Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bijections
------------------------------------------------------------------------
module Function.Bijection where
open import Data.Product
open import Level
open import Relation.Binary
open import Function.Equality as F
using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_)
open import Function.Injection as Inj hiding (id; _∘_)
open import Function.Surjection as Surj hiding (id; _∘_)
open import Function.LeftInverse as Left hiding (id; _∘_)
-- Bijective functions.
record Bijective {f₁ f₂ t₁ t₂}
{From : Setoid f₁ f₂} {To : Setoid t₁ t₂}
(to : From ⟶ To) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
injective : Injective to
surjective : Surjective to
open Surjective surjective public
left-inverse-of : from LeftInverseOf to
left-inverse-of x = injective (right-inverse-of (to ⟨$⟩ x))
-- The set of all bijections between two setoids.
record Bijection {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
to : From ⟶ To
bijective : Bijective to
open Bijective bijective public
injection : Injection From To
injection = record
{ to = to
; injective = injective
}
surjection : Surjection From To
surjection = record
{ to = to
; surjective = surjective
}
open Surjection surjection public
using (equivalence; right-inverse; from-to)
left-inverse : LeftInverse From To
left-inverse = record
{ to = to
; from = from
; left-inverse-of = left-inverse-of
}
open LeftInverse left-inverse public using (to-from)
-- Identity and composition. (Note that these proofs are superfluous,
-- given that Bijection is equivalent to Function.Inverse.Inverse.)
id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Bijection S S
id {S = S} = record
{ to = F.id
; bijective = record
{ injective = Injection.injective (Inj.id {S = S})
; surjective = Surjection.surjective (Surj.id {S = S})
}
}
infixr 9 _∘_
_∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂}
{F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} →
Bijection M T → Bijection F M → Bijection F T
f ∘ g = record
{ to = to f ⟪∘⟫ to g
; bijective = record
{ injective = Injection.injective (Inj._∘_ (injection f) (injection g))
; surjective = Surjection.surjective (Surj._∘_ (surjection f) (surjection g))
}
} where open Bijection
| {
"alphanum_fraction": 0.5840742172,
"avg_line_length": 28.1195652174,
"ext": "agda",
"hexsha": "c6721d04bb7889a2267ae3f31bba64819eaf2d77",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 776,
"size": 2587
} |
------------------------------------------------------------------------------
-- From inductive PA to Mendelson's axioms
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From the definition of PA using Agda data types and primitive
-- recursive functions for addition and multiplication, we can prove the
-- Mendelson's axioms [1].
-- N.B. We make the recursion in the first argument for _+_ and _*_.
-- S₁. m = n → m = o → n = o
-- S₂. m = n → succ m = succ n
-- S₃. 0 ≠ succ n
-- S₄. succ m = succ n → m = n
-- S₅. 0 + n = n
-- S₆. succ m + n = succ (m + n)
-- S₇. 0 * n = 0
-- S₈. succ m * n = (m * n) + m
-- S₉. P(0) → (∀n.P(n) → P(succ n)) → ∀n.P(n), for any wf P(n) of PA.
-- [1]. Elliott Mendelson. Introduction to mathematical
-- logic. Chapman& Hall, 4th edition, 1997, p. 155.
module PA.Inductive2Mendelson where
open import PA.Inductive.Base
------------------------------------------------------------------------------
S₁ : ∀ {m n o} → m ≡ n → m ≡ o → n ≡ o
S₁ refl refl = refl
S₂ : ∀ {m n} → m ≡ n → succ m ≡ succ n
S₂ refl = refl
S₃ : ∀ {n} → zero ≢ succ n
S₃ ()
S₄ : ∀ {m n} → succ m ≡ succ n → m ≡ n
S₄ refl = refl
S₅ : ∀ n → zero + n ≡ n
S₅ n = refl
S₆ : ∀ m n → succ m + n ≡ succ (m + n)
S₆ m n = refl
S₇ : ∀ n → zero * n ≡ zero
S₇ n = refl
S₈ : ∀ m n → succ m * n ≡ n + m * n
S₈ m n = refl
S₉ : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n
S₉ = ℕ-ind
| {
"alphanum_fraction": 0.452690167,
"avg_line_length": 26.5081967213,
"ext": "agda",
"hexsha": "80bb393bb51391da1c0be454e0e5595cfc30b299",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive2Mendelson.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive2Mendelson.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive2Mendelson.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 557,
"size": 1617
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Operations.Addition where
open import Data.Binary.Definitions
open import Data.Binary.Operations.Unary
add : Bit → 𝔹⁺ → 𝔹⁺ → 𝔹⁺
add c (x ∷ xs) (y ∷ ys) = sumᵇ c x y ∷ add (carryᵇ c x y) xs ys
add O 1ᵇ ys = inc⁺⁺ ys
add O (O ∷ xs) 1ᵇ = I ∷ xs
add O (I ∷ xs) 1ᵇ = O ∷ inc⁺⁺ xs
add I 1ᵇ 1ᵇ = I ∷ 1ᵇ
add I 1ᵇ (y ∷ ys) = y ∷ inc⁺⁺ ys
add I (x ∷ xs) 1ᵇ = x ∷ inc⁺⁺ xs
_+_ : 𝔹 → 𝔹 → 𝔹
0ᵇ + ys = ys
(0< xs) + 0ᵇ = 0< xs
(0< xs) + (0< ys) = 0< add O xs ys
| {
"alphanum_fraction": 0.5564356436,
"avg_line_length": 24.0476190476,
"ext": "agda",
"hexsha": "1a9e6c9dcd4fdea44eb143289967b318154f7477",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-binary",
"max_forks_repo_path": "Data/Binary/Operations/Addition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-binary",
"max_issues_repo_path": "Data/Binary/Operations/Addition.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-binary",
"max_stars_repo_path": "Data/Binary/Operations/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z",
"num_tokens": 283,
"size": 505
} |
module SortDependingOnIndex where
open import Common.Level
data Bad : (l : Level) → Set l where
| {
"alphanum_fraction": 0.7474747475,
"avg_line_length": 14.1428571429,
"ext": "agda",
"hexsha": "c1021700219693792d7006dae7ca89a0a0f995bf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/SortDependingOnIndex.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/SortDependingOnIndex.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/SortDependingOnIndex.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 99
} |
module Text.Greek.SBLGNT.Rev where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ : List (Word)
ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ =
word (Ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἣ ∷ ν ∷ []) "Rev.1.1"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.1"
∷ word (ὁ ∷ []) "Rev.1.1"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἃ ∷ []) "Rev.1.1"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.1.1"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.1"
∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.1"
∷ word (ἐ ∷ σ ∷ ή ∷ μ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.1.1"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.1.1"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.1"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ῳ ∷ []) "Rev.1.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ῃ ∷ []) "Rev.1.1"
∷ word (ὃ ∷ ς ∷ []) "Rev.1.2"
∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.2"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.2"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.1.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.1.2"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.3"
∷ word (ὁ ∷ []) "Rev.1.3"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.3"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.3"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.3"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.1.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.1.3"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.1.3"
∷ word (ὁ ∷ []) "Rev.1.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.1.3"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.3"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.1.3"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.4"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.4"
∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rev.1.4"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.1.4"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rev.1.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ὢ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ἦ ∷ ν ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ὁ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.4"
∷ word (ἃ ∷ []) "Rev.1.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.1.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ς ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (ὁ ∷ []) "Rev.1.5"
∷ word (ἄ ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.5"
∷ word (Τ ∷ ῷ ∷ []) "Rev.1.5"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5"
∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.1.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.5"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.6"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.6"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.6"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.1.6"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.6"
∷ word (ἡ ∷ []) "Rev.1.6"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.6"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.6"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.6"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.6"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.7"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.7"
∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (ὄ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.1.7"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ έ ∷ ν ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (ἐ ∷ π ∷ []) "Rev.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.1.7"
∷ word (α ∷ ἱ ∷ []) "Rev.1.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.1.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.7"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.7"
∷ word (ν ∷ α ∷ ί ∷ []) "Rev.1.7"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.7"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.8"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.8"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.8"
∷ word (Ὦ ∷ []) "Rev.1.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.1.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ὢ ∷ ν ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.8"
∷ word (ὁ ∷ []) "Rev.1.8"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.1.8"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.9"
∷ word (ὁ ∷ []) "Rev.1.9"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Rev.1.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (ν ∷ ή ∷ σ ∷ ῳ ∷ []) "Rev.1.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.1.9"
∷ word (Π ∷ ά ∷ τ ∷ μ ∷ ῳ ∷ []) "Rev.1.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.10"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.10"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.10"
∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ῇ ∷ []) "Rev.1.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.10"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.1.10"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.1.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.10"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.1.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.10"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.1.10"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.1.11"
∷ word (Ὃ ∷ []) "Rev.1.11"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.11"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.11"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Ἔ ∷ φ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Π ∷ έ ∷ ρ ∷ γ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Θ ∷ υ ∷ ά ∷ τ ∷ ε ∷ ι ∷ ρ ∷ α ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ έ ∷ ∙λ ∷ φ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11"
∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ί ∷ κ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ π ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.1.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.12"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.12"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.1.12"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.12"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.12"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Rev.1.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.12"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.12"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.12"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.13"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.1.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.13"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.13"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.1.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.1.13"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (π ∷ ο ∷ δ ∷ ή ∷ ρ ∷ η ∷ []) "Rev.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13"
∷ word (μ ∷ α ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Rev.1.13"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ν ∷ []) "Rev.1.13"
∷ word (ἡ ∷ []) "Rev.1.14"
∷ word (δ ∷ ὲ ∷ []) "Rev.1.14"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Rev.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (α ∷ ἱ ∷ []) "Rev.1.14"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ε ∷ ς ∷ []) "Rev.1.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (ἔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ν ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (χ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.14"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.14"
∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.1.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.15"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.1.15"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.1.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.1.15"
∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15"
∷ word (ἡ ∷ []) "Rev.1.15"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.15"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.16"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.1.16"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.1.16"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.1.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.1.16"
∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.1.16"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16"
∷ word (ἡ ∷ []) "Rev.1.16"
∷ word (ὄ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.16"
∷ word (ὁ ∷ []) "Rev.1.16"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.16"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.1.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.1.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.1.16"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rev.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.1.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.1.17"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.1.17"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.17"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ὡ ∷ ς ∷ []) "Rev.1.17"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.17"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ἐ ∷ π ∷ []) "Rev.1.17"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rev.1.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.1.17"
∷ word (Μ ∷ ὴ ∷ []) "Rev.1.17"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.1.17"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.17"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.17"
∷ word (ὁ ∷ []) "Rev.1.17"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17"
∷ word (ὁ ∷ []) "Rev.1.17"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ὁ ∷ []) "Rev.1.18"
∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.18"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.18"
∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.18"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.18"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.1.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.18"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18"
∷ word (ᾅ ∷ δ ∷ ο ∷ υ ∷ []) "Rev.1.18"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19"
∷ word (ἃ ∷ []) "Rev.1.19"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.19"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.19"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.1.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.1.20"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.1.20"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rev.1.20"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.1.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.20"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.1.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.1.20"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20"
∷ word (α ∷ ἱ ∷ []) "Rev.1.20"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20"
∷ word (α ∷ ἱ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20"
∷ word (Τ ∷ ῷ ∷ []) "Rev.2.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.1"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.1"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.1"
∷ word (ὁ ∷ []) "Rev.2.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ῇ ∷ []) "Rev.2.1"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.2.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.1"
∷ word (ὁ ∷ []) "Rev.2.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.1"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.2.1"
∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.2"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.2"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.2"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.2"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.2.2"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.2"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.2"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.2.3"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ἐ ∷ β ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.3"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.2.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.3"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.3"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.4"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.4"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.4"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.4"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.4"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.2.5"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.5"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.2.5"
∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.5"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.2.5"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.5"
∷ word (π ∷ ο ∷ ί ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.5"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.5"
∷ word (μ ∷ ή ∷ []) "Rev.2.5"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.5"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5"
∷ word (κ ∷ ι ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.5"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.5"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.5"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.5"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.2.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.6"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.2.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.6"
∷ word (μ ∷ ι ∷ σ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6"
∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6"
∷ word (ἃ ∷ []) "Rev.2.6"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.6"
∷ word (μ ∷ ι ∷ σ ∷ ῶ ∷ []) "Rev.2.6"
∷ word (ὁ ∷ []) "Rev.2.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.7"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.7"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.7"
∷ word (τ ∷ ί ∷ []) "Rev.2.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.7"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.7"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.7"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.7"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.2.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.7"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.7"
∷ word (ὅ ∷ []) "Rev.2.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.7"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ ί ∷ σ ∷ ῳ ∷ []) "Rev.2.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.8"
∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ ῃ ∷ []) "Rev.2.8"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.8"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.8"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.8"
∷ word (ὁ ∷ []) "Rev.2.8"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (ὁ ∷ []) "Rev.2.8"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.8"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.2.8"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.2.8"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.2.9"
∷ word (ε ∷ ἶ ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.9"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.9"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.2.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ []) "Rev.2.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.9"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.2.10"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.2.10"
∷ word (ἃ ∷ []) "Rev.2.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.10"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.10"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ὁ ∷ []) "Rev.2.10"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.2.10"
∷ word (ἐ ∷ ξ ∷ []) "Rev.2.10"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.10"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Rev.2.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rev.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10"
∷ word (ἕ ∷ ξ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.10"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.10"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.10"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.2.10"
∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.10"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.2.10"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.10"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.10"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.10"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.10"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.10"
∷ word (ὁ ∷ []) "Rev.2.11"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.11"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.11"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.11"
∷ word (τ ∷ ί ∷ []) "Rev.2.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.11"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.11"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.11"
∷ word (ὁ ∷ []) "Rev.2.11"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.11"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.11"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.2.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.2.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.12"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.12"
∷ word (Π ∷ ε ∷ ρ ∷ γ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.2.12"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.12"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.12"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.12"
∷ word (ὁ ∷ []) "Rev.2.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ν ∷ []) "Rev.2.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ ν ∷ []) "Rev.2.12"
∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.13"
∷ word (π ∷ ο ∷ ῦ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.2.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.13"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.13"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.13"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.13"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.13"
∷ word (Ἀ ∷ ν ∷ τ ∷ ι ∷ π ∷ ᾶ ∷ ς ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.2.13"
∷ word (π ∷ α ∷ ρ ∷ []) "Rev.2.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.13"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13"
∷ word (ὁ ∷ []) "Rev.2.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.2.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.13"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.14"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.14"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.14"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.2.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.14"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.14"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.14"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.14"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.14"
∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ά ∷ μ ∷ []) "Rev.2.14"
∷ word (ὃ ∷ ς ∷ []) "Rev.2.14"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Rev.2.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.14"
∷ word (Β ∷ α ∷ ∙λ ∷ ὰ ∷ κ ∷ []) "Rev.2.14"
∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14"
∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.2.14"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.2.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.14"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.2.14"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.2.14"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.14"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.14"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.2.15"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.15"
∷ word (σ ∷ ὺ ∷ []) "Rev.2.15"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.15"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.15"
∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.15"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.2.15"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.16"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.16"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.16"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.16"
∷ word (μ ∷ ή ∷ []) "Rev.2.16"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.16"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.16"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.16"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.16"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.2.16"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.2.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.16"
∷ word (ὁ ∷ []) "Rev.2.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.17"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.17"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.17"
∷ word (τ ∷ ί ∷ []) "Rev.2.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.17"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.17"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17"
∷ word (μ ∷ ά ∷ ν ∷ ν ∷ α ∷ []) "Rev.2.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17"
∷ word (κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17"
∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.17"
∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.2.17"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.2.17"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.17"
∷ word (ὃ ∷ []) "Rev.2.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.2.17"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.2.17"
∷ word (ε ∷ ἰ ∷ []) "Rev.2.17"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.17"
∷ word (ὁ ∷ []) "Rev.2.17"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Rev.2.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.2.18"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.18"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.18"
∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.18"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.18"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.18"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.18"
∷ word (ὁ ∷ []) "Rev.2.18"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Rev.2.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὁ ∷ []) "Rev.2.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.18"
∷ word (φ ∷ ∙λ ∷ ό ∷ γ ∷ α ∷ []) "Rev.2.18"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.18"
∷ word (ο ∷ ἱ ∷ []) "Rev.2.18"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.2.18"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.2.18"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.19"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ α ∷ []) "Rev.2.19"
∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Rev.2.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.19"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.20"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.20"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.20"
∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.2.20"
∷ word (Ἰ ∷ ε ∷ ζ ∷ ά ∷ β ∷ ε ∷ ∙λ ∷ []) "Rev.2.20"
∷ word (ἡ ∷ []) "Rev.2.20"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.2.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.2.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.20"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.20"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.2.21"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.21"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.21"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.21"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.22"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.22"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.2.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.2.22"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.22"
∷ word (ἐ ∷ κ ∷ []) "Rev.2.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.22"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.2.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rev.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.23"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῶ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.23"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (α ∷ ἱ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.2.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.23"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.2.23"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.2.23"
∷ word (ὁ ∷ []) "Rev.2.23"
∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.23"
∷ word (ν ∷ ε ∷ φ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.23"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.2.23"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.23"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.24"
∷ word (δ ∷ ὲ ∷ []) "Rev.2.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.24"
∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.24"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.24"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.24"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rev.2.24"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.24"
∷ word (β ∷ α ∷ θ ∷ έ ∷ α ∷ []) "Rev.2.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.24"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.24"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24"
∷ word (ο ∷ ὐ ∷ []) "Rev.2.24"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.24"
∷ word (ἐ ∷ φ ∷ []) "Rev.2.24"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.2.24"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.2.24"
∷ word (β ∷ ά ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.2.24"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.2.25"
∷ word (ὃ ∷ []) "Rev.2.25"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.25"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.2.25"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.25"
∷ word (ο ∷ ὗ ∷ []) "Rev.2.25"
∷ word (ἂ ∷ ν ∷ []) "Rev.2.25"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26"
∷ word (ὁ ∷ []) "Rev.2.26"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26"
∷ word (ὁ ∷ []) "Rev.2.26"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.26"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.26"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.26"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.26"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.26"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.26"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.27"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.27"
∷ word (ἐ ∷ ν ∷ []) "Rev.2.27"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.2.27"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.2.27"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.27"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rev.2.27"
∷ word (τ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (κ ∷ ε ∷ ρ ∷ α ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ []) "Rev.2.27"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ β ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.27"
∷ word (ὡ ∷ ς ∷ []) "Rev.2.28"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.28"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ []) "Rev.2.28"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.28"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.28"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.28"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.2.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28"
∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ν ∷ []) "Rev.2.28"
∷ word (ὁ ∷ []) "Rev.2.29"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.29"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.29"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.29"
∷ word (τ ∷ ί ∷ []) "Rev.2.29"
∷ word (τ ∷ ὸ ∷ []) "Rev.2.29"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.29"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.29"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.1"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.1"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.1"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.1"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.1"
∷ word (ὁ ∷ []) "Rev.3.1"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.1"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.1"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.1"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.1"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.1"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.1"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1"
∷ word (ζ ∷ ῇ ∷ ς ∷ []) "Rev.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.1"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.1"
∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.3.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.2"
∷ word (σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.2"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Rev.3.2"
∷ word (ἃ ∷ []) "Rev.3.2"
∷ word (ἔ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.2"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.2"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.3.2"
∷ word (ε ∷ ὕ ∷ ρ ∷ η ∷ κ ∷ ά ∷ []) "Rev.3.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.2"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.2"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.3.2"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.2"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.3"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Rev.3.3"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.3"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.3"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.3"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.3"
∷ word (γ ∷ ν ∷ ῷ ∷ ς ∷ []) "Rev.3.3"
∷ word (π ∷ ο ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.3"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.3"
∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.3"
∷ word (σ ∷ έ ∷ []) "Rev.3.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.4"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.4"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.3.4"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.4"
∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (ἃ ∷ []) "Rev.3.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ μ ∷ ό ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.3.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.4"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.4"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.4"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.3.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4"
∷ word (ὁ ∷ []) "Rev.3.5"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.5"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.5"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.3.5"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ []) "Rev.3.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.5"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5"
∷ word (ὁ ∷ []) "Rev.3.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.6"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.6"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.6"
∷ word (τ ∷ ί ∷ []) "Rev.3.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.6"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.6"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.7"
∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.7"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.7"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.7"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.7"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.3.7"
∷ word (ὁ ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Rev.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.8"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.8"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.8"
∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.3.8"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.3.8"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.8"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.3.8"
∷ word (ἣ ∷ ν ∷ []) "Rev.3.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.8"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.8"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.8"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.3.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.8"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Rev.3.8"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.8"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8"
∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ά ∷ ς ∷ []) "Rev.3.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.8"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.8"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9"
∷ word (δ ∷ ι ∷ δ ∷ ῶ ∷ []) "Rev.3.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.3.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.3.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.3.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.9"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.3.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.9"
∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.9"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.9"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.3.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9"
∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.9"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.9"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ά ∷ []) "Rev.3.9"
∷ word (σ ∷ ε ∷ []) "Rev.3.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.10"
∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.10"
∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "Rev.3.10"
∷ word (σ ∷ ε ∷ []) "Rev.3.10"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.3.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.3.10"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.3.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.3.10"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.11"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.3.11"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Rev.3.11"
∷ word (ὃ ∷ []) "Rev.3.11"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.11"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.11"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Rev.3.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.11"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.11"
∷ word (ὁ ∷ []) "Rev.3.12"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12"
∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.12"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.3.12"
∷ word (ο ∷ ὐ ∷ []) "Rev.3.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.12"
∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.3.12"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Rev.3.12"
∷ word (ἐ ∷ π ∷ []) "Rev.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.12"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Rev.3.12"
∷ word (ἡ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.3.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.3.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.12"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.12"
∷ word (ὁ ∷ []) "Rev.3.13"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.13"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.13"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.13"
∷ word (τ ∷ ί ∷ []) "Rev.3.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.13"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.13"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.13"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.14"
∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ι ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.14"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.14"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.14"
∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.3.14"
∷ word (ὁ ∷ []) "Rev.3.14"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.14"
∷ word (ἡ ∷ []) "Rev.3.14"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.3.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.14"
∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.15"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.3.15"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.15"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.15"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15"
∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.15"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15"
∷ word (ἦ ∷ ς ∷ []) "Rev.3.15"
∷ word (ἢ ∷ []) "Rev.3.15"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.16"
∷ word (χ ∷ ∙λ ∷ ι ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.16"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.16"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16"
∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.16"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16"
∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.16"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.3.16"
∷ word (σ ∷ ε ∷ []) "Rev.3.16"
∷ word (ἐ ∷ μ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (Π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ό ∷ ς ∷ []) "Rev.3.17"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.3.17"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.17"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.17"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.3.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17"
∷ word (σ ∷ ὺ ∷ []) "Rev.3.17"
∷ word (ε ∷ ἶ ∷ []) "Rev.3.17"
∷ word (ὁ ∷ []) "Rev.3.17"
∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ π ∷ ω ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rev.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.17"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.3.18"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18"
∷ word (π ∷ α ∷ ρ ∷ []) "Rev.3.18"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.18"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.3.18"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.18"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (μ ∷ ὴ ∷ []) "Rev.3.18"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Rev.3.18"
∷ word (ἡ ∷ []) "Rev.3.18"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ []) "Rev.3.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.18"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18"
∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.18"
∷ word (ἐ ∷ γ ∷ χ ∷ ρ ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.18"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.3.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ῃ ∷ ς ∷ []) "Rev.3.18"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.19"
∷ word (ὅ ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.19"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.19"
∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ []) "Rev.3.19"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ω ∷ []) "Rev.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.19"
∷ word (ζ ∷ ή ∷ ∙λ ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.19"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.20"
∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (κ ∷ ρ ∷ ο ∷ ύ ∷ ω ∷ []) "Rev.3.20"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.3.20"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.3.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.3.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.20"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ ξ ∷ ῃ ∷ []) "Rev.3.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.20"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.20"
∷ word (ὁ ∷ []) "Rev.3.21"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.21"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.21"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.21"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.3.21"
∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Rev.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ []) "Rev.3.21"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.3.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.21"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.3.21"
∷ word (τ ∷ ῷ ∷ []) "Rev.3.21"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21"
∷ word (ὁ ∷ []) "Rev.3.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.22"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.22"
∷ word (τ ∷ ί ∷ []) "Rev.3.22"
∷ word (τ ∷ ὸ ∷ []) "Rev.3.22"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.22"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.22"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.22"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.22"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.1"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "Rev.4.1"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.4.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (ἡ ∷ []) "Rev.4.1"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.4.1"
∷ word (ἡ ∷ []) "Rev.4.1"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.4.1"
∷ word (ἣ ∷ ν ∷ []) "Rev.4.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.4.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.1"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.4.1"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.4.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.4.1"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.4.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.4.1"
∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ []) "Rev.4.1"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.4.1"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.4.1"
∷ word (ἃ ∷ []) "Rev.4.1"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.4.1"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.4.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1"
∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.4.2"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.4.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2"
∷ word (ἔ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Rev.4.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.2"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.4.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (ὁ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.4.3"
∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3"
∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.4.3"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.3"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3"
∷ word (σ ∷ μ ∷ α ∷ ρ ∷ α ∷ γ ∷ δ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Rev.4.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.4"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.4"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.4.4"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.4.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.4"
∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.5"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.4.5"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Rev.4.5"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5"
∷ word (ἅ ∷ []) "Rev.4.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.4.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.6"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.4.6"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ []) "Rev.4.6"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.4.6"
∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.4.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.6"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.6"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.6"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.6"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ῳ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.4.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.7"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7"
∷ word (ἀ ∷ ε ∷ τ ∷ ῷ ∷ []) "Rev.4.7"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.8"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.8"
∷ word (ἓ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ θ ∷ []) "Rev.4.8"
∷ word (ἓ ∷ ν ∷ []) "Rev.4.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.8"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.8"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.4.8"
∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ α ∷ ς ∷ []) "Rev.4.8"
∷ word (ἕ ∷ ξ ∷ []) "Rev.4.8"
∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.4.8"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.4.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.8"
∷ word (Ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ὢ ∷ ν ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8"
∷ word (ὁ ∷ []) "Rev.4.8"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.9"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.9"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.4.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.9"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.9"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.9"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.9"
∷ word (π ∷ ε ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.4.10"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.10"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.10"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.4.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.4.10"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10"
∷ word (β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10"
∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.10"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11"
∷ word (ε ∷ ἶ ∷ []) "Rev.4.11"
∷ word (ὁ ∷ []) "Rev.4.11"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (ὁ ∷ []) "Rev.4.11"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.4.11"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.11"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.4.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.4.11"
∷ word (σ ∷ ὺ ∷ []) "Rev.4.11"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ α ∷ ς ∷ []) "Rev.4.11"
∷ word (τ ∷ ὰ ∷ []) "Rev.4.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.4.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.4.11"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Rev.4.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.4.11"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11"
∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.1"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.5.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.1"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.1"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.5.2"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.2"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.5.2"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.2"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.2"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2"
∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.5.2"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.2"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.5.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.3"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.3"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.3"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.3"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.3"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.4"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.5.4"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Rev.5.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.4"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.4"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.5.4"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.4"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.4"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.5.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.5"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.5.5"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.5.5"
∷ word (Μ ∷ ὴ ∷ []) "Rev.5.5"
∷ word (κ ∷ ∙λ ∷ α ∷ ῖ ∷ ε ∷ []) "Rev.5.5"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.5.5"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.5.5"
∷ word (ὁ ∷ []) "Rev.5.5"
∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.5.5"
∷ word (ὁ ∷ []) "Rev.5.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.5"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.5.5"
∷ word (ἡ ∷ []) "Rev.5.5"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.5.5"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.5.5"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.5"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.5"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.5"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.5.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.5.6"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.6"
∷ word (ο ∷ ἵ ∷ []) "Rev.5.6"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.5.6"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.5.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.6"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.5.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.7"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.5.8"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.8"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.5.8"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.5.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.5.8"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.8"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.8"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.5.8"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.8"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.8"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ν ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.5.8"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.5.8"
∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.8"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.5.8"
∷ word (α ∷ ἵ ∷ []) "Rev.5.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.8"
∷ word (α ∷ ἱ ∷ []) "Rev.5.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ὶ ∷ []) "Rev.5.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.9"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.9"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.9"
∷ word (ε ∷ ἶ ∷ []) "Rev.5.9"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.9"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.9"
∷ word (ἐ ∷ σ ∷ φ ∷ ά ∷ γ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.9"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.9"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.5.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.5.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.5.9"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.5.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.5.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.11"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.11"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.5.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (ἦ ∷ ν ∷ []) "Rev.5.11"
∷ word (ὁ ∷ []) "Rev.5.11"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.5.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.12"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.12"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "Rev.5.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.12"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.12"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.12"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.5.13"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Rev.5.13"
∷ word (ὃ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.5.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.5.13"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.5.13"
∷ word (Τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.5.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.5.13"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (ἡ ∷ []) "Rev.5.13"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.5.13"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.13"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.5.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.13"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.5.14"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.14"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Rev.5.14"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.5.14"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.14"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.1"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.1"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.1"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.6.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.1"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.1"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.1"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.1"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.2"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ὁ ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (ἐ ∷ π ∷ []) "Rev.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.2"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.2"
∷ word (τ ∷ ό ∷ ξ ∷ ο ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.2"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.2"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.2"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.6.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.3"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.3"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.6.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.3"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.3"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.4"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.4"
∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ π ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.6.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.4"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Rev.6.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.4"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.4"
∷ word (σ ∷ φ ∷ ά ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4"
∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "Rev.6.4"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.5"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.6.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.5"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.5"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5"
∷ word (ὁ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.5"
∷ word (ἐ ∷ π ∷ []) "Rev.6.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.5"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.5"
∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rev.6.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.5"
∷ word (τ ∷ ῇ ∷ []) "Rev.6.5"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.6.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.6"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.6.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.6"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.6"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.6"
∷ word (Χ ∷ ο ∷ ῖ ∷ ν ∷ ι ∷ ξ ∷ []) "Rev.6.6"
∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.6"
∷ word (χ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.6.6"
∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ ν ∷ []) "Rev.6.6"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.6"
∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.6"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.6.6"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.6.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.7"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.7"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.7"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.7"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.7"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.7"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.8"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (Θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὁ ∷ []) "Rev.6.8"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.6.8"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.6.8"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.6.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.8"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.6.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ῷ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.6.8"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.6.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.9"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.9"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.9"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.6.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.9"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.6.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.9"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.6.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.9"
∷ word (ἣ ∷ ν ∷ []) "Rev.6.9"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.6.10"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.6.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.10"
∷ word (Ἕ ∷ ω ∷ ς ∷ []) "Rev.6.10"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Rev.6.10"
∷ word (ὁ ∷ []) "Rev.6.10"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rev.6.10"
∷ word (ὁ ∷ []) "Rev.6.10"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.6.10"
∷ word (ο ∷ ὐ ∷ []) "Rev.6.10"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10"
∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.6.10"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.6.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.6.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.6.11"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rev.6.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.11"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.6.11"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.11"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.6.11"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rev.6.11"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.11"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.11"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.6.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.6.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.12"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.12"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12"
∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.6.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ὁ ∷ []) "Rev.6.12"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.12"
∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12"
∷ word (ἡ ∷ []) "Rev.6.12"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.6.12"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.6.12"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.12"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.13"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.6.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.6.13"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.6.13"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.13"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Rev.6.13"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.6.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.13"
∷ word (ὀ ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.13"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.6.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.6.13"
∷ word (σ ∷ ε ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (ὁ ∷ []) "Rev.6.14"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.14"
∷ word (ἀ ∷ π ∷ ε ∷ χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.6.14"
∷ word (ὡ ∷ ς ∷ []) "Rev.6.14"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.14"
∷ word (ἑ ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.6.14"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14"
∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.6.14"
∷ word (ἐ ∷ κ ∷ []) "Rev.6.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14"
∷ word (τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14"
∷ word (ἐ ∷ κ ∷ ι ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.15"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ρ ∷ χ ∷ ο ∷ ι ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.6.15"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.6.15"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.15"
∷ word (ἔ ∷ κ ∷ ρ ∷ υ ∷ ψ ∷ α ∷ ν ∷ []) "Rev.6.15"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.6.15"
∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ α ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.15"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.15"
∷ word (ὀ ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.16"
∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.6.16"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.6.16"
∷ word (Π ∷ έ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.6.16"
∷ word (ἐ ∷ φ ∷ []) "Rev.6.16"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (κ ∷ ρ ∷ ύ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "Rev.6.16"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.16"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.6.17"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.17"
∷ word (ἡ ∷ []) "Rev.6.17"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.6.17"
∷ word (ἡ ∷ []) "Rev.6.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.17"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.17"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.17"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.6.17"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.17"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.17"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.1"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.7.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.7.1"
∷ word (μ ∷ ὴ ∷ []) "Rev.7.1"
∷ word (π ∷ ν ∷ έ ∷ ῃ ∷ []) "Rev.7.1"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.1"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.1"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.7.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.7.2"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.7.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.2"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.7.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.7.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.2"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.7.2"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.7.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.3"
∷ word (Μ ∷ ὴ ∷ []) "Rev.7.3"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.7.3"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Rev.7.3"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.7.3"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.7.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.3"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.7.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.7.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.4"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.4"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.7.4"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.4"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.4"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.4"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.4"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.7.4"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.7.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Ῥ ∷ ο ∷ υ ∷ β ∷ ὴ ∷ ν ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.5"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5"
∷ word (Γ ∷ ὰ ∷ δ ∷ []) "Rev.7.5"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Ἀ ∷ σ ∷ ὴ ∷ ρ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Ν ∷ ε ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ ὶ ∷ μ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6"
∷ word (Μ ∷ α ∷ ν ∷ α ∷ σ ∷ σ ∷ ῆ ∷ []) "Rev.7.6"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Σ ∷ υ ∷ μ ∷ ε ∷ ὼ ∷ ν ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7"
∷ word (Ἰ ∷ σ ∷ σ ∷ α ∷ χ ∷ ὰ ∷ ρ ∷ []) "Rev.7.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Ζ ∷ α ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.8"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8"
∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ὶ ∷ ν ∷ []) "Rev.7.8"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.8"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.9"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.7.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.7.9"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.7.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Rev.7.9"
∷ word (ὃ ∷ ν ∷ []) "Rev.7.9"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.9"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.7.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.9"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.9"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.9"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ά ∷ ς ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9"
∷ word (φ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.7.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.9"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.7.9"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.7.10"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.10"
∷ word (Ἡ ∷ []) "Rev.7.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.7.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.10"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.11"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.7.11"
∷ word (ε ∷ ἱ ∷ σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.7.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.11"
∷ word (τ ∷ ὰ ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.7.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.11"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.12"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.7.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ []) "Rev.7.12"
∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.12"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.12"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.12"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.7.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.12"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.12"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Rev.7.13"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.7.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.13"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.13"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ ς ∷ []) "Rev.7.13"
∷ word (τ ∷ ί ∷ ν ∷ ε ∷ ς ∷ []) "Rev.7.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.13"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.7.13"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.14"
∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ έ ∷ []) "Rev.7.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.7.14"
∷ word (σ ∷ ὺ ∷ []) "Rev.7.14"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.7.14"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.14"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.7.14"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.14"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.7.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ἔ ∷ π ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ κ ∷ α ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.14"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.7.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Rev.7.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.15"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.7.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.7.15"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15"
∷ word (ὁ ∷ []) "Rev.7.15"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.7.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.15"
∷ word (ἐ ∷ π ∷ []) "Rev.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.15"
∷ word (ο ∷ ὐ ∷ []) "Rev.7.16"
∷ word (π ∷ ε ∷ ι ∷ ν ∷ ά ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (δ ∷ ι ∷ ψ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (μ ∷ ὴ ∷ []) "Rev.7.16"
∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "Rev.7.16"
∷ word (ἐ ∷ π ∷ []) "Rev.7.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.16"
∷ word (ὁ ∷ []) "Rev.7.16"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.7.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.16"
∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.7.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.7.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.7.17"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.7.17"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.7.17"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.17"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.17"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ὁ ∷ δ ∷ η ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.7.17"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.7.17"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.7.17"
∷ word (ὁ ∷ []) "Rev.7.17"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.7.17"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.17"
∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.7.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.7.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.1"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.8.1"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.8.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.8.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1"
∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.8.1"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.1"
∷ word (σ ∷ ι ∷ γ ∷ ὴ ∷ []) "Rev.8.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.8.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.8.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.1"
∷ word (ἡ ∷ μ ∷ ι ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.2"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.8.2"
∷ word (ο ∷ ἳ ∷ []) "Rev.8.2"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.2"
∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.8.2"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.8.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.8.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.3"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.8.3"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.8.3"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.3"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.8.3"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.3"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.4"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.8.4"
∷ word (ὁ ∷ []) "Rev.8.4"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.4"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.8.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (ὁ ∷ []) "Rev.8.5"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5"
∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ό ∷ ν ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἐ ∷ γ ∷ έ ∷ μ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.8.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.5"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.8.5"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Rev.8.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.8.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.8.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.8.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.6"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.6"
∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.6"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ὁ ∷ []) "Rev.8.7"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.7"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.8.7"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.8.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.7"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.7"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.7"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.7"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.7"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.8.7"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.7"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ὁ ∷ []) "Rev.8.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.8"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.8.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.8"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.8"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.8"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.8.8"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ []) "Rev.8.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (κ ∷ τ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῇ ∷ []) "Rev.8.9"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.8.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.8.9"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.8.9"
∷ word (ψ ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "Rev.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.9"
∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ὁ ∷ []) "Rev.8.10"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.8.10"
∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.8.10"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.8.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.8.10"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ ς ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.10"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.10"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.8.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.11"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.8.11"
∷ word (ὁ ∷ []) "Rev.8.11"
∷ word (Ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.11"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.11"
∷ word (ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.8.11"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ὁ ∷ []) "Rev.8.12"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.12"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.12"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ή ∷ γ ∷ η ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.12"
∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.8.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.8.12"
∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.8.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.8.12"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12"
∷ word (ἡ ∷ []) "Rev.8.12"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.8.12"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.8.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.8.13"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.13"
∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.8.13"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.13"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.8.13"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.13"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.8.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.8.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.13"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.8.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ὁ ∷ []) "Rev.9.1"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.9.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (π ∷ ε ∷ π ∷ τ ∷ ω ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Rev.9.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.1"
∷ word (ἡ ∷ []) "Rev.9.1"
∷ word (κ ∷ ∙λ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.1"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.9.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ ρ ∷ []) "Rev.9.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.2"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.9.2"
∷ word (ὁ ∷ []) "Rev.9.2"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2"
∷ word (ὁ ∷ []) "Rev.9.2"
∷ word (ἀ ∷ ὴ ∷ ρ ∷ []) "Rev.9.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2"
∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.9.3"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.3"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.3"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.3"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.3"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.3"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ []) "Rev.9.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.4"
∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.9.4"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.4"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.4"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.9.4"
∷ word (ε ∷ ἰ ∷ []) "Rev.9.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.9.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.4"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.9.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.4"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.9.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.4"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.9.5"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.9.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.9.5"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.5"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.5"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5"
∷ word (ὁ ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.5"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.5"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.5"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.9.5"
∷ word (π ∷ α ∷ ί ∷ σ ∷ ῃ ∷ []) "Rev.9.5"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6"
∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.6"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.9.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ο ∷ ὐ ∷ []) "Rev.9.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.6"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6"
∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.9.6"
∷ word (ὁ ∷ []) "Rev.9.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.6"
∷ word (ἀ ∷ π ∷ []) "Rev.9.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.7"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.9.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.9.7"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.9.7"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.7"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.9.7"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῷ ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.7"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.8"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.8"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.9.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.8"
∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.9.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.8"
∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.8"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.9"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.9"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9"
∷ word (ἡ ∷ []) "Rev.9.9"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (π ∷ τ ∷ ε ∷ ρ ∷ ύ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.9"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9"
∷ word (ἁ ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.9.9"
∷ word (τ ∷ ρ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.9"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ ς ∷ []) "Rev.9.10"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.10"
∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ α ∷ []) "Rev.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.10"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10"
∷ word (ἡ ∷ []) "Rev.9.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.10"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.10"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.10"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.11"
∷ word (ἐ ∷ π ∷ []) "Rev.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Rev.9.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.11"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.9.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.11"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.11"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.9.11"
∷ word (Ἀ ∷ β ∷ α ∷ δ ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.9.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.11"
∷ word (τ ∷ ῇ ∷ []) "Rev.9.11"
∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ κ ∷ ῇ ∷ []) "Rev.9.11"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.9.11"
∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.9.11"
∷ word (Ἡ ∷ []) "Rev.9.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12"
∷ word (ἡ ∷ []) "Rev.9.12"
∷ word (μ ∷ ί ∷ α ∷ []) "Rev.9.12"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.9.12"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.9.12"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.12"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.9.12"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.9.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.9.12"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.9.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.13"
∷ word (ὁ ∷ []) "Rev.9.13"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.13"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.13"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.13"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.9.13"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.13"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.9.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (ἕ ∷ κ ∷ τ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (ὁ ∷ []) "Rev.9.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.9.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.14"
∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ []) "Rev.9.14"
∷ word (Λ ∷ ῦ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.9.14"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ ῃ ∷ []) "Rev.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.15"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.9.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.9.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.15"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.15"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15"
∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.15"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.15"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.16"
∷ word (ὁ ∷ []) "Rev.9.16"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.16"
∷ word (ἱ ∷ π ∷ π ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.9.16"
∷ word (δ ∷ ι ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.16"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.16"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.16"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.9.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.9.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.17"
∷ word (τ ∷ ῇ ∷ []) "Rev.9.17"
∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (ἐ ∷ π ∷ []) "Rev.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.9.17"
∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.17"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ὑ ∷ α ∷ κ ∷ ι ∷ ν ∷ θ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (θ ∷ ε ∷ ι ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (α ∷ ἱ ∷ []) "Rev.9.17"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (ὡ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.17"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17"
∷ word (θ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.9.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.9.18"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18"
∷ word (ἡ ∷ []) "Rev.9.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.9.19"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (α ∷ ἱ ∷ []) "Rev.9.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "Rev.9.19"
∷ word (ὄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ά ∷ ς ∷ []) "Rev.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.9.20"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.20"
∷ word (ο ∷ ἳ ∷ []) "Rev.9.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.20"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.20"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.20"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (μ ∷ ὴ ∷ []) "Rev.9.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ᾶ ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (∙λ ∷ ί ∷ θ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.9.20"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20"
∷ word (ἃ ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.9.21"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (φ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.9.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (κ ∷ ∙λ ∷ ε ∷ μ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.10.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ἡ ∷ []) "Rev.10.1"
∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.10.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.1"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.1"
∷ word (ὁ ∷ []) "Rev.10.1"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1"
∷ word (ο ∷ ἱ ∷ []) "Rev.10.1"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.1"
∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.10.1"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.10.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (π ∷ ό ∷ δ ∷ α ∷ []) "Rev.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2"
∷ word (δ ∷ ὲ ∷ []) "Rev.10.2"
∷ word (ε ∷ ὐ ∷ ώ ∷ ν ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.10.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.10.3"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.3"
∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rev.10.3"
∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.10.3"
∷ word (μ ∷ υ ∷ κ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.3"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.3"
∷ word (α ∷ ἱ ∷ []) "Rev.10.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.3"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.10.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.10.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.10.3"
∷ word (φ ∷ ω ∷ ν ∷ ά ∷ ς ∷ []) "Rev.10.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.4"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (α ∷ ἱ ∷ []) "Rev.10.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4"
∷ word (ἤ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.4"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.10.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (Σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.10.4"
∷ word (ἃ ∷ []) "Rev.10.4"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4"
∷ word (α ∷ ἱ ∷ []) "Rev.10.4"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.10.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ῃ ∷ ς ∷ []) "Rev.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5"
∷ word (ὁ ∷ []) "Rev.10.5"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.10.5"
∷ word (ὃ ∷ ν ∷ []) "Rev.10.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.5"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.10.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.5"
∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.10.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.10.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.10.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.6"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.6"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.10.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.10.6"
∷ word (ὃ ∷ ς ∷ []) "Rev.10.6"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.10.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.10.6"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.10.6"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.10.7"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.7"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rev.10.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.10.7"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.7"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.7"
∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.10.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.7"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.7"
∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.10.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Rev.10.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (ἡ ∷ []) "Rev.10.8"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.10.8"
∷ word (ἣ ∷ ν ∷ []) "Rev.10.8"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.8"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.10.8"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.8"
∷ word (∙λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.10.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.8"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.10.8"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.10.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ []) "Rev.10.9"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.10.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.9"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ί ∷ []) "Rev.10.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.10.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9"
∷ word (Λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ φ ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9"
∷ word (π ∷ ι ∷ κ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.10.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.9"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rev.10.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.9"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.9"
∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ὺ ∷ []) "Rev.10.9"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.9"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.10.10"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.10.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.10"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.10"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ἦ ∷ ν ∷ []) "Rev.10.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.10.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.10.10"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (ὡ ∷ ς ∷ []) "Rev.10.10"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.10"
∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ύ ∷ []) "Rev.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.10"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.10.10"
∷ word (ἡ ∷ []) "Rev.10.10"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.10.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.10.11"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.11"
∷ word (Δ ∷ ε ∷ ῖ ∷ []) "Rev.10.11"
∷ word (σ ∷ ε ∷ []) "Rev.10.11"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.10.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.11"
∷ word (∙λ ∷ α ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.1"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.11.1"
∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.1"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.1"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.11.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.11.1"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.11.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.1"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.11.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.1"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.2"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.11.2"
∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Rev.11.2"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (μ ∷ ὴ ∷ []) "Rev.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.11.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.2"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.2"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.2"
∷ word (π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.2"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.2"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.11.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.3"
∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.11.3"
∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.11.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.3"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.3"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.3"
∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.3"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.11.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ῖ ∷ α ∷ ι ∷ []) "Rev.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.11.4"
∷ word (α ∷ ἱ ∷ []) "Rev.11.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.4"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.4"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.4"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (ε ∷ ἴ ∷ []) "Rev.11.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.11.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.11.5"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rev.11.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5"
∷ word (ε ∷ ἴ ∷ []) "Rev.11.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.11.5"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.11.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.5"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.6"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.11.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.11.6"
∷ word (μ ∷ ὴ ∷ []) "Rev.11.6"
∷ word (ὑ ∷ ε ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.6"
∷ word (β ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "Rev.11.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.11.6"
∷ word (σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.11.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6"
∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Rev.11.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.6"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rev.11.6"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῇ ∷ []) "Rev.11.6"
∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Rev.11.6"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.11.6"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.7"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.7"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.7"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.7"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.11.7"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.8"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.8"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.8"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Rev.11.8"
∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (Α ∷ ἴ ∷ γ ∷ υ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.8"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8"
∷ word (ὁ ∷ []) "Rev.11.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.9"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.9"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.9"
∷ word (π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.11.9"
∷ word (ἀ ∷ φ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9"
∷ word (τ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.9"
∷ word (μ ∷ ν ∷ ῆ ∷ μ ∷ α ∷ []) "Rev.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ []) "Rev.11.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10"
∷ word (δ ∷ ῶ ∷ ρ ∷ α ∷ []) "Rev.11.10"
∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.10"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.10"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.10"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ά ∷ ν ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.10"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.11.11"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.11"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.11"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.11.11"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.11.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.11"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rev.11.11"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.11"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.11.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.11.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.12"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.12"
∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ τ ∷ ε ∷ []) "Rev.11.12"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.11.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.12"
∷ word (τ ∷ ῇ ∷ []) "Rev.11.12"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.12"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.13"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Rev.11.13"
∷ word (τ ∷ ῇ ∷ []) "Rev.11.13"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.11.13"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.13"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.13"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.13"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.13"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.13"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.11.13"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.11.13"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἔ ∷ μ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Rev.11.13"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.11.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.13"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.13"
∷ word (Ἡ ∷ []) "Rev.11.14"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.11.14"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.14"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14"
∷ word (ἡ ∷ []) "Rev.11.14"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Rev.11.14"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.14"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.11.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (ὁ ∷ []) "Rev.11.15"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.11.15"
∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.15"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Rev.11.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.15"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.15"
∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.15"
∷ word (ἡ ∷ []) "Rev.11.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.15"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.15"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.15"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.11.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.16"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.16"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.11.16"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.11.16"
∷ word (ο ∷ ἱ ∷ []) "Rev.11.16"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.16"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.16"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.16"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.11.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.16"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.16"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.17"
∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ έ ∷ ν ∷ []) "Rev.11.17"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.11.17"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (ὢ ∷ ν ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17"
∷ word (ὁ ∷ []) "Rev.11.17"
∷ word (ἦ ∷ ν ∷ []) "Rev.11.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.17"
∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.11.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rev.11.17"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ὰ ∷ []) "Rev.11.18"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.11.18"
∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.18"
∷ word (ἡ ∷ []) "Rev.11.18"
∷ word (ὀ ∷ ρ ∷ γ ∷ ή ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (ὁ ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.18"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.11.18"
∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.18"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.11.18"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.11.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.11.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.18"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.11.19"
∷ word (ὁ ∷ []) "Rev.11.19"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (ὁ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.11.19"
∷ word (ἡ ∷ []) "Rev.11.19"
∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.19"
∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Rev.11.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.11.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.11.19"
∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.11.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.19"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.11.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.11.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.1"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.12.1"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.1"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.1"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (ἡ ∷ []) "Rev.12.1"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.12.1"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.12.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.1"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.1"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.1"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.2"
∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.12.2"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.12.2"
∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.2"
∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.3"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.12.3"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.3"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.3"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.12.3"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.3"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.3"
∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.12.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ἡ ∷ []) "Rev.12.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (σ ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.12.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.4"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.4"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.4"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4"
∷ word (ὁ ∷ []) "Rev.12.4"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.4"
∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.4"
∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.4"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.12.4"
∷ word (τ ∷ έ ∷ κ ∷ ῃ ∷ []) "Rev.12.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.4"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.5"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Rev.12.5"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.5"
∷ word (ὃ ∷ ς ∷ []) "Rev.12.5"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.12.5"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.12.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.12.5"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.12.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.5"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.12.5"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (ἡ ∷ ρ ∷ π ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.5"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.6"
∷ word (ἡ ∷ []) "Rev.12.6"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.6"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.12.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.6"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6"
∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.12.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.7"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.7"
∷ word (ὁ ∷ []) "Rev.12.7"
∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ὁ ∷ []) "Rev.12.7"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.7"
∷ word (ἐ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.8"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.12.8"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.12.8"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.8"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.12.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.8"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.12.9"
∷ word (ὁ ∷ []) "Rev.12.9"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.12.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.12.9"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.12.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.10"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.12.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.12.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.10"
∷ word (Ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.12.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.10"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.10"
∷ word (ὁ ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ τ ∷ ή ∷ γ ∷ ω ∷ ρ ∷ []) "Rev.12.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ὁ ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.12.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.12.11"
∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.11"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.12.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.11"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.11"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.11"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.11"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.12.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.12.11"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.12.11"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.12"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.12.12"
∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rev.12.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.12"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.12.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.12.12"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.12.12"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.12.12"
∷ word (ὁ ∷ []) "Rev.12.12"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.12"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.12.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.12"
∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.12.12"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Rev.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.12"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.12"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.13"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.12.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (ὁ ∷ []) "Rev.12.13"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.13"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.13"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.13"
∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.12.13"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.12.13"
∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.13"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.13"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ α ∷ []) "Rev.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.14"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.14"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "Rev.12.14"
∷ word (α ∷ ἱ ∷ []) "Rev.12.14"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.12.14"
∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.14"
∷ word (π ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.14"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.14"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14"
∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14"
∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.15"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.15"
∷ word (ὁ ∷ []) "Rev.12.15"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.12.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.12.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.15"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.15"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.12.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ό ∷ ν ∷ []) "Rev.12.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ φ ∷ ό ∷ ρ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.15"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.12.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (ἐ ∷ β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ἡ ∷ []) "Rev.12.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.12.16"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.16"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ἡ ∷ []) "Rev.12.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.12.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.12.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ ι ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.16"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.16"
∷ word (ὃ ∷ ν ∷ []) "Rev.12.16"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.16"
∷ word (ὁ ∷ []) "Rev.12.16"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.16"
∷ word (ἐ ∷ κ ∷ []) "Rev.12.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.17"
∷ word (ὁ ∷ []) "Rev.12.17"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.17"
∷ word (τ ∷ ῇ ∷ []) "Rev.12.17"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.12.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.17"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.17"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.17"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.17"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.12.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.12.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.18"
∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.18"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.13.1"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.13.1"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (ὃ ∷ []) "Rev.13.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (ἦ ∷ ν ∷ []) "Rev.13.2"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (π ∷ α ∷ ρ ∷ δ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.13.2"
∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.2"
∷ word (ἄ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.2"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.2"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2"
∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.2"
∷ word (ὁ ∷ []) "Rev.13.2"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.2"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.2"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.13.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.3"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.13.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.3"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (ἡ ∷ []) "Rev.13.3"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3"
∷ word (ἐ ∷ θ ∷ α ∷ υ ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.13.3"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.13.3"
∷ word (ἡ ∷ []) "Rev.13.3"
∷ word (γ ∷ ῆ ∷ []) "Rev.13.3"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.13.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.13.4"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.4"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.4"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.13.4"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.13.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.13.4"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.4"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.13.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.5"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.5"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.5"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.13.5"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.5"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6"
∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.6"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.6"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.6"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.6"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rev.13.6"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.6"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.6"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.13.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.6"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.13.6"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.13.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.13.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.7"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ν ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.7"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.7"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.13.8"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (ο ∷ ὗ ∷ []) "Rev.13.8"
∷ word (ο ∷ ὐ ∷ []) "Rev.13.8"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.8"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.13.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.13.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.13.8"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.13.8"
∷ word (Ε ∷ ἴ ∷ []) "Rev.13.9"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.9"
∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.13.9"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.9"
∷ word (ε ∷ ἴ ∷ []) "Rev.13.10"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10"
∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10"
∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.13.10"
∷ word (ε ∷ ἴ ∷ []) "Rev.13.10"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.10"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.10"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10"
∷ word (ὧ ∷ δ ∷ έ ∷ []) "Rev.13.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.13.10"
∷ word (ἡ ∷ []) "Rev.13.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.13.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.10"
∷ word (ἡ ∷ []) "Rev.13.10"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.13.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.10"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.13.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.11"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.13.11"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.11"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.11"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.13.11"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.13.11"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.12"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.12"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.12"
∷ word (ο ∷ ὗ ∷ []) "Rev.13.12"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.12"
∷ word (ἡ ∷ []) "Rev.13.12"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.13"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.13"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.13.13"
∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ []) "Rev.13.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.13.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.13.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.13"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.13"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.13.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.13.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.13.14"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.14"
∷ word (ἃ ∷ []) "Rev.13.14"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.14"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.13.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.13.14"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.14"
∷ word (ὃ ∷ ς ∷ []) "Rev.13.14"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.14"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ ν ∷ []) "Rev.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.13.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.15"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.15"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.13.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15"
∷ word (ἡ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.13.15"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.13.15"
∷ word (μ ∷ ὴ ∷ []) "Rev.13.15"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.13.15"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.16"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.16"
∷ word (δ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.16"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.13.16"
∷ word (ἢ ∷ []) "Rev.13.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.16"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.17"
∷ word (μ ∷ ή ∷ []) "Rev.13.17"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.17"
∷ word (δ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ἢ ∷ []) "Rev.13.17"
∷ word (π ∷ ω ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17"
∷ word (ε ∷ ἰ ∷ []) "Rev.13.17"
∷ word (μ ∷ ὴ ∷ []) "Rev.13.17"
∷ word (ὁ ∷ []) "Rev.13.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.17"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.13.17"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.17"
∷ word (ἢ ∷ []) "Rev.13.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.17"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.13.18"
∷ word (ἡ ∷ []) "Rev.13.18"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.13.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18"
∷ word (ὁ ∷ []) "Rev.13.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.18"
∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.18"
∷ word (ψ ∷ η ∷ φ ∷ ι ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.13.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.18"
∷ word (ὁ ∷ []) "Rev.13.18"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18"
∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ό ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.13.18"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.18"
∷ word (ἕ ∷ ξ ∷ []) "Rev.13.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (ἑ ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.1"
∷ word (Σ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.1"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.1"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.1"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.1"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2"
∷ word (ἡ ∷ []) "Rev.14.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.14.2"
∷ word (ἣ ∷ ν ∷ []) "Rev.14.2"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.2"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.14.2"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.14.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.14.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.14.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.14.3"
∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3"
∷ word (ε ∷ ἰ ∷ []) "Rev.14.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.14.3"
∷ word (α ∷ ἱ ∷ []) "Rev.14.3"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.3"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.3"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.3"
∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.3"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.3"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.14.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ἳ ∷ []) "Rev.14.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.14.4"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.4"
∷ word (ἐ ∷ μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4"
∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Rev.14.4"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.4"
∷ word (ἂ ∷ ν ∷ []) "Rev.14.4"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.14.4"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4"
∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.4"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.14.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.5"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.5"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.14.5"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.14.5"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.14.5"
∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ί ∷ []) "Rev.14.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (π ∷ ε ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.6"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.6"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.6"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.14.6"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6"
∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rev.14.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.7"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.7"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.7"
∷ word (Φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.14.7"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.14.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.7"
∷ word (ἡ ∷ []) "Rev.14.7"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.7"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.14.7"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.7"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.7"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.14.7"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.8"
∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.14.8"
∷ word (ἡ ∷ []) "Rev.14.8"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.14.8"
∷ word (ἣ ∷ []) "Rev.14.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.14.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8"
∷ word (π ∷ ε ∷ π ∷ ό ∷ τ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Rev.14.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.14.8"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.14.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.9"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.14.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.9"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.9"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.9"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.9"
∷ word (Ε ∷ ἴ ∷ []) "Rev.14.9"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.9"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.9"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (ἢ ∷ []) "Rev.14.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.10"
∷ word (π ∷ ί ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (κ ∷ ε ∷ κ ∷ ε ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (ἀ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.10"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.10"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.10"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.14.10"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ὁ ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.14.11"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.11"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11"
∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.14.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.11"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11"
∷ word (ε ∷ ἴ ∷ []) "Rev.14.11"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.11"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.11"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11"
∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.14.12"
∷ word (ἡ ∷ []) "Rev.14.12"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.14.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.12"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.14.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.12"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.12"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.14.12"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.14.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.12"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.14.12"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.14.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.13"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.14.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.13"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.13"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.14.13"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.13"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.14.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.14.13"
∷ word (ο ∷ ἱ ∷ []) "Rev.14.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.13"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.13"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.13"
∷ word (ἀ ∷ π ∷ []) "Rev.14.13"
∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.14.13"
∷ word (ν ∷ α ∷ ί ∷ []) "Rev.14.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.14.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.13"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.14.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.14.13"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (κ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.14.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.14.13"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ []) "Rev.14.13"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.14"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rev.14.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.14"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.14.14"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.14"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.14.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.14"
∷ word (τ ∷ ῇ ∷ []) "Rev.14.14"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.14.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14"
∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.15"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.15"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.15"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.15"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.15"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.14.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.15"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.15"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.14.15"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15"
∷ word (θ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15"
∷ word (ἡ ∷ []) "Rev.14.15"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.15"
∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.14.15"
∷ word (ὁ ∷ []) "Rev.14.15"
∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.14.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.16"
∷ word (ὁ ∷ []) "Rev.14.16"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.16"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.16"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.16"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.14.16"
∷ word (ἡ ∷ []) "Rev.14.16"
∷ word (γ ∷ ῆ ∷ []) "Rev.14.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.17"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.14.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.17"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.14.17"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.17"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.17"
∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (ὁ ∷ []) "Rev.14.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.18"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.14.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.18"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.14.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.18"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.18"
∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.18"
∷ word (β ∷ ό ∷ τ ∷ ρ ∷ υ ∷ α ∷ ς ∷ []) "Rev.14.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.14.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.18"
∷ word (ἤ ∷ κ ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.18"
∷ word (α ∷ ἱ ∷ []) "Rev.14.18"
∷ word (σ ∷ τ ∷ α ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.14.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (ὁ ∷ []) "Rev.14.19"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.14.19"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἐ ∷ τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (ἄ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.19"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.19"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20"
∷ word (ἐ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.14.20"
∷ word (ἡ ∷ []) "Rev.14.20"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.20"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.14.20"
∷ word (ἐ ∷ κ ∷ []) "Rev.14.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20"
∷ word (∙λ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.20"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (χ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.20"
∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.15.1"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.15.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.15.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.1"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.1"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.15.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.1"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.15.1"
∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.1"
∷ word (ὁ ∷ []) "Rev.15.1"
∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.15.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.15.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.2"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.2"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.15.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2"
∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "Rev.15.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.3"
∷ word (Μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὰ ∷ []) "Rev.15.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.3"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.15.3"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.15.3"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.15.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.15.3"
∷ word (α ∷ ἱ ∷ []) "Rev.15.3"
∷ word (ὁ ∷ δ ∷ ο ∷ ί ∷ []) "Rev.15.3"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3"
∷ word (ὁ ∷ []) "Rev.15.3"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.15.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.3"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.3"
∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.15.4"
∷ word (ο ∷ ὐ ∷ []) "Rev.15.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.15.4"
∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.15.4"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.15.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.15.4"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.4"
∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.15.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.4"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.15.4"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.4"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ά ∷ []) "Rev.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.5"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.15.5"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.15.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.5"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.15.5"
∷ word (ὁ ∷ []) "Rev.15.5"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.5"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.15.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.5"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.5"
∷ word (ἐ ∷ ν ∷ []) "Rev.15.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.15.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.15.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.15.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.15.6"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.6"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.15.6"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (∙λ ∷ ί ∷ ν ∷ ο ∷ ν ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rev.15.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.15.6"
∷ word (σ ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.15.6"
∷ word (ζ ∷ ώ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.6"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.7"
∷ word (ἓ ∷ ν ∷ []) "Rev.15.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.15.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.15.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.7"
∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.7"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.8"
∷ word (ὁ ∷ []) "Rev.15.8"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.15.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.15.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.15.8"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.15.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.15.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.15.8"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.15.8"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.15.8"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.8"
∷ word (α ∷ ἱ ∷ []) "Rev.15.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.15.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.15.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.1"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.16.1"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.1"
∷ word (ἐ ∷ κ ∷ χ ∷ έ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.2"
∷ word (ὁ ∷ []) "Rev.16.2"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.2"
∷ word (ἕ ∷ ∙λ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.16.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.2"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.16.2"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.16.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (ὁ ∷ []) "Rev.16.3"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.3"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.3"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.3"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.3"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.3"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "Rev.16.3"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.16.3"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.16.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.16.3"
∷ word (τ ∷ ῇ ∷ []) "Rev.16.3"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.16.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (ὁ ∷ []) "Rev.16.4"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.4"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.4"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.4"
∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.4"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.4"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.16.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.5"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (Δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (ε ∷ ἶ ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ὢ ∷ ν ∷ []) "Rev.16.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ἦ ∷ ν ∷ []) "Rev.16.5"
∷ word (ὁ ∷ []) "Rev.16.5"
∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.5"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.16.5"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Rev.16.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.6"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ α ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.6"
∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.16.6"
∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.6"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.16.6"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.7"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.7"
∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.16.7"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.16.7"
∷ word (ὁ ∷ []) "Rev.16.7"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.16.7"
∷ word (ὁ ∷ []) "Rev.16.7"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.16.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.16.7"
∷ word (α ∷ ἱ ∷ []) "Rev.16.7"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.7"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.16.7"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.8"
∷ word (ὁ ∷ []) "Rev.16.8"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.8"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.8"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.8"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.16.8"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.16.8"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.16.9"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.16.9"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.16.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.9"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.9"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.9"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9"
∷ word (ο ∷ ὐ ∷ []) "Rev.16.9"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.9"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.16.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ὁ ∷ []) "Rev.16.10"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.10"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.10"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.10"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.10"
∷ word (ἡ ∷ []) "Rev.16.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10"
∷ word (ἐ ∷ μ ∷ α ∷ σ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.10"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ς ∷ []) "Rev.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10"
∷ word (π ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.11"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (π ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (ἑ ∷ ∙λ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11"
∷ word (ο ∷ ὐ ∷ []) "Rev.16.11"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.12"
∷ word (ὁ ∷ []) "Rev.16.12"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.12"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.12"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Rev.16.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.12"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.16.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.12"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.12"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.16.12"
∷ word (ἡ ∷ []) "Rev.16.12"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ς ∷ []) "Rev.16.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.16.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.12"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.16.12"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Rev.16.13"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.13"
∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.13"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.16.13"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.13"
∷ word (β ∷ ά ∷ τ ∷ ρ ∷ α ∷ χ ∷ ο ∷ ι ∷ []) "Rev.16.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.16.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.16.14"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.14"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.14"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rev.16.14"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.16.14"
∷ word (ἃ ∷ []) "Rev.16.14"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.16.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.14"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.16.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.16.15"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.15"
∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.16.15"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.15"
∷ word (ὁ ∷ []) "Rev.16.15"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.16.15"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.15"
∷ word (μ ∷ ὴ ∷ []) "Rev.16.15"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.16.15"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῇ ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.15"
∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.16"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ γ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.16.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.16"
∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.16.16"
∷ word (Ἁ ∷ ρ ∷ μ ∷ α ∷ γ ∷ ε ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.16.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.17"
∷ word (ὁ ∷ []) "Rev.16.17"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.16.17"
∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.17"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.17"
∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.16.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.17"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.16.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.17"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.17"
∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἀ ∷ φ ∷ []) "Rev.16.18"
∷ word (ο ∷ ὗ ∷ []) "Rev.16.18"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.18"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.16.18"
∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.18"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Rev.16.18"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.19"
∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.19"
∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (α ∷ ἱ ∷ []) "Rev.16.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.16.19"
∷ word (ἡ ∷ []) "Rev.16.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19"
∷ word (ἐ ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Rev.16.19"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.16.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.16.19"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.19"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.20"
∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.16.20"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.16.20"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.16.20"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21"
∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.16.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.16.21"
∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ι ∷ α ∷ ί ∷ α ∷ []) "Rev.16.21"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.16.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.21"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.21"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.16.21"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.21"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.16.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (χ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ η ∷ ς ∷ []) "Rev.16.21"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.16.21"
∷ word (ἡ ∷ []) "Rev.16.21"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.16.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21"
∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Rev.16.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.1"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.1"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.17.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.1"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.17.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.17.1"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.17.1"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.1"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.1"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.1"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.17.1"
∷ word (μ ∷ ε ∷ θ ∷ []) "Rev.17.2"
∷ word (ἧ ∷ ς ∷ []) "Rev.17.2"
∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.2"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.2"
∷ word (ἐ ∷ μ ∷ ε ∷ θ ∷ ύ ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.17.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.2"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.17.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.17.3"
∷ word (μ ∷ ε ∷ []) "Rev.17.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.3"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.3"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.3"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.3"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.3"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.3"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (ἡ ∷ []) "Rev.17.4"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.4"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.4"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.17.4"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.17.4"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.4"
∷ word (τ ∷ ῇ ∷ []) "Rev.17.4"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.17.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.4"
∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.4"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.17.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.5"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.5"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.5"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.5"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.17.5"
∷ word (ἡ ∷ []) "Rev.17.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.5"
∷ word (ἡ ∷ []) "Rev.17.5"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Rev.17.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5"
∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.6"
∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.17.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.17.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.6"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ []) "Rev.17.6"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Rev.17.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6"
∷ word (θ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.17.6"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.17.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.17.7"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.7"
∷ word (ὁ ∷ []) "Rev.17.7"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rev.17.7"
∷ word (τ ∷ ί ∷ []) "Rev.17.7"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.17.7"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.17.7"
∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Rev.17.7"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.7"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.7"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.17.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.17.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.7"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.7"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.7"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.7"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.7"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (ὃ ∷ []) "Rev.17.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.17.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.8"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ὧ ∷ ν ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ []) "Rev.17.8"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.17.8"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.17.8"
∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.8"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.8"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8"
∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.17.9"
∷ word (ὁ ∷ []) "Rev.17.9"
∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.17.9"
∷ word (ὁ ∷ []) "Rev.17.9"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.9"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.9"
∷ word (α ∷ ἱ ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.17.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.17.9"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.17.9"
∷ word (ἡ ∷ []) "Rev.17.9"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.9"
∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.9"
∷ word (ἐ ∷ π ∷ []) "Rev.17.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.9"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.10"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.17.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.10"
∷ word (ὁ ∷ []) "Rev.17.10"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.10"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.10"
∷ word (ὁ ∷ []) "Rev.17.10"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.10"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.10"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.17.10"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.17.10"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.17.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.17.10"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.17.10"
∷ word (μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.11"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.11"
∷ word (ὃ ∷ []) "Rev.17.11"
∷ word (ἦ ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.11"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.17.11"
∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ό ∷ ς ∷ []) "Rev.17.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ἐ ∷ κ ∷ []) "Rev.17.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.11"
∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.11"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.11"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.12"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.12"
∷ word (ἃ ∷ []) "Rev.17.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.12"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.12"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.17.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.17.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.17.12"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.12"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.12"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.13"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.13"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.13"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.13"
∷ word (τ ∷ ῷ ∷ []) "Rev.17.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.13"
∷ word (δ ∷ ι ∷ δ ∷ ό ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.14"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.14"
∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.17.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.17.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.17.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.17.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.14"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14"
∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.17.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.15"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.15"
∷ word (Τ ∷ ὰ ∷ []) "Rev.17.15"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.15"
∷ word (ἃ ∷ []) "Rev.17.15"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.15"
∷ word (ο ∷ ὗ ∷ []) "Rev.17.15"
∷ word (ἡ ∷ []) "Rev.17.15"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ []) "Rev.17.15"
∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.15"
∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.17.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15"
∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὰ ∷ []) "Rev.17.16"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.16"
∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.16"
∷ word (ἃ ∷ []) "Rev.17.16"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.17.16"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.16"
∷ word (μ ∷ ι ∷ σ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.17.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ή ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.16"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.16"
∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16"
∷ word (ἐ ∷ ν ∷ []) "Rev.17.16"
∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.17.16"
∷ word (ὁ ∷ []) "Rev.17.17"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.17.17"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.17.17"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.17.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.17"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17"
∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.17.17"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.17"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.17"
∷ word (ο ∷ ἱ ∷ []) "Rev.17.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.17.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.17.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.18"
∷ word (ἣ ∷ ν ∷ []) "Rev.17.18"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.18"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.18"
∷ word (ἡ ∷ []) "Rev.17.18"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.18"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.18"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.18.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.18.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.1"
∷ word (ἡ ∷ []) "Rev.18.1"
∷ word (γ ∷ ῆ ∷ []) "Rev.18.1"
∷ word (ἐ ∷ φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.18.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.1"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.18.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.2"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ᾷ ∷ []) "Rev.18.2"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.18.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.2"
∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.2"
∷ word (ἡ ∷ []) "Rev.18.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.2"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2"
∷ word (μ ∷ ε ∷ μ ∷ ι ∷ σ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.3"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.3"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.3"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3"
∷ word (σ ∷ τ ∷ ρ ∷ ή ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.18.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.4"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.18.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.4"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.18.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.4"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.4"
∷ word (Ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (ὁ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "Rev.18.4"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.18.4"
∷ word (ἐ ∷ ξ ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.4"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.4"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.18.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.4"
∷ word (∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.5"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5"
∷ word (α ∷ ἱ ∷ []) "Rev.18.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Rev.18.5"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.18.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.5"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.5"
∷ word (ἐ ∷ μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.5"
∷ word (ὁ ∷ []) "Rev.18.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.5"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rev.18.6"
∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ᾶ ∷ []) "Rev.18.6"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.18.6"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.18.6"
∷ word (ᾧ ∷ []) "Rev.18.6"
∷ word (ἐ ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.6"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.6"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.18.7"
∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7"
∷ word (α ∷ ὑ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7"
∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.7"
∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.18.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.7"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.7"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rev.18.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.18.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7"
∷ word (Κ ∷ ά ∷ θ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Rev.18.7"
∷ word (β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Rev.18.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.18.7"
∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rev.18.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.7"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.7"
∷ word (ἴ ∷ δ ∷ ω ∷ []) "Rev.18.7"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.8"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.18.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.8"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.8"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.8"
∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.8"
∷ word (α ∷ ἱ ∷ []) "Rev.18.8"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.8"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.18.8"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.8"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.18.8"
∷ word (ὁ ∷ []) "Rev.18.8"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.8"
∷ word (ὁ ∷ []) "Rev.18.8"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Rev.18.8"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (κ ∷ ∙λ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.9"
∷ word (ἐ ∷ π ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9"
∷ word (σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.18.9"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.9"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.10"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.10"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.10"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.10"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "Rev.18.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.10"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.10"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10"
∷ word (ἡ ∷ []) "Rev.18.10"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rev.18.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.11"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.11"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.11"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.11"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11"
∷ word (ἐ ∷ π ∷ []) "Rev.18.11"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.11"
∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.11"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.18.11"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.18.11"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.11"
∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (β ∷ υ ∷ σ ∷ σ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (σ ∷ ι ∷ ρ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (κ ∷ ο ∷ κ ∷ κ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (θ ∷ ύ ∷ ϊ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ φ ∷ ά ∷ ν ∷ τ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.12"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (σ ∷ ι ∷ δ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12"
∷ word (μ ∷ α ∷ ρ ∷ μ ∷ ά ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (κ ∷ ι ∷ ν ∷ ν ∷ ά ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (∙λ ∷ ί ∷ β ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ε ∷ μ ∷ ί ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (κ ∷ τ ∷ ή ∷ ν ∷ η ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ῥ ∷ ε ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (σ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.18.13"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (ἡ ∷ []) "Rev.18.14"
∷ word (ὀ ∷ π ∷ ώ ∷ ρ ∷ α ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (∙λ ∷ ι ∷ π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.14"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.14"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.18.14"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.15"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.15"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.15"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (ἀ ∷ π ∷ []) "Rev.18.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.15"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.15"
∷ word (σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.15"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.15"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.15"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.15"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.16"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.16"
∷ word (ἡ ∷ []) "Rev.18.16"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.18.16"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.18.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "Rev.18.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.17"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.17"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.17"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.17"
∷ word (ὁ ∷ []) "Rev.18.17"
∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17"
∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17"
∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17"
∷ word (ὁ ∷ []) "Rev.18.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.17"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.18.17"
∷ word (π ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (ν ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.18.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.17"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17"
∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.17"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.17"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.18"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.18"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18"
∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.18.18"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.18.18"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.18.18"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.18.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.19"
∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.19"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.19"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.18.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.18.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.19"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.19"
∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.19"
∷ word (ἡ ∷ []) "Rev.18.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.19"
∷ word (ἡ ∷ []) "Rev.18.19"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.19"
∷ word (ᾗ ∷ []) "Rev.18.19"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.19"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.19"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Rev.18.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.19"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.19"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.18.19"
∷ word (ἐ ∷ κ ∷ []) "Rev.18.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.19"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.19"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.19"
∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.19"
∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.20"
∷ word (ἐ ∷ π ∷ []) "Rev.18.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.20"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ έ ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.18.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.20"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.20"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.18.20"
∷ word (ὁ ∷ []) "Rev.18.20"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.18.20"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.18.20"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.18.20"
∷ word (ἐ ∷ ξ ∷ []) "Rev.18.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.18.21"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.18.21"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.18.21"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.21"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Rev.18.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.18.21"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.21"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.18.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.18.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.21"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.21"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.21"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.18.21"
∷ word (ὁ ∷ ρ ∷ μ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.18.21"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.21"
∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.21"
∷ word (ἡ ∷ []) "Rev.18.21"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.21"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.21"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.21"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.21"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22"
∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (α ∷ ὐ ∷ ∙λ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.22"
∷ word (τ ∷ ε ∷ χ ∷ ν ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (τ ∷ έ ∷ χ ∷ ν ∷ η ∷ ς ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.22"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.22"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.22"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.22"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.18.23"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.23"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.23"
∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.23"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ς ∷ []) "Rev.18.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.18.23"
∷ word (μ ∷ ὴ ∷ []) "Rev.18.23"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ί ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23"
∷ word (ο ∷ ἱ ∷ []) "Rev.18.23"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.18.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.23"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.23"
∷ word (τ ∷ ῇ ∷ []) "Rev.18.23"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ α ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.18.23"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23"
∷ word (ἐ ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.23"
∷ word (τ ∷ ὰ ∷ []) "Rev.18.23"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (ἐ ∷ ν ∷ []) "Rev.18.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.24"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.18.24"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.18.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24"
∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.18.24"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.24"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.24"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.1"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.19.1"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.1"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.1"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.1"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.1"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.19.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ []) "Rev.19.1"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.19.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.1"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.19.2"
∷ word (α ∷ ἱ ∷ []) "Rev.19.2"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2"
∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.2"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.19.2"
∷ word (ἔ ∷ φ ∷ θ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.19.2"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.2"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.2"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.2"
∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.19.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.2"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.19.3"
∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Rev.19.3"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3"
∷ word (ὁ ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.19.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.3"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.3"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.3"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.19.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.3"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.4"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.19.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.4"
∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.19.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.4"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.19.4"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.19.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.4"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.19.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.4"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.19.4"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.19.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.19.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.5"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.5"
∷ word (Α ∷ ἰ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rev.19.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.5"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.5"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.5"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6"
∷ word (ὡ ∷ ς ∷ []) "Rev.19.6"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6"
∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.6"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6"
∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.6"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.6"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.6"
∷ word (ὁ ∷ []) "Rev.19.6"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.19.6"
∷ word (ὁ ∷ []) "Rev.19.6"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.19.6"
∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.7"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.19.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.7"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (ὁ ∷ []) "Rev.19.7"
∷ word (γ ∷ ά ∷ μ ∷ ο ∷ ς ∷ []) "Rev.19.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7"
∷ word (ἡ ∷ []) "Rev.19.7"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.19.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.19.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.8"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.19.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.8"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.8"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.8"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.8"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.19.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.19.9"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.9"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (γ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.9"
∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.19.9"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.19.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.9"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.19.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.19.10"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.10"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.19.10"
∷ word (μ ∷ ή ∷ []) "Rev.19.10"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.19.10"
∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.19.10"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.19.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.10"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.19.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.19.10"
∷ word (ἡ ∷ []) "Rev.19.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.10"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.19.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.10"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.19.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.19.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.19.11"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ὁ ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (ἐ ∷ π ∷ []) "Rev.19.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.19.11"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11"
∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ε ∷ ῖ ∷ []) "Rev.19.11"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.12"
∷ word (δ ∷ ὲ ∷ []) "Rev.19.12"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12"
∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.19.12"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.19.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.12"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12"
∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Rev.19.12"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.12"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.12"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.12"
∷ word (ὃ ∷ []) "Rev.19.12"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.19.12"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.19.12"
∷ word (ε ∷ ἰ ∷ []) "Rev.19.12"
∷ word (μ ∷ ὴ ∷ []) "Rev.19.12"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.19.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.13"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.13"
∷ word (β ∷ ε ∷ β ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.13"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13"
∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (ὁ ∷ []) "Rev.19.13"
∷ word (Λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rev.19.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (Θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.14"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.14"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.14"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.14"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.19.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.14"
∷ word (ἐ ∷ φ ∷ []) "Rev.19.14"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.14"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.14"
∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.14"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.19.14"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.15"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.19.15"
∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Rev.19.15"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.15"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.15"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.19.15"
∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Rev.19.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.15"
∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.15"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.19.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.19.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.16"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.16"
∷ word (μ ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.16"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.16"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.16"
∷ word (Β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.19.16"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.16"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.17"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Rev.19.17"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.19.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.17"
∷ word (τ ∷ ῷ ∷ []) "Rev.19.17"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.19.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.17"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.19.17"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.19.17"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.19.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.19.17"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17"
∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17"
∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.17"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.17"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Rev.19.17"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.17"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.17"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.19.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.18"
∷ word (φ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (ἐ ∷ π ∷ []) "Rev.19.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (τ ∷ ε ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.19"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.19"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.19.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.19"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.19"
∷ word (σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.19.19"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.19.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.19"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (ἐ ∷ π ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.19.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.20"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ὁ ∷ []) "Rev.19.20"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.19.20"
∷ word (ὁ ∷ []) "Rev.19.20"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.20"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.20"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὸ ∷ []) "Rev.19.20"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.20"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.19.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.20"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.20"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.19.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.20"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.19.20"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.20"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.19.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.19.21"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.19.21"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21"
∷ word (ἐ ∷ ν ∷ []) "Rev.19.21"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.21"
∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.21"
∷ word (τ ∷ ῇ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.19.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.19.21"
∷ word (τ ∷ ὰ ∷ []) "Rev.19.21"
∷ word (ὄ ∷ ρ ∷ ν ∷ ε ∷ α ∷ []) "Rev.19.21"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21"
∷ word (ἐ ∷ κ ∷ []) "Rev.19.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.1"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1"
∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.1"
∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.1"
∷ word (ἅ ∷ ∙λ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.1"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.20.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2"
∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.20.2"
∷ word (ὅ ∷ ς ∷ []) "Rev.20.2"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.2"
∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ὁ ∷ []) "Rev.20.2"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2"
∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.2"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.3"
∷ word (ἄ ∷ β ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.20.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3"
∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.3"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.20.3"
∷ word (μ ∷ ὴ ∷ []) "Rev.20.3"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.20.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.3"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.3"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.3"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.3"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.3"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.20.3"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.20.3"
∷ word (∙λ ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.20.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.20.3"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.3"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.20.4"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.20.4"
∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.20.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4"
∷ word (π ∷ ε ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ κ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.4"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ []) "Rev.20.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.4"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.4"
∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4"
∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.4"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.4"
∷ word (ο ∷ ἱ ∷ []) "Rev.20.5"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.20.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.5"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.20.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.5"
∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.5"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.5"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.5"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.5"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.5"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (ἡ ∷ []) "Rev.20.5"
∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Rev.20.5"
∷ word (ἡ ∷ []) "Rev.20.5"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.20.5"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ὁ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.20.6"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.6"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.6"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.20.6"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.6"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Rev.20.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.20.6"
∷ word (ὁ ∷ []) "Rev.20.6"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.6"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.20.6"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.20.6"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.6"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.6"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.20.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.6"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.20.7"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.7"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.7"
∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.7"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.7"
∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.7"
∷ word (ὁ ∷ []) "Rev.20.7"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.7"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.7"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῆ ∷ ς ∷ []) "Rev.20.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.8"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.20.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.8"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.8"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.8"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ []) "Rev.20.8"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8"
∷ word (Γ ∷ ὼ ∷ γ ∷ []) "Rev.20.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8"
∷ word (Μ ∷ α ∷ γ ∷ ώ ∷ γ ∷ []) "Rev.20.8"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.20.8"
∷ word (ὧ ∷ ν ∷ []) "Rev.20.8"
∷ word (ὁ ∷ []) "Rev.20.8"
∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.20.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.8"
∷ word (ὡ ∷ ς ∷ []) "Rev.20.8"
∷ word (ἡ ∷ []) "Rev.20.8"
∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Rev.20.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.20.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.9"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.9"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.9"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (ἐ ∷ κ ∷ ύ ∷ κ ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.9"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.20.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9"
∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.20.9"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.20.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.9"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.20.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.10"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.10"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.20.10"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (τ ∷ ὸ ∷ []) "Rev.20.10"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ὁ ∷ []) "Rev.20.10"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.10"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.20.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.20.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.20.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.10"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.20.11"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11"
∷ word (ἐ ∷ π ∷ []) "Rev.20.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11"
∷ word (ο ∷ ὗ ∷ []) "Rev.20.11"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.20.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.11"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.11"
∷ word (ἡ ∷ []) "Rev.20.11"
∷ word (γ ∷ ῆ ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (ὁ ∷ []) "Rev.20.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.20.11"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.11"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12"
∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.20.12"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.12"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.20.12"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.12"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ []) "Rev.20.12"
∷ word (ὅ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.12"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12"
∷ word (ο ∷ ἱ ∷ []) "Rev.20.12"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.20.12"
∷ word (ἐ ∷ κ ∷ []) "Rev.20.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.12"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.12"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.12"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.12"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.12"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.20.13"
∷ word (ἡ ∷ []) "Rev.20.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ὁ ∷ []) "Rev.20.13"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ὁ ∷ []) "Rev.20.13"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.13"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13"
∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.13"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.13"
∷ word (τ ∷ ὰ ∷ []) "Rev.20.13"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.14"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.14"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14"
∷ word (ὁ ∷ []) "Rev.20.14"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.14"
∷ word (ἡ ∷ []) "Rev.20.14"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ []) "Rev.20.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.15"
∷ word (ε ∷ ἴ ∷ []) "Rev.20.15"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.20.15"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.15"
∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.15"
∷ word (ἐ ∷ ν ∷ []) "Rev.20.15"
∷ word (τ ∷ ῇ ∷ []) "Rev.20.15"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Rev.20.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.15"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.15"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.20.15"
∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.15"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.15"
∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ ν ∷ []) "Rev.21.1"
∷ word (ὁ ∷ []) "Rev.21.1"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.1"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ἡ ∷ []) "Rev.21.1"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.21.1"
∷ word (γ ∷ ῆ ∷ []) "Rev.21.1"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1"
∷ word (ἡ ∷ []) "Rev.21.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.21.1"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.1"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.1"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.2"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.21.2"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.2"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.2"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.2"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.2"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rev.21.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.3"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.21.3"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.21.3"
∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.21.3"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.3"
∷ word (ἡ ∷ []) "Rev.21.3"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Rev.21.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.21.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.3"
∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.3"
∷ word (ὁ ∷ []) "Rev.21.3"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.3"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4"
∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.21.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.4"
∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.21.4"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4"
∷ word (ὁ ∷ []) "Rev.21.4"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ὴ ∷ []) "Rev.21.4"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4"
∷ word (π ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4"
∷ word (τ ∷ ὰ ∷ []) "Rev.21.4"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.21.4"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.4"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Rev.21.5"
∷ word (ὁ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.5"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.5"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.21.5"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὰ ∷ []) "Rev.21.5"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rev.21.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.21.5"
∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.21.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.21.5"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.21.5"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.5"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.21.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.21.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.21.6"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.6"
∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ ν ∷ []) "Rev.21.6"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.21.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (Ὦ ∷ []) "Rev.21.6"
∷ word (ἡ ∷ []) "Rev.21.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.21.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.6"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.6"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.6"
∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.6"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.21.6"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (π ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.6"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.6"
∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.21.6"
∷ word (ὁ ∷ []) "Rev.21.7"
∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.21.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.21.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7"
∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.21.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.21.7"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.7"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.7"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.7"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Rev.21.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (δ ∷ ὲ ∷ []) "Rev.21.8"
∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ἐ ∷ β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.21.8"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.8"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.8"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.8"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.21.8"
∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ []) "Rev.21.8"
∷ word (τ ∷ ῇ ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.21.8"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.21.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8"
∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.21.8"
∷ word (ὅ ∷ []) "Rev.21.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.8"
∷ word (ὁ ∷ []) "Rev.21.8"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (ὁ ∷ []) "Rev.21.8"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.9"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.21.9"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.9"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.9"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.9"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.9"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.21.9"
∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.21.9"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.21.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.21.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.21.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.9"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.21.10"
∷ word (μ ∷ ε ∷ []) "Rev.21.10"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.10"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.21.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.10"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.21.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.10"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.10"
∷ word (ἐ ∷ κ ∷ []) "Rev.21.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.10"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.11"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.11"
∷ word (ὁ ∷ []) "Rev.21.11"
∷ word (φ ∷ ω ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.21.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.11"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.11"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.11"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11"
∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.21.11"
∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.11"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.12"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.12"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.12"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.12"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.12"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.12"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.21.12"
∷ word (ἅ ∷ []) "Rev.21.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12"
∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.21.12"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.21.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (β ∷ ο ∷ ρ ∷ ρ ∷ ᾶ ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (ν ∷ ό ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13"
∷ word (δ ∷ υ ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.13"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.14"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.14"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.21.14"
∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14"
∷ word (ἐ ∷ π ∷ []) "Rev.21.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.14"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (ὁ ∷ []) "Rev.21.15"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.15"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.15"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.15"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.21.15"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.15"
∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.21.15"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.21.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.15"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.21.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.15"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.21.15"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.15"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (ἡ ∷ []) "Rev.21.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.16"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.21.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.16"
∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.16"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.16"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.16"
∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Rev.21.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16"
∷ word (ἴ ∷ σ ∷ α ∷ []) "Rev.21.16"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.21.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.17"
∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.17"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.17"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.21.17"
∷ word (π ∷ η ∷ χ ∷ ῶ ∷ ν ∷ []) "Rev.21.17"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.17"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.21.17"
∷ word (ὅ ∷ []) "Rev.21.17"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.17"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.21.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18"
∷ word (ἡ ∷ []) "Rev.21.18"
∷ word (ἐ ∷ ν ∷ δ ∷ ώ ∷ μ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.18"
∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.18"
∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18"
∷ word (ἡ ∷ []) "Rev.21.18"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.18"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.18"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.18"
∷ word (ὑ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.21.18"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ῷ ∷ []) "Rev.21.18"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.21.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.19"
∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.19"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.21.19"
∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.19"
∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.21.19"
∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (σ ∷ ά ∷ π ∷ φ ∷ ι ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ η ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.19"
∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (σ ∷ μ ∷ ά ∷ ρ ∷ α ∷ γ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.19"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ό ∷ ν ∷ υ ∷ ξ ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (σ ∷ ά ∷ ρ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ∙λ ∷ ι ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (β ∷ ή ∷ ρ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἔ ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (τ ∷ ο ∷ π ∷ ά ∷ ζ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ π ∷ ρ ∷ α ∷ σ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (ἑ ∷ ν ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὑ ∷ ά ∷ κ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ὁ ∷ []) "Rev.21.20"
∷ word (δ ∷ ω ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (ἀ ∷ μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.21"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.21"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.21"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.21.21"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.21"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.21"
∷ word (π ∷ υ ∷ ∙λ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.21.21"
∷ word (ἦ ∷ ν ∷ []) "Rev.21.21"
∷ word (ἐ ∷ ξ ∷ []) "Rev.21.21"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.21"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21"
∷ word (ἡ ∷ []) "Rev.21.21"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.21.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.21"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.21"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.21"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.21"
∷ word (ὡ ∷ ς ∷ []) "Rev.21.21"
∷ word (ὕ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.21"
∷ word (δ ∷ ι ∷ α ∷ υ ∷ γ ∷ ή ∷ ς ∷ []) "Rev.21.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.22"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.21.22"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.22"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.22"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.22"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.21.22"
∷ word (ὁ ∷ []) "Rev.21.22"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.21.22"
∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.21.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.22"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.22"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ []) "Rev.21.23"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.23"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.23"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.21.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.23"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.21.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.21.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.23"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.23"
∷ word (ἡ ∷ []) "Rev.21.23"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.23"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.21.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.23"
∷ word (ἐ ∷ φ ∷ ώ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23"
∷ word (ὁ ∷ []) "Rev.21.23"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23"
∷ word (τ ∷ ὸ ∷ []) "Rev.21.23"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24"
∷ word (τ ∷ ὰ ∷ []) "Rev.21.24"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.21.24"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.21.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.24"
∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.21.24"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.24"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.24"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.25"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.25"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.25"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.25"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.25"
∷ word (κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.25"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.21.25"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.21.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.25"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.25"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.21.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26"
∷ word (ο ∷ ἴ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.21.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.26"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.21.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.26"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (ο ∷ ὐ ∷ []) "Rev.21.27"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.21.27"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.27"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.21.27"
∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Rev.21.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.27"
∷ word (ε ∷ ἰ ∷ []) "Rev.21.27"
∷ word (μ ∷ ὴ ∷ []) "Rev.21.27"
∷ word (ο ∷ ἱ ∷ []) "Rev.21.27"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.27"
∷ word (ἐ ∷ ν ∷ []) "Rev.21.27"
∷ word (τ ∷ ῷ ∷ []) "Rev.21.27"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.21.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.27"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.27"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.1"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.22.1"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.22.1"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.1"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.1"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.22.1"
∷ word (ὡ ∷ ς ∷ []) "Rev.22.1"
∷ word (κ ∷ ρ ∷ ύ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.1"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.22.1"
∷ word (ἐ ∷ κ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.1"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.2"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.22.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ῦ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.2"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.2"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.2"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.22.2"
∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.22.2"
∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.22.2"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rev.22.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2"
∷ word (τ ∷ ὰ ∷ []) "Rev.22.2"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Rev.22.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.2"
∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.2"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.22.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "Rev.22.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (ὁ ∷ []) "Rev.22.3"
∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.3"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.22.3"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.3"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.22.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4"
∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.4"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.4"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4"
∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.22.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.5"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.5"
∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.22.5"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.22.5"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.22.5"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.5"
∷ word (ὁ ∷ []) "Rev.22.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.5"
∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.5"
∷ word (ἐ ∷ π ∷ []) "Rev.22.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.22.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.5"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.5"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.5"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.22.6"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.6"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.22.6"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6"
∷ word (ὁ ∷ []) "Rev.22.6"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.6"
∷ word (ὁ ∷ []) "Rev.22.6"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.6"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.22.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.6"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.22.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6"
∷ word (ἃ ∷ []) "Rev.22.6"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.22.6"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.22.6"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.6"
∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.22.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.7"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.7"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.7"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.7"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.7"
∷ word (ὁ ∷ []) "Rev.22.7"
∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.7"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.7"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.7"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.7"
∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.22.8"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.22.8"
∷ word (ὁ ∷ []) "Rev.22.8"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.22.8"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8"
∷ word (ἔ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.22.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.22.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.8"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.8"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.22.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8"
∷ word (δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ό ∷ ς ∷ []) "Rev.22.8"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.9"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.22.9"
∷ word (μ ∷ ή ∷ []) "Rev.22.9"
∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.22.9"
∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.22.9"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9"
∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.9"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.9"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.9"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.22.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.22.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.10"
∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.10"
∷ word (Μ ∷ ὴ ∷ []) "Rev.22.10"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.10"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.10"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.10"
∷ word (ὁ ∷ []) "Rev.22.10"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.22.10"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.22.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.22.10"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.22.11"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.11"
∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.22.11"
∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11"
∷ word (ὁ ∷ []) "Rev.22.11"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11"
∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.12"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.12"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.12"
∷ word (ὁ ∷ []) "Rev.22.12"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "Rev.22.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.12"
∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.22.12"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.12"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.22.12"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.22.12"
∷ word (ὡ ∷ ς ∷ []) "Rev.22.12"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.12"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rev.22.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.22.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.12"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (Ὦ ∷ []) "Rev.22.13"
∷ word (ὁ ∷ []) "Rev.22.13"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (ὁ ∷ []) "Rev.22.13"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (ἡ ∷ []) "Rev.22.13"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.22.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.13"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.22.13"
∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.22.14"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.14"
∷ word (π ∷ ∙λ ∷ ύ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.22.14"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.14"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.22.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.22.14"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.14"
∷ word (ἡ ∷ []) "Rev.22.14"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.22.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.14"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.14"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.14"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.14"
∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.22.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.22.14"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (κ ∷ ύ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (φ ∷ ά ∷ ρ ∷ μ ∷ α ∷ κ ∷ ο ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (ο ∷ ἱ ∷ []) "Rev.22.15"
∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.22.15"
∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.22.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.22.15"
∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.22.15"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.16"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.22.16"
∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Rev.22.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.16"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.22.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.16"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.16"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.22.16"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.16"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.22.16"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.22.16"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.22.16"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.16"
∷ word (ἡ ∷ []) "Rev.22.16"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.22.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.16"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.16"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.16"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.22.16"
∷ word (ὁ ∷ []) "Rev.22.16"
∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.22.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ἡ ∷ []) "Rev.22.17"
∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ []) "Rev.22.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.17"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.17"
∷ word (ε ∷ ἰ ∷ π ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.17"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ []) "Rev.22.17"
∷ word (ἐ ∷ ρ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rev.22.17"
∷ word (ὁ ∷ []) "Rev.22.17"
∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.22.17"
∷ word (∙λ ∷ α ∷ β ∷ έ ∷ τ ∷ ω ∷ []) "Rev.22.17"
∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.22.17"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.17"
∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.22.17"
∷ word (Μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.18"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.22.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.18"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.18"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ []) "Rev.22.18"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.18"
∷ word (ὁ ∷ []) "Rev.22.18"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ π ∷ []) "Rev.22.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.18"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.18"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.18"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.18"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.19"
∷ word (ἀ ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.22.19"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19"
∷ word (∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Rev.22.19"
∷ word (ἀ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rev.22.19"
∷ word (ὁ ∷ []) "Rev.22.19"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ὸ ∷ []) "Rev.22.19"
∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.22.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19"
∷ word (ἐ ∷ κ ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19"
∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.19"
∷ word (ἐ ∷ ν ∷ []) "Rev.22.19"
∷ word (τ ∷ ῷ ∷ []) "Rev.22.19"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.19"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.19"
∷ word (Λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.20"
∷ word (ὁ ∷ []) "Rev.22.20"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.20"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.20"
∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.22.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.20"
∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.20"
∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.22.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.20"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.22.20"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.20"
∷ word (Ἡ ∷ []) "Rev.22.21"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.22.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.21"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.21"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.22.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.21"
∷ []
| {
"alphanum_fraction": 0.3367893147,
"avg_line_length": 43.9144656644,
"ext": "agda",
"hexsha": "10e1d57b88db73e1ee9a79063fe76e53aa2ffdd9",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda",
"max_line_length": 87,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 300034,
"size": 432294
} |
module Oscar.Prelude where
module _ where -- Objectevel
open import Agda.Primitive public
using ()
renaming ( Level to Ł
; lzero to ∅̂
; lsuc to ↑̂_
; _⊔_ to _∙̂_ )
infix 0 Ø_
Ø_ : ∀ 𝔬 → Set (↑̂ 𝔬)
Ø_ 𝔬 = Set 𝔬
Ø₀ = Ø ∅̂
Ø₁ = Ø (↑̂ ∅̂)
postulate
magic : ∀ {a} {A : Ø a} → A
module _ where -- Function
infixr 9 _∘_
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
infixr 9 _∘′_
_∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(B → C) → (A → B) → (A → C)
f ∘′ g = f ∘ g
¡ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒
¡ 𝓞 = 𝓞
infixl -10 ¡
syntax ¡ {𝔒 = A} x = x ofType A
¡[_] : ∀ {𝔬} (𝔒 : Ø 𝔬) → 𝔒 → 𝔒
¡[ _ ] = ¡
_∋_ : ∀ {a} (A : Set a) → A → A
A ∋ x = x
_∞ : ∀ {a} {A : Set a} → A → ∀ {b} {B : Set b} → B → A
_∞ x = λ _ → x
_∞⟦_⟧ : ∀ {a} {A : Set a} → A → ∀ {b} (B : Set b) → B → A
x ∞⟦ B ⟧ = _∞ x {B = B}
_∞₁ : ∀ ..{a} ..{A : Set a} → A → ∀ ..{b} ..{B : Set b} → ∀ ..{h} ..{H : Set h} → .(_ : B) .{_ : H} → A
_∞₁ f _ = f
_∞₃ : ∀ ..{a} ..{A : Set a} → A → ∀ ..{b} ..{B : Set b} → ∀ ..{h₁ h₂ h₃} ..{H₁ : Set h₁} ..{H₂ : Set h₂} ..{H₃ : Set h₃} → .(_ : B) .{_ : H₁} .{_ : H₂} .{_ : H₃} → A
_∞₃ f _ = f
hid : ∀ {a} {A : Set a} {x : A} → A
hid {x = x} = x
it : ∀ {a} {A : Set a} {{x : A}} → A
it {{x}} = x
{-# INLINE it #-}
! = it
asInstance : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ {{x}} → B x) → B x
asInstance x f = f {{x}}
{-# INLINE asInstance #-}
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → (∀ x y → C x y) → ∀ y x → C x y
flip f x y = f y x
{-# INLINE flip #-}
infixr -20 _$_
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x
f $ x = f x
infixr -20 _$′_
_$′_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → A → B
f $′ x = f x
-- The S combinator. (Written infix as in Conor McBride's paper
-- "Outrageous but Meaningful Coincidences: Dependent type-safe syntax
-- and evaluation".)
_ˢ_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} →
((x : A) (y : B x) → C x y) →
(g : (x : A) → B x) →
((x : A) → C x (g x))
f ˢ g = λ x → f x (g x)
infixr 0 case_of_ case_return_of_
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → (∀ x → B x) → B x
case x return B of f = f x
infixl 8 _on_
_on_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x y → B x → B y → Set c} →
(∀ {x y} (z : B x) (w : B y) → C x y z w) → (f : ∀ x → B x) → ∀ x y →
C x y (f x) (f y)
h on f = λ x y → h (f x) (f y)
{-# INLINE _on_ #-}
Function : ∀ {a} → Ø a → Ø a → Ø a
Function A B = A → B
Function⟦_⟧ : ∀ a → Ø a → Ø a → Ø a
Function⟦ a ⟧ = Function {a = a}
MFunction : ∀ {a b} (M : Ø a → Ø b) → Ø a → Ø a → Ø b
MFunction M A B = M A → M B
Arrow : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} {𝔟} → (𝔛 → Ø 𝔞) → (𝔛 → Ø 𝔟) → 𝔛 → 𝔛 → Ø 𝔞 ∙̂ 𝔟
Arrow 𝔄 𝔅 x y = 𝔄 x → 𝔅 y
module _ where
Extension : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → 𝔒 → 𝔒 → Ø 𝔭
Extension 𝔓 = Arrow 𝔓 𝔓
module _ where
_⟨_⟩→_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → ∀ {𝔭} → (𝔒 → Ø 𝔭) → 𝔒 → Ø 𝔭
m ⟨ 𝔓 ⟩→ n = Extension 𝔓 m n
π̂ : ∀ {𝔵} ℓ (𝔛 : Ø 𝔵) → Ø 𝔵 ∙̂ ↑̂ ℓ
π̂ ℓ 𝔛 = 𝔛 → Ø ℓ
infixl 21 _←̂_
_←̂_ = π̂
π̇ : ∀ {𝔞 𝔟} (𝔄 : Ø 𝔞) (𝔅 : 𝔄 → Ø 𝔟) → Ø 𝔞 ∙̂ 𝔟
π̇ 𝔄 𝔅 = (𝓐 : 𝔄) → 𝔅 𝓐
infixl 20 π̇
syntax π̇ 𝔄 (λ 𝓐 → 𝔅𝓐) = 𝔅𝓐 ← 𝓐 ≔ 𝔄
π̇-hidden-quantifier-syntax = π̇
infixl 20 π̇-hidden-quantifier-syntax
syntax π̇-hidden-quantifier-syntax 𝔄 (λ _ → 𝔅𝓐) = 𝔅𝓐 ← 𝔄
π̂² : ∀ {𝔞} ℓ → Ø 𝔞 → Ø 𝔞 ∙̂ ↑̂ ℓ
π̂² ℓ 𝔄 = ℓ ←̂ 𝔄 ← 𝔄
_→̂²_ : ∀ {𝔞} → Ø 𝔞 → ∀ ℓ → Ø 𝔞 ∙̂ ↑̂ ℓ
_→̂²_ 𝔒 ℓ = π̂² ℓ 𝔒
record Lift {a ℓ} (A : Set a) : Set (a ∙̂ ℓ) where
instance constructor lift
field lower : A
open Lift public
record Wrap {𝔵} (𝔛 : Ø 𝔵) : Ø 𝔵 where
constructor ∁
field
π₀ : 𝔛
open Wrap public
∀̇ : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞}
→ (∀ ℓ (𝔄 : Ø 𝔞) → Ø 𝔞 ∙̂ ↑̂ ℓ)
→ ∀ ℓ → (𝔛 → Ø 𝔞) → Ø 𝔵 ∙̂ 𝔞 ∙̂ ↑̂ ℓ
∀̇ Q ℓ 𝔄 = ∀ {x} → Q ℓ (𝔄 x)
Ṙelation : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} ℓ → (𝔞 ←̂ 𝔛) → Ø 𝔵 ∙̂ 𝔞 ∙̂ ↑̂ ℓ
Ṙelation ℓ P = Wrap (∀̇ π̂² ℓ P)
Pointwise : ∀ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {ℓ} → 𝔅 →̂² ℓ → (𝔅 ← 𝔄) → (𝔄 → 𝔅) → Ø 𝔞 ∙̂ ℓ
Pointwise _≈_ = λ f g → ∀ x → f x ≈ g x
Ṗroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔬} ℓ → (𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ) ←̂ (𝔬 ←̂ 𝔛)
Ṗroperty ℓ P = Wrap (∀̇ π̂ ℓ P)
LeftṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔶} {𝔜 : 𝔛 → Ø 𝔶} {𝔯} → ∀ ℓ → ((x : 𝔛) → 𝔜 x → Ø 𝔯) → 𝔛 → Ø 𝔶 ∙̂ 𝔯 ∙̂ ↑̂ ℓ
LeftṖroperty ℓ _↦_ = Ṗroperty ℓ ∘ _↦_
ArrowṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔭₁ 𝔭₂} → ∀ ℓ → (𝔛 → Ø 𝔭₁) → (𝔛 → Ø 𝔭₂) → 𝔛 → Ø 𝔵 ∙̂ 𝔭₁ ∙̂ 𝔭₂ ∙̂ ↑̂ ℓ
ArrowṖroperty ℓ 𝔒₁ 𝔒₂ = LeftṖroperty ℓ (Arrow 𝔒₁ 𝔒₂)
module _ where
infixr 5 _,_
record Σ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : 𝔒 → Ø 𝔭) : Ø 𝔬 ∙̂ 𝔭 where
instance constructor _,_
field
π₀ : 𝔒
π₁ : 𝔓 π₀
open Σ public
infixr 5 _,,_
record Σ′ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : Ø 𝔭) : Ø 𝔬 ∙̂ 𝔭 where
instance constructor _,,_
field
π₀ : 𝔒
π₁ : 𝔓
open Σ′ public
_×_ : ∀ {𝔬₁ 𝔬₂} (𝔒₁ : Ø 𝔬₁) (𝔒₂ : Ø 𝔬₂) → Ø 𝔬₁ ∙̂ 𝔬₂
_×_ O₁ O₂ = Σ O₁ (λ _ → O₂)
∃_ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → Ø 𝔬 ∙̂ 𝔭
∃_ = Σ _
uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} →
(∀ x (y : B x) → C x y) → (p : Σ A B) → C (π₀ p) (π₁ p)
uncurry f (x , y) = f x y
uncurry′ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} →
(∀ x → B x → C) → Σ A B → C
uncurry′ f (x , y) = f x y
curry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} →
(∀ p → C p) → ∀ x (y : B x) → C (x , y)
curry f x y = f (x , y)
ExtensionṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔬} {ℓ̇}
ℓ (𝔒 : 𝔛 → Ø 𝔬) (_↦_ : ∀̇ π̂² ℓ̇ 𝔒)
→ Ø 𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ ∙̂ ℓ̇
ExtensionṖroperty ℓ 𝔒 _↦_ = Σ (Ṗroperty ℓ 𝔒) (λ P → ∀ {x} {f g : 𝔒 x} → f ↦ g → Extension (π₀ P) f g)
LeftExtensionṖroperty : ∀ {𝔶} {𝔜 : Ø 𝔶} {𝔵} {𝔛 : 𝔜 → Ø 𝔵} {𝔬} {ℓ̇}
ℓ (𝔒 : (y : 𝔜) → 𝔛 y → Ø 𝔬) (_↦_ : ∀ {y} → ∀̇ π̂² ℓ̇ (𝔒 y))
→ 𝔜
→ Ø 𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ ∙̂ ℓ̇
LeftExtensionṖroperty ℓ 𝔒 _↦_ y = ExtensionṖroperty ℓ (𝔒 y) _↦_
ArrowExtensionṖroperty : ∀
{𝔵} {𝔛 : Ø 𝔵}
{𝔬₁} ℓ (𝔒₁ : 𝔛 → Ø 𝔬₁)
{𝔬₂} (𝔒₂ : 𝔛 → Ø 𝔬₂)
→ ∀ {ℓ̇} (_↦_ : ∀̇ π̂² ℓ̇ 𝔒₂)
→ 𝔛
→ Ø 𝔵 ∙̂ 𝔬₁ ∙̂ 𝔬₂ ∙̂ ↑̂ ℓ ∙̂ ℓ̇
ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ = LeftExtensionṖroperty ℓ (Arrow 𝔒₁ 𝔒₂) (Pointwise _↦_)
record Instance {a} (A : Set a) : Set a where
constructor ∁
field {{x}} : A
mkInstance : ∀ {a} {A : Set a} → A → Instance A
mkInstance x = ∁ {{x}}
| {
"alphanum_fraction": 0.408030303,
"avg_line_length": 26.0869565217,
"ext": "agda",
"hexsha": "d7b9d5f20f6751739b5d840c22a87aac0d8c8e33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Prelude.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Prelude.agda",
"max_line_length": 167,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3996,
"size": 6600
} |
{-# OPTIONS --cubical --postfix-projections --safe #-}
open import Relation.Binary
open import Prelude hiding (tt)
module Data.List.Sort.InsertionSort {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where
open import Relation.Binary.Construct.LowerBound totalOrder
open import Data.List.Sort.Sorted totalOrder
open TotalOrder totalOrder renaming (refl to refl-≤)
open TotalOrder lb-ord renaming (≤-trans to ⌊trans⌋) using ()
open import Data.List
open import Data.Unit.UniversePolymorphic as Poly using (tt)
open import Data.List.Relation.Binary.Permutation
open import Function.Isomorphism
open import Data.Fin
open import Data.List.Membership
private variable lb : ⌊∙⌋
insert : E → List E → List E
insert x [] = x ∷ []
insert x (y ∷ xs) with x ≤ᵇ y
... | true = x ∷ y ∷ xs
... | false = y ∷ insert x xs
insert-sort : List E → List E
insert-sort = foldr insert []
insert-sorts : ∀ x xs → lb ⌊≤⌋ ⌊ x ⌋ → SortedFrom lb xs → SortedFrom lb (insert x xs)
insert-sorts x [] lb≤x Pxs = lb≤x , tt
insert-sorts x (y ∷ xs) lb≤x (lb≤y , Sxs) with x ≤? y
... | yes x≤y = lb≤x , x≤y , Sxs
... | no x≰y = lb≤y , insert-sorts x xs (<⇒≤ (≰⇒> x≰y)) Sxs
sort-sorts : ∀ xs → Sorted (insert-sort xs)
sort-sorts [] = tt
sort-sorts (x ∷ xs) = insert-sorts x (insert-sort xs) tt (sort-sorts xs)
insert-perm : ∀ x xs → insert x xs ↭ x ∷ xs
insert-perm x [] = reflₚ
insert-perm x (y ∷ xs) with x ≤ᵇ y
... | true = consₚ x reflₚ
... | false = consₚ y (insert-perm x xs) ⟨ transₚ ⟩ swapₚ y x xs
sort-perm : ∀ xs → insert-sort xs ↭ xs
sort-perm [] = reflₚ {xs = []}
sort-perm (x ∷ xs) = insert-perm x (insert-sort xs) ⟨ transₚ {xs = insert x (insert-sort xs)} ⟩ consₚ x (sort-perm xs)
perm-invar : ∀ xs ys → xs ↭ ys → insert-sort xs ≡ insert-sort ys
perm-invar xs ys xs⇔ys =
perm-same
(insert-sort xs)
(insert-sort ys)
(sort-sorts xs)
(sort-sorts ys)
(λ k → sort-perm xs k ⟨ trans-⇔ ⟩ xs⇔ys k ⟨ trans-⇔ ⟩ sym-⇔ (sort-perm ys k))
| {
"alphanum_fraction": 0.6460040984,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "ea911648689ebd0ce8348af134a0b6c907bf5d6d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Sort/InsertionSort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Sort/InsertionSort.agda",
"max_line_length": 118,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Sort/InsertionSort.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 720,
"size": 1952
} |
------------------------------------------------------------------------------
-- We only translate definition with one clause
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module OnlyOneClause where
infixl 9 _+_
infix 7 _≡_
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
data _≡_ (n : ℕ) : ℕ → Set where
refl : n ≡ n
_+_ : ℕ → ℕ → ℕ
zero + n = n
succ m + n = succ (m + n)
{-# ATP definition _+_ #-}
postulate +-comm : ∀ m n → m + n ≡ n + m
{-# ATP prove +-comm #-}
| {
"alphanum_fraction": 0.401459854,
"avg_line_length": 23.6206896552,
"ext": "agda",
"hexsha": "4ed31ff69ac6e4e8f3935b96dc468081b37c93fa",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/Errors/OnlyOneClause.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Fail/Errors/OnlyOneClause.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/Errors/OnlyOneClause.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 168,
"size": 685
} |
module 015-logic where
-- Simple propositional logic.
open import 010-false-true
-- Logical and. We represent a proof of A and B as a pair of proofs,
-- namely, a proof of A and a proof of B.
data Pair (A B : Set) : Set where
_,_ : A -> B -> Pair A B
_∧_ : (A B : Set) -> Set
A ∧ B = Pair A B
-- Get back proof of any of the components.
a∧b->a : {A B : Set} -> A ∧ B -> A
a∧b->a (a , b) = a
a∧b->b : {A B : Set} -> A ∧ B -> B
a∧b->b (a , b) = b
-- Logical or. We represent a proof of A or B as a proof of A or a
-- proof of B.
data Either (A B : Set) : Set where
left : A -> Either A B
right : B -> Either A B
_∨_ : (A B : Set) -> Set
A ∨ B = Either A B
-- Negation.
¬_ : (A : Set) -> Set
¬ A = A -> False
-- Now some properties.
-- Commutativity.
a∧b->b∧a : ∀ {A B} -> A ∧ B -> B ∧ A
a∧b->b∧a ( a , b ) = ( b , a )
a∨b->b∨a : ∀ {A B} -> A ∨ B -> B ∨ A
a∨b->b∨a (left a) = right a
a∨b->b∨a (right b) = left b
-- Distributivity.
a∧[b∨c]->[a∧b]∨[a∧c] : ∀ {A B C} -> A ∧ (B ∨ C) -> (A ∧ B) ∨ (A ∧ C)
a∧[b∨c]->[a∧b]∨[a∧c] (a , left b) = left (a , b)
a∧[b∨c]->[a∧b]∨[a∧c] (a , right c) = right (a , c)
[a∧b]∨[a∧c]->a∧[b∨c] : ∀ {A B C} -> (A ∧ B) ∨ (A ∧ C) -> A ∧ (B ∨ C)
[a∧b]∨[a∧c]->a∧[b∨c] (left (a , b)) = (a , left b)
[a∧b]∨[a∧c]->a∧[b∨c] (right (a , c)) = (a , right c)
a∨[b∧c]->[a∨b]∧[a∨c] : ∀ {A B C} -> A ∨ (B ∧ C) -> (A ∨ B) ∧ (A ∨ C)
a∨[b∧c]->[a∨b]∧[a∨c] (left a) = (left a , left a)
a∨[b∧c]->[a∨b]∧[a∨c] (right (b , c)) = (right b , right c)
[a∨b]∧[a∨c]->a∨[b∧c] : ∀ {A B C} -> (A ∨ B) ∧ (A ∨ C) -> A ∨ (B ∧ C)
[a∨b]∧[a∨c]->a∨[b∧c] ( left a , _ ) = left a
[a∨b]∧[a∨c]->a∨[b∧c] ( _ , left a ) = left a
[a∨b]∧[a∨c]->a∨[b∧c] ( right b , right c ) = right (b , c)
-- Contraposition.
[a->b]->[¬b->¬a] : ∀ {A B} -> (A -> B) -> (¬ B -> ¬ A)
[a->b]->[¬b->¬a] a->b ¬b a = ¬b (a->b a)
-- Contradiction.
¬[a∧¬a] : ∀ {A} -> ¬ (A ∧ (¬ A))
¬[a∧¬a] ( a , ¬a ) = ¬a a
-- De Morgan.
¬[a∨b]->¬a∧¬b : ∀ {A B} -> ¬ (A ∨ B) -> (¬ A) ∧ (¬ B)
¬[a∨b]->¬a∧¬b ¬[a∨b] = (\a -> ¬[a∨b] (left a)) , (\b -> ¬[a∨b] (right b))
¬a∧¬b->¬[a∨b] : ∀ {A B} -> (¬ A) ∧ (¬ B) -> ¬ (A ∨ B)
¬a∧¬b->¬[a∨b] ( ¬a , ¬b ) (left a) = ¬a a
¬a∧¬b->¬[a∨b] ( ¬a , ¬b ) (right b) = ¬b b
¬a∨¬b->¬[a∧b] : ∀ {A B} -> (¬ A) ∨ (¬ B) -> ¬ (A ∧ B)
¬a∨¬b->¬[a∧b] (left ¬a) ( a , b ) = ¬a a
¬a∨¬b->¬[a∧b] (right ¬b) ( a , b ) = ¬b b
-- not provable, see https://math.stackexchange.com/questions/120187/does-de-morgans-laws-hold-in-propositional-intuitionistic-logic
-- ¬[a∧b]->¬a∨¬b : ∀ {A B} -> ¬ (A ∧ B) -> (¬ A) ∨ (¬ B)
-- ¬[a∧b]->¬a∨¬b ¬[a∧b] = {!!}
| {
"alphanum_fraction": 0.4189988175,
"avg_line_length": 26.7052631579,
"ext": "agda",
"hexsha": "6c00d29d2980530c8408acf80daf3be6af83e34c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mcmtroffaes/agda-proofs",
"max_forks_repo_path": "015-logic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mcmtroffaes/agda-proofs",
"max_issues_repo_path": "015-logic.agda",
"max_line_length": 132,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mcmtroffaes/agda-proofs",
"max_stars_repo_path": "015-logic.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z",
"num_tokens": 1414,
"size": 2537
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax QIO
type
T : 0-ary
P : 0-ary
term
new : P.T -> T
measure : P T T -> T
applyX : P P.T -> T
applyI2 : P P.T -> T
applyDuv : P P (P,P).T -> T
applyDu : P P.T -> T
applyDv : P P.T -> T
theory
(A) a:P t u:T |> applyX (a, b.measure(b, t, u)) = measure(a, u, t)
(B) a:P b:P t u:P.T |> measure(a, applyDu(b, b.t[b]), applyDv(b, b.u[b])) = applyDuv(a, b, a b.measure(a, t[b], u[b]))
(D) t u:T |> new(a.measure(a, t, u)) = t
(E) b:P t:(P, P).T |> new(a.applyDuv(a, b, a b. t[a,b])) = applyDu(b, b.new(a.t[a,b]))
-}
module QIO.Signature where
open import SOAS.Context
-- Type declaration
data QIOT : Set where
T : QIOT
P : QIOT
open import SOAS.Syntax.Signature QIOT public
open import SOAS.Syntax.Build QIOT public
-- Operator symbols
data QIOₒ : Set where
newₒ measureₒ applyXₒ applyI2ₒ applyDuvₒ applyDuₒ applyDvₒ : QIOₒ
-- Term signature
QIO:Sig : Signature QIOₒ
QIO:Sig = sig λ
{ newₒ → (P ⊢₁ T) ⟼₁ T
; measureₒ → (⊢₀ P) , (⊢₀ T) , (⊢₀ T) ⟼₃ T
; applyXₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T
; applyI2ₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T
; applyDuvₒ → (⊢₀ P) , (⊢₀ P) , (P , P ⊢₂ T) ⟼₃ T
; applyDuₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T
; applyDvₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T
}
open Signature QIO:Sig public
| {
"alphanum_fraction": 0.5356386733,
"avg_line_length": 24.8596491228,
"ext": "agda",
"hexsha": "b1f554c29295f872069d15c6e6e1b05daf763cf9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "out/QIO/Signature.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "out/QIO/Signature.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "out/QIO/Signature.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 659,
"size": 1417
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Dagger.Instance.Rels where
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
open import Level
open import Categories.Category.Dagger
open import Categories.Category.Instance.Rels
RelsHasDagger : ∀ {o ℓ} → HasDagger (Rels o ℓ)
RelsHasDagger = record
{ _† = flip
; †-identity = (lift ∘ sym ∘ lower) , (lift ∘ sym ∘ lower)
; †-homomorphism = (map₂ swap) , (map₂ swap)
; †-resp-≈ = λ p → (proj₁ p) , (proj₂ p) -- it's the implicits that need flipped
; †-involutive = λ _ → id , id
}
RelsDagger : ∀ o ℓ → DaggerCategory (suc o) (suc (o ⊔ ℓ)) (o ⊔ ℓ)
RelsDagger o ℓ = record
{ C = Rels o ℓ
; hasDagger = RelsHasDagger
}
| {
"alphanum_fraction": 0.6724832215,
"avg_line_length": 28.6538461538,
"ext": "agda",
"hexsha": "0d3a54dcf8c3ad5bd0f4d8913d15554cea69317a",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_line_length": 82,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 259,
"size": 745
} |
{-# OPTIONS --universe-polymorphism #-}
{-# OPTIONS --universe-polymorphism #-}
open import Level
open import Categories.Category
open import Categories.Product
-- Parameterize over the categories in whose product we are working
module Categories.Product.Properties
{o ℓ e o′ ℓ′ e′}
(C : Category o ℓ e)
(D : Category o′ ℓ′ e′)
where
C×D : Category _ _ _
C×D = Product C D
module C×D = Category C×D
import Categories.Product.Projections
open Categories.Product.Projections C D
open import Categories.Functor
open import Relation.Binary using (module IsEquivalence)
open import Relation.Binary.PropositionalEquality as PropEq
using ()
renaming (_≡_ to _≣_)
∏₁※∏₂≣id : (∏₁ ※ ∏₂) ≣ id
∏₁※∏₂≣id = PropEq.refl
∏₁※∏₂-identity : (∏₁ ※ ∏₂) ≡ id
∏₁※∏₂-identity h = refl
where open Heterogeneous C×D
※-distrib' :
∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
→ {A : Category o₁ ℓ₁ e₁}
→ {B : Category o₂ ℓ₂ e₂}
→ {F : Functor B C}
→ {G : Functor B D}
→ {H : Functor A B}
→ ((F ∘ H) ※ (G ∘ H)) ≣ ((F ※ G) ∘ H)
※-distrib' = PropEq.refl
※-distrib :
∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
→ {A : Category o₁ ℓ₁ e₁}
→ {B : Category o₂ ℓ₂ e₂}
→ (F : Functor B C)
→ (G : Functor B D)
→ (H : Functor A B)
→ ((F ∘ H) ※ (G ∘ H)) ≡ ((F ※ G) ∘ H)
※-distrib F G H h = refl
where open Heterogeneous C×D
∏₁※∏₂-distrib :
∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁}
→ (F : Functor A C×D)
→ ((∏₁ ∘ F) ※ (∏₂ ∘ F)) ≡ F
∏₁※∏₂-distrib F h = refl
where open Heterogeneous C×D
module Lemmas where
open Heterogeneous C×D
open import Data.Product
lem₁ : {x₁ y₁ x₂ y₂ : Category.Obj C}
→ {x₃ y₃ : Category.Obj D}
→ (f₁ : C [ x₁ , y₁ ])
→ (f₂ : C [ x₂ , y₂ ])
→ (g : D [ x₃ , y₃ ])
→ C [ f₁ ∼ f₂ ]
→ C×D [ (f₁ , g) ∼ (f₂ , g) ]
lem₁ f₁ f₂ g (≡⇒∼ f₁≡f₂) = ≡⇒∼ (f₁≡f₂ , Category.Equiv.refl D)
lem₂ : {x₁ y₁ x₂ y₂ : Category.Obj D}
→ {x₃ y₃ : Category.Obj C}
→ (f : C [ x₃ , y₃ ])
→ (g₁ : D [ x₁ , y₁ ])
→ (g₂ : D [ x₂ , y₂ ])
→ D [ g₁ ∼ g₂ ]
→ C×D [ (f , g₁) ∼ (f , g₂) ]
lem₂ f g₁ g₂ (≡⇒∼ g₁≡g₂) = ≡⇒∼ (Category.Equiv.refl C , g₁≡g₂)
open Lemmas
※-preserves-≡ˡ :
∀ {o₁ ℓ₁ e₁}
→ {A : Category o₁ ℓ₁ e₁}
→ (F₁ : Functor A C)
→ (F₂ : Functor A C)
→ (G : Functor A D)
→ (F₁ ≡ F₂) → ((F₁ ※ G) ≡ (F₂ ※ G))
※-preserves-≡ˡ F₁ F₂ G F₁≡F₂ h =
lem₁ (Functor.F₁ F₁ h) (Functor.F₁ F₂ h) (Functor.F₁ G h) (F₁≡F₂ h)
※-preserves-≡ʳ :
∀ {o₁ ℓ₁ e₁}
→ {A : Category o₁ ℓ₁ e₁}
→ (F : Functor A C)
→ (G₁ : Functor A D)
→ (G₂ : Functor A D)
→ (G₁ ≡ G₂) → ((F ※ G₁) ≡ (F ※ G₂))
※-preserves-≡ʳ F G₁ G₂ G₁≡G₂ h =
lem₂ (Functor.F₁ F h) (Functor.F₁ G₁ h) (Functor.F₁ G₂ h) (G₁≡G₂ h)
where open Heterogeneous C×D
.※-preserves-≡ :
∀ {o₁ ℓ₁ e₁}
→ {A : Category o₁ ℓ₁ e₁}
→ (F : Functor A C)
→ (G : Functor A C)
→ (H : Functor A D)
→ (I : Functor A D)
→ (F ≡ G) → (H ≡ I) → ((F ※ H) ≡ (G ※ I))
※-preserves-≡ {A = A} F G H I F≡G H≡I
= trans {i = F ※ H}{j = G ※ H}{k = G ※ I}
(※-preserves-≡ˡ F G H F≡G)
(※-preserves-≡ʳ G H I H≡I)
where open IsEquivalence (equiv {C = A}{D = C×D})
.※-universal :
∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁}
→ {F : Functor A C}
→ {G : Functor A D}
→ {I : Functor A C×D}
→ (∏₁ ∘ I ≡ F)
→ (∏₂ ∘ I ≡ G)
→ ((F ※ G) ≡ I)
※-universal {_}{_}{_}{A}{F}{G}{I} p₁ p₂ =
trans {i = F ※ G}{j = (∏₁ ∘ I) ※ (∏₂ ∘ I)}{k = I}
(sym {i = (∏₁ ∘ I) ※ (∏₂ ∘ I)}{j = F ※ G}
(※-preserves-≡ (∏₁ ∘ I) F (∏₂ ∘ I) G p₁ p₂))
(∏₁※∏₂-distrib I)
where open IsEquivalence (equiv {C = A}{D = C×D})
※-commute₁ :
∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁}
→ {F : Functor A C}
→ {G : Functor A D}
→ (∏₁ ∘ (F ※ G) ≡ F)
※-commute₁ h = refl
where open Heterogeneous C
※-commute₂ :
∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁}
→ {F : Functor A C}
→ {G : Functor A D}
→ (∏₂ ∘ (F ※ G) ≡ G)
※-commute₂ h = refl
where open Heterogeneous D
| {
"alphanum_fraction": 0.4927357794,
"avg_line_length": 26.7171052632,
"ext": "agda",
"hexsha": "6713fb2915a6140baabb9262c14b47ff41589e93",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Product/Properties.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Product/Properties.agda",
"max_line_length": 72,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Product/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1833,
"size": 4061
} |
module Dave.Logic.Basics where
open import Dave.Functions
open import Dave.Equality
open import Dave.Isomorphism
open import Dave.Structures.Monoid
{- True -}
data ⊤ : Set where
tt : ⊤
η-⊤ : ∀ (w : ⊤) → tt ≡ w
η-⊤ tt = refl
{- False -}
data ⊥ : Set where
-- no clauses!
⊥-elim : ∀ {A : Set} → ⊥ → A
⊥-elim ()
uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w
uniq-⊥ h ()
{- Product (Conjunction) -}
data _×_ (A B : Set) : Set where
⟨_,_⟩ : A → B → A × B
infixr 2 _×_
proj₁ : {A B : Set} → A × B → A
proj₁ ⟨ a , b ⟩ = a
proj₂ : {A B : Set} → A × B → B
proj₂ ⟨ a , b ⟩ = b
×-comm : {A B : Set} → (A × B) ≃ (B × A)
×-comm = record
{
to = λ{ ⟨ a , b ⟩ → ⟨ b , a ⟩ };
from = λ {⟨ b , a ⟩ → ⟨ a , b ⟩};
from∘to = λ { ⟨ a , b ⟩ → refl };
to∘from = λ { ⟨ b , a ⟩ → refl }
}
×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C)
×-assoc = record
{
to = λ {⟨ ⟨ a , b ⟩ , c ⟩ → ⟨ a , ⟨ b , c ⟩ ⟩};
from = λ {⟨ a , ⟨ b , c ⟩ ⟩ → ⟨ ⟨ a , b ⟩ , c ⟩};
from∘to = λ {⟨ ⟨ a , b ⟩ , c ⟩ → refl};
to∘from = λ {⟨ a , ⟨ b , c ⟩ ⟩ → refl}
}
η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w
η-× ⟨ x , y ⟩ = refl
⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A
⊤-identityˡ = record
{
to = λ{ ⟨ tt , x ⟩ → x };
from = λ{ x → ⟨ tt , x ⟩ };
from∘to = λ{ ⟨ tt , x ⟩ → refl };
to∘from = λ{ x → refl }
}
⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A
⊤-identityʳ {A} = ≃-begin
(A × ⊤) ≃⟨ ×-comm ⟩
(⊤ × A) ≃⟨ ⊤-identityˡ ⟩
A ≃-∎
{- Sum (Disjunction) -}
data _⊎_ (A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
infixr 1 _⊎_
case-⊎ : ∀ {A B C : Set}
→ (A → C)
→ (B → C)
→ A ⊎ B
-----------
→ C
case-⊎ f g (inj₁ x) = f x
case-⊎ f g (inj₂ y) = g y
uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) →
case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w
uniq-⊎ h (inj₁ x) = refl
uniq-⊎ h (inj₂ y) = refl
η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w
η-⊎ (inj₁ x) = refl
η-⊎ (inj₂ y) = refl
⊥-identityˡ : ∀ {A : Set} → ⊥ ⊎ A ≃ A
⊥-identityˡ = record
{
to = λ {(inj₂ a) → a};
from = λ a → inj₂ a;
from∘to = λ {(inj₂ a) → refl};
to∘from = λ a → refl
}
⊎-comm : ∀ {A B : Set} → A ⊎ B ≃ B ⊎ A
⊎-comm = record
{
to = λ {(inj₁ A) → inj₂ A
; (inj₂ B) → inj₁ B};
from = λ {(inj₁ B) → inj₂ B
; (inj₂ A) → inj₁ A};
from∘to = λ {(inj₁ x) → refl
; (inj₂ x) → refl};
to∘from = λ {(inj₁ x) → refl
; (inj₂ x) → refl}
}
⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C)
⊎-assoc = record
{
to = λ {(inj₁ (inj₁ a)) → inj₁ a
; (inj₁ (inj₂ b)) → inj₂ (inj₁ b)
; (inj₂ c) → inj₂ (inj₂ c)};
from = λ {(inj₁ a) → inj₁ (inj₁ a)
; (inj₂ (inj₁ b)) → inj₁ (inj₂ b)
; (inj₂ (inj₂ c)) → inj₂ c};
from∘to = λ {(inj₁ (inj₁ x)) → refl
; (inj₁ (inj₂ x)) → refl
; (inj₂ x) → refl};
to∘from = λ {(inj₁ x) → refl
; (inj₂ (inj₁ x)) → refl
; (inj₂ (inj₂ x)) → refl}
}
⊥-identityʳ : ∀ {A : Set} → A ⊎ ⊥ ≃ A
⊥-identityʳ {A} = ≃-begin
(A ⊎ ⊥) ≃⟨ ⊎-comm ⟩
(⊥ ⊎ A) ≃⟨ ⊥-identityˡ ⟩
A ≃-∎
{- Equality -}
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
⇔-ref : ∀ {A : Set} → A ⇔ A
⇔-ref = record
{
to = λ a → a;
from = λ a → a
}
⇔-sym : ∀ {A B : Set} → A ⇔ B → B ⇔ A
⇔-sym A⇔B = record
{
to = from A⇔B;
from = to A⇔B
}
⇔-trans : ∀ {A B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C
⇔-trans A⇔B B⇔C = record
{
to = λ a → to B⇔C (to A⇔B a);
from = λ c → from A⇔B (from B⇔C c)
}
⇔≃× : ∀ {A B : Set} → A ⇔ B ≃ (A → B) × (B → A)
⇔≃× = record
{
to = λ {A⇔B → ⟨ to A⇔B , from A⇔B ⟩};
from = λ {x → record { to = proj₁ x; from = proj₂ x } };
from∘to = λ A⇔B → refl;
to∘from = λ {⟨ A→B , B→A ⟩ → refl}
}
| {
"alphanum_fraction": 0.3221335573,
"avg_line_length": 26.6033519553,
"ext": "agda",
"hexsha": "b590055fd4f8fb28a277f26604e8539eeff8af2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/Logic/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/Logic/Basics.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/Logic/Basics.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2036,
"size": 4762
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use Data.Vec.Recursive.Properties
-- instead.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.N-ary.Properties where
{-# WARNING_ON_IMPORT
"Data.Product.N-ary.Properties was deprecated in v1.1.
Use Data.Vec.Recursive.Properties instead."
#-}
open import Data.Vec.Recursive.Properties public
| {
"alphanum_fraction": 0.5396518375,
"avg_line_length": 28.7222222222,
"ext": "agda",
"hexsha": "107e07e2e57ff79db94a5a6328ba00e0b3744f21",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 90,
"size": 517
} |
module Data.List.Instance where
open import Class.Equality
open import Class.Monad
open import Class.Monoid
open import Class.Show
open import Class.Traversable
open import Data.Bool using (Bool; _∧_; true; false)
open import Data.List hiding (concat)
open import Data.List.Properties
open import Data.String using (String)
open import Data.String.Instance
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
instance
List-Eq : ∀ {A} {{_ : Eq A}} -> Eq (List A)
List-Eq {A} = record { _≟_ = ≡-dec _≟_ }
List-EqB : ∀ {A} {{_ : EqB A}} -> EqB (List A)
List-EqB {A} = record { _≣_ = helper }
where
helper : (l l' : List A) -> Bool
helper [] [] = true
helper [] (x ∷ l') = false
helper (x ∷ l) [] = false
helper (x ∷ l) (x₁ ∷ l') = x ≣ x₁ ∧ helper l l'
List-Monoid : ∀ {a} {A : Set a} -> Monoid (List A)
List-Monoid = record { mzero = [] ; _+_ = _++_ }
List-Traversable : ∀ {a} -> Traversable {a} (List {a})
List-Traversable = record { sequence = helper }
where
helper : ∀ {a} {M : Set a → Set a} ⦃ _ : Monad M ⦄ {A : Set a} → List (M A) → M (List A)
helper [] = return []
helper (x ∷ xs) = do
x' <- x
xs' <- helper xs
return (x' ∷ xs')
List-Show : ∀ {a} {A : Set a} {{_ : Show A}} -> Show (List A)
List-Show = record { show = showList show }
where
showList : ∀ {a} {A : Set a} -> (A -> String) -> List A -> String
showList showA l = "[" + concat (intersperse "," (map showA l)) + "]"
List-Monad : ∀ {a} -> Monad {a} List
List-Monad = record { _>>=_ = λ l f -> concat (map f l) ; return = λ a -> Data.List.[ a ] }
| {
"alphanum_fraction": 0.5667067308,
"avg_line_length": 33.28,
"ext": "agda",
"hexsha": "bdb61c5d2bccd5191b17af510e0dba9e6ff23fd5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/List/Instance.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/List/Instance.agda",
"max_line_length": 94,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/List/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 559,
"size": 1664
} |
module _ where
open import Relation.Binary.PropositionalEquality using (refl)
_ : 2 + 1 ≡ 3
_ = refl | {
"alphanum_fraction": 0.7352941176,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "25a39bd5a5c7a657179dd27bec553321ab0aed53",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z",
"max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dubinsky/intellij-dtlc",
"max_forks_repo_path": "testData/parse/agda/dummy name.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dubinsky/intellij-dtlc",
"max_issues_repo_path": "testData/parse/agda/dummy name.agda",
"max_line_length": 62,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dubinsky/intellij-dtlc",
"max_stars_repo_path": "testData/parse/agda/dummy name.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z",
"num_tokens": 32,
"size": 102
} |
{-# OPTIONS --prop --allow-unsolved-metas #-}
data ⊤ : Prop where
tt : ⊤
data A : ⊤ → Set where
a : (x : ⊤) → A x
f : A tt → ⊤
f (a x) = {!!}
| {
"alphanum_fraction": 0.4563758389,
"avg_line_length": 13.5454545455,
"ext": "agda",
"hexsha": "28101ba6df0f126382b09f810de0d1e6537ef0ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3724b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3724b.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3724b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 63,
"size": 149
} |
-- Andreas, 2011-10-02
-- {-# OPTIONS -v tc.meta:20 #-}
module Issue483 where
data _≡_ (a : Set) : Set → Set where
refl : a ≡ a
test : (P : .Set → Set) →
let X : .Set → Set
X = _
in (x : Set) → X x ≡ P (P x)
test P x = refl
-- expected behavior: solving X = P
{- THE FOLLOWING COULD BE SOLVED IN THE SPECIFIC CASE, BUT NOT IN GENERAL
postulate
A : Set
a : A
f : .A → A
test2 : let X : .A → A
X = _
in (x : A) → X a ≡ f x
test2 x = refl
-- should solve as X = f
-- it was treated as X _ = f _ before with solution X = \ x -> f _
-- which eta-contracts to X = f
-}
| {
"alphanum_fraction": 0.5368248773,
"avg_line_length": 21.0689655172,
"ext": "agda",
"hexsha": "a9d4336ec5bb13db2bfa2fde44029690e36b28f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue483.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue483.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue483.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 228,
"size": 611
} |
{-# OPTIONS --without-K --rewriting #-}
module Algebra.Monoid where
open import Basics
open import lib.types.Paths
record ∞-monoid i : Type (lsucc i) where
field -- data
el : Type i
μ : el → End el
μ' : el → End el
μ' b a = μ a b
field -- properties
unit-l : hfiber μ (idf el) is-contractible
unit-r : hfiber μ' (idf el) is-contractible
mult : ∀ a b → hfiber μ ((μ a) ∘ (μ b)) is-contractible
1l : el
1l = fst $ contr-center unit-l
1l-def : μ 1l == idf el
1l-def = snd $ contr-center unit-l
1r : el
1r = fst $ contr-center unit-r
1r-def : μ' 1r == idf el
1r-def = snd $ contr-center unit-r
infix 50 _·_
_·_ : el → el → el
a · b = fst $ contr-center (mult a b)
·-def : ∀ a b → μ (a · b) == (μ a) ∘ (μ b)
·-def a b = snd $ contr-center (mult a b)
-- --------------------------------------------
1l=1r : 1l == 1r
1l=1r = 1l
=⟨ ! (1r-def at 1l) ⟩
μ 1l 1r
=⟨ 1l-def at 1r ⟩
1r
=∎
μ=· : ∀ a b → (μ a b) == (a · b)
μ=· a b = μ a b
=⟨ ! $ ap (μ a) (1r-def at b) ⟩
μ a (μ b 1r)
=⟨ ! $ (·-def a b) at 1r ⟩
μ (a · b) 1r
=⟨ 1r-def at (a · b) ⟩
a · b
=∎
m-assoc : ∀ a b c → (a · b) · c == a · (b · c)
m-assoc a b c = ap fst (! (contr-path (mult a (b · c)) in-fib))
where
lem : μ((a · b) · c) == (μ a) ∘ μ(b · c)
lem = μ((a · b) · c)
=⟨ ·-def (a · b) c ⟩
μ(a · b) ∘ (μ c)
=⟨ ap (λ f → f ∘ (μ c)) (·-def a b) ⟩
(μ a) ∘ (μ b) ∘ (μ c)
=⟨ ! $ ap (λ f → (μ a) ∘ f) (·-def b c) ⟩
(μ a) ∘ μ(b · c)
=∎
in-fib : hfiber μ ((μ a) ∘ μ(b · c))
in-fib = ((a · b) · c) , lem
penta : ∀ a b c d →
(m-assoc (a · b) c d) ∙ (m-assoc a b (c · d))
==
(ap (λ x → x · d) (m-assoc a b c)) ∙ (m-assoc a (b · c) d) ∙ (ap (λ x → a · x) (m-assoc b c d))
penta a b c d = {!!}
End-l : ∀ {i} (X : Type i) → ∞-monoid i
End-l X = record { el = End X
; μ = λ f → λ g → f ∘ g
; unit-l = has-level-in $ (idf X , refl) , proof-unit-l
; unit-r = has-level-in $ (idf X , refl) , proof-unit-r
; mult = λ a b → has-level-in $ (a ∘ b , refl) , proof-mult a b}
where
proof-unit-l : ∀ y → (idf X , refl) == y
proof-unit-l (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $
idp
=⟨ ! (!-inv-l p) ⟩
(! p) ∙ p
=⟨ ap (λ α → α ∙ p) helper ⟩
(ap (λ z g → z ∘ g) (! p at idf X)) ∙ p
=∎
where
lemma : (k : End X → End X) (q : (idf (End X)) == k) (f : End X)
(η : (k f) ∘_ == k ∘ (f ∘_))
→ (ap (λ u g → (u f) ∘ g) q) ∙' η == (ap (λ u g → u (f ∘ g)) q)
lemma _ idp _ idp = idp
helper : ! p == (ap (λ z g → z ∘ g) (! p at idf X))
helper = ! p
=⟨ other-lemma (! p) ⟩
ap (λ u g → u g) (! p)
=⟨ ! $ lemma (f ∘_) (! p) (idf X) refl ⟩
ap (λ u g → (u (idf X)) ∘ g) (! p)
=⟨ ap-∘ (λ z x x₁ → z (x x₁)) (λ z → z (λ x → x)) (! p) ⟩
(ap (λ z g → z ∘ g) (! p at idf X))
=∎
where
other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y}
(p : f == g) → p == (ap (λ u g → u g) p)
other-lemma refl = refl
proof-unit-r : ∀ y → (idf X , refl) == y
proof-unit-r (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $
idp
=⟨ ! (!-inv-l p) ⟩
(! p) ∙ p
=⟨ ap (λ α → α ∙ p) helper ⟩
(ap (λ z g → g ∘ z) (! p at idf X)) ∙ p
=∎
where
lemma : (k : End X → End X) (q : (idf (End X)) == k) (f : End X)
(η : _∘ (k f) == k ∘ (_∘ f))
→ (ap (λ u g → g ∘ (u f)) q) ∙' η == (ap (λ u g → u (g ∘ f)) q)
lemma _ refl _ refl = refl
helper : ! p == (ap (λ z g → g ∘ z) (! p at idf X))
helper = ! p
=⟨ other-lemma (! p) ⟩
ap (λ u g → u g) (! p)
=⟨ ! $ lemma (_∘ f) (! p) (idf X) refl ⟩
ap (λ u g → g ∘ (u (idf X))) (! p)
=⟨ ap-∘ (λ z x x₁ → x (z x₁)) (λ z → z (λ x → x)) (! p) ⟩
ap (λ z g → g ∘ z) (! p at idf X)
=∎
where
other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y}
(p : f == g) → p == (ap (λ u g → u g) p)
other-lemma refl = refl
proof-mult : ∀ a b y → (a ∘ b , refl) == y
proof-mult a b (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $
refl
=⟨ ! (!-inv-l p) ⟩
! p ∙ p
=⟨ ap (λ α → α ∙ p) helper ⟩
(ap (λ z g → z ∘ g) (! p at idf X)) ∙ p
=∎
where
lemma : (k : End X → End X) (q : (a ∘ b) ∘_ == k) (f : End X)
(η : (k f) ∘_ == k ∘ (f ∘_))
→ (ap (λ u g → (u f) ∘ g) q) ∙' η == (ap (λ u g → u (f ∘ g)) q)
lemma _ idp _ idp = idp
helper : ! p == (ap (λ z g → z ∘ g) (! p at idf X))
helper = ! p
=⟨ other-lemma (! p) ⟩
ap (λ u g → u g) (! p)
=⟨ ! $ lemma (f ∘_) (! p) (idf X) refl ⟩
ap (λ u g → (u (idf X)) ∘ g) (! p)
=⟨ ap-∘ (λ z x x₁ → z (x x₁)) (λ z → z (λ x → x)) (! p) ⟩
(ap (λ z g → z ∘ g) (! p at idf X))
=∎
where
other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y}
(p : f == g) → p == (ap (λ u g → u g) p)
other-lemma refl = refl
Aut-l : ∀ {i} {X : Type i} (x : X) → ∞-monoid i
Aut-l {X = X} x = record { el = x == x
; μ = λ p → λ q → p ∙ q
; unit-l = has-level-in $ (refl , refl) , unit-l-proof
; unit-r = has-level-in $ (refl , (λ= ∙-unit-r)) , unit-r-proof
; mult = λ a b → has-level-in $ (a ∙ b , λ= (∙-assoc a b)) , mult-proof a b }
where
unit-l-proof : ∀ y → (refl , refl) == y
unit-l-proof (p , α) = pair= (! (α at refl) ∙ (∙-unit-r p)) $ ↓-app=cst-in $
idp
=⟨ ! (!-inv-l α) ⟩
! α ∙ α
=⟨ {!!} ⟩
ap (λ z q → z ∙ q) (! (α at refl) ∙ (∙-unit-r p)) ∙ α
=∎
unit-r-proof : ∀ y → (refl , (λ= ∙-unit-r)) == y
unit-r-proof (p , α) = {!!}
mult-proof : ∀ a b y → (a ∙ b , λ= (∙-assoc a b)) == y
mult-proof a b y = {!!}
| {
"alphanum_fraction": 0.3149241147,
"avg_line_length": 36.306122449,
"ext": "agda",
"hexsha": "a43076a7a05e1f7378f1fab088da4a32c457edde",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda",
"max_line_length": 107,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 2681,
"size": 7116
} |
{- Denotational semantics of the terms in the category of temporal types. -}
module Semantics.Terms where
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Types
open import Semantics.Types
open import Semantics.Context
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Linear
open import TemporalOps.Box
open import TemporalOps.Diamond
open import TemporalOps.OtherOps
open import TemporalOps.Linear
open import TemporalOps.StrongMonad
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans renaming (_⟹_ to ⟹)
import CategoryTheory.Monad as M
import CategoryTheory.Comonad as W
open import Data.Product
open import Data.Sum hiding ([_,_])
import Data.Nat as N
open W.Comonad W-□
open M.Monad M-◇
private module F-◇ = Functor F-◇
private module F-□ = Functor F-□
-- open Linear ℝeactive-linear
mutual
-- Denotation of pure terms as morphisms from contexts to types.
⟦_⟧ₘ : ∀{Γ A} -> Γ ⊢ A -> (⟦ Γ ⟧ₓ ⇴ ⟦ A ⟧ⱼ)
⟦ var top ⟧ₘ = π₂
⟦ var (pop x) ⟧ₘ = ⟦ var x ⟧ₘ ∘ π₁
⟦ lam M ⟧ₘ = Λ ⟦ M ⟧ₘ
⟦ F $ M ⟧ₘ = eval ∘ ⟨ ⟦ F ⟧ₘ , ⟦ M ⟧ₘ ⟩
⟦ unit ⟧ₘ = !
⟦ [ M ,, N ] ⟧ₘ = ⟨ ⟦ M ⟧ₘ , ⟦ N ⟧ₘ ⟩
⟦ fst M ⟧ₘ = π₁ ∘ ⟦ M ⟧ₘ
⟦ snd M ⟧ₘ = π₂ ∘ ⟦ M ⟧ₘ
⟦ inl M ⟧ₘ = ι₁ ∘ ⟦ M ⟧ₘ
⟦ inr M ⟧ₘ = ι₂ ∘ ⟦ M ⟧ₘ
⟦ case M inl↦ B₁ ||inr↦ B₂ ⟧ₘ = [ ⟦ B₁ ⟧ₘ ⁏ ⟦ B₂ ⟧ₘ ] ∘ dist ∘ ⟨ id , ⟦ M ⟧ₘ ⟩
⟦ sample {A} S ⟧ₘ = ε.at ⟦ A ⟧ₜ ∘ ⟦ S ⟧ₘ
⟦ stable {Γ} S ⟧ₘ = F-□.fmap ⟦ S ⟧ₘ ∘ ⟦ Γ ˢ⟧□
⟦ sig S ⟧ₘ = ⟦ S ⟧ₘ
⟦ letSig S In B ⟧ₘ = ⟦ B ⟧ₘ ∘ ⟨ id , ⟦ S ⟧ₘ ⟩
⟦ event E ⟧ₘ = ⟦ E ⟧ᵐ
-- Helper function for interpreting bound events
bindEvent : ∀ Γ {⟦A⟧ ⟦B⟧} -> (⟦E⟧ : ⟦ Γ ⟧ₓ ⇴ ◇ ⟦A⟧) (⟦C⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦A⟧ ⇴ ◇ ⟦B⟧)
-> (⟦ Γ ⟧ₓ ⇴ ◇ ⟦B⟧)
bindEvent Γ {⟦A⟧}{⟦B⟧} ⟦E⟧ ⟦C⟧ =
μ.at ⟦B⟧ ∘ F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) ∘ st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ ∘ ⟨ ⟦ Γ ˢ⟧□ , ⟦E⟧ ⟩
-- Denotation of computational terms as Kleisli morphisms from contexts to types.
⟦_⟧ᵐ : ∀{Γ A} -> Γ ⊨ A -> (⟦ Γ ⟧ₓ ⇴ ◇ ⟦ A ⟧ⱼ)
⟦ pure {A} M ⟧ᵐ = η.at ⟦ A ⟧ⱼ ∘ ⟦ M ⟧ₘ
⟦ letSig S InC C ⟧ᵐ = ⟦ C ⟧ᵐ ∘ ⟨ id , ⟦ S ⟧ₘ ⟩
⟦ letEvt_In_ {Γ} E C ⟧ᵐ = bindEvent Γ ⟦ E ⟧ₘ ⟦ C ⟧ᵐ
⟦ select_↦_||_↦_||both↦_ {Γ} E₁ C₁ E₂ C₂ C₃ ⟧ᵐ =
bindEvent Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫) (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ)
| {
"alphanum_fraction": 0.5259443753,
"avg_line_length": 35.4264705882,
"ext": "agda",
"hexsha": "a3b50feead7a094aae2d40bf42168e39b1aa839d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Terms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Terms.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Terms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1216,
"size": 2409
} |
------------------------------------------------------------------------------
-- Well-founded relation related to the McCarthy 91 function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.McCarthy91.WF-Relation where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
-- The relation _◁_.
◁-fn : D → D
◁-fn n = 101' ∸ n
{-# ATP definition ◁-fn #-}
_◁_ : D → D → Set
m ◁ n = ◁-fn m < ◁-fn n
{-# ATP definition _◁_ #-}
| {
"alphanum_fraction": 0.43125,
"avg_line_length": 29.6296296296,
"ext": "agda",
"hexsha": "c033e8d74403ab61b389298e931125cae79b224c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 179,
"size": 800
} |
{-# OPTIONS --without-K --safe #-}
module Data.List.Base where
open import Level
open import Agda.Builtin.List using (List; _∷_; []) public
open import Data.Nat.Base
open import Function
open import Strict
open import Data.Maybe using (Maybe; just; nothing; maybe)
foldr : (A → B → B) → B → List A → B
foldr f b [] = b
foldr f b (x ∷ xs) = f x (foldr f b xs)
foldrMay : (A → A → A) → List A → Maybe A
foldrMay f = foldr (λ x → just ∘ maybe x (f x)) nothing
foldl : (B → A → B) → B → List A → B
foldl f b [] = b
foldl f b (x ∷ xs) = foldl f (f b x) xs
foldl′ : (B → A → B) → B → List A → B
foldl′ f b [] = b
foldl′ f b (x ∷ xs) = let! z =! f b x in! foldl′ f z xs
foldr′ : (A → B → B) → B → List A → B
foldr′ f b [] = b
foldr′ f b (x ∷ xs) = f x $! foldr′ f b xs
infixr 5 _++_
_++_ : List A → List A → List A
xs ++ ys = foldr _∷_ ys xs
length : List A → ℕ
length = foldr (const suc) zero
concat : List (List A) → List A
concat = foldr _++_ []
concatMap : (A → List B) → List A → List B
concatMap f = foldr (λ x ys → f x ++ ys) []
map : (A → B) → List A → List B
map f = foldr (λ x xs → f x ∷ xs) []
take : ℕ → List A → List A
take zero _ = []
take (suc n) [] = []
take (suc n) (x ∷ xs) = x ∷ take n xs
_⋯_ : ℕ → ℕ → List ℕ
_⋯_ n = go n
where
go″ : ℕ → ℕ → List ℕ
go′ : ℕ → ℕ → List ℕ
go″ n zero = []
go″ n (suc m) = go′ (suc n) m
go′ n m = n ∷ go″ n m
go : ℕ → ℕ → List ℕ
go zero = go′ n
go (suc n) zero = []
go (suc n) (suc m) = go n m
replicate : A → ℕ → List A
replicate {A = A} x = go
where
go : ℕ → List A
go zero = []
go (suc n) = x ∷ go n
| {
"alphanum_fraction": 0.5329981144,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "a959473eed3bc88fa67d5206bb38b6584d3e75ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Base.agda",
"max_line_length": 58,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 668,
"size": 1591
} |
{-
Set quotients:
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetQuotients.Properties where
open import Cubical.HITs.SetQuotients.Base
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.HAEquiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open import Cubical.HITs.PropositionalTruncation
open import Cubical.HITs.SetTruncation
-- Type quotients
private
variable
ℓ ℓ' ℓ'' : Level
A : Type ℓ
R : A → A → Type ℓ'
B : A / R → Type ℓ''
elimEq/ : (Bprop : (x : A / R ) → isProp (B x))
{x y : A / R}
(eq : x ≡ y)
(bx : B x)
(by : B y) →
PathP (λ i → B (eq i)) bx by
elimEq/ {B = B} Bprop {x = x} =
J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by)
elimSetQuotientsProp : ((x : A / R ) → isProp (B x)) →
(f : (a : A) → B ( [ a ])) →
(x : A / R) → B x
elimSetQuotientsProp Bprop f [ x ] = f x
elimSetQuotientsProp Bprop f (squash/ x y p q i j) =
isOfHLevel→isOfHLevelDep {n = 2} (λ x → isProp→isSet (Bprop x))
(g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
where
g = elimSetQuotientsProp Bprop f
elimSetQuotientsProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i
-- lemma 6.10.2 in hott book
-- TODO: defined truncated Sigma as ∃
[]surjective : (x : A / R) → ∥ Σ[ a ∈ A ] [ a ] ≡ x ∥
[]surjective = elimSetQuotientsProp (λ x → squash) (λ a → ∣ a , refl ∣)
elimSetQuotients : {B : A / R → Type ℓ} →
(Bset : (x : A / R) → isSet (B x)) →
(f : (a : A) → (B [ a ])) →
(feq : (a b : A) (r : R a b) →
PathP (λ i → B (eq/ a b r i)) (f a) (f b)) →
(x : A / R) → B x
elimSetQuotients Bset f feq [ a ] = f a
elimSetQuotients Bset f feq (eq/ a b r i) = feq a b r i
elimSetQuotients Bset f feq (squash/ x y p q i j) =
isOfHLevel→isOfHLevelDep {n = 2} Bset
(g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j
where
g = elimSetQuotients Bset f feq
setQuotUniversal : {B : Type ℓ} (Bset : isSet B) →
(A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b))
setQuotUniversal Bset = isoToEquiv (iso intro elim elimRightInv elimLeftInv)
where
intro = λ g → (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i)
elim = λ h → elimSetQuotients (λ x → Bset) (fst h) (snd h)
elimRightInv : ∀ h → intro (elim h) ≡ h
elimRightInv h = refl
elimLeftInv : ∀ g → elim (intro g) ≡ g
elimLeftInv = λ g → funExt (λ x → elimPropTrunc {P = λ sur → elim (intro g) x ≡ g x}
(λ sur → Bset (elim (intro g) x) (g x))
(λ sur → cong (elim (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x)
)
open BinaryRelation
effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b
effective {A = A} {R = R} Rprop (EquivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _)
where
helper : A / R → hProp
helper = elimSetQuotients (λ _ → isSetHProp) (λ c → (R a c , Rprop a c))
(λ c d cd → ΣProp≡ (λ _ → isPropIsProp)
(ua (PropEquiv→Equiv (Rprop a c) (Rprop a d)
(λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))))
aa≡ab : R a a ≡ R a b
aa≡ab i = fst (helper (p i))
isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R
isEquivRel→isEffective {R = R} Rprop Req a b = isoToEquiv (iso intro elim intro-elim elim-intro)
where
intro : [ a ] ≡ [ b ] → R a b
intro = effective Rprop Req a b
elim : R a b → [ a ] ≡ [ b ]
elim = eq/ a b
intro-elim : ∀ x → intro (elim x) ≡ x
intro-elim ab = Rprop a b _ _
elim-intro : ∀ x → elim (intro x) ≡ x
elim-intro eq = squash/ _ _ _ _
discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R)
discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec =
elimSetQuotients ((λ a₀ → isSetPi (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))))
discreteSetQuotients' discreteSetQuotients'-eq
where
discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y)
discreteSetQuotients' a₀ = elimSetQuotients ((λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁)))) dis dis-eq
where
dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ])
dis a₁ with Rdec a₀ a₁
... | (yes p) = yes (eq/ a₀ a₁ p)
... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq )
dis-eq : (a b : A) (r : R a b) →
PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b)
dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k)
(λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b)
discreteSetQuotients'-eq : (a b : A) (r : R a b) →
PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y))
(discreteSetQuotients' a) (discreteSetQuotients' b)
discreteSetQuotients'-eq a b ab =
J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y))
(discreteSetQuotients' a) k)
(λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b)
| {
"alphanum_fraction": 0.5362190813,
"avg_line_length": 37.7333333333,
"ext": "agda",
"hexsha": "1b7ae68b5774d544b03ab3346ad592ec477a0e6b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/HITs/SetQuotients/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/HITs/SetQuotients/Properties.agda",
"max_line_length": 142,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/HITs/SetQuotients/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2130,
"size": 5660
} |
module Basic.Axiomatic.TotalImpliesPartial where
open import Basic.AST
open import Basic.BigStep
open import Basic.Axiomatic.Total as T
renaming (〈_〉_〈_〉 to total〈_〉_〈_〉)
open import Basic.Axiomatic.Partial as P
renaming (〈_〉_〈_〉 to partial〈_〉_〈_〉) hiding (_==>_; _∧_)
open import Function
open import Data.Product
{-
The proof that total correctness implies partial correctness (exercise 6.33)
is fortunately really simple.
We already proved soundness and completeness for both systems, so instead of
trying to construct the partial proof directly from the total proof, we can
just take a detour and prove the analoguous implication about the *validity*
of triples.
-}
{-
The total validity of Hoare triples implies partial validity, if the language semantics is
deterministic.
-}
P==>wp→P==>wlp : ∀{n S}{P Q : State n → Set} → (P ==> wp S Q) → (P ==> wlp S Q)
P==>wp→P==>wlp pwp ps runS with pwp ps
... | _ , runS' , qs' rewrite deterministic runS runS' = qs'
{- And now we just do an excursion to semantics-land and then back -}
total→partial : ∀ {n S}{P Q : State n → Set} → total〈 P 〉 S 〈 Q 〉 → partial〈 P 〉 S 〈 Q 〉
total→partial = P.complete _ ∘ P==>wp→P==>wlp ∘ T.sound
| {
"alphanum_fraction": 0.7067226891,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "3001b51e6643bad7ff71d0c9a4c0b8e749fa4cc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda",
"max_line_length": 90,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 404,
"size": 1190
} |
{-# OPTIONS --sized-types #-}
module SList.Concatenation (A : Set) where
open import Data.List
open import List.Permutation.Base A
open import Size
open import SList
lemma-⊕-/ : {xs ys : List A}{x y : A} → xs / x ⟶ ys → unsize A (_⊕_ A (size A xs) (y ∙ snil)) / x ⟶ unsize A (_⊕_ A (size A ys) (y ∙ snil))
lemma-⊕-/ /head = /head
lemma-⊕-/ (/tail xs/x⟶xs') = /tail (lemma-⊕-/ xs/x⟶xs')
lemma-⊕∼ : {xs ys : List A}(x : A) → xs ∼ ys → (x ∷ xs) ∼ unsize A (_⊕_ A (size A ys) (x ∙ snil))
lemma-⊕∼ x ∼[] = ∼x /head /head ∼[]
lemma-⊕∼ x (∼x xs/x⟶xs' ys/x⟶ys' xs'∼ys') = ∼x (/tail xs/x⟶xs') (lemma-⊕-/ ys/x⟶ys') (lemma-⊕∼ x xs'∼ys')
lemma-size-unsize : {ι : Size}(x : A) → (xs : SList A {ι}) → (unsize A (_⊕_ A (size A (unsize A xs)) (x ∙ snil))) ∼ unsize A (_⊕_ A xs (x ∙ snil))
lemma-size-unsize x snil = ∼x /head /head ∼[]
lemma-size-unsize x (y ∙ ys) = ∼x /head /head (lemma-size-unsize x ys)
| {
"alphanum_fraction": 0.5533333333,
"avg_line_length": 37.5,
"ext": "agda",
"hexsha": "0b2698ae1e9a7143f683ad6ee7e202af3aab8e04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SList/Concatenation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SList/Concatenation.agda",
"max_line_length": 146,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SList/Concatenation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 420,
"size": 900
} |
module main where
open import Not-named-according-to-the-Haskell-lexical-syntax
main = return Not-named-according-to-the-Haskell-lexical-syntax.unit
-- The following code once triggered an MAlonzo bug resulting in the
-- error message "Panic: ... no such name main.M.d".
module M where
data D : Set where
d : D
| {
"alphanum_fraction": 0.7414330218,
"avg_line_length": 24.6923076923,
"ext": "agda",
"hexsha": "aad9725794dcfd7343c40c36977cbfc52dfd6bc0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/compiler/main.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/compiler/main.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/compiler/main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 83,
"size": 321
} |
-- This file has been extracted from https://alhassy.github.io/PathCat/
-- Type checks with Agda version 2.6.0.
module PathCat where
open import Level using (Level) renaming (zero to ℓ₀ ; suc to ℓsuc ; _⊔_ to _⊍_)
-- Numbers
open import Data.Fin
using (Fin ; toℕ ; fromℕ ; fromℕ≤ ; reduce≥ ; inject≤)
renaming (_<_ to _f<_ ; zero to fzero ; suc to fsuc)
open import Data.Nat
open import Relation.Binary using (module DecTotalOrder)
open import Data.Nat.Properties using(≤-decTotalOrder ; ≤-refl)
open DecTotalOrder Data.Nat.Properties.≤-decTotalOrder
-- Z-notation for sums
open import Data.Product using (Σ ; proj₁ ; proj₂ ; _×_ ; _,_)
Σ∶• : {a b : Level} (A : Set a) (B : A → Set b) → Set (a ⊍ b)
Σ∶• = Σ
infix -666 Σ∶•
syntax Σ∶• A (λ x → B) = Σ x ∶ A • B
-- Equalities
open import Relation.Binary.PropositionalEquality using (_≗_ ; _≡_)
renaming (sym to ≡-sym ; refl to ≡-refl ; trans to _⟨≡≡⟩_
; cong to ≡-cong ; cong₂ to ≡-cong₂
; subst to ≡-subst ; subst₂ to ≡-subst₂ ; setoid to ≡-setoid)
module _ {i} {S : Set i} where
open import Relation.Binary.EqReasoning (≡-setoid S) public
open import Agda.Builtin.String
defn-chasing : ∀ {i} {A : Set i} (x : A) → String → A → A
defn-chasing x reason supposedly-x-again = supposedly-x-again
syntax defn-chasing x reason xish = x ≡⟨ reason ⟩′ xish
infixl 3 defn-chasing
_even-under_ : ∀ {a b} {A : Set a} {B : Set b} {x y} → x ≡ y → (f : A → B) → f x ≡ f y
_even-under_ = λ eq f → ≡-cong f eq
record Graph₀ : Set₁ where
field
V : Set
E : Set
src : E → V
tgt : E → V
record _𝒢⟶₀_ (G H : Graph₀) : Set₁ where
open Graph₀
field
vertex : V(G) → V(H)
edge : E(G) → E(H)
src-preservation : ∀ e → src(H) (edge e) ≡ vertex (src(G) e)
tgt-preservation : ∀ e → tgt(H) (edge e) ≡ vertex (tgt(G) e)
-- ‘small graphs’ , since we are not using levels
record Graph : Set₁ where
field
V : Set
_⟶_ : V → V → Set
-- i.e., Graph ≈ Σ V ∶ Set • (V → V)
-- Graphs are a dependent type!
record GraphMap (G H : Graph) : Set₁ where
private
open Graph using (V)
_⟶g_ = Graph._⟶_ G
_⟶h_ = Graph._⟶_ H
field
ver : V(G) → V(H) -- vertex morphism
edge : {x y : V(G)} → (x ⟶g y) → (ver x ⟶h ver y) -- arrow preservation
open GraphMap
-- embedding: j < n ⇒ j < suc n
`_ : ∀{n} → Fin n → Fin (suc n)
` j = inject≤ j (≤-step ≤-refl) where open import Data.Nat.Properties using (≤-step)
[_]₀ : ℕ → Graph₀
[ n ]₀ = record
{ V = Fin (suc n) -- ≈ {0, 1, ..., n - 1, n}
; E = Fin n -- ≈ {0, 1, ..., n - 1}
; src = λ j → ` j
; tgt = λ j → fsuc j
}
[_] : ℕ → Graph
[ n ] = record {V = Fin (suc n) ; _⟶_ = λ x y → fsuc x ≡ ` y }
open import Data.Vec
using (Vec)
renaming (_∷_ to _,,_ ; [] to nil) -- , already in use for products :/
-- one sorted
record Signature : Set where
field
𝒩 : ℕ -- How many function symbols there are
ar : Vec ℕ 𝒩 -- Their arities: lookup i ar == arity of i-th function symbol
open Signature ⦃...⦄ -- 𝒩 now refers to the number of function symbols in a signature
MonSig : Signature
MonSig = record { 𝒩 = 2 ; ar = 0 ,, 2 ,, nil }
-- unit u : X⁰ → X and multiplication m : X² → X
module _ where -- An anyonomous module for categorial definitions
record Category {i j : Level} : Set (ℓsuc (i ⊍ j)) where
infixr 10 _⨾_
field
Obj : Set i
_⟶_ : Obj → Obj → Set j
_⨾_ : ∀ {A B C : Obj} → A ⟶ B → B ⟶ C → A ⟶ C
assoc : ∀ {A B C D} {f : A ⟶ B}{g : B ⟶ C} {h : C ⟶ D} → (f ⨾ g) ⨾ h ≡ f ⨾ (g ⨾ h)
Id : ∀ {A : Obj} → A ⟶ A
leftId : ∀ {A B : Obj} {f : A ⟶ B} → Id ⨾ f ≡ f
rightId : ∀ {A B : Obj} {f : A ⟶ B} → f ⨾ Id ≡ f
open Category using (Obj)
open Category ⦃...⦄ hiding (Obj)
-- Some sugar for times when we must specify the category
-- “colons associate to the right” ;-)
arr = Category._⟶_
syntax arr 𝒞 x y = x ⟶ y ∶ 𝒞 -- “ghost colon”
cmp = Category._⨾_
syntax cmp 𝒞 f g = f ⨾ g ∶ 𝒞 -- “ghost colon”
open Category using (Obj) public
record Iso {i} {j} (𝒞 : Category {i} {j}) (A B : Obj 𝒞) : Set j where
private instance 𝒞′ : Category ; 𝒞′ = 𝒞
field
to : A ⟶ B
from : B ⟶ A
lid : to ⨾ from ≡ Id
rid : from ⨾ to ≡ Id
syntax Iso 𝒞 A B = A ≅ B within 𝒞
instance
𝒮e𝓉 : ∀ {i} → Category {ℓsuc i} {i} -- this is a ‘big’ category
𝒮e𝓉 {i} = record {
Obj = Set i
; _⟶_ = λ A B → (A → B)
; _⨾_ = λ f g → (λ x → g (f x))
; assoc = ≡-refl
; Id = λ x → x
; leftId = ≡-refl
; rightId = ≡-refl
}
record Functor {i j k l} (𝒞 : Category {i} {j}) (𝒟 : Category {k} {l})
: Set (ℓsuc (i ⊍ j ⊍ k ⊍ l)) where
private
instance
𝒞′ : Category ; 𝒞′ = 𝒞
𝒟′ : Category ; 𝒟′ = 𝒟
field
-- Usual graph homomorphism structure: An object map, with morphism preservation
obj : Obj 𝒞 → Obj 𝒟
mor : ∀{x y : Obj 𝒞} → x ⟶ y → obj x ⟶ obj y
-- Interaction with new algebraic structure: Preservation of identities & composition
id : ∀{x : Obj 𝒞} → mor (Id {A = x}) ≡ Id -- identities preservation
comp : ∀{x y z} {f : x ⟶ y} {g : y ⟶ z} → mor (f ⨾ g) ≡ mor f ⨾ mor g
-- Aliases for readability
functor_preserves-composition = comp
functor_preserves-identities = id
open Functor public hiding (id ; comp)
NatTrans : ∀ {i j i’ j’} ⦃ 𝒞 : Category {i} {j} ⦄ ⦃ 𝒟 : Category {i’} {j’} ⦄
(F G : Functor 𝒞 𝒟) → Set (j’ ⊍ i ⊍ j)
NatTrans ⦃ 𝒞 = 𝒞 ⦄ ⦃ 𝒟 ⦄ F G =
Σ η ∶ (∀ {X : Obj 𝒞} → (obj F X) ⟶ (obj G X))
• (∀ {A B} {f : A ⟶ B} → mor F f ⨾ η {B} ≡ η {A} ⨾ mor G f)
-- function extensionality
postulate extensionality : ∀ {i j} {A : Set i} {B : A → Set j}
{f g : (a : A) → B a}
→ (∀ {a} → f a ≡ g a) → f ≡ g
-- functor extensionality
postulate funcext : ∀ {i j k l} ⦃ 𝒞 : Category {i} {j} ⦄ ⦃ 𝒟 : Category {k} {l} ⦄
{F G : Functor 𝒞 𝒟}
→ (oeq : ∀ {o} → obj F o ≡ obj G o)
→ (∀ {X Y} {f : X ⟶ Y}
→ mor G f ≡ ≡-subst₂ (Category._⟶_ 𝒟) oeq oeq (mor F f))
→ F ≡ G
-- graph map extensionality
postulate graphmapext : {G H : Graph } {f g : GraphMap G H}
→ (veq : ∀ {v} → ver f v ≡ ver g v)
→ (∀ {x y} {e : Graph._⟶_ G x y}
→ edge g e ≡ ≡-subst₂ (Graph._⟶_ H) veq veq (edge f e))
→ f ≡ g
-- natural transformation extensionality
postulate nattransext : ∀ {i j i’ j’} {𝒞 : Category {i} {j} } {𝒟 : Category {i’} {j’} }
{F G : Functor 𝒞 𝒟} (η γ : NatTrans F G)
→ (∀ {X} → proj₁ η {X} ≡ proj₁ γ {X})
→ η ≡ γ
instance
𝒞𝒶𝓉 : ∀ {i j} → Category {ℓsuc (i ⊍ j)} {ℓsuc (i ⊍ j)}
𝒞𝒶𝓉 {i} {j} = record {
Obj = Category {i} {j}
; _⟶_ = Functor
; _⨾_ = λ {𝒞} {𝒟} {ℰ} F G →
let instance
𝒞′ : Category ; 𝒞′ = 𝒞
𝒟′ : Category ; 𝒟′ = 𝒟
ℰ′ : Category ; ℰ′ = ℰ
in record
{ obj = obj F ⨾ obj G -- this compositon lives in 𝒮e𝓉
; mor = mor F ⨾ mor G
; id = λ {x} → begin
(mor F ⨾ mor G) (Id ⦃ 𝒞 ⦄ {A = x})
≡⟨ "definition of function composition" ⟩′
mor G (mor F Id)
≡⟨ functor F preserves-identities even-under (mor G) ⟩
mor G Id
≡⟨ functor G preserves-identities ⟩
Id
∎
; comp = λ {x y z f g} →
begin
(mor F ⨾ mor G) (f ⨾ g)
≡⟨ "definition of function composition" ⟩′
mor G (mor F (f ⨾ g))
≡⟨ functor F preserves-composition even-under mor G ⟩
mor G (mor F f ⨾ mor F g)
≡⟨ functor G preserves-composition ⟩
(mor F ⨾ mor G) f ⨾ (mor F ⨾ mor G) g
∎
}
; assoc = λ {a b c d f g h} → funcext ≡-refl ≡-refl
; Id = record { obj = Id ; mor = Id ; id = ≡-refl ; comp = ≡-refl }
; leftId = funcext ≡-refl ≡-refl
; rightId = funcext ≡-refl ≡-refl
}
𝒢𝓇𝒶𝓅𝒽 : Category
𝒢𝓇𝒶𝓅𝒽 =
record
{ Obj = Graph ; _⟶_ = GraphMap
; _⨾_ = λ f g → record { ver = ver f ⨾ ver g ; edge = edge f ⨾ edge g } -- using ~𝒮et~
; assoc = ≡-refl -- function composition is associtive, by definition
; Id = record { ver = Id ; edge = Id } ; leftId = ≡-refl ; rightId = ≡-refl
-- functional identity is no-op, by definition
}
where open GraphMap
𝒰₀ : Category → Graph
𝒰₀ 𝒞 = record { V = Obj 𝒞 ; _⟶_ = Category._⟶_ 𝒞 }
𝒰₁ : {𝒞 𝒟 : Category} → 𝒞 ⟶ 𝒟 → 𝒰₀ 𝒞 ⟶ 𝒰₀ 𝒟
𝒰₁ F = record { ver = obj F ; edge = mor F }
-- Underlying/forgetful functor: Every category is a graph
𝒰 : Functor 𝒞𝒶𝓉 𝒢𝓇𝒶𝓅𝒽
𝒰 = record { obj = 𝒰₀ ; mor = 𝒰₁ ; id = ≡-refl ; comp = ≡-refl }
instance
Func : ∀ {i j i’ j’} (𝒞 : Category {i} {j}) (𝒟 : Category {i’} {j’}) → Category {ℓsuc (i ⊍ j ⊍ i’ ⊍ j’)} {j’ ⊍ i ⊍ j}
Func {i} {j} {i’} {j’} 𝒞 𝒟 = record {
Obj = Functor 𝒞 𝒟
; _⟶_ = NatTrans
; _⨾_ = λ {A B C} η γ → comp {A} {B} {C} η γ
; assoc = λ {F G H K η γ ω} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {K} (comp {F} {H} {K} (comp {F} {G} {H} η γ) ω) (comp {F} {G} {K} η (comp {G} {H} {K} γ ω)) assoc
; Id = λ {F} → iden F
; leftId = λ {F G η} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {G} (comp {F} {F} {G} (iden F) η) η leftId
; rightId = λ {F G η} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {G} (comp {F} {G} {G} η (iden G)) η rightId
}
where
instance
𝒟′ : Category
𝒟′ = 𝒟
iden : (A : Functor 𝒞 𝒟) → NatTrans A A
iden A = Id , (rightId ⟨≡≡⟩ ≡-sym leftId)
-- To avoid long wait times, we avoid instance resolution by
-- making an alias.
_⨾′_ = Category._⨾_ 𝒟
infixr 6 _⨾′_
comp : {A B C : Functor 𝒞 𝒟} → NatTrans A B → NatTrans B C → NatTrans A C
comp {F} {G} {H} (η , nat) (γ , nat′) = (λ {X} → η {X} ⨾′ γ {X}) , (λ {A B f} → begin
mor F f ⨾′ η {B} ⨾′ γ {B}
≡⟨ ≡-sym assoc ⟨≡≡⟩ (≡-cong₂ _⨾′_ nat ≡-refl ⟨≡≡⟩ assoc) ⟩
η {A} ⨾′ mor G f ⨾′ γ {B}
≡⟨ ≡-cong₂ _⨾′_ ≡-refl nat′ ⟨≡≡⟩ ≡-sym assoc ⟩
(η {A} ⨾′ γ {A}) ⨾′ mor H f
∎)
module graphs-as-functors where
-- formal objects
data 𝒢₀ : Set where E V : 𝒢₀
-- formal arrows
data 𝒢₁ : 𝒢₀ → 𝒢₀ → Set where
s t : 𝒢₁ E V
id : ∀ {o} → 𝒢₁ o o
-- (forward) composition
fcmp : ∀ {a b c} → 𝒢₁ a b → 𝒢₁ b c → 𝒢₁ a c
fcmp f id = f
fcmp id f = f
instance
𝒢 : Category
𝒢 = record
{ Obj = 𝒢₀
; _⟶_ = 𝒢₁
; _⨾_ = fcmp
; assoc = λ {a b c d f g h} → fcmp-assoc f g h
; Id = id
; leftId = left-id
; rightId = right-id
}
where
-- exercises: prove associativity, left and right unit laws
-- proofs are just C-c C-a after some casing
fcmp-assoc : ∀ {a b c d} (f : 𝒢₁ a b) (g : 𝒢₁ b c) (h : 𝒢₁ c d) → fcmp (fcmp f g) h ≡ fcmp f (fcmp g h)
fcmp-assoc s id id = ≡-refl
fcmp-assoc t id id = ≡-refl
fcmp-assoc id s id = ≡-refl
fcmp-assoc id t id = ≡-refl
fcmp-assoc id id s = ≡-refl
fcmp-assoc id id t = ≡-refl
fcmp-assoc id id id = ≡-refl
right-id : ∀ {a b} {f : 𝒢₁ a b} → fcmp f id ≡ f
right-id {f = s} = ≡-refl
right-id {f = t} = ≡-refl
right-id {f = id} = ≡-refl
left-id : ∀ {a b} {f : 𝒢₁ a b} → fcmp id f ≡ f
left-id {f = s} = ≡-refl
left-id {f = t} = ≡-refl
left-id {f = id} = ≡-refl
toFunc : Graph → Functor 𝒢 𝒮e𝓉
toFunc G = record
{ obj = ⟦_⟧₀
; mor = ⟦_⟧₁
; id = ≡-refl
; comp = λ {x y z f g} → fcmp-⨾ {x} {y} {z} {f} {g}
}
where
⟦_⟧₀ : Obj 𝒢 → Obj 𝒮e𝓉
⟦ 𝒢₀.V ⟧₀ = Graph.V G
⟦ 𝒢₀.E ⟧₀ = Σ x ∶ Graph.V G • Σ y ∶ Graph.V G • Graph._⟶_ G x y
⟦_⟧₁ : ∀ {x y : Obj 𝒢} → x ⟶ y → (⟦ x ⟧₀ → ⟦ y ⟧₀)
⟦ s ⟧₁ (src , tgt , edg) = src
⟦ t ⟧₁ (src , tgt , edg) = tgt
⟦ id ⟧₁ x = x
-- Exercise: fcmp is realised as functional composition
fcmp-⨾ : ∀{x y z} {f : 𝒢₁ x y} {g : 𝒢₁ y z} → ⟦ fcmp f g ⟧₁ ≡ ⟦ f ⟧₁ ⨾ ⟦ g ⟧₁
fcmp-⨾ {f = s} {id} = ≡-refl
fcmp-⨾ {f = t} {id} = ≡-refl
fcmp-⨾ {f = id} {s} = ≡-refl
fcmp-⨾ {f = id} {t} = ≡-refl
fcmp-⨾ {f = id} {id} = ≡-refl
fromFunc : Functor 𝒢 𝒮e𝓉 → Graph
fromFunc F = record {
V = obj F 𝒢₀.V
; _⟶_ = λ x y → Σ e ∶ obj F 𝒢₀.E • src e ≡ x × tgt e ≡ y
-- the type of edges whose source is x and target is y
}
where tgt src : obj F 𝒢₀.E → obj F 𝒢₀.V
src = mor F 𝒢₁.s
tgt = mor F 𝒢₁.t
_ᵒᵖ : ∀ {i j} → Category {i} {j} → Category {i} {j}
𝒞 ᵒᵖ = record {
Obj = Obj 𝒞
; _⟶_ = λ A B → (B ⟶ A)
; _⨾_ = λ f g → (g ⨾ f)
; assoc = ≡-sym assoc
; Id = Id
; leftId = rightId
; rightId = leftId
}
where instance 𝒞′ : Category ; 𝒞′ = 𝒞
infix 10 _∘_
_∘_ : ∀ {i j } ⦃ 𝒞 : Category {i} {j}⦄ {A B C : Obj 𝒞} → B ⟶ C → A ⟶ B → A ⟶ C
f ∘ g = g ⨾ f
-- this only changes type
opify : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}}
→ Functor 𝒞 𝒟 → Functor (𝒞 ᵒᵖ) (𝒟 ᵒᵖ)
opify F = record { obj = obj F
; mor = mor F
; id = Functor.id F
; comp = Functor.comp F
}
∂ : ∀ {i j} → Functor (𝒞𝒶𝓉 {i} {j}) 𝒞𝒶𝓉
∂ = record { obj = _ᵒᵖ ; mor = opify ; id = ≡-refl ; comp = ≡-refl }
ah-yeah : ∀ {i j} (let Cat = Obj (𝒞𝒶𝓉 {i} {j}))
-- identity on objects cofunctor, sometimes denoted _˘
→ (dual : ∀ (𝒞 : Cat) {x y : Obj 𝒞} → x ⟶ y ∶ 𝒞 → y ⟶ x ∶ 𝒞)
→ (Id˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x : Obj 𝒞} → dual 𝒞 Id ≡ Id {A = x})
→ (⨾-˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x y z : Obj 𝒞} {f : x ⟶ y} {g : y ⟶ z}
→ dual 𝒞 (f ⨾ g ∶ 𝒞) ≡ (dual 𝒞 g) ⨾ (dual 𝒞 f) ∶ 𝒞)
-- which is involutionary
→ (˘˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x y : Obj 𝒞} {f : x ⟶ y} → dual 𝒞 (dual 𝒞 f) ≡ f)
-- which is respected by other functors
→ (respect : ⦃ 𝒞 𝒟 : Cat ⦄ {F : 𝒞 ⟶ 𝒟} {x y : Obj 𝒞} {f : x ⟶ y}
→ mor F (dual 𝒞 f) ≡ dual 𝒟 (mor F f))
-- then
→ ∂ ≅ Id within Func (𝒞𝒶𝓉 {i} {j}) 𝒞𝒶𝓉
ah-yeah {i} {j} _˘ Id˘ ⨾-˘ ˘˘ respect = record
{ to = II
; from = JJ
; lid = nattransext {𝒞 = 𝒞𝒶𝓉} {𝒞𝒶𝓉} {∂} {∂} (Category._⨾_ 𝒩𝓉 {∂} {Id} {∂} II JJ) (Category.Id 𝒩𝓉 {∂}) λ {𝒞} → funcext ≡-refl (≡-sym (˘˘ ⦃ 𝒞 ⦄ ))
; rid = nattransext {𝒞 = 𝒞𝒶𝓉} {𝒞𝒶𝓉} {Id} {Id} (Category._⨾_ 𝒩𝓉 {Id} {∂} {Id} JJ II) (Category.Id 𝒩𝓉 {Id}) λ {𝒞} → funcext ≡-refl (≡-sym (˘˘ ⦃ 𝒞 ⦄))
}
where
𝒩𝓉 = Func (𝒞𝒶𝓉 {i} {j}) (𝒞𝒶𝓉 {i} {j}) -- the category of ~𝒩~atural transormations as morphisms
I : ⦃ 𝒞 : Category {i} {j} ⦄ → Functor (obj ∂ 𝒞) 𝒞
I ⦃ 𝒞 ⦄ = record { obj = Id ; mor = _˘ 𝒞 ; id = Id˘ ; comp = ⨾-˘ }
_⨾f_ = Category._⨾_ (𝒞𝒶𝓉 {i} {j})
Inat : ⦃ 𝒞 𝒟 : Category {i} {j} ⦄ {F : Functor 𝒞 𝒟} → mor ∂ F ⨾f I ⦃ 𝒟 ⦄ ≡ I ⦃ 𝒞 ⦄ ⨾f F
Inat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} = funcext ⦃ 𝒞 = 𝒞 ᵒᵖ ⦄ ⦃ 𝒟 ⦄ { mor ∂ F ⨾f I ⦃ 𝒟 ⦄ } { I ⦃ 𝒞 ⦄ ⨾f F } ≡-refl λ {x} {y} {f} → respect ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} {y} {x} {f}
II : NatTrans ∂ Id
II = I , (λ {𝒞} {𝒟} {F} → Inat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F})
J : ⦃ 𝒞 : Category {i} {j} ⦄ → 𝒞 ⟶ obj ∂ 𝒞
J ⦃ 𝒞 ⦄ = record { obj = Id ; mor = _˘ 𝒞 ; id = Id˘ ; comp = ⨾-˘ }
Jnat : ⦃ 𝒞 𝒟 : Category {i} {j} ⦄ {F : 𝒞 ⟶ 𝒟} → F ⨾f J ⦃ 𝒟 ⦄ ≡ J ⦃ 𝒞 ⦄ ⨾f mor ∂ F
Jnat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} = funcext ⦃ 𝒞 = 𝒞 ⦄ ⦃ 𝒟 ᵒᵖ ⦄ {F ⨾f J ⦃ 𝒟 ⦄} {J ⦃ 𝒞 ⦄ ⨾f mor ∂ F} ≡-refl (λ {x y f} → respect ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} {x} {y} {f})
JJ : NatTrans ⦃ 𝒞𝒶𝓉 {i} {j} ⦄ ⦃ 𝒞𝒶𝓉 ⦄ Id ∂
JJ = J , (λ {𝒞} {𝒟} {F} → Jnat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F})
infix 5 _⊗_
_⊗_ : ∀ {i j i’ j’} → Category {i} {j} → Category {i’} {j’} → Category {i ⊍ i’} {j ⊍ j’}
𝒞 ⊗ 𝒟 = record
{ Obj = Obj 𝒞 × Obj 𝒟
; _⟶_ = λ{ (A , X) (B , Y) → (A ⟶ B) × (X ⟶ Y) }
; _⨾_ = λ{ (f , k) (g , l) → (f ⨾ g , k ⨾ l) }
; assoc = assoc ≡×≡ assoc
; Id = Id , Id
; leftId = leftId ≡×≡ leftId
; rightId = rightId ≡×≡ rightId
}
where
_≡×≡_ : ∀ {i j} {A : Set i} {B : Set j} {a a’ : A} {b b’ : B} → a ≡ a’ → b ≡ b’ → (a , b) ≡ (a’ , b’)
≡-refl ≡×≡ ≡-refl = ≡-refl
instance
𝒞′ : Category
𝒞′ = 𝒞
𝒟′ : Category
𝒟′ = 𝒟
Fst : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}}
→ Functor (𝒞 ⊗ 𝒟) 𝒞
Fst = record { obj = proj₁ ; mor = proj₁ ; id = ≡-refl ; comp = ≡-refl }
Snd : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}}
→ Functor (𝒞 ⊗ 𝒟) 𝒟
Snd = record { obj = proj₂ ; mor = proj₂ ; id = ≡-refl ; comp = ≡-refl }
curry₂ : ∀ {ix jx iy jy iz jz} ⦃ 𝒳 : Category {ix} {jx} ⦄ ⦃ 𝒴 : Category {iy} {jy} ⦄ ⦃ 𝒵 : Category {iz} {jz} ⦄
→ Functor (𝒳 ⊗ 𝒴) 𝒵 → Functor 𝒴 (Func 𝒳 𝒵)
curry₂ ⦃ 𝒳 = 𝒳 ⦄ ⦃ 𝒴 ⦄ ⦃ 𝒵 ⦄ F = record {
obj = funcify
; mor = natify
; id = λ {x} → nattransext {F = funcify x} {funcify x} (natify (Id {A = x})) (Category.Id (Func 𝒳 𝒵) {A = funcify x}) (Functor.id F)
; comp = λ {x y z f g} → nattransext {F = funcify x} {funcify z} (natify (f ⨾ g)) ( Category._⨾_ (Func 𝒳 𝒵) {A = funcify x} {B = funcify y} {C = funcify z} (natify f) (natify g) ) (begin
mor F (Id , f 𝒴.⨾ g)
≡⟨ ≡-cong (λ e → mor F (e , f 𝒴.⨾ g)) (≡-sym 𝒳.rightId) ⟩
mor F (Id 𝒳.⨾ Id , f 𝒴.⨾ g)
≡⟨ functor F preserves-composition ⟩
mor F (Id , f) 𝒵.⨾ mor F (Id , g)
∎) }
where
module 𝒳 = Category 𝒳
module 𝒴 = Category 𝒴
module 𝒵 = Category 𝒵
funcify : (y : Obj 𝒴) → Functor 𝒳 𝒵
funcify = λ Y → record {
obj = λ X → obj F (X , Y)
; mor = λ f → mor F (f , Id ⦃ 𝒴 ⦄ {A = Y})
; id = Functor.id F
; comp = λ {x y z f g} → begin
mor F (f 𝒳.⨾ g , Id ⦃ 𝒴 ⦄)
≡⟨ ≡-cong (λ x → mor F (f 𝒳.⨾ g , x)) (≡-sym 𝒴.rightId) ⟩
mor F (f 𝒳.⨾ g , Id 𝒴.⨾ Id)
≡⟨ Functor.comp F ⟩
mor F (f , Id ⦃ 𝒴 ⦄) 𝒵.⨾ mor F (g , Id ⦃ 𝒴 ⦄)
∎ }
natify : {x y : Obj 𝒴} → x 𝒴.⟶ y → NatTrans (funcify x) (funcify y)
natify {x} {y} f = (λ {z} → mor F (Id {A = z} , f)) , (λ {a b g} → begin
mor F (g , Id) 𝒵.⨾ mor F (Id , f)
≡⟨ ≡-sym (functor F preserves-composition) ⟩
mor F (g 𝒳.⨾ Id , Id 𝒴.⨾ f)
≡⟨ ≡-cong₂ (λ x y → mor F (x , y)) 𝒳.rightId 𝒴.leftId ⟩
mor F (g , f)
≡⟨ ≡-sym (≡-cong₂ (λ x y → mor F (x , y)) 𝒳.leftId 𝒴.rightId) ⟩
mor F (Id 𝒳.⨾ g , f 𝒴.⨾ Id)
≡⟨ functor F preserves-composition ⟩
mor F (Id , f) 𝒵.⨾ mor F (g , Id)
∎)
pointwise : ∀ {ic jc id jd ix jx iy jy} {𝒞 : Category {ic} {jc}} {𝒟 : Category {id} {jd}}
{𝒳 : Category {ix} {jx}} {𝒴 : Category {iy} {jy}}
(_⊕_ : Functor (𝒳 ⊗ 𝒴) 𝒟) (F : Functor 𝒞 𝒳) (G : Functor 𝒞 𝒴) → Functor 𝒞 𝒟
pointwise {𝒞 = 𝒞} {𝒟} {𝒳} {𝒴} Bi F G =
let module 𝒳 = Category 𝒳
module 𝒴 = Category 𝒴
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
in record {
obj = λ C → obj Bi (obj F C , obj G C)
; mor = λ {x y} x→y → mor Bi (mor F x→y , mor G x→y)
; id = λ {x} → begin
mor Bi (mor F 𝒞.Id , mor G 𝒞.Id)
≡⟨ ≡-cong₂ (λ f g → mor Bi (f , g)) (Functor.id F) (Functor.id G) ⟩
mor Bi (𝒳.Id , 𝒴.Id)
≡⟨ functor Bi preserves-identities ⟩
𝒟.Id
∎
; comp = λ {x y z x⟶y y⟶z} → begin
mor Bi (mor F (x⟶y 𝒞.⨾ y⟶z) , mor G (x⟶y 𝒞.⨾ y⟶z))
≡⟨ ≡-cong₂ (λ f g → mor Bi (f , g)) (Functor.comp F) (Functor.comp G) ⟩
mor Bi (mor F x⟶y 𝒳.⨾ mor F y⟶z , mor G x⟶y 𝒴.⨾ mor G y⟶z)
≡⟨ functor Bi preserves-composition ⟩
(mor Bi (mor F x⟶y , mor G x⟶y)) 𝒟.⨾ (mor Bi (mor F y⟶z , mor G y⟶z))
∎
}
exempli-gratia : ∀ {𝒞 𝒟 𝒳 𝒴 : Category {ℓ₀} {ℓ₀}} (⊕ : Functor (𝒳 ⊗ 𝒴) 𝒟)
→ let _⟨⊕⟩_ = pointwise ⊕
in
Fst ⟨⊕⟩ Snd ≡ ⊕
exempli-gratia Bi = funcext (≡-cong (obj Bi) ≡-refl) (≡-cong (mor Bi) ≡-refl)
Hom : ∀ {i j} {𝒞 : Category {i} {j} } → Functor (𝒞 ᵒᵖ ⊗ 𝒞) (𝒮e𝓉 {j})
-- hence contravariant in ‘first arg’ and covaraint in ‘second arg’
Hom {𝒞 = 𝒞} =
let
module 𝒞 = Category 𝒞
instance 𝒞′ : Category ; 𝒞′ = 𝒞
⨾-cong₂ : ∀ {A B C : Obj 𝒞} {f : A 𝒞.⟶ B} {g g’ : B 𝒞.⟶ C}
→ g ≡ g’ → f 𝒞.⨾ g ≡ f 𝒞.⨾ g’
⨾-cong₂ q = ≡-cong₂ 𝒞._⨾_ ≡-refl q
in record {
obj = λ{ (A , B) → A ⟶ B }
; mor = λ{ (f , g) → λ h → f ⨾ h ⨾ g }
; id = extensionality (λ {h} → begin
Id 𝒞.⨾ h 𝒞.⨾ Id
≡⟨ leftId ⟩
h 𝒞.⨾ Id
≡⟨ rightId ⟩
h
∎)
; comp = λ {x y z fg fg’} →
let (f , g) = fg ; (f’ , g’) = fg’ in extensionality (λ {h} → begin
(f’ 𝒞.⨾ f) 𝒞.⨾ h 𝒞.⨾ (g 𝒞.⨾ g’)
≡⟨ assoc ⟩
f’ 𝒞.⨾ (f 𝒞.⨾ (h 𝒞.⨾ (g 𝒞.⨾ g’)))
≡⟨ ⨾-cong₂ (≡-sym assoc) ⟩
f’ 𝒞.⨾ ((f 𝒞.⨾ h) 𝒞.⨾ (g 𝒞.⨾ g’))
≡⟨ ⨾-cong₂ (≡-sym assoc) ⟩
f’ 𝒞.⨾ ((f 𝒞.⨾ h) 𝒞.⨾ g) 𝒞.⨾ g’
≡⟨ ⨾-cong₂ (≡-cong₂ 𝒞._⨾_ assoc ≡-refl) ⟩
f’ 𝒞.⨾ (f 𝒞.⨾ h 𝒞.⨾ g) 𝒞.⨾ g’
∎)
}
_⊣₀_ : ∀ {i j} {𝒞 𝒟 : Category {i} {j}} → Functor 𝒞 𝒟 → Functor 𝒟 𝒞 → Set (i ⊍ j)
_⊣₀_ {𝒞 = 𝒞} {𝒟} F G
=
(F ′ ∘ X ⟶ₙₐₜ Y) ≅ (X ⟶ₙₐₜ G ∘ Y) within Func (𝒞 ᵒᵖ ⊗ 𝒟) 𝒮e𝓉
where
X = Fst ; Y = Snd ; _′ = opify -- only changes types
infix 5 _⟶ₙₐₜ_
_⟶ₙₐₜ_ : ∀ {i j} {𝒜 : Category {i} {j}} →
Functor (𝒞 ᵒᵖ ⊗ 𝒟) (𝒜 ᵒᵖ) → Functor (𝒞 ᵒᵖ ⊗ 𝒟) 𝒜 → Functor (𝒞 ᵒᵖ ⊗ 𝒟) 𝒮e𝓉
_⟶ₙₐₜ_ {i} {j} {𝒜} = pointwise (Hom {i} {j} {𝒜})
record _⊣_ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}}
(F : Functor 𝒞 𝒟) (G : Functor 𝒟 𝒞)
: Set (j’ ⊍ i’ ⊍ j ⊍ i) where
open Category 𝒟 renaming (_⨾_ to _⨾₂_)
open Category 𝒞 renaming (_⨾_ to _⨾₁_)
field
-- ‘left-adjunct’ L ≈ ⌊ and ‘right-adjunct’ r ≈ ⌈
⌊_⌋ : ∀ {X Y} → obj F X ⟶ Y ∶ 𝒟 → X ⟶ obj G Y ∶ 𝒞
⌈_⌉ : ∀ {X Y} → X ⟶ obj G Y ∶ 𝒞 → obj F X ⟶ Y ∶ 𝒟
-- Adjuncts are inverse operations
lid : ∀ {X Y} {d : obj F X ⟶ Y ∶ 𝒟} → ⌈ ⌊ d ⌋ ⌉ ≡ d
rid : ∀ {X Y} {c : X ⟶ obj G Y ∶ 𝒞} → ⌊ ⌈ c ⌉ ⌋ ≡ c
-- That for a fixed argument, are natural transformations between Hom functors
lfusion : ∀ {A B C D} {f : A ⟶ B ∶ 𝒞} {ψ : obj F B ⟶ C ∶ 𝒟} {g : C ⟶ D ∶ 𝒟}
→ ⌊ mor F f ⨾₂ ψ ⨾₂ g ⌋ ≡ f ⨾₁ ⌊ ψ ⌋ ⨾₁ mor G g
rfusion : ∀ {A B C D} {f : A ⟶ B ∶ 𝒞} {ψ : B ⟶ obj G C ∶ 𝒞} {g : C ⟶ D ∶ 𝒟}
→ ⌈ f ⨾₁ ψ ⨾₁ mor G g ⌉ ≡ mor F f ⨾₂ ⌈ ψ ⌉ ⨾₂ g
Path₀ : ℕ → Graph₀ → Set (ℓsuc ℓ₀)
Path₀ n G = [ n ]₀ 𝒢⟶₀ G
open import Data.Vec using (Vec ; lookup)
record Path₁ (n : ℕ) (G : Graph₀) : Set (ℓsuc ℓ₀) where
open Graph₀
field
edges : Vec (E G) (suc n)
coherency : {i : Fin n} → tgt G (lookup (` i) edges) ≡ src G (lookup (fsuc i) edges)
module Path-definition-2 (G : Graph₀) where
open Graph₀ G
mutual
data Path₂ : Set where
_! : V → Path₂
cons : (v : V) (e : E) (ps : Path₂) (s : v ≡ src e) (t : tgt e ≡ head₂ ps) → Path₂
head₂ : Path₂ → V
head₂ (v !) = v
head₂ (cons v e p s t) = v
module Path-definition-3 (G : Graph) where
open Graph G
-- handy dandy syntax
infixr 5 cons
syntax cons v ps e = v ⟶[ e ]⟶ ps -- v goes, by e, onto path ps
-- we want well-formed paths
mutual
data Path₃ : Set where
_! : (v : V) → Path₃
cons : (v : V) (ps : Path₃) (e : v ⟶ head₃ ps) → Path₃
head₃ : Path₃ → V
head₃ (v !) = v
head₃ (v ⟶[ e ]⟶ ps) = v
-- motivation for the syntax declaration above
example : (v₁ v₂ v₃ : V) (e₁ : v₁ ⟶ v₂) (e₂ : v₂ ⟶ v₃) → Path₃
example v₁ v₂ v₃ e₁ e₂ = v₁ ⟶[ e₁ ]⟶ v₂ ⟶[ e₂ ]⟶ v₃ !
end₃ : Path₃ → V
end₃ (v !) = v
end₃ (v ⟶[ e ]⟶ ps) = end₃ ps
-- typed paths; squigarrowright
record _⇝_ (x y : V) : Set where
field
path : Path₃
start : head₃ path ≡ x
finish : end₃ path ≡ y
module TypedPaths (G : Graph) where
open Graph G hiding(V)
open Graph using (V)
data _⇝_ : V G → V G → Set where
_! : ∀ x → x ⇝ x
_⟶[_]⟶_ : ∀ x {y ω} (e : x ⟶ y) (ps : y ⇝ ω) → x ⇝ ω
-- Preprend preserves path equality
⟶-≡ : ∀{x y ω} {e : x ⟶ y} {ps qs : y ⇝ ω}
→ ps ≡ qs → (x ⟶[ e ]⟶ ps) ≡ (x ⟶[ e ]⟶ qs)
⟶-≡ {x} {y} {ω} {e} {ps} {qs} eq = ≡-cong (λ r → x ⟶[ e ]⟶ r) eq
open import Data.List using (List ; [] ; _∷_)
edges : ∀ {x ω} (p : x ⇝ ω) → List (Σ s ∶ V G • Σ t ∶ V G • s ⟶ t)
edges {x} (.x !) = []
edges {x} (.x ⟶[ e ]⟶ ps) = (x , _ , e) ∷ edges ps
path-eq : ∀ {x y} {p q : x ⇝ y} → edges p ≡ edges q → p ≡ q
path-eq {x} {p = .x !} {q = .x !} pf = ≡-refl
path-eq {x} {p = .x !} {q = .x ⟶[ e ]⟶ q} ()
path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x !} ()
path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x ⟶[ e₁ ]⟶ q} pf with edges p | pf
path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x ⟶[ .e ]⟶ q} pf | .(edges q) | ≡-refl = ⟶-≡ (path-eq (uncons pf))
where uncons : ∀{A : Set} {x y : A} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys
uncons {A} {x} {.x} {xs} {.xs} ≡-refl = ≡-refl
infixr 5 _++_
_++_ : ∀{x y z} → x ⇝ y → y ⇝ z → x ⇝ z
x ! ++ q = q -- left unit
(x ⟶[ e ]⟶ p) ++ q = x ⟶[ e ]⟶ (p ++ q) -- mutual-associativity
leftId : ∀ {x y} {p : x ⇝ y} → x ! ++ p ≡ p
leftId = ≡-refl
rightId : ∀ {x y} {p : x ⇝ y} → p ++ y ! ≡ p
rightId {x} {.x} {.x !} = ≡-refl
rightId {x} {y } {.x ⟶[ e ]⟶ ps} = ≡-cong (λ q → x ⟶[ e ]⟶ q) rightId
assoc : ∀{x y z ω} {p : x ⇝ y} {q : y ⇝ z} {r : z ⇝ ω}
→ (p ++ q) ++ r ≡ p ++ (q ++ r)
assoc {x} {p = .x !} = ≡-refl
assoc {x} {p = .x ⟶[ e ]⟶ ps} {q} {r} = ≡-cong (λ s → x ⟶[ e ]⟶ s) (assoc {p = ps})
𝒫₀ : Graph → Category
𝒫₀ G = let open TypedPaths G in
record
{ Obj = Graph.V G
; _⟶_ = _⇝_
; _⨾_ = _++_
; assoc = λ {x y z ω p q r} → assoc {p = p}
; Id = λ {x} → x !
; leftId = leftId
; rightId = rightId
}
𝒫₁ : ∀ {G H} → GraphMap G H → Functor (𝒫₀ G) (𝒫₀ H)
𝒫₁ {G} {H} f = record
{ obj = ver f
; mor = amore
; id = ≡-refl
; comp = λ {x} {y} {z} {p} → comp {p = p}
}
where
open TypedPaths ⦃...⦄ public
instance G' : Graph ; G' = G
H' : Graph ; H' = H
amore : {x y : Graph.V G} → x ⇝ y → (ver f x) ⇝ (ver f y)
amore (x !) = ver f x !
amore (x ⟶[ e ]⟶ p) = ver f x ⟶[ edge f e ]⟶ amore p
comp : {x y z : Graph.V G} {p : x ⇝ y} {q : y ⇝ z}
→ amore (p ++ q) ≡ amore p ++ amore q
comp {x} {p = .x !} = ≡-refl -- since ! is left unit of ++
comp {x} {p = .x ⟶[ e ]⟶ ps} = ⟶-≡ (comp {p = ps})
𝒫 : Functor 𝒢𝓇𝒶𝓅𝒽 𝒞𝒶𝓉
𝒫 = record { obj = 𝒫₀
; mor = 𝒫₁
; id = λ {G} → funcext ≡-refl (id ⦃ G ⦄)
; comp = funcext ≡-refl comp
}
where
open TypedPaths ⦃...⦄
open Category ⦃...⦄
module 𝒞𝒶𝓉 = Category 𝒞𝒶𝓉
module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽
id : ∀ ⦃ G ⦄ {x y} {p : x ⇝ y}
→ mor (𝒞𝒶𝓉.Id {𝒫₀ G}) p ≡ mor (𝒫₁ (𝒢𝓇𝒶𝓅𝒽.Id)) p
id {p = x !} = ≡-refl
id {p = x ⟶[ e ]⟶ ps} = ⟶-≡ (id {p = ps})
comp : {G H K : Graph} {f : GraphMap G H} {g : GraphMap H K}
→ {x y : Graph.V G} {p : TypedPaths._⇝_ G x y}
→ mor (𝒫₁ f 𝒞𝒶𝓉.⨾ 𝒫₁ g) p ≡ mor (𝒫₁ (f 𝒢𝓇𝒶𝓅𝒽.⨾ g)) p
comp {p = x !} = ≡-refl
comp {p = x ⟶[ e ]⟶ ps} = ⟶-≡ (comp {p = ps})
module freedom (G : Obj 𝒢𝓇𝒶𝓅𝒽) {𝒞 : Category {ℓ₀} {ℓ₀} } where
open TypedPaths G using (_! ; _⟶[_]⟶_ ; _⇝_ ; _++_)
open Category ⦃...⦄
module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽
module 𝒮ℯ𝓉 = Category (𝒮e𝓉 {ℓ₀})
module 𝒞 = Category 𝒞
instance 𝒞′ : Category ; 𝒞′ = 𝒞
ι : G ⟶ 𝒰₀ (𝒫₀ G)
ι = record { ver = Id ; edge = λ {x} {y} e → x ⟶[ e ]⟶ (y !) }
lift : G ⟶ 𝒰₀ 𝒞 → 𝒫₀ G ⟶ 𝒞
lift f = record
{ obj = λ v → ver f v -- Only way to obtain an object of 𝒞; hope it works!
; mor = fmap
; id = ≡-refl
; comp = λ {x y z p q} → proof {x} {y} {z} {p} {q}
}
where
fmap : ∀ {x y} → x ⇝ y → ver f x 𝒞.⟶ ver f y
fmap (y !) = 𝒞.Id
fmap (x ⟶[ e ]⟶ p) = edge f e 𝒞.⨾ fmap p
-- homomorphism property
proof : ∀{x y z} {p : x ⇝ y} {q : y ⇝ z} → fmap (p ++ q) ≡ fmap p 𝒞.⨾ fmap q
proof {p = ._ !} = ≡-sym 𝒞.leftId
proof {p = ._ ⟶[ e ]⟶ ps} = ≡-cong (λ m → edge f e 𝒞.⨾ m) (proof {p = ps})
⟨≡≡⟩ ≡-sym assoc
-- Exercise: Rewrite this calculationally!
property : ∀{f : G ⟶ 𝒰₀ 𝒞} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f))
property {f} = graphmapext
-- Proving: ∀ {v} → ver f v ≡ ver (ι 𝒞.⨾ 𝒰₁ (lift f)) v
-- by starting at the complicated side and simplifying
(λ {v} → ≡-sym (begin
ver (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f)) v
≡⟨" definition of ver on composition "⟩′
(ver ι 𝒮ℯ𝓉.⨾ ver (𝒰₁ (lift f))) v
≡⟨" definition of 𝒰₁ says: ver (𝒰₁ F) = obj F "⟩′
(ver ι 𝒮ℯ𝓉.⨾ obj (lift f)) v
≡⟨" definition of lift says: obj (lift f) = ver f "⟩′
(ver ι 𝒮ℯ𝓉.⨾ ver f) v
≡⟨" definition of ι on vertices is identity "⟩′
ver f v
∎))
-- Proving: edge (ι ⨾g 𝒰₁ (lift f)) e ≡ edge f e
(λ {x} {y} {e} → begin
edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f)) e
≡⟨" definition of edge on composition "⟩′
(edge ι 𝒮ℯ𝓉.⨾ edge (𝒰₁ (lift f))) e
≡⟨" definition of 𝒰 says: edge (𝒰₁ F) = mor F "⟩′
(edge ι 𝒮ℯ𝓉.⨾ mor (lift f)) e
≡⟨" definition chasing gives: mor (lift f) (edge ι e) = edge f e ⨾ Id "⟩′
edge f e 𝒞.⨾ Id
≡⟨ 𝒞.rightId ⟩
edge f e
∎)
uniqueness : ∀{f : G ⟶ 𝒰₀ 𝒞} {F : 𝒫₀ G ⟶ 𝒞} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) → lift f ≡ F
uniqueness {.(ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)} {F} ≡-refl = funcext ≡-refl (≡-sym pf)
where
pf : ∀{x y} {p : x ⇝ y} → mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) p ≡ mor F p
pf {x} {.x} {p = .x !} = ≡-sym (Functor.id F)
pf {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin
mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) (x ⟶[ e ]⟶ ps)
≡⟨" definition of mor on lift, the inductive clause "⟩′
edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒞.⨾ mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) ps
≡⟨ ≡-cong₂ 𝒞._⨾_ ≡-refl (pf {p = ps}) ⟩ -- inductive step
edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒞.⨾ mor F ps
≡⟨" definition of edge says it preserves composition "⟩′
(edge ι 𝒮ℯ𝓉.⨾ edge (𝒰₁ F)) e 𝒞.⨾ mor F ps
≡⟨" definition of 𝒰 gives: edge (𝒰₁ F) = mor F "⟩′
(edge ι 𝒮ℯ𝓉.⨾ mor F) e 𝒞.⨾ mor F ps
≡⟨" definition of functional composition 𝒮ℯ𝓉 "⟩′
mor F (edge ι e) 𝒞.⨾ mor F ps
≡⟨ ≡-sym (Functor.comp F) {- i.e., functors preserve composition -} ⟩
mor F (edge ι e ++ ps)
≡⟨" definition of embedding and concatenation "⟩′
mor F (x ⟶[ e ]⟶ ps)
∎
_≈g_ : ∀{G H : Graph} (f g : G ⟶ H) → Set
_≈g_ {G} {H} f g = Σ veq ∶ (∀ {v} → ver f v ≡ ver g v) •
(∀ {x y e} → edge g {x} {y} e ≡ ≡-subst₂ (λ a b → Graph._⟶_ H a b) veq veq (edge f {x} {y} e))
_≋_ : ∀{𝒞 𝒟 : Category} (f g : 𝒞 ⟶ 𝒟) → Set
F ≋ G = 𝒰₁ F ≈g 𝒰₁ G -- proofs (x , y) now replaced with: funcext x y
-- Since equality of functors makes use of ~subst~s all over the place, we will need
-- a lemma about how ~subst~ factors/distributes over an operator composition.
subst-dist : ∀ {S : Set} {v v’ : S → Category.Obj 𝒞} (veq : ∀ {z} → v z ≡ v’ z)
→ ∀ x t y {ec : v x 𝒞.⟶ v t} {psc : v t 𝒞.⟶ v y}
→
≡-subst₂ 𝒞._⟶_ veq veq ec 𝒞.⨾ ≡-subst₂ 𝒞._⟶_ veq veq psc
≡ ≡-subst₂ 𝒞._⟶_ veq veq (ec 𝒞.⨾ psc)
subst-dist veq x t y rewrite veq {x} | veq {t} | veq {y} = ≡-refl
uniquenessOld : ∀{f : G ⟶ 𝒰₀ 𝒞} {F : 𝒫₀ G ⟶ 𝒞} → f ≈g (ι ⨾ 𝒰₁ F) → lift f ≡ F
uniquenessOld {f} {F} (veq , eeq) = funcext veq pf
where
𝒮 : ∀{x y} → ver f x 𝒞.⟶ ver f y → obj F x 𝒞.⟶ obj F y
𝒮 m = ≡-subst₂ 𝒞._⟶_ veq veq m
pf : ∀{x y} {p : x ⇝ y} → mor F p ≡ 𝒮( mor (lift f) p )
pf {x} {.x} {.x !} rewrite (veq {x})= Functor.id F
pf {x} {y} {.x ⟶[ e ]⟶ ps} rewrite (eeq {e = e}) = begin
mor F (x ⟶[ e ]⟶ ps)
≡⟨" definition of embedding and concatenation "⟩′
mor F (edge ι e ++ ps)
≡⟨ functor F preserves-composition ⟩
mor F (edge ι e) 𝒞.⨾ mor F ps
≡⟨ ≡-cong₂ 𝒞._⨾_ eeq (pf {p = ps}) ⟩ -- inductive step
𝒮(edge f e) 𝒞.⨾ 𝒮(mor (lift f) ps)
≡⟨ subst-dist veq x _ y ⟩
𝒮( edge f e 𝒞.⨾ mor (lift f) ps )
≡⟨" definition of “mor” on “lift”, the inductive clause "⟩′
𝒮( mor (lift f) (x ⟶[ e ]⟶ ps) )
∎
lift˘ : Functor (𝒫₀ G) 𝒞 → GraphMap G (𝒰₀ 𝒞)
lift˘ F = ι ⨾ 𝒰₁ F -- ≡ record {ver = obj F , edge = mor F ∘ edge ι}
rid₀ : ∀ {f : GraphMap G (𝒰₀ 𝒞)} → ver (lift˘ (lift f)) ≡ ver f
rid₀ {f} = begin
ver (lift˘ (lift f))
≡⟨" ver of lift˘ ; defn of lift˘ "⟩′
obj (lift f)
≡⟨" defn of lift.obj "⟩′
ver f
∎
-- note that ≡-refl would have suffcied, but we show all the steps for clarity, for human consumption!
open Graph G renaming (_⟶_ to _⟶g_)
rid₁ : ∀{f : GraphMap G (𝒰₀ 𝒞)} → ∀{x y} {e : x ⟶g y} → edge (lift˘ (lift f)) e ≡ edge f e
rid₁ {f} {x} {y} {e} = begin
edge (lift˘ (lift f)) e
≡⟨ "lift˘.edge definition" ⟩′
mor (lift f) (edge ι e)
≡⟨ "lift.mor~ on an edge; i.e., the inductive case of fmap" ⟩′
edge f e 𝒞.⨾ Id
≡⟨ 𝒞.rightId ⟩
edge f e
∎
rid : ∀{f : GraphMap G (𝒰₀ 𝒞)} → lift˘ (lift f) ≡ f
rid {f} = graphmapext ≡-refl (≡-sym (rid₁ {f}))
lid₀ : ∀{F : Functor (𝒫₀ G) 𝒞} → obj (lift (lift˘ F)) ≡ obj F
lid₀ {F} = begin
obj (lift (lift˘ F))
≡⟨ "obj of lift" ⟩′
ver (lift˘ F)
≡⟨ "ver of lift˘" ⟩′
obj F
∎
lid₁ : ∀{F : Functor (𝒫₀ G) 𝒞} → ∀ {x y} {p : x ⇝ y} → mor (lift (lift˘ F)) p ≡ mor F p
lid₁ {F} {x} {.x} {p = (.x) !} = begin
mor (lift (lift˘ F)) (x !)
≡⟨ "mor of lift on !" ⟩′
𝒞.Id
≡⟨ ≡-sym (Functor.id F) ⟩ -- ! is identity path in ~𝒫G~ and functor preserve identites
mor F (x !)
∎
lid₁ {F} {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin
mor (lift (lift˘ F)) (x ⟶[ e ]⟶ ps)
≡⟨⟩ -- mor on lift on inductive case
edge (lift˘ F) e 𝒞.⨾ mor (lift (lift˘ F)) ps
≡⟨ ≡-cong (λ w → edge (lift˘ F) e 𝒞.⨾ w) (lid₁ {F}) ⟩
edge (lift˘ F) e 𝒞.⨾ mor F ps
≡⟨ "edge on lift˘" ⟩′
mor F (edge ι e) 𝒞.⨾ mor F ps
≡⟨ ≡-sym (Functor.comp F) ⟩ -- factor out Functor.mor
mor F (edge ι e ++ ps)
≡⟨ "defn of ++" ⟩′
mor F (x ⟶[ e ]⟶ ps)
∎
lid : ∀ {F : Functor (𝒫₀ G) 𝒞} → lift (lift˘ F) ≡ F
lid {F} = funcext ≡-refl (≡-sym (lid₁ {F}))
-- old version
lift-≈ : ∀{f f’ : GraphMap G (𝒰₀ 𝒞)} → f ≈g f’ → lift f ≋ lift f’
lift-≈ {f} {f’} (veq , eeq) = veq , (λ {x} {y} {p} → pf {x} {y} {p})
where
pf : {x y : V} {p : x ⇝ y} → mor (lift f’) p ≡ ≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) p)
pf {x} {.x} {p = .x !} rewrite (veq {x}) = ≡-refl
pf {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin
mor (lift f’) (x ⟶[ e ]⟶ ps)
≡⟨⟩
edge f’ e 𝒞.⨾ mor (lift f’) ps
≡⟨ ≡-cong₂ 𝒞._⨾_ eeq (pf {p = ps}) ⟩
≡-subst₂ 𝒞._⟶_ veq veq (edge f e) 𝒞.⨾ ≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) ps)
≡⟨ subst-dist veq x _ y ⟩
≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) (x ⟶[ e ]⟶ ps))
∎
uniqueness’ : ∀{f h} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ h) → lift f ≡ h
uniqueness’ {f} {h} f≈ι⨾𝒰₁h = begin
lift f
≡⟨ ≡-cong lift f≈ι⨾𝒰₁h ⟩
lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ h)
≡⟨" definition of lift˘ "⟩′
lift (lift˘ h)
≡⟨ lid ⟩
h
∎
module _ {G H : Graph} {𝒞 𝒟 : Category {ℓ₀} {ℓ₀}}
(g : GraphMap G H) (F : Functor 𝒞 𝒟) where
private
lift˘ = λ {A} {C} B → freedom.lift˘ A {C} B
lift = λ {A} {C} B → freedom.lift A {C} B
open Category ⦃...⦄
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽
module 𝒞𝒶𝓉 = Category (𝒞𝒶𝓉 {ℓ₀} {ℓ₀})
module 𝒮ℯ𝓉 = Category (𝒮e𝓉 {ℓ₀})
naturality˘ : ∀ {K : Functor (𝒫₀ H) 𝒞}
→ lift˘ (𝒫₁ g 𝒞𝒶𝓉.⨾ K 𝒞𝒶𝓉.⨾ F) ≡ (g 𝒢𝓇𝒶𝓅𝒽.⨾ lift˘ K 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)
naturality˘ = graphmapext ≡-refl ≡-refl
naturality : ∀ {k : GraphMap H (𝒰₀ 𝒞)} → lift (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)
≡ (𝒫₁ g 𝒞𝒶𝓉.⨾ lift k 𝒞𝒶𝓉.⨾ F)
naturality {k} = funcext ≡-refl (λ {x y p} → proof {x} {y} {p})
where
open TypedPaths ⦃...⦄
instance G′ : Graph ; G′ = G
H′ : Graph ; H′ = H
proof : ∀ {x y : Graph.V G} {p : x ⇝ y}
→ mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) p
≡ mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) p
proof {p = _ !} = functor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) preserves-identities
proof {p = x ⟶[ e ]⟶ ps} = begin
mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) (x ⟶[ e ]⟶ ps)
≡⟨" By definition, “mor” distributes over composition "⟩′
(mor (𝒫₁ g) 𝒮ℯ𝓉.⨾ mor (lift {H} {𝒞} k) 𝒮ℯ𝓉.⨾ mor F) (x ⟶[ e ]⟶ ps)
≡⟨" Definitions of function composition and “𝒫₁ ⨾ mor” "⟩′
mor F (mor (lift {H} {𝒞} k) (mor (𝒫₁ g) (x ⟶[ e ]⟶ ps)))
-- This explicit path is in G
≡⟨" Lifting graph-map “g” onto a path "⟩′
mor F (mor (lift {H} {𝒞} k) (ver g x ⟶[ edge g e ]⟶ mor (𝒫₁ g) ps))
-- This explicit path is in H
≡⟨" Definition of “lift ⨾ mor” on inductive case for paths "⟩′
mor F (edge k (edge g e) 𝒞.⨾ mor (lift {H} {𝒞} k) (mor (𝒫₁ g) ps))
≡⟨ functor F preserves-composition ⟩
mor F (edge k (edge g e))
𝒟.⨾ mor F (mor (lift {H} {𝒞} k) (mor (𝒫₁ g) ps))
≡⟨" Definition of function composition, for top part "⟩′
(edge g 𝒮ℯ𝓉.⨾ edge k 𝒮ℯ𝓉.⨾ mor F) e -- ≈ mor F ∘ edge k ∘ edge g
𝒟.⨾ (mor (𝒫₁ g) 𝒮ℯ𝓉.⨾ mor (lift {H} {𝒞} k) 𝒮ℯ𝓉.⨾ mor F) ps
≡⟨" “𝒰₁ ⨾ edge = mor” and “edge” and “mor” are functorial by definition "⟩′
edge (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e
𝒟.⨾ mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) ps
≡⟨ {- Inductive Hypothesis: -} ≡-cong₂ 𝒟._⨾_ ≡-refl (proof {p = ps}) ⟩
edge (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e
𝒟.⨾ mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) ps
≡⟨" Definition of “lift ⨾ mor” on inductive case for paths "⟩′
mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) (x ⟶[ e ]⟶ ps)
∎
𝒫⊣𝒰 : 𝒫 ⊣ 𝒰
𝒫⊣𝒰 = record{
⌊_⌋ = lift˘
; ⌈_⌉ = lift
; lid = lid
; rid = λ {G 𝒞 c} → rid {G} {𝒞} {c}
; lfusion = λ {G H 𝒞 𝒟 f F K} → naturality˘ {G} {H} {𝒞} {𝒟} f K {F}
; rfusion = λ {G H 𝒞 𝒟 f k F} → naturality {G} {H} {𝒞} {𝒟} f F {k} }
where
module _ {G : Graph} {𝒞 : Category} where open freedom G {𝒞} public
module folding (G : Graph) where
open TypedPaths G
open Graph G
-- Given:
fold : {X : Set} (v : V → X) -- realise G's vertices as X elements
(f : ∀ x {y} (e : x ⟶ y) → X → X) -- realise paths as X elements
→ (∀ {a b} → a ⇝ b → X) -- Then: Any path is an X value
fold v f (b !) = v b
fold v f (x ⟶[ e ]⟶ ps) = f x e (fold v f ps)
length : ∀{x y} → x ⇝ y → ℕ
length = fold (λ _ → 0) -- single walks are length 0.
(λ _ _ n → 1 + n) -- edges are one more than the
-- length of the remaining walk
length-! : ∀{x} → length (x !) ≡ 0
length-! = ≡-refl
-- True by definition of “length”: The first argument to the “fold”
length-ind : ∀ {x y ω} {e : x ⟶ y} {ps : y ⇝ ω}
→ length (x ⟶[ e ]⟶ ps) ≡ 1 + length ps
length-ind = ≡-refl
-- True by definition of “length”: The second-argument to the “fold”
path-cost : (c : ∀{x y}(e : x ⟶ y) → ℕ) → ∀{x y}(ps : x ⇝ y) → ℕ
path-cost c = fold (λ _ → 0) -- No cost on an empty path.
(λ x e n → c e + n) -- Cost of current edge plus
-- cost of remainder of path.
fold-++ : ∀{X : Set} {v : V → X} {g : ∀ x {y} (e : x ⟶ y) → X}
→ (_⊕_ : X → X → X)
→ ∀{x y z : V} {p : x ⇝ y} {q : y ⇝ z}
→ (unitl : ∀{x y} → y ≡ v x ⊕ y) -- Image of ‘v’ is left unit of ⊕
→ (assoc : ∀ {x y z} → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ) -- ⊕ is associative
→ let f : ∀ x {y} (e : x ⟶ y) → X → X
f = λ x e ps → g x e ⊕ ps
in
fold v f (p ++ q) ≡ fold v f p ⊕ fold v f q
fold-++ {g = g} _⊕_ {x = x} {p = .x !} unitl assoc = unitl
fold-++ {g = g} _⊕_ {x = x} {p = .x ⟶[ e ]⟶ ps} unitl assoc =
≡-cong (λ exp → g x e ⊕ exp) (fold-++ _⊕_ {p = ps} unitl assoc) ⟨≡≡⟩ assoc
module lists (A : Set) where
open import Data.Unit
listGraph : Graph
listGraph = record { V = A ; _⟶_ = λ a a’ → ⊤ }
open TypedPaths listGraph
open folding listGraph
-- Every non-empty list [x₀, …, xₖ] of A’s corresonds to a path x₀ ⇝ xₖ.
toPath : ∀{n} (list : Fin (suc n) → A) → list fzero ⇝ list (fromℕ n)
toPath {zero} list = list fzero !
toPath {suc n} list = list fzero ⟶[ tt ]⟶ toPath {n} (λ i → list(fsuc i))
-- Note that in the inductive case, “list : Fin (suc (suc n)) → A”
-- whereas “suc ⨾ list : Fin (suc n) → A”.
--
-- For example, if “list ≈ [x , y , z]” yields
-- “fsuc ⨾ list ≈ [y , z ]” and
-- “fsuc ⨾ fsuc ⨾ list ≈ [z]”.
-- List type former
List = λ (X : Set) → Σ n ∶ ℕ • (Fin n → X)
-- Usual list folding, but it's in terms of path folding.
foldr : ∀{B : Set} (f : A → B → B) (e : B) → List A → B
foldr f e (zero , l) = e
foldr f e (suc n , l) = fold (λ a → f a e) (λ a _ rem → f a rem) (toPath l)
-- example
listLength : List A → ℕ -- result should clearly be “proj₁” of the list, anyhow:
listLength = foldr
(λ a rem → 1 + rem) -- Non-empty list has length 1 more than the remainder.
0 -- Empty list has length 0.
-- Empty list
[] : ∀{X : Set} → List X
[] = 0 , λ ()
-- Cons for lists
_∷_ : ∀{X : Set} → X → List X → List X
_∷_ {X} x (n , l) = 1 + n , cons x l
where
-- “cons a l ≈ λ i : Fin (1 + n) → if i ≈ 0 then a else l i”
cons : ∀{n} → X → (Fin n → X) → (Fin (suc n) → X)
cons x l fzero = x
cons x l (fsuc i) = l i
map : ∀ {B} (f : A → B) → List A → List B
map f = foldr (λ a rem → f a ∷ rem) [] -- looks like the usual map don’t it ;)
-- list concatenation
_++ℓ_ : List A → List A → List A
l ++ℓ r = foldr _∷_ r l -- fold over ‘l’ by consing its elements infront of ‘r’
-- Exercise: Write path catenation as a path-fold.
| {
"alphanum_fraction": 0.4476493509,
"avg_line_length": 37.0375747225,
"ext": "agda",
"hexsha": "d8c951b1f1f650164ac6f353006525fd4e7e65eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "KMx404/selfev.agda",
"max_forks_repo_path": "understand/1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "KMx404/selfev.agda",
"max_issues_repo_path": "understand/1.agda",
"max_line_length": 189,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "KMx404/selfev.agda",
"max_stars_repo_path": "understand/1.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-12T15:57:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-18T11:22:21.000Z",
"num_tokens": 21251,
"size": 43371
} |
-- Andreas, 2016-12-20, issue #2347, reported by m0davis
-- Case splitting in extended lambda with instance argument
-- was printed wrongly
-- {-# OPTIONS -v interaction.case:100 #-}
-- {-# OPTIONS -v reify:100 #-}
-- {-# OPTIONS -v reify.clause:100 #-}
-- {-# OPTIONS -v extendedlambda:100 #-}
-- {-# OPTIONS -v tc.term.extlam:100 #-}
data ⊥ : Set where
works : ⊥ → Set
works = λ {x → {!x!}}
works1 : { _ : Set } → ⊥ → Set
works1 = λ {x → {!x!}}
test : ⦃ _ : Set ⦄ → ⊥ → Set
test = λ {x → {!x!}}
-- Case splitting on x should succeed in each case
| {
"alphanum_fraction": 0.5873873874,
"avg_line_length": 23.125,
"ext": "agda",
"hexsha": "addf38dc84e1439354800db4c90ecc9afca4ea25",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2347.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2347.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2347.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 185,
"size": 555
} |
module Cats.Util.SetoidMorphism where
open import Data.Product using (∃-syntax ; _,_ ; proj₁ ; proj₂)
open import Level using (_⊔_ ; suc)
open import Relation.Binary using (Rel ; Setoid ; IsEquivalence ; _Preserves_⟶_)
open import Relation.Binary.SetoidReasoning
open import Cats.Util.Function using () renaming (_∘_ to _⊚_)
open Setoid renaming (_≈_ to eq)
infixr 9 _∘_
record _⇒_ {l l≈} (A : Setoid l l≈) {l′ l≈′} (B : Setoid l′ l≈′)
: Set (l ⊔ l′ ⊔ l≈ ⊔ l≈′)
where
field
arr : Carrier A → Carrier B
resp : arr Preserves eq A ⟶ eq B
open _⇒_ public using (arr ; resp)
module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where
infixr 4 _≈_
record _≈_ (f g : A ⇒ B) : Set (l ⊔ l≈ ⊔ l≈′) where
constructor ≈-intro
field
≈-elim : ∀ {x y} → eq A x y → eq B (arr f x) (arr g y)
≈-elim′ : ∀ {x} → eq B (arr f x) (arr g x)
≈-elim′ = ≈-elim (refl A)
open _≈_ public
equiv : IsEquivalence _≈_
equiv = record
{ refl = λ {f} → ≈-intro (resp f)
; sym = λ eq → ≈-intro λ x≈y → sym B (≈-elim eq (sym A x≈y))
; trans = λ eq₁ eq₂ → ≈-intro (λ x≈y → trans B (≈-elim eq₁ x≈y) (≈-elim′ eq₂))
}
setoid : Setoid (l ⊔ l≈ ⊔ l′ ⊔ l≈′) (l ⊔ l≈ ⊔ l≈′)
setoid = record
{ Carrier = A ⇒ B
; _≈_ = _≈_
; isEquivalence = equiv
}
id : ∀ {l l≈} {A : Setoid l l≈} → A ⇒ A
id = record { arr = λ x → x ; resp = λ x → x }
_∘_ : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ ∀ {l″ l≈″} {C : Setoid l″ l≈″}
→ B ⇒ C → A ⇒ B → A ⇒ C
_∘_ f g = record
{ arr = arr f ⊚ arr g
; resp = resp f ⊚ resp g
}
∘-resp : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ ∀ {l″ l≈″} {C : Setoid l″ l≈″}
→ {f f′ : B ⇒ C} {g g′ : A ⇒ B}
→ f ≈ f′ → g ≈ g′ → f ∘ g ≈ f′ ∘ g′
∘-resp f≈f′ g≈g′ = ≈-intro (≈-elim f≈f′ ⊚ ≈-elim g≈g′)
id-l : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ {f : A ⇒ B}
→ id ∘ f ≈ f
id-l {f = f} = ≈-intro (resp f)
id-r : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ {f : A ⇒ B}
→ f ∘ id ≈ f
id-r {f = f} = ≈-intro (resp f)
assoc : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′}
→ ∀ {l″ l≈″} {C : Setoid l″ l≈″} {l‴ l≈‴} {D : Setoid l‴ l≈‴}
→ {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B}
→ (f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
assoc {f = f} {g} {h} = ≈-intro (resp f ⊚ resp g ⊚ resp h)
module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where
IsInjective : A ⇒ B → Set (l ⊔ l≈ ⊔ l≈′)
IsInjective f = ∀ {a b} → eq B (arr f a) (arr f b) → eq A a b
IsSurjective : A ⇒ B → Set (l ⊔ l′ ⊔ l≈′)
IsSurjective f = ∀ b → ∃[ a ] (eq B b (arr f a))
| {
"alphanum_fraction": 0.4674489023,
"avg_line_length": 25.1619047619,
"ext": "agda",
"hexsha": "db4832b6dea3a3b911a0700f73b7c83bedaa8eea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/SetoidMorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/SetoidMorphism.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/SetoidMorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1325,
"size": 2642
} |
-- Andreas, 2016-03-28, Issue 1920
-- Improve error message when user puts where clause in hole.
infix 3 _∎
postulate
A : Set
begin : A
_∎ : A → A
works : A
works = begin
∎
where b = begin
test : A
test = {!begin
∎
where b = begin
!}
| {
"alphanum_fraction": 0.6071428571,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "897ac185b3a8881fa6b1e7ffdc6240427960ec69",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/ParseHoleWhere.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/ParseHoleWhere.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/ParseHoleWhere.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 252
} |
module functor where
open import level
record Functor {ℓ : Level} (F : Set ℓ → Set ℓ) : Set (lsuc ℓ) where
constructor mkFunc
field
fmap : ∀{A B : Set ℓ} → (A → B) → F A → F B
open Functor public
| {
"alphanum_fraction": 0.6231884058,
"avg_line_length": 18.8181818182,
"ext": "agda",
"hexsha": "2eb5b137c83e6af0052b45c659d16ac8a789c345",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "functor.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 74,
"size": 207
} |
{-# OPTIONS --show-implicit #-}
module Exegesis where
module Superclasses where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Semigroup (A : Set) : Set where
field
_∙_ : A → A → A
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z
open Semigroup ⦃ … ⦄
record Identity {A : Set} (_∙_ : A → A → A) : Set where
field
ε : A
left-identity : ∀ x → ε ∙ x ≡ x
right-identity : ∀ x → x ∙ ε ≡ x
open Identity ⦃ … ⦄
record Monoid (A : Set) : Set where
field
⦃ semigroup ⦄ : Semigroup A
⦃ identity ⦄ : Identity (_∙_ ⦃ semigroup ⦄)
open Monoid ⦃ … ⦄
foo : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ⦃ identity ⦄ ≡ x
foo x = right-identity x
module StandardLibraryMethod where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Semigroup (A : Set) : Set where
field
_∙_ : A → A → A
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z
--open Semigroup ⦃ … ⦄
record Identity (A : Set) (ε : A) (_∙_ : A → A → A) : Set where
field
left-identity : ∀ x → ε ∙ x ≡ x
right-identity : ∀ x → x ∙ ε ≡ x
--open Identity ⦃ … ⦄
record Monoid (A : Set) : Set where
field
s : Semigroup A
open Semigroup s public
field
ε : A
i : Identity A ε _∙_
open Identity i public
open Monoid ⦃ … ⦄
foo : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≡ x
foo x = right-identity x -- right-identity x
module Cascade where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Semigroup (A : Set) : Set where
field
_∙_ : A → A → A
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z
open Semigroup ⦃ … ⦄
record RawMonoid (A : Set) ⦃ _ : Semigroup A ⦄ : Set where
no-eta-equality
field
ε : A
open RawMonoid ⦃ … ⦄
record Identity (A : Set) (ε : A) (_∙_ : A → A → A) : Set where
field
left-identity : ∀ x → ε ∙ x ≡ x
right-identity : ∀ x → x ∙ ε ≡ x
open Identity ⦃ … ⦄
foo : {A : Set} ⦃ _ : Semigroup A ⦄ ⦃ _ : RawMonoid A ⦄ ⦃ i : Identity A ε _∙_ ⦄ → (x : A) → x ∙ ε ≡ x
foo ⦃ s ⦄ ⦃ rm ⦄ ⦃ i ⦄ x = right-identity ⦃ i ⦄ x
module Buncha where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Semigroup (A : Set) : Set where
field
_∙_ : A → A → A
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z
open Semigroup ⦃ … ⦄
record RawMonoid (A : Set) : Set where
field
ε : A
open RawMonoid ⦃ … ⦄
record Identity {A : Set} (_∙_ : A → A → A) ⦃ _ : RawMonoid A ⦄ : Set where
field
left-identity : ∀ x → ε ∙ x ≡ x
right-identity : ∀ x → x ∙ ε ≡ x
open Identity ⦃ … ⦄
record Monoid (A : Set) : Set where
field
⦃ semigroup ⦄ : Semigroup A
⦃ rawmonoid ⦄ : RawMonoid A
⦃ identity ⦄ : Identity {A} _∙_
open Monoid ⦃ … ⦄
foo : {A : Set} ⦃ _ : Semigroup A ⦄ ⦃ _ : RawMonoid A ⦄ ⦃ _ : Identity _∙_ ⦄ → (x : A) → x ∙ ε ≡ x
foo x = right-identity x
bar : {A : Set} ⦃ _ : Monoid A ⦄ → (x : A) → x ∙ ε ≡ x
bar x = right-identity x
module SomethingThatWorks where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Equivalence (A : Set) : Set₁ where
infix 4 _≈_
field
_≈_ : A → A → Set
reflexive : ∀ x → x ≈ x
symmetric : ∀ {x y} → x ≈ y → y ≈ x
transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
open Equivalence ⦃ … ⦄
record Operator (A : Set) : Set where
field
_∙_ : A → A → A
record Semigroup (A : Set) : Set₁ where
field
⦃ operator ⦄ : Operator A
⦃ equivalence ⦄ : Equivalence A
open Operator operator public
field
assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z)
cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z
open Semigroup ⦃ … ⦄
record IdentityElement (A : Set) : Set where
field
ε : A
module ε where
open IdentityElement ⦃ … ⦄ public
record Identity {A : Set} (_∙_ : A → A → A) ⦃ _ : IdentityElement A ⦄ : Set where
open ε
field
left-identity : ∀ x → ε ∙ x ≡ x
right-identity : ∀ x → x ∙ ε ≡ x
open Identity ⦃ … ⦄
record Monoid (A : Set) : Set₁ where
field
⦃ semigroup ⦄ : Semigroup A
⦃ identityElement ⦄ : IdentityElement A
⦃ identity ⦄ : Identity {A} _∙_
open Monoid ⦃ … ⦄
bar : {A : Set} ⦃ _ : Monoid A ⦄ {B : Set} ⦃ _ : Monoid B ⦄ (open ε) → (x : A) → x ∙ ε ≡ x
bar x = right-identity x
module SeparatingIsFromOught where
open import Agda.Primitive
open import Agda.Builtin.Equality
record Equivalence (A : Set) : Set₁ where
infix 4 _≈_
field
_≈_ : A → A → Set
reflexive : ∀ x → x ≈ x
symmetric : ∀ {x y} → x ≈ y → y ≈ x
transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
open Equivalence ⦃ … ⦄
record Operator (A : Set) : Set where
field
_∙_ : A → A → A
open Operator ⦃ … ⦄
record IsSemigroup (A : Set) ⦃ _ : Operator A ⦄ ⦃ _ : Equivalence A ⦄ : Set where
field
assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z)
cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z
open IsSemigroup ⦃ … ⦄
record Semigroup (A : Set) : Set₁ where
field
⦃ operator ⦄ : Operator A
⦃ equivalence ⦄ : Equivalence A
⦃ isSemigroup ⦄ : IsSemigroup A
open Semigroup ⦃ … ⦄
{-
record IdentityElement (A : Set) : Set where
field
ε : A
open IdentityElement ⦃ … ⦄
-}
record IsIdentity (A : Set) ⦃ _ : Operator A ⦄ {-⦃ _ : IdentityElement A ⦄-} ⦃ _ : Equivalence A ⦄ : Set where
-- record IsIdentity {A : Set} (_∙_ : A → A → A) (ε : A) ⦃ _ : Equivalence A ⦄ : Set where
field
ε : A
left-identity : ∀ (x : A) → ε ∙ x ≈ x
right-identity : ∀ (x : A) → x ∙ ε ≈ x
open IsIdentity ⦃ … ⦄
record Monoid (A : Set) : Set₁ where
field
⦃ semigroup ⦄ : Semigroup A
--⦃ identityElement ⦄ : IdentityElement A
--ε : A
--⦃ identity ⦄ : IsIdentity (_∙_ {A}) ε
-- ⦃ operator ⦄ : Operator A
⦃ identity ⦄ : IsIdentity A
open Monoid ⦃ … ⦄
bar : {A : Set} ⦃ m : Monoid A ⦄ {B : Set} ⦃ _ : Semigroup B ⦄ → (x : A) → x ∙ ε ≈ x
bar x = right-identity x
bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y : A) → (x ∙ ε) ∙ y ≈ x ∙ (ε ∙ y)
bar2 x y = assoc x ε y
module FineControl where
record IsEquivalence {A : Set} (_≈_ : A → A → Set) : Set₁ where
field
reflexive : ∀ x → x ≈ x
symmetric : ∀ {x y} → x ≈ y → y ≈ x
transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
open IsEquivalence ⦃ … ⦄
record Equivalence (A : Set) : Set₁ where
infix 4 _≈_
field
_≈_ : A → A → Set
⦃ isEquivalence ⦄ : IsEquivalence _≈_
open Equivalence ⦃ … ⦄
record IsSemigroup {A : Set} (_∙_ : A → A → A) ⦃ _ : Equivalence A ⦄ : Set where
field
assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z)
cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z
open IsSemigroup ⦃ … ⦄
record Semigroup (A : Set) : Set₁ where
field
⦃ equivalence ⦄ : Equivalence A
_∙_ : A → A → A
⦃ isSemigroup ⦄ : IsSemigroup _∙_
open Semigroup ⦃ … ⦄
record Identity (A : Set) : Set where
field
ε : A
open Identity ⦃ … ⦄
-- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ (ε : A) ⦃ _ : Equivalence B ⦄ : Set where
record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set where
field
left-identity : ∀ x → ε ∙ x ≈ x
open IsLeftIdentity ⦃ … ⦄
-- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where
record IsRightIdentity {A B : Set} (_∙_ : B → A → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set where
field
right-identity : ∀ x → x ∙ ε ≈ x
open IsRightIdentity ⦃ … ⦄
record Monoid (A : Set) : Set₁ where
field
⦃ semigroup ⦄ : Semigroup A
--ε : A
⦃ identity ⦄ : Identity A
⦃ lidentity ⦄ : IsLeftIdentity {A = A} _∙_
⦃ ridentity ⦄ : IsRightIdentity {A = A} _∙_
open Monoid ⦃ … ⦄
bar : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x
bar {A} x = right-identity {_∙_ = _∙_} x -- right-identity {_∙_ = _∙_} x
bar' : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x
bar' x = right-identity x
bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y z : A) → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z)
bar2 x y z = assoc x y z
module FineControl2 where
record IsEquivalence {A : Set} (_≈_ : A → A → Set) : Set₁ where
field
reflexive : ∀ x → x ≈ x
symmetric : ∀ {x y} → x ≈ y → y ≈ x
transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
open IsEquivalence ⦃ … ⦄
record Equivalence (A : Set) : Set₁ where
infix 4 _≈_
field
_≈_ : A → A → Set
⦃ isEquivalence ⦄ : IsEquivalence _≈_
open Equivalence ⦃ … ⦄
record IsSemigroup {A : Set} (_∙_ : A → A → A) ⦃ _ : Equivalence A ⦄ : Set where
field
assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z)
cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z
open IsSemigroup ⦃ … ⦄
record Semigroup (A : Set) : Set₁ where
field
overlap ⦃ equivalence ⦄ : Equivalence A
_∙_ : A → A → A
⦃ isSemigroup ⦄ : IsSemigroup _∙_
open Semigroup ⦃ … ⦄
record Identity (A : Set) : Set where
field
ε : A
open Identity ⦃ … ⦄
-- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where
-- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) : Set₁ where
record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set₁ where
field
left-identity : ∀ x → ε ∙ x ≈ x
open IsLeftIdentity ⦃ … ⦄
-- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where
-- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) : Set₁ where
record IsRightIdentity {A B : Set} (_∙_ : B → A → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set₁ where
field
right-identity : ∀ x → x ∙ ε ≈ x
-- open IsRightIdentity ⦃ … ⦄
record Monoid (A : Set) : Set₁ where
field
⦃ semigroup ⦄ : Semigroup A
--ε : A
⦃ identity ⦄ : Identity A
⦃ lidentity ⦄ : IsLeftIdentity {A = A} _∙_
⦃ ridentity ⦄ : IsRightIdentity {A = A} _∙_
open IsRightIdentity ridentity public
open Monoid ⦃ … ⦄
bar : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x
bar {A} x = right-identity x -- right-identity {_∙_ = _∙_} x
bar' : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x
bar' x = right-identity x
bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y z : A) → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z)
bar2 x y z = assoc x y z
| {
"alphanum_fraction": 0.5133783909,
"avg_line_length": 25.8397129187,
"ext": "agda",
"hexsha": "d607a024e719c337aaf14c11f8117cbb0e0f6eec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Exegesis.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Exegesis.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Exegesis.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4630,
"size": 10801
} |
----------------------------------------------------------------------------------
-- Types for parse trees
----------------------------------------------------------------------------------
module cedille-types where
open import lib
-- open import parse-tree
posinfo = string
alpha = string
alpha-bar-3 = string
alpha-range-1 = string
alpha-range-2 = string
bvar = string
bvar-bar-13 = string
fpth = string
fpth-bar-15 = string
fpth-bar-16 = string
fpth-bar-17 = string
fpth-plus-14 = string
fpth-star-18 = string
kvar = string
kvar-bar-19 = string
kvar-star-20 = string
num = string
num-plus-5 = string
numone = string
numone-range-4 = string
numpunct = string
numpunct-bar-10 = string
numpunct-bar-6 = string
numpunct-bar-7 = string
numpunct-bar-8 = string
numpunct-bar-9 = string
qkvar = string
qvar = string
var = string
var-bar-11 = string
var-star-12 = string
{-# FOREIGN GHC import qualified CedilleTypes #-}
data arg : Set
{-# COMPILE GHC arg = type CedilleTypes.Arg #-}
data args : Set
{-# COMPILE GHC args = type CedilleTypes.Args #-}
data opacity : Set
{-# COMPILE GHC opacity = type CedilleTypes.Opacity #-}
data cmd : Set
{-# COMPILE GHC cmd = type CedilleTypes.Cmd #-}
data cmds : Set
{-# COMPILE GHC cmds = type CedilleTypes.Cmds #-}
data decl : Set
{-# COMPILE GHC decl = type CedilleTypes.Decl #-}
data defDatatype : Set
{-# COMPILE GHC defDatatype = type CedilleTypes.DefDatatype #-}
data dataConst : Set
{-# COMPILE GHC dataConst = type CedilleTypes.DataConst #-}
data dataConsts : Set
{-# COMPILE GHC dataConsts = type CedilleTypes.DataConsts #-}
data defTermOrType : Set
{-# COMPILE GHC defTermOrType = type CedilleTypes.DefTermOrType #-}
data imports : Set
{-# COMPILE GHC imports = type CedilleTypes.Imports #-}
data imprt : Set
{-# COMPILE GHC imprt = type CedilleTypes.Imprt #-}
data kind : Set
{-# COMPILE GHC kind = type CedilleTypes.Kind #-}
data leftRight : Set
{-# COMPILE GHC leftRight = type CedilleTypes.LeftRight #-}
data liftingType : Set
{-# COMPILE GHC liftingType = type CedilleTypes.LiftingType #-}
data lterms : Set
{-# COMPILE GHC lterms = type CedilleTypes.Lterms #-}
data optType : Set
{-# COMPILE GHC optType = type CedilleTypes.OptType #-}
data maybeErased : Set
{-# COMPILE GHC maybeErased = type CedilleTypes.MaybeErased #-}
data maybeMinus : Set
{-# COMPILE GHC maybeMinus = type CedilleTypes.MaybeMinus #-}
data nums : Set
{-# COMPILE GHC nums = type CedilleTypes.Nums #-}
data optAs : Set
{-# COMPILE GHC optAs = type CedilleTypes.OptAs #-}
data optClass : Set
{-# COMPILE GHC optClass = type CedilleTypes.OptClass #-}
data optGuide : Set
{-# COMPILE GHC optGuide = type CedilleTypes.OptGuide #-}
data optPlus : Set
{-# COMPILE GHC optPlus = type CedilleTypes.OptPlus #-}
data optNums : Set
{-# COMPILE GHC optNums = type CedilleTypes.OptNums #-}
data optPublic : Set
{-# COMPILE GHC optPublic = type CedilleTypes.OptPublic #-}
data optTerm : Set
{-# COMPILE GHC optTerm = type CedilleTypes.OptTerm #-}
data params : Set
{-# COMPILE GHC params = type CedilleTypes.Params #-}
data start : Set
{-# COMPILE GHC start = type CedilleTypes.Start #-}
data term : Set
{-# COMPILE GHC term = type CedilleTypes.Term #-}
data theta : Set
{-# COMPILE GHC theta = type CedilleTypes.Theta #-}
data tk : Set
{-# COMPILE GHC tk = type CedilleTypes.Tk #-}
data type : Set
{-# COMPILE GHC type = type CedilleTypes.Type #-}
data vars : Set
{-# COMPILE GHC vars = type CedilleTypes.Vars #-}
data cases : Set
{-# COMPILE GHC cases = type CedilleTypes.Cases #-}
data varargs : Set
{-# COMPILE GHC varargs = type CedilleTypes.Varargs #-}
data arg where
TermArg : maybeErased → term → arg
TypeArg : type → arg
{-# COMPILE GHC arg = data CedilleTypes.Arg (CedilleTypes.TermArg | CedilleTypes.TypeArg) #-}
data args where
ArgsCons : arg → args → args
ArgsNil : args
{-# COMPILE GHC args = data CedilleTypes.Args (CedilleTypes.ArgsCons | CedilleTypes.ArgsNil) #-}
data opacity where
OpacOpaque : opacity
OpacTrans : opacity
{-# COMPILE GHC opacity = data CedilleTypes.Opacity (CedilleTypes.OpacOpaque | CedilleTypes.OpacTrans) #-}
data cmd where
DefKind : posinfo → kvar → params → kind → posinfo → cmd
DefTermOrType : opacity → defTermOrType → posinfo → cmd
DefDatatype : defDatatype → posinfo → cmd
ImportCmd : imprt → cmd
{-# COMPILE GHC cmd = data CedilleTypes.Cmd (CedilleTypes.DefKind | CedilleTypes.DefTermOrType | CedilleTypes.DefDatatype |CedilleTypes.ImportCmd) #-}
data cmds where
CmdsNext : cmd → cmds → cmds
CmdsStart : cmds
{-# COMPILE GHC cmds = data CedilleTypes.Cmds (CedilleTypes.CmdsNext | CedilleTypes.CmdsStart) #-}
data decl where
Decl : posinfo → posinfo → maybeErased → bvar → tk → posinfo → decl
{-# COMPILE GHC decl = data CedilleTypes.Decl (CedilleTypes.Decl) #-}
data defDatatype where
Datatype : posinfo → posinfo → var → params → kind → dataConsts → posinfo → defDatatype
{-# COMPILE GHC defDatatype = data CedilleTypes.DefDatatype (CedilleTypes.Datatype) #-}
data dataConst where
DataConst : posinfo → var → type → dataConst
{-# COMPILE GHC dataConst = data CedilleTypes.DataConst (CedilleTypes.DataConst) #-}
data dataConsts where
DataNull : dataConsts
DataCons : dataConst → dataConsts → dataConsts
{-# COMPILE GHC dataConsts = data CedilleTypes.DataConsts (CedilleTypes.DataNull | CedilleTypes.DataCons) #-}
data defTermOrType where
DefTerm : posinfo → var → optType → term → defTermOrType
DefType : posinfo → var → kind → type → defTermOrType
{-# COMPILE GHC defTermOrType = data CedilleTypes.DefTermOrType (CedilleTypes.DefTerm | CedilleTypes.DefType) #-}
data imports where
ImportsNext : imprt → imports → imports
ImportsStart : imports
{-# COMPILE GHC imports = data CedilleTypes.Imports (CedilleTypes.ImportsNext | CedilleTypes.ImportsStart) #-}
data imprt where
Import : posinfo → optPublic → posinfo → fpth → optAs → args → posinfo → imprt
{-# COMPILE GHC imprt = data CedilleTypes.Imprt (CedilleTypes.Import) #-}
data kind where
KndArrow : kind → kind → kind
KndParens : posinfo → kind → posinfo → kind
KndPi : posinfo → posinfo → bvar → tk → kind → kind
KndTpArrow : type → kind → kind
KndVar : posinfo → qkvar → args → kind
Star : posinfo → kind
{-# COMPILE GHC kind = data CedilleTypes.Kind (CedilleTypes.KndArrow | CedilleTypes.KndParens | CedilleTypes.KndPi | CedilleTypes.KndTpArrow | CedilleTypes.KndVar | CedilleTypes.Star) #-}
data leftRight where
Both : leftRight
Left : leftRight
Right : leftRight
{-# COMPILE GHC leftRight = data CedilleTypes.LeftRight (CedilleTypes.Both | CedilleTypes.Left | CedilleTypes.Right) #-}
data liftingType where
LiftArrow : liftingType → liftingType → liftingType
LiftParens : posinfo → liftingType → posinfo → liftingType
LiftPi : posinfo → bvar → type → liftingType → liftingType
LiftStar : posinfo → liftingType
LiftTpArrow : type → liftingType → liftingType
{-# COMPILE GHC liftingType = data CedilleTypes.LiftingType (CedilleTypes.LiftArrow | CedilleTypes.LiftParens | CedilleTypes.LiftPi | CedilleTypes.LiftStar | CedilleTypes.LiftTpArrow) #-}
data lterms where
LtermsCons : maybeErased → term → lterms → lterms
LtermsNil : posinfo → lterms
{-# COMPILE GHC lterms = data CedilleTypes.Lterms (CedilleTypes.LtermsCons | CedilleTypes.LtermsNil) #-}
data optType where
SomeType : type → optType
NoType : optType
{-# COMPILE GHC optType = data CedilleTypes.OptType (CedilleTypes.SomeType | CedilleTypes.NoType) #-}
data maybeErased where
Erased : maybeErased
NotErased : maybeErased
{-# COMPILE GHC maybeErased = data CedilleTypes.MaybeErased (CedilleTypes.Erased | CedilleTypes.NotErased) #-}
data maybeMinus where
EpsHanf : maybeMinus
EpsHnf : maybeMinus
{-# COMPILE GHC maybeMinus = data CedilleTypes.MaybeMinus (CedilleTypes.EpsHanf | CedilleTypes.EpsHnf) #-}
data nums where
NumsStart : num → nums
NumsNext : num → nums → nums
{-# COMPILE GHC nums = data CedilleTypes.Nums (CedilleTypes.NumsStart | CedilleTypes.NumsNext) #-}
data optAs where
NoOptAs : optAs
SomeOptAs : posinfo → var → optAs
{-# COMPILE GHC optAs = data CedilleTypes.OptAs (CedilleTypes.NoOptAs | CedilleTypes.SomeOptAs) #-}
data optPublic where
NotPublic : optPublic
IsPublic : optPublic
{-# COMPILE GHC optPublic = data CedilleTypes.OptPublic (CedilleTypes.NotPublic | CedilleTypes.IsPublic) #-}
data optClass where
NoClass : optClass
SomeClass : tk → optClass
{-# COMPILE GHC optClass = data CedilleTypes.OptClass (CedilleTypes.NoClass | CedilleTypes.SomeClass) #-}
data optGuide where
NoGuide : optGuide
Guide : posinfo → var → type → optGuide
{-# COMPILE GHC optGuide = data CedilleTypes.OptGuide (CedilleTypes.NoGuide | CedilleTypes.Guide) #-}
data optPlus where
RhoPlain : optPlus
RhoPlus : optPlus
{-# COMPILE GHC optPlus = data CedilleTypes.OptPlus (CedilleTypes.RhoPlain | CedilleTypes.RhoPlus) #-}
data optNums where
NoNums : optNums
SomeNums : nums → optNums
{-# COMPILE GHC optNums = data CedilleTypes.OptNums (CedilleTypes.NoNums | CedilleTypes.SomeNums) #-}
data optTerm where
NoTerm : optTerm
SomeTerm : term → posinfo → optTerm
{-# COMPILE GHC optTerm = data CedilleTypes.OptTerm (CedilleTypes.NoTerm | CedilleTypes.SomeTerm) #-}
data params where
ParamsCons : decl → params → params
ParamsNil : params
{-# COMPILE GHC params = data CedilleTypes.Params (CedilleTypes.ParamsCons | CedilleTypes.ParamsNil) #-}
data start where
File : posinfo → imports → posinfo → posinfo → qvar → params → cmds → posinfo → start
{-# COMPILE GHC start = data CedilleTypes.Start (CedilleTypes.File) #-}
data term where
App : term → maybeErased → term → term
AppTp : term → type → term
Beta : posinfo → optTerm → optTerm → term
Chi : posinfo → optType → term → term
Delta : posinfo → optType → term → term
Epsilon : posinfo → leftRight → maybeMinus → term → term
Hole : posinfo → term
IotaPair : posinfo → term → term → optGuide → posinfo → term
IotaProj : term → num → posinfo → term
Lam : posinfo → maybeErased → posinfo → bvar → optClass → term → term
Let : posinfo → defTermOrType → term → term
Open : posinfo → var → term → term
Parens : posinfo → term → posinfo → term
Phi : posinfo → term → term → term → posinfo → term
Rho : posinfo → optPlus → optNums → term → optGuide → term → term
Sigma : posinfo → term → term
Theta : posinfo → theta → term → lterms → term
Mu : posinfo → bvar → term → optType → posinfo → cases → posinfo → term
Mu' : posinfo → term → optType → posinfo → cases → posinfo → term
Var : posinfo → qvar → term
{-# COMPILE GHC term = data CedilleTypes.Term (CedilleTypes.App | CedilleTypes.AppTp | CedilleTypes.Beta | CedilleTypes.Chi | CedilleTypes.Delta | CedilleTypes.Epsilon | CedilleTypes.Hole | CedilleTypes.IotaPair | CedilleTypes.IotaProj | CedilleTypes.Lam | CedilleTypes.Let | CedilleTypes.Open | CedilleTypes.Parens | CedilleTypes.Phi | CedilleTypes.Rho | CedilleTypes.Sigma | CedilleTypes.Theta | CedilleTypes.Mu | CedilleTypes.Mu' | CedilleTypes.Var) #-}
data cases where
NoCase : cases
SomeCase : posinfo → var → varargs → term → cases → cases
{-# COMPILE GHC cases = data CedilleTypes.Cases (CedilleTypes.NoCase | CedilleTypes.SomeCase) #-}
data varargs where
NoVarargs : varargs
NormalVararg : bvar → varargs → varargs
ErasedVararg : bvar → varargs → varargs
TypeVararg : bvar → varargs → varargs
{-# COMPILE GHC varargs = data CedilleTypes.Varargs (CedilleTypes.NoVarargs | CedilleTypes.NormalVararg | CedilleTypes.ErasedVararg | CedilleTypes.TypeVararg ) #-}
data theta where
Abstract : theta
AbstractEq : theta
AbstractVars : vars → theta
{-# COMPILE GHC theta = data CedilleTypes.Theta (CedilleTypes.Abstract | CedilleTypes.AbstractEq | CedilleTypes.AbstractVars) #-}
data tk where
Tkk : kind → tk
Tkt : type → tk
{-# COMPILE GHC tk = data CedilleTypes.Tk (CedilleTypes.Tkk | CedilleTypes.Tkt) #-}
data type where
Abs : posinfo → maybeErased → posinfo → bvar → tk → type → type
Iota : posinfo → posinfo → bvar → type → type → type
Lft : posinfo → posinfo → var → term → liftingType → type
NoSpans : type → posinfo → type
TpLet : posinfo → defTermOrType → type → type
TpApp : type → type → type
TpAppt : type → term → type
TpArrow : type → maybeErased → type → type
TpEq : posinfo → term → term → posinfo → type
TpHole : posinfo → type
TpLambda : posinfo → posinfo → bvar → tk → type → type
TpParens : posinfo → type → posinfo → type
TpVar : posinfo → qvar → type
{-# COMPILE GHC type = data CedilleTypes.Type (CedilleTypes.Abs | CedilleTypes.Iota | CedilleTypes.Lft | CedilleTypes.NoSpans | CedilleTypes.TpLet | CedilleTypes.TpApp | CedilleTypes.TpAppt | CedilleTypes.TpArrow | CedilleTypes.TpEq | CedilleTypes.TpHole | CedilleTypes.TpLambda | CedilleTypes.TpParens | CedilleTypes.TpVar) #-}
data vars where
VarsNext : var → vars → vars
VarsStart : var → vars
{-# COMPILE GHC vars = data CedilleTypes.Vars (CedilleTypes.VarsNext | CedilleTypes.VarsStart) #-}
pattern Pi = NotErased
pattern All = Erased
-- embedded types:
aterm = term
atype = type
lliftingType = liftingType
lterm = term
ltype = type
pterm = term
| {
"alphanum_fraction": 0.7129193867,
"avg_line_length": 38.2965116279,
"ext": "agda",
"hexsha": "aa6341b4ea660b05c8e3a30ef964d63787b9b336",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/cedille-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/cedille-types.agda",
"max_line_length": 456,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/cedille-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3858,
"size": 13174
} |
{-# OPTIONS --warning=error #-}
-- Useless abstract
module Issue476b where
abstract
data A : Set
data A where
| {
"alphanum_fraction": 0.6896551724,
"avg_line_length": 10.5454545455,
"ext": "agda",
"hexsha": "8300712ac6415304b44335eb061d3ce7fa22aac9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue476b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue476b.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue476b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 30,
"size": 116
} |
module RecordInParModule (a : Set) where
record Setoid : Set1 where
field el : Set
postulate
S : Setoid
A : Setoid.el S
postulate X : Set
module M (x : X) where
record R : Set where
module E {x : X} (r : M.R x) where
open module M' = M.R x r
| {
"alphanum_fraction": 0.6332046332,
"avg_line_length": 13.6315789474,
"ext": "agda",
"hexsha": "34395692706a7e2be7a5e79ec4504d4eaeeabcd7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/RecordInParModule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/RecordInParModule.agda",
"max_line_length": 40,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/RecordInParModule.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 93,
"size": 259
} |
-- Check that FOREIGN code can have nested pragmas.
module _ where
open import Common.Prelude
{-# FOREIGN GHC
{-# NOINLINE plusOne #-}
plusOne :: Integer -> Integer
plusOne n = n + 1
{-# INLINE plusTwo #-}
plusTwo :: Integer -> Integer
plusTwo = plusOne . plusOne
#-}
postulate
plusOne : Nat → Nat
{-# COMPILE GHC plusOne = plusOne #-}
| {
"alphanum_fraction": 0.6724637681,
"avg_line_length": 15.6818181818,
"ext": "agda",
"hexsha": "23e0a1257901658e8a9df4f50662fcca190e78ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ForeignPragma.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ForeignPragma.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ForeignPragma.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 345
} |
module _ where
module M (A : _) where
y = Set -- type of A is solved if this is removed
x : Set
x = A
-- WAS: yellow on type of A
-- SHOULD: succeed
| {
"alphanum_fraction": 0.6100628931,
"avg_line_length": 13.25,
"ext": "agda",
"hexsha": "2fe41ef30669dae674d6bfd3d3d4a8cdbcd106dc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1063.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1063.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1063.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 159
} |
open import Prelude
open import Nat
open import dynamics-core
open import contexts
open import lemmas-disjointness
module contraction where
-- in the same style as the proofs of exchange, this argument along with
-- trasnport allows you to prove contraction for all the hypothetical
-- judgements uniformly. we never explicitly use contraction anywhere, so
-- we omit any of the specific instances for concision; they are entirely
-- mechanical, as are the specific instances of exchange. one is shown
-- below as an example.
contract : {A : Set} {x : Nat} {τ : A} (Γ : A ctx) →
((Γ ,, (x , τ)) ,, (x , τ)) == (Γ ,, (x , τ))
contract {A} {x} {τ} Γ = funext guts
where
guts : (y : Nat) → (Γ ,, (x , τ) ,, (x , τ)) y == (Γ ,, (x , τ)) y
guts y with natEQ x y
guts .x | Inl refl with Γ x
guts .x | Inl refl | Some x₁ = refl
guts .x | Inl refl | None with natEQ x x
guts .x | Inl refl | None | Inl refl = refl
guts .x | Inl refl | None | Inr x≠x = abort (x≠x refl)
guts y | Inr x≠y with natEQ x y
guts y | Inr x≠y | Inl refl = abort (x≠y refl)
guts y | Inr x≠y | Inr x≠y' = refl
contract-synth : ∀{Γ x τ e τ'} →
(Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' →
(Γ ,, (x , τ)) ⊢ e => τ'
contract-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} =
tr (λ qq → qq ⊢ e => τ') (contract {x = x} {τ = τ} Γ)
-- as an aside, this also establishes the other direction which is rarely
-- mentioned, since equality is symmetric
elab-synth : ∀{Γ x τ e τ'} →
(Γ ,, (x , τ)) ⊢ e => τ' →
(Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ'
elab-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} =
tr (λ qq → qq ⊢ e => τ') (! (contract {x = x} {τ = τ} Γ))
| {
"alphanum_fraction": 0.5271708683,
"avg_line_length": 42.5,
"ext": "agda",
"hexsha": "82ae781711a5f383e4d0d001c8852c76be5fff0a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "contraction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "contraction.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "contraction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 639,
"size": 1785
} |
module Numeral.Integer where
import Lvl
open import Numeral.Natural as ℕ using (ℕ)
import Numeral.Natural.Oper as ℕ
open import Syntax.Number
open import Type
-- Integers
data ℤ : Type{Lvl.𝟎} where
+ₙ_ : ℕ → ℤ -- Positive integers including zero from the naturals (0,1,..).
−𝐒ₙ_ : ℕ → ℤ -- Negative integers from the naturals (..,−2,−1).
{-# BUILTIN INTEGER ℤ #-}
{-# BUILTIN INTEGERPOS +ₙ_ #-}
{-# BUILTIN INTEGERNEGSUC −𝐒ₙ_ #-}
------------------------------------------
-- Constructors and deconstructors
-- Constructing negative number from ℕ
−ₙ_ : ℕ → ℤ
−ₙ (ℕ.𝟎) = +ₙ ℕ.𝟎
−ₙ (ℕ.𝐒(x)) = −𝐒ₙ(x)
-- Intuitive constructor patterns
pattern 𝟎 = +ₙ(ℕ.𝟎) -- Zero (0).
pattern +𝐒ₙ_ n = +ₙ(ℕ.𝐒(n)) -- Positive integers from the naturals (1,2,..).
pattern 𝟏 = +ₙ(ℕ.𝟏) -- One (1).
pattern −𝟏 = −𝐒ₙ(ℕ.𝟎) -- Negative one (−1).
{-# DISPLAY ℤ.+ₙ_ ℕ.𝟎 = 𝟎 #-}
{-# DISPLAY ℤ.+ₙ_ ℕ.𝟏 = 𝟏 #-}
{-# DISPLAY ℤ.−𝐒ₙ_ ℕ.𝟎 = −𝟏 #-}
{-# DISPLAY ℤ.+ₙ_(ℕ.𝐒(n)) = +𝐒ₙ_ n #-}
-- Absolute value
absₙ : ℤ → ℕ
absₙ(+ₙ x) = x
absₙ(−𝐒ₙ(x)) = ℕ.𝐒(x)
-- Syntax
instance
ℤ-InfiniteNegativeNumeral : InfiniteNegativeNumeral(ℤ)
ℤ-InfiniteNegativeNumeral = InfiniteNegativeNumeral.intro(−ₙ_)
instance
ℤ-InfiniteNumeral : InfiniteNumeral(ℤ)
ℤ-InfiniteNumeral = InfiniteNumeral.intro(+ₙ_)
| {
"alphanum_fraction": 0.5998492841,
"avg_line_length": 27.0816326531,
"ext": "agda",
"hexsha": "4740a60bcee71601e470fee5fd588cb6d9e5b9e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Integer.agda",
"max_line_length": 78,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 553,
"size": 1327
} |
-- Andreas, 2017-08-18, issue #2703, reported by davdar, testcase by gallais
-- Underapplied constructor triggers internal error
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.getConType:35 #-}
postulate
A : Set
data Sg : A → Set where
sg : ∀ t → Sg t -- Target type depends on constructor argument
postulate
cut : (∀ t → Sg t) → Set
bug : cut sg -- Underapplied constructor
bug with A
bug | _ = _
-- Was: internal error in 2.5.3 RC1
-- Should succeed with unsolved meta.
| {
"alphanum_fraction": 0.6706586826,
"avg_line_length": 20.875,
"ext": "agda",
"hexsha": "fa62b90ea7edcd464e23b3e1c28bfd25524bb4b8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2703.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2703.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2703.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 153,
"size": 501
} |
module Issue157b where
postulate
A B : Set
R : A → B → Set
err : ∀ {a b} → R a b → R b | {
"alphanum_fraction": 0.5208333333,
"avg_line_length": 13.7142857143,
"ext": "agda",
"hexsha": "4cebfb83ba3dc7ca00b7188969dd7efea5fc7976",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/Issue157b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/Issue157b.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "masondesu/agda",
"max_stars_repo_path": "test/interaction/Issue157b.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 41,
"size": 96
} |
module Cats.Category.Cat where
open import Cats.Functor public using (Functor ; _∘_ ; id)
open import Data.Product using (_,_)
open import Data.Unit using (⊤ ; tt)
open import Level
open import Relation.Binary using
(IsEquivalence ; _Preserves_⟶_ ; _Preserves₂_⟶_⟶_)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Cats.Category
open import Cats.Category.Zero
open import Cats.Category.One
open import Cats.Trans.Iso as NatIso using (NatIso ; iso ; forth-natural)
open import Cats.Util.Simp using (simp!)
open Functor
open Category._≅_
_⇒_ : ∀ {lo la l≈ lo′ la′ l≈′}
→ Category lo la l≈ → Category lo′ la′ l≈′ → Set _
C ⇒ D = Functor C D
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈} {D : Category lo′ la′ l≈′}
where
infixr 4 _≈_
_≈_ : (F G : C ⇒ D) → Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′)
F ≈ G = NatIso F G
equiv : IsEquivalence _≈_
equiv = record
{ refl = NatIso.id
; sym = NatIso.sym
; trans = λ eq₁ eq₂ → eq₂ NatIso.∘ eq₁
}
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈} {D : Category lo′ la′ l≈′}
where
∘-resp : ∀ {lo″ la″ l≈″} {E : Category lo″ la″ l≈″}
→ {F G : D ⇒ E} {H I : C ⇒ D}
→ F ≈ G
→ H ≈ I
→ F ∘ H ≈ G ∘ I
∘-resp {E = E} {F} {G} {H} {I}
record { iso = F≅G ; forth-natural = fnat-GH }
record { iso = H≅I ; forth-natural = fnat-HI }
= record
{ iso = E.≅.trans F≅G (fobj-resp G H≅I)
; forth-natural = λ {_} {_} {f} →
begin
(fmap G (forth H≅I) E.∘ forth F≅G) E.∘ fmap F (fmap H f)
≈⟨ simp! E ⟩
fmap G (forth H≅I) E.∘ forth F≅G E.∘ fmap F (fmap H f)
≈⟨ E.∘-resp-r fnat-GH ⟩
fmap G (forth H≅I) E.∘ fmap G (fmap H f) E.∘ forth F≅G
≈⟨ simp! E ⟩
(fmap G (forth H≅I) E.∘ fmap G (fmap H f)) E.∘ forth F≅G
≈⟨ E.∘-resp-l (fmap-∘ G) ⟩
fmap G (forth H≅I D.∘ fmap H f) E.∘ forth F≅G
≈⟨ E.∘-resp-l (fmap-resp G fnat-HI) ⟩
fmap G (fmap I f D.∘ forth H≅I) E.∘ forth F≅G
≈⟨ E.∘-resp-l (E.≈.sym (fmap-∘ G)) ⟩
(fmap G (fmap I f) E.∘ fmap G (forth H≅I)) E.∘ forth F≅G
≈⟨ simp! E ⟩
fmap G (fmap I f) E.∘ fmap G (forth H≅I) E.∘ forth F≅G
∎
}
where
module D = Category D
module E = Category E
open E.≈-Reasoning
id-r : {F : C ⇒ D} → F ∘ id ≈ F
id-r {F} = record
{ iso = D.≅.refl
; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r)
}
where
module D = Category D
id-l : {F : C ⇒ D} → id ∘ F ≈ F
id-l {F} = record
{ iso = D.≅.refl
; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r)
}
where
module D = Category D
assoc : ∀ {lo″ la″ l≈″ lo‴ la‴ l≈‴}
→ {E : Category lo″ la″ l≈″} {X : Category lo‴ la‴ l≈‴}
→ (F : E ⇒ X) (G : D ⇒ E) (H : C ⇒ D)
→ (F ∘ G) ∘ H ≈ F ∘ (G ∘ H)
assoc {E = E} {X} _ _ _ = record
{ iso = X.≅.refl
; forth-natural = X.≈.trans X.id-l (X.≈.sym X.id-r)
}
where
module X = Category X
instance
Cat : ∀ lo la l≈
→ Category (suc (lo ⊔ la ⊔ l≈)) (lo ⊔ la ⊔ l≈) (lo ⊔ la ⊔ l≈)
Cat lo la l≈ = record
{ Obj = Category lo la l≈
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = equiv
; ∘-resp = ∘-resp
; id-r = id-r
; id-l = id-l
; assoc = λ {_} {_} {_} {_} {F} {G} {H} → assoc F G H
}
| {
"alphanum_fraction": 0.4847693647,
"avg_line_length": 26.5153846154,
"ext": "agda",
"hexsha": "54afff6963a8565f9345651e109132a6437d0fc3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Cat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Cat.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Cat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1505,
"size": 3447
} |
open import Peano using (ℕ; zero; succ; _+_; Rel)
module Semigroup where
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
record Semigroup {A : Set} (_◇_ : A → A → A) : Set where
field
associativity : ∀ x y z → (x ◇ y) ◇ z ≡ x ◇ (y ◇ z)
record ℕ+-isSemigroup : Semigroup _+_ where
field
associativity : ∀ x y z → (x + y) + z ≡ x + (y + z)
| {
"alphanum_fraction": 0.5260545906,
"avg_line_length": 23.7058823529,
"ext": "agda",
"hexsha": "c343313de40eb46c2bc1bdb3f989926a8f4ec5ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "cantsin/agda-experiments",
"max_forks_repo_path": "Semigroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "cantsin/agda-experiments",
"max_issues_repo_path": "Semigroup.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "cantsin/agda-experiments",
"max_stars_repo_path": "Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 164,
"size": 403
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
-- slice category (https://ncatlab.org/nlab/show/over+category)
-- TODO: Forgetful Functor from Slice to 𝒞
module Categories.Category.Slice {o ℓ e} (𝒞 : Category o ℓ e) where
open Category 𝒞
open HomReasoning
open import Level
open import Function using (_$_)
open import Relation.Binary using (Rel)
open import Categories.Morphism.Reasoning 𝒞
record SliceObj (X : Obj) : Set (o ⊔ ℓ) where
constructor sliceobj
field
{Y} : Obj
arr : Y ⇒ X
private
variable
A : Obj
X Y Z : SliceObj A
record Slice⇒ {A : Obj} (X Y : SliceObj A) : Set (ℓ ⊔ e) where
constructor slicearr
module X = SliceObj X
module Y = SliceObj Y
field
{h} : X.Y ⇒ Y.Y
△ : Y.arr ∘ h ≈ X.arr
Slice : Obj → Category _ _ _
Slice A = record
{ Obj = SliceObj A
; _⇒_ = Slice⇒
; _≈_ = λ where
(slicearr {f} _) (slicearr {g} _) → f ≈ g
; id = slicearr identityʳ
; _∘_ = _∘′_
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record -- must be expanded to get levels to work out
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where _∘′_ : Slice⇒ Y Z → Slice⇒ X Y → Slice⇒ X Z
_∘′_ {Y = sliceobj y} {Z = sliceobj z} {X = sliceobj x} (slicearr {g} △) (slicearr {f} △′) = slicearr $ begin
z ∘ g ∘ f ≈⟨ pullˡ △ ⟩
y ∘ f ≈⟨ △′ ⟩
x ∎
| {
"alphanum_fraction": 0.569669475,
"avg_line_length": 25.2950819672,
"ext": "agda",
"hexsha": "de8ee293971ea29368e0569a4205ea3401d8cf5b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Slice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Slice.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Slice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 581,
"size": 1543
} |
module Holes.Term where
open import Holes.Prelude
-- TODO: This logically ought to be abstract, but that breaks the `cong!` macro
-- because when it is abstract, `⌞ x ⌟ ≡ x` does not hold (at least
-- definitionally). Look into a way of fixing this.
⌞_⌟ : ∀ {a}{A : Set a} → A → A
⌞ x ⌟ = x
private
-- Given a term, if it is a hole, returns the list of arguments given to it.
-- Otherwise returns nothing.
toHole : Term → Maybe (List (Arg Term))
-- First three arguments are the parameters of `⌞_⌟`, respectively the universe
-- level `a`, the set `A` and the explicit parameter (i.e. the thing in the
-- hole). So these are ignored.
toHole (def (quote ⌞_⌟) (_ ∷ _ ∷ _ ∷ args)) = just args
toHole _ = nothing
-- A HoleyTerm is an Agda term that has a single 'hole' in it, where another
-- term fits
data HoleyTerm : Set where
hole : (args : List (Arg Term)) → HoleyTerm
var : (x : ℕ) (args : List (Arg HoleyTerm)) → HoleyTerm
con : (c : Name) (args : List (Arg HoleyTerm)) → HoleyTerm
def : (f : Name) (args : List (Arg HoleyTerm)) → HoleyTerm
lam : (v : Visibility) (holeyAbs : Abs HoleyTerm) → HoleyTerm
pi : (a : Arg HoleyTerm) (b : Abs HoleyTerm) → HoleyTerm
agda-sort : (s : Sort) → HoleyTerm
lit : (l : Literal) → HoleyTerm
unknown : HoleyTerm
meta : (x : Meta) (args : List (Arg HoleyTerm)) → HoleyTerm
data HoleyErr : Set where
noHole : HoleyErr
unsupportedTerm : Term → HoleyErr
mismatchedHoleTerms : HoleyErr
printHoleyErr : Term → HoleyErr → List ErrorPart
printHoleyErr goalLhs noHole
= strErr "LHS of goal type contains no hole:"
∷ termErr goalLhs
∷ []
printHoleyErr goalLhs (unsupportedTerm x)
= strErr "Goal type's LHS"
∷ termErr goalLhs
∷ strErr "contains unsupported term"
∷ termErr x
∷ []
printHoleyErr goalLhs mismatched-hole-terms
= strErr "Terms in different holes failed to unify with each other."
∷ strErr "Check that every hole has an identical term in it."
∷ strErr "Offending term:"
∷ termErr goalLhs
∷ []
private
mapArglist : {A B : Set} → (A → B) → List (Arg A) → List (Arg B)
mapArglist = map ∘ mapArg
-- Converts a HoleyTerm to a regular term by filling in the hole with some other
-- given term which is a function of the number of binders encountered on the
-- way to the hole.
--
-- Free variables inside the holey term are detected and modified using the
-- provided function, because otherwise they might interact wrongly with
-- surrounding terms in the result.
{-# TERMINATING #-}
fillHoley : (ℕ → ℕ) → ℕ → (ℕ → List (Arg Term) → Term) → HoleyTerm → Term
fillHoley freeVarMod binderDepth filler = go binderDepth
where
go : ℕ → HoleyTerm → Term
go depth (hole args) = filler depth args
go _ (lit l) = lit l
go depth (var x args) =
let freeVar = not (x <? depth)
in var (if freeVar then freeVarMod x else x) (mapArglist (go depth) args)
go depth (con c args) = con c (mapArglist (go depth) args)
go depth (def f args) = def f (mapArglist (go depth) args)
go depth (meta x args) = meta x (mapArglist (go depth) args)
go depth (lam v (abs s holey)) = lam v (abs s (go depth holey))
go depth (pi (arg v a) (abs s b)) =
pi (arg v (go depth a))
(abs s (go depth b))
go _ (agda-sort s) = agda-sort s
go _ unknown = unknown
-- Converts a HoleyTerm to a regular term which abstracts a variable that is
-- used to fill the hole.
--
-- The `suc` function is provided for `fillHoley`'s `freeVarMod` parameter.
-- This is because the binding level of any free variables in the given term
-- will need to be lifted over the new lambda that we're introducing. Otherwise
-- they'll end up referring to the new lambda's variables, which is wrong. Bound
-- variables inside the given term don't need to be changed.
holeyToLam : HoleyTerm → Term
holeyToLam holey = lam visible (abs "hole" (fillHoley suc 0 var holey))
-- Converts a HoleyTerm to a regular term by filling in the hole with a constant
-- other term.
fillHoley′ : (List (Arg Term) → Term) → HoleyTerm → Term
fillHoley′ filler = fillHoley id 0 (λ _ → filler)
private
mapPair : ∀ {a b x y}{A : Set a}{B : Set b}{X : Set x}{Y : Set y} → (A → X) → (B → Y) → A × B → X × Y
mapPair f g (x , y) = f x , g y
pushArg : ∀ {A B : Set} → Arg (A × B) → A × Arg B
pushArg (arg i (x , y)) = x , arg i y
mutual
argHelper : (List (Arg HoleyTerm) → HoleyTerm) → List (Arg Term) → Result HoleyErr (List Term × HoleyTerm)
argHelper buildHoley
= fmap (mapPair concat buildHoley ∘ unzip)
∘ traverse (fmap pushArg ∘ traverse termToHoleyHelper)
{-# TERMINATING #-}
termToHoleyHelper : Term → Result HoleyErr (List Term × HoleyTerm)
termToHoleyHelper term with toHole term
termToHoleyHelper term | just args = ok (term ∷ [] , hole args)
termToHoleyHelper (lit l) | nothing = ok ([] , lit l)
termToHoleyHelper (var x args) | nothing = argHelper (var x) args
termToHoleyHelper (con c args) | nothing = argHelper (con c) args
termToHoleyHelper (def f args) | nothing = argHelper (def f) args
termToHoleyHelper (meta x args) | nothing = argHelper (meta x) args
termToHoleyHelper (lam v (abs s t)) | nothing =
mapPair id (λ h → lam v (abs s h)) <$> termToHoleyHelper t
termToHoleyHelper (pi (arg v a) (abs s b)) | nothing =
termToHoleyHelper a >>=² λ ts₁ a′ →
termToHoleyHelper b >>=² λ ts₂ b′ →
return (ts₁ ++ ts₂ , pi (arg v a′) (abs s b′))
termToHoleyHelper unknown | nothing = ok ([] , unknown)
termToHoleyHelper (agda-sort s) | nothing = ok ([] , agda-sort s)
... | _ = err (unsupportedTerm term)
-- If a term has a hole in it, specified by ⌞_⌟ around a subterm, returns a
-- HoleyTerm with the hole removed.
termToHoley : Term → Result HoleyErr HoleyTerm
termToHoley term = proj₂ <$> termToHoleyHelper term
-- A variant of `termToHoley` that also returns the term in the hole. If there
-- are multiple holes, returns all of the terms that are in them.
termToHoley′ : Term → Result HoleyErr (List Term × HoleyTerm)
termToHoley′ = termToHoleyHelper
private
unifyAll : List Term → TC (Maybe Term)
unifyAll [] = return nothing
unifyAll (x ∷ xs) = traverse- (unify x) xs >> return (just x)
checkedTermToHoley : Term → RTC HoleyErr (Term × HoleyTerm)
checkedTermToHoley term =
liftResult (termToHoley′ term) >>=² λ holeTerms holey →
liftTC (unifyAll holeTerms)
⟨ catchRTC ⟩
throw mismatchedHoleTerms >>= λ
{ nothing → return (fillHoley′ (λ _ → unknown) holey , hole [])
; (just holeTerm) → return (holeTerm , holey)
}
-- A variant of `termToHoley` that also returns the term in the hole, and checks
-- that the holey term is valid by unifying it with the original term. The list
-- of error parts given is thrown as a type error if the term could not be
-- converted to a holey term. Also, if there are no holes, treats the entire
-- expression as a hole.
checkedTermToHoley′ : (HoleyErr → List ErrorPart) → Term → TC (Term × HoleyTerm)
checkedTermToHoley′ error =
runRTC (typeError ∘ error) ∘ checkedTermToHoley
-- These macros are useful for debugging and testing
macro
-- Given a holey term, expands to a function which accepts something to go in
-- the hole.
lambdaIntoHole : Term → Term → TC ⊤
lambdaIntoHole term target =
checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:"
∷ termErr term
∷ []) term >>=² λ _ →
unify target ∘ holeyToLam
-- Given a holey term, expands to the quoted form of a function which accepts
-- something to go in the hole.
lambdaIntoHole′ : Term → Term → TC ⊤
lambdaIntoHole′ term target =
checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:"
∷ termErr term
∷ []) term >>=² λ _ result →
quoteTC (holeyToLam result) >>=
unify target
-- Quotes a holey term, reifying its abstract syntax tree.
quoteHoley : Term → Term → TC ⊤
quoteHoley term target =
checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:"
∷ termErr term
∷ []) term >>=² λ _ result →
quoteTC result >>= unify target
-- Quotes a holey term and also the term in the hole. Expanded type is always
-- `Term × HoleyTerm`.
quoteHoley′ : Term → Term → TC ⊤
quoteHoley′ term target =
checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:"
∷ termErr term
∷ []) term >>=
quoteTC >>= unify target
private
module Tests where
open PropEq using (_≡_; refl)
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
eqTyped : ∀ {a}(A : Set a) → A → A → Set a
eqTyped _ x y = x ≡ y
syntax eqTyped A x y = x ≡[ A ] y
-- Holes don't have to match the type of the bigger expression
test1 : lambdaIntoHole (4 + 5 * length ⌞ 1 ∷ [] ⌟ + 7) ≡ λ hole → 4 + 5 * length hole + 7
test1 = refl
-- Holes can be around functions
test2 : lambdaIntoHole (⌞ _+_ ⌟ 3 4) ≡[ ((ℕ → ℕ → ℕ) → ℕ) ] λ hole → hole 3 4
test2 = refl
-- Holey terms can contain free variables
test3 : ∀ x y z → lambdaIntoHole (⌞ x + y ⌟ + z) ≡ λ hole → hole + z
test3 x y z = refl
-- Multiple holes are possible
test4 : ∀ x y z → lambdaIntoHole (x + ⌞ y + z ⌟ * ⌞ y + z ⌟ + y * z) ≡ λ hole → x + hole * hole + y * z
test4 x y z = refl
-- Holes into Π types
test5 : ∀ x y → lambdaIntoHole (Fin ⌞ x + y ⌟ → ℕ) ≡ λ hole → Fin hole → ℕ
test5 x y = refl
-- Constructors on the path
test6 : (x y : ℕ) → lambdaIntoHole (ℕ.suc (x + ⌞ y ⌟ + y)) ≡ λ hole → suc (x + hole + y)
test6 x y = refl
| {
"alphanum_fraction": 0.6396616733,
"avg_line_length": 38.0348837209,
"ext": "agda",
"hexsha": "ae6c6891bd91ddf5aa7c843428455f8f8166dca6",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z",
"max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-holes",
"max_forks_repo_path": "src/Holes/Term.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-holes",
"max_issues_repo_path": "src/Holes/Term.agda",
"max_line_length": 110,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-holes",
"max_stars_repo_path": "src/Holes/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z",
"num_tokens": 3122,
"size": 9813
} |
-- Andreas, 2016-05-04 shrunk from the standard library
open import Common.Product
record ⊤ : Set where
IFun : Set → Set1
IFun I = I → I → Set → Set
------------------------------------------------------------------------
-- Indexed state monads
record RawIMonad {I : Set} (M : (i j : I) → Set → Set) : Set1 where
field
return : ∀ {i A} → A → M i i A
_>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B
record RawIMonadZero {I : Set} (M : IFun I) : Set1 where
field
monad : RawIMonad M
∅ : ∀ {i j A} → M i j A
open RawIMonad monad public
record RawIMonadPlus {I : Set} (M : IFun I) : Set1 where
field
monadZero : RawIMonadZero M
_∣_ : ∀ {i j A} → M i j A → M i j A → M i j A
open RawIMonadZero monadZero public
RawMonad : (Set → Set) → Set1
RawMonad M = RawIMonad {I = ⊤} (λ _ _ → M)
RawMonadZero : (Set → Set) → Set1
RawMonadZero M = RawIMonadZero {I = ⊤} (λ _ _ → M)
RawMonadPlus : (Set → Set) → Set1
RawMonadPlus M = RawIMonadPlus {I = ⊤} (λ _ _ → M)
module RawMonad {M : Set → Set} (Mon : RawMonad M) where
open RawIMonad Mon public
module RawMonadZero {M : Set → Set} (Mon : RawMonadZero M) where
open RawIMonadZero Mon public
module RawMonadPlus {M : Set → Set} (Mon : RawMonadPlus M) where
open RawIMonadPlus Mon public
IStateT : ∀ {I : Set} (S : I → Set) (M : Set → Set) (i j : I) (A : Set) → Set
IStateT S M i j A = S i → M (A × S j)
StateTIMonad : ∀ {I : Set} (S : I → Set) {M} →
RawMonad M → RawIMonad (IStateT S M)
StateTIMonad S Mon = record
{ return = λ x s → return (x , s)
; _>>=_ = λ m f s → m s >>= λ as → let a , s' = as in f a s'
}
where open RawMonad Mon
StateTIMonadZero : ∀ {I : Set} (S : I → Set) {M} →
RawMonadZero M → RawIMonadZero (IStateT S M)
StateTIMonadZero S Mon = record
{ monad = StateTIMonad S (RawMonadZero.monad Mon)
; ∅ = λ s → ∅
}
where open RawMonadZero Mon
StateTIMonadPlus : ∀ {I : Set} (S : I → Set) {M} →
RawMonadPlus M → RawIMonadPlus (IStateT S M)
StateTIMonadPlus S Mon = record
{ monadZero = StateTIMonadZero S (RawIMonadPlus.monadZero Mon)
; _∣_ = λ m₁ m₂ s → m₁ s ∣ m₂ s
}
where open RawMonadPlus Mon
-- test = {!RawIMonadPlus.monadZero!}
-- test' = {! RawMonadPlus.monadZero !}
| {
"alphanum_fraction": 0.5708695652,
"avg_line_length": 28.0487804878,
"ext": "agda",
"hexsha": "a8607915f8a5091fe9c2856e76aaf658aab57f3e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1954a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1954a.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1954a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 865,
"size": 2300
} |
module Structure.Logic.Constructive.Proofs where
open import Functional as Fn
open import Lang.Instance
open import Logic.Propositional as Logic using (_←_ ; _↔_)
open import Logic.Predicate as Logic hiding (∀ₗ)
import Lvl
import Structure.Logic.Constructive.BoundedPredicate
import Structure.Logic.Constructive.Predicate
import Structure.Logic.Constructive.Propositional
open import Syntax.Function
open import Type
private variable ℓ ℓₗ ℓₘₗ ℓₒ ℓₚ : Lvl.Level
private variable Formula : Type{ℓₗ}
private variable Proof : Formula → Type{ℓₘₗ}
private variable Predicate : Type{ℓₚ}
private variable Domain : Type{ℓₒ}
module _ (Proof : Formula → Type{ℓₘₗ}) where
open Structure.Logic.Constructive.Propositional(Proof)
private variable X Y Z : Formula
{-
module _ ⦃ logic : ConstructiveLogic ⦄ where
[⟵][⟶][∧]-[⟷]-equivalence : Proof(X ⟷ Y) ↔ (Proof(X ⟵ Y) Logic.∧ Proof(X ⟶ Y))
[⟵][⟶][∧]-[⟷]-equivalence {X} {Y} = Logic.[↔]-intro
(p ↦ ⟷.intro (⟵.elim(Logic.[∧]-elimₗ p)) (⟶.elim(Logic.[∧]-elimᵣ p)))
(p ↦ Logic.[∧]-intro (⟵.intro (⟷.elimₗ p)) (⟶.intro (⟷.elimᵣ p)))
-}
[⟶]-redundancyₗ : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ (X ⟶ Y)) → Proof(X ⟶ Y)
[⟶]-redundancyₗ = ⟶.intro ∘ swap apply₂ ∘ (⟶.elim ∘₂ ⟶.elim)
[⟷]-reflexivity : ∀{_⟷_} → ⦃ Equivalence(_⟷_) ⦄ → Proof(X ⟷ X)
[⟷]-reflexivity = ⟷.intro id id
[⟵]-to-[⟶] : ⦃ con : ∃(Consequence) ⦄ → ∃(Implication)
∃.witness [⟵]-to-[⟶] = swap(_⟵_)
Implication.intro (∃.proof [⟵]-to-[⟶]) = ⟵.intro
Implication.elim (∃.proof [⟵]-to-[⟶]) = ⟵.elim
[⟶]-to-[⟵] : ⦃ impl : ∃(Implication) ⦄ → ∃(Consequence)
∃.witness [⟶]-to-[⟵] = swap(_⟶_)
Consequence.intro (∃.proof [⟶]-to-[⟵]) = ⟶.intro
Consequence.elim (∃.proof [⟶]-to-[⟵]) = ⟶.elim
[⟵][⟶][∧]-to-[⟷] : ⦃ con : ∃(Consequence) ⦄ → ⦃ impl : ∃(Implication) ⦄ → ⦃ or : ∃(Conjunction) ⦄ → ∃(Equivalence)
∃.witness [⟵][⟶][∧]-to-[⟷] X Y = (X ⟵ Y) ∧ (X ⟶ Y)
Equivalence.intro (∃.proof [⟵][⟶][∧]-to-[⟷]) yx xy = ∧.intro (⟵.intro yx) (⟶.intro xy)
Equivalence.elimₗ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟵.elim ∘ ∧.elimₗ
Equivalence.elimᵣ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟶.elim ∘ ∧.elimᵣ
[⟶][⟷]-to-[∧] : ⦃ impl : ∃(Implication) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Conjunction)
∃.witness [⟶][⟷]-to-[∧] X Y = (X ⟶ Y) ⟷ X
Conjunction.intro (∃.proof [⟶][⟷]-to-[∧]) x y = ⟷.intro (const(⟶.intro(const y))) (const x)
Conjunction.elimₗ (∃.proof [⟶][⟷]-to-[∧]) xyx = ⟷.elimᵣ xyx (⟶.intro(swap apply₂(⟶.elim ∘ ⟷.elimₗ xyx)))
Conjunction.elimᵣ (∃.proof [⟶][⟷]-to-[∧]) xyx = apply₂(⟷.elimᵣ xyx (⟶.intro(swap apply₂ (⟶.elim ∘ ⟷.elimₗ xyx)))) (⟶.elim ∘ (⟷.elimₗ xyx))
[∨][⟷]-to-[⟶] : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication)
∃.witness [∨][⟷]-to-[⟶] X Y = (X ∨ Y) ⟷ Y
Implication.intro (∃.proof [∨][⟷]-to-[⟶]) = ⟷.intro ∨.introᵣ ∘ swap ∨.elim id
Implication.elim (∃.proof [∨][⟷]-to-[⟶]) xyy x = ⟷.elimᵣ xyy (∨.introₗ x)
[∧][⟷]-to-[⟶] : ⦃ and : ∃(Conjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication)
∃.witness [∧][⟷]-to-[⟶] X Y = (X ∧ Y) ⟷ X
Implication.intro (∃.proof [∧][⟷]-to-[⟶]) xy = ⟷.intro (x ↦ ∧.intro x (xy x)) ∧.elimₗ
Implication.elim (∃.proof [∧][⟷]-to-[⟶]) xyx x = ∧.elimᵣ(⟷.elimₗ xyx x)
[¬][⊤]-to-[⊥] : ⦃ neg : ∃(Negation) ⦄ → ⦃ top : ∃(Top) ⦄ → ∃(Bottom)
∃.witness [¬][⊤]-to-[⊥] = ¬ ⊤
Bottom.elim (∃.proof [¬][⊤]-to-[⊥]) = ¬.elim ⊤.intro
[¬][⊥]-to-[⊤] : ⦃ neg : ∃(Negation) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Top)
∃.witness [¬][⊥]-to-[⊤] = ¬ ⊥
Top.intro (∃.proof [¬][⊥]-to-[⊤]) = ¬.intro{Y = ⊥} ⊥.elim ⊥.elim
[⟷]-to-[⊤] : Formula → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Top)
∃.witness ([⟷]-to-[⊤] φ) = φ ⟷ φ
Top.intro (∃.proof ([⟷]-to-[⊤] φ)) = [⟷]-reflexivity
[⟷][⊥]-to-[¬] : ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Negation)
∃.witness [⟷][⊥]-to-[¬] = _⟷ ⊥
Negation.intro (∃.proof [⟷][⊥]-to-[¬]) xy xy⊥ = ⟷.intro ⊥.elim ((⟷.elimᵣ ∘ xy⊥) ∘ₛ xy)
Negation.elim (∃.proof [⟷][⊥]-to-[¬]) = ⊥.elim ∘₂ swap ⟷.elimᵣ
[∨][⟷][⊥]-adequacy : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → Logic
Logic.top [∨][⟷][⊥]-adequacy = [⟷]-to-[⊤] ⊥
Logic.implication [∨][⟷][⊥]-adequacy = [∨][⟷]-to-[⟶]
Logic.negation [∨][⟷][⊥]-adequacy = [⟷][⊥]-to-[¬]
Logic.conjunction [∨][⟷][⊥]-adequacy = [⟶][⟷]-to-[∧] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy
Logic.consequence [∨][⟷][⊥]-adequacy = [⟶]-to-[⟵] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy
module _ (Proof : Formula → Type{ℓₘₗ}) where
open Structure.Logic.Constructive.Propositional(Proof)
private variable X Y Z : Formula
open import Data.Tuple as Tuple using ()
[⊤]-preserving-type : ⦃ top : ∃(Top) ⦄ → Proof(⊤) ↔ Logic.⊤
Tuple.left [⊤]-preserving-type = const ⊤.intro
Tuple.right [⊤]-preserving-type = const Logic.[⊤]-intro
[∧]-preserving-type : ⦃ and : ∃(Conjunction) ⦄ → Proof(X ∧ Y) ↔ (Proof(X) Logic.∧ Proof(Y))
Tuple.left [∧]-preserving-type (Logic.[∧]-intro x y) = ∧.intro x y
Tuple.right [∧]-preserving-type xy = Logic.[∧]-intro (∧.elimₗ xy) (∧.elimᵣ xy)
[∨]-preserving-type : ⦃ or : ∃(Disjunction) ⦄ → Proof(X ∨ Y) ← (Proof(X) Logic.∨ Proof(Y))
[∨]-preserving-type = Logic.[∨]-elim ∨.introₗ ∨.introᵣ
[⟶]-preserving-type : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ Y) ↔ (Proof(X) → Proof(Y))
Tuple.left [⟶]-preserving-type = ⟶.intro
Tuple.right [⟶]-preserving-type = ⟶.elim
[⟵]-preserving-type : ⦃ cons : ∃(Consequence) ⦄ → Proof(X ⟵ Y) ↔ (Proof(X) ← Proof(Y))
Tuple.left [⟵]-preserving-type = ⟵.intro
Tuple.right [⟵]-preserving-type = ⟵.elim
[⟷]-preserving-type : ⦃ eq : ∃(Equivalence) ⦄ → Proof(X ⟷ Y) ↔ (Proof(X) ↔ Proof(Y))
Tuple.left [⟷]-preserving-type xy = ⟷.intro (Logic.[↔]-to-[←] xy) (Logic.[↔]-to-[→] xy)
Tuple.right [⟷]-preserving-type xy = Logic.[↔]-intro (⟷.elimₗ xy) (⟷.elimᵣ xy)
{-
module Test ⦃ logic : Logic ⦄ where
pure : ∀{A : Formula} → Proof(A) → Proof(A)
pure = id
_<*>_ : ∀{A B : Formula} → Proof(A ⟶ B) → Proof(A) → Proof(B)
_<*>_ = ⟶.elim
test : ∀{A B} → Proof(A ⟶ (A ⟶ B)) → Proof(A) → Proof(B)
test ab a = ⦇ ab a a ⦈
module Test2 ⦃ logic : ConstructiveLogic ⦄ {Obj : Type{ℓ}} where
private variable P : Obj → Formula
module _ ⦃ all : ∃(Universal) ⦄ where
pure : ∀{A : Formula} → Proof(A) → Proof(A)
pure = id
_<*>_ : ∀{P : Obj → Formula} → Proof(∀ₗ P) → (x : Obj) → Proof(P(x))
_<*>_ = ∀ₗ.elim
test : ∀{A : Obj → Obj → Formula} → Proof(∀ₗ(x ↦ ∀ₗ(y ↦ A x y))) → (x : Obj) → Proof(A x x)
test a x = ⦇ a x x ⦈
-}
module _ where
open import Data
open import Data.Tuple
open import Data.Either as Either
open Structure.Logic.Constructive.BoundedPredicate renaming (Logic to BoundedPredicateLogic)
open Structure.Logic.Constructive.Predicate renaming (Logic to PredicateLogic)
open Structure.Logic.Constructive.Propositional renaming (Logic to PropositionalLogic)
instance
typePropositionalLogic : PropositionalLogic{Formula = Type{ℓ}} id
PropositionalLogic.bottom typePropositionalLogic = [∃]-intro Empty ⦃ record{elim = empty} ⦄
PropositionalLogic.top typePropositionalLogic = [∃]-intro Unit ⦃ record{intro = <>} ⦄
PropositionalLogic.implication typePropositionalLogic = [∃]-intro _→ᶠ_ ⦃ record{intro = _$_ ; elim = id} ⦄
PropositionalLogic.conjunction typePropositionalLogic = [∃]-intro _⨯_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄
PropositionalLogic.disjunction typePropositionalLogic = [∃]-intro _‖_ ⦃ record{introₗ = Left ; introᵣ = Right ; elim = Either.map1} ⦄
PropositionalLogic.consequence typePropositionalLogic = [∃]-intro _←ᶠ_ ⦃ record{intro = id ; elim = _$_} ⦄
PropositionalLogic.equivalence typePropositionalLogic = [∃]-intro Logic._↔_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄
PropositionalLogic.negation typePropositionalLogic = [∃]-intro Logic.¬_ ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = empty ∘₂ apply} ⦄
instance
typePredicateLogic : ∀{T : Type{ℓₒ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = T → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id
PredicateLogic.universal typePredicateLogic = [∃]-intro Logic.∀ₗ ⦃ record{intro = id ; elim = id} ⦄
PredicateLogic.existential typePredicateLogic = [∃]-intro Logic.∃ ⦃ record{intro = \{_}{x} p → Logic.[∃]-intro x ⦃ p ⦄ ; elim = Logic.[∃]-elim} ⦄
open import Type.Dependent
instance
typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}} → BoundedPredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = (x : T) → ∀{B : T → Type{ℓₒ Lvl.⊔ ℓₗ}} → B(x) → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id
BoundedPredicateLogic.universal typeBoundedPredicateLogic = [∃]-intro (\B P → ∀{x} → (bx : B(x)) → P(x){B}(bx)) ⦃ record{intro = \p bx → p bx ; elim = \p bx → p bx} ⦄
BoundedPredicateLogic.existential typeBoundedPredicateLogic = [∃]-intro (\B P → Logic.∃(x ↦ Σ(B(x)) (P(x){B}))) ⦃ record{intro = \{_}{x} bx p → Logic.[∃]-intro x ⦃ intro bx p ⦄ ; elim = \p → Logic.[∃]-elim (\(intro bx px) → p bx px)} ⦄
{- TODO: Maybe have some more assumptions
boundedPredicateLogic-to-predicateLogic : ∀{Formula Domain Predicate : Type{ℓₒ}}{Proof : Formula → Type}{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = (Domain → Formula) ⨯ Predicate} {Domain = Σ(Predicate ⨯ Domain) (\(P , x) → Proof((P $ x) {{!!}} {!!}))} {!!}
PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L
∃.witness (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.universal L) B P
Universal.intro (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) {B , P} p = BoundedUniversal.intro
(∃.proof (BoundedPredicateLogic.universal L)) (\{x} pp → p{intro (P , x) {!!}})
Universal.elim (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) = {!!}
∃.witness (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.existential L) B P
Existential.intro (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!}
Existential.elim (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!}
-}
{- TODO: Seems to need a duplicate (Domain → Formula) in Predicate. Also, does not work with this generality
boundedPredicateLogic-to-predicateLogic : ∀{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Σ((Domain → Formula) ⨯ Domain) (\(B , x) → Proof(B(x)))} (\P (intro(B , x) bx) → (P $ x) {B} bx)
PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L
PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄
PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄
-}
{-instance
typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}}{B : T → Type{ℓ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} id {Predicate = (x : T) → ⦃ B(x) ⦄ → Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} {Domain = Σ T B} (\f (intro x b) → f x ⦃ b ⦄)
PredicateLogic.universal (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ (∀{x} ⦃ bx ⦄ → f(x) ⦃ bx ⦄)) ⦃ record{intro = \px → px ; elim = \{P} px {x} → px{Σ.left x} ⦃ Σ.right x ⦄} ⦄
PredicateLogic.existential (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ Logic.∃(x ↦ Σ(B(x)) (bx ↦ f x ⦃ bx ⦄)) ) ⦃ record{intro = {!!} ; elim = {!!}} ⦄
-}
import Logic.Classical.DoubleNegated as DoubleNegated
open import Logic.Names
import Logic.Propositional.Theorems as Logic
instance
doubleNegatedTypeLogic : PropositionalLogic{ℓₘₗ = Lvl.𝟎}(Logic.¬¬_)
PropositionalLogic.bottom doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊥ ⦃ record{elim = DoubleNegated.[⊥]-elim} ⦄
PropositionalLogic.top doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊤ ⦃ record{intro = DoubleNegated.[⊤]-intro} ⦄
PropositionalLogic.implication doubleNegatedTypeLogic = Logic.[∃]-intro (_→ᶠ_) ⦃ record{intro = DoubleNegated.[→]-intro ; elim = DoubleNegated.[→]-elim} ⦄
PropositionalLogic.conjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∧_) ⦃ record{intro = DoubleNegated.[∧]-intro ; elimₗ = DoubleNegated.[∧]-elimₗ ; elimᵣ = DoubleNegated.[∧]-elimᵣ} ⦄
PropositionalLogic.disjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∨_) ⦃ record{introₗ = DoubleNegated.[∨]-introₗ ; introᵣ = DoubleNegated.[∨]-introᵣ ; elim = DoubleNegated.[∨]-elim} ⦄
PropositionalLogic.consequence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._←_) ⦃ record{intro = DoubleNegated.[←]-intro ; elim = DoubleNegated.[→]-elim} ⦄
PropositionalLogic.equivalence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._↔_) ⦃ record{intro = DoubleNegated.[↔]-intro ; elimₗ = DoubleNegated.[↔]-elimₗ ; elimᵣ = DoubleNegated.[↔]-elimᵣ} ⦄
PropositionalLogic.negation doubleNegatedTypeLogic = Logic.[∃]-intro (Logic.¬_) ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = const ∘₂ apply} ⦄
open import Data.Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs
instance
booleanLogic : PropositionalLogic IsTrue
PropositionalLogic.bottom booleanLogic = [∃]-intro 𝐹 ⦃ record{elim = Logic.[⊥]-elim ∘ IsTrue.[𝐹]-elim} ⦄
PropositionalLogic.top booleanLogic = [∃]-intro 𝑇 ⦃ record{intro = IsTrue.[𝑇]-intro} ⦄
PropositionalLogic.conjunction booleanLogic = [∃]-intro _&&_ ⦃ record{intro = IsTrue.[∧]-intro ; elimₗ = IsTrue.[∧]-elimₗ ; elimᵣ = IsTrue.[∧]-elimᵣ} ⦄
PropositionalLogic.disjunction booleanLogic = [∃]-intro _||_ ⦃ record{introₗ = IsTrue.[∨]-introₗ ; introᵣ = IsTrue.[∨]-introᵣ ; elim = IsTrue.[∨]-elim} ⦄
PropositionalLogic.negation booleanLogic = [∃]-intro ! ⦃ record{intro = IsTrue.[!]-intro ; elim = IsTrue.[!]-elim} ⦄
PropositionalLogic.implication booleanLogic = [∃]-intro _→?_ ⦃ record{intro = IsTrue.[→?]-intro ; elim = IsTrue.[→?]-elim} ⦄
PropositionalLogic.consequence booleanLogic = [∃]-intro _←?_ ⦃ record{intro = IsTrue.[←?]-intro ; elim = IsTrue.[←?]-elim} ⦄
PropositionalLogic.equivalence booleanLogic = [∃]-intro _==_ ⦃ record{intro = IsTrue.[==]-intro ; elimₗ = IsTrue.[==]-elimₗ ; elimᵣ = IsTrue.[==]-elimᵣ} ⦄
booleanPredicateLogic : ∀{T : Type{ℓ}}{all exist : (T → Bool) → Bool} → (∀{P} → (∀{x} → IsTrue(P(x))) ↔ IsTrue(all P)) → (∀{P} → (Logic.∃(x ↦ IsTrue(P(x)))) ↔ IsTrue(exist P)) → PredicateLogic IsTrue {Domain = T} id
PredicateLogic.universal (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro all ⦃ record{intro = Logic.[↔]-to-[→] all-eq ; elim = Logic.[↔]-to-[←] all-eq} ⦄
PredicateLogic.existential (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro exist ⦃ record{intro = Logic.[↔]-to-[→] exist-eq ∘ (p ↦ [∃]-intro _ ⦃ p ⦄) ; elim = p ↦ ep ↦ p(Logic.[∃]-proof(Logic.[↔]-to-[←] exist-eq ep))} ⦄
| {
"alphanum_fraction": 0.6068969954,
"avg_line_length": 65.582278481,
"ext": "agda",
"hexsha": "1b541614b363b26c0e99f54918925738586fcd10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Logic/Constructive/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Logic/Constructive/Proofs.agda",
"max_line_length": 373,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Logic/Constructive/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 6270,
"size": 15543
} |
module Logic where
-- The true proposition.
data ⊤ : Set where
obvious : ⊤ -- The proof of truth.
-- The false proposition.
data ⊥ : Set where
-- There is nothing here so one can never prove false.
-- The AND of two statments.
data _∧_ (A B : Set) : Set where
-- The only way to construct a proof of A ∧ B is by pairing a a
-- proof of A with a proof of and B.
⟨_,_⟩ : (a : A) -- Proof of A
→ (b : B) -- Proof of B
→ A ∧ B -- Proof of A ∧ B
-- The OR of two statements.
data _∨_ (A B : Set) : Set where
-- There are two ways of constructing a proof of A ∨ B.
inl : (a : A) → A ∨ B -- From a proof of A by left introduction
inr : (b : B) → A ∨ B -- From a proof of B by right introduction
-- The not of statement A
¬_ : (A : Set) → Set
¬ A = A → ⊥ -- Given a proof of A one should be able to get a proof
-- of ⊥.
-- The statement A ↔ B are equivalent.
_↔_ : (A B : Set) → Set
A ↔ B = (A → B) -- If
∧ -- and
(B → A) -- only if
infixr 1 _∧_
infixr 1 _∨_
infixr 0 _↔_
infix 2 ¬_
-- Function composition
_∘_ : {A B C : Set} → (B → C) → (A → B) → A → C
(f ∘ g) x = f (g x)
-- Double negation
doubleNegation : ∀ {A : Set} → A → ¬ (¬ A)
doubleNegation a negNegA = negNegA a
{-
doubleNegation' : ∀ {A : Set} → ¬ ( ¬ (¬ A)) → ¬ A
-}
deMorgan1 : ∀ (A B : Set) → ¬ (A ∨ B) → ¬ A ∧ ¬ B
deMorgan1 A B notAorB = ⟨ notAorB ∘ inl , notAorB ∘ inr ⟩
deMorgan2 : ∀ (A B : Set) → ¬ A ∧ ¬ B → ¬ (A ∨ B)
deMorgan2 A B ⟨ notA , notB ⟩ (inl a) = notA a
deMorgan2 A B ⟨ notA , notB ⟩ (inr b) = notB b
deMorgan : ∀ (A B : Set) → ¬ (A ∨ B) ↔ ¬ A ∧ ¬ B
deMorgan A B = ⟨ deMorgan1 A B , deMorgan2 A B ⟩
| {
"alphanum_fraction": 0.5346475508,
"avg_line_length": 24.9850746269,
"ext": "agda",
"hexsha": "a5c7ead3416ce38aa342d6260aeca46faff6a050",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "piyush-kurur/sample-code",
"max_forks_repo_path": "agda/Logic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "piyush-kurur/sample-code",
"max_issues_repo_path": "agda/Logic.agda",
"max_line_length": 69,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "piyush-kurur/sample-code",
"max_stars_repo_path": "agda/Logic.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z",
"num_tokens": 663,
"size": 1674
} |
module Data.Option.Categorical where
import Lvl
import Functional as Fn
open import Function.Equals
open import Data.Option
open import Data.Option.Functions
open import Data.Option.Proofs
open import Lang.Instance
open import Logic
open import Logic.Predicate
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
import Structure.Category.Functor as Functor
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
open import Type.Category
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
-- Option is a functor by using `map`.
instance
map-functor : Functor{ℓ}(Option)
Functor.map ⦃ map-functor ⦄ = map
Functor.map-function ⦃ map-functor ⦄ = map-function
Functor.op-preserving ⦃ map-functor ⦄ = map-preserves-[∘]
Functor.id-preserving ⦃ map-functor ⦄ = map-preserves-id
-- Option is a monad by using `andThen`.
instance
andThen-monad : Monad{ℓ}(Option)
Monad.η ⦃ andThen-monad ⦄ _ = Some
Monad.ext ⦃ andThen-monad ⦄ = Fn.swap _andThen_
Monad.ext-function ⦃ andThen-monad ⦄ = andThen-function
Monad.ext-inverse ⦃ andThen-monad ⦄ = andThenᵣ-Some
Dependent._⊜_.proof (Monad.ext-identity ⦃ andThen-monad ⦄) = [≡]-intro
Dependent._⊜_.proof (Monad.ext-distribute ⦃ andThen-monad ⦄ {f = f} {g}) {x} = andThen-associativity {f = g}{g = f}{o = x}
-- A monoid is constructed by lifting an associative binary operator using `or-combine`.
-- Essentially means that an additional value (None) is added to the type, and it becomes an identity by definition.
module _ {_▫_ : T → T → T} where
instance
or-combine-monoid : ⦃ assoc : Associativity(_▫_) ⦄ → Monoid(or-combine(_▫_) Fn.id Fn.id)
Associativity.proof (Monoid.associativity or-combine-monoid) {None} {None} {None} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {None} {None} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {None} {Some y} {None} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {None} {Some y} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {None} {None} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {None} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {Some y} {None} = [≡]-intro
Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {Some y} {Some z} = [≡]-with(Some) (associativity(_▫_))
∃.witness (Monoid.identity-existence or-combine-monoid) = None
Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence or-combine-monoid))) {None} = [≡]-intro
Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence or-combine-monoid))) {Some x} = [≡]-intro
Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence or-combine-monoid))) {None} = [≡]-intro
Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence or-combine-monoid))) {Some x} = [≡]-intro
module _ {_▫_ : T → T → T} where
open Monoid ⦃ … ⦄ using (id)
-- A monoid is still a monoid when lifting a binary operator using `and-combine`.
instance
and-combine-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(and-combine(_▫_))
Associativity.proof (Monoid.associativity and-combine-monoid) {None} {None} {None} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {None} {None} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {None} {Some y} {None} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {None} {Some y} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {None} {None} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {None} {Some z} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {Some y} {None} = [≡]-intro
Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {Some y} {Some z} = [≡]-with(Some) (associativity(_▫_))
∃.witness (Monoid.identity-existence and-combine-monoid) = Some(id)
Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence and-combine-monoid))) {None} = [≡]-intro
Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence and-combine-monoid))) {Some x} = [≡]-with(Some) (identityₗ(_▫_)(_))
Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence and-combine-monoid))) {None} = [≡]-intro
Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence and-combine-monoid))) {Some x} = [≡]-with(Some) (identityᵣ(_▫_)(_))
instance
and-combine-absorberₗ : Absorberₗ(and-combine(_▫_))(None)
Absorberₗ.proof and-combine-absorberₗ = [≡]-intro
instance
and-combine-absorberᵣ : Absorberᵣ(and-combine(_▫_))(None)
Absorberᵣ.proof and-combine-absorberᵣ {None} = [≡]-intro
Absorberᵣ.proof and-combine-absorberᵣ {Some x} = [≡]-intro
-- `and-combine` essentially adds an additional value (None) to the type, and it becomes an absorber by definition.
instance
and-combine-absorber : Absorber(and-combine(_▫_))(None)
and-combine-absorber = intro
| {
"alphanum_fraction": 0.7003305178,
"avg_line_length": 56.7291666667,
"ext": "agda",
"hexsha": "3ceee961b72fe447e51a7f84f6f2f9d3f22b0438",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Option/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Option/Categorical.agda",
"max_line_length": 139,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Option/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1782,
"size": 5446
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Truncation.FromNegOne where
open import Cubical.HITs.Truncation.FromNegOne.Base public
open import Cubical.HITs.Truncation.FromNegOne.Properties public
| {
"alphanum_fraction": 0.8080357143,
"avg_line_length": 37.3333333333,
"ext": "agda",
"hexsha": "fdbb77ecd12a49b7635e67c6a865c42578a19d8d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 60,
"size": 224
} |
{-# OPTIONS --without-K #-}
import Level
open import Data.Empty using (⊥-elim)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Fin using (Fin; zero; suc)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Control.Category
module Dimension.PartialWeakening (E : Set) where
-- Partial weakenings from n to m are injective maps from Fin n to Fin m
-- that can raise exceptions in E.
data PWeak : (n m : ℕ) → Set where
[] : PWeak 0 0 -- empty
_∷_ : ∀ {n m} (e : E) (f : PWeak n m) → PWeak (1 + n) m -- partial
lift : ∀ {n m} (f : PWeak n m) → PWeak (1 + n) (1 + m) -- new name
weak : ∀ {n m} (f : PWeak n m) → PWeak n (1 + m) -- unused n.
-- Empty.
empty : ∀ {m} → PWeak 0 m
empty {m = 0} = []
empty {m = suc m} = weak (empty {m = m})
-- Identity.
id : ∀ {n} → PWeak n n
id {n = 0} = []
id {n = suc n} = lift (id {n = n})
-- Composition.
comp : ∀ {n m l} → PWeak n m → PWeak m l → PWeak n l
comp [] _ = empty
comp (e ∷ f) g = e ∷ comp f g
comp (lift f) (e ∷ g) = e ∷ comp f g
comp (lift f) (lift g) = lift (comp f g)
comp (lift f) (weak g) = weak (comp (lift f) g)
comp (weak f) (e ∷ g) = comp f g
comp (weak f) (lift g) = weak (comp f g)
comp (weak f) (weak g) = weak (comp (weak f) g)
module Laws where
-- Empty is initial (i.e., equal to any (g : PWeak 0 m))
abstract
empty-extensional : ∀ {m} (g : PWeak 0 m) → g ≡ empty
empty-extensional [] = refl
empty-extensional (weak g) = cong weak (empty-extensional g)
-- Empty is left dominant
abstract
empty-comp : ∀ {n m} (g : PWeak n m) → comp empty g ≡ empty
empty-comp g = empty-extensional (comp empty g)
{-
empty-comp [] = refl
empty-comp (e ∷ g) = empty-comp g
empty-comp (lift g) = cong weak (empty-comp g)
empty-comp {n = zero } (weak g) = refl
empty-comp {n = suc n} (weak g) = cong weak (empty-comp g)
-}
-- Left identity.
abstract
left-id : ∀ {n m} (g : PWeak n m) → comp id g ≡ g
left-id [] = refl
left-id (e ∷ g) = cong (_∷_ e) (left-id g)
left-id (lift g) = cong lift (left-id g)
left-id {n = zero} (weak g) = cong weak (sym (empty-extensional g))
left-id {n = suc n} (weak g) = cong weak (left-id g)
-- Right identity.
abstract
right-id : ∀ {n m} (g : PWeak n m) → comp g id ≡ g
right-id [] = refl
right-id (e ∷ g) = cong (_∷_ e) (right-id g)
right-id (lift g) = cong lift (right-id g)
right-id {n = zero } (weak g) = cong weak (right-id g)
right-id {n = suc n} (weak g) = cong weak (right-id g)
-- Associativity.
abstract
assoc : ∀ {n m l k} (f : PWeak n m) (g : PWeak m l) (h : PWeak l k) →
comp (comp f g) h ≡ comp f (comp g h)
assoc [] g h = empty-extensional _
assoc (e ∷ f) g h = cong (_∷_ e) (assoc f g h)
assoc (lift f) (e ∷ g) h = cong (_∷_ e) (assoc f g h)
assoc (lift f) (lift g) (e ∷ h) = cong (_∷_ e) (assoc f g h)
assoc (lift f) (lift g) (lift h) = cong lift (assoc f g h)
assoc (lift f) (lift g) (weak h) = cong weak (assoc (lift f) (lift g) h)
assoc (lift f) (weak g) (e ∷ h) = assoc (lift f) g h
assoc (lift f) (weak g) (lift h) = cong weak (assoc (lift f) g h)
assoc (lift f) (weak g) (weak h) = cong weak (assoc (lift f) (weak g) h)
assoc (weak f) (e ∷ g) h = assoc f g h
assoc (weak f) (lift g) (e ∷ h) = assoc f g h
assoc (weak f) (lift g) (lift h) = cong weak (assoc f g h)
assoc (weak f) (lift g) (weak h) = cong weak (assoc (weak f) (lift g) h)
assoc (weak f) (weak g) (e ∷ h) = assoc (weak f) g h
assoc (weak f) (weak g) (lift h) = cong weak (assoc (weak f) g h)
assoc (weak f) (weak g) (weak h) = cong weak (assoc (weak f) (weak g) h)
open Laws
-- PWeak is a category with initial object
SPWeak = λ n m → setoid (PWeak n m)
pWeakIsCategory : IsCategory SPWeak
pWeakIsCategory = record
{ ops = record
{ id = id
; _⟫_ = comp
}
; laws = record
{ id-first = left-id _
; id-last = right-id _
; ∘-assoc = λ f → assoc f _ _
; ∘-cong = cong₂ comp
}
}
emptyIsInitial : IsInitial SPWeak 0
emptyIsInitial = record
{ initial = empty
; initial-universal = empty-extensional _
}
-- The category PWEAK
PWEAK : Category _ _ _
PWEAK = record { Hom = SPWeak; isCategory = pWeakIsCategory }
-- -}
| {
"alphanum_fraction": 0.5382242785,
"avg_line_length": 31.3034482759,
"ext": "agda",
"hexsha": "ac7816eb4cde3dcd21b63032dab459006c443b5e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Dimension/PartialWeakening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Dimension/PartialWeakening.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Dimension/PartialWeakening.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1608,
"size": 4539
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homomorphism proofs for multiplication over polynomials
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.Polynomial.Parameters
module Tactic.RingSolver.Core.Polynomial.Homomorphism.Multiplication
{r₁ r₂ r₃ r₄}
(homo : Homomorphism r₁ r₂ r₃ r₄)
where
open import Data.Nat.Base as ℕ using (ℕ; suc; zero; _<′_; _≤′_; ≤′-step; ≤′-refl)
open import Data.Nat.Properties using (≤′-trans)
open import Data.Nat.Induction
open import Data.Product using (_×_; _,_; proj₁; proj₂; map₁)
open import Data.List.Kleene
open import Data.Vec using (Vec)
open import Function
open import Induction.WellFounded
open import Relation.Unary
open Homomorphism homo hiding (_^_)
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo
open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Addition homo
open import Tactic.RingSolver.Core.Polynomial.Base from
open import Tactic.RingSolver.Core.Polynomial.Reasoning to
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
open import Algebra.Operations.Ring rawRing
reassoc : ∀ {y} x z → x * (y * z) ≈ y * (x * z)
reassoc {y} x z = sym (*-assoc x y z) ⟨ trans ⟩ ((≪* *-comm x y) ⟨ trans ⟩ *-assoc y x z)
mutual
⊠-step′-hom : ∀ {n} → (a : Acc _<′_ n) → (xs ys : Poly n) → ∀ ρ → ⟦ ⊠-step′ a xs ys ⟧ ρ ≈ ⟦ xs ⟧ ρ * ⟦ ys ⟧ ρ
⊠-step′-hom a (x ⊐ p) = ⊠-step-hom a x p
⊠-step-hom : ∀ {i n}
→ (a : Acc _<′_ n)
→ (xs : FlatPoly i)
→ (i≤n : i ≤′ n)
→ (ys : Poly n)
→ ∀ ρ → ⟦ ⊠-step a xs i≤n ys ⟧ ρ ≈ ⟦ xs ⊐ i≤n ⟧ ρ * ⟦ ys ⟧ ρ
⊠-step-hom a (Κ x) i≤n = ⊠-Κ-hom a x
⊠-step-hom a (⅀ xs) i≤n = ⊠-⅀-hom a xs i≤n
⊠-Κ-hom : ∀ {n}
→ (a : Acc _<′_ n)
→ ∀ x
→ (ys : Poly n)
→ ∀ ρ
→ ⟦ ⊠-Κ a x ys ⟧ ρ ≈ ⟦ x ⟧ᵣ * ⟦ ys ⟧ ρ
⊠-Κ-hom (acc _) x (Κ y ⊐ i≤n) ρ = *-homo x y
⊠-Κ-hom (acc wf) x (⅀ xs ⊐ i≤n) ρ =
begin
⟦ ⊠-Κ-inj (wf _ i≤n) x xs ⊐↓ i≤n ⟧ ρ
≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i≤n) x xs) i≤n ρ ⟩
⅀?⟦ ⊠-Κ-inj (wf _ i≤n) x xs ⟧ (drop-1 i≤n ρ)
≈⟨ ⊠-Κ-inj-hom (wf _ i≤n) x xs (drop-1 i≤n ρ) ⟩
⟦ x ⟧ᵣ * ⅀⟦ xs ⟧ (drop-1 i≤n ρ)
∎
⊠-Κ-inj-hom : ∀ {n}
→ (a : Acc _<′_ n)
→ (x : Raw.Carrier)
→ (xs : Coeff n +)
→ ∀ ρ
→ ⅀?⟦ ⊠-Κ-inj a x xs ⟧ ρ ≈ ⟦ x ⟧ᵣ * ⅀⟦ xs ⟧ ρ
⊠-Κ-inj-hom {n} a x xs (ρ , Ρ) =
poly-mapR
ρ
Ρ
(⊠-Κ a x)
(⟦ x ⟧ᵣ *_)
(*-cong refl)
reassoc
(distribˡ ⟦ x ⟧ᵣ)
(λ ys → ⊠-Κ-hom a x ys Ρ)
(zeroʳ _)
xs
⊠-⅀-hom : ∀ {i n}
→ (a : Acc _<′_ n)
→ (xs : Coeff i +)
→ (i<n : i <′ n)
→ (ys : Poly n)
→ ∀ ρ
→ ⟦ ⊠-⅀ a xs i<n ys ⟧ ρ ≈ ⅀⟦ xs ⟧ (drop-1 i<n ρ) * ⟦ ys ⟧ ρ
⊠-⅀-hom (acc wf) xs i<n (⅀ ys ⊐ j≤n) = ⊠-match-hom (acc wf) (inj-compare i<n j≤n) xs ys
⊠-⅀-hom (acc wf) xs i<n (Κ y ⊐ _) ρ =
begin
⟦ ⊠-Κ-inj (wf _ i<n) y xs ⊐↓ i<n ⟧ ρ
≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i<n) y xs) i<n ρ ⟩
⅀?⟦ ⊠-Κ-inj (wf _ i<n) y xs ⟧ (drop-1 i<n ρ)
≈⟨ ⊠-Κ-inj-hom (wf _ i<n) y xs (drop-1 i<n ρ) ⟩
⟦ y ⟧ᵣ * ⅀⟦ xs ⟧ (drop-1 i<n ρ)
≈⟨ *-comm _ _ ⟩
⅀⟦ xs ⟧ (drop-1 i<n ρ) * ⟦ y ⟧ᵣ
∎
⊠-⅀-inj-hom : ∀ {i k}
→ (a : Acc _<′_ k)
→ (i<k : i <′ k)
→ (xs : Coeff i +)
→ (ys : Poly k)
→ ∀ ρ
→ ⟦ ⊠-⅀-inj a i<k xs ys ⟧ ρ ≈ ⅀⟦ xs ⟧ (drop-1 i<k ρ) * ⟦ ys ⟧ ρ
⊠-⅀-inj-hom (acc wf) i<k x (⅀ ys ⊐ j≤k) = ⊠-match-hom (acc wf) (inj-compare i<k j≤k) x ys
⊠-⅀-inj-hom (acc wf) i<k x (Κ y ⊐ j≤k) ρ =
begin
⟦ ⊠-Κ-inj (wf _ i<k) y x ⊐↓ i<k ⟧ ρ
≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i<k) y x) i<k ρ ⟩
⅀?⟦ ⊠-Κ-inj (wf _ i<k) y x ⟧ (drop-1 i<k ρ)
≈⟨ ⊠-Κ-inj-hom (wf _ i<k) y x (drop-1 i<k ρ) ⟩
⟦ y ⟧ᵣ * ⅀⟦ x ⟧ (drop-1 i<k ρ)
≈⟨ *-comm _ _ ⟩
⅀⟦ x ⟧ (drop-1 i<k ρ) * ⟦ y ⟧ᵣ
∎
⊠-match-hom : ∀ {i j n}
→ (a : Acc _<′_ n)
→ {i<n : i <′ n}
→ {j<n : j <′ n}
→ (ord : InjectionOrdering i<n j<n)
→ (xs : Coeff i +)
→ (ys : Coeff j +)
→ (Ρ : Vec Carrier n)
→ ⟦ ⊠-match a ord xs ys ⟧ Ρ
≈ ⅀⟦ xs ⟧ (drop-1 i<n Ρ) * ⅀⟦ ys ⟧ (drop-1 j<n Ρ)
⊠-match-hom {j = j} (acc wf) (inj-lt i≤j-1 j≤n) xs ys Ρ′ =
let (ρ , Ρ) = drop-1 j≤n Ρ′
xs′ = ⅀⟦ xs ⟧ (drop-1 (≤′-trans (≤′-step i≤j-1) j≤n) Ρ′)
in
begin
⟦ poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys ⊐↓ j≤n ⟧ Ρ′
≈⟨ ⊐↓-hom (poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys) j≤n Ρ′ ⟩
⅀?⟦ poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys ⟧ (ρ , Ρ)
≈⟨ poly-mapR ρ Ρ (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)
(_ *_)
(*-cong refl)
reassoc
(distribˡ _)
(λ y → ⊠-⅀-inj-hom (wf _ j≤n) i≤j-1 xs y _)
(zeroʳ _) ys ⟩
⅀⟦ xs ⟧ (drop-1 i≤j-1 Ρ) * ⅀⟦ ys ⟧ (ρ , Ρ)
≈⟨ ≪* trans-join-coeffs-hom i≤j-1 j≤n xs Ρ′ ⟩
xs′ * ⅀⟦ ys ⟧ (ρ , Ρ)
∎
⊠-match-hom (acc wf) (inj-gt i≤n j≤i-1) xs ys Ρ′ =
let (ρ , Ρ) = drop-1 i≤n Ρ′
ys′ = ⅀⟦ ys ⟧ (drop-1 (≤′-step j≤i-1 ⟨ ≤′-trans ⟩ i≤n) Ρ′)
in
begin
⟦ poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs ⊐↓ i≤n ⟧ Ρ′
≈⟨ ⊐↓-hom (poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs) i≤n Ρ′ ⟩
⅀?⟦ poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs ⟧ (ρ , Ρ)
≈⟨ poly-mapR ρ Ρ (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)
(_ *_)
(*-cong refl)
reassoc
(distribˡ _)
(λ x → ⊠-⅀-inj-hom (wf _ i≤n) j≤i-1 ys x _)
(zeroʳ _) xs ⟩
⅀⟦ ys ⟧ (drop-1 j≤i-1 Ρ) * ⅀⟦ xs ⟧ (ρ , Ρ)
≈⟨ ≪* trans-join-coeffs-hom j≤i-1 i≤n ys Ρ′ ⟩
ys′ * ⅀⟦ xs ⟧ (ρ , Ρ)
≈⟨ *-comm ys′ _ ⟩
⅀⟦ xs ⟧ (ρ , Ρ) * ys′
∎
⊠-match-hom (acc wf) (inj-eq ij≤n) xs ys Ρ =
begin
⟦ ⊠-coeffs (wf _ ij≤n) xs ys ⊐↓ ij≤n ⟧ Ρ
≈⟨ ⊐↓-hom (⊠-coeffs (wf _ ij≤n) xs ys) ij≤n Ρ ⟩
⅀?⟦ ⊠-coeffs (wf _ ij≤n) xs ys ⟧ (drop-1 ij≤n Ρ)
≈⟨ ⊠-coeffs-hom (wf _ ij≤n) xs ys (drop-1 ij≤n Ρ) ⟩
⅀⟦ xs ⟧ (drop-1 ij≤n Ρ) * ⅀⟦ ys ⟧ (drop-1 ij≤n Ρ)
∎
⊠-coeffs-hom : ∀ {n}
→ (a : Acc _<′_ n)
→ (xs ys : Coeff n +)
→ ∀ ρ → ⅀?⟦ ⊠-coeffs a xs ys ⟧ ρ ≈ ⅀⟦ xs ⟧ ρ * ⅀⟦ ys ⟧ ρ
⊠-coeffs-hom a xs (y ≠0 Δ j & []) (ρ , Ρ) =
begin
⅀?⟦ poly-map (⊠-step′ a y) xs ⍓* j ⟧ (ρ , Ρ)
≈⟨ sym (pow′-hom j (poly-map (⊠-step′ a y) xs) ρ Ρ) ⟩
⅀?⟦ poly-map (⊠-step′ a y) xs ⟧ (ρ , Ρ) *⟨ ρ ⟩^ j
≈⟨ pow-mul-cong (poly-mapR ρ Ρ (⊠-step′ a y) (⟦ y ⟧ Ρ *_) (*-cong refl) reassoc (distribˡ _) (λ z → ⊠-step′-hom a y z Ρ) (zeroʳ _) xs) ρ j ⟩
(⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ)) *⟨ ρ ⟩^ j
≈⟨ pow-opt _ ρ j ⟩
(ρ ^ j) * (⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ))
≈⟨ sym (*-assoc _ _ _) ⟩
(ρ ^ j) * ⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ)
≈⟨ *-comm _ _ ⟩
⅀⟦ xs ⟧ (ρ , Ρ) * ((ρ ^ j) * ⟦ y ⟧ Ρ)
≈⟨ *≫ sym (pow-opt _ ρ j) ⟩
⅀⟦ xs ⟧ (ρ , Ρ) * (⟦ y ⟧ Ρ *⟨ ρ ⟩^ j)
∎
⊠-coeffs-hom a xs (y ≠0 Δ j & ∹ ys) (ρ , Ρ) =
let xs′ = ⅀⟦ xs ⟧ (ρ , Ρ)
y′ = ⟦ y ⟧ Ρ
ys′ = ⅀⟦ ys ⟧ (ρ , Ρ)
in
begin
⅀?⟦ para (⊠-cons a y ys) xs ⍓* j ⟧ (ρ , Ρ)
≈⟨ sym (pow′-hom j (para (⊠-cons a y ys) xs) ρ Ρ) ⟨ trans ⟩ pow-opt _ ρ j ⟩
ρ ^ j * ⅀?⟦ para (⊠-cons a y ys) xs ⟧ (ρ , Ρ)
≈⟨ *≫ ⊠-cons-hom a y ys xs ρ Ρ ⟩
ρ ^ j * (xs′ * (ρ * ys′ + y′))
≈⟨ sym (*-assoc _ _ _) ⟨ trans ⟩ (≪* *-comm _ _) ⟨ trans ⟩ *-assoc _ _ _ ⟨ trans ⟩ (*≫ sym (pow-opt _ ρ j))⟩
xs′ * ((ρ * ys′ + y′) *⟨ ρ ⟩^ j)
∎
⊠-cons-hom : ∀ {n}
→ (a : Acc _<′_ n)
→ (y : Poly n)
→ (ys xs : Coeff n +)
→ (ρ : Carrier)
→ (Ρ : Vec Carrier n)
→ ⅀?⟦ para (⊠-cons a y ys) xs ⟧ (ρ , Ρ)
≈ ⅀⟦ xs ⟧ (ρ , Ρ) * (ρ * ⅀⟦ ys ⟧ (ρ , Ρ) + ⟦ y ⟧ Ρ)
-- ⊠-cons-hom a y [] xs ρ Ρ = {!!}
⊠-cons-hom a y ys xs ρ Ρ = poly-foldR ρ Ρ (⊠-cons a y ys) (flip _*_ (ρ * ⅀⟦ ys ⟧ (ρ , Ρ) + ⟦ y ⟧ Ρ)) (flip *-cong refl) (λ x y → sym (*-assoc x y _)) step (zeroˡ _) xs
where
step = λ { (z ⊐ j≤n) {ys₁} zs ys≋zs →
let x′ = ⟦ z ⊐ j≤n ⟧ Ρ
xs′ = ⅀?⟦ zs ⟧ (ρ , Ρ)
y′ = ⟦ y ⟧ Ρ
ys′ = ⅀⟦ ys ⟧ (ρ , Ρ)
step = λ y → ⊠-step-hom a z j≤n y Ρ
in
begin
ρ * ⅀?⟦ ⊞-coeffs (poly-map ( (⊠-step a z j≤n)) ys) ys₁ ⟧ (ρ , Ρ) + ⟦ ⊠-step a z j≤n y ⟧ Ρ
≈⟨ (*≫ ⊞-coeffs-hom (poly-map (⊠-step a z j≤n) ys) _ (ρ , Ρ)) ⟨ +-cong ⟩ ⊠-step-hom a z j≤n y Ρ ⟩
ρ * (⅀?⟦ poly-map (⊠-step a z j≤n) ys ⟧ (ρ , Ρ) + ⅀?⟦ ys₁ ⟧ (ρ , Ρ)) + x′ * y′
≈⟨ ≪+ *≫ (poly-mapR ρ Ρ (⊠-step a z j≤n) (x′ *_) (*-cong refl) reassoc (distribˡ _) step (zeroʳ _) ys ⟨ +-cong ⟩ ys≋zs) ⟩
ρ * (x′ * ys′ + xs′ * (ρ * ys′ + y′)) + (x′ * y′)
≈⟨ ≪+ distribˡ _ _ _ ⟩
ρ * (x′ * ys′) + ρ * (xs′ * (ρ * ys′ + y′)) + (x′ * y′)
≈⟨ (≪+ +-comm _ _) ⟨ trans ⟩ +-assoc _ _ _ ⟩
ρ * (xs′ * (ρ * ys′ + y′)) + (ρ * (x′ * ys′) + (x′ * y′))
≈⟨ sym (*-assoc _ _ _) ⟨ +-cong ⟩ ((≪+ (sym (*-assoc _ _ _) ⟨ trans ⟩ (≪* *-comm _ _) ⟨ trans ⟩ *-assoc _ _ _)) ⟨ trans ⟩ sym (distribˡ _ _ _)) ⟩
ρ * xs′ * (ρ * ys′ + y′) + x′ * (ρ * ys′ + y′)
≈⟨ sym (distribʳ _ _ _) ⟩
(ρ * xs′ + x′) * (ρ * ys′ + y′)
∎ }
⊠-hom : ∀ {n} (xs ys : Poly n) →
∀ ρ → ⟦ xs ⊠ ys ⟧ ρ ≈ ⟦ xs ⟧ ρ * ⟦ ys ⟧ ρ
⊠-hom (xs ⊐ i≤n) = ⊠-step-hom (<′-wellFounded _) xs i≤n
| {
"alphanum_fraction": 0.3893514236,
"avg_line_length": 38.1529411765,
"ext": "agda",
"hexsha": "8f4ea2872183fd756dd2f3a110490a0406d9233b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda",
"max_line_length": 169,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 5082,
"size": 9729
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the heterogeneous suffix relation
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Suffix.Heterogeneous.Properties where
open import Data.List as List
using (List; []; _∷_; _++_; length; filter; replicate; reverse; reverseAcc)
open import Data.List.Relation.Binary.Pointwise as Pw
using (Pointwise; []; _∷_; Pointwise-length)
open import Data.List.Relation.Binary.Suffix.Heterogeneous as Suffix
using (Suffix; here; there; tail)
open import Data.List.Relation.Binary.Prefix.Heterogeneous as Prefix
using (Prefix)
open import Data.Nat
open import Data.Nat.Properties
open import Function using (_$_; flip)
open import Relation.Nullary using (Dec; yes; no; ¬_)
import Relation.Nullary.Decidable as Dec
open import Relation.Unary as U using (Pred)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary as B
using (REL; Rel; Trans; Antisym; Irrelevant; _⇒_)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; subst; subst₂)
import Data.List.Properties as Listₚ
import Data.List.Relation.Binary.Prefix.Heterogeneous.Properties as Prefixₚ
------------------------------------------------------------------------
-- Suffix and Prefix are linked via reverse
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
fromPrefix : ∀ {as bs} → Prefix R as bs →
Suffix R (reverse as) (reverse bs)
fromPrefix {as} {bs} p with Prefix.toView p
... | Prefix._++_ {cs} rs ds =
subst (Suffix R (reverse as))
(sym (Listₚ.reverse-++-commute cs ds))
(Suffix.fromView (reverse ds Suffix.++ Pw.reverse⁺ rs))
fromPrefix-rev : ∀ {as bs} → Prefix R (reverse as) (reverse bs) →
Suffix R as bs
fromPrefix-rev pre =
subst₂ (Suffix R)
(Listₚ.reverse-involutive _)
(Listₚ.reverse-involutive _)
(fromPrefix pre)
toPrefix-rev : ∀ {as bs} → Suffix R as bs →
Prefix R (reverse as) (reverse bs)
toPrefix-rev {as} {bs} s with Suffix.toView s
... | Suffix._++_ cs {ds} rs =
subst (Prefix R (reverse as))
(sym (Listₚ.reverse-++-commute cs ds))
(Prefix.fromView (Pw.reverse⁺ rs Prefix.++ reverse cs))
toPrefix : ∀ {as bs} → Suffix R (reverse as) (reverse bs) →
Prefix R as bs
toPrefix suf =
subst₂ (Prefix R)
(Listₚ.reverse-involutive _)
(Listₚ.reverse-involutive _)
(toPrefix-rev suf)
------------------------------------------------------------------------
-- length
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
length-mono : ∀ {as bs} → Suffix R as bs → length as ≤ length bs
length-mono (here rs) = ≤-reflexive (Pointwise-length rs)
length-mono (there suf) = ≤-step (length-mono suf)
S[as][bs]⇒∣as∣≢1+∣bs∣ : ∀ {as bs} → Suffix R as bs →
length as ≢ suc (length bs)
S[as][bs]⇒∣as∣≢1+∣bs∣ suf eq = <⇒≱ (≤-reflexive (sym eq)) (length-mono suf)
------------------------------------------------------------------------
-- Pointwise conversion
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
fromPointwise : Pointwise R ⇒ Suffix R
fromPointwise = here
toPointwise : ∀ {as bs} → length as ≡ length bs →
Suffix R as bs → Pointwise R as bs
toPointwise eq (here rs) = rs
toPointwise eq (there suf) = contradiction eq (S[as][bs]⇒∣as∣≢1+∣bs∣ suf)
------------------------------------------------------------------------
-- Suffix as a partial order
module _ {a b c r s t} {A : Set a} {B : Set b} {C : Set c}
{R : REL A B r} {S : REL B C s} {T : REL A C t} where
trans : Trans R S T → Trans (Suffix R) (Suffix S) (Suffix T)
trans rs⇒t (here rs) (here ss) = here (Pw.transitive rs⇒t rs ss)
trans rs⇒t (here rs) (there ssuf) = there (trans rs⇒t (here rs) ssuf)
trans rs⇒t (there rsuf) ssuf = trans rs⇒t rsuf (tail ssuf)
module _ {a b e r s} {A : Set a} {B : Set b}
{R : REL A B r} {S : REL B A s} {E : REL A B e} where
antisym : Antisym R S E → Antisym (Suffix R) (Suffix S) (Pointwise E)
antisym rs⇒e rsuf ssuf = Pw.antisymmetric
rs⇒e
(toPointwise eq rsuf)
(toPointwise (sym eq) ssuf)
where eq = ≤-antisym (length-mono rsuf) (length-mono ssuf)
------------------------------------------------------------------------
-- _++_
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
++⁺ : ∀ {as bs cs ds} → Suffix R as bs → Pointwise R cs ds →
Suffix R (as ++ cs) (bs ++ ds)
++⁺ (here rs) rs′ = here (Pw.++⁺ rs rs′)
++⁺ (there suf) rs′ = there (++⁺ suf rs′)
++⁻ : ∀ {as bs cs ds} → length cs ≡ length ds →
Suffix R (as ++ cs) (bs ++ ds) → Pointwise R cs ds
++⁻ {_ ∷ _} {_} {_} {_} eq suf = ++⁻ eq (tail suf)
++⁻ {[]} {[]} {_} {_} eq suf = toPointwise eq suf
++⁻ {[]} {b ∷ bs} {_} {_} eq (there suf) = ++⁻ eq suf
++⁻ {[]} {b ∷ bs} {cs} {ds} eq (here rs) = contradiction (sym eq) (<⇒≢ ds<cs)
where
open ≤-Reasoning
ds<cs : length ds < length cs
ds<cs = begin
suc (length ds) ≤⟨ s≤s (n≤m+n (length bs) (length ds)) ⟩
suc (length bs + length ds) ≡⟨ sym $ Listₚ.length-++ (b ∷ bs) ⟩
length (b ∷ bs ++ ds) ≡⟨ sym $ Pointwise-length rs ⟩
length cs ∎
------------------------------------------------------------------------
-- map
module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{R : REL C D r} where
map⁺ : ∀ {as bs} (f : A → C) (g : B → D) →
Suffix (λ a b → R (f a) (g b)) as bs →
Suffix R (List.map f as) (List.map g bs)
map⁺ f g (here rs) = here (Pw.map⁺ f g rs)
map⁺ f g (there suf) = there (map⁺ f g suf)
map⁻ : ∀ {as bs} (f : A → C) (g : B → D) →
Suffix R (List.map f as) (List.map g bs) →
Suffix (λ a b → R (f a) (g b)) as bs
map⁻ {as} {b ∷ bs} f g (here rs) = here (Pw.map⁻ f g rs)
map⁻ {as} {b ∷ bs} f g (there suf) = there (map⁻ f g suf)
map⁻ {x ∷ as} {[]} f g suf with length-mono suf
... | ()
map⁻ {[]} {[]} f g suf = here []
------------------------------------------------------------------------
-- filter
module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r}
{P : Pred A p} {Q : Pred B q}
(P? : U.Decidable P) (Q? : U.Decidable Q)
(P⇒Q : ∀ {a b} → R a b → P a → Q b)
(Q⇒P : ∀ {a b} → R a b → Q b → P a)
where
filter⁺ : ∀ {as bs} → Suffix R as bs →
Suffix R (filter P? as) (filter Q? bs)
filter⁺ (here rs) = here (Pw.filter⁺ P? Q? P⇒Q Q⇒P rs)
filter⁺ (there {a} suf) with Q? a
... | yes q = there (filter⁺ suf)
... | no ¬q = filter⁺ suf
------------------------------------------------------------------------
-- replicate
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
replicate⁺ : ∀ {m n a b} → m ≤ n → R a b →
Suffix R (replicate m a) (replicate n b)
replicate⁺ {a = a} {b = b} m≤n r = repl (≤⇒≤′ m≤n)
where
repl : ∀ {m n} → m ≤′ n → Suffix R (replicate m a) (replicate n b)
repl ≤′-refl = here (Pw.replicate⁺ r _)
repl (≤′-step m≤n) = there (repl m≤n)
------------------------------------------------------------------------
-- Irrelevant
module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where
irrelevant : Irrelevant R → Irrelevant (Suffix R)
irrelevant irr (here rs) (here rs₁) = P.cong here $ Pw.irrelevant irr rs rs₁
irrelevant irr (here rs) (there rsuf) = contradiction (Pointwise-length rs) (S[as][bs]⇒∣as∣≢1+∣bs∣ rsuf)
irrelevant irr (there rsuf) (here rs) = contradiction (Pointwise-length rs) (S[as][bs]⇒∣as∣≢1+∣bs∣ rsuf)
irrelevant irr (there rsuf) (there rsuf₁) = P.cong there $ irrelevant irr rsuf rsuf₁
------------------------------------------------------------------------
-- Decidability
suffix? : B.Decidable R → B.Decidable (Suffix R)
suffix? R? as bs = Dec.map′ fromPrefix-rev toPrefix-rev
$ Prefixₚ.prefix? R? (reverse as) (reverse bs)
| {
"alphanum_fraction": 0.5076660988,
"avg_line_length": 38.9478672986,
"ext": "agda",
"hexsha": "f4b199c5a878be541aef5f8e8059004ae2439b51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2754,
"size": 8218
} |
{-# OPTIONS --universe-polymorphism #-}
{- This module is really a combination of copumpkin's Semigroup and
CommutativeSemigroup modules, available on github at
https://github.com/copumpkin/containers.git
-}
module Permutations where
open import Algebra
-- import Algebra.FunctionProperties as FunctionProperties
open import Data.Empty
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product
open import Data.Nat hiding (fold)
open import Data.Nat.Properties using (commutativeSemiring; i+j≡0⇒i≡0)
open import Data.Fin using (Fin; zero; suc; toℕ)
open import Data.Vec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality renaming (setoid to ≡-setoid)
import Relation.Binary.EqReasoning as EqReasoning
open CommutativeSemiring commutativeSemiring using (+-identity; +-comm; distrib)
-- open import Containers.Semigroup
-- Full trees, representing associations
data Association : ℕ → Set where
leaf : Association 1
node : ∀ {m n} →
(l : Association m) → (r : Association n) → Association (m + n)
leftA : ∀ {n} → Association (1 + n)
leftA {zero} = leaf
leftA {suc n} rewrite +-comm 1 n = node (leftA {n}) leaf
rightA : ∀ {n} → Association (1 + n)
rightA {zero} = leaf
rightA {suc n} = node leaf rightA
fold : ∀ {n} {a} {A : Set a} → Association n → (A → A → A) → Vec A n → A
fold leaf _∙_ (x ∷ xs) = x
fold (node {m} l r) _∙_ xs with splitAt m xs
... | ls , rs , pf = fold l _∙_ ls ∙ fold r _∙_ rs
foldl₁-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) →
(xs : Vec A (1 + n)) → foldl₁ f xs ≡ fold leftA f xs
foldl₁-fold {zero} f (x ∷ []) = refl
foldl₁-fold {suc n} f xs rewrite +-comm 1 n with splitAt (suc n) xs
foldl₁-fold {suc n} f .(ls ++ r ∷ []) | ls , r ∷ [] , refl
rewrite sym (foldl₁-fold f ls) = foldl₁-snoc f r ls
where
foldl₁-snoc : ∀ {a} {A : Set a} {n} f x (xs : Vec A (1 + n)) →
foldl₁ f (xs ++ x ∷ []) ≡ f (foldl₁ f xs) x
foldl₁-snoc f x₀ (x₁ ∷ []) = refl
foldl₁-snoc f x₀ (x₁ ∷ x ∷ xs) = foldl₁-snoc f x₀ (f x₁ x ∷ xs)
foldr-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) z (xs : Vec A n) →
foldr _ f z xs ≡ fold rightA f (xs ∷ʳ z)
foldr-fold f z [] = refl
foldr-fold f z (x ∷ xs) = cong (f x) (foldr-fold f z xs)
foldl-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) z (xs : Vec A n) →
foldl _ f z xs ≡ fold leftA f (z ∷ xs)
foldl-fold f z xs rewrite sym (foldl₁-fold f (z ∷ xs)) = refl
foldl-elim : ∀ {a b c} {A : Set a} {B : ℕ → Set b}
(P : ∀ {n} → Vec A n → B n → Set c)
{f : ∀ {n} → B n → A → B (1 + n)} {z : B 0}
→ P [] z
→ (∀ {n x′ z′} {xs′ : Vec A n} → P xs′ z′ → P (xs′ ∷ʳ x′) (f z′ x′))
→ ∀ {n} (xs : Vec A n) → P xs (foldl B f z xs)
foldl-elim P Pz Ps [] = Pz
foldl-elim {A} {B} P {f} {z} Pz Ps (x ∷ xs) =
foldl-elim (λ xs′ → P (x ∷ xs′)) (Ps Pz) Ps xs
foldl-lemma : ∀ {a b} {A : Set a} {B : ℕ → Set b}
{f : ∀ {n} → B n → A → B (suc n)} {z : B 0} {n} {x} (xs : Vec A n) →
f (foldl B f z xs) x ≡ foldl B f z (xs ∷ʳ x)
foldl-lemma [] = refl
foldl-lemma {B = B} (y ∷ ys) = foldl-lemma {B = λ n → B (suc n)} ys
infixr 5 _∷_
data Permutation : ℕ → Set where
[] : Permutation 0
_∷_ : {n : ℕ} → (p : Fin (1 + n)) → (ps : Permutation n) → Permutation (1 + n)
max : ∀ {n} → Fin (suc n)
max {zero} = zero
max {suc n} = suc max
idP : ∀ {n} → Permutation n
idP {zero} = []
idP {suc n} = zero ∷ idP
reverseP : ∀ {n} → Permutation n
reverseP {zero} = []
reverseP {suc n} = max ∷ reverseP
insert : ∀ {n} {a} {A : Set a} → Vec A n → Fin (1 + n) → A → Vec A (1 + n)
insert xs zero a = a ∷ xs
insert [] (suc ()) a
insert (x ∷ xs) (suc i) a = x ∷ insert xs i a
permute : ∀ {n} {a} {A : Set a} → Permutation n → Vec A n → Vec A n
permute [] [] = []
permute (p ∷ ps) (x ∷ xs) = insert (permute ps xs) p x
idP-id : ∀ {n} {a} {A : Set a} (xs : Vec A n) → permute idP xs ≡ xs
idP-id [] = refl
idP-id (x ∷ xs) = cong (_∷_ x) (idP-id xs)
insert-max : ∀ {n} {a} {A : Set a} (ys : Vec A n) x → insert ys max x ≡ ys ∷ʳ x
insert-max [] x = refl
insert-max (y ∷ ys) x = cong (_∷_ y) (insert-max ys x)
reverse-∷ʳ : ∀ {n} {a} {A : Set a} (ys : Vec A n) x →
reverse ys ∷ʳ x ≡ reverse (x ∷ ys)
reverse-∷ʳ {A = A} xs x =
foldl-elim
(λ xs b → b ∷ʳ x ≡ reverse (x ∷ xs))
refl
(λ {_} {_} {_} {xs} eq →
trans (cong (_∷_ _) eq) (foldl-lemma {B = λ n -> Vec A (suc n)} xs))
xs
reverseP-reverse : ∀ {n} {a} {A : Set a} (xs : Vec A n) →
permute reverseP xs ≡ reverse xs
reverseP-reverse [] = refl
reverseP-reverse {suc n} {_} {A} (x ∷ xs) =
begin
insert (permute reverseP xs) max x
≈⟨ insert-max (permute reverseP xs) x ⟩
permute reverseP xs ∷ʳ x
≈⟨ cong (λ q → q ∷ʳ x) (reverseP-reverse xs) ⟩
reverse xs ∷ʳ x
≈⟨ reverse-∷ʳ xs x ⟩
reverse (x ∷ xs)
∎
where open EqReasoning (≡-setoid (Vec A (1 + n)))
remove : {n : ℕ} → {A : Set} → (i : Fin (suc n)) → Vec A (suc n) → Vec A n
remove {n} zero (x ∷ v) = v
remove {zero} (suc ()) _
remove {suc n} (suc i) (x ∷ v) = x ∷ remove i v
remove0 : {n : ℕ} {A : Set} → (v : Vec A (suc n)) →
v ≡ (lookup zero v) ∷ remove zero v
remove0 (x ∷ v) = refl
{-
_◌_ : ∀ {n} → Permutation n → Permutation n → Permutation n
[] ◌ [] = []
(zero ∷ p₁) ◌ (q ∷ q₁) = q ∷ (p₁ ◌ q₁)
(suc p ∷ p₁) ◌ (zero ∷ q₁) = {!!}
(suc p ∷ p₁) ◌ (suc q ∷ q₁) = {!!}
perm◌perm : ∀ {n} {A : Set} → (p q : Permutation n) → (v : Vec A n) → permute q (permute p v) ≡ permute (p ◌ q) v
perm◌perm [] [] [] = refl
perm◌perm (zero ∷ p₁) (q ∷ q₁) (x ∷ v) = cong (λ y → insert y q x) (perm◌perm p₁ q₁ v)
perm◌perm (suc p ∷ p₁) (q ∷ q₁) (x ∷ v) with permute ((suc p) ∷ p₁) (x ∷ v)
perm◌perm (suc p ∷ p₁) (zero ∷ q₁) (x ∷ v) | y ∷ w = {!!}
perm◌perm (suc p ∷ p₁) (suc q ∷ q₁) (x ∷ v) | y ∷ w = {!!}
p1 : Permutation 5
p1 = suc (suc zero) ∷ suc (suc zero) ∷ zero ∷ suc zero ∷ zero ∷ []
p2 : Permutation 5
p2 = suc (suc (suc zero)) ∷ suc (suc (suc zero)) ∷ zero ∷ zero ∷ zero ∷ []
p3 : Permutation 5
p3 = suc (suc (suc (suc zero))) ∷ suc zero ∷ suc zero ∷ suc zero ∷ zero ∷ []
test1 : Vec (Fin 5) 5
test1 = permute p1 (tabulate {5} (λ x → x))
test2 : Vec (Fin 5 ) 5
test2 = permute p2 (tabulate (λ x → x))
test3 : Vec (Fin 5) 5
test3 = permute p1 (test2)
test4 : test3 ≡ permute p3 (tabulate (λ x → x))
test4 = refl
-}
| {
"alphanum_fraction": 0.5429564119,
"avg_line_length": 33.8609625668,
"ext": "agda",
"hexsha": "9f917b2068be22469dda73fe901725f1e7332d5c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Permutations.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Permutations.agda",
"max_line_length": 113,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Permutations.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2691,
"size": 6332
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to multiplication of integers
------------------------------------------------------------------------
module Data.Integer.Multiplication.Properties where
open import Algebra
using (module CommutativeSemiring; CommutativeMonoid)
import Algebra.FunctionProperties
open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid)
open import Data.Integer
using (ℤ; -[1+_]; +_; ∣_∣; sign; _◃_) renaming (_*_ to ℤ*)
open import Data.Nat
using (suc; zero) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Product using (proj₂)
import Data.Nat.Properties as ℕ
open import Data.Sign using () renaming (_*_ to _S*_)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong; cong₂; isEquivalence)
open Algebra.FunctionProperties (_≡_ {A = ℤ})
open CommutativeSemiring ℕ.commutativeSemiring
using (+-identity; *-comm) renaming (zero to *-zero)
------------------------------------------------------------------------
-- Multiplication and one form a commutative monoid
private
identityˡ : LeftIdentity (+ 1) ℤ*
identityˡ (+ zero ) = refl
identityˡ -[1+ n ] rewrite proj₂ +-identity n = refl
identityˡ (+ suc n) rewrite proj₂ +-identity n = refl
comm : Commutative ℤ*
comm -[1+ a ] -[1+ b ] rewrite *-comm (suc a) (suc b) = refl
comm -[1+ a ] (+ b ) rewrite *-comm (suc a) b = refl
comm (+ a ) -[1+ b ] rewrite *-comm a (suc b) = refl
comm (+ a ) (+ b ) rewrite *-comm a b = refl
lemma : ∀ a b c → c ℕ+ (b ℕ+ a ℕ* suc b) ℕ* suc c
≡ c ℕ+ b ℕ* suc c ℕ+ a ℕ* suc (c ℕ+ b ℕ* suc c)
lemma =
solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c)
:= c :+ b :* (con 1 :+ c) :+
a :* (con 1 :+ (c :+ b :* (con 1 :+ c))))
refl
where open ℕ.SemiringSolver
assoc : Associative ℤ*
assoc (+ zero) _ _ = refl
assoc x (+ zero) _ rewrite proj₂ *-zero ∣ x ∣ = refl
assoc x y (+ zero) rewrite
proj₂ *-zero ∣ y ∣
| proj₂ *-zero ∣ x ∣
| proj₂ *-zero ∣ sign x S* sign y ◃ ∣ x ∣ ℕ* ∣ y ∣ ∣
= refl
assoc -[1+ a ] -[1+ b ] (+ suc c) = cong (+_ ∘ suc) (lemma a b c)
assoc -[1+ a ] (+ suc b) -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
assoc (+ suc a) (+ suc b) (+ suc c) = cong (+_ ∘ suc) (lemma a b c)
assoc (+ suc a) -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c)
assoc -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] (lemma a b c)
assoc (+ suc a) -[1+ b ] (+ suc c) = cong -[1+_] (lemma a b c)
assoc (+ suc a) (+ suc b) -[1+ c ] = cong -[1+_] (lemma a b c)
isSemigroup : IsSemigroup _ _
isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = assoc
; ∙-cong = cong₂ ℤ*
}
isCommutativeMonoid : IsCommutativeMonoid _≡_ ℤ* (+ 1)
isCommutativeMonoid = record
{ isSemigroup = isSemigroup
; identityˡ = identityˡ
; comm = comm
}
commutativeMonoid : CommutativeMonoid _ _
commutativeMonoid = record
{ Carrier = ℤ
; _≈_ = _≡_
; _∙_ = ℤ*
; ε = + 1
; isCommutativeMonoid = isCommutativeMonoid
}
| {
"alphanum_fraction": 0.5214560521,
"avg_line_length": 36.7282608696,
"ext": "agda",
"hexsha": "6729c5e9569eaf8314b23b8fbb779c29cd95e3ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1153,
"size": 3379
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Decidable.Sets
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Semiring
module Computability.LambdaCalculus.ChurchNumeral where
open import UnorderedSet.Definition ℕDecideEquality
open import Computability.LambdaCalculus.Definition
private
iter : ℕ → Term
iter zero = var 0
iter (succ n) = apply (var 1) (iter n)
church : ℕ → Term
church n = lam 1 (lam 0 (iter n))
churchSucc : Term
churchSucc = lam 0 (lam 1 (lam 2 (apply (var 1) (apply (apply (var 0) (var 1)) (var 2)))))
| {
"alphanum_fraction": 0.7415565345,
"avg_line_length": 27.24,
"ext": "agda",
"hexsha": "650c8d3cd84d6ad9764f2b329759bf697de6f706",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda",
"max_line_length": 90,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 208,
"size": 681
} |
------------------------------------------------------------------------------
-- The FOTC streams type
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Stream.Type where
open import FOTC.Base
open import FOTC.Base.List
------------------------------------------------------------------------------
-- The FOTC streams type (co-inductive predicate for total streams).
-- Functional for the Stream predicate.
-- StreamF : (D → Set) → D → Set
-- StreamF A xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs'
-- Stream is the greatest fixed-point of StreamF (by Stream-out and
-- Stream-coind).
postulate Stream : D → Set
postulate
-- Stream is a post-fixed point of StreamF, i.e.
--
-- Stream ≤ StreamF Stream.
Stream-out : ∀ {xs} → Stream xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs'
{-# ATP axiom Stream-out #-}
-- Stream is the greatest post-fixed point of StreamF, i.e.
--
-- ∀ A. A ≤ StreamF A ⇒ A ≤ Stream.
--
-- N.B. This is an axiom schema. Because in the automatic proofs we
-- *must* use an instance, we do not add this postulate as an ATP
-- axiom.
postulate
Stream-coind :
(A : D → Set) →
-- A is post-fixed point of StreamF.
(∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') →
-- Stream is greater than A.
∀ {xs} → A xs → Stream xs
| {
"alphanum_fraction": 0.4979973298,
"avg_line_length": 31.2083333333,
"ext": "agda",
"hexsha": "35dbec72e613f68e6c471d21574964a222cec8a4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Stream/Type.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Stream/Type.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Stream/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 391,
"size": 1498
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.EilenbergMacLane1 where
open import Cubical.HITs.EilenbergMacLane1.Base public
open import Cubical.HITs.EilenbergMacLane1.Properties public
| {
"alphanum_fraction": 0.8075117371,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "28ea97a274fea535ad5ebad0d8790f88010b965b",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/HITs/EilenbergMacLane1.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/HITs/EilenbergMacLane1.agda",
"max_line_length": 60,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/HITs/EilenbergMacLane1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 61,
"size": 213
} |
module Imports.NonTerminating where
Foo : Set
Foo = Foo
| {
"alphanum_fraction": 0.7719298246,
"avg_line_length": 11.4,
"ext": "agda",
"hexsha": "e5d11332a8c5ba241d782a5826db3a694112dec6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Imports/NonTerminating.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Imports/NonTerminating.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Imports/NonTerminating.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 15,
"size": 57
} |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.S1SuspensionS0 where
{- To -}
module To = S¹Rec (north Bool) (merid _ false ∙ ! (merid _ true))
to : S¹ → Suspension Bool
to = To.f
{- From -}
from-merid : Bool → base == base
from-merid true = loop
from-merid false = idp
module From = SuspensionRec Bool base base from-merid
from : Suspension Bool → S¹
from = From.f
{- ToFrom and FromTo -}
postulate -- TODO, easy and boring
to-from : (x : Suspension Bool) → to (from x) == x
from-to : (x : S¹) → from (to x) == x
e : S¹ ≃ Suspension Bool
e = equiv to from to-from from-to
| {
"alphanum_fraction": 0.6467661692,
"avg_line_length": 18.2727272727,
"ext": "agda",
"hexsha": "11f0ab4c9565d60d129de2307484c9e1c79fa8d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "homotopy/S1SuspensionS0.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "homotopy/S1SuspensionS0.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/S1SuspensionS0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 197,
"size": 603
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Group.EilenbergMacLane.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc)
open import Cubical.Foundations.Path
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Transport
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Homotopy.Connected
open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim)
open import Cubical.HITs.EilenbergMacLane1 hiding (elim)
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Data.Empty
renaming (rec to ⊥-rec) hiding (elim)
open import Cubical.HITs.Truncation
renaming (elim to trElim ; rec to trRec ; rec2 to trRec2)
open import Cubical.Data.Nat hiding (_·_ ; elim)
open import Cubical.HITs.Susp
open import Cubical.Functions.Morphism
open import Cubical.Foundations.Path
private
variable ℓ ℓ' : Level
_* = AbGroup→Group
EM-raw : (G : AbGroup ℓ) (n : ℕ) → Type ℓ
EM-raw G zero = fst G
EM-raw G (suc zero) = EM₁ (G *)
EM-raw G (suc (suc n)) = Susp (EM-raw G (suc n))
ptEM-raw : {n : ℕ} {G : AbGroup ℓ} → EM-raw G n
ptEM-raw {n = zero} {G = G} = AbGroupStr.0g (snd G)
ptEM-raw {n = suc zero} {G = G} = embase
ptEM-raw {n = suc (suc n)} {G = G} = north
raw-elim : (G : AbGroup ℓ) (n : ℕ) {A : EM-raw G (suc n) → Type ℓ'}
→ ((x : _) → isOfHLevel (suc n) (A x) )
→ A ptEM-raw
→ (x : _) → A x
raw-elim G zero hlev b = elimProp _ hlev b
raw-elim G (suc n) hlev b north = b
raw-elim G (suc n) {A = A} hlev b south = subst A (merid ptEM-raw) b
raw-elim G (suc n) {A = A} hlev b (merid a i) = help a i
where
help : (a : _) → PathP (λ i → A (merid a i)) b (subst A (merid ptEM-raw) b)
help = raw-elim G n (λ _ → isOfHLevelPathP' (suc n) (hlev _) _ _)
λ i → transp (λ j → A (merid ptEM-raw (j ∧ i))) (~ i) b
EM : (G : AbGroup ℓ) (n : ℕ) → Type ℓ
EM G zero = EM-raw G zero
EM G (suc zero) = EM-raw G 1
EM G (suc (suc n)) = hLevelTrunc (4 + n) (EM-raw G (suc (suc n)))
0ₖ : {G : AbGroup ℓ} (n : ℕ) → EM G n
0ₖ {G = G} zero = AbGroupStr.0g (snd G)
0ₖ (suc zero) = embase
0ₖ (suc (suc n)) = ∣ ptEM-raw ∣
EM∙ : (G : AbGroup ℓ) (n : ℕ) → Pointed ℓ
EM∙ G n = EM G n , (0ₖ n)
EM-raw∙ : (G : AbGroup ℓ) (n : ℕ) → Pointed ℓ
EM-raw∙ G n = EM-raw G n , ptEM-raw
hLevelEM : (G : AbGroup ℓ) (n : ℕ) → isOfHLevel (2 + n) (EM G n)
hLevelEM G zero = AbGroupStr.is-set (snd G)
hLevelEM G (suc zero) = emsquash
hLevelEM G (suc (suc n)) = isOfHLevelTrunc (4 + n)
EM-raw→EM : (G : AbGroup ℓ) (n : ℕ) → EM-raw G n → EM G n
EM-raw→EM G zero x = x
EM-raw→EM G (suc zero) x = x
EM-raw→EM G (suc (suc n)) = ∣_∣
elim : {G : AbGroup ℓ} (n : ℕ) {A : EM G n → Type ℓ'}
→ ((x : _) → isOfHLevel (2 + n) (A x))
→ ((x : EM-raw G n) → A (EM-raw→EM G n x))
→ (x : _) → A x
elim zero hlev hyp x = hyp x
elim (suc zero) hlev hyp x = hyp x
elim (suc (suc n)) hlev hyp = trElim (λ _ → hlev _) hyp
| {
"alphanum_fraction": 0.6443438914,
"avg_line_length": 35.2659574468,
"ext": "agda",
"hexsha": "f4d56a4991d64dae6d6cb9c640f91cbffe8d3422",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda",
"max_line_length": 84,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1294,
"size": 3315
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Torus where
open import Cubical.HITs.Torus.Base public
-- open import Cubical.HITs.Torus.Properties public
| {
"alphanum_fraction": 0.7555555556,
"avg_line_length": 25.7142857143,
"ext": "agda",
"hexsha": "656aaf47dc548806cc2de7226bef11d08377026c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Torus.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Torus.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Torus.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 49,
"size": 180
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Pointed
module lib.types.Lift where
⊙Lift : ∀ {i j} → Ptd i → Ptd (lmax i j)
⊙Lift {j = j} (A , a) = ⊙[ Lift {j = j} A , lift a ]
⊙lift : ∀ {i j} {X : Ptd i} → fst (X ⊙→ ⊙Lift {j = j} X)
⊙lift = (lift , idp)
⊙lower : ∀ {i j} {X : Ptd i} → fst (⊙Lift {j = j} X ⊙→ X)
⊙lower = (lower , idp)
Lift-level : ∀ {i j} {A : Type i} {n : ℕ₋₂} →
has-level n A → has-level n (Lift {j = j} A)
Lift-level = equiv-preserves-level ((lift-equiv)⁻¹)
| {
"alphanum_fraction": 0.53307393,
"avg_line_length": 25.7,
"ext": "agda",
"hexsha": "897327a39498da4db09d01c83e835f114a61a993",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "lib/types/Lift.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "lib/types/Lift.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "lib/types/Lift.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 234,
"size": 514
} |
{-# OPTIONS --without-K #-}
-- Large indices are not allowed --without-K
data Singleton {a} {A : Set a} : A → Set where
[_] : ∀ x → Singleton x
| {
"alphanum_fraction": 0.5986394558,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "b7a2d5cab58f7bdeafc95ec3a5e686b5d05ac316",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 147
} |
{-# OPTIONS --rewriting #-}
-- Normalization by Evaluation for Call-By-Push-Value
module NfCBPV where
-- Imports from the Agda standard library.
open import Library hiding (_×̇_)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
pattern here! = here refl
-- We postulate a set of generic value types.
-- There are no operations defined on these types, thus,
-- they play the type of (universal) type variables.
postulate Base : Set
-- Variants (Σ) (and records (Π), resp.) can in principle have any number of
-- constructors (fields, resp.), including infinitely one.
-- In general, the constructor (field, resp.) names are given by a set I.
-- However, I : Set would make syntax already a big type, living in Set₁.
-- To keep it in Set₀, we only consider variants (records) with finitely
-- many constructors (fields), thus, I : ℕ.
-- Branching over I is then realized as functions out of El I, where
-- El I = { i | i < I} = Fin I.
set = ℕ
El = Fin
-- Let I range over arities (constructor/field sets) and i over
-- constructor/field names.
variable
I : set
i : El I
-- The types of CBPV are classified into value types P : Ty⁺ which we
-- refer to as positive types, and computation types N : Ty⁻ which we
-- refer to as negative types.
mutual
-- Value types
data Ty⁺ : Set where
base : (o : Base) → Ty⁺ -- Base type.
_×̇_ : (P₁ P₂ : Ty⁺) → Ty⁺ -- Finite product (tensor).
Σ̇ : (I : set) (Ps : El I → Ty⁺) → Ty⁺ -- Variant (sum).
□̇ : (N : Ty⁻) → Ty⁺ -- Thunk (U).
-- Computation types
data Ty⁻ : Set where
◇̇ : (P : Ty⁺) → Ty⁻ -- Comp (F).
Π̇ : (I : set) (Ns : El I → Ty⁻) → Ty⁻ -- Record (lazy product).
_⇒̇_ : (P : Ty⁺) (N : Ty⁻) → Ty⁻ -- Function type.
-- In CBPV, a variable stands for a value.
-- Thus, environments only contain values,
-- and typing contexts only value types.
-- We use introduce syntax in an intrinsically well-typed way
-- with variables being de Bruijn indices into the typing context.
-- Thus, contexts are just lists of types.
Cxt = List Ty⁺
variable
Γ Δ Φ : Cxt
P P₁ P₂ P' P′ Q : Ty⁺
N N₁ N₂ N' N′ : Ty⁻
Ps : El I → Ty⁺
Ns : El I → Ty⁻
-- Generic values
module _ (Var : Ty⁺ → Cxt → Set) (Comp : Ty⁻ → Cxt → Set) where
-- Right non-invertible
data Val' : (P : Ty⁺) (Γ : Cxt) → Set where
var : ∀{Γ P} (x : Var P Γ) → Val' P Γ
pair : ∀{Γ P₁ P₂} (v₁ : Val' P₁ Γ) (v₂ : Val' P₂ Γ) → Val' (P₁ ×̇ P₂) Γ
inj : ∀{Γ I P} i (v : Val' (P i) Γ) → Val' (Σ̇ I P) Γ
thunk : ∀{Γ N} (t : Comp N Γ) → Val' (□̇ N) Γ
-- Terms
mutual
Val = Val' _∈_ Comp
data Comp : (N : Ty⁻) (Γ : Cxt) → Set where
-- introductions
ret : ∀{Γ P} (v : Val P Γ) → Comp (◇̇ P) Γ
rec : ∀{Γ I N} (t : ∀ i → Comp (N i) Γ) → Comp (Π̇ I N) Γ
abs : ∀{Γ P N} (t : Comp N (P ∷ Γ)) → Comp (P ⇒̇ N) Γ
-- positive eliminations
split : ∀{Γ P₁ P₂ N} (v : Val (P₁ ×̇ P₂) Γ) (t : Comp N (P₂ ∷ P₁ ∷ Γ)) → Comp N Γ
case : ∀{Γ I Ps N} (v : Val (Σ̇ I Ps) Γ) (t : ∀ i → Comp N (Ps i ∷ Γ)) → Comp N Γ
bind : ∀{Γ P N} (u : Comp (◇̇ P) Γ) (t : Comp N (P ∷ Γ)) → Comp N Γ
-- cut
letv : ∀{Γ P N} (v : Val P Γ) (t : Comp N (P ∷ Γ)) → Comp N Γ
-- negative eliminations
force : ∀{Γ N} (v : Val (□̇ N) Γ) → Comp N Γ
prj : ∀{Γ I Ns} i (t : Comp (Π̇ I Ns) Γ) → Comp (Ns i) Γ
app : ∀{Γ P N} (t : Comp (P ⇒̇ N) Γ) (v : Val P Γ) → Comp N Γ
-- Normal forms
------------------------------------------------------------------------
-- Normal values only reference variables of base type
NVar : (P : Ty⁺) (Γ : Cxt) → Set
NVar (base o) Γ = base o ∈ Γ
NVar _ _ = ⊥
-- Negative neutrals
module _ (Val : Ty⁺ → Cxt → Set) where
-- Right non-invertible
data Ne' : (N : Ty⁻) (Γ : Cxt) → Set where
force : ∀{Γ N} (x : □̇ N ∈ Γ) → Ne' N Γ
prj : ∀{Γ I N} i (t : Ne' (Π̇ I N) Γ) → Ne' (N i) Γ
app : ∀{Γ P N} (t : Ne' (P ⇒̇ N) Γ) (v : Val P Γ) → Ne' N Γ
mutual
NVal = Val' NVar Nf
Ne = Ne' NVal
-- Cover monad
data ◇ (J : Cxt → Set) (Γ : Cxt) : Set where
return : (j : J Γ) → ◇ J Γ
bind : ∀{P} (u : Ne (◇̇ P) Γ) (t : ◇ J (P ∷ Γ)) → ◇ J Γ
case : ∀{I Ps} (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → ◇ J (Ps i ∷ Γ)) → ◇ J Γ
split : ∀{P₁ P₂} (x : (P₁ ×̇ P₂) ∈ Γ) (t : ◇ J (P₂ ∷ P₁ ∷ Γ)) → ◇ J Γ
data NComp (Q : Ty⁺) (Γ : Cxt) : Set where
ret : (v : NVal Q Γ) → NComp Q Γ -- Invoke RFoc
ne : (n : Ne (◇̇ Q) Γ) → NComp Q Γ -- Finish with LFoc
-- e.g. app (force f) x
-- Use lemma LFoc
bind : ∀{P} (u : Ne (◇̇ P) Γ) (t : NComp Q (P ∷ Γ)) → NComp Q Γ
-- Left invertible
split : ∀{P₁ P₂} (x : (P₁ ×̇ P₂) ∈ Γ) (t : NComp Q (P₂ ∷ P₁ ∷ Γ)) → NComp Q Γ
case : ∀{I Ps} (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → NComp Q (Ps i ∷ Γ)) → NComp Q Γ
-- Right invertible
data Nf : (N : Ty⁻) (Γ : Cxt) → Set where
ret : ∀{Γ P} (v : ◇ (NVal P) Γ) → Nf (◇̇ P) Γ -- Invoke RFoc
ne : ∀{Γ o} (let N = ◇̇ (base o))
(n : ◇ (Ne N) Γ) → Nf N Γ
-- comp : ∀{Γ P} (t : NComp P Γ) → Nf (◇̇ P) Γ
rec : ∀{Γ I N} (t : ∀ i → Nf (N i) Γ) → Nf (Π̇ I N) Γ
abs : ∀{Γ P N} (t : Nf N (P ∷ Γ)) → Nf (P ⇒̇ N) Γ
-- Context-indexed sets
------------------------------------------------------------------------
ISet = (Γ : Cxt) → Set
variable
A B C : ISet
F G : (i : El I) → ISet
-- Constructions on ISet
1̂ : ISet
1̂ Γ = ⊤
_×̂_ : (A B : ISet) → ISet
(A ×̂ B) Γ = A Γ × B Γ
Σ̂ : (I : set) (F : El I → ISet) → ISet
(Σ̂ I F) Γ = ∃ λ i → F i Γ
_⇒̂_ : (A B : ISet) → ISet
(A ⇒̂ B) Γ = A Γ → B Γ
Π̂ : (I : set) (F : El I → ISet) → ISet
(Π̂ I F) Γ = ∀ i → F i Γ
⟨_⟩ : (P : Ty⁺) (A : ISet) → ISet
⟨ P ⟩ A Γ = A (P ∷ Γ)
-- Morphisms between ISets
_→̇_ : (A B : Cxt → Set) → Set
A →̇ B = ∀{Γ} → A Γ → B Γ
⟨_⊙_⟩→̇_ : (P Q R : Cxt → Set) → Set
⟨ P ⊙ Q ⟩→̇ R = ∀{Γ} → P Γ → Q Γ → R Γ
⟨_⊙_⊙_⟩→̇_ : (P Q R S : Cxt → Set) → Set
⟨ P ⊙ Q ⊙ R ⟩→̇ S = ∀{Γ} → P Γ → Q Γ → R Γ → S Γ
Map : (F : (Cxt → Set) → Cxt → Set) → Set₁
Map F = ∀{A B : Cxt → Set} (f : A →̇ B) → F A →̇ F B
Π-map : (∀ i → F i →̇ G i) → Π̂ I F →̇ Π̂ I G
Π-map f r i = f i (r i)
-- -- Introductions and eliminations for ×̂
-- p̂air : ⟨ A ⊙ B ⟩→̇ (A ×̂ B)
-- p̂air a b = λ
-- Monotonicity
------------------------------------------------------------------------
-- Monotonization □ is a monoidal comonad
□ : (A : Cxt → Set) → Cxt → Set
□ A Γ = ∀{Δ} (τ : Γ ⊆ Δ) → A Δ
extract : □ A →̇ A
extract a = a ⊆-refl
duplicate : □ A →̇ □ (□ A)
duplicate a τ τ′ = a (⊆-trans τ τ′)
□-map : Map □
□-map f a τ = f (a τ)
extend : (□ A →̇ B) → □ A →̇ □ B
extend f = □-map f ∘ duplicate
□-weak : □ A →̇ ⟨ P ⟩ (□ A)
□-weak a τ = a (⊆-trans (_ ∷ʳ ⊆-refl) τ)
□-weak' : □ A →̇ □ (⟨ P ⟩ A)
□-weak' a τ = a (_ ∷ʳ τ)
□-sum : Σ̂ I (□ ∘ F) →̇ □ (Σ̂ I F)
□-sum (i , a) τ = i , a τ
-- Monoidality:
□-unit : 1̂ →̇ □ 1̂
□-unit = _
□-pair : ⟨ □ A ⊙ □ B ⟩→̇ □ (A ×̂ B)
□-pair a b τ = (a τ , b τ)
-- Strong functoriality
Map! : (F : (Cxt → Set) → Cxt → Set) → Set₁
Map! F = ∀{A B : Cxt → Set} → ⟨ □ (A ⇒̂ B) ⊙ F A ⟩→̇ F B
-- Monotonicity
Mon : (A : Cxt → Set) → Set
Mon A = A →̇ □ A
monVar : Mon (P ∈_)
monVar x τ = ⊆-lookup τ x
-- Positive ISets are monotone
□-mon : Mon (□ A)
□-mon = duplicate
1-mon : Mon 1̂
1-mon = □-unit
×-mon : Mon A → Mon B → Mon (A ×̂ B)
×-mon mA mB (a , b) = □-pair (mA a) (mB b)
Σ-mon : ((i : El I) → Mon (F i)) → Mon (Σ̂ I F)
Σ-mon m (i , a) = □-sum (i , m i a)
□-intro : Mon A → (A →̇ B) → (A →̇ □ B)
□-intro mA f = □-map f ∘ mA
-- Cover monad: a strong monad
------------------------------------------------------------------------
join : ◇ (◇ A) →̇ ◇ A
join (return c) = c
join (bind u c) = bind u (join c)
join (case x t) = case x (join ∘ t)
join (split x c) = split x (join c)
◇-map : Map ◇
◇-map f (return j) = return (f j)
◇-map f (bind u a) = bind u (◇-map f a)
◇-map f (case x t) = case x (λ i → ◇-map f (t i))
◇-map f (split x a) = split x (◇-map f a)
◇-map! : Map! ◇
◇-map! f (return j) = return (extract f j)
◇-map! f (bind u a) = bind u (◇-map! (□-weak f) a)
◇-map! f (case x t) = case x (λ i → ◇-map! (□-weak f) (t i))
◇-map! f (split x a) = split x (◇-map! (□-weak (□-weak f)) a)
◇-bind : A →̇ ◇ B → ◇ A →̇ ◇ B
◇-bind f = join ∘ ◇-map f
◇-record : ◇ (Π̂ I F) →̇ Π̂ I (◇ ∘ F)
◇-record c i = ◇-map (_$ i) c
◇-fun : Mon A → ◇ (A ⇒̂ B) →̇ (A ⇒̂ ◇ B)
◇-fun mA c a = ◇-map! (λ τ f → f (mA a τ)) c
-- Monoidal functoriality
-- ◇-pair : ⟨ ◇ A ⊙ ◇ B ⟩→̇ ◇ (A ×̂ B) -- does not hold!
◇-pair : ⟨ □ (◇ A) ⊙ ◇ (□ B) ⟩→̇ ◇ (A ×̂ B)
◇-pair ca = join ∘ ◇-map! λ τ b → ◇-map! (λ τ′ a → a , b τ′) (ca τ)
_⋉_ = ◇-pair
□◇-pair' : ⟨ □ (◇ A) ⊙ □ (◇ (□ B)) ⟩→̇ □ (◇ (A ×̂ B))
□◇-pair' ca cb τ = ◇-pair (□-mon ca τ) (cb τ)
□◇-pair : Mon B → ⟨ □ (◇ A) ⊙ □ (◇ B) ⟩→̇ □ (◇ (A ×̂ B))
□◇-pair mB ca cb τ = join $
◇-map! (λ τ₁ b → ◇-map! (λ τ₂ a → a , mB b τ₂) (ca (⊆-trans τ τ₁))) (cb τ)
◇□-pair' : ⟨ ◇ (□ A) ⊙ □ (◇ (□ B)) ⟩→̇ ◇ (□ (A ×̂ B))
◇□-pair' ca cb = join (◇-map! (λ τ a → ◇-map! (λ τ₁ b τ₂ → a (⊆-trans τ₁ τ₂) , b τ₂) (cb τ)) ca)
◇□-pair : ⟨ □ (◇ (□ A)) ⊙ ◇ (□ B) ⟩→̇ ◇ (□ (A ×̂ B))
◇□-pair ca cb = join (◇-map! (λ τ b → ◇-map! (λ τ₁ a τ₂ → a τ₂ , b (⊆-trans τ₁ τ₂)) (ca τ)) cb)
-- Runnability
Run : (A : Cxt → Set) → Set
Run A = ◇ A →̇ A
-- Negative ISets are runnable
◇-run : Run (◇ A)
◇-run = join
Π-run : (∀ i → Run (F i)) → Run (Π̂ I F)
Π-run f = Π-map f ∘ ◇-record
⇒-run : Mon A → Run B → Run (A ⇒̂ B)
⇒-run mA rB f = rB ∘ ◇-fun mA f
-- Bind for the ◇ monad
◇-elim : Run B → (A →̇ B) → ◇ A →̇ B
◇-elim rB f = rB ∘ ◇-map f
◇-elim! : Run B → ⟨ □ (A ⇒̂ B) ⊙ ◇ A ⟩→̇ B
◇-elim! rB f = rB ∘ ◇-map! f
◇-elim-□ : Run B → ⟨ □ (A ⇒̂ B) ⊙ □ (◇ A) ⟩→̇ □ B
◇-elim-□ rB f c = □-map (uncurry (◇-elim! rB)) (□-pair (□-mon f) c)
◇-elim-□-alt : Run B → ⟨ □ (A ⇒̂ B) ⊙ □ (◇ A) ⟩→̇ □ B
◇-elim-□-alt rB f c τ = ◇-elim! rB (□-mon f τ) (c τ)
bind! : Mon C → Run B → (C →̇ ◇ A) → (C →̇ (A ⇒̂ B)) → C →̇ B
bind! mC rB f k γ = ◇-elim! rB (λ τ a → k (mC γ τ) a) (f γ)
-- Type interpretation
------------------------------------------------------------------------
mutual
⟦_⟧⁺ : Ty⁺ → ISet
⟦ base o ⟧⁺ = base o ∈_
⟦ P₁ ×̇ P₂ ⟧⁺ = ⟦ P₁ ⟧⁺ ×̂ ⟦ P₂ ⟧⁺
⟦ Σ̇ I P ⟧⁺ = Σ̂ I λ i → ⟦ P i ⟧⁺
⟦ □̇ N ⟧⁺ = □ ⟦ N ⟧⁻
⟦_⟧⁻ : Ty⁻ → ISet
⟦ ◇̇ P ⟧⁻ = ◇ ⟦ P ⟧⁺
⟦ Π̇ I N ⟧⁻ = Π̂ I λ i → ⟦ N i ⟧⁻
⟦ P ⇒̇ N ⟧⁻ = ⟦ P ⟧⁺ ⇒̂ ⟦ N ⟧⁻
⟦_⟧ᶜ : Cxt → ISet
⟦_⟧ᶜ Γ Δ = All (λ P → ⟦ P ⟧⁺ Δ) Γ
-- ⟦ [] ⟧ᶜ = 1̂
-- ⟦ P ∷ Γ ⟧ᶜ = ⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺
-- Positive types are monotone.
mon⁺ : (P : Ty⁺) → Mon ⟦ P ⟧⁺
mon⁺ (base o) = monVar
mon⁺ (P₁ ×̇ P₂) = ×-mon (mon⁺ P₁) (mon⁺ P₂)
mon⁺ (Σ̇ I P) = Σ-mon (mon⁺ ∘ P)
mon⁺ (□̇ N) = □-mon
monᶜ : (Γ : Cxt) → Mon ⟦ Γ ⟧ᶜ
monᶜ Γ γ τ = All.map (λ {P} v → mon⁺ P v τ) γ
-- Negative types are runnable.
run⁻ : (N : Ty⁻) → Run ⟦ N ⟧⁻
run⁻ (◇̇ P) = ◇-run
run⁻ (Π̇ I N) = Π-run (run⁻ ∘ N)
run⁻ (P ⇒̇ N) = ⇒-run (mon⁺ P) (run⁻ N)
-- monᶜ [] = 1-mon
-- monᶜ (P ∷ Γ) = ×-mon (monᶜ Γ) (mon⁺ P)
-- Interpretation
------------------------------------------------------------------------
mutual
⦅_⦆⁺ : Val P Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⟧⁺
⦅ var x ⦆⁺ = λ γ → All.lookup γ x
⦅ pair v₁ v₂ ⦆⁺ = < ⦅ v₁ ⦆⁺ , ⦅ v₂ ⦆⁺ >
⦅ inj i v ⦆⁺ = (i ,_) ∘ ⦅ v ⦆⁺
⦅ thunk t ⦆⁺ = □-intro (monᶜ _) ⦅ t ⦆⁻
λ⦅_⦆⁻ : Comp N (P ∷ Γ) → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⇒̇ N ⟧⁻
λ⦅ t ⦆⁻ γ a = ⦅ t ⦆⁻ (a ∷ γ)
⦅_⦆⁻ : Comp N Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ N ⟧⁻
⦅ ret v ⦆⁻ = return ∘ ⦅ v ⦆⁺
⦅ rec t ⦆⁻ = flip λ i → ⦅ t i ⦆⁻
⦅ abs t ⦆⁻ = λ⦅ t ⦆⁻
⦅ split v t ⦆⁻ γ = let (a₁ , a₂) = ⦅ v ⦆⁺ γ in ⦅ t ⦆⁻ (a₂ ∷ (a₁ ∷ γ))
⦅ case v t ⦆⁻ γ = let (i , a) = ⦅ v ⦆⁺ γ in ⦅ t i ⦆⁻ (a ∷ γ)
⦅ bind {Γ = Γ} {N = N} t t₁ ⦆⁻ = bind! (monᶜ Γ) (run⁻ N) ⦅ t ⦆⁻ λ⦅ t₁ ⦆⁻
⦅ force v ⦆⁻ = extract ∘ ⦅ v ⦆⁺
⦅ prj i t ⦆⁻ = (_$ i) ∘ ⦅ t ⦆⁻
⦅ app t v ⦆⁻ = ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺
⦅ letv v t ⦆⁻ = λ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺
-- Reflection and reification
mutual
fresh□◇□ : ∀ P {Γ} → ⟨ P ⟩ (□ (◇ (□ ⟦ P ⟧⁺))) Γ
fresh□◇□ P = reflect⁺□ P ∘ monVar here!
fresh□ : ∀ P {Γ} → ⟨ P ⟩ (□ (◇ ⟦ P ⟧⁺)) Γ
fresh□ P = ◇-map extract ∘ reflect⁺□ P ∘ monVar here!
fresh□ P = reflect⁺ P ∘ monVar here!
fresh : ∀ {P Γ} → ⟨ P ⟩ (◇ ⟦ P ⟧⁺) Γ
fresh {P} = ◇-map extract (reflect⁺□ P here!)
fresh {P} = reflect⁺ P here!
fresh◇ : ∀ {P Γ} → ⟨ P ⟩ (◇ (□ ⟦ P ⟧⁺)) Γ
fresh◇ {P} = reflect⁺□ P here!
fresh◇ {P} = ◇-map (mon⁺ P) fresh
-- saves us use of Mon P in freshᶜ
reflect⁺□ : (P : Ty⁺) → (P ∈_) →̇ (◇ (□ ⟦ P ⟧⁺))
reflect⁺□ (base o) x = return (monVar x)
reflect⁺□ (P₁ ×̇ P₂) x = split x (◇□-pair (reflect⁺□ P₁ ∘ monVar (there here!)) fresh◇)
reflect⁺□ (Σ̇ I Ps) x = case x λ i → ◇-map (□-map (i ,_)) fresh◇
reflect⁺□ (□̇ N) x = return (□-mon (reflect⁻ N ∘ force ∘ monVar x))
reflect⁺ : (P : Ty⁺) → (P ∈_) →̇ (◇ ⟦ P ⟧⁺)
reflect⁺ (base o) x = return x
reflect⁺ (P₁ ×̇ P₂) x = split x (□-weak (fresh□ P₁) ⋉ fresh◇)
reflect⁺ (Σ̇ I Ps) x = case x λ i → ◇-map (i ,_) fresh
reflect⁺ (□̇ N) x = return λ τ → reflect⁻ N (force (monVar x τ))
reflect⁻ : (N : Ty⁻) → Ne N →̇ ⟦ N ⟧⁻
reflect⁻ (◇̇ P) u = bind u fresh
reflect⁻ (Π̇ I Ns) u = λ i → reflect⁻ (Ns i) (prj i u)
reflect⁻ (P ⇒̇ N) u = λ a → reflect⁻ N (app u (reify⁺ P a))
reify⁺ : (P : Ty⁺) → ⟦ P ⟧⁺ →̇ NVal P
reify⁺ (base o) = var
reify⁺ (P₁ ×̇ P₂) (a₁ , a₂) = pair (reify⁺ P₁ a₁) (reify⁺ P₂ a₂)
reify⁺ (Σ̇ I Ps) (i , a ) = inj i (reify⁺ (Ps i) a)
reify⁺ (□̇ N) a = thunk (reify⁻ N a)
reify⁻ : (N : Ty⁻) → □ ⟦ N ⟧⁻ →̇ Nf N
reify⁻ (◇̇ P) f = ret (◇-map (reify⁺ P) (extract f))
reify⁻ (Π̇ I Ns) f = rec λ i → reify⁻ (Ns i) (□-map (_$ i) f)
reify⁻ (P ⇒̇ N) f = abs $ reify⁻ N $ ◇-elim-□ (run⁻ N) (□-weak f) $ fresh□ P
ext : (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟦ P ∷ Γ ⟧ᶜ
ext (γ , a) = a ∷ γ
◇-ext : ◇ (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ◇ ⟦ P ∷ Γ ⟧ᶜ
◇-ext = ◇-map ext
-- Without the use of ◇-mon!
freshᶜ : (Γ : Cxt) → □ (◇ ⟦ Γ ⟧ᶜ) Γ
freshᶜ [] = λ τ → return []
freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (fresh□◇□ P)
freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair (mon⁺ P) (□-weak (freshᶜ Γ)) (fresh□ P)
freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (◇-map (mon⁺ P) ∘ (fresh□ P))
freshᶜ (P ∷ Γ) = ◇-ext ∘ λ τ →
(□-weak (□-mon (freshᶜ Γ)) τ)
⋉ ◇-map (mon⁺ P) (fresh□ P τ)
norm : Comp N →̇ Nf N
norm {N = N} {Γ = Γ} t = reify⁻ N $ □-map (run⁻ N ∘ ◇-map ⦅ t ⦆⁻) $ freshᶜ Γ
norm {N = N} {Γ = Γ} t = reify⁻ N $ run⁻ N ∘ ◇-map ⦅ t ⦆⁻ ∘ freshᶜ Γ
-- -}
-- -}
-- -}
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.422462406,
"avg_line_length": 28.9805447471,
"ext": "agda",
"hexsha": "7c28072a46db01999fe3d99d9087849601155208",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z",
"max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "andreasabel/ipl",
"max_forks_repo_path": "src-cbpv/NfCBPV.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "andreasabel/ipl",
"max_issues_repo_path": "src-cbpv/NfCBPV.agda",
"max_line_length": 96,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "andreasabel/ipl",
"max_stars_repo_path": "src-cbpv/NfCBPV.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z",
"num_tokens": 7655,
"size": 14896
} |
{-# OPTIONS --safe #-}
module Generics.Constructions.DecEq where
open import Generics.Prelude hiding (lookup; _≟_)
open import Generics.Telescope
open import Generics.Desc
open import Generics.All
open import Generics.HasDesc
import Generics.Helpers as Helpers
import Data.Fin.Properties as Fin
import Data.Product.Properties as Product
open import Relation.Nullary.Decidable as Decidable
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary using (DecidableEquality)
open import Relation.Nullary.Product
record DecEq {l} (A : Set l) : Set l where
field _≟_ : DecidableEquality A
open DecEq ⦃...⦄ public
module _ {P I ℓ}
{A : Indexed P I ℓ}
(H : HasDesc {P} {I} {ℓ} A) where
data HigherOrderArgumentsNotSupported : Set where
-- Predicate preventing the use of Higher-order inductive arguments
OnlyFO : ∀ {V} → ConDesc P V I → Setω
OnlyFO (var _) = Liftω ⊤
OnlyFO (π _ _ _) = Liftω HigherOrderArgumentsNotSupported
OnlyFO (A ⊗ B) = OnlyFO A ×ω OnlyFO B
open HasDesc H
open Helpers P I DecEq (const ⊤) OnlyFO
DecEqHelpers : ∀ p → Setω
DecEqHelpers p = Helpers p D
private irr≡ : ∀ {l} (A : Set l) (x y : Irr A) → x ≡ y
irr≡ A (irrv _) (irrv _) = refl
private module _ {p} (DH : DecEqHelpers p) where
variable
V : ExTele P
v : ⟦ V ⟧tel p
i : ⟦ I ⟧tel p
mutual
decEqIndArg-wf : ∀ (C : ConDesc P V I) → OnlyFO C
→ (x y : ⟦ C ⟧IndArg A′ (p , v))
→ AllIndArgω Acc C x
→ AllIndArgω Acc C y
→ Dec (x ≡ y)
decEqIndArg-wf (var i) H x y ax ay = decEq-wf x y ax ay
decEqIndArg-wf (A ⊗ B) (HA , HB) (xa , xb) (ya , yb) (axa , axb) (aya , ayb)
= map′ (λ (p , q) → cong₂ _,_ p q)
(λ p → cong proj₁ p , cong proj₂ p)
(decEqIndArg-wf _ HA xa ya axa aya ×-dec decEqIndArg-wf _ HB xb yb axb ayb)
decEqIndArg-wf (π i S C) ()
decEqCon-wf : (C : ConDesc P V I)
⦃ H : ConHelper p C ⦄
(x y : ⟦ C ⟧Con A′ (p , v , i))
→ AllConω Acc C x
→ AllConω Acc C y
→ Dec (x ≡ y)
decEqCon-wf ._ ⦃ var ⦄ refl refl _ _ = yes refl
decEqCon-wf ._ ⦃ pi-irr ⦃ _ ⦄ ⦃ H ⦄ ⦄ (irrv _ , x) (irrv _ , y) ax ay
with decEqCon-wf _ ⦃ H ⦄ x y ax ay
... | yes refl = yes refl
... | no p = no (p ∘ λ {refl → refl})
decEqCon-wf ._ ⦃ pi-rel ⦃ dec ⦄ ⦃ H ⦄ ⦄ (s₁ , x) (s₂ , y) ax ay
with dec .DecEq._≟_ s₁ s₂
... | no p = no (p ∘ (λ { refl → refl }))
... | yes refl with decEqCon-wf _ ⦃ H ⦄ x y ax ay
... | yes refl = yes refl
... | no p = no (p ∘ (λ { refl → refl }))
decEqCon-wf ._ ⦃ prod ⦃ HA ⦄ ⦄ (xa , xb) (ya , yb) (axa , axb) (aya , ayb) =
map′ (λ (p , q) → cong₂ _,_ p q)
(λ p → cong proj₁ p , cong proj₂ p)
(decEqIndArg-wf _ HA xa ya axa aya ×-dec decEqCon-wf _ xb yb axb ayb)
decEqData-wf : (x y : ⟦ D ⟧Data A′ (p , i))
→ AllDataω Acc D x
→ AllDataω Acc D y
→ Decω (x ≡ω y)
decEqData-wf (k₁ , x) (k₂ , y) ax ay with k₁ Fin.≟ k₂
decEqData-wf (k , x) (k , y) ax ay | yes refl with decEqCon-wf _ ⦃ lookupHelper DH k ⦄ x y ax ay
decEqData-wf (k , x) (k , y) ax ay | yes refl | yes refl = yesω refl
decEqData-wf (k , x) (k , y) ax ay | yes refl | no x≢y = noω λ { refl → x≢y refl }
decEqData-wf (k₁ , x) (k₂ , y) ax ay | no k₁≢k₂ =
noω λ { refl → k₁≢k₂ refl }
decEq-wf : (x y : A′ (p , i)) → Acc x → Acc y → Dec (x ≡ y)
decEq-wf x y (acc ax) (acc ay) with decEqData-wf (split x) (split y) ax ay
... | yesω p = yes (split-injective p)
... | noω p = no (λ e → p (cong≡ω split e))
deriveDecEq : ∀ {p} ⦃ DH : DecEqHelpers p ⦄ {i} → DecEq (A′ (p , i))
deriveDecEq ⦃ DH ⦄ .DecEq._≟_ x y
= decEq-wf DH x y (wf x) (wf y)
| {
"alphanum_fraction": 0.528174305,
"avg_line_length": 36.3,
"ext": "agda",
"hexsha": "3b04841f1e9ddcdc4513db92e9c8c65d9583fa55",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Constructions/DecEq.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Constructions/DecEq.agda",
"max_line_length": 104,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Constructions/DecEq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 1506,
"size": 3993
} |
{-# OPTIONS -v tc.size:100 #-}
-- {-# OPTIONS -v tc.meta:100 #-}
open import Common.Size using (Size; Size<_)
postulate
A : Set
record R (i₀ : Size) (x : A) : Set where
coinductive
field
force : (j : Size< i₀) → R j x
postulate
P : (A → Set) → Set
f : (Q : A → Set) (x : A) {{ c : P Q }} → Q x → Q x
g : (i₁ : Size) (x : A) → R i₁ x → R i₁ x
instance
c : {i₂ : Size} → P (R i₂)
accepted rejected : A → (x : A) (i₃ : Size) → R i₃ x → R i₃ x
accepted y x i r = g _ _ (f _ _ r)
rejected y x i r = g _ _ (f _ x r)
| {
"alphanum_fraction": 0.5074074074,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "6082ac25f9964a44ffffa90481c53523e04595e9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1914.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1914.agda",
"max_line_length": 61,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1914.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 226,
"size": 540
} |
-- Andreas, AIM XVIII, 2013-09-13
module ProjectionsTakeModuleTelAsParameters where
import Common.Level
open import Common.Equality
module M (A : Set) where
record Prod (B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open Prod public
open M -- underapplied open
-- module parameters are hidden in projections
myfst : {A B : Set} → Prod A B → A
myfst = fst
mysnd : {A B : Set} → Prod A B → B
mysnd p = snd p
| {
"alphanum_fraction": 0.6651884701,
"avg_line_length": 17.3461538462,
"ext": "agda",
"hexsha": "8e65420bb189e8e334a71639597cebe74355d852",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 138,
"size": 451
} |
open import Relation.Binary.Core
module BBHeap.Heapify {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BBHeap _≤_
open import BBHeap.Insert _≤_ tot≤ trans≤
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.List
heapify : List A → BBHeap bot
heapify [] = leaf
heapify (x ∷ xs) = insert {x = x} lebx (heapify xs)
| {
"alphanum_fraction": 0.6031390135,
"avg_line_length": 26.2352941176,
"ext": "agda",
"hexsha": "a76a6019d73c9694ef6854940aa6663bf71205bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Heapify.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Heapify.agda",
"max_line_length": 52,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Heapify.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 142,
"size": 446
} |
-- {-# OPTIONS -v tc.pos:10 #-}
-- Andreas, 2014-07-04
record R (A : Set) : Set where
field f : R A
-- Should complain about missing 'inductive' or 'coinductive'.
| {
"alphanum_fraction": 0.628742515,
"avg_line_length": 20.875,
"ext": "agda",
"hexsha": "2b3c82eaf23d26c9918ab4862b1eaedbef518948",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 55,
"size": 167
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Instances.IntMod where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Bool
open import Cubical.Data.Fin
open import Cubical.Data.Fin.Arithmetic
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Algebra.Group.Instances.Unit
renaming (Unit to UnitGroup)
open import Cubical.Algebra.Group.Instances.Bool
renaming (Bool to BoolGroup)
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open GroupStr
open IsGroup
open IsMonoid
ℤ/_ : ℕ → Group₀
ℤ/ zero = UnitGroup
fst (ℤ/ suc n) = Fin (suc n)
1g (snd (ℤ/ suc n)) = 0
GroupStr._·_ (snd (ℤ/ suc n)) = _+ₘ_
inv (snd (ℤ/ suc n)) = -ₘ_
IsSemigroup.is-set (isSemigroup (isMonoid (isGroup (snd (ℤ/ suc n))))) =
isSetFin
IsSemigroup.assoc (isSemigroup (isMonoid (isGroup (snd (ℤ/ suc n))))) =
λ x y z → sym (+ₘ-assoc x y z)
fst (identity (isMonoid (isGroup (snd (ℤ/ suc n)))) x) = +ₘ-rUnit x
snd (identity (isMonoid (isGroup (snd (ℤ/ suc n)))) x) = +ₘ-lUnit x
fst (inverse (isGroup (snd (ℤ/ suc n))) x) = +ₘ-rCancel x
snd (inverse (isGroup (snd (ℤ/ suc n))) x) = +ₘ-lCancel x
ℤ/1≅Unit : GroupIso (ℤ/ 1) UnitGroup
ℤ/1≅Unit = contrGroupIsoUnit isContrFin1
Bool≅ℤ/2 : GroupIso BoolGroup (ℤ/ 2)
Iso.fun (fst Bool≅ℤ/2) false = 1
Iso.fun (fst Bool≅ℤ/2) true = 0
Iso.inv (fst Bool≅ℤ/2) (zero , p) = true
Iso.inv (fst Bool≅ℤ/2) (suc zero , p) = false
Iso.inv (fst Bool≅ℤ/2) (suc (suc x) , p) =
⊥-rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p)))
Iso.rightInv (fst Bool≅ℤ/2) (zero , p) =
Σ≡Prop (λ _ → m≤n-isProp) refl
Iso.rightInv (fst Bool≅ℤ/2) (suc zero , p) =
Σ≡Prop (λ _ → m≤n-isProp) refl
Iso.rightInv (fst Bool≅ℤ/2) (suc (suc x) , p) =
⊥-rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p)))
Iso.leftInv (fst Bool≅ℤ/2) false = refl
Iso.leftInv (fst Bool≅ℤ/2) true = refl
snd Bool≅ℤ/2 =
makeIsGroupHom λ { false false → refl
; false true → refl
; true false → refl
; true true → refl}
ℤ/2≅Bool : GroupIso (ℤ/ 2) BoolGroup
ℤ/2≅Bool = invGroupIso Bool≅ℤ/2
| {
"alphanum_fraction": 0.6844679984,
"avg_line_length": 35.0428571429,
"ext": "agda",
"hexsha": "6639441bccacc3525e5e52b9253ba88edd996c43",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FernandoLarrain/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FernandoLarrain/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z",
"num_tokens": 934,
"size": 2453
} |
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module Mergesort.Impl1.Correctness.Permutation {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.List
open import Data.Product
open import Data.Sum
open import List.Permutation.Base A
open import List.Permutation.Base.Equivalence A
open import List.Permutation.Pair A
open import List.Permutation.Pair.Properties A
open import Mergesort.Impl1 _≤_ tot≤
open import Size
open import SList
open import SList.Properties
open import SOList.Lower _≤_
lemma-deal : {ι : Size} → (xs : SList A {ι}) → unsize A xs ≈ unsize× A (deal xs)
lemma-deal snil = ≈[]l []
lemma-deal (x ∙ snil) = ≈[]r (x ∷ [])
lemma-deal (x ∙ (y ∙ xs))
with lemma-deal xs
... | xs≈ys,zs = ≈xl (≈xr xs≈ys,zs)
lemma-merge : {ι ι' : Size}{b : Bound}(xs : SOList {ι} b)(ys : SOList {ι'} b) → forget (merge xs ys) ≈ (forget xs , forget ys)
lemma-merge onil ys = ≈[]l (forget ys)
lemma-merge xs onil
with xs
... | onil = ≈[]r []
... | (:< {x = z} b≤z zs) = ≈[]r (z ∷ forget zs)
lemma-merge (:< {x = x} b≤x xs) (:< {x = y} b≤y ys)
with tot≤ x y
... | inj₁ x≤y = ≈xl (lemma-merge xs (:< (lexy x≤y) ys))
... | inj₂ y≤x = ≈xr (lemma-merge (:< (lexy y≤x) xs) ys)
lemma-mergesort : {ι : Size}(xs : SList A {↑ ι}) → unsize A xs ∼ forget (mergesort xs)
lemma-mergesort snil = ∼[]
lemma-mergesort (x ∙ snil) = ∼x /head /head ∼[]
lemma-mergesort (x ∙ (y ∙ xs)) = lemma≈ (≈xl (≈xr (lemma-deal xs))) (lemma-mergesort (x ∙ ys)) (lemma-mergesort (y ∙ zs)) (lemma-merge (mergesort (x ∙ ys)) (mergesort (y ∙ zs)))
where d = deal xs
ys = proj₁ d
zs = proj₂ d
theorem-mergesort-∼ : (xs : List A) → xs ∼ (forget (mergesort (size A xs)))
theorem-mergesort-∼ xs = trans∼ (lemma-unsize-size A xs) (lemma-mergesort (size A xs))
| {
"alphanum_fraction": 0.598858329,
"avg_line_length": 37.7843137255,
"ext": "agda",
"hexsha": "8d7003eadcd98cb819e64331d80e6432605a96ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda",
"max_line_length": 177,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 728,
"size": 1927
} |
{-# OPTIONS --sized-types #-}
module SNat.Sum where
open import Relation.Binary.PropositionalEquality
open import Size
open import SNat
+-assoc-succ : (m n : SNat) → m + succ n ≡ succ (m + n)
+-assoc-succ zero n = refl
+-assoc-succ (succ m) n rewrite +-assoc-succ m n = refl
+-assoc-right : (a b c : SNat) → (a + b) + c ≡ a + (b + c)
+-assoc-right zero b c = refl
+-assoc-right (succ n) b c rewrite +-assoc-right n b c = refl
+-assoc-left : (a b c : SNat) → a + (b + c) ≡ (a + b) + c
+-assoc-left zero b c = refl
+-assoc-left (succ n) b c rewrite +-assoc-left n b c = refl
+-id : (n : SNat) → n + zero ≡ n
+-id zero = refl
+-id (succ n) rewrite +-id n = refl
+-comm : (m n : SNat) → m + n ≡ n + m
+-comm zero n rewrite +-id n = refl
+-comm (succ m) n rewrite +-assoc-succ n m | +-comm m n = refl
| {
"alphanum_fraction": 0.5875776398,
"avg_line_length": 29.8148148148,
"ext": "agda",
"hexsha": "5dbde2af4dfee7dd7d33ff317d35aa333c7ff4bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SNat/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SNat/Sum.agda",
"max_line_length": 62,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SNat/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 289,
"size": 805
} |
{-# OPTIONS --cubical --safe #-}
module Data.Nat.WellFounded where
open import Prelude
open import Data.Nat
open import WellFounded
infix 4 _≤_ _<_
data _≤_ (n : ℕ) : ℕ → Type where
n≤n : n ≤ n
n≤s : ∀ {m} → n ≤ m → n ≤ suc m
_<_ : ℕ → ℕ → Type
n < m = suc n ≤ m
≤-wellFounded : WellFounded _<_
≤-wellFounded x = acc (go x)
where
go : ∀ n m → m < n → Acc _<_ m
go (suc n) .n n≤n = acc (go n)
go (suc n) m (n≤s m<n) = go n m m<n
open import Data.Nat.DivMod
open import Agda.Builtin.Nat using (div-helper)
import Data.Nat.Properties as ℕ
-- Bear in mind the following two functions will not compute
-- as currently subst (with --cubical) doesn't work on GADTs.
--
-- We could write the functions without using subst.
div2≤ : ∀ n → n ÷ 2 ≤ n
div2≤ n = subst (n ÷ 2 ≤_) (ℕ.+-idʳ n) (go zero n)
where
go : ∀ k n → div-helper k 1 n 1 ≤ n + k
go k zero = n≤n
go k (suc zero) = n≤s n≤n
go k (suc (suc n)) = n≤s (subst (div-helper (suc k) 1 n 1 ≤_) (ℕ.+-suc n k) (go (suc k) n))
s≤s : ∀ {n m} → n ≤ m → suc n ≤ suc m
s≤s n≤n = n≤n
s≤s (n≤s x) = n≤s (s≤s x)
| {
"alphanum_fraction": 0.5816326531,
"avg_line_length": 25.0697674419,
"ext": "agda",
"hexsha": "cd51077df41f3e8ce789706e146b37e072f4e7b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Nat/WellFounded.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Nat/WellFounded.agda",
"max_line_length": 93,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Nat/WellFounded.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 470,
"size": 1078
} |
------------------------------------------------------------------------------
-- Exclusive disjunction theorems
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.ExclusiveDisjunction.TheoremsATP where
-- The theorems below are valid on intuitionistic logic and with an
-- empty domain.
open import FOL.Base hiding ( D≢∅ ; pem )
open import FOL.ExclusiveDisjunction.Base
------------------------------------------------------------------------------
-- We postulate some propositional formulae (which are translated as
-- 0-ary predicates).
postulate P Q : Set
-- We do not use the _⊻_ operator because its definition is not a
-- FOL-definition.
postulate
p⊻q→p→¬q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → P → ¬ Q
{-# ATP prove p⊻q→p→¬q #-}
postulate
p⊻q→q→¬p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → Q → ¬ P
{-# ATP prove p⊻q→q→¬p #-}
postulate
p⊻q→¬p→q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ P → Q
{-# ATP prove p⊻q→¬p→q #-}
postulate
p⊻q→¬q→p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ Q → P
{-# ATP prove p⊻q→¬q→p #-}
postulate
¬[p⊻q] : ¬ ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ((P ∧ Q) ∨ (¬ P ∧ ¬ Q))
{-# ATP prove ¬[p⊻q] #-}
| {
"alphanum_fraction": 0.4496904025,
"avg_line_length": 29.3636363636,
"ext": "agda",
"hexsha": "12c889a0470cec8f09f26fca7873ef56ed979d18",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 404,
"size": 1292
} |
-- Andreas, 2013-05-02 This ain't a bug, it is a feature.
-- {-# OPTIONS -v scope.name:10 #-}
module _ where
open import Common.Equality
module M where
record R' : Set₁ where
field
X : Set
open M renaming (R' to R)
X : R → Set
X = R.X
-- Nisse:
-- The open directive did not mention the /module/ R, so (I think
-- that) the code above should be rejected.
-- Andreas:
-- NO, it is a feature that projections can also be accessed via
-- the record /type/.
-- Ulf:
-- According to the suggestion in 836, if you rename the module explicitly
-- the code above breaks (test/fail/Issue836.agda).
| {
"alphanum_fraction": 0.671592775,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "a2243881248f5ceff110987eacf4b06689474b10",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue836b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue836b.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue836b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 174,
"size": 609
} |
module Generic.Reflection.DeriveEq where
open import Generic.Core
open import Generic.Function.FoldMono
open import Generic.Reflection.ReadData
fromToClausesOf : Data Type -> Name -> List Clause
fromToClausesOf (packData d a b cs ns) f = unmap (λ {a} -> clauseOf a) ns where
vars : ℕ -> ℕ -> Type -> List (Maybe (String × ℕ) × ℕ)
vars (suc i) j (explPi r s a b) = if isSomeName d a
then (just (s , j) , i) ∷ vars i (suc j) b
else (nothing , i) ∷ vars i j b
vars i j (pi s a b) = vars i j b
vars i j b = []
clauseOf : Type -> Name -> Clause
clauseOf c n = clause lhs rhs where
es = explPisToNames c
i = length es
mxs = vars i 0 c
xs = mapMaybe proj₁ mxs
k = length xs
lhs = explRelArg (patCon n (patVars es)) ∷ []
lams = λ t -> foldr (explLam ∘ proj₁) t xs
each = λ m i -> maybe (proj₂ >>> λ j -> pureVar (k ∸ suc j)) (pureVar (i + k)) m
args = map (uncurry each) mxs
grow = lams (vis appCon n args)
rs = mapMaybe (uncurry λ m i -> vis# 1 appDef f (pureVar i) <$ m) mxs
rhs = vis appDef (quote congn) $ reify k ∷ grow ∷ rs
toTypeOf : Data Type -> Name -> Type
toTypeOf (packData d a b cs ns) d′ = let ab = appendType a b; k = countPis ab in
appendType (implicitize ab) $ appDef d (pisToArgVars k ab) ‵→ appDef d′ (pisToArgVars (suc k) ab)
fromTypeOf : Data Type -> Name -> Type
fromTypeOf (packData d a b cs ns) d′ = let ab = appendType a b; k = countPis ab in
appendType (implicitize ab) $ appDef d′ (pisToArgVars k ab) ‵→ appDef d (pisToArgVars (suc k) ab)
fromToTypeOf : Data Type -> Name -> Name -> Name -> Type
fromToTypeOf (packData d a b cs ns) d′ to from = let ab = appendType a b; k = countPis ab in
appendType (implicitize ab) ∘ pi "x" (explRelArg (appDef d (pisToArgVars k ab))) $
sate _≡_ (vis# 1 appDef from (vis# 1 appDef to (pureVar 0))) (pureVar 0)
injTypeOf : Data Type -> Name -> Type
injTypeOf (packData d a b cs ns) d′ =
let ab = appendType a b
k = countPis ab
avs = pisToArgVars k ab
in appendType (implicitize ab) $ sate _↦_ (appDef d avs) (appDef d′ avs)
deriveDesc : Name -> Data Type -> TC Name
deriveDesc d D =
freshName (showName d ++ˢ "′") >>= λ d′ ->
getType d >>= λ a ->
declareDef (explRelArg d′) a >>
d′ <$ (quoteData D >>= defineTerm d′)
deriveTo : Data Type -> Name -> Name -> TC Name
deriveTo D d′ fd =
freshName ("to" ++ˢ showName d′) >>= λ to ->
declareDef (explRelArg to) (toTypeOf D d′) >>
to <$ defineTerm to (sateMacro gcoerce (pureDef fd))
deriveFrom : Data Type -> Name -> TC Name
deriveFrom D d′ =
freshName ("from" ++ˢ showName d′) >>= λ from ->
declareDef (explRelArg from) (fromTypeOf D d′) >>
from <$ defineTerm from (guncoercePure D)
deriveFromTo : Data Type -> Name -> Name -> Name -> TC Name
deriveFromTo D d′ to from =
freshName ("fromTo" ++ˢ showName d′) >>= λ from-to ->
declareDef (explRelArg from-to) (fromToTypeOf D d′ to from) >>
from-to <$ defineFun from-to (fromToClausesOf D from-to)
deriveInj : Data Type -> Name -> Name -> Name -> Name -> TC Name
deriveInj D d′ to from from-to =
freshName ("inj" ++ˢ showName d′) >>= λ inj ->
declareDef (explRelArg inj) (injTypeOf D d′) >>
inj <$ defineTerm inj (sate packInj (pureDef to) (pureDef from) (pureDef from-to))
deriveEqTo : Name -> Name -> TC _
deriveEqTo e d =
getData d >>= λ D ->
deriveDesc d D >>= λ d′ ->
deriveFold d D >>= λ f ->
deriveTo D d′ f >>= λ to ->
deriveFrom D d′ >>= λ from ->
deriveFromTo D d′ to from >>= λ from-to ->
deriveInj D d′ to from from-to >>= λ inj ->
defineTerm e (sate viaInj (pureDef inj))
| {
"alphanum_fraction": 0.6187996711,
"avg_line_length": 39.6630434783,
"ext": "agda",
"hexsha": "07316e18de11f2c928bf0ac39b2afcbd1a026139",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Reflection/DeriveEq.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Reflection/DeriveEq.agda",
"max_line_length": 99,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Reflection/DeriveEq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 1275,
"size": 3649
} |
------------------------------------------------------------------------
-- M-types for indexed containers, defined using functions
------------------------------------------------------------------------
-- Based on "Non-wellfounded trees in Homotopy Type Theory" by Ahrens,
-- Capriotti and Spadotti.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Container.Indexed.M.Function
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection eq as Bijection using (_↔_)
open import Container.Indexed eq
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq as F hiding (id; _∘_)
open import H-level eq as H-level using (H-level)
open import H-level.Closure eq
import Nat eq as Nat
open import Surjection eq using (_↠_)
open import Tactic.Sigma-cong eq
open import Univalence-axiom eq
private
variable
a ℓ o p s : Level
A I O : Type a
b ext ext₁ ext₂ i k x : A
Q : A → Type p
C : Container I s p
n : ℕ
------------------------------------------------------------------------
-- Chains
-- Chains (indexed).
Chain : Type i → ∀ ℓ → Type (i ⊔ lsuc ℓ)
Chain {i = i} I ℓ =
∃ λ (P : ℕ → I → Type ℓ) → ∀ n → P (suc n) ⇾ P n
-- Limits of chains.
Limit : {I : Type i} → Chain I ℓ → I → Type ℓ
Limit (P , down) i =
∃ λ (f : ∀ n → P n i) →
∀ n → down n i (f (suc n)) ≡ f n
-- A kind of dependent universal property for limits.
universal-property-Π :
{A : Type a} {I : Type i} {g : A → I} →
(X@(P , down) : Chain I ℓ) →
((a : A) → Limit X (g a))
≃
(∃ λ (f : ∀ n (a : A) → P n (g a)) →
∀ n a → down n (g a) (f (suc n) a) ≡ f n a)
universal-property-Π {g = g} X@(P , down) =
(∀ a → Limit X (g a)) ↔⟨⟩
(∀ a → ∃ λ (f : ∀ n → P n (g a)) →
∀ n → down n (g a) (f (suc n)) ≡ f n) ↔⟨ ΠΣ-comm ⟩
(∃ λ (f : ∀ a n → P n (g a)) →
∀ a n → down n (g a) (f a (suc n)) ≡ f a n) ↝⟨ Σ-cong-refl Π-comm (λ _ → Π-comm) ⟩□
(∃ λ (f : ∀ n a → P n (g a)) →
∀ n a → down n (g a) (f (suc n) a) ≡ f n a) □
-- A universal property for limits.
universal-property :
{I : Type i} {P : I → Type p} →
(X@(Q , down) : Chain I ℓ) →
(P ⇾ Limit X)
↝[ i ∣ p ⊔ ℓ ]
(∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n i x → down n i (f (suc n) i x) ≡ f n i x)
universal-property {P = P} X@(Q , down) ext =
(P ⇾ Limit X) ↔⟨⟩
(∀ i → P i → Limit X i) ↝⟨ (∀-cong ext λ _ → from-equivalence $ universal-property-Π X) ⟩
(∀ i → ∃ λ (f : ∀ n → P i → Q n i) →
∀ n x → down n i (f (suc n) x) ≡ f n x) ↔⟨ ΠΣ-comm ⟩
(∃ λ (f : ∀ i n → P i → Q n i) →
∀ i n x → down n i (f i (suc n) x) ≡ f i n x) ↝⟨ Σ-cong-refl Π-comm (λ _ → Π-comm) ⟩
(∃ λ (f : ∀ n i → P i → Q n i) →
∀ n i x → down n i (f (suc n) i x) ≡ f n i x) ↔⟨⟩
(∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n i x → down n i (f (suc n) i x) ≡ f n i x) □
-- Cones.
Cone : {I : Type i} → (I → Type p) → Chain I ℓ → Type (i ⊔ p ⊔ ℓ)
Cone P (Q , down) =
∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n → down n ∘⇾ f (suc n) ≡ f n
-- A variant of the non-dependent universal property.
universal-property-≃ :
{I : Type i} {P : I → Type p} →
Extensionality (i ⊔ p) (i ⊔ p ⊔ ℓ) →
(X : Chain I ℓ) →
(P ⇾ Limit X) ≃ Cone P X
universal-property-≃ {i = i} {p = p} {ℓ = ℓ} {P = P} ext X@(Q , down) =
P ⇾ Limit X ↝⟨ universal-property X (lower-extensionality p i ext) ⟩
(∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n i x → down n i (f (suc n) i x) ≡ f n i x) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality _ lzero ext) λ _ →
∀-cong (lower-extensionality p i ext) λ _ →
Eq.extensionality-isomorphism (lower-extensionality (i ⊔ p) (i ⊔ p) ext)) ⟩
(∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n i → down n i ∘ f (suc n) i ≡ f n i) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality _ lzero ext) λ _ →
Eq.extensionality-isomorphism (lower-extensionality (i ⊔ p) (i ⊔ p) ext)) ⟩
(∃ λ (f : ∀ n → P ⇾ Q n) →
∀ n → down n ∘⇾ f (suc n) ≡ f n) ↔⟨⟩
Cone P X □
-- Shifts a chain one step.
shift : Chain I ℓ → Chain I ℓ
shift = Σ-map (_∘ suc) (_∘ suc)
-- Shifting does not affect the limit (assuming extensionality).
--
-- This is a variant of Lemma 12 in "Non-wellfounded trees in Homotopy
-- Type Theory".
Limit-shift :
∀ (X : Chain I ℓ) {i} →
Limit (shift X) i ↝[ lzero ∣ ℓ ] Limit X i
Limit-shift {ℓ = ℓ} X@(P , down) {i = i} ext =
Limit (shift X) i ↔⟨⟩
(∃ λ (p : ∀ n → P (suc n) i) →
∀ n → down (suc n) i (p (suc n)) ≡ p n) ↔⟨ (∃-cong λ _ → inverse $
drop-⊤-left-× λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∃ λ (p : ∀ n → P (suc n) i) →
(∃ λ (p₀ : P 0 i) → down 0 i (p 0) ≡ p₀) ×
∀ n → down (suc n) i (p (suc n)) ≡ p n) ↔⟨ Σ-assoc F.∘
∃-comm F.∘
(∃-cong λ _ → inverse Σ-assoc) ⟩
(∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) →
down 0 i (p 0) ≡ p₀ ×
∀ n → down (suc n) i (p (suc n)) ≡ p n) ↝⟨ inverse-ext?
(generalise-ext?
(_↠_.logical-equivalence lemma₂-↠)
(λ ext →
_↠_.right-inverse-of lemma₂-↠
, _↔_.left-inverse-of (lemma₂-↔ ext)))
ext ⟩
(∃ λ (p : ∀ n → P n i) →
∀ n → down n i (p (suc n)) ≡ p n) ↔⟨⟩
Limit X i □
where
lemma₁-↠ :
{P : ℕ → Type ℓ} →
(∀ n → P n) ↠ (P 0 × (∀ n → P (suc n)))
lemma₁-↠ ._↠_.logical-equivalence ._⇔_.to = λ p → p 0 , p ∘ suc
lemma₁-↠ ._↠_.logical-equivalence ._⇔_.from = uncurry ℕ-case
lemma₁-↠ ._↠_.right-inverse-of = refl
lemma₁-↔ :
{P : ℕ → Type ℓ} →
Extensionality lzero ℓ →
(∀ n → P n) ↔ (P 0 × (∀ n → P (suc n)))
lemma₁-↔ _ ._↔_.surjection = lemma₁-↠
lemma₁-↔ ext ._↔_.left-inverse-of = λ f →
apply-ext ext $ ℕ-case (refl _) λ _ → refl _
lemma₂-↠ : _ ↠ _
lemma₂-↠ =
(∃ λ (p : ∀ n → P n i) →
∀ n → down n i (p (suc n)) ≡ p n) ↝⟨ (∃-cong λ _ → lemma₁-↠) ⟩
(∃ λ (p : ∀ n → P n i) →
down 0 i (p 1) ≡ p 0 ×
∀ n → down (suc n) i (p (2 + n)) ≡ p (1 + n)) ↝⟨ Σ-cong-id-↠ lemma₁-↠ ⟩□
(∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) →
down 0 i (p 0) ≡ p₀ ×
∀ n → down (suc n) i (p (suc n)) ≡ p n) □
lemma₂-↔ : Extensionality lzero ℓ → _ ↔ _
lemma₂-↔ ext =
(∃ λ (p : ∀ n → P n i) →
∀ n → down n i (p (suc n)) ≡ p n) ↝⟨ (∃-cong λ _ → lemma₁-↔ ext) ⟩
(∃ λ (p : ∀ n → P n i) →
down 0 i (p 1) ≡ p 0 ×
∀ n → down (suc n) i (p (2 + n)) ≡ p (1 + n)) ↝⟨ Σ-cong-id (Eq.↔⇒≃ $ lemma₁-↔ ext) ⟩□
(∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) →
down 0 i (p 0) ≡ p₀ ×
∀ n → down (suc n) i (p (suc n)) ≡ p n) □
------------------------------------------------------------------------
-- Cochains
-- Cochains (non-indexed).
Cochain : ∀ ℓ → Type (lsuc ℓ)
Cochain ℓ =
∃ λ (P : ℕ → Type ℓ) → ∀ n → P n → P (suc n)
-- There is a pointwise split surjection from the "limit" of a cochain
-- to the first element.
cochain-limit-↠ :
((P , up) : Cochain ℓ) →
(∃ λ (p : ∀ n → P n) → ∀ n → p (suc n) ≡ up n (p n))
↠
P 0
cochain-limit-↠ (_ , up) = λ where
._↠_.logical-equivalence ._⇔_.to (p , _) → p 0
._↠_.logical-equivalence ._⇔_.from p₀ .proj₁ → ℕ-rec p₀ up
._↠_.logical-equivalence ._⇔_.from p₀ .proj₂ _ → refl _
._↠_.right-inverse-of → refl
-- The "limit" of a cochain is pointwise equivalent to the first
-- element (assuming extensionality).
--
-- This is a variant of Lemma 11 in "Non-wellfounded trees in Homotopy
-- Type Theory".
cochain-limit :
((P , up) : Cochain ℓ) →
(∃ λ (p : ∀ n → P n) → ∀ n → p (suc n) ≡ up n (p n))
↝[ lzero ∣ ℓ ]
P 0
cochain-limit X@(_ , up) ext =
generalise-ext?
(_↠_.logical-equivalence cl)
(λ ext → _↠_.right-inverse-of cl , from∘to ext)
ext
where
cl = cochain-limit-↠ X
open _↠_ cl
from₁∘to : ∀ l n → proj₁ (from (to l)) n ≡ proj₁ l n
from₁∘to _ zero = refl _
from₁∘to l@(p , q) (suc n) =
up n (proj₁ (from (to l)) n) ≡⟨ cong (up n) $ from₁∘to l n ⟩
up n (p n) ≡⟨ sym $ q n ⟩∎
p (suc n) ∎
from∘to :
Extensionality lzero _ →
∀ l → from (to l) ≡ l
from∘to ext l@(p , q) = Σ-≡,≡→≡
(apply-ext ext′ (from₁∘to l))
(apply-ext ext λ n →
subst (λ p → ∀ n → p (suc n) ≡ up n (p n))
(apply-ext ext′ (from₁∘to l))
(λ _ → refl _) n ≡⟨ sym $ push-subst-application _ _ ⟩
subst (λ p → p (suc n) ≡ up n (p n))
(apply-ext ext′ (from₁∘to l))
(refl _) ≡⟨ trans subst-in-terms-of-trans-and-cong $
cong (trans _) $
trans-reflˡ _ ⟩
trans (sym $ cong (_$ suc n) (apply-ext ext′ (from₁∘to l)))
(cong (λ p → up n (p n)) (apply-ext ext′ (from₁∘to l))) ≡⟨ cong₂ trans
(cong sym $ Eq.cong-good-ext ext _)
(trans (sym $ cong-∘ _ _ _) $
cong (cong _) $ Eq.cong-good-ext ext _) ⟩
trans (sym $ from₁∘to l (suc n))
(cong (up n) $ from₁∘to l n) ≡⟨⟩
trans (sym $ trans (cong (up n) $ from₁∘to l n) (sym $ q n))
(cong (up n) $ from₁∘to l n) ≡⟨ cong (flip trans _) $
trans (sym-trans _ _) $
cong (flip trans _) $
sym-sym _ ⟩
trans (trans (q n) (sym $ cong (up n) $ from₁∘to l n))
(cong (up n) $ from₁∘to l n) ≡⟨ trans-[trans-sym]- _ _ ⟩∎
q n ∎)
where
ext′ = Eq.good-ext ext
-- A variant of cochain-limit-↠ for simple cochains.
simple-cochain-limit-↠ :
(∃ λ (f : ℕ → A) → ∀ n → f (suc n) ≡ f n) ↠ A
simple-cochain-limit-↠ = λ where
._↠_.logical-equivalence ._⇔_.to (f , _) → f 0
._↠_.logical-equivalence ._⇔_.from f₀ .proj₁ _ → f₀
._↠_.logical-equivalence ._⇔_.from f₀ .proj₂ _ → refl _
._↠_.right-inverse-of → refl
-- The first projection of the right-to-left direction of
-- simple-cochain-limit-↠ computes in a certain way.
_ : proj₁ (_↠_.from simple-cochain-limit-↠ x) n ≡ x
_ = refl _
-- A variant of cochain-limit for simple cochains.
simple-cochain-limit :
{A : Type a} →
(∃ λ (f : ℕ → A) → ∀ n → f (suc n) ≡ f n) ↝[ lzero ∣ a ] A
simple-cochain-limit =
generalise-ext?
(_↠_.logical-equivalence scl)
(λ ext → _↠_.right-inverse-of scl , from∘to ext)
where
scl = simple-cochain-limit-↠
open _↠_ scl
from₁∘to : ∀ l n → proj₁ (from (to l)) n ≡ proj₁ l n
from₁∘to _ zero = refl _
from₁∘to l@(f , p) (suc n) =
proj₁ (from (to l)) n ≡⟨ from₁∘to l n ⟩
f n ≡⟨ sym $ p n ⟩∎
f (suc n) ∎
from∘to :
Extensionality lzero _ →
∀ l → from (to l) ≡ l
from∘to ext l@(f , p) = Σ-≡,≡→≡
(apply-ext ext′ (from₁∘to l))
(apply-ext ext λ n →
subst (λ f → ∀ n → f (suc n) ≡ f n)
(apply-ext ext′ (from₁∘to l))
(λ _ → refl _) n ≡⟨ sym $ push-subst-application _ _ ⟩
subst (λ f → f (suc n) ≡ f n)
(apply-ext ext′ (from₁∘to l))
(refl _) ≡⟨ trans subst-in-terms-of-trans-and-cong $
cong (trans _) $
trans-reflˡ _ ⟩
trans (sym $ cong (_$ suc n) (apply-ext ext′ (from₁∘to l)))
(cong (_$ n) (apply-ext ext′ (from₁∘to l))) ≡⟨ cong₂ trans
(cong sym $ Eq.cong-good-ext ext _)
(Eq.cong-good-ext ext _) ⟩
trans (sym $ from₁∘to l (suc n)) (from₁∘to l n) ≡⟨⟩
trans (sym $ trans (from₁∘to l n) (sym $ p n)) (from₁∘to l n) ≡⟨ cong (flip trans _) $
trans (sym-trans _ _) $
cong (flip trans _) $
sym-sym _ ⟩
trans (trans (p n) (sym $ from₁∘to l n)) (from₁∘to l n) ≡⟨ trans-[trans-sym]- _ _ ⟩∎
p n ∎)
where
ext′ = Eq.good-ext ext
-- The first projection of the right-to-left direction of
-- simple-cochain-limit computes in a certain way (at least when "k"
-- has certain values).
_ : proj₁ (_⇔_.from (simple-cochain-limit _) x) n ≡ x
_ = refl _
_ : proj₁ (_≃_.from (simple-cochain-limit ext) x) n ≡ x
_ = refl _
------------------------------------------------------------------------
-- Chains and containers
-- Containers can be applied to chains.
Container-chain :
{I : Type i} {O : Type o} →
Container₂ I O s p → Chain I ℓ → Chain O (s ⊔ p ⊔ ℓ)
Container-chain C = Σ-map (⟦ C ⟧ ∘_) (map C ∘_)
-- The polynomial functor (for a container C) of the limit of a chain
-- is pointwise equivalent to the limit of C applied to the chain
-- (assuming extensionality).
--
-- This is a variant of Lemma 13 in "Non-wellfounded trees in Homotopy
-- Type Theory".
⟦⟧-Limit≃ :
{I : Type i} {O : Type o} →
Extensionality p (s ⊔ p ⊔ ℓ) →
(C : Container₂ I O s p) (X : Chain I ℓ) {o : O} →
⟦ C ⟧ (Limit X) o ≃ Limit (Container-chain C X) o
⟦⟧-Limit≃ {p = p} {s = s} {ℓ = ℓ} ext C X@(Q , down) {o = o} =
⟦ C ⟧ (Limit X) o ↔⟨⟩
(∃ λ (s : Shape C o) →
(p : Position C s) → Limit X (index C p)) ↝⟨ (∃-cong λ _ →
universal-property-Π X) ⟩
(∃ λ (s : Shape C o) →
∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) →
∀ n p → down n (index C p) (f (suc n) p) ≡ f n p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ →
∀-cong (lower-extensionality p r ext) λ _ →
Eq.extensionality-isomorphism (lower-extensionality p r ext)) ⟩
(∃ λ (s : Shape C o) →
∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) →
∀ n → down n _ ∘ f (suc n) ≡ f n) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong (lower-extensionality p r ext) λ _ →
≡⇒↝ _ $ cong (_≡ _) $ sym $
subst-refl _ _) ⟩
(∃ λ (s : Shape C o) →
∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) →
∀ n → subst (λ s → (p : Position C s) → Q n (index C p))
(refl _) (down n _ ∘ f (suc n)) ≡
f n) ↝⟨ (Σ-cong (inverse $
simple-cochain-limit {k = equivalence}
(lower-extensionality p r ext)) λ _ →
F.id) ⟩
(∃ λ ((s , eq) : ∃ λ (s : ℕ → Shape C o) →
∀ n → s (suc n) ≡ s n) →
∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) →
∀ n → subst (λ s → (p : Position C s) → Q n (index C p))
(eq n) (down n _ ∘ f (suc n)) ≡
f n) ↔⟨ (∃-cong λ _ →
(∃-cong λ _ →
(∀-cong (lower-extensionality p r ext) λ _ →
Bijection.Σ-≡,≡↔≡) F.∘
inverse ΠΣ-comm) F.∘
∃-comm) F.∘
inverse Σ-assoc ⟩
(∃ λ (s : ℕ → Shape C o) →
∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) →
∀ n → (s (suc n) , down n _ ∘ f (suc n)) ≡ (s n , f n)) ↔⟨⟩
(∃ λ (s : ℕ → Shape C o) →
∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) →
∀ n → map C (down n) o (s (suc n) , f (suc n)) ≡
(s n , f n)) ↝⟨ (inverse $ Σ-cong-id (Eq.↔⇒≃ ΠΣ-comm)) F.∘
Eq.↔⇒≃ Σ-assoc ⟩
(∃ λ (f : ∀ n → ∃ λ (s : Shape C o) →
(p : Position C s) → Q n (index C p)) →
∀ n → map C (down n) o (f (suc n)) ≡ f n) ↔⟨⟩
Limit (Container-chain C X) o □
where
r = s ⊔ p ⊔ ℓ
------------------------------------------------------------------------
-- M-types
private
-- Up-to C n is the n-fold application of ⟦ C ⟧ to something
-- trivial.
Up-to : {I : Type i} → Container I s p → ℕ → I → Type (i ⊔ s ⊔ p)
Up-to C zero = λ _ → ↑ _ ⊤
Up-to C (suc n) = ⟦ C ⟧ (Up-to C n)
-- Up-to C is downwards closed.
down : ∀ n → Up-to C (suc n) ⇾ Up-to C n
down zero = _
down (suc n) = map _ (down n)
-- One can combine Up-to and down into a chain.
M-chain : {I : Type i} → Container I s p → Chain I (i ⊔ s ⊔ p)
M-chain C = Up-to C , down
-- An M-type for a given container.
M : {I : Type i} → Container I s p → I → Type (i ⊔ s ⊔ p)
M C = Limit (M-chain C)
-- M C is, in a certain sense, a fixpoint of ⟦ C ⟧ (assuming
-- extensionality).
M-fixpoint :
Block "M-fixpoint" →
{I : Type i} →
Extensionality p (i ⊔ s ⊔ p) →
{C : Container I s p} {i : I} →
⟦ C ⟧ (M C) i ≃ M C i
M-fixpoint ⊠ ext {C = C} {i = i} =
⟦ C ⟧ (M C) i ↔⟨⟩
⟦ C ⟧ (Limit (M-chain C)) i ↝⟨ ⟦⟧-Limit≃ ext C (M-chain C) ⟩
Limit (Container-chain C (M-chain C)) i ↔⟨⟩
Limit (shift (M-chain C)) i ↝⟨ Limit-shift (M-chain C) (lower-extensionality _ lzero ext) ⟩
Limit (M-chain C) i ↔⟨⟩
M C i □
-- One direction of the fixpoint.
out-M :
Block "M-fixpoint" →
{I : Type i} {C : Container I s p} →
Extensionality p (i ⊔ s ⊔ p) →
M C ⇾ ⟦ C ⟧ (M C)
out-M b ext _ = _≃_.from (M-fixpoint b ext)
-- The other direction of the fixpoint.
in-M :
Block "M-fixpoint" →
{I : Type i} {C : Container I s p} →
Extensionality p (i ⊔ s ⊔ p) →
⟦ C ⟧ (M C) ⇾ M C
in-M b ext _ = _≃_.to (M-fixpoint b ext)
-- A "computation" rule for in-M.
in-M≡ :
(b : Block "M-fixpoint")
{I : Type i}
(ext : Extensionality p (i ⊔ s ⊔ p)) →
let ext′ = apply-ext $ Eq.good-ext $
lower-extensionality p (i ⊔ s ⊔ p) ext
in
{C : Container I s p} {i : I}
(x@(s , f) : ⟦ C ⟧ (M C) i) →
in-M b ext _ x ≡
( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n)
, ℕ-case (refl _) (λ n → cong (s ,_) $ ext′ λ p → proj₂ (f p) n)
)
in-M≡ {i = i} {p = p} {s = sℓ} ⊠ ext {C = C} x@(s , f) =
( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n)
, ℕ-case (refl _)
(λ n → Σ-≡,≡→≡
(refl _)
(≡⇒→
(cong (_≡ λ p → proj₁ (f p) n) $ sym $
subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)))
) ≡⟨ cong (ℕ-case _ (λ n → s , λ p → proj₁ (f p) n) ,_) $
cong (ℕ-case (refl _)) $
apply-ext (lower-extensionality _ lzero ext) lemma ⟩∎
( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n)
, ℕ-case (refl _) (λ n → cong (s ,_) $ ext′ λ p → proj₂ (f p) n)
) ∎
where
ext′ =
apply-ext $
Eq.good-ext $
lower-extensionality p (i ⊔ sℓ ⊔ p) ext
lemma = λ n →
Σ-≡,≡→≡
(refl _)
(≡⇒→
(cong (_≡ λ p → proj₁ (f p) n) $ sym $
subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (_ ,_)
(trans (sym $ subst-refl _ _) $
≡⇒→
(cong (_≡ λ p → proj₁ (f p) n) $ sym $
subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $ sym $
subst-id-in-terms-of-≡⇒↝ equivalence ⟩
cong (_ ,_)
(trans (sym $ subst-refl _ _) $
subst id
(cong (_≡ λ p → proj₁ (f p) n) $ sym $
subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $ sym $
subst-∘ _ _ _ ⟩
cong (_ ,_)
(trans (sym $ subst-refl _ _) $
subst (_≡ λ p → proj₁ (f p) n)
(sym $ subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $
subst-trans _ ⟩
cong (_ ,_)
(trans (sym $ subst-refl _ _) $
trans (subst-refl _ _)
(ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $
trans-sym-[trans] _ _ ⟩∎
cong (_ ,_) (ext′ λ p → proj₂ (f p) n) ∎
-- A coalgebra defined using M and out-M.
M-coalgebra :
Block "M-fixpoint" →
{I : Type i} →
Extensionality p (i ⊔ s ⊔ p) →
(C : Container I s p) → Coalgebra C
M-coalgebra b ext C = M C , out-M b ext
-- Definitions used to implement unfold.
private
module Unfold
((P , f) : Coalgebra C)
where
up : ∀ n → P ⇾ Up-to C n
up zero = _
up (suc n) = map C (up n) ∘⇾ f
ok : ∀ n → down n ∘⇾ up (suc n) ≡ up n
ok zero = refl _
ok (suc n) =
map C (down n ∘⇾ up (suc n)) ∘⇾ f ≡⟨ cong (λ g → map C g ∘⇾ f) $ ok n ⟩∎
map C (up n) ∘⇾ f ∎
-- A direct implementation of an unfold operation.
unfold :
((P , _) : Coalgebra C) →
P ⇾ M C
unfold Y i p =
(λ n → up n i p)
, (λ n → cong (λ f → f i p) (ok n))
where
open Unfold Y
-- Definitions used to implement M-final.
private
module M-final
(b : Block "M-fixpoint")
{I : Type i} {C : Container I s p}
(ext : Extensionality p (i ⊔ s ⊔ p))
(ext′ : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p))
(Y@(P , f) : Coalgebra C)
where
step : P ⇾ Q → P ⇾ ⟦ C ⟧ Q
step h = map C h ∘⇾ f
univ : Cone P (M-chain C) → P ⇾ M C
univ = _≃_.from (universal-property-≃ ext′ (M-chain C))
steps₁ : (∀ n → P ⇾ Up-to C n) → (∀ n → P ⇾ Up-to C n)
steps₁ g n i p =
ℕ-case
{P = λ n → Up-to C n i}
_
(λ n → step (g n) i p)
n
Eq : (∀ n → P ⇾ Up-to C n) → Type (i ⊔ s ⊔ p)
Eq g = ∀ n → down n ∘⇾ g (suc n) ≡ g n
steps₂ : {g : ∀ n → P ⇾ Up-to C n} → Eq g → Eq (steps₁ g)
steps₂ p zero = refl _
steps₂ {g = g} p (suc n) =
down (suc n) ∘⇾ steps₁ g (suc (suc n)) ≡⟨⟩
step (down n ∘⇾ g (suc n)) ≡⟨ cong step (p n) ⟩∎
step (g n) ∎
steps : Cone P (M-chain C) → Cone P (M-chain C)
steps = Σ-map steps₁ steps₂
ext-i : Extensionality i (i ⊔ s ⊔ p)
ext-i = lower-extensionality (s ⊔ p) lzero ext′
ext₀ : Extensionality lzero (i ⊔ s ⊔ p)
ext₀ = lower-extensionality _ lzero ext
ext₀′ :
{A : Type} {P : A → Type (i ⊔ s ⊔ p)} →
Extensionality′ A P
ext₀′ = apply-ext (Eq.good-ext ext₀)
≡univ-steps : ∀ c → in-M b ext ∘⇾ step (univ c) ≡ univ (steps c)
≡univ-steps c@(g , eq) = apply-ext ext-i λ i → apply-ext ext′ λ p →
in-M b ext i (step (univ c) i p) ≡⟨ in-M≡ b ext (step (univ c) i p) ⟩
( (λ n → steps₁ g n i p)
, ℕ-case (refl _)
(λ n →
cong (proj₁ (f i p) ,_)
(ext‴ λ p′ →
ext⁻¹ (ext⁻¹ (eq n) (index C p′)) (proj₂ (f i p) p′)))
) ≡⟨ cong ((λ n → steps₁ g n i p) ,_) $
ext₀′ $ ℕ-case
(
refl _ ≡⟨ sym $ ext⁻¹-refl _ {x = p} ⟩
ext⁻¹ (refl _) p ≡⟨ cong (flip ext⁻¹ p) $ sym $ ext⁻¹-refl _ ⟩
ext⁻¹ (ext⁻¹ {B = λ x → P x → ↑ _ ⊤} (refl _) i) p ≡⟨⟩
ext⁻¹ (ext⁻¹ (steps₂ eq zero) i) p ∎)
(λ n →
cong (proj₁ (f i p) ,_)
(ext‴ λ p′ →
ext⁻¹ (ext⁻¹ (eq n) (index C p′)) (proj₂ (f i p) p′)) ≡⟨ elim₁
(λ eq →
cong (proj₁ (f i p) ,_)
(ext‴ λ p′ →
ext⁻¹ (ext⁻¹ eq (index C p′)) (proj₂ (f i p) p′)) ≡
ext⁻¹ (ext⁻¹ (cong (λ g → map C g ∘⇾ f) eq) i) p)
(
cong (proj₁ (f i p) ,_)
(ext‴ λ p′ →
ext⁻¹ (ext⁻¹ (refl (g n)) (index C p′))
(proj₂ (f i p) p′)) ≡⟨ (cong (cong _) $
cong ext‴ $ ext‴ λ _ →
trans (cong (flip ext⁻¹ _) $
ext⁻¹-refl _) $
ext⁻¹-refl _) ⟩
cong (proj₁ (f i p) ,_) (ext‴ λ _ → refl _) ≡⟨ trans (cong (cong _) $
Eq.good-ext-refl ext″ _) $
cong-refl _ ⟩
refl _ ≡⟨ sym $
trans (cong (flip ext⁻¹ _) $
trans (cong (flip ext⁻¹ _) $
cong-refl _) $
ext⁻¹-refl _) $
ext⁻¹-refl _ ⟩∎
ext⁻¹ (ext⁻¹ (cong step (refl (g n))) i) p ∎)
(eq n) ⟩
ext⁻¹ (ext⁻¹ (cong step (eq n)) i) p ∎) ⟩
( (λ n → steps₁ g n i p)
, (λ n → ext⁻¹ (ext⁻¹ (steps₂ eq n) i) p)
) ≡⟨⟩
univ (steps c) i p ∎
where
ext″ = lower-extensionality p (i ⊔ s ⊔ p) ext
ext‴ = apply-ext (Eq.good-ext ext″)
contr : Contractible (P ⇾ Up-to C 0)
contr =
Π-closure ext-i 0 λ _ →
Π-closure ext′ 0 λ _ →
↑-closure 0 ⊤-contractible
steps₁-fixpoint≃ :
{g : ∀ n → P ⇾ Up-to C n} →
(g ≡ steps₁ g) ≃ (∀ n → g (suc n) ≡ step (g n))
steps₁-fixpoint≃ {g = g} =
g ≡ steps₁ g ↝⟨ inverse $ Eq.extensionality-isomorphism ext₀ ⟩
(∀ n → g n ≡ steps₁ g n) ↝⟨ Πℕ≃ ext₀ ⟩
g 0 ≡ steps₁ g 0 × (∀ n → g (suc n) ≡ steps₁ g (suc n)) ↔⟨⟩
(λ _ _ → lift tt) ≡ (λ _ _ → lift tt) ×
(∀ n → g (suc n) ≡ step (g n)) ↔⟨ (drop-⊤-left-× λ _ →
_⇔_.to contractible⇔↔⊤ $
H-level.⇒≡ 0 contr) ⟩□
(∀ n → g (suc n) ≡ step (g n)) □
cochain₁ : Cochain (i ⊔ s ⊔ p)
cochain₁ = (λ n → P ⇾ Up-to C n)
, (λ _ → step)
cl₁← : P ⇾ Up-to C 0 → ∀ n → P ⇾ Up-to C n
cl₁← = proj₁ ∘ _↠_.from (cochain-limit-↠ cochain₁)
⇾↔⊤ : (P ⇾ Up-to C 0) ↔ ⊤
⇾↔⊤ = _⇔_.to contractible⇔↔⊤ contr
g₀ : P ⇾ Up-to C 0
g₀ = _↔_.from ⇾↔⊤ _
steps₁-fixpoint : ∀ n → cl₁← g₀ n ≡ steps₁ (cl₁← g₀) n
steps₁-fixpoint = ℕ-case (refl _) (λ _ → refl _)
steps₁-fixpoint-lemma :
{p : Eq (cl₁← g₀)} →
subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡
trans (p n) (steps₁-fixpoint n)
steps₁-fixpoint-lemma {n = n} {p = p} =
subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡⟨⟩
subst Eq (ext₀′ (ℕ-case _ (λ _ → refl _))) p n ≡⟨ cong (λ eq → subst Eq eq p n) $
cong ext₀′ $
cong (flip ℕ-case _) $
H-level.mono (Nat.zero≤ 2) contr _ _ ⟩
subst Eq (ext₀′ steps₁-fixpoint) p n ≡⟨ sym $ push-subst-application _ _ ⟩
subst (λ g → down n ∘⇾ g (suc n) ≡ g n)
(ext₀′ steps₁-fixpoint) (p n) ≡⟨ trans subst-in-terms-of-trans-and-cong $
cong (flip trans _) $ cong sym $ sym $
cong-∘ _ _ _ ⟩
trans (sym (cong (down n ∘⇾_)
(cong (_$ suc n) (ext₀′ steps₁-fixpoint))))
(trans (p n) (cong (_$ n) (ext₀′ steps₁-fixpoint))) ≡⟨ cong₂ (λ eq₁ eq₂ → trans (sym (cong (down n ∘⇾_) eq₁)) (trans _ eq₂))
(Eq.cong-good-ext ext₀ _)
(Eq.cong-good-ext ext₀ _) ⟩
trans (sym (cong (down n ∘⇾_) (steps₁-fixpoint (suc n))))
(trans (p n) (steps₁-fixpoint n)) ≡⟨⟩
trans (sym (cong (down n ∘⇾_) (refl _)))
(trans (p n) (steps₁-fixpoint n)) ≡⟨ trans (cong (flip trans _) $
trans (cong sym $ cong-refl _)
sym-refl) $
trans-reflˡ _ ⟩∎
trans (p n) (steps₁-fixpoint n) ∎
cochain₂ : Cochain (i ⊔ s ⊔ p)
cochain₂ = (λ n → down n ∘⇾ step (cl₁← g₀ n) ≡ cl₁← g₀ n)
, (λ _ → cong step)
equiv : Block "equiv" → (Y ⇨ M-coalgebra b ext C) ≃ ⊤
equiv ⊠ =
Y ⇨ M-coalgebra b ext C ↔⟨⟩
(∃ λ (h : P ⇾ M C) → out-M b ext ∘⇾ h ≡ step h) ↝⟨ (∃-cong λ _ → inverse $
Eq.≃-≡ $ ∀-cong ext-i λ _ → ∀-cong ext′ λ _ →
M-fixpoint b ext) ⟩
(∃ λ (h : P ⇾ M C) →
(in-M b ext ∘⇾ out-M b ext) ∘⇾ h ≡ in-M b ext ∘⇾ step h) ↝⟨ (∃-cong λ h → ≡⇒↝ _ $ cong (_≡ in-M b ext ∘⇾ step h) $
apply-ext ext-i λ _ → apply-ext ext′ λ _ →
_≃_.right-inverse-of (M-fixpoint b ext) _) ⟩
(∃ λ (h : P ⇾ M C) → h ≡ in-M b ext ∘⇾ step h) ↝⟨ (inverse $
Σ-cong (inverse $ universal-property-≃ ext′ (M-chain C)) λ _ →
F.id) ⟩
(∃ λ (c : Cone P (M-chain C)) →
univ c ≡ in-M b ext ∘⇾ step (univ c)) ↝⟨ (∃-cong λ c → ≡⇒↝ _ $ cong (univ c ≡_) $ ≡univ-steps c) ⟩
(∃ λ (c : Cone P (M-chain C)) → univ c ≡ univ (steps c)) ↝⟨ (∃-cong λ _ →
Eq.≃-≡ $ inverse $ universal-property-≃ ext′ (M-chain C)) ⟩
(∃ λ (c : Cone P (M-chain C)) → c ≡ steps c) ↔⟨ (∃-cong λ _ → inverse
Bijection.Σ-≡,≡↔≡) ⟩
(∃ λ ((g , p) : Cone P (M-chain C)) →
∃ λ (q : g ≡ steps₁ g) → subst Eq q p ≡ steps₂ p) ↔⟨ Σ-assoc F.∘
(∃-cong λ _ → ∃-comm) F.∘
inverse Σ-assoc ⟩
(∃ λ ((g , q) : ∃ λ (g : ∀ n → P ⇾ Up-to C n) → g ≡ steps₁ g) →
∃ λ (p : Eq g) → subst Eq q p ≡ steps₂ p) ↝⟨ (inverse $
Σ-cong (inverse $
∃-cong λ _ →
steps₁-fixpoint≃) λ _ →
F.id) ⟩
(∃ λ ((g , q) : ∃ λ (g : ∀ n → P ⇾ Up-to C n) →
∀ n → g (suc n) ≡ step (g n)) →
∃ λ (p : Eq g) →
subst Eq (_≃_.from steps₁-fixpoint≃ q) p ≡ steps₂ p) ↝⟨ (inverse $
Σ-cong (inverse $
cochain-limit cochain₁ {k = equivalence} ext₀) λ _ →
F.id) ⟩
(∃ λ (g : P ⇾ Up-to C 0) →
∃ λ (p : Eq (cl₁← g)) →
subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p ≡
steps₂ p) ↔⟨ drop-⊤-left-Σ ⇾↔⊤ ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p ≡
steps₂ p) ↝⟨ (∃-cong λ _ → inverse $
Eq.extensionality-isomorphism ext₀) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡
steps₂ p n) ↝⟨ (∃-cong λ p → ∀-cong ext₀ λ n → ≡⇒↝ _ $ cong (_≡ steps₂ p n)
steps₁-fixpoint-lemma) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → trans (p n) (steps₁-fixpoint n) ≡ steps₂ p n) ↝⟨ (∃-cong λ _ → ∀-cong ext₀ λ _ → ≡⇒↝ _ $
[trans≡]≡[≡trans-symʳ] _ _ _) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → p n ≡ trans (steps₂ p n) (sym (steps₁-fixpoint n))) ↝⟨ (∃-cong λ _ →
Πℕ≃ ext₀) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
p zero ≡ trans (steps₂ p zero) (sym (steps₁-fixpoint zero)) ×
(∀ n → p (suc n) ≡
trans (steps₂ p (suc n))
(sym (steps₁-fixpoint (suc n))))) ↔⟨ (∃-cong λ _ → drop-⊤-left-× λ _ →
_⇔_.to contractible⇔↔⊤ $
H-level.⇒≡ 0 $ H-level.⇒≡ 0 contr) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → p (suc n) ≡
trans (steps₂ p (suc n)) (sym (steps₁-fixpoint (suc n)))) ↔⟨⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → p (suc n) ≡
trans (cong step (p n)) (sym (refl _))) ↝⟨ (∃-cong λ _ → ∀-cong ext₀ λ _ → ≡⇒↝ _ $ cong (_ ≡_) $
trans (cong (trans _) sym-refl) $
trans-reflʳ _) ⟩
(∃ λ (p : Eq (cl₁← g₀)) →
∀ n → p (suc n) ≡ cong step (p n)) ↝⟨ cochain-limit cochain₂ ext₀ ⟩
down {C = C} 0 ∘⇾ step (cl₁← g₀ 0) ≡ cl₁← g₀ 0 ↔⟨ _⇔_.to contractible⇔↔⊤ $
H-level.⇒≡ 0 contr ⟩□
⊤ □
-- The definition of M-final is set up so that it returns unfold Y
-- rather than the function obtained directly from equiv. Here it is
-- shown that the two functions are equal.
≡-unfold : ∀ b → proj₁ (_≃_.from (equiv b) _) ≡ unfold Y
≡-unfold ⊠ =
apply-ext ext-i λ i → apply-ext ext′ λ p →
Σ-≡,≡→≡
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))
(lemma₃ i p)
where
-- Pieces of the function obtained from equiv.
--
-- These pieces are rather similar to pieces of unfold. I chose to
-- implement unfold using explicit pattern matching rather than
-- ℕ-rec to ensure that things do not unfold too much.
up′ : ∀ n → P ⇾ Up-to C n
up′ = ℕ-rec _ (λ _ ih → map C ih ∘⇾ f)
ok′ : ∀ n → down n ∘⇾ up′ (suc n) ≡ up′ n
ok′ = ℕ-rec
(proj₁ (H-level.⇒≡ 0 contr))
(λ _ → cong step)
lemma₁ : ∀ n → up′ n ≡ Unfold.up Y n
lemma₁ zero = refl _
lemma₁ (suc n) =
step (up′ n) ≡⟨ cong step $ lemma₁ n ⟩∎
step (Unfold.up Y n) ∎
lemma₂ :
∀ n →
trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n))))
(trans (ok′ n) (lemma₁ n)) ≡
Unfold.ok Y n
lemma₂ zero =
trans (sym (cong (const _) (cong step (refl _))))
(trans (proj₁ (H-level.⇒≡ 0 contr)) (refl _)) ≡⟨ trans (cong (flip trans _) $
trans (cong sym $ cong-const _) $
sym-refl) $
trans (trans-reflˡ _) $
trans-reflʳ _ ⟩
proj₁ (H-level.⇒≡ 0 contr) ≡⟨ H-level.mono (Nat.zero≤ 2) contr _ _ ⟩∎
refl _ ∎
lemma₂ (suc n) =
trans (sym (cong (down (1 + n) ∘⇾_) (lemma₁ (2 + n))))
(trans (ok′ (1 + n)) (lemma₁ (1 + n))) ≡⟨⟩
trans (sym (cong (map C (down n) ∘⇾_)
(cong step (lemma₁ (suc n)))))
(trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨ cong (flip trans _) $ cong sym $
cong-∘ _ _ _ ⟩
trans (sym (cong ((map C (down n) ∘⇾_) ∘ step) (lemma₁ (suc n))))
(trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨⟩
trans (sym (cong (step ∘ (down n ∘⇾_)) (lemma₁ (suc n))))
(trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨ sym $
trans (cong-trans _ _ _) $
cong₂ trans
(trans (cong-sym _ _) $
cong sym $ cong-∘ _ _ _)
(cong-trans _ _ _) ⟩
cong step
(trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n))))
(trans (ok′ n) (lemma₁ n))) ≡⟨ cong (cong _) $ lemma₂ n ⟩
cong step (Unfold.ok Y n) ≡⟨⟩
Unfold.ok Y (1 + n) ∎
lemma₃ :
∀ i p →
subst (λ f → ∀ n → down n i (f (suc n)) ≡ f n)
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))
(cong (_$ p) ∘ cong (_$ i) ∘ ok′) ≡
(λ n → cong (λ f → f i p) (Unfold.ok Y n))
lemma₃ i p = ext₀′ λ n →
subst (λ f → ∀ n → down n i (f (suc n)) ≡ f n)
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))
(cong (_$ p) ∘ cong (_$ i) ∘ ok′) n ≡⟨ sym $
push-subst-application _ _ ⟩
subst (λ f → down n i (f (suc n)) ≡ f n)
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))
(cong (_$ p) (cong (_$ i) (ok′ n))) ≡⟨ cong (subst (λ f → down n i (f (suc n)) ≡ f n) _) $
cong-∘ _ _ _ ⟩
subst (λ f → down n i (f (suc n)) ≡ f n)
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))
(cong (λ f → f i p) (ok′ n)) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (λ f → down n i (f (suc n)))
(ext₀′ λ n → cong (λ f → f i p) (lemma₁ n))))
(trans (cong (λ f → f i p) (ok′ n))
(cong (_$ n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)))) ≡⟨ cong₂ (λ eq₁ eq₂ →
trans (sym eq₁) (trans (cong (λ f → f i p) (ok′ n)) eq₂))
(trans (sym $ cong-∘ _ _ _) $
cong (cong _) $
Eq.cong-good-ext ext₀ _)
(Eq.cong-good-ext ext₀ _) ⟩
trans (sym (cong (down n i)
(cong (λ f → f i p) (lemma₁ (suc n)))))
(trans (cong (λ f → f i p) (ok′ n))
(cong (λ f → f i p) (lemma₁ n))) ≡⟨ cong (flip trans _) $ cong sym $
cong-∘ _ _ _ ⟩
trans (sym (cong (λ f → down n i (f i p)) (lemma₁ (suc n))))
(trans (cong (λ f → f i p) (ok′ n))
(cong (λ f → f i p) (lemma₁ n))) ≡⟨ sym $
trans (cong-trans _ _ _) $
cong₂ trans
(trans (cong-sym _ _) $
cong sym $
cong-∘ _ _ _)
(cong-trans _ _ _) ⟩
cong (λ f → f i p)
(trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n))))
(trans (ok′ n) (lemma₁ n))) ≡⟨ cong (cong _) $ lemma₂ n ⟩∎
cong (λ f → f i p) (Unfold.ok Y n) ∎
unfold-lemma :
Block "equiv" →
out-M b ext ∘⇾ unfold Y ≡ map _ (unfold Y) ∘⇾ f
unfold-lemma b′ =
subst
(λ h → out-M b ext ∘⇾ h ≡ map C h ∘⇾ f)
(≡-unfold b′)
(proj₂ (_≃_.from (equiv b′) _))
unfold-morphism :
Block "equiv" → Y ⇨ M-coalgebra b ext C
unfold-morphism b = unfold Y , unfold-lemma b
≡-unfold-morphism : ∀ b → _≃_.from (equiv b) _ ≡ unfold-morphism b
≡-unfold-morphism b =
Σ-≡,≡→≡ (≡-unfold b) (refl (unfold-lemma b))
M-final : Contractible (Y ⇨ M-coalgebra b ext C)
M-final =
block λ b →
_↔_.from (contractible↔≃⊤ ext′) $
Eq.with-other-inverse
(equiv b)
(λ _ → unfold-morphism b)
(λ _ → ≡-unfold-morphism b)
-- Note that unfold is not blocked, but that the other pieces are.
M-final-partly-blocked :
Block "M-final" →
Contractible (Y ⇨ M-coalgebra b ext C)
M-final-partly-blocked _ .proj₁ .proj₁ = unfold Y
M-final-partly-blocked ⊠ .proj₁ .proj₂ = M-final .proj₁ .proj₂
M-final-partly-blocked ⊠ .proj₂ = M-final .proj₂
-- M-coalgebra b ext C is a final coalgebra (assuming extensionality).
--
-- This is a variant of Theorem 7 from "Non-wellfounded trees in
-- Homotopy Type Theory".
M-final :
(b : Block "M-final")
{I : Type i} {C : Container I s p} →
(ext : Extensionality p (i ⊔ s ⊔ p)) →
Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) →
Final (M-coalgebra b ext C)
M-final b ext ext′ Y =
M-final.M-final-partly-blocked b ext ext′ Y b
-- The morphism returned by M-final is definitionally equal to an
-- instance of unfold.
_ :
{Y : Coalgebra C} →
proj₁ (proj₁ (M-final b ext₁ ext₂ Y)) ≡ unfold Y
_ = refl _
------------------------------------------------------------------------
-- H-levels
-- If the shape types of C have h-level n, then M C i has h-level n
-- (assuming extensionality).
--
-- This is a variant of Lemma 14 from "Non-wellfounded trees in
-- Homotopy Type Theory".
H-level-M :
Extensionality p (i ⊔ s ⊔ p) →
{I : Type i} {C : Container I s p} {i : I} →
(∀ i → H-level n (Shape C i)) →
H-level n (M C i)
H-level-M {p = p} {i = iℓ} {n = m} ext {C = C} hyp =
Σ-closure m
(Π-closure ext′ m
H-level-Up-to) λ _ →
Π-closure ext′ m $
H-level.⇒≡ m ∘ H-level-Up-to
where
ext′ = lower-extensionality _ lzero ext
step :
∀ P → (∀ {i} → H-level m (P i)) → (∀ {i} → H-level m (⟦ C ⟧ P i))
step P h =
Σ-closure m (hyp _) λ _ →
Π-closure ext m λ _ →
h
H-level-Up-to : ∀ n → H-level m (Up-to C n i)
H-level-Up-to (suc n) = step (Up-to C n) (H-level-Up-to n)
H-level-Up-to zero =
↑-closure m (H-level.mono (Nat.zero≤ m) ⊤-contractible)
-- If the shape types of C have h-level n, then F i has h-level n,
-- where F is the carrier of any final coalgebra of C, and "final
-- coalgebra" is defined using Final′. (Assuming extensionality.)
H-level-final-coalgebra′ :
Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) →
{I : Type i} {C : Container I s p} {i : I} →
(((X , _) , _) : Final-coalgebra′ C) →
(∀ i → H-level n (Shape C i)) →
H-level n (X i)
H-level-final-coalgebra′
{i = iℓ} {s = s} {n = n} ext {C = C} {i = i} F@((X , _) , _) =
block λ b →
(∀ i → H-level n (Shape C i)) ↝⟨ H-level-M ext′ ⟩
H-level n (M C i) ↝⟨ H-level-cong _ n $
carriers-of-final-coalgebras-equivalent′
(Final-coalgebra→Final-coalgebra′ $
M-coalgebra b ext′ C , M-final b ext′ ext)
F _ ⟩□
H-level n (X i) □
where
ext′ = lower-extensionality (iℓ ⊔ s) lzero ext
-- The previous result holds also if Final-coalgebra′ is replaced by
-- Final-coalgebra.
H-level-final-coalgebra :
Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) →
{I : Type i} {C : Container I s p} {i : I} →
(((X , _) , _) : Final-coalgebra C) →
(∀ i → H-level n (Shape C i)) →
H-level n (X i)
H-level-final-coalgebra ext =
H-level-final-coalgebra′ ext ∘
Final-coalgebra→Final-coalgebra′
| {
"alphanum_fraction": 0.364529724,
"avg_line_length": 42.9165217391,
"ext": "agda",
"hexsha": "fe205759fe4cbdc3fc660a7c4cb0726cdbdcb014",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Container/Indexed/M/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Container/Indexed/M/Function.agda",
"max_line_length": 140,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Container/Indexed/M/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 15731,
"size": 49354
} |
data Nat : Set where
record Ord (A : Set) : Set where
field f : A → A
instance
OrdNat : Ord Nat
OrdNat = record { f = λ x → x }
postulate
T : Nat → Set
R : ∀ {A} {{_ : Ord A}} → A → Set
-- Before solving the type of m, instance search considers it to
-- be a potential candidate for Ord Nat. It then proceeds to check
-- uniqueness by comparing m and OrdNat. The problem was that this
-- left a constraint m == OrdNat that leaked into the state.
foo : Set
foo = ∀ (n : Nat) m → R n → T m
| {
"alphanum_fraction": 0.6401590457,
"avg_line_length": 23.9523809524,
"ext": "agda",
"hexsha": "1241eeb7ac79c1cc1772efb834b23c3af04095d9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1456.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1456.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1456.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 154,
"size": 503
} |
{-# OPTIONS --without-K #-}
module Inspect where
open import Data.Unit.Core
open import SimpleHoTT using (refl;_≡_)
------------------------------------------------------------------------
-- Inspect on steroids (borrowed from standard library)
-- Inspect on steroids can be used when you want to pattern match on
-- the result r of some expression e, and you also need to "remember"
-- that r ≡ e.
data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where
⟪_⟫ : (eq : reveal x ≡ y) → Reveal x is y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x)
inspect f x = ⟪ refl (f x) ⟫
| {
"alphanum_fraction": 0.5407854985,
"avg_line_length": 28.7826086957,
"ext": "agda",
"hexsha": "e3e7c815c78e0ee3246624ff464fb417e4c68fe0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Inspect.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Inspect.agda",
"max_line_length": 72,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Inspect.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 205,
"size": 662
} |
-- Andreas, 2015-06-28
-- {-# OPTIONS -v tc.polarity:20 #-}
open import Common.Size
-- List should be monotone in both arguments
-- (even as phantom type).
data List (i : Size) (A : Set) : Set where
[] : List i A
castL : ∀{i A} → List i A → List ∞ A
castL x = x
castLL : ∀{i A} → List i (List i A) → List ∞ (List ∞ A)
castLL x = x
-- Stream should be antitone in the first and monotone in the second argument
-- (even with field `tail' missing).
record Stream (i : Size) (A : Set) : Set where
coinductive
field
head : A
castS : ∀{i A} → Stream ∞ A → Stream i A
castS x = x
castSS : ∀{i A} → Stream ∞ (Stream ∞ A) → Stream i (Stream i A)
castSS x = x
| {
"alphanum_fraction": 0.6089552239,
"avg_line_length": 21.6129032258,
"ext": "agda",
"hexsha": "c157bff80643b8992b8063e9cb06546567f588f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1596.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1596.agda",
"max_line_length": 77,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1596.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 237,
"size": 670
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
module Rings.Orders.Total.Cauchy {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) where
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
cauchy : Sequence A → Set (m ⊔ o)
cauchy s = ∀ (ε : A) → (Ring.0R R < ε) → Sg ℕ (λ N → ∀ {m n : ℕ} → (N <N m) → (N <N n) → abs (Ring._-R_ R (index s m) (index s n)) < ε)
| {
"alphanum_fraction": 0.7069943289,
"avg_line_length": 46,
"ext": "agda",
"hexsha": "78b1b2d4859aaefd99cb678d822982a3ca761ae3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Orders/Total/Cauchy.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Orders/Total/Cauchy.agda",
"max_line_length": 275,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Orders/Total/Cauchy.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 335,
"size": 1058
} |
module Class.Listable where
open import Class.Equality
open import Data.List
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All.Properties
open import Data.List.Relation.Unary.Unique.Propositional
open import Data.List.Membership.Propositional
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
record Listable (A : Set) : Set where
field
listing : List A
unique : Unique listing
complete : (a : A) → a ∈ listing
Listable→Eq : Eq A
Listable→Eq ._≟_ a b = helper (complete a) (complete b) unique
where
helper : ∀ {a b} {l : List A} → (a ∈ l) → (b ∈ l) → Unique l → Dec (a ≡ b)
helper {a} {b} {l} h h' u with l | h | h' | u
... | ._ | here refl | here refl | _ = yes refl
... | ._ | here refl | there h | h' ∷ _ = no λ where refl → All¬⇒¬Any h' h
... | ._ | there h | here refl | h' ∷ _ = no λ where refl → All¬⇒¬Any h' h
... | ._ | there h | there h' | _ ∷ u = helper h h' u
| {
"alphanum_fraction": 0.6122650841,
"avg_line_length": 36.1071428571,
"ext": "agda",
"hexsha": "7270677fbe3b419c8f1c37c44ac31715f0320a5e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Listable.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Listable.agda",
"max_line_length": 82,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Listable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 326,
"size": 1011
} |
{-# OPTIONS --without-K #-}
{-
Ribbon is the explicit covering space construction.
This construction is given by Daniel Grayson, Favonia (me)
and Guillaume Brunerie together.
-}
open import Base
open import Homotopy.Pointed
-- A is the pointed base space.
-- Y is intended to be a (group-)set,
-- but can be an arbitrarily weird space.
module Homotopy.Cover.Ribbon {i} (A⋆ : pType i) {Y : Set i} where
open pType A⋆ renaming (∣_∣ to A ; ⋆ to a)
open import Homotopy.Truncation
open import Homotopy.PathTruncation
open import Homotopy.HomotopyGroups
open import Algebra.GroupSets (fundamental-group A⋆)
-- The HIT ribbon---reconstructed covering space
private
module Ribbon {act : action Y} where
open action act
private
data #ribbon (a₂ : A) : Set i where
#trace : Y → a ≡₀ a₂ → #ribbon a₂
ribbon : A → Set i
ribbon = #ribbon
-- A point in the fiber a₂.
{-
y is a point in the fiber a, and
p is a path to transport y to fiber a₂.
-}
trace : ∀ {a₂} → Y → a ≡₀ a₂ → ribbon a₂
trace = #trace
{-
A loop based at a can used as a group action
or for concatination. Both should be equivalent.
And after pasting, make the type fiberwise a set.
-}
postulate -- HIT
paste : ∀ {a₂} y loop (p : a ≡₀ a₂)
→ trace (y ∙ loop) p ≡ trace y (loop ∘₀ p)
ribbon-is-set : ∀ a₂ → is-set (ribbon a₂)
-- Standard dependent eliminator
ribbon-rec : ∀ a₂ {j} (P : ribbon a₂ → Set j)
⦃ P-is-set : ∀ r → is-set (P r) ⦄
(trace* : ∀ y p → P (trace y p))
(paste* : ∀ y loop p → transport P (paste y loop p) (trace* (y ∙ loop) p)
≡ trace* y (loop ∘₀ p))
→ (∀ r → P r)
ribbon-rec a₂ P trace* paste* (#trace y p) = trace* y p
-- Standard non-dependent eliminator
ribbon-rec-nondep : ∀ a₂ {j} (P : Set j)
⦃ P-is-set : is-set P ⦄
(trace* : ∀ (y : Y) (p : a ≡₀ a₂) → P)
(paste* : ∀ y (loop : a ≡₀ a) p → trace* (y ∙ loop) p ≡ trace* y (loop ∘₀ p))
→ (ribbon a₂ → P)
ribbon-rec-nondep a₂ P trace* paste* (#trace y p) = trace* y p
open Ribbon public hiding (ribbon)
module _ (act : action Y) where
ribbon : A → Set i
ribbon = Ribbon.ribbon {act}
trans-trace : ∀ {a₁ a₂} (q : a₁ ≡ a₂) y p
→ transport ribbon q (trace y p) ≡ trace y (p ∘₀ proj q)
trans-trace refl y p = ap (trace y) $ ! $ refl₀-right-unit p
| {
"alphanum_fraction": 0.5626984127,
"avg_line_length": 30.7317073171,
"ext": "agda",
"hexsha": "94076f1001d53869e4d3747dc19d0368848096d0",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Cover/Ribbon.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Cover/Ribbon.agda",
"max_line_length": 85,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Cover/Ribbon.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 815,
"size": 2520
} |
------------------------------------------------------------------------------
-- ABP Lemma 1
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From Dybjer and Sander's paper: The first lemma states that given a
-- start state S of the ABP, we will arrive at a state S', where the
-- message has been received by the receiver, but where the
-- acknowledgement has not yet been received by the sender.
module FOT.FOTC.Program.ABP.Lemma1NoHelperATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.Loop
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesATP using ( x≢not-x )
open import FOTC.Data.List
open import FOTC.Program.ABP.ABP
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Fair.PropertiesATP
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- 30 November 2013. If we don't have the following definitions
-- outside, the ATPs cannot prove the theorems.
as^ : ∀ b i' is' ds → D
as^ b i' is' ds = await b i' is' ds
{-# ATP definition as^ #-}
bs^ : D → D → D → D → D → D
bs^ b i' is' ds os₁^ = corrupt os₁^ · (as^ b i' is' ds)
{-# ATP definition bs^ #-}
cs^ : D → D → D → D → D → D
cs^ b i' is' ds os₁^ = ack b · (bs^ b i' is' ds os₁^)
{-# ATP definition cs^ #-}
ds^ : D → D → D → D → D → D → D
ds^ b i' is' ds os₁^ os₂^ = corrupt os₂^ · cs^ b i' is' ds os₁^
{-# ATP definition ds^ #-}
os₁^ : D → D → D
os₁^ os₁' ft₁^ = ft₁^ ++ os₁'
{-# ATP definition os₁^ #-}
os₂^ : D → D
os₂^ os₂ = tail₁ os₂
{-# ATP definition os₂^ #-}
------------------------------------------------------------------------------
-- From Dybjer and Sander's paper: From the assumption that os₁ ∈ Fair
-- and hence by unfolding Fair, we conclude that there are ft₁ : F*T
-- and os₁' : Fair, such that os₁ = ft₁ ++ os₁'.
--
-- We proceed by induction on ft₁ : F*T using helper.
-- 26 January 2014. Pattern matching after a @with@ it is not accepted
-- by the termination checker. See Agda issue 59, comment 18.
{-# TERMINATING #-}
lemma₁ : ∀ b i' is' os₁ os₂ as bs cs ds js →
Bit b →
Fair os₁ →
Fair os₂ →
S b (i' ∷ is') os₁ os₂ as bs cs ds js →
∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]
Fair os₁'
∧ Fair os₂'
∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js'
∧ js ≡ i' ∷ js'
lemma₁ b i' is' os₁ os₂ as bs cs ds js Bb Fos₁ Fos₂ s with Fair-out Fos₁
... | .(true ∷ []) , os₁' , f*tnil , os₁≡ft₁++os₁' , Fos₁' = prf
where
postulate
prf : ∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ]
Fair os₁'
∧ Fair os₂'
∧ (as' ≡ await b i' is' ds'
∧ bs' ≡ corrupt os₁' · as'
∧ cs' ≡ ack (not b) · bs'
∧ ds' ≡ corrupt os₂' · (b ∷ cs')
∧ js' ≡ out (not b) · bs')
∧ js ≡ i' ∷ js'
{-# ATP prove prf #-}
... | .(F ∷ ft₁^) , os₁' , f*tcons {ft₁^} FTft₁ , os₁≡ft₁++os₁' , Fos₁' =
lemma₁ b i' is'
(ft₁^ ++ os₁')
(tail₁ os₂)
(await b i' is' ds)
(corrupt (ft₁^ ++ os₁') · await b i' is' ds)
(ack b · (corrupt (ft₁^ ++ os₁') · await b i' is' ds))
(corrupt (tail₁ os₂) ·
(ack b · (corrupt (ft₁^ ++ os₁') · await b i' is' ds)))
js Bb (Fair-in (ft₁^ , os₁' , FTft₁ , refl , Fos₁')) (tail-Fair Fos₂) ihS
where
postulate os₁-eq-helper : os₁ ≡ F ∷ os₁^ os₁' ft₁^
{-# ATP prove os₁-eq-helper #-}
postulate as-eq : as ≡ < i' , b > ∷ (as^ b i' is' ds)
{-# ATP prove as-eq #-}
postulate bs-eq : bs ≡ error ∷ (bs^ b i' is' ds (os₁^ os₁' ft₁^))
{-# ATP prove bs-eq os₁-eq-helper as-eq #-}
postulate cs-eq : cs ≡ not b ∷ cs^ b i' is' ds (os₁^ os₁' ft₁^)
{-# ATP prove cs-eq bs-eq #-}
postulate ds-eq : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
∨ ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove ds-eq head-tail-Fair cs-eq #-}
postulate
as^-eq-helper₁ :
ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove as^-eq-helper₁ x≢not-x #-}
postulate
as^-eq-helper₂ :
ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) →
as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
{-# ATP prove as^-eq-helper₂ #-}
as^-eq : as^ b i' is' ds ≡
send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)
as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq
postulate js-eq : js ≡ out b · bs^ b i' is' ds (os₁^ os₁' ft₁^)
{-# ATP prove js-eq bs-eq #-}
ihS : S b
(i' ∷ is')
(os₁^ os₁' ft₁^)
(os₂^ os₂)
(as^ b i' is' ds)
(bs^ b i' is' ds (os₁^ os₁' ft₁^))
(cs^ b i' is' ds (os₁^ os₁' ft₁^))
(ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂))
js
ihS = as^-eq , refl , refl , refl , js-eq
| {
"alphanum_fraction": 0.4764475889,
"avg_line_length": 35.8066666667,
"ext": "agda",
"hexsha": "e01fdfa361ad4d27bab06e5e015acc72726ad170",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda",
"max_line_length": 84,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1958,
"size": 5371
} |
------------------------------------------------------------------------
-- A virtual machine
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --sized-types #-}
module Lambda.Partiality-monad.Inductive.Virtual-machine where
open import Prelude hiding (⊥)
open import Partiality-monad.Inductive
open import Lambda.Syntax
open import Lambda.Virtual-machine
open Closure Code
-- A functional semantics for the VM.
--
-- For an alternative definition, see the semantics in
-- Lambda.Simplified.Partiality-monad.Inductive.Virtual-machine, which
-- is defined using a fixpoint combinator.
steps : State → ℕ → Maybe Value ⊥
steps s n with step s
steps s zero | continue s′ = never
steps s (suc n) | continue s′ = steps s′ n
steps s n | done v = now (just v)
steps s n | crash = now nothing
steps-increasing : ∀ s n → steps s n ⊑ steps s (suc n)
steps-increasing s n with step s
steps-increasing s zero | continue s′ = never⊑ _
steps-increasing s (suc n) | continue s′ = steps-increasing s′ n
steps-increasing s n | done v = ⊑-refl _
steps-increasing s n | crash = ⊑-refl _
stepsˢ : State → Increasing-sequence (Maybe Value)
stepsˢ s = (steps s , steps-increasing s)
exec : State → Maybe Value ⊥
exec s = ⨆ (stepsˢ s)
| {
"alphanum_fraction": 0.6053811659,
"avg_line_length": 31.1162790698,
"ext": "agda",
"hexsha": "a563332de567925b305e12a00d255b2af7afedd4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 337,
"size": 1338
} |
module Cats.Category.Constructions.Initial where
open import Data.Product using (proj₁ ; proj₂)
open import Level
open import Cats.Category.Base
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Constructions.Unique as Unique
module Build {lo la l≈} (Cat : Category lo la l≈) where
open Category Cat
open Iso.Build Cat
open Unique.Build Cat
IsInitial : Obj → Set (lo ⊔ la ⊔ l≈)
IsInitial Zero = ∀ X → ∃! Zero X
initial→id-unique : ∀ {A} → IsInitial A → IsUnique (id {A})
initial→id-unique {A} init id′ with init A
... | ∃!-intro id″ _ id″-uniq = ≈.trans (≈.sym (id″-uniq _)) (id″-uniq _)
initial-unique : ∀ {A B} → IsInitial A → IsInitial B → A ≅ B
initial-unique {A} {B} A-init B-init = record
{ forth = ∃!′.arr (A-init B)
; back = ∃!′.arr (B-init A)
; back-forth = ≈.sym (initial→id-unique A-init _)
; forth-back = ≈.sym (initial→id-unique B-init _)
}
Initial⇒X-unique : ∀ {Zero} → IsInitial Zero → ∀ {X} {f g : Zero ⇒ X} → f ≈ g
Initial⇒X-unique init {X} {f} {g} with init X
... | ∃!-intro x _ x-uniq = ≈.trans (≈.sym (x-uniq _)) (x-uniq _)
record HasInitial {lo la l≈} (Cat : Category lo la l≈)
: Set (lo ⊔ la ⊔ l≈) where
open Category Cat
open Build Cat
field
Zero : Obj
isInitial : IsInitial Zero
| {
"alphanum_fraction": 0.6165011459,
"avg_line_length": 26.18,
"ext": "agda",
"hexsha": "0a152a9463ec2f2d73b87cb00a4ac2f8c47c86c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Initial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 464,
"size": 1309
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Limits where
open import Level
open import Categories.Category
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.Object.Terminal
open import Categories.Object.Initial
open import Categories.Diagram.Limit
open import Categories.Diagram.Colimit
open import Categories.Diagram.Cone.Properties
open import Categories.Diagram.Cocone.Properties
open import Categories.Category.Construction.Cones
open import Categories.Category.Construction.Cocones
private
variable
o ℓ e : Level
𝒞 𝒟 ℐ : Category o ℓ e
module _ (F : Functor 𝒞 𝒟) {J : Functor ℐ 𝒞} where
PreservesLimit : (L : Limit J) → Set _
PreservesLimit L = IsTerminal (Cones (F ∘F J)) (F-map-Coneˡ F limit)
where open Limit L
PreservesColimit : (L : Colimit J) → Set _
PreservesColimit L = IsInitial (Cocones (F ∘F J)) (F-map-Coconeˡ F colimit)
where open Colimit L
ReflectsLimits : Set _
ReflectsLimits = ∀ (K : Cone J) → IsTerminal (Cones (F ∘F J)) (F-map-Coneˡ F K) → IsTerminal (Cones J) K
ReflectsColimits : Set _
ReflectsColimits = ∀ (K : Cocone J) → IsInitial (Cocones (F ∘F J)) (F-map-Coconeˡ F K) → IsInitial (Cocones J) K
-- record CreatesLimits : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o″ ⊔ ℓ″) where
-- field
-- preserves-limits : PreservesLimit
-- reflects-limits : ReflectsLimits
-- record CreatesColimits : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o″ ⊔ ℓ″) where
-- field
-- preserves-colimits : PreservesColimit
-- reflects-colimits : ReflectsColimits
Continuous : ∀ o ℓ e → (F : Functor 𝒞 𝒟) → Set _
Continuous {𝒞 = 𝒞} o ℓ e F = ∀ {𝒥 : Category o ℓ e} {J : Functor 𝒥 𝒞} (L : Limit J) → PreservesLimit F L
Cocontinuous : ∀ o ℓ e → (F : Functor 𝒞 𝒟) → Set _
Cocontinuous {𝒞 = 𝒞} o ℓ e F = ∀ {𝒥 : Category o ℓ e} {J : Functor 𝒥 𝒞} (L : Colimit J) → PreservesColimit F L
| {
"alphanum_fraction": 0.6769633508,
"avg_line_length": 34.1071428571,
"ext": "agda",
"hexsha": "c0d51cf88665a112f0f2bc7fdfbf4783c8bff8e9",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Limits.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Limits.agda",
"max_line_length": 114,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Limits.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 659,
"size": 1910
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Maybe
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
module KeyValue.KeyValue {a b : _} (keys : Set a) (values : Set b) where
record KeyValue {c : _} (maps : Set c) : Set (a ⊔ b ⊔ c) where
field
tryFind : maps → keys → Maybe values
add : (map : maps) → keys → values → maps
empty : maps
count : maps → ℕ
lookupAfterAdd : (map : maps) → (k : keys) → (v : values) → tryFind (add map k v) k ≡ yes v
lookupAfterAdd' : (map : maps) → (k1 : keys) → (v : values) → (k2 : keys) → (k1 ≡ k2) || (tryFind (add map k1 v) k2 ≡ tryFind map k2)
countAfterAdd' : (map : maps) → (k : keys) → (v : values) → (tryFind map k ≡ no) → count (add map k v) ≡ succ (count map)
countAfterAdd : (map : maps) → (k : keys) → (v1 v2 : values) → (tryFind map k ≡ yes v2) → count (add map k v1) ≡ count map
| {
"alphanum_fraction": 0.6027253669,
"avg_line_length": 45.4285714286,
"ext": "agda",
"hexsha": "795c3752764d9411e306093826d4e41a300f377c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "KeyValue/KeyValue.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "KeyValue/KeyValue.agda",
"max_line_length": 137,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "KeyValue/KeyValue.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 342,
"size": 954
} |
module TerminationArgumentSwapping where
-- subtyping simple types
data Bool : Set where
true : Bool
false : Bool
_&&_ : Bool -> Bool -> Bool
true && a = a
false && a = false
data Ty : Set where
bot : Ty
top : Ty
arr : Ty -> Ty -> Ty
subty : Ty -> Ty -> Bool
subty bot _ = true
subty _ top = true
subty (arr a b) (arr a' b') = subty a' a && subty b b'
subty _ _ = false
-- maximum with happy swapping
data Nat : Set where
zero : Nat
succ : Nat -> Nat
-- Maximum of 3 numbers
max3 : Nat -> Nat -> Nat -> Nat
max3 zero zero z = z
max3 zero y zero = y
max3 x zero zero = x
max3 (succ x) (succ y) zero = succ (max3 x y zero)
max3 (succ x) zero (succ z) = succ (max3 x z zero)
max3 zero (succ y) (succ z) = succ (max3 y z zero)
max3 (succ x) (succ y) (succ z) = succ (max3 z x y)
-- can also be done with sized types
-- max3 : Nat^i -> Nat^i -> Nat^i -> Nat^i
-- swapping with higher-order datatypes
data Ord : Set where
ozero : Ord
olim : (Nat -> Ord) -> Ord
foo : Ord -> (Nat -> Ord) -> Ord
foo ozero g = ozero
foo (olim f) g = olim (\n -> foo (g n) f)
| {
"alphanum_fraction": 0.5974499089,
"avg_line_length": 20.3333333333,
"ext": "agda",
"hexsha": "6fd523eccdbd4e9f791a42811bba03a36cf2f428",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/TerminationArgumentSwapping.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/TerminationArgumentSwapping.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/TerminationArgumentSwapping.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 385,
"size": 1098
} |
module Typed.LTLCRef where
open import Data.List.Relation.Ternary.Interleaving.Propositional
open import Relation.Unary hiding (_∈_)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Function
open import Category.Monad
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Allstar
open import Relation.Ternary.Separation.Morphisms
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Monad.Reader
open import Prelude
data Ty : Set where
unit : Ty
ref : Ty → Ty
prod : Ty → Ty → Ty
_⊸_ : (a b : Ty) → Ty
Ctx = List Ty
CtxT = List Ty → List Ty
open import Relation.Ternary.Separation.Construct.List Ty
open import Relation.Ternary.Separation.Construct.Market
open import Relation.Ternary.Separation.Construct.Product
infixr 20 _◂_
_◂_ : Ty → CtxT → CtxT
(x ◂ f) Γ = x ∷ f Γ
variable a b c : Ty
variable ℓv : Level
variable τ : Set ℓv
variable Γ Γ₁ Γ₂ Γ₃ : List τ
data Exp : Ty → Ctx → Set where
-- base type
tt : ε[ Exp unit ]
letunit : ∀[ Exp unit ✴ Exp a ⇒ Exp a ]
-- linear λ calculus
var : ∀[ Just a ⇒ Exp a ]
lam : ∀[ (a ◂ id ⊢ Exp b) ⇒ Exp (a ⊸ b) ]
ap : ∀[ Exp (a ⊸ b) ✴ Exp a ⇒ Exp b ]
-- products
pair : ∀[ Exp a ✴ Exp b ⇒ Exp (prod a b) ]
letpair : ∀[ Exp (prod a b) ✴ (λ Γ → a ∷ b ∷ Γ) ⊢ Exp c ⇒ Exp c ]
-- state
ref : ε[ Exp a ⇒ Exp (ref a) ]
swaps : ∀[ Exp (ref a) ✴ Exp b ⇒ Exp (prod a (ref b)) ]
del : ε[ Exp (ref unit) ⇒ Exp unit ]
-- store types
ST = List Ty
-- values
data Val : Ty → Pred ST 0ℓ where
tt : ε[ Val unit ]
clos : Exp b (a ∷ Γ) → ∀[ Allstar Val Γ ⇒ Val (a ⊸ b) ]
ref : ∀[ Just a ⇒ Val (ref a) ]
pair : ∀[ Val a ✴ Val b ⇒ Val (prod a b) ]
{- The 'give-it-to-me-straight' semantics -}
Store : ST → ST → Set
Store = Allstar Val
-- {- First attempt -- evaluation without a frame, seems simple enough... -}
-- eval₁ : ∀ {Ψ Γ} → Exp a Γ → Allstar Val Γ Φ₁ → Store Ψ Φ₂ → Φ₁ ⊎ Φ₂ ≣ Ψ →
-- ∃ λ Ψ' → ∃₂ λ Φ₃ Φ₄ → Store Ψ' Φ₃ × Val a Φ₄ × Φ₃ ⊎ Φ₄ ≣ Ψ'
-- eval₁ (num x) nil μ σ = -, -, -, μ , num x , ⊎-comm σ
-- eval₁ (lam e) env μ σ = -, -, -, μ , (clos e env) , ⊎-comm σ
-- eval₁ (ap (f ×⟨ σ ⟩ e)) env μ σ₂ =
-- let
-- env₁ ×⟨ σ₃ ⟩ env₂ = repartition σ env
-- _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₂
-- {- Oops, store contains more stuff than used; i.e. we have a frame -}
-- in case eval₁ f env₁ μ {!τ₂!} of λ where
-- (_ , _ , _ , μ' , clos e env₃ , σ₄) → {!!}
-- eval₁ (var x) = {!!}
-- eval₁ (ref e) = {!!}
-- eval₁ (deref e) = {!!}
-- eval₁ (asgn x) = {!!}
-- {- First attempt -- evaluation *with* a frame. Are you sure want this? -}
-- eval₂ : ∀ {Ψ Γ Φf} → Exp a Γ → Allstar Val Γ Φ₁ → Store Ψ Φ₂ → Φ₁ ⊎ Φ₂ ≣ Φ → Φ ⊎ Φf ≣ Ψ →
-- ∃₂ λ Φ' Ψ' → ∃₂ λ Φ₃ Φ₄ → Store Ψ' Φ₃ × Val a Φ₄ × Φ₃ ⊎ Φ₄ ≣ Φ' × Φ' ⊎ Φf ≣ Ψ'
-- eval₂ (num x) nil μ σ₁ σ₂ =
-- case ⊎-id⁻ˡ σ₁ of λ where refl → -, -, -, -, μ , num x , ⊎-idʳ , σ₂
-- eval₂ (lam x) env μ σ₁ σ₂ = {!!}
-- eval₂ (pair (e₁ ×⟨ σ ⟩ e₂)) env μ σ₁ σ₂ =
-- let
-- env₁ ×⟨ σ₃ ⟩ env₂ = repartition σ env
-- _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₁ -- separation between sub-env and store
-- _ , τ₃ , τ₄ = ⊎-assoc (⊎-comm τ₁) σ₂ -- compute the frame
-- in case eval₂ e₁ env₁ μ τ₂ τ₃ of λ where
-- (_ , _ , _ , _ , μ' , v₁ , σ₄ , σ₅) →
-- let v = eval₂ e₂ env₂ μ' {!τ₁!} {!!} in {!!}
-- eval₂ (var x) env μ σ₁ σ₂ = {!!}
-- eval₂ (ref e) env μ σ₁ σ₂ = {!!}
-- eval₂ (deref e) env μ σ₁ σ₂ = {!!}
-- eval₂ (asgn x) env μ σ₁ σ₂ = {!!}
-- eval₂ (ap (f ×⟨ σ ⟩ e)) env μ σ₁ σ₂ = {!!}
{- The monadic semantics -}
module _ {i : Size} where
open import Relation.Ternary.Separation.Monad.Delay public
open import Relation.Ternary.Separation.Monad.State
open import Relation.Ternary.Separation.Monad.State.Heap Val
open HeapOps (Delay i) {{ monad = delay-monad }}
using (state-monad; newref; read; write; Cells)
public
open ReaderTransformer id-morph Val (StateT (Delay i) Cells)
{{ monad = state-monad }}
renaming (Reader to M'; reader-monad to monad)
public
open Monads.Monad monad public
open Monads using (_&_; str; typed-str) public
M : Size → (Γ₁ Γ₂ : Ctx) → Pt ST 0ℓ
M i = M' {i}
mutual
eval⊸ : ∀ {i Γ} → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ M i Γ ε (Val b) ]
eval⊸ e v = do
clos e env ×⟨ σ₂ ⟩ v ← ►eval e & v
empty ← append (cons (v ×⟨ ⊎-comm σ₂ ⟩ env))
►eval e
eval : ∀ {i Γ} → Exp a Γ → ε[ M i Γ ε (Val a) ]
eval tt = do
return tt
eval (letunit (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
tt ← frame Γ≺ (►eval e₁)
►eval e₂
eval (var refl) = do
lookup
eval (lam e) = do
env ← ask
return (clos e env)
eval (pair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
v₁ ← frame Γ≺ (►eval e₁)
v₂✴v₁ ← ►eval e₂ & v₁
return (pair (✴-swap v₂✴v₁))
eval (letpair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
pair (v₁ ×⟨ σ ⟩ v₂) ← frame Γ≺ (►eval e₁)
empty ← prepend (cons (v₁ ×⟨ σ ⟩ (singleton v₂)))
►eval e₂
eval (ap (f ×⟨ Γ≺ ⟩ e)) = do
v ← frame (⊎-comm Γ≺) (►eval e)
eval⊸ f v
eval (ref e) = do
v ← ►eval e
r ← liftM (newref v)
return (ref r)
eval (swaps (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
ref ra ← frame Γ≺ (►eval e₁)
vb ×⟨ σ₁ ⟩ ra ← ►eval e₂ & ra
rb ×⟨ σ₂ ⟩ va ← liftM (write (ra ×⟨ ⊎-comm σ₁ ⟩ vb))
return (pair (va ×⟨ (⊎-comm σ₂) ⟩ (ref rb)))
eval (del e) = do
ref r ← ►eval e
liftM (read r)
►eval : ∀ {i Γ} → Exp a Γ → ε[ M i Γ ε (Val a) ]
app (app (►eval e) env σ) μ σ' = later (λ where .force → app (app (eval e) env σ) μ σ')
| {
"alphanum_fraction": 0.5466139752,
"avg_line_length": 28.2588832487,
"ext": "agda",
"hexsha": "8a78ffde897b8b1cc75e9bb84c1ba3729461d56c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Typed/LTLCRef.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Typed/LTLCRef.agda",
"max_line_length": 92,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Typed/LTLCRef.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 2284,
"size": 5567
} |
{- 2010-09-28 Andreas, see issue 336 -}
module WhyWeNeedUntypedLambda where
IdT = ({A : Set} -> A -> A)
data _==_ {A : Set2}(a : A) : A -> Set where
refl : a == a
-- Untyped lambda succeeds, because checking \ x -> x : X is postponed,
-- then the solution X = IdT is found, and upon revisiting the tc problem
-- a hidden lambda \ {A} is inserted.
foo : ({X : Set1} -> X -> X == IdT -> Set) -> Set
foo k = k (\ x -> x) refl -- succeeds
{-
-- Typed lambda fails, because \ (x : _) -> x has inferred type ?A -> ?A
-- but then unification with IdT fails.
foo' : ({X : Set1} -> X -> X == IdT -> Set) -> Set
foo' k = k (\ (x : _) -> x) refl -- fails
-}
| {
"alphanum_fraction": 0.5610859729,
"avg_line_length": 30.1363636364,
"ext": "agda",
"hexsha": "4b0977bc42e41cf1089893a5e3a4b6087dfc2eb7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 223,
"size": 663
} |
------------------------------------------------------------------------
-- The parser data type
------------------------------------------------------------------------
-- This hybrid variant is coinductive /and/ includes !_.
module RecursiveDescent.Hybrid.Type where
open import Data.Bool
open import Data.Product.Record
open import RecursiveDescent.Index
-- A type for parsers which can be implemented using recursive
-- descent. The types used ensure that the implemented backends are
-- structurally recursive.
-- The parsers are indexed on a type of nonterminals.
codata Parser (tok : Set) (nt : ParserType) : ParserType₁ where
!_ : forall {e c r}
-> nt (e , c) r -> Parser tok nt (e , step c) r
symbol : Parser tok nt (false , leaf) tok
return : forall {r} -> r -> Parser tok nt (true , leaf) r
fail : forall {r} -> Parser tok nt (false , leaf) r
_?>>=_ : forall {c₁ e₂ c₂ r₁ r₂}
-> Parser tok nt (true , c₁) r₁
-> (r₁ -> Parser tok nt (e₂ , c₂) r₂)
-> Parser tok nt (e₂ , node c₁ c₂) r₂
_!>>=_ : forall {c₁ r₁ r₂} {i₂ : r₁ -> Index}
-> Parser tok nt (false , c₁) r₁
-> ((x : r₁) -> Parser tok nt (i₂ x) r₂)
-> Parser tok nt (false , step c₁) r₂
alt : forall e₁ e₂ {c₁ c₂ r}
-> Parser tok nt (e₁ , c₁) r
-> Parser tok nt (e₂ , c₂) r
-> Parser tok nt (e₁ ∨ e₂ , node c₁ c₂) r
-- Grammars.
Grammar : Set -> ParserType -> Set1
Grammar tok nt = forall {i r} -> nt i r -> Parser tok nt i r
| {
"alphanum_fraction": 0.5300581771,
"avg_line_length": 35.976744186,
"ext": "agda",
"hexsha": "deefe192dcb7aa52a6ffecc13d0b7f7cc85bc962",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 450,
"size": 1547
} |
------------------------------------------------------------------------------
-- No theorem used by the shelltestrunner test
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module NoTheorem where
postulate
D : Set
_≡_ : D → D → Set
a b : D
postulate foo : a ≡ b
{-# ATP prove foo #-}
| {
"alphanum_fraction": 0.37,
"avg_line_length": 26.3157894737,
"ext": "agda",
"hexsha": "5bed1870cdc832300c6e3f9b4e87f046da923742",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/Errors/NoTheorem.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/NonConjectures/NoTheorem.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/Errors/NoTheorem.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 94,
"size": 500
} |
module Categories.SubCategory where
open import Categories.Category
open import Data.Product
sub-category : ∀ {o ℓ e o′ ℓ′} -> (C : Category o ℓ e) -> let module C = Category C in
{A : Set o′} (U : A -> C.Obj) (R : ∀ {a b} -> U a C.⇒ U b -> Set ℓ′) ->
(∀ {a} -> R (C.id {U a})) -> (∀ {a b c} {f : U b C.⇒ U c} {g : U a C.⇒ U b} -> R f -> R g -> R (f C.∘ g)) →
Category _ _ _
sub-category C {A} U R Rid R∘ = record
{ Obj = A
; _⇒_ = λ a b → Σ (U a C.⇒ U b) R
; _≡_ = λ f g → proj₁ f C.≡ proj₁ g
; id = C.id , Rid
; _∘_ = λ f g → (proj₁ f C.∘ proj₁ g) , R∘ (proj₂ f) (proj₂ g)
; assoc = C.assoc
; identityˡ = C.identityˡ
; identityʳ = C.identityʳ
; equiv = record
{ refl = C.Equiv.refl
; sym = C.Equiv.sym
; trans = C.Equiv.trans
}
; ∘-resp-≡ = C.∘-resp-≡
}
where
module C = Category C
| {
"alphanum_fraction": 0.4758698092,
"avg_line_length": 31.8214285714,
"ext": "agda",
"hexsha": "8364da7e9f0e6e8711655444b841ae45eb305ce8",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/SubCategory.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/SubCategory.agda",
"max_line_length": 122,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/SubCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 378,
"size": 891
} |
module EtaAndMetas where
record Functor : Set₁ where
field
F : Set → Set
eta : Functor → Functor
eta S = record { F = F }
where open Functor S
postulate
Π : (To : Functor) → Set
mkΠ : (B : Functor) → Π (eta B)
To : Functor
π : Π (eta To)
π = mkΠ _
| {
"alphanum_fraction": 0.5962962963,
"avg_line_length": 14.2105263158,
"ext": "agda",
"hexsha": "a1b365025798f3d2f43105d93c6f6bc0833d7613",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/EtaAndMetas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/EtaAndMetas.agda",
"max_line_length": 33,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/EtaAndMetas.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 100,
"size": 270
} |
module Integer12 where
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥)
open import Data.Bool using (Bool; true; false)
open import Relation.Binary.PropositionalEquality
as PropEq using (_≡_; refl; cong; cong₂; sym)
isTrue : Bool → Set
isTrue true = ⊤
isTrue false = ⊥
-- 整数のガチな定義
--(succ (succ (pred zero))などはもうできない)
mutual
data ℤ : Set where
zero : ℤ
succ : (x : ℤ) → isTrue (zeroOrSucc x) → ℤ
pred : (x : ℤ) → isTrue (zeroOrPred x) → ℤ
zeroOrSucc : ℤ → Bool
zeroOrSucc zero = true
zeroOrSucc (succ x p) = true
zeroOrSucc (pred x p) = false
zeroOrPred : ℤ → Bool
zeroOrPred zero = true
zeroOrPred (succ x p) = false
zeroOrPred (pred x p) = true
-- succ (succ zero tt) tt のように使う
postulate -- ここだけ
ttxS : (x : ℤ) → (isTrue (zeroOrSucc x))
ttxP : (x : ℤ) → (isTrue (zeroOrPred x))
succPred :
(x : ℤ)(px : isTrue (zeroOrPred x))(px2 : isTrue (zeroOrSucc (pred x px)))
→ succ (pred x px) px2 ≡ x
predSucc :
(x : ℤ)(px : isTrue (zeroOrSucc x))(px2 : isTrue (zeroOrPred (succ x px)))
→ pred (succ x px) px2 ≡ x
pxToTtxS : (x : ℤ)(px : isTrue (zeroOrSucc x)) → px ≡ ttxS x
pyToTtxP : (y : ℤ)(py : isTrue (zeroOrPred y)) → py ≡ ttxP y
myCong₂S : {x y : ℤ}{u : ⊤}{v : ⊤}
→ x ≡ y → u ≡ v → succ x (ttxS x) ≡ succ y (ttxS y)
myCong₂P : {x y : ℤ}{u : ⊤}{v : ⊤}
→ x ≡ y → u ≡ v → pred x (ttxP x) ≡ pred y (ttxP y)
myCong₂ : {A : Set}(x y : A){B : Set}{C : Set}(f : A → B → C){u v : B} →
x ≡ y → u ≡ v → f x u ≡ f y v
infixl 40 _+_
infixl 60 _*_
-- 加法
_+_ : ℤ → ℤ → ℤ
zero + y = y
succ x px + zero = succ x px
succ x px + succ y py
= let z = succ x px + y in succ z (ttxS z)
succ x _ + pred y _ = x + y
pred x px + zero = pred x px
pred x _ + succ y _ = x + y
pred x px + pred y py
= let z = pred x px + y in pred z (ttxP z)
-- 反数
opposite : ℤ → ℤ
opposite zero = zero
opposite (succ x px) = pred (opposite x) (ttxP (opposite x))
opposite (pred x px) = succ (opposite x) (ttxS (opposite x))
-- 乗法
_*_ : ℤ → ℤ → ℤ
x * zero = zero
x * succ y py = (x * y) + x
x * pred y py = (x * y) + (opposite x)
-- (-1) * (-1) = 1
-1*-1≡1 : pred zero tt * pred zero tt ≡ succ zero tt
-1*-1≡1 = refl
-- 2 * (-3) = (-6)
2*-3≡-6 :
succ (succ zero tt) tt * pred (pred (pred zero tt) tt) tt
≡ pred (pred (pred (pred (pred (pred zero tt) tt) tt) tt) tt) tt
2*-3≡-6 = refl
-- 雑多な定理
-- 右から0を足しても変わらない
x+zero≡x : (x : ℤ) → x + zero ≡ x
x+zero≡x zero = refl
x+zero≡x (succ _ _) = refl
x+zero≡x (pred _ _) = refl
-- ユーティリティ
mutual
succOut1 : (x y : ℤ)(px : isTrue (zeroOrSucc x))
→ succ x px + y ≡ succ (x + y) (ttxS (x + y))
succOut1 x zero px rewrite x+zero≡x x | pxToTtxS x px = refl
succOut1 x (succ y py) px rewrite succOut1 x y px | succOut2 x y py = refl
succOut1 x (pred y py) _ rewrite predOut2 x y py
| succPred (x + y) (ttxP (x + y))
(ttxS (pred (x + y) (ttxP (x + y)))) = refl
succOut2 : (x y : ℤ)(py : isTrue (zeroOrSucc y))
→ x + succ y py ≡ succ (x + y) (ttxS (x + y))
succOut2 zero y py rewrite pxToTtxS y py = refl
succOut2 (succ x px) y py = refl
succOut2 (pred x px) y py rewrite predOut1 x y px
| succPred (x + y) (ttxP (x + y))
(ttxS (pred (x + y) (ttxP (x + y)))) = refl
predOut1 : (x y : ℤ)(px : isTrue (zeroOrPred x))
→ pred x px + y ≡ pred (x + y) (ttxP (x + y))
predOut1 x zero px rewrite x+zero≡x x | pyToTtxP x px = refl
predOut1 x (succ y py) px rewrite succOut2 x y py
| predSucc (x + y) (ttxS (x + y))
(ttxP (succ (x + y) (ttxS (x + y)))) = refl
predOut1 x (pred y py) px rewrite predOut1 x y px
| predOut2 x y py = refl
predOut2 : (x y : ℤ)(py : isTrue (zeroOrPred y))
→ x + pred y py ≡ pred (x + y) (ttxP (x + y))
predOut2 zero y py rewrite pyToTtxP y py = refl
predOut2 (succ x px) y py rewrite succOut1 x y px
| predSucc (x + y) (ttxS (x + y))
(ttxP (succ (x + y) (ttxS (x + y)))) = refl
predOut2 (pred x px) y py = refl
-- 結合法則
ℤ+-assoc : (x y z : ℤ) → (x + y) + z ≡ x + (y + z)
ℤ+-assoc zero y z = refl
ℤ+-assoc (succ x px) y z rewrite succOut1 x y px
| succOut1 (x + y) z (ttxS (x + y))
| succOut1 x (y + z) px
= myCong₂S (ℤ+-assoc x y z) refl
ℤ+-assoc (pred x px) y z rewrite predOut1 x y px
| predOut1 (x + y) z (ttxP (x + y))
| predOut1 x (y + z) px
= myCong₂P (ℤ+-assoc x y z) refl
-- 左分配法則
ℤdistL : (x y z : ℤ) → x * (y + z) ≡ (x * y) + (x * z)
ℤdistL x y zero rewrite x+zero≡x y | x+zero≡x (x * y) = refl
ℤdistL x y (succ z pz) rewrite succOut2 y z pz
| ℤdistL x y z
= ℤ+-assoc (x * y) (x * z) x
ℤdistL x y (pred z pz) rewrite predOut2 y z pz
| ℤdistL x y z
= ℤ+-assoc (x * y) (x * z) (opposite x)
-- oppositeの線形性
oppoLinear : (x y : ℤ) → opposite x + opposite y ≡ opposite (x + y)
oppoLinear x zero rewrite x+zero≡x (opposite x)
| x+zero≡x x = refl
oppoLinear x (succ y py) rewrite predOut2 (opposite x) (opposite y) (ttxP (opposite y))
| succOut2 x y py
= myCong₂P (oppoLinear x y) refl
oppoLinear x (pred y py) rewrite succOut2 (opposite x) (opposite y) (ttxS (opposite y))
| predOut2 x y py
= myCong₂S (oppoLinear x y) refl
| {
"alphanum_fraction": 0.4983757907,
"avg_line_length": 34.0058139535,
"ext": "agda",
"hexsha": "3a6dec795eb728d2ac6197f2c5da4b51c132904b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "righ1113/Agda",
"max_forks_repo_path": "Integer12.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "righ1113/Agda",
"max_issues_repo_path": "Integer12.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "righ1113/Agda",
"max_stars_repo_path": "Integer12.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2282,
"size": 5849
} |
open import SOAS.Common
open import SOAS.Families.Core
open import Categories.Object.Initial
open import SOAS.Coalgebraic.Strength
import SOAS.Metatheory.MetaAlgebra
-- Monoids with ⅀-algebra structure
module SOAS.Metatheory.Monoid {T : Set}
(⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F)
where
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Construction.Structure as Structure
open import SOAS.Abstract.Hom
open import SOAS.Abstract.Monoid
open import SOAS.Coalgebraic.Map
open import SOAS.Coalgebraic.Monoid
open import SOAS.Metatheory.Algebra {T} ⅀F
open Strength ⅀:Str
private
variable
Γ Δ : Ctx
α : T
-- Family with compatible monoid and ⅀-algebra structure
record ΣMon (ℳ : Familyₛ) : Set where
field
ᵐ : Mon ℳ
𝑎𝑙𝑔 : ⅀ ℳ ⇾̣ ℳ
open Mon ᵐ public
field
μ⟨𝑎𝑙𝑔⟩ : {σ : Γ ~[ ℳ ]↝ Δ}(t : ⅀ ℳ α Γ)
→ μ (𝑎𝑙𝑔 t) σ ≡ 𝑎𝑙𝑔 (str ᴮ ℳ (⅀₁ μ t) σ)
record ΣMon⇒ {ℳ 𝒩 : Familyₛ}(ℳᴹ : ΣMon ℳ)(𝒩ᴹ : ΣMon 𝒩)
(f : ℳ ⇾̣ 𝒩) : Set where
private module ℳ = ΣMon ℳᴹ
private module 𝒩 = ΣMon 𝒩ᴹ
field
ᵐ⇒ : Mon⇒ ℳ.ᵐ 𝒩.ᵐ f
⟨𝑎𝑙𝑔⟩ : {t : ⅀ ℳ α Γ} → f (ℳ.𝑎𝑙𝑔 t) ≡ 𝒩.𝑎𝑙𝑔 (⅀₁ f t)
open Mon⇒ ᵐ⇒ public
-- Category of Σ-monoids
module ΣMonoidStructure = Structure 𝔽amiliesₛ ΣMon
ΣMonoidCatProps : ΣMonoidStructure.CategoryProps
ΣMonoidCatProps = record
{ IsHomomorphism = ΣMon⇒
; id-hom = λ {ℳ}{ℳᴹ} → record
{ ᵐ⇒ = AsMonoid⇒.ᵐ⇒ 𝕄on.id
; ⟨𝑎𝑙𝑔⟩ = cong (ΣMon.𝑎𝑙𝑔 ℳᴹ) (sym ⅀.identity)
}
; comp-hom = λ{ {𝐸ˢ = 𝒪ᴹ} g f record { ᵐ⇒ = gᵐ⇒ ; ⟨𝑎𝑙𝑔⟩ = g⟨𝑎𝑙𝑔⟩ }
record { ᵐ⇒ = fᵐ⇒ ; ⟨𝑎𝑙𝑔⟩ = f⟨𝑎𝑙𝑔⟩ } → record
{ ᵐ⇒ = AsMonoid⇒.ᵐ⇒ ((g ⋉ gᵐ⇒) 𝕄on.∘ (f ⋉ fᵐ⇒))
; ⟨𝑎𝑙𝑔⟩ = trans (cong g f⟨𝑎𝑙𝑔⟩) (trans g⟨𝑎𝑙𝑔⟩
(cong (ΣMon.𝑎𝑙𝑔 𝒪ᴹ) (sym ⅀.homomorphism))) } }
}
Σ𝕄onoids : Category 1ℓ 0ℓ 0ℓ
Σ𝕄onoids = ΣMonoidStructure.StructCat ΣMonoidCatProps
module Σ𝕄on = Category Σ𝕄onoids
ΣMonoid : Set₁
ΣMonoid = Σ𝕄on.Obj
ΣMonoid⇒ : ΣMonoid → ΣMonoid → Set
ΣMonoid⇒ = Σ𝕄on._⇒_
module FreeΣMonoid = ΣMonoidStructure.Free ΣMonoidCatProps
| {
"alphanum_fraction": 0.6398058252,
"avg_line_length": 24.8192771084,
"ext": "agda",
"hexsha": "917689a3f4921e7cd9e7da034da2be16f0188a5d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/Monoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/Monoid.agda",
"max_line_length": 68,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1121,
"size": 2060
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.GroupoidTruncation where
open import Cubical.HITs.GroupoidTruncation.Base public
open import Cubical.HITs.GroupoidTruncation.Properties public
| {
"alphanum_fraction": 0.8139534884,
"avg_line_length": 35.8333333333,
"ext": "agda",
"hexsha": "d4b40a07d48ac062ad8f4276cf7b81a2b85cb098",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/GroupoidTruncation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/GroupoidTruncation.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/GroupoidTruncation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 57,
"size": 215
} |
{-# OPTIONS --safe --cubical #-}
module Container where
open import Prelude
Container : (s p : Level) → Type (ℓsuc (s ℓ⊔ p))
Container s p = Σ[ Shape ⦂ Type s ] × (Shape → Type p)
⟦_⟧ : ∀ {s p ℓ} → Container s p → Set ℓ → Set (s ℓ⊔ p ℓ⊔ ℓ)
⟦ S , P ⟧ X = Σ[ s ⦂ S ] × (P s → X)
cmap : ∀ {s p} {C : Container s p} → (A → B) → ⟦ C ⟧ A → ⟦ C ⟧ B
cmap f xs = xs .fst , λ i → f (xs .snd i)
{-# INLINE cmap #-}
| {
"alphanum_fraction": 0.5012224939,
"avg_line_length": 25.5625,
"ext": "agda",
"hexsha": "83cec1fef17ac1ce8612f9da3ea39a7cc04863bf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Container.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Container.agda",
"max_line_length": 64,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Container.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 183,
"size": 409
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.