Search is not available for this dataset
text
string | meta
dict |
---|---|
module Extensions.Vec where
open import Data.Product hiding (map; zip)
open import Data.Nat
open import Data.Fin
open import Data.Vec
open import Data.Product hiding (map)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Data.List as L using ()
open import Data.List.Properties
open import Relation.Binary.HeterogeneousEquality as H using ()
open ≡-Reasoning public
private
module HR = H.≅-Reasoning
[]=-functional : ∀ {a n} {A : Set a} (l : Vec A n) i →
∀ {x y : A} → l [ i ]= x → l [ i ]= y → x ≡ y
[]=-functional .(_ ∷ _) _ here here = refl
[]=-functional .(_ ∷ _) .(suc _) (there p) (there q) = []=-functional _ _ p q
lookup⋆map : ∀ {a b : Set} {n} (v : Vec a n) (f : a → b) x →
f (lookup x v) ≡ lookup x (map f v)
lookup⋆map [] f ()
lookup⋆map (x ∷ xs) f zero = refl
lookup⋆map (x ∷ xs) f (suc y) = lookup⋆map xs f y
strong-lookup : ∀ {a} {A : Set a} {n} → (v : Vec A n) → (i : Fin n) → ∃ λ x → v [ i ]= x
strong-lookup (x ∷ v) zero = x , here
strong-lookup (x ∷ v) (suc i) with strong-lookup v i
... | y , p = y , there p
∷⋆map : ∀ {a b : Set} {n} (f : a → b) (x : a) (xs : Vec a n) → map f (x ∷ xs) ≡ f x ∷ (map f xs)
∷⋆map f x [] = refl
∷⋆map f x (y ∷ xs) = cong (_∷_ (f x)) (∷⋆map f y xs)
-- TODO replace with []=↔lookup
∈⟶index : ∀ {A : Set} {n} {v : Vec A n} {a : A} → a ∈ v → ∃ λ i → lookup i v ≡ a
∈⟶index here = zero , refl
∈⟶index (there e) with ∈⟶index e
∈⟶index (there e) | i , lookup-i≡a = suc i , lookup-i≡a
∈⋆map : ∀ {A B : Set} {n} {v : Vec A n} {a} → a ∈ v → (f : A → B) → (f a) ∈ (map f v)
∈⋆map here f = here
∈⋆map (there a∈v) f = there (∈⋆map a∈v f)
∷-cong : ∀ {l n n'} {A : Set l} {x : A} {xs : Vec A n} {xs' : Vec A n'} →
n ≡ n' →
xs H.≅ xs' →
x ∷ xs H.≅ x ∷ xs'
∷-cong refl H.refl = H.refl
fromList-map : ∀ {l} {A B : Set l} (f : A → B) (xs : L.List A) →
(fromList ((L.map f xs))) H.≅ (map f (fromList xs))
fromList-map f L.[] = H.refl
fromList-map f (x L.∷ xs) = ∷-cong (length-map _ xs) (fromList-map f xs)
length-toList : ∀ {A : Set } {n} (v : Vec A n) → L.length (toList v) ≡ n
length-toList [] = refl
length-toList (x ∷ v) = cong suc (length-toList v)
length-map-toList : ∀ {A B : Set} {n} {f : A → B} (v : Vec A n) → L.length (L.map f (toList v)) ≡ n
length-map-toList {n = n} {f} v = begin
L.length (L.map f (toList v))
≡⟨ length-map f (toList v) ⟩
L.length (toList v)
≡⟨ length-toList v ⟩
n ∎
lookup-≔ : ∀ {n k} {A : Set k} (v : Vec A n) i (a : A) → lookup i (v [ i ]≔ a) ≡ a
lookup-≔ (x ∷ v) zero a = refl
lookup-≔ (x ∷ v) (suc i) a = lookup-≔ v i a
infixl 4 _⊑_
data _⊑_ {a} {A : Set a} : ∀ {n m} → Vec A n -> Vec A m -> Set where
[] : ∀ {n} {xs : Vec A n} → [] ⊑ xs
_∷_ : ∀ {n m} x {xs : Vec A n} {ys : Vec A m} -> xs ⊑ ys -> (x ∷ xs) ⊑ (x ∷ ys)
infixl 4 _⊒_
_⊒_ : ∀ {a} {A : Set a} {n m} → Vec A n -> Vec A m -> Set
xs ⊒ ys = ys ⊑ xs
open import Relation.Binary.Core using (Reflexive; Transitive)
⊑-refl : ∀ {a n} {A : Set a} → Reflexive (_⊑_ {A = A} {n = n})
⊑-refl {x = []} = []
⊑-refl {x = x ∷ xs} = x ∷ ⊑-refl
⊑-trans : ∀ {a n m k} {A : Set a} {xs : Vec A n} {ys : Vec A m} {zs : Vec A k} →
xs ⊑ ys → ys ⊑ zs → xs ⊑ zs
⊑-trans [] [] = []
⊑-trans [] (x ∷ b) = []
⊑-trans (x ∷ xs) (.x ∷ ys) = x ∷ (⊑-trans xs ys)
∷ʳ-⊒ : ∀ {a} {A : Set a} (x : A) {n} (xs : Vec A n) → xs ∷ʳ x ⊒ xs
∷ʳ-⊒ x [] = []
∷ʳ-⊒ x (x₁ ∷ Σ₁) = x₁ ∷ (∷ʳ-⊒ x Σ₁)
xs⊒ys-length : ∀ {a n m} {A : Set a} {xs : Vec A n} {ys : Vec A m} → xs ⊒ ys → n ≥ m
xs⊒ys-length [] = z≤n
xs⊒ys-length (x ∷ p) = s≤s (xs⊒ys-length p)
xs⊒ys[i] : ∀ {a n m} {A : Set a} {xs : Vec A n} {ys : Vec A m} {i y} →
xs [ i ]= y → (p : ys ⊒ xs) → ys [ inject≤ i (xs⊒ys-length p) ]= y
xs⊒ys[i] here (x ∷ q) = here
xs⊒ys[i] (there p) (x ∷ q) = there (xs⊒ys[i] p q)
∷ʳ[length] : ∀ {a n} {A : Set a} (l : Vec A n) x → ∃ λ i → (l ∷ʳ x) [ i ]= x
∷ʳ[length] [] _ = , here
∷ʳ[length] (x ∷ Σ) y with ∷ʳ[length] Σ y
∷ʳ[length] (x ∷ Σ₁) y | i , p = (suc i) , there p
-- Moar All properties
open import Data.Vec.All
all-lookup' : ∀ {a p} {A : Set a} {P : A → Set p} {k} {xs : Vec A k} {i x} →
xs [ i ]= x → All P xs → P x
all-lookup' here (px ∷ _) = px
all-lookup' (there p) (_ ∷ xs) = all-lookup' p xs
-- proof matters; update a particular witness of a property
_All[_]≔_ : ∀ {a p} {A : Set a} {P : A → Set p} {k} {xs : Vec A k} {i x} →
All P xs → xs [ i ]= x → P x → All P xs
[] All[ () ]≔ px
(px ∷ xs) All[ here ]≔ px' = px' ∷ xs
(px ∷ xs) All[ there i ]≔ px' = px ∷ (xs All[ i ]≔ px')
_all-∷ʳ_ : ∀ {a n p} {A : Set a} {l : Vec A n} {x} {P : A → Set p} → All P l → P x → All P (l ∷ʳ x)
_all-∷ʳ_ [] q = q ∷ []
_all-∷ʳ_ (px ∷ p) q = px ∷ (p all-∷ʳ q)
| {
"alphanum_fraction": 0.4914067473,
"avg_line_length": 35.7045454545,
"ext": "agda",
"hexsha": "91a704851e01e67377029bd4dcdfd4da0aa8d68e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Extensions/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Extensions/Vec.agda",
"max_line_length": 99,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Extensions/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 2222,
"size": 4713
} |
module _ where
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
record Category {o h} : Set (lsuc (o ⊔ h)) where
no-eta-equality
constructor con
field
Obj : Set o
Hom : Obj → Obj → Set h
field
id : ∀ {X : Obj} → Hom X X
comp : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z
id-left : ∀ {X Y} (f : Hom X Y) → comp id f ≡ f
open Category
postulate
isSet : ∀ {l} → (X : Set l) → Set l
hSets : (o : Level) → Category
hSets o .Obj = Σ (Set o) isSet
hSets o .Hom (A , _) (B , _) = A → B
hSets o .id = \ x → x
hSets o .comp f g = \ x → f (g x)
hSets o .id-left f = refl
| {
"alphanum_fraction": 0.5275362319,
"avg_line_length": 22.2580645161,
"ext": "agda",
"hexsha": "bae417e1b953b266ebf1557848180b8b9b4d7079",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2968.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2968.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2968.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 251,
"size": 690
} |
-- Andreas, 2015-09-07 Issue reported by identicalsnowflake
data D : Set1 where
field
A : Set
-- WAS: Internal error (on master)
-- NOW:
-- Illegal declaration in data type definition
-- field A : Set
-- when scope checking the declaration
-- data D where
-- field A : Set
| {
"alphanum_fraction": 0.6701030928,
"avg_line_length": 19.4,
"ext": "agda",
"hexsha": "ba62070079fa0fd1152edc647480e54702aebcec",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1639.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1639.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1639.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 80,
"size": 291
} |
module Issue175b where
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
data Bool : Set where
true : Bool
false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
postulate ℝ : Set
{-# BUILTIN FLOAT ℝ #-}
primitive
-- ℝ functions
primFloatMinus : ℝ -> ℝ -> ℝ
primFloatNumericalLess : ℝ -> ℝ -> Bool
_<_ : ℝ -> ℝ -> Bool
a < b = primFloatNumericalLess a b
data _≤_ : ℝ -> ℝ -> Set where
≤_ : {x y : ℝ} -> (x < y) ≡ true -> x ≤ y
--absolute value
[|_|] : ℝ -> ℝ
[| a |] with (a < 0.0)
[| a |] | true = primFloatMinus 0.0 a
[| a |] | false = a
--error variable
ε : ℝ
ε = 1.0e-5
-- two floating point numbers can be said to be equal if their
-- difference is less than the given error variable
postulate
reflℝ : {a b : ℝ} -> [| primFloatMinus a b |] ≤ ε -> a ≡ b
test : 1.0 ≡ 1.0000001
test = reflℝ (≤ refl)
| {
"alphanum_fraction": 0.576,
"avg_line_length": 19.4444444444,
"ext": "agda",
"hexsha": "14c4b02a1d159e73fad1d18d11421a61eb02f604",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue175b.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue175b.agda",
"max_line_length": 62,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue175b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 323,
"size": 875
} |
module Nom where
open import Basics
open import Pr
data Nom : Set where
Ze : Nom
Su : Nom -> Nom
Pu : Nom -> Nom
_NomQ_ : Nom -> Nom -> Pr
Ze NomQ Ze = tt
Ze NomQ (Su y) = ff
Ze NomQ (Pu y) = ff
(Su x) NomQ Ze = ff
(Su x) NomQ (Su y) = x eq y
(Su x) NomQ (Pu y) = ff
(Pu x) NomQ Ze = ff
(Pu x) NomQ (Su y) = ff
(Pu x) NomQ (Pu y) = x eq y
nomQ : {x y : Nom} -> [| (x eq y) => (x NomQ y) |]
nomQ {Ze} refl = _
nomQ {Su x} refl = refl
nomQ {Pu x} refl = refl
nomEq : (x y : Nom) -> Decision (x eq y)
nomEq Ze Ze = yes refl
nomEq Ze (Su y) = no nomQ
nomEq Ze (Pu y) = no nomQ
nomEq (Su x) Ze = no nomQ
nomEq (Su x) (Su y) with nomEq x y
nomEq (Su x) (Su .x) | yes refl = yes refl
nomEq (Su x) (Su y) | no p = no (p o nomQ)
nomEq (Su x) (Pu y) = no nomQ
nomEq (Pu x) Ze = no nomQ
nomEq (Pu x) (Su y) = no nomQ
nomEq (Pu x) (Pu y) with nomEq x y
nomEq (Pu x) (Pu .x) | yes refl = yes refl
nomEq (Pu x) (Pu y) | no p = no (p o nomQ)
data Nat : Set where
ze : Nat
su : Nat -> Nat
pfog : Nom -> Nat
pfog Ze = ze
pfog (Su x) = pfog x
pfog (Pu x) = su (pfog x)
NatGE : Nat -> Nat -> Bool
NatGE ze _ = false
NatGE (su _) ze = true
NatGE (su x) (su y) = NatGE x y
_>_ : Nat -> Nat -> Pr
x > y = So (NatGE x y)
_>?_ : (x y : Nat) -> Decision (x > y)
x >? y = so (NatGE x y)
_P>_ : Nom -> Nom -> Pr
x P> y = pfog x > pfog y
_S+_ : Nat -> Nom -> Nom
ze S+ y = y
su x S+ y = Su (x S+ y)
PSlem : (n : Nat)(x : Nom) -> Id (pfog (n S+ x)) (pfog x)
PSlem ze x = refl
PSlem (su n) x = PSlem n x
Plem : (x y : Nom) -> [| x P> y |] -> [| Pu x P> y |]
Plem _ Ze p = _
Plem x (Su y) p = Plem x y p
Plem Ze (Pu y) ()
Plem (Su x) (Pu y) p = Plem x (Pu y) p
Plem (Pu x) (Pu y) p = Plem x y p
asym : (x : Nom) -> [| ∼ (x P> x) |]
asym Ze ()
asym (Su x) p = asym x p
asym (Pu x) p = asym x p
record Nominal (X : Set) : Set1 where
field
Everywhere : Pow Nom -> Pow X
everywhere : (P Q : Pow Nom) -> [| P ==> Q |] ->
[| Everywhere P ==> Everywhere Q |]
| {
"alphanum_fraction": 0.5285497726,
"avg_line_length": 21.9888888889,
"ext": "agda",
"hexsha": "eb133c05cd6e22940a43f71a741330e007659a85",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Nom.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Nom.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/Syntacticosmos/Nom.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 858,
"size": 1979
} |
module Issue4954.M (_ : Set₁) where
| {
"alphanum_fraction": 0.7222222222,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "4e03ae395ccecdfa095613589acb93c0891693b9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue4954/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue4954/M.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue4954/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 12,
"size": 36
} |
{-
Definition of function fixpoint and Kraus' lemma
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Functions.Fixpoint where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
private
variable
ℓ : Level
A : Type ℓ
Fixpoint : (A → A) → Type _
Fixpoint {A = A} f = Σ A (λ x → f x ≡ x)
fixpoint : {f : A → A} → Fixpoint f → A
fixpoint = fst
fixpointPath : {f : A → A} → (p : Fixpoint f) → f (fixpoint p) ≡ fixpoint p
fixpointPath = snd
-- Kraus' lemma
-- a version not using cubical features can be found at
-- https://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/html/GeneralizedHedberg.html#21576
2-Constant→isPropFixpoint : (f : A → A) → 2-Constant f → isProp (Fixpoint f)
2-Constant→isPropFixpoint f fconst (x , p) (y , q) i = s i , t i where
noose : ∀ x y → f x ≡ f y
noose x y = sym (fconst x x) ∙ fconst x y
-- the main idea is that for any path p, cong f p does not depend on p
-- but only on its endpoints and the structure of 2-Constant f
KrausInsight : ∀ {x y} → (p : x ≡ y) → noose x y ≡ cong f p
KrausInsight {x} = J (λ y p → noose x y ≡ cong f p) (lCancel (fconst x x))
-- Need to solve for a path s : x ≡ y, such that:
-- transport (λ i → cong f s i ≡ s i) p ≡ q
s : x ≡ y
s = sym p ∙∙ noose x y ∙∙ q
t' : PathP (λ i → noose x y i ≡ s i) p q
t' i j = doubleCompPath-filler (sym p) (noose x y) q j i
t : PathP (λ i → cong f s i ≡ s i) p q
t = subst (λ kraus → PathP (λ i → kraus i ≡ s i) p q) (KrausInsight s) t'
| {
"alphanum_fraction": 0.635,
"avg_line_length": 35.5555555556,
"ext": "agda",
"hexsha": "e6c3eac08db1d0c4a94964b22e04510e770e3b78",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Functions/Fixpoint.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Functions/Fixpoint.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Functions/Fixpoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 609,
"size": 1600
} |
-- Andreas, 2015-08-27 use imported rewrite rule
{-# OPTIONS --rewriting #-}
open import Common.Nat
open import Common.Equality
open import Issue1550
x+0+0+0 : ∀{x} → ((x + 0) + 0) + 0 ≡ x
x+0+0+0 = refl
| {
"alphanum_fraction": 0.6394230769,
"avg_line_length": 17.3333333333,
"ext": "agda",
"hexsha": "dfd92ce8de03c666fd6e7fe0219df134eb406795",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue1550a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue1550a.agda",
"max_line_length": 48,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue1550a.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 79,
"size": 208
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Fin.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Empty
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Sum
open import Cubical.Relation.Nullary
-- Finite types.
--
-- Currently it is most convenient to define these as a subtype of the
-- natural numbers, because indexed inductive definitions don't behave
-- well with cubical Agda. This definition also has some more general
-- attractive properties, of course, such as easy conversion back to
-- ℕ.
Fin : ℕ → Type₀
Fin n = Σ[ k ∈ ℕ ] k < n
private
variable
ℓ : Level
k : ℕ
fzero : Fin (suc k)
fzero = (0 , suc-≤-suc zero-≤)
-- It is easy, using this representation, to take the successor of a
-- number as a number in the next largest finite type.
fsuc : Fin k → Fin (suc k)
fsuc (k , l) = (suc k , suc-≤-suc l)
-- Conversion back to ℕ is trivial...
toℕ : Fin k → ℕ
toℕ = fst
-- ... and injective.
toℕ-injective : ∀{fj fk : Fin k} → toℕ fj ≡ toℕ fk → fj ≡ fk
toℕ-injective {fj = fj} {fk} = ΣProp≡ (λ _ → m≤n-isProp)
-- A case analysis helper for induction.
fsplit
: ∀(fj : Fin (suc k))
→ (fzero ≡ fj) ⊎ (Σ[ fk ∈ Fin k ] fsuc fk ≡ fj)
fsplit (0 , k<sn) = inl (toℕ-injective refl)
fsplit (suc k , k<sn) = inr ((k , pred-≤-pred k<sn) , toℕ-injective refl)
-- Fin 0 is empty
¬Fin0 : ¬ Fin 0
¬Fin0 (k , k<0) = ¬-<-zero k<0
-- The full inductive family eliminator for finite types.
finduction
: ∀(P : ∀{k} → Fin k → Type ℓ)
→ (∀{k} → P {suc k} fzero)
→ (∀{k} {fn : Fin k} → P fn → P (fsuc fn))
→ {k : ℕ} → (fn : Fin k) → P fn
finduction P fz fs {zero} = ⊥-elim ∘ ¬Fin0
finduction P fz fs {suc k} fj
= case fsplit fj return (λ _ → P fj) of λ
{ (inl p) → subst P p fz
; (inr (fk , p)) → subst P p (fs (finduction P fz fs fk))
}
| {
"alphanum_fraction": 0.6415192508,
"avg_line_length": 27.0704225352,
"ext": "agda",
"hexsha": "cba6530c118a0c35d3931962b11b4bb485d87717",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Fin/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Fin/Base.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Fin/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 690,
"size": 1922
} |
module IO.File where
open import Base
open import IO
{-# IMPORT System.IO #-}
FilePath = String
data IOMode : Set where
readMode : IOMode
writeMode : IOMode
appendMode : IOMode
readWriteMode : IOMode
{-# COMPILED_DATA IOMode ReadMode WriteMode AppendMode ReadWriteMode #-}
canRead : IOMode -> Bool
canRead readMode = true
canRead writeMode = false
canRead appendMode = false
canRead readWriteMode = true
canWrite : IOMode -> Bool
canWrite readMode = false
canWrite writeMode = true
canWrite appendMode = true
canWrite readWriteMode = true
CanRead : IOMode -> Set
CanRead m = IsTrue (canRead m)
CanWrite : IOMode -> Set
CanWrite m = IsTrue (canWrite m)
postulate
Handle : Set
private
postulate
hs-openFile : FilePath -> IOMode -> IO Handle
hs-hClose : Handle -> IO Unit
hs-hGetChar : Handle -> IO Char
hs-hGetLine : Handle -> IO String
hs-hGetContents : Handle -> IO String
hs-hPutStr : Handle -> String -> IO Unit
{-# COMPILED hs-openFile openFile #-}
{-# COMPILED hs-hClose hClose #-}
{-# COMPILED hs-hGetChar hGetChar #-}
{-# COMPILED hs-hGetLine hGetLine #-}
{-# COMPILED hs-hGetContents hGetContents #-}
{-# COMPILED hs-hPutStr hPutStr #-}
Handles = List (Handle × IOMode)
abstract
-- The FileIO monad. Records the list of open handles before and after
-- a computation. The open handles after the computation may depend on
-- the computed value.
data FileIO (A : Set)(hs₁ : Handles)(hs₂ : A -> Handles) : Set where
fileIO : IO A -> FileIO A hs₁ hs₂
private
abstract
unFileIO : forall {A hs f} -> FileIO A hs f -> IO A
unFileIO (fileIO io) = io
FileIO₋ : Set -> Handles -> Handles -> Set
FileIO₋ A hs₁ hs₂ = FileIO A hs₁ (\_ -> hs₂)
abstract
openFile : {hs : Handles} -> FilePath -> (m : IOMode) ->
FileIO Handle hs (\h -> (h , m) :: hs)
openFile file mode = fileIO (hs-openFile file mode)
infix 30 _∈_
data _∈_ {A : Set}(x : A) : List A -> Set where
hd : forall {xs} -> x ∈ x :: xs
tl : forall {y xs} -> x ∈ xs -> x ∈ y :: xs
delete : {A : Set}{x : A}(xs : List A) -> x ∈ xs -> List A
delete [] ()
delete (x :: xs) hd = xs
delete (x :: xs) (tl p) = x :: delete xs p
abstract
hClose : {hs : Handles}{m : IOMode}(h : Handle)(p : (h , m) ∈ hs) ->
FileIO₋ Unit hs (delete hs p)
hClose h _ = fileIO (hs-hClose h)
hGetLine : {hs : Handles}{m : IOMode}{isRead : CanRead m}(h : Handle)
(p : (h , m) ∈ hs) -> FileIO₋ String hs hs
hGetLine h _ = fileIO (hs-hGetLine h)
hGetContents : {hs : Handles}{m : IOMode}{isRead : CanRead m}(h : Handle)
(p : (h , m) ∈ hs) -> FileIO₋ String hs (delete hs p)
hGetContents h _ = fileIO (hs-hGetContents h)
abstract
-- You can only run file computations that don't leave any open
-- handles.
runFileIO : {A : Set} -> FileIO₋ A [] [] -> IO A
runFileIO (fileIO m) = m
abstract
_>>=_ : forall {A B hs f g} ->
FileIO A hs f -> ((x : A) -> FileIO B (f x) g) -> FileIO B hs g
fileIO m >>= k = fileIO (bindIO m \x -> unFileIO (k x))
return : forall {A hs} -> A -> FileIO₋ A hs hs
return x = fileIO (returnIO x)
| {
"alphanum_fraction": 0.6167721519,
"avg_line_length": 27.2413793103,
"ext": "agda",
"hexsha": "a98a771c8721fd5c430595dbc06de93e0e6c0d31",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/fileIO/IO/File.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/fileIO/IO/File.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/fileIO/IO/File.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1036,
"size": 3160
} |
{-# OPTIONS --without-K #-}
module Data.ByteString.Primitive.Int where
open import Agda.Builtin.Nat using (Nat)
{-# FOREIGN GHC import qualified Data.Int #-}
postulate
Int : Set
Int64 : Set
IntToℕ : Int → Nat
ℕToInt : Nat → Int
int64Toℕ : Int64 → Nat
ℕToInt64 : Nat → Int64
{-# COMPILE GHC Int = type (Prelude.Int) #-}
{-# COMPILE GHC Int64 = type (Data.Int.Int64) #-}
{-# COMPILE GHC IntToℕ = (Prelude.fromIntegral) #-}
{-# COMPILE GHC ℕToInt = (Prelude.fromIntegral) #-}
{-# COMPILE GHC int64Toℕ = (Prelude.fromIntegral) #-}
{-# COMPILE GHC ℕToInt64 = (Prelude.fromIntegral) #-}
| {
"alphanum_fraction": 0.6661073826,
"avg_line_length": 28.380952381,
"ext": "agda",
"hexsha": "b66624e409f1a3004348581b417b1535c19060e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bytes-agda",
"max_forks_repo_path": "src/Data/ByteString/Primitive/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bytes-agda",
"max_issues_repo_path": "src/Data/ByteString/Primitive/Int.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bytes-agda",
"max_stars_repo_path": "src/Data/ByteString/Primitive/Int.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 178,
"size": 596
} |
-- Andreas, 2016-09-13, issue #2177, reported by Andres
--
-- Check me with -v check.ranges:100
postulate A : Set
-- Was an internal error when loading Agda.Primitive
-- (because of range outside the current file).
| {
"alphanum_fraction": 0.7188940092,
"avg_line_length": 24.1111111111,
"ext": "agda",
"hexsha": "5c9959bd42430eca26bfd595ba1aca928e9e6487",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2177.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2177.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2177.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 61,
"size": 217
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.Equivalence2
open import lib.Function2
open import lib.NType2
open import lib.types.Group
open import lib.types.Pi
open import lib.types.Subtype
open import lib.types.Truncation
open import lib.groups.Homomorphism
open import lib.groups.SubgroupProp
module lib.groups.Isomorphism where
GroupStructureIso : ∀ {i j} {GEl : Type i} {HEl : Type j}
(GS : GroupStructure GEl) (HS : GroupStructure HEl) → Type (lmax i j)
GroupStructureIso GS HS = Σ (GroupStructureHom GS HS) (λ φ → is-equiv (GroupStructureHom.f φ))
infix 30 _≃ᴳˢ_ -- [ˢ] for structures
_≃ᴳˢ_ = GroupStructureIso
GroupIso : ∀ {i j} (G : Group i) (H : Group j) → Type (lmax i j)
GroupIso G H = Σ (G →ᴳ H) (λ φ → is-equiv (GroupHom.f φ))
infix 30 _≃ᴳ_
_≃ᴳ_ = GroupIso
≃ᴳˢ-to-≃ᴳ : ∀ {i j} {G : Group i} {H : Group j}
→ (Group.group-struct G ≃ᴳˢ Group.group-struct H) → (G ≃ᴳ H)
≃ᴳˢ-to-≃ᴳ (φ , φ-is-equiv) = →ᴳˢ-to-→ᴳ φ , φ-is-equiv
≃-to-≃ᴳ : ∀ {i j} {G : Group i} {H : Group j} (e : Group.El G ≃ Group.El H)
→ preserves-comp (Group.comp G) (Group.comp H) (–> e) → G ≃ᴳ H
≃-to-≃ᴳ (f , f-is-equiv) pres-comp = group-hom f pres-comp , f-is-equiv
≃-to-≃ᴳˢ : ∀ {i j} {GEl : Type i} {HEl : Type j}
{GS : GroupStructure GEl} {HS : GroupStructure HEl} (e : GEl ≃ HEl)
→ preserves-comp (GroupStructure.comp GS) (GroupStructure.comp HS) (–> e)
→ GS ≃ᴳˢ HS
≃-to-≃ᴳˢ (f , f-is-equiv) pres-comp = group-structure-hom f pres-comp , f-is-equiv
private
inverse-preserves-comp : ∀ {i j} {A : Type i} {B : Type j}
(A-comp : A → A → A) (B-comp : B → B → B) {f : A → B} (f-ie : is-equiv f)
→ preserves-comp A-comp B-comp f
→ preserves-comp B-comp A-comp (is-equiv.g f-ie)
inverse-preserves-comp Ac Bc ie pc b₁ b₂ = let open is-equiv ie in
ap2 (λ w₁ w₂ → g (Bc w₁ w₂)) (! (f-g b₁)) (! (f-g b₂))
∙ ! (ap g (pc (g b₁) (g b₂)))
∙ g-f (Ac (g b₁) (g b₂))
module GroupStructureIso {i j} {GEl : Type i} {HEl : Type j}
{GS : GroupStructure GEl} {HS : GroupStructure HEl}
(iso : GroupStructureIso GS HS) where
f-shom : GS →ᴳˢ HS
f-shom = fst iso
open GroupStructureHom {GS = GS} {HS = HS} f-shom public
f-is-equiv : is-equiv f
f-is-equiv = snd iso
open is-equiv f-is-equiv public
f-equiv : GEl ≃ HEl
f-equiv = f , f-is-equiv
g-shom : HS →ᴳˢ GS
g-shom = group-structure-hom g (inverse-preserves-comp (GroupStructure.comp GS) (GroupStructure.comp HS) f-is-equiv pres-comp)
g-is-equiv : is-equiv g
g-is-equiv = is-equiv-inverse f-is-equiv
g-equiv : HEl ≃ GEl
g-equiv = g , g-is-equiv
module GroupIso {i j} {G : Group i} {H : Group j} (iso : GroupIso G H) where
f-hom : G →ᴳ H
f-hom = fst iso
open GroupHom {G = G} {H = H} f-hom public
f-is-equiv : is-equiv f
f-is-equiv = snd iso
open is-equiv f-is-equiv public
f-equiv : Group.El G ≃ Group.El H
f-equiv = f , f-is-equiv
g-hom : H →ᴳ G
g-hom = group-hom g (inverse-preserves-comp (Group.comp G) (Group.comp H) f-is-equiv pres-comp)
g-is-equiv : is-equiv g
g-is-equiv = is-equiv-inverse f-is-equiv
g-equiv : Group.El H ≃ Group.El G
g-equiv = g , g-is-equiv
idiso : ∀ {i} (G : Group i) → (G ≃ᴳ G)
idiso G = idhom G , idf-is-equiv _
idsiso : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) → (GS ≃ᴳˢ GS)
idsiso GS = idshom GS , idf-is-equiv _
{- equality of isomomorphisms -}
abstract
group-hom=-to-iso= : ∀ {i j} {G : Group i} {H : Group j} {φ ψ : G ≃ᴳ H}
→ GroupIso.f-hom φ == GroupIso.f-hom ψ → φ == ψ
group-hom=-to-iso= = Subtype=-out (is-equiv-prop ∘sub GroupHom.f)
group-iso= : ∀ {i j} {G : Group i} {H : Group j} {φ ψ : G ≃ᴳ H}
→ GroupIso.f φ == GroupIso.f ψ → φ == ψ
group-iso= {H = H} p = group-hom=-to-iso= $ group-hom= p
{- compositions -}
infixr 80 _∘eᴳˢ_ _∘eᴳ_
_∘eᴳˢ_ : ∀ {i j k} {GEl : Type i} {HEl : Type j} {KEl : Type k}
{GS : GroupStructure GEl} {HS : GroupStructure HEl} {KS : GroupStructure KEl}
→ HS ≃ᴳˢ KS → GS ≃ᴳˢ HS → GS ≃ᴳˢ KS
(φ₂ , ie₂) ∘eᴳˢ (φ₁ , ie₁) = (φ₂ ∘ᴳˢ φ₁ , ie₂ ∘ise ie₁)
_∘eᴳ_ : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ H ≃ᴳ K → G ≃ᴳ H → G ≃ᴳ K
(φ₂ , ie₂) ∘eᴳ (φ₁ , ie₁) = (φ₂ ∘ᴳ φ₁ , ie₂ ∘ise ie₁)
infixr 10 _≃ᴳˢ⟨_⟩_ _≃ᴳ⟨_⟩_
infix 15 _≃ᴳˢ∎ _≃ᴳ∎
_≃ᴳˢ⟨_⟩_ : ∀ {i j k} {GEl : Type i} {HEl : Type j} {KEl : Type k}
(GS : GroupStructure GEl) {HS : GroupStructure HEl} {KS : GroupStructure KEl}
→ GS ≃ᴳˢ HS → HS ≃ᴳˢ KS → GS ≃ᴳˢ KS
GS ≃ᴳˢ⟨ e₁ ⟩ e₂ = e₂ ∘eᴳˢ e₁
_≃ᴳ⟨_⟩_ : ∀ {i j k} (G : Group i) {H : Group j} {K : Group k}
→ G ≃ᴳ H → H ≃ᴳ K → G ≃ᴳ K
G ≃ᴳ⟨ e₁ ⟩ e₂ = e₂ ∘eᴳ e₁
_≃ᴳˢ∎ : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) → (GS ≃ᴳˢ GS)
_≃ᴳˢ∎ = idsiso
_≃ᴳ∎ : ∀ {i} (G : Group i) → (G ≃ᴳ G)
_≃ᴳ∎ = idiso
infixl 120 _⁻¹ᴳˢ _⁻¹ᴳ
_⁻¹ᴳˢ : ∀ {i j} {GEl : Type i} {HEl : Type j} {GS : GroupStructure GEl} {HS : GroupStructure HEl}
→ GS ≃ᴳˢ HS → HS ≃ᴳˢ GS
_⁻¹ᴳˢ {GS = GS} {HS} (φ , ie) = GroupStructureIso.g-shom (φ , ie) , is-equiv-inverse ie
_⁻¹ᴳ : ∀ {i j} {G : Group i} {H : Group j} → G ≃ᴳ H → H ≃ᴳ G
_⁻¹ᴳ {G = G} {H = H} (φ , ie) = GroupIso.g-hom (φ , ie) , is-equiv-inverse ie
{- mimicking notations for equivalences -}
–>ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (G ≃ᴳ H) → (G →ᴳ H)
–>ᴳ = GroupIso.f-hom
<–ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (G ≃ᴳ H) → (H →ᴳ G)
<–ᴳ = GroupIso.g-hom
{- univalence -}
module _ {i} {G H : Group i} (iso : GroupIso G H) where
private
module G = Group G
module H = Group H
open module φ = GroupIso {G = G} {H = H} iso
El= = ua f-equiv
private
ap3-lemma : ∀ {i j k l} {C : Type i} {D : C → Type j} {E : C → Type k}
{F : Type l} {c₁ c₂ : C} {d₁ : D c₁} {d₂ : D c₂} {e₁ : E c₁} {e₂ : E c₂}
(f : (c : C) → D c → E c → F) (p : c₁ == c₂)
→ (d₁ == d₂ [ D ↓ p ]) → (e₁ == e₂ [ E ↓ p ])
→ (f c₁ d₁ e₁ == f c₂ d₂ e₂)
ap3-lemma f idp idp idp = idp
ap3-lemma-El : ∀ {i} {G H : Group i}
(p : Group.El G == Group.El H)
(q : Group.El-level G == Group.El-level H [ _ ↓ p ])
(r : Group.group-struct G == Group.group-struct H [ _ ↓ p ])
→ ap Group.El (ap3-lemma (λ a b c → group a {{b}} c) p q r) == p
ap3-lemma-El idp idp idp = idp
{- a homomorphism which is an equivalence gives a path between groups -}
abstract
uaᴳ : G == H
uaᴳ =
ap3-lemma (λ a b c → group a {{b}} c)
El=
prop-has-all-paths-↓
(↓-group-structure= El= ident= inv= comp=)
where
ident= : G.ident == H.ident [ (λ C → C) ↓ El= ]
ident= = ↓-idf-ua-in _ pres-ident
inv= : G.inv == H.inv [ (λ C → C → C) ↓ El= ]
inv= =
↓-→-from-transp $ λ= λ a →
transport (λ C → C) El= (G.inv a)
=⟨ to-transp (↓-idf-ua-in _ idp) ⟩
f (G.inv a)
=⟨ pres-inv a ⟩
H.inv (f a)
=⟨ ap H.inv (! (to-transp (↓-idf-ua-in _ idp))) ⟩
H.inv (transport (λ C → C) El= a) =∎
comp=' : (a : G.El)
→ G.comp a == H.comp (f a) [ (λ C → C → C) ↓ El= ]
comp=' a =
↓-→-from-transp $ λ= λ b →
transport (λ C → C) El= (G.comp a b)
=⟨ to-transp (↓-idf-ua-in _ idp) ⟩
f (G.comp a b)
=⟨ pres-comp a b ⟩
H.comp (f a) (f b)
=⟨ ! (to-transp (↓-idf-ua-in _ idp))
|in-ctx (λ w → H.comp (f a) w) ⟩
H.comp (f a) (transport (λ C → C) El= b) =∎
comp= : G.comp == H.comp [ (λ C → C → C → C) ↓ El= ]
comp= =
↓-→-from-transp $ λ= λ a →
transport (λ C → C → C) El= (G.comp a)
=⟨ to-transp (comp=' a) ⟩
H.comp (f a)
=⟨ ! (to-transp (↓-idf-ua-in _ idp)) |in-ctx (λ w → H.comp w) ⟩
H.comp (transport (λ C → C) El= a) =∎
-- XXX This stretches the naming convention a little bit.
El=-β : ap Group.El uaᴳ == El=
El=-β = ap3-lemma-El El= _ _
{- homomorphism from equality of groups -}
abstract
transp-El-pres-comp : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ preserves-comp (Group.comp (B a₁)) (Group.comp (B a₂)) (transport (Group.El ∘ B) p)
transp-El-pres-comp B idp g₁ g₂ = idp
transp!-El-pres-comp : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ preserves-comp (Group.comp (B a₂)) (Group.comp (B a₁)) (transport! (Group.El ∘ B) p)
transp!-El-pres-comp B idp h₁ h₂ = idp
transportᴳ : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ (B a₁ →ᴳ B a₂)
transportᴳ B p = record {f = transport (Group.El ∘ B) p; pres-comp = transp-El-pres-comp B p}
transport!ᴳ : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ (B a₂ →ᴳ B a₁)
transport!ᴳ B p = record {f = transport! (Group.El ∘ B) p; pres-comp = transp!-El-pres-comp B p}
abstract
transpᴳ-is-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ is-equiv (GroupHom.f (transportᴳ B p))
transpᴳ-is-iso B idp = idf-is-equiv _
transp!ᴳ-is-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ is-equiv (GroupHom.f (transport!ᴳ B p))
transp!ᴳ-is-iso B idp = idf-is-equiv _
transportᴳ-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ B a₁ ≃ᴳ B a₂
transportᴳ-iso B p = transportᴳ B p , transpᴳ-is-iso B p
transport!ᴳ-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂)
→ B a₂ ≃ᴳ B a₁
transport!ᴳ-iso B p = transport!ᴳ B p , transp!ᴳ-is-iso B p
coeᴳ : ∀ {i} {G H : Group i} → G == H → (G →ᴳ H)
coeᴳ = transportᴳ (idf _)
coe!ᴳ : ∀ {i} {G H : Group i} → G == H → (H →ᴳ G)
coe!ᴳ = transport!ᴳ (idf _)
coeᴳ-iso : ∀ {i} {G H : Group i} → G == H → G ≃ᴳ H
coeᴳ-iso = transportᴳ-iso (idf _)
coe!ᴳ-iso : ∀ {i} {G H : Group i} → G == H → H ≃ᴳ G
coe!ᴳ-iso = transport!ᴳ-iso (idf _)
abstract
coeᴳ-β : ∀ {i} {G H : Group i} (iso : G ≃ᴳ H)
→ coeᴳ (uaᴳ iso) == GroupIso.f-hom iso
coeᴳ-β iso = group-hom= $
ap coe (El=-β iso)
∙ λ= (coe-β (GroupIso.f-equiv iso))
-- triviality
iso-preserves-trivial : ∀ {i j} {G : Group i} {H : Group j}
→ G ≃ᴳ H → is-trivialᴳ G → is-trivialᴳ H
iso-preserves-trivial iso G-is-trivial h =
! (GroupIso.f-g iso h)
∙ ap (GroupIso.f iso) (G-is-trivial _)
∙ GroupIso.pres-ident iso
iso-preserves'-trivial : ∀ {i j} {G : Group i} {H : Group j}
→ G ≃ᴳ H → is-trivialᴳ H → is-trivialᴳ G
iso-preserves'-trivial iso H-is-trivial g =
! (GroupIso.g-f iso g)
∙ ap (GroupIso.g iso) (H-is-trivial _)
∙ GroupHom.pres-ident (GroupIso.g-hom iso)
-- a surjective and injective homomorphism is an isomorphism
module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H)
(surj : is-surjᴳ φ) (inj : is-injᴳ φ) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
abstract
instance
image-prop : (h : H.El) → is-prop (hfiber φ.f h)
image-prop h = all-paths-is-prop λ {(g₁ , p₁) (g₂ , p₂) →
pair= (inj g₁ g₂ (p₁ ∙ ! p₂)) prop-has-all-paths-↓}
surjᴳ-and-injᴳ-is-equiv : is-equiv φ.f
surjᴳ-and-injᴳ-is-equiv = contr-map-is-equiv
(λ h → let (g₁ , p₁) = Trunc-rec (idf _) (surj h) in
has-level-in ((g₁ , p₁) , (λ {(g₂ , p₂) →
pair= (inj g₁ g₂ (p₁ ∙ ! p₂))
prop-has-all-paths-↓})))
surjᴳ-and-injᴳ-iso : G ≃ᴳ H
surjᴳ-and-injᴳ-iso = φ , surjᴳ-and-injᴳ-is-equiv
-- isomorphisms preserve abelianess.
module _ {i} {G H : Group i} (iso : G ≃ᴳ H) (G-abelian : is-abelian G) where
private
module G = Group G
module H = Group H
open GroupIso iso
abstract
iso-preserves-abelian : is-abelian H
iso-preserves-abelian h₁ h₂ =
H.comp h₁ h₂
=⟨ ap2 H.comp (! $ f-g h₁) (! $ f-g h₂) ⟩
H.comp (f (g h₁)) (f (g h₂))
=⟨ ! $ pres-comp (g h₁) (g h₂) ⟩
f (G.comp (g h₁) (g h₂))
=⟨ G-abelian (g h₁) (g h₂) |in-ctx f ⟩
f (G.comp (g h₂) (g h₁))
=⟨ pres-comp (g h₂) (g h₁) ⟩
H.comp (f (g h₂)) (f (g h₁))
=⟨ ap2 H.comp (f-g h₂) (f-g h₁) ⟩
H.comp h₂ h₁
=∎
pre∘ᴳ-iso : ∀ {i j k} {G : Group i} {H : Group j} (K : AbGroup k)
→ (G ≃ᴳ H) → (hom-group H K ≃ᴳ hom-group G K)
pre∘ᴳ-iso K iso = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to = GroupHom.f (pre∘ᴳ-hom K (–>ᴳ iso))
to-pres-comp = GroupHom.pres-comp (pre∘ᴳ-hom K (–>ᴳ iso))
from = GroupHom.f (pre∘ᴳ-hom K (<–ᴳ iso))
abstract
to-from : ∀ φ → to (from φ) == φ
to-from φ = group-hom= $ λ= λ g → ap (GroupHom.f φ) (GroupIso.g-f iso g)
from-to : ∀ φ → from (to φ) == φ
from-to φ = group-hom= $ λ= λ h → ap (GroupHom.f φ) (GroupIso.f-g iso h)
post∘ᴳ-iso : ∀ {i j k} (G : Group i) (H : AbGroup j) (K : AbGroup k)
→ (AbGroup.grp H ≃ᴳ AbGroup.grp K) → (hom-group G H ≃ᴳ hom-group G K)
post∘ᴳ-iso G H K iso = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to = GroupHom.f (post∘ᴳ-hom G H K (–>ᴳ iso))
to-pres-comp = GroupHom.pres-comp (post∘ᴳ-hom G H K(–>ᴳ iso))
from = GroupHom.f (post∘ᴳ-hom G K H (<–ᴳ iso))
abstract
to-from : ∀ φ → to (from φ) == φ
to-from φ = group-hom= $ λ= λ g → GroupIso.f-g iso (GroupHom.f φ g)
from-to : ∀ φ → from (to φ) == φ
from-to φ = group-hom= $ λ= λ h → GroupIso.g-f iso (GroupHom.f φ h)
| {
"alphanum_fraction": 0.5447801147,
"avg_line_length": 34.0494791667,
"ext": "agda",
"hexsha": "49e864fd14fd6fb88a450696c42d6dfed93a2546",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Isomorphism.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5818,
"size": 13075
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.FunctionOver
{- Splitting Lemma - Right Split
Assume an exact sequence:
φ ψ
0 → G → H → K
where H is abelian. If ψ has a right inverse χ, then H == G × K. Over
this path φ becomes the natural injection and ψ the natural projection.
The only non-private terms are [iso], [φ-over-iso], and [ψ-over-iso].
-}
module cohomology.SplitExactRight {i} {L G H K : Group i}
(H-abelian : is-abelian H) (φ : G →ᴳ H) (ψ : H →ᴳ K) where
private
module G = Group G
module H = Group H
module K = Group K
module φ = GroupHom φ
module ψ = GroupHom ψ
module SplitExactRight
(ex : is-exact-seq (L ⟨ cst-hom ⟩→ G ⟨ φ ⟩→ H ⟨ ψ ⟩→ K ⊣|))
(χ : K →ᴳ H) (χ-rinv : (k : K.El) → ψ.f (GroupHom.f χ k) == k)
where
private
module χ = GroupHom χ
{- H == Ker ψ × Im χ -}
ker-part : H →ᴳ Ker ψ
ker-part = ker-hom ψ
(comp-hom H-abelian (idhom H) (inv-hom H H-abelian ∘ᴳ (χ ∘ᴳ ψ)))
(λ h →
ψ.f (H.comp h (H.inv (χ.f (ψ.f h))))
=⟨ ψ.pres-comp h (H.inv (χ.f (ψ.f h))) ⟩
K.comp (ψ.f h) (ψ.f (H.inv (χ.f (ψ.f h))))
=⟨ ! (χ.pres-inv (ψ.f h))
|in-ctx (λ w → K.comp (ψ.f h) (ψ.f w)) ⟩
K.comp (ψ.f h) (ψ.f (χ.f (K.inv (ψ.f h))))
=⟨ χ-rinv (K.inv (ψ.f h)) |in-ctx (λ w → K.comp (ψ.f h) w) ⟩
K.comp (ψ.f h) (K.inv (ψ.f h))
=⟨ K.invr (ψ.f h) ⟩
K.ident ∎)
ker-part-kerψ : (h : H.El) (p : ψ.f h == K.ident)
→ GroupHom.f ker-part h == (h , p)
ker-part-kerψ h p = pair=
(H.comp h (H.inv (χ.f (ψ.f h)))
=⟨ p |in-ctx (λ w → H.comp h (H.inv (χ.f w))) ⟩
H.comp h (H.inv (χ.f K.ident))
=⟨ χ.pres-ident |in-ctx (λ w → H.comp h (H.inv w)) ⟩
H.comp h (H.inv H.ident)
=⟨ group-inv-ident H |in-ctx H.comp h ⟩
H.comp h H.ident
=⟨ H.unitr h ⟩
h ∎)
(prop-has-all-paths-↓ (K.El-level _ _))
ker-part-imχ : (h : H.El) → Trunc -1 (Σ K.El (λ k → χ.f k == h))
→ GroupHom.f ker-part h == Group.ident (Ker ψ)
ker-part-imχ h = Trunc-rec (Group.El-level (Ker ψ) _ _) $
(λ {(k , p) → pair=
(H.comp h (H.inv (χ.f (ψ.f h)))
=⟨ ! p |in-ctx (λ w → H.comp w (H.inv (χ.f (ψ.f w)))) ⟩
H.comp (χ.f k) (H.inv (χ.f (ψ.f (χ.f k))))
=⟨ χ-rinv k |in-ctx (λ w → H.comp (χ.f k) (H.inv (χ.f w))) ⟩
H.comp (χ.f k) (H.inv (χ.f k))
=⟨ H.invr (χ.f k) ⟩
H.ident ∎)
(prop-has-all-paths-↓ (K.El-level _ _))})
im-part : H →ᴳ Im χ
im-part = im-in-hom χ ∘ᴳ ψ
im-part-kerψ : (h : H.El) → ψ.f h == K.ident
→ GroupHom.f im-part h == Group.ident (Im χ)
im-part-kerψ h p = pair=
(ap χ.f p ∙ χ.pres-ident)
(prop-has-all-paths-↓ Trunc-level)
im-part-imχ : (h : H.El) (s : Trunc -1 (Σ K.El (λ k → χ.f k == h)))
→ GroupHom.f im-part h == (h , s)
im-part-imχ h s = pair=
(Trunc-rec (Group.El-level H _ _)
(λ {(k , p) →
χ.f (ψ.f h) =⟨ ! p |in-ctx (χ.f ∘ ψ.f) ⟩
χ.f (ψ.f (χ.f k)) =⟨ χ-rinv k |in-ctx χ.f ⟩
χ.f k =⟨ p ⟩
h ∎})
s)
(prop-has-all-paths-↓ Trunc-level)
decomp : H →ᴳ Ker ψ ×ᴳ Im χ
decomp = ×ᴳ-hom-in ker-part im-part
decomp-is-equiv : is-equiv (GroupHom.f decomp)
decomp-is-equiv = is-eq _ dinv decomp-dinv dinv-decomp
where
dinv : Group.El (Ker ψ ×ᴳ Im χ) → H.El
dinv ((h₁ , _) , (h₂ , _)) = H.comp h₁ h₂
decomp-dinv : ∀ s → GroupHom.f decomp (dinv s) == s
decomp-dinv ((h₁ , kr) , (h₂ , im)) = pair×=
(GroupHom.f ker-part (H.comp h₁ h₂)
=⟨ GroupHom.pres-comp ker-part h₁ h₂ ⟩
Group.comp (Ker ψ) (GroupHom.f ker-part h₁) (GroupHom.f ker-part h₂)
=⟨ ker-part-kerψ h₁ kr
|in-ctx (λ w → Group.comp (Ker ψ) w (GroupHom.f ker-part h₂)) ⟩
Group.comp (Ker ψ) (h₁ , kr) (GroupHom.f ker-part h₂)
=⟨ ker-part-imχ h₂ im
|in-ctx (λ w → Group.comp (Ker ψ) (h₁ , kr) w) ⟩
Group.comp (Ker ψ) (h₁ , kr) (Group.ident (Ker ψ))
=⟨ Group.unitr (Ker ψ) (h₁ , kr) ⟩
(h₁ , kr) ∎)
(GroupHom.f im-part (H.comp h₁ h₂)
=⟨ GroupHom.pres-comp im-part h₁ h₂ ⟩
Group.comp (Im χ) (GroupHom.f im-part h₁) (GroupHom.f im-part h₂)
=⟨ im-part-kerψ h₁ kr
|in-ctx (λ w → Group.comp (Im χ) w (GroupHom.f im-part h₂)) ⟩
Group.comp (Im χ) (Group.ident (Im χ)) (GroupHom.f im-part h₂)
=⟨ im-part-imχ h₂ im
|in-ctx (λ w → Group.comp (Im χ) (Group.ident (Im χ)) w) ⟩
Group.comp (Im χ) (Group.ident (Im χ)) (h₂ , im)
=⟨ Group.unitl (Im χ) (h₂ , im) ⟩
(h₂ , im) ∎)
dinv-decomp : ∀ h → dinv (GroupHom.f decomp h) == h
dinv-decomp h =
H.comp (H.comp h (H.inv (χ.f (ψ.f h)))) (χ.f (ψ.f h))
=⟨ H.assoc h (H.inv (χ.f (ψ.f h))) (χ.f (ψ.f h)) ⟩
H.comp h (H.comp (H.inv (χ.f (ψ.f h))) (χ.f (ψ.f h)))
=⟨ H.invl (χ.f (ψ.f h)) |in-ctx H.comp h ⟩
H.comp h H.ident
=⟨ H.unitr h ⟩
h ∎
decomp-equiv : H.El ≃ Group.El (Ker ψ ×ᴳ Im χ)
decomp-equiv = (_ , decomp-is-equiv)
decomp-iso : H == Ker ψ ×ᴳ Im χ
decomp-iso = group-ua (decomp , decomp-is-equiv)
{- G == Ker ψ -}
ker-in-φ : G →ᴳ Ker ψ
ker-in-φ = ker-hom ψ φ (λ g → itok (exact-get ex 1) (φ.f g) [ g , idp ])
ker-in-φ-is-equiv : is-equiv (GroupHom.f ker-in-φ)
ker-in-φ-is-equiv = surj-inj-is-equiv ker-in-φ inj surj
where
inj = zero-kernel-injective ker-in-φ
(λ g p → Trunc-rec (G.El-level _ _)
(λ {(_ , q) → ! q}) (ktoi (exact-get ex 0) g (ap fst p)))
surj = λ {(h , p) → Trunc-fmap
(λ {(g , q) → (g , pair= q (prop-has-all-paths-↓ (K.El-level _ _)))})
(ktoi (exact-get ex 1) h p)}
G-iso-Kerψ : G == Ker ψ
G-iso-Kerψ = group-ua (ker-in-φ , ker-in-φ-is-equiv)
{- K == Im χ -}
im-in-χ-is-equiv : is-equiv (GroupHom.f (im-in-hom χ))
im-in-χ-is-equiv = surj-inj-is-equiv (im-in-hom χ) inj (im-in-surj χ)
where
inj = zero-kernel-injective (im-in-hom χ)
(λ k p → ! (χ-rinv k) ∙ ap ψ.f (ap fst p) ∙ ψ.pres-ident)
K-iso-Imχ : K == Im χ
K-iso-Imχ = group-ua (im-in-hom χ , im-in-χ-is-equiv)
{- H == G ×ᴳ K -}
iso : H == G ×ᴳ K
iso = decomp-iso ∙ ap2 _×ᴳ_ (! G-iso-Kerψ) (! K-iso-Imχ)
private
decomp-φ = ×ᴳ-hom-in ker-in-φ (cst-hom {G = G} {H = Im χ})
ψ-dinv = ψ ∘ᴳ ×ᴳ-sum-hom H-abelian (ker-inj ψ) (im-inj χ)
φ-over-decomp : φ == decomp-φ [ (λ J → G →ᴳ J) ↓ decomp-iso ]
φ-over-decomp = codomain-over-iso $ codomain-over-equiv φ.f _ ▹ lemma
where
lemma : GroupHom.f decomp ∘ φ.f == GroupHom.f decomp-φ
lemma = λ= (λ g → pair×=
(ker-part-kerψ (φ.f g) (itok (exact-get ex 1) (φ.f g) [ g , idp ]))
(im-part-kerψ (φ.f g) (itok (exact-get ex 1) (φ.f g) [ g , idp ])))
ψ-over-decomp : ψ == ψ-dinv [ (λ J → J →ᴳ K) ↓ decomp-iso ]
ψ-over-decomp = domain-over-iso $ domain!-over-equiv ψ.f _
id-over-G-iso : idhom _ == ker-in-φ [ (λ J → G →ᴳ J) ↓ G-iso-Kerψ ]
id-over-G-iso = codomain-over-iso $ codomain-over-equiv (idf _) _
φ-over-G-iso : φ == ker-inj ψ [ (λ J → J →ᴳ H) ↓ G-iso-Kerψ ]
φ-over-G-iso =
domain-over-iso $ domain-over-equiv (GroupHom.f (ker-inj ψ)) _
ψ|imχ-over-K-iso : idhom K == ψ ∘ᴳ im-inj χ
[ (λ J → J →ᴳ K) ↓ K-iso-Imχ ]
ψ|imχ-over-K-iso = domain-over-iso $ domain!-over-equiv (idf _) _ ▹ lemma
where
lemma : <– (_ , im-in-χ-is-equiv) == ψ.f ∘ GroupHom.f (im-inj χ)
lemma = λ= (λ {(h , s) →
Trunc-elim {P = λ s' → <– (_ , im-in-χ-is-equiv) (h , s') == ψ.f h}
(λ _ → K.El-level _ _) (λ {(k , p) → ! (χ-rinv k) ∙ ap ψ.f p}) s})
φ-over-G-K-isos : decomp-φ == ×ᴳ-inl
[ (λ J → G →ᴳ J) ↓ ap2 _×ᴳ_ (! G-iso-Kerψ) (! K-iso-Imχ) ]
φ-over-G-K-isos = ↓-ap2-in _ _×ᴳ_ $ transport
(λ q → decomp-φ == ×ᴳ-inl [ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂}) ↓ q ])
(! (pair×=-split-l (! G-iso-Kerψ) (! K-iso-Imχ)))
(l ∙ᵈ r)
where
l : decomp-φ == ×ᴳ-hom-in (idhom G) (cst-hom {G = G} {H = Im χ})
[ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂})
↓ ap (λ J → J , Im χ) (! G-iso-Kerψ) ]
l = ↓-ap-in _ (λ J → J , Im χ)
(ap↓ (λ θ → ×ᴳ-hom-in θ (cst-hom {G = G} {H = Im χ}))
(!ᵈ id-over-G-iso))
r : ×ᴳ-hom-in (idhom G) (cst-hom {H = Im χ}) == ×ᴳ-inl
[ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂})
↓ ap (λ J → G , J) (! K-iso-Imχ) ]
r = ↓-ap-in _ (λ J → G , J)
(apd (λ J → ×ᴳ-hom-in (idhom G)
(cst-hom {G = G} {H = J})) (! K-iso-Imχ))
ψ-over-G-K-isos : ψ-dinv == ×ᴳ-snd {G = G}
[ (λ J → J →ᴳ K) ↓ ap2 _×ᴳ_ (! G-iso-Kerψ) (! K-iso-Imχ) ]
ψ-over-G-K-isos = ↓-ap2-in _ _×ᴳ_ $ transport
(λ q → ψ-dinv == (×ᴳ-snd {G = G})
[ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K}) ↓ q ])
(! (pair×=-split-l (! G-iso-Kerψ) (! K-iso-Imχ)))
(l ∙ᵈ (m ◃ r))
where
l : ψ-dinv == ψ ∘ᴳ ×ᴳ-sum-hom H-abelian φ (im-inj χ)
[ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K})
↓ ap (λ J → J , Im χ) (! G-iso-Kerψ) ]
l = ↓-ap-in _ (λ J → J , Im χ)
(ap↓ (λ θ → ψ ∘ᴳ ×ᴳ-sum-hom H-abelian θ (im-inj χ))
(!ᵈ φ-over-G-iso))
m : ψ ∘ᴳ ×ᴳ-sum-hom H-abelian φ (im-inj χ)
== (ψ ∘ᴳ im-inj χ) ∘ᴳ ×ᴳ-snd {G = G}
m = hom= _ _ $ λ= $ (λ {(g , (h , _)) →
ψ.f (H.comp (φ.f g) h)
=⟨ ψ.pres-comp (φ.f g) h ⟩
K.comp (ψ.f (φ.f g)) (ψ.f h)
=⟨ itok (exact-get ex 1) (φ.f g) [ g , idp ]
|in-ctx (λ w → K.comp w (ψ.f h)) ⟩
K.comp K.ident (ψ.f h)
=⟨ K.unitl (ψ.f h) ⟩
ψ.f h ∎})
r : (ψ ∘ᴳ im-inj χ) ∘ᴳ ×ᴳ-snd {G = G} == ×ᴳ-snd {G = G}
[ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K})
↓ (ap (λ J → G , J) (! K-iso-Imχ)) ]
r = ↓-ap-in _ (λ J → G , J)
(ap↓ (λ θ → θ ∘ᴳ ×ᴳ-snd {G = G}) (!ᵈ ψ|imχ-over-K-iso))
φ-over-iso : φ == ×ᴳ-inl [ (λ J → G →ᴳ J) ↓ iso ]
φ-over-iso = φ-over-decomp ∙ᵈ φ-over-G-K-isos
ψ-over-iso : ψ == (×ᴳ-snd {G = G}) [ (λ J → J →ᴳ K) ↓ iso ]
ψ-over-iso = ψ-over-decomp ∙ᵈ ψ-over-G-K-isos
| {
"alphanum_fraction": 0.4653398058,
"avg_line_length": 36.917562724,
"ext": "agda",
"hexsha": "5cab59c7b4901639e3efbdb60269cd1cf22a8af3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SplitExactRight.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SplitExactRight.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SplitExactRight.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4530,
"size": 10300
} |
open import Oscar.Prelude
open import Oscar.Class.Symmetry
open import Oscar.Class.Symmetrical
import Oscar.Data.Proposequality
module Oscar.Class.Symmetrical.Symmetry where
module _
{𝔬} {𝔒 : Ø 𝔬}
{ℓ} {_∼_ : 𝔒 → 𝔒 → Ø ℓ}
⦃ _ : Symmetry.class _∼_ ⦄
where
instance
Symmetrical𝓢ymmetry : Symmetrical _∼_ (λ x∼y y∼x → x∼y → y∼x)
Symmetrical𝓢ymmetry .𝓢ymmetrical.symmetrical _ _ = symmetry
| {
"alphanum_fraction": 0.6980676329,
"avg_line_length": 21.7894736842,
"ext": "agda",
"hexsha": "018866b9818becc3dc626aa9a9f476b01d04e9dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/Symmetry.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 161,
"size": 414
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties imply others
------------------------------------------------------------------------
module Relation.Binary.Consequences where
open import Relation.Binary.Core hiding (refl)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality.Core
open import Function
open import Data.Sum
open import Data.Product
open import Data.Empty
-- Some of the definitions can be found in the following module:
open import Relation.Binary.Consequences.Core public
trans∧irr⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} → {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Reflexive _≈_ →
Transitive _<_ → Irreflexive _≈_ _<_ → Asymmetric _<_
trans∧irr⟶asym refl trans irrefl = λ x<y y<x →
irrefl refl (trans x<y y<x)
irr∧antisym⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Irreflexive _≈_ _<_ → Antisymmetric _≈_ _<_ → Asymmetric _<_
irr∧antisym⟶asym irrefl antisym = λ x<y y<x →
irrefl (antisym x<y y<x) x<y
asym⟶antisym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Asymmetric _<_ → Antisymmetric _≈_ _<_
asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x)
asym⟶irr :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
_<_ Respects₂ _≈_ → Symmetric _≈_ →
Asymmetric _<_ → Irreflexive _≈_ _<_
asym⟶irr {_<_ = _<_} resp sym asym {x} {y} x≈y x<y = asym x<y y<x
where
y<y : y < y
y<y = proj₂ resp x≈y x<y
y<x : y < x
y<x = proj₁ resp (sym x≈y) y<y
total⟶refl :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} →
_∼_ Respects₂ _≈_ → Symmetric _≈_ →
Total _∼_ → _≈_ ⇒ _∼_
total⟶refl {_≈_ = _≈_} {_∼_ = _∼_} resp sym total = refl
where
refl : _≈_ ⇒ _∼_
refl {x} {y} x≈y with total x y
... | inj₁ x∼y = x∼y
... | inj₂ y∼x =
proj₁ resp x≈y (proj₂ resp (sym x≈y) y∼x)
total+dec⟶dec :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_≤_ : Rel A ℓ₂} →
_≈_ ⇒ _≤_ → Antisymmetric _≈_ _≤_ →
Total _≤_ → Decidable _≈_ → Decidable _≤_
total+dec⟶dec {_≈_ = _≈_} {_≤_ = _≤_} refl antisym total _≟_ = dec
where
dec : Decidable _≤_
dec x y with total x y
... | inj₁ x≤y = yes x≤y
... | inj₂ y≤x with x ≟ y
... | yes x≈y = yes (refl x≈y)
... | no ¬x≈y = no (λ x≤y → ¬x≈y (antisym x≤y y≤x))
tri⟶asym :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Trichotomous _≈_ _<_ → Asymmetric _<_
tri⟶asym tri {x} {y} x<y x>y with tri x y
... | tri< _ _ x≯y = x≯y x>y
... | tri≈ _ _ x≯y = x≯y x>y
... | tri> x≮y _ _ = x≮y x<y
tri⟶irr :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
_<_ Respects₂ _≈_ → Symmetric _≈_ →
Trichotomous _≈_ _<_ → Irreflexive _≈_ _<_
tri⟶irr resp sym tri = asym⟶irr resp sym (tri⟶asym tri)
tri⟶dec≈ :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Trichotomous _≈_ _<_ → Decidable _≈_
tri⟶dec≈ compare x y with compare x y
... | tri< _ x≉y _ = no x≉y
... | tri≈ _ x≈y _ = yes x≈y
... | tri> _ x≉y _ = no x≉y
tri⟶dec< :
∀ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} →
Trichotomous _≈_ _<_ → Decidable _<_
tri⟶dec< compare x y with compare x y
... | tri< x<y _ _ = yes x<y
... | tri≈ x≮y _ _ = no x≮y
... | tri> x≮y _ _ = no x≮y
map-NonEmpty : ∀ {a b p q} {A : Set a} {B : Set b}
{P : REL A B p} {Q : REL A B q} →
P ⇒ Q → NonEmpty P → NonEmpty Q
map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))
| {
"alphanum_fraction": 0.5427830596,
"avg_line_length": 31.8440366972,
"ext": "agda",
"hexsha": "0f36c7bfc31e80326e5b963bd897ce193e36b735",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1597,
"size": 3471
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.RingSolver.Examples where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Int.Base hiding (_+_ ; _·_ ; _-_)
open import Cubical.Data.List
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module Test (R : CommRing ℓ) where
open CommRingStr (snd R)
_ : 0r ≡ 0r
_ = solve R
_ : 1r · (1r + 0r)
≡ (1r · 0r) + 1r
_ = solve R
_ : 1r · 0r + (1r - 1r)
≡ 0r - 0r
_ = solve R
_ : (x : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x ≡ x
_ = solve R
_ : (x y : fst R) → x + y ≡ y + x
_ = solve R
_ : (x y : fst R) → (x + y) · (x - y) ≡ x · x - y · y
_ = solve R
{-
A bigger example, copied from the other example files:
-}
_ : (x y z : (fst R)) → (x + y) · (x + y) · (x + y) · (x + y)
≡ x · x · x · x + (fromℤ R 4) · x · x · x · y + (fromℤ R 6) · x · x · y · y
+ (fromℤ R 4) · x · y · y · y + y · y · y · y
_ = solve R
{-
Examples that used to fail (see #513):
-}
_ : (x : (fst R)) → x · 0r ≡ 0r
_ = solve R
_ : (x y z : (fst R)) → x · (y - z) ≡ x · y - x · z
_ = solve R
{-
Keep in mind, that the solver can lead to wrong error locations.
For example, the commented code below tries to solve an equation that does not hold,
with the result of an error at the wrong location.
_ : (x y : (fst R)) → x ≡ y
_ = solve R
-}
module TestInPlaceSolving (R : CommRing ℓ) where
open CommRingStr (snd R)
testWithOneVariabl : (x : fst R) → x + 0r ≡ 0r + x
testWithOneVariabl x = solveInPlace R (x ∷ [])
testEquationalReasoning : (x : fst R) → x + 0r ≡ 0r + x
testEquationalReasoning x =
x + 0r ≡⟨solveIn R withVars (x ∷ []) ⟩
0r + x ∎
testWithTwoVariables : (x y : fst R) → x + y ≡ y + x
testWithTwoVariables x y =
x + y ≡⟨solveIn R withVars (x ∷ y ∷ []) ⟩
y + x ∎
{-
So far, solving during equational reasoning has a serious
restriction:
The solver identifies variables by deBruijn indices and the variables
appearing in the equations to solve need to have indices 0,...,n. This
entails that in the following code, the order of 'p' and 'x' cannot be
switched.
-}
testEquationalReasoning' : (p : (y : fst R) → 0r + y ≡ 1r) (x : fst R) → x + 0r ≡ 1r
testEquationalReasoning' p x =
x + 0r ≡⟨solveIn R withVars (x ∷ []) ⟩
0r + x ≡⟨ p x ⟩
1r ∎
| {
"alphanum_fraction": 0.5349107836,
"avg_line_length": 26.306122449,
"ext": "agda",
"hexsha": "b4e0116c92e92fac86fb925f991b8bca6d754ae4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ecavallo/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ecavallo/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ecavallo/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-20T11:56:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-20T11:56:18.000Z",
"num_tokens": 979,
"size": 2578
} |
------------------------------------------------------------------------
-- Kuratowski finite subsets
------------------------------------------------------------------------
-- Based on Frumin, Geuvers, Gondelman and van der Weide's "Finite
-- Sets in Homotopy Type Theory".
{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Finite-subset.Kuratowski
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
import Finite-subset.Listed eq as L
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Truncation.Propositional eq as Trunc
using (∥_∥; _∥⊎∥_)
open import Monad equality-with-J as M using (Raw-monad; Monad)
private
variable
a b p : Level
A B : Type a
P : A → Type p
f g : (x : A) → P x
l x y z : A
m n : ℕ
------------------------------------------------------------------------
-- Kuratowski finite subsets
-- Kuratowski finite subsets of a given type.
infixr 5 _∪_
data Finite-subset-of (A : Type a) : Type a where
∅ : Finite-subset-of A
singleton : A → Finite-subset-of A
_∪_ : Finite-subset-of A → Finite-subset-of A →
Finite-subset-of A
∅∪ᴾ : ∅ ∪ x P.≡ x
idem-sᴾ : singleton x ∪ singleton x P.≡ singleton x
assocᴾ : x ∪ (y ∪ z) P.≡ (x ∪ y) ∪ z
commᴾ : x ∪ y P.≡ y ∪ x
is-setᴾ : P.Is-set (Finite-subset-of A)
-- Variants of some of the constructors.
∅∪ : ∅ ∪ x ≡ x
∅∪ = _↔_.from ≡↔≡ ∅∪ᴾ
idem-s : singleton x ∪ singleton x ≡ singleton x
idem-s = _↔_.from ≡↔≡ idem-sᴾ
assoc : x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z
assoc = _↔_.from ≡↔≡ assocᴾ
comm : x ∪ y ≡ y ∪ x
comm = _↔_.from ≡↔≡ commᴾ
is-set : Is-set (Finite-subset-of A)
is-set = _↔_.from (H-level↔H-level 2) is-setᴾ
-- ∅ is a right identity for _∪_.
∪∅ : x ∪ ∅ ≡ x
∪∅ {x = x} =
x ∪ ∅ ≡⟨ comm ⟩
∅ ∪ x ≡⟨ ∅∪ ⟩∎
x ∎
------------------------------------------------------------------------
-- Eliminators
-- A dependent eliminator, expressed using paths.
record Elimᴾ {A : Type a} (P : Finite-subset-of A → Type p) :
Type (a ⊔ p) where
field
∅ʳ : P ∅
singletonʳ : ∀ x → P (singleton x)
∪ʳ : P x → P y → P (x ∪ y)
∅∪ʳ : (p : P x) →
P.[ (λ i → P (∅∪ᴾ {x = x} i)) ] ∪ʳ ∅ʳ p ≡ p
idem-sʳ : ∀ x →
P.[ (λ i → P (idem-sᴾ {x = x} i)) ]
∪ʳ (singletonʳ x) (singletonʳ x) ≡ singletonʳ x
assocʳ : (p : P x) (q : P y) (r : P z) →
P.[ (λ i → P (assocᴾ {x = x} {y = y} {z = z} i)) ]
∪ʳ p (∪ʳ q r) ≡ ∪ʳ (∪ʳ p q) r
commʳ : (p : P x) (q : P y) →
P.[ (λ i → P (commᴾ {x = x} {y = y} i)) ]
∪ʳ p q ≡ ∪ʳ q p
is-setʳ : ∀ x → P.Is-set (P x)
open Elimᴾ public
elimᴾ : Elimᴾ P → (x : Finite-subset-of A) → P x
elimᴾ {A = A} {P = P} e = helper
where
module E = Elimᴾ e
helper : (x : Finite-subset-of A) → P x
helper ∅ = E.∅ʳ
helper (singleton x) = E.singletonʳ x
helper (x ∪ y) = E.∪ʳ (helper x) (helper y)
helper (∅∪ᴾ {x = x} i) = E.∅∪ʳ (helper x) i
helper (idem-sᴾ i) = E.idem-sʳ _ i
helper (assocᴾ {x = x} {y = y} {z = z} i) = E.assocʳ
(helper x) (helper y)
(helper z) i
helper (commᴾ {x = x} {y = y} i) = E.commʳ
(helper x) (helper y) i
helper (is-setᴾ x y i j) =
P.heterogeneous-UIP E.is-setʳ (is-setᴾ x y)
(λ i → helper (x i)) (λ i → helper (y i)) i j
-- A non-dependent eliminator, expressed using paths.
record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
∅ʳ : B
singletonʳ : A → B
∪ʳ : Finite-subset-of A → Finite-subset-of A → B → B → B
∅∪ʳ : ∀ x p → ∪ʳ ∅ x ∅ʳ p P.≡ p
idem-sʳ : ∀ x →
∪ʳ (singleton x) (singleton x)
(singletonʳ x) (singletonʳ x) P.≡
singletonʳ x
assocʳ : ∀ p q r →
∪ʳ x (y ∪ z) p (∪ʳ y z q r) P.≡
∪ʳ (x ∪ y) z (∪ʳ x y p q) r
commʳ : ∀ p q → ∪ʳ x y p q P.≡ ∪ʳ y x q p
is-setʳ : P.Is-set B
open Recᴾ public
recᴾ : Recᴾ A B → Finite-subset-of A → B
recᴾ r = elimᴾ e
where
module R = Recᴾ r
e : Elimᴾ _
e .∅ʳ = R.∅ʳ
e .singletonʳ = R.singletonʳ
e .∪ʳ {x = x} {y = y} = R.∪ʳ x y
e .∅∪ʳ {x = x} = R.∅∪ʳ x
e .idem-sʳ = R.idem-sʳ
e .assocʳ = R.assocʳ
e .commʳ = R.commʳ
e .is-setʳ _ = R.is-setʳ
-- A dependent eliminator, expressed using equality.
record Elim {A : Type a} (P : Finite-subset-of A → Type p) :
Type (a ⊔ p) where
field
∅ʳ : P ∅
singletonʳ : ∀ x → P (singleton x)
∪ʳ : P x → P y → P (x ∪ y)
∅∪ʳ : (p : P x) → subst P (∅∪ {x = x}) (∪ʳ ∅ʳ p) ≡ p
idem-sʳ : ∀ x →
subst P (idem-s {x = x})
(∪ʳ (singletonʳ x) (singletonʳ x)) ≡
singletonʳ x
assocʳ : (p : P x) (q : P y) (r : P z) →
subst P (assoc {x = x} {y = y} {z = z})
(∪ʳ p (∪ʳ q r)) ≡
∪ʳ (∪ʳ p q) r
commʳ : (p : P x) (q : P y) →
subst P (comm {x = x} {y = y}) (∪ʳ p q) ≡ ∪ʳ q p
is-setʳ : ∀ x → Is-set (P x)
open Elim public
elim : Elim P → (x : Finite-subset-of A) → P x
elim e = elimᴾ e′
where
module E = Elim e
e′ : Elimᴾ _
e′ .∅ʳ = E.∅ʳ
e′ .singletonʳ = E.singletonʳ
e′ .∪ʳ = E.∪ʳ
e′ .∅∪ʳ p = subst≡→[]≡ (E.∅∪ʳ p)
e′ .idem-sʳ x = subst≡→[]≡ (E.idem-sʳ x)
e′ .assocʳ p q r = subst≡→[]≡ (E.assocʳ p q r)
e′ .commʳ p q = subst≡→[]≡ (E.commʳ p q)
e′ .is-setʳ x = _↔_.to (H-level↔H-level 2) (E.is-setʳ x)
-- A non-dependent eliminator, expressed using equality.
record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
∅ʳ : B
singletonʳ : A → B
∪ʳ : Finite-subset-of A → Finite-subset-of A → B → B → B
∅∪ʳ : ∀ x p → ∪ʳ ∅ x ∅ʳ p ≡ p
idem-sʳ : ∀ x →
∪ʳ (singleton x) (singleton x)
(singletonʳ x) (singletonʳ x) ≡
singletonʳ x
assocʳ : ∀ p q r →
∪ʳ x (y ∪ z) p (∪ʳ y z q r) ≡
∪ʳ (x ∪ y) z (∪ʳ x y p q) r
commʳ : ∀ p q → ∪ʳ x y p q ≡ ∪ʳ y x q p
is-setʳ : Is-set B
open Rec public
rec : Rec A B → Finite-subset-of A → B
rec r = recᴾ r′
where
module R = Rec r
r′ : Recᴾ _ _
r′ .∅ʳ = R.∅ʳ
r′ .singletonʳ = R.singletonʳ
r′ .∪ʳ = R.∪ʳ
r′ .∅∪ʳ x p = _↔_.to ≡↔≡ (R.∅∪ʳ x p)
r′ .idem-sʳ x = _↔_.to ≡↔≡ (R.idem-sʳ x)
r′ .assocʳ p q r = _↔_.to ≡↔≡ (R.assocʳ p q r)
r′ .commʳ p q = _↔_.to ≡↔≡ (R.commʳ p q)
r′ .is-setʳ = _↔_.to (H-level↔H-level 2) R.is-setʳ
-- A dependent eliminator for propositions.
record Elim-prop {A : Type a} (P : Finite-subset-of A → Type p) :
Type (a ⊔ p) where
field
∅ʳ : P ∅
singletonʳ : ∀ x → P (singleton x)
∪ʳ : P x → P y → P (x ∪ y)
is-propositionʳ : ∀ x → Is-proposition (P x)
open Elim-prop public
elim-prop : Elim-prop P → (x : Finite-subset-of A) → P x
elim-prop e = elim e′
where
module E = Elim-prop e
e′ : Elim _
e′ .∅ʳ = E.∅ʳ
e′ .singletonʳ = E.singletonʳ
e′ .∪ʳ = E.∪ʳ
e′ .∅∪ʳ _ = E.is-propositionʳ _ _ _
e′ .idem-sʳ _ = E.is-propositionʳ _ _ _
e′ .assocʳ _ _ _ = E.is-propositionʳ _ _ _
e′ .commʳ _ _ = E.is-propositionʳ _ _ _
e′ .is-setʳ _ = mono₁ 1 (E.is-propositionʳ _)
-- A non-dependent eliminator for propositions.
record Rec-prop (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
∅ʳ : B
singletonʳ : A → B
∪ʳ : Finite-subset-of A → Finite-subset-of A →
B → B → B
is-propositionʳ : Is-proposition B
open Rec-prop public
rec-prop : Rec-prop A B → Finite-subset-of A → B
rec-prop r = elim-prop e
where
module R = Rec-prop r
e : Elim-prop _
e .∅ʳ = R.∅ʳ
e .singletonʳ = R.singletonʳ
e .∪ʳ {x = x} {y = y} = R.∪ʳ x y
e .is-propositionʳ _ = R.is-propositionʳ
------------------------------------------------------------------------
-- Definitions related to listed finite subsets
private
-- Some definitions used in the implementation of Listed≃Kuratowski
-- below.
to : L.Finite-subset-of A → Finite-subset-of A
to L.[] = ∅
to (x L.∷ y) = singleton x ∪ to y
to (L.dropᴾ {x = x} {y = y} i) =
(singleton x ∪ (singleton x ∪ to y) P.≡⟨ assocᴾ ⟩
(singleton x ∪ singleton x) ∪ to y P.≡⟨ P.cong (_∪ to y) idem-sᴾ ⟩∎
singleton x ∪ to y ∎) i
to (L.swapᴾ {x = x} {y = y} {z = z} i) =
(singleton x ∪ (singleton y ∪ to z) P.≡⟨ assocᴾ ⟩
(singleton x ∪ singleton y) ∪ to z P.≡⟨ P.cong (_∪ to z) commᴾ ⟩
(singleton y ∪ singleton x) ∪ to z P.≡⟨ P.sym assocᴾ ⟩∎
singleton y ∪ (singleton x ∪ to z) ∎) i
to (L.is-setᴾ x y i j) =
is-setᴾ (λ i → to (x i)) (λ i → to (y i)) i j
to-∪ : (x : L.Finite-subset-of A) → to (x L.∪ y) ≡ to x ∪ to y
to-∪ {y = y} = L.elim-prop e
where
e : L.Elim-prop _
e .L.is-propositionʳ _ = is-set
e .L.[]ʳ =
to y ≡⟨ sym ∅∪ ⟩∎
∅ ∪ to y ∎
e .L.∷ʳ {y = z} x hyp =
singleton x ∪ to (z L.∪ y) ≡⟨ cong (singleton x ∪_) hyp ⟩
singleton x ∪ (to z ∪ to y) ≡⟨ assoc ⟩∎
(singleton x ∪ to z) ∪ to y ∎
-- Listed finite subsets are equivalent to Kuratowski finite subsets.
Listed≃Kuratowski : L.Finite-subset-of A ≃ Finite-subset-of A
Listed≃Kuratowski {A = A} = from-bijection (record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to∘from
}
; left-inverse-of = from∘to
})
where
from : Finite-subset-of A → L.Finite-subset-of A
from ∅ = L.[]
from (singleton x) = x L.∷ L.[]
from (x ∪ y) = from x L.∪ from y
from (∅∪ᴾ {x = x} _) = from x
from (idem-sᴾ {x = x} i) = L.dropᴾ {x = x} {y = L.[]} i
from (assocᴾ {x = x} {y = y} {z = z} i) =
_↔_.to ≡↔≡ (L.assoc {y = from y} {z = from z} (from x)) i
from (commᴾ {x = x} {y = y} i) =
_↔_.to ≡↔≡ (L.comm {y = from y} (from x)) i
from (is-setᴾ x y i j) =
L.is-setᴾ (λ i → from (x i)) (λ i → from (y i)) i j
to∘from : ∀ x → to (from x) ≡ x
to∘from = elim-prop e
where
e : Elim-prop _
e .is-propositionʳ _ = is-set
e .∅ʳ = refl _
e .singletonʳ _ = ∪∅
e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ =
to (from x L.∪ from y) ≡⟨ to-∪ (from x) ⟩
to (from x) ∪ to (from y) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩∎
x ∪ y ∎
from∘to : ∀ x → from (to x) ≡ x
from∘to = L.elim-prop e
where
e : L.Elim-prop _
e .L.is-propositionʳ _ = L.is-set
e .L.[]ʳ = refl _
e .L.∷ʳ {y = y} x hyp =
x L.∷ from (to y) ≡⟨ cong (x L.∷_) hyp ⟩∎
x L.∷ y ∎
-- The forward direction of Listed≃Kuratowski is homomorphic with
-- respect to L._∪_/_∪_.
to-Listed≃Kuratowski-∪ :
(x : L.Finite-subset-of A) →
_≃_.to Listed≃Kuratowski (x L.∪ y) ≡
_≃_.to Listed≃Kuratowski x ∪ _≃_.to Listed≃Kuratowski y
to-Listed≃Kuratowski-∪ = to-∪
-- The other direction of Listed≃Kuratowski is definitionally
-- homomorphic with respect to _∪_/L._∪_.
_ :
_≃_.from Listed≃Kuratowski (x ∪ y) ≡
_≃_.from Listed≃Kuratowski x L.∪ _≃_.from Listed≃Kuratowski y
_ = refl _
-- A list-like dependent eliminator for Finite-subset-of, for
-- propositions.
record List-elim-prop
{A : Type a} (P : Finite-subset-of A → Type p) :
Type (a ⊔ p) where
field
[]ʳ : P ∅
∷ʳ : ∀ x → P y → P (singleton x ∪ y)
is-propositionʳ : ∀ x → Is-proposition (P x)
open List-elim-prop public
list-elim-prop : List-elim-prop P → (x : Finite-subset-of A) → P x
list-elim-prop {P = P} l x =
subst P (_≃_.right-inverse-of Listed≃Kuratowski x)
(L.elim-prop e (_≃_.from Listed≃Kuratowski x))
where
module E = List-elim-prop l
e : L.Elim-prop (P ∘ _≃_.to Listed≃Kuratowski)
e .L.[]ʳ = E.[]ʳ
e .L.∷ʳ x = E.∷ʳ x
e .L.is-propositionʳ _ = E.is-propositionʳ _
-- A list-like non-dependent eliminator for Finite-subset-of,
-- expressed using paths.
record List-recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
[]ʳ : B
∷ʳ : A → Finite-subset-of A → B → B
dropʳ : ∀ x y p →
∷ʳ x (singleton x ∪ y) (∷ʳ x y p) P.≡ ∷ʳ x y p
swapʳ : ∀ x y z p →
∷ʳ x (singleton y ∪ z) (∷ʳ y z p) P.≡
∷ʳ y (singleton x ∪ z) (∷ʳ x z p)
is-setʳ : P.Is-set B
open List-recᴾ public
list-recᴾ : List-recᴾ A B → Finite-subset-of A → B
list-recᴾ l = L.recᴾ r ∘ _≃_.from Listed≃Kuratowski
where
module E = List-recᴾ l
r : L.Recᴾ _ _
r .L.[]ʳ = E.[]ʳ
r .L.∷ʳ x y = E.∷ʳ x (_≃_.to Listed≃Kuratowski y)
r .L.dropʳ x y = E.dropʳ x (_≃_.to Listed≃Kuratowski y)
r .L.swapʳ x y z = E.swapʳ x y (_≃_.to Listed≃Kuratowski z)
r .L.is-setʳ = E.is-setʳ
-- Unit tests documenting some of the computational behaviour of
-- list-recᴾ.
_ : list-recᴾ l ∅ ≡ l .[]ʳ
_ = refl _
_ : list-recᴾ l (singleton x) ≡ l .∷ʳ x ∅ (l .[]ʳ)
_ = refl _
_ : let y′ = _≃_.to Listed≃Kuratowski (_≃_.from Listed≃Kuratowski y) in
list-recᴾ l (singleton x ∪ y) ≡ l .∷ʳ x y′ (list-recᴾ l y)
_ = refl _
-- A list-like non-dependent eliminator for Finite-subset-of,
-- expressed using equality.
record List-rec (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
[]ʳ : B
∷ʳ : A → Finite-subset-of A → B → B
dropʳ : ∀ x y p →
∷ʳ x (singleton x ∪ y) (∷ʳ x y p) ≡ ∷ʳ x y p
swapʳ : ∀ x y z p →
∷ʳ x (singleton y ∪ z) (∷ʳ y z p) ≡
∷ʳ y (singleton x ∪ z) (∷ʳ x z p)
is-setʳ : Is-set B
open List-rec public
list-rec : List-rec A B → Finite-subset-of A → B
list-rec l = list-recᴾ l′
where
module R = List-rec l
l′ : List-recᴾ _ _
l′ .[]ʳ = R.[]ʳ
l′ .∷ʳ = R.∷ʳ
l′ .dropʳ x y p = _↔_.to ≡↔≡ (R.dropʳ x y p)
l′ .swapʳ x y z p = _↔_.to ≡↔≡ (R.swapʳ x y z p)
l′ .is-setʳ = _↔_.to (H-level↔H-level 2) R.is-setʳ
-- Unit tests documenting some of the computational behaviour of
-- list-rec.
_ : list-rec l ∅ ≡ l .[]ʳ
_ = refl _
_ : list-rec l (singleton x) ≡ l .∷ʳ x ∅ (l .[]ʳ)
_ = refl _
_ : let y′ = _≃_.to Listed≃Kuratowski (_≃_.from Listed≃Kuratowski y) in
list-rec l (singleton x ∪ y) ≡ l .∷ʳ x y′ (list-rec l y)
_ = refl _
------------------------------------------------------------------------
-- Membership
-- Membership.
infix 4 _∈_
_∈_ : {A : Type a} → A → Finite-subset-of A → Type a
x ∈ y = x L.∈ _≃_.from Listed≃Kuratowski y
-- Membership is propositional.
∈-propositional : ∀ y → Is-proposition (x ∈ y)
∈-propositional _ = L.∈-propositional
-- A lemma characterising ∅.
∈∅≃ : (x ∈ ∅) ≃ ⊥₀
∈∅≃ = L.∈[]≃
-- A lemma characterising singleton.
∈singleton≃ : (x ∈ singleton y) ≃ ∥ x ≡ y ∥
∈singleton≃ = L.∈singleton≃
-- If x is a member of y, then x is a member of y ∪ z.
∈→∈∪ˡ : ∀ y z → x ∈ y → x ∈ y ∪ z
∈→∈∪ˡ {x = x} y z =
x ∈ y ↔⟨⟩
x L.∈ _≃_.from Listed≃Kuratowski y ↝⟨ L.∈→∈∪ˡ ⟩
x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↔⟨⟩
x L.∈ _≃_.from Listed≃Kuratowski (y ∪ z) ↔⟨⟩
x ∈ y ∪ z □
-- If x is a member of z, then x is a member of y ∪ z.
∈→∈∪ʳ : ∀ y z → x ∈ z → x ∈ y ∪ z
∈→∈∪ʳ {x = x} y z =
x ∈ z ↔⟨⟩
x L.∈ _≃_.from Listed≃Kuratowski z ↝⟨ L.∈→∈∪ʳ (_≃_.from Listed≃Kuratowski y) ⟩
x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↔⟨⟩
x ∈ y ∪ z □
-- Membership of a union of two subsets can be expressed in terms of
-- membership of the subsets.
∈∪≃ : ∀ y z → (x ∈ y ∪ z) ≃ (x ∈ y ∥⊎∥ x ∈ z)
∈∪≃ {x = x} y z =
x ∈ y ∪ z ↔⟨⟩
x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↝⟨ L.∈∪≃ ⟩
x L.∈ _≃_.from Listed≃Kuratowski y ∥⊎∥
x L.∈ _≃_.from Listed≃Kuratowski z ↔⟨⟩
x ∈ y ∥⊎∥ x ∈ z □
-- If truncated equality is decidable, then membership is also
-- decidable.
member? :
((x y : A) → Dec ∥ x ≡ y ∥) →
(x : A) (y : Finite-subset-of A) → Dec (x ∈ y)
member? equal? x = L.member? equal? x ∘ _≃_.from Listed≃Kuratowski
-- Subsets.
_⊆_ : {A : Type a} → Finite-subset-of A → Finite-subset-of A → Type a
x ⊆ y = ∀ z → z ∈ x → z ∈ y
-- The subset property can be expressed using _∪_ and _≡_.
⊆≃∪≡ : (x ⊆ y) ≃ (x ∪ y ≡ y)
⊆≃∪≡ {x = x} {y = y} =
x ⊆ y ↝⟨ L.⊆≃∪≡ (_≃_.from Listed≃Kuratowski x) ⟩
_≃_.from Listed≃Kuratowski x L.∪ _≃_.from Listed≃Kuratowski y ≡
_≃_.from Listed≃Kuratowski y ↔⟨⟩
_≃_.from Listed≃Kuratowski (x ∪ y) ≡ _≃_.from Listed≃Kuratowski y ↝⟨ Eq.≃-≡ (inverse Listed≃Kuratowski) ⟩□
x ∪ y ≡ y □
-- Extensionality.
extensionality :
(x ≡ y) ≃ (∀ z → z ∈ x ⇔ z ∈ y)
extensionality {x = x} {y = y} =
x ≡ y ↝⟨ inverse $ Eq.≃-≡ (inverse Listed≃Kuratowski) ⟩
_≃_.from Listed≃Kuratowski x ≡ _≃_.from Listed≃Kuratowski y ↝⟨ L.extensionality ⟩□
(∀ z → z ∈ x ⇔ z ∈ y) □
------------------------------------------------------------------------
-- A law
-- Union is idempotent.
idem : x ∪ x ≡ x
idem {x = x} = _≃_.from extensionality λ y →
y ∈ x ∪ x ↔⟨ ∈∪≃ x x ⟩
y ∈ x ∥⊎∥ y ∈ x ↔⟨ Trunc.idempotent ⟩
∥ y ∈ x ∥ ↔⟨ Trunc.∥∥↔ (∈-propositional x) ⟩□
y ∈ x □
------------------------------------------------------------------------
-- Some operations
-- A map function.
map : (A → B) → Finite-subset-of A → Finite-subset-of B
map f = recᴾ r
where
r : Recᴾ _ _
r .∅ʳ = ∅
r .singletonʳ x = singleton (f x)
r .∪ʳ _ _ = _∪_
r .∅∪ʳ _ _ = ∅∪ᴾ
r .idem-sʳ _ = idem-sᴾ
r .assocʳ _ _ _ = assocᴾ
r .commʳ _ _ = commᴾ
r .is-setʳ = is-setᴾ
-- A filter function.
filter : (A → Bool) → Finite-subset-of A → Finite-subset-of A
filter p = rec r
where
r : Rec _ _
r .∅ʳ = ∅
r .singletonʳ x = if p x then singleton x else ∅
r .∪ʳ _ _ = _∪_
r .∅∪ʳ _ _ = ∅∪
r .idem-sʳ _ = idem
r .assocʳ _ _ _ = assoc
r .commʳ _ _ = comm
r .is-setʳ = is-set
-- Join.
join : Finite-subset-of (Finite-subset-of A) → Finite-subset-of A
join = rec r
where
r : Rec _ _
r .∅ʳ = ∅
r .singletonʳ = id
r .∪ʳ _ _ = _∪_
r .∅∪ʳ _ _ = ∅∪
r .idem-sʳ _ = idem
r .assocʳ _ _ _ = assoc
r .commʳ _ _ = comm
r .is-setʳ = is-set
-- A universe-polymorphic variant of bind.
infixl 5 _>>=′_
_>>=′_ :
Finite-subset-of A → (A → Finite-subset-of B) → Finite-subset-of B
x >>=′ f = join (map f x)
-- Bind distributes from the right over union.
_ : (x ∪ y) >>=′ f ≡ (x >>=′ f) ∪ (y >>=′ f)
_ = refl _
-- Bind distributes from the left over union.
>>=-left-distributive :
∀ x → (x >>=′ λ x → f x ∪ g x) ≡ (x >>=′ f) ∪ (x >>=′ g)
>>=-left-distributive {f = f} {g = g} = elim-prop e
where
e : Elim-prop _
e .∅ʳ = ∅ ≡⟨ sym idem ⟩∎
∅ ∪ ∅ ∎
e .singletonʳ _ = refl _
e .is-propositionʳ _ = is-set
e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ =
(x ∪ y) >>=′ (λ x → f x ∪ g x) ≡⟨⟩
(x >>=′ λ x → f x ∪ g x) ∪ (y >>=′ λ x → f x ∪ g x) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩
((x >>=′ f) ∪ (x >>=′ g)) ∪ ((y >>=′ f) ∪ (y >>=′ g)) ≡⟨ sym assoc ⟩
(x >>=′ f) ∪ ((x >>=′ g) ∪ ((y >>=′ f) ∪ (y >>=′ g))) ≡⟨ cong ((x >>=′ f) ∪_) assoc ⟩
(x >>=′ f) ∪ (((x >>=′ g) ∪ (y >>=′ f)) ∪ (y >>=′ g)) ≡⟨ cong (((x >>=′ f) ∪_) ∘ (_∪ (y >>=′ g))) comm ⟩
(x >>=′ f) ∪ (((y >>=′ f) ∪ (x >>=′ g)) ∪ (y >>=′ g)) ≡⟨ cong ((x >>=′ f) ∪_) (sym assoc) ⟩
(x >>=′ f) ∪ ((y >>=′ f) ∪ ((x >>=′ g) ∪ (y >>=′ g))) ≡⟨ assoc ⟩
((x >>=′ f) ∪ (y >>=′ f)) ∪ ((x >>=′ g) ∪ (y >>=′ g)) ≡⟨⟩
((x ∪ y) >>=′ f) ∪ ((x ∪ y) >>=′ g) ∎
-- Monad laws.
_ : singleton x >>=′ f ≡ f x
_ = refl _
>>=-singleton : x >>=′ singleton ≡ x
>>=-singleton = elim-prop e _
where
e : Elim-prop (λ x → x >>=′ singleton ≡ x)
e .∅ʳ = refl _
e .singletonʳ _ = refl _
e .is-propositionʳ _ = is-set
e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ =
(x ∪ y) >>=′ singleton ≡⟨⟩
(x >>=′ singleton) ∪ (y >>=′ singleton) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩∎
x ∪ y ∎
>>=-assoc : ∀ x → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g
>>=-assoc {f = f} {g = g} = elim-prop e
where
e : Elim-prop _
e .∅ʳ = refl _
e .singletonʳ _ = refl _
e .is-propositionʳ _ = is-set
e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ =
(x ∪ y) >>=′ (λ x → f x >>=′ g) ≡⟨⟩
(x >>=′ λ x → f x >>=′ g) ∪ (y >>=′ λ x → f x >>=′ g) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩
(x >>=′ f >>=′ g) ∪ (y >>=′ f >>=′ g) ≡⟨⟩
(x ∪ y) >>=′ f >>=′ g ∎
-- A monad instance.
instance
raw-monad : Raw-monad {d = a} Finite-subset-of
raw-monad .M.return = singleton
raw-monad .M._>>=_ = _>>=′_
monad : Monad {d = a} Finite-subset-of
monad .M.Monad.raw-monad = raw-monad
monad .M.Monad.left-identity _ _ = refl _
monad .M.Monad.right-identity _ = >>=-singleton
monad .M.Monad.associativity x _ _ = >>=-assoc x
------------------------------------------------------------------------
-- Size
-- Size.
infix 4 ∣_∣≡_
∣_∣≡_ : {A : Type a} → Finite-subset-of A → ℕ → Type a
∣ x ∣≡ n = L.∣ _≃_.from Listed≃Kuratowski x ∣≡ n
-- The size predicate is propositional.
∣∣≡-propositional :
(x : Finite-subset-of A) → Is-proposition (∣ x ∣≡ n)
∣∣≡-propositional = L.∣∣≡-propositional ∘ _≃_.from Listed≃Kuratowski
-- Unit tests documenting some of the computational behaviour of
-- ∣_∣≡_.
_ : (∣ ∅ {A = A} ∣≡ n) ≡ ↑ _ (n ≡ 0)
_ = refl _
_ : ∀ {A : Type a} {x : A} {y} →
(∣ singleton x ∪ y ∣≡ zero) ≡ (x ∈ y × ∣ y ∣≡ zero ⊎ ⊥)
_ = refl _
_ : (∣ singleton x ∪ y ∣≡ suc n) ≡
(x ∈ y × ∣ y ∣≡ suc n ⊎ ¬ x ∈ y × ∣ y ∣≡ n)
_ = refl _
-- The size predicate is functional.
∣∣≡-functional :
(x : Finite-subset-of A) → ∣ x ∣≡ m → ∣ x ∣≡ n → m ≡ n
∣∣≡-functional = L.∣∣≡-functional ∘ _≃_.from Listed≃Kuratowski
-- If truncated equality is decidable, then one can compute the size
-- of a finite subset.
size :
((x y : A) → Dec ∥ x ≡ y ∥) →
(x : Finite-subset-of A) → ∃ λ n → ∣ x ∣≡ n
size equal? = L.size equal? ∘ _≃_.from Listed≃Kuratowski
| {
"alphanum_fraction": 0.4558053846,
"avg_line_length": 30.5409207161,
"ext": "agda",
"hexsha": "0e1af70fc12820388e59a4a026d8f4cad4d8f449",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Finite-subset/Kuratowski.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Finite-subset/Kuratowski.agda",
"max_line_length": 114,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Finite-subset/Kuratowski.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 9853,
"size": 23883
} |
data ⊤ : Set where
tt : ⊤
data Identity (t : Set) : Set where
MkIdentity : t → Identity t
let-example : Identity ⊤
let-example =
let x = tt
in MkIdentity x -- Parse error
do-example : Identity ⊤
do-example = do
MkIdentity tt
where
x : ⊤
x = tt
| {
"alphanum_fraction": 0.598540146,
"avg_line_length": 14.4210526316,
"ext": "agda",
"hexsha": "bbba817fd08f476f6b655ff30951f8163b39867e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3046.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3046.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3046.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 274
} |
{-# OPTIONS --cubical --safe --guardedness #-}
module Data.PolyP where
open import Data.PolyP.RecursionSchemes public
open import Data.PolyP.Universe public
open import Data.PolyP.Composition public
open import Data.PolyP.Types public
open import Data.PolyP.Currying public
| {
"alphanum_fraction": 0.8043478261,
"avg_line_length": 27.6,
"ext": "agda",
"hexsha": "d11eb8b81cf384ae34c64b65f925297ed90da28a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/PolyP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/PolyP.agda",
"max_line_length": 46,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/PolyP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 71,
"size": 276
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal
module Categories.Category.Monoidal.Symmetric {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Morphism C
open import Categories.Category.Monoidal.Braided M
open Category C
open Commutation
private
variable
X Y Z : Obj
-- symmetric monoidal category
-- commutative braided monoidal category
record Symmetric : Set (levelOfTerm M) where
field
braided : Braided
module braided = Braided braided
open braided public
private
B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X
B {X} {Y} = braiding.⇒.η (X , Y)
field
commutative : B {X} {Y} ∘ B {Y} {X} ≈ id
braided-iso : X ⊗₀ Y ≅ Y ⊗₀ X
braided-iso = record
{ from = B
; to = B
; iso = record
{ isoˡ = commutative
; isoʳ = commutative
}
}
| {
"alphanum_fraction": 0.6746411483,
"avg_line_length": 21.3265306122,
"ext": "agda",
"hexsha": "e5ee344bf09bb1849975f2f5358bc8330714bb1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-categories",
"max_forks_repo_path": "Categories/Category/Monoidal/Symmetric.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-categories",
"max_issues_repo_path": "Categories/Category/Monoidal/Symmetric.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "89d163f72caa7deeac9413f27bc1b4ed7f9e025b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-categories",
"max_stars_repo_path": "Categories/Category/Monoidal/Symmetric.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 328,
"size": 1045
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The type for booleans and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Bool.Base where
open import Data.Unit.Base using (⊤)
open import Data.Empty
open import Level using (Level)
private
variable
a : Level
A : Set a
------------------------------------------------------------------------
-- The boolean type
open import Agda.Builtin.Bool public
------------------------------------------------------------------------
-- Relations
infix 4 _≤_ _<_
data _≤_ : Bool → Bool → Set where
f≤t : false ≤ true
b≤b : ∀ {b} → b ≤ b
data _<_ : Bool → Bool → Set where
f<t : false < true
------------------------------------------------------------------------
-- Boolean operations
infixr 6 _∧_
infixr 5 _∨_ _xor_
not : Bool → Bool
not true = false
not false = true
_∧_ : Bool → Bool → Bool
true ∧ b = b
false ∧ b = false
_∨_ : Bool → Bool → Bool
true ∨ b = true
false ∨ b = b
_xor_ : Bool → Bool → Bool
true xor b = not b
false xor b = b
------------------------------------------------------------------------
-- Other operations
infix 0 if_then_else_
if_then_else_ : Bool → A → A → A
if true then t else f = t
if false then t else f = f
-- A function mapping true to an inhabited type and false to an empty
-- type.
T : Bool → Set
T true = ⊤
T false = ⊥
| {
"alphanum_fraction": 0.4510067114,
"avg_line_length": 19.8666666667,
"ext": "agda",
"hexsha": "ee641de78fa6e7492a72186effb413788b00b83d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Bool/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Bool/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Bool/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 365,
"size": 1490
} |
-- {-# OPTIONS --verbose tc.conv.term:40 #-}
-- {-# OPTIONS --verbose tc.conv.level:40 #-}
-- {-# OPTIONS --verbose tc.conv.atom:50 #-}
-- {-# OPTIONS --verbose tc.conv.elim:50 #-}
module Issue680-NeutralLevels where
open import Common.Level
postulate N : Set
A : N → Set
B : Set
level' : B → Level
lac : ∀ {n} → A n → B
I : Level → Level → Set
refl : ∀ {l : Level} → I l l
Top : Set
top : Top
data Test : Set where
mkTest : (n : N) → (tel : A n) → Test
test : Test → Top
test (mkTest n tel) = top
where
test′ : I (lsuc (level' (lac tel))) (lsuc (level' (lac tel)))
test′ = refl
| {
"alphanum_fraction": 0.5110782866,
"avg_line_length": 23.3448275862,
"ext": "agda",
"hexsha": "4cee9293890d051d30dbc061751429d7a0f51acb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue680-NeutralLevels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue680-NeutralLevels.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue680-NeutralLevels.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 209,
"size": 677
} |
module Stack where
open import Prelude public
-- Stacks, or snoc-lists.
data Stack (X : Set) : Set where
∅ : Stack X
_,_ : Stack X → X → Stack X
-- Stack membership, or de Bruijn indices.
module _ {X : Set} where
infix 3 _∈_
data _∈_ (A : X) : Stack X → Set where
top : ∀ {Γ} → A ∈ Γ , A
pop : ∀ {Γ B} → A ∈ Γ → A ∈ Γ , B
⌊_⌋∈ : ∀ {Γ A} → A ∈ Γ → Nat
⌊ top ⌋∈ = zero
⌊ pop i ⌋∈ = suc ⌊ i ⌋∈
i₀ : ∀ {Γ A} → A ∈ Γ , A
i₀ = top
i₁ : ∀ {Γ A B} → A ∈ Γ , A , B
i₁ = pop i₀
i₂ : ∀ {Γ A B C} → A ∈ Γ , A , B , C
i₂ = pop i₁
-- Stack inclusion, or order-preserving embeddings.
module _ {X : Set} where
infix 3 _⊆_
data _⊆_ : Stack X → Stack X → Set where
bot : ∀ {Γ} → ∅ ⊆ Γ
skip : ∀ {Γ Γ′ A} → Γ ⊆ Γ′ → Γ ⊆ Γ′ , A
keep : ∀ {Γ Γ′ A} → Γ ⊆ Γ′ → Γ , A ⊆ Γ′ , A
refl⊆ : ∀ {Γ} → Γ ⊆ Γ
refl⊆ {∅} = bot
refl⊆ {Γ , A} = keep refl⊆
trans⊆ : ∀ {Γ Γ′ Γ″} → Γ ⊆ Γ′ → Γ′ ⊆ Γ″ → Γ ⊆ Γ″
trans⊆ bot η′ = bot
trans⊆ η (skip η′) = skip (trans⊆ η η′)
trans⊆ (skip η) (keep η′) = skip (trans⊆ η η′)
trans⊆ (keep η) (keep η′) = keep (trans⊆ η η′)
weak⊆ : ∀ {Γ A} → Γ ⊆ Γ , A
weak⊆ = skip refl⊆
-- Monotonicity of stack membership with respect to stack inclusion.
module _ {X : Set} where
mono∈ : ∀ {Γ Γ′ : Stack X} {A} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′
mono∈ bot ()
mono∈ (skip η) i = pop (mono∈ η i)
mono∈ (keep η) top = top
mono∈ (keep η) (pop i) = pop (mono∈ η i)
-- Pairs of stacks.
infixl 4 _⁏_
record Stack² (X Y : Set) : Set where
constructor _⁏_
field
π₁ : Stack X
π₂ : Stack Y
open Stack² public
-- Stack pair inclusion.
module _ {X Y : Set} where
infix 3 _⊆²_
_⊆²_ : Stack² X Y → Stack² X Y → Set
Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ = Γ ⊆ Γ′ ∧ Δ ⊆ Δ′
refl⊆² : ∀ {Γ Δ} → Γ ⁏ Δ ⊆² Γ ⁏ Δ
refl⊆² = refl⊆ , refl⊆
trans⊆² : ∀ {Γ Γ′ Γ″ Δ Δ′ Δ″} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ′ ⁏ Δ′ ⊆² Γ″ ⁏ Δ″ → Γ ⁏ Δ ⊆² Γ″ ⁏ Δ″
trans⊆² (η , ρ) (η′ , ρ′) = trans⊆ η η′ , trans⊆ ρ ρ′
| {
"alphanum_fraction": 0.4691109995,
"avg_line_length": 21.6413043478,
"ext": "agda",
"hexsha": "28b5fea58fcca6b618a58d2c7d739b3f5eb4665e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/imla2017",
"max_forks_repo_path": "src/Stack.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/imla2017",
"max_issues_repo_path": "src/Stack.agda",
"max_line_length": 90,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/imla2017",
"max_stars_repo_path": "src/Stack.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-17T13:02:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-02-27T05:04:55.000Z",
"num_tokens": 1005,
"size": 1991
} |
{-# OPTIONS --safe --without-K #-}
module JVM.Prelude where
open import Level public hiding (zero) renaming (suc to sucℓ)
open import Function public using (case_of_; _∘_; id; const)
open import Data.List using (List; _∷_; []; [_]) public
open import Data.Unit using (⊤; tt) public
open import Data.Nat using (ℕ; suc; zero; _+_) public
open import Data.Sum using (inj₁; inj₂) renaming (_⊎_ to _⊕_)public
open import Data.Product public hiding (map; zip)
open import Relation.Unary hiding (_∈_; Empty) public
open import Relation.Binary.PropositionalEquality hiding ([_]) public
open import Relation.Ternary.Core public
open import Relation.Ternary.Structures public
| {
"alphanum_fraction": 0.752238806,
"avg_line_length": 37.2222222222,
"ext": "agda",
"hexsha": "f8e575d8089da31dd19101aecf0b1ca26852f4f4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Prelude.agda",
"max_line_length": 69,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 183,
"size": 670
} |
module Coverage where
infixr 40 _::_
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
data D : Set where
c1 : D -> D
c2 : D
c3 : D -> D -> D -> D
c4 : D -> D -> D
f : D -> D -> D -> D -> List D
f (c3 a (c1 b) (c1 c2)) (c1 (c1 c)) d (c1 (c1 (c1 e))) = a :: b :: c :: d :: e :: []
f (c3 (c4 c2 a) (c1 b) (c1 c)) d (c1 (c1 e)) (c1 (c1 (c1 f))) = a :: b :: c :: d :: e :: f :: []
f a b (c1 c) (c3 d (c1 e) (c1 f)) = a :: b :: c :: d :: e :: f :: []
f (c3 (c4 a c2) b (c1 c)) (c1 d) (c1 (c1 (c1 e))) (c1 (c1 (c1 f))) = a :: b :: c :: d :: e :: f :: []
-- f (c3 a (c1 b) c) (c1 (c1 (c1 d))) (c1 (c1 (c1 e))) f = a :: b :: c :: d :: e :: f :: []
-- f a b (c1 (c1 c)) (c1 (c1 (c1 c2))) = a :: b :: c :: []
f a b c d = a :: b :: c :: d :: []
| {
"alphanum_fraction": 0.3651612903,
"avg_line_length": 33.6956521739,
"ext": "agda",
"hexsha": "bc00f588a0c86f47d77c28c66ef70945a57a9103",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "benchmark/misc/Coverage.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "benchmark/misc/Coverage.agda",
"max_line_length": 101,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "benchmark/misc/Coverage.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 391,
"size": 775
} |
open import Data.Product using ( proj₁ ; proj₂ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; sym ; cong )
open import Relation.Unary using ( _⊆_ )
open import Web.Semantic.DL.ABox using ( ABox ; ⟨ABox⟩ ; Assertions )
open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind )
open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; bnodes ; _,_ )
open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ; iface )
open import Web.Semantic.DL.Category.Morphism using ( impl ; _≣_ ; _⊑_ ; _,_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a )
open import Web.Semantic.DL.Category.Wiring using
( wiring ; wires-≈ ; wires-≈⁻¹ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using
( Δ ; _⊨_≈_ ; ≈-refl ; ≈-refl′ ; ≈-trans )
open import Web.Semantic.Util using
( _∘_ ; False ; elim ; _⊕_⊕_ ; inode ; bnode ; enode )
module Web.Semantic.DL.Category.Properties.Composition.RespectsWiring
{Σ : Signature} {S T : TBox Σ} where
compose-resp-wiring : ∀ (A B C : Object S T) →
(f : IN B → IN A) →
(f✓ : Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) →
(g : IN C → IN B) →
(g✓ : Assertions (⟨ABox⟩ g (iface C)) ⊆ Assertions (iface B)) →
(h : IN C → IN A) →
(h✓ : Assertions (⟨ABox⟩ h (iface C)) ⊆ Assertions (iface A)) →
(∀ x → f (g x) ≡ h x) →
(wiring A B f f✓ ∙ wiring B C g g✓ ≣ wiring A C h h✓)
compose-resp-wiring A B C f f✓ g g✓ h h✓ fg≡h =
(LHS⊑RHS , RHS⊑LHS) where
LHS⊑RHS : wiring A B f f✓ ∙ wiring B C g g✓ ⊑ wiring A C h h✓
LHS⊑RHS I I⊨STA I⊨F = (elim , I⊨RHS) where
lemma : ∀ x → ⌊ I ⌋ ⊨ ind I (inode (h x)) ≈ ind I (enode x)
lemma x = ≈-trans ⌊ I ⌋
(≈-refl′ ⌊ I ⌋ (cong (ind I ∘ inode) (sym (fg≡h x))))
(≈-trans ⌊ I ⌋
(wires-≈ f (proj₂ (fin B) (g x))
(compose-left (wiring A B f f✓) (wiring B C g g✓) I I⊨F))
(wires-≈ g (proj₂ (fin C) x)
(compose-right (wiring A B f f✓) (wiring B C g g✓) I I⊨F)))
I⊨RHS : bnodes I elim ⊨a impl (wiring A C h h✓)
I⊨RHS = wires-≈⁻¹ h lemma (proj₁ (fin C))
RHS⊑LHS : wiring A C h h✓ ⊑ wiring A B f f✓ ∙ wiring B C g g✓
RHS⊑LHS I I⊨STA I⊨F = (i , I⊨LHS) where
i : (False ⊕ IN B ⊕ False) → Δ ⌊ I ⌋
i (inode ())
i (bnode y) = ind I (inode (f y))
i (enode ())
lemma : ∀ x → ⌊ I ⌋ ⊨ ind I (inode (f (g x))) ≈ ind I (enode x)
lemma x = ≈-trans ⌊ I ⌋
(≈-refl′ ⌊ I ⌋ (cong (ind I ∘ inode) (fg≡h x)))
(wires-≈ h (proj₂ (fin C) x) I⊨F)
I⊨LHS : bnodes I i ⊨a impl (wiring A B f f✓ ∙ wiring B C g g✓)
I⊨LHS = compose-resp-⊨a (wiring A B f f✓) (wiring B C g g✓) (bnodes I i)
(wires-≈⁻¹ f (λ x → ≈-refl ⌊ I ⌋) (proj₁ (fin B)))
(wires-≈⁻¹ g lemma (proj₁ (fin C)))
| {
"alphanum_fraction": 0.5801086219,
"avg_line_length": 43.3235294118,
"ext": "agda",
"hexsha": "18486bc200479d8da5769c7bd1616519d0f1bd7d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda",
"max_line_length": 79,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/RespectsWiring.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1289,
"size": 2946
} |
----------------------------------------------------------------------
-- Copyright: 2013, Jan Stolarek, Lodz University of Technology --
-- --
-- License: See LICENSE file in root of the repo --
-- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps --
-- --
-- Basic implementation of weight-biased leftist heap. No proofs --
-- and no dependent types. Uses a single-pass merging algorithm. --
-- --
-- Now we will modify our implementation by turning a two-pass --
-- merging algorithm into a single-pass one. We will do this by --
-- inlining makeT into merge. See [Single-pass merging algorithm] --
-- for a detailed description of new algorithm. Since merge --
-- function will be the only thing that changes we will not repeat --
-- singleton, findMin and deleteMin functions - they are exactly --
-- same as they were in case of two-pass merging algorithm. All --
-- data declaration also remain the same. We will focus our --
-- attention only on merging. --
----------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module SinglePassMerge.NoProofs where
open import Basics.Nat
open import Basics hiding (_≥_)
open import Sized
data Heap : {i : Size} → Set where
empty : {i : Size} → Heap {↑ i}
node : {i : Size} → Priority → Rank → Heap {i} → Heap {i} → Heap {↑ i}
-- Note [Single-pass merging algorithm]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- New single-pass merging algorithm is a straightfowrward derivation
-- from two-pass merge. We obtain this new algorithm by inlining calls
-- to makeT. This means that merge creates a new node instead of
-- delegating this task to makeT. The consequence of this is that
-- merge has two more cases now (a total of six). Base cases remain
-- unchanged (we use the same notation as in [Two-pass merging
-- algorithm]:
--
-- a) h1 is empty - return h2
--
-- b) h2 is empty - return h1
--
-- There are two more cases in the inductive part of merge definition:
--
-- c) priority p1 is higher than p2 AND rank of l1 is not smaller
-- than rank of r1 + h2 - p1 becomes the root, l1 becomes the
-- left child and result of merging r1 with h2 becomes the right
-- child child.
--
-- p1
-- / \
-- / \
-- l1 r1+h2
--
-- d) priority p1 is higher than p2 AND rank of r1 + h2 is not
-- smaller than rank of l1 - p1 becomes the root, result of
-- merging r1 with h2 becomes the left child and l1 becomes the
-- right child child.
--
-- p1
-- / \
-- / \
-- r1+h2 l1
--
-- e) priority p2 is higher than p1 AND rank of l2 is not smaller
-- rank of r2 + h1 - p2 becomes the root, l2 becomes the left
-- child and result of merging r2 with h1 becomes the right
-- child child.
--
-- p2
-- / \
-- / \
-- l2 r2+h1
--
-- f) priority p2 is higher than p1 AND rank of r2 + h1 is not
-- smaller than rank of l2 - p2 becomes the root, result of
-- merging r2 with h1 becomes the left child and l2 becomes the
-- right child child.
--
-- p2
-- / \
-- / \
-- r2+h1 l2
-- We still use a helper function to get rank of a node
rank : Heap → Nat
rank empty = zero
rank (node _ r _ _) = r
-- Note [Compacting merge]
-- ~~~~~~~~~~~~~~~~~~~~~~~
--
-- To make implementation of merge slighty shorter we check which
-- priority is higher and at the same time we compute relation between
-- ranks of new possible subtrees (l1, r1 + h2 and l2, r2 + h1).
-- Depending on result of comparing p1 with p2 we will only need to
-- know one of this relations:
--
-- 1) if priority p1 is higher than p2 then we need to know whether
-- l1 ≥ r1 + h2
--
-- 2) if priority p2 is higher than p1 then we need to know whether
-- l2 ≥ r2 + h1
--
-- Computing these relations at once allows us to reduce code
-- verbosity at the price of doing some extra computations. In a
-- practical application we would most likely prefer performance over
-- code readibility, but I believe that for demonstration purposes it
-- is better to have shorter code.
merge : {i j : Size} → Heap {i} → Heap {j} → Heap
merge empty h2 = h2 -- See [Single-pass merging algorithm]
merge h1 empty = h1
merge (node p1 w1 l1 r1) (node p2 w2 l2 r2)
with p1 < p2 -- See [Compacting merge]
| rank l1 ≥ rank r1 + w2
| rank l2 ≥ rank r2 + w1
merge (node p1 w1 l1 r1) (node p2 w2 l2 r2)
| true | true | _ = node p1 (w1 + w2) l1 (merge r1 (node p2 w2 l2 r2))
merge (node p1 w1 l1 r1) (node p2 w2 l2 r2)
| true | false | _ = node p1 (w1 + w2) (merge r1 (node p2 w2 l2 r2)) l1
merge (node p1 w1 l1 r1) (node p2 w2 l2 r2)
| false | _ | true = node p2 (w1 + w2) l2 (merge r2 (node p1 w1 l1 r1))
merge (node p1 w1 l1 r1) (node p2 w2 l2 r2)
| false | _ | false = node p2 (w1 + w2) (merge r2 (node p1 w1 l1 r1)) l2
| {
"alphanum_fraction": 0.5699168556,
"avg_line_length": 40.7076923077,
"ext": "agda",
"hexsha": "f482da2f8c37208acf91080fec289c835eb1a6b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_forks_repo_path": "src/SinglePassMerge/NoProofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_issues_repo_path": "src/SinglePassMerge/NoProofs.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps",
"max_stars_repo_path": "src/SinglePassMerge/NoProofs.agda",
"max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z",
"num_tokens": 1433,
"size": 5292
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.NeTypeEq where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Helper function for the same variable instance of a context have equal types.
varTypeEq′ : ∀ {n R T Γ} → n ∷ R ∈ Γ → n ∷ T ∈ Γ → R PE.≡ T
varTypeEq′ here here = PE.refl
varTypeEq′ (there n∷R) (there n∷T) rewrite varTypeEq′ n∷R n∷T = PE.refl
-- The same variable instance of a context have equal types.
varTypeEq : ∀ {x A B Γ} → Γ ⊢ A → Γ ⊢ B → x ∷ A ∈ Γ → x ∷ B ∈ Γ → Γ ⊢ A ≡ B
varTypeEq A B x∷A x∷B rewrite varTypeEq′ x∷A x∷B = refl A
-- The same neutral term have equal types.
neTypeEq : ∀ {t A B Γ} → Neutral t → Γ ⊢ t ∷ A → Γ ⊢ t ∷ B → Γ ⊢ A ≡ B
neTypeEq (var x) (var x₁ x₂) (var x₃ x₄) =
varTypeEq (syntacticTerm (var x₃ x₂)) (syntacticTerm (var x₃ x₄)) x₂ x₄
neTypeEq (∘ₙ neT) (t∷A ∘ⱼ t∷A₁) (t∷B ∘ⱼ t∷B₁) with neTypeEq neT t∷A t∷B
... | q = let w = proj₂ (injectivity q)
in substTypeEq w (refl t∷A₁)
neTypeEq (natrecₙ neT) (natrecⱼ x t∷A t∷A₁ t∷A₂) (natrecⱼ x₁ t∷B t∷B₁ t∷B₂) =
refl (substType x₁ t∷B₂)
neTypeEq x (conv t∷A x₁) t∷B = let q = neTypeEq x t∷A t∷B
in trans (sym x₁) q
neTypeEq x t∷A (conv t∷B x₃) = let q = neTypeEq x t∷A t∷B
in trans q x₃
| {
"alphanum_fraction": 0.6434668418,
"avg_line_length": 41.1621621622,
"ext": "agda",
"hexsha": "30526c6a3c2a469d2d990cffbdf8032961997fbb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 612,
"size": 1523
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Bouquet
open import homotopy.DisjointlyPointedSet
open import cohomology.Theory
module cohomology.DisjointlyPointedSet {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
open import cohomology.Bouquet OT
module _ (X : Ptd i)
(X-is-set : is-set (de⊙ X)) (X-sep : is-separable X)
(ac : has-choice 0 (de⊙ X) i) where
C-set : C 0 X ≃ᴳ Πᴳ (MinusPoint X) (λ _ → C2 0)
C-set = C-Bouquet-diag 0 (MinusPoint X) (MinusPoint-has-choice X-sep ac)
∘eᴳ C-emap 0 (Bouquet-⊙equiv-X X-sep)
module _ {n : ℤ} (n≠0 : n ≠ 0) (X : Ptd i)
(X-is-set : is-set (de⊙ X)) (X-sep : is-separable X)
(ac : has-choice 0 (de⊙ X) i) where
abstract
C-set-≠-is-trivial : is-trivialᴳ (C n X)
C-set-≠-is-trivial = iso-preserves'-trivial
(C-emap n (Bouquet-⊙equiv-X X-sep))
(C-Bouquet-≠-is-trivial n (MinusPoint X) 0 n≠0 (MinusPoint-has-choice X-sep ac))
| {
"alphanum_fraction": 0.6302349336,
"avg_line_length": 32.6333333333,
"ext": "agda",
"hexsha": "af02bce1308d0c09c318e2de40088f5229d08cd5",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_line_length": 88,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 390,
"size": 979
} |
module tests.Forcing3 where
open import Prelude.Nat
-- {-
open import Prelude.IO
open import Prelude.Product
open import Prelude.Unit
-- -}
data _**_ (A B : Set) : Set where
_,_ : A -> B -> A ** B
data P {A B : Set} : A ** B -> Set where
_,_ : (x : A)(y : B) -> P (x , y)
data Q {A : Set} : A ** A -> Set where
[_] : (x : A) -> Q (x , x)
test : let t : Set
t = (Nat ** Nat) ** Nat
in (q : t ** t) -> Q q -> Nat
test ._ [ ( Z , Z ) , Z ] = Z
test ._ [ ( Z , S l) , m ] = S l + m
test ._ [ ( S Z , Z) , m ] = S m
test ._ [ ( S Z , S l) , m ] = S Z + m + l
test ._ [ ( S (S n) , l) , m ] = S (S n) + m + l
test ._ [ ( n , l ) , m ] = m
-- {-
main : IO Unit
main = let tTyp : Set
tTyp = (Nat ** Nat) ** Nat
t0 : tTyp
t0 = (0 , 0) , 0
t1 : tTyp
t1 = ( 0 , 1 ) , 2
t2 : tTyp
t2 = ( 1 , 0 ) , 3
t3 : tTyp
t3 = ( 1 , 4 ) , 5
t4 : tTyp
t4 = ( 3 , 2 ) , 10
t5 : tTyp
t5 = ( 0 , 0 ) , 4
pn : tTyp -> IO Unit
pn t = printNat (test (t , t) [ t ])
in pn t0 ,, -- 0
pn t1 ,, -- 3
pn t2 ,, -- 4
pn t3 ,, -- 9
pn t4 ,, -- 15
pn t5 ,, -- 4
return unit
-- -}
| {
"alphanum_fraction": 0.3470149254,
"avg_line_length": 23.9285714286,
"ext": "agda",
"hexsha": "14d3caa7239066f21c5f4646e0fd4717e50e6ffb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/epic/tests/Forcing3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/epic/tests/Forcing3.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/epic/tests/Forcing3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 534,
"size": 1340
} |
module Structure.Relator where
import Lvl
open import Functional using (_∘₂_)
open import Functional.Dependent
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Structure.Relator.Names
open import Structure.Relator.Properties
open import Syntax.Function
open import Type
-- TODO: It seems possible to define UnaryRelator as a special case of Function, so let's do that
private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ : Lvl.Level
module Names where
module _ {A : Type{ℓₒ}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ (P : A → Stmt{ℓₗ₂}) where
Substitution₁ = ∀{x y : A} → (x ≡ y) → P(x) → P(y)
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (_▫_ : A → B → Stmt{ℓₗ₃}) where
Substitution₂ = ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (x₁ ▫ x₂) → (y₁ ▫ y₂)
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₗ₃}(C) ⦄ (_▫_▫_ : A → B → C → Stmt{ℓₗ₄}) where
Substitution₃ = ∀{x₁ y₁ : A}{x₂ y₂ : B}{x₃ y₃ : C} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (x₃ ≡ y₃) → (x₁ ▫ x₂ ▫ x₃) → (y₁ ▫ y₂ ▫ y₃)
-- The unary relator `P` "(behaves like)/is a relator" in the context of `_≡_` from the Equiv instance.
module _ {A : Type{ℓₒ}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ (P : A → Stmt{ℓₗ₂}) where
record UnaryRelator : Stmt{ℓₒ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field
substitution : Names.Substitution₁(P)
substitution-sym : ∀{x y : A} → (x ≡ y) → P(x) ← P(y)
substitution-sym = substitution ∘ Structure.Relator.Properties.symmetry(_≡_)
substitution-equivalence : ∀{x y : A} → (x ≡ y) → (P(x) ↔ P(y))
substitution-equivalence xy = [↔]-intro (substitution-sym xy) (substitution xy)
substitute₁ₗ = inst-fn UnaryRelator.substitution-sym
substitute₁ᵣ = inst-fn UnaryRelator.substitution
substitute₁ₗᵣ = inst-fn UnaryRelator.substitution-equivalence
substitute₁ = substitute₁ᵣ
unaryRelator = resolve UnaryRelator
-- The binary relator `_▫_` "(behaves like)/is a relator" in the context of `_≡_` from the Equiv instance.
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (_▫_ : A → B → Stmt{ℓₗ₃}) where
open Structure.Relator.Properties
record BinaryRelator : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where
constructor intro
field
substitution : Names.Substitution₂(_▫_)
left : ∀{x} → UnaryRelator(_▫ x)
left = intro(\p → substitution p (reflexivity(_≡_)))
right : ∀{x} → UnaryRelator(x ▫_)
right = intro(\p → substitution (reflexivity(_≡_)) p)
substitutionₗ = \{a x y} → UnaryRelator.substitution(left {a}) {x}{y}
substitutionᵣ = \{a x y} → UnaryRelator.substitution(right{a}) {x}{y}
substitution-sym : ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → ((x₁ ▫ x₂) ← (y₁ ▫ y₂))
substitution-sym xy1 xy2 = substitution (Structure.Relator.Properties.symmetry(_≡_) xy1) (Structure.Relator.Properties.symmetry(_≡_) xy2)
substitution-equivalence : ∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → ((x₁ ▫ x₂) ↔ (y₁ ▫ y₂))
substitution-equivalence xy1 xy2 = [↔]-intro (substitution-sym xy1 xy2) (substitution xy1 xy2)
substitute₂ = inst-fn BinaryRelator.substitution
substitute₂ₗ = inst-fn BinaryRelator.substitutionₗ
substitute₂ᵣ = inst-fn BinaryRelator.substitutionᵣ
substitute₂ₗᵣ = inst-fn BinaryRelator.substitution-equivalence
binaryRelator = resolve BinaryRelator
module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₗ₃}(C) ⦄ (_▫_▫_ : A → B → C → Stmt{ℓₗ₄}) where
open Structure.Relator.Properties
record TrinaryRelator : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₒ₃ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓₗ₄} where
constructor intro
field
substitution : Names.Substitution₃(_▫_▫_)
unary₁ : ∀{y z} → UnaryRelator(_▫ y ▫ z)
unary₁ = intro(\p → substitution p (reflexivity(_≡_)) (reflexivity(_≡_)))
unary₂ : ∀{x z} → UnaryRelator(x ▫_▫ z)
unary₂ = intro(\p → substitution (reflexivity(_≡_)) p (reflexivity(_≡_)))
unary₃ : ∀{x y} → UnaryRelator(x ▫ y ▫_)
unary₃ = intro(\p → substitution (reflexivity(_≡_)) (reflexivity(_≡_)) p)
binary₁₂ : ∀{z} → BinaryRelator(_▫_▫ z)
binary₁₂ = intro(\p q → substitution p q (reflexivity(_≡_)))
binary₁₃ : ∀{y} → BinaryRelator(_▫ y ▫_)
binary₁₃ = intro(\p q → substitution p (reflexivity(_≡_)) q)
binary₂₃ : ∀{x} → BinaryRelator(x ▫_▫_)
binary₂₃ = intro(\p q → substitution (reflexivity(_≡_)) p q)
substitution-unary₁ = \{a b x y} → UnaryRelator.substitution(unary₁ {a}{b}) {x}{y}
substitution-unary₂ = \{a b x y} → UnaryRelator.substitution(unary₂ {a}{b}) {x}{y}
substitution-unary₃ = \{a b x y} → UnaryRelator.substitution(unary₃ {a}{b}) {x}{y}
substitution-binary₁₂ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₁₂ {a}) {x₁}{x₂}{y₁}{y₂}
substitution-binary₁₃ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₁₃ {a}) {x₁}{x₂}{y₁}{y₂}
substitution-binary₂₃ = \{a x₁ x₂ y₁ y₂} → BinaryRelator.substitution(binary₂₃ {a}) {x₁}{x₂}{y₁}{y₂}
substitute₃ = inst-fn TrinaryRelator.substitution
substitute₃-unary₁ = inst-fn TrinaryRelator.substitution-unary₁
substitute₃-unary₂ = inst-fn TrinaryRelator.substitution-unary₂
substitute₃-unary₃ = inst-fn TrinaryRelator.substitution-unary₃
substitute₃-binary₁₂ = inst-fn TrinaryRelator.substitution-binary₁₂
substitute₃-binary₁₃ = inst-fn TrinaryRelator.substitution-binary₁₃
substitute₃-binary₂₃ = inst-fn TrinaryRelator.substitution-binary₂₃
trinaryRelator = resolve TrinaryRelator
| {
"alphanum_fraction": 0.6631616468,
"avg_line_length": 55.0098039216,
"ext": "agda",
"hexsha": "fb0651903caa0db4f8c81582593324d595354821",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator.agda",
"max_line_length": 162,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2368,
"size": 5611
} |
module IID-Proof-Test where
open import LF
open import Identity
open import IID
open import IIDr
open import DefinitionalEquality
open import IID-Proof-Setup
η : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> Args γ U
η (ι i) U _ = ★
η (σ A γ) U a = < a₀ | η (γ a₀) U a₁ >
where
a₀ = π₀ a
a₁ = π₁ a
η (δ A i γ) U a = < a₀ | η γ U a₁ >
where
a₀ = π₀ a
a₁ = π₁ a
r←→gArgs-equal :
{I : Set}(γ : OPg I)(U : I -> Set)
(i : I)(a : Args (ε γ i) U) ->
_==_ {I × \i -> Args (ε γ i) U}
< index γ U (r→gArgs γ U i a) |
g→rArgs γ U (r→gArgs γ U i a)
> < i | a >
r←→gArgs-equal {I} (ι i) U j < p | ★ > = elim== i (\k q -> _==_ {I × \k -> Args (ε (ι i) k) U}
< i | < refl | ★ > >
< k | < q | ★ > >
) refl j p
r←→gArgs-equal {I} (σ A γ) U j < a | b > = cong f ih
where ih = r←→gArgs-equal (γ a) U j b
f : (I × \i -> Args (ε (γ a) i) U) -> (I × \i -> Args (ε (σ A γ) i) U)
f < k | q > = < k | < a | q > >
r←→gArgs-equal {I} (δ H i γ) U j < g | b > = cong f ih
where ih = r←→gArgs-equal γ U j b
f : (I × \k -> Args (ε γ k) U) -> (I × \k -> Args (ε (δ H i γ) k) U)
f < k | q > = < k | < g | q > >
{-
r←→gArgs-subst-identity' :
{I : Set}(γ : OPg I) ->
(\(U : I -> Set)(C : (i : I) -> rArgs (ε γ) U i -> Set)
(a : Args γ U)(h : C (index γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
(g→rArgs γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
) -> r←→gArgs-subst γ U C (index γ U (η γ U a)) (g→rArgs γ U (η γ U a)) h
) ==¹
(\(U : I -> Set)(C : (i : I) -> rArgs (ε γ) U i -> Set)
(a : Args γ U)(h : C (index γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
(g→rArgs γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
) -> h
)
r←→gArgs-subst-identity' (ι i) = refl¹
r←→gArgs-subst-identity' (σ A γ) = ?
r←→gArgs-subst-identity' (δ A i γ) = subst¹ (\ ∙ -> f ∙ ==¹ f (\U C a h -> h))
(r←→gArgs-subst-identity' γ) ?
where
ih = r←→gArgs-subst-identity' γ
f = \g U C a h -> g U (\i c -> C i < π₀ a | c >) (π₁ a) h
-}
| {
"alphanum_fraction": 0.4525512637,
"avg_line_length": 32.765625,
"ext": "agda",
"hexsha": "2a5d335fdfc032160cc30defcf967f90c352fb38",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Test.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 984,
"size": 2097
} |
module Nat where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
| {
"alphanum_fraction": 0.6081081081,
"avg_line_length": 9.25,
"ext": "agda",
"hexsha": "c1b27f0a4c3f2c9f21fc17bea7cd6b300675f44d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Nat.agda",
"max_line_length": 20,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 24,
"size": 74
} |
{-# OPTIONS --allow-unsolved-metas #-}
module StateSizedIO.GUI.BaseStateDependent where
open import Size renaming (Size to AgdaSize)
open import NativeIO
open import Function
open import Agda.Primitive
open import Level using (_⊔_) renaming (suc to lsuc)
open import Data.Product
open import Relation.Binary.PropositionalEquality
record IOInterfaceˢ {γ ρ μ} : Set (lsuc (γ ⊔ ρ ⊔ μ )) where
field
Stateˢ : Set γ
Commandˢ : Stateˢ → Set ρ
Responseˢ : (s : Stateˢ) → Commandˢ s → Set μ
nextˢ : (s : Stateˢ) → (c : Commandˢ s) → Responseˢ s c → Stateˢ
open IOInterfaceˢ public
module _ {γ ρ μ}(i : IOInterfaceˢ {γ} {ρ} {μ} )
(let S = Stateˢ i) (let C = Commandˢ i)
(let R = Responseˢ i) (let next = nextˢ i)
where
mutual
record IOˢ {α} (i : AgdaSize) (A : S → Set α) (s : S) : Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ )) where
coinductive
constructor delay
field
forceˢ : {j : Size< i} → IOˢ' j A s
data IOˢ' {α} (i : AgdaSize) (A : S → Set α) : S → Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ )) where
doˢ' : {s : S} → (c : C s) → (f : (r : R s c) → IOˢ i A (next s c r) )
→ IOˢ' i A s
returnˢ' : {s : S} → (a : A s) → IOˢ' i A s
data IOˢ+ {α} (i : AgdaSize) (A : S → Set α ) : S → Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ )) where
doˢ' : {s : S} → (c : C s) (f : (r : R s c) → IOˢ i A (next s c r))
→ IOˢ+ i A s
IOₚˢ : ∀{α}(i : AgdaSize)(A : Set α)(t t' : S) → Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ ))
IOₚˢ i A t t' = IOˢ i (λ s → s ≡ t' × A) t
IOₚˢ' : ∀{α}(i : AgdaSize)(A : Set α)(t t' : S) → Set (lsuc (α ⊔ γ ⊔ ρ ⊔ μ ))
IOₚˢ' i A t t' = IOˢ' i (λ s → s ≡ t' × A) t
IOₚsemiˢ : ∀{i}{α}{β}{A : Set α }{B : S → Set β}{t : S}
(t' : A → S) → Set (lsuc α ⊔ (lsuc μ ⊔ (lsuc ρ ⊔ lsuc γ)))
IOₚsemiˢ{i}{α}{β}{A}{B}{t} t' = IOˢ i (λ s → Σ[ a ∈ A ] (s ≡ t' a)) t
{-
Add also this later:
IO A t t' where t' : A -> S
Programs which start in t end with an a : A and a state t' a
IO A t t' = IO (lambda s.Sigma a : A. s = t' a) t
>== : (p : IO A t t') (f : (a : A) -> IO B (t' a) ) -> IO B a
-}
open IOˢ public
module _ {α γ ρ μ}{I : IOInterfaceˢ {γ} {ρ} {μ}}
(let S = Stateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let next = nextˢ I) where
returnˢ : ∀{i}{A : S → Set α} {s : S} (a : A s) → IOˢ I i A s
forceˢ (returnˢ a) = returnˢ' a
doˢ : ∀{i}{A : S → Set α}{s : S}
(c : C s)
(f : (r : R s c) → IOˢ I i A (next s c r))
→ IOˢ I i A s
forceˢ (doˢ c f) = doˢ' c f
module _ {α β γ ρ μ}{I : IOInterfaceˢ {γ} {ρ} {μ}}
(let S = Stateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let next = nextˢ I) where
mutual -- TODO: check that next state is honored
fmapˢ : ∀ {i} → {A : S → Set α}{B : S → Set β}
(f : (s : S)(a : A s) → B s)
{s : S}
(p : (IOˢ I i A s))
→ IOˢ I i B s
fmapˢ f {s} p .forceˢ = fmapˢ' f {s} (p .forceˢ)
fmapˢ' : ∀ {i} → {A : S → Set α}{B : S → Set β}
(f : (s : S)(a : A s) → B s)
{s : S}
(p : (IOˢ' I i A s))
→ IOˢ' I i B s
fmapˢ' f {s} (doˢ' c g) = doˢ' c (λ r → fmapˢ f (g r))
fmapˢ' f {s} (returnˢ' a) = returnˢ' (f s a)
module _ {α γ ρ μ}{I : IOInterfaceˢ {γ} {ρ} {μ}}
(let S = Stateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let next = nextˢ I) where
delayˢ : ∀ {i}{A : S → Set α}{s : S} → IOˢ' I i A s → IOˢ I (↑ i) A s
delayˢ p .forceˢ = p
module _ {γ ρ μ}{I : IOInterfaceˢ {γ} {ρ} {μ}}
(let S = Stateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let next = nextˢ I) where
mutual
_>>=ˢ'_ : ∀{i α β}{A : S → Set α}{B : S → Set β}{t : S}
(m : IOˢ' I i A t)
(f : (s : S)(a : A s) → IOˢ I (↑ i) B s)
→ IOˢ' I i B t
doˢ' c f >>=ˢ' k = doˢ' c λ x → f x >>=ˢ k
_>>=ˢ'_ {_} {_} {_} {_} {_} {t} (returnˢ' a) f = f t a .forceˢ
_>>=ˢ_ : ∀{i α β}{A : S → Set α}{B : S → Set β}{t : S}
(m : IOˢ I i A t)
(k : (s : S)(a : A s) → IOˢ I i B s)
→ IOˢ I i B t
forceˢ (m >>=ˢ k) = (forceˢ m) >>=ˢ' k
_>>=ₚˢ'_ : ∀{i}{α}{β}{A : Set α }{B : S → Set β}{t t' : S}
(p : IOˢ' I i (λ s → s ≡ t' × A) t)
(f : (a : A) → IOˢ I (↑ i) B t')
→ IOˢ' {γ} {ρ} {μ} I i B t
_>>=ₚˢ'_ {i} {α} {β} p f = p >>=ˢ' (λ s → λ {(refl , a) → f a})
_>>=ₚˢ_ : ∀{i}{α}{β}{A : Set α }{B : S → Set β}{t t' : S}
(p : IOˢ I i (λ s → s ≡ t' × A) t)
(f : (a : A) → IOˢ I (↑ i) B t')
→ IOˢ I i B t
_>>=ₚˢ_ {i} {α} {β} p f = p >>=ˢ (λ s → λ {(refl , a) → f a})
_>>=ₚsemiˢ_ : ∀{i}{α}{β}{A : Set α }{B : S → Set β}{t : S}
{t' : A → S}
-- IOs starts in t, returns a, and ends in a state t' a:
(p : IOˢ I i (λ s → Σ[ a ∈ A ] (s ≡ t' a)) t)
(f : (a : A) → IOˢ I (↑ i) B (t' a))
→ IOˢ I i B t
_>>=ₚsemiˢ_ {i} {α} {β}{A}{B}{t}{t'} p f = p >>=ˢ f'
module aux where
f' : (s : Stateˢ I) → Σ[ a ∈ A ] (s ≡ t' a) → IOˢ I i B s
f' .(t' a) (a , refl) = f a
module _ {γ ρ}{I : IOInterfaceˢ {γ} {ρ} {lzero}}
(let S = Stateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let next = nextˢ I) where
{-# NON_TERMINATING #-}
translateIOˢ : ∀{A : Set }{s : S}
→ (translateLocal : (s : S) → (c : C s) → NativeIO (R s c))
→ IOˢ I ∞ (λ s → A) s
→ NativeIO A
translateIOˢ {A} {s} translateLocal p = case (forceˢ p {_}) of
λ{ (doˢ' {.s} c f) → (translateLocal s c) native>>= λ r →
translateIOˢ translateLocal (f r)
; (returnˢ' a) → nativeReturn a
}
| {
"alphanum_fraction": 0.4127868852,
"avg_line_length": 35.0574712644,
"ext": "agda",
"hexsha": "c41131f3e8508e06ad460f1a67c9cdc78be05eed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/StateSizedIO/GUI/BaseStateDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/StateSizedIO/GUI/BaseStateDependent.agda",
"max_line_length": 96,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "src/StateSizedIO/GUI/BaseStateDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 2657,
"size": 6100
} |
{-# OPTIONS --cubical --safe #-}
module Control.Monad.Levels.Definition where
open import Prelude
open import Data.Bag
data Levels (A : Type a) : Type a where
_∷_ : ⟅ A ⟆ → Levels A → Levels A
[] : Levels A
trail : [] ∷ [] ≡ []
trunc : isSet (Levels A)
| {
"alphanum_fraction": 0.6127819549,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "2d7aa2b9aa6ce0e1d2775a44f746c0ee511a803a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/Levels/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/Levels/Definition.agda",
"max_line_length": 44,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/Levels/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 85,
"size": 266
} |
module Issue474 where
open import Common.Level
postulate
a b c : Level
A : Set a
B : Set b
C : Set c
data Foo : Set (lsuc lzero ⊔ (a ⊔ (b ⊔ c))) where
foo : (Set → A → B) → Foo
| {
"alphanum_fraction": 0.5759162304,
"avg_line_length": 13.6428571429,
"ext": "agda",
"hexsha": "ee3ee60e39aed5cc7dea7ae0e9fef6cfd3b97691",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue474.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue474.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue474.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 75,
"size": 191
} |
{-# OPTIONS --without-K --safe #-}
-- A cartesian functor preserves products (of cartesian categories)
module Categories.Functor.Cartesian where
open import Level
open import Categories.Category.Cartesian.Structure
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Properties
import Categories.Object.Product as P
import Categories.Object.Terminal as ⊤
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e o′ ℓ′ e′ : Level
record IsCartesianF (C : CartesianCategory o ℓ e) (D : CartesianCategory o′ ℓ′ e′)
(F : Functor (CartesianCategory.U C) (CartesianCategory.U D)) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = CartesianCategory C
module D = CartesianCategory D
open P D.U
open ⊤ D.U
open M D.U
open Functor F
field
F-resp-⊤ : IsTerminal (F₀ C.⊤)
F-resp-× : ∀ {A B} → IsProduct {P = F₀ (A C.× B)} (F₁ C.π₁) (F₁ C.π₂)
module F-resp-⊤ = IsTerminal F-resp-⊤
module F-resp-× {A B} = IsProduct (F-resp-× {A} {B})
F-prod : ∀ A B → Product (F₀ A) (F₀ B)
F-prod _ _ = IsProduct⇒Product F-resp-×
module F-prod A B = Product (F-prod A B)
F-resp-⟨⟩ : ∀ {A B X} → (f : X C.⇒ A) (g : X C.⇒ B) → D.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩ D.∘ F₁ C.⟨ f , g ⟩ D.≈ D.⟨ F₁ f , F₁ g ⟩
F-resp-⟨⟩ f g = begin
D.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩ D.∘ F₁ C.⟨ f , g ⟩ ≈⟨ D.⟨⟩∘ ⟩
D.⟨ F₁ C.π₁ D.∘ F₁ C.⟨ f , g ⟩ , F₁ C.π₂ D.∘ F₁ C.⟨ f , g ⟩ ⟩ ≈⟨ D.⟨⟩-cong₂ ([ F ]-resp-∘ C.project₁) ([ F ]-resp-∘ C.project₂) ⟩
D.⟨ F₁ f , F₁ g ⟩ ∎
where open D.HomReasoning
⊤-iso : F₀ C.⊤ ≅ D.⊤
⊤-iso = ⊤.up-to-iso D.U (record { ⊤-is-terminal = F-resp-⊤ }) D.terminal
module ⊤-iso = _≅_ ⊤-iso
×-iso : ∀ A B → F₀ (A C.× B) ≅ F₀ A D.× F₀ B
×-iso A B = record
{ from = D.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩
; to = F-resp-×.⟨ D.π₁ , D.π₂ ⟩
; iso = record
{ isoˡ = begin
F-resp-×.⟨ D.π₁ , D.π₂ ⟩ D.∘ D.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩ ≈⟨ [ F-prod A B ]⟨⟩∘ ⟩
F-resp-×.⟨ D.π₁ D.∘ _ , D.π₂ D.∘ _ ⟩ ≈⟨ F-prod.⟨⟩-cong₂ A B D.project₁ D.project₂ ⟩
F-resp-×.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩ ≈⟨ F-prod.η A B ⟩
D.id ∎
; isoʳ = begin
D.⟨ F₁ C.π₁ , F₁ C.π₂ ⟩ D.∘ F-resp-×.⟨ D.π₁ , D.π₂ ⟩ ≈⟨ D.⟨⟩∘ ⟩
D.⟨ F₁ C.π₁ D.∘ _ , F₁ C.π₂ D.∘ _ ⟩ ≈⟨ D.⟨⟩-cong₂ (F-prod.project₁ A B) (F-prod.project₂ A B) ⟩
D.⟨ D.π₁ , D.π₂ ⟩ ≈⟨ D.η ⟩
D.id ∎
}
}
where open D.HomReasoning
module ×-iso A B = _≅_ (×-iso A B)
F-resp-⟨⟩′ : ∀ {A B X} → (f : X C.⇒ A) (g : X C.⇒ B) → F₁ C.⟨ f , g ⟩ D.≈ F-resp-×.⟨ F₁ f , F₁ g ⟩
F-resp-⟨⟩′ f g = begin
F₁ C.⟨ f , g ⟩ ≈⟨ switch-fromtoˡ (×-iso _ _) (F-resp-⟨⟩ f g) ⟩
×-iso.to _ _ D.∘ D.⟨ F₁ f , F₁ g ⟩ ≈⟨ ([ F-prod _ _ ]⟨⟩∘ ○ F-prod.⟨⟩-cong₂ _ _ D.project₁ D.project₂) ⟩
F-resp-×.⟨ F₁ f , F₁ g ⟩ ∎
where open MR D.U
open D.HomReasoning
record CartesianF (C : CartesianCategory o ℓ e) (D : CartesianCategory o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = CartesianCategory C
module D = CartesianCategory D
field
F : Functor C.U D.U
isCartesian : IsCartesianF C D F
open Functor F public
open IsCartesianF isCartesian public
| {
"alphanum_fraction": 0.4951093211,
"avg_line_length": 36.5894736842,
"ext": "agda",
"hexsha": "6ffcf6a08c2336ec3bae291649fa4d97fec6d94d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_line_length": 133,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1555,
"size": 3476
} |
module Text.Greek.Bible where
open import Data.Nat
open import Data.List
open import Data.String
open import Text.Greek.Script
data Word : Set where
word : (List Token) → String → Word
| {
"alphanum_fraction": 0.7619047619,
"avg_line_length": 18.9,
"ext": "agda",
"hexsha": "0bd01c9eea94a2fa87cc7db884a1d2eba3349bcd",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/Bible.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/Bible.agda",
"max_line_length": 37,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/Bible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 49,
"size": 189
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Homomorphisms.Definition
open import Groups.QuotientGroup.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Actions.Definition
open import Sets.EquivalenceRelations
module Groups.SymmetricGroups.Lemmas where
trivialAction : {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A → A → A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) → GroupAction G X
trivialAction G X = record { action = λ _ x → x ; actionWellDefined1 = λ _ → reflexive ; actionWellDefined2 = λ wd1 → wd1 ; identityAction = reflexive ; associativeAction = reflexive }
where
open Setoid X renaming (eq to setoidEq)
open Equivalence (Setoid.eq X)
leftRegularAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) → GroupAction G S
GroupAction.action (leftRegularAction {_·_ = _·_} G) g h = g · h
where
open Group G
GroupAction.actionWellDefined1 (leftRegularAction {S = S} G) eq1 = +WellDefined eq1 reflexive
where
open Group G
open Setoid S renaming (eq to setoidEq)
open Equivalence setoidEq
GroupAction.actionWellDefined2 (leftRegularAction {S = S} G) {g} {x} {y} eq1 = +WellDefined reflexive eq1
where
open Group G
open Setoid S
open Equivalence eq
GroupAction.identityAction (leftRegularAction G) = identLeft
where
open Group G
GroupAction.associativeAction (leftRegularAction {S = S} G) = symmetric +Associative
where
open Group G
open Setoid S
open Equivalence eq
conjugationAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} → (G : Group S _·_) → GroupAction G S
conjugationAction {S = S} {_·_ = _·_} G = record { action = λ g h → (g · h) · (inverse g) ; actionWellDefined1 = λ gh → +WellDefined (+WellDefined gh reflexive) (inverseWellDefined G gh) ; actionWellDefined2 = λ x~y → +WellDefined (+WellDefined reflexive x~y) reflexive ; identityAction = transitive (+WellDefined reflexive (invIdent G)) (transitive identRight identLeft) ; associativeAction = λ {x} {g} {h} → transitive (+WellDefined reflexive (invContravariant G)) (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (symmetric (+Associative)) (+WellDefined reflexive +Associative))) reflexive)) }
where
open Group G
open Setoid S
open Equivalence eq
conjugationNormalSubgroupAction : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_·A_ : A → A → A} {_·B_ : B → B → B} → (G : Group S _·A_) → (H : Group T _·B_) → {underF : A → B} (f : GroupHom G H underF) → GroupAction G (quotientGroupSetoid G f)
GroupAction.action (conjugationNormalSubgroupAction {_·A_ = _·A_} G H {f} fHom) a b = a ·A (b ·A (Group.inverse G a))
GroupAction.actionWellDefined1 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {g} {h} {x} g~h = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((g ·A (x ·A (inverse g))) ·A inverse (h ·A (x ·A inverse h))) ∼ Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.+WellDefined G g~h (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (inverseWellDefined G g~h))))) (imageOfIdentityIsIdentity fHom)
GroupAction.actionWellDefined2 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G H {f} fHom) {g} {x} {y} x~y = ans
where
open Group G
open Setoid T
open Equivalence (Setoid.eq S)
open Equivalence (Setoid.eq T) renaming (transitive to transitiveH ; symmetric to symmetricH ; reflexive to reflexiveH)
input : f (x ·A inverse y) ∼ Group.0G H
input = x~y
p1 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g))
p1 = Group.+WellDefined G reflexive (invContravariant G)
p2 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g)) ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g))
p2 = Group.+WellDefined G reflexive (Group.+WellDefined G (invContravariant G) reflexive)
p3 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g)) (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g))
p3 = symmetric (transitive (+WellDefined reflexive (symmetric +Associative)) +Associative)
p4 : Setoid._∼_ S (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g))
p4 = Group.+WellDefined G reflexive (Group.+WellDefined G (symmetric (transitive (+WellDefined reflexive (symmetric +Associative)) +Associative)) reflexive)
p5 : Setoid._∼_ S (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A (0G ·A inverse y)) ·A inverse g))
p5 = Group.+WellDefined G reflexive (Group.+WellDefined G (Group.+WellDefined G reflexive (Group.+WellDefined G invRight reflexive)) reflexive)
p6 : Setoid._∼_ S (g ·A ((x ·A (0G ·A inverse y)) ·A inverse g)) (g ·A ((x ·A inverse y) ·A inverse g))
p6 = Group.+WellDefined G reflexive (Group.+WellDefined G (Group.+WellDefined G reflexive identLeft) reflexive)
intermediate : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (g ·A ((x ·A inverse y) ·A inverse g))
intermediate = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 p6))))
p7 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ f (g ·A ((x ·A inverse y) ·A inverse g))
p7 = GroupHom.wellDefined fHom intermediate
p8 : f (g ·A ((x ·A inverse y) ·A inverse g)) ∼ (f g) ·B (f ((x ·A inverse y) ·A inverse g))
p8 = GroupHom.groupHom fHom
p9 : (f g) ·B (f ((x ·A inverse y) ·A inverse g)) ∼ (f g) ·B (f (x ·A inverse y) ·B f (inverse g))
p9 = Group.+WellDefined H reflexiveH (GroupHom.groupHom fHom)
p10 : (f g) ·B (f (x ·A inverse y) ·B f (inverse g)) ∼ (f g) ·B (Group.0G H ·B f (inverse g))
p10 = Group.+WellDefined H reflexiveH (Group.+WellDefined H input reflexiveH)
p11 : (f g) ·B (Group.0G H ·B f (inverse g)) ∼ (f g) ·B (f (inverse g))
p11 = Group.+WellDefined H reflexiveH (Group.identLeft H)
p12 : (f g) ·B (f (inverse g)) ∼ f (g ·A (inverse g))
p12 = symmetricH (GroupHom.groupHom fHom)
intermediate2 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ (f (g ·A (inverse g)))
intermediate2 = transitiveH p7 (transitiveH p8 (transitiveH p9 (transitiveH p10 (transitiveH p11 p12))))
ans : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ Group.0G H
ans = transitiveH intermediate2 (transitiveH (GroupHom.wellDefined fHom invRight) (imageOfIdentityIsIdentity fHom))
GroupAction.identityAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} = ans
where
open Group G
open Setoid S
open Setoid T renaming (_∼_ to _∼T_)
open Equivalence (Setoid.eq T)
i : Setoid._∼_ S (x ·A inverse 0G) x
i = Equivalence.transitive (Setoid.eq S) (+WellDefined (Equivalence.reflexive (Setoid.eq S)) (invIdent G)) identRight
h : 0G ·A (x ·A inverse 0G) ∼ x
h = Equivalence.transitive (Setoid.eq S) identLeft i
g : ((0G ·A (x ·A inverse 0G)) ·A inverse x) ∼ 0G
g = transferToRight'' G h
ans : f ((0G ·A (x ·A inverse 0G)) ·A Group.inverse G x) ∼T Group.0G H
ans = transitive (GroupHom.wellDefined fHom g) (imageOfIdentityIsIdentity fHom)
GroupAction.associativeAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} {g} {h} = ans
where
open Group G
open Setoid T renaming (_∼_ to _∼T_)
open Setoid S renaming (_∼_ to _∼S_)
open Equivalence (Setoid.eq T) renaming (transitive to transitiveH)
open Equivalence (Setoid.eq S) renaming (transitive to transitiveG ; symmetric to symmetricG ; reflexive to reflexiveG)
ans : f (((g ·A h) ·A (x ·A inverse (g ·A h))) ·A inverse ((g ·A ((h ·A (x ·A inverse h)) ·A inverse g)))) ∼T Group.0G H
ans = transitiveH (GroupHom.wellDefined fHom (transferToRight'' G (transitiveG (symmetricG +Associative) (Group.+WellDefined G reflexiveG (transitiveG (+WellDefined reflexiveG (transitiveG (+WellDefined reflexiveG (invContravariant G)) +Associative)) +Associative))))) (imageOfIdentityIsIdentity fHom)
| {
"alphanum_fraction": 0.6611842105,
"avg_line_length": 70.9333333333,
"ext": "agda",
"hexsha": "1ce845593e3ec3bb26039ecf3b14153bd0997cf1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/SymmetricGroups/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/SymmetricGroups/Lemmas.agda",
"max_line_length": 636,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/SymmetricGroups/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2964,
"size": 8512
} |
{-# OPTIONS --type-in-type #-}
module Primitive where
infixr 2 _,_
record Σ (A : Set)(B : A → Set) : Set where
constructor _,_
field fst : A
snd : B fst
open Σ
data ⊤ : Set where
tt : ⊤
∃ : {A : Set}(B : A → Set) → Set
∃ B = Σ _ B
infix 10 _≡_
data _≡_ {A : Set}(a : A) : {B : Set} → B → Set where
refl : a ≡ a
trans : ∀ {A B C}{a : A}{b : B}{c : C} → a ≡ b → b ≡ c → a ≡ c
trans refl p = p
sym : ∀ {A B}{a : A}{b : B} → a ≡ b → b ≡ a
sym refl = refl
resp : ∀ {A}{B : A → Set}{a a' : A} →
(f : (a : A) → B a) → a ≡ a' → f a ≡ f a'
resp f refl = refl
Cat : Set
Cat =
∃ λ (Obj : Set) →
∃ λ (Hom : Obj → Obj → Set) →
∃ λ (id : ∀ X → Hom X X) →
∃ λ (_○_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) →
∃ λ (idl : ∀ {X Y}{f : Hom X Y} → id Y ○ f ≡ f) →
∃ λ (idr : ∀ {X Y}{f : Hom X Y} → f ○ id X ≡ f) →
∃ λ (assoc : ∀ {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} →
(h ○ g) ○ f ≡ h ○ (g ○ f)) →
⊤
Obj : (C : Cat) → Set
Obj C = fst C
Hom : (C : Cat) → Obj C → Obj C → Set
Hom C = fst (snd C)
id : (C : Cat) → ∀ X → Hom C X X
id C = fst (snd (snd C))
comp : (C : Cat) → ∀ {X Y Z} → Hom C Y Z → Hom C X Y → Hom C X Z
comp C = fst (snd (snd (snd C)))
idl : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C (id C Y) f ≡ f
idl C = fst (snd (snd (snd (snd C))))
idr : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C f (id C X) ≡ f
idr C = fst (snd (snd (snd (snd (snd C)))))
assoc : (C : Cat) → ∀ {W X Y Z}{f : Hom C W X}{g : Hom C X Y}{h : Hom C Y Z} →
comp C (comp C h g) f ≡ comp C h (comp C g f)
assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
{-
record Functor (C D : Cat) : Set where
field Fun : Obj C → Obj D
map : ∀ {X Y} → (Hom C X Y) → Hom D (Fun X) (Fun Y)
mapid : ∀ {X} → map (id C X) ≡ id D (Fun X)
map○ : ∀ {X Y Z}{f : Hom C X Y}{g : Hom C Y Z} →
map (_○_ C g f) ≡ _○_ D (map g) (map f)
open Functor
idF : ∀ C → Functor C C
idF C = record {Fun = \x → x; map = \x → x; mapid = refl; map○ = refl}
_•_ : ∀ {C D E} → Functor D E → Functor C D → Functor C E
F • G = record {Fun = \X → Fun F (Fun G X);
map = \f → map F (map G f);
mapid = trans (resp (\x → map F x) (mapid G)) (mapid F);
map○ = trans (resp (\x → map F x) (map○ G)) (map○ F)}
record Nat {C D : Cat} (F G : Functor C D) : Set where
field η : (X : Obj C) → Hom D (Fun F X) (Fun G X)
law : {X Y : Obj C}{f : Hom C X Y} →
_○_ D (η Y) (map F f) ≡ _○_ D (map G f) (η X)
open Nat
_▪_ : ∀ {C D : Cat}{F G H : Functor C D} → Nat G H → Nat F G → Nat F H
_▪_ {D = D} A B =
record {
η = \X → _○_ D (η A X) (η B X);
law = \{X}{Y} →
trans (assoc D)
(trans (resp (\f → _○_ D (η A Y) f) (law B))
(trans (sym (assoc D))
(trans (resp (\g → _○_ D g (η B X)) (law A))
(assoc D))))
}
-}
| {
"alphanum_fraction": 0.4231686542,
"avg_line_length": 27.6886792453,
"ext": "agda",
"hexsha": "3330130fcf91ba62b2a67b9eb91de61758426137",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "benchmark/categories/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "benchmark/categories/Primitive.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "benchmark/categories/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1271,
"size": 2935
} |
module Categories.Equalizer where
| {
"alphanum_fraction": 0.8823529412,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "edd2d362b045d0e02cff2562b13495fa4d8eb9b7",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Equalizer.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Equalizer.agda",
"max_line_length": 33,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Equalizer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 6,
"size": 34
} |
open import Data.List
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product
open import Data.Bool
open import Function using (id; _∘_)
open import Algebra
open import Level using (Level; _⊔_)
module test where
variable
a b c ℓ c₂ ℓ₂ : Level
A : Set a
B : Set b
C : Set c
m n o p : ℕ
-- Vector representation
module Vector where
-- Inductive definition of a vector
data Vector (A : Set a) : (n : ℕ) → Set a where
[] : Vector A zero
_::_ : A → Vector A n → Vector A (suc n)
infixr 5 _::_
vecLength : Vector A n → ℕ
vecLength {n = n} v = n
headV : Vector A (suc n) → A
headV (x :: _) = x
tailV : Vector A (suc n) → Vector A n
tailV (_ :: xs) = xs
-- Matrices are defined as vector of vectors
Matrix : (A : Set a) → (m n : ℕ) → Set a
Matrix A m n = Vector (Vector A m) n
matLength : Matrix A m n → ℕ × ℕ
matLength {m = m} {n = n} mat = m , n
-- Some examples
v1 : Vector ℕ 4
v1 = 1 :: 3 :: 4 :: 5 :: []
m1 : Matrix ℕ 2 2
m1 = (1 :: 2 :: []) :: (3 :: 4 :: []) :: []
-- Some standard functions for working with vectors
zipV : (A → B → C) → (Vector A n → Vector B n → Vector C n)
zipV f [] [] = []
zipV f (x :: xs) (y :: ys) = f x y :: zipV f xs ys
mapV : (A → B) → Vector A n → Vector B n
mapV f [] = []
mapV f (x :: v) = f x :: mapV f v
replicateV : A → Vector A n
replicateV {n = zero} x = []
replicateV {n = suc n} x = x :: replicateV x
transpose : Matrix A m n → Matrix A n m
transpose [] = replicateV []
transpose (x :: xs) = ((zipV _::_) x) (transpose xs)
-- Pointwise equality on vectors (lifting _∼_ from elements to vectors)
data EqV {A : Set a} (_∼_ : A → A → Set c) :
∀ {m n} (xs : Vector A m) (ys : Vector A n) → Set (a ⊔ c)
where
eq-[] : EqV _∼_ [] []
eq-:: : ∀ {m n x y} {xs : Vector A m} {ys : Vector A n}
(x∼y : x ∼ y) (xs∼ys : EqV _∼_ xs ys) →
EqV _∼_ (x :: xs) (y :: ys)
-- Operations
module Operations (R : Ring c ℓ) where
open Ring R
open Vector
infixr 6 _+v_
infixr 7 _◁_ _◁ₘ_ _x_ _⊗_ _*m_
sumV : Vector Carrier n → Carrier
sumV {n = zero} v = 0#
sumV {n = suc n} (x :: xs) = x + sumV {n} xs
0v : Vector Carrier n
0v = replicateV 0#
0m : Matrix Carrier m n
0m = replicateV 0v
-- Vector addition
_+v_ : Vector Carrier n → Vector Carrier n → Vector Carrier n
_+v_ = zipV _+_
-- Scale vector
_◁_ : Carrier → Vector Carrier n → Vector Carrier n
c ◁ v = mapV (c *_) v
-- Dot product
_•_ : Vector Carrier n → Vector Carrier n → Carrier
u • v = sumV (zipV _*_ u v)
-- Cross
_x_ : Vector Carrier 3 → Vector Carrier 3 → Vector Carrier 3
(v1 :: v2 :: v3 :: []) x (u1 :: u2 :: u3 :: []) = (v2 * u3 + -(v3 * u2) ::
v3 * u1 + -(v1 * u3) ::
v1 * u2 + -(v2 * u1) :: [])
-- Outer product
_⊗_ : Vector Carrier m → Vector Carrier n → Matrix Carrier n m
_⊗_ [] ys = []
_⊗_ (x :: xs) ys = mapV (x *_) ys :: xs ⊗ ys
-- Scale matrix
_◁ₘ_ : Carrier → Matrix Carrier m n → Matrix Carrier m n
c ◁ₘ m = mapV (c ◁_) m
-- Add matrix/matrix
_+m_ : Matrix Carrier m n → Matrix Carrier m n → Matrix Carrier m n
_+m_ = zipV _+v_
-- Mul matrix/vector
_*mv_ : Matrix Carrier n m → Vector Carrier n → Vector Carrier m
[] *mv m = 0v
m *mv v = mapV (_• v) m
-- Mul matrix/matrix
_*m_ : {m n o : ℕ} → Matrix Carrier m n → Matrix Carrier m o → Matrix Carrier n o
_ *m [] = 0m
m1 *m m2 = mapV (m1 *mv_) m2
Sign = Carrier
altSumVHelp : Sign → Vector Carrier n → Carrier
altSumVHelp s [] = 0#
altSumVHelp s (x :: xs) = s * x + altSumVHelp (- s) xs
altSumV : Vector Carrier n → Carrier
altSumV = altSumVHelp 1# -- alternating sum: multiply every second term by minus one
-- submatricesStep : Matrix Carrier m (suc (suc n)) → Vector (Matrix Carrier m (suc n)) (suc (suc n))
submatricesStep : Matrix Carrier (suc (suc m)) n → Vector (Matrix Carrier (suc m) n) (suc (suc m))
-- submatrices : Matrix Carrier m (suc n) → Vector (Matrix Carrier m n) (suc n)
submatrices : Matrix Carrier (suc m) n → Vector (Matrix Carrier m n) (suc m)
submatrices {ℕ.zero} {n} ma = replicateV [] :: []
submatrices {suc m} {n} ma = submatricesStep ma
submatricesStep ma with mapV headV ma | mapV tailV ma
submatricesStep ma | heads | tails with submatrices tails
submatricesStep ma | heads | tails | rec = tails :: mapV (zipV _::_ heads) rec
-- Determinant
det : Matrix Carrier m m → Carrier
det [] = 1#
det (v :: m) = altSumV (zipV _*_ v (mapV det (submatrices m)))
module Property (a11 a12 a21 a22 : Carrier) where
m22 : Matrix Carrier 2 2
m22 = (a11 :: a12 :: []) :: (a21 :: a22 :: []) :: []
test : Carrier
test = det m22
-- Equality on our vectors is a lifted version of the
-- underlying equality of the ring of components.
_=v_ : Vector Carrier n → Vector Carrier m → Set (c ⊔ ℓ)
_=v_ = EqV _≈_
-- The equality type is basically just a vector of equality
-- proofs between pairs of corresponding elements.
-- Left and right proof of identity with vector addition
vectorAddIdentityˡ : ∀ {n} (v1 : Vector Carrier n) → (0v +v v1) =v v1
vectorAddIdentityˡ [] = eq-[]
vectorAddIdentityˡ (x1 :: v1) = eq-::(+-identityˡ x1) (vectorAddIdentityˡ v1)
vectorAddIdentityʳ : ∀ {n} (v1 : Vector Carrier n) → (v1 +v 0v) =v v1
vectorAddIdentityʳ [] = eq-[]
vectorAddIdentityʳ (x1 :: v1) = eq-::(+-identityʳ x1) (vectorAddIdentityʳ v1)
-- Vector addition is commutative (statement, and inductive proof)
vectorAddComm : ∀ {n} (v1 v2 : Vector Carrier n) →
(v1 +v v2) =v (v2 +v v1)
vectorAddComm [] [] = eq-[]
vectorAddComm (x1 :: v1) (x2 :: v2) =
eq-:: (+-comm x1 x2) (vectorAddComm v1 v2)
-- Vector addition is associative (statement, and inductive proof)
vectorAddAssoc : ∀ {n} (v1 v2 v3 : Vector Carrier n) →
((v1 +v v2) +v v3) =v (v1 +v (v2 +v v3))
vectorAddAssoc [] [] [] = eq-[]
vectorAddAssoc (x1 :: v1) (x2 :: v2) (x3 :: v3) =
eq-:: (+-assoc x1 x2 x3) (vectorAddAssoc v1 v2 v3)
dotComm : ∀ {n} (v1 v2 : Vector Carrier n) → (v1 • v2) ≈ (v2 • v1)
dotComm [] v2 = refl
dotComm (v1 :: vs) v2 = {!!} --hmmm
module Morphism (G : Group c ℓ) (H : Group c₂ ℓ₂) where
open Group G renaming (_∙_ to _*m_; ε to 0m)
open Group H renaming (_∙_ to _*_; ε to 0#)
-- show the determinant is a homomorphism
| {
"alphanum_fraction": 0.5005366246,
"avg_line_length": 35.1603773585,
"ext": "agda",
"hexsha": "9e5553c7d11bbd18d2aa102a38d855480bc44c6b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-02-02T18:02:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-02-02T18:02:43.000Z",
"max_forks_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DSLsofMath/BScProj2021",
"max_forks_repo_path": "agda/test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DSLsofMath/BScProj2021",
"max_issues_repo_path": "agda/test.agda",
"max_line_length": 109,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "87c0340515b0965454d9ba240ecc6de84b74ee0a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DSLsofMath/BScProj2021",
"max_stars_repo_path": "agda/test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-10T22:46:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-27T11:56:35.000Z",
"num_tokens": 2397,
"size": 7454
} |
module slots.imports where
open import Data.Nat public using (ℕ ; zero ; suc ; _+_ ; _*_)
open import Data.Fin public using (Fin ; zero ; suc ; #_)
open import Data.List public using (List ; [] ; _∷_)
open import Data.Vec public using (Vec ; [] ; _∷_)
open import Data.Product public using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Function public using (const ; _∘_ ; _$_ ; case_of_)
open import Relation.Nullary public using (Dec ; yes ; no)
open import Relation.Binary.PropositionalEquality public using (_≡_ ; refl)
module N = Data.Nat
module F = Data.Fin
module L = Data.List
module V = Data.Vec
module P = Data.Product
| {
"alphanum_fraction": 0.7088,
"avg_line_length": 36.7647058824,
"ext": "agda",
"hexsha": "bcde3326d6fb8bdacd1d0a231af25555cadd382c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/slots-agda",
"max_forks_repo_path": "src/slots/imports.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/slots-agda",
"max_issues_repo_path": "src/slots/imports.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/slots-agda",
"max_stars_repo_path": "src/slots/imports.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 176,
"size": 625
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Rules
import GSeTT.Typed-Syntax
import Globular-TT.Syntax
import Globular-TT.Rules
{- Decidability of type cheking for the type theory for globular sets -}
module Globular-TT.Dec-Type-Checking {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index))
(assumption : Globular-TT.Rules.well-founded index rule)
(eqdec-index : eqdec index) where
open import Globular-TT.Syntax index
open import Globular-TT.Eqdec-syntax index eqdec-index
open import Globular-TT.Rules index rule
open import Globular-TT.CwF-Structure index rule
dec-∈ : ∀ (n : ℕ) (A : Pre-Ty) (Γ : Pre-Ctx) → dec (n # A ∈ Γ)
dec-∈ n A ⊘ = inr λ{()}
dec-∈ n A (Γ ∙ x # B) with dec-∈ n A Γ
... | inl n∈Γ = inl (inl n∈Γ)
... | inr n∉Γ with eqdecℕ n x | eqdec-Ty A B
... | inl idp | inl idp = inl (inr (idp , idp))
... | inr n≠x | _ = inr λ{(inl n∈Γ) → n∉Γ n∈Γ; (inr (idp , idp)) → n≠x idp}
... | inl idp | inr A≠B_ = inr λ{(inl n∈Γ) → n∉Γ n∈Γ; (inr (_ , A=B)) → A≠B A=B}
{- Decidability in the fragment of the theory with only globular contexts -}
-- termination is really tricky, and involves reasonning both on depth and dimension at the same time !
dec-G⊢T : ∀ (Γ : GSeTT.Typed-Syntax.Ctx) n A → dim A ≤ n → dec (GPre-Ctx (fst Γ) ⊢T A)
dec-G⊢t : ∀ (Γ : GSeTT.Typed-Syntax.Ctx) n d A t → dim A ≤ n → depth t ≤ d → dec (GPre-Ctx (fst Γ) ⊢t t # A)
dec-G⊢S : ∀ (Δ Γ : GSeTT.Typed-Syntax.Ctx) n d γ → dimC (GPre-Ctx (fst Γ)) ≤ n → depthS γ ≤ d → dec (GPre-Ctx (fst Δ) ⊢S γ > GPre-Ctx (fst Γ))
dec-G⊢T Γ _ ∗ _ = inl (ob (GCtx _ (snd Γ)))
dec-G⊢T Γ (S n) (⇒ A t u) (S≤ i) with dec-G⊢T Γ n A i | dec-G⊢t Γ n _ A t i (n≤n _) | dec-G⊢t Γ n _ A u i (n≤n _)
... | inl Γ⊢A | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢A Γ⊢t:A Γ⊢u:A)
... | inr Γ⊬A | _ | _ = inr λ{(ar Γ⊢A _ _) → Γ⊬A Γ⊢A}
... | inl _ | inr Γ⊬t:A | _ = inr λ{(ar _ Γ⊢t:A _) → Γ⊬t:A Γ⊢t:A}
... | inl _ | inl _ | inr Γ⊬u:A = inr λ{(ar _ _ Γ⊢u:A) → Γ⊬u:A Γ⊢u:A}
dec-G⊢t Γ n _ A (Var x) _ (0≤ _) with dec-∈ x A (GPre-Ctx (fst Γ))
... | inl x∈Γ = inl (var (GCtx _ (snd Γ)) x∈Γ)
... | inr x∉Γ = inr λ {(var _ x∈Γ) → x∉Γ x∈Γ}
dec-G⊢t Γ n (S d) A (Tm-constructor i γ) dimA≤n (S≤ dγ≤d) with eqdec-Ty A (Ti i [ γ ]Pre-Ty )
... | inr A≠Ti = inr λ{(tm _ _ idp) → A≠Ti idp}
... | inl idp
with dec-G⊢T (fst (rule i)) n (Ti i) (=-≤ (dim[] _ _ ^) dimA≤n)
... | inr Ci⊬Ti = inr λ t → Ci⊬Ti (Γ⊢tm→Ci⊢Ti t)
... | inl Ci⊢Ti with dec-G⊢S Γ (fst (rule i)) n d γ
(≤T (≤-= (assumption i Ci⊢Ti) (dim[] _ _ ^)) dimA≤n) -- dim Ci ≤ dim A
dγ≤d -- depth γ ≤ d
... | inr Γ⊬γ = inr λ t → Γ⊬γ (Γ⊢tm→Γ⊢γ t)
... | inl Γ⊢γ = inl (tm Ci⊢Ti Γ⊢γ idp)
dec-G⊢S Δ (nil , _) _ _ <> (0≤ _) _ = inl (es (GCtx _ (snd Δ)))
dec-G⊢S Δ ((Γ :: _) , _) _ _ <> _ _ = inr λ {()}
dec-G⊢S Δ (nil , _) _ _ < γ , x ↦ t > _ _ = inr λ {()}
dec-G⊢S Δ ((Γ :: (y , A)) , Γ+⊢@(GSeTT.Rules.cc Γ⊢ Γ⊢A idp)) n d < γ , x ↦ t > dimΓ+≤n dγ+≤d with dec-G⊢S Δ (Γ , Γ⊢) n d γ
(≤T (n≤max (dimC (GPre-Ctx Γ)) (dim (GPre-Ty A))) dimΓ+≤n) -- dim Γ ≤ n
(≤T (n≤max (depthS γ) (depth t)) dγ+≤d) -- depth γ ≤ d
| dec-G⊢t Δ n d ((GPre-Ty A) [ γ ]Pre-Ty) t
((≤T (=-≤ (dim[] _ _) (m≤max (dimC (GPre-Ctx Γ)) (dim (GPre-Ty A)))) dimΓ+≤n)) -- dim A[γ] ≤ n
(≤T (m≤max (depthS γ) (depth t)) dγ+≤d) -- depth t ≤ d
| eqdecℕ y x
... | inl Δ⊢γ:Γ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ:Γ (GCtx _ Γ+⊢) Δ⊢t idp)
... | inr Δ⊬γ:Γ | _ | _ = inr λ {(sc Δ⊢γ:Γ _ _ idp) → Δ⊬γ:Γ Δ⊢γ:Γ}
... | inl _ | inr Δ⊬t | _ = inr λ {(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t}
... | inl _ | inl _ | inr n≠x = inr λ {(sc _ _ _ idp) → n≠x idp}
{- Decidability of judgments for contexts, types, terms and substitution towards a glaobular context -}
dec-⊢C : ∀ Γ → dec (Γ ⊢C)
dec-⊢T : ∀ Γ A → dec (Γ ⊢T A)
dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A)
dec-⊢S:G : ∀ Δ (Γ : GSeTT.Typed-Syntax.Ctx) γ → dec (Δ ⊢S γ > GPre-Ctx (fst Γ))
dec-⊢T Γ ∗ with dec-⊢C Γ
... | inl Γ⊢ = inl (ob Γ⊢)
... | inr Γ⊬ = inr λ {(ob Γ⊢) → Γ⊬ Γ⊢}
dec-⊢T Γ (⇒ A t u) with dec-⊢T Γ A | dec-⊢t Γ A t | dec-⊢t Γ A u
... | inl Γ⊢A | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢A Γ⊢t:A Γ⊢u:A)
... | inr Γ⊬A | _ | _ = inr λ {(ar Γ⊢A _ _) → Γ⊬A Γ⊢A}
... | inl _ | inr Γ⊬t:A | _ = inr λ {(ar _ Γ⊢t:A _) → Γ⊬t:A Γ⊢t:A}
... | inl _ | inl _ | inr Γ⊬u:A = inr λ {(ar _ _ Γ⊢u:A) → Γ⊬u:A Γ⊢u:A}
dec-⊢t Γ A (Var x) with dec-⊢C Γ | dec-∈ x A Γ
... | inl Γ⊢ | inl x∈Γ = inl (var Γ⊢ x∈Γ)
... | inr Γ⊬ | _ = inr λ {(var Γ⊢ _) → Γ⊬ Γ⊢}
... | inl _ | inr x∉Γ = inr λ {(var _ x∈Γ) → x∉Γ x∈Γ}
dec-⊢t Γ A (Tm-constructor i γ) with eqdec-Ty A (Ti i [ γ ]Pre-Ty)
... | inr A≠Ti = inr λ{(tm _ _ idp) → A≠Ti idp}
... | inl idp
with dec-G⊢T (fst (rule i)) _ (Ti i) (n≤n _) | dec-⊢S:G Γ (fst (rule i)) γ
... | inl Ci⊢Ti | inl Γ⊢γ = inl (tm Ci⊢Ti Γ⊢γ idp)
... | inr Ci⊬Ti | _ = inr λ t → Ci⊬Ti (Γ⊢tm→Ci⊢Ti t)
... | inl _ | inr Γ⊬γ = inr λ t → Γ⊬γ (Γ⊢tm→Γ⊢γ t)
dec-⊢C ⊘ = inl ec
dec-⊢C (Γ ∙ n # A) with dec-⊢C Γ | dec-⊢T Γ A | eqdecℕ n (C-length Γ)
... | inl Γ⊢ | inl Γ⊢A | inl idp = inl (cc Γ⊢ Γ⊢A idp)
... | inr Γ⊬ | _ | _ = inr λ {(cc Γ⊢ _ idp) → Γ⊬ Γ⊢}
... | inl _ | inr Γ⊬A | _ = inr λ {(cc _ Γ⊢A idp) → Γ⊬A Γ⊢A}
... | inl _ | inl _ | inr n≠l = inr λ {(cc _ _ idp) → n≠l idp}
dec-⊢S:G Δ (nil , _) <> with (dec-⊢C Δ)
... | inl Δ⊢ = inl (es Δ⊢)
... | inr Δ⊬ = inr λ{(es Δ⊢) → Δ⊬ Δ⊢}
dec-⊢S:G Δ (nil , _) < γ , x ↦ x₁ > = inr λ{()}
dec-⊢S:G Δ ((Γ :: _) , _) <> = inr λ{()}
dec-⊢S:G Δ ((Γ :: (v , A)) , Γ+⊢@(GSeTT.Rules.cc Γ⊢ Γ⊢A idp)) < γ , x ↦ t > with dec-⊢S:G Δ (Γ , Γ⊢) γ | dec-⊢t Δ ((GPre-Ty A) [ γ ]Pre-Ty) t | eqdecℕ x (length Γ)
... | inl Δ⊢γ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ (GCtx _ Γ+⊢) Δ⊢t idp)
... | inr Δ⊬γ | _ | _ = inr λ{(sc Δ⊢γ _ _ idp) → Δ⊬γ Δ⊢γ}
... | inl _ | inr Δ⊬t | _ = inr λ{(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t}
... | inl _ | inl _ | inr x≠x = inr λ{(sc _ _ _ idp) → x≠x idp}
{- Decidability of substitution -}
dec-⊢S : ∀ Δ Γ γ → dec (Δ ⊢S γ > Γ)
dec-⊢S Δ ⊘ <> with (dec-⊢C Δ)
... | inl Δ⊢ = inl (es Δ⊢)
... | inr Δ⊬ = inr λ{(es Δ⊢) → Δ⊬ Δ⊢}
dec-⊢S Δ ⊘ < γ , x ↦ x₁ > = inr λ{()}
dec-⊢S Δ (Γ ∙ _ # _) <> = inr λ{()}
dec-⊢S Δ (Γ ∙ v # A) < γ , x ↦ t > with dec-⊢S Δ Γ γ | dec-⊢C (Γ ∙ v # A) | dec-⊢t Δ (A [ γ ]Pre-Ty) t | eqdecℕ x v
... | inl Δ⊢γ | inl Γ+⊢ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ Γ+⊢ Δ⊢t idp)
... | inr Δ⊬γ | _ | _ | _ = inr λ{(sc Δ⊢γ _ _ idp) → Δ⊬γ Δ⊢γ}
... | inl _ | inr Γ+⊬ | _ | _ = inr λ{(sc _ Γ⊢ _ idp) → Γ+⊬ Γ⊢}
... | inl _ | inl _ | inr Δ⊬t | _ = inr λ{(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t}
... | inl _ | inl _ | inl _ | inr x≠x = inr λ{(sc _ _ _ idp) → x≠x idp}
| {
"alphanum_fraction": 0.3448021108,
"avg_line_length": 70.1851851852,
"ext": "agda",
"hexsha": "1ada383eb52dd269dc675f02a3598ba2040b6143",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "Globular-TT/Dec-Type-Checking.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "Globular-TT/Dec-Type-Checking.agda",
"max_line_length": 196,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "Globular-TT/Dec-Type-Checking.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3858,
"size": 9475
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.List where
open import Cubical.Data.List.Base public
open import Cubical.Data.List.Properties public
| {
"alphanum_fraction": 0.7430167598,
"avg_line_length": 29.8333333333,
"ext": "agda",
"hexsha": "f2423de0556eeb8031c217d922d10c8a56c5323e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/List.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/List.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 40,
"size": 179
} |
-- Andreas, 2017-12-04, Re: issue #2862, reported by m0davis,
-- Make sure there is similar problem with functions.
open import Agda.Builtin.Equality
data Bool : Set where
true false : Bool
module N where
val : Bool -- Should fail
module M where
open N
val = true
val≡true : val ≡ true
val≡true = refl
open N
val = false
data ⊥ : Set where
¬val≡true : val ≡ true → ⊥
¬val≡true ()
-- val≡true : val ≡ true
-- val≡true = Z.va val true
boom : ⊥
boom = ¬val≡true Z.val≡true
| {
"alphanum_fraction": 0.6524390244,
"avg_line_length": 15.8709677419,
"ext": "agda",
"hexsha": "a8ee57fc3dfd35f98198849f37197ed929148cdd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2862fun1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2862fun1.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2862fun1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 175,
"size": 492
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Inequality where
open import Definition.Untyped hiding (U≢ne; ℕ≢ne; B≢ne; U≢B; ℕ≢B)
open import Definition.Typed
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Definition.Typed.Consequences.Syntactic
open import Tools.Product
open import Tools.Empty
A≢B : ∀ {A B Γ} (_⊩′⟨_⟩A_ _⊩′⟨_⟩B_ : Con Term → TypeLevel → Term → Set)
(A-intr : ∀ {l} → Γ ⊩′⟨ l ⟩A A → Γ ⊩⟨ l ⟩ A)
(B-intr : ∀ {l} → Γ ⊩′⟨ l ⟩B B → Γ ⊩⟨ l ⟩ B)
(A-elim : ∀ {l} → Γ ⊩⟨ l ⟩ A → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩A A)
(B-elim : ∀ {l} → Γ ⊩⟨ l ⟩ B → ∃ λ l′ → Γ ⊩′⟨ l′ ⟩B B)
(A≢B′ : ∀ {l l′} ([A] : Γ ⊩′⟨ l ⟩A A) ([B] : Γ ⊩′⟨ l′ ⟩B B)
→ ShapeView Γ l l′ A B (A-intr [A]) (B-intr [B]) → ⊥)
→ Γ ⊢ A ≡ B → ⊥
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B with reducibleEq A≡B
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B | [A] , [B] , [A≡B] =
let _ , [A]′ = A-elim ([A])
_ , [B]′ = B-elim ([B])
[A≡B]′ = irrelevanceEq [A] (A-intr [A]′) [A≡B]
in A≢B′ [A]′ [B]′ (goodCases (A-intr [A]′) (B-intr [B]′) [A≡B]′)
U≢ℕ′ : ∀ {Γ B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([ℕ] : Γ ⊩ℕ B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (ℕᵣ [ℕ]) → ⊥
U≢ℕ′ a b ()
U≢ℕ-red : ∀ {B Γ} → Γ ⊢ B ⇒* ℕ → Γ ⊢ U ≡ B → ⊥
U≢ℕ-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩ℕ B) Uᵣ ℕᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (ℕ-elim′ D x))
U≢ℕ′
-- U and ℕ cannot be judgmentally equal.
U≢ℕ : ∀ {Γ} → Γ ⊢ U ≡ ℕ → ⊥
U≢ℕ U≡ℕ =
let _ , ⊢ℕ = syntacticEq U≡ℕ
in U≢ℕ-red (id ⊢ℕ) U≡ℕ
-- U and Empty
U≢Empty′ : ∀ {Γ B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([Empty] : Γ ⊩Empty B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Emptyᵣ [Empty]) → ⊥
U≢Empty′ a b ()
U≢Empty-red : ∀ {B Γ} → Γ ⊢ B ⇒* Empty → Γ ⊢ U ≡ B → ⊥
U≢Empty-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩Empty B) Uᵣ Emptyᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (Empty-elim′ D x))
U≢Empty′
U≢Emptyⱼ : ∀ {Γ} → Γ ⊢ U ≡ Empty → ⊥
U≢Emptyⱼ U≡Empty =
let _ , ⊢Empty = syntacticEq U≡Empty
in U≢Empty-red (id ⊢Empty) U≡Empty
-- U and Unit
U≢Unit′ : ∀ {Γ B l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Unitᵣ [Unit]) → ⊥
U≢Unit′ a b ()
U≢Unit-red : ∀ {B Γ} → Γ ⊢ B ⇒* Unit → Γ ⊢ U ≡ B → ⊥
U≢Unit-red D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩Unit B) Uᵣ Unitᵣ
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
U≢Unit′
U≢Unitⱼ : ∀ {Γ} → Γ ⊢ U ≡ Unit → ⊥
U≢Unitⱼ U≡Unit =
let _ , ⊢Unit = syntacticEq U≡Unit
in U≢Unit-red (id ⊢Unit) U≡Unit
-- ℕ and Empty
ℕ≢Empty′ : ∀ {Γ B l l'}
([ℕ] : Γ ⊩ℕ ℕ)
([Empty] : Γ ⊩Empty B)
→ ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Emptyᵣ [Empty]) → ⊥
ℕ≢Empty′ a b ()
ℕ≢Empty-red : ∀ {B Γ} → Γ ⊢ B ⇒* Empty → Γ ⊢ ℕ ≡ B → ⊥
ℕ≢Empty-red D = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩Empty B) ℕᵣ Emptyᵣ
(λ x → extractMaybeEmb (ℕ-elim x))
(λ x → extractMaybeEmb (Empty-elim′ D x))
ℕ≢Empty′
ℕ≢Emptyⱼ : ∀ {Γ} → Γ ⊢ ℕ ≡ Empty → ⊥
ℕ≢Emptyⱼ ℕ≡Empty =
let _ , ⊢Empty = syntacticEq ℕ≡Empty
in ℕ≢Empty-red (id ⊢Empty) ℕ≡Empty
-- ℕ and Unit
ℕ≢Unit′ : ∀ {Γ B l l'}
([ℕ] : Γ ⊩ℕ ℕ)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Unitᵣ [Unit]) → ⊥
ℕ≢Unit′ a b ()
ℕ≢Unit-red : ∀ {B Γ} → Γ ⊢ B ⇒* Unit → Γ ⊢ ℕ ≡ B → ⊥
ℕ≢Unit-red D = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩Unit B) ℕᵣ Unitᵣ
(λ x → extractMaybeEmb (ℕ-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
ℕ≢Unit′
ℕ≢Unitⱼ : ∀ {Γ} → Γ ⊢ ℕ ≡ Unit → ⊥
ℕ≢Unitⱼ ℕ≡Unit =
let _ , ⊢Unit = syntacticEq ℕ≡Unit
in ℕ≢Unit-red (id ⊢Unit) ℕ≡Unit
-- Empty and Unit
Empty≢Unit′ : ∀ {Γ B l l'}
([Empty] : Γ ⊩Empty Empty)
([Unit] : Γ ⊩Unit B)
→ ShapeView Γ l l' _ _ (Emptyᵣ [Empty]) (Unitᵣ [Unit]) → ⊥
Empty≢Unit′ a b ()
Empty≢Unit-red : ∀ {B Γ} → Γ ⊢ B ⇒* Unit → Γ ⊢ Empty ≡ B → ⊥
Empty≢Unit-red D = A≢B (λ Γ l A → Γ ⊩Empty A) (λ Γ l B → Γ ⊩Unit B) Emptyᵣ Unitᵣ
(λ x → extractMaybeEmb (Empty-elim x))
(λ x → extractMaybeEmb (Unit-elim′ D x))
Empty≢Unit′
Empty≢Unitⱼ : ∀ {Γ} → Γ ⊢ Empty ≡ Unit → ⊥
Empty≢Unitⱼ Empty≡Unit =
let _ , ⊢Unit = syntacticEq Empty≡Unit
in Empty≢Unit-red (id ⊢Unit) Empty≡Unit
-- Universe and binding types
U≢B′ : ∀ {B Γ l l′} W
([U] : Γ ⊩′⟨ l ⟩U)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (Bᵣ W [W]) → ⊥
U≢B′ W a b ()
U≢B-red : ∀ {B F G Γ} W → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ U ≡ B → ⊥
U≢B-red W D = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Uᵣ (Bᵣ W)
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (B-elim′ W D x))
(U≢B′ W)
-- U and Π F ▹ G for any F and G cannot be judgmentally equal.
U≢B : ∀ {F G Γ} W → Γ ⊢ U ≡ ⟦ W ⟧ F ▹ G → ⊥
U≢B W U≡W =
let _ , ⊢W = syntacticEq U≡W
in U≢B-red W (id ⊢W) U≡W
U≢Π : ∀ {F G Γ} → _
U≢Π {F} {G} {Γ} = U≢B {F} {G} {Γ} BΠ
U≢Σ : ∀ {F G Γ} → _
U≢Σ {F} {G} {Γ} = U≢B {F} {G} {Γ} BΣ
U≢ne′ : ∀ {K Γ l l′}
([U] : Γ ⊩′⟨ l ⟩U)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Uᵣ [U]) (ne [K]) → ⊥
U≢ne′ a b ()
U≢ne-red : ∀ {B K Γ} → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ U ≡ B → ⊥
U≢ne-red D neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩U) (λ Γ l B → Γ ⊩ne B) Uᵣ ne
(λ x → extractMaybeEmb (U-elim x))
(λ x → extractMaybeEmb (ne-elim′ D neK x))
U≢ne′
-- U and K for any neutral K cannot be judgmentally equal.
U≢ne : ∀ {K Γ} → Neutral K → Γ ⊢ U ≡ K → ⊥
U≢ne neK U≡K =
let _ , ⊢K = syntacticEq U≡K
in U≢ne-red (id ⊢K) neK U≡K
ℕ≢B′ : ∀ {A B Γ l l′} W
([ℕ] : Γ ⊩ℕ A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (Bᵣ W [W]) → ⊥
ℕ≢B′ W a b ()
ℕ≢B-red : ∀ {A B F G Γ} W → Γ ⊢ A ⇒* ℕ → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
ℕ≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩ℕ A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) ℕᵣ (Bᵣ W)
(λ x → extractMaybeEmb (ℕ-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(ℕ≢B′ W)
-- ℕ and B F ▹ G for any F and G cannot be judgmentally equal.
ℕ≢B : ∀ {F G Γ} W → Γ ⊢ ℕ ≡ ⟦ W ⟧ F ▹ G → ⊥
ℕ≢B W ℕ≡W =
let ⊢ℕ , ⊢W = syntacticEq ℕ≡W
in ℕ≢B-red W (id ⊢ℕ) (id ⊢W) ℕ≡W
ℕ≢Π : ∀ {F G Γ} → _
ℕ≢Π {F} {G} {Γ} = ℕ≢B {F} {G} {Γ} BΠ
ℕ≢Σ : ∀ {F G Γ} → _
ℕ≢Σ {F} {G} {Γ} = ℕ≢B {F} {G} {Γ} BΣ
-- Empty and Π
Empty≢B′ : ∀ {A B Γ l l′} W
([Empty] : Γ ⊩Empty A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (Bᵣ W [W]) → ⊥
Empty≢B′ W a b ()
Empty≢B-red : ∀ {A B F G Γ} W → Γ ⊢ A ⇒* Empty → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
Empty≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩Empty A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Emptyᵣ (Bᵣ W)
(λ x → extractMaybeEmb (Empty-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(Empty≢B′ W)
Empty≢Bⱼ : ∀ {F G Γ} W → Γ ⊢ Empty ≡ ⟦ W ⟧ F ▹ G → ⊥
Empty≢Bⱼ W Empty≡W =
let ⊢Empty , ⊢W = syntacticEq Empty≡W
in Empty≢B-red W (id ⊢Empty) (id ⊢W) Empty≡W
Empty≢Πⱼ : ∀ {F G Γ} → _
Empty≢Πⱼ {F} {G} {Γ} = Empty≢Bⱼ {F} {G} {Γ} BΠ
Empty≢Σⱼ : ∀ {F G Γ} → _
Empty≢Σⱼ {F} {G} {Γ} = Empty≢Bⱼ {F} {G} {Γ} BΣ
-- Unit and Π
Unit≢B′ : ∀ {A B Γ l l′} W
([Unit] : Γ ⊩Unit A)
([W] : Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ B)
→ ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (Bᵣ W [W]) → ⊥
Unit≢B′ W a b ()
Unit≢B-red : ∀ {A B F G Γ} W → Γ ⊢ A ⇒* Unit → Γ ⊢ B ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ A ≡ B → ⊥
Unit≢B-red W D D′ = A≢B (λ Γ l A → Γ ⊩Unit A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A) Unitᵣ (Bᵣ W)
(λ x → extractMaybeEmb (Unit-elim′ D x))
(λ x → extractMaybeEmb (B-elim′ W D′ x))
(Unit≢B′ W)
Unit≢Bⱼ : ∀ {F G Γ} W → Γ ⊢ Unit ≡ ⟦ W ⟧ F ▹ G → ⊥
Unit≢Bⱼ W Unit≡W =
let ⊢Unit , ⊢W = syntacticEq Unit≡W
in Unit≢B-red W (id ⊢Unit) (id ⊢W) Unit≡W
Unit≢Πⱼ : ∀ {F G Γ} → _
Unit≢Πⱼ {F} {G} {Γ} = Unit≢Bⱼ {F} {G} {Γ} BΠ
Unit≢Σⱼ : ∀ {F G Γ} → _
Unit≢Σⱼ {F} {G} {Γ} = Unit≢Bⱼ {F} {G} {Γ} BΣ
ℕ≢ne′ : ∀ {A K Γ l l′}
([ℕ] : Γ ⊩ℕ A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (ne [K]) → ⊥
ℕ≢ne′ a b ()
ℕ≢ne-red : ∀ {A B K Γ} → Γ ⊢ A ⇒* ℕ → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
ℕ≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩ℕ A) (λ Γ l B → Γ ⊩ne B) ℕᵣ ne
(λ x → extractMaybeEmb (ℕ-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
ℕ≢ne′
-- ℕ and K for any neutral K cannot be judgmentally equal.
ℕ≢ne : ∀ {K Γ} → Neutral K → Γ ⊢ ℕ ≡ K → ⊥
ℕ≢ne neK ℕ≡K =
let ⊢ℕ , ⊢K = syntacticEq ℕ≡K
in ℕ≢ne-red (id ⊢ℕ) (id ⊢K) neK ℕ≡K
-- Empty and neutral
Empty≢ne′ : ∀ {A K Γ l l′}
([Empty] : Γ ⊩Empty A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (ne [K]) → ⊥
Empty≢ne′ a b ()
Empty≢ne-red : ∀ {A B K Γ} → Γ ⊢ A ⇒* Empty → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
Empty≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩Empty A) (λ Γ l B → Γ ⊩ne B) Emptyᵣ ne
(λ x → extractMaybeEmb (Empty-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
Empty≢ne′
Empty≢neⱼ : ∀ {K Γ} → Neutral K → Γ ⊢ Empty ≡ K → ⊥
Empty≢neⱼ neK Empty≡K =
let ⊢Empty , ⊢K = syntacticEq Empty≡K
in Empty≢ne-red (id ⊢Empty) (id ⊢K) neK Empty≡K
-- Unit and neutral
Unit≢ne′ : ∀ {A K Γ l l′}
([Unit] : Γ ⊩Unit A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (ne [K]) → ⊥
Unit≢ne′ a b ()
Unit≢ne-red : ∀ {A B K Γ} → Γ ⊢ A ⇒* Unit → Γ ⊢ B ⇒* K → Neutral K → Γ ⊢ A ≡ B → ⊥
Unit≢ne-red D D′ neK = A≢B (λ Γ l A → Γ ⊩Unit A) (λ Γ l B → Γ ⊩ne B) Unitᵣ ne
(λ x → extractMaybeEmb (Unit-elim′ D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
Unit≢ne′
Unit≢neⱼ : ∀ {K Γ} → Neutral K → Γ ⊢ Unit ≡ K → ⊥
Unit≢neⱼ neK Unit≡K =
let ⊢Unit , ⊢K = syntacticEq Unit≡K
in Unit≢ne-red (id ⊢Unit) (id ⊢K) neK Unit≡K
B≢ne′ : ∀ {A K Γ l l′} W
([W] : Γ ⊩′⟨ l ⟩B⟨ W ⟩ A)
([K] : Γ ⊩ne K)
→ ShapeView Γ l l′ _ _ (Bᵣ W [W]) (ne [K]) → ⊥
B≢ne′ W a b ()
B≢ne-red : ∀ {A B F G K Γ} W → Γ ⊢ A ⇒* ⟦ W ⟧ F ▹ G → Γ ⊢ B ⇒* K → Neutral K
→ Γ ⊢ A ≡ B → ⊥
B≢ne-red W D D′ neK = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ W ⟩ A)
(λ Γ l B → Γ ⊩ne B) (Bᵣ W) ne
(λ x → extractMaybeEmb (B-elim′ W D x))
(λ x → extractMaybeEmb (ne-elim′ D′ neK x))
(B≢ne′ W)
-- ⟦ W ⟧ F ▹ G and K for any W, F, G and neutral K cannot be judgmentally equal.
B≢ne : ∀ {F G K Γ} W → Neutral K → Γ ⊢ ⟦ W ⟧ F ▹ G ≡ K → ⊥
B≢ne W neK W≡K =
let ⊢W , ⊢K = syntacticEq W≡K
in B≢ne-red W (id ⊢W) (id ⊢K) neK W≡K
Π≢ne : ∀ {F G K Γ} → _
Π≢ne {F} {G} {K} {Γ} = B≢ne {F} {G} {K} {Γ} BΠ
Σ≢ne : ∀ {F G K Γ} → _
Σ≢ne {F} {G} {K} {Γ} = B≢ne {F} {G} {K} {Γ} BΣ
-- Π and Σ
Π≢Σ′ : ∀ {A B Γ l l′}
([A] : Γ ⊩′⟨ l ⟩B⟨ BΠ ⟩ A)
([B] : Γ ⊩′⟨ l′ ⟩B⟨ BΣ ⟩ B)
→ ShapeView Γ l l′ _ _ (Bᵣ BΠ [A]) (Bᵣ BΣ [B]) → ⊥
Π≢Σ′ a b ()
Π≢Σ-red : ∀ {A B F G H E Γ} → Γ ⊢ A ⇒* Π F ▹ G → Γ ⊢ B ⇒* Σ H ▹ E → Γ ⊢ A ≡ B → ⊥
Π≢Σ-red D D′ = A≢B (λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ BΠ ⟩ A)
(λ Γ l A → Γ ⊩′⟨ l ⟩B⟨ BΣ ⟩ A) (Bᵣ BΠ) (Bᵣ BΣ)
(λ x → extractMaybeEmb (B-elim′ BΠ D x))
(λ x → extractMaybeEmb (B-elim′ BΣ D′ x))
Π≢Σ′
Π≢Σ : ∀ {Γ F G H E} → Γ ⊢ Π F ▹ G ≡ Σ H ▹ E → ⊥
Π≢Σ Π≡Σ =
let ⊢Π , ⊢Σ = syntacticEq Π≡Σ
in Π≢Σ-red (id ⊢Π) (id ⊢Σ) Π≡Σ
| {
"alphanum_fraction": 0.4342454395,
"avg_line_length": 33.781512605,
"ext": "agda",
"hexsha": "cd23d5b7d4e26d3dac1d59995c6cf7383b26e416",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Inequality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Inequality.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Inequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6155,
"size": 12060
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module LibraBFT.Impl.Base.Types where
open import LibraBFT.Prelude
open import LibraBFT.Hash
NodeId : Set
NodeId = ℕ
_≟NodeId_ : (n1 n2 : NodeId) → Dec (n1 ≡ n2)
_≟NodeId_ = _≟ℕ_
UID : Set
UID = Hash
_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)
_≟UID_ = _≟Hash_
| {
"alphanum_fraction": 0.6864244742,
"avg_line_length": 23.7727272727,
"ext": "agda",
"hexsha": "fb2eeb0535466434b913d3ba7d796f8360cc86bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Base/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Base/Types.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Base/Types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 190,
"size": 523
} |
module Category.FAM where
open import Level
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_; id; _∘′_)
------------------------------------------------------------------------
-- Functors
record IsFunctor {ℓ} (F : Set ℓ → Set ℓ)
(_<$>_ : ∀ {A B} → (A → B) → F A → F B)
: Set (suc ℓ) where
field
identity : {A : Set ℓ} (a : F A) → id <$> a ≡ a
homo : ∀ {A B C} (f : B → C) (g : A → B) (a : F A)
→ (f ∘ g) <$> a ≡ f <$> (g <$> a)
record Functor {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 4 _<$>_ _<$_
field
_<$>_ : ∀ {A B} → (A → B) → F A → F B
isFunctor : IsFunctor F _<$>_
-- An textual synonym of _<$>_
fmap : ∀ {A B} → (A → B) → F A → F B
fmap = _<$>_
-- Replace all locations in the input with the same value.
-- The default definition is fmap . const, but this may be overridden with a
-- more efficient version.
_<$_ : ∀ {A B} → A → F B → F A
x <$ y = Function.const x <$> y
open IsFunctor isFunctor public
-- open Functor {{...}} public
------------------------------------------------------------------------
-- Applicatives (not indexed)
record IsApplicative {ℓ} (F : Set ℓ → Set ℓ)
(pure : {A : Set ℓ} → A → F A)
(_⊛_ : {A B : Set ℓ} → (F (A → B)) → F A → F B)
: Set (suc ℓ) where
field
identity : {A : Set ℓ} (x : F A) → pure id ⊛ x ≡ x
compose : {A B C : Set ℓ} (f : F (B → C)) (g : F (A → B))
→ (x : F A)
→ ((pure _∘′_ ⊛ f) ⊛ g) ⊛ x ≡ f ⊛ (g ⊛ x)
homo : ∀ {A B} (f : A → B) (x : A)
→ pure f ⊛ pure x ≡ pure (f x)
interchange : ∀ {A B} (f : F (A → B)) (x : A)
→ f ⊛ pure x ≡ pure (λ f → f x) ⊛ f
record Applicative {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 4 _⊛_ _<⊛_ _⊛>_
infix 4 _⊗_
field
pure : {A : Set ℓ} → A → F A
_⊛_ : {A B : Set ℓ} → (F (A → B)) → F A → F B
isApplicative : IsApplicative F pure _⊛_
open IsApplicative isApplicative public
_<⊛_ : ∀ {A B} → F A → F B → F A
x <⊛ y = x
_⊛>_ : ∀ {A B} → F A → F B → F B
x ⊛> y = y
functor : Functor F
functor = record
{ _<$>_ = λ f x → pure f ⊛ x
; isFunctor = record
{ identity = App.identity
; homo = λ {A} {B} {C} f g x →
begin
pure (f ∘ g) ⊛ x
≡⟨ cong (λ w → _⊛_ w x) (sym (App.homo (λ g → (f ∘ g)) g)) ⟩
(pure ((λ g → (f ∘ g))) ⊛ pure g) ⊛ x
≡⟨ cong (λ w → (w ⊛ pure g) ⊛ x) (sym (App.homo (λ f → _∘_ f) f)) ⟩
((pure (λ f → _∘_ f) ⊛ pure f) ⊛ pure g) ⊛ x
≡⟨ App.compose (pure f) (pure g) x ⟩
pure f ⊛ (pure g ⊛ x)
∎
}
}
where
open ≡-Reasoning
module App = IsApplicative isApplicative
instance
ApplicativeFunctor : Functor F
ApplicativeFunctor = functor
open import Data.Product
open Functor {{...}}
_⊗_ : ∀ {A B} → F A → F B → F (A × B)
x ⊗ y = _,_ <$> x ⊛ y
zipWith : ∀ {A B C} → (A → B → C) → F A → F B → F C
zipWith f x y = f <$> x ⊛ y
-- open Applicative {{...}} public
----------------------------------------------------------------------
-- Monad
record IsMonad {ℓ} (M : Set ℓ → Set ℓ)
(return : {A : Set ℓ} → A → M A)
(_>>=_ : {A B : Set ℓ} → M A → (A → M B) → M B)
: Set (suc ℓ) where
field
left-identity : {A B : Set ℓ} (x : A) (fs : A → M B) → return x >>= fs ≡ fs x
right-identity : {A : Set ℓ} (xs : M A) → xs >>= return ≡ xs
assoc : {A B C : Set ℓ} (x : M A) (fs : A → M B) (g : B → M C)
→ (x >>= fs) >>= g ≡ (x >>= λ x' → fs x' >>= g)
temp : {A B : Set ℓ} (x : A) (fs : M (A → B))
→ (fs >>= λ f → return x >>= (return ∘ f)) ≡ (fs >>= λ f → (return ∘ f) x)
record Monad {ℓ} (M : Set ℓ → Set ℓ) : Set (suc ℓ) where
infixl 1 _>>=_ _>>_ _>=>_
infixr 1 _=<<_ _<=<_
field
return : {A : Set ℓ} → A → M A
_>>=_ : {A B : Set ℓ} → M A → (A → M B) → M B
isMonad : IsMonad M return _>>=_
_>>_ : ∀ {A B} → M A → M B → M B
m₁ >> m₂ = m₁ >>= λ _ → m₂
_=<<_ : ∀ {A B} → (A → M B) → M A → M B
f =<< c = c >>= f
_>=>_ : ∀ {A : Set ℓ} {B C} → (A → M B) → (B → M C) → (A → M C)
f >=> g = _=<<_ g ∘ f
_<=<_ : ∀ {A : Set ℓ} {B C} → (B → M C) → (A → M B) → (A → M C)
g <=< f = f >=> g
join : ∀ {A} → M (M A) → M A
join m = m >>= id
congruence : ∀ {A B : Set ℓ} (fs : M A) (g h : A → M B)
→ (∀ f → g f ≡ h f)
→ (fs >>= g) ≡ (fs >>= h)
congruence fs g h prop =
begin
(fs >>= g)
≡⟨ sym (right-identity (fs >>= g)) ⟩
(fs >>= g >>= return)
≡⟨ assoc fs g return ⟩
(fs >>= (λ f → g f >>= return))
≡⟨ cong (λ w → fs >>= (λ f → w f >>= return)) {! !} ⟩
(fs >>= (λ f → h f >>= return))
≡⟨ sym (assoc fs h return) ⟩
(fs >>= h >>= return)
≡⟨ right-identity (fs >>= h) ⟩
(fs >>= h)
∎
where
open ≡-Reasoning
open IsMonad isMonad
-- (fs >>= (λ f → return x >>= return ∘ f))
-- (fs >>= (λ f → (return ∘ f) x))
applicative : Applicative M
applicative = record
{ pure = return
; _⊛_ = λ fs xs → fs >>= λ f → xs >>= return ∘′ f
; isApplicative = record
{ identity = λ xs → begin
(return id >>= λ f → xs >>= λ x → return (f x))
≡⟨ Mon.left-identity id (λ f → xs >>= λ x → return (f x)) ⟩
(xs >>= λ x → return (id x))
≡⟨ refl ⟩
(xs >>= λ x → return x)
≡⟨ refl ⟩
(xs >>= return)
≡⟨ Mon.right-identity xs ⟩
xs
∎
-- { identity = λ xs → begin
-- (do
-- f ← (return id)
-- x ← xs
-- (return (f x)))
-- ≡⟨ Mon.left-identity id (λ f → do
-- x ← xs
-- (return (f x)))
-- ⟩
-- (do
-- x ← xs
-- return (id x))
-- ≡⟨ refl ⟩
-- (do
-- x ← xs
-- return x)
-- ≡⟨ Mon.right-identity xs ⟩
-- xs
-- ∎
-- left-identity : {A B : Set ℓ} (x : A) (f : A → M B) → return x >>= f ≡ f x
-- right-identity : {A : Set ℓ} (xs : M A) → xs >>= return ≡ xs
-- → (x >>= f) >>= g ≡ (x >>= λ x' → f x' >>= g)
; compose = λ fs gs xs → begin
(return _∘′_ >>=
(λ flip → fs >>= return ∘′ flip) >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f))
≡⟨ cong (λ w → w >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f)) (Mon.left-identity _∘′_ (λ flip → fs >>= return ∘′ flip))
⟩
(fs >>= return ∘′ _∘′_ >>=
(λ f → gs >>= return ∘′ f) >>=
(λ f → xs >>= return ∘′ f))
≡⟨ Mon.assoc (fs >>= return ∘′ _∘′_) (λ f → gs >>= return ∘′ f) (λ f → xs >>= return ∘′ f) ⟩
((fs >>= return ∘′ _∘′_) >>= (λ h → gs >>= return ∘′ h >>= λ f → xs >>= return ∘′ f))
≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ cong (λ w → fs >>= λ r → {! !}) {! !} ⟩
(fs >>= (λ f → (gs >>= λ g → xs >>= return ∘′ g) >>= return ∘′ f))
∎
; homo = λ f x → begin
(return f >>= λ f' → return x >>= return ∘ f')
≡⟨ Mon.left-identity f (λ f' → return x >>= return ∘ f') ⟩
(return x >>= return ∘ f)
≡⟨ Mon.left-identity x (return ∘ f) ⟩
return (f x)
∎
-- left-identity : return x >>= f ≡ f x
-- right-identity : xs >>= return ≡ xs
-- assoc : (x >>= f) >>= g ≡ (x >>= λ x' → f x' >>= g)
; interchange = λ fs x →
begin
(fs >>= (λ f → return x >>= return ∘ f))
≡⟨ congruence fs (λ f → return x >>= return ∘ f) (λ f → (return ∘ f) x) (λ f → Mon.left-identity x (return ∘ f)) ⟩
(fs >>= (λ f → (return ∘ f) x))
≡⟨ sym (Mon.left-identity (λ f → f x) (λ f' → fs >>= (λ f → return (f' f)))) ⟩
(return (λ f → f x) >>= (λ f' → fs >>= (λ f → return (f' f))))
∎
}
}
-- -- ≡⟨ sym (Mon.right-identity (fs >>= (λ f → return x >>= return ∘ f))) ⟩
-- -- (fs >>= (λ f → return x >>= return ∘ f) >>= return)
-- -- ≡⟨ Mon.assoc fs (λ f → return x >>= return ∘ f) return ⟩
-- -- (fs >>= (λ f → return x >>= return ∘ f >>= return))
-- -- ≡⟨ cong (λ w → fs >>= λ f → w f >>= return) {! !} ⟩
-- ≡⟨ cong (λ w → w >>= (λ f → return x >>= return ∘ f)) (sym (Mon.right-identity fs)) ⟩
-- (fs >>= return >>= (λ f → return x >>= return ∘ f))
-- ≡⟨ Mon.assoc fs return (λ f → return x >>= return ∘ f) ⟩
-- (fs >>= λ f → return f >>= λ f → return x >>= return ∘ f)
-- ≡⟨ cong (λ w → fs >>= λ f → w f) {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- (fs >>= (λ f → (return ∘ f) x >>= return))
-- ≡⟨ sym (Mon.assoc fs (λ f → return (f x)) return) ⟩
-- ((fs >>= λ f → (return ∘ f) x) >>= return)
-- ≡⟨ Mon.right-identity (fs >>= λ f → return (f x)) ⟩
where
open ≡-Reasoning
open Applicative applicative
module Mon = IsMonad isMonad
--
-- lemma : {A B : Set ℓ} (x : A) → (λ f → return x >>= return ∘′ f) ≡ (λ f → return (f x))
-- lemma x = begin
-- (λ f → return x >>= return ∘′ f)
-- ≡⟨ cong (λ w f → w) (Mon.left-identity x (λ f → {! !})) ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- (λ f → return (f x))
-- ∎
-- begin
-- (return x >>= return ∘′ f)
-- ≡⟨ Mon.left-identity x (return ∘′ f) ⟩
-- return (f x)
-- ∎
-- lemma : {A B : Set ℓ} (x : A) (f : A → M B) → (return x >>= return ∘′ f) ≡ return (f x)
-- lemma x f = begin
-- (return x >>= return ∘′ f)
-- ≡⟨ Mon.left-identity x (return ∘′ f) ⟩
-- return (f x)
-- ∎
--
-- rawIApplicative : RawIApplicative M
-- rawIApplicative = record
-- { pure = return
-- ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x')
-- }
| {
"alphanum_fraction": 0.3400584019,
"avg_line_length": 36.8110749186,
"ext": "agda",
"hexsha": "ee3a83c3347587aed30cc0db48a24965cb44319d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/FAM",
"max_forks_repo_path": "src/Category/FAM.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/FAM",
"max_issues_repo_path": "src/Category/FAM.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/FAM",
"max_stars_repo_path": "src/Category/FAM.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3921,
"size": 11301
} |
-- Andreas, 2020-06-21, issue #4768
-- Problem was: @0 appearing in "Not a finite domain" message.
open import Agda.Builtin.Bool
open import Agda.Primitive.Cubical
f : (i : I) → IsOne i → Set
f i (i0 = i1) = Bool
-- EXPECTED:
-- Not a finite domain: IsOne i
-- when checking that the pattern (i0 = i1) has type IsOne i
| {
"alphanum_fraction": 0.6801242236,
"avg_line_length": 24.7692307692,
"ext": "agda",
"hexsha": "bf3faef673fd963dc2f2319dd8e63011365dc5b8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4768.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4768.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4768.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 109,
"size": 322
} |
module ClashingImport where
X = TODO--Can't-make-this-happen!
postulate A : Set
import Imports.A
open Imports.A
| {
"alphanum_fraction": 0.75,
"avg_line_length": 11.6,
"ext": "agda",
"hexsha": "b1733bcf9e9a5dcd587aa95d7918a1e3edc5879f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/ClashingImport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/ClashingImport.agda",
"max_line_length": 33,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/ClashingImport.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 31,
"size": 116
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.MonoidSolver.CommSolver where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ; _+_; iter)
open import Cubical.Data.Vec
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.MonoidSolver.MonoidExpression
private
variable
ℓ : Level
module Eval (M : CommMonoid ℓ) where
open CommMonoidStr (snd M)
open CommMonoidTheory M
Env : ℕ → Type ℓ
Env n = Vec ⟨ M ⟩ n
-- evaluation of an expression (without normalization)
⟦_⟧ : ∀{n} → Expr ⟨ M ⟩ n → Env n → ⟨ M ⟩
⟦ ε⊗ ⟧ v = ε
⟦ ∣ i ⟧ v = lookup i v
⟦ e₁ ⊗ e₂ ⟧ v = ⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v
-- a normalform is a vector of multiplicities, counting the occurances of each variable in an expression
NormalForm : ℕ → Type _
NormalForm n = Vec ℕ n
_⊞_ : {n : ℕ} → NormalForm n → NormalForm n → NormalForm n
x ⊞ y = zipWith _+_ x y
emptyForm : {n : ℕ} → NormalForm n
emptyForm = replicate 0
-- e[ i ] is the i-th unit vector
e[_] : {n : ℕ} → Fin n → NormalForm n
e[ Fin.zero ] = 1 ∷ emptyForm
e[ (Fin.suc j) ] = 0 ∷ e[ j ]
-- normalization of an expression
normalize : {n : ℕ} → Expr ⟨ M ⟩ n → NormalForm n
normalize (∣ i) = e[ i ]
normalize ε⊗ = emptyForm
normalize (e₁ ⊗ e₂) = (normalize e₁) ⊞ (normalize e₂)
-- evaluation of normalform
eval : {n : ℕ} → NormalForm n → Env n → ⟨ M ⟩
eval [] v = ε
eval (x ∷ xs) (v ∷ vs) = iter x (λ w → v · w) (eval xs vs)
-- some calculations
emptyFormEvaluatesToε : {n : ℕ} (v : Env n) → eval emptyForm v ≡ ε
emptyFormEvaluatesToε [] = refl
emptyFormEvaluatesToε (v ∷ vs) = emptyFormEvaluatesToε vs
UnitVecEvaluatesToVar : ∀{n} (i : Fin n) (v : Env n) → eval e[ i ] v ≡ lookup i v
UnitVecEvaluatesToVar zero (v ∷ vs) =
v · eval emptyForm vs ≡⟨ cong₂ _·_ refl (emptyFormEvaluatesToε vs) ⟩
v · ε ≡⟨ ·IdR _ ⟩
v ∎
UnitVecEvaluatesToVar (suc i) (v ∷ vs) = UnitVecEvaluatesToVar i vs
evalIsHom : ∀ {n} (x y : NormalForm n) (v : Env n)
→ eval (x ⊞ y) v ≡ (eval x v) · (eval y v)
evalIsHom [] [] v = sym (·IdL _)
evalIsHom (x ∷ xs) (y ∷ ys) (v ∷ vs) =
lemma x y (evalIsHom xs ys vs)
where
lemma : ∀ x y {a b c}(p : a ≡ b · c)
→ iter (x + y) (v ·_) a ≡ iter x (v ·_) b · iter y (v ·_) c
lemma 0 0 p = p
lemma 0 (ℕ.suc y) p = (cong₂ _·_ refl (lemma 0 y p)) ∙ commAssocl _ _ _
lemma (ℕ.suc x) y p = (cong₂ _·_ refl (lemma x y p)) ∙ ·Assoc _ _ _
module EqualityToNormalform (M : CommMonoid ℓ) where
open Eval M
open CommMonoidStr (snd M)
-- proof that evaluation of an expression is invariant under normalization
isEqualToNormalform : {n : ℕ}
→ (e : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ eval (normalize e) v ≡ ⟦ e ⟧ v
isEqualToNormalform ε⊗ v = emptyFormEvaluatesToε v
isEqualToNormalform (∣ i) v = UnitVecEvaluatesToVar i v
isEqualToNormalform (e₁ ⊗ e₂) v =
eval ((normalize e₁) ⊞ (normalize e₂)) v ≡⟨ evalIsHom (normalize e₁) (normalize e₂) v ⟩
(eval (normalize e₁) v) · (eval (normalize e₂) v) ≡⟨ cong₂ _·_ (isEqualToNormalform e₁ v) (isEqualToNormalform e₂ v) ⟩
⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v ∎
solve : {n : ℕ}
→ (e₁ e₂ : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ (p : eval (normalize e₁) v ≡ eval (normalize e₂) v)
→ ⟦ e₁ ⟧ v ≡ ⟦ e₂ ⟧ v
solve e₁ e₂ v p =
⟦ e₁ ⟧ v ≡⟨ sym (isEqualToNormalform e₁ v) ⟩
eval (normalize e₁) v ≡⟨ p ⟩
eval (normalize e₂) v ≡⟨ isEqualToNormalform e₂ v ⟩
⟦ e₂ ⟧ v ∎
solve : (M : CommMonoid ℓ)
{n : ℕ} (e₁ e₂ : Expr ⟨ M ⟩ n) (v : Eval.Env M n)
(p : Eval.eval M (Eval.normalize M e₁) v ≡ Eval.eval M (Eval.normalize M e₂) v)
→ _
solve M = EqualityToNormalform.solve M
| {
"alphanum_fraction": 0.5687910976,
"avg_line_length": 34.0862068966,
"ext": "agda",
"hexsha": "0fdace6c66d14d1d55030d15cc0974dacc51e9e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/MonoidSolver/CommSolver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/MonoidSolver/CommSolver.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/MonoidSolver/CommSolver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1480,
"size": 3954
} |
------------------------------------------------------------------------
-- The cubical identity type
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Equality.Id where
open import Equality
import Equality.Path as P
open import Prelude
import Agda.Builtin.Cubical.Id as Id
------------------------------------------------------------------------
-- Equality
infix 4 _≡_
_≡_ : ∀ {a} {A : Type a} → A → A → Type a
_≡_ = Id.Id
refl : ∀ {a} {A : Type a} {x : A} → x ≡ x
refl = Id.conid P.1̲ P.refl
------------------------------------------------------------------------
-- Various derived definitions and properties
reflexive-relation : ∀ ℓ → Reflexive-relation ℓ
Reflexive-relation._≡_ (reflexive-relation _) = _≡_
Reflexive-relation.refl (reflexive-relation _) = λ _ → refl
equality-with-J₀ : ∀ {a p} → Equality-with-J₀ a p reflexive-relation
Equality-with-J₀.elim equality-with-J₀ = λ P r → Id.primIdJ
(λ _ → P) (r _)
Equality-with-J₀.elim-refl equality-with-J₀ = λ _ _ → refl
equivalence-relation⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ
equivalence-relation⁺ _ = J₀⇒Equivalence-relation⁺ equality-with-J₀
equality-with-paths :
∀ {a p} → P.Equality-with-paths a p equivalence-relation⁺
equality-with-paths =
P.Equality-with-J₀⇒Equality-with-paths equality-with-J₀
open P.Derived-definitions-and-properties equality-with-paths public
hiding (_≡_; refl; reflexive-relation; equality-with-J₀)
open import Equality.Path.Isomorphisms equality-with-paths public
| {
"alphanum_fraction": 0.5601996257,
"avg_line_length": 32.06,
"ext": "agda",
"hexsha": "985f847397b0f90ddff871e24676d9ccf2f8bb1e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Id.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Id.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Id.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 419,
"size": 1603
} |
-- Andreas, 2012-02-24 example by Ramana Kumar
{-# OPTIONS --sized-types #-}
-- {-# OPTIONS --show-implicit -v tc.size.solve:20 -v tc.conv.size:15 #-}
module SizeInconsistentMeta4 where
open import Data.Nat using (ℕ;zero;suc) renaming (_<_ to _N<_)
open import Data.Product using (_,_;_×_)
open import Data.List using (List)
open import Relation.Binary using (Rel;_Respects₂_;Transitive;IsEquivalence)
open import Relation.Binary.Product.StrictLex using (×-Lex;×-transitive)
open import Relation.Binary.List.StrictLex using (Lex-<) renaming (transitive to Lex<-trans)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
import Level
open import Size using (Size;↑_)
-- keeping the definition of Vec for the positivity check
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
{- produces different error
data Lex-< {A : _} (_≈_ _<_ : Rel A Level.zero) : Rel (List A) Level.zero where
postulate
Lex<-trans : ∀ {P _≈_ _<_} →
IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ →
Transitive (Lex-< _≈_ _<_)
-}
postulate
N<-trans : Transitive _N<_
-- Vec : ∀ {a} (A : Set a) → ℕ → Set a
Vec→List : ∀ {a n} {A : Set a} → Vec A n → List A
data Type : {z : Size} → Set where
TyApp : {z : Size} (n : ℕ) → (as : Vec (Type {z}) n) → Type {↑ z}
infix 4 _<_
data _<_ : {z : Size} → Rel (Type {z}) Level.zero where
TyApp<TyApp : ∀ {z} {n₁} {as₁} {n₂} {as₂} → ×-Lex _≡_ _N<_ (Lex-< _≡_ (_<_ {z})) (n₁ , Vec→List as₁) (n₂ , Vec→List as₂) → _<_ {↑ z} (TyApp n₁ as₁) (TyApp n₂ as₂)
<-trans : {z : Size} → Transitive (_<_ {z})
<-trans (TyApp<TyApp p) (TyApp<TyApp q) = TyApp<TyApp (×-transitive PropEq.isEquivalence (PropEq.resp₂ _N<_) N<-trans {_≤₂_ = Lex-< _≡_ _<_ } (Lex<-trans PropEq.isEquivalence (PropEq.resp₂ _<_) <-trans) p q)
| {
"alphanum_fraction": 0.6347080878,
"avg_line_length": 40.5869565217,
"ext": "agda",
"hexsha": "db18b0e246607895e9db18791e76b467ec911545",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda",
"max_line_length": 207,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 682,
"size": 1867
} |
-- Andreas, 2013-12-28
-- Reported by jesper.cockx, Dec 20, 2013
-- WAS: In the following example, there is an unsolved instance
-- argument, but no part of the code is highlighted.
typeof : ∀ {{T : Set}} → T → Set
typeof {{T}} x = T
test : {A : Set} {B : Set} (y : A) → typeof y
test y = y
-- Should solve the instance argument, no constraint should remain.
| {
"alphanum_fraction": 0.6510989011,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "80832d01b4d254fc3acc545f14dd3f60327986b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue1003.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue1003.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue1003.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 115,
"size": 364
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module 07-finite-sets where
import 06-universes
open 06-universes public
--------------------------------------------------------------------------------
{- Section 7.1 The congruence relations -}
{- Definition 7.1.1 -}
-- We introduce the divisibility relation. --
div-ℕ : ℕ → ℕ → UU lzero
div-ℕ m n = Σ ℕ (λ k → Id (mul-ℕ k m) n)
{- Proposition 7.1.2 -}
{- In the following three constructions we show that if any two of the three
numbers x, y, and x + y, is divisible by d, then so is the third. -}
div-add-ℕ :
(d x y : ℕ) → div-ℕ d x → div-ℕ d y → div-ℕ d (add-ℕ x y)
div-add-ℕ d x y (pair n p) (pair m q) =
pair
( add-ℕ n m)
( ( right-distributive-mul-add-ℕ n m d) ∙
( ap-add-ℕ p q))
div-left-summand-ℕ :
(d x y : ℕ) → div-ℕ d y → div-ℕ d (add-ℕ x y) → div-ℕ d x
div-left-summand-ℕ zero-ℕ x y (pair m q) (pair n p) =
pair zero-ℕ
( ( inv (right-zero-law-mul-ℕ n)) ∙
( p ∙ (ap (add-ℕ x) ((inv q) ∙ (right-zero-law-mul-ℕ m)))))
div-left-summand-ℕ (succ-ℕ d) x y (pair m q) (pair n p) =
pair
( dist-ℕ m n)
( is-injective-add-ℕ (mul-ℕ m (succ-ℕ d)) (mul-ℕ (dist-ℕ m n) (succ-ℕ d)) x
( ( inv
( ( right-distributive-mul-add-ℕ m (dist-ℕ m n) (succ-ℕ d)) ∙
( commutative-add-ℕ
( mul-ℕ m (succ-ℕ d))
( mul-ℕ (dist-ℕ m n) (succ-ℕ d))))) ∙
( ( ap
( mul-ℕ' (succ-ℕ d))
( leq-dist-ℕ m n
( leq-leq-mul-ℕ' m n d
( concatenate-eq-leq-eq-ℕ q
( leq-add-ℕ' y x)
( inv p))))) ∙
( p ∙ (ap (add-ℕ x) (inv q))))))
div-right-summand-ℕ :
(d x y : ℕ) → div-ℕ d x → div-ℕ d (add-ℕ x y) → div-ℕ d y
div-right-summand-ℕ d x y H1 H2 =
div-left-summand-ℕ d y x H1 (tr (div-ℕ d) (commutative-add-ℕ x y) H2)
{- Definition 7.1.3 -}
{- We define the congruence relation on ℕ and we do some bureaucracy that will
help us in calculations involving the congruence relations. -}
cong-ℕ :
ℕ → ℕ → ℕ → UU lzero
cong-ℕ k x y = div-ℕ k (dist-ℕ x y)
_≡_mod_ : ℕ → ℕ → ℕ → UU lzero
x ≡ y mod k = cong-ℕ k x y
concatenate-eq-cong-eq-ℕ :
(k : ℕ) {x1 x2 x3 x4 : ℕ} →
Id x1 x2 → cong-ℕ k x2 x3 → Id x3 x4 → cong-ℕ k x1 x4
concatenate-eq-cong-eq-ℕ k refl H refl = H
concatenate-eq-cong-ℕ :
(k : ℕ) {x1 x2 x3 : ℕ} →
Id x1 x2 → cong-ℕ k x2 x3 → cong-ℕ k x1 x3
concatenate-eq-cong-ℕ k refl H = H
concatenate-cong-eq-ℕ :
(k : ℕ) {x1 x2 x3 : ℕ} →
cong-ℕ k x1 x2 → Id x2 x3 → cong-ℕ k x1 x3
concatenate-cong-eq-ℕ k H refl = H
{- Proposition 7.1.4 -}
-- We show that cong-ℕ is an equivalence relation.
reflexive-cong-ℕ :
(k x : ℕ) → cong-ℕ k x x
reflexive-cong-ℕ k x =
pair zero-ℕ ((left-zero-law-mul-ℕ (succ-ℕ k)) ∙ (dist-eq-ℕ x x refl))
cong-identification-ℕ :
(k : ℕ) {x y : ℕ} → Id x y → cong-ℕ k x y
cong-identification-ℕ k {x} refl = reflexive-cong-ℕ k x
symmetric-cong-ℕ :
(k x y : ℕ) → cong-ℕ k x y → cong-ℕ k y x
symmetric-cong-ℕ k x y (pair d p) =
pair d (p ∙ (symmetric-dist-ℕ x y))
{- Before we show that cong-ℕ is transitive, we give some lemmas that will help
us showing that cong is an equivalence relation. They are basically
bureaucracy, manipulating already known facts. -}
-- Three elements can be ordered in 6 possible ways
cases-order-three-elements-ℕ :
(x y z : ℕ) → UU lzero
cases-order-three-elements-ℕ x y z =
coprod
( coprod ((leq-ℕ x y) × (leq-ℕ y z)) ((leq-ℕ x z) × (leq-ℕ z y)))
( coprod
( coprod ((leq-ℕ y z) × (leq-ℕ z x)) ((leq-ℕ y x) × (leq-ℕ x z)))
( coprod ((leq-ℕ z x) × (leq-ℕ x y)) ((leq-ℕ z y) × (leq-ℕ y x))))
order-three-elements-ℕ :
(x y z : ℕ) → cases-order-three-elements-ℕ x y z
order-three-elements-ℕ zero-ℕ zero-ℕ zero-ℕ = inl (inl (pair star star))
order-three-elements-ℕ zero-ℕ zero-ℕ (succ-ℕ z) = inl (inl (pair star star))
order-three-elements-ℕ zero-ℕ (succ-ℕ y) zero-ℕ = inl (inr (pair star star))
order-three-elements-ℕ zero-ℕ (succ-ℕ y) (succ-ℕ z) =
inl (functor-coprod (pair star) (pair star) (decide-leq-ℕ y z))
order-three-elements-ℕ (succ-ℕ x) zero-ℕ zero-ℕ =
inr (inl (inl (pair star star)))
order-three-elements-ℕ (succ-ℕ x) zero-ℕ (succ-ℕ z) =
inr (inl (functor-coprod (pair star) (pair star) (decide-leq-ℕ z x)))
order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) zero-ℕ =
inr (inr (functor-coprod (pair star) (pair star) (decide-leq-ℕ x y)))
order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) (succ-ℕ z) =
order-three-elements-ℕ x y z
{- We show that the distances of any three elements always add up, when they
are added up in the right way :) -}
cases-dist-ℕ :
(x y z : ℕ) → UU lzero
cases-dist-ℕ x y z =
coprod
( Id (add-ℕ (dist-ℕ x y) (dist-ℕ y z)) (dist-ℕ x z))
( coprod
( Id (add-ℕ (dist-ℕ y z) (dist-ℕ x z)) (dist-ℕ x y))
( Id (add-ℕ (dist-ℕ x z) (dist-ℕ x y)) (dist-ℕ y z)))
is-total-dist-ℕ :
(x y z : ℕ) → cases-dist-ℕ x y z
is-total-dist-ℕ x y z with order-three-elements-ℕ x y z
is-total-dist-ℕ x y z | inl (inl (pair H1 H2)) =
inl (triangle-equality-dist-ℕ x y z H1 H2)
is-total-dist-ℕ x y z | inl (inr (pair H1 H2)) =
inr
( inl
( ( commutative-add-ℕ (dist-ℕ y z) (dist-ℕ x z)) ∙
( ( ap (add-ℕ (dist-ℕ x z)) (symmetric-dist-ℕ y z)) ∙
( triangle-equality-dist-ℕ x z y H1 H2))))
is-total-dist-ℕ x y z | inr (inl (inl (pair H1 H2))) =
inr
( inl
( ( ap (add-ℕ (dist-ℕ y z)) (symmetric-dist-ℕ x z)) ∙
( ( triangle-equality-dist-ℕ y z x H1 H2) ∙
( symmetric-dist-ℕ y x))))
is-total-dist-ℕ x y z | inr (inl (inr (pair H1 H2))) =
inr
( inr
( ( ap (add-ℕ (dist-ℕ x z)) (symmetric-dist-ℕ x y)) ∙
( ( commutative-add-ℕ (dist-ℕ x z) (dist-ℕ y x)) ∙
( triangle-equality-dist-ℕ y x z H1 H2))))
is-total-dist-ℕ x y z | inr (inr (inl (pair H1 H2))) =
inr
( inr
( ( ap (add-ℕ' (dist-ℕ x y)) (symmetric-dist-ℕ x z)) ∙
( ( triangle-equality-dist-ℕ z x y H1 H2) ∙
( symmetric-dist-ℕ z y))))
is-total-dist-ℕ x y z | inr (inr (inr (pair H1 H2))) =
inl
( ( ap-add-ℕ (symmetric-dist-ℕ x y) (symmetric-dist-ℕ y z)) ∙
( ( commutative-add-ℕ (dist-ℕ y x) (dist-ℕ z y)) ∙
( ( triangle-equality-dist-ℕ z y x H1 H2) ∙
( symmetric-dist-ℕ z x))))
-- Finally, we show that cong-ℕ is transitive.
transitive-cong-ℕ :
(k x y z : ℕ) →
cong-ℕ k x y → cong-ℕ k y z → cong-ℕ k x z
transitive-cong-ℕ k x y z d e with is-total-dist-ℕ x y z
transitive-cong-ℕ k x y z d e | inl α =
tr (div-ℕ k) α (div-add-ℕ k (dist-ℕ x y) (dist-ℕ y z) d e)
transitive-cong-ℕ k x y z d e | inr (inl α) =
div-right-summand-ℕ k (dist-ℕ y z) (dist-ℕ x z) e (tr (div-ℕ k) (inv α) d)
transitive-cong-ℕ k x y z d e | inr (inr α) =
div-left-summand-ℕ k (dist-ℕ x z) (dist-ℕ x y) d (tr (div-ℕ k) (inv α) e)
concatenate-cong-eq-cong-ℕ :
{k x1 x2 x3 x4 : ℕ} →
cong-ℕ k x1 x2 → Id x2 x3 → cong-ℕ k x3 x4 → cong-ℕ k x1 x4
concatenate-cong-eq-cong-ℕ {k} {x} {y} {.y} {z} H refl K =
transitive-cong-ℕ k x y z H K
concatenate-eq-cong-eq-cong-eq-ℕ :
(k : ℕ) {x1 x2 x3 x4 x5 x6 : ℕ} →
Id x1 x2 → cong-ℕ k x2 x3 → Id x3 x4 →
cong-ℕ k x4 x5 → Id x5 x6 → cong-ℕ k x1 x6
concatenate-eq-cong-eq-cong-eq-ℕ k {x} {.x} {y} {.y} {z} {.z} refl H refl K refl =
transitive-cong-ℕ k x y z H K
{- Remark 7.1.6 (this is also Exercise 7.2) -}
-- We show that cong-ℕ one-ℕ is the indiscrete equivalence relation --
div-one-ℕ :
(x : ℕ) → div-ℕ one-ℕ x
div-one-ℕ x = pair x (right-unit-law-mul-ℕ x)
is-indiscrete-cong-one-ℕ :
(x y : ℕ) → cong-ℕ one-ℕ x y
is-indiscrete-cong-one-ℕ x y = div-one-ℕ (dist-ℕ x y)
-- We show that the congruence relation modulo 0 is discrete
div-zero-ℕ :
(k : ℕ) → div-ℕ k zero-ℕ
div-zero-ℕ k = pair zero-ℕ (left-zero-law-mul-ℕ k)
is-discrete-cong-zero-ℕ :
(x y : ℕ) → cong-ℕ zero-ℕ x y → Id x y
is-discrete-cong-zero-ℕ x y (pair k p) =
eq-dist-ℕ x y ((inv (right-zero-law-mul-ℕ k)) ∙ p)
-- We show that d | 1 if and only if d = 1.
-- We show that 0 | x if and only if x = 0.
-- We show that zero-ℕ is congruent to n modulo n.
cong-zero-ℕ :
(k : ℕ) → cong-ℕ k k zero-ℕ
cong-zero-ℕ k =
pair one-ℕ ((left-unit-law-mul-ℕ k) ∙ (inv (right-zero-law-dist-ℕ k)))
cong-zero-ℕ' :
(k : ℕ) → cong-ℕ k zero-ℕ k
cong-zero-ℕ' k =
symmetric-cong-ℕ k k zero-ℕ (cong-zero-ℕ k)
--------------------------------------------------------------------------------
{- Section 7.2 The finite types -}
{- Definition 7.2.1 -}
-- We introduce the finite types as a family indexed by ℕ.
Fin : ℕ → UU lzero
Fin zero-ℕ = empty
Fin (succ-ℕ k) = coprod (Fin k) unit
inl-Fin :
(k : ℕ) → Fin k → Fin (succ-ℕ k)
inl-Fin k = inl
neg-one-Fin : {k : ℕ} → Fin (succ-ℕ k)
neg-one-Fin {k} = inr star
{- Definition 7.2.4 -}
-- We define the inclusion of Fin k into ℕ.
nat-Fin : {k : ℕ} → Fin k → ℕ
nat-Fin {succ-ℕ k} (inl x) = nat-Fin x
nat-Fin {succ-ℕ k} (inr x) = k
{- Lemma 7.2.5 -}
-- We show that nat-Fin is bounded
strict-upper-bound-nat-Fin : {k : ℕ} (x : Fin k) → le-ℕ (nat-Fin x) k
strict-upper-bound-nat-Fin {succ-ℕ k} (inl x) =
transitive-le-ℕ
( nat-Fin x)
( k)
( succ-ℕ k)
( strict-upper-bound-nat-Fin x)
( succ-le-ℕ k)
strict-upper-bound-nat-Fin {succ-ℕ k} (inr star) =
succ-le-ℕ k
-- We also give a non-strict upper bound for convenience
upper-bound-nat-Fin : {k : ℕ} (x : Fin (succ-ℕ k)) → leq-ℕ (nat-Fin x) k
upper-bound-nat-Fin {zero-ℕ} (inr star) = star
upper-bound-nat-Fin {succ-ℕ k} (inl x) =
preserves-leq-succ-ℕ (nat-Fin x) k (upper-bound-nat-Fin x)
upper-bound-nat-Fin {succ-ℕ k} (inr star) = reflexive-leq-ℕ (succ-ℕ k)
{- Proposition 7.2.6 -}
-- We show that nat-Fin is an injective function
neq-le-ℕ : {x y : ℕ} → le-ℕ x y → ¬ (Id x y)
neq-le-ℕ {zero-ℕ} {succ-ℕ y} H = Peano-8 y
neq-le-ℕ {succ-ℕ x} {succ-ℕ y} H p = neq-le-ℕ H (is-injective-succ-ℕ x y p)
is-injective-nat-Fin : {k : ℕ} {x y : Fin k} →
Id (nat-Fin x) (nat-Fin y) → Id x y
is-injective-nat-Fin {succ-ℕ k} {inl x} {inl y} p =
ap inl (is-injective-nat-Fin p)
is-injective-nat-Fin {succ-ℕ k} {inl x} {inr star} p =
ex-falso (neq-le-ℕ (strict-upper-bound-nat-Fin x) p)
is-injective-nat-Fin {succ-ℕ k} {inr star} {inl y} p =
ex-falso (neq-le-ℕ (strict-upper-bound-nat-Fin y) (inv p))
is-injective-nat-Fin {succ-ℕ k} {inr star} {inr star} p =
refl
{- Definition 7.2.7 -}
-- We define the zero element of Fin k.
zero-Fin : {k : ℕ} → Fin (succ-ℕ k)
zero-Fin {zero-ℕ} = inr star
zero-Fin {succ-ℕ k} = inl zero-Fin
-- We define a function skip-zero-Fin in order to define succ-Fin.
skip-zero-Fin : {k : ℕ} → Fin k → Fin (succ-ℕ k)
skip-zero-Fin {succ-ℕ k} (inl x) = inl (skip-zero-Fin x)
skip-zero-Fin {succ-ℕ k} (inr star) = inr star
-- We define the successor function on Fin k.
succ-Fin : {k : ℕ} → Fin k → Fin k
succ-Fin {succ-ℕ k} (inl x) = skip-zero-Fin x
succ-Fin {succ-ℕ k} (inr star) = zero-Fin
{- Definition 7.2.8 -}
-- We define the negative two element of Fin k.
neg-two-Fin :
{k : ℕ} → Fin (succ-ℕ k)
neg-two-Fin {zero-ℕ} = inr star
neg-two-Fin {succ-ℕ k} = inl (inr star)
-- We define a function skip-neg-two-Fin in order to define pred-Fin.
skip-neg-two-Fin :
{k : ℕ} → Fin k → Fin (succ-ℕ k)
skip-neg-two-Fin {succ-ℕ k} (inl x) = inl (inl x)
skip-neg-two-Fin {succ-ℕ k} (inr x) = neg-one-Fin {succ-ℕ k}
-- We define the predecessor function on Fin k.
pred-Fin : {k : ℕ} → Fin k → Fin k
pred-Fin {succ-ℕ k} (inl x) = skip-neg-two-Fin (pred-Fin x)
pred-Fin {succ-ℕ k} (inr x) = neg-two-Fin
{- Definition 7.2.9 -}
-- We define the modulo function
mod-succ-ℕ : (k : ℕ) → ℕ → Fin (succ-ℕ k)
mod-succ-ℕ k zero-ℕ = zero-Fin
mod-succ-ℕ k (succ-ℕ n) = succ-Fin (mod-succ-ℕ k n)
mod-two-ℕ : ℕ → Fin two-ℕ
mod-two-ℕ = mod-succ-ℕ one-ℕ
mod-three-ℕ : ℕ → Fin three-ℕ
mod-three-ℕ = mod-succ-ℕ two-ℕ
{- Lemma 7.2.10 -}
successor-law-mod-succ-ℕ :
(k x : ℕ) → leq-ℕ x k →
Id (mod-succ-ℕ (succ-ℕ k) x) (inl (mod-succ-ℕ k x))
successor-law-mod-succ-ℕ k zero-ℕ star = refl
successor-law-mod-succ-ℕ (succ-ℕ k) (succ-ℕ x) p =
( ( ap succ-Fin
( successor-law-mod-succ-ℕ (succ-ℕ k) x
( preserves-leq-succ-ℕ x k p))) ∙
( ap succ-Fin (ap inl (successor-law-mod-succ-ℕ k x p)))) ∙
( ap inl (ap succ-Fin (inv (successor-law-mod-succ-ℕ k x p))))
{- Corollary 7.2.11 -}
neg-one-law-mod-succ-ℕ :
(k : ℕ) → Id (mod-succ-ℕ k k) neg-one-Fin
neg-one-law-mod-succ-ℕ zero-ℕ = refl
neg-one-law-mod-succ-ℕ (succ-ℕ k) =
ap succ-Fin
( ( successor-law-mod-succ-ℕ k k (reflexive-leq-ℕ k)) ∙
( ap inl (neg-one-law-mod-succ-ℕ k)))
base-case-is-periodic-mod-succ-ℕ :
(k : ℕ) → Id (mod-succ-ℕ k (succ-ℕ k)) zero-Fin
base-case-is-periodic-mod-succ-ℕ zero-ℕ = refl
base-case-is-periodic-mod-succ-ℕ (succ-ℕ k) =
ap succ-Fin (neg-one-law-mod-succ-ℕ (succ-ℕ k))
{- Theorem 7.2.12 -}
-- Now we show that Fin (succ-ℕ k) is a retract of ℕ
issec-nat-Fin : (k : ℕ) (x : Fin (succ-ℕ k)) → Id (mod-succ-ℕ k (nat-Fin x)) x
issec-nat-Fin zero-ℕ (inr star) = refl
issec-nat-Fin (succ-ℕ k) (inl x) =
( successor-law-mod-succ-ℕ k (nat-Fin x) (upper-bound-nat-Fin x)) ∙
( ap inl (issec-nat-Fin k x))
issec-nat-Fin (succ-ℕ k) (inr star) = neg-one-law-mod-succ-ℕ (succ-ℕ k)
--------------------------------------------------------------------------------
{- Section 7.3 The effectiveness theorem of modular arithmetic -}
{- Lemma 7.3.1 -}
-- We prove three things to help calculating with nat-Fin.
nat-zero-Fin :
{k : ℕ} → Id (nat-Fin (zero-Fin {k})) zero-ℕ
nat-zero-Fin {zero-ℕ} = refl
nat-zero-Fin {succ-ℕ k} = nat-zero-Fin {k}
nat-skip-zero-Fin :
{k : ℕ} (x : Fin k) → Id (nat-Fin (skip-zero-Fin x)) (succ-ℕ (nat-Fin x))
nat-skip-zero-Fin {succ-ℕ k} (inl x) = nat-skip-zero-Fin x
nat-skip-zero-Fin {succ-ℕ k} (inr star) = refl
cong-nat-succ-Fin :
(k : ℕ) (x : Fin k) → cong-ℕ k (nat-Fin (succ-Fin x)) (succ-ℕ (nat-Fin x))
cong-nat-succ-Fin (succ-ℕ k) (inl x) =
cong-identification-ℕ
( succ-ℕ k)
{ nat-Fin (succ-Fin (inl x))}
{ succ-ℕ (nat-Fin x)}
( nat-skip-zero-Fin x)
cong-nat-succ-Fin (succ-ℕ k) (inr star) =
concatenate-eq-cong-ℕ
( succ-ℕ k)
{ nat-Fin {succ-ℕ k} zero-Fin}
{ zero-ℕ}
{ succ-ℕ k}
( nat-zero-Fin {k})
( cong-zero-ℕ' (succ-ℕ k))
{- Corollary 7.3.2 -}
-- We show that (nat-Fin (mod-succ-ℕ n x)) is congruent to x modulo n+1. --
cong-nat-mod-succ-ℕ :
(k x : ℕ) → cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k x)) x
cong-nat-mod-succ-ℕ k zero-ℕ =
cong-identification-ℕ (succ-ℕ k) (nat-zero-Fin {k})
cong-nat-mod-succ-ℕ k (succ-ℕ x) =
transitive-cong-ℕ
( succ-ℕ k)
( nat-Fin (mod-succ-ℕ k (succ-ℕ x)))
( succ-ℕ (nat-Fin (mod-succ-ℕ k x)))
( succ-ℕ x)
( cong-nat-succ-Fin (succ-ℕ k) (mod-succ-ℕ k x) )
( cong-nat-mod-succ-ℕ k x)
{- Proposition 7.3.4 -}
contradiction-leq-ℕ :
(x y : ℕ) → leq-ℕ x y → leq-ℕ (succ-ℕ y) x → empty
contradiction-leq-ℕ (succ-ℕ x) (succ-ℕ y) H K = contradiction-leq-ℕ x y H K
eq-zero-div-ℕ :
(d x : ℕ) → leq-ℕ x d → div-ℕ (succ-ℕ d) x → Id x zero-ℕ
eq-zero-div-ℕ d zero-ℕ H D = refl
eq-zero-div-ℕ d (succ-ℕ x) H (pair (succ-ℕ k) p) =
ex-falso
( contradiction-leq-ℕ d x
( concatenate-eq-leq-eq-ℕ
{ x1 = succ-ℕ d}
{ x2 = succ-ℕ d}
{ x3 = succ-ℕ (add-ℕ (mul-ℕ k (succ-ℕ d)) d)}
{ x4 = succ-ℕ x}
( refl)
( leq-add-ℕ' d (mul-ℕ k (succ-ℕ d)))
( p)) H)
{- Theorem 7.3.5 -}
{- We show that if mod-succ-ℕ k x = mod-succ-ℕ k y, then x and y must be
congruent modulo succ-ℕ n. This is the forward direction of the theorm. -}
cong-eq-ℕ :
(k x y : ℕ) → Id (mod-succ-ℕ k x) (mod-succ-ℕ k y) → cong-ℕ (succ-ℕ k) x y
cong-eq-ℕ k x y p =
concatenate-cong-eq-cong-ℕ {succ-ℕ k} {x}
( symmetric-cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k x)) x
( cong-nat-mod-succ-ℕ k x))
( ap nat-Fin p)
( cong-nat-mod-succ-ℕ k y)
eq-cong-nat-Fin :
(k : ℕ) (x y : Fin k) → cong-ℕ k (nat-Fin x) (nat-Fin y) → Id x y
eq-cong-nat-Fin (succ-ℕ k) x y H =
is-injective-nat-Fin
( eq-dist-ℕ
( nat-Fin x)
( nat-Fin y)
( inv
( eq-zero-div-ℕ k
( dist-ℕ (nat-Fin x) (nat-Fin y))
( upper-bound-dist-ℕ k
( nat-Fin x)
( nat-Fin y)
( upper-bound-nat-Fin x)
( upper-bound-nat-Fin y))
( H))))
eq-cong-ℕ :
(k x y : ℕ) → cong-ℕ (succ-ℕ k) x y → Id (mod-succ-ℕ k x) (mod-succ-ℕ k y)
eq-cong-ℕ k x y H =
eq-cong-nat-Fin
( succ-ℕ k)
( mod-succ-ℕ k x)
( mod-succ-ℕ k y)
( transitive-cong-ℕ
( succ-ℕ k)
( nat-Fin (mod-succ-ℕ k x))
( x)
( nat-Fin (mod-succ-ℕ k y))
( cong-nat-mod-succ-ℕ k x)
( transitive-cong-ℕ (succ-ℕ k) x y (nat-Fin (mod-succ-ℕ k y)) H
( symmetric-cong-ℕ (succ-ℕ k) (nat-Fin (mod-succ-ℕ k y)) y
( cong-nat-mod-succ-ℕ k y))))
--------------------------------------------------------------------------------
{- Section 7.4 The cyclic group structure on the finite types -}
{- Definition 7.4.1 -}
-- Addition on finite sets --
add-Fin : {k : ℕ} → Fin k → Fin k → Fin k
add-Fin {succ-ℕ k} x y = mod-succ-ℕ k (add-ℕ (nat-Fin x) (nat-Fin y))
add-Fin' : {k : ℕ} → Fin k → Fin k → Fin k
add-Fin' x y = add-Fin y x
-- We define an action on paths of add-Fin on the two arguments at once.
ap-add-Fin :
{k : ℕ} {x y x' y' : Fin k} →
Id x x' → Id y y' → Id (add-Fin x y) (add-Fin x' y')
ap-add-Fin refl refl = refl
-- The negative of an element of Fin k --
neg-Fin :
{k : ℕ} → Fin k → Fin k
neg-Fin {succ-ℕ k} x =
mod-succ-ℕ k (dist-ℕ (nat-Fin x) (succ-ℕ k))
{- Remark 7.4.2 -}
cong-nat-zero-Fin :
{k : ℕ} → cong-ℕ (succ-ℕ k) (nat-Fin (zero-Fin {k})) zero-ℕ
cong-nat-zero-Fin {k} = cong-nat-mod-succ-ℕ k zero-ℕ
cong-add-Fin :
{k : ℕ} (x y : Fin k) →
cong-ℕ k (nat-Fin (add-Fin x y)) (add-ℕ (nat-Fin x) (nat-Fin y))
cong-add-Fin {succ-ℕ k} x y =
cong-nat-mod-succ-ℕ k (add-ℕ (nat-Fin x) (nat-Fin y))
cong-neg-Fin :
{k : ℕ} (x : Fin k) →
cong-ℕ k (nat-Fin (neg-Fin x)) (dist-ℕ (nat-Fin x) k)
cong-neg-Fin {succ-ℕ k} x =
cong-nat-mod-succ-ℕ k (dist-ℕ (nat-Fin x) (succ-ℕ k))
{- Proposition 7.4.3 -}
-- We show that congruence is translation invariant --
translation-invariant-cong-ℕ :
(k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (add-ℕ z x) (add-ℕ z y)
translation-invariant-cong-ℕ k x y z (pair d p) =
pair d (p ∙ inv (translation-invariant-dist-ℕ z x y))
translation-invariant-cong-ℕ' :
(k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (add-ℕ x z) (add-ℕ y z)
translation-invariant-cong-ℕ' k x y z H =
concatenate-eq-cong-eq-ℕ k
( commutative-add-ℕ x z)
( translation-invariant-cong-ℕ k x y z H)
( commutative-add-ℕ z y)
step-invariant-cong-ℕ :
(k x y : ℕ) → cong-ℕ k x y → cong-ℕ k (succ-ℕ x) (succ-ℕ y)
step-invariant-cong-ℕ k x y = translation-invariant-cong-ℕ' k x y one-ℕ
-- We show that addition respects the congruence relation --
congruence-add-ℕ :
(k : ℕ) {x y x' y' : ℕ} →
cong-ℕ k x x' → cong-ℕ k y y' → cong-ℕ k (add-ℕ x y) (add-ℕ x' y')
congruence-add-ℕ k {x} {y} {x'} {y'} H K =
transitive-cong-ℕ k (add-ℕ x y) (add-ℕ x y') (add-ℕ x' y')
( translation-invariant-cong-ℕ k y y' x K)
( translation-invariant-cong-ℕ' k x x' y' H)
{- Theorem 7.4.4 -}
-- We show that addition is commutative --
commutative-add-Fin : {k : ℕ} (x y : Fin k) → Id (add-Fin x y) (add-Fin y x)
commutative-add-Fin {succ-ℕ k} x y =
ap (mod-succ-ℕ k) (commutative-add-ℕ (nat-Fin x) (nat-Fin y))
-- We show that addition is associative --
associative-add-Fin :
{k : ℕ} (x y z : Fin k) →
Id (add-Fin (add-Fin x y) z) (add-Fin x (add-Fin y z))
associative-add-Fin {succ-ℕ k} x y z =
eq-cong-ℕ k
( add-ℕ (nat-Fin (add-Fin x y)) (nat-Fin z))
( add-ℕ (nat-Fin x) (nat-Fin (add-Fin y z)))
( concatenate-cong-eq-cong-ℕ
{ x1 = add-ℕ (nat-Fin (add-Fin x y)) (nat-Fin z)}
{ x2 = add-ℕ (add-ℕ (nat-Fin x) (nat-Fin y)) (nat-Fin z)}
{ x3 = add-ℕ (nat-Fin x) (add-ℕ (nat-Fin y) (nat-Fin z))}
{ x4 = add-ℕ (nat-Fin x) (nat-Fin (add-Fin y z))}
( congruence-add-ℕ
( succ-ℕ k)
{ x = nat-Fin (add-Fin x y)}
{ y = nat-Fin z}
{ x' = add-ℕ (nat-Fin x) (nat-Fin y)}
{ y' = nat-Fin z}
( cong-add-Fin x y)
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin z)))
( associative-add-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z))
( congruence-add-ℕ
( succ-ℕ k)
{ x = nat-Fin x}
{ y = add-ℕ (nat-Fin y) (nat-Fin z)}
{ x' = nat-Fin x}
{ y' = nat-Fin (add-Fin y z)}
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x))
( symmetric-cong-ℕ
( succ-ℕ k)
( nat-Fin (add-Fin y z))
( add-ℕ (nat-Fin y) (nat-Fin z))
( cong-add-Fin y z))))
-- We show that addition satisfies the right unit law --
right-unit-law-add-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin x zero-Fin) x
right-unit-law-add-Fin {k} x =
( eq-cong-ℕ k
( add-ℕ (nat-Fin x) (nat-Fin {succ-ℕ k} zero-Fin))
( add-ℕ (nat-Fin x) zero-ℕ)
( congruence-add-ℕ
( succ-ℕ k)
{ x = nat-Fin {succ-ℕ k} x}
{ y = nat-Fin {succ-ℕ k} zero-Fin}
{ x' = nat-Fin x}
{ y' = zero-ℕ}
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin {succ-ℕ k} x))
( cong-nat-zero-Fin {k}))) ∙
( issec-nat-Fin k x)
left-unit-law-add-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin zero-Fin x) x
left-unit-law-add-Fin {k} x =
( commutative-add-Fin zero-Fin x) ∙
( right-unit-law-add-Fin x)
-- We show that addition satisfies the left inverse law --
left-inverse-law-add-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin (neg-Fin x) x) zero-Fin
left-inverse-law-add-Fin {k} x =
eq-cong-ℕ k (add-ℕ (nat-Fin (neg-Fin x)) (nat-Fin x)) zero-ℕ
( concatenate-cong-eq-cong-ℕ
{ succ-ℕ k}
{ x1 = add-ℕ (nat-Fin (neg-Fin x)) (nat-Fin x)}
{ x2 = add-ℕ (dist-ℕ (nat-Fin x) (succ-ℕ k)) (nat-Fin x)}
{ x3 = succ-ℕ k}
{ x4 = zero-ℕ}
( congruence-add-ℕ
( succ-ℕ k)
{ x = nat-Fin (neg-Fin x)}
{ y = nat-Fin x}
( cong-neg-Fin x)
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x)))
( ( ap ( add-ℕ (dist-ℕ (nat-Fin x) (succ-ℕ k)))
( inv (left-zero-law-dist-ℕ (nat-Fin x)))) ∙
( ( commutative-add-ℕ
( dist-ℕ (nat-Fin x) (succ-ℕ k))
( dist-ℕ zero-ℕ (nat-Fin x))) ∙
( triangle-equality-dist-ℕ zero-ℕ (nat-Fin x) (succ-ℕ k) star
( preserves-leq-succ-ℕ (nat-Fin x) k (upper-bound-nat-Fin x)))))
( symmetric-cong-ℕ
( succ-ℕ k)
( zero-ℕ)
( succ-ℕ k)
( cong-zero-ℕ (succ-ℕ k))))
right-inverse-law-add-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (add-Fin x (neg-Fin x)) zero-Fin
right-inverse-law-add-Fin x =
( commutative-add-Fin x (neg-Fin x)) ∙ (left-inverse-law-add-Fin x)
--------------------------------------------------------------------------------
{- Exercises -}
{- Exercise 7.1 -}
-- See Proposition 7.1.2
{- Exercise 7.2 -}
{- Exercise 7.3 -}
{- Exercise 7.4 -}
{- Exercise 7.5 -}
{- Exercise 7.6 -}
{- Exercise 7.7 -}
pred-zero-Fin :
{k : ℕ} → Id (pred-Fin {succ-ℕ k} zero-Fin) neg-one-Fin
pred-zero-Fin {zero-ℕ} = refl
pred-zero-Fin {succ-ℕ k} = ap skip-neg-two-Fin (pred-zero-Fin {k})
succ-skip-neg-two-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) →
Id (succ-Fin (skip-neg-two-Fin x)) (inl (succ-Fin x))
succ-skip-neg-two-Fin {zero-ℕ} (inr star) = refl
succ-skip-neg-two-Fin {succ-ℕ k} (inl x) = refl
succ-skip-neg-two-Fin {succ-ℕ k} (inr star) = refl
succ-pred-Fin :
{k : ℕ} (x : Fin k) → Id (succ-Fin (pred-Fin x)) x
succ-pred-Fin {succ-ℕ zero-ℕ} (inr star) = refl
succ-pred-Fin {succ-ℕ (succ-ℕ k)} (inl x) =
succ-skip-neg-two-Fin (pred-Fin x) ∙ ap inl (succ-pred-Fin x)
succ-pred-Fin {succ-ℕ (succ-ℕ k)} (inr star) = refl
pred-succ-Fin :
{k : ℕ} (x : Fin k) → Id (pred-Fin (succ-Fin x)) x
pred-succ-Fin {succ-ℕ zero-ℕ} (inr star) = refl
pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inl (inl x)) =
ap skip-neg-two-Fin (pred-succ-Fin (inl x))
pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inl (inr star)) = refl
pred-succ-Fin {succ-ℕ (succ-ℕ k)} (inr star) = pred-zero-Fin
{- Exercise 7.8 -}
{- Exercise 7.9 -}
reverse-Fin : {k : ℕ} → Fin k → Fin k
reverse-Fin {succ-ℕ k} (inl x) = skip-zero-Fin (reverse-Fin x)
reverse-Fin {succ-ℕ k} (inr x) = zero-Fin
reverse-skip-zero-Fin :
{k : ℕ} (x : Fin k) →
Id (reverse-Fin (skip-zero-Fin x)) (inl-Fin k (reverse-Fin x))
reverse-skip-zero-Fin {succ-ℕ k} (inl x) =
ap skip-zero-Fin (reverse-skip-zero-Fin x)
reverse-skip-zero-Fin {succ-ℕ k} (inr star) = refl
reverse-neg-one-Fin :
{k : ℕ} → Id (reverse-Fin (neg-one-Fin {k})) (zero-Fin {k})
reverse-neg-one-Fin {k} = refl
reverse-zero-Fin :
{k : ℕ} → Id (reverse-Fin (zero-Fin {k})) (neg-one-Fin {k})
reverse-zero-Fin {zero-ℕ} = refl
reverse-zero-Fin {succ-ℕ k} = ap skip-zero-Fin (reverse-zero-Fin {k})
reverse-reverse-Fin :
{k : ℕ} (x : Fin k) → Id (reverse-Fin (reverse-Fin x)) x
reverse-reverse-Fin {succ-ℕ k} (inl x) =
( reverse-skip-zero-Fin (reverse-Fin x)) ∙
( ap inl (reverse-reverse-Fin x))
reverse-reverse-Fin {succ-ℕ k} (inr star) = reverse-zero-Fin
{- Exercise 7.10 -}
-- We show that congruence is invariant under scalar multiplication --
scalar-invariant-cong-ℕ :
(k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (mul-ℕ z x) (mul-ℕ z y)
scalar-invariant-cong-ℕ k x y z (pair d p) =
pair
( mul-ℕ z d)
( ( associative-mul-ℕ z d k) ∙
( ( ap (mul-ℕ z) p) ∙
( inv (linear-dist-ℕ x y z))))
scalar-invariant-cong-ℕ' :
(k x y z : ℕ) → cong-ℕ k x y → cong-ℕ k (mul-ℕ x z) (mul-ℕ y z)
scalar-invariant-cong-ℕ' k x y z H =
concatenate-eq-cong-eq-ℕ k
( commutative-mul-ℕ x z)
( scalar-invariant-cong-ℕ k x y z H)
( commutative-mul-ℕ z y)
-- We show that multiplication respects the congruence relation --
congruence-mul-ℕ :
(k : ℕ) {x y x' y' : ℕ} →
cong-ℕ k x x' → cong-ℕ k y y' → cong-ℕ k (mul-ℕ x y) (mul-ℕ x' y')
congruence-mul-ℕ k {x} {y} {x'} {y'} H K =
transitive-cong-ℕ k (mul-ℕ x y) (mul-ℕ x y') (mul-ℕ x' y')
( scalar-invariant-cong-ℕ k y y' x K)
( scalar-invariant-cong-ℕ' k x x' y' H)
{- We define the multiplication on the types Fin k. -}
mul-Fin :
{k : ℕ} → Fin k → Fin k → Fin k
mul-Fin {succ-ℕ k} x y = mod-succ-ℕ k (mul-ℕ (nat-Fin x) (nat-Fin y))
ap-mul-Fin :
{k : ℕ} {x y x' y' : Fin k} →
Id x x' → Id y y' → Id (mul-Fin x y) (mul-Fin x' y')
ap-mul-Fin refl refl = refl
cong-mul-Fin :
{k : ℕ} (x y : Fin k) →
cong-ℕ k (nat-Fin (mul-Fin x y)) (mul-ℕ (nat-Fin x) (nat-Fin y))
cong-mul-Fin {succ-ℕ k} x y =
cong-nat-mod-succ-ℕ k (mul-ℕ (nat-Fin x) (nat-Fin y))
associative-mul-Fin :
{k : ℕ} (x y z : Fin k) →
Id (mul-Fin (mul-Fin x y) z) (mul-Fin x (mul-Fin y z))
associative-mul-Fin {succ-ℕ k} x y z =
eq-cong-ℕ k
( mul-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin z))
( mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z)))
( concatenate-cong-eq-cong-ℕ
{ x1 = mul-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin z)}
{ x2 = mul-ℕ (mul-ℕ (nat-Fin x) (nat-Fin y)) (nat-Fin z)}
{ x3 = mul-ℕ (nat-Fin x) (mul-ℕ (nat-Fin y) (nat-Fin z))}
{ x4 = mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z))}
( congruence-mul-ℕ
( succ-ℕ k)
{ x = nat-Fin (mul-Fin x y)}
{ y = nat-Fin z}
( cong-mul-Fin x y)
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin z)))
( associative-mul-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z))
( symmetric-cong-ℕ
( succ-ℕ k)
( mul-ℕ (nat-Fin x) (nat-Fin (mul-Fin y z)))
( mul-ℕ (nat-Fin x) (mul-ℕ (nat-Fin y) (nat-Fin z)))
( congruence-mul-ℕ
( succ-ℕ k)
{ x = nat-Fin x}
{ y = nat-Fin (mul-Fin y z)}
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x))
( cong-mul-Fin y z))))
commutative-mul-Fin :
{k : ℕ} (x y : Fin k) → Id (mul-Fin x y) (mul-Fin y x)
commutative-mul-Fin {succ-ℕ k} x y =
eq-cong-ℕ k
( mul-ℕ (nat-Fin x) (nat-Fin y))
( mul-ℕ (nat-Fin y) (nat-Fin x))
( cong-identification-ℕ
( succ-ℕ k)
( commutative-mul-ℕ (nat-Fin x) (nat-Fin y)))
one-Fin : {k : ℕ} → Fin (succ-ℕ k)
one-Fin {k} = mod-succ-ℕ k one-ℕ
nat-one-Fin : {k : ℕ} → Id (nat-Fin (one-Fin {succ-ℕ k})) one-ℕ
nat-one-Fin {zero-ℕ} = refl
nat-one-Fin {succ-ℕ k} = nat-one-Fin {k}
left-unit-law-mul-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (mul-Fin one-Fin x) x
left-unit-law-mul-Fin {zero-ℕ} (inr star) = refl
left-unit-law-mul-Fin {succ-ℕ k} x =
( eq-cong-ℕ (succ-ℕ k)
( mul-ℕ (nat-Fin (one-Fin {succ-ℕ k})) (nat-Fin x))
( nat-Fin x)
( cong-identification-ℕ
( succ-ℕ (succ-ℕ k))
( ( ap ( mul-ℕ' (nat-Fin x))
( nat-one-Fin {k})) ∙
( left-unit-law-mul-ℕ (nat-Fin x))))) ∙
( issec-nat-Fin (succ-ℕ k) x)
right-unit-law-mul-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (mul-Fin x one-Fin) x
right-unit-law-mul-Fin x =
( commutative-mul-Fin x one-Fin) ∙
( left-unit-law-mul-Fin x)
left-distributive-mul-add-Fin :
{k : ℕ} (x y z : Fin k) →
Id (mul-Fin x (add-Fin y z)) (add-Fin (mul-Fin x y) (mul-Fin x z))
left-distributive-mul-add-Fin {succ-ℕ k} x y z =
eq-cong-ℕ k
( mul-ℕ (nat-Fin x) (nat-Fin (add-Fin y z)))
( add-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin (mul-Fin x z)))
( concatenate-cong-eq-cong-ℕ
{ k = succ-ℕ k}
{ x1 = mul-ℕ ( nat-Fin x) (nat-Fin (add-Fin y z))}
{ x2 = mul-ℕ ( nat-Fin x) (add-ℕ (nat-Fin y) (nat-Fin z))}
{ x3 = add-ℕ ( mul-ℕ (nat-Fin x) (nat-Fin y))
( mul-ℕ (nat-Fin x) (nat-Fin z))}
{ x4 = add-ℕ (nat-Fin (mul-Fin x y)) (nat-Fin (mul-Fin x z))}
( congruence-mul-ℕ
( succ-ℕ k)
{ x = nat-Fin x}
{ y = nat-Fin (add-Fin y z)}
{ x' = nat-Fin x}
{ y' = add-ℕ (nat-Fin y) (nat-Fin z)}
( reflexive-cong-ℕ (succ-ℕ k) (nat-Fin x))
( cong-add-Fin y z))
( left-distributive-mul-add-ℕ (nat-Fin x) (nat-Fin y) (nat-Fin z))
( symmetric-cong-ℕ (succ-ℕ k)
( add-ℕ ( nat-Fin (mul-Fin x y))
( nat-Fin (mul-Fin x z)))
( add-ℕ ( mul-ℕ (nat-Fin x) (nat-Fin y))
( mul-ℕ (nat-Fin x) (nat-Fin z)))
( congruence-add-ℕ
( succ-ℕ k)
{ x = nat-Fin (mul-Fin x y)}
{ y = nat-Fin (mul-Fin x z)}
{ x' = mul-ℕ (nat-Fin x) (nat-Fin y)}
{ y' = mul-ℕ (nat-Fin x) (nat-Fin z)}
( cong-mul-Fin x y)
( cong-mul-Fin x z))))
right-distributive-mul-add-Fin :
{k : ℕ} (x y z : Fin k) →
Id (mul-Fin (add-Fin x y) z) (add-Fin (mul-Fin x z) (mul-Fin y z))
right-distributive-mul-add-Fin {k} x y z =
( commutative-mul-Fin (add-Fin x y) z) ∙
( ( left-distributive-mul-add-Fin z x y) ∙
( ap-add-Fin (commutative-mul-Fin z x) (commutative-mul-Fin z y)))
{- Exercise 7.11 -}
{- Exercise 7.12 -}
-- We introduce the observational equality on finite sets.
Eq-Fin : (k : ℕ) → Fin k → Fin k → UU lzero
Eq-Fin (succ-ℕ k) (inl x) (inl y) = Eq-Fin k x y
Eq-Fin (succ-ℕ k) (inl x) (inr y) = empty
Eq-Fin (succ-ℕ k) (inr x) (inl y) = empty
Eq-Fin (succ-ℕ k) (inr x) (inr y) = unit
-- Exercise 7.12 (a)
refl-Eq-Fin : {k : ℕ} (x : Fin k) → Eq-Fin k x x
refl-Eq-Fin {succ-ℕ k} (inl x) = refl-Eq-Fin x
refl-Eq-Fin {succ-ℕ k} (inr x) = star
Eq-Fin-eq : {k : ℕ} {x y : Fin k} → Id x y → Eq-Fin k x y
Eq-Fin-eq {k} refl = refl-Eq-Fin {k} _
eq-Eq-Fin :
{k : ℕ} {x y : Fin k} → Eq-Fin k x y → Id x y
eq-Eq-Fin {succ-ℕ k} {inl x} {inl y} e = ap inl (eq-Eq-Fin e)
eq-Eq-Fin {succ-ℕ k} {inr star} {inr star} star = refl
-- Exercise 7.12 (b)
is-injective-inl-Fin :
{k : ℕ} {x y : Fin k} → Id (inl-Fin k x) (inl-Fin k y) → Id x y
is-injective-inl-Fin p = eq-Eq-Fin (Eq-Fin-eq p)
-- Exercise 7.12 (c)
neq-zero-succ-Fin :
{k : ℕ} {x : Fin k} → ¬ (Id (succ-Fin (inl-Fin k x)) zero-Fin)
neq-zero-succ-Fin {succ-ℕ k} {inl x} p =
neq-zero-succ-Fin (is-injective-inl-Fin p)
neq-zero-succ-Fin {succ-ℕ k} {inr star} p =
Eq-Fin-eq {succ-ℕ (succ-ℕ k)} {inr star} {zero-Fin} p
-- Exercise 7.12 (d)
is-injective-skip-zero-Fin :
{k : ℕ} {x y : Fin k} → Id (skip-zero-Fin x) (skip-zero-Fin y) → Id x y
is-injective-skip-zero-Fin {succ-ℕ k} {inl x} {inl y} p =
ap inl (is-injective-skip-zero-Fin (is-injective-inl-Fin p))
is-injective-skip-zero-Fin {succ-ℕ k} {inl x} {inr star} p =
ex-falso (Eq-Fin-eq p)
is-injective-skip-zero-Fin {succ-ℕ k} {inr star} {inl y} p =
ex-falso (Eq-Fin-eq p)
is-injective-skip-zero-Fin {succ-ℕ k} {inr star} {inr star} p = refl
is-injective-succ-Fin :
{k : ℕ} {x y : Fin k} → Id (succ-Fin x) (succ-Fin y) → Id x y
is-injective-succ-Fin {succ-ℕ k} {inl x} {inl y} p =
ap inl (is-injective-skip-zero-Fin {k} {x} {y} p)
is-injective-succ-Fin {succ-ℕ k} {inl x} {inr star} p =
ex-falso (neq-zero-succ-Fin {succ-ℕ k} {inl x} (ap inl p))
is-injective-succ-Fin {succ-ℕ k} {inr star} {inl y} p =
ex-falso (neq-zero-succ-Fin {succ-ℕ k} {inl y} (ap inl (inv p)))
is-injective-succ-Fin {succ-ℕ k} {inr star} {inr star} p = refl
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
{- Section 7.2 Decidability -}
{- Definition 7.2.1 -}
is-decidable : {l : Level} (A : UU l) → UU l
is-decidable A = coprod A (¬ A)
{- Example 7.2.2 -}
is-decidable-unit : is-decidable unit
is-decidable-unit = inl star
is-decidable-empty : is-decidable empty
is-decidable-empty = inr id
{- Definition 7.2.3 -}
{- We say that a type has decidable equality if we can decide whether
x = y holds for any x, y : A. -}
has-decidable-equality : {l : Level} (A : UU l) → UU l
has-decidable-equality A = (x y : A) → is-decidable (Id x y)
{- Lemma 7.2.5 -}
is-decidable-iff :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
(A → B) → (B → A) → is-decidable A → is-decidable B
is-decidable-iff f g =
functor-coprod f (functor-neg g)
{- Proposition 7.2.6 -}
{- The type ℕ is an example of a type with decidable equality. -}
is-decidable-Eq-ℕ :
(m n : ℕ) → is-decidable (Eq-ℕ m n)
is-decidable-Eq-ℕ zero-ℕ zero-ℕ = inl star
is-decidable-Eq-ℕ zero-ℕ (succ-ℕ n) = inr id
is-decidable-Eq-ℕ (succ-ℕ m) zero-ℕ = inr id
is-decidable-Eq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-Eq-ℕ m n
has-decidable-equality-ℕ : has-decidable-equality ℕ
has-decidable-equality-ℕ x y =
is-decidable-iff (eq-Eq-ℕ x y) Eq-ℕ-eq (is-decidable-Eq-ℕ x y)
{- Proposition 7.2.9 -}
{- We show that Fin k has decidable equality, for each n : ℕ. -}
is-decidable-Eq-Fin :
(k : ℕ) (x y : Fin k) → is-decidable (Eq-Fin k x y)
is-decidable-Eq-Fin (succ-ℕ k) (inl x) (inl y) = is-decidable-Eq-Fin k x y
is-decidable-Eq-Fin (succ-ℕ k) (inl x) (inr y) = inr id
is-decidable-Eq-Fin (succ-ℕ k) (inr x) (inl y) = inr id
is-decidable-Eq-Fin (succ-ℕ k) (inr x) (inr y) = inl star
is-decidable-eq-Fin :
(k : ℕ) (x y : Fin k) → is-decidable (Id x y)
is-decidable-eq-Fin k x y =
functor-coprod eq-Eq-Fin (functor-neg Eq-Fin-eq) (is-decidable-Eq-Fin k x y)
{- Section 7.3 Definitions by case analysis -}
{- We define an alternative definition of the predecessor function with manual
with-abstraction. -}
cases-pred-Fin-2 :
{k : ℕ} (x : Fin (succ-ℕ k))
(d : is-decidable (Eq-Fin (succ-ℕ k) x zero-Fin)) → Fin (succ-ℕ k)
cases-pred-Fin-2 {zero-ℕ} (inr star) d = zero-Fin
cases-pred-Fin-2 {succ-ℕ k} (inl x) (inl e) = neg-one-Fin
cases-pred-Fin-2 {succ-ℕ k} (inl x) (inr f) =
inl (cases-pred-Fin-2 {k} x (inr f))
cases-pred-Fin-2 {succ-ℕ k} (inr star) (inr f) = inl neg-one-Fin
pred-Fin-2 : {k : ℕ} → Fin k → Fin k
pred-Fin-2 {succ-ℕ k} x =
cases-pred-Fin-2 {k} x (is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin)
{- We give a solution to the exercise for the alternative definition of the
predecessor function, using with-abstraction. -}
pred-zero-Fin-2 :
{k : ℕ} → Id (pred-Fin-2 {succ-ℕ k} zero-Fin) neg-one-Fin
pred-zero-Fin-2 {k} with is-decidable-Eq-Fin (succ-ℕ k) zero-Fin zero-Fin
pred-zero-Fin-2 {zero-ℕ} | d = refl
pred-zero-Fin-2 {succ-ℕ k} | inl e = refl
pred-zero-Fin-2 {succ-ℕ k} | inr f =
ex-falso (f (refl-Eq-Fin {succ-ℕ k} zero-Fin))
cases-succ-pred-Fin-2 :
{k : ℕ} (x : Fin (succ-ℕ k))
(d : is-decidable (Eq-Fin (succ-ℕ k) x zero-Fin)) →
Id (succ-Fin (cases-pred-Fin-2 x d)) x
cases-succ-pred-Fin-2 {zero-ℕ} (inr star) d =
refl
cases-succ-pred-Fin-2 {succ-ℕ k} (inl x) (inl e) =
inv (eq-Eq-Fin e)
cases-succ-pred-Fin-2 {succ-ℕ zero-ℕ} (inl (inr x)) (inr f) =
ex-falso (f star)
cases-succ-pred-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl x)) (inr f) =
ap inl (cases-succ-pred-Fin-2 (inl x) (inr f))
cases-succ-pred-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inr star)) (inr f) =
refl
cases-succ-pred-Fin-2 {succ-ℕ k} (inr star) (inr f) =
refl
succ-pred-Fin-2 :
{k : ℕ} (x : Fin k) → Id (succ-Fin (pred-Fin-2 x)) x
succ-pred-Fin-2 {succ-ℕ k} x =
cases-succ-pred-Fin-2 x (is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin)
pred-inl-Fin-2 :
{k : ℕ} (x : Fin (succ-ℕ k)) (f : ¬ (Eq-Fin (succ-ℕ k) x zero-Fin)) →
Id (pred-Fin-2 (inl x)) (inl (pred-Fin-2 x))
pred-inl-Fin-2 {k} x f with is-decidable-Eq-Fin (succ-ℕ k) x zero-Fin
... | inl e = ex-falso (f e)
... | inr f' = refl
nEq-zero-succ-Fin :
{k : ℕ} (x : Fin (succ-ℕ k)) →
¬ (Eq-Fin (succ-ℕ (succ-ℕ k)) (succ-Fin (inl x)) zero-Fin)
nEq-zero-succ-Fin {succ-ℕ k} (inl (inl x)) e = nEq-zero-succ-Fin (inl x) e
nEq-zero-succ-Fin {succ-ℕ k} (inl (inr star)) ()
nEq-zero-succ-Fin {succ-ℕ k} (inr star) ()
pred-succ-Fin-2 :
{k : ℕ} (x : Fin (succ-ℕ k)) → Id (pred-Fin-2 (succ-Fin x)) x
pred-succ-Fin-2 {zero-ℕ} (inr star) = refl
pred-succ-Fin-2 {succ-ℕ zero-ℕ} (inl (inr star)) = refl
pred-succ-Fin-2 {succ-ℕ zero-ℕ} (inr star) = refl
pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl (inl x))) =
( pred-inl-Fin-2 (inl (succ-Fin (inl x))) (nEq-zero-succ-Fin (inl x))) ∙
( ( ap inl (pred-inl-Fin-2 (succ-Fin (inl x)) (nEq-zero-succ-Fin (inl x)))) ∙
( ap (inl ∘ inl) (pred-succ-Fin-2 (inl x))))
pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inl (inr star))) = refl
pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inl (inr star)) = refl
pred-succ-Fin-2 {succ-ℕ (succ-ℕ k)} (inr star) = pred-zero-Fin-2
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
dist-ℤ : ℤ → ℤ → ℕ
dist-ℤ (inl x) (inl y) = dist-ℕ x y
dist-ℤ (inl x) (inr (inl star)) = succ-ℕ x
dist-ℤ (inl x) (inr (inr y)) = succ-ℕ (succ-ℕ (add-ℕ x y))
dist-ℤ (inr (inl star)) (inl y) = succ-ℕ y
dist-ℤ (inr (inr x)) (inl y) = succ-ℕ (succ-ℕ (add-ℕ x y))
dist-ℤ (inr (inl star)) (inr (inl star)) = zero-ℕ
dist-ℤ (inr (inl star)) (inr (inr y)) = succ-ℕ y
dist-ℤ (inr (inr x)) (inr (inl star)) = succ-ℕ x
dist-ℤ (inr (inr x)) (inr (inr y)) = dist-ℕ x y
dist-ℤ' : ℤ → ℤ → ℕ
dist-ℤ' x y = dist-ℤ y x
ap-dist-ℤ :
{x y x' y' : ℤ} → Id x x' → Id y y' → Id (dist-ℤ x y) (dist-ℤ x' y')
ap-dist-ℤ refl refl = refl
eq-dist-ℤ :
(x y : ℤ) → Id zero-ℕ (dist-ℤ x y) → Id x y
eq-dist-ℤ (inl x) (inl y) p = ap inl (eq-dist-ℕ x y p)
eq-dist-ℤ (inl x) (inr (inl star)) p = ex-falso (Peano-8 x p)
eq-dist-ℤ (inr (inl star)) (inl y) p = ex-falso (Peano-8 y p)
eq-dist-ℤ (inr (inl star)) (inr (inl star)) p = refl
eq-dist-ℤ (inr (inl star)) (inr (inr y)) p = ex-falso (Peano-8 y p)
eq-dist-ℤ (inr (inr x)) (inr (inl star)) p = ex-falso (Peano-8 x p)
eq-dist-ℤ (inr (inr x)) (inr (inr y)) p = ap (inr ∘ inr) (eq-dist-ℕ x y p)
dist-eq-ℤ' :
(x : ℤ) → Id zero-ℕ (dist-ℤ x x)
dist-eq-ℤ' (inl x) = dist-eq-ℕ' x
dist-eq-ℤ' (inr (inl star)) = refl
dist-eq-ℤ' (inr (inr x)) = dist-eq-ℕ' x
dist-eq-ℤ :
(x y : ℤ) → Id x y → Id zero-ℕ (dist-ℤ x y)
dist-eq-ℤ x .x refl = dist-eq-ℤ' x
{- The distance function on ℤ is symmetric. -}
symmetric-dist-ℤ :
(x y : ℤ) → Id (dist-ℤ x y) (dist-ℤ y x)
symmetric-dist-ℤ (inl x) (inl y) = symmetric-dist-ℕ x y
symmetric-dist-ℤ (inl x) (inr (inl star)) = refl
symmetric-dist-ℤ (inl x) (inr (inr y)) =
ap (succ-ℕ ∘ succ-ℕ) (commutative-add-ℕ x y)
symmetric-dist-ℤ (inr (inl star)) (inl y) = refl
symmetric-dist-ℤ (inr (inr x)) (inl y) =
ap (succ-ℕ ∘ succ-ℕ) (commutative-add-ℕ x y)
symmetric-dist-ℤ (inr (inl star)) (inr (inl star)) = refl
symmetric-dist-ℤ (inr (inl star)) (inr (inr y)) = refl
symmetric-dist-ℤ (inr (inr x)) (inr (inl star)) = refl
symmetric-dist-ℤ (inr (inr x)) (inr (inr y)) = symmetric-dist-ℕ x y
-- We compute the distance from zero --
left-zero-law-dist-ℤ :
(x : ℤ) → Id (dist-ℤ zero-ℤ x) (abs-ℤ x)
left-zero-law-dist-ℤ (inl x) = refl
left-zero-law-dist-ℤ (inr (inl star)) = refl
left-zero-law-dist-ℤ (inr (inr x)) = refl
right-zero-law-dist-ℤ :
(x : ℤ) → Id (dist-ℤ x zero-ℤ) (abs-ℤ x)
right-zero-law-dist-ℤ (inl x) = refl
right-zero-law-dist-ℤ (inr (inl star)) = refl
right-zero-law-dist-ℤ (inr (inr x)) = refl
-- We prove the triangle inequality --
{-
triangle-inequality-dist-ℤ :
(x y z : ℤ) → leq-ℕ (dist-ℤ x y) (add-ℕ (dist-ℤ x z) (dist-ℤ z y))
triangle-inequality-dist-ℤ (inl x) (inl y) (inl z) =
triangle-inequality-dist-ℕ x y z
triangle-inequality-dist-ℤ (inl x) (inl y) (inr (inl star)) =
triangle-inequality-dist-ℕ (succ-ℕ x) (succ-ℕ y) zero-ℕ
triangle-inequality-dist-ℤ (inl x) (inl y) (inr (inr z)) = {!!}
triangle-inequality-dist-ℤ (inl x) (inr y) (inl z) = {!!}
triangle-inequality-dist-ℤ (inl x) (inr y) (inr z) = {!!}
triangle-inequality-dist-ℤ (inr x) (inl y) (inl z) = {!!}
triangle-inequality-dist-ℤ (inr x) (inl y) (inr z) = {!!}
triangle-inequality-dist-ℤ (inr x) (inr y) (inl z) = {!!}
triangle-inequality-dist-ℤ (inr x) (inr y) (inr z) = {!!}
-}
{-
triangle-inequality-dist-ℕ :
(m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n))
triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star
triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star
triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ =
tr ( leq-ℕ (succ-ℕ n))
( inv (left-unit-law-add-ℕ (succ-ℕ n)))
( reflexive-leq-ℕ (succ-ℕ n))
triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) =
concatenate-eq-leq-eq-ℕ
( inv (ap succ-ℕ (left-zero-law-dist-ℕ n)))
( triangle-inequality-dist-ℕ zero-ℕ n k)
( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙
( inv (left-successor-law-add-ℕ k (dist-ℕ k n))))
triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m)
triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) =
concatenate-eq-leq-eq-ℕ
( inv (ap succ-ℕ (right-zero-law-dist-ℕ m)))
( triangle-inequality-dist-ℕ m zero-ℕ k)
( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k))
triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ =
concatenate-leq-eq-ℕ
( dist-ℕ m n)
( transitive-leq-ℕ
( dist-ℕ m n)
( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))
( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))
( transitive-leq-ℕ
( dist-ℕ m n)
( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))
( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))
( triangle-inequality-dist-ℕ m n zero-ℕ)
( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))
( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))))
( ( ap (succ-ℕ ∘ succ-ℕ)
( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙
( inv (left-successor-law-add-ℕ m (succ-ℕ n))))
triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) =
triangle-inequality-dist-ℕ m n k
-- We show that dist-ℕ x y is a solution to a simple equation.
leq-dist-ℕ :
(x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y
leq-dist-ℕ zero-ℕ zero-ℕ H = refl
leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y)
leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H =
( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙
( ap succ-ℕ (leq-dist-ℕ x y H))
rewrite-left-add-dist-ℕ :
(x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z)
rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl
rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl =
( dist-eq-ℕ' y) ∙
( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y))))
rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl
rewrite-left-add-dist-ℕ
(succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl =
rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl
rewrite-left-dist-add-ℕ :
(x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z
rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl =
( commutative-add-ℕ (dist-ℕ y z) y) ∙
( leq-dist-ℕ y z H)
rewrite-right-add-dist-ℕ :
(x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z)
rewrite-right-add-dist-ℕ x y z p =
rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p)
rewrite-right-dist-add-ℕ :
(x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z
rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl =
leq-dist-ℕ x z H
-- We show that dist-ℕ is translation invariant
translation-invariant-dist-ℕ :
(k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n)
translation-invariant-dist-ℕ zero-ℕ m n =
ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n)
translation-invariant-dist-ℕ (succ-ℕ k) m n =
( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙
( translation-invariant-dist-ℕ k m n)
-- We show that dist-ℕ is linear with respect to scalar multiplication
linear-dist-ℕ :
(m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n))
linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl
linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k
linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl
linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) =
ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k))
linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl
linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) =
ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k))
linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl
linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) =
( ap-dist-ℕ
( right-successor-law-mul-ℕ (succ-ℕ k) m)
( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙
( ( translation-invariant-dist-ℕ
( succ-ℕ k)
( mul-ℕ (succ-ℕ k) m)
( mul-ℕ (succ-ℕ k) n)) ∙
( linear-dist-ℕ m n (succ-ℕ k)))
-}
| {
"alphanum_fraction": 0.5635619683,
"avg_line_length": 33.2153075823,
"ext": "agda",
"hexsha": "0e0c75ef5cc8ddf159320baf6f11e9abfd963ed4",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tmoux/HoTT-Intro",
"max_forks_repo_path": "Agda/07-finite-sets.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tmoux/HoTT-Intro",
"max_issues_repo_path": "Agda/07-finite-sets.agda",
"max_line_length": 82,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tmoux/HoTT-Intro",
"max_stars_repo_path": "Agda/07-finite-sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 20274,
"size": 46435
} |
-- Andreas, 2019-03-18, AIM XXIX, issue #3631 reported by rrose1
-- Performance regression in 2.5.4 due to new sort handling
{-# OPTIONS --no-universe-polymorphism #-} -- needed for the performance problem
-- {-# OPTIONS -v 10 -v tc.cc:15 -v tc.cc.type:60 -v tc.cover:100 #-}
-- {-# OPTIONS -v tc.cc.type:80 #-}
module _ where
module M
(X : Set)
(x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : X)
(x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 : X)
(x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 : X)
where
f : X
f = x0
-- Should check quickly.
| {
"alphanum_fraction": 0.6081560284,
"avg_line_length": 26.8571428571,
"ext": "agda",
"hexsha": "560e0eb0681f2407a69f25b429c62f55f24b29f8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3631.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3631.agda",
"max_line_length": 81,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3631.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 218,
"size": 564
} |
module Source.Examples where
open import Source.Size
open import Source.Size.Substitution.Theory
open import Source.Term
open import Source.Type
open import Util.Prelude
import Source.Size.Substitution.Canonical as SC
{-
liftℕ : ∀ n < ⋆. ∀ m < n. Nat m → Nat n
liftℕ ≔ Λ n < ⋆. Λ m < n. λ i : Nat m.
caseNat[Nat n] m i
zero n
(Λ k < m. λ i′ : Nat k. suc n k i′)
-}
liftNat : ∀ {Δ} → Term Δ
liftNat = Λₛ ⋆ , Λₛ v0 , Λ (Nat v0) ,
caseNat (Nat v1) v0 (var 0)
(zero v1)
(Λₛ v0 , Λ (Nat v0) , suc v2 v0 (var 0))
liftNat⊢ : ∀ {Δ Γ}
→ Δ , Γ ⊢ liftNat ∶ Π ⋆ , Π v0 , Nat v0 ⇒ Nat v1
liftNat⊢
= absₛ
(absₛ
(abs
(caseNat (<-trans (var refl) (var refl))
(var zero)
(zero (var refl))
(absₛ
(abs
(suc (var refl) (<-trans (var refl) (var refl)) (var zero)))
refl)
refl))
refl)
refl
{-
half : ∀ n < ⋆. Nat n → Nat n
half ≔ λ n < ⋆. fix[Nat ∙ → Nat ∙]
(Λ n < ⋆. λ rec : (∀ m < n. Nat m → Nat m). λ i : Nat n.
caseNat[Nat n] n i
(zero n)
(Λ m < n. λ i′ : Nat m. caseNat[Nat n] m i′
(zero n)
(Λ k < m. λ i″ : Nat k. suc n k (rec k i″))))
n
-}
half : ∀ {Δ} → Term Δ
half = Λₛ ⋆ , fix (Nat v0 ⇒ Nat v0)
(Λₛ ⋆ , Λ (Π v0 , Nat v0 ⇒ Nat v0) ,
Λ Nat v0 , caseNat (Nat v0) v0 (var 0)
(zero v0)
(Λₛ v0 , Λ (Nat v0) , caseNat (Nat v1) v0 (var 0)
(zero v1)
(Λₛ v0 , Λ (Nat v0) , suc v2 v0 (var 3 ·ₛ v0 · var 0))))
v0
half⊢ : ∀ {Δ Γ} → Δ , Γ ⊢ half ∶ Π ⋆ , Nat v0 ⇒ Nat v0
half⊢
= absₛ
(fix (var refl)
(absₛ
(abs
(abs
(caseNat (var refl) (var zero) (zero (var refl))
(absₛ
(abs
(caseNat (<-trans (var refl) (var refl))
(var zero)
(zero (var refl))
(absₛ
(abs
(suc (var refl) (<-trans (var refl) (var refl))
(app
(appₛ (<-trans (var refl) (var refl))
(var (suc (suc (suc zero))))
refl)
(var zero))))
refl)
refl))
refl)
refl)))
refl)
refl
refl)
refl
{-
suc∞ : Nat ∞ → Nat ∞
suc∞ ≔ λ i : Nat ∞. caseNat[Nat ∞] ∞ i
(suc ∞ 0 (zero 0))
(Λ m < ∞. λ i′ : Nat m. suc ∞ (↑ m) (suc (↑ m) m i′))
-}
suc∞ : ∀ {Δ} → Term Δ
suc∞ = Λ (Nat ∞) , caseNat (Nat ∞) ∞ (var 0)
(suc ∞ zero (zero zero))
(Λₛ ∞ , Λ (Nat v0) , suc ∞ (suc v0) (suc (suc v0) v0 (var 0)))
suc∞⊢ : ∀ {Δ Γ} → Δ , Γ ⊢ suc∞ ∶ Nat ∞ ⇒ Nat ∞
suc∞⊢
= abs
(caseNat <suc (var zero) (suc <suc zero<∞ (zero (<-trans zero<∞ <suc)))
(absₛ
(abs
(suc <suc (suc<∞ (var refl))
(suc (<-trans (suc<∞ (var refl)) <suc) <suc
(var zero))))
refl)
refl)
{-
plus : ∀ n < ⋆. Nat n → Nat ∞ → Nat ∞
plus ≔ Λ n < ⋆. fix[Nat ∙ → Nat ∞ → Nat ∞]
(Λ n < ⋆. λ rec : (∀ m < n. Nat m → Nat ∞ → Nat ∞).
λ i : Nat n. λ j : Nat ∞. caseNat[Nat ∞] n i
j
(Λ m < n. λ i′ : Nat m. suc∞ (rec m i′ j)))
n
-}
plus : ∀ {Δ} → Term Δ
plus = Λₛ ⋆ , fix (Nat v0 ⇒ Nat ∞ ⇒ Nat ∞)
(Λₛ ⋆ , Λ (Π v0 , Nat v0 ⇒ Nat ∞ ⇒ Nat ∞) ,
Λ (Nat v0) , Λ (Nat ∞) , caseNat (Nat ∞) v0 (var 1)
(var 0)
(Λₛ v0 , Λ (Nat v0) , suc∞ · (var 3 ·ₛ v0 · var 0 · var 1)))
v0
plus⊢ : ∀ {Δ Γ} → Δ , Γ ⊢ plus ∶ Π ⋆ , Nat v0 ⇒ Nat ∞ ⇒ Nat ∞
plus⊢
= absₛ
(fix (var refl)
(absₛ
(abs
(abs
(abs
(caseNat (var refl) (var (suc zero)) (var zero)
(absₛ
(abs
(app
suc∞⊢
(app
(app
(appₛ (var refl)
(var (suc (suc (suc zero))))
refl)
(var zero))
(var (suc zero)))))
refl)
refl))))
refl)
refl
refl)
refl
{-
zeros : ∀ n < ⋆. Stream n
zeros ≔ Λ n < ⋆. fix[Stream ∙]
(Λ n < ⋆. λ rec : (∀ m < n. Stream m).
cons (zero ∞) n rec)
n
-}
zeros : ∀ {Δ} → Term Δ
zeros = Λₛ ⋆ , fix (Stream v0)
(Λₛ ⋆ , Λ (Π v0 , Stream v0) , cons (zero ∞) v0 (var 0))
v0
zeros⊢ : ∀ {Δ Γ} → Δ , Γ ⊢ zeros ∶ Π ⋆ , Stream v0
zeros⊢
= absₛ
(fix (var refl)
(absₛ
(abs
(cons (var refl) (zero <suc) (var zero)))
refl)
refl
refl)
refl
{-
map : (Nat ∞ → Nat ∞) → ∀ n < ⋆. Stream n → Stream n
map ≔ λ f : Nat ∞ → Nat ∞. Λ n < ⋆. fix[Stream ∙ → Stream ∙]
(Λ n < ⋆. λ rec : (∀ m < n. Stream m → Stream m). λ xs : Stream n.
cons (f (head n xs)) n (Λ m < n. rec m (tail n xs m)))
n
-}
map : ∀ {Δ} → Term Δ
map = Λ (Nat ∞ ⇒ Nat ∞) , Λₛ ⋆ , fix (Stream v0 ⇒ Stream v0)
(Λₛ ⋆ , Λ (Π v0 , Stream v0 ⇒ Stream v0) , Λ Stream v0 ,
cons (var 2 · head v0 (var 0)) v0
(Λₛ v0 , var 1 ·ₛ v0 · tail v1 (var 0) v0))
v0
map⊢ : ∀ {Δ Γ} → Δ , Γ ⊢ map ∶ (Nat ∞ ⇒ Nat ∞) ⇒ (Π ⋆ , Stream v0 ⇒ Stream v0)
map⊢
= abs
(absₛ
(fix (var refl)
(absₛ
(abs
(abs
(cons
(var refl)
(app (var (suc (suc zero))) (head (var refl) (var zero)))
(absₛ (app (appₛ (var refl) (var (suc zero)) refl)
(tail (var refl) (var refl) (var zero)))
refl))))
refl)
refl
refl)
refl)
| {
"alphanum_fraction": 0.3862306368,
"avg_line_length": 25.5947136564,
"ext": "agda",
"hexsha": "511e5e4daae69a918def426dcb0606d62fd84ab2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Source/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Source/Examples.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Source/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 2294,
"size": 5810
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Fundamental.Reducibility {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Reducibility
open import Definition.LogicalRelation.Fundamental
open import Tools.Product
-- Well-formed types are reducible.
reducible : ∀ {A Γ} → Γ ⊢ A → Γ ⊩⟨ ¹ ⟩ A
reducible A = let [Γ] , [A] = fundamental A
in reducibleᵛ [Γ] [A]
-- Well-formed equality is reducible.
reducibleEq : ∀ {A B Γ} → Γ ⊢ A ≡ B
→ ∃₂ λ [A] ([B] : Γ ⊩⟨ ¹ ⟩ B) → Γ ⊩⟨ ¹ ⟩ A ≡ B / [A]
reducibleEq {A} {B} A≡B =
let [Γ] , [A] , [B] , [A≡B] = fundamentalEq A≡B
in reducibleᵛ [Γ] [A]
, reducibleᵛ [Γ] [B]
, reducibleEqᵛ {A} {B} [Γ] [A] [A≡B]
-- Well-formed terms are reducible.
reducibleTerm : ∀ {t A Γ} → Γ ⊢ t ∷ A → ∃ λ [A] → Γ ⊩⟨ ¹ ⟩ t ∷ A / [A]
reducibleTerm {t} {A} ⊢t =
let [Γ] , [A] , [t] = fundamentalTerm ⊢t
in reducibleᵛ [Γ] [A] , reducibleTermᵛ {t} {A} [Γ] [A] [t]
-- Well-formed term equality is reducible.
reducibleEqTerm : ∀ {t u A Γ} → Γ ⊢ t ≡ u ∷ A → ∃ λ [A] → Γ ⊩⟨ ¹ ⟩ t ≡ u ∷ A / [A]
reducibleEqTerm {t} {u} {A} t≡u =
let [Γ] , modelsTermEq [A] [t] [u] [t≡u] = fundamentalTermEq t≡u
in reducibleᵛ [Γ] [A] , reducibleEqTermᵛ {t} {u} {A} [Γ] [A] [t≡u]
| {
"alphanum_fraction": 0.6130114017,
"avg_line_length": 34.6744186047,
"ext": "agda",
"hexsha": "b8439af7902035abe497c83ced92f4f230f3968e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Fundamental/Reducibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Fundamental/Reducibility.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Fundamental/Reducibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 626,
"size": 1491
} |
module MLib.Prelude.DFS.ViaNat where
open import MLib.Prelude
open import MLib.Prelude.Finite
open FE using (_⇨_; cong)
open import Data.Digit using (fromDigits; toDigits; Digit)
module _ {c p} (A-finiteSet : FiniteSet c p) where
module A = FiniteSet A-finiteSet
open A using () renaming (Carrier to A)
open LeftInverse
open Nat using (_^_; _+_; _*_)
private
fromBool : Bool → Digit 2
fromBool false = Fin.zero
fromBool true = Fin.suc Fin.zero
toBool : Digit 2 → Bool
toBool Fin.zero = false
toBool (Fin.suc Fin.zero) = true
toBool (Fin.suc (Fin.suc ()))
toBool-fromBool : ∀ b → toBool (fromBool b) ≡ b
toBool-fromBool false = ≡.refl
toBool-fromBool true = ≡.refl
-- fromBinary : (n : ℕ) → List Bool → ℕ
-- fromBinary n [] = 0 -- an empty table represents an empty binary string
-- fromBinary n (x ∷ xs) = Fin.toℕ x + n * from-n-ary n xs
-- -- -- div-rem m i = "i % m" , "i / m"
-- div-rem : ∀ n → ℕ → Fin n × ℕ
-- div-rem n k = {!!}
-- to-n-ary : (n : ℕ) → ℕ → List (Fin n)
-- to-n-ary n k =
-- let r , d = div-rem n k
-- rs = to-n-ary d
-- in {!!}
-- -- r ∷ rs
-- Goal: fromDigits
-- (List.tabulate (λ x → fromBool (.i ⟨$⟩ (from A.ontoFin ⟨$⟩ x))))
-- ≡
-- fromDigits
-- (List.tabulate (λ x → fromBool (.j ⟨$⟩ (from A.ontoFin ⟨$⟩ x))))
lookupOrElse : ∀ {n} {a} {A : Set a} → A → Fin n → List A → A
lookupOrElse z _ [] = z
lookupOrElse _ Fin.zero (x ∷ xs) = x
lookupOrElse z (Fin.suc n) (x ∷ xs) = lookupOrElse z n xs
lookupOrElse-toList : ∀ {n} {a} {A : Set a} {z : A} (i : Fin n) (t : Table A n) → lookupOrElse z i (Table.toList t) ≡ Table.lookup t i
lookupOrElse-toList Fin.zero t = ≡.refl
lookupOrElse-toList (Fin.suc i) = lookupOrElse-toList i ∘ Table.tail
*2-absurd : ∀ m n → m * 2 ≡ suc (n * 2) → ⊥
*2-absurd zero zero ()
*2-absurd zero (suc n) ()
*2-absurd (suc m) zero ()
*2-absurd (suc m) (suc n) = *2-absurd m n ∘ Nat.suc-injective ∘ Nat.suc-injective
*2-injective : ∀ m n → m * 2 ≡ n * 2 → m ≡ n
*2-injective zero zero _ = ≡.refl
*2-injective zero (suc n) ()
*2-injective (suc m) zero ()
*2-injective (suc m) (suc n) = ≡.cong suc ∘ *2-injective m n ∘ Nat.suc-injective ∘ Nat.suc-injective
01-+-*2 : (i j : Fin 2) (m n : ℕ) → Fin.toℕ i + m * 2 ≡ Fin.toℕ j + n * 2 → m ≡ n
01-+-*2 Fin.zero Fin.zero = *2-injective
01-+-*2 Fin.zero (Fin.suc Fin.zero) m n = ⊥-elim ∘ *2-absurd m n
01-+-*2 Fin.zero (Fin.suc (Fin.suc ())) m n
01-+-*2 (Fin.suc Fin.zero) Fin.zero m n = ⊥-elim ∘ *2-absurd n m ∘ ≡.sym
01-+-*2 (Fin.suc (Fin.suc ())) Fin.zero m n
01-+-*2 (Fin.suc Fin.zero) (Fin.suc Fin.zero) m n = *2-injective m n ∘ Nat.suc-injective
01-+-*2 (Fin.suc Fin.zero) (Fin.suc (Fin.suc ())) m n
01-+-*2 (Fin.suc (Fin.suc ())) (Fin.suc Fin.zero) m n
01-+-*2 (Fin.suc (Fin.suc ())) (Fin.suc (Fin.suc j)) m n
+-injective₂ : ∀ m n o → o + m ≡ o + n → m ≡ n
+-injective₂ m n zero = id
+-injective₂ m n (suc o) = +-injective₂ m n o ∘ Nat.suc-injective
+-injective₁ : ∀ m n o → m + o ≡ n + o → m ≡ n
+-injective₁ m n o p = +-injective₂ m n o (≡.trans (Nat.+-comm o m) (≡.trans p (Nat.+-comm n o)))
lookupOrElse-fromDigits : ∀ {n} (i : Fin n) (xs ys : List (Fin 2)) → fromDigits xs ≡ fromDigits ys → lookupOrElse Fin.zero i xs ≡ lookupOrElse Fin.zero i ys
lookupOrElse-fromDigits i [] [] p = ≡.refl
lookupOrElse-fromDigits Fin.zero [] (Fin.zero ∷ ys) p = ≡.refl
lookupOrElse-fromDigits Fin.zero [] (Fin.suc y ∷ ys) ()
lookupOrElse-fromDigits (Fin.suc i) [] (Fin.zero ∷ ys) p = lookupOrElse-fromDigits i [] ys (*2-injective 0 _ p)
lookupOrElse-fromDigits (Fin.suc i) [] (Fin.suc y ∷ ys) ()
lookupOrElse-fromDigits Fin.zero (Fin.zero ∷ xs) [] p = ≡.refl
lookupOrElse-fromDigits Fin.zero (Fin.suc x ∷ xs) [] ()
lookupOrElse-fromDigits {Nat.suc n} Fin.zero (x ∷ xs) (y ∷ ys) p =
let q = 01-+-*2 x y (fromDigits xs) (fromDigits ys) p
p′ = ≡.subst (λ fdys → Fin.toℕ x + fromDigits xs * 2 ≡ Fin.toℕ y + fdys) (≡.cong₂ _*_ (≡.sym q) ≡.refl) p
p′′ = +-injective₁ (Fin.toℕ x) (Fin.toℕ y) _ p′
in Fin.toℕ-injective p′′
lookupOrElse-fromDigits (Fin.suc i) (Fin.zero ∷ xs) [] p = lookupOrElse-fromDigits i xs [] (*2-injective _ _ p)
lookupOrElse-fromDigits (Fin.suc i) (Fin.suc x ∷ xs) [] ()
lookupOrElse-fromDigits (Fin.suc i) (x ∷ xs) (y ∷ ys) p =
lookupOrElse-fromDigits i xs ys (01-+-*2 x y (fromDigits xs) (fromDigits ys) p)
toDigits-fromDigits : ∀ {n} (i : Fin n) xs → lookupOrElse Fin.zero i (proj₁ (toDigits 2 (fromDigits xs))) ≡ lookupOrElse Fin.zero i xs
toDigits-fromDigits i xs with toDigits 2 (fromDigits xs)
toDigits-fromDigits i xs | ds , p = lookupOrElse-fromDigits i ds xs p
asNat : LeftInverse (FiniteSet.setoid A-finiteSet ⇨ ≡.setoid Bool) (≡.setoid ℕ)
_⟨$⟩_ (to asNat) f = fromDigits (Table.toList (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ))
cong (to asNat) {f} p = ≡.cong fromDigits {x = Table.toList (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ)} (List.tabulate-cong λ x → ≡.cong fromBool (p A.refl))
_⟨$⟩_ (_⟨$⟩_ (from asNat) n) x = toBool (lookupOrElse Fin.zero (A.toIx x) (proj₁ (toDigits 2 n)))
cong (_⟨$⟩_ (from asNat) n) {x} {y} = ≡.cong (λ i → toBool (lookupOrElse Fin.zero i (proj₁ (toDigits 2 n)))) ∘ cong (to A.ontoFin)
cong (from asNat) {n} ≡.refl = cong (_⟨$⟩_ (from asNat) n)
left-inverse-of asNat f {x} {y} p =
begin
toBool (lookupOrElse Fin.zero (A.toIx x) (proj₁ (toDigits 2 (fromDigits (Table.toList (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ))))))
≡⟨ ≡.cong toBool (toDigits-fromDigits (A.toIx x) (Table.toList (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ))) ⟩
toBool (lookupOrElse Fin.zero (A.toIx x) (Table.toList (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ)))
≡⟨ ≡.cong toBool (lookupOrElse-toList (A.toIx x) _) ⟩
toBool (Table.lookup (Table.map (fromBool ∘ (f ⟨$⟩_)) A.enumₜ) (A.toIx x))
≡⟨⟩
toBool (fromBool (f ⟨$⟩ (from A.ontoFin ⟨$⟩ (to A.ontoFin ⟨$⟩ x))))
≡⟨ toBool-fromBool _ ⟩
f ⟨$⟩ (from A.ontoFin ⟨$⟩ (to A.ontoFin ⟨$⟩ x))
≡⟨ cong f (left-inverse-of A.ontoFin x) ⟩
f ⟨$⟩ x
≡⟨ cong f p ⟩
f ⟨$⟩ y
∎
where open ≡.Reasoning
| {
"alphanum_fraction": 0.5786543662,
"avg_line_length": 46.5703703704,
"ext": "agda",
"hexsha": "9f97128cd9364805e14030a539b58c833deffd84",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/DFS/ViaNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/DFS/ViaNat.agda",
"max_line_length": 160,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/DFS/ViaNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2454,
"size": 6287
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Implications of nullary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Implication where
open import Data.Bool.Base
open import Data.Empty
open import Function.Base
open import Relation.Nullary
open import Level
private
variable
p q : Level
P : Set p
Q : Set q
------------------------------------------------------------------------
-- Some properties which are preserved by _→_.
infixr 2 _→-reflects_ _→-dec_
_→-reflects_ : ∀ {bp bq} → Reflects P bp → Reflects Q bq →
Reflects (P → Q) (not bp ∨ bq)
ofʸ p →-reflects ofʸ q = ofʸ (const q)
ofʸ p →-reflects ofⁿ ¬q = ofⁿ (¬q ∘ (_$ p))
ofⁿ ¬p →-reflects _ = ofʸ (⊥-elim ∘ ¬p)
_→-dec_ : Dec P → Dec Q → Dec (P → Q)
does (p? →-dec q?) = not (does p?) ∨ does q?
proof (p? →-dec q?) = proof p? →-reflects proof q?
| {
"alphanum_fraction": 0.481844946,
"avg_line_length": 27.5405405405,
"ext": "agda",
"hexsha": "cdf257c78d5d697ee1b3ec3dbac29d7f1cd4bc0d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Nullary/Implication.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Nullary/Implication.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Nullary/Implication.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 287,
"size": 1019
} |
{-# OPTIONS --cubical --safe #-}
module Data.Binary.PerformanceTests.Subtraction where
open import Prelude
open import Data.Binary.Definition
open import Data.Binary.Addition using (_+_)
open import Data.Binary.Subtraction using (_-_)
open import Data.Binary.Multiplication using (_*_)
sub-r : 𝔹 → 𝔹 → ℕ → 𝔹
sub-r a x zero = a
sub-r a x (suc n) = sub-r a x n - x
sub-l : 𝔹 → 𝔹 → ℕ → 𝔹
sub-l a x zero = a
sub-l a x (suc n) = sub-r (a - x) x n
one-thousand : 𝔹
one-thousand = 2ᵇ 1ᵇ 1ᵇ 2ᵇ 1ᵇ 2ᵇ 2ᵇ 2ᵇ 2ᵇ 0ᵇ
f : 𝔹
f = one-thousand * one-thousand * one-thousand
n : ℕ
n = 99999
-- The actual performance test (uncomment and time how long it takes to type-check)
-- _ : sub-l f one-thousand n ≡ sub-r f one-thousand n
-- _ = refl
| {
"alphanum_fraction": 0.6716621253,
"avg_line_length": 23.6774193548,
"ext": "agda",
"hexsha": "ef21c2c508abe678f9827cd3508abee15219b136",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/PerformanceTests/Subtraction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/PerformanceTests/Subtraction.agda",
"max_line_length": 83,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/PerformanceTests/Subtraction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 287,
"size": 734
} |
------------------------------------------------------------------------------
-- Common definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Common.DefinitionsATP where
open import Common.FOL.FOL using ( ¬_ ; D )
open import Common.FOL.Relation.Binary.PropositionalEquality using ( _≡_ )
infix 4 _≢_
------------------------------------------------------------------------------
-- Inequality.
_≢_ : D → D → Set
x ≢ y = ¬ x ≡ y
{-# ATP definition _≢_ #-}
| {
"alphanum_fraction": 0.3864306785,
"avg_line_length": 30.8181818182,
"ext": "agda",
"hexsha": "fcc3a15143c0436e33584cfb63e3bda3c3581d6b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/Common/DefinitionsATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/Common/DefinitionsATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/Common/DefinitionsATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 126,
"size": 678
} |
------------------------------------------------------------------------
-- Convenient syntax for "equational reasoning" using a indexed preorder
------------------------------------------------------------------------
open import Relation.Binary.Indexed.Extra
module Relation.Binary.Indexed.PreorderReasoning {𝒾} {I : Set 𝒾} {𝒸 ℓ₁ ℓ₂} (P : Preorder I 𝒸 ℓ₁ ℓ₂) where
open Preorder P
infix 4 _IsRelatedTo_
infix 1 begin_
infix 3 _∎
infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈⟨⟩_
data _IsRelatedTo_ {i j : I} (x : Carrier i) (y : Carrier j) : Set ℓ₂ where
relTo : (x∼y : x ∼ y) → x IsRelatedTo y
begin_ : ∀ {i j : I} {x : Carrier i} {y : Carrier j} → x IsRelatedTo y → x ∼ y
begin relTo x∼y = x∼y
_∼⟨_⟩_ : ∀ {i j k : I} → (x : Carrier i)
→ {y : Carrier j} {z : Carrier k}
→ x ∼ y → y IsRelatedTo z → x IsRelatedTo z
_ ∼⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z)
_≈⟨_⟩_ : ∀ {i j k : I} → (x : Carrier i)
→ {y : Carrier j} {z : Carrier k}
→ x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_ ≈⟨ x≈y ⟩ relTo y∼z = relTo (trans (reflexive x≈y) y∼z)
_≈⟨⟩_ : ∀ {i j : I} → (x : Carrier i) → {y : Carrier j}
→ x IsRelatedTo y → x IsRelatedTo y
_ ≈⟨⟩ x∼y = x∼y
_∎ : ∀ {i : I} (x : Carrier i) → x IsRelatedTo x
_∎ _ = relTo refl
| {
"alphanum_fraction": 0.5146341463,
"avg_line_length": 32.3684210526,
"ext": "agda",
"hexsha": "6c224d058cf659cc9a0005aa9b3cf8f4d6a15a7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/categories",
"max_forks_repo_path": "src/Relation/Binary/Indexed/PreorderReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/categories",
"max_issues_repo_path": "src/Relation/Binary/Indexed/PreorderReasoning.agda",
"max_line_length": 105,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/categories",
"max_stars_repo_path": "src/Relation/Binary/Indexed/PreorderReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z",
"num_tokens": 510,
"size": 1230
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Rings.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Lemmas
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
record fieldOfFractionsSet : Set (a ⊔ b) where
field
num : A
denom : A
.denomNonzero : (Setoid._∼_ S denom (Ring.0R R) → False)
fieldOfFractionsSetoid : Setoid fieldOfFractionsSet
Setoid._∼_ fieldOfFractionsSetoid (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 }) = Setoid._∼_ S (a * d) (b * c)
Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} = Ring.*Commutative R
Equivalence.symmetric (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} ad=bc = transitive (Ring.*Commutative R) (transitive (symmetric ad=bc) (Ring.*Commutative R))
where
open Equivalence (Setoid.eq S)
Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} ad=bc cf=de = p5
where
open Setoid S
open Ring R
open Equivalence eq
p : (a * d) * f ∼ (b * c) * f
p = Ring.*WellDefined R ad=bc reflexive
p2 : (a * f) * d ∼ b * (d * e)
p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de)))
p3 : (a * f) * d ∼ (b * e) * d
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
p4 : ((d ∼ 0R) → False) → ((a * f) ∼ (b * e))
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
p5 : (a * f) ∼ (b * e)
p5 = p4 λ t → exFalso (d!=0 t)
| {
"alphanum_fraction": 0.6523681859,
"avg_line_length": 54.5853658537,
"ext": "agda",
"hexsha": "fd670c6985f95fedf712bbbc341f0d34610c3cea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/FieldOfFractions/Setoid.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/FieldOfFractions/Setoid.agda",
"max_line_length": 260,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/FieldOfFractions/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 774,
"size": 2238
} |
open import Mockingbird.Forest using (Forest)
-- Curry’s Lively Bird Forest
module Mockingbird.Problems.Chapter14 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Product using (_×_; _,_; ∃-syntax; proj₁; proj₂)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_$_; _⇔_; Equivalence; mk⇔)
open import Level using (_⊔_)
open import Relation.Binary using (_Respects_)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred)
open import Mockingbird.Forest.Birds forest
import Mockingbird.Problems.Chapter09 forest as Chapter₉
open Forest forest
module _ {s} (Sings : Pred Bird s)
(respects : Sings Respects _≈_)
-- This law of excluded middle is not stated in the problem as one of
-- the laws, but in the solution given in the book, it is used.
(LEM : ∀ x → Sings x ⊎ ¬ Sings x)
(P : Bird) where
module _ (law₁ : ∀ {x y} → Sings y → Sings (P ∙ x ∙ y))
(law₂ : ∀ {x y} → ¬ (Sings x) → Sings (P ∙ x ∙ y))
(law₃ : ∀ {x y} → Sings x → Sings (P ∙ x ∙ y) → Sings y)
(law₄ : ∀ x → ∃[ y ] Sings y ⇔ Sings (P ∙ y ∙ x)) where
problem₁ : ∀ x → Sings x
problem₁ x = law₃ (proj₂ (law₄-⇐ x) Pyx-sings) Pyx-sings
where
-- If y sings on all days on which x sings, then Pxy sings on all days.
lemma-Pxy : ∀ y x → (Sings y → Sings x) → Sings (P ∙ y ∙ x)
lemma-Pxy y x y-sings⇒x-sings with LEM y
... | inj₁ y-sings = law₁ (y-sings⇒x-sings y-sings)
... | inj₂ ¬y-sings = law₂ ¬y-sings
law₄-⇒ : ∀ x → ∃[ y ] (Sings y → Sings (P ∙ y ∙ x))
law₄-⇒ x =
let (y , p) = law₄ x
in (y , Equivalence.f p)
law₄-⇐ : ∀ x → ∃[ y ] (Sings (P ∙ y ∙ x) → Sings y)
law₄-⇐ x =
let (y , p) = law₄ x
in (y , Equivalence.g p)
y = proj₁ $ law₄ x
y-sings⇒x-sings : Sings y → Sings x
y-sings⇒x-sings y-sings = law₃ y-sings $ proj₂ (law₄-⇒ x) y-sings
Pyx-sings : Sings (P ∙ y ∙ x)
Pyx-sings = lemma-Pxy y x y-sings⇒x-sings
module _ (law₁ : ∀ {x y} → Sings y → Sings (P ∙ x ∙ y))
(law₂ : ∀ {x y} → ¬ Sings (x) → Sings (P ∙ x ∙ y))
(law₃ : ∀ {x y} → Sings x → Sings (P ∙ x ∙ y) → Sings y)
⦃ _ : HasCardinal ⦄ ⦃ _ : HasLark ⦄ where
problem₂ : ∀ x → Sings x
problem₂ = problem₁ law₁ law₂ law₃ $ λ x →
let -- There exists a bird of which CPx is fond.
(y , isFond) = Chapter₉.problem₂₅ (C ∙ P ∙ x)
Pyx≈y : P ∙ y ∙ x ≈ y
Pyx≈y = begin
P ∙ y ∙ x ≈˘⟨ isCardinal P x y ⟩
C ∙ P ∙ x ∙ y ≈⟨ isFond ⟩
y ∎
law₄ : Sings y ⇔ Sings (P ∙ y ∙ x)
law₄ = mk⇔ (respects (sym Pyx≈y)) (respects Pyx≈y)
in (y , law₄)
module _ (law₁ : ∀ {x y} → Sings y → Sings (P ∙ x ∙ y))
(law₂ : ∀ {x y} → ¬ Sings (x) → Sings (P ∙ x ∙ y))
(law₃ : ∀ {x y} → Sings x → Sings (P ∙ x ∙ y) → Sings y) where
problem₃ : ∃[ A ] (∀ x y z → A ∙ x ∙ y ∙ z ≈ x ∙ (z ∙ z) ∙ y) → ∀ x → Sings x
problem₃ (A , Axyz≈x[zz]y) = problem₁ law₁ law₂ law₃ $ λ x →
let y = A ∙ P ∙ x ∙ (A ∙ P ∙ x)
y≈Pyx : y ≈ P ∙ y ∙ x
y≈Pyx = begin
y ≈⟨⟩
A ∙ P ∙ x ∙ (A ∙ P ∙ x) ≈⟨ Axyz≈x[zz]y P x (A ∙ P ∙ x) ⟩
P ∙ (A ∙ P ∙ x ∙ (A ∙ P ∙ x)) ∙ x ≈⟨⟩
(P ∙ y ∙ x ∎)
law₄ : Sings y ⇔ Sings (P ∙ y ∙ x)
law₄ = mk⇔ (respects y≈Pyx) (respects (sym y≈Pyx))
in (y , law₄)
-- -- TODO: bonus exercises
| {
"alphanum_fraction": 0.4835345774,
"avg_line_length": 37.1836734694,
"ext": "agda",
"hexsha": "e933a6fe9318657d5de9b3420cb90ac7c11fef81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter14.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter14.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter14.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 1482,
"size": 3644
} |
open import Nat
open import Prelude
open import core
open import lemmas-gcomplete
module lemmas-complete where
lem-comp-pair1 : ∀{d1 d2} → ⟨ d1 , d2 ⟩ dcomplete → d1 dcomplete
lem-comp-pair1 (DCPair h _) = h
lem-comp-pair2 : ∀{d1 d2} → ⟨ d1 , d2 ⟩ dcomplete → d2 dcomplete
lem-comp-pair2 (DCPair _ h) = h
lem-comp-prod1 : ∀{τ1 τ2} → τ1 ⊗ τ2 tcomplete → τ1 tcomplete
lem-comp-prod1 (TCProd h _) = h
lem-comp-prod2 : ∀{τ1 τ2} → τ1 ⊗ τ2 tcomplete → τ2 tcomplete
lem-comp-prod2 (TCProd _ h) = h
-- no term is both complete and indeterminate
lem-ind-comp : ∀{d} → d dcomplete → d indet → ⊥
lem-ind-comp DCVar ()
lem-ind-comp DCConst ()
lem-ind-comp (DCLam comp x₁) ()
lem-ind-comp (DCAp comp comp₁) (IAp x ind x₁) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastArr x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastGroundHole x₂ ind) = lem-ind-comp comp ind
lem-ind-comp (DCCast comp x x₁) (ICastHoleGround x₂ ind x₃) = lem-ind-comp comp ind
lem-ind-comp (DCCast dc x x₁) (ICastProd x₂ ind) = lem-ind-comp dc ind
lem-ind-comp (DCFst d) (IFst ind x x₁) = lem-ind-comp d ind
lem-ind-comp (DCSnd d) (ISnd ind x x₁) = lem-ind-comp d ind
lem-ind-comp (DCPair d d₁) (IPair1 ind x) = lem-ind-comp d ind
lem-ind-comp (DCPair d d₁) (IPair2 x ind) = lem-ind-comp d₁ ind
-- complete types that are consistent are equal
complete-consistency : ∀{τ1 τ2} → τ1 ~ τ2 → τ1 tcomplete → τ2 tcomplete → τ1 == τ2
complete-consistency TCRefl TCBase comp2 = refl
complete-consistency TCRefl (TCArr comp1 comp2) comp3 = refl
complete-consistency TCHole1 comp1 ()
complete-consistency TCHole2 () comp2
complete-consistency (TCArr consis consis₁) (TCArr comp1 comp2) (TCArr comp3 comp4)
with complete-consistency consis comp1 comp3 | complete-consistency consis₁ comp2 comp4
... | refl | refl = refl
complete-consistency TCRefl (TCProd tc' tc'') = λ _ → refl
complete-consistency (TCProd tc tc') (TCProd tc1 tc2) (TCProd tc3 tc4)
with complete-consistency tc tc1 tc3 | complete-consistency tc' tc2 tc4
... | refl | refl = refl
-- a well typed complete term is assigned a complete type
complete-ta : ∀{Γ Δ d τ} → (Γ gcomplete) →
(Δ , Γ ⊢ d :: τ) →
d dcomplete →
τ tcomplete
complete-ta gc TAConst comp = TCBase
complete-ta gc (TAVar x₁) DCVar = gc _ _ x₁
complete-ta gc (TALam a wt) (DCLam comp x₁) = TCArr x₁ (complete-ta (gcomp-extend gc x₁ a ) wt comp)
complete-ta gc (TAAp wt wt₁) (DCAp comp comp₁) with complete-ta gc wt comp
complete-ta gc (TAAp wt wt₁) (DCAp comp comp₁) | TCArr qq qq₁ = qq₁
complete-ta gc (TAEHole x x₁) ()
complete-ta gc (TANEHole x wt x₁) ()
complete-ta gc (TACast wt x) (DCCast comp x₁ x₂) = x₂
complete-ta gc (TAFailedCast wt x x₁ x₂) ()
complete-ta gc (TAFst wt) (DCFst comp) = lem-comp-prod1 (complete-ta gc wt comp)
complete-ta gc (TASnd wt) (DCSnd comp) = lem-comp-prod2 (complete-ta gc wt comp)
complete-ta gc (TAPair ta ta₁) (DCPair comp comp₁) = TCProd (complete-ta gc ta comp) (complete-ta gc ta₁ comp₁)
-- a well typed term synthesizes a complete type
comp-synth : ∀{Γ e τ} →
Γ gcomplete →
e ecomplete →
Γ ⊢ e => τ →
τ tcomplete
comp-synth gc ec SConst = TCBase
comp-synth gc (ECAsc x ec) (SAsc x₁) = x
comp-synth gc ec (SVar x) = gc _ _ x
comp-synth gc (ECAp ec ec₁) (SAp _ wt MAHole x₁) with comp-synth gc ec wt
... | ()
comp-synth gc (ECAp ec ec₁) (SAp _ wt MAArr x₁) with comp-synth gc ec wt
comp-synth gc (ECAp ec ec₁) (SAp _ wt MAArr x₁) | TCArr qq qq₁ = qq₁
comp-synth gc () SEHole
comp-synth gc () (SNEHole _ wt)
comp-synth gc (ECLam2 ec x₁) (SLam x₂ wt) = TCArr x₁ (comp-synth (gcomp-extend gc x₁ x₂) ec wt)
comp-synth gc (ECFst ec) (SFst wt MPHole) = comp-synth gc ec wt
comp-synth gc (ECFst ec) (SFst wt MPProd) = lem-comp-prod1 (comp-synth gc ec wt)
comp-synth gc (ECSnd ec) (SSnd wt MPHole) = comp-synth gc ec wt
comp-synth gc (ECSnd ec) (SSnd wt MPProd) = lem-comp-prod2 (comp-synth gc ec wt)
comp-synth gc (ECPair ec ec₁) (SPair x wt wt₁) = TCProd (comp-synth gc ec wt) (comp-synth gc ec₁ wt₁)
-- complete boxed values are just values
lem-comp-boxed-val : {Δ : hctx} {d : iexp} {τ : typ} {Γ : tctx} →
Δ , Γ ⊢ d :: τ →
d dcomplete →
d boxedval →
d val
lem-comp-boxed-val wt comp (BVVal VConst) = VConst
lem-comp-boxed-val wt comp (BVVal VLam) = VLam
lem-comp-boxed-val wt comp (BVVal (VPair x x₁)) = VPair x x₁
lem-comp-boxed-val (TAPair wt wt₁) (DCPair comp comp₁) (BVPair bv bv₁) = VPair (lem-comp-boxed-val wt comp bv)
(lem-comp-boxed-val wt₁ comp₁ bv₁)
lem-comp-boxed-val (TACast wt x₃) (DCCast comp x₁ x₂) (BVArrCast x bv) = abort (x (complete-consistency x₃ x₁ x₂))
lem-comp-boxed-val (TACast wt x₁) (DCCast comp x₂ x₃) (BVProdCast x bv) = abort (x (complete-consistency x₁ x₂ x₃))
lem-comp-boxed-val (TACast wt x₁) (DCCast comp x₂ ()) (BVHoleCast x bv)
| {
"alphanum_fraction": 0.6326257411,
"avg_line_length": 50.7669902913,
"ext": "agda",
"hexsha": "c8691e6a7901ffcacef193b73e35f5ba0bc48f4a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "lemmas-complete.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "lemmas-complete.agda",
"max_line_length": 117,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "lemmas-complete.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z",
"num_tokens": 1868,
"size": 5229
} |
-- Andreas, 2015-12-12, report by Ulf, 2015-12-09
{-# OPTIONS -v tc.with.40 #-}
open import Common.Equality
open import Common.Bool
T : Bool → Set
T true = Bool
T false = true ≡ false
foo : (a b : Bool) → a ≡ b → T a → T b
foo a b eq x rewrite eq = x
data _≅_ {A : Set} (x : A) : {B : Set} → B → Set where
refl : x ≅ x
-- Intended new rewrite
refl-rewrite : ∀ a (eq : a ≡ a) (t : T a) → foo a a eq t ≡ t
refl-rewrite a eq t with eq
refl-rewrite a eq t | refl = refl
test : ∀ a (eq : a ≡ a) (t : T a) → foo a a eq t ≡ t
test a eq t rewrite eq = refl -- FAILS, this is the original issue report
-- Error:
-- foo a a eq t | a | eq != t of type T a
-- when checking that the expression refl has type foo a a eq t ≡ t
-- test a refl t = refl -- WORKS, of course
-- Non-reflexive rewrite
works : ∀ a b (eq : a ≡ b) (t : T a) → foo a b eq t ≅ t
works a b eq t rewrite eq = refl
-- Manual desugaring of old-style rewrite works as well
old-rewrite : ∀ a (eq : a ≡ a) (t : T a) → foo a a eq t ≡ t
old-rewrite a eq t with a | eq
old-rewrite a eq t | _ | refl = refl
| {
"alphanum_fraction": 0.59494855,
"avg_line_length": 28.1315789474,
"ext": "agda",
"hexsha": "eda47efa3cc8ac4d7b38770bdc44c30fea98ea3a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1740.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1740.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1740.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 402,
"size": 1069
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary
open import Cubical.Algebra.Magma
module Cubical.Algebra.Magma.Construct.Quotient {c ℓ} (M : Magma c) {R : Rel ⟨ M ⟩ ℓ} (isEq : IsEquivalence R)
(closed : Congruent₂ R (Magma._•_ M)) where
open import Cubical.Algebra.Properties
open import Cubical.HITs.SetQuotients
open Magma M
open IsEquivalence isEq
Carrier/R = Carrier / R
_•ᴿ_ : Op₂ Carrier/R
_•ᴿ_ = rec2 squash/ (λ x y → [ x • y ]) (λ _ _ _ eq → eq/ _ _ (cong₂⇒rcong R reflexive _•_ closed eq))
(λ _ _ _ eq → eq/ _ _ (cong₂⇒lcong R reflexive _•_ closed eq))
M/R-isMagma : IsMagma Carrier/R _•ᴿ_
M/R-isMagma = record { is-set = squash/ }
M/R : Magma (ℓ-max c ℓ)
M/R = record { isMagma = M/R-isMagma }
| {
"alphanum_fraction": 0.6177474403,
"avg_line_length": 32.5555555556,
"ext": "agda",
"hexsha": "4f304fed8d3c161e6198666c49415f66dd0b0c76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Quotient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Quotient.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 295,
"size": 879
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.QuoQ.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat as ℕ using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.HITs.Ints.QuoInt
open import Cubical.HITs.SetQuotients as SetQuotient
using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
ℕ₊₁→ℤ : ℕ₊₁ → ℤ
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)
private
ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m ·₊₁ n) ≡ ℕ₊₁→ℤ m · ℕ₊₁→ℤ n
ℕ₊₁→ℤ-hom _ _ = refl
-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)
_∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀
(a , b) ∼ (c , d) = a · ℕ₊₁→ℤ d ≡ c · ℕ₊₁→ℤ b
ℚ : Type₀
ℚ = (ℤ × ℕ₊₁) // _∼_
isSetℚ : isSet ℚ
isSetℚ = SetQuotient.squash/
[_/_] : ℤ → ℕ₊₁ → ℚ
[ a / b ] = [ a , b ]
isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r
where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i ⟩
ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩
(c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b ⟩
(e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d ∎
eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y
eq/⁻¹ = SetQuotient.effective (λ _ _ → isSetℤ _ _) isEquivRel∼
discreteℚ : Discrete ℚ
discreteℚ = discreteSetQuotients (discreteΣ discreteℤ (λ _ → subst Discrete 1+Path discreteℕ))
(λ _ _ → isSetℤ _ _) isEquivRel∼ (λ _ _ → discreteℤ _ _)
-- Natural number and negative integer literals for ℚ
open import Cubical.Data.Nat.Literals public
instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] }
instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] }
| {
"alphanum_fraction": 0.5530455829,
"avg_line_length": 32.1948051948,
"ext": "agda",
"hexsha": "52dbe194f0d7de6c045733c2998466f751ec5387",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/HITs/Rationals/QuoQ/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/HITs/Rationals/QuoQ/Base.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/HITs/Rationals/QuoQ/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1267,
"size": 2479
} |
module Functors.FullyFaithful where
open import Library
open import Categories
open import Functors
open import Naturals hiding (Iso)
open import Isomorphism
open Cat
open Fun
FullyFaithful : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
(F : Fun C D) → Set (a ⊔ b ⊔ d)
FullyFaithful {C = C}{D = D} F =
∀ (X Y : Obj C) → Iso (Hom D (OMap F X) (OMap F Y)) (Hom C X Y)
Full : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
(F : Fun C D) → Set _
Full {C = C}{D = D} F = ∀ {X Y}(h : Hom D (OMap F X) (OMap F Y)) →
Σ (Hom C X Y) \ f -> HMap F f ≅ h
Faithful : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
(F : Fun C D) → Set _
Faithful {C = C}{D = D} F = ∀{X Y}{f g : Hom C X Y} → HMap F f ≅ HMap F g → f ≅ g
| {
"alphanum_fraction": 0.5066137566,
"avg_line_length": 30.24,
"ext": "agda",
"hexsha": "55cfff93f981599e804b0e66f2d26550408e7df4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Functors/FullyFaithful.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Functors/FullyFaithful.agda",
"max_line_length": 81,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Functors/FullyFaithful.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 314,
"size": 756
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Vehicle.Data.Tensor
open import Data.Rational as ℚ using (ℚ)
open import Data.Fin as Fin using (Fin; #_)
open import Data.List
module increasing-temp-output where
postulate f : Tensor ℚ (1 ∷ []) → Tensor ℚ (1 ∷ [])
abstract
increasing : ∀ (x : ℚ) → x ℚ.≤ f (x ∷ []) (# 0)
increasing = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
} | {
"alphanum_fraction": 0.6702453988,
"avg_line_length": 27.1666666667,
"ext": "agda",
"hexsha": "0489ce1a17fc9fccdcaea5560f1fc707293baee9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "test/Test/Compile/Golden/increasing/increasing-output.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "test/Test/Compile/Golden/increasing/increasing-output.agda",
"max_line_length": 71,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "test/Test/Compile/Golden/increasing/increasing-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 197,
"size": 652
} |
module AgdaCheatSheet where
open import Level using (Level)
open import Data.Nat
open import Data.Bool hiding (_<?_)
open import Data.List using (List; []; _∷_; length)
-- https://alhassy.github.io/AgdaCheatSheet/CheatSheet.pdf
{-
------------------------------------------------------------------------------
-- dependent function
A function whose RESULT type depends on the VALUE of the argument.
-- given value of type A
-- return result of type B a
(a : A) → B a
E.g., generic identity
-- input
-- the type of X
-- value of type X
-- output a function X → X
-}
id0 : (X : Set) → X → X
id0 X x = x
id1 id2 id3 : (X : Set) → X → X
id1 X = λ x → x
id2 = λ X x → x
id3 = λ (X : Set) (x : X) → x
-- call it
sad : ℕ
sad = id0 ℕ 3
{-
------------------------------------------------------------------------------
-- implicits
In above, type arg can be inferred.
Use curly braces to mark arg as implicit.
-}
id : {X : Set} → X → X
id x = x
-- call it
nice : ℕ
nice = id 3
-- call with explicit implicit
explicit : ℕ
explicit = id {ℕ} 3
-- call with explicit inferred implicit
explicit’ : ℕ
explicit’ = id0 _ 3
{-
------------------------------------------------------------------------------
-- specifying arguments
{x : _} {y : _} (z : _) → · · · ≈ ∀ {x y} z → · · ·
(a1 : A) → (a2 : A) → (b : B) → · · · ≈ (a1 a2 : A) (b : B) → · · ·
------------------------------------------------------------------------------
-- dependent datatypes
-- data
-- name
-- arguments
-- type of the datatype
-- constructors and their types
-}
data Vec {ℓ : Level} (A : Set ℓ) : ℕ → Set ℓ where
[] : Vec A 0
_::_ : {n : ℕ} → A → Vec A n → Vec A (1 + n)
{-
For a given A, type of Vec A is N → Set.
Means Vec A is a FAMILY of types indexed by natural numbers:
- For each n, there is a TYPE Vec A n.
Vec is
- parametrised by A (and ℓ)
- indexed by n
A is type of elements
n is length
only way to Vec A 0 is via []
only way to Vec A (1 + n) is via _::_
enables safe head (since empty impossible)
-}
head : {A : Set} {n : ℕ} → Vec A (1 + n) → A
head (x :: xs) = x
{-
------------------------------------------------------------------------------
-- universes
ℓ arg says Vec is universe polymorphic
- can vectors of numbers and also vectors of types
Levels are essentially natural numbers:
- constructurs
- lzero
- lsuc
- _t_ : max of two levels
NO UNIVERSE OF ALL UNIVERSES:
- Set n has type Set n+1 for any n
- the type (n : Level) → Set n
- is not itself typeable
— i.e., is not in Set ℓ for any ℓ
— Agda errors saying it is a value of Set ω
------------------------------------------------------------------------------
-- functions defined by pattern matching ALL cases
must terminate : so recursive calls must be made on structurally smaller arg
-}
infixr 40 _++_
_++_ : {A : Set} {n m : ℕ} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
{-
Append type encodes property : length of catenation is sum of args lengths
- Different types can have the same constructor names.
- Mixifx operators can be written prefix by having all underscores mentioned; e.g.,
- In def, if an arg is not needed, use _ (wildcard pattern)
------------------------------------------------------------------------------
-- Curry-Howard Correspondence — Propositions as Types
Logic Programming Example Use in Programming
================================================================================
proof / proposition element / type “p is a proof of P” ≈ “p is of type P”
true singleton type return type of side-effect only methods
false empty type return type for non-terminating methods
⇒ function type → methods with an input and output type
∧ product type × simple records of data and methods
∨ sum type + enumerations or tagged unions
∀ dependent function type Π return type varies according to input value
∃ dependent product type Σ record fields depend on each other’s values
natural deduction type system ensuring only “meaningful” programs
hypothesis free variable global variables, closures
modus ponens function application executing methods on arguments
⇒ -introduction λ-abstraction parameters acting as local variables
to method definitions
induction;
elimination rules Structural recursion for-loops are precisely N-induction
Signature, term Syntax; interface, record type, class
Algebra, Interpretation Semantics; implementation, instance, object
Free Theory Data structure
Inference rule Algebraic datatype constructor
Monoid Untyped programming / composition
Category Typed programming / composition
------------------------------------------------------------------------------
-- equality
example of propositions-as-types : definition of identity relation (the least reflexive relation)
-}
data _≡_ {A : Set} : A → A → Set where
refl : {x : A} → x ≡ x
{-
states that refl {x}
- is a proof of l ≡ r
- whenever l and r simplify to x
- by definition chasing only
Use it to prove Leibniz’s substitutivity rule, “equals for equals”:
-}
subst : {A : Set} {P : A → Set} {l r : A}
→ l ≡ r -- must be of the form refl {x} for some canonical form x
→ P l -- if l and r are both x, then P l and P r are the same type
→ P r -- matching on proof l ≡ r gave infor about the rest of the program’s type
subst refl it = it
------------------------------------------------------------------------------
-- modules - namespace management
--------------------------------------------------
-- SIMPLE MODULES
module M where
N : Set
N = ℕ
private
x : ℕ
x = 3
y : N
y = x + 1
-- using it - public names accessible by qualification or by opening them locally or globally
use0 : M.N
use0 = M.y
use1 : ℕ
use1 = y where open M
{- if open, then causes y in M' to duplicate
open M
use2 : ℕ
use2 = y
-}
--------------------------------------------------
-- PARAMETERISED MODULES : by arbitrarily many values and types (but not by other modules)
module M’ (x : ℕ) where
y : ℕ
y = x + 1
-- names are functions
--exposed : (x : ℕ) → ℕ
--exposed = M’.y -- TODO compile error
-- using it
use’0 : ℕ
use’0 = M’.y 3
module M” = M’ 3
use” : ℕ
use” = M”.y
use’1 : ℕ
use’1 = y where open M’ 3
{-
“Using Them”:
- names in parameterised modules are are treated as functions
- can instantiate some parameters and name the resulting module
- can still open them as usual
--------------------------------------------------
-- ANONYMOUS MODULES
-- named-then-immediately-opened modules
module _ {A : Set} {a : A} · · ·
≈
module T {A : Set} {a : A} · · ·
open T
-- use-case : to approximate the informal phrase
-- “for any A : Set and a : A, we have · · · ”
-- so common that variable keyword was introduced
-- Names in · · · are functions of only those variable-s they actually mention.
variable
A : Set
a : A
--------------------------------------------------
-- opening, using, hiding, renaming
open M hiding (n0; ...; nk) : treat ni as private
open M using (n0; ...; nk) : treat only ni as public
open M renaming (n0 to m0; ...; nk to mk) : use names mi instead of ni
import X.Y.Z : Use the definitions of module Z which lives in file ./X/Y/Z.agda.
open M public : Treat the contents of M as if it is the public contents of the current module
Splitting a program over several files improves type checking performance,
since only need to type check files influenced by the change.
------------------------------------------------------------------------------
-- records : record ≈ module + data with one constructor
-}
record PointedSet : Set1 where
constructor MkIt {- optional -}
field
Carrier : Set
point : Carrier
{- like a module, so can add derived definitions -}
blind : {A : Set} → A → Carrier
blind = λ a → point
-- construct without named constructor
ex0 : PointedSet
ex0 = record {Carrier = ℕ; point = 3}
-- construct with named constructor
ex1 : PointedSet
ex1 = MkIt ℕ 3
open PointedSet
ex2 : PointedSet
Carrier ex2 = ℕ
point ex2 = 3
{-
Start with ex2 = ?, then in the hole enter C-c C-c RET to obtain the co-pattern setup.
Two tuples are the same when they have the same components.
Likewise a record is defined by its projections, whence co-patterns.
If you’re using many local definitions, you likely want to use co-patterns.
To enable projection of the fields from a record,
each record type comes with a module of the same name.
This module is parameterised by an element of the record type and
contains projection functions for the fields.
-}
useR0 : ℕ
useR0 = PointedSet.point ex0
{-
use¹ : ℕ
use¹ = point where open PointedSet ex0 -- TODO compile error
-}
open PointedSet
use² : ℕ
use² = blind ex0 true
-- pattern match on records
use³ : (P : PointedSet) → Carrier P
use³ record {Carrier = C; point = x} = x
use4 : (P : PointedSet) → Carrier P
use4 (MkIt C x) = x
{-
------------------------------------------------------------------------------
-- TODO Interacting with the real world —Compilation, Haskell, and IO
------------------------------------------------------------------------------
-- absurd patterns
When no constructor are matchable
- match the pattern ()
- provide no right hand side (since no way to could provide an arg to the function)
E.g., numbers smaller than a given natural number
-}
{- Fin n ∼= numbers i with i < n -}
data Fin : ℕ → Set where
fzero : {n : ℕ} → Fin (suc n) -- smaller than suc n for any n
fsuc : {n : ℕ} → Fin n → Fin (suc n) -- if i smaller than n then fsuc i is smaller than suc n.
{-
for each n, the type Fin n contains n elements
- Fin 2 has elements fsuc fzero and fzero
- Fin 0 has no elements
safe indexing function
-}
_!!_ : {A : Set} {n : ℕ} → Vec A n → Fin n → A
[] !! () -- n is necessarily 0, but no way to make an element of type Fin 0
-- so use absurd pattern
(x :: xs) !! fzero = x
(x :: xs) !! fsuc i = xs !! i
-- Logically “anything follows from false” becomes the following program:
data False : Set where
magic : {Anything-you-want : Set} → False → Anything-you-want
magic ()
{-
do
magic x = ?
then case split on x
yields the program
------------------------------------------------------------------------------
-- isTrue pattern : passing around explicit proof objects
-- when not possible/easy to capture a desired precondition in types
-}
-- An empty record has only one value: record {} -}
record True : Set where
isTrue : Bool → Set
isTrue true = True
isTrue false = False
_<0_ : ℕ → ℕ → Bool
_ <0 zero = false
zero <0 suc y = true
suc x <0 suc y = x <0 y
find : {A : Set} (xs : List A) (i : ℕ) → isTrue (i <0 length xs) → A
find [] i ()
find (x ∷ xs) zero pf = x
find (x ∷ xs) (suc i) pf = find xs i pf
head’ : {A : Set} (xs : List A) → isTrue (0 <0 length xs) → A
head’ [] ()
head’ (x ∷ xs) _ = x
-- Unlike the _!!_ definition
-- rather than there being no index into the empty list
-- there is no proof that a natural number i is smaller than 0
{-
------------------------------------------------------------------------------
Mechanically Moving from Bool to Set —Avoiding “Boolean Blindness”
proposition represented as type whose elements denote proofs
Why use?
- awkward to request an index be “in bounds” in the find method,
- easier to encode this using Fin
- likewise, head’ is more elegant type when the non-empty precondition
is part of the datatype definition, as in head.
recipe : from Boolean functions to inductive datatype families
1. Write the Boolean function.
2. Throw away all the cases with right side false.
3. Every case that has right side true corresponds to a new nullary constructor.
4. Every case that has n recursive calls corresponds to an n-ary constructor.
following these steps for _<0_:
-}
data _<1_ : ℕ → ℕ → Set where
z< : {y : ℕ} → zero <1 y
s< : {x y : ℕ} → x <1 y → suc x <1 suc y
{-
then prove
- soundness : constructed values correspond to Boolean-true statements
ensured by the second step in recipe
- completeness : true things correspond to terms formed from constructors.
-}
completeness : {x y : ℕ} → isTrue (x <0 y) → x <1 y
completeness {x} {zero} ()
completeness {zero} {suc y} p = z<
completeness {suc x} {suc y} p = s< (completeness p)
{-
begin with
completeness {x} {y} p = ?
then want case on p
but that requires evaluating x <0 y
which requires we know the shapes of x and y.
shape of proofs usually mimics the shape of definitions they use
------------------------------------------------------------------------------
record Payload (A : Set) : Set
field
pPayload : [a]
record BlockType (A : Set) : Set
= Proposal (Payload a) Author
| NilBlock
| Genesis
record LastVoteInfo
fields
lviLiDigest :: HashValue
lviRound :: Round
lviIsTimeout :: Bool
-}
| {
"alphanum_fraction": 0.5665900837,
"avg_line_length": 27.8206185567,
"ext": "agda",
"hexsha": "b00e1d1efc8922e848ce00b6d5a5a516cc3467be",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/AgdaCheatSheet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/AgdaCheatSheet.agda",
"max_line_length": 98,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/AgdaCheatSheet.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3472,
"size": 13493
} |
module Issue1486 where
open import Common.Prelude
postulate
QName : Set
{-# BUILTIN QNAME QName #-}
primitive
primShowQName : QName -> String
main : IO Unit
main = putStrLn (primShowQName (quote main))
| {
"alphanum_fraction": 0.7333333333,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "315a1c1c6f7105c302271def83d0a8d8858534d6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue1486.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue1486.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue1486.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 56,
"size": 210
} |
-- Andreas, 2014-10-05, issue reported by Stevan Andjelkovic
{-# OPTIONS --cubical-compatible #-}
postulate
IO : Set → Set
record ⊤ : Set where
constructor tt
record Container : Set₁ where
field
Shape : Set
Position : Shape → Set
open Container public
data W (A : Set) (B : A → Set) : Set where
sup : (x : A) (f : B x → W A B) → W A B
postulate
Ω : Container
p : ∀ {s} → Position Ω s
mutual
bad : W (Shape Ω) (Position Ω) → IO ⊤
bad (sup c k) = helper c k
helper : (s : Shape Ω) → (Position Ω s → W (Shape Ω) (Position Ω)) → IO ⊤
helper _ k = bad (k p)
-- should pass termination check
| {
"alphanum_fraction": 0.6012759171,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "54fab05fea421c4b6de7bd8c529638fd443b80cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1292.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1292.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1292.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 224,
"size": 627
} |
open import Coinduction using ( ∞ )
open import Data.ByteString using ( ByteString ; strict ; lazy )
open import Data.String using ( String )
module System.IO.Primitive where
infixl 1 _>>=_
-- The Unit type and its sole inhabitant
postulate
Unit : Set
unit : Unit
{-# COMPILED_TYPE Unit () #-}
{-# COMPILED unit () #-}
-- The IO type and its primitives
-- TODO: Make these universe-polymorphic once the compiler supports it
postulate
IO : Set → Set
return : {A : Set} → A → (IO A)
_>>=_ : {A B : Set} → (IO A) → (A → (IO B)) → (IO B)
inf : {A : Set} → ∞(IO A) → (IO A)
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED return (\ _ a -> return a) #-}
{-# COMPILED _>>=_ (\ _ _ a f -> a >>= f) #-}
-- {-# COMPILED inf (\ _ a -> a) #-}
-- The commitment primitives
postulate
commit : IO Unit
onCommit : (IO Unit) → (IO Unit)
{-# IMPORT System.IO.AgdaFFI #-}
{-# COMPILED commit System.IO.AgdaFFI.commit #-}
{-# COMPILED onCommit System.IO.AgdaFFI.onCommit #-}
-- The low-level binary handle primitives.
-- TODO: Should the string etc. functions be built on top of
-- the binary functions, or should we link directly to the Haskell
-- string functions?
-- TODO: Think about append and read-write modes.
postulate
HandleR : Set
stdin : HandleR
hOpenR : String → (IO HandleR)
hGetLazy : HandleR → (IO (ByteString lazy))
hGetStrict : HandleR → (IO (ByteString strict))
hCloseR : HandleR → (IO Unit)
{-# IMPORT System.IO #-}
{-# COMPILED_TYPE HandleR System.IO.Handle #-}
{-# COMPILED stdin System.IO.stdin #-}
{-# COMPILED hOpenR System.IO.AgdaFFI.hOpen System.IO.ReadMode #-}
{-# COMPILED hGetStrict System.IO.AgdaFFI.hGetStrict #-}
{-# COMPILED hGetLazy System.IO.AgdaFFI.hGetLazy #-}
{-# COMPILED hCloseR System.IO.AgdaFFI.hClose #-}
postulate
HandleW : Set
stdout : HandleW
stderr : HandleW
hOpenW : String → (IO HandleW)
hPutLazy : HandleW → (ByteString lazy) → (IO Unit)
hPutStrict : HandleW → (ByteString strict) → (IO Unit)
hCloseW : HandleW → (IO Unit)
{-# COMPILED_TYPE HandleW System.IO.Handle #-}
{-# COMPILED stdout System.IO.stdout #-}
{-# COMPILED stderr System.IO.stderr #-}
{-# COMPILED hOpenW System.IO.AgdaFFI.hOpen System.IO.WriteMode #-}
{-# COMPILED hPutStrict System.IO.AgdaFFI.hPutStrict #-}
{-# COMPILED hPutLazy System.IO.AgdaFFI.hPutLazy #-}
{-# COMPILED hCloseW System.IO.AgdaFFI.hClose #-}
| {
"alphanum_fraction": 0.6676458246,
"avg_line_length": 29.7875,
"ext": "agda",
"hexsha": "9242cf4a19e3ec4b67037475dcd2ccaab9563d48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Primitive.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 701,
"size": 2383
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Base definitions for the left-biased universe-sensitive functor and
-- monad instances for These.
--
-- To minimize the universe level of the RawFunctor, we require that
-- elements of B are "lifted" to a copy of B at a higher universe level
-- (a ⊔ b).
-- See the Data.Product.Categorical.Examples for how this is done in a
-- Product-based similar setting.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Level
module Data.These.Categorical.Left.Base {a} (A : Set a) (b : Level) where
open import Data.These
open import Category.Functor
open import Category.Applicative
open import Category.Monad
open import Function
Theseₗ : Set (a ⊔ b) → Set (a ⊔ b)
Theseₗ B = These A B
functor : RawFunctor Theseₗ
functor = record { _<$>_ = map₂ }
------------------------------------------------------------------------
-- Get access to other monadic functions
module _ {F} (App : RawApplicative {a ⊔ b} F) where
open RawApplicative App
sequenceA : ∀ {A} → Theseₗ (F A) → F (Theseₗ A)
sequenceA (this a) = pure (this a)
sequenceA (that b) = that <$> b
sequenceA (these a b) = these a <$> b
mapA : ∀ {A B} → (A → F B) → Theseₗ A → F (Theseₗ B)
mapA f = sequenceA ∘ map₂ f
forA : ∀ {A B} → Theseₗ A → (A → F B) → F (Theseₗ B)
forA = flip mapA
module _ {M} (Mon : RawMonad {a ⊔ b} M) where
private App = RawMonad.rawIApplicative Mon
sequenceM : ∀ {A} → Theseₗ (M A) → M (Theseₗ A)
sequenceM = sequenceA App
mapM : ∀ {A B} → (A → M B) → Theseₗ A → M (Theseₗ B)
mapM = mapA App
forM : ∀ {A B} → Theseₗ A → (A → M B) → M (Theseₗ B)
forM = forA App
| {
"alphanum_fraction": 0.564479638,
"avg_line_length": 28.5161290323,
"ext": "agda",
"hexsha": "f7b2633d01edcae9a34bad5098a76db7e60ef036",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left/Base.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 535,
"size": 1768
} |
open import Data.Sum
open import Data.Fin
open import Data.Maybe
open import Signature
module MixedTest (Σ : Sig) (D : Set) where
-- Δ : Sig
-- Δ = record { ∥_∥ = D ; ar = λ x → Fin 1 }
mutual
data Term : Set where
cons : ⟪ Σ ⟫ (Term ⊎ CoTerm) → Term
record CoTerm : Set where
coinductive
field destr : D → Maybe (Term ⊎ CoTerm)
open CoTerm public
| {
"alphanum_fraction": 0.6368563686,
"avg_line_length": 18.45,
"ext": "agda",
"hexsha": "9f4a82057b9a432b14996cdb66e8cdd1767f2edd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP/MixedTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP/MixedTest.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP/MixedTest.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 125,
"size": 369
} |
{-# OPTIONS --safe --cubical #-}
module Erased-cubical.Cubical-again where
open import Agda.Builtin.Cubical.Path
open import Erased-cubical.Erased public
-- Code defined using --erased-cubical can be imported and used by
-- regular Cubical Agda code.
_ : {A : Set} → A → ∥ A ∥
_ = ∣_∣
-- The constructor trivialᶜ is defined in a module that uses --cubical
-- and re-exported from a module that uses --erased-cubical. Because
-- the current module uses --cubical it is fine to use trivialᶜ in a
-- non-erased setting.
_ : {A : Set} (x y : ∥ A ∥ᶜ) → x ≡ y
_ = trivialᶜ
| {
"alphanum_fraction": 0.6916376307,
"avg_line_length": 26.0909090909,
"ext": "agda",
"hexsha": "c64aef2136856799c87cefc2f39d9db7410d465e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical/Cubical-again.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical/Cubical-again.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical/Cubical-again.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 193,
"size": 574
} |
-- 2015-05-05 Bad error message
_=R_ : Rel → Rel → Set
R =R S : (R ⊆ S) × (S ⊆ R) -- here is a typo, : instead of =
ldom : Rel → Pred
ldom R a = ∃ λ b → R a b
-- More than one matching type signature for left hand side ldom R a
-- it could belong to any of: ldom R
| {
"alphanum_fraction": 0.6044776119,
"avg_line_length": 24.3636363636,
"ext": "agda",
"hexsha": "8724555ba8075b494d6965f77dc69cc07c2361d7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1499.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1499.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1499.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 99,
"size": 268
} |
module Data.Finitude.FinType where
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Data.Nat as ℕ
open import Data.Fin as Fin using (Fin; #_)
open import Data.Finitude
open import Function.Equality using (_⟨$⟩_)
open import Function.Injection as Inj using (Injective)
open import Function.Inverse as Inv using (Inverse)
open import Data.Vec
open import Data.Vec.Membership.Propositional
open import Data.Vec.Membership.Propositional.Properties
open import Data.Vec.Membership.Propositional.Distinct as Distinct using (Distinct)
record FinType {a} (A : Set a) : Set a where
field
size : ℕ
finitude : Finitude (P.setoid A) size
open import Data.Vec.Properties
index : A → Fin size
index = Inverse.to finitude ⟨$⟩_
index-injective : ∀ {x y} → index x ≡ index y → x ≡ y
index-injective = Inverse.injective finitude
enum : Fin size → A
enum = Inverse.from finitude ⟨$⟩_
enum-injective : ∀ {i j} → enum i ≡ enum j → i ≡ j
enum-injective = Inverse.injective (Inv.sym finitude)
elems : Vec A size
elems = tabulate enum
elems-distinct : Distinct elems
elems-distinct = Distinct.tabulate (Inverse.injection (Inv.sym finitude))
_∈elems : ∀ x → x ∈ elems
x ∈elems rewrite P.sym (Inverse.left-inverse-of finitude x) = ∈-tabulate⁺ enum (index x)
open FinType ⦃ ... ⦄ using (index ; _∈elems)
size : ∀ {a} (A : Set a) ⦃ fin : FinType A ⦄ → ℕ
size A {{ fin }} = FinType.size fin
elems : ∀ {a} (A : Set a) ⦃ fin : FinType A ⦄ → Vec A (size A)
elems A {{ fin }} = FinType.elems fin
instance
open import Data.Bool
open import Data.Unit
open import Data.Empty
empty : FinType ⊥
empty = record {
size = 0
; finitude = record {
to = P.→-to-⟶ λ()
; from = P.→-to-⟶ λ()
; inverse-of = record {
left-inverse-of = λ ()
; right-inverse-of = λ ()
}
}
}
unit : FinType ⊤
unit = record {
size = 1
; finitude = record {
to = P.→-to-⟶ λ _ → Fin.zero
; from = P.→-to-⟶ λ _ → tt
; inverse-of = record {
left-inverse-of = λ _ → P.refl
; right-inverse-of = λ { Fin.zero → P.refl ; (Fin.suc ()) }
}
}
}
bool : FinType Bool
bool = record {
size = 2
; finitude = record {
to = P.→-to-⟶ λ { false → # 0 ; true → # 1 }
; from = P.→-to-⟶ λ { Fin.zero → false ; (Fin.suc Fin.zero) → true ; (Fin.suc (Fin.suc ())) }
; inverse-of = record {
left-inverse-of = λ { false → P.refl ; true → P.refl }
; right-inverse-of = λ { Fin.zero → P.refl ; (Fin.suc Fin.zero) → P.refl ; (Fin.suc (Fin.suc ())) }
}
}
}
private
bools : Vec Bool _
bools = elems Bool
example : bools ≡ false ∷ true ∷ []
example = P.refl
| {
"alphanum_fraction": 0.5679012346,
"avg_line_length": 29.7551020408,
"ext": "agda",
"hexsha": "b68b39b18c7d82d0d9fc7feca2b378cbe346a60a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Finitude/FinType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Finitude/FinType.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Finitude/FinType.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 895,
"size": 2916
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Group
open import lib.types.Bool
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
open import lib.groups.Homomorphisms
open import lib.groups.Lift
open import lib.groups.Unit
module lib.groups.GroupProduct where
{- binary product -}
×-group-struct : ∀ {i j} {A : Type i} {B : Type j}
(GS : GroupStructure A) (HS : GroupStructure B)
→ GroupStructure (A × B)
×-group-struct GS HS = record {
ident = (ident GS , ident HS);
inv = λ {(g , h) → (inv GS g , inv HS h)};
comp = λ {(g₁ , h₁) (g₂ , h₂) → (comp GS g₁ g₂ , comp HS h₁ h₂)};
unitl = λ {(g , h) → pair×= (unitl GS g) (unitl HS h)};
unitr = λ {(g , h) → pair×= (unitr GS g) (unitr HS h)};
assoc = λ {(g₁ , h₁) (g₂ , h₂) (g₃ , h₃) →
pair×= (assoc GS g₁ g₂ g₃) (assoc HS h₁ h₂ h₃)};
invl = λ {(g , h) → pair×= (invl GS g) (invl HS h)};
invr = λ {(g , h) → pair×= (invr GS g) (invr HS h)}}
where open GroupStructure
_×ᴳ_ : ∀ {i j} → Group i → Group j → Group (lmax i j)
_×ᴳ_ (group A A-level A-struct) (group B B-level B-struct) =
group (A × B) (×-level A-level B-level) (×-group-struct A-struct B-struct)
{- general product -}
Π-group-struct : ∀ {i j} {I : Type i} {A : I → Type j}
(FS : (i : I) → GroupStructure (A i))
→ GroupStructure (Π I A)
Π-group-struct FS = record {
ident = ident ∘ FS;
inv = λ f i → inv (FS i) (f i);
comp = λ f g i → comp (FS i) (f i) (g i);
unitl = λ f → (λ= (λ i → unitl (FS i) (f i)));
unitr = λ f → (λ= (λ i → unitr (FS i) (f i)));
assoc = λ f g h → (λ= (λ i → assoc (FS i) (f i) (g i) (h i)));
invl = λ f → (λ= (λ i → invl (FS i) (f i)));
invr = λ f → (λ= (λ i → invr (FS i) (f i)))}
where open GroupStructure
Πᴳ : ∀ {i j} (I : Type i) (F : I → Group j) → Group (lmax i j)
Πᴳ I F = group (Π I (El ∘ F)) (Π-level (λ i → El-level (F i)))
(Π-group-struct (group-struct ∘ F))
where open Group
{- the product of abelian groups is abelian -}
×ᴳ-abelian : ∀ {i j} {G : Group i} {H : Group j}
→ is-abelian G → is-abelian H → is-abelian (G ×ᴳ H)
×ᴳ-abelian aG aH (g₁ , h₁) (g₂ , h₂) = pair×= (aG g₁ g₂) (aH h₁ h₂)
Πᴳ-abelian : ∀ {i j} {I : Type i} {F : I → Group j}
→ (∀ i → is-abelian (F i)) → is-abelian (Πᴳ I F)
Πᴳ-abelian aF f₁ f₂ = λ= (λ i → aF i (f₁ i) (f₂ i))
{- defining a homomorphism into a binary product -}
×ᴳ-hom-in : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ (G →ᴳ H) → (G →ᴳ K) → (G →ᴳ H ×ᴳ K)
×ᴳ-hom-in (group-hom h h-comp) (group-hom k k-comp) = record {
f = λ x → (h x , k x);
pres-comp = λ x y → pair×= (h-comp x y) (k-comp x y)}
{- projection homomorphisms -}
×ᴳ-fst : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ G)
×ᴳ-fst = record {f = fst; pres-comp = λ _ _ → idp}
×ᴳ-snd : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ H)
×ᴳ-snd = record {f = snd; pres-comp = λ _ _ → idp}
Πᴳ-proj : ∀ {i j} {I : Type i} {F : I → Group j} (i : I)
→ (Πᴳ I F →ᴳ F i)
Πᴳ-proj i = record {
f = λ f → f i;
pres-comp = λ _ _ → idp}
{- injection homomorphisms -}
module _ {i j} {G : Group i} {H : Group j} where
×ᴳ-inl : G →ᴳ G ×ᴳ H
×ᴳ-inl = ×ᴳ-hom-in (idhom G) cst-hom
×ᴳ-inr : H →ᴳ G ×ᴳ H
×ᴳ-inr = ×ᴳ-hom-in (cst-hom {H = G}) (idhom H)
×ᴳ-diag : ∀ {i} {G : Group i} → (G →ᴳ G ×ᴳ G)
×ᴳ-diag = ×ᴳ-hom-in (idhom _) (idhom _)
{- when G is abelian, we can define a map H×K → G as a sum of maps
- H → G and K → G (that is, the product behaves as a sum) -}
module _ {i j k} {G : Group i} {H : Group j} {K : Group k}
(G-abelian : is-abelian G) where
private
module G = Group G
module H = Group H
module K = Group K
lemma : (g₁ g₂ g₃ g₄ : G.El) →
G.comp (G.comp g₁ g₂) (G.comp g₃ g₄)
== G.comp (G.comp g₁ g₃) (G.comp g₂ g₄)
lemma g₁ g₂ g₃ g₄ =
(g₁ □ g₂) □ (g₃ □ g₄)
=⟨ G.assoc g₁ g₂ (g₃ □ g₄) ⟩
g₁ □ (g₂ □ (g₃ □ g₄))
=⟨ G-abelian g₃ g₄ |in-ctx (λ w → g₁ □ (g₂ □ w)) ⟩
g₁ □ (g₂ □ (g₄ □ g₃))
=⟨ ! (G.assoc g₂ g₄ g₃) |in-ctx (λ w → g₁ □ w) ⟩
g₁ □ ((g₂ □ g₄) □ g₃)
=⟨ G-abelian (g₂ □ g₄) g₃ |in-ctx (λ w → g₁ □ w) ⟩
g₁ □ (g₃ □ (g₂ □ g₄))
=⟨ ! (G.assoc g₁ g₃ (g₂ □ g₄)) ⟩
(g₁ □ g₃) □ (g₂ □ g₄) ∎
where _□_ = G.comp
×ᴳ-sum-hom : (H →ᴳ G) → (K →ᴳ G) → (H ×ᴳ K →ᴳ G)
×ᴳ-sum-hom φ ψ = record {
f = λ {(h , k) → G.comp (φ.f h) (ψ.f k)};
pres-comp = λ {(h₁ , k₁) (h₂ , k₂) →
G.comp (φ.f (H.comp h₁ h₂)) (ψ.f (K.comp k₁ k₂))
=⟨ φ.pres-comp h₁ h₂ |in-ctx (λ w → G.comp w (ψ.f (K.comp k₁ k₂))) ⟩
G.comp (G.comp (φ.f h₁) (φ.f h₂)) (ψ.f (K.comp k₁ k₂))
=⟨ ψ.pres-comp k₁ k₂
|in-ctx (λ w → G.comp (G.comp (φ.f h₁) (φ.f h₂)) w) ⟩
G.comp (G.comp (φ.f h₁) (φ.f h₂)) (G.comp (ψ.f k₁) (ψ.f k₂))
=⟨ lemma (φ.f h₁) (φ.f h₂) (ψ.f k₁) (ψ.f k₂) ⟩
G.comp (G.comp (φ.f h₁) (ψ.f k₁)) (G.comp (φ.f h₂) (ψ.f k₂)) ∎}}
where
module φ = GroupHom φ
module ψ = GroupHom ψ
abstract
×ᴳ-sum-hom-η : ∀ {i j} (G : Group i) (H : Group j)
(aGH : is-abelian (G ×ᴳ H))
→ idhom (G ×ᴳ H) == ×ᴳ-sum-hom aGH (×ᴳ-inl {G = G}) (×ᴳ-inr {G = G})
×ᴳ-sum-hom-η G H aGH = hom= _ _ $ λ= $ λ {(g , h) →
! (pair×= (Group.unitr G g) (Group.unitl H h))}
∘-×ᴳ-sum-hom : ∀ {i j k l}
{G : Group i} {H : Group j} {K : Group k} {L : Group l}
(aK : is-abelian K) (aL : is-abelian L)
(φ : K →ᴳ L) (ψ : G →ᴳ K) (χ : H →ᴳ K)
→ ×ᴳ-sum-hom aL (φ ∘ᴳ ψ) (φ ∘ᴳ χ) == φ ∘ᴳ (×ᴳ-sum-hom aK ψ χ)
∘-×ᴳ-sum-hom aK aL φ ψ χ = hom= _ _ $ λ= $ λ {(g , h) →
! (GroupHom.pres-comp φ (GroupHom.f ψ g) (GroupHom.f χ h))}
{- define a homomorphism G₁ × G₂ → H₁ × H₂ from homomorphisms
- G₁ → H₁ and G₂ → H₂ -}
×ᴳ-parallel-hom : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j}
{H₁ : Group k} {H₂ : Group l}
→ (G₁ →ᴳ H₁) → (G₂ →ᴳ H₂) → (G₁ ×ᴳ G₂ →ᴳ H₁ ×ᴳ H₂)
×ᴳ-parallel-hom φ ψ = record {
f = λ {(h₁ , h₂) → (φ.f h₁ , ψ.f h₂)};
pres-comp = λ {(h₁ , h₂) (h₁' , h₂') →
pair×= (φ.pres-comp h₁ h₁') (ψ.pres-comp h₂ h₂')}}
where
module φ = GroupHom φ
module ψ = GroupHom ψ
{- 0ᴳ is a unit for product -}
×ᴳ-unit-l : ∀ {i} {G : Group i} → 0ᴳ {i} ×ᴳ G == G
×ᴳ-unit-l = group-ua
(×ᴳ-snd {G = 0ᴳ} ,
is-eq snd (λ g → (lift unit , g)) (λ _ → idp) (λ _ → idp))
×ᴳ-unit-r : ∀ {i} {G : Group i} → G ×ᴳ 0ᴳ {i} == G
×ᴳ-unit-r = group-ua
(×ᴳ-fst , (is-eq fst (λ g → (g , lift unit)) (λ _ → idp) (λ _ → idp)))
{- A product Πᴳ indexed by Bool is the same as a binary product -}
module _ {i} (Pick : Lift {j = i} Bool → Group i) where
Πᴳ-Bool-is-×ᴳ :
Πᴳ (Lift Bool) Pick == (Pick (lift true)) ×ᴳ (Pick (lift false))
Πᴳ-Bool-is-×ᴳ = group-ua (φ , e)
where
φ = ×ᴳ-hom-in (Πᴳ-proj {F = Pick} (lift true))
(Πᴳ-proj {F = Pick} (lift false))
e : is-equiv (GroupHom.f φ)
e = is-eq _ (λ {(g , h) → λ {(lift true) → g; (lift false) → h}})
(λ _ → idp)
(λ _ → λ= (λ {(lift true) → idp; (lift false) → idp}))
{- Commutativity of ×ᴳ -}
×ᴳ-comm : ∀ {i j} (H : Group i) (K : Group j) → H ×ᴳ K ≃ᴳ K ×ᴳ H
×ᴳ-comm H K =
(record {
f = λ {(h , k) → (k , h)};
pres-comp = λ _ _ → idp} ,
snd (equiv _ (λ {(k , h) → (h , k)}) (λ _ → idp) (λ _ → idp)))
{- Associativity of ×ᴳ -}
×ᴳ-assoc : ∀ {i j k} (G : Group i) (H : Group j) (K : Group k)
→ ((G ×ᴳ H) ×ᴳ K) == (G ×ᴳ (H ×ᴳ K))
×ᴳ-assoc G H K = group-ua
(record {
f = λ {((g , h) , k) → (g , (h , k))};
pres-comp = λ _ _ → idp} ,
snd (equiv _ (λ {(g , (h , k)) → ((g , h) , k)}) (λ _ → idp) (λ _ → idp)))
module _ {i} where
_^ᴳ_ : Group i → ℕ → Group i
H ^ᴳ O = 0ᴳ
H ^ᴳ (S n) = H ×ᴳ (H ^ᴳ n)
^ᴳ-sum : (H : Group i) (m n : ℕ) → (H ^ᴳ m) ×ᴳ (H ^ᴳ n) == H ^ᴳ (m + n)
^ᴳ-sum H O n = ×ᴳ-unit-l {G = H ^ᴳ n}
^ᴳ-sum H (S m) n =
×ᴳ-assoc H (H ^ᴳ m) (H ^ᴳ n) ∙ ap (λ K → H ×ᴳ K) (^ᴳ-sum H m n)
| {
"alphanum_fraction": 0.4915514593,
"avg_line_length": 35.1891891892,
"ext": "agda",
"hexsha": "5182611b57d76b254163117dbd4db38beddd34e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/groups/GroupProduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/groups/GroupProduct.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/groups/GroupProduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3835,
"size": 7812
} |
postulate
f : {A B : Set₁} (C : Set) → C → C
module _ (A B C : Set) where
test : Set
test = {!!}
| {
"alphanum_fraction": 0.4857142857,
"avg_line_length": 13.125,
"ext": "agda",
"hexsha": "375171c91e16645cca6160393f9e7476af0202c8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue952.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue952.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue952.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 45,
"size": 105
} |
module _ where
module A where
infix 2 c
infix 1 d
syntax c x = x ↑
syntax d x y = x ↓ y
data D : Set where
● : D
c : D → D
d : D → D → D
module B where
syntax d x y = x ↓ y
data D : Set where
d : D → D → D
open A
open B
rejected : A.D
rejected = ● ↑ ↓ ●
| {
"alphanum_fraction": 0.4983050847,
"avg_line_length": 10.5357142857,
"ext": "agda",
"hexsha": "a2c3ec2a7f288a35a511e49fc62bbdc2f9d5e57f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1436-5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1436-5.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1436-5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 115,
"size": 295
} |
{-# NON_TERMINATING #-}
mutual
data D : Set where
c : T₁ → D
T₁ : Set
T₁ = T₂
T₂ : Set
T₂ = T₁ → D
| {
"alphanum_fraction": 0.4871794872,
"avg_line_length": 9,
"ext": "agda",
"hexsha": "53c3d37d9d719158c670f5fc284f2d96d4e85f0a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/BadInductionRecursion5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/BadInductionRecursion5.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/BadInductionRecursion5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 117
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Polynomials.Multivariate.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat renaming (_+_ to _+n_)
open import Cubical.Data.Vec
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
private variable
ℓ ℓ' : Level
module _ (A' : CommRing ℓ) where
private
A = fst A'
open CommRingStr (snd A')
-----------------------------------------------------------------------------
-- Definition
data Poly (n : ℕ) : Type ℓ where
-- elements
0P : Poly n
base : (v : Vec ℕ n) → (a : A) → Poly n
_poly+_ : (P : Poly n) → (Q : Poly n) → Poly n
-- AbGroup eq
poly+Assoc : (P Q R : Poly n) → P poly+ (Q poly+ R) ≡ (P poly+ Q) poly+ R
poly+IdR : (P : Poly n) → P poly+ 0P ≡ P
poly+Comm : (P Q : Poly n) → P poly+ Q ≡ Q poly+ P
-- Base eq
base-0P : (v : Vec ℕ n) → base v 0r ≡ 0P
base-poly+ : (v : Vec ℕ n) → (a b : A) → (base v a) poly+ (base v b) ≡ base v (a + b)
-- Set Trunc
trunc : isSet(Poly n)
-----------------------------------------------------------------------------
-- Induction and Recursion
module _ (A' : CommRing ℓ) where
private
A = fst A'
open CommRingStr (snd A')
module Poly-Ind-Set
-- types
(n : ℕ)
(F : (P : Poly A' n) → Type ℓ')
(issd : (P : Poly A' n) → isSet (F P))
-- elements
(0P* : F 0P)
(base* : (v : Vec ℕ n) → (a : A) → F (base v a))
(_poly+*_ : {P Q : Poly A' n} → (PS : F P) → (QS : F Q) → F (P poly+ Q))
-- AbGroup eq
(poly+Assoc* : {P Q R : Poly A' n} → (PS : F P) → (QS : F Q) → (RS : F R)
→ PathP (λ i → F (poly+Assoc P Q R i)) (PS poly+* (QS poly+* RS)) ((PS poly+* QS) poly+* RS))
(poly+IdR* : {P : Poly A' n} → (PS : F P) →
PathP (λ i → F (poly+IdR P i)) (PS poly+* 0P*) PS)
(poly+Comm* : {P Q : Poly A' n} → (PS : F P) → (QS : F Q)
→ PathP (λ i → F (poly+Comm P Q i)) (PS poly+* QS) (QS poly+* PS))
-- Base eq
(base-0P* : (v : Vec ℕ n) → PathP (λ i → F (base-0P v i)) (base* v 0r) 0P*)
(base-poly+* : (v : Vec ℕ n) → (a b : A)
→ PathP (λ i → F (base-poly+ v a b i)) ((base* v a) poly+* (base* v b)) (base* v (a + b)))
where
f : (P : Poly A' n) → F P
f 0P = 0P*
f (base v a) = base* v a
f (P poly+ Q) = (f P) poly+* (f Q)
f (poly+Assoc P Q R i) = poly+Assoc* (f P) (f Q) (f R) i
f (poly+IdR P i) = poly+IdR* (f P) i
f (poly+Comm P Q i) = poly+Comm* (f P) (f Q) i
f (base-0P v i) = base-0P* v i
f (base-poly+ v a b i) = base-poly+* v a b i
f (trunc P Q p q i j) = isOfHLevel→isOfHLevelDep 2 issd (f P) (f Q) (cong f p) (cong f q) (trunc P Q p q) i j
module Poly-Rec-Set
-- types
(n : ℕ)
(B : Type ℓ')
(iss : isSet B)
-- elements
(0P* : B)
(base* : (v : Vec ℕ n) → (a : A) → B)
(_poly+*_ : B → B → B)
-- AbGroup eq
(poly+Assoc* : (PS QS RS : B) → (PS poly+* (QS poly+* RS)) ≡ ((PS poly+* QS) poly+* RS))
(poly+IdR* : (PS : B) → (PS poly+* 0P*) ≡ PS)
(poly+Comm* : (PS QS : B) → (PS poly+* QS) ≡ (QS poly+* PS))
-- Base eq
(base-0P* : (v : Vec ℕ n) → (base* v 0r) ≡ 0P*)
(base-poly+* : (v : Vec ℕ n) → (a b : A) → ((base* v a) poly+* (base* v b)) ≡ (base* v (a + b)))
where
f : Poly A' n → B
f = Poly-Ind-Set.f n (λ _ → B) (λ _ → iss) 0P* base* _poly+*_ poly+Assoc* poly+IdR* poly+Comm* base-0P* base-poly+*
module Poly-Ind-Prop
-- types
(n : ℕ)
(F : (P : Poly A' n) → Type ℓ')
(ispd : (P : Poly A' n) → isProp (F P))
-- elements
(0P* : F 0P)
(base* : (v : Vec ℕ n) → (a : A) → F (base v a))
(_poly+*_ : {P Q : Poly A' n} → (PS : F P) → (QS : F Q) → F (P poly+ Q))
where
f : (P : Poly A' n) → F P
f = Poly-Ind-Set.f n F (λ P → isProp→isSet (ispd P)) 0P* base* _poly+*_
(λ {P Q R} PS QS RQ → toPathP (ispd _ (transport (λ i → F (poly+Assoc P Q R i)) _) _))
(λ {P} PS → toPathP (ispd _ (transport (λ i → F (poly+IdR P i)) _) _))
(λ {P Q} PS QS → toPathP (ispd _ (transport (λ i → F (poly+Comm P Q i)) _) _))
(λ v → toPathP (ispd _ (transport (λ i → F (base-0P v i)) _) _))
(λ v a b → toPathP (ispd _ (transport (λ i → F (base-poly+ v a b i)) _) _))
module Poly-Rec-Prop
-- types
(n : ℕ)
(B : Type ℓ')
(isp : isProp B)
-- elements
(0P* : B)
(base* : (v : Vec ℕ n) → (a : A) → B)
(_poly+*_ : B → B → B)
where
f : Poly A' n → B
f = Poly-Ind-Prop.f n (λ _ → B) (λ _ → isp) 0P* base* _poly+*_
| {
"alphanum_fraction": 0.4532601815,
"avg_line_length": 34.8455882353,
"ext": "agda",
"hexsha": "b22849d2fbaef9ed2424e00747a5d46efa059474",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_line_length": 119,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1939,
"size": 4739
} |
------------------------------------------------------------------------
-- The syntax of, and a type system for, the untyped λ-calculus with
-- constants
------------------------------------------------------------------------
module Lambda.Syntax where
open import Codata.Musical.Notation
open import Data.Nat
open import Data.Fin hiding (_≤?_)
open import Data.Vec
open import Relation.Nullary.Decidable
------------------------------------------------------------------------
-- Terms
-- Variables are represented using de Bruijn indices.
infixl 9 _·_
data Tm (n : ℕ) : Set where
con : (i : ℕ) → Tm n
var : (x : Fin n) → Tm n
ƛ : (t : Tm (suc n)) → Tm n
_·_ : (t₁ t₂ : Tm n) → Tm n
-- Convenient helper.
vr : ∀ m {n} {m<n : True (suc m ≤? n)} → Tm n
vr _ {m<n = m<n} = var (#_ _ {m<n = m<n})
------------------------------------------------------------------------
-- Values, potentially with free variables
module WHNF where
data Value (n : ℕ) : Set where
con : (i : ℕ) → Value n
ƛ : (t : Tm (suc n)) → Value n
⌜_⌝ : ∀ {n} → Value n → Tm n
⌜ con i ⌝ = con i
⌜ ƛ t ⌝ = ƛ t
------------------------------------------------------------------------
-- Closure-based definition of values
-- Environments and values. Defined in a module parametrised on the
-- type of terms.
module Closure (Tm : ℕ → Set) where
mutual
-- Environments.
Env : ℕ → Set
Env n = Vec Value n
-- Values. Lambdas are represented using closures, so values do
-- not contain any free variables.
data Value : Set where
con : (i : ℕ) → Value
ƛ : ∀ {n} (t : Tm (suc n)) (ρ : Env n) → Value
------------------------------------------------------------------------
-- Type system (following Leroy and Grall)
-- Recursive, simple types, defined coinductively.
infixr 8 _⇾_
data Ty : Set where
nat : Ty
_⇾_ : (σ τ : ∞ Ty) → Ty
-- Contexts.
Ctxt : ℕ → Set
Ctxt n = Vec Ty n
-- Type system.
infix 4 _⊢_∈_
data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty → Set where
con : ∀ {i} → Γ ⊢ con i ∈ nat
var : ∀ {x} → Γ ⊢ var x ∈ lookup Γ x
ƛ : ∀ {t σ τ} (t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) → Γ ⊢ ƛ t ∈ σ ⇾ τ
_·_ : ∀ {t₁ t₂ σ τ} (t₁∈ : Γ ⊢ t₁ ∈ σ ⇾ τ) (t₂∈ : Γ ⊢ t₂ ∈ ♭ σ) →
Γ ⊢ t₁ · t₂ ∈ ♭ τ
------------------------------------------------------------------------
-- Example
-- A non-terminating term.
ω : Tm 0
ω = ƛ (vr 0 · vr 0)
Ω : Tm 0
Ω = ω · ω
-- Ω is well-typed.
Ω-well-typed : (τ : Ty) → [] ⊢ Ω ∈ τ
Ω-well-typed τ =
_·_ {σ = ♯ σ} {τ = ♯ τ} (ƛ (var · var)) (ƛ (var · var))
where σ = ♯ σ ⇾ ♯ τ
-- A call-by-value fix-point combinator.
Z : Tm 0
Z = ƛ (t · t)
where t = ƛ (vr 1 · ƛ (vr 1 · vr 1 · vr 0))
-- This combinator is also well-typed.
fix-well-typed :
∀ {σ τ} → [] ⊢ Z ∈ ♯ (♯ (σ ⇾ τ) ⇾ ♯ (σ ⇾ τ)) ⇾ ♯ (σ ⇾ τ)
fix-well-typed =
ƛ (_·_ {σ = υ} {τ = ♯ _}
(ƛ (var · ƛ (var · var · var)))
(ƛ (var · ƛ (var · var · var))))
where
υ : ∞ Ty
υ = ♯ (υ ⇾ ♯ _)
| {
"alphanum_fraction": 0.4373522459,
"avg_line_length": 22.9534883721,
"ext": "agda",
"hexsha": "7c01c767383c44ce70d11d36c1501e79c8054043",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Lambda/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Lambda/Syntax.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Lambda/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1078,
"size": 2961
} |
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Equality
postulate _↦_ : ∀ {a} {A : Set a} → A → A → Set
{-# BUILTIN REWRITE _↦_ #-}
postulate
T : (Set → Set → Set) → Set
T₀ : Set
module _ (F : Set → Set) where
postulate rew : T (λ X Y → F X) ↦ T₀
{-# REWRITE rew #-}
test : T (λ X Y → F X) ≡ T₀
test = refl
| {
"alphanum_fraction": 0.5375375375,
"avg_line_length": 16.65,
"ext": "agda",
"hexsha": "9cc9f1c8e80ec802109108ade3c202c42275ca60",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/HORewritingInParametrizedModule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/HORewritingInParametrizedModule.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/HORewritingInParametrizedModule.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 131,
"size": 333
} |
module Oscar.Class.TermSubstitution.Internal {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term.Core FunctionName
open import Oscar.Data.Nat.Core
open import Oscar.Data.Fin.Core
open import Oscar.Data.Vec.Core
open import Oscar.Data.Equality.Core
open import Oscar.Data.Product.Core
open import Oscar.Function
open import Oscar.Level
_⊸_ : (m n : ℕ) → Set 𝔣
m ⊸ n = Fin m → Term n
⊸-Property : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-Property {ℓ} m = ∀ {n} → m ⊸ n → Set ℓ
_≐_ : {m n : ℕ} → m ⊸ n → m ⊸ n → Set 𝔣
f ≐ g = ∀ x → f x ≡ g x
⊸-Extensional : {ℓ : Level} {m : ℕ} → ⊸-Property {ℓ} m → Set (ℓ ⊔ 𝔣)
⊸-Extensional P = ∀ {m f g} → f ≐ g → P {m} f → P g
⊸-ExtentionalProperty : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-ExtentionalProperty {ℓ} m = Σ (⊸-Property {ℓ} m) ⊸-Extensional
mutual
_◃Term_ : ∀ {m n} → (f : m ⊸ n) → Term m → Term n
f ◃Term i x = f x
f ◃Term leaf = leaf
f ◃Term (s fork t) = (f ◃Term s) fork (f ◃Term t)
f ◃Term (function fn ts) = function fn (f ◃VecTerm ts) where
_◃VecTerm_ : ∀ {N m n} → m ⊸ n → Vec (Term m) N → Vec (Term n) N
f ◃VecTerm [] = []
f ◃VecTerm (t ∷ ts) = f ◃Term t ∷ f ◃VecTerm ts
_◇_ : ∀ {l m n} → m ⊸ n → l ⊸ m → l ⊸ n
_◇_ f g = (f ◃Term_) ∘ g
record Substitution {a} (A : ℕ → Set a) : Set (a ⊔ 𝔣) where
field
_◃_ : ∀ {m n} → m ⊸ n → A m → A n
◃-extentionality : ∀ {m n} {f g : m ⊸ n} → f ≐ g → (t : A m) → f ◃ t ≡ g ◃ t
◃-identity : ∀ {n} → (t : A n) → i ◃ t ≡ t
field
◃-associativity : ∀ {l m n} → {f : m ⊸ n} {g : _} (t : A l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
⊸-Unifies : ∀ {m} (s t : A m) → ⊸-Property m
⊸-Unifies s t f = f ◃ s ≡ f ◃ t
open Substitution ⦃ … ⦄ public
{-# DISPLAY Substitution._◃_ _ = _◃_ #-}
| {
"alphanum_fraction": 0.5347749854,
"avg_line_length": 29.5,
"ext": "agda",
"hexsha": "463f66a2d97dc6de6f247a33a2ecec5a70a4a355",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Class/termsubinternal.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Class/termsubinternal.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Class/termsubinternal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 805,
"size": 1711
} |
module vector where
open import bool
open import eq
open import list
open import list-to-string
open import nat
open import nat-thms
open import product
open import string
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data 𝕍 {ℓ} (A : Set ℓ) : ℕ → Set ℓ where
[] : 𝕍 A 0
_::_ : {n : ℕ} → A → 𝕍 A n → 𝕍 A (suc n)
vector = 𝕍
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixr 6 _::_ _++𝕍_
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
[_]𝕍 : ∀ {ℓ} {A : Set ℓ} → A → 𝕍 A 1
[ x ]𝕍 = x :: []
_++𝕍_ : ∀ {ℓ} {A : Set ℓ}{n m : ℕ} → 𝕍 A n → 𝕍 A m → 𝕍 A (n + m)
[] ++𝕍 ys = ys
(x :: xs) ++𝕍 ys = x :: xs ++𝕍 ys
head𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → 𝕍 A (suc n) → A
head𝕍 (x :: _) = x
tail𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → 𝕍 A n → 𝕍 A (pred n)
tail𝕍 [] = []
tail𝕍 (_ :: xs) = xs
map𝕍 : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'}{n : ℕ} → (A → B) → 𝕍 A n → 𝕍 B n
map𝕍 f [] = []
map𝕍 f (x :: xs) = f x :: map𝕍 f xs
concat𝕍 : ∀{ℓ}{A : Set ℓ}{n m : ℕ} → 𝕍 (𝕍 A n) m → 𝕍 A (m * n)
concat𝕍 [] = []
concat𝕍 (x :: xs) = x ++𝕍 (concat𝕍 xs)
nth𝕍 : ∀ {ℓ} {A : Set ℓ}{m : ℕ} → (n : ℕ) → n < m ≡ tt → 𝕍 A m → A
nth𝕍 0 _ (x :: _) = x
nth𝕍 (suc n) p (_ :: xs) = nth𝕍 n p xs
nth𝕍 (suc n) () []
nth𝕍 0 () []
repeat𝕍 : ∀ {ℓ} {A : Set ℓ} → (a : A)(n : ℕ) → 𝕍 A n
repeat𝕍 a 0 = []
repeat𝕍 a (suc n) = a :: (repeat𝕍 a n)
foldl𝕍 : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → B → (B → A → B) → {n : ℕ} → 𝕍 A n → 𝕍 B n
foldl𝕍 b _f_ [] = []
foldl𝕍 b _f_ (x :: xs) = let r = (b f x) in r :: (foldl𝕍 r _f_ xs)
zipWith𝕍 : ∀ {ℓ ℓ' ℓ''} {A : Set ℓ}{B : Set ℓ'}{C : Set ℓ''} →
(A → B → C) → {n : ℕ} → 𝕍 A n → 𝕍 B n → 𝕍 C n
zipWith𝕍 f [] [] = []
zipWith𝕍 _f_ (x :: xs) (y :: ys) = (x f y) :: (zipWith𝕍 _f_ xs ys)
-- helper function for all𝕍
allh𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ}(p : ℕ → A → 𝔹) → 𝕍 A n → ℕ → 𝔹
allh𝕍 p [] n = tt
allh𝕍 p (x :: xs) n = p n x && allh𝕍 p xs (suc n)
-- given a predicate p which takes in an index and the element of
-- the given 𝕍 at that index, return tt iff the predicate
-- returns true for all indices (and their elements).
all𝕍 : ∀ {ℓ} {A : Set ℓ}{n : ℕ}(p : ℕ → A → 𝔹) → 𝕍 A n → 𝔹
all𝕍 p v = allh𝕍 p v 0
𝕍-to-𝕃 : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → 𝕍 A n → 𝕃 A
𝕍-to-𝕃 [] = []
𝕍-to-𝕃 (x :: xs) = x :: (𝕍-to-𝕃 xs)
𝕃-to-𝕍 : ∀ {ℓ} {A : Set ℓ} → 𝕃 A → Σ ℕ (λ n → 𝕍 A n)
𝕃-to-𝕍 [] = (0 , [])
𝕃-to-𝕍 (x :: xs) with 𝕃-to-𝕍 xs
... | (n , v) = (suc n , x :: v)
{- turn the given 𝕍 into a string by calling f on each element, and separating the elements
with the given separator string -}
𝕍-to-string : ∀ {ℓ} {A : Set ℓ}{n : ℕ} → (f : A → string) → (separator : string) → 𝕍 A n → string
𝕍-to-string f sep v = 𝕃-to-string f sep (𝕍-to-𝕃 v)
| {
"alphanum_fraction": 0.4140493077,
"avg_line_length": 30.2142857143,
"ext": "agda",
"hexsha": "95621451e0a71d47e4f513e13e4d4e7a46d12bb9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "vector.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "vector.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "vector.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1358,
"size": 2961
} |
open import Function using (_∘_)
open import Data.Fin as Fin using (Fin; toℕ)
open import Data.Nat as Nat using (ℕ; suc; zero)
open import Data.Nat.Show using () renaming (show to showℕ)
open import Data.String
open import Data.Vec using (Vec; []; _∷_)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl)
module Unification.Show
(Sym : ℕ → Set)
(showSym : ∀ {k} (s : Sym k) → String)
(decEqSym : ∀ {k} (f g : Sym k) → Dec (f ≡ g)) where
import Unification
module UI = Unification Sym decEqSym
open UI hiding (_++_)
showFin : ∀ {n} → Fin n → String
showFin {n} x = (showℕ (toℕ x)) ++ "/" ++ (showℕ n)
mutual
showTerm : ∀ {n} → Term n → String
showTerm (var x) = "?" ++ showFin x
showTerm (con {zero} s []) = showSym s
showTerm (con {suc k} s ts) = showSym s ++ "(" ++ showTermArgs ts ++ ")"
showTermArgs : ∀ {n k} → Vec (Term n) k → String
showTermArgs [] = ""
showTermArgs (t ∷ []) = showTerm t
showTermArgs (t₁ ∷ t₂ ∷ ts) = showTerm t₁ ++ " , " ++ showTermArgs (t₂ ∷ ts)
showSubst : ∀ {m n} → Subst m n → String
showSubst s = "{" ++ showSubst' s ++ "}"
where
showFor : ∀ {n} (x : Fin (suc n)) (t : Term n) → String
showFor x t = "?" ++ showFin x ++ " → " ++ showTerm t
showSubst' : ∀ {m n} → Subst m n → String
showSubst' nil = ""
showSubst' (snoc nil t x)
= "?" ++ showFin x ++ " → " ++ showTerm t
showSubst' (snoc (snoc s t₂ x₂) t₁ x₁)
= showFor x₁ t₁ ++ " , " ++ showSubst' (snoc s t₂ x₂)
| {
"alphanum_fraction": 0.5717884131,
"avg_line_length": 35.2888888889,
"ext": "agda",
"hexsha": "3a40c3d9466c604a78a27f1798839aeded541ef3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_forks_repo_path": "Unification/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_issues_repo_path": "Unification/Show.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_stars_repo_path": "Unification/Show.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-06T21:58:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-07-27T22:15:32.000Z",
"num_tokens": 565,
"size": 1588
} |
-- Andreas, 2017-08-25, issue #1611.
-- Fixed by Jesper Cockx as #2621.
open import Common.Prelude
data D : Bool → Set where
dt : D true
df : D false
Works : ∀{b} → D b → Set
Works dt = Bool
Works df = Bool
Fails : ∀{b : Bool} → D _ → Set
Fails dt = Bool
Fails df = Bool
-- WAS:
-- false != true of type Bool
-- when checking that the pattern df has type D true
-- SHOULD BE:
-- Don't know whether to split on dt
-- NOW:
-- I'm not sure if there should be a case for the constructor dt,
-- because I get stuck when trying to solve the following unification
-- problems (inferred index ≟ expected index):
-- true ≟ _9
-- when checking that the pattern dt has type D _9
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 21.9677419355,
"ext": "agda",
"hexsha": "5807f1e612c335f5d19f20564143c6bd15729b9a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1611.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1611.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1611.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 205,
"size": 681
} |
import Issue2447.M
import Issue2447.Parse-error
| {
"alphanum_fraction": 0.8541666667,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "441253b372476792cc80d829d7761c8c4309f161",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2447c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2447c.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2447c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 48
} |
{-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Decidable where
open import Level
open import Data.Bool
open import Data.Empty
open import Function.Biconditional
Reflects : Type a → Bool → Type a
Reflects A true = A
Reflects A false = ¬ A
record Dec {a} (A : Type a) : Type a where
constructor _because_
field
does : Bool
why : Reflects A does
open Dec public
pattern yes p = true because p
pattern no ¬p = false because ¬p
map-reflects : (A → B) → (¬ A → ¬ B) → ∀ {d} → Reflects A d → Reflects B d
map-reflects {A = A} {B = B} to fro {d = d} = bool {P = λ d → Reflects A d → Reflects B d} fro to d
map-dec : (A → B) → (¬ A → ¬ B) → Dec A → Dec B
map-dec to fro dec .does = dec .does
map-dec to fro dec .why = map-reflects to fro (dec .why)
iff-dec : (A ↔ B) → Dec A → Dec B
iff-dec (to iff fro) = map-dec to (λ ¬y x → ¬y (fro x))
infixr 1 dec
dec : (A → B) → (¬ A → B) → Dec A → B
dec {A = A} {B = B} on-yes on-no d = bool {P = λ d → Reflects A d → B} on-no on-yes (d .does) (d .why)
syntax dec (λ yv → ye) (λ nv → ne) dc = ∣ dc ∣yes yv ⇒ ye ∣no nv ⇒ ne
T? : (b : Bool) → Dec (T b)
T? b .does = b
T? false .why ()
T? true .why = _
| {
"alphanum_fraction": 0.5851788756,
"avg_line_length": 26.6818181818,
"ext": "agda",
"hexsha": "81ddcd9d50678fe751e4566e8eef8418c2742013",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Nullary/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Nullary/Decidable.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Nullary/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 451,
"size": 1174
} |
module Problem3 where
open import Problem1
open import Problem2
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
data False : Set where
-- 3.1
empty : Fin zero -> False
empty ()
-- 3.2
_!_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A
ε ! ()
(x ► xs) ! fzero = x
(x ► xs) ! fsuc i = xs ! i
-- 3.3
-- The simply typed composition would do here, but the more
-- dependent version is more interesting.
-- _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C
_∘_ : {A B : Set}{C : B -> Set}(f : (x : B) -> C x)
(g : A -> B)(x : A) -> C (g x)
(f ∘ g) x = f (g x)
tabulate : {A : Set}{n : Nat} -> (Fin n -> A) -> Vec A n
tabulate {n = zero } f = ε
tabulate {n = suc n} f = f fzero ► tabulate (f ∘ fsuc)
| {
"alphanum_fraction": 0.5012787724,
"avg_line_length": 20.5789473684,
"ext": "agda",
"hexsha": "9fc78185cc7e29371f7a84eeef404b2c68692444",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/SummerSchool07/Solutions/Problem3.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/SummerSchool07/Solutions/Problem3.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/SummerSchool07/Solutions/Problem3.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 310,
"size": 782
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal
module Categories.Category.Monoidal.Symmetric {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Functor.Bifunctor
open import Categories.Functor.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Morphism C
open import Categories.Morphism.Properties C
open import Categories.Category.Monoidal.Braided M
open Category C
open Commutation
private
variable
X Y Z : Obj
-- symmetric monoidal category
-- commutative braided monoidal category
--
-- the reason why we define symmetric categories via braided monoidal categories could
-- be not obvious, but it is the right definition: it requires again a redundant
-- hexagon proof which allows achieves definitional equality of the opposite.
record Symmetric : Set (levelOfTerm M) where
field
braided : Braided
module braided = Braided braided
open braided public
private
B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X
B {X} {Y} = braiding.⇒.η (X , Y)
field
commutative : B {X} {Y} ∘ B {Y} {X} ≈ id
braided-iso : X ⊗₀ Y ≅ Y ⊗₀ X
braided-iso = record
{ from = B
; to = B
; iso = record
{ isoˡ = commutative
; isoʳ = commutative
}
}
module braided-iso {X Y} = _≅_ (braided-iso {X} {Y})
private
record Symmetric′ : Set (levelOfTerm M) where
open Monoidal M
field
braiding : NaturalIsomorphism ⊗ (flip-bifunctor ⊗)
module braiding = NaturalIsomorphism braiding
private
B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X
B {X} {Y} = braiding.⇒.η (X , Y)
field
commutative : B {X} {Y} ∘ B {Y} {X} ≈ id
hexagon : [ (X ⊗₀ Y) ⊗₀ Z ⇒ Y ⊗₀ Z ⊗₀ X ]⟨
B ⊗₁ id ⇒⟨ (Y ⊗₀ X) ⊗₀ Z ⟩
associator.from ⇒⟨ Y ⊗₀ X ⊗₀ Z ⟩
id ⊗₁ B
≈ associator.from ⇒⟨ X ⊗₀ Y ⊗₀ Z ⟩
B ⇒⟨ (Y ⊗₀ Z) ⊗₀ X ⟩
associator.from
⟩
braided-iso : X ⊗₀ Y ≅ Y ⊗₀ X
braided-iso = record
{ from = B
; to = B
; iso = record
{ isoˡ = commutative
; isoʳ = commutative
}
}
module braided-iso {X Y} = _≅_ (braided-iso {X} {Y})
-- we don't define [Symmetric] from [Braided] because we want to avoid asking
-- [hexagon₂], which can readily be proven using the [hexagon] and [commutative].
braided : Braided
braided = record
{ braiding = braiding
; hexagon₁ = hexagon
; hexagon₂ = λ {X Y Z} →
Iso-≈ hexagon
(Iso-∘ (Iso-∘ ([ -⊗ Y ]-resp-Iso braided-iso.iso) associator.iso)
([ X ⊗- ]-resp-Iso braided-iso.iso))
(Iso-∘ (Iso-∘ associator.iso braided-iso.iso)
associator.iso)
}
symmetricHelper : Symmetric′ → Symmetric
symmetricHelper S = record
{ braided = braided
; commutative = commutative
}
where open Symmetric′ S
| {
"alphanum_fraction": 0.5625191073,
"avg_line_length": 28.4434782609,
"ext": "agda",
"hexsha": "1eec886a840b27e77fec8ef6de42632bfafdf811",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Symmetric.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Symmetric.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Symmetric.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1015,
"size": 3271
} |
{-# OPTIONS --without-K #-}
module hw1 where
open import Level using (_⊔_)
open import Function using (id)
open import Data.Nat using (ℕ; suc; _+_; _*_)
open import Data.Empty using (⊥)
open import Data.Sum using (_⊎_; inj₁; inj₂)
import Level
infix 4 _≡_
recℕ : ∀ {ℓ} → (C : Set ℓ) → C → (ℕ → C → C) → ℕ → C
recℕ C z f 0 = z
recℕ C z f (suc n) = f n (recℕ C z f n)
indℕ : ∀ {ℓ}
→ (C : ℕ → Set ℓ)
→ C 0
→ ((n : ℕ) → C n → C (suc n))
→ (n : ℕ)
→ C n
indℕ C z f 0 = z
indℕ C z f (suc n) = f n (indℕ C z f n)
------------------------------------------------------------------------------
data _≡_ {ℓ} {A : Set ℓ} : (x y : A) → Set ℓ where
refl : (x : A) → x ≡ x
rec≡ : {A : Set} →
(R : A → A → Set) {reflexiveR : {a : A} → R a a} →
({x y : A} (p : x ≡ y) → R x y)
rec≡ R {reflR} (refl y) = reflR {y}
subst : ∀ {ℓ} {A : Set ℓ} {C : A → Set ℓ} →
({x y : A} (p : x ≡ y) → C x → C y)
subst (refl x) = id
------------------------------------------------------------------------------
-- Exercise 1.1
-- show h ∘ (g ∘ f) = (h ∘ g) ∘ f
------------------------------------------------------------------------------
_∘_ : {A B C : Set} → (f : B → C) → (g : A → B) → A → C
f ∘ g = (λ a → f (g a))
compose≡ : {A B C D : Set}
→ (f : A → B)
→ (g : B → C)
→ (h : C → D)
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
compose≡ = λ f g h → refl (λ a → (h (g (f a))))
------------------------------------------------------------------------------
-- Exercise 1.2
-- Derive the recursion principle for products recA×B
-- using only the projections, and verify that the definitional
-- equalities are valid. Do the same for Σ-types.
------------------------------------------------------------------------------
---------------------------------------------------
-- Product Types
data _×_ {ℓ₁ ℓ₂} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where
pair : A → B → A × B
fst : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} → A × B → A
fst (pair a _) = a
snd : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} -> A × B -> B
snd (pair _ b) = b
rec× : ∀ {ℓ} {A B : Set ℓ}
→ (C : Set ℓ)
→ (A → B → C)
→ A × B → C
rec× c f = λ p -> (f (fst p) (snd p))
fstofab≡a : ∀ {A B : Set}
(a : A)
→ (b : B)
→ fst (pair a b) ≡ a
fstofab≡a {A} {B} = λ a b → refl a
sndofab≡b : ∀ {A B : Set}
(a : A)
→ (b : B)
→ snd (pair a b) ≡ b
sndofab≡b {A} {B} = λ a b → refl b
uniq× : ∀ {ℓ₁ ℓ₂}
{A : Set ℓ₁}
{B : Set ℓ₂}
(p : A × B)
→ (pair (fst p) (snd p)) ≡ p
uniq× (pair a b) = refl (pair a b)
rec×g≡g : ∀ {A B C : Set}
(g : A → B → C)
(a : A)
→ (b : B)
→ rec× C g (pair a b) ≡ g a b
rec×g≡g {A} {B} {C} = λ g a b → refl (g a b)
recfst : ∀ (A B : Set)
→ fst {B = B} ≡ rec× A (λ a b → a)
recfst A B = refl fst
---------------------------------------------------
-- Sigma Types
data Σ {ℓ₁ ℓ₂} (A : Set ℓ₁)
(B : A → Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂)
where dpair : (a : A) → (B a) → Σ A B
dfst : ∀ {A : Set} {B : A → Set} → Σ A B → A
dfst (dpair a _) = a
dsnd : ∀ {A : Set} {B : A → Set} → (p : Σ A B) → (B (dfst p))
dsnd (dpair _ b) = b
dfstofab≡a : ∀ {A : Set}
{B : A → Set}
(a : A)
(b : B a) →
dfst {B = B} (dpair a b) ≡ a
dfstofab≡a {A} {B} = λ a b → refl a
dsndofab≡a : ∀ {A : Set}
{B : A → Set}
(a : A)
(b : B a) →
dsnd {B = B} (dpair a b) ≡ b
dsndofab≡a {A} {B} = λ a b → refl b
uniqΣ : ∀ {A : Set}
{B : A → Set}
(p : Σ A B)
→ (dpair (dfst p) (dsnd p)) ≡ p
uniqΣ (dpair a b) = refl (dpair a b)
------------------------------------------------------------------------------
-- Exercise 1.3
-- Derive the induction principle for products indA×B,
-- using only the projections and the propositional uniqueness
-- principle uniqA×B. Verify that the definitional equalities are
-- valid. Generalize uniqA×B to Σ-types, and do the same for Σ-types.
------------------------------------------------------------------------------
ind× : ∀ {ℓ} {A : Set ℓ} {B : Set ℓ}
→ (C : (A × B) → Set ℓ)
→ ((a : A) (b : B) → (C (pair a b)))
→ (p : (A × B)) → (C p)
ind× = λ C f → λ p → subst {C = C}
(uniq× p)
(f (fst p) (snd p))
indΣ' : ∀ {A : Set} {B : A → Set} → (C : Σ A B → Set) →
((a : A) → (b : B a) → C (dpair a b)) → (p : Σ A B) → C p
indΣ' C g s = subst {C = C}
(uniqΣ s)
(g (dfst s) (dsnd s))
------------------------------------------------------------------------------
--- Exercise 1.4 Given the function iter, derive a function having the
--- type of the recursor recN. Show that the defining equations of the
--- recursor hold propositionally for this function, using the
--- induction principle for Nats.
------------------------------------------------------------------------------
iter : ∀ {ℓ} {C : Set ℓ} → C → (C → C) → ℕ → C
iter c₀ c₊ 0 = c₀
iter c₀ c₊ (suc n) = c₊ (iter c₀ c₊ n)
recℕ' : ∀ {ℓ} → (C : Set ℓ) → C → (ℕ → C → C) → ℕ → C
recℕ' C c₀ f n =
snd (iter (pair 0 c₀)
(λ nc →
(pair (suc (fst nc))
(f (fst nc) (snd nc))))
n)
-- quick def and sanity check of fact via recℕ
fact = recℕ ℕ 1 (λ n nfact → (suc n) * nfact)
fact1 : fact 0 ≡ 1
fact1 = refl 1
fact5 : fact 5 ≡ 120
fact5 = refl 120
-- quick def and sanity check of fact via recℕ'
fact' = recℕ' ℕ 1 (λ n nfact → (suc n) * nfact)
fact'1 : fact' 0 ≡ 1
fact'1 = refl 1
fact'5 : fact' 5 ≡ 120
fact'5 = refl 120
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f (refl y) = refl (f y)
-- this _is_ valid but I haven't done enough Agda
-- to see how to prove this. I proved it in the Coq HoTT library...
-- https://github.com/andmkent/HoTT/blob/5f9faf5ef4ea21db249d6ad45bcee0adf97f8f9d/contrib/HoTTBookExercises.v#L124
postulate
punt1 : ∀ {ℓ} (C : Set ℓ) →
(c₀ : C) →
(f : (ℕ → C → C)) →
(n : ℕ) →
recℕ C c₀ f (suc n) ≡ recℕ' C c₀ f (suc n)
recℕ≡recℕ' : ∀ {ℓ} (C : Set ℓ) →
(c₀ : C) →
(f : (ℕ → C → C)) →
((n : ℕ) → recℕ C c₀ f n ≡ recℕ' C c₀ f n)
recℕ≡recℕ' {ℓ} C c₀ f n =
indℕ {ℓ = ℓ}
(λ n → (((recℕ {ℓ = ℓ} C c₀ f) n)
≡
((recℕ' {ℓ = ℓ} C c₀ f) n)))
(refl c₀)
(λ n IH → (punt1 C c₀ f n))
n
------------------------------------------------------------------------------
--- Exercise 1.5 Show that if we define A + B Σ(x:2) rec2(U, A, B,
--- x), then we can give a definition of indA+B for which the
--- definitional equalities stated in §1.7 hold.
------------------------------------------------------------------------------
data 𝟚 : Set where
true : 𝟚
false : 𝟚
rec𝟚 : ∀ {ℓ} → {C : Set ℓ} → C → C → 𝟚 → C
rec𝟚 th el false = el
rec𝟚 th el true = th
if_then_else_ : ∀ {ℓ} {C : Set ℓ} → 𝟚 → C → C → C
if b then X else Y = rec𝟚 X Y b
ind𝟚 : ∀ {ℓ} → {C : 𝟚 → Set ℓ} → C true → C false → (b : 𝟚) → C b
ind𝟚 th el false = el
ind𝟚 th el true = th
bsum : ∀ (A : Set) → (B : Set) → Set
bsum A B = Σ 𝟚 (rec𝟚 A B)
injbs1 : ∀ (A : Set) → (B : Set) → A → bsum A B
injbs1 A B a = dpair true a
injbs2 : ∀ (A : Set) → (B : Set) → B → bsum A B
injbs2 A B b = dpair false b
recΣ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (C : Set ℓ₃) →
((a : A) → B a → C) → Σ A B → C
recΣ C g (dpair a b) = g a b
indΣ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (C : Σ A B → Set ℓ₃) →
((a : A) → (b : B a) → C (dpair a b)) → (p : Σ A B) → C p
indΣ C g (dpair a b) = g a b
indbsum : (A : Set) (B : Set) (C : (bsum A B → Set))
→ ((a : A) → (C (injbs1 A B a)))
→ ((b : B) → (C (injbs2 A B b)))
→ (a+b : bsum A B) → (C a+b)
indbsum A B C ca cb = indΣ C (ind𝟚 ca cb)
-- where ind𝟚's C = (λ b → (t : rec𝟚 A B b) → C (dpair b t))
indbs1 : ∀ {A B : Set} (P : (bsum A B) → Set)
→ (fa : (a : A) → P (injbs1 A B a))
→ (fb : (b : B) → P (injbs2 A B b))
→ (a : A)
→ indbsum A B P fa fb (injbs1 A B a) ≡ fa a
indbs1 P fa fb x = refl (fa x)
indbs2 : ∀ {A B : Set} (P : (bsum A B) → Set)
→ (fa : (a : A) → P (injbs1 A B a))
→ (fb : (b : B) → P (injbs2 A B b))
→ (b : B)
→ indbsum A B P fa fb (injbs2 A B b) ≡ fb b
indbs2 P fa fb x = refl (fb x)
rec⊎ : ∀ {ℓ₁ ℓ₂ ℓ₃} → {A : Set ℓ₁} {B : Set ℓ₂} →
(C : Set ℓ₃) → (A → C) → (B → C) → (A ⊎ B → C)
rec⊎ C f g (inj₁ a) = f a
rec⊎ C f g (inj₂ b) = g b
------------------------------------------------------------------------------
--- Exercise 1.10
-- Show that the Ackermann function ack : ℕ → ℕ → ℕ is definable using
-- only recℕ satisfying the following equations:
-- ack(0, m) = succ(m) -> ack(0) = suc
-- ack(succ(n), 0) = ack(n, 1) -> ack (suc n) =
-- ack(succ(n), succ(m)) = ack(n, ack(succ(n), m)).
ack : ℕ → ℕ → ℕ
ack = recℕ (ℕ → ℕ)
suc
(λ n ackn → recℕ ℕ (ackn 1) (λ m res → (ackn res)))
acktest00 : ack 0 0 ≡ 1
acktest00 = refl 1
acktest01 : ack 0 1 ≡ 2
acktest01 = refl 2
acktest10 : ack 1 0 ≡ 2
acktest10 = refl 2
acktest11 : ack 1 1 ≡ 3
acktest11 = refl 3
acktest22 : ack 2 2 ≡ 7
acktest22 = refl 7
------------------------------------------------------------------------------
--- Exercise 1.11
-- Show that for any type A, we have ¬¬¬A → ¬A.
¬ : Set → Set
¬ P = P → ⊥
ex11 : ∀ (P : Set) → ¬ (¬ (¬ P)) → ¬ P
ex11 P = λ nnnP → λ P → nnnP (λ nP → nP P)
------------------------------------------------------------------------------
-- Exercise 1.12
-- Using the propositions as types interpretation, derive the following tautologies.
-- (i) If A, then (if B then A).
-- (ii) If A, then not (not A).
-- (iii) If (not A or not B), then not (A and B).
ex12i : ∀ (A : Set) → A → (Set → A)
ex12i = λ A a _ → a
ex12ii : ∀ (A : Set) → A → (¬ (¬ A))
ex12ii = λ A a → λ nA → nA a
ex12iii : ∀ (A B : Set) → (¬ (A ⊎ B)) → (¬ (A × B))
ex12iii = λ A B → λ nAorB → λ AandB → nAorB (inj₁ (fst AandB))
------------------------------------------------------------------------------
-- Exercise 1.13
-- Using propositions-as-types, derive the double negation of the principle of ex-
-- cluded middle, i.e. prove not (not (P or not P)).
ex13 : ∀ (P : Set) → (¬ (¬ (P ⊎ (¬ P))))
ex13 = λ P nPorPnot → nPorPnot (inj₂ (λ P → nPorPnot (inj₁ P)))
------------------------------------------------------------------------------
-- Exercise 1.16
-- Show that addition of natural numbers is commutative.
ex16 : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c
ex16 = indℕ (λ a → (b c : ℕ) → a + (b + c) ≡ a + b + c)
(λ b c → refl (b + c))
(λ n IHn b c → cong suc (IHn b c))
| {
"alphanum_fraction": 0.3959683225,
"avg_line_length": 29.474801061,
"ext": "agda",
"hexsha": "e1b640d7174c2df0588dae3ed5260719015d37b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andmkent/misc-HoTT",
"max_forks_repo_path": "hw1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andmkent/misc-HoTT",
"max_issues_repo_path": "hw1.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andmkent/misc-HoTT",
"max_stars_repo_path": "hw1.agda",
"max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z",
"num_tokens": 4308,
"size": 11112
} |
module Data.Either.Equiv.Id where
import Lvl
open import Data
open import Data.Either as Either
open import Data.Either.Equiv
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Setoid
open import Structure.Function.Domain
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable A B : Type{ℓ}
module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where
instance
Left-injectivity : Injective(Left{A = A}{B = B})
Injective.proof Left-injectivity [≡]-intro = [≡]-intro
instance
Right-injectivity : Injective(Right{A = A}{B = B})
Injective.proof Right-injectivity [≡]-intro = [≡]-intro
instance
Either-Id-extensionality : Extensionality{A = A}{B = B} [≡]-equiv
Either-Id-extensionality = intro \()
| {
"alphanum_fraction": 0.710723192,
"avg_line_length": 28.6428571429,
"ext": "agda",
"hexsha": "f2248ea74e56fcb44ea14f12906226514adf43b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Either/Equiv/Id.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Either/Equiv/Id.agda",
"max_line_length": 70,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Either/Equiv/Id.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 266,
"size": 802
} |
{-# OPTIONS --universe-polymorphism #-}
module SetInf where
id : ∀ {A} → A → A
id x = x
| {
"alphanum_fraction": 0.5888888889,
"avg_line_length": 12.8571428571,
"ext": "agda",
"hexsha": "2378e3234f8a18c77063c5783478f910e6011553",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/interaction/SetInf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/interaction/SetInf.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/interaction/SetInf.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 30,
"size": 90
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.