Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe #-} module STLC.Syntax where open import Data.Nat using (ℕ; suc) open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (Dec; yes; no) private variable n : ℕ data Type : Set where _⇒_ : Type → Type → Type _×'_ : Type → Type → Type unit : Type data Term : ℕ → Set where abs : Type → Term (suc n) → Term n app : Term n → Term n → Term n var : Fin n → Term n ⋆ : Term n pair : Term n → Term n → Term n projₗ : Term n → Term n projᵣ : Term n → Term n data Ctx : ℕ → Set where ● : Ctx 0 _,-_ : Ctx n → Type → Ctx (suc n) find : Ctx n → Fin n → Type find (Γ ,- A) fzero = A find (Γ ,- A) (fsuc n) = find Γ n _=?=_ : (x : Type) → (y : Type) → Dec (x ≡ y) unit =?= unit = yes refl (a ⇒ b) =?= (c ⇒ d) with a =?= c | b =?= d ... | yes refl | yes refl = yes refl ... | yes refl | no ne = no λ { refl → ne refl } ... | no ne | _ = no λ { refl → ne refl } (a ×' b) =?= (c ×' d) with a =?= c | b =?= d ... | yes refl | yes refl = yes refl ... | yes refl | no ne = no λ { refl → ne refl } ... | no ne | _ = no λ { refl → ne refl } unit =?= (_ ×' _) = no λ () unit =?= (_ ⇒ _) = no λ () (_ ×' _) =?= unit = no λ () (_ ×' _) =?= (_ ⇒ _) = no λ () (_ ⇒ _) =?= unit = no λ () (_ ⇒ _) =?= (_ ×' _) = no λ ()
{ "alphanum_fraction": 0.4893029676, "avg_line_length": 28.4117647059, "ext": "agda", "hexsha": "9713e3eea62d0238ba67ffa1f3eb728dfcc45451", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TrulyNonstrict/STLC", "max_forks_repo_path": "STLC/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TrulyNonstrict/STLC", "max_issues_repo_path": "STLC/Syntax.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TrulyNonstrict/STLC", "max_stars_repo_path": "STLC/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-10T14:58:46.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-10T14:58:46.000Z", "num_tokens": 530, "size": 1449 }
------------------------------------------------------------------------------ -- Totality properties of the gcd ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.GCD.Partial.TotalityI where open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI open import FOTC.Program.GCD.Partial.ConversionRulesI open import FOTC.Program.GCD.Partial.Definitions open import FOTC.Program.GCD.Partial.GCD ------------------------------------------------------------------------------ -- gcd 0 (succ n) is total. gcd-0S-N : ∀ {n} → N n → N (gcd zero (succ₁ n)) gcd-0S-N {n} Nn = subst N (sym (gcd-0S n)) (nsucc Nn) ------------------------------------------------------------------------------ -- gcd (succ₁ n) 0 is total. gcd-S0-N : ∀ {n} → N n → N (gcd (succ₁ n) zero) gcd-S0-N {n} Nn = subst N (sym (gcd-S0 n)) (nsucc Nn) ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is total. gcd-S>S-N : ∀ {m n} → N m → N n → N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) → succ₁ m > succ₁ n → N (gcd (succ₁ m) (succ₁ n)) gcd-S>S-N {m} {n} Nm Nn ih Sm>Sn = subst N (sym (gcd-S>S m n Sm>Sn)) ih ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is total. gcd-S≯S-N : ∀ {m n} → N m → N n → N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) → succ₁ m ≯ succ₁ n → N (gcd (succ₁ m) (succ₁ n)) gcd-S≯S-N {m} {n} Nm Nn ih Sm≯Sn = subst N (sym (gcd-S≯S m n Sm≯Sn)) ih ------------------------------------------------------------------------------ -- gcd m n when m > n is total. gcd-x>y-N : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → N (gcd o p)) → m > n → x≢0≢y m n → N (gcd m n) gcd-x>y-N nzero Nn _ 0>n _ = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-N (nsucc Nm) nzero _ _ _ = gcd-S0-N Nm gcd-x>y-N (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ = gcd-S>S-N Nm Nn ih Sm>Sn where -- Inductive hypothesis. ih : N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₂ p))) ------------------------------------------------------------------------------ -- gcd m n when m ≯ n is total. gcd-x≯y-N : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → N (gcd o p)) → m ≯ n → x≢0≢y m n → N (gcd m n) gcd-x≯y-N nzero nzero _ _ h = ⊥-elim (h (refl , refl)) gcd-x≯y-N nzero (nsucc Nn) _ _ _ = gcd-0S-N Nn gcd-x≯y-N (nsucc _) nzero _ Sm≯0 _ = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-N (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ = gcd-S≯S-N Nm Nn ih Sm≯Sn where -- Inductive hypothesis. ih : N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₁ p))) ------------------------------------------------------------------------------ -- gcd m n when m ≢ 0 and n ≢ 0 is total. gcd-N : ∀ {m n} → N m → N n → x≢0≢y m n → N (gcd m n) gcd-N = Lexi-wfind A h where A : D → D → Set A i j = x≢0≢y i j → N (gcd i j) h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-N Ni Nj ah) (gcd-x≯y-N Ni Nj ah) (x>y∨x≯y Ni Nj)
{ "alphanum_fraction": 0.4316885693, "avg_line_length": 38.4095238095, "ext": "agda", "hexsha": "ffe28795f600df14f8ded0bfd275a1a17aaa6fd6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/TotalityI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/TotalityI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/TotalityI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1446, "size": 4033 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data D (A : Set) : Set where c c' : D A module M (A : Set) where postulate rew : c {A} ≡ c' {A} {-# REWRITE rew #-} test : ∀ {B} → c {B} ≡ c' {B} test = refl
{ "alphanum_fraction": 0.5646258503, "avg_line_length": 16.3333333333, "ext": "agda", "hexsha": "b70e49352fad7b73e8dc3ccaf07c60eb411dbe64", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RewriteConstructorParsNotGeneral2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/RewriteConstructorParsNotGeneral2.agda", "max_line_length": 33, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/RewriteConstructorParsNotGeneral2.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 108, "size": 294 }
{- This second-order term syntax was created from the following second-order syntax description: syntax QIO type T : 0-ary P : 0-ary term new : P.T -> T measure : P T T -> T applyX : P P.T -> T applyI2 : P P.T -> T applyDuv : P P (P,P).T -> T applyDu : P P.T -> T applyDv : P P.T -> T theory (A) a:P t u:T |> applyX (a, b.measure(b, t, u)) = measure(a, u, t) (B) a:P b:P t u:P.T |> measure(a, applyDu(b, b.t[b]), applyDv(b, b.u[b])) = applyDuv(a, b, a b.measure(a, t[b], u[b])) (D) t u:T |> new(a.measure(a, t, u)) = t (E) b:P t:(P, P).T |> new(a.applyDuv(a, b, a b. t[a,b])) = applyDu(b, b.new(a.t[a,b])) -} module QIO.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import QIO.Signature private variable Γ Δ Π : Ctx α : QIOT 𝔛 : Familyₛ -- Inductive term declaration module QIO:Terms (𝔛 : Familyₛ) where data QIO : Familyₛ where var : ℐ ⇾̣ QIO mvar : 𝔛 α Π → Sub QIO Π Γ → QIO α Γ new : QIO T (P ∙ Γ) → QIO T Γ measure : QIO P Γ → QIO T Γ → QIO T Γ → QIO T Γ applyX : QIO P Γ → QIO T (P ∙ Γ) → QIO T Γ applyI2 : QIO P Γ → QIO T (P ∙ Γ) → QIO T Γ applyDuv : QIO P Γ → QIO P Γ → QIO T (P ∙ P ∙ Γ) → QIO T Γ applyDu : QIO P Γ → QIO T (P ∙ Γ) → QIO T Γ applyDv : QIO P Γ → QIO T (P ∙ Γ) → QIO T Γ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 QIOᵃ : MetaAlg QIO QIOᵃ = record { 𝑎𝑙𝑔 = λ where (newₒ ⋮ a) → new a (measureₒ ⋮ a , b , c) → measure a b c (applyXₒ ⋮ a , b) → applyX a b (applyI2ₒ ⋮ a , b) → applyI2 a b (applyDuvₒ ⋮ a , b , c) → applyDuv a b c (applyDuₒ ⋮ a , b) → applyDu a b (applyDvₒ ⋮ a , b) → applyDv a b ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module QIOᵃ = MetaAlg QIOᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : QIO ⇾̣ 𝒜 𝕊 : Sub QIO Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (new a) = 𝑎𝑙𝑔 (newₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (measure a b c) = 𝑎𝑙𝑔 (measureₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞 (applyX a b) = 𝑎𝑙𝑔 (applyXₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (applyI2 a b) = 𝑎𝑙𝑔 (applyI2ₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (applyDuv a b c) = 𝑎𝑙𝑔 (applyDuvₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞 (applyDu a b) = 𝑎𝑙𝑔 (applyDuₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (applyDv a b) = 𝑎𝑙𝑔 (applyDvₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ QIOᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ QIO α Γ) → 𝕤𝕖𝕞 (QIOᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (newₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (measureₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (applyXₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (applyI2ₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (applyDuvₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (applyDuₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (applyDvₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ QIO ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : QIO ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ QIOᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : QIO α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub QIO Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (new a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (measure a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (applyX a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (applyI2 a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (applyDuv a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (applyDu a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (applyDv a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature QIO:Syn : Syntax QIO:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = QIO:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open QIO:Terms 𝔛 in record { ⊥ = QIO ⋉ QIOᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax QIO:Syn public open QIO:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands QIOᵃ public open import SOAS.Metatheory QIO:Syn public
{ "alphanum_fraction": 0.5213622291, "avg_line_length": 30.664556962, "ext": "agda", "hexsha": "3bc9b52463760263215aa4e9c1437dca1ff52946", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "out/QIO/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "out/QIO/Syntax.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "out/QIO/Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3090, "size": 4845 }
module Context where open import Level using (_⊔_) open import Function open import Data.List.Base -- | `ifix`. Check `docs/fomega/deep-isorecursive/README.md` for details. {-# NO_POSITIVITY_CHECK #-} data IFix {ι φ} {I : Set ι} (F : (I -> Set φ) -> I -> Set φ) (i : I) : Set φ where Wrap : F (IFix F) i -> IFix F i infix 3 _∈_ _⊆_ infixl 5 _▻_ _▻▻_ _▶_ _▷_ -- | A context is a snoc-list. data Con {α} (A : Set α) : Set α where ε : Con A _▻_ : (Γ : Con A) -> A -> Con A -- | The left fold over a context. Note that for contexts, the left fold is the lazy one, -- i.e. it's preferable. foldlᶜ : ∀ {α ρ} {A : Set α} {R : Set ρ} -> (R -> A -> R) -> R -> Con A -> R foldlᶜ f z ε = z foldlᶜ f z (Γ ▻ σ) = f (foldlᶜ f z Γ) σ -- | Concatenate two contexts. _▻▻_ : ∀ {α} {A : Set α} -> Con A -> Con A -> Con A Γ ▻▻ Δ = foldlᶜ _▻_ Γ Δ {-# DISPLAY foldlᶜ _▻_ Γ Δ = Γ ▻▻ Δ #-} -- | The right fold over a context. Note that for contexts, the right fold is the strict one, -- i.e. it's not preferable. foldrᶜ : ∀ {α ρ} {A : Set α} {R : Set ρ} -> (A -> R -> R) -> R -> Con A -> R foldrᶜ f z ε = z foldrᶜ f z (Γ ▻ σ) = foldrᶜ f (f σ z) Γ -- | Mapping over a context. mapᶜ : ∀ {α β} {A : Set α} {B : Set β} -> (A -> B) -> Con A -> Con B mapᶜ f = foldlᶜ (λ Ξ x -> Ξ ▻ f x) ε joinᶜ : ∀ {α} {A : Set α} -> Con (Con A) -> Con A joinᶜ = foldlᶜ _▻▻_ ε listToCon : ∀ {α} {A : Set α} -> List A -> Con A listToCon = foldl _▻_ ε {-# DISPLAY foldl _▻_ ε = listToCon #-} -- | A variable is a point in a context. data _∈_ {α} {A : Set α} σ : Con A -> Set where vz : ∀ {Γ} -> σ ∈ Γ ▻ σ vs_ : ∀ {Γ τ} -> (v : σ ∈ Γ) -> σ ∈ Γ ▻ τ -- | Expand the context that a variable is defined in, but do not change the variable. wkᵛ : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ} -> σ ∈ Δ -> σ ∈ Γ ▻▻ Δ wkᵛ vz = vz wkᵛ (vs v) = vs (wkᵛ v) -- | A variable in the middle of a context. vsⁿ : ∀ {α} {A : Set α} {Θ : Con A} {σ} Ξ -> σ ∈ Θ ▻ σ ▻▻ Ξ vsⁿ ε = vz vsⁿ (Ξ ▻ ν) = vs (vsⁿ Ξ) mapᵛ : ∀ {α β} {A : Set α} {B : Set β} {Γ σ} {f : A -> B} -> σ ∈ Γ -> f σ ∈ mapᶜ f Γ mapᵛ vz = vz mapᵛ (vs v) = vs (mapᵛ v) -- -- | Order-preserving embedding. I.e. in `Γ ⊆ Δ` `Δ` contains the same elements as `Γ` and -- -- they're in the same order, but there can be additional elements between them. -- -- See https://fplab.bitbucket.io/posts/2008-03-07-order-preserving-embeddin.html -- data _⊆_ {α} {A : Set α} : Con A -> Con A -> Set where -- -- We use this instead of `ε ⊆ ε`, because we this definition we have `idᵒ ∘ᵒ idᵒ ≡ idᵒ` -- -- definitionally and this is needed in order to type check some terms with open types. -- stop : ∀ {Γ} -> Γ ⊆ Γ -- skip : ∀ {Γ Δ σ} -> (ι : Γ ⊆ Δ) -> Γ ⊆ Δ ▻ σ -- keep : ∀ {Γ Δ σ} -> (ι : Γ ⊆ Δ) -> Γ ▻ σ ⊆ Δ ▻ σ _⊆_ : ∀ {α} {A : Set α} -> Con A -> Con A -> Set α Γ ⊆ Δ = ∀ {σ} -> σ ∈ Γ -> σ ∈ Δ stop : ∀ {α} {A : Set α} {Γ : Con A} -> Γ ⊆ Γ stop = id dupl : ∀ {α} {A : Set α} {Γ : Con A} {σ} -> Γ ▻ σ ▻ σ ⊆ Γ ▻ σ dupl vz = vz dupl (vs v) = v skip : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ} -> Γ ⊆ Δ -> Γ ⊆ Δ ▻ σ skip ι = vs_ ∘ ι keep : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ} -> Γ ⊆ Δ -> Γ ▻ σ ⊆ Δ ▻ σ keep ι vz = vz keep ι (vs v) = vs (ι v) move : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ} -> Γ ⊆ Δ -> Γ ▻ σ ▻ σ ⊆ Δ ▻ σ move ι vz = vz move ι (vs v) = keep ι v skipⁿ : ∀ {α} {A : Set α} {Γ Δ : Con A} Ξ -> Γ ⊆ Δ -> Γ ⊆ Δ ▻▻ Ξ skipⁿ ε ι = ι skipⁿ (Ξ ▻ ν) ι = skip (skipⁿ Ξ ι) keepⁿ : ∀ {α} {A : Set α} {Γ Δ : Con A} Ξ -> Γ ⊆ Δ -> Γ ▻▻ Ξ ⊆ Δ ▻▻ Ξ keepⁿ ε ι = ι keepⁿ (Ξ ▻ ν) ι = keep (keepⁿ Ξ ι) empᵒ : ∀ {α} {A : Set α} {Γ : Con A} -> ε ⊆ Γ empᵒ {Γ = ε} = stop empᵒ {Γ = Γ ▻ σ} = skip empᵒ -- | The identity embedding. idᵒ : ∀ {α} {A : Set α} {Γ : Con A} -> Γ ⊆ Γ idᵒ = stop -- | The left extension embedding. extˡ : ∀ {α} {A : Set α} {Γ Δ : Con A} -> Γ ⊆ Δ ▻▻ Γ extˡ {Γ = ε} = empᵒ extˡ {Γ = Γ ▻ σ} = keep extˡ -- | The right extension embedding. extʳ : ∀ {α} {A : Set α} {Γ : Con A} Δ -> Γ ⊆ Γ ▻▻ Δ extʳ Δ = skipⁿ Δ idᵒ -- | The one element extension embedding. topᵒ : ∀ {α} {A : Set α} {Γ : Con A} {σ} -> Γ ⊆ Γ ▻ σ topᵒ = extʳ (ε ▻ _) mapᶜ-⊆ : ∀ {α β} {A : Set α} {B : Set β} {Γ Δ} {f : A -> B} -> Γ ⊆ Δ -> mapᶜ f Γ ⊆ mapᶜ f Δ mapᶜ-⊆ {Γ = ε} ι () mapᶜ-⊆ {Γ = Γ ▻ σ} ι vz = mapᵛ (ι vz) mapᶜ-⊆ {Γ = Γ ▻ σ} ι (vs v) = mapᶜ-⊆ (ι ∘ vs_) v -- | Rename a variable. renᵛ : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ} -> Γ ⊆ Δ -> σ ∈ Γ -> σ ∈ Δ renᵛ ι = ι shiftᵛⁿ : ∀ {α} {A : Set α} {Γ : Con A} {σ} Δ -> σ ∈ Γ -> σ ∈ Γ ▻▻ Δ shiftᵛⁿ Δ = renᵛ (extʳ Δ) shiftᵛ : ∀ {α} {A : Set α} {Γ : Con A} {σ τ} -> σ ∈ Γ -> σ ∈ Γ ▻ τ shiftᵛ = shiftᵛⁿ (ε ▻ _) -- We need both first-order and higher-order environments, because the former are more convenient -- for compilation and the latter are more convenient for evaluation at the type level. -- | In `Seq P Γ` there a `P σ` for each `σ` from `Γ`. data Seq {α π} {A : Set α} (P : A -> Set π) : Con A -> Set π where ø : Seq P ε _▶_ : ∀ {σ Γ} -> Seq P Γ -> P σ -> Seq P (Γ ▻ σ) -- We wrap this in `record` in order to get good inference. -- | In `Env P Γ` there a `P σ` for each `σ` from `Γ`. record Env {α π} {A : Set α} (P : A -> Set π) (Γ : Con A) : Set (α ⊔ π) where constructor PackEnv field unpackEnv : ∀ {σ} -> σ ∈ Γ -> P σ open Env public foldlˢ : ∀ {α π ρ} {A : Set α} {P : A -> Set π} {Γ} -> (R : Con A -> Set ρ) -> (∀ {Ξ σ} -> R Ξ -> P σ -> R (Ξ ▻ σ)) -> R ε -> Seq P Γ -> R Γ foldlˢ R f z ø = z foldlˢ R f z (ρ ▶ α) = f (foldlˢ R f z ρ) α -- | Apply a natural transformation to each element of a `Seq`. mapˢ : ∀ {α π₁ π₂} {A : Set α} {P₁ : A -> Set π₁} {P₂ : A -> Set π₂} {Γ} -> (∀ {σ} -> P₁ σ -> P₂ σ) -> Seq P₁ Γ -> Seq P₂ Γ mapˢ f = foldlˢ (Seq _) (λ ρ x -> ρ ▶ f x) ø mapElˢ : ∀ {α π₁ π₂} {A : Set α} {P₁ : A -> Set π₁} {P₂ : A -> Set π₂} {Γ} -> (∀ {σ} -> σ ∈ Γ -> P₁ σ -> P₂ σ) -> Seq P₁ Γ -> Seq P₂ Γ mapElˢ f ø = ø mapElˢ f (ρ ▶ α) = mapElˢ (f ∘ vs_) ρ ▶ f vz α eraseˢ : ∀ {α π} {A : Set α} {P : Set π} {Γ : Con A} -> Seq (λ _ -> P) Γ -> Con P eraseˢ = foldlˢ _ _▻_ ε ∅ : ∀ {α π} {A : Set α} {P : A -> Set π} -> Env P ε ∅ = PackEnv λ() _▷_ : ∀ {α π} {A : Set α} {Γ σ} {P : A -> Set π} -> Env P Γ -> P σ -> Env P (Γ ▻ σ) PackEnv ρ ▷ α = PackEnv λ { vz -> α ; (vs v) -> ρ v } _∘ᵉ_ : ∀ {α π} {A : Set α} {Γ Δ} {P : A -> Set π} -> Env P Δ -> Γ ⊆ Δ -> Env P Γ PackEnv ρ ∘ᵉ ι = PackEnv (ρ ∘ ι) withSplitᵉ : ∀ {α π ρ} {A : Set α} {Γ σ} {P : A -> Set π} {R : Set ρ} -> Env P (Γ ▻ σ) -> (Env P Γ -> P σ -> R) -> R withSplitᵉ (PackEnv ρ) k = k (PackEnv (ρ ∘ vs_)) (ρ vz) foldlᵉ : ∀ {α π ρ} {A : Set α} {P : A -> Set π} {Γ} -> (R : Con A -> Set ρ) -> (∀ {Ξ σ} -> R Ξ -> P σ -> R (Ξ ▻ σ)) -> R ε -> Env P Γ -> R Γ foldlᵉ {Γ = ε} R f z ρ = z foldlᵉ {Γ = Γ ▻ σ} R f z ρ = withSplitᵉ ρ λ ρ′ α -> f (foldlᵉ R f z ρ′) α -- | Apply a natural transformation to each element of a `Env`. mapᵉ : ∀ {α π₁ π₂} {A : Set α} {P₁ : A -> Set π₁} {P₂ : A -> Set π₂} {Γ} -> (∀ {σ} -> P₁ σ -> P₂ σ) -> Env P₁ Γ -> Env P₂ Γ mapᵉ f = foldlᵉ (Env _) (λ ρ x -> ρ ▷ f x) ∅ mapElᵉ : ∀ {α π₁ π₂} {A : Set α} {P₁ : A -> Set π₁} {P₂ : A -> Set π₂} {Γ} -> (∀ {σ} -> σ ∈ Γ -> P₁ σ -> P₂ σ) -> Env P₁ Γ -> Env P₂ Γ mapElᵉ f (PackEnv ρ) = PackEnv λ v -> f v (ρ v) -- | Look up a variable in an environment. lookupᵉ : ∀ {α π} {A : Set α} {P : A -> Set π} {Γ σ} -> σ ∈ Γ -> Env P Γ -> P σ lookupᵉ v (PackEnv ρ) = ρ v eraseᵉ : ∀ {α π} {A : Set α} {P : Set π} {Γ : Con A} -> Env (λ _ -> P) Γ -> Con P eraseᵉ = foldlᵉ _ _▻_ ε record Environment {α β} {A : Set α} (_◆_ : Con A -> A -> Set β) : Set (α ⊔ β) where infix 3 _⊢ᵉ_ field varᵈ : ∀ {Γ σ} -> σ ∈ Γ -> Γ ◆ σ renᵈ : ∀ {Γ Δ σ} -> Γ ⊆ Δ -> Γ ◆ σ -> Δ ◆ σ idᵉ : ∀ {Γ} -> Env (Γ ◆_) Γ idᵉ = PackEnv varᵈ freshᵉ : ∀ {Γ σ} -> (Γ ▻ σ) ◆ σ freshᵉ = varᵈ vz _⊢ᵉ_ : Con A -> Con A -> Set (α ⊔ β) Ξ ⊢ᵉ Θ = Env (λ σ -> Ξ ◆ σ) Θ renᵉ : ∀ {Δ Ξ Γ} -> Δ ⊆ Ξ -> Δ ⊢ᵉ Γ -> Ξ ⊢ᵉ Γ renᵉ ι (PackEnv ρ) = PackEnv $ renᵈ ι ∘ ρ keepᵉ : ∀ {Δ Γ σ} -> Δ ⊢ᵉ Γ -> Δ ▻ σ ⊢ᵉ Γ ▻ σ keepᵉ ρ = renᵉ topᵒ ρ ▷ freshᵉ topᵉ : ∀ {Γ σ} -> Γ ◆ σ -> Γ ⊢ᵉ Γ ▻ σ topᵉ t = idᵉ ▷ t shiftᵉ : ∀ {Δ Γ τ} -> Δ ⊢ᵉ Γ -> Δ ▻ τ ⊢ᵉ Γ shiftᵉ = renᵉ topᵒ
{ "alphanum_fraction": 0.4785583384, "avg_line_length": 33.2723577236, "ext": "agda", "hexsha": "75a3d6b691f7aa72363177be3c808be2cbef9640", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "papers/unraveling-recursion/code/src/Context.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "papers/unraveling-recursion/code/src/Context.agda", "max_line_length": 97, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "papers/unraveling-recursion/code/src/Context.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 4123, "size": 8185 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Data.Sigma open import Cubical.Categories.Category private variable ℓ ℓ' : Level module _ (C : Category ℓ ℓ') where open Category C isTerminal : (x : ob) → Type (ℓ-max ℓ ℓ') isTerminal x = ∀ (y : ob) → isContr (C [ y , x ]) Terminal : Type (ℓ-max ℓ ℓ') Terminal = Σ[ x ∈ ob ] isTerminal x terminalOb : Terminal → ob terminalOb = fst terminalArrow : (T : Terminal) (y : ob) → C [ y , terminalOb T ] terminalArrow T y = T .snd y .fst terminalArrowUnique : {T : Terminal} {y : ob} (f : C [ y , terminalOb T ]) → terminalArrow T y ≡ f terminalArrowUnique {T} {y} f = T .snd y .snd f terminalEndoIsId : (T : Terminal) (f : C [ terminalOb T , terminalOb T ]) → f ≡ id terminalEndoIsId T f = isContr→isProp (T .snd (terminalOb T)) f id hasTerminal : Type (ℓ-max ℓ ℓ') hasTerminal = ∥ Terminal ∥₁ -- Terminality of an object is a proposition. isPropIsTerminal : (x : ob) → isProp (isTerminal x) isPropIsTerminal _ = isPropΠ λ _ → isPropIsContr open CatIso -- Objects that are initial are isomorphic. terminalToIso : (x y : Terminal) → CatIso C (terminalOb x) (terminalOb y) mor (terminalToIso x y) = terminalArrow y (terminalOb x) inv (terminalToIso x y) = terminalArrow x (terminalOb y) sec (terminalToIso x y) = terminalEndoIsId y _ ret (terminalToIso x y) = terminalEndoIsId x _ open isUnivalent -- The type of terminal objects of a univalent category is a proposition, -- i.e. all terminal objects are equal. isPropTerminal : (hC : isUnivalent C) → isProp Terminal isPropTerminal hC x y = Σ≡Prop isPropIsTerminal (CatIsoToPath hC (terminalToIso x y))
{ "alphanum_fraction": 0.6742105263, "avg_line_length": 30.6451612903, "ext": "agda", "hexsha": "b9a472ddaa4b93d953730f0baa9c5cf7e2d738ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 598, "size": 1900 }
{-# OPTIONS --without-K #-} module Simplify where open import FT open import HoTT -- just flip. It is he caller's responsibility to do other things flip : {b₁ b₂ : FT} → b₂ ⇛ b₁ → b₁ ⇛ b₂ flip unite₊⇛ = uniti₊⇛ flip uniti₊⇛ = unite₊⇛ flip swap₊⇛ = swap₊⇛ flip assocl₊⇛ = assocr₊⇛ flip assocr₊⇛ = assocl₊⇛ flip unite⋆⇛ = uniti⋆⇛ flip uniti⋆⇛ = unite⋆⇛ flip swap⋆⇛ = swap⋆⇛ flip assocl⋆⇛ = assocr⋆⇛ flip assocr⋆⇛ = assocl⋆⇛ flip distz⇛ = factorz⇛ flip factorz⇛ = distz⇛ flip dist⇛ = factor⇛ flip factor⇛ = dist⇛ flip id⇛ = id⇛ flip (sym⇛ p) = p flip (p ◎ q) = flip q ◎ flip p flip (p ⊕ q) = flip p ⊕ flip q flip (p ⊗ q) = flip p ⊗ flip q flip-id-lemma : ∀ {b} → flip {b} {b} id⇛ ≡ id⇛ flip-id-lemma = λ {b} → refl id⇛ -- we're going to be pretty brute-force about this, for now -- All this is going to be one huge mutual definition. mutual simplify : {b₁ b₂ : FT} → b₁ ⇛ b₂ → b₁ ⇛ b₂ -- all the basic (atomic) combinators simplify to themselves simplify unite₊⇛ = unite₊⇛ simplify uniti₊⇛ = uniti₊⇛ simplify swap₊⇛ = swap₊⇛ simplify assocl₊⇛ = assocl₊⇛ simplify assocr₊⇛ = assocr₊⇛ simplify unite⋆⇛ = unite⋆⇛ simplify uniti⋆⇛ = uniti⋆⇛ simplify swap⋆⇛ = swap⋆⇛ simplify assocl⋆⇛ = assocl⋆⇛ simplify assocr⋆⇛ = assocr⋆⇛ simplify distz⇛ = distz⇛ simplify factorz⇛ = factorz⇛ simplify dist⇛ = dist⇛ simplify factor⇛ = factor⇛ simplify id⇛ = id⇛ simplify (sym⇛ p) = flip (simplify p) simplify (p ◎ q) = scomp (simplify p) (simplify q) simplify (p ⊕ q) = simplify p ⊕ simplify q simplify (p ⊗ q) = simplify p ⊗ simplify q -- split on p, and then only on those q that we want to simplify scomp : {b₁ b₂ b₃ : FT} → b₁ ⇛ b₂ → b₂ ⇛ b₃ → b₁ ⇛ b₃ scomp id⇛ p = p scomp unite₊⇛ id⇛ = unite₊⇛ scomp unite₊⇛ uniti₊⇛ = id⇛ scomp unite₊⇛ q = unite₊⇛ ◎ q -- more? scomp uniti₊⇛ unite₊⇛ = id⇛ scomp uniti₊⇛ id⇛ = uniti₊⇛ scomp uniti₊⇛ q = uniti₊⇛ ◎ q scomp swap₊⇛ swap₊⇛ = id⇛ scomp swap₊⇛ id⇛ = swap₊⇛ scomp swap₊⇛ (q ◎ q₁) = scomp swap₊⇛ q ◎ q₁ scomp swap₊⇛ q = swap₊⇛ ◎ q scomp assocl₊⇛ assocr₊⇛ = id⇛ scomp assocl₊⇛ id⇛ = assocl₊⇛ scomp assocl₊⇛ q = assocl₊⇛ ◎ q scomp assocr₊⇛ assocl₊⇛ = id⇛ scomp assocr₊⇛ id⇛ = assocr₊⇛ scomp assocr₊⇛ q = assocr₊⇛ ◎ q scomp unite⋆⇛ uniti⋆⇛ = id⇛ scomp unite⋆⇛ id⇛ = unite⋆⇛ scomp unite⋆⇛ q = unite⋆⇛ ◎ q scomp uniti⋆⇛ unite⋆⇛ = id⇛ scomp uniti⋆⇛ id⇛ = uniti⋆⇛ scomp uniti⋆⇛ q = uniti⋆⇛ ◎ q scomp swap⋆⇛ swap⋆⇛ = id⇛ scomp swap⋆⇛ id⇛ = swap⋆⇛ scomp swap⋆⇛ q = swap⋆⇛ ◎ q scomp assocl⋆⇛ assocr⋆⇛ = id⇛ scomp assocl⋆⇛ id⇛ = assocl⋆⇛ scomp assocl⋆⇛ q = assocl⋆⇛ ◎ q scomp assocr⋆⇛ assocl⋆⇛ = id⇛ scomp assocr⋆⇛ id⇛ = assocr⋆⇛ scomp assocr⋆⇛ q = assocr⋆⇛ ◎ q scomp distz⇛ id⇛ = distz⇛ scomp distz⇛ q = distz⇛ ◎ q scomp factorz⇛ distz⇛ = id⇛ scomp factorz⇛ id⇛ = factorz⇛ scomp factorz⇛ q = factorz⇛ ◎ q scomp dist⇛ q = dist⇛ ◎ q -- Can't simplify? scomp factor⇛ dist⇛ = id⇛ scomp factor⇛ id⇛ = factor⇛ scomp factor⇛ q = factor⇛ ◎ q scomp (sym⇛ p) q = (flip p) ◎ q -- won't happen from simplify scomp (p₁ ◎ p₂) id⇛ = scomp p₁ p₂ scomp (p₁ ◎ p₂) q = scomp p₁ p₂ ◎ q scomp (p₁ ⊕ p₂) id⇛ = p₁ ⊕ p₂ scomp (p₁ ⊕ p₂) (q₁ ⊕ q₂) = scomp p₁ q₁ ⊕ scomp p₂ q₂ scomp (p₁ ⊕ p₂) q = (p₁ ⊕ p₂) ◎ q scomp (p₁ ⊗ p₂) id⇛ = p₁ ⊗ p₂ scomp (p₁ ⊗ p₂) (q ◎ q₁) = scomp (p₁ ⊗ p₂) q ◎ q₁ scomp (p₁ ⊗ p₂) (q ⊗ q₁) = scomp p₁ q ⊗ scomp p₂ q₁ scomp (p₁ ⊗ p₂) q = (p₁ ⊗ p₂) ◎ q -- testing test1 : ∀ {b₁ : FT} → b₁ ⇛ b₁ test1 = simplify (id⇛ ◎ id⇛ ◎ id⇛) test2 : ∀ {b₁ : FT} → TIMES ONE b₁ ⇛ TIMES ONE b₁ test2 = simplify ((sym⇛ uniti⋆⇛) ◎ id⇛ ◎ uniti⋆⇛)
{ "alphanum_fraction": 0.5867148416, "avg_line_length": 31.0172413793, "ext": "agda", "hexsha": "3348138923d7cb6dbee105f680cc7d26e1b8f649", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/Simplify.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/Simplify.agda", "max_line_length": 66, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/Simplify.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2114, "size": 3598 }
open import Prelude open import dynamics-core module lemmas-ground where -- not ground types aren't just a type constructor filled with holes ground-not-holes : ∀{τ} → (τ ground → ⊥) → (τ ≠ (⦇-⦈ ==> ⦇-⦈)) × (τ ≠ (⦇-⦈ ⊕ ⦇-⦈)) × (τ ≠ (⦇-⦈ ⊠ ⦇-⦈)) ground-not-holes notg = (λ{refl → notg GArrHole}) , (λ{refl → notg GSumHole}) , (λ{refl → notg GProdHole}) -- not ground types either have to be hole, an arrow, or a sum not-ground : ∀{τ} → (τ ground → ⊥) → ((τ == ⦇-⦈) + (Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] (τ == (τ1 ==> τ2))) + (Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] (τ == (τ1 ⊕ τ2))) + (Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] (τ == (τ1 ⊠ τ2)))) not-ground {num} gnd = abort (gnd GNum) not-ground {⦇-⦈} gnd = Inl refl not-ground {τ ==> τ₁} gnd = Inr (Inl (τ , τ₁ , refl)) not-ground {τ ⊕ τ₁} gnd = Inr (Inr (Inl (τ , τ₁ , refl))) not-ground {τ ⊠ τ₁} gnd = Inr (Inr (Inr (τ , τ₁ , refl)))
{ "alphanum_fraction": 0.4439163498, "avg_line_length": 42.08, "ext": "agda", "hexsha": "e97235933bd8f36e6e82d94ff21f389a272d9d8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-ground.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-ground.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-ground.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 432, "size": 1052 }
module _ where open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import calculus open import context-properties open import Esterel.Lang.Binding
{ "alphanum_fraction": 0.8480725624, "avg_line_length": 24.5, "ext": "agda", "hexsha": "fea915ea43eb4428e309ed6df78261d5ff069f67", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "cross-tests/examples/1/test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "cross-tests/examples/1/test.agda", "max_line_length": 49, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "cross-tests/examples/1/test.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 96, "size": 441 }
module ShowNat where open import IO open import Data.Unit open import Data.Nat.Show open import Level using (0ℓ) main = run {0ℓ} (putStrLn (Data.Nat.Show.show 10))
{ "alphanum_fraction": 0.7530120482, "avg_line_length": 18.4444444444, "ext": "agda", "hexsha": "bdf3d8e3bad495d914b375b22e71e4d4c0db5de5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guilhermehas/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/ShowNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guilhermehas/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/ShowNat.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guilhermehas/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/ShowNat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 50, "size": 166 }
module Avionics.SafetyEnvelopes.ExtInterface where open import Data.Bool using (Bool) open import Data.Float using (Float) open import Data.List using (List; map) open import Data.Maybe using (Maybe; just; nothing) open import Data.Product using (_×_; _,_) open import Avionics.Probability using (Dist; NormalDist; ND) open import Avionics.Real renaming (fromFloat to ff; toFloat to tf) open import Avionics.SafetyEnvelopes using (z-predictable'; sample-z-predictable) open import ExtInterface.Data.Maybe using (just; nothing) renaming (Maybe to ExtMaybe) open import ExtInterface.Data.Product as Ext using (⟨_,_⟩) fromFloats-z-predictable : List (Float Ext.× Float) → Float → Float → ExtMaybe (Float Ext.× Bool) fromFloats-z-predictable means×stds z x = let ndists = map (λ{⟨ mean , std ⟩ → ND (ff mean) (ff std)}) means×stds (m , b) = z-predictable' ndists (ff z) (ff x) in just ⟨ tf m , b ⟩ {-# COMPILE GHC fromFloats-z-predictable as zPredictable #-} fromFloats-sample-z-predictable : List (Float Ext.× Float) → Float → Float → List Float → ExtMaybe (Float Ext.× Float Ext.× Bool) fromFloats-sample-z-predictable means×stds zμ zσ xs = let ndists = map (λ{⟨ mean , std ⟩ → ND (ff mean) (ff std)}) means×stds in return (sample-z-predictable ndists (ff zμ) (ff zσ) (map ff xs)) where return : Maybe (ℝ × ℝ × Bool) → ExtMaybe (Float Ext.× Float Ext.× Bool) return nothing = nothing return (just (m' , v' , b)) = just ⟨ tf m' , ⟨ tf v' , b ⟩ ⟩ {-# COMPILE GHC fromFloats-sample-z-predictable as sampleZPredictable #-}
{ "alphanum_fraction": 0.686163522, "avg_line_length": 41.8421052632, "ext": "agda", "hexsha": "f56efebd35032c4e80bee48069b444e11d16f63b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z", "max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z", "max_forks_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "RPI-WCL/safety-envelopes-sentinels", "max_forks_repo_path": "agda/Avionics/SafetyEnvelopes/ExtInterface.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "RPI-WCL/safety-envelopes-sentinels", "max_issues_repo_path": "agda/Avionics/SafetyEnvelopes/ExtInterface.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "896e67a2ad21041a1c9ef5f3ad6318c67d730341", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "RPI-WCL/safety-envelopes-sentinels", "max_stars_repo_path": "agda/Avionics/SafetyEnvelopes/ExtInterface.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 486, "size": 1590 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monad where open import Level open import Categories.Category open import Categories.Functor hiding (_≡_; assoc; identityˡ; identityʳ) open import Categories.NaturalTransformation renaming (id to idN) record Monad {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where field F : Endofunctor C η : NaturalTransformation id F μ : NaturalTransformation (F ∘ F) F open Functor F field .assoc : μ ∘₁ (F ∘ˡ μ) ≡ μ ∘₁ (μ ∘ʳ F) .identityˡ : μ ∘₁ (F ∘ˡ η) ≡ idN .identityʳ : μ ∘₁ (η ∘ʳ F) ≡ idN
{ "alphanum_fraction": 0.6568965517, "avg_line_length": 27.619047619, "ext": "agda", "hexsha": "c1eca3a8e73a374b58d06af33d78bfbc5068c632", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monad.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monad.agda", "max_line_length": 72, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 207, "size": 580 }
module Cats.Category.Lift where open import Relation.Binary using (IsEquivalence) open import Level as L using (Level ; suc ; _⊔_ ; lift ; lower) open import Cats.Category.Base open IsEquivalence LCategory : (l : Level) → Set (suc l) LCategory l = Category l l l Lift : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈ → Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′) Lift {lo′ = lo′} {la′} {l≈′} C = record { Obj = L.Lift lo′ C.Obj ; _⇒_ = λ A B → L.Lift la′ (lower A C.⇒ lower B) ; _≈_ = λ f g → L.Lift l≈′ (lower f C.≈ lower g) ; id = lift C.id ; _∘_ = λ f g → lift (lower f C.∘ lower g) ; equiv = record { refl = lift (refl C.equiv) ; sym = λ eq → lift (sym C.equiv (lower eq)) ; trans = λ eq₁ eq₂ → lift (trans C.equiv (lower eq₁) (lower eq₂)) } ; ∘-resp = λ eq₁ eq₂ → lift (C.∘-resp (lower eq₁) (lower eq₂)) ; id-r = lift C.id-r ; id-l = lift C.id-l ; assoc = lift C.assoc } where module C = Category C LiftEq : ∀ {lo la l≈} → Category lo la l≈ → LCategory (lo ⊔ la ⊔ l≈) LiftEq {lo} {la} {l≈} = Lift {lo′ = la ⊔ l≈} {la′ = lo ⊔ l≈} {l≈′ = lo ⊔ la}
{ "alphanum_fraction": 0.5381244522, "avg_line_length": 28.525, "ext": "agda", "hexsha": "a167a3a1e784dc3a3f61f6810945f52db09976e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Lift.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Lift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 468, "size": 1141 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Instance.Simplex where open import Level open import Data.Product open import Data.Fin.Base using (Fin; _≤_) open import Data.Nat.Base using (ℕ; z≤n; s≤s) open import Function renaming (id to idF; _∘_ to _∙_) open import Relation.Binary using (_=[_]⇒_) open import Relation.Binary.PropositionalEquality Δ : Category 0ℓ 0ℓ 0ℓ Δ = record { Obj = ℕ ; _⇒_ = λ m n → Σ (Fin m → Fin n) (λ f → _≤_ =[ f ]⇒ _≤_) ; _≈_ = λ { (f , mf) (g , mg) → ∀ x → f x ≡ g x } ; id = idF , idF ; _∘_ = λ { (f , mf) (g , mg) → f ∙ g , mf ∙ mg } ; assoc = λ _ → refl ; sym-assoc = λ _ → refl ; identityˡ = λ _ → refl ; identityʳ = λ _ → refl ; identity² = λ _ → refl ; equiv = record { refl = λ _ → refl ; sym = λ eq x → sym (eq x) ; trans = λ eq₁ eq₂ x → trans (eq₁ x) (eq₂ x) } ; ∘-resp-≈ = λ {_ _ _ f g h i} eq₁ eq₂ x → trans (cong (λ t → proj₁ f t) (eq₂ x)) (eq₁ (proj₁ i x)) } open Category Δ -------------------------------------------------------------------------------- -- Face + Degeneracy Maps face-map : ∀ {n} → Fin (ℕ.suc n) → Fin n → Fin (ℕ.suc n) face-map Fin.zero k = Fin.suc k face-map (Fin.suc i) Fin.zero = Fin.zero face-map (Fin.suc i) (Fin.suc k) = Fin.suc (face-map i k) face-mono : ∀ {n} → (i : Fin (ℕ.suc n)) → _≤_ =[ face-map i ]⇒ _≤_ face-mono Fin.zero {_} {_} le = s≤s le face-mono (Fin.suc i) {Fin.zero} {_} _ = z≤n face-mono (Fin.suc i) {Fin.suc _} {Fin.suc _} (s≤s le) = s≤s (face-mono i le) face : ∀ {n} → Fin (ℕ.suc n) → n ⇒ ℕ.suc n face i = face-map i , face-mono i degeneracy-map : ∀ {n} → Fin n → Fin (ℕ.suc n) → Fin n degeneracy-map Fin.zero Fin.zero = Fin.zero degeneracy-map Fin.zero (Fin.suc k) = k degeneracy-map (Fin.suc i) Fin.zero = Fin.zero degeneracy-map (Fin.suc i) (Fin.suc k) = Fin.suc (degeneracy-map i k) degeneracy-mono : ∀ {n} → (i : Fin n) → _≤_ =[ degeneracy-map i ]⇒ _≤_ degeneracy-mono Fin.zero {Fin.zero} {_} _ = z≤n degeneracy-mono Fin.zero {Fin.suc _} {Fin.suc _} (s≤s le) = le degeneracy-mono (Fin.suc i) {Fin.zero} {_} _ = z≤n degeneracy-mono (Fin.suc i) {Fin.suc _} {Fin.suc _} (s≤s le) = s≤s (degeneracy-mono i le) degeneracy : ∀ {n} → Fin n → ℕ.suc n ⇒ n degeneracy i = degeneracy-map i , degeneracy-mono i
{ "alphanum_fraction": 0.5386503067, "avg_line_length": 35.9558823529, "ext": "agda", "hexsha": "7894b0f3bf41a0bb6d916e7d8f740b27224e1a91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jaykru/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jaykru/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jaykru/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Simplex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 961, "size": 2445 }
-- Andreas, AIM XXIII, 2016-04-23 -- Issue 1944 -- Milestone 2.0: overload projection by fields (does not affect matching) -- {-# OPTIONS -v tc.lhs.split:20 #-} record R : Set2 where field out : Set1 r : R R.out r = Set s = r open R r -- fully applied open open R open R s -- Now out is overloaded. It is both a field and a projection. -- We can still use it in pattern position (since a field does not make sense here). ok : R out ok = Set -- out should be highlighted as projection
{ "alphanum_fraction": 0.6794354839, "avg_line_length": 20.6666666667, "ext": "agda", "hexsha": "db179e4dd0a3a56aeb9122ceb0438f60c051040b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/InstantiatedRecordModuleNoCopattern2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/InstantiatedRecordModuleNoCopattern2.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/InstantiatedRecordModuleNoCopattern2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 148, "size": 496 }
module neq where open import eq open import negation ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 4 _≢_ ---------------------------------------------------------------------- -- defined types ---------------------------------------------------------------------- _≢_ : ∀ {ℓ}{A : Set ℓ} → A → A → Set ℓ x ≢ y = ¬ (x ≡ y) sym-≢ : ∀{ℓ}{A : Set ℓ}{x y : A} → x ≢ y → y ≢ x sym-≢ p₁ p₂ = p₁ (sym p₂)
{ "alphanum_fraction": 0.2286821705, "avg_line_length": 24.5714285714, "ext": "agda", "hexsha": "edfd6639074a83d10664749a64a2424f0044e0f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "neq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "neq.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "neq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 121, "size": 516 }
-- Product of two functors {-# OPTIONS --safe #-} module Cubical.Categories.Functor.BinProduct where open import Cubical.Categories.Category.Base open import Cubical.Categories.Constructions.BinProduct open import Cubical.Categories.Functor.Base open import Cubical.Data.Sigma.Properties open import Cubical.Foundations.Prelude private variable ℓA ℓA' ℓB ℓB' ℓC ℓC' ℓD ℓD' : Level A : Category ℓA ℓA' B : Category ℓB ℓB' C : Category ℓC ℓC' D : Category ℓD ℓD' open Functor _×F_ : Functor A C → Functor B D → Functor (A × B) (C × D) (G ×F H) .F-ob (a , b) = (G ⟅ a ⟆ , H ⟅ b ⟆) (G ×F H) .F-hom (g , h) = (G ⟪ g ⟫ , H ⟪ h ⟫) (G ×F H) .F-id = ≡-× (G .F-id) (H .F-id) (G ×F H) .F-seq _ _ = ≡-× (G .F-seq _ _) (H .F-seq _ _)
{ "alphanum_fraction": 0.6243315508, "avg_line_length": 27.7037037037, "ext": "agda", "hexsha": "8b15074431c491fede85aa9de504fb68ebc5bfab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Functor/BinProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Functor/BinProduct.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Functor/BinProduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 297, "size": 748 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Heterogeneous equality ------------------------------------------------------------------------ module Relation.Binary.HeterogeneousEquality where open import Data.Product open import Function open import Function.Inverse using (Inverse) open import Data.Unit.Core open import Level open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.Indexed as I using (_at_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) import Relation.Binary.HeterogeneousEquality.Core as Core ------------------------------------------------------------------------ -- Heterogeneous equality infix 4 _≇_ open Core public using (_≅_; refl) -- Nonequality. _≇_ : ∀ {ℓ} {A : Set ℓ} → A → {B : Set ℓ} → B → Set ℓ x ≇ y = ¬ x ≅ y ------------------------------------------------------------------------ -- Conversion ≡-to-≅ : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≅ y ≡-to-≅ refl = refl open Core public using (≅-to-≡) ------------------------------------------------------------------------ -- Some properties reflexive : ∀ {a} {A : Set a} → _⇒_ {A = A} _≡_ (λ x y → x ≅ y) reflexive refl = refl sym : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B} → x ≅ y → y ≅ x sym refl = refl trans : ∀ {ℓ} {A B C : Set ℓ} {x : A} {y : B} {z : C} → x ≅ y → y ≅ z → x ≅ z trans refl eq = eq subst : ∀ {a} {A : Set a} {p} → Substitutive {A = A} (λ x y → x ≅ y) p subst P refl p = p subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≅ x₂ → y₁ ≅ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p subst-removable : ∀ {a p} {A : Set a} (P : A → Set p) {x y} (eq : x ≅ y) z → subst P eq z ≅ z subst-removable P refl z = refl ≡-subst-removable : ∀ {a p} {A : Set a} (P : A → Set p) {x y} (eq : x ≡ y) z → P.subst P eq z ≅ z ≡-subst-removable P refl z = refl cong : ∀ {a b} {A : Set a} {B : A → Set b} {x y} (f : (x : A) → B x) → x ≅ y → f x ≅ f y cong f refl = refl cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≅ g → (x : A) → f x ≅ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} {x y u v} (f : (x : A) (y : B x) → C x y) → x ≅ y → u ≅ v → f x u ≅ f y v cong₂ f refl refl = refl resp₂ : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) → ∼ Respects₂ (λ x y → x ≅ y) resp₂ _∼_ = subst⟶resp₂ _∼_ subst proof-irrelevance : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B} (p q : x ≅ y) → p ≡ q proof-irrelevance refl refl = refl isEquivalence : ∀ {a} {A : Set a} → IsEquivalence {A = A} (λ x y → x ≅ y) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = λ x y → x ≅ y ; isEquivalence = isEquivalence } indexedSetoid : ∀ {a b} {A : Set a} → (A → Set b) → I.Setoid A _ _ indexedSetoid B = record { Carrier = B ; _≈_ = λ x y → x ≅ y ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } ≡↔≅ : ∀ {a b} {A : Set a} (B : A → Set b) {x : A} → Inverse (P.setoid (B x)) (indexedSetoid B at x) ≡↔≅ B = record { to = record { _⟨$⟩_ = id; cong = ≡-to-≅ } ; from = record { _⟨$⟩_ = id; cong = ≅-to-≡ } ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ _ → refl } } decSetoid : ∀ {a} {A : Set a} → Decidable {A = A} {B = A} (λ x y → x ≅ y) → DecSetoid _ _ decSetoid dec = record { _≈_ = λ x y → x ≅ y ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} (λ x y → x ≅ y) (λ x y → x ≅ y) isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } isPreorder-≡ : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ (λ x y → x ≅ y) isPreorder-≡ = record { isEquivalence = P.isEquivalence ; reflexive = reflexive ; trans = trans } preorder : ∀ {a} → Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = λ x y → x ≅ y ; isPreorder = isPreorder-≡ } ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning module ≅-Reasoning where -- The code in Relation.Binary.EqReasoning cannot handle -- heterogeneous equalities, hence the code duplication here. infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _≅⟨_⟩_ _≡⟨_⟩_ _≡⟨⟩_ infix 1 begin_ data _IsRelatedTo_ {ℓ} {A : Set ℓ} (x : A) {B : Set ℓ} (y : B) : Set ℓ where relTo : (x≅y : x ≅ y) → x IsRelatedTo y begin_ : ∀ {ℓ} {A : Set ℓ} {x : A} {B} {y : B} → x IsRelatedTo y → x ≅ y begin relTo x≅y = x≅y _≅⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} → x ≅ y → y IsRelatedTo z → x IsRelatedTo z _ ≅⟨ x≅y ⟩ relTo y≅z = relTo (trans x≅y y≅z) _≡⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ x≡y ⟩ relTo y≅z = relTo (trans (reflexive x≡y) y≅z) _≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} → x IsRelatedTo y → x IsRelatedTo y _ ≡⟨⟩ x≅y = x≅y _∎ : ∀ {a} {A : Set a} (x : A) → x IsRelatedTo x _∎ _ = relTo refl ------------------------------------------------------------------------ -- Functional extensionality -- A form of functional extensionality for _≅_. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B₁ B₂ : A → Set b} {f₁ : (x : A) → B₁ x} {f₂ : (x : A) → B₂ x} → (∀ x → B₁ x ≡ B₂ x) → (∀ x → f₁ x ≅ f₂ x) → f₁ ≅ f₂ -- This form of extensionality follows from extensionality for _≡_. ≡-ext-to-≅-ext : ∀ {ℓ₁ ℓ₂} → P.Extensionality ℓ₁ (suc ℓ₂) → Extensionality ℓ₁ ℓ₂ ≡-ext-to-≅-ext ext B₁≡B₂ f₁≅f₂ with ext B₁≡B₂ ≡-ext-to-≅-ext {ℓ₁} {ℓ₂} ext B₁≡B₂ f₁≅f₂ | P.refl = ≡-to-≅ $ ext′ (≅-to-≡ ∘ f₁≅f₂) where ext′ : P.Extensionality ℓ₁ ℓ₂ ext′ = P.extensionality-for-lower-levels ℓ₁ (suc ℓ₂) ext ------------------------------------------------------------------------ -- Inspect on steroids -- Inspect on steroids can be used when you want to pattern match on -- the result r of some expression e, and you also need to "remember" -- that r ≡ e. data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where [_] : (eq : reveal x ≅ y) → Reveal x is y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x) inspect f x = [ refl ]
{ "alphanum_fraction": 0.4701514269, "avg_line_length": 29.1016949153, "ext": "agda", "hexsha": "d6e6896e9387d9e21b531143f3ac33a62a03acc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/HeterogeneousEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/HeterogeneousEquality.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/HeterogeneousEquality.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2666, "size": 6868 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Lists.Definition module Lists.Fold.Fold {a b : _} {A : Set a} {B : Set b} where fold : (f : A → B → B) → B → List A → B fold f default [] = default fold f default (x :: l) = f x (fold f default l)
{ "alphanum_fraction": 0.5931558935, "avg_line_length": 26.3, "ext": "agda", "hexsha": "921f143c0669e48d9b8346b017c87bb691dec84c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Fold/Fold.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Fold/Fold.agda", "max_line_length": 62, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Fold/Fold.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 87, "size": 263 }
module DelayMishMash where open import Level --public using (Level) renaming (zero to lzero; suc to lsuc) open import Size public open import Prelude.Monad renaming (Monad to RawMonad) --open import Category.Monad public -- using (RawMonad; module RawMonad) open import Data.Empty --public using (⊥; ⊥-elim) open import Data.List --public using (List; []; _∷_; map) open import Data.Maybe --public using (Maybe; just; nothing) renaming (map to fmap) open import Data.Product public using (∃; _×_; _,_) renaming (proj₁ to fst; proj₂ to snd) --infixr 1 _,_ open import Data.Sum --public using (_⊎_; [_,_]′) renaming (inj₁ to inl; inj₂ to inr) open import Data.Unit --public using (⊤) open import Function --public using (_∘_; case_of_) open import Relation.Nullary --public using (Dec; yes; no) open import Relation.Binary --public using (Setoid; module Setoid) import Relation.Binary.PreorderReasoning module Pre = Relation.Binary.PreorderReasoning open import Relation.Binary.PropositionalEquality --public using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning) --open ≡-Reasoning renaming (begin_ to proof_) public open import Relation.Binary.HeterogeneousEquality --public using (_≅_; refl; ≡-to-≅; module ≅-Reasoning) renaming (sym to hsym; trans to htrans; cong to hcong; cong₂ to hcong₂; subst to hsubst) hcong₃ : {A : Set}{B : A → Set}{C : ∀ a → B a → Set}{D : ∀ a b → C a b → Set} (f : ∀ a b c → D a b c) {a a′ : A} → a ≅ a′ → {b : B a}{b′ : B a′} → b ≅ b′ → {c : C a b}{c′ : C a′ b′} → c ≅ c′ → f a b c ≅ f a′ b′ c′ hcong₃ f refl refl refl = refl ≅-to-≡ : ∀ {a} {A : Set a} {x y : A} → x ≅ y → x ≡ y ≅-to-≡ refl = refl mutual data Delay (i : Size) (A : Set) : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay (i : Size) (A : Set) : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay public never : ∀{i A} → ∞Delay i A force (never {i}) {j} = later (never {j}) module Bind where mutual bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B bindDelay (now a) f = f a bindDelay (later a∞) f = later (bind∞Delay a∞ f) bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (bind∞Delay a∞ f) = bindDelay (force a∞) f _d>>=_ : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B _d>>=_ {i} = Bind.bindDelay {i} {- open import Prelude.Applicative using (Applicative) instance delayApplicative : ∀ {i} → Applicative (Delay i) Applicative.pure (delayApplicative {i}) x = now x Applicative._<*>_ (delayApplicative {i}) (now f) x = x d>>= (now ∘ f) Applicative._<*>_ (delayApplicative {i}) (later f) x = {!force f {i}!} {- Applicative._<*>_ (delayApplicative {i}) f (now x) = {!x!} -- Bind.bindDelay x (λ x₁ → {!!}) Applicative._<*>_ (delayApplicative {i}) (now f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!}) Applicative._<*>_ (delayApplicative {i}) (later f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!}) -} Applicative.super (delayApplicative {i}) = {!!} -} {- instance delayMonad : ∀ {i} → RawMonad (Delay i) delayMonad {i} = record { {-return = now ; -}_>>=_ = bindDelay {i} } where open Bind -} {- module _ {i : Size} where open module DelayMonad = RawMonad (delayMonad {i = i}) public -- renaming (_⊛_ to _<*>_) -} open Bind public using () renaming (bind∞Delay to _∞>>=_) -- Map for Delay dreturn : {i : Size} → {A : Set} → A → Delay i A dreturn {i} = Delay.now {i} _d<$>_ : ∀ {i A B} (f : A → B) (a : Delay i A) → Delay i B f d<$> a = a d>>= λ a → dreturn (f a) -- Map for ∞Delay _∞<$>_ : ∀ {i A B} (f : A → B) (∞a : ∞Delay i A) → ∞Delay i B f ∞<$> ∞a = ∞a ∞>>= λ a → dreturn (f a) -- force (f ∞<$> ∞a) = f <$> force ∞a -- Double bind _=<<2_,_ : ∀ {i A B C} → (A → B → Delay i C) → Delay i A → Delay i B → Delay i C f =<<2 x , y = x d>>= λ a → y d>>= λ b → f a b mutual data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where ∼now : ∀ a → now a ∼ now a ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞ _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b? record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where coinductive field ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞ _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞ open _∞∼⟨_⟩∼_ public ∼never : ∀{i A} → (never {A = A}) ∞∼⟨ i ⟩∼ never ∼force ∼never = ∼later ∼never ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a? ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞ ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a? ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞ ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c? ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞ ∼refl (now a) = ∼now a ∼refl (later a∞) = ∼later (∞∼refl a∞) ∼force (∞∼refl a∞) = ∼refl (force a∞) ∼sym (∼now a) = ∼now a ∼sym (∼later eq) = ∼later (∞∼sym eq) ∼force (∞∼sym eq) = ∼sym (∼force eq) ∼trans (∼now a) (∼now .a) = ∼now a ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′) ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′) -- Equality reasoning ∼setoid : (i : Size) (A : Set) → Setoid lzero lzero ∼setoid i A = record { Carrier = Delay ∞ A ; _≈_ = _∼_ {i} ; isEquivalence = record { refl = λ {a?} → ∼refl a? ; sym = ∼sym ; trans = ∼trans } } ∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero ∞∼setoid i A = record { Carrier = ∞Delay ∞ A ; _≈_ = _∞∼_ {i} ; isEquivalence = record { refl = λ {a?} → ∞∼refl a? ; sym = ∞∼sym ; trans = ∞∼trans } } module ∼-Reasoning {i : Size} {A : Set} where open Pre (Setoid.preorder (∼setoid i A)) public -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_) renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∼⟨_⟩_; begin_ to proof_) module ∞∼-Reasoning {i : Size} {A : Set} where open Pre (Setoid.preorder (∞∼setoid i A)) public -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_) renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∞∼⟨_⟩_; begin_ to proof_) mutual bind-assoc : ∀{i A B C} (m : Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((m d>>= k) d>>= l) ∼⟨ i ⟩∼ (m d>>= λ a → (k a d>>= l)) bind-assoc (now a) = ∼refl _ bind-assoc (later a∞) = ∼later (∞bind-assoc a∞) ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a d>>= l)) ∼force (∞bind-assoc a∞) = bind-assoc (force a∞) bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → (k : A → Delay ∞ B) → (a? d>>= k) ∼⟨ i ⟩∼ (b? d>>= k) ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k) bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? d>>= k) ∼⟨ i ⟩∼ (a? d>>= l) ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l) bind-cong-l (∼now a) k = ∼refl _ bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k) ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k bind-cong-r (now a) h = h a bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h) ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h open import Prelude.Functor using (Functor; _<$>_) {- instance FunctorDelay : {i : Size} → Functor (Delay i) Functor.fmap (FunctorDelay {i}) {A} {B} f (now x) = {!!} Functor.fmap (FunctorDelay {i}) {A} {B} f (later x) = {!!} -} open import Prelude.Function using (_∘′_) map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} → (g d<$> (f d<$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) d<$> a?) map-compose a? = bind-assoc a? map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) → a? ∼⟨ i ⟩∼ b? → (f d<$> a?) ∼⟨ i ⟩∼ (f d<$> b?) map-cong f eq = bind-cong-l eq (now ∘ f) data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where now⇓ : ∀{a} → now a ⇓ a later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a _⇓ : {A : Set} (x : Delay ∞ A) → Set x ⇓ = ∃ λ a → x ⇓ a map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f d<$> a?) ⇓ f a subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} → ?a ⇓ a → f a ⇓ b → (?a d>>= f) ⇓ b map⇓ f now⇓ = now⇓ map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) subst∼⇓ now⇓ (∼now a) = now⇓ subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq)) bind⇓ f now⇓ q = q bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q) --infixr 6 _⇒_ --infixl 1 _,_
{ "alphanum_fraction": 0.4579093432, "avg_line_length": 33.204778157, "ext": "agda", "hexsha": "b1fa1dbfd312ee9ea804a1ff585fd1d0393d3349", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/DelayMishMash.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/DelayMishMash.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/DelayMishMash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4433, "size": 9729 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bisimilarity for Conats ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Conat.Bisimilarity where open import Level using (0ℓ) open import Size open import Codata.Thunk open import Codata.Conat open import Relation.Binary infix 1 _⊢_≈_ data _⊢_≈_ i : (m n : Conat ∞) → Set where zero : i ⊢ zero ≈ zero suc : ∀ {m n} → Thunk^R _⊢_≈_ i m n → i ⊢ suc m ≈ suc n refl : ∀ {i m} → i ⊢ m ≈ m refl {m = zero} = zero refl {m = suc m} = suc λ where .force → refl sym : ∀ {i m n} → i ⊢ m ≈ n → i ⊢ n ≈ m sym zero = zero sym (suc eq) = suc λ where .force → sym (eq .force) trans : ∀ {i m n p} → i ⊢ m ≈ n → i ⊢ n ≈ p → i ⊢ m ≈ p trans zero zero = zero trans (suc eq₁) (suc eq₂) = suc λ where .force → trans (eq₁ .force) (eq₂ .force) isEquivalence : ∀ {i} → IsEquivalence (i ⊢_≈_) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : Size → Setoid 0ℓ 0ℓ setoid i = record { isEquivalence = isEquivalence {i = i} } module ≈-Reasoning {i} where open import Relation.Binary.Reasoning.Setoid (setoid i) public infix 1 _⊢_≲_ data _⊢_≲_ i : (m n : Conat ∞) → Set where z≲n : ∀ {n} → i ⊢ zero ≲ n s≲s : ∀ {m n} → Thunk^R _⊢_≲_ i m n → i ⊢ suc m ≲ suc n ≈⇒≲ : ∀ {i m n} → i ⊢ m ≈ n → i ⊢ m ≲ n ≈⇒≲ zero = z≲n ≈⇒≲ (suc eq) = s≲s λ where .force → ≈⇒≲ (eq .force) ≲-refl : ∀ {i m} → i ⊢ m ≲ m ≲-refl = ≈⇒≲ refl ≲-antisym : ∀ {i m n} → i ⊢ m ≲ n → i ⊢ n ≲ m → i ⊢ m ≈ n ≲-antisym z≲n z≲n = zero ≲-antisym (s≲s le) (s≲s ge) = suc λ where .force → ≲-antisym (le .force) (ge .force) ≲-trans : ∀ {i m n p} → i ⊢ m ≲ n → i ⊢ n ≲ p → i ⊢ m ≲ p ≲-trans z≲n _ = z≲n ≲-trans (s≲s le₁) (s≲s le₂) = s≲s λ where .force → ≲-trans (le₁ .force) (le₂ .force)
{ "alphanum_fraction": 0.5002602811, "avg_line_length": 27.8405797101, "ext": "agda", "hexsha": "fea7f2a86668695951e3ee567413283ec46923f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Codata/Conat/Bisimilarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Codata/Conat/Bisimilarity.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Codata/Conat/Bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 846, "size": 1921 }
{- This second-order equational theory was created from the following second-order syntax description: $sig_string -} module $syn_name.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import $syn_name.Signature open import $syn_name.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution ${sig}:Syn open import SOAS.Metatheory.SecondOrder.Equality ${sig}:Syn private variable α β γ τ : $type Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ ${sig}) α Γ → (𝔐 ▷ ${sig}) α Γ → Set where $axioms open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning $derived_eqs
{ "alphanum_fraction": 0.7427440633, "avg_line_length": 20.4864864865, "ext": "agda", "hexsha": "d5d632f4e9216b0416cb32680507824c9664b844", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "gen/templates/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "gen/templates/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "gen/templates/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 258, "size": 758 }
{-# OPTIONS --allow-unsolved-metas #-} module nat where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Relation.Binary.Definitions open import logic open import Level hiding ( zero ; suc ) nat-<> : { x y : ℕ } → x < y → y < x → ⊥ nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x nat-<≡ : { x : ℕ } → x < x → ⊥ nat-<≡ (s≤s lt) = nat-<≡ lt nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥ nat-≡< refl lt = nat-<≡ lt ¬a≤a : {la : ℕ} → suc la ≤ la → ⊥ ¬a≤a (s≤s lt) = ¬a≤a lt a<sa : {la : ℕ} → la < suc la a<sa {zero} = s≤s z≤n a<sa {suc la} = s≤s a<sa =→¬< : {x : ℕ } → ¬ ( x < x ) =→¬< {zero} () =→¬< {suc x} (s≤s lt) = =→¬< lt >→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x <-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) ) <-∨ {zero} {zero} (s≤s z≤n) = case1 refl <-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n) <-∨ {suc x} {zero} (s≤s ()) <-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt <-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq) <-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1) max : (x y : ℕ) → ℕ max zero zero = zero max zero (suc x) = (suc x) max (suc x) zero = (suc x) max (suc x) (suc y) = suc ( max x y ) -- _*_ : ℕ → ℕ → ℕ -- _*_ zero _ = zero -- _*_ (suc n) m = m + ( n * m ) -- x ^ y exp : ℕ → ℕ → ℕ exp _ zero = 1 exp n (suc m) = n * ( exp n m ) div2 : ℕ → (ℕ ∧ Bool ) div2 zero = ⟪ 0 , false ⟫ div2 (suc zero) = ⟪ 0 , true ⟫ div2 (suc (suc n)) = ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where open _∧_ div2-rev : (ℕ ∧ Bool ) → ℕ div2-rev ⟪ x , true ⟫ = suc (x + x) div2-rev ⟪ x , false ⟫ = x + x div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x div2-eq zero = refl div2-eq (suc zero) = refl div2-eq (suc (suc x)) with div2 x | inspect div2 x ... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫ div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩ suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1 _ ) ⟩ suc (suc (suc (x1 + x1))) ≡⟨⟩ suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ suc (suc x) ∎ where open ≡-Reasoning ... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩ suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1 _ ) ⟩ suc (suc (x1 + x1)) ≡⟨⟩ suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ suc (suc x) ∎ where open ≡-Reasoning sucprd : {i : ℕ } → 0 < i → suc (pred i) ≡ i sucprd {suc i} 0<i = refl 0<s : {x : ℕ } → zero < suc x 0<s {_} = s≤s z≤n px<py : {x y : ℕ } → pred x < pred y → x < y px<py {zero} {suc y} lt = 0<s px<py {suc zero} {suc (suc y)} (s≤s lt) = s≤s 0<s px<py {suc (suc x)} {suc (suc y)} (s≤s lt) = s≤s (px<py {suc x} {suc y} lt) minus : (a b : ℕ ) → ℕ minus a zero = a minus zero (suc b) = zero minus (suc a) (suc b) = minus a b _-_ = minus m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j m+= {i} {j} {zero} refl = refl m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq ) +m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j +m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq ) less-1 : { n m : ℕ } → suc n < m → n < m less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt) sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m sa=b→a<b {0} {suc zero} refl = s≤s z≤n sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl) minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl minus+n {zero} {suc y} (s≤s ()) minus+n {suc x} {suc y} (s≤s lt) = begin minus (suc x) (suc y) + suc y ≡⟨ +-comm _ (suc y) ⟩ suc y + minus x y ≡⟨ cong ( λ k → suc k ) ( begin y + minus x y ≡⟨ +-comm y _ ⟩ minus x y + y ≡⟨ minus+n {x} {y} lt ⟩ x ∎ ) ⟩ suc x ∎ where open ≡-Reasoning <-minus-0 : {x y z : ℕ } → z + x < z + y → x < y <-minus-0 {x} {suc _} {zero} lt = lt <-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt <-minus : {x y z : ℕ } → x + z < y + z → x < y <-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt ) x≤x+y : {z y : ℕ } → z ≤ z + y x≤x+y {zero} {y} = z≤n x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y}) x≤y+x : {z y : ℕ } → z ≤ y + z x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y <-plus : {x y z : ℕ } → x < y → x + z < y + z <-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y ) <-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt) <-plus-0 : {x y z : ℕ } → x < y → z + x < z + y <-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt ) ≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z ≤-plus {0} {y} {zero} z≤n = z≤n ≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y ≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt ) ≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y ≤-plus-0 {x} {y} {zero} lt = lt ≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt ) x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 ) *≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z *≤ lt = *-mono-≤ lt ≤-refl *< : {x y z : ℕ } → x < y → x * suc z < y * suc z *< {zero} {suc y} lt = s≤s z≤n *< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt) <to<s : {x y : ℕ } → x < y → x < suc y <to<s {zero} {suc y} (s≤s lt) = s≤s z≤n <to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt) <tos<s : {x y : ℕ } → x < y → suc x < suc y <tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n) <tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt) <to≤ : {x y : ℕ } → x < y → x ≤ y <to≤ {zero} {suc y} (s≤s z≤n) = z≤n <to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y} lt) refl-≤s : {x : ℕ } → x ≤ suc x refl-≤s {zero} = z≤n refl-≤s {suc x} = s≤s (refl-≤s {x}) refl-≤ : {x : ℕ } → x ≤ x refl-≤ {zero} = z≤n refl-≤ {suc x} = s≤s (refl-≤ {x}) x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt) ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j ≤→= {0} {0} z≤n z≤n = refl ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i ) px≤x : {x : ℕ } → pred x ≤ x px≤x {zero} = refl-≤ px≤x {suc x} = refl-≤s px≤py : {x y : ℕ } → x ≤ y → pred x ≤ pred y px≤py {zero} {zero} lt = refl-≤ px≤py {zero} {suc y} lt = z≤n px≤py {suc x} {suc y} (s≤s lt) = lt open import Data.Product i-j=0→i=j : {i j : ℕ } → j ≤ i → i - j ≡ 0 → i ≡ j i-j=0→i=j {zero} {zero} _ refl = refl i-j=0→i=j {zero} {suc j} () refl i-j=0→i=j {suc i} {zero} z≤n () i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq) m*n=0⇒m=0∨n=0 : {i j : ℕ} → i * j ≡ 0 → (i ≡ 0) ∨ ( j ≡ 0 ) m*n=0⇒m=0∨n=0 {zero} {j} refl = case1 refl m*n=0⇒m=0∨n=0 {suc i} {zero} eq = case2 refl minus+1 : {x y : ℕ } → y ≤ x → suc (minus x y) ≡ minus (suc x) y minus+1 {zero} {zero} y≤x = refl minus+1 {suc x} {zero} y≤x = refl minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x minus+yz : {x y z : ℕ } → z ≤ y → x + minus y z ≡ minus (x + y) z minus+yz {zero} {y} {z} _ = refl minus+yz {suc x} {y} {z} z≤y = begin suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩ suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩ minus (suc x + y) z ∎ where open ≡-Reasoning minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0 minus<=0 {0} {zero} z≤n = refl minus<=0 {0} {suc y} z≤n = refl minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le minus>0 : {x y : ℕ } → x < y → 0 < minus y x minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt minus>0→x<y : {x y : ℕ } → 0 < minus y x → x < y minus>0→x<y {x} {y} lt with <-cmp x y ... | tri< a ¬b ¬c = a ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt ) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt ) minus+y-y : {x y : ℕ } → (x + y) - y ≡ x minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl minus+y-y {suc x} {y} = begin (suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩ suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩ suc x ∎ where open ≡-Reasoning minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z) ≡ x - z minus+yx-yz {x} {zero} {z} = refl minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z} minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y) ≡ x - z minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z}) y-x<y : {x y : ℕ } → 0 < x → 0 < y → y - x < y y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y) ... | tri< a ¬b ¬c = +-cancelʳ-< {x} (y - x) y ( begin suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩ suc y ≡⟨ +-comm 1 _ ⟩ y + suc 0 ≤⟨ +-mono-≤ ≤-refl 0<x ⟩ y + x ∎ ) where open ≤-Reasoning ... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y ... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x open import Relation.Binary.Definitions distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z) distr-minus-* {x} {zero} {z} = refl distr-minus-* {x} {suc y} {z} with <-cmp x y distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin minus x (suc y) * z ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩ 0 * z ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩ minus (x * z) (z + y * z) ∎ where open ≡-Reasoning le : x * z ≤ z + y * z le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where lemma : x * z ≤ y * z lemma = *≤ {x} {y} {z} (<to≤ a) distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin minus x (suc y) * z ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩ 0 * z ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩ minus (x * z) (z + y * z) ∎ where open ≡-Reasoning lt : {x z : ℕ } → x * z ≤ z + x * z lt {zero} {zero} = z≤n lt {suc x} {zero} = lt {x} {zero} lt {x} {suc z} = ≤-trans lemma refl-≤s where lemma : x * suc z ≤ z + x * suc z lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z}) distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin minus x (suc y) * z + suc y * z ≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩ ( minus x (suc y) + suc y ) * z ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩ x * z ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩ minus (x * z) (suc y * z) + suc y * z ∎ ) where open ≡-Reasoning lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z lt {x} {y} {z} le = *≤ le distr-minus-*' : {z x y : ℕ } → z * (minus x y) ≡ minus (z * x) (z * y) distr-minus-*' {z} {x} {y} = begin z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩ (minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩ minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩ minus (z * x) (z * y) ∎ where open ≡-Reasoning minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z) minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin minus (minus x y) z + z ≡⟨ minus+n {_} {z} lemma ⟩ minus x y ≡⟨ +m= {_} {_} {y} ( begin minus x y + y ≡⟨ minus+n {_} {y} lemma1 ⟩ x ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩ minus x (z + y) + (z + y) ≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩ minus x (z + y) + z + y ∎ ) ⟩ minus x (z + y) + z ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩ minus x (y + z) + z ∎ ) where open ≡-Reasoning lemma1 : suc x > y lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt ) lemma : suc (minus x y) > z lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt ) minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M minus-* {zero} {k} {n} lt = begin minus k (suc n) * zero ≡⟨ *-comm (minus k (suc n)) zero ⟩ zero * minus k (suc n) ≡⟨⟩ 0 * minus k n ≡⟨ *-comm 0 (minus k n) ⟩ minus (minus k n * 0 ) 0 ∎ where open ≡-Reasoning minus-* {suc m} {k} {n} lt with <-cmp k 1 minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin minus k (suc n) * M ≡⟨ distr-minus-* {k} {suc n} {M} ⟩ minus (k * M ) ((suc n) * M) ≡⟨⟩ minus (k * M ) (M + n * M ) ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩ minus (k * M ) ((n * M) + M ) ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩ minus (minus (k * M ) (n * M)) M ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩ minus (minus k n * M ) M ∎ where M = suc m lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y )) lemma {suc n} {suc k} {m} lt = begin suc (suc m + suc n * suc m) ≡⟨⟩ suc ( suc (suc n) * suc m) ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩ suc (suc k * suc m) ∎ where open ≤-Reasoning open ≡-Reasoning x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y) → (x - z) ≡ suc y x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y suc x - zero ≡⟨ refl ⟩ suc x ≡⟨ eq ⟩ suc y + zero ≡⟨ +-comm _ zero ⟩ suc y ∎ where open ≡-Reasoning x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin x ≡⟨ cong pred eq ⟩ pred (suc y + suc z) ≡⟨ +-comm _ (suc z) ⟩ suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩ suc y + z ∎ ) where open ≡-Reasoning m*1=m : {m : ℕ } → m * 1 ≡ m m*1=m {zero} = refl m*1=m {suc m} = cong suc m*1=m record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where field fzero : {p : P} → f p ≡ zero → Q p pnext : (p : P ) → P decline : {p : P} → 0 < f p → f (pnext p) < f p ind : {p : P} → Q (pnext p) → Q p y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x y<sx→y≤x (s≤s lt) = lt fi0 : (x : ℕ) → x ≤ zero → x ≡ zero fi0 .0 z≤n = refl f-induction : {n m : Level} {P : Set n } → {Q : P → Set m } → (f : P → ℕ) → Finduction P Q f → (p : P ) → Q p f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p) ... | tri> ¬a ¬b () ... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b) ... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le)) f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x) ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a ... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p} (subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) )) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c ) record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where field pnext : (p : P ) → P fzero : {p : P} → f (pnext p) ≡ zero → Q p decline : {p : P} → 0 < f p → f (pnext p) < f p ind : {p : P} → Q (pnext p) → Q p s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j s≤s→≤ (s≤s lt) = lt n-induction : {n m : Level} {P : Set n } → {Q : P → Set m } → (f : P → ℕ) → Ninduction P Q f → (p : P ) → Q p n-induction {n} {m} {P} {Q} f I p = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x → Q p f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt) f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x) ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a ... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where f>0 : 0 < f (Ninduction.pnext I p) f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n ) nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 ) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c ) record Factor (n m : ℕ ) : Set where field factor : ℕ remain : ℕ is-factor : factor * n + remain ≡ m record Dividable (n m : ℕ ) : Set where field factor : ℕ is-factor : factor * n + 0 ≡ m open Factor DtoF : {n m : ℕ} → Dividable n m → Factor n m DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa } FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa } --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n --divdable^2 n k dn2 = {!!} decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } = decf1 {n} {k} f r fa where decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n decf1 {n} {k} f (suc r) fa = -- this case must be the first record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n f * k + r ≡⟨ cong pred ( begin suc ( f * k + r ) ≡⟨ +-comm _ r ⟩ r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩ (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩ (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩ f * k + suc r ≡⟨ fa ⟩ suc n ∎ ) ⟩ n ∎ ) } where open ≡-Reasoning decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa ( begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩ suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩ suc zero ≤⟨ s≤s z≤n ⟩ suc n ∎ )) where open ≤-Reasoning decf1 {n} {suc k} (suc f) zero fa = record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n f * suc k + k ≡⟨ +-comm _ k ⟩ k + f * suc k ≡⟨ +-comm zero _ ⟩ (k + f * suc k) + zero ≡⟨ cong pred fa ⟩ n ∎ ) } where open ≡-Reasoning div0 : {k : ℕ} → Dividable k 0 div0 {k} = record { factor = 0; is-factor = refl } div= : {k : ℕ} → Dividable k k div= {k} = record { factor = 1; is-factor = ( begin k + 0 * k + 0 ≡⟨ trans ( +-comm _ 0) ( +-comm _ 0) ⟩ k ∎ ) } where open ≡-Reasoning div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin 2 ≤⟨ k>1 ⟩ k ≡⟨ +-comm 0 _ ⟩ k + 0 ≡⟨ refl ⟩ 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩ suc f * k ≡⟨ +-comm 0 _ ⟩ suc f * k + 0 ∎ )) where open ≤-Reasoning div+div : { i j k : ℕ } → Dividable k i → Dividable k j → Dividable k (i + j) ∧ Dividable k (j + i) div+div {i} {j} {k} di dj = ⟪ div+div1 , subst (λ g → Dividable k g) (+-comm i j) div+div1 ⟫ where fki = Dividable.factor di fkj = Dividable.factor dj div+div1 : Dividable k (i + j) div+div1 = record { factor = fki + fkj ; is-factor = ( begin (fki + fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩ (fki + fkj) * k ≡⟨ *-distribʳ-+ k fki _ ⟩ fki * k + fkj * k ≡⟨ cong₂ ( λ i j → i + j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩ (fki * k + 0) + (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i + j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩ i + j ∎ ) } where open ≡-Reasoning div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i) div-div {i} {j} {k} k>1 di dj = ⟪ div-div1 di dj , div-div1 dj di ⟫ where div-div1 : {i j : ℕ } → Dividable k i → Dividable k j → Dividable k (i - j) div-div1 {i} {j} di dj = record { factor = fki - fkj ; is-factor = ( begin (fki - fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩ (fki - fkj) * k ≡⟨ distr-minus-* {fki} {fkj} ⟩ (fki * k) - (fkj * k) ≡⟨ cong₂ ( λ i j → i - j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩ (fki * k + 0) - (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i - j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩ i - j ∎ ) } where open ≡-Reasoning fki = Dividable.factor di fkj = Dividable.factor dj open _∧_ div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i) div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where div+11 : Dividable k 1 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) ) div<k : { m k : ℕ } → k > 1 → m > 0 → m < k → ¬ Dividable k m div<k {m} {k} k>1 m>0 m<k d = ⊥-elim ( nat-≤> (div<k1 (Dividable.factor d) (Dividable.is-factor d)) m<k ) where div<k1 : (f : ℕ ) → f * k + 0 ≡ m → k ≤ m div<k1 zero eq = ⊥-elim (nat-≡< eq m>0 ) div<k1 (suc f) eq = begin k ≤⟨ x≤x+y ⟩ k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩ k + f * k + 0 ≡⟨ eq ⟩ m ∎ where open ≤-Reasoning div→k≤m : { m k : ℕ } → k > 1 → m > 0 → Dividable k m → m ≥ k div→k≤m {m} {k} k>1 m>0 d with <-cmp m k ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 m>0 a d ) ... | tri≈ ¬a refl ¬c = ≤-refl ... | tri> ¬a ¬b c = <to≤ c div1*k+0=k : {k : ℕ } → 1 * k + 0 ≡ k div1*k+0=k {k} = begin 1 * k + 0 ≡⟨ cong (λ g → g + 0) (+-comm _ 0) ⟩ k + 0 ≡⟨ +-comm _ 0 ⟩ k ∎ where open ≡-Reasoning decD : {k m : ℕ} → k > 1 → Dec (Dividable k m ) decD {k} {m} k>1 = n-induction {_} {_} {ℕ} {λ m → Dec (Dividable k m ) } F I m where F : ℕ → ℕ F m = m F0 : ( m : ℕ ) → F (m - k) ≡ 0 → Dec (Dividable k m ) F0 0 eq = yes record { factor = 0 ; is-factor = refl } F0 (suc m) eq with <-cmp k (suc m) ... | tri< a ¬b ¬c = yes record { factor = 1 ; is-factor = subst (λ g → 1 * k + 0 ≡ g ) (sym (i-j=0→i=j (<to≤ a) eq )) div1*k+0=k } -- (suc m - k) ≡ 0 → k ≡ suc m, k ≤ suc m ... | tri≈ ¬a refl ¬c = yes record { factor = 1 ; is-factor = div1*k+0=k } ... | tri> ¬a ¬b c = no ( λ d → ⊥-elim (div<k k>1 (s≤s z≤n ) c d) ) decl : {m : ℕ } → 0 < m → m - k < m decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m ind : (p : ℕ ) → Dec (Dividable k (p - k) ) → Dec (Dividable k p ) ind p (yes y) with <-cmp p k ... | tri≈ ¬a refl ¬c = yes (subst (λ g → Dividable k g) (minus+n ≤-refl ) (proj1 ( div+div y div= ))) ... | tri> ¬a ¬b k<p = yes (subst (λ g → Dividable k g) (minus+n (<-trans k<p a<sa)) (proj1 ( div+div y div= ))) ... | tri< a ¬b ¬c with <-cmp p 0 ... | tri≈ ¬a refl ¬c₁ = yes div0 ... | tri> ¬a ¬b₁ c = no (λ d → not-div p (Dividable.factor d) a c (Dividable.is-factor d) ) where not-div : (p f : ℕ) → p < k → 0 < p → f * k + 0 ≡ p → ⊥ not-div (suc p) (suc f) p<k 0<p eq = nat-≡< (sym eq) ( begin -- ≤-trans p<k {!!}) -- suc p ≤ k suc (suc p) ≤⟨ p<k ⟩ k ≤⟨ x≤x+y ⟩ k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩ suc f * k + 0 ∎ ) where open ≤-Reasoning ind p (no n) = no (λ d → n (proj1 (div-div k>1 d div=)) ) I : Ninduction ℕ _ F I = record { pnext = λ p → p - k ; fzero = λ {m} eq → F0 m eq ; decline = λ {m} lt → decl lt ; ind = λ {p} prev → ind p prev }
{ "alphanum_fraction": 0.4311285574, "avg_line_length": 40.1813880126, "ext": "agda", "hexsha": "142961caf70f89cb826bae928cb0a944f54a7222", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/nat.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12062, "size": 25475 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Fin.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Embedding open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Fin.Base open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Empty open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Induction.WellFounded private -- Σ is more convenient than the inductive ×, but I don't -- want to have to write λ_→ all over. _×_ : Type₀ → Type₀ → Type₀ A × B = Σ A λ _ → B -- Fin 0 is empty, and thus a proposition. Fin0-isProp : isProp (Fin 0) Fin0-isProp = ⊥-elim ∘ ¬Fin0 -- Fin 1 has only one value. Fin1-isContr : isContr (Fin 1) Fin1-isContr = fzero , λ { (zero , _) → toℕ-injective refl ; (suc k , sk<1) → ⊥-elim (¬-<-zero (pred-≤-pred sk<1)) } -- Regardless of k, Fin k is a set. isSetFin : ∀{k} → isSet (Fin k) isSetFin {k} = isOfHLevelΣ 2 isSetℕ (λ _ → isProp→isSet m≤n-isProp) -- Helper function for the reduction procedure below. -- -- If n = expand o k m, then n is congruent to m modulo k. expand : ℕ → ℕ → ℕ → ℕ expand 0 k m = m expand (suc o) k m = k + expand o k m expand≡ : ∀ k m o → expand o k m ≡ o * k + m expand≡ k m zero = refl expand≡ k m (suc o) = cong (k +_) (expand≡ k m o) ∙ +-assoc k (o * k) m -- Expand a pair. This is useful because the whole function is -- injective. expand× : ∀{k} → (Fin k × ℕ) → ℕ expand× {k} (f , o) = expand o k (toℕ f) private lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2 expand×Inj k {f1 , zero} {f2 , zero} p i = toℕ-injective {fj = f1} {f2} p i , zero expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p = ⊥-elim (<-asym r<sk (lemma₀ refl p)) expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p = ⊥-elim (<-asym r<sk (lemma₀ refl (sym p))) expand×Inj k {f1 , suc o1} {f2 , suc o2} = cong (λ { (f , o) → (f , suc o) }) ∘ expand×Inj k {f1 , o1} {f2 , o2} ∘ inj-m+ {suc k} expand×Emb : ∀ k → isEmbedding (expand× {k}) expand×Emb 0 = ⊥-elim ∘ ¬Fin0 ∘ fst expand×Emb (suc k) = injEmbedding (isOfHLevelΣ 2 isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k) -- A Residue is a family of types representing evidence that a -- natural is congruent to a value of a finite type. Residue : ℕ → ℕ → Type₀ Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n extract : ∀{k n} → Residue k n → Fin k extract = fst ∘ fst -- There is at most one canonical finite value congruent to each -- natural. isPropResidue : ∀ k n → isProp (Residue k n) isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k) -- A value of a finite type is its own residue. Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f) Fin→Residue f = (f , 0) , refl -- Fibers of numbers that differ by k are equivalent in a more obvious -- way than via the fact that they are propositions. Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n) Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n Residue-k k n (((r , r<k) , zero) , p) = ⊥-elim (<-asym r<k (lemma₀ p refl)) Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p) Residue+k-k : (k n : ℕ) → (R : Residue k (k + n)) → Residue+k k n (Residue-k k n R) ≡ R Residue+k-k k n (((r , r<k) , zero) , p) = ⊥-elim (<-asym r<k (lemma₀ p refl)) Residue+k-k k n ((f , suc o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) (k + n)) refl Residue-k+k : (k n : ℕ) → (R : Residue k n) → Residue-k k n (Residue+k k n R) ≡ R Residue-k+k k n ((f , o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) n) refl private Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n) Residue≃ k n = Residue+k k n , isoToIsEquiv (iso (Residue+k k n) (Residue-k k n) (Residue+k-k k n) (Residue-k+k k n)) Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n) Residue≡ k n = ua (Residue≃ k n) -- For positive `k`, all `n` have a canonical residue mod `k`. module Reduce (k₀ : ℕ) where k : ℕ k = suc k₀ base : ∀ n (n<k : n < k) → Residue k n base n n<k = Fin→Residue (n , n<k) step : ∀ n → Residue k n → Residue k (k + n) step n = transport (Residue≡ k n) reduce : ∀ n → Residue k n reduce = +induction k₀ (Residue k) base step reduce≡ : ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n) reduce≡ n = sym (+inductionStep k₀ _ base step n) reduceP : ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n)) reduceP n = toPathP (reduce≡ n) open Reduce using (reduce; reduce≡) public private lemma₅ : ∀ k n (R : Residue k n) → extract R ≡ extract (transport (Residue≡ k n) R) lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n) -- The residue of n modulo k is the same as the residue of k + n. extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n)) extract≡ k n = lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n) isContrResidue : ∀{k n} → isContr (Residue (suc k) n) isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
{ "alphanum_fraction": 0.6066641847, "avg_line_length": 31.2325581395, "ext": "agda", "hexsha": "c77e5e426e10f58be576b49f1efacd9ab04a393e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Fin/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Fin/Properties.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Fin/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2087, "size": 5372 }
-- Displayed SIP {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Relation.Binary private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓ≅A ℓB ℓ≅B ℓC ℓ≅C ℓ≅ᴰ : Level -- a univalent reflexive graph structure on a type record URGStr (A : Type ℓA) (ℓ≅A : Level) : Type (ℓ-max ℓA (ℓ-suc ℓ≅A)) where no-eta-equality constructor urgstr field _≅_ : Rel A A ℓ≅A ρ : isRefl _≅_ uni : isUnivalent _≅_ ρ -- another constructor for URGStr that uses that if the -- relational singleton is contractible, the relation is univalent make-𝒮 : {A : Type ℓA} {_≅_ : Rel A A ℓ≅A} (ρ : isRefl _≅_) (contrTotal : contrRelSingl _≅_) → URGStr A ℓ≅A make-𝒮 {_≅_ = _≅_} _ _ .URGStr._≅_ = _≅_ make-𝒮 ρ _ .URGStr.ρ = ρ make-𝒮 {_≅_ = _≅_} ρ contrTotal .URGStr.uni = contrRelSingl→isUnivalent _≅_ ρ contrTotal module _ where open URGStr η-URGStr : {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : URGStr A ℓ≅A) → urgstr (_≅_ 𝒮-A) (ρ 𝒮-A) (uni 𝒮-A) ≡ 𝒮-A _≅_ (η-URGStr 𝒮-A i) = _≅_ 𝒮-A ρ (η-URGStr 𝒮-A i) = ρ 𝒮-A uni (η-URGStr 𝒮-A i) = uni 𝒮-A -- a displayed univalent reflexive graph structure over a URGStr on a type record URGStrᴰ {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A) (B : A → Type ℓB) (ℓ≅ᴰ : Level) : Type (ℓ-max (ℓ-max (ℓ-max ℓA ℓB) ℓ≅A) (ℓ-suc ℓ≅ᴰ)) where no-eta-equality constructor urgstrᴰ open URGStr 𝒮-A field _≅ᴰ⟨_⟩_ : {a a' : A} → B a → a ≅ a' → B a' → Type ℓ≅ᴰ ρᴰ : {a : A} → isRefl _≅ᴰ⟨ ρ a ⟩_ uniᴰ : {a : A} → isUnivalent _≅ᴰ⟨ ρ a ⟩_ ρᴰ open URGStrᴰ -- another constructor for URGStrᴰ, using contractability of relational singletons -- rather than univalence make-𝒮ᴰ : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A} {B : A → Type ℓB} (_≅ᴰ⟨_⟩_ : {a a' : A} → B a → URGStr._≅_ 𝒮-A a a' → B a' → Type ℓ≅ᴰ) (ρᴰ : {a : A} → isRefl _≅ᴰ⟨ URGStr.ρ 𝒮-A a ⟩_) (contrTotal : (a : A) → contrRelSingl _≅ᴰ⟨ URGStr.ρ 𝒮-A a ⟩_) → URGStrᴰ 𝒮-A B ℓ≅ᴰ make-𝒮ᴰ {A = A} {𝒮-A = 𝒮-A} _≅ᴰ⟨_⟩_ ρᴰ contrTotal ._≅ᴰ⟨_⟩_ = _≅ᴰ⟨_⟩_ make-𝒮ᴰ {A = A} {𝒮-A = 𝒮-A} _≅ᴰ⟨_⟩_ ρᴰ contrTotal .ρᴰ = ρᴰ make-𝒮ᴰ {A = A} {𝒮-A = 𝒮-A} _≅ᴰ⟨_⟩_ ρᴰ contrTotal .uniᴰ {a} b b' = contrRelSingl→isUnivalent (_≅ᴰ⟨ URGStr.ρ 𝒮-A a ⟩_) (ρᴰ {a}) (contrTotal a) b b' -- abbreviation to obtain contractibility of total space 𝒮→cTS : {A : Type ℓA} (StrA : URGStr A ℓ≅A) → contrRelSingl (URGStr._≅_ StrA) 𝒮→cTS StrA = isUnivalent→contrRelSingl _≅_ ρ uni where open URGStr StrA
{ "alphanum_fraction": 0.6357960458, "avg_line_length": 36.0375, "ext": "agda", "hexsha": "4ce63f09fd7e4bc25603c4ea15179dc45543fa08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Base.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1419, "size": 2883 }
------------------------------------------------------------------------ -- Convenient syntax for "equational reasoning" using a strict partial -- order ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.StrictPartialOrderReasoning (p : StrictPartialOrder) where import Relation.Binary.PreorderReasoning as PreR import Relation.Binary.Props.StrictPartialOrder as SPO open PreR (SPO.preorder p) public renaming (_∼⟨_⟩_ to _<⟨_⟩_)
{ "alphanum_fraction": 0.5642023346, "avg_line_length": 36.7142857143, "ext": "agda", "hexsha": "3a3d23210bc832f2aec7f5b24b1f7d6aea57bffe", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/StrictPartialOrderReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 96, "size": 514 }
-- Andreas, 2013-05-16, raised by Andrea 2015-02-10 open import Common.Size open import Common.Prelude data Wrap (A : SizeUniv) : SizeUniv where -- data Wrap (A : Set) : Set where wrap : A → Wrap A module M (f : ∀ i → Wrap (Size< i)) where test : ∀ i → Wrap (Size< i) → ⊥ test i (wrap j) = test j (f j) module N (pred : ∀ i → Size< i) where f = (λ i → wrap (pred i)) open M f loop : Size → ⊥ loop i = test i (f i) -- = test i (wrap (pred i)) -- = test (pred i) ((λ i → wrap (pred i)) (pred i)) -- = test (pred i) (wrap (pred (pred i))) -- = test (pred (pred i)) (wrap (pred (pred (pred i)))) -- = ...
{ "alphanum_fraction": 0.5458860759, "avg_line_length": 23.4074074074, "ext": "agda", "hexsha": "37844b6ea466a7ede5fda2a73512083f2456c41a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1428.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1428.agda", "max_line_length": 57, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1428.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 235, "size": 632 }
{-# OPTIONS --without-K #-} module NTypes.Universe where open import Equivalence open import NTypes open import PathOperations open import PathStructure.Coproduct open import Types open import Univalence Bool : Set Bool = ⊤ ⊎ ⊤ not : Bool → Bool not = case (λ _ → Bool) (λ _ → inr _) (λ _ → inl _) not-not : ∀ x → not (not x) ≡ x not-not = case (λ x → not (not x) ≡ x) (λ _ → refl) (λ _ → refl) Bool-eq₁ : Bool ≃ Bool Bool-eq₁ = ≡→eq refl Bool-eq₂ : Bool ≃ Bool Bool-eq₂ = not , (not , not-not) , (not , not-not) nope : Bool-eq₁ ≡ Bool-eq₂ → ⊥ nope x = lower (split-path (happly (ap π₁ x) (inl _))) -- With Lift, we could prove stronger statement -- (∀ ℓ → isSet (Set ℓ) → ⊥), but the idea is same - pick -- something equivalent to Bool in Set ℓ, find two different -- ways in which this type is equivalent and derive -- a contradiction. ¬U-set : (∀ ℓ → isSet (Set ℓ)) → ⊥ ¬U-set U-set = nope ( from-to-eq _ ⁻¹ · ap from-≡ (U-set _ Bool Bool (to-≡ Bool-eq₁) (to-≡ Bool-eq₂)) · from-to-eq _ ) where from-≡ = π₁ (ua {A = Bool} {B = Bool}) to-≡ = π₁ (π₁ (π₂ (ua {A = Bool} {B = Bool}))) from-to-eq = π₂ (π₁ (π₂ (ua {A = Bool} {B = Bool})))
{ "alphanum_fraction": 0.590108969, "avg_line_length": 23.86, "ext": "agda", "hexsha": "f7a8bc7defc64dcc735b6d04051cf5b23069f5f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Universe.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Universe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 458, "size": 1193 }
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Translation between different formalisations of syntax. module BasicIPC.Syntax.Translation where open import BasicIPC.Syntax.Common public import BasicIPC.Syntax.ClosedHilbertSequential as CHS import BasicIPC.Syntax.ClosedHilbert as CH import BasicIPC.Syntax.HilbertSequential as HS import BasicIPC.Syntax.Hilbert as H import BasicIPC.Syntax.Gentzen as G open HS using () renaming (_⊦⊢_ to HS⟨_⊦⊢_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open H using () renaming (_⊢_ to H⟨_⊢_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩) public -- Available translations. -- -- ┌─────┬─────┬─────┬─────┬─────┐ -- │ CHS │ CH │ HS │ H │ G │ -- ┌─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CHS │ │ d │ d │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CH │ d │ │ ∘ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ HS │ d │ ∘ │ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ H │ ∘ │ d │ d │ │ d │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ G │ ∘ │ ∘ │ ∘ │ d │ │ -- └─────┴─────┴─────┴─────┴─────┴─────┘ -- -- d : Direct translation. -- ∘ : Composition of translations. -- Translation from closed Hilbert-style sequential to closed Hilbert-style. chs→ch : ∀ {A} → CHS.⊢ A → CH.⊢ A chs→ch (Ξ , ts) = chs⊦→ch ts top where chs⊦→ch : ∀ {A Ξ} → CHS.⊦⊢ Ξ → A ∈ Ξ → CH.⊢ A chs⊦→ch (CHS.mp i j ts) top = CH.app (chs⊦→ch ts i) (chs⊦→ch ts j) chs⊦→ch (CHS.ci ts) top = CH.ci chs⊦→ch (CHS.ck ts) top = CH.ck chs⊦→ch (CHS.cs ts) top = CH.cs chs⊦→ch (CHS.cpair ts) top = CH.cpair chs⊦→ch (CHS.cfst ts) top = CH.cfst chs⊦→ch (CHS.csnd ts) top = CH.csnd chs⊦→ch (CHS.unit ts) top = CH.unit chs⊦→ch (CHS.mp i j ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ci ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ck ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cs ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cpair ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cfst ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.csnd ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.unit ts) (pop k) = chs⊦→ch ts k -- Translation from closed Hilbert-style to closed Hilbert-style sequential. ch→chs : ∀ {A} → CH.⊢ A → CHS.⊢ A ch→chs (CH.app t u) = CHS.app (ch→chs t) (ch→chs u) ch→chs CH.ci = ∅ , CHS.ci CHS.nil ch→chs CH.ck = ∅ , CHS.ck CHS.nil ch→chs CH.cs = ∅ , CHS.cs CHS.nil ch→chs CH.cpair = ∅ , CHS.cpair CHS.nil ch→chs CH.cfst = ∅ , CHS.cfst CHS.nil ch→chs CH.csnd = ∅ , CHS.csnd CHS.nil ch→chs CH.unit = ∅ , CHS.unit CHS.nil -- Translation from Hilbert-style sequential to Hilbert-style. hs→h : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ hs→h (Ξ , ts) = hs⊦→h ts top where hs⊦→h : ∀ {A Ξ Γ} → HS⟨ Γ ⊦⊢ Ξ ⟩ → A ∈ Ξ → H⟨ Γ ⊢ A ⟩ hs⊦→h (HS.var i ts) top = H.var i hs⊦→h (HS.mp i j ts) top = H.app (hs⊦→h ts i) (hs⊦→h ts j) hs⊦→h (HS.ci ts) top = H.ci hs⊦→h (HS.ck ts) top = H.ck hs⊦→h (HS.cs ts) top = H.cs hs⊦→h (HS.cpair ts) top = H.cpair hs⊦→h (HS.cfst ts) top = H.cfst hs⊦→h (HS.csnd ts) top = H.csnd hs⊦→h (HS.unit ts) top = H.unit hs⊦→h (HS.var i ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.mp i j ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ci ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ck ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cs ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cpair ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cfst ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.csnd ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.unit ts) (pop k) = hs⊦→h ts k -- Translation from Hilbert-style to Hilbert-style sequential. h→hs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ h→hs (H.var i) = ∅ , HS.var i HS.nil h→hs (H.app t u) = HS.app (h→hs t) (h→hs u) h→hs H.ci = ∅ , HS.ci HS.nil h→hs H.ck = ∅ , HS.ck HS.nil h→hs H.cs = ∅ , HS.cs HS.nil h→hs H.cpair = ∅ , HS.cpair HS.nil h→hs H.cfst = ∅ , HS.cfst HS.nil h→hs H.csnd = ∅ , HS.csnd HS.nil h→hs H.unit = ∅ , HS.unit HS.nil -- Deduction and detachment theorems for Hilbert-style sequential. hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ hs-lam = h→hs ∘ H.lam ∘ hs→h hs-lam⋆₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ hs-lam⋆₀ = h→hs ∘ H.lam⋆₀ ∘ hs→h hs-det : ∀ {A B Γ} → HS⟨ Γ ⊢ A ▻ B ⟩ → HS⟨ Γ , A ⊢ B ⟩ hs-det = h→hs ∘ H.det ∘ hs→h hs-det⋆₀ : ∀ {A Γ} → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ → HS⟨ Γ ⊢ A ⟩ hs-det⋆₀ = h→hs ∘ H.det⋆₀ ∘ hs→h -- Translation from closed Hilbert-style sequential to Hilbert-style sequential. chs→hs₀ : ∀ {A} → CHS.⊢ A → HS⟨ ∅ ⊢ A ⟩ chs→hs₀ (Ξ , ts) = Ξ , chs⊦→hs₀⊦ ts where chs⊦→hs₀⊦ : ∀ {Ξ} → CHS.⊦⊢ Ξ → HS⟨ ∅ ⊦⊢ Ξ ⟩ chs⊦→hs₀⊦ CHS.nil = HS.nil chs⊦→hs₀⊦ (CHS.mp i j ts) = HS.mp i j (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ci ts) = HS.ci (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ck ts) = HS.ck (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cs ts) = HS.cs (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cpair ts) = HS.cpair (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cfst ts) = HS.cfst (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.csnd ts) = HS.csnd (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.unit ts) = HS.unit (chs⊦→hs₀⊦ ts) chs→hs : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ chs→hs t = hs-det⋆₀ (chs→hs₀ t) -- Translation from Hilbert-style sequential to closed Hilbert-style sequential. hs₀→chs : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CHS.⊢ A hs₀→chs (Ξ , ts) = Ξ , hs₀⊦→chs⊦ ts where hs₀⊦→chs⊦ : ∀ {Ξ} → HS⟨ ∅ ⊦⊢ Ξ ⟩ → CHS.⊦⊢ Ξ hs₀⊦→chs⊦ HS.nil = CHS.nil hs₀⊦→chs⊦ (HS.var () ts) hs₀⊦→chs⊦ (HS.mp i j ts) = CHS.mp i j (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ci ts) = CHS.ci (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ck ts) = CHS.ck (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cs ts) = CHS.cs (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cpair ts) = CHS.cpair (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cfst ts) = CHS.cfst (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.csnd ts) = CHS.csnd (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.unit ts) = CHS.unit (hs₀⊦→chs⊦ ts) hs→chs : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A hs→chs t = hs₀→chs (hs-lam⋆₀ t) -- Translation from closed Hilbert-style to Hilbert-style. ch→h₀ : ∀ {A} → CH.⊢ A → H⟨ ∅ ⊢ A ⟩ ch→h₀ (CH.app t u) = H.app (ch→h₀ t) (ch→h₀ u) ch→h₀ CH.ci = H.ci ch→h₀ CH.ck = H.ck ch→h₀ CH.cs = H.cs ch→h₀ CH.cpair = H.cpair ch→h₀ CH.cfst = H.cfst ch→h₀ CH.csnd = H.csnd ch→h₀ CH.unit = H.unit ch→h : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ ch→h t = H.det⋆₀ (ch→h₀ t) -- Translation from Hilbert-style to closed Hilbert-style. h₀→ch : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CH.⊢ A h₀→ch (H.var ()) h₀→ch (H.app t u) = CH.app (h₀→ch t) (h₀→ch u) h₀→ch H.ci = CH.ci h₀→ch H.ck = CH.ck h₀→ch H.cs = CH.cs h₀→ch H.cpair = CH.cpair h₀→ch H.cfst = CH.cfst h₀→ch H.csnd = CH.csnd h₀→ch H.unit = CH.unit h→ch : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A h→ch t = h₀→ch (H.lam⋆₀ t) -- Translation from Hilbert-style to Gentzen-style. h→g : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ h→g (H.var i) = G.var i h→g (H.app t u) = G.app (h→g t) (h→g u) h→g H.ci = G.ci h→g H.ck = G.ck h→g H.cs = G.cs h→g H.cpair = G.cpair h→g H.cfst = G.cfst h→g H.csnd = G.csnd h→g H.unit = G.unit -- Translation from Gentzen-style to Hilbert-style. g→h : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ g→h (G.var i) = H.var i g→h (G.lam t) = H.lam (g→h t) g→h (G.app t u) = H.app (g→h t) (g→h u) g→h (G.pair t u) = H.pair (g→h t) (g→h u) g→h (G.fst t) = H.fst (g→h t) g→h (G.snd t) = H.snd (g→h t) g→h G.unit = H.unit -- Additional translations from closed Hilbert-style sequential. chs→h₀ : ∀ {A} → CHS.⊢ A → H⟨ ∅ ⊢ A ⟩ chs→h₀ = ch→h₀ ∘ chs→ch chs→h : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ chs→h = ch→h ∘ chs→ch chs→g₀ : ∀ {A} → CHS.⊢ A → G⟨ ∅ ⊢ A ⟩ chs→g₀ = h→g ∘ chs→h₀ chs→g : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ chs→g = h→g ∘ chs→h -- Additional translations from closed Hilbert-style. ch→hs₀ : ∀ {A} → CH.⊢ A → HS⟨ ∅ ⊢ A ⟩ ch→hs₀ = chs→hs₀ ∘ ch→chs ch→hs : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ ch→hs = chs→hs ∘ ch→chs ch→g₀ : ∀ {A} → CH.⊢ A → G⟨ ∅ ⊢ A ⟩ ch→g₀ = h→g ∘ ch→h₀ ch→g : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ ch→g = h→g ∘ ch→h -- Additional translations from Hilbert-style sequential. hs₀→ch : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CH.⊢ A hs₀→ch = chs→ch ∘ hs₀→chs hs→ch : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A hs→ch = chs→ch ∘ hs→chs hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ hs→g = h→g ∘ hs→h -- Additional translations from Hilbert-style. h₀→chs : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CHS.⊢ A h₀→chs = ch→chs ∘ h₀→ch h→chs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A h→chs = ch→chs ∘ h→ch -- Additional translations from Gentzen-style. g₀→chs : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CHS.⊢ A g₀→chs = h₀→chs ∘ g→h g→chs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A g→chs = h→chs ∘ g→h g₀→ch : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CH.⊢ A g₀→ch = h₀→ch ∘ g→h g→ch : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A g→ch = h→ch ∘ g→h g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ g→hs = h→hs ∘ g→h
{ "alphanum_fraction": 0.481571397, "avg_line_length": 30.4093959732, "ext": "agda", "hexsha": "b12d36ae82d8bc32a7d393f1df2a23af101dafc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Syntax/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Syntax/Translation.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Syntax/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 4866, "size": 9062 }
module Numeral.Natural.Relation.Order.Category where open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic open import Logic.Propositional open import Logic.IntroInstances import Lvl open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv import Structure.Categorical.Names as Names open import Structure.Categorical.Properties open import Structure.Category import Structure.Function.Names as Names open import Structure.Operator open import Structure.Relator.Properties open import Type instance [≤]-identityₗ : Morphism.Identityₗ{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) (reflexivity(_≤_)) [≤]-identityₗ = Morphism.intro proof where proof : Names.Morphism.Identityₗ{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) (reflexivity(_≤_)) proof {𝟎} {y} {min} = [≡]-intro proof {𝐒 x} {𝐒 y} {succ p} = [≡]-with succ (proof {x}{y} {p}) instance [≤]-identityᵣ : Morphism.Identityᵣ{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) (reflexivity(_≤_)) [≤]-identityᵣ = Morphism.intro proof where proof : Names.Morphism.Identityᵣ{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) (reflexivity(_≤_)) proof {𝟎} {y} {min} = [≡]-intro proof {𝐒 x} {𝐒 y} {succ p} = [≡]-with (p ↦ [≤]-with-[𝐒] ⦃ p ⦄) (proof {x}{y} {p}) instance [≤]-associativity : Morphism.Associativity{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) [≤]-associativity = Morphism.intro proof where proof : Names.Morphism.Associativity{Obj = ℕ}(\{x} → swap(transitivity(_≤_) {x})) proof {.𝟎} {.𝟎} {.𝟎} {w} {min} {min} {min} = [≡]-intro proof {.𝟎} {.𝟎} {.(𝐒 _)} {.(𝐒 _)} {succ _} {min} {min} = [≡]-intro proof {.𝟎} {.(𝐒 _)} {.(𝐒 _)} {.(𝐒 _)} {succ _} {succ _} {min} = [≡]-intro proof {.(𝐒 _)} {.(𝐒 _)} {.(𝐒 _)} {.(𝐒 _)} {succ _} {succ _} {succ _} = [≡]-with succ proof instance [≤]-category : Category(_≤_) Category._∘_ [≤]-category = swap(transitivity(_≤_)) Category.id [≤]-category = reflexivity(_≤_) Category.binaryOperator [≤]-category = intro(\{[≡]-intro [≡]-intro → [≡]-intro})
{ "alphanum_fraction": 0.6313901345, "avg_line_length": 44.6, "ext": "agda", "hexsha": "6832d5a505de0b32fae8c2ca25d5c1f8b70da58c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Order/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Order/Category.agda", "max_line_length": 100, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Order/Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 825, "size": 2230 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Constructions.Exponential where open import Level open import Cats.Category.Base open import Cats.Category.Constructions.Product as Product using (HasBinaryProducts) open import Cats.Util.Conv import Cats.Category.Constructions.Iso as Iso import Cats.Category.Constructions.Unique as Unique module Build {lo la l≈} (Cat : Category lo la l≈) {{hasBinaryProducts : HasBinaryProducts Cat}} where open Category Cat open ≈-Reasoning open Unique.Build Cat open Iso.Build Cat open HasBinaryProducts hasBinaryProducts open _≅_ record Exp (B C : Obj) : Set (lo ⊔ la ⊔ l≈) where field Cᴮ : Obj eval : Cᴮ × B ⇒ C curry′ : ∀ {A} (f : A × B ⇒ C) → ∃![ f̃ ∈ A ⇒ Cᴮ ] (eval ∘ ⟨ f̃ × id ⟩ ≈ f) curry : ∀ {A} → A × B ⇒ C → A ⇒ Cᴮ curry f = curry′ f ⃗ eval-curry : ∀ {A} {f : A × B ⇒ C} → eval ∘ ⟨ curry f × id ⟩ ≈ f eval-curry {f = f} = ∃!′.prop (curry′ f) curry-unique : ∀ {A} {f : A × B ⇒ C} {g} → eval ∘ ⟨ g × id ⟩ ≈ f → curry f ≈ g curry-unique {f = f} = ∃!′.unique (curry′ f) uncurry : ∀ {A} → A ⇒ Cᴮ → A × B ⇒ C uncurry f = eval ∘ ⟨ f × id ⟩ curry∘uncurry : ∀ {A} {f : A ⇒ Cᴮ} → curry (uncurry f) ≈ f curry∘uncurry = curry-unique ≈.refl uncurry∘curry : ∀ {A} {f : A × B ⇒ C} → uncurry (curry f) ≈ f uncurry∘curry = eval-curry instance HasObj-Exp : ∀ {B C} → HasObj (Exp B C) lo la l≈ HasObj-Exp = record { Cat = Cat ; _ᴼ = Exp.Cᴮ } open Exp public curry∘curry : ∀ {A B C Y Z} (Cᴮ : Exp B C) (Yᶻ : Exp Y Z) → {f : Cᴮ ᴼ × Y ⇒ Z} {g : A × B ⇒ C} → curry Yᶻ f ∘ curry Cᴮ g ≈ curry Yᶻ (f ∘ ⟨ curry Cᴮ g × id ⟩) curry∘curry Cᴮ Yᶻ {f} {g} = ≈.sym (curry-unique Yᶻ ( begin eval Yᶻ ∘ ⟨ curry Yᶻ f ∘ curry Cᴮ g × id ⟩ ≈⟨ ∘-resp-r (⟨×⟩-resp ≈.refl (≈.sym id-l)) ⟩ eval Yᶻ ∘ ⟨ curry Yᶻ f ∘ curry Cᴮ g × id ∘ id ⟩ ≈⟨ ∘-resp-r (≈.sym ⟨×⟩-∘) ⟩ eval Yᶻ ∘ ⟨ curry Yᶻ f × id ⟩ ∘ ⟨ curry Cᴮ g × id ⟩ ≈⟨ unassoc ⟩ (eval Yᶻ ∘ ⟨ curry Yᶻ f × id ⟩) ∘ ⟨ curry Cᴮ g × id ⟩ ≈⟨ ∘-resp-l (eval-curry Yᶻ) ⟩ f ∘ ⟨ curry Cᴮ g × id ⟩ ∎ )) Exp-resp-≅ : ∀ {A A′ B B′} → A ≅ A′ → B ≅ B′ → (E : Exp A B) (E′ : Exp A′ B′) → E ᴼ ≅ E′ ᴼ Exp-resp-≅ A≅A′ B≅B′ E E′ = record { forth = curry E′ (B≅B′ .forth ∘ eval E ∘ ⟨ id × A≅A′ .back ⟩) ; back = curry E (B≅B′ .back ∘ eval E′ ∘ ⟨ id × A≅A′ .forth ⟩) -- Today in our series on 'trivial' properties (also copy-and-paste -- programming). ; back-forth = ≈.trans (curry∘curry E′ E) (curry-unique E (≈.trans (∘-resp-r ⟨×⟩-id) (≈.trans id-r (≈.sym (≈.trans assoc (≈.trans (∘-resp-r (≈.trans assoc (≈.trans (∘-resp-r (≈.trans ⟨×⟩-∘ (≈.trans (⟨×⟩-resp (≈.trans id-l (≈.sym id-r)) (≈.trans id-r (≈.sym id-l))) (≈.sym ⟨×⟩-∘)))) (≈.trans unassoc (∘-resp-l (eval-curry E′)))))) (≈.trans unassoc (≈.trans (∘-resp-l (≈.trans unassoc (≈.trans (∘-resp-l (B≅B′ .back-forth)) id-l))) (≈.trans assoc (≈.trans (∘-resp-r (≈.trans ⟨×⟩-∘ (≈.trans (⟨×⟩-resp id-l (A≅A′ .back-forth)) ⟨×⟩-id))) id-r)))))))))) ; forth-back = ≈.trans (curry∘curry E E′) (curry-unique E′ (≈.trans (∘-resp-r ⟨×⟩-id) (≈.trans id-r (≈.sym (≈.trans assoc (≈.trans (∘-resp-r (≈.trans assoc (≈.trans (∘-resp-r (≈.trans ⟨×⟩-∘ (≈.trans (⟨×⟩-resp (≈.trans id-l (≈.sym id-r)) (≈.trans id-r (≈.sym id-l))) (≈.sym ⟨×⟩-∘)))) (≈.trans unassoc (∘-resp-l (eval-curry E)))))) (≈.trans unassoc (≈.trans (∘-resp-l (≈.trans unassoc (≈.trans (∘-resp-l (B≅B′ .forth-back)) id-l))) (≈.trans assoc (≈.trans (∘-resp-r (≈.trans ⟨×⟩-∘ (≈.trans (⟨×⟩-resp id-l (A≅A′ .forth-back)) ⟨×⟩-id))) id-r)))))))))) } record HasExponentials {lo la l≈} (Cat : Category lo la l≈) : Set (lo ⊔ la ⊔ l≈) where private open module Bld = Build Cat using (Exp) open Category Cat open Unique.Build Cat open Iso.Build Cat infixr 1 _↝′_ _↝_ field {{hasBinaryProducts}} : HasBinaryProducts Cat _↝′_ : ∀ B C → Exp B C open HasBinaryProducts hasBinaryProducts _↝_ : Obj → Obj → Obj B ↝ C = (B ↝′ C) ᴼ eval : ∀ {B C} → (B ↝ C) × B ⇒ C eval {B} {C} = Bld.eval (B ↝′ C) curry : ∀ {A B C} → A × B ⇒ C → A ⇒ B ↝ C curry {B = B} {C} f = Bld.curry (B ↝′ C) f uncurry : ∀ {A B C} → A ⇒ B ↝ C → A × B ⇒ C uncurry {B = B} {C} = Bld.uncurry (B ↝′ C) eval-curry : ∀ {A B C} {f : A × B ⇒ C} → eval ∘ ⟨ curry f × id ⟩ ≈ f eval-curry {B = B} {C} = Bld.eval-curry (B ↝′ C) curry-unique : ∀ {A B C} {f : A × B ⇒ C} {g} → eval ∘ ⟨ g × id ⟩ ≈ f → curry f ≈ g curry-unique {B = B} {C} = Bld.curry-unique (B ↝′ C) curry∘uncurry : ∀ {A B C} {f : A ⇒ B ↝ C} → curry (uncurry f) ≈ f curry∘uncurry {B = B} {C} = Bld.curry∘uncurry (B ↝′ C) uncurry∘curry : ∀ {A B C} {f : A × B ⇒ C} → uncurry (curry f) ≈ f uncurry∘curry {B = B} {C} = Bld.uncurry∘curry (B ↝′ C) curry∘curry : ∀ {A B C Y Z} → {f : (B ↝ C) × Y ⇒ Z} {g : A × B ⇒ C} → curry f ∘ curry g ≈ curry (f ∘ ⟨ curry g × id ⟩) curry∘curry {B = B} {C} {Y} {Z} = Bld.curry∘curry (B ↝′ C) (Y ↝′ Z) ↝-resp-≅ : ∀ {A A′ B B′} → A ≅ A′ → B ≅ B′ → (A ↝ B) ≅ (A′ ↝ B′) ↝-resp-≅ {A} {A′} {B} {B′} A≅A′ B≅B′ = Bld.Exp-resp-≅ A≅A′ B≅B′ (A ↝′ B) (A′ ↝′ B′) open Build public
{ "alphanum_fraction": 0.484904271, "avg_line_length": 28.1450777202, "ext": "agda", "hexsha": "94afbc0095e0d5bb4a8d119ace34451c27664a3b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_line_length": 83, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Constructions/Exponential.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 2539, "size": 5432 }
{-# OPTIONS --cubical --safe #-} module Control.Monad.Levels.Eliminators where open import Prelude open import Data.Bag open import Control.Monad.Levels.Definition record Eliminator {a p} (A : Type a) (P : Levels A → Type p) : Type (a ℓ⊔ p) where constructor elim field ⟦_⟧-set : ∀ {xs} → isSet (P xs) ⟦_⟧_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs) ⟦_⟧[] : P [] ⟦_⟧-trail : PathP (λ i → P (trail i)) (⟦_⟧_∷_⟨_⟩ [] [] ⟦_⟧[]) ⟦_⟧[] run : ∀ xs → P xs run (x ∷ xs) = ⟦_⟧_∷_⟨_⟩ x xs (run xs) run [] = ⟦_⟧[] run (trail i) = ⟦_⟧-trail i run (trunc xs ys x y i j) = isOfHLevel→isOfHLevelDep 2 (λ xs → ⟦_⟧-set {xs}) (run xs) (run ys) (cong run x) (cong run y) (trunc xs ys x y) i j _⇓_ : (xs : Levels A) → P xs _⇓_ = run {-# INLINE _⇓_ #-} open Eliminator public infixr 1 Eliminator syntax Eliminator A (λ v → e) = Levels-Π[ v ⦂ e ] A record Recursor (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where constructor rec field [_]-set : isSet B [_]_∷_⟨_⟩ : (x : ⟅ A ⟆) → (xs : Levels A) → B → B [_][] : B private f = [_]_∷_⟨_⟩; z = [_][] field [_]-trail : f [] [] z ≡ z _↑ : Eliminator A (λ _ → B) _↑ = elim [_]-set f z [_]-trail _↓_ : Levels A → B _↓_ = run _↑ {-# INLINE _↑ #-} {-# INLINE _↓_ #-} open Recursor public infixr 1 Recursor syntax Recursor A B = Levels-ϕ[ A ] B infix 4 _⊜_ record AnEquality (A : Type a) : Type a where constructor _⊜_ field lhs rhs : Levels A open AnEquality public record Property {r} (A : Type a) (P : Levels A → Type r) : Type (a ℓ⊔ r) where constructor property field ∥_∥-prop : ∀ {xs} → isProp (P xs) ∥_∥_∷_⟨_⟩ : (x : ⟅ A ⟆) → (xs : Levels A) → P xs → P (x ∷ xs) ∥_∥[] : P [] private z = ∥_∥[]; f = ∥_∥_∷_⟨_⟩ ∥_∥⇑ = elim (λ {xs} → isProp→isSet (∥_∥-prop {xs})) f z (toPathP (∥_∥-prop (transp (λ i → P (trail i)) i0 (f [] [] z)) z)) ∥_∥⇓ = run ∥_∥⇑ {-# INLINE ∥_∥⇑ #-} {-# INLINE ∥_∥⇓ #-} open Property public infixr 1 Property syntax Property A (λ v → e) = Levels-ψ[ v ⦂ A ] e record EqualityProof {B : Type b} (A : Type a) (P : Levels A → AnEquality B) : Type (a ℓ⊔ b) where Pr : Levels A → Type b Pr xs = let e = P xs in lhs e ≡ rhs e field ⟦_⟧≡_∷_⟨_⟩ : (x : ⟅ A ⟆) → (xs : Levels A) → Pr xs → Pr (x ∷ xs) ⟦_⟧≡[] : Pr [] _⇑≡ : Eliminator A Pr _⇑≡ = ∥ property (trunc _ _) ⟦_⟧≡_∷_⟨_⟩ ⟦_⟧≡[] ∥⇑ _⇓≡_ : (xs : Levels A) → Pr xs _⇓≡_ = run _⇑≡ {-# INLINE _⇑≡ #-} {-# INLINE _⇓≡_ #-} open EqualityProof public infixr 1 EqualityProof syntax EqualityProof A (λ v → e) = Levels-ψ[ v ⦂ A ]≡ e
{ "alphanum_fraction": 0.5166602834, "avg_line_length": 24.8666666667, "ext": "agda", "hexsha": "51d7d6730f30e3cb8d3e6bf44519c32351a38d33", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/Levels/Eliminators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/Levels/Eliminators.agda", "max_line_length": 98, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/Levels/Eliminators.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1220, "size": 2611 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Functions.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Integers.Integers open import Numbers.Modulo.Group open import Numbers.Modulo.Definition open import Rings.Examples.Proofs open import Numbers.Primes.PrimeNumbers open import Setoids.Setoids open import Rings.Definition open import Groups.Definition open import Groups.Lemmas open import Sets.EquivalenceRelations module Rings.Examples.Examples where multiplicationNotGroup : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) → (nontrivial : Setoid._∼_ S (Ring.1R R) (Ring.0R R) → False) → Group S _*_ → False multiplicationNotGroup {S = S} R 1!=0 gr = exFalso (1!=0 (groupsHaveLeftCancellation gr (Ring.0R R) (Ring.1R R) (Ring.0R R) (transitive (Ring.timesZero' R) (symmetric (Ring.timesZero' R))))) where open Setoid S open Equivalence eq nToZn : (n : ℕ) (pr : 0 <N n) (x : ℕ) → ℤn n pr nToZn n pr x = nToZn' n pr x mod : (n : ℕ) → (pr : 0 <N n) → ℤ → ℤn n pr mod n pr a = mod' n pr a modNExampleSurjective : (n : ℕ) → (pr : 0 <N n) → Surjection (mod n pr) modNExampleSurjective n pr = modNExampleSurjective' n pr {- modNExampleGroupHom : (n : ℕ) → (pr : 0 <N n) → GroupHom ℤGroup (ℤnGroup n pr) (mod n pr) modNExampleGroupHom n pr = modNExampleGroupHom' n pr embedZnInZ : {n : ℕ} {pr : 0 <N n} → (a : ℤn n pr) → ℤ embedZnInZ record { x = x } = nonneg x modNRoundTrip : (n : ℕ) → (pr : 0 <N n) → (a : ℤn n pr) → mod n pr (embedZnInZ a) ≡ a modNRoundTrip zero () modNRoundTrip (succ n) pr record { x = x ; xLess = xLess } with divisionAlg (succ n) x modNRoundTrip (succ n) _ record { x = x ; xLess = xLess } | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = equalityZn _ _ p where p : rem ≡ x p = modIsUnique record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } record { quot = 0 ; rem = x ; pr = identityOfIndiscernablesLeft _ _ _ _≡_ refl (applyEquality (λ i → i +N x) (multiplicationNIsCommutative 0 n)) ; remIsSmall = inl xLess ; quotSmall = inl (succIsPositive n) } modNRoundTrip (succ n) _ record { x = x ; xLess = xLess } | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inr () } -}
{ "alphanum_fraction": 0.6670792079, "avg_line_length": 45.7358490566, "ext": "agda", "hexsha": "f506b84e3dd4a01aea6b603590213dd80a9fcb2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Examples/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Examples/Examples.agda", "max_line_length": 329, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Examples/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 862, "size": 2424 }
open import Common.Reflection open import Common.Unit open import Common.Prelude macro t1 : (A : Set) -> Term -> Term -> Tactic t1 x y z = give y t2 : Term -> (A : Set) -> Term -> Tactic t2 x y z = give x t3 : Term -> Term -> (A : Set) -> QName -> Tactic t3 x y z n = give x t4 : Term -> Term -> (A : Set) -> A -> Tactic t4 x y z a = give x f1 : {A : Set} -> A -> A f1 x = t1 Unit x x f2 : {A : Set} -> A -> A f2 x = t2 x Unit x y : Set y = Unit f3 : {A : Set} -> A -> A f3 x = (t3 x x Unit y) f4 : {A : Set} -> A -> A f4 x = t4 x x Unit unit
{ "alphanum_fraction": 0.5113835377, "avg_line_length": 16.3142857143, "ext": "agda", "hexsha": "8104d517493547887ba8923e66a1a02cad5db209", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/MacroArgs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/MacroArgs.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/MacroArgs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 236, "size": 571 }
module lambda.untyped where open import Data.Nat open import Data.Fin hiding (lift) data term (n : ℕ) : Set where lam : term (suc n) → term n var : Fin n → term n app : term n → term n → term n data norm {n : ℕ} : term n → Set data neut {n : ℕ} : term n → Set data norm {n} where lam : {x : term (suc n)} → norm x → norm (lam x) gnd : {x : term n} → neut x → norm x data neut {n} where var : {i : Fin n} → neut (var i) app : {x y : term n} → neut x → norm y → neut (app x y) lift : ∀ {n} → term n → term (suc n) lift (lam x) = lam (lift x) lift (var i) = var (suc i) lift (app x y) = app (lift x) (lift y) lift₁ : ∀ {n} → term (suc n) → term (suc (suc n)) lift₁ (lam x) = lam (lift₁ x) lift₁ (var zero) = var zero lift₁ (var (suc i)) = var (suc (suc i)) lift₁ (app x y) = app (lift₁ x) (lift₁ y) ↑ : ∀ {n m} → (Fin n → term m) → Fin (suc n) → term (suc m) ↑ ρ zero = var zero ↑ ρ (suc i) = lift (ρ i) subst : ∀ {n m} → term n → (Fin n → term m) → term m subst (lam x) ρ = lam (subst x (↑ ρ)) subst (var i) ρ = ρ i subst (app x y) ρ = app (subst x ρ) (subst y ρ) subst₁ : ∀ {n} → term (suc n) → term n → term n subst₁ x y = subst x (λ {zero → y; (suc i) → var i}) data _→β_ {n : ℕ} : term n → term n → Set where β-beta : ∀ {x y} → app (lam x) y →β subst₁ x y β-app₁ : ∀ {x y z} → x →β y → app x z →β app y z β-app₂ : ∀ {x y z} → y →β z → app x y →β app x z β-lam : ∀ {x y} → x →β y → lam x →β lam y data _β*_ {n : ℕ} : term n → term n → Set where ε : ∀ {x} → x β* x _←_ : ∀ {x y z} → x →β y → y β* z → x β* z
{ "alphanum_fraction": 0.5252263907, "avg_line_length": 28.6296296296, "ext": "agda", "hexsha": "b8ffedb3d3332644a2f8edec58867a90c39d3f58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Lapin0t/lambda", "max_forks_repo_path": "lambda/untyped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Lapin0t/lambda", "max_issues_repo_path": "lambda/untyped.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Lapin0t/lambda", "max_stars_repo_path": "lambda/untyped.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 667, "size": 1546 }
{-# OPTIONS --without-K --no-pattern-matching #-} module Ch2-6 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 open import Ch2-3 open import Ch2-4 open import Ch2-5 open import Data.Product open import Function using (id; _∘_) -- Definition 2.6.1 Definition-2-6-1 : ∀ {a b} {A : Set a} {B : Set b} {x y : A × B} → (p : x ≡ y) → proj₁ x ≡ proj₁ y × proj₂ x ≡ proj₂ y Definition-2-6-1 {_} {_} {A} {B} {x} {y} p = J (A × B) D d x y p where D : (x y : A × B) (p : x ≡ y) → Set _ D x y p = proj₁ x ≡ proj₁ y × proj₂ x ≡ proj₂ y d : (x : A × B) → D x x refl d x = refl , refl -- Definition 2.6.3 Definition-2-6-3 : ∀ {i j} {A : Set i} {B : Set j} {x y : A × B} → proj₁ x ≡ proj₁ y × proj₂ x ≡ proj₂ y → x ≡ y Definition-2-6-3 {_} {_} {A} {B} {x} {y} p = J A D d (proj₁ x) (proj₁ y) (proj₁ p) (proj₂ x) (proj₂ y) (proj₂ p) where D : (a b : A) (fst : a ≡ b) → Set _ D a b fst = (a' b' : B) (snd : a' ≡ b') → (a , a') ≡ (b , b') d : (x : A) → D x x refl d x a' b' snd = J B E e a' b' snd x where E : (a' b' : B) (snd : a' ≡ b') → Set _ E a' b' snd = (x : A) → (x , a') ≡ (x , b') e : (x : B) → E x x refl e x y = refl pair≡ : ∀ {a b} {A : Set a} {B : Set b} {x y : A × B} → proj₁ x ≡ proj₁ y × proj₂ x ≡ proj₂ y → x ≡ y pair≡ = Definition-2-6-3 -- Theorem 2.6.2 Theorem-2-6-2 : ∀ {a b} {A : Set a} {B : Set b} (x y : A × B) → (x ≡ y) ≅ (proj₁ x ≡ proj₁ y × proj₂ x ≡ proj₂ y) Theorem-2-6-2 {_} {_} {A} {B} a b = Definition-2-6-1 , it-isequiv -- where it-isequiv : isequiv Definition-2-6-1 it-isequiv = (Definition-2-6-3 , α) , (Definition-2-6-3 , β) where α : Definition-2-6-1 ∘ Definition-2-6-3 ~ id α p = J A D d (proj₁ a) (proj₁ b) (proj₁ p) (proj₂ a) (proj₂ b) (proj₂ p) where D : (x y : A) (p : x ≡ y) → Set _ D x y p = (x' y' : B) (snd : x' ≡ y') → (Definition-2-6-1 ∘ Definition-2-6-3) (p , snd) ≡ ((p , snd)) d : (x : A) → D x x refl d x x' y' q = J B E e x' y' q where E : (x' y' : B) (q : x' ≡ y') → Set _ E x' y' q = (Definition-2-6-1 ∘ Definition-2-6-3) (refl , q) ≡ ((refl , q)) e : (x' : B) → E x' x' refl e x' = refl β : Definition-2-6-3 ∘ Definition-2-6-1 ~ id β p = J (A × B) D d a b p where D : (x y : A × B) (p : x ≡ y) → Set _ D x y p = (Definition-2-6-3 ∘ Definition-2-6-1) p ≡ id p d : (x : A × B) → D x x refl d x = refl -- Definition 2.6.4 _X_ : {a b : Level} {Z : Set a} → (A B : Z → Set b) → Z → Set _ _X_ {a} {b} {Z} A B z = A z × B z -- Theorem 2.6.4 Theorem-2-6-4 : {a b : Level} {Z : Set a} → (A B : Z → Set b) → {z w : Z} (p : z ≡ w) → (x : (A X B) z) → transport (A X B) p x ≡ ((transport A p (proj₁ x)) , transport B p (proj₂ x)) Theorem-2-6-4 {_} {_} {Z} A B {z} {w} p x = J _ D d z w p x where D : (z w : Z) (p : z ≡ w) → Set _ D z w p = (x : (A X B) z) → transport (A X B) p x ≡ (transport A p (proj₁ x) , transport B p (proj₂ x)) d : (z : Z) → D z z refl d z x = refl -- Definition 2.6.5 Definition-2-6-5 : {a a' b b' : Level} → {A : Set a} {A' : Set a'} {B : Set b} {B' : Set b'} → (g : A → A') (h : B → B') → A × B → A' × B' Definition-2-6-5 g h x = g (proj₁ x) , h (proj₂ x) -- Theorem 2.6.5 Theorem-2-6-5 : {a a' b b' : Level} → {A : Set a} {A' : Set a'} {B : Set b} {B' : Set b'} → (g : A → A') (h : B → B') → {x y : A × B} → (p : proj₁ x ≡ proj₁ y) → (q : proj₂ x ≡ proj₂ y) → ap (Definition-2-6-5 g h) (Definition-2-6-3 (p , q)) ≡ Definition-2-6-3 (ap g p , ap h q) Theorem-2-6-5 {A = A} {A'} {B} {B'} g h {x} {y} p q = J _ D d (proj₁ x) (proj₁ y) p g h (proj₂ x) (proj₂ y) q where D : (x₁ y₁ : A) (p : x₁ ≡ y₁) → Set _ D x₁ y₁ p = (g : A → A') (h : B → B') (x₂ y₂ : B) (q : x₂ ≡ y₂) → ap (Definition-2-6-5 g h) (Definition-2-6-3 (p , q)) ≡ Definition-2-6-3 (ap g p , ap h q) d : (x : A) → D x x refl d x g h x₂ y₂ q = J _ E e x₂ y₂ q g h where E : (x₂ y₂ : B) (q : x₂ ≡ y₂) → Set _ E x₂ y₂ q = (g : A → A') (h : B → B') → ap (Definition-2-6-5 g h) (Definition-2-6-3 (refl , q)) ≡ Definition-2-6-3 (ap g refl , ap h q) e : (y : B) → E y y refl e y g h = refl
{ "alphanum_fraction": 0.438750281, "avg_line_length": 30.6827586207, "ext": "agda", "hexsha": "0a913c81f61b11a2c3a3942df6e01e5e016ac75d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-6.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-6.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-6.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2041, "size": 4449 }
module L.Base.Empty.Core where open import Agda.Primitive -- Introducing the empty type data ⊥ : Set where exfalso : ∀{c} (C : ⊥ → Set c) → (a : ⊥) → C a exfalso = λ C ()
{ "alphanum_fraction": 0.6206896552, "avg_line_length": 17.4, "ext": "agda", "hexsha": "7b79e8615215c12733256fc3250e3832fb20664a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Empty/Core.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Empty/Core.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Empty/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 63, "size": 174 }
-- Andreas, 2020-03-26, issue #4481, reported by gallais -- #952 unintentionally added named lambdas; tests here. -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.term.expr.top:15 #-} -- {-# OPTIONS -v tc.term.lambda:30 #-} open import Agda.Primitive -- Named lambdas: postulate f : ({A : Set} → Set) → Set _ = f λ {A = A} → A postulate A : Set g : ({{a : A}} → A) → A _ = g λ {{a = a}} → a data ⊥ : Set where record ⊤ : Set where proj2 : ∀ a {A B : Set a} → Set a proj2 = λ _ {B = B} → B agdaIsConsistent : proj2 lzero {⊥} {⊤} agdaIsConsistent = _
{ "alphanum_fraction": 0.5782073814, "avg_line_length": 19.6206896552, "ext": "agda", "hexsha": "f32d1d65ec1af1d0262caa6e77b44283300357b5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4481.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4481.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4481.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 212, "size": 569 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT renaming (pt to ⊙pt) open import cw.CW open import cw.FinCW open import cohomology.Theory open import groups.Int open import groups.DisjointlyPointedSet module cw.cohomology.cochainequiv.AugmentCommSquare (OT : OrdinaryTheory lzero) (⊙fin-skel : ⊙FinSkeleton 0) where open OrdinaryTheory OT open import cw.cohomology.reconstructed.TipAndAugment OT ⊙⦉ ⊙fin-skel ⦊ private I = ⊙FinSkeleton.skel ⊙fin-skel ac = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero pt = ⊙FinSkeleton.skel ⊙fin-skel abstract augment-comm-sqr : CommSquareEquiv (GroupHom.f cw-coε) (_∘ᴳ FreeAbGroup-extend (Lift-abgroup {j = lzero} ℤ-abgroup) λ _ → lift 1) ((_∘ᴳ lower-hom {j = lzero}) ∘ <– (ℤ→ᴳ-equiv-idf (C2 0))) (FreeAbGroup-extend (C2-abgroup 0) ∘ GroupIso.f (C2×CX₀-diag-β ac)) augment-comm-sqr = comm-sqr (λ g → equiv-adj' (GroupIso.f-equiv (FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ C2×CX₀-diag-β ac)) (! $ pair×= idp ( ap (GroupIso.g (CX₀-diag-β ac)) (λ= λ _ → Group.inv-r (C2 0) g) ∙ GroupHom.pres-ident (GroupIso.g-hom (CX₀-diag-β ac))))) , (GroupIso.f-is-equiv (pre∘ᴳ-iso (C2-abgroup 0) (lower-iso {j = lzero}) ∘eᴳ ℤ→ᴳ-iso-idf (C2-abgroup 0) ⁻¹ᴳ)) , (GroupIso.f-is-equiv (FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ C2×CX₀-diag-β ac)) augment-comm-sqrᴳ : CommSquareEquivᴳ cw-coε (pre∘ᴳ-hom (C2-abgroup 0) (FreeAbGroup-extend (Lift-abgroup {j = lzero} ℤ-abgroup) λ _ → lift 1)) (pre∘ᴳ-hom (C2-abgroup 0) (lower-hom {j = lzero}) ∘ᴳ GroupIso.g-hom (ℤ→ᴳ-iso-idf (C2-abgroup 0))) (FreeAbGroup-extend-hom (C2-abgroup 0) ∘ᴳ GroupIso.f-hom (C2×CX₀-diag-β ac)) augment-comm-sqrᴳ = comm-sqrᴳ (fst augment-comm-sqr □$_) , snd augment-comm-sqr
{ "alphanum_fraction": 0.6659192825, "avg_line_length": 40.5454545455, "ext": "agda", "hexsha": "78444c60deeee742f6dc0161a06d13d2ed4a7eb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/AugmentCommSquare.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/AugmentCommSquare.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/AugmentCommSquare.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 740, "size": 1784 }
module WErrorOverride where postulate IO : Set → Set {-# COMPILE GHC IO = type IO #-} {-# BUILTIN IO IO #-} infixl 1 _>>=_ postulate return : {A : Set} → A → IO A _>>=_ : {A : Set} {B : Set} → IO A → (A → IO B) → IO B {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC _>>=_ = \_ _ -> (>>=) #-} ------------------------------------------------------------------------ -- An error should be raised if one tries to do something like this: data PartialBool : Set where true : PartialBool {-# COMPILE GHC PartialBool = data Bool (True) #-} -- However one can override such behaviour by passing the flag -- --ghc-flag=-Wwarn to Agda upon compilation. main = return true
{ "alphanum_fraction": 0.5467625899, "avg_line_length": 21.71875, "ext": "agda", "hexsha": "6d68c69d852cbfd63b42482a1147ffd52ab9d686", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WErrorOverride.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WErrorOverride.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WErrorOverride.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 695 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Unit open import Cubical.Data.Sigma using (ΣPathP) open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Instances.Sets private variable ℓJ ℓJ' ℓC ℓC' : Level ℓ ℓ' ℓ'' : Level module _ {J : Category ℓJ ℓJ'} {C : Category ℓC ℓC'} where open Category open Functor open NatTrans -- functor which sends all objects to c and all -- morphisms to the identity constF : (c : C .ob) → Functor J C constF c .F-ob _ = c constF c .F-hom _ = C .id constF c .F-id = refl constF c .F-seq _ _ = sym (C .⋆IdL _) -- a cone is a natural transformation from the constant functor at x to K Cone : (K : Functor J C) → C .ob → Type _ Cone K x = NatTrans (constF x) K module _ {K : Functor J C} where -- precomposes a cone with a morphism _◼_ : ∀ {d c : C .ob} → (f : C [ d , c ]) → Cone K c → Cone K d (f ◼ μ) .N-ob x = f ⋆⟨ C ⟩ μ ⟦ x ⟧ (f ◼ μ) .N-hom {x = x} {y} k = C .id ⋆⟨ C ⟩ (f ⋆⟨ C ⟩ μ ⟦ y ⟧) ≡⟨ C .⋆IdL _ ⟩ f ⋆⟨ C ⟩ μ ⟦ y ⟧ ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) (sym (C .⋆IdL _)) ⟩ f ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ μ ⟦ y ⟧) ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) (μ .N-hom k) ⟩ f ⋆⟨ C ⟩ (μ ⟦ x ⟧ ⋆⟨ C ⟩ K ⟪ k ⟫) ≡⟨ sym (C .⋆Assoc _ _ _) ⟩ f ⋆⟨ C ⟩ μ ⟦ x ⟧ ⋆⟨ C ⟩ K ⟪ k ⟫ ∎ -- μ factors ν if there's a morphism such that the natural transformation -- from precomposing it with ν gives you back μ _factors_ : {u v : C .ob} (μ : Cone K u) (ν : Cone K v) → Type _ _factors_ {u} {v} μ ν = Σ[ mor ∈ C [ v , u ] ] ν ≡ (mor ◼ μ) -- μ uniquely factors ν if the factor from above is contractible _uniquelyFactors_ : {u v : C .ob} (μ : Cone K u) (ν : Cone K v) → Type _ _uniquelyFactors_ {u} {v} μ ν = isContr (μ factors ν) module _ (K : Functor J C) where -- a Limit is a cone such that all cones are uniquely factored by it record isLimit (head : C .ob) : Type (ℓ-max (ℓ-max ℓJ ℓJ') (ℓ-max ℓC ℓC')) where field cone : Cone K head -- TODO: change this to terminal object in category of Cones? up : ∀ {v} (ν : Cone K v) → cone uniquelyFactors ν record Limit : Type (ℓ-max (ℓ-max ℓJ ℓJ') (ℓ-max ℓC ℓC')) where field head : C .ob islim : isLimit head -- a Category is complete if it has all limits complete' : {ℓJ ℓJ' : Level} (C : Category ℓC ℓC') → Type _ complete' {ℓJ = ℓJ} {ℓJ'} C = (J : Category ℓJ ℓJ') (K : Functor J C) → Limit K complete : (C : Category ℓC ℓC') → Typeω complete C = ∀ {ℓJ ℓJ'} → complete' {ℓJ = ℓJ} {ℓJ'} C open Limit open NatTrans open Category -- TODO: -- 1. every diagram has limits isomorphic to the limit of an equalizer of products -- 2. every equalizer can be made into a pullback -- 3. every product can be made into an equalizer -- 4. a category with all pullbacks and a terminal object has all limits -- SET is complete -- notes: -- didn't need to restrict to *finite* diagrams , why is that required in Set theoretic? -- didn't use coinduction here because Agda didn't like me referencing 'cone' frome 'up' (termination check) isCompleteSET : ∀ {ℓJ ℓJ'} → complete' {ℓJ = ℓJ} {ℓJ'} (SET (ℓ-max ℓJ ℓJ')) isCompleteSET J K = record { head = head' ; islim = record { cone = cone' ; up = up' } } where -- the limit is defined as the Set of all cones with head Unit head' = Cone K (Unit* , isOfHLevelLift 2 isSetUnit) , isSetNat -- the legs are defined by taking a cone to its component at j cone' : Cone K head' cone' .N-ob j μ = (μ ⟦ j ⟧) tt* -- Naturality follows from naturality of the Unit cone cone' .N-hom {x = i} {j} f = funExt λ μ → (μ ⟦ j ⟧) tt* ≡[ i ]⟨ (μ .N-hom f i) tt* ⟩ (K ⟪ f ⟫) ((μ ⟦ i ⟧) tt*) ∎ -- Given another cone α, we want a unique function f from α → cone' which factors it -- factorization property enforces that (cone' ⟦ j ⟧ ● f) ≡ α ⟦ j ⟧ -- but cone' ⟦ j ⟧ simply takes the jth component the output Cone K Unit from f -- so this enforces that for all x ∈ A, (f x) ⟦ j ⟧ ≡ α ⟦ j ⟧ x -- this determines the *only* possible factoring morphism up' : ∀ {A} (α : Cone K A) → cone' uniquelyFactors α up' {A} α = (f , fact) , unique where f : fst A → Cone K (Unit* , isOfHLevelLift 2 isSetUnit) f x = natTrans (λ j _ → α .N-ob j x) (λ {m} {n} f → funExt λ μ i → α .N-hom f i x) fact : α ≡ (f ◼ cone') fact = makeNatTransPath refl -- I LOVE DEFINITIONAL EQUALITY unique : (τ : cone' factors α) → (f , fact) ≡ τ unique (f' , fact') = ΣPathP (f≡f' , fact≡fact') where f≡f' : f ≡ f' f≡f' = funExt λ x → makeNatTransPath (funExt λ _ → sym eq2) where -- the factorization property enforces that f' must have the same behavior as f eq1 : ∀ {x j} → ((cone' ⟦ j ⟧) (f' x)) ≡ (α ⟦ j ⟧) x eq1 {x} {j} i = ((fact' (~ i)) ⟦ j ⟧) x eq2 : ∀ {x j} → (f' x) ⟦ j ⟧ ≡ λ _ → (α ⟦ j ⟧) x -- = (f x) ⟦ j ⟧ eq2 {x} {j} = funExt λ _ → eq1 -- follows from Set having homsets fact≡fact' : PathP (λ i → α ≡ ((f≡f' i) ◼ cone')) fact fact' fact≡fact' = isOfHLevel→isOfHLevelDep 1 (λ β → isSetNat α β) fact fact' λ i → (f≡f' i) ◼ cone'
{ "alphanum_fraction": 0.5537014024, "avg_line_length": 34.9875776398, "ext": "agda", "hexsha": "8d185082a5c6145822c4d2ad5c3491859ada6026", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mzeuner/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mzeuner/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Base.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mzeuner/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2099, "size": 5633 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Data.Fin.Recursive.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as Empty hiding (rec; elim) open import Cubical.Data.Nat hiding (elim) data FinF (X : Type₀) : Type₀ where zero : FinF X suc : X → FinF X Fin : ℕ → Type₀ Fin zero = ⊥ Fin (suc k) = FinF (Fin k) private variable ℓ : Level k : ℕ R : Type ℓ rec : R → (R → R) → Fin k → R rec {k = suc k} z _ zero = z rec {k = suc k} z s (suc x) = s (rec z s x) elim : ∀(P : ∀{k} → Fin k → Type ℓ) → (∀{k} → P {suc k} zero) → (∀{k} (fn : Fin k) → P fn → P {suc k} (suc fn)) → (fn : Fin k) → P fn elim {k = suc k} P fz fs zero = fz elim {k = suc k} P fz fs (suc x) = fs x (elim P fz fs x)
{ "alphanum_fraction": 0.5703125, "avg_line_length": 21.9428571429, "ext": "agda", "hexsha": "042c0c105f6cbd4342f7f1c55ac0b98e602b28ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Fin/Recursive/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Fin/Recursive/Base.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Fin/Recursive/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 304, "size": 768 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Bool where open import Cubical.Data.Bool.Base public open import Cubical.Data.Bool.Properties public
{ "alphanum_fraction": 0.7692307692, "avg_line_length": 22.2857142857, "ext": "agda", "hexsha": "6918841aea0fd55a5e26fce3b6173d868fb5fc2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Bool.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 34, "size": 156 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality where import Axiom.Extensionality.Propositional as Ext open import Axiom.UniquenessOfIdentityProofs open import Function open import Function.Equality using (Π; _⟶_; ≡-setoid) open import Level open import Data.Empty open import Data.Product open import Relation.Nullary using (yes ; no) open import Relation.Unary using (Pred) open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial ------------------------------------------------------------------------ -- Re-export contents of core module open import Relation.Binary.PropositionalEquality.Core public ------------------------------------------------------------------------ -- Some properties subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl setoid : ∀ {a} → Set a → Setoid _ _ setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : ∀ {a} {A : Set a} → Decidable {A = A} _≡_ → DecSetoid _ _ decSetoid dec = record { _≈_ = _≡_ ; isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = dec } } isPreorder : ∀ {a} {A : Set a} → IsPreorder {A = A} _≡_ _≡_ isPreorder = record { isEquivalence = isEquivalence ; reflexive = id ; trans = trans } preorder : ∀ {a} → Set a → Preorder _ _ _ preorder A = record { Carrier = A ; _≈_ = _≡_ ; _∼_ = _≡_ ; isPreorder = isPreorder } ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : ∀ {a b} (A : Set a) (B : Set b) → Setoid _ _ A →-setoid B = ≡-setoid A (Trivial.indexedSetoid (setoid B)) _≗_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _ _≗_ {A = A} {B} = Setoid._≈_ (A →-setoid B) :→-to-Π : ∀ {a b₁ b₂} {A : Set a} {B : IndexedSetoid _ b₁ b₂} → ((x : A) → IndexedSetoid.Carrier B x) → Π (setoid A) B :→-to-Π {B = B} f = record { _⟨$⟩_ = f; cong = cong′ } where open IndexedSetoid B using (_≈_) cong′ : ∀ {x y} → x ≡ y → f x ≈ f y cong′ refl = IndexedSetoid.refl B →-to-⟶ : ∀ {a b₁ b₂} {A : Set a} {B : Setoid b₁ b₂} → (A → Setoid.Carrier B) → setoid A ⟶ B →-to-⟶ = :→-to-Π ------------------------------------------------------------------------ -- Inspect -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≡ y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] -- Example usage: -- f x y with g x | inspect g x -- f x y | c z | [ eq ] = ... ------------------------------------------------------------------------ -- Propositionality isPropositional : ∀ {a} → Set a → Set a isPropositional A = (a b : A) → a ≡ b ------------------------------------------------------------------------ -- Various equality rearrangement lemmas module _ {a} {A : Set a} {x y : A} where trans-injectiveˡ : ∀ {z} {p₁ p₂ : x ≡ y} (q : y ≡ z) → trans p₁ q ≡ trans p₂ q → p₁ ≡ p₂ trans-injectiveˡ refl = subst₂ _≡_ (trans-reflʳ _) (trans-reflʳ _) trans-injectiveʳ : ∀ {z} (p : x ≡ y) {q₁ q₂ : y ≡ z} → trans p q₁ ≡ trans p q₂ → q₁ ≡ q₂ trans-injectiveʳ refl eq = eq cong-id : ∀ {a} {A : Set a} {x y : A} (p : x ≡ y) → cong id p ≡ p cong-id refl = refl cong-∘ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {x y : A} {f : B → C} {g : A → B} (p : x ≡ y) → cong (f ∘ g) p ≡ cong f (cong g p) cong-∘ refl = refl module _ {a p} {A : Set a} {P : A → Set p} {x y : A} where subst-injective : ∀ (x≡y : x ≡ y) {p q : P x} → subst P x≡y p ≡ subst P x≡y q → p ≡ q subst-injective refl p≡q = p≡q subst-subst : ∀ {z} (x≡y : x ≡ y) {y≡z : y ≡ z} {p : P x} → subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p subst-subst refl = refl subst-subst-sym : (x≡y : x ≡ y) {p : P y} → subst P x≡y (subst P (sym x≡y) p) ≡ p subst-subst-sym refl = refl subst-sym-subst : (x≡y : x ≡ y) {p : P x} → subst P (sym x≡y) (subst P x≡y p) ≡ p subst-sym-subst refl = refl subst-∘ : ∀ {a b p} {A : Set a} {B : Set b} {x y : A} {P : B → Set p} {f : A → B} (x≡y : x ≡ y) {p : P (f x)} → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p subst-∘ refl = refl subst-application : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} (B₁ : A₁ → Set b₁) {B₂ : A₂ → Set b₂} {f : A₂ → A₁} {x₁ x₂ : A₂} {y : B₁ (f x₁)} (g : ∀ x → B₁ (f x) → B₂ x) (eq : x₁ ≡ x₂) → subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong f eq) y) subst-application _ _ refl = refl -- A lemma that is very similar to Lemma 2.4.3 from the HoTT book. naturality : ∀ {a b} {A : Set a} {B : Set b} {x y} {x≡y : x ≡ y} {f g : A → B} (f≡g : ∀ x → f x ≡ g x) → trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y) naturality {x = x} {x≡y = refl} f≡g = f≡g x ≡⟨ sym (trans-reflʳ _) ⟩ trans (f≡g x) refl ∎ where open ≡-Reasoning -- A lemma that is very similar to Corollary 2.4.4 from the HoTT book. cong-≡id : ∀ {a} {A : Set a} {f : A → A} {x : A} (f≡id : ∀ x → f x ≡ x) → cong f (f≡id x) ≡ f≡id (f x) cong-≡id {f = f} {x} f≡id = cong f (f≡id x) ≡⟨ sym (trans-reflʳ _) ⟩ trans (cong f (f≡id x)) refl ≡⟨ cong (trans _) (sym (trans-symʳ (f≡id x))) ⟩ trans (cong f (f≡id x)) (trans (f≡id x) (sym (f≡id x))) ≡⟨ sym (trans-assoc (cong f (f≡id x))) ⟩ trans (trans (cong f (f≡id x)) (f≡id x)) (sym (f≡id x)) ≡⟨ cong (λ p → trans p (sym _)) (naturality f≡id) ⟩ trans (trans (f≡id (f x)) (cong id (f≡id x))) (sym (f≡id x)) ≡⟨ cong (λ p → trans (trans (f≡id (f x)) p) (sym (f≡id x))) (cong-id _) ⟩ trans (trans (f≡id (f x)) (f≡id x)) (sym (f≡id x)) ≡⟨ trans-assoc (f≡id (f x)) ⟩ trans (f≡id (f x)) (trans (f≡id x) (sym (f≡id x))) ≡⟨ cong (trans _) (trans-symʳ (f≡id x)) ⟩ trans (f≡id (f x)) refl ≡⟨ trans-reflʳ _ ⟩ f≡id (f x) ∎ where open ≡-Reasoning module _ {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) {a : A} where ≡-≟-identity : ∀ {b} (eq : a ≡ b) → a ≟ b ≡ yes eq ≡-≟-identity {b} eq with a ≟ b ... | yes p = cong yes (Decidable⇒UIP.≡-irrelevant _≟_ p eq) ... | no ¬p = ⊥-elim (¬p eq) ≢-≟-identity : ∀ {b} → a ≢ b → ∃ λ ¬eq → a ≟ b ≡ no ¬eq ≢-≟-identity {b} ¬eq with a ≟ b ... | yes p = ⊥-elim (¬eq p) ... | no ¬p = ¬p , refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 Extensionality = Ext.Extensionality {-# WARNING_ON_USAGE Extensionality "Warning: Extensionality was deprecated in v1.0. Please use Extensionality from `Axiom.Extensionality.Propositional` instead." #-} extensionality-for-lower-levels = Ext.lower-extensionality {-# WARNING_ON_USAGE extensionality-for-lower-levels "Warning: extensionality-for-lower-levels was deprecated in v1.0. Please use lower-extensionality from `Axiom.Extensionality.Propositional` instead." #-} ∀-extensionality = Ext.∀-extensionality {-# WARNING_ON_USAGE ∀-extensionality "Warning: ∀-extensionality was deprecated in v1.0. Please use ∀-extensionality from `Axiom.Extensionality.Propositional` instead." #-}
{ "alphanum_fraction": 0.4928241015, "avg_line_length": 33.1929133858, "ext": "agda", "hexsha": "c8af2e363949144075df554401be52895193de19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3222, "size": 8431 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.SingleSubst {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening using (id) open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.Weakening open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE -- Validity of substitution of single variable in types. substS : ∀ {F G t Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] / [Γ] substS {F} {G} {t} [Γ] [F] [G] [t] {σ = σ} ⊢Δ [σ] = let Geq = substConsId G G[t] = proj₁ ([G] ⊢Δ ([σ] , (proj₁ ([t] ⊢Δ [σ])))) G[t]′ = irrelevance′ Geq G[t] in G[t]′ , (λ {σ′} [σ′] [σ≡σ′] → irrelevanceEq″ Geq (substConsId G) G[t] G[t]′ (proj₂ ([G] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) ([σ′] , proj₁ ([t] ⊢Δ [σ′])) (([σ≡σ′] , (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]))))) -- Validity of substitution of single variable in type equality. substSEq : ∀ {F F′ G G′ t t′ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([G′] : Γ ∙ F′ ⊩ᵛ⟨ l ⟩ G′ / ([Γ] ∙″ [F′])) ([G≡G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] ∙″ [F] / [G]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) ([t′] : Γ ⊩ᵛ⟨ l ⟩ t′ ∷ F′ / [Γ] / [F′]) ([t≡t′] : Γ ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] ≡ G′ [ t′ ] / [Γ] / substS {F} {G} {t} [Γ] [F] [G] [t] substSEq {F} {F′} {G} {G′} {t} {t′} [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] [t] [t′] [t≡t′] {σ = σ} ⊢Δ [σ] = let Geq = substConsId G G′eq = substConsId G′ G[t] = (proj₁ ([G] ⊢Δ ([σ] , (proj₁ ([t] ⊢Δ [σ]))))) G[t]′ = irrelevance′ Geq G[t] [t]′ = convᵛ {t} {F} {F′} [Γ] [F] [F′] [F≡F′] [t] G′[t] = (proj₁ ([G′] ⊢Δ ([σ] , proj₁ ([t]′ ⊢Δ [σ])))) G[t]≡G′[t] = irrelevanceEq′ Geq G[t] G[t]′ ([G≡G′] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) G′[t]≡G′[t′] = irrelevanceEq″ PE.refl G′eq G′[t] G′[t] (proj₂ ([G′] ⊢Δ ([σ] , proj₁ ([t]′ ⊢Δ [σ]))) ([σ] , proj₁ ([t′] ⊢Δ [σ])) (reflSubst [Γ] ⊢Δ [σ] , convEqᵛ {t} {t′} {F} {F′} [Γ] [F] [F′] [F≡F′] [t≡t′] ⊢Δ [σ])) G′[t′] = (proj₁ ([G′] ⊢Δ ([σ] , proj₁ ([t′] ⊢Δ [σ])))) G′[t′]′ = irrelevance′ G′eq G′[t′] in transEq G[t]′ G′[t] G′[t′]′ G[t]≡G′[t] G′[t]≡G′[t′] -- Validity of substitution of single variable in terms. substSTerm : ∀ {F G t f Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([f] : Γ ∙ F ⊩ᵛ⟨ l ⟩ f ∷ G / ([Γ] ∙″ [F]) / [G]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ f [ t ] ∷ G [ t ] / [Γ] / substS {F} {G} {t} [Γ] [F] [G] [t] substSTerm {F} {G} {t} {f} [Γ] [F] [G] [f] [t] {σ = σ} ⊢Δ [σ] = let prfG = substConsId G prff = substConsId f G[t] = proj₁ ([G] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) G[t]′ = irrelevance′ prfG G[t] f[t] = proj₁ ([f] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) f[t]′ = irrelevanceTerm″ prfG prff G[t] G[t]′ f[t] in f[t]′ , (λ {σ′} [σ′] [σ≡σ′] → irrelevanceEqTerm″ prff (substConsId f) prfG G[t] G[t]′ (proj₂ ([f] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) ([σ′] , proj₁ ([t] ⊢Δ [σ′])) ([σ≡σ′] , proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]))) -- Validity of substitution of single lifted variable in types. subst↑S : ∀ {F G t Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([t] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ wk1 F / ([Γ] ∙″ [F]) / wk1ᵛ {F} {F} [Γ] [F] [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ G [ t ]↑ / ([Γ] ∙″ [F]) subst↑S {F} {G} {t} [Γ] [F] [G] [t] {σ = σ} ⊢Δ [σ] = let [wk1F] = wk1ᵛ {F} {F} [Γ] [F] [F] [σwk1F] = proj₁ ([wk1F] {σ = σ} ⊢Δ [σ]) [σwk1F]′ = proj₁ ([F] {σ = tail σ} ⊢Δ (proj₁ [σ])) [t]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t] ⊢Δ [σ])) G[t] = proj₁ ([G] {σ = consSubst (tail σ) (subst σ t)} ⊢Δ (proj₁ [σ] , [t]′)) G[t]′ = irrelevance′ (substConsTailId {G} {t} {σ}) G[t] in G[t]′ , (λ {σ′} [σ′] [σ≡σ′] → let [σ′t] = irrelevanceTerm′ (subst-wk F) (proj₁ ([wk1F] {σ = σ′} ⊢Δ [σ′])) (proj₁ ([F] ⊢Δ (proj₁ [σ′]))) (proj₁ ([t] ⊢Δ [σ′])) [σt≡σ′t] = irrelevanceEqTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σG[t]≡σ′G[t]] = proj₂ ([G] ⊢Δ (proj₁ [σ] , [t]′)) (proj₁ [σ′] , [σ′t]) (proj₁ [σ≡σ′] , [σt≡σ′t]) in irrelevanceEq″ (substConsTailId {G} {t} {σ}) (substConsTailId {G} {t} {σ′}) G[t] G[t]′ [σG[t]≡σ′G[t]]) -- Validity of substitution of single lifted variable in type equality. subst↑SEq : ∀ {F G G′ t t′ Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / ([Γ] ∙″ [F])) ([G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G′ / ([Γ] ∙″ [F])) ([G≡G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] ∙″ [F] / [G]) ([t] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ wk1 F / [Γ] ∙″ [F] / wk1ᵛ {F} {F} [Γ] [F] [F]) ([t′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t′ ∷ wk1 F / [Γ] ∙″ [F] / wk1ᵛ {F} {F} [Γ] [F] [F]) ([t≡t′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ wk1 F / [Γ] ∙″ [F] / wk1ᵛ {F} {F} [Γ] [F] [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ G [ t ]↑ ≡ G′ [ t′ ]↑ / [Γ] ∙″ [F] / subst↑S {F} {G} {t} [Γ] [F] [G] [t] subst↑SEq {F} {G} {G′} {t} {t′} [Γ] [F] [G] [G′] [G≡G′] [t] [t′] [t≡t′] {σ = σ} ⊢Δ [σ] = let [wk1F] = wk1ᵛ {F} {F} [Γ] [F] [F] [σwk1F] = proj₁ ([wk1F] {σ = σ} ⊢Δ [σ]) [σwk1F]′ = proj₁ ([F] {σ = tail σ} ⊢Δ (proj₁ [σ])) [t]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t] ⊢Δ [σ])) [t′]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t′] ⊢Δ [σ])) [t≡t′]′ = irrelevanceEqTerm′ (subst-wk F) [σwk1F] [σwk1F]′ ([t≡t′] ⊢Δ [σ]) G[t] = proj₁ ([G] ⊢Δ (proj₁ [σ] , [t]′)) G[t]′ = irrelevance′ (substConsTailId {G} {t} {σ}) G[t] G′[t] = proj₁ ([G′] ⊢Δ (proj₁ [σ] , [t]′)) G′[t]′ = irrelevance′ (substConsTailId {G′} {t} {σ}) G′[t] G′[t′] = proj₁ ([G′] ⊢Δ (proj₁ [σ] , [t′]′)) G′[t′]′ = irrelevance′ (substConsTailId {G′} {t′} {σ}) G′[t′] G[t]≡G′[t] = irrelevanceEq″ (substConsTailId {G} {t} {σ}) (substConsTailId {G′} {t} {σ}) G[t] G[t]′ ([G≡G′] ⊢Δ (proj₁ [σ] , [t]′)) G′[t]≡G′[t′] = irrelevanceEq″ (substConsTailId {G′} {t} {σ}) (substConsTailId {G′} {t′} {σ}) G′[t] G′[t]′ (proj₂ ([G′] ⊢Δ (proj₁ [σ] , [t]′)) (proj₁ [σ] , [t′]′) (reflSubst [Γ] ⊢Δ (proj₁ [σ]) , [t≡t′]′)) in transEq G[t]′ G′[t]′ G′[t′]′ G[t]≡G′[t] G′[t]≡G′[t′] -- Helper function for reducible substitution of Π-types with specific typing derivations. substSΠ₁′ : ∀ {F G t Γ l l′} ([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G) ([F] : Γ ⊩⟨ l′ ⟩ F) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) → Γ ⊩⟨ l ⟩ G [ t ] substSΠ₁′ {t = t} (noemb (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) [F]₁ [t] = let F≡F′ , G≡G′ = Π-PE-injectivity (whnfRed* (red D) Πₙ) Feq = PE.trans F≡F′ (PE.sym (wk-id _)) Geq = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′)) ⊢Γ = wf (escape [F]₁) [t]′ = irrelevanceTerm′ Feq [F]₁ ([F] id ⊢Γ) [t] in irrelevance′ Geq ([G] id ⊢Γ [t]′) substSΠ₁′ (emb 0<1 x) [F]₁ [t] = emb′ 0<1 (substSΠ₁′ x [F]₁ [t]) -- Reducible substitution of Π-types. substSΠ₁ : ∀ {F G t Γ l l′} ([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G) ([F] : Γ ⊩⟨ l′ ⟩ F) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) → Γ ⊩⟨ l ⟩ G [ t ] substSΠ₁ [ΠFG] [F] [t] = substSΠ₁′ (Π-elim [ΠFG]) [F] [t] -- Helper function for reducible substitution of Π-congurence with specific typing derivations. substSΠ₂′ : ∀ {F F′ G G′ t t′ Γ l l′ l″ l‴} ([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G) ([ΠFG≡ΠF′G′] : Γ ⊩⟨ l ⟩ Π F ▹ G ≡ Π F′ ▹ G′ / Π-intr [ΠFG]) ([F] : Γ ⊩⟨ l′ ⟩ F) ([F′] : Γ ⊩⟨ l′ ⟩ F′) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) ([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ F′ / [F′]) ([t≡t′] : Γ ⊩⟨ l′ ⟩ t ≡ t′ ∷ F / [F]) ([G[t]] : Γ ⊩⟨ l″ ⟩ G [ t ]) ([G′[t′]] : Γ ⊩⟨ l‴ ⟩ G′ [ t′ ]) → Γ ⊩⟨ l″ ⟩ G [ t ] ≡ G′ [ t′ ] / [G[t]] substSΠ₂′ (noemb (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F″ G″ D′ A≡B [F≡F′] [G≡G′]) [F]₁ [F′] [t] [t′] [t≡t′] [G[t]] [G′[t′]] = let F≡F′ , G≡G′ = Π-PE-injectivity (whnfRed* (red D) Πₙ) F′≡F″ , G′≡G″ = Π-PE-injectivity (whnfRed* D′ Πₙ) Feq = PE.trans F≡F′ (PE.sym (wk-id _)) F′eq = PE.trans F′≡F″ (PE.sym (wk-id _)) Geq = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′)) Geq′ = PE.cong (λ x → x [ _ ]) (PE.trans G′≡G″ (PE.sym (wk-lift-id _))) ⊢Γ = wf (escape [F]₁) [t]′ = irrelevanceTerm′ Feq [F]₁ ([F] id ⊢Γ) [t] [t′]′ = convTerm₂′ F′eq ([F] id ⊢Γ) [F′] ([F≡F′] id ⊢Γ) [t′] [t≡t′]′ = irrelevanceEqTerm′ Feq [F]₁ ([F] id ⊢Γ) [t≡t′] [Gt≡Gt′] = G-ext id ⊢Γ [t]′ [t′]′ [t≡t′]′ [Gt′≡G′t′] = [G≡G′] id ⊢Γ [t′]′ in irrelevanceEq′ Geq ([G] id ⊢Γ [t]′) [G[t]] (transEq′ PE.refl Geq′ ([G] id ⊢Γ [t]′) ([G] id ⊢Γ [t′]′) [G′[t′]] [Gt≡Gt′] [Gt′≡G′t′]) substSΠ₂′ (emb 0<1 x) (ιx y) = substSΠ₂′ x y -- Reducible substitution of Π-congurence. substSΠ₂ : ∀ {F F′ G G′ t t′ Γ l l′ l″ l‴} ([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G) ([ΠFG≡ΠF′G′] : Γ ⊩⟨ l ⟩ Π F ▹ G ≡ Π F′ ▹ G′ / [ΠFG]) ([F] : Γ ⊩⟨ l′ ⟩ F) ([F′] : Γ ⊩⟨ l′ ⟩ F′) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) ([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ F′ / [F′]) ([t≡t′] : Γ ⊩⟨ l′ ⟩ t ≡ t′ ∷ F / [F]) ([G[t]] : Γ ⊩⟨ l″ ⟩ G [ t ]) ([G′[t′]] : Γ ⊩⟨ l‴ ⟩ G′ [ t′ ]) → Γ ⊩⟨ l″ ⟩ G [ t ] ≡ G′ [ t′ ] / [G[t]] substSΠ₂ [ΠFG] [ΠFG≡ΠF′G′] = let [ΠFG≡ΠF′G′]′ = irrelevanceEq [ΠFG] (Π-intr (Π-elim [ΠFG])) [ΠFG≡ΠF′G′] in substSΠ₂′ (Π-elim [ΠFG]) [ΠFG≡ΠF′G′]′ -- Valid substitution of Π-types. substSΠ : ∀ {F G t Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G / [Γ]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] / [Γ] substSΠ {F} {G} {t} [Γ] [F] [ΠFG] [t] ⊢Δ [σ] = let [σG[t]] = substSΠ₁ (proj₁ ([ΠFG] ⊢Δ [σ])) (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) [σG[t]]′ = irrelevance′ (PE.sym (singleSubstLift G t)) [σG[t]] in [σG[t]]′ , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G t)) [σG[t]] [σG[t]]′ (substSΠ₂ (proj₁ ([ΠFG] ⊢Δ [σ])) (proj₂ ([ΠFG] ⊢Δ [σ]) [σ′] [σ≡σ′]) (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σG[t]] (substSΠ₁ (proj₁ ([ΠFG] ⊢Δ [σ′])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ′]))))) -- Valid substitution of Π-congurence. substSΠEq : ∀ {F G F′ G′ t u Γ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ]) ([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G / [Γ]) ([ΠF′G′] : Γ ⊩ᵛ⟨ l ⟩ Π F′ ▹ G′ / [Γ]) ([ΠFG≡ΠF′G′] : Γ ⊩ᵛ⟨ l ⟩ Π F ▹ G ≡ Π F′ ▹ G′ / [Γ] / [ΠFG]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) ([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ F′ / [Γ] / [F′]) ([t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] ≡ G′ [ u ] / [Γ] / substSΠ {F} {G} {t} [Γ] [F] [ΠFG] [t] substSΠEq {F} {G} {F′} {G′} {t} {u} [Γ] [F] [F′] [ΠFG] [ΠF′G′] [ΠFG≡ΠF′G′] [t] [u] [t≡u] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ]) Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ = extractMaybeEmbΠ (Π-elim [σΠFG]) F≡F₁ , G≡G₁ = Π-PE-injectivity (whnfRed* (red D₁) Πₙ) [σΠF′G′] = proj₁ ([ΠF′G′] ⊢Δ [σ]) Πᵣ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂ = extractMaybeEmbΠ (Π-elim [σΠF′G′]) F′≡F₂ , G′≡G₂ = Π-PE-injectivity (whnfRed* (red D₂) Πₙ) [σF] = proj₁ ([F] ⊢Δ [σ]) [σF′] = proj₁ ([F′] ⊢Δ [σ]) [σt] = proj₁ ([t] ⊢Δ [σ]) [σu] = proj₁ ([u] ⊢Δ [σ]) [σt]′ = irrelevanceTerm′ (PE.trans F≡F₁ (PE.sym (wk-id F₁))) [σF] ([F]₁ id ⊢Δ) [σt] [σu]′ = irrelevanceTerm′ (PE.trans F′≡F₂ (PE.sym (wk-id F₂))) [σF′] ([F]₂ id ⊢Δ) [σu] [σt≡σu] = [t≡u] ⊢Δ [σ] [G[t]] = irrelevance′ (PE.cong (λ x → x [ subst σ t ]) (PE.trans (wk-lift-id G₁) (PE.sym G≡G₁))) ([G]₁ id ⊢Δ [σt]′) [G′[u]] = irrelevance′ (PE.cong (λ x → x [ subst σ u ]) (PE.trans (wk-lift-id G₂) (PE.sym G′≡G₂))) ([G]₂ id ⊢Δ [σu]′) in irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G′ u)) [G[t]] (proj₁ (substSΠ {F} {G} {t} [Γ] [F] [ΠFG] [t] ⊢Δ [σ])) (substSΠ₂ {subst σ F} {subst σ F′} {subst (liftSubst σ) G} {subst (liftSubst σ) G′} (proj₁ ([ΠFG] ⊢Δ [σ])) ([ΠFG≡ΠF′G′] ⊢Δ [σ]) [σF] [σF′] [σt] [σu] [σt≡σu] [G[t]] [G′[u]])
{ "alphanum_fraction": 0.3625466693, "avg_line_length": 48.4666666667, "ext": "agda", "hexsha": "6beba4154540c57c0f369c20720a1fca55237e34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7333, "size": 15267 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable equality over lists using propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Relation.Binary.PropositionalEquality module Data.List.Relation.Binary.Equality.DecPropositional {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where open import Data.List using (List) open import Data.List.Properties using (≡-dec) import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq ------------------------------------------------------------------------ -- Publically re-export everything from decSetoid and propositional -- equality open PropositionalEq public open DecSetoidEq (decSetoid _≟_) public using (_≋?_; ≋-isDecEquivalence; ≋-decSetoid) ------------------------------------------------------------------------ -- Additional proofs _≡?_ : Decidable (_≡_ {A = List A}) _≡?_ = ≡-dec _≟_
{ "alphanum_fraction": 0.5592459605, "avg_line_length": 33.7575757576, "ext": "agda", "hexsha": "356f35de9dfb571d773b8a82a0a66d778eee87ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecPropositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecPropositional.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecPropositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 1114 }
module Data.Real.Base where open import Data.Float renaming (Float to ℝ) public
{ "alphanum_fraction": 0.7901234568, "avg_line_length": 20.25, "ext": "agda", "hexsha": "de85d33f24bddfe53c57b3d2106def51e4f31a2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Data/Real/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Data/Real/Base.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Data/Real/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 18, "size": 81 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Semigroup.Morphism where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Functions.Embedding open import Cubical.Algebra open import Cubical.Algebra.Magma.Morphism private variable s t : Level IsSemigroupHom : (S : Semigroup s) (T : Semigroup t) → (⟨ S ⟩ → ⟨ T ⟩) → Type (ℓ-max s t) IsSemigroupHom S T fun = Homomorphic₂ fun (Semigroup._•_ S) (Semigroup._•_ T) record SemigroupHom (S : Semigroup s) (T : Semigroup t) : Type (ℓ-max s t) where constructor semigrouphom field fun : ⟨ S ⟩ → ⟨ T ⟩ isHom : IsSemigroupHom S T fun record SemigroupEquiv (S : Semigroup s) (T : Semigroup t) : Type (ℓ-max s t) where constructor semigroupequiv field eq : ⟨ S ⟩ ≃ ⟨ T ⟩ isHom : IsSemigroupHom S T (equivFun eq) hom : SemigroupHom S T hom = record { isHom = isHom } instance SemigroupHomOperators : HomOperators (Semigroup s) (Semigroup t) (ℓ-max s t) SemigroupHomOperators = record { _⟶ᴴ_ = SemigroupHom; _≃ᴴ_ = SemigroupEquiv } private variable S : Semigroup s T : Semigroup t SemigroupHom→MagmaHom : (S ⟶ᴴ T) → (Semigroup.magma S ⟶ᴴ Semigroup.magma T) SemigroupHom→MagmaHom hom .MagmaHom.fun = hom .SemigroupHom.fun SemigroupHom→MagmaHom hom .MagmaHom.isHom = hom .SemigroupHom.isHom MagmaHom→SemigroupHom : (Semigroup.magma S ⟶ᴴ Semigroup.magma T) → (S ⟶ᴴ T) MagmaHom→SemigroupHom hom .SemigroupHom.fun = hom .MagmaHom.fun MagmaHom→SemigroupHom hom .SemigroupHom.isHom = hom .MagmaHom.isHom SemigroupHom≃MagmaHom : (S ⟶ᴴ T) ≃ (Semigroup.magma S ⟶ᴴ Semigroup.magma T) SemigroupHom≃MagmaHom = isoToEquiv (iso SemigroupHom→MagmaHom MagmaHom→SemigroupHom (λ _ → refl) (λ _ → refl)) SemigroupEquiv→MagmaEquiv : S ≃ᴴ T → Semigroup.magma S ≃ᴴ Semigroup.magma T SemigroupEquiv→MagmaEquiv eq .MagmaEquiv.eq = eq .SemigroupEquiv.eq SemigroupEquiv→MagmaEquiv eq .MagmaEquiv.isHom = eq .SemigroupEquiv.isHom MagmaEquiv→SemigroupEquiv : Semigroup.magma S ≃ᴴ Semigroup.magma T → S ≃ᴴ T MagmaEquiv→SemigroupEquiv eq .SemigroupEquiv.eq = eq .MagmaEquiv.eq MagmaEquiv→SemigroupEquiv eq .SemigroupEquiv.isHom = eq .MagmaEquiv.isHom SemigroupEquiv≃MagmaEquiv : (S ≃ᴴ T) ≃ (Semigroup.magma S ≃ᴴ Semigroup.magma T) SemigroupEquiv≃MagmaEquiv = isoToEquiv (iso SemigroupEquiv→MagmaEquiv MagmaEquiv→SemigroupEquiv (λ _ → refl) (λ _ → refl))
{ "alphanum_fraction": 0.7393617021, "avg_line_length": 35.9411764706, "ext": "agda", "hexsha": "1c57c0465453855531c5fa9a73bb78818ccd2d0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Semigroup/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Semigroup/Morphism.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Semigroup/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 891, "size": 2444 }
{-# OPTIONS --without-K #-} module Ch2-5 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 open import Ch2-3 open import Ch2-4 open import Data.Product open import Function using (_∘_; id) -- Example 2.5.1 (equivalence) Example-2-5-1 : ∀ {a b} {A : Set a} {B : Set b} → (a a' : A) (b b' : B) → ((a , b) ≡ (a' , b')) ≅ ((a ≡ a') × (b ≡ b')) Example-2-5-1 {_} {_} {A} {B} a a' b b' = f , f-isequiv where f : ∀ {a b a' b'} → (a , b) ≡ (a' , b') → a ≡ a' × b ≡ b' f {a} {b} {a'} {b'} eq = J (A × B) D d (a , b) (a' , b') eq where D : (x y : A × B) → (p : x ≡ y) → Set _ D (a , b) (a' , b') p = a ≡ a' × b ≡ b' d : (x : A × B) → D x x refl d x = refl , refl f-isequiv : isequiv f f-isequiv = (g , α) , (g , β) where g : ∀ {a b a' b'} → a ≡ a' × b ≡ b' → (a , b) ≡ (a' , b') g {a} {b} {a'} {b'} (fst , snd) = J A D d a a' fst b b' snd where D : (a a' : A) → (p : a ≡ a') → Set _ D a a' p = (b b' : B) (q : b ≡ b') → (a , b) ≡ (a' , b') d : (x : A) → D x x refl d x b b' q = J B E e b b' q where E : (b b' : B) → (q : b ≡ b') → Set _ E b b' q = (x , b) ≡ (x , b') e : (x : B) → E x x refl e x = refl α : f ∘ g ~ id α (fst , snd) = J A D d a a' fst b b' snd where D : (x y : A) (p : x ≡ y) → Set _ D x y p = (x' y' : B) (snd : x' ≡ y') → (f ∘ g) (p , snd) ≡ ((p , snd)) d : (x : A) → D x x refl d x x' y' q = J B E e x' y' q where E : (x' y' : B) (q : x' ≡ y') → Set _ E x' y' q = (f ∘ g) (refl , q) ≡ ((refl , q)) e : (x' : B) → E x' x' refl e x' = refl β : g ∘ f ~ id β p = J (A × B) D d (a , b) (a' , b') p where D : (x y : A × B) (p : x ≡ y) → Set _ D x y p = (g ∘ f) p ≡ p d : (x : A × B) → D x x refl d x = refl
{ "alphanum_fraction": 0.32415757, "avg_line_length": 28.8630136986, "ext": "agda", "hexsha": "78ca3962cf15d8271685528979aeaa7fad802977", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-5.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 893, "size": 2107 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category module Categories.Slice {o ℓ e} (C : Category o ℓ e) where open Category C open Equiv open import Level open import Relation.Binary using (Rel) record SliceObj (X : Obj) : Set (o ⊔ ℓ) where constructor sliceobj field {Y} : Obj arr : Y ⇒ X record Slice⇒ {A : Obj} (X Y : SliceObj A) : Set (ℓ ⊔ e) where constructor slicearr module X = SliceObj X module Y = SliceObj Y field {h} : X.Y ⇒ Y.Y .triangle : Y.arr ∘ h ≡ X.arr slice : Obj → Category _ _ _ slice x = record { Obj = Obj′ ; _⇒_ = _⇒′_ ; _≡_ = _≡′_ ; _∘_ = _∘′_ ; id = slicearr identityʳ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc′ {f = f} {g} {h} ; identityˡ = identityˡ ; identityʳ = identityʳ ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} → ∘-resp-≡′ {f = f} {h} {g} {i} } where Obj′ = SliceObj x _⇒′_ : Rel Obj′ _ _⇒′_ = Slice⇒ infixr 9 _∘′_ infix 4 _≡′_ _≡′_ : ∀ {A B} → Rel (A ⇒′ B) _ slicearr {f} _ ≡′ slicearr {g} _ = f ≡ g _∘′_ : ∀ {A B C} → (B ⇒′ C) → (A ⇒′ B) → (A ⇒′ C) _∘′_ {sliceobj a⇒x} {sliceobj b⇒x} {sliceobj c⇒x} (slicearr {b⇒c} pf₁) (slicearr {a⇒b} pf₂) = slicearr pf where .pf : c⇒x ∘ (b⇒c ∘ a⇒b) ≡ a⇒x pf = begin c⇒x ∘ (b⇒c ∘ a⇒b) ↑⟨ assoc ⟩ (c⇒x ∘ b⇒c) ∘ a⇒b ↓⟨ ∘-resp-≡ˡ pf₁ ⟩ b⇒x ∘ a⇒b ↓⟨ pf₂ ⟩ a⇒x ∎ where open HomReasoning .assoc′ : ∀ {A B C D} {f : A ⇒′ B} {g : B ⇒′ C} {h : C ⇒′ D} → (h ∘′ g) ∘′ f ≡′ h ∘′ (g ∘′ f) assoc′ = assoc .∘-resp-≡′ : ∀ {A B C} {f h : B ⇒′ C} {g i : A ⇒′ B} → f ≡′ h → g ≡′ i → f ∘′ g ≡′ h ∘′ i ∘-resp-≡′ f≡h g≡i = ∘-resp-≡ f≡h g≡i
{ "alphanum_fraction": 0.4537037037, "avg_line_length": 22.3902439024, "ext": "agda", "hexsha": "65764aa8f757493c141fa86699cdfda9c8c2ba8f", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Slice.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Slice.agda", "max_line_length": 107, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Slice.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 908, "size": 1836 }
module Formalization.LambdaCalculus.Semantics.CallByName where import Lvl open import Data open import Formalization.LambdaCalculus open import Formalization.LambdaCalculus.Semantics open import Formalization.LambdaCalculus.SyntaxTransformation open import Logic.Predicate open import Numeral.Natural open import Syntax.Number open import Type private variable d db : ℕ private variable f t x : Term(d) private variable body : Term(db) private variable v : ∃(Value) data _⇓_ : Term(d) → ∃(Value) → Type{0} where value : ⦃ val : Value(t) ⦄ → (t ⇓ [∃]-intro t) apply : (f ⇓ [∃]-intro(Abstract body)) → (substituteVar0 x body ⇓ v) → (Apply f x ⇓ v)
{ "alphanum_fraction": 0.7446808511, "avg_line_length": 31.3333333333, "ext": "agda", "hexsha": "b406154ce87e92a106d2ac3c702d482c005a09c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/LambdaCalculus/Semantics/CallByName.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/LambdaCalculus/Semantics/CallByName.agda", "max_line_length": 88, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/LambdaCalculus/Semantics/CallByName.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 193, "size": 658 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.AbelianGroup {g₁ g₂} (G : AbelianGroup g₁ g₂) where open AbelianGroup G open import Function open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Publicly re-export group properties open import Algebra.Properties.Group group public ------------------------------------------------------------------------ -- Properties of abelian groups private lemma₁ : ∀ x y → x ∙ y ∙ x ⁻¹ ≈ y lemma₁ x y = begin x ∙ y ∙ x ⁻¹ ≈⟨ ∙-congʳ $ comm _ _ ⟩ y ∙ x ∙ x ⁻¹ ≈⟨ assoc _ _ _ ⟩ y ∙ (x ∙ x ⁻¹) ≈⟨ ∙-congˡ $ inverseʳ _ ⟩ y ∙ ε ≈⟨ identityʳ _ ⟩ y ∎ lemma₂ : ∀ x y → x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ≈ y ⁻¹ lemma₂ x y = begin x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ≈˘⟨ assoc _ _ _ ⟩ x ∙ (y ∙ (x ∙ y) ⁻¹) ∙ y ⁻¹ ≈˘⟨ ∙-congʳ $ assoc _ _ _ ⟩ x ∙ y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ ∙-congʳ $ inverseʳ _ ⟩ ε ∙ y ⁻¹ ≈⟨ identityˡ _ ⟩ y ⁻¹ ∎ ⁻¹-∙-comm : ∀ x y → x ⁻¹ ∙ y ⁻¹ ≈ (x ∙ y) ⁻¹ ⁻¹-∙-comm x y = begin x ⁻¹ ∙ y ⁻¹ ≈⟨ comm _ _ ⟩ y ⁻¹ ∙ x ⁻¹ ≈˘⟨ ∙-congʳ $ lemma₂ x y ⟩ x ∙ (y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹) ∙ x ⁻¹ ≈⟨ lemma₁ _ _ ⟩ y ∙ (x ∙ y) ⁻¹ ∙ y ⁻¹ ≈⟨ lemma₁ _ _ ⟩ (x ∙ y) ⁻¹ ∎
{ "alphanum_fraction": 0.3671970624, "avg_line_length": 32.0392156863, "ext": "agda", "hexsha": "73cbdf60b5e878500f7331d8cdb1ee6b49f40057", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/AbelianGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/AbelianGroup.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/AbelianGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 639, "size": 1634 }
import Relation.Binary.Reasoning.Setoid as SetoidR open import SingleSorted.AlgebraicTheory import SingleSorted.Interpretation as Interpretation import SingleSorted.Model as Model import SingleSorted.UniversalInterpretation as UniversalInterpretation import SingleSorted.Substitution as Substitution import SingleSorted.SyntacticCategory as SyntacticCategory module SingleSorted.UniversalModel {ℓt} {Σ : Signature} (T : Theory ℓt Σ) where open Theory T open Substitution T open UniversalInterpretation T open Interpretation.Interpretation ℐ open SyntacticCategory T 𝒰 : Model.Model T cartesian-𝒮 ℐ 𝒰 = record { model-eq = λ ε var-var → let open SetoidR (eq-setoid (ax-ctx ε)) in begin interp-term (ax-lhs ε) var-var ≈⟨ interp-term-self (ax-lhs ε) var-var ⟩ ax-lhs ε ≈⟨ id-action ⟩ ax-lhs ε [ id-s ]s ≈⟨ eq-axiom ε id-s ⟩ ax-rhs ε [ id-s ]s ≈˘⟨ id-action ⟩ ax-rhs ε ≈˘⟨ interp-term-self (ax-rhs ε) var-var ⟩ interp-term (ax-rhs ε) var-var ∎ }
{ "alphanum_fraction": 0.6185216653, "avg_line_length": 35.6666666667, "ext": "agda", "hexsha": "e98d64dc4e8521e141b7e4a30a1345fd885335e8", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SingleSorted/UniversalModel.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SingleSorted/UniversalModel.agda", "max_line_length": 96, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SingleSorted/UniversalModel.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 330, "size": 1177 }
{-# OPTIONS --without-K #-} open import lib.Base module lib.Relation where Rel : ∀ {i} (A : Type i) j → Type (lmax i (lsucc j)) Rel A j = A → A → Type j Decidable : ∀ {i} {A : Type i} {j} → Rel A j → Type (lmax i j) Decidable rel = ∀ a₁ a₂ → Dec (rel a₁ a₂)
{ "alphanum_fraction": 0.572519084, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "bab64a09e5ea38e834aae72582cb4aac60307227", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/Relation.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 98, "size": 262 }
{-# OPTIONS --without-K #-} module Data.Word8.FromNat where open import Data.Word8.Primitive -- open import Agda.Builtin.Bool using (Bool; true) -- open import Agda.Builtin.Nat using (Nat; _<_) open import Agda.Builtin.Unit using (⊤) open import Agda.Builtin.FromNat using (Number) {- instance NumberNat : Number Nat NumberNat = record { Constraint = λ _ → ⊤ ; fromNat = λ n → n } data IsTrue : Bool → Set where itis : IsTrue true instance indeed : IsTrue true indeed = itis -} instance NumberWord8 : Number Word8 NumberWord8 = record { Constraint = λ n → ⊤ -- IsTrue (n < 256) ; fromNat = λ n → primWord8fromNat n }
{ "alphanum_fraction": 0.6621417798, "avg_line_length": 18.9428571429, "ext": "agda", "hexsha": "e88e190e77b8bd49d5ef41e232e6e5059ecea8fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/Word8/FromNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/Word8/FromNat.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/Word8/FromNat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 203, "size": 663 }
module PiQ.Invariants where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Function using (_∘_) open import PiQ.Syntax open import PiQ.Opsem open import PiQ.NoRepeat -- Reconstruct the whole combinator from context getℂκ : ∀ {A B} → A ↔ B → Context {A} {B} → ∃[ C ] ∃[ D ] (C ↔ D) getℂκ c ☐ = _ , _ , c getℂκ c (☐⨾ c₂ • κ) = getℂκ (c ⨾ c₂) κ getℂκ c (c₁ ⨾☐• κ) = getℂκ (c₁ ⨾ c) κ getℂκ c (☐⊕ c₂ • κ) = getℂκ (c ⊕ c₂) κ getℂκ c (c₁ ⊕☐• κ) = getℂκ (c₁ ⊕ c) κ getℂκ c (☐⊗[ c₂ , x ]• κ) = getℂκ (c ⊗ c₂) κ getℂκ c ([ c₁ , x ]⊗☐• κ) = getℂκ (c₁ ⊗ c) κ getℂ : (st : State) → st ≢ ⊠ → ∃[ A ] ∃[ B ] (A ↔ B) getℂ ⟨ c ∣ _ ∣ κ ⟩▷ _ = getℂκ c κ getℂ [ c ∣ _ ∣ κ ]▷ _ = getℂκ c κ getℂ ⟨ c ∣ _ ∣ κ ⟩◁ _ = getℂκ c κ getℂ [ c ∣ _ ∣ κ ]◁ _ = getℂκ c κ getℂ ⊠ st≢⊠ = ⊥-elim (st≢⊠ refl) -- The reconstructed combinator stays the same ℂInvariant : ∀ {st st'} → st ↦ st' → (¬fail : st ≢ ⊠) → (¬fail' : st' ≢ ⊠) → getℂ st ¬fail ≡ getℂ st' ¬fail' ℂInvariant ↦⃗₁ _ _ = refl ℂInvariant ↦⃗₂ _ _ = refl ℂInvariant ↦⃗₃ _ _ = refl ℂInvariant ↦⃗₄ _ _ = refl ℂInvariant ↦⃗₅ _ _ = refl ℂInvariant ↦⃗₆ _ _ = refl ℂInvariant ↦⃗₇ _ _ = refl ℂInvariant ↦⃗₈ _ _ = refl ℂInvariant ↦⃗₉ _ _ = refl ℂInvariant ↦⃗₁₀ _ _ = refl ℂInvariant ↦⃗₁₁ _ _ = refl ℂInvariant ↦⃗₁₂ _ _ = refl ℂInvariant ↦⃖₁ _ _ = refl ℂInvariant ↦⃖₂ _ _ = refl ℂInvariant ↦⃖₃ _ _ = refl ℂInvariant ↦⃖₄ _ _ = refl ℂInvariant ↦⃖₅ _ _ = refl ℂInvariant ↦⃖₆ _ _ = refl ℂInvariant ↦⃖₇ _ _ = refl ℂInvariant ↦⃖₈ _ _ = refl ℂInvariant ↦⃖₉ _ _ = refl ℂInvariant ↦⃖₁₀ _ _ = refl ℂInvariant ↦⃖₁₁ _ _ = refl ℂInvariant ↦⃖₁₂ _ _ = refl ℂInvariant ↦η₊₁ _ _ = refl ℂInvariant ↦η₊₂ _ _ = refl ℂInvariant ↦ε₊₁ _ _ = refl ℂInvariant ↦ε₊₂ _ _ = refl ℂInvariant ↦⃗ηₓ _ _ = refl ℂInvariant ↦⃖ηₓ₁ _ _ = refl ℂInvariant ↦⃖ηₓ₂ _ ¬fail' = ⊥-elim (¬fail' refl) ℂInvariant ↦⃗εₓ₁ _ _ = refl ℂInvariant ↦⃗εₓ₂ _ ¬fail' = ⊥-elim (¬fail' refl) ℂInvariant ↦⃖εₓ _ _ = refl ℂInvariant* : ∀ {st st'} → st ↦* st' → (¬fail : st ≢ ⊠) → (¬fail' : st' ≢ ⊠) → getℂ st ¬fail ≡ getℂ st' ¬fail' ℂInvariant* {⟨ _ ∣ _ ∣ _ ⟩▷} ◾ _ _ = refl ℂInvariant* {[ _ ∣ _ ∣ _ ]▷} ◾ _ _ = refl ℂInvariant* {⟨ _ ∣ _ ∣ _ ⟩◁} ◾ _ _ = refl ℂInvariant* {[ _ ∣ _ ∣ _ ]◁} ◾ _ _ = refl ℂInvariant* {⊠} ◾ ¬fail _ = ⊥-elim (¬fail refl) ℂInvariant* (r ∷ ◾) ¬fail ¬fail' = ℂInvariant r ¬fail ¬fail' ℂInvariant* (r ∷ (r' ∷ rs)) ¬fail ¬fail' = trans (ℂInvariant r ¬fail λ {refl → ⊠-is-stuck refl (_ , r')}) (ℂInvariant* (r' ∷ rs) _ ¬fail') -- Get the type of the deepest context get𝕌 : ∀ {A B} → Context {A} {B} → 𝕌 × 𝕌 get𝕌 {A} {B} ☐ = A , B get𝕌 (☐⨾ c₂ • κ) = get𝕌 κ get𝕌 (c₁ ⨾☐• κ) = get𝕌 κ get𝕌 (☐⊕ c₂ • κ) = get𝕌 κ get𝕌 (c₁ ⊕☐• κ) = get𝕌 κ get𝕌 (☐⊗[ c₂ , x ]• κ) = get𝕌 κ get𝕌 ([ c₁ , x ]⊗☐• κ) = get𝕌 κ get𝕌State : (st : State) → st ≢ ⊠ → 𝕌 × 𝕌 get𝕌State ⟨ c ∣ v ∣ κ ⟩▷ _ = get𝕌 κ get𝕌State [ c ∣ v ∣ κ ]▷ _ = get𝕌 κ get𝕌State ⟨ c ∣ v ∣ κ ⟩◁ _ = get𝕌 κ get𝕌State [ c ∣ v ∣ κ ]◁ _ = get𝕌 κ get𝕌State ⊠ nf = ⊥-elim (nf refl) -- Append a context to another context appendκ : ∀ {A B} → (ctx : Context {A} {B}) → let (C , D) = get𝕌 ctx in Context {C} {D} → Context {A} {B} appendκ ☐ ctx = ctx appendκ (☐⨾ c₂ • κ) ctx = ☐⨾ c₂ • appendκ κ ctx appendκ (c₁ ⨾☐• κ) ctx = c₁ ⨾☐• appendκ κ ctx appendκ (☐⊕ c₂ • κ) ctx = ☐⊕ c₂ • appendκ κ ctx appendκ (c₁ ⊕☐• κ) ctx = c₁ ⊕☐• appendκ κ ctx appendκ (☐⊗[ c₂ , x ]• κ) ctx = ☐⊗[ c₂ , x ]• appendκ κ ctx appendκ ([ c₁ , x ]⊗☐• κ) ctx = [ c₁ , x ]⊗☐• appendκ κ ctx appendκState : ∀ st → (nf : st ≢ ⊠) → let (A , B) = get𝕌State st nf in Context {A} {B} → State appendκState ⟨ c ∣ v ∣ κ ⟩▷ _ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩▷ appendκState [ c ∣ v ∣ κ ]▷ _ ctx = [ c ∣ v ∣ appendκ κ ctx ]▷ appendκState ⟨ c ∣ v ∣ κ ⟩◁ _ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩◁ appendκState [ c ∣ v ∣ κ ]◁ _ ctx = [ c ∣ v ∣ appendκ κ ctx ]◁ appendκState ⊠ nf = ⊥-elim (nf refl) -- The type of context does not change during execution 𝕌Invariant : ∀ {st st'} → st ↦ st' → (nf : st ≢ ⊠) → (nf' : st' ≢ ⊠) → get𝕌State st nf ≡ get𝕌State st' nf' 𝕌Invariant ↦⃗₁ nf nf' = refl 𝕌Invariant ↦⃗₂ nf nf' = refl 𝕌Invariant ↦⃗₃ nf nf' = refl 𝕌Invariant ↦⃗₄ nf nf' = refl 𝕌Invariant ↦⃗₅ nf nf' = refl 𝕌Invariant ↦⃗₆ nf nf' = refl 𝕌Invariant ↦⃗₇ nf nf' = refl 𝕌Invariant ↦⃗₈ nf nf' = refl 𝕌Invariant ↦⃗₉ nf nf' = refl 𝕌Invariant ↦⃗₁₀ nf nf' = refl 𝕌Invariant ↦⃗₁₁ nf nf' = refl 𝕌Invariant ↦⃗₁₂ nf nf' = refl 𝕌Invariant ↦⃖₁ nf nf' = refl 𝕌Invariant ↦⃖₂ nf nf' = refl 𝕌Invariant ↦⃖₃ nf nf' = refl 𝕌Invariant ↦⃖₄ nf nf' = refl 𝕌Invariant ↦⃖₅ nf nf' = refl 𝕌Invariant ↦⃖₆ nf nf' = refl 𝕌Invariant ↦⃖₇ nf nf' = refl 𝕌Invariant ↦⃖₈ nf nf' = refl 𝕌Invariant ↦⃖₉ nf nf' = refl 𝕌Invariant ↦⃖₁₀ nf nf' = refl 𝕌Invariant ↦⃖₁₁ nf nf' = refl 𝕌Invariant ↦⃖₁₂ nf nf' = refl 𝕌Invariant ↦η₊₁ nf nf' = refl 𝕌Invariant ↦η₊₂ nf nf' = refl 𝕌Invariant ↦ε₊₁ nf nf' = refl 𝕌Invariant ↦ε₊₂ nf nf' = refl 𝕌Invariant ↦⃗ηₓ nf nf' = refl 𝕌Invariant ↦⃖ηₓ₁ nf nf' = refl 𝕌Invariant ↦⃖ηₓ₂ nf nf' = ⊥-elim (nf' refl) 𝕌Invariant ↦⃗εₓ₁ nf nf' = refl 𝕌Invariant ↦⃗εₓ₂ nf nf' = ⊥-elim (nf' refl) 𝕌Invariant ↦⃖εₓ nf nf' = refl 𝕌Invariant* : ∀ {st st'} → st ↦* st' → (nf : st ≢ ⊠) → (nf' : st' ≢ ⊠) → get𝕌State st nf ≡ get𝕌State st' nf' 𝕌Invariant* {⟨ _ ∣ _ ∣ _ ⟩▷} ◾ nf nf' = refl 𝕌Invariant* {[ _ ∣ _ ∣ _ ]▷} ◾ nf nf' = refl 𝕌Invariant* {⟨ _ ∣ _ ∣ _ ⟩◁} ◾ nf nf' = refl 𝕌Invariant* {[ _ ∣ _ ∣ _ ]◁} ◾ nf nf' = refl 𝕌Invariant* {⊠} ◾ nf nf' = ⊥-elim (nf' refl) 𝕌Invariant* (r ∷ ◾) nf nf' = 𝕌Invariant r nf nf' 𝕌Invariant* (r ∷ (r' ∷ rs)) nf nf' = trans (𝕌Invariant r nf nf'') (𝕌Invariant* (r' ∷ rs) nf'' nf') where nf'' = λ eq → ⊠-is-stuck eq (_ , r') -- Appending context does not affect reductions appendκ↦ : ∀ {st st'} → (r : st ↦ st') (nf : st ≢ ⊠) (nf' : st' ≢ ⊠) (eq : get𝕌State st nf ≡ get𝕌State st' nf') → (κ : Context {proj₁ (get𝕌State st nf)} {proj₂ (get𝕌State st nf)}) → appendκState st nf κ ↦ appendκState st' nf' (subst (λ {(A , B) → Context {A} {B}}) eq κ) appendκ↦ ↦⃗₁ nf nf' refl ctx = ↦⃗₁ appendκ↦ ↦⃗₂ nf nf' refl ctx = ↦⃗₂ appendκ↦ ↦⃗₃ nf nf' refl ctx = ↦⃗₃ appendκ↦ ↦⃗₄ nf nf' refl ctx = ↦⃗₄ appendκ↦ ↦⃗₅ nf nf' refl ctx = ↦⃗₅ appendκ↦ ↦⃗₆ nf nf' refl ctx = ↦⃗₆ appendκ↦ ↦⃗₇ nf nf' refl ctx = ↦⃗₇ appendκ↦ ↦⃗₈ nf nf' refl ctx = ↦⃗₈ appendκ↦ ↦⃗₉ nf nf' refl ctx = ↦⃗₉ appendκ↦ ↦⃗₁₀ nf nf' refl ctx = ↦⃗₁₀ appendκ↦ ↦⃗₁₁ nf nf' refl ctx = ↦⃗₁₁ appendκ↦ ↦⃗₁₂ nf nf' refl ctx = ↦⃗₁₂ appendκ↦ ↦⃖₁ nf nf' refl ctx = ↦⃖₁ appendκ↦ ↦⃖₂ nf nf' refl ctx = ↦⃖₂ appendκ↦ ↦⃖₃ nf nf' refl ctx = ↦⃖₃ appendκ↦ ↦⃖₄ nf nf' refl ctx = ↦⃖₄ appendκ↦ ↦⃖₅ nf nf' refl ctx = ↦⃖₅ appendκ↦ ↦⃖₆ nf nf' refl ctx = ↦⃖₆ appendκ↦ ↦⃖₇ nf nf' refl ctx = ↦⃖₇ appendκ↦ ↦⃖₈ nf nf' refl ctx = ↦⃖₈ appendκ↦ ↦⃖₉ nf nf' refl ctx = ↦⃖₉ appendκ↦ ↦⃖₁₀ nf nf' refl ctx = ↦⃖₁₀ appendκ↦ ↦⃖₁₁ nf nf' refl ctx = ↦⃖₁₁ appendκ↦ ↦⃖₁₂ nf nf' refl ctx = ↦⃖₁₂ appendκ↦ ↦η₊₁ nf nf' refl ctx = ↦η₊₁ appendκ↦ ↦η₊₂ nf nf' refl ctx = ↦η₊₂ appendκ↦ ↦ε₊₁ nf nf' refl ctx = ↦ε₊₁ appendκ↦ ↦ε₊₂ nf nf' refl ctx = ↦ε₊₂ appendκ↦ ↦⃗ηₓ nf nf' refl ctx = ↦⃗ηₓ appendκ↦ (↦⃖ηₓ₁ {eq = eq}) nf nf' refl ctx = ↦⃖ηₓ₁ {eq = eq} appendκ↦ ↦⃖ηₓ₂ nf nf' eq ctx = ⊥-elim (nf' refl) appendκ↦ (↦⃗εₓ₁ {eq = eq}) nf nf' refl ctx = ↦⃗εₓ₁ {eq = eq} appendκ↦ ↦⃗εₓ₂ nf nf' eq ctx = ⊥-elim (nf' refl) appendκ↦ ↦⃖εₓ nf nf' refl ctx = ↦⃖εₓ appendκ↦* : ∀ {st st'} → (r : st ↦* st') (nf : st ≢ ⊠) (nf' : st' ≢ ⊠) (eq : get𝕌State st nf ≡ get𝕌State st' nf') → (κ : Context {proj₁ (get𝕌State st nf)} {proj₂ (get𝕌State st nf)}) → appendκState st nf κ ↦* appendκState st' nf' (subst (λ {(A , B) → Context {A} {B}}) eq κ) appendκ↦* {⟨ _ ∣ _ ∣ _ ⟩▷} ◾ nf nf' refl ctx = ◾ appendκ↦* {[ _ ∣ _ ∣ _ ]▷} ◾ nf nf' refl ctx = ◾ appendκ↦* {⟨ _ ∣ _ ∣ _ ⟩◁} ◾ nf nf' refl ctx = ◾ appendκ↦* {[ _ ∣ _ ∣ _ ]◁} ◾ nf nf' refl ctx = ◾ appendκ↦* {⊠} ◾ nf nf' eq ctx = ⊥-elim (nf' refl) appendκ↦* (↦⃗₁ {b = b} {v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₁ {b = b} {v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₂ {v = v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₂ {v = v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₃ {v = v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₃ {v = v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₄ {x = x} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₄ {x = x} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₅ {y = y} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₅ {y = y} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₆ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₆ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₇ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₇ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₈ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₈ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₉ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₉ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₁₀ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₁₀ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₁₁ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₁₁ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗₁₂ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗₁₂ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₁ {b = b} {v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₁ {b = b} {v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₂ {v = v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₂ {v = v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₃ {v = v} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₃ {v = v} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₄ {x = x} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₄ {x = x} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₅ {y = y} {κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₅ {y = y} {κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₆ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₆ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₇ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₇ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₈ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₈ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₉ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₉ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₁₀ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₁₀ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₁₁ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₁₁ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖₁₂ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖₁₂ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦η₊₁ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦η₊₁ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦η₊₂ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦η₊₂ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦ε₊₁ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦ε₊₁ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦ε₊₂ {κ = κ} ∷ rs) nf nf' eq ctx = appendκ↦ (↦ε₊₂ {κ = κ}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗ηₓ ∷ rs) nf nf' eq ctx = appendκ↦ ↦⃗ηₓ nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖ηₓ₁ {eq = eq'} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃖ηₓ₁ {eq = eq'}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃖ηₓ₂ ∷ ◾) nf nf' eq ctx = ⊥-elim (nf' refl) appendκ↦* (↦⃗εₓ₁ {eq = eq'} ∷ rs) nf nf' eq ctx = appendκ↦ (↦⃗εₓ₁ {eq = eq'}) nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦* (↦⃗εₓ₂ ∷ ◾) nf nf' eq ctx = ⊥-elim (nf' refl) appendκ↦* (↦⃖εₓ ∷ rs) nf nf' eq ctx = appendκ↦ ↦⃖εₓ nf (λ ()) refl ctx ∷ appendκ↦* rs (λ ()) nf' eq ctx appendκ↦⊠ : ∀ {st} → (r : st ↦ ⊠) (nf : st ≢ ⊠) → (κ : Context {proj₁ (get𝕌State st nf)} {proj₂ (get𝕌State st nf)}) → appendκState st nf κ ↦ ⊠ appendκ↦⊠ (↦⃖ηₓ₂ {neq = neq}) nf ctx = ↦⃖ηₓ₂ {neq = neq} appendκ↦⊠ (↦⃗εₓ₂ {neq = neq}) nf ctx = ↦⃗εₓ₂ {neq = neq} appendκ↦*⊠ : ∀ {st} → (r : st ↦* ⊠) (nf : st ≢ ⊠) → (κ : Context {proj₁ (get𝕌State st nf)} {proj₂ (get𝕌State st nf)}) → appendκState st nf κ ↦* ⊠ appendκ↦*⊠ ◾ nf ctx = ⊥-elim (nf refl) appendκ↦*⊠ (r ∷ ◾) nf ctx = appendκ↦⊠ r nf ctx ∷ ◾ appendκ↦*⊠ (↦⃗₁ ∷ (r' ∷ rs)) nf ctx = ↦⃗₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₂ ∷ (r' ∷ rs)) nf ctx = ↦⃗₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₃ ∷ (r' ∷ rs)) nf ctx = ↦⃗₃ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₄ ∷ (r' ∷ rs)) nf ctx = ↦⃗₄ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₅ ∷ (r' ∷ rs)) nf ctx = ↦⃗₅ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₆ ∷ (r' ∷ rs)) nf ctx = ↦⃗₆ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₇ ∷ (r' ∷ rs)) nf ctx = ↦⃗₇ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₈ ∷ (r' ∷ rs)) nf ctx = ↦⃗₈ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₉ ∷ (r' ∷ rs)) nf ctx = ↦⃗₉ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₁₀ ∷ (r' ∷ rs)) nf ctx = ↦⃗₁₀ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₁₁ ∷ (r' ∷ rs)) nf ctx = ↦⃗₁₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗₁₂ ∷ (r' ∷ rs)) nf ctx = ↦⃗₁₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₁ ∷ (r' ∷ rs)) nf ctx = ↦⃖₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₂ ∷ (r' ∷ rs)) nf ctx = ↦⃖₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₃ ∷ (r' ∷ rs)) nf ctx = ↦⃖₃ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₄ ∷ (r' ∷ rs)) nf ctx = ↦⃖₄ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₅ ∷ (r' ∷ rs)) nf ctx = ↦⃖₅ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₆ ∷ (r' ∷ rs)) nf ctx = ↦⃖₆ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₇ ∷ (r' ∷ rs)) nf ctx = ↦⃖₇ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₈ ∷ (r' ∷ rs)) nf ctx = ↦⃖₈ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₉ ∷ (r' ∷ rs)) nf ctx = ↦⃖₉ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₁₀ ∷ (r' ∷ rs)) nf ctx = ↦⃖₁₀ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₁₁ ∷ (r' ∷ rs)) nf ctx = ↦⃖₁₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖₁₂ ∷ (r' ∷ rs)) nf ctx = ↦⃖₁₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦η₊₁ ∷ (r' ∷ rs)) nf ctx = ↦η₊₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦η₊₂ ∷ (r' ∷ rs)) nf ctx = ↦η₊₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦ε₊₁ ∷ (r' ∷ rs)) nf ctx = ↦ε₊₁ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦ε₊₂ ∷ (r' ∷ rs)) nf ctx = ↦ε₊₂ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗ηₓ ∷ (r' ∷ rs)) nf ctx = ↦⃗ηₓ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖ηₓ₁ {eq = eq} ∷ (r' ∷ rs)) nf ctx = ↦⃖ηₓ₁ {eq = eq} ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃗εₓ₁ {eq = eq} ∷ (r' ∷ rs)) nf ctx = ↦⃗εₓ₁ {eq = eq} ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx appendκ↦*⊠ (↦⃖εₓ ∷ (r' ∷ rs)) nf ctx = ↦⃖εₓ ∷ appendκ↦*⊠ (r' ∷ rs) (λ ()) ctx
{ "alphanum_fraction": 0.5159307245, "avg_line_length": 51.8082191781, "ext": "agda", "hexsha": "4811b1906d79ada820fc811b8dfa6a96ad8181ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiQ/Invariants.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiQ/Invariants.agda", "max_line_length": 135, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiQ/Invariants.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 8701, "size": 15128 }
module Pi-.Dir where open import Relation.Binary.PropositionalEquality data Dir : Set where ◁ : Dir ▷ : Dir -ᵈⁱʳ_ : Dir → Dir -ᵈⁱʳ ▷ = ◁ -ᵈⁱʳ ◁ = ▷ _×ᵈⁱʳ_ : Dir → Dir → Dir ◁ ×ᵈⁱʳ ◁ = ▷ ◁ ×ᵈⁱʳ ▷ = ◁ ▷ ×ᵈⁱʳ ◁ = ◁ ▷ ×ᵈⁱʳ ▷ = ▷ identˡᵈⁱʳ : ∀ d → ▷ ×ᵈⁱʳ d ≡ d identˡᵈⁱʳ ◁ = refl identˡᵈⁱʳ ▷ = refl assoclᵈⁱʳ : ∀ d₁ d₂ d₃ → d₁ ×ᵈⁱʳ (d₂ ×ᵈⁱʳ d₃) ≡ (d₁ ×ᵈⁱʳ d₂) ×ᵈⁱʳ d₃ assoclᵈⁱʳ ◁ ◁ ◁ = refl assoclᵈⁱʳ ◁ ◁ ▷ = refl assoclᵈⁱʳ ◁ ▷ ◁ = refl assoclᵈⁱʳ ◁ ▷ ▷ = refl assoclᵈⁱʳ ▷ ◁ ◁ = refl assoclᵈⁱʳ ▷ ◁ ▷ = refl assoclᵈⁱʳ ▷ ▷ ◁ = refl assoclᵈⁱʳ ▷ ▷ ▷ = refl commᵈⁱʳ : ∀ d₁ d₂ → d₁ ×ᵈⁱʳ d₂ ≡ d₂ ×ᵈⁱʳ d₁ commᵈⁱʳ ◁ ◁ = refl commᵈⁱʳ ◁ ▷ = refl commᵈⁱʳ ▷ ◁ = refl commᵈⁱʳ ▷ ▷ = refl assocl-commᵈⁱʳ : ∀ d₁ d₂ d₃ → d₁ ×ᵈⁱʳ (d₂ ×ᵈⁱʳ d₃) ≡ (d₂ ×ᵈⁱʳ d₁) ×ᵈⁱʳ d₃ assocl-commᵈⁱʳ ◁ ◁ ◁ = refl assocl-commᵈⁱʳ ◁ ◁ ▷ = refl assocl-commᵈⁱʳ ◁ ▷ ◁ = refl assocl-commᵈⁱʳ ◁ ▷ ▷ = refl assocl-commᵈⁱʳ ▷ ◁ ◁ = refl assocl-commᵈⁱʳ ▷ ◁ ▷ = refl assocl-commᵈⁱʳ ▷ ▷ ◁ = refl assocl-commᵈⁱʳ ▷ ▷ ▷ = refl assoc-commᵈⁱʳ : ∀ d₁ d₂ d₃ → d₁ ×ᵈⁱʳ (d₂ ×ᵈⁱʳ d₃) ≡ d₂ ×ᵈⁱʳ (d₁ ×ᵈⁱʳ d₃) assoc-commᵈⁱʳ ◁ ◁ ◁ = refl assoc-commᵈⁱʳ ◁ ◁ ▷ = refl assoc-commᵈⁱʳ ◁ ▷ ◁ = refl assoc-commᵈⁱʳ ◁ ▷ ▷ = refl assoc-commᵈⁱʳ ▷ ◁ ◁ = refl assoc-commᵈⁱʳ ▷ ◁ ▷ = refl assoc-commᵈⁱʳ ▷ ▷ ◁ = refl assoc-commᵈⁱʳ ▷ ▷ ▷ = refl
{ "alphanum_fraction": 0.5734597156, "avg_line_length": 22.2105263158, "ext": "agda", "hexsha": "d5f2344ec42c22ccf536196ad445d7435ff4a9d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/Dir.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/Dir.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/Dir.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 973, "size": 1266 }
{-# OPTIONS --safe #-} module Parametrized where open import Generics open import Agda.Primitive open import Function.Base open import Data.Nat.Base hiding (pred) open import Data.Fin.Base hiding (pred; _+_) open import Data.List.Base hiding (sum; length) open import Relation.Nullary open import Relation.Nullary.Decidable as Decidable open import Relation.Binary.HeterogeneousEquality.Core using (_≅_; refl) open import Relation.Binary.PropositionalEquality open import Data.String hiding (show; _≟_; length) open import Data.Maybe.Base module Nat where instance natD : HasDesc ℕ natD = deriveDesc ℕ --------------------------- -- Deriving the eliminator elimℕ = deriveElim natD plus : ℕ → ℕ → ℕ plus n = elimℕ (const ℕ) n suc mult : ℕ → ℕ → ℕ mult n = elimℕ (const ℕ) 0 (plus n) -- things defined with the eliminator reduce properly on open terms plus0 : ∀ {n} → plus n 0 ≡ n plus0 = refl plusS : ∀ {n m} → plus n (suc m) ≡ suc (plus n m) plusS = refl mult0 : ∀ {n} → mult n 0 ≡ 0 mult0 = refl multS : ∀ {n m} → mult n (suc m) ≡ plus n (mult n m) multS = refl ----------------- -- Deriving fold foldℕ = deriveFold natD t : ℕ t = foldℕ 1 suc 2 ----------------- -- Deriving show instance showℕ : Show ℕ showℕ = deriveShow natD _ : show 2 ≡ "suc (suc (zero))" _ = refl ------------------------------------ -- Deriving case analysis principle caseℕ = deriveCase natD pred : ℕ → ℕ pred = caseℕ (const ℕ) 0 id pred0 : pred 0 ≡ 0 pred0 = refl predS : ∀ {n} → pred (suc n) ≡ n predS = refl ----------------------- -- Deriving congruence congℕ = deriveCong natD ze≅ze : 0 ≅ 0 ze≅ze = congℕ zero su≅su : ∀ {n m} → n ≅ m → suc n ≅ suc m su≅su = congℕ (suc zero) ------------------------------- -- Deriving decidable equality instance decℕ : DecEq ℕ decℕ = deriveDecEq natD _ : 3 ≟ 3 ≡ yes refl _ = refl _ : 3 ≟ 2 ≡ no _ _ = refl module ListDemo where data list (A : Set) : Set where [] : list A _∷_ : A → list A → list A listD : HasDesc list listD = deriveDesc list foldList = deriveFold listD sum : list ℕ → ℕ sum = foldList 0 _+_ []-sum : sum [] ≡ 0 []-sum = refl ∷-sum : ∀ {x xs} → sum (x ∷ xs) ≡ x + sum xs ∷-sum = refl mul : list ℕ → ℕ mul = foldList 1 _*_ module Vec where private variable A : Set n : ℕ data Vec (A : Set) : ℕ → Set where nil : Vec A 0 cons : ∀ {n} → A → Vec A n → Vec A (suc n) instance vekD : HasDesc Vec vekD = deriveDesc Vec --------------------------- -- Deriving the eliminator elimVec = deriveElim vekD length : Vec A n → ℕ length = elimVec (const ℕ) 0 (const suc) length0 : length (nil {A}) ≡ 0 length0 = refl lengthP : (x : Vec A n) → length x ≡ n lengthP = elimVec (λ {n} x → length x ≡ n) refl (const (cong suc)) --------------------------- -- Deriving fold foldVec = deriveFold vekD vekToList : ∀ {A n} → Vec A n → List A vekToList = foldVec [] _∷_ ----------------------- -- Deriving congruence congV = deriveCong vekD []≅[] : ∀ {A} → nil {A} ≅ nil {A} []≅[] = congV zero cong-cons : ∀ {A n} {x y : A} → x ≅ y → {xs ys : Vec A n} → xs ≅ ys → cons x xs ≅ cons y ys cong-cons = congV (suc zero) refl module WType where private variable A : Set B : A → Set c : Level data W (A : Set) (B : A → Set) : Set where node : ∀ x → (B x → W A B) → W A B wD : HasDesc W wD = deriveDesc W --------------------------- -- Deriving the eliminator elimW : (Pr : W A B → Set c) → (∀ x {g} → (∀ y → Pr (g y)) → Pr (node x g) ) → ∀ x → Pr x elimW = deriveElim wD elimW-node : {Pr : W A B → Set c} (M : ∀ x {g} → (∀ y → Pr (g y)) → Pr (node x g) ) → ∀ {x g} → elimW Pr M (node x g) ≡ M x (λ y → elimW Pr M (g y)) elimW-node M = refl module Irrelevance where data Squash (A : Set) : Set where squash : .(x : A) → Squash A -- Irrelevant arguments are supported squashD : HasDesc Squash squashD = deriveDesc Squash ----------------- -- Deriving fold foldSquash : ∀ {A X : Set} → (.A → X) → Squash A → X foldSquash = deriveFold squashD ------------------------------ -- Deriving printing function -- Because the value of type A is irrelevant, -- we don't require an instance of Show A instance showSquash : ∀ {A} → Show (Squash A) showSquash = deriveShow squashD _ : show (squash 3) ≡ "squash (._)" _ = refl
{ "alphanum_fraction": 0.5355976486, "avg_line_length": 19.8831168831, "ext": "agda", "hexsha": "820fabe4558d678b4b9824d6cc36840c833789a3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "examples/Parametrized.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "examples/Parametrized.agda", "max_line_length": 72, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "examples/Parametrized.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 1592, "size": 4593 }
{-# OPTIONS --without-K --safe #-} -- Constructions of a Cocone from the Twisted Arrow function from a Cowedge -- and vice-versa, by Duality. -- Note that the proper functioning of this relies crucially on -- Functor.op (Functor.op F) being definitionally equal to F. open import Categories.Category using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Diagram.Cowedge.Properties {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open import Level open import Categories.Category.Construction.Cocones using (Cocones) open import Categories.Category.Construction.Cowedges open import Categories.Category.Construction.TwistedArrow open import Categories.Category.Equivalence using (StrongEquivalence) open import Categories.Diagram.Cocone open import Categories.Diagram.Cowedge open import Categories.Diagram.Duality open import Categories.Diagram.Wedge.Properties open import Categories.Functor hiding (id) open import Categories.Functor.Instance.Twisted C D import Categories.Morphism.Reasoning as MR open import Categories.NaturalTransformation.Dinatural open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) Cowedge-to-Cocone : (W : Cowedge F) → Cocone (Twist′ F) Cowedge-to-Cocone W = coCone⇒Cocone D (Wedge-to-Cone (Functor.op F) (Cowedge⇒coWedge D W)) Cocone-to-Cowedge : Cocone (Twist′ F) → Cowedge F Cocone-to-Cowedge C = coWedge⇒Cowedge D (Cone-to-Wedge (Functor.op F) (Cocone⇒coCone D C)) CooneTwist⇒CowedgeF : Functor (Cocones (Twist′ F)) (Cowedges F) CooneTwist⇒CowedgeF = record { F₀ = Cocone-to-Cowedge ; F₁ = λ co⇒ → record { u = arr co⇒ ; commute = commute co⇒ } ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = λ f≈g → f≈g } where open Cocone⇒ open Category D Cowedge⇒CoconeTwistF : Functor (Cowedges F) (Cocones (Twist′ F)) Cowedge⇒CoconeTwistF = record { F₀ = Cowedge-to-Cocone ; F₁ = λ we⇒ → record { arr = u we⇒ ; commute = pullˡ (commute we⇒) } ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = λ f≈g → f≈g } where open Cowedge open Cowedge-Morphism open Category D open MR D -- The duality here is not just 'op', so spell out some of it. Note how the proofs need the explicit commutations. CoconesTwist≅Cowedges : StrongEquivalence (Cocones (Twist′ F)) (Cowedges F) CoconesTwist≅Cowedges = record { F = CooneTwist⇒CowedgeF ; G = Cowedge⇒CoconeTwistF ; weak-inverse = record { F∘G≈id = niHelper (record { η = λ X → record { u = id ; commute = identityˡ ○ MR.elimʳ D identity } ; η⁻¹ = λ X → record { u = id ; commute = MR.id-comm-sym D ○ (refl⟩∘⟨ Equiv.sym identity) } ; commute = λ _ → MR.id-comm-sym D ; iso = λ _ → record { isoˡ = identity² ; isoʳ = identity² } }) ; G∘F≈id = niHelper record { η = λ X → record { arr = id ; commute = λ {Y} → identityˡ ○ Coapex.commute (coapex X) (mor⇒ (MR.elimˡ C C.identity²)) } ; η⁻¹ = λ X → record { arr = id ; commute = λ {Y} → identityˡ ○ Equiv.sym (Coapex.commute (coapex X) (mor⇒ (MR.elimˡ C C.identity²))) } ; commute = λ _ → MR.id-comm-sym D ; iso = λ X → record { isoˡ = identity² ; isoʳ = identity² } } } } where module C = Category C open Category D open HomReasoning open Cocone open Functor F open Cowedge open DinaturalTransformation
{ "alphanum_fraction": 0.6939491377, "avg_line_length": 36.7849462366, "ext": "agda", "hexsha": "7f96aef3c3682caebc37295b10c3a3bef823333a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Cowedge/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Cowedge/Properties.agda", "max_line_length": 141, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Cowedge/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1165, "size": 3421 }
module InstanceArgumentsSections where postulate A : Set module Basic where record B : Set where field bA : A open B {{...}} bA' : B → A bA' _ = bA module Parameterised (a : A) where record C : Set where field cA : A open C {{...}} cA' : C → A cA' _ = cA module RecordFromParameterised where postulate a : A open Parameterised a open C {{...}} cA'' : C → A cA'' _ = cA module RecordFromParameterisedInParameterised (a : A) where open Parameterised a open C {{...}} cA'' : C → A cA'' _ = cA module RecordFromParameterised' (a : A) where open Parameterised open C {{...}} cA'' : C a → A cA'' _ = cA a module AppliedRecord (a : A) where open Parameterised D : Set D = C a module D = C a open D {{...}} dA' : D → A dA' _ = cA
{ "alphanum_fraction": 0.5772558714, "avg_line_length": 13.4833333333, "ext": "agda", "hexsha": "97c261688072c9aa0eba1d75c5c3a942fe301c46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/InstanceArgumentsSections.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/InstanceArgumentsSections.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/InstanceArgumentsSections.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 291, "size": 809 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} import Level open import Data.Empty open import Data.Product open import Data.List using (_∷_; []; _++_) open import Data.List.Properties using (∷-injectiveʳ) open import Relation.Unary using (Pred; _⊆_; _∈_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst) open import Common module TraceSet {ℙ : Set} (message : Message ℙ) where open import Trace message open import SessionType message open import Transitions message open import HasTrace message TraceSet : Set₁ TraceSet = Pred Trace Level.zero ⟦_⟧ : SessionType -> TraceSet ⟦_⟧ = _HasTrace_ _⊆⊇_ : TraceSet -> TraceSet -> Set X ⊆⊇ Y = X ⊆ Y × Y ⊆ X PrefixClosed : TraceSet -> Set PrefixClosed X = ∀{φ ψ} -> ψ ⊑ φ -> X φ -> X ψ Coherent : TraceSet -> Set Coherent X = ∀{φ ψ₁ ψ₂ x y} -> X (φ ++ I x ∷ ψ₁) -> X (φ ++ O y ∷ ψ₂) -> ⊥ _∂_ : TraceSet -> Action -> TraceSet (X ∂ α) φ = X (α ∷ φ) --| CO-SETS |-- CoSet : TraceSet -> TraceSet CoSet X φ = X (co-trace φ) co-set-involution : ∀{X} -> CoSet (CoSet X) ≡ X co-set-involution {X} = extensionality λ φ -> subst (λ z -> X z ≡ X φ) (sym (co-trace-involution φ)) refl co-set-⊆ : ∀{X Y} -> X ⊆ Y -> CoSet X ⊆ CoSet Y co-set-⊆ sub xcφ = sub xcφ co-set-right->left : ∀{X Y} -> X ⊆ CoSet Y -> CoSet X ⊆ Y co-set-right->left {X} {Y} sub xcφ with co-set-⊆ {X} {CoSet Y} sub ... | sub' = subst Y (co-trace-involution _) (sub' xcφ) co-definition : ∀{X φ} -> φ ∈ X -> co-trace φ ∈ CoSet X co-definition {_} {φ} xφ rewrite co-trace-involution φ = xφ co-inversion : ∀{X φ} -> co-trace φ ∈ CoSet X -> φ ∈ X co-inversion {_} {φ} coφ rewrite co-trace-involution φ = coφ --| MAXIMAL TRACES |-- data Maximal : TraceSet -> Trace -> Set where maximal : ∀{X φ} (wit : φ ∈ X) (F : ∀{ψ} -> φ ⊑ ψ -> ψ ∈ X -> ψ ≡ φ) -> Maximal X φ maximal-sub : ∀{X} -> Maximal X ⊆ X maximal-sub (maximal x _) = x derive-maximal : ∀{α φ X} -> α ∷ φ ∈ Maximal X -> φ ∈ Maximal (X ∂ α) derive-maximal (maximal wit F) = maximal wit λ le p -> ∷-injectiveʳ (F (some le) p) input-maximal : ∀{x φ f} -> I x ∷ φ ∈ Maximal ⟦ inp f ⟧ -> φ ∈ Maximal ⟦ f x .force ⟧ input-maximal (maximal (_ , def , step inp tr) F) = maximal (_ , def , tr) λ { le tψ -> ∷-injectiveʳ (F (some le) (inp-has-trace tψ)) } output-maximal : ∀{x φ f} -> O x ∷ φ ∈ Maximal ⟦ out f ⟧ -> φ ∈ Maximal ⟦ f x .force ⟧ output-maximal (maximal (_ , def , step (out _) tr) F) = maximal (_ , def , tr) λ { le tψ -> ∷-injectiveʳ (F (some le) (out-has-trace tψ)) }
{ "alphanum_fraction": 0.6559050773, "avg_line_length": 34.1886792453, "ext": "agda", "hexsha": "452d14988bb5b617f74650a042223d057ad60e78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/TraceSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/TraceSet.agda", "max_line_length": 86, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/TraceSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1192, "size": 3624 }
module Data.List.Relation.Quantification.Proofs where import Lvl open import Data.List open import Data.List.Functions open import Data.List.Equiv.Id open import Data.List.Relation.Permutation open import Data.List.Relation.Quantification open import Functional open import Logic.Propositional open import Logic open import Structure.Relator.Properties open import Type.Dependent open import Type private variable ℓ : Lvl.Level private variable T A B C : Type{ℓ} private variable l l₁ l₂ : List(T) private variable ll : List(List(T)) private variable x : T private variable P Q : T → Stmt{ℓ} private variable Q₂ : A → B → Stmt{ℓ} private variable _▫_ : T → T → Stmt{ℓ} AllElements-map : (f : A → B) → (g : A → C) → (∀{x} → P(f(x)) → Q(g(x))) → (AllElements P(map f(l)) → AllElements Q(map g(l))) AllElements-map {l = ∅} f g pq ∅ = ∅ AllElements-map {l = x ⊰ l} f g pq (p ⊰ ap) = pq p ⊰ AllElements-map f g pq ap AllElements-mapᵣ : (f : A → B) → (∀{x} → P(x) → Q(f(x))) → (AllElements P l → AllElements Q (map f(l))) AllElements-mapᵣ = AllElements-map id AllElements-mapₗ : (f : A → B) → (∀{x} → P(f(x)) → Q(x)) → (AllElements P (map f(l)) → AllElements Q l) AllElements-mapₗ f = AllElements-map f id AllElements-fn : (∀{x} → P(x) → Q(x)) → (AllElements P l → AllElements Q l) AllElements-fn = AllElements-map id id AllElements-[++] : AllElements P l₁ → AllElements P l₂ → AllElements P (l₁ ++ l₂) AllElements-[++] {l₁ = ∅} p q = q AllElements-[++] {l₁ = _ ⊰ _} (x ⊰ p) q = x ⊰ AllElements-[++] p q AllElements-concat : (AllElements (AllElements P) l → AllElements P (concat l)) AllElements-concat ∅ = ∅ AllElements-concat (p ⊰ pl) = AllElements-[++] p (AllElements-concat pl) AllElements-concatMap : (f : A → List(B)) → (∀{x} → P(x) → AllElements Q(f(x))) → (AllElements P(l) → AllElements Q(concatMap f(l))) AllElements-concatMap f pq ∅ = ∅ AllElements-concatMap f pq (x ⊰ p) = AllElements-[++] (pq x) (AllElements-concatMap f pq p) AllElements-order-independent : ∀{P : T → Type{ℓ}}{l₁ l₂} → (l₁ permutes l₂) → (AllElements P(l₁) → AllElements P(l₂)) AllElements-order-independent _permutes_.empty ∅ = ∅ AllElements-order-independent (_permutes_.prepend perm) (x ⊰ p) = x ⊰ AllElements-order-independent perm p AllElements-order-independent _permutes_.swap (x ⊰ y ⊰ p) = y ⊰ x ⊰ p AllElements-order-independent (trans perm₁ perm₂) = AllElements-order-independent perm₂ ∘ AllElements-order-independent perm₁ AllElements-of-transitive-binary-relationₗ : ⦃ trans : Transitivity(_▫_) ⦄ → (l₁ ▫ l₂) → (AllElements (_▫ l₁) ll → AllElements (_▫ l₂) ll) AllElements-of-transitive-binary-relationₗ _ ∅ = ∅ AllElements-of-transitive-binary-relationₗ {_▫_ = _▫_} p (a ⊰ al) = transitivity(_▫_) a p ⊰ AllElements-of-transitive-binary-relationₗ p al AllElements-of-transitive-binary-relationᵣ : ⦃ trans : Transitivity(_▫_) ⦄ → (l₂ ▫ l₁) → (AllElements (l₁ ▫_) ll → AllElements (l₂ ▫_) ll) AllElements-of-transitive-binary-relationᵣ _ ∅ = ∅ AllElements-of-transitive-binary-relationᵣ {_▫_ = _▫_} p (a ⊰ al) = (transitivity(_▫_) p a) ⊰ AllElements-of-transitive-binary-relationᵣ p al AllElements-sigma : Σ(List(T)) (AllElements(P)) ↔ List(Σ T P) AllElements-sigma = [↔]-intro L R where L : Σ(List(T)) (AllElements(P)) ← List(Σ T P) L ∅ = intro ∅ ∅ L ((intro x p) ⊰ sl) = let (intro l pl) = L sl in intro (x ⊰ l) (p ⊰ pl) R : Σ(List(T)) (AllElements(P)) → List(Σ T P) R (intro ∅ ∅) = ∅ R (intro (x ⊰ l) (p ⊰ pl)) = intro x p ⊰ R(intro l pl)
{ "alphanum_fraction": 0.6407847472, "avg_line_length": 48.2533333333, "ext": "agda", "hexsha": "d023c80feddbba23408f4094d9f4d13944c7b5f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Relation/Quantification/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Relation/Quantification/Proofs.agda", "max_line_length": 143, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Relation/Quantification/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1241, "size": 3619 }
{-# OPTIONS --safe #-} module Cubical.Data.Int.MoreInts.QuoInt where open import Cubical.Data.Int.MoreInts.QuoInt.Base public open import Cubical.Data.Int.MoreInts.QuoInt.Properties public
{ "alphanum_fraction": 0.7958115183, "avg_line_length": 27.2857142857, "ext": "agda", "hexsha": "a4044824286adb33224fda852328a2f1020a3965", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Int/MoreInts/QuoInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Int/MoreInts/QuoInt.agda", "max_line_length": 62, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Int/MoreInts/QuoInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 48, "size": 191 }
-- Andreas, 2012-01-11 module Issue551a where data Box (A : Set) : Set where [_] : A → Box A implicit : {A : Set}{{a : A}} -> A implicit {{a}} = a postulate A : Set .a : A -- this irrelevant definition needs to be ignored by instance search a' : Box A a' = [ implicit ] -- this should fail
{ "alphanum_fraction": 0.6112956811, "avg_line_length": 17.7058823529, "ext": "agda", "hexsha": "7c8e34eb45aebfb87445e8ec2df53161b236e637", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/fail/Issue551a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/fail/Issue551a.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue551a.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 102, "size": 301 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Dependent product combinators for setoid equality preserving -- functions ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Product.Function.Dependent.Setoid.WithK where open import Data.Product open import Data.Product.Function.Dependent.Setoid using (surjection) open import Data.Product.Relation.Binary.Pointwise.Dependent open import Relation.Binary open import Function open import Function.Equality as F using (_⟶_; _⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence; _⇔_; module Equivalence) open import Function.Injection as Inj using (Injection; Injective; _↣_; module Injection) open import Function.Inverse as Inv using (Inverse; _↔_; module Inverse) open import Function.LeftInverse as LeftInv using (LeftInverse; _↞_; _LeftInverseOf_; _RightInverseOf_; module LeftInverse) open import Function.Surjection as Surj using (Surjection; _↠_; module Surjection) open import Relation.Binary as B open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) open import Relation.Binary.Indexed.Heterogeneous.Construct.At using (_atₛ_) open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Combinator for Inverse module _ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} where inverse : {B₁ : IndexedSetoid A₁ b₁ b₁′} (B₂ : IndexedSetoid A₂ b₂ b₂′) → (A₁↔A₂ : A₁ ↔ A₂) → (∀ {x} → Inverse (B₁ atₛ x) (B₂ atₛ (Inverse.to A₁↔A₂ ⟨$⟩ x))) → Inverse (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) inverse {B₁} B₂ A₁↔A₂ B₁↔B₂ = record { to = Surjection.to surj ; from = Surjection.from surj ; inverse-of = record { left-inverse-of = left ; right-inverse-of = Surjection.right-inverse-of surj } } where surj = surjection B₂ (Inverse.surjection A₁↔A₂) (Inverse.surjection B₁↔B₂) left : Surjection.from surj LeftInverseOf Surjection.to surj left (x , y) = Inverse.left-inverse-of A₁↔A₂ x , IndexedSetoid.trans B₁ (lemma (P.sym (Inverse.left-inverse-of A₁↔A₂ x)) (P.sym (Inverse.right-inverse-of A₁↔A₂ (Inverse.to A₁↔A₂ ⟨$⟩ x)))) (Inverse.left-inverse-of B₁↔B₂ y) where lemma : ∀ {x x′ y} → x ≡ x′ → (eq : (Inverse.to A₁↔A₂ ⟨$⟩ x) ≡ (Inverse.to A₁↔A₂ ⟨$⟩ x′)) → IndexedSetoid._≈_ B₁ (Inverse.from B₁↔B₂ ⟨$⟩ P.subst (IndexedSetoid.Carrier B₂) eq y) (Inverse.from B₁↔B₂ ⟨$⟩ y) lemma P.refl P.refl = IndexedSetoid.refl B₁
{ "alphanum_fraction": 0.6128798842, "avg_line_length": 38.3888888889, "ext": "agda", "hexsha": "1673279d19c4ea24aaba88a62cc1498cbe10c556", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid/WithK.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Setoid/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 817, "size": 2764 }
{-# OPTIONS --cubical --safe #-} module Categories.Functor where open import Prelude open import Categories record Functor {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (C : PreCategory ℓ₁ ℓ₂) (D : PreCategory ℓ₃ ℓ₄) : Type (ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₃ ℓ⊔ ℓ₄) where private module C = PreCategory C private module D = PreCategory D field F₀ : C.Ob → D.Ob F₁ : ∀ {X Y} → (X C.⟶ Y) → (F₀ X D.⟶ F₀ Y) identity : ∀ {X} → F₁ (C.Id {X}) ≡ D.Id homomorphism : ∀ {X Y Z} → (f : X C.⟶ Y) (g : Y C.⟶ Z) → F₁ (g C.· f) ≡ F₁ g D.· F₁ f
{ "alphanum_fraction": 0.5496183206, "avg_line_length": 29.1111111111, "ext": "agda", "hexsha": "f689fa30d9f7a3ee2a69337fe5ab8893bb5c139c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Categories/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Categories/Functor.agda", "max_line_length": 112, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Categories/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 244, "size": 524 }
------------------------------------------------------------------------ -- Raw terms ------------------------------------------------------------------------ import Level open import Data.Universe module README.DependentlyTyped.Raw-term (Uni₀ : Universe Level.zero Level.zero) where open import Data.Nat import README.DependentlyTyped.Term as Term; open Term Uni₀ open import Relation.Binary.PropositionalEquality as P using (_≡_) mutual infixl 9 _·_ infix 5 _∶_ -- Raw types. data Raw-ty : Set where ⋆ : Raw-ty el : (t : Raw) → Raw-ty π : (t₁ t₂ : Raw-ty) → Raw-ty -- Raw terms. -- -- One could distinguish between "checkable" and "inferrable" terms, -- but without a corresponding split for the well-typed terms this -- seems awkward. data Raw : Set where var : (x : ℕ) → Raw ƛ : (t : Raw) → Raw _·_ : (t₁ t₂ : Raw) → Raw -- Type annotation. _∶_ : (t : Raw) (σ : Raw-ty) → Raw -- The context position corresponding to a variable. position : ∀ {Γ σ} → Γ ∋ σ → ℕ position zero = zero position (suc x) = suc (position x) -- Well-typed terms can be turned into raw ones. ⌊_⌋ : ∀ {Γ σ} → Γ ⊢ σ → Raw ⌊ var x ⌋ = var (position x) ⌊ ƛ t ⌋ = ƛ ⌊ t ⌋ ⌊ t₁ · t₂ ⌋ = ⌊ t₁ ⌋ · ⌊ t₂ ⌋ -- The same applies to syntactic types. ⌊_⌋ty : ∀ {Γ σ} → Γ ⊢ σ type → Raw-ty ⌊ ⋆ ⌋ty = ⋆ ⌊ el t ⌋ty = el ⌊ t ⌋ ⌊ π σ′ τ′ ⌋ty = π ⌊ σ′ ⌋ty ⌊ τ′ ⌋ty mutual -- The following functions remove type-annotations. ⌊_⌋raw-ty : Raw-ty → Raw-ty ⌊ ⋆ ⌋raw-ty = ⋆ ⌊ el t ⌋raw-ty = el ⌊ t ⌋raw ⌊ π t₁ t₂ ⌋raw-ty = π ⌊ t₁ ⌋raw-ty ⌊ t₂ ⌋raw-ty ⌊_⌋raw : Raw → Raw ⌊ var x ⌋raw = var x ⌊ ƛ t ⌋raw = ƛ ⌊ t ⌋raw ⌊ t₁ · t₂ ⌋raw = ⌊ t₁ ⌋raw · ⌊ t₂ ⌋raw ⌊ t ∶ σ ⌋raw = ⌊ t ⌋raw -- Some congruence lemmas. position-cong : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} → x₁ ≅-∋ x₂ → position x₁ ≡ position x₂ position-cong P.refl = P.refl ⌊⌋-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁} {Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂} → t₁ ≅-⊢ t₂ → ⌊ t₁ ⌋ ≡ ⌊ t₂ ⌋ ⌊⌋-cong P.refl = P.refl ⌊⌋ty-cong : ∀ {Γ₁ σ₁} {σ′₁ : Γ₁ ⊢ σ₁ type} {Γ₂ σ₂} {σ′₂ : Γ₂ ⊢ σ₂ type} → σ′₁ ≅-type σ′₂ → ⌊ σ′₁ ⌋ty ≡ ⌊ σ′₂ ⌋ty ⌊⌋ty-cong P.refl = P.refl
{ "alphanum_fraction": 0.4946996466, "avg_line_length": 24.3440860215, "ext": "agda", "hexsha": "490ead96b3a092f27ec65c46095fea0014cdd4c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/Raw-term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/Raw-term.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/Raw-term.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1036, "size": 2264 }
module FStream.Bisimulation where open import Library open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Binary.PropositionalEquality.Core as Core -- open ≡-Reasoning open import FStream.Core mutual record _~_ {i} {ℓ₁ ℓ₂} {X : Set ℓ₁} {C : Container ℓ₂} (s₁ s₂ : FStream {i} C X) : Set (ℓ₁ ⊔ ℓ₂) where coinductive field sameInitShapes : proj₁ (inF s₁) ≡ proj₁ (inF s₂) bisim : ∀ pos → proj₂ (inF s₁) pos ~' proj₂ (inF s₂) (subst (Position C) sameInitShapes pos) record _~'_ {i} {ℓ₁ ℓ₂} {X : Set ℓ₁} {C : Container ℓ₂} (s₁ s₂ : FStream' {i} C X) : Set (ℓ₁ ⊔ ℓ₂) where coinductive field hd∼ : head s₁ ≡ head s₂ tl∼ : ∀ {j : Size< i} → tail s₁ ~ tail s₂ open _~_ public open _~'_ public -- alias _∼_ = _~_ {- mutual BisimEquiv : ∀ {i : Size} → IsEquivalence (_~_ {i}) sameInitShapes (IsEquivalence.refl BisimEquiv {x = x}) = refl bisim (IsEquivalence.refl (BisimEquiv {i}) {x}) {j} pos = IsEquivalence.refl (BisimEquiv' {i}) sameInitShapes (IsEquivalence.sym BisimEquiv x) = sym (sameInitShapes x) bisim (IsEquivalence.sym (BisimEquiv {i}) {i = s1} {j = s2} x) pos with bisim x pos ... | bla = IsEquivalence.sym BisimEquiv' (subst (λ x₁ → {! !}) lemma x) where lemma = begin {! !} sameInitShapes (IsEquivalence.trans BisimEquiv bisim1 bisim2) = trans (sameInitShapes bisim1) (sameInitShapes bisim2) bisim (IsEquivalence.trans BisimEquiv bisim1 bisim2) pos = IsEquivalence.trans BisimEquiv' {! !} {! !} BisimEquiv' : ∀ {i : Size} → IsEquivalence (_~'_ {i}) hd∼ (IsEquivalence.refl BisimEquiv' {x}) = refl tl∼ (IsEquivalence.refl BisimEquiv' {x}) {j} = IsEquivalence.refl (BisimEquiv {j}) hd∼ (IsEquivalence.sym BisimEquiv' x) = sym (hd∼ x) tl∼ (IsEquivalence.sym BisimEquiv' x) {j} = IsEquivalence.sym BisimEquiv (tl∼ x) hd∼ (IsEquivalence.trans BisimEquiv' bisim1 bisim2) = trans (hd∼ bisim1) (hd∼ bisim2) tl∼ (IsEquivalence.trans BisimEquiv' bisim1 bisim2) {j} = IsEquivalence.trans BisimEquiv (tl∼ bisim1) (tl∼ bisim2) -}
{ "alphanum_fraction": 0.6690821256, "avg_line_length": 40.5882352941, "ext": "agda", "hexsha": "56fd7763c9476738e398362e406dd8e3aee17826", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "FStream/Bisimulation.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "FStream/Bisimulation.agda", "max_line_length": 119, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "FStream/Bisimulation.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 806, "size": 2070 }
data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A data Is-nothing {A} : Maybe A → Set where nothing : Is-nothing nothing record ℕ∞ : Set where coinductive field prd∞ : Maybe ℕ∞ open ℕ∞ f : ℕ∞ → ℕ∞ prd∞ (f m) with prd∞ m prd∞ (f m) | just pm with f pm prd∞ (f m) | just pm | x = prd∞ x prd∞ (f m) | nothing = nothing inf∞ : ℕ∞ prd∞ inf∞ = just inf∞ test : Is-nothing (prd∞ (f inf∞)) test = nothing
{ "alphanum_fraction": 0.5890410959, "avg_line_length": 16.8461538462, "ext": "agda", "hexsha": "f37ef88b66378ae64b06aee82c2d68b0ff7f6573", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3604.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3604.agda", "max_line_length": 41, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3604.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 188, "size": 438 }
-- Pattern matching on a (decidably) empty type allows you to omit the -- right-hand side. module AbsurdPattern where data Empty : Set where elim-Empty : {A : Set} -> Empty -> A elim-Empty ()
{ "alphanum_fraction": 0.693877551, "avg_line_length": 17.8181818182, "ext": "agda", "hexsha": "a10908419d42e3f3f77ce9b9b38af6f675337ab6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/AbsurdPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/AbsurdPattern.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/AbsurdPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 54, "size": 196 }
{-# OPTIONS --without-K --safe #-} -- Polynomials over a commutative ring in sparse Horner normal form. -- -- Much of the implementation is inspired by: -- -- B. Grégoire and A. Mahboubi, ‘Proving Equalities in a Commutative -- Ring Done Right in Coq’, in Theorem Proving in Higher Order -- Logics, Berlin, Heidelberg, 2005, vol. 3603, pp. 98–113. -- -- The main sources of efficience come from: -- -- * Careful arrangement of operators to maintain *syntactic equality*. -- -- * Avoiding of identities (like *1 or +0) with specialised data -- structures. open import Polynomial.Parameters module Polynomial.NormalForm {c r₁ r₂ r₃} (homo : Homomorphism c r₁ r₂ r₃) where open Homomorphism homo -- The "injection index" is what allows us to store the nested -- polynomials sparsely. open import Polynomial.NormalForm.InjectionIndex public -- The definition and types for the polynomial. open import Polynomial.NormalForm.Definition coeffs public -- Normalizing constructors. open import Polynomial.NormalForm.Construction coeffs public -- Definition of arithmetic operations etc. open import Polynomial.NormalForm.Operations coeffs public -- "Running" the polynomial on some input. open import Polynomial.NormalForm.Semantics homo public
{ "alphanum_fraction": 0.7597454256, "avg_line_length": 30.6585365854, "ext": "agda", "hexsha": "fbc592774280b81a74f677b925eae4f5074aaa09", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/NormalForm.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/NormalForm.agda", "max_line_length": 71, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/NormalForm.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 310, "size": 1257 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product open import Algebra.Definitions -- (x²y)x = x²(yx) JordanIdentity: : Op₂ A → Set _ JordanIdentity: _∙_ = ∀ x y → (((x ∙ x) ∙ y) ∙ x) ≈ (((x ∙ x) ∙ y) ∙ x) -- x = xyx PesudoInverse₁ : Op₂ A → Set _ PesudoInverse₁ _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ x -- y = yxy PseudoInverse₂ : Op₂ A → Set _ PseudoInverse₂ _∙_ = ∀ x y → ((y ∙ x) ∙ y) ≈ y PseudoInverse : Op₂ A → Set _ PseudoInverse ∙ = (PesudoInverse₁ ∙) × (PseudoInverse₂ ∙) -- JacobiIdentity is (x ∙ (y ∙ z)) + ((y ∙ (z ∙ x)) + (z ∙ (x ∙ y))) = 0 -- Using the antisymmetry property Jacobi identity may be rewritten as a modification of the associative property JacobiIdentity : Op₂ A → Op₂ A → Set _ JacobiIdentity _∙_ _-_ = ∀ x y z → (x ∙ (y ∙ z)) ≈ ((y ∙ (z ∙ x)) - (z ∙ (x ∙ y)))
{ "alphanum_fraction": 0.5940695297, "avg_line_length": 28.7647058824, "ext": "agda", "hexsha": "2e77066fb00a47f4e3f7203da6c0571e7ba93f20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Definitions.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Definitions.agda", "max_line_length": 113, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 382, "size": 978 }
-- We use instance argument to overload the algebraic operations + and -- * etc.. For example, Ring record here is like what Num class in -- Haskell. Also like Haskell, we don't require the operations abide -- by any laws (we can use the algebraic definitions in stdlib if -- needed). {-# OPTIONS --without-K --safe #-} module Typeclasses where -- ---------------------------------------------------------------------- -- Type classes for Ring. -- SemiRing typecalss has two operations + and * and two special -- numbers 0 and 1. record SemiRing (A : Set) : Set where infixl 6 _+_ infixl 7 _*_ infixr 8 _^2 field _+_ : A -> A -> A _*_ : A -> A -> A 0# : A 1# : A -- A useful shot-hand. _^2 : A -> A x ^2 = x * x -- A special way to open a module in order to make the fields of the -- record available as functions taking instance arguments. open SemiRing {{...}} public -- Ring typeclass is a subclass of SemiRing typeclass, and has -- addtitve inverse. Hence we can define subtraction. record Ring (A : Set) : Set where infixl 6 _-_ infix 8 -_ field {{sra}} : SemiRing A -_ : A -> A _-_ : A -> A -> A _-_ x y = x + (- y) open Ring {{...}} public -- ---------------------------------------------------------------------- -- Type classes decidable order. -- We will use orders on ℕ and ℤ simultaneously, so we also overload -- the comparsion operations using typeclass. -- Decidable order typeclass. Normally DecEq is a super class of -- DecOrd, here we don't enforce this, since the main purpose is to -- overload operators. open import Relation.Binary using (Rel ; Decidable) record DecOrd (A : Set) : Set₁ where infixl 4 _≤_ _<_ infixl 4 _≤?_ _<?_ field _≤_ : Rel A _ _≤?_ : Decidable _≤_ _<_ : Rel A _ _<?_ : Decidable _<_ open DecOrd {{...}} public -- ---------------------------------------------------------------------- -- Type classes NonZero and DivMod -- We will use irrelevant implicit argument to exlude the zero divisor -- case when defining the partial function "div" and "mod". record NonZeroTypeclass (A : Set) : Set₁ where field NonZero : (a : A) -> Set open NonZeroTypeclass {{...}} public -- DivMod typeclass is used to overload _/_ and _%_. record DivMod (A : Set) : Set₁ where infixl 7 _/_ _%_ field {{NZT}} : NonZeroTypeclass A _/_ : (n d : A) .{{_ : NonZero d}} -> A _%_ : (n d : A) .{{_ : NonZero d}} -> A open DivMod {{...}} public -- ---------------------------------------------------------------------- -- Type classes for Rank (to be used in defining Euclidean structure) -- Rank record has a rank function that spcifies the rank of the given -- argument. import Data.Nat as Nat record Rank (A : Set) : Set where field rank : A -> Nat.ℕ open Rank {{...}} public
{ "alphanum_fraction": 0.5789660057, "avg_line_length": 27.6862745098, "ext": "agda", "hexsha": "729216c0acf72a1cee3de3977a5430a39ac1c95b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "Typeclasses.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "Typeclasses.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "Typeclasses.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 783, "size": 2824 }
module Tactic.Nat.Subtract where open import Tactic.Nat.Subtract.Auto public using (autosub-tactic) open import Tactic.Nat.Subtract.Simplify public using (simplifysub-tactic; simplifygoal-tactic) open import Tactic.Nat.Subtract.By public using (by-tactic) open import Tactic.Nat.Subtract.Refute public using (refutesub-tactic)
{ "alphanum_fraction": 0.8237082067, "avg_line_length": 41.125, "ext": "agda", "hexsha": "1f29250ece6b28d81fa8022b7e781639023e60b8", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract.agda", "max_line_length": 95, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 88, "size": 329 }
module Acme.Data.Nat where open import Acme.Type ℕ : Type isZ : Type isS : Type ℕ cs = isZ cs || isS cs isZ [] = false isZ (c ∷ cs) = c == 'Z' && isNil cs isS [] = false isS (c ∷ cs) = c == 'S' && ℕ cs zero = ℕ ∋ "Z" suc : Elt ℕ → Elt ℕ suc [ n ] = [ 'S' ∷ n ] one = ℕ ∋ "SZ" two = suc (suc zero) three = ℕ ∋ "SSSZ" four = suc three module _ (P : Elt ℕ → Set) (P0 : P zero) (PS : ∀ n → P n → P (suc n)) where induction : ∀ n → P n induction [ ccs@(c ∷ cs) ] = checkZ (c ≟ 'Z') cs refl where checkS : ∀ {b} → Reflects c 'S' b → ∀ cs → {{@0 _ : IsTrue (b && ℕ cs)}} → ∀ {ccs} → c ∷ cs ≡ ccs .value → P ccs checkS true cs refl = PS [ cs ] (induction [ cs ]) checkZ : ∀ {b} → Reflects c 'Z' b → ∀ cs → {{@0 _ : IsTrue (b && isNil cs || isS (c ∷ cs))}} → ∀ {ccs} → c ∷ cs ≡ ccs .value → P ccs checkZ true [] refl = P0 checkZ false cs eq = checkS (c ≟ 'S') cs eq _ : ∀ {P P0 PS} → induction P P0 PS zero ≡ P0 _ = refl _ : ∀ {P P0 PS n} → induction P P0 PS (suc n) ≡ PS n (induction P P0 PS n) _ = refl _+_ : Elt ℕ → Elt ℕ → Elt ℕ m + n = induction (λ _ → Elt ℕ) n (λ _ → suc) m _ : three + one ≡ four _ = refl _*_ : Elt ℕ → Elt ℕ → Elt ℕ m * n = induction (λ _ → Elt ℕ) zero (λ _ → n +_) m _ : two * three ≡ four + two _ = refl zero-+ : ∀ m → zero + m ≡ m zero-+ m = refl +-zero : ∀ m → m + zero ≡ m +-zero = induction (λ m → m + zero ≡ m) refl (λ n → cong suc) suc-+ : ∀ m n → suc m + n ≡ suc (m + n) suc-+ m n = refl +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc m n = induction (λ m → (m + suc n) ≡ suc (m + n)) refl (λ n → cong suc) m +-comm : ∀ m n → m + n ≡ n + m +-comm m n = induction (λ m → m + n ≡ n + m) (sym (+-zero n)) (λ m ih → trans (cong suc ih) (sym (+-suc n m))) m +-assoc : ∀ m n p → (m + n) + p ≡ m + (n + p) +-assoc m n p = induction (λ m → ((m + n) + p) ≡ (m + (n + p))) refl (λ m → cong suc) m
{ "alphanum_fraction": 0.4464197531, "avg_line_length": 19.8529411765, "ext": "agda", "hexsha": "c05693975d6fefc20321fecce10129ab45e847d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "gallais/STRINaGda", "max_forks_repo_path": "src/Acme/Data/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "gallais/STRINaGda", "max_issues_repo_path": "src/Acme/Data/Nat.agda", "max_line_length": 64, "max_stars_count": 2, "max_stars_repo_head_hexsha": "9e83fe708271b4437ae4e259175397d96d10aaf6", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "gallais/STRINaGda", "max_stars_repo_path": "src/Acme/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-01T20:56:37.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-14T22:26:17.000Z", "num_tokens": 871, "size": 2025 }
module Agda.Builtin.List where infixr 5 _∷_ data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# HASKELL type AgdaList a b = [b] #-} {-# COMPILED_DATA List MAlonzo.Code.Agda.Builtin.List.AgdaList [] (:) #-} {-# COMPILED_DATA_UHC List __LIST__ __NIL__ __CONS__ #-}
{ "alphanum_fraction": 0.5954198473, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "98958ab72550008d3c4c71388cf9e9f246ccdb4f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 393 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Strict2Group where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.ReflGraph open import Cubical.DStructures.Structures.VertComp private variable ℓ ℓ' : Level module _ (ℓ ℓ' : Level) where private ℓℓ' = ℓ-max ℓ ℓ' 𝒮ᴰ-Strict2Group : URGStrᴰ (𝒮-ReflGraph ℓ ℓ') VertComp ℓ-zero 𝒮ᴰ-Strict2Group = Subtype→Sub-𝒮ᴰ (λ 𝒢 → VertComp 𝒢 , isPropVertComp 𝒢) (𝒮-ReflGraph ℓ ℓ') Strict2Group : Type (ℓ-suc ℓℓ') Strict2Group = Σ[ 𝒢 ∈ ReflGraph ℓ ℓ' ] VertComp 𝒢 record S2G : Type (ℓ-suc ℓℓ') where no-eta-equality field G₀ : Group {ℓ} G₁ : Group {ℓ'} σ : GroupHom G₁ G₀ τ : GroupHom G₁ G₀ ι : GroupHom G₀ G₁ split-σ : isGroupSplitEpi ι σ split-τ : isGroupSplitEpi ι τ V : VertComp (((((G₀ , G₁) , ι , σ) , split-σ) , τ) , split-τ) {- open S2G make-S2G : {G₀ : Group {ℓ}} {G₁ : Group {ℓ'}} → (σ τ : GroupHom G₁ G₀) → (ι : GroupHom G₀ G₁) → (split-σ : isGroupSplitEpi ι σ) → (split-τ : isGroupSplitEpi ι τ) → VertComp (((((G₀ , G₁) , ι , σ) , split-σ) , τ) , split-τ) → S2G make-S2G = {!!} Group→S2G : Group {ℓ} → S2G ℓ ℓ Group→S2G G .G₀ = G Group→S2G G .G₁ = G Group→S2G G .σ = idGroupHom G Group→S2G G .τ = idGroupHom G Group→S2G G .ι = idGroupHom G Group→S2G G .split-σ = GroupMorphismExt (λ _ → refl) Group→S2G G .split-τ = GroupMorphismExt (λ _ → refl) Group→S2G G .V = {!!} -}
{ "alphanum_fraction": 0.64329806, "avg_line_length": 26.6823529412, "ext": "agda", "hexsha": "08436ac59ba2451b647ea0fb5e2e1aab9388a31c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Strict2Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Strict2Group.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Strict2Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 803, "size": 2268 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.Cokernel open import cohomology.Theory open import cw.CW module cw.cohomology.HigherCoboundary {i} (OT : OrdinaryTheory i) {n} (⊙skel : ⊙Skeleton {i} (S (S n))) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.GridLongExactSequence cohomology-theory (ℕ-to-ℤ (S n)) (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel) cw-co∂-last : CXₙ/Xₙ₋₁ (⊙cw-init ⊙skel) (ℕ-to-ℤ (S n)) →ᴳ CXₙ/Xₙ₋₁ ⊙skel (ℕ-to-ℤ (S (S n))) cw-co∂-last = grid-co∂ module CokerCo∂ where grp = Coker cw-co∂-last (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n)))) open Group grp public CokerCo∂ = CokerCo∂.grp
{ "alphanum_fraction": 0.6844319776, "avg_line_length": 28.52, "ext": "agda", "hexsha": "21d8f1c7619cec7c75932961656cca0a3fb40e87", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/HigherCoboundary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/HigherCoboundary.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/HigherCoboundary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 310, "size": 713 }
-- The "intro" command manages to refine goals of type ∞ A with the -- term ♯ ?. module IntroSharp where postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} Foo : ∞ Set Foo = ?
{ "alphanum_fraction": 0.4846625767, "avg_line_length": 19.1764705882, "ext": "agda", "hexsha": "e64c9b3c314a3fa4761d3c9754638312c14c32d1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/IntroSharp.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/IntroSharp.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/IntroSharp.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 326 }
module par-swap.dpg-e-view where open import par-swap open import par-swap.properties open import par-swap.confluent open import par-swap.dpg-pot open import utility open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Plug open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_) open import Data.Empty open import sn-calculus open import context-properties -- get view, E-views DPG-E-view : ∀ {E C r₁ r₂ p q θ θ' pin qin A A'} -> (peq : p ≐ E ⟦ pin ⟧e) -> (qeq : q ≐ E ⟦ qin ⟧e) -> p ≐ C ⟦ r₁ ∥ r₂ ⟧c -> (psn⟶₁q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A' ⟩· q) -> ->E-view psn⟶₁q peq qeq -> Σ[ d ∈ Term ] Σ[ sn⟶₁d ∈ ρ⟨ θ , A ⟩· C ⟦ r₂ ∥ r₁ ⟧c sn⟶₁ ρ⟨ θ' , A' ⟩· d ] Σ[ ∥Rd ∈ q ∥R* d ] Σ[ E′ ∈ List EvaluationContext1 ] Σ[ pin′ ∈ Term ] Σ[ qin′ ∈ Term ] Σ[ peq′ ∈ C ⟦ r₂ ∥ r₁ ⟧c ≐ E′ ⟦ pin′ ⟧e ] Σ[ qeq′ ∈ d ≐ E′ ⟦ qin′ ⟧e ] ->E-view sn⟶₁d peq′ qeq′ DPG-E-view dehole dehole dchole psn⟶₁q () DPG-E-view dehole dehole (dcpar₁ pC) psn⟶₁q () DPG-E-view dehole dehole (dcpar₂ pC) psn⟶₁q () DPG-E-view dehole dehole (dcseq₁ pC) psn⟶₁q () DPG-E-view dehole dehole (dcseq₂ pC) psn⟶₁q () DPG-E-view dehole dehole (dcsuspend pC) psn⟶₁q () DPG-E-view dehole dehole (dctrap pC) psn⟶₁q () DPG-E-view dehole dehole (dcsignl pC) psn⟶₁q () DPG-E-view dehole dehole (dcloop pC) psn⟶₁q () DPG-E-view dehole dehole (dcloopˢ₁ pC) psn⟶₁q () DPG-E-view dehole dehole (dcloopˢ₂ pC) psn⟶₁q () DPG-E-view dehole dehole (dcpresent₁ pC) (ris-present S∈ s[θ]≡p dehole) vis-present = _ , ris-present S∈ s[θ]≡p dehole , ∥Rn (∥Rstep pC) ∥R0 , _ , _ , _ , dehole , dehole , vis-present DPG-E-view dehole dehole (dcpresent₁ pC) (ris-absent S∈ s[θ]≡p dehole) vis-absent = _ , ris-absent S∈ s[θ]≡p dehole , ∥R0 , _ , _ , _ , dehole , dehole , vis-absent DPG-E-view dehole dehole (dcpresent₂ pC) (ris-present S∈ s[θ]≡a dehole) vis-present = _ , ris-present S∈ s[θ]≡a dehole , ∥R0 , _ , _ , _ , dehole , dehole , vis-present DPG-E-view dehole dehole (dcpresent₂ pC) (ris-absent S∈ s[θ]≡a dehole) vis-absent = _ , ris-absent S∈ s[θ]≡a dehole , ∥Rn (∥Rstep pC) ∥R0 , _ , _ , _ , dehole , dehole , vis-absent DPG-E-view dehole dehole (dcshared pC) (rraise-shared allready dehole) vraise-shared = _ , rraise-shared allready dehole , Context1-∥R* (cenv _ _) (∥Rn (∥Rstep pC) ∥R0) , _ , _ , _ , dehole , dehole , vraise-shared DPG-E-view dehole dehole (dcvar pC) (rraise-var allready dehole) vraise-var = _ , rraise-var allready dehole , Context1-∥R* (cenv _ _) (∥Rn (∥Rstep pC) ∥R0) , _ , _ , _ , dehole , dehole , vraise-var DPG-E-view dehole dehole (dcif₁ pC) (rif-false x∈ x[θ]≡0 dehole) vif-false = _ , rif-false x∈ x[θ]≡0 dehole , ∥R0 , _ , _ , _ , dehole , dehole , vif-false DPG-E-view dehole dehole (dcif₁ pC) (rif-true x∈ x[θ]≡s dehole) vif-true = _ , rif-true x∈ x[θ]≡s dehole , ∥Rn (∥Rstep pC) ∥R0 , _ , _ , _ , dehole , dehole , vif-true DPG-E-view dehole dehole (dcif₂ pC) (rif-false x∈ x[θ]≡0 dehole) vif-false = _ , rif-false x∈ x[θ]≡0 dehole , ∥Rn (∥Rstep pC) ∥R0 , _ , _ , _ , dehole , dehole , vif-false DPG-E-view dehole dehole (dcif₂ pC) (rif-true x∈ x[θ]≡s dehole) vif-true = _ , rif-true x∈ x[θ]≡s dehole , ∥R0 , _ , _ , _ , dehole , dehole , vif-true DPG-E-view dehole dehole (dcenv pC) (rmerge dehole) vmerge = _ , rmerge dehole , ∥Rn (∥Rstep pC) ∥R0 , _ , _ , _ , dehole , dehole , vmerge DPG-E-view (depar₁ pE) (depar₁ qE) dchole psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₁ pE) (depar₁ qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub _ (depar₂ pE) (depar₂ qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (∥Rstep dchole) ∥R0 , _ , _ , _ , depar₂ pE , depar₂ qE , E-view′ DPG-E-view (depar₂ pE) (depar₂ qE) dchole psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₂ pE) (depar₂ qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub _ (depar₁ pE) (depar₁ qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (∥Rstep dchole) ∥R0 , _ , _ , _ , depar₁ pE , depar₁ qE , E-view′ DPG-E-view {e ∷ _} (depar₁ pE) (depar₁ qE) (dcpar₁ pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₁ pE) (depar₁ qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (depar₁ pE′) (depar₁ qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , depar₁ pE′ , depar₁ qE′ , E-view′ DPG-E-view {e ∷ _} (depar₂ pE) (depar₂ qE) (dcpar₂ pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₂ pE) (depar₂ qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (depar₂ pE′) (depar₂ qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , depar₂ pE′ , depar₂ qE′ , E-view′ DPG-E-view {e ∷ _} (desuspend pE) (desuspend qE) (dcsuspend pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (desuspend pE) (desuspend qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (desuspend pE′) (desuspend qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , desuspend pE′ , desuspend qE′ , E-view′ DPG-E-view {e ∷ _} (detrap pE) (detrap qE) (dctrap pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (detrap pE) (detrap qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (detrap pE′) (detrap qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , detrap pE′ , detrap qE′ , E-view′ DPG-E-view {e ∷ _} (deseq pE) (deseq qE) (dcseq₁ pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (deseq pE) (deseq qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (deseq pE′) (deseq qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , deseq pE′ , deseq qE′ , E-view′ DPG-E-view {e ∷ _} (deloopˢ pE) (deloopˢ qE) (dcloopˢ₁ pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (deloopˢ pE) (deloopˢ qE) pE qE E-view ... | (redo-sub , E-view-sub) with DPG-E-view pE qE pC redo-sub E-view-sub ... | (ds , pssn⟶₁ds , qs∥Rds , _ , _ , _ , pE′ , qE′ , E-view-sub′) with wrap-rho pssn⟶₁ds pE′ qE′ E-view-sub′ _ (deloopˢ pE′) (deloopˢ qE′) ... | (redo , E-view′) = _ , redo , Context1-∥R* (ceval e) qs∥Rds , _ , _ , _ , deloopˢ pE′ , deloopˢ qE′ , E-view′ DPG-E-view{_}{_}{r₁}{r₂} (depar₁ pE) (depar₁ qE) (dcpar₂{C = C} pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₁ pE) (depar₁ qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub (epar₁ (C ⟦ r₂ ∥ r₁ ⟧c)) (depar₁ pE) (depar₁ qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (Context1-∥R (ceval (epar₂ _)) (∥Rstep pC)) ∥R0 , _ , _ , _ , depar₁ pE , depar₁ qE , E-view′ DPG-E-view{_}{_}{r₁}{r₂} (depar₂ pE) (depar₂ qE) (dcpar₁{C = C} pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (depar₂ pE) (depar₂ qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub (epar₂ (C ⟦ r₂ ∥ r₁ ⟧c)) (depar₂ pE) (depar₂ qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (Context1-∥R (ceval (epar₁ _)) (∥Rstep pC)) ∥R0 , _ , _ , _ , depar₂ pE , depar₂ qE , E-view′ DPG-E-view{_}{_}{r₁}{r₂} (deseq pE) (deseq qE) (dcseq₂{C = C} pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (deseq pE) (deseq qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub (eseq (C ⟦ r₂ ∥ r₁ ⟧c)) (deseq pE) (deseq qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (Context1-∥R (cseq₂ _) (∥Rstep pC)) ∥R0 , _ , _ , _ , deseq pE , deseq qE , E-view′ DPG-E-view{_}{_}{r₁}{r₂} (deloopˢ pE) (deloopˢ qE) (dcloopˢ₂{C = C} pC) psn⟶₁q E-view with unwrap-rho psn⟶₁q (deloopˢ pE) (deloopˢ qE) pE qE E-view ... | (redo-sub , E-view-sub) with wrap-rho redo-sub pE qE E-view-sub (eloopˢ (C ⟦ r₂ ∥ r₁ ⟧c)) (deloopˢ pE) (deloopˢ qE) ... | (redo′ , E-view′) = _ , redo′ , ∥Rn (Context1-∥R (cloopˢ₂ _) (∥Rstep pC)) ∥R0 , _ , _ , _ , deloopˢ pE , deloopˢ qE , E-view′
{ "alphanum_fraction": 0.5783861038, "avg_line_length": 38.3797468354, "ext": "agda", "hexsha": "9ad1ae079ecdb013d8fbe5b27f71166e911e1c21", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/par-swap/dpg-e-view.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/par-swap/dpg-e-view.agda", "max_line_length": 85, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/par-swap/dpg-e-view.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 4165, "size": 9096 }
module Fixities where open import Haskell.Prelude leftAssoc : Int → List Int leftAssoc n = 2 * n + 1 ∷ 2 * (n + 1) ∷ 1 + n * 2 ∷ (1 + n) * 2 ∷ (n + n) + n ∷ n + (n + n) ∷ [] rightAssoc : List Int → List Int rightAssoc xs = xs ++ xs ++ ((xs ++ xs) ++ xs) ++ xs nonAssoc : Bool → Bool nonAssoc b = (b == b) == (b == b) mixedAssoc : Maybe Int → (Int → Maybe Int) → Maybe Int mixedAssoc m f = f =<< (((f =<< m) >>= f) >>= f) {-# COMPILE AGDA2HS leftAssoc #-} {-# COMPILE AGDA2HS rightAssoc #-} {-# COMPILE AGDA2HS nonAssoc #-} {-# COMPILE AGDA2HS mixedAssoc #-}
{ "alphanum_fraction": 0.490625, "avg_line_length": 22.8571428571, "ext": "agda", "hexsha": "c18377c9415cd8d342371ff43e15790e4e9fb83b", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Fixities.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Fixities.agda", "max_line_length": 54, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Fixities.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 220, "size": 640 }
-- Nils' suggestion import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties.Simple using (+-suc) open import Relation.Nullary using (¬_) open import Function using (_∘_; id) open import Data.Product using (_×_; _,_; proj₁; proj₂; map; ∃; ∃-syntax) open import Data.Sum using (_⊎_; inj₁; inj₂) data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n → odd (suc n) ∃-even : ∀ {n : ℕ} → even n → ∃[ m ] (n ≡ m * 2) ∃-odd : ∀ {n : ℕ} → odd n → ∃[ m ] (n ≡ 1 + m * 2) ∃-even even-zero = zero , refl ∃-even (even-suc o) with ∃-odd o ... | m , refl = suc m , refl ∃-odd (odd-suc e) with ∃-even e ... | m , refl = m , refl
{ "alphanum_fraction": 0.5737351991, "avg_line_length": 29.03125, "ext": "agda", "hexsha": "a41cfb3477a51a10e26954f042b9f86408fdde53", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/EvenOdd3.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/EvenOdd3.agda", "max_line_length": 73, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/EvenOdd3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 342, "size": 929 }
-- Andreas, 2014-03-03, report and test case by Nisse. -- {-# OPTIONS -v tc.lhs.unify:60 #-} module Issue1071 where postulate F : Set → Set module M (_ : Set₁) where postulate A : Set open M Set data P : Set → Set₁ where c : (R : Set) → P (F R) data Q : (R : Set) → R → P R → Set₁ where d : (R : Set) (f : F R) → Q (F R) f (c R) Foo : (f' : F A) → Q (F A) f' (c A) → Set₁ Foo ._ (d ._ _) = Set -- WAS: -- Refuse to solve heterogeneous constraint f₁ : F A =?= f : F A -- when checking that the pattern d ._ _ has type Q (F A) f (c A) -- SHOULD: succeed
{ "alphanum_fraction": 0.5614035088, "avg_line_length": 19.6551724138, "ext": "agda", "hexsha": "c2d46f0a5b257a68161bf24b562f268e9bca69cc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1071.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1071.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1071.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 217, "size": 570 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.CommDisjunctionSchema where open import Common.FOL.FOL postulate ∨-comm : {A B : Set} → A ∨ B → B ∨ A {-# ATP prove ∨-comm #-}
{ "alphanum_fraction": 0.5630769231, "avg_line_length": 27.0833333333, "ext": "agda", "hexsha": "c69a627d82dd56667f9675e9d892e1bcd2ddf80c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunctionSchema.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunctionSchema.agda", "max_line_length": 50, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunctionSchema.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 83, "size": 325 }
-- Andreas, 2018-08-14, issue #1556 -- Rule out very dependent types by looking for recursive calls -- in the types of definitions. -- {-# OPTIONS -v term:20 -v rec.graph:80 #-} A : Set data D : A → Set -- D --> A (new!) a : A -- a --> A (new!) A = D a -- A --> D, a data D where d : D a -- TODO: D --> a a = d -- a --> d -- Should be rejected, e.g., by termination checker.
{ "alphanum_fraction": 0.4965357968, "avg_line_length": 27.0625, "ext": "agda", "hexsha": "ed7a60ed2df4e93358cfee653c9fd9ac69570250", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue1556.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue1556.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue1556.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 130, "size": 433 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.Traced where open import Level open import Data.Product open import Data.Fin open import Categories.Category open import Categories.Monoidal open import Categories.Functor hiding (id; _∘_; identityʳ; assoc) open import Categories.Monoidal.Braided open import Categories.Monoidal.Helpers open import Categories.Monoidal.Braided.Helpers open import Categories.Monoidal.Symmetric open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation hiding (id) ------------------------------------------------------------------------------ -- Helpers unary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A : Category.Obj C) → Fin 1 → Category.Obj C unary C A zero = A unary C A (suc ()) binary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A B : Category.Obj C) → Fin 2 → Category.Obj C binary C A B zero = A binary C A B (suc zero) = B binary C A B (suc (suc ())) ternary : ∀ {o ℓ e} → (C : Category o ℓ e) → (A X Y : Category.Obj C) → Fin 3 → Category.Obj C ternary C A X Y zero = A ternary C A X Y (suc zero) = X ternary C A X Y (suc (suc zero)) = Y ternary C A X Y (suc (suc (suc ()))) ------------------------------------------------------------------------------ -- Def from http://ncatlab.org/nlab/show/traced+monoidal+category -- -- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is -- said to be traced if it is equipped with a natural family of functions -- -- TrXA,B:C(A⊗X,B⊗X)→C(A,B) -- satisfying three axioms: -- -- Vanishing: Tr1A,B(f)=f (for all f:A→B) and -- TrX⊗YA,B=TrXA,B(TrYA⊗X,B⊗X(f)) (for all f:A⊗X⊗Y→B⊗X⊗Y) -- -- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X) -- -- Yanking: TrXX,X(bX,X)=idX record Traced {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} {B : Braided M} (S : Symmetric B) : Set (o ⊔ ℓ ⊔ e) where private module C = Category C open C using (Obj; id; _∘_) private module M = Monoidal M open M using (⊗; identityʳ; assoc) renaming (id to 𝟙) private module F = Functor ⊗ open F using () renaming (F₀ to ⊗ₒ; F₁ to ⊗ₘ) private module NIʳ = NaturalIsomorphism identityʳ open NaturalTransformation NIʳ.F⇒G renaming (η to ηidr⇒) open NaturalTransformation NIʳ.F⇐G renaming (η to ηidr⇐) private module NIassoc = NaturalIsomorphism assoc open NaturalTransformation NIassoc.F⇒G renaming (η to ηassoc⇒) open NaturalTransformation NIassoc.F⇐G renaming (η to ηassoc⇐) private module B = Braided B open B using (braid) private module NIbraid = NaturalIsomorphism braid open NaturalTransformation NIbraid.F⇒G renaming (η to ηbraid⇒) field trace : ∀ {X A B} → C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ] → C [ A , B ] vanish_id : ∀ {A B f} → C [ trace {𝟙} {A} {B} f ≡ (ηidr⇒ (unary C B) ∘ f ∘ ηidr⇐ (unary C A)) ] vanish_⊗ : ∀ {X Y A B f} → C [ trace {⊗ₒ (X , Y)} {A} {B} f ≡ trace {X} {A} {B} (trace {Y} {⊗ₒ (A , X)} {⊗ₒ (B , X)} ((ηassoc⇐ (ternary C B X Y)) ∘ f ∘ (ηassoc⇒ (ternary C A X Y)))) ] superpose : ∀ {X Y A B} {f : C [ ⊗ₒ (A , X) , ⊗ₒ (B , X) ]} → C [ trace {X} {⊗ₒ (Y , A)} {⊗ₒ (Y , B)} (ηassoc⇐ (ternary C Y B X) ∘ ⊗ₘ (id , f) ∘ ηassoc⇒ (ternary C Y A X)) ≡ ⊗ₘ (id , (trace {X} {A} {B} f)) ] yank : ∀ {X} → C [ trace {X} {X} {X} (ηbraid⇒ (binary C X X)) ≡ id ] ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5153583618, "avg_line_length": 32.5555555556, "ext": "agda", "hexsha": "1cba3acd85a88fcc3a852119c172041325616fe8", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/categories", "max_forks_repo_path": "Categories/Monoidal/Traced.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/categories", "max_issues_repo_path": "Categories/Monoidal/Traced.agda", "max_line_length": 91, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monoidal/Traced.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1315, "size": 3809 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.Setoid module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.EqReasoning {s₁ s₂} (S : Setoid s₁ s₂) where open import Relation.Binary.Reasoning.Setoid S public
{ "alphanum_fraction": 0.5139784946, "avg_line_length": 31, "ext": "agda", "hexsha": "34c77fc7f97893289fb803277c0db3d3655b12c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 84, "size": 465 }
open import LibraBFT.Impl.Consensus.MetricsSafetyRules open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude hiding (_++_) module LibraBFT.Impl.Consensus.Properties.MetricsSafetyRules where open Invariants module performInitializeSpec (safetyRules : SafetyRules) (storage : PersistentLivenessStorage) where record ContractOk (sr : SafetyRules) : Set where constructor mkContractOk field srPres : Preserves SafetyRulesInv safetyRules sr lvNothing : sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing open ContractOk Contract : EitherD-Post ErrLog SafetyRules Contract (Left _) = ⊤ Contract (Right sr) = ContractOk sr module _ (sri : SafetyRulesInv safetyRules) (lvNothing : safetyRules ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing) where -- TODO-2: Requires refinement postulate contract' : EitherD-weakestPre (performInitialize-ed-abs safetyRules storage) Contract contract : Contract (performInitialize-abs safetyRules storage) contract rewrite performInitialize-abs-≡ safetyRules storage = EitherD-contract (performInitialize-ed-abs safetyRules storage) Contract contract'
{ "alphanum_fraction": 0.7579661017, "avg_line_length": 36.875, "ext": "agda", "hexsha": "0634e9170bbde22552080142c2de5f54104a8f16", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Properties/MetricsSafetyRules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 368, "size": 1475 }
{-# OPTIONS --without-K --safe #-} module Fragment.Prelude where open import Fragment.Tactic.Fragment using (fragment) public open import Fragment.Equational.Theory.Bundles public open import Fragment.Equational.Structures public open import Fragment.Extensions.Semigroup using (SemigroupFrex) public open import Fragment.Extensions.CSemigroup using (CSemigroupFrex) public
{ "alphanum_fraction": 0.8227513228, "avg_line_length": 31.5, "ext": "agda", "hexsha": "da3b46b669e3ed12bc416cf0a276c88c57de183e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Prelude.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Prelude.agda", "max_line_length": 72, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 81, "size": 378 }
module Cats.Category.Arrow where open import Level open import Relation.Binary using (IsEquivalence ; _Preserves₂_⟶_⟶_) open import Cats.Category module _ {lo la l≈} (C : Category lo la l≈) where infixr 9 _∘_ infixr 4 _≈_ private module C = Category C module ≈ = C.≈ record Obj : Set (lo ⊔ la) where field Dom : C.Obj Cod : C.Obj arr : Dom C.⇒ Cod open Obj record _⇒_ (f g : Obj) : Set (la ⊔ l≈) where field dom : Dom f C.⇒ Dom g cod : Cod f C.⇒ Cod g commute : arr g C.∘ dom C.≈ cod C.∘ arr f open _⇒_ record _≈_ {A B} (F G : A ⇒ B) : Set l≈ where field dom : dom F C.≈ dom G cod : cod F C.≈ cod G id : ∀ {A} → A ⇒ A id {record { Dom = Dom ; Cod = Cod ; arr = arr }} = record { dom = C.id ; cod = C.id ; commute = ≈.trans C.id-r (≈.sym C.id-l) } _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) _∘_ {F} {G} {H} record { dom = F-dom ; cod = F-cod ; commute = F-commute } record { dom = G-dom ; cod = G-cod ; commute = G-commute } = record { dom = F-dom C.∘ G-dom ; cod = F-cod C.∘ G-cod ; commute = begin arr H C.∘ F-dom C.∘ G-dom ≈⟨ C.unassoc ⟩ (arr H C.∘ F-dom) C.∘ G-dom ≈⟨ C.∘-resp-l F-commute ⟩ (F-cod C.∘ arr G) C.∘ G-dom ≈⟨ C.assoc ⟩ F-cod C.∘ arr G C.∘ G-dom ≈⟨ C.∘-resp-r G-commute ⟩ F-cod C.∘ G-cod C.∘ arr F ≈⟨ C.unassoc ⟩ (F-cod C.∘ G-cod) C.∘ arr F ∎ } where open C.≈-Reasoning equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) equiv = record { refl = record { dom = ≈.refl ; cod = ≈.refl } ; sym = λ where record { dom = dom ; cod = cod } → record { dom = ≈.sym dom ; cod = ≈.sym cod } ; trans = λ where record { dom = dom₁ ; cod = cod₁ } record { dom = dom₂ ; cod = cod₂ } → record { dom = ≈.trans dom₁ dom₂ ; cod = ≈.trans cod₁ cod₂ } } ∘-resp : ∀ {A B C} → (_∘_ {A} {B} {C}) Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ∘-resp record { dom = dom-FG ; cod = cod-FG } record { dom = dom-HI ; cod = cod-HI } = record { dom = C.∘-resp dom-FG dom-HI ; cod = C.∘-resp cod-FG cod-HI } id-r : ∀ {A B} {F : A ⇒ B} → F ∘ id ≈ F id-r = record { dom = C.id-r ; cod = C.id-r } id-l : ∀ {A B} {F : A ⇒ B} → id ∘ F ≈ F id-l = record { dom = C.id-l ; cod = C.id-l } assoc : ∀ {A B C D} {F : C ⇒ D} {G : B ⇒ C} {H : A ⇒ B} → (F ∘ G) ∘ H ≈ F ∘ (G ∘ H) assoc = record { dom = C.assoc ; cod = C.assoc } _⃗ : Category (la ⊔ lo) (l≈ ⊔ la) l≈ _⃗ = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = ∘-resp ; id-r = id-r ; id-l = id-l ; assoc = assoc }
{ "alphanum_fraction": 0.4186429513, "avg_line_length": 21.6857142857, "ext": "agda", "hexsha": "15004ceb2b97f865ae1ca6a7ff7aaaa5ef887eed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Arrow.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Arrow.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Arrow.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1240, "size": 3036 }
module _ where open import Agda.Builtin.Nat module M (n : Nat) where postulate A : Set module M₁ (m : Nat) where open module Mm = M m -- bar : M.A (m + 1) -- bar = m -- Nat !=< M.A (m + 1) postulate n : Nat foo : M.A n foo = n -- Nat !=< M.A n
{ "alphanum_fraction": 0.5416666667, "avg_line_length": 12, "ext": "agda", "hexsha": "e5715b5c415a747a024ad4aaa7cddcc5832e2abc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2067b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2067b.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2067b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 264 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using () renaming (Category to Setoid-Category) open import Categories.Category.Monoidal module Categories.Category.Construction.EnrichedFunctors {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where -- The (enriched) functor category for a given pair of V-enriched categories open import Level open import Data.Product using (_,_; uncurry′) open import Categories.Enriched.Category M open import Categories.Enriched.Functor M renaming (id to idF) open import Categories.Enriched.NaturalTransformation M renaming (id to idNT) open import Categories.Functor.Bifunctor using (Bifunctor) open NaturalTransformation using (_[_]) EnrichedFunctors : ∀ {c d} (C : Category c) (D : Category d) → Setoid-Category (ℓ ⊔ e ⊔ c ⊔ d) (ℓ ⊔ e ⊔ c) (e ⊔ c) EnrichedFunctors C D = record { Obj = Functor C D ; _⇒_ = NaturalTransformation ; _≈_ = λ α β → ∀ {X} → α [ X ] ≈ β [ X ] ; id = idNT ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = λ α≈β → Equiv.sym α≈β ; trans = λ α≈β β≈γ → Equiv.trans α≈β β≈γ } ; ∘-resp-≈ = λ α₁≈β₁ α₂≈β₂ → ∘-resp-≈ α₁≈β₁ α₂≈β₂ } where open Underlying D -- Horizontal composition of natural transformations (aka the Godement -- product) induces a composition functor over functor categories. -- -- Note that all the equational reasoning happens in the underlying -- (ordinary) categories! ⊚ : ∀ {c d e} {C : Category c} {D : Category d} {E : Category e} → Bifunctor (EnrichedFunctors D E) (EnrichedFunctors C D) (EnrichedFunctors C E) ⊚ {_} {_} {_} {_} {D} {E} = record { F₀ = uncurry′ _∘F_ ; F₁ = uncurry′ _∘ₕ_ ; identity = λ{ {F , G} {X} → begin (F $₁ D.id) ∘ E.id ≈⟨ identityʳ ⟩ F $₁ D.id ≈⟨ identity F ⟩ E.id ∎ } ; homomorphism = λ{ {_ , F₂} {G₁ , G₂} {H₁ , _} {α₁ , α₂} {β₁ , β₂} {X} → begin H₁ $₁ (β₂ [ X ] D.∘ α₂ [ X ]) ∘ β₁ [ F₂ $₀ X ] ∘ α₁ [ F₂ $₀ X ] ≈⟨ homomorphism H₁ ⟩∘⟨refl ⟩ (H₁ $₁ β₂ [ X ] ∘ H₁ $₁ α₂ [ X ]) ∘ β₁ [ F₂ $₀ X ] ∘ α₁ [ F₂ $₀ X ] ≈⟨ ⟺ assoc ○ ∘-resp-≈ˡ assoc ⟩ (H₁ $₁ β₂ [ X ] ∘ (H₁ $₁ α₂ [ X ] ∘ β₁ [ F₂ $₀ X ])) ∘ α₁ [ F₂ $₀ X ] ≈˘⟨ (refl⟩∘⟨ commute β₁ (α₂ [ X ])) ⟩∘⟨refl ⟩ (H₁ $₁ β₂ [ X ] ∘ (β₁ [ G₂ $₀ X ] ∘ G₁ $₁ α₂ [ X ])) ∘ α₁ [ F₂ $₀ X ] ≈˘⟨ ⟺ assoc ○ ∘-resp-≈ˡ assoc ⟩ (H₁ $₁ β₂ [ X ] ∘ β₁ [ G₂ $₀ X ]) ∘ G₁ $₁ α₂ [ X ] ∘ α₁ [ F₂ $₀ X ] ∎ } ; F-resp-≈ = λ{ {_} {F , _} (eq₁ , eq₂) → ∘-resp-≈ (F-resp-≈ F eq₂) eq₁ } } where module D = Underlying D module E = Underlying E open E hiding (id) open HomReasoning open UnderlyingFunctor hiding (F₀; F₁) open UnderlyingNT -- Aliases used to shorten some proof expressions infixr 14 _$₀_ _$₁_ _$₀_ = UnderlyingFunctor.F₀ _$₁_ = UnderlyingFunctor.F₁
{ "alphanum_fraction": 0.577077748, "avg_line_length": 34.6976744186, "ext": "agda", "hexsha": "d06ccf83e04074488e927c138f78301a1668726a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Construction/EnrichedFunctors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Construction/EnrichedFunctors.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Construction/EnrichedFunctors.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1216, "size": 2984 }
module RandomAccessList.General.Core where open import Data.List open import Data.Nat open import Data.Vec open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) data General (A : Set) : ℕ → ℕ → ℕ → Set where [] : ∀ {a b n} → General A a b n ∺ : ∀ {v a a' b b' n} → Vec A v → a ⊓ v ≡ a' → b ⊔ b ≡ b' → General A a b n → General A a' b' n -------------------------------------------------------------------------------- -- Beispiele --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.405451448, "avg_line_length": 26.6818181818, "ext": "agda", "hexsha": "c0989b369f3bc69d68c5a66650f6552fd73d989a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/General/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/General/Core.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/General/Core.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 146, "size": 587 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Theorems of ∨ connective. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Disjunction ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Syntax n open import Data.PropFormula.Theorems.Classical n open import Data.PropFormula.Properties n open import Data.PropFormula.Theorems.Conjunction n using ( ∧-dmorgan₁ ) open import Data.PropFormula.Theorems.Implication n using ( vanDalen244e ) open import Function using ( _$_; _∘_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ) ------------------------------------------------------------------------------ -- Theorem. ∨-assoc₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∨ (ψ ∨ γ) → Γ ⊢ (φ ∨ ψ) ∨ γ -- Proof. ∨-assoc₁ {Γ}{φ}{ψ}{γ} = ⊃-elim (⊃-intro (∨-elim (∨-intro₁ γ (∨-intro₁ ψ (assume φ))) (⊃-elim (⊃-intro (∨-elim {Γ = Γ , ψ ∨ γ} (∨-intro₁ γ (∨-intro₂ φ (assume {Γ = Γ , ψ ∨ γ} ψ))) (∨-intro₂ (φ ∨ ψ) (assume {Γ = Γ , ψ ∨ γ} γ)))) (assume (ψ ∨ γ))))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-assoc₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∨ ψ) ∨ γ → Γ ⊢ φ ∨ (ψ ∨ γ) -- Proof. ∨-assoc₂ {Γ}{φ}{ψ}{γ} = ⊃-elim (⊃-intro (∨-elim (⊃-elim (⊃-intro (∨-elim {Γ = Γ , φ ∨ ψ} (∨-intro₁ (ψ ∨ γ) (assume {Γ = Γ , φ ∨ ψ} φ)) (∨-intro₂ φ (∨-intro₁ γ (assume {Γ = Γ , φ ∨ ψ} ψ))))) (assume (φ ∨ ψ))) (∨-intro₂ φ (∨-intro₂ ψ (assume γ))))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-assoc : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∨ (ψ ∨ γ)) ⇔ ((φ ∨ ψ) ∨ γ) -- Proof. ∨-assoc {φ = φ}{ψ}{γ} = ⇔-intro (∨-assoc₁ (assume (φ ∨ (ψ ∨ γ)))) (∨-assoc₂ (assume (φ ∨ ψ ∨ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-comm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∨ ψ → Γ ⊢ ψ ∨ φ -- Proof. ∨-comm {φ = φ}{ψ} = ⊃-elim $ ⊃-intro (∨-elim (∨-intro₂ ψ (assume φ)) (∨-intro₁ φ $ assume ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dist₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∨ (ψ ∧ γ) → Γ ⊢ (φ ∨ ψ) ∧ (φ ∨ γ) -- Proof. ∨-dist₁ {Γ}{φ}{ψ}{γ} = ⊃-elim (⊃-intro (∨-elim (∧-intro (∨-intro₁ ψ (assume φ)) (∨-intro₁ γ (assume φ))) (∧-intro (∨-intro₂ φ (∧-proj₁ (assume (ψ ∧ γ)))) (∨-intro₂ φ (∧-proj₂ (assume (ψ ∧ γ))))))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dist₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∨ ψ) ∧ (φ ∨ γ) → Γ ⊢ φ ∨ (ψ ∧ γ) -- Proof. ∨-dist₂ {Γ}{φ}{ψ}{γ} Γ⊢⟪φ∨ψ⟫∧⟪φ∨γ⟫ = ⊃-elim (⊃-intro (∨-elim (∨-intro₁ (ψ ∧ γ) (assume φ)) (⊃-elim (⊃-intro (∨-elim (∨-intro₁ (ψ ∧ γ) (assume {Γ = Γ , ψ} φ)) (∨-intro₂ φ (∧-intro (weaken γ (assume ψ)) (assume {Γ = Γ , ψ} γ))))) (∧-proj₂ (weaken ψ Γ⊢⟪φ∨ψ⟫∧⟪φ∨γ⟫))))) (∧-proj₁ Γ⊢⟪φ∨ψ⟫∧⟪φ∨γ⟫) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dist : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∨ (ψ ∧ γ)) ⇔ ((φ ∨ ψ) ∧ (φ ∨ γ)) -- Proof. ∨-dist {φ = φ}{ψ}{γ} = ⇔-intro (∨-dist₁ (assume (φ ∨ (ψ ∧ γ)))) (∨-dist₂ (assume (φ ∨ ψ ∧ (φ ∨ γ)))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-equiv : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∨ ψ → Γ ⊢ ¬ (¬ φ ∧ ¬ ψ) ∨-to-¬¬∧¬ = ∨-equiv -- Proof. ∨-equiv {Γ}{φ}{ψ} Γ⊢φ∨ψ = ¬-intro (⊃-elim (⊃-intro (∨-elim {Γ = Γ , ¬ φ ∧ ¬ ψ} (¬-elim (weaken φ (∧-proj₁ (assume (¬ φ ∧ ¬ ψ)))) (assume {Γ = Γ , ¬ φ ∧ ¬ ψ } φ)) (¬-elim (weaken ψ (∧-proj₂ (assume (¬ φ ∧ ¬ ψ)))) (assume {Γ = Γ , ¬ φ ∧ ¬ ψ} ψ)))) (weaken (¬ φ ∧ ¬ ψ) Γ⊢φ∨ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dmorgan₁ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ (φ ∨ ψ) → Γ ⊢ ¬ φ ∧ ¬ ψ ¬∨-to-¬∧¬ = ∨-dmorgan₁ -- Proof. ∨-dmorgan₁ {Γ}{φ}{ψ} = ⊃-elim $ ⊃-intro $ ∧-intro (¬-intro $ ¬-elim (weaken φ $ assume (¬ (φ ∨ ψ))) (∨-intro₁ ψ $ assume {Γ = Γ , ¬ (φ ∨ ψ)} φ)) (¬-intro $ ¬-elim (weaken ψ $ assume (¬ (φ ∨ ψ))) (∨-intro₂ φ $ assume {Γ = Γ , ¬ (φ ∨ ψ)} ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dmorgan₂ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ∧ ¬ ψ → Γ ⊢ ¬ (φ ∨ ψ) ¬∧¬-to-¬∨ = ∨-dmorgan₂ -- Proof. ∨-dmorgan₂ {φ = φ}{ψ} Γ⊢¬φ∧¬ψ = ¬-intro (∨-elim (¬-elim (weaken φ (∧-proj₁ Γ⊢¬φ∧¬ψ )) (assume φ)) (¬-elim (weaken ψ (∧-proj₂ Γ⊢¬φ∧¬ψ )) (assume ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. ∨-dmorgan : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ (φ ∨ ψ) ⇔ (¬ φ ∧ ¬ ψ) ¬∨-⇔-¬∧¬ = ∨-dmorgan -- Proof. ∨-dmorgan {φ = φ}{ψ} = ⇔-intro (∨-dmorgan₁ (assume (¬ (φ ∨ ψ)))) (∨-dmorgan₂ (assume (¬ φ ∧ ¬ ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. lem1 : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ ¬ φ ∨ ¬ ¬ ψ → Γ ⊢ φ ∨ ψ ¬¬∨¬¬-to-∨ = lem1 -- Proof. lem1 {φ = φ}{ψ} = ⊃-elim $ ⊃-intro $ ∨-elim (∨-intro₁ ψ $ ⊃-elim vanDalen244e $ assume $ ¬ ¬ φ) (∨-intro₂ φ $ ⊃-elim vanDalen244e $ assume $ ¬ ¬ ψ) -------------------------------------------------------------------------- ∎ -- Theorem. lem2 : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ∨ ψ) ∧ ¬ ψ → Γ ⊢ φ -- Proof. lem2 {φ = φ}{ψ} Γ⊢⟪φ∨ψ⟫∧¬ψ = ⊃-elim (⊃-intro $ (∨-elim (assume φ) (⊥-elim φ (¬-elim (weaken ψ (∧-proj₂ Γ⊢⟪φ∨ψ⟫∧¬ψ)) (assume ψ))))) (∧-proj₁ Γ⊢⟪φ∨ψ⟫∧¬ψ) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₀ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∨ ψ → Γ ⊢ ¬ φ ∨ γ → Γ ⊢ ψ ∨ γ -- Proof. resolve₀ {Γ}{φ}{ψ}{γ} Γ⊢φ∨ψ Γ⊢¬φ∨γ = lem1 $ ∧-dmorgan₁ $ ¬-intro $ ¬-elim (lem2 {Γ = Γ , ¬ ψ ∧ ¬ γ} $ ∧-intro (weaken (¬ ψ ∧ ¬ γ) Γ⊢¬φ∨γ) (∧-proj₂ $ assume $ ¬ ψ ∧ ¬ γ)) (lem2 $ ∧-intro (weaken (¬ ψ ∧ ¬ γ) Γ⊢φ∨ψ) (∧-proj₁ $ assume $ ¬ ψ ∧ ¬ γ)) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ ψ ∨ φ → Γ ⊢ ¬ φ ∨ γ → Γ ⊢ ψ ∨ γ -- Proof. resolve₁ = resolve₀ ∘ ∨-comm -------------------------------------------------------------------------- ∎ -- Theorem. resolve₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∨ ψ → Γ ⊢ γ ∨ ¬ φ → Γ ⊢ ψ ∨ γ -- Proof. resolve₂ Γ⊢φ∨ψ Γ⊢γ∨¬φ = resolve₀ Γ⊢φ∨ψ (∨-comm Γ⊢γ∨¬φ) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₃ : ∀ {Γ} {φ ψ γ} → Γ ⊢ ψ ∨ φ → Γ ⊢ γ ∨ ¬ φ → Γ ⊢ ψ ∨ γ -- Proof. resolve₃ Γ⊢ψ∨φ Γ⊢γ∨¬φ = resolve₀ (∨-comm Γ⊢ψ∨φ) (∨-comm Γ⊢γ∨¬φ) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₄ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ∨ ψ → Γ ⊢ φ → Γ ⊢ ψ -- Proof. resolve₄ {φ = φ}{ψ} Γ⊢¬φ∨ψ Γ⊢φ = ⊃-elim (⊃-intro $ ∨-elim (assume ψ) (assume ψ)) (resolve₀ (∨-intro₁ ψ Γ⊢φ) Γ⊢¬φ∨ψ) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₅ : ∀ {Γ} {φ ψ} → Γ ⊢ ψ ∨ ¬ φ → Γ ⊢ φ → Γ ⊢ ψ -- Proof. resolve₅ = resolve₄ ∘ ∨-comm -------------------------------------------------------------------------- ∎ -- Theorem. resolve₆ : ∀ {Γ} {φ ψ} → Γ ⊢ ψ ∨ φ → Γ ⊢ ¬ φ → Γ ⊢ ψ -- Proof. resolve₆ {φ = φ}{ψ} Γ⊢ψ∨φ Γ⊢¬φ = ⊃-elim (⊃-intro $ ∨-elim (assume ψ) (assume ψ)) (resolve₀ (∨-comm Γ⊢ψ∨φ) (∨-intro₁ ψ Γ⊢¬φ)) -------------------------------------------------------------------------- ∎ -- Theorem. resolve₇ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∨ ψ → Γ ⊢ ¬ φ → Γ ⊢ ψ -- Proof. resolve₇ Γ⊢φ∨ψ Γ⊢¬φ = resolve₆ (∨-comm Γ⊢φ∨ψ) Γ⊢¬φ -------------------------------------------------------------------------- ∎ -- Theorem. resolve₈ : ∀ {Γ} {φ} → Γ ⊢ φ → Γ ⊢ ¬ φ → Γ ⊢ ⊥ -- Proof. resolve₈ Γ⊢φ Γ⊢¬φ = ¬-elim Γ⊢¬φ Γ⊢φ -------------------------------------------------------------------------- ∎ -- Theorem. resolve₉ : ∀ {Γ} {φ} → Γ ⊢ ¬ φ → Γ ⊢ φ → Γ ⊢ ⊥ -- Proof. resolve₉ = ¬-elim -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢∨₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ⊃ γ → Γ ⊢ φ ∨ ψ → Γ ⊢ γ ∨ ψ -- Proof. subst⊢∨₁ {φ = φ}{ψ}{γ} Γ⊢φ⊃γ Γ⊢φ∨ψ = ⊃-elim (⊃-intro (∨-elim (∨-intro₁ ψ (⊃-elim (weaken φ Γ⊢φ⊃γ) (assume φ))) (∨-intro₂ γ (assume ψ)))) Γ⊢φ∨ψ -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢∨₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ ψ ⊃ γ → Γ ⊢ φ ∨ ψ → Γ ⊢ φ ∨ γ -- Proof. subst⊢∨₂ {φ = φ}{ψ}{γ} Γ⊢ψ⊃γ Γ⊢φ∨ψ = ⊃-elim (⊃-intro (∨-elim (∨-intro₁ γ (assume φ)) (∨-intro₂ φ (⊃-elim (weaken ψ Γ⊢ψ⊃γ) (assume ψ))))) Γ⊢φ∨ψ -------------------------------------------------------------------------- ∎ -- Theorem. ∨-to-¬⊃ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∨ ψ → Γ ⊢ ¬ φ ⊃ ψ -- Proof. ∨-to-¬⊃ {Γ}{φ}{ψ} Γ⊢φ∨ψ = ⊃-intro (⊃-elim (⊃-intro (∨-elim {Γ = Γ , ¬ φ} (⊥-elim ψ (¬-elim (weaken φ (assume (¬ φ))) (assume {Γ = Γ , ¬ φ} φ))) (assume {Γ = Γ , ¬ φ} ψ))) (weaken (¬ φ) Γ⊢φ∨ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. φ∨⊥-to-φ : ∀ {Γ} {φ} → Γ ⊢ φ ∨ ⊥ → Γ ⊢ φ -- Proof. φ∨⊥-to-φ {φ = φ} Γ⊢φ∨⊥ = ⊃-elim (⊃-intro (∨-elim (assume φ) (⊥-elim φ (assume ⊥)))) Γ⊢φ∨⊥ -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢∨₁≡ : ∀ {Γ} {φ ψ γ} → φ ≡ γ → Γ ⊢ φ ∨ ψ → Γ ⊢ γ ∨ ψ -- Proof. subst⊢∨₁≡ {φ = φ}{ψ}{γ} φ≡γ Γ⊢φ∨ψ = ⊃-elim (⊃-intro (∨-elim (∨-intro₁ ψ (subst φ≡γ (assume φ))) (∨-intro₂ γ (assume ψ)))) Γ⊢φ∨ψ -------------------------------------------------------------------------- ∎
{ "alphanum_fraction": 0.2833241909, "avg_line_length": 21.6594059406, "ext": "agda", "hexsha": "d8eecff313d154bedc39c7874c68f2e6f5d2f370", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Theorems/Disjunction.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Theorems/Disjunction.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Theorems/Disjunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 4470, "size": 10938 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.elims.Lemmas where fill-upper-right : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ b₁₀' : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀' == b₁₁ [ B ↓ p₁₋ ]) → Σ (b₁₀ == b₁₀') (λ r → SquareOver B sq q₀₋ q₋₀ q₋₁ (r ◃ q₁₋)) fill-upper-right ids idp idp idp idp = (idp , ids) fill-upper-right-unique : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ b₁₀' : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀' == b₁₁ [ B ↓ p₁₋ ]) (r : b₁₀ == b₁₀') → SquareOver B sq q₀₋ q₋₀ q₋₁ (r ◃ q₁₋) → r == fst (fill-upper-right sq q₀₋ q₋₀ q₋₁ q₁₋) fill-upper-right-unique {B = B} ids idp idp idp idp r sq' = ! (◃idp {B = B} r) ∙ ! (horiz-degen-path sq')
{ "alphanum_fraction": 0.4855729596, "avg_line_length": 40.4333333333, "ext": "agda", "hexsha": "0a63314c1795fd312e746e1fe9acb5b67bc748d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/elims/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/elims/Lemmas.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/elims/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 705, "size": 1213 }
open import Common.Equality open import Common.Prelude NaN : Float NaN = primFloatDiv 0.0 0.0 NaN≢-NaN : primFloatEquality NaN (primFloatNegate NaN) ≡ true NaN≢-NaN = refl NaN≢N-NaN : primFloatNumericalEquality NaN (primFloatNegate NaN) ≡ false NaN≢N-NaN = refl
{ "alphanum_fraction": 0.7593984962, "avg_line_length": 20.4615384615, "ext": "agda", "hexsha": "4bee6da64b19efe77d676fd1f5ce97be24c6bbd3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2194.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2194.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2194.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 93, "size": 266 }
{-# OPTIONS --safe #-} module Cubical.Categories.Category.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv private variable ℓ ℓ' : Level -- Categories with hom-sets record Category ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where -- no-eta-equality ; NOTE: need eta equality for `opop` field ob : Type ℓ Hom[_,_] : ob → ob → Type ℓ' id : ∀ {x} → Hom[ x , x ] _⋆_ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Hom[ x , z ] ⋆IdL : ∀ {x y} (f : Hom[ x , y ]) → id ⋆ f ≡ f ⋆IdR : ∀ {x y} (f : Hom[ x , y ]) → f ⋆ id ≡ f ⋆Assoc : ∀ {x y z w} (f : Hom[ x , y ]) (g : Hom[ y , z ]) (h : Hom[ z , w ]) → (f ⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h) isSetHom : ∀ {x y} → isSet Hom[ x , y ] -- composition: alternative to diagramatic order _∘_ : ∀ {x y z} (g : Hom[ y , z ]) (f : Hom[ x , y ]) → Hom[ x , z ] g ∘ f = f ⋆ g infixr 9 _⋆_ infixr 9 _∘_ open Category -- Helpful syntax/notation _[_,_] : (C : Category ℓ ℓ') → (x y : C .ob) → Type ℓ' _[_,_] = Hom[_,_] -- Needed to define this in order to be able to make the subsequence syntax declaration seq' : ∀ (C : Category ℓ ℓ') {x y z} (f : C [ x , y ]) (g : C [ y , z ]) → C [ x , z ] seq' = _⋆_ infixl 15 seq' syntax seq' C f g = f ⋆⟨ C ⟩ g -- composition comp' : ∀ (C : Category ℓ ℓ') {x y z} (g : C [ y , z ]) (f : C [ x , y ]) → C [ x , z ] comp' = _∘_ infixr 16 comp' syntax comp' C g f = g ∘⟨ C ⟩ f -- Isomorphisms and paths in categories record CatIso (C : Category ℓ ℓ') (x y : C .ob) : Type ℓ' where constructor catiso field mor : C [ x , y ] inv : C [ y , x ] sec : inv ⋆⟨ C ⟩ mor ≡ C .id ret : mor ⋆⟨ C ⟩ inv ≡ C .id pathToIso : {C : Category ℓ ℓ'} {x y : C .ob} (p : x ≡ y) → CatIso C x y pathToIso {C = C} p = J (λ z _ → CatIso _ _ z) (catiso idx idx (C .⋆IdL idx) (C .⋆IdL idx)) p where idx = C .id -- Univalent Categories record isUnivalent (C : Category ℓ ℓ') : Type (ℓ-max ℓ ℓ') where field univ : (x y : C .ob) → isEquiv (pathToIso {C = C} {x = x} {y = y}) -- package up the univalence equivalence univEquiv : ∀ (x y : C .ob) → (x ≡ y) ≃ (CatIso _ x y) univEquiv x y = pathToIso , univ x y -- The function extracting paths from category-theoretic isomorphisms. CatIsoToPath : {x y : C .ob} (p : CatIso _ x y) → x ≡ y CatIsoToPath {x = x} {y = y} p = equivFun (invEquiv (univEquiv x y)) p -- Opposite category _^op : Category ℓ ℓ' → Category ℓ ℓ' ob (C ^op) = ob C Hom[_,_] (C ^op) x y = C [ y , x ] id (C ^op) = id C _⋆_ (C ^op) f g = g ⋆⟨ C ⟩ f ⋆IdL (C ^op) = C .⋆IdR ⋆IdR (C ^op) = C .⋆IdL ⋆Assoc (C ^op) f g h = sym (C .⋆Assoc _ _ _) isSetHom (C ^op) = C .isSetHom
{ "alphanum_fraction": 0.5242577842, "avg_line_length": 30.3516483516, "ext": "agda", "hexsha": "36606c14dd617e0e112f90b292a288d122d14525", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Categories/Category/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Categories/Category/Base.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Categories/Category/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1196, "size": 2762 }
{-# OPTIONS --without-K #-} -- Two equivalent approached to define the advantage in -- a (bit) guessing game open import Data.Two open import Data.Nat.NP hiding (_==_) open import Data.Nat.Distance open import Data.Product.NP open import Function open import Explore.Core open import Explore.Properties open import Explore.Summable open import Explore.Sum open import Explore.Product open import Explore.Two open import Relation.Binary.PropositionalEquality.NP module Explore.GuessingGameFlipping (R : Set)(sum : Sum R)(sum-ind : SumInd sum)(⅁ : 𝟚 → R → 𝟚) where open Operators X Y : R → 𝟚 X = ⅁ 0₂ Y = ⅁ 1₂ R' = 𝟚 × R sum' : Sum R' sum' = 𝟚ˢ ×ˢ sum open FromSum sum' renaming (count to #'_) open FromSumInd sum-ind renaming (count to #_) G : R' → 𝟚 G (b , r) = b == ⅁ b r 1/2 : R' → 𝟚 1/2 = fst -- TODO use the library lemma : ∀ X → sum (const 1) ≡ #(not ∘ X) + # X lemma X = sum-ind P refl (λ {a}{b} → part1 {a}{b}) part2 where count = FromSum.count P = λ s → s (const 1) ≡ count s (not ∘ X) + count s X part1 : ∀ {s₀ s₁} → P s₀ → P s₁ → P (λ f → s₀ f + s₁ f) part1 {s₀} {s₁} Ps₀ Ps₁ rewrite Ps₀ | Ps₁ = +-interchange (count s₀ (not ∘ X)) (count s₀ X) (count s₁ (not ∘ X)) (count s₁ X) part2 : ∀ x → P (λ f → f x) part2 x with X x part2 x | 0₂ = refl part2 x | 1₂ = refl thm : dist (#' G) (#' 1/2) ≡ dist (# Y) (# X) thm = dist (#' G) (#' 1/2) ≡⟨ cong (dist (#' G)) helper ⟩ dist (#' G) (#(not ∘ X) + # X) ≡⟨ refl ⟩ -- #' definition dist (# (_==_ 0₂ ∘ X) + # (_==_ 1₂ ∘ Y)) (# (not ∘ X) + # X) ≡⟨ refl ⟩ -- #' definition dist (# (not ∘ X) + # Y) (# (not ∘ X) + # X) ≡⟨ dist-x+ (# (not ∘ X)) (# Y) (# X) ⟩ dist (# Y) (# X) ∎ where open ≡-Reasoning helper = #' 1/2 ≡⟨ refl ⟩ sum (const 0) + sum (const 1) ≡⟨ cong (λ p → p + sum (const 1)) sum-zero ⟩ sum (const 1) ≡⟨ lemma X ⟩ # (not ∘ X) + # X ∎
{ "alphanum_fraction": 0.5004770992, "avg_line_length": 27.2207792208, "ext": "agda", "hexsha": "55b8ad5fa85c3fb7ba5fb4f876202850558c946c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/GuessingGameFlipping.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/GuessingGameFlipping.agda", "max_line_length": 131, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/GuessingGameFlipping.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 814, "size": 2096 }
{-# OPTIONS --profile=interactive #-} open import Common.Prelude open import Common.Equality `1 = suc zero `2 = `1 + `1 `4 = `2 + `2 `8 = `4 + `4 `16 = `8 + `8 `32 = `16 + `16 `64 = `32 + `32 `128 = `64 + `64 `256 = `128 + `128 `512 = `256 + `256 `1024 = `512 + `512 `2048 = `1024 + `1024 `4096 = `2048 + `2048 `8192 = `4096 + `4096 `16384 = `8192 + `8192 `32768 = `16384 + `16384 `65536 = `32768 + `32768 prf8 : `8 ≡ 8 prf8 = refl prf65k : `65536 ≡ 65536 prf65k = refl
{ "alphanum_fraction": 0.4480968858, "avg_line_length": 20.6428571429, "ext": "agda", "hexsha": "4afb824677c03ca4b5525e8b98ee1baf1942d3a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Succeed/SharedDefinitions.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Succeed/SharedDefinitions.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/Succeed/SharedDefinitions.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 268, "size": 578 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Standard evaluation with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Denotation.Evaluation where open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Denotation.Value open import Data.Integer open import Structure.Bag.Nehemiah import Parametric.Denotation.Evaluation Const ⟦_⟧Base as Evaluation ⟦_⟧Const : Evaluation.Structure ⟦ intlit-const n ⟧Const = n ⟦ add-const ⟧Const = λ m n → m + n ⟦ minus-const ⟧Const = λ n → - n ⟦ empty-const ⟧Const = emptyBag ⟦ insert-const ⟧Const = λ n b → singletonBag n ++ b ⟦ union-const ⟧Const = λ b₁ b₂ → b₁ ++ b₂ ⟦ negate-const ⟧Const = λ b → negateBag b ⟦ flatmap-const ⟧Const = λ f b → flatmapBag f b ⟦ sum-const ⟧Const = λ b → sumBag b open Evaluation.Structure ⟦_⟧Const public
{ "alphanum_fraction": 0.6163793103, "avg_line_length": 30.9333333333, "ext": "agda", "hexsha": "44d8f97fc8ba6fff6cf88688407a960f539b5af5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Denotation/Evaluation.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Denotation/Evaluation.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Denotation/Evaluation.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 262, "size": 928 }