Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- A pointwise lifting of a relation to incorporate new extrema. ------------------------------------------------------------------------- {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Extrema open import Relation.Binary module Relation.Binary.Construct.Add.Extrema.Equality {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Function using (_∘′_) import Relation.Binary.Construct.Add.Infimum.Equality as AddInfimum import Relation.Binary.Construct.Add.Supremum.Equality as AddSupremum open import Relation.Nullary.Construct.Add.Extrema ------------------------------------------------------------------------- -- Definition private module Inf = AddInfimum _≈_ module Sup = AddSupremum (Inf._≈₋_) open Sup using () renaming (_≈⁺_ to _≈±_) public ------------------------------------------------------------------------- -- Useful pattern synonyms pattern ⊥±≈⊥± = Sup.[ Inf.⊥₋≈⊥₋ ] pattern [_] p = Sup.[ Inf.[ p ] ] pattern ⊤±≈⊤± = Sup.⊤⁺≈⊤⁺ ------------------------------------------------------------------------- -- Relational properties [≈]-injective : ∀ {k l} → [ k ] ≈± [ l ] → k ≈ l [≈]-injective = Inf.[≈]-injective ∘′ Sup.[≈]-injective ≈±-refl : Reflexive _≈_ → Reflexive _≈±_ ≈±-refl = Sup.≈⁺-refl ∘′ Inf.≈₋-refl ≈±-sym : Symmetric _≈_ → Symmetric _≈±_ ≈±-sym = Sup.≈⁺-sym ∘′ Inf.≈₋-sym ≈±-trans : Transitive _≈_ → Transitive _≈±_ ≈±-trans = Sup.≈⁺-trans ∘′ Inf.≈₋-trans ≈±-dec : Decidable _≈_ → Decidable _≈±_ ≈±-dec = Sup.≈⁺-dec ∘′ Inf.≈₋-dec ≈±-irrelevant : Irrelevant _≈_ → Irrelevant _≈±_ ≈±-irrelevant = Sup.≈⁺-irrelevant ∘′ Inf.≈₋-irrelevant ≈±-substitutive : ∀ {ℓ} → Substitutive _≈_ ℓ → Substitutive _≈±_ ℓ ≈±-substitutive = Sup.≈⁺-substitutive ∘′ Inf.≈₋-substitutive ------------------------------------------------------------------------- -- Structures ≈±-isEquivalence : IsEquivalence _≈_ → IsEquivalence _≈±_ ≈±-isEquivalence = Sup.≈⁺-isEquivalence ∘′ Inf.≈₋-isEquivalence ≈±-isDecEquivalence : IsDecEquivalence _≈_ → IsDecEquivalence _≈±_ ≈±-isDecEquivalence = Sup.≈⁺-isDecEquivalence ∘′ Inf.≈₋-isDecEquivalence
{ "alphanum_fraction": 0.5337807606, "avg_line_length": 31.9285714286, "ext": "agda", "hexsha": "690f02962f2311fbdd7001aae7b3166a65513db6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Equality.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Extrema/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 764, "size": 2235 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Operations where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Data.Unit.Base -- Unit open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` open import Function.Base using (_$_) open import Number.Postulates open import Number.Base open import Number.Coercions open import Number.Operations.Specification open import Number.Operations.Details open import Number.Operations.Details using (_⁻¹; -_) public open ℕⁿ open ℤᶻ open ℚᶠ open ℝʳ open ℂᶜ -- infixl 6 _-_ infixl 7 _·_ infixl 6 _+_ infixl 4 _#_ infixl 4 _<_ infixl 4 _≤_ -- homogeneous operations private _+ʰ_ : ∀{l p q} → Number (l , p) → Number (l , q) → Number (l , +-Positivityʰ l p q) _+ʰ_ {isNat } x y = (num x +ⁿ num y) ,, (x +ʰⁿ y) _+ʰ_ {isInt } x y = (num x +ᶻ num y) ,, (x +ʰᶻ y) _+ʰ_ {isRat } x y = (num x +ᶠ num y) ,, (x +ʰᶠ y) _+ʰ_ {isReal } x y = (num x +ʳ num y) ,, (x +ʰʳ y) _+ʰ_ {isComplex} x y = (num x +ᶜ num y) ,, (x +ʰᶜ y) _·ʰ_ : ∀{l p q} → Number (l , p) → Number (l , q) → Number (l , ·-Positivityʰ l p q) _·ʰ_ {isNat } x y = (num x ·ⁿ num y) ,, (x ·ʰⁿ y) _·ʰ_ {isInt } x y = (num x ·ᶻ num y) ,, (x ·ʰᶻ y) _·ʰ_ {isRat } x y = (num x ·ᶠ num y) ,, (x ·ʰᶠ y) _·ʰ_ {isReal } x y = (num x ·ʳ num y) ,, (x ·ʰʳ y) _·ʰ_ {isComplex} x y = (num x ·ᶜ num y) ,, (x ·ʰᶜ y) _<ʰ_ : ∀{L} → (x y : NumberKindInterpretation L) → Type (NumberKindProplevel L) _<ʰ_ {isNat} x y = x <ⁿ y _<ʰ_ {isInt} x y = x <ᶻ y _<ʰ_ {isRat} x y = x <ᶠ y _<ʰ_ {isReal} x y = x <ʳ y -- NOTE: this is some realization of a partial function, because `_<_` is defined on all numbers -- one might already anticipate that this breaks something in the future ... _<ʰ_ {isComplex} x y = {{p : ⊥}} → Lift ⊥ _≤ʰ_ : ∀{L} → (x y : NumberKindInterpretation L) → Type (NumberKindProplevel L) _≤ʰ_ {isNat} x y = x ≤ⁿ y _≤ʰ_ {isInt} x y = x ≤ᶻ y _≤ʰ_ {isRat} x y = x ≤ᶠ y _≤ʰ_ {isReal} x y = x ≤ʳ y -- NOTE: this is some realization of a partial function, because `_≤_` is defined on all numbers -- one might already anticipate that this breaks something in the future ... _≤ʰ_ {isComplex} x y = {{p : ⊥}} → Lift ⊥ _#ʰ_ : ∀{L} → (x y : NumberKindInterpretation L) → Type (NumberKindProplevel L) _#ʰ_ {isNat} x y = x #ⁿ y _#ʰ_ {isInt} x y = x #ᶻ y _#ʰ_ {isRat} x y = x #ᶠ y _#ʰ_ {isReal} x y = x #ʳ y _#ʰ_ {isComplex} x y = x #ᶜ y {- NOTE: this creates a weird Number.L in the Have/Goal display module _ {Lx Ly Px Py} (x : Number (Lx , Px)) (y : Number (Ly , Py)) where private L = maxₙₗ' Lx Ly _+_ : Number (L , +-Positivityʰ L (coerce-PositivityKind Lx L Px) (coerce-PositivityKind Ly L Py)) _+_ = let (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂' Lx Ly in coerce Lx L Lx≤L x +ʰ coerce Ly L Ly≤L y -} -- inhomogeneous operations _+_ : ∀{Lx Ly Px Py} → (x : Number (Lx , Px)) (y : Number (Ly , Py)) → let L = maxₙₗ Lx Ly in Number (L , +-Positivityʰ L (coerce-PositivityKind Lx L Px) (coerce-PositivityKind Ly L Py)) _+_ {Lx} {Ly} {Px} {Py} x y = let L = maxₙₗ Lx Ly (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂ Lx Ly in coerce Lx L Lx≤L x +ʰ coerce Ly L Ly≤L y _·_ : ∀{Lx Ly Px Py} → (x : Number (Lx , Px)) (y : Number (Ly , Py)) → let L = maxₙₗ Lx Ly in Number (L , ·-Positivityʰ L (coerce-PositivityKind Lx L Px) (coerce-PositivityKind Ly L Py)) _·_ {Lx} {Ly} {Px} {Py} x y = let L = maxₙₗ Lx Ly (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂ Lx Ly in coerce Lx L Lx≤L x ·ʰ coerce Ly L Ly≤L y _<_ : ∀{Lx Ly Px Py} → (x : Number (Lx , Px)) (y : Number (Ly , Py)) → Type (NumberKindProplevel (maxₙₗ Lx Ly)) _<_ {Lx} {Ly} {Px} {Py} x y = let L = maxₙₗ Lx Ly (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂ Lx Ly in num (coerce Lx L Lx≤L x) <ʰ num (coerce Ly L Ly≤L y) _≤_ : ∀{Lx Ly Px Py} → (x : Number (Lx , Px)) (y : Number (Ly , Py)) → Type (NumberKindProplevel (maxₙₗ Lx Ly)) _≤_ {Lx} {Ly} {Px} {Py} x y = let L = maxₙₗ Lx Ly (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂ Lx Ly in num (coerce Lx L Lx≤L x) ≤ʰ num (coerce Ly L Ly≤L y) _#_ : ∀{Lx Ly Px Py} → (x : Number (Lx , Px)) (y : Number (Ly , Py)) → Type (NumberKindProplevel (maxₙₗ Lx Ly)) _#_ {Lx} {Ly} {Px} {Py} x y = let L = maxₙₗ Lx Ly (Lx≤L , Ly≤L) = max-implies-≤ₙₗ₂ Lx Ly in num (coerce Lx L Lx≤L x) #ʰ num (coerce Ly L Ly≤L y)
{ "alphanum_fraction": 0.5876963351, "avg_line_length": 37.2682926829, "ext": "agda", "hexsha": "d9b1ffe51c1e03d00db9306bcac4676ee0944331", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Operations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Operations.agda", "max_line_length": 111, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Operations.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 2113, "size": 4584 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Extensions.CSemigroup.Monomial where open import Fragment.Equational.Theory.Bundles open import Fragment.Algebra.Signature open import Fragment.Algebra.Free Σ-magma hiding (_~_) open import Fragment.Algebra.Homomorphism Σ-magma open import Fragment.Algebra.Algebra Σ-magma using (Algebra; IsAlgebra; Interpretation; Congruence) open import Fragment.Equational.Model Θ-csemigroup open import Fragment.Setoid.Morphism using (_↝_) open import Fragment.Extensions.CSemigroup.Nat open import Data.Nat using (ℕ; zero; suc; _≟_) open import Data.Fin using (Fin; #_; zero; suc; toℕ; fromℕ) open import Data.Vec using (Vec; []; _∷_) open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_) open import Relation.Nullary using (yes ; no) open import Relation.Binary.PropositionalEquality as PE using (_≡_) open import Relation.Binary using (Setoid; IsEquivalence) import Relation.Binary.Reasoning.Setoid as Reasoning data Monomial : ℕ → Set where leaf : ∀ {n} → ℕ⁺ → Monomial (suc n) skip : ∀ {n} → Monomial n → Monomial (suc n) cons : ∀ {n} → ℕ⁺ → Monomial n → Monomial (suc n) lift : ∀ {n} → Monomial n → Monomial (suc n) lift (leaf x) = leaf x lift (skip x) = skip (lift x) lift (cons x xs) = cons x (lift xs) _⊗_ : ∀ {n} → Monomial n → Monomial n → Monomial n leaf x ⊗ leaf y = leaf (x + y) leaf x ⊗ skip y = cons x y leaf x ⊗ cons y ys = cons (x + y) ys skip x ⊗ leaf y = cons y x skip x ⊗ skip y = skip (x ⊗ y) skip x ⊗ cons y ys = cons y (x ⊗ ys) cons x xs ⊗ leaf y = cons (x + y) xs cons x xs ⊗ skip y = cons x (xs ⊗ y) cons x xs ⊗ cons y ys = cons (x + y) (xs ⊗ ys) ⊗-cong : ∀ {n} {x y z w : Monomial n} → x ≡ y → z ≡ w → x ⊗ z ≡ y ⊗ w ⊗-cong = PE.cong₂ _⊗_ ⊗-comm : ∀ {n} (x y : Monomial n) → x ⊗ y ≡ y ⊗ x ⊗-comm (leaf x) (leaf y) = PE.cong leaf (+-comm x y) ⊗-comm (leaf x) (skip y) = PE.refl ⊗-comm (leaf x) (cons y ys) = PE.cong₂ cons (+-comm x y) PE.refl ⊗-comm (skip x) (leaf y) = PE.refl ⊗-comm (skip x) (skip y) = PE.cong skip (⊗-comm x y) ⊗-comm (skip x) (cons y ys) = PE.cong (cons y) (⊗-comm x ys) ⊗-comm (cons x xs) (leaf y) = PE.cong₂ cons (+-comm x y) PE.refl ⊗-comm (cons x xs) (skip y) = PE.cong (cons x) (⊗-comm xs y) ⊗-comm (cons x xs) (cons y ys) = PE.cong₂ cons (+-comm x y) (⊗-comm xs ys) ⊗-assoc : ∀ {n} (x y z : Monomial n) → (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z) ⊗-assoc (leaf x) (leaf y) (leaf z) = PE.cong leaf (+-assoc x y z) ⊗-assoc (leaf x) (leaf y) (skip z) = PE.refl ⊗-assoc (leaf x) (leaf y) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (leaf x) (skip y) (leaf z) = PE.refl ⊗-assoc (leaf x) (skip y) (skip z) = PE.refl ⊗-assoc (leaf x) (skip y) (cons z zs) = PE.refl ⊗-assoc (leaf x) (cons y ys) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (leaf x) (cons y ys) (skip z) = PE.refl ⊗-assoc (leaf x) (cons y ys) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (skip x) (leaf y) (leaf z) = PE.refl ⊗-assoc (skip x) (leaf y) (skip z) = PE.refl ⊗-assoc (skip x) (leaf y) (cons z zs) = PE.refl ⊗-assoc (skip x) (skip y) (leaf z) = PE.refl ⊗-assoc (skip x) (skip y) (skip z) = PE.cong skip (⊗-assoc x y z) ⊗-assoc (skip x) (skip y) (cons z zs) = PE.cong (cons z) (⊗-assoc x y zs) ⊗-assoc (skip x) (cons y ys) (leaf z) = PE.refl ⊗-assoc (skip x) (cons y ys) (skip z) = PE.cong (cons y) (⊗-assoc x ys z) ⊗-assoc (skip x) (cons y ys) (cons z zs) = PE.cong (cons (y + z)) (⊗-assoc x ys zs) ⊗-assoc (cons x xs) (leaf y) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (cons x xs) (leaf y) (skip z) = PE.refl ⊗-assoc (cons x xs) (leaf y) (cons z zs) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (cons x xs) (skip y) (leaf z) = PE.refl ⊗-assoc (cons x xs) (skip y) (skip z) = PE.cong (cons x) (⊗-assoc xs y z) ⊗-assoc (cons x xs) (skip y) (cons z zs) = PE.cong (cons (x + z)) (⊗-assoc xs y zs) ⊗-assoc (cons x xs) (cons y ys) (leaf z) = PE.cong₂ cons (+-assoc x y z) PE.refl ⊗-assoc (cons x xs) (cons y ys) (skip z) = PE.cong (cons (x + y)) (⊗-assoc xs ys z) ⊗-assoc (cons x xs) (cons y ys) (cons z zs) = PE.cong₂ cons (+-assoc x y z) (⊗-assoc xs ys zs) module _ (n : ℕ) where private Monomial/≡ : Setoid _ _ Monomial/≡ = PE.setoid (Monomial n) Monomial⟦_⟧ : Interpretation Monomial/≡ Monomial⟦ • ⟧ (x ∷ y ∷ []) = x ⊗ y Monomial⟦_⟧-cong : Congruence Monomial/≡ Monomial⟦_⟧ Monomial⟦ • ⟧-cong (p ∷ q ∷ []) = PE.cong₂ _⊗_ p q Monomial/≡-isAlgebra : IsAlgebra (Monomial/≡) Monomial/≡-isAlgebra = record { ⟦_⟧ = Monomial⟦_⟧ ; ⟦⟧-cong = Monomial⟦_⟧-cong } Monomial/≡-algebra : Algebra Monomial/≡-algebra = record { ∥_∥/≈ = Monomial/≡ ; ∥_∥/≈-isAlgebra = Monomial/≡-isAlgebra } Monomial/≡-models : Models Monomial/≡-algebra Monomial/≡-models comm θ = ⊗-comm (θ (# 0)) (θ (# 1)) Monomial/≡-models assoc θ = ⊗-assoc (θ (# 0)) (θ (# 1)) (θ (# 2)) Monomial/≡-isModel : IsModel Monomial/≡ Monomial/≡-isModel = record { isAlgebra = Monomial/≡-isAlgebra ; models = Monomial/≡-models } J' : Model J' = record { ∥_∥/≈ = Monomial/≡ ; isModel = Monomial/≡-isModel } private module _ {n : ℕ} where open Setoid ∥ J n ∥/≈ using (_≈_) _·_ : ∥ J n ∥ → ∥ J n ∥ → ∥ J n ∥ x · y = term • (x ∷ y ∷ []) ·-cong : ∀ {x y z w} → x ≈ y → z ≈ w → x · z ≈ y · w ·-cong p q = cong • (p ∷ q ∷ []) ·-comm : ∀ x y → x · y ≈ y · x ·-comm x y = axiom comm (env {A = ∥ J n ∥ₐ} (x ∷ y ∷ [])) ·-assoc : ∀ x y z → (x · y) · z ≈ x · (y · z) ·-assoc x y z = axiom assoc (env {A = ∥ J n ∥ₐ} (x ∷ y ∷ z ∷ [])) module _ (n : ℕ) where open Setoid ∥ J (suc n) ∥/≈ using (_≈_) exp : ℕ⁺ → ∥ J (suc n) ∥ exp one = atomise n exp (suc k) = atomise n · exp k exp-hom : ∀ {j k} → exp j · exp k ≈ exp (j + k) exp-hom {one} {k} = refl exp-hom {suc j} {k} = begin (atomise n · exp j) · exp k ≈⟨ ·-assoc (atomise n) (exp j) (exp k) ⟩ atomise n · (exp j · exp k) ≈⟨ ·-cong refl exp-hom ⟩ atomise n · exp (j + k) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣ : ∀ {n} → ∥ J' n ∥ → ∥ J n ∥ ∣syn∣ {suc n} (leaf k) = exp n k ∣syn∣ {suc n} (skip x) = ∣ raise ∣ (∣syn∣ x) ∣syn∣ {suc n} (cons k xs) = exp n k · ∣ raise ∣ (∣syn∣ xs) ∣syn∣-cong : ∀ {n} → Congruent _≡_ ≈[ J n ] ∣syn∣ ∣syn∣-cong {n} p = Setoid.reflexive ∥ J n ∥/≈ (PE.cong ∣syn∣ p) ∣syn∣⃗ : ∀ {n} → ∥ J' n ∥/≈ ↝ ∥ J n ∥/≈ ∣syn∣⃗ {n} = record { ∣_∣ = ∣syn∣ {n} ; ∣_∣-cong = ∣syn∣-cong {n} } ∣syn∣-hom : ∀ {n} → Homomorphic ∥ J' n ∥ₐ ∥ J n ∥ₐ ∣syn∣ ∣syn∣-hom {suc n} • (leaf x ∷ leaf y ∷ []) = exp-hom n ∣syn∣-hom {suc n} • (leaf x ∷ skip y ∷ []) = refl ∣syn∣-hom {suc n} • (leaf x ∷ cons y ys ∷ []) = begin exp n x · (exp n y · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩ (exp n x · exp n y) · ∣ raise ∣ (∣syn∣ ys) ≈⟨ ·-cong (exp-hom n) refl ⟩ exp n (x + y) · ∣ raise ∣ (∣syn∣ ys) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣-hom {suc n} • (skip x ∷ leaf y ∷ []) = ·-comm _ (exp n y) ∣syn∣-hom {suc n} • (skip x ∷ skip y ∷ []) = begin ∣ raise ∣ (∣syn∣ x) · ∣ raise ∣ (∣syn∣ y) ≈⟨ ∣ raise ∣-hom • (∣syn∣ x ∷ ∣syn∣ y ∷ []) ⟩ ∣ raise ∣ (∣syn∣ x · ∣syn∣ y) ≈⟨ ∣ raise ∣-cong (∣syn∣-hom • (x ∷ y ∷ [])) ⟩ ∣ raise ∣ (∣syn∣ (x ⊗ y)) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣-hom {suc n} • (skip x ∷ cons y ys ∷ []) = begin ∣ raise ∣ (∣syn∣ x) · (exp n y · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ sym (·-assoc _ (exp n y) _) ⟩ (∣ raise ∣ (∣syn∣ x) · exp n y) · ∣ raise ∣ (∣syn∣ ys) ≈⟨ ·-cong (·-comm _ (exp n y)) refl ⟩ (exp n y · ∣ raise ∣ (∣syn∣ x)) · ∣ raise ∣ (∣syn∣ ys) ≈⟨ ·-assoc (exp n y) _ _ ⟩ exp n y · (∣ raise ∣ (∣syn∣ x) · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ ·-cong refl (∣ raise ∣-hom • (∣syn∣ x ∷ ∣syn∣ ys ∷ [])) ⟩ exp n y · ∣ raise ∣ (∣syn∣ x · ∣syn∣ ys) ≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (x ∷ ys ∷ []))) ⟩ exp n y · ∣ raise ∣ (∣syn∣ (x ⊗ ys)) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣-hom {suc n} • (cons x xs ∷ leaf y ∷ []) = begin (exp n x · ∣ raise ∣ (∣syn∣ xs)) · exp n y ≈⟨ ·-assoc (exp n x) _ (exp n y) ⟩ exp n x · (∣ raise ∣ (∣syn∣ xs) · exp n y) ≈⟨ ·-cong refl (·-comm _ (exp n y)) ⟩ exp n x · (exp n y · ∣ raise ∣ (∣syn∣ xs)) ≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩ (exp n x · exp n y) · ∣ raise ∣ (∣syn∣ xs) ≈⟨ ·-cong (exp-hom n) refl ⟩ exp n (x + y) · ∣ raise ∣ (∣syn∣ xs) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣-hom {suc n} • (cons x xs ∷ skip y ∷ []) = begin (exp n x · ∣ raise ∣ (∣syn∣ xs)) · ∣ raise ∣ (∣syn∣ y) ≈⟨ ·-assoc (exp n x) _ _ ⟩ exp n x · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ y)) ≈⟨ ·-cong refl (∣ raise ∣-hom • (∣syn∣ xs ∷ ∣syn∣ y ∷ [])) ⟩ exp n x · ∣ raise ∣ (∣syn∣ xs · ∣syn∣ y) ≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (xs ∷ y ∷ []))) ⟩ exp n x · ∣ raise ∣ (∣syn∣ (xs ⊗ y)) ∎ where open Reasoning ∥ J (suc n) ∥/≈ ∣syn∣-hom {suc n} • (cons x xs ∷ cons y ys ∷ []) = begin (exp n x · ∣ raise ∣ (∣syn∣ xs)) · (exp n y · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ ·-assoc (exp n x) _ _ ⟩ exp n x · (∣ raise ∣ (∣syn∣ xs) · (exp n y · ∣ raise ∣ (∣syn∣ ys))) ≈⟨ ·-cong refl (sym (·-assoc _ (exp n y) _)) ⟩ exp n x · ((∣ raise ∣ (∣syn∣ xs) · exp n y) · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ ·-cong refl (·-cong (·-comm (∣ raise ∣ (∣syn∣ xs)) _) refl) ⟩ exp n x · ((exp n y · ∣ raise ∣ (∣syn∣ xs)) · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ ·-cong refl (·-assoc (exp n y) _ _) ⟩ exp n x · (exp n y · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ ys))) ≈⟨ sym (·-assoc (exp n x) (exp n y) _) ⟩ (exp n x · exp n y) · (∣ raise ∣ (∣syn∣ xs) · ∣ raise ∣ (∣syn∣ ys)) ≈⟨ ·-cong (exp-hom n) (∣ raise ∣-hom • (∣syn∣ xs ∷ ∣syn∣ ys ∷ [])) ⟩ exp n (x + y) · ∣ raise ∣ (∣syn∣ xs · ∣syn∣ ys) ≈⟨ ·-cong refl (∣ raise ∣-cong (∣syn∣-hom • (xs ∷ ys ∷ []))) ⟩ exp n (x + y) · ∣ raise ∣ (∣syn∣ (xs ⊗ ys)) ∎ where open Reasoning ∥ J (suc n) ∥/≈ syn : ∀ {n} → ∥ J' n ∥ₐ ⟿ ∥ J n ∥ₐ syn = record { ∣_∣⃗ = ∣syn∣⃗ ; ∣_∣-hom = ∣syn∣-hom } private tab : ∀ {n} → Fin n → ∥ J' n ∥ tab {suc zero} zero = leaf one tab {suc (suc n)} zero = skip (tab {suc n} zero) tab {suc (suc n)} (suc k) = lift (tab {suc n} k) norm : ∀ {n} → ∥ J n ∥ₐ ⟿ ∥ J' n ∥ₐ norm {n} = interp (J' n) tab private step-exp : ∀ {n} → (k : ℕ⁺) → ≈[ J (suc (suc n)) ] (exp (suc n) k) (∣ step ∣ (exp n k)) step-exp one = refl step-exp (suc k) = ·-cong refl (step-exp k) step-lift : ∀ {n} → (x : ∥ J' n ∥) → ≈[ J (suc n) ] (∣ syn ∣ (lift x)) (∣ step ∣ (∣ syn ∣ x)) step-lift {suc n} (leaf x) = step-exp x step-lift {suc n} (skip x) = begin ∣ raise ∣ (∣ syn ∣ (lift x)) ≈⟨ ∣ raise ∣-cong (step-lift x) ⟩ ∣ raise ∣ (∣ step ∣ (∣ syn ∣ x)) ≈⟨ sym (step-raise {x = ∣ syn ∣ x}) ⟩ ∣ step ∣ (∣ raise ∣ (∣ syn ∣ x)) ∎ where open Reasoning ∥ J (suc (suc n)) ∥/≈ step-lift {suc n} (cons x xs) = begin exp (suc n) x · ∣ raise ∣ (∣ syn ∣ (lift xs)) ≈⟨ ·-cong refl (∣ raise ∣-cong (step-lift xs)) ⟩ exp (suc n) x · ∣ raise ∣ (∣ step ∣ (∣ syn ∣ xs)) ≈⟨ ·-cong (step-exp x) (sym (step-raise {x = ∣ syn ∣ xs})) ⟩ ∣ step ∣ (exp n x) · ∣ step ∣ (∣ raise ∣ (∣ syn ∣ xs)) ≈⟨ ∣ step ∣-hom • (exp n x ∷ (∣ raise ∣ (∣ syn ∣ xs)) ∷ []) ⟩ ∣ step ∣ (exp n x · ∣ raise ∣ (∣ syn ∣ xs)) ∎ where open Reasoning ∥ J (suc (suc n)) ∥/≈ syn-tab : ∀ {n} → (k : Fin n) → ≈[ J n ] (∣ syn ∣ (tab k)) (atom (dyn k)) syn-tab {suc zero} zero = refl syn-tab {suc (suc n)} zero = ∣ raise ∣-cong (syn-tab zero) syn-tab {suc (suc n)} (suc k) = begin ∣ syn ∣ (lift (tab {suc n} k)) ≈⟨ step-lift (tab {suc n} k) ⟩ ∣ step ∣ (∣ syn ∣ (tab {suc n} k)) ≈⟨ ∣ step ∣-cong (syn-tab k) ⟩ ∣ step ∣ (atom (dyn k)) ∎ where open Reasoning ∥ J (suc (suc n)) ∥/≈ syn⊙norm≗id : ∀ {n} → syn {n} ⊙ norm {n} ≗ id syn⊙norm≗id {n} {atom (dyn k)} = syn-tab k syn⊙norm≗id {n} {term • (x ∷ y ∷ [])} = begin ∣ syn ∣ (∣ norm ∣ x ⊗ ∣ norm ∣ y) ≈⟨ sym (∣ syn ∣-hom • (∣ norm ∣ x ∷ ∣ norm ∣ y ∷ [])) ⟩ ∣ syn ∣ (∣ norm ∣ x) · ∣ syn ∣ (∣ norm ∣ y) ≈⟨ ·-cong syn⊙norm≗id syn⊙norm≗id ⟩ x · y ∎ where open Reasoning ∥ J n ∥/≈ private tab-diag : ∀ n → tab {suc n} (fromℕ n) ≡ leaf one tab-diag zero = PE.refl tab-diag (suc n) = PE.cong lift (tab-diag n) norm-exp : ∀ {n} (k : ℕ⁺) → ∣ norm ∣ (exp n k) ≡ leaf k norm-exp {n} one = tab-diag n norm-exp {n} (suc k) = begin ∣ norm ∣ (atomise n · exp n k) ≈⟨ PE.sym (∣ norm ∣-hom • (atomise n ∷ exp n k ∷ [])) ⟩ ∣ norm ∣ (atomise n) ⊗ ∣ norm ∣ (exp n k) ≈⟨ ⊗-cong (tab-diag n) (norm-exp k) ⟩ leaf one ⊗ leaf k ∎ where open Reasoning ∥ J' (suc n) ∥/≈ tab-skip : ∀ {n} → (k : Fin n) → tab {suc n} (up k) ≡ skip (tab {n} k) tab-skip {suc zero} zero = PE.refl tab-skip {suc (suc n)} zero = PE.refl tab-skip {suc (suc n)} (suc k) = PE.cong lift (tab-skip k) norm-raise : ∀ {n x} → ∣ norm {suc n} ∣ (∣ raise ∣ x) ≡ skip (∣ norm {n} ∣ x) norm-raise {n} {atom (dyn k)} = tab-skip k norm-raise {n} {term • (x ∷ y ∷ [])} = begin ∣ norm ∣ (∣ raise ∣ (x · y)) ≡⟨ ∣ norm ∣-cong (sym (∣ raise ∣-hom • (x ∷ y ∷ []))) ⟩ ∣ norm ∣ (∣ raise ∣ x · ∣ raise ∣ y) ≡⟨ PE.sym (∣ norm ∣-hom • (∣ raise ∣ x ∷ ∣ raise ∣ y ∷ [])) ⟩ ∣ norm ∣ (∣ raise ∣ x) ⊗ ∣ norm ∣ (∣ raise ∣ y) ≡⟨ ⊗-cong (norm-raise {x = x}) (norm-raise {x = y}) ⟩ skip (∣ norm ∣ x ⊗ ∣ norm ∣ y) ≡⟨ PE.cong skip (∣ norm ∣-hom • (x ∷ y ∷ [])) ⟩ skip (∣ norm ∣ (x · y)) ∎ where open PE.≡-Reasoning norm⊙syn≗id : ∀ {n} → norm {n} ⊙ syn {n} ≗ id norm⊙syn≗id {suc n} {leaf x} = norm-exp x norm⊙syn≗id {suc n} {skip x} = begin ∣ norm ∣ (∣ raise ∣ (∣ syn ∣ x)) ≈⟨ norm-raise {x = ∣ syn ∣ x} ⟩ skip (∣ norm ∣ (∣ syn ∣ x)) ≈⟨ PE.cong skip norm⊙syn≗id ⟩ skip x ∎ where open Reasoning ∥ J' (suc n) ∥/≈ norm⊙syn≗id {suc n} {cons x xs} = begin ∣ norm ∣ (exp n x · ∣ raise ∣ (∣ syn ∣ xs)) ≈⟨ PE.sym (∣ norm ∣-hom • (exp n x ∷ ∣ raise ∣ (∣ syn ∣ xs) ∷ [])) ⟩ ∣ norm ∣ (exp n x) ⊗ ∣ norm ∣ (∣ raise ∣ (∣ syn ∣ xs)) ≈⟨ ⊗-cong (norm-exp x) (norm-raise {x = ∣ syn ∣ xs}) ⟩ leaf x ⊗ skip (∣ norm ∣ (∣ syn ∣ xs)) ≈⟨ ⊗-cong (PE.refl {x = leaf x}) (PE.cong skip (norm⊙syn≗id {x = xs})) ⟩ leaf x ⊗ skip xs ∎ where open Reasoning ∥ J' (suc n) ∥/≈ iso : ∀ {n} → ∥ J n ∥ₐ ≃ ∥ J' n ∥ₐ iso = record { _⃗ = norm ; _⃖ = syn ; invˡ = norm⊙syn≗id ; invʳ = syn⊙norm≗id }
{ "alphanum_fraction": 0.4715500327, "avg_line_length": 39.104859335, "ext": "agda", "hexsha": "64a3a4b47f13193529bcb0aad8526a5a891a1d17", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Extensions/CSemigroup/Monomial.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Extensions/CSemigroup/Monomial.agda", "max_line_length": 94, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Extensions/CSemigroup/Monomial.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 7185, "size": 15290 }
-- Properties of (pre)additive categories {-# OPTIONS --safe #-} module Cubical.Categories.Additive.Properties where open import Cubical.Algebra.AbGroup.Base open import Cubical.Algebra.Group.Properties open import Cubical.Categories.Additive.Base open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level -- Some useful lemmas about preadditive categories module PreaddCategoryTheory (C : PreaddCategory ℓ ℓ') where open PreaddCategory C -- Pure group theory lemmas +idl = λ {x y} → AbGroupStr.+IdL (homAbStr x y) +idr = λ {x y} → AbGroupStr.+IdR (homAbStr x y) +invl = λ {x y} → AbGroupStr.+InvL (homAbStr x y) +invr = λ {x y} → AbGroupStr.+InvR (homAbStr x y) +assoc = λ {x y} → AbGroupStr.+Assoc (homAbStr x y) +comm = λ {x y} → AbGroupStr.+Comm (homAbStr x y) -dist+ : {x y : ob} (f g : Hom[ x , y ]) → - (f + g) ≡ (- f) + (- g) -dist+ {x} {y} f g = let open GroupTheory (AbGroup→Group (Hom[ x , y ] , homAbStr x y)) in (invDistr _ _) ∙ (+comm _ _) +4assoc : {x y : ob} (a b c d : Hom[ x , y ]) → (a + b) + (c + d) ≡ a + (b + c) + d +4assoc a b c d = sym (+assoc _ _ _) ∙ cong (a +_) (+assoc _ _ _) +4comm : {x y : ob} (a b c d : Hom[ x , y ]) → (a + b) + (c + d) ≡ (a + c) + (b + d) +4comm a b c d = +4assoc _ _ _ _ ∙ cong (λ u → a + (u + d)) (+comm _ _) ∙ sym (+4assoc _ _ _ _) -- Interaction of categorical & group structure ⋆0hl : ∀ {w x y} (f : Hom[ x , y ]) → 0h ⋆ f ≡ 0h {w} ⋆0hl f = 0h ⋆ f ≡⟨ sym (+idr _) ⟩ 0h ⋆ f + 0h ≡⟨ cong (0h ⋆ f +_) (sym (+invr _)) ⟩ 0h ⋆ f + (0h ⋆ f - 0h ⋆ f) ≡⟨ +assoc _ _ _ ⟩ (0h ⋆ f + 0h ⋆ f) - 0h ⋆ f ≡⟨ cong (_- 0h ⋆ f) (sym (⋆distr+ _ _ _)) ⟩ (0h + 0h) ⋆ f - 0h ⋆ f ≡⟨ cong (λ a → a ⋆ f - 0h ⋆ f) (+idr _) ⟩ 0h ⋆ f - 0h ⋆ f ≡⟨ +invr _ ⟩ 0h ∎ ⋆0hr : ∀ {x y z} (f : Hom[ x , y ]) → f ⋆ 0h ≡ 0h {x} {z} ⋆0hr f = f ⋆ 0h ≡⟨ sym (+idr _) ⟩ f ⋆ 0h + 0h ≡⟨ cong (f ⋆ 0h +_) (sym (+invr _)) ⟩ f ⋆ 0h + (f ⋆ 0h - f ⋆ 0h) ≡⟨ +assoc _ _ _ ⟩ (f ⋆ 0h + f ⋆ 0h) - f ⋆ 0h ≡⟨ cong (_- f ⋆ 0h) (sym (⋆distl+ _ _ _)) ⟩ f ⋆ (0h + 0h) - f ⋆ 0h ≡⟨ cong (λ a → f ⋆ a - f ⋆ 0h) (+idr _) ⟩ f ⋆ 0h - f ⋆ 0h ≡⟨ +invr _ ⟩ 0h ∎ -distl⋆ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → (- f) ⋆ g ≡ - (f ⋆ g) -distl⋆ {x} {y} {z} f g = let open GroupTheory (AbGroup→Group (Hom[ x , z ] , homAbStr x z)) in invUniqueR ( f ⋆ g + (- f) ⋆ g ≡⟨ sym (⋆distr+ _ _ _) ⟩ (f - f) ⋆ g ≡⟨ cong (_⋆ g) (+invr _) ⟩ 0h ⋆ g ≡⟨ ⋆0hl _ ⟩ 0h ∎ ) -distr⋆ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → f ⋆ (- g) ≡ - (f ⋆ g) -distr⋆ {x} {y} {z} f g = let open GroupTheory (AbGroup→Group (Hom[ x , z ] , homAbStr x z)) in invUniqueR ( f ⋆ g + f ⋆ (- g) ≡⟨ sym (⋆distl+ _ _ _) ⟩ f ⋆ (g - g) ≡⟨ cong (f ⋆_) (+invr _) ⟩ f ⋆ 0h ≡⟨ ⋆0hr _ ⟩ 0h ∎ ) -- Matrix notation for morphisms (x₁ ⊕ ⋯ ⊕ x­­ₙ) → (y₁ ⊕ ⋯ ⊕ yₘ) -- in an additive category module MatrixNotation (A : AdditiveCategory ℓ ℓ') where open AdditiveCategory A open PreaddCategoryTheory preaddcat -- Polymorphic biproduct morphisms i₁ = λ {x y} → Biproduct.i₁ (biprod x y) i₂ = λ {x y} → Biproduct.i₂ (biprod x y) π₁ = λ {x y} → Biproduct.π₁ (biprod x y) π₂ = λ {x y} → Biproduct.π₂ (biprod x y) -- and axioms i₁⋆π₁ = λ {x y} → Biproduct.i₁⋆π₁ (biprod x y) i₁⋆π₂ = λ {x y} → Biproduct.i₁⋆π₂ (biprod x y) i₂⋆π₁ = λ {x y} → Biproduct.i₂⋆π₁ (biprod x y) i₂⋆π₂ = λ {x y} → Biproduct.i₂⋆π₂ (biprod x y) ∑π⋆i = λ {x y} → Biproduct.∑π⋆i (biprod x y) _∣_ : ∀ {x y y'} → Hom[ x , y ] → Hom[ x , y' ] → Hom[ x , y ⊕ y' ] f ∣ f' = (f ⋆ i₁) + (f' ⋆ i₂) infixr 5 _∣_ _`_ : ∀ {y y' z} → Hom[ y , z ] → Hom[ y' , z ] → Hom[ y ⊕ y' , z ] g ` g' = (π₁ ⋆ g) + (π₂ ⋆ g') infixr 6 _`_ -- Use the matrix notation like this: private module _ (x y : ob) (f : Hom[ x , y ]) where h : Hom[ x ⊕ x ⊕ x , y ⊕ y ⊕ y ⊕ y ] h = f ` - f ` 0h ∣ 0h ` 0h ` f ∣ f ` - f ` 0h ∣ 0h ` f ` f + f -- Exchange law exchange : ∀ {x x' y y'} (a : Hom[ x , y ]) (b : Hom[ x' , y ]) (c : Hom[ x , y' ]) (d : Hom[ x' , y' ]) → (a ` b ∣ c ` d) ≡ (a ∣ c) ` (b ∣ d) exchange a b c d = (π₁ ⋆ a + π₂ ⋆ b) ⋆ i₁ + (π₁ ⋆ c + π₂ ⋆ d) ⋆ i₂ ≡⟨ cong₂ _+_ (⋆distr+ _ _ _) (⋆distr+ _ _ _) ⟩ ((π₁ ⋆ a) ⋆ i₁ + (π₂ ⋆ b) ⋆ i₁) + ((π₁ ⋆ c) ⋆ i₂ + (π₂ ⋆ d) ⋆ i₂) ≡⟨ +4comm _ _ _ _ ⟩ ((π₁ ⋆ a) ⋆ i₁ + (π₁ ⋆ c) ⋆ i₂) + ((π₂ ⋆ b) ⋆ i₁ + (π₂ ⋆ d) ⋆ i₂) ≡⟨ cong₂ _+_ (cong₂ _+_ (⋆Assoc _ _ _) (⋆Assoc _ _ _)) (cong₂ _+_ (⋆Assoc _ _ _) (⋆Assoc _ _ _)) ⟩ (π₁ ⋆ (a ⋆ i₁) + π₁ ⋆ (c ⋆ i₂)) + (π₂ ⋆ (b ⋆ i₁) + π₂ ⋆ (d ⋆ i₂)) ≡⟨ sym (cong₂ _+_ (⋆distl+ _ _ _) (⋆distl+ _ _ _)) ⟩ π₁ ⋆ (a ⋆ i₁ + c ⋆ i₂) + π₂ ⋆ (b ⋆ i₁ + d ⋆ i₂) ∎ -- iₖ times a row module _ {x x' y : ob} (a : Hom[ x , y ]) (b : Hom[ x' , y ]) where i₁⋆row : i₁ ⋆ (a ` b) ≡ a i₁⋆row = i₁ ⋆ (π₁ ⋆ a + π₂ ⋆ b) ≡⟨ ⋆distl+ _ _ _ ⟩ i₁ ⋆ (π₁ ⋆ a) + i₁ ⋆ (π₂ ⋆ b) ≡⟨ cong₂ _+_ (sym (⋆Assoc _ _ _)) (sym (⋆Assoc _ _ _)) ⟩ (i₁ ⋆ π₁) ⋆ a + (i₁ ⋆ π₂) ⋆ b ≡⟨ cong₂ (λ u v → u ⋆ a + v ⋆ b) i₁⋆π₁ i₁⋆π₂ ⟩ id ⋆ a + 0h ⋆ b ≡⟨ cong₂ _+_ (⋆IdL _) (⋆0hl _) ⟩ a + 0h ≡⟨ +idr _ ⟩ a ∎ i₂⋆row : i₂ ⋆ (a ` b) ≡ b i₂⋆row = i₂ ⋆ (π₁ ⋆ a + π₂ ⋆ b) ≡⟨ ⋆distl+ _ _ _ ⟩ i₂ ⋆ (π₁ ⋆ a) + i₂ ⋆ (π₂ ⋆ b) ≡⟨ cong₂ _+_ (sym (⋆Assoc _ _ _)) (sym (⋆Assoc _ _ _)) ⟩ (i₂ ⋆ π₁) ⋆ a + (i₂ ⋆ π₂) ⋆ b ≡⟨ cong₂ (λ u v → u ⋆ a + v ⋆ b) i₂⋆π₁ i₂⋆π₂ ⟩ 0h ⋆ a + id ⋆ b ≡⟨ cong₂ _+_ (⋆0hl _) (⋆IdL _) ⟩ 0h + b ≡⟨ +idl _ ⟩ b ∎ -- A column times πₖ module _ {x y y' : ob} (a : Hom[ x , y ]) (b : Hom[ x , y' ]) where col⋆π₁ : (a ∣ b) ⋆ π₁ ≡ a col⋆π₁ = (a ⋆ i₁ + b ⋆ i₂) ⋆ π₁ ≡⟨ ⋆distr+ _ _ _ ⟩ (a ⋆ i₁) ⋆ π₁ + (b ⋆ i₂) ⋆ π₁ ≡⟨ cong₂ _+_ (⋆Assoc _ _ _) (⋆Assoc _ _ _) ⟩ a ⋆ (i₁ ⋆ π₁) + b ⋆ (i₂ ⋆ π₁) ≡⟨ cong₂ (λ u v → a ⋆ u + b ⋆ v) i₁⋆π₁ i₂⋆π₁ ⟩ a ⋆ id + b ⋆ 0h ≡⟨ cong₂ _+_ (⋆IdR _) (⋆0hr _) ⟩ a + 0h ≡⟨ +idr _ ⟩ a ∎ col⋆π₂ : (a ∣ b) ⋆ π₂ ≡ b col⋆π₂ = (a ⋆ i₁ + b ⋆ i₂) ⋆ π₂ ≡⟨ ⋆distr+ _ _ _ ⟩ (a ⋆ i₁) ⋆ π₂ + (b ⋆ i₂) ⋆ π₂ ≡⟨ cong₂ _+_ (⋆Assoc _ _ _) (⋆Assoc _ _ _) ⟩ a ⋆ (i₁ ⋆ π₂) + b ⋆ (i₂ ⋆ π₂) ≡⟨ cong₂ (λ u v → a ⋆ u + b ⋆ v) i₁⋆π₂ i₂⋆π₂ ⟩ a ⋆ 0h + b ⋆ id ≡⟨ cong₂ _+_ (⋆0hr _) (⋆IdR _) ⟩ 0h + b ≡⟨ +idl _ ⟩ b ∎ -- iₖ / πₖ times a diagonal matrix module _ {x x' y y'} (a : Hom[ x , y ]) (b : Hom[ x' , y' ]) where i₁⋆diag : i₁ ⋆ (a ` 0h ∣ 0h ` b) ≡ a ⋆ i₁ i₁⋆diag = i₁ ⋆ (a ` 0h ∣ 0h ` b) ≡⟨ cong (i₁ ⋆_) (exchange _ _ _ _) ⟩ i₁ ⋆ ((a ∣ 0h) ` (0h ∣ b)) ≡⟨ i₁⋆row _ _ ⟩ (a ∣ 0h) ≡⟨ cong (a ⋆ i₁ +_) (⋆0hl _) ⟩ a ⋆ i₁ + 0h ≡⟨ +idr _ ⟩ a ⋆ i₁ ∎ i₂⋆diag : i₂ ⋆ (a ` 0h ∣ 0h ` b) ≡ b ⋆ i₂ i₂⋆diag = i₂ ⋆ (a ` 0h ∣ 0h ` b) ≡⟨ cong (i₂ ⋆_) (exchange _ _ _ _) ⟩ i₂ ⋆ ((a ∣ 0h) ` (0h ∣ b)) ≡⟨ i₂⋆row _ _ ⟩ (0h ∣ b) ≡⟨ cong (_+ b ⋆ i₂) (⋆0hl _) ⟩ 0h + b ⋆ i₂ ≡⟨ +idl _ ⟩ b ⋆ i₂ ∎ diag⋆π₁ : (a ` 0h ∣ 0h ` b) ⋆ π₁ ≡ π₁ ⋆ a diag⋆π₁ = (a ` 0h ∣ 0h ` b) ⋆ π₁ ≡⟨ col⋆π₁ _ _ ⟩ a ` 0h ≡⟨ cong (π₁ ⋆ a +_) (⋆0hr _) ⟩ π₁ ⋆ a + 0h ≡⟨ +idr _ ⟩ π₁ ⋆ a ∎ diag⋆π₂ : (a ` 0h ∣ 0h ` b) ⋆ π₂ ≡ π₂ ⋆ b diag⋆π₂ = (a ` 0h ∣ 0h ` b) ⋆ π₂ ≡⟨ col⋆π₂ _ _ ⟩ 0h ` b ≡⟨ cong (_+ π₂ ⋆ b) (⋆0hr _) ⟩ 0h + π₂ ⋆ b ≡⟨ +idl _ ⟩ π₂ ⋆ b ∎ -- Matrix addition addRow : ∀ {x y z} (f f' : Hom[ x , z ]) (g g' : Hom[ y , z ]) → (f ` g) + (f' ` g') ≡ (f + f') ` (g + g') addRow f f' g g' = (π₁ ⋆ f + π₂ ⋆ g) + (π₁ ⋆ f' + π₂ ⋆ g') ≡⟨ +4comm _ _ _ _ ⟩ (π₁ ⋆ f + π₁ ⋆ f') + (π₂ ⋆ g + π₂ ⋆ g') ≡⟨ sym (cong₂ _+_ (⋆distl+ _ _ _) (⋆distl+ _ _ _)) ⟩ π₁ ⋆ (f + f') + π₂ ⋆ (g + g') ∎ addCol : ∀ {x y z} (f f' : Hom[ x , y ]) (g g' : Hom[ x , z ]) → (f ∣ g) + (f' ∣ g') ≡ (f + f') ∣ (g + g') addCol f f' g g' = (f ⋆ i₁ + g ⋆ i₂) + (f' ⋆ i₁ + g' ⋆ i₂) ≡⟨ +4comm _ _ _ _ ⟩ (f ⋆ i₁ + f' ⋆ i₁) + (g ⋆ i₂ + g' ⋆ i₂) ≡⟨ sym (cong₂ _+_ (⋆distr+ _ _ _) (⋆distr+ _ _ _)) ⟩ (f + f') ⋆ i₁ + (g + g') ⋆ i₂ ∎ private ⋆4assoc : ∀ {x y z w v} (a : Hom[ x , y ]) (b : Hom[ y , z ]) (c : Hom[ z , w ]) (d : Hom[ w , v ]) → (a ⋆ b) ⋆ (c ⋆ d) ≡ a ⋆ (b ⋆ c) ⋆ d ⋆4assoc a b c d = (⋆Assoc _ _ _) ∙ cong (a ⋆_) (sym (⋆Assoc _ _ _)) ⋆4assoc' : ∀ {x y z w v} (a : Hom[ x , y ]) (b : Hom[ y , z ]) (c : Hom[ z , w ]) (d : Hom[ w , v ]) → (a ⋆ b) ⋆ (c ⋆ d) ≡ (a ⋆ (b ⋆ c)) ⋆ d ⋆4assoc' a b c d = sym (⋆Assoc _ _ _) ∙ cong (_⋆ d) (⋆Assoc _ _ _) -- Matrix multiplication innerProd : ∀ {x y₁ y₂ z} (f₁ : Hom[ x , y₁ ]) (g₁ : Hom[ y₁ , z ]) (f₂ : Hom[ x , y₂ ]) (g₂ : Hom[ y₂ , z ]) → (f₁ ∣ f₂) ⋆ (g₁ ` g₂) ≡ (f₁ ⋆ g₁) + (f₂ ⋆ g₂) innerProd f₁ g₁ f₂ g₂ = (f₁ ⋆ i₁ + f₂ ⋆ i₂) ⋆ (π₁ ⋆ g₁ + π₂ ⋆ g₂) ≡⟨ ⋆distr+ _ _ _ ⟩ (f₁ ⋆ i₁) ⋆ (π₁ ⋆ g₁ + π₂ ⋆ g₂) + (f₂ ⋆ i₂) ⋆ (π₁ ⋆ g₁ + π₂ ⋆ g₂) ≡⟨ cong₂ _+_ (⋆distl+ _ _ _) (⋆distl+ _ _ _) ⟩ ((f₁ ⋆ i₁) ⋆ (π₁ ⋆ g₁) + (f₁ ⋆ i₁) ⋆ (π₂ ⋆ g₂)) + (f₂ ⋆ i₂) ⋆ (π₁ ⋆ g₁) + (f₂ ⋆ i₂) ⋆ (π₂ ⋆ g₂) ≡⟨ cong₂ _+_ (cong₂ _+_ eq₁₁ eq₁₂) (cong₂ _+_ eq₂₁ eq₂₂) ⟩ (f₁ ⋆ g₁ + 0h) + 0h + f₂ ⋆ g₂ ≡⟨ cong₂ _+_ (+idr _) (+idl _) ⟩ (f₁ ⋆ g₁) + (f₂ ⋆ g₂) ∎ where eq₁₁ = (f₁ ⋆ i₁) ⋆ (π₁ ⋆ g₁) ≡⟨ ⋆4assoc _ _ _ _ ⟩ f₁ ⋆ (i₁ ⋆ π₁) ⋆ g₁ ≡⟨ cong (λ u → _ ⋆ u ⋆ _) i₁⋆π₁ ⟩ f₁ ⋆ id ⋆ g₁ ≡⟨ cong (f₁ ⋆_) (⋆IdL _) ⟩ f₁ ⋆ g₁ ∎ eq₁₂ = (f₁ ⋆ i₁) ⋆ (π₂ ⋆ g₂) ≡⟨ ⋆4assoc _ _ _ _ ⟩ f₁ ⋆ (i₁ ⋆ π₂) ⋆ g₂ ≡⟨ cong (λ u → _ ⋆ u ⋆ _) i₁⋆π₂ ⟩ f₁ ⋆ 0h ⋆ g₂ ≡⟨ cong (f₁ ⋆_) (⋆0hl _) ⟩ f₁ ⋆ 0h ≡⟨ ⋆0hr _ ⟩ 0h ∎ eq₂₁ = (f₂ ⋆ i₂) ⋆ (π₁ ⋆ g₁) ≡⟨ ⋆4assoc _ _ _ _ ⟩ f₂ ⋆ (i₂ ⋆ π₁) ⋆ g₁ ≡⟨ cong (λ u → _ ⋆ u ⋆ _) i₂⋆π₁ ⟩ f₂ ⋆ 0h ⋆ g₁ ≡⟨ cong (f₂ ⋆_) (⋆0hl _) ⟩ f₂ ⋆ 0h ≡⟨ ⋆0hr _ ⟩ 0h ∎ eq₂₂ = (f₂ ⋆ i₂) ⋆ (π₂ ⋆ g₂) ≡⟨ ⋆4assoc _ _ _ _ ⟩ f₂ ⋆ (i₂ ⋆ π₂) ⋆ g₂ ≡⟨ cong (λ u → _ ⋆ u ⋆ _) i₂⋆π₂ ⟩ f₂ ⋆ id ⋆ g₂ ≡⟨ cong (f₂ ⋆_) (⋆IdL _) ⟩ f₂ ⋆ g₂ ∎ outerProd : ∀ {x₁ x₂ y z₁ z₂} (f₁ : Hom[ x₁ , y ]) (g₁ : Hom[ y , z₁ ]) (f₂ : Hom[ x₂ , y ]) (g₂ : Hom[ y , z₂ ]) → (f₁ ` f₂) ⋆ (g₁ ∣ g₂) ≡ f₁ ⋆ g₁ ` f₂ ⋆ g₁ ∣ f₁ ⋆ g₂ ` f₂ ⋆ g₂ outerProd {y = y} f₁ g₁ f₂ g₂ = (π₁ ⋆ f₁ + π₂ ⋆ f₂) ⋆ (g₁ ⋆ i₁ + g₂ ⋆ i₂) ≡⟨ ⋆distl+ _ _ _ ⟩ (π₁ ⋆ f₁ + π₂ ⋆ f₂) ⋆ (g₁ ⋆ i₁) + (π₁ ⋆ f₁ + π₂ ⋆ f₂) ⋆ (g₂ ⋆ i₂) ≡⟨ cong₂ _+_ (eq g₁ i₁) (eq g₂ i₂) ⟩ (π₁ ⋆ (f₁ ⋆ g₁) + π₂ ⋆ (f₂ ⋆ g₁)) ⋆ i₁ + (π₁ ⋆ (f₁ ⋆ g₂) + π₂ ⋆ (f₂ ⋆ g₂)) ⋆ i₂ ∎ where eq = λ {z w} (g : Hom[ y , z ]) (i : Hom[ z , w ]) → (π₁ ⋆ f₁ + π₂ ⋆ f₂) ⋆ (g ⋆ i) ≡⟨ ⋆distr+ _ _ _ ⟩ (π₁ ⋆ f₁) ⋆ (g ⋆ i) + (π₂ ⋆ f₂) ⋆ (g ⋆ i) ≡⟨ cong₂ _+_ (⋆4assoc' _ _ _ _) (⋆4assoc' _ _ _ _) ⟩ (π₁ ⋆ (f₁ ⋆ g)) ⋆ i + (π₂ ⋆ (f₂ ⋆ g)) ⋆ i ≡⟨ sym (⋆distr+ _ _ _) ⟩ (π₁ ⋆ (f₁ ⋆ g) + π₂ ⋆ (f₂ ⋆ g)) ⋆ i ∎
{ "alphanum_fraction": 0.3311576262, "avg_line_length": 38.5231213873, "ext": "agda", "hexsha": "fa21bfbd87878c048c7c4f486894165b53481058", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Additive/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Additive/Properties.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Additive/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6998, "size": 13329 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.AlmostRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ) open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup private variable ℓ : Level record IsAlmostRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isalmostring field +IsMonoid : IsMonoid 0r _+_ ·IsMonoid : IsMonoid 1r _·_ +Comm : (x y : R) → x + y ≡ y + x ·Comm : (x y : R) → x · y ≡ y · x ·DistR+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·DistL+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) -Comm· : (x y : R) → - (x · y) ≡ (- x) · y -Dist+ : (x y : R) → - (x + y) ≡ (- x) + (- y) 0LeftAnnihilates : (x : R) → 0r · x ≡ 0r 0RightAnnihilates : (x : R) → x · 0r ≡ 0r open IsMonoid +IsMonoid public renaming ( assoc to +Assoc ; identity to +Identity ; lid to +Lid ; rid to +Rid ; isSemigroup to +IsSemigroup) open IsMonoid ·IsMonoid public renaming ( assoc to ·Assoc ; identity to ·Identity ; lid to ·Lid ; rid to ·Rid ; isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this record AlmostRing : Type (ℓ-suc ℓ) where constructor almostring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier isAlmostRing : IsAlmostRing 0r 1r _+_ _·_ -_ infixl 9 _^_ infixl 8 _·_ infixl 7 -_ infixl 6 _+_ infixl 6 _-_ open IsAlmostRing isAlmostRing public _^_ : Carrier → ℕ → Carrier x ^ 0 = 1r x ^ ℕ.suc k = x · (x ^ k) _-_ : Carrier → Carrier → Carrier x - y = x + (- y) -- Extractor for the carrier type ⟨_⟩ : AlmostRing → Type ℓ ⟨_⟩ = AlmostRing.Carrier isSetAlmostRing : (R : AlmostRing {ℓ}) → isSet ⟨ R ⟩ isSetAlmostRing R = R .AlmostRing.isAlmostRing .IsAlmostRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set module Theory (R : AlmostRing {ℓ}) where open AlmostRing R 0IsSelfinverse : - 0r ≡ 0r 0IsSelfinverse = - 0r ≡⟨ cong -_ (sym (·Lid 0r)) ⟩ - (1r · 0r) ≡⟨ -Comm· 1r 0r ⟩ (- 1r) · 0r ≡⟨ 0RightAnnihilates (- 1r) ⟩ 0r ∎ ·CommRight : (x y z : ⟨ R ⟩) → x · y · z ≡ x · z · y ·CommRight x y z = x · y · z ≡⟨ sym (·Assoc _ _ _) ⟩ x · (y · z) ≡⟨ cong (λ u → x · u) (·Comm _ _) ⟩ x · (z · y) ≡⟨ ·Assoc _ _ _ ⟩ x · z · y ∎ +ShufflePairs : (a b c d : ⟨ R ⟩) → (a + b) + (c + d) ≡ (a + c) + (b + d) +ShufflePairs a b c d = (a + b) + (c + d) ≡⟨ +Assoc _ _ _ ⟩ ((a + b) + c) + d ≡⟨ cong (λ u → u + d) (sym (+Assoc _ _ _)) ⟩ (a + (b + c)) + d ≡⟨ cong (λ u → (a + u) + d) (+Comm _ _) ⟩ (a + (c + b)) + d ≡⟨ cong (λ u → u + d) (+Assoc _ _ _) ⟩ ((a + c) + b) + d ≡⟨ sym (+Assoc _ _ _) ⟩ (a + c) + (b + d) ∎
{ "alphanum_fraction": 0.4979932078, "avg_line_length": 28.9196428571, "ext": "agda", "hexsha": "de8a190be621d456523d609c3834d174057436fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/AlmostRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1291, "size": 3239 }
-- Andreas, 2017-10-11, issue #2769 -- Patch https://github.com/agda/agda/commit/7fc73607703e0373beaf65ba05fb1911b6d84a5e -- -- Re #2495: make mutual info safer by distinguishing Nothing and Just [] -- -- Nothing means: never computed. -- Just [] means: computed, but non-recursive. -- -- These two notions were conflated before. -- -- introduced this regression because the projection-likeness check failed. -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v 10 #-} -- {-# OPTIONS -v tc.signature:60 #-} -- {-# OPTIONS -v tc.mod.apply:80 #-} -- {-# OPTIONS -v tc.sig.param:90 #-} -- {-# OPTIONS -v tc.display:100 #-} module Issue2769 where module M (_X : Set₁) where record R (_Y : Set₂) : Set₁ where field A : Set record S : Set₁ where field r : R Set₁ module Rr = R r ok : (s : M.S Set) → M.R.A (M.S.r s) -- M.S.Rr.A s ok = {!!} -- goal displayed as (s : M.S Set) → M.R.A (M.S.r s) module MSet = M Set goal : (s : M.S Set) → M.R.A (M.S.r s) -- M.S.Rr.A s goal = {!!} -- WAS: goal displayed as (s : MSet.S) → MSet.S.Rr.A -- adding display form Issue2769.M.R.A --> Issue2769.MSet.S.Rr.A -- Display {dfFreeVars = 1, dfPats = [Apply ru(Def Issue2769.M.S.r [Apply ru(Var 0 [])])], dfRHS = DTerm (Def Issue2769.MSet.S.Rr.A [])} -- EXPECTED: -- Should display goal 1 as -- ?1 : (s : MSet.S) → M.R.A (MSet.S.r s)
{ "alphanum_fraction": 0.6094674556, "avg_line_length": 28.1666666667, "ext": "agda", "hexsha": "65045ba2ea9116bbc72a40be406f2ab01c39b65f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2769.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2769.agda", "max_line_length": 136, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2769.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 468, "size": 1352 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Span open import lib.types.Paths import lib.types.Generic1HIT as Generic1HIT module lib.types.Pushout {i j k} where module _ where private data #Pushout-aux (d : Span {i} {j} {k}) : Type (lmax (lmax i j) k) where #left : Span.A d → #Pushout-aux d #right : Span.B d → #Pushout-aux d data #Pushout (d : Span) : Type (lmax (lmax i j) k) where #pushout : #Pushout-aux d → (Unit → Unit) → #Pushout d Pushout : (d : Span) → Type _ Pushout d = #Pushout d left : {d : Span} → Span.A d → Pushout d left a = #pushout (#left a) _ right : {d : Span} → Span.B d → Pushout d right b = #pushout (#right b) _ postulate -- HIT glue : {d : Span} → (c : Span.C d) → left (Span.f d c) == right (Span.g d c) :> Pushout d module PushoutElim {d : Span} {l} {P : Pushout d → Type l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where f : Π (Pushout d) P f = f-aux phantom where f-aux : Phantom glue* → Π (Pushout d) P f-aux phantom (#pushout (#left y) _) = left* y f-aux phantom (#pushout (#right y) _) = right* y postulate -- HIT glue-β : (c : Span.C d) → apd f (glue c) == glue* c open PushoutElim public using () renaming (f to Pushout-elim) module PushoutRec {d : Span} {l} {D : Type l} (left* : Span.A d → D) (right* : Span.B d → D) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c)) where private module M = PushoutElim left* right* (λ c → ↓-cst-in (glue* c)) f : Pushout d → D f = M.f glue-β : (c : Span.C d) → ap f (glue c) == glue* c glue-β c = apd=cst-in {f = f} (M.glue-β c) module PushoutGeneric {d : Span {i} {j} {k}} where open Span d renaming (f to g; g to h) open Generic1HIT (Coprod A B) C (inl ∘ g) (inr ∘ h) public module _ where module To = PushoutRec (cc ∘ inl) (cc ∘ inr) pp to : Pushout d → T to = To.f from-cc : Coprod A B → Pushout d from-cc (inl a) = left a from-cc (inr b) = right b module From = Rec from-cc glue from : T → Pushout d from = From.f abstract to-from : (x : T) → to (from x) == x to-from = elim to-from-cc to-from-pp where to-from-cc : (x : Coprod A B) → to (from (cc x)) == cc x to-from-cc (inl a) = idp to-from-cc (inr b) = idp to-from-pp : (c : C) → idp == idp [ (λ z → to (from z) == z) ↓ pp c ] to-from-pp c = ↓-∘=idf-in to from (ap to (ap from (pp c)) =⟨ From.pp-β c |in-ctx ap to ⟩ ap to (glue c) =⟨ To.glue-β c ⟩ pp c ∎) from-to : (x : Pushout d) → from (to x) == x from-to = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in from to (ap from (ap to (glue c)) =⟨ To.glue-β c |in-ctx ap from ⟩ ap from (pp c) =⟨ From.pp-β c ⟩ glue c ∎)) generic-pushout : Pushout d ≃ T generic-pushout = equiv to from to-from from-to _⊔^[_]_/_ : (A : Type i) (C : Type k) (B : Type j) (fg : (C → A) × (C → B)) → Type (lmax (lmax i j) k) A ⊔^[ C ] B / (f , g) = Pushout (span A B C f g) ⊙Pushout : (d : ⊙Span {i} {j} {k}) → Ptd _ ⊙Pushout d = ⊙[ Pushout (⊙span-out d) , left (snd (⊙Span.X d)) ] module _ (d : ⊙Span {i} {j} {k}) where open ⊙Span d ⊙left : fst (X ⊙→ ⊙Pushout d) ⊙left = (left , idp) ⊙right : fst (Y ⊙→ ⊙Pushout d) ⊙right = (right , ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f)) ⊙glue : (⊙left ⊙∘ f) == (⊙right ⊙∘ g) ⊙glue = pair= (λ= glue) (↓-app=cst-in $ ap left (snd f) ∙ idp =⟨ ∙-unit-r _ ⟩ ap left (snd f) =⟨ lemma (glue (snd Z)) (ap right (snd g)) (ap left (snd f)) ⟩ glue (snd Z) ∙ ap right (snd g) ∙ ! (ap right (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f) =⟨ !-ap right (snd g) |in-ctx (λ w → glue (snd Z) ∙ ap right (snd g) ∙ w ∙ ! (glue (snd Z)) ∙' ap left (snd f)) ⟩ glue (snd Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f) =⟨ ! (app=-β glue (snd Z)) |in-ctx (λ w → w ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f)) ⟩ app= (λ= glue) (snd Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f) ∎) where lemma : ∀ {i} {A : Type i} {x y z w : A} (p : x == y) (q : y == z) (r : x == w) → r == p ∙ q ∙ ! q ∙ ! p ∙' r lemma idp idp idp = idp ⊙pushout-J : ∀ {l} (P : ⊙Span → Type l) → ({A : Type i} {B : Type j} (Z : Ptd k) (f : fst Z → A) (g : fst Z → B) → P (⊙span (A , f (snd Z)) (B , g (snd Z)) Z (f , idp) (g , idp))) → ((ps : ⊙Span) → P ps) ⊙pushout-J P t (⊙span (_ , ._) (_ , ._) Z (f , idp) (g , idp)) = t Z f g
{ "alphanum_fraction": 0.4921766686, "avg_line_length": 31.1666666667, "ext": "agda", "hexsha": "e3e12e699d548033e376bd54d69537a54ce3e88e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Pushout.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Pushout.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Pushout.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 2058, "size": 5049 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Sum.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Functions.Embedding open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Sum.Base open Iso private variable ℓa ℓb ℓc ℓd : Level A : Type ℓa B : Type ℓb C : Type ℓc D : Type ℓd -- Path space of sum type module ⊎Path {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where Cover : A ⊎ B → A ⊎ B → Type (ℓ-max ℓ ℓ') Cover (inl a) (inl a') = Lift {j = ℓ-max ℓ ℓ'} (a ≡ a') Cover (inl _) (inr _) = Lift ⊥ Cover (inr _) (inl _) = Lift ⊥ Cover (inr b) (inr b') = Lift {j = ℓ-max ℓ ℓ'} (b ≡ b') reflCode : (c : A ⊎ B) → Cover c c reflCode (inl a) = lift refl reflCode (inr b) = lift refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode (inl a) (inl a') (lift p) = cong inl p decode (inl a) (inr b') () decode (inr b) (inl a') () decode (inr b) (inr b') (lift q) = cong inr q decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl (inl a) = refl decodeRefl (inr b) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d encodeDecode (inl a) (inl _) (lift d) = J (λ a' p → encode (inl a) (inl a') (cong inl p) ≡ lift p) (encodeRefl (inl a)) d encodeDecode (inr a) (inr _) (lift d) = J (λ a' p → encode (inr a) (inr a') (cong inr p) ≡ lift p) (encodeRefl (inr a)) d Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c') Cover≃Path c c' = isoToEquiv (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) isOfHLevelCover : (n : HLevel) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p q (inl a) (inl a') = isOfHLevelLift (suc n) (p a a') isOfHLevelCover n p q (inl a) (inr b') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inl a') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inr b') = isOfHLevelLift (suc n) (q b b') isEmbedding-inl : isEmbedding (inl {A = A} {B = B}) isEmbedding-inl w z = snd (compEquiv LiftEquiv (⊎Path.Cover≃Path (inl w) (inl z))) isEmbedding-inr : isEmbedding (inr {A = A} {B = B}) isEmbedding-inr w z = snd (compEquiv LiftEquiv (⊎Path.Cover≃Path (inr w) (inr z))) isOfHLevel⊎ : (n : HLevel) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → isOfHLevel (suc (suc n)) (A ⊎ B) isOfHLevel⊎ n lA lB c c' = isOfHLevelRetract (suc n) (⊎Path.encode c c') (⊎Path.decode c c') (⊎Path.decodeEncode c c') (⊎Path.isOfHLevelCover n lA lB c c') isSet⊎ : isSet A → isSet B → isSet (A ⊎ B) isSet⊎ = isOfHLevel⊎ 0 isGroupoid⊎ : isGroupoid A → isGroupoid B → isGroupoid (A ⊎ B) isGroupoid⊎ = isOfHLevel⊎ 1 is2Groupoid⊎ : is2Groupoid A → is2Groupoid B → is2Groupoid (A ⊎ B) is2Groupoid⊎ = isOfHLevel⊎ 2 ⊎Iso : Iso A C → Iso B D → Iso (A ⊎ B) (C ⊎ D) fun (⊎Iso iac ibd) (inl x) = inl (iac .fun x) fun (⊎Iso iac ibd) (inr x) = inr (ibd .fun x) inv (⊎Iso iac ibd) (inl x) = inl (iac .inv x) inv (⊎Iso iac ibd) (inr x) = inr (ibd .inv x) rightInv (⊎Iso iac ibd) (inl x) = cong inl (iac .rightInv x) rightInv (⊎Iso iac ibd) (inr x) = cong inr (ibd .rightInv x) leftInv (⊎Iso iac ibd) (inl x) = cong inl (iac .leftInv x) leftInv (⊎Iso iac ibd) (inr x) = cong inr (ibd .leftInv x) ⊎-swap-Iso : Iso (A ⊎ B) (B ⊎ A) fun ⊎-swap-Iso (inl x) = inr x fun ⊎-swap-Iso (inr x) = inl x inv ⊎-swap-Iso (inl x) = inr x inv ⊎-swap-Iso (inr x) = inl x rightInv ⊎-swap-Iso (inl _) = refl rightInv ⊎-swap-Iso (inr _) = refl leftInv ⊎-swap-Iso (inl _) = refl leftInv ⊎-swap-Iso (inr _) = refl ⊎-swap-≃ : A ⊎ B ≃ B ⊎ A ⊎-swap-≃ = isoToEquiv ⊎-swap-Iso ⊎-assoc-Iso : Iso ((A ⊎ B) ⊎ C) (A ⊎ (B ⊎ C)) fun ⊎-assoc-Iso (inl (inl x)) = inl x fun ⊎-assoc-Iso (inl (inr x)) = inr (inl x) fun ⊎-assoc-Iso (inr x) = inr (inr x) inv ⊎-assoc-Iso (inl x) = inl (inl x) inv ⊎-assoc-Iso (inr (inl x)) = inl (inr x) inv ⊎-assoc-Iso (inr (inr x)) = inr x rightInv ⊎-assoc-Iso (inl _) = refl rightInv ⊎-assoc-Iso (inr (inl _)) = refl rightInv ⊎-assoc-Iso (inr (inr _)) = refl leftInv ⊎-assoc-Iso (inl (inl _)) = refl leftInv ⊎-assoc-Iso (inl (inr _)) = refl leftInv ⊎-assoc-Iso (inr _) = refl ⊎-assoc-≃ : (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc-≃ = isoToEquiv ⊎-assoc-Iso ⊎-⊥-Iso : Iso (A ⊎ ⊥) A fun ⊎-⊥-Iso (inl x) = x inv ⊎-⊥-Iso x = inl x rightInv ⊎-⊥-Iso x = refl leftInv ⊎-⊥-Iso (inl x) = refl ⊎-⊥-≃ : A ⊎ ⊥ ≃ A ⊎-⊥-≃ = isoToEquiv ⊎-⊥-Iso
{ "alphanum_fraction": 0.5921515033, "avg_line_length": 32.8333333333, "ext": "agda", "hexsha": "ee87b7d7dcf2a7152d7f1ae56d96b7166382e4a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Data/Sum/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Data/Sum/Properties.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Data/Sum/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2365, "size": 5122 }
module Data.Word32 where open import Data.Bool open import Data.Char {-# FOREIGN GHC import Data.Bits import Data.Word data Byte = Byte Bool Bool Bool Bool Bool Bool Bool Bool data Bytes = Bytes Byte Byte Byte Byte byteToWord8 :: Byte -> Word8 byteToWord8 (Byte b0 b1 b2 b3 b4 b5 b6 b7) = boolToBit b0 0 + boolToBit b1 1 + boolToBit b2 2 + boolToBit b3 3 + boolToBit b4 4 + boolToBit b5 5 + boolToBit b6 6 + boolToBit b7 7 where boolToBit b i = if b then bit i else 0 word8ToByte :: Word8 -> Byte word8ToByte w = Byte (testBit w 0) (testBit w 1) (testBit w 2) (testBit w 3) (testBit w 4) (testBit w 5) (testBit w 6) (testBit w 7) bytesToWord32 :: Bytes -> Word32 bytesToWord32 (Bytes b0 b1 b2 b3) = byteToWordShifted b0 0 + byteToWordShifted b1 1 + byteToWordShifted b2 2 + byteToWordShifted b3 3 where byteToWordShifted :: Byte -> Int -> Word32 byteToWordShifted b i = shift (fromIntegral $ byteToWord8 b) (i * 8) word32ToBytes :: Word32 -> Bytes word32ToBytes w = Bytes (getByte w 0) (getByte w 1) (getByte w 2) (getByte w 3) where getByte :: Word32 -> Int -> Byte getByte w i = word8ToByte $ fromIntegral (shift w (-i * 8)) bytesToChar :: Bytes -> Char bytesToChar = toEnum . fromIntegral . bytesToWord32 charToBytes :: Char -> Bytes charToBytes = word32ToBytes . fromIntegral . fromEnum #-} data Byte : Set where mkByte : Bool -> Bool -> Bool -> Bool -> Bool -> Bool -> Bool -> Bool -> Byte data Word32 : Set where mkWord32 : Byte -> Byte -> Byte -> Byte -> Word32 {-# COMPILE GHC Byte = data Byte (Byte) #-} {-# COMPILE GHC Word32 = data Bytes (Bytes) #-} postulate bytesToChar : Word32 -> Char charToBytes : Char -> Word32 {-# COMPILE GHC bytesToChar = bytesToChar #-} {-# COMPILE GHC charToBytes = charToBytes #-} word32ToChar : Word32 -> Char word32ToChar = bytesToChar charToWord32 : Char -> Word32 charToWord32 = charToBytes
{ "alphanum_fraction": 0.66598778, "avg_line_length": 28.4637681159, "ext": "agda", "hexsha": "4212ddbe2aff7659c933a97cc7f91f6f47d53988", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Word32.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Word32.agda", "max_line_length": 101, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Word32.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 666, "size": 1964 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers defined in terms of Data.Star ------------------------------------------------------------------------ module Data.Star.Nat where open import Data.Star open import Data.Unit open import Function open import Relation.Binary open import Relation.Binary.Simple -- Natural numbers. ℕ : Set ℕ = Star Always tt tt -- Zero and successor. zero : ℕ zero = ε suc : ℕ → ℕ suc = _◅_ _ -- The length of a star-list. length : ∀ {i t} {I : Set i} {T : Rel I t} {i j} → Star T i j → ℕ length = gmap (const _) (const _) -- Arithmetic. infixl 7 _*_ infixl 6 _+_ _∸_ _+_ : ℕ → ℕ → ℕ _+_ = _◅◅_ _*_ : ℕ → ℕ → ℕ _*_ m = const m ⋆ _∸_ : ℕ → ℕ → ℕ m ∸ ε = m ε ∸ (_ ◅ n) = zero (_ ◅ m) ∸ (_ ◅ n) = m ∸ n -- Some constants. 0# = zero 1# = suc 0# 2# = suc 1# 3# = suc 2# 4# = suc 3# 5# = suc 4#
{ "alphanum_fraction": 0.4832793959, "avg_line_length": 16.2631578947, "ext": "agda", "hexsha": "a54a46517f45ced9a77944675dc4b650a226128b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/Nat.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 306, "size": 927 }
module Issue1496 where open import Common.Unit open import Common.String open import Common.Char open import Common.List open import Common.IO -- Agda infers that the "a" level argument to return has to be -- Agda.Primitive.lzero. main : IO Unit main = return unit
{ "alphanum_fraction": 0.7790262172, "avg_line_length": 20.5384615385, "ext": "agda", "hexsha": "7e3abd78698bb54f415600ddeb5de3bb0a84f803", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue1496.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue1496.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue1496.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 267 }
-- -- In this module we conclude our proof: we have shown that t, derive-dterm t -- and produce related values (in the sense of the fundamental property, -- rfundamental3), and for related values v1, dv and v2 we have v1 ⊕ dv ≡ -- v2 (because ⊕ agrees with validity, rrelV3→⊕). -- -- We now put these facts together via derive-correct-si and derive-correct. -- This is immediate, even though I spend so much code on it: -- Indeed, all theorems are immediate corollaries of what we established (as -- explained above); only the statements are longer, especially because I bother -- expanding them. module Thesis.SIRelBigStep.DeriveCorrect where open import Data.Product open import Relation.Binary.PropositionalEquality open import Thesis.SIRelBigStep.IlcSILR open import Thesis.SIRelBigStep.FundamentalProperty -- Theorem statement. This theorem still mentions step-indexes explicitly. derive-correct-si-type = ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 → (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t (derive-dterm t) t ρ1 dρ ρ2 k -- A verified expansion of the theorem statement. derive-correct-si-type-means : derive-correct-si-type ≡ ∀ {τ Γ k} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3 Γ ρ1 dρ ρ2 k) → (v1 v2 : Val τ) → ∀ j (j<k : j < k) → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct-si-type-means = refl derive-correct-si : derive-correct-si-type derive-correct-si t ρ1 dρ ρ2 ρρ = rrelT3→⊕ t (derive-dterm t) t ρ1 dρ ρ2 (rfundamental3 _ t ρ1 dρ ρ2 ρρ) -- Infinitely related environments: rrelρ3-inf : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set rrelρ3-inf Γ ρ1 dρ ρ2 = ∀ k → rrelρ3 Γ ρ1 dρ ρ2 k -- A theorem statement for infinitely-related environments. On paper, if we informally -- omit the arbitrary derivation step-index as usual, we get a statement without -- step-indexes. derive-correct : ∀ {τ Γ} (t : Term Γ τ) ρ1 dρ ρ2 (ρρ : rrelρ3-inf Γ ρ1 dρ ρ2) → (v1 v2 : Val τ) → ∀ j → (ρ1⊢t1↓[j]v1 : ρ1 ⊢ t ↓[ i' j ] v1) → (ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t ↓[ no ] v2) → Σ[ dv ∈ DVal τ ] ρ1 D dρ ⊢ derive-dterm t ↓ dv × v1 ⊕ dv ≡ v2 derive-correct t ρ1 dρ ρ2 ρρ v1 v2 j = derive-correct-si t ρ1 dρ ρ2 (ρρ (suc j)) v1 v2 j ≤-refl open import Data.Unit nilρ : ∀ {Γ n} (ρ : ⟦ Γ ⟧Context) → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ dρ ρ n nilV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n nilV (closure t ρ) = let dρ , ρρ = nilρ ρ in dclosure (derive-dterm t) ρ dρ , rfundamental3svv _ (abs t) ρ dρ ρ ρρ nilV (natV n₁) = dnatV zero , refl nilV (pairV a b) = let 0a , aa = nilV a; 0b , bb = nilV b in dpairV 0a 0b , aa , bb nilρ ∅ = ∅ , tt nilρ (v • ρ) = let dv , vv = nilV v ; dρ , ρρ = nilρ ρ in dv • dρ , vv , ρρ -- -- Try to prove to define validity-preserving change composition. -- -- If we don't store proofs that environment changes in closures are valid, we -- -- can't finish the proof for the closure case using the Fundamental property. -- -- But it seems that's not the approach we need to use: we might need -- -- environment validity elsewhere. -- -- Moreover, the proof is annoying to do unless we build a datatype to invert -- -- validity proofs (as suggested by Ezyang in -- -- http://blog.ezyang.com/2013/09/induction-and-logical-relations/). -- ocomposeρ : ∀ {Γ} n ρ1 dρ1 ρ2 dρ2 ρ3 → rrelρ3 Γ ρ1 dρ1 ρ2 n → rrelρ3 Γ ρ2 dρ2 ρ3 n → Σ[ dρ ∈ ChΔ Γ ] rrelρ3 Γ ρ1 dρ ρ3 n -- ocomposev : ∀ {τ} n v1 dv1 v2 dv2 v3 → rrelV3 τ v1 dv1 v2 n → rrelV3 τ v2 dv2 v3 n → Σ[ dv ∈ DVal τ ] rrelV3 τ v1 dv v3 n -- ocomposev n v1 dv1 v2 (bang v3) .v3 vv1 refl = bang v3 , refl -- ocomposev n v1 (bang x) v2 (dclosure dt ρ dρ) v3 vv1 vv2 = {!!} -- ocomposev n (closure t ρ) (dclosure .(derive-dterm t) .ρ dρ1) (closure .t .(ρ ⊕ρ dρ1)) (dclosure .(derive-dterm t) .(ρ ⊕ρ dρ1) dρ2) (closure .t .((ρ ⊕ρ dρ1) ⊕ρ dρ2)) ((refl , refl) , refl , refl , refl , refl , vv1) ((refl , refl) , refl , refl , refl , refl , vv2) = -- let dρ , ρρ = ocomposeρ n ρ dρ1 (ρ ⊕ρ dρ1) dρ2 ((ρ ⊕ρ dρ1) ⊕ρ dρ2) {!!} {!!} -- in dclosure (derive-dterm t) ρ dρ , (refl , refl) , refl , {!!} , refl , refl , -- λ { k (s≤s k≤n) v1 dv v2 vv → -- let nilv2 , nilv2v = nilV v2 -- -- vv1 k ? v1 dv v2 vv -- -- vv2 k ? v2 nilv2 v2 nilv2v -- in {!!} -- } -- -- rfundamental3 k t (v1 • ρ) (dv • dρ) (v2 • ((ρ ⊕ρ dρ1) ⊕ρ dρ2)) (vv , rrelρ3-mono k n (≤-step k<n) _ ρ dρ ((ρ ⊕ρ dρ1) ⊕ρ dρ2) ρρ)} -- -- p1 , p2 , p3 , p4 , p5 -- ocomposev n v1 dv1 v2 (dnatV n₁) v3 vv1 vv2 = {!!} -- ocomposev n v1 dv1 v2 (dpairV dv2 dv3) v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (bang v2) .v2 dv2 v3 refl vv2 = bang (v2 ⊕ dv2) , rrelV3→⊕ v2 dv2 v3 vv2 -- -- ocomposev n v1 (dclosure dt ρ dρ) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dnatV n₁) v2 dv2 v3 vv1 vv2 = {!!} -- -- ocomposev n v1 (dpairV dv1 dv2) v2 dv3 v3 vv1 vv2 = {!!} -- -- ocomposeV : ∀ {τ n} (v : Val τ) → Σ[ dv ∈ DVal τ ] rrelV3 τ v dv v n -- ocomposeρ {∅} n ∅ dρ1 ρ2 dρ2 ∅ ρρ1 ρρ2 = ∅ , tt -- ocomposeρ {τ • Γ} n (v1 • ρ1) (dv1 • dρ1) (v2 • ρ2) (dv2 • dρ2) (v3 • ρ3) (vv1 , ρρ1) (vv2 , ρρ2) = -- let dv , vv = ocomposev n v1 dv1 v2 dv2 v3 vv1 vv2 -- dρ , ρρ = ocomposeρ n ρ1 dρ1 ρ2 dρ2 ρ3 ρρ1 ρρ2 -- in dv • dρ , vv , ρρ -- -- But we sort of know how to store environments validity proofs in closures, you just need to use well-founded inductions, even if you're using types. Sad, yes, that's insanely tedious. Let's leave that to Coq. -- -- What is also interesting: if that were fixed, could we prove correct -- -- composition for change *terms* and rrelT3? And for *open expressions*? The -- -- last is the main problem Ahmed run into. -- 1: the proof of transitivity of rrelT by Ahmed is for the case where the second rrelT holds at arbitrary step counts :-) -- 2: that proof doesn't go through for us. If de1 : e1 -> e2 and de2 : e2 -> -- e3, we must show that if e1 and e3 evaluate something happens, but to use our -- hypothesis we need that e2 also terminates, which in our case does not -- follow. For Ahmed 2006, instead, e1 terminates and e1 ≤ e2 implies that e2 -- terminates. -- -- Indeed, it seems that we can have a change from e1 to looping e2 and a change -- from looping e2 to e3, and I don't expect the composition of such changes to -- satisfy anything. -- -- Indeed, "Imperative self-adjusting computation" does not mention any -- transitivity result (even in the technical report).
{ "alphanum_fraction": 0.637264005, "avg_line_length": 49.7076923077, "ext": "agda", "hexsha": "ed3fa5bb854fe23d624d6a2d6e6501fea10bb9ee", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/SIRelBigStep/DeriveCorrect.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/SIRelBigStep/DeriveCorrect.agda", "max_line_length": 270, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/SIRelBigStep/DeriveCorrect.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 2643, "size": 6462 }
{-# OPTIONS --safe #-} module Cubical.HITs.SetCoequalizer where open import Cubical.HITs.SetCoequalizer.Base public open import Cubical.HITs.SetCoequalizer.Properties public
{ "alphanum_fraction": 0.8125, "avg_line_length": 29.3333333333, "ext": "agda", "hexsha": "b6ddc6459050c4e0bc523cea7b1a0cbb4fe96671", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/SetCoequalizer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/SetCoequalizer.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/SetCoequalizer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 176 }
module datatype-util where open import constants open import ctxt open import syntax-util open import general-util open import type-util open import cedille-types open import subst open import rename open import free-vars {-# TERMINATING #-} decompose-arrows : ctxt → type → params × type decompose-arrows Γ (TpAbs me x atk T) = let x' = fresh-var-new Γ x in case decompose-arrows (ctxt-var-decl x' Γ) (rename-var Γ x x' T) of λ where (ps , T') → Param me x' atk :: ps , T' decompose-arrows Γ T = [] , T decompose-ctr-type : ctxt → type → type × params × 𝕃 tmtp decompose-ctr-type Γ T with decompose-arrows Γ T ...| ps , Tᵣ with decompose-tpapps Tᵣ ...| Tₕ , as = Tₕ , ps , as {-# TERMINATING #-} kind-to-indices : ctxt → kind → indices kind-to-indices Γ (KdAbs x atk k) = let x' = fresh-var-new Γ x in Index x' atk :: kind-to-indices (ctxt-var-decl x' Γ) (rename-var Γ x x' k) kind-to-indices Γ _ = [] rename-indices-h : ctxt → renamectxt → indices → 𝕃 tmtp → indices rename-indices-h Γ ρ (Index x atk :: is) (ty :: tys) = Index x' atk' :: rename-indices-h (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') is tys where x' = fresh-var-renamectxt Γ ρ (maybe-else x id (is-var-unqual ty)) atk' = subst-renamectxt Γ ρ -tk atk rename-indices-h Γ ρ (Index x atk :: is) [] = let x' = fresh-var-renamectxt Γ ρ x in Index x' (subst-renamectxt Γ ρ -tk atk) :: rename-indices-h (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') is [] rename-indices-h _ _ [] _ = [] rename-indices : ctxt → indices → 𝕃 tmtp → indices rename-indices Γ = rename-indices-h Γ empty-renamectxt positivity : Set positivity = 𝔹 × 𝔹 -- occurs positively × occurs negatively pattern occurs-nil = ff , ff pattern occurs-pos = tt , ff pattern occurs-neg = ff , tt pattern occurs-all = tt , tt --positivity-inc : positivity → positivity --positivity-dec : positivity → positivity positivity-neg : positivity → positivity positivity-add : positivity → positivity → positivity --positivity-inc = map-fst λ _ → tt --positivity-dec = map-snd λ _ → tt positivity-neg = uncurry $ flip _,_ positivity-add (+ₘ , -ₘ) (+ₙ , -ₙ) = (+ₘ || +ₙ) , (-ₘ || -ₙ) -- just tt = negative occurrence; just ff = not in the return type; nothing = okay module positivity (x : var) where open import conversion not-free : ∀ {ed} → ⟦ ed ⟧ → maybe 𝔹 not-free = maybe-map (λ _ → tt) ∘' maybe-if ∘' is-free-in x if-free : ∀ {ed} → ⟦ ed ⟧ → positivity if-free t with is-free-in x t ...| f = f , f if-free-args : args → positivity if-free-args as with stringset-contains (free-vars-args as) x ...| f = f , f hnf' : ∀ {ed} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ hnf' Γ T = hnf Γ unfold-no-defs T mtt = maybe-else tt id mff = maybe-else ff id posₒ = fst negₒ = snd occurs : positivity → maybe 𝔹 occurs p = maybe-if (negₒ p) >> just tt {-# TERMINATING #-} arrs+ : ctxt → type → maybe 𝔹 type+ : ctxt → type → positivity kind+ : ctxt → kind → positivity tpkd+ : ctxt → tpkd → positivity tpapp+ : ctxt → type → positivity arrs+ Γ (TpAbs me x' atk T) = let Γ' = ctxt-var-decl x' Γ in occurs (tpkd+ Γ $ hnf' Γ -tk atk) maybe-or arrs+ Γ' (hnf' Γ' T) arrs+ Γ (TpApp T tT) = occurs (tpapp+ Γ $ hnf' Γ (TpApp T tT)) --arrs+ Γ T maybe-or (not-free -tT' tT) arrs+ Γ (TpLam x' atk T) = let Γ' = ctxt-var-decl x' Γ in occurs (tpkd+ Γ $ hnf' Γ -tk atk) maybe-or arrs+ Γ' (hnf' Γ' T) arrs+ Γ (TpVar x') = maybe-if (~ x =string x') >> just ff arrs+ Γ T = just ff type+ Γ (TpAbs me x' atk T) = let Γ' = ctxt-var-decl x' Γ in positivity-add (positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) (type+ Γ' $ hnf' Γ' T) type+ Γ (TpIota x' T T') = let Γ' = ctxt-var-decl x' Γ in positivity-add (type+ Γ $ hnf' Γ T) (type+ Γ' $ hnf' Γ' T') type+ Γ (TpApp T tT) = tpapp+ Γ $ hnf' Γ $ TpApp T tT type+ Γ (TpEq tₗ tᵣ) = occurs-nil type+ Γ (TpHole _) = occurs-nil type+ Γ (TpLam x' atk T)= let Γ' = ctxt-var-decl x' Γ in positivity-add (positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) (type+ Γ' (hnf' Γ' T)) type+ Γ (TpVar x') = x =string x' , ff tpapp+ Γ T with decompose-tpapps T ...| TpVar x' , as = let f = if-free-args (tmtps-to-args NotErased as) in if x =string x' then positivity-add occurs-pos f else maybe-else' (data-lookup Γ x' as) f λ {(mk-data-info x'' xₒ'' asₚ asᵢ ps kᵢ k cs csₚₛ eds gds) → type+ Γ (hnf' Γ $ TpAbs tt x'' (Tkk k) $ foldr (uncurry λ cₓ cₜ → TpAbs ff ignored-var (Tkt cₜ)) (TpVar x'') (inst-ctrs Γ ps asₚ cs))} ...| _ , _ = if-free T kind+ Γ (KdAbs x' atk k) = let Γ' = ctxt-var-decl x' Γ in positivity-add (positivity-neg $ tpkd+ Γ $ hnf' Γ -tk atk) (kind+ Γ' k) kind+ Γ _ = occurs-nil tpkd+ Γ (Tkt T) = type+ Γ (hnf' Γ T) tpkd+ Γ (Tkk k) = kind+ Γ k ctr-positive : ctxt → type → maybe 𝔹 ctr-positive Γ = arrs+ Γ ∘ hnf' Γ
{ "alphanum_fraction": 0.6100757731, "avg_line_length": 33.2176870748, "ext": "agda", "hexsha": "81f7b746172793cc05cd4b5c162123d344452ce8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zmthy/cedille", "max_forks_repo_path": "src/datatype-util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zmthy/cedille", "max_issues_repo_path": "src/datatype-util.agda", "max_line_length": 144, "max_stars_count": null, "max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zmthy/cedille", "max_stars_repo_path": "src/datatype-util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1820, "size": 4883 }
module DSyntax where open import Data.List open import Data.List.All open import Data.Nat open import Typing data DExpr φ : Type → Set where var : ∀ {t} → (x : t ∈ φ) → DExpr φ t nat : (unr-φ : All Unr φ) → (i : ℕ) → DExpr φ TInt unit : (unr-φ : All Unr φ) → DExpr φ TUnit pair : ∀ {φ₁ φ₂ t₁ t₂} → (sp : Split φ φ₁ φ₂) → (e₁ : DExpr φ₁ t₁) → (e₂ : DExpr φ₂ t₂) → DExpr φ (TPair t₁ t₂) letpair : ∀ {φ₁ φ₂ t₁ t₂ t} → (sp : Split φ φ₁ φ₂) → (epair : DExpr φ₁ (TPair t₁ t₂)) → (ebody : DExpr (t₁ ∷ t₂ ∷ φ₂) t) → DExpr φ t fork : (e : DExpr φ TUnit) → DExpr φ TUnit new : (unr-φ : All Unr φ) → (s : SType) → DExpr φ (TPair (TChan (SType.force s)) (TChan (SType.force (dual s)))) send : ∀ {φ₁ φ₂ s t} → (sp : Split φ φ₁ φ₂) → (ech : DExpr φ₁ (TChan (send t s))) → (earg : DExpr φ₂ t) → DExpr φ (TChan (SType.force s)) recv : ∀ {s t} → (ech : DExpr φ (TChan (recv t s))) → DExpr φ (TPair (TChan (SType.force s)) t) close : (ech : DExpr φ (TChan send!)) → DExpr φ TUnit wait : (ech : DExpr φ (TChan send?)) → DExpr φ TUnit select : ∀ {s₁ s₂} → (lab : Selector) → (ech : DExpr φ (TChan (sintern s₁ s₂))) → DExpr φ (TChan (selection lab (SType.force s₁) (SType.force s₂))) branch : ∀ {s₁ s₂ φ₁ φ₂ t} → (sp : Split φ φ₁ φ₂) → (ech : DExpr φ₁ (TChan (sextern s₁ s₂))) → (eleft : DExpr (TChan (SType.force s₁) ∷ φ₂) t) → (erght : DExpr (TChan (SType.force s₂) ∷ φ₂) t) → DExpr φ t ulambda : ∀ {t₁ t₂} → (unr-φ : All Unr φ) → (ebody : DExpr (t₁ ∷ φ) t₂) → DExpr φ (TFun UU t₁ t₂) llambda : ∀ {t₁ t₂} → (ebody : DExpr (t₁ ∷ φ) t₂) → DExpr φ (TFun LL t₁ t₂) app : ∀ {φ₁ φ₂ lu t₁ t₂} → (sp : Split φ φ₁ φ₂) → (efun : DExpr φ₁ (TFun lu t₁ t₂)) → (earg : DExpr φ₂ t₁) → DExpr φ t₂ subsume : ∀ {t₁ t₂} → (e : DExpr φ t₁) → (t≤t' : SubT t₁ t₂) → DExpr φ t₂
{ "alphanum_fraction": 0.4997542998, "avg_line_length": 23.3908045977, "ext": "agda", "hexsha": "6f6e4d14537af71ec6d1883ba47d67f573b3604c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/DSyntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/DSyntax.agda", "max_line_length": 78, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/DSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 856, "size": 2035 }
module Max where open import Data.Empty using (⊥-elim) open import Data.Fin open import Data.Nat hiding (_≤_) open import Function using (_∘_) open import Relation.Nullary variable n : ℕ -- from https://github.com/zmthy/recursive-types/tree/ftfjp16 -- RecursiveTypes.Inductive.Type -- adapted to use "variable" -- A proposition that the indexed number is the largest it can be, i.e. one less -- than its exclusive upper bound. data Max : Fin n → Set where max : Max {suc n} (fromℕ n) -- A lemma on Max: if a number is max, then one less than that number with a -- simultaneously lowered upper bound is also max. max-pre : {x : Fin (suc n)} → Max (suc x) → Max x max-pre max = max -- A lemma on Max: if a number is max, then one more than that number with a -- simultaneously increased upper bound is also max. max-suc : {x : Fin n} → Max x → Max (suc x) max-suc max = max -- Given a proof that a number is not max, reduce its lower bound by one, -- keeping the value of the number the same. reduce : {x : Fin (suc n)} → ¬ Max x → Fin n reduce {zero} {zero} ¬p = ⊥-elim (¬p max) reduce {zero} {suc ()} ¬p reduce {suc n} {zero} ¬p = zero reduce {suc n} {suc x} ¬p = suc (reduce {x = x} (¬p ∘ max-suc)) -- Max is a decidable proposition: just compare the number value to the value of -- the upper bound. max? : (x : Fin n) → Dec (Max x) max? {zero} () max? {suc zero} zero = yes max max? {suc zero} (suc ()) max? {suc (suc n)} zero = no (λ ()) max? {suc (suc n)} (suc x) with max? x max? {suc (suc n)} (suc .(fromℕ n)) | yes max = yes max max? {suc (suc n)} (suc x) | no ¬p = no (¬p ∘ max-pre) -- The reduce function preserves ≤. reduce₁ : ∀ {m} {x : Fin n} (¬p : ¬ Max (suc x)) → m ≤ x → suc m ≤ inject₁ (reduce ¬p) reduce₁ {m = zero} ¬p₁ z≤n = s≤s z≤n reduce₁ {m = suc m} {zero} ¬p () reduce₁ {m = suc m₁} {suc x₁} ¬p₁ (s≤s q₁) = s≤s (reduce₁ (λ z → ¬p₁ (max-suc z)) q₁) -- Injection is compatible with ordering. inject-≤ : {i j : Fin n} → inject₁ i ≤ inject₁ j → i ≤ j inject-≤ {i = 0F} {0F} z≤n = z≤n inject-≤ {i = 0F} {suc j} z≤n = z≤n inject-≤ {i = suc i} {0F} () inject-≤ {i = suc i} {suc j} (s≤s ii≤ij) = s≤s (inject-≤ ii≤ij) -- Technical lemma about reduce. lemma-reduce : {i j : Fin (suc n)} → (i≤j : inject₁ i ≤ inject₁ j) → (¬p : ¬ Max j) → i ≤ inject₁ (reduce ¬p) lemma-reduce {i = 0F} i≤j ¬p = z≤n lemma-reduce {i = suc i} {suc j} (s≤s i≤j) ¬p = reduce₁ ¬p (inject-≤ i≤j) -- A lemma on ≤: if x ≤ y, then x ≤ suc y. suc-≤ : {x y : Fin n} → x ≤ y → inject₁ x ≤ suc y suc-≤ {x = zero} z≤n = z≤n suc-≤ {x = suc x} {zero} () suc-≤ {x = suc x} {suc y} (s≤s p) = s≤s (suc-≤ p) -- A lemma on ≤: if suc x ≤ y, then x ≤ y. pred-≤ : {x y : Fin n} → suc x ≤ inject₁ y → inject₁ x ≤ inject₁ y pred-≤ {y = zero} () pred-≤ {y = suc x} (s≤s p) = suc-≤ p -- A lemma on ≤: if x ≤ y, then for any z < x, z ≤ y. trans-< : {x y : Fin n} {z : Fin′ x} → x ≤ y → inject z ≤ y trans-< {x = zero} {z = ()} p trans-< {x = suc x} {zero} () trans-< {x = suc x} {suc y} {zero} (s≤s p) = z≤n trans-< {x = suc x} {suc y} {suc z} (s≤s p) = s≤s (trans-< p)
{ "alphanum_fraction": 0.5741395947, "avg_line_length": 33.7934782609, "ext": "agda", "hexsha": "56c9bfdd93e637d2cf534252f1bdec34a05cbfb0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "kcaliban/dual-session", "max_forks_repo_path": "src/Max.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "kcaliban/dual-session", "max_issues_repo_path": "src/Max.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "kcaliban/dual-session", "max_stars_repo_path": "src/Max.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1280, "size": 3109 }
{- This file contains a summary of the proof that π₄(S³) ≡ ℤ/2ℤ The --experimental-lossy-unification flag is used to speed up type checking. The file still type checks without it, but it's a lot slower (about 10 times). -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Pi4S3.Summary where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Data.Nat.Base open import Cubical.Data.Sigma.Base open import Cubical.HITs.Sn open import Cubical.HITs.SetTruncation open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.HopfInvariant.Brunerie open import Cubical.Homotopy.Whitehead open import Cubical.Homotopy.Group.Base hiding (π) open import Cubical.Homotopy.Group.Pi3S2 open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.GroupPath open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.IntMod open import Cubical.Algebra.Group.ZAction -- Homotopy groups (shifted version of π'Gr to get nicer numbering) π : ℕ → Pointed₀ → Group₀ π n X = π'Gr (predℕ n) X -- Nicer notation for the spheres (as pointed types) 𝕊² 𝕊³ : Pointed₀ 𝕊² = S₊∙ 2 𝕊³ = S₊∙ 3 -- The Brunerie number; defined in Cubical.Homotopy.Group.Pi4S3.BrunerieNumber -- as "abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×))" β : ℕ β = Brunerie -- The connection to π₄(S³) is then also proved in the BrunerieNumber -- file following Corollary 3.4.5 in Guillaume Brunerie's PhD thesis. βSpec : GroupEquiv (π 4 𝕊³) (ℤGroup/ β) βSpec = BrunerieIso -- Ideally one could prove that β is 2 by normalization, but this does -- not seem to terminate before we run out of memory. To try normalize -- this use "C-u C-c C-n β≡2" (which normalizes the term, ignoring -- abstract's). So instead we prove this by hand as in the second half -- of Guillaume's thesis. β≡2 : β ≡ 2 β≡2 = Brunerie≡2 -- This involves a lot of theory, for example that π₃(S²) ≃ ℤGroup where -- the underlying map is induced by the Hopf invariant (which involves -- the cup product on cohomology). _ : GroupEquiv (π 3 𝕊²) ℤGroup _ = hopfInvariantEquiv -- Which is a consequence of the fact that π₃(S²) is generated by the -- Hopf map. _ : gen₁-by (π 3 𝕊²) ∣ HopfMap ∣₂ _ = π₂S³-gen-by-HopfMap -- etc. For more details see the proof of "Brunerie≡2". -- Combining all of this gives us the desired equivalence of groups: π₄S³≃ℤ/2ℤ : GroupEquiv (π 4 𝕊³) (ℤGroup/ 2) π₄S³≃ℤ/2ℤ = subst (GroupEquiv (π 4 𝕊³)) (cong ℤGroup/_ β≡2) βSpec -- By the SIP this induces an equality of groups: π₄S³≡ℤ/2ℤ : π 4 𝕊³ ≡ ℤGroup/ 2 π₄S³≡ℤ/2ℤ = GroupPath _ _ .fst π₄S³≃ℤ/2ℤ -- As a sanity check we also establish the equality with Bool: π₄S³≡Bool : π 4 𝕊³ ≡ BoolGroup π₄S³≡Bool = π₄S³≡ℤ/2ℤ ∙ GroupPath _ _ .fst (GroupIso→GroupEquiv ℤGroup/2≅Bool)
{ "alphanum_fraction": 0.7526915769, "avg_line_length": 31.898989899, "ext": "agda", "hexsha": "f9755bb09a2124c55adbd6b017dd0ec0d87144cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1098, "size": 3158 }
module BasicIS4.Metatheory.Hilbert-TarskiClosedOvergluedImplicit where open import BasicIS4.Syntax.Hilbert public open import BasicIS4.Semantics.TarskiClosedOvergluedImplicit public open ImplicitSyntax (∅ ⊢_) public -- Completeness with respect to a particular model, for closed terms only. module _ {{_ : Model}} where reify : ∀ {A} → ⊩ A → ∅ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {□ A} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ⟪K⟫ a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ → app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪D⟫_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A → ⊩ □ B (t ⅋ s) ⟪D⟫ (u ⅋ a) = app (app cdist t) u ⅋ s ⟪$⟫ a _⟪D⟫′_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A ▻ □ B _⟪D⟫′_ s = app cdist (reify s) ⅋ _⟪D⟫_ s ⟪↑⟫ : ∀ {A} → ⊩ □ A → ⊩ □ □ A ⟪↑⟫ s = box (syn s) ⅋ s _⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B _⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a -- Additional useful equipment, for sequents. module _ {{_ : Model}} where _⟦D⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ □ (A ▻ B) → ⊩ Γ ⇒ □ A → ⊩ Γ ⇒ □ B (s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ) ⟦↑⟧ : ∀ {A Γ} → ⊩ Γ ⇒ □ A → ⊩ Γ ⇒ □ □ A ⟦↑⟧ s γ = ⟪↑⟫ (s γ) -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = ci ⅋ I eval ck γ = ck ⅋ ⟪K⟫ eval cs γ = cs ⅋ ⟪S⟫′ eval (box t) γ = box t ⅋ eval t ∙ eval cdist γ = cdist ⅋ _⟪D⟫′_ eval cup γ = cup ⅋ ⟪↑⟫ eval cdown γ = cdown ⅋ ⟪↓⟫ eval cpair γ = cpair ⅋ _⟪,⟫′_ eval cfst γ = cfst ⅋ π₁ eval csnd γ = csnd ⅋ π₂ eval unit γ = ∙ -- Correctness of evaluation with respect to conversion. eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (congapp⋙ p q) = cong² _⟦$⟧_ (eval✓ p) (eval✓ q) eval✓ (congi⋙ p) = cong I (eval✓ p) eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q) eval✓ (congs⋙ p q r) = cong³ ⟦S⟧ (eval✓ p) (eval✓ q) (eval✓ r) eval✓ (congdist⋙ p q) = cong² _⟦D⟧_ (eval✓ p) (eval✓ q) eval✓ (congup⋙ p) = cong ⟦↑⟧ (eval✓ p) eval✓ (congdown⋙ p) = cong ⟦↓⟧ (eval✓ p) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ beta▻ₖ⋙ = refl eval✓ beta▻ₛ⋙ = refl eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ∅ ⊢ α P } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A quot₀ t = reify (t ∙) -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A norm₀ = quot₀ ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.4809902741, "avg_line_length": 28.7542372881, "ext": "agda", "hexsha": "650376ea430a46411581efb097c4c1a62faa366a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiClosedOvergluedImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiClosedOvergluedImplicit.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiClosedOvergluedImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1629, "size": 3393 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Identity module HoTT.Identity.NaturalNumber where private variable m n : ℕ _=ℕ_ : ℕ → ℕ → 𝒰₀ zero =ℕ zero = 𝟏 zero =ℕ (succ _) = 𝟎 succ _ =ℕ zero = 𝟎 succ m =ℕ succ n = m =ℕ n private r : (n : ℕ) → n =ℕ n r zero = ★ r (succ n) = r n =ℕ-elim : m == n → m =ℕ n =ℕ-elim {m} p = transport (m =ℕ_) p (r m) =ℕ-intro : m =ℕ n → m == n =ℕ-intro {zero} {zero} _ = refl =ℕ-intro {zero} {succ n} () =ℕ-intro {succ m} {zero} () =ℕ-intro {succ m} {succ n} = ap succ ∘ =ℕ-intro =ℕ-equiv : {m n : ℕ} → m == n ≃ m =ℕ n =ℕ-equiv {x} = f , qinv→isequiv (g , η , ε {x}) where f = =ℕ-elim g = =ℕ-intro η : g ∘ f {m} {n} ~ id η {zero} refl = refl η {succ n} refl = ap (ap succ) (η refl) ε : f ∘ g {m} {n} ~ id ε {zero} {zero} ★ = refl ε {zero} {succ n} () ε {succ m} {zero} () ε {succ m} {succ n} p = transport-ap (succ m =ℕ_) succ (g p) (r m) ∙ ε {m} p
{ "alphanum_fraction": 0.5300207039, "avg_line_length": 21.4666666667, "ext": "agda", "hexsha": "09c4c41b8dc0b844f1b70787325265baf3ca9860", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Identity/NaturalNumber.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Identity/NaturalNumber.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Identity/NaturalNumber.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 458, "size": 966 }
module Common.Reflect where open import Common.Level open import Common.Prelude renaming (Nat to ℕ) postulate QName : Set {-# BUILTIN QNAME QName #-} primitive primQNameEquality : QName → QName → Bool data Hiding : Set where hidden visible instance : Hiding {-# BUILTIN HIDING Hiding #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN INSTANCE instance #-} -- relevant the argument is (possibly) relevant at compile-time -- irrelevant the argument is irrelevant at compile- and runtime data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} data ArgInfo : Set where arginfo : Hiding → Relevance → ArgInfo data Arg A : Set where arg : ArgInfo → A → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} {-# BUILTIN ARGARGINFO arginfo #-} mutual Args : Set data Type : Set data Sort : Set data Term : Set where var : ℕ → Args → Term con : QName → Args → Term def : QName → Args → Term lam : Hiding → Term → Term pi : Arg Type → Type → Term sort : Sort → Term unknown : Term Args = List (Arg Term) data Type where el : Sort → Term → Type data Sort where set : Term → Sort lit : ℕ → Sort unknown : Sort {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDATYPE Type #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT sort #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDATYPEEL el #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} postulate FunDef : Set DataDef : Set RecordDef : Set {-# BUILTIN AGDAFUNDEF FunDef #-} {-# BUILTIN AGDADATADEF DataDef #-} {-# BUILTIN AGDARECORDDEF RecordDef #-} data Definition : Set where funDef : FunDef → Definition dataDef : DataDef → Definition recordDef : RecordDef → Definition dataConstructor : Definition axiom : Definition prim : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF funDef #-} {-# BUILTIN AGDADEFINITIONDATADEF dataDef #-} {-# BUILTIN AGDADEFINITIONRECORDDEF recordDef #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR dataConstructor #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim #-} primitive primQNameType : QName → Type primQNameDefinition : QName → Definition --primFunClauses : FunDef → List Clause primDataConstructors : DataDef → List QName --primRecordConstructor : RecordDef → QName --primRecordFields : RecordDef → List QName
{ "alphanum_fraction": 0.6008703761, "avg_line_length": 28.7232142857, "ext": "agda", "hexsha": "f2b65d931971a720801d9d3937ba4786fbc7dde7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/Common/Reflect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/Common/Reflect.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/Common/Reflect.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 830, "size": 3217 }
{-# OPTIONS --cubical --safe #-} module FreeReader where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Function.Base using (id; _$_) open import Class open Functor variable A B C : Set -- The Reader monad, as a free monad data FreeReader (R : Set) : Set → Set₁ where Pure : A → FreeReader R A Bind : FreeReader R A → (A → FreeReader R B) → FreeReader R B Ask : FreeReader R R -- Monad laws LeftId : ∀ {A B} → (a : A) → (f : A → FreeReader R B) → Bind (Pure a) f ≡ f a RightId : ∀ {A} → (m : FreeReader R A) → Bind m Pure ≡ m Assoc : ∀ {A B C} → (m : FreeReader R A) → (f : A → FreeReader R B) → (g : B → FreeReader R C) → Bind (Bind m f) g ≡ Bind m (λ x → Bind (f x) g) freereader-functor : ∀ {R} → Functor (FreeReader R) freereader-functor .fmap f m = Bind m (Pure ∘ f) freereader-functor .fmap-id-legit m i = RightId m i freereader-functor .fmap-compose-legit m f g i = hcomp (λ j → λ { (i = i0) → Bind m (Pure ∘ f ∘ g) ; (i = i1) → Assoc m (Pure ∘ g) (Pure ∘ f) (~ j) }) (Bind m (λ x → LeftId (g x) (Pure ∘ f) (~ i))) freereader-ap : ∀ {R} → Applicative (FreeReader R) freereader-ap .Applicative.functor = freereader-functor freereader-ap .Applicative.pure = Pure freereader-ap .Applicative._<*>_ mf m = Bind mf (λ f → Bind m (Pure ∘ f)) freereader-ap .Applicative.app-identity v i = hcomp (λ j → λ { (i = i0) → LeftId id (λ f → Bind v (Pure ∘ f)) (~ j) ; (i = i1) → v }) (RightId v i) freereader-ap .Applicative.app-compose u v w -- For some reason, Agda doesn't like wildcards in cubical proofs. Oh well. = Pure _∘_ <*> u <*> v <*> w ≡[ i ]⟨ LeftId _∘_ (λ f → Bind u (Pure ∘ f)) i <*> v <*> w ⟩ Bind u (λ u' → Pure (u' ∘_)) <*> v <*> w ≡[ i ]⟨ Assoc u (λ u' → Pure (u' ∘_)) (λ f → Bind v (Pure ∘ f)) i <*> w ⟩ Bind u (λ u' → Bind (Pure (u' ∘_)) (λ c → Bind v (Pure ∘ c))) <*> w ≡[ i ]⟨ Bind u (λ u' → LeftId (u' ∘_) (λ c → Bind v (Pure ∘ c)) i) <*> w ⟩ Bind u (λ u' → Bind v (λ v' → Pure (u' ∘ v'))) <*> w ≡[ i ]⟨ Assoc u (λ u' → Bind v (λ v' → Pure (u' ∘ v'))) (λ f → Bind w (Pure ∘ f)) i ⟩ Bind u (λ u' → Bind (Bind v (λ v' → Pure (u' ∘ v'))) (λ f → Bind w (Pure ∘ f))) ≡[ i ]⟨ Bind u (λ u' → Assoc v (λ v' → Pure (u' ∘ v')) (λ f → Bind w (Pure ∘ f)) i) ⟩ Bind u (λ u' → Bind v (λ v' → Bind (Pure (u' ∘ v')) (λ f → Bind w (Pure ∘ f)))) ≡[ i ]⟨ Bind u (λ u' → Bind v (λ v' → LeftId (u' ∘ v') (λ f → Bind w (Pure ∘ f)) i)) ⟩ Bind u (λ u' → Bind v (λ v' → Bind w (Pure ∘ u' ∘ v'))) ≡[ i ]⟨ Bind u (λ u' → Bind v (λ v' → Bind w (λ w' → LeftId (v' w') (Pure ∘ u') (~ i)))) ⟩ Bind u (λ u' → Bind v (λ v' → Bind w (λ w' → Bind (Pure (v' w')) (Pure ∘ u')))) ≡[ i ]⟨ Bind u (λ u' → Bind v (λ v' → Assoc w (Pure ∘ v') (Pure ∘ u') (~ i))) ⟩ Bind u (λ u' → Bind v (λ v' → Bind (Bind w (Pure ∘ v')) (Pure ∘ u'))) ≡[ i ]⟨ Bind u (λ u' → Assoc v (λ f → Bind w (Pure ∘ f)) (Pure ∘ u') (~ i)) ⟩ Bind u (λ u' → Bind (Bind v (λ v' → Bind w (Pure ∘ v'))) (Pure ∘ u')) ∎ where open Applicative freereader-ap freereader-ap .Applicative.app-homo f x = LeftId f (λ f' → Bind (Pure x) (λ x' → Pure (f' x'))) ∙ LeftId x (λ x' → Pure (f x')) freereader-ap .Applicative.app-intchg u y -- u <*> pure y = Bind u (λ u' → Bind (Pure y) (Pure ∘ u')) ≡[ i ]⟨ Bind u (λ u' → LeftId y (Pure ∘ u') i) ⟩ Bind u (λ u' → Pure (u' y)) ≡[ i ]⟨ LeftId (_$ y) (λ f → Bind u (Pure ∘ f)) (~ i) ⟩ Bind (Pure (_$ y)) (λ _y' → Bind u (λ u' → Pure (u' y'))) -- pure (_$ y) <*> u ∎ freereader-monad : ∀ {R} → Monad (FreeReader R) freereader-monad .Monad.applicative = freereader-ap freereader-monad .Monad._>>=_ = Bind freereader-monad .Monad.monad-left-id = LeftId freereader-monad .Monad.monad-right-id = RightId freereader-monad .Monad.monad-assoc = Assoc
{ "alphanum_fraction": 0.5026048127, "avg_line_length": 41.9895833333, "ext": "agda", "hexsha": "8f033d6bccad762471b58981c5dc5a66b16657e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mb64/cubical-free-monads", "max_forks_repo_path": "FreeReader.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mb64/cubical-free-monads", "max_issues_repo_path": "FreeReader.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mb64/cubical-free-monads", "max_stars_repo_path": "FreeReader.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-17T17:53:44.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T17:53:44.000Z", "num_tokens": 1598, "size": 4031 }
module Ids where id : {A : Set} -> A -> A id x = x slow : {A : Set} -> A -> A slow = id id id id id id id id id id id id id id id id id id -- The example above is based on one in "Implementing Typed -- Intermediate Languages" by Shao, League and Monnier.
{ "alphanum_fraction": 0.6395348837, "avg_line_length": 23.4545454545, "ext": "agda", "hexsha": "6ea599f1e5db9a319b220a49959b77cb62ebfae9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Ids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Ids.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Ids.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 82, "size": 258 }
{-# OPTIONS --cubical #-} open import 17-number-theory open import Cubical.Core.Everything data circle-C : UU lzero where base : circle-C loop : Path circle-C base base
{ "alphanum_fraction": 0.72, "avg_line_length": 19.4444444444, "ext": "agda", "hexsha": "05452cf53282256dcb27693521f63d0dd3b509b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/cubical-circle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/cubical-circle.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/cubical-circle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 175 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Modulo.FinEquiv where open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Data.Fin open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.HITs.Modulo.Base -- For positive `k`, every `Modulo k` can be reduced to its -- residue modulo `k`, given by a value of type `Fin k`. This -- forms an equivalence between `Fin k` and `Modulo k`. module Reduction {k₀ : ℕ} where private k = suc k₀ fembed : Fin k → Modulo k fembed = embed ∘ toℕ ResiduePath : ℕ → Type₀ ResiduePath n = Σ[ f ∈ Fin k ] fembed f ≡ embed n rbase : ∀ n (n<k : n < k) → ResiduePath n rbase n n<k = (n , n<k) , refl rstep : ∀ n → ResiduePath n → ResiduePath (k + n) rstep n (f , p) = f , p ∙ step n rstep≡ : ∀ n (R : ResiduePath n) → PathP (λ i → fembed (fst R) ≡ step n i) (snd R) (snd (rstep n R)) rstep≡ n (f , p) = λ i j → compPath-filler p (step n) i j residuePath : ∀ n → ResiduePath n residuePath = +induction k₀ ResiduePath rbase rstep lemma₁ : ∀ n → rstep n (residuePath n) ≡ residuePath (k + n) lemma₁ = sym ∘ +inductionStep k₀ ResiduePath rbase rstep residueStep₁ : ∀ n → fst (residuePath n) ≡ fst (residuePath (k + n)) residueStep₁ = cong fst ∘ lemma₁ residueStep₂ : ∀ n → PathP (λ i → fembed (residueStep₁ n i) ≡ step n i) ((snd ∘ residuePath) n) ((snd ∘ residuePath) (k + n)) residueStep₂ n i j = hfill (λ ii → λ { (i = i0) → snd (residuePath n) j ; (j = i0) → fembed (residueStep₁ n (i ∧ ii)) ; (i = i1) → snd (lemma₁ n ii) j ; (j = i1) → step n i }) (inS (rstep≡ n (residuePath n) i j)) i1 residue : Modulo k → Fin k residue (embed n) = fst (residuePath n) residue (step n i) = residueStep₁ n i sect : section residue fembed sect (r , r<k) = cong fst (+inductionBase k₀ ResiduePath rbase rstep r r<k) retr : retract residue fembed retr (embed n) = snd (residuePath n) retr (step n i) = residueStep₂ n i Modulo≡Fin : Modulo k ≡ Fin k Modulo≡Fin = isoToPath (iso residue fembed sect retr) open Reduction using (fembed; residue; Modulo≡Fin) public
{ "alphanum_fraction": 0.6190271201, "avg_line_length": 29.7820512821, "ext": "agda", "hexsha": "9486df2c7957f73cdea6270647c7374c16151084", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Modulo/FinEquiv.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Modulo/FinEquiv.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Modulo/FinEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 818, "size": 2323 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Equivalence open import HoTT.Homotopy module HoTT.Identity.Identity where ap⁻¹ : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} ((f , _) : A ≃ B) {a a' : A} → f a == f a' → a == a' ap⁻¹ e {a} {a'} p = η a ⁻¹ ∙ ap g p ∙ η a' where open Iso (eqv→iso e) -- Theorem 2.11.1 ap≃ : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} → ((f , _) : A ≃ B) → (a a' : A) → (a == a') ≃ (f a == f a') ap≃ e a a' = iso→eqv iso where open Iso (eqv→iso e) iso : Iso _ _ Iso.f iso = ap f Iso.g iso = ap⁻¹ e Iso.η iso p = η a ⁻¹ ∙ ap g (ap f p) ∙ η a' =⟨ _ ∙ₗ ap-∘ g f p ⁻¹ ∙ᵣ _ ⟩ η a ⁻¹ ∙ ap (g ∘ f) p ∙ η a' =⟨ assoc ⁻¹ ⟩ η a ⁻¹ ∙ (ap (g ∘ f) p ∙ η a') =⟨ pivotₗ (~-natural-id η p) ⁻¹ ⟩ p ∎ where open =-Reasoning Iso.ε iso q = ap f (η a ⁻¹ ∙ ap g q ∙ η a') =⟨ pivotₗ (~-natural (ε ∘ f) _) ⟩ ε (f a) ⁻¹ ∙ (ap (f ∘ g ∘ f) _ ∙ ε (f a')) =⟨ _ ∙ₗ (ap-∘ f (g ∘ f) _ ∙ᵣ _) ⟩ ε (f a) ⁻¹ ∙ (ap f (ap (g ∘ f) _) ∙ ε (f a')) =⟨ ap (λ p → _ ∙ (ap f p ∙ _)) inner ⟩ ε (f a) ⁻¹ ∙ (ap f (ap g q) ∙ ε (f a')) =⟨ _ ∙ₗ (ap-∘ f g q ⁻¹ ∙ᵣ _) ⟩ ε (f a) ⁻¹ ∙ (ap (f ∘ g) q ∙ ε (f a')) =⟨ pivotₗ (~-natural-id ε q) ⁻¹ ⟩ q ∎ where open =-Reasoning inner : ap (g ∘ f) (η a ⁻¹ ∙ ap g q ∙ η a') == ap g q inner = ap (g ∘ f) (η a ⁻¹ ∙ ap g q ∙ η a') =⟨ pivotᵣ (~-natural-id η _ ⁻¹) ⟩ η a ∙ (η a ⁻¹ ∙ ap g q ∙ η a') ∙ η a' ⁻¹ =⟨ assoc ∙ᵣ η a' ⁻¹ ⟩ η a ∙ (η a ⁻¹ ∙ ap g q) ∙ η a' ∙ η a' ⁻¹ =⟨ assoc ∙ᵣ _ ∙ᵣ _ ⟩ η a ∙ η a ⁻¹ ∙ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ invᵣ ∙ᵣ _ ∙ᵣ _ ∙ᵣ _ ⟩ refl ∙ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ unitₗ ⁻¹ ∙ᵣ _ ∙ᵣ _ ⟩ ap g q ∙ η a' ∙ η a' ⁻¹ =⟨ assoc ⁻¹ ⟩ ap g q ∙ (η a' ∙ η a' ⁻¹) =⟨ _ ∙ₗ invᵣ ⟩ ap g q ∙ refl =⟨ unitᵣ ⁻¹ ⟩ ap g q ∎ -- Theorem 2.11.3 =-transport : ∀ {i j} {A : 𝒰 i} {B : 𝒰 j} {a a' : A} (f g : A → B) (p : a == a') (q : f a == g a) → transport (λ x → f x == g x) p q == ap f p ⁻¹ ∙ q ∙ ap g p =-transport _ _ refl q rewrite q = refl module _ {i} {A : 𝒰 i} {x₁ x₂ : A} (a : A) (p : x₁ == x₂) where =-transportₗ : (q : a == x₁) → transport (a ==_) p q == q ∙ p =-transportₗ q rewrite p = unitᵣ =-transportᵣ : (q : x₁ == a) → transport (_== a) p q == p ⁻¹ ∙ q =-transportᵣ q rewrite p = unitₗ
{ "alphanum_fraction": 0.3841607565, "avg_line_length": 40.2857142857, "ext": "agda", "hexsha": "4d9d1b83fdfebe0c2bcc6f881c5b3103d75b4819", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Identity/Identity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Identity/Identity.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Identity/Identity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1319, "size": 2538 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the membership predicate for fresh lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid) module Data.List.Fresh.Membership.Setoid.Properties {c ℓ} (S : Setoid c ℓ) where open import Level using (Level; _⊔_) open import Data.Empty open import Data.Nat.Base open import Data.Nat.Properties open import Data.Product using (∃; _×_; _,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; fromInj₂) open import Function using (id; _∘′_; _$_) open import Relation.Nullary open import Relation.Unary as U using (Pred) import Relation.Binary as B import Relation.Binary.PropositionalEquality as P open import Relation.Nary open import Data.List.Fresh open import Data.List.Fresh.Properties open import Data.List.Fresh.Membership.Setoid S open import Data.List.Fresh.Relation.Unary.Any using (Any; here; there; _─_) import Data.List.Fresh.Relation.Unary.Any.Properties as Anyₚ import Data.List.Fresh.Relation.Unary.All.Properties as Allₚ open Setoid S renaming (Carrier to A) private variable p r : Level ------------------------------------------------------------------------ -- transport module _ {R : Rel A r} where ≈-subst-∈ : ∀ {x y} {xs : List# A R} → x ≈ y → x ∈ xs → y ∈ xs ≈-subst-∈ x≈y (here x≈x′) = here (trans (sym x≈y) x≈x′) ≈-subst-∈ x≈y (there x∈xs) = there (≈-subst-∈ x≈y x∈xs) ------------------------------------------------------------------------ -- relationship to fresh module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) where fresh⇒∉ : ∀ {x} {xs : List# A R} → x # xs → x ∉ xs fresh⇒∉ (r , _) (here x≈y) = R⇒≉ r x≈y fresh⇒∉ (_ , x#xs) (there x∈xs) = fresh⇒∉ x#xs x∈xs ------------------------------------------------------------------------ -- disjointness module _ {R : Rel A r} where distinct : ∀ {x y} {xs : List# A R} → x ∈ xs → y ∉ xs → x ≉ y distinct x∈xs y∉xs x≈y = y∉xs (≈-subst-∈ x≈y x∈xs) ------------------------------------------------------------------------ -- remove module _ {R : Rel A r} where remove-inv : ∀ {x y} {xs : List# A R} (x∈xs : x ∈ xs) → y ∈ xs → x ≈ y ⊎ y ∈ (xs ─ x∈xs) remove-inv (here x≈z) (here y≈z) = inj₁ (trans x≈z (sym y≈z)) remove-inv (here _) (there y∈xs) = inj₂ y∈xs remove-inv (there _) (here y≈z) = inj₂ (here y≈z) remove-inv (there x∈xs) (there y∈xs) = Sum.map₂ there (remove-inv x∈xs y∈xs) ∈-remove : ∀ {x y} {xs : List# A R} (x∈xs : x ∈ xs) → y ∈ xs → x ≉ y → y ∈ (xs ─ x∈xs) ∈-remove x∈xs y∈xs x≉y = fromInj₂ (⊥-elim ∘′ x≉y) (remove-inv x∈xs y∈xs) module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) (≉⇒R : ∀[ _≉_ ⇒ R ]) where private R≈ : R B.Respectsˡ _≈_ R≈ x≈y Rxz = ≉⇒R (R⇒≉ Rxz ∘′ trans x≈y) fresh-remove : ∀ {x} {xs : List# A R} (x∈xs : x ∈ xs) → x # (xs ─ x∈xs) fresh-remove {xs = cons x xs pr} (here x≈y) = fresh-respectsˡ R≈ (sym x≈y) pr fresh-remove {xs = cons x xs pr} (there x∈xs) = ≉⇒R (distinct x∈xs (fresh⇒∉ R⇒≉ pr)) , fresh-remove x∈xs ∉-remove : ∀ {x} {xs : List# A R} (x∈xs : x ∈ xs) → x ∉ (xs ─ x∈xs) ∉-remove x∈xs = fresh⇒∉ R⇒≉ (fresh-remove x∈xs) ------------------------------------------------------------------------ -- injection module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) where injection : ∀ {xs ys : List# A R} (inj : ∀ {x} → x ∈ xs → x ∈ ys) → length xs ≤ length ys injection {[]} {ys} inj = z≤n injection {xxs@(cons x xs pr)} {ys} inj = begin length xxs ≤⟨ s≤s (injection step) ⟩ suc (length (ys ─ x∈ys)) ≡⟨ P.sym (Anyₚ.length-remove x∈ys) ⟩ length ys ∎ where open ≤-Reasoning x∉xs : x ∉ xs x∉xs = fresh⇒∉ R⇒≉ pr x∈ys : x ∈ ys x∈ys = inj (here refl) step : ∀ {y} → y ∈ xs → y ∈ (ys ─ x∈ys) step {y} y∈xs = ∈-remove x∈ys (inj (there y∈xs)) (distinct y∈xs x∉xs ∘′ sym) strict-injection : ∀ {xs ys : List# A R} (inj : ∀ {x} → x ∈ xs → x ∈ ys) → (∃ λ x → x ∈ ys × x ∉ xs) → length xs < length ys strict-injection {xs} {ys} inj (x , x∈ys , x∉xs) = begin suc (length xs) ≤⟨ s≤s (injection step) ⟩ suc (length (ys ─ x∈ys)) ≡⟨ P.sym (Anyₚ.length-remove x∈ys) ⟩ length ys ∎ where open ≤-Reasoning step : ∀ {y} → y ∈ xs → y ∈ (ys ─ x∈ys) step {y} y∈xs = fromInj₂ (λ x≈y → ⊥-elim (x∉xs (≈-subst-∈ (sym x≈y) y∈xs))) $ remove-inv x∈ys (inj y∈xs) ------------------------------------------------------------------------ -- proof irrelevance module _ {R : Rel A r} (R⇒≉ : ∀[ R ⇒ _≉_ ]) (≈-irrelevant : B.Irrelevant _≈_) where ∈-irrelevant : ∀ {x} {xs : List# A R} → Irrelevant (x ∈ xs) -- positive cases ∈-irrelevant (here x≈y₁) (here x≈y₂) = P.cong here (≈-irrelevant x≈y₁ x≈y₂) ∈-irrelevant (there x∈xs₁) (there x∈xs₂) = P.cong there (∈-irrelevant x∈xs₁ x∈xs₂) -- absurd cases ∈-irrelevant {xs = cons x xs pr} (here x≈y) (there x∈xs₂) = ⊥-elim (distinct x∈xs₂ (fresh⇒∉ R⇒≉ pr) x≈y) ∈-irrelevant {xs = cons x xs pr} (there x∈xs₁) (here x≈y) = ⊥-elim (distinct x∈xs₁ (fresh⇒∉ R⇒≉ pr) x≈y)
{ "alphanum_fraction": 0.4964701393, "avg_line_length": 34.7086092715, "ext": "agda", "hexsha": "7653bcaa2c1e7f39dd69678e2b24aae30354fbc3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh/Membership/Setoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh/Membership/Setoid/Properties.agda", "max_line_length": 88, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh/Membership/Setoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2047, "size": 5241 }
module Interpreter where open import Data.Char open import Data.Bool open import Data.Nat import Data.Unit as U open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality as PropEq open import Relation.Nullary.Core import Data.String as Str open import Data.Nat.Show import Data.List as List open import Data.Empty infix 3 _:::_,_ infix 2 _∈_ infix 1 _⊢_ data `Set : Set where `Nat : `Set `Bool : `Set `_⇨_ : `Set → `Set → `Set `Unit : `Set `_×_ : `Set → `Set → `Set `_+_ : `Set → `Set → `Set #_ : `Set → Set # `Nat = ℕ # `Bool = Bool # (` t ⇨ s) = # t → # s # `Unit = U.Unit # (` t × s) = # t × # s # (` t + s) = # t ⊎ # s data Γ : Set where · : Γ _:::_,_ : Char → `Set → Γ → Γ data _∈_ : Char → Γ → Set where H : ∀ {x Δ t } → x ∈ x ::: t , Δ TH : ∀ {x y Δ t } → {{prf : x ∈ Δ}} → x ∈ y ::: t , Δ !Γ_[_] : ∀ {x} → (Δ : Γ) → x ∈ Δ → `Set !Γ_[_] · () !Γ _ ::: t , Δ [ H ] = t !Γ _ ::: _ , Δ [ TH {{prf = i}} ] = !Γ Δ [ i ] data _⊢_ : Γ → `Set → Set where `false : ∀ {Δ} → Δ ⊢ `Bool `true : ∀ {Δ} → Δ ⊢ `Bool `n_ : ∀ {Δ} → ℕ → Δ ⊢ `Nat `v_ : ∀ {Δ} → (x : Char) → {{i : x ∈ Δ}} → Δ ⊢ !Γ Δ [ i ] `_₋_ : ∀ {Δ t s} → Δ ⊢ ` t ⇨ s → Δ ⊢ t → Δ ⊢ s `λ_`:_⇨_ : ∀ {Δ tr} → (x : Char) → (tx : `Set) → x ::: tx , Δ ⊢ tr → Δ ⊢ ` tx ⇨ tr `_+_ : ∀ {Δ} → Δ ⊢ `Nat → Δ ⊢ `Nat → Δ ⊢ `Nat `_*_ : ∀ {Δ} → Δ ⊢ `Nat → Δ ⊢ `Nat → Δ ⊢ `Nat `_∧_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool `_∨_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool `_≤_ : ∀ {Δ} → Δ ⊢ `Nat → Δ ⊢ `Nat → Δ ⊢ `Bool `¬_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool `_,_ : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ s → Δ ⊢ ` t × s `fst : ∀ {Δ t s} → Δ ⊢ ` t × s → Δ ⊢ t `snd : ∀ {Δ t s} → Δ ⊢ ` t × s → Δ ⊢ s `left : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ ` t + s `right : ∀ {Δ t s} → Δ ⊢ s → Δ ⊢ ` t + s `case_`of_||_ : ∀ {Δ t s u} → Δ ⊢ ` t + s → Δ ⊢ ` t ⇨ u → Δ ⊢ ` s ⇨ u → Δ ⊢ u `tt : ∀ {Δ} → Δ ⊢ `Unit `let_`=_`in_ : ∀ {Δ th tb} → (x : Char) → Δ ⊢ th → x ::: th , Δ ⊢ tb → Δ ⊢ tb `if_`then_`else_ : ∀ {Δ t} → Δ ⊢ `Bool → Δ ⊢ t → Δ ⊢ t → Δ ⊢ t data ⟨_⟩ : Γ → Set₁ where [] : ⟨ · ⟩ _∷_ : ∀ {x t Δ} → # t → ⟨ Δ ⟩ → ⟨ x ::: t , Δ ⟩ !_[_] : ∀ {x Δ} → ⟨ Δ ⟩ → (i : x ∈ Δ) → # !Γ Δ [ i ] !_[_] [] () !_[_] (val ∷ env) H = val !_[_] (val ∷ env) (TH {{prf = i}}) = ! env [ i ] interpret : ∀ {t} → · ⊢ t → # t interpret = interpret' [] where interpret' : ∀ {Δ t} → ⟨ Δ ⟩ → Δ ⊢ t → # t interpret' env `true = true interpret' env `false = false interpret' env `tt = U.unit interpret' env (`n n) = n interpret' env ((`v x) {{i = idx}}) = ! env [ idx ] interpret' env (` f ₋ x) = (interpret' env f) (interpret' env x) interpret' env (`λ _ `: tx ⇨ body) = λ (x : # tx) → interpret' (x ∷ env) body interpret' env (` l + r) = interpret' env l + interpret' env r interpret' env (` l * r) = interpret' env l * interpret' env r interpret' env (` l ∧ r) = interpret' env l ∧ interpret' env r interpret' env (` l ∨ r) = interpret' env l ∨ interpret' env r interpret' env (` l ≤ r) with interpret' env l ≤? interpret' env r interpret' env (` l ≤ r) | yes p = true interpret' env (` l ≤ r) | no ¬p = false interpret' env (`¬ x) = not (interpret' env x) interpret' env (` f , s) = interpret' env f ,′ interpret' env s interpret' env (`fst p) with interpret' env p interpret' env (`fst p) | f , s = f interpret' env (`snd p) with interpret' env p interpret' env (`snd p) | f , s = s interpret' env (`left v) = inj₁ (interpret' env v) interpret' env (`right v) = inj₂ (interpret' env v) interpret' env (`case s `of le || re) with interpret' env s interpret' env (`case s `of le || re) | inj₁ l = (interpret' env le) l interpret' env (`case s `of le || re) | inj₂ r = (interpret' env re) r interpret' env (`let _ `= h `in b) = let hval = interpret' env h in interpret' (hval ∷ env) b interpret' env (`if b `then et `else ef) with interpret' env b interpret' env (`if b `then et `else ef) | true = interpret' env et interpret' env (`if b `then et `else ef) | false = interpret' env ef testSimpleLambda : · ⊢ `Nat testSimpleLambda = ` (`λ 'x' `: `Nat ⇨ ` `v 'x' + `v 'x') ₋ `n 10 testNestedLambda : · ⊢ `Nat testNestedLambda = ` ` (`λ 'x' `: `Nat ⇨ (`λ 'y' `: `Nat ⇨ ` `v 'x' * `v 'y')) ₋ `n 10 ₋ `n 15 -- Should not work because the inner x is not bound to a boolean, and it should not be possible to refer to the outside x using Elem -- TODO Fix this to not work with instance search --testNamingNotWorking : · ⊢ `Bool --testNamingNotWorking = ` ` `λ 'x' `: `Bool ⇨ (`λ 'x' `: `Unit ⇨ `v 'x') ₋ `true ₋ `tt testNamingWorking : · ⊢ `Unit testNamingWorking = ` ` `λ 'x' `: `Bool ⇨ (`λ 'x' `: `Unit ⇨ `v 'x') ₋ `true ₋ `tt testSum1 : · ⊢ `Nat testSum1 = `let 'n' `= `case `left (`n 10) `of `λ 'n' `: `Nat ⇨ `v 'n' || `λ 'b' `: `Bool ⇨ `if `v 'b' `then `n 1 `else `n 0 `in `v 'n' testSum2 : · ⊢ `Nat testSum2 = `let 'n' `= `case `right `true `of `λ 'n' `: `Nat ⇨ `v 'n' || `λ 'b' `: `Bool ⇨ `if `v 'b' `then `n 1 `else `n 0 `in `v 'n' testProduct1 : · ⊢ `Bool testProduct1 = `fst (` `true , (` `n 10 , `tt )) testProduct2 : · ⊢ ` `Nat × `Unit testProduct2 = `snd (` `true , (` `n 10 , `tt )) testDeMorganFullOr : · ⊢ `Bool testDeMorganFullOr = `let 's' `= `λ 'x' `: `Bool ⇨ `λ 'y' `: `Bool ⇨ `¬ (` `v 'x' ∨ `v 'y') `in ` ` `v 's'₋ `true ₋ `true testDeMorganBrokenAnd : · ⊢ `Bool testDeMorganBrokenAnd = `let 's' `= `λ 'x' `: `Bool ⇨ `λ 'y' `: `Bool ⇨ ` `¬ `v 'x' ∧ `¬ `v 'y' `in ` ` `v 's' ₋ `true ₋ `true
{ "alphanum_fraction": 0.4415542188, "avg_line_length": 39.6838709677, "ext": "agda", "hexsha": "8e0f3624168ba756abde0dbf262b314b819b17d4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-04-20T01:22:35.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-22T10:30:57.000Z", "max_forks_repo_head_hexsha": "e4529eb03a0a48f800a5fd2a36047195f1949ca9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ahmadsalim/well-typed-agda-interpreter", "max_forks_repo_path": "Interpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e4529eb03a0a48f800a5fd2a36047195f1949ca9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ahmadsalim/well-typed-agda-interpreter", "max_issues_repo_path": "Interpreter.agda", "max_line_length": 132, "max_stars_count": 10, "max_stars_repo_head_hexsha": "e4529eb03a0a48f800a5fd2a36047195f1949ca9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ahmadsalim/well-typed-agda-interpreter", "max_stars_repo_path": "Interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-16T00:52:33.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T21:18:56.000Z", "num_tokens": 2472, "size": 6151 }
{-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality.Subst.Properties where -- Properties of 'subst' onto binary relations. open import Level open import Function using (_$_; flip) renaming (id to idFun; _∘_ to _⊚_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Construct.Closure.ReflexiveTransitive private variable ℓ ℓ₁ ℓ₂ t t₁ t₂ o : Level -- Two shorthands: transport the domain or codomain of a relation along an equality. module Shorthands {O : Set o} (R : Rel O ℓ) where infixr 9 _◂_ infixl 9 _▸_ _◂_ : ∀ {A B C} → A ≡ B → R B C → R A C p ◂ f = subst (flip R _) (sym p) f _▸_ : ∀ {A B C} → R A B → B ≡ C → R A C f ▸ p = subst (R _) p f -- Some simple properties of transports module Transport {O : Set o} (R : Rel O ℓ) where open Shorthands R public ◂-▸-id : ∀ {A} (f : R A A) → refl ◂ f ≡ f ▸ refl ◂-▸-id f = refl ◂-▸-comm : ∀ {A B C D} (p : A ≡ B) (f : R B C) (q : C ≡ D) → (p ◂ (f ▸ q)) ≡ ((p ◂ f) ▸ q) ◂-▸-comm refl f refl = refl ◂-assocˡ : ∀ {A B C D} (p : A ≡ B) {q : B ≡ C} (f : R C D) → p ◂ q ◂ f ≡ (trans p q) ◂ f ◂-assocˡ refl {refl} f = refl ▸-assocʳ : ∀ {A B C D} (f : R A B) {p : B ≡ C} (q : C ≡ D) → f ▸ p ▸ q ≡ f ▸ trans p q ▸-assocʳ f {refl} refl = refl -- If we have a relation Q over a relation R, we can transport over that too module TransportOverQ {O : Set o} (R : Rel O ℓ) (Q : {X Y : O} → Rel (R X Y) t) where open Transport R ◂-resp-≈ : ∀ {A B C} (p : A ≡ B) {f g : R B C} → Q f g → Q (p ◂ f) (p ◂ g) ◂-resp-≈ refl f≈g = f≈g ▸-resp-≈ : ∀ {A B C} {f g : R A B} → Q f g → (p : B ≡ C) → Q (f ▸ p) (g ▸ p) ▸-resp-≈ f≈g refl = f≈g -- Given two relations and a homomorphism between them, -- congruence properties over subst module TransportMor {O₁ O₂ : Set o} (R₁ : Rel O₁ ℓ) (R₂ : Rel O₂ t) (M₀ : O₁ → O₂) (M₁ : ∀ {A B} → R₁ A B → R₂ (M₀ A) (M₀ B)) where open Shorthands R₁ open Shorthands R₂ renaming (_◂_ to _◃_; _▸_ to _▹_) M-resp-▸ : ∀ {A B C} (f : R₁ A B) (p : B ≡ C) → M₁ (f ▸ p) ≡ M₁ f ▹ cong M₀ p M-resp-▸ f refl = refl M-resp-◂ : ∀ {A B C} (p : A ≡ B) (f : R₁ B C) → M₁ (p ◂ f) ≡ cong M₀ p ◃ M₁ f M-resp-◂ refl f = refl -- Transports on paths module TransportStar {O : Set o} (R : Rel O ℓ) where open Shorthands (Star R) public renaming ( _◂_ to _◂*_ ; _▸_ to _▸*_ ) open Shorthands R -- Lemmas relating transports to path operations. ◂*-▸*-ε : {A B : O} (p : A ≡ B) → ε ▸* p ≡ p ◂* ε ◂*-▸*-ε refl = refl ◂*-◅ : {A B C D : O} (p : A ≡ B) (f : R B C) (fs : Star R C D) → p ◂* (f ◅ fs) ≡ (p ◂ f) ◅ fs ◂*-◅ refl f fs = refl ◅-▸* : {A B C D : O} (f : R A B) (fs : Star R B C) (p : C ≡ D) → (f ◅ fs) ▸* p ≡ f ◅ (fs ▸* p) ◅-▸* f fs refl = refl ◅-◂*-▸ : {A B C D : O} (f : R A B) (p : B ≡ C) (fs : Star R C D) → _≡_ {_} {Star R A D} (f ◅ (p ◂* fs)) ((f ▸ p) ◅ fs) ◅-◂*-▸ f refl fs = refl
{ "alphanum_fraction": 0.5057660626, "avg_line_length": 30.35, "ext": "agda", "hexsha": "629586589c0923fb7ba8a1c91d49f09685892d98", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Relation/Binary/PropositionalEquality/Subst/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Relation/Binary/PropositionalEquality/Subst/Properties.agda", "max_line_length": 86, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Relation/Binary/PropositionalEquality/Subst/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1388, "size": 3035 }
{-# OPTIONS --cubical #-} module Computability.Enumeration.Univalence where open import Cubical.Core.Everything open import Computability.Prelude open import Computability.Enumeration.Base
{ "alphanum_fraction": 0.8186528497, "avg_line_length": 19.3, "ext": "agda", "hexsha": "a1e2e612b5adc766d4a2f89f475492fe50b53b5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Enumeration/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Enumeration/Univalence.agda", "max_line_length": 49, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Enumeration/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 40, "size": 193 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the sublist relation over setoid equality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary hiding (Decidable) module Data.List.Relation.Binary.Subset.Propositional.Properties where open import Category.Monad open import Data.Bool.Base using (Bool; true; false; T) open import Data.List open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any.Properties open import Data.List.Categorical open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties import Data.List.Relation.Binary.Subset.Setoid.Properties as Setoidₚ open import Data.List.Relation.Binary.Subset.Propositional import Data.Product as Prod import Data.Sum as Sum open import Function using (_∘_; _∘′_; id; _$_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Equivalence using (module Equivalence) open import Relation.Nullary using (¬_; yes; no) open import Relation.Unary using (Decidable) open import Relation.Binary using (_⇒_) open import Relation.Binary.PropositionalEquality using (_≡_; _≗_; isEquivalence; refl; setoid; module ≡-Reasoning) import Relation.Binary.PreorderReasoning as PreorderReasoning private open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ}) ------------------------------------------------------------------------ -- Relational properties module _ {a} {A : Set a} where ⊆-reflexive : _≡_ ⇒ (_⊆_ {A = A}) ⊆-reflexive refl = id ⊆-refl : Reflexive {A = List A} _⊆_ ⊆-refl x∈xs = x∈xs ⊆-trans : Transitive {A = List A} (_⊆_ {A = A}) ⊆-trans xs⊆ys ys⊆zs x∈xs = ys⊆zs (xs⊆ys x∈xs) module _ {a} (A : Set a) where ⊆-isPreorder : IsPreorder {A = List A} _≡_ _⊆_ ⊆-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ⊆-reflexive ; trans = ⊆-trans } ⊆-preorder : Preorder _ _ _ ⊆-preorder = record { isPreorder = ⊆-isPreorder } ------------------------------------------------------------------------ -- Reasoning over subsets module ⊆-Reasoning {a} (A : Set a) where open Setoidₚ.⊆-Reasoning (setoid A) public hiding (_≋⟨_⟩_; _≋˘⟨_⟩_; _≋⟨⟩_) ------------------------------------------------------------------------ -- Properties relating _⊆_ to various list functions ------------------------------------------------------------------------ -- Any module _ {a p} {A : Set a} {P : A → Set p} {xs ys : List A} where mono : xs ⊆ ys → Any P xs → Any P ys mono xs⊆ys = _⟨$⟩_ (Inverse.to Any↔) ∘′ Prod.map id (Prod.map xs⊆ys id) ∘ _⟨$⟩_ (Inverse.from Any↔) ------------------------------------------------------------------------ -- map module _ {a b} {A : Set a} {B : Set b} (f : A → B) {xs ys} where map-mono : xs ⊆ ys → map f xs ⊆ map f ys map-mono xs⊆ys = _⟨$⟩_ (Inverse.to (map-∈↔ f)) ∘ Prod.map id (Prod.map xs⊆ys id) ∘ _⟨$⟩_ (Inverse.from (map-∈↔ f)) ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} where _++-mono_ : xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → xs₁ ++ xs₂ ⊆ ys₁ ++ ys₂ _++-mono_ xs₁⊆ys₁ xs₂⊆ys₂ = _⟨$⟩_ (Inverse.to ++↔) ∘ Sum.map xs₁⊆ys₁ xs₂⊆ys₂ ∘ _⟨$⟩_ (Inverse.from ++↔) ------------------------------------------------------------------------ -- concat module _ {a} {A : Set a} {xss yss : List (List A)} where concat-mono : xss ⊆ yss → concat xss ⊆ concat yss concat-mono xss⊆yss = _⟨$⟩_ (Inverse.to $ concat-∈↔ {a = a}) ∘ Prod.map id (Prod.map id xss⊆yss) ∘ _⟨$⟩_ (Inverse.from $ concat-∈↔ {a = a}) ------------------------------------------------------------------------ -- _>>=_ module _ {ℓ} {A B : Set ℓ} (f g : A → List B) {xs ys} where >>=-mono : xs ⊆ ys → (∀ {x} → f x ⊆ g x) → (xs >>= f) ⊆ (ys >>= g) >>=-mono xs⊆ys f⊆g = _⟨$⟩_ (Inverse.to $ >>=-∈↔ {ℓ = ℓ}) ∘ Prod.map id (Prod.map xs⊆ys f⊆g) ∘ _⟨$⟩_ (Inverse.from $ >>=-∈↔ {ℓ = ℓ}) ------------------------------------------------------------------------ -- _⊛_ module _ {ℓ} {A B : Set ℓ} {fs gs : List (A → B)} {xs ys : List A} where _⊛-mono_ : fs ⊆ gs → xs ⊆ ys → (fs ⊛ xs) ⊆ (gs ⊛ ys) _⊛-mono_ fs⊆gs xs⊆ys = _⟨$⟩_ (Inverse.to $ ⊛-∈↔ gs) ∘ Prod.map id (Prod.map id (Prod.map fs⊆gs (Prod.map xs⊆ys id))) ∘ _⟨$⟩_ (Inverse.from $ ⊛-∈↔ fs) ------------------------------------------------------------------------ -- _⊗_ module _ {ℓ} {A B : Set ℓ} {xs₁ ys₁ : List A} {xs₂ ys₂ : List B} where _⊗-mono_ : xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → (xs₁ ⊗ xs₂) ⊆ (ys₁ ⊗ ys₂) xs₁⊆ys₁ ⊗-mono xs₂⊆ys₂ = _⟨$⟩_ (Inverse.to $ ⊗-∈↔ {ℓ = ℓ}) ∘ Prod.map xs₁⊆ys₁ xs₂⊆ys₂ ∘ _⟨$⟩_ (Inverse.from $ ⊗-∈↔ {ℓ = ℓ}) ------------------------------------------------------------------------ -- any module _ {a} {A : Set a} (p : A → Bool) {xs ys} where any-mono : xs ⊆ ys → T (any p xs) → T (any p ys) any-mono xs⊆ys = _⟨$⟩_ (Equivalence.to any⇔) ∘ mono xs⊆ys ∘ _⟨$⟩_ (Equivalence.from any⇔) ------------------------------------------------------------------------ -- map-with-∈ module _ {a b} {A : Set a} {B : Set b} {xs : List A} {f : ∀ {x} → x ∈ xs → B} {ys : List A} {g : ∀ {x} → x ∈ ys → B} where map-with-∈-mono : (xs⊆ys : xs ⊆ ys) → (∀ {x} → f {x} ≗ g ∘ xs⊆ys) → map-with-∈ xs f ⊆ map-with-∈ ys g map-with-∈-mono xs⊆ys f≈g {x} = _⟨$⟩_ (Inverse.to map-with-∈↔) ∘ Prod.map id (Prod.map xs⊆ys (λ {x∈xs} x≡fx∈xs → begin x ≡⟨ x≡fx∈xs ⟩ f x∈xs ≡⟨ f≈g x∈xs ⟩ g (xs⊆ys x∈xs) ∎)) ∘ _⟨$⟩_ (Inverse.from map-with-∈↔) where open ≡-Reasoning ------------------------------------------------------------------------ -- filter module _ {a p} {A : Set a} {P : A → Set p} (P? : Decidable P) where filter⁺ : ∀ xs → filter P? xs ⊆ xs filter⁺ = Setoidₚ.filter⁺ (setoid A) P? ------------------------------------------------------------------------ -- DEPRECATED ------------------------------------------------------------------------ -- Version 0.16 boolFilter-⊆ : ∀ {a} {A : Set a} (p : A → Bool) → (xs : List A) → boolFilter p xs ⊆ xs boolFilter-⊆ _ [] = λ () boolFilter-⊆ p (x ∷ xs) with p x | boolFilter-⊆ p xs ... | false | hyp = there ∘ hyp ... | true | hyp = λ { (here eq) → here eq ; (there ∈boolFilter) → there (hyp ∈boolFilter) } {-# WARNING_ON_USAGE boolFilter-⊆ "Warning: boolFilter was deprecated in v0.15. Please use filter instead." #-}
{ "alphanum_fraction": 0.4715519809, "avg_line_length": 31.8199052133, "ext": "agda", "hexsha": "bc185bb0e5c5ff2a8819e4a7ea35cdb224e873c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2341, "size": 6714 }
{-# OPTIONS --cubical --prop #-} module Issue2487.Infective where
{ "alphanum_fraction": 0.7014925373, "avg_line_length": 16.75, "ext": "agda", "hexsha": "5209f31731741dbaca5638114dc572dc7d23cf22", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2487/Infective.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2487/Infective.agda", "max_line_length": 32, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2487/Infective.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 18, "size": 67 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An equality postulate which evaluates ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Relation.Binary.PropositionalEquality.TrustMe where open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) open import Agda.Builtin.TrustMe -- trustMe {x = x} {y = y} evaluates to refl if x and y are -- definitionally equal. trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y trustMe = primTrustMe -- "Erases" a proof. The original proof is not inspected. The -- resulting proof reduces to refl if the two sides are definitionally -- equal. Note that checking for definitional equality can be slow. erase : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y erase _ = trustMe -- A "postulate with a reduction": postulate[ a ↦ b ] a evaluates to b, -- while postulate[ a ↦ b ] a' gets stuck if a' is not definitionally -- equal to a. This can be used to define a postulate of type (x : A) → B x -- by only specifying the behaviour at B t for some t : A. Introduced in -- -- Alan Jeffrey, Univalence via Agda's primTrustMe again -- 23 January 2015 -- https://lists.chalmers.se/pipermail/agda/2015/007418.html postulate[_↦_] : ∀ {a b} {A : Set a}{B : A → Set b} → (t : A) → B t → (x : A) → B x postulate[ a ↦ b ] a' with trustMe {x = a} {a'} postulate[ a ↦ b ] .a | refl = b ------------------------------------------------------------------------ -- DEPRECATION ------------------------------------------------------------------------ -- Version 0.18 {-# WARNING_ON_USAGE erase "Warning: erase was deprecated in v0.18. Please use the safe function ≡-erase defined in Relation.Binary.PropositionalEquality.WithK instead." #-}
{ "alphanum_fraction": 0.5616061606, "avg_line_length": 34.3018867925, "ext": "agda", "hexsha": "df210fc3303199b3d4d56c18f383cf420b217dd2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_line_length": 101, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PropositionalEquality/TrustMe.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 478, "size": 1818 }
module Issue237 where open import Common.Equality data Unit : Set where unit : Unit f : Unit → Unit f u with u ... | unit = unit postulate eq : ∀ u → f u ≡ unit foo : Unit → Set₁ foo u rewrite eq u = Set -- Bug.agda:20,1-25 -- Not implemented: type checking of with application -- when checking that the expression f u | u has type _35 u
{ "alphanum_fraction": 0.6733524355, "avg_line_length": 15.8636363636, "ext": "agda", "hexsha": "68dfbfc6021dfccfdba5fe02079b65c6f1f6343e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue237.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue237.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue237.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 349 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Monoid where open import Cubical.Algebra.Monoid.Base public
{ "alphanum_fraction": 0.7555555556, "avg_line_length": 27, "ext": "agda", "hexsha": "27c64dfaf92cb7b67237958e7615ab67d8920e52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/Monoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/Monoid.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 34, "size": 135 }
-- {-# OPTIONS -v reify:100 -v syntax.reify:100 #-} module Issue857b where data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x _∋_ : (A : Set) → A → A _ ∋ x = x foo : {A B : Set} {x : ⊥} {y : B} → ((⊥ → A) ∋ λ()) x ≡ ((⊥ → B → A) ∋ λ()) x y foo = refl -- WAS: An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:514 bar : {A B C : Set} {x : ⊥} {y : B} {z : C} → ((⊥ → B → A) ∋ λ()) x y ≡ ((⊥ → C → A) ∋ λ()) x z bar = refl -- WAS: -- .y != .z of type .B -- when checking that the expression refl has type -- ((⊥ → .B → .A) ∋ .Test.absurdLambda) .x .y ≡ -- ((⊥ → .C → .A) ∋ .Test.absurdLambda) .x .z -- Note that z has type C, not B. baz : {A : Set} → _≡_ {A = ⊥ → A} ⊥-elim (λ()) baz = refl -- WAS: An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:51 -- ERROR: ⊥-elim x != (λ ()) x of type .A -- when checking that the expression refl has type ⊥-elim ≡ (λ ())
{ "alphanum_fraction": 0.5299455535, "avg_line_length": 26.2380952381, "ext": "agda", "hexsha": "24766bf50d2b8401b65062f191c532f8821d3ddf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue857b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue857b.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue857b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 453, "size": 1102 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Monoid.Instances.NatPlusBis where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Algebra.Monoid open PlusBis NatPlusBis-Monoid : Monoid ℓ-zero fst NatPlusBis-Monoid = ℕ MonoidStr.ε (snd NatPlusBis-Monoid) = 0 MonoidStr._·_ (snd NatPlusBis-Monoid) = _+'_ MonoidStr.isMonoid (snd NatPlusBis-Monoid) = makeIsMonoid isSetℕ +'-assoc +'-rid +'-lid
{ "alphanum_fraction": 0.7756410256, "avg_line_length": 27.5294117647, "ext": "agda", "hexsha": "c98b5f8511c7ce03f4c2302ca6b95ed520f3cf93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Monoid/Instances/NatPlusBis.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Monoid/Instances/NatPlusBis.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Monoid/Instances/NatPlusBis.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 158, "size": 468 }
module Ints.Properties where open import Ints open import Equality ------------------------------------------------------------------------ -- internal stuffs private ≡→≡ : ∀ {a b} → (+ a ≡ + b) → a ≡ b ≡→≡ refl = refl ≡→≡′ : ∀ {a b} → (-[1+ a ] ≡ -[1+ b ]) → a ≡ b ≡→≡′ refl = refl ≡←≡ : ∀ {a b} → a ≡ b → (+ a ≡ + b) ≡←≡ refl = refl ≡←≡′ : ∀ {a b} → a ≡ b → (-[1+ a ] ≡ -[1+ b ]) ≡←≡′ refl = refl ------------------------------------------------------------------------ -- public aliases eq-int-to-nat : ∀ {a b} → (+ a ≡ + b) → a ≡ b eq-int-to-nat = ≡→≡ eq-neg-int-to-nat : ∀ {a b} → (-[1+ a ] ≡ -[1+ b ]) → a ≡ b eq-neg-int-to-nat = ≡→≡′ eq-nat-to-int : ∀ {a b} → a ≡ b → (+ a ≡ + b) eq-nat-to-int = ≡←≡ eq-neg-nat-to-int : ∀ {a b} → a ≡ b → (-[1+ a ] ≡ -[1+ b ]) eq-neg-nat-to-int = ≡←≡′
{ "alphanum_fraction": 0.3308913309, "avg_line_length": 22.75, "ext": "agda", "hexsha": "77a7154fb794fe9c38e9f70abe2e2b209f75768e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Ints/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Ints/Properties.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Ints/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 360, "size": 819 }
{-# OPTIONS --no-universe-polymorphism #-} module Issue202 where open import Common.Level open import Imports.Test module Test2 {ℓ : Level} (F : Foo ℓ) where -- Test2.agda:4,31-36 -- The metavariable _1 cannot depend on ℓ because it does not depend -- on any variables -- when checking that the expression Foo ℓ has type _1 -- The code is accepted if universe polymorphism is turned on in -- Test2.agda.
{ "alphanum_fraction": 0.7359413203, "avg_line_length": 24.0588235294, "ext": "agda", "hexsha": "68ca5c8f92c9356cb844a19ba5fcd68c9606d723", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue202.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue202.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue202.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 111, "size": 409 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.CircleHSpace open import homotopy.LoopSpaceCircle open import homotopy.Pi2HSusp open import homotopy.IterSuspensionStable -- This summerizes all [πₙ Sⁿ] module homotopy.PinSn where private π1S¹-iso-ℤ : πS 0 ⊙S¹ ≃ᴳ ℤ-group π1S¹-iso-ℤ = ΩS¹-iso-ℤ ∘eᴳ unTrunc-iso ΩS¹-group-structure ΩS¹-is-set private πS-SphereS'-iso-ℤ : ∀ n → πS n (⊙Susp^ n ⊙S¹) ≃ᴳ ℤ-group πS-SphereS'-iso-ℤ 0 = π1S¹-iso-ℤ πS-SphereS'-iso-ℤ 1 = πS 1 ⊙S² ≃ᴳ⟨ Pi2HSusp.π₂-Susp S¹-level S¹-conn ⊙S¹-hSpace ⟩ πS 0 ⊙S¹ ≃ᴳ⟨ πS-SphereS'-iso-ℤ O ⟩ ℤ-group ≃ᴳ∎ πS-SphereS'-iso-ℤ (S (S n)) = πS (S (S n)) (⊙Susp^ (S (S n)) ⊙S¹) ≃ᴳ⟨ Susp^StableSucc.stable ⊙S¹ S¹-conn (S n) (S n) (≤-ap-S $ ≤-ap-S $ *2-increasing n) ⟩ πS (S n) (⊙Susp^ (S n) ⊙S¹) ≃ᴳ⟨ πS-SphereS'-iso-ℤ (S n) ⟩ ℤ-group ≃ᴳ∎ πS-SphereS-iso-ℤ : ∀ n → πS n (⊙Sphere (S n)) ≃ᴳ ℤ-group πS-SphereS-iso-ℤ n = πS-SphereS'-iso-ℤ n ∘eᴳ πS-emap n (⊙Susp^-Susp-split-iso n ⊙S⁰)
{ "alphanum_fraction": 0.5684870188, "avg_line_length": 29.3947368421, "ext": "agda", "hexsha": "9bf8061456b36e73cab5a0a6a2b3dba538965948", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PinSn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PinSn.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PinSn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 571, "size": 1117 }
module InstanceArgumentsBraceSpaces where postulate A B : Set test : {{a : A} } → B
{ "alphanum_fraction": 0.6741573034, "avg_line_length": 14.8333333333, "ext": "agda", "hexsha": "da35a3fa682b9b8430d044d13139e891846284ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/InstanceArgumentsBraceSpaces.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/InstanceArgumentsBraceSpaces.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/InstanceArgumentsBraceSpaces.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 89 }
module Tactic.Nat.Subtract.Auto where open import Prelude open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection.Meta open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Auto open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Subtract.Exp open import Tactic.Nat.Subtract.Reflect open import Tactic.Nat.Subtract.Lemmas open import Tactic.Nat.Less.Lemmas autosub-proof : ∀ eqn ρ → Maybe (⟦ eqn ⟧eqn ρ) autosub-proof (e₁ :≡ e₂) ρ with normSub e₁ == normSub e₂ autosub-proof (e₁ :≡ e₂) ρ | no _ = nothing autosub-proof (e₁ :≡ e₂) ρ | yes eq = just (liftNFSubEq e₁ e₂ ρ (cong (λ n → ⟦ n ⟧sn ρ) eq)) autosub-proof (e₁ :< e₂) ρ with cancel (normSub e₁) (normSub e₂) | simplifySubLess e₁ e₂ ρ autosub-proof (e₁ :< e₂) ρ | [] , (suc n , []) ∷ nf | simp = let sk : SubNF sk = (suc n , []) ∷ nf k = ( n , []) ∷ nf in just $ simp $ LessNat.diff (⟦ k ⟧sns ρ) $ ns-sound sk (atomEnvS ρ) ⟨≡⟩ auto ⟨≡⟩ʳ (λ z → suc (z + 0)) $≡ lem-eval-sns-nS k ρ autosub-proof (e₁ :< e₂) ρ | _ , _ | simp = nothing autosub-tactic : Type → TC Term autosub-tactic t = do ensureNoMetas t just (eqn , Γ) ← termToSubEqn t where nothing → typeError $ strErr "Invalid goal:" ∷ termErr t ∷ [] pure $ getProof (quote cantProve) t $ def (quote autosub-proof) ( vArg (` eqn) ∷ vArg (quotedEnv Γ) ∷ [] )
{ "alphanum_fraction": 0.6416022488, "avg_line_length": 33.0930232558, "ext": "agda", "hexsha": "c245aa48024a4a5cedc379b377d1592a6507edbb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract/Auto.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract/Auto.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract/Auto.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 535, "size": 1423 }
{-# FOREIGN GHC import qualified Issue223 #-} data A : Set data B : Set data A where BA : B → A data B where AB : A → B BB : B {-# COMPILE GHC A = data Issue223.A (Issue223.BA) #-} {-# COMPILE GHC B = data Issue223.B (Issue223.AB | Issue223.BB) #-}
{ "alphanum_fraction": 0.61003861, "avg_line_length": 17.2666666667, "ext": "agda", "hexsha": "a00e31a47e9720b70e50486b21e716f1a359f8f3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue223.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue223.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue223.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 84, "size": 259 }
------------------------------------------------------------------------ -- The Agda standard library -- -- de Bruijn-aware generic traversal of reflected terms. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Category.Applicative using (RawApplicative) open import Category.Monad using (RawMonad) module Leftovers.Everywhere {F : Set → Set} (MF : RawMonad F) where open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.List using (List; []; _∷_; _++_; reverse; length) open import Data.Product using (_×_; _,_) open import Data.String using (String) open import Function using (_∘_) open import Reflection open RawMonad MF ------------------------------------------------------------------------ -- Context representation -- Track both number of variables and actual context, to avoid having to -- compute the length of the context everytime it's needed. record Cxt : Set where constructor _,,_ pattern field len : ℕ context : List (String × Arg Term) private _∷cxt_ : String × Arg Term → Cxt → Cxt e ∷cxt (n ,, Γ) = (suc n ,, (e ∷ Γ)) _++cxt_ : List (String × Arg Term) → Cxt → Cxt es ++cxt (n ,, Γ) = ((length es + n) ,, (es ++ Γ)) ------------------------------------------------------------------------ -- Actions Action : Set → Set Action A = Cxt → A → F A -- A traversal gets to operate on variables, metas, and names. record Actions : Set where field onVar : Action ℕ onMeta : Action Meta onCon : Action Name onDef : Action Name -- Default action: do nothing. defaultActions : Actions defaultActions .Actions.onVar _ = pure defaultActions .Actions.onMeta _ = pure defaultActions .Actions.onCon _ = pure defaultActions .Actions.onDef _ = pure ------------------------------------------------------------------------ -- Traversal functions private module Params (actions : Actions) (everyAction : Action Term) where open Actions actions everywhereTerm : Action Term everywhereTerm' : Action Term everywhereSort : Action Sort everywherePattern : Action Pattern everywhereArgs : Action (List (Arg Term)) everywhereArg : Action (Arg Term) everywherePats : Action (List (Arg Pattern)) everywhereAbs : Arg Term → Action (Abs Term) everywhereClauses : Action Clauses everywhereClause : Action Clause everywhereTel : Action (List (String × Arg Term)) everywhereTerm Γ t = everyAction Γ =<< everywhereTerm' Γ t everywhereTerm' Γ (var x args) = var <$> onVar Γ x ⊛ everywhereArgs Γ args everywhereTerm' Γ (con c args) = con <$> onCon Γ c ⊛ everywhereArgs Γ args everywhereTerm' Γ (def f args) = def <$> onDef Γ f ⊛ everywhereArgs Γ args everywhereTerm' Γ (pat-lam cs args) = pat-lam <$> everywhereClauses Γ cs ⊛ everywhereArgs Γ args everywhereTerm' Γ (pi a b) = pi <$> everywhereArg Γ a ⊛ everywhereAbs a Γ b everywhereTerm' Γ (agda-sort s) = agda-sort <$> everywhereSort Γ s everywhereTerm' Γ (meta x args) = meta <$> onMeta Γ x ⊛ everywhereArgs Γ args everywhereTerm' Γ t@(lit _) = pure t everywhereTerm' Γ t@unknown = pure t everywhereTerm' Γ (lam v t) = lam v <$> everywhereAbs (arg (arg-info v m) unknown) Γ t where m = defaultModality everywhereArg Γ (arg i t) = arg i <$> everywhereTerm Γ t everywhereArgs Γ [] = pure [] everywhereArgs Γ (a ∷ as) = _∷_ <$> everywhereArg Γ a ⊛ everywhereArgs Γ as everywhereAbs ty Γ (abs x t) = abs x <$> everywhereTerm ((x , ty) ∷cxt Γ) t everywhereClauses Γ [] = pure [] everywhereClauses Γ (c ∷ cs) = _∷_ <$> everywhereClause Γ c ⊛ everywhereClauses Γ cs everywhereClause Γ (Clause.clause tel ps t) = Clause.clause <$> everywhereTel Γ tel ⊛ everywherePats Γ′ ps ⊛ everywhereTerm Γ′ t where Γ′ = reverse tel ++cxt Γ everywhereClause Γ (Clause.absurd-clause tel ps) = Clause.absurd-clause <$> everywhereTel Γ tel ⊛ everywherePats Γ′ ps where Γ′ = reverse tel ++cxt Γ everywhereTel Γ [] = pure [] everywhereTel Γ ((x , ty) ∷ tel) = _∷_ ∘ (x ,_) <$> everywhereArg Γ ty ⊛ everywhereTel ((x , ty) ∷cxt Γ) tel everywhereSort Γ (Sort.set t) = Sort.set <$> everywhereTerm Γ t everywhereSort Γ t@(Sort.lit _) = pure t everywhereSort Γ (Sort.prop t) = Sort.prop <$> everywhereTerm Γ t everywhereSort Γ t@(Sort.propLit _) = pure t everywhereSort Γ t@(Sort.inf _) = pure t everywhereSort Γ [email protected] = pure t everywherePattern Γ (Pattern.con c ps) = Pattern.con <$> onCon Γ c ⊛ everywherePats Γ ps everywherePattern Γ (Pattern.dot t) = Pattern.dot <$> everywhereTerm Γ t everywherePattern Γ (Pattern.var x) = Pattern.var <$> onVar Γ x everywherePattern Γ p@(Pattern.lit _) = pure p everywherePattern Γ p@(Pattern.proj _) = pure p everywherePattern Γ (Pattern.absurd x) = Pattern.absurd <$> onVar Γ x everywherePats Γ [] = pure [] everywherePats Γ (arg i p ∷ ps) = _∷_ ∘ arg i <$> everywherePattern Γ p ⊛ everywherePats Γ ps everywhere : (actions : Actions) → (everyAction : Action Term) → Term → F Term everywhere actions every = Params.everywhereTerm actions every (0 ,, [])
{ "alphanum_fraction": 0.6088014981, "avg_line_length": 38.6956521739, "ext": "agda", "hexsha": "dab34e66866625608e525aa164f6e422613fee0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/AgdaLeftovers", "max_forks_repo_path": "src/Leftovers/Everywhere.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/AgdaLeftovers", "max_issues_repo_path": "src/Leftovers/Everywhere.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/AgdaLeftovers", "max_stars_repo_path": "src/Leftovers/Everywhere.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1414, "size": 5340 }
{-# OPTIONS --universe-polymorphism #-} module Reflection where open import Common.Prelude hiding (Unit; module Unit) renaming (Nat to ℕ; module Nat to ℕ) open import Common.Reflection open import Common.Equality open import Agda.Builtin.TrustMe data Id {A : Set}(x : A) : (B : Set) → B → Set where course : Id x A x open import Common.Level set₀ : Type set₀ = sort (lit 0) unCheck : Term → Term unCheck (def x (_ ∷ _ ∷ arg _ t ∷ [])) = t unCheck t = unknown infix 1 _is_of_ data Check {a}{A : Set a}(x : A) : Set where _is_of_ : (t t′ : Term) → Id (primTrustMe {x = unCheck t} {t′}) (t′ ≡ t′) refl → Check x `Check : QName `Check = quote Check test₁ : Check ({A : Set} → A → A) test₁ = quoteGoal t in t is pi (hArg set₀) (abs "A" (pi (vArg (var 0 [])) (abs "_" (var 1 [])))) of course test₂ : (X : Set) → Check (λ (x : X) → x) test₂ X = quoteGoal t in t is lam visible (abs "x" (var 0 [])) of course infixr 5 _`∷_ pattern _`∷_ x xs = con (quote _∷_) (hArg unknown ∷ hArg unknown ∷ vArg x ∷ vArg xs ∷ []) pattern `[] = con (quote []) (hArg unknown ∷ hArg unknown ∷ []) pattern `true = con (quote true) [] pattern `false = con (quote false) [] test₃ : Check (true ∷ false ∷ []) test₃ = quoteGoal t in t is (`true `∷ `false `∷ `[]) of course `List : Term → Term `List A = def (quote List) (hArg (def (quote lzero) []) ∷ vArg A ∷ []) `ℕ = def (quote ℕ) [] `Term : Term `Term = def (quote Term) [] `Type : Term `Type = def (quote Type) [] `Sort : Term `Sort = def (quote Sort) [] test₄ : Check (List ℕ) test₄ = quoteGoal t in t is `List `ℕ of course postulate a : ℕ test₁₄ : Check 1 test₁₄ = quoteGoal t in t is lit (nat 1) of course record R : Set₁ where field A : Set macro RA : Term → TC _ RA goal = bindTC (getDefinition (quote R)) λ where (recordDef _ (vArg A ∷ [])) → unify goal (def A []) _ → typeError (strErr "Impossible" ∷ []) test₁₅ : RA ≡ R.A test₁₅ = refl
{ "alphanum_fraction": 0.5799404171, "avg_line_length": 23.9761904762, "ext": "agda", "hexsha": "5e4cd0be191ef54189b6fadb0f302b4a6697d737", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Reflection.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Reflection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 710, "size": 2014 }
module Data.Real where open import Data.Real.Base public open import Data.Real.Order public
{ "alphanum_fraction": 0.8085106383, "avg_line_length": 15.6666666667, "ext": "agda", "hexsha": "b3c29944dab6d466fa615c66580cabc87a583cdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Data/Real.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Data/Real.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Data/Real.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19, "size": 94 }
module MJ.Examples.While where open import MJ.Examples.Integer open import Prelude open import MJ.Types open import MJ.Classtable.Code Σ open import MJ.Syntax Σ open import MJ.Syntax.Program Σ open import MJ.Semantics Σ Lib open import MJ.Semantics.Values Σ open import Data.List.Any open import Data.List.Membership.Propositional open import Data.Star open import Data.Bool as Bools hiding (_≤?_) open import Relation.Nullary.Decidable -- a simple program that computes 10 using a while loop p₁ : Prog int p₁ = Lib , let x = (here refl) in body ( loc int ◅ asgn x (num 1) ◅ while iop (λ x y → Bools.if ⌊ suc x ≤? y ⌋ then 0 else 1) (var x) (num 10) run ( asgn x (iop (λ x y → x + y) (var x) (num 1)) ) -- test simplest if-then-else and early return from statement ◅ if (num 0) then (ret (var x)) else (ret (num 0)) ◅ ε ) (num 0) test1 : p₁ ⇓⟨ 100 ⟩ (λ {W} (v : Val W int) → v ≡ num 10) test1 = refl
{ "alphanum_fraction": 0.6475409836, "avg_line_length": 25.6842105263, "ext": "agda", "hexsha": "8b3c6467bf4d83949c0e620a4951f02b1437a1db", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Examples/While.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Examples/While.agda", "max_line_length": 88, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Examples/While.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 327, "size": 976 }
{-# OPTIONS --cubical --safe #-} module Function.Biconditional where open import Level open import Relation.Binary open import Path as ≡ using (_;_; cong) open import Function infix 4 _↔_ record _↔_ {a b} (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where constructor _iff_ field fun : A → B inv : B → A open _↔_ public sym-↔ : (A ↔ B) → (B ↔ A) fun (sym-↔ A↔B) = inv A↔B inv (sym-↔ A↔B) = fun A↔B refl-↔ : A ↔ A fun refl-↔ = id inv refl-↔ = id trans-↔ : A ↔ B → B ↔ C → A ↔ C fun (trans-↔ A↔B B↔C) = fun B↔C ∘ fun A↔B inv (trans-↔ A↔B B↔C) = inv A↔B ∘ inv B↔C
{ "alphanum_fraction": 0.5746527778, "avg_line_length": 19.8620689655, "ext": "agda", "hexsha": "b7d9617eee7dcaa23b3975e3c642041059a564e2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function/Biconditional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function/Biconditional.agda", "max_line_length": 64, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function/Biconditional.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 267, "size": 576 }
module Reflexivity where import PolyDepPrelude open PolyDepPrelude using(Bool; True) -- Local reflexivity lref : {X : Set} -> (X -> X -> Bool) -> X -> Set lref _R_ = \x -> True (x R x) -- Reflexive = locally reflexive everywhere data Refl {X : Set} (r : X -> X -> Bool) : Set where refl : ((x : X) -> lref r x) -> Refl r
{ "alphanum_fraction": 0.6146788991, "avg_line_length": 23.3571428571, "ext": "agda", "hexsha": "890120f467507f71197ec36925e7ce94c02433f1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM5/PolyDep/Reflexivity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM5/PolyDep/Reflexivity.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM5/PolyDep/Reflexivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 111, "size": 327 }
{-# OPTIONS --type-in-type #-} module Reactive where open import Prelude infixr 9 _∘ᵗ_ _∘ᵀ_ _∘ᵇ_ _∙_ infixl 9 _∘ʷ_ infix 4 _,ᵀ_ _,ᵗ_ infix 2 _×ᵀ_ -- Coinductive trees will represent protocols of interactions record Tree : Set where coinductive field Branch : Set child : Branch → Tree open Tree constᵀ : Set → Tree constᵀ A .Branch = A constᵀ A .child _ = constᵀ A _×ᵀ_ : Tree → Tree → Tree (p ×ᵀ q) .Branch = p .Branch × q .Branch (p ×ᵀ q) .child (ph , qh) = p .child ph ×ᵀ q .child qh alter : Tree → Tree → Tree alter p q .Branch = p .Branch alter p q .child hp = alter q (p .child hp) alter' = λ A B → alter (constᵀ A) (constᵀ B) -- signals Sig = λ A B → alter' (Maybe A) (Maybe B) NoSig = Sig ⊥ ⊥ OutSig = λ A → Sig A ⊥ InSig = λ A → Sig ⊥ A BiSig = λ A → Sig A A {- p: P₁ P₂ -> P₃ P₄ ... | ^ | ^ v | v | q: Q₁ -> Q₂ Q₃ -> Q₄ ... -} merge : Tree → Tree → Tree merge p q .Branch = p .Branch merge p q .child hp .Branch = q .Branch merge p q .child hp .child hq = merge (q .child hq) (p .child hp) union2 : Tree → Tree → Tree union2 p q .Branch = p .Branch ⊎ q .Branch union2 p q .child (inj₁ ph) with p .child ph ... | r = λ where .Branch → q .Branch .child rh → union2 r (q .child rh) union2 p q .child (inj₂ qh) with q .child qh ... | r = λ where .Branch → p .Branch .child rh → union2 (p .child rh) r -- TODO: express with simpler combinators? union2mb : Tree → Tree → Tree union2mb p q .Branch = Maybe (p .Branch ⊎ q .Branch) union2mb p q .child (just (inj₁ ph)) with p .child ph ... | r = λ where .Branch → q .Branch .child rh → union2mb r (q .child rh) union2mb p q .child (just (inj₂ qh)) with q .child qh ... | r = λ where .Branch → p .Branch .child rh → union2mb (p .child rh) r union2mb p q .child nothing .Branch = ⊤ union2mb p q .child nothing .child _ = union2mb p q ----------------------------- data I/O : Set where I O : I/O -- input and output phases variable p q r s : Tree variable i/o : I/O opposite : I/O → I/O opposite I = O opposite O = I ΠΣ : I/O → (A : Set) → (A → Set) → Set ΠΣ I A P = (a : A) → P a ΠΣ O A P = Σ A P ⟨_⟩ : I/O → (A → A → B) → A → A → B ⟨ I ⟩ = id ⟨ O ⟩ = flip -- an interactive agent which communcates according to the protocol p -- an agent can be called either in input or in output phase record Agent (i/o : I/O) (p : Tree) : Set where coinductive field step : ΠΣ i/o (p .Branch) λ a → Agent (opposite i/o) (p .child a) open Agent _,ᵀ_ : Agent i/o p → Agent i/o q → Agent i/o (p ×ᵀ q) _,ᵀ_ {i/o = I} a b .step (k , l) = a .step k ,ᵀ b .step l _,ᵀ_ {i/o = O} a b .step with a .step | b .step ... | i , j | k , l = (i , k) , (j ,ᵀ l) _∘ᵗ_ : Agent I (alter p q) → Agent I (alter q r) → Agent I (alter p r) (b ∘ᵗ a) .step ph .step with b .step ph .step ... | qh , bt with a .step qh .step ... | rh , at = rh , bt ∘ᵗ at -- stream processors SP = λ A B → Agent I (alter' A B) -- same as Agent I (Sig A B) SPM = λ A B → SP (Maybe A) (Maybe B) arr : (A → B) → SP A B arr f .step x .step = f x , arr f accum : (A → B → B) → B → SP A B accum f b .step a .step with f a b ... | b' = b' , accum f b' maybefy : SP A B → SPM A B maybefy f .step nothing .step = nothing , (maybefy f) maybefy f .step (just a) .step with f .step a .step ... | x , y = just x , maybefy y -- synchronous interaction transformers IT = λ p q → Agent I (merge p q) mapAgent : ⟨ i/o ⟩ IT q p → Agent i/o p → Agent i/o q mapAgent {i/o = I} l i .step hq with l .step hq .step ... | a , l2 = mapAgent l2 (i .step a) mapAgent {i/o = O} l i .step with i .step ... | a , b with l .step a .step ... | c , l2 = c , (mapAgent l2 b) _∘ᵀ_ : IT p q → IT q r → IT p r (b ∘ᵀ a) .step ph .step with b .step ph .step ... | qh , bt with a .step qh .step ... | rh , at = rh , at ∘ᵀ bt _,ᵗ_ : IT p q → IT r s → IT (p ×ᵀ r) (q ×ᵀ s) _,ᵗ_ a b .step (k , l) .step with a .step k .step | b .step l .step ... | c , d | e , f = (c , e) , (d ,ᵗ f) idIT : IT p p idIT .step a .step = a , idIT swapIT : IT (p ×ᵀ q) (q ×ᵀ p) swapIT .step (a , b) .step = (b , a) , swapIT assocIT : ⟨ i/o ⟩ IT ((p ×ᵀ q) ×ᵀ r) (p ×ᵀ (q ×ᵀ r)) assocIT {i/o = I} .step ((a , b) , c) . step = (a , (b , c)) , assocIT {i/o = O} assocIT {i/o = O} .step (a , (b , c)) . step = ((a , b) , c) , assocIT {i/o = I} fstSig : IT (p ×ᵀ Sig A B) p fstSig .step (x , y) .step = x , λ where .step x .step → (x , nothing) , fstSig joinSig : A → B → ⟨ i/o ⟩ IT (⟨ i/o ⟩ Sig A C ×ᵀ ⟨ i/o ⟩ Sig B D) (⟨ i/o ⟩ Sig (A × B) (C × D)) joinSig {i/o = I} a b .step (nothing , nothing) .step = nothing , joinSig {i/o = O} a b joinSig {i/o = I} a b .step (nothing , just y ) .step = just (a , y) , joinSig {i/o = O} a y joinSig {i/o = I} a b .step (just x , nothing) .step = just (x , b) , joinSig {i/o = O} x b joinSig {i/o = I} a b .step (just x , just y ) .step = just (x , y) , joinSig {i/o = O} x y joinSig {i/o = O} a b .step nothing .step = (nothing , nothing) , joinSig {i/o = I} a b joinSig {i/o = O} a b .step (just (x , y)) .step = (just x , just y ) , joinSig {i/o = I} a b noInput : IT (Sig A B) (OutSig A) noInput .step x .step = x , λ where .step y .step → nothing , noInput noOutput : IT (Sig A B) (InSig B) noOutput .step x .step = nothing , λ where .step y .step → y , noOutput mkIT : Agent i/o p → ⟨ i/o ⟩ IT p NoSig mkIT {i/o = I} a .step x .step = nothing , mkIT {i/o = O} (a .step x) mkIT {i/o = O} a .step _ .step with a .step ... | b , c = b , mkIT {i/o = I} c constIT = λ S T A B → IT (alter' S T) (alter' A B) constITM = λ S T A B → IT (Sig S T) (Sig A B) lensIT : Lens S T A B → constIT S T A B lensIT k .step s .step with k s ... | a , bt = a , λ where .step b .step → bt b , lensIT k prismIT : Prism S T A B → constITM S T A B prismIT f = lensIT (prismToLens f) mkIT' : SP S A → SP B T → constIT S T A B mkIT' f g .step s .step with f .step s .step ... | a , cont = a , (mkIT' g cont) isoIT : (S → A) → (B → T) → constIT S T A B isoIT f g = lensIT λ x → (f x) , g -- bidirectional connection Bi = λ p q → Agent I (union2 p q) _∘ᵇ_ : Bi p q → Bi q r → Bi p r (a ∘ᵇ b) .step (inj₁ x) .step with a .step (inj₁ x) .step ... | c , d with b .step (inj₁ c) .step ... | e , f = e , d ∘ᵇ f (a ∘ᵇ b) .step (inj₂ x) .step with b .step (inj₂ x) .step ... | c , d with a .step (inj₂ c) .step ... | e , f = e , f ∘ᵇ d isoBi : Iso A A B B → Bi (constᵀ A) (constᵀ B) isoBi i .step (inj₁ x) .step = (i .proj₁ x) , isoBi i isoBi i .step (inj₂ x) .step = (i .proj₂ x) , isoBi i mmb : Bi p q → Agent I (union2mb p q) mmb x .step nothing .step = _ , mmb x mmb x .step (just (inj₁ y)) .step with x .step (inj₁ y) .step ... | a , b = a , mmb b mmb x .step (just (inj₂ y)) .step with x .step (inj₂ y) .step ... | a , b = a , mmb b entangleBi : IT (Sig A A ×ᵀ Sig B B) (union2mb (constᵀ A) (constᵀ B)) entangleBi .step (nothing , nothing) .step = nothing , λ where .step _ .step → (nothing , nothing) , entangleBi entangleBi .step (just x , nothing) .step = just (inj₁ x) , λ where .step z .step → (nothing , just z) , entangleBi entangleBi .step (nothing , just x) .step = just (inj₂ x) , λ where .step z .step → (just z , nothing) , entangleBi entangleBi .step (just x , just y) .step = nothing , λ where .step _ .step → (nothing , nothing) , entangleBi entangle : IT (Sig A C ×ᵀ Sig C B) (Sig A B) entangle .step (a , c) .step = a , λ where .step b .step → (c , b) , entangle enta : SP A B → IT (Sig A C ×ᵀ Sig C B) NoSig enta x = entangle ∘ᵀ mkIT (maybefy x) entaBi : Bi (constᵀ A) (constᵀ B) → IT (Sig A A ×ᵀ Sig B B) NoSig entaBi x = entangleBi ∘ᵀ mkIT (mmb x) --------------------------------------------------------------------- data Direction : Set where horizontal vertical : Direction data Abled : Set where enabled disabled : Abled data Validity : Set where valid invalid : Validity variable fin : Fin _ variable vec : Vec _ _ variable checked : Bool variable size : ℕ variable name str : String variable en : Abled variable dir : Direction variable val : Validity oppositeᵉ : Abled → Abled oppositeᵉ enabled = disabled oppositeᵉ disabled = enabled oppositeᵛ : Validity → Validity oppositeᵛ valid = invalid oppositeᵛ invalid = valid isEnabled : I/O → Abled → Set isEnabled I enabled = ⊤ isEnabled I disabled = ⊥ isEnabled O _ = ⊤ -- abstract widget data Widget : Set where Button : Abled → String → Widget CheckBox : Abled → Bool → Widget ComboBox : Abled → Vec String n → Fin n → Widget Entry : Abled → (size : ℕ)(name contents : String) → Validity → Widget Label : String → Widget Empty : Widget Container : Direction → Widget → Widget → Widget variable w w₁ w₂ : Widget isInput : Widget → Maybe (Abled × Widget) isInput (Button e x) = just (e , Button (oppositeᵉ e) x) isInput (CheckBox e x) = just (e , CheckBox (oppositeᵉ e) x) isInput (ComboBox e ss i) = just (e , ComboBox (oppositeᵉ e) ss i) isInput (Entry e n s s' v) = just (e , Entry (oppositeᵉ e) n s s' v) isInput _ = nothing isJust : Maybe A → Set isJust = maybe ⊥ (λ _ → ⊤) -- possible edits of a widget (I: by the user; O: by the program) data WidgetEdit : I/O → Widget → Set -- ⟪_⟫ performs the edit ⟪_⟫ : {d : I/O} {a : Widget} (p : WidgetEdit d a) → Widget data WidgetEdit where toggle : {_ : isEnabled i/o en} → WidgetEdit i/o (CheckBox en checked) click : WidgetEdit I (Button enabled str) setLabel : String → WidgetEdit O (Label str) setEntry : {_ : isEnabled i/o en} → String → WidgetEdit i/o (Entry en size name str val) select : {vec : Vec String n}{_ : isEnabled i/o en} → Fin n → WidgetEdit i/o (ComboBox en vec fin) toggleEnable : {_ : isJust (isInput w)} → WidgetEdit O w toggleValidity : WidgetEdit O (Entry en size name str val) replaceBy : Widget → WidgetEdit O w modLeft : WidgetEdit i/o w₁ → WidgetEdit i/o (Container dir w₁ w₂) modRight : WidgetEdit i/o w₂ → WidgetEdit i/o (Container dir w₁ w₂) addToLeft addToRight : Direction → Widget → WidgetEdit O w removeLeft removeRight : WidgetEdit O (Container dir w₁ w₂) _∙_ : (p : WidgetEdit O w) → WidgetEdit O ⟪ p ⟫ → WidgetEdit O w ⟪ replaceBy x ⟫ = x ⟪ modLeft {dir = dir} {w₂ = w₂} p ⟫ = Container dir ⟪ p ⟫ w₂ ⟪ modRight {dir = dir} {w₁ = w₁} p ⟫ = Container dir w₁ ⟪ p ⟫ ⟪ toggle {en = en} {checked} ⟫ = CheckBox en (not checked) ⟪ select {en = en} {vec = vec} fin ⟫ = ComboBox en vec fin ⟪ setEntry {_} {en} {size} {name} {_} {val} {_} str ⟫ = Entry en size name str val ⟪ toggleValidity {en} {size} {name} {str} {val} ⟫ = Entry en size name str (oppositeᵛ val) ⟪ click {s} ⟫ = Button enabled s ⟪ setLabel l ⟫ = Label l ⟪ toggleEnable {w} {e} ⟫ with isInput w | e ... | just (_ , w') | tt = w' -- note: the JS backend cannot erase 'e', maybe because of the pattern maching on tt here ... | nothing | () ⟪ addToLeft {r} dir w ⟫ = Container dir w r ⟪ addToRight {l} dir w ⟫ = Container dir l w ⟪ removeLeft {w₂ = w₂} ⟫ = w₂ ⟪ removeRight {w₁ = w₁} ⟫ = w₁ ⟪ p ∙ q ⟫ = ⟪ q ⟫ --------------------------------------- pw : I/O → Widget → Tree pw i/o w .Branch = Maybe (WidgetEdit i/o w) pw i/o w .child e = pw (opposite i/o) (maybe w ⟪_⟫ e) -- GUI component (reactive widget) WComp' = λ i/o w p → ⟨ i/o ⟩ IT (pw i/o w) p WComp = λ i/o w A B → WComp' i/o w (⟨ i/o ⟩ Sig A B) WC = λ p → Σ Widget λ w → WComp' I w p processMain : WC (Sig A B) → Agent O (pw O Empty) processMain (w , x) .step = just (replaceBy w) , mapAgent {i/o = I} (x ∘ᵀ noInput ∘ᵀ noOutput) (arr id) -- enforcing no input ⇒ no output ease : WComp i/o w A B → WComp i/o w A B ease {i/o = I} b .step nothing .step = nothing , λ where .step x .step → nothing , ease {i/o = I} b ease {i/o = I} b .step (just z) .step with b .step (just z) .step ... | x , y = x , ease {i/o = O} y ease {i/o = O} b .step x .step with b .step x .step ... | c , d = c , ease {i/o = I} d ease' : WC (Sig A B) → WC (Sig A B) ease' (_ , x) = _ , ease {i/o = I} x _∘ʷ_ : WC p → IT p q → WC q (_ , x) ∘ʷ y = (_ , x ∘ᵀ y) ---------------------------------------------------------- button : ∀ i/o → WComp i/o (Button enabled str) ⊤ ⊥ button I .step nothing .step = nothing , button O button I .step (just click) .step = just _ , button O button O .step _ .step = nothing , button I button' : String → WC (OutSig ⊤) button' s = _ , button {s} I checkbox : ∀ i/o → WComp i/o (CheckBox enabled checked) Bool Bool checkbox I .step nothing .step = nothing , checkbox O checkbox {b} I .step (just toggle) .step = just (not b) , checkbox O checkbox O .step nothing .step = nothing , checkbox I checkbox {b} O .step (just b') .step with b == b' ... | true = nothing , checkbox I ... | false = just toggle , checkbox I checkbox' : Bool → WC (BiSig Bool) checkbox' b = _ , checkbox {b} I comboBox : ∀ {vec : Vec String n} i/o → WComp i/o (ComboBox enabled vec fin) (Fin n) (Fin n) comboBox I .step nothing .step = nothing , comboBox O comboBox I .step (just (select i)) .step = just i , comboBox O comboBox O .step nothing .step = nothing , comboBox I comboBox O .step (just i) .step = just (select i) , comboBox I comboBox' : (vec : Vec String n)(fin : Fin n) → WC (Sig (Fin n) (Fin n)) comboBox' vec fin = _ , comboBox {fin = fin}{vec = vec} I label : ∀ i/o → WComp i/o (Label str) ⊥ String label I .step nothing .step = nothing , label O label I .step (just ()) label O .step nothing .step = nothing , label I label O .step (just m) .step = just (setLabel m) , label I label' : String → WC (InSig String) label' n = _ , label {n} I label'' = λ n → label' n -- ∘ʷ discard -- todo: refactoring (use less cases) entry : Bool → ∀ i/o → WComp' i/o (Entry en size name str val) (⟨ i/o ⟩ Sig String (Maybe String) ×ᵀ ⟨ i/o ⟩ Sig ⊥ ⊤) entry _ I .step nothing .step = (nothing , nothing) , entry false O entry _ I .step (just (setEntry s)) .step = (just s , nothing) , entry true O entry {val = v} v' O .step (ii , td) .step with td | ii | v | v' ... | nothing | nothing | invalid | true = just toggleValidity , entry false I ... | nothing | just nothing | valid | _ = just toggleValidity , entry false I ... | nothing | just (just ss) | valid | _ = just (setEntry ss) , entry false I ... | nothing | just (just ss) | invalid | _ = just (setEntry ss ∙ toggleValidity) , entry false I ... | nothing | _ | _ | _ = nothing , entry false I ... | just _ | nothing | invalid | true = just (toggleEnable ∙ toggleValidity) , entry false I ... | just _ | just nothing | valid | _ = just (toggleEnable ∙ toggleValidity) , entry false I ... | just _ | just (just ss) | valid | _ = just (toggleEnable ∙ setEntry ss) , entry false I ... | just _ | just (just ss) | invalid | _ = just (toggleEnable ∙ setEntry ss ∙ toggleValidity) , entry false I ... | just _ | _ | _ | _ = just toggleEnable , entry false I entryF : ℕ → Abled → String → WC (Sig String (Maybe String) ×ᵀ InSig ⊤) entryF size en name = _ , entry {en} {size} {name} {""} {valid} false I container' : ∀ i/o → WComp' i/o (Container dir w₁ w₂) (pw i/o w₁ ×ᵀ pw i/o w₂) container' I .step nothing .step = (nothing , nothing) , container' O container' I .step (just (modLeft e)) .step = (just e , nothing) , container' O container' I .step (just (modRight e)) .step = (nothing , just e) , container' O container' O .step (nothing , nothing) .step = nothing , container' I container' O .step (just x , nothing) .step = just (modLeft x) , container' I container' O .step (nothing , just y) .step = just (modRight y) , container' I container' O .step (just x , just y) .step = just (modLeft x ∙ modRight y) , container' I container : (dir : Direction) → WComp' I w₁ r → WComp' I w₂ s → WComp' I (Container dir w₁ w₂) (r ×ᵀ s) container _ p q = container' I ∘ᵀ (p ,ᵗ q) fc : Direction → WC p → WC (Sig C D) → WC p fc dir (_ , b) (_ , d) = _ , container' {dir} I ∘ᵀ ({-ease {I}-} b ,ᵗ ease {i/o = I} d) ∘ᵀ fstSig infixr 3 _<->_ infixr 4 _<|>_ _<|>_ : WC p → WC (Sig C D) → WC p _<|>_ = fc horizontal _<->_ : WC p → WC (Sig C D) → WC p _<->_ = fc vertical infix 5 _⟦_⟧_ _⟦_⟧_ : WC p → IT (p ×ᵀ q) r → WC q → WC r (_ , b) ⟦ t ⟧ (_ , d) = _ , container' {horizontal} I ∘ᵀ (b ,ᵗ d) ∘ᵀ t entry'' : Abled → ℕ → String → WC (Sig String (Maybe String) ×ᵀ InSig ⊤) entry'' en len name = entryF len en name ⟦ fstSig ⟧ label' name entry' = λ len name → entry'' enabled len name ∘ʷ fstSig addLabel : String → WC p → WC p addLabel s x = x ⟦ fstSig ⟧ label'' s --------------------------------------------------------------------------------------------------------------- counter = λ n → label' (showNat n) ⟦ swapIT ∘ᵀ enta (arr (const 1) ∘ᵗ accum _+_ n ∘ᵗ arr showNat) ⟧ button' "Count" counter' = λ f b n → checkbox' b ∘ʷ noInput ⟦ enta (arr f ∘ᵗ accum _+_ n ∘ᵗ arr showNat) ⟧ label' (showNat n) floatEntry = λ s → entry' 4 s ∘ʷ prismIT floatPrism dateEntry = λ en s → entry'' en 4 s ∘ʷ (prismIT floatPrism ,ᵗ idIT) showDates : (Float × Float) → String showDates (a , b) = primStringAppend (primShowFloat a) (primStringAppend " -- " (primShowFloat b)) main = processMain ( label' "count clicks:" <|> counter 0 <-> label' "count checks:" <|> counter' (if_then 1 else 0) false 0 <-> label' "count checks and unchecks:" <|> counter' (const 1) false 0 <-> label' "count unchecks:" <|> counter' (if_then 0 else 1) false 0 <-> label' "copy input to label:" <|> entry' 10 "" ∘ʷ noInput ⟦ enta (arr id) ⟧ label' "" <-> label' "converter:" <|> floatEntry "Celsius" ⟦ entaBi (isoBi (mulIso 1.8) ∘ᵇ isoBi (plusIso 32.0)) ⟧ floatEntry "Fahrenheit" <-> label' "flight booker (unfinished):" <|> ((comboBox' ("one-way" ∷ "return" ∷ []) zero ⟦ (mkIT' (arr ( maybe nothing (const (just _)) -- mapMaybe (const _) cannot be used because Agda bug #3380 )) (arr id) ,ᵗ (assocIT {i/o = O} ∘ᵀ swapIT)) ∘ᵀ assocIT {i/o = O} ∘ᵀ (swapIT ∘ᵀ entangle ,ᵗ joinSig {i/o = I} 0.0 0.0) ∘ᵀ (swapIT ∘ᵀ fstSig) ⟧ (dateEntry enabled "start date" ∘ʷ fstSig ⟦ idIT ⟧ dateEntry disabled "return date")) ∘ʷ noInput) ⟦ {-(isoIT (showDates) (const nothing) ,ᵗ idIT) ∘ᵀ entangle-} enta (arr showDates) ⟧ (label' "") )
{ "alphanum_fraction": 0.5776045358, "avg_line_length": 37.2825203252, "ext": "agda", "hexsha": "8355bc84421089c995e111b582bae692ce3c1106", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "divipp/frp_agda", "max_forks_repo_path": "Reactive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "divipp/frp_agda", "max_issues_repo_path": "Reactive.agda", "max_line_length": 123, "max_stars_count": 21, "max_stars_repo_head_hexsha": "ac7e1758c86b48ff5d38797b61078b3085a4389d", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "divipp/frp_agda", "max_stars_repo_path": "Reactive.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:32:32.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-08T08:51:59.000Z", "num_tokens": 6883, "size": 18343 }
import SOAS.Families.Core -- Various properties of context map operations module SOAS.ContextMaps.Properties {T : Set} (open SOAS.Families.Core {T}) (𝒳 : Familyₛ) where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.ContextMaps.CategoryOfRenamings {T} open import SOAS.ContextMaps.Combinators open import Categories.Functor.Bifunctor open import Categories.Object.Initial open import Categories.Object.Coproduct open import Categories.Category.Cocartesian open import Categories.Category.Equivalence using (StrongEquivalence) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) renaming (refl to NI-refl) private variable Γ Δ Θ Ξ : Ctx α : T -- Copairing and injection copair∘i₁ : {σ : Γ ~[ 𝒳 ]↝ Θ}{ς : Δ ~[ 𝒳 ]↝ Θ} (v : ℐ α Γ) → copair 𝒳 σ ς (∔.i₁ v) ≡ σ v copair∘i₁ new = refl copair∘i₁ {σ = σ} (old v) = copair∘i₁ {σ = σ ∘ old} v copair∘i₂ : {σ : Γ ~[ 𝒳 ]↝ Θ}{ς : Δ ~[ 𝒳 ]↝ Θ} (v : ℐ α Δ) → copair 𝒳 σ ς (∔.i₂ {Γ} v) ≡ ς v copair∘i₂ {Γ = ∅} v = refl copair∘i₂ {Γ = α ∙ Γ} {σ = σ} v = copair∘i₂ {σ = σ ∘ old} v -- Push function into copairing f∘copair : (𝒳 {𝒴} : Familyₛ) (f : Θ ~[ 𝒳 ➔ 𝒴 ]↝ Ξ)(σ : Γ ~[ 𝒳 ]↝ Θ)(ς : Δ ~[ 𝒳 ]↝ Θ) (v : ℐ α (Γ ∔ Δ)) → f (copair 𝒳 σ ς v) ≡ copair 𝒴 (f ∘ σ) (f ∘ ς) v f∘copair {Γ = ∅} 𝒳 f σ ς v = refl f∘copair {Γ = α ∙ Γ} 𝒳 f σ ς new = refl f∘copair {Γ = α ∙ Γ} 𝒳 f σ ς (old v) = f∘copair 𝒳 f (σ ∘ old) ς v
{ "alphanum_fraction": 0.6255088195, "avg_line_length": 32.7555555556, "ext": "agda", "hexsha": "ae779b551173ace9ee5da9b78ebe453bd9752368", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "SOAS/ContextMaps/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "SOAS/ContextMaps/Properties.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "SOAS/ContextMaps/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 649, "size": 1474 }
open import Data.Sum open import Data.Fin open import Data.Product open import Data.Maybe open import Signature Σ-N∞ : Sig Σ-N∞ = record { ∥_∥ = Fin 2 ; ar = Σ-N∞-ar } where Σ-N∞-ar : Fin 2 → Set Σ-N∞-ar zero = Fin 0 Σ-N∞-ar (suc zero) = Fin 1 Σ-N∞-ar (suc (suc ())) D-N∞ : Set D-N∞ = Fin 1 open import MixedTest Σ-N∞ D-N∞ as LP-N∞ renaming (Term to N∞μ; CoTerm to N∞) stop' : N∞μ stop' = cons (# 0 , λ()) step' : N∞ → N∞μ step' x = (cons (# 1 , (λ _ → inj₂ x))) -- Immediate stop -> 0 stop : N∞ destr stop zero = just (inj₁ stop') destr stop (suc ()) -- Do a step -> successor succ : N∞ → N∞ destr (succ x) zero = just (inj₁ (step' x)) destr (succ x) (suc ()) -- Not actually in N∞ foo : N∞ destr foo x = nothing
{ "alphanum_fraction": 0.5710455764, "avg_line_length": 19.1282051282, "ext": "agda", "hexsha": "ea2ced9a31e76aaa9d16fe663ce5704ef7067e19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP/ExampleMixedTest.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP/ExampleMixedTest.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP/ExampleMixedTest.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 327, "size": 746 }
module Base.Extensionality where open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_) -- Postualting extensionality is consistent with agdas underlying theory. postulate ext : ∀ {ℓ ℓ′ : Level} {A : Set ℓ} {B : A → Set ℓ′} {f g : (x : A) → B x} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g
{ "alphanum_fraction": 0.5394402036, "avg_line_length": 32.75, "ext": "agda", "hexsha": "d88add905e5c89a007be3e506efa2a9dbdff21ae", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Extensionality.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Extensionality.agda", "max_line_length": 75, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Extensionality.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 115, "size": 393 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Magma.Construct.Unit where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Algebra.Magma open import Cubical.Data.Unit _◯_ : Op₂ ⊤ _ ◯ _ = tt ⊤-isMagma : IsMagma ⊤ _◯_ ⊤-isMagma = record { is-set = isSet⊤ } ⊤-Magma : Magma ℓ-zero ⊤-Magma = record { isMagma = ⊤-isMagma }
{ "alphanum_fraction": 0.7067669173, "avg_line_length": 21, "ext": "agda", "hexsha": "1a38e91cc2ea9ffc047bcafb388e8ec25af2e608", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Unit.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 147, "size": 399 }
------------------------------------------------------------------------ -- A monad-like structure ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Delay-monad.Sized.Monad where open import Prelude open import Prelude.Size open import Delay-monad.Sized open import Delay-monad.Sized.Bisimilarity ------------------------------------------------------------------------ -- Monadic combinators -- Return. return : ∀ {i a} {A : Size → Type a} → A i → Delay A i return = now -- Map. Note the function argument's type. map : ∀ {i a b} {A : Size → Type a} {B : Size → Type b} → ({j : Size< (ssuc i)} → A j → B j) → Delay A i → Delay B i map f (now x) = now (f x) map f (later x) = later λ { .force → map f (force x) } -- Join. join : ∀ {i a} {A : Size → Type a} → Delay (Delay A) i → Delay A i join (now x) = x join (later x) = later λ { .force → join (force x) } -- Bind. Note the function argument's type. infixl 5 _>>=_ _>>=_ : ∀ {i a b} {A : Size → Type a} {B : Size → Type b} → Delay A i → ({j : Size< (ssuc i)} → A j → Delay B j) → Delay B i x >>= f = join (map f x) ------------------------------------------------------------------------ -- Monad laws left-identity : ∀ {a b} {A : Size → Type a} {B : Size → Type b} x (f : ∀ {i} → A i → Delay B i) → return x >>= f ∼ f x left-identity x f = reflexive (f x) right-identity : ∀ {a i} {A : Size → Type a} (x : Delay A ∞) → [ i ] x >>= return ∼ x right-identity (now x) = now right-identity (later x) = later λ { .force → right-identity (force x) } associativity : ∀ {a b c i} {A : Size → Type a} {B : Size → Type b} {C : Size → Type c} → (x : Delay A ∞) (f : ∀ {i} → A i → Delay B i) (g : ∀ {i} → B i → Delay C i) → [ i ] x >>= (λ x → f x >>= g) ∼ x >>= f >>= g associativity (now x) f g = reflexive (f x >>= g) associativity (later x) f g = later λ { .force → associativity (force x) f g } ------------------------------------------------------------------------ -- The functions map, join and _>>=_ preserve strong and weak -- bisimilarity and expansion map-cong : ∀ {k i a b} {A : Size → Type a} {B : Size → Type b} (f : ∀ {i} → A i → B i) {x y : Delay A ∞} → [ i ] x ⟨ k ⟩ y → [ i ] map f x ⟨ k ⟩ map f y map-cong f now = now map-cong f (later p) = later λ { .force → map-cong f (force p) } map-cong f (laterˡ p) = laterˡ (map-cong f p) map-cong f (laterʳ p) = laterʳ (map-cong f p) join-cong : ∀ {k i a} {A : Size → Type a} {x y : Delay (Delay A) ∞} → [ i ] x ⟨ k ⟩ y → [ i ] join x ⟨ k ⟩ join y join-cong now = reflexive _ join-cong (later p) = later λ { .force → join-cong (force p) } join-cong (laterˡ p) = laterˡ (join-cong p) join-cong (laterʳ p) = laterʳ (join-cong p) infixl 5 _>>=-cong_ _>>=-cong_ : ∀ {k i a b} {A : Size → Type a} {B : Size → Type b} {x y : Delay A ∞} {f g : ∀ {i} → A i → Delay B i} → [ i ] x ⟨ k ⟩ y → (∀ z → [ i ] f z ⟨ k ⟩ g z) → [ i ] x >>= f ⟨ k ⟩ y >>= g now >>=-cong q = q _ later p >>=-cong q = later λ { .force → force p >>=-cong q } laterˡ p >>=-cong q = laterˡ (p >>=-cong q) laterʳ p >>=-cong q = laterʳ (p >>=-cong q) ------------------------------------------------------------------------ -- A lemma -- The function map can be expressed using _>>=′_ and now. map∼>>=-now : ∀ {i a b} {A : Size → Type a} {B : Size → Type b} {f : ∀ {i} → A i → B i} (x : Delay A ∞) → [ i ] map f x ∼ x >>= now ∘ f map∼>>=-now (now x) = now map∼>>=-now (later x) = later λ { .force → map∼>>=-now (x .force) }
{ "alphanum_fraction": 0.4471897909, "avg_line_length": 32.592920354, "ext": "agda", "hexsha": "f721a318ab07c9a3079937a31273543a41da0414", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Sized/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Sized/Monad.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Sized/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1257, "size": 3683 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Instance.Setoids where open import Level open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Function.Equality open import Relation.Binary using (Setoid) open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Category.Cartesian open import Categories.Category.Instance.SingletonSet module _ {o ℓ} where Setoids-Cartesian : Cartesian (Setoids o ℓ) Setoids-Cartesian = record { terminal = SingletonSetoid-⊤ ; products = record { product = λ {A B} → let module A = Setoid A module B = Setoid B in record { A×B = ×-setoid A B -- the stdlib doesn't provide projections! ; π₁ = record { _⟨$⟩_ = proj₁ ; cong = proj₁ } ; π₂ = record { _⟨$⟩_ = proj₂ ; cong = proj₂ } ; ⟨_,_⟩ = λ f g → record { _⟨$⟩_ = λ x → f ⟨$⟩ x , g ⟨$⟩ x ; cong = λ eq → cong f eq , cong g eq } ; project₁ = λ {_ h i} eq → cong h eq ; project₂ = λ {_ h i} eq → cong i eq ; unique = λ {W h i j} eq₁ eq₂ eq → A.sym (eq₁ (Setoid.sym W eq)) , B.sym (eq₂ (Setoid.sym W eq)) } } } module Setoids-Cartesian = Cartesian Setoids-Cartesian open Setoids-Cartesian renaming (monoidal to Setoids-Monoidal) public
{ "alphanum_fraction": 0.5767195767, "avg_line_length": 31.5, "ext": "agda", "hexsha": "9642b25bb77fc8a19f3094667e9c4ecd14e1676b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/Setoids.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 420, "size": 1512 }
{-# OPTIONS --without-K #-} module Data.Inductive.Higher.Interval where open import Relation.Equality open import Relation.Path.Operation -- The interval, which we denote I, is perhaps an even simpler higher inductive type than the -- circle generated by: module Interval where private data #I : Set where #0 : #I #1 : #I I : Set I = #I -- A point 0ᵢ 0ᵢ : I 0ᵢ = #0 -- A point 1₁ 1ᵢ : I 1ᵢ = #1 postulate -- A path segment path-seg : 0ᵢ ≡ 1ᵢ -- "The recursion principle for the interval says that given a type B along with interval-rec : ∀ {b} {B : Set b} → (b₀ b₁ : B) → -- points b₀, b₁ and (p : b₀ ≡ b₁) → -- a path b₀ ≡ b₁ (i : I) → B -- there is a function f : I → B such that interval-rec b₀ b₁ p #0 = b₀ -- f(0ᵢ) ≡ b₀ interval-rec b₀ b₁ p #1 = b₁ -- f(1ᵢ) ≡ b₁" -- The induction principle says that given P : I → U along with interval-ind : ∀ {b} (P : I → Set b) (b₀ : P 0ᵢ) → -- a point b₀ : P(0ᵢ) (b₁ : P 1ᵢ) → -- a point b₁ : P(1ᵢ) and (p : transport {_}{_}{I}{P} path-seg b₀ ≡ b₁) → ∀ i → P i -- there is a function f : Π(x:I) P(x) such that interval-ind P b₀ b₁ p #0 = b₀ -- f(0ᵢ) ≡ b₀ interval-ind P b₀ b₁ p #1 = b₁ -- f(1ᵢ) ≡ b₁" open Interval public
{ "alphanum_fraction": 0.5201149425, "avg_line_length": 29.6170212766, "ext": "agda", "hexsha": "003a76380569ed7af22aa9c984585eb56c1856cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Data/Inductive/Higher/Interval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Data/Inductive/Higher/Interval.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Data/Inductive/Higher/Interval.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 518, "size": 1392 }
module Haskell.Prim.Either where open import Haskell.Prim open import Haskell.Prim.Bool -------------------------------------------------- -- Either data Either (a b : Set) : Set where Left : a → Either a b Right : b → Either a b either : (a → c) → (b → c) → Either a b → c either f g (Left x) = f x either f g (Right y) = g y testBool : (b : Bool) → Either (IsFalse b) (IsTrue b) testBool false = Left itsFalse testBool true = Right itsTrue
{ "alphanum_fraction": 0.576754386, "avg_line_length": 21.7142857143, "ext": "agda", "hexsha": "c6a7c84d2f36c755ea034c000c2ab917cc791c26", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Either.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Either.agda", "max_line_length": 53, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Either.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 139, "size": 456 }
module Rat where open import Data.Empty open import Data.Unit import Data.Sign as S open import Data.String open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Coprimality renaming (sym to symCoprime) open import Data.Nat.GCD open import Data.Nat.Show renaming (show to ℕshow) open import Data.Nat.Divisibility open import Data.Integer hiding (_-_ ; -_) renaming (_+_ to _ℤ+_ ; _*_ to _ℤ*_ ; _≟_ to _ℤ≟_ ; show to ℤshow) open import Data.Integer.Properties open import Data.Rational open import Data.Product open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality open ≡-Reasoning infix 8 -_ 1/_ infixl 7 _*_ _/_ infixl 6 _-_ _+_ ------------------------------------------------------------------------------ -- Two lemmas to help with operations on rationals NonZero : ℕ → Set NonZero 0 = ⊥ NonZero (suc _) = ⊤ -- normalize takes two natural numbers, say 6 and 21 and their gcd 3, and -- returns them normalized as 2 and 7 and a proof that they are coprime normalize : ∀ {m n g} → {n≢0 : NonZero n} → {g≢0 : NonZero g} → GCD m n g → Σ[ p ∈ ℕ ] Σ[ q ∈ ℕ ] False (q ℕ.≟ 0) × Coprime p q normalize {m} {n} {0} {_} {()} _ normalize {m} {n} {ℕ.suc g} {_} {_} G with Bézout.identity G normalize {m} {.0} {ℕ.suc g} {()} {_} (GCD.is (divides p m≡pg' , divides 0 refl) _) | _ normalize {m} {n} {ℕ.suc g} {_} {_} (GCD.is (divides p m≡pg' , divides (ℕ.suc q) n≡qg') _) | Bézout.+- x y eq = (p , ℕ.suc q , tt , Bézout-coprime {p} {ℕ.suc q} {g} (Bézout.+- x y (begin ℕ.suc g ℕ.+ y ℕ.* (ℕ.suc q ℕ.* ℕ.suc g) ≡⟨ cong (λ h → ℕ.suc g ℕ.+ y ℕ.* h) (sym n≡qg') ⟩ ℕ.suc g ℕ.+ y ℕ.* n ≡⟨ eq ⟩ x ℕ.* m ≡⟨ cong (λ h → x ℕ.* h) m≡pg' ⟩ x ℕ.* (p ℕ.* ℕ.suc g) ∎))) normalize {m} {n} {ℕ.suc g} {_} {_} (GCD.is (divides p m≡pg' , divides (ℕ.suc q) n≡qg') _) | Bézout.-+ x y eq = (p , ℕ.suc q , tt , Bézout-coprime {p} {ℕ.suc q} {g} (Bézout.-+ x y (begin ℕ.suc g ℕ.+ x ℕ.* (p ℕ.* ℕ.suc g) ≡⟨ cong (λ h → ℕ.suc g ℕ.+ x ℕ.* h) (sym m≡pg') ⟩ ℕ.suc g ℕ.+ x ℕ.* m ≡⟨ eq ⟩ y ℕ.* n ≡⟨ cong (λ h → y ℕ.* h) n≡qg' ⟩ y ℕ.* (ℕ.suc q ℕ.* ℕ.suc g) ∎))) -- a version of gcd that returns a proof that the result is non-zero given -- that one of the inputs is non-zero gcd≢0 : (m n : ℕ) → {m≢0 : NonZero m} → ∃ λ d → GCD m n d × NonZero d gcd≢0 m n {m≢0} with gcd m n gcd≢0 m n {m≢0} | (0 , GCD.is (0|m , _) _) with 0∣⇒≡0 0|m gcd≢0 .0 n {()} | (0 , GCD.is (0|m , _) _) | refl gcd≢0 m n {_} | (ℕ.suc d , G) = (ℕ.suc d , G , tt) ------------------------------------------------------------------------------ -- Operations on rationals: unary -, reciprocal, multiplication, addition -- unary negation -- -- Andreas Abel says: Agda's type-checker is incomplete when it has to handle -- types with leading hidden quantification, such as the ones of Coprime m n -- and c. A work around is to use hidden abstraction explicitly. In your -- case, giving λ {i} -> c works. Not pretty, but unavoidable until we -- improve on the current heuristics. I recorded this as a bug -- http://code.google.com/p/agda/issues/detail?id=1079 -_ : ℚ → ℚ -_ p with ℚ.numerator p | ℚ.denominator-1 p | toWitness (ℚ.isCoprime p) ... | -[1+ n ] | d | c = (+ ℕ.suc n ÷ ℕ.suc d) {fromWitness (λ {i} → c)} ... | + 0 | d | _ = p ... | + ℕ.suc n | d | c = (-[1+ n ] ÷ ℕ.suc d) {fromWitness (λ {i} → c)} -- reciprocal: requires a proof that the numerator is not zero 1/_ : (p : ℚ) → {n≢0 : NonZero ∣ ℚ.numerator p ∣} → ℚ 1/_ p {n≢0} with ℚ.numerator p | ℚ.denominator-1 p | toWitness (ℚ.isCoprime p) 1/_ p {()} | + 0 | d | c ... | + (ℕ.suc n) | d | c = ((S.+ ◃ ℕ.suc d) ÷ ℕ.suc n) {fromWitness (λ {i} → subst (λ h → Coprime h (ℕ.suc n)) (sym (abs-◃ S.+ (ℕ.suc d))) (symCoprime c))} ... | -[1+ n ] | d | c = ((S.- ◃ ℕ.suc d) ÷ ℕ.suc n) {fromWitness (λ {i} → subst (λ h → Coprime h (ℕ.suc n)) (sym (abs-◃ S.- (ℕ.suc d))) (symCoprime c))} -- multiplication private helper* : (n₁ : ℤ) → (d₁ : ℕ) → (n₂ : ℤ) → (d₂ : ℕ) → {n≢0 : NonZero ∣ n₁ ℤ* n₂ ∣} → {d≢0 : NonZero (d₁ ℕ.* d₂)} → ℚ helper* n₁ d₁ n₂ d₂ {n≢0} {d≢0} = let n = n₁ ℤ* n₂ d = d₁ ℕ.* d₂ (g , G , g≢0) = gcd≢0 ∣ n ∣ d {n≢0} (nn , nd , nd≢0 , nc) = normalize {∣ n ∣} {d} {g} {d≢0} {g≢0} G in ((sign n ◃ nn) ÷ nd) {fromWitness (λ {i} → subst (λ h → Coprime h nd) (sym (abs-◃ (sign n) nn)) nc)} {nd≢0} _*_ : ℚ → ℚ → ℚ p₁ * p₂ with ℚ.numerator p₁ | ℚ.numerator p₂ ... | + 0 | _ = + 0 ÷ 1 ... | _ | + 0 = + 0 ÷ 1 ... | + ℕ.suc n₁ | + ℕ.suc n₂ = helper* (+ ℕ.suc n₁) (ℕ.suc (ℚ.denominator-1 p₁)) (+ ℕ.suc n₂) (ℕ.suc (ℚ.denominator-1 p₂)) ... | + ℕ.suc n₁ | -[1+ n₂ ] = helper* (+ ℕ.suc n₁) (ℕ.suc (ℚ.denominator-1 p₁)) -[1+ n₂ ] (ℕ.suc (ℚ.denominator-1 p₂)) ... | -[1+ n₁ ] | + ℕ.suc n₂ = helper* -[1+ n₁ ] (ℕ.suc (ℚ.denominator-1 p₁)) (+ ℕ.suc n₂) (ℕ.suc (ℚ.denominator-1 p₂)) ... | -[1+ n₁ ] | -[1+ n₂ ] = helper* -[1+ n₁ ] (ℕ.suc (ℚ.denominator-1 p₁)) -[1+ n₂ ] (ℕ.suc (ℚ.denominator-1 p₂)) -- addition private helper+ : (n : ℤ) → (d : ℕ) → {d≢0 : NonZero d} → ℚ helper+ (+ 0) d {d≢0} = + 0 ÷ 1 helper+ (+ ℕ.suc n) d {d≢0} = let (g , G , g≢0) = gcd≢0 ∣ + ℕ.suc n ∣ d {tt} (nn , nd , nd≢0 , nc) = normalize {∣ + ℕ.suc n ∣} {d} {g} {d≢0} {g≢0} G in ((S.+ ◃ nn) ÷ nd) {fromWitness (λ {i} → subst (λ h → Coprime h nd) (sym (abs-◃ S.+ nn)) nc)} {nd≢0} helper+ -[1+ n ] d {d≢0} = let (g , G , g≢0) = gcd≢0 ∣ -[1+ n ] ∣ d {tt} (nn , nd , nd≢0 , nc) = normalize {∣ -[1+ n ] ∣} {d} {g} {d≢0} {g≢0} G in ((S.- ◃ nn) ÷ nd) {fromWitness (λ {i} → subst (λ h → Coprime h nd) (sym (abs-◃ S.- nn)) nc)} {nd≢0} _+_ : ℚ → ℚ → ℚ p₁ + p₂ = let n₁ = ℚ.numerator p₁ d₁ = ℕ.suc (ℚ.denominator-1 p₁) n₂ = ℚ.numerator p₂ d₂ = ℕ.suc (ℚ.denominator-1 p₂) n = (n₁ ℤ* + d₂) ℤ+ (n₂ ℤ* + d₁) d = d₁ ℕ.* d₂ in helper+ n d -- subtraction and division _-_ : ℚ → ℚ → ℚ p₁ - p₂ = p₁ + (- p₂) _/_ : (p₁ p₂ : ℚ) → {n≢0 : NonZero ∣ ℚ.numerator p₂ ∣} → ℚ _/_ p₁ p₂ {n≢0} = p₁ * (1/_ p₂ {n≢0}) -- conventional printed representation show : ℚ → String show p = ℤshow (ℚ.numerator p) ++ "/" ++ ℕshow (ℕ.suc (ℚ.denominator-1 p)) ------------------------------------------------------------------------------ -- A few constants and some small tests 0ℚ 1ℚ : ℚ 0ℚ = + 0 ÷ 1 1ℚ = + 1 ÷ 1 private p₀ p₁ p₂ p₃ : ℚ p₀ = + 1 ÷ 2 p₁ = + 1 ÷ 3 p₂ = -[1+ 2 ] ÷ 4 p₃ = + 3 ÷ 4 test₀ = show p₂ test₁ = show (- p₂) test₂ = show (1/ p₂) test₃ = show (p₀ + p₀) test₄ = show (p₁ * p₂) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4789533561, "avg_line_length": 33.4857142857, "ext": "agda", "hexsha": "b43a585062acc4b7e4c1c5359b2e0d6247d04931", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Rat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Rat.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Rat.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2974, "size": 7032 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.DescendingList where open import Cubical.Data.DescendingList.Base public open import Cubical.Data.DescendingList.Properties public
{ "alphanum_fraction": 0.8108108108, "avg_line_length": 30.8333333333, "ext": "agda", "hexsha": "0ece5c884cadcbc10ccb7846f8df14d3dfec964c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 185 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary where open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def public open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Dec public open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Properties public open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Map public open import Algebra.Construct.Free.Semilattice.Relation.Unary.Membership public open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def public open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Dec public open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Properties public open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Map public
{ "alphanum_fraction": 0.8477722772, "avg_line_length": 57.7142857143, "ext": "agda", "hexsha": "46cf4a288840cb92e3005f00c7d1ec693364d4be", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 186, "size": 808 }
open import Nat open import Prelude open import core open import contexts open import progress open import lemmas-complete module complete-progress where -- as in progress, we define a datatype for the possible outcomes of -- progress for readability. data okc : (d : iexp) (Δ : hctx) → Set where V : ∀{d Δ} → d val → okc d Δ S : ∀{d Δ} → Σ[ d' ∈ iexp ] (d ↦ d') → okc d Δ complete-progress : {Δ : hctx} {d : iexp} {τ : typ} → Δ , ∅ ⊢ d :: τ → d dcomplete → okc d Δ complete-progress wt comp with progress wt complete-progress wt comp | S x = S x complete-progress wt comp | I x = abort (lem-ind-comp comp x) complete-progress wt comp | BV x = V (lem-comp-boxed-val wt comp x)
{ "alphanum_fraction": 0.596377749, "avg_line_length": 32.2083333333, "ext": "agda", "hexsha": "802c7ca5f6191b917ca53a6253f9b90b25c60305", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "complete-progress.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "complete-progress.agda", "max_line_length": 70, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "complete-progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 228, "size": 773 }
open import Nat open import Prelude open import dynamics-core open import contexts open import lemmas-consistency open import lemmas-ground open import progress-checks open import canonical-boxed-forms open import canonical-value-forms open import canonical-indeterminate-forms open import ground-decidable open import htype-decidable module progress where -- this is a little bit of syntactic sugar to avoid many layer nested Inl -- and Inrs that you would get from the more literal transcription of the -- consequent of progress data ok : (d : ihexp) (Δ : hctx) → Set where S : ∀{d Δ} → Σ[ d' ∈ ihexp ] (d ↦ d') → ok d Δ I : ∀{d Δ} → d indet → ok d Δ BV : ∀{d Δ} → d boxedval → ok d Δ progress : {Δ : hctx} {d : ihexp} {τ : htyp} → Δ , ∅ ⊢ d :: τ → ok d Δ -- constants progress TANum = BV (BVVal VNum) -- addition progress (TAPlus wt1 wt2) with progress wt1 | progress wt2 -- if the left steps, the whole thing steps ... | S (_ , Step x y z) | _ = S (_ , Step (FHPlus1 x) y (FHPlus1 z)) ... | I _ | S (_ , Step x y z) = S (_ , Step (FHPlus2 x) y (FHPlus2 z)) ... | BV _ | S (_ , Step x y z) = S (_ , Step (FHPlus2 x) y (FHPlus2 z)) ... | I x | I x₁ = I (IPlus1 x (FIndet x₁)) ... | I x | BV x₁ = I (IPlus1 x (FBoxedVal x₁)) ... | BV (BVVal VNum) | I x = I (IPlus2 (FBoxedVal (BVVal VNum)) x) ... | BV (BVVal VNum) | BV (BVVal VNum) = S (_ , Step FHOuter (ITPlus refl) FHOuter) -- variables progress (TAVar x₁) = abort (somenotnone (! x₁)) -- lambdas progress (TALam _ wt) = BV (BVVal VLam) -- applications progress (TAAp wt1 wt2) with progress wt1 | progress wt2 -- if the left steps, the whole thing steps ... | S (_ , Step x y z) | _ = S (_ , Step (FHAp1 x) y (FHAp1 z)) -- if the left is indeterminate, step the right ... | I i | S (_ , Step x y z) = S (_ , Step (FHAp2 x) y (FHAp2 z)) -- if they're both indeterminate, step when the cast steps and indet otherwise ... | I x | I y with canonical-indeterminate-forms-arr wt1 x ... | CIFACast (_ , _ , _ , _ , _ , refl , _ , _ ) = S (_ , Step FHOuter ITApCast FHOuter) ... | CIFAEHole (_ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFANEHole (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFAAp (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFACastHole (_ , refl , refl , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFAFailedCast (_ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFACase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFAFst (_ , _ , refl , _ , _ , _ , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) ... | CIFASnd (_ , _ , refl , _ , _ , _ , _) = I (IAp (λ _ _ _ _ _ ()) x (FIndet y)) -- similar if the left is indeterminate but the right is a boxed val progress (TAAp wt1 wt2) | I x | BV y with canonical-indeterminate-forms-arr wt1 x ... | CIFACast (_ , _ , _ , _ , _ , refl , _ , _ ) = S (_ , Step FHOuter ITApCast FHOuter) ... | CIFAEHole (_ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFANEHole (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFAAp (_ , _ , _ , _ , _ , refl , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFACastHole (_ , refl , refl , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFAFailedCast (_ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFACase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFAFst (_ , _ , refl , _ , _ , _ , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) ... | CIFASnd (_ , _ , refl , _ , _ , _ , _) = I (IAp (λ _ _ _ _ _ ()) x (FBoxedVal y)) -- if the left is a boxed value, inspect the right progress (TAAp wt1 wt2) | BV v | S (_ , Step x y z) = S (_ , Step (FHAp2 x) y (FHAp2 z)) progress (TAAp wt1 wt2) | BV v | I i with canonical-boxed-forms-arr wt1 v ... | CBFALam (_ , _ , refl , _) = S (_ , Step FHOuter ITLam FHOuter) ... | CBFACastArr (_ , _ , _ , refl , _ , _) = S (_ , Step FHOuter ITApCast FHOuter) progress (TAAp wt1 wt2) | BV v | BV v₂ with canonical-boxed-forms-arr wt1 v ... | CBFALam (_ , _ , refl , _) = S (_ , Step FHOuter ITLam FHOuter) ... | CBFACastArr (_ , _ , _ , refl , _ , _) = S (_ , Step FHOuter ITApCast FHOuter) -- sum types progress (TAInl wt) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHInl x) y (FHInl z)) ... | I x = I (IInl x) ... | BV x = BV (BVInl x) progress (TAInr wt) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHInr x) y (FHInr z)) ... | I x = I (IInr x) ... | BV x = BV (BVInr x) progress (TACase wt _ wt₁ _ wt₂) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHCase x) y (FHCase z)) progress (TACase () _ wt₁ _ wt₂) | BV (BVVal VNum) progress (TACase () _ wt₁ _ wt₂) | BV (BVVal VLam) progress (TACase () _ wt₁ _ wt₂) | BV (BVVal (VPair x x₁)) progress (TACase wt _ wt₁ _ wt₂) | BV (BVVal (VInl x)) = S (_ , Step FHOuter ITCaseInl FHOuter) ... | BV (BVVal (VInr x)) = S (_ , Step FHOuter ITCaseInr FHOuter) ... | BV (BVInl x) = S (_ , Step FHOuter ITCaseInl FHOuter) ... | BV (BVInr x) = S (_ , Step FHOuter ITCaseInr FHOuter) ... | BV (BVSumCast x x₁) = S (_ , Step FHOuter ITCaseCast FHOuter) ... | I (IAp x x₁ x₂) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (IAp x x₁ x₂)) ... | I (IInl x) = S (_ , Step FHOuter ITCaseInl FHOuter) ... | I (IInr x) = S (_ , Step FHOuter ITCaseInr FHOuter) ... | I (ICase x x₁ x₂ x₃) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (ICase x x₁ x₂ x₃)) ... | I (IFst x x₁ x₂) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (IFst x x₁ x₂)) ... | I (ISnd x x₁ x₂) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (ISnd x x₁ x₂)) ... | I IEHole = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) IEHole) ... | I (INEHole x) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (INEHole x)) ... | I (ICastSum x x₁) = S (_ , Step FHOuter ITCaseCast FHOuter) ... | I (ICastHoleGround x x₁ x₂) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (ICastHoleGround x x₁ x₂)) ... | I (IFailedCast x x₁ x₂ x₃) = I (ICase (λ _ _ ()) (λ _ _ ()) (λ _ _ _ _ _ ()) (IFailedCast x x₁ x₂ x₃)) --product types progress (TAPair wt₁ wt₂) with progress wt₁ | progress wt₂ ... | S (_ , Step x y z) | _ = S (_ , Step (FHPair1 x) y (FHPair1 z)) ... | I _ | S (_ , Step x y z) = S (_ , Step (FHPair2 x) y (FHPair2 z)) ... | BV _ | S (_ , Step x y z) = S (_ , Step (FHPair2 x) y (FHPair2 z)) ... | I x | I x₁ = I (IPair1 x (FIndet x₁)) ... | I x | BV x₁ = I (IPair1 x (FBoxedVal x₁)) ... | BV x | I x₁ = I (IPair2 (FBoxedVal x) x₁) ... | BV x | BV x₁ = BV (BVPair x x₁) progress (TAFst wt) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHFst x) y (FHFst z)) ... | I (IAp x x₁ x₂) = I (IFst (λ _ _ ()) (λ _ _ _ _ _()) (IAp x x₁ x₂)) ... | I (ICase x x₁ x₂ x₃) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (ICase x x₁ x₂ x₃)) ... | I (IPair1 x x₁) = S (_ , Step FHOuter ITFstPair FHOuter) ... | I (IPair2 x x₁) = S (_ , Step FHOuter ITFstPair FHOuter) ... | I (IFst x x₁ x₂) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (IFst x x₁ x₂)) ... | I (ISnd x x₁ x₂) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (ISnd x x₁ x₂)) ... | I IEHole = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) IEHole) ... | I (INEHole x) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (INEHole x)) ... | I (ICastProd x x₁) = S (_ , Step FHOuter ITFstCast FHOuter) ... | I (ICastHoleGround x x₁ x₂) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (ICastHoleGround x x₁ x₂)) ... | I (IFailedCast x x₁ x₂ x₃) = I (IFst (λ _ _ ()) (λ _ _ _ _ _ ()) (IFailedCast x x₁ x₂ x₃)) ... | BV (BVVal (VPair x x₁)) = S (_ , Step FHOuter ITFstPair FHOuter) ... | BV (BVPair x x₁) = S (_ , Step FHOuter ITFstPair FHOuter) ... | BV (BVProdCast x x₁) = S (_ , Step FHOuter ITFstCast FHOuter) progress (TASnd wt) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHSnd x) y (FHSnd z)) ... | I (IAp x x₁ x₂) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (IAp x x₁ x₂)) ... | I (ICase x x₁ x₂ x₃) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (ICase x x₁ x₂ x₃)) ... | I (IPair1 x x₁) = S (_ , Step FHOuter ITSndPair FHOuter) ... | I (IPair2 x x₁) = S (_ , Step FHOuter ITSndPair FHOuter) ... | I (IFst x x₁ x₂) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (IFst x x₁ x₂)) ... | I (ISnd x x₁ x₂) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (ISnd x x₁ x₂)) ... | I IEHole = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) IEHole) ... | I (INEHole x) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (INEHole x)) ... | I (ICastProd x x₁) = S (_ , Step FHOuter ITSndCast FHOuter) ... | I (ICastHoleGround x x₁ x₂) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (ICastHoleGround x x₁ x₂)) ... | I (IFailedCast x x₁ x₂ x₃) = I (ISnd (λ _ _ ()) (λ _ _ _ _ _ ()) (IFailedCast x x₁ x₂ x₃)) ... | BV (BVVal (VPair x x₁)) = S (_ , Step FHOuter ITSndPair FHOuter) ... | BV (BVPair x x₁) = S (_ , Step FHOuter ITSndPair FHOuter) ... | BV (BVProdCast x x₁) = S (_ , Step FHOuter ITSndCast FHOuter) -- empty holes are indeterminate progress (TAEHole _ _ ) = I IEHole -- nonempty holes step if the innards step, indet otherwise progress (TANEHole xin wt x₁) with progress wt ... | S (_ , Step x y z) = S (_ , Step (FHNEHole x) y (FHNEHole z)) ... | I x = I (INEHole (FIndet x)) ... | BV x = I (INEHole (FBoxedVal x)) -- casts progress (TACast wt con) with progress wt -- step if the innards step ... | S (_ , Step x y z) = S (_ , Step (FHCast x) y (FHCast z)) -- if indet, inspect how the types in the cast are realted by consistency: -- if they're the same, step by ID progress (TACast wt TCRefl) | I x = S (_ , Step FHOuter ITCastID FHOuter) -- if first type is hole progress (TACast {τ1 = τ1} wt TCHole1) | I x with τ1 ... | num = I (ICastGroundHole GNum x) ... | ⦇-⦈ = S (_ , Step FHOuter ITCastID FHOuter) ... | τ11 ==> τ12 with ground-decidable (τ11 ==> τ12) ... | Inl GArrHole = I (ICastGroundHole GArrHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGArr (π1 (ground-not-holes y)))) FHOuter) progress (TACast {τ1 = τ1} wt TCHole1) | I x | τ11 ⊕ τ12 with ground-decidable (τ11 ⊕ τ12) ... | Inl GSumHole = I (ICastGroundHole GSumHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGSum (π1 (π2 (ground-not-holes y))))) FHOuter) progress (TACast {τ1 = τ1} wt TCHole1) | I x | τ11 ⊠ τ12 with ground-decidable (τ11 ⊠ τ12) ... | Inl GProdHole = I (ICastGroundHole GProdHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGProd (π2 (π2 (ground-not-holes y))))) FHOuter) -- if second type is hole progress (TACast wt (TCHole2 {num})) | I x with canonical-indeterminate-forms-hole wt x ... | CIFHEHole (_ , _ , _ , refl , f) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHNEHole (_ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHFst (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHSnd (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GNum) ... | CIFHCast (_ , τ , refl , _ , grn , _) with htype-dec τ num ... | Inl refl = S (_ , Step FHOuter (ITCastSucceed grn ) FHOuter) ... | Inr y = S (_ , Step FHOuter (ITCastFail grn GNum y) FHOuter) progress (TACast wt (TCHole2 {⦇-⦈}))| I x = S (_ , Step FHOuter ITCastID FHOuter) progress (TACast wt (TCHole2 {τ11 ==> τ12})) | I x with ground-decidable (τ11 ==> τ12) ... | Inr y = S (_ , Step FHOuter (ITExpand (MGArr (π1 (ground-not-holes y)))) FHOuter) ... | Inl GArrHole with canonical-indeterminate-forms-hole wt x ... | CIFHEHole (_ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHNEHole (_ , _ , _ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHFst (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHSnd (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GArrHole) ... | CIFHCast (_ , ._ , refl , _ , GNum , _) = S (_ , Step FHOuter (ITCastFail GNum GArrHole (λ ())) FHOuter) ... | CIFHCast (_ , ._ , refl , _ , GArrHole , _) = S (_ , Step FHOuter (ITCastSucceed GArrHole) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GSumHole , _) = S (_ , Step FHOuter (ITCastFail GSumHole GArrHole (λ ())) FHOuter) ... | CIFHCast (_ , ._ , refl , _ , GProdHole , _) = S (_ , Step FHOuter (ITCastFail GProdHole GArrHole (λ ())) FHOuter) progress (TACast wt (TCHole2 {τ11 ⊕ τ12})) | I x with ground-decidable (τ11 ⊕ τ12) ... | Inr y = S (_ , Step FHOuter (ITExpand (MGSum (π1 (π2 (ground-not-holes y))))) FHOuter) ... | Inl GSumHole with canonical-indeterminate-forms-hole wt x ... | CIFHEHole (_ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHNEHole (_ , _ , _ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHFst (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHSnd (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GSumHole) ... | CIFHCast (_ , _ , refl , _ , GNum , _) = S (_ , Step FHOuter (ITCastFail GNum GSumHole (λ ())) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GArrHole , _) = S (_ , Step FHOuter (ITCastFail GArrHole GSumHole (λ ())) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GSumHole , _) = S (_ , Step FHOuter (ITCastSucceed GSumHole) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GProdHole , _) = S (_ , Step FHOuter (ITCastFail GProdHole GSumHole λ ()) FHOuter) progress (TACast wt (TCHole2 {τ11 ⊠ τ12})) | I x with ground-decidable (τ11 ⊠ τ12) ... | Inr y = S (_ , Step FHOuter (ITExpand (MGProd (π2 (π2 (ground-not-holes y))))) FHOuter) ... | Inl GProdHole with canonical-indeterminate-forms-hole wt x ... | CIFHEHole (_ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHNEHole (_ , _ , _ , _ , _ , refl , _) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHAp (_ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , _ ) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHFst (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHSnd (_ , _ , refl , _ , _ , _ , _) = I (ICastHoleGround (λ _ _ ()) x GProdHole) ... | CIFHCast (_ , _ , refl , _ , GNum , _) = S (_ , Step FHOuter (ITCastFail GNum GProdHole (λ ())) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GArrHole , _) = S (_ , Step FHOuter (ITCastFail GArrHole GProdHole (λ ())) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GSumHole , _) = S (_ , Step FHOuter (ITCastFail GSumHole GProdHole λ ()) FHOuter) ... | CIFHCast (_ , _ , refl , _ , GProdHole , _) = S (_ , Step FHOuter (ITCastSucceed GProdHole) FHOuter) -- if both are arrows progress (TACast wt (TCArr {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | I x with htype-dec (τ1 ==> τ2) (τ1' ==> τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = I (ICastArr y x) -- if both are sums progress (TACast wt (TCSum {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | I x with htype-dec (τ1 ⊕ τ2) (τ1' ⊕ τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = I (ICastSum y x) progress (TACast wt (TCProd {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | I x with htype-dec (τ1 ⊠ τ2) (τ1' ⊠ τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = I (ICastProd y x) -- boxed value cases, inspect how the casts are related by consistency -- step by ID if the casts are the same progress (TACast wt TCRefl) | BV x = S (_ , Step FHOuter ITCastID FHOuter) -- if left is hole progress (TACast wt (TCHole1 {τ = τ})) | BV x with τ | ground-decidable τ ... | τ | Inl g = BV (BVHoleCast g x) ... | num | Inr y = abort (y GNum) ... | ⦇-⦈ | Inr y = S (_ , Step FHOuter ITCastID FHOuter) ... | τ1 ==> τ2 | Inr y with (htype-dec (τ1 ==> τ2) (⦇-⦈ ==> ⦇-⦈)) ... | Inl refl = BV (BVHoleCast GArrHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGArr y)) FHOuter) progress (TACast wt (TCHole1 {τ = τ})) | BV x | τ1 ⊕ τ2 | Inr y with (htype-dec (τ1 ⊕ τ2) (⦇-⦈ ⊕ ⦇-⦈)) ... | Inl refl = BV (BVHoleCast GSumHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGSum y)) FHOuter) progress (TACast wt (TCHole1 {τ = τ})) | BV x | τ1 ⊠ τ2 | Inr y with (htype-dec (τ1 ⊠ τ2) (⦇-⦈ ⊠ ⦇-⦈)) ... | Inl refl = BV (BVHoleCast GProdHole x) ... | Inr y = S (_ , Step FHOuter (ITGround (MGProd y)) FHOuter) -- if right is hole progress {τ = τ} (TACast wt TCHole2) | BV x with canonical-boxed-forms-hole wt x ... | d' , τ' , refl , gnd , wt' with htype-dec τ τ' ... | Inl refl = S (_ , Step FHOuter (ITCastSucceed gnd) FHOuter) ... | Inr x₁ with ground-decidable τ ... | Inl y = S (_ , Step FHOuter (ITCastFail gnd y (flip x₁)) FHOuter) ... | Inr y with not-ground y ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr (Inl (τ1 , τ2 , refl)) = S (_ , Step FHOuter (ITExpand (MGArr (π1 (ground-not-holes y)))) FHOuter) ... | Inr (Inr (Inl (τ1 , τ2 , refl))) = S (_ , Step FHOuter (ITExpand (MGSum (π1 (π2 (ground-not-holes y))))) FHOuter) ... | Inr (Inr (Inr (τ1 , τ2 , refl))) = S (_ , Step FHOuter (ITExpand (MGProd (π2 (π2 (ground-not-holes y))))) FHOuter) -- if both arrows progress (TACast wt (TCArr {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | BV x with htype-dec (τ1 ==> τ2) (τ1' ==> τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = BV (BVArrCast y x) -- if both sums progress (TACast wt (TCSum {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | BV x with htype-dec (τ1 ⊕ τ2) (τ1' ⊕ τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = BV (BVSumCast y x) progress (TACast wt (TCProd {τ1} {τ2} {τ1'} {τ2'} c1 c2)) | BV x with htype-dec (τ1 ⊠ τ2) (τ1' ⊠ τ2') ... | Inl refl = S (_ , Step FHOuter ITCastID FHOuter) ... | Inr y = BV (BVProdCast y x) -- failed casts progress (TAFailedCast wt y z w) with progress wt ... | S (d' , Step x a q) = S (_ , Step (FHFailedCast x) a (FHFailedCast q)) ... | I x = I (IFailedCast (FIndet x) y z w) ... | BV x = I (IFailedCast (FBoxedVal x) y z w)
{ "alphanum_fraction": 0.5415083537, "avg_line_length": 56.3431085044, "ext": "agda", "hexsha": "2c0fe1e6e4af6e4504f1486c7a591b609eed08a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "progress.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "progress.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7732, "size": 19213 }
{-# OPTIONS --type-in-type #-} open import Data.Empty open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Function.Base using (_∘_; id) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; subst; cong; sym) record _◁_ {ℓ} (A B : Set ℓ) : Set ℓ where constructor _,_,_ field ϕ : A → B ψ : B → A retract : ψ ∘ ϕ ≡ id open _◁_ record _◁′_ {ℓ} (A B : Set ℓ) : Set ℓ where constructor _,_,_ field ϕ : A → B ψ : B → A retract : A ◁ B → ψ ∘ ϕ ≡ id open _◁′_ postulate EM : ∀ {ℓ} (A : Set ℓ) → A ⊎ (¬ A) ℘ : ∀ {ℓ} → Set ℓ → Set _ ℘ X = X → Set t : ∀ {ℓ} (A B : Set ℓ) → ℘ A ◁′ ℘ B t A B with EM (℘ A ◁ ℘ B) ... | inj₁ ℘A◁℘B = let ϕ , ψ , retract = ℘A◁℘B in ϕ , ψ , λ _ → retract ... | inj₂ ¬℘A◁℘B = (λ _ _ → ⊥) , (λ _ _ → ⊥) , λ ℘A◁℘B → ⊥-elim (¬℘A◁℘B ℘A◁℘B) -- type-in-type allows U to be put into Set... U : Set U = ∀ X → ℘ X -- ...so that u: U can be applied to U itself projᵤ : U → ℘ U projᵤ u = u U injᵤ : ℘ U → U injᵤ f X = let _ , ψ , _ = t X U ϕ , _ , _ = t U U in ψ (ϕ f) projᵤ∘injᵤ : projᵤ ∘ injᵤ ≡ id projᵤ∘injᵤ = retract (t U U) (id , id , refl) _∈_ : U → U → Set u ∈ v = projᵤ u v Russell : ℘ U Russell u = ¬ u ∈ u r : U r = injᵤ Russell -- up to here EM + impredicativity is enough, -- as long as _≡_ itself is in the impredicative universe, -- but to go further, large elimination (via subst) is required r∈r≡r∉r : r ∈ r ≡ (¬ r ∈ r) r∈r≡r∉r = cong (λ f → f Russell r) projᵤ∘injᵤ r∉r : ¬ r ∈ r r∉r r∈r = let r∈r→r∉r = subst id r∈r≡r∉r in r∈r→r∉r r∈r r∈r false : ⊥ false = let r∉r→r∈r = subst id (sym r∈r≡r∉r) in r∉r (r∉r→r∈r r∉r)
{ "alphanum_fraction": 0.5298287064, "avg_line_length": 21.1625, "ext": "agda", "hexsha": "181e6c8d4453fc9b881090cd410cc1c358842807", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ionathanch/ionathanch.github.io", "max_forks_repo_path": "_assets/agda/Berardi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ionathanch/ionathanch.github.io", "max_issues_repo_path": "_assets/agda/Berardi.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ionathanch/ionathanch.github.io", "max_stars_repo_path": "_assets/agda/Berardi.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 843, "size": 1693 }
module Preliminaries where -- universe levels postulate Level : Set lZ : Level lS : Level -> Level lmax : Level -> Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lZ #-} {-# BUILTIN LEVELSUC lS #-} {-# BUILTIN LEVELMAX lmax #-} -- ---------------------------------------------------------------------- -- functions _o_ : {A B C : Set} → (B → C) → (A → B) → A → C g o f = \ x → g (f x) infixr 10 _o_ -- ---------------------------------------------------------------------- -- identity type data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where Refl : M == M {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL Refl #-} transport : {l1 : Level} {l2 : Level} {A : Set l1} (B : A → Set l2) {a1 a2 : A} → a1 == a2 → (B a1 → B a2) transport B Refl = λ x → x ! : {l : Level} {A : Set l} {M N : A} → M == N → N == M ! Refl = Refl _∘_ : {l : Level} {A : Set l} {M N P : A} → N == P → M == N → M == P β ∘ Refl = β ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {M N : A} (f : A → B) → M == N → (f M) == (f N) ap f Refl = Refl ap2 : {l1 l2 l3 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {M N : A} {M' N' : B} (f : A -> B -> C) -> M == N -> M' == N' -> (f M M') == (f N N') ap2 f Refl Refl = Refl postulate -- function extensionality λ= : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : (x : A) -> B x} -> ((x : A) -> (f x) == (g x)) -> f == g -- function extensionality for implicit functions λ=i : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : {x : A} -> B x} -> ((x : A) -> (f {x}) == (g {x})) -> _==_ {_}{ {x : A} → B x } f g private primitive primTrustMe : {l : Level} {A : Set l} {x y : A} -> x == y infixr 9 _==_ infix 2 _∎ infixr 2 _=〈_〉_ _=〈_〉_ : {l : Level} {A : Set l} (x : A) {y z : A} → x == y → y == z → x == z _ =〈 p1 〉 p2 = (p2 ∘ p1) _∎ : {l : Level} {A : Set l} (x : A) → x == x _∎ _ = Refl -- ---------------------------------------------------------------------- -- product types record Unit : Set where constructor <> record Σ {l1 l2 : Level} {A : Set l1} (B : A -> Set l2) : Set (lmax l1 l2) where constructor _,_ field fst : A snd : B fst open Σ public infixr 0 _,_ _×_ : {l1 l2 : Level} → Set l1 -> Set l2 -> Set (lmax l1 l2) A × B = Σ (\ (_ : A) -> B) infixr 10 _×_ -- ---------------------------------------------------------------------- -- booleans data Bool : Set where True : Bool False : Bool {-# COMPILED_DATA Bool Bool True False #-} {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE True #-} {-# BUILTIN FALSE False #-} -- ---------------------------------------------------------------------- -- order data Order : Set where Less : Order Equal : Order Greater : Order -- ---------------------------------------------------------------------- -- sums data Void : Set where abort : {A : Set} → Void → A abort () data Either (A B : Set) : Set where Inl : A → Either A B Inr : B → Either A B DecEq : Set → Set DecEq A = (x y : A) → Either (x == y) (x == y → Void) -- ---------------------------------------------------------------------- -- natural numbers module Nat where data Nat : Set where Z : Nat S : Nat -> Nat -- let's you use numerals for Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC S #-} {-# BUILTIN ZERO Z #-} _+_ : Nat → Nat → Nat Z + n = n (S m) + n = S (m + n) max : Nat → Nat → Nat max Z n = n max m Z = m max (S m) (S n) = S (max m n) equal : Nat → Nat → Bool equal Z Z = True equal Z (S _) = False equal (S _) Z = False equal (S m) (S n) = equal m n compare : Nat → Nat → Order compare Z Z = Equal compare Z (S m) = Less compare (S n) Z = Greater compare (S n) (S m) = compare n m open Nat public using (Nat ; Z ; S) -- ---------------------------------------------------------------------- -- monad module Monad where record Monad : Set1 where field T : Set → Set return : ∀ {A} → A → T A _>>=_ : ∀ {A B} → T A → (A → T B) -> T B -- ---------------------------------------------------------------------- -- options module Maybe where data Maybe {l : Level} (A : Set l) : Set l where Some : A → Maybe A None : Maybe A Monad : Monad.Monad Monad = record { T = Maybe; return = Some; _>>=_ = (λ {None _ → None; (Some v) f → f v}) } open Maybe public using (Maybe;Some;None) -- ---------------------------------------------------------------------- -- lists module List where data List {l : Level} (A : Set l) : Set l where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} infixr 99 _::_ _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) infixr 10 _++_ map : {l1 l2 : Level} {A : Set l1} {B : Set l2} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs map-id : {l : Level} {A : Set l} (l : List A) → map (\ (x : A) → x) l == l map-id [] = Refl map-id (x :: l) with map (\ x -> x) l | map-id l ... | ._ | Refl = Refl module Uninformative where -- simply typed version peelOff : {A : Set} (eq : A → A → Bool) → List A → List A → Maybe (List A) peelOff eq [] ys = Some ys peelOff eq (_ :: _) [] = None peelOff eq (x :: xs) (y :: ys) with eq x y ... | False = None ... | True = peelOff eq xs ys peelOff : {A : Set} (eq : DecEq A) → (xs ys : List A) → Maybe (Σ \ zs → (xs ++ zs) == ys ) peelOff eq [] ys = Some (ys , Refl) peelOff eq (_ :: _) [] = None peelOff eq (x :: xs) (y :: ys) with eq x y ... | Inr xyneq = None peelOff eq (x :: xs) (.x :: ys) | Inl Refl with peelOff eq xs ys peelOff eq (x :: xs) (.x :: .(xs ++ zs)) | Inl Refl | Some (zs , Refl) = Some (zs , Refl) ... | None = None [_] : {A : Set} → A → List A [ c ] = c :: [] ++-assoc : ∀ {A} (l1 l2 l3 : List A) → (l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = Refl ++-assoc (x :: xs) l2 l3 = ap (_::_ x) (++-assoc xs l2 l3) open List public using (List ; [] ; _::_) -- ---------------------------------------------------------------------- -- characters module Char where postulate {- Agda Primitive -} Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} private primitive primCharToNat : Char → Nat primCharEquality : Char → Char → Bool toNat : Char → Nat toNat = primCharToNat equalb : Char -> Char -> Bool equalb = primCharEquality -- need to go outside the real language a little to give the primitives good types, -- but from the outside this should be safe equal : DecEq Char equal x y with equalb x y ... | True = Inl primTrustMe ... | False = Inr canthappen where postulate canthappen : _ open Char public using (Char) -- ---------------------------------------------------------------------- -- vectors module Vector where data Vec (A : Set) : Nat → Set where [] : Vec A 0 _::_ : ∀ {n} → A → Vec A n → Vec A (S n) infixr 99 _::_ Vec-elim : {A : Set} (P : {n : Nat} → Vec A n → Set) → (P []) → ({n : Nat} (x : A) (xs : Vec A n) → P xs → P (x :: xs)) → {n : Nat} (v : Vec A n) → P v Vec-elim P n c [] = n Vec-elim P n c (y :: ys) = c y ys (Vec-elim P n c ys) fromList : {A : Set} → List A → Σ \n → Vec A n fromList [] = _ , [] fromList (x :: xs) = _ , x :: snd (fromList xs) toList : {A : Set} {n : Nat} → Vec A n → List A toList [] = [] toList (x :: xs) = x :: (toList xs) toList' : {A : Set} → (Σ \ n → Vec A n) → List A toList' (._ , []) = [] toList' (._ , (x :: xs)) = x :: (toList' (_ , xs)) to-from : {A : Set} (l : List A) → toList' (fromList l) == l to-from [] = Refl to-from (x :: l) with toList' (fromList l) | to-from l to-from (x :: l) | .l | Refl = Refl from-to : {A : Set} (l : Σ \n → Vec A n) → fromList (toList' l) == l from-to (._ , []) = Refl from-to (._ , x :: l) with fromList (toList' (_ , l)) | from-to (_ , l) from-to (.(S n) , _::_ {n} x l) | .(n , l) | Refl = Refl -- ---------------------------------------------------------------------- -- strings module String where postulate {- Agda Primitive -} String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} private primitive primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool equal : String -> String -> Bool equal = primStringEquality toList = primStringToList fromList = primStringFromList append = primStringAppend toVec : String -> Σ \ m → Vector.Vec Char m toVec = Vector.fromList o toList -- ---------------------------------------------------------------------- -- fancy order module FancyOrder where data FancyOrder {A : Set} {_≤_ : A → A → Set} (a1 a2 : A) : Set where Less : a1 ≤ a2 -> (a1 == a2 -> Void) → FancyOrder a1 a2 Equal : a1 == a2 -> FancyOrder a1 a2 Greater : a2 ≤ a1 → (a1 == a2 -> Void) -> FancyOrder a1 a2 record DecidableOrder : Set1 where field A : Set _≤_ : A → A → Set ≤-refl : ∀ {a} → a ≤ a ≤-trans : ∀ {a1 a2 a3} → a1 ≤ a2 -> a2 ≤ a3 -> a1 ≤ a3 ≤-saturated : ∀ {a1 a2} -> a1 ≤ a2 -> a2 ≤ a1 -> a1 == a2 compare : (a1 a2 : A) → FancyOrder {A}{_≤_} a1 a2 ≤-refl' : ∀ {a1 a2} → a1 == a2 -> a1 ≤ a2 ≤-refl' Refl = ≤-refl min : A → A → A min a1 a2 with compare a1 a2 ... | Less _ _ = a1 ... | Equal _ = a1 ... | Greater _ _ = a2 min-≤-1 : {a1 a2 : A} → min a1 a2 ≤ a1 min-≤-1 {a1}{a2} with compare a1 a2 ... | Less lt _ = ≤-refl ... | Equal eq = ≤-refl ... | Greater gt _ = gt min-≤-2 : {a1 a2 : A} → min a1 a2 ≤ a2 min-≤-2 {a1}{a2} with compare a1 a2 ... | Less lt _ = lt min-≤-2 | Equal Refl = ≤-refl ... | Greater gt _ = ≤-refl min-sym : {a1 a2 : A} → min a1 a2 == min a2 a1 min-sym {a1}{a2} with compare a1 a2 | compare a2 a1 min-sym | Less lt12 _ | Less lt21 _ = ≤-saturated lt12 lt21 min-sym | Less lt12 _ | Equal Refl = Refl min-sym | Less lt12 _ | Greater gt21 _ = Refl min-sym | Equal eq12 | Less lt21 _ = eq12 min-sym | Equal eq12 | Equal eq21 = eq12 min-sym | Equal eq12 | Greater gt21 _ = Refl min-sym | Greater gt12 _ | Less lt21 _ = Refl min-sym | Greater gt12 _ | Equal eq21 = Refl min-sym | Greater gt12 _ | Greater gt21 _ = ≤-saturated gt12 gt21 min-≤ : {a1 a2 : A} → a1 ≤ a2 -> (min a1 a2) == a1 min-≤ {a1} {a2} lt1 with compare a1 a2 ... | Less lt _ = Refl ... | Equal eq = Refl ... | Greater gt _ = ≤-saturated gt lt1 max : A → A → A max a1 a2 with compare a1 a2 ... | Less _ _ = a2 ... | Equal _ = a2 ... | Greater _ _ = a1 max-≥-1 : {a1 a2 : A} → a1 ≤ max a1 a2 max-≥-1 {a1}{a2} with compare a1 a2 ... | Less lt _ = lt max-≥-1 | Equal Refl = ≤-refl ... | Greater gt _ = ≤-refl max-≥-2 : {a1 a2 : A} → a2 ≤ max a1 a2 max-≥-2 {a1}{a2} with compare a1 a2 ... | Less lt _ = ≤-refl ... | Equal eq = ≤-refl ... | Greater gt _ = gt min-monotone : {a1 a1' a2 a2' : A} → a1 ≤ a1' -> a2 ≤ a2' -> min a1 a2 ≤ min a1' a2' min-monotone {a1}{a1'}{a2}{a2'} lt1 lt2 with compare a1 a2 | compare a1' a2' min-monotone lt1 lt2 | Less x x₁ | Less x₂ x₃ = lt1 min-monotone lt1 lt2 | Less x x₁ | Equal x₂ = lt1 min-monotone lt1 lt2 | Less x x₁ | Greater x₂ x₃ = ≤-trans x lt2 min-monotone lt1 lt2 | Equal x | Less x₁ x₂ = lt1 min-monotone lt1 lt2 | Equal x | Equal x₁ = lt1 min-monotone lt1 lt2 | Equal Refl | Greater x₁ x₂ = lt2 min-monotone lt1 lt2 | Greater x x₁ | Less x₂ x₃ = ≤-trans x lt1 min-monotone lt1 lt2 | Greater x x₁ | Equal x₂ = ≤-trans x lt1 min-monotone lt1 lt2 | Greater x x₁ | Greater x₂ x₃ = lt2 max-sym : {a1 a2 : A} → max a1 a2 == max a2 a1 max-sym {a1}{a2} with compare a1 a2 | compare a2 a1 max-sym | Less lt12 _ | Less lt21 _ = ≤-saturated lt21 lt12 max-sym | Less lt12 _ | Equal eq21 = eq21 max-sym | Less lt12 _ | Greater gt21 _ = Refl max-sym | Equal eq12 | Less lt21 _ = ! eq12 max-sym | Equal eq12 | Equal eq21 = eq21 max-sym | Equal eq12 | Greater gt21 _ = Refl max-sym | Greater gt12 _ | Less lt21 _ = Refl max-sym | Greater gt12 _ | Equal eq21 = Refl max-sym | Greater gt12 _ | Greater gt21 _ = ≤-saturated gt21 gt12 max-≤ : {a1 a2 : A} → a1 ≤ a2 -> (max a1 a2) == a2 max-≤ {a1} {a2} lt1 with compare a1 a2 ... | Less lt _ = Refl ... | Equal eq = Refl ... | Greater gt _ = ≤-saturated lt1 gt max-monotone : {a1 a1' a2 a2' : A} → a1 ≤ a1' -> a2 ≤ a2' -> max a1 a2 ≤ max a1' a2' max-monotone {a1}{a1'}{a2}{a2'} lt1 lt2 with compare a1 a2 | compare a1' a2' max-monotone lt1 lt2 | Less x x₁ | Less x₂ x₃ = lt2 max-monotone lt1 lt2 | Less x x₁ | Equal x₂ = lt2 max-monotone lt1 lt2 | Less x x₁ | Greater x₂ x₃ = ≤-trans lt2 x₂ max-monotone lt1 lt2 | Equal x | Less x₁ x₂ = lt2 max-monotone lt1 lt2 | Equal x | Equal x₁ = lt2 max-monotone lt1 lt2 | Equal Refl | Greater x₁ x₂ = lt1 max-monotone lt1 lt2 | Greater x x₁ | Less x₂ x₃ = ≤-trans lt1 x₂ max-monotone lt1 lt2 | Greater x x₁ | Equal Refl = lt1 max-monotone lt1 lt2 | Greater x x₁ | Greater x₂ x₃ = lt1
{ "alphanum_fraction": 0.4581667719, "avg_line_length": 30.7969762419, "ext": "agda", "hexsha": "3d8d71347aa28d33da9f0397149108b2f1382d48", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ayberkt/system-t-normalization", "max_forks_repo_path": "Preliminaries.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ayberkt/system-t-normalization", "max_issues_repo_path": "Preliminaries.agda", "max_line_length": 151, "max_stars_count": 3, "max_stars_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ayberkt/system-t-normalization", "max_stars_repo_path": "Preliminaries.agda", "max_stars_repo_stars_event_max_datetime": "2016-06-25T03:40:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-24T14:36:42.000Z", "num_tokens": 5084, "size": 14259 }
{-# OPTIONS --without-K #-} -- From nlab: FinSet is the category of finite sets and all functions -- between them: the full subcategory of Set on finite sets. It is -- easy (and thus common) to make FinSet skeletal; there is one object -- for each natural number n (including n=0), and a morphism from m to -- n is an m-tuple (f0,…,fm−1) of numbers satisfying 0≤fi<n. This -- amounts to identifying n with the set {0,…,n−1}. (Sometimes {1,…,n} -- is used instead.) This is exactly what we do below. module SkFinSetCategory where ------------------------------------------------------------------------------ -- Categorical structure import Level open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin; inject+; raise; zero; suc) open import Function using (_∘_; id) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong₂) open import Relation.Binary.PropositionalEquality.Core using (isEquivalence) open import Categories.Category using (Category; module Category) open import Categories.Functor using (Functor; module Functor) open import Categories.Bifunctor using (Bifunctor) open import Categories.NaturalTransformation using (module NaturalTransformation) renaming (id to idn) open import Categories.Monoidal using (Monoidal) open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors) open import Categories.Monoidal.Braided using (Braided; module Braided) open import FinVec open F -- Objects are natural numbers which are proxies for finite sets of -- the given size; morphisms between m and n are finite functions, Vec -- (Fin n) m, mapping each element of Fin m to an element in Fin -- n. Two morphisms are considered the same if they are ≡ to each other. finVecC : Category Level.zero Level.zero Level.zero finVecC = record { Obj = ℕ ; _⇒_ = FinVec ; _≡_ = _≡_ ; id = 1C ; _∘_ = _∘̂_ ; assoc = λ { {f = f} {g = g} {h = h} → sym (∘̂-assoc h g f) } ; identityˡ = λ { {f = f} → ∘̂-lid f } ; identityʳ = λ { {f = f} → ∘̂-rid f } ; equiv = isEquivalence ; ∘-resp-≡ = cong₂ _∘̂_ } ⊕-bifunctor : Bifunctor finVecC finVecC finVecC ⊕-bifunctor = record { F₀ = λ { (m , n) → m + n } ; F₁ = λ { (f , g) → f ⊎c g } ; identity = λ { { (m , n) } → 1C⊎1C≡1C {m} {n} } ; homomorphism = λ { {(x₁ , x₂)} {(y₁ , y₂)} {(z₁ , z₂)} {(x₁y₁ , x₂y₂)} {(y₁z₁ , y₂z₂)} → sym (⊎c-distrib {p₁ = y₁z₁} {p₂ = y₂z₂} {p₃ = x₁y₁} {p₄ = x₂y₂}) } ; F-resp-≡ = λ { {(x₁ , x₂)} {(y₁ , y₂)} {(p₁ , p₂)} {(p₃ , p₄)} (p₁≡p₃ , p₂≡p₄) → cong₂ _⊎c_ p₁≡p₃ p₂≡p₄ } } ⊗-bifunctor : Bifunctor finVecC finVecC finVecC ⊗-bifunctor = record { F₀ = λ { (m , n) → m * n } ; F₁ = λ { (f , g) → f ×c g } ; identity = λ { { (m , n) } → 1C×1C≡1C {m} {n} } ; homomorphism = λ { {(x₁ , x₂)} {(y₁ , y₂)} {(z₁ , z₂)} {(x₁y₁ , x₂y₂)} {(y₁z₁ , y₂z₂)} → sym (×c-distrib {p₁ = y₁z₁} {p₂ = y₂z₂} {p₃ = x₁y₁} {p₄ = x₂y₂}) } ; F-resp-≡ = λ { {(x₁ , x₂)} {(y₁ , y₂)} {(p₁ , p₂)} {(p₃ , p₄)} (p₁≡p₃ , p₂≡p₄) → cong₂ _×c_ p₁≡p₃ p₂≡p₄ } } {-- CommutativeSquare f g h i = h ∘ f ≡ i ∘ g Functor (C D): F₀ : C.Obj → D.Obj F₁ : ∀ {A B} → C [ A , B ] → D [ F₀ A , F₀ B ] identity : ∀ {A} → D [ F₁ (C.id {A}) ≡ D.id ] homomorphism : ∀ {X Y Z} {f : C [ X , Y ]} {g : C [ Y , Z ]} → D [ F₁ (C [ g ∘ f ]) ≡ D [ F₁ g ∘ F₁ f ] ] F-resp-≡ : ∀ {A B} {F G : C [ A , B ]} → C [ F ≡ G ] → D [ F₁ F ≡ F₁ G ] NaturalTransformation (F G : Functor C D): η : ∀ X → D [ F₀ X , G₀ X ] commute : ∀ {X Y} (f : C [ X , Y ]) → D.CommutativeSquare (F₁ f) (η X) (η Y) (G₁ f) NaturalIsomorphism (F G : Functor C D): F⇒G : NaturalTransformation F G F⇐G : NaturalTransformation G F iso : ∀ X → Iso (⇒.η X) (⇐.η X) Monoidal (C : Category): identityˡ : NaturalIsomorphism id⊗x x identityʳ : NaturalIsomorphism x⊗id x assoc : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z] triangle : TriangleLeftSide ≡ⁿ (TriangleRightSide ∘₁ TriangleTopSide) pentagon : (PentagonNESide ∘₁ PentagonNWSide) ≡ⁿ (PentagonSESide ∘₁ (PentagonSSide ∘₁ PentagonSWSide)) --} private module CFV = Category finVecC private module MFunctors = MonoidalHelperFunctors finVecC ⊕-bifunctor 0 private module Fid⊗x = Functor MFunctors.id⊗x private module Fx = Functor MFunctors.x finVecAdditiveM : Monoidal finVecC -- power = Fin 1 (so apply everything to zero) finVecAdditiveM = record { ⊗ = ⊕-bifunctor ; id = 0 ; identityˡ = record { F⇒G = record { -- F, G : (0C ⊎ x) ⇒ x η = λ X → 1C ; commute = λ f → trans (∘̂-lid (1C ⊎c f zero)) (trans 1C₀⊎x≡x (sym (∘̂-rid (f zero)))) -- ntp ηY ∘̂ (0C ⊎ f) ≡ f ∘̂ ηX } ; F⇐G = record { η = λ _ → 1C ; commute = λ f → trans (∘̂-lid (f zero)) (trans (sym 1C₀⊎x≡x) (sym (∘̂-rid (1C ⊎c f zero)))) } ; iso = λ X → record { isoˡ = ∘̂-rid 1C ; isoʳ = ∘̂-lid 1C } } ; identityʳ = record { F⇒G = record { η = λ X → uniti+ ; commute = λ f → idʳ⊕ {x = f zero} } ; F⇐G = record { η = λ X → unite+ ; commute = λ f → {!!} } ; iso = λ X → record { isoˡ = unite+∘̂uniti+~id ; isoʳ = uniti+∘̂unite+~id } } ; assoc = record { F⇒G = record { η = λ X → assocl+ {m = X zero} ; commute = λ f → {!!} } ; F⇐G = record { η = λ X → assocr+ {m = X zero} ; commute = {!!} } ; iso = λ X → record { isoˡ = assocr+∘̂assocl+~id {m = X zero} ; isoʳ = assocl+∘̂assocr+~id {m = X zero} } } ; triangle = {!!} ; pentagon = {!!} } -- where -- private module FVC = Category finVecC -- private module MFunctors = MonoidalHelperFunctors finVecC ⊕-bifunctor 0 -- private module FF = Functor MFunctors.id⊗x -- private module GF = Functor MFunctors.x {-- -- Commutative semiring structure import Level open import Algebra open import Algebra.Structures open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality using (subst; sym; trans; cong₂) open F _cauchy≃_ : (m n : ℕ) → Set m cauchy≃ n = FinVec m n id-iso : {m : ℕ} → FinVec m m id-iso = 1C private postulate sym-iso : {m n : ℕ} → FinVec m n → FinVec n m trans-iso : {m n o : ℕ} → FinVec m n → FinVec n o → FinVec m o trans-iso c₁ c₂ = c₂ ∘̂ c₁ cauchy≃IsEquiv : IsEquivalence {Level.zero} {Level.zero} {ℕ} _cauchy≃_ cauchy≃IsEquiv = record { refl = id-iso ; sym = sym-iso ; trans = trans-iso } cauchyPlusIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _+_ cauchyPlusIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl+ {m} {n} {o} ; ∙-cong = _⊎c_ } cauchyTimesIsSG : IsSemigroup {Level.zero} {Level.zero} {ℕ} _cauchy≃_ _*_ cauchyTimesIsSG = record { isEquivalence = cauchy≃IsEquiv ; assoc = λ m n o → assocl* {m} {n} {o} ; ∙-cong = _×c_ } cauchyPlusIsCM : IsCommutativeMonoid _cauchy≃_ _+_ 0 cauchyPlusIsCM = record { isSemigroup = cauchyPlusIsSG ; identityˡ = λ m → 1C ; comm = λ m n → swap+cauchy n m } cauchyTimesIsCM : IsCommutativeMonoid _cauchy≃_ _*_ 1 cauchyTimesIsCM = record { isSemigroup = cauchyTimesIsSG ; identityˡ = λ m → uniti* {m} ; comm = λ m n → swap⋆cauchy n m } cauchyIsCSR : IsCommutativeSemiring _cauchy≃_ _+_ _*_ 0 1 cauchyIsCSR = record { +-isCommutativeMonoid = cauchyPlusIsCM ; *-isCommutativeMonoid = cauchyTimesIsCM ; distribʳ = λ o m n → factor*+ {m} {n} {o} ; zeroˡ = λ m → 0C } cauchyCSR : CommutativeSemiring Level.zero Level.zero cauchyCSR = record { Carrier = ℕ ; _≈_ = _cauchy≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0 ; 1# = 1 ; isCommutativeSemiring = cauchyIsCSR } ------------------------------------------------------------------------------ -- Groupoid structure open import Groupoid private postulate linv : {m n : ℕ} (c : FinVec m n) → (sym-iso c) ∘̂ c ≡ 1C postulate rinv : {m n : ℕ} (c : FinVec m n) → c ∘̂ (sym-iso c) ≡ 1C G : 1Groupoid G = record { set = ℕ ; _↝_ = _cauchy≃_ ; _≈_ = _≡_ ; id = id-iso ; _∘_ = λ c₁ c₂ → trans-iso c₂ c₁ ; _⁻¹ = sym-iso ; lneutr = ∘̂-lid ; rneutr = ∘̂-rid ; assoc = λ c₁ c₂ c₃ → sym (∘̂-assoc c₁ c₂ c₃) ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; linv = linv ; rinv = rinv ; ∘-resp-≈ = cong₂ _∘̂_ } --} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5537548505, "avg_line_length": 32.6940298507, "ext": "agda", "hexsha": "a4a62be140dec14f804e59fd242c01bef7934309", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/SkFinSetCategory.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/SkFinSetCategory.agda", "max_line_length": 123, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/SkFinSetCategory.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3464, "size": 8762 }
open import Lemmachine module Lemmachine.Lemmas (hooks : Hooks) where import Lemmachine.Resolve open import Data.Empty open import Data.String open import Data.Maybe open import Data.Function open import Data.Product hiding (map) open import Data.List.Any hiding (map) renaming (any to any₂) open import Relation.Nullary open Membership-≡ public open import Relation.Binary.PropositionalEquality public open import Relation.Binary.PropositionalEquality.TrustMe private resource : Resource resource = toResource hooks open Request public open Resource resource public open Lemmachine.Resolve resource public private eqMethod-refl : ∀ m → eqMethod m m ≡ true eqMethod-refl HEAD = refl eqMethod-refl GET = refl eqMethod-refl PUT = refl eqMethod-refl DELETE = refl eqMethod-refl POST = refl eqMethod-refl TRACE = refl eqMethod-refl CONNECT = refl eqMethod-refl OPTIONS = refl methodIsMember : ∀ r → (methods : List Method) → method r ∈ methods → any (eqMethod (method r)) methods ≡ true methodIsMember _ [] () methodIsMember _ (x ∷ _) (here p) rewrite p with eqMethod-refl x ... | p₂ rewrite p₂ = refl methodIsMember r (x ∷ xs) (there ps) with eqMethod (method r) x | methodIsMember r xs ps ... | true | _ = refl ... | false | p rewrite p = refl methodIsKnown : ∀ r → method r ∈ knownMethods r → any (eqMethod (method r)) (knownMethods r) ≡ true methodIsKnown r p = methodIsMember r (knownMethods r) p methodIsAllowed : ∀ r → method r ∈ allowedMethods r → any (eqMethod (method r)) (allowedMethods r) ≡ true methodIsAllowed r p = methodIsMember r (allowedMethods r) p postulate methodIsntAllowed : ∀ r → method r ∉ allowedMethods r → any (eqMethod (method r)) (allowedMethods r) ≡ false notOptions : ∀ r → method r ≢ OPTIONS → eqMethod (method r) OPTIONS ≡ false notOptions r p with method r ... | HEAD = refl ... | GET = refl ... | PUT = refl ... | DELETE = refl ... | POST = refl ... | TRACE = refl ... | CONNECT = refl ... | OPTIONS = ⊥-elim (p refl) private ==-refl : ∀ s → (s == s) ≡ true ==-refl s = trustMe headerIsMember : (header : String) → (headers : RequestHeaders) → header ∈ map headerKey headers → ∃ λ v → fetchHeader header headers ≡ just v headerIsMember _ [] () headerIsMember _ ((k , v) ∷ _) (here p) rewrite p with ==-refl k ... | p₂ rewrite p₂ = v , refl headerIsMember header ((k , v) ∷ xs) (there ps) with header ≟ k | headerIsMember header xs ps ... | yes _ | _ = v , refl ... | no _ | v₂ , p with any₂ (_≟_ header ∘ headerKey) xs ... | yes _ rewrite p = v₂ , refl ... | no _ = v₂ , p acceptIsHeader : ∀ r → "Accept" ∈ map headerKey (headers r) → ∃ λ v → fetchHeader "Accept" (headers r) ≡ just v acceptIsHeader r p with headerIsMember "Accept" (headers r) p ... | v , p₂ with fetchHeader "Accept" (headers r) | p₂ ... | ._ | refl = v , refl acceptLanguageIsHeader : ∀ r → "Accept-Language" ∈ map headerKey (headers r) → ∃ λ v → fetchHeader "Accept-Language" (headers r) ≡ just v acceptLanguageIsHeader r p with headerIsMember "Accept-Language" (headers r) p ... | v , p₂ with fetchHeader "Accept-Language" (headers r) | p₂ ... | ._ | refl = v , refl
{ "alphanum_fraction": 0.6155612977, "avg_line_length": 35.5408163265, "ext": "agda", "hexsha": "f58b2989ff048d7f84870dd72436828ba3052117", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Lemmas.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Lemmas.agda", "max_line_length": 95, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 973, "size": 3483 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Equivalence.Properties where open import Level open import Categories.Adjoint.Equivalence using (⊣Equivalence) open import Categories.Adjoint.TwoSided using (_⊣⊢_; withZig) open import Categories.Category.Core open import Categories.Category.Equivalence using (WeakInverse; StrongEquivalence) import Categories.Morphism.Reasoning as MR import Categories.Morphism.Properties as MP open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties using ([_]-resp-Iso) open import Categories.NaturalTransformation using (ntHelper; _∘ᵥ_; _∘ˡ_; _∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_) private variable o ℓ e : Level C D E : Category o ℓ e module _ {F : Functor C D} {G : Functor D C} (W : WeakInverse F G) where open WeakInverse W private module C = Category C module D = Category D module F = Functor F module G = Functor G -- adjoint equivalence F⊣⊢G : F ⊣⊢ G F⊣⊢G = withZig record { unit = ≃.sym G∘F≈id ; counit = let open D open HomReasoning open MR D open MP D in record { F⇒G = ntHelper record { η = λ X → F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ; commute = λ {X Y} f → begin (F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G.F₁ f))) ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y) C.∘ G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G.F₁ f)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G.F₁ f C.∘ G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩ F∘G≈id.⇒.η Y ∘ (F.F₁ (G.F₁ f) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ center⁻¹ (F∘G≈id.⇒.commute f) Equiv.refl ⟩ (f ∘ F∘G≈id.⇒.η X) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ assoc ⟩ f ∘ F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ∎ } ; F⇐G = ntHelper record { η = λ X → (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ; commute = λ {X Y} f → begin ((F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F∘G≈id.⇐.η Y) ∘ f ≈⟨ pullʳ (F∘G≈id.⇐.commute f) ⟩ (F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ center (⟺ F.homomorphism) ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y) C.∘ G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇐.commute (G.F₁ f)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G.F₁ (F.F₁ (G.F₁ f)) C.∘ G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ≈⟨ center⁻¹ (F∘G≈id.⇒.commute _) Equiv.refl ⟩ (F.F₁ (G.F₁ f) ∘ F∘G≈id.⇒.η (F.F₀ (G.F₀ X))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ center Equiv.refl ⟩ F.F₁ (G.F₁ f) ∘ (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ∎ } ; iso = λ X → Iso-∘ (Iso-∘ (Iso-swap (F∘G≈id.iso _)) ([ F ]-resp-Iso (G∘F≈id.iso _))) (F∘G≈id.iso X) } ; zig = λ {A} → let open D open HomReasoning open MR D in begin (F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ A)))) ∘ F.F₁ (G∘F≈id.⇐.η A) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G∘F≈id.⇐.η A))) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F.F₁ (G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A)) C.∘ G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G∘F≈id.⇐.η A)) ⟩∘⟨refl ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇐.η A C.∘ G∘F≈id.⇒.η A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl⟩∘⟨ elimˡ ((F.F-resp-≈ (G∘F≈id.iso.isoˡ _)) ○ F.identity) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ F∘G≈id.iso.isoʳ _ ⟩ id ∎ } module F⊣⊢G = _⊣⊢_ F⊣⊢G module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (SE : StrongEquivalence C D) where open StrongEquivalence SE C≅D : ⊣Equivalence C D C≅D = record { L = F ; R = G ; L⊣⊢R = F⊣⊢G weak-inverse } module C≅D = ⊣Equivalence C≅D
{ "alphanum_fraction": 0.4703915011, "avg_line_length": 43.8189655172, "ext": "agda", "hexsha": "1f4366a074c2037610853a3a60450314585cc6d2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Equivalence/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Equivalence/Properties.agda", "max_line_length": 114, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Equivalence/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2891, "size": 5083 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} import Level open import Data.Empty open import Data.Product open import Data.List using (_∷_; []; _++_) open import Data.List.Properties using (∷-injectiveʳ) open import Relation.Nullary open import Relation.Unary open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst) open import Common module Semantics {ℙ : Set} (message : Message ℙ) where open import Trace message open import HasTrace message open import TraceSet message open import SessionType message open import Transitions message record Semantics (X : TraceSet) : Set where field closed : PrefixClosed X coherent : Coherent X open Semantics public data Classification : TraceSet -> Set where emp : ∀{X} -> X ⊆ ∅ -> Classification X eps : ∀{X} -> X ⊆⊇ { [] } -> Classification X inp : ∀{X x} -> I x ∷ [] ∈ X -> Classification X out : ∀{X x} -> O x ∷ [] ∈ X -> Classification X is-emp : ∀{X} -> Semantics X -> [] ∉ X -> X ⊆ ∅ is-emp sem nxε xφ with closed sem none xφ ... | xε = ⊥-elim (nxε xε) is-eps : ∀{X} -> Semantics X -> (¬ (∃[ x ] (I x ∷ [] ∈ X))) -> (¬ (∃[ x ] (O x ∷ [] ∈ X))) -> X ⊆ { [] } is-eps sem nix nox {[]} xφ = refl is-eps sem nix nox {I x ∷ φ} xφ with closed sem (some none) xφ ... | ix = ⊥-elim (nix (x , ix)) is-eps sem nix nox {O x ∷ φ} xφ with closed sem (some none) xφ ... | ox = ⊥-elim (nox (x , ox)) kind? : ∀{X} -> Semantics X -> Classification X kind? {X} sem with excluded-middle {∃[ x ] (I x ∷ [] ∈ X)} ... | yes (_ , ix) = inp ix ... | no nix with excluded-middle {∃[ x ] (O x ∷ [] ∈ X)} ... | yes (_ , ox) = out ox ... | no nox with excluded-middle {[] ∈ X} ... | yes xε = eps (is-eps sem nix nox , λ { refl -> xε }) ... | no nxε = emp (is-emp sem nxε) sem-sound : (T : SessionType) -> Semantics ⟦ T ⟧ closed (sem-sound T) = ⊑-has-trace coherent (sem-sound T) = trace-coherence derive-semantics : ∀{X} -> Semantics X -> (α : Action) -> Semantics (X ∂ α) closed (derive-semantics sem _) pre hasφ = closed sem (some pre) hasφ coherent (derive-semantics {X} sem γ) {φ} {α} {β} hasφα hasφβ = coherent {X} sem {γ ∷ φ} hasφα hasφβ co-semantics : ∀{X} -> Semantics X -> Semantics (CoSet X) closed (co-semantics sem) le coφ = closed sem (⊑-co-trace le) coφ coherent (co-semantics sem) {φ} {ψ₁} {ψ₂} {x} {y} iφx oφx rewrite co-trace-++ φ (I x ∷ ψ₁) | co-trace-++ φ (O y ∷ ψ₂) = coherent sem {co-trace φ} {co-trace ψ₂} {co-trace ψ₁} {y} {x} oφx iφx non-empty-semantics-contains-[] : ∀{X : TraceSet}{φ} -> Semantics X -> φ ∈ X -> [] ∈ X non-empty-semantics-contains-[] sem w = closed sem none w decode : ∀{X} -> Semantics X -> ∞SessionType force (decode sem) with kind? sem ... | emp _ = nil ... | eps _ = win ... | inp _ = inp λ x -> decode (derive-semantics sem (I x)) ... | out _ = out λ x -> decode (derive-semantics sem (O x)) decode-sub : ∀{X} (sem : Semantics X) -> ⟦ decode sem .force ⟧ ⊆ X decode-sub sem tφ with kind? sem decode-sub _ (_ , () , refl) | emp _ decode-sub _ (_ , _ , step () _) | emp _ decode-sub _ (_ , _ , refl) | eps (_ , sup) = sup refl decode-sub _ (_ , _ , step (out ()) _) | eps _ decode-sub sem (_ , _ , refl) | inp w = non-empty-semantics-contains-[] sem w decode-sub sem (_ , def , step inp tr) | inp w = decode-sub (derive-semantics sem (I _)) (_ , def , tr) decode-sub sem (_ , _ , refl) | out w = non-empty-semantics-contains-[] sem w decode-sub sem (_ , def , step (out !x) tr) | out w = decode-sub (derive-semantics sem (O _)) (_ , def , tr) decode-sup : ∀{X} (sem : Semantics X) -> X ⊆ ⟦ decode sem .force ⟧ decode-sup sem {φ} hasφ with kind? sem ... | emp sub = ⊥-elim (sub hasφ) ... | eps (sub , _) rewrite sym (sub hasφ) = _ , out , refl decode-sup sem {[]} hasφ | inp _ = _ , inp , refl decode-sup sem {I _ ∷ _} hasφ | inp _ = let _ , def , tr = decode-sup (derive-semantics sem (I _)) hasφ in _ , def , step inp tr decode-sup sem {O _ ∷ _} hasφ | inp w = ⊥-elim (coherent sem {[]} w hasφ) decode-sup sem {[]} hasφ | out _ = _ , out , refl decode-sup sem {I _ ∷ _} hasφ | out w = ⊥-elim (coherent sem {[]} hasφ w) decode-sup sem {O _ ∷ _} hasφ | out _ = let _ , def , tr = decode-sup (derive-semantics sem (O _)) hasφ in _ , def , step (out (transitions+defined->defined tr def)) tr decode+maximal->win : ∀{X φ} (sem : Semantics X) (rφ : decode sem .force HasTrace φ) -> φ ∈ Maximal X -> Win (after rφ) decode+maximal->win sem rφ comp with kind? sem decode+maximal->win sem (_ , () , refl) comp | emp sub decode+maximal->win sem (_ , _ , step () _) comp | emp sub decode+maximal->win sem (_ , _ , refl) comp | eps _ = Win-win decode+maximal->win sem (_ , _ , step (out ()) _) comp | eps _ decode+maximal->win sem (_ , def , refl) (maximal _ F) | inp w with F none w ... | () decode+maximal->win sem (_ , def , step inp tr) comp | inp _ = decode+maximal->win (derive-semantics sem (I _)) (_ , def , tr) (derive-maximal comp) decode+maximal->win sem (_ , def , refl) (maximal _ F) | out w with F none w ... | () decode+maximal->win sem (_ , def , step (out !x) tr) comp | out w = decode+maximal->win (derive-semantics sem (O _)) (_ , def , tr) (derive-maximal comp) win->maximal : ∀{T φ ψ} -> φ ⊑ ψ -> (tφ : T HasTrace φ) -> T HasTrace ψ -> Win (after tφ) -> φ ≡ ψ win->maximal le (_ , tdef , refl) (_ , sdef , refl) w = refl win->maximal le (_ , tdef , refl) (_ , sdef , step (out !x) sr) (out U) = ⊥-elim (U _ !x) win->maximal (some le) (_ , tdef , step inp tr) (_ , sdef , step inp sr) w rewrite win->maximal le (_ , tdef , tr) (_ , sdef , sr) w = refl win->maximal (some le) (_ , tdef , step (out _) tr) (_ , sdef , step (out _) sr) w rewrite win->maximal le (_ , tdef , tr) (_ , sdef , sr) w = refl decode+win->maximal : ∀{X φ} (sem : Semantics X) (rφ : decode sem .force HasTrace φ) -> Win (after rφ) -> φ ∈ Maximal X decode+win->maximal {X} {φ} sem rφ w = maximal (decode-sub sem rφ) λ le xψ -> let rψ = decode-sup sem xψ in sym (win->maximal le rφ rψ w)
{ "alphanum_fraction": 0.6208053691, "avg_line_length": 39.2967032967, "ext": "agda", "hexsha": "6aebbc6af5c4deda4b1aa7e227ad11d6e2989034", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Semantics.agda", "max_line_length": 100, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 2401, "size": 7152 }
module Lemmachine.Response.Status where {-# IMPORT Lemmachine.FFI #-} open import Data.Nat data Status : Set where -- 1xx: Informational - Request received, continuing process -- 2xx: Success - The action was successfully received, understood, and accepted OK Created Accepted NoContent : Status -- 3xx: Redirection - Further action must be taken in order to complete the request MultipleChoices MovedPermanently SeeOther NotModified MovedTemporarily : Status -- 4xx: Client Error - The request contains bad syntax or cannot be fulfilled BadRequest Unauthorized Forbidden NotFound MethodNotAllowed : Status NotAcceptable Conflict Gone PreconditionFailed : Status RequestEntityTooLarge RequestURItooLong UnsupportedMediaType : Status -- 5xx: Server Error - The server failed to fulfill an apparently valid request NotImplemented ServiceUnavailable : Status
{ "alphanum_fraction": 0.7997724687, "avg_line_length": 51.7058823529, "ext": "agda", "hexsha": "92b445467ae3decc6225d564c026311339139cab", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Response/Status.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Response/Status.agda", "max_line_length": 85, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Response/Status.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 188, "size": 879 }
open import Agda.Builtin.Equality using (_≡_; refl) record ⊤ : Set where no-eta-equality constructor tt data Box (A : Set) : Set where [_] : A → Box A Unit : Set Unit = Box ⊤ F : Unit → Set → Set F [ _ ] x = x G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x) G f [ x ] = f x record R : Set₁ where no-eta-equality field f : (x : Unit) → Box (F x ⊤) data ⊥ : Set where r : R r = record { f = G [_] } open R r H : ⊥ → Set₁ H _ rewrite refl {x = tt} = Set
{ "alphanum_fraction": 0.5212981744, "avg_line_length": 14.9393939394, "ext": "agda", "hexsha": "cb3f8ef4cb8b33eda4dbd94d1319bf90dbd7d504", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2727-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2727-1.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2727-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 198, "size": 493 }
-- Andreas, 2015-07-13 Better parse errors for illegal type signatures A | B : Set
{ "alphanum_fraction": 0.7176470588, "avg_line_length": 21.25, "ext": "agda", "hexsha": "f35319c07adcb388e1e27c9ff66500de6e26ed77", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1609c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1609c.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1609c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 85 }
{- This file shows Hⁿ⁺ᵐ(Sⁿ×Sᵐ)≅ℤ for n, m ≥ 1. This can be done in several ways (e.g. Mayer-Vietoris). We give the iso as explicitly as possible. The idea: Step 1: Hⁿ⁺ᵐ(Sⁿ×Sᵐ)≅H¹⁺ⁿ⁺ᵐ(S¹⁺ⁿ×Sᵐ) (i.e. some form of suspension axiom). Step 2: H¹⁺ᵐ(S¹×Sᵐ)≅ℤ Step 3: Conclude Hⁿ⁺ᵐ(Sⁿ×Sᵐ)≅ℤ by induction on n. The iso as defined here has the advantage that it looks a lot like the cup product, making it trivial to show that e.g. gₗ ⌣ gᵣ ≡ e, where gₗ, gᵣ are the two generators of H²(S²×S²) and e is the generator of H⁴(S²×S²) -- this of interest since it is used in π₄S³≅ℤ/2. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.SphereProduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Relation.Nullary open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.HITs.Truncation as T open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open Iso open PlusBis private ¬lem : (n m : ℕ) → ¬ suc (n + m) ≡ m ¬lem n zero = snotz ¬lem n (suc m) p = ¬lem n m (sym (+-suc n m) ∙ cong predℕ p) {- Step 1: Hⁿ⁺ᵐ(Sⁿ×Sᵐ)≅H¹⁺ⁿ⁺ᵐ(S¹⁺ⁿ×Sᵐ) -} -- The functions back and forth (suspension on the left component) ↓Sⁿ×Sᵐ→Kₙ₊ₘ : (n m : ℕ) → (S₊ (suc (suc n)) → S₊ (suc m) → coHomK (suc (suc ((suc n) + m)))) → S₊ (suc n) → S₊ (suc m) → coHomK (suc (suc (n + m))) ↓Sⁿ×Sᵐ→Kₙ₊ₘ n m f x y = ΩKn+1→Kn ((suc ((suc n) + m))) (sym (rCancelₖ _ (f north y)) ∙∙ cong (λ x → f x y -ₖ f north y) (merid x ∙ sym (merid (ptSn (suc n)))) ∙∙ rCancelₖ _ (f north y)) ↑Sⁿ×Sᵐ→Kₙ₊ₘ : (n m : ℕ) → (S₊ (suc n) → S₊ (suc m) → coHomK (suc (suc (n + m)))) → (S₊ (suc (suc n)) → S₊ (suc m) → coHomK (suc (suc ((suc n) + m)))) ↑Sⁿ×Sᵐ→Kₙ₊ₘ n m f north y = 0ₖ _ ↑Sⁿ×Sᵐ→Kₙ₊ₘ n m f south y = 0ₖ _ ↑Sⁿ×Sᵐ→Kₙ₊ₘ n m f (merid a i) y = Kn→ΩKn+1 _ (f a y) i ∥HⁿSᵐPath∥ : (n m : ℕ) → (f : S₊ (suc m) → coHomK (suc n)) → ¬ (n ≡ m) → ∥ f ≡ (λ _ → 0ₖ (suc n)) ∥₁ ∥HⁿSᵐPath∥ n m f p = fun PathIdTrunc₀Iso (isContr→isProp (isOfHLevelRetractFromIso 0 (fst (Hⁿ-Sᵐ≅0 n m p)) isContrUnit) ∣ f ∣₂ (0ₕ _)) -- The iso ×leftSuspensionIso : (n m : ℕ) → GroupIso (coHomGr (suc (((suc n) + m))) (S₊ (suc n) × S₊ (suc m))) (coHomGr (suc (suc ((suc n) + m))) (S₊ (suc (suc n)) × S₊ (suc m))) fun (fst (×leftSuspensionIso n m)) = ST.map (uncurry ∘ ↑Sⁿ×Sᵐ→Kₙ₊ₘ n m ∘ curry) inv (fst (×leftSuspensionIso n m)) = ST.map ((uncurry ∘ ↓Sⁿ×Sᵐ→Kₙ₊ₘ n m ∘ curry)) rightInv (fst (×leftSuspensionIso n m)) = ST.elim (λ _ → isSetPathImplicit) λ f → inv PathIdTrunc₀Iso (PT.rec squash₁ (uncurry (λ g p → PT.map (λ gid → funExt λ {(x , y) → (λ i → uncurry (↑Sⁿ×Sᵐ→Kₙ₊ₘ n m (↓Sⁿ×Sᵐ→Kₙ₊ₘ n m (curry (p (~ i))))) (x , y)) ∙∙ main g gid x y ∙∙ funExt⁻ p (x , y)}) (∥Path∥ g))) (rewrte f)) where lem : (n m : ℕ) → ¬ suc (suc (n + m)) ≡ m lem n zero = snotz lem n (suc m) p = lem n m (cong suc (sym (+-suc n m)) ∙ cong predℕ p) charac-fun : (S₊ (suc n) → S₊ (suc m) → typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) → S₊ (suc (suc n)) × S₊ (suc m) → coHomK (suc (suc (suc n + m))) charac-fun g (north , y) = 0ₖ _ charac-fun g (south , y) = 0ₖ _ charac-fun g (merid c i , y) = g c y i rewrte : (f : S₊ (suc (suc n)) × S₊ (suc m) → coHomK (suc (suc (suc n + m)))) → ∃[ g ∈ (S₊ (suc n) → S₊ (suc m) → typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) ] charac-fun g ≡ f rewrte f = PT.map (λ p → (λ x y → sym (funExt⁻ p y) ∙∙ (λ i → f ((merid x ∙ sym (merid (ptSn (suc n)))) i , y)) ∙∙ funExt⁻ p y) , funExt λ { (north , y) → sym (funExt⁻ p y) ; (south , y) → sym (funExt⁻ p y) ∙ λ i → f (merid (ptSn (suc n)) i , y) ; (merid a i , y) j → hcomp (λ k → λ { (i = i0) → p (~ j ∧ k) y ; (i = i1) → compPath-filler' (sym (funExt⁻ p y)) (λ i → f (merid (ptSn (suc n)) i , y)) k j ; (j = i1) → f (merid a i , y) }) (f (compPath-filler (merid a) (sym (merid (ptSn (suc n)))) (~ j) i , y))}) (∥HⁿSᵐPath∥ _ _ (λ x → f (north , x)) (lem n m)) ∥Path∥ : (g : S₊ (suc n) → S₊ (suc m) → typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) → ∥ (g (ptSn _)) ≡ (λ _ → refl) ∥₁ ∥Path∥ g = fun PathIdTrunc₀Iso (isContr→isProp (isOfHLevelRetractFromIso 0 ((invIso (fst (coHom≅coHomΩ _ (S₊ (suc m)))))) (0ₕ _ , ST.elim (λ _ → isProp→isSet (squash₂ _ _)) λ f → PT.rec (squash₂ _ _) (sym ∘ cong ∣_∣₂) (∥HⁿSᵐPath∥ _ _ f (¬lem n m)))) ∣ g (ptSn (suc n)) ∣₂ ∣ (λ _ → refl) ∣₂) main : (g : _) → (g (ptSn _)) ≡ (λ _ → refl) → (x : S₊ (suc (suc n))) (y : S₊ (suc m)) → uncurry (↑Sⁿ×Sᵐ→Kₙ₊ₘ n m (↓Sⁿ×Sᵐ→Kₙ₊ₘ n m (curry (charac-fun g)))) (x , y) ≡ charac-fun g (x , y) main g gid north y = refl main g gid south y = refl main g gid (merid a i) y j = helper j i where helper : (λ i → uncurry (↑Sⁿ×Sᵐ→Kₙ₊ₘ n m (↓Sⁿ×Sᵐ→Kₙ₊ₘ n m (curry (charac-fun g)))) (merid a i , y)) ≡ g a y helper = (λ i → rightInv (Iso-Kn-ΩKn+1 _) ((sym (rCancel≡refl _ i) ∙∙ cong-∙ (λ x → rUnitₖ _ (charac-fun g (x , y)) i) (merid a) (sym (merid (ptSn (suc n)))) i ∙∙ rCancel≡refl _ i)) i) ∙∙ sym (rUnit _) ∙∙ (cong (g a y ∙_) (cong sym (funExt⁻ gid y)) ∙ sym (rUnit (g a y))) leftInv (fst (×leftSuspensionIso n m)) = ST.elim (λ _ → isSetPathImplicit) λ f → PT.rec (squash₂ _ _) (λ id → cong ∣_∣₂ (funExt (λ {(x , y) → (λ i → ΩKn+1→Kn _ (sym (rCancel≡refl _ i) ∙∙ ((λ j → rUnitₖ _ (↑Sⁿ×Sᵐ→Kₙ₊ₘ n m (curry f) ((merid x ∙ sym (merid (ptSn (suc n)))) j) y) i)) ∙∙ rCancel≡refl _ i)) ∙ (λ i → ΩKn+1→Kn _ (rUnit (cong-∙ (λ r → ↑Sⁿ×Sᵐ→Kₙ₊ₘ n m (curry f) r y) (merid x) (sym (merid (ptSn (suc n)))) i) (~ i))) ∙ cong (ΩKn+1→Kn _) (cong (Kn→ΩKn+1 _ (f (x , y)) ∙_) (cong sym (cong (Kn→ΩKn+1 _) (funExt⁻ id y) ∙ (Kn→ΩKn+10ₖ _))) ∙ sym (rUnit _)) ∙ leftInv (Iso-Kn-ΩKn+1 _) (f (x , y))}))) (∥HⁿSᵐPath∥ (suc n + m) m (λ x → f (ptSn _ , x)) (¬lem n m)) snd (×leftSuspensionIso n m) = makeIsGroupHom (ST.elim2 (λ _ _ → isSetPathImplicit) λ f g → cong ∣_∣₂ (funExt λ { (north , y) → refl ; (south , y) → refl ; (merid a i , y) j → (sym (∙≡+₂ _ (Kn→ΩKn+1 _ (f (a , y))) (Kn→ΩKn+1 _ (g (a , y)))) ∙ sym (Kn→ΩKn+1-hom _ (f (a , y)) (g (a , y)))) (~ j) i})) {- Step 2: H¹⁺ᵐ(S¹×Sᵐ)≅ℤ -} -- The functions back and forth Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ : (m : ℕ) → (S₊ (suc m) → coHomK (suc m)) → S₊ (suc zero) → S₊ (suc m) → coHomK (suc (suc m)) Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m f base y = 0ₖ _ Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m f (loop i) y = Kn→ΩKn+1 (suc m) (f y) i Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ : (m : ℕ) → (S₊ (suc zero) → S₊ (suc m) → coHomK (suc (suc m))) → (S₊ (suc m) → coHomK (suc m)) Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ m f x = ΩKn+1→Kn (suc m) (sym (rCancelₖ _ (f base x)) ∙∙ ((λ i → f (loop i) x -ₖ f base x)) ∙∙ rCancelₖ _ (f base x)) Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ : (m : ℕ) → GroupIso (coHomGr (suc m) (S₊ (suc m))) (coHomGr (suc (suc m)) (S₊ (suc zero) × S₊ (suc m))) fun (fst (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m)) = ST.map (uncurry ∘ Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m) inv (fst (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m)) = ST.map (Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ m ∘ curry) rightInv (fst (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m)) = ST.elim (λ _ → isSetPathImplicit) λ f → inv PathIdTrunc₀Iso (PT.map (uncurry (λ g p → funExt λ {(x , y) → (λ i → uncurry (Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m (Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ m (curry (p i)))) (x , y)) ∙∙ main g x y ∙∙ sym (funExt⁻ p (x , y))})) (rewrte f)) where characFun : (x : S₊ (suc m) → coHomK (suc m)) → S₊ 1 × S₊ (suc m) → coHomK (suc (suc m)) characFun f (base , y) = 0ₖ _ characFun f (loop i , y) = Kn→ΩKn+1 _ (f y) i main : (g : _) (x : S¹) (y : S₊ (suc m)) → uncurry (Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m (Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ m (curry (characFun g)))) (x , y) ≡ characFun g (x , y) main g base y = refl main g (loop i) y j = help j i where help : cong (λ x → Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m (Hⁿ-Sⁿ→Hⁿ-S¹×Sⁿ m (curry (characFun g))) x y) loop ≡ Kn→ΩKn+1 _ (g y) help = rightInv (Iso-Kn-ΩKn+1 (suc m)) (sym (rCancelₖ _ (0ₖ _)) ∙∙ ((λ i → Kn→ΩKn+1 _ (g y) i -ₖ 0ₖ _)) ∙∙ rCancelₖ _ (0ₖ _)) ∙∙ (λ i → sym (rCancel≡refl _ i) ∙∙ (λ j → rUnitₖ _ (Kn→ΩKn+1 _ (g y) j) i) ∙∙ rCancel≡refl _ i) ∙∙ sym (rUnit _) lem : (m : ℕ) → ¬ suc m ≡ m lem zero = snotz lem (suc m) p = lem m (cong predℕ p) rewrte : (f : S₊ 1 × S₊ (suc m) → coHomK (suc (suc m))) → ∃[ g ∈ (S₊ (suc m) → coHomK (suc m)) ] f ≡ characFun g rewrte f = PT.map (λ p → (λ x → ΩKn+1→Kn _ (sym (funExt⁻ p x) ∙∙ (λ i → f (loop i , x)) ∙∙ funExt⁻ p x)) , funExt λ { (base , y) → funExt⁻ p y ; (loop i , x) j → hcomp (λ k → λ {(i = i0) → funExt⁻ p x j ; (i = i1) → funExt⁻ p x j ; (j = i0) → f (loop i , x) ; (j = i1) → rightInv (Iso-Kn-ΩKn+1 (suc m)) (sym (funExt⁻ p x) ∙∙ (λ i → f (loop i , x)) ∙∙ funExt⁻ p x) (~ k) i}) (doubleCompPath-filler (sym (funExt⁻ p x)) (λ i → f (loop i , x)) (funExt⁻ p x) j i)}) (∥HⁿSᵐPath∥ (suc m) m (λ x → f (base , x)) (lem m)) leftInv (fst (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m)) = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → cong (ΩKn+1→Kn (suc m)) ((λ i → sym (rCancel≡refl _ i) ∙∙ cong (λ z → rUnitₖ _ (Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ m f z x) i) loop ∙∙ rCancel≡refl _ i) ∙ sym (rUnit (Kn→ΩKn+1 (suc m) (f x)))) ∙ leftInv (Iso-Kn-ΩKn+1 _) (f x)) snd (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m) = makeIsGroupHom (ST.elim2 (λ _ _ → isSetPathImplicit) λ f g → cong ∣_∣₂ (funExt λ { (base , y) → refl ; (loop i , y) j → (sym (∙≡+₂ _ (Kn→ΩKn+1 _ (f y)) (Kn→ΩKn+1 _ (g y))) ∙ sym (Kn→ΩKn+1-hom _ (f y) (g y))) (~ j) i})) Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ : (n m : ℕ) → GroupIso (coHomGr ((suc n) +' (suc m)) (S₊ (suc n) × S₊ (suc m))) ℤGroup Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ zero m = compGroupIso (invGroupIso (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ m)) (Hⁿ-Sⁿ≅ℤ m) Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ (suc n) m = compGroupIso (invGroupIso (×leftSuspensionIso n m)) (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ n m) -- Proof that ⌣ respects generators for H²×H²→H⁴ -- Todo: generalise H²-S²×S²-genₗ : coHom 2 (S₊ 2 × S₊ 2) H²-S²×S²-genₗ = ∣ (λ x → ∣ fst x ∣) ∣₂ H²-S²×S²-genᵣ : coHom 2 (S₊ 2 × S₊ 2) H²-S²×S²-genᵣ = ∣ (λ x → ∣ snd x ∣) ∣₂ H²-S²≅H⁴-S²×S² : GroupIso (coHomGr 2 (S₊ 2)) (coHomGr 4 (S₊ 2 × S₊ 2)) H²-S²≅H⁴-S²×S² = (compGroupIso (Hⁿ-Sⁿ≅Hⁿ-S¹×Sⁿ 1) (×leftSuspensionIso 0 1)) H²-S²≅H⁴-S²×S²⌣ : fun (fst (H²-S²≅H⁴-S²×S²)) ∣ ∣_∣ₕ ∣₂ ≡ H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ H²-S²≅H⁴-S²×S²⌣ = cong ∣_∣₂ (funExt (uncurry (λ { north y → refl ; south y → refl ; (merid a i) y j → Kn→ΩKn+1 3 (lem a y j) i}))) where lem : (a : S¹) (y : S₊ 2) → Hⁿ-S¹×Sⁿ→Hⁿ-Sⁿ 1 ∣_∣ₕ a y ≡ _⌣ₖ_ {n = 1} {m = 2} ∣ a ∣ₕ ∣ y ∣ₕ lem base y = refl lem (loop i) y = refl
{ "alphanum_fraction": 0.4668225004, "avg_line_length": 37.0446927374, "ext": "agda", "hexsha": "2519139edea6ca4bf6fb97441e31411ea3e534f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/SphereProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/SphereProduct.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/SphereProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6039, "size": 13262 }
{-# OPTIONS --cubical --safe #-} module Function where open import Level open import Path infixr 9 _∘_ _∘′_ _∘_ : ∀ {A : Type a} {B : A → Type b} {C : {x : A} → B x → Type c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) _∘′_ : (B → C) → (A → B) → A → C f ∘′ g = λ x → f (g x) flip : ∀ {A : Type a} {B : Type b} {C : A → B → Type c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ y x → f x y id : ∀ {A : Type a} → A → A id x = x const : A → B → A const x _ = x infixr -1 _$_ _$_ : ∀ {A : Type a} {B : A → Type b} → (∀ (x : A) → B x) → (x : A) → B x f $ x = f x infixl 1 _⟨_⟩_ _⟨_⟩_ : A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y infixl 0 _∋_ _∋_ : (A : Type a) → A → A A ∋ x = x infix 0 case_of_ case_of_ : A → (A → B) → B case x of f = f x record Reveal_·_is_ {A : Type a} {B : A → Type b} (f : (x : A) → B x) (x : A) (y : B x) : Type b where constructor 〖_〗 field eq : f x ≡ y inspect : {A : Type a} {B : A → Type b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = 〖 refl 〗
{ "alphanum_fraction": 0.4147217235, "avg_line_length": 21.4230769231, "ext": "agda", "hexsha": "5de1aa121b36d6d4157de47866f0f8d26af8892c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 552, "size": 1114 }
module Structure.Type.Identity.Proofs.Eliminator where import Lvl open import Functional using (_→ᶠ_ ; id ; _on₂_ ; swap ; apply) open import Logic open import Logic.Propositional open import Logic.Propositional.Proofs.Structures open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Groupoid open import Structure.Setoid using (Equiv ; intro) renaming (_≡_ to _≡ₛ_) open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Relator.Properties.Proofs open import Structure.Relator open import Structure.Type.Identity open import Structure.Type.Identity.Proofs open import Syntax.Function open import Syntax.Transitivity open import Syntax.Type open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ ℓₑ ℓₘₑ ℓₚ ℓₒ : Lvl.Level private variable T A B : Type{ℓ} private variable x y : T private variable Id _≡_ _▫_ : T → T → Stmt{ℓ} module Oper (Id : T → T → Type{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator{ℓₚ = ℓₑ}(Id) ⦄ where open Symmetry (identity-eliminator-to-symmetry {Id = Id}) using () renaming (proof to sym) public open Transitivity(identity-eliminator-to-transitivity {Id = Id}) using () renaming (proof to trans) public ftrans = identity-eliminator-to-flipped-transitivityᵣ ⦃ refl ⦄ ⦃ identElim ⦄ module Oper2 (Id : A → A → Type{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator{ℓₚ = ℓₚ}(Id) ⦄ where open Reflexivity (refl) using () renaming (proof to refl) public module _ (_▫_ : A → A → Type{ℓₚ}) ⦃ [▫]-refl : Reflexivity(_▫_) ⦄ where open _⊆₂_ identity-eliminator-to-reflexive-subrelation using () renaming (proof to sub) public module _ (_▫_ : B → B → Type{ℓₚ}) ⦃ [▫]-refl : Reflexivity(_▫_) ⦄ (f : A → B) where open _⊆₂_ (minimal-reflection-transport ⦃ minRefl = identity-eliminator-to-reflexive-subrelation ⦄ {_▫_ = _▫_} {f = f}) using () renaming (proof to transp) public module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ}(Id) identity-eliminator-symmetry-of-refl : ∀{x} → (sym refl ≡ refl{x}) identity-eliminator-symmetry-of-refl = idElimOfIntro(Id)(_≡_) (\{x y} _ → (Id y x)) refl module _ {Id : T → T → Type{ℓₑ₁}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ {_▫_ : T → T → Type{ℓₑ₂}} ⦃ refl-op : Reflexivity(_▫_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ₂}(Id) identity-eliminator-reflexive-subrelation-of-refl : ∀{x} → (sub(_▫_) refl ≡ reflexivity(_▫_){x}) identity-eliminator-reflexive-subrelation-of-refl = idElimOfIntro(Id)(_≡_) (\{x y} _ → (x ▫ y)) (reflexivity(_▫_)) module _ {Id : A → A → Type{ℓₑ₁}} ⦃ refle-A : Reflexivity(Id) ⦄ ⦃ identElim-A : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ {_▫_ : B → B → Type{ℓₑ₂}} ⦃ refle-B : Reflexivity(_▫_) ⦄ {f : A → B} where open Oper(Id) open Oper2{ℓₚ = ℓₑ₂}(Id) identity-eliminator-transport-of-refl : ∀{a} → (transp(_▫_)(f) (refl{a}) ≡ reflexivity(_▫_) {f(a)}) identity-eliminator-transport-of-refl {a} = identity-eliminator-reflexive-subrelation-of-refl {_≡_ = _≡_} {_▫_ = (_▫_) on₂ f} ⦃ on₂-reflexivity ⦄ {x = a} module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ}(Id) instance _ = identity-eliminator-to-reflexive-subrelation identity-eliminator-flipped-transitivityᵣ-of-refl : ∀{x} → (ftrans refl refl ≡ refl{x}) identity-eliminator-flipped-transitivityᵣ-of-refl {z} = sub₂(_≡_)((_≡_) on₂ (apply refl)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-transport-of-refl identity-eliminator-transitivity-of-refl : ∀{x} → (trans refl refl ≡ refl{x}) identity-eliminator-transitivity-of-refl = transitivity(_≡_) ⦃ identity-eliminator-to-transitivity ⦄ p identity-eliminator-flipped-transitivityᵣ-of-refl where p : trans refl refl ≡ ftrans refl refl p = sub₂(_≡_)((_≡_) on₂ (p ↦ identity-eliminator-to-flipped-transitivityᵣ p refl)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-symmetry-of-refl module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ identElim-A : IdentityEliminator(Equiv._≡_ equiv-A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Equiv._≡_ equiv-A)(_≡_) ⦄ where open Reflexivity(Equiv.reflexivity equiv-A) using () renaming (proof to refl-A) open Reflexivity(Equiv.reflexivity equiv-B) using () renaming (proof to refl-B) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = minimal-reflection-to-function identity-eliminator-function-of-refl : ∀{f : A → B}{a} → (congruence₁(f) (refl-A {a}) ≡ refl-B {f(a)}) identity-eliminator-function-of-refl = identity-eliminator-transport-of-refl module _ ⦃ equiv-T : Equiv{ℓₑ₁}(T) ⦄ ⦃ identElim-T : IdentityEliminator(Equiv._≡_ equiv-T) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ ⦃ identElimOfIntro : IdentityEliminationOfIntro(Equiv._≡_ equiv-T)(_≡_) ⦄ where open Reflexivity(Equiv.reflexivity equiv-T) using () renaming (proof to refl) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = minimal-reflection-to-relator identity-eliminator-relator-of-refl : ∀{P : T → Stmt}{x}{p : P(x)} → (substitute₁(P) refl p ≡ p) identity-eliminator-relator-of-refl {p = p} = sub₂(_≡_)((_≡_) on₂ (apply p)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-transport-of-refl module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : ∀{ℓₚ} → IdentityEliminator{ℓₚ = ℓₚ}(Id) ⦄ -- ⦃ identElim₁-T : IdentityEliminator{ℓₚ = ℓₑ}(Id) ⦄ -- ⦃ identElim₂-T : IdentityEliminator{ℓₚ = ℓₘₑ}(Id) ⦄ -- ⦃ identElim₃-T : IdentityEliminator{ℓₚ = ℓₑ Lvl.⊔ ℓₘₑ}(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ -- TODO: Try to not have these and instead have the properties that are used ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Reflexivity (refle-T) using () renaming (proof to refl) open Symmetry (identity-eliminator-to-symmetry {Id = Id}) using () renaming (proof to sym) open Transitivity(identity-eliminator-to-transitivity {Id = Id}) using () renaming (proof to trans) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = \{T} → identity-eliminator-to-symmetry {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ instance _ = \{T} → identity-eliminator-to-transitivity {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ instance _ = \{T} → Structure.Setoid.intro(_) ⦃ identity-eliminator-to-equivalence {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ ⦄ identity-eliminator-identityₗ : ∀{x y}{p : Id x y} → (trans refl p ≡ p) identity-eliminator-identityₗ {p = p} = idElim(Id) (p ↦ (trans refl p ≡ p)) identity-eliminator-transitivity-of-refl p identity-eliminator-identityᵣ : ∀{x y}{p : Id x y} → (trans p refl ≡ p) identity-eliminator-identityᵣ {p = p} = idElim(Id) (p ↦ (trans p refl ≡ p)) identity-eliminator-transitivity-of-refl p identity-eliminator-associativity : ∀{x y z w}{p : Id x y}{q : Id y z}{r : Id z w} → (trans (trans p q) r ≡ trans p (trans q r)) identity-eliminator-associativity {p = p} {q = q} {r = r} = idElim(Id) (p ↦ ∀ q r → (trans (trans p q) r ≡ trans p (trans q r))) (q ↦ r ↦ ( trans (trans refl q) r 🝖[ _≡_ ]-[ sub₂(_≡_)((_≡_) on₂ (expr ↦ trans expr r)) ⦃ identity-eliminator-to-reflexive-subrelation ⦃ refl = on₂-reflexivity ⦄ ⦄ identity-eliminator-identityₗ ] trans q r 🝖[ _≡_ ]-[ identity-eliminator-identityₗ ]-sym trans refl (trans q r) 🝖-end )) p q r identity-eliminator-inverseₗ : ∀{x y}{p : Id x y} → (trans (sym p) p ≡ refl) identity-eliminator-inverseₗ {p = p} = idElim(Id) (p ↦ trans (sym p) p ≡ refl) ( trans (sym refl) refl 🝖[ _≡_ ]-[ identity-eliminator-identityᵣ ] sym refl 🝖[ _≡_ ]-[ identity-eliminator-symmetry-of-refl ] refl 🝖-end ) p identity-eliminator-inverseᵣ : ∀{x y}{p : Id x y} → (trans p (sym p) ≡ refl) identity-eliminator-inverseᵣ {p = p} = idElim(Id) (p ↦ trans p (sym p) ≡ refl) ( trans refl (sym refl) 🝖[ _≡_ ]-[ identity-eliminator-identityₗ ] sym refl 🝖[ _≡_ ]-[ identity-eliminator-symmetry-of-refl ] refl 🝖-end ) p identity-eliminator-categorical-identityₗ : Morphism.Identityₗ{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identityₗ = Morphism.intro identity-eliminator-identityᵣ identity-eliminator-categorical-identityᵣ : Morphism.Identityᵣ{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identityᵣ = Morphism.intro identity-eliminator-identityₗ identity-eliminator-categorical-identity : Morphism.Identity{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identity = [∧]-intro identity-eliminator-categorical-identityₗ identity-eliminator-categorical-identityᵣ identity-eliminator-categorical-associativity : Morphism.Associativity{Obj = T} (\{x} → swap(trans{x})) identity-eliminator-categorical-associativity = Morphism.intro (symmetry(_≡_) identity-eliminator-associativity) identity-eliminator-categorical-inverterₗ : Polymorphism.Inverterₗ{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverterₗ = Polymorphism.intro identity-eliminator-inverseᵣ identity-eliminator-categorical-inverterᵣ : Polymorphism.Inverterᵣ{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverterᵣ = Polymorphism.intro identity-eliminator-inverseₗ identity-eliminator-categorical-inverter : Polymorphism.Inverter{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverter = [∧]-intro identity-eliminator-categorical-inverterₗ identity-eliminator-categorical-inverterᵣ identity-eliminator-groupoid : Groupoid(Id) Groupoid._∘_ identity-eliminator-groupoid = swap(trans) Groupoid.id identity-eliminator-groupoid = refl Groupoid.inv identity-eliminator-groupoid = sym Groupoid.associativity identity-eliminator-groupoid = identity-eliminator-categorical-associativity Groupoid.identity identity-eliminator-groupoid = identity-eliminator-categorical-identity Groupoid.inverter identity-eliminator-groupoid = identity-eliminator-categorical-inverter Groupoid.binaryOperator identity-eliminator-groupoid = intro a where postulate a : ∀{a} → a -- TODO
{ "alphanum_fraction": 0.6717306862, "avg_line_length": 52.1846846847, "ext": "agda", "hexsha": "0b036aa6eb8d83aa9c7cccc401a3e22c6395318c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Type/Identity/Proofs/Eliminator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Type/Identity/Proofs/Eliminator.agda", "max_line_length": 192, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Type/Identity/Proofs/Eliminator.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4256, "size": 11585 }
------------------------------------------------------------------------ -- Well-founded induction ------------------------------------------------------------------------ -- I want universe polymorphism. open import Relation.Binary module Induction1.WellFounded {a : Set} (_<_ : Rel a) where open import Induction1 -- When using well-founded recursion you can recurse arbitrarily, as -- long as the arguments become smaller, and "smaller" is -- well-founded. WfRec : RecStruct a WfRec P x = ∀ y → y < x → P y -- The accessibility predicate encodes what it means to be -- well-founded; if all elements are accessible, then _<_ is -- well-founded. data Acc (x : a) : Set₁ where acc : (rs : WfRec Acc x) → Acc x -- Well-founded induction for the subset of accessible elements: module Some where wfRec-builder : SubsetRecursorBuilder Acc WfRec wfRec-builder P f x (acc rs) = λ y y<x → f y (wfRec-builder P f y (rs y y<x)) wfRec : SubsetRecursor Acc WfRec wfRec = subsetBuild wfRec-builder -- Well-founded induction for all elements, assuming they are all -- accessible: module All (allAcc : ∀ x → Acc x) where wfRec-builder : RecursorBuilder WfRec wfRec-builder P f x = Some.wfRec-builder P f x (allAcc x) wfRec : Recursor WfRec wfRec = build wfRec-builder
{ "alphanum_fraction": 0.6308049536, "avg_line_length": 26.9166666667, "ext": "agda", "hexsha": "ac88936f3bb71b48382cd02d15b81db4fa8b4dbd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Induction1/WellFounded.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Induction1/WellFounded.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Induction1/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 329, "size": 1292 }
module HasDecidableSubstantiveDischarge where open import OscarPrelude open import HasSubstantiveDischarge record HasDecidableSubstantiveDischarge (A : Set) : Set₁ where field ⦃ hasSubstantiveDischarge ⦄ : HasSubstantiveDischarge A _≽?_ : (+ - : A) → Dec $ + ≽ - open HasDecidableSubstantiveDischarge ⦃ … ⦄ public {-# DISPLAY HasDecidableSubstantiveDischarge._≽?_ _ = _≽?_ #-} open import Membership _⋆≽?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+s : List A) → (- : A) → Dec (+s ⋆≽ -) _⋆≽?_ [] - = no λ { (_ , () , _)} _⋆≽?_ (+ ∷ +s) - with + ≽? - … | yes +≽- = yes $ _ , zero , +≽- … | no +⋡- with +s ⋆≽? - … | yes (+' , +'∈+s , +'≽-) = yes $ _ , suc +'∈+s , +'≽- … | no +s⋡- = no λ { (_ , zero , +≽-) → +⋡- +≽- ; (+' , suc +'∈+s , +'≽-) → +s⋡- $ _ , +'∈+s , +'≽- } _≽⋆?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+ : A) → (-s : List A) → Dec (+ ≽⋆ -s) + ≽⋆? [] = no (λ { (fst₁ , () , snd₁)}) + ≽⋆? (- ∷ -s) with + ≽? - … | yes +≽- = yes (_ , zero , +≽-) … | no +⋡- with + ≽⋆? -s … | yes (_ , i∈-s , +≽⋆i) = yes (_ , suc i∈-s , +≽⋆i) … | no +⋡⋆-s = no (λ { (_ , zero , +≽-) → +⋡- +≽- ; (_ , suc -'∈-s , +≽-') → +⋡⋆-s (_ , -'∈-s , +≽-')}) _⋆≽⋆?_ : ∀ {A} ⦃ _ : HasDecidableSubstantiveDischarge A ⦄ → (+s : List A) → (-s : List A) → Dec (+s ⋆≽⋆ -s) _⋆≽⋆?_ +s [] = yes λ _ () _⋆≽⋆?_ +s (- ∷ -s) with +s ⋆≽? - … | no +s⋡- = no λ +s≽-∷-s → +s⋡- $ +s≽-∷-s (-) zero … | yes +s≽- with +s ⋆≽⋆? -s … | yes +s≽-s = yes λ { _ zero → +s≽- ; -' (suc -'∈-∷-s) → +s≽-s -' -'∈-∷-s } … | no +s⋡-s = no λ +s≽-∷-s → +s⋡-s λ +' +'∈-s → +s≽-∷-s +' (suc +'∈-s) open import HasNegation ◁?_ : ∀ {+} ⦃ _ : HasDecidableSubstantiveDischarge (+) ⦄ → (+s : List +) → Dec $ ◁ +s ◁? [] = no λ {(_ , () , _)} ◁?_ (+ ∷ +s) with +s ⋆≽? ~ + … | yes (_ , +'∈+s , +'≽~+) = yes $ _ , zero , _ , suc +'∈+s , +'≽~+ … | no +s⋆⋡~+ with ~ + ≽⋆? +s … | yes (_ , c∈+s , ~+≽c) = yes (_ , suc c∈+s , _ , zero , ≽-contrapositive (+) _ ~+≽c) … | no ~+⋡⋆+s with ◁? +s … | yes (s , s∈+s , c , c∈+s , c≽~s) = yes $ _ , suc s∈+s , _ , suc c∈+s , c≽~s … | no ⋪+s = no λ { (_ , zero , _ , zero , c≽~s) → ≽-consistent (+) (+) (≽-reflexive +) c≽~s ; (_ , zero , c , suc c∈+s , c≽~s) → +s⋆⋡~+ (_ , c∈+s , c≽~s) ; (s , suc s∈+s , .+ , zero , +≽~s) → ~+⋡⋆+s (_ , s∈+s , ≽-contrapositive' (+) s +≽~s) ; (s , suc s∈+s , c , suc c∈+s , c≽~s) → ⋪+s (_ , s∈+s , _ , c∈+s , c≽~s) }
{ "alphanum_fraction": 0.3946830266, "avg_line_length": 39.435483871, "ext": "agda", "hexsha": "8104e9024dd2ecca95c9709583638d0c3ad013ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasDecidableSubstantiveDischarge.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasDecidableSubstantiveDischarge.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasDecidableSubstantiveDischarge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1380, "size": 2445 }
module HasDecidableVacuousDischarge where open import OscarPrelude --open import HasVacuousDischarge open import HasSubstantiveDischarge open import HasNegation record HasDecidableVacuousDischarge (A : Set) : Set₁ where field -- ⦃ hasVacuousDischarge ⦄ : HasVacuousDischarge A ⦃ hasNegation ⦄ : HasNegation A ⦃ hasSubstantiveDischarge ⦄ : HasSubstantiveDischarge A ◁?_ : (x : List A) → Dec $ ◁ x open HasDecidableVacuousDischarge ⦃ … ⦄ public {-# DISPLAY HasDecidableVacuousDischarge.◁?_ _ = ◁?_ #-}
{ "alphanum_fraction": 0.7480916031, "avg_line_length": 26.2, "ext": "agda", "hexsha": "bd0218cecb0414d3070e4f7d6187e7a69b1ffcf0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/HasDecidableVacuousDischarge.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/HasDecidableVacuousDischarge.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/HasDecidableVacuousDischarge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 179, "size": 524 }
-- Monoidal categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal where open import Cubical.Categories.Monoidal.Base public open import Cubical.Categories.Monoidal.Enriched public
{ "alphanum_fraction": 0.807106599, "avg_line_length": 24.625, "ext": "agda", "hexsha": "bc2a153a1493ecf1fce7f6657fc7218e386b4d3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Monoidal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Monoidal.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z", "num_tokens": 40, "size": 197 }
------------------------------------------------------------------------------ -- All the predicate logic modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.Everything where open import FOL.Base open import FOL.ExclusiveDisjunction.Base open import FOL.ExclusiveDisjunction.TheoremsATP open import FOL.ExclusiveDisjunction.TheoremsI open import FOL.NonEmptyDomain.TheoremsATP open import FOL.NonEmptyDomain.TheoremsI open import FOL.NonIntuitionistic.TheoremsATP open import FOL.NonIntuitionistic.TheoremsI open import FOL.PropositionalLogic.TheoremsATP open import FOL.PropositionalLogic.TheoremsI open import FOL.SchemataATP open import FOL.TheoremsATP open import FOL.TheoremsI
{ "alphanum_fraction": 0.6389811739, "avg_line_length": 36.12, "ext": "agda", "hexsha": "9d4acb3936872b17e9e1e776de8c503d7cdfa89c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/Everything.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 202, "size": 903 }
------------------------------------------------------------------------ -- Listed finite subsets ------------------------------------------------------------------------ -- Based on Frumin, Geuvers, Gondelman and van der Weide's "Finite -- Sets in Homotopy Type Theory". {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Finite-subset.Listed {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Dec open import Logical-equivalence using (_⇔_) open import Prelude as P hiding ([_,_]; swap) open import Bag-equivalence equality-with-J as BE using (_∼[_]_; set) open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms eq open import Equality.Path.Isomorphisms.Univalence eq open import Equivalence equality-with-J as Eq using (_≃_) open import Erased.Cubical eq as EC using (Erased; [_]; Dec-Erased; Dec→Dec-Erased) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as Trunc using (∥_∥; ∣_∣; _∥⊎∥_) open import Injection equality-with-J using (Injective) import List equality-with-J as L import Maybe equality-with-J as Maybe open import Monad equality-with-J as M using (Raw-monad; Monad; _=<<_) open import Nat equality-with-J as Nat using (_<_) open import Quotient eq as Q using (_/_) open import Surjection equality-with-J using (_↠_) import Univalence-axiom equality-with-J as Univ private variable a b : Level A B : Type a H ms p q x x₁ x₂ xs y y₁ y₂ ys z _≟_ : A P : A → Type p f g : (x : A) → P x m n : ℕ ------------------------------------------------------------------------ -- Listed finite subsets -- Listed finite subsets of a given type. infixr 5 _∷_ data Finite-subset-of (A : Type a) : Type a where [] : Finite-subset-of A _∷_ : A → Finite-subset-of A → Finite-subset-of A dropᴾ : x ∷ x ∷ y P.≡ x ∷ y swapᴾ : x ∷ y ∷ z P.≡ y ∷ x ∷ z is-setᴾ : P.Is-set (Finite-subset-of A) -- Variants of some of the constructors. drop : {x : A} {y : Finite-subset-of A} → x ∷ x ∷ y ≡ x ∷ y drop = _↔_.from ≡↔≡ dropᴾ swap : {x y : A} {z : Finite-subset-of A} → x ∷ y ∷ z ≡ y ∷ x ∷ z swap = _↔_.from ≡↔≡ swapᴾ is-set : Is-set (Finite-subset-of A) is-set = _↔_.from (H-level↔H-level 2) Finite-subset-of.is-setᴾ ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) dropʳ : ∀ x (p : P y) → P.[ (λ i → P (dropᴾ {x = x} {y = y} i)) ] ∷ʳ x (∷ʳ x p) ≡ ∷ʳ x p swapʳ : ∀ x y (p : P z) → P.[ (λ i → P (swapᴾ {x = x} {y = y} {z = z} i)) ] ∷ʳ x (∷ʳ y p) ≡ ∷ʳ y (∷ʳ x p) is-setʳ : ∀ x → P.Is-set (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : Finite-subset-of A) → P x elimᴾ {A = A} {P = P} e = helper where module E = Elimᴾ e helper : (x : Finite-subset-of A) → P x helper [] = E.[]ʳ helper (x ∷ y) = E.∷ʳ x (helper y) helper (dropᴾ {x = x} {y = y} i) = E.dropʳ x (helper y) i helper (swapᴾ {x = x} {y = y} {z = z} i) = E.swapʳ x y (helper z) i helper (is-setᴾ x y i j) = P.heterogeneous-UIP E.is-setʳ (Finite-subset-of.is-setᴾ x y) (λ i → helper (x i)) (λ i → helper (y i)) i j -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B dropʳ : ∀ x y p → ∷ʳ x (x ∷ y) (∷ʳ x y p) P.≡ ∷ʳ x y p swapʳ : ∀ x y z p → ∷ʳ x (y ∷ z) (∷ʳ y z p) P.≡ ∷ʳ y (x ∷ z) (∷ʳ x z p) is-setʳ : P.Is-set B open Recᴾ public recᴾ : Recᴾ A B → Finite-subset-of A → B recᴾ r = elimᴾ e where module R = Recᴾ r e : Elimᴾ _ e .[]ʳ = R.[]ʳ e .∷ʳ {y = y} x = R.∷ʳ x y e .dropʳ {y = y} x = R.dropʳ x y e .swapʳ {z = z} x y = R.swapʳ x y z e .is-setʳ _ = R.is-setʳ -- A dependent eliminator, expressed using equality. record Elim {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) dropʳ : ∀ x (p : P y) → subst P (drop {x = x} {y = y}) (∷ʳ x (∷ʳ x p)) ≡ ∷ʳ x p swapʳ : ∀ x y (p : P z) → subst P (swap {x = x} {y = y} {z = z}) (∷ʳ x (∷ʳ y p)) ≡ ∷ʳ y (∷ʳ x p) is-setʳ : ∀ x → Is-set (P x) open Elim public elim : Elim P → (x : Finite-subset-of A) → P x elim e = elimᴾ e′ where module E = Elim e e′ : Elimᴾ _ e′ .[]ʳ = E.[]ʳ e′ .∷ʳ = E.∷ʳ e′ .dropʳ x p = subst≡→[]≡ (E.dropʳ x p) e′ .swapʳ x y p = subst≡→[]≡ (E.swapʳ x y p) e′ .is-setʳ x = _↔_.to (H-level↔H-level 2) (E.is-setʳ x) -- A non-dependent eliminator, expressed using equality. record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B dropʳ : ∀ x y p → ∷ʳ x (x ∷ y) (∷ʳ x y p) ≡ ∷ʳ x y p swapʳ : ∀ x y z p → ∷ʳ x (y ∷ z) (∷ʳ y z p) ≡ ∷ʳ y (x ∷ z) (∷ʳ x z p) is-setʳ : Is-set B open Rec public rec : Rec A B → Finite-subset-of A → B rec r = recᴾ r′ where module R = Rec r r′ : Recᴾ _ _ r′ .[]ʳ = R.[]ʳ r′ .∷ʳ = R.∷ʳ r′ .dropʳ x y p = _↔_.to ≡↔≡ (R.dropʳ x y p) r′ .swapʳ x y z p = _↔_.to ≡↔≡ (R.swapʳ x y z p) r′ .is-setʳ = _↔_.to (H-level↔H-level 2) R.is-setʳ -- A dependent eliminator for propositions. record Elim-prop {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where no-eta-equality field []ʳ : P [] ∷ʳ : ∀ x → P y → P (x ∷ y) is-propositionʳ : ∀ x → Is-proposition (P x) open Elim-prop public elim-prop : Elim-prop P → (x : Finite-subset-of A) → P x elim-prop e = elim e′ where module E = Elim-prop e e′ : Elim _ e′ .[]ʳ = E.[]ʳ e′ .∷ʳ = E.∷ʳ e′ .dropʳ _ _ = E.is-propositionʳ _ _ _ e′ .swapʳ _ _ _ = E.is-propositionʳ _ _ _ e′ .is-setʳ _ = mono₁ 1 (E.is-propositionʳ _) -- A non-dependent eliminator for propositions. record Rec-prop (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B is-propositionʳ : Is-proposition B open Rec-prop public rec-prop : Rec-prop A B → Finite-subset-of A → B rec-prop r = elim-prop e where module R = Rec-prop r e : Elim-prop _ e .[]ʳ = R.[]ʳ e .∷ʳ {y = y} x = R.∷ʳ x y e .is-propositionʳ _ = R.is-propositionʳ ------------------------------------------------------------------------ -- Some operations -- Singleton subsets. singleton : A → Finite-subset-of A singleton x = x ∷ [] -- The union of two finite subsets. infixr 5 _∪_ _∪_ : Finite-subset-of A → Finite-subset-of A → Finite-subset-of A [] ∪ y = y (x ∷ y) ∪ z = x ∷ (y ∪ z) dropᴾ {x = x} {y = y} i ∪ z = dropᴾ {x = x} {y = y ∪ z} i swapᴾ {x = x} {y = y} {z = z} i ∪ u = swapᴾ {x = x} {y = y} {z = z ∪ u} i is-setᴾ x y i j ∪ z = is-setᴾ (λ i → x i ∪ z) (λ i → y i ∪ z) i j -- [] is a right identity for _∪_. ∪[] : (x : Finite-subset-of A) → x ∪ [] ≡ x ∪[] = elim-prop e where e : Elim-prop _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = y} x hyp = x ∷ y ∪ [] ≡⟨ cong (x ∷_) hyp ⟩∎ x ∷ y ∎ -- A lemma relating _∪_ and _∷_. ∪∷ : (x : Finite-subset-of A) → x ∪ (y ∷ z) ≡ y ∷ x ∪ z ∪∷ {y = y} {z = z} = elim-prop e where e : Elim-prop _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = u} x hyp = (x ∷ u) ∪ (y ∷ z) ≡⟨⟩ x ∷ u ∪ (y ∷ z) ≡⟨ cong (x ∷_) hyp ⟩ x ∷ y ∷ u ∪ z ≡⟨ swap ⟩ y ∷ x ∷ u ∪ z ≡⟨⟩ y ∷ (x ∷ u) ∪ z ∎ -- Union is associative. assoc : (x : Finite-subset-of A) → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z assoc {y = y} {z = z} = elim-prop e where e : Elim-prop _ e .is-propositionʳ _ = is-set e .[]ʳ = refl _ e .∷ʳ {y = u} x hyp = x ∷ u ∪ (y ∪ z) ≡⟨ cong (x ∷_) hyp ⟩∎ x ∷ (u ∪ y) ∪ z ∎ -- Union is commutative. comm : (x : Finite-subset-of A) → x ∪ y ≡ y ∪ x comm {y = y} = elim-prop e where e : Elim-prop _ e .is-propositionʳ _ = is-set e .[]ʳ = [] ∪ y ≡⟨⟩ y ≡⟨ sym (∪[] y) ⟩∎ y ∪ [] ∎ e .∷ʳ {y = z} x hyp = x ∷ z ∪ y ≡⟨ cong (x ∷_) hyp ⟩ x ∷ y ∪ z ≡⟨ sym (∪∷ y) ⟩∎ y ∪ (x ∷ z) ∎ -- Union is idempotent. idem : (x : Finite-subset-of A) → x ∪ x ≡ x idem = elim-prop e where e : Elim-prop _ e .[]ʳ = [] ∪ [] ≡⟨⟩ [] ∎ e .∷ʳ {y = y} x hyp = (x ∷ y) ∪ (x ∷ y) ≡⟨⟩ x ∷ y ∪ x ∷ y ≡⟨ cong (_ ∷_) (∪∷ y) ⟩ x ∷ x ∷ y ∪ y ≡⟨ drop ⟩ x ∷ y ∪ y ≡⟨ cong (_ ∷_) hyp ⟩∎ x ∷ y ∎ e .is-propositionʳ = λ _ → is-set -- Union distributes from the left and right over union. ∪-distrib-left : ∀ x → x ∪ (y ∪ z) ≡ (x ∪ y) ∪ (x ∪ z) ∪-distrib-left {y = y} {z = z} x = x ∪ (y ∪ z) ≡⟨ cong (_∪ _) $ sym (idem x) ⟩ (x ∪ x) ∪ (y ∪ z) ≡⟨ sym $ assoc x ⟩ x ∪ (x ∪ (y ∪ z)) ≡⟨ cong (x ∪_) $ assoc x ⟩ x ∪ ((x ∪ y) ∪ z) ≡⟨ cong ((x ∪_) ∘ (_∪ _)) $ comm x ⟩ x ∪ ((y ∪ x) ∪ z) ≡⟨ cong (x ∪_) $ sym $ assoc y ⟩ x ∪ (y ∪ (x ∪ z)) ≡⟨ assoc x ⟩∎ (x ∪ y) ∪ (x ∪ z) ∎ ∪-distrib-right : ∀ x → (x ∪ y) ∪ z ≡ (x ∪ z) ∪ (y ∪ z) ∪-distrib-right {y = y} {z = z} x = (x ∪ y) ∪ z ≡⟨ comm (x ∪ _) ⟩ z ∪ (x ∪ y) ≡⟨ ∪-distrib-left z ⟩ (z ∪ x) ∪ (z ∪ y) ≡⟨ cong₂ _∪_ (comm z) (comm z) ⟩∎ (x ∪ z) ∪ (y ∪ z) ∎ -- A map function. map : (A → B) → Finite-subset-of A → Finite-subset-of B map f = recᴾ r where r : Recᴾ _ _ r .[]ʳ = [] r .∷ʳ x _ y = f x ∷ y r .dropʳ _ _ _ = dropᴾ r .swapʳ _ _ _ _ = swapᴾ r .is-setʳ = is-setᴾ -- Join. join : Finite-subset-of (Finite-subset-of A) → Finite-subset-of A join = rec r where r : Rec _ _ r .[]ʳ = [] r .∷ʳ x _ = x ∪_ r .dropʳ x y z = x ∪ x ∪ z ≡⟨ assoc x ⟩ (x ∪ x) ∪ z ≡⟨ cong (_∪ _) (idem x) ⟩∎ x ∪ z ∎ r .swapʳ x y z u = x ∪ y ∪ u ≡⟨ assoc x ⟩ (x ∪ y) ∪ u ≡⟨ cong (_∪ _) (comm x) ⟩ (y ∪ x) ∪ u ≡⟨ sym (assoc y) ⟩∎ y ∪ x ∪ u ∎ r .is-setʳ = is-set -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : Finite-subset-of A → (A → Finite-subset-of B) → Finite-subset-of B x >>=′ f = join (map f x) -- Bind distributes from the right over union. >>=-right-distributive : ∀ x → (x ∪ y) >>=′ f ≡ (x >>=′ f) ∪ (y >>=′ f) >>=-right-distributive {y = y} {f = f} = elim-prop e where e : Elim-prop _ e .[]ʳ = refl _ e .is-propositionʳ _ = is-set e .∷ʳ {y = z} x hyp = ((x ∷ z) ∪ y) >>=′ f ≡⟨⟩ f x ∪ ((z ∪ y) >>=′ f) ≡⟨ cong (f x ∪_) hyp ⟩ f x ∪ ((z >>=′ f) ∪ (y >>=′ f)) ≡⟨ assoc (f x) ⟩ (f x ∪ (z >>=′ f)) ∪ (y >>=′ f) ≡⟨⟩ ((x ∷ z) >>=′ f) ∪ (y >>=′ f) ∎ -- Bind distributes from the left over union. >>=-left-distributive : ∀ x → (x >>=′ λ x → f x ∪ g x) ≡ (x >>=′ f) ∪ (x >>=′ g) >>=-left-distributive {f = f} {g = g} = elim-prop e where e : Elim-prop _ e .[]ʳ = refl _ e .is-propositionʳ _ = is-set e .∷ʳ {y = y} x hyp = (x ∷ y) >>=′ (λ x → f x ∪ g x) ≡⟨⟩ (f x ∪ g x) ∪ (y >>=′ λ x → f x ∪ g x) ≡⟨ cong ((f x ∪ g x) ∪_) hyp ⟩ (f x ∪ g x) ∪ ((y >>=′ f) ∪ (y >>=′ g)) ≡⟨ sym (assoc (f x)) ⟩ f x ∪ (g x ∪ ((y >>=′ f) ∪ (y >>=′ g))) ≡⟨ cong (f x ∪_) (assoc (g x)) ⟩ f x ∪ ((g x ∪ (y >>=′ f)) ∪ (y >>=′ g)) ≡⟨ cong ((f x ∪_) ∘ (_∪ (y >>=′ g))) (comm (g x)) ⟩ f x ∪ (((y >>=′ f) ∪ g x) ∪ (y >>=′ g)) ≡⟨ cong (f x ∪_) (sym (assoc (y >>=′ f))) ⟩ f x ∪ ((y >>=′ f) ∪ (g x ∪ (y >>=′ g))) ≡⟨ assoc (f x) ⟩ (f x ∪ (y >>=′ f)) ∪ (g x ∪ (y >>=′ g)) ≡⟨⟩ ((x ∷ y) >>=′ f) ∪ ((x ∷ y) >>=′ g) ∎ -- Monad laws. singleton->>= : (f : A → Finite-subset-of B) → singleton x >>=′ f ≡ f x singleton->>= {x = x} f = f x ∪ [] ≡⟨ ∪[] _ ⟩∎ f x ∎ >>=-singleton : x >>=′ singleton ≡ x >>=-singleton = elim-prop e _ where e : Elim-prop (λ x → x >>=′ singleton ≡ x) e .[]ʳ = refl _ e .is-propositionʳ _ = is-set e .∷ʳ {y = y} x hyp = x ∷ (y >>=′ singleton) ≡⟨ cong (_ ∷_) hyp ⟩∎ x ∷ y ∎ >>=-assoc : ∀ x → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g >>=-assoc {f = f} {g = g} = elim-prop e where e : Elim-prop _ e .[]ʳ = refl _ e .is-propositionʳ _ = is-set e .∷ʳ {y = y} x hyp = (x ∷ y) >>=′ (λ x → f x >>=′ g) ≡⟨⟩ (f x >>=′ g) ∪ (y >>=′ λ x → f x >>=′ g) ≡⟨ cong ((f x >>=′ g) ∪_) hyp ⟩ (f x >>=′ g) ∪ (y >>=′ f >>=′ g) ≡⟨ sym (>>=-right-distributive (f x)) ⟩ (f x ∪ (y >>=′ f)) >>=′ g ≡⟨⟩ (x ∷ y) >>=′ f >>=′ g ∎ -- A monad instance. instance raw-monad : Raw-monad {d = a} Finite-subset-of raw-monad .M.return = singleton raw-monad .M._>>=_ = _>>=′_ monad : Monad {d = a} Finite-subset-of monad .M.Monad.raw-monad = raw-monad monad .M.Monad.left-identity _ = singleton->>= monad .M.Monad.right-identity _ = >>=-singleton monad .M.Monad.associativity x _ _ = >>=-assoc x ------------------------------------------------------------------------ -- Membership private -- Membership is used to define _∈_ and ∈-propositional below. Membership : {A : Type a} → A → Finite-subset-of A → Proposition a Membership x = rec r where r : Rec _ _ r .[]ʳ = ⊥ , ⊥-propositional r .∷ʳ y z (x∈z , _) = (x ≡ y ∥⊎∥ x∈z) , Trunc.truncation-is-proposition r .dropʳ y z (P , P-prop) = _↔_.to (ignore-propositional-component (H-level-propositional ext 1)) $ Univ.≃⇒≡ univ (x ≡ y ∥⊎∥ x ≡ y ∥⊎∥ P ↔⟨ Trunc.∥⊎∥-assoc ⟩ (x ≡ y ∥⊎∥ x ≡ y) ∥⊎∥ P ↔⟨ Trunc.idempotent Trunc.∥⊎∥-cong F.id ⟩ ∥ x ≡ y ∥ ∥⊎∥ P ↔⟨ inverse Trunc.truncate-left-∥⊎∥ ⟩□ x ≡ y ∥⊎∥ P □) r .swapʳ y z u (P , P-prop) = _↔_.to (ignore-propositional-component (H-level-propositional ext 1)) $ Univ.≃⇒≡ univ (x ≡ y ∥⊎∥ x ≡ z ∥⊎∥ P ↔⟨ Trunc.∥⊎∥-assoc ⟩ (x ≡ y ∥⊎∥ x ≡ z) ∥⊎∥ P ↔⟨ (Trunc.∥⊎∥-comm Trunc.∥⊎∥-cong F.id) ⟩ (x ≡ z ∥⊎∥ x ≡ y) ∥⊎∥ P ↔⟨ inverse Trunc.∥⊎∥-assoc ⟩□ x ≡ z ∥⊎∥ x ≡ y ∥⊎∥ P □) r .is-setʳ = Univ.∃-H-level-H-level-1+ ext univ 1 -- Membership. -- -- The type is wrapped to make it easier for Agda to infer the subset -- argument. private module Dummy where infix 4 _∈_ record _∈_ {A : Type a} (x : A) (y : Finite-subset-of A) : Type a where constructor box field unbox : proj₁ (Membership x y) open Dummy public using (_∈_) hiding (module _∈_) -- The negation of membership. infix 4 _∉_ _∉_ : {A : Type a} → A → Finite-subset-of A → Type a x ∉ y = ¬ x ∈ y private -- An unfolding lemma. ∈≃ : (x ∈ y) ≃ proj₁ (Membership x y) ∈≃ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = Dummy._∈_.unbox ; from = Dummy.box } ; right-inverse-of = refl } ; left-inverse-of = refl }) -- Membership is propositional. ∈-propositional : Is-proposition (x ∈ y) ∈-propositional {x = x} {y = y} = $⟨ proj₂ (Membership x y) ⟩ Is-proposition (proj₁ (Membership x y)) ↝⟨ H-level-cong _ 1 (inverse ∈≃) ⦂ (_ → _) ⟩□ Is-proposition (x ∈ y) □ -- A lemma characterising []. ∈[]≃ : (x ∈ []) ≃ ⊥₀ ∈[]≃ {x = x} = x ∈ [] ↝⟨ ∈≃ ⟩ ⊥ ↔⟨ ⊥↔⊥ ⟩□ ⊥₀ □ -- A lemma characterising _∷_. ∈∷≃ : (x ∈ y ∷ z) ≃ (x ≡ y ∥⊎∥ x ∈ z) ∈∷≃ {x = x} {y = y} {z = z} = x ∈ y ∷ z ↝⟨ ∈≃ ⟩ x ≡ y ∥⊎∥ proj₁ (Membership x z) ↝⟨ F.id Trunc.∥⊎∥-cong inverse ∈≃ ⟩□ x ≡ y ∥⊎∥ x ∈ z □ -- A variant. ∈≢∷≃ : x ≢ y → (x ∈ y ∷ z) ≃ (x ∈ z) ∈≢∷≃ {x = x} {y = y} {z = z} x≢y = x ∈ y ∷ z ↝⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ z ↔⟨ Trunc.drop-⊥-left-∥⊎∥ ∈-propositional x≢y ⟩□ x ∈ z □ -- A lemma characterising singleton. ∈singleton≃ : (x ∈ singleton y) ≃ ∥ x ≡ y ∥ ∈singleton≃ {x = x} {y = y} = x ∈ singleton y ↝⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ [] ↔⟨ Trunc.∥∥-cong $ drop-⊥-right ∈[]≃ ⟩□ ∥ x ≡ y ∥ □ -- Some "introduction rules" for _∈_. ∈→∈∷ : x ∈ z → x ∈ y ∷ z ∈→∈∷ {x = x} {z = z} {y = y} = x ∈ z ↝⟨ ∣_∣ ∘ inj₂ ⟩ x ≡ y ∥⊎∥ x ∈ z ↔⟨ inverse ∈∷≃ ⟩□ x ∈ y ∷ z □ ∥≡∥→∈∷ : ∥ x ≡ y ∥ → x ∈ y ∷ z ∥≡∥→∈∷ {x = x} {y = y} {z = z} = ∥ x ≡ y ∥ ↝⟨ Trunc.∥∥-map inj₁ ⟩ x ≡ y ∥⊎∥ x ∈ z ↔⟨ inverse ∈∷≃ ⟩□ x ∈ y ∷ z □ ≡→∈∷ : x ≡ y → x ∈ y ∷ z ≡→∈∷ = ∥≡∥→∈∷ ∘ ∣_∣ ∥≡∥→∈singleton : ∥ x ≡ y ∥ → x ∈ singleton y ∥≡∥→∈singleton = ∥≡∥→∈∷ ≡→∈singleton : x ≡ y → x ∈ singleton y ≡→∈singleton = ≡→∈∷ -- Membership of a union of two subsets can be expressed in terms of -- membership of the subsets. ∈∪≃ : (x ∈ y ∪ z) ≃ (x ∈ y ∥⊎∥ x ∈ z) ∈∪≃ {x = x} {y = y} {z = z} = elim-prop e y where e : Elim-prop (λ y → (x ∈ y ∪ z) ≃ (x ∈ y ∥⊎∥ x ∈ z)) e .[]ʳ = x ∈ z ↔⟨ inverse $ Trunc.∥∥↔ ∈-propositional ⟩ ∥ x ∈ z ∥ ↔⟨ Trunc.∥∥-cong (inverse $ drop-⊥-left ∈[]≃) ⟩□ x ∈ [] ∥⊎∥ x ∈ z □ e .∷ʳ {y = u} y hyp = x ∈ y ∷ u ∪ z ↝⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ u ∪ z ↝⟨ F.id Trunc.∥⊎∥-cong hyp ⟩ x ≡ y ∥⊎∥ x ∈ u ∥⊎∥ x ∈ z ↔⟨ Trunc.∥⊎∥-assoc ⟩ (x ≡ y ∥⊎∥ x ∈ u) ∥⊎∥ x ∈ z ↝⟨ Trunc.∥∥-cong (inverse ∈∷≃ ⊎-cong F.id) ⟩□ x ∈ y ∷ u ∥⊎∥ x ∈ z □ e .is-propositionʳ _ = Eq.left-closure ext 0 ∈-propositional -- More "introduction rules". ∈→∈∪ˡ : x ∈ y → x ∈ y ∪ z ∈→∈∪ˡ {x = x} {y = y} {z = z} = x ∈ y ↝⟨ ∣_∣ ∘ inj₁ ⟩ x ∈ y ∥⊎∥ x ∈ z ↔⟨ inverse ∈∪≃ ⟩□ x ∈ y ∪ z □ ∈→∈∪ʳ : ∀ y → x ∈ z → x ∈ y ∪ z ∈→∈∪ʳ {x = x} {z = z} y = x ∈ z ↝⟨ ∈→∈∪ˡ ⟩ x ∈ z ∪ y ↝⟨ ≡⇒↝ _ (cong (_ ∈_) (comm z)) ⟩□ x ∈ y ∪ z □ -- A lemma characterising join. ∈join≃ : (x ∈ join z) ≃ ∥ (∃ λ y → x ∈ y × y ∈ z) ∥ ∈join≃ {x = x} = elim-prop e _ where e : Elim-prop (λ z → (x ∈ join z) ≃ ∥ (∃ λ y → x ∈ y × y ∈ z) ∥) e .[]ʳ = x ∈ join [] ↔⟨⟩ x ∈ [] ↝⟨ ∈[]≃ ⟩ ⊥ ↔⟨ inverse $ Trunc.∥∥↔ ⊥-propositional ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.∥∥-cong (inverse (×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong (λ _ → ×-right-zero))) ⟩ ∥ (∃ λ y → x ∈ y × ⊥) ∥ ↝⟨ Trunc.∥∥-cong (∃-cong λ _ → ∃-cong λ _ → inverse ∈[]≃) ⟩□ ∥ (∃ λ y → x ∈ y × y ∈ []) ∥ □ e .∷ʳ {y = z} u hyp = x ∈ join (u ∷ z) ↔⟨⟩ x ∈ u ∪ join z ↝⟨ ∈∪≃ ⟩ x ∈ u ∥⊎∥ x ∈ join z ↝⟨ F.id Trunc.∥⊎∥-cong hyp ⟩ x ∈ u ∥⊎∥ ∥ (∃ λ y → x ∈ y × y ∈ z) ∥ ↔⟨ inverse Trunc.truncate-right-∥⊎∥ ⟩ x ∈ u ∥⊎∥ (∃ λ y → x ∈ y × y ∈ z) ↔⟨ ∃-intro _ _ Trunc.∥⊎∥-cong F.id ⟩ (∃ λ y → x ∈ y × y ≡ u) ∥⊎∥ (∃ λ y → x ∈ y × y ∈ z) ↔⟨ Trunc.∥∥-cong $ inverse $ ∃-⊎-distrib-left F.∘ (∃-cong λ _ → ∃-⊎-distrib-left) ⟩ ∥ (∃ λ y → x ∈ y × (y ≡ u ⊎ y ∈ z)) ∥ ↔⟨ inverse $ Trunc.flatten′ (λ F → ∃ λ y → x ∈ y × F (y ≡ u ⊎ y ∈ z)) (λ f → Σ-map id (Σ-map id f)) (λ (y , p , q) → Trunc.∥∥-map (λ q → y , p , q) q) ⟩ ∥ (∃ λ y → x ∈ y × (y ≡ u ∥⊎∥ y ∈ z)) ∥ ↝⟨ (Trunc.∥∥-cong $ ∃-cong λ _ → ∃-cong λ _ → inverse ∈∷≃) ⟩□ ∥ (∃ λ y → x ∈ y × y ∈ u ∷ z) ∥ □ e .is-propositionʳ _ = Eq.left-closure ext 0 ∈-propositional -- If truncated equality is decidable, then membership is also -- decidable. member? : ((x y : A) → Dec ∥ x ≡ y ∥) → (x : A) (y : Finite-subset-of A) → Dec (x ∈ y) member? equal? x = elim-prop e where e : Elim-prop _ e .[]ʳ = no λ () e .∷ʳ {y = z} y = case equal? x y of λ where (yes ∥x≡y∥) _ → yes (∥≡∥→∈∷ ∥x≡y∥) (no ¬∥x≡y∥) → P.[ (λ x∈z → yes (∈→∈∷ x∈z)) , (λ x∉z → no ( x ∈ y ∷ z ↔⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ z ↝⟨ Trunc.∥∥-map P.[ ¬∥x≡y∥ ∘ ∣_∣ , x∉z ] ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.not-inhabited⇒∥∥↔⊥ id ⟩□ ⊥ □)) ] e .is-propositionʳ y = Dec-closure-propositional ext ∈-propositional -- A variant that uses Dec-Erased instead of Dec. member?ᴱ : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → (x : A) (y : Finite-subset-of A) → Dec-Erased (x ∈ y) member?ᴱ equal? x = elim-prop e where e : Elim-prop _ e .[]ʳ = no [ (λ ()) ] e .∷ʳ {y = z} y = case equal? x y of λ where (yes [ ∥x≡y∥ ]) _ → yes [ ∥≡∥→∈∷ ∥x≡y∥ ] (no [ ¬∥x≡y∥ ]) → P.[ (λ ([ x∈z ]) → yes [ ∈→∈∷ x∈z ]) , (λ ([ x∉z ]) → no [ x ∈ y ∷ z ↔⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ z ↝⟨ Trunc.∥∥-map P.[ ¬∥x≡y∥ ∘ ∣_∣ , x∉z ] ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.not-inhabited⇒∥∥↔⊥ id ⟩□ ⊥ □ ]) ] e .is-propositionʳ y = EC.Is-proposition-Dec-Erased ext ∈-propositional -- If x is a member of y, then x ∷ y is equal to y. ∈→∷≡ : x ∈ y → x ∷ y ≡ y ∈→∷≡ {x = x} = elim-prop e _ where e : Elim-prop (λ y → x ∈ y → x ∷ y ≡ y) e .∷ʳ {y = y} z hyp = x ∈ z ∷ y ↔⟨ ∈∷≃ ⟩ x ≡ z ∥⊎∥ x ∈ y ↝⟨ id Trunc.∥⊎∥-cong hyp ⟩ x ≡ z ∥⊎∥ x ∷ y ≡ y ↝⟨ Trunc.rec is-set P.[ (λ x≡z → x ∷ z ∷ y ≡⟨ cong (λ x → x ∷ _) x≡z ⟩ z ∷ z ∷ y ≡⟨ drop ⟩∎ z ∷ y ∎) , (λ x∷y≡y → x ∷ z ∷ y ≡⟨ swap ⟩ z ∷ x ∷ y ≡⟨ cong (_ ∷_) x∷y≡y ⟩∎ z ∷ y ∎) ] ⟩□ x ∷ z ∷ y ≡ z ∷ y □ e .is-propositionʳ _ = Π-closure ext 1 λ _ → is-set ------------------------------------------------------------------------ -- Subsets of subsets -- Subsets. infix 4 _⊆_ _⊆_ : {A : Type a} → Finite-subset-of A → Finite-subset-of A → Type a x ⊆ y = ∀ z → z ∈ x → z ∈ y -- _⊆_ is pointwise propositional. ⊆-propositional : Is-proposition (x ⊆ y) ⊆-propositional = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ∈-propositional -- The subset property can be expressed using _∪_ and _≡_. ⊆≃∪≡ : ∀ x → (x ⊆ y) ≃ (x ∪ y ≡ y) ⊆≃∪≡ {y = y} x = _↠_.from (Eq.≃↠⇔ (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ∈-propositional) is-set) (record { to = elim-prop e x ; from = λ p z → z ∈ x ↝⟨ ∈→∈∪ˡ ⟩ z ∈ x ∪ y ↝⟨ ≡⇒↝ _ (cong (z ∈_) p) ⟩□ z ∈ y □ }) where e : Elim-prop (λ x → x ⊆ y → x ∪ y ≡ y) e .[]ʳ _ = [] ∪ y ≡⟨⟩ y ∎ e .∷ʳ {y = z} x hyp x∷z⊆y = x ∷ z ∪ y ≡⟨ cong (x ∷_) (hyp (λ _ → x∷z⊆y _ ∘ ∈→∈∷)) ⟩ x ∷ y ≡⟨ ∈→∷≡ (x∷z⊆y x (≡→∈∷ (refl _))) ⟩∎ y ∎ e .is-propositionʳ _ = Π-closure ext 1 λ _ → is-set -- Extensionality. extensionality : (x ≡ y) ≃ (∀ z → z ∈ x ⇔ z ∈ y) extensionality {x = x} {y = y} = _↠_.from (Eq.≃↠⇔ is-set (Π-closure ext 1 λ _ → ⇔-closure ext 1 ∈-propositional ∈-propositional)) (record { to = λ x≡y z → ≡⇒↝ _ (cong (z ∈_) x≡y) ; from = (∀ z → z ∈ x ⇔ z ∈ y) ↝⟨ (λ p → _⇔_.to ∘ p , _⇔_.from ∘ p) ⟩ x ⊆ y × y ⊆ x ↔⟨ ⊆≃∪≡ x ×-cong ⊆≃∪≡ y ⟩ x ∪ y ≡ y × y ∪ x ≡ x ↝⟨ (λ (p , q) → trans (sym q) (trans (comm y) p)) ⟩□ x ≡ y □ }) -- Another way to characterise equality. ≡≃⊆×⊇ : (x ≡ y) ≃ (x ⊆ y × y ⊆ x) ≡≃⊆×⊇ {x = x} {y = y} = x ≡ y ↝⟨ extensionality ⟩ (∀ z → z ∈ x ⇔ z ∈ y) ↝⟨ Eq.⇔→≃ (Π-closure ext 1 λ _ → ⇔-closure ext 1 ∈-propositional ∈-propositional) (×-closure 1 ⊆-propositional ⊆-propositional) (λ hyp → _⇔_.to ∘ hyp , _⇔_.from ∘ hyp) (λ (x⊆y , y⊆x) z → record { to = x⊆y z ; from = y⊆x z }) ⟩□ x ⊆ y × y ⊆ x □ -- _⊆_ is a partial order. ⊆-refl : x ⊆ x ⊆-refl _ = id ⊆-trans : x ⊆ y → y ⊆ z → x ⊆ z ⊆-trans x⊆y y⊆z _ = y⊆z _ ∘ x⊆y _ ⊆-antisymmetric : x ⊆ y → y ⊆ x → x ≡ y ⊆-antisymmetric = curry (_≃_.from ≡≃⊆×⊇) -- If truncated equality is decidable, then _⊆_ is also decidable. subset? : ((x y : A) → Dec ∥ x ≡ y ∥) → (x y : Finite-subset-of A) → Dec (x ⊆ y) subset? equal? x y = elim-prop r x where r : Elim-prop (λ x → Dec (x ⊆ y)) r .[]ʳ = yes λ z → z ∈ [] ↔⟨ ∈[]≃ ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ z ∈ y □ r .∷ʳ {y = x} z = Dec (x ⊆ y) ↝⟨ member? equal? z y ,_ ⟩ Dec (z ∈ y) × Dec (x ⊆ y) ↝⟨ uncurry P.[ (λ u∈y → Dec-map ( x ⊆ y ↝⟨ record { to = λ x⊆y u → P.[ (λ z≡u → subst (_∈ y) (sym z≡u) u∈y) , x⊆y u ] ; from = λ hyp u → hyp u ∘ inj₂ } ⟩ (∀ u → u ≡ z ⊎ u ∈ x → u ∈ y) ↔⟨ (∀-cong ext λ _ → inverse $ Trunc.universal-property ∈-propositional) ⟩ (∀ u → u ≡ z ∥⊎∥ u ∈ x → u ∈ y) ↝⟨ (∀-cong _ λ _ → →-cong₁ _ (inverse ∈∷≃)) ⟩ (∀ u → u ∈ z ∷ x → u ∈ y) ↔⟨⟩ z ∷ x ⊆ y □)) , (λ u∉y _ → no ( z ∷ x ⊆ y ↝⟨ (λ u∷x⊆y → u∷x⊆y z (≡→∈∷ (refl _))) ⟩ z ∈ y ↝⟨ u∉y ⟩□ ⊥ □)) ] ⟩□ Dec (z ∷ x ⊆ y) □ r .is-propositionʳ _ = Dec-closure-propositional ext ⊆-propositional -- A variant of subset? that uses Dec-Erased. subset?ᴱ : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → (x y : Finite-subset-of A) → Dec-Erased (x ⊆ y) subset?ᴱ equal? x y = elim-prop r x where r : Elim-prop (λ x → Dec-Erased (x ⊆ y)) r .[]ʳ = yes [ (λ z → z ∈ [] ↔⟨ ∈[]≃ ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ z ∈ y □ )] r .∷ʳ {y = x} z = Dec-Erased (x ⊆ y) ↝⟨ member?ᴱ equal? z y ,_ ⟩ Dec-Erased (z ∈ y) × Dec-Erased (x ⊆ y) ↝⟨ uncurry P.[ (λ ([ u∈y ]) → EC.Dec-Erased-map ( x ⊆ y ↝⟨ record { to = λ x⊆y u → P.[ (λ z≡u → subst (_∈ y) (sym z≡u) u∈y) , x⊆y u ] ; from = λ hyp u → hyp u ∘ inj₂ } ⟩ (∀ u → u ≡ z ⊎ u ∈ x → u ∈ y) ↔⟨ (∀-cong ext λ _ → inverse $ Trunc.universal-property ∈-propositional) ⟩ (∀ u → u ≡ z ∥⊎∥ u ∈ x → u ∈ y) ↝⟨ (∀-cong _ λ _ → →-cong₁ _ (inverse ∈∷≃)) ⟩ (∀ u → u ∈ z ∷ x → u ∈ y) ↔⟨⟩ z ∷ x ⊆ y □)) , (λ ([ u∉y ]) _ → no [ z ∷ x ⊆ y ↝⟨ (λ u∷x⊆y → u∷x⊆y z (≡→∈∷ (refl _))) ⟩ z ∈ y ↝⟨ u∉y ⟩□ ⊥ □ ]) ] ⟩□ Dec-Erased (z ∷ x ⊆ y) □ r .is-propositionʳ _ = EC.Is-proposition-Dec-Erased ext ⊆-propositional -- If truncated equality is decidable, then _≡_ is also decidable. equal? : ((x y : A) → Dec ∥ x ≡ y ∥) → (x y : Finite-subset-of A) → Dec (x ≡ y) equal? eq? x y = $⟨ subset? eq? x y , subset? eq? y x ⟩ Dec (x ⊆ y) × Dec (y ⊆ x) ↝⟨ uncurry Dec-× ⟩ Dec (x ⊆ y × y ⊆ x) ↝⟨ Dec-map (from-equivalence $ inverse ≡≃⊆×⊇) ⟩□ Dec (x ≡ y) □ -- A variant of equal? that uses Dec-Erased. equal?ᴱ : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → (x y : Finite-subset-of A) → Dec-Erased (x ≡ y) equal?ᴱ eq? x y = $⟨ subset?ᴱ eq? x y , subset?ᴱ eq? y x ⟩ Dec-Erased (x ⊆ y) × Dec-Erased (y ⊆ x) ↝⟨ EC.Dec-Erased↔Dec-Erased _ ×-cong EC.Dec-Erased↔Dec-Erased _ ⟩ Dec (Erased (x ⊆ y)) × Dec (Erased (y ⊆ x)) ↝⟨ uncurry Dec-× ⟩ Dec (Erased (x ⊆ y) × Erased (y ⊆ x)) ↝⟨ Dec-map (from-isomorphism $ inverse EC.Erased-Σ↔Σ) ⟩ Dec (Erased (x ⊆ y × y ⊆ x)) ↝⟨ _⇔_.from $ EC.Dec-Erased↔Dec-Erased _ ⟩ Dec-Erased (x ⊆ y × y ⊆ x) ↝⟨ EC.Dec-Erased-map (from-equivalence $ inverse ≡≃⊆×⊇) ⟩□ Dec-Erased (x ≡ y) □ ------------------------------------------------------------------------ -- The functions map-Maybe, filter, minus and delete private -- A function used to define map-Maybe. map-Maybe-cons : Maybe B → Finite-subset-of B → Finite-subset-of B map-Maybe-cons nothing y = y map-Maybe-cons (just x) y = x ∷ y -- A combination of map and filter. map-Maybe : (A → Maybe B) → Finite-subset-of A → Finite-subset-of B map-Maybe f = rec r where r : Rec _ _ r .[]ʳ = [] r .∷ʳ x _ y = map-Maybe-cons (f x) y r .is-setʳ = is-set r .dropʳ x _ y = lemma (f x) where lemma : ∀ m → map-Maybe-cons m (map-Maybe-cons m y) ≡ map-Maybe-cons m y lemma nothing = refl _ lemma (just _) = drop r .swapʳ x y _ z = lemma (f x) (f y) where lemma : ∀ m₁ m₂ → map-Maybe-cons m₁ (map-Maybe-cons m₂ z) ≡ map-Maybe-cons m₂ (map-Maybe-cons m₁ z) lemma (just _) (just _) = swap lemma _ nothing = refl _ lemma nothing _ = refl _ -- A lemma characterising map-Maybe. ∈map-Maybe≃ : (x ∈ map-Maybe f y) ≃ ∥ (∃ λ z → z ∈ y × f z ≡ just x) ∥ ∈map-Maybe≃ {x = x} {f = f} = elim-prop e _ where e : Elim-prop (λ y → (x ∈ map-Maybe f y) ≃ ∥ (∃ λ z → z ∈ y × f z ≡ just x) ∥) e .[]ʳ = x ∈ map-Maybe f [] ↝⟨ ∈[]≃ ⟩ ⊥ ↔⟨ inverse $ Trunc.∥∥↔ ⊥-propositional ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.∥∥-cong (inverse (×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong (λ _ → ×-left-zero))) ⟩ ∥ (∃ λ z → ⊥ × f z ≡ just x) ∥ ↝⟨ Trunc.∥∥-cong (∃-cong λ _ → inverse ∈[]≃ ×-cong F.id) ⟩□ ∥ (∃ λ z → z ∈ [] × f z ≡ just x) ∥ □ e .∷ʳ {y = y} z hyp = (x ∈ map-Maybe f (z ∷ y)) ↝⟨ lemma _ _ ⟩ f z ≡ just x ∥⊎∥ (x ∈ map-Maybe f y) ↝⟨ from-isomorphism (inverse Trunc.truncate-right-∥⊎∥) F.∘ (F.id Trunc.∥⊎∥-cong hyp) ⟩ f z ≡ just x ∥⊎∥ (∃ λ u → u ∈ y × f u ≡ just x) ↔⟨ inverse $ drop-⊤-left-Σ (_⇔_.to contractible⇔↔⊤ $ singleton-contractible _) F.∘ Σ-assoc Trunc.∥⊎∥-cong F.id ⟩ (∃ λ u → u ≡ z × f u ≡ just x) ∥⊎∥ (∃ λ u → u ∈ y × f u ≡ just x) ↔⟨ Trunc.∥∥-cong $ inverse ∃-⊎-distrib-left ⟩ ∥ (∃ λ u → u ≡ z × f u ≡ just x ⊎ u ∈ y × f u ≡ just x) ∥ ↔⟨ Trunc.∥∥-cong (∃-cong λ _ → inverse ∃-⊎-distrib-right) ⟩ ∥ (∃ λ u → (u ≡ z ⊎ u ∈ y) × f u ≡ just x) ∥ ↔⟨ inverse $ Trunc.flatten′ (λ F → (∃ λ u → F (u ≡ z ⊎ u ∈ y) × f u ≡ just x)) (λ f → Σ-map id (Σ-map f id)) (λ (u , p , q) → Trunc.∥∥-map (λ p → u , p , q) p) ⟩ ∥ (∃ λ u → (u ≡ z ∥⊎∥ u ∈ y) × f u ≡ just x) ∥ ↝⟨ Trunc.∥∥-cong (∃-cong λ _ → ×-cong₁ λ _ → inverse ∈∷≃) ⟩□ ∥ (∃ λ u → u ∈ z ∷ y × f u ≡ just x) ∥ □ where lemma : ∀ m y → (x ∈ map-Maybe-cons m y) ≃ (m ≡ just x ∥⊎∥ x ∈ y) lemma nothing y = x ∈ map-Maybe-cons nothing y ↔⟨⟩ x ∈ y ↔⟨ inverse $ Trunc.drop-⊥-left-∥⊎∥ ∈-propositional ⊎.inj₁≢inj₂ ⟩□ (nothing ≡ just x ∥⊎∥ x ∈ y) □ lemma (just z) y = x ∈ map-Maybe-cons (just z) y ↔⟨⟩ x ∈ z ∷ y ↝⟨ ∈∷≃ ⟩ x ≡ z ∥⊎∥ x ∈ y ↔⟨ (Bijection.≡↔inj₂≡inj₂ F.∘ ≡-comm) Trunc.∥⊎∥-cong F.id ⟩□ just z ≡ just x ∥⊎∥ x ∈ y □ e .is-propositionʳ y = Eq.left-closure ext 0 ∈-propositional -- The function map-Maybe f commutes with map-Maybe g if f commutes -- with g in a certain way. map-Maybe-comm : {A : Type a} {f g : A → Maybe A} → (∀ x → f =<< g x ≡ g =<< f x) → ∀ x → map-Maybe f (map-Maybe g x) ≡ map-Maybe g (map-Maybe f x) map-Maybe-comm {A = A} {f = f} {g = g} hyp x = _≃_.from extensionality λ y → y ∈ map-Maybe f (map-Maybe g x) ↝⟨ lemma₂ ⟩ ∥ (∃ λ u → u ∈ x × f =<< g u ≡ just y) ∥ ↝⟨ Trunc.∥∥-cong (∃-cong λ _ → ∃-cong λ _ → ≡⇒↝ _ $ cong (_≡ _) $ hyp _) ⟩ ∥ (∃ λ u → u ∈ x × g =<< f u ≡ just y) ∥ ↝⟨ inverse lemma₂ ⟩ y ∈ map-Maybe g (map-Maybe f x) □ where lemma₁ : ∀ (f {g} : A → Maybe A) {x z} → (∃ λ y → f x ≡ just y × g y ≡ just z) ⇔ (g =<< f x ≡ just z) lemma₁ f {g = g} {x = x} {z = z} = record { to = λ (y , f≡ , g≡) → g =<< f x ≡⟨⟩ Maybe.maybe g nothing (f x) ≡⟨ cong (Maybe.maybe g nothing) f≡ ⟩ g y ≡⟨ g≡ ⟩∎ just z ∎ ; from = from (f x) } where from : (fx : Maybe A) → g =<< fx ≡ just z → ∃ λ y → fx ≡ just y × g y ≡ just z from nothing = ⊥-elim ∘ ⊎.inj₁≢inj₂ from (just y) = (y ,_) ∘ (refl _ ,_) lemma₂ : {f g : A → Maybe A} → y ∈ map-Maybe f (map-Maybe g x) ⇔ ∥ (∃ λ u → u ∈ x × f =<< g u ≡ just y) ∥ lemma₂ {y = y} {f = f} {g = g} = y ∈ map-Maybe f (map-Maybe g x) ↔⟨ Trunc.∥∥-cong (∃-cong λ _ → ∈map-Maybe≃ ×-cong F.id) F.∘ ∈map-Maybe≃ ⟩ ∥ (∃ λ z → ∥ (∃ λ u → u ∈ x × g u ≡ just z) ∥ × f z ≡ just y) ∥ ↔⟨ Trunc.flatten′ (λ F → ∃ λ z → F (∃ λ u → u ∈ x × _) × _) (λ f → Σ-map id (Σ-map f id)) (λ (z , p , q) → Trunc.∥∥-map (λ p → z , p , q) p) ⟩ ∥ (∃ λ z → (∃ λ u → u ∈ x × g u ≡ just z) × f z ≡ just y) ∥ ↔⟨ Trunc.∥∥-cong (∃-cong λ _ → inverse $ Σ-assoc F.∘ ∃-cong λ _ → Σ-assoc) ⟩ ∥ (∃ λ z → ∃ λ u → u ∈ x × g u ≡ just z × f z ≡ just y) ∥ ↔⟨ Trunc.∥∥-cong ((∃-cong λ _ → ∃-comm) F.∘ ∃-comm) ⟩ ∥ (∃ λ u → u ∈ x × ∃ λ z → g u ≡ just z × f z ≡ just y) ∥ ↝⟨ Trunc.∥∥-cong (∃-cong λ _ → ∃-cong λ _ → lemma₁ g) ⟩□ ∥ (∃ λ u → u ∈ x × f =<< g u ≡ just y) ∥ □ -- The function map-Maybe commutes with union. map-Maybe-∪ : ∀ x → map-Maybe f (x ∪ y) ≡ map-Maybe f x ∪ map-Maybe f y map-Maybe-∪ {f = f} {y = y} x = _≃_.from extensionality λ z → z ∈ map-Maybe f (x ∪ y) ↔⟨ (Trunc.∥∥-cong (∃-cong λ _ → ∈∪≃ ×-cong F.id)) F.∘ ∈map-Maybe≃ ⟩ ∥ (∃ λ u → (u ∈ x ∥⊎∥ u ∈ y) × f u ≡ just z) ∥ ↔⟨ Trunc.flatten′ (λ F → ∃ λ u → F (u ∈ x ⊎ u ∈ y) × _) (λ f → Σ-map id (Σ-map f id)) (λ (u , p , q) → Trunc.∥∥-map (λ p → u , p , q) p) ⟩ ∥ (∃ λ u → (u ∈ x ⊎ u ∈ y) × f u ≡ just z) ∥ ↔⟨ Trunc.∥∥-cong (∃-cong λ _ → ∃-⊎-distrib-right) ⟩ ∥ (∃ λ u → u ∈ x × f u ≡ just z ⊎ u ∈ y × f u ≡ just z) ∥ ↔⟨ Trunc.∥∥-cong ∃-⊎-distrib-left ⟩ (∃ λ u → u ∈ x × f u ≡ just z) ∥⊎∥ (∃ λ u → u ∈ y × f u ≡ just z) ↔⟨ inverse $ Trunc.flatten′ (λ F → F _ ⊎ F _) (λ f → ⊎-map f f) P.[ Trunc.∥∥-map inj₁ , Trunc.∥∥-map inj₂ ] ⟩ ∥ (∃ λ u → u ∈ x × f u ≡ just z) ∥ ∥⊎∥ ∥ (∃ λ u → u ∈ y × f u ≡ just z) ∥ ↔⟨ inverse $ (∈map-Maybe≃ Trunc.∥⊎∥-cong ∈map-Maybe≃) F.∘ ∈∪≃ ⟩□ z ∈ map-Maybe f x ∪ map-Maybe f y □ -- One can express map using map-Maybe. map≡map-Maybe-just : (x : Finite-subset-of A) → map f x ≡ map-Maybe (just ∘ f) x map≡map-Maybe-just {f = f} = elim-prop e where e : Elim-prop _ e .[]ʳ = refl _ e .∷ʳ x = cong (f x ∷_) e .is-propositionʳ _ = is-set -- A lemma characterising map. ∈map≃ : (x ∈ map f y) ≃ ∥ (∃ λ z → z ∈ y × f z ≡ x) ∥ ∈map≃ {x = x} {f = f} {y = y} = x ∈ map f y ↝⟨ ≡⇒↝ _ $ cong (_ ∈_) $ map≡map-Maybe-just y ⟩ x ∈ map-Maybe (just ∘ f) y ↝⟨ ∈map-Maybe≃ ⟩ ∥ (∃ λ z → z ∈ y × just (f z) ≡ just x) ∥ ↔⟨ Trunc.∥∥-cong (∃-cong λ _ → ∃-cong λ _ → inverse Bijection.≡↔inj₂≡inj₂) ⟩□ ∥ (∃ λ z → z ∈ y × f z ≡ x) ∥ □ -- Some consequences of the characterisation of map. ∈→∈map : {f : A → B} → x ∈ y → f x ∈ map f y ∈→∈map {x = x} {y = y} {f = f} = x ∈ y ↝⟨ (λ x∈y → ∣ x , x∈y , refl _ ∣) ⟩ ∥ (∃ λ z → z ∈ y × f z ≡ f x) ∥ ↔⟨ inverse ∈map≃ ⟩□ f x ∈ map f y □ Injective→∈map≃ : {f : A → B} → Injective f → (f x ∈ map f y) ≃ (x ∈ y) Injective→∈map≃ {x = x} {y = y} {f = f} inj = f x ∈ map f y ↝⟨ ∈map≃ ⟩ ∥ (∃ λ z → z ∈ y × f z ≡ f x) ∥ ↝⟨ (Trunc.∥∥-cong-⇔ $ ∃-cong λ _ → ∃-cong λ _ → record { to = inj; from = cong f }) ⟩ ∥ (∃ λ z → z ∈ y × z ≡ x) ∥ ↔⟨ Trunc.∥∥-cong $ inverse $ ∃-intro _ _ ⟩ ∥ x ∈ y ∥ ↔⟨ Trunc.∥∥↔ ∈-propositional ⟩□ x ∈ y □ -- The function map commutes with union. map-∪ : ∀ x → map f (x ∪ y) ≡ map f x ∪ map f y map-∪ {f = f} {y = y} x = map f (x ∪ y) ≡⟨ map≡map-Maybe-just (x ∪ y) ⟩ map-Maybe (just ∘ f) (x ∪ y) ≡⟨ map-Maybe-∪ x ⟩ map-Maybe (just ∘ f) x ∪ map-Maybe (just ∘ f) y ≡⟨ sym $ cong₂ _∪_ (map≡map-Maybe-just x) (map≡map-Maybe-just y) ⟩∎ map f x ∪ map f y ∎ -- A filter function. filter : (A → Bool) → Finite-subset-of A → Finite-subset-of A filter p = map-Maybe (λ x → if p x then just x else nothing) -- A lemma characterising filter. ∈filter≃ : ∀ p → (x ∈ filter p y) ≃ (T (p x) × x ∈ y) ∈filter≃ {x = x} {y = y} p = x ∈ map-Maybe (λ x → if p x then just x else nothing) y ↝⟨ ∈map-Maybe≃ ⟩ ∥ (∃ λ z → z ∈ y × if p z then just z else nothing ≡ just x) ∥ ↝⟨ (Trunc.∥∥-cong $ ∃-cong λ _ → ∃-cong λ _ → lemma _ (refl _)) ⟩ ∥ (∃ λ z → z ∈ y × T (p z) × z ≡ x) ∥ ↔⟨ (Trunc.∥∥-cong $ ∃-cong λ _ → (×-cong₁ λ z≡x → ≡⇒↝ _ $ cong (λ z → z ∈ y × T (p z)) z≡x) F.∘ Σ-assoc) ⟩ ∥ (∃ λ z → (x ∈ y × T (p x)) × z ≡ x) ∥ ↔⟨ inverse Σ-assoc F.∘ (×-cong₁ λ _ → ×-comm F.∘ Trunc.∥∥↔ (×-closure 1 ∈-propositional (T-propositional (p x)))) F.∘ inverse Trunc.∥∥×∥∥↔∥×∥ F.∘ Trunc.∥∥-cong ∃-comm ⟩ T (p x) × x ∈ y × ∥ (∃ λ z → z ≡ x) ∥ ↔⟨ (∃-cong λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ (singleton-contractible _) F.∘ Trunc.∥∥↔ (mono₁ 0 $ singleton-contractible _)) ⟩□ T (p x) × x ∈ y □ where lemma : ∀ b → p z ≡ b → (if b then just z else nothing ≡ just x) ≃ (T b × z ≡ x) lemma {z = z} true eq = just z ≡ just x ↔⟨ inverse Bijection.≡↔inj₂≡inj₂ ⟩ z ≡ x ↔⟨ inverse ×-left-identity ⟩□ ⊤ × z ≡ x □ lemma {z = z} false eq = nothing ≡ just x ↔⟨ Bijection.≡↔⊎ ⟩ ⊥ ↔⟨ inverse ×-left-zero ⟩□ ⊥ × z ≡ x □ -- The result of filtering is a subset of the original subset. filter⊆ : ∀ p → filter p x ⊆ x filter⊆ {x = x} p z = z ∈ filter p x ↔⟨ ∈filter≃ p ⟩ T (p z) × z ∈ x ↝⟨ proj₂ ⟩□ z ∈ x □ -- Filtering commutes with itself. filter-comm : ∀ (p q : A → Bool) x → filter p (filter q x) ≡ filter q (filter p x) filter-comm p q x = _≃_.from extensionality λ y → y ∈ filter p (filter q x) ↔⟨ from-isomorphism Σ-assoc F.∘ (F.id ×-cong ∈filter≃ q) F.∘ ∈filter≃ p ⟩ (T (p y) × T (q y)) × y ∈ x ↔⟨ ×-comm ×-cong F.id ⟩ (T (q y) × T (p y)) × y ∈ x ↔⟨ inverse $ from-isomorphism Σ-assoc F.∘ (F.id ×-cong ∈filter≃ p) F.∘ ∈filter≃ q ⟩□ y ∈ filter q (filter p x) □ -- Filtering commutes with union. filter-∪ : ∀ p x → filter p (x ∪ y) ≡ filter p x ∪ filter p y filter-∪ _ = map-Maybe-∪ -- If erased truncated equality is decidable, then one subset can be -- removed from another. minus : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → Finite-subset-of A → Finite-subset-of A → Finite-subset-of A minus _≟_ x y = filter (λ z → if member?ᴱ _≟_ z y then false else true) x -- A lemma characterising minus. ∈minus≃ : (x ∈ minus _≟_ y z) ≃ (x ∈ y × x ∉ z) ∈minus≃ {x = x} {_≟_ = _≟_} {y = y} {z = z} = x ∈ minus _≟_ y z ↝⟨ ∈filter≃ (λ _ → if member?ᴱ _ _ z then _ else _) ⟩ T (if member?ᴱ _≟_ x z then false else true) × x ∈ y ↔⟨ lemma (member?ᴱ _≟_ x z) ×-cong F.id ⟩ x ∉ z × x ∈ y ↔⟨ ×-comm ⟩□ x ∈ y × x ∉ z □ where lemma : (d : Dec-Erased A) → T (if d then false else true) ↔ ¬ A lemma {A = A} d@(yes a) = T (if d then false else true) ↔⟨⟩ ⊥ ↝⟨ Bijection.⊥↔uninhabited (_$ a) ⟩ ¬ EC.Erased A ↝⟨ EC.¬-Erased↔¬ ext ⟩□ ¬ A □ lemma {A = A} d@(no ¬a) = T (if d then false else true) ↔⟨⟩ ⊤ ↝⟨ inverse $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (¬-propositional ext) (EC.Stable-¬ ¬a) ⟩□ ¬ A □ -- The result of minus is a subset of the original subset. minus⊆ : ∀ y → minus _≟_ x y ⊆ x minus⊆ y = filter⊆ (λ _ → if member?ᴱ _ _ y then _ else _) -- Minus commutes with itself (in a certain sense). minus-comm : ∀ x y z → minus _≟_ (minus _≟_ x y) z ≡ minus _≟_ (minus _≟_ x z) y minus-comm x y z = filter-comm (λ _ → if member?ᴱ _ _ z then _ else _) (λ _ → if member?ᴱ _ _ y then _ else _) x -- Minus commutes with union (in a certain sense). minus-∪ : ∀ x z → minus _≟_ (x ∪ y) z ≡ minus _≟_ x z ∪ minus _≟_ y z minus-∪ x z = filter-∪ (λ _ → if member?ᴱ _ _ z then _ else _) x -- A lemma relating minus, _⊆_ and _∪_. minus⊆≃ : {_≟_ : (x y : A) → Dec ∥ x ≡ y ∥} → ∀ y → (minus (λ x y → Dec→Dec-Erased (x ≟ y)) x y ⊆ z) ≃ (x ⊆ y ∪ z) minus⊆≃ {x = x} {z = z} {_≟_ = _≟_} y = _↠_.from (Eq.≃↠⇔ ⊆-propositional ⊆-propositional) $ record { to = λ x-y⊆z u → u ∈ x ↝⟨ (λ u∈x → case member? _≟_ u y of P.[ Trunc.∣inj₁∣ , Trunc.∣inj₂∣ ∘ (u∈x ,_) ]) ⟩ u ∈ y ∥⊎∥ (u ∈ x × u ∉ y) ↔⟨ F.id Trunc.∥⊎∥-cong inverse ∈minus≃ ⟩ u ∈ y ∥⊎∥ u ∈ minus _≟′_ x y ↝⟨ id Trunc.∥⊎∥-cong x-y⊆z u ⟩ u ∈ y ∥⊎∥ u ∈ z ↔⟨ inverse ∈∪≃ ⟩□ u ∈ y ∪ z □ ; from = λ x⊆y∪z u → u ∈ minus _≟′_ x y ↔⟨ ∈minus≃ ⟩ u ∈ x × u ∉ y ↝⟨ Σ-map (x⊆y∪z _) id ⟩ u ∈ y ∪ z × u ∉ y ↔⟨ ∈∪≃ ×-cong F.id ⟩ (u ∈ y ∥⊎∥ u ∈ z) × u ∉ y ↔⟨ (×-cong₁ λ u∉y → Trunc.drop-⊥-left-∥⊎∥ ∈-propositional u∉y) ⟩ u ∈ z × u ∉ y ↝⟨ proj₁ ⟩□ u ∈ z □ } where _≟′_ = λ x y → Dec→Dec-Erased (x ≟ y) -- If erased truncated equality is decidable, then elements can be -- removed from a subset. delete : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → A → Finite-subset-of A → Finite-subset-of A delete _≟_ x y = minus _≟_ y (singleton x) -- A lemma characterising delete. ∈delete≃ : ∀ _≟_ → (x ∈ delete _≟_ y z) ≃ (x ≢ y × x ∈ z) ∈delete≃ {x = x} {y = y} {z = z} _≟_ = x ∈ delete _≟_ y z ↝⟨ ∈minus≃ {_≟_ = _≟_} ⟩ x ∈ z × x ∉ singleton y ↝⟨ F.id ×-cong →-cong₁ ext ∈singleton≃ ⟩ x ∈ z × ¬ ∥ x ≡ y ∥ ↔⟨ F.id ×-cong Trunc.¬∥∥↔¬ ⟩ x ∈ z × x ≢ y ↔⟨ ×-comm ⟩□ x ≢ y × x ∈ z □ -- A deleted element is no longer a member of the set. ∉delete : ∀ _≟_ y → x ∉ delete _≟_ x y ∉delete {x = x} _≟_ y = x ∈ delete _≟_ x y ↔⟨ ∈delete≃ _≟_ ⟩ x ≢ x × x ∈ y ↝⟨ (_$ refl _) ∘ proj₁ ⟩□ ⊥ □ -- Deletion commutes with itself (in a certain sense). delete-comm : ∀ _≟_ z → delete _≟_ x (delete _≟_ y z) ≡ delete _≟_ y (delete _≟_ x z) delete-comm _≟_ z = minus-comm {_≟_ = _≟_} z (singleton _) (singleton _) -- Deletion commutes with union. delete-∪ : ∀ _≟_ y → delete _≟_ x (y ∪ z) ≡ delete _≟_ x y ∪ delete _≟_ x z delete-∪ _≟_ y = minus-∪ {_≟_ = _≟_} y (singleton _) -- A lemma relating delete, _⊆_ and _∷_. delete⊆≃ : (_≟_ : (x y : A) → Dec ∥ x ≡ y ∥) → (delete (λ x y → Dec→Dec-Erased (x ≟ y)) x y ⊆ z) ≃ (y ⊆ x ∷ z) delete⊆≃ _≟_ = minus⊆≃ {_≟_ = _≟_} (singleton _) ------------------------------------------------------------------------ -- Some preservation lemmas for _⊆_ -- Various operations preserve _⊆_. ∷-cong-⊆ : y ⊆ z → x ∷ y ⊆ x ∷ z ∷-cong-⊆ {y = y} {z = z} {x = x} y⊆z u = u ∈ x ∷ y ↔⟨ ∈∷≃ ⟩ u ≡ x ∥⊎∥ u ∈ y ↝⟨ id Trunc.∥⊎∥-cong y⊆z _ ⟩ u ≡ x ∥⊎∥ u ∈ z ↔⟨ inverse ∈∷≃ ⟩□ u ∈ x ∷ z □ ∪-cong-⊆ : x₁ ⊆ x₂ → y₁ ⊆ y₂ → x₁ ∪ y₁ ⊆ x₂ ∪ y₂ ∪-cong-⊆ {x₁ = x₁} {x₂ = x₂} {y₁ = y₁} {y₂ = y₂} x₁⊆x₂ y₁⊆y₂ z = z ∈ x₁ ∪ y₁ ↔⟨ ∈∪≃ ⟩ z ∈ x₁ ∥⊎∥ z ∈ y₁ ↝⟨ x₁⊆x₂ _ Trunc.∥⊎∥-cong y₁⊆y₂ _ ⟩ z ∈ x₂ ∥⊎∥ z ∈ y₂ ↔⟨ inverse ∈∪≃ ⟩□ z ∈ x₂ ∪ y₂ □ filter-cong-⊆ : (∀ z → T (p z) → T (q z)) → x ⊆ y → filter p x ⊆ filter q y filter-cong-⊆ {p = p} {q = q} {x = x} {y = y} p⇒q x⊆y z = z ∈ filter p x ↔⟨ ∈filter≃ p ⟩ T (p z) × z ∈ x ↝⟨ Σ-map (p⇒q _) (x⊆y _) ⟩ T (q z) × z ∈ y ↔⟨ inverse $ ∈filter≃ q ⟩□ z ∈ filter q y □ minus-cong-⊆ : x₁ ⊆ x₂ → y₂ ⊆ y₁ → minus _≟_ x₁ y₁ ⊆ minus _≟_ x₂ y₂ minus-cong-⊆ {x₁ = x₁} {x₂ = x₂} {y₂ = y₂} {y₁ = y₁} {_≟_ = _≟_} x₁⊆x₂ y₂⊆y₁ z = z ∈ minus _≟_ x₁ y₁ ↔⟨ ∈minus≃ ⟩ z ∈ x₁ × z ∉ y₁ ↝⟨ Σ-map (x₁⊆x₂ _) (_∘ y₂⊆y₁ _) ⟩ z ∈ x₂ × z ∉ y₂ ↔⟨ inverse ∈minus≃ ⟩□ z ∈ minus _≟_ x₂ y₂ □ delete-cong-⊆ : ∀ _≟_ → y ⊆ z → delete _≟_ x y ⊆ delete _≟_ x z delete-cong-⊆ _≟_ y⊆z = minus-cong-⊆ {_≟_ = _≟_} y⊆z (⊆-refl {x = singleton _}) ------------------------------------------------------------------------ -- Size private -- This definition is used to define ∣_∣≡ and ∣∣≡-propositional -- below. -- -- This definition is not taken from "Finite Sets in Homotopy Type -- Theory", but it is based on the size function in that paper. Size : {A : Type a} → Finite-subset-of A → ℕ → Proposition a Size {a = a} {A = A} = rec r where mutual -- The size of x ∷ y is equal to the size of y if x is a member -- of y, and otherwise it is equal to the successor of the size -- of y. Cons′ : A → Finite-subset-of A → (ℕ → Proposition a) → (ℕ → Type a) Cons′ x y ∣y∣≡ n = x ∈ y × proj₁ (∣y∣≡ n) ⊎ Cons″ x y ∣y∣≡ n Cons″ : A → Finite-subset-of A → (ℕ → Proposition a) → (ℕ → Type a) Cons″ x y ∣y∣≡ zero = ⊥ Cons″ x y ∣y∣≡ (suc n) = x ∉ y × proj₁ (∣y∣≡ n) Cons′-propositional : ∀ Hyp n → Is-proposition (Cons′ x y Hyp n) Cons′-propositional Hyp zero = ⊎-closure-propositional (λ _ ()) (×-closure 1 ∈-propositional (proj₂ (Hyp 0))) ⊥-propositional Cons′-propositional Hyp (suc n) = ⊎-closure-propositional (λ (x∈y , _) (x∉y , _) → x∉y x∈y) (×-closure 1 ∈-propositional (proj₂ (Hyp (suc n)))) (×-closure 1 (¬-propositional ext) (proj₂ (Hyp n))) Cons : A → Finite-subset-of A → (ℕ → Proposition a) → (ℕ → Proposition a) Cons x y Hyp n = Cons′ x y Hyp n , Cons′-propositional _ _ drop-lemma : Cons′ x (x ∷ y) (Cons x y H) n ≃ Cons′ x y H n drop-lemma {x = x} {y = y} {H = H} {n = n} = Cons′ x (x ∷ y) (Cons x y H) n ↔⟨⟩ x ∈ x ∷ y × Cons′ x y H n ⊎ C n ↔⟨ drop-⊥-right (C↔⊥ n) ⟩ x ∈ x ∷ y × Cons′ x y H n ↔⟨ drop-⊤-left-× (λ _ → x∈x∷y↔⊤) ⟩ Cons′ x y H n □ where C = Cons″ x (x ∷ y) (Cons x y H) x∈x∷y↔⊤ : x ∈ x ∷ y ↔ ⊤ x∈x∷y↔⊤ = x ∈ x ∷ y ↔⟨ ∈∷≃ ⟩ x ≡ x ∥⊎∥ x ∈ y ↝⟨ Trunc.inhabited⇒∥∥↔⊤ ∣ inj₁ (refl _) ∣ ⟩□ ⊤ □ C↔⊥ : ∀ n → C n ↔ ⊥ C↔⊥ zero = ⊥↔⊥ C↔⊥ (suc n) = x ∉ x ∷ y × Cons′ x y H n ↝⟨ →-cong ext x∈x∷y↔⊤ F.id ×-cong F.id ⟩ ¬ ⊤ × Cons′ x y H n ↝⟨ inverse (Bijection.⊥↔uninhabited (_$ _)) ×-cong F.id ⟩ ⊥₀ × Cons′ x y H n ↝⟨ ×-left-zero ⟩□ ⊥ □ swap-lemma′ : ∀ n → x ∈ y ∷ z × Cons′ y z H n ⊎ Cons″ x (y ∷ z) (Cons y z H) n → y ∈ x ∷ z × Cons′ x z H n ⊎ Cons″ y (x ∷ z) (Cons x z H) n swap-lemma′ {x = x} {y = y} {z = z} {H = H} = λ where n (inj₁ (x∈y∷z , inj₁ (y∈z , p))) → inj₁ ( ∈→∈∷ y∈z , inj₁ ( ( $⟨ x∈y∷z ⟩ x ∈ y ∷ z ↔⟨ ∈∷≃ ⟩ x ≡ y ∥⊎∥ x ∈ z ↝⟨ Trunc.∥∥-map P.[ (flip (subst (_∈ z)) y∈z ∘ sym) , id ] ⟩ ∥ x ∈ z ∥ ↔⟨ Trunc.∥∥↔ ∈-propositional ⟩□ x ∈ z □) , p ) ) (suc n) (inj₁ (x∈y∷z , inj₂ (y∉z , p))) → Trunc.rec (Cons′-propositional (Cons x z H) _) P.[ (λ x≡y → inj₁ ( ≡→∈∷ (sym x≡y) , inj₂ ( (x ∈ z ↝⟨ subst (_∈ z) x≡y ⟩ y ∈ z ↝⟨ y∉z ⟩□ ⊥ □) , p ) )) , (λ x∈z → inj₂ ( (y ∈ x ∷ z ↔⟨ ∈∷≃ ⟩ y ≡ x ∥⊎∥ y ∈ z ↝⟨ Trunc.∥∥-map P.[ flip (subst (_∈ z)) x∈z ∘ sym , id ] ⟩ ∥ y ∈ z ∥ ↝⟨ Trunc.∥∥-map y∉z ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.∥∥↔ ⊥-propositional ⟩□ ⊥ □) , inj₁ (x∈z , p) )) ] (_≃_.to ∈∷≃ x∈y∷z) (suc n) (inj₂ (x∉y∷z , inj₁ (y∈z , p))) → inj₁ ( ∈→∈∷ y∈z , inj₂ ( (x ∈ z ↝⟨ ∈→∈∷ ⟩ x ∈ y ∷ z ↝⟨ x∉y∷z ⟩□ ⊥ □) , p ) ) (suc (suc n)) (inj₂ (x∉y∷z , inj₂ (y∉z , p))) → inj₂ ( (y ∈ x ∷ z ↔⟨ ∈∷≃ ⟩ y ≡ x ∥⊎∥ y ∈ z ↝⟨ ≡→∈∷ ∘ sym Trunc.∥⊎∥-cong id ⟩ x ∈ y ∷ z ∥⊎∥ y ∈ z ↝⟨ Trunc.∥∥-map P.[ x∉y∷z , y∉z ] ⟩ ∥ ⊥ ∥ ↔⟨ Trunc.∥∥↔ ⊥-propositional ⟩□ ⊥ □) , inj₂ ( (x ∈ z ↝⟨ ∈→∈∷ ⟩ x ∈ y ∷ z ↝⟨ x∉y∷z ⟩□ ⊥ □) , p ) ) swap-lemma : Cons′ x (y ∷ z) (Cons y z H) n ≃ Cons′ y (x ∷ z) (Cons x z H) n swap-lemma {x = x} {y = y} {z = z} {H = H} {n = n} = _↠_.from (Eq.≃↠⇔ (Cons′-propositional _ _) (Cons′-propositional _ _)) (record { to = swap-lemma′ _; from = swap-lemma′ _ }) r : Rec A (ℕ → Proposition a) r .[]ʳ n = ↑ _ (n ≡ 0) , ↑-closure 1 ℕ-set r .∷ʳ = Cons r .dropʳ x y Hyp = ⟨ext⟩ λ _ → _↔_.to (ignore-propositional-component (H-level-propositional ext 1)) $ Univ.≃⇒≡ univ drop-lemma r .swapʳ x y z Hyp = ⟨ext⟩ λ _ → _↔_.to (ignore-propositional-component (H-level-propositional ext 1)) $ Univ.≃⇒≡ univ swap-lemma r .is-setʳ = Π-closure ext 2 λ _ → Univ.∃-H-level-H-level-1+ ext univ 1 -- Size. infix 4 ∣_∣≡_ ∣_∣≡_ : {A : Type a} → Finite-subset-of A → ℕ → Type a ∣ x ∣≡ n = proj₁ (Size x n) -- The size predicate is propositional. ∣∣≡-propositional : (x : Finite-subset-of A) → Is-proposition (∣ x ∣≡ n) ∣∣≡-propositional x = proj₂ (Size x _) -- Unit tests documenting the computational behaviour of ∣_∣≡_. _ : (∣ [] {A = A} ∣≡ n) ≡ ↑ _ (n ≡ 0) _ = refl _ _ : ∀ {A : Type a} {x : A} {y} → (∣ x ∷ y ∣≡ zero) ≡ (x ∈ y × ∣ y ∣≡ zero ⊎ ⊥) _ = refl _ _ : (∣ x ∷ y ∣≡ suc n) ≡ (x ∈ y × ∣ y ∣≡ suc n ⊎ x ∉ y × ∣ y ∣≡ n) _ = refl _ -- The size predicate is functional. ∣∣≡-functional : (x : Finite-subset-of A) → ∣ x ∣≡ m → ∣ x ∣≡ n → m ≡ n ∣∣≡-functional x = elim-prop e x _ _ where e : Elim-prop (λ x → ∀ m n → ∣ x ∣≡ m → ∣ x ∣≡ n → m ≡ n) e .[]ʳ m n (lift m≡0) (lift n≡0) = m ≡⟨ m≡0 ⟩ 0 ≡⟨ sym n≡0 ⟩∎ n ∎ e .∷ʳ {y = y} x hyp = λ where m n (inj₁ (x∈y , ∣y∣≡m)) (inj₁ (x∈y′ , ∣y∣≡n)) → hyp m n ∣y∣≡m ∣y∣≡n (suc m) (suc n) (inj₂ (x∉y , ∣y∣≡m)) (inj₂ (x∉y′ , ∣y∣≡n)) → cong suc (hyp m n ∣y∣≡m ∣y∣≡n) _ (suc _) (inj₁ (x∈y , _)) (inj₂ (x∉y , _)) → ⊥-elim (x∉y x∈y) (suc _) _ (inj₂ (x∉y , _)) (inj₁ (x∈y , _)) → ⊥-elim (x∉y x∈y) e .is-propositionʳ _ = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ℕ-set -- If truncated equality is decidable, then one can compute the size -- of a finite subset. size : ((x y : A) → Dec ∥ x ≡ y ∥) → (x : Finite-subset-of A) → ∃ λ n → ∣ x ∣≡ n size equal? = elim-prop e where e : Elim-prop _ e .[]ʳ = 0 , lift (refl _) e .∷ʳ {y = y} x (n , ∣y∣≡n) = case member? equal? x y of λ x∈?y → if x∈?y then n else suc n , lemma ∣y∣≡n x∈?y where lemma : ∣ y ∣≡ n → (x∈?y : Dec (x ∈ y)) → ∣ x ∷ y ∣≡ if x∈?y then n else suc n lemma ∣y∣≡n (yes x∈y) = inj₁ (x∈y , ∣y∣≡n) lemma ∣y∣≡n (no x∉y) = inj₂ (x∉y , ∣y∣≡n) e .is-propositionʳ x (m , ∣x∣≡m) (n , ∣x∣≡n) = Σ-≡,≡→≡ (m ≡⟨ ∣∣≡-functional x ∣x∣≡m ∣x∣≡n ⟩∎ n ∎) (∣∣≡-propositional x _ _) -- A variant of size that uses Erased. sizeᴱ : ((x y : A) → Dec-Erased ∥ x ≡ y ∥) → (x : Finite-subset-of A) → ∃ λ n → Erased (∣ x ∣≡ n) sizeᴱ equal? = elim-prop e where e : Elim-prop _ e .[]ʳ = 0 , [ lift (refl _) ] e .∷ʳ {y = y} x (n , [ ∣y∣≡n ]) = case member?ᴱ equal? x y of λ x∈?y → if x∈?y then n else suc n , [ lemma ∣y∣≡n x∈?y ] where @0 lemma : ∣ y ∣≡ n → (x∈?y : Dec-Erased (x ∈ y)) → ∣ x ∷ y ∣≡ if x∈?y then n else suc n lemma ∣y∣≡n (yes [ x∈y ]) = inj₁ (x∈y , ∣y∣≡n) lemma ∣y∣≡n (no [ x∉y ]) = inj₂ (x∉y , ∣y∣≡n) e .is-propositionʳ x (m , [ ∣x∣≡m ]) (n , [ ∣x∣≡n ]) = Σ-≡,≡→≡ (m ≡⟨ EC.Very-stable→Stable 1 (EC.Decidable-equality→Very-stable-≡ Nat._≟_) _ _ [ ∣∣≡-functional x ∣x∣≡m ∣x∣≡n ] ⟩∎ n ∎) (EC.H-level-Erased 1 (∣∣≡-propositional x) _ _) ------------------------------------------------------------------------ -- Finite types -- A type is finite if there is some finite subset of the type for -- which every element of the type is a member of the subset. is-finite : Type a → Type a is-finite A = ∃ λ (s : Finite-subset-of A) → ∀ x → x ∈ s -- The is-finite predicate is propositional. is-finite-propositional : Is-proposition (is-finite A) is-finite-propositional (x , p) (y , q) = $⟨ (λ z → record { to = λ _ → q z; from = λ _ → p z }) ⟩ (∀ z → z ∈ x ⇔ z ∈ y) ↔⟨ inverse extensionality ⟩ x ≡ y ↝⟨ ignore-propositional-component (Π-closure ext 1 (λ _ → ∈-propositional)) ⟩□ (x , p) ≡ (y , q) □ ------------------------------------------------------------------------ -- Lists can be converted to finite subsets -- Converts lists to finite subsets. from-List : List A → Finite-subset-of A from-List = L.foldr _∷_ [] -- Membership in the resulting set is equivalent to truncated -- membership in the list. ∥∈∥≃∈-from-List : ∥ x BE.∈ ys ∥ ≃ (x ∈ from-List ys) ∥∈∥≃∈-from-List {x = x} {ys = ys} = _↠_.from (Eq.≃↠⇔ Trunc.truncation-is-proposition ∈-propositional) (record { to = to _; from = from _ }) where to : ∀ ys → ∥ x BE.∈ ys ∥ → x ∈ from-List ys to [] = Trunc.rec ∈-propositional (λ ()) to (y ∷ ys) = Trunc.rec ∈-propositional P.[ ≡→∈∷ , ∈→∈∷ ∘ to ys ∘ ∣_∣ ] from : ∀ ys → x ∈ from-List ys → ∥ x BE.∈ ys ∥ from [] () from (y ∷ ys) = Trunc.rec Trunc.truncation-is-proposition P.[ ∣_∣ ∘ inj₁ , Trunc.∥∥-map inj₂ ∘ from ys ] ∘ _≃_.to ∈∷≃ ------------------------------------------------------------------------ -- Some definitions related to the definitions in Bag-equivalence -- Finite subsets can be expressed as lists quotiented by set -- equivalence. ≃List/∼ : Finite-subset-of A ≃ List A / _∼[ set ]_ ≃List/∼ = from-bijection (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where cons : A → List A / _∼[ set ]_ → List A / _∼[ set ]_ cons x = (x ∷_) Q./-map λ _ _ → refl _ BE.∷-cong_ to : Finite-subset-of A → List A / _∼[ set ]_ to = rec r where r : Rec _ _ r .[]ʳ = Q.[ [] ] r .∷ʳ x _ y = cons x y r .is-setʳ = Q./-is-set r .dropʳ x _ = Q.elim-prop λ where .Q.[]ʳ xs → Q.[]-respects-relation λ z → z BE.∈ x ∷ x ∷ xs ↝⟨ record { to = P.[ inj₁ , id ]; from = inj₂ } ⟩□ z BE.∈ x ∷ xs □ .Q.is-propositionʳ _ → Q./-is-set r .swapʳ x y _ = Q.elim-prop λ where .Q.[]ʳ xs → Q.[]-respects-relation λ z → z BE.∈ x ∷ y ∷ xs ↔⟨ BE.swap-first-two z ⟩□ z BE.∈ y ∷ x ∷ xs □ .Q.is-propositionʳ _ → Q./-is-set from : List A / _∼[ set ]_ → Finite-subset-of A from {A = A} = Q.rec λ where .Q.[]ʳ → from-List .Q.[]-respects-relationʳ {x = xs} {y = ys} xs∼ys → _≃_.from extensionality λ z → z ∈ from-List xs ↔⟨ inverse ∥∈∥≃∈-from-List ⟩ ∥ z BE.∈ xs ∥ ↔⟨ Trunc.∥∥-cong-⇔ {k = bijection} (xs∼ys z) ⟩ ∥ z BE.∈ ys ∥ ↔⟨ ∥∈∥≃∈-from-List ⟩□ z ∈ from-List ys □ .Q.is-setʳ → is-set to∘from : ∀ x → to (from x) ≡ x to∘from = Q.elim-prop λ where .Q.[]ʳ → lemma .Q.is-propositionʳ _ → Q./-is-set where lemma : ∀ xs → to (from-List xs) ≡ Q.[ xs ] lemma [] = refl _ lemma (x ∷ xs) = to (from-List (x ∷ xs)) ≡⟨⟩ ((x ∷_) Q./-map _) (to (from-List xs)) ≡⟨ cong ((x ∷_) Q./-map _) (lemma xs) ⟩ ((x ∷_) Q./-map λ _ _ → refl _ BE.∷-cong_) Q.[ xs ] ≡⟨⟩ Q.[ x ∷ xs ] ∎ from∘to : ∀ x → from (to x) ≡ x from∘to = elim-prop e where e : Elim-prop _ e .[]ʳ = refl _ e .∷ʳ {y = y} x hyp = from (to (x ∷ y)) ≡⟨⟩ from (cons x (to y)) ≡⟨ Q.elim-prop {P = λ y → from (cons x y) ≡ x ∷ from y} (λ where .Q.[]ʳ _ → refl _ .Q.is-propositionʳ _ → is-set) (to y) ⟩ x ∷ from (to y) ≡⟨ cong (x ∷_) hyp ⟩∎ x ∷ y ∎ e .is-propositionʳ _ = is-set -- A truncated variant of the proof-relevant membership relation from -- Bag-equivalence can be expressed in terms of _∈_. ∥∈∥≃∈ : ∥ x BE.∈ ys ∥ ≃ (x ∈ _≃_.from ≃List/∼ Q.[ ys ]) ∥∈∥≃∈ = ∥∈∥≃∈-from-List ------------------------------------------------------------------------ -- Fresh numbers -- One can always find a natural number that is distinct from those in -- a given finite set of natural numbers. fresh : (ns : Finite-subset-of ℕ) → ∃ λ (n : ℕ) → n ∉ ns fresh ns = Σ-map id (λ {m} → Erased (∀ n → n ∈ ns → n < m) ↝⟨ EC.map (_$ m) ⟩ Erased (m ∈ ns → m < m) ↝⟨ EC.map (∀-cong _ λ _ → Nat.+≮ 0) ⟩ Erased (m ∉ ns) ↝⟨ EC.Stable-¬ ⟩□ m ∉ ns □) (elim e ns) where OK : @0 Finite-subset-of ℕ → @0 ℕ → Type OK ms m = Erased (∀ n → n ∈ ms → n < m) prop : Is-proposition (OK ms m) prop = EC.H-level-Erased 1 ( Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ≤-propositional) ∷-max-suc : ∀ {ms n m} → OK ms n → OK (m ∷ ms) (Nat.max (suc m) n) ∷-max-suc {ms = ms} {n = n} {m = m} [ ub ] = [ (λ o → o ∈ m ∷ ms ↔⟨ ∈∷≃ ⟩ o ≡ m ∥⊎∥ o ∈ ms ↝⟨ Nat.≤-refl′ ∘ cong suc ∘ id Trunc.∥⊎∥-cong ub o ⟩ o Nat.< suc m ∥⊎∥ o Nat.< n ↝⟨ Trunc.rec ≤-propositional P.[ flip Nat.≤-trans (Nat.ˡ≤max _ n) , flip Nat.≤-trans (Nat.ʳ≤max (suc m) _) ] ⟩□ o Nat.< Nat.max (suc m) n □) ] e : Elim (λ ms → ∃ λ m → OK ms m) e .[]ʳ = 0 , [ (λ _ ()) ] e .∷ʳ m (n , ub) = Nat.max (suc m) n , ∷-max-suc ub e .dropʳ {y = ns} m (n , ub) = _↔_.to (ignore-propositional-component prop) (proj₁ (subst (λ ms → ∃ λ m → OK ms m) (drop {x = m} {y = ns}) ( Nat.max (suc m) (Nat.max (suc m) n) , ∷-max-suc (∷-max-suc ub) )) ≡⟨ cong proj₁ $ push-subst-pair-× {y≡z = drop {x = m} {y = ns}} _ (λ (ms , m) → OK ms m) {p = _ , ∷-max-suc (∷-max-suc ub)} ⟩ Nat.max (suc m) (Nat.max (suc m) n) ≡⟨ Nat.max-assoc (suc m) {n = suc m} {o = n} ⟩ Nat.max (Nat.max (suc m) (suc m)) n ≡⟨ cong (λ m → Nat.max m n) $ Nat.max-idempotent (suc m) ⟩∎ Nat.max (suc m) n ∎) e .swapʳ {z = ns} m n (o , ub) = _↔_.to (ignore-propositional-component prop) (proj₁ (subst (λ xs → ∃ λ m → OK xs m) (swap {x = m} {y = n} {z = ns}) ( Nat.max (suc m) (Nat.max (suc n) o) , ∷-max-suc (∷-max-suc ub) )) ≡⟨ cong proj₁ $ push-subst-pair-× {y≡z = swap {x = m} {y = n} {z = ns}} _ (λ (ms , m) → OK ms m) {p = _ , ∷-max-suc (∷-max-suc ub)} ⟩ Nat.max (suc m) (Nat.max (suc n) o) ≡⟨ Nat.max-assoc (suc m) {n = suc n} {o = o} ⟩ Nat.max (Nat.max (suc m) (suc n)) o ≡⟨ cong (λ m → Nat.max m o) $ Nat.max-comm (suc m) (suc n) ⟩ Nat.max (Nat.max (suc n) (suc m)) o ≡⟨ sym $ Nat.max-assoc (suc n) {n = suc m} {o = o} ⟩∎ Nat.max (suc n) (Nat.max (suc m) o) ∎) e .is-setʳ _ = Σ-closure 2 ℕ-set λ _ → mono₁ 1 prop
{ "alphanum_fraction": 0.3867070392, "avg_line_length": 34.387628866, "ext": "agda", "hexsha": "d97c859cff2375e95e6363d0961d23091439e0d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Finite-subset/Listed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Finite-subset/Listed.agda", "max_line_length": 145, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Finite-subset/Listed.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 28349, "size": 66712 }
open import Common.Level open import Common.Reflection open import Common.Equality open import Common.Prelude postulate f : ∀ a → Set a pattern expectedType = pi (vArg (def (quote Level) [])) (abs "a" (sort (set (var 0 [])))) ok : ⊤ ok = _ notOk : String notOk = "not ok" macro isExpected : QName → Tactic isExpected x hole = bindTC (getType x) λ { expectedType → give (quoteTerm ok) hole ; t → give (quoteTerm notOk) hole } thm : ⊤ thm = isExpected f
{ "alphanum_fraction": 0.6325301205, "avg_line_length": 17.1724137931, "ext": "agda", "hexsha": "1e31af15ae24341e863925dcba5fd65a287a2a2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1221.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1221.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1221.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 498 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Sets.EquivalenceRelations open import Functions open import Lists.Definition open import Lists.Fold.Fold open import Lists.Concat open import Lists.Length open import Setoids.Setoids open import Maybe open import Numbers.Naturals.Semiring module Lists.Permutations {a b : _} {A : Set a} (S : Setoid {a} {b} A) (decidable : (x y : A) → (Setoid._∼_ S x y) || ((Setoid._∼_ S x y) → False)) where open Setoid S open Equivalence eq indexOf : (a : A) → (l : List A) → Maybe ℕ indexOf a [] = no indexOf a (x :: l) with decidable a x ... | inl eq = yes 0 ... | inr noneq = mapMaybe succ (indexOf a l) eltAt : (n : ℕ) → (l : List A) → Maybe A eltAt n [] = no eltAt zero (x :: l) = yes x eltAt (succ n) (x :: l) = eltAt n l indexOfIsIndexOf : (a : A) → (l : List A) → {n : ℕ} → indexOf a l ≡ yes n → Sg A (λ b → (eltAt n l ≡ yes b) && (b ∼ a)) indexOfIsIndexOf a (x :: l) {n} ind with decidable a x indexOfIsIndexOf a (x :: l) {.0} refl | inl a=x = x , (refl ,, symmetric a=x) indexOfIsIndexOf a (x :: l) {zero} ind | inr a!=x with indexOf a l indexOfIsIndexOf a (x :: l) {zero} () | inr a!=x | no indexOfIsIndexOf a (x :: l) {zero} () | inr a!=x | yes _ indexOfIsIndexOf a (x :: l) {succ n} ind | inr a!=x with mapMaybePreservesYes ind ... | m , (pr ,, z=n) = indexOfIsIndexOf a l (transitivity pr (applyEquality yes (succInjective z=n))) Permutation : (List A) → (List A) → Set Permutation [] [] = True Permutation [] (x :: l2) = False Permutation (x :: l1) [] = False Permutation (a :: as) (b :: bs) with decidable a b Permutation (a :: as) (b :: bs) | inl a=b = Permutation as bs Permutation (a :: as) (b :: bs) | inr a!=b = {!!}
{ "alphanum_fraction": 0.6271777003, "avg_line_length": 37.4347826087, "ext": "agda", "hexsha": "e6f9dfef5957bae43ba6cc725c5330a85e2786e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Permutations.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Permutations.agda", "max_line_length": 153, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Permutations.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 609, "size": 1722 }
module MixfixBinders where postulate M : Set → Set return : ∀ {A} → A → M A bind : ∀ {A B} → M A → (A → M B) → M B infixr 40 bind syntax bind m (λ x → m′) = x ← m , m′ postulate X : Set m₁ m₂ m₃ : M X f : X → X → X foo : M X foo = x₁ ← m₁ , x₂ ← m₂ , x₃ ← m₃ , return (f x₁ (f x₂ x₃)) infixr 10 Σ _,_ syntax Σ A (λ x → B) = Σ x ∈ A , B data Σ (A : Set)(B : A → Set) : Set where _,_ : (x : A) → B x → Σ x ∈ A , B x infix 50 _≤_ postulate _≤_ : X → X → Set x₁ x₂ : X le : x₁ ≤ x₂ p : Σ x ∈ X , Σ y ∈ X , x ≤ y p = x₁ , x₂ , le
{ "alphanum_fraction": 0.4548611111, "avg_line_length": 16.9411764706, "ext": "agda", "hexsha": "7a25ea41008ade3fcc6129f39387faf544749099", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/MixfixBinders.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/MixfixBinders.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/MixfixBinders.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 286, "size": 576 }
record _ : Set where
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 10.5, "ext": "agda", "hexsha": "ec270c53db3d051cd86b078ffc9256c36b9797ef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1465-record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1465-record.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1465-record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 6, "size": 21 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Profunctor where open import Level open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Functor.Bifunctor open import Categories.Functor.Hom Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _ Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (Setoids (ℓ ⊔ ℓ′) (e ⊔ e′)) id : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C id {C = C} = Hom[ C ][-,-]
{ "alphanum_fraction": 0.6512524085, "avg_line_length": 30.5294117647, "ext": "agda", "hexsha": "1d731f744940e82a73db64c7f8ba9f65216c96d4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Profunctor.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Profunctor.agda", "max_line_length": 99, "max_stars_count": 279, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Profunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 191, "size": 519 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Showing booleans ------------------------------------------------------------------------ module Data.Bool.Show where open import Data.Bool open import Data.String hiding (show) show : Bool → String show true = "true" show false = "false"
{ "alphanum_fraction": 0.4216524217, "avg_line_length": 23.4, "ext": "agda", "hexsha": "19961a68045d0d6b7bb88d939ce85957d0e3c4fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Bool/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Bool/Show.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Bool/Show.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 55, "size": 351 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Discrete where open import Level open import Data.Unit using (⊤) open import Function using (flip) open import Categories.Category open import Categories.Support.PropositionalEquality Discrete : ∀ {o} (A : Set o) → Category o o zero Discrete A = record { Obj = A ; _⇒_ = _≣_ ; _≡_ = λ _ _ → ⊤ ; _∘_ = flip ≣-trans ; id = ≣-refl ; assoc = _ ; identityˡ = _ ; identityʳ = _ ; equiv = _ ; ∘-resp-≡ = _ }
{ "alphanum_fraction": 0.6342975207, "avg_line_length": 21.0434782609, "ext": "agda", "hexsha": "bc9eab100a3ffb5c2fbd0d47b178c183441836fe", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Discrete.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Discrete.agda", "max_line_length": 52, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 167, "size": 484 }
open import Agda.Builtin.Reflection open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Equality magic : Nat magic = 666 macro by-magic : Term → TC ⊤ by-magic hole = unify hole (def (quote magic) []) meta-magic : Term → TC ⊤ meta-magic hole = unify hole (def (quote by-magic) []) test : Nat test = meta-magic check : test ≡ 666 check = refl
{ "alphanum_fraction": 0.7050359712, "avg_line_length": 18.1304347826, "ext": "agda", "hexsha": "6bb3fb5bb92de033f7f55e926ded11100ae0e1b7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2130.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2130.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2130.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 417 }
open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Equality data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀{n} (x : A) (xs : Vec A n) → Vec A (suc n) data All₂ {A : Set} {B : Set} (R : A → B → Set) : ∀ {k} → Vec A k → Vec B k → Set where [] : All₂ R [] [] _∷_ : ∀ {k x y} {xs : Vec A k} {ys : Vec B k} (r : R x y) (rs : All₂ R xs ys) → All₂ R (x ∷ xs) (y ∷ ys) Det : ∀ {A : Set} {B : Set} (R : A → B → Set) → Set Det R = ∀{a b c} → R a b → R a c → b ≡ c detAll₂ : ∀ {A : Set} {B : Set} (R : A → B → Set) (h : Det R) → Det (All₂ R) detAll₂ R h rab rac = {!rab!}
{ "alphanum_fraction": 0.4673046252, "avg_line_length": 34.8333333333, "ext": "agda", "hexsha": "039b02d025e27497dd30943a1165c94683df3075", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2621.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2621.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2621.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 284, "size": 627 }
-- FNF, 2019-02-06 -- Test the difference between --ignore-interfaces and --ignore-all-interfaces -- See Issue641-all-interfaces.flags and compare with Issue641.flags module Issue641-all-interfaces where -- Provoke a scope checking error. open NoSuchModule -- Expected output is some debug messages about importing, plus the error, -- but in particular re-typechecking Agda.Primitive
{ "alphanum_fraction": 0.7835051546, "avg_line_length": 29.8461538462, "ext": "agda", "hexsha": "b9cd7f1195f61b2624367460f760f7ac7e2b3fdf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue641-all-interfaces.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue641-all-interfaces.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue641-all-interfaces.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 89, "size": 388 }
-- Andreas & James, 2016-04-18 pre-AIM XXIII -- order of clauses should not matter here! {-# OPTIONS --exact-split #-} open import Common.Equality open import Common.Prelude open import Common.Product thing : Bool → Bool × Bool proj₁ (thing true) = false proj₁ (thing false) = true proj₂ (thing b) = b test : ∀ b → proj₂ (thing b) ≡ b test b = refl
{ "alphanum_fraction": 0.6912181303, "avg_line_length": 20.7647058824, "ext": "agda", "hexsha": "43196c0d0b30e52027468c53aebbed3889274f54", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1834b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1834b.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1834b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 353 }
open import FRP.JS.RSet using ( ⟦_⟧ ) open import FRP.JS.Behaviour using ( Beh ) open import FRP.JS.DOM using ( DOM ) module FRP.JS.Main where postulate Main : Set reactimate : ⟦ Beh DOM ⟧ → Main {-# COMPILED_JS reactimate require("agda.frp").reactimate #-}
{ "alphanum_fraction": 0.6943396226, "avg_line_length": 22.0833333333, "ext": "agda", "hexsha": "5e722121e2272374451f9aa4a4fb5a0076e9213c", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Main.agda", "max_line_length": 61, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Main.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 86, "size": 265 }
------------------------------------------------------------------------------ -- Abelian group theory properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.AbelianGroup.PropertiesATP where open import GroupTheory.AbelianGroup.Base ------------------------------------------------------------------------------ postulate xyx⁻¹≡y : ∀ a b → a · b · a ⁻¹ ≡ b {-# ATP prove xyx⁻¹≡y #-} postulate x⁻¹y⁻¹≡[xy]⁻¹ : ∀ a b → a ⁻¹ · b ⁻¹ ≡ (a · b) ⁻¹ {-# ATP prove x⁻¹y⁻¹≡[xy]⁻¹ #-}
{ "alphanum_fraction": 0.3767705382, "avg_line_length": 33.619047619, "ext": "agda", "hexsha": "d3cc6fdebea549d57c057e2338e6a82ecec17b6f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/AbelianGroup/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/AbelianGroup/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/AbelianGroup/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 169, "size": 706 }
{-# OPTIONS --rewriting --prop #-} open import common open import syntx open import derivability {- Here are the structural rules, as derivation rules -} module _ (Σ : Signature) where {- Γ ⊢ A (x : A) ∈ Γ -------------------- Γ ⊢ x : A -} -- The version of the variable rule we use is that Γ ⊢ x : A if Γ ⊢ A holds, and if A is the type -- corresponding to x in Γ. VarRule : (k : ℕ) → DerivationRule Σ (([] , (0 , Ty)) , Tm) rule (VarRule k) ↑ Γ ([] , ◇ ⊢ A) = do (k' , A') ← get k Γ assume (A' ≡ A) return (◇ ⊢ var k' :> A) ConvRule : DerivationRule Σ (([] , (0 , Tm) , (0 , Ty=)) , Tm) rule ConvRule ↑ Γ ([] , ◇ ⊢ u :> A , ◇ ⊢ A' == B) = do assume (A ≡ A') return (◇ ⊢ u :> B) ConvEqRule : DerivationRule Σ (([] , (0 , Tm=) , (0 , Ty=)) , Tm=) rule ConvEqRule ↑ Γ ([] , ◇ ⊢ u == v :> A , ◇ ⊢ A' == B) = do assume (A ≡ A') return (◇ ⊢ u == v :> B) TyReflRule : DerivationRule Σ (([] , (0 , Ty)) , Ty=) rule TyReflRule ↑ Γ ([] , ◇ ⊢ A) = return (◇ ⊢ A == A) TySymmRule : DerivationRule Σ (([] , (0 , Ty=)) , Ty=) rule TySymmRule ↑ Γ ([] , ◇ ⊢ A == B) = return (◇ ⊢ B == A) TyTranRule : DerivationRule Σ (([] , (0 , Ty=) , (0 , Ty=)) , Ty=) rule TyTranRule ↑ Γ ([] , ◇ ⊢ A == B , ◇ ⊢ B' == D) = -- Can’t use C as a bound variable as it’s a tag. do assume (B ≡ B') return (◇ ⊢ A == D) TmReflRule : DerivationRule Σ (([] , (0 , Tm)) , Tm=) rule TmReflRule ↑ Γ ([] , ◇ ⊢ u :> A) = return (◇ ⊢ u == u :> A) TmSymmRule : DerivationRule Σ (([] , (0 , Tm=)) , Tm=) rule TmSymmRule ↑ Γ ([] , ◇ ⊢ u == v :> A) = return (◇ ⊢ v == u :> A) TmTranRule : DerivationRule Σ (([] , (0 , Tm=) , (0 , Tm=)) , Tm=) rule TmTranRule ↑ Γ ([] , ◇ ⊢ u == v :> A , ◇ ⊢ v' == w :> A') = do assume (v ≡ v') assume (A ≡ A') return (◇ ⊢ u == w :> A) {- Small hack to make our life easier, the implicit argument [ar] of [StructuralRulesType] is automatically inferred from the definition of [StructuralRules], but for that they need to be mutually recursive -} StructuralRules : DerivabilityStructure Σ -- See #4366 private ar1 = _ ar2 = _ ar3 = _ ar4 = _ ar5 = _ ar6 = _ ar7 = _ ar8 = _ ar9 = _ data StructuralRulesType : {ar : JudgmentArity} → Set where var : ℕ → StructuralRulesType {ar1} conv : StructuralRulesType {ar2} convEq : StructuralRulesType {ar3} tyRefl : StructuralRulesType {ar4} tySymm : StructuralRulesType {ar5} tyTran : StructuralRulesType {ar6} tmRefl : StructuralRulesType {ar7} tmSymm : StructuralRulesType {ar8} tmTran : StructuralRulesType {ar9} Rules StructuralRules S ar = StructuralRulesType {ar} Rules StructuralRules T ar = Empty Rules StructuralRules C ar = Empty Rules StructuralRules Eq ar = Empty derivationRule StructuralRules {t = S} (var k) = VarRule k derivationRule StructuralRules {t = S} conv = ConvRule derivationRule StructuralRules {t = S} convEq = ConvEqRule derivationRule StructuralRules {t = S} tyRefl = TyReflRule derivationRule StructuralRules {t = S} tySymm = TySymmRule derivationRule StructuralRules {t = S} tyTran = TyTranRule derivationRule StructuralRules {t = S} tmRefl = TmReflRule derivationRule StructuralRules {t = S} tmSymm = TmSymmRule derivationRule StructuralRules {t = S} tmTran = TmTranRule
{ "alphanum_fraction": 0.5957512315, "avg_line_length": 29.5272727273, "ext": "agda", "hexsha": "b534ddc65c21f95132d04af9ce50ad68e4a97a82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "structuralrules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "structuralrules.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "structuralrules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1207, "size": 3248 }
open import Agda.Builtin.Float _ : Float _ = 1.0xA
{ "alphanum_fraction": 0.7115384615, "avg_line_length": 10.4, "ext": "agda", "hexsha": "edc8979e65dfb3f34404fd10c3330be90302d808", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4132.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4132.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4132.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 52 }
module proofs where open import univ open import cwf open import Base open import Nat open import help {- lem-id∘ : {Γ Δ : Con}(σ : Γ ─→ Δ) -> id ∘ σ == σ lem-id∘ (el < σ , pσ >) = eq \x -> ref lem-∘id : {Γ Δ : Con}(σ : Γ ─→ Δ) -> σ ∘ id == σ lem-∘id (el < σ , pσ >) = eq \x -> ref lem-∘assoc : {Γ Δ Θ Ξ : Con}(σ : Θ ─→ Ξ)(δ : Δ ─→ Θ)(θ : Γ ─→ Δ) -> (σ ∘ δ) ∘ θ == σ ∘ (δ ∘ θ) lem-∘assoc (el < σ , pσ >) (el < δ , pδ >) (el < θ , pθ >) = eq \x -> ref -} lem-/∘ : {Γ Δ Θ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) -> A / σ ∘ δ =Ty A / σ / δ lem-/∘ A (el < _ , _ >) (el < _ , _ >) = eqTy \x -> refS {- lem-//id : {Γ : Con}{A : Type Γ}{u : Elem Γ A} -> u // id =El castElem lem-/id u lem-//id {Γ}{A}{elem (el < u , pu >)} = eqEl (eq prf) where prf : (x : El Γ) -> _ prf x = chain> u x === _ << u (refS << x) by pu (sym (ref<< x)) === _ << u (refS << x) by pfi _ _ _ where open module C11 = Chain _==_ (ref {_}) (trans {_}) lem-//∘ : {Γ Δ Θ : Con}{A : Type Γ}(u : Elem Γ A)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) -> u // σ ∘ δ =El castElem (lem-/∘ A σ δ) (u // σ // δ) lem-//∘ {Γ}{Δ}{Θ} (elem (el < u , pu >)) σ'@(el < σ , _ >) δ'@(el < δ , _ >) = eqEl (eq prf) where prf : (x : El Θ) -> _ prf x = chain> u (σ (δ x)) === _ << u (σ (δ (refS << x))) by pu (p─→ σ' (p─→ δ' (sym (ref<< x)))) === _ << u (σ (δ (refS << x))) by pfi _ _ _ where open module C12 = Chain _==_ (ref {_}) (trans {_}) lem-wk∘σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> wk ∘ (σ ,, u) == σ lem-wk∘σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eq \x -> ref lem-/wk∘σ,,u : {Γ Δ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> A / wk / (σ ,, u) =Ty A / σ lem-/wk∘σ,,u A (el < σ , pσ >) (elem (el < u , pu >)) = eqTy \x -> refS lem-vz/σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> vz // (σ ,, u) =El castElem (lem-/wk∘σ,,u A σ u) u lem-vz/σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eqEl (eq \x -> prf x) where prf : (x : El _) -> u x == _ << u (refS << x) prf x = chain> u x === _ << u (refS << x) by pu (sym (ref<< x)) === _ << u (refS << x) by pfi _ _ _ where open module C15 = Chain _==_ (ref {_}) (trans {_}) lem-σ,,u∘ : {Γ Δ Θ : Con}{A : Type Γ} (σ : Δ ─→ Γ)(u : Elem Δ (A / σ))(δ : Θ ─→ Δ) -> (σ ,, u) ∘ δ == (σ ∘ δ ,, castElem (lem-/∘ A σ δ) (u // δ)) lem-σ,,u∘ (el < σ , _ >) (elem (el < u , pu >)) δ'@(el < δ , _ >) = eq \x -> eq < ref , prf x > where prf : (x : El _) -> u (δ x) == _ << _ << u (δ (refS << x)) prf x = chain> u (δ x) === _ << u (δ (refS << x)) by pu (p─→ δ' (sym (ref<< x))) === _ << _ << u (δ (refS << x)) by sym (casttrans _ _ _ _) where open module C15 = Chain _==_ (ref {_}) (trans {_}) lem-wk,,vz : {Γ : Con}{A : Type Γ} -> (wk ,, vz) == id {Γ , A} lem-wk,,vz {Γ}{A} = eq prf where prf : (x : El (Γ , A)) -> _ prf (el < x , y >) = ref -} lem-Π/ : {Γ Δ : Con}{A : Type Γ}(B : Type (Γ , A))(σ : Δ ─→ Γ) -> Π A B / σ =Ty Π (A / σ) (B / (σ ∘ wk ,, castElem (lem-/∘ A σ wk) vz)) lem-Π/ B (el < σ , pσ >) = eqTy \x -> eqS < refS , (\y -> pFam B (eq < ref , prf x y >)) > where postulate prf : (x : El _)(y : El _) -> y == _ << _ << _ << _ << y -- prf x y = -- chain> y -- === _ << _ << y by sym (castref2 _ _ y) -- === _ << _ << _ << y by trans<< _ _ _ -- === _ << _ << _ << _ << y by trans<< _ _ _ -- where open module C16 = Chain _==_ (ref {_}) (trans {_}) {- lem-β : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)} (v : Elem (Γ , A) B)(u : Elem Γ A) -> (ƛ v) ∙ u =El v // [ u ] lem-β {Γ}{A}{B} (elem (el < v , pv >)) (elem (el < u , pu >)) = eqEl (eq \x -> prf x _ _) where prf : (x : El Γ)(q : _ =S _)(p : _ =S _) -> p << v (el < x , u x >) == v (el < x , q << u (refS << x) >) prf x q p = chain> p << v (el < x , u x >) === p << q0 << v (el < x , q1 << u (refS << x) >) by p<< p (pv (eqSnd (pu (sym (ref<< x))))) === q2 << v (el < x , q1 << u (refS << x) >) by sym (trans<< p q0 _) === q2 << q3 << v (el < x , q << u (refS << x) >) by p<< q2 (pv (eqSnd (pfi q1 q _))) === v (el < x , q << u (refS << x) >) by castref2 q2 q3 _ where open module C17 = Chain _==_ (ref {_}) (trans {_}) q0 = _ q1 = _ q2 = _ q3 = _ -}
{ "alphanum_fraction": 0.3854283787, "avg_line_length": 35.2936507937, "ext": "agda", "hexsha": "7be982896f1d739d708d4cc0a68084b44d127133", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/univ/proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/univ/proofs.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/univ/proofs.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2017, "size": 4447 }
module Prelude.String where open import Agda.Primitive open import Prelude.Unit open import Prelude.Char open import Prelude.Bool open import Prelude.Nat open import Prelude.List open import Prelude.Maybe open import Prelude.Equality open import Prelude.Equality.Unsafe open import Prelude.Decidable open import Prelude.Ord open import Prelude.Function open import Prelude.Monad open import Prelude.Semiring open import Agda.Builtin.String public open import Agda.Builtin.FromString public unpackString = primStringToList packString = primStringFromList unpackString-inj : ∀ {x y} → unpackString x ≡ unpackString y → x ≡ y unpackString-inj {x} p with unpackString x unpackString-inj refl | ._ = unsafeEqual infixr 5 _&_ _&_ = primStringAppend -- Eq -- instance EqString : Eq String _==_ {{EqString}} x y with primStringEquality x y ... | true = yes unsafeEqual ... | false = no unsafeNotEqual -- Ord -- instance OrdString : Ord String OrdString = OrdBy unpackString-inj OrdLawsString : Ord/Laws String OrdLawsString = OrdLawsBy unpackString-inj -- Overloaded literals -- instance StringIsString : IsString String IsString.Constraint StringIsString _ = ⊤ IsString.fromString StringIsString s = s ListIsString : IsString (List Char) IsString.Constraint ListIsString _ = ⊤ IsString.fromString ListIsString s = unpackString s -- Monoid -- instance open import Prelude.Monoid SemigroupString : Semigroup String _<>_ {{SemigroupString}} = primStringAppend MonoidString : Monoid String Monoid.super MonoidString = it mempty {{MonoidString}} = "" -- More functions -- parseNat : String → Maybe Nat parseNat = parseNat′ ∘ unpackString where pDigit : Char → Maybe Nat pDigit c = if isDigit c then just (charToNat c - charToNat '0') else nothing pNat : Nat → List Char → Maybe Nat pNat n [] = just n pNat n (c ∷ s) = pDigit c >>= λ d → pNat (n * 10 + d) s parseNat′ : List Char → Maybe Nat parseNat′ [] = nothing parseNat′ (c ∷ s) = pDigit c >>= λ d → pNat d s onChars : (List Char → List Char) → String → String onChars f = packString ∘ f ∘ unpackString words : String → List String words = map packString ∘ wordsBy isSpace ∘ unpackString ltrim : String → String ltrim = onChars (dropWhile isSpace) rtrim : String → String rtrim = onChars (reverse ∘ dropWhile isSpace ∘ reverse) trim : String → String trim = rtrim ∘ ltrim strTake : Nat → String → String strTake n = onChars (take n) strDrop : Nat → String → String strDrop n = onChars (drop n) strLength : String → Nat strLength = length ∘ unpackString strIsPrefixOf? : String → String → Bool strIsPrefixOf? = isPrefixOf? on unpackString strCommonPrefix : String → String → String strCommonPrefix s₁ s₂ = packString $ (commonPrefix! on unpackString) s₁ s₂
{ "alphanum_fraction": 0.7197317331, "avg_line_length": 24.0084745763, "ext": "agda", "hexsha": "a14c5e4f4738a772a40baac94b0d98e05e90fc62", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/String.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/String.agda", "max_line_length": 74, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 804, "size": 2833 }
------------------------------------------------------------------------ -- Streams ------------------------------------------------------------------------ module Data.Stream where open import Coinduction open import Data.Colist using (Colist; []; _∷_) open import Data.Vec using (Vec; []; _∷_) open import Data.Nat using (ℕ; zero; suc) open import Relation.Binary ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A ------------------------------------------------------------------------ -- Some operations head : forall {A} -> Stream A -> A head (x ∷ xs) = x tail : forall {A} -> Stream A -> Stream A tail (x ∷ xs) = ♭ xs map : ∀ {A B} → (A → B) → Stream A → Stream B map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) zipWith : forall {A B C} -> (A -> B -> C) -> Stream A -> Stream B -> Stream C zipWith _∙_ (x ∷ xs) (y ∷ ys) = (x ∙ y) ∷ ♯ zipWith _∙_ (♭ xs) (♭ ys) take : ∀ {A} (n : ℕ) → Stream A → Vec A n take zero xs = [] take (suc n) (x ∷ xs) = x ∷ take n (♭ xs) drop : ∀ {A} -> ℕ -> Stream A -> Stream A drop zero xs = xs drop (suc n) (x ∷ xs) = drop n (♭ xs) repeat : forall {A} -> A -> Stream A repeat x = x ∷ ♯ repeat x iterate : ∀ {A} → (A → A) → A → Stream A iterate f x = x ∷ ♯ iterate f (f x) -- Interleaves the two streams. infixr 5 _⋎_ _⋎_ : ∀ {A} → Stream A → Stream A → Stream A (x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs) toColist : ∀ {A} → Stream A → Colist A toColist (x ∷ xs) = x ∷ ♯ toColist (♭ xs) lookup : ∀ {A} → ℕ → Stream A → A lookup zero (x ∷ xs) = x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {A} → Colist A → Stream A → Stream A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) ------------------------------------------------------------------------ -- Equality and other relations -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {A} : (xs ys : Stream A) → Set where _∷_ : ∀ x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ x ∷ ys -- x ∈ xs means that x is a member of xs. infix 4 _∈_ data _∈_ {A : Set} : A → Stream A → Set where here : ∀ {x xs} → x ∈ x ∷ xs there : ∀ {x y xs} (x∈xs : x ∈ ♭ xs) → x ∈ y ∷ xs -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {A : Set} : Colist A → Stream A → Set where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys ------------------------------------------------------------------------ -- Some proofs setoid : Set → Setoid setoid A = record { carrier = Stream A ; _≈_ = _≈_ {A} ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {x ∷ xs} = x ∷ ♯ refl sym : Symmetric _≈_ sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : Transitive _≈_ trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) map-cong : ∀ {A B} (f : A → B) {xs ys : Stream A} → xs ≈ ys → map f xs ≈ map f ys map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈)
{ "alphanum_fraction": 0.4231136581, "avg_line_length": 25.5365853659, "ext": "agda", "hexsha": "33709622c1db5afb7469bca1b0b36e24631aa170", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Stream.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Stream.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1167, "size": 3141 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} open import Data.Nat open import Data.Vec open import Data.Fin open import Data.Product open import Data.Unit open import Data.Empty open import Relation.Nullary open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Size open import Codata.Thunk open import Relation.Binary.PropositionalEquality as ≡ open import is-lib.SInfSys as IS open import Examples.Lambda.Lambda module Examples.Lambda.SmallStep where U : Set U = Term 0 × Term 0 data SmallStepRN : Set where β L-APP R-APP : SmallStepRN β-r : FinMetaRule U β-r .Ctx = Term 1 × Value β-r .comp (t , v) = [] , ------------------------- (app (lambda t) (term v) , subst-0 t (term v)) l-app-r : FinMetaRule U l-app-r .Ctx = Term 0 × Term 0 × Term 0 l-app-r .comp (t1 , t1' , t2) = (t1 , t1') ∷ [] , ------------------------- ((app t1 t2) , (app t1' t2)) r-app-r : FinMetaRule U r-app-r .Ctx = Value × Term 0 × Term 0 r-app-r .comp (v , t2 , t2') = (t2 , t2') ∷ [] , ------------------------- ((app (term v) t2) , app (term v) t2') SmallStepIS : IS U SmallStepIS .Names = SmallStepRN SmallStepIS .rules β = from β-r SmallStepIS .rules L-APP = from l-app-r SmallStepIS .rules R-APP = from r-app-r _⇒_ : Term 0 → Term 0 → Set t ⇒ t' = Ind⟦ SmallStepIS ⟧ (t , t') _⇒*_ : Term 0 → Term 0 → Set _⇒*_ = Star _⇒_ _ConvergesSS : Term 0 → Set t ConvergesSS = Σ[ v ∈ Value ] (t ⇒* term v) data ⇒∞ : Term 0 → Size → Set where step : ∀{t t' i} → t ⇒ t' → Thunk (⇒∞ t') i → ⇒∞ t i {- Properties -} inj-l-app : ∀{t1 t1'} t2 → t1 ⇒* t1' → (app t1 t2) ⇒* (app t1' t2) inj-l-app _ ε = ε inj-l-app {t1} t2 (fold x ◅ red) = apply-ind L-APP _ (λ {zero → IS.fold x}) ◅ inj-l-app t2 red inj-r-app : ∀{t2 t2'} v → t2 ⇒* t2' → (app (term v) t2) ⇒* (app (term v) t2') inj-r-app _ ε = ε inj-r-app {t2} v (fold x ◅ red) = apply-ind R-APP _ (λ {zero → IS.fold x}) ◅ inj-r-app v red val-not-reduce⇒ : ∀{v e'} → ¬ (term v ⇒ e') val-not-reduce⇒ {lambda _} (fold (β , c , () , pr)) val-not-reduce⇒ {lambda _} (fold (L-APP , c , () , pr)) val-not-reduce⇒ {lambda _} (fold (R-APP , c , () , pr)) ⇒-deterministic : ∀{e e' e''} → e ⇒ e' → e ⇒ e'' → e' ≡ e'' ⇒-deterministic (fold (β , (_ , lambda _) , refl , _)) (fold (β , (_ , lambda _) , refl , _)) = refl ⇒-deterministic (fold (β , (_ , lambda _) , refl , _)) (fold (L-APP , _ , refl , pr)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (β , (_ , lambda _) , refl , _)) (fold (R-APP , (lambda _ , _) , refl , pr)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (L-APP , _ , refl , pr)) (fold (β , _ , refl , _)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (L-APP , _ , refl , pr)) (fold (L-APP , _ , refl , pr')) = cong (λ x → app x _) (⇒-deterministic (pr zero) (pr' zero)) ⇒-deterministic (fold (L-APP , _ , refl , pr)) (fold (R-APP , _ , refl , _)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (R-APP , (lambda _ , _) , refl , pr)) (fold (β , _ , refl , _)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (R-APP , (lambda _ , _) , refl , _)) (fold (L-APP , _ , refl , pr)) = ⊥-elim (val-not-reduce⇒ (pr zero)) ⇒-deterministic (fold (R-APP , (lambda _ , _) , refl , pr)) (fold (R-APP , (lambda _ , _) , refl , pr')) = cong (λ x → app _ x) (⇒-deterministic (pr zero) (pr' zero)) ⇒*-preserves-⇒∞ : ∀{e e'} → (∀{i} → ⇒∞ e i) → e ⇒* e' → (∀{i} → ⇒∞ e' i) ⇒*-preserves-⇒∞ ss ε = ss ⇒*-preserves-⇒∞ ss (x ◅ red-e) with ss ⇒*-preserves-⇒∞ ss (x ◅ red-e) | step x₁ x₂ = let e'-eq = ⇒-deterministic x₁ x in ⇒*-preserves-⇒∞ (≡.subst (λ x → (∀{i} → ⇒∞ x i)) e'-eq (x₂ .force)) red-e app-subst-⇒∞ : ∀{e v} → (∀{i} → ⇒∞ (app (lambda e) (term v)) i) → (∀{i} → ⇒∞ (subst-0 e (term v)) i) app-subst-⇒∞ ss with ss app-subst-⇒∞ {_} {lambda _} ss | step (fold (β , (_ , lambda _) , refl , _)) rec = rec .force app-subst-⇒∞ {_} {lambda _} ss | step (fold (L-APP , _ , refl , pr)) _ = ⊥-elim (val-not-reduce⇒ (pr zero)) app-subst-⇒∞ {_} {lambda _} ss | step (fold (R-APP , (lambda _ , _) , refl , pr)) rec = ⊥-elim (val-not-reduce⇒ (pr zero)) app-subst-⇒∞₁ : ∀{e1 e1' e2 v} → e1 ⇒* lambda e1' → e2 ⇒* term v → (∀{i} → ⇒∞ (app e1 e2) i) → (∀{i} → ⇒∞ (subst-0 e1' (term v)) i) app-subst-⇒∞₁ red-e1 red-e2 ss = let red-left = ⇒*-preserves-⇒∞ ss (inj-l-app _ red-e1) in let red-right = ⇒*-preserves-⇒∞ red-left (inj-r-app _ red-e2) in app-subst-⇒∞ red-right not-conv-next : ∀{e e'} → ¬ (Σ[ v ∈ Value ] e ⇒* term v) → e ⇒ e' → ¬ (Σ[ v ∈ Value ] e' ⇒* term v) not-conv-next {e} {e'} n ss-e (v , ss-e') = ⊥-elim (n (v , ss-e ◅ ss-e')) div-app-l-not-conv : ∀{e1 e2} → (∀{i} → ⇒∞ (app e1 e2) i) → ¬ (e1 ConvergesSS) → (∀{i} → ⇒∞ e1 i) div-app-l-not-conv ss n-conv with ss div-app-l-not-conv ss n-conv | step (fold (β , _ , refl , _)) _ = ⊥-elim (n-conv (_ , ε)) div-app-l-not-conv ss n-conv | step (fold (L-APP , _ , refl , pr)) x₁ = step (pr zero) λ where .force → div-app-l-not-conv (x₁ .force) (not-conv-next n-conv (pr zero)) div-app-l-not-conv ss n-conv | step (fold (R-APP , _ , refl , _)) _ = ⊥-elim (n-conv (_ , ε)) div-app-r-not-conv : ∀{e1 e2 v} → (∀{i} → ⇒∞ (app e1 e2) i) → e1 ⇒* term v → ¬ (e2 ConvergesSS) → (∀{i} → ⇒∞ e2 i) div-app-r-not-conv ss red-e1 ¬e2-conv with ss div-app-r-not-conv ss red-e1 ¬e2-conv | step (fold (β , _ , refl , _)) _ = ⊥-elim (¬e2-conv (_ , ε)) div-app-r-not-conv ss ε ¬e2-conv | step (fold (L-APP , _ , refl , pr)) _ = ⊥-elim (val-not-reduce⇒ (pr zero)) div-app-r-not-conv ss (x ◅ red-e1) ¬e2-conv | step (fold (L-APP , _ , refl , pr)) x₁ = div-app-r-not-conv (λ {i} → ≡.subst (λ x → ⇒∞ (app x _) i) (⇒-deterministic (pr zero) x) (x₁ .force)) red-e1 ¬e2-conv div-app-r-not-conv ss red-e1 ¬e2-conv | step (fold (R-APP , (lambda _ , _) , refl , pr)) x₁ = step (pr zero) λ where .force → div-app-r-not-conv (x₁ .force) red-e1 (not-conv-next ¬e2-conv (pr zero)) ⇒∞-reduce-⇒ : ∀{e} → (∀{i} → ⇒∞ e i) → Σ[ e' ∈ Term 0 ] e ⇒ e' × (∀{i} → ⇒∞ e' i) ⇒∞-reduce-⇒ ss with ss ⇒∞-reduce-⇒ ss | step s s' = _ , s , s' .force val-not-⇒∞ : ∀{e v} → e ⇒ term v → ¬ (∀{i} → ⇒∞ e i) val-not-⇒∞ {e} {v} ss ss' with ss' val-not-⇒∞ {.(app (lambda (var zero)) (lambda _))} {lambda _} (fold (β , (var zero , lambda _) , refl , _)) ss' | step (fold (β , (.(var zero) , lambda _) , refl , _)) rec = ⊥-elim (val-not-reduce⇒ (proj₁ (proj₂ (⇒∞-reduce-⇒ (rec .force))))) val-not-⇒∞ {.(app (lambda (lambda _)) (lambda _))} {lambda _} (fold (β , (lambda _ , lambda _) , refl , _)) ss' | step (fold (β , (.(lambda _) , lambda _) , refl , _)) rec = ⊥-elim (val-not-reduce⇒ (proj₁ (proj₂ (⇒∞-reduce-⇒ (rec .force))))) val-not-⇒∞ {.(app (lambda e1) e2)} {lambda _} (fold (β , (_ , lambda _) , _)) ss' | step (fold (L-APP , (lambda e1 , e1' , e2) , refl , pr)) rec = ⊥-elim (val-not-reduce⇒ (pr zero)) val-not-⇒∞ {.(app e1 e2)} {lambda _} (fold (L-APP , _ , () , _)) ss' | step (fold (L-APP , (e1 , e1' , e2) , refl , _)) _ val-not-⇒∞ {.(app e1 e2)} {lambda _} (fold (R-APP , (lambda _ , _) , () , _)) ss' | step (fold (L-APP , (e1 , e1' , e2) , refl , pr)) _ val-not-⇒∞ {.(app (lambda _) (lambda e2))} {lambda _} (fold (β , (_ , lambda _) , _)) ss' | step (fold (R-APP , (lambda _ , lambda e2 , e2') , refl , pr)) rec = ⊥-elim (val-not-reduce⇒ (pr zero))
{ "alphanum_fraction": 0.5226790451, "avg_line_length": 50.6040268456, "ext": "agda", "hexsha": "bebf0e90cb0eda064385b2f542f77d7b87c0a062", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "LcicC/inference-systems-agda", "max_forks_repo_path": "Examples/Lambda/SmallStep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "LcicC/inference-systems-agda", "max_issues_repo_path": "Examples/Lambda/SmallStep.agda", "max_line_length": 175, "max_stars_count": 3, "max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "LcicC/inference-systems-agda", "max_stars_repo_path": "Examples/Lambda/SmallStep.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z", "num_tokens": 3231, "size": 7540 }
{-# OPTIONS --allow-unsolved-metas #-} record Sg (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst app : {A : Set} {B : A → Set} → ((x' : A) → B x') → (x : A) → B x app f x = f x ppa : {A : Set} {B : A → Set} → (x : A) → ((x' : A) → B x') → B x ppa x f = f x postulate Bool : Set bar : ((Sg Bool (λ _ → Bool)) → Bool) → Bool foo : Bool -- foo = app bar (λ (_ , _) → {!!}) -- accepted foo = ppa (λ (_ , _) → {!!}) bar -- rejected
{ "alphanum_fraction": 0.4581589958, "avg_line_length": 21.7272727273, "ext": "agda", "hexsha": "4f5eeb8cc9c4b3a3b0638f502b216174cf3a3ddd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4261.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4261.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4261.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 196, "size": 478 }