Search is not available for this dataset
text
string
meta
dict
-- Andreas, 2018-06-14, issue #2513, surviving shape-irrelevance annotations. record Foo (A : Set) : Set where field @shape-irrelevant foo : A test : ∀ A → Foo A → A test A = Foo.foo
{ "alphanum_fraction": 0.6596858639, "avg_line_length": 21.2222222222, "ext": "agda", "hexsha": "acc61c6f93a941d39cefaae685d6684b30e352f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ShapeIrrelevantField.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ShapeIrrelevantField.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ShapeIrrelevantField.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 191 }
module context-properties where open import utility open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Properties using (canₛ-⊆-FV ; canₛₕ-⊆-FV ; canθₛ-E₁⟦p⟧⊆canθₛ-p ; canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p) open import Esterel.Environment open import Esterel.Context open import Esterel.Context.Properties public -- 'public' for backward compatibility open import Data.Product using (Σ ; Σ-syntax ; ∃ ; proj₁ ; proj₂ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Data.List using (List ; _∷_ ; [] ; _++_ ; map) open import Data.List.Properties using (map-id ; map-cong ; map-compose) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _≟_) open import Data.Nat.Properties.Simple using (+-comm) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM infix 20 _~_ infix 20 _a~_ data _~_ : EvaluationContext → EvaluationContext → Set where hole : [] ~ [] parr : ∀{p p' E E'} → E ~ E' → (epar₁ p ∷ E) ~ (epar₁ p' ∷ E') parl : ∀{p p' E E'} → E ~ E' → (epar₂ p ∷ E) ~ (epar₂ p' ∷ E') seq : ∀{p p' E E'} → E ~ E' → (eseq p ∷ E) ~ (eseq p' ∷ E') loopˢ : ∀{p p' E E'} → E ~ E' → (eloopˢ p ∷ E) ~ (eloopˢ p' ∷ E') susp : ∀{S E E'} → E ~ E' → (esuspend S ∷ E) ~ (esuspend S ∷ E') trp : ∀{E E'} → E ~ E' → (etrap ∷ E) ~ (etrap ∷ E') data R : Term → Set where mit : ∀{S} → R (emit S) <== : ∀{s e} → R (s ⇐ e) :== : ∀{x e} → R (x ≔ e) pres : ∀{S p q} → R (present S ∣⇒ p ∣⇒ q) iff : ∀{x p q} → R (if x ∣⇒ p ∣⇒ q) shrd : ∀{s e p} → R (shared s ≔ e in: p) varr : ∀{x e p} → R (var x ≔ e in: p) ~ref : (E : EvaluationContext) → E ~ E ~ref [] = hole ~ref (epar₁ q ∷ E) = parr (~ref E) ~ref (epar₂ p ∷ E) = parl (~ref E) ~ref (eseq q ∷ E) = seq (~ref E) ~ref (eloopˢ q ∷ E) = loopˢ (~ref E) ~ref (esuspend S ∷ E) = susp (~ref E) ~ref (etrap ∷ E) = trp (~ref E) ~sym : ∀{E1 E2} → E1 ~ E2 → E2 ~ E1 ~sym hole = hole ~sym (parr eq) = parr (~sym eq) ~sym (parl eq) = parl (~sym eq) ~sym (seq eq) = seq (~sym eq) ~sym (loopˢ eq) = loopˢ (~sym eq) ~sym (susp eq) = susp (~sym eq) ~sym (trp eq) = trp (~sym eq) ~:: : ∀{E E' Ei} → (Ei ∷ E) ~ (Ei ∷ E') → E ~ E' ~:: (parr ~) = ~ ~:: (parl ~) = ~ ~:: (seq ~) = ~ ~:: (loopˢ ~) = ~ ~:: (susp ~) = ~ ~:: (trp ~) = ~ CB-rho-rho-imp-dist : ∀{p q θ θ' BV FV A A'} → CorrectBinding ((ρ⟨ θ , A ⟩· p) ∥ (ρ⟨ θ' , A' ⟩· q)) BV FV → distinct (Dom θ) (Dom θ') CB-rho-rho-imp-dist (CBpar{BVp = BVp}{BVq = BVq} (CBρ cb) (CBρ cb₁) x x₁ x₂ x₃) = dist++b x ddb-r-rec : ∀{E' q BV FV θ θ' r s A A'} → CorrectBinding ((ρ⟨ θ , A ⟩· r) ∥ q) BV FV → q ≐ E' ⟦ (ρ⟨ θ' , A' ⟩· s) ⟧e → (distinct (Dom θ) (Dom θ')) ddb-r-rec {[]} {ρ⟨ θ' , A' ⟩· p} (CBpar cb cb₁ x x₁ x₂ x₃) dehole = CB-rho-rho-imp-dist (CBpar cb cb₁ x x₁ x₂ x₃) ddb-r-rec {.(epar₁ _) ∷ E'} (CBpar cb (CBpar cb₁ cb₂ x x₁ x₂ x₃) x₄ x₅ x₆ x₇) (depar₁ eq2) = ddb-r-rec {E'} (CBpar cb cb₁ (dist++ˡ x₄) (dist++ˡ x₅) (dist++ˡ x₆) (dist'++ˡ x₇)) eq2 ddb-r-rec {.(epar₂ _) ∷ E'} (CBpar cb (CBpar{BVp = BVp}{FVp = FVp@(S , s , xs)} cb₁ cb₂ x x₁ x₂ x₃) x₄ x₅ x₆ x₇) (depar₂ eq2) = ddb-r-rec {E'} (CBpar cb cb₂ (dist++ʳ{VL2 = BVp} x₄) (dist++ʳ{VL2 = BVp} x₅) (dist++ʳ{VL2 = FVp} x₆) (dist'++ʳ{V2 = xs} x₇)) eq2 ddb-r-rec {.(esuspend _) ∷ E'}{q = (suspend _ S)} (CBpar cb (CBsusp cb₁ x) x₁ x₂ x₃ x₄) (desuspend eq2) = ddb-r-rec {E'} (CBpar cb cb₁ x₁ x₂ (dist::{S = S} x₃) x₄) eq2 ddb-r-rec {.etrap ∷ E'} (CBpar cb (CBtrap cb₁) x₁ x₂ x₃ x₄) (detrap eq2) = ddb-r-rec {E'} (CBpar cb cb₁ x₁ x₂ x₃ x₄) eq2 ddb-r-rec {.(eseq _) ∷ E'} (CBpar cb (CBseq cb₁ cb₂ x) x₁ x₂ x₃ x₄) (deseq eq2) = ddb-r-rec ((CBpar cb cb₁ (dist++ˡ x₁) (dist++ˡ x₂) (dist++ˡ x₃) (dist'++ˡ x₄))) eq2 ddb-r-rec {.(eloopˢ _) ∷ E'} (CBpar cb (CBloopˢ cb₁ cb₂ x _) x₁ x₂ x₃ x₄) (deloopˢ eq2) = ddb-r-rec ((CBpar cb cb₁ (dist++ˡ x₁) (dist++ˡ x₂) (dist++ˡ x₃) (dist'++ˡ x₄))) eq2 dist++l2 : ∀{VL1 VL2 VL3} → (distinct (VL2 U̬ VL3) VL1) → (distinct VL2 VL1) dist++l2 d = (distinct-sym (dist++ˡ (distinct-sym d))) dist'++l2 : ∀{A VL1 VL2 VL3} → (distinct'{A} (VL2 ++ VL3) VL1) → (distinct' VL2 VL1) dist'++l2 d = (distinct'-sym (dist'++ˡ (distinct'-sym d))) dist++r2 : ∀{VL1 VL2 VL3} → (distinct (VL2 U̬ VL3) VL1) → (distinct VL3 VL1) dist++r2{VL2 = VL2} d = (distinct-sym (dist++ʳ{VL2 = VL2} (distinct-sym d))) dist'++r2 : ∀{A VL1 VL2 VL3} → (distinct'{A} (VL2 ++ VL3) VL1) → (distinct' VL3 VL1) dist'++r2{VL2 = VL2} d = (distinct'-sym (dist'++ʳ{V2 = VL2} (distinct'-sym d))) dist::2 : ∀{VL1 VL2 S} → (distinct (+S S VL1) VL2) → (distinct VL1 VL2) dist::2{S = S} d = (distinct-sym ( dist::{S = S} (distinct-sym d) )) decomp-distinct-binding : ∀{E E' p q BV FV θ θ' r s A A'} → CorrectBinding (p ∥ q) BV FV → p ≐ E ⟦ (ρ⟨ θ , A ⟩· r) ⟧e → q ≐ E' ⟦ (ρ⟨ θ' , A' ⟩· s) ⟧e → (distinct (Dom θ) (Dom θ')) decomp-distinct-binding {[]} {E} (CBpar cb cb₁ x₁ x₂ x₃ x₄) dehole eq2 = ddb-r-rec (CBpar cb cb₁ x₁ x₂ x₃ x₄) eq2 decomp-distinct-binding {x ∷ E} {[]} (CBpar cb cb₁ x₁ x₂ x₃ x₄) eq1 dehole = distinct-sym (ddb-r-rec {x ∷ E} (CBpar cb₁ cb (distinct-sym x₁) (distinct-sym x₃) (distinct-sym x₂) (distinct'-sym x₄)) eq1) decomp-distinct-binding {.(epar₁ _) ∷ E} {x₁ ∷ E'} (CBpar{BVq = BVq} (CBpar cb cb₁ x x₂ x₃ x₄) cb₂ x₅ x₆ x₇ x₈) (depar₁ eq1) eq2 = decomp-distinct-binding (CBpar cb cb₂ (dist++l2 x₅) (dist++l2 x₆) (dist++l2 x₇) (dist'++l2 x₈)) eq1 eq2 decomp-distinct-binding {.(epar₂ _) ∷ E} {x₁ ∷ E'} (CBpar (CBpar{BVp = BVp}{FVp = FVp@(S , s , xs)}{BVq = BVq} cb cb₁ x x₂ x₃ x₄) cb₂ x₅ x₆ x₇ x₈) (depar₂ eq1) eq2 = decomp-distinct-binding (CBpar cb₁ cb₂ (dist++r2{VL2 = BVp} x₅) (dist++r2{VL2 = FVp} x₆) (dist++r2{VL2 = BVp} x₇) (dist'++r2{VL2 = xs} x₈)) eq1 eq2 decomp-distinct-binding {.(eseq _) ∷ E} {x₁ ∷ E'} (CBpar (CBseq cb cb₁ x) cb₂ x₂ x₃ x₄ x₅) (deseq eq1) eq2 = decomp-distinct-binding {E} ((CBpar cb cb₂ (dist++l2 x₂) (dist++l2 x₃) (dist++l2 x₄) (dist'++l2 x₅))) eq1 eq2 decomp-distinct-binding {.(eloopˢ _) ∷ E} {x₁ ∷ E'} (CBpar (CBloopˢ cb cb₁ x _) cb₂ x₂ x₃ x₄ x₅) (deloopˢ eq1) eq2 = decomp-distinct-binding {E} ((CBpar cb cb₂ (dist++l2 x₂) (dist++l2 x₃) (dist++l2 x₄) (dist'++l2 x₅))) eq1 eq2 decomp-distinct-binding {.(esuspend _) ∷ E} {x₁ ∷ E'} {p = (suspend _ S)} (CBpar (CBsusp cb x) cb₁ x₂ x₃ x₄ x₅) (desuspend eq1) eq2 = decomp-distinct-binding {E} (CBpar cb cb₁ x₂ ( (dist::2{S = S} x₃) ) x₄ x₅) eq1 eq2 decomp-distinct-binding {.etrap ∷ E} {x₁ ∷ E'} (CBpar (CBtrap cb) cb₁ x₂ x₃ x₄ x₅) (detrap eq1) eq2 = decomp-distinct-binding ((CBpar cb cb₁ x₂ x₃ x₄ x₅)) eq1 eq2 data _a~_ : EvaluationContext → EvaluationContext → Set where parr : ∀{p p' E E'} → E a~ E' → (epar₁ p ∷ E) a~ (epar₁ p' ∷ E') parl : ∀{p p' E E'} → E a~ E' → (epar₂ p ∷ E) a~ (epar₂ p' ∷ E') seq : ∀{p p' E E'} → E a~ E' → (eseq p ∷ E) a~ (eseq p' ∷ E') loopˢ : ∀{p p' E E'} → E a~ E' → (eloopˢ p ∷ E) a~ (eloopˢ p' ∷ E') susp : ∀{S E E'} → E a~ E' → (esuspend S ∷ E) a~ (esuspend S ∷ E') trp : ∀{E E'} → E a~ E' → (etrap ∷ E) a~ (etrap ∷ E') par : ∀{p q E E'} → (epar₂ p ∷ E) a~ (epar₁ q ∷ E') par2 : ∀{p q E E'} → (epar₁ p ∷ E) a~ (epar₂ q ∷ E') a~-sym : ∀{E E'} → E a~ E' → E' a~ E a~-sym (parr ~) = parr (a~-sym ~) a~-sym (parl ~) = parl (a~-sym ~) a~-sym (seq ~) = seq (a~-sym ~) a~-sym (loopˢ ~) = loopˢ (a~-sym ~) a~-sym (susp ~) = susp (a~-sym ~) a~-sym (trp ~) = trp (a~-sym ~) a~-sym par = par2 a~-sym par2 = par decomp-maint-bind : ∀{E E' p r s θ θ' BV FV A A'} → CorrectBinding p BV FV → p ≐ E ⟦ (ρ⟨ θ , A ⟩· r ) ⟧e → p ≐ E' ⟦ (ρ⟨ θ' , A' ⟩· s ) ⟧e → (E ≡ E' × r ≡ s × θ ≡ θ' × A ≡ A') ⊎ ((distinct (Dom θ) (Dom θ')) × E a~ E') decomp-maint-bind {[]} {[]} {.(ρ⟨ _ , _ ⟩· _)} bv dehole dehole = inj₁ (refl , refl , refl , refl) decomp-maint-bind {[]} {x ∷ E'} {.(ρ⟨ _ , _ ⟩· _)} bv dehole () decomp-maint-bind {.(epar₁ _) ∷ E} {[]} {.(_ ∥ _)} bv (depar₁ d1) () decomp-maint-bind {.(epar₂ _) ∷ E} {[]} {.(_ ∥ _)} bv (depar₂ d1) () decomp-maint-bind {.(eseq _) ∷ E} {[]} {.(_ >> _)} bv (deseq d1) () decomp-maint-bind {.(eloopˢ _) ∷ E} {[]} {.(loopˢ _ _)} bv (deloopˢ d1) () decomp-maint-bind {.(esuspend _) ∷ E} {[]} {.(suspend _ _)} bv (desuspend d1) () decomp-maint-bind {.etrap ∷ E} {[]} {.(trap _)} bv (detrap d1) () decomp-maint-bind {(epar₁ q) ∷ E} {(epar₂ p) ∷ E'} {.(_ ∥ _)} bv (depar₁ d1) (depar₂ d2) = inj₂ ((decomp-distinct-binding bv d1 d2) , par2 ) decomp-maint-bind {.(epar₂ _) ∷ E} {.(epar₁ _) ∷ E'} {.(_ ∥ _)} bv (depar₂ d1) (depar₁ d2) with (decomp-distinct-binding bv d2 d1) ... | c = inj₂ ((distinct-sym c) , par) decomp-maint-bind {.(epar₁ _) ∷ E} {.(epar₁ _) ∷ E'} {.(_ ∥ _)} (CBpar bv bv₁ x x₁ x₂ x₃) (depar₁ d1) (depar₁ d2) with decomp-maint-bind bv d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , parr neg) decomp-maint-bind {.(epar₂ _) ∷ E} {.(epar₂ _) ∷ E'} {.(_ ∥ _)} (CBpar bv bv₁ x x₁ x₂ x₃) (depar₂ d1) (depar₂ d2) with decomp-maint-bind bv₁ d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , parl neg) decomp-maint-bind {.(eseq _) ∷ E} {.(eseq _) ∷ E'} {.(_ >> _)} (CBseq bv bv₁ x) (deseq d1) (deseq d2) with decomp-maint-bind bv d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , seq neg) decomp-maint-bind {.(eloopˢ _) ∷ E} {.(eloopˢ _) ∷ E'} {.(loopˢ _ _)} (CBloopˢ bv bv₁ x _) (deloopˢ d1) (deloopˢ d2) with decomp-maint-bind bv d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , loopˢ neg) decomp-maint-bind {.(esuspend _) ∷ E} {.(esuspend _) ∷ E'} {.(suspend _ _)} (CBsusp bv x) (desuspend d1) (desuspend d2) with decomp-maint-bind bv d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , susp neg) decomp-maint-bind {.etrap ∷ E} {.etrap ∷ E'} {.(trap _)} (CBtrap bv) (detrap d1) (detrap d2) with decomp-maint-bind bv d1 d2 ... | inj₁ (eq1 , eq2 , eq3 , eq4) rewrite eq1 | eq2 | eq3 | eq4 = inj₁ (refl , refl , refl , refl) ... | inj₂ (y , neg) = inj₂ (y , trp neg) data ->E-view : ∀{p q pin qin E θ θ' A A'} → (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q) → p ≐ E ⟦ pin ⟧e → q ≐ E ⟦ qin ⟧e → Set where vmerge : ∀{θ₁ θ₂ r p E A A'' dec} → ∀{dec2 : E ⟦ p ⟧e ≐ E ⟦ p ⟧e} → (->E-view{A = A} (rmerge{θ₁}{θ₂}{r}{p}{E}{A}{A''} dec) dec dec2) vis-present : ∀{θ S r p q E S∈ ineq dec A} → ∀{dec2 : E ⟦ p ⟧e ≐ E ⟦ p ⟧e} → (->E-view{A = A} (ris-present{θ}{S}{r}{p}{q}{E} S∈ ineq dec) dec dec2) vis-absent : ∀{θ S r p q E S∈ ineq dec A} → ∀{dec2 : E ⟦ q ⟧e ≐ E ⟦ q ⟧e} → (->E-view{A = A} (ris-absent{θ}{S}{r}{p}{q}{E} S∈ ineq dec) dec dec2) vemit : ∀{θ r S E S∈ ¬S≡a dec} → ∀{dec2 : E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e} → (->E-view (remit{θ}{r}{S}{E} S∈ ¬S≡a dec) dec dec2) vraise-shared : ∀{θ r s e p E e' dec A} → ∀{dec2 : E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.[ s ↦ (SharedVar.old ,′ (δ e'))] VarMap.empty) , WAIT ⟩· p) ⟧e ≐ E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.[ s ↦ (SharedVar.old ,′ (δ e'))] VarMap.empty) , WAIT ⟩· p) ⟧e} → (->E-view{A = A} (rraise-shared{θ}{r}{s}{e}{p}{E} e' dec) dec dec2) vset-shared-value-old : ∀{θ r s e E e' s∈ ineq dec} → ∀{dec2 : E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e} → (->E-view (rset-shared-value-old{θ}{r}{s}{e}{E} e' s∈ ineq dec) dec dec2) vset-shared-value-new : ∀{θ r s e E e' s∈ ineq dec} → ∀{dec2 : E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e} → (->E-view (rset-shared-value-new{θ}{r}{s}{e}{E} e' s∈ ineq dec) dec dec2) vraise-var : ∀{θ r x p e E e' dec A} → ∀{dec2 : E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p) ⟧e ≐ E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p) ⟧e} → (->E-view{A = A} (rraise-var{θ}{r}{x}{p}{e}{E} e' dec) dec dec2) vset-var : ∀{θ r x e E x∈ e' dec A} → ∀{dec2 : E ⟦ nothin ⟧e ≐ E ⟦ nothin ⟧e}→ (->E-view{A = A} (rset-var{θ}{r}{x}{e}{E} x∈ e' dec) dec dec2) vif-false : ∀{θ r p q x E x∈ ineq dec A} → ∀{dec2 : E ⟦ q ⟧e ≐ E ⟦ q ⟧e} → (->E-view{A = A} (rif-false{θ}{r}{p}{q}{x}{E} x∈ ineq dec) dec dec2) vif-true : ∀{θ r p q x E n x∈ ineq dec A} → ∀{dec2 : E ⟦ p ⟧e ≐ E ⟦ p ⟧e} → (->E-view{A = A} (rif-true{θ}{r}{p}{q}{x}{E}{n} x∈ ineq dec) dec dec2) data ->pot-view : ∀{p θ q θ' A A'} → (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q) → p ≡ q → A ≡ A' → Set where vabsence : ∀{θ p A} S S∈ θS≡unknown S∉can-p-θ → (->pot-view{A = A} (rabsence{θ}{p}{S} S∈ θS≡unknown S∉can-p-θ) refl refl) vreadyness : ∀{θ p A} s s∈ θs≡old⊎θs≡new s∉can-p-θ → (->pot-view{A = A} (rreadyness{θ}{p}{s} s∈ θs≡old⊎θs≡new s∉can-p-θ) refl refl) data ->θview : ∀{p θ q θ' A A'} → (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q) → Set where ->θE-view : ∀{p q pin qin E θ θ' A A'} → ∀{red : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q)} → ∀{pin : p ≐ E ⟦ pin ⟧e} → ∀{qin : q ≐ E ⟦ qin ⟧e} → ->E-view red pin qin → ->θview red ->θpot-view : ∀{p θ q θ' A A'} → ∀{red : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q)} → ∀{eq : p ≡ q} → ∀{eq2 : A ≡ A'} → ->pot-view red eq eq2 → ->θview red -- views for the term inside an ->E-view reduction data ->E-view-term : Term → Set where evt-merge : ∀ {θ p A} → ->E-view-term (ρ⟨ θ , A ⟩· p) evt-present : ∀ {S p q} → ->E-view-term (present S ∣⇒ p ∣⇒ q) evt-emit : ∀ {S} → ->E-view-term (emit S) evt-raise-shared : ∀ {s e p} → ->E-view-term (shared s ≔ e in: p) evt-set-shared : ∀ {s e} → ->E-view-term (s ⇐ e) evt-raise-var : ∀ {x e p} → ->E-view-term (var x ≔ e in: p) evt-set-var : ∀ {x e} → ->E-view-term (x ≔ e) evt-if : ∀ {x p q} → ->E-view-term (if x ∣⇒ p ∣⇒ q) ->E-view-inner-term : ∀ {E pin poin p po θ θo A Ao} → { p≐E⟦pin⟧ : p ≐ E ⟦ pin ⟧e } → { po≐E⟦poin⟧ : po ≐ E ⟦ poin ⟧e } → { ρθ·psn⟶₁ρθo·po : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θo , Ao ⟩· po } → ->E-view ρθ·psn⟶₁ρθo·po p≐E⟦pin⟧ po≐E⟦poin⟧ → ->E-view-term pin ->E-view-inner-term vmerge = evt-merge ->E-view-inner-term vis-present = evt-present ->E-view-inner-term vis-absent = evt-present ->E-view-inner-term vemit = evt-emit ->E-view-inner-term vraise-shared = evt-raise-shared ->E-view-inner-term vset-shared-value-old = evt-set-shared ->E-view-inner-term vset-shared-value-new = evt-set-shared ->E-view-inner-term vraise-var = evt-raise-var ->E-view-inner-term vset-var = evt-set-var ->E-view-inner-term vif-false = evt-if ->E-view-inner-term vif-true = evt-if -- terms inside the hole of an ->E-view cannot be done done-E-view-term-disjoint : ∀ {p} → done p → ->E-view-term p → ⊥ done-E-view-term-disjoint (dhalted hnothin) () done-E-view-term-disjoint (dhalted (hexit n)) () done-E-view-term-disjoint (dpaused ppause) () done-E-view-term-disjoint (dpaused (pseq p/paused)) () done-E-view-term-disjoint (dpaused (ploopˢ p/paused)) () done-E-view-term-disjoint (dpaused (ppar p/paused q/paused)) () done-E-view-term-disjoint (dpaused (psuspend p/paused)) () done-E-view-term-disjoint (dpaused (ptrap p/paused)) () unwrap-rho : ∀{E₁ E p θ θ' pin q qin po qo A A'} → (red : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q)) → (peq : p ≐ (E₁ ∷ E) ⟦ pin ⟧e) → (qeq : q ≐ (E₁ ∷ E) ⟦ qin ⟧e) → (poeq : po ≐ E ⟦ pin ⟧e) → (qoeq : qo ≐ E ⟦ qin ⟧e) → (->E-view red peq qeq) → Σ[ redo ∈ (ρ⟨ θ , A ⟩· po) sn⟶₁ (ρ⟨ θ' , A' ⟩· qo) ] (->E-view redo poeq qoeq) unwrap-rho{E = E}{θ = θ}{θ' = θ'}{qin = qin}{po = po} red@(rmerge{θ₁}{θ₂} .peq) peq qeq poeq qoeq (vmerge) with sym (unplug qoeq) ... | refl = rmerge poeq , vmerge{θ}{_}{po}{qin}{E}{_}{_}{poeq} unwrap-rho (ris-present S∈ ineq .peq) peq qeq poeq qoeq vis-present with sym (unplug qoeq) ... | refl = (ris-present S∈ ineq poeq) , vis-present unwrap-rho (ris-absent S∈ ineq .peq) peq qeq poeq qoeq vis-absent with sym (unplug qoeq) ... | refl = (ris-absent S∈ ineq poeq) , vis-absent unwrap-rho (remit x eq .peq) peq qeq poeq qoeq vemit with sym (unplug qoeq) ... | refl = (remit x eq poeq) , vemit unwrap-rho (rraise-shared x .peq) peq qeq poeq qoeq vraise-shared with sym (unplug qoeq) ... | refl = rraise-shared x poeq , vraise-shared unwrap-rho (rset-shared-value-old a b c .peq) peq qeq poeq qoeq vset-shared-value-old with sym (unplug qoeq) ... | refl = (rset-shared-value-old a b c poeq) , vset-shared-value-old unwrap-rho (rset-shared-value-new a b c .peq) peq qeq poeq qoeq vset-shared-value-new with sym (unplug qoeq) ... | refl = (rset-shared-value-new a b c poeq) , vset-shared-value-new unwrap-rho (rraise-var a .peq) peq qeq poeq qoeq vraise-var with sym (unplug qoeq) ... | refl = (rraise-var a poeq) , vraise-var unwrap-rho (rset-var a b .peq) peq qeq poeq qoeq vset-var with sym (unplug qoeq) ... | refl = (rset-var a b poeq) , vset-var unwrap-rho (rif-false a b .peq) peq qeq poeq qoeq vif-false with sym (unplug qoeq) ... | refl = rif-false a b poeq , vif-false unwrap-rho (rif-true a b .peq) peq qeq poeq qoeq vif-true with sym (unplug qoeq) ... | refl = rif-true a b poeq , vif-true wrap-rho : ∀{θ θ' pout qout pin qin E po qo A A'} → (red : (ρ⟨ θ , A ⟩· pout) sn⟶₁ (ρ⟨ θ' , A' ⟩· qout)) → (peq : pout ≐ E ⟦ pin ⟧e) → (qeq : qout ≐ E ⟦ qin ⟧e) → ->E-view red peq qeq → (E₁ : EvaluationContext1) → (poeq : po ≐ (E₁ ∷ E) ⟦ pin ⟧e) → (qoeq : qo ≐ (E₁ ∷ E) ⟦ qin ⟧e) → Σ[ redo ∈ (ρ⟨ θ , A ⟩· po) sn⟶₁ (ρ⟨ θ' , A' ⟩· qo) ] ->E-view redo poeq qoeq wrap-rho .(rmerge peq) peq qeq vmerge Eo poeq qoeq with sym (unplug qoeq) ... | refl = rmerge poeq , vmerge wrap-rho (ris-present S∈ ineq .peq) peq qeq vis-present Eo poeq qoeq with sym (unplug qoeq) ... | refl = ris-present S∈ ineq poeq , vis-present wrap-rho (ris-absent S∈ ineq .peq) peq qeq vis-absent Eo poeq qoeq with sym (unplug qoeq) ... | refl = ris-absent S∈ ineq poeq , vis-absent wrap-rho (remit S∈ eq .peq) peq qeq vemit Eo poeq qoeq with sym (unplug qoeq) ... | refl = remit S∈ eq poeq , vemit wrap-rho (rraise-shared a .peq) peq qeq vraise-shared Eo poeq qoeq with sym (unplug qoeq) ... | refl = rraise-shared a poeq , vraise-shared wrap-rho (rset-shared-value-old a b c .peq) peq qeq vset-shared-value-old Eo poeq qoeq with sym (unplug qoeq) ... | refl = rset-shared-value-old a b c poeq , vset-shared-value-old wrap-rho (rset-shared-value-new a b c .peq) peq qeq vset-shared-value-new Eo poeq qoeq with sym (unplug qoeq) ... | refl = rset-shared-value-new a b c poeq , vset-shared-value-new wrap-rho (rraise-var a .peq) peq qeq vraise-var Eo poeq qoeq with sym (unplug qoeq) ... | refl = rraise-var a poeq , vraise-var wrap-rho (rset-var a b .peq) peq qeq vset-var Eo poeq qoeq with sym (unplug qoeq) ... | refl = rset-var a b poeq , vset-var wrap-rho (rif-false a b .peq) peq qeq vif-false Eo poeq qoeq with sym (unplug qoeq) ... | refl = rif-false a b poeq , vif-false wrap-rho (rif-true a b .peq) peq qeq vif-true Eo poeq qoeq with sym (unplug qoeq) ... | refl = rif-true a b poeq , vif-true wrap-rho-pot : ∀ {E₁ pin θ θ' pin≡pin E₁⟦nothin⟧ BV FV A A≡A} → -- distinct (Dom θ) (FV (E₁ ⟦ nothin ⟧)) E₁⟦nothin⟧ ≐ (E₁ ∷ []) ⟦ nothin ⟧e → CorrectBinding E₁⟦nothin⟧ BV FV → distinct (Dom θ) FV → (ρθpinsn⟶₁ρθ'qin : ρ⟨ θ , A ⟩· pin sn⟶₁ ρ⟨ θ' , A ⟩· pin) → ->pot-view ρθpinsn⟶₁ρθ'qin pin≡pin A≡A → ∃ λ po → Σ[ po≐E₁⟦pin⟧ ∈ po ≐ (E₁ ∷ []) ⟦ pin ⟧e ] Σ[ ρθE₁⟦pin⟧sn⟶₁ρθ'E₁⟦pin⟧ ∈ ρ⟨ θ , A ⟩· po sn⟶₁ ρ⟨ θ' , A ⟩· po ] ->pot-view ρθE₁⟦pin⟧sn⟶₁ρθ'E₁⟦pin⟧ refl refl wrap-rho-pot {epar₁ q} {pin} {θ} {FV = FV} (depar₁ dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-p) (vabsence S S∈ θS≡unknown S∉canθ-θ-p) = _ , depar₁ dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉canθ-θ-p ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (depar₁ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {epar₂ p} {pin} {θ} {FV = FV} (depar₂ dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ) (vabsence S S∈ θS≡unknown S∉can-p-θ) = _ , depar₂ dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉can-p-θ ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (depar₂ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {eseq q} {pin} {θ} {FV = FV} (deseq dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ) (vabsence S S∈ θS≡unknown S∉can-p-θ) = _ , deseq dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉can-p-θ ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (deseq dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {eloopˢ q} {pin} {θ} {FV = FV} (deloopˢ dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ) (vabsence S S∈ θS≡unknown S∉can-p-θ) = _ , deloopˢ dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉can-p-θ ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (deloopˢ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {esuspend S'} {pin} {θ} {FV = FV} (desuspend dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ) (vabsence S S∈ θS≡unknown S∉can-p-θ) = _ , desuspend dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉can-p-θ ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (desuspend dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {etrap} {pin} {θ} {FV = FV} (detrap dehole) cb Domθ≠FV .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ) (vabsence S S∈ θS≡unknown S∉can-p-θ) = _ , detrap dehole , rabsence {S = S} S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env , vabsence S S∈ θS≡unknown S∉canθ-θ-E₁⟦p⟧-[]env where S∉canθ-θ-E₁⟦p⟧-[]env = S∉can-p-θ ∘ canθₛ-E₁⟦p⟧⊆canθₛ-p (sig θ) 0 []env (detrap dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) S (proj₁ Domθ≠FV (Signal.unwrap S) S∈) wrap-rho-pot {epar₁ q} {pin} {θ} {FV = FV} (depar₁ dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , depar₁ dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (depar₁ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) wrap-rho-pot {epar₂ p} {pin} {θ} {FV = FV} (depar₂ dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , depar₂ dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (depar₂ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) wrap-rho-pot {eseq q} {pin} {θ} {FV = FV} (deseq dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , deseq dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (deseq dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) wrap-rho-pot {eloopˢ q} {pin} {θ} {FV = FV} (deloopˢ dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , deloopˢ dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (deloopˢ dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) wrap-rho-pot {esuspend S} {pin} {θ} {FV = FV} (desuspend dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , desuspend dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (desuspend dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) wrap-rho-pot {etrap} {pin} {θ} {FV = FV} (detrap dehole) cb Domθ≠FV .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) = _ , detrap dehole , rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env , vreadyness s s∈ θs≡old⊎θs≡new s∉canθ-θ-E₁⟦p⟧-[]env where s∉canθ-θ-E₁⟦p⟧-[]env = s∉can-p-θ ∘ canθₛₕ-E₁⟦p⟧⊆canθₛₕ-p (sig θ) 0 []env (detrap dehole) cb (subst (λ dom → distinct' dom (proj₁ FV)) (sym (map-id (proj₁ (Dom θ)))) (proj₁ Domθ≠FV)) s (proj₁ (proj₂ Domθ≠FV) (SharedVar.unwrap s) s∈) -- p and p' are not important at all; we use them to extract the -- distinctness condition of FV E₁ and Dom θ wrap-rho-pot' : ∀ {θ θ' E₁ E pin p p' BV FV A} → p ≐ (E₁ ∷ E) ⟦ ρ⟨ θ , A ⟩· p' ⟧e → CorrectBinding p BV FV → (ρθpinsn⟶₁ρθ'pin : ρ⟨ θ , A ⟩· pin sn⟶₁ ρ⟨ θ' , A ⟩· pin) → ->pot-view ρθpinsn⟶₁ρθ'pin refl refl → ∃ λ po → Σ[ po≐E₁⟦pin⟧ ∈ po ≐ (E₁ ∷ []) ⟦ pin ⟧e ] Σ[ ρθE₁⟦pin⟧sn⟶₁ρθ'E₁⟦pin⟧ ∈ ρ⟨ θ , A ⟩· po sn⟶₁ ρ⟨ θ' , A ⟩· po ] ->pot-view ρθE₁⟦pin⟧sn⟶₁ρθ'E₁⟦pin⟧ refl refl wrap-rho-pot' {θ} (depar₁ p≐E⟦ρθp'⟧) (CBpar cbp cbq _ _ BVp≠FVq _) ρθpinsn⟶₁ρθ'pin pot with binding-extract cbp p≐E⟦ρθp'⟧ ... | (BVρθ , _) , (BVρθ⊆BVp , _) , CBρ _ = wrap-rho-pot (depar₁ dehole) cb' (⊆-respect-distinct-left (∪-unjoin-⊆ˡ {xs³ = Dom θ} BVρθ⊆BVp) BVp≠FVq) ρθpinsn⟶₁ρθ'pin pot where cb' = CBpar CBnothing cbq distinct-empty-left distinct-empty-left distinct-empty-left (λ _ ()) wrap-rho-pot' {θ} (depar₂ q≐E⟦ρθp'⟧) (CBpar cbp cbq _ FVp≠BVq _ _) ρθpinsn⟶₁ρθ'pin pot with binding-extract cbq q≐E⟦ρθp'⟧ ... | (BVρθ , _) , (BVρθ⊆BVq , _) , CBρ _ = -- Test your eyesight : 1) ⊃ 2) ∪ 3) ⊂ 4) ∩ wrap-rho-pot (depar₂ dehole) cb' -- hack to delete (_∪ base) in (distinct (FVq ∪ base)) (⊆-respect-distinct-right (∪-join-⊆ ⊆-refl ⊆-empty-left) -- using (FVq ∪ base) ⊆ FVq here (⊆-respect-distinct-left (∪-unjoin-⊆ˡ {xs³ = Dom θ} BVρθ⊆BVq) (distinct-sym FVp≠BVq))) ρθpinsn⟶₁ρθ'pin pot where cb' = CBpar cbp CBnothing distinct-empty-right distinct-empty-right distinct-empty-right (λ _ _ ()) wrap-rho-pot' {θ} (deseq p≐E⟦ρθp'⟧) (CBseq cbp cbq BVp≠FVq) ρθpinsn⟶₁ρθ'pin pot with binding-extract cbp p≐E⟦ρθp'⟧ ... | (BVρθ , _) , (BVρθ⊆BVp , _) , CBρ _ = wrap-rho-pot (deseq dehole) cb' (⊆-respect-distinct-left (∪-unjoin-⊆ˡ {xs³ = Dom θ} BVρθ⊆BVp) BVp≠FVq) ρθpinsn⟶₁ρθ'pin pot where cb' = CBseq CBnothing cbq distinct-empty-left wrap-rho-pot' {θ} (deloopˢ p≐E⟦ρθp'⟧) (CBloopˢ cbp cbq BVp≠FVq BVq≠FVq) ρθpinsn⟶₁ρθ'pin pot with binding-extract cbp p≐E⟦ρθp'⟧ ... | (BVρθ , _) , (BVρθ⊆BVp , _) , CBρ _ = wrap-rho-pot (deloopˢ dehole) cb' (⊆-respect-distinct-left (∪-unjoin-⊆ˡ {xs³ = Dom θ} BVρθ⊆BVp) BVp≠FVq) ρθpinsn⟶₁ρθ'pin pot where cb' = CBloopˢ CBnothing cbq distinct-empty-left BVq≠FVq wrap-rho-pot' {θ} (desuspend p≐E⟦ρθp'⟧) (CBsusp cb [S]≠BVp) ρθpinsn⟶₁ρθ'pin pot with binding-extract cb p≐E⟦ρθp'⟧ ... | (BVρθ , _) , (BVρθ⊆BVp , _) , CBρ _ = wrap-rho-pot (desuspend dehole) cb' ((distinct'-sym (⊆¹-respect-distinct'-right (proj₁ (∪¹-unjoin-⊆¹ (proj₁ (Dom θ)) (proj₁ BVρθ⊆BVp))) [S]≠BVp)) ,′ (λ _ _ ()) ,′ (λ _ _ ())) ρθpinsn⟶₁ρθ'pin pot where cb' = CBsusp CBnothing (λ _ _ ()) wrap-rho-pot' {θ} (detrap p≐E⟦ρθp'⟧) cb@(CBtrap cb') ρθpinsn⟶₁ρθ'pin pot = wrap-rho-pot (detrap dehole) (CBtrap CBnothing) distinct-empty-right ρθpinsn⟶₁ρθ'pin pot E-view-main-bind : ∀{El Er p il ir iol ior ql qr θ θl θr A Al Ar} → ∀{redl : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· ql) } → ∀{redr : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θr , Ar ⟩· qr) } → ∀{dec1l : p ≐ El ⟦ il ⟧e} → ∀{dec2l : ql ≐ El ⟦ iol ⟧e} → ∀{dec1r : p ≐ Er ⟦ ir ⟧e} → ∀{dec2r : qr ≐ Er ⟦ ior ⟧e} → ->E-view redl dec1l dec2l → ->E-view redr dec1r dec2r → (El ≡ Er × ql ≡ qr × θl ≡ θr × Al ≡ Ar) ⊎ (El a~ Er) E-view-main-bind {epar₁ q ∷ El} {epar₂ p ∷ Er} v1 v2 = inj₂ par2 E-view-main-bind {epar₂ p ∷ El} {epar₁ q ∷ Er} v1 v2 = inj₂ par E-view-main-bind {[]} {[]} {(present S ∣⇒ _ ∣⇒ _)}{θ = θ} {redl = (ris-present ∈1 eq1 dehole)} {(ris-absent ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vis-present vis-absent with sig-stats-∈-irr{S}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {(present S ∣⇒ _ ∣⇒ _)}{θ = θ} {redl = (ris-absent ∈1 eq1 dehole)} {(ris-present ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vis-absent vis-present with sig-stats-∈-irr{S}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {(if x ∣⇒ _ ∣⇒ _)}{θ = θ} {redl = (rif-false ∈1 eq1 dehole)} {(rif-true ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vif-false vif-true with var-vals-∈-irr{x}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {(if x ∣⇒ _ ∣⇒ _)}{θ = θ} {redl = (rif-true ∈1 eq1 dehole)} {(rif-false ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vif-true vif-false with var-vals-∈-irr{x}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {(s ⇐ _)}{θ = θ} {redl = (rset-shared-value-new _ ∈1 eq1 dehole)} {(rset-shared-value-old _ ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vset-shared-value-new vset-shared-value-old with shr-stats-∈-irr{s}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {(s ⇐ _)}{θ = θ} {redl = (rset-shared-value-old _ ∈1 eq1 dehole)} {(rset-shared-value-new _ ∈2 eq2 dehole)} {dehole} {dehole} {dehole} {dehole} vset-shared-value-old vset-shared-value-new with shr-stats-∈-irr{s}{θ} ∈1 ∈2 ... | k with trans (sym (trans k eq2)) eq1 ... | () E-view-main-bind {[]} {[]} {.(ρ⟨ _ , _ ⟩· _)} {redl = .(rmerge dehole)} {.(rmerge dehole)} {dehole} {dehole} {dehole} {dehole} vmerge vmerge = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(present _ ∣⇒ _ ∣⇒ _)} {redl = .(ris-present _ _ dehole)} {.(ris-present _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vis-present vis-present = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(present _ ∣⇒ _ ∣⇒ _)} {redl = .(ris-absent _ _ dehole)} {.(ris-absent _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vis-absent vis-absent = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(emit _)} {redl = .(remit _ _ dehole)} {.(remit _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vemit vemit = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(shared _ ≔ _ in: _)} {redl = (rraise-shared e' dehole)} {(rraise-shared e'' dehole)} {dehole} {dehole} {dehole} {dehole} vraise-shared vraise-shared rewrite δ-e-irr e' e'' = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(_ ⇐ _)} {redl = (rset-shared-value-old e' _ _ dehole)} {(rset-shared-value-old e'' _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vset-shared-value-old vset-shared-value-old rewrite δ-e-irr e' e'' = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {(s ⇐ _)}{θ = θ} {redl = (rset-shared-value-new e' s∈' _ dehole)} {(rset-shared-value-new e'' s∈'' _ dehole)} {dehole} {dehole} {dehole} {dehole} vset-shared-value-new vset-shared-value-new rewrite δ-e-irr e' e'' | (shr-vals-∈-irr{s}{θ} s∈' s∈'') = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(var _ ≔ _ in: _)} {redl = (rraise-var e' dehole)} {(rraise-var e'' dehole)} {dehole} {dehole} {dehole} {dehole} vraise-var vraise-var rewrite δ-e-irr e' e'' = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {(x ≔ e)} {redl = (rset-var{e = .e} _ e' dehole)} {(rset-var{e = .e} _ e'' dehole)} {dehole} {dehole} {dehole} {dehole} vset-var vset-var rewrite δ-e-irr e' e'' = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(if _ ∣⇒ _ ∣⇒ _)} {redl = .(rif-false _ _ dehole)} {.(rif-false _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vif-false vif-false = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {[]} {.(if _ ∣⇒ _ ∣⇒ _)} {redl = .(rif-true _ _ dehole)} {.(rif-true _ _ dehole)} {dehole} {dehole} {dehole} {dehole} vif-true vif-true = inj₁ (refl , refl , refl , refl) E-view-main-bind {[]} {.(epar₁ _) ∷ Er} {.(_ ∥ _)} {redl = redl} {redr} {dehole} {dec2l} {depar₁ dec1r} {dec2r} () v2 E-view-main-bind {[]} {.(epar₂ _) ∷ Er} {.(_ ∥ _)} {redl = redl} {redr} {dehole} {dec2l} {depar₂ dec1r} {dec2r} () v2 E-view-main-bind {[]} {.(eseq _) ∷ Er} {.(_ >> _)} {redl = redl} {redr} {dehole} {dec2l} {deseq dec1r} {dec2r} () v2 E-view-main-bind {[]} {.(eloopˢ _) ∷ Er} {.(loopˢ _ _)} {redl = redl} {redr} {dehole} {dec2l} {deloopˢ dec1r} {dec2r} () v2 E-view-main-bind {[]} {.(esuspend _) ∷ Er} {.(suspend _ _)} {redl = redl} {redr} {dehole} {dec2l} {desuspend dec1r} {dec2r} () v2 E-view-main-bind {[]} {.etrap ∷ Er} {.(trap _)} {redl = redl} {redr} {dehole} {dec2l} {detrap dec1r} {dec2r} () v2 E-view-main-bind {.(epar₁ _) ∷ El} {[]} {.(_ ∥ _)} {redl = redl} {redr} {depar₁ dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {.(epar₂ _) ∷ El} {[]} {.(_ ∥ _)} {redl = redl} {redr} {depar₂ dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {.(eseq _) ∷ El} {[]} {.(_ >> _)} {redl = redl} {redr} {deseq dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {.(eloopˢ _) ∷ El} {[]} {.(loopˢ _ _)} {redl = redl} {redr} {deloopˢ dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {.(esuspend _) ∷ El} {[]} {.(suspend _ _)} {redl = redl} {redr} {desuspend dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {.etrap ∷ El} {[]} {.(trap _)} {redl = redl} {redr} {detrap dec1l} {dec2l} {dehole} {dec2r} v1 () E-view-main-bind {epar₁ q ∷ El} {epar₁ .q ∷ Er} {dec1l = depar₁ dec1l} {depar₁ dec2l} {depar₁ dec1r} {depar₁ dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (parr y) E-view-main-bind {.(epar₂ _) ∷ El} {.(epar₂ _) ∷ Er} {.(_ ∥ _)} {dec1l = depar₂ dec1l} {depar₂ dec2l} {depar₂ dec1r} {depar₂ dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (parl y) E-view-main-bind {.(eseq _) ∷ El} {.(eseq _) ∷ Er} {.(_ >> _)} {dec1l = deseq dec1l} {deseq dec2l} {deseq dec1r} {deseq dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (seq y) E-view-main-bind {.(eloopˢ _) ∷ El} {.(eloopˢ _) ∷ Er} {.(loopˢ _ _)} {dec1l = deloopˢ dec1l} {deloopˢ dec2l} {deloopˢ dec1r} {deloopˢ dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (loopˢ y) E-view-main-bind {.(esuspend _) ∷ El} {.(esuspend _) ∷ Er} {.(suspend _ _)} {dec1l = desuspend dec1l} {desuspend dec2l} {desuspend dec1r} {desuspend dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (susp y) E-view-main-bind {.etrap ∷ El} {.etrap ∷ Er} {.(trap _)} {dec1l = detrap dec1l} {detrap dec2l} {detrap dec1r} {detrap dec2r} v1 v2 with unwrap-rho _ _ _ dec1l dec2l v1 | unwrap-rho _ _ _ dec1r dec2r v2 ... | (redil , viewil) | (redir , viewir) with E-view-main-bind viewil viewir ... | (inj₁ (refl , refl , refl , refl)) = inj₁ (refl , refl , refl , refl) ... | (inj₂ y) = inj₂ (trp y) get-view : ∀{θ θ' p q A A'} → (red : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θ' , A' ⟩· q)) → (Σ[ E ∈ EvaluationContext ] Σ[ pin ∈ Term ] Σ[ qin ∈ Term ] Σ[ peq ∈ (p ≐ E ⟦ pin ⟧e) ] Σ[ qeq ∈ (q ≐ E ⟦ qin ⟧e) ] (->E-view{p}{q}{pin}{qin}{E}{θ}{θ'}{A}{A'} red peq qeq )) ⊎ Σ[ eq ∈ (p ≡ q) ] Σ[ eq2 ∈ (A ≡ A') ] (->pot-view red eq eq2) get-view (ris-present S∈ x x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vis-present) get-view (ris-absent S∈ x x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vis-absent) get-view (remit S∈ _ x) = inj₁ (_ , _ , _ , x , Erefl , vemit) get-view (rraise-shared e' x) = inj₁ (_ , _ , _ , x , Erefl , vraise-shared) get-view (rset-shared-value-old e' s∈ x x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vset-shared-value-old) get-view (rset-shared-value-new e' s∈ x x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vset-shared-value-new) get-view (rraise-var e' x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vraise-var) get-view (rset-var x∈ e' x₁) = inj₁ (_ , _ , _ , x₁ , Erefl , vset-var) get-view (rif-false x∈ x₁ x₂) = inj₁ (_ , _ , _ , x₂ , Erefl , vif-false) get-view (rif-true x∈ x₁ x₂) = inj₁ (_ , _ , _ , x₂ , Erefl , vif-true) get-view (rmerge x) = inj₁ (_ , _ , _ , x , Erefl , vmerge) get-view (rabsence {S = S} S∈ x x₁) = inj₂ (refl , refl , vabsence S S∈ x x₁) get-view (rreadyness {s = s} s∈ x x₁) = inj₂ (refl , refl , vreadyness s s∈ x x₁)
{ "alphanum_fraction": 0.5636815064, "avg_line_length": 58.8697539797, "ext": "agda", "hexsha": "d5c9e9a28824a2d09389df13481927b0ae30dd50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/context-properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/context-properties.agda", "max_line_length": 249, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/context-properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 19152, "size": 40679 }
{-# OPTIONS --subtyping #-} open import Agda.Builtin.Equality postulate A : Set mutual I : (A -> A) → .A → A I f = _ testQ : {f : .A -> A} → I f ≡ f testQ = refl
{ "alphanum_fraction": 0.5227272727, "avg_line_length": 12.5714285714, "ext": "agda", "hexsha": "7dee20fb230570a8b42c8f593dea5f38319c87d2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4390irrelevance-subtyping.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4390irrelevance-subtyping.agda", "max_line_length": 33, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4390irrelevance-subtyping.agda", "max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z", "num_tokens": 70, "size": 176 }
module stateDependentIO where open import Level using (_⊔_ ) renaming (suc to lsuc; zero to lzero) open import Size renaming (Size to AgdaSize) open import NativeIO open import Function module _ {γ ρ μ} where record IOInterfaceˢ : Set (lsuc (γ ⊔ ρ ⊔ μ )) where field StateIOˢ : Set γ Commandˢ : StateIOˢ → Set ρ Responseˢ : (s : StateIOˢ) → Commandˢ s → Set μ nextIOˢ : (s : StateIOˢ) → (c : Commandˢ s) → Responseˢ s c → StateIOˢ open IOInterfaceˢ public module _ {α γ ρ μ}(i : IOInterfaceˢ {γ} {ρ} {μ} ) (let S = StateIOˢ i) (let C = Commandˢ i) (let R = Responseˢ i) (let next = nextIOˢ i) where mutual record IOˢ (i : AgdaSize) (A : S → Set α) (s : S) : Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ )) where coinductive constructor delay field forceˢ : {j : Size< i} → IOˢ' j A s data IOˢ' (i : AgdaSize) (A : S → Set α) : S → Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ )) where doˢ' : {s : S} → (c : C s) → (f : (r : R s c) → IOˢ i A (next s c r) ) → IOˢ' i A s returnˢ' : {s : S} → (a : A s) → IOˢ' i A s open IOˢ public module _ {α γ ρ μ}{I : IOInterfaceˢ {γ} {ρ} {μ}} (let S = StateIOˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let next = nextIOˢ I) where returnIOˢ : ∀{i}{A : S → Set α} {s : S} (a : A s) → IOˢ I i A s forceˢ (returnIOˢ a) = returnˢ' a doˢ : ∀{i}{A : S → Set α} {s : S} (c : C s) (f : (r : R s c) → IOˢ I i A (next s c r)) → IOˢ I i A s forceˢ (doˢ c f) = doˢ' c f module _ {γ ρ}{I : IOInterfaceˢ {γ} {ρ} {lzero}} (let S = StateIOˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let next = nextIOˢ I) where {-# NON_TERMINATING #-} translateIOˢ : ∀{A : Set }{s : S} → (translateLocal : (s : S) → (c : C s) → NativeIO (R s c)) → IOˢ I ∞ (λ s → A) s → NativeIO A translateIOˢ {A} {s} translateLocal p = case (forceˢ p {_}) of λ{ (doˢ' {.s} c f) → (translateLocal s c) native>>= λ r → translateIOˢ translateLocal (f r) ; (returnˢ' a) → nativeReturn a }
{ "alphanum_fraction": 0.4779411765, "avg_line_length": 33.5072463768, "ext": "agda", "hexsha": "491304ca79325dc2be013c5c3f79d6621b6e87e5", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/stateDependentIO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/stateDependentIO.agda", "max_line_length": 76, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/stateDependentIO.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 912, "size": 2312 }
module New.FunctionLemmas where open import New.Changes module BinaryValid {A : Set} {{CA : ChAlg A}} {B : Set} {{CB : ChAlg B}} {C : Set} {{CC : ChAlg C}} (f : A → B → C) (df : A → Ch A → B → Ch B → Ch C) where binary-valid-preserve-hp = ∀ a da (ada : valid a da) b db (bdb : valid b db) → valid (f a b) (df a da b db) binary-valid-eq-hp = ∀ a da (ada : valid a da) b db (bdb : valid b db) → (f ⊕ df) (a ⊕ da) (b ⊕ db) ≡ f a b ⊕ df a da b db binary-valid : binary-valid-preserve-hp → binary-valid-eq-hp → valid f df binary-valid ext-valid proof a da ada = (λ b db bdb → ext-valid a da ada b db bdb , lem2 b db bdb) , ext lem1 where lem1 : ∀ b → f (a ⊕ da) b ⊕ df (a ⊕ da) (nil (a ⊕ da)) b (nil b) ≡ f a b ⊕ df a da b (nil b) lem1 b rewrite sym (update-nil b) | proof a da ada b (nil b) (nil-valid b) | update-nil b = refl lem2 : ∀ b (db : Ch B) (bdb : valid b db) → f a (b ⊕ db) ⊕ df a da (b ⊕ db) (nil (b ⊕ db)) ≡ f a b ⊕ df a da b db lem2 b db bdb rewrite sym (proof a da ada (b ⊕ db) (nil (b ⊕ db)) (nil-valid (b ⊕ db))) | update-nil (b ⊕ db) = proof a da ada b db bdb module TernaryValid {A : Set} {{CA : ChAlg A}} {B : Set} {{CB : ChAlg B}} {C : Set} {{CC : ChAlg C}} {D : Set} {{CD : ChAlg D}} (f : A → B → C → D) (df : A → Ch A → B → Ch B → C → Ch C → Ch D) where ternary-valid-preserve-hp = ∀ a da (ada : valid a da) b db (bdb : valid b db) c dc (cdc : valid c dc) → valid (f a b c) (df a da b db c dc) -- These are explicit definitions only to speed up typechecking. CA→B→C→D : ChAlg (A → B → C → D) CA→B→C→D = funCA f⊕df = (_⊕_ {{CA→B→C→D}} f df) -- Already this definition takes a while to typecheck. ternary-valid-eq-hp = ∀ a (da : Ch A {{CA}}) (ada : valid {{CA}} a da) b (db : Ch B {{CB}}) (bdb : valid {{CB}} b db) c (dc : Ch C {{CC}}) (cdc : valid {{CC}} c dc) → f⊕df (a ⊕ da) (b ⊕ db) (c ⊕ dc) ≡ f a b c ⊕ df a da b db c dc ternary-valid : ternary-valid-preserve-hp → ternary-valid-eq-hp → valid f df ternary-valid ext-valid proof a da ada = binary-valid (λ b db bdb c dc cdc → ext-valid a da ada b db bdb c dc cdc) lem2 , ext (λ b → ext (lem1 b)) where open BinaryValid (f a) (df a da) lem1 : ∀ b c → f⊕df (a ⊕ da) b c ≡ (f a ⊕ df a da) b c lem1 b c rewrite sym (update-nil b) | sym (update-nil c) | proof a da ada b (nil b) (nil-valid b) c (nil c) (nil-valid c) | update-nil b | update-nil c = refl -- rewrite -- sym -- (proof -- (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da)) -- b (nil b) (nil-valid b) -- c (nil c) (nil-valid c)) -- | update-nil (a ⊕ da) -- | update-nil b -- | update-nil c = {! !} lem2 : ∀ b db (bdb : valid b db) c dc (cdc : valid c dc) → (f a ⊕ df a da) (b ⊕ db) (c ⊕ dc) ≡ f a b c ⊕ df a da b db c dc lem2 b db bdb c dc cdc rewrite sym (proof a da ada (b ⊕ db) (nil (b ⊕ db)) (nil-valid (b ⊕ db)) (c ⊕ dc) (nil (c ⊕ dc)) (nil-valid (c ⊕ dc)) ) | update-nil (b ⊕ db) | update-nil (c ⊕ dc) = proof a da ada b db bdb c dc cdc
{ "alphanum_fraction": 0.4668778802, "avg_line_length": 30.4561403509, "ext": "agda", "hexsha": "e40aa41a1e6c00f5b90ded5eb113d673eb86fbfc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/FunctionLemmas.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/FunctionLemmas.agda", "max_line_length": 81, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/FunctionLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1300, "size": 3472 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Relation.Nullary.Omniscience where open import Prelude open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic open import Relation.Nullary open import Data.Bool using (bool) private variable p : Level P : A → Type p Omniscient Exhaustible Prop-Omniscient : ∀ p {a} → Type a → Type _ Omniscient p A = ∀ {P : A → Type p} → (∀ x → Dec (P x)) → Dec (∃ x × P x) Exhaustible p A = ∀ {P : A → Type p} → (∀ x → Dec (P x)) → Dec (∀ x → P x) Omniscient→Exhaustible : Omniscient p A → Exhaustible p A Omniscient→Exhaustible omn P? = map-dec (λ ¬∃P x → Dec→Stable _ (P? x) (¬∃P ∘ (x ,_))) (λ ¬∃P ∀P → ¬∃P λ p → p .snd (∀P (p .fst))) (! (omn (! ∘ P?))) Prop-Omniscient p A = ∀ {P : A → Type p} → (∀ x → Dec (P x)) → Dec ∥ ∃ x × P x ∥
{ "alphanum_fraction": 0.610738255, "avg_line_length": 28.8387096774, "ext": "agda", "hexsha": "4751454493ad47710c645c50f4990e0afd58582a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Nullary/Omniscience.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Nullary/Omniscience.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Nullary/Omniscience.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 325, "size": 894 }
-- Andreas, 2017-06-20, issue #2613, reported by Jonathan Prieto. -- Regression introduced by fix of #2458 (which is obsolete since #2403) module _ where open import Agda.Builtin.Nat module Prop' (n : Nat) where data Prop' : Set where _∧_ _∨_ : Prop' → Prop' → Prop' open Prop' zero data DView : Prop' → Set where case₁ : (a b c : Prop') → DView ((a ∨ b) ∧ c) case₂ : (a : Prop') → DView a dView : (p : Prop') → DView p dView ((a ∨ b) ∧ c) = case₁ _ _ _ dView a = case₂ _ dist-∧ : Prop' → Prop' dist-∧ p with dView p dist-∧ .((a ∨ b) ∧ c) | case₁ a b c = dist-∧ (a ∧ c) dist-∧ a | case₂ .a = a -- WAS: -- Termination checking failed for the following functions: -- dist-∧ -- Problematic calls: -- dist-∧ (a ∧ c) -- Should succeed.
{ "alphanum_fraction": 0.578343949, "avg_line_length": 22.4285714286, "ext": "agda", "hexsha": "815190f05ed7a2830bf1ee9d9a8711d43cf35215", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2613.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2613.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2613.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 285, "size": 785 }
module #11 where {- Show that for any type A, we have ¬¬¬A → ¬A. -} open import Data.Empty open import Relation.Nullary tripleNeg : ∀{x}{A : Set x} → ¬ (¬ (¬ A)) → ¬ A tripleNeg = λ z z₁ → z (λ z₂ → z₂ z₁)
{ "alphanum_fraction": 0.5754716981, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "f1f544455857b0489fcedf647eab13f12bfb705b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#11.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#11.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#11.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 83, "size": 212 }
{-# OPTIONS --safe #-} module Cubical.Data.Vec where open import Cubical.Data.Vec.Base public open import Cubical.Data.Vec.Properties public open import Cubical.Data.Vec.NAry public open import Cubical.Data.Vec.OperationsNat public
{ "alphanum_fraction": 0.8025751073, "avg_line_length": 29.125, "ext": "agda", "hexsha": "b20c81ffc2c3b46e6baa6e44307b64ea3af9157f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/Vec.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 57, "size": 233 }
------------------------------------------------------------------------------ -- Properties related with lists of natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.List.PropertiesI where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.List open import FOTC.Data.List ------------------------------------------------------------------------------ -- See the ATP version. postulate ++-ListN : ∀ {ms ns} → ListN ms → ListN ns → ListN (ms ++ ns) map-ListN : ∀ f {ns} → (∀ {n} → N n → N (f · n)) → ListN ns → ListN (map f ns) map-ListN f h lnnil = subst ListN (sym (map-[] f)) lnnil map-ListN f h (lncons {n} {ns} Nn Lns) = subst ListN (sym (map-∷ f n ns)) (lncons (h Nn) (map-ListN f h Lns))
{ "alphanum_fraction": 0.4494382022, "avg_line_length": 39.16, "ext": "agda", "hexsha": "6b9da4e1680cb4861bb3e85bbb45abc1a1ca896f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/List/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 245, "size": 979 }
-- a hodge-podge of tests module Test where import Test.Class import Test.EquivalenceExtensionṖroperty import Test.EquivalenceṖroperty import Test.EquivalentCandidates import Test.EquivalentCandidates-2 import Test.Factsurj3 import Test.Functor -- FIXME doesn't work with open import Everything import Test.ProblemWithDerivation import Test.ProblemWithDerivation-2 import Test.ProblemWithDerivation-3 import Test.ProblemWithDerivation-4 import Test.ProblemWithDerivation-5 import Test.ProblemWithLevelZero import Test.ProblemWithSym import Test.ṖropertyFacts -- FIXME doesn't work with open import Everything import Test.ṖropertyFactsSubstitunction import Test.SubstitunctionPropId import Test.Surjcollation -- FIXME remove commented import block? import Test.Surjidentity import Test.SurjidentityI import Test.SurjidentityP import Test.Symmetrical import Test.SymmetricalSubstitunction import Test.Test0 import Test.Test1 import Test.Test2 import Test.Test3 import Test.Test4 import Test.Test5 import Test.Test6 import Test.Test7 import Test.Thickandthin import Test.Transassociativity import Test.UnifiesSubstitunction import Test.𝓢urjectivityWithOverlapping𝓢urjection
{ "alphanum_fraction": 0.8657604078, "avg_line_length": 29.425, "ext": "agda", "hexsha": "898dd38655e5164deed65da1e72a45b9983769e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 309, "size": 1177 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path using (_≡_) open import Agda.Builtin.Sigma using (Σ; fst; _,_) postulate Is-proposition : Set → Set subst : ∀ {A : Set} (P : A → Set) {x y} → x ≡ y → P x → P y Proposition : Set₁ Proposition = Σ _ Is-proposition data _/_ (A : Set) (R : A → A → Proposition) : Set where [_] : A → A / R resp : ∀ {x y} → fst (R x y) → [ x ] ≡ [ y ] variable A : Set R : A → A → Proposition postulate F : (P : A / R → Set) (p-[] : ∀ x → P [ x ]) → (∀ {x y} (r : fst (R x y)) → subst P (resp r) (p-[] x) ≡ p-[] y) → Set F' : (A : Set) (R : A → A → Proposition) (P : A / R → Set) (p-[] : ∀ x → P [ x ]) → (∀ {x y} (r : fst (R x y)) → subst P (resp r) (p-[] x) ≡ p-[] y) → Set F' A R = F {A = A} {R = R}
{ "alphanum_fraction": 0.4487804878, "avg_line_length": 23.4285714286, "ext": "agda", "hexsha": "34735d17c6db3427e1dc7f3160a25a003c2edf19", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3695.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3695.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3695.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 345, "size": 820 }
module _ where module A where infix 0 c syntax c x = + x data D₁ : Set where b : D₁ c : D₁ → D₁ module B where infix 1 c syntax c x = + x data D₂ : Set where c : A.D₁ → D₂ open A open B test₁ : D₂ test₁ = + + + b test₂ : D₂ → D₁ test₂ (+ + x) = x test₂ (+ b) = + + + b
{ "alphanum_fraction": 0.5098039216, "avg_line_length": 9.8709677419, "ext": "agda", "hexsha": "e99f36eafb2b3c7f8717873d837d47d009c8c3ec", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1194i.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1194i.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1194i.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 131, "size": 306 }
{-# OPTIONS --prop --rewriting #-} module Examples.TreeSum where open import Calf.CostMonoid open import Calf.CostMonoids using (ℕ²-ParCostMonoid) parCostMonoid = ℕ²-ParCostMonoid open ParCostMonoid parCostMonoid open import Calf costMonoid open import Calf.ParMetalanguage parCostMonoid open import Calf.Types.Nat open import Calf.Types.Bounded costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; module ≡-Reasoning) open import Data.Nat as Nat using (_+_; _⊔_) open import Data.Nat.Properties as N using () open import Data.Product add : cmp (Π nat λ _ → Π nat λ _ → F nat) add m n = step (F nat) (1 , 1) (ret (m + n)) add/cost : cmp (Π nat λ _ → Π nat λ _ → cost) add/cost m n = (1 , 1) ⊕ 𝟘 add/cost/closed : cmp (Π nat λ _ → Π nat λ _ → cost) add/cost/closed m n = (1 , 1) add/cost≤add/cost/closed : ∀ m n → ◯ (add/cost m n ≤ add/cost/closed m n) add/cost≤add/cost/closed m n u = ≤-reflexive (⊕-identityʳ (1 , 1)) add≤add/cost : ∀ m n → IsBounded nat (add m n) (add/cost m n) add≤add/cost m n = bound/step (1 , 1) _ bound/ret add≤add/cost/closed : ∀ m n → IsBounded nat (add m n) (add/cost/closed m n) add≤add/cost/closed m n = bound/relax (add/cost≤add/cost/closed m n) (add≤add/cost m n) data Tree : Set where leaf : val nat → Tree node : Tree → Tree → Tree tree : tp pos tree = U (meta Tree) sum : cmp (Π tree λ _ → F nat) sum (leaf x) = ret x sum (node t₁ t₂) = bind (F nat) (sum t₁ & sum t₂) λ (n₁ , n₂) → add n₁ n₂ sum/total : ∀ t → ◯ (∃ λ n → sum t ≡ ret n) sum/total (leaf x) u = x , refl sum/total (node t₁ t₂) u = let (n₁ , ≡₁) = sum/total t₁ u (n₂ , ≡₂) = sum/total t₂ u in n₁ + n₂ , ( let open ≡-Reasoning in begin (bind (F nat) (sum t₁ & sum t₂) λ (n₁ , n₂) → add n₁ n₂) ≡⟨ Eq.cong₂ (λ e₁ e₂ → bind (F nat) (e₁ & e₂) _) ≡₁ ≡₂ ⟩ add n₁ n₂ ≡⟨⟩ step (F nat) (1 , 1) (ret (n₁ + n₂)) ≡⟨ step/ext (F nat) _ (1 , 1) u ⟩ ret (n₁ + n₂) ∎ ) sum/cost : cmp (Π tree λ _ → cost) sum/cost (leaf x) = 𝟘 sum/cost (node t₁ t₂) = bind cost (sum t₁ & sum t₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ add/cost/closed n₁ n₂ size : val tree → val nat size (leaf x) = 0 size (node t₁ t₂) = suc (size t₁ + size t₂) depth : val tree → val nat depth (leaf x) = 0 depth (node t₁ t₂) = suc (depth t₁ ⊔ depth t₂) sum/cost/closed : cmp (Π tree λ _ → cost) sum/cost/closed t = size t , depth t sum/cost≤sum/cost/closed : ∀ t → ◯ (sum/cost t ≤ sum/cost/closed t) sum/cost≤sum/cost/closed (leaf x) u = ≤-refl sum/cost≤sum/cost/closed (node t₁ t₂) u = let (_ , ≡₁) = sum/total t₁ u (_ , ≡₂) = sum/total t₂ u in begin sum/cost (node t₁ t₂) ≡⟨⟩ (bind cost (sum t₁ & sum t₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ add/cost/closed n₁ n₂) ≡⟨ Eq.cong₂ (λ e₁ e₂ → bind cost (e₁ & e₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ _) ≡₁ ≡₂ ⟩ sum/cost t₁ ⊗ sum/cost t₂ ⊕ (1 , 1) ≤⟨ ⊕-monoˡ-≤ (1 , 1) (⊗-mono-≤ (sum/cost≤sum/cost/closed t₁ u) (sum/cost≤sum/cost/closed t₂ u)) ⟩ sum/cost/closed t₁ ⊗ sum/cost/closed t₂ ⊕ (1 , 1) ≡⟨⟩ (size t₁ , depth t₁) ⊗ (size t₂ , depth t₂) ⊕ (1 , 1) ≡⟨⟩ size t₁ + size t₂ + 1 , depth t₁ ⊔ depth t₂ + 1 ≡⟨ Eq.cong₂ _,_ (N.+-comm _ 1) (N.+-comm _ 1) ⟩ suc (size t₁ + size t₂) , suc (depth t₁ ⊔ depth t₂) ≡⟨⟩ sum/cost/closed (node t₁ t₂) ∎ where open ≤-Reasoning sum≤sum/cost : ∀ t → IsBounded nat (sum t) (sum/cost t) sum≤sum/cost (leaf x) = bound/ret sum≤sum/cost (node t₁ t₂) = bound/bind (sum/cost t₁ ⊗ sum/cost t₂) _ (bound/par (sum≤sum/cost t₁) (sum≤sum/cost t₂)) λ (n₁ , n₂) → add≤add/cost/closed n₁ n₂ sum≤sum/cost/closed : ∀ t → IsBounded nat (sum t) (sum/cost/closed t) sum≤sum/cost/closed t = bound/relax (sum/cost≤sum/cost/closed t) (sum≤sum/cost t)
{ "alphanum_fraction": 0.5950326797, "avg_line_length": 30.8467741935, "ext": "agda", "hexsha": "1e927dca48e9ea6b6b2d06784b58bdb668cc1033", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/TreeSum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/TreeSum.agda", "max_line_length": 104, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/TreeSum.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1684, "size": 3825 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.Core where open import Level open import Categories.Category open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as MR private variable o ℓ e o′ ℓ′ e′ : Level C D E : Category o ℓ e record NaturalTransformation {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where eta-equality private module F = Functor F module G = Functor G open F using (F₀; F₁) open Category D hiding (op) field η : ∀ X → D [ F₀ X , G.F₀ X ] commute : ∀ {X Y} (f : C [ X , Y ]) → η Y ∘ F₁ f ≈ G.F₁ f ∘ η X -- We introduce an extra proof to ensure the opposite of the opposite of a natural -- transformation is definitionally equal to itself. sym-commute : ∀ {X Y} (f : C [ X , Y ]) → G.F₁ f ∘ η X ≈ η Y ∘ F₁ f op : NaturalTransformation G.op F.op op = record { η = η ; commute = sym-commute ; sym-commute = commute } -- Just like `Category`, we introduce a helper definition to ease the actual -- construction of a natural transformation. record NTHelper {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module G = Functor G open Functor F using (F₀; F₁) open Category D hiding (op) field η : ∀ X → D [ F₀ X , G.F₀ X ] commute : ∀ {X Y} (f : C [ X , Y ]) → η Y ∘ F₁ f ≈ G.F₁ f ∘ η X ntHelper : ∀ {F G : Functor C D} → NTHelper F G → NaturalTransformation F G ntHelper {D = D} α = record { η = η ; commute = commute ; sym-commute = λ f → Equiv.sym (commute f) } where open NTHelper α open Category D id : ∀ {F : Functor C D} → NaturalTransformation F F id {D = D} = ntHelper record { η = λ _ → D.id ; commute = λ _ → D.identityˡ ○ ⟺ D.identityʳ } where module D = Category D open D.HomReasoning infixr 9 _∘ᵥ_ _∘ₕ_ _∘ˡ_ _∘ʳ_ -- "Vertical composition" _∘ᵥ_ : ∀ {F G H : Functor C D} → NaturalTransformation G H → NaturalTransformation F G → NaturalTransformation F H _∘ᵥ_ {C = C} {D = D} {F} {G} {H} X Y = ntHelper record { η = λ q → D [ X.η q ∘ Y.η q ] ; commute = λ f → glue (X.commute f) (Y.commute f) } where module X = NaturalTransformation X module Y = NaturalTransformation Y open MR D -- "Horizontal composition" _∘ₕ_ : ∀ {F G : Functor C D} {H I : Functor D E} → NaturalTransformation H I → NaturalTransformation F G → NaturalTransformation (H ∘F F) (I ∘F G) _∘ₕ_ {E = E} {F} {I = I} Y X = ntHelper record { η = λ q → E [ I₁ (X.η q) ∘ Y.η (F.F₀ q) ] ; commute = λ f → glue ([ I ]-resp-square (X.commute f)) (Y.commute (F.F₁ f)) } where module F = Functor F module X = NaturalTransformation X module Y = NaturalTransformation Y open Functor I renaming (F₀ to I₀; F₁ to I₁) open MR E _∘ˡ_ : ∀ {G H : Functor C D} (F : Functor D E) → NaturalTransformation G H → NaturalTransformation (F ∘F G) (F ∘F H) _∘ˡ_ F α = ntHelper record { η = λ X → F₁ (η X) ; commute = λ f → [ F ]-resp-square (commute f) } where open Functor F open NaturalTransformation α _∘ʳ_ : ∀ {G H : Functor D E} → NaturalTransformation G H → (F : Functor C D) → NaturalTransformation (G ∘F F) (H ∘F F) _∘ʳ_ {D = D} {E = E} {G = G} {H = H} α F = ntHelper record { η = λ X → η (F₀ X) ; commute = λ f → commute (F₁ f) } where open Functor F open NaturalTransformation α id∘id⇒id : {C : Category o ℓ e} → NaturalTransformation {C = C} {D = C} (idF ∘F idF) idF id∘id⇒id {C = C} = ntHelper record { η = λ _ → Category.id C ; commute = λ f → MR.id-comm-sym C {f = f} } id⇒id∘id : {C : Category o ℓ e} → NaturalTransformation {C = C} {D = C} idF (idF ∘F idF) id⇒id∘id {C = C} = ntHelper record { η = λ _ → Category.id C ; commute = λ f → MR.id-comm-sym C {f = f} } module _ {F : Functor C D} where open Category.HomReasoning D open Functor F open Category D open MR D private module D = Category D F⇒F∘id : NaturalTransformation F (F ∘F idF) F⇒F∘id = ntHelper record { η = λ _ → D.id ; commute = λ _ → id-comm-sym } F⇒id∘F : NaturalTransformation F (idF ∘F F) F⇒id∘F = ntHelper record { η = λ _ → D.id ; commute = λ _ → id-comm-sym } F∘id⇒F : NaturalTransformation (F ∘F idF) F F∘id⇒F = ntHelper record { η = λ _ → D.id ; commute = λ _ → id-comm-sym } id∘F⇒F : NaturalTransformation (idF ∘F F) F id∘F⇒F = ntHelper record { η = λ _ → D.id ; commute = λ _ → id-comm-sym }
{ "alphanum_fraction": 0.5839831401, "avg_line_length": 34.1366906475, "ext": "agda", "hexsha": "2ca779fca16d55a29a990f0c7954af7a4b33baa6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/Core.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1725, "size": 4745 }
------------------------------------------------------------------------ -- An alternative characterisation of the information ordering, along -- with related results ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} open import Prelude hiding (⊥) module Partiality-monad.Inductive.Alternative-order {a} {A : Type a} where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Bijection equality-with-J using (_↔_) open import Double-negation equality-with-J as DN open import Equality.Path.Isomorphisms.Univalence equality-with-paths open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc open import Monad equality-with-J open import Nat equality-with-J open import Univalence-axiom equality-with-J open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Eliminators ------------------------------------------------------------------------ -- An alternative characterisation of λ x y → now x ⊑ y -- This characterisation uses a technique from the first edition of -- the HoTT book (Theorems 11.3.16 and 11.3.32). -- -- The characterisation was developed together with Paolo Capriotti. -- A binary relation, defined using structural recursion. private now[_]≲-args : A → Arguments-nd (lsuc a) a A now[ x ]≲-args = record { P = Proposition a ; Q = λ P Q → proj₁ P → proj₁ Q ; pe = Prelude.⊥ , ⊥-propositional ; po = λ y → ∥ x ≡ y ∥ , truncation-is-proposition ; pl = λ { s (now-x≲s[_] , _) → ∥ ∃ (λ n → proj₁ (now-x≲s[ n ])) ∥ , truncation-is-proposition } ; pa = λ now-x≲y now-x≲z now-x≲y→now-x≲z now-x≲z→now-x≲y → $⟨ record { to = now-x≲y→now-x≲z; from = now-x≲z→now-x≲y } ⟩ proj₁ now-x≲y ⇔ proj₁ now-x≲z ↝⟨ _↔_.to (⇔↔≡″ ext prop-ext) ⟩□ now-x≲y ≡ now-x≲z □ ; ps = ps ; qr = λ { _ (now-x≲y , _) → now-x≲y ↝⟨ id ⟩□ now-x≲y □ } ; qt = λ { _ _ (P , _) (Q , _) (R , _) P→Q Q→R → P ↝⟨ P→Q ⟩ Q ↝⟨ Q→R ⟩□ R □ } ; qe = λ { _ (now-x≲⊥ , _) → Prelude.⊥ ↝⟨ ⊥-elim ⟩□ now-x≲⊥ □ } ; qu = λ { s (now-x≲s[_] , _) n → proj₁ now-x≲s[ n ] ↝⟨ ∣_∣ ∘ (n ,_) ⟩□ ∥ ∃ (λ n → proj₁ now-x≲s[ n ]) ∥ □ } ; ql = λ { s ub is-ub (now-x≲s[_] , _) now-x≲ub now-x≲s[]→now-x≲ub → ∥ ∃ (λ n → proj₁ now-x≲s[ n ]) ∥ ↝⟨ Trunc.rec (proj₂ now-x≲ub) (uncurry now-x≲s[]→now-x≲ub) ⟩□ proj₁ now-x≲ub □ } ; qp = λ _ now-x≲z → Π-closure ext 1 λ _ → proj₂ now-x≲z } where abstract ps : Is-set (Proposition a) ps = Is-set-∃-Is-proposition ext prop-ext infix 4 now[_]≲_ now[_]≲_ : A → A ⊥ → Type a now[ x ]≲ y = proj₁ (⊥-rec-nd now[ x ]≲-args y) -- The relation is propositional. now[]≲-propositional : ∀ {x y} → Is-proposition (now[ x ]≲ y) now[]≲-propositional = proj₂ (⊥-rec-nd now[ _ ]≲-args _) -- If a computation terminates with a certain value, then all larger -- computations terminate with the same value (according to now[_]≲_). larger-terminate-with-same-value≲ : ∀ {x y} → x ⊑ y → ∀ {z} → now[ z ]≲ x → now[ z ]≲ y larger-terminate-with-same-value≲ x⊑y = ⊑-rec-nd now[ _ ]≲-args x⊑y -- "Evaluation" lemmas for now[_]≲_. now[]≲never : ∀ {x} → (now[ x ]≲ never) ≡ Prelude.⊥ now[]≲never {x} = now[ x ]≲ never ≡⟨ cong proj₁ (⊥-rec-nd-never now[ x ]≲-args) ⟩∎ Prelude.⊥ ∎ now[]≲now : ∀ {x y} → (now[ x ]≲ now y) ≡ ∥ x ≡ y ∥ now[]≲now {x} {y} = now[ x ]≲ now y ≡⟨ cong proj₁ (⊥-rec-nd-now now[ x ]≲-args y) ⟩∎ ∥ x ≡ y ∥ ∎ now[]≲⨆ : ∀ {x s} → (now[ x ]≲ ⨆ s) ≡ ∥ (∃ λ n → now[ x ]≲ s [ n ]) ∥ now[]≲⨆ {x} {s} = now[ x ]≲ ⨆ s ≡⟨ cong proj₁ (⊥-rec-nd-⨆ now[ x ]≲-args s) ⟩∎ ∥ (∃ λ n → now[ x ]≲ s [ n ]) ∥ ∎ -- now[_]≲_ is pointwise equivalent to λ x y → now x ⊑ y. now⊑≃now[]≲ : ∀ {x y} → (now x ⊑ y) ≃ (now[ x ]≲ y) now⊑≃now[]≲ {x} {y} = _↔_.to (Eq.⇔↔≃ ext ⊑-propositional now[]≲-propositional) (record { to = now x ⊑ y ↝⟨ larger-terminate-with-same-value≲ ⟩ (∀ {z} → now[ z ]≲ now x → now[ z ]≲ y) ↝⟨ (λ hyp {_} eq → hyp (≡⇒→ (sym now[]≲now) eq)) ⟩ (∀ {z} → ∥ z ≡ x ∥ → now[ z ]≲ y) ↝⟨ (λ hyp → hyp ∣ refl ∣) ⟩□ now[ x ]≲ y □ ; from = ⊥-rec-⊥ from-args _ }) where from-args : Arguments-⊥ a A from-args = record { P = λ y → now[ x ]≲ y → now x ⊑ y ; pe = now[ x ]≲ never ↝⟨ ≡⇒↝ _ now[]≲never ⟩ Prelude.⊥ ↝⟨ ⊥-elim ⟩□ now x ⊑ never □ ; po = λ y → now[ x ]≲ now y ↝⟨ ≡⇒↝ _ now[]≲now ⟩ ∥ x ≡ y ∥ ↝⟨ Trunc.rec ⊑-propositional ( x ≡ y ↝⟨ cong now ⟩ now x ≡ now y ↝⟨ flip (subst (now x ⊑_)) (⊑-refl _) ⟩□ now x ⊑ now y □) ⟩□ now x ⊑ now y □ ; pl = λ s now-x≲s→now-x⊑s → now[ x ]≲ ⨆ s ↝⟨ ≡⇒↝ _ now[]≲⨆ ⟩ ∥ ∃ (λ n → now[ x ]≲ s [ n ]) ∥ ↝⟨ Trunc.rec ⊑-propositional (uncurry λ n now-x≲s[n] → now x ⊑⟨ now-x≲s→now-x⊑s n now-x≲s[n] ⟩ s [ n ] ⊑⟨ upper-bound s n ⟩■ ⨆ s ■) ⟩□ now x ⊑ ⨆ s □ ; pp = λ _ → Π-closure ext 1 λ _ → ⊑-propositional } ------------------------------------------------------------------------ -- Some properties that follow from the equivalence between now[_]≲_ -- and λ x y → now x ⊑ y -- An equivalence between "now x ⊑ never" and an empty type. -- -- This lemma was proved together with Paolo Capriotti. now⊑never≃⊥ : {x : A} → (now x ⊑ never) ≃ Prelude.⊥ {ℓ = a} now⊑never≃⊥ {x} = now x ⊑ never ↝⟨ now⊑≃now[]≲ ⟩ now[ x ]≲ never ↝⟨ ≡⇒↝ _ now[]≲never ⟩□ Prelude.⊥ □ -- Defined values of the form now x are never smaller than or equal to -- never. -- -- This lemma was proved together with Paolo Capriotti. now⋢never : (x : A) → ¬ now x ⊑ never now⋢never x = now x ⊑ never ↔⟨ now⊑never≃⊥ ⟩ Prelude.⊥ ↝⟨ ⊥-elim ⟩□ ⊥₀ □ -- Defined values of the form now x are never equal to never. now≢never : (x : A) → now x ≢ never now≢never x = now x ≡ never ↝⟨ _≃_.from equality-characterisation-⊥ ⟩ now x ⊑ never × now x ⊒ never ↝⟨ proj₁ ⟩ now x ⊑ never ↝⟨ now⋢never x ⟩□ ⊥₀ □ -- There is an equivalence between "now x is smaller than or equal -- to now y" and "x is merely equal to y". now⊑now≃∥≡∥ : {x y : A} → (now x ⊑ now y) ≃ ∥ x ≡ y ∥ now⊑now≃∥≡∥ {x} {y} = now x ⊑ now y ↝⟨ now⊑≃now[]≲ ⟩ now[ x ]≲ now y ↝⟨ ≡⇒↝ _ now[]≲now ⟩□ ∥ x ≡ y ∥ □ -- There is an equivalence between "now x is equal to now y" and "x -- is merely equal to y". now≡now≃∥≡∥ : {x y : A} → (now x ≡ now y) ≃ ∥ x ≡ y ∥ now≡now≃∥≡∥ {x} {y} = now x ≡ now y ↝⟨ inverse equality-characterisation-⊥ ⟩ now x ⊑ now y × now x ⊒ now y ↝⟨ now⊑now≃∥≡∥ ×-cong now⊑now≃∥≡∥ ⟩ ∥ x ≡ y ∥ × ∥ y ≡ x ∥ ↝⟨ _↔_.to (Eq.⇔↔≃ ext (×-closure 1 truncation-is-proposition truncation-is-proposition) truncation-is-proposition) (record { to = proj₁ ; from = λ ∥x≡y∥ → ∥x≡y∥ , ∥∥-map sym ∥x≡y∥ }) ⟩□ ∥ x ≡ y ∥ □ -- There is an equivalence between "now x is smaller than or equal to -- now y" and "now x is equal to now y". now⊑now≃now≡now : {x y : A} → (now x ⊑ now y) ≃ (now x ≡ now y) now⊑now≃now≡now {x} {y} = now x ⊑ now y ↝⟨ now⊑now≃∥≡∥ ⟩ ∥ x ≡ y ∥ ↝⟨ inverse now≡now≃∥≡∥ ⟩□ now x ≡ now y □ -- A computation can terminate with at most one value. termination-value-merely-unique : ∀ {x y z} → x ⇓ y → x ⇓ z → ∥ y ≡ z ∥ termination-value-merely-unique {x} {y} {z} x⇓y x⇓z = _≃_.to now≡now≃∥≡∥ ( now y ≡⟨ sym x⇓y ⟩ x ≡⟨ x⇓z ⟩∎ now z ∎) -- There is an equivalence between now x ⊑ ⨆ s and -- ∥ ∃ (λ n → now x ⊑ s [ n ]) ∥. now⊑⨆≃∥∃now⊑∥ : ∀ {s : Increasing-sequence A} {x} → (now x ⊑ ⨆ s) ≃ ∥ ∃ (λ n → now x ⊑ s [ n ]) ∥ now⊑⨆≃∥∃now⊑∥ {s} {x} = now x ⊑ ⨆ s ↝⟨ now⊑≃now[]≲ ⟩ now[ x ]≲ ⨆ s ↝⟨ ≡⇒↝ _ now[]≲⨆ ⟩ ∥ (∃ λ n → now[ x ]≲ s [ n ]) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → inverse now⊑≃now[]≲) ⟩□ ∥ (∃ λ n → now x ⊑ s [ n ]) ∥ □ -- If x is larger than or equal to now y, then x is equal to now y. now⊑→⇓ : ∀ {x} {y : A} → now y ⊑ x → x ⇓ y now⊑→⇓ {x} {y} = ⊥-rec-⊥ (record { P = λ x → now y ⊑ x → x ⇓ y ; pe = now y ⊑ never ↝⟨ now⋢never y ⟩ Prelude.⊥ ↝⟨ ⊥-elim ⟩□ never ≡ now y □ ; po = λ x → now y ⊑ now x ↔⟨ now⊑now≃∥≡∥ ⟩ ∥ y ≡ x ∥ ↝⟨ ∥∥-map sym ⟩ ∥ x ≡ y ∥ ↝⟨ Trunc.rec ⊥-is-set (cong now) ⟩□ now x ≡ now y □ ; pl = λ s hyp → now y ⊑ ⨆ s ↝⟨ (λ p → p , _≃_.to now⊑⨆≃∥∃now⊑∥ p) ⟩ now y ⊑ ⨆ s × ∥ (∃ λ n → now y ⊑ s [ n ]) ∥ ↝⟨ uncurry (λ p → Trunc.rec ⊥-is-set (uncurry λ n → now y ⊑ s [ n ] ↝⟨ (λ now⊑ _ n≤m → ⊑-trans now⊑ (later-larger s n≤m)) ⟩ (∀ m → n ≤ m → now y ⊑ s [ m ]) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → hyp _) ⟩ (∀ m → n ≤ m → s [ m ] ≡ now y) ↝⟨ (∀-cong _ λ _ → ∀-cong _ λ _ → flip (subst (_ ⊑_)) (⊑-refl _)) ⟩ (∀ m → n ≤ m → s [ m ] ⊑ now y) ↝⟨ upper-bound-≤→upper-bound s ⟩ (∀ n → s [ n ] ⊑ now y) ↝⟨ least-upper-bound _ _ ⟩ ⨆ s ⊑ now y ↝⟨ flip antisymmetry p ⟩□ ⨆ s ≡ now y □)) ⟩□ ⨆ s ≡ now y □ ; pp = λ _ → Π-closure ext 1 λ _ → ⊥-is-set }) x -- If a computation terminates with a certain value, then all larger -- computations terminate with the same value. -- -- Capretta proved a similar result in "General Recursion via -- Coinductive Types". larger-terminate-with-same-value : {x y : A ⊥} → x ⊑ y → x ≼ y larger-terminate-with-same-value now-x⊑y _ refl = now⊑→⇓ now-x⊑y -- If one element in an increasing sequence terminates with a given -- value, then this value is the sequence's least upper bound. terminating-element-is-⨆ : ∀ (s : Increasing-sequence A) {n x} → s [ n ] ⇓ x → ⨆ s ⇓ x terminating-element-is-⨆ s {n} {x} = larger-terminate-with-same-value (upper-bound s n) x -- The relation _≼_ is contained in _⊑_. -- -- Capretta proved a similar result in "General Recursion via -- Coinductive Types". ≼→⊑ : {x y : A ⊥} → x ≼ y → x ⊑ y ≼→⊑ {x} {y} = ⊥-rec-⊥ (record { P = λ x → x ≼ y → x ⊑ y ; pe = never ≼ y ↝⟨ (λ _ → never⊑ y) ⟩□ never ⊑ y □ ; po = λ x → now x ≼ y ↝⟨ (λ hyp → hyp x refl) ⟩ y ⇓ x ↔⟨ inverse equality-characterisation-⊥ ⟩ y ⊑ now x × y ⊒ now x ↝⟨ proj₂ ⟩□ now x ⊑ y □ ; pl = λ s s≼y→s⊑y → ⨆ s ≼ y ↝⟨ id ⟩ (∀ z → ⨆ s ⇓ z → y ⇓ z) ↝⟨ (λ hyp n z → s [ n ] ⇓ z ↝⟨ larger-terminate-with-same-value (upper-bound s n) z ⟩ ⨆ s ⇓ z ↝⟨ hyp z ⟩□ y ⇓ z □) ⟩ (∀ n z → s [ n ] ⇓ z → y ⇓ z) ↝⟨ id ⟩ (∀ n → s [ n ] ≼ y) ↝⟨ (λ hyp n → s≼y→s⊑y n (hyp n)) ⟩ (∀ n → s [ n ] ⊑ y) ↝⟨ least-upper-bound s y ⟩□ ⨆ s ⊑ y □ ; pp = λ _ → Π-closure ext 1 λ _ → ⊑-propositional }) x -- The two relations _≼_ and _⊑_ are pointwise equivalent. -- -- Capretta proved a similar result in "General Recursion via -- Coinductive Types". ≼≃⊑ : {x y : A ⊥} → (x ≼ y) ≃ (x ⊑ y) ≼≃⊑ = _↔_.to (Eq.⇔↔≃ ext ≼-propositional ⊑-propositional) (record { to = ≼→⊑ ; from = larger-terminate-with-same-value }) -- An alternative characterisation of _⇓_. ⇓≃now⊑ : ∀ {x} {y : A} → (x ⇓ y) ≃ (now y ⊑ x) ⇓≃now⊑ {x} {y} = _↔_.to (Eq.⇔↔≃ ext ⊥-is-set ⊑-propositional) (record { to = x ≡ now y ↔⟨ inverse equality-characterisation-⊥ ⟩ x ⊑ now y × x ⊒ now y ↝⟨ proj₂ ⟩□ now y ⊑ x □ ; from = now y ⊑ x ↝⟨ larger-terminate-with-same-value ⟩ (∀ z → now y ⇓ z → x ⇓ z) ↝⟨ (λ hyp → hyp y refl) ⟩□ x ⇓ y □ }) -- Another alternative characterisation of _⇓_. ⇓≃now[]≲ : ∀ {x y} → (x ⇓ y) ≃ (now[ y ]≲ x) ⇓≃now[]≲ {x} {y} = x ⇓ y ↝⟨ ⇓≃now⊑ ⟩ now y ⊑ x ↝⟨ now⊑≃now[]≲ ⟩□ now[ y ]≲ x □ -- Two corollaries of ⇓≃now[]≲. never⇓≃⊥ : {x : A} → (never ⇓ x) ≃ Prelude.⊥ {ℓ = a} never⇓≃⊥ {x = x} = never ≡ now x ↝⟨ ⇓≃now[]≲ ⟩ now[ x ]≲ never ↝⟨ ≡⇒↝ _ now[]≲never ⟩□ Prelude.⊥ □ ⨆⇓≃∥∃⇓∥ : ∀ {s : Increasing-sequence A} {x} → (⨆ s ⇓ x) ≃ ∥ ∃ (λ n → s [ n ] ⇓ x) ∥ ⨆⇓≃∥∃⇓∥ {s} {x} = ⨆ s ⇓ x ↝⟨ ⇓≃now[]≲ ⟩ now[ x ]≲ ⨆ s ↝⟨ ≡⇒↝ _ now[]≲⨆ ⟩ ∥ ∃ (λ n → now[ x ]≲ s [ n ]) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → inverse ⇓≃now[]≲) ⟩□ ∥ ∃ (λ n → s [ n ] ⇓ x) ∥ □ -- If x does not terminate, then x is equal to never. ¬⇓→⇑ : {x : A ⊥} → ¬ (∃ λ y → x ⇓ y) → x ⇑ ¬⇓→⇑ {x} = ⊥-rec-⊥ (record { P = λ x → ¬ (∃ λ y → x ⇓ y) → x ⇑ ; pe = ¬ ∃ (never ⇓_) ↝⟨ const refl ⟩□ never ⇑ □ ; po = λ x → ¬ ∃ (now x ⇓_) ↝⟨ _$ (x , refl) ⟩ ⊥₀ ↝⟨ ⊥-elim ⟩□ now x ⇑ □ ; pl = λ s ih → ¬ ∃ (⨆ s ⇓_) ↔⟨ →-cong ext (∃-cong (λ _ → ⨆⇓≃∥∃⇓∥)) F.id ⟩ ¬ ∃ (λ x → ∥ ∃ (λ n → s [ n ] ⇓ x) ∥) ↝⟨ (λ { hyp (n , x , s[n]⇓x) → hyp (x , ∣ n , s[n]⇓x ∣) }) ⟩ ¬ ∃ (λ n → ∃ λ x → s [ n ] ⇓ x) ↝⟨ (λ hyp n → ih n (hyp ∘ (n ,_))) ⟩ (∀ n → s [ n ] ⇑) ↝⟨ sym ∘ _↔_.to equality-characterisation-increasing ⟩ constˢ never ≡ s ↝⟨ flip (subst (λ s → ⨆ s ⇑)) ⨆-const ⟩□ ⨆ s ⇑ □ ; pp = λ _ → Π-closure ext 1 λ _ → ⊥-is-set }) x -- In the double-negation monad a computation is either terminating or -- non-terminating. now-or-never : (x : A ⊥) → ¬ ¬ ((∃ λ y → x ⇓ y) ⊎ x ⇑) now-or-never x = run (map (⊎-map id ¬⇓→⇑) excluded-middle) -- _⊑_ is a flat order, in the sense that distinct elements that are -- distinct from never are unrelated. flat-order : {x y : A ⊥} → x ≢ y → ¬ x ⇑ → ¬ y ⇑ → ¬ (x ⊑ y) flat-order {x} {y} x≢y never≢x never≢y x⊑y = ¬¬¬⊥ $ ¬⇑→¬¬⇓ never≢x >>= λ x⇓ → ¬⇑→¬¬⇓ never≢y >>= λ y⇓ → return (⊥-elim $ ¬x⇓×y⇓ (x⇓ , y⇓)) where -- The computations x and y cannot both terminate. ¬x⇓×y⇓ : ¬ ((∃ λ z → x ⇓ z) × (∃ λ z → y ⇓ z)) ¬x⇓×y⇓ ((xz , refl) , (yz , refl)) = x≢y ( now xz ≡⟨ _≃_.to now⊑now≃now≡now ( now xz ⊑⟨ x⊑y ⟩■ now yz ■) ⟩∎ now yz ∎) -- Computations that fail to be equal to never do not fail to -- terminate. ¬⇑→¬¬⇓ : {x : A ⊥} → ¬ x ⇑ → ¬¬ (∃ λ y → x ⇓ y) run (¬⇑→¬¬⇓ ¬x⇑) = ¬x⇑ ∘ ¬⇓→⇑ -- Some "constructors" for □. □-never : ∀ {ℓ} {P : A → Type ℓ} → □ P never □-never {P = P} y = never ⇓ y ↔⟨ ⇓≃now[]≲ ⟩ now[ y ]≲ never ↔⟨ ≡⇒↝ bijection now[]≲never ⟩ Prelude.⊥ ↝⟨ ⊥-elim ⟩□ P y □ □-now : ∀ {ℓ} {P : A → Type ℓ} {x} → Is-proposition (P x) → P x → □ P (now x) □-now {P = P} {x} P-prop p y = now x ⇓ y ↔⟨ now≡now≃∥≡∥ ⟩ ∥ x ≡ y ∥ ↝⟨ (λ ∥x≡y∥ → Trunc.rec (Trunc.rec (H-level-propositional ext 1) (λ x≡y → subst (Is-proposition ∘ P) x≡y P-prop) ∥x≡y∥) (λ x≡y → subst P x≡y p) ∥x≡y∥) ⟩□ P y □ □-⨆ : ∀ {ℓ} {P : A → Type ℓ} → (∀ x → Is-proposition (P x)) → ∀ {s} → (∀ n → □ P (s [ n ])) → □ P (⨆ s) □-⨆ {P = P} P-prop {s} p y = ⨆ s ⇓ y ↔⟨ ⨆⇓≃∥∃⇓∥ ⟩ ∥ ∃ (λ n → s [ n ] ⇓ y) ∥ ↝⟨ Trunc.rec (P-prop y) (uncurry λ n s[n]⇓y → p n y s[n]⇓y) ⟩□ P y □ -- One "non-constructor" and one "constructor" for ◇. ◇-never : ∀ {ℓ} {P : A → Type ℓ} → ¬ ◇ P never ◇-never {P = P} = ◇ P never ↝⟨ id ⟩ ∥ (∃ λ y → never ⇓ y × P y) ∥ ↝⟨ Trunc.rec ⊥-propositional (now≢never _ ∘ sym ∘ proj₁ ∘ proj₂) ⟩□ ⊥₀ □ ◇-⨆ : ∀ {ℓ} {P : A → Type ℓ} → ∀ {s n} → ◇ P (s [ n ]) → ◇ P (⨆ s) ◇-⨆ {P = P} = ∥∥-map (Σ-map id (λ {x} → Σ-map {Q = λ _ → P x} (terminating-element-is-⨆ _) id)) ------------------------------------------------------------------------ -- An alternative characterisation of _⊑_ -- This characterisation uses a technique from the first edition of -- the HoTT book (Theorems 11.3.16 and 11.3.32). -- -- The characterisation was developed together with Paolo Capriotti. -- A binary relation, defined using structural recursion. private ≲-args : Arguments-nd (lsuc a) a A ≲-args = record { P = A ⊥ → Proposition a ; Q = λ P Q → ∀ z → proj₁ (Q z) → proj₁ (P z) ; pe = λ _ → ↑ _ ⊤ , ↑-closure 1 (mono₁ 0 ⊤-contractible) ; po = λ x y → ⊥-rec-nd now[ x ]≲-args y ; pl = λ { _ (s[_]≲ , _) y → (∀ n → proj₁ (s[ n ]≲ y)) , Π-closure ext 1 λ n → proj₂ (s[ n ]≲ y) } ; pa = λ x≲ y≲ y≲→x≲ x≲→y≲ → ⟨ext⟩ λ z → $⟨ record { to = x≲→y≲ z; from = y≲→x≲ z } ⟩ proj₁ (x≲ z) ⇔ proj₁ (y≲ z) ↝⟨ _↔_.to (⇔↔≡″ ext prop-ext) ⟩□ x≲ z ≡ y≲ z □ ; ps = ps ; qr = λ _ x≲ z → proj₁ (x≲ z) ↝⟨ id ⟩□ proj₁ (x≲ z) □ ; qt = λ _ _ P Q R Q→P R→Q z → proj₁ (R z) ↝⟨ R→Q z ⟩ proj₁ (Q z) ↝⟨ Q→P z ⟩□ proj₁ (P z) □ ; qe = λ _ ⊥≲ z → proj₁ (⊥≲ z) ↝⟨ _ ⟩□ ↑ _ ⊤ □ ; qu = λ { s (s[_]≲ , _) n z → (∀ m → proj₁ (s[ m ]≲ z)) ↝⟨ (_$ n) ⟩□ proj₁ (s[ n ]≲ z) □ } ; ql = λ { _ _ _ (s[_]≲ , _) ub≲ ub≲→s[]≲ z → proj₁ (ub≲ z) ↝⟨ flip (flip ub≲→s[]≲ z) ⟩□ (∀ n → proj₁ (s[ n ]≲ z)) □ } ; qp = λ x≲ y≲ → Π-closure ext 1 λ z → Π-closure ext 1 λ _ → proj₂ (x≲ z) } where abstract ps : Is-set (A ⊥ → Proposition a) ps = Π-closure ext 2 λ _ → Is-set-∃-Is-proposition ext prop-ext infix 4 _≲_ _≲_ : A ⊥ → A ⊥ → Type a x ≲ y = proj₁ (⊥-rec-nd ≲-args x y) -- The relation is propositional. ≲-propositional : ∀ x y → Is-proposition (x ≲ y) ≲-propositional x y = proj₂ (⊥-rec-nd ≲-args x y) -- A form of transitivity involving _⊑_ and _≲_. ⊑≲-trans : ∀ {x y} (z : A ⊥) → x ⊑ y → y ≲ z → x ≲ z ⊑≲-trans z x⊑y = ⊑-rec-nd ≲-args x⊑y z -- "Evaluation" lemmas for _≲_. never≲ : ∀ {y} → (never ≲ y) ≡ ↑ _ ⊤ never≲ {y} = cong (proj₁ ∘ (_$ _)) ( ⊥-rec-nd ≲-args never ≡⟨ ⊥-rec-nd-never ≲-args ⟩∎ (λ _ → ↑ _ ⊤ , _) ∎) ⨆≲ : ∀ {s y} → (⨆ s ≲ y) ≡ ∀ n → s [ n ] ≲ y ⨆≲ {s} {y} = cong (proj₁ ∘ (_$ _)) ( ⊥-rec-nd ≲-args (⨆ s) ≡⟨ ⊥-rec-nd-⨆ ≲-args s ⟩∎ (λ y → (∀ n → s [ n ] ≲ y) , _) ∎) now≲ : ∀ {x y} → (now x ≲ y) ≡ (now[ x ]≲ y) now≲ {x} {y} = now x ≲ y ≡⟨ cong (proj₁ ∘ (_$ _)) (⊥-rec-nd-now ≲-args x) ⟩∎ now[ x ]≲ y ∎ now≲never : ∀ {x} → (now x ≲ never) ≡ Prelude.⊥ now≲never {x} = now x ≲ never ≡⟨ now≲ ⟩ now[ x ]≲ never ≡⟨ now[]≲never ⟩∎ Prelude.⊥ ∎ now≲now : ∀ {x y} → (now x ≲ now y) ≡ ∥ x ≡ y ∥ now≲now {x} {y} = now x ≲ now y ≡⟨ now≲ ⟩ now[ x ]≲ now y ≡⟨ now[]≲now ⟩∎ ∥ x ≡ y ∥ ∎ now≲⨆ : ∀ {x s} → (now x ≲ ⨆ s) ≡ ∥ (∃ λ n → now x ≲ s [ n ]) ∥ now≲⨆ {x} {s} = now x ≲ ⨆ s ≡⟨ now≲ ⟩ now[ x ]≲ ⨆ s ≡⟨ now[]≲⨆ ⟩ ∥ (∃ λ n → now[ x ]≲ s [ n ]) ∥ ≡⟨ cong (λ P → ∥ ∃ P ∥) (⟨ext⟩ λ _ → sym now≲) ⟩∎ ∥ (∃ λ n → now x ≲ s [ n ]) ∥ ∎ -- _≲_ is reflexive. ≲-refl : ∀ x → x ≲ x ≲-refl = ⊥-rec-⊥ (record { pe = $⟨ _ ⟩ ↑ _ ⊤ ↝⟨ ≡⇒↝ bijection $ sym never≲ ⟩□ never ≲ never □ ; po = λ x → $⟨ ∣ refl ∣ ⟩ ∥ x ≡ x ∥ ↝⟨ ≡⇒↝ bijection $ sym now≲now ⟩□ now x ≲ now x □ ; pl = λ s → (∀ n → s [ n ] ≲ s [ n ]) ↝⟨ (λ s≲s n → ⨆-lemma s (s [ n ]) n (s≲s n)) ⟩ (∀ n → s [ n ] ≲ ⨆ s) ↔⟨ ≡⇒↝ bijection $ sym ⨆≲ ⟩□ ⨆ s ≲ ⨆ s □ ; pp = λ x → ≲-propositional x x }) where ⨆-lemma : ∀ s x n → x ≲ s [ n ] → x ≲ ⨆ s ⨆-lemma s = ⊥-rec-⊥ (record { P = λ x → ∀ n → x ≲ s [ n ] → x ≲ ⨆ s ; pe = λ n → never ≲ s [ n ] ↔⟨ ≡⇒↝ bijection $ never≲ ⟩ ↑ _ ⊤ ↔⟨ ≡⇒↝ bijection $ sym never≲ ⟩□ never ≲ ⨆ s □ ; po = λ x n → now x ≲ s [ n ] ↝⟨ ∣_∣ ∘ (n ,_) ⟩ ∥ (∃ λ n → now x ≲ s [ n ]) ∥ ↔⟨ ≡⇒↝ bijection $ sym now≲⨆ ⟩□ now x ≲ ⨆ s □ ; pl = λ s′ → (∀ m n → s′ [ m ] ≲ s [ n ] → s′ [ m ] ≲ ⨆ s) ↝⟨ (λ hyp n s′≲s m → hyp m n (s′≲s m)) ⟩ (∀ n → (∀ m → s′ [ m ] ≲ s [ n ]) → (∀ m → s′ [ m ] ≲ ⨆ s)) ↝⟨ ∀-cong _ (λ _ → ≡⇒↝ _ $ sym $ cong₂ (λ x y → x → y) ⨆≲ ⨆≲) ⟩□ (∀ n → ⨆ s′ ≲ s [ n ] → ⨆ s′ ≲ ⨆ s) □ ; pp = λ x → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ≲-propositional x (⨆ s) }) -- _⊑_ and _≲_ are pointwise equivalent. ⊑≃≲ : ∀ {x y} → (x ⊑ y) ≃ (x ≲ y) ⊑≃≲ {x} {y} = _↔_.to (Eq.⇔↔≃ ext ⊑-propositional (≲-propositional x y)) (record { to = λ x⊑y → ⊑≲-trans _ x⊑y (≲-refl y) ; from = ⊥-rec-⊥ from-args _ _ }) where from-args : Arguments-⊥ a A from-args = record { P = λ x → ∀ y → x ≲ y → x ⊑ y ; pe = λ y _ → never⊑ y ; po = λ x y → now x ≲ y ↝⟨ ≡⇒↝ _ now≲ ⟩ now[ x ]≲ y ↔⟨ inverse now⊑≃now[]≲ ⟩□ now x ⊑ y □ ; pl = λ s s≲→s⊑ y → ⨆ s ≲ y ↝⟨ ≡⇒↝ _ ⨆≲ ⟩ (∀ n → s [ n ] ≲ y) ↝⟨ (λ s[_]≲y n → s≲→s⊑ n y s[ n ]≲y) ⟩ (∀ n → s [ n ] ⊑ y) ↝⟨ least-upper-bound s y ⟩□ ⨆ s ⊑ y □ ; pp = λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ⊑-propositional }
{ "alphanum_fraction": 0.3892087238, "avg_line_length": 35.7312312312, "ext": "agda", "hexsha": "715583d01b5204fe1518f5e1f571eaa9f9f4f8ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive/Alternative-order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive/Alternative-order.agda", "max_line_length": 128, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive/Alternative-order.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 10555, "size": 23797 }
------------------------------------------------------------------------------ -- Testing the translation of the universal quantified propositional symbols ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PropositionalSymbol where postulate D : Set postulate id : {P : Set} → P → P {-# ATP prove id #-}
{ "alphanum_fraction": 0.4166666667, "avg_line_length": 32.25, "ext": "agda", "hexsha": "9b26c3ed5eacb7a84f8257643dc953e654f1bc6e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/non-fol-theorems/PropositionalSymbol.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/non-fol-theorems/PropositionalSymbol.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/non-fol-theorems/PropositionalSymbol.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 80, "size": 516 }
-- 2014-06-02 Andrea & Andreas module _ where open import Common.Equality open import Common.Product postulate A : Set F : Set → Set test : let M : Set M = _ N : Set × Set → Set N = _ in ∀ {X : Set} → M ≡ F (N (X , X)) × N (A , A) ≡ A test = refl , refl -- Here, we can prune the argument of N, -- since M does not depend on X, -- and the argument is a pair with a bad rigid -- in *each* component.
{ "alphanum_fraction": 0.5329087049, "avg_line_length": 18.84, "ext": "agda", "hexsha": "d813228becb47eeef99f22363bf133ae90d82104", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PruneRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PruneRecord.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PruneRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 145, "size": 471 }
-- Semantics of syntactic kits and explicit substitutions module Semantics.Substitution.Kits where open import Syntax.Types open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Substitution.Kits open import Semantics.Types open import Semantics.Context open import Semantics.Terms open import CategoryTheory.Categories open import CategoryTheory.Instances.Reactive renaming (top to Top) open import CategoryTheory.Functor open import CategoryTheory.Comonad open import TemporalOps.Diamond open import TemporalOps.Box open import TemporalOps.Linear open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl) open Comonad W-□ private module F-□ = Functor F-□ -- Semantic interpretation of kits, grouping together -- lemmas for the kit operations record ⟦Kit⟧ {𝒮 : Schema} (k : Kit 𝒮) : Set where open Kit k field -- Interpretation of the syntactic entity of the given scheme ⟦_⟧ : ∀{A Δ} -> 𝒮 Δ A -> ⟦ Δ ⟧ₓ ⇴ ⟦ A ⟧ⱼ -- Variable conversion lemma ⟦𝓋⟧ : ∀ A Δ -> ⟦ 𝓋 {Δ ,, A} top ⟧ ≈ π₂ -- Term conversion lemma ⟦𝓉⟧ : ∀{A Δ} (T : 𝒮 Δ A) -> ⟦ 𝓉 T ⟧ₘ ≈ ⟦ T ⟧ -- Weakening map lemma ⟦𝓌⟧ : ∀ B {Δ A} (T : 𝒮 Δ A) -> ⟦ 𝓌 {B} T ⟧ ≈ ⟦ T ⟧ ∘ π₁ -- Context stabilisation lemma ⟦𝒶⟧ : ∀{A Δ} (T : 𝒮 Δ (A always)) -> F-□.fmap ⟦ 𝒶 T ⟧ ∘ ⟦ Δ ˢ⟧□ ≈ δ.at ⟦ A ⟧ₜ ∘ ⟦ T ⟧ -- | Interpretation of substitutions and combinators module ⟦K⟧ {𝒮} {k : Kit 𝒮} (⟦k⟧ : ⟦Kit⟧ k) where open ⟦Kit⟧ ⟦k⟧ open Kit k -- Denotation of substitutions as a map between contexts ⟦subst⟧ : ∀{Γ Δ} -> Subst 𝒮 Γ Δ -> ⟦ Δ ⟧ₓ ⇴ ⟦ Γ ⟧ₓ ⟦subst⟧ ● = ! ⟦subst⟧ (σ ▸ T) = ⟨ ⟦subst⟧ σ , ⟦ T ⟧ ⟩ -- Simplified context stabilisation lemma for non-boxed stabilisation ⟦𝒶⟧′ : ∀{A Δ} (T : 𝒮 Δ (A always)) -> ⟦ 𝒶 T ⟧ ∘ ⟦ Δ ˢ⟧ ≈ ⟦ T ⟧ ⟦𝒶⟧′ {A} {Δ} T {n} {⟦Δ⟧} rewrite ⟦ˢ⟧-factor Δ {n} {⟦Δ⟧} = □-≡ n n (⟦𝒶⟧ T) n -- Denotation of weakening ⟦⁺⟧ : ∀ A {Γ Δ} -> (σ : Subst 𝒮 Γ Δ) -> ⟦subst⟧ (_⁺_ {A} σ k) ≈ ⟦subst⟧ σ ∘ π₁ ⟦⁺⟧ A ● = refl ⟦⁺⟧ A (_▸_ {B} σ T) {n} {a} rewrite ⟦⁺⟧ A σ {n} {a} | ⟦𝓌⟧ A T {n} {a} = refl -- Denotation of lifting ⟦↑⟧ : ∀ A {Δ Γ} -> (σ : Subst 𝒮 Γ Δ) -> ⟦subst⟧ (_↑_ {A} σ k) ≈ (⟦subst⟧ σ * id) ⟦↑⟧ A {Δ} ● {n} {a} rewrite ⟦𝓋⟧ A Δ {n} {a} = refl ⟦↑⟧ A {Δ} (σ ▸ T) {n} {a} rewrite ⟦⁺⟧ A σ {n} {a} | ⟦𝓌⟧ A T {n} {a} | ⟦𝓋⟧ A Δ {n} {a} = refl -- Denotation of stabilisation (naturality condition for ⟦_ˢ⟧□) ⟦↓ˢ⟧ : ∀ {Γ Δ} -> (σ : Subst 𝒮 Γ Δ) -> F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) ∘ ⟦ Δ ˢ⟧□ ≈ ⟦ Γ ˢ⟧□ ∘ ⟦subst⟧ σ ⟦↓ˢ⟧ ● = refl ⟦↓ˢ⟧ (_▸_ {A now} σ T) {n} {a} rewrite ⟦↓ˢ⟧ σ {n} {a} = refl ⟦↓ˢ⟧ {Δ = Δ} (_▸_ {A always}{Γ} σ T) {n} {a} = ext lemma where lemma : ∀ l -> (F-□.fmap (⟦subst⟧ ((σ ▸ T) ↓ˢ k)) ∘ ⟦ Δ ˢ⟧□) n a l ≡ (⟦ Γ ,, A always ˢ⟧□ ∘ ⟦subst⟧ (σ ▸ T)) n a l lemma l rewrite □-≡ n l (⟦↓ˢ⟧ σ {n} {a}) l | □-≡ n l (⟦𝒶⟧ T {n} {a}) l = refl -- Simplified denotation of stabilisation ⟦↓ˢ⟧′ : ∀ {Γ Δ} -> (σ : Subst 𝒮 Γ Δ) -> ⟦subst⟧ (σ ↓ˢ k) ∘ ⟦ Δ ˢ⟧ ≈ ⟦ Γ ˢ⟧ ∘ ⟦subst⟧ σ ⟦↓ˢ⟧′ {Γ} {Δ} σ {n} {a} rewrite ⟦ˢ⟧-factor Δ {n} {a} | □-≡ n n (⟦↓ˢ⟧ σ {n} {a}) n | ⟦ˢ⟧-factor Γ {n} {(⟦subst⟧ σ n a)} = refl -- Denotation of stabilisation idempotence ⟦ˢˢ⟧ : ∀ Γ -> F-□.fmap (⟦subst⟧ (Γ ˢˢₛ k)) ∘ ⟦ Γ ˢ ˢ⟧□ ∘ ⟦ Γ ˢ⟧ ≈ ⟦ Γ ˢ⟧□ ⟦ˢˢ⟧ ∙ = refl ⟦ˢˢ⟧ (Γ ,, B now) = ⟦ˢˢ⟧ Γ ⟦ˢˢ⟧ (Γ ,, B always) {n} {⟦Γˢ⟧ , □⟦B⟧} = ext lemma where lemma : ∀ l → (F-□.fmap (⟦subst⟧ ((Γ ,, B always) ˢˢₛ k)) ∘ ⟦ (Γ ,, B always) ˢ ˢ⟧□ ∘ ⟦ Γ ,, B always ˢ⟧) n (⟦Γˢ⟧ , □⟦B⟧) l ≡ (⟦ Γ ˢ⟧□ n ⟦Γˢ⟧ l , □⟦B⟧) lemma l rewrite ⟦𝓋⟧ (B always) (Γ ˢ ˢ) {l} {⟦ Γ ˢ ˢ⟧□ n (⟦ Γ ˢ⟧ n ⟦Γˢ⟧) l , □⟦B⟧} | ⟦⁺⟧ (B always) (Γ ˢˢₛ k) {l} {(⟦ Γ ˢ ˢ⟧□ n (⟦ Γ ˢ⟧ n ⟦Γˢ⟧) l , □⟦B⟧)} | □-≡ n l (⟦ˢˢ⟧ Γ {n} {⟦Γˢ⟧}) l = refl -- Denotation of identity substitution ⟦idₛ⟧ : ∀ {Γ} -> ⟦subst⟧ (idₛ {Γ} k) ≈ id ⟦idₛ⟧ {∙} = refl ⟦idₛ⟧ {Γ ,, A} {n} {⟦Γ⟧ , ⟦A⟧} rewrite ⟦⁺⟧ A {Γ} (idₛ k) {n} {⟦Γ⟧ , ⟦A⟧} | ⟦idₛ⟧ {Γ} {n} {⟦Γ⟧} | ⟦𝓋⟧ A Γ {n} {⟦Γ⟧ , ⟦A⟧} = refl -- | Other lemmas -- Substitution by the Γ ˢ ⊆ Γ subcontext substitution is the same as -- stabilising the context ⟦subst⟧-Γˢ⊆Γ : ∀ Γ -> ⟦subst⟧ (Γˢ⊆Γ Γ ⊆ₛ k) ≈ ⟦ Γ ˢ⟧ ⟦subst⟧-Γˢ⊆Γ ∙ = refl ⟦subst⟧-Γˢ⊆Γ (Γ ,, A now) {n} {⟦Γ⟧ , ⟦A⟧} rewrite ⟦⁺⟧ (A now) (Γˢ⊆Γ Γ ⊆ₛ k) {n} {⟦Γ⟧ , ⟦A⟧} = ⟦subst⟧-Γˢ⊆Γ Γ ⟦subst⟧-Γˢ⊆Γ (Γ ,, A always) {n} {⟦Γ⟧ , ⟦A⟧} rewrite ⟦↑⟧ (A always) (Γˢ⊆Γ Γ ⊆ₛ k) {n} {⟦Γ⟧ , ⟦A⟧} | ⟦subst⟧-Γˢ⊆Γ Γ {n} {⟦Γ⟧} = refl -- Interpretation of substitution and selection can be commuted ⟦subst⟧-handle : ∀{Δ Γ A B C} -> (σ : Subst 𝒮 Γ Δ) -> {⟦C₁⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦ A ⟧ₜ ⊗ ◇ ⟦ B ⟧ₜ ⇴ ◇ ⟦ C ⟧ₜ} -> {⟦C₂⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ◇ ⟦ A ⟧ₜ ⊗ ⟦ B ⟧ₜ ⇴ ◇ ⟦ C ⟧ₜ} -> {⟦C₃⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦ A ⟧ₜ ⊗ ⟦ B ⟧ₜ ⇴ ◇ ⟦ C ⟧ₜ} -> (handle (⟦C₁⟧ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) (⟦C₂⟧ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k))) (⟦C₃⟧ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k)))) ≈ handle ⟦C₁⟧ ⟦C₂⟧ ⟦C₃⟧ ∘ (⟦subst⟧ (σ ↓ˢ k) * id) ⟦subst⟧-handle {A = A} {B} σ {n = n} {⟦Δ⟧ , inj₁ (inj₁ (⟦A⟧ , ⟦◇B⟧))} rewrite ⟦↑⟧ (Event B now) (_↑_ {A now} (σ ↓ˢ k) k) {n} {(⟦Δ⟧ , ⟦A⟧) , ⟦◇B⟧} | ⟦↑⟧ (A now) (σ ↓ˢ k) {n} {⟦Δ⟧ , ⟦A⟧} = refl ⟦subst⟧-handle {A = A} {B} σ {n = n} {⟦Δ⟧ , inj₁ (inj₂ (⟦B⟧ , ⟦◇A⟧))} rewrite ⟦↑⟧ (B now) (_↑_ {Event A now} (σ ↓ˢ k) k) {n} {(⟦Δ⟧ , ⟦B⟧) , ⟦◇A⟧} | ⟦↑⟧ (Event A now) (σ ↓ˢ k) {n} {⟦Δ⟧ , ⟦B⟧} = refl ⟦subst⟧-handle {A = A} {B} σ {n = n} {⟦Δ⟧ , inj₂ (⟦A⟧ , ⟦B⟧)} rewrite ⟦↑⟧ (B now) (_↑_ {A now} (σ ↓ˢ k) k) {n} {(⟦Δ⟧ , ⟦A⟧) , ⟦B⟧} | ⟦↑⟧ (A now) (σ ↓ˢ k) {n} {⟦Δ⟧ , ⟦A⟧} = refl
{ "alphanum_fraction": 0.4286837553, "avg_line_length": 41.2922077922, "ext": "agda", "hexsha": "67eecdc1d67a055edbd9eb2d0504ef74dae4ba4f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Semantics/Substitution/Kits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Semantics/Substitution/Kits.agda", "max_line_length": 93, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Semantics/Substitution/Kits.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 3408, "size": 6359 }
------------------------------------------------------------------------ -- Some alternative definitions of the concept of being an equivalence ------------------------------------------------------------------------ -- Partly based on the blog post "Universal properties without -- function extensionality" by Mike Shulman -- (https://homotopytypetheory.org/2014/11/02/universal-properties-without-function-extensionality/), -- and the corresponding code in the Coq HoTT library -- (https://github.com/HoTT/HoTT). {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Path-split {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq as B using (_↔_) open import Embedding eq using (Embedding) open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_; Is-equivalence) open import Equivalence.Erased.Basics eq using (Is-equivalenceᴱ) open import Function-universe eq as F hiding (id; _∘_) open import H-level eq as H-level open import H-level.Closure eq open import Surjection eq using (Split-surjective; _↠_) private variable a b c d p : Level A B : Type a x y : A f : A → B k : Kind n : ℕ ------------------------------------------------------------------------ -- Path-split -- An alternative definition of "Is-equivalence". Path-split : {A : Type a} {B : Type b} → ℕ → (A → B) → Type (a ⊔ b) Path-split zero f = ↑ _ ⊤ Path-split (suc n) f = Split-surjective f × (∀ x y → Path-split n (cong {x = x} {y = y} f)) private -- A lemma. eq→emb : Is-equivalence f → Is-equivalence (cong {x = x} {y = y} f) eq→emb eq = Embedding.is-embedding (from-isomorphism Eq.⟨ _ , eq ⟩) _ _ -- Equivalences are path-split. Is-equivalence→Path-split : Is-equivalence f → Path-split n f Is-equivalence→Path-split {n = zero} eq = _ Is-equivalence→Path-split {n = suc n} eq = _≃_.split-surjective Eq.⟨ _ , eq ⟩ , λ x y → Is-equivalence→Path-split (eq→emb eq) private -- Path-split n f holds, for n ≥ 2, iff f is an equivalence. Path-split⇔Is-equivalence : Path-split (2 + n) f ⇔ Is-equivalence f Path-split⇔Is-equivalence {f = f} = record { to = λ (s , p) → let inv = proj₁ ∘ s is-inv = proj₂ ∘ s in _≃_.is-equivalence $ Eq.↔⇒≃ (record { surjection = record { right-inverse-of = is-inv } ; left-inverse-of = λ x → $⟨ is-inv (f x) ⟩ f (inv (f x)) ≡ f x ↝⟨ proj₁ ∘ proj₁ (p _ _) ⟩ inv (f x) ≡ x □ }) ; from = Is-equivalence→Path-split } -- If f is an equivalence, then Split-surjective f is contractible -- (assuming extensionality). Split-surjective-contractible-for-equivalences : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} → Extensionality b (a ⊔ b) → Is-equivalence f → Contractible (Split-surjective f) Split-surjective-contractible-for-equivalences {A = A} {B = B} {f = f} ext eq = propositional⇒inhabited⇒contractible (Π-closure ext 1 λ y → let surj : (∃ λ x → x ≡ _≃_.from A≃B y) ↠ (∃ λ x → f x ≡ y) surj = ∃-cong λ x → x ≡ _≃_.from A≃B y ↔⟨ inverse $ Eq.≃-≡ A≃B ⟩ f x ≡ f (_≃_.from A≃B y) ↝⟨ ≡⇒↝ _ $ cong (_ ≡_) $ _≃_.right-inverse-of A≃B _ ⟩□ f x ≡ y □ in H-level.respects-surjection surj 1 $ mono₁ 0 $ singleton-contractible _) (_≃_.split-surjective A≃B) where A≃B : A ≃ B A≃B = Eq.⟨ _ , eq ⟩ -- If f is an equivalence, then Path-split n f is contractible -- (assuming extensionality). Path-split-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-equivalence f → Contractible (Path-split n f) Path-split-contractible-for-equivalences {n = zero} _ _ = ↑-closure 0 $ ⊤-contractible Path-split-contractible-for-equivalences {a = a} {b = b} {n = suc n} {A = A} {B = B} {f = f} ext eq = ×-closure 0 (Split-surjective-contractible-for-equivalences (lower-extensionality a lzero ext) eq) (Π-closure (lower-extensionality b lzero ext) 0 λ _ → Π-closure (lower-extensionality b lzero ext) 0 λ _ → Path-split-contractible-for-equivalences ext (eq→emb eq)) -- Path-split n is pointwise propositional for n ≥ 2 (assuming -- extensionality). Path-split-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Path-split (2 + n) f) Path-split-propositional ext = [inhabited⇒contractible]⇒propositional λ p → Path-split-contractible-for-equivalences ext $ _⇔_.to Path-split⇔Is-equivalence p -- There is a bijection between Path-split n f, for n ≥ 2, and -- Is-equivalence f (assuming extensionality). Path-split↔Is-equivalence : {A : Type a} {B : Type b} {f : A → B} → Path-split (2 + n) f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalence f Path-split↔Is-equivalence = generalise-ext?-prop Path-split⇔Is-equivalence Path-split-propositional (λ ext → Eq.propositional ext _) -- Another alternative definition of "Is-equivalence". Path-split-∞ : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Path-split-∞ f = ∀ n → Path-split n f -- Path-split-∞ is pointwise propositional (assuming extensionality). Path-split-∞-propositional : {A : Type a} {B : Type b} {f : A → B} → Extensionality (a ⊔ b) (a ⊔ b) → Is-proposition (Path-split-∞ f) Path-split-∞-propositional ext = [inhabited⇒contractible]⇒propositional λ p → Π-closure (lower-extensionality _ lzero ext) 0 λ _ → Path-split-contractible-for-equivalences ext $ _⇔_.to Path-split⇔Is-equivalence (p 2) -- There is a bijection between Path-split-∞ f and Is-equivalence f -- (assuming extensionality). Path-split-∞↔Is-equivalence : {A : Type a} {B : Type b} {f : A → B} → Path-split-∞ f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalence f Path-split-∞↔Is-equivalence = generalise-ext?-prop (record { to = λ p → _⇔_.to Path-split⇔Is-equivalence (p 2) ; from = λ eq _ → Is-equivalence→Path-split eq }) Path-split-∞-propositional (λ ext → Eq.propositional ext _) -- A preservation lemma for Path-split. Path-split-cong : {A : Type a} {B : Type b} {C : Type c} {D : Type d} {f : A → B} {g : C → D} → Extensionality? k (a ⊔ b ⊔ c ⊔ d) (a ⊔ b ⊔ c ⊔ d) → (A≃C : A ≃ C) (B≃D : B ≃ D) → (∀ x → g (_≃_.to A≃C x) ≡ _≃_.to B≃D (f x)) → ∀ n → Path-split n f ↝[ k ] Path-split n g Path-split-cong {a = a} {b = b} {c = c} {d = d} {k = k} {f = f} {g = g} ext A≃C B≃D hyp = λ where zero → ↑ _ ⊤ ↔⟨ B.↑↔ ⟩ ⊤ ↔⟨ inverse B.↑↔ ⟩□ ↑ _ ⊤ □ (suc n) → (Split-surjective f ↔⟨⟩ (∀ y → ∃ λ x → f x ≡ y) ↝⟨ (Π-cong (lower-extensionality? k (a ⊔ c) lzero ext) B≃D λ y → Σ-cong A≃C λ x → (f x ≡ y) ↔⟨ inverse $ Eq.≃-≡ B≃D ⟩ (_≃_.to B≃D (f x) ≡ _≃_.to B≃D y) ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $ sym $ hyp x ⟩□ (g (_≃_.to A≃C x) ≡ _≃_.to B≃D y) □) ⟩ (∀ y → ∃ λ x → g x ≡ y) ↔⟨⟩ Split-surjective g □) ×-cong (Π-cong (lower-extensionality? k (b ⊔ d) lzero ext) A≃C λ x → Π-cong (lower-extensionality? k (b ⊔ d) lzero ext) A≃C λ y → Path-split-cong ext (x ≡ y ↝⟨ inverse $ Eq.≃-≡ A≃C ⟩□ _≃_.to A≃C x ≡ _≃_.to A≃C y □) (f x ≡ f y ↝⟨ inverse $ Eq.≃-≡ B≃D ⟩ _≃_.to B≃D (f x) ≡ _≃_.to B≃D (f y) ↝⟨ ≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y) ⟩□ g (_≃_.to A≃C x) ≡ g (_≃_.to A≃C y) □) (λ x≡y → cong g (cong (_≃_.to A≃C) x≡y) ≡⟨ cong-∘ _ _ _ ⟩ cong (g ∘ _≃_.to A≃C) x≡y ≡⟨ elim¹ (λ {y} x≡y → cong (g ∘ _≃_.to A≃C) x≡y ≡ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) (sym $ hyp y)) ( cong (g ∘ _≃_.to A≃C) (refl _) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym $ trans-symʳ _ ⟩ trans (hyp x) (sym $ hyp x) ≡⟨ cong (flip trans _) $ trans (sym $ trans-reflʳ _) $ cong (trans _) $ sym $ cong-refl _ ⟩∎ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) (refl _))) (sym $ hyp x) ∎) _ ⟩ trans (trans (hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) (sym $ hyp y) ≡⟨ trans (cong (flip trans _) $ sym $ subst-trans _) $ trans-subst ⟩ subst (_ ≡_) (sym $ hyp y) (subst (_≡ _) (sym $ hyp x) (cong (_≃_.to B≃D ∘ f) x≡y)) ≡⟨ trans (cong (subst _ _) $ subst-in-terms-of-≡⇒↝ equivalence _ _ _) $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ _≃_.to (≡⇒↝ _ (cong (_ ≡_) (sym $ hyp y))) (_≃_.to (≡⇒↝ _ (cong (_≡ _) (sym $ hyp x))) (cong (_≃_.to B≃D ∘ f) x≡y)) ≡⟨ cong (_$ cong (_≃_.to B≃D ∘ f) x≡y) $ sym $ ≡⇒↝-trans equivalence ⟩ _≃_.to (≡⇒↝ _ $ trans (cong (_≡ _) (sym $ hyp x)) (cong (_ ≡_) (sym $ hyp y))) (cong (_≃_.to B≃D ∘ f) x≡y) ≡⟨⟩ _≃_.to (≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y)) (cong (_≃_.to B≃D ∘ f) x≡y) ≡⟨ cong (_≃_.to (≡⇒↝ _ _)) $ sym $ cong-∘ _ _ _ ⟩∎ _≃_.to (≡⇒↝ _ $ cong₂ _≡_ (sym $ hyp x) (sym $ hyp y)) (cong (_≃_.to B≃D) (cong f x≡y)) ∎) n) ------------------------------------------------------------------------ -- Extendable along -- Is-[ n ]-extendable-along-[ f ] P means that P is n-extendable -- along f. Is-[_]-extendable-along-[_] : {A : Type a} {B : Type b} → ℕ → (A → B) → (B → Type c) → Type (a ⊔ b ⊔ c) Is-[ zero ]-extendable-along-[ f ] P = ↑ _ ⊤ Is-[ suc n ]-extendable-along-[ f ] P = ((g : ∀ x → P (f x)) → ∃ λ (h : ∀ x → P x) → ∀ x → h (f x) ≡ g x) × ((g h : ∀ x → P x) → Is-[ n ]-extendable-along-[ f ] (λ x → g x ≡ h x)) -- Is-∞-extendable-along-[ f ] P means that P is ∞-extendable along f. Is-∞-extendable-along-[_] : {A : Type a} {B : Type b} → (A → B) → (B → Type c) → Type (a ⊔ b ⊔ c) Is-∞-extendable-along-[ f ] P = ∀ n → Is-[ n ]-extendable-along-[ f ] P -- In the presence of extensionality Is-[_]-extendable-along-[_] can -- be expressed using Path-split. Is-extendable-along≃Path-split : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → ∀ n → Is-[ n ]-extendable-along-[ f ] P ≃ Path-split n (λ (g : ∀ x → P x) → g ∘ f) Is-extendable-along≃Path-split {a = a} {b = b} {p = p} {f = f} ext = λ where zero → Eq.id (suc n) → (∀-cong (lower-extensionality b lzero ext) λ g → ∃-cong λ h → (∀ x → h (f x) ≡ g x) ↝⟨ Eq.extensionality-isomorphism (lower-extensionality (b ⊔ p) (a ⊔ b) ext) ⟩□ h ∘ f ≡ g □) ×-cong (∀-cong (lower-extensionality a lzero ext) λ g → ∀-cong (lower-extensionality a lzero ext) λ h → Is-[ n ]-extendable-along-[ f ] (λ x → g x ≡ h x) ↝⟨ Is-extendable-along≃Path-split ext n ⟩ Path-split n (_∘ f) ↝⟨ Path-split-cong ext (Eq.extensionality-isomorphism ext₁) (Eq.extensionality-isomorphism ext₂) (λ eq → cong (_∘ f) (apply-ext (Eq.good-ext ext₁) eq) ≡⟨ Eq.cong-pre-∘-good-ext ext₂ ext₁ _ ⟩∎ apply-ext (Eq.good-ext ext₂) (eq ∘ f) ∎) n ⟩□ Path-split n (cong (_∘ f)) □) where ext₁ = lower-extensionality (a ⊔ p) (a ⊔ b) ext ext₂ = lower-extensionality (b ⊔ p) (a ⊔ b) ext -- In the presence of extensionality Is-∞-extendable-along-[_] can -- be expressed using Path-split-∞. Is-∞-extendable-along≃Path-split-∞ : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-∞-extendable-along-[ f ] P ≃ Path-split-∞ (λ (g : ∀ x → P x) → g ∘ f) Is-∞-extendable-along≃Path-split-∞ ext = ∀-cong (lower-extensionality _ lzero ext) $ Is-extendable-along≃Path-split ext -- Is-[ 2 + n ]-extendable-along-[ f ] P is propositional (assuming -- extensionality). Is-extendable-along-propositional : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-proposition (Is-[ 2 + n ]-extendable-along-[ f ] P) Is-extendable-along-propositional ext = H-level-cong _ 1 (inverse $ Is-extendable-along≃Path-split ext _) $ Path-split-propositional ext -- Is-∞-extendable-along-[ f ] P is propositional (assuming -- extensionality). Is-∞-extendable-along-propositional : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-proposition (Is-∞-extendable-along-[ f ] P) Is-∞-extendable-along-propositional ext = H-level-cong _ 1 (inverse $ Is-∞-extendable-along≃Path-split-∞ ext) $ Path-split-∞-propositional ext -- In the presence of extensionality Is-∞-extendable-along-[_] can be -- expressed using Is-equivalence. Is-∞-extendable-along≃Is-equivalence : {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-∞-extendable-along-[ f ] P ≃ Is-equivalence (λ (g : ∀ x → P x) → g ∘ f) Is-∞-extendable-along≃Is-equivalence {P = P} {f = f} ext = Is-∞-extendable-along-[ f ] P ↝⟨ Is-∞-extendable-along≃Path-split-∞ ext ⟩ Path-split-∞ (_∘ f) ↝⟨ Path-split-∞↔Is-equivalence ext ⟩□ Is-equivalence (_∘ f) □ -- The definitions below are not taken directly from "Universal -- properties without function extensionality". -- A type B is P-null for a predicate P of type A → Type p if the -- function const of type B → P x → B is an equivalence for each x. -- -- This definition is based on one from "Modalities in Homotopy Type -- Theory" by Rijke, Shulman and Spitters. _-Null_ : {A : Type a} → (A → Type p) → Type b → Type (a ⊔ b ⊔ p) P -Null B = ∀ x → Is-equivalence (const ⦂ (B → P x → B)) -- A variant of _-Null_ with erased proofs. _-Nullᴱ_ : {A : Type a} → (A → Type p) → Type b → Type (a ⊔ b ⊔ p) P -Nullᴱ B = ∀ x → Is-equivalenceᴱ (const ⦂ (B → P x → B)) -- Is-∞-extendable-along-[_] can sometimes be replaced by -- Is-equivalence const. Is-∞-extendable-along≃Is-equivalence-const : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → Is-∞-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ≃ Is-equivalence (const ⦂ (B → A → B)) Is-∞-extendable-along≃Is-equivalence-const {a = a} {A = A} {B = B} ext = Is-∞-extendable-along-[ (λ _ → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝⟨ Is-∞-extendable-along≃Is-equivalence ext ⟩ Is-equivalence (_∘ (λ _ → lift tt) ⦂ ((↑ a ⊤ → B) → (A → B))) ↝⟨ inverse $ Is-equivalence≃Is-equivalence-∘ʳ (_≃_.is-equivalence $ Eq.↔→≃ (_$ lift tt) const refl refl) ext ⟩□ Is-equivalence (const ⦂ (B → A → B)) □ -- A corollary of Is-∞-extendable-along≃Is-equivalence-const. Π-Is-∞-extendable-along≃Null : {A : Type a} {P : A → Type p} {B : Type b} → Extensionality (a ⊔ b ⊔ p) (b ⊔ p) → (∀ x → Is-∞-extendable-along-[ (λ (_ : P x) → lift tt) ] (λ (_ : ↑ p ⊤) → B)) ≃ P -Null B Π-Is-∞-extendable-along≃Null {a = a} {p = p} {b = b} ext = ∀-cong (lower-extensionality (b ⊔ p) lzero ext) λ _ → Is-∞-extendable-along≃Is-equivalence-const (lower-extensionality a lzero ext) private -- If const is an equivalence from Bool to B → Bool, then B is not -- not inhabited (assuming extensionality). Is-equivalence-const→¬¬ : {B : Type b} → Extensionality b lzero → Is-equivalence (const ⦂ (Bool → B → Bool)) → ¬ ¬ B Is-equivalence-const→¬¬ {B = B} ext = curry (Is-equivalence (const ⦂ (Bool → B → Bool)) × ¬ B →⟨ Σ-map Eq.⟨ _ ,_⟩ (Eq.↔⇒≃ ∘ inverse ∘ B.⊥↔uninhabited) ⟩ Bool ≃ (B → Bool) × B ≃ ⊥ →⟨ (λ (≃B→ , B≃) → →-cong ext B≃ F.id F.∘ ≃B→) ⟩ Bool ≃ (⊥ → Bool) →⟨ Π⊥↔⊤ ext F.∘_ ⟩ Bool ≃ ⊤ →⟨ (λ eq → _≃_.to (Eq.≃-≡ eq) (refl _)) ⟩ true ≡ false →⟨ Bool.true≢false ⟩□ ⊥ □) -- If const is an equivalence from Bool to B → Bool, and equality is -- decidable for B, then B is a proposition. Is-equivalence-const→Decidable-equality→Is-proposition : Is-equivalence (const ⦂ (Bool → B → Bool)) → Decidable-equality B → Is-proposition B Is-equivalence-const→Decidable-equality→Is-proposition {B = B} eq _≟_ x y = x≡y where lemma : (f g : B → Bool) → f ≢ g → (h : B → Bool) → f ≡ h ⊎ g ≡ h lemma = $⟨ helper ⟩ ((x y : Bool) → x ≢ y → (z : Bool) → x ≡ z ⊎ y ≡ z) →⟨ (Π-cong _ equiv λ x → Π-cong _ equiv λ y → →-cong-→ (→-cong-→ (_≃_.from (Eq.≃-≡ equiv)) id) $ Π-cong _ equiv λ z → _≃_.from (Eq.≃-≡ equiv ⊎-cong Eq.≃-≡ equiv)) ⟩□ ((f g : B → Bool) → f ≢ g → (h : B → Bool) → f ≡ h ⊎ g ≡ h) □ where equiv : Bool ≃ (B → Bool) equiv = Eq.⟨ _ , eq ⟩ true≡⊎false≡ : (b : Bool) → true ≡ b ⊎ false ≡ b true≡⊎false≡ true = inj₁ (refl _) true≡⊎false≡ false = inj₂ (refl _) helper : (x y : Bool) → x ≢ y → (z : Bool) → x ≡ z ⊎ y ≡ z helper true true t≢t = ⊥-elim $ t≢t (refl _) helper true false _ = true≡⊎false≡ helper false true _ = _↔_.to ⊎-comm ∘ true≡⊎false≡ helper false false f≢f = ⊥-elim $ f≢f (refl _) f₁ f₂ f₃ : B → Bool f₁ _ = true f₂ _ = false f₃ z = if x ≟ z then true else false f₁≢f₂ : f₁ ≢ f₂ f₁≢f₂ f₁≡f₂ = Bool.true≢false $ cong (_$ x) f₁≡f₂ f₁≡f₃→x≡y : f₁ ≡ f₃ → x ≡ y f₁≡f₃→x≡y f₁≡f₃ = helper (x ≟ y) (cong (_$ y) f₁≡f₃) where helper : (d : Dec (x ≡ y)) → true ≡ if d then true else false → x ≡ y helper (yes x≡y) _ = x≡y helper (no _) true≡false = ⊥-elim $ Bool.true≢false true≡false f₂≢f₃ : f₂ ≢ f₃ f₂≢f₃ = f₂ ≡ f₃ →⟨ cong (_$ x) ⟩ false ≡ if x ≟ x then true else false →⟨ flip trans (helper (x ≟ x)) ⟩ false ≡ true →⟨ Bool.true≢false ∘ sym ⟩□ ⊥ □ where helper : (d : Dec (x ≡ x)) → if d then true else false ≡ true helper (yes _) = refl _ helper (no x≢x) = ⊥-elim $ x≢x $ refl _ f₁≡⊎f₂≡ : (f : B → Bool) → f₁ ≡ f ⊎ f₂ ≡ f f₁≡⊎f₂≡ = lemma f₁ f₂ f₁≢f₂ x≡y : x ≡ y x≡y with f₁≡⊎f₂≡ f₃ … | inj₁ f₁≡f₃ = f₁≡f₃→x≡y f₁≡f₃ … | inj₂ f₂≡f₃ = ⊥-elim $ f₂≢f₃ f₂≡f₃ -- If f is an equivalence, then n-extendability along f is -- contractible (assuming extensionality). Is-extendable-along-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} {P : B → Type p} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-equivalence f → ∀ n → Contractible (Is-[ n ]-extendable-along-[ f ] P) Is-extendable-along-contractible-for-equivalences _ _ zero = ↑-closure 0 ⊤-contractible Is-extendable-along-contractible-for-equivalences {a = a} {b = b} {p = p} {f = f} {P = P} ext eq (suc n) = ×-closure 0 (Π-closure (lower-extensionality b lzero ext) 0 λ g → $⟨ singleton-contractible _ ⟩ Contractible (∃ λ h → h ≡ subst P (inv _) ∘ g ∘ f⁻¹) ↝⟨ H-level-cong _ 0 (lemma g) ⦂ (_ → _) ⟩□ Contractible (∃ λ h → ∀ x → h (f x) ≡ g x) □) (Π-closure (lower-extensionality a lzero ext) 0 λ _ → Π-closure (lower-extensionality a lzero ext) 0 λ _ → Is-extendable-along-contractible-for-equivalences ext eq n) where f⁻¹ = _≃_.from Eq.⟨ _ , eq ⟩ inv = _≃_.left-inverse-of (inverse Eq.⟨ _ , eq ⟩) lemma : ∀ _ → _ ≃ _ lemma g = (∃ λ h → h ≡ subst P (inv _) ∘ g ∘ f⁻¹) ↔⟨ (∃-cong λ h → inverse $ ∘from≡↔≡∘to′ (lower-extensionality p (a ⊔ b) ext) (inverse Eq.⟨ _ , eq ⟩)) ⟩ (∃ λ h → h ∘ f ≡ g) ↝⟨ (∃-cong λ _ → inverse $ Eq.extensionality-isomorphism (lower-extensionality (b ⊔ p) (a ⊔ b) ext)) ⟩□ (∃ λ h → ∀ x → h (f x) ≡ g x) □ -- If f is an equivalence, then ∞-extendability along f is -- contractible (assuming extensionality). Is-∞-extendable-along-contractible-for-equivalences : {A : Type a} {B : Type b} {f : A → B} {P : B → Type p} → Extensionality (a ⊔ b ⊔ p) (a ⊔ b ⊔ p) → Is-equivalence f → Contractible (Is-∞-extendable-along-[ f ] P) Is-∞-extendable-along-contractible-for-equivalences ext eq = Π-closure (lower-extensionality _ lzero ext) 0 λ n → Is-extendable-along-contractible-for-equivalences ext eq n ------------------------------------------------------------------------ -- Alternatives to Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_] -- A variant of Is-[_]-extendable-along-[_]. Is-[_]-extendable-along-const-tt-[_] : ℕ → Type a → Type b → Type (a ⊔ b) Is-[ zero ]-extendable-along-const-tt-[ A ] B = ↑ _ ⊤ Is-[ suc n ]-extendable-along-const-tt-[ A ] B = ((g : A → B) → ∃ λ (x : B) → ∀ y → x ≡ g y) × ((x y : B) → Is-[ n ]-extendable-along-const-tt-[ A ] (x ≡ y)) -- A variant of Is-∞-extendable-along-[_]. Is-∞-extendable-along-const-tt-[_] : Type a → Type b → Type (a ⊔ b) Is-∞-extendable-along-const-tt-[ A ] B = ∀ n → Is-[ n ]-extendable-along-const-tt-[ A ] B -- In some cases Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_] can be replaced by the variants. ≃Is-extendable-along-const-tt : {A : Type a} {B : Type b} → Extensionality? k (a ⊔ b) (a ⊔ b) → ∀ n → Is-[ n ]-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝[ k ] Is-[ n ]-extendable-along-const-tt-[ A ] B ≃Is-extendable-along-const-tt _ zero = F.id ≃Is-extendable-along-const-tt {a = a} {k = k} ext (suc n) = (∀-cong ext λ _ → Σ-cong (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → F.id) ×-cong Π-cong ext′ (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → Π-cong ext′ (Eq.↔→≃ (_$ lift tt) const refl refl) λ _ → ≃Is-extendable-along-const-tt ext n where ext′ = lower-extensionality? k a lzero ext ≃Is-∞-extendable-along-const-tt : {A : Type a} {B : Type b} → Extensionality? k (a ⊔ b) (a ⊔ b) → Is-∞-extendable-along-[ (λ (_ : A) → lift tt) ] (λ (_ : ↑ a ⊤) → B) ↝[ k ] Is-∞-extendable-along-const-tt-[ A ] B ≃Is-∞-extendable-along-const-tt {k = k} ext = ∀-cong (lower-extensionality? k _ lzero ext) λ n → ≃Is-extendable-along-const-tt ext n -- Preservation lemmas for Is-[_]-extendable-along-[_] and -- Is-∞-extendable-along-[_]. Is-extendable-along-const-tt-cong : {A : Type a} {B : Type b} {C : Type c} → Extensionality? k (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → (A≃B : A ≃ B) (A→≃B→ : {C : Type c} → (A → C) ≃ (B → C)) → ({C : Type c} (f : A → C) (x : A) → _≃_.to A→≃B→ f (_≃_.to A≃B x) ≡ f x) → ∀ n → Is-[ n ]-extendable-along-const-tt-[ A ] C ↝[ k ] Is-[ n ]-extendable-along-const-tt-[ B ] C Is-extendable-along-const-tt-cong _ _ _ _ zero = ↑ _ ⊤ ↔⟨ B.↑↔ ⟩ ⊤ ↔⟨ inverse B.↑↔ ⟩□ ↑ _ ⊤ □ Is-extendable-along-const-tt-cong {a = a} {b = b} {c = c} {k = k} ext A≃B A→≃B→ hyp (suc n) = (Π-cong ext A→≃B→ λ g → ∃-cong λ x → Π-cong (lower-extensionality? k c (a ⊔ b) ext) A≃B λ y → x ≡ g y ↝⟨ ≡⇒↝ _ $ cong (_ ≡_) $ sym $ hyp g y ⟩□ x ≡ _≃_.to A→≃B→ g (_≃_.to A≃B y) □) ×-cong (∀-cong (lower-extensionality? k (a ⊔ b) lzero ext) λ x → ∀-cong (lower-extensionality? k (a ⊔ b) lzero ext) λ y → Is-extendable-along-const-tt-cong ext A≃B A→≃B→ hyp n) Is-∞-extendable-along-const-tt-cong : {A : Type a} {B : Type b} {C : Type c} → Extensionality? k (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → (A≃B : A ≃ B) (A→≃B→ : {C : Type c} → (A → C) ≃ (B → C)) → ({C : Type c} (f : A → C) (x : A) → _≃_.to A→≃B→ f (_≃_.to A≃B x) ≡ f x) → Is-∞-extendable-along-const-tt-[ A ] C ↝[ k ] Is-∞-extendable-along-const-tt-[ B ] C Is-∞-extendable-along-const-tt-cong {k = k} ext A≃B A→≃B→ hyp = ∀-cong (lower-extensionality? k _ lzero ext) λ n → Is-extendable-along-const-tt-cong ext A≃B A→≃B→ hyp n
{ "alphanum_fraction": 0.479449465, "avg_line_length": 39.4143070045, "ext": "agda", "hexsha": "066c62821371906dbe8851610c0af2eddfe23c29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equivalence/Path-split.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equivalence/Path-split.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equivalence/Path-split.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 9846, "size": 26447 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational.Literals where open import Agda.Builtin.FromNat open import Agda.Builtin.FromNeg open import Data.Unit open import Data.Nat open import Data.Nat.Coprimality open import Data.Integer open import Data.Rational hiding (-_) fromℤ : ℤ → ℚ fromℤ z = record { numerator = z ; denominator-1 = zero ; isCoprime = sym (1-coprimeTo ∣ z ∣) } number : Number ℚ number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → fromℤ (+ n) } negative : Negative ℚ negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → fromℤ (- (+ n)) }
{ "alphanum_fraction": 0.5350553506, "avg_line_length": 21.972972973, "ext": "agda", "hexsha": "7b4c73f6c76c104431c22b88e59a22563541ffbc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Literals.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Literals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 216, "size": 813 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Algebra where open import Level hiding (lift) open import Categories.Category open import Categories.Functor record F-Algebra {o ℓ e} {C : Category o ℓ e} (F : Endofunctor C) : Set (o ⊔ ℓ) where constructor _,_ open Category C open Functor F field A : Obj α : F₀ A ⇒ A lift : ∀ {o ℓ e} {C : Category o ℓ e} {F : Endofunctor C} → F-Algebra F → F-Algebra F lift {F = F} (A , α) = record { A = F₀ A; α = F₁ α } where open Functor F
{ "alphanum_fraction": 0.6467181467, "avg_line_length": 25.9, "ext": "agda", "hexsha": "785fea12c09ce85e293c334f6a0bda14de688e70", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Algebra.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Algebra.agda", "max_line_length": 85, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 178, "size": 518 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- Note: this module is for cohomology theories, so the commuting squares below do not care about the proof of pointedness, because any cohomology theory is independent of the possibly different proofs of pointedness. -} module homotopy.PtdMapSequence where infix 15 _⊙⊣| infixr 10 _⊙→⟨_⟩_ data PtdMapSequence {i} : (X : Ptd i) (Y : Ptd i) → Type (lsucc i) where _⊙⊣| : (X : Ptd i) → PtdMapSequence X X _⊙→⟨_⟩_ : (X : Ptd i) {Y Z : Ptd i} → (X ⊙→ Y) → PtdMapSequence Y Z → PtdMapSequence X Z {- maps between two pointed map sequences -} infix 15 _⊙↓| infixr 10 _⊙↓⟨_⟩_ data PtdMapSeqMap {i₀ i₁} : {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} (⊙seq₀ : PtdMapSequence X₀ Y₀) (⊙seq₁ : PtdMapSequence X₁ Y₁) (⊙hX : X₀ ⊙→ X₁) (⊙fY : Y₀ ⊙→ Y₁) → Type (lsucc (lmax i₀ i₁)) where _⊙↓| : {X₀ : Ptd i₀} {X₁ : Ptd i₁} (f : X₀ ⊙→ X₁) → PtdMapSeqMap (X₀ ⊙⊣|) (X₁ ⊙⊣|) f f _⊙↓⟨_⟩_ : ∀ {X₀ Y₀ Z₀ : Ptd i₀} {X₁ Y₁ Z₁ : Ptd i₁} → {⊙f₀ : X₀ ⊙→ Y₀} {⊙seq₀ : PtdMapSequence Y₀ Z₀} → {⊙f₁ : X₁ ⊙→ Y₁} {⊙seq₁ : PtdMapSequence Y₁ Z₁} → (⊙hX : X₀ ⊙→ X₁) {⊙hY : Y₀ ⊙→ Y₁} {⊙hZ : Z₀ ⊙→ Z₁} → CommSquare (fst ⊙f₀) (fst ⊙f₁) (fst ⊙hX) (fst ⊙hY) → PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hY ⊙hZ → PtdMapSeqMap (X₀ ⊙→⟨ ⊙f₀ ⟩ ⊙seq₀) (X₁ ⊙→⟨ ⊙f₁ ⟩ ⊙seq₁) ⊙hX ⊙hZ {- equivalences between two pointed map sequences -} is-⊙seq-equiv : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} → PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY → Type (lmax i₀ i₁) is-⊙seq-equiv (⊙h ⊙↓|) = is-equiv (fst ⊙h) is-⊙seq-equiv (⊙h ⊙↓⟨ _ ⟩ ⊙seq) = is-equiv (fst ⊙h) × is-⊙seq-equiv ⊙seq PtdMapSeqEquiv : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} (⊙seq₀ : PtdMapSequence X₀ Y₀) (⊙seq₁ : PtdMapSequence X₁ Y₁) (⊙hX : X₀ ⊙→ X₁) (⊙hY : Y₀ ⊙→ Y₁) → Type (lsucc (lmax i₀ i₁)) PtdMapSeqEquiv ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY = Σ (PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY) is-⊙seq-equiv {- Doesn't seem useful. infix 15 _⊙↕⊣| infixr 10 _⊙↕⟨_⟩↕_ _⊙↕⊣| : ∀ {i} {X₀ X₁ : Ptd i} (⊙eq : X₀ ⊙≃ X₁) → PtdMapSequenceEquiv (X₀ ⊙⊣|) (X₁ ⊙⊣|) (⊙–> ⊙eq) (⊙–> ⊙eq) ⊙eq ⊙↕⊣| = (⊙–> ⊙eq ⊙↓⊣|) , snd ⊙eq _⊙↕⟨_⟩↕_ : ∀ {i} {X₀ X₁ : Ptd i} → (⊙eqX : X₀ ⊙≃ X₁) → ∀ {Y₀ Y₁ : Ptd i} {⊙f : X₀ ⊙→ Y₀} {⊙g : X₁ ⊙→ Y₁} {⊙eqY : Y₀ ⊙≃ Y₁} → ⊙CommutingSquare ⊙f ⊙g (⊙–> ⊙eqX) (⊙–> ⊙eqY) → ∀ {Z₀ Z₁ : Ptd i} {⊙eqZ : Z₀ ⊙≃ Z₁} {⊙seq₀ : PtdMapSequence Y₀ Z₀} {⊙seq₁ : PtdMapSequence Y₁ Z₁} → PtdMapSequenceEquiv ⊙seq₀ ⊙seq₁ (⊙–> ⊙eqY) (⊙–> ⊙eqZ) → PtdMapSequenceEquiv (X₀ ⊙⟨ ⊙f ⟩→ ⊙seq₀) (X₁ ⊙⟨ ⊙g ⟩→ ⊙seq₁) (⊙–> ⊙eqX) (⊙–> ⊙eqZ) (⊙hX , hX-is-equiv) ⊙↕⟨ sqr ⟩↕ (⊙seq-map , ⊙seq-map-is-equiv) = (⊙hX ⊙↓⟨ sqr ⟩↓ ⊙seq-map) , hX-is-equiv , ⊙seq-map-is-equiv -} private is-⊙seq-equiv-head : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} {seq-map : PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY} → is-⊙seq-equiv seq-map → is-equiv (fst ⊙hX) is-⊙seq-equiv-head {seq-map = ξ ⊙↓|} ise = ise is-⊙seq-equiv-head {seq-map = ξ ⊙↓⟨ _ ⟩ _} ise = fst ise private ptd-map-seq-map-index-type : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} → ℕ → PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY → Type (lmax i₀ i₁) ptd-map-seq-map-index-type _ (_ ⊙↓|) = Lift ⊤ ptd-map-seq-map-index-type O (_⊙↓⟨_⟩_ {⊙f₀ = ⊙f₀} {⊙f₁ = ⊙f₁} ⊙hX {⊙hY} _ _) = CommSquare (fst ⊙f₀) (fst ⊙f₁) (fst ⊙hX) (fst ⊙hY) ptd-map-seq-map-index-type (S n) (_ ⊙↓⟨ _ ⟩ seq-map) = ptd-map-seq-map-index-type n seq-map abstract ptd-map-seq-map-index : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} (n : ℕ) (seq-map : PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY) → ptd-map-seq-map-index-type n seq-map ptd-map-seq-map-index _ (_ ⊙↓|) = lift tt ptd-map-seq-map-index O (_ ⊙↓⟨ □ ⟩ _) = □ ptd-map-seq-map-index (S n) (_ ⊙↓⟨ _ ⟩ seq-map) = ptd-map-seq-map-index n seq-map private ptd-map-seq-equiv-index-type : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} → ℕ → PtdMapSeqMap ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY → Type (lmax i₀ i₁) ptd-map-seq-equiv-index-type {⊙hX = ⊙hX} O _ = is-equiv (fst ⊙hX) ptd-map-seq-equiv-index-type (S _) (_ ⊙↓|) = Lift ⊤ ptd-map-seq-equiv-index-type (S n) (_ ⊙↓⟨ _ ⟩ seq-map) = ptd-map-seq-equiv-index-type n seq-map abstract ptd-map-seq-equiv-index : ∀ {i₀ i₁} {X₀ Y₀ : Ptd i₀} {X₁ Y₁ : Ptd i₁} {⊙seq₀ : PtdMapSequence X₀ Y₀} {⊙seq₁ : PtdMapSequence X₁ Y₁} {⊙hX : X₀ ⊙→ X₁} {⊙hY : Y₀ ⊙→ Y₁} (n : ℕ) (seq-equiv : PtdMapSeqEquiv ⊙seq₀ ⊙seq₁ ⊙hX ⊙hY) → ptd-map-seq-equiv-index-type n (fst seq-equiv) ptd-map-seq-equiv-index O (seq-map , ise) = is-⊙seq-equiv-head ise ptd-map-seq-equiv-index (S _) ((_ ⊙↓|) , _) = lift tt ptd-map-seq-equiv-index (S n) ((_ ⊙↓⟨ _ ⟩ seq-map) , ise) = ptd-map-seq-equiv-index n (seq-map , snd ise)
{ "alphanum_fraction": 0.5516911905, "avg_line_length": 41.2047244094, "ext": "agda", "hexsha": "898b7e6b22d2e320fa69bb50b42309b1a10d2620", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PtdMapSequence.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PtdMapSequence.agda", "max_line_length": 110, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PtdMapSequence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2831, "size": 5233 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using () renaming (Category to Setoid-Category) open import Categories.Category.Monoidal module Categories.Enriched.NaturalTransformation.NaturalIsomorphism {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where open import Level open import Categories.Category.Construction.EnrichedFunctors M open import Categories.Enriched.Category M open import Categories.Enriched.Functor M renaming (id to idF) open import Categories.Enriched.NaturalTransformation M renaming (id to idNT) open import Categories.Functor.Properties using ([_]-resp-Iso) open import Categories.Morphism as Morphism using (Iso) open import Categories.Category.Monoidal.Reasoning M open import Relation.Binary using (IsEquivalence) open Setoid-Category V renaming (Obj to ObjV; id to idV) module M = Monoidal M open M hiding (unitorˡ; unitorʳ; associator) open NaturalTransformation module NaturalIsomorphism = Morphism._≅_ open NaturalIsomorphism -- A natural isomorphism |α : F ≅ G : C → D| is an isomorphism of F -- and G in the functor category [C , D] between C and D. module _ {c d} {C : Category c} {D : Category d} where NaturalIsomorphism : (F G : Functor C D) → Set (ℓ ⊔ e ⊔ c) NaturalIsomorphism F G = F ≅ G where open Morphism (EnrichedFunctors C D) using (_≅_) -- A commonly used shorthand for NaturalIsomorphism infix 4 _≃_ _≃_ = NaturalIsomorphism module _ {F G : Functor C D} where private module F = Functor F module G = Functor G open Morphism (Underlying D) using (_≅_) -- Natural isomorphisms are pointwise isomorphisms: each component -- |α [ X ]| is an isomorphism |F X ≅ G X|. infixl 16 _ᵢ[_] _ᵢ[_] : NaturalIsomorphism F G → ∀ X → F.₀ X ≅ G.₀ X α ᵢ[ X ] = record { from = from α [ X ] ; to = to α [ X ] ; iso = record { isoˡ = isoˡ α ; isoʳ = isoʳ α } } ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = Morphism.≅-isEquivalence (EnrichedFunctors C D) module ≃ = IsEquivalence ≃-isEquivalence id : {F : Functor C D} → F ≃ F id = ≃.refl _⁻¹ : {F G : Functor C D} → F ≃ G → G ≃ F α ⁻¹ = ≃.sym α infixr 9 _ⓘᵥ_ _ⓘᵥ_ : {F G H : Functor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ≃.trans β α private module D = Underlying D -- Left and right unitors unitorˡ : {F : Functor C D} → idF ∘F F ≃ F unitorˡ {F} = record { from = record { comp = λ _ → D.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ identityˡ ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → D.id ; commute = comm ○ (refl⟩∘⟨ ⟺ identityˡ ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = D.identity² ; isoʳ = D.identity² } } where comm = commute (idNT {F = F}) unitorʳ : {F : Functor C D} → F ∘F idF ≃ F unitorʳ {F} = record { from = record { comp = λ _ → D.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ identityʳ ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → D.id ; commute = comm ○ (refl⟩∘⟨ ⟺ identityʳ ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = D.identity² ; isoʳ = D.identity² } } where comm = commute (idNT {F = F}) module _ {c d e} {C : Category c} {D : Category d} {E : Category e} where open NaturalIsomorphism -- Left- and right-hand composition with a functor infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘˡ_ : {F G : Functor C D} (H : Functor D E) → F ≃ G → H ∘F F ≃ H ∘F G H ⓘˡ α = record { from = H ∘ˡ from α ; to = H ∘ˡ to α ; iso = record { isoˡ = iso.isoˡ ; isoʳ = iso.isoʳ } } where module iso {X} = Iso ([ UnderlyingFunctor H ]-resp-Iso (iso (α ᵢ[ X ]))) _ⓘʳ_ : {G H : Functor D E} → G ≃ H → (F : Functor C D) → G ∘F F ≃ H ∘F F α ⓘʳ F = record { from = from α ∘ʳ F ; to = to α ∘ʳ F ; iso = record { isoˡ = isoˡ (α ᵢ[ F.₀ _ ]) ; isoʳ = isoʳ (α ᵢ[ F.₀ _ ]) } } where module F = Functor F -- Horizontal composition _ⓘₕ_ : {H I : Functor D E} {F G : Functor C D} → H ≃ I → F ≃ G → (H ∘F F) ≃ (I ∘F G) _ⓘₕ_ {_} {I} {F} {_} α β = (I ⓘˡ β) ⓘᵥ (α ⓘʳ F) module _ {b c d e} {B : Category b} {C : Category c} {D : Category d} {E : Category e} where open NaturalIsomorphism private module E = Category E module UE = Underlying E -- Associator associator : {F : Functor D E} {G : Functor C D} {H : Functor B C} → (F ∘F G) ∘F H ≃ F ∘F (G ∘F H) associator {F} {G} {H} = record { from = record { comp = λ _ → E.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → E.id ; commute = comm ○ (refl⟩∘⟨ ⟺ assoc ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = UE.identity² ; isoʳ = UE.identity² } } where comm = commute (idNT {F = F ∘F (G ∘F H)})
{ "alphanum_fraction": 0.5784660154, "avg_line_length": 29.5153374233, "ext": "agda", "hexsha": "5e9425f867b22f8a412d81ab88fb8bde7a3906af", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1864, "size": 4811 }
open import Agda.Builtin.Equality postulate A : Set a : A b : A mutual Meta : A → A → A → A Meta = ? _ : Meta a ≡ Meta b _ = refl
{ "alphanum_fraction": 0.5442176871, "avg_line_length": 10.5, "ext": "agda", "hexsha": "a90fa9fe8bab9823d95956594838142b053ed9d5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3114.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3114.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3114.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 147 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.LeftAction where open import Cubical.Foundations.Prelude open import Cubical.Foundations.SIP open import Cubical.Structures.Auto module _ {ℓ ℓ' : Level} (A : Type ℓ') where LeftActionStructure : Type ℓ → Type (ℓ-max ℓ ℓ') LeftActionStructure X = A → X → X LeftActionEquivStr = AutoEquivStr LeftActionStructure leftActionUnivalentStr : UnivalentStr _ LeftActionEquivStr leftActionUnivalentStr = autoUnivalentStr LeftActionStructure
{ "alphanum_fraction": 0.7744916821, "avg_line_length": 30.0555555556, "ext": "agda", "hexsha": "fadf1189e8f29819de781b8e26842cd3adc276de", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/LeftAction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/LeftAction.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/LeftAction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 154, "size": 541 }
{-# OPTIONS --cubical #-} module Cubical.Categories.Functor where open import Cubical.Foundations.Prelude open import Cubical.HITs.PropositionalTruncation open import Cubical.Categories.Category private variable ℓ𝒞 ℓ𝒞' ℓ𝒟 ℓ𝒟' : Level record Functor (𝒞 : Precategory ℓ𝒞 ℓ𝒞') (𝒟 : Precategory ℓ𝒟 ℓ𝒟') : Type (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟')) where no-eta-equality open Precategory field F-ob : 𝒞 .ob → 𝒟 .ob F-hom : {x y : 𝒞 .ob} → 𝒞 .hom x y → 𝒟 .hom (F-ob x) (F-ob y) F-idn : {x : 𝒞 .ob} → F-hom (𝒞 .idn x) ≡ 𝒟 .idn (F-ob x) F-seq : {x y z : 𝒞 .ob} (f : 𝒞 .hom x y) (g : 𝒞 .hom y z) → F-hom (𝒞 .seq f g) ≡ 𝒟 .seq (F-hom f) (F-hom g) is-full = (x y : _) (F[f] : 𝒟 .hom (F-ob x) (F-ob y)) → ∥ Σ (𝒞 .hom x y) (λ f → F-hom f ≡ F[f]) ∥ is-faithful = (x y : _) (f g : 𝒞 .hom x y) → F-hom f ≡ F-hom g → f ≡ g
{ "alphanum_fraction": 0.567535545, "avg_line_length": 33.76, "ext": "agda", "hexsha": "c05b44d115f67cd689a5799aa38ab0f19535b8d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Categories/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Categories/Functor.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Categories/Functor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 434, "size": 844 }
------------------------------------------------------------------------ -- A relational semantics which uses closures and environments ------------------------------------------------------------------------ module Lambda.Closure.Relational where open import Codata.Musical.Notation open import Data.Empty open import Data.List hiding (lookup) open import Data.Product open import Data.Vec using (Vec; _∷_; []; lookup) open import Function.Base open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Lambda.Syntax using (Tm; con; var; ƛ; _·_) open Lambda.Syntax.Closure Tm open import Lambda.VirtualMachine as VM open VM.Relational open StarReasoning _⟶_ open InfiniteSequence ------------------------------------------------------------------------ -- Big-step semantics -- For terminating computations. infix 4 _⊢_⇓_ data _⊢_⇓_ {n} (ρ : Env n) : Tm n → Value → Set where var : ∀ {x} → ρ ⊢ var x ⇓ lookup ρ x con : ∀ {i} → ρ ⊢ con i ⇓ con i ƛ : ∀ {t} → ρ ⊢ ƛ t ⇓ ƛ t ρ app : ∀ {t₁ t₂ n t} {ρ′ : Env n} {v v′} (t₁⇓ : ρ ⊢ t₁ ⇓ ƛ t ρ′) (t₂⇓ : ρ ⊢ t₂ ⇓ v′) (t₁t₂⇓ : v′ ∷ ρ′ ⊢ t ⇓ v) → ρ ⊢ t₁ · t₂ ⇓ v -- For non-terminating computations. infix 4 _⊢_⇑ data _⊢_⇑ {n} (ρ : Env n) : Tm n → Set where app : ∀ {t₁ t₂ n t} {ρ′ : Env n} {v′} (t₁⇓ : ρ ⊢ t₁ ⇓ ƛ t ρ′) (t₂⇓ : ρ ⊢ t₂ ⇓ v′) (t₁t₂⇑ : ∞ (v′ ∷ ρ′ ⊢ t ⇑)) → ρ ⊢ t₁ · t₂ ⇑ ·ˡ : ∀ {t₁ t₂} (t₁⇑ : ∞ (ρ ⊢ t₁ ⇑)) → ρ ⊢ t₁ · t₂ ⇑ ·ʳ : ∀ {t₁ t₂ v} (t₁⇓ : ρ ⊢ t₁ ⇓ v) (t₂⇑ : ∞ (ρ ⊢ t₂ ⇑)) → ρ ⊢ t₁ · t₂ ⇑ -- For crashing computations. infix 4 _⊢_↯ _⊢_↯ : ∀ {n} → Env n → Tm n → Set ρ ⊢ t ↯ = ¬ (∃ λ v → ρ ⊢ t ⇓ v) × ¬ (ρ ⊢ t ⇑) ------------------------------------------------------------------------ -- The semantics is deterministic deterministic⇓ : ∀ {n} {ρ : Env n} {t v₁ v₂} → ρ ⊢ t ⇓ v₁ → ρ ⊢ t ⇓ v₂ → v₁ ≡ v₂ deterministic⇓ var var = P.refl deterministic⇓ con con = P.refl deterministic⇓ ƛ ƛ = P.refl deterministic⇓ (app t₁⇓ t₂⇓ t₁t₂⇓) (app t₁⇓′ t₂⇓′ t₁t₂⇓′) with deterministic⇓ t₁⇓ t₁⇓′ | deterministic⇓ t₂⇓ t₂⇓′ ... | P.refl | P.refl = deterministic⇓ t₁t₂⇓ t₁t₂⇓′ deterministic⇓⇑ : ∀ {n} {ρ : Env n} {t v} → ρ ⊢ t ⇓ v → ρ ⊢ t ⇑ → ⊥ deterministic⇓⇑ var () deterministic⇓⇑ con () deterministic⇓⇑ ƛ () deterministic⇓⇑ (app t₁⇓ t₂⇓ t₁t₂⇓) (app t₁⇓′ t₂⇓′ t₁t₂⇑) with deterministic⇓ t₁⇓ t₁⇓′ | deterministic⇓ t₂⇓ t₂⇓′ ... | P.refl | P.refl = deterministic⇓⇑ t₁t₂⇓ (♭ t₁t₂⇑) deterministic⇓⇑ (app t₁⇓ t₂⇓ t₁t₂⇓) (·ˡ t₁⇑) = deterministic⇓⇑ t₁⇓ (♭ t₁⇑) deterministic⇓⇑ (app t₁⇓ t₂⇓ t₁t₂⇓) (·ʳ t₁⇓′ t₂⇑) = deterministic⇓⇑ t₂⇓ (♭ t₂⇑) ------------------------------------------------------------------------ -- Compiler "correctness" -- The proofs below establish that the compiler in -- Lambda.VirtualMachine preserves the semantics above (_⊢_⇓_ and -- _⊢_⇑, not necessarily _⊢_↯), given that the virtual machine is -- deterministic. correct⇓′ : ∀ {n ρ c s v} {t : Tm n} → ρ ⊢ t ⇓ v → ⟨ comp t c , s , comp-env ρ ⟩ ⟶⋆ ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ correct⇓′ {ρ = ρ} {c} {s} (var {x}) = begin ⟨ var x ∷ c , s , comp-env ρ ⟩ ⟶⟨ var ⟩ ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → ⟨ c , val v ∷ s , comp-env ρ ⟩) (lookup-hom x ρ) ⟩ ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ∎ correct⇓′ {ρ = ρ} {c} {s} (con {i}) = begin ⟨ con i ∷ c , s , comp-env ρ ⟩ ⟶⟨ con ⟩ ⟨ c , val (Lambda.Syntax.Closure.con i) ∷ s , comp-env ρ ⟩ ∎ correct⇓′ {ρ = ρ} {c} {s} (ƛ {t}) = begin ⟨ clo (comp t [ ret ]) ∷ c , s , comp-env ρ ⟩ ⟶⟨ clo ⟩ ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ∎ correct⇓′ {ρ = ρ} {c} {s} {v} (app {t₁} {t₂} {t = t} {ρ′} {v′ = v′} t₁⇓ t₂⇓ t₁t₂⇓) = begin ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ⟶⋆⟨ correct⇓′ t₁⇓ ⟩ ⟨ comp t₂ (app ∷ c) , val (comp-val (ƛ t ρ′)) ∷ s , comp-env ρ ⟩ ⟶⋆⟨ correct⇓′ t₂⇓ ⟩ ⟨ app ∷ c , val (comp-val v′) ∷ val (comp-val (ƛ t ρ′)) ∷ s , comp-env ρ ⟩ ⟶⟨ app ⟩ ⟨ comp t [ ret ] , ret c (comp-env ρ) ∷ s , comp-val v′ ∷ comp-env ρ′ ⟩ ⟶⋆⟨ correct⇓′ t₁t₂⇓ ⟩ ⟨ [ ret ] , val (comp-val v) ∷ ret c (comp-env ρ) ∷ s , comp-val v′ ∷ comp-env ρ′ ⟩ ⟶⟨ ret ⟩ ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ∎ correct⇑′ : ∀ {n ρ c s} {t : Tm n} → ρ ⊢ t ⇑ → ⟨ comp t c , s , comp-env ρ ⟩ ⟶∞′ correct⇑′ {ρ = ρ} {c} {s} (app {t₁} {t₂} {t = t} {ρ′} {v′} t₁⇓ t₂⇓ t₁t₂⇑) = ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ⟶⋆⟨ correct⇓′ t₁⇓ ⟩′ ⟨ comp t₂ (app ∷ c) , val (comp-val (ƛ t ρ′)) ∷ s , comp-env ρ ⟩ ⟶⋆⟨ correct⇓′ t₂⇓ ⟩′ ⟨ app ∷ c , val (comp-val v′) ∷ val (comp-val (ƛ t ρ′)) ∷ s , comp-env ρ ⟩ ⟶⟨ app ⟩′ ♯ (⟨ comp t [ ret ] , ret c (comp-env ρ) ∷ s , comp-val v′ ∷ comp-env ρ′ ⟩ ⟶∞⟨ correct⇑′ (♭ t₁t₂⇑) ⟩) correct⇑′ {ρ = ρ} {c} {s} (·ˡ {t₁} {t₂} t₁⇑) = ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ⟶∞⟨ correct⇑′ (♭ t₁⇑) ⟩ correct⇑′ {ρ = ρ} {c} {s} (·ʳ {t₁} {t₂} {v} t₁⇓ t₂⇑) = ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ⟶⋆⟨ correct⇓′ t₁⇓ ⟩′ ⟨ comp t₂ (app ∷ c) , val (comp-val v) ∷ s , comp-env ρ ⟩ ⟶∞⟨ correct⇑′ (♭ t₂⇑) ⟩ correct⇓ : ∀ {t v} → [] ⊢ t ⇓ v → ∃ λ s → ⟨ comp t [] , [] , [] ⟩ ⟶⋆ s × s ⇓ comp-val v correct⇓ t⇓ = (_ , correct⇓′ t⇓ , final) correct⇑ : ∀ {t} → [] ⊢ t ⇑ → ⟨ comp t [] , [] , [] ⟩ ⟶∞ correct⇑ = InfiniteSequence.sound ∘ correct⇑′
{ "alphanum_fraction": 0.4153334389, "avg_line_length": 44.1468531469, "ext": "agda", "hexsha": "4563dc1c5145e7851a354ec1706b7dbe3a9d0271", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Relational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Relational.agda", "max_line_length": 138, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Relational.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2779, "size": 6313 }
module Prelude where data _==_ {A : Set}(x : A) : A → Set where refl : x == x J : {A : Set} {x y : A} (P : (x y : A) → x == y -> Set) → (∀ z → P z z refl) → (p : x == y) → P x y p J P h refl = h _
{ "alphanum_fraction": 0.4174757282, "avg_line_length": 20.6, "ext": "agda", "hexsha": "ad29bea2628f2f232232bf5421ae0017bbb352e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Prelude.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 93, "size": 206 }
{-# OPTIONS --universe-polymorphism #-} module CompareLevel where open import Common.Level postulate X : Set Foo : (a b : Level) → Set (a ⊔ b) → Set Bar : Foo _ _ X -- solve _1 ⊔ _2 = 0 postulate id : ∀ {a}{A : Set a} → A → A apply : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → A → B a b : Level Any : (ℓ : Level) → Set ℓ any : ∀ {ℓ} → Any ℓ -- Too aggressive level solving can cause a problem here. foo : Any (a ⊔ b) foo = apply {_}{_} id any
{ "alphanum_fraction": 0.539748954, "avg_line_length": 21.7272727273, "ext": "agda", "hexsha": "aa77baee833461dff5df6101ed9db26271ad3972", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CompareLevel.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CompareLevel.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CompareLevel.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 187, "size": 478 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Properties.Functors where open import Categories.Category.Complete.Properties using ( Functors-Complete ; evalF-Continuous) public open import Categories.Category.Cocomplete.Properties using (Functors-Cocomplete) public
{ "alphanum_fraction": 0.7763578275, "avg_line_length": 26.0833333333, "ext": "agda", "hexsha": "a81ad19bc64a9db13bd4207898475e5a61c5382a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/Functors.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/Functors.agda", "max_line_length": 65, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/Functors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 63, "size": 313 }
-- Andreas, 2012-01-10 -- {-# OPTIONS -v tc.constr.findInScope:50 #-} module InstanceGuessesMeta2 where open import Common.Level data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ record takeClass {a} (F : Set a → Set a) (G : Set a → ℕ → Set a) : Set (lsuc a) where field take : {A : Set a} → (n : ℕ) → F A → G A n take : ∀ {a} {A : Set a} {F : Set a → Set a} {G : Set a → ℕ → Set a} {{takeA : takeClass F G}} → (n : ℕ) → F A → G A n take {{takeA}} = takeClass.take takeA postulate List : ∀ {a} → Set a → Set a BVec : ∀ {a} → Set a → ℕ → Set a toList : ∀ {a}{A : Set a}{n : ℕ} → BVec A n → List A -- universe polymorphic instance takeInstanceList : {a : Level} → takeClass (List {a = a}) BVec take0 : {A : Set} → List A → BVec A zero take0 l = take zero l take1 : {A : Set} → List A → List A take1 l = toList (take (suc zero) l)
{ "alphanum_fraction": 0.5545243619, "avg_line_length": 25.3529411765, "ext": "agda", "hexsha": "0846feb16c7554f4fa650e8eca19a8aaf3777c3a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/InstanceGuessesMeta2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/InstanceGuessesMeta2.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/InstanceGuessesMeta2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 340, "size": 862 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.Agsy.AddTotality where open import Relation.Binary.PropositionalEquality infixl 9 _+_ ------------------------------------------------------------------------------ postulate D : Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) postulate _+_ : D → D → D +-0x : ∀ d → zero + d ≡ d +-Sx : ∀ d e → succ d + e ≡ succ (d + e) +-N : ∀ {m n} → N m → N n → N (m + n) +-N {m} {n} Nm Nn = {!-c -m -t 20!} -- No solution found at time out (20s). +-N₁ : ∀ {m n} → N m → N n → N (m + n) +-N₁ zN Nn = {!-m!} -- No solution found +-N₁ (sN Nm) Nn = {!-m!} -- No solution found.
{ "alphanum_fraction": 0.4415437003, "avg_line_length": 24.4722222222, "ext": "agda", "hexsha": "57df3545a769712919a7d92f9ea0a28a84cef572", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Agsy/AddTotality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Agsy/AddTotality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Agsy/AddTotality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 299, "size": 881 }
module Relation.Unary.Monotone.Prefix {ℓ}{T : Set ℓ} where open import Data.List.Prefix open import Data.List as List open import Data.List.Membership.Propositional open import Data.List.All as All open import Relation.Unary.Monotone (⊑-preorder {A = T}) instance open Monotone any-monotone : ∀ {x : T} → Monotone (λ xs → x ∈ xs) wk any-monotone ext l = ∈-⊒ l ext
{ "alphanum_fraction": 0.7165775401, "avg_line_length": 24.9333333333, "ext": "agda", "hexsha": "c4b828de8d36fdb1644fc618b9cbc6a622c9a808", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Relation/Unary/Monotone/Prefix.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Relation/Unary/Monotone/Prefix.agda", "max_line_length": 58, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Relation/Unary/Monotone/Prefix.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 122, "size": 374 }
module Terms where import Level open import Data.Unit as Unit open import Data.List as List open import Data.Product as Product open import Categories.Category using (Category) open import Types open import Common.Context GType using (Ctx; Var; zero; ctx-cat; ctx-bin-coproducts) renaming (succ to succ′) open Categories.Category.Category ctx-cat renaming ( _⇒_ to _▹_ ; _≡_ to _≈_ ; _∘_ to _●_ ; id to ctx-id ) open import Categories.Object.BinaryCoproducts ctx-cat open BinaryCoproducts ctx-bin-coproducts -- | Signatures over which we can define terms Sig = Ctx -- | Typed patterns data Pat : (a : GType) → Set where var′ : ∀{a : GType} (x : Var [ a ] a) → Pat a κ₁′ : ∀{a₁ a₂ : GType} (p : Pat a₁) → Pat (a₁ ⊕ a₂) κ₂′ : ∀{a₁ a₂ : GType} (p : Pat a₂) → Pat (a₁ ⊕ a₂) α′ : ∀{a : Type [ tt ]} (p : Pat (unfold-μ a)) → Pat (μ a) -- | Context defined by a pattern (this is either empty or contains a single -- variable). pat-ctx : ∀ {a} → Pat a → Ctx pat-ctx {a} (var′ x) = [ a ] pat-ctx (κ₁′ x) = pat-ctx x pat-ctx (κ₂′ x) = pat-ctx x pat-ctx (α′ x) = pat-ctx x -- | Typed copatterns data Copat : (a b : GType) → Set where · : ∀{a} → Copat a a app′ : ∀{a b c : GType} (q : Copat (b ⇒ c) a) (p : Pat c) → Copat c a π₁′ : ∀{a₁ a₂ a : GType} (q : Copat (a₁ ⊗ a₂) a) → Copat a₁ a π₂′ : ∀{a₁ a₂ a : GType} (q : Copat (a₁ ⊗ a₂) a) → Copat a₂ a ξ′ : ∀{b : Type [ tt ]} {a : GType} (q : Copat (ν b) a) → Copat (unfold-ν b) a -- | Context defined by a copattern copat-ctx : ∀ { a b} → Copat a b → Ctx copat-ctx · = [] copat-ctx (app′ q p) = (copat-ctx q) ∐ (pat-ctx p) copat-ctx (π₁′ q) = copat-ctx q copat-ctx (π₂′ q) = copat-ctx q copat-ctx (ξ′ q) = copat-ctx q mutual -- | A clause { q₁ ↦ t₁ ; ... ; qₙ ↦ tₙ } defines the body of a λ-abstraction -- of the definition of a symbol in a signature. record Clause {Δ : Sig} {Γ : Ctx} {a : GType} : Set where inductive field body : List ( Σ GType (λ b → Σ (Copat a b) (λ q → (Term {Δ} ((copat-ctx q) ∐ Γ) b))) ) -- | Terms typed in a context data Term {Δ : Sig} (Γ : Ctx) : GType → Set where var : ∀{a : GType} (x : Var Γ a) → Term Γ a κ₁ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ a₁) → Term Γ (a₁ ⊕ a₂) κ₂ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ a₂) → Term Γ (a₁ ⊕ a₂) α : ∀{a : Type [ tt ]} (t : Term {Δ} Γ (unfold-μ a)) → Term Γ (μ a) app : ∀{a b : GType} (t : Term {Δ} Γ (a ⇒ b)) (s : Term {Δ} Γ a) → Term Γ b π₁ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ (a₁ ⊗ a₂)) → Term Γ a₁ π₂ : ∀{a₁ a₂ : GType} (t : Term {Δ} Γ (a₁ ⊗ a₂)) → Term Γ a₂ ξ : ∀{a : Type [ tt ]} (t : Term {Δ} Γ (ν a)) → Term Γ (unfold-ν a) svar : ∀{a : GType} (f : Var Δ a) → Term Γ a abs : ∀{a : GType} (D : Clause {Δ} {Γ} {a}) → Term Γ a rlet : ∀{a : GType} {Δ' : Sig} → (Ω : Definition Δ') → Term {Δ ∐ Δ'} Γ a → Term {Δ} Γ a -- | A definition consists of a signature and its definition data DeclBlock : Sig → Set where empty : DeclBlock [] record Definition (Δ : Sig) : Set where inductive field defs : List (Σ GType (λ a → (Var Δ a) × Clause {Δ} {[]} {a})) open Definition TermWDef : GType → Set TermWDef a = Σ Sig (λ Δ → (Definition Δ) × (Term {Δ} [] a)) ---------- Convenience _↦_ : ∀{Δ : Sig} {Γ : Ctx} {a b : GType} (q : Copat a b) (t : Term {Δ} ((copat-ctx q) ∐ Γ) b) → (Σ GType (λ b → Σ (Copat a b) (λ q → (Term {Δ} ((copat-ctx q) ∐ Γ) b)))) _↦_ {b = b} q t = b , q , t _≝_ : ∀{Δ : Sig} {a : GType} (f : Var Δ a) (c : Clause {Δ} {[]} {a}) → Σ GType (λ a → (Var Δ a) × Clause {Δ} {[]} {a}) _≝_ {a = a} f c = a , (f , c) -------------------------------- ------ Examples -- 〈〉 : Term [] unit -- 〈〉 = ? {- hd : ∀ {a : GType} → Term (Str a) → Term a hd t = π₁ (ξ q) hd′ : ∀ {a b : GType} → Copat (Str a) b → Copat a b hd′ q = π₁′ (ξ′ q) ones : TermWDef (Str Nat) ones = Δ , def , (svar o) where Δ : Sig Δ = [ Str Nat ] o : Var [ Str Nat ] (Str Nat) o = zero o-def : Clause {[ Str Nat ]} {[]} {Str Nat} o-def = record { body = [ (· ↦ svar o) ] } def : Definition Δ def = record { defs = [ o ≝ o-def ] } -}
{ "alphanum_fraction": 0.4586434191, "avg_line_length": 32.4344827586, "ext": "agda", "hexsha": "dcc9ffee72b6e33fce411b14f177f834ab26b5c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/SimpleOTT/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/SimpleOTT/Terms.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/SimpleOTT/Terms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1841, "size": 4703 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Matrix where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat hiding (_+_ ; +-comm) open import Cubical.Data.Vec open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Structures.CommRing private variable ℓ : Level A : Type ℓ -- Equivalence between Vec matrix and Fin function matrix FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ FinMatrix A m n = FinVec (FinVec A n) m VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ VecMatrix A m n = Vec (Vec A n) m FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (λ fn → M fm fn)) VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M) FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n) → VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt λ f → ⊥.rec (¬Fin0 f) FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ λ _ f → ⊥.rec (¬Fin0 f) FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal where goal : (fm : Fin (suc m)) (fn : Fin (suc n)) → VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (λ z → M (suc z))) fm fn ≡ M fm fn goal zero zero = refl goal zero (suc fn) i = FinVec→Vec→FinVec (λ z → M zero (suc z)) i fn goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (λ z → M (suc z)) i fm fn VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n) → FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i = Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n) FinMatrixIsoVecMatrix A m n = iso FinMatrix→VecMatrix VecMatrix→FinMatrix VecMatrix→FinMatrix→VecMatrix FinMatrix→VecMatrix→FinMatrix FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n) FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix -- We could have constructed the above Path as follows, but that -- doesn't reduce as nicely as ua isn't on the toplevel: -- -- FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n -- FinMatrix≡VecMatrix A m n i = FinVec≡Vec (FinVec≡Vec A n i) m i -- Experiment using addition. Transport commutativity from one -- representation to the the other and relate the transported -- operation with a more direct definition. module _ (R' : CommRing {ℓ}) where open CommRing R' renaming ( Carrier to R ) addFinMatrix : ∀ {m n} → FinMatrix R m n → FinMatrix R m n → FinMatrix R m n addFinMatrix M N = λ k l → M k l + N k l addFinMatrixComm : ∀ {m n} → (M N : FinMatrix R m n) → addFinMatrix M N ≡ addFinMatrix N M addFinMatrixComm M N i k l = +-comm (M k l) (N k l) i addVecMatrix : ∀ {m n} → VecMatrix R m n → VecMatrix R m n → VecMatrix R m n addVecMatrix {m} {n} = transport (λ i → FinMatrix≡VecMatrix R m n i → FinMatrix≡VecMatrix R m n i → FinMatrix≡VecMatrix R m n i) addFinMatrix addMatrixPath : ∀ {m n} → PathP (λ i → FinMatrix≡VecMatrix R m n i → FinMatrix≡VecMatrix R m n i → FinMatrix≡VecMatrix R m n i) addFinMatrix addVecMatrix addMatrixPath {m} {n} i = transp (λ j → FinMatrix≡VecMatrix R m n (i ∧ j) → FinMatrix≡VecMatrix R m n (i ∧ j) → FinMatrix≡VecMatrix R m n (i ∧ j)) (~ i) addFinMatrix addVecMatrixComm : ∀ {m n} → (M N : VecMatrix R m n) → addVecMatrix M N ≡ addVecMatrix N M addVecMatrixComm {m} {n} = transport (λ i → (M N : FinMatrix≡VecMatrix R m n i) → addMatrixPath i M N ≡ addMatrixPath i N M) addFinMatrixComm -- More direct definition of addition for VecMatrix: addVec : ∀ {m} → Vec R m → Vec R m → Vec R m addVec [] [] = [] addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys addVecLem : ∀ {m} → (M N : Vec R m) → FinVec→Vec (λ l → lookup l M + lookup l N) ≡ addVec M N addVecLem {zero} [] [] = refl addVecLem {suc m} (x ∷ xs) (y ∷ ys) = cong (λ zs → x + y ∷ zs) (addVecLem xs ys) addVecMatrix' : ∀ {m n} → VecMatrix R m n → VecMatrix R m n → VecMatrix R m n addVecMatrix' [] [] = [] addVecMatrix' (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix' MS NS -- The key lemma relating addVecMatrix and addVecMatrix' addVecMatrixEq : ∀ {m n} → (M N : VecMatrix R m n) → addVecMatrix M N ≡ addVecMatrix' M N addVecMatrixEq {zero} {n} [] [] j = transp (λ i → Vec (Vec R n) 0) j [] addVecMatrixEq {suc m} {n} (M ∷ MS) (N ∷ NS) = addVecMatrix (M ∷ MS) (N ∷ NS) ≡⟨ transportUAop₂ FinMatrix≃VecMatrix addFinMatrix (M ∷ MS) (N ∷ NS) ⟩ FinVec→Vec (λ l → lookup l M + lookup l N) ∷ _ ≡⟨ (λ i → addVecLem M N i ∷ FinMatrix→VecMatrix (λ k l → lookup l (lookup k MS) + lookup l (lookup k NS))) ⟩ addVec M N ∷ _ ≡⟨ cong (λ X → addVec M N ∷ X) (sym (transportUAop₂ FinMatrix≃VecMatrix addFinMatrix MS NS) ∙ addVecMatrixEq MS NS) ⟩ addVec M N ∷ addVecMatrix' MS NS ∎ -- By binary funext we get an equality as functions addVecMatrixEqFun : ∀ {m} {n} → addVecMatrix {m} {n} ≡ addVecMatrix' addVecMatrixEqFun i M N = addVecMatrixEq M N i -- We then directly get the properties about addVecMatrix' addVecMatrixComm' : ∀ {m n} → (M N : VecMatrix R m n) → addVecMatrix' M N ≡ addVecMatrix' N M addVecMatrixComm' M N = sym (addVecMatrixEq M N) ∙∙ addVecMatrixComm M N ∙∙ addVecMatrixEq N M -- TODO: prove more properties about addition of matrices for both -- FinMatrix and VecMatrix -- TODO: define multiplication of matrices and do the same kind of -- reasoning as we did for addition
{ "alphanum_fraction": 0.6192083461, "avg_line_length": 43.744966443, "ext": "agda", "hexsha": "2585c1fb1329adc8096d92d1d75a97bc1251478a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Algebra/Matrix.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Algebra/Matrix.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Algebra/Matrix.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2176, "size": 6518 }
module OldBasicILP.UntypedSyntax.Common where open import Common.UntypedContext public -- Types parametrised by closed, untyped representations. module ClosedSyntax (Proof : Set) where infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _⦂_ : Proof → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty -- Additional useful types. infixr 7 _▻⋯▻_ _▻⋯▻_ : Cx Ty → Ty → Ty ∅ ▻⋯▻ B = B (Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B)
{ "alphanum_fraction": 0.5685483871, "avg_line_length": 17.1034482759, "ext": "agda", "hexsha": "23483e43f042e0eacbb52a09434ed8f56af264f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/UntypedSyntax/Common.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/UntypedSyntax/Common.agda", "max_line_length": 57, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/UntypedSyntax/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 217, "size": 496 }
open import Nat open import Prelude open import core open import disjointness module elaboration-generality where mutual elaboration-generality-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Γ ⊢ e => τ elaboration-generality-synth ESConst = SConst elaboration-generality-synth (ESVar x₁) = SVar x₁ elaboration-generality-synth (ESLam apt ex) with elaboration-generality-synth ex ... | ih = SLam apt ih elaboration-generality-synth (ESAp dis _ a x₁ x₂ x₃) = SAp dis a x₁ (elaboration-generality-ana x₃) elaboration-generality-synth ESEHole = SEHole elaboration-generality-synth (ESNEHole dis ex) = SNEHole (elab-disjoint-new-synth ex dis) (elaboration-generality-synth ex) elaboration-generality-synth (ESAsc x) = SAsc (elaboration-generality-ana x) elaboration-generality-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → Γ ⊢ e <= τ elaboration-generality-ana (EALam apt m ex) = ALam apt m (elaboration-generality-ana ex) elaboration-generality-ana (EASubsume x x₁ x₂ x₃) = ASubsume (elaboration-generality-synth x₂) x₃ elaboration-generality-ana EAEHole = ASubsume SEHole TCHole1 elaboration-generality-ana (EANEHole dis x) = ASubsume (SNEHole (elab-disjoint-new-synth x dis) (elaboration-generality-synth x)) TCHole1
{ "alphanum_fraction": 0.6553365058, "avg_line_length": 54.4814814815, "ext": "agda", "hexsha": "052a530a803b9c9d64d33b4d1a517b9a4061321a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "elaboration-generality.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "elaboration-generality.agda", "max_line_length": 141, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "elaboration-generality.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 512, "size": 1471 }
open import Functional using (id) import Structure.Logic.Constructive.NaturalDeduction module Structure.Logic.Constructive.Functions.Properties {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ constructiveLogicSign : _ ⦄ where open Structure.Logic.Constructive.NaturalDeduction.ConstructiveLogicSignature {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (constructiveLogicSign) open import Structure.Logic.Constructive.Functions(Domain) open import Syntax.Function -- States whether the function f is defined on the element x. -- Whether f(x) yields/returns an element in the domain. -- In other words: Whether the logic can interpret f(x) as anything meaningful. Defined : Function → Domain → Formula Defined f(x) = ∃ₗ(y ↦ f(x) ≡ y) -- States whether the function f can yield/return the element y. Value : Function → Domain → Formula Value f(y) = ∃ₗ(x ↦ f(x) ≡ y) Injective : Function → Formula Injective(f) = ∀ₗ(x ↦ ∀ₗ(y ↦ (f(x) ≡ f(y)) ⟶ (x ≡ y))) Surjective : Function → Formula Surjective(f) = ∀ₗ(y ↦ ∃ₗ(x ↦ f(x) ≡ y)) Bijective : Function → Formula Bijective(f) = Injective(f) ∧ Surjective(f) Preserving₁ : Function → Function → Function → Formula Preserving₁(f)(g₁)(g₂) = ∀ₗ(x ↦ f(g₁(x)) ≡ g₂(f(x))) Preserving₂ : Function → BinaryOperator → BinaryOperator → Formula Preserving₂(f)(_▫₁_)(_▫₂_) = ∀ₗ(x ↦ ∀ₗ(y ↦ f(x ▫₁ y) ≡ (f(x) ▫₂ f(y)))) Fixpoint : Function → Domain → Formula Fixpoint f(x) = (f(x) ≡ x)
{ "alphanum_fraction": 0.6952850106, "avg_line_length": 36.4358974359, "ext": "agda", "hexsha": "723453903abf619871362a5f4c4cc7e30307f62a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Constructive/Functions/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Constructive/Functions/Properties.agda", "max_line_length": 144, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Constructive/Functions/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 472, "size": 1421 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Finite maps with indexed keys and values, based on AVL trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Data.Product as Prod open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; cong; subst) import Data.AVL.Value module Data.AVL.IndexedMap {i k v ℓ} {Index : Set i} {Key : Index → Set k} (Value : Index → Set v) {_<_ : Rel (∃ Key) ℓ} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where import Data.AVL open import Data.Bool open import Data.List.Base as List using (List) open import Data.Maybe.Base as Maybe open import Function open import Level -- Key/value pairs. KV : Set (i ⊔ k ⊔ v) KV = ∃ λ i → Key i × Value i -- Conversions. private fromKV : KV → Σ[ ik ∈ ∃ Key ] Value (proj₁ ik) fromKV (i , k , v) = ((i , k) , v) toKV : Σ[ ik ∈ ∃ Key ] Value (proj₁ ik) → KV toKV ((i , k) , v) = (i , k , v) -- The map type. private open module AVL = Data.AVL (record { isStrictTotalOrder = isStrictTotalOrder }) using () renaming (Tree to Map') Map = Map' (AVL.MkValue (Value ∘ proj₁) (subst Value ∘′ cong proj₁)) -- Repackaged functions. empty : Map empty = AVL.empty singleton : ∀ {i} → Key i → Value i → Map singleton k v = AVL.singleton (-, k) v insert : ∀ {i} → Key i → Value i → Map → Map insert k v = AVL.insert (-, k) v delete : ∀ {i} → Key i → Map → Map delete k = AVL.delete (-, k) lookup : ∀ {i} → Key i → Map → Maybe (Value i) lookup k m = AVL.lookup (-, k) m infix 4 _∈?_ _∈?_ : ∀ {i} → Key i → Map → Bool _∈?_ k = AVL._∈?_ (-, k) headTail : Map → Maybe (KV × Map) headTail m = Maybe.map (Prod.map toKV id) (AVL.headTail m) initLast : Map → Maybe (Map × KV) initLast m = Maybe.map (Prod.map id toKV) (AVL.initLast m) fromList : List KV → Map fromList = AVL.fromList ∘ List.map fromKV toList : Map → List KV toList = List.map toKV ∘ AVL.toList
{ "alphanum_fraction": 0.5871062992, "avg_line_length": 24.1904761905, "ext": "agda", "hexsha": "b7cafecb83d015598e00cbbb5201eb1faa1f4684", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/IndexedMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/IndexedMap.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/IndexedMap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 630, "size": 2032 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Showing booleans ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool.Show where open import Data.Bool.Base using (Bool; false; true) open import Data.String.Base using (String) show : Bool → String show true = "true" show false = "false"
{ "alphanum_fraction": 0.4575471698, "avg_line_length": 24.9411764706, "ext": "agda", "hexsha": "daa414f783074eda8b1b13f9c628922687c8722d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Show.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Show.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Show.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 72, "size": 424 }
{-# OPTIONS --cubical --safe #-} open import Algebra module Algebra.SemiringLiterals {r} (rng : Semiring r) where open Semiring rng open import Literals.Number open import Data.Nat.Literals open import Data.Unit import Data.Unit.UniversePolymorphic as Poly open import Data.Nat.DivMod open import Data.Nat using (ℕ; suc; zero) open import Data.Nat.Properties open import Data.Bool open import Strict 2# : 𝑅 2# = 1# + 1# sringFromNatRec : ℕ → ℕ → 𝑅 sringFromNatRec zero _ = 0# sringFromNatRec (suc 0) _ = 1# sringFromNatRec (suc 1) _ = 2# sringFromNatRec (suc 2) _ = 1# + 2# sringFromNatRec (suc n) (suc w) = let! r =! sringFromNatRec (n ÷ 2) w in! if even n then 1# + (r * 2#) else (1# + r) * 2# sringFromNatRec _ zero = 0# -- will not happen sringFromNat : ℕ → 𝑅 sringFromNat n = sringFromNatRec n n instance numberRng : Number 𝑅 Number.Constraint numberRng _ = Poly.⊤ Number.fromNat numberRng n = sringFromNat n
{ "alphanum_fraction": 0.683557394, "avg_line_length": 23.5853658537, "ext": "agda", "hexsha": "2be0212a5dc49487e11ea6a222c0b9e2e8a25f11", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Algebra/SemiringLiterals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Algebra/SemiringLiterals.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Algebra/SemiringLiterals.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 353, "size": 967 }
{-# OPTIONS --without-K --safe #-} module Util.Relation.Binary.PropositionalEquality where open import Relation.Binary.PropositionalEquality public open import Data.Product using (uncurry) open import Util.Prelude private variable α β γ γ′ δ : Level A B C A′ B′ C′ : Set α trans-unassoc : {a b c d : A} (p : a ≡ b) {q : b ≡ c} {r : c ≡ d} → trans p (trans q r) ≡ trans (trans p q) r trans-unassoc p = sym (trans-assoc p) Σ-≡⁻ : {A : Set α} {B : A → Set β} {x y : Σ A B} → x ≡ y → Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y Σ-≡⁻ refl = refl , refl Σ-≡⁺ : {A : Set α} {B : A → Set β} {x y : Σ A B} → Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y → x ≡ y Σ-≡⁺ (refl , refl) = refl Σ-≡⁺∘Σ-≡⁻ : {A : Set α} {B : A → Set β} {x y : Σ A B} → (p : x ≡ y) → Σ-≡⁺ (Σ-≡⁻ p) ≡ p Σ-≡⁺∘Σ-≡⁻ refl = refl Σ-≡⁻∘Σ-≡⁺ : {A : Set α} {B : A → Set β} {x y : Σ A B} → (p : Σ[ p ∈ (proj₁ x ≡ proj₁ y) ] subst B p (proj₂ x) ≡ proj₂ y) → Σ-≡⁻ (Σ-≡⁺ p) ≡ p Σ-≡⁻∘Σ-≡⁺ (refl , refl) = refl ×-≡⁺ : {x y : A × B} → (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y) → x ≡ y ×-≡⁺ (refl , refl) = refl ×-≡⁻ : {x y : A × B} → x ≡ y → (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y) ×-≡⁻ refl = refl , refl ×-≡⁺∘×-≡⁻ : {x y : A × B} (p : x ≡ y) → ×-≡⁺ (×-≡⁻ p) ≡ p ×-≡⁺∘×-≡⁻ refl = refl ×-≡⁻∘×-≡⁺ : {x y : A × B} (p : (proj₁ x ≡ proj₁ y) × (proj₂ x ≡ proj₂ y)) → ×-≡⁻ (×-≡⁺ p) ≡ p ×-≡⁻∘×-≡⁺ (refl , refl) = refl cast : A ≡ B → A → B cast = subst (λ x → x) cast-refl : {x : A} → cast refl x ≡ x cast-refl = refl cast-trans : (B≡C : B ≡ C) (A≡B : A ≡ B) {x : A} → cast B≡C (cast A≡B x) ≡ cast (trans A≡B B≡C) x cast-trans refl refl = refl subst-trans : ∀ {P : A → Set β} {x y z : A} {p : P x} → (x≡y : x ≡ y) (y≡z : y ≡ z) → subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p subst-trans refl refl = refl subst₂-trans : (C : A → B → Set γ) → {a₀ a₁ a₂ : A} (p : a₀ ≡ a₁) (p′ : a₁ ≡ a₂) → {b₀ b₁ b₂ : B} (q : b₀ ≡ b₁) (q′ : b₁ ≡ b₂) → {x : C a₀ b₀} → subst₂ C p′ q′ (subst₂ C p q x) ≡ subst₂ C (trans p p′) (trans q q′) x subst₂-trans C refl refl refl refl = refl subst₂-subst₂-sym : (C : A → B → Set γ) → {a a′ : A} (p : a ≡ a′) → {b b′ : B} (q : b ≡ b′) → {x : C a′ b′} → subst₂ C p q (subst₂ C (sym p) (sym q) x) ≡ x subst₂-subst₂-sym C refl refl = refl subst₂-sym-subst₂ : (C : A → B → Set γ) → {a a′ : A} (p : a ≡ a′) → {b b′ : B} (q : b ≡ b′) → {x : C a b} → subst₂ C (sym p) (sym q) (subst₂ C p q x) ≡ x subst₂-sym-subst₂ C refl refl = refl subst₂-cong : (C : A′ → B′ → Set γ) → (f : A → A′) (g : B → B′) → {a a′ : A} (p : a ≡ a′) → {b b′ : B} (q : b ≡ b′) → {x : C (f a) (g b)} → subst₂ C (cong f p) (cong g q) x ≡ subst₂ (λ a b → C (f a) (g b)) p q x subst₂-cong C f g refl refl = refl subst₂≡subst : ∀ {la} {A : Set la} {lb} {B : Set lb} {lc} (C : A → B → Set lc) → ∀ {a a′} (p : a ≡ a′) {b b′} (q : b ≡ b′) {x : C a b} → subst₂ C p q x ≡ subst (uncurry C) (cong₂ _,_ p q) x subst₂≡subst C refl refl = refl subst₂-application : (C : A → B → Set γ) {C′ : A′ → B′ → Set γ′} → {fa : A′ → A} {fb : B′ → B} → {a a′ : A′} {b b′ : B′} {c : C (fa a) (fb b)} → (g : ∀ a b → C (fa a) (fb b) → C′ a b) → (eqa : a ≡ a′) → (eqb : b ≡ b′) → subst₂ C′ eqa eqb (g a b c) ≡ g a′ b′ (subst₂ C (cong fa eqa) (cong fb eqb) c) subst₂-application _ _ refl refl = refl subst₂-application′ : {C : A → B → Set γ} (C′ : A′ → B′ → Set γ′) → {fa : A → A′} {fb : B → B′} → {a a′ : A} {b b′ : B} {c : C a b} → (g : ∀ a b → C a b → C′ (fa a) (fb b)) → (eqa : a ≡ a′) → (eqb : b ≡ b′) → subst₂ C′ (cong fa eqa) (cong fb eqb) (g a b c) ≡ g a′ b′ (subst₂ C eqa eqb c) subst₂-application′ _ _ refl refl = refl cong₂-dep : {A : Set α} {B : A → Set β} {C : Set γ} → (f : (a : A) → B a → C) → {x y : A} (p : x ≡ y) → {u : B x} {v : B y} (q : subst B p u ≡ v) → f x u ≡ f y v cong₂-dep f refl refl = refl cong₃-dep : {A : Set α} {B : A → Set β} {C : (a : A) → B a → Set γ} → {D : Set δ} → (f : (a : A) (b : B a) → C a b → D) → {x y : A} (p : x ≡ y) → {u : B x} {v : B y} (q : subst B p u ≡ v) → {w : C x u} {z : C y v} (r : subst (λ i → C (proj₁ i) (proj₂ i)) (Σ-≡⁺ (p , q)) w ≡ z) → f x u w ≡ f y v z cong₃-dep f refl refl refl = refl
{ "alphanum_fraction": 0.4477507029, "avg_line_length": 26.0243902439, "ext": "agda", "hexsha": "59fd394fc1bdfed7bb06c2e9662f449f9f87351f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/Relation/Binary/PropositionalEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/Relation/Binary/PropositionalEquality.agda", "max_line_length": 90, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/Relation/Binary/PropositionalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 2239, "size": 4268 }
{-# OPTIONS --without-K #-} module MidiEvent where open import Data.Fin using (Fin; #_) open import Data.List using (List; _∷_; []; concat; map) open import Data.Nat using (ℕ; _+_; _⊔_) open import Data.Product using (_×_; _,_; proj₁) open import Data.String using (String) open import Data.Vec using (toList) open import Function using (_∘_) open import Music using (Melody; melody; Counterpoint; cp; Harmony; melody→notes; harmony→counterpoint) open import Note using (Note; tone; rest; duration) open import Pitch using (Pitch) -- General MIDI instrument numbers range from 1 to 128, -- so this is the actual instrument number minus 1. InstrumentNumber-1 : Set InstrumentNumber-1 = Fin 128 Tick : Set Tick = ℕ Velocity : Set Velocity = Fin 128 defaultVelocity : Velocity defaultVelocity = # 60 -- percussion is channel 10, so 9 as Channel-1 Channel-1 : Set Channel-1 = Fin 16 -- in bpm Tempo : Set Tempo = ℕ record MidiEvent : Set where constructor midiEvent field pitch : Pitch -- Pitch was defined to correspond to MIDI pitch start : Tick stop : Tick velocity : Velocity record MidiTrack : Set where constructor track field trackName : String instrumentNumber : InstrumentNumber-1 channel : Channel-1 tempo : Tempo -- initial tempo events : List MidiEvent notes→events : Velocity → List Note → List MidiEvent notes→events v ns = me 0 ns where me : Tick → List Note → List MidiEvent me t [] = [] me t (tone (duration d) p ∷ ns) = midiEvent p t (t + d) v ∷ me (t + d) ns me t (rest (duration d) ∷ ns) = me (t + d) ns melody→events : {n : ℕ} → Velocity → Melody n → List MidiEvent melody→events v = notes→events v ∘ melody→notes counterpoint→events : {v d : ℕ} → Velocity → Counterpoint v d → List MidiEvent counterpoint→events v (cp ms) = concat (map (melody→events v) (toList ms)) harmony→events : {v d : ℕ} → Velocity → Harmony v d → List MidiEvent harmony→events v = counterpoint→events v ∘ harmony→counterpoint
{ "alphanum_fraction": 0.6590801328, "avg_line_length": 29.7042253521, "ext": "agda", "hexsha": "394574739d493bd03a6c3f6c040e62b35acb35d5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/MidiEvent.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/MidiEvent.agda", "max_line_length": 110, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/MidiEvent.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 594, "size": 2109 }
{-# OPTIONS --without-K --safe #-} module TypeTheory.HoTT.Data.Empty.Properties where -- agda-stdlib open import Data.Empty -- agda-misc open import TypeTheory.HoTT.Base isProp-⊥ : isProp ⊥ isProp-⊥ x = ⊥-elim x
{ "alphanum_fraction": 0.7037037037, "avg_line_length": 16.6153846154, "ext": "agda", "hexsha": "59d3773fc633d117360040174f707dd4fcc17349", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "TypeTheory/HoTT/Data/Empty/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "TypeTheory/HoTT/Data/Empty/Properties.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "TypeTheory/HoTT/Data/Empty/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 71, "size": 216 }
{-# OPTIONS --without-K --safe #-} module Math.Combinatorics.Function.Properties.Lemma where open import Data.Unit using (tt) open import Data.Product open import Data.Sum open import Data.Nat open import Data.Nat.Properties open import Data.Nat.DivMod open import Data.Nat.Solver using (module +-*-Solver) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open import Function open import Algebra.FunctionProperties open ≤-Reasoning 1≤n⇒n≢0 : ∀ {n} → 1 ≤ n → n ≢ 0 1≤n⇒n≢0 .{suc _} (s≤s z≤n) () -- TODO: use m<n⇒0<n∸m m<n⇒n∸m≢0 : ∀ {m n} → m < n → n ∸ m ≢ 0 m<n⇒n∸m≢0 {m} {n} m<n n∸m≡0 = (λ x → x (sym n∸m≡0)) $ <⇒≢ $ +-cancelʳ-< 0 (n ∸ m) $ begin-strict m <⟨ m<n ⟩ n ≡⟨ sym $ m∸n+n≡m (<⇒≤ m<n) ⟩ (n ∸ m) + m ∎ ≤⇒≡∨< : ∀ {m n} → m ≤ n → (m ≡ n) ⊎ (m < n) ≤⇒≡∨< {m} {n} m≤n with m ≟ n ... | yes m≡n = inj₁ m≡n ... | no m≢n = inj₂ (≤∧≢⇒< m≤n m≢n) ^-monoˡ-≤ : ∀ n → (_^ n) Preserves _≤_ ⟶ _≤_ ^-monoˡ-≤ 0 {m} {o} m≤o = ≤-refl ^-monoˡ-≤ (suc n) {m} {o} m≤o = begin m ^ suc n ≡⟨⟩ m * m ^ n ≤⟨ *-mono-≤ m≤o (^-monoˡ-≤ n m≤o) ⟩ o * o ^ n ≡⟨⟩ o ^ suc n ∎ 1≤[1+m]^n : ∀ m n → 1 ≤ (1 + m) ^ n 1≤[1+m]^n m zero = ≤-refl 1≤[1+m]^n m (suc n) = begin 1 * 1 ≤⟨ *-mono-≤ (s≤s {0} {m} z≤n) (1≤[1+m]^n m n) ⟩ suc m * suc m ^ n ∎ ^-monoʳ-≤ : ∀ n → (suc n ^_) Preserves _≤_ ⟶ _≤_ ^-monoʳ-≤ n {.0} {o} z≤n = begin 1 ≤⟨ 1≤[1+m]^n n o ⟩ suc n ^ o ∎ ^-monoʳ-≤ n {.(suc _)} {.(suc _)} (s≤s {m} {o} m≤o) = begin suc n ^ suc m ≡⟨⟩ suc n * suc n ^ m ≤⟨ *-monoʳ-≤ (suc n) (^-monoʳ-≤ n m≤o) ⟩ suc n * suc n ^ o ≡⟨⟩ suc n ^ suc o ∎ ^-mono-≤ : ∀ {m n o p} → m ≤ n → o ≤ p → suc m ^ o ≤ suc n ^ p ^-mono-≤ {m} {n} {o} {p} m≤n o≤p = begin suc m ^ o ≤⟨ ^-monoˡ-≤ o (s≤s m≤n) ⟩ suc n ^ o ≤⟨ ^-monoʳ-≤ n o≤p ⟩ suc n ^ p ∎ *-cancelʳ-≤′ : ∀ m n {o} → False (o ≟ 0) → m * o ≤ n * o → m ≤ n *-cancelʳ-≤′ m n {suc o} tt = *-cancelʳ-≤ m n o -- TODO upadte stdlib *-cancelʳ-≡′ : ∀ m n {o} → False (o ≟ 0) → m * o ≡ n * o → m ≡ n *-cancelʳ-≡′ m n {suc o} tt = *-cancelʳ-≡ m n *-monoʳ-<′ : ∀ n → False (n ≟ 0) → (n *_) Preserves _<_ ⟶ _<_ *-monoʳ-<′ (suc n) tt gt = *-monoʳ-< n gt *-monoˡ-<′ : ∀ n → False (n ≟ 0) → (_* n) Preserves _<_ ⟶ _<_ *-monoˡ-<′ (suc n) tt gt = *-monoˡ-< n gt m≡n+o⇒m∸o≡n : ∀ m n o → m ≡ n + o → m ∸ o ≡ n m≡n+o⇒m∸o≡n m n o m≡n+o = trans (cong (_∸ o) m≡n+o) (m+n∸n≡m n o) lemma₃ : ∀ m n → (∃ λ o → (n ≡ o + m)) ⊎ (n < m) lemma₃ m n with compare m n lemma₃ m .(suc (m + k)) | less .m k = inj₁ (suc k , cong suc (+-comm m k)) lemma₃ m .m | equal .m = inj₁ (0 , +-identityˡ m) lemma₃ .(suc (n + k)) n | greater .n k = inj₂ (s≤s (≤-stepsʳ k ≤-refl)) m≡n*o⇒n≡m/o : ∀ m n o → (wit : False (o ≟ 0)) → m ≡ n * o → n ≡ _/_ m o {wit} m≡n*o⇒n≡m/o m n o@(suc o-1) tt m≡n*o = sym $ begin-equality m / o ≡⟨ cong (_/ o) $ m≡n*o ⟩ (n * o) / o ≡⟨ m*n/n≡m n o ⟩ n ∎ m*n≡o⇒m≡o/n : ∀ m n o → (wit : False (n ≟ 0)) → m * n ≡ o → m ≡ _/_ o n {wit} m*n≡o⇒m≡o/n m n o wit m*n≡o = m≡n*o⇒n≡m/o o m n wit (sym m*n≡o) *-pres-≢0 : ∀ {a b} → a ≢ 0 → b ≢ 0 → a * b ≢ 0 *-pres-≢0 {0} {b} a≢0 b≢0 a*b≡0 = a≢0 refl *-pres-≢0 {suc a} {0} a≢0 b≢0 a*b≡0 = b≢0 refl -- TODO numbering lemma₅ : ∀ m n o p → (m + n) * (o * p) ≡ (o * (m * p)) + n * (o * p) lemma₅ = solve 4 (λ m n o p → (m :+ n) :* (o :* p) := (o :* (m :* p)) :+ (n :* (o :* p))) refl where open +-*-Solver lemma₇ : ∀ m n o → m * n * o ≡ m * o * n lemma₇ = solve 3 (λ m n o → m :* n :* o := m :* o :* n) refl where open +-*-Solver lemma₈ : ∀ m n o → m * (n * o) ≡ n * m * o lemma₈ = solve 3 (λ m n o → m :* (n :* o) := n :* m :* o) refl where open +-*-Solver lemma₉ : ∀ m n o p → m * n * (o * p) ≡ (m * o) * (n * p) lemma₉ = solve 4 (λ m n o p → m :* n :* (o :* p) := (m :* o) :* (n :* p)) refl where open +-*-Solver lemma₁₀ : ∀ m n o p → m * n * o * p ≡ (m * o) * (n * p) lemma₁₀ = solve 4 (λ m n o p → m :* n :* o :* p := (m :* o) :* (n :* p)) refl where open +-*-Solver lemma₁₁ : ∀ m n o p → (m * n) * (o * p) ≡ m * o * p * n lemma₁₁ = solve 4 (λ m n o p → (m :* n) :* (o :* p) := m :* o :* p :* n) refl where open +-*-Solver lemma₁₂ : ∀ m n o → m * n * o ≡ n * (m * o) lemma₁₂ = solve 3 (λ m n o → m :* n :* o := n :* (m :* o)) refl where open +-*-Solver lemma₁₃ : ∀ m n o → m * n * n * o ≡ o * m * n * n lemma₁₃ = solve 3 (λ m n o → m :* n :* n :* o := o :* m :* n :* n) refl where open +-*-Solver lemma₁₄ : ∀ m n o → m * n * (n * o * o) ≡ m * (n * o) * (n * o) lemma₁₄ = solve 3 (λ m n o → m :* n :* (n :* o :* o) := m :* (n :* o) :* (n :* o)) refl where open +-*-Solver lemma₁₅ : ∀ n → (2 + 2 * n) * (1 + 2 * n) ≡ 2 * (1 + 2 * n) * (1 + n) lemma₁₅ = solve 1 (λ n → (con 2 :+ con 2 :* n) :* (con 1 :+ con 2 :* n) := con 2 :* (con 1 :+ con 2 :* n) :* (con 1 :+ n) ) refl where open +-*-Solver lemma₁₆ : ∀ m n o p → m * n * (o * p * p) ≡ m * o * (n * p * p) lemma₁₆ = solve 4 (λ m n o p → m :* n :* (o :* p :* p) := m :* o :* (n :* p :* p) ) refl where open +-*-Solver lemma₁₇ : ∀ m n o p → m * n * (o * p) ≡ o * m * (n * p) lemma₁₇ = solve 4 (λ m n o p → m :* n :* (o :* p) := o :* m :* (n :* p)) refl where open +-*-Solver
{ "alphanum_fraction": 0.4378306878, "avg_line_length": 34.1419354839, "ext": "agda", "hexsha": "d4863411b92ab67ec7ef5199b09113a0a03b2854", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/Function/Properties/Lemma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/Function/Properties/Lemma.agda", "max_line_length": 96, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/Function/Properties/Lemma.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 2850, "size": 5292 }
module Semantics where open import Syntax public -- Kripke models. record Model : Set₁ where infix 3 _⊩ᵅ_ field World : Set _≤_ : World → World → Set refl≤ : ∀ {w} → w ≤ w trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″ idtrans≤ : ∀ {w w′} → (p : w ≤ w′) → trans≤ refl≤ p ≡ p _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P idmono⊩ᵅ : ∀ {P w} → (s : w ⊩ᵅ P) → mono⊩ᵅ {P} refl≤ s ≡ s open Model {{…}} public -- Forcing in a particular world. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Type → Set w ⊩ α P = w ⊩ᵅ P w ⊩ A ⇒ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B w ⊩ A ⩕ B = w ⊩ A ∧ w ⊩ B w ⊩ ⫪ = ⊤ infix 3 _⊩⋆_ _⊩⋆_ : World → Stack Type → Set w ⊩⋆ ∅ = ⊤ w ⊩⋆ Ξ , A = w ⊩⋆ Ξ ∧ w ⊩ A -- Function extensionality. postulate funext : ∀ {X : Set} {Y : X → Set} {f g : ∀ x → Y x} → (∀ x → f x ≡ g x) → (λ x → f x) ≡ (λ x → g x) ⟨funext⟩ : ∀ {X : Set} {Y : X → Set} {f g : ∀ {x} → Y x} → (∀ {x} → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ (λ {x} → g {x}) extfun : ∀ {X : Set} {Y : X → Set} {f g : ∀ x → Y x} → (λ x → f x) ≡ (λ x → g x) → (∀ x → f x ≡ g x) extfun refl = λ x → refl ⟨extfun⟩ : ∀ {X : Set} {Y : X → Set} {f g : ∀ {x} → Y x} → (λ {x} → f {x}) ≡ (λ {x} → g {x}) → (∀ {x} → f {x} ≡ g {x}) ⟨extfun⟩ refl = refl -- Monotonicity of forcing with respect to constructive accessibility. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} p s = mono⊩ᵅ p s mono⊩ {A ⇒ B} p s = λ p′ → s (trans≤ p p′) mono⊩ {A ⩕ B} p s = mono⊩ {A} p (π₁ s) , mono⊩ {B} p (π₂ s) mono⊩ {⫪} p s = ∙ mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ mono⊩⋆ {∅} p ∙ = ∙ mono⊩⋆ {Ξ , A} p (σ , s) = mono⊩⋆ {Ξ} p σ , mono⊩ {A} p s -- TODO: Naming things. module _ {{_ : Model}} where idmono⊩ : ∀ {A w} → (s : w ⊩ A) → mono⊩ {A} refl≤ s ≡ s idmono⊩ {α P} s = idmono⊩ᵅ s idmono⊩ {A ⇒ B} s = ⟨funext⟩ λ {w′} → funext λ p → cong s (idtrans≤ p) idmono⊩ {A ⩕ B} s = cong² _,_ (idmono⊩ {A} (π₁ s)) (idmono⊩ {B} (π₂ s)) idmono⊩ {⫪} s = refl idmono⊩⋆ : ∀ {Ξ w} → (γ : w ⊩⋆ Ξ) → mono⊩⋆ refl≤ γ ≡ γ idmono⊩⋆ {∅} ∙ = refl idmono⊩⋆ {Ξ , A} (σ , s) = cong² _,_ (idmono⊩⋆ σ) (idmono⊩ {A} s) -- TODO: Naming things. module _ {{_ : Model}} where _⟪_⊫_⟫ : World → Context → Type → Set w ⟪ Γ ⊫ A ⟫ = w ⊩⋆ Γ → w ⊩ A -- Evaluation equipment. module _ {{_ : Model}} where ⟪var⟫ : ∀ {A Γ w} → A ∈ Γ → w ⟪ Γ ⊫ A ⟫ ⟪var⟫ top = λ { (γ , s) → s } ⟪var⟫ (pop i) = λ { (γ , s) → ⟪var⟫ i γ } ⟪lam⟫ : ∀ {A B Γ w} → (∀ {w′} → w′ ⟪ Γ , A ⊫ B ⟫) → w ⟪ Γ ⊫ A ⇒ B ⟫ ⟪lam⟫ ⟪d⟫ = λ γ p s → ⟪d⟫ (mono⊩⋆ p γ , s) ⟪app⟫ : ∀ {A B Γ w} → w ⟪ Γ ⊫ A ⇒ B ⟫ → w ⟪ Γ ⊫ A ⟫ → w ⟪ Γ ⊫ B ⟫ ⟪app⟫ ⟪d⟫ ⟪e⟫ = λ γ → ⟪d⟫ γ refl≤ (⟪e⟫ γ) ⟪pair⟫ : ∀ {A B Γ w} → w ⟪ Γ ⊫ A ⟫ → w ⟪ Γ ⊫ B ⟫ → w ⟪ Γ ⊫ A ⩕ B ⟫ ⟪pair⟫ ⟪d⟫ ⟪e⟫ = λ γ → ⟪d⟫ γ , ⟪e⟫ γ ⟪fst⟫ : ∀ {A B Γ w} → w ⟪ Γ ⊫ A ⩕ B ⟫ → w ⟪ Γ ⊫ A ⟫ ⟪fst⟫ ⟪d⟫ = λ γ → π₁ (⟪d⟫ γ) ⟪snd⟫ : ∀ {A B Γ w} → w ⟪ Γ ⊫ A ⩕ B ⟫ → w ⟪ Γ ⊫ B ⟫ ⟪snd⟫ ⟪d⟫ = λ γ → π₂ (⟪d⟫ γ) ⟪unit⟫ : ∀ {Γ w} → w ⟪ Γ ⊫ ⫪ ⟫ ⟪unit⟫ = λ γ → ∙ -- Shorthand for variables. module _ {{_ : Model}} where ⟪v₀⟫ : ∀ {A Γ w} → w ⟪ Γ , A ⊫ A ⟫ ⟪v₀⟫ {A} = ⟪var⟫ {A} i₀ -- Forcing in all worlds, or semantic entailment. module _ {{_ : Model}} where infix 3 _⊨_ _⊨_ : Context → Type → Set Γ ⊨ A = ∀ {w} → w ⟪ Γ ⊫ A ⟫ -- Evaluation, or soundness of the semantics with respect to the syntax. module _ {{_ : Model}} where eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) = ⟪var⟫ i eval (lam {A} {B} d) = ⟪lam⟫ {A} {B} (eval d) eval (app {A} {B} d e) = ⟪app⟫ {A} {B} (eval d) (eval e) eval (pair {A} {B} d e) = ⟪pair⟫ {A} {B} (eval d) (eval e) eval (fst {A} {B} d) = ⟪fst⟫ {A} {B} (eval d) eval (snd {A} {B} d) = ⟪snd⟫ {A} {B} (eval d) eval unit = ⟪unit⟫ -- The canonical model. private instance canon : Model canon = record { World = Context ; _≤_ = _⊆_ ; refl≤ = refl⊆ ; trans≤ = trans⊆ ; idtrans≤ = idtrans⊆ ; _⊩ᵅ_ = λ Γ P → Γ ⊢ⁿᵉ α P ; mono⊩ᵅ = mono⊢ⁿᵉ ; idmono⊩ᵅ = idmono⊢ⁿᵉ } -- Soundness and completeness of the canonical model with respect to the syntax. mutual evalᶜ : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A evalᶜ {α P} d = d evalᶜ {A ⇒ B} d = λ p e → evalᶜ (appⁿᵉ (mono⊢ⁿᵉ p d) (quotᶜ e)) evalᶜ {A ⩕ B} d = evalᶜ (fstⁿᵉ d) , evalᶜ (sndⁿᵉ d) evalᶜ {⫪} d = ∙ quotᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A quotᶜ {α P} s = neⁿᶠ s quotᶜ {A ⇒ B} s = lamⁿᶠ (quotᶜ (s weak⊆ (evalᶜ {A} v₀ⁿᵉ))) quotᶜ {A ⩕ B} s = pairⁿᶠ (quotᶜ (π₁ s)) (quotᶜ (π₂ s)) quotᶜ {⫪} s = unitⁿᶠ -- Reflexivity of simultaneous forcing. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ {∅} = ∙ refl⊩⋆ {Γ , A} = mono⊩⋆ weak⊆ refl⊩⋆ , evalᶜ {A} v₀ⁿᵉ -- Quotation, or completeness of the semantics with respect to the syntax. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ⁿᶠ A quot s = quotᶜ (s refl⊩⋆) -- Normalisation by evaluation. nbe : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ⁿᶠ A nbe = quot ∘ eval
{ "alphanum_fraction": 0.4280492497, "avg_line_length": 25.99, "ext": "agda", "hexsha": "4b711e97163937746308d07f6cf7c256b7097469", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/nbe-correctness", "max_forks_repo_path": "src/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/nbe-correctness", "max_issues_repo_path": "src/Semantics.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/nbe-correctness", "max_stars_repo_path": "src/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z", "num_tokens": 2858, "size": 5198 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} -- This module proves the two "VotesOnce" proof obligations for our fake handler open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types hiding (EpochConfigFor) open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor.Properties sha256 sha256-cr open import LibraBFT.Impl.Handle sha256 sha256-cr open import LibraBFT.Impl.Handle.Properties sha256 sha256-cr open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Properties.Aux open import LibraBFT.Impl.Util.Util open import LibraBFT.Concrete.System impl-sps-avp open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK open Structural impl-sps-avp -- In this module, we prove the two implementation obligations for the VotesOnce rule. Note -- that it is not yet 100% clear that the obligations are the best definitions to use. See comments -- in Concrete.VotesOnce. We will want to prove these obligations for the fake/simple -- implementation (or some variant on it) and streamline the proof before we proceed to tackle more -- ambitious properties. module LibraBFT.Impl.Properties.VotesOnce where -- TODO-1: It seems that vo₂ should be proved via a couple of invocations of this property; -- the proofs are quite similar. newVoteSameEpochGreaterRound : ∀ {e}{pre : SystemState e}{pid initd' s' outs v m pk} → ReachableSystemState pre → StepPeerState {e} pid (availEpochs pre) (msgPool pre) (initialised pre) (peerStates pre pid) initd' (s' , outs) → v ⊂Msg m → m ∈ outs → (sig : WithVerSig pk v) → ¬ MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → (v ^∙ vEpoch) ≡ (₋epEC (peerStates pre pid)) ^∙ epEpoch × suc ((₋epEC (peerStates pre pid)) ^∙ epLastVotedRound) ≡ (v ^∙ vRound) -- New vote for higher round than last voted × (v ^∙ vRound) ≡ ((₋epEC s') ^∙ epLastVotedRound) -- Last voted round is round of new vote newVoteSameEpochGreaterRound _ (step-init _) v⊂m m∈outs sig = ⊥-elim (¬Any[] m∈outs) newVoteSameEpochGreaterRound {pre = pre} {pid} {m = m} r (step-msg {(_ , nm)} msg∈pool pinit) v⊂m m∈outs sig vnew rewrite pinit with nm ...| P msg with msgsToSendWereSent {pid} {0} {P msg} {m} {peerStates pre pid} m∈outs ...| vm , refl , vmSent with msgsToSendWereSent1 {pid} {0} {msg} {vm} {peerStates pre pid} vmSent ...| _ , v∈outs rewrite SendVote-inj-v (Any-singleton⁻ v∈outs) | SendVote-inj-si (Any-singleton⁻ v∈outs) with v⊂m -- Rebuilding keeps the same signature, and the SyncInfo included with the -- VoteMsg sent comprises QCs from the peer's state. Votes represented in -- those QCS have signatures that have been sent before, contradicting the -- assumption that v's signature has not been sent before. ...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld | procPMCerts≡ {0} {msg} {peerStates pre pid} {vm} v∈outs = ⊥-elim (vnew (qcVotesSentB4 r pinit refl qc∈m refl vs∈qc)) ...| vote∈vm {si} = refl , refl , refl -- Always true, so far, as no epoch changes. noEpochChangeYet : ∀ {e}{pre : SystemState e}{pid}{initd' ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) ppre initd' (ppost , msgs) → (₋epEC ppre) ^∙ epEpoch ≡ (₋epEC ppost) ^∙ epEpoch noEpochChangeYet _ ppre≡ (step-init ix) = {!!} noEpochChangeYet _ ppre≡ (step-msg {(_ , m)} _ _) with m ...| P p = refl ...| V v = refl ...| C c = refl -- We resist the temptation to combine this with the noEpochChangeYet because in future there will be epoch changes lastVoteRound-mono : ∀ {e}{pre : SystemState e}{pid}{initd' ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) ppre initd' (ppost , msgs) → (₋epEC ppre) ^∙ epEpoch ≡ (₋epEC ppost) ^∙ epEpoch → (₋epEC ppre) ^∙ epLastVotedRound ≤ (₋epEC ppost) ^∙ epLastVotedRound lastVoteRound-mono _ ppre≡ (step-init ix) _ = {!!} lastVoteRound-mono _ ppre≡ (step-msg {(_ , m)} _ _) with m ...| P p = const (≤-step (≤-reflexive refl)) ...| V v = const (≤-reflexive refl) ...| C c = const (≤-reflexive refl) -- This is the information we can establish about the state after the first time a signature is -- sent, and that we can carry forward to subsequent states, so we can use it to prove -- VO.ImplObligation₁. LvrProp : CarrierProp LvrProp v ep = ( v ^∙ vEpoch ≢ (₋epEC ep) ^∙ epEpoch ⊎ (v ^∙ vEpoch ≡ (₋epEC ep) ^∙ epEpoch × v ^∙ vRound ≤ (₋epEC ep) ^∙ epLastVotedRound)) LvrCarrier = PropCarrier LvrProp firstSendEstablishes : ∀ {e} → Vote → PK → (origSt : SystemState e) → SystemStateRel Step firstSendEstablishes _ _ _ (step-epoch _) = Lift (ℓ+1 0ℓ) ⊥ firstSendEstablishes _ _ _ (step-peer (step-cheat _ _)) = Lift (ℓ+1 0ℓ) ⊥ firstSendEstablishes {e} v' pk origSt sysStep@(step-peer {e'} {pid'} {pre = pre} pstep@(step-honest _)) = ( ReachableSystemState pre × ¬ MsgWithSig∈ pk (signature v' unit) (msgPool pre) × LvrCarrier pk (₋vSignature v') (StepPeer-post pstep) ) isValidNewPart⇒fSE : ∀ {e e' pk v'}{pre : SystemState e} {post : SystemState e'} {theStep : Step pre post} → Meta-Honest-PK pk → (ivnp : IsValidNewPart (₋vSignature v') pk theStep) → firstSendEstablishes v' pk pre theStep isValidNewPart⇒fSE {pre = pre} {theStep = step-peer {pid = β} {outs = outs} pstep} hpk (_ , ¬sentb4 , mws , _) with Any-++⁻ (List-map (β ,_) outs) (msg∈pool mws) -- TODO-1 : Much of this proof is not specific to the particular property being proved, and could be -- refactored into Yasm.Properties. See proof of unwind and refactor to avoid redundancy? ...| inj₂ furtherBack = ⊥-elim (¬sentb4 (MsgWithSig∈-transp mws furtherBack)) ...| inj₁ thisStep with pstep ...| step-cheat fm isCheat with thisStep ...| here refl with isCheat (msg⊆ mws) (msgSigned mws) ...| inj₁ dis = ⊥-elim (hpk dis) ...| inj₂ sentb4 rewrite msgSameSig mws = ⊥-elim (¬sentb4 sentb4) isValidNewPart⇒fSE {e}{pk = pk}{pre = pre}{theStep = step-peer {.e} {β} {postst} {outs} {.pre} pstep} hpk (r , ¬sentb4 , mws , vpk) | inj₁ thisStep | step-honest {.β} {postst} {outs} {init'} hstep with Any-satisfied-∈ (Any-map⁻ thisStep) ...| nm , refl , nm∈outs with hstep ...| step-init _ = ⊥-elim (¬Any[] nm∈outs) ...| step-msg {m} m∈pool _ with impl-sps-avp {m = msgWhole mws} r hpk hstep nm∈outs (msg⊆ mws) (msgSigned mws) ...| inj₂ sentb4 rewrite msgSameSig mws = ⊥-elim (¬sentb4 sentb4) ...| inj₁ (vpk' , _) with sameEpoch⇒sameEC vpk vpk' refl ...| refl with newVoteSameEpochGreaterRound r hstep (msg⊆ mws) nm∈outs (msgSigned mws) (subst (λ sig → ¬ MsgWithSig∈ pk sig (msgPool pre)) (sym (msgSameSig mws)) ¬sentb4) ...| refl , refl , newlvr with noEpochChangeYet {ppre = peerStates pre β} r refl hstep ...| eids≡ with StepPeer-post-lemma pstep ...| post≡ = r , ¬sentb4 , mkCarrier (step-s r (step-peer pstep)) mws vpk (inj₂ ( trans eids≡ (auxEid post≡) , ≤-reflexive (trans newlvr (auxLvr post≡)))) where auxEid = cong (_^∙ epEpoch ∘ ₋epEC) auxLvr = cong (_^∙ epLastVotedRound ∘ ₋epEC) ImplPreservesLvr : PeerStepPreserves LvrProp -- We don't have a real model for the initial peer state, so we can't prove this case yet. -- Eventually, we'll prove something like a peer doesn't initialize to an epoch for which -- it has already sent votes. ImplPreservesLvr r _ (step-init ix) = {!!} ImplPreservesLvr {pre = pre} r prop (step-msg {m} m∈pool inited) with carrProp prop ...| preprop with noEpochChangeYet r refl (step-msg m∈pool inited) ...| stepDNMepoch with preprop ...| inj₁ diffEpoch = inj₁ λ x → diffEpoch (trans x (sym stepDNMepoch)) ...| inj₂ (sameEpoch , rnd≤ppre) with (msgPart (carrSent prop)) ^∙ vEpoch ≟ (₋epEC (peerStates pre (msgSender (carrSent prop)))) ^∙ epEpoch ...| no neq = ⊥-elim (neq sameEpoch) ...| yes refl with lastVoteRound-mono r refl (step-msg m∈pool inited) ...| es≡⇒lvr≤ = inj₂ (stepDNMepoch , ≤-trans rnd≤ppre (es≡⇒lvr≤ stepDNMepoch)) LvrCarrier-transp* : ∀ {e e' pk sig} {start : SystemState e}{final : SystemState e'} → LvrCarrier pk sig start → (step* : Step* start final) → LvrCarrier pk sig final LvrCarrier-transp* lvrc step-0 = lvrc LvrCarrier-transp* lvrc (step-s s* s) = Carrier-transp LvrProp ImplPreservesLvr s (LvrCarrier-transp* lvrc s*) fSE⇒rnd≤lvr : ∀ {v' pk e'} → {final : SystemState e'} → Meta-Honest-PK pk → ∀ {d d'}{pre : SystemState d}{post : SystemState d'}{theStep : Step pre post} → firstSendEstablishes v' pk post theStep → Step* post final → LvrCarrier pk (signature v' unit) final fSE⇒rnd≤lvr _ {theStep = step-epoch _} () fSE⇒rnd≤lvr hpk {theStep = step-peer (step-honest _)} (_ , _ , lvrc) step* = LvrCarrier-transp* lvrc step* vo₁ : VO.ImplObligation₁ -- Initialization doesn't send any messages at all so far. In future it may send messages, but -- probably not containing Votes? vo₁ r (step-init _) _ _ m∈outs = ⊥-elim (¬Any[] m∈outs) vo₁ {e} {pid} {pk = pk} {pre = pre} r (step-msg m∈pool ps≡) {v' = v'} hpk v⊂m m∈outs sig ¬sentb4 vpb v'⊂m' m'∈pool sig' refl rnds≡ with newVoteSameEpochGreaterRound {e} {pre} {pid = pid} r (step-msg m∈pool ps≡) v⊂m m∈outs sig ¬sentb4 ...| eIds≡' , suclvr≡v'rnd , _ -- Use unwind to find the step that first sent the signature for v', then Any-Step-elim to -- prove that going from the poststate of that step to pre results in a state in which the -- round of v' is at most the last voted round recorded in the peerState of the peer that -- sent v' with Any-Step-elim {Q = LvrCarrier pk (₋vSignature v') pre} (fSE⇒rnd≤lvr {v'} hpk) (Any-Step-⇒ (λ _ ivnp → isValidNewPart⇒fSE {v' = v'} hpk ivnp) (unwind r hpk v'⊂m' m'∈pool sig')) ...| mkCarrier r' mws vpf' preprop -- The fake/trivial handler always sends a vote for its current epoch, but for a -- round greater than its last voted round with sameHonestSig⇒sameVoteData hpk (msgSigned mws) sig' (msgSameSig mws) ...| inj₁ hb = ⊥-elim (PerState.meta-sha256-cr pre r hb) ...| inj₂ refl -- Both votes have the same epochID, therefore same EpochConfig with sameEpoch⇒sameEC vpb vpf' refl -- Both peers are allowed to sign for the same PK, so they are the same peer ...| refl rewrite NodeId-PK-OK-injective (vp-ec vpb) (vp-sender-ok vpb) (vp-sender-ok vpf') with noEpochChangeYet r' refl (step-msg m∈pool ps≡) ...| stepDNMepoch with preprop ...| inj₁ diffEpoch = ⊥-elim (diffEpoch eIds≡') ...| inj₂ (sameEpoch , v'rnd≤lvr) -- So we have proved both that the round of v' is ≤ the lastVotedRound of -- the peer's state and that the round of v' is one greater than that value, -- which leads to a contradiction = ⊥-elim (1+n≰n (≤-trans (≤-reflexive suclvr≡v'rnd) (≤-trans (≤-reflexive rnds≡) v'rnd≤lvr))) -- TODO-1: This proof should be refactored to reduce redundant reasoning about the two votes. The -- newVoteSameEpochGreaterRound property uses similar reasoning. vo₂ : VO.ImplObligation₂ vo₂ _ (step-init _) _ _ m∈outs _ _ _ _ _ _ _ _ = ⊥-elim (¬Any[] m∈outs) vo₂ {pid = pid} {pre = pre} r (step-msg {_ , nm} _ pinit) {m = m} {m' = m'} hpk v⊂m m∈outs sig vnew vpk v'⊂m' m'∈outs sig' v'new vpk' es≡ rnds≡ with nm ...| P msg with msgsToSendWereSent {pid} {0} {P msg} {m} {peerStates pre pid} m∈outs ...| vm , refl , vmSent with msgsToSendWereSent1 {pid} {0} {msg} {vm} {peerStates pre pid} vmSent ...| _ , v∈outs with v⊂m -- Rebuilding keeps the same signature, and the SyncInfo included with the -- VoteMsg sent comprises QCs from the peer's state. Votes represented in -- those QCS have signatures that have been sent before, contradicting the -- assumption that v's signature has not been sent before. ...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld | procPMCerts≡ {0} {msg} {peerStates pre pid} {vm} v∈outs | SendVote-inj-v (Any-singleton⁻ v∈outs) = ⊥-elim (vnew (qcVotesSentB4 r pinit refl qc∈m refl vs∈qc)) ...| vote∈vm {si} with m' ...| P _ = ⊥-elim (P≢V (Any-singleton⁻ m'∈outs)) ...| C _ = ⊥-elim (C≢V (Any-singleton⁻ m'∈outs)) ...| V vm' -- Because the handler sends only one message, the two VoteMsgs vm and vm' are the same rewrite V-inj (trans (Any-singleton⁻ m'∈outs) (sym (Any-singleton⁻ m∈outs))) with v'⊂m' -- Both votes are the vote in the (single) VoteMsg, so their biIds must be the same ...| vote∈vm = refl -- Here we use the same reasoning as above to show that v' is not new ...| vote∈qc vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld | procPMCerts≡ {0} {msg} {peerStates pre pid} {vm} v∈outs = ⊥-elim (v'new (qcVotesSentB4 r pinit refl qc∈m refl vs∈qc))
{ "alphanum_fraction": 0.6051736782, "avg_line_length": 54.5418181818, "ext": "agda", "hexsha": "8dff56dbb6dd7c76d37f0478d6e2331630f34c35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4827, "size": 14999 }
-- Andreas, 2017-01-26 -- A hopefully exhaustive list of reasons why a function cannot -- be projection-like. The correctness is ensured by triggering -- a crash if any of the functions in this file is projection-like. {-# OPTIONS -v tc.proj.like.crash:1000 #-} data ⊥ : Set where record ⊤ : Set where data Bool : Set where true false : Bool data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A -- Not projection-like because recursive. -- (Could be changed). id' : ∀{A} (xs : List A) → List A id' [] = [] id' (x ∷ xs) = x ∷ id' xs -- Not projection-like because constructor-headed. -- (Could this be changed?) NonEmpty : ∀{A} (xs : List A) → Set NonEmpty [] = ⊥ NonEmpty (x ∷ xs) = ⊤ -- Not projection-like because of absurd match. -- Reason: we cannot infer the value of @A@ for stuck @head [] p@. head : ∀{A} (xs : List A) (p : NonEmpty xs) → A head [] () head (x ∷ xs) _ = x -- Not projection-like because of matching on non-principal argument. -- Reason: we cannot infer the value of @A@ for @dropHeadIf (x ∷ xs) b@. -- (Constructor applications are not inferable in general.) dropHeadIf : ∀{A} (xs : List A) (b : Bool) → List A dropHeadIf (_ ∷ xs) true = xs dropHeadIf xs _ = xs -- Not projection-like because of deep matching. -- Reason: we cannot infer @A@ for @drop2 (x ∷ xs)@. drop2 : ∀{A} (xs : List A) → List A drop2 (_ ∷ (_ ∷ xs)) = xs drop2 xs = xs -- Not projection-like because @abstract@. -- Reason: @tail []@ is stuck outside of the abstract block. abstract tail : ∀{A} (xs : List A) → List A tail [] = [] tail (_ ∷ xs) = xs -- Not projection-like because mutually defined. mutual odds : ∀{A} (xs : List A) → List A odds [] = [] odds (x ∷ xs) = evens xs postulate evens : ∀{A} (xs : List A) → List A -- evens [] = [] -- evens (x ∷ xs) = x ∷ odds xs -- Not projection-like because no parameters. IsTrue : Bool → Set IsTrue true = ⊤ IsTrue false = ⊥ -- Not projection-like because type can reduce. idTrue : (b : Bool) (p : IsTrue b) → Bool idTrue b p = b -- Not projection-like because it returns a paramter par : {A : Set} (xs : List A) → Set par {A} xs = A
{ "alphanum_fraction": 0.6150320807, "avg_line_length": 24.2444444444, "ext": "agda", "hexsha": "81729f795ab78508339b1d8c514aeb5e8d52d269", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Blaisorblade/Agda", "max_forks_repo_path": "test/Succeed/NotProjectionLike.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Blaisorblade/Agda", "max_issues_repo_path": "test/Succeed/NotProjectionLike.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Blaisorblade/Agda", "max_stars_repo_path": "test/Succeed/NotProjectionLike.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 706, "size": 2182 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.CohomologyGroups where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.KcompPrelims open import Cubical.ZCohomology.Groups.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) hiding (map) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) hiding (map) open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.Data.Int open import Cubical.Algebra.Group open GroupIso open GroupHom open BijectionIso -- --------------------------H¹(S¹) ----------------------------------- {- In order to apply Mayer-Vietoris, we need the following lemma. Given the following diagram a ↦ (a , 0) ψ ϕ A --> A × A -------> B ---> C If ψ is an isomorphism and ϕ is surjective with ker ϕ ≡ {ψ (a , a) ∣ a ∈ A}, then C ≅ B -} diagonalIso : ∀ {ℓ ℓ' ℓ''} {A : Group {ℓ}} (B : Group {ℓ'}) {C : Group {ℓ''}} (ψ : GroupIso (dirProd A A) B) (ϕ : GroupHom B C) → isSurjective _ _ ϕ → ((x : ⟨ B ⟩) → isInKer B C ϕ x → ∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → ((x : ⟨ B ⟩) → (∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → isInKer B C ϕ x) → GroupIso A C diagonalIso {A = A} B {C = C} ψ ϕ issurj ker→diag diag→ker = BijectionIsoToGroupIso bijIso where open GroupStr module A = GroupStr (snd A) module B = GroupStr (snd B) module C = GroupStr (snd C) module A×A = GroupStr (snd (dirProd A A)) module ψ = GroupIso ψ module ϕ = GroupHom ϕ ψ⁻ = inv ψ fstProj : GroupHom A (dirProd A A) fun fstProj a = a , GroupStr.0g (snd A) isHom fstProj g0 g1 i = (g0 A.+ g1) , GroupStr.lid (snd A) (GroupStr.0g (snd A)) (~ i) bijIso : BijectionIso A C map' bijIso = compGroupHom fstProj (compGroupHom (map ψ) ϕ) inj bijIso a inker = pRec (isSetCarrier A _ _) (λ {(a' , id) → (cong fst (sym (leftInv ψ (a , GroupStr.0g (snd A))) ∙∙ cong ψ⁻ id ∙∙ leftInv ψ (a' , a'))) ∙ cong snd (sym (leftInv ψ (a' , a')) ∙∙ cong ψ⁻ (sym id) ∙∙ leftInv ψ (a , GroupStr.0g (snd A)))}) (ker→diag _ inker) surj bijIso c = pRec propTruncIsProp (λ { (b , id) → ∣ (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b))) , ((sym (GroupStr.rid (snd C) _) ∙∙ cong ((fun ϕ) ((fun (map ψ)) (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b)) , GroupStr.0g (snd A))) C.+_) (sym (diag→ker (fun (map ψ) ((snd (ψ⁻ b)) , (snd (ψ⁻ b)))) ∣ (snd (ψ⁻ b)) , refl ∣₁)) ∙∙ sym ((isHom ϕ) _ _)) ∙∙ cong (fun ϕ) (sym ((isHom (map ψ)) _ _) ∙∙ cong (fun (map ψ)) (ΣPathP (sym (GroupStr.assoc (snd A) _ _ _) ∙∙ cong (fst (ψ⁻ b) A.+_) (GroupStr.invl (snd A) _) ∙∙ GroupStr.rid (snd A) _ , (GroupStr.lid (snd A) _))) ∙∙ rightInv ψ b) ∙∙ id) ∣₁ }) (issurj c) H¹-S¹≅ℤ : GroupIso intGroup (coHomGr 1 (S₊ 1)) H¹-S¹≅ℤ = diagonalIso (coHomGr 0 (S₊ 0)) (invGroupIso H⁰-S⁰≅ℤ×ℤ) (K.d 0) (λ x → K.Ker-i⊂Im-d 0 x (ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _ , isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ x inker → pRec propTruncIsProp (λ {((f , g) , id') → helper x f g id' inker}) ((K.Ker-d⊂Im-Δ 0 ∣ x ∣₂ inker))))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ F surj → pRec (setTruncIsSet _ _) (λ { (x , id) → K.Im-Δ⊂Ker-d 0 ∣ F ∣₂ ∣ (∣ (λ _ → x) ∣₂ , ∣ (λ _ → 0) ∣₂) , (cong ∣_∣₂ (funExt (surjHelper x))) ∙ sym id ∣₁ }) surj) ) □ invGroupIso (coHomPushout≅coHomSn 0 1) where module K = MV Unit Unit (S₊ 0) (λ _ → tt) (λ _ → tt) surjHelper : (x : Int) (x₁ : S₊ 0) → x -[ 0 ]ₖ 0 ≡ S0→Int (x , x) x₁ surjHelper x true = Iso.leftInv (Iso-Kn-ΩKn+1 0) x surjHelper x false = Iso.leftInv (Iso-Kn-ΩKn+1 0) x helper : (F : S₊ 0 → Int) (f g : ∥ (Unit → Int) ∥₂) (id : GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂) → isInKer (coHomGr 0 (S₊ 0)) (coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt))) (K.d 0) ∣ F ∣₂ → ∃[ x ∈ Int ] ∣ F ∣₂ ≡ inv H⁰-S⁰≅ℤ×ℤ (x , x) helper F = sElim2 (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f g id inker → pRec propTruncIsProp (λ ((a , b) , id2) → sElim2 {C = λ f g → GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂ → _ } (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ f g id → ∣ (helper2 f g .fst) , (sym id ∙ sym (helper2 f g .snd)) ∣₁) a b id2) (MV.Ker-d⊂Im-Δ _ _ (S₊ 0) (λ _ → tt) (λ _ → tt) 0 ∣ F ∣₂ inker) where helper2 : (f g : Unit → Int) → Σ[ x ∈ Int ] (inv H⁰-S⁰≅ℤ×ℤ (x , x)) ≡ GroupHom.fun (K.Δ 0) (∣ f ∣₂ , ∣ g ∣₂) helper2 f g = (f _ -[ 0 ]ₖ g _) , cong ∣_∣₂ (funExt λ {true → refl ; false → refl})
{ "alphanum_fraction": 0.4527027027, "avg_line_length": 46.1843971631, "ext": "agda", "hexsha": "c4741763fcc09c566086b3e2fdc03713233cb8cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Experiments/CohomologyGroups.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Experiments/CohomologyGroups.agda", "max_line_length": 142, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Experiments/CohomologyGroups.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2287, "size": 6512 }
module Sec2 where open import Sec4 data Bool : Set where T : Bool F : Bool _∣∣_ : Bool → Bool → Bool _ ∣∣ F = F _ ∣∣ T = T _&_ : Bool → Bool → Bool _ & F = F F & T = F T & T = T _==>_ : Bool → Bool → Bool F ==> _ = T T ==> F = F T ==> T = T not : Bool -> Bool not T = F not F = T data ℕ : Set where Z : ℕ S : ℕ → ℕ _+_ : ∀ (m : ℕ) → ∀ (n : ℕ) → ℕ Z + m = m (S n) + m = S (n + m) _*_ : ℕ → ℕ → ℕ Z * m = Z (S n) * m = (n * m) + m {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN BOOL Bool #-} _≤_ : ℕ → ℕ → Bool Z ≤ _ = T (S n) ≤ Z = F (S n) ≤ (S m) = n ≤ m _<_ : ℕ → ℕ → Bool Z < (S _) = T Z < Z = F (S n) < (S m) = n < m (S n) < Z = F _≥_ : ℕ → ℕ → Bool m ≥ n = n ≤ m _>_ : ℕ → ℕ → Bool m > n = n < m -- XXX: == on Nat _==_ : ℕ → ℕ → Bool x == y = (x ≥ y) & (x ≤ y) _-_ : ℕ → ℕ → ℕ Z - _ = Z (S n) - Z = (S n) (S n) - (S m) = n - m K : {A B : Set} → A → B → A K x _ = x SC : {A B C : Set} → (A → B → C) → (A → B) → A → C SC f g x = f x (g x) -- XXX: The list type data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A length : {A : Set} → List A → ℕ length [] = Z length (x ∷ m) = 1 + length m test : List ℕ test = 2 ∷ (3 ∷ []) test1 : ℕ test1 = length test data So : Bool → Set where ok : So T private head : {A : Set} → (x : List A) → So ((length x) ≥ 1) → A head [] () head (x ∷ x₁) _ = x private tail : {A : Set} → (x : List A) → So ((length x) ≥ 1) → List A tail [] () tail (x ∷ x₁) _ = x₁ if_then_else_ : {A : Set} → Bool → A → A → A if T then x else _ = x if F then _ else y = y private filter : {A : Set} → (A → Bool) → List A → List A filter cmp [] = [] filter cmp (x ∷ x₁) = if (cmp x) then x ∷ (filter cmp x₁) else filter cmp x₁ _++_ : {A : Set} → List A → List A → List A [] ++ r = r (x ∷ l) ++ r = x ∷ (l ++ r) insert : (a : ℕ) → (List ℕ) → (List ℕ) insert a [] = (a ∷ []) insert a (x ∷ l) = if (a ≤ x) then (a ∷ (x ∷ l)) else (x ∷ (insert a l)) tt2 : List ℕ tt2 = insert 9 (0 ∷ (8 ∷ [])) private foldl : {A : Set} → (A → A → A) → List A → A → A foldl _ [] y = y foldl f (x ∷ x₁) y = foldl f x₁ (f x y) -- XXX: injective tuple data _+′_ (A B : Set) : Set where inl : (x : A) → A +′ B inr : (x : B) → A +′ B case : {A B C : Set} → (A +′ B) → (f₁ : (A → C)) → (f₂ : (B → C)) → C case (inl x) f₁ _ = f₁ x case (inr x) _ f₂ = f₂ x -- XXX: Proof of transitivity of > T> : (a b c : ℕ) → So (a > b) → So (b > c) → So (a > c) T> Z Z Z () y T> Z Z (S c) () y T> Z (S b) c () y T> (S a) Z Z ok () T> (S a) Z (S c) ok () T> (S a) (S b) Z x y = ok T> (S a) (S b) (S c) x y = T> a b c x y -- XXX: Tuple type data _Π_ (A B : Set) : Set where <_,_> : (x : A) → (y : B) → A Π B private zip : {A B : Set} → (xs : List A) → (ys : List B) → So ((length xs) == (length ys)) → List (A Π B) zip [] [] k = [] zip [] (x ∷ ys) () zip (x ∷ xs) [] () zip (x ∷ xs) (y ∷ ys) k = < x , y > ∷ zip xs ys k -- TODO: Write unzip later on -- unzip : {A B : Set} → List (A Π B) → (List A Π List B) -- unzip xs = {!!} test5 : List (ℕ Π ℕ) test5 = zip ((1 ∷ [])) (2 ∷ []) ok infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} -- XXX: Transitivity of ℕ ℕ-trans : ∀ {x y z : ℕ} → (x ≡ y) → (y ≡ z) → (x ≡ z) ℕ-trans refl refl = refl -- XXX: Symmetry of ℕ sym : ∀ {x y : ℕ} → (x ≡ y) → (y ≡ x) sym refl = refl -- XXX: Congruence of ℕ cong : ∀ {x y : ℕ} → (x ≡ y) → (1 + x) ≡ (1 + y) cong refl = refl plus-z : ∀ (y : ℕ) → ((y + Z) ≡ y) plus-z Z = refl plus-z (S y) = cong (plus-z y) assoc-+ : ∀ (a b c : ℕ) → ((a + b) + c) ≡ (a + (b + c)) assoc-+ Z y z = refl assoc-+ (S x) y z = cong (assoc-+ x y z) t1 : ∀ (x y : ℕ) → (x + S y) ≡ S (x + y) t1 Z y = refl t1 (S x) y = cong (t1 x y) -- See this: https://github.com/dvanhorn/play/blob/master/agda/Rewrite.agda -- for examples of rewrite. -- Also read: http://agda.readthedocs.io/en/latest/language/with-abstraction.html#generalisation commute-+ : ∀ (x y : ℕ) → ((x + y) ≡ (y + x)) commute-+ Z y rewrite plus-z y = refl commute-+ (S x) y rewrite t1 y x = cong (commute-+ x y) mult-z : ∀ (y : ℕ) → ((y * Z) ≡ Z) mult-z Z = refl mult-z (S y) rewrite plus-z (y * Z) = mult-z y lemma-1 : ∀ {a b : ℕ} → ∀ (n : ℕ) → (a ≡ b) → (n + a ≡ n + b) lemma-1 _ refl = refl c-* : ∀ (m n : ℕ) → (m * S n) ≡ (m * n) + m c-* Z n rewrite commute-+ (n * Z) Z | mult-z n = refl c-* (S m) n rewrite commute-+ (m * S n) (S n) | commute-+ ((m * n) + n) (S m) | commute-+ m ((m * n) + n) | assoc-+ (m * n) n m | commute-+ (m * n) (n + m) | assoc-+ n m (m * n) | commute-+ m (m * n) = cong (lemma-1 n (c-* m n)) commute-* : ∀ (m n : ℕ) → (m * n) ≡ (n * m) commute-* m Z = mult-z m commute-* m (S n) rewrite c-* m n | commute-+ (m * n) m | commute-+ (n * m) m = lemma-1 m (commute-* m n) lemma-2 : ∀ (m n x : ℕ) → (m + n) * x ≡ ((m * x) + (n * x)) lemma-2 m n Z rewrite mult-z (m + n) | mult-z m | mult-z n = refl lemma-2 m n (S x) rewrite c-* (m + n) x | c-* m x | c-* n x | assoc-+ (m * x) m ((n * x) + n) | commute-+ m ((n * x) + n) | assoc-+ (n * x) n m | commute-+ n m | commute-+ (n * x) (m + n) | commute-+ (m * x) ((m + n) + (n * x)) | assoc-+ (m + n) (n * x) (m * x) | commute-+ (m + n) ((n * x) + (m * x)) | commute-+ (n * x) (m * x) | commute-+ ((m * x) + (n * x)) (m + n) | commute-+ ((m + n) * x) (m + n) = lemma-1 (m + n) (lemma-2 m n x) assoc-* : ∀ (a b c : ℕ) → ((a * b) * c) ≡ (a * (b * c)) assoc-* Z b c = refl assoc-* (S a) b c rewrite lemma-2 (a * b) b c | commute-+ ((a * b) * c) (b * c) | commute-+ (a * (b * c)) (b * c) = lemma-1 (b * c) (assoc-* a b c) distributivity-+-* : ∀ (a b c : ℕ) → (a * (b + c)) ≡ ((a * b) + (a * c)) distributivity-+-* a b c rewrite commute-* a (b + c) | commute-* a b | commute-* a c | lemma-2 b c a = refl -- XXX: factorial function on naturals fact : ∀ (x : ℕ) → ℕ fact Z = (S Z) fact (S Z) = (S Z) fact (S x) = x * (fact x) -- TODO: Relation on ℕ and > _>⋆_ : ℕ → ℕ → Prop Z >⋆ Z = ⊥ S x >⋆ Z = ⊤ Z >⋆ S y = ⊥ S x >⋆ S y = x >⋆ y lem : (m n : ℕ) → (p : n >⋆ Z) → (m + n) >⋆ 0 lem Z n p = p lem (S m) n p = ⋆ -- XXX: Theorem; factorial of any natural number is > 0 -- XXX: page-124, problem 4.35, Type Theory and functional programming thm : ∀ (x : ℕ) → (fact x) >⋆ Z thm Z = ⋆ thm (S Z) = ⋆ thm (S (S x)) = lem (x * fact (S x)) (fact (S x)) (thm (S x)) _<=_ : ∀ (m n : ℕ) → Prop Z <= n = ⊤ S m <= Z = ⊥ S m <= S n = m <= n -- symm : ∀ (m n : ℕ) → (p : m <= n) → (n <= m) -- symm Z Z p = ⋆ -- symm Z (S n) p = {!!} -- symm (S m) Z p = ⋆ -- symm (S m) (S n) p = symm m n p transm : ∀ (m n p : ℕ) → (m <= n) → (n <= p) → (m <= p) transm Z n p p1 p2 = ⋆ transm (S m) Z Z p1 p2 = p1 transm (S m) (S n) Z p1 p2 = p2 transm (S m) Z (S p) () p2 transm (S m) (S n) (S p) p1 p2 = transm m n p p1 p2 -- Show that 2 + 3 ≡ 3 + 2 eqq : 2 + 3 ≡ 3 + 2 eqq = refl
{ "alphanum_fraction": 0.4121220302, "avg_line_length": 23.9741100324, "ext": "agda", "hexsha": "4f34cab0e95a39838c46224d170303df502aad57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "Sec2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "Sec2.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "Sec2.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 3243, "size": 7408 }
{-# OPTIONS --without-K #-} module algebra.monoid where open import algebra.monoid.core public open import algebra.monoid.morphism public open import algebra.monoid.mset public
{ "alphanum_fraction": 0.7932960894, "avg_line_length": 25.5714285714, "ext": "agda", "hexsha": "0cfed5fcaf33e632cd834827c795f3c572bb85f2", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/monoid.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/monoid.agda", "max_line_length": 42, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 39, "size": 179 }
{-# OPTIONS --type-in-type --no-termination-check #-} module Containers where record Sigma (A : Set) (B : A -> Set) : Set where field fst : A snd : B fst open Sigma _*_ : (A B : Set) -> Set A * B = Sigma A \_ -> B data Zero : Set where record One : Set where data PROP : Set where Absu : PROP Triv : PROP _/\_ : PROP -> PROP -> PROP All : (S : Set) -> (S -> PROP) -> PROP Prf : PROP -> Set Prf Absu = Zero Prf Triv = One Prf (P /\ Q) = Prf P * Prf Q Prf (All S P) = (x : S) -> Prf (P x) _,_ : forall {A B} -> (a : A) -> B a -> Sigma A B a , b = record { fst = a ; snd = b } split : ∀ {A B} {C : Sigma A B -> Set} -> (f : (a : A) -> (b : B a) -> C (a , b)) -> (ab : Sigma A B) -> C ab split f ab = f (fst ab) (snd ab) data _+_ (A B : Set) : Set where l : A -> A + B r : B -> A + B cases : ∀ {A B} {C : A + B -> Set} -> ((a : A) -> C (l a)) -> ((b : B) -> C (r b)) -> (ab : A + B) -> C ab cases f g (l a) = f a cases f g (r b) = g b rearrange : ∀ {A B X} (C : A → Set) (D : B → Set) (f : Sigma A C → X) → Sigma (A + B) (cases C D) → X + Sigma B D rearrange {A} {B} {X} C D f = split {A + B} (cases (\a c → l (f (a , c))) (\b d → r (b , d))) data CON (I : Set) : Set where ?? : I -> CON I PrfC : PROP -> CON I _*C_ : CON I -> CON I -> CON I PiC : (S : Set) -> (S -> CON I) -> CON I SiC : (S : Set) -> (S -> CON I) -> CON I MuC : (O : Set) -> (O -> CON (I + O)) -> O -> CON I mutual data Mu {I : Set} (O : Set) (D : O -> CON (I + O)) (X : I -> Set) : O -> Set where inm : {o : O} -> [| D o |] (cases X (Mu O D X)) -> Mu O D X o [|_|]_ : {I : Set} -> (CON I) -> (I -> Set) -> Set [| ?? i |] X = X i [| PrfC p |] X = Prf p [| C *C D |] X = [| C |] X * [| D |] X [| PiC S C |] X = (s : S) -> [| C s |] X [| SiC S C |] X = Sigma S \s -> [| C s |] X [| MuC O C o |] X = Mu O C X o outm : {I O : Set} {D : O -> CON (I + O)} {X : I -> Set} {o : O} -> Mu O D X o -> [| D o |] (cases X (Mu O D X)) outm (inm x) = x Everywhere : {I : Set} -> (D : CON I) -> (J : I -> Set) -> (X : Set) -> (Sigma I J -> X) -> [| D |] J -> CON X Everywhere (?? i) J X c t = ?? (c (i , t)) Everywhere (PrfC p) J X c t = PrfC Triv Everywhere (C *C D) J X c t = Everywhere C J X c (fst t) *C Everywhere D J X c (snd t) Everywhere (PiC S C) J X c t = PiC S (\s -> Everywhere (C s) J X c (t s)) Everywhere (SiC S C) J X c t = Everywhere (C (fst t)) J X c (snd t) Everywhere (MuC O C o) J X c t = MuC (Sigma O (Mu O C J)) (\ot' -> Everywhere (C (fst ot')) (cases J (Mu O C J)) (X + (Sigma O (Mu O C J))) (split (cases(\i j -> l (c (i , j))) (\o'' t'' -> r (o'' , t'')))) (outm (snd ot'))) (o , t) everywhere : {I : Set} -> (D : CON I) -> (J : I -> Set) -> (X : Set) -> (c : Sigma I J -> X) -> (Y : X -> Set) -> (f : (ij : Sigma I J) -> Y (c ij)) -> (t : [| D |] J) -> [| Everywhere D J X c t |] Y everywhere (?? i) J X c Y f t = f (i , t) everywhere (PrfC p) J X c Y f t = _ everywhere (C *C D) J X c Y f t = everywhere C J X c Y f (fst t) , everywhere D J X c Y f (snd t) everywhere (PiC S C) J X c Y f t = \s -> everywhere (C s) J X c Y f (t s) everywhere (SiC S C) J X c Y f t = everywhere (C (fst t)) J X c Y f (snd t) everywhere (MuC O C o) J X c Y f (inm t) = inm (everywhere (C o) (cases J (Mu O C J)) (X + Sigma O (Mu O C J)) ( (split (cases (\i j -> l (c (i , j))) (\o t -> r (o , t))))) (cases Y (split \o'' t'' -> [| Everywhere (MuC O C o'') J X c t'' |] Y)) (split (cases (\i j -> f (i , j)) (\o'' t'' -> everywhere (MuC O C o'') J X c Y f t''))) t) induction : {I O : Set} (D : O -> CON (I + O)) (J : I -> Set) (X : Set) (c : Sigma I J -> X) (Y : X -> Set) (f : (ij : Sigma I J) -> Y (c ij)) (P : Sigma O (Mu O D J) -> Set) -> ({o : O} (v : [| D o |] cases J (Mu O D J)) -> [| Everywhere (D o) _ (X + Sigma O (Mu O D J)) (split (cases (\i j -> l (c (i , j))) (\o v -> r (o , v)))) v |] cases Y P -> P (o , inm v)) -> (o : O) (v : Mu O D J o) -> P (o , v) induction {I} {O} D J X c Y f P p o (inm v) = p v (everywhere {I + O} (D o) (λ x -> cases {I} {O} {\_ -> Set} J (Mu O D J) x) ((X + Sigma O (Mu O D J))) (rearrange J (Mu O D J) c) (cases Y P) (split {I + O} (cases (\i j -> f (i , j)) (\o v -> induction D J X c Y f P p o v))) v)
{ "alphanum_fraction": 0.3844901282, "avg_line_length": 37.7923076923, "ext": "agda", "hexsha": "4e439e1d2e4594da5ecbb14fb1e15ca3c456b465", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/Containers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/Containers.agda", "max_line_length": 95, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/Containers.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 1922, "size": 4913 }
module Everything where -- basic utilities open import Library open import Isomorphism -- basic category theory open import Categories open import Categories.Sets open import Categories.Families open import Categories.Initial open import Categories.Terminal open import Categories.CoProducts open import Categories.PushOuts open import Categories.Setoids -- should be replaced by standard libary def open import Functors open import Functors.Fin open import Functors.FullyFaithful open import Naturals -- basic examples open import Monoids open import FunctorCat -- ordinary monads open import Monads open import Monads.MonadMorphs open import Adjunctions open import Adjunctions.Adj2Mon open import Monads.Kleisli open import Monads.Kleisli.Functors open import Monads.Kleisli.Adjunction open import Monads.EM open import Monads.EM.Functors open import Monads.EM.Adjunction open import Monads.CatofAdj open import Monads.CatofAdj.InitAdj open import Monads.CatofAdj.TermAdjObj open import Monads.CatofAdj.TermAdjHom open import Monads.CatofAdj.TermAdjUniq open import Monads.CatofAdj.TermAdj -- relative monads open import RMonads open import RMonads.RMonadMorphs open import RAdjunctions open import RAdjunctions.RAdj2RMon open import RMonads.REM open import RMonads.REM.Functors open import RMonads.REM.Adjunction open import RMonads.RKleisli open import RMonads.RKleisli.Functors open import RMonads.RKleisli.Adjunction open import RMonads.Restriction open import RMonads.SpecialCase open import RMonads.CatofRAdj open import RMonads.CatofRAdj.InitRAdj open import RMonads.CatofRAdj.TermRAdjObj open import RMonads.CatofRAdj.TermRAdjHom open import RMonads.CatofRAdj.TermRAdj open import RMonads.Modules -- rmonad examples open import WellScopedTerms open import WellScopedTermsModel open import WellTypedTerms open import WellTypedTermsModel open import Lawvere
{ "alphanum_fraction": 0.8530351438, "avg_line_length": 26.0833333333, "ext": "agda", "hexsha": "fe70ae438e865cc0c32bbb52a9c87e38bcc94a9d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Everything.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Everything.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 517, "size": 1878 }
open import Auto open import Algebra open import Data.List using (_∷_; [];_++_;List) open import Data.Nat using (ℕ; suc; zero; _+_) open import Data.Product using (_×_; ∃₂; proj₁; proj₂) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong; sym) open import Reflection module Auto.Example.Even where private n+0≡n : ∀ n → n + 0 ≡ n n+0≡n zero = refl n+0≡n (suc n) = cong suc (n+0≡n n) m+1+n≡1+m+n : ∀ m n → m + suc n ≡ suc (m + n) m+1+n≡1+m+n zero n = refl m+1+n≡1+m+n (suc m) n = cong suc (m+1+n≡1+m+n m n) data Even : ℕ → Set where isEven0 : Even 0 isEven+2 : ∀ {n} → Even n → Even (suc (suc n)) even+ : ∀ {n m} → Even n → Even m → Even (n + m) even+ isEven0 e2 = e2 even+ (isEven+2 e1) e2 = isEven+2 (even+ e1 e2) isEven-2 : ∀ {n} → Even (2 + n) → Even n isEven-2 (isEven+2 n) = n simple : ∀ {n} → Even n → Even (n + 2) simple e = even+ e (isEven+2 isEven0) rules : HintDB rules = [] << quote isEven0 << quote isEven+2 << quote even+ test₁ : Even 4 test₁ = tactic (auto 5 rules) test₂ : ∀ {n} → Even n → Even (n + 2) test₂ = tactic (auto 5 rules) test₃ : ∀ {n} → Even n → Even (4 + n) test₃ = tactic (auto 5 rules) test₄ : ∀ {n} → Even n → Even (n + 2) test₄ = tactic (auto 5 rules) -- attempting to prove an impossible goal (e.g. evenness of n + 3 -- for all n) will result in searchSpaceExhausted goal₁ = quoteTerm (∀ {n} → Even n → Even (n + 3)) fail₁ : unquote (auto 5 rules goal₁) ≡ throw searchSpaceExhausted fail₁ = refl -- attempting to convert an unsupported expression (e.g. a lambda -- term) will result in unsupportedSyntax goal₂ = quoteTerm (∃₂ λ m n → Even (m + n)) fail₂ : unquote (auto 5 rules goal₂) ≡ throw unsupportedSyntax fail₂ = refl
{ "alphanum_fraction": 0.5904139434, "avg_line_length": 29.1428571429, "ext": "agda", "hexsha": "28cca0cdc7eec2bb2af85b82a9a5d26534ba7ba9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z", "max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/AutoInAgda", "max_forks_repo_path": "src/Auto/Example/Even.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/AutoInAgda", "max_issues_repo_path": "src/Auto/Example/Even.agda", "max_line_length": 88, "max_stars_count": 22, "max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/AutoInAgda", "max_stars_repo_path": "src/Auto/Example/Even.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z", "max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z", "num_tokens": 699, "size": 1836 }
{-# OPTIONS --rewriting #-} --{-# OPTIONS --exact-split #-} --{-# OPTIONS --show-implicit #-} module NaturalDeduction where module CustomPrelude where open import Prelude public renaming (_==_ to _≟_) -- TODO ask Agda to rename Eq._==_ to Eq._≟_ hiding (force) -- needed by ∞Delay {-# BUILTIN REWRITE _≡_ #-} {-# DISPLAY Eq._==_ _ = _≟_ #-} open import Container.List renaming (_∈_ to _∈C_; lookup∈ to lookup∈C) public _∈C?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈C xs) a ∈C? [] = no λ () a ∈C? (x ∷ xs) with a ≟ x … | yes a≡x rewrite a≡x = yes (zero refl) … | no a≢x with a ∈C? xs … | yes a∈xs = yes (suc a∈xs) … | no a∉xs = no (λ {(zero a≡x) → a≢x a≡x ; (suc a∈xs) → a∉xs a∈xs}) _≢_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ x ≢ y = ¬ (x ≡ y) infix 0 _↔_ _↔_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ↔ Q = (P → Q) × (Q → P) infix 0 _←⊗→_ _←⊗→_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ←⊗→ Q = (P → ¬ Q) × (Q → ¬ P) ∃ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∃ = Σ _ ∄ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∄ = ¬_ ∘ ∃ infixl 4 _⊎_ _⊎_ = Either {-# DISPLAY Either = _⊎_ #-} --open import Agda.Builtin.Size public open import Size public open import Control.Monad.State public open import Control.Monad.Identity public open import Container.Traversable public sequence : ∀ {a b} {A : Set a} {F : Set a → Set b} ⦃ _ : Applicative F ⦄ → List (F A) → F ⊤′ sequence [] = pure tt sequence (x ∷ xs) = x *> sequence xs open import Tactic.Nat public open import Tactic.Deriving.Eq public mutual data Delay (i : Size) (A : Set) : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay (i : Size) (A : Set) : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay public module BindDelay where mutual bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B bindDelay (now a) f = f a bindDelay (later ∞a) f = later (bind∞Delay ∞a f) bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (bind∞Delay ∞a f) = bindDelay (force ∞a) f module _ where open BindDelay open BindDelay public using () renaming (bind∞Delay to _∞>>=_) instance FunctorDelay : {i : Size} → Functor (Delay i) Functor.fmap FunctorDelay f x = bindDelay x $ now ∘ f instance ApplicativeDelay : {i : Size} → Applicative (Delay i) Applicative.pure ApplicativeDelay x = now x Applicative._<*>_ ApplicativeDelay (now f) x = f <$> x Applicative._<*>_ ApplicativeDelay (later ∞f) x = later ∘ bind∞Delay ∞f $ flip fmap x Applicative.super ApplicativeDelay = FunctorDelay instance MonadDelay : {i : Size} → Monad (Delay i) Monad._>>=_ MonadDelay = bindDelay Monad.super MonadDelay = ApplicativeDelay {-# DISPLAY BindDelay.bindDelay x f = x >>= f #-} mutual data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where ∼now : ∀ a → now a ∼ now a ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞ _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b? record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where coinductive field ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞ open _∞∼⟨_⟩∼_ public _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞ mutual ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a? ∼refl (now a) = ∼now a ∼refl (later a∞) = ∼later (∞∼refl a∞) ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞ ∼force (∞∼refl a∞) = ∼refl (force a∞) mutual ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a? ∼sym (∼now a) = ∼now a ∼sym (∼later eq) = ∼later (∞∼sym eq) ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞ ∼force (∞∼sym eq) = ∼sym (∼force eq) mutual ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c? ∼trans (∼now a) (∼now .a) = ∼now a ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′) ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞ ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′) --∼setoid : (i : Size) (A : Set) → Setoid lzero lzero --∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero mutual bind-assoc : ∀{i A B C} (m : Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((m >>= k) >>= l) ∼⟨ i ⟩∼ (m >>= λ a → (k a >>= l)) bind-assoc (now a) = ∼refl _ bind-assoc (later a∞) = ∼later (∞bind-assoc a∞) ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a >>= l)) ∼force (∞bind-assoc a∞) = bind-assoc (force a∞) mutual bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → (k : A → Delay ∞ B) → (a? >>= k) ∼⟨ i ⟩∼ (b? >>= k) bind-cong-l (∼now a) k = ∼refl _ bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k) ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k) ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k mutual bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? >>= k) ∼⟨ i ⟩∼ (a? >>= l) bind-cong-r (now a) h = h a bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h) ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l) ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} → (g <$> (f <$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) <$> a?) map-compose a? = bind-assoc a? map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) → a? ∼⟨ i ⟩∼ b? → (f <$> a?) ∼⟨ i ⟩∼ (f <$> b?) map-cong f eq = bind-cong-l eq (now ∘ f) data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where now⇓ : ∀{a} → now a ⇓ a later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a _⇓ : {A : Set} (x : Delay ∞ A) → Set x ⇓ = ∃ λ a → x ⇓ a map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f <$> a?) ⇓ f a map⇓ f now⇓ = now⇓ map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} → ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b bind⇓ f now⇓ q = q bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q) infixl 4 _>>=⇓_ _>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{a : A}{b : B} → ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b _>>=⇓_ = bind⇓ _ infixl 4 _⇓>>=⇓_ _⇓>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{b : B} → (?a⇓ : ?a ⇓) → f (fst ?a⇓) ⇓ b → (?a >>= f) ⇓ b _⇓>>=⇓_ (_ , a⇓) = bind⇓ _ a⇓ _⇓Dec>>=⇓_else⇓_ : ∀{A B}{f-yes : A → Delay ∞ B}{f-no : ¬ A → Delay ∞ B}{?a : Delay ∞ (Dec A)}{b : B} → (?a⇓ : ?a ⇓) → ((a : A) → f-yes a ⇓ b) → ((¬a : ¬ A) → f-no ¬a ⇓ b) → ((?a >>= (λ { (yes y) → f-yes y ; (no n) → f-no n }))) ⇓ b (yes y , y⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ y (no n , n⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n _⇓DecEq>>=⇓_else⇓_ : ∀{A : Set} {A₁ A₂ : A} {B}{f-yes : A₁ ≡ A₂ → Delay ∞ B}{f-no : A₁ ≢ A₂ → Delay ∞ B}{?a : Delay ∞ (Dec (A₁ ≡ A₂))}{b : B} → (?a⇓ : ?a ⇓) → ((eq : A₁ ≡ A₂) → f-yes eq ⇓ b) → ((¬eq : A₁ ≢ A₂) → f-no ¬eq ⇓ b) → ((?a >>= (λ { (yes refl) → f-yes refl ; (no n) → f-no n }))) ⇓ b (yes refl , y⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ refl (no n , n⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n app⇓ : ∀{A}{B}{f? : Delay ∞ (A → B)}{f : A → B}{x? : Delay ∞ A}{x : A} → f? ⇓ f → x? ⇓ x → (f? <*> x?) ⇓ f x app⇓ now⇓ now⇓ = now⇓ app⇓ now⇓ (later⇓ x?) = later⇓ $ map⇓ _ x? app⇓ (later⇓ f?) now⇓ = later⇓ $ bind⇓ _ f? now⇓ app⇓ (later⇓ ⇓f) (later⇓ ⇓x) = later⇓ $ bind⇓ _ ⇓f $ later⇓ $ bind⇓ _ ⇓x now⇓ subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a subst∼⇓ now⇓ (∼now a) = now⇓ subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq)) {- traverse⇓' : ∀{A}{B}{f? : A → Delay ∞ B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f? x ⇓ traverse⇓' x₁ x₂ = {!!} , {!!} -} {- traverse⇓ : ∀{A}{B}{f : A → B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f x ⇓ traverse⇓ x₁ x₂ = {!!} , {!!} -} traverse-list⇓ : ∀{A}{B} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : List A) → traverse f? xs ⇓ traverse-list⇓ f? f?⇓ [] = [] , now⇓ traverse-list⇓ f? f?⇓ (x ∷ xs) with f?⇓ x | traverse-list⇓ f? f?⇓ xs … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ {- traverse-vec⇓' : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vector A 𝑎) → traverse f? xs ⇓ traverse-vec⇓' f? f?⇓ [] = [] , now⇓ traverse-vec⇓' f? f?⇓ (x ∷ xs) with f?⇓ x | traverse-vec⇓' f? f?⇓ xs … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ traverse-vec⇓ : ∀{A}{B}{𝑎} (f : A → B) → (xs : Vector (Delay ∞ A) 𝑎) → traverse {!f!} xs ⇓ traverse-vec⇓ = {!!} -} {- traverse-vec⇓ : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vec A 𝑎) → traverse {!f!} xs ⇓ -} open CustomPrelude record Successor {ℓᴬ} (A : Set ℓᴬ) {ℓᴮ} (B : Set ℓᴮ) : Set (ℓᴬ ⊔ ℓᴮ) where field ⊹ : A → B open Successor ⦃ … ⦄ instance SuccessorNat : Successor Nat Nat Successor.⊹ SuccessorNat = suc instance SuccessorLevel : Successor Level Level Successor.⊹ SuccessorLevel = lsuc record Membership {ℓ} (m : Set ℓ) (M : Set ℓ) : Set (⊹ ℓ) where field _∈_ : m → M → Set ℓ _∉_ : m → M → Set ℓ xor-membership : ∀ {x : m} {X : M} → x ∈ X ←⊗→ x ∉ X open Membership ⦃ … ⦄ data _∈L_ {ℓ} {A : Set ℓ} (a : A) : List A → Set ℓ where zero : {as : List A} → a ∈L (a ∷ as) suc : {x : A} {as : List A} → a ∈L as → a ∈L (x ∷ as) instance Successor∈L : ∀ {ℓ} {A : Set ℓ} {a : A} {x : A} {as : List A} → Successor (a ∈L as) $ a ∈L (x ∷ as) Successor.⊹ Successor∈L = suc instance MembershipList : ∀ {ℓ} {A : Set ℓ} → Membership A $ List A Membership._∈_ MembershipList = _∈L_ Membership._∉_ MembershipList x X = ¬ x ∈ X Membership.xor-membership MembershipList = (λ x x₁ → x₁ x) , (λ x x₁ → x x₁) record DecidableMembership {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set (⊹ ℓ) where field _∈?_ : (x : m) → (X : M) → Dec $ x ∈ X field _∉?_ : (x : m) → (X : M) → Dec $ x ∉ X open DecidableMembership ⦃ … ⦄ instance DecidableMembershipList : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → DecidableMembership A $ List A DecidableMembership._∈?_ (DecidableMembershipList {ℓ} {A}) = _∈L?_ where _∈L?_ : (a : A) → (xs : List A) → Dec (a ∈ xs) a ∈L? [] = no λ () a ∈L? (x ∷ xs) with a ≟ x … | yes a≡x rewrite a≡x = yes zero … | no a≢x with a ∈L? xs … | yes a∈xs = yes (⊹ a∈xs) … | no a∉xs = no (λ {zero → a≢x refl ; (suc a∈xs) → a∉xs a∈xs}) DecidableMembership._∉?_ (DecidableMembershipList {ℓ} {A}) = {!!} _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ _⊆_ {A = A} R S = ∀ {x : A} → x ∈ R → x ∈ S record VariableName : Set where constructor ⟨_⟩ field name : Nat open VariableName instance EqVariableName : Eq VariableName Eq._==_ EqVariableName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record FunctionName : Set where constructor ⟨_⟩ field name : Nat open FunctionName instance EqFunctionName : Eq FunctionName Eq._==_ EqFunctionName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record PredicateName : Set where constructor ⟨_⟩ field name : Nat open PredicateName instance EqPredicateName : Eq PredicateName Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record Arity : Set where constructor ⟨_⟩ field arity : Nat open Arity instance EqArity : Eq Arity Eq._==_ EqArity _ = decEq₁ (cong arity) ∘ (_≟_ on arity $ _) record Vector (A : Set) (𝑎 : Arity) : Set where constructor ⟨_⟩ field vector : Vec A (arity 𝑎) open Vector instance EqVector : {A : Set} ⦃ _ : Eq A ⦄ {𝑎 : Arity} → Eq (Vector A 𝑎) Eq._==_ EqVector _ = decEq₁ (cong vector) ∘ (_≟_ on vector $ _) data ITerm : Nat → Set where variable : VariableName → ITerm zero function : FunctionName → {arity : Nat} → (τs : Vec (Σ Nat ITerm) arity) → {n : Nat} → n ≡ sum (vecToList $ (fst <$> τs)) → ITerm (suc n) mutual eqITerm : ∀ {n} → (x y : ITerm n) → Dec (x ≡ y) eqITerm = {!!} {- eqITerm : ∀ {n} → (x y : ITerm n) → Dec (x ≡ y) eqITerm {.0} (variable x) (variable x₁) = {!!} eqITerm {.(suc n)} (function x {arity = arity₁} τs {n = n} x₁) (function x₂ {arity = arity₂} τs₁ {n = .n} x₃) with x ≟ x₂ | arity₁ ≟ arity₂ eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) with eqITerms τs τs₁ eqITerm {.(suc n)} (function x₁ {arity₁} τs {n} x₄) (function .x₁ {.arity₁} .τs {.n} x₅) | yes refl | (yes refl) | (yes refl) rewrite x₄ | x₅ = yes refl eqITerm {.(suc n)} (function x₁ {arity₁} τs {n} x₄) (function .x₁ {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) | (no x) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | yes x₁ | (no x₃) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (yes x₃) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (no x₃) = {!!} -} eqITerms : ∀ {n} → (x y : Vec (Σ Nat ITerm) n) → Dec (x ≡ y) eqITerms {.0} [] [] = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) with fst₁ ≟ fst₂ eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl with eqITerm snd₁ snd₂ eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl with eqITerms x₁ y eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl | yes refl = yes refl eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl | no ref = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | no ref = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | no ref = {!!} instance EqITerm : ∀ {n} → Eq (ITerm n) Eq._==_ EqITerm = eqITerm {- instance EqITerm : ∀ {n} → Eq (ITerm n) Eq._==_ EqITerm (variable x) (variable x₁) = {!!} Eq._==_ EqITerm (function x {arity = arity₁} τs {n = n} x₁) (function x₂ {arity = arity₂} τs₁ {n = .n} x₃) with x ≟ x₂ | arity₁ ≟ arity₂ Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) with τs ≟ τs₁ Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) | τs≡τs₁ = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | yes x₁ | (no x₃) = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (yes x₃) = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (no x₃) = {!!} -} mutual data Term : Set where variable : VariableName → Term function : FunctionName → Terms → Term record Terms : Set where constructor ⟨_⟩ inductive field {arity} : Arity terms : Vector Term arity open Terms termVariable-inj : ∀ {𝑥₁ 𝑥₂} → Term.variable 𝑥₁ ≡ variable 𝑥₂ → 𝑥₁ ≡ 𝑥₂ termVariable-inj refl = refl termFunction-inj₁ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → 𝑓₁ ≡ 𝑓₂ termFunction-inj₁ refl = refl termFunction-inj₂ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → τ₁s ≡ τ₂s termFunction-inj₂ refl = refl terms-inj : ∀ {𝑎} → {τs₁ τs₂ : Vector Term 𝑎} → (τs₁≡τs₂ : (Terms.⟨_⟩ {𝑎} τs₁) ≡ ⟨ τs₂ ⟩) → τs₁ ≡ τs₂ terms-inj refl = refl mutual termToITerm : Term → Σ Nat ITerm termToITerm (variable x) = _ , (variable x) termToITerm (function x x₁) = {!!} termsToVec : Terms → Σ Nat (λ arity → Σ (Vec (Σ Nat ITerm) arity) λ τs → Σ Nat λ n → n ≡ sum (vecToList $ (fst <$> τs))) termsToVec (⟨_⟩ {arity = arity₁} ⟨ vector₁ ⟩) = {!!} iTermToTerm : Σ Nat ITerm → Term iTermToTerm = {!!} eq-term-round : ∀ τ → iTermToTerm (termToITerm τ) ≡ τ eq-term-round = {!!} eq-iterm-round : ∀ τ → termToITerm (iTermToTerm τ) ≡ τ eq-iterm-round = {!!} instance EqTerm : Eq Term Eq._==_ EqTerm x y with termToITerm x | graphAt termToITerm x | termToITerm y | graphAt termToITerm y Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy with ix ≟ iy Eq._==_ EqTerm x y | ix | ingraph eqx | .ix | ingraph eqy | yes refl = yes $ ((cong iTermToTerm eqy ⟨≡⟩ʳ cong iTermToTerm eqx) ⟨≡⟩ eq-term-round x) ʳ⟨≡⟩ eq-term-round y Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy | no neq = {!!} instance EqTerms : Eq Terms EqTerms = {!!} {- module _ {i : Size} where mutual EqTerm⇑ : (x y : Term) → Delay i ∘ Dec $ x ≡ y EqTerm⇑ (variable _) (variable _) = now (decEq₁ termVariable-inj $ _≟_ _ _) EqTerm⇑ (function 𝑓₁ τ₁s) (function 𝑓₂ τ₂s) = {- τ₁s≟τ₂s ← EqTerms⇑ τ₁s τ₂s -| (now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s) -} EqTerms⇑ τ₁s τ₂s >>= λ τ₁s≟τ₂s → now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s EqTerm⇑ (variable _) (function _ _) = now $ no λ () EqTerm⇑ (function _ _) (variable _) = now $ no λ () EqTerms⇑ : (x y : Terms) → Delay i ∘ Dec $ x ≡ y EqTerms⇑ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) with 𝑎₁ ≟ 𝑎₂ … | no 𝑎₁≢𝑎₂ = now $ no λ {τ₁≡τ₂ → 𝑎₁≢𝑎₂ (cong arity τ₁≡τ₂)} … | yes refl = EqVectorTerm⇑ τ₁s τ₂s >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no (λ ⟨τ₁s⟩≡⟨τ₂s⟩ → τ₁s≢τ₂s (terms-inj ⟨τ₁s⟩≡⟨τ₂s⟩)) } EqVectorTerm⇑ : ∀ {n} → (x y : Vector Term n) → Delay i ∘ Dec $ x ≡ y EqVectorTerm⇑ ⟨ [] ⟩ ⟨ [] ⟩ = now (yes refl) EqVectorTerm⇑ ⟨ τ₁ ∷ τ₁s ⟩ ⟨ τ₂ ∷ τ₂s ⟩ = EqTerm⇑ τ₁ τ₂ >>= λ { (yes refl) → EqVectorTerm⇑ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩ >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no λ τ₁₁s≡τ₁₂s → τ₁s≢τ₂s $ cong ⟨_⟩ ((vcons-inj-tail (cong vector τ₁₁s≡τ₁₂s))) } ; (no τ₁≢τ₂) → now $ no λ τ₁₁s≡τ₂₂s → τ₁≢τ₂ $ vcons-inj-head (cong vector τ₁₁s≡τ₂₂s) } EqVectorTerm⇓ : ∀ {n} → (x y : Vector Term n) → EqVectorTerm⇑ x y ⇓ EqVectorTerm⇓ ⟨ [] ⟩ ⟨ [] ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩ with 𝑥₁ ≟ 𝑥₂ … | yes refl with EqVectorTerm⇓ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ .τ₁s ⟩ | yes refl | (yes refl , snd₁) = _ , snd₁ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ τ₂s ⟩ | yes refl | (no x , snd₁) = _ , snd₁ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩ | no 𝑥₁≢𝑥₂ = _ , now⇓ EqVectorTerm⇓ ⟨ variable x ∷ τ₁s ⟩ ⟨ function x₁ x₂ ∷ τ₂s ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ function x x₁ ∷ τ₁s ⟩ ⟨ variable x₂ ∷ τ₂s ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩ with 𝑎₁ ≟ 𝑎₂ | 𝑓₁ ≟ 𝑓₂ … | no 𝑎₁≢𝑎₂ | no 𝑓₁≢𝑓₂ = _ , now⇓ … | no 𝑎₁≢𝑎₂ | yes refl = _ , now⇓ … | yes refl | no 𝑓₁≢𝑓₂ with EqVectorTerm⇓ τ₁s τ₂s … | (no τ₁s≢τ₂s , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩ | yes refl | yes refl with EqVectorTerm⇓ τ₁s τ₂s | EqVectorTerm⇓ ⟨ τ₁₂s ⟩ ⟨ τ₂₂s ⟩ … | (no τ₁s≢τ₂s , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) … | (no τ₁s≢τ₂s , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) EqTerms⇓ : (x y : Terms) → EqTerms⇑ x y ⇓ EqTerms⇓ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) with 𝑎₁ ≟ 𝑎₂ … | no 𝑎₁≢𝑎₂ = _ , now⇓ … | yes refl with EqVectorTerm⇓ τ₁s τ₂s … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ … | (no _ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ EqTerm⇓ : (x y : Term) → EqTerm⇑ x y ⇓ EqTerm⇓ (variable x) (variable x₁) = _ , now⇓ EqTerm⇓ (function _ τ₁s) (function _ τ₂s) with EqTerms⇓ τ₁s τ₂s … | (_ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ EqTerm⇓ (variable x) (function x₁ x₂) = _ , now⇓ EqTerm⇓ (function x x₁) (variable x₂) = _ , now⇓ instance EqTerm : Eq Term EqTerm = record { _==_ = λ x y → fst (EqTerm⇓ x y) } instance EqTerms : Eq Terms Eq._==_ EqTerms x y = fst (EqTerms⇓ x y) -} record Unifiable (F : Set) (T : Set) (U₁ U₂ : Set) (σ : (T → F) → F → F) : Set₁ where field _≈u≈_ : (φ₁ φ₂ : F) → Set unifier : (φ₁ φ₂ : F) → φ₁ ≈u≈ φ₂ → (F → F) × (F → F) unifier-law : (φ₁ φ₂ : F) → (=u= : φ₁ ≈u≈ φ₂) → (let u = unifier φ₁ φ₂ =u=) → (fst u) φ₁ ≡ (snd u) φ₂ {- {-# TERMINATING #-} -- substitute 𝑥ₛ τₛ τ = τ, where all occurrences of 𝑥ₛ are replaced by τₛ substitute : VariableName → Term → Term → Term substitute 𝑥ₛ τₛ τ@(variable 𝑥) = ifYes 𝑥ₛ ≟ 𝑥 then τₛ else τ substitute 𝑥ₛ τₛ (function 𝑓 ⟨ ⟨ τs ⟩ ⟩) = function 𝑓 ⟨ ⟨ substitute 𝑥ₛ τₛ <$> τs ⟩ ⟩ -} mutual substituteTerm⇑ : VariableName → Term → ∀ {i} → Term → Delay i Term substituteTerm⇑ 𝑥ₛ τₛ τ@(variable 𝑥) = now $ ifYes 𝑥ₛ ≟ 𝑥 then τₛ else τ substituteTerm⇑ 𝑥ₛ τₛ (function 𝑓 τs) = substituteTerms⇑ 𝑥ₛ τₛ τs >>= λ τsₛ → now $ function 𝑓 τsₛ substituteTerms⇑ : VariableName → Term → ∀ {i} → Terms → Delay i Terms substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ ⟨ [] ⟩ ⟩ substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = let τs = substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ τ = substituteTerm⇑ 𝑥ₛ τₛ τ in τs >>= λ { ⟨ ⟨ τs ⟩ ⟩ → τ >>= λ { τ → now $ ⟨ ⟨ τ ∷ τs ⟩ ⟩ } } substituteTerms⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τs : Terms) → substituteTerms⇑ 𝑥ₛ τₛ τs ⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (variable 𝑥) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (function 𝑓 τs₁) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ ((substituteTerms⇓ 𝑥ₛ τₛ τs₁ ⇓>>=⇓ now⇓) >>=⇓ now⇓) substituteTerm⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τ : Term) → substituteTerm⇑ 𝑥ₛ τₛ τ ⇓ substituteTerm⇓ 𝑥ₛ τₛ (variable 𝑥) = _ , now⇓ substituteTerm⇓ 𝑥ₛ τₛ (function 𝑓 τs) = _ , substituteTerms⇓ 𝑥ₛ τₛ τs ⇓>>=⇓ now⇓ substitute : VariableName → Term → Term → Term substitute 𝑥ₛ τₛ τ = fst $ substituteTerm⇓ 𝑥ₛ τₛ τ {- record StructureSuitableForSubstitution : Set where field (∀ x xs → x ∈ xs → ) VariableConstructor : VariableName → Term FunctionConstructor : FunctionName → (a : Nat) → (ts : Vec Term a) → Term ∀ v' → VariableConstructor v' ≡ τ → τₛ ≡ substitute 𝑥ₛ τₛ τ ∀ f' → FunctionConstructor f' ≡ τ → ∀ τ' → τ' ∈ τ → τₛ ≡ substitute 𝑥ₛ τₛ τ constructor-bases : Vec Set #constructors eq : ∀ x → x ∈ constructor-bases → Eq x substitute : → constructor-base Structure → Structure datatype-constructor₁ : constructor-base₁ → datatype MEMBERSHIP : ELEMENT → STRUCTURE → Set ELEMENT → MEMBERSHIP e s → Σ STRUCTURE VariableConstructor → Term FunctionConstructor → Term substitute : VariableConstructor → Term → Term → Term substitute -} instance MembershipTermTerms : Membership Term Terms Membership._∈_ MembershipTermTerms = _ᵗ∈ᵗˢ_ where data _ᵗ∈ᵗˢ_ (τ : Term) : Terms → Set where zero : τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ [] ⟩ ⟩ suc : ∀ {τs} → τ ᵗ∈ᵗˢ τs → τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ vector (terms τs) ⟩ ⟩ Membership._∉_ MembershipTermTerms x X = ¬ x ∈ X fst (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₂ x₁ snd (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₁ x₂ instance MembershipVariableNameTerm : Membership VariableName Term Membership._∈_ MembershipVariableNameTerm = _ᵛ∈ᵗ_ where data _ᵛ∈ᵗ_ (𝑥 : VariableName) : Term → Set where variable : 𝑥 ᵛ∈ᵗ variable 𝑥 function : ∀ 𝑓 {τ : Term} {τs} → {_ : 𝑥 ∈ τ} → τ ∈ τs → 𝑥 ᵛ∈ᵗ function 𝑓 τs Membership._∉_ MembershipVariableNameTerm x X = ¬ x ∈ X fst (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₂ x₁ snd (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₁ x₂ data 𝕃 {𝑨} (𝐴 : Set 𝑨) : Set 𝑨 data _∉𝕃_ {𝑨} {𝐴 : Set 𝑨} (x : 𝐴) : 𝕃 𝐴 → Set 𝑨 data 𝕃 {𝑨} (𝐴 : Set 𝑨) where ∅ : 𝕃 𝐴 ✓ : {x₀ : 𝐴} → {x₁s : 𝕃 𝐴} → x₀ ∉𝕃 x₁s → 𝕃 𝐴 instance Successor𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} → {x₀ : 𝐴} → {x₁s : 𝕃 𝐴} → Successor (x₀ ∉𝕃 x₁s) (𝕃 𝐴) Successor.⊹ Successor𝕃 = ✓ data _∉𝕃_ {𝑨} {𝐴 : Set 𝑨} (𝔞 : 𝐴) where ∅ : 𝔞 ∉𝕃 ∅ ● : ∀ {x₀} → 𝔞 ≢ x₀ → ∀ {x₁s} → 𝔞 ∉𝕃 x₁s → (x₀∉x₁s : x₀ ∉𝕃 x₁s) → 𝔞 ∉𝕃 ✓ x₀∉x₁s data _∈𝕃_ {𝑨} {𝐴 : Set 𝑨} : (𝔞 : 𝐴) → 𝕃 𝐴 → Set {-𝑨-} where here : (𝔞 : 𝐴) {xs : 𝕃 𝐴} (𝔞∉xs : 𝔞 ∉𝕃 xs) → 𝔞 ∈𝕃 (✓ 𝔞∉xs) there : {x : 𝐴} {xs : 𝕃 𝐴} (x∉xs : x ∉𝕃 xs) {𝔞 : 𝐴} → 𝔞 ∈𝕃 xs → 𝔞 ∈𝕃 ✓ x∉xs ∈→¬∉ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → x ∈𝕃 xs → ¬ x ∉𝕃 xs ∈→¬∉ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {𝔞} {xs} 𝔞∉xs)} (here 𝔞 {xs = xs} 𝔞∉xs) (● {x₀ = .𝔞} x {x₁s = .xs} x₂ .𝔞∉xs) = x refl ∈→¬∉ {𝑨} {𝐴} {x₁} {.(✓ {_} {_} {x} {∅} ∅)} (there {x = x} {xs = .∅} ∅ {𝔞 = .x₁} ()) (● {x₀ = .x} x₃ {x₁s = .∅} ∅ .∅) ∈→¬∉ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {x} {✓ {_} {_} {𝔞} {x₁s} x∉xs} (● {_} {_} {_} {𝔞} x₁ {x₁s} x∉xs₁ x∉xs))} (there {x = x} {xs = .(✓ {_} {_} {𝔞} {x₁s} x∉xs)} (● {x₀ = .𝔞} x₁ {x₁s = x₁s} x∉xs₁ x∉xs) {𝔞 = .𝔞} (here 𝔞 {xs = .x₁s} .x∉xs)) (● {x₀ = .x} x₃ {x₁s = .(✓ {_} {_} {𝔞} {x₁s} x∉xs)} (● {x₀ = .𝔞} x₂ {x₁s = .x₁s} x₄ .x∉xs) .(● {_} {_} {_} {𝔞} x₁ {x₁s} x∉xs₁ x∉xs)) = x₂ refl ∈→¬∉ {𝑨} {𝐴} {x} {.(✓ {_} {_} {x₁} {✓ {_} {_} {x₀} {x₁s} x∉xs} (● {_} {_} {_} {x₀} x₂ {x₁s} x∉xs₁ x∉xs))} (there {x = x₁} {xs = .(✓ {_} {_} {x₀} {x₁s} x∉xs)} (● {x₀ = x₀} x₂ {x₁s = x₁s} x∉xs₁ x∉xs) {𝔞 = .x} (there {x = .x₀} {xs = .x₁s} .x∉xs {𝔞 = .x} x₃)) (● {x₀ = .x₁} x₄ {x₁s = .(✓ {_} {_} {x₀} {x₁s} x∉xs)} (● {x₀ = .x₀} x₅ {x₁s = .x₁s} x₆ .x∉xs) .(● {_} {_} {_} {x₀} x₂ {x₁s} x∉xs₁ x∉xs)) = ∈→¬∉ x₃ x₆ ∉→¬∈ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → x ∉𝕃 xs → ¬ x ∈𝕃 xs ∉→¬∈ {𝑨} {𝐴} {x} {.∅} ∅ () ∉→¬∈ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {𝔞} {x₁s} x₁)} (● {x₀ = .𝔞} x {x₁s = x₁s} x₂ x₁) (here 𝔞 {xs = .x₁s} .x₁) = x refl ∉→¬∈ {𝑨} {𝐴} {x} {.(✓ {_} {_} {x₀} {x₁s} x₁)} (● {x₀ = x₀} x₂ {x₁s = x₁s} x₃ x₁) (there {x = .x₀} {xs = .x₁s} .x₁ {𝔞 = .x} x₄) = ∉→¬∈ x₃ x₄ foo : ∀ {𝑨} {𝐴 : Set 𝑨} {x x₀ : 𝐴} (x₁ : _≡_ {𝑨} {𝐴} x x₀) (x₂ : _∈𝕃_ {𝑨} {𝐴} x (✓ {_} {_} {x₀} {∅} ∅) → ⊥) → ⊥ foo {𝑨} {𝐴} {x} {.x} refl x₂ = x₂ (here x ∅) foo₂ : (𝑨 : Level) (𝐴 : Set 𝑨 ) (x₀ : 𝐴 ) (x₁s : 𝕃 𝐴 ) (x₁ : x₀ ∉𝕃 x₁s ) (x : 𝐴 ) (x₂ : 𝐴 ) (x₃ : x₂ ≡ x₀ → ⊥ ) (x₄ : x₂ ∉𝕃 x₁s ) (x₅ : ¬ (x ∈𝕃 ✓ (● x₃ x₄ x₁)) ) (x₆ : x ≡ x₂) → ⊥ foo₂ 𝑨 𝐴 x₀ x₁s x₁ x .x x₃ x₄ x₅ refl = x₅ (here x (● x₃ x₄ x₁)) -- x₅ (here x (● x₃ x₄ x₁)) foo₃ : (𝑨 : Level) (𝐴 : Set 𝑨 ) (x₀ : 𝐴 ) (x₁s : 𝕃 𝐴 ) (x₁ : x₀ ∉𝕃 x₁s ) (x : 𝐴 ) (x₂ : 𝐴 ) (x₃ : x₂ ≡ x₀ → ⊥ ) (x₄ : x₂ ∉𝕃 x₁s ) (x₅ : ¬ (x ∈𝕃 ✓ (● x₃ x₄ x₁)) ) (x₆ : x ≡ x₀) → ⊥ foo₃ 𝑨 𝐴 x₀ x₁s x₁ .x₀ x₂ x₃ x₄ x₅ refl = x₅ (there (● x₃ x₄ x₁) (here x₀ x₁)) ¬∈→∉ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → ¬ x ∈𝕃 xs → x ∉𝕃 xs ¬∈→∉ {𝑨} {𝐴} {x} {∅} x₁ = ∅ ¬∈→∉ {𝑨} {𝐴} {x} {✓ {x₀ = x₀} {x₁s = .∅} ∅} x₂ = ● (λ {x₁ → foo x₁ x₂}) ∅ ∅ ¬∈→∉ {𝑨} {𝐴} {x} {✓ {x₀ = x₂} {x₁s = .(✓ {_} {_} {x₀} {x₁s} x₁)} (● {x₀ = x₀} x₃ {x₁s = x₁s} x₄ x₁)} x₅ = ● (λ {x₆ → foo₂ 𝑨 𝐴 x₀ x₁s x₁ x x₂ x₃ x₄ x₅ x₆}) (● (λ {x₆ → foo₃ 𝑨 𝐴 x₀ x₁s x₁ _ x₂ x₃ x₄ x₅ x₆}) (¬∈→∉ (λ z → x₅ (there (● x₃ x₄ x₁) (there x₁ z)))) x₁) (● x₃ x₄ x₁) ¬∉→∈ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → ¬ x ∉𝕃 xs → x ∈𝕃 xs ¬∉→∈ {𝑨} {𝐴} {x} {∅} x₁ = ⊥-elim (x₁ ∅) ¬∉→∈ {𝑨} {𝐴} {x} {✓ {x₀ = x₀} {x₁s = ∅} ∅} x₂ = {!⊥-elim!} ¬∉→∈ {𝑨} {𝐴} {x₁} {✓ {x₀ = x₂} {x₁s = ✓ {x₀ = x₀} {x₁s = x₁s} x} (● {x₀ = .x₀} x₃ {x₁s = .x₁s} x₄ .x)} x₅ = {!!} pattern tail= x₁s = ✓ {x₁s = x₁s} _ pattern 𝕃⟦_⟧ x₀ = ✓ {x₀ = x₀} ∅ pattern _₀∷₁_∷⟦_⟧ x₀ x₁ x₂s = ✓ {x₀ = x₀} (● {x₁} _ {x₂s} _ _) --{-# DISPLAY ✓ {x₀ = x₀} (● {x₁} _ {x₂s} _ _) = _₀∷₁_∷⟦_⟧ x₀ x₁ x₂s #-} pattern _↶_↷_ x₀∉x₂s x₀≢x₁ x₁∉x₂s = ● x₀≢x₁ x₀∉x₂s x₁∉x₂s pattern _₀∷₁⟦_⟧ x₀ x₁s = ● {x₀} _ {x₁s} _ _ instance Membership𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} → Membership 𝐴 (𝕃 𝐴) Membership._∉_ Membership𝕃 x xs = x ∉𝕃 xs Membership._∈_ Membership𝕃 x xs = ¬ x ∉𝕃 xs fst (Membership.xor-membership Membership𝕃) x₁ x₂ = x₁ x₂ snd (Membership.xor-membership Membership𝕃) x₁ x₂ = x₂ x₁ {-# DISPLAY _∉𝕃_ = _∉_ #-} add-1-preserves-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} {x₀ : 𝐴} {x₁s : 𝕃 𝐴} (x₀∉x₁s : x₀ ∉ x₁s) {x : 𝐴} → x ∈ x₁s → x ∈ ✓ x₀∉x₁s add-1-preserves-∈𝕃 x₀∉x₁s x₁ (● x₃ x₄ x₂) = x₁ x₄ --{-# DISPLAY #-} _∉𝕃?_ : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → (x : 𝐴) (xs : 𝕃 𝐴) → Dec (x ∉𝕃 xs) _∉𝕃?_ x ∅ = yes ∅ _∉𝕃?_ x 𝕃⟦ x₀ ⟧ with x ≟ x₀ … | yes refl = no λ {(● x₂ _ .∅) → x₂ refl} … | no x≢x₀ = yes (● x≢x₀ ∅ ∅) _∉𝕃?_ x (✓ {x₀ = x₀} (● {x₁} x₀≢x₁ {x₂s} x₀∉x₂s x₁∉x₂s)) with x ≟ x₀ … | yes refl = no λ { (● x₃ _ _) → x₃ refl} … | no x≢x₀ with x ≟ x₁ … | yes refl = no λ { ((_ ↶ x≢x ↷ _) ↶ _ ↷ _) → x≢x refl } … | no x≢x₁ with x ∉𝕃? x₂s _∉𝕃?_ x₁ (✓ {x₂} (● {x₀} x₃ {.∅} x₄ x₀∉x₁s)) | no x≢x₀ | (no x≢x₁) | (yes ∅) = yes (● x≢x₀ (● x≢x₁ ∅ x₀∉x₁s) (● _ _ x₀∉x₁s)) _∉𝕃?_ x₁ (✓ {x₄} (● {x₃} x₅ {.(✓ asdf)} x₆ x₀∉x₁s)) | no x≢x₀ | (no x≢x₁) | (yes (● x₂ asdf₁ asdf)) = yes (● x≢x₀ (● x≢x₁ (● x₂ asdf₁ asdf) x₀∉x₁s) (● x₅ x₆ x₀∉x₁s)) … | no x∈x₂s = no λ { (● {_} x₃ {.(✓ x₁∉x₂s)} (● x₄ x∉x₀s .x₁∉x₂s) .(● x₀≢x₁ x₀∉x₂s x₁∉x₂s)) → x∈x₂s x∉x₀s} instance DecidableMembership𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → DecidableMembership 𝐴 (𝕃 𝐴) DecidableMembership._∉?_ DecidableMembership𝕃 = _∉𝕃?_ DecidableMembership._∈?_ DecidableMembership𝕃 x X with _∉𝕃?_ x X … | yes x∉X = no (λ x₁ → x₁ x∉X) … | no x∈X = yes x∈X x∈singleton→x=singleton : ∀ {𝑨} {𝐴 : Set 𝑨} {x₀ : 𝐴} ⦃ _ : Eq 𝐴 ⦄ {x₀∉∅ : _∉_ ⦃ Membership𝕃 ⦄ x₀ 𝕃.∅} {x : 𝐴} → x ∈ ✓ x₀∉∅ → x ≡ x₀ x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x₁ with x ≟ x₀ x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x₁ | yes refl = refl x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x∈x₀ | no x≢x₀ = ⊥-elim (x∈x₀ (● x≢x₀ ∅ ∅)) foo₄ : (𝑨 : Level ) (𝐴 : Set 𝑨 ) (x₁ : 𝐴 ) (x₂s : 𝕃 𝐴 ) (x₁∉x₂s : x₁ ∉ x₂s ) (x₀ : 𝐴 ) (x₀≢x₁ : x₀ ≡ x₁ → ⊥ ) (x₀∉x₂s : x₀ ∉ x₂s ) (x : 𝐴 ) (x∈x₀∉x₁s : x ∉ ✓ (● x₀≢x₁ x₀∉x₂s x₁∉x₂s) → ⊥ ) (x≢x₀ : x ≡ x₀ → ⊥ ) (x≢x₁ : x ≡ x₁ → ⊥ ) (x∉x₂s : x ∉ x₂s ) (x₂ : x ≡ x₀ ) → ⊥ foo₄ 𝑨 𝐴 x₁ x₂s x₁∉x₂s x₀ x₀≢x₁ x₀∉x₂s .x₀ x∈x₀∉x₁s x≢x₀ x≢x₁ x∉x₂s refl = x≢x₀ refl if-diff-then-somewhere-else-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ {x₀ : 𝐴} (x₁s : 𝕃 𝐴) {x₀∉x₁s : x₀ ∉ x₁s} {x : 𝐴} → x ∈ ✓ x₀∉x₁s → x ≢ x₀ → x ∈ x₁s if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} ∅ {∅} {x} x∈x₀∉∅ x≢x₀ ∅ = x≢x₀ (x∈singleton→x=singleton x∈x₀∉∅) if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} (✓ {x₀ = x₁} {x₁s = x₂s} x₁∉x₂s) {● x₀≢x₁ x₀∉x₂s ._} {x} x∈x₀∉x₁s x≢x₀ (● x≢x₁ x∉x₂s _) = x∈x₀∉x₁s (● (λ {x₂ → foo₄ 𝑨 𝐴 x₁ x₂s x₁∉x₂s x₀ x₀≢x₁ x₀∉x₂s _ x∈x₀∉x₁s x≢x₀ x≢x₁ x∉x₂s x₂}) (● x≢x₁ x∉x₂s x₁∉x₂s) (● x₀≢x₁ x₀∉x₂s x₁∉x₂s)) --if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} .∅ {x₀∉x₁s} {x} x∈x₀s x≢x₀ ∅ = {!!} --if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} ._ {x₀∉x₁s} {x} x∈x₀s x≢x₀ (● {x₀ = x₁} x≢x₁ {x₁s = x₂s} x∉x₂s x₁∉x₂s) = {!!} record TotalUnion {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set ℓ where field union : M → M → M unionLaw1 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₁ → x ∈ union X₁ X₂ unionLaw2 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₂ → x ∈ union X₁ X₂ unionLaw3 : ∀ {x : m} {X₁ X₂ : M} → x ∈ union X₁ X₂ → x ∈ X₁ ⊎ x ∈ X₂ open TotalUnion ⦃ … ⦄ {-# DISPLAY TotalUnion.union _ = union #-} add1-then-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ {x₀ : 𝐴} (x₁s : 𝕃 𝐴) {x₀∉x₁s : x₀ ∉ x₁s} → x₀ ∈ ✓ {x₀ = x₀} x₀∉x₁s add1-then-∈𝕃 {𝑨} {𝐴} {{x}} {x₀} x₁s {.x₁} (● {x₀ = .x₀} x₂ {x₁s = .x₁s} x₃ x₁) = x₂ refl module ModuleTotalUnion𝕃 {ℓ} (A : Set ℓ) ⦃ _ : Eq A ⦄ where -- TODO aribtrarily moves from l₀s to r₀s, so a union of 10 and 2 elements takes longer than a union of 2 and 10 elements totalUnion : 𝕃 A → 𝕃 A → 𝕃 A totalUnion ∅ ∅ = ∅ totalUnion ∅ r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) = r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) ∅ = l₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) with l₀ ∉? r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) | no l₀∈r₀s = totalUnion l₁s r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) | yes l₀∉r₀s = totalUnion l₁s (✓ l₀∉r₀s) totalUnionLaw2 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ X₂ → x ∈ totalUnion X₁ X₂ totalUnionLaw2 {x₁} {∅} {∅} x₂ x₃ = x₂ x₃ totalUnionLaw2 {x₁} {∅} {✓ x₂} x₃ x₄ = x₃ x₄ totalUnionLaw2 {x₁} {✓ x₂} {∅} x₃ x₄ = x₃ ∅ totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s with l₀ ∉? r₀s totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s | no l₀∈r₀s = totalUnionLaw2 {X₁ = l₁s} x∈r₀s $ x∉l₀s∪r₀s totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s | yes l₀∉r₀s = (totalUnionLaw2 {X₁ = l₁s} $ add-1-preserves-∈𝕃 l₀∉r₀s x∈r₀s) $ x∉l₀s∪r₀s totalUnionLaw1 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ X₁ → x ∈ totalUnion X₁ X₂ totalUnionLaw1 {x₁} {∅} {∅} x₂ x₃ = x₂ x₃ totalUnionLaw1 {x₁} {∅} {✓ {x₀ = x₀} {x₁s = X₂} x₂} x₃ x₄ = x₃ ∅ totalUnionLaw1 {x₁} {✓ {x₀ = x₀} {x₁s = X₁} x₂} {∅} x₃ x₄ = x₃ x₄ totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s with l₀ ∉? r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s with x ≟ l₀ totalUnionLaw1 {.l₀} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s | yes refl = totalUnionLaw2 {X₁ = l₁s} l₀∈r₀s $ x∉l₀s∪r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s | no x≢l₀ = let x∈l₁s = if-diff-then-somewhere-else-∈𝕃 l₁s x∈l₀s x≢l₀ in totalUnionLaw1 x∈l₁s $ x∉l₀s∪r₀s -- with x ≟ l₀ -- = {!!} totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | yes l₀∉r₀s with x ≟ l₀ --totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} l₀∈l₀s l₀∉l₀s∪r₀s | yes l₀∉r₀s | yes refl = {!l₀∉r₀s!} totalUnionLaw1 {.l₀} {✓ {l₀} {l₁s} l₀∉l₁s} {✓ {r₀} {r₁s} r₀∉r₁s} l₀∈l₀s l₀∉l₁s∪l₀r₀s | yes (● l₀≢r₀ l₀∉r₁s .r₀∉r₁s) | (yes refl) = let l₀∈l₀r₀s : l₀ ∈ (✓ (● l₀≢r₀ l₀∉r₁s r₀∉r₁s)) l₀∈l₀r₀s = add1-then-∈𝕃 (✓ r₀∉r₁s) in totalUnionLaw2 {X₁ = l₁s} l₀∈l₀r₀s $ l₀∉l₁s∪l₀r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | yes l₀∉r₀s | no x≢l₀ = let x∈l₁s = if-diff-then-somewhere-else-∈𝕃 l₁s x∈l₀s x≢l₀ in totalUnionLaw1 x∈l₁s $ x∉l₀s∪r₀s totalUnionLaw3 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ totalUnion X₁ X₂ → x ∈ X₁ ⊎ x ∈ X₂ totalUnionLaw3 = {!!} instance TotalUnion𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → TotalUnion 𝐴 (𝕃 𝐴) TotalUnion.union TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnion _ TotalUnion.unionLaw1 TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnionLaw1 _ TotalUnion.unionLaw2 (TotalUnion𝕃 {𝑨} {𝐴} {{x}}) {x₁} {X₁} {X₂} x₂ x₃ = ModuleTotalUnion𝕃.totalUnionLaw2 𝐴 {X₁ = X₁} {X₂ = X₂} x₂ x₃ TotalUnion.unionLaw3 TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnionLaw3 _ mutual data FTerm : 𝕃 VariableName → Set where variable : (𝑥 : VariableName) → FTerm (𝕃⟦ 𝑥 ⟧) function : (𝑓 : FunctionName) → ..{𝑥s : 𝕃 VariableName} {arity : Nat} → (τs : FTerms 𝑥s arity) → FTerm 𝑥s data FTerms : 𝕃 VariableName → Nat → Set where [] : FTerms ∅ zero _∷_ : ∀ ..{𝑥s' 𝑥s : 𝕃 VariableName} → FTerm 𝑥s' → {n : Nat} → FTerms 𝑥s n → FTerms (union {m = VariableName} 𝑥s' 𝑥s) (⊹ n) instance MembershipVariableNameFTerm : ∀ {𝑥s} → Membership VariableName (FTerm 𝑥s) MembershipVariableNameFTerm = {!!} record TotalIntersection {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set ℓ where field intersection : M → M → M intersectionLaw1 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₁ intersectionLaw2 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₂ intersectionLaw3 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₁ × x ∈ X₂ → x ∈ intersection X₁ X₂ open TotalIntersection ⦃ … ⦄ {-# DISPLAY TotalIntersection.intersection _ = intersection #-} instance Intersection𝕃 : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → TotalIntersection A (𝕃 A) Intersection𝕃 = {!!} data HasUniqueValues (A : Set) : List A → Set where [] : HasUniqueValues A [] _∷_ : {x : A} → {xs : List A} → x ∉ xs → (uxs : HasUniqueValues A xs) → HasUniqueValues A (x ∷ xs) record AList (A : Set) (B : Set) : Set where field domain : List A uniquedomain : HasUniqueValues A domain range : ∀ {x : A} → x ∈ domain → B open AList mutual subst : AList VariableName (∃ FTerm) → ∃ FTerm → ∃ FTerm subst x t@(.(✓ ∅) , variable 𝑥) with 𝑥 ∈? domain x … | yes x∈D = range x x∈D … | no x∉D = t subst x (fst₁ , function 𝑓 {𝑥s = 𝑥s} {arity = a} τs) with substs x a (𝑥s , τs) subst x (fst₁ , function 𝑓 {.fst₁} {arity₁} τs) | fst₂ , snd₁ = fst₂ , (function 𝑓 snd₁) substs : AList VariableName (∃ FTerm) → (a : Nat) → ∃ (flip FTerms a) → ∃ (flip FTerms a) substs x .0 (.∅ , []) = ∅ , [] substs x .(suc _) (._ , (x₁ ∷ snd₁)) with {!subst x (_ , x₁)!} substs x .(suc _) (._ , (x₁ ∷ snd₁)) | sb = {!!} -- indexed by the number of function symbols contained data DTerm : Nat → Set where variable : (𝑥 : VariableName) → DTerm zero function : (𝑓 : FunctionName) → {arity : Nat} → (τs : Vec (∃ DTerm) arity) → DTerm (suc (sum (fst <$> vecToList τs))) mutual substD : VariableName → ∃ DTerm → {n : Nat} → DTerm n → ∃ DTerm substD x x₁ (variable 𝑥) = ifYes 𝑥 ≟ x then x₁ else _ , variable 𝑥 substD x x₁ (function 𝑓 τs) with substsD x x₁ τs substD x x₁ (function 𝑓 τs) | ss = suc (sum (fst <$> vecToList ss)) , function 𝑓 {_} ss substsD : VariableName → ∃ DTerm → {n : Nat} → Vec (Σ Nat DTerm) n → Vec (Σ Nat DTerm) n substsD x x₁ [] = [] substsD x x₁ (x₂ ∷ x₃) with substD x x₁ (snd x₂) | substsD x x₁ x₃ substsD x x₁ (x₂ ∷ x₃) | fst₁ , snd₁ | sss = (fst₁ , snd₁) ∷ sss data HDTerm : Set where ⟨_⟩ : {n : Nat} → DTerm n → HDTerm substituteD : (AList VariableName HDTerm) → HDTerm → HDTerm substituteD = {!!} amgu : HDTerm → HDTerm → (AList VariableName HDTerm) → Maybe (AList VariableName HDTerm) amgu ⟨ variable 𝑥 ⟩ ⟨ variable 𝑥₁ ⟩ f = {!!} amgu ⟨ variable 𝑥 ⟩ ⟨ function 𝑓 τs ⟩ f = {!!} amgu ⟨ function 𝑓 τs ⟩ ⟨ variable 𝑥 ⟩ f = {!!} amgu ⟨ function 𝑓 τs₁ ⟩ ⟨ function 𝑓₁ τs ⟩ f = {!!} -- {- -- data AList : 𝕃 VariableName → Set -- where -- [] : AList ∅ -- _∷_ : -- -} -- record JohnUnification {𝑥s₁} (τ₁ : FTerm 𝑥s₁) {𝑥s₂} (τ₂ : FTerm 𝑥s₂) (_ : intersection {m = VariableName} 𝑥s₁ 𝑥s₂ ≡ ∅) : Set where -- field -- u₁ u₂ : AList VariableName (∃ FTerm) -- unification-law₁ : fst (subst u₁ (𝑥s₁ , τ₁)) ≡ fst (subst u₂ (𝑥s₂ , τ₂)) -- unification-law₂ : snd (subst u₁ (𝑥s₁ , τ₁)) ≡ transport FTerm (sym unification-law₁) (snd (subst u₂ (𝑥s₂ , τ₂))) -- record UnificationEquation (𝑥s : 𝕃 VariableName) : Set -- where -- field -- {lhs-terms} : 𝕃 VariableName -- lhs : FTerm lhs-terms -- {rhs-terms} : 𝕃 VariableName -- rhs : FTerm rhs-terms -- lhs∪rhs-terms : 𝑥s ≡ union {m = VariableName} lhs-terms rhs-terms -- open UnificationEquation -- number-of-variables-that-occur-more-than-once : ∀ {n-eqn} → Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn → Nat -- number-of-variables-that-occur-more-than-once {zero} [] = 0 -- number-of-variables-that-occur-more-than-once {suc n-eqn} x = {!!} -- number-of-function-symbols : ∀ {𝑥s} → FTerm 𝑥s → Nat -- number-of-function-symbols = {!!} -- record UnificationProblem (n-var n-lhs n-eqn : Nat) : Set -- where -- field -- equations : Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn -- n-var-law : number-of-variables-that-occur-more-than-once equations ≤ n-var -- n-lhs-law : (sum ∘ vecToList $ number-of-function-symbols ∘ lhs ∘ snd <$> equations) ≤ n-lhs -- instance MembershipUnificationEquationUnificationProblem : ∀ {n-var n-lhs n-eqn 𝑥s} → Membership (UnificationEquation 𝑥s) (UnificationProblem n-var n-lhs n-eqn) -- MembershipUnificationEquationUnificationProblem = {!!} -- instance MembershipVariableNameUnificationProblem : ∀ {n-var n-lhs n-eqn} → Membership VariableName (UnificationProblem n-var n-lhs n-eqn) -- MembershipVariableNameUnificationProblem = {!!} -- deletable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- deletable = {!!} -- deletable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (deletable eq) -- deletable? = {!!} -- u-deletable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → deletable εq × εq ∈ up) -- u-deletable? {n-var} {n-lhs} {zero} up = no {!!} -- u-deletable? {n-var} {n-lhs} {suc n-eqn} up = {!!} -- deleteRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs (suc n-eqn)} {𝑥s} {εq : UnificationEquation 𝑥s} → deletable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- deleteRule = {!!} -- decomposable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- decomposable = {!!} -- decomposable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (decomposable eq) -- decomposable? = {!!} -- u-decomposable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → decomposable εq × εq ∈ up) -- u-decomposable? = {!!} -- decomposeRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → decomposable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- decomposeRule = {!!} -- swapable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- swapable = {!!} -- swapable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (swapable eq) -- swapable? = {!!} -- u-swapable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → swapable εq × εq ∈ up) -- u-swapable? = {!!} -- swapRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → swapable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- swapRule = {!!} -- eliminatable : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → (εq∈up : εq ∈ up) → Set -- eliminatable = {!!} -- u-eliminatable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem (suc n-var) n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → ∃ λ (εq∈up : εq ∈ up) → eliminatable {up = up} {εq = εq} εq∈up) -- u-eliminatable? = {!!} -- eliminateRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem (suc n-var) n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → {εq∈up : εq ∈ up} → eliminatable {up = up} {εq = εq} εq∈up → UnificationProblem n-var n-lhs n-eqn -- eliminateRule = {!!} -- conflictable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- conflictable = {!!} -- conflictable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (conflictable εq) -- conflictable? = {!!} -- u-conflictable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → conflictable εq × εq ∈ up) -- u-conflictable? = {!!} -- checkable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- checkable = {!!} -- checkable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (checkable εq) -- checkable? = {!!} -- u-checkable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → checkable εq × εq ∈ up) -- u-checkable? = {!!} -- record HasNegation (A : Set) : Set -- where -- field -- ~ : A → A -- open HasNegation ⦃ … ⦄ -- {-# DISPLAY HasNegation.~ _ = ~ #-} -- data Formula : Set -- where -- atomic : PredicateName → Terms → Formula -- logical : Formula → -- Formula → -- Formula -- quantified : VariableName → Formula → Formula -- formulaAtomic-inj₁ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → 𝑃₁ ≡ 𝑃₂ -- formulaAtomic-inj₁ refl = refl -- formulaAtomic-inj₂ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → τs₁ ≡ τs₂ -- formulaAtomic-inj₂ refl = refl -- formulaLogical-inj₁ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₁ ≡ φ₂₁ -- formulaLogical-inj₁ refl = refl -- formulaLogical-inj₂ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₂ ≡ φ₂₂ -- formulaLogical-inj₂ refl = refl -- formulaQuantified-inj₁ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → 𝑥₁ ≡ 𝑥₂ -- formulaQuantified-inj₁ refl = refl -- formulaQuantified-inj₂ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → φ₁ ≡ φ₂ -- formulaQuantified-inj₂ refl = refl -- instance EqFormula : Eq Formula -- Eq._==_ EqFormula (atomic 𝑃₁ τs₁) -- (atomic 𝑃₂ τs₂) -- = decEq₂ formulaAtomic-inj₁ -- formulaAtomic-inj₂ -- (𝑃₁ ≟ 𝑃₂) -- (τs₁ ≟ τs₂) -- Eq._==_ EqFormula (logical φ₁₁ φ₁₂) -- (logical φ₂₁ φ₂₂) -- = decEq₂ formulaLogical-inj₁ formulaLogical-inj₂ (φ₁₁ ≟ φ₂₁) (φ₁₂ ≟ φ₂₂) -- Eq._==_ EqFormula (quantified 𝑥₁ φ₁) (quantified 𝑥₂ φ₂) = decEq₂ formulaQuantified-inj₁ formulaQuantified-inj₂ (𝑥₁ ≟ 𝑥₂) (φ₁ ≟ φ₂) -- Eq._==_ EqFormula (atomic _ _) (logical _ _) = no λ () -- Eq._==_ EqFormula (atomic _ _) (quantified _ _) = no λ () -- Eq._==_ EqFormula (logical _ _) (atomic _ _) = no λ () -- Eq._==_ EqFormula (logical _ _) (quantified _ _) = no λ () -- Eq._==_ EqFormula (quantified _ _) (atomic _ _) = no λ () -- Eq._==_ EqFormula (quantified _ _) (logical _ _) = no λ () -- data IsFormula : Formula → Set -- where -- ⟨_⟩ : (φ : Formula) → IsFormula φ -- record 𝓕ormula (Is𝓕ormula : Formula → Set) : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- is𝓕ormula : Is𝓕ormula formula -- open 𝓕ormula -- 𝑃[_♭_] : PredicateName → Terms → Formula -- 𝑃[_♭_] = atomic -- {-# DISPLAY atomic = 𝑃[_♭_] #-} -- record HasNeitherNor (A : Set) : Set -- where -- field -- _⊗_ : A → A → A -- open HasNeitherNor ⦃ … ⦄ -- instance HasNeitherNorFormula : HasNeitherNor Formula -- HasNeitherNor._⊗_ HasNeitherNorFormula = logical -- {-# DISPLAY logical = _⊗_ #-} -- instance HasNegationFormula : HasNegation Formula -- HasNegation.~ HasNegationFormula φ = φ ⊗ φ -- data IsLiteralFormula : Formula → Set -- where -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula $ 𝑃[ 𝑃 ♭ τs ] -- logical : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula ∘ ~ $ 𝑃[ 𝑃 ♭ τs ] -- eqIsLiteralFormula : ∀ {φ} → (lf₁ lf₂ : IsLiteralFormula φ) → lf₁ ≡ lf₂ -- eqIsLiteralFormula (atomic _ _) (atomic _ _) = refl -- eqIsLiteralFormula (logical _ _) (logical _ _) = refl -- instance EqIsLiteralFormula : ∀ {φ} → Eq (IsLiteralFormula φ) -- Eq._==_ EqIsLiteralFormula lf₁ lf₂ = yes $ eqIsLiteralFormula lf₁ lf₂ -- record LiteralFormula : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- isLiteralFormula : IsLiteralFormula formula -- open LiteralFormula -- instance EqLiteralFormula : Eq LiteralFormula -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) -- with φ₁ ≟ φ₂ -- … | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl}) -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteralFormula lf₁ lf₂) of λ {refl → yes refl} -- instance HasNegationLiteralFormula : HasNegation LiteralFormula -- HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩ -- HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩ -- data IsPropositionalFormula : Formula → Set -- where -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsPropositionalFormula $ 𝑃[ 𝑃 ♭ τs ] -- logical : {φ₁ : Formula} → IsPropositionalFormula φ₁ → {φ₂ : Formula} → IsPropositionalFormula φ₂ → IsPropositionalFormula (φ₁ ⊗ φ₂) -- instance EqIsPropositionalFormula : ∀ {φ} → Eq (IsPropositionalFormula φ) -- Eq._==_ EqIsPropositionalFormula (atomic _ _) (atomic _ _ ) = yes refl -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) with φ₁₁ ≟ φ₂₁ | φ₁₂ ≟ φ₂₂ -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | yes refl = yes refl -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | no φ₁₂≢φ₂₂ = no λ {refl → φ₁₂≢φ₂₂ refl} -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | no φ₁₁≢φ₂₁ | _ = no λ {refl → φ₁₁≢φ₂₁ refl} -- {- -- -- need to use coinduction to prove this -- foo : ¬ ∃ λ φ → ∃ λ (p₁ : IsPropositionalFormula φ) → ∃ λ (p₂ : IsPropositionalFormula φ) → p₁ ≢ p₂ -- foo (atomic x x₁ , atomic .x .x₁ , atomic .x .x₁ , snd₁) = snd₁ refl -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) with fst₃ ≟ fst₅ | fst₄ ≟ fst₆ -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ .fst₄ , snd₁) | yes refl | (yes refl) = snd₁ refl -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ fst₆ , snd₁) | yes refl | (no x₁) = foo (fst₂ , fst₄ , fst₆ , λ xs → x₁ xs) -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (yes x₁) = {!!} -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (no x₁) = {!!} -- foo (quantified x fst₁ , () , fst₃ , snd₁) -- -} -- record PropositionalFormula : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- isPropositionalFormula : IsPropositionalFormula formula -- open PropositionalFormula -- instance HasNegationPropositionalFormula : HasNegation PropositionalFormula -- HasNegation.~ HasNegationPropositionalFormula ⟨ φ ⟩ = ⟨ logical φ φ ⟩ -- instance HasNeitherNorPropositionalFormula : HasNeitherNor PropositionalFormula -- HasNeitherNor._⊗_ HasNeitherNorPropositionalFormula ⟨ φ₁ ⟩ ⟨ φ₂ ⟩ = ⟨ logical φ₁ φ₂ ⟩ -- {-# DISPLAY IsPropositionalFormula.logical = _⊗_ #-} -- record 𝓐ssertion (A : Set) : Set -- where -- no-eta-equality -- instance 𝓐ssertionList : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ → 𝓐ssertion (List A) -- 𝓐ssertionList = record {} -- instance 𝓐ssertionFormula : 𝓐ssertion Formula -- 𝓐ssertionFormula = record {} -- instance 𝓐ssertionLiteralFormula : 𝓐ssertion LiteralFormula -- 𝓐ssertionLiteralFormula = record {} -- infix 15 _⊢_ -- record 𝓢equent (A : Set) ⦃ _ : 𝓐ssertion A ⦄ : Set -- where -- constructor _⊢_ -- field -- antecedents : List A -- consequents : List A -- open 𝓢equent ⦃ … ⦄ -- instance Eq𝓢equent : {A : Set} ⦃ _ : Eq A ⦄ ⦃ _ : 𝓐ssertion A ⦄ → Eq (𝓢equent A) -- Eq._==_ Eq𝓢equent (antecedents₁ ⊢ consequents₁) (antecedents₂ ⊢ consequents₂) = {!antecedents₁ ≟ antecedents₂!} -- instance 𝓐ssertion𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ → 𝓐ssertion (𝓢equent A) -- 𝓐ssertion𝓢equent = record {} -- instance 𝓐ssertion𝓕ormula : {Is𝓕ormula : Formula → Set} → 𝓐ssertion (𝓕ormula Is𝓕ormula) -- 𝓐ssertion𝓕ormula = record {} -- infix 15 _╱_ -- record Sequent : Set -- where -- constructor _╱_ -- field -- statement : Formula -- suppositions : List Formula -- open Sequent -- instance EqSequent : Eq Sequent -- Eq._==_ EqSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong statement) (cong suppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂) -- instance HasNegationSequent : HasNegation Sequent -- HasNegation.~ HasNegationSequent ( φᵗ ╱ φˢs ) = ~ φᵗ ╱ φˢs -- record IsLiteralSequent (Φ : Sequent) : Set -- where -- constructor _╱_ -- field -- isLiteralStatement : IsLiteralFormula (statement Φ) -- isLiteralSuppositions : All IsLiteralFormula (suppositions Φ) -- open IsLiteralSequent -- instance EqIsLiteralSequent : ∀ {Φ} → Eq (IsLiteralSequent Φ) -- Eq._==_ EqIsLiteralSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong isLiteralStatement) (cong isLiteralSuppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂) -- record LiteralSequent : Set -- where -- constructor ⟨_⟩ -- field -- {sequent} : Sequent -- isLiteralSequent : IsLiteralSequent sequent -- open LiteralSequent -- pattern ⟪_,_⟫ h s = ⟨_⟩ {h} s -- pattern ⟪_⟫ h = (⟨_⟩ {h} _) -- instance EqLiteralSequent : Eq LiteralSequent -- Eq._==_ EqLiteralSequent ⟪ Φ₁ ⟫ ⟪ Φ₂ ⟫ with Φ₁ ≟ Φ₂ -- Eq._==_ EqLiteralSequent ⟨ !Φ₁ ⟩ ⟨ !Φ₂ ⟩ | yes refl with !Φ₁ ≟ !Φ₂ -- Eq._==_ EqLiteralSequent _ _ | yes refl | yes refl = yes refl -- Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | yes refl | no !Φ₁≢!Φ₂ = no λ {refl → !Φ₁≢!Φ₂ refl} -- Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | no Φ₁≢Φ₂ = no λ {refl → Φ₁≢Φ₂ refl} -- instance HasNegationLiteralSequent : HasNegation LiteralSequent -- HasNegation.~ HasNegationLiteralSequent ⟨ atomic 𝑃 τs ╱ φˢs ⟩ = ⟨ logical 𝑃 τs ╱ φˢs ⟩ -- HasNegation.~ HasNegationLiteralSequent ⟨ logical 𝑃 τs ╱ φˢs ⟩ = ⟨ atomic 𝑃 τs ╱ φˢs ⟩ -- infix 13 _¶_ -- record Problem : Set -- where -- constructor _¶_ -- field -- inferences : List Sequent -- interest : Sequent -- open Problem -- instance EqProblem : Eq Problem -- EqProblem = {!!} -- record IsLiteralProblem (𝔓 : Problem) : Set -- where -- constructor _¶_ -- field -- {problem} : Problem -- isLiteralInferences : All IsLiteralSequent (inferences 𝔓) -- isLiteralInterest : IsLiteralSequent (interest 𝔓) -- open IsLiteralProblem -- instance EqIsLiteralProblem : ∀ {𝔓} → Eq (IsLiteralProblem 𝔓) -- EqIsLiteralProblem = {!!} -- record LiteralProblem : Set -- where -- constructor ⟨_⟩ -- field -- {problem} : Problem -- isLiteralProblem : IsLiteralProblem problem -- open LiteralProblem -- instance EqLiteralProblem : Eq LiteralProblem -- EqLiteralProblem = {!!} -- record Element : Set -- where -- constructor ⟨_⟩ -- field -- element : Nat -- instance EqElement : Eq Element -- Eq._==_ EqElement ⟨ ε₁ ⟩ ⟨ ε₂ ⟩ with ε₁ ≟ ε₂ -- Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | yes refl = yes refl -- Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | no ε₁≢ε₂ = no λ {refl → ε₁≢ε₂ refl} -- record Elements : Set -- where -- constructor ⟨_⟩ -- field -- {arity} : Arity -- elements : Vector Element arity -- open Elements -- instance EqElements : Eq Elements -- Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂) -- with 𝑎₁ ≟ 𝑎₂ -- … | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl} -- … | yes refl -- with εs₁ ≟ εs₂ -- … | yes refl = yes refl -- … | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl} -- record TruthValue : Set -- where -- constructor ⟨_⟩ -- field -- truthValue : Bool -- record Interpretation : Set -- where -- field -- μ⟦_⟧ : VariableName → Element -- 𝑓⟦_⟧ : FunctionName → Elements → Element -- 𝑃⟦_⟧ : PredicateName → Elements → TruthValue -- open Interpretation -- mutual -- τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element -- τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥 -- τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs -- τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs)) -- τs⇑⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ [] ⟩ -- τs⇑⟦ I ⟧ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ >>= λ ts → now ⟨ t ∷ vector ts ⟩) -- τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩ = _ , τs⇓⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ ⟩ = -- _ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ ⟨ τs₂ ⟩ ⟩ ⇓>>=⇓ now⇓) -- τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓ -- τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓ -- τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓ -- τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element -- τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ) -- record HasSatisfaction (A : Set) ⦃ _ : 𝓐ssertion A ⦄ : Set₁ -- where -- field -- _⊨_ : Interpretation → A → Set -- _⊭_ : Interpretation → A → Set -- _⊭_ I = ¬_ ∘ I ⊨_ -- open HasSatisfaction ⦃ … ⦄ -- {-# DISPLAY HasSatisfaction._⊨_ _ = _⊨_ #-} -- {-# DISPLAY HasSatisfaction._⊭_ _ = _⊭_ #-} -- record _≞_/_ (𝓘 : Interpretation) (I : Interpretation) (𝑥 : VariableName) : Set -- where -- field -- μEquality : {𝑥′ : VariableName} → 𝑥′ ≢ 𝑥 → μ⟦ 𝓘 ⟧ 𝑥 ≡ μ⟦ I ⟧ 𝑥′ -- 𝑓Equality : (𝑓 : FunctionName) (μs : Elements) → 𝑓⟦ 𝓘 ⟧ 𝑓 μs ≡ 𝑓⟦ I ⟧ 𝑓 μs -- 𝑃Equality : (𝑃 : PredicateName) → (μs : Elements) → 𝑃⟦ 𝓘 ⟧ 𝑃 μs ≡ 𝑃⟦ I ⟧ 𝑃 μs -- instance HasSatisfactionFormula : HasSatisfaction Formula -- HasSatisfaction._⊨_ HasSatisfactionFormula I (atomic 𝑃 τs) = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ -- HasSatisfaction._⊨_ HasSatisfactionFormula I (logical φ₁ φ₂) = ¬ I ⊨ φ₁ × ¬ I ⊨ φ₂ -- HasSatisfaction._⊨_ HasSatisfactionFormula I (quantified 𝑥 φ) = (𝓘 : Interpretation) → 𝓘 ≞ I / 𝑥 → 𝓘 ⊨ φ -- instance HasSatisfaction𝓕ormula : {Is𝓕ormula : Formula → Set} → HasSatisfaction (𝓕ormula Is𝓕ormula) -- HasSatisfaction._⊨_ HasSatisfaction𝓕ormula I ⟪ φ ⟫ = I ⊨ φ -- instance HasSatisfactionLiteralFormula : HasSatisfaction LiteralFormula -- HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ atomic 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ -- HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ logical 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ false ⟩ -- instance HasSatisfactionList : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A -- HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤ -- HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs -- instance 𝓐ssertionSequent : 𝓐ssertion Sequent -- 𝓐ssertionSequent = record {} -- instance 𝓐ssertionLiteralSequent : 𝓐ssertion LiteralSequent -- 𝓐ssertionLiteralSequent = record {} -- instance 𝓐ssertionProblem : 𝓐ssertion Problem -- 𝓐ssertionProblem = record {} -- instance 𝓐ssertionLiteralProblem : 𝓐ssertion LiteralProblem -- 𝓐ssertionLiteralProblem = record {} -- instance HasSatisfactionSequent : HasSatisfaction Sequent -- HasSatisfaction._⊨_ HasSatisfactionSequent I (φᵗ ╱ φˢs) = I ⊨ φˢs → I ⊨ φᵗ -- instance HasSatisfactionLiteralSequent : HasSatisfaction LiteralSequent -- HasSatisfaction._⊨_ HasSatisfactionLiteralSequent I Φ = I ⊨ sequent Φ -- instance HasSatisfactionProblem : HasSatisfaction Problem -- HasSatisfaction._⊨_ HasSatisfactionProblem I (Φ⁺s ¶ Φ⁻) = I ⊨ Φ⁺s → I ⊨ Φ⁻ -- instance HasSatisfactionLiteralProblem : HasSatisfaction LiteralProblem -- HasSatisfaction._⊨_ HasSatisfactionLiteralProblem I 𝔓 = I ⊨ problem 𝔓 -- record HasDecidableSatisfaction (A : Set) ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ : Set₁ -- where -- field -- _⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x) -- open HasDecidableSatisfaction ⦃ … ⦄ -- {-# DISPLAY HasDecidableSatisfaction._⊨?_ _ = _⊨?_ #-} -- instance HasDecidableSatisfactionFormula : HasDecidableSatisfaction Formula -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (atomic 𝑃 τs) = {!!} -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (logical φ₁ φ₂) = {!!} -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (quantified 𝑥 φ) = {!!} -- instance HasDecidableSatisfactionLiteralFormula : HasDecidableSatisfaction LiteralFormula -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula -- I ⟨ atomic 𝑃 τs ⟩ -- with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ -- … | ⟨ true ⟩ = yes refl -- … | ⟨ false ⟩ = no λ () -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula -- I ⟨ logical 𝑃 τs ⟩ -- with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ -- … | ⟨ true ⟩ = no λ () -- … | ⟨ false ⟩ = yes refl -- module _ {A} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ -- where -- ⊨_ : A → Set -- ⊨ x = (I : Interpretation) → I ⊨ x -- ⊭_ : A → Set -- ⊭_ = ¬_ ∘ ⊨_ -- record HasDecidableValidation (A : Set) ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ : Set₁ -- where -- field -- ⊨?_ : (x : A) → Dec $ ⊨ x -- instance HasDecidableValidationFormula : HasDecidableValidation Formula -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (atomic 𝑃 τs) = {!!} -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (logical φ₁ φ₂) = {!!} -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (quantified 𝑥 φ) = {!!} -- instance HasDecidableValidationLiteralFormula : HasDecidableValidation LiteralFormula -- HasDecidableValidationLiteralFormula = {!!} -- instance HasDecidableValidationSequent : HasDecidableValidation Sequent -- HasDecidableValidationSequent = {!!} -- instance HasDecidableValidationLiteralSequent : HasDecidableValidation LiteralSequent -- HasDecidableValidationLiteralSequent = {!!} -- instance HasDecidableValidationProblem : HasDecidableValidation Problem -- HasDecidableValidationProblem = {!!} -- instance HasDecidableValidationLiteralProblem : HasDecidableValidation LiteralProblem -- HasDecidableValidationLiteralProblem = {!!} -- postulate -- substituteFormula : (VariableName → Term) → Formula → Formula -- record Unifier : Set -- where -- field -- unifier-left unifier-right : VariableName → Term -- open Unifier -- record _Unifies_and_ (υ : Unifier) (φ₁ φ₂ : Formula) : Set -- where -- field -- unification-law : substituteFormula (unifier-left υ) φ₁ ≡ substituteFormula (unifier-right υ) φ₂ -- record HasSubstantiveDischarge (+ : Set) (- : Set) : Set₁ -- where -- field -- _≽_ : + → - → Set -- _⋡_ : + → - → Set -- + ⋡ - = ¬ + ≽ - -- open HasSubstantiveDischarge ⦃ … ⦄ -- {-# DISPLAY HasSubstantiveDischarge._≽_ _ = _≽_ #-} -- instance HasSubstantiveDischargeList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ → HasSubstantiveDischarge (List A) A -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeList +s - = {!!} -- ∃ λ c → (c ∈ +s) × c ≽ - -- instance HasSubstantiveDischargeListList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ → HasSubstantiveDischarge (List A) (List A) -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeListList +s -s = {!!} -- ∀ i → i ∈ -s → +s ≽ i -- instance HasSubstantiveDischargeFormulaFormula : HasSubstantiveDischarge Formula Formula -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeFormulaFormula φ₁ φ₂ = ∃ λ υ → υ Unifies φ₁ and φ₂ -- instance HasSubstantiveDischargeSequentSequent : HasSubstantiveDischarge Sequent Sequent -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeSequentSequent (+ᵗ ╱ +ᵖs) (-ᵗ ╱ -ᵖs) = {!!} -- +ᵗ ≽ -ᵗ × +ᵖs ≽ -ᵖs -- use "unification into", from John's "Natural Deduction" -- instance HasSubstantiveDischargeProblemProblem : HasSubstantiveDischarge Problem Problem -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeProblemProblem (+s ¶ +) (-s ¶ -) = {!!} -- + ≽ - × +s ≽ -s -- record HasDecidableSubstantiveDischarge (+ : Set) (- : Set) ⦃ _ : HasSubstantiveDischarge (+) (-) ⦄ : Set₁ -- where -- field -- _≽?_ : (+ : +) → (- : -) → Dec $ + ≽ - -- open HasDecidableSubstantiveDischarge ⦃ … ⦄ -- {-# DISPLAY HasDecidableSubstantiveDischarge._≽?_ _ = _≽?_ #-} -- instance HasDecidableSubstantiveDischargeList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ ⦃ _ : Eq A ⦄ → HasDecidableSubstantiveDischarge (List A) A -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeList +s - = {!!} -- instance HasDecidableSubstantiveDischargeListList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ ⦃ _ : Eq A ⦄ → HasDecidableSubstantiveDischarge (List A) (List A) -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeListList +s -s = {!!} -- instance HasDecidableSubstantiveDischargeFormulaFormula : HasDecidableSubstantiveDischarge Formula Formula -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeFormulaFormula = {!!} -- _≟_ -- instance HasDecidableSubstantiveDischargeSequentSequent : HasDecidableSubstantiveDischarge Sequent Sequent -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeSequentSequent = {!!} -- instance HasDecidableSubstantiveDischargeProblemProblem : HasDecidableSubstantiveDischarge Problem Problem -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeProblemProblem = {!!} -- record SubstantiveDischargeIsConsistent (+ : Set) (- : Set) ⦃ _ : HasNegation (-) ⦄ ⦃ _ : HasSubstantiveDischarge (+) (-) ⦄ : Set₁ -- where -- field -- ≽-consistent : {+ : +} → { - : - } → + ≽ - → + ⋡ ~ - -- open SubstantiveDischargeIsConsistent ⦃ … ⦄ -- {-# DISPLAY SubstantiveDischargeIsConsistent.≽-consistent _ = ≽-consistent #-} -- record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- field -- ≽-reflexive : (x : A) → x ≽ x -- open SubstantiveDischargeIsReflexive ⦃ … ⦄ -- {- -- record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- field -- ≽-reflexive : {x : A} → x ≽ x -- open SubstantiveDischargeIsReflexive ⦃ … ⦄ -- -} -- {-# DISPLAY SubstantiveDischargeIsReflexive.≽-reflexive _ = ≽-reflexive #-} -- record HasVacuousDischarge (A : Set) ⦃ _ : HasNegation A ⦄ ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- ◁_ : List A → Set -- ◁ +s = ∃ λ (s : A) → (+s ≽ s) × (+s ≽ ~ s) -- ⋪_ : List A → Set -- ⋪_ = ¬_ ∘ ◁_ -- open HasVacuousDischarge ⦃ … ⦄ -- {-# DISPLAY HasVacuousDischarge.◁_ _ = ◁_ #-} -- {-# DISPLAY HasVacuousDischarge.⋪_ _ = ⋪_ #-} -- infixr 1 ,_ -- pattern ,_ p = _ , p -- pattern ◁pattern c₁∈xs c₁≽s c₂∈xs c₂≽~s = , (((, (c₁∈xs , c₁≽s)) , (, (c₂∈xs , c₂≽~s)))) -- record HasDecidableVacuousDischarge (A : Set) -- ⦃ _ : HasNegation A ⦄ -- ⦃ _ : HasSubstantiveDischarge A A ⦄ -- ⦃ _ : HasVacuousDischarge A ⦄ -- --⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ -- --⦃ _ : SubstantiveDischargeIsConsistent A A ⦄ -- --⦃ _ : SubstantiveDischargeIsReflexive A ⦄ -- ⦃ _ : Eq A ⦄ -- : Set₁ -- where -- field -- ◁?_ : (x : List A) → Dec $ ◁ x -- instance HasDecidableVacuousDischarge𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : Eq A ⦄ ⦃ _ : HasNegation (𝓢equent A) ⦄ ⦃ _ : HasSubstantiveDischarge (𝓢equent A) (𝓢equent A) ⦄ ⦃ _ : HasVacuousDischarge (𝓢equent A) ⦄ → HasDecidableVacuousDischarge (𝓢equent A) -- HasDecidableVacuousDischarge𝓢equent = {!!} -- {- -- instance -- ◁? [] = no (λ { (_ , (_ , () , _) , _)}) -- ◁? (x ∷ xs) with xs ≽? ~ x -- ◁? (x ∷ xs) | yes (, ~x!∈xs , ~x!≽~x) = yes $ , (((, (here xs , ≽-reflexive x)) , (, (there _ ~x!∈xs , ~x!≽~x)))) -- ◁? (x ∷ xs) | no xs⋡~x with ◁? xs -- ◁? (x ∷ xs) | no xs⋡~x | yes (◁pattern c₁∈xs c₁≽s c₂∈xs c₂≽~s) = yes (◁pattern (there _ c₁∈xs) c₁≽s (there _ c₂∈xs) c₂≽~s) -- ◁? (x ∷ xs) | no xs⋡~x | no ⋪xs = no λ -- { (◁pattern (here .xs) x≽s (here .xs) c₂≽~s) → {!xs⋡~x!} -- ; (◁pattern (here .xs) x≽s (there _ c₂∈xs) c₂≽~s) → {!xs⋡~x!} -- ; (◁pattern (there _ c₁∈xs) c₁≽s c₂∈xxs c₂≽~s) → {!xs⋡~x!} } -- -} -- --{-⋪xs (◁pattern {!!} c₁≽s {!!} c₂≽~s)-} -- open HasDecidableVacuousDischarge ⦃ … ⦄ -- {-# DISPLAY HasDecidableVacuousDischarge.◁?_ _ = ◁?_ #-} -- instance HasDecidableVacuousDischargeFormula : HasDecidableVacuousDischarge Formula -- HasDecidableVacuousDischarge.◁?_ HasDecidableVacuousDischargeFormula [] = {!!} -- HasDecidableVacuousDischarge.◁?_ HasDecidableVacuousDischargeFormula (φ ∷ φs) = {!!} -- record HasSalvation (A : Set) : Set₁ -- where -- field -- -- {isVacuouslyDischargable} : Set -- -- ⦃ hasVacuousDischarge ⦄ : HasVacuousDischarge isVacuouslyDischargable -- ▷_ : A → Set -- open HasSalvation ⦃ … ⦄ -- instance -- HasSalvation𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasNegation A ⦄ ⦃ _ : HasVacuousDischarge A ⦄ → HasSalvation $ 𝓢equent A -- HasSalvation.▷_ HasSalvation𝓢equent (φᵖs ⊢ φᵗs) = (◁ φᵖs) ⊎ (φᵖs ≽ φᵗs) -- {-# DISPLAY HasSalvation.▷_ _ = ▷_ #-} -- record HasDecidableSalvation (A : Set) ⦃ _ : HasSalvation A ⦄ : Set₁ -- where -- field -- ▷?_ : (x : A) → Dec $ ▷_ x -- open HasDecidableSalvation ⦃ … ⦄ -- {-# DISPLAY HasDecidableSalvation.▷?_ _ = ▷?_ #-} -- ∀[_♭_] : VariableName → Formula → Formula -- ∀[_♭_] = quantified -- {-# DISPLAY quantified = ∀[_♭_] #-} -- _∧_ : Formula → Formula → Formula -- φ₁ ∧ φ₂ = ~ φ₁ ⊗ ~ φ₂ -- _∨_ : Formula → Formula → Formula -- φ₁ ∨ φ₂ = ~ (φ₁ ⊗ φ₂) -- _⊃_ : Formula → Formula → Formula -- φ₁ ⊃ φ₂ = ~ φ₁ ∨ φ₂ -- _⟷_ : Formula → Formula → Formula -- φ₁ ⟷ φ₂ = (φ₁ ⊗ (φ₂ ⊗ φ₂)) ⊗ ((φ₁ ⊗ φ₁) ⊗ φ₂) -- TODO check that this is logically equivalent to the more verbose, (φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁) -- data TermCode : Set -- where -- variable : VariableName → TermCode -- function : FunctionName → Arity → TermCode -- termCode-function-inj₁ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → 𝑓₁ ≡ 𝑓₂ -- termCode-function-inj₁ refl = refl -- termCode-function-inj₂ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → arity₁ ≡ arity₂ -- termCode-function-inj₂ refl = refl -- instance -- EqTermCode : Eq TermCode -- Eq._==_ EqTermCode (variable 𝑥₁) (variable 𝑥₂) with 𝑥₁ ≟ 𝑥₂ -- … | yes 𝑥₁≡𝑥₂ rewrite 𝑥₁≡𝑥₂ = yes refl -- … | no 𝑥₁≢𝑥₂ = no (λ { refl → 𝑥₁≢𝑥₂ refl}) -- Eq._==_ EqTermCode (variable x) (function x₁ x₂) = no (λ ()) -- Eq._==_ EqTermCode (function x x₁) (variable x₂) = no (λ ()) -- Eq._==_ EqTermCode (function 𝑓₁ 𝑎₁) (function 𝑓₂ 𝑎₂) = decEq₂ termCode-function-inj₁ termCode-function-inj₂ (𝑓₁ ≟ 𝑓₂) (𝑎₁ ≟ 𝑎₂) -- mutual -- encodeTerm : Term → List TermCode -- encodeTerm (variable 𝑥) = variable 𝑥 ∷ [] -- encodeTerm (function 𝑓 (⟨_⟩ {arity} τs)) = function 𝑓 arity ∷ encodeTerms τs -- encodeTerms : {arity : Arity} → Vector Term arity → List TermCode -- encodeTerms ⟨ [] ⟩ = [] -- encodeTerms ⟨ τ ∷ τs ⟩ = encodeTerm τ ++ encodeTerms ⟨ τs ⟩ -- mutual -- decodeTerm : Nat → StateT (List TermCode) Maybe Term -- decodeTerm zero = lift nothing -- decodeTerm (suc n) = do -- caseM get of λ -- { [] → lift nothing -- ; (variable 𝑥 ∷ _) → -- modify (drop 1) ~| -- return (variable 𝑥) -- ; (function 𝑓 arity ∷ _) → -- modify (drop 1) ~| -- decodeFunction n 𝑓 arity } -- decodeFunction : Nat → FunctionName → Arity → StateT (List TermCode) Maybe Term -- decodeFunction n 𝑓 arity = do -- τs ← decodeTerms n arity -| -- return (function 𝑓 ⟨ τs ⟩) -- decodeTerms : Nat → (arity : Arity) → StateT (List TermCode) Maybe (Vector Term arity) -- decodeTerms n ⟨ zero ⟩ = return ⟨ [] ⟩ -- decodeTerms n ⟨ suc arity ⟩ = do -- τ ← decodeTerm n -| -- τs ← decodeTerms n ⟨ arity ⟩ -| -- return ⟨ τ ∷ vector τs ⟩ -- .decode-is-inverse-of-encode : ∀ τ → runStateT (decodeTerm ∘ length $ encodeTerm τ) (encodeTerm τ) ≡ (just $ τ , []) -- decode-is-inverse-of-encode (variable 𝑥) = refl -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ [] ⟩ ⟩) = {!!} -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩) = {!!} -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ function 𝑓' τs' ∷ τs ⟩ ⟩) = {!!} -- module ExampleEncodeDecode where -- example-Term : Term -- example-Term = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ ( variable ⟨ 0 ⟩ ∷ -- function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ -- variable ⟨ 5 ⟩ ∷ [] ) -- ⟩ ⟩ -- ) -- -- function ⟨ 2 ⟩ ⟨ 3 ⟩ ∷ variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ 1 ⟩ ∷ variable ⟨ 2 ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] -- example-TermCodes : List TermCode -- example-TermCodes = encodeTerm example-Term -- example-TermDecode : Maybe (Term × List TermCode) -- example-TermDecode = runStateT (decodeTerm (length example-TermCodes)) example-TermCodes -- example-verified : example-TermDecode ≡ (just $ example-Term , []) -- example-verified = refl -- example-bad : runStateT (decodeTerm 2) (function ⟨ 2 ⟩ ⟨ 2 ⟩ ∷ variable ⟨ 0 ⟩ ∷ []) ≡ nothing -- example-bad = refl -- record TermNode : Set -- where -- inductive -- field -- children : List (TermCode × TermNode) -- number : Nat -- open TermNode -- _child∈_ : TermCode → TermNode → Set -- _child∈_ 𝔠 𝔫 = 𝔠 ∈ (fst <$> children 𝔫) -- _child∉_ : TermCode → TermNode → Set -- 𝔠 child∉ 𝔫 = ¬ (𝔠 child∈ 𝔫) -- _child∈?_ : (𝔠 : TermCode) → (𝔫 : TermNode) → Dec $ 𝔠 child∈ 𝔫 -- c child∈? record { children = cs } = c ∈? (fst <$> cs) -- getChild : {𝔠 : TermCode} → (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode -- getChild {𝔠} (record { children = [] ; number = number₁ }) () -- getChild {._} (record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }) zero = snd₁ -- getChild {𝔠} (𝔫@record { children = x ∷ children₁ ; number = number₁ }) (suc x₁) = getChild record 𝔫 { children = children₁ } x₁ -- addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∉ 𝔫 → TermNode → TermNode -- addChild {𝔠} 𝔫 𝔠∉𝔫 𝔫' = -- record 𝔫 { children = (𝔠 , 𝔫') ∷ children 𝔫 } -- setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode → TermNode -- setChild {𝔠} record { children = [] ; number = number₁ } () 𝔫' -- setChild 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) 𝔫' = -- record 𝔫 { children = ((fst₁ , 𝔫') ∷ children₁) } -- setChild {𝔠} 𝔫@record { children = (x ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) 𝔫' = -- record 𝔫 { children = (x ∷ children (setChild (record 𝔫 { children = children₁ }) 𝔠∈𝔫 𝔫')) } -- setGet-ok : ∀ {𝔠} 𝔫 → (𝔠∈𝔫 : 𝔠 child∈ 𝔫) → setChild 𝔫 𝔠∈𝔫 (getChild 𝔫 𝔠∈𝔫) ≡ 𝔫 -- setGet-ok record { children = [] ; number = number₁ } () -- setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) = refl -- setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) rewrite setGet-ok (record { children = children₁ ; number = number₁ }) 𝔠∈𝔫 = refl -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat -- storeTermCodes [] 𝔑 = return 𝔑 -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- 𝔫 ← get -| -- case 𝔠 child∈? 𝔫 of λ -- { (no 𝔠∉tests) → -- let 𝔑' , 𝔫' = runIdentity $ -- runStateT -- (storeTermCodes 𝔠s $ suc 𝔑) -- (record -- { children = [] -- ; number = suc 𝔑 }) in -- put ((addChild 𝔫 𝔠∉tests 𝔫')) ~| -- return 𝔑' -- ; (yes 𝔠∈tests) → -- let 𝔑' , 𝔫' = runIdentity $ -- runStateT -- (storeTermCodes 𝔠s $ suc 𝔑) -- ((getChild 𝔫 𝔠∈tests)) in -- put ((setChild 𝔫 𝔠∈tests 𝔫')) ~| -- return 𝔑' } -- storeTermCodes[] : (𝔫 : TermNode) (𝔑 : Nat) → (runIdentity $ runStateT (storeTermCodes [] 𝔑) 𝔫) ≡ (𝔑 , 𝔫) -- storeTermCodes[] 𝔫 𝔑 = refl -- --{-# REWRITE storeTermCodes[] #-} -- storeTermCodes' : List TermCode → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermCodes' 𝔠s = -- 𝔑 ← get -| -- tn ← lift get -| -- (let 𝔑' , tn' = runIdentity $ runStateT (storeTermCodes 𝔠s 𝔑) tn in -- put 𝔑' ~| lift (put tn') ~| return tt) -- mutual -- storeTerm : Term → StateT Nat (StateT TermNode Identity) ⊤ -- storeTerm τ@(variable _) = storeTermCodes' (encodeTerm τ) -- storeTerm τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTerms τs -- storeTerms : Terms → StateT Nat (StateT TermNode Identity) ⊤ -- storeTerms ⟨ ⟨ [] ⟩ ⟩ = return tt -- storeTerms ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTerm τ ~| storeTerms ⟨ ⟨ τs ⟩ ⟩ ~| return tt -- module ExampleStoreTerm where -- example-Term₁ : Term -- example-Term₁ = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ variable ⟨ 0 ⟩ -- ∷ function ⟨ 3 ⟩ -- ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ -- ∷ variable ⟨ 5 ⟩ -- ∷ [] -- ⟩ ⟩ -- ) -- example-Term₂ : Term -- example-Term₂ = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ variable ⟨ 0 ⟩ -- ∷ variable ⟨ 2 ⟩ -- ∷ function ⟨ 3 ⟩ -- ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ -- ∷ variable ⟨ 5 ⟩ -- ∷ [] -- ⟩ ⟩ -- ) -- topNode : TermNode -- topNode = record { children = [] ; number = 0 } -- example-storeTerm : (⊤ × Nat) × TermNode -- example-storeTerm = runIdentity $ runStateT (runStateT (storeTerm example-Term₁ >> storeTerm example-Term₂) 0) topNode -- NodeStateT = StateT TermNode -- TopNodeState = StateT Nat (NodeStateT Identity) -- storeLiteralFormulaTerms : LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤ -- storeLiteralFormulaTerms ⟨ atomic 𝑃 τs ⟩ = storeTerms τs -- storeLiteralFormulaTerms ⟨ logical 𝑃 τs ⟩ = storeTerms τs -- storeSequentLiteralFormulaTerms : 𝓢equent LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤′ -- storeSequentLiteralFormulaTerms (φˢs ⊢ φᵗ) = sequence $ storeLiteralFormulaTerms <$> ({!φᵗ!} ∷ φˢs) -- record FindTermNode (A : Set) : Set -- where -- field -- findTermNode : A → TermNode → Maybe TermNode -- open FindTermNode ⦃ … ⦄ -- instance -- FindTermNodeTermCode : FindTermNode TermCode -- FindTermNode.findTermNode FindTermNodeTermCode termCode record { children = [] ; number = number₁ } = nothing -- FindTermNode.findTermNode FindTermNodeTermCode termCode 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } = ifYes fst₁ ≟ termCode then just snd₁ else findTermNode termCode record 𝔫 { children = children₁ } -- FindTermNodeTermCodes : FindTermNode (List TermCode) -- FindTermNode.findTermNode FindTermNodeTermCodes [] node = just node -- FindTermNode.findTermNode FindTermNodeTermCodes (x ∷ termCodes) node = join $ findTermNode termCodes <$> findTermNode x node -- FindTermNodeTerm : FindTermNode Term -- FindTermNode.findTermNode FindTermNodeTerm term node = findTermNode (encodeTerm term) node -- -- This is starting to get difficult. We need Agda to know that the Term is encoded in the TermNode. Then we can drop the Maybe -- getInterpretationOfTerm : Term → TermNode → Maybe Element -- getInterpretationOfTerm τ node = ⟨_⟩ ∘ number <$> findTermNode (encodeTerm τ) node -- FindTermNodeTermCode-ok : ∀ {𝔠 𝔫} → 𝔠 child∈ 𝔫 → IsJust (findTermNode 𝔠 𝔫) -- FindTermNodeTermCode-ok {𝔠} {record { children = [] ; number = number₁ }} () -- --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case (fst₁ ≟_) 𝔠 , graphAt {B = λ 𝑐 → Dec (fst₁ ≡ 𝑐)} (fst₁ ≟_) 𝔠 of λ { (yes x , snd₂) → {!!} ; (no x , snd₂) → {!!}} --λ { ((yes ===) , (inspect s1)) → {!!} ; ((no =n=) , inspect s2) → {!!} } -- --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case fst₁ ≟ 𝔠 of λ { (yes refl) → {!!} ; (no x) → {!!}} -- FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ with fst₁ ≟ 𝔠 -- FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ | yes eq2 = tt -- FindTermNodeTermCode-ok {.fst₁} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (zero) | no neq = ⊥-elim (neq refl) -- FindTermNodeTermCode-ok {𝔠} {𝔫@record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (suc x₁) | no neq = FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} x₁ -- Justified : ∀ {a} {A : Set a} → (m : Maybe A) → IsJust m → ∃ λ x → m ≡ just x -- Justified nothing () -- Justified (just x) x₁ = _ , refl -- storeTerm-ok : ∀ τ 𝔫 𝔑 → IsJust (findTermNode τ (snd (runIdentity (runStateT (runStateT (storeTerm τ) 𝔑) 𝔫)))) -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 with variable 𝑥 child∈? 𝔫 -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x with TermCode.variable 𝑥 ≟ variable 𝑥 -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | yes _ = tt -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | no variable𝑥≢variable𝑥 = ⊥-elim (variable𝑥≢variable𝑥 refl) -- --storeTerm-ok (variable 𝑥) 𝔫 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!𝔫!} -- storeTerm-ok (variable 𝑥) record { children = [] ; number = number₁ } 𝔑 | yes () -- --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!!} -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 with fst₁ ≟ variable 𝑥 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | yes eq = tt -- --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case graphAt FindTermNodeTermCode-ok asdf of λ { (ingraph sss) → {!!} } } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 -- --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case inspect $ FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} asdf of λ { (.(FindTermNodeTermCode-ok asdf) , ingraph refl) → {!!}} } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq with vx∈𝔫 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | zero = ⊥-elim (neq refl) -- --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | there dfdsf fdsdfs with FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs | graphAt (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }}) fdsdfs -- --… | frfrrf | ingraph tttttt = transport _ (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) _ -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | suc fdsdfs rewrite (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) = tt -- storeTerm-ok (function 𝑥 𝑎) 𝔫 𝔑 with (function 𝑥 (arity 𝑎)) child∈? 𝔫 -- storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x with Eq._==_ EqFunctionName ⟨ name 𝑥 ⟩ ⟨ name 𝑥 ⟩ -- storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x | (yes refl) = tt -- … | no neq = ⊥-elim (neq refl) -- --storeTerm-ok τ₀@(function 𝑓 ⟨ τ₁ ∷ τ₂s ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!τ₁!} -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 with variable 𝑥 child∈? 𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) with 𝑓₀ ≟ 𝑓₀ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl with TermCode.variable 𝑥 ≟ variable 𝑥 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | yes eq = tt -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | no neq = ⊥-elim (neq refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | no neq = ⊥-elim (neq refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) with 𝑓₀ ≟ 𝑓₀ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl with TermCode.variable 𝑥₁ ≟ variable 𝑥₁ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | yes 𝔠₁≡𝔠₁ = tt -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | no 𝔠₁≢𝔠₁ = ⊥-elim (𝔠₁≢𝔠₁ refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | no 𝑓₀≢𝑓₀ = ⊥-elim (𝑓₀≢𝑓₀ refl) -- rewrite setGet-ok 𝔫 𝔠₁∈𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 with variable 𝑥₁ child∈? 𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | yes 𝔠₁∈𝔫 = {!!} -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | no 𝔠₁∉𝔫 = {!!} -- storeTerm-ok τ₀@(function 𝑓₀ ⟨ ⟨ function 𝑓₁ τ₁s ∷ τ₂s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!!} -- storeTerm-ok (function 𝑥 x₁) 𝔫 𝔑 | yes x = {!!} -- mutual -- storeTermVerifiably' : (τ : Term) → StateT Nat (StateT (Σ TermNode λ n → IsJust (findTermNode τ n)) Identity) ⊤ -- storeTermVerifiably' (variable x) = {!!} -- storeTermVerifiably' (function x x₁) = {!!} -- storeTermVerifiably : Term → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermVerifiably τ@(variable _) = storeTermCodes' (encodeTerm τ) -- storeTermVerifiably τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTermsVerifiably τs -- storeTermsVerifiably : Terms → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermsVerifiably ⟨ ⟨ [] ⟩ ⟩ = return tt -- storeTermsVerifiably ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTermVerifiably τ ~| storeTermsVerifiably ⟨ ⟨ τs ⟩ ⟩ ~| return tt -- Theorem1 : {Φ : 𝓢equent (𝓢equent LiteralFormula)} → {!⊨!} Φ ↔ {!▷!} Φ -- Theorem1 = {!!} -- {- -- Theorem1 {Φ@(χs ¶ ι)} = Theorem1a , Theorem1b -- where -- Theorem1a : ⊨ Φ → ▷ Φ -- Theorem1a with ▷? Φ -- … | yes ▷Φ = const ▷Φ -- … | no ⋫Φ = -- let I , I⊨χs , I⊭ι = Lemma1a in -- λ I→I⊨cs→I⊨i → ⊥-elim $ I⊭ι $ I→I⊨cs→I⊨i I I⊨χs -- where -- Lemma1a : ∃ λ I → I ⊨ χs × I ⊭ ι -- -- To construct the interpretation, consider a unique list, τ₀, τ₁, …, τₙ, of terms in ι ∷ χs. For each term, τ, we find <TODO> interpretations, 𝓘, such that for any I ∈ 𝓘, and any i ∈ 0, …, n, τ⟦ I ⟧ τᵢ = i. For each formula φ ∈ ι ∷ χs, we find <TODO> an interpretation I ∈ 𝓘 such that 𝑃⟦ I ⟧ φ = true when φ ∈ χs and 𝑃⟦ I ⟧ φ = false when φ = ι. -- -- For all terms in ι ∷ χs, find a coding into Nat that uniquely determines each term. To do this, compute the maximum functional depth of terms, D, the maximal arity of terms, A, the maximal function name, F, and the maximal variable name, V. Each term can then be coded into Fin V + (D₀ = F + F * V + F * V ^ 2 + ... + F * V ^ A) + (D₀ ... -- -- Encode each term in a discrimination network. Each new term stored is assigned a unique id -- Lemma1a = {!!} -- where -- Theorem1b : ▷ Φ → ⊨ Φ -- Theorem1b = {!!} -- -} -- negationEliminationRule : (I : Interpretation) (φ : Formula) → I ⊨ ~ (~ φ) → I ⊨ φ -- negationEliminationRule I φ (¬[I⊭φ×I⊭φ] , _) with I ⊨? φ -- … | yes I⊨φ = I⊨φ -- … | no I⊭φ = ⊥-elim $ ¬[I⊭φ×I⊭φ] $ I⊭φ , I⊭φ -- -- justifieds simplification and ... more? -- simplificationRule₁ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₁ φ₁ -- simplificationRule₁ I φ₁ φ₂ x = (fst x) , (fst x) -- simplificationRule₂ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₂ φ₂ -- simplificationRule₂ I φ₁ φ₂ x = snd x , snd x -- -- logical (logical (logical p p) q) (logical (logical p p) q) -- {- -- conditionalizationRule : (I : Interpretation) (p q : Formula) → I ⊨ q → I ⊨ (p ⊃ q ╱ (p ∷ []) ) -- conditionalizationRule I p q ⊨q (_ , _) = let prf = λ { (_ , ⊭q) → ⊭q ⊨q} in prf , prf -- --let ⊨p = {!-⊨p p (here [])!} in (λ { (x , ~q) → ~q ⊨q}) , (λ { (x , y) → y ⊨q}) -- -} -- modusPonens : (I : Interpretation) (p q : Formula) → I ⊨ p → I ⊨ (p ⊃ q) → I ⊨ q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) with I ⊨? q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | yes x = x -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | no x = ⊥-elim (~[~p&~p&~q] ((λ { (x₁ , y) → y P}) , (λ x₁ → x x₁))) -- -- -- -- -- -- data SkolemFormula {ι : Size} (α : Alphabet) : Set where -- -- -- -- -- -- atomic : Predication α → SkolemFormula α -- -- -- -- -- -- logical : {ι¹ : Size< ι} → SkolemFormula {ι¹} α → {ι² : Size< ι} → SkolemFormula {ι²} α → SkolemFormula {ι} α -- -- -- -- -- -- record Alphabet₊ᵥ (α : Alphabet) : Set where -- -- -- -- -- -- constructor α₊ᵥ⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- .one-variable-is-added : (number ∘ variables $ alphabet) ≡ suc (number ∘ variables $ α) -- -- -- -- -- -- .there-are-no-functions-of-maximal-arity : number (functions alphabet) zero ≡ zero -- -- -- -- -- -- .shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → number (functions alphabet) (suc ytira₁) ≡ number (functions α) ytira₀ -- -- -- -- -- -- open Alphabet₊ᵥ -- -- -- -- -- -- record Alphabet₊ₛ (α : Alphabet) : Set where -- -- -- -- -- -- constructor α₊ₛ⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- open Alphabet₊ₛ -- -- -- -- -- -- {- -- -- -- -- -- -- toSkolemFormula -- -- -- -- -- -- ∀x(F x v₀ v₁) ⟿ F v₀ v₁ v₂ -- -- -- -- -- -- ∃x(F x v₀ v₁) ⟿ F (s₀͍₂ v₀ v₁) v₀ v₁ -- -- -- -- -- -- ∀x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F v₀ (s₀͍₂ v₁ v₂) v₂ -- -- -- -- -- -- ∃x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F (s₀͍₂ v₀ v₁) (s₁͍₂ v₁ v₂) v₂ -- -- -- -- -- -- F v₀ ⊗ G v₀ ⟿ F v₀ ⊗ G v₀ -- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∀x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₂ v₃ ⊗ G v₁ (s₀͍₂ v₀ v₃) v₃ -- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∃x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₁ v₂ ⊗ G (s₀͍₁ v₂) (s₁͍₂ (s₀͍₂ v₂) v₂) v₂ -- -- -- -- -- -- Φ₀ = ∃x(G x (s₀͍₂ x v₁) v₁) has alphabet of 2 variables, skolem functions: 0, 0, 1 -- -- -- -- -- -- this is existential {α₊ₛ} Φ₁, where -- -- -- -- -- -- Φ₁ = G (s₀͍₂ v₀ v₁) (s₁͍₂ (s₀͍₂ v₀ v₁)) v₁ -- -- -- -- -- -- α₊ₛ = ⟨ 2 , 0 ∷ 0 ∷ 2 ∷ [] ⟩ -- -- -- -- -- -- maybe Φ₋₁ = ∀y∃x(G x (s₀͍₂ x v₀) v₀) -- -- -- -- -- -- and Φ₋₂ = ∀z∀y∃x(G x (s₀͍₂ x z) z), finally having no free variables, but nevertheless having skolem functions! these are user-defined functions, so this notion of Alphabet is somehow wrong. we have also left out constants (i.e. user-defined skolem-functions of arity 0) -- -- -- -- -- -- Instead, take the alphabet as defining -- -- -- -- -- -- a stack of free variables -- -- -- -- -- -- a matrix (triangle?) of skolem functions -- -- -- -- -- -- Let's try to reverse Φ₁ from a Skolem to a 1st-order formula. Is there a unique way to do it? -- -- -- -- -- -- Φ₀' = ∀x(G (s₀͍₂ x v₀) (s₁͍₂ (s₀͍₂ x v₀)) v₀ -- -- -- -- -- -- Nope! -- -- -- -- -- -- toSkolemFormula of -- -- -- -- -- -- -} -- -- -- -- -- -- -- toSkolemFormula (logical Φ₁ Φ₂) ⟿ -- -- -- -- -- -- -- let α' , φ₁ = toSkolemFormula Φ₁ -- -- -- -- -- -- -- Φ₂' = transcodeToAugmentedAlphabet Φ₂ α' -- -- -- -- -- -- -- α'' , φ₂' = toSkolemFormula Φ₂' -- -- -- -- -- -- -- φ₁' = transcodeToAugmentedAlphabet φ₁ α'' -- -- -- -- -- -- {- -- -- -- -- -- -- given Δv = #varibles α' - #variables α -- -- -- -- -- -- for every variable v in α, v in Φ, v stays the same in Φ' -- -- -- -- -- -- for the added variable v⁺ in α₊ - α, v⁺ in Φ, v⁺ ⟿ v⁺ + Δv in transcode (universal {α₊} Φ) -- -- -- -- -- -- α'₊ = α' + 1 variable -- -- -- -- -- -- -} -- -- -- -- -- -- -- record AddVariable (A : Alphabet → Set) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- addVariableToAlphabet : {α : Alphabet} → A α → {α₊ : Alphabet} → Alphabet₊ᵥ α₊ → A α₊ -- -- -- -- -- -- -- instance -- -- -- -- -- -- -- AddVariableFirstOrderFormula : AddVariable FirstOrderFormula -- -- -- -- -- -- -- AddVariableFirstOrderFormula = {!!} -- -- -- -- -- -- -- #variables = number ∘ variables -- -- -- -- -- -- -- #functions_ofArity_ : Alphabet → Nat → Nat -- -- -- -- -- -- -- #functions α⟨ V⟨ #variables ⟩ , S⟨ #functions ⟩ ⟩ ofArity arity = if′ lessNat arity (suc #variables) then #functions (natToFin arity) else 0 -- -- -- -- -- -- -- record _⊇_ (α' α : Alphabet) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- at-least-as-many-variables : #variables α' ≥ #variables α -- -- -- -- -- -- -- at-least-as-many-functions : ∀ {arity} → arity < #variables α → #functions α' ofArity arity ≥ #functions α ofArity arity -- -- -- -- -- -- -- record AddAlphabet (α-top α-bottom : Alphabet) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- record Transcodeable (A : Alphabet → Set) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- transcode : {α' α : Alphabet} → ⦃ _ : α' ⊇ α ⦄ → A α → A α' -- -- -- -- -- -- -- open Transcodeable ⦃ … ⦄ -- -- -- -- -- -- -- record TransferAlphabet {α' α : Alphabet} (α'⊇α : α' ⊇ α) (α₊ : Alphabet₊ᵥ α) (Φ : FirstOrderFormula (alphabet α₊)) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- firstOrderFormula : FirstOrderFormula alphabet -- -- -- -- -- -- -- instance -- -- -- -- -- -- -- TranscodeablePredication : Transcodeable Predication -- -- -- -- -- -- -- TranscodeablePredication = {!!} -- -- -- -- -- -- -- TranscodeableAlphabet+Variable : Transcodeable Alphabet₊ᵥ -- -- -- -- -- -- -- TranscodeableAlphabet+Variable = {!!} -- -- -- -- -- -- -- TranscodeableSkolemFormula : Transcodeable SkolemFormula -- -- -- -- -- -- -- TranscodeableSkolemFormula = {!!} -- -- -- -- -- -- -- TranscodeableFirstOrderFormula : Transcodeable FirstOrderFormula -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (atomic p) = atomic (transcode p) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (logical Φ₁ Φ₂) = logical (transcode Φ₁) (transcode Φ₂) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula {α'} {α} ⦃ α'⊇α ⦄ (universal {α₊} Φ) = {!!} -- universal {_} {_} {transcode α₊} (transcode Φ) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (existential Φ) = {!!} -- -- -- -- -- -- -- --(α' α : Alphabet) (α'⊇α : α' ⊇ α) (α₊ : Alphabet+Variable α) (Φ : FirstOrderFormula (alphabet α₊)) → Σ _ λ (α''' : Alphabet) → FirstOrderFormula α''' -- -- -- -- -- -- -- --FirstOrderFormula (alphabet α₊) -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- --transcodeIntoAugmentedAlphabet : -- -- -- -- -- -- -- -- --toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- --record IsEquivalentFormulas {α₀ : Alphabet} (φ₀ : SkolemFormula α₀) {α₁ : Alphabet} (Φ₁ : FirstOrderFormula α₁) : Set where -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- .atomicCase : {p : Predication α₀} → φ₀ ≡ atomic p → Φ₁ ≡ atomic p -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet+Alphabet (α₀ α₁ α₂ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- alphabet : -- -- -- -- -- -- -- -- -- -- ∀xφ₁(x) ⊗ φ₂ ⟿ ∀x(φ₁ ⊗ φ₂) -- -- -- -- -- -- -- -- -- -- hasQuantifiers : FirstOrderFormula α → Bool -- -- -- -- -- -- -- -- -- --record Skolemization {α : Alphabet} (φ : FirstOrderFormula α) : Set where -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- -- -- -- skolemization : SkolemFormula alphabet -- -- -- -- -- -- -- -- -- record _IsAugmentationOf_ (α₁ α₀ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- record AugmentedAlphabet (α : Alphabet) : Set where -- -- -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- -- -- ..laws : alphabet ≡ α -- -- -- -- -- -- -- -- -- open AugmentedAlphabet -- -- -- -- -- -- -- -- -- trivialAugmentation : (α : Alphabet) → AugmentedAlphabet α -- -- -- -- -- -- -- -- -- trivialAugmentation = {!!} -- -- -- -- -- -- -- -- -- record DisjointRelativeUnion {α : Alphabet} (α¹ α² : AugmentedAlphabet α) : Set where -- -- -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- augmentation : AugmentedAlphabet α -- -- -- -- -- -- -- -- -- .laws : {!!} -- -- -- -- -- -- -- -- -- open DisjointRelativeUnion -- -- -- -- -- -- -- -- -- disjointRelativeUnion : {α : Alphabet} → (α¹ α² : AugmentedAlphabet α) → DisjointRelativeUnion α¹ α² -- -- -- -- -- -- -- -- -- disjointRelativeUnion = {!!} -- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet : {α : Alphabet} → (α¹ : AugmentedAlphabet α) → SkolemFormula α → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet = {!!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (atomic 𝑃) = trivialAugmentation α₀ , atomic 𝑃 -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) with toSkolemFormula φ₁ | toSkolemFormula φ₂ -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) | α¹ , Φ₁ | α² , Φ₂ = augmentation (disjointRelativeUnion α¹ α²) , logical {!inAugmentedAlphabet (augmentation (disjointRelativeUnion α¹ α²)) Φ₁!} {!Φ₂!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (universal x) = {!!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (existential x) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- --VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionArity = Fin ∘ suc ∘ size -- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- |v| : Nat -- number of variables -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f| : Fin (suc |v|) → Nat -- number of functions of each arity, |v| through 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionArity = Fin ∘ suc ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- variable : VariableName alphabet → Term alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {arity : FunctionArity alphabet} → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName alphabet (natToFin (|v| alphabet) - arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀ {j : Size< i} → Vec (Term {j} alphabet) (finToNat arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateArity = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateName = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a zeroth-order formula? (i.e. no quantifiers) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data NQFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → NQFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → NQFormula {j} alphabet → {k : Size< i} → NQFormula {k} alphabet → NQFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedByVariable (alphabet₀ alphabet₁ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- one-variable-is-added : |v| alphabet₁ ≡ suc (|v| alphabet₀) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function-domain-is-zero-at-new-variable : |f| alphabet₁ zero ≡ 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → |f| alphabet₁ (suc ytira₁) ≡ |f| alphabet₀ ytira₀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentVariables (alphabet₀ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet₁ : Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentation : AugmentedByVariable alphabet₀ alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open AugmentVariables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : (alphabet : Alphabet) → AugmentVariables alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables ⟨ |v| , |f| ⟩ = -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { alphabet₁ = ⟨ suc |v| , (λ { zero → zero ; (suc ytira) → |f| ytira}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; augmentation = -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { one-variable-is-added = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; function-domain-is-zero-at-new-variable = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; shifted-function-matches = cong |f| ∘ finToNat-inj } } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f|₀ = |f|₀ + 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions ⟨ |v| , |f| ⟩ = ⟨ |v| , (λ { zero → suc (|f| zero) ; (suc ytira) → |f| (suc ytira) }) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data QFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → QFormula {j} alphabet → {k : Size< i} → QFormula {k} alphabet → QFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- universal : QFormula (alphabet₁ (augmentVariables alphabet)) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- existential : QFormula (augmentFunctions alphabet) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Assignment (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- μ : VariableName alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑓 : ∀ {arity} → FunctionName alphabet arity → Vec Domain (finToNat arity) → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm : ∀ {i alphabet} → Assignment alphabet → Term {i} alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ⟨ μ , _ ⟩ (variable x) = μ x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm 𝑎@(⟨ μ , 𝑓 ⟩) (function f x) = 𝑓 f (evaluateTerm 𝑎 <$> x) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Interpretation (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Assignment -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑎 : Assignment alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑃 : PredicateName → ∀ {arity} → Vec Domain arity → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula : ∀ {i alphabet} → Interpretation alphabet → NQFormula {i} alphabet → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula ⟨ 𝑎 , 𝑃 ⟩ (atomic name terms) = 𝑃 name $ evaluateTerm 𝑎 <$> terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula I (logical formula₁ formula₂) = not (evaluateNQFormula I formula₁) && not (evaluateNQFormula I formula₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record IsADisjointUnionOfNQFormulas -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {alphabet₁ alphabet₂ alphabet₁₊₂ : Alphabet} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁ : NQFormula alphabet₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₂ : NQFormula alphabet₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁₊₂ : NQFormula alphabet₁₊₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet-size : |v| alphabet₁₊₂ ≡ |v| alphabet₁ + |v| alphabet₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --|f| alphabet₁₊₂ ytira -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----record AlphabetSummed (alphabet₀ alphabet₁ : Alphabet) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets : Alphabet → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets ⟨ |v|₁ , |f|₁ ⟩ ⟨ |v|₂ , |f|₂ ⟩ = ⟨ (|v|₁ + |v|₂) , (λ x → if′ finToNat x ≤? |v|₁ && finToNat x ≤? |v|₂ then {!!} else {!!}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup : ∀ {alphabet₁} → Formula alphabet₁ → ∀ {alphabet₂} → Formula alphabet₂ → Σ _ λ alphabet₁₊₂ → Formula alphabet₁₊₂ × Formula alphabet₁₊₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup {⟨ |v|₁ , |a|₁ , |f|₁ ⟩} φ₁ {⟨ |v|₂ , |a|₂ , |f|₂ ⟩} φ₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf : ∀ {alphabet} → Formula alphabet → Σ _ λ alphabet+ → Formula₀ alphabet+ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --universal (P 0) = ∀ x → P x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (∀ x ∃ y (P x y)) ∨ (∀ x ∃ y (P x y)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- P x₀ (s₀͍₁ x₀) ∨ P x₁ (s₁͍₁ x₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| : (arity : Arity) → Vec ℕ (suc |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a variable to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN : ∀ {n} → Fin n → (Fin n → Nat) → Fin n → Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedFunctions {|a| : Arity} (arity : Arity) (|f| : Vec ℕ (++arity |a|)) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA : ℕ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA-law : max arity |a| ≡ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ++|f| : Vec ℕ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f-law : increaseTabulationAt arity (indexVec |f|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ⊗ b ≡ False a and False b -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- now, we can define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ¬a = a ⊗ a ≡ False a and False a -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∨ b = ¬(a ⊗ b) ≡ False (False a and False b) and False (False a and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∧ b = ¬(¬a ∨ ¬b) = ¬(¬(¬a ⊗ ¬b)) = ¬a ⊗ ¬b = False (False a and False a) and False (False b and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a → b = ¬a ∨ b = (a ⊗ a) ∨ b = ¬((a ⊗ a) ⊗ b) = ((a ⊗ a) ⊗ b) ⊗ ((a ⊗ a) ⊗ b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- conversion to prenex -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀xF ⊗ G ⟿ ∃x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∃xF ⊗ G ⟿ ∀x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∀xG ⟿ ∃x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∃xG ⟿ ∀x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ======================== -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (a ⊗ ∀xB) ⊗ c ⟿ ∃x(wk(a) ⊗ B) ⊗ c ⟿ ∀x((wk(a) ⊗ B) ⊗ wk(c)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF : (arity : Arity) → ∀ {|a| : Arity} → Vec ℕ (++arity |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- with decBool (lessNat |a| arity) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x with compare arity |a| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.(suc (k + arity))} |f| | yes x | less (diff k refl) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl with lessNat arity arity -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl | false = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF zero {.zero} |f| | yes true | equal refl | true = {!!} ∷ [] -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF (suc arity) {.(suc arity)} |f| | yes true | equal refl | true = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x | greater gt = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x with decBool (lessNat arity |a|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | yes x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | no x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- = case arity <? |a| of λ { false → {!!} ; true → {!!} } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a function of a given arity to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Arity → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions arity ⟨ |v| , |a| , |f| ⟩ = ⟨ |v| , max arity |a| , augmentF arity |f| ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data DomainSignifier : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- free : Nat → DomainSignifier -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartiallyAppliedFunction : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constant : PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {n} → PartiallyAppliedFunction 0 → PartiallyAppliedFunction (suc n) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term = PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartialyAppliedPredicate : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- statement : PartialyAppliedPredicate 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- partial : ∀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Language : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Name = String -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- name : Name -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- number-of-arguments : Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Vec -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : Function → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Sentence : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- predication : Name → -- -- -- -- -- -- {- -- -- -- -- -- -- record Variables : Set where -- -- -- -- -- -- constructor V⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- number : Nat -- -- -- -- -- -- open Variables -- -- -- -- -- -- record Functions (υ : Variables) : Set where -- -- -- -- -- -- constructor S⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- number : Fin (suc (number υ)) → Nat -- -- -- -- -- -- open Functions -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- constructor α⟨_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- variables : Variables -- -- -- -- -- -- functions : Functions variables -- -- -- -- -- -- open Alphabet -- -- -- -- -- -- record Variable (α : Alphabet) : Set where -- -- -- -- -- -- constructor v⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- name : Fin (number (variables α)) -- -- -- -- -- -- open Variable -- -- -- -- -- -- record Function (α : Alphabet) : Set where -- -- -- -- -- -- constructor s⟨_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- arity : Fin ∘ suc ∘ number ∘ variables $ α -- -- -- -- -- -- name : Fin $ number (functions α) arity -- -- -- -- -- -- open Function -- -- -- -- -- -- data Term (𝑽 : Nat) : Set where -- -- -- -- -- -- variable : Fin 𝑽 → Term 𝑽 -- -- -- -- -- -- function : (𝑓 : Function α) → {ι₋₁ : Size< ι₀} → Vec (Term {ι₋₁} α) (finToNat (arity 𝑓)) → -- -- -- -- -- -- Term {ι₀} α -- -- -- -- -- -- record Predication (alphabet : Alphabet) : Set where -- -- -- -- -- -- constructor P⟨_,_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- name : Nat -- -- -- -- -- -- arity : Nat -- -- -- -- -- -- terms : Vec (Term alphabet) arity -- -- -- -- -- -- open Predication -- -- -- -- -- -- -} -- -- module NotUsed where -- -- -- thought it might be easier to use this -- -- module UsingContainerList where -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- children : List (TermCode × TermNode) -- -- number : Nat -- -- open TermNode -- -- _child∈_ : TermCode → TermNode → Set -- -- _child∈_ 𝔠 𝔫 = Any ((𝔠 ≡_) ∘ fst) (children 𝔫) -- -- -- this still has a lambda problem, albeit weirder -- -- module RememberChildren where -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- tests : List TermCode -- -- children : ∀ {𝔠} → 𝔠 ∈ tests → TermNode -- -- number : Nat -- -- open TermNode -- -- addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∉ tests 𝔫 → TermNode → TermNode -- -- addChild {𝔠} 𝔫 𝔠∉tests𝔫 𝔫' = -- -- record 𝔫 -- -- { tests = 𝔠 ∷ tests 𝔫 -- -- ; children = λ -- -- { (here _) → 𝔫' -- -- ; (there _ 𝔠'∈tests) → children 𝔫 𝔠'∈tests }} -- -- setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∈ tests 𝔫 → TermNode → TermNode -- -- setChild {𝔠} 𝔫 𝔠∈tests𝔫 𝔫' = -- -- record 𝔫 -- -- { children = λ {𝔠'} 𝔠'∈tests𝔫' → ifYes 𝔠' ≟ 𝔠 then 𝔫' else children 𝔫 𝔠'∈tests𝔫' } -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat -- -- storeTermCodes [] 𝔑 = return 𝔑 -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case 𝔠 ∈? tests 𝔫 of λ -- -- { (no 𝔠∉tests) → -- -- let 𝔑' , 𝔫' = runIdentity $ -- -- runStateT -- -- (storeTermCodes 𝔠s $ suc 𝔑) -- -- (record -- -- { tests = [] -- -- ; children = λ () -- -- ; number = suc 𝔑 }) in -- -- put (addChild 𝔫 𝔠∉tests 𝔫') ~| -- -- return 𝔑' -- -- ; (yes 𝔠∈tests) → -- -- let 𝔑' , 𝔫' = runIdentity $ -- -- runStateT -- -- (storeTermCodes 𝔠s $ suc 𝔑) -- -- (children 𝔫 𝔠∈tests) in -- -- put (setChild 𝔫 𝔠∈tests 𝔫') ~| -- -- return 𝔑' } -- -- topNode : TermNode -- -- topNode = record { tests = [] ; children = λ () ; number = 0 } -- -- example-store : TermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 0) topNode -- -- foo : TermNode × TermNode -- -- foo = -- -- {!example-store!} , -- -- {!snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 10) example-store!} -- -- -- using a lambda for the children results in extra unnecessary structure when adding to an existing node; perhaps using an explicit mapping? or use another field to state what codes are present in the mapping? -- -- module NoParents where -- -- mutual -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode -- -- self : TermCode -- -- number : Nat -- -- record TopTermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- -- open TermNode -- -- open TopTermNode -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤ -- -- storeTermCodes [] _ = return tt -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤ -- -- storeTermCodesAtTop [] _ = return tt -- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- initialTopNode : TopTermNode -- -- initialTopNode = record { children = const nothing } -- -- example-store : TopTermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode -- -- foo : TopTermNode × TopTermNode -- -- foo = -- -- {!example-store!} , -- -- {!snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 10) example-store!} -- -- -- it's tricky to keep the parents up to date when the children change (viz adolescence) -- -- module FirstTryWithParent where -- -- mutual -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- parent : TopTermNode ⊎ TermNode -- -- self : TermCode -- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode -- -- number : Nat -- -- record TopTermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- -- open TermNode -- -- open TopTermNode -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤ -- -- storeTermCodes [] _ = return tt -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { parent = right 𝔫 -- -- ; self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤ -- -- storeTermCodesAtTop [] _ = return tt -- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { parent = left 𝔫 -- -- ; self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- initialTopNode : TopTermNode -- -- initialTopNode = record { children = const nothing } -- -- example-store : TopTermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode -- -- foo : TopTermNode -- -- foo = {!example-store!} -- -- -- -- -- -- _⟪_⟫_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → -- -- A → (A → B → C) → B → C -- -- x ⟪ f ⟫ y = f x y -- -- -- -- {- -- -- infixr 9 _∘₂′_ -- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → -- -- (C → D) → (A → B → C) → (A → B → D) -- -- _∘₂′_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -- -- infixr 9 _∘₂′_ -- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → -- -- (C → D) → (A → B → C) → (A → B → D) -- -- _∘₂′_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -} -- -- {- -- -- infixr 9 _∘₂_ -- -- _∘₂_ : ∀ {a b c d} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} {D : ∀ x → B x → C x -- -- (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → -- -- ∀ x → C x (g x) -- -- _∘₂_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -}
{ "alphanum_fraction": 0.5080441961, "avg_line_length": 45.3652822151, "ext": "agda", "hexsha": "5925c2476392ff67cae40b24e95200609d0beadd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/NaturalDeduction.monolithic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/NaturalDeduction.monolithic.agda", "max_line_length": 405, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/NaturalDeduction.monolithic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54015, "size": 127794 }
open import Nat open import Prelude open import contexts open import core open import type-assignment-unicity module canonical-indeterminate-forms where -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at base type data cif-base : (Δ : hctx) (d : iexp) → Set where CIFBEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBAp : ∀ {Δ d} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2 ==> b) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-base Δ d CIFBFst : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: b ⊗ τ2) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-base Δ d CIFBSnd : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ1 ⊗ b) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-base Δ d CIFBCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] ((d == d' ⟨ ⦇·⦈ ⇒ b ⟩) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-base Δ d CIFBFailedCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒⦇⦈⇏ b ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ b) ) → cif-base Δ d canonical-indeterminate-forms-base : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d indet → cif-base Δ d canonical-indeterminate-forms-base TAConst () canonical-indeterminate-forms-base (TAVar x₁) () canonical-indeterminate-forms-base (TAAp wt wt₁) (IAp x ind x₁) = CIFBAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-base (TAEHole x x₁) IEHole = CIFBEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-base (TANEHole x wt x₁) (INEHole x₂) = CIFBNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-base (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFBCast (_ , refl , wt , ind , x₁) canonical-indeterminate-forms-base (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFBFailedCast (_ , _ , refl , x , x₅ , x₇) canonical-indeterminate-forms-base (TAFst wt) (IFst ind h1 h2) = CIFBFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-base (TASnd wt) (ISnd ind h1 h2) = CIFBSnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at arrow type data cif-arr : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CIFAEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFANEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFAAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2' ∈ typ ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ==> τ2) ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-arr Δ d τ1 τ2 CIFASnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ (τ1 ==> τ2)) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-arr Δ d τ1 τ2 CIFACast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] ((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2') × (d' indet) × ((τ1' ==> τ2') ≠ (τ1 ==> τ2)) ) → cif-arr Δ d τ1 τ2 CIFACastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] ((d == (d' ⟨ ⦇·⦈ ⇒ ⦇·⦈ ==> ⦇·⦈ ⟩)) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == (d' ⟨ τ' ⇒⦇⦈⇏ ⦇·⦈ ==> ⦇·⦈ ⟩) ) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇·⦈ ==> ⦇·⦈)) ) → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d indet → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr (TAVar x₁) () canonical-indeterminate-forms-arr (TALam _ wt) () canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TAFailedCast x x₁ GHole x₃) (IFailedCast x₄ x₅ GHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇) canonical-indeterminate-forms-arr (TAFst wt) (IFst ind h1 h2) = CIFAFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-arr (TASnd wt) (ISnd ind h1 h2) = CIFASnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at hole type data cif-hole : (Δ : hctx) (d : iexp) → Set where CIFHEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: ⦇·⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: ⦇·⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHAp : ∀ {Δ d} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇·⦈)) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-hole Δ d CIFHFst : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: ⦇·⦈ ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-hole Δ d CIFHSnd : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ ⦇·⦈) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-hole Δ d CIFHCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒ ⦇·⦈ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (d' indet) ) → cif-hole Δ d canonical-indeterminate-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇·⦈ → d indet → cif-hole Δ d canonical-indeterminate-forms-hole (TAVar x₁) () canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind) canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ()) canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇) canonical-indeterminate-forms-hole (TAFst wt) (IFst ind h1 h2) = CIFHFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-hole (TASnd wt) (ISnd ind h1 h2) = CIFHSnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at product type data cif-prod : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CIFPEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: (τ1 ⊗ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPNEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ⊗ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2' ∈ typ ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊗ τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ⊗ τ2) ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPSnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ (τ1 ⊗ τ2)) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPPair1 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 indet × d2 final ) → cif-prod Δ d τ1 τ2 CIFPPair2 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 final × d2 indet ) → cif-prod Δ d τ1 τ2 CIFPCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] ((d == d' ⟨ (τ1' ⊗ τ2') ⇒ (τ1 ⊗ τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ⊗ τ2') × (d' indet) × ((τ1' ⊗ τ2') ≠ (τ1 ⊗ τ2)) × ((τ1' ⊗ τ2') ~ (τ1 ⊗ τ2)) ) → cif-prod Δ d τ1 τ2 CIFPCastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] ((d == (d' ⟨ ⦇·⦈ ⇒ ⦇·⦈ ⊗ ⦇·⦈ ⟩)) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == (d' ⟨ τ' ⇒⦇⦈⇏ ⦇·⦈ ⊗ ⦇·⦈ ⟩) ) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇·⦈ ⊗ ⦇·⦈) × d' final)) → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊗ τ2) → d indet → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod (TAVar x₁) () canonical-indeterminate-forms-prod (TAAp wt wt₁) (IAp x ind x₁) = CIFPAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-prod (TAEHole x x₁) IEHole = CIFPEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-prod (TANEHole x wt x₁) (INEHole x₂) = CIFPNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-prod (TACast wt x) (ICastProd x₁ ind) = CIFPCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁ , x) canonical-indeterminate-forms-prod (TACast wt TCHole2) (ICastHoleGround x₁ ind GProd) = CIFPCastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-prod (TAFailedCast wt x GProd x₂) (IFailedCast x₃ x₄ GProd x₆) = CIFPFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆ , x₃) canonical-indeterminate-forms-prod (TAFst wt) (IFst ind h1 h2) = CIFPFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-prod (TASnd wt) (ISnd ind h1 h2) = CIFPSnd (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair1 ind x) = CIFPPair1 (_ , _ , refl , wt , wt₁ , ind , x) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair2 x ind) = CIFPPair2 (_ , _ , refl , wt , wt₁ , x , ind) canonical-indeterminate-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d indet → τ ≠ b → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇·⦈ → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ⊗ τ2)) → ⊥ canonical-indeterminate-forms-coverage TAConst () nb na nh canonical-indeterminate-forms-coverage (TAVar x₁) () nb na nh canonical-indeterminate-forms-coverage (TALam _ wt) () nb na nh canonical-indeterminate-forms-coverage {τ = b} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAEHole x x₁) IEHole nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAEHole x x₁) IEHole nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAEHole x x₁) IEHole nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastArr x₁ ind) nb na nh _ = na _ _ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastGroundHole x₁ ind) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = b} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) z _ _ _ = z refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) _ _ z _ = z refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) _ z _ _ = z τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAFst wt) (IFst ind x _) nb na nh np = nb refl canonical-indeterminate-forms-coverage {τ = b} (TASnd wt) (ISnd ind x _) nb na nh np = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAFst wt) (IFst ind x _) nb na nh np = nh refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TASnd wt) (ISnd ind x _) nb na nh np = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFst wt) (IFst ind x _) nb na nh np = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TASnd wt) (ISnd ind x _) nb na nh np = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAEHole x x₁) IEHole nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TACast wt x) (ICastProd x₁ ind) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAFailedCast wt x x₁ x₂) (IFailedCast x₃ x₄ x₅ x₆) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAFst wt) (IFst ind x _) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TASnd wt) (ISnd ind x _) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAPair wt wt₁) (IPair1 ind x) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAPair wt wt₁) (IPair2 x ind) nb na nh np = np τ τ₁ refl
{ "alphanum_fraction": 0.4570943976, "avg_line_length": 46.8163771712, "ext": "agda", "hexsha": "cc09199c4d757b949f6c8ef54c11800e9e5c8368", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "canonical-indeterminate-forms.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "canonical-indeterminate-forms.agda", "max_line_length": 160, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "canonical-indeterminate-forms.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 8083, "size": 18867 }
{-# OPTIONS --cubical --safe #-} module Cubical.ZCohomology.Properties where open import Cubical.ZCohomology.Base open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.NatMinusTwo.Base open import Cubical.Data.Empty open import Cubical.Data.Sigma open import Cubical.Data.Prod.Base open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation open import Cubical.HITs.Nullification open import Cubical.Data.Int open import Cubical.Data.Nat open import Cubical.HITs.Truncation open import Cubical.HITs.Pushout open import Cubical.Data.Sum.Base open import Cubical.Data.HomotopyGroup open import Cubical.Data.Bool private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Set ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₀ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →* C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →* C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →* C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →* C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc n) A i = ∥ coHomRed+1.helpLemma A i {C = ((coHomK (suc n)) , ∣ north ∣)} i ∥₀
{ "alphanum_fraction": 0.6078167116, "avg_line_length": 35.3333333333, "ext": "agda", "hexsha": "bee12fee4474014786898516931ac5fd2740ee29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Properties.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 769, "size": 2226 }
------------------------------------------------------------------------ -- Examples ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Examples where open import Data.List open import Data.Vec using ([]; _∷_) open import Data.Nat open import Data.Bool open import Data.Char using (Char) import Data.Char.Properties as C import Data.String as S open S using (String) open import Codata.Musical.Notation open import Relation.Binary.PropositionalEquality as P using (_≡_) open import StructurallyRecursiveDescentParsing.Index open import StructurallyRecursiveDescentParsing.Grammar open import StructurallyRecursiveDescentParsing.DepthFirst open import StructurallyRecursiveDescentParsing.Lib open Token C.decSetoid -- Some functions used to simplify the examples a little. infix 5 _∈?_/_ _∈?_ _∈?_/_ : ∀ {NT i R} → String → Parser NT Char i R → Grammar NT Char → List R s ∈? p / g = parseComplete (⟦ p ⟧ g) (S.toList s) _∈?_ : ∀ {i R} → String → Parser EmptyNT Char i R → List R s ∈? p = s ∈? p / emptyGrammar module Ex₁ where mutual -- e ∷= 0 + e | 0 data Nonterminal : NonTerminalType where e : Nonterminal i Char private i = _ grammar : Grammar Nonterminal Char grammar e = tok '0' ⊛> tok '+' ⊛> ! e ∣ tok '0' ex₁ : "0+0" ∈? ! e / grammar ≡ [ '0' ] ex₁ = P.refl module Ex₂ where mutual -- e ∷= f + e | f -- f ∷= 0 | 0 * f | ( e ) data Nonterminal : NonTerminalType where expr : Nonterminal i₁ Char factor : Nonterminal i₂ Char private i₁ = _ i₂ = _ grammar : Grammar Nonterminal Char grammar expr = ! factor ⊛> tok '+' ⊛> ! expr ∣ ! factor grammar factor = tok '0' ∣ tok '0' ⊛> tok '*' ⊛> ! factor ∣ tok '(' ⊛> ! expr <⊛ tok ')' ex₁ : "(0*)" ∈? ! expr / grammar ≡ [] ex₁ = P.refl ex₂ : "0*(0+0)" ∈? ! expr / grammar ≡ [ '0' ] ex₂ = P.refl {- module Ex₃ where mutual -- This is not allowed: -- e ∷= f + e | f -- f ∷= 0 | f * 0 | ( e ) data Nonterminal : NonTerminalType where expr : Nonterminal i₁ Char factor : Nonterminal i₂ Char private i₁ = _ i₂ = _ grammar : Grammar Nonterminal Char grammar expr = ! factor ⊛> tok '+' ⊛> ! expr ∣ ! factor grammar factor = tok '0' ∣ ! factor ⊛> tok '*' ⊛> tok '0' ∣ tok '(' ⊛> ! expr <⊛ tok ')' -} module Ex₄ where mutual -- The language aⁿbⁿcⁿ, which is not context free. -- The non-terminal top returns the number of 'a' characters -- parsed. data NT : NonTerminalType where top : NT i₁ ℕ -- top ∷= aⁿbⁿcⁿ as : ℕ → NT i₂ ℕ -- as n ∷= aˡ⁺¹bⁿ⁺ˡ⁺¹cⁿ⁺ˡ⁺¹ bcs : Char → ℕ → NT i₃ ℕ -- bcs x n ∷= xⁿ⁺¹ private i₁ = _ i₂ = _ i₃ = _ grammar : Grammar NT Char grammar top = return 0 ∣ ! (as zero) grammar (as n) = suc <$ tok 'a' ⊛ ( ! (as (suc n)) ∣ _+_ <$> ! (bcs 'b' n) ⊛ ! (bcs 'c' n) ) grammar (bcs c zero) = tok c ⊛> return 0 grammar (bcs c (suc n)) = tok c ⊛> ! (bcs c n) ex₁ : "aaabbbccc" ∈? ! top / grammar ≡ [ 3 ] ex₁ = P.refl ex₂ : "aaabbccc" ∈? ! top / grammar ≡ [] ex₂ = P.refl module Ex₄′ where mutual -- A monadic variant of Ex₄. aⁿbⁿcⁿ = return 0 ∣ tok 'a' + !>>= λ as → ♯ (let n = length as in exactly n (tok 'b') ⊛> exactly n (tok 'c') ⊛> return n) ex₁ : "aaabbbccc" ∈? aⁿbⁿcⁿ ≡ [ 3 ] ex₁ = P.refl ex₂ : "aaabbccc" ∈? aⁿbⁿcⁿ ≡ [] ex₂ = P.refl module Ex₅ where mutual -- A grammar making use of a parameterised parser from the -- library. data NT : NonTerminalType where a : NT i₁ Char as : NT i₂ ℕ private i₁ = _ i₂ = _ grammar : Grammar NT Char grammar a = tok 'a' grammar as = length <$> ! a ⋆ ex₁ : "aaaaa" ∈? ! as / grammar ≡ [ 5 ] ex₁ = P.refl module Ex₆ where mutual -- A grammar which uses the chain≥ combinator. data NT : NonTerminalType where op : NT i₁ (ℕ → ℕ → ℕ) expr : (a : Assoc) → NT i₂ ℕ private i₁ = _ i₂ = _ grammar : Grammar NT Char grammar op = _+_ <$ tok '+' ∣ _*_ <$ tok '*' ∣ _∸_ <$ tok '∸' grammar (expr a) = chain≥ 0 a number (! op) ex₁ : "12345" ∈? number / grammar ≡ [ 12345 ] ex₁ = P.refl ex₂ : "1+5*2∸3" ∈? ! (expr left) / grammar ≡ [ 9 ] ex₂ = P.refl ex₃ : "1+5*2∸3" ∈? ! (expr right) / grammar ≡ [ 1 ] ex₃ = P.refl module Ex₇ where mutual -- A proper expression example. data NT : NonTerminalType where expr : NT i₁ ℕ term : NT i₂ ℕ factor : NT i₃ ℕ addOp : NT i₄ (ℕ → ℕ → ℕ) mulOp : NT i₅ (ℕ → ℕ → ℕ) private i₁ = _ i₂ = _ i₃ = _ i₄ = _ i₅ = _ grammar : Grammar NT Char grammar expr = chain≥ 0 left (! term) (! addOp) grammar term = chain≥ 0 left (! factor) (! mulOp) grammar factor = tok '(' ⊛> ! expr <⊛ tok ')' ∣ number grammar addOp = _+_ <$ tok '+' ∣ _∸_ <$ tok '∸' grammar mulOp = _*_ <$ tok '*' ex₁ : "1+5*2∸3" ∈? ! expr / grammar ≡ [ 8 ] ex₁ = P.refl ex₂ : "1+5*(2∸3)" ∈? ! expr / grammar ≡ [ 1 ] ex₂ = P.refl module Ex₈ where mutual -- An example illustrating the use of one grammar within another. data NT : NonTerminalType where lib : ∀ {i R} (nt : Ex₇.NT i R) → NT i R exprs : NT i (List ℕ) private i = _ expr = lib Ex₇.expr grammar : Grammar NT Char grammar (lib nt) = mapNT lib (Ex₇.grammar nt) grammar exprs = ! expr sepBy tok ',' ex₁ : "1,2∸1" ∈? ! exprs / grammar ≡ [ 1 ∷ 1 ∷ [] ] ex₁ = P.refl module Ex₉ where mutual -- An example illustrating the use of one grammar within another -- when the inner grammar contains non-terminals parameterised on -- parsers, and the outer grammar instantiates one of these -- parsers with an outer non-terminal. infix 55 _★ _∔ data LibraryNT (NT : NonTerminalType) (Tok : Set) : NonTerminalType where _★ : ∀ {c R} → Parser NT Tok (false ◇ c) R → LibraryNT NT Tok (i₁ c) (List R) _∔ : ∀ {c R} → Parser NT Tok (false ◇ c) R → LibraryNT NT Tok (i₂ c) (List R) private i₁ i₂ : _ → _ i₁ = _ i₂ = _ library : ∀ {NT Tok} → (∀ {i R} → LibraryNT NT Tok i R → NT i R) → ∀ {i R} → LibraryNT NT Tok i R → Parser NT Tok i R library lift (p ★) = return [] ∣ ! (lift (p ∔)) library lift (p ∔) = p >>= λ x → ! (lift (p ★)) >>= λ xs → return (x ∷ xs) mutual data NT : NonTerminalType where lib : ∀ {i R} → LibraryNT NT Char i R → NT i R a : NT i₃ Char as : NT i₄ (List Char) private i₃ = _ i₄ = _ grammar : Grammar NT Char grammar (lib nt) = library lib nt grammar a = tok 'a' grammar as = ! (lib (! a ★)) ex₁ : "aa" ∈? ! as / grammar ≡ [ 'a' ∷ 'a' ∷ [] ] ex₁ = P.refl
{ "alphanum_fraction": 0.4998650836, "avg_line_length": 23.38170347, "ext": "agda", "hexsha": "e60e435f5a4682292afc2c8b6fe63d56e312457b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Examples.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2501, "size": 7412 }
module Issue261 where postulate List : Set → Set nil : ∀ A → List A Nat : Set works-now : List Nat works-now with nil _ ... | xs = xs
{ "alphanum_fraction": 0.6153846154, "avg_line_length": 11.9166666667, "ext": "agda", "hexsha": "a27bddaab6ef80c1758d428d380c21e8e72eaa9a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue261.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue261.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue261.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 143 }
module _ where module A where data D : Set where !_ : D module B where data D : Set where !_ : D open A test : B.D test = !_
{ "alphanum_fraction": 0.5734265734, "avg_line_length": 8.4117647059, "ext": "agda", "hexsha": "ec270cc0748bc4e1e7440c562cc72e18f4c2ebbe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Sections-16.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Sections-16.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Sections-16.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 143 }
------------------------------------------------------------------------ -- An alternative definition of the partiality monad: a variant of the -- delay monad quotiented by a notion of weak bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --sized-types #-} module Partiality-monad.Coinductive.Alternative where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) open import Function-universe equality-with-J hiding (⊥↔⊥) open import H-level equality-with-J open import H-level.Truncation.Propositional equality-with-paths open import Quotient equality-with-paths import Delay-monad.Alternative as A import Delay-monad.Alternative.Equivalence as A import Delay-monad.Alternative.Weak-bisimilarity as A import Delay-monad.Bisimilarity as B import Partiality-monad.Coinductive as C -- The partiality monad, defined as the alternative definition of the -- delay monad quotiented by weak bisimilarity. _⊥ : ∀ {a} → Type a → Type a A ⊥ = A.Delay A / A._≈_ -- The partiality monad is a set. ⊥-is-set : ∀ {a} {A : Type a} → Is-set (A ⊥) ⊥-is-set = /-is-set -- This definition of the partiality monad is isomorphic to the one in -- Partiality-monad.Coinductive, for sets, assuming extensionality. ⊥↔⊥ : ∀ {a} {A : Type a} → Is-set A → B.Extensionality a → A ⊥ ↔ A C.⊥ ⊥↔⊥ {A = A} A-set delay-ext = D↔D /-cong lemma where D↔D = A.Delay↔Delay delay-ext lemma : (x y : A.Delay A) → x A.≈ y ⇔ ∥ _↔_.to D↔D x B.≈ _↔_.to D↔D y ∥ lemma x y = x A.≈ y ↔⟨ inverse $ ∥∥↔ (A.≈-propositional x y) ⟩ ∥ x A.≈ y ∥ ↝⟨ ∥∥-cong-⇔ (A.≈⇔≈ A-set x y) ⟩□ ∥ _↔_.to D↔D x B.≈ _↔_.to D↔D y ∥ □
{ "alphanum_fraction": 0.6049649217, "avg_line_length": 34.3148148148, "ext": "agda", "hexsha": "15cc22a92483117e9f1055a3d083e6070a7dd6a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Coinductive/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Coinductive/Alternative.agda", "max_line_length": 81, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Coinductive/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 613, "size": 1853 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous.Definitions where open import Level import Relation.Binary.Core as B import Relation.Binary.Definitions as B import Relation.Binary.PropositionalEquality.Core as P open import Relation.Binary.Indexed.Heterogeneous.Core private variable i a ℓ : Level I : Set i ------------------------------------------------------------------------ -- Simple properties of indexed binary relations Reflexive : (A : I → Set a) → IRel A ℓ → Set _ Reflexive _ _∼_ = ∀ {i} → B.Reflexive (_∼_ {i}) Symmetric : (A : I → Set a) → IRel A ℓ → Set _ Symmetric _ _∼_ = ∀ {i j} → B.Sym (_∼_ {i} {j}) _∼_ Transitive : (A : I → Set a) → IRel A ℓ → Set _ Transitive _ _∼_ = ∀ {i j k} → B.Trans _∼_ (_∼_ {j}) (_∼_ {i} {k})
{ "alphanum_fraction": 0.5411334552, "avg_line_length": 30.3888888889, "ext": "agda", "hexsha": "8df0b73e9f94e7ba62219372e659930a48f06b83", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Definitions.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 285, "size": 1094 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Data.Dyck.Empty where open import Prelude open import Data.Nat using (_+_) open import Data.Vec.Iterated using (Vec; _∷_; []; foldlN; head) private variable n : ℕ -------------------------------------------------------------------------------- -- Binary trees: definition and associated functions -------------------------------------------------------------------------------- data Tree (A : Type a) : Type a where ◇ : Tree A [_] : A → Tree A _*_ : Tree A → Tree A → Tree A -------------------------------------------------------------------------------- -- Programs: definition and associated functions -------------------------------------------------------------------------------- data Prog (A : Type a) : ℕ → Type a where halt : Prog A 1 push : A → Prog A (1 + n) → Prog A n pull : Prog A (1 + n) → Prog A (2 + n) skip : Prog A (1 + n) → Prog A n -------------------------------------------------------------------------------- -- Conversion from a Prog to a Tree -------------------------------------------------------------------------------- prog→tree⊙ : Prog A n → Vec (Tree A) n → Tree A prog→tree⊙ halt (v ∷ []) = v prog→tree⊙ (push v is) st = prog→tree⊙ is ([ v ] ∷ st) prog→tree⊙ (pull is) (t₁ ∷ t₂ ∷ st) = prog→tree⊙ is (t₂ * t₁ ∷ st) prog→tree⊙ (skip is) st = prog→tree⊙ is (◇ ∷ st) prog→tree : Prog A zero → Tree A prog→tree ds = prog→tree⊙ ds [] -------------------------------------------------------------------------------- -- Conversion from a Tree to a Prog -------------------------------------------------------------------------------- tree→prog⊙ : Tree A → Prog A (suc n) → Prog A n tree→prog⊙ [ x ] = push x tree→prog⊙ (xs * ys) = tree→prog⊙ xs ∘ tree→prog⊙ ys ∘ pull tree→prog⊙ ◇ = skip tree→prog : Tree A → Prog A zero tree→prog tr = tree→prog⊙ tr halt -------------------------------------------------------------------------------- -- Proof of isomorphism -------------------------------------------------------------------------------- tree→prog→tree⊙ : {is : Prog A (1 + n)} {st : Vec (Tree A) n} (e : Tree A) → prog→tree⊙ (tree→prog⊙ e is) st ≡ prog→tree⊙ is (e ∷ st) tree→prog→tree⊙ [ x ] = refl tree→prog→tree⊙ (xs * ys) = tree→prog→tree⊙ xs ; tree→prog→tree⊙ ys tree→prog→tree⊙ ◇ = refl prog→tree→prog⊙ : {st : Vec (Tree A) n} (is : Prog A n) → tree→prog (prog→tree⊙ is st) ≡ foldlN (Prog A) tree→prog⊙ is st prog→tree→prog⊙ halt = refl prog→tree→prog⊙ (push i is) = prog→tree→prog⊙ is prog→tree→prog⊙ (pull is) = prog→tree→prog⊙ is prog→tree→prog⊙ (skip is) = prog→tree→prog⊙ is prog-iso : Prog A zero ⇔ Tree A prog-iso .fun = prog→tree prog-iso .inv = tree→prog prog-iso .rightInv = tree→prog→tree⊙ prog-iso .leftInv = prog→tree→prog⊙
{ "alphanum_fraction": 0.4275210084, "avg_line_length": 36.1518987342, "ext": "agda", "hexsha": "c0deed6c44901db67886d2088dea5b00b9803b70", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Dyck/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Dyck/Empty.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Dyck/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 872, "size": 2856 }
{- Holey congruence where there is a 'general' `cong` function available, as in one that works for any given function. -} open import Holes.Prelude -- NOTE: Why can't we accept the actual functions as arguments instead of quoted -- versions? Because macros don't play nicely with modules. module Holes.Cong.General (quote-cong : Name) (quote-sym : Name) where open Holes.Prelude public using (quote-term) import Holes.Term as HTerm -- NOTE: This doesn't work! The place that uses the macros has to import -- Holes.Term using (⌞_⌟) manually. -- open HTerm using (⌞_⌟) public open HTerm private -- If the given term is one that has arguments, returns them. getArgs : Term → Maybe (List (Arg Term)) getArgs (var x args) = just args getArgs (con c args) = just args getArgs (def f args) = just args getArgs (pat-lam cs args) = just args getArgs _ = nothing -- In a list of arguments, returns the relevant ones for a binary relation. ≈relevantArgs : List (Arg Term) → Maybe (Term × Term) ≈relevantArgs (_ ∷ _ ∷ arg _ x ∷ arg _ y ∷ []) = just (x , y) ≈relevantArgs _ = nothing -- Given a type of the form `x ≡ y`, returns the pair `x , y`. decompose≈ : Term → Maybe (Term × Term) decompose≈ = getArgs >=> ≈relevantArgs applyCong : Term → Term → Term applyCong lambda inner-equality = def quote-cong ( basicArg lambda -- f : A → B ∷ basicArg inner-equality -- x ≈ y ∷ []) applySym : Term → Term applySym equality = def quote-sym ( basicArg equality -- i ≈ j ∷ []) autoCongWithType : Term → Type → TC Term autoCongWithType equalityTerm targetType = -- Try to decompose the goal type, which should be of the form `x ≈ y`, into -- `x` and `y`. Throw a type error if this is not possible. liftMaybe ( strErr "Term is not of the form x ≈ y:" ∷ termErr targetType ∷ []) (decompose≈ targetType) >>=² λ goalLhs _ → -- Try to extract the holes in the LHS. Throw a type error if this is not -- possible. checkedTermToHoley′ (printHoleyErr goalLhs) goalLhs >>=² λ _ lhsHoley → -- Construct a lambda expression into the holes in the LHS. return (holeyToLam lhsHoley) >>= λ lhsLam → -- Apply the `cong` function with our newly constructed lambda and the -- provided equality term. Most implicit arguments are left unknown, and -- then inferred by Agda when we call `checkType`. return (applyCong lhsLam equalityTerm) >>= λ congTerm → -- Try to check the type of the cong term. If it doesn't work, try it -- symmetrically. If that doesn't work, try the first again so that the user -- gets a nicer error message. checkType congTerm targetType ⟨ catchTC ⟩ checkType (applySym congTerm) targetType ⟨ catchTC ⟩ checkType congTerm targetType -- `checkType` hopefully returns to us the `cong` call with filled implicit -- arguments. Assuming the user's logic is correct, this is what we need to -- prove the goal. cong!′ : Term → Term → TC ⊤ cong!′ equalityTerm target = inferType target >>= autoCongWithType equalityTerm >>= unify target macro cong! : Term → Term → TC ⊤ cong! = cong!′
{ "alphanum_fraction": 0.6595481275, "avg_line_length": 32.9693877551, "ext": "agda", "hexsha": "2469e194c521321ce888b154249a85f9dff12f08", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "src/Holes/Cong/General.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "src/Holes/Cong/General.agda", "max_line_length": 80, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "src/Holes/Cong/General.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 921, "size": 3231 }
open import FRP.JS.Nat using ( ℕ ) renaming ( _<_ to _<N_ ; _≤_ to _≤N_ ) open import FRP.JS.Bool using ( Bool ; true ; false ; not ) module FRP.JS.Char where infix 4 _≟_ _≠_ _<_ _≤_ open import FRP.JS.Primitive public using ( Char ) private primitive primCharToNat : Char → ℕ primCharEquality : Char → Char → Bool toNat : Char → ℕ toNat = primCharToNat {-# COMPILED_JS toNat function(c) { return c.charCodeAt(0); } #-} _≟_ : Char → Char → Bool _≟_ = primCharEquality {-# COMPILED_JS _≟_ function(c) { return function(d) { return c === d; }; } #-} _≠_ : Char → Char → Bool c ≠ d = not (c ≟ d) {-# COMPILED_JS _≠_ function(c) { return function(d) { return c !== d; }; } #-} _<_ : Char → Char → Bool c < d = toNat c <N toNat d {-# COMPILED_JS _<_ function(c) { return function(d) { return c < d; }; } #-} _≤_ : Char → Char → Bool c ≤ d = toNat c ≤N toNat d {-# COMPILED_JS _≤_ function(c) { return function(d) { return c <= d; }; } #-}
{ "alphanum_fraction": 0.609832636, "avg_line_length": 24.5128205128, "ext": "agda", "hexsha": "9730bb9edae83ed1c7c9f45c384a5776be88f9fc", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Char.agda", "max_line_length": 79, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Char.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 339, "size": 956 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Groupoid where open import Level using (Level; suc; _⊔_) open import Categories.Category using (Category) import Categories.Morphism record IsGroupoid {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where open Category C public open Categories.Morphism C infix 10 _⁻¹ field _⁻¹ : ∀ {A B} → A ⇒ B → B ⇒ A iso : ∀ {A B} {f : A ⇒ B} → Iso f (f ⁻¹) module iso {A B f} = Iso (iso {A} {B} {f}) equiv-obj : ∀ {A B} → A ⇒ B → A ≅ B equiv-obj f = record { from = f ; to = _ ; iso = iso } -- this definition doesn't seem to 'carry its weight' equiv-obj-sym : ∀ {A B} → A ⇒ B → B ≅ A equiv-obj-sym f = ≅.sym (equiv-obj f) -- A groupoid is a category that has a groupoid structure record Groupoid (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where field category : Category o ℓ e isGroupoid : IsGroupoid category open IsGroupoid isGroupoid public
{ "alphanum_fraction": 0.6006224066, "avg_line_length": 23.512195122, "ext": "agda", "hexsha": "5c8b0c643fd6690d26a9ac08205eb5fb71f4bfec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Groupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Groupoid.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 343, "size": 964 }
module plfa.part1.Midterm where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) -- you can add any import definitions that you need open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; _>_; z≤n; s≤s; _≤?_) open import Data.Nat.Properties using (+-assoc; +-suc; *-suc; +-comm; *-distribˡ-+; *-identityʳ) open import Relation.Nullary using (yes; no) open import plfa.part1.Induction using (*-distrib-+; *-zero) -- used for rewrite simplify : ∀ {A : Set} (x : A) → x ≡ x simplify x = refl sum : ℕ → ℕ sum 0 = 0 sum n@(suc sn) = sum sn + n -- Problem 1 -- remove the "postulate" and prove this theorem, which is a version of -- sum n ≡ n * (n + 1) / 2 ---postulate simple : ∀ (n : ℕ) → (sum n) * 2 ≡ (suc n) * n simple zero = refl simple (suc n) rewrite *-distrib-+ (sum n) (suc n) 2 | simple n | simplify n | *-suc n n | +-comm n (n * n) | sym (+-assoc n (n * n) n) | +-comm n (n * n) | +-assoc (n * n) n n | sym (+-suc (n * n) (n + n)) | sym (+-assoc n (n * n) (suc (n + n))) | +-comm n (n * n) | sym (+-suc (n * n) n) | +-assoc (n * n) n (suc (n + n)) | sym (+-suc (n * n) (n + suc (n + n))) | sym (+-suc n (suc (n + n))) | sym (+-assoc (n * n) n (suc (suc (n + n)))) | *-suc n 1 | *-identityʳ n = refl -- Problem 2 -- remove the postulate and implement this function, which gives an Natural -- number approximation of square root postulate sqrt : ℕ → ℕ -- you can run these test cases -- _ : sqrt 0 ≡ 0 -- _ = refl -- _ : sqrt 1 ≡ 1 -- _ = refl -- _ : sqrt 2 ≡ 1 -- _ = refl -- _ : sqrt 3 ≡ 1 -- _ = refl -- _ : sqrt 4 ≡ 2 -- _ = refl -- _ : sqrt 5 ≡ 2 -- _ = refl -- _ : sqrt 6 ≡ 2 -- _ = refl -- _ : sqrt 7 ≡ 2 -- _ = refl -- _ : sqrt 8 ≡ 2 -- _ = refl -- _ : sqrt 9 ≡ 3 -- _ = refl -- _ : sqrt 10 ≡ 3 -- _ = refl -- _ : sqrt 11 ≡ 3 -- _ = refl -- _ : sqrt 12 ≡ 3 -- _ = refl -- _ : sqrt 13 ≡ 3 -- _ = refl -- _ : sqrt 14 ≡ 3 -- _ = refl -- _ : sqrt 15 ≡ 3 -- _ = refl -- _ : sqrt 16 ≡ 4 -- _ = refl -- _ : sqrt 17 ≡ 4 -- _ = refl -- _ : sqrt 18 ≡ 4 -- _ = refl -- _ : sqrt 19 ≡ 4 -- _ = refl -- _ : sqrt 20 ≡ 4 -- _ = refl -- _ : sqrt 21 ≡ 4 -- _ = refl -- _ : sqrt 22 ≡ 4 -- _ = refl -- _ : sqrt 23 ≡ 4 -- _ = refl -- _ : sqrt 24 ≡ 4 -- _ = refl -- _ : sqrt 24 ≡ 4 -- _ = refl -- _ : sqrt 24 ≡ 4 -- _ = refl -- _ : sqrt 25 ≡ 5 -- _ = refl -- _ : sqrt 26 ≡ 5 -- _ = refl -- _ : sqrt 27 ≡ 5 -- _ = refl
{ "alphanum_fraction": 0.4688812524, "avg_line_length": 23.5945945946, "ext": "agda", "hexsha": "609407830588d0fba1168a13dec1826f4125322c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a30af28dc669502ec79d36379afd6925ad8f74da", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "zrz1996/plfa.github.io", "max_forks_repo_path": "src/plfa/part1/Midterm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a30af28dc669502ec79d36379afd6925ad8f74da", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "zrz1996/plfa.github.io", "max_issues_repo_path": "src/plfa/part1/Midterm.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "a30af28dc669502ec79d36379afd6925ad8f74da", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "zrz1996/plfa.github.io", "max_stars_repo_path": "src/plfa/part1/Midterm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1073, "size": 2619 }
{-# OPTIONS --erased-cubical --safe #-} open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_ ; _>_; _<_; _≥_; z≤n; s≤s) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) module Nat where -- Useful functions for natural numbers _-_ : (n m : ℕ) → {m ≤ n} → ℕ (n - zero) {z≤n} = n (suc n - suc m) {s≤s p} = _-_ n m {p} _-_⟨_⟩ : (n m : ℕ) → (m ≤ n) → ℕ _-_⟨_⟩ n m m≤n = _-_ n m {m≤n} m+n-m=n : (m n : ℕ) → {m≤n : m ≤ n} → m + (n - m ⟨ m≤n ⟩) ≡ n m+n-m=n zero n {z≤n} = refl m+n-m=n (suc m) (suc n) {s≤s m≤n} = cong suc (m+n-m=n m n {m≤n}) <-∨-≥ : (m n : ℕ) → m < n ⊎ m ≥ n <-∨-≥ zero zero = inj₂ z≤n <-∨-≥ zero (suc n) = inj₁ (s≤s z≤n) <-∨-≥ (suc m) zero = inj₂ z≤n <-∨-≥ (suc m) (suc n) with <-∨-≥ m n ... | inj₁ m<n = inj₁ (s≤s m<n) ... | inj₂ m≥n = inj₂ (s≤s m≥n)
{ "alphanum_fraction": 0.4701912261, "avg_line_length": 29.6333333333, "ext": "agda", "hexsha": "6f8d556cf941e7e6756adbc3781dbb684089d2e8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Nat.agda", "max_line_length": 89, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 451, "size": 889 }
{-# OPTIONS --sized-types --show-implicit #-} module SizedTypesScopeViolationInMeta where open import Size data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {↑ size} suc : {size : Size} -> Nat {size} -> Nat {↑ size} -- exposing a bug in size constraint solving -- *** Exception: Inconsistent meta: _73 [[CtxId 420],[CtxId 418]] A : Set1 A = (Id : {i : Size} -> Nat {_} -> Set) (k : Size)(m : Nat {↑ k}) -> Id {k} m -> (j : Size)(n : Nat {j}) -> Id {j} n {- mutual -- id : {i : Size} -> Nat {_} -> Nat {i} -- FAILS id : {i : Size} -> Nat {i} -> Nat {i} id x = x succ : {i : Size} -> Nat {i} -> Nat {↑ i} succ x = suc (id x) -}
{ "alphanum_fraction": 0.5169366716, "avg_line_length": 22.6333333333, "ext": "agda", "hexsha": "7a2296431ec4ed257335cd028748faffd02987c5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/SizedTypesScopeViolationInMeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/SizedTypesScopeViolationInMeta.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/SizedTypesScopeViolationInMeta.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 246, "size": 679 }
module sv20.assign1.First where {- Code partially taken from the book "Programming Language Foundations in - Agda" by Philip Wadler, Wen Kokke, Jeremy Siek and many others. The book - can be found at https://plfa.github.io/ - - Based on chapter 1 - Natural numbers - https://plfa.github.io/Naturals/ - - The solution for the homework can be found from line 161 -} data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- Gives us the power of writing `3` to mean `suc (suc (suc zero))` :) {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open import Function.Base using (flip) open Eq using (_≡_; _≢_; refl; cong; sym; trans) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n -- +-def₀ (suc m) + n = suc (m + n) -- +-def₁ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) -- Monus _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n infixl 6 _+_ _∸_ infixl 7 _*_ infixr 8 _^_ assoc-+ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) assoc-+ zero n p = refl assoc-+ (suc m) n p rewrite assoc-+ m n p = refl comm-+₀ : ∀ (m : ℕ) → m + zero ≡ m comm-+₀ zero = refl -- Proofs on natural numbers can be written in a manner that ressembles a pen -- and paper proof. For example: comm-+₀ (suc n) = begin suc n + zero ≡⟨⟩ -- By addition definition suc (n + zero) ≡⟨ cong suc (comm-+₀ n) ⟩ suc n ∎ -- But often, proofs are written for Agda to check them and not to humans to -- read them. The above proof can be written succintly as: --comm-+₀ (suc n) rewrite comm-+₀ n = refl succ_right : ∀ (n m : ℕ) → suc (n + m) ≡ n + suc m succ_right zero m = refl succ_right (suc n) m rewrite succ_right n m = refl --succ_right (suc n) m = cong suc (succ_right n m) --succ_right (suc n) m = -- begin -- suc (suc n + m) -- ≡⟨⟩ -- suc (suc (n + m)) -- ≡⟨ cong suc (succ_right n m) ⟩ -- suc (n + suc m) -- ≡⟨⟩ -- suc n + suc m -- ∎ comm-+ : ∀ (n m : ℕ) → n + m ≡ m + n comm-+ zero n = sym (comm-+₀ n) comm-+ (suc n) m rewrite comm-+ n m | succ_right m n = refl --comm-+ (suc n) m = trans (cong suc (comm-+ n m)) (succ_right m n) --comm-+ (suc n) m = -- begin -- suc n + m -- ≡⟨⟩ -- +-def₁ -- suc (n + m) -- ≡⟨ cong suc (comm-+ n m) ⟩ -- suc (m + n) -- ≡⟨ succ_right m n ⟩ -- m + suc n -- ∎ swap-m-n-+ : ∀ (m n p) → m + (n + p) ≡ n + (m + p) swap-m-n-+ m n p rewrite sym (assoc-+ m n p) | sym (assoc-+ n m p) | comm-+ m n = refl right-zero-* : ∀ (n : ℕ) → n * 0 ≡ 0 right-zero-* zero = refl right-zero-* (suc n) rewrite right-zero-* n = refl suc-right-* : ∀ (m n) → m * suc n ≡ m + m * n suc-right-* zero n = refl suc-right-* (suc m) n rewrite suc-right-* m n | sym (assoc-+ n m (m * n)) | comm-+ n m | assoc-+ m n (m * n) = refl comm-* : ∀ (m n : ℕ) → m * n ≡ n * m comm-* zero n rewrite right-zero-* n = refl comm-* (suc m) n rewrite comm-* m n | suc-right-* n m = refl distr-*-+ : ∀ (m n p) → (m + n) * p ≡ m * p + n * p distr-*-+ zero _ _ = refl distr-*-+ (suc m) n p rewrite distr-*-+ m n p | assoc-+ p (m * p) (n * p) = refl distl-*-+ : ∀ (p m n) → p * (m + n) ≡ p * m + p * n distl-*-+ zero _ _ = refl distl-*-+ (suc p) m n rewrite distl-*-+ p m n | sym (assoc-+ (m + n) (p * m) (p * n)) | sym (assoc-+ (m + p * m) n (p * n)) | assoc-+ m n (p * m) | comm-+ n (p * m) | assoc-+ m (p * m) n = refl assoc-* : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) assoc-* zero n p = refl assoc-* (suc m) n p rewrite assoc-* m n p | distr-*-+ n (m * n) p | assoc-* m n p = refl swap-m-n-* : ∀ (m n p) → m * (n * p) ≡ n * (m * p) swap-m-n-* m n p rewrite sym (assoc-* m n p) | sym (assoc-* n m p) | comm-* m n = refl ------------------------------------------------------------------------------------------ -- HOMEWORK SOLUTION -- ------------------------------------------------------------------------------------------ -- We want to proof that: distr-^-* : ∀ (m n p) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) -- We will prove the `distr-^-*` by induction. To prove something by induction -- in Agda, we use recursion. -- The first basic case is when `p = 0` distr-^-* m n zero = begin (m * n) ^ zero ≡⟨⟩ -- The builtin option "NATURAL" allows us to write `0` instead of `zero` (m * n) ^ 0 ≡⟨⟩ -- because: n ^ zero = suc zero suc 0 ≡⟨⟩ -- because: zero + n = n suc (0 + 0) ≡⟨⟩ -- because: (suc m) + n = suc (m + n) suc 0 + 0 ≡⟨⟩ -- Agda builtin option "NATURAL" allows us to write `1` instead of `suc 0` 1 + 0 ≡⟨⟩ -- because: zero * n = zero 1 + 0 * 1 ≡⟨⟩ -- because: (suc m) * n = n + (m * n) suc 0 * 1 ≡⟨⟩ -- `1` instead of `suc 0` 1 * 1 ≡⟨⟩ -- because: n ^ zero = suc zero 1 * (n ^ 0) ≡⟨⟩ -- because: n ^ zero = suc zero (m ^ 0) * (n ^ 0) ∎ -- Agda computes every expression it is given until it can't apply any more -- rules, i.e, Agda reduces every expression to its normal form. -- For example, if we give Agda the expression `2 + 1`, it will apply the -- rule `(suc m) + n = suc (m + n)` until it arrives to -- `suc (suc (suc zero))`, `3`. -- -- Notice that every line in the previous proof reduces to `1`. This means -- that Agda read the previous proof as: -- --distr-^-* m n zero = -- begin -- 1 -- ≡⟨⟩ -- 1 -- ≡⟨⟩ -- ... -- 1 -- ≡⟨⟩ -- 1 -- ∎ -- -- So we could have written a shorter proof saying that `1 ≡⟨⟩ 1 ∎` and it -- would sufficient for Agda to approve our proof. -- --distr-^-* _ _ zero = 1 ≡⟨⟩ 1 ∎ -- -- In fact, `1 ≡⟨⟩ 1 ∎` can be written as `refl` in Agda. -- --distr-^-* _ _ zero = refl -- The following two base cases can be easily proven with the same technique as -- the previous proof: distr-^-* zero _ (suc p) = refl -- For the last base case, we need a little more human involvement because the -- expressions do not reduce completly to a common normal form. distr-^-* (suc m) zero (suc p) = begin (suc m * 0) ^ suc p ≡⟨⟩ -- Agda reduces the expression to m * 0 * (m * 0) ^ p -- Applying `right-zero-*` (`n * 0 ≡ 0`) lemma to the left side ≡⟨ cong (_* (m * 0) ^ p) (right-zero-* m) ⟩ 0 * (m * 0) ^ p ≡⟨⟩ -- reduces to 0 -- Applying `sym ∘ right-zero-*` (`0 ≡ n * 0`) lemma to the left side ≡⟨ sym (right-zero-* (suc m ^ suc p)) ⟩ (suc m ^ suc p) * 0 ≡⟨⟩ -- reduces to (suc m ^ p + m * suc m ^ p) * 0 ≡⟨⟩ -- reduced from our goal (suc m ^ suc p) * (0 ^ suc p) ∎ -- -- Notice how the previous proof required us to tell Agda which "lemmas" to use -- to be able to link the left side of the proof with the right side. -- -- As before, we have more ways to write the previous proof. We can forgo all -- the intermediate steps and tell Agda which lemmas the proof needs. -- --distr-^-* (suc m) 0 (suc p) = -- trans -- (cong (_* (m * 0) ^ p) (right-zero-* m)) -- (sym (right-zero-* (suc m ^ suc p))) -- -- An even shorter proof can be written using `rewrite`. `rewrite` will try to -- apply the `lemmas` we tell it to apply once, descending order. If the -- rewriting process works by the end, we will only need `refl` to indicate -- that both sides of the proof are the same. -- --distr-^-* (suc m) zero (suc p) -- rewrite ---- We start with what we want to proof: ---- ---- (suc m * zero) ^ suc p ≡ suc m ^ suc p * zero ^ suc p ---- ---- which reduces to ---- ---- m * 0 * (m * 0) ^ p ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- -- right-zero-* m -- asking to rewrite all appearances of `m * 0` for `0` ---- ---- λ m p → 0 * 0 ^ p ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- ---- which reduces to ---- ---- 0 ≡ (suc m ^ p + m * suc m ^ p) * 0 ---- -- -- asking to rewrite all appearances of `(suc m ^ suc p) * 0` for `0` -- -- (notice that: `(suc m ^ suc p)` reduces to `(suc m ^ p + m * suc m ^ p)`) -- | right-zero-* (suc m ^ suc p) ---- ---- 0 ≡ 0 ---- ---- We have arrived to a expression where both sides are equal. Thus we have ---- found a proof. -- = refl -- -- The final part of the inductive proof requires us to proof the inductive -- case: distr-^-* (suc m) (suc n) (suc p) rewrite -- First we start with expression: -- -- (m * n) ^ p ≡ (m ^ p) * (n ^ p) -- -- Reducing the expression to its normal form: -- -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ (suc m ^ p + m * suc m ^ p) * (suc n ^ p + n * suc n ^ p) -- Applying distributivity of _+_ over _*_ distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * suc m ^ p * (suc n ^ p + n * suc n ^ p) | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * (suc m ^ p * (suc n ^ p + n * suc n ^ p)) | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* m (suc n) -- suc (n + (m + n * m)) ^ p -- + (n + (m + n * m)) * suc (n + (m + n * m)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* n m -- suc (n + (m + m * n)) ^ p -- + (n + (m + m * n)) * suc (n + (m + m * n)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | sym (suc-right-* m n) -- suc (n + m * suc n) ^ p -- + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-^-* (suc m) (suc n) p -- INDUCTIVE HYPOTHESIS!! -- suc m ^ p * suc n ^ p + (n + m * suc n) * (suc m ^ p * suc n ^ p) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | comm-* m (suc n) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + (m + n * m) * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (n * (suc m ^ p * suc n ^ p))) | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * n * (suc m ^ p * suc n ^ p)) | comm-* m n -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- -- We finally find that the two expressions are equal! -- -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- -- QED = refl -- The full proof without comments: --distr-^-* : ∀ (m n p) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) --distr-^-* _ _ zero = refl --distr-^-* zero _ (suc p) = refl --distr-^-* (suc m) zero (suc p) -- rewrite -- right-zero-* m -- | right-zero-* (suc m ^ suc p) -- = refl --distr-^-* (suc m) (suc n) (suc p) -- rewrite -- distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- | comm-* m (suc n) -- | comm-* n m -- | sym (suc-right-* m n) -- | distr-^-* (suc m) (suc n) p -- | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- | comm-* m (suc n) -- | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- | comm-* m n -- | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- = refl
{ "alphanum_fraction": 0.4507169706, "avg_line_length": 32.1387024609, "ext": "agda", "hexsha": "35a717f46694c7e210750fc4912ce475eb357857", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign1/First.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign1/First.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign1/First.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6031, "size": 14366 }
{-# OPTIONS --without-K --safe #-} -- Identity-on-Objects Functor for (Object-)Unbundled Categories module Categories.Functor.IdentityOnObjects where open import Data.Product using (_,_) open import Function using () renaming (id to id→) open import Level open import Categories.Category.Unbundled using (Category) open import Categories.Category.Unbundled.Properties using (pack′) open import Categories.Category.Unbundled.Utilities using (module Equiv) open import Categories.Functor.Core using (Functor) private variable o ℓ e ℓ′ e′ : Level record IdentityOnObjects {Obj : Set o} (C : Category Obj ℓ e) (D : Category Obj ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ ℓ′ ⊔ e′) where eta-equality private module C = Category C private module D = Category D field F₁ : ∀ {A B} → (A C.⇒ B) → A D.⇒ B identity : ∀ {A} → F₁ (C.id {A}) D.≈ D.id homomorphism : ∀ {X Y Z} {f : X C.⇒ Y} {g : Y C.⇒ Z} → F₁ (g C.∘ f) D.≈ F₁ g D.∘ F₁ f F-resp-≈ : ∀ {A B} {f g : A C.⇒ B} → f C.≈ g → F₁ f D.≈ F₁ g IOO⇒Functor : {Ob : Set o} {C : Category Ob ℓ e} {D : Category Ob ℓ′ e′} → (F : IdentityOnObjects C D) → Functor (pack′ C) (pack′ D) IOO⇒Functor F = record { F₀ = id→; IOO } where module IOO = IdentityOnObjects F id-IOO : {Obj : Set o} {C : Category Obj ℓ e} → IdentityOnObjects C C id-IOO {C = C} = record { F₁ = id→ ; identity = refl ; homomorphism = refl ; F-resp-≈ = id→ } where open Equiv C
{ "alphanum_fraction": 0.6243055556, "avg_line_length": 34.2857142857, "ext": "agda", "hexsha": "f060a475c68bfa9d49de47085a6d7d2d8a360d06", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/IdentityOnObjects.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/IdentityOnObjects.agda", "max_line_length": 120, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/IdentityOnObjects.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 526, "size": 1440 }
{-# OPTIONS --no-termination-check #-} module Data.Nat where import Prelude import Data.Bool as Bool open Prelude open Bool data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-} infix 40 _==_ _<_ _≤_ _>_ _≥_ infixl 60 _+_ _-_ infixl 70 _*_ infixr 80 _^_ infix 100 _! _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) _-_ : Nat -> Nat -> Nat zero - m = zero suc n - zero = suc n suc n - suc m = n - m _*_ : Nat -> Nat -> Nat zero * m = zero suc n * m = m + n * m _^_ : Nat -> Nat -> Nat n ^ zero = 1 n ^ suc m = n * n ^ m _! : Nat -> Nat zero ! = 1 suc n ! = suc n * n ! {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATMINUS _-_ #-} {-# BUILTIN NATTIMES _*_ #-} _==_ : Nat -> Nat -> Bool zero == zero = true zero == suc _ = false suc _ == zero = false suc n == suc m = n == m _<_ : Nat -> Nat -> Bool n < zero = false zero < suc m = true suc n < suc m = n < m _≤_ : Nat -> Nat -> Bool n ≤ m = n < suc m _>_ = flip _<_ _≥_ = flip _≤_ {-# BUILTIN NATEQUALS _==_ #-} {-# BUILTIN NATLESS _<_ #-} divSucAux : Nat -> Nat -> Nat -> Nat -> Nat divSucAux k m zero j = k divSucAux k m (suc n) zero = divSucAux (suc k) m n m divSucAux k m (suc n) (suc j) = divSucAux k m n j modSucAux : Nat -> Nat -> Nat -> Nat -> Nat modSucAux k m zero j = k modSucAux k m (suc n) zero = modSucAux zero m n m modSucAux k m (suc n) (suc j) = modSucAux (suc k) m n j {-# BUILTIN NATDIVSUCAUX divSucAux #-} {-# BUILTIN NATMODSUCAUX modSucAux #-} div : Nat -> Nat -> Nat div n zero = zero div n (suc m) = divSucAux zero m n m mod : Nat -> Nat -> Nat mod n zero = zero mod n (suc m) = modSucAux zero m n m gcd : Nat -> Nat -> Nat gcd a 0 = a gcd a b = gcd b (mod a b) lcm : Nat -> Nat -> Nat lcm a b = div (a * b) (gcd a b) even : Nat -> Bool even n = mod n 2 == 0 odd : Nat -> Bool odd n = mod n 2 == 1
{ "alphanum_fraction": 0.5511363636, "avg_line_length": 18.6153846154, "ext": "agda", "hexsha": "e289f8e720a38125e310343964f35c430fe76e8b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "examples/lib/Data/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "examples/lib/Data/Nat.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/lib/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 753, "size": 1936 }
module Categories.Functor.Monoidal where
{ "alphanum_fraction": 0.8780487805, "avg_line_length": 20.5, "ext": "agda", "hexsha": "045a43f0e89183494dec1ee68b67db7ff2aec7fa", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Monoidal.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Monoidal.agda", "max_line_length": 40, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 9, "size": 41 }
-- Andreas, 2016-09-20 issue #2197 -- We are now only turning eta-equality on after positivity check. -- This is at the end of the mutual block. module _ where open import Common.Equality module Works where mutual record ⊤ : Set where eta-equality test : ∀ {x y : ⊤} → x ≡ y test = refl mutual record ⊤ : Set where test : ∀ {x y : ⊤} → x ≡ y test = refl -- Fails, as eta-equality is only turned on after mutual block.
{ "alphanum_fraction": 0.6323851204, "avg_line_length": 17.5769230769, "ext": "agda", "hexsha": "07e355aa67200fe9d36cc67a802b5cc9161539f1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NoEtaInMutual.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NoEtaInMutual.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NoEtaInMutual.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 457 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.XModule where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.Action private variable ℓ ℓ' : Level ------------------------------------------------- -- Definitions and properties of -- equivariance and peiffer condition ------------------------------------------------- module _ ((((G₀ , H) , _α_) , isAct) : Action ℓ ℓ') (φ : GroupHom H G₀) where open GroupNotation₀ G₀ open GroupNotationᴴ H private f = GroupHom.fun φ -- α is equivariant w.r.t φ if φ (g α h) ≡ g + (φ h) - g isEquivariant : Type (ℓ-max ℓ ℓ') isEquivariant = (g : ⟨ G₀ ⟩) → (h : ⟨ H ⟩) → f (g α h) ≡ (g +₀ f h) -₀ g -- G₀ is a set, so isEquivariant is a proposition isPropIsEquivariant : isProp isEquivariant isPropIsEquivariant = isPropΠ2 (λ g h → set₀ (f (g α h)) ((g +₀ f h) -₀ g)) -- (α, φ) satisfies the peiffer condition, if -- (φ h) α h' ≡ h + h' - h isPeiffer : Type ℓ' isPeiffer = (h h' : ⟨ H ⟩) → (f h) α h' ≡ (h +ᴴ h') -ᴴ h -- H is a set, so isPeiffer is a proposition isPropIsPeiffer : isProp isPeiffer isPropIsPeiffer = isPropΠ2 (λ h h' → setᴴ ((f h) α h') ((h +ᴴ h') -ᴴ h)) module _ (ℓ ℓ' : Level) where ---------------------- -- Define the types of -- - Actions α with a morphism φ -- - Precrossed modules -- - Crossed modules -- and add URG structures to them ---------------------- ActionB = Σ[ (((G₀ , H) , _α_) , isAct) ∈ Action ℓ ℓ' ] (GroupHom H G₀) PreXModule = Σ[ (α , φ) ∈ ActionB ] (isEquivariant α φ) XModule = Σ[ ((α , φ) , isEqui) ∈ PreXModule ] (isPeiffer α φ) -- displayed over 𝒮-Action, a morphism back -- by lifting the morphism back over Grp² twice 𝒮ᴰ-Action\PreXModuleStr : URGStrᴰ (𝒮-Action ℓ ℓ') (λ (((G , H) , _) , _) → GroupHom H G) (ℓ-max ℓ ℓ') 𝒮ᴰ-Action\PreXModuleStr = VerticalLift2-𝒮ᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ') (𝒮ᴰ-G²\B ℓ ℓ') (𝒮ᴰ-G²\Las ℓ ℓ') (𝒮ᴰ-G²Las\Action ℓ ℓ') 𝒮-PreXModuleStr : URGStr ActionB (ℓ-max ℓ ℓ') 𝒮-PreXModuleStr = ∫⟨ 𝒮-Action ℓ ℓ' ⟩ 𝒮ᴰ-Action\PreXModuleStr -- add equivariance condition -- use that equivariance is a proposition 𝒮ᴰ-PreXModule : URGStrᴰ 𝒮-PreXModuleStr (λ (α , φ) → isEquivariant α φ) ℓ-zero 𝒮ᴰ-PreXModule = Subtype→Sub-𝒮ᴰ (λ (α , φ) → isEquivariant α φ , isPropIsEquivariant α φ) 𝒮-PreXModuleStr 𝒮-PreXModule : URGStr PreXModule (ℓ-max ℓ ℓ') 𝒮-PreXModule = ∫⟨ 𝒮-PreXModuleStr ⟩ 𝒮ᴰ-PreXModule -- add the proposition isPeiffer to precrossed modules 𝒮ᴰ-XModule : URGStrᴰ 𝒮-PreXModule (λ ((α , φ) , isEqui) → isPeiffer α φ) ℓ-zero 𝒮ᴰ-XModule = Subtype→Sub-𝒮ᴰ (λ ((α , φ) , isEqui) → isPeiffer α φ , isPropIsPeiffer α φ) 𝒮-PreXModule 𝒮-XModule : URGStr XModule (ℓ-max ℓ ℓ') 𝒮-XModule = ∫⟨ 𝒮-PreXModule ⟩ 𝒮ᴰ-XModule
{ "alphanum_fraction": 0.5938992042, "avg_line_length": 34.2727272727, "ext": "agda", "hexsha": "e6cbea46ddfe8c336f9fbd07aa0011c3e692cebd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/XModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/XModule.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/XModule.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1351, "size": 3770 }
module Vector where open import OscarPrelude open import Arity record Vector (A : Set) (𝑎 : Arity) : Set where constructor ⟨_⟩ field vector : Vec A (arity 𝑎) open Vector public instance EqVector : {A : Set} ⦃ _ : Eq A ⦄ {𝑎 : Arity} → Eq (Vector A 𝑎) Eq._==_ EqVector _ = decEq₁ (cong vector) ∘ (_≟_ on vector $ _)
{ "alphanum_fraction": 0.6493902439, "avg_line_length": 19.2941176471, "ext": "agda", "hexsha": "5c60850ebfecb53aa3473c8175eeef217785b159", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Vector.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Vector.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Vector.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 123, "size": 328 }
{- Type-level differentiation in Agda; or differentiation of functors! Most things below are just restatements of elementary category theory. The new things are Diff, which defines the derivative of an arbitrary functor from Set to Set, and _+++_ _***_ _∘∘∘_ which show how to differentiate sums, products and compositions of such functors. -} {-# OPTIONS --type-in-type #-} -- needed in (fun (Diff f) x) module DiffFunctor where -- ( syntax ) infix 6 _[_] infix 5 _∘∘_ infix 5 _∘∘∘_ infix 4 _**_ infix 4 _***_ infix 3 _++_ infix 2 _=>_ -- Numbers are formalised as sets! Num = Set -- ( addition of numbers ) data _+_ (a : Num) (b : Num) : Num where inl : a -> a + b inr : b -> a + b [_,_] : {a b c : Num} -> (a -> c) -> (b -> c) -> (a + b -> c) [ a , b ] (inl x) = a x [ a , b ] (inr x) = b x map[+] : {a₀ b₀ a₁ b₁ : Num} -> (a₀ -> a₁) -> (b₀ -> b₁) -> (a₀ + b₀ -> a₁ + b₁) map[+] a b (inl x) = inl (a x) map[+] a b (inr x) = inr (b x) -- ( multiplication of numbers ) data _*_ (a : Num) (b : Num) : Num where pair : a -> b -> a * b ⟨_,_⟩ : {a b c : Num} -> (c -> a) -> (c -> b) -> (c -> a * b) ⟨ a , b ⟩ x = pair (a x) (b x) map[*] : {a₀ b₀ a₁ b₁ : Num} -> (a₀ -> a₁) -> (b₀ -> b₁) -> (a₀ * b₀ -> a₁ * b₁) map[*] a b (pair x y) = pair (a x) (b y) -- Functions are formalised as functors! record Fun : Set where constructor _[_] field fun : Num -> Num map : {x y : Num} -> (u : x -> y) -> (fun x -> fun y) open Fun -- ( pointwise addition of functions ) _++_ : Fun -> Fun -> Fun fun (f ++ g) x = fun f x + fun g x map (f ++ g) u = map[+] (map f u) (map g u) -- ( pointwise multiplication of functions ) _**_ : Fun -> Fun -> Fun fun (f ** g) x = fun f x * fun g x map (f ** g) u = map[*] (map f u) (map g u) -- ( composition of functions ) _∘∘_ : Fun -> Fun -> Fun fun (f ∘∘ g) x = fun f (fun g x) map (f ∘∘ g) u = map f (map g u) -- Differentiation is parametric consumption of a resource! -- You are supposed to use dx : h precisely once, like in linear logic. Diff : Fun -> Fun fun (Diff f) x = {h : Num} -> (dx : h) -> fun f (x + h) map (Diff f) u f[x+·] dx = map f (map[+] u (\dx -> dx)) (f[x+·] dx) -- A differentiation rule is a natural transformation! (in reverse) _=>_ : Fun -> Fun -> Set f => g = ((x : Num) -> fun f x -> fun g x) -- (omitting naturality conditions) -- ( derivative of sum ) _+++_ : (f g : Fun) -> Diff f ++ Diff g => Diff (f ++ g) (f +++ g) x (inl f[x+·]) dx = inl (f[x+·] dx) (f +++ g) x (inr g[x+·]) dx = inr (g[x+·] dx) -- (derivative of product ) _***_ : (f g : Fun) -> Diff f ** g ++ f ** Diff g => Diff (f ** g) (f *** g) x (inl (pair f[x+·] g[x])) dx = pair (f[x+·] dx) (map g inl g[x]) (f *** g) x (inr (pair f[x] g[x+·])) dx = pair (map f inl f[x]) (g[x+·] dx) -- ( derivative of composition ) _∘∘∘_ : (f g : Fun) -> Diff f ∘∘ g ** Diff g => Diff (f ∘∘ g) (f ∘∘∘ g) x (pair f[g[x]+·] g[x+·]) {h} dx = f[g[x+dx]] where f[g[x+dx]] : fun (f ∘∘ g) (x + h) f[g[x+dx]] = map f [ map g inl , g[x+·] ] (f[g[x]+·] dx) {- Things that need to be done: - Define higher order derivatives as follows: HighDiff n f x = forall h. h |n| -> f (x + h) Here h |n| stands for n copies of the resource h. Try to show n! -> Diff^n f => HighDiff n f. - Explore differential calculus in several variables. - Explore integration and differential equations. (hard) - Solve partial differential equations. (good luck) - Explore inverse functions. (hard) - Write some examples, such as 0 => Diff (Const a) 1 => Diff Id n * Id^(n-1) => Diff Id^n List ** List => Diff List derivatives of linear transformations -}
{ "alphanum_fraction": 0.5428020919, "avg_line_length": 29.7786885246, "ext": "agda", "hexsha": "c92356c9fd5d84c2b9570b84cb4f2fd025b3c0e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e56caa8dfeb8d5a033ae2f06782bbeb67ced58d1", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JoelSjogren/diff-functor", "max_forks_repo_path": "DiffFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e56caa8dfeb8d5a033ae2f06782bbeb67ced58d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JoelSjogren/diff-functor", "max_issues_repo_path": "DiffFunctor.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "e56caa8dfeb8d5a033ae2f06782bbeb67ced58d1", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JoelSjogren/diff-functor", "max_stars_repo_path": "DiffFunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1359, "size": 3633 }
module Long where data Nat : Set where z : Nat s : (n : Nat) → Nat data Exp : Set where val : (n : Nat) → Exp throw : Exp data Maybe (A : Set) : Set where Just : A → Maybe A Nothing : Maybe A abstract s′ : Nat → Nat s′ = s eval : Exp → Maybe Nat eval (val n) = ? eval throw = ? data D : Nat → Set where d : D z foo : D {!!} foo = {!!} bar : D z bar = {!!} baz : Maybe {!!} baz = {!!}
{ "alphanum_fraction": 0.5131894484, "avg_line_length": 11.9142857143, "ext": "agda", "hexsha": "5e26c417e47425324bfe84733fe98aecfd7eed53", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Long.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Long.agda", "max_line_length": 32, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Long.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 150, "size": 417 }
open import Prelude module Implicits.Syntax.Type.Unification where open import Data.Maybe as Maybe open import Data.Unit open import Implicits.Syntax open import Implicits.Syntax.Type.Unification.McBride as McBride using ( substitute; asub; AList; _//_) public open import Data.Vec.Properties open import Data.Nat as N using () open import Data.Nat.Properties.Simple open import Category.Monad open import Data.Fin.Substitution open import Implicits.Substitutions open import Implicits.Syntax.MetaType public open import Implicits.Substitutions.Lemmas open McBride using (substitute; asub; AList; ASub; _//_; asub-weaken) public private module M = MetaTypeMetaSubst module T = MetaTypeTypeSubst -- Just a bit stricter than mcbride.mgu -- We require here as well that all meta variables are instantiated -- (this is equivalent to the ⊢unamb constraint in Oliveira) mgu : ∀ {m ν} (a : MetaType m ν) → (b : SimpleType ν) → Maybe (Sub (flip MetaType ν) m zero) mgu a b with McBride.mgu a (simpl b) mgu a b | just (zero , u) = just (asub u) mgu a b | just (suc m , _) = nothing mgu a b | nothing = nothing Unifier : ∀ {m ν} → (MetaType m ν) → SimpleType ν → (Sub (flip MetaType ν) m zero) → Set Unifier {m} a b u = from-meta (a M./ u) ≡ (simpl b) Unifiable : ∀ {m ν} → (MetaType m ν) → SimpleType ν → Set Unifiable a τ = ∃ (Unifier a τ) ◁-Unifiable : ∀ {m ν} → MetaType m ν → SimpleType ν → Set ◁-Unifiable x τ = Unifiable (x M.◁m) τ meta-weaken = M.weaken smeta-weaken = M.smeta-weaken open-meta = M.open-meta
{ "alphanum_fraction": 0.7225509533, "avg_line_length": 33.0652173913, "ext": "agda", "hexsha": "132c9dfb5242f064ac0c1e19f9cc45b351805aff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax/Type/Unification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax/Type/Unification.agda", "max_line_length": 92, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax/Type/Unification.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 476, "size": 1521 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Pointwise where open import Function open import Function.Inverse using (Inverse) open import Data.Product hiding (map) open import Data.List.Base as List hiding (map; head; tail) open import Data.List.Properties using (≡-dec) open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.Nat using (ℕ; zero; suc) open import Level open import Relation.Nullary open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec using (map′) open import Relation.Unary as U using (Pred) open import Relation.Binary renaming (Rel to Rel₂) open import Relation.Binary.PropositionalEquality as P using (_≡_) infixr 5 _∷_ data Pointwise {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where [] : Pointwise _∼_ [] [] _∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Pointwise _∼_ xs ys) → Pointwise _∼_ (x ∷ xs) (y ∷ ys) ------------------------------------------------------------------------ -- Operations module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where head : ∀ {x y xs ys} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y head (x∼y ∷ xs∼ys) = x∼y tail : ∀ {x y xs ys} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → Pointwise _∼_ xs ys tail (x∼y ∷ xs∼ys) = xs∼ys rec : ∀ {c} (P : ∀ {xs ys} → Pointwise _∼_ xs ys → Set c) → (∀ {x y xs ys} {xs∼ys : Pointwise _∼_ xs ys} → (x∼y : x ∼ y) → P xs∼ys → P (x∼y ∷ xs∼ys)) → P [] → ∀ {xs ys} (xs∼ys : Pointwise _∼_ xs ys) → P xs∼ys rec P c n [] = n rec P c n (x∼y ∷ xs∼ys) = c x∼y (rec P c n xs∼ys) map : ∀ {ℓ₂} {_≈_ : REL A B ℓ₂} → _≈_ ⇒ _∼_ → Pointwise _≈_ ⇒ Pointwise _∼_ map ≈⇒∼ [] = [] map ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ map ≈⇒∼ xs≈ys ------------------------------------------------------------------------ -- Relational properties reflexive : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} {_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} → _≈_ ⇒ _∼_ → Pointwise _≈_ ⇒ Pointwise _∼_ reflexive ≈⇒∼ [] = [] reflexive ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ reflexive ≈⇒∼ xs≈ys refl : ∀ {a ℓ} {A : Set a} {_∼_ : Rel₂ A ℓ} → Reflexive _∼_ → Reflexive (Pointwise _∼_) refl rfl {[]} = [] refl rfl {x ∷ xs} = rfl ∷ refl rfl symmetric : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} {_≈_ : REL A B ℓ₁} {_∼_ : REL B A ℓ₂} → Sym _≈_ _∼_ → Sym (Pointwise _≈_) (Pointwise _∼_) symmetric sym [] = [] symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys transitive : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} {_≋_ : REL A B ℓ₁} {_≈_ : REL B C ℓ₂} {_∼_ : REL A C ℓ₃} → Trans _≋_ _≈_ _∼_ → Trans (Pointwise _≋_) (Pointwise _≈_) (Pointwise _∼_) transitive trans [] [] = [] transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) = trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs antisymmetric : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {_≤_ : REL A B ℓ₁} {_≤′_ : REL B A ℓ₂} {_≈_ : REL A B ℓ₃} → Antisym _≤_ _≤′_ _≈_ → Antisym (Pointwise _≤_) (Pointwise _≤′_) (Pointwise _≈_) antisymmetric antisym [] [] = [] antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) = antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs respects₂ : ∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} → _∼_ Respects₂ _≈_ → (Pointwise _∼_) Respects₂ (Pointwise _≈_) respects₂ {_≈_ = _≈_} {_∼_} resp = resp¹ , resp² where resp¹ : ∀ {xs} → (Pointwise _∼_ xs) Respects (Pointwise _≈_) resp¹ [] [] = [] resp¹ (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) = proj₁ resp x≈y z∼x ∷ resp¹ xs≈ys zs∼xs resp² : ∀ {ys} → (flip (Pointwise _∼_) ys) Respects (Pointwise _≈_) resp² [] [] = [] resp² (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) = proj₂ resp x≈y x∼z ∷ resp² xs≈ys xs∼zs decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} → Decidable _∼_ → Decidable (Pointwise _∼_) decidable dec [] [] = yes [] decidable dec [] (y ∷ ys) = no (λ ()) decidable dec (x ∷ xs) [] = no (λ ()) decidable dec (x ∷ xs) (y ∷ ys) with dec x y ... | no ¬x∼y = no (¬x∼y ∘ head) ... | yes x∼y with decidable dec xs ys ... | no ¬xs∼ys = no (¬xs∼ys ∘ tail) ... | yes xs∼ys = yes (x∼y ∷ xs∼ys) isEquivalence : ∀ {a ℓ} {A : Set a} {_≈_ : Rel₂ A ℓ} → IsEquivalence _≈_ → IsEquivalence (Pointwise _≈_) isEquivalence eq = record { refl = refl Eq.refl ; sym = symmetric Eq.sym ; trans = transitive Eq.trans } where module Eq = IsEquivalence eq isPreorder : ∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} → IsPreorder _≈_ _∼_ → IsPreorder (Pointwise _≈_) (Pointwise _∼_) isPreorder pre = record { isEquivalence = isEquivalence Pre.isEquivalence ; reflexive = reflexive Pre.reflexive ; trans = transitive Pre.trans } where module Pre = IsPreorder pre isPartialOrder : ∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} → IsPartialOrder _≈_ _≤_ → IsPartialOrder (Pointwise _≈_) (Pointwise _≤_) isPartialOrder po = record { isPreorder = isPreorder PO.isPreorder ; antisym = antisymmetric PO.antisym } where module PO = IsPartialOrder po isDecEquivalence : ∀ {a ℓ} {A : Set a} {_≈_ : Rel₂ A ℓ} → IsDecEquivalence _≈_ → IsDecEquivalence (Pointwise _≈_) isDecEquivalence eq = record { isEquivalence = isEquivalence DE.isEquivalence ; _≟_ = decidable DE._≟_ } where module DE = IsDecEquivalence eq preorder : ∀ {p₁ p₂ p₃} → Preorder p₁ p₂ p₃ → Preorder _ _ _ preorder p = record { isPreorder = isPreorder (Preorder.isPreorder p) } poset : ∀ {c ℓ₁ ℓ₂} → Poset c ℓ₁ ℓ₂ → Poset _ _ _ poset p = record { isPartialOrder = isPartialOrder (Poset.isPartialOrder p) } setoid : ∀ {c ℓ} → Setoid c ℓ → Setoid _ _ setoid s = record { isEquivalence = isEquivalence (Setoid.isEquivalence s) } decSetoid : ∀ {c ℓ} → DecSetoid c ℓ → DecSetoid _ _ decSetoid d = record { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d) } ------------------------------------------------------------------------ -- tabulate module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → (∀ i → f i ∼ g i) → Pointwise _∼_ (tabulate f) (tabulate g) tabulate⁺ {zero} f∼g = [] tabulate⁺ {suc n} f∼g = f∼g fzero ∷ tabulate⁺ (f∼g ∘ fsuc) tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → Pointwise _∼_ (tabulate f) (tabulate g) → (∀ i → f i ∼ g i) tabulate⁻ {zero} [] () tabulate⁻ {suc n} (x∼y ∷ xs∼ys) fzero = x∼y tabulate⁻ {suc n} (x∼y ∷ xs∼ys) (fsuc i) = tabulate⁻ xs∼ys i ------------------------------------------------------------------------ -- _++_ module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where ++⁺ : ∀ {ws xs ys zs} → Pointwise _∼_ ws xs → Pointwise _∼_ ys zs → Pointwise _∼_ (ws ++ ys) (xs ++ zs) ++⁺ [] ys∼zs = ys∼zs ++⁺ (w∼x ∷ ws∼xs) ys∼zs = w∼x ∷ ++⁺ ws∼xs ys∼zs ------------------------------------------------------------------------ -- concat module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where concat⁺ : ∀ {xss yss} → Pointwise (Pointwise _∼_) xss yss → Pointwise _∼_ (concat xss) (concat yss) concat⁺ [] = [] concat⁺ (xs∼ys ∷ xss∼yss) = ++⁺ xs∼ys (concat⁺ xss∼yss) ------------------------------------------------------------------------ -- length module _ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} where Pointwise-length : ∀ {xs ys} → Pointwise _∼_ xs ys → length xs ≡ length ys Pointwise-length [] = P.refl Pointwise-length (x∼y ∷ xs∼ys) = P.cong ℕ.suc (Pointwise-length xs∼ys) ------------------------------------------------------------------------ -- reverse module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where reverseAcc⁺ : ∀ {as bs as′ bs′} → Pointwise R as′ bs′ → Pointwise R as bs → Pointwise R (reverseAcc as′ as) (reverseAcc bs′ bs) reverseAcc⁺ rs′ [] = rs′ reverseAcc⁺ rs′ (r ∷ rs) = reverseAcc⁺ (r ∷ rs′) rs reverse⁺ : ∀ {as bs} → Pointwise R as bs → Pointwise R (reverse as) (reverse bs) reverse⁺ = reverseAcc⁺ [] ------------------------------------------------------------------------ -- map module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {R : REL C D r} where map⁺ : ∀ {as bs} (f : A → C) (g : B → D) → Pointwise (λ a b → R (f a) (g b)) as bs → Pointwise R (List.map f as) (List.map g bs) map⁺ f g [] = [] map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs map⁻ : ∀ {as bs} (f : A → C) (g : B → D) → Pointwise R (List.map f as) (List.map g bs) → Pointwise (λ a b → R (f a) (g b)) as bs map⁻ {[]} {[]} f g [] = [] map⁻ {[]} {b ∷ bs} f g rs with Pointwise-length rs ... | () map⁻ {a ∷ as} {[]} f g rs with Pointwise-length rs ... | () map⁻ {a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs ------------------------------------------------------------------------ -- filter module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r} {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) (P⇒Q : ∀ {a b} → R a b → P a → Q b) (Q⇒P : ∀ {a b} → R a b → Q b → P a) where filter⁺ : ∀ {as bs} → Pointwise R as bs → Pointwise R (filter P? as) (filter Q? bs) filter⁺ [] = [] filter⁺ {a ∷ _} {b ∷ _} (r ∷ rs) with P? a | Q? b ... | yes p | yes q = r ∷ filter⁺ rs ... | yes p | no ¬q = contradiction (P⇒Q r p) ¬q ... | no ¬p | yes q = contradiction (Q⇒P r q) ¬p ... | no ¬p | no ¬q = filter⁺ rs ------------------------------------------------------------------------ -- replicate module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where replicate⁺ : ∀ {a b} → R a b → ∀ n → Pointwise R (replicate n a) (replicate n b) replicate⁺ r 0 = [] replicate⁺ r (suc n) = r ∷ replicate⁺ r n ------------------------------------------------------------------------ -- Irrelevance module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where irrelevant : Irrelevant R → Irrelevant (Pointwise R) irrelevant R-irr [] [] = P.refl irrelevant R-irr (r ∷ rs) (r₁ ∷ rs₁) = P.cong₂ _∷_ (R-irr r r₁) (irrelevant R-irr rs rs₁) ------------------------------------------------------------------------ -- Properties of propositional pointwise module _ {a} {A : Set a} where Pointwise-≡⇒≡ : Pointwise {A = A} _≡_ ⇒ _≡_ Pointwise-≡⇒≡ [] = P.refl Pointwise-≡⇒≡ (P.refl ∷ xs∼ys) with Pointwise-≡⇒≡ xs∼ys ... | P.refl = P.refl ≡⇒Pointwise-≡ : _≡_ ⇒ Pointwise {A = A} _≡_ ≡⇒Pointwise-≡ P.refl = refl P.refl Pointwise-≡↔≡ : Inverse (setoid (P.setoid A)) (P.setoid (List A)) Pointwise-≡↔≡ = record { to = record { _⟨$⟩_ = id; cong = Pointwise-≡⇒≡ } ; from = record { _⟨$⟩_ = id; cong = ≡⇒Pointwise-≡ } ; inverse-of = record { left-inverse-of = λ _ → refl P.refl ; right-inverse-of = λ _ → P.refl } } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 Rel = Pointwise {-# WARNING_ON_USAGE Rel "Warning: Rel was deprecated in v0.15. Please use Pointwise instead." #-} Rel≡⇒≡ = Pointwise-≡⇒≡ {-# WARNING_ON_USAGE Rel≡⇒≡ "Warning: Rel≡⇒≡ was deprecated in v0.15. Please use Pointwise-≡⇒≡ instead." #-} ≡⇒Rel≡ = ≡⇒Pointwise-≡ {-# WARNING_ON_USAGE ≡⇒Rel≡ "Warning: ≡⇒Rel≡ was deprecated in v0.15. Please use ≡⇒Pointwise-≡ instead." #-} Rel↔≡ = Pointwise-≡↔≡ {-# WARNING_ON_USAGE Rel↔≡ "Warning: Rel↔≡ was deprecated in v0.15. Please use Pointwise-≡↔≡ instead." #-} -- Version 1.0 decidable-≡ = ≡-dec {-# WARNING_ON_USAGE decidable-≡ "Warning: decidable-≡ was deprecated in v1.0. Please use ≡-dec from `Data.List.Properties` instead." #-}
{ "alphanum_fraction": 0.48809429, "avg_line_length": 35.6732954545, "ext": "agda", "hexsha": "ffcbf9c59c505cf1a8da3dd70dbc1e79c93f6c27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Pointwise.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4840, "size": 12557 }
------------------------------------------------------------------------ -- Identifiers ------------------------------------------------------------------------ {-# OPTIONS --guardedness #-} module Examples.Identifier where open import Codata.Musical.Notation open import Data.Bool open import Data.Char open import Data.List.NonEmpty open import Data.Product open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary open import Grammar.Infinite as Grammar using (Grammar) hiding (module Grammar) open import Pretty using (Doc; Pretty-printer) open import Renderer open import Utilities -- Lower-case (ASCII) characters. is-lower : Char → Bool is-lower t = ('a' ≤?C t) ∧ (t ≤?C 'z') -- A problematic attempt to define a grammar and a corresponding -- pretty-printer for identifiers. module Problematic where -- The grammar can be defined. identifier : Grammar (List⁺ Char) identifier = (proj₁ <$> sat is-lower) + where open Grammar -- However, it is impossible to define a corresponding -- pretty-printer. no-printer : ¬ Pretty-printer identifier no-printer identifier-printer = no-doc (identifier-printer [ 'A' ]) where open Grammar lemma : ∀ {p : Char → Bool} {t s s′} → t ∷ s ∈ (proj₁ <$> sat p) + · s′ → T (p t) lemma (⊛-sem (<$>-sem (<$>-sem {x = _ , ok} _)) _) = ok no-doc : ¬ Doc identifier [ 'A' ] no-doc d = lemma (proj₂ (Renderer.string-exists d)) -- Identifiers. Identifier : Set Identifier = List⁺ (∃ λ t → T (is-lower t)) identifier : Grammar Identifier identifier = sat is-lower + where open Grammar identifier-printer : Pretty-printer identifier identifier-printer = map+ (sat is-lower) where open Pretty -- Identifiers possibly followed by whitespace. identifier-w : Grammar Identifier identifier-w = identifier <⊛ whitespace ⋆ where open Grammar identifier-w-printer : Pretty-printer identifier-w identifier-w-printer n = identifier-printer n <⊛ nil-⋆ where open Pretty test : render 80 (identifier-w-printer (str⁺ "aaa")) ≡ "aaa" test = refl
{ "alphanum_fraction": 0.6481303931, "avg_line_length": 26.4050632911, "ext": "agda", "hexsha": "67efd3eaf696f0994db1a87f3fe2aae12be60545", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Examples/Identifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Examples/Identifier.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Examples/Identifier.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 523, "size": 2086 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Integers.Definition open import Numbers.Naturals.Order open import LogicalFormulae open import Groups.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Rings.Definition open import Fields.Fields open import Fields.Orders.Partial.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Total.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {_<_ : A → A → Set c} {pOrder : SetoidPartialOrder S _<_} {F : Field R} (p : PartiallyOrderedField F pOrder) where open Setoid S open Equivalence eq open Ring R open Group additiveGroup open import Groups.Lemmas additiveGroup open import Groups.Cyclic.Definition additiveGroup open import Groups.Cyclic.DefinitionLemmas additiveGroup open import Groups.Orders.Archimedean (toGroup R (PartiallyOrderedField.oRing p)) open import Rings.Orders.Partial.Lemmas (PartiallyOrderedField.oRing p) open import Rings.InitialRing R open SetoidPartialOrder pOrder open PartiallyOrderedRing (PartiallyOrderedField.oRing p) open Field F ArchimedeanField : Set (a ⊔ c) ArchimedeanField = (x : A) → (0R < x) → Sg ℕ (λ n → x < (fromN n)) private lemma : (r : A) (N : ℕ) → (positiveEltPower 1R N * r) ∼ positiveEltPower r N lemma r zero = timesZero' lemma r (succ n) = transitive *DistributesOver+' (+WellDefined identIsIdent (lemma r n)) findBound : (0<1 : 0R < 1R) → (r s : A) (N : ℕ) → (1R < r) → (s < positiveEltPower 1R N) → s < positiveEltPower r N findBound _ r s zero 1<r s<N = s<N findBound 0<1 r s (succ N) 1<r s<N = <Transitive s<N (<WellDefined (transitive *Commutative identIsIdent) (lemma r (succ N)) (ringCanMultiplyByPositive' (fromNPreservesOrder 0<1 (succIsPositive N)) 1<r)) archFieldToGrp : ((x y : A) → 0R < x → (x * y) ∼ 1R → 0R < y) → ArchimedeanField → Archimedean archFieldToGrp reciprocalPositive a r s 0<r 0<s with allInvertible r (λ r=0 → irreflexive (<WellDefined reflexive r=0 0<r)) ... | inv , prInv with a inv (reciprocalPositive r inv 0<r (transitive *Commutative prInv)) ... | N , invBound with a s 0<s ... | Ns , nSBound = (Ns *N N) , <WellDefined reflexive (symmetric (elementPowerMultiplies (nonneg Ns) (nonneg N) r)) (findBound (<WellDefined reflexive (transitive *Commutative prInv) (orderRespectsMultiplication 0<r (reciprocalPositive r inv 0<r (transitive *Commutative prInv)))) (positiveEltPower r N) s Ns m nSBound) where m : 1R < positiveEltPower r N m = <WellDefined prInv (lemma r N) (ringCanMultiplyByPositive 0<r invBound) archToArchField : 0R < 1R → Archimedean → ArchimedeanField archToArchField 0<1 arch a 0<a with arch 1R a 0<1 0<a ... | N , pr = N , pr
{ "alphanum_fraction": 0.7347956132, "avg_line_length": 49.3278688525, "ext": "agda", "hexsha": "700107ba1726076910a1c735563ccc78d0e31459", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/Total/Archimedean.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/Total/Archimedean.agda", "max_line_length": 321, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/Total/Archimedean.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 973, "size": 3009 }
-- ------------------------------------------------------------------------------------------------------ -- | ███████╗ ██████╗ ██╗ ██╗ ██╗██╗███╗ ██╗ ██████╗ ██████╗ ██╗███╗ ██╗ ██████╗ ███████╗ | -- | ██╔════╝██╔═══██╗██║ ██║ ██║██║████╗ ██║██╔════╝ ██╔══██╗██║████╗ ██║██╔════╝ ██╔════╝ | -- | ███████╗██║ ██║██║ ██║ ██║██║██╔██╗ ██║██║ ███╗ ██████╔╝██║██╔██╗ ██║██║ ███╗███████╗ | -- | ╚════██║██║ ██║██║ ╚██╗ ██╔╝██║██║╚██╗██║██║ ██║ ██╔══██╗██║██║╚██╗██║██║ ██║╚════██║ | -- | ███████║╚██████╔╝███████╗ ╚████╔╝ ██║██║ ╚████║╚██████╔╝ ██║ ██║██║██║ ╚████║╚██████╔╝███████║ | -- | ╚══════╝ ╚═════╝ ╚══════╝ ╚═══╝ ╚═╝╚═╝ ╚═══╝ ╚═════╝ ╚═╝ ╚═╝╚═╝╚═╝ ╚═══╝ ╚═════╝ ╚══════╝ | -- | | -- | ██╗███╗ ██╗ █████╗ ██████╗ ██████╗ █████╗ | -- | ██║████╗ ██║ ██╔══██╗██╔════╝ ██╔══██╗██╔══██╗ | -- | ██║██╔██╗ ██║ ███████║██║ ███╗██║ ██║███████║ | -- | ██║██║╚██╗██║ ██╔══██║██║ ██║██║ ██║██╔══██║ | -- | ██║██║ ╚████║ ██║ ██║╚██████╔╝██████╔╝██║ ██║ | -- | ╚═╝╚═╝ ╚═══╝ ╚═╝ ╚═╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ | -- ------------------------------------------------------------------------------------------------------ -- -- Donnacha Oisín Kidney -- 17 April 2019 -- -- Compiled with Agda version 2.6.1, and standard library commit 84d7962cfd90379a6d1d5ef2cdd9d3ae411ee603 -- This contains the worked-through source code for: -- -- "Automatically And Efficiently Illustrating Polynomial Equalities in Agda" -- -- We present a new library which automates the construction of equivalence -- proofs between polynomials over commutative rings and semirings in the -- programming language Agda. It is asymptotically faster than Agda's existing -- solver. We use Agda's reflection machinery to provide a simple interface to -- the solver, and demonstrate an interesting use of the constructed relations: -- step-by-step solutions. -- -- Which is (at time of writing) a work-in-progress. -- -- This code is available on github: -- https://github.com/oisdk/agda-ring-solver -- -- As is the paper: -- https://github.com/oisdk/agda-ring-solver-report module README where -------------------------------------------------------------------------------- -- There are 3 main contributions in this library: -- -- -- -- * A solver for polynomials over "almost commutative rings". -- -- Agda already has one these in the standard library, but this one -- -- is much more efficient. "Almost commutative rings" encapsulates a -- -- bunch of things, including ℕ. -- -- -- -- * A reflection-based interface. -- -- Not many people used the old solver, mainly (I think) because the -- -- interface was difficult and irritating. This library provides a -- -- super-simple interface using reflection. -- -- -- -- * An implementation of "step-by-step solutions". -- -- I don't know a huge amount about computer algebra systems, but I -- -- have used Wolfram Alpha countless times (especially when I was in -- -- school) to help with basic maths. I was able to get this solver to -- -- produce step-by-step solutions, and learned something about the -- -- theory behind them along the way. -- -------------------------------------------------------------------------------- -- -- ██████╗ ███████╗███╗ ██╗ ██████╗██╗ ██╗███╗ ███╗ █████╗ ██████╗ ██╗ ██╗███████╗ -- ██╔══██╗██╔════╝████╗ ██║██╔════╝██║ ██║████╗ ████║██╔══██╗██╔══██╗██║ ██╔╝██╔════╝ -- ██████╔╝█████╗ ██╔██╗ ██║██║ ███████║██╔████╔██║███████║██████╔╝█████╔╝ ███████╗ ███████╗ -- ██╔══██╗██╔══╝ ██║╚██╗██║██║ ██╔══██║██║╚██╔╝██║██╔══██║██╔══██╗██╔═██╗ ╚════██║ ╚════██║ -- ██████╔╝███████╗██║ ╚████║╚██████╗██║ ██║██║ ╚═╝ ██║██║ ██║██║ ██║██║ ██╗███████║ ██║ -- ╚═════╝ ╚══════╝╚═╝ ╚═══╝ ╚═════╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝ ██║ -- ██║ -- ███████╗██╗ ██╗ █████╗ ███╗ ███╗██████╗ ██╗ ███████╗███████╗ ██║ -- ██╔════╝╚██╗██╔╝██╔══██╗████╗ ████║██╔══██╗██║ ██╔════╝██╔════╝ ██║ -- █████╗ ╚███╔╝ ███████║██╔████╔██║██████╔╝██║ █████╗ ███████╗ ████████████████████╗ ██║ -- ██╔══╝ ██╔██╗ ██╔══██║██║╚██╔╝██║██╔═══╝ ██║ ██╔══╝ ╚════██║ ╚═════════════════██║ ██║ -- ███████╗██╔╝ ██╗██║ ██║██║ ╚═╝ ██║██║ ███████╗███████╗███████║ ██║ ██║ -- ╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚══════╝╚══════╝╚══════╝ ██║ ██║ -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- You can ignore this bit! We're just overloading the literals Agda uses for -- ██║ ██║ -- numbers This bit isn't necessary if you're just using Nats, or if you -- ██║ ██║ -- construct your type directly. We only really do it here so that we can use -- ██║ ██║ -- different numeric types in the same file. -- ██║ ██║ -- ██║ ██║ open import Agda.Builtin.FromNat -- ██║ ██║ open import Data.Nat using (ℕ; suc) -- ██║ ██║ open import Data.Integer using (ℤ) -- ██║ ██║ -- ██║ ██║ instance -- ██║ ██║ numberNat : Number ℕ -- ██║ ██║ numberNat = Data.Nat.Literals.number -- ██║ ██║ where import Data.Nat.Literals -- ██║ ██║ -- ██║ ██║ instance -- ██║ ██║ numberInt : Number ℤ -- ██║ ██║ numberInt = Data.Integer.Literals.number -- ██║ ██║ where import Data.Integer.Literals -- ██║ ██║ -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- Imports! -- ██║ ██║ -- ██║ ██║ open import Polynomial.Simple.AlmostCommutativeRing -- ██║ ██║ open import Polynomial.Simple.AlmostCommutativeRing.Instances -- ██║ ██║ open import Polynomial.Simple.Reflection -- ██║ ██║ open import Data.List as List using (List; _∷_; []) -- ██║ ██║ open import Function -- ██║ ██║ open import Relation.Binary.PropositionalEquality as ≡ using (subst; _≡_) -- ██║ ██║ open import Data.Bool as Bool using (Bool; true; false; if_then_else_) -- ██║ ██║ open import Data.Unit using (⊤; tt) -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ -- 8888888888',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888' -- ██║ ██║ -- ,8',8888888888888 -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ module IntExamples where -- ██║ ██║ open AlmostCommutativeRing Int.ring -- ██║ ██║ -- Everything is automatic: you just ask Agda to solve it and it does! -- ██╗ ██║ ██║ lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 3 + 1 + y + x + - 1 -- ████║ ██║ ██║ lemma₁ = solve Int.ring -- ██████████║ ██║ -- ████╔═██║ ██║ lemma₂ : ∀ x y → (x + y) ^ 2 ≈ x ^ 2 + 2 * x * y + y ^ 2 -- ██║ ██║ ██║ lemma₂ = solve Int.ring -- ╚═╝ ██║ ██║ -- ██║ ██║ open import Relation.Binary.Reasoning.Inference setoid -- ██║ ██║ -- ██║ ██║ -- It can interact with manual proofs as well. -- ██║ ██║ lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x -- ██║ ██║ lemma₃ x y = begin -- ██║ ██║ x + y * 1 + 3 ≈⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩ -- ██║ ██║ y * 1 + x + 3 ≈⟨ solveOver (x ∷ y ∷ []) Int.ring ⟩ -- ██║ ██║ 3 + y + x ≡⟨⟩ -- ██║ ██║ 2 + 1 + y + x ∎ -- ██║ ██║ -- ██║ ██║ open Int.Reflection -- ██║ ██║ -- ██║ ██║ -- There's a shorthand included for Int and Nat. -- ██║ ██║ lemma₄ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x -- ██║ ██║ lemma₄ x y = begin -- ██║ ██║ x + y * 1 + 3 ≈⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩ -- ██║ ██║ y * 1 + x + 3 ≈⟨ ∀⟨ x ∷ y ∷ [] ⟩ ⟩ -- ██║ ██║ 3 + y + x ≡⟨⟩ -- ██║ ██║ 2 + 1 + y + x ∎ -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ -- b. 8 -- ██║ ██║ -- 888o. 8 -- ██║ ██║ -- Y88888o. 8 -- ██║ ██║ -- .`Y888888o. 8 -- ██║ ██║ -- 8o. `Y888888o. 8 -- ██║ ██║ -- 8`Y8o. `Y88888o8 -- ██║ ██║ -- 8 `Y8o. `Y8888 -- ██║ ██║ -- 8 `Y8o. `Y8 -- ██║ ██║ -- 8 `Y8o.` -- ██║ ██║ -- 8 `Yo -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ module NatExamples where -- ██║ ██║ open AlmostCommutativeRing Nat.ring -- ██╗ ██║ ██║ -- The solver is flexible enough to work with Nats (even though it asks -- ████║ ██║ ██║ -- for rings!) -- ██████████║ ██║ lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x -- ████╔═██║ ██║ lemma₁ = solve Nat.ring -- ██║ ██║ ██║ -- ╚═╝ ██║ ██║ lemma₂ : ∀ x y → x + y * 1 + 3 ≈ 2 + suc y + x -- ██║ ██║ lemma₂ = solve Nat.ring -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ -- ##### # # ####### ##### # # ### # # ##### -- ██║ ██║ -- # # # # # # # # # # ## # # # -- ██║ ██║ -- # # # # # # # # # # # # -- ██║ ██║ -- # ####### ##### # ### # # # # # #### -- ██║ ██║ -- # # # # # # # # # # # # # -- ██║ ██║ -- # # # # # # # # # # # ## # # -- ██║ ██║ -- ##### # # ####### ##### # # ### # # ##### -- ██║ ██║ -- -- ██║ ██║ -- ### # # # # # ###### ### # # # ####### ##### -- ██║ ██║ -- # ## # # # # # # # # # # ## # # # # -- ██║ ██║ -- # # # # # # # # # # # # # # # # # # -- ██║ ██║ -- # # # # # # # # ###### # # # # # # # ##### -- ██║ ██║ -- # # # # # # ####### # # # ####### # # # # # -- ██║ ██║ -- # # ## # # # # # # # # # # ## # # # -- ██║ ██║ -- ### # # # # # # # ### # # # # # ##### -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- The solver makes it easy to prove invariants, without having to rewrite -- ██║ ██║ -- proof code every time something changes in the data structure. -- ██║ ██║ -- -- ██║ ██║ module _ {a} {A : Set a} (_≤_ : A → A → Bool) where -- ██║ ██║ -- A Skew Heap, indexed by its size. -- ██║ ██║ data Tree : ℕ → Set a where -- ██║ ██║ leaf : Tree 0 -- ██║ ██║ node : ∀ {n m} → A → Tree n → Tree m → Tree (n + m + 1) -- ██║ ██║ -- ██║ ██║ -- A substitution operator, to clean things up. -- ██║ ██║ _⇒_ : ∀ {n} → Tree n → ∀ {m} → n ≈ m → Tree m -- ██║ ██║ x ⇒ n≈m = subst Tree n≈m x -- ██║ ██║ -- ██║ ██║ open Nat.Reflection -- ██║ ██║ -- ██║ ██║ -- _∪_ : ∀ {n m} → Tree n → Tree m → Tree (n + m) -- ██║ ██║ -- leaf ∪ ys = ys -- ██║ ██║ -- node {a} {b} x xl xr ∪ leaf = -- ██║ ██║ -- node x xl xr ⇒ ∀⟨ a ∷ b ∷ [] ⟩ -- ██╗ ██║ ██║ -- node {a} {b} x xl xr ∪ node {c} {d} y yl yr = if x ≤ y -- ████║ ██║ ██║ -- then node x (node y yl yr ∪ xr) xl -- ██████████║ ██║ -- ⇒ ∀⟨ a ∷ b ∷ c ∷ d ∷ [] ⟩ -- ████╔═██║ ██║ -- else (node y (node x xl xr ∪ yr) yl -- ██║ ██║ ██║ -- ⇒ ∀⟨ a ∷ b ∷ c ∷ d ∷ [] ⟩) -- ╚═╝ ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- -- ██║ ██║ -- 8888888 8888888888 8 8888 8 8 8888888888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 888888888888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888888888888 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 8888 -- ██║ ██║ -- 8 8888 8 8888 8 8 888888888888 -- ██║ ██║ -- -- ██║ ██║ -- ,o888888o. 8 8888 8 888888888o. -- ██║ ██║ -- . 8888 `88. 8 8888 8 8888 `^888. -- ██║ ██║ -- ,8 8888 `8b 8 8888 8 8888 `88. -- ██║ ██║ -- 88 8888 `8b 8 8888 8 8888 `88 -- ██║ ██║ -- 88 8888 88 8 8888 8 8888 88 -- ██║ ██║ -- 88 8888 88 8 8888 8 8888 88 -- ██║ ██║ -- 88 8888 ,8P 8 8888 8 8888 ,88 -- ██║ ██║ -- `8 8888 ,8P 8 8888 8 8888 ,88' -- ██║ ██║ -- ` 8888 ,88' 8 8888 8 8888 ,o88P' -- ██║ ██║ -- `8888888P' 8 888888888888 8 888888888P' -- ██║ ██║ -- -- ██║ ██║ -- `8.`888b ,8' .8. `8.`8888. ,8' -- ██║ ██║ -- `8.`888b ,8' .888. `8.`8888. ,8' -- ██║ ██║ -- `8.`888b ,8' :88888. `8.`8888. ,8' -- ██║ ██║ -- `8.`888b .b ,8' . `88888. `8.`8888.,8' -- ██║ ██║ -- `8.`888b 88b ,8' .8. `88888. `8.`88888' -- ██║ ██║ -- `8.`888b .`888b,8' .8`8. `88888. `8. 8888 -- ██║ ██║ -- `8.`888b8.`8888' .8' `8. `88888. `8 8888 -- ██║ ██║ -- `8.`888`8.`88' .8' `8. `88888. 8 8888 -- ██║ ██║ -- `8.`8' `8,`' .888888888. `88888. 8 8888 -- ██║ ██║ -- `8.` `8' .8' `8. `88888. 8 8888 -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- Previously, you had to construct the expression you wanted to solve twice: -- ██║ ██║ -- once in the type signature, and again using the special solver syntax. -- ██║ ██║ -- -- ██║ ██║ -- This is difficult to learn, and error-prone: if I change an x + y -- ██║ ██║ -- somewhere to a y + x, I *also* have to change the proofs now! The -- ██║ ██║ -- reflection-based solver will automatically construct the new proof. -- ██║ ██║ -- -- ██║ ██║ module OldSolver where -- ██║ ██║ open import Data.Nat -- ██║ ██║ open import Data.Nat.Solver using (module +-*-Solver) -- ██║ ██║ open +-*-Solver -- ██║ ██║ -- ██╗ ██║ ██║ --lemma : ∀ x y → x + y * 1 + 3 ≡ 2 + 1 + y + x -- ████║ ██║ ██║ --lemma = +-*-Solver.solve 2 -- ██████████║ ██║ -- (λ x y → x :+ y :* con 1 :+ con 3 := con 2 :+ con 1 :+ y :+ x) ≡.refl -- ████╔═██║ ██║ -- -- ██║ ██║ ██║ -------------------------------------------------------------------------------- ╚═╝ ██║ ██║ -- -- ██║ ██║ -- d888888o. 8888888 8888888888 8 8888888888 8 888888888o -- ██║ ██║ -- .`8888:' `88. 8 8888 8 8888 8 8888 `88. -- ██║ ██║ -- 8.`8888. Y8 8 8888 8 8888 8 8888 `88 -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 8888 ,88 -- ██║ ██║ -- `8.`8888. 8 8888 8 888888888888 8 8888. ,88' -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 888888888P' -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 8888 -- ██║ ██║ -- 8b `8.`8888. 8 8888 8 8888 8 8888 -- ██║ ██║ -- `8b. ;8.`8888 8 8888 8 8888 8 8888 -- ██║ ██║ -- `Y8888P ,88P' 8 8888 8 888888888888 8 8888 -- ██║ ██║ -- -- ██║ ██║ -- 8 888888888o `8.`8888. ,8' -- ██║ ██║ -- 8 8888 `88. `8.`8888. ,8' -- ██║ ██║ -- 8 8888 `88 `8.`8888. ,8' -- ██║ ██║ -- 8 8888 ,88 `8.`8888.,8' -- ██║ ██║ -- 8 8888. ,88' `8.`88888' -- ██║ ██║ -- 8 8888888888 `8. 8888 -- ██║ ██║ -- 8 8888 `88. `8 8888 -- ██║ ██║ -- 8 8888 88 8 8888 -- ██║ ██║ -- 8 8888 ,88' 8 8888 -- ██║ ██║ -- 8 888888888P 8 8888 -- ██║ ██║ -- -- ██║ ██║ -- d888888o. 8888888 8888888888 8 8888888888 8 888888888o -- ██║ ██║ -- .`8888:' `88. 8 8888 8 8888 8 8888 `88. -- ██║ ██║ -- 8.`8888. Y8 8 8888 8 8888 8 8888 `88 -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 8888 ,88 -- ██║ ██║ -- `8.`8888. 8 8888 8 888888888888 8 8888. ,88' -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 888888888P' -- ██║ ██║ -- `8.`8888. 8 8888 8 8888 8 8888 -- ██║ ██║ -- 8b `8.`8888. 8 8888 8 8888 8 8888 -- ██║ ██║ -- `8b. ;8.`8888 8 8888 8 8888 8 8888 -- ██║ ██║ -- `Y8888P ,88P' 8 8888 8 888888888888 8 8888 -- ██║ ██║ -- -- ██║ ██║ -------------------------------------------------------------------------------- ██║ ██║ -- Don't understand why something works? Wanna get it explained to you? Now -- ██║ ██║ -- you can! The solver can generate step-by-step, human-readable solutions -- ██║ ██║ -- for learning purposes. -- ██║ ██║ -- -- ██║ ██║ module TracedExamples where -- ██║ ██║ import Data.Nat.Show -- ██║ ██║ open import EqBool -- ██║ ██║ open import Relation.Traced Nat.ring Data.Nat.Show.show public -- ██║ ██║ open AlmostCommutativeRing tracedRing -- ██║ ██║ -- ██║ ██║ lemma : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x -- ██║ ██║ lemma = solve tracedRing -- ██║ ██║ -- ██╗██║ ██║ explained -- ████║██║ ██║ : showProof (lemma "x" "y") ≡ "x + y + 3" -- █████████║ ██║ ∷ " ={ +-comm(x, y + 3) }" -- ████╔══╝ ██║ ∷ "y + 3 + x" -- ██║ ██║ ∷ " ={ +-comm(y, 3) }" -- ╚═╝ ██║ ∷ "3 + y + x" -- ██║ ∷ [] -- ██║ explained = ≡.refl -- ██║ -------------------------------------------------------------------------------- ██║ -- -- ██║ -- The new solver uses a sparse representation, which is much faster than the -- ██║ -- dense one the old solver used. The following graph shows the time (in -- ██║ -- seconds) to prove that: -- ██║ -- -- ██║ -- (1 + x₁¹ + x₂² + x₃³ + x₄⁴ + x₅⁵)ᵈ -- ██║ -- -- ██║ -- is equal to its expanded form. (to run the benchmarks yourself, run the -- ██║ -- run_benchmarks.py file. You'll need python 3 and sympy.) -- ██║ -- -- ██║ -- 540 | * = old * -- ██║ -- 525 | + = new * -- ██║ -- 510 | * -- ██║ -- 495 | * -- ██║ -- 480 | * -- ██║ -- 465 | * -- ██║ -- 450 | * -- ██║ -- 435 | * -- ██║ -- 420 | * -- ██║ -- 405 | * -- ██║ -- 390 | * -- ██║ -- 375 | * -- ██║ -- 360 | * -- ██║ -- 345 | * -- ██║ -- 330 | * -- ██║ -- 315 | * -- ██║ -- 300 | * -- ██║ -- 285 | * -- ██║ -- 270 | * -- ██║ -- 255 | * -- ██║ -- 240 | * -- ██╗██║ -- 225 | * -- ████║██║ -- 210 | * -- █████████║ -- 195 | * -- ████╔══╝ -- 180 | * -- ██║ -- 165 | * -- ╚═╝ -- 150 | * -- -- 135 | * -- -- 120 | * -- -- 105 | * -- -- 90 | * -- -- 75 | * -- -- 60 | ** -- -- 45 | ** -- -- 30 | ** +++++ -- -- 15 | ***** +++++++++ -- -- 0 | *****************************************+++++++++ -- -- ------------------------------------------------------------------ -- -- d = 1 2 3 4 5 6 7 8 -- -------------------------------------------------------------------------------- -- -- * How does it work? Why is it fast? -- The solver works by converting expressions to "Horner Normal Form". -- This representation is special: x + y is represented in the same way -- as y + x. This is what lets us check that two expressions are equal. -- The implementation here is *sparse*, also, which is why it's faster -- than the old implementation. -- -- Want to learn more? Then this is the place for you: import Polynomial.NormalForm -- -- * Prove it! -- The type of proofs we need are *homomorphisms*. They basically mean -- that the operations on the normal form correspond to the operations -- on expressions. Also, we don't use propositional equality: we use -- any equivalence relation the user supplies. -- -- Don't believe me? Check it out: import Polynomial.Homomorphism -- -- * How do I use it? -- Copy the examples above! For the full solver, check out: import Polynomial.Solver -- -- * Wait! Don't! -- The "full" solver lets you use different types for the coefficient -- and carrier. You probably don't want that, unless you need the extra -- efficiency. You'll want the *simple* solver: import Polynomial.Simple.Solver -- -- * Is that all? -- No! As it happens, even the simple solver is complicated to use. -- You'll *actually* want to use the reflection-based interface: import Polynomial.Simple.Reflection -- -- * And what about the step-by-step stuff? -- That all uses the same underlying solver as the other stuff, with a -- special *relation*. You can check that out here: import Relation.Traced
{ "alphanum_fraction": 0.1875727945, "avg_line_length": 87.2789598109, "ext": "agda", "hexsha": "a518cac9ce211adcbadedbc6a948991dccd2d775", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/README.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/README.agda", "max_line_length": 105, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/README.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 8759, "size": 36919 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by posets ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.Properties.Poset {p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where open Relation.Binary.Poset P hiding (trans) import Relation.Binary.NonStrictToStrict as Conv open Conv _≈_ _≤_ ------------------------------------------------------------------------ -- Posets can be turned into strict partial orders strictPartialOrder : StrictPartialOrder _ _ _ strictPartialOrder = record { isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = irrefl ; trans = trans isPartialOrder ; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈ } } open StrictPartialOrder strictPartialOrder
{ "alphanum_fraction": 0.5353535354, "avg_line_length": 29.7, "ext": "agda", "hexsha": "1171bc539e3ebab02b7887326f81660393085963", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Properties/Poset.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 191, "size": 891 }
postulate f : {A B : Set₁} (C : Set) → A → B → C module _ (A B C : Set) where test : (X : Set) → Set → Set → X test = f { A₁ = Set } { B₁ = Set }
{ "alphanum_fraction": 0.461038961, "avg_line_length": 19.25, "ext": "agda", "hexsha": "826532a598501e7bc01073b6bbe025bcdaa950a6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue952.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue952.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue952.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 154 }
-- -- Created by Dependently-Typed Lambda Calculus on 2020-09-23 -- Commerce -- Author: dplaindoux -- {-# OPTIONS --without-K --safe #-} module Commerce where open import Relation.Nullary using (Reflects; Dec; yes; no) open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; _+_; _≥?_; _≥_) open import Agda.Builtin.Nat using (_-_) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎; step-≡) module Customer where record Account : Set where field balance : ℕ account : ℕ -> Account account n = record { balance = n } _↑_ : Account → ℕ → Account c ↑ n = account (Account.balance c + n) _↓_ : Account → ℕ → Account c ↓ n = account (Account.balance c - n ) infixl 50 _↑_ infixl 50 _↓_ module Product where record Item : Set where field price : ℕ data Basket : Set where ∅ : Basket _then_ : Item → Basket → Basket total : Basket → ℕ total ∅ = 0 total (a then b) = Item.price a + total b module Payment where open Customer open Product pay : (c : Account) → (p : Basket) → {Account.balance c ≥ total p} → Account pay c p = c ↓ total p module Front where pay? : Account → Basket → Account pay? c p with Account.balance c ≥? total p ... | yes proof = pay c p {proof} ... | no _ = c
{ "alphanum_fraction": 0.5974025974, "avg_line_length": 23.9836065574, "ext": "agda", "hexsha": "41d0d317e6790ad8101fb3da9aebf84f650d0670", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/exercices/Commerce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/exercices/Commerce.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/exercices/Commerce.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 427, "size": 1463 }
{- This second-order signature was created from the following second-order syntax description: syntax PropLog | PR type * : 0-ary term false : * | ⊥ or : * * -> * | _∨_ l20 true : * | ⊤ and : * * -> * | _∧_ l30 not : * -> * | ¬_ r50 theory (⊥U∨ᴸ) a |> or (false, a) = a (⊥U∨ᴿ) a |> or (a, false) = a (∨A) a b c |> or (or(a, b), c) = or (a, or(b, c)) (∨C) a b |> or(a, b) = or(b, a) (⊤U∧ᴸ) a |> and (true, a) = a (⊤U∧ᴿ) a |> and (a, true) = a (∧A) a b c |> and (and(a, b), c) = and (a, and(b, c)) (∧D∨ᴸ) a b c |> and (a, or (b, c)) = or (and(a, b), and(a, c)) (∧D∨ᴿ) a b c |> and (or (a, b), c) = or (and(a, c), and(b, c)) (⊥X∧ᴸ) a |> and (false, a) = false (⊥X∧ᴿ) a |> and (a, false) = false (¬N∨ᴸ) a |> or (not (a), a) = false (¬N∨ᴿ) a |> or (a, not (a)) = false (∧C) a b |> and(a, b) = and(b, a) (∨I) a |> or(a, a) = a (∧I) a |> and(a, a) = a (¬²) a |> not(not (a)) = a (∨D∧ᴸ) a b c |> or (a, and (b, c)) = and (or(a, b), or(a, c)) (∨D∧ᴿ) a b c |> or (and (a, b), c) = and (or(a, c), or(b, c)) (∨B∧ᴸ) a b |> or (and (a, b), a) = a (∨B∧ᴿ) a b |> or (a, and (a, b)) = a (∧B∨ᴸ) a b |> and (or (a, b), a) = a (∧B∨ᴿ) a b |> and (a, or (a, b)) = a (⊤X∨ᴸ) a |> or (true, a) = true (⊤X∨ᴿ) a |> or (a, true) = true (¬N∧ᴸ) a |> and (not (a), a) = false (¬N∧ᴿ) a |> and (a, not (a)) = false (DM∧) a b |> not (and (a, b)) = or (not(a), not(b)) (DM∨) a b |> not (or (a, b)) = and (not(a), not(b)) -} module PropLog.Signature where open import SOAS.Context open import SOAS.Common open import SOAS.Syntax.Signature *T public open import SOAS.Syntax.Build *T public -- Operator symbols data PRₒ : Set where falseₒ orₒ trueₒ andₒ notₒ : PRₒ -- Term signature PR:Sig : Signature PRₒ PR:Sig = sig λ { falseₒ → ⟼₀ * ; orₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * ; trueₒ → ⟼₀ * ; andₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * ; notₒ → (⊢₀ *) ⟼₁ * } open Signature PR:Sig public
{ "alphanum_fraction": 0.4507401736, "avg_line_length": 26.8356164384, "ext": "agda", "hexsha": "d2cfd0354e787a9c95846a6b08b2d0681c2d82b9", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/PropLog/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/PropLog/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/PropLog/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1023, "size": 1959 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.GCD.Partial.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP using ( 0∤x ; x∣S→x≤S ) open import FOTC.Data.Nat.Type open import FOTC.Program.GCD.Partial.CommonDivisorATP using ( gcdCD ) open import FOTC.Program.GCD.Partial.Definitions using ( x≢0≢y ; gcdSpec ) open import FOTC.Program.GCD.Partial.DivisibleATP using ( gcdDivisible ) open import FOTC.Program.GCD.Partial.GCD using ( gcd ) import FOTC.Program.GCD.Partial.GreatestAnyCommonDivisor open module GreatestAnyCommonDivisorATP = FOTC.Program.GCD.Partial.GreatestAnyCommonDivisor x∣S→x≤S 0∤x using ( gcdGACD ) open import FOTC.Program.GCD.Partial.TotalityATP using ( gcd-N ) ------------------------------------------------------------------------------ -- The gcd is correct. postulate gcdCorrect : ∀ {m n} → N m → N n → x≢0≢y m n → gcdSpec m n (gcd m n) {-# ATP prove gcdCorrect gcdCD gcdGACD gcd-N gcdDivisible #-}
{ "alphanum_fraction": 0.6129666012, "avg_line_length": 41.2702702703, "ext": "agda", "hexsha": "110bec4a351baac0a38d018e55018f1824f5e6f1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofATP.agda", "max_line_length": 83, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 379, "size": 1527 }
open import Agda.Primitive.Cubical record Bad : IUniv where
{ "alphanum_fraction": 0.8032786885, "avg_line_length": 15.25, "ext": "agda", "hexsha": "7b5189a3e14bd6396848dfab9008e14350daba21", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/IUnivRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/IUnivRecord.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/IUnivRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 18, "size": 61 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Homomorphism.Equivalence (Σ : Signature) where open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Homomorphism.Base Σ open import Fragment.Algebra.Homomorphism.Properties Σ open import Fragment.Algebra.Homomorphism.Setoid Σ open import Level using (Level; _⊔_) open import Relation.Binary using (Setoid; IsEquivalence) import Relation.Binary.Reasoning.Setoid as Reasoning private variable a b c ℓ₁ ℓ₂ ℓ₃ : Level A : Algebra {a} {ℓ₁} B : Algebra {b} {ℓ₂} C : Algebra {c} {ℓ₃} module _ (A : Algebra {a} {ℓ₁}) (B : Algebra {b} {ℓ₂}) where infix 3 _≃_ record _≃_ : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field _⃗ : A ⟿ B _⃖ : B ⟿ A invˡ : _⃗ ⊙ _⃖ ≗ id invʳ : _⃖ ⊙ _⃗ ≗ id open _≃_ public private ≃-refl : A ≃ A ≃-refl {A = A} = record { _⃗ = id ; _⃖ = id ; invˡ = λ {_} → refl ; invʳ = λ {_} → refl } where open Setoid ∥ A ∥/≈ ≃-sym : A ≃ B → B ≃ A ≃-sym f = record { _⃗ = f ⃖ ; _⃖ = f ⃗ ; invˡ = invʳ f ; invʳ = invˡ f } ≃-inv : ∀ (g : B ≃ C) (f : A ≃ B) → (g ⃗ ⊙ f ⃗) ⊙ (f ⃖ ⊙ g ⃖) ≗ id ≃-inv {B = B} {C = C} g f = begin (g ⃗ ⊙ f ⃗) ⊙ (f ⃖ ⊙ g ⃖) ≈⟨ ⊙-assoc (g ⃗) (f ⃗) (f ⃖ ⊙ g ⃖) ⟩ g ⃗ ⊙ (f ⃗ ⊙ (f ⃖ ⊙ g ⃖)) ≈⟨ ⊙-congˡ (g ⃗) (f ⃗ ⊙ (f ⃖ ⊙ g ⃖)) ((f ⃗ ⊙ f ⃖) ⊙ g ⃖) (⊙-assoc (f ⃗) (f ⃖) (g ⃖)) ⟩ g ⃗ ⊙ ((f ⃗ ⊙ f ⃖) ⊙ g ⃖) ≈⟨ ⊙-congˡ (g ⃗) ((f ⃗ ⊙ f ⃖) ⊙ g ⃖) (id ⊙ g ⃖) (⊙-congʳ (g ⃖) (f ⃗ ⊙ f ⃖) id (invˡ f)) ⟩ g ⃗ ⊙ (id ⊙ g ⃖) ≈⟨ ⊙-congˡ (g ⃗) (id ⊙ g ⃖) (g ⃖) (id-unitˡ {f = g ⃖}) ⟩ g ⃗ ⊙ g ⃖ ≈⟨ invˡ g ⟩ id ∎ where open Reasoning (C ⟿ C /≗) ≃-trans : A ≃ B → B ≃ C → A ≃ C ≃-trans f g = record { _⃗ = g ⃗ ⊙ f ⃗ ; _⃖ = f ⃖ ⊙ g ⃖ ; invˡ = ≃-inv g f ; invʳ = ≃-inv (≃-sym f) (≃-sym g) } ≃-isEquivalence : IsEquivalence (_≃_ {a} {ℓ₁} {a} {ℓ₁}) ≃-isEquivalence = record { refl = ≃-refl ; sym = ≃-sym ; trans = ≃-trans } ≃-setoid : ∀ {a ℓ} → Setoid _ _ ≃-setoid {a} {ℓ} = record { Carrier = Algebra {a} {ℓ} ; _≈_ = _≃_ {a} {ℓ} {a} {ℓ} ; isEquivalence = ≃-isEquivalence }
{ "alphanum_fraction": 0.4042718447, "avg_line_length": 27.688172043, "ext": "agda", "hexsha": "f2f82c5a83d3697f08cc5bc1f002d28ea90a7f3a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Homomorphism/Equivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Homomorphism/Equivalence.agda", "max_line_length": 93, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Homomorphism/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 1206, "size": 2575 }
module Cat where open import Agda.Primitive open import CS410-Prelude open import CS410-Nat open import CS410-Monoid open import CS410-Vec record Cat {k}{l}(O : Set k)(_>>_ : O -> O -> Set l) : Set (lsuc (k ⊔ l)) where field -- OPERATIONS --------------------------------------------------------- iden : {X : O} -> X >> X comp : {R S T : O} -> S >> T -> R >> S -> R >> T -- KLUDGE ------------------------------------------------------------- Eq : {S T : O} -> S >> T -> S >> T -> Set l -- LAWS --------------------------------------------------------------- idenL : {S T : O}(f : S >> T) -> Eq (comp iden f) f idenR : {S T : O}(f : S >> T) -> Eq (comp f iden) f assoc : {Q R S T : O}(f : S >> T)(g : R >> S)(h : Q >> R) -> Eq (comp f (comp g h)) (comp (comp f g) h) SetCat : Cat Set (\ S T -> S -> T) SetCat = record { iden = id ; comp = _o_ ; Eq = \ f g -> forall x -> f x == g x ; idenL = λ {S} {T} f x → refl ; idenR = λ {S} {T} f x → refl ; assoc = λ {Q} {R} {S} {T} f g h x → refl } N>=Cat : Cat Nat _N>=_ N>=Cat = record { iden = \ {n} -> N>=refl n ; comp = \ {l}{m}{n} -> N>=trans l m n ; Eq = \ _ _ -> One ; idenL = λ {S} {T} f → <> ; idenR = λ {S} {T} f → <> ; assoc = λ {Q} {R} {S} {T} f g h → <> } where N>=refl : (n : Nat) -> n N>= n N>=refl zero = <> N>=refl (suc n) = N>=refl n N>=trans : forall l m n -> m N>= n -> l N>= m -> l N>= n N>=trans l m zero mn lm = <> N>=trans l zero (suc n) () lm N>=trans zero (suc m) (suc n) mn () N>=trans (suc l) (suc m) (suc n) mn lm = N>=trans l m n mn lm MonCat : forall {X} -> Monoid X -> Cat One \ _ _ -> X MonCat M = record { iden = e ; comp = op ; Eq = _==_ ; idenL = lunit ; idenR = runit ; assoc = assoc } where open Monoid M record Functor {k l}{ObjS : Set k}{_>S>_ : ObjS -> ObjS -> Set l} {m n}{ObjT : Set m}{_>T>_ : ObjT -> ObjT -> Set n} (CS : Cat ObjS _>S>_)(CT : Cat ObjT _>T>_) : Set (lsuc (k ⊔ l ⊔ m ⊔ n)) where open Cat field -- OPERATIONS --------------------------------------------------------- Map : ObjS -> ObjT map : {A B : ObjS} -> A >S> B -> Map A >T> Map B -- LAWS --------------------------------------------------------------- mapId : {A : ObjS} -> Eq CT (map (iden CS {A})) (iden CT {Map A}) mapComp : {A B C : ObjS}(f : B >S> C)(g : A >S> B) -> Eq CT (map (comp CS f g)) (comp CT (map f) (map g)) mapEq : {A B : ObjS}{f g : A >S> B} -> Eq CS f g -> Eq CT (map f) (map g) data List (X : Set) : Set where -- X scopes over the whole declaration... [] : List X -- ...so you can use it here... _::_ : X -> List X -> List X -- ...and here. infixr 3 _::_ listMap : {A B : Set} → (A → B) → List A → List B listMap f [] = [] listMap f (a :: as) = f a :: listMap f as list : Functor SetCat SetCat list = record { Map = List ; map = listMap ; mapId = {!!} ; mapComp = {!!} ; mapEq = {!!} } {- goo : Functor (MonCat +Mon) SetCat goo = ? -} hoo : (X : Set) -> Functor N>=Cat SetCat hoo X = record { Map = Vec X ; map = {!!} ; mapId = {!!} ; mapComp = {!!} ; mapEq = {!!} }
{ "alphanum_fraction": 0.3812908729, "avg_line_length": 31.9727272727, "ext": "agda", "hexsha": "03aeee38b261b17dceda848f7fc71b4e08132a7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Cat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Cat.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Cat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1205, "size": 3517 }
module Relation.Equality where open import Data.Product -- Identity Types -- {- The type of identifications of two (x y : A). While this can be read as propositional equality, in HoTT identity can be (and is) elevated to a data type. -} data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x cong : ∀ {a b} {A : Set a}{B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl -- Path Induction over the Identity Type -- ind₌ : ∀ {a c}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set c) → ((x : A) → C x x refl) → (x y : A) → (p : x ≡ y) → C x y p ind₌ C c x .x refl = c x
{ "alphanum_fraction": 0.5516666667, "avg_line_length": 25, "ext": "agda", "hexsha": "3e38bf261ad705c3c6bbe22fc04af86708bdced7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Relation/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Relation/Equality.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Relation/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 237, "size": 600 }
{- Basic theory about h-levels/n-types: - Basic properties of isContr, isProp and isSet (definitions are in Prelude) - Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.HLevels where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence using (ua ; univalence) open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-zero; +-comm) HLevel : Type₀ HLevel = ℕ private variable ℓ ℓ' ℓ'' ℓ''' : Level A : Type ℓ B : A → Type ℓ C : (x : A) → B x → Type ℓ D : (x : A) (y : B x) → C x y → Type ℓ E : (x : A) (y : B x) → (z : C x y) → D x y z → Type ℓ w x y z : A n : HLevel isOfHLevel : HLevel → Type ℓ → Type ℓ isOfHLevel 0 A = isContr A isOfHLevel 1 A = isProp A isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y) isOfHLevelFun : (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isOfHLevelFun n f = ∀ b → isOfHLevel n (fiber f b) TypeOfHLevel : ∀ ℓ → HLevel → Type (ℓ-suc ℓ) TypeOfHLevel ℓ n = TypeWithStr ℓ (isOfHLevel n) hProp hSet hGroupoid h2Groupoid : ∀ ℓ → Type (ℓ-suc ℓ) hProp ℓ = TypeOfHLevel ℓ 1 hSet ℓ = TypeOfHLevel ℓ 2 hGroupoid ℓ = TypeOfHLevel ℓ 3 h2Groupoid ℓ = TypeOfHLevel ℓ 4 -- lower h-levels imply higher h-levels isOfHLevelSuc : (n : HLevel) → isOfHLevel n A → isOfHLevel (suc n) A isOfHLevelSuc 0 = isContr→isProp isOfHLevelSuc 1 = isProp→isSet isOfHLevelSuc (suc (suc n)) h a b = isOfHLevelSuc (suc n) (h a b) isSet→isGroupoid : isSet A → isGroupoid A isSet→isGroupoid = isOfHLevelSuc 2 isGroupoid→is2Groupoid : isGroupoid A → is2Groupoid A isGroupoid→is2Groupoid = isOfHLevelSuc 3 isOfHLevelPlus : (m : HLevel) → isOfHLevel n A → isOfHLevel (m + n) A isOfHLevelPlus zero hA = hA isOfHLevelPlus (suc m) hA = isOfHLevelSuc _ (isOfHLevelPlus m hA) isOfHLevelPlus' : (m : HLevel) → isOfHLevel m A → isOfHLevel (m + n) A isOfHLevelPlus' {A = A} {n = n} m hA = subst (λ m → isOfHLevel m A) (+-comm n m) (isOfHLevelPlus n hA ) isContr→isOfHLevel : (n : HLevel) → isContr A → isOfHLevel n A isContr→isOfHLevel {A = A} n cA = isOfHLevelPlus' 0 cA isProp→isOfHLevelSuc : (n : HLevel) → isProp A → isOfHLevel (suc n) A isProp→isOfHLevelSuc {A = A} n pA = isOfHLevelPlus' 1 pA -- hlevel of path and dependent path types isProp→isContrPath : isProp A → (x y : A) → isContr (x ≡ y) isProp→isContrPath h x y = h x y , isProp→isSet h x y _ isContr→isContrPath : isContr A → (x y : A) → isContr (x ≡ y) isContr→isContrPath cA = isProp→isContrPath (isContr→isProp cA) isOfHLevelPath' : (n : HLevel) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath' 0 = isProp→isContrPath isOfHLevelPath' (suc n) h x y = h x y isOfHLevelPath'⁻ : (n : HLevel) → ((x y : A) → isOfHLevel n (x ≡ y)) → isOfHLevel (suc n) A isOfHLevelPath'⁻ zero h x y = h x y .fst isOfHLevelPath'⁻ (suc n) h = h isOfHLevelPath : (n : HLevel) → isOfHLevel n A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath 0 h x y = isContr→isContrPath h x y isOfHLevelPath (suc n) h x y = isOfHLevelSuc n (isOfHLevelPath' n h x y) isOfHLevelPathP' : {A : I → Type ℓ} (n : HLevel) → isOfHLevel (suc n) (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP' {A = A} n h x y = transport⁻ (λ i → isOfHLevel n (PathP≡Path A x y i)) (isOfHLevelPath' n h _ _) isOfHLevelPathP : {A : I → Type ℓ} (n : HLevel) → isOfHLevel n (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP {A = A} n h x y = transport⁻ (λ i → isOfHLevel n (PathP≡Path A x y i)) (isOfHLevelPath n h _ _) -- h-level of isOfHLevel isPropIsOfHLevel : (n : HLevel) → isProp (isOfHLevel n A) isPropIsOfHLevel 0 = isPropIsContr isPropIsOfHLevel 1 = isPropIsProp isPropIsOfHLevel (suc (suc n)) f g i a b = isPropIsOfHLevel (suc n) (f a b) (g a b) i isPropIsSet : isProp (isSet A) isPropIsSet = isPropIsOfHLevel 2 isPropIsGroupoid : isProp (isGroupoid A) isPropIsGroupoid = isPropIsOfHLevel 3 isPropIs2Groupoid : isProp (is2Groupoid A) isPropIs2Groupoid = isPropIsOfHLevel 4 TypeOfHLevel≡ : (n : HLevel) {X Y : TypeOfHLevel ℓ n} → ⟨ X ⟩ ≡ ⟨ Y ⟩ → X ≡ Y TypeOfHLevel≡ n = Σ≡Prop (λ _ → isPropIsOfHLevel n) -- Fillers for cubes from h-level isSet→isSet' : isSet A → isSet' A isSet→isSet' {A = A} Aset a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Aset _ _ _ _) isSet'→isSet : isSet' A → isSet A isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl isSet→SquareP : {A : I → I → Type ℓ} (isSet : (i j : I) → isSet (A i j)) {a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁) {a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁) (a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁) → SquareP A a₀₋ a₁₋ a₋₀ a₋₁ isSet→SquareP isset a₀₋ a₁₋ a₋₀ a₋₁ = transport (sym (PathP≡Path _ _ _)) (isOfHLevelPathP' 1 (isset _ _) _ _ _ _ ) isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = transport⁻ (PathP≡Path (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋) (isGroupoid→isPropSquare _ _ _ _ _ _) where isGroupoid→isPropSquare : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → isProp (Square a₀₋ a₁₋ a₋₀ a₋₁) isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (cong isProp (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋)) (Agpd _ _ _ _) isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl -- hlevels are preserved by retracts (and consequently equivalences) isContrRetract : ∀ {B : Type ℓ} → (f : A → B) (g : B → A) → (h : retract f g) → (v : isContr B) → isContr A fst (isContrRetract f g h (b , p)) = g b snd (isContrRetract f g h (b , p)) x = (cong g (p (f x))) ∙ (h x) isPropRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isProp B → isProp A isPropRetract f g h p x y i = hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (p (f x) (f y) i)) isSetRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isSet B → isSet A isSetRetract f g h set x y p q i j = hcomp (λ k → λ { (i = i0) → h (p j) k ; (i = i1) → h (q j) k ; (j = i0) → h x k ; (j = i1) → h y k}) (g (set (f x) (f y) (cong f p) (cong f q) i j)) isGroupoidRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isGroupoid B → isGroupoid A isGroupoidRetract f g h grp x y p q P Q i j k = hcomp ((λ l → λ { (i = i0) → h (P j k) l ; (i = i1) → h (Q j k) l ; (j = i0) → h (p k) l ; (j = i1) → h (q k) l ; (k = i0) → h x l ; (k = i1) → h y l})) (g (grp (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) i j k)) is2GroupoidRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → is2Groupoid B → is2Groupoid A is2GroupoidRetract f g h grp x y p q P Q R S i j k l = hcomp (λ r → λ { (i = i0) → h (R j k l) r ; (i = i1) → h (S j k l) r ; (j = i0) → h (P k l) r ; (j = i1) → h (Q k l) r ; (k = i0) → h (p l) r ; (k = i1) → h (q l) r ; (l = i0) → h x r ; (l = i1) → h y r}) (g (grp (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) (cong (cong (cong f)) R) (cong (cong (cong f)) S) i j k l)) isOfHLevelRetract : (n : HLevel) {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isOfHLevel n B → isOfHLevel n A isOfHLevelRetract 0 = isContrRetract isOfHLevelRetract 1 = isPropRetract isOfHLevelRetract 2 = isSetRetract isOfHLevelRetract 3 = isGroupoidRetract isOfHLevelRetract 4 = is2GroupoidRetract isOfHLevelRetract (suc (suc (suc (suc (suc n))))) f g h ofLevel x y p q P Q R S = isOfHLevelRetract (suc n) (cong (cong (cong (cong f)))) (λ s i j k l → hcomp (λ r → λ { (i = i0) → h (R j k l) r ; (i = i1) → h (S j k l) r ; (j = i0) → h (P k l) r ; (j = i1) → h (Q k l) r ; (k = i0) → h (p l) r ; (k = i1) → h (q l) r ; (l = i0) → h x r ; (l = i1) → h y r}) (g (s i j k l))) (λ s i j k l m → hcomp (λ n → λ { (i = i1) → s j k l m ; (j = i0) → h (R k l m) (i ∨ n) ; (j = i1) → h (S k l m) (i ∨ n) ; (k = i0) → h (P l m) (i ∨ n) ; (k = i1) → h (Q l m) (i ∨ n) ; (l = i0) → h (p m) (i ∨ n) ; (l = i1) → h (q m) (i ∨ n) ; (m = i0) → h x (i ∨ n) ; (m = i1) → h y (i ∨ n) }) (h (s j k l m) i)) (ofLevel (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) (cong (cong (cong f)) R) (cong (cong (cong f)) S)) isOfHLevelRetractFromIso : {A : Type ℓ} {B : Type ℓ'} (n : HLevel) → Iso A B → isOfHLevel n B → isOfHLevel n A isOfHLevelRetractFromIso n e hlev = isOfHLevelRetract n (Iso.fun e) (Iso.inv e) (Iso.leftInv e) hlev isOfHLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : HLevel) → A ≃ B → isOfHLevel n A → isOfHLevel n B isOfHLevelRespectEquiv n eq = isOfHLevelRetract n (invEq eq) (eq .fst) (retEq eq) isContrRetractOfConstFun : {A : Type ℓ} {B : Type ℓ'} (b₀ : B) → Σ[ f ∈ (B → A) ] ((x : A) → (f ∘ (λ _ → b₀)) x ≡ x) → isContr A fst (isContrRetractOfConstFun b₀ ret) = ret .fst b₀ snd (isContrRetractOfConstFun b₀ ret) y = ret .snd y -- h-level of Σ-types isContrΣ : isContr A → ((x : A) → isContr (B x)) → isContr (Σ A B) isContrΣ {A = A} {B = B} (a , p) q = let h : (x : A) (y : B x) → (q x) .fst ≡ y h x y = (q x) .snd y in (( a , q a .fst) , ( λ x i → p (x .fst) i , h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i)) isContrΣ′ : (ca : isContr A) → isContr (B (fst ca)) → isContr (Σ A B) isContrΣ′ ca cb = isContrΣ ca (λ x → subst _ (snd ca x) cb) section-Σ≡Prop : (pB : (x : A) → isProp (B x)) {u v : Σ A B} → section (Σ≡Prop pB {u} {v}) (cong fst) section-Σ≡Prop {A = A} pB {u} {v} p j i = (p i .fst) , isProp→PathP (λ i → isOfHLevelPath 1 (pB (fst (p i))) (Σ≡Prop pB {u} {v} (cong fst p) i .snd) (p i .snd) ) refl refl i j isEquiv-Σ≡Prop : (pB : (x : A) → isProp (B x)) {u v : Σ A B} → isEquiv (Σ≡Prop pB {u} {v}) isEquiv-Σ≡Prop {A = A} pB {u} {v} = isoToIsEquiv (iso (Σ≡Prop pB) (cong fst) (section-Σ≡Prop pB) (λ _ → refl)) isPropΣ : isProp A → ((x : A) → isProp (B x)) → isProp (Σ A B) isPropΣ pA pB t u = Σ≡Prop pB (pA (t .fst) (u .fst)) isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n (Σ A B) isOfHLevelΣ 0 = isContrΣ isOfHLevelΣ 1 = isPropΣ isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y = isOfHLevelRetractFromIso (suc n) (invIso (IsoΣPathTransportPathΣ _ _)) (isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ x → h2 _ _ _) isSetΣ : isSet A → ((x : A) → isSet (B x)) → isSet (Σ A B) isSetΣ = isOfHLevelΣ 2 isGroupoidΣ : isGroupoid A → ((x : A) → isGroupoid (B x)) → isGroupoid (Σ A B) isGroupoidΣ = isOfHLevelΣ 3 is2GroupoidΣ : is2Groupoid A → ((x : A) → is2Groupoid (B x)) → is2Groupoid (Σ A B) is2GroupoidΣ = isOfHLevelΣ 4 -- h-level of × isProp× : {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → isProp (A × B) isProp× pA pB = isPropΣ pA (λ _ → pB) isProp×2 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → isProp A → isProp B → isProp C → isProp (A × B × C) isProp×2 pA pB pC = isProp× pA (isProp× pB pC) isProp×3 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → isProp A → isProp B → isProp C → isProp D → isProp (A × B × C × D) isProp×3 pA pB pC pD = isProp×2 pA pB (isProp× pC pD) isOfHLevel× : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B) isOfHLevel× n hA hB = isOfHLevelΣ n hA (λ _ → hB) isSet× : ∀ {A : Type ℓ} {B : Type ℓ'} → isSet A → isSet B → isSet (A × B) isSet× = isOfHLevel× 2 isGroupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → isGroupoid A → isGroupoid B → isGroupoid (A × B) isGroupoid× = isOfHLevel× 3 is2Groupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → is2Groupoid A → is2Groupoid B → is2Groupoid (A × B) is2Groupoid× = isOfHLevel× 4 -- h-level of Π-types isOfHLevelΠ : ∀ n → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n ((x : A) → B x) isOfHLevelΠ 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i isOfHLevelΠ 1 h f g i x = (h x) (f x) (g x) i isOfHLevelΠ 2 h f g F G i j z = h z (f z) (g z) (funExt⁻ F z) (funExt⁻ G z) i j isOfHLevelΠ 3 h f g p q P Q i j k z = h z (f z) (g z) (funExt⁻ p z) (funExt⁻ q z) (cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q) i j k isOfHLevelΠ 4 h f g p q P Q R S i j k l z = h z (f z) (g z) (funExt⁻ p z) (funExt⁻ q z) (cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q) (cong (cong (λ f → funExt⁻ f z)) R) (cong (cong (λ f → funExt⁻ f z)) S) i j k l isOfHLevelΠ (suc (suc (suc (suc (suc n))))) h f g p q P Q R S = isOfHLevelRetract (suc n) (cong (cong (cong funExt⁻))) (cong (cong (cong funExt))) (λ _ → refl) (isOfHLevelΠ (suc (suc (suc (suc n)))) (λ x → h x (f x) (g x)) (funExt⁻ p) (funExt⁻ q) (cong funExt⁻ P) (cong funExt⁻ Q) (cong (cong funExt⁻) R) (cong (cong funExt⁻) S)) isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) isPropΠ = isOfHLevelΠ 1 isPropΠ2 : (h : (x : A) (y : B x) → isProp (C x y)) → isProp ((x : A) (y : B x) → C x y) isPropΠ2 h = isPropΠ λ x → isPropΠ λ y → h x y isPropΠ3 : (h : (x : A) (y : B x) (z : C x y) → isProp (D x y z)) → isProp ((x : A) (y : B x) (z : C x y) → D x y z) isPropΠ3 h = isPropΠ λ x → isPropΠ λ y → isPropΠ λ z → h x y z isPropΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isProp (E x y z w)) → isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isPropΠ4 h = isPropΠ λ _ → isPropΠ3 λ _ → h _ _ isPropImplicitΠ : (h : (x : A) → isProp (B x)) → isProp ({x : A} → B x) isPropImplicitΠ h f g i {x} = h x (f {x}) (g {x}) i isProp→ : {A : Type ℓ} {B : Type ℓ'} → isProp B → isProp (A → B) isProp→ pB = isPropΠ λ _ → pB isSetΠ : ((x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetΠ = isOfHLevelΠ 2 isSetΠ2 : (h : (x : A) (y : B x) → isSet (C x y)) → isSet ((x : A) (y : B x) → C x y) isSetΠ2 h = isSetΠ λ x → isSetΠ λ y → h x y isSetΠ3 : (h : (x : A) (y : B x) (z : C x y) → isSet (D x y z)) → isSet ((x : A) (y : B x) (z : C x y) → D x y z) isSetΠ3 h = isSetΠ λ x → isSetΠ λ y → isSetΠ λ z → h x y z isGroupoidΠ : ((x : A) → isGroupoid (B x)) → isGroupoid ((x : A) → B x) isGroupoidΠ = isOfHLevelΠ 3 isGroupoidΠ2 : (h : (x : A) (y : B x) → isGroupoid (C x y)) → isGroupoid ((x : A) (y : B x) → C x y) isGroupoidΠ2 h = isGroupoidΠ λ _ → isGroupoidΠ λ _ → h _ _ isGroupoidΠ3 : (h : (x : A) (y : B x) (z : C x y) → isGroupoid (D x y z)) → isGroupoid ((x : A) (y : B x) (z : C x y) → D x y z) isGroupoidΠ3 h = isGroupoidΠ λ _ → isGroupoidΠ2 λ _ → h _ _ isGroupoidΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isGroupoid (E x y z w)) → isGroupoid ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isGroupoidΠ4 h = isGroupoidΠ λ _ → isGroupoidΠ3 λ _ → h _ _ is2GroupoidΠ : ((x : A) → is2Groupoid (B x)) → is2Groupoid ((x : A) → B x) is2GroupoidΠ = isOfHLevelΠ 4 isOfHLevelΠ⁻ : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n (A → B) → (A → isOfHLevel n B) isOfHLevelΠ⁻ 0 h x = fst h x , λ y → funExt⁻ (snd h (const y)) x isOfHLevelΠ⁻ 1 h x y z = funExt⁻ (h (const y) (const z)) x isOfHLevelΠ⁻ (suc (suc n)) h x y z = isOfHLevelΠ⁻ (suc n) (subst (isOfHLevel (suc n)) (sym funExtPath) (h (const y) (const z))) x -- h-level of A ≃ B and A ≡ B isOfHLevel≃ : ∀ n {A : Type ℓ} {B : Type ℓ'} → (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B) isOfHLevel≃ zero {A = A} {B = B} hA hB = isContr→Equiv hA hB , contr where contr : (y : A ≃ B) → isContr→Equiv hA hB ≡ y contr y = Σ≡Prop isPropIsEquiv (funExt (λ a → snd hB (fst y a))) isOfHLevel≃ (suc n) {A = A} {B = B} hA hB = isOfHLevelΣ (suc n) (isOfHLevelΠ _ λ _ → hB) λ a → isOfHLevelPlus' 1 (isPropIsEquiv a) isOfHLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≡ B) isOfHLevel≡ n hA hB = isOfHLevelRetract n (fst univalence) ua (secEq univalence) (isOfHLevel≃ n hA hB) isOfHLevel⁺≃ₗ : ∀ n {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≃ B) isOfHLevel⁺≃ₗ zero pA e = isOfHLevel≃ 1 pA (isOfHLevelRespectEquiv 1 e pA) e isOfHLevel⁺≃ₗ (suc n) hA e = isOfHLevel≃ m hA (isOfHLevelRespectEquiv m e hA) e where m = suc (suc n) isOfHLevel⁺≃ᵣ : ∀ n {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≃ B) isOfHLevel⁺≃ᵣ zero pB e = isOfHLevel≃ 1 (isPropRetract (e .fst) (invEq e) (secEq e) pB) pB e isOfHLevel⁺≃ᵣ (suc n) hB e = isOfHLevel≃ m (isOfHLevelRetract m (e .fst) (invEq e) (secEq e) hB) hB e where m = suc (suc n) isOfHLevel⁺≡ₗ : ∀ n → {A B : Type ℓ} → isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≡ B) isOfHLevel⁺≡ₗ zero pA P = isOfHLevel≡ 1 pA (subst isProp P pA) P isOfHLevel⁺≡ₗ (suc n) hA P = isOfHLevel≡ m hA (subst (isOfHLevel m) P hA) P where m = suc (suc n) isOfHLevel⁺≡ᵣ : ∀ n → {A B : Type ℓ} → isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≡ B) isOfHLevel⁺≡ᵣ zero pB P = isOfHLevel≡ 1 (subst⁻ isProp P pB) pB P isOfHLevel⁺≡ᵣ (suc n) hB P = isOfHLevel≡ m (subst⁻ (isOfHLevel m) P hB) hB P where m = suc (suc n) -- h-level of TypeOfHLevel isPropHContr : isProp (TypeOfHLevel ℓ 0) isPropHContr x y = Σ≡Prop (λ _ → isPropIsContr) (isOfHLevel≡ 0 (x .snd) (y .snd) .fst) isOfHLevelTypeOfHLevel : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel zero = isPropHContr isOfHLevelTypeOfHLevel (suc n) (X , a) (Y , b) = isOfHLevelRetract (suc n) (cong fst) (Σ≡Prop λ _ → isPropIsOfHLevel (suc n)) (section-Σ≡Prop λ _ → isPropIsOfHLevel (suc n)) (isOfHLevel≡ (suc n) a b) isSetHProp : isSet (hProp ℓ) isSetHProp = isOfHLevelTypeOfHLevel 1 -- h-level of lifted type isOfHLevelLift : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A) isOfHLevelLift n = isOfHLevelRetract n lower lift λ _ → refl ---------------------------- -- More consequences of isProp and isContr inhProp→isContr : A → isProp A → isContr A inhProp→isContr x h = x , h x extend : isContr A → (∀ φ → (u : Partial φ A) → Sub A φ u) extend (x , p) φ u = inS (hcomp (λ { j (φ = i1) → p (u 1=1) j }) x) isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ} → (extend : ∀ φ → Partial φ A → A) → (∀ u → u ≡ (extend i1 λ { _ → u})) → isContr A isContrPartial→isContr {A = A} extend law = ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y) where ex = extend i0 empty module Aux (y : A) (i : I) where φ = ~ i ∨ i u : Partial φ A u = λ { (i = i0) → ex ; (i = i1) → y } v = extend φ u -- Dependent h-level over a type isOfHLevelDep : HLevel → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b') isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1 isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1) isOfHLevel→isOfHLevelDep : (n : HLevel) → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B isOfHLevel→isOfHLevelDep 0 h {a} = (h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b') isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1 isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 = isOfHLevel→isOfHLevelDep (suc n) (λ p → helper a1 p b1) where helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1) helper a1 p b1 = J (λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)) (λ _ → h _ _ _) p b1 isContrDep→isPropDep : isOfHLevelDep 0 B → isOfHLevelDep 1 B isContrDep→isPropDep {B = B} Bctr {a0 = a0} b0 b1 p i = comp (λ k → B (p (i ∧ k))) (λ k → λ where (i = i0) → Bctr .snd b0 refl k (i = i1) → Bctr .snd b1 p k) (c0 .fst) where c0 = Bctr {a0} isPropDep→isSetDep : isOfHLevelDep 1 B → isOfHLevelDep 2 B isPropDep→isSetDep {B = B} Bprp b0 b1 b2 b3 p i j = comp (λ k → B (p (i ∧ k) (j ∧ k))) (λ k → λ where (j = i0) → Bprp b0 b0 refl k (i = i0) → Bprp b0 (b2 j) (λ k → p i0 (j ∧ k)) k (i = i1) → Bprp b0 (b3 j) (λ k → p k (j ∧ k)) k (j = i1) → Bprp b0 b1 (λ k → p (i ∧ k) (j ∧ k)) k) b0 isOfHLevelDepSuc : (n : HLevel) → isOfHLevelDep n B → isOfHLevelDep (suc n) B isOfHLevelDepSuc 0 = isContrDep→isPropDep isOfHLevelDepSuc 1 = isPropDep→isSetDep isOfHLevelDepSuc (suc (suc n)) Blvl b0 b1 = isOfHLevelDepSuc (suc n) (Blvl b0 b1) isPropDep→isSetDep' : isOfHLevelDep 1 B → {p : w ≡ x} {q : y ≡ z} {r : w ≡ y} {s : x ≡ z} → {tw : B w} {tx : B x} {ty : B y} {tz : B z} → (sq : Square p q r s) → (tp : PathP (λ i → B (p i)) tw tx) → (tq : PathP (λ i → B (q i)) ty tz) → (tr : PathP (λ i → B (r i)) tw ty) → (ts : PathP (λ i → B (s i)) tx tz) → SquareP (λ i j → B (sq i j)) tp tq tr ts isPropDep→isSetDep' {B = B} Bprp {p} {q} {r} {s} {tw} sq tp tq tr ts i j = comp (λ k → B (sq (i ∧ k) (j ∧ k))) (λ k → λ where (i = i0) → Bprp tw (tp j) (λ k → p (k ∧ j)) k (i = i1) → Bprp tw (tq j) (λ k → sq (i ∧ k) (j ∧ k)) k (j = i0) → Bprp tw (tr i) (λ k → r (k ∧ i)) k (j = i1) → Bprp tw (ts i) (λ k → sq (k ∧ i) (j ∧ k)) k) tw isOfHLevelΣ' : ∀ n → isOfHLevel n A → isOfHLevelDep n B → isOfHLevel n (Σ A B) isOfHLevelΣ' 0 Actr Bctr .fst = (Actr .fst , Bctr .fst) isOfHLevelΣ' 0 Actr Bctr .snd (x , y) i = Actr .snd x i , Bctr .snd y (Actr .snd x) i isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .fst = Alvl w x i isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .snd = Blvl y z (Alvl w x) i isOfHLevelΣ' {A = A} {B = B} (suc (suc n)) Alvl Blvl (w , y) (x , z) = isOfHLevelRetract (suc n) (λ p → (λ i → p i .fst) , λ i → p i .snd) ΣPathP (λ x → refl) (isOfHLevelΣ' (suc n) (Alvl w x) (Blvl y z))
{ "alphanum_fraction": 0.5272945163, "avg_line_length": 39.0936995153, "ext": "agda", "hexsha": "a6184060e2da0ca54acc72dd2af5a4d1b80243d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Foundations/HLevels.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Foundations/HLevels.agda", "max_line_length": 150, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Foundations/HLevels.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10958, "size": 24199 }
-- {-# OPTIONS -v interaction.case:10 -v tc.cover:40 #-} module Issue635 where record Pointed : Set₁ where field Carrier : Set empty : Carrier equal : Carrier → Carrier → Set record PointedMorphism (M₁ M₂ : Pointed) : Set where constructor morph module M₁ = Pointed M₁ module M₂ = Pointed M₂ field f : M₁.Carrier → M₂.Carrier .identity : M₂.equal (f M₁.empty) M₂.empty g : ∀ (M₁ M₂ : Pointed) → PointedMorphism M₁ M₂ → PointedMorphism M₁ M₂ g M₁ M₂ (morph f identity) = morph f identity f : ∀ {M₁ M₂ : Pointed} → PointedMorphism M₁ M₂ → PointedMorphism M₁ M₂ f x = {!x!} {- WAS: case splitting on x in that hole produces this monstrosity: f {.Splitting.recCon-NOT-PRINTED Carrier empty times equal} {.Splitting.recCon-NOT-PRINTED Carrier₁ empty₁ times₁ equal₁} (morph f identity) = ? -} -- Andreas, 2013-03-21 -- NOW: case splitting on x yields pattern (morph f identity)
{ "alphanum_fraction": 0.6941694169, "avg_line_length": 28.40625, "ext": "agda", "hexsha": "cb68009bca24fbad5176a5e6ba1f5b856bb400d3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue635.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue635.agda", "max_line_length": 144, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue635.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 297, "size": 909 }
module Termination.Sized.DeBruijnBase where open import Data.Maybe open import Data.Maybe.Effectful open import Function -- composition, identity open import Relation.Binary.PropositionalEquality hiding ( subst ) open ≡-Reasoning open import Effect.Functor fmap : {A B : Set} -> (A -> B) -> Maybe A -> Maybe B fmap = RawFunctor._<$>_ functor -- OR: -- open RawFunctor MaybeFunctor using () renaming (_<$>_ to fmap) fmapExt : {A B : Set}{f g : A -> B} -> (forall a -> f a ≡ g a) -> forall m -> fmap f m ≡ fmap g m fmapExt f≡g nothing = refl fmapExt f≡g (just a) = cong just (f≡g a) fmapLaw1 : {A : Set}(a : Maybe A) -> fmap id a ≡ a fmapLaw1 nothing = refl fmapLaw1 (just a) = refl fmapLaw2 : {A B C : Set}(f : B -> C)(g : A -> B) -> forall m -> fmap f (fmap g m) ≡ fmap (f ∘ g) m fmapLaw2 f g nothing = refl fmapLaw2 f g (just a) = refl -- untyped de Bruijn terms data Lam (A : Set) : Set where var : A -> Lam A app : Lam A -> Lam A -> Lam A abs : Lam (Maybe A) -> Lam A -- functoriality of Lam lam : {A B : Set} -> (A -> B) -> Lam A -> Lam B lam f (var a) = var (f a) lam f (app t1 t2) = app (lam f t1) (lam f t2) lam f (abs r) = abs (lam (fmap f) r) lamExt : {A B : Set}{f g : A -> B} -> (forall a -> f a ≡ g a) -> forall t -> lam f t ≡ lam g t lamExt f≡g (var a) = cong var (f≡g a) lamExt f≡g (abs r) = cong abs (lamExt (fmapExt f≡g) r) lamExt f≡g (app r s) = cong₂ app (lamExt f≡g r) (lamExt f≡g s) lamLaw1 : {A : Set}(t : Lam A) -> lam id t ≡ t lamLaw1 (var a) = refl lamLaw1 (app r s) = begin lam id (app r s) ≡⟨ refl ⟩ app (lam id r) (lam id s) ≡⟨ cong (app (lam id r)) (lamLaw1 s) ⟩ app (lam id r) s ≡⟨ cong (\ x -> app x s) (lamLaw1 r) ⟩ app r s ∎ lamLaw1 (abs t) = begin lam id (abs t) ≡⟨ refl ⟩ abs (lam (fmap id) t) ≡⟨ cong abs (lamExt {g = id} fmapLaw1 t) ⟩ abs (lam id t) ≡⟨ cong abs (lamLaw1 t) ⟩ abs t ∎ lamLaw2 : {A B C : Set}(f : B -> C)(g : A -> B) -> forall t -> lam f (lam g t) ≡ lam (f ∘ g) t lamLaw2 f g (var a) = refl lamLaw2 f g (app r s) = cong₂ app (lamLaw2 f g r) (lamLaw2 f g s) lamLaw2 f g (abs t) = begin lam f (lam g (abs t)) ≡⟨ refl ⟩ lam f (abs (lam (fmap g) t)) ≡⟨ refl ⟩ abs (lam (fmap f) (lam (fmap g) t)) ≡⟨ cong abs (lamLaw2 (fmap f) (fmap g) t) ⟩ abs (lam (fmap f ∘ fmap g) t) ≡⟨ cong abs (lamExt (fmapLaw2 f g) t) ⟩ abs (lam (fmap (f ∘ g)) t) ≡⟨ refl ⟩ lam (f ∘ g) (abs t) ∎ -- lifting a substitution A -> Lam B under a binder lift : {A B : Set} -> (A -> Lam B) -> Maybe A -> Lam (Maybe B) lift f nothing = var nothing lift f (just a) = lam just (f a) -- extensionality of lifting liftExt : {A B : Set}{f g : A -> Lam B} -> ((a : A) -> f a ≡ g a) -> (t : Maybe A) -> lift f t ≡ lift g t liftExt H nothing = refl liftExt H (just a) = cong (lam just) $ H a -- simultaneous substitution subst : {A B : Set} -> (A -> Lam B) -> Lam A -> Lam B subst f (var a) = f a subst f (app t1 t2) = app (subst f t1) (subst f t2) subst f (abs r) = abs (subst (lift f) r) -- extensionality of subst substExt : {A B : Set}{f g : A -> Lam B} -> ((a : A) -> f a ≡ g a) -> (t : Lam A) -> subst f t ≡ subst g t substExt H (var a) = H a substExt {f = f}{g = g} H (app t1 t2) = begin subst f (app t1 t2) ≡⟨ refl ⟩ app (subst f t1) (subst f t2) ≡⟨ cong (\ x -> app x (subst f t2)) (substExt H t1) ⟩ app (subst g t1) (subst f t2) ≡⟨ cong (\ x -> app (subst g t1) x) (substExt H t2) ⟩ app (subst g t1) (subst g t2) ∎ substExt {f = f}{g = g} H (abs r) = begin subst f (abs r) ≡⟨ refl ⟩ abs (subst (lift f) r) ≡⟨ cong abs (substExt (liftExt H) r) ⟩ abs (subst (lift g) r) ≡⟨ refl ⟩ subst g (abs r) ∎ -- Lemma: lift g ∘ fmap f = lift (g ∘ f) liftLaw1 : {A B C : Set}(f : A -> B)(g : B -> Lam C)(t : Maybe A) -> lift g (fmap f t) ≡ lift (g ∘ f) t liftLaw1 f g nothing = begin lift g (fmap f nothing) ≡⟨ refl ⟩ lift g nothing ≡⟨ refl ⟩ var nothing ≡⟨ refl ⟩ lift (g ∘ f) nothing ∎ liftLaw1 f g (just a) = begin lift g (fmap f (just a)) ≡⟨ refl ⟩ lift g (just (f a)) ≡⟨ refl ⟩ lam just (g (f a)) ≡⟨ refl ⟩ lift (g ∘ f) (just a) ∎ -- Lemma: subst g ∘ lam f t = subst (g ∘ f) substLaw1 : {A B C : Set}(f : A -> B)(g : B -> Lam C)(t : Lam A) -> subst g (lam f t) ≡ subst (g ∘ f) t substLaw1 f g (var a) = refl substLaw1 f g (app t1 t2) = begin subst g (lam f (app t1 t2)) ≡⟨ refl ⟩ subst g (app (lam f t1) (lam f t2)) ≡⟨ refl ⟩ app (subst g (lam f t1)) (subst g (lam f t2)) ≡⟨ cong (\ x -> app x (subst g (lam f t2))) (substLaw1 f g t1) ⟩ app (subst (g ∘ f) t1) (subst g (lam f t2)) ≡⟨ cong (\ x -> app (subst (g ∘ f) t1) x) (substLaw1 f g t2) ⟩ app (subst (g ∘ f) t1) (subst (g ∘ f) t2) ∎ substLaw1 f g (abs r) = begin subst g (lam f (abs r)) ≡⟨ refl ⟩ subst g (abs (lam (fmap f) r)) ≡⟨ refl ⟩ abs (subst (lift g) (lam (fmap f) r)) ≡⟨ cong abs (substLaw1 (fmap f) (lift g) r) ⟩ abs (subst (lift g ∘ fmap f) r) ≡⟨ cong abs (substExt {f = lift g ∘ fmap f} {g = lift (g ∘ f)} (liftLaw1 f g) r) ⟩ abs (subst (lift (g ∘ f)) r) ∎ -- Lemma: lift (lam f ∘ g) = lam f ∘ subst g liftLaw2 : {A B C : Set}(f : B -> C)(g : A -> Lam B)(t : Maybe A) -> lift (lam f ∘ g) t ≡ lam (fmap f) (lift g t) liftLaw2 f g nothing = begin lift (lam f ∘ g) nothing ≡⟨ refl ⟩ var nothing ≡⟨ refl ⟩ var (fmap f nothing) ≡⟨ refl ⟩ lam (fmap f) (var nothing) ≡⟨ refl ⟩ lam (fmap f) (lift g nothing) ∎ liftLaw2 f g (just a) = begin lift (lam f ∘ g) (just a) ≡⟨ refl ⟩ lam just (lam f (g a)) ≡⟨ lamLaw2 just f (g a) ⟩ lam (just ∘ f) (g a) ≡⟨ lamExt (\ a -> refl) (g a) ⟩ lam (fmap f ∘ just) (g a) ≡⟨ sym (lamLaw2 (fmap f) just (g a)) ⟩ lam (fmap f) (lam just (g a)) ≡⟨ refl ⟩ lam (fmap f) (lift g (just a)) ∎ -- Lemma: subst (lam f ∘ g) = lam f ∘ subst g substLaw2 : {A B C : Set}(f : B -> C)(g : A -> Lam B)(t : Lam A) -> subst (lam f ∘ g) t ≡ lam f (subst g t) substLaw2 f g (var a) = refl substLaw2 f g (app r s) = begin subst (lam f ∘ g) (app r s) ≡⟨ refl ⟩ app (subst (lam f ∘ g) r) (subst (lam f ∘ g) s) ≡⟨ cong (app (subst (lam f ∘ g) r)) (substLaw2 f g s) ⟩ app (subst (lam f ∘ g) r) (lam f (subst g s)) ≡⟨ cong (\ x -> app x (lam f (subst g s))) (substLaw2 f g r) ⟩ app (lam f (subst g r)) (lam f (subst g s)) ≡⟨ refl ⟩ lam f (app (subst g r) (subst g s)) ≡⟨ refl ⟩ lam f (subst g (app r s)) ∎ substLaw2 f g (abs t) = begin subst (lam f ∘ g) (abs t) ≡⟨ refl ⟩ abs (subst (lift (lam f ∘ g)) t) ≡⟨ cong abs (substExt (liftLaw2 f g) t) ⟩ abs (subst (lam (fmap f) ∘ (lift g)) t) ≡⟨ cong abs (substLaw2 (fmap f) (lift g) t) ⟩ abs (lam (fmap f) (subst (lift g) t)) ≡⟨ refl ⟩ lam f (abs (subst (lift g) t)) ≡⟨ refl ⟩ lam f (subst g (abs t)) ∎
{ "alphanum_fraction": 0.5178341212, "avg_line_length": 28.847107438, "ext": "agda", "hexsha": "749ed16a9679c68522e10e61c50f2eae9fb9d6b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/LibSucceed/Termination/Sized/DeBruijnBase.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/LibSucceed/Termination/Sized/DeBruijnBase.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/LibSucceed/Termination/Sized/DeBruijnBase.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3038, "size": 6981 }
{-# OPTIONS --without-K #-} module sum where open import level using (Level; _⊔_) open import function.core infixr 4 _,_ infixr 2 _×_ infixr 1 _⊎_ record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public _×_ : {l k : Level} (A : Set l) (B : Set k) → Set (l ⊔ k) A × B = Σ A λ _ → B uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (x : A) → (B x) → Set c} → ((x : A) → (y : B x) → C x y) → ((xy : Σ A B) → C (proj₁ xy) (proj₂ xy)) uncurry f (a , b) = f a b uncurry' : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → (X → Y → Z) → (X × Y) → Z uncurry' f (x , y) = f x y data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,⊎_] : ∀ {i i' j}{A : Set i}{A' : Set i'}{B : Set j} → (A → B) → (A' → B) → A ⊎ A' → B [ f ,⊎ f' ] (inj₁ a) = f a [ f ,⊎ f' ] (inj₂ a') = f' a' map-⊎ : ∀ {i i' j j'}{A : Set i}{A' : Set i'} → {B : Set j}{B' : Set j'} → (A → B) → (A' → B') → A ⊎ A' → B ⊎ B' map-⊎ g g' = [ inj₁ ∘' g ,⊎ inj₂ ∘' g' ]
{ "alphanum_fraction": 0.4145907473, "avg_line_length": 24.4347826087, "ext": "agda", "hexsha": "5e37eb1d9c791b710707b0dc6a6ac10651099ec8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "sum.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sum.agda", "max_line_length": 82, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 554, "size": 1124 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Abstractions used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection.Abstraction where open import Data.List.Base as List using (List) open import Data.Product using (_×_; _,_; uncurry; <_,_>) import Data.String as String open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Binary open import Relation.Binary.PropositionalEquality private variable A B : Set ------------------------------------------------------------------------ -- Re-exporting the builtins publically open import Agda.Builtin.Reflection public using (Abs) open Abs public -- Pattern synonyms ------------------------------------------------------------------------ -- Operations map : (A → B) → Abs A → Abs B map f (abs s x) = abs s (f x) ------------------------------------------------------------------------ -- Decidable equality abs-injective₁ : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → i ≡ i′ abs-injective₁ refl = refl abs-injective₂ : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → a ≡ a′ abs-injective₂ refl = refl abs-injective : ∀ {i i′} {a a′ : A} → abs i a ≡ abs i′ a′ → i ≡ i′ × a ≡ a′ abs-injective = < abs-injective₁ , abs-injective₂ > -- We often need decidability of equality for Abs A when implementing it -- for A. Unfortunately ≡-dec makes the termination checker unhappy. -- Instead, we can match on both Abs A and use unAbs-dec for an obviously -- decreasing recursive call. unAbs : Abs A → A unAbs (abs s a) = a unAbs-dec : {x y : Abs A} → Dec (unAbs x ≡ unAbs y) → Dec (x ≡ y) unAbs-dec {x = abs i a} {abs i′ a′} a≟a′ = Dec.map′ (uncurry (cong₂ abs)) abs-injective ((i String.≟ i′) ×-dec a≟a′) ≡-dec : Decidable {A = A} _≡_ → Decidable {A = Abs A} _≡_ ≡-dec _≟_ x y = unAbs-dec (unAbs x ≟ unAbs y)
{ "alphanum_fraction": 0.5467590302, "avg_line_length": 31.578125, "ext": "agda", "hexsha": "52fb0b640dd57c3a2470a6c7df05fbe39b66db5b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Reflection/Abstraction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Reflection/Abstraction.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Reflection/Abstraction.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 555, "size": 2021 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Functions.Definition open import Groups.Definition open import Sets.EquivalenceRelations open import Groups.Homomorphisms.Definition open import Groups.Lemmas module Groups.Homomorphisms.Lemmas {a b c d : _} {A : Set a} {S : Setoid {a} {c} A} {B : Set b} {T : Setoid {b} {d} B} {_+A_ : A → A → A} {_+B_ : B → B → B} {G : Group S _+A_} {H : Group T _+B_} {f : A → B} (hom : GroupHom G H f) where imageOfIdentityIsIdentity : Setoid._∼_ T (f (Group.0G G)) (Group.0G H) imageOfIdentityIsIdentity = Equivalence.symmetric (Setoid.eq T) t where open Group H open Setoid T id2 : Setoid._∼_ S (Group.0G G) ((Group.0G G) +A (Group.0G G)) id2 = Equivalence.symmetric (Setoid.eq S) (Group.identRight G) r : f (Group.0G G) ∼ f (Group.0G G) +B f (Group.0G G) s : 0G +B f (Group.0G G) ∼ f (Group.0G G) +B f (Group.0G G) t : 0G ∼ f (Group.0G G) t = groupsHaveRightCancellation H (f (Group.0G G)) 0G (f (Group.0G G)) s s = Equivalence.transitive (Setoid.eq T) identLeft r r = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined hom id2) (GroupHom.groupHom hom) groupHomsCompose : {o t : _} {C : Set o} {U : Setoid {o} {t} C} {_+C_ : C → C → C} {I : Group U _+C_} {g : B → C} (gHom : GroupHom H I g) → GroupHom G I (g ∘ f) GroupHom.wellDefined (groupHomsCompose {I} {f} gHom) {x} {y} pr = GroupHom.wellDefined gHom (GroupHom.wellDefined hom pr) GroupHom.groupHom (groupHomsCompose {U = U} {_+C_ = _·C_} {I} {g} gHom) {x} {y} = answer where open Group I answer : (Setoid._∼_ U) ((g ∘ f) (x +A y)) ((g ∘ f) x ·C (g ∘ f) y) answer = (Equivalence.transitive (Setoid.eq U)) (GroupHom.wellDefined gHom (GroupHom.groupHom hom {x} {y}) ) (GroupHom.groupHom gHom {f x} {f y}) homRespectsInverse : {x : A} → Setoid._∼_ T (f (Group.inverse G x)) (Group.inverse H (f x)) homRespectsInverse {x} = rightInversesAreUnique H {f x} {f (Group.inverse G x)} (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invLeft G)) imageOfIdentityIsIdentity)) where open Setoid T open Equivalence eq zeroImpliesInverseZero : {x : A} → Setoid._∼_ T (f x) (Group.0G H) → Setoid._∼_ T (f (Group.inverse G x)) (Group.0G H) zeroImpliesInverseZero {x} fx=0 = transitive homRespectsInverse (transitive (inverseWellDefined H fx=0) (invIdent H)) where open Setoid T open Equivalence eq homRespectsInverse' : {a b : A} → Setoid._∼_ T (f (Group.inverse G a) +B f (Group.inverse G b)) (Group.inverse H (f (b +A a))) homRespectsInverse' {a} {b} = transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Equivalence.symmetric (Setoid.eq S) (invContravariant G))) (homRespectsInverse)) where open Setoid T open Equivalence eq
{ "alphanum_fraction": 0.6652512385, "avg_line_length": 55.4117647059, "ext": "agda", "hexsha": "557aa3119742c8ac6d9b179cbad0ed01d968eab3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Homomorphisms/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Homomorphisms/Lemmas.agda", "max_line_length": 235, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Homomorphisms/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1045, "size": 2826 }
-- Some proposition constructors. {-# OPTIONS --without-K --safe #-} module Tools.Nullary where open import Relation.Nullary using (¬_; Dec; yes; no) public open import Relation.Nullary.Decidable using (isYes) public -- If A and B are logically equivalent, then so are Dec A and Dec B. map : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} → (A → B) → (B → A) → Dec A → Dec B map f g (yes p) = yes (f p) map f g (no ¬p) = no (λ x → ¬p (g x))
{ "alphanum_fraction": 0.6275862069, "avg_line_length": 29, "ext": "agda", "hexsha": "6713ebf842e8e9975081e5176110b562550d2640", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Tools/Nullary.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Tools/Nullary.agda", "max_line_length": 77, "max_stars_count": 30, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Tools/Nullary.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 147, "size": 435 }