Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- Bijections ------------------------------------------------------------------------ module Function.Bijection where open import Data.Product open import Level open import Relation.Binary open import Function.Equality as F using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_) open import Function.Injection as Inj hiding (id; _∘_) open import Function.Surjection as Surj hiding (id; _∘_) open import Function.LeftInverse as Left hiding (id; _∘_) -- Bijective functions. record Bijective {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} (to : From ⟶ To) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field injective : Injective to surjective : Surjective to open Surjective surjective public left-inverse-of : from LeftInverseOf to left-inverse-of x = injective (right-inverse-of (to ⟨$⟩ x)) -- The set of all bijections between two setoids. record Bijection {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To bijective : Bijective to open Bijective bijective public injection : Injection From To injection = record { to = to ; injective = injective } surjection : Surjection From To surjection = record { to = to ; surjective = surjective } open Surjection surjection public using (equivalence; right-inverse; from-to) left-inverse : LeftInverse From To left-inverse = record { to = to ; from = from ; left-inverse-of = left-inverse-of } open LeftInverse left-inverse public using (to-from) -- Identity and composition. (Note that these proofs are superfluous, -- given that Bijection is equivalent to Function.Inverse.Inverse.) id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Bijection S S id {S = S} = record { to = F.id ; bijective = record { injective = Injection.injective (Inj.id {S = S}) ; surjective = Surjection.surjective (Surj.id {S = S}) } } infixr 9 _∘_ _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} {F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} → Bijection M T → Bijection F M → Bijection F T f ∘ g = record { to = to f ⟪∘⟫ to g ; bijective = record { injective = Injection.injective (Inj._∘_ (injection f) (injection g)) ; surjective = Surjection.surjective (Surj._∘_ (surjection f) (surjection g)) } } where open Bijection
{ "alphanum_fraction": 0.5840742172, "avg_line_length": 28.1195652174, "ext": "agda", "hexsha": "c6721d04bb7889a2267ae3f31bba64819eaf2d77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Function/Bijection.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 776, "size": 2587 }
------------------------------------------------------------------------------ -- From inductive PA to Mendelson's axioms ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From the definition of PA using Agda data types and primitive -- recursive functions for addition and multiplication, we can prove the -- Mendelson's axioms [1]. -- N.B. We make the recursion in the first argument for _+_ and _*_. -- S₁. m = n → m = o → n = o -- S₂. m = n → succ m = succ n -- S₃. 0 ≠ succ n -- S₄. succ m = succ n → m = n -- S₅. 0 + n = n -- S₆. succ m + n = succ (m + n) -- S₇. 0 * n = 0 -- S₈. succ m * n = (m * n) + m -- S₉. P(0) → (∀n.P(n) → P(succ n)) → ∀n.P(n), for any wf P(n) of PA. -- [1]. Elliott Mendelson. Introduction to mathematical -- logic. Chapman& Hall, 4th edition, 1997, p. 155. module PA.Inductive2Mendelson where open import PA.Inductive.Base ------------------------------------------------------------------------------ S₁ : ∀ {m n o} → m ≡ n → m ≡ o → n ≡ o S₁ refl refl = refl S₂ : ∀ {m n} → m ≡ n → succ m ≡ succ n S₂ refl = refl S₃ : ∀ {n} → zero ≢ succ n S₃ () S₄ : ∀ {m n} → succ m ≡ succ n → m ≡ n S₄ refl = refl S₅ : ∀ n → zero + n ≡ n S₅ n = refl S₆ : ∀ m n → succ m + n ≡ succ (m + n) S₆ m n = refl S₇ : ∀ n → zero * n ≡ zero S₇ n = refl S₈ : ∀ m n → succ m * n ≡ n + m * n S₈ m n = refl S₉ : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n S₉ = ℕ-ind
{ "alphanum_fraction": 0.452690167, "avg_line_length": 26.5081967213, "ext": "agda", "hexsha": "80bb393bb51391da1c0be454e0e5595cfc30b299", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Inductive2Mendelson.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Inductive2Mendelson.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Inductive2Mendelson.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 557, "size": 1617 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Operations.Addition where open import Data.Binary.Definitions open import Data.Binary.Operations.Unary add : Bit → 𝔹⁺ → 𝔹⁺ → 𝔹⁺ add c (x ∷ xs) (y ∷ ys) = sumᵇ c x y ∷ add (carryᵇ c x y) xs ys add O 1ᵇ ys = inc⁺⁺ ys add O (O ∷ xs) 1ᵇ = I ∷ xs add O (I ∷ xs) 1ᵇ = O ∷ inc⁺⁺ xs add I 1ᵇ 1ᵇ = I ∷ 1ᵇ add I 1ᵇ (y ∷ ys) = y ∷ inc⁺⁺ ys add I (x ∷ xs) 1ᵇ = x ∷ inc⁺⁺ xs _+_ : 𝔹 → 𝔹 → 𝔹 0ᵇ + ys = ys (0< xs) + 0ᵇ = 0< xs (0< xs) + (0< ys) = 0< add O xs ys
{ "alphanum_fraction": 0.5564356436, "avg_line_length": 24.0476190476, "ext": "agda", "hexsha": "1a9e6c9dcd4fdea44eb143289967b318154f7477", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Operations/Addition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Operations/Addition.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Operations/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 283, "size": 505 }
module SortDependingOnIndex where open import Common.Level data Bad : (l : Level) → Set l where
{ "alphanum_fraction": 0.7474747475, "avg_line_length": 14.1428571429, "ext": "agda", "hexsha": "c1021700219693792d7006dae7ca89a0a0f995bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/SortDependingOnIndex.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/SortDependingOnIndex.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/SortDependingOnIndex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 99 }
module Text.Greek.SBLGNT.Rev where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ : List (Word) ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ = word (Ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἣ ∷ ν ∷ []) "Rev.1.1" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.1" ∷ word (ὁ ∷ []) "Rev.1.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἃ ∷ []) "Rev.1.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.1.1" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.1" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.1" ∷ word (ἐ ∷ σ ∷ ή ∷ μ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.1.1" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.1" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ῳ ∷ []) "Rev.1.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.1" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ῃ ∷ []) "Rev.1.1" ∷ word (ὃ ∷ ς ∷ []) "Rev.1.2" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.2" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.2" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.1.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.1.2" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.3" ∷ word (ὁ ∷ []) "Rev.1.3" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.3" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.3" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.3" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.1.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.1.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.1.3" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.1.3" ∷ word (ὁ ∷ []) "Rev.1.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.1.3" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.3" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.1.3" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.4" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.4" ∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rev.1.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rev.1.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ὢ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ἦ ∷ ν ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ὁ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.4" ∷ word (ἃ ∷ []) "Rev.1.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.1.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ς ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (ὁ ∷ []) "Rev.1.5" ∷ word (ἄ ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.5" ∷ word (Τ ∷ ῷ ∷ []) "Rev.1.5" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.5" ∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.5" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.1.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.1.6" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.1.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.1.6" ∷ word (ἡ ∷ []) "Rev.1.6" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.6" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.6" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.6" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.7" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.7" ∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (ὄ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.1.7" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ έ ∷ ν ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (ἐ ∷ π ∷ []) "Rev.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.1.7" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.1.7" ∷ word (α ∷ ἱ ∷ []) "Rev.1.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.1.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.7" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.1.7" ∷ word (ν ∷ α ∷ ί ∷ []) "Rev.1.7" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.1.7" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.8" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.8" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.8" ∷ word (Ὦ ∷ []) "Rev.1.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.1.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ὢ ∷ ν ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.1.8" ∷ word (ὁ ∷ []) "Rev.1.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.1.8" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.9" ∷ word (ὁ ∷ []) "Rev.1.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Rev.1.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (ν ∷ ή ∷ σ ∷ ῳ ∷ []) "Rev.1.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.1.9" ∷ word (Π ∷ ά ∷ τ ∷ μ ∷ ῳ ∷ []) "Rev.1.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.1.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.1.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.1.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.1.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.10" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.10" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ῇ ∷ []) "Rev.1.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.10" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.1.10" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.1.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.10" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.1.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.10" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.1.10" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.1.11" ∷ word (Ὃ ∷ []) "Rev.1.11" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.1.11" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.11" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Ἔ ∷ φ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Π ∷ έ ∷ ρ ∷ γ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Θ ∷ υ ∷ ά ∷ τ ∷ ε ∷ ι ∷ ρ ∷ α ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ έ ∷ ∙λ ∷ φ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.11" ∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ί ∷ κ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.1.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ π ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.1.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.12" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.1.12" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.1.12" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.12" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Rev.1.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.12" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.12" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.13" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.13" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.13" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.1.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.1.13" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (π ∷ ο ∷ δ ∷ ή ∷ ρ ∷ η ∷ []) "Rev.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.1.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.1.13" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Rev.1.13" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ν ∷ []) "Rev.1.13" ∷ word (ἡ ∷ []) "Rev.1.14" ∷ word (δ ∷ ὲ ∷ []) "Rev.1.14" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "Rev.1.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (α ∷ ἱ ∷ []) "Rev.1.14" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ε ∷ ς ∷ []) "Rev.1.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (ἔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ν ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (χ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.14" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.1.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.14" ∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.1.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.15" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.1.15" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.1.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.1.15" ∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.15" ∷ word (ἡ ∷ []) "Rev.1.15" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.15" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.1.15" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.1.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.1.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.16" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.1.16" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.1.16" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.1.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.1.16" ∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.1.16" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.16" ∷ word (ἡ ∷ []) "Rev.1.16" ∷ word (ὄ ∷ ψ ∷ ι ∷ ς ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.16" ∷ word (ὁ ∷ []) "Rev.1.16" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.1.16" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.1.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.1.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.1.16" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rev.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.1.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.1.17" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.1.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.17" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ὡ ∷ ς ∷ []) "Rev.1.17" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.1.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.1.17" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ἐ ∷ π ∷ []) "Rev.1.17" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rev.1.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.1.17" ∷ word (Μ ∷ ὴ ∷ []) "Rev.1.17" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.1.17" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.1.17" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.17" ∷ word (ὁ ∷ []) "Rev.1.17" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.17" ∷ word (ὁ ∷ []) "Rev.1.17" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ὁ ∷ []) "Rev.1.18" ∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.1.18" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.1.18" ∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.1.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.1.18" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.18" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.1.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.18" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.1.18" ∷ word (ᾅ ∷ δ ∷ ο ∷ υ ∷ []) "Rev.1.18" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.1.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.19" ∷ word (ἃ ∷ []) "Rev.1.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.1.19" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.1.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.1.19" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.1.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.1.20" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.1.20" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rev.1.20" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.1.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.1.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.1.20" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.1.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.1.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.1.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.1.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.1.20" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.1.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.1.20" ∷ word (α ∷ ἱ ∷ []) "Rev.1.20" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20" ∷ word (α ∷ ἱ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.1.20" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.1.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.1.20" ∷ word (Τ ∷ ῷ ∷ []) "Rev.2.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.1" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.1" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.1" ∷ word (ὁ ∷ []) "Rev.2.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ῇ ∷ []) "Rev.2.1" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rev.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.1" ∷ word (ὁ ∷ []) "Rev.2.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.1" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.2.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.2.1" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.2.1" ∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.2" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.2" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.2" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.2.2" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.2" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.2" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.2.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.2" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.2.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ἐ ∷ β ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.2.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.2.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.3" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.3" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.3" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.4" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.4" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.4" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.4" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ς ∷ []) "Rev.2.4" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.2.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.5" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.2.5" ∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.5" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.2.5" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.5" ∷ word (π ∷ ο ∷ ί ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.5" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.5" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.5" ∷ word (μ ∷ ή ∷ []) "Rev.2.5" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.5" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.5" ∷ word (κ ∷ ι ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.5" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.5" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.5" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.5" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.2.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.6" ∷ word (μ ∷ ι ∷ σ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6" ∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.6" ∷ word (ἃ ∷ []) "Rev.2.6" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.6" ∷ word (μ ∷ ι ∷ σ ∷ ῶ ∷ []) "Rev.2.6" ∷ word (ὁ ∷ []) "Rev.2.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.7" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.7" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.7" ∷ word (τ ∷ ί ∷ []) "Rev.2.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.7" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.7" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.7" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.7" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.2.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.7" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.7" ∷ word (ὅ ∷ []) "Rev.2.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ ί ∷ σ ∷ ῳ ∷ []) "Rev.2.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.8" ∷ word (Σ ∷ μ ∷ ύ ∷ ρ ∷ ν ∷ ῃ ∷ []) "Rev.2.8" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.8" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.8" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.8" ∷ word (ὁ ∷ []) "Rev.2.8" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (ὁ ∷ []) "Rev.2.8" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.2.8" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.8" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.2.8" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.8" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.2.8" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.2.9" ∷ word (ε ∷ ἶ ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.9" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.9" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.2.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.2.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ []) "Rev.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.9" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.2.10" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rev.2.10" ∷ word (ἃ ∷ []) "Rev.2.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.10" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.10" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ὁ ∷ []) "Rev.2.10" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.2.10" ∷ word (ἐ ∷ ξ ∷ []) "Rev.2.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.10" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Rev.2.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rev.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10" ∷ word (ἕ ∷ ξ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.10" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.10" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.2.10" ∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.2.10" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.10" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.10" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.10" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.10" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.2.10" ∷ word (ὁ ∷ []) "Rev.2.11" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.11" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.11" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.11" ∷ word (τ ∷ ί ∷ []) "Rev.2.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.11" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.11" ∷ word (ὁ ∷ []) "Rev.2.11" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.11" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.11" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.2.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.11" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.2.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.12" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.12" ∷ word (Π ∷ ε ∷ ρ ∷ γ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.2.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.12" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.12" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.12" ∷ word (ὁ ∷ []) "Rev.2.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ν ∷ []) "Rev.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.12" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ ν ∷ []) "Rev.2.12" ∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rev.2.13" ∷ word (π ∷ ο ∷ ῦ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.13" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.13" ∷ word (Ἀ ∷ ν ∷ τ ∷ ι ∷ π ∷ ᾶ ∷ ς ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.2.13" ∷ word (π ∷ α ∷ ρ ∷ []) "Rev.2.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.13" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.2.13" ∷ word (ὁ ∷ []) "Rev.2.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.2.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.14" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.14" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.14" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.14" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.2.14" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.14" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.14" ∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ά ∷ μ ∷ []) "Rev.2.14" ∷ word (ὃ ∷ ς ∷ []) "Rev.2.14" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Rev.2.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.14" ∷ word (Β ∷ α ∷ ∙λ ∷ ὰ ∷ κ ∷ []) "Rev.2.14" ∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.2.14" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.14" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.2.14" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.2.14" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.14" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.14" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.14" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.2.15" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.15" ∷ word (σ ∷ ὺ ∷ []) "Rev.2.15" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.15" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.15" ∷ word (Ν ∷ ι ∷ κ ∷ ο ∷ ∙λ ∷ α ∷ ϊ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.15" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.2.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.2.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.2.16" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.16" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.16" ∷ word (μ ∷ ή ∷ []) "Rev.2.16" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rev.2.16" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.2.16" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.16" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.2.16" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.2.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.2.16" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.2.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.2.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.16" ∷ word (ὁ ∷ []) "Rev.2.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.17" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.17" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.17" ∷ word (τ ∷ ί ∷ []) "Rev.2.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.2.17" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17" ∷ word (μ ∷ ά ∷ ν ∷ ν ∷ α ∷ []) "Rev.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.17" ∷ word (κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.17" ∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.17" ∷ word (ψ ∷ ῆ ∷ φ ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.2.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.2.17" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.17" ∷ word (ὃ ∷ []) "Rev.2.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.2.17" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.2.17" ∷ word (ε ∷ ἰ ∷ []) "Rev.2.17" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.17" ∷ word (ὁ ∷ []) "Rev.2.17" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Rev.2.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.2.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.2.18" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.2.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.18" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.18" ∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.18" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.18" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.2.18" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.2.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.18" ∷ word (ὁ ∷ []) "Rev.2.18" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Rev.2.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὁ ∷ []) "Rev.2.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.18" ∷ word (φ ∷ ∙λ ∷ ό ∷ γ ∷ α ∷ []) "Rev.2.18" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.18" ∷ word (ο ∷ ἱ ∷ []) "Rev.2.18" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.2.18" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.2.18" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ∙λ ∷ ι ∷ β ∷ ά ∷ ν ∷ ῳ ∷ []) "Rev.2.18" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.19" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.2.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.19" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ α ∷ []) "Rev.2.19" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Rev.2.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.19" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.2.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.2.20" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.20" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.2.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.20" ∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.2.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.2.20" ∷ word (Ἰ ∷ ε ∷ ζ ∷ ά ∷ β ∷ ε ∷ ∙λ ∷ []) "Rev.2.20" ∷ word (ἡ ∷ []) "Rev.2.20" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.2.20" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.2.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.20" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.20" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.2.20" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "Rev.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.2.21" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.2.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.2.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.2.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.21" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.2.22" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.22" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.2.22" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.2.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.2.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.2.22" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.22" ∷ word (ἐ ∷ κ ∷ []) "Rev.2.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.22" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.2.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rev.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.2.23" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ῶ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.23" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (α ∷ ἱ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rev.2.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.2.23" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.2.23" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.2.23" ∷ word (ὁ ∷ []) "Rev.2.23" ∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.23" ∷ word (ν ∷ ε ∷ φ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.23" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.23" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.2.23" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.23" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.2.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.2.24" ∷ word (δ ∷ ὲ ∷ []) "Rev.2.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.2.24" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.24" ∷ word (Θ ∷ υ ∷ α ∷ τ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.2.24" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.2.24" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Rev.2.24" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.2.24" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rev.2.24" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.24" ∷ word (β ∷ α ∷ θ ∷ έ ∷ α ∷ []) "Rev.2.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.24" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.2.24" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.2.24" ∷ word (ο ∷ ὐ ∷ []) "Rev.2.24" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.2.24" ∷ word (ἐ ∷ φ ∷ []) "Rev.2.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.2.24" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.2.24" ∷ word (β ∷ ά ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.2.24" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.2.25" ∷ word (ὃ ∷ []) "Rev.2.25" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.2.25" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.2.25" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.25" ∷ word (ο ∷ ὗ ∷ []) "Rev.2.25" ∷ word (ἂ ∷ ν ∷ []) "Rev.2.25" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26" ∷ word (ὁ ∷ []) "Rev.2.26" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.26" ∷ word (ὁ ∷ []) "Rev.2.26" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.2.26" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.2.26" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.26" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.2.26" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.26" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.26" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.2.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.2.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.27" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.2.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.2.27" ∷ word (ἐ ∷ ν ∷ []) "Rev.2.27" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.2.27" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.2.27" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.27" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rev.2.27" ∷ word (τ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (κ ∷ ε ∷ ρ ∷ α ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ []) "Rev.2.27" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ β ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.2.27" ∷ word (ὡ ∷ ς ∷ []) "Rev.2.28" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.2.28" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ []) "Rev.2.28" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.2.28" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.2.28" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.2.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.2.28" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.2.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.2.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.2.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.2.28" ∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ν ∷ []) "Rev.2.28" ∷ word (ὁ ∷ []) "Rev.2.29" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.2.29" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.2.29" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.2.29" ∷ word (τ ∷ ί ∷ []) "Rev.2.29" ∷ word (τ ∷ ὸ ∷ []) "Rev.2.29" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.2.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.2.29" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.2.29" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.2.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.1" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.1" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.1" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.1" ∷ word (ὁ ∷ []) "Rev.3.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.1" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.1" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.1" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.1" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.1" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.1" ∷ word (ζ ∷ ῇ ∷ ς ∷ []) "Rev.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.1" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.1" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.1" ∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.2" ∷ word (σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.2" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Rev.3.2" ∷ word (ἃ ∷ []) "Rev.3.2" ∷ word (ἔ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.2" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.3.2" ∷ word (ε ∷ ὕ ∷ ρ ∷ η ∷ κ ∷ ά ∷ []) "Rev.3.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.2" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.3.2" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.3" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rev.3.3" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.3" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.3" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.3" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.3" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.3" ∷ word (γ ∷ ν ∷ ῷ ∷ ς ∷ []) "Rev.3.3" ∷ word (π ∷ ο ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.3" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.3" ∷ word (ἥ ∷ ξ ∷ ω ∷ []) "Rev.3.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.3" ∷ word (σ ∷ έ ∷ []) "Rev.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.4" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.4" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Rev.3.4" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.4" ∷ word (Σ ∷ ά ∷ ρ ∷ δ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (ἃ ∷ []) "Rev.3.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ μ ∷ ό ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.3.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.4" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.4" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.3.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.4" ∷ word (ὁ ∷ []) "Rev.3.5" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.5" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.3.5" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ []) "Rev.3.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.5" ∷ word (ὁ ∷ []) "Rev.3.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.6" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.6" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.6" ∷ word (τ ∷ ί ∷ []) "Rev.3.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.6" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.6" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.7" ∷ word (Φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.7" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.7" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.7" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.3.7" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.3.7" ∷ word (ὁ ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (κ ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Rev.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.7" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.7" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.8" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.8" ∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "Rev.3.8" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.3.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.8" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.3.8" ∷ word (ἣ ∷ ν ∷ []) "Rev.3.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.8" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.8" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.3.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.8" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Rev.3.8" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8" ∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ά ∷ ς ∷ []) "Rev.3.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.8" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9" ∷ word (δ ∷ ι ∷ δ ∷ ῶ ∷ []) "Rev.3.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.3.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Rev.3.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.3.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.3.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.3.9" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.3.9" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.9" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.9" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.3.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.9" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.9" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.9" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ά ∷ []) "Rev.3.9" ∷ word (σ ∷ ε ∷ []) "Rev.3.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.10" ∷ word (ἐ ∷ τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.10" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "Rev.3.10" ∷ word (σ ∷ ε ∷ []) "Rev.3.10" ∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.3.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.3.10" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.3.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.3.10" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.11" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.3.11" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Rev.3.11" ∷ word (ὃ ∷ []) "Rev.3.11" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.11" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.3.11" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Rev.3.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.3.11" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.11" ∷ word (ὁ ∷ []) "Rev.3.12" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12" ∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.12" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.3.12" ∷ word (ο ∷ ὐ ∷ []) "Rev.3.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.12" ∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.3.12" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Rev.3.12" ∷ word (ἐ ∷ π ∷ []) "Rev.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.12" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Rev.3.12" ∷ word (ἡ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.3.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.3.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.3.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.12" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ []) "Rev.3.12" ∷ word (ὁ ∷ []) "Rev.3.13" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.13" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.13" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.13" ∷ word (τ ∷ ί ∷ []) "Rev.3.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.13" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.14" ∷ word (Λ ∷ α ∷ ο ∷ δ ∷ ι ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.3.14" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.3.14" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.3.14" ∷ word (Τ ∷ ά ∷ δ ∷ ε ∷ []) "Rev.3.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rev.3.14" ∷ word (ὁ ∷ []) "Rev.3.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.14" ∷ word (ἡ ∷ []) "Rev.3.14" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.14" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.3.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.3.14" ∷ word (Ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Rev.3.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.3.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.3.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.15" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.15" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.15" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.3.15" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.15" ∷ word (ἦ ∷ ς ∷ []) "Rev.3.15" ∷ word (ἢ ∷ []) "Rev.3.15" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.16" ∷ word (χ ∷ ∙λ ∷ ι ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.16" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.16" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16" ∷ word (ζ ∷ ε ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.16" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.3.16" ∷ word (ψ ∷ υ ∷ χ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.16" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Rev.3.16" ∷ word (σ ∷ ε ∷ []) "Rev.3.16" ∷ word (ἐ ∷ μ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.3.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (Π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ό ∷ ς ∷ []) "Rev.3.17" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rev.3.17" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.3.17" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.3.17" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.3.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.3.17" ∷ word (σ ∷ ὺ ∷ []) "Rev.3.17" ∷ word (ε ∷ ἶ ∷ []) "Rev.3.17" ∷ word (ὁ ∷ []) "Rev.3.17" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ π ∷ ω ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rev.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.17" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.3.17" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.3.18" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18" ∷ word (π ∷ α ∷ ρ ∷ []) "Rev.3.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.18" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (π ∷ ε ∷ π ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.3.18" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.3.18" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (μ ∷ ὴ ∷ []) "Rev.3.18" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Rev.3.18" ∷ word (ἡ ∷ []) "Rev.3.18" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ []) "Rev.3.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.18" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.18" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.3.18" ∷ word (ἐ ∷ γ ∷ χ ∷ ρ ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.3.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.3.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.3.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ῃ ∷ ς ∷ []) "Rev.3.18" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.3.19" ∷ word (ὅ ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.3.19" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.3.19" ∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ []) "Rev.3.19" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ω ∷ []) "Rev.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ω ∷ []) "Rev.3.19" ∷ word (ζ ∷ ή ∷ ∙λ ∷ ε ∷ υ ∷ ε ∷ []) "Rev.3.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rev.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.19" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.3.19" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.3.20" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ α ∷ []) "Rev.3.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (κ ∷ ρ ∷ ο ∷ ύ ∷ ω ∷ []) "Rev.3.20" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.3.20" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.3.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.3.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.3.20" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.3.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (ἀ ∷ ν ∷ ο ∷ ί ∷ ξ ∷ ῃ ∷ []) "Rev.3.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.3.20" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.3.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Rev.3.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.3.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.20" ∷ word (ὁ ∷ []) "Rev.3.21" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.3.21" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.3.21" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.21" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.3.21" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Rev.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ []) "Rev.3.21" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.3.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.3.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.3.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.3.21" ∷ word (τ ∷ ῷ ∷ []) "Rev.3.21" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.3.21" ∷ word (ὁ ∷ []) "Rev.3.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.3.22" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.3.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.3.22" ∷ word (τ ∷ ί ∷ []) "Rev.3.22" ∷ word (τ ∷ ὸ ∷ []) "Rev.3.22" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.3.22" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.3.22" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.3.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.3.22" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.1" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "Rev.4.1" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.4.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (ἡ ∷ []) "Rev.4.1" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.4.1" ∷ word (ἡ ∷ []) "Rev.4.1" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.4.1" ∷ word (ἣ ∷ ν ∷ []) "Rev.4.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.4.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.1" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.4.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.4.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.4.1" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.4.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.4.1" ∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ []) "Rev.4.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.1" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.4.1" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.4.1" ∷ word (ἃ ∷ []) "Rev.4.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.4.1" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.4.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.4.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.4.1" ∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.4.2" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.4.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.4.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2" ∷ word (ἔ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Rev.4.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.2" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.4.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (ὁ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.4.3" ∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.3" ∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.4.3" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.3" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.3" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.4.3" ∷ word (σ ∷ μ ∷ α ∷ ρ ∷ α ∷ γ ∷ δ ∷ ί ∷ ν ∷ ῳ ∷ []) "Rev.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Rev.4.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.4" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.4" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.4.4" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.4.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.4" ∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.5" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.4.5" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Rev.4.5" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.5" ∷ word (ἅ ∷ []) "Rev.4.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.4.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.6" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.4.6" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ []) "Rev.4.6" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.4.6" ∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.4.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.6" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.6" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.6" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.6" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.6" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.6" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ῳ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.4.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.7" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ζ ∷ ῷ ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.7" ∷ word (ἀ ∷ ε ∷ τ ∷ ῷ ∷ []) "Rev.4.7" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.4.8" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.8" ∷ word (ἓ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ θ ∷ []) "Rev.4.8" ∷ word (ἓ ∷ ν ∷ []) "Rev.4.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.8" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.4.8" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.4.8" ∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ α ∷ ς ∷ []) "Rev.4.8" ∷ word (ἕ ∷ ξ ∷ []) "Rev.4.8" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.4.8" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.4.8" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.4.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.8" ∷ word (Ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ὢ ∷ ν ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.8" ∷ word (ὁ ∷ []) "Rev.4.8" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.9" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.4.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.9" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.4.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.9" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.9" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.9" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.9" ∷ word (π ∷ ε ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.4.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.4.10" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.4.10" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.4.10" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.4.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.4.10" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.4.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.4.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.10" ∷ word (β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.4.10" ∷ word (σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.4.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.4.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.4.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.4.10" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11" ∷ word (ε ∷ ἶ ∷ []) "Rev.4.11" ∷ word (ὁ ∷ []) "Rev.4.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (ὁ ∷ []) "Rev.4.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.4.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.4.11" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.4.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.4.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.4.11" ∷ word (σ ∷ ὺ ∷ []) "Rev.4.11" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ α ∷ ς ∷ []) "Rev.4.11" ∷ word (τ ∷ ὰ ∷ []) "Rev.4.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.4.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.4.11" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Rev.4.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.4.11" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.4.11" ∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.4.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.1" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.1" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.1" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.1" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.1" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.5.2" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.2" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.5.2" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.2" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.2" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.2" ∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.5.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.5.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.3" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.5.3" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.3" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.3" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.3" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.3" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.4" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.5.4" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Rev.5.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.5.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.4" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.5.4" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.4" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.5.4" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.5.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.5" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.5.5" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.5.5" ∷ word (Μ ∷ ὴ ∷ []) "Rev.5.5" ∷ word (κ ∷ ∙λ ∷ α ∷ ῖ ∷ ε ∷ []) "Rev.5.5" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.5.5" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.5.5" ∷ word (ὁ ∷ []) "Rev.5.5" ∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.5.5" ∷ word (ὁ ∷ []) "Rev.5.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.5" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.5.5" ∷ word (ἡ ∷ []) "Rev.5.5" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.5.5" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.5.5" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.5" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.5" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.5" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.5.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.6" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.5.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.5.6" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.6" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.5.6" ∷ word (ο ∷ ἵ ∷ []) "Rev.5.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.5.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.5.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.5.6" ∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.5.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.6" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.7" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.5.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.7" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.7" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.5.8" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.8" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.5.8" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.5.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.5.8" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.8" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.5.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.8" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.5.8" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.8" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.8" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ν ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.5.8" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.5.8" ∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.8" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.5.8" ∷ word (α ∷ ἵ ∷ []) "Rev.5.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.8" ∷ word (α ∷ ἱ ∷ []) "Rev.5.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ὶ ∷ []) "Rev.5.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.9" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.9" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.5.9" ∷ word (ε ∷ ἶ ∷ []) "Rev.5.9" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἀ ∷ ν ∷ ο ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.5.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.5.9" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ ς ∷ []) "Rev.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.5.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.5.9" ∷ word (ἐ ∷ σ ∷ φ ∷ ά ∷ γ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.9" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.5.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.5.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.5.9" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.9" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rev.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.5.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.5.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.5.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.11" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.5.11" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.5.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (ἦ ∷ ν ∷ []) "Rev.5.11" ∷ word (ὁ ∷ []) "Rev.5.11" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.5.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.5.11" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.11" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.5.11" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.5.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.5.12" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.5.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.5.12" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ό ∷ ν ∷ []) "Rev.5.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.12" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.12" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.5.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.5.12" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.5.13" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Rev.5.13" ∷ word (ὃ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.5.13" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.5.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.5.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.5.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.5.13" ∷ word (Τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.5.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.5.13" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (ἡ ∷ []) "Rev.5.13" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.5.13" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.5.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.5.13" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.5.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.5.13" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.5.14" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.5.14" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.5.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Rev.5.14" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.5.14" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.5.14" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.5.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.5.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.1" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.1" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.1" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.6.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.1" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.1" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.1" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.1" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.1" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.2" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ὁ ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (ἐ ∷ π ∷ []) "Rev.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.2" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.2" ∷ word (τ ∷ ό ∷ ξ ∷ ο ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.2" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.2" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.2" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.6.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.3" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.3" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.3" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.6.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.3" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.3" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.4" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.4" ∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ π ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.6.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.4" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Rev.6.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.4" ∷ word (σ ∷ φ ∷ ά ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.4" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "Rev.6.4" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.5" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.6.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.5" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.5" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.5" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.5" ∷ word (ὁ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.5" ∷ word (ἐ ∷ π ∷ []) "Rev.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.6.5" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.6.5" ∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rev.6.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.5" ∷ word (τ ∷ ῇ ∷ []) "Rev.6.5" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.6" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.6.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.6" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.6.6" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.6.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.6" ∷ word (Χ ∷ ο ∷ ῖ ∷ ν ∷ ι ∷ ξ ∷ []) "Rev.6.6" ∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.6" ∷ word (χ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.6.6" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ ν ∷ []) "Rev.6.6" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.6" ∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.6" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.6.6" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.6.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.7" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.7" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.7" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.6.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.6.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.7" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (ζ ∷ ῴ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.7" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.6.8" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (Θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὁ ∷ []) "Rev.6.8" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.6.8" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.6.8" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.6.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.8" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.6.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ῷ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.6.8" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.8" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.6.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.9" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.9" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.9" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.6.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.9" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.6.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.9" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.6.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.6.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.6.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.6.9" ∷ word (ἣ ∷ ν ∷ []) "Rev.6.9" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.6.10" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.6.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.6.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.10" ∷ word (Ἕ ∷ ω ∷ ς ∷ []) "Rev.6.10" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Rev.6.10" ∷ word (ὁ ∷ []) "Rev.6.10" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rev.6.10" ∷ word (ὁ ∷ []) "Rev.6.10" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.6.10" ∷ word (ο ∷ ὐ ∷ []) "Rev.6.10" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.10" ∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.6.10" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.6.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.6.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.6.11" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rev.6.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.6.11" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.6.11" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.11" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.6.11" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rev.6.11" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.11" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.6.11" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.6.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.6.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.6.12" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.6.12" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.12" ∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.6.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ὁ ∷ []) "Rev.6.12" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.6.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.12" ∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.12" ∷ word (ἡ ∷ []) "Rev.6.12" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.6.12" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.6.12" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.6.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.12" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.13" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.6.13" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.6.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.6.13" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.13" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Rev.6.13" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.6.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.13" ∷ word (ὀ ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.6.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.6.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rev.6.13" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.6.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.6.13" ∷ word (σ ∷ ε ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (ὁ ∷ []) "Rev.6.14" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.6.14" ∷ word (ἀ ∷ π ∷ ε ∷ χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.6.14" ∷ word (ὡ ∷ ς ∷ []) "Rev.6.14" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.6.14" ∷ word (ἑ ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.6.14" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.14" ∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.6.14" ∷ word (ἐ ∷ κ ∷ []) "Rev.6.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14" ∷ word (τ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.14" ∷ word (ἐ ∷ κ ∷ ι ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.15" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ρ ∷ χ ∷ ο ∷ ι ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.6.15" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.6.15" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.6.15" ∷ word (ἔ ∷ κ ∷ ρ ∷ υ ∷ ψ ∷ α ∷ ν ∷ []) "Rev.6.15" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.6.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.6.15" ∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ α ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.6.15" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.6.15" ∷ word (ὀ ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.6.16" ∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.6.16" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.6.16" ∷ word (Π ∷ έ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.6.16" ∷ word (ἐ ∷ φ ∷ []) "Rev.6.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (κ ∷ ρ ∷ ύ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "Rev.6.16" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.6.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.16" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.6.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.16" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.6.16" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.6.17" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.6.17" ∷ word (ἡ ∷ []) "Rev.6.17" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.6.17" ∷ word (ἡ ∷ []) "Rev.6.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.6.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.6.17" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.6.17" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.6.17" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.6.17" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.6.17" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.7.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.1" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.7.1" ∷ word (μ ∷ ὴ ∷ []) "Rev.7.1" ∷ word (π ∷ ν ∷ έ ∷ ῃ ∷ []) "Rev.7.1" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.1" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.1" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.1" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.7.2" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.7.2" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.7.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.2" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.7.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.7.2" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.7.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.7.2" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.3" ∷ word (Μ ∷ ὴ ∷ []) "Rev.7.3" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.7.3" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Rev.7.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.7.3" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Rev.7.3" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.7.3" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.7.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.3" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.7.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.7.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.4" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.4" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.4" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.7.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.7.4" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.4" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.4" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.7.4" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.4" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.7.4" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.7.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Ῥ ∷ ο ∷ υ ∷ β ∷ ὴ ∷ ν ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.5" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.5" ∷ word (Γ ∷ ὰ ∷ δ ∷ []) "Rev.7.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.5" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Ἀ ∷ σ ∷ ὴ ∷ ρ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Ν ∷ ε ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ ὶ ∷ μ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.6" ∷ word (Μ ∷ α ∷ ν ∷ α ∷ σ ∷ σ ∷ ῆ ∷ []) "Rev.7.6" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Σ ∷ υ ∷ μ ∷ ε ∷ ὼ ∷ ν ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.7" ∷ word (Ἰ ∷ σ ∷ σ ∷ α ∷ χ ∷ ὰ ∷ ρ ∷ []) "Rev.7.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.7" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Ζ ∷ α ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.8" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.7.8" ∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ὶ ∷ ν ∷ []) "Rev.7.8" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.7.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.7.8" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.8" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.7.9" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.7.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.7.9" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.7.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Rev.7.9" ∷ word (ὃ ∷ ν ∷ []) "Rev.7.9" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.7.9" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.7.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.9" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.9" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.7.9" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.9" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ά ∷ ς ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.9" ∷ word (φ ∷ ο ∷ ί ∷ ν ∷ ι ∷ κ ∷ ε ∷ ς ∷ []) "Rev.7.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.9" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.7.9" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.7.10" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.7.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.7.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.10" ∷ word (Ἡ ∷ []) "Rev.7.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.7.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.10" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.11" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.7.11" ∷ word (ε ∷ ἱ ∷ σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rev.7.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.11" ∷ word (τ ∷ ὰ ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.7.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.7.11" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.7.12" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ []) "Rev.7.12" ∷ word (ἰ ∷ σ ∷ χ ∷ ὺ ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.12" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.7.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.12" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.7.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.12" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.7.12" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.7.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.7.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Rev.7.13" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.7.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.13" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.7.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.7.13" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ ς ∷ []) "Rev.7.13" ∷ word (τ ∷ ί ∷ ν ∷ ε ∷ ς ∷ []) "Rev.7.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.13" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.7.13" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.14" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ έ ∷ []) "Rev.7.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.7.14" ∷ word (σ ∷ ὺ ∷ []) "Rev.7.14" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.7.14" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.7.14" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.7.14" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.7.14" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.7.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.7.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ἔ ∷ π ∷ ∙λ ∷ υ ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ κ ∷ α ∷ ν ∷ α ∷ ν ∷ []) "Rev.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Rev.7.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.14" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.7.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.7.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Rev.7.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.7.15" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.7.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.7.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.7.15" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.15" ∷ word (ὁ ∷ []) "Rev.7.15" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.7.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.15" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.15" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.15" ∷ word (ἐ ∷ π ∷ []) "Rev.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.15" ∷ word (ο ∷ ὐ ∷ []) "Rev.7.16" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ά ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (δ ∷ ι ∷ ψ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.7.16" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (μ ∷ ὴ ∷ []) "Rev.7.16" ∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "Rev.7.16" ∷ word (ἐ ∷ π ∷ []) "Rev.7.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.16" ∷ word (ὁ ∷ []) "Rev.7.16" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.7.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.7.16" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.16" ∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.7.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.7.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.7.17" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.7.17" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.7.17" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.7.17" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.7.17" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ὁ ∷ δ ∷ η ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.7.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.7.17" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.7.17" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.7.17" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.7.17" ∷ word (ὁ ∷ []) "Rev.7.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.7.17" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.7.17" ∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.7.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.7.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.7.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.1" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.8.1" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.8.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.1" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rev.8.1" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.1" ∷ word (σ ∷ ι ∷ γ ∷ ὴ ∷ []) "Rev.8.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.8.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.8.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.1" ∷ word (ἡ ∷ μ ∷ ι ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.2" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.8.2" ∷ word (ο ∷ ἳ ∷ []) "Rev.8.2" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.2" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.8.2" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.2" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.8.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.3" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.8.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.3" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.8.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.8.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.3" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.8.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.3" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.4" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.8.4" ∷ word (ὁ ∷ []) "Rev.8.4" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.4" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.8.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.8.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (ὁ ∷ []) "Rev.8.5" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5" ∷ word (∙λ ∷ ι ∷ β ∷ α ∷ ν ∷ ω ∷ τ ∷ ό ∷ ν ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἐ ∷ γ ∷ έ ∷ μ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.8.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.5" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.8.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.5" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.8.5" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.5" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Rev.8.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.8.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.8.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.8.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.8.6" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.6" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.6" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.6" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.8.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ὁ ∷ []) "Rev.8.7" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.7" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.8.7" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.8.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.7" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.7" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.7" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.7" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.7" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.7" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.8.7" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.7" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.8.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ κ ∷ ά ∷ η ∷ []) "Rev.8.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ὁ ∷ []) "Rev.8.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.8" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.8" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.8.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.8" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.8.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.8.8" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.8" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.8" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.8.8" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ []) "Rev.8.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (κ ∷ τ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῇ ∷ []) "Rev.8.9" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.8.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.8.9" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.8.9" ∷ word (ψ ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "Rev.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ω ∷ ν ∷ []) "Rev.8.9" ∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ὁ ∷ []) "Rev.8.10" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.8.10" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.8.10" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ι ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.8.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.8.10" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ά ∷ ς ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.10" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.8.10" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.10" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.11" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.8.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.8.11" ∷ word (ὁ ∷ []) "Rev.8.11" ∷ word (Ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.11" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.8.11" ∷ word (ἄ ∷ ψ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.8.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.11" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.8.11" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.8.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ὁ ∷ []) "Rev.8.12" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.12" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.8.12" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ή ∷ γ ∷ η ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.8.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.8.12" ∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.8.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.8.12" ∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.8.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.8.12" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.12" ∷ word (ἡ ∷ []) "Rev.8.12" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.8.12" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rev.8.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.8.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.8.13" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.8.13" ∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.8.13" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.8.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.8.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.8.13" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.8.13" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.8.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.8.13" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.8.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.8.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.8.13" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.8.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.8.13" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.8.13" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.8.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ὁ ∷ []) "Rev.9.1" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.9.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (π ∷ ε ∷ π ∷ τ ∷ ω ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Rev.9.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.1" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.1" ∷ word (ἡ ∷ []) "Rev.9.1" ∷ word (κ ∷ ∙λ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.1" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.1" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.9.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ ρ ∷ []) "Rev.9.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.2" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ μ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.9.2" ∷ word (ὁ ∷ []) "Rev.9.2" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.2" ∷ word (ὁ ∷ []) "Rev.9.2" ∷ word (ἀ ∷ ὴ ∷ ρ ∷ []) "Rev.9.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.2" ∷ word (φ ∷ ρ ∷ έ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.9.3" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.3" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.3" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.3" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.3" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.3" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ []) "Rev.9.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.4" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.9.4" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.4" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.4" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.9.4" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.9.4" ∷ word (ε ∷ ἰ ∷ []) "Rev.9.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.9.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.9.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.4" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rev.9.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.4" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.9.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.9.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.9.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.5" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.5" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.5" ∷ word (ὁ ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.5" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.5" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.5" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.5" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.9.5" ∷ word (π ∷ α ∷ ί ∷ σ ∷ ῃ ∷ []) "Rev.9.5" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.6" ∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.6" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.9.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ο ∷ ὐ ∷ []) "Rev.9.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.6" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.6" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.6" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.9.6" ∷ word (ὁ ∷ []) "Rev.9.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.6" ∷ word (ἀ ∷ π ∷ []) "Rev.9.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.7" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.9.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.9.7" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.9.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.7" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.7" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ι ∷ []) "Rev.9.7" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῷ ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.7" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.9.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.8" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.8" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Rev.9.8" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.8" ∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.9.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.8" ∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.8" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.9.9" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.9" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.9" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.9" ∷ word (ἡ ∷ []) "Rev.9.9" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (π ∷ τ ∷ ε ∷ ρ ∷ ύ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.9" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.9.9" ∷ word (ἁ ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.9.9" ∷ word (τ ∷ ρ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.9" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ ς ∷ []) "Rev.9.10" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.10" ∷ word (σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ α ∷ []) "Rev.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.10" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10" ∷ word (ἡ ∷ []) "Rev.9.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.10" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.10" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.10" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.9.10" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.9.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.11" ∷ word (ἐ ∷ π ∷ []) "Rev.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Rev.9.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.11" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.9.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.11" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.9.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.9.11" ∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.9.11" ∷ word (Ἀ ∷ β ∷ α ∷ δ ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.9.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.11" ∷ word (τ ∷ ῇ ∷ []) "Rev.9.11" ∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ κ ∷ ῇ ∷ []) "Rev.9.11" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.9.11" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.9.11" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.9.11" ∷ word (Ἡ ∷ []) "Rev.9.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12" ∷ word (ἡ ∷ []) "Rev.9.12" ∷ word (μ ∷ ί ∷ α ∷ []) "Rev.9.12" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.9.12" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.9.12" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.12" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.9.12" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.9.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.9.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.9.12" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.9.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.13" ∷ word (ὁ ∷ []) "Rev.9.13" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.9.13" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.9.13" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.13" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.9.13" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.9.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.13" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.9.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (ἕ ∷ κ ∷ τ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (ὁ ∷ []) "Rev.9.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.9.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.14" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ α ∷ []) "Rev.9.14" ∷ word (Λ ∷ ῦ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ ς ∷ []) "Rev.9.14" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.14" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.9.14" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ ῃ ∷ []) "Rev.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.15" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.9.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.9.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.15" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.9.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.9.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.9.15" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.15" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.9.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.15" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.15" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.16" ∷ word (ὁ ∷ []) "Rev.9.16" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.9.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.16" ∷ word (ἱ ∷ π ∷ π ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.9.16" ∷ word (δ ∷ ι ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.9.16" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.9.16" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.9.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.9.16" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.9.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.9.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.9.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.17" ∷ word (τ ∷ ῇ ∷ []) "Rev.9.17" ∷ word (ὁ ∷ ρ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (ἐ ∷ π ∷ []) "Rev.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.9.17" ∷ word (θ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rev.9.17" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ὑ ∷ α ∷ κ ∷ ι ∷ ν ∷ θ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (θ ∷ ε ∷ ι ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (α ∷ ἱ ∷ []) "Rev.9.17" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (ὡ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.17" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.17" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.17" ∷ word (θ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.9.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.9.18" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.9.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.9.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (σ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.18" ∷ word (ἡ ∷ []) "Rev.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.9.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.9.19" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (α ∷ ἱ ∷ []) "Rev.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.9.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.19" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "Rev.9.19" ∷ word (ὄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.9.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ά ∷ ς ∷ []) "Rev.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.19" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.9.20" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.9.20" ∷ word (ο ∷ ἳ ∷ []) "Rev.9.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.9.20" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.9.20" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.9.20" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.9.20" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.20" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (μ ∷ ὴ ∷ []) "Rev.9.20" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ᾶ ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (∙λ ∷ ί ∷ θ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.9.20" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ []) "Rev.9.20" ∷ word (ἃ ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.9.20" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.20" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.9.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.9.21" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (φ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.9.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.9.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (κ ∷ ∙λ ∷ ε ∷ μ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.9.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.10.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ἡ ∷ []) "Rev.10.1" ∷ word (ἶ ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.10.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.1" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.1" ∷ word (ὁ ∷ []) "Rev.10.1" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.1" ∷ word (ο ∷ ἱ ∷ []) "Rev.10.1" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.1" ∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.10.1" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.10.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.2" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (π ∷ ό ∷ δ ∷ α ∷ []) "Rev.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.2" ∷ word (δ ∷ ὲ ∷ []) "Rev.10.2" ∷ word (ε ∷ ὐ ∷ ώ ∷ ν ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.10.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.10.3" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.3" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rev.10.3" ∷ word (∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.10.3" ∷ word (μ ∷ υ ∷ κ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.3" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.10.3" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.3" ∷ word (α ∷ ἱ ∷ []) "Rev.10.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.3" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.10.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.10.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.10.3" ∷ word (φ ∷ ω ∷ ν ∷ ά ∷ ς ∷ []) "Rev.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.4" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (α ∷ ἱ ∷ []) "Rev.10.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4" ∷ word (ἤ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.4" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.10.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (Σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.10.4" ∷ word (ἃ ∷ []) "Rev.10.4" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.4" ∷ word (α ∷ ἱ ∷ []) "Rev.10.4" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.10.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ ῃ ∷ ς ∷ []) "Rev.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5" ∷ word (ὁ ∷ []) "Rev.10.5" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.10.5" ∷ word (ὃ ∷ ν ∷ []) "Rev.10.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.10.5" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.10.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.5" ∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.5" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ὰ ∷ ν ∷ []) "Rev.10.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.6" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.10.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.10.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.10.6" ∷ word (ὃ ∷ ς ∷ []) "Rev.10.6" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.6" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.10.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.10.6" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.10.6" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.10.7" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.7" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rev.10.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.10.7" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Rev.10.7" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.7" ∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.10.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.7" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.10.7" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.10.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.10.7" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Rev.10.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (ἡ ∷ []) "Rev.10.8" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.10.8" ∷ word (ἣ ∷ ν ∷ []) "Rev.10.8" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.10.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.8" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.10.8" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.10.8" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.8" ∷ word (∙λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.8" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.10.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.10.8" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.8" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.10.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ []) "Rev.10.9" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.10.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.10.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.10.9" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ί ∷ []) "Rev.10.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.10.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.9" ∷ word (Λ ∷ ά ∷ β ∷ ε ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ φ ∷ α ∷ γ ∷ ε ∷ []) "Rev.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.9" ∷ word (π ∷ ι ∷ κ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.10.9" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rev.10.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.10.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.9" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.10.9" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.10.9" ∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ὺ ∷ []) "Rev.10.9" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.9" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.10.10" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ α ∷ ρ ∷ ί ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.10.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.10.10" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.10.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ἦ ∷ ν ∷ []) "Rev.10.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.10.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.10.10" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rev.10.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (ὡ ∷ ς ∷ []) "Rev.10.10" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Rev.10.10" ∷ word (γ ∷ ∙λ ∷ υ ∷ κ ∷ ύ ∷ []) "Rev.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.10.10" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Rev.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Rev.10.10" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.10.10" ∷ word (ἡ ∷ []) "Rev.10.10" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.10.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.10.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.10.11" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.10.11" ∷ word (Δ ∷ ε ∷ ῖ ∷ []) "Rev.10.11" ∷ word (σ ∷ ε ∷ []) "Rev.10.11" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Rev.10.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.10.11" ∷ word (∙λ ∷ α ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rev.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.10.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.10.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.10.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.1" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.11.1" ∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.1" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.1" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.11.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.11.1" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.11.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.1" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.11.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.1" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.2" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.11.2" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Rev.11.2" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (μ ∷ ὴ ∷ []) "Rev.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.11.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.2" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.11.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.2" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.2" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.2" ∷ word (π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.2" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.2" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.2" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.11.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.3" ∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.11.3" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.11.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.3" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.3" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.11.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.3" ∷ word (σ ∷ ά ∷ κ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.3" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.11.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ῖ ∷ α ∷ ι ∷ []) "Rev.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.4" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ι ∷ []) "Rev.11.4" ∷ word (α ∷ ἱ ∷ []) "Rev.11.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.4" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (ε ∷ ἴ ∷ []) "Rev.11.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.11.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.11.5" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rev.11.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.5" ∷ word (ε ∷ ἴ ∷ []) "Rev.11.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.11.5" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.11.5" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.11.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.5" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.6" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ι ∷ []) "Rev.11.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.11.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.11.6" ∷ word (μ ∷ ὴ ∷ []) "Rev.11.6" ∷ word (ὑ ∷ ε ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.6" ∷ word (β ∷ ρ ∷ έ ∷ χ ∷ ῃ ∷ []) "Rev.11.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.6" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.6" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.11.6" ∷ word (σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.11.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.6" ∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Rev.11.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.6" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.6" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rev.11.6" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῇ ∷ []) "Rev.11.6" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Rev.11.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.11.6" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.7" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.7" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.7" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.7" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.11.7" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.8" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.8" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.8" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.8" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Rev.11.8" ∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (Α ∷ ἴ ∷ γ ∷ υ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.11.8" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.8" ∷ word (ὁ ∷ []) "Rev.11.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.8" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (∙λ ∷ α ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.9" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Rev.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.9" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.9" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.9" ∷ word (π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.11.9" ∷ word (ἀ ∷ φ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.9" ∷ word (τ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.9" ∷ word (μ ∷ ν ∷ ῆ ∷ μ ∷ α ∷ []) "Rev.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ []) "Rev.11.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.10" ∷ word (δ ∷ ῶ ∷ ρ ∷ α ∷ []) "Rev.11.10" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.11.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.10" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.11.10" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.10" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.11.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.10" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ά ∷ ν ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.10" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.11.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.11.11" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.11.11" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.11.11" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.11.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.11.11" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.11.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.11" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rev.11.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.11" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.11" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.11.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.11.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.12" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.12" ∷ word (Ἀ ∷ ν ∷ ά ∷ β ∷ α ∷ τ ∷ ε ∷ []) "Rev.11.12" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.11.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.12" ∷ word (τ ∷ ῇ ∷ []) "Rev.11.12" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.12" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.12" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.13" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Rev.11.13" ∷ word (τ ∷ ῇ ∷ []) "Rev.11.13" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.11.13" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.13" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.13" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.13" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.13" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.11.13" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.11.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.11.13" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.11.13" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἔ ∷ μ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Rev.11.13" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.11.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.11.13" ∷ word (Ἡ ∷ []) "Rev.11.14" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.11.14" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.14" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.11.14" ∷ word (ἡ ∷ []) "Rev.11.14" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Rev.11.14" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.11.14" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.11.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (ὁ ∷ []) "Rev.11.15" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.11.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.11.15" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.15" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Rev.11.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.15" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.15" ∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.11.15" ∷ word (ἡ ∷ []) "Rev.11.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.11.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.15" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.15" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.11.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.16" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.16" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.11.16" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.11.16" ∷ word (ο ∷ ἱ ∷ []) "Rev.11.16" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.16" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.11.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.16" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.11.16" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Rev.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.16" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.16" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.11.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.11.17" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ έ ∷ ν ∷ []) "Rev.11.17" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.11.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (ὢ ∷ ν ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17" ∷ word (ὁ ∷ []) "Rev.11.17" ∷ word (ἦ ∷ ν ∷ []) "Rev.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.11.17" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ α ∷ ς ∷ []) "Rev.11.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rev.11.17" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.17" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Rev.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ὰ ∷ []) "Rev.11.18" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.11.18" ∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.11.18" ∷ word (ἡ ∷ []) "Rev.11.18" ∷ word (ὀ ∷ ρ ∷ γ ∷ ή ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (ὁ ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.11.18" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.11.18" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.11.18" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.11.18" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.11.18" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.11.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.18" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.11.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.11.18" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.11.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.11.18" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.11.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.11.19" ∷ word (ὁ ∷ []) "Rev.11.19" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (ὁ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.11.19" ∷ word (ἡ ∷ []) "Rev.11.19" ∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.11.19" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Rev.11.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.11.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.11.19" ∷ word (ν ∷ α ∷ ῷ ∷ []) "Rev.11.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.11.19" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.11.19" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.11.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.11.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.1" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.12.1" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.1" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.1" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (ἡ ∷ []) "Rev.12.1" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Rev.12.1" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.12.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.1" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.1" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.1" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.1" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.2" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Rev.12.2" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.12.2" ∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.2" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.12.2" ∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Rev.12.3" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.12.3" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.12.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.3" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.3" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.12.3" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.3" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.3" ∷ word (π ∷ υ ∷ ρ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.12.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.12.3" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ἡ ∷ []) "Rev.12.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ ὰ ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (σ ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "Rev.12.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.4" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.4" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.4" ∷ word (ὁ ∷ []) "Rev.12.4" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.4" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.4" ∷ word (τ ∷ ε ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.12.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.4" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.12.4" ∷ word (τ ∷ έ ∷ κ ∷ ῃ ∷ []) "Rev.12.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.5" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Rev.12.5" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.5" ∷ word (ὃ ∷ ς ∷ []) "Rev.12.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.12.5" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.12.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.12.5" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.12.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.5" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.12.5" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (ἡ ∷ ρ ∷ π ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.5" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.6" ∷ word (ἡ ∷ []) "Rev.12.6" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.12.6" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.12.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.12.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.6" ∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.6" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.12.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Rev.12.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.7" ∷ word (ὁ ∷ []) "Rev.12.7" ∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ὁ ∷ []) "Rev.12.7" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.7" ∷ word (ἐ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.7" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.8" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.12.8" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.12.8" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.8" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.8" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.12.9" ∷ word (ὁ ∷ []) "Rev.12.9" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.12.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.12.9" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.9" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.12.10" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.12.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.12.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.12.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.10" ∷ word (Ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.12.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.10" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.10" ∷ word (ὁ ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ γ ∷ ω ∷ ρ ∷ []) "Rev.12.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ὁ ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.12.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.12.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.10" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.12.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.12.11" ∷ word (ἐ ∷ ν ∷ ί ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.11" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.12.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.11" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.11" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.11" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.12.11" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.11" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rev.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.12.11" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.12.11" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.12.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.12.12" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.12.12" ∷ word (ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rev.12.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.12.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.12.12" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.12.12" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.12" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.12.12" ∷ word (ὁ ∷ []) "Rev.12.12" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.12.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.12.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rev.12.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.12.12" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.12.12" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Rev.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.12" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.12.12" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.12.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.12.13" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.12.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (ὁ ∷ []) "Rev.12.13" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.12.13" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.12.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.12.13" ∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.13" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.12.13" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.12.13" ∷ word (ἔ ∷ τ ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rev.12.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.13" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ α ∷ []) "Rev.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.12.14" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.14" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "Rev.12.14" ∷ word (α ∷ ἱ ∷ []) "Rev.12.14" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.12.14" ∷ word (π ∷ τ ∷ έ ∷ ρ ∷ υ ∷ γ ∷ ε ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ἀ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.14" ∷ word (π ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.14" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.12.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.14" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.12.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.12.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.14" ∷ word (ἥ ∷ μ ∷ ι ∷ σ ∷ υ ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.12.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.14" ∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.15" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.15" ∷ word (ὁ ∷ []) "Rev.12.15" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.12.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.15" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.12.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.15" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.12.15" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.12.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ό ∷ ν ∷ []) "Rev.12.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ φ ∷ ό ∷ ρ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Rev.12.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (ἐ ∷ β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ἡ ∷ []) "Rev.12.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.12.16" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.16" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ἡ ∷ []) "Rev.12.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.12.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.12.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ ι ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.12.16" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.12.16" ∷ word (ὃ ∷ ν ∷ []) "Rev.12.16" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.12.16" ∷ word (ὁ ∷ []) "Rev.12.16" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.16" ∷ word (ἐ ∷ κ ∷ []) "Rev.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ὠ ∷ ρ ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.12.17" ∷ word (ὁ ∷ []) "Rev.12.17" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.17" ∷ word (τ ∷ ῇ ∷ []) "Rev.12.17" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.12.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.12.17" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.12.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.12.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.12.17" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.17" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.12.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.17" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.12.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.12.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Rev.12.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.12.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.12.18" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.12.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.12.18" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.12.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.13.1" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ []) "Rev.13.1" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.13.1" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.1" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.1" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (ὃ ∷ []) "Rev.13.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (ἦ ∷ ν ∷ []) "Rev.13.2" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (π ∷ α ∷ ρ ∷ δ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.13.2" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.2" ∷ word (ἄ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.2" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.2" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.2" ∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.2" ∷ word (ὁ ∷ []) "Rev.13.2" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.2" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.2" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.3" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.13.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.3" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (ἡ ∷ []) "Rev.13.3" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.3" ∷ word (ἐ ∷ θ ∷ α ∷ υ ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.13.3" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Rev.13.3" ∷ word (ἡ ∷ []) "Rev.13.3" ∷ word (γ ∷ ῆ ∷ []) "Rev.13.3" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Rev.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.3" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.13.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.13.4" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.4" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.13.4" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.4" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.13.4" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.4" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.13.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.5" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.5" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ ς ∷ []) "Rev.13.5" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.5" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6" ∷ word (ἤ ∷ ν ∷ ο ∷ ι ∷ ξ ∷ ε ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.6" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.6" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.13.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.6" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rev.13.6" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.6" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.6" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.13.6" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.13.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.13.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.7" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ν ∷ ι ∷ κ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.7" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.13.7" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.7" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.7" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.13.8" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.13.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (ο ∷ ὗ ∷ []) "Rev.13.8" ∷ word (ο ∷ ὐ ∷ []) "Rev.13.8" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.8" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.13.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.8" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.13.8" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.13.8" ∷ word (Ε ∷ ἴ ∷ []) "Rev.13.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.9" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.9" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "Rev.13.9" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.9" ∷ word (ε ∷ ἴ ∷ []) "Rev.13.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.10" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.10" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.13.10" ∷ word (ε ∷ ἴ ∷ []) "Rev.13.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.10" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.13.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.10" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ ῃ ∷ []) "Rev.13.10" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.10" ∷ word (ὧ ∷ δ ∷ έ ∷ []) "Rev.13.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.13.10" ∷ word (ἡ ∷ []) "Rev.13.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.13.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.10" ∷ word (ἡ ∷ []) "Rev.13.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.13.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.13.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.13.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.13.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.11" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.13.11" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.13.11" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.13.11" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Rev.13.11" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.11" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.13.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.13.11" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rev.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rev.13.12" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.12" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.12" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.13.12" ∷ word (ο ∷ ὗ ∷ []) "Rev.13.12" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "Rev.13.12" ∷ word (ἡ ∷ []) "Rev.13.12" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.13" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.13.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.13" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.13.13" ∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ []) "Rev.13.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.13.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.13.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.13.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.13" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.13.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.13.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾷ ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.13.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.13.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.13.14" ∷ word (ἃ ∷ []) "Rev.13.14" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.14" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.14" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.14" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.13.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.13.14" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.13.14" ∷ word (ὃ ∷ ς ∷ []) "Rev.13.14" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.13.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.13.14" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ ν ∷ []) "Rev.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.14" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.14" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.13.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.13.15" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.13.15" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.13.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15" ∷ word (ἡ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.13.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.15" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.13.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rev.13.15" ∷ word (μ ∷ ὴ ∷ []) "Rev.13.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.13.15" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.15" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.15" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Rev.13.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.13.16" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.16" ∷ word (δ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.13.16" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.13.16" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Rev.13.16" ∷ word (ἢ ∷ []) "Rev.13.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.13.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.16" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.13.17" ∷ word (μ ∷ ή ∷ []) "Rev.13.17" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.13.17" ∷ word (δ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ἢ ∷ []) "Rev.13.17" ∷ word (π ∷ ω ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.13.17" ∷ word (ε ∷ ἰ ∷ []) "Rev.13.17" ∷ word (μ ∷ ὴ ∷ []) "Rev.13.17" ∷ word (ὁ ∷ []) "Rev.13.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.17" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.13.17" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.17" ∷ word (ἢ ∷ []) "Rev.13.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.17" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.13.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.17" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Rev.13.18" ∷ word (ἡ ∷ []) "Rev.13.18" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Rev.13.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18" ∷ word (ὁ ∷ []) "Rev.13.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.13.18" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.13.18" ∷ word (ψ ∷ η ∷ φ ∷ ι ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.13.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.13.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.13.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.13.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.13.18" ∷ word (ὁ ∷ []) "Rev.13.18" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.13.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.13.18" ∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ό ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.13.18" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.13.18" ∷ word (ἕ ∷ ξ ∷ []) "Rev.13.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.1" ∷ word (Σ ∷ ι ∷ ώ ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.1" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.1" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.1" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.1" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.14.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.1" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.2" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.2" ∷ word (ἡ ∷ []) "Rev.14.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.14.2" ∷ word (ἣ ∷ ν ∷ []) "Rev.14.2" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.2" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.14.2" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.14.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.14.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.3" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.14.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.14.3" ∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.14.3" ∷ word (ε ∷ ἰ ∷ []) "Rev.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.14.3" ∷ word (α ∷ ἱ ∷ []) "Rev.14.3" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.14.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.3" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.14.3" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Rev.14.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.3" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.14.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ἳ ∷ []) "Rev.14.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.14.4" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rev.14.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.4" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.4" ∷ word (ἂ ∷ ν ∷ []) "Rev.14.4" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ῃ ∷ []) "Rev.14.4" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.14.4" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.4" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.14.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.4" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ῳ ∷ []) "Rev.14.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.5" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.5" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.14.5" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.14.5" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.14.5" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ί ∷ []) "Rev.14.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (π ∷ ε ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.6" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.14.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.6" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.6" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.14.6" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.6" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rev.14.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.7" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.7" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.7" ∷ word (Φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.14.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.14.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.7" ∷ word (ἡ ∷ []) "Rev.14.7" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.7" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.14.7" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.7" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.7" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.7" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.14.7" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.14.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.8" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.8" ∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.14.8" ∷ word (ἡ ∷ []) "Rev.14.8" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.14.8" ∷ word (ἣ ∷ []) "Rev.14.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.14.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.8" ∷ word (π ∷ ε ∷ π ∷ ό ∷ τ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Rev.14.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.14.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.14.8" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.14.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.9" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.14.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.9" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.9" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.9" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.9" ∷ word (Ε ∷ ἴ ∷ []) "Rev.14.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.9" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.9" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.9" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (ἢ ∷ []) "Rev.14.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.9" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.10" ∷ word (π ∷ ί ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (κ ∷ ε ∷ κ ∷ ε ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (ἀ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.10" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.10" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.10" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.14.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.10" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.10" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ὁ ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.14.11" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.14.11" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11" ∷ word (ἀ ∷ ν ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.14.11" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.14.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.11" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.11" ∷ word (ε ∷ ἴ ∷ []) "Rev.14.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.14.11" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rev.14.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.11" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.14.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.11" ∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.14.12" ∷ word (ἡ ∷ []) "Rev.14.12" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rev.14.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.12" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.14.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.12" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.14.12" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.14.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.14.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.14.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.13" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.14.13" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.14.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.13" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.13" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.14.13" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.13" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.14.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.14.13" ∷ word (ο ∷ ἱ ∷ []) "Rev.14.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.14.13" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.14.13" ∷ word (ἀ ∷ π ∷ []) "Rev.14.13" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "Rev.14.13" ∷ word (ν ∷ α ∷ ί ∷ []) "Rev.14.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.14.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.14.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.14.13" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.14.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (κ ∷ ό ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.14.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.14.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ []) "Rev.14.13" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.14.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.14.14" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rev.14.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.14" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rev.14.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.14.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.14" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.14.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.14" ∷ word (τ ∷ ῇ ∷ []) "Rev.14.14" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.14.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.14" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.14" ∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.15" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.15" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.15" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.15" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.15" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.14.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.15" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.15" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rev.14.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.15" ∷ word (θ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.15" ∷ word (ἡ ∷ []) "Rev.14.15" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rev.14.15" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.14.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.15" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.14.15" ∷ word (ὁ ∷ []) "Rev.14.15" ∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.14.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.16" ∷ word (ὁ ∷ []) "Rev.14.16" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.16" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.14.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.16" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.16" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.16" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.14.16" ∷ word (ἡ ∷ []) "Rev.14.16" ∷ word (γ ∷ ῆ ∷ []) "Rev.14.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.14.17" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.17" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.14.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.17" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.14.17" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.14.17" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.17" ∷ word (ὀ ∷ ξ ∷ ύ ∷ []) "Rev.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.18" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (ὁ ∷ []) "Rev.14.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.14.18" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.14.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.18" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.18" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.14.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.14.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.14.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.14.18" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.18" ∷ word (ὀ ∷ ξ ∷ ὺ ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.14.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.14.18" ∷ word (β ∷ ό ∷ τ ∷ ρ ∷ υ ∷ α ∷ ς ∷ []) "Rev.14.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.14.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.14.18" ∷ word (ἤ ∷ κ ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rev.14.18" ∷ word (α ∷ ἱ ∷ []) "Rev.14.18" ∷ word (σ ∷ τ ∷ α ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.14.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (ὁ ∷ []) "Rev.14.19" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.14.19" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.14.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἐ ∷ τ ∷ ρ ∷ ύ ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (ἄ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.19" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.14.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.14.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.14.19" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.14.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.14.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.14.19" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20" ∷ word (ἐ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.14.20" ∷ word (ἡ ∷ []) "Rev.14.20" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.14.20" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.14.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.14.20" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.14.20" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.14.20" ∷ word (ἐ ∷ κ ∷ []) "Rev.14.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.14.20" ∷ word (∙λ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.14.20" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (χ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.14.20" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.14.20" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (χ ∷ ι ∷ ∙λ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (ἑ ∷ ξ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.14.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.15.1" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rev.15.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.15.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.1" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.1" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.15.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.1" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.15.1" ∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.1" ∷ word (ὁ ∷ []) "Rev.15.1" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.15.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.15.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.2" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.15.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.2" ∷ word (ὑ ∷ α ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Rev.15.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "Rev.15.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (ᾄ ∷ δ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (ᾠ ∷ δ ∷ ὴ ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.3" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.3" ∷ word (Μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὰ ∷ []) "Rev.15.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.3" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.15.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.15.3" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.15.3" ∷ word (α ∷ ἱ ∷ []) "Rev.15.3" ∷ word (ὁ ∷ δ ∷ ο ∷ ί ∷ []) "Rev.15.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.3" ∷ word (ὁ ∷ []) "Rev.15.3" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.15.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.3" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.3" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rev.15.4" ∷ word (ο ∷ ὐ ∷ []) "Rev.15.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.15.4" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῇ ∷ []) "Rev.15.4" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.15.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.15.4" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.15.4" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.15.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.4" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.15.4" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ό ∷ ν ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.15.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.4" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ά ∷ []) "Rev.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.15.4" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.15.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.15.5" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.15.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.15.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.15.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.5" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ []) "Rev.15.5" ∷ word (ὁ ∷ []) "Rev.15.5" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.5" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.15.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.5" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.15.5" ∷ word (ἐ ∷ ν ∷ []) "Rev.15.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.15.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.15.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Rev.15.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.15.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.15.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.15.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.15.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.15.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.6" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.15.6" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (∙λ ∷ ί ∷ ν ∷ ο ∷ ν ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ζ ∷ ω ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.15.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rev.15.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.15.6" ∷ word (σ ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "Rev.15.6" ∷ word (ζ ∷ ώ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.6" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.7" ∷ word (ἓ ∷ ν ∷ []) "Rev.15.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.15.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.15.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.7" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ ς ∷ []) "Rev.15.7" ∷ word (γ ∷ ε ∷ μ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.7" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.15.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.15.7" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.7" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.15.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.15.8" ∷ word (ὁ ∷ []) "Rev.15.8" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.15.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.15.8" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.15.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.15.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.15.8" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Rev.15.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.15.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.15.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.15.8" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.15.8" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.15.8" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.15.8" ∷ word (α ∷ ἱ ∷ []) "Rev.15.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.15.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.15.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.15.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.15.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.1" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.16.1" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.1" ∷ word (ἐ ∷ κ ∷ χ ∷ έ ∷ ε ∷ τ ∷ ε ∷ []) "Rev.16.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.16.1" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.2" ∷ word (ὁ ∷ []) "Rev.16.2" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.2" ∷ word (ἕ ∷ ∙λ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.16.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.2" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.16.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (ὁ ∷ []) "Rev.16.3" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.3" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.3" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.3" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.3" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.3" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rev.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.3" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.3" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "Rev.16.3" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.16.3" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.16.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.16.3" ∷ word (τ ∷ ῇ ∷ []) "Rev.16.3" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.16.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (ὁ ∷ []) "Rev.16.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.4" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.4" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.4" ∷ word (π ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.4" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.4" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.4" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.16.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.5" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.16.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (Δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (ε ∷ ἶ ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ὢ ∷ ν ∷ []) "Rev.16.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ἦ ∷ ν ∷ []) "Rev.16.5" ∷ word (ὁ ∷ []) "Rev.16.5" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.5" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.16.5" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Rev.16.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.6" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ α ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.6" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.16.6" ∷ word (δ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ς ∷ []) "Rev.16.6" ∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.6" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "Rev.16.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.7" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.7" ∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.16.7" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.16.7" ∷ word (ὁ ∷ []) "Rev.16.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.16.7" ∷ word (ὁ ∷ []) "Rev.16.7" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.16.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.7" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.16.7" ∷ word (α ∷ ἱ ∷ []) "Rev.16.7" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.7" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.16.7" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.8" ∷ word (ὁ ∷ []) "Rev.16.8" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.8" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.8" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.8" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rev.16.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.16.8" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.16.9" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.16.9" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.16.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.9" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.9" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.16.9" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Rev.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.9" ∷ word (ο ∷ ὐ ∷ []) "Rev.16.9" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.16.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.16.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ὁ ∷ []) "Rev.16.10" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.10" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.10" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.10" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.10" ∷ word (ἡ ∷ []) "Rev.16.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.10" ∷ word (ἐ ∷ μ ∷ α ∷ σ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.16.10" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ς ∷ []) "Rev.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.10" ∷ word (π ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.11" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (π ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (ἑ ∷ ∙λ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.11" ∷ word (ο ∷ ὐ ∷ []) "Rev.16.11" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.16.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.12" ∷ word (ὁ ∷ []) "Rev.16.12" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.12" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.12" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.12" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Rev.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.12" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Rev.16.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.12" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.12" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.16.12" ∷ word (ἡ ∷ []) "Rev.16.12" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ς ∷ []) "Rev.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.12" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.16.12" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.13" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.13" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Rev.16.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.13" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.13" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.16.13" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.13" ∷ word (β ∷ ά ∷ τ ∷ ρ ∷ α ∷ χ ∷ ο ∷ ι ∷ []) "Rev.16.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.16.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.16.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.16.14" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.16.14" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rev.16.14" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.16.14" ∷ word (ἃ ∷ []) "Rev.16.14" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.16.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.14" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.14" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.16.14" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.16.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.16.15" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.15" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ η ∷ ς ∷ []) "Rev.16.15" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.16.15" ∷ word (ὁ ∷ []) "Rev.16.15" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.16.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.16.15" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Rev.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.16.15" ∷ word (μ ∷ ὴ ∷ []) "Rev.16.15" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.16.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῇ ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.15" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.16.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.15" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.16" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ γ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.16.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.16" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.16.16" ∷ word (Ἑ ∷ β ∷ ρ ∷ α ∷ ϊ ∷ σ ∷ τ ∷ ὶ ∷ []) "Rev.16.16" ∷ word (Ἁ ∷ ρ ∷ μ ∷ α ∷ γ ∷ ε ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.16.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.16.17" ∷ word (ὁ ∷ []) "Rev.16.17" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.16.17" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.16.17" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.16.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.17" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "Rev.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.17" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.16.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.17" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.16.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.17" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.16.17" ∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rev.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἀ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (φ ∷ ω ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.18" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἀ ∷ φ ∷ []) "Rev.16.18" ∷ word (ο ∷ ὗ ∷ []) "Rev.16.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.18" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Rev.16.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.16.18" ∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.16.18" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.16.18" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Rev.16.18" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Rev.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.16.19" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.16.19" ∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (α ∷ ἱ ∷ []) "Rev.16.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.16.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.19" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.16.19" ∷ word (ἡ ∷ []) "Rev.16.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.19" ∷ word (ἐ ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Rev.16.19" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.16.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.16.19" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.19" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rev.16.20" ∷ word (ν ∷ ῆ ∷ σ ∷ ο ∷ ς ∷ []) "Rev.16.20" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.20" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.16.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.16.20" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21" ∷ word (χ ∷ ά ∷ ∙λ ∷ α ∷ ζ ∷ α ∷ []) "Rev.16.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.16.21" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ι ∷ α ∷ ί ∷ α ∷ []) "Rev.16.21" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.16.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.16.21" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.16.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.16.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.16.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rev.16.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.16.21" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.16.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.16.21" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Rev.16.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.16.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rev.16.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.16.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (χ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ η ∷ ς ∷ []) "Rev.16.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.16.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.16.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.16.21" ∷ word (ἡ ∷ []) "Rev.16.21" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὴ ∷ []) "Rev.16.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.16.21" ∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Rev.16.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.1" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.1" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.1" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.17.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.1" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.17.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.17.1" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.17.1" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.1" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.1" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.1" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.17.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.1" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.17.1" ∷ word (μ ∷ ε ∷ θ ∷ []) "Rev.17.2" ∷ word (ἧ ∷ ς ∷ []) "Rev.17.2" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.2" ∷ word (ἐ ∷ μ ∷ ε ∷ θ ∷ ύ ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.2" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.17.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.2" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.17.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.17.3" ∷ word (μ ∷ ε ∷ []) "Rev.17.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.3" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.3" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.3" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.3" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.3" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.3" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (ἡ ∷ []) "Rev.17.4" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.4" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.17.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.17.4" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rev.17.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.17.4" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.4" ∷ word (τ ∷ ῇ ∷ []) "Rev.17.4" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "Rev.17.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (γ ∷ έ ∷ μ ∷ ο ∷ ν ∷ []) "Rev.17.4" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.4" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Rev.17.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.5" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.5" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.5" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.5" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.17.5" ∷ word (ἡ ∷ []) "Rev.17.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.5" ∷ word (ἡ ∷ []) "Rev.17.5" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Rev.17.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.5" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.17.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.17.6" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.6" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.17.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.17.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.6" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ []) "Rev.17.6" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Rev.17.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.6" ∷ word (θ ∷ α ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.17.6" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.17.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.17.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.7" ∷ word (ὁ ∷ []) "Rev.17.7" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rev.17.7" ∷ word (τ ∷ ί ∷ []) "Rev.17.7" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ α ∷ ς ∷ []) "Rev.17.7" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.17.7" ∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Rev.17.7" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.17.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.17.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.7" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Rev.17.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.17.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.7" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rev.17.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.7" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.17.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.7" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.7" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.7" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (ὃ ∷ []) "Rev.17.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.17.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.8" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.17.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ὧ ∷ ν ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ []) "Rev.17.8" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.17.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.17.8" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rev.17.8" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.17.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.8" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.8" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.8" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.8" ∷ word (Ὧ ∷ δ ∷ ε ∷ []) "Rev.17.9" ∷ word (ὁ ∷ []) "Rev.17.9" ∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.17.9" ∷ word (ὁ ∷ []) "Rev.17.9" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.17.9" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.9" ∷ word (α ∷ ἱ ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.17.9" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Rev.17.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rev.17.9" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.17.9" ∷ word (ἡ ∷ []) "Rev.17.9" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.9" ∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.9" ∷ word (ἐ ∷ π ∷ []) "Rev.17.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.9" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.10" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Rev.17.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.17.10" ∷ word (ὁ ∷ []) "Rev.17.10" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.17.10" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.10" ∷ word (ὁ ∷ []) "Rev.17.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.17.10" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.17.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.10" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.17.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.17.10" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Rev.17.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.17.10" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.17.10" ∷ word (μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.11" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.11" ∷ word (ὃ ∷ []) "Rev.17.11" ∷ word (ἦ ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.17.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.17.11" ∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ό ∷ ς ∷ []) "Rev.17.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ἐ ∷ κ ∷ []) "Rev.17.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.11" ∷ word (ἑ ∷ π ∷ τ ∷ ά ∷ []) "Rev.17.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.11" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rev.17.11" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.12" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.12" ∷ word (ἃ ∷ []) "Rev.17.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.12" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Rev.17.12" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.17.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.17.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.17.12" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Rev.17.12" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.12" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.13" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.13" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.13" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.13" ∷ word (τ ∷ ῷ ∷ []) "Rev.17.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.13" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.17.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.17.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.14" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.17.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.17.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.17.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.17.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.17.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.17.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.14" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.17.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.14" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.17.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Rev.17.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.17.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.17.15" ∷ word (Τ ∷ ὰ ∷ []) "Rev.17.15" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.15" ∷ word (ἃ ∷ []) "Rev.17.15" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.15" ∷ word (ο ∷ ὗ ∷ []) "Rev.17.15" ∷ word (ἡ ∷ []) "Rev.17.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ []) "Rev.17.15" ∷ word (κ ∷ ά ∷ θ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.15" ∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.17.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.15" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὰ ∷ []) "Rev.17.16" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Rev.17.16" ∷ word (κ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rev.17.16" ∷ word (ἃ ∷ []) "Rev.17.16" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.17.16" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.17.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.17.16" ∷ word (μ ∷ ι ∷ σ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "Rev.17.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ή ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.17.16" ∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.17.16" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.17.16" ∷ word (ἐ ∷ ν ∷ []) "Rev.17.16" ∷ word (π ∷ υ ∷ ρ ∷ ί ∷ []) "Rev.17.16" ∷ word (ὁ ∷ []) "Rev.17.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.17.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.17.17" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.17.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.17.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.17" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.17.17" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.17.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.17.17" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.17.17" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.17.17" ∷ word (ο ∷ ἱ ∷ []) "Rev.17.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.17.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.17.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.17.18" ∷ word (ἣ ∷ ν ∷ []) "Rev.17.18" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ς ∷ []) "Rev.17.18" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.17.18" ∷ word (ἡ ∷ []) "Rev.17.18" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.17.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.17.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.17.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.17.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.17.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.17.18" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.17.18" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.18.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.1" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.18.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.1" ∷ word (ἡ ∷ []) "Rev.18.1" ∷ word (γ ∷ ῆ ∷ []) "Rev.18.1" ∷ word (ἐ ∷ φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rev.18.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.1" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rev.18.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.18.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.2" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ᾷ ∷ []) "Rev.18.2" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.18.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.2" ∷ word (Ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.2" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.2" ∷ word (ἡ ∷ []) "Rev.18.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.2" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ []) "Rev.18.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.18.2" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.2" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ σ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.3" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.3" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.3" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.3" ∷ word (σ ∷ τ ∷ ρ ∷ ή ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.18.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.3" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.4" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.18.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.18.4" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.18.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.4" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.4" ∷ word (Ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (ὁ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "Rev.18.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.18.4" ∷ word (ἐ ∷ ξ ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.4" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.4" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.18.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.18.4" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.4" ∷ word (∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "Rev.18.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.5" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5" ∷ word (α ∷ ἱ ∷ []) "Rev.18.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Rev.18.5" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.18.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.18.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.5" ∷ word (ἐ ∷ μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.5" ∷ word (ὁ ∷ []) "Rev.18.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.5" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rev.18.6" ∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ᾶ ∷ []) "Rev.18.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.18.6" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rev.18.6" ∷ word (ᾧ ∷ []) "Rev.18.6" ∷ word (ἐ ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.6" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rev.18.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.6" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.6" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rev.18.7" ∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7" ∷ word (α ∷ ὑ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.18.7" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.7" ∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rev.18.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.7" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.7" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rev.18.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.18.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.7" ∷ word (Κ ∷ ά ∷ θ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "Rev.18.7" ∷ word (β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Rev.18.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.18.7" ∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rev.18.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.7" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.7" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.7" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.7" ∷ word (ἴ ∷ δ ∷ ω ∷ []) "Rev.18.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rev.18.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.8" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.8" ∷ word (ἥ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.8" ∷ word (α ∷ ἱ ∷ []) "Rev.18.8" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.8" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.18.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.8" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.18.8" ∷ word (ὁ ∷ []) "Rev.18.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.8" ∷ word (ὁ ∷ []) "Rev.18.8" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Rev.18.8" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (κ ∷ ∙λ ∷ α ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (κ ∷ ό ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.9" ∷ word (ἐ ∷ π ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.18.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.18.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.9" ∷ word (σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.18.9" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.9" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.10" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.10" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.10" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.10" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.10" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "Rev.18.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.10" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.10" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.10" ∷ word (ἡ ∷ []) "Rev.18.10" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rev.18.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.11" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.11" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.11" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.11" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.11" ∷ word (ἐ ∷ π ∷ []) "Rev.18.11" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.18.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.11" ∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.18.11" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rev.18.11" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.11" ∷ word (γ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (β ∷ υ ∷ σ ∷ σ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (σ ∷ ι ∷ ρ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (κ ∷ ο ∷ κ ∷ κ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (θ ∷ ύ ∷ ϊ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ φ ∷ ά ∷ ν ∷ τ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.18.12" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rev.18.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ο ∷ ῦ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (σ ∷ ι ∷ δ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.12" ∷ word (μ ∷ α ∷ ρ ∷ μ ∷ ά ∷ ρ ∷ ο ∷ υ ∷ []) "Rev.18.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (κ ∷ ι ∷ ν ∷ ν ∷ ά ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ ά ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (∙λ ∷ ί ∷ β ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ε ∷ μ ∷ ί ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (κ ∷ τ ∷ ή ∷ ν ∷ η ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ῥ ∷ ε ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (σ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.13" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.18.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.18.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (ἡ ∷ []) "Rev.18.14" ∷ word (ὀ ∷ π ∷ ώ ∷ ρ ∷ α ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rev.18.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (∙λ ∷ ι ∷ π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Rev.18.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rev.18.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.14" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rev.18.14" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.14" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rev.18.14" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.18.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.15" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.18.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.15" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (ἀ ∷ π ∷ []) "Rev.18.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.15" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.15" ∷ word (σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.18.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.15" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rev.18.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.18.15" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.18.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.15" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.15" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.16" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.16" ∷ word (ἡ ∷ []) "Rev.18.16" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ υ ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rev.18.16" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.18.16" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.18.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.16" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "Rev.18.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.17" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.17" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.17" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.17" ∷ word (ὁ ∷ []) "Rev.18.17" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17" ∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.17" ∷ word (ὁ ∷ []) "Rev.18.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.17" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rev.18.17" ∷ word (π ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (ν ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.17" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rev.18.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.17" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.18.17" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Rev.18.17" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.18" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.18.18" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.18.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18" ∷ word (π ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.18.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.18" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rev.18.18" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ α ∷ []) "Rev.18.18" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rev.18.18" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.18.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.18.19" ∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.18.19" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.19" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.18.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.18.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rev.18.19" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (Ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Rev.18.19" ∷ word (ο ∷ ὐ ∷ α ∷ ί ∷ []) "Rev.18.19" ∷ word (ἡ ∷ []) "Rev.18.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.19" ∷ word (ἡ ∷ []) "Rev.18.19" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.19" ∷ word (ᾗ ∷ []) "Rev.18.19" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.19" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.18.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Rev.18.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.19" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.19" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rev.18.19" ∷ word (ἐ ∷ κ ∷ []) "Rev.18.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rev.18.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.19" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Rev.18.19" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Rev.18.19" ∷ word (ἠ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rev.18.19" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.20" ∷ word (ἐ ∷ π ∷ []) "Rev.18.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.20" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ έ ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.18.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.20" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.20" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.18.20" ∷ word (ὁ ∷ []) "Rev.18.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.18.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.18.20" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.18.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.18.20" ∷ word (ἐ ∷ ξ ∷ []) "Rev.18.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.18.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ἦ ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.18.21" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.18.21" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.18.21" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.18.21" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Rev.18.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.18.21" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.18.21" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.18.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.18.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.18.21" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.18.21" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rev.18.21" ∷ word (ὁ ∷ ρ ∷ μ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.18.21" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.18.21" ∷ word (Β ∷ α ∷ β ∷ υ ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Rev.18.21" ∷ word (ἡ ∷ []) "Rev.18.21" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rev.18.21" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.21" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.21" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.21" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.21" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ῳ ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (μ ∷ ο ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (α ∷ ὐ ∷ ∙λ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.18.22" ∷ word (τ ∷ ε ∷ χ ∷ ν ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (τ ∷ έ ∷ χ ∷ ν ∷ η ∷ ς ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.22" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.22" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.18.22" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.22" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.22" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.22" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.22" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.18.23" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.23" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.23" ∷ word (φ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.18.23" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ς ∷ []) "Rev.18.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.18.23" ∷ word (μ ∷ ὴ ∷ []) "Rev.18.23" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ο ∷ ί ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23" ∷ word (ο ∷ ἱ ∷ []) "Rev.18.23" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.18.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.23" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.18.23" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.23" ∷ word (τ ∷ ῇ ∷ []) "Rev.18.23" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ α ∷ κ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.18.23" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.18.23" ∷ word (ἐ ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.18.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.18.23" ∷ word (τ ∷ ὰ ∷ []) "Rev.18.23" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.18.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (ἐ ∷ ν ∷ []) "Rev.18.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.18.24" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.18.24" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.18.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.18.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.18.24" ∷ word (ἐ ∷ σ ∷ φ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.18.24" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.18.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.18.24" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.18.24" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.1" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.19.1" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.1" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.1" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.1" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.1" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.19.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ []) "Rev.19.1" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rev.19.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ α ∷ ι ∷ []) "Rev.19.2" ∷ word (α ∷ ἱ ∷ []) "Rev.19.2" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.19.2" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rev.19.2" ∷ word (ἔ ∷ φ ∷ θ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.2" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.19.2" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.2" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.2" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rev.19.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.2" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.19.3" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Rev.19.3" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.3" ∷ word (ὁ ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ π ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.19.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.19.3" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.3" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.19.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.3" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.4" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rev.19.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.4" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "Rev.19.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ ε ∷ ς ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.4" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ α ∷ []) "Rev.19.4" ∷ word (ζ ∷ ῷ ∷ α ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rev.19.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.4" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.19.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.4" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.19.4" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Rev.19.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.19.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.5" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.5" ∷ word (Α ∷ ἰ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rev.19.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.5" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.19.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.5" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.19.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.19.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rev.19.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (ὑ ∷ δ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.6" ∷ word (ὡ ∷ ς ∷ []) "Rev.19.6" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.19.6" ∷ word (β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.6" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.6" ∷ word (Ἁ ∷ ∙λ ∷ ∙λ ∷ η ∷ ∙λ ∷ ο ∷ υ ∷ ϊ ∷ ά ∷ []) "Rev.19.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.6" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.6" ∷ word (ὁ ∷ []) "Rev.19.6" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.19.6" ∷ word (ὁ ∷ []) "Rev.19.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.19.6" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.19.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.19.7" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (ὁ ∷ []) "Rev.19.7" ∷ word (γ ∷ ά ∷ μ ∷ ο ∷ ς ∷ []) "Rev.19.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.7" ∷ word (ἡ ∷ []) "Rev.19.7" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rev.19.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.7" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.19.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.8" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.19.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.8" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.8" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.8" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.8" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.19.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.19.9" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.9" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (γ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.9" ∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.19.9" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ὶ ∷ []) "Rev.19.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.19.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.19.10" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.19.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.19.10" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.19.10" ∷ word (μ ∷ ή ∷ []) "Rev.19.10" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.19.10" ∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.19.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.19.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.10" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.19.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.19.10" ∷ word (ἡ ∷ []) "Rev.19.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.19.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Rev.19.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.19.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.19.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.19.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.19.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (ἠ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.19.11" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ό ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ὁ ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (ἐ ∷ π ∷ []) "Rev.19.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.19.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rev.19.11" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rev.19.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ε ∷ μ ∷ ε ∷ ῖ ∷ []) "Rev.19.11" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.12" ∷ word (δ ∷ ὲ ∷ []) "Rev.19.12" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12" ∷ word (φ ∷ ∙λ ∷ ὸ ∷ ξ ∷ []) "Rev.19.12" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.19.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.12" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.12" ∷ word (δ ∷ ι ∷ α ∷ δ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Rev.19.12" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.12" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.12" ∷ word (ὃ ∷ []) "Rev.19.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rev.19.12" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rev.19.12" ∷ word (ε ∷ ἰ ∷ []) "Rev.19.12" ∷ word (μ ∷ ὴ ∷ []) "Rev.19.12" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Rev.19.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.19.13" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.13" ∷ word (β ∷ ε ∷ β ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.13" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.13" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (ὁ ∷ []) "Rev.19.13" ∷ word (Λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rev.19.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (Θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.14" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.14" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.14" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.14" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Rev.19.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.19.14" ∷ word (ἐ ∷ φ ∷ []) "Rev.19.14" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.14" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.19.14" ∷ word (β ∷ ύ ∷ σ ∷ σ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.14" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.19.14" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Rev.19.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.19.15" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ α ∷ []) "Rev.19.15" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Rev.19.15" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.15" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.15" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "Rev.19.15" ∷ word (σ ∷ ι ∷ δ ∷ η ∷ ρ ∷ ᾷ ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Rev.19.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.15" ∷ word (∙λ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (ο ∷ ἴ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.15" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.15" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.19.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.19.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.16" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.16" ∷ word (μ ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.19.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.16" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.19.16" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.16" ∷ word (Β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rev.19.16" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.19.16" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.19.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.19.17" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Rev.19.17" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.19.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.17" ∷ word (τ ∷ ῷ ∷ []) "Rev.19.17" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.19.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.17" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Rev.19.17" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Rev.19.17" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Rev.19.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.19.17" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17" ∷ word (ὀ ∷ ρ ∷ ν ∷ έ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.19.17" ∷ word (π ∷ ε ∷ τ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.19.17" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.17" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.19.17" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Rev.19.17" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ χ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.17" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Rev.19.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.17" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.19.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.19.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.19.18" ∷ word (φ ∷ ά ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (ἵ ∷ π ∷ π ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (ἐ ∷ π ∷ []) "Rev.19.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ ς ∷ []) "Rev.19.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (τ ∷ ε ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.18" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.19.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.19" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.19" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.19.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.19" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.19.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.19" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.19.19" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.19.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.19.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.19.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.19" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.19.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (ἐ ∷ π ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rev.19.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.20" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ὁ ∷ []) "Rev.19.20" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.19.20" ∷ word (ὁ ∷ []) "Rev.19.20" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.20" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.20" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὸ ∷ []) "Rev.19.20" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.19.20" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.20" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ι ∷ []) "Rev.19.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.20" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.20" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Rev.19.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.19.20" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.19.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.20" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.19.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rev.19.20" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.20" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.19.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.19.21" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.19.21" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ τ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21" ∷ word (ἐ ∷ ν ∷ []) "Rev.19.21" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.21" ∷ word (ῥ ∷ ο ∷ μ ∷ φ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (ἵ ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Rev.19.21" ∷ word (τ ∷ ῇ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rev.19.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.19.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.19.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.19.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.19.21" ∷ word (τ ∷ ὰ ∷ []) "Rev.19.21" ∷ word (ὄ ∷ ρ ∷ ν ∷ ε ∷ α ∷ []) "Rev.19.21" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.19.21" ∷ word (ἐ ∷ κ ∷ []) "Rev.19.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.19.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.1" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1" ∷ word (κ ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.1" ∷ word (ἀ ∷ β ∷ ύ ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.1" ∷ word (ἅ ∷ ∙λ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.1" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Rev.20.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.1" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2" ∷ word (δ ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (ὄ ∷ φ ∷ ι ∷ ς ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rev.20.2" ∷ word (ὅ ∷ ς ∷ []) "Rev.20.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.2" ∷ word (Δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ὁ ∷ []) "Rev.20.2" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.2" ∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.2" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.2" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.3" ∷ word (ἄ ∷ β ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.20.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.3" ∷ word (ἐ ∷ σ ∷ φ ∷ ρ ∷ ά ∷ γ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.20.3" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.20.3" ∷ word (μ ∷ ὴ ∷ []) "Rev.20.3" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.20.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.3" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.3" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.3" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.3" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.3" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.20.3" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.20.3" ∷ word (∙λ ∷ υ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rev.20.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.20.3" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.3" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rev.20.4" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.20.4" ∷ word (ψ ∷ υ ∷ χ ∷ ὰ ∷ ς ∷ []) "Rev.20.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4" ∷ word (π ∷ ε ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ κ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.4" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ []) "Rev.20.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.4" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (χ ∷ ά ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.4" ∷ word (μ ∷ έ ∷ τ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.4" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Rev.20.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.4" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.20.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.4" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.4" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.4" ∷ word (ο ∷ ἱ ∷ []) "Rev.20.5" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rev.20.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.5" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.20.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.5" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.5" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rev.20.5" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.5" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.5" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.5" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (ἡ ∷ []) "Rev.20.5" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Rev.20.5" ∷ word (ἡ ∷ []) "Rev.20.5" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.20.5" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ὁ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.20.6" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.6" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.6" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Rev.20.6" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.6" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Rev.20.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rev.20.6" ∷ word (ὁ ∷ []) "Rev.20.6" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.20.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rev.20.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rev.20.6" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.6" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.20.6" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.20.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.6" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.6" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rev.20.7" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ σ ∷ θ ∷ ῇ ∷ []) "Rev.20.7" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.7" ∷ word (χ ∷ ί ∷ ∙λ ∷ ι ∷ α ∷ []) "Rev.20.7" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Rev.20.7" ∷ word (∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.7" ∷ word (ὁ ∷ []) "Rev.20.7" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Rev.20.7" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.7" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῆ ∷ ς ∷ []) "Rev.20.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.8" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.20.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.8" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.20.8" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ έ ∷ σ ∷ σ ∷ α ∷ ρ ∷ σ ∷ ι ∷ []) "Rev.20.8" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8" ∷ word (Γ ∷ ὼ ∷ γ ∷ []) "Rev.20.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.8" ∷ word (Μ ∷ α ∷ γ ∷ ώ ∷ γ ∷ []) "Rev.20.8" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rev.20.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "Rev.20.8" ∷ word (ὧ ∷ ν ∷ []) "Rev.20.8" ∷ word (ὁ ∷ []) "Rev.20.8" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rev.20.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.8" ∷ word (ὡ ∷ ς ∷ []) "Rev.20.8" ∷ word (ἡ ∷ []) "Rev.20.8" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Rev.20.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.8" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rev.20.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.20.9" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.9" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (ἐ ∷ κ ∷ ύ ∷ κ ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.9" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.20.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.9" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ β ∷ η ∷ []) "Rev.20.9" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Rev.20.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.9" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.20.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.10" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.10" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (θ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Rev.20.10" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (τ ∷ ὸ ∷ []) "Rev.20.10" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ὁ ∷ []) "Rev.20.10" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.20.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.20.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.10" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.20.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.10" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.20.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.10" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Rev.20.11" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὸ ∷ ν ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.20.11" ∷ word (ἐ ∷ π ∷ []) "Rev.20.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11" ∷ word (ο ∷ ὗ ∷ []) "Rev.20.11" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.20.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.20.11" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Rev.20.11" ∷ word (ἡ ∷ []) "Rev.20.11" ∷ word (γ ∷ ῆ ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (ὁ ∷ []) "Rev.20.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ς ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.11" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Rev.20.11" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.11" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.12" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.20.12" ∷ word (ἑ ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ ς ∷ []) "Rev.20.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.12" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ α ∷ []) "Rev.20.12" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.20.12" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ []) "Rev.20.12" ∷ word (ὅ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.12" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.12" ∷ word (ο ∷ ἱ ∷ []) "Rev.20.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rev.20.12" ∷ word (ἐ ∷ κ ∷ []) "Rev.20.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.20.12" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.12" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.12" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rev.20.13" ∷ word (ἡ ∷ []) "Rev.20.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ὁ ∷ []) "Rev.20.13" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ὁ ∷ []) "Rev.20.13" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.20.13" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.13" ∷ word (ἐ ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.13" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.20.13" ∷ word (τ ∷ ὰ ∷ []) "Rev.20.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rev.20.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.20.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (ᾅ ∷ δ ∷ η ∷ ς ∷ []) "Rev.20.14" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rev.20.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.14" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.20.14" ∷ word (ὁ ∷ []) "Rev.20.14" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.20.14" ∷ word (ἡ ∷ []) "Rev.20.14" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ []) "Rev.20.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.14" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.20.15" ∷ word (ε ∷ ἴ ∷ []) "Rev.20.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.20.15" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rev.20.15" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rev.20.15" ∷ word (ἐ ∷ ν ∷ []) "Rev.20.15" ∷ word (τ ∷ ῇ ∷ []) "Rev.20.15" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Rev.20.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.20.15" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.20.15" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.20.15" ∷ word (ἐ ∷ β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Rev.20.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.20.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.20.15" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "Rev.20.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.20.15" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.20.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ ν ∷ []) "Rev.21.1" ∷ word (ὁ ∷ []) "Rev.21.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.1" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ἡ ∷ []) "Rev.21.1" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Rev.21.1" ∷ word (γ ∷ ῆ ∷ []) "Rev.21.1" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.1" ∷ word (ἡ ∷ []) "Rev.21.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Rev.21.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.1" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.1" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.2" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Rev.21.2" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.2" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.2" ∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.2" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rev.21.2" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rev.21.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.3" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Rev.21.3" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.21.3" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rev.21.3" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.3" ∷ word (ἡ ∷ []) "Rev.21.3" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Rev.21.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.21.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.3" ∷ word (∙λ ∷ α ∷ ο ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.21.3" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.3" ∷ word (ὁ ∷ []) "Rev.21.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.3" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4" ∷ word (ἐ ∷ ξ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rev.21.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.4" ∷ word (δ ∷ ά ∷ κ ∷ ρ ∷ υ ∷ ο ∷ ν ∷ []) "Rev.21.4" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.4" ∷ word (ὁ ∷ []) "Rev.21.4" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (π ∷ έ ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ὴ ∷ []) "Rev.21.4" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rev.21.4" ∷ word (π ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.4" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.21.4" ∷ word (τ ∷ ὰ ∷ []) "Rev.21.4" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ α ∷ []) "Rev.21.4" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ α ∷ ν ∷ []) "Rev.21.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Rev.21.5" ∷ word (ὁ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.5" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.5" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Rev.21.5" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὰ ∷ []) "Rev.21.5" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rev.21.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.21.5" ∷ word (Γ ∷ ρ ∷ ά ∷ ψ ∷ ο ∷ ν ∷ []) "Rev.21.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.21.5" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.21.5" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.21.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.5" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.21.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.21.6" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.6" ∷ word (Γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ ν ∷ []) "Rev.21.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.21.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (Ὦ ∷ []) "Rev.21.6" ∷ word (ἡ ∷ []) "Rev.21.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.21.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.6" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.6" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.21.6" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.6" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.6" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rev.21.6" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (π ∷ η ∷ γ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.6" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.6" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.21.6" ∷ word (ὁ ∷ []) "Rev.21.7" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.21.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.21.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.21.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.21.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.21.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.21.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.7" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.7" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.7" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Rev.21.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (δ ∷ ὲ ∷ []) "Rev.21.8" ∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ἐ ∷ β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (φ ∷ α ∷ ρ ∷ μ ∷ ά ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rev.21.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.8" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.8" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.8" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.8" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.21.8" ∷ word (∙λ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ []) "Rev.21.8" ∷ word (τ ∷ ῇ ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ι ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rev.21.8" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Rev.21.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.8" ∷ word (θ ∷ ε ∷ ί ∷ ῳ ∷ []) "Rev.21.8" ∷ word (ὅ ∷ []) "Rev.21.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.8" ∷ word (ὁ ∷ []) "Rev.21.8" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (ὁ ∷ []) "Rev.21.8" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.9" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.21.9" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.9" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (φ ∷ ι ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Rev.21.9" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.9" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.9" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.9" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.9" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rev.21.9" ∷ word (Δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rev.21.9" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ []) "Rev.21.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rev.21.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ ν ∷ []) "Rev.21.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.9" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Rev.21.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.9" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ έ ∷ ν ∷ []) "Rev.21.10" ∷ word (μ ∷ ε ∷ []) "Rev.21.10" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rev.21.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.10" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.10" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.21.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.21.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.10" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.10" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rev.21.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.10" ∷ word (ἐ ∷ κ ∷ []) "Rev.21.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rev.21.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.11" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.11" ∷ word (ὁ ∷ []) "Rev.21.11" ∷ word (φ ∷ ω ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.21.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.11" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.11" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (τ ∷ ι ∷ μ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.11" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.11" ∷ word (ἰ ∷ ά ∷ σ ∷ π ∷ ι ∷ δ ∷ ι ∷ []) "Rev.21.11" ∷ word (κ ∷ ρ ∷ υ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.21.11" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.12" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.21.12" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.21.12" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.21.12" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.12" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.12" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.12" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rev.21.12" ∷ word (ἅ ∷ []) "Rev.21.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.12" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rev.21.12" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rev.21.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (β ∷ ο ∷ ρ ∷ ρ ∷ ᾶ ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (ν ∷ ό ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.21.13" ∷ word (δ ∷ υ ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rev.21.13" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.13" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.14" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.14" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rev.21.14" ∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.14" ∷ word (ἐ ∷ π ∷ []) "Rev.21.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rev.21.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.21.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.14" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (ὁ ∷ []) "Rev.21.15" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.21.15" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.21.15" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.21.15" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Rev.21.15" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.15" ∷ word (κ ∷ ά ∷ ∙λ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Rev.21.15" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.21.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.15" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rev.21.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.15" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.21.15" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.21.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.15" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.15" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (ἡ ∷ []) "Rev.21.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.16" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Rev.21.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.21.16" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.16" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.16" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (μ ∷ ῆ ∷ κ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (π ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.16" ∷ word (ὕ ∷ ψ ∷ ο ∷ ς ∷ []) "Rev.21.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.16" ∷ word (ἴ ∷ σ ∷ α ∷ []) "Rev.21.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rev.21.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.17" ∷ word (ἐ ∷ μ ∷ έ ∷ τ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ ῖ ∷ χ ∷ ο ∷ ς ∷ []) "Rev.21.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.17" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rev.21.17" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Rev.21.17" ∷ word (π ∷ η ∷ χ ∷ ῶ ∷ ν ∷ []) "Rev.21.17" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rev.21.17" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rev.21.17" ∷ word (ὅ ∷ []) "Rev.21.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.17" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.21.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18" ∷ word (ἡ ∷ []) "Rev.21.18" ∷ word (ἐ ∷ ν ∷ δ ∷ ώ ∷ μ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.18" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.18" ∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.18" ∷ word (ἡ ∷ []) "Rev.21.18" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.18" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.18" ∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.18" ∷ word (ὑ ∷ ά ∷ ∙λ ∷ ῳ ∷ []) "Rev.21.18" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ῷ ∷ []) "Rev.21.18" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.19" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.21.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.19" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.21.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.19" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.21.19" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rev.21.19" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ῳ ∷ []) "Rev.21.19" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ σ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ἴ ∷ α ∷ σ ∷ π ∷ ι ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (σ ∷ ά ∷ π ∷ φ ∷ ι ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ η ∷ δ ∷ ώ ∷ ν ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.19" ∷ word (τ ∷ έ ∷ τ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (σ ∷ μ ∷ ά ∷ ρ ∷ α ∷ γ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.19" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (π ∷ έ ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (σ ∷ α ∷ ρ ∷ δ ∷ ό ∷ ν ∷ υ ∷ ξ ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἕ ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (σ ∷ ά ∷ ρ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ∙λ ∷ ι ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ὄ ∷ γ ∷ δ ∷ ο ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (β ∷ ή ∷ ρ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἔ ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (τ ∷ ο ∷ π ∷ ά ∷ ζ ∷ ι ∷ ο ∷ ν ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ π ∷ ρ ∷ α ∷ σ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (ἑ ∷ ν ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὑ ∷ ά ∷ κ ∷ ι ∷ ν ∷ θ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ὁ ∷ []) "Rev.21.20" ∷ word (δ ∷ ω ∷ δ ∷ έ ∷ κ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (ἀ ∷ μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.21" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.21" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.21.21" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.21" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Rev.21.21" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rev.21.21" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.21.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.21" ∷ word (π ∷ υ ∷ ∙λ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.21.21" ∷ word (ἦ ∷ ν ∷ []) "Rev.21.21" ∷ word (ἐ ∷ ξ ∷ []) "Rev.21.21" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rev.21.21" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "Rev.21.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.21" ∷ word (ἡ ∷ []) "Rev.21.21" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ α ∷ []) "Rev.21.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.21" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.21.21" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.21" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.21.21" ∷ word (ὡ ∷ ς ∷ []) "Rev.21.21" ∷ word (ὕ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.21.21" ∷ word (δ ∷ ι ∷ α ∷ υ ∷ γ ∷ ή ∷ ς ∷ []) "Rev.21.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.21.22" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Rev.21.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.22" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Rev.21.22" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rev.21.22" ∷ word (ὁ ∷ []) "Rev.21.22" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ο ∷ κ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Rev.21.22" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "Rev.21.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.21.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.22" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.22" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ []) "Rev.21.23" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rev.21.23" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.23" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.21.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rev.21.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.23" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rev.21.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rev.21.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.21.23" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.21.23" ∷ word (ἡ ∷ []) "Rev.21.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.23" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rev.21.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.21.23" ∷ word (ἐ ∷ φ ∷ ώ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.23" ∷ word (ὁ ∷ []) "Rev.21.23" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.21.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.23" ∷ word (τ ∷ ὸ ∷ []) "Rev.21.23" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ ν ∷ []) "Rev.21.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24" ∷ word (τ ∷ ὰ ∷ []) "Rev.21.24" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rev.21.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rev.21.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.24" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.24" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.21.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rev.21.24" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.24" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.21.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.24" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.25" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.25" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.21.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.21.25" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.25" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.25" ∷ word (κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.25" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rev.21.25" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.21.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.21.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.21.25" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.21.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rev.21.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26" ∷ word (ο ∷ ἴ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rev.21.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rev.21.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.21.26" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.21.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.26" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Rev.21.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (ο ∷ ὐ ∷ []) "Rev.21.27" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.21.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rev.21.27" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.21.27" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rev.21.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.21.27" ∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Rev.21.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.21.27" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.21.27" ∷ word (ε ∷ ἰ ∷ []) "Rev.21.27" ∷ word (μ ∷ ὴ ∷ []) "Rev.21.27" ∷ word (ο ∷ ἱ ∷ []) "Rev.21.27" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.21.27" ∷ word (ἐ ∷ ν ∷ []) "Rev.21.27" ∷ word (τ ∷ ῷ ∷ []) "Rev.21.27" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.21.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.21.27" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.21.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.21.27" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.21.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.1" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ έ ∷ ν ∷ []) "Rev.22.1" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ὸ ∷ ν ∷ []) "Rev.22.1" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.1" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.1" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rev.22.1" ∷ word (ὡ ∷ ς ∷ []) "Rev.22.1" ∷ word (κ ∷ ρ ∷ ύ ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.1" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rev.22.1" ∷ word (ἐ ∷ κ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.1" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.1" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.2" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Rev.22.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (π ∷ ∙λ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ῦ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.2" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.2" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.2" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.2" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rev.22.2" ∷ word (μ ∷ ῆ ∷ ν ∷ α ∷ []) "Rev.22.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rev.22.2" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rev.22.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rev.22.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.2" ∷ word (τ ∷ ὰ ∷ []) "Rev.22.2" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Rev.22.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.2" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.2" ∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.2" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rev.22.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "Rev.22.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (ὁ ∷ []) "Rev.22.3" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (ἀ ∷ ρ ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.3" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rev.22.3" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.3" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.3" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.3" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rev.22.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4" ∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.4" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.4" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.4" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4" ∷ word (μ ∷ ε ∷ τ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rev.22.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rev.22.5" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rev.22.5" ∷ word (φ ∷ ω ∷ τ ∷ ὸ ∷ ς ∷ []) "Rev.22.5" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ υ ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rev.22.5" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rev.22.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.5" ∷ word (ὁ ∷ []) "Rev.22.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.5" ∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.5" ∷ word (ἐ ∷ π ∷ []) "Rev.22.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rev.22.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.5" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.5" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.5" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.5" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Rev.22.6" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Rev.22.6" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ο ∷ ί ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.6" ∷ word (ὁ ∷ []) "Rev.22.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.6" ∷ word (ὁ ∷ []) "Rev.22.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.6" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Rev.22.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.6" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rev.22.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.6" ∷ word (ἃ ∷ []) "Rev.22.6" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rev.22.6" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rev.22.6" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.6" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rev.22.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.7" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.7" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.7" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.7" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.7" ∷ word (ὁ ∷ []) "Rev.22.7" ∷ word (τ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.7" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.7" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.7" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.7" ∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rev.22.8" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Rev.22.8" ∷ word (ὁ ∷ []) "Rev.22.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rev.22.8" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.8" ∷ word (ἔ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ α ∷ []) "Rev.22.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ []) "Rev.22.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.8" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.8" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Rev.22.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.8" ∷ word (δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ό ∷ ς ∷ []) "Rev.22.8" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.9" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Rev.22.9" ∷ word (μ ∷ ή ∷ []) "Rev.22.9" ∷ word (σ ∷ ύ ∷ ν ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rev.22.9" ∷ word (σ ∷ ο ∷ ύ ∷ []) "Rev.22.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.9" ∷ word (τ ∷ η ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.9" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.9" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rev.22.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Rev.22.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rev.22.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rev.22.10" ∷ word (Μ ∷ ὴ ∷ []) "Rev.22.10" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.10" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.10" ∷ word (ὁ ∷ []) "Rev.22.10" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rev.22.10" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rev.22.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rev.22.10" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "Rev.22.11" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rev.22.11" ∷ word (ῥ ∷ υ ∷ π ∷ α ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rev.22.11" ∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.11" ∷ word (ὁ ∷ []) "Rev.22.11" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rev.22.11" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rev.22.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rev.22.11" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rev.22.12" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.12" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.12" ∷ word (ὁ ∷ []) "Rev.22.12" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "Rev.22.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "Rev.22.12" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rev.22.12" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Rev.22.12" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rev.22.12" ∷ word (ὡ ∷ ς ∷ []) "Rev.22.12" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rev.22.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rev.22.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.12" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (Ἄ ∷ ∙λ ∷ φ ∷ α ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (Ὦ ∷ []) "Rev.22.13" ∷ word (ὁ ∷ []) "Rev.22.13" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (ὁ ∷ []) "Rev.22.13" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (ἡ ∷ []) "Rev.22.13" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rev.22.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.13" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rev.22.13" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rev.22.14" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.14" ∷ word (π ∷ ∙λ ∷ ύ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rev.22.14" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.14" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Rev.22.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rev.22.14" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rev.22.14" ∷ word (ἡ ∷ []) "Rev.22.14" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rev.22.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rev.22.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.14" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.14" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rev.22.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.14" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rev.22.14" ∷ word (π ∷ υ ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rev.22.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rev.22.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rev.22.14" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (κ ∷ ύ ∷ ν ∷ ε ∷ ς ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (φ ∷ ά ∷ ρ ∷ μ ∷ α ∷ κ ∷ ο ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (ο ∷ ἱ ∷ []) "Rev.22.15" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rev.22.15" ∷ word (φ ∷ ι ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rev.22.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.15" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rev.22.15" ∷ word (ψ ∷ ε ∷ ῦ ∷ δ ∷ ο ∷ ς ∷ []) "Rev.22.15" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Rev.22.16" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "Rev.22.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rev.22.16" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Rev.22.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rev.22.16" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rev.22.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rev.22.16" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rev.22.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rev.22.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rev.22.16" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rev.22.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rev.22.16" ∷ word (ἡ ∷ []) "Rev.22.16" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rev.22.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.16" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.16" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rev.22.16" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (∙λ ∷ α ∷ μ ∷ π ∷ ρ ∷ ό ∷ ς ∷ []) "Rev.22.16" ∷ word (ὁ ∷ []) "Rev.22.16" ∷ word (π ∷ ρ ∷ ω ∷ ϊ ∷ ν ∷ ό ∷ ς ∷ []) "Rev.22.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ἡ ∷ []) "Rev.22.17" ∷ word (ν ∷ ύ ∷ μ ∷ φ ∷ η ∷ []) "Rev.22.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rev.22.17" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ ν ∷ []) "Rev.22.17" ∷ word (ε ∷ ἰ ∷ π ∷ ά ∷ τ ∷ ω ∷ []) "Rev.22.17" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ ν ∷ []) "Rev.22.17" ∷ word (ἐ ∷ ρ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rev.22.17" ∷ word (ὁ ∷ []) "Rev.22.17" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rev.22.17" ∷ word (∙λ ∷ α ∷ β ∷ έ ∷ τ ∷ ω ∷ []) "Rev.22.17" ∷ word (ὕ ∷ δ ∷ ω ∷ ρ ∷ []) "Rev.22.17" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.17" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ά ∷ ν ∷ []) "Rev.22.17" ∷ word (Μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rev.22.18" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rev.22.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rev.22.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.18" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.18" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ []) "Rev.22.18" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rev.22.18" ∷ word (ὁ ∷ []) "Rev.22.18" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ π ∷ []) "Rev.22.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (π ∷ ∙λ ∷ η ∷ γ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rev.22.18" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Rev.22.18" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.18" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.18" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rev.22.19" ∷ word (ἀ ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Rev.22.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Rev.22.19" ∷ word (ἀ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rev.22.19" ∷ word (ὁ ∷ []) "Rev.22.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ὸ ∷ []) "Rev.22.19" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Rev.22.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.19" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rev.22.19" ∷ word (ἐ ∷ κ ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rev.22.19" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rev.22.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rev.22.19" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rev.22.19" ∷ word (ἐ ∷ ν ∷ []) "Rev.22.19" ∷ word (τ ∷ ῷ ∷ []) "Rev.22.19" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rev.22.19" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rev.22.19" ∷ word (Λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rev.22.20" ∷ word (ὁ ∷ []) "Rev.22.20" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rev.22.20" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rev.22.20" ∷ word (Ν ∷ α ∷ ί ∷ []) "Rev.22.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rev.22.20" ∷ word (τ ∷ α ∷ χ ∷ ύ ∷ []) "Rev.22.20" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rev.22.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ υ ∷ []) "Rev.22.20" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rev.22.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.20" ∷ word (Ἡ ∷ []) "Rev.22.21" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rev.22.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rev.22.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rev.22.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rev.22.21" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rev.22.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rev.22.21" ∷ []
{ "alphanum_fraction": 0.3367893147, "avg_line_length": 43.9144656644, "ext": "agda", "hexsha": "10e1d57b88db73e1ee9a79063fe76e53aa2ffdd9", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda", "max_line_length": 87, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Rev.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 300034, "size": 432294 }
module Oscar.Prelude where module _ where -- Objectevel open import Agda.Primitive public using () renaming ( Level to Ł ; lzero to ∅̂ ; lsuc to ↑̂_ ; _⊔_ to _∙̂_ ) infix 0 Ø_ Ø_ : ∀ 𝔬 → Set (↑̂ 𝔬) Ø_ 𝔬 = Set 𝔬 Ø₀ = Ø ∅̂ Ø₁ = Ø (↑̂ ∅̂) postulate magic : ∀ {a} {A : Ø a} → A module _ where -- Function infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) infixr 9 _∘′_ _∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → (A → C) f ∘′ g = f ∘ g ¡ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 ¡ 𝓞 = 𝓞 infixl -10 ¡ syntax ¡ {𝔒 = A} x = x ofType A ¡[_] : ∀ {𝔬} (𝔒 : Ø 𝔬) → 𝔒 → 𝔒 ¡[ _ ] = ¡ _∋_ : ∀ {a} (A : Set a) → A → A A ∋ x = x _∞ : ∀ {a} {A : Set a} → A → ∀ {b} {B : Set b} → B → A _∞ x = λ _ → x _∞⟦_⟧ : ∀ {a} {A : Set a} → A → ∀ {b} (B : Set b) → B → A x ∞⟦ B ⟧ = _∞ x {B = B} _∞₁ : ∀ ..{a} ..{A : Set a} → A → ∀ ..{b} ..{B : Set b} → ∀ ..{h} ..{H : Set h} → .(_ : B) .{_ : H} → A _∞₁ f _ = f _∞₃ : ∀ ..{a} ..{A : Set a} → A → ∀ ..{b} ..{B : Set b} → ∀ ..{h₁ h₂ h₃} ..{H₁ : Set h₁} ..{H₂ : Set h₂} ..{H₃ : Set h₃} → .(_ : B) .{_ : H₁} .{_ : H₂} .{_ : H₃} → A _∞₃ f _ = f hid : ∀ {a} {A : Set a} {x : A} → A hid {x = x} = x it : ∀ {a} {A : Set a} {{x : A}} → A it {{x}} = x {-# INLINE it #-} ! = it asInstance : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ {{x}} → B x) → B x asInstance x f = f {{x}} {-# INLINE asInstance #-} flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → (∀ x y → C x y) → ∀ y x → C x y flip f x y = f y x {-# INLINE flip #-} infixr -20 _$_ _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x f $ x = f x infixr -20 _$′_ _$′_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → A → B f $′ x = f x -- The S combinator. (Written infix as in Conor McBride's paper -- "Outrageous but Meaningful Coincidences: Dependent type-safe syntax -- and evaluation".) _ˢ_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} → ((x : A) (y : B x) → C x y) → (g : (x : A) → B x) → ((x : A) → C x (g x)) f ˢ g = λ x → f x (g x) infixr 0 case_of_ case_return_of_ case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → (∀ x → B x) → B x case x return B of f = f x infixl 8 _on_ _on_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x y → B x → B y → Set c} → (∀ {x y} (z : B x) (w : B y) → C x y z w) → (f : ∀ x → B x) → ∀ x y → C x y (f x) (f y) h on f = λ x y → h (f x) (f y) {-# INLINE _on_ #-} Function : ∀ {a} → Ø a → Ø a → Ø a Function A B = A → B Function⟦_⟧ : ∀ a → Ø a → Ø a → Ø a Function⟦ a ⟧ = Function {a = a} MFunction : ∀ {a b} (M : Ø a → Ø b) → Ø a → Ø a → Ø b MFunction M A B = M A → M B Arrow : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} {𝔟} → (𝔛 → Ø 𝔞) → (𝔛 → Ø 𝔟) → 𝔛 → 𝔛 → Ø 𝔞 ∙̂ 𝔟 Arrow 𝔄 𝔅 x y = 𝔄 x → 𝔅 y module _ where Extension : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → 𝔒 → 𝔒 → Ø 𝔭 Extension 𝔓 = Arrow 𝔓 𝔓 module _ where _⟨_⟩→_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → ∀ {𝔭} → (𝔒 → Ø 𝔭) → 𝔒 → Ø 𝔭 m ⟨ 𝔓 ⟩→ n = Extension 𝔓 m n π̂ : ∀ {𝔵} ℓ (𝔛 : Ø 𝔵) → Ø 𝔵 ∙̂ ↑̂ ℓ π̂ ℓ 𝔛 = 𝔛 → Ø ℓ infixl 21 _←̂_ _←̂_ = π̂ π̇ : ∀ {𝔞 𝔟} (𝔄 : Ø 𝔞) (𝔅 : 𝔄 → Ø 𝔟) → Ø 𝔞 ∙̂ 𝔟 π̇ 𝔄 𝔅 = (𝓐 : 𝔄) → 𝔅 𝓐 infixl 20 π̇ syntax π̇ 𝔄 (λ 𝓐 → 𝔅𝓐) = 𝔅𝓐 ← 𝓐 ≔ 𝔄 π̇-hidden-quantifier-syntax = π̇ infixl 20 π̇-hidden-quantifier-syntax syntax π̇-hidden-quantifier-syntax 𝔄 (λ _ → 𝔅𝓐) = 𝔅𝓐 ← 𝔄 π̂² : ∀ {𝔞} ℓ → Ø 𝔞 → Ø 𝔞 ∙̂ ↑̂ ℓ π̂² ℓ 𝔄 = ℓ ←̂ 𝔄 ← 𝔄 _→̂²_ : ∀ {𝔞} → Ø 𝔞 → ∀ ℓ → Ø 𝔞 ∙̂ ↑̂ ℓ _→̂²_ 𝔒 ℓ = π̂² ℓ 𝔒 record Lift {a ℓ} (A : Set a) : Set (a ∙̂ ℓ) where instance constructor lift field lower : A open Lift public record Wrap {𝔵} (𝔛 : Ø 𝔵) : Ø 𝔵 where constructor ∁ field π₀ : 𝔛 open Wrap public ∀̇ : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} → (∀ ℓ (𝔄 : Ø 𝔞) → Ø 𝔞 ∙̂ ↑̂ ℓ) → ∀ ℓ → (𝔛 → Ø 𝔞) → Ø 𝔵 ∙̂ 𝔞 ∙̂ ↑̂ ℓ ∀̇ Q ℓ 𝔄 = ∀ {x} → Q ℓ (𝔄 x) Ṙelation : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} ℓ → (𝔞 ←̂ 𝔛) → Ø 𝔵 ∙̂ 𝔞 ∙̂ ↑̂ ℓ Ṙelation ℓ P = Wrap (∀̇ π̂² ℓ P) Pointwise : ∀ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {ℓ} → 𝔅 →̂² ℓ → (𝔅 ← 𝔄) → (𝔄 → 𝔅) → Ø 𝔞 ∙̂ ℓ Pointwise _≈_ = λ f g → ∀ x → f x ≈ g x Ṗroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔬} ℓ → (𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ) ←̂ (𝔬 ←̂ 𝔛) Ṗroperty ℓ P = Wrap (∀̇ π̂ ℓ P) LeftṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔶} {𝔜 : 𝔛 → Ø 𝔶} {𝔯} → ∀ ℓ → ((x : 𝔛) → 𝔜 x → Ø 𝔯) → 𝔛 → Ø 𝔶 ∙̂ 𝔯 ∙̂ ↑̂ ℓ LeftṖroperty ℓ _↦_ = Ṗroperty ℓ ∘ _↦_ ArrowṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔭₁ 𝔭₂} → ∀ ℓ → (𝔛 → Ø 𝔭₁) → (𝔛 → Ø 𝔭₂) → 𝔛 → Ø 𝔵 ∙̂ 𝔭₁ ∙̂ 𝔭₂ ∙̂ ↑̂ ℓ ArrowṖroperty ℓ 𝔒₁ 𝔒₂ = LeftṖroperty ℓ (Arrow 𝔒₁ 𝔒₂) module _ where infixr 5 _,_ record Σ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : 𝔒 → Ø 𝔭) : Ø 𝔬 ∙̂ 𝔭 where instance constructor _,_ field π₀ : 𝔒 π₁ : 𝔓 π₀ open Σ public infixr 5 _,,_ record Σ′ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : Ø 𝔭) : Ø 𝔬 ∙̂ 𝔭 where instance constructor _,,_ field π₀ : 𝔒 π₁ : 𝔓 open Σ′ public _×_ : ∀ {𝔬₁ 𝔬₂} (𝔒₁ : Ø 𝔬₁) (𝔒₂ : Ø 𝔬₂) → Ø 𝔬₁ ∙̂ 𝔬₂ _×_ O₁ O₂ = Σ O₁ (λ _ → O₂) ∃_ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → Ø 𝔬 ∙̂ 𝔭 ∃_ = Σ _ uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} → (∀ x (y : B x) → C x y) → (p : Σ A B) → C (π₀ p) (π₁ p) uncurry f (x , y) = f x y uncurry′ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} → (∀ x → B x → C) → Σ A B → C uncurry′ f (x , y) = f x y curry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → (∀ p → C p) → ∀ x (y : B x) → C (x , y) curry f x y = f (x , y) ExtensionṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔬} {ℓ̇} ℓ (𝔒 : 𝔛 → Ø 𝔬) (_↦_ : ∀̇ π̂² ℓ̇ 𝔒) → Ø 𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ ∙̂ ℓ̇ ExtensionṖroperty ℓ 𝔒 _↦_ = Σ (Ṗroperty ℓ 𝔒) (λ P → ∀ {x} {f g : 𝔒 x} → f ↦ g → Extension (π₀ P) f g) LeftExtensionṖroperty : ∀ {𝔶} {𝔜 : Ø 𝔶} {𝔵} {𝔛 : 𝔜 → Ø 𝔵} {𝔬} {ℓ̇} ℓ (𝔒 : (y : 𝔜) → 𝔛 y → Ø 𝔬) (_↦_ : ∀ {y} → ∀̇ π̂² ℓ̇ (𝔒 y)) → 𝔜 → Ø 𝔵 ∙̂ 𝔬 ∙̂ ↑̂ ℓ ∙̂ ℓ̇ LeftExtensionṖroperty ℓ 𝔒 _↦_ y = ExtensionṖroperty ℓ (𝔒 y) _↦_ ArrowExtensionṖroperty : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔬₁} ℓ (𝔒₁ : 𝔛 → Ø 𝔬₁) {𝔬₂} (𝔒₂ : 𝔛 → Ø 𝔬₂) → ∀ {ℓ̇} (_↦_ : ∀̇ π̂² ℓ̇ 𝔒₂) → 𝔛 → Ø 𝔵 ∙̂ 𝔬₁ ∙̂ 𝔬₂ ∙̂ ↑̂ ℓ ∙̂ ℓ̇ ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ = LeftExtensionṖroperty ℓ (Arrow 𝔒₁ 𝔒₂) (Pointwise _↦_) record Instance {a} (A : Set a) : Set a where constructor ∁ field {{x}} : A mkInstance : ∀ {a} {A : Set a} → A → Instance A mkInstance x = ∁ {{x}}
{ "alphanum_fraction": 0.408030303, "avg_line_length": 26.0869565217, "ext": "agda", "hexsha": "d7b9d5f20f6751739b5d840c22a87aac0d8c8e33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Prelude.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Prelude.agda", "max_line_length": 167, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3996, "size": 6600 }
{-# OPTIONS --cubical --postfix-projections --safe #-} open import Relation.Binary open import Prelude hiding (tt) module Data.List.Sort.InsertionSort {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open import Relation.Binary.Construct.LowerBound totalOrder open import Data.List.Sort.Sorted totalOrder open TotalOrder totalOrder renaming (refl to refl-≤) open TotalOrder lb-ord renaming (≤-trans to ⌊trans⌋) using () open import Data.List open import Data.Unit.UniversePolymorphic as Poly using (tt) open import Data.List.Relation.Binary.Permutation open import Function.Isomorphism open import Data.Fin open import Data.List.Membership private variable lb : ⌊∙⌋ insert : E → List E → List E insert x [] = x ∷ [] insert x (y ∷ xs) with x ≤ᵇ y ... | true = x ∷ y ∷ xs ... | false = y ∷ insert x xs insert-sort : List E → List E insert-sort = foldr insert [] insert-sorts : ∀ x xs → lb ⌊≤⌋ ⌊ x ⌋ → SortedFrom lb xs → SortedFrom lb (insert x xs) insert-sorts x [] lb≤x Pxs = lb≤x , tt insert-sorts x (y ∷ xs) lb≤x (lb≤y , Sxs) with x ≤? y ... | yes x≤y = lb≤x , x≤y , Sxs ... | no x≰y = lb≤y , insert-sorts x xs (<⇒≤ (≰⇒> x≰y)) Sxs sort-sorts : ∀ xs → Sorted (insert-sort xs) sort-sorts [] = tt sort-sorts (x ∷ xs) = insert-sorts x (insert-sort xs) tt (sort-sorts xs) insert-perm : ∀ x xs → insert x xs ↭ x ∷ xs insert-perm x [] = reflₚ insert-perm x (y ∷ xs) with x ≤ᵇ y ... | true = consₚ x reflₚ ... | false = consₚ y (insert-perm x xs) ⟨ transₚ ⟩ swapₚ y x xs sort-perm : ∀ xs → insert-sort xs ↭ xs sort-perm [] = reflₚ {xs = []} sort-perm (x ∷ xs) = insert-perm x (insert-sort xs) ⟨ transₚ {xs = insert x (insert-sort xs)} ⟩ consₚ x (sort-perm xs) perm-invar : ∀ xs ys → xs ↭ ys → insert-sort xs ≡ insert-sort ys perm-invar xs ys xs⇔ys = perm-same (insert-sort xs) (insert-sort ys) (sort-sorts xs) (sort-sorts ys) (λ k → sort-perm xs k ⟨ trans-⇔ ⟩ xs⇔ys k ⟨ trans-⇔ ⟩ sym-⇔ (sort-perm ys k))
{ "alphanum_fraction": 0.6460040984, "avg_line_length": 32, "ext": "agda", "hexsha": "ea911648689ebd0ce8348af134a0b6c907bf5d6d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Sort/InsertionSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Sort/InsertionSort.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Sort/InsertionSort.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 720, "size": 1952 }
------------------------------------------------------------------------------ -- We only translate definition with one clause ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module OnlyOneClause where infixl 9 _+_ infix 7 _≡_ data ℕ : Set where zero : ℕ succ : ℕ → ℕ data _≡_ (n : ℕ) : ℕ → Set where refl : n ≡ n _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) {-# ATP definition _+_ #-} postulate +-comm : ∀ m n → m + n ≡ n + m {-# ATP prove +-comm #-}
{ "alphanum_fraction": 0.401459854, "avg_line_length": 23.6206896552, "ext": "agda", "hexsha": "4ed31ff69ac6e4e8f3935b96dc468081b37c93fa", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/OnlyOneClause.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/Errors/OnlyOneClause.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/OnlyOneClause.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 168, "size": 685 }
module 015-logic where -- Simple propositional logic. open import 010-false-true -- Logical and. We represent a proof of A and B as a pair of proofs, -- namely, a proof of A and a proof of B. data Pair (A B : Set) : Set where _,_ : A -> B -> Pair A B _∧_ : (A B : Set) -> Set A ∧ B = Pair A B -- Get back proof of any of the components. a∧b->a : {A B : Set} -> A ∧ B -> A a∧b->a (a , b) = a a∧b->b : {A B : Set} -> A ∧ B -> B a∧b->b (a , b) = b -- Logical or. We represent a proof of A or B as a proof of A or a -- proof of B. data Either (A B : Set) : Set where left : A -> Either A B right : B -> Either A B _∨_ : (A B : Set) -> Set A ∨ B = Either A B -- Negation. ¬_ : (A : Set) -> Set ¬ A = A -> False -- Now some properties. -- Commutativity. a∧b->b∧a : ∀ {A B} -> A ∧ B -> B ∧ A a∧b->b∧a ( a , b ) = ( b , a ) a∨b->b∨a : ∀ {A B} -> A ∨ B -> B ∨ A a∨b->b∨a (left a) = right a a∨b->b∨a (right b) = left b -- Distributivity. a∧[b∨c]->[a∧b]∨[a∧c] : ∀ {A B C} -> A ∧ (B ∨ C) -> (A ∧ B) ∨ (A ∧ C) a∧[b∨c]->[a∧b]∨[a∧c] (a , left b) = left (a , b) a∧[b∨c]->[a∧b]∨[a∧c] (a , right c) = right (a , c) [a∧b]∨[a∧c]->a∧[b∨c] : ∀ {A B C} -> (A ∧ B) ∨ (A ∧ C) -> A ∧ (B ∨ C) [a∧b]∨[a∧c]->a∧[b∨c] (left (a , b)) = (a , left b) [a∧b]∨[a∧c]->a∧[b∨c] (right (a , c)) = (a , right c) a∨[b∧c]->[a∨b]∧[a∨c] : ∀ {A B C} -> A ∨ (B ∧ C) -> (A ∨ B) ∧ (A ∨ C) a∨[b∧c]->[a∨b]∧[a∨c] (left a) = (left a , left a) a∨[b∧c]->[a∨b]∧[a∨c] (right (b , c)) = (right b , right c) [a∨b]∧[a∨c]->a∨[b∧c] : ∀ {A B C} -> (A ∨ B) ∧ (A ∨ C) -> A ∨ (B ∧ C) [a∨b]∧[a∨c]->a∨[b∧c] ( left a , _ ) = left a [a∨b]∧[a∨c]->a∨[b∧c] ( _ , left a ) = left a [a∨b]∧[a∨c]->a∨[b∧c] ( right b , right c ) = right (b , c) -- Contraposition. [a->b]->[¬b->¬a] : ∀ {A B} -> (A -> B) -> (¬ B -> ¬ A) [a->b]->[¬b->¬a] a->b ¬b a = ¬b (a->b a) -- Contradiction. ¬[a∧¬a] : ∀ {A} -> ¬ (A ∧ (¬ A)) ¬[a∧¬a] ( a , ¬a ) = ¬a a -- De Morgan. ¬[a∨b]->¬a∧¬b : ∀ {A B} -> ¬ (A ∨ B) -> (¬ A) ∧ (¬ B) ¬[a∨b]->¬a∧¬b ¬[a∨b] = (\a -> ¬[a∨b] (left a)) , (\b -> ¬[a∨b] (right b)) ¬a∧¬b->¬[a∨b] : ∀ {A B} -> (¬ A) ∧ (¬ B) -> ¬ (A ∨ B) ¬a∧¬b->¬[a∨b] ( ¬a , ¬b ) (left a) = ¬a a ¬a∧¬b->¬[a∨b] ( ¬a , ¬b ) (right b) = ¬b b ¬a∨¬b->¬[a∧b] : ∀ {A B} -> (¬ A) ∨ (¬ B) -> ¬ (A ∧ B) ¬a∨¬b->¬[a∧b] (left ¬a) ( a , b ) = ¬a a ¬a∨¬b->¬[a∧b] (right ¬b) ( a , b ) = ¬b b -- not provable, see https://math.stackexchange.com/questions/120187/does-de-morgans-laws-hold-in-propositional-intuitionistic-logic -- ¬[a∧b]->¬a∨¬b : ∀ {A B} -> ¬ (A ∧ B) -> (¬ A) ∨ (¬ B) -- ¬[a∧b]->¬a∨¬b ¬[a∧b] = {!!}
{ "alphanum_fraction": 0.4189988175, "avg_line_length": 26.7052631579, "ext": "agda", "hexsha": "6c00d29d2980530c8408acf80daf3be6af83e34c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "015-logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "015-logic.agda", "max_line_length": 132, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "015-logic.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 1414, "size": 2537 }
{- This second-order signature was created from the following second-order syntax description: syntax QIO type T : 0-ary P : 0-ary term new : P.T -> T measure : P T T -> T applyX : P P.T -> T applyI2 : P P.T -> T applyDuv : P P (P,P).T -> T applyDu : P P.T -> T applyDv : P P.T -> T theory (A) a:P t u:T |> applyX (a, b.measure(b, t, u)) = measure(a, u, t) (B) a:P b:P t u:P.T |> measure(a, applyDu(b, b.t[b]), applyDv(b, b.u[b])) = applyDuv(a, b, a b.measure(a, t[b], u[b])) (D) t u:T |> new(a.measure(a, t, u)) = t (E) b:P t:(P, P).T |> new(a.applyDuv(a, b, a b. t[a,b])) = applyDu(b, b.new(a.t[a,b])) -} module QIO.Signature where open import SOAS.Context -- Type declaration data QIOT : Set where T : QIOT P : QIOT open import SOAS.Syntax.Signature QIOT public open import SOAS.Syntax.Build QIOT public -- Operator symbols data QIOₒ : Set where newₒ measureₒ applyXₒ applyI2ₒ applyDuvₒ applyDuₒ applyDvₒ : QIOₒ -- Term signature QIO:Sig : Signature QIOₒ QIO:Sig = sig λ { newₒ → (P ⊢₁ T) ⟼₁ T ; measureₒ → (⊢₀ P) , (⊢₀ T) , (⊢₀ T) ⟼₃ T ; applyXₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T ; applyI2ₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T ; applyDuvₒ → (⊢₀ P) , (⊢₀ P) , (P , P ⊢₂ T) ⟼₃ T ; applyDuₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T ; applyDvₒ → (⊢₀ P) , (P ⊢₁ T) ⟼₂ T } open Signature QIO:Sig public
{ "alphanum_fraction": 0.5356386733, "avg_line_length": 24.8596491228, "ext": "agda", "hexsha": "b1f554c29295f872069d15c6e6e1b05daf763cf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "out/QIO/Signature.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "out/QIO/Signature.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "out/QIO/Signature.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 659, "size": 1417 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Dagger.Instance.Rels where open import Data.Product open import Function open import Relation.Binary.PropositionalEquality open import Level open import Categories.Category.Dagger open import Categories.Category.Instance.Rels RelsHasDagger : ∀ {o ℓ} → HasDagger (Rels o ℓ) RelsHasDagger = record { _† = flip ; †-identity = (lift ∘ sym ∘ lower) , (lift ∘ sym ∘ lower) ; †-homomorphism = (map₂ swap) , (map₂ swap) ; †-resp-≈ = λ p → (proj₁ p) , (proj₂ p) -- it's the implicits that need flipped ; †-involutive = λ _ → id , id } RelsDagger : ∀ o ℓ → DaggerCategory (suc o) (suc (o ⊔ ℓ)) (o ⊔ ℓ) RelsDagger o ℓ = record { C = Rels o ℓ ; hasDagger = RelsHasDagger }
{ "alphanum_fraction": 0.6724832215, "avg_line_length": 28.6538461538, "ext": "agda", "hexsha": "0d3a54dcf8c3ad5bd0f4d8913d15554cea69317a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda", "max_line_length": 82, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 259, "size": 745 }
{-# OPTIONS --universe-polymorphism #-} {-# OPTIONS --universe-polymorphism #-} open import Level open import Categories.Category open import Categories.Product -- Parameterize over the categories in whose product we are working module Categories.Product.Properties {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where C×D : Category _ _ _ C×D = Product C D module C×D = Category C×D import Categories.Product.Projections open Categories.Product.Projections C D open import Categories.Functor open import Relation.Binary using (module IsEquivalence) open import Relation.Binary.PropositionalEquality as PropEq using () renaming (_≡_ to _≣_) ∏₁※∏₂≣id : (∏₁ ※ ∏₂) ≣ id ∏₁※∏₂≣id = PropEq.refl ∏₁※∏₂-identity : (∏₁ ※ ∏₂) ≡ id ∏₁※∏₂-identity h = refl where open Heterogeneous C×D ※-distrib' : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {A : Category o₁ ℓ₁ e₁} → {B : Category o₂ ℓ₂ e₂} → {F : Functor B C} → {G : Functor B D} → {H : Functor A B} → ((F ∘ H) ※ (G ∘ H)) ≣ ((F ※ G) ∘ H) ※-distrib' = PropEq.refl ※-distrib : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {A : Category o₁ ℓ₁ e₁} → {B : Category o₂ ℓ₂ e₂} → (F : Functor B C) → (G : Functor B D) → (H : Functor A B) → ((F ∘ H) ※ (G ∘ H)) ≡ ((F ※ G) ∘ H) ※-distrib F G H h = refl where open Heterogeneous C×D ∏₁※∏₂-distrib : ∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁} → (F : Functor A C×D) → ((∏₁ ∘ F) ※ (∏₂ ∘ F)) ≡ F ∏₁※∏₂-distrib F h = refl where open Heterogeneous C×D module Lemmas where open Heterogeneous C×D open import Data.Product lem₁ : {x₁ y₁ x₂ y₂ : Category.Obj C} → {x₃ y₃ : Category.Obj D} → (f₁ : C [ x₁ , y₁ ]) → (f₂ : C [ x₂ , y₂ ]) → (g : D [ x₃ , y₃ ]) → C [ f₁ ∼ f₂ ] → C×D [ (f₁ , g) ∼ (f₂ , g) ] lem₁ f₁ f₂ g (≡⇒∼ f₁≡f₂) = ≡⇒∼ (f₁≡f₂ , Category.Equiv.refl D) lem₂ : {x₁ y₁ x₂ y₂ : Category.Obj D} → {x₃ y₃ : Category.Obj C} → (f : C [ x₃ , y₃ ]) → (g₁ : D [ x₁ , y₁ ]) → (g₂ : D [ x₂ , y₂ ]) → D [ g₁ ∼ g₂ ] → C×D [ (f , g₁) ∼ (f , g₂) ] lem₂ f g₁ g₂ (≡⇒∼ g₁≡g₂) = ≡⇒∼ (Category.Equiv.refl C , g₁≡g₂) open Lemmas ※-preserves-≡ˡ : ∀ {o₁ ℓ₁ e₁} → {A : Category o₁ ℓ₁ e₁} → (F₁ : Functor A C) → (F₂ : Functor A C) → (G : Functor A D) → (F₁ ≡ F₂) → ((F₁ ※ G) ≡ (F₂ ※ G)) ※-preserves-≡ˡ F₁ F₂ G F₁≡F₂ h = lem₁ (Functor.F₁ F₁ h) (Functor.F₁ F₂ h) (Functor.F₁ G h) (F₁≡F₂ h) ※-preserves-≡ʳ : ∀ {o₁ ℓ₁ e₁} → {A : Category o₁ ℓ₁ e₁} → (F : Functor A C) → (G₁ : Functor A D) → (G₂ : Functor A D) → (G₁ ≡ G₂) → ((F ※ G₁) ≡ (F ※ G₂)) ※-preserves-≡ʳ F G₁ G₂ G₁≡G₂ h = lem₂ (Functor.F₁ F h) (Functor.F₁ G₁ h) (Functor.F₁ G₂ h) (G₁≡G₂ h) where open Heterogeneous C×D .※-preserves-≡ : ∀ {o₁ ℓ₁ e₁} → {A : Category o₁ ℓ₁ e₁} → (F : Functor A C) → (G : Functor A C) → (H : Functor A D) → (I : Functor A D) → (F ≡ G) → (H ≡ I) → ((F ※ H) ≡ (G ※ I)) ※-preserves-≡ {A = A} F G H I F≡G H≡I = trans {i = F ※ H}{j = G ※ H}{k = G ※ I} (※-preserves-≡ˡ F G H F≡G) (※-preserves-≡ʳ G H I H≡I) where open IsEquivalence (equiv {C = A}{D = C×D}) .※-universal : ∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁} → {F : Functor A C} → {G : Functor A D} → {I : Functor A C×D} → (∏₁ ∘ I ≡ F) → (∏₂ ∘ I ≡ G) → ((F ※ G) ≡ I) ※-universal {_}{_}{_}{A}{F}{G}{I} p₁ p₂ = trans {i = F ※ G}{j = (∏₁ ∘ I) ※ (∏₂ ∘ I)}{k = I} (sym {i = (∏₁ ∘ I) ※ (∏₂ ∘ I)}{j = F ※ G} (※-preserves-≡ (∏₁ ∘ I) F (∏₂ ∘ I) G p₁ p₂)) (∏₁※∏₂-distrib I) where open IsEquivalence (equiv {C = A}{D = C×D}) ※-commute₁ : ∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁} → {F : Functor A C} → {G : Functor A D} → (∏₁ ∘ (F ※ G) ≡ F) ※-commute₁ h = refl where open Heterogeneous C ※-commute₂ : ∀ {o₁ ℓ₁ e₁}{A : Category o₁ ℓ₁ e₁} → {F : Functor A C} → {G : Functor A D} → (∏₂ ∘ (F ※ G) ≡ G) ※-commute₂ h = refl where open Heterogeneous D
{ "alphanum_fraction": 0.4927357794, "avg_line_length": 26.7171052632, "ext": "agda", "hexsha": "6713fb2915a6140baabb9262c14b47ff41589e93", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Product/Properties.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Product/Properties.agda", "max_line_length": 72, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Product/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1833, "size": 4061 }
module Dave.Logic.Basics where open import Dave.Functions open import Dave.Equality open import Dave.Isomorphism open import Dave.Structures.Monoid {- True -} data ⊤ : Set where tt : ⊤ η-⊤ : ∀ (w : ⊤) → tt ≡ w η-⊤ tt = refl {- False -} data ⊥ : Set where -- no clauses! ⊥-elim : ∀ {A : Set} → ⊥ → A ⊥-elim () uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w uniq-⊥ h () {- Product (Conjunction) -} data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B → A × B infixr 2 _×_ proj₁ : {A B : Set} → A × B → A proj₁ ⟨ a , b ⟩ = a proj₂ : {A B : Set} → A × B → B proj₂ ⟨ a , b ⟩ = b ×-comm : {A B : Set} → (A × B) ≃ (B × A) ×-comm = record { to = λ{ ⟨ a , b ⟩ → ⟨ b , a ⟩ }; from = λ {⟨ b , a ⟩ → ⟨ a , b ⟩}; from∘to = λ { ⟨ a , b ⟩ → refl }; to∘from = λ { ⟨ b , a ⟩ → refl } } ×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C) ×-assoc = record { to = λ {⟨ ⟨ a , b ⟩ , c ⟩ → ⟨ a , ⟨ b , c ⟩ ⟩}; from = λ {⟨ a , ⟨ b , c ⟩ ⟩ → ⟨ ⟨ a , b ⟩ , c ⟩}; from∘to = λ {⟨ ⟨ a , b ⟩ , c ⟩ → refl}; to∘from = λ {⟨ a , ⟨ b , c ⟩ ⟩ → refl} } η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w η-× ⟨ x , y ⟩ = refl ⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A ⊤-identityˡ = record { to = λ{ ⟨ tt , x ⟩ → x }; from = λ{ x → ⟨ tt , x ⟩ }; from∘to = λ{ ⟨ tt , x ⟩ → refl }; to∘from = λ{ x → refl } } ⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A ⊤-identityʳ {A} = ≃-begin (A × ⊤) ≃⟨ ×-comm ⟩ (⊤ × A) ≃⟨ ⊤-identityˡ ⟩ A ≃-∎ {- Sum (Disjunction) -} data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B infixr 1 _⊎_ case-⊎ : ∀ {A B C : Set} → (A → C) → (B → C) → A ⊎ B ----------- → C case-⊎ f g (inj₁ x) = f x case-⊎ f g (inj₂ y) = g y uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) → case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w uniq-⊎ h (inj₁ x) = refl uniq-⊎ h (inj₂ y) = refl η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w η-⊎ (inj₁ x) = refl η-⊎ (inj₂ y) = refl ⊥-identityˡ : ∀ {A : Set} → ⊥ ⊎ A ≃ A ⊥-identityˡ = record { to = λ {(inj₂ a) → a}; from = λ a → inj₂ a; from∘to = λ {(inj₂ a) → refl}; to∘from = λ a → refl } ⊎-comm : ∀ {A B : Set} → A ⊎ B ≃ B ⊎ A ⊎-comm = record { to = λ {(inj₁ A) → inj₂ A ; (inj₂ B) → inj₁ B}; from = λ {(inj₁ B) → inj₂ B ; (inj₂ A) → inj₁ A}; from∘to = λ {(inj₁ x) → refl ; (inj₂ x) → refl}; to∘from = λ {(inj₁ x) → refl ; (inj₂ x) → refl} } ⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc = record { to = λ {(inj₁ (inj₁ a)) → inj₁ a ; (inj₁ (inj₂ b)) → inj₂ (inj₁ b) ; (inj₂ c) → inj₂ (inj₂ c)}; from = λ {(inj₁ a) → inj₁ (inj₁ a) ; (inj₂ (inj₁ b)) → inj₁ (inj₂ b) ; (inj₂ (inj₂ c)) → inj₂ c}; from∘to = λ {(inj₁ (inj₁ x)) → refl ; (inj₁ (inj₂ x)) → refl ; (inj₂ x) → refl}; to∘from = λ {(inj₁ x) → refl ; (inj₂ (inj₁ x)) → refl ; (inj₂ (inj₂ x)) → refl} } ⊥-identityʳ : ∀ {A : Set} → A ⊎ ⊥ ≃ A ⊥-identityʳ {A} = ≃-begin (A ⊎ ⊥) ≃⟨ ⊎-comm ⟩ (⊥ ⊎ A) ≃⟨ ⊥-identityˡ ⟩ A ≃-∎ {- Equality -} record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ ⇔-ref : ∀ {A : Set} → A ⇔ A ⇔-ref = record { to = λ a → a; from = λ a → a } ⇔-sym : ∀ {A B : Set} → A ⇔ B → B ⇔ A ⇔-sym A⇔B = record { to = from A⇔B; from = to A⇔B } ⇔-trans : ∀ {A B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C ⇔-trans A⇔B B⇔C = record { to = λ a → to B⇔C (to A⇔B a); from = λ c → from A⇔B (from B⇔C c) } ⇔≃× : ∀ {A B : Set} → A ⇔ B ≃ (A → B) × (B → A) ⇔≃× = record { to = λ {A⇔B → ⟨ to A⇔B , from A⇔B ⟩}; from = λ {x → record { to = proj₁ x; from = proj₂ x } }; from∘to = λ A⇔B → refl; to∘from = λ {⟨ A→B , B→A ⟩ → refl} }
{ "alphanum_fraction": 0.3221335573, "avg_line_length": 26.6033519553, "ext": "agda", "hexsha": "b590055fd4f8fb28a277f26604e8539eeff8af2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Logic/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Logic/Basics.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Logic/Basics.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2036, "size": 4762 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.Vec.Recursive.Properties -- instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.N-ary.Properties where {-# WARNING_ON_IMPORT "Data.Product.N-ary.Properties was deprecated in v1.1. Use Data.Vec.Recursive.Properties instead." #-} open import Data.Vec.Recursive.Properties public
{ "alphanum_fraction": 0.5396518375, "avg_line_length": 28.7222222222, "ext": "agda", "hexsha": "107e07e2e57ff79db94a5a6328ba00e0b3744f21", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Product/N-ary/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 90, "size": 517 }
module Data.List.Instance where open import Class.Equality open import Class.Monad open import Class.Monoid open import Class.Show open import Class.Traversable open import Data.Bool using (Bool; _∧_; true; false) open import Data.List hiding (concat) open import Data.List.Properties open import Data.String using (String) open import Data.String.Instance open import Relation.Binary.PropositionalEquality open import Relation.Nullary instance List-Eq : ∀ {A} {{_ : Eq A}} -> Eq (List A) List-Eq {A} = record { _≟_ = ≡-dec _≟_ } List-EqB : ∀ {A} {{_ : EqB A}} -> EqB (List A) List-EqB {A} = record { _≣_ = helper } where helper : (l l' : List A) -> Bool helper [] [] = true helper [] (x ∷ l') = false helper (x ∷ l) [] = false helper (x ∷ l) (x₁ ∷ l') = x ≣ x₁ ∧ helper l l' List-Monoid : ∀ {a} {A : Set a} -> Monoid (List A) List-Monoid = record { mzero = [] ; _+_ = _++_ } List-Traversable : ∀ {a} -> Traversable {a} (List {a}) List-Traversable = record { sequence = helper } where helper : ∀ {a} {M : Set a → Set a} ⦃ _ : Monad M ⦄ {A : Set a} → List (M A) → M (List A) helper [] = return [] helper (x ∷ xs) = do x' <- x xs' <- helper xs return (x' ∷ xs') List-Show : ∀ {a} {A : Set a} {{_ : Show A}} -> Show (List A) List-Show = record { show = showList show } where showList : ∀ {a} {A : Set a} -> (A -> String) -> List A -> String showList showA l = "[" + concat (intersperse "," (map showA l)) + "]" List-Monad : ∀ {a} -> Monad {a} List List-Monad = record { _>>=_ = λ l f -> concat (map f l) ; return = λ a -> Data.List.[ a ] }
{ "alphanum_fraction": 0.5667067308, "avg_line_length": 33.28, "ext": "agda", "hexsha": "bdb61c5d2bccd5191b17af510e0dba9e6ff23fd5", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/List/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/List/Instance.agda", "max_line_length": 94, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/List/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 559, "size": 1664 }
module _ where open import Relation.Binary.PropositionalEquality using (refl) _ : 2 + 1 ≡ 3 _ = refl
{ "alphanum_fraction": 0.7352941176, "avg_line_length": 17, "ext": "agda", "hexsha": "25a39bd5a5c7a657179dd27bec553321ab0aed53", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/dummy name.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/dummy name.agda", "max_line_length": 62, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/dummy name.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 32, "size": 102 }
{-# OPTIONS --prop --allow-unsolved-metas #-} data ⊤ : Prop where tt : ⊤ data A : ⊤ → Set where a : (x : ⊤) → A x f : A tt → ⊤ f (a x) = {!!}
{ "alphanum_fraction": 0.4563758389, "avg_line_length": 13.5454545455, "ext": "agda", "hexsha": "28101ba6df0f126382b09f810de0d1e6537ef0ac", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3724b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3724b.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3724b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 149 }
-- Andreas, 2011-10-02 -- {-# OPTIONS -v tc.meta:20 #-} module Issue483 where data _≡_ (a : Set) : Set → Set where refl : a ≡ a test : (P : .Set → Set) → let X : .Set → Set X = _ in (x : Set) → X x ≡ P (P x) test P x = refl -- expected behavior: solving X = P {- THE FOLLOWING COULD BE SOLVED IN THE SPECIFIC CASE, BUT NOT IN GENERAL postulate A : Set a : A f : .A → A test2 : let X : .A → A X = _ in (x : A) → X a ≡ f x test2 x = refl -- should solve as X = f -- it was treated as X _ = f _ before with solution X = \ x -> f _ -- which eta-contracts to X = f -}
{ "alphanum_fraction": 0.5368248773, "avg_line_length": 21.0689655172, "ext": "agda", "hexsha": "a9d4336ec5bb13db2bfa2fde44029690e36b28f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue483.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue483.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue483.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 228, "size": 611 }
{-# OPTIONS --without-K --rewriting #-} module Algebra.Monoid where open import Basics open import lib.types.Paths record ∞-monoid i : Type (lsucc i) where field -- data el : Type i μ : el → End el μ' : el → End el μ' b a = μ a b field -- properties unit-l : hfiber μ (idf el) is-contractible unit-r : hfiber μ' (idf el) is-contractible mult : ∀ a b → hfiber μ ((μ a) ∘ (μ b)) is-contractible 1l : el 1l = fst $ contr-center unit-l 1l-def : μ 1l == idf el 1l-def = snd $ contr-center unit-l 1r : el 1r = fst $ contr-center unit-r 1r-def : μ' 1r == idf el 1r-def = snd $ contr-center unit-r infix 50 _·_ _·_ : el → el → el a · b = fst $ contr-center (mult a b) ·-def : ∀ a b → μ (a · b) == (μ a) ∘ (μ b) ·-def a b = snd $ contr-center (mult a b) -- -------------------------------------------- 1l=1r : 1l == 1r 1l=1r = 1l =⟨ ! (1r-def at 1l) ⟩ μ 1l 1r =⟨ 1l-def at 1r ⟩ 1r =∎ μ=· : ∀ a b → (μ a b) == (a · b) μ=· a b = μ a b =⟨ ! $ ap (μ a) (1r-def at b) ⟩ μ a (μ b 1r) =⟨ ! $ (·-def a b) at 1r ⟩ μ (a · b) 1r =⟨ 1r-def at (a · b) ⟩ a · b =∎ m-assoc : ∀ a b c → (a · b) · c == a · (b · c) m-assoc a b c = ap fst (! (contr-path (mult a (b · c)) in-fib)) where lem : μ((a · b) · c) == (μ a) ∘ μ(b · c) lem = μ((a · b) · c) =⟨ ·-def (a · b) c ⟩ μ(a · b) ∘ (μ c) =⟨ ap (λ f → f ∘ (μ c)) (·-def a b) ⟩ (μ a) ∘ (μ b) ∘ (μ c) =⟨ ! $ ap (λ f → (μ a) ∘ f) (·-def b c) ⟩ (μ a) ∘ μ(b · c) =∎ in-fib : hfiber μ ((μ a) ∘ μ(b · c)) in-fib = ((a · b) · c) , lem penta : ∀ a b c d → (m-assoc (a · b) c d) ∙ (m-assoc a b (c · d)) == (ap (λ x → x · d) (m-assoc a b c)) ∙ (m-assoc a (b · c) d) ∙ (ap (λ x → a · x) (m-assoc b c d)) penta a b c d = {!!} End-l : ∀ {i} (X : Type i) → ∞-monoid i End-l X = record { el = End X ; μ = λ f → λ g → f ∘ g ; unit-l = has-level-in $ (idf X , refl) , proof-unit-l ; unit-r = has-level-in $ (idf X , refl) , proof-unit-r ; mult = λ a b → has-level-in $ (a ∘ b , refl) , proof-mult a b} where proof-unit-l : ∀ y → (idf X , refl) == y proof-unit-l (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $ idp =⟨ ! (!-inv-l p) ⟩ (! p) ∙ p =⟨ ap (λ α → α ∙ p) helper ⟩ (ap (λ z g → z ∘ g) (! p at idf X)) ∙ p =∎ where lemma : (k : End X → End X) (q : (idf (End X)) == k) (f : End X) (η : (k f) ∘_ == k ∘ (f ∘_)) → (ap (λ u g → (u f) ∘ g) q) ∙' η == (ap (λ u g → u (f ∘ g)) q) lemma _ idp _ idp = idp helper : ! p == (ap (λ z g → z ∘ g) (! p at idf X)) helper = ! p =⟨ other-lemma (! p) ⟩ ap (λ u g → u g) (! p) =⟨ ! $ lemma (f ∘_) (! p) (idf X) refl ⟩ ap (λ u g → (u (idf X)) ∘ g) (! p) =⟨ ap-∘ (λ z x x₁ → z (x x₁)) (λ z → z (λ x → x)) (! p) ⟩ (ap (λ z g → z ∘ g) (! p at idf X)) =∎ where other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y} (p : f == g) → p == (ap (λ u g → u g) p) other-lemma refl = refl proof-unit-r : ∀ y → (idf X , refl) == y proof-unit-r (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $ idp =⟨ ! (!-inv-l p) ⟩ (! p) ∙ p =⟨ ap (λ α → α ∙ p) helper ⟩ (ap (λ z g → g ∘ z) (! p at idf X)) ∙ p =∎ where lemma : (k : End X → End X) (q : (idf (End X)) == k) (f : End X) (η : _∘ (k f) == k ∘ (_∘ f)) → (ap (λ u g → g ∘ (u f)) q) ∙' η == (ap (λ u g → u (g ∘ f)) q) lemma _ refl _ refl = refl helper : ! p == (ap (λ z g → g ∘ z) (! p at idf X)) helper = ! p =⟨ other-lemma (! p) ⟩ ap (λ u g → u g) (! p) =⟨ ! $ lemma (_∘ f) (! p) (idf X) refl ⟩ ap (λ u g → g ∘ (u (idf X))) (! p) =⟨ ap-∘ (λ z x x₁ → x (z x₁)) (λ z → z (λ x → x)) (! p) ⟩ ap (λ z g → g ∘ z) (! p at idf X) =∎ where other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y} (p : f == g) → p == (ap (λ u g → u g) p) other-lemma refl = refl proof-mult : ∀ a b y → (a ∘ b , refl) == y proof-mult a b (f , p) = pair= (! p at idf X) $ ↓-app=cst-in $ refl =⟨ ! (!-inv-l p) ⟩ ! p ∙ p =⟨ ap (λ α → α ∙ p) helper ⟩ (ap (λ z g → z ∘ g) (! p at idf X)) ∙ p =∎ where lemma : (k : End X → End X) (q : (a ∘ b) ∘_ == k) (f : End X) (η : (k f) ∘_ == k ∘ (f ∘_)) → (ap (λ u g → (u f) ∘ g) q) ∙' η == (ap (λ u g → u (f ∘ g)) q) lemma _ idp _ idp = idp helper : ! p == (ap (λ z g → z ∘ g) (! p at idf X)) helper = ! p =⟨ other-lemma (! p) ⟩ ap (λ u g → u g) (! p) =⟨ ! $ lemma (f ∘_) (! p) (idf X) refl ⟩ ap (λ u g → (u (idf X)) ∘ g) (! p) =⟨ ap-∘ (λ z x x₁ → z (x x₁)) (λ z → z (λ x → x)) (! p) ⟩ (ap (λ z g → z ∘ g) (! p at idf X)) =∎ where other-lemma : ∀ {i j} {X : Type i} {Y : Type j} {f g : X → Y} (p : f == g) → p == (ap (λ u g → u g) p) other-lemma refl = refl Aut-l : ∀ {i} {X : Type i} (x : X) → ∞-monoid i Aut-l {X = X} x = record { el = x == x ; μ = λ p → λ q → p ∙ q ; unit-l = has-level-in $ (refl , refl) , unit-l-proof ; unit-r = has-level-in $ (refl , (λ= ∙-unit-r)) , unit-r-proof ; mult = λ a b → has-level-in $ (a ∙ b , λ= (∙-assoc a b)) , mult-proof a b } where unit-l-proof : ∀ y → (refl , refl) == y unit-l-proof (p , α) = pair= (! (α at refl) ∙ (∙-unit-r p)) $ ↓-app=cst-in $ idp =⟨ ! (!-inv-l α) ⟩ ! α ∙ α =⟨ {!!} ⟩ ap (λ z q → z ∙ q) (! (α at refl) ∙ (∙-unit-r p)) ∙ α =∎ unit-r-proof : ∀ y → (refl , (λ= ∙-unit-r)) == y unit-r-proof (p , α) = {!!} mult-proof : ∀ a b y → (a ∙ b , λ= (∙-assoc a b)) == y mult-proof a b y = {!!}
{ "alphanum_fraction": 0.3149241147, "avg_line_length": 36.306122449, "ext": "agda", "hexsha": "a43076a7a05e1f7378f1fab088da4a32c457edde", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Algebra/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 2681, "size": 7116 }
{- Denotational semantics of the terms in the category of temporal types. -} module Semantics.Terms where open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Types open import Semantics.Types open import Semantics.Context open import CategoryTheory.Instances.Reactive open import CategoryTheory.Linear open import TemporalOps.Box open import TemporalOps.Diamond open import TemporalOps.OtherOps open import TemporalOps.Linear open import TemporalOps.StrongMonad open import CategoryTheory.Functor open import CategoryTheory.NatTrans renaming (_⟹_ to ⟹) import CategoryTheory.Monad as M import CategoryTheory.Comonad as W open import Data.Product open import Data.Sum hiding ([_,_]) import Data.Nat as N open W.Comonad W-□ open M.Monad M-◇ private module F-◇ = Functor F-◇ private module F-□ = Functor F-□ -- open Linear ℝeactive-linear mutual -- Denotation of pure terms as morphisms from contexts to types. ⟦_⟧ₘ : ∀{Γ A} -> Γ ⊢ A -> (⟦ Γ ⟧ₓ ⇴ ⟦ A ⟧ⱼ) ⟦ var top ⟧ₘ = π₂ ⟦ var (pop x) ⟧ₘ = ⟦ var x ⟧ₘ ∘ π₁ ⟦ lam M ⟧ₘ = Λ ⟦ M ⟧ₘ ⟦ F $ M ⟧ₘ = eval ∘ ⟨ ⟦ F ⟧ₘ , ⟦ M ⟧ₘ ⟩ ⟦ unit ⟧ₘ = ! ⟦ [ M ,, N ] ⟧ₘ = ⟨ ⟦ M ⟧ₘ , ⟦ N ⟧ₘ ⟩ ⟦ fst M ⟧ₘ = π₁ ∘ ⟦ M ⟧ₘ ⟦ snd M ⟧ₘ = π₂ ∘ ⟦ M ⟧ₘ ⟦ inl M ⟧ₘ = ι₁ ∘ ⟦ M ⟧ₘ ⟦ inr M ⟧ₘ = ι₂ ∘ ⟦ M ⟧ₘ ⟦ case M inl↦ B₁ ||inr↦ B₂ ⟧ₘ = [ ⟦ B₁ ⟧ₘ ⁏ ⟦ B₂ ⟧ₘ ] ∘ dist ∘ ⟨ id , ⟦ M ⟧ₘ ⟩ ⟦ sample {A} S ⟧ₘ = ε.at ⟦ A ⟧ₜ ∘ ⟦ S ⟧ₘ ⟦ stable {Γ} S ⟧ₘ = F-□.fmap ⟦ S ⟧ₘ ∘ ⟦ Γ ˢ⟧□ ⟦ sig S ⟧ₘ = ⟦ S ⟧ₘ ⟦ letSig S In B ⟧ₘ = ⟦ B ⟧ₘ ∘ ⟨ id , ⟦ S ⟧ₘ ⟩ ⟦ event E ⟧ₘ = ⟦ E ⟧ᵐ -- Helper function for interpreting bound events bindEvent : ∀ Γ {⟦A⟧ ⟦B⟧} -> (⟦E⟧ : ⟦ Γ ⟧ₓ ⇴ ◇ ⟦A⟧) (⟦C⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦A⟧ ⇴ ◇ ⟦B⟧) -> (⟦ Γ ⟧ₓ ⇴ ◇ ⟦B⟧) bindEvent Γ {⟦A⟧}{⟦B⟧} ⟦E⟧ ⟦C⟧ = μ.at ⟦B⟧ ∘ F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) ∘ st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ ∘ ⟨ ⟦ Γ ˢ⟧□ , ⟦E⟧ ⟩ -- Denotation of computational terms as Kleisli morphisms from contexts to types. ⟦_⟧ᵐ : ∀{Γ A} -> Γ ⊨ A -> (⟦ Γ ⟧ₓ ⇴ ◇ ⟦ A ⟧ⱼ) ⟦ pure {A} M ⟧ᵐ = η.at ⟦ A ⟧ⱼ ∘ ⟦ M ⟧ₘ ⟦ letSig S InC C ⟧ᵐ = ⟦ C ⟧ᵐ ∘ ⟨ id , ⟦ S ⟧ₘ ⟩ ⟦ letEvt_In_ {Γ} E C ⟧ᵐ = bindEvent Γ ⟦ E ⟧ₘ ⟦ C ⟧ᵐ ⟦ select_↦_||_↦_||both↦_ {Γ} E₁ C₁ E₂ C₂ C₃ ⟧ᵐ = bindEvent Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫) (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ)
{ "alphanum_fraction": 0.5259443753, "avg_line_length": 35.4264705882, "ext": "agda", "hexsha": "a3b50feead7a094aae2d40bf42168e39b1aa839d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Semantics/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Semantics/Terms.agda", "max_line_length": 92, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Semantics/Terms.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1216, "size": 2409 }
------------------------------------------------------------------------------ -- Well-founded relation related to the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.McCarthy91.WF-Relation where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- The relation _◁_. ◁-fn : D → D ◁-fn n = 101' ∸ n {-# ATP definition ◁-fn #-} _◁_ : D → D → Set m ◁ n = ◁-fn m < ◁-fn n {-# ATP definition _◁_ #-}
{ "alphanum_fraction": 0.43125, "avg_line_length": 29.6296296296, "ext": "agda", "hexsha": "c033e8d74403ab61b389298e931125cae79b224c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 179, "size": 800 }
{-# OPTIONS --without-K --safe #-} module Data.List.Base where open import Level open import Agda.Builtin.List using (List; _∷_; []) public open import Data.Nat.Base open import Function open import Strict open import Data.Maybe using (Maybe; just; nothing; maybe) foldr : (A → B → B) → B → List A → B foldr f b [] = b foldr f b (x ∷ xs) = f x (foldr f b xs) foldrMay : (A → A → A) → List A → Maybe A foldrMay f = foldr (λ x → just ∘ maybe x (f x)) nothing foldl : (B → A → B) → B → List A → B foldl f b [] = b foldl f b (x ∷ xs) = foldl f (f b x) xs foldl′ : (B → A → B) → B → List A → B foldl′ f b [] = b foldl′ f b (x ∷ xs) = let! z =! f b x in! foldl′ f z xs foldr′ : (A → B → B) → B → List A → B foldr′ f b [] = b foldr′ f b (x ∷ xs) = f x $! foldr′ f b xs infixr 5 _++_ _++_ : List A → List A → List A xs ++ ys = foldr _∷_ ys xs length : List A → ℕ length = foldr (const suc) zero concat : List (List A) → List A concat = foldr _++_ [] concatMap : (A → List B) → List A → List B concatMap f = foldr (λ x ys → f x ++ ys) [] map : (A → B) → List A → List B map f = foldr (λ x xs → f x ∷ xs) [] take : ℕ → List A → List A take zero _ = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n xs _⋯_ : ℕ → ℕ → List ℕ _⋯_ n = go n where go″ : ℕ → ℕ → List ℕ go′ : ℕ → ℕ → List ℕ go″ n zero = [] go″ n (suc m) = go′ (suc n) m go′ n m = n ∷ go″ n m go : ℕ → ℕ → List ℕ go zero = go′ n go (suc n) zero = [] go (suc n) (suc m) = go n m replicate : A → ℕ → List A replicate {A = A} x = go where go : ℕ → List A go zero = [] go (suc n) = x ∷ go n
{ "alphanum_fraction": 0.5329981144, "avg_line_length": 21.5, "ext": "agda", "hexsha": "a959473eed3bc88fa67d5206bb38b6584d3e75ad", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Base.agda", "max_line_length": 58, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 668, "size": 1591 }
{- Set quotients: -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.Univalence open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation open import Cubical.HITs.SetTruncation -- Type quotients private variable ℓ ℓ' ℓ'' : Level A : Type ℓ R : A → A → Type ℓ' B : A / R → Type ℓ'' elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimSetQuotientsProp : ((x : A / R ) → isProp (B x)) → (f : (a : A) → B ( [ a ])) → (x : A / R) → B x elimSetQuotientsProp Bprop f [ x ] = f x elimSetQuotientsProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep {n = 2} (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimSetQuotientsProp Bprop f elimSetQuotientsProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i -- lemma 6.10.2 in hott book -- TODO: defined truncated Sigma as ∃ []surjective : (x : A / R) → ∥ Σ[ a ∈ A ] [ a ] ≡ x ∥ []surjective = elimSetQuotientsProp (λ x → squash) (λ a → ∣ a , refl ∣) elimSetQuotients : {B : A / R → Type ℓ} → (Bset : (x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → (feq : (a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elimSetQuotients Bset f feq [ a ] = f a elimSetQuotients Bset f feq (eq/ a b r i) = feq a b r i elimSetQuotients Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep {n = 2} Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimSetQuotients Bset f feq setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (iso intro elim elimRightInv elimLeftInv) where intro = λ g → (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) elim = λ h → elimSetQuotients (λ x → Bset) (fst h) (snd h) elimRightInv : ∀ h → intro (elim h) ≡ h elimRightInv h = refl elimLeftInv : ∀ g → elim (intro g) ≡ g elimLeftInv = λ g → funExt (λ x → elimPropTrunc {P = λ sur → elim (intro g) x ≡ g x} (λ sur → Bset (elim (intro g) x) (g x)) (λ sur → cong (elim (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x) ) open BinaryRelation effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (EquivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp helper = elimSetQuotients (λ _ → isSetHProp) (λ c → (R a c , Rprop a c)) (λ c d cd → ΣProp≡ (λ _ → isPropIsProp) (ua (PropEquiv→Equiv (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd))))) aa≡ab : R a a ≡ R a b aa≡ab i = fst (helper (p i)) isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective {R = R} Rprop Req a b = isoToEquiv (iso intro elim intro-elim elim-intro) where intro : [ a ] ≡ [ b ] → R a b intro = effective Rprop Req a b elim : R a b → [ a ] ≡ [ b ] elim = eq/ a b intro-elim : ∀ x → intro (elim x) ≡ x intro-elim ab = Rprop a b _ _ elim-intro : ∀ x → elim (intro x) ≡ x elim-intro eq = squash/ _ _ _ _ discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elimSetQuotients ((λ a₀ → isSetPi (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁))))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elimSetQuotients ((λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁)))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b)
{ "alphanum_fraction": 0.5362190813, "avg_line_length": 37.7333333333, "ext": "agda", "hexsha": "1b7ae68b5774d544b03ab3346ad592ec477a0e6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_line_length": 142, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/SetQuotients/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2130, "size": 5660 }
module Basic.Axiomatic.TotalImpliesPartial where open import Basic.AST open import Basic.BigStep open import Basic.Axiomatic.Total as T renaming (〈_〉_〈_〉 to total〈_〉_〈_〉) open import Basic.Axiomatic.Partial as P renaming (〈_〉_〈_〉 to partial〈_〉_〈_〉) hiding (_==>_; _∧_) open import Function open import Data.Product {- The proof that total correctness implies partial correctness (exercise 6.33) is fortunately really simple. We already proved soundness and completeness for both systems, so instead of trying to construct the partial proof directly from the total proof, we can just take a detour and prove the analoguous implication about the *validity* of triples. -} {- The total validity of Hoare triples implies partial validity, if the language semantics is deterministic. -} P==>wp→P==>wlp : ∀{n S}{P Q : State n → Set} → (P ==> wp S Q) → (P ==> wlp S Q) P==>wp→P==>wlp pwp ps runS with pwp ps ... | _ , runS' , qs' rewrite deterministic runS runS' = qs' {- And now we just do an excursion to semantics-land and then back -} total→partial : ∀ {n S}{P Q : State n → Set} → total〈 P 〉 S 〈 Q 〉 → partial〈 P 〉 S 〈 Q 〉 total→partial = P.complete _ ∘ P==>wp→P==>wlp ∘ T.sound
{ "alphanum_fraction": 0.7067226891, "avg_line_length": 34, "ext": "agda", "hexsha": "3001b51e6643bad7ff71d0c9a4c0b8e749fa4cc5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda", "max_line_length": 90, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Basic/Axiomatic/TotalImpliesPartial.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 404, "size": 1190 }
{-# OPTIONS --sized-types #-} module SList.Concatenation (A : Set) where open import Data.List open import List.Permutation.Base A open import Size open import SList lemma-⊕-/ : {xs ys : List A}{x y : A} → xs / x ⟶ ys → unsize A (_⊕_ A (size A xs) (y ∙ snil)) / x ⟶ unsize A (_⊕_ A (size A ys) (y ∙ snil)) lemma-⊕-/ /head = /head lemma-⊕-/ (/tail xs/x⟶xs') = /tail (lemma-⊕-/ xs/x⟶xs') lemma-⊕∼ : {xs ys : List A}(x : A) → xs ∼ ys → (x ∷ xs) ∼ unsize A (_⊕_ A (size A ys) (x ∙ snil)) lemma-⊕∼ x ∼[] = ∼x /head /head ∼[] lemma-⊕∼ x (∼x xs/x⟶xs' ys/x⟶ys' xs'∼ys') = ∼x (/tail xs/x⟶xs') (lemma-⊕-/ ys/x⟶ys') (lemma-⊕∼ x xs'∼ys') lemma-size-unsize : {ι : Size}(x : A) → (xs : SList A {ι}) → (unsize A (_⊕_ A (size A (unsize A xs)) (x ∙ snil))) ∼ unsize A (_⊕_ A xs (x ∙ snil)) lemma-size-unsize x snil = ∼x /head /head ∼[] lemma-size-unsize x (y ∙ ys) = ∼x /head /head (lemma-size-unsize x ys)
{ "alphanum_fraction": 0.5533333333, "avg_line_length": 37.5, "ext": "agda", "hexsha": "0b2698ae1e9a7143f683ad6ee7e202af3aab8e04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SList/Concatenation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SList/Concatenation.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SList/Concatenation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 420, "size": 900 }
module main where open import Not-named-according-to-the-Haskell-lexical-syntax main = return Not-named-according-to-the-Haskell-lexical-syntax.unit -- The following code once triggered an MAlonzo bug resulting in the -- error message "Panic: ... no such name main.M.d". module M where data D : Set where d : D
{ "alphanum_fraction": 0.7414330218, "avg_line_length": 24.6923076923, "ext": "agda", "hexsha": "aad9725794dcfd7343c40c36977cbfc52dfd6bc0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/compiler/main.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/compiler/main.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/compiler/main.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 321 }
-- This file has been extracted from https://alhassy.github.io/PathCat/ -- Type checks with Agda version 2.6.0. module PathCat where open import Level using (Level) renaming (zero to ℓ₀ ; suc to ℓsuc ; _⊔_ to _⊍_) -- Numbers open import Data.Fin using (Fin ; toℕ ; fromℕ ; fromℕ≤ ; reduce≥ ; inject≤) renaming (_<_ to _f<_ ; zero to fzero ; suc to fsuc) open import Data.Nat open import Relation.Binary using (module DecTotalOrder) open import Data.Nat.Properties using(≤-decTotalOrder ; ≤-refl) open DecTotalOrder Data.Nat.Properties.≤-decTotalOrder -- Z-notation for sums open import Data.Product using (Σ ; proj₁ ; proj₂ ; _×_ ; _,_) Σ∶• : {a b : Level} (A : Set a) (B : A → Set b) → Set (a ⊍ b) Σ∶• = Σ infix -666 Σ∶• syntax Σ∶• A (λ x → B) = Σ x ∶ A • B -- Equalities open import Relation.Binary.PropositionalEquality using (_≗_ ; _≡_) renaming (sym to ≡-sym ; refl to ≡-refl ; trans to _⟨≡≡⟩_ ; cong to ≡-cong ; cong₂ to ≡-cong₂ ; subst to ≡-subst ; subst₂ to ≡-subst₂ ; setoid to ≡-setoid) module _ {i} {S : Set i} where open import Relation.Binary.EqReasoning (≡-setoid S) public open import Agda.Builtin.String defn-chasing : ∀ {i} {A : Set i} (x : A) → String → A → A defn-chasing x reason supposedly-x-again = supposedly-x-again syntax defn-chasing x reason xish = x ≡⟨ reason ⟩′ xish infixl 3 defn-chasing _even-under_ : ∀ {a b} {A : Set a} {B : Set b} {x y} → x ≡ y → (f : A → B) → f x ≡ f y _even-under_ = λ eq f → ≡-cong f eq record Graph₀ : Set₁ where field V : Set E : Set src : E → V tgt : E → V record _𝒢⟶₀_ (G H : Graph₀) : Set₁ where open Graph₀ field vertex : V(G) → V(H) edge : E(G) → E(H) src-preservation : ∀ e → src(H) (edge e) ≡ vertex (src(G) e) tgt-preservation : ∀ e → tgt(H) (edge e) ≡ vertex (tgt(G) e) -- ‘small graphs’ , since we are not using levels record Graph : Set₁ where field V : Set _⟶_ : V → V → Set -- i.e., Graph ≈ Σ V ∶ Set • (V → V) -- Graphs are a dependent type! record GraphMap (G H : Graph) : Set₁ where private open Graph using (V) _⟶g_ = Graph._⟶_ G _⟶h_ = Graph._⟶_ H field ver : V(G) → V(H) -- vertex morphism edge : {x y : V(G)} → (x ⟶g y) → (ver x ⟶h ver y) -- arrow preservation open GraphMap -- embedding: j < n ⇒ j < suc n `_ : ∀{n} → Fin n → Fin (suc n) ` j = inject≤ j (≤-step ≤-refl) where open import Data.Nat.Properties using (≤-step) [_]₀ : ℕ → Graph₀ [ n ]₀ = record { V = Fin (suc n) -- ≈ {0, 1, ..., n - 1, n} ; E = Fin n -- ≈ {0, 1, ..., n - 1} ; src = λ j → ` j ; tgt = λ j → fsuc j } [_] : ℕ → Graph [ n ] = record {V = Fin (suc n) ; _⟶_ = λ x y → fsuc x ≡ ` y } open import Data.Vec using (Vec) renaming (_∷_ to _,,_ ; [] to nil) -- , already in use for products :/ -- one sorted record Signature : Set where field 𝒩 : ℕ -- How many function symbols there are ar : Vec ℕ 𝒩 -- Their arities: lookup i ar == arity of i-th function symbol open Signature ⦃...⦄ -- 𝒩 now refers to the number of function symbols in a signature MonSig : Signature MonSig = record { 𝒩 = 2 ; ar = 0 ,, 2 ,, nil } -- unit u : X⁰ → X and multiplication m : X² → X module _ where -- An anyonomous module for categorial definitions record Category {i j : Level} : Set (ℓsuc (i ⊍ j)) where infixr 10 _⨾_ field Obj : Set i _⟶_ : Obj → Obj → Set j _⨾_ : ∀ {A B C : Obj} → A ⟶ B → B ⟶ C → A ⟶ C assoc : ∀ {A B C D} {f : A ⟶ B}{g : B ⟶ C} {h : C ⟶ D} → (f ⨾ g) ⨾ h ≡ f ⨾ (g ⨾ h) Id : ∀ {A : Obj} → A ⟶ A leftId : ∀ {A B : Obj} {f : A ⟶ B} → Id ⨾ f ≡ f rightId : ∀ {A B : Obj} {f : A ⟶ B} → f ⨾ Id ≡ f open Category using (Obj) open Category ⦃...⦄ hiding (Obj) -- Some sugar for times when we must specify the category -- “colons associate to the right” ;-) arr = Category._⟶_ syntax arr 𝒞 x y = x ⟶ y ∶ 𝒞 -- “ghost colon” cmp = Category._⨾_ syntax cmp 𝒞 f g = f ⨾ g ∶ 𝒞 -- “ghost colon” open Category using (Obj) public record Iso {i} {j} (𝒞 : Category {i} {j}) (A B : Obj 𝒞) : Set j where private instance 𝒞′ : Category ; 𝒞′ = 𝒞 field to : A ⟶ B from : B ⟶ A lid : to ⨾ from ≡ Id rid : from ⨾ to ≡ Id syntax Iso 𝒞 A B = A ≅ B within 𝒞 instance 𝒮e𝓉 : ∀ {i} → Category {ℓsuc i} {i} -- this is a ‘big’ category 𝒮e𝓉 {i} = record { Obj = Set i ; _⟶_ = λ A B → (A → B) ; _⨾_ = λ f g → (λ x → g (f x)) ; assoc = ≡-refl ; Id = λ x → x ; leftId = ≡-refl ; rightId = ≡-refl } record Functor {i j k l} (𝒞 : Category {i} {j}) (𝒟 : Category {k} {l}) : Set (ℓsuc (i ⊍ j ⊍ k ⊍ l)) where private instance 𝒞′ : Category ; 𝒞′ = 𝒞 𝒟′ : Category ; 𝒟′ = 𝒟 field -- Usual graph homomorphism structure: An object map, with morphism preservation obj : Obj 𝒞 → Obj 𝒟 mor : ∀{x y : Obj 𝒞} → x ⟶ y → obj x ⟶ obj y -- Interaction with new algebraic structure: Preservation of identities & composition id : ∀{x : Obj 𝒞} → mor (Id {A = x}) ≡ Id -- identities preservation comp : ∀{x y z} {f : x ⟶ y} {g : y ⟶ z} → mor (f ⨾ g) ≡ mor f ⨾ mor g -- Aliases for readability functor_preserves-composition = comp functor_preserves-identities = id open Functor public hiding (id ; comp) NatTrans : ∀ {i j i’ j’} ⦃ 𝒞 : Category {i} {j} ⦄ ⦃ 𝒟 : Category {i’} {j’} ⦄ (F G : Functor 𝒞 𝒟) → Set (j’ ⊍ i ⊍ j) NatTrans ⦃ 𝒞 = 𝒞 ⦄ ⦃ 𝒟 ⦄ F G = Σ η ∶ (∀ {X : Obj 𝒞} → (obj F X) ⟶ (obj G X)) • (∀ {A B} {f : A ⟶ B} → mor F f ⨾ η {B} ≡ η {A} ⨾ mor G f) -- function extensionality postulate extensionality : ∀ {i j} {A : Set i} {B : A → Set j} {f g : (a : A) → B a} → (∀ {a} → f a ≡ g a) → f ≡ g -- functor extensionality postulate funcext : ∀ {i j k l} ⦃ 𝒞 : Category {i} {j} ⦄ ⦃ 𝒟 : Category {k} {l} ⦄ {F G : Functor 𝒞 𝒟} → (oeq : ∀ {o} → obj F o ≡ obj G o) → (∀ {X Y} {f : X ⟶ Y} → mor G f ≡ ≡-subst₂ (Category._⟶_ 𝒟) oeq oeq (mor F f)) → F ≡ G -- graph map extensionality postulate graphmapext : {G H : Graph } {f g : GraphMap G H} → (veq : ∀ {v} → ver f v ≡ ver g v) → (∀ {x y} {e : Graph._⟶_ G x y} → edge g e ≡ ≡-subst₂ (Graph._⟶_ H) veq veq (edge f e)) → f ≡ g -- natural transformation extensionality postulate nattransext : ∀ {i j i’ j’} {𝒞 : Category {i} {j} } {𝒟 : Category {i’} {j’} } {F G : Functor 𝒞 𝒟} (η γ : NatTrans F G) → (∀ {X} → proj₁ η {X} ≡ proj₁ γ {X}) → η ≡ γ instance 𝒞𝒶𝓉 : ∀ {i j} → Category {ℓsuc (i ⊍ j)} {ℓsuc (i ⊍ j)} 𝒞𝒶𝓉 {i} {j} = record { Obj = Category {i} {j} ; _⟶_ = Functor ; _⨾_ = λ {𝒞} {𝒟} {ℰ} F G → let instance 𝒞′ : Category ; 𝒞′ = 𝒞 𝒟′ : Category ; 𝒟′ = 𝒟 ℰ′ : Category ; ℰ′ = ℰ in record { obj = obj F ⨾ obj G -- this compositon lives in 𝒮e𝓉 ; mor = mor F ⨾ mor G ; id = λ {x} → begin (mor F ⨾ mor G) (Id ⦃ 𝒞 ⦄ {A = x}) ≡⟨ "definition of function composition" ⟩′ mor G (mor F Id) ≡⟨ functor F preserves-identities even-under (mor G) ⟩ mor G Id ≡⟨ functor G preserves-identities ⟩ Id ∎ ; comp = λ {x y z f g} → begin (mor F ⨾ mor G) (f ⨾ g) ≡⟨ "definition of function composition" ⟩′ mor G (mor F (f ⨾ g)) ≡⟨ functor F preserves-composition even-under mor G ⟩ mor G (mor F f ⨾ mor F g) ≡⟨ functor G preserves-composition ⟩ (mor F ⨾ mor G) f ⨾ (mor F ⨾ mor G) g ∎ } ; assoc = λ {a b c d f g h} → funcext ≡-refl ≡-refl ; Id = record { obj = Id ; mor = Id ; id = ≡-refl ; comp = ≡-refl } ; leftId = funcext ≡-refl ≡-refl ; rightId = funcext ≡-refl ≡-refl } 𝒢𝓇𝒶𝓅𝒽 : Category 𝒢𝓇𝒶𝓅𝒽 = record { Obj = Graph ; _⟶_ = GraphMap ; _⨾_ = λ f g → record { ver = ver f ⨾ ver g ; edge = edge f ⨾ edge g } -- using ~𝒮et~ ; assoc = ≡-refl -- function composition is associtive, by definition ; Id = record { ver = Id ; edge = Id } ; leftId = ≡-refl ; rightId = ≡-refl -- functional identity is no-op, by definition } where open GraphMap 𝒰₀ : Category → Graph 𝒰₀ 𝒞 = record { V = Obj 𝒞 ; _⟶_ = Category._⟶_ 𝒞 } 𝒰₁ : {𝒞 𝒟 : Category} → 𝒞 ⟶ 𝒟 → 𝒰₀ 𝒞 ⟶ 𝒰₀ 𝒟 𝒰₁ F = record { ver = obj F ; edge = mor F } -- Underlying/forgetful functor: Every category is a graph 𝒰 : Functor 𝒞𝒶𝓉 𝒢𝓇𝒶𝓅𝒽 𝒰 = record { obj = 𝒰₀ ; mor = 𝒰₁ ; id = ≡-refl ; comp = ≡-refl } instance Func : ∀ {i j i’ j’} (𝒞 : Category {i} {j}) (𝒟 : Category {i’} {j’}) → Category {ℓsuc (i ⊍ j ⊍ i’ ⊍ j’)} {j’ ⊍ i ⊍ j} Func {i} {j} {i’} {j’} 𝒞 𝒟 = record { Obj = Functor 𝒞 𝒟 ; _⟶_ = NatTrans ; _⨾_ = λ {A B C} η γ → comp {A} {B} {C} η γ ; assoc = λ {F G H K η γ ω} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {K} (comp {F} {H} {K} (comp {F} {G} {H} η γ) ω) (comp {F} {G} {K} η (comp {G} {H} {K} γ ω)) assoc ; Id = λ {F} → iden F ; leftId = λ {F G η} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {G} (comp {F} {F} {G} (iden F) η) η leftId ; rightId = λ {F G η} → nattransext {i} {j} {i’} {j’} {𝒞} {𝒟} {F} {G} (comp {F} {G} {G} η (iden G)) η rightId } where instance 𝒟′ : Category 𝒟′ = 𝒟 iden : (A : Functor 𝒞 𝒟) → NatTrans A A iden A = Id , (rightId ⟨≡≡⟩ ≡-sym leftId) -- To avoid long wait times, we avoid instance resolution by -- making an alias. _⨾′_ = Category._⨾_ 𝒟 infixr 6 _⨾′_ comp : {A B C : Functor 𝒞 𝒟} → NatTrans A B → NatTrans B C → NatTrans A C comp {F} {G} {H} (η , nat) (γ , nat′) = (λ {X} → η {X} ⨾′ γ {X}) , (λ {A B f} → begin mor F f ⨾′ η {B} ⨾′ γ {B} ≡⟨ ≡-sym assoc ⟨≡≡⟩ (≡-cong₂ _⨾′_ nat ≡-refl ⟨≡≡⟩ assoc) ⟩ η {A} ⨾′ mor G f ⨾′ γ {B} ≡⟨ ≡-cong₂ _⨾′_ ≡-refl nat′ ⟨≡≡⟩ ≡-sym assoc ⟩ (η {A} ⨾′ γ {A}) ⨾′ mor H f ∎) module graphs-as-functors where -- formal objects data 𝒢₀ : Set where E V : 𝒢₀ -- formal arrows data 𝒢₁ : 𝒢₀ → 𝒢₀ → Set where s t : 𝒢₁ E V id : ∀ {o} → 𝒢₁ o o -- (forward) composition fcmp : ∀ {a b c} → 𝒢₁ a b → 𝒢₁ b c → 𝒢₁ a c fcmp f id = f fcmp id f = f instance 𝒢 : Category 𝒢 = record { Obj = 𝒢₀ ; _⟶_ = 𝒢₁ ; _⨾_ = fcmp ; assoc = λ {a b c d f g h} → fcmp-assoc f g h ; Id = id ; leftId = left-id ; rightId = right-id } where -- exercises: prove associativity, left and right unit laws -- proofs are just C-c C-a after some casing fcmp-assoc : ∀ {a b c d} (f : 𝒢₁ a b) (g : 𝒢₁ b c) (h : 𝒢₁ c d) → fcmp (fcmp f g) h ≡ fcmp f (fcmp g h) fcmp-assoc s id id = ≡-refl fcmp-assoc t id id = ≡-refl fcmp-assoc id s id = ≡-refl fcmp-assoc id t id = ≡-refl fcmp-assoc id id s = ≡-refl fcmp-assoc id id t = ≡-refl fcmp-assoc id id id = ≡-refl right-id : ∀ {a b} {f : 𝒢₁ a b} → fcmp f id ≡ f right-id {f = s} = ≡-refl right-id {f = t} = ≡-refl right-id {f = id} = ≡-refl left-id : ∀ {a b} {f : 𝒢₁ a b} → fcmp id f ≡ f left-id {f = s} = ≡-refl left-id {f = t} = ≡-refl left-id {f = id} = ≡-refl toFunc : Graph → Functor 𝒢 𝒮e𝓉 toFunc G = record { obj = ⟦_⟧₀ ; mor = ⟦_⟧₁ ; id = ≡-refl ; comp = λ {x y z f g} → fcmp-⨾ {x} {y} {z} {f} {g} } where ⟦_⟧₀ : Obj 𝒢 → Obj 𝒮e𝓉 ⟦ 𝒢₀.V ⟧₀ = Graph.V G ⟦ 𝒢₀.E ⟧₀ = Σ x ∶ Graph.V G • Σ y ∶ Graph.V G • Graph._⟶_ G x y ⟦_⟧₁ : ∀ {x y : Obj 𝒢} → x ⟶ y → (⟦ x ⟧₀ → ⟦ y ⟧₀) ⟦ s ⟧₁ (src , tgt , edg) = src ⟦ t ⟧₁ (src , tgt , edg) = tgt ⟦ id ⟧₁ x = x -- Exercise: fcmp is realised as functional composition fcmp-⨾ : ∀{x y z} {f : 𝒢₁ x y} {g : 𝒢₁ y z} → ⟦ fcmp f g ⟧₁ ≡ ⟦ f ⟧₁ ⨾ ⟦ g ⟧₁ fcmp-⨾ {f = s} {id} = ≡-refl fcmp-⨾ {f = t} {id} = ≡-refl fcmp-⨾ {f = id} {s} = ≡-refl fcmp-⨾ {f = id} {t} = ≡-refl fcmp-⨾ {f = id} {id} = ≡-refl fromFunc : Functor 𝒢 𝒮e𝓉 → Graph fromFunc F = record { V = obj F 𝒢₀.V ; _⟶_ = λ x y → Σ e ∶ obj F 𝒢₀.E • src e ≡ x × tgt e ≡ y -- the type of edges whose source is x and target is y } where tgt src : obj F 𝒢₀.E → obj F 𝒢₀.V src = mor F 𝒢₁.s tgt = mor F 𝒢₁.t _ᵒᵖ : ∀ {i j} → Category {i} {j} → Category {i} {j} 𝒞 ᵒᵖ = record { Obj = Obj 𝒞 ; _⟶_ = λ A B → (B ⟶ A) ; _⨾_ = λ f g → (g ⨾ f) ; assoc = ≡-sym assoc ; Id = Id ; leftId = rightId ; rightId = leftId } where instance 𝒞′ : Category ; 𝒞′ = 𝒞 infix 10 _∘_ _∘_ : ∀ {i j } ⦃ 𝒞 : Category {i} {j}⦄ {A B C : Obj 𝒞} → B ⟶ C → A ⟶ B → A ⟶ C f ∘ g = g ⨾ f -- this only changes type opify : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}} → Functor 𝒞 𝒟 → Functor (𝒞 ᵒᵖ) (𝒟 ᵒᵖ) opify F = record { obj = obj F ; mor = mor F ; id = Functor.id F ; comp = Functor.comp F } ∂ : ∀ {i j} → Functor (𝒞𝒶𝓉 {i} {j}) 𝒞𝒶𝓉 ∂ = record { obj = _ᵒᵖ ; mor = opify ; id = ≡-refl ; comp = ≡-refl } ah-yeah : ∀ {i j} (let Cat = Obj (𝒞𝒶𝓉 {i} {j})) -- identity on objects cofunctor, sometimes denoted _˘ → (dual : ∀ (𝒞 : Cat) {x y : Obj 𝒞} → x ⟶ y ∶ 𝒞 → y ⟶ x ∶ 𝒞) → (Id˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x : Obj 𝒞} → dual 𝒞 Id ≡ Id {A = x}) → (⨾-˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x y z : Obj 𝒞} {f : x ⟶ y} {g : y ⟶ z} → dual 𝒞 (f ⨾ g ∶ 𝒞) ≡ (dual 𝒞 g) ⨾ (dual 𝒞 f) ∶ 𝒞) -- which is involutionary → (˘˘ : ∀ ⦃ 𝒞 : Cat ⦄ {x y : Obj 𝒞} {f : x ⟶ y} → dual 𝒞 (dual 𝒞 f) ≡ f) -- which is respected by other functors → (respect : ⦃ 𝒞 𝒟 : Cat ⦄ {F : 𝒞 ⟶ 𝒟} {x y : Obj 𝒞} {f : x ⟶ y} → mor F (dual 𝒞 f) ≡ dual 𝒟 (mor F f)) -- then → ∂ ≅ Id within Func (𝒞𝒶𝓉 {i} {j}) 𝒞𝒶𝓉 ah-yeah {i} {j} _˘ Id˘ ⨾-˘ ˘˘ respect = record { to = II ; from = JJ ; lid = nattransext {𝒞 = 𝒞𝒶𝓉} {𝒞𝒶𝓉} {∂} {∂} (Category._⨾_ 𝒩𝓉 {∂} {Id} {∂} II JJ) (Category.Id 𝒩𝓉 {∂}) λ {𝒞} → funcext ≡-refl (≡-sym (˘˘ ⦃ 𝒞 ⦄ )) ; rid = nattransext {𝒞 = 𝒞𝒶𝓉} {𝒞𝒶𝓉} {Id} {Id} (Category._⨾_ 𝒩𝓉 {Id} {∂} {Id} JJ II) (Category.Id 𝒩𝓉 {Id}) λ {𝒞} → funcext ≡-refl (≡-sym (˘˘ ⦃ 𝒞 ⦄)) } where 𝒩𝓉 = Func (𝒞𝒶𝓉 {i} {j}) (𝒞𝒶𝓉 {i} {j}) -- the category of ~𝒩~atural transormations as morphisms I : ⦃ 𝒞 : Category {i} {j} ⦄ → Functor (obj ∂ 𝒞) 𝒞 I ⦃ 𝒞 ⦄ = record { obj = Id ; mor = _˘ 𝒞 ; id = Id˘ ; comp = ⨾-˘ } _⨾f_ = Category._⨾_ (𝒞𝒶𝓉 {i} {j}) Inat : ⦃ 𝒞 𝒟 : Category {i} {j} ⦄ {F : Functor 𝒞 𝒟} → mor ∂ F ⨾f I ⦃ 𝒟 ⦄ ≡ I ⦃ 𝒞 ⦄ ⨾f F Inat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} = funcext ⦃ 𝒞 = 𝒞 ᵒᵖ ⦄ ⦃ 𝒟 ⦄ { mor ∂ F ⨾f I ⦃ 𝒟 ⦄ } { I ⦃ 𝒞 ⦄ ⨾f F } ≡-refl λ {x} {y} {f} → respect ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} {y} {x} {f} II : NatTrans ∂ Id II = I , (λ {𝒞} {𝒟} {F} → Inat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F}) J : ⦃ 𝒞 : Category {i} {j} ⦄ → 𝒞 ⟶ obj ∂ 𝒞 J ⦃ 𝒞 ⦄ = record { obj = Id ; mor = _˘ 𝒞 ; id = Id˘ ; comp = ⨾-˘ } Jnat : ⦃ 𝒞 𝒟 : Category {i} {j} ⦄ {F : 𝒞 ⟶ 𝒟} → F ⨾f J ⦃ 𝒟 ⦄ ≡ J ⦃ 𝒞 ⦄ ⨾f mor ∂ F Jnat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} = funcext ⦃ 𝒞 = 𝒞 ⦄ ⦃ 𝒟 ᵒᵖ ⦄ {F ⨾f J ⦃ 𝒟 ⦄} {J ⦃ 𝒞 ⦄ ⨾f mor ∂ F} ≡-refl (λ {x y f} → respect ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F} {x} {y} {f}) JJ : NatTrans ⦃ 𝒞𝒶𝓉 {i} {j} ⦄ ⦃ 𝒞𝒶𝓉 ⦄ Id ∂ JJ = J , (λ {𝒞} {𝒟} {F} → Jnat ⦃ 𝒞 ⦄ ⦃ 𝒟 ⦄ {F}) infix 5 _⊗_ _⊗_ : ∀ {i j i’ j’} → Category {i} {j} → Category {i’} {j’} → Category {i ⊍ i’} {j ⊍ j’} 𝒞 ⊗ 𝒟 = record { Obj = Obj 𝒞 × Obj 𝒟 ; _⟶_ = λ{ (A , X) (B , Y) → (A ⟶ B) × (X ⟶ Y) } ; _⨾_ = λ{ (f , k) (g , l) → (f ⨾ g , k ⨾ l) } ; assoc = assoc ≡×≡ assoc ; Id = Id , Id ; leftId = leftId ≡×≡ leftId ; rightId = rightId ≡×≡ rightId } where _≡×≡_ : ∀ {i j} {A : Set i} {B : Set j} {a a’ : A} {b b’ : B} → a ≡ a’ → b ≡ b’ → (a , b) ≡ (a’ , b’) ≡-refl ≡×≡ ≡-refl = ≡-refl instance 𝒞′ : Category 𝒞′ = 𝒞 𝒟′ : Category 𝒟′ = 𝒟 Fst : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}} → Functor (𝒞 ⊗ 𝒟) 𝒞 Fst = record { obj = proj₁ ; mor = proj₁ ; id = ≡-refl ; comp = ≡-refl } Snd : ∀ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}} → Functor (𝒞 ⊗ 𝒟) 𝒟 Snd = record { obj = proj₂ ; mor = proj₂ ; id = ≡-refl ; comp = ≡-refl } curry₂ : ∀ {ix jx iy jy iz jz} ⦃ 𝒳 : Category {ix} {jx} ⦄ ⦃ 𝒴 : Category {iy} {jy} ⦄ ⦃ 𝒵 : Category {iz} {jz} ⦄ → Functor (𝒳 ⊗ 𝒴) 𝒵 → Functor 𝒴 (Func 𝒳 𝒵) curry₂ ⦃ 𝒳 = 𝒳 ⦄ ⦃ 𝒴 ⦄ ⦃ 𝒵 ⦄ F = record { obj = funcify ; mor = natify ; id = λ {x} → nattransext {F = funcify x} {funcify x} (natify (Id {A = x})) (Category.Id (Func 𝒳 𝒵) {A = funcify x}) (Functor.id F) ; comp = λ {x y z f g} → nattransext {F = funcify x} {funcify z} (natify (f ⨾ g)) ( Category._⨾_ (Func 𝒳 𝒵) {A = funcify x} {B = funcify y} {C = funcify z} (natify f) (natify g) ) (begin mor F (Id , f 𝒴.⨾ g) ≡⟨ ≡-cong (λ e → mor F (e , f 𝒴.⨾ g)) (≡-sym 𝒳.rightId) ⟩ mor F (Id 𝒳.⨾ Id , f 𝒴.⨾ g) ≡⟨ functor F preserves-composition ⟩ mor F (Id , f) 𝒵.⨾ mor F (Id , g) ∎) } where module 𝒳 = Category 𝒳 module 𝒴 = Category 𝒴 module 𝒵 = Category 𝒵 funcify : (y : Obj 𝒴) → Functor 𝒳 𝒵 funcify = λ Y → record { obj = λ X → obj F (X , Y) ; mor = λ f → mor F (f , Id ⦃ 𝒴 ⦄ {A = Y}) ; id = Functor.id F ; comp = λ {x y z f g} → begin mor F (f 𝒳.⨾ g , Id ⦃ 𝒴 ⦄) ≡⟨ ≡-cong (λ x → mor F (f 𝒳.⨾ g , x)) (≡-sym 𝒴.rightId) ⟩ mor F (f 𝒳.⨾ g , Id 𝒴.⨾ Id) ≡⟨ Functor.comp F ⟩ mor F (f , Id ⦃ 𝒴 ⦄) 𝒵.⨾ mor F (g , Id ⦃ 𝒴 ⦄) ∎ } natify : {x y : Obj 𝒴} → x 𝒴.⟶ y → NatTrans (funcify x) (funcify y) natify {x} {y} f = (λ {z} → mor F (Id {A = z} , f)) , (λ {a b g} → begin mor F (g , Id) 𝒵.⨾ mor F (Id , f) ≡⟨ ≡-sym (functor F preserves-composition) ⟩ mor F (g 𝒳.⨾ Id , Id 𝒴.⨾ f) ≡⟨ ≡-cong₂ (λ x y → mor F (x , y)) 𝒳.rightId 𝒴.leftId ⟩ mor F (g , f) ≡⟨ ≡-sym (≡-cong₂ (λ x y → mor F (x , y)) 𝒳.leftId 𝒴.rightId) ⟩ mor F (Id 𝒳.⨾ g , f 𝒴.⨾ Id) ≡⟨ functor F preserves-composition ⟩ mor F (Id , f) 𝒵.⨾ mor F (g , Id) ∎) pointwise : ∀ {ic jc id jd ix jx iy jy} {𝒞 : Category {ic} {jc}} {𝒟 : Category {id} {jd}} {𝒳 : Category {ix} {jx}} {𝒴 : Category {iy} {jy}} (_⊕_ : Functor (𝒳 ⊗ 𝒴) 𝒟) (F : Functor 𝒞 𝒳) (G : Functor 𝒞 𝒴) → Functor 𝒞 𝒟 pointwise {𝒞 = 𝒞} {𝒟} {𝒳} {𝒴} Bi F G = let module 𝒳 = Category 𝒳 module 𝒴 = Category 𝒴 module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 in record { obj = λ C → obj Bi (obj F C , obj G C) ; mor = λ {x y} x→y → mor Bi (mor F x→y , mor G x→y) ; id = λ {x} → begin mor Bi (mor F 𝒞.Id , mor G 𝒞.Id) ≡⟨ ≡-cong₂ (λ f g → mor Bi (f , g)) (Functor.id F) (Functor.id G) ⟩ mor Bi (𝒳.Id , 𝒴.Id) ≡⟨ functor Bi preserves-identities ⟩ 𝒟.Id ∎ ; comp = λ {x y z x⟶y y⟶z} → begin mor Bi (mor F (x⟶y 𝒞.⨾ y⟶z) , mor G (x⟶y 𝒞.⨾ y⟶z)) ≡⟨ ≡-cong₂ (λ f g → mor Bi (f , g)) (Functor.comp F) (Functor.comp G) ⟩ mor Bi (mor F x⟶y 𝒳.⨾ mor F y⟶z , mor G x⟶y 𝒴.⨾ mor G y⟶z) ≡⟨ functor Bi preserves-composition ⟩ (mor Bi (mor F x⟶y , mor G x⟶y)) 𝒟.⨾ (mor Bi (mor F y⟶z , mor G y⟶z)) ∎ } exempli-gratia : ∀ {𝒞 𝒟 𝒳 𝒴 : Category {ℓ₀} {ℓ₀}} (⊕ : Functor (𝒳 ⊗ 𝒴) 𝒟) → let _⟨⊕⟩_ = pointwise ⊕ in Fst ⟨⊕⟩ Snd ≡ ⊕ exempli-gratia Bi = funcext (≡-cong (obj Bi) ≡-refl) (≡-cong (mor Bi) ≡-refl) Hom : ∀ {i j} {𝒞 : Category {i} {j} } → Functor (𝒞 ᵒᵖ ⊗ 𝒞) (𝒮e𝓉 {j}) -- hence contravariant in ‘first arg’ and covaraint in ‘second arg’ Hom {𝒞 = 𝒞} = let module 𝒞 = Category 𝒞 instance 𝒞′ : Category ; 𝒞′ = 𝒞 ⨾-cong₂ : ∀ {A B C : Obj 𝒞} {f : A 𝒞.⟶ B} {g g’ : B 𝒞.⟶ C} → g ≡ g’ → f 𝒞.⨾ g ≡ f 𝒞.⨾ g’ ⨾-cong₂ q = ≡-cong₂ 𝒞._⨾_ ≡-refl q in record { obj = λ{ (A , B) → A ⟶ B } ; mor = λ{ (f , g) → λ h → f ⨾ h ⨾ g } ; id = extensionality (λ {h} → begin Id 𝒞.⨾ h 𝒞.⨾ Id ≡⟨ leftId ⟩ h 𝒞.⨾ Id ≡⟨ rightId ⟩ h ∎) ; comp = λ {x y z fg fg’} → let (f , g) = fg ; (f’ , g’) = fg’ in extensionality (λ {h} → begin (f’ 𝒞.⨾ f) 𝒞.⨾ h 𝒞.⨾ (g 𝒞.⨾ g’) ≡⟨ assoc ⟩ f’ 𝒞.⨾ (f 𝒞.⨾ (h 𝒞.⨾ (g 𝒞.⨾ g’))) ≡⟨ ⨾-cong₂ (≡-sym assoc) ⟩ f’ 𝒞.⨾ ((f 𝒞.⨾ h) 𝒞.⨾ (g 𝒞.⨾ g’)) ≡⟨ ⨾-cong₂ (≡-sym assoc) ⟩ f’ 𝒞.⨾ ((f 𝒞.⨾ h) 𝒞.⨾ g) 𝒞.⨾ g’ ≡⟨ ⨾-cong₂ (≡-cong₂ 𝒞._⨾_ assoc ≡-refl) ⟩ f’ 𝒞.⨾ (f 𝒞.⨾ h 𝒞.⨾ g) 𝒞.⨾ g’ ∎) } _⊣₀_ : ∀ {i j} {𝒞 𝒟 : Category {i} {j}} → Functor 𝒞 𝒟 → Functor 𝒟 𝒞 → Set (i ⊍ j) _⊣₀_ {𝒞 = 𝒞} {𝒟} F G = (F ′ ∘ X ⟶ₙₐₜ Y) ≅ (X ⟶ₙₐₜ G ∘ Y) within Func (𝒞 ᵒᵖ ⊗ 𝒟) 𝒮e𝓉 where X = Fst ; Y = Snd ; _′ = opify -- only changes types infix 5 _⟶ₙₐₜ_ _⟶ₙₐₜ_ : ∀ {i j} {𝒜 : Category {i} {j}} → Functor (𝒞 ᵒᵖ ⊗ 𝒟) (𝒜 ᵒᵖ) → Functor (𝒞 ᵒᵖ ⊗ 𝒟) 𝒜 → Functor (𝒞 ᵒᵖ ⊗ 𝒟) 𝒮e𝓉 _⟶ₙₐₜ_ {i} {j} {𝒜} = pointwise (Hom {i} {j} {𝒜}) record _⊣_ {i j i’ j’} {𝒞 : Category {i} {j}} {𝒟 : Category {i’} {j’}} (F : Functor 𝒞 𝒟) (G : Functor 𝒟 𝒞) : Set (j’ ⊍ i’ ⊍ j ⊍ i) where open Category 𝒟 renaming (_⨾_ to _⨾₂_) open Category 𝒞 renaming (_⨾_ to _⨾₁_) field -- ‘left-adjunct’ L ≈ ⌊ and ‘right-adjunct’ r ≈ ⌈ ⌊_⌋ : ∀ {X Y} → obj F X ⟶ Y ∶ 𝒟 → X ⟶ obj G Y ∶ 𝒞 ⌈_⌉ : ∀ {X Y} → X ⟶ obj G Y ∶ 𝒞 → obj F X ⟶ Y ∶ 𝒟 -- Adjuncts are inverse operations lid : ∀ {X Y} {d : obj F X ⟶ Y ∶ 𝒟} → ⌈ ⌊ d ⌋ ⌉ ≡ d rid : ∀ {X Y} {c : X ⟶ obj G Y ∶ 𝒞} → ⌊ ⌈ c ⌉ ⌋ ≡ c -- That for a fixed argument, are natural transformations between Hom functors lfusion : ∀ {A B C D} {f : A ⟶ B ∶ 𝒞} {ψ : obj F B ⟶ C ∶ 𝒟} {g : C ⟶ D ∶ 𝒟} → ⌊ mor F f ⨾₂ ψ ⨾₂ g ⌋ ≡ f ⨾₁ ⌊ ψ ⌋ ⨾₁ mor G g rfusion : ∀ {A B C D} {f : A ⟶ B ∶ 𝒞} {ψ : B ⟶ obj G C ∶ 𝒞} {g : C ⟶ D ∶ 𝒟} → ⌈ f ⨾₁ ψ ⨾₁ mor G g ⌉ ≡ mor F f ⨾₂ ⌈ ψ ⌉ ⨾₂ g Path₀ : ℕ → Graph₀ → Set (ℓsuc ℓ₀) Path₀ n G = [ n ]₀ 𝒢⟶₀ G open import Data.Vec using (Vec ; lookup) record Path₁ (n : ℕ) (G : Graph₀) : Set (ℓsuc ℓ₀) where open Graph₀ field edges : Vec (E G) (suc n) coherency : {i : Fin n} → tgt G (lookup (` i) edges) ≡ src G (lookup (fsuc i) edges) module Path-definition-2 (G : Graph₀) where open Graph₀ G mutual data Path₂ : Set where _! : V → Path₂ cons : (v : V) (e : E) (ps : Path₂) (s : v ≡ src e) (t : tgt e ≡ head₂ ps) → Path₂ head₂ : Path₂ → V head₂ (v !) = v head₂ (cons v e p s t) = v module Path-definition-3 (G : Graph) where open Graph G -- handy dandy syntax infixr 5 cons syntax cons v ps e = v ⟶[ e ]⟶ ps -- v goes, by e, onto path ps -- we want well-formed paths mutual data Path₃ : Set where _! : (v : V) → Path₃ cons : (v : V) (ps : Path₃) (e : v ⟶ head₃ ps) → Path₃ head₃ : Path₃ → V head₃ (v !) = v head₃ (v ⟶[ e ]⟶ ps) = v -- motivation for the syntax declaration above example : (v₁ v₂ v₃ : V) (e₁ : v₁ ⟶ v₂) (e₂ : v₂ ⟶ v₃) → Path₃ example v₁ v₂ v₃ e₁ e₂ = v₁ ⟶[ e₁ ]⟶ v₂ ⟶[ e₂ ]⟶ v₃ ! end₃ : Path₃ → V end₃ (v !) = v end₃ (v ⟶[ e ]⟶ ps) = end₃ ps -- typed paths; squigarrowright record _⇝_ (x y : V) : Set where field path : Path₃ start : head₃ path ≡ x finish : end₃ path ≡ y module TypedPaths (G : Graph) where open Graph G hiding(V) open Graph using (V) data _⇝_ : V G → V G → Set where _! : ∀ x → x ⇝ x _⟶[_]⟶_ : ∀ x {y ω} (e : x ⟶ y) (ps : y ⇝ ω) → x ⇝ ω -- Preprend preserves path equality ⟶-≡ : ∀{x y ω} {e : x ⟶ y} {ps qs : y ⇝ ω} → ps ≡ qs → (x ⟶[ e ]⟶ ps) ≡ (x ⟶[ e ]⟶ qs) ⟶-≡ {x} {y} {ω} {e} {ps} {qs} eq = ≡-cong (λ r → x ⟶[ e ]⟶ r) eq open import Data.List using (List ; [] ; _∷_) edges : ∀ {x ω} (p : x ⇝ ω) → List (Σ s ∶ V G • Σ t ∶ V G • s ⟶ t) edges {x} (.x !) = [] edges {x} (.x ⟶[ e ]⟶ ps) = (x , _ , e) ∷ edges ps path-eq : ∀ {x y} {p q : x ⇝ y} → edges p ≡ edges q → p ≡ q path-eq {x} {p = .x !} {q = .x !} pf = ≡-refl path-eq {x} {p = .x !} {q = .x ⟶[ e ]⟶ q} () path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x !} () path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x ⟶[ e₁ ]⟶ q} pf with edges p | pf path-eq {x} {p = .x ⟶[ e ]⟶ p} {q = .x ⟶[ .e ]⟶ q} pf | .(edges q) | ≡-refl = ⟶-≡ (path-eq (uncons pf)) where uncons : ∀{A : Set} {x y : A} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys uncons {A} {x} {.x} {xs} {.xs} ≡-refl = ≡-refl infixr 5 _++_ _++_ : ∀{x y z} → x ⇝ y → y ⇝ z → x ⇝ z x ! ++ q = q -- left unit (x ⟶[ e ]⟶ p) ++ q = x ⟶[ e ]⟶ (p ++ q) -- mutual-associativity leftId : ∀ {x y} {p : x ⇝ y} → x ! ++ p ≡ p leftId = ≡-refl rightId : ∀ {x y} {p : x ⇝ y} → p ++ y ! ≡ p rightId {x} {.x} {.x !} = ≡-refl rightId {x} {y } {.x ⟶[ e ]⟶ ps} = ≡-cong (λ q → x ⟶[ e ]⟶ q) rightId assoc : ∀{x y z ω} {p : x ⇝ y} {q : y ⇝ z} {r : z ⇝ ω} → (p ++ q) ++ r ≡ p ++ (q ++ r) assoc {x} {p = .x !} = ≡-refl assoc {x} {p = .x ⟶[ e ]⟶ ps} {q} {r} = ≡-cong (λ s → x ⟶[ e ]⟶ s) (assoc {p = ps}) 𝒫₀ : Graph → Category 𝒫₀ G = let open TypedPaths G in record { Obj = Graph.V G ; _⟶_ = _⇝_ ; _⨾_ = _++_ ; assoc = λ {x y z ω p q r} → assoc {p = p} ; Id = λ {x} → x ! ; leftId = leftId ; rightId = rightId } 𝒫₁ : ∀ {G H} → GraphMap G H → Functor (𝒫₀ G) (𝒫₀ H) 𝒫₁ {G} {H} f = record { obj = ver f ; mor = amore ; id = ≡-refl ; comp = λ {x} {y} {z} {p} → comp {p = p} } where open TypedPaths ⦃...⦄ public instance G' : Graph ; G' = G H' : Graph ; H' = H amore : {x y : Graph.V G} → x ⇝ y → (ver f x) ⇝ (ver f y) amore (x !) = ver f x ! amore (x ⟶[ e ]⟶ p) = ver f x ⟶[ edge f e ]⟶ amore p comp : {x y z : Graph.V G} {p : x ⇝ y} {q : y ⇝ z} → amore (p ++ q) ≡ amore p ++ amore q comp {x} {p = .x !} = ≡-refl -- since ! is left unit of ++ comp {x} {p = .x ⟶[ e ]⟶ ps} = ⟶-≡ (comp {p = ps}) 𝒫 : Functor 𝒢𝓇𝒶𝓅𝒽 𝒞𝒶𝓉 𝒫 = record { obj = 𝒫₀ ; mor = 𝒫₁ ; id = λ {G} → funcext ≡-refl (id ⦃ G ⦄) ; comp = funcext ≡-refl comp } where open TypedPaths ⦃...⦄ open Category ⦃...⦄ module 𝒞𝒶𝓉 = Category 𝒞𝒶𝓉 module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽 id : ∀ ⦃ G ⦄ {x y} {p : x ⇝ y} → mor (𝒞𝒶𝓉.Id {𝒫₀ G}) p ≡ mor (𝒫₁ (𝒢𝓇𝒶𝓅𝒽.Id)) p id {p = x !} = ≡-refl id {p = x ⟶[ e ]⟶ ps} = ⟶-≡ (id {p = ps}) comp : {G H K : Graph} {f : GraphMap G H} {g : GraphMap H K} → {x y : Graph.V G} {p : TypedPaths._⇝_ G x y} → mor (𝒫₁ f 𝒞𝒶𝓉.⨾ 𝒫₁ g) p ≡ mor (𝒫₁ (f 𝒢𝓇𝒶𝓅𝒽.⨾ g)) p comp {p = x !} = ≡-refl comp {p = x ⟶[ e ]⟶ ps} = ⟶-≡ (comp {p = ps}) module freedom (G : Obj 𝒢𝓇𝒶𝓅𝒽) {𝒞 : Category {ℓ₀} {ℓ₀} } where open TypedPaths G using (_! ; _⟶[_]⟶_ ; _⇝_ ; _++_) open Category ⦃...⦄ module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽 module 𝒮ℯ𝓉 = Category (𝒮e𝓉 {ℓ₀}) module 𝒞 = Category 𝒞 instance 𝒞′ : Category ; 𝒞′ = 𝒞 ι : G ⟶ 𝒰₀ (𝒫₀ G) ι = record { ver = Id ; edge = λ {x} {y} e → x ⟶[ e ]⟶ (y !) } lift : G ⟶ 𝒰₀ 𝒞 → 𝒫₀ G ⟶ 𝒞 lift f = record { obj = λ v → ver f v -- Only way to obtain an object of 𝒞; hope it works! ; mor = fmap ; id = ≡-refl ; comp = λ {x y z p q} → proof {x} {y} {z} {p} {q} } where fmap : ∀ {x y} → x ⇝ y → ver f x 𝒞.⟶ ver f y fmap (y !) = 𝒞.Id fmap (x ⟶[ e ]⟶ p) = edge f e 𝒞.⨾ fmap p -- homomorphism property proof : ∀{x y z} {p : x ⇝ y} {q : y ⇝ z} → fmap (p ++ q) ≡ fmap p 𝒞.⨾ fmap q proof {p = ._ !} = ≡-sym 𝒞.leftId proof {p = ._ ⟶[ e ]⟶ ps} = ≡-cong (λ m → edge f e 𝒞.⨾ m) (proof {p = ps}) ⟨≡≡⟩ ≡-sym assoc -- Exercise: Rewrite this calculationally! property : ∀{f : G ⟶ 𝒰₀ 𝒞} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f)) property {f} = graphmapext -- Proving: ∀ {v} → ver f v ≡ ver (ι 𝒞.⨾ 𝒰₁ (lift f)) v -- by starting at the complicated side and simplifying (λ {v} → ≡-sym (begin ver (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f)) v ≡⟨" definition of ver on composition "⟩′ (ver ι 𝒮ℯ𝓉.⨾ ver (𝒰₁ (lift f))) v ≡⟨" definition of 𝒰₁ says: ver (𝒰₁ F) = obj F "⟩′ (ver ι 𝒮ℯ𝓉.⨾ obj (lift f)) v ≡⟨" definition of lift says: obj (lift f) = ver f "⟩′ (ver ι 𝒮ℯ𝓉.⨾ ver f) v ≡⟨" definition of ι on vertices is identity "⟩′ ver f v ∎)) -- Proving: edge (ι ⨾g 𝒰₁ (lift f)) e ≡ edge f e (λ {x} {y} {e} → begin edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ (lift f)) e ≡⟨" definition of edge on composition "⟩′ (edge ι 𝒮ℯ𝓉.⨾ edge (𝒰₁ (lift f))) e ≡⟨" definition of 𝒰 says: edge (𝒰₁ F) = mor F "⟩′ (edge ι 𝒮ℯ𝓉.⨾ mor (lift f)) e ≡⟨" definition chasing gives: mor (lift f) (edge ι e) = edge f e ⨾ Id "⟩′ edge f e 𝒞.⨾ Id ≡⟨ 𝒞.rightId ⟩ edge f e ∎) uniqueness : ∀{f : G ⟶ 𝒰₀ 𝒞} {F : 𝒫₀ G ⟶ 𝒞} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) → lift f ≡ F uniqueness {.(ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)} {F} ≡-refl = funcext ≡-refl (≡-sym pf) where pf : ∀{x y} {p : x ⇝ y} → mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) p ≡ mor F p pf {x} {.x} {p = .x !} = ≡-sym (Functor.id F) pf {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) (x ⟶[ e ]⟶ ps) ≡⟨" definition of mor on lift, the inductive clause "⟩′ edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒞.⨾ mor (lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) ps ≡⟨ ≡-cong₂ 𝒞._⨾_ ≡-refl (pf {p = ps}) ⟩ -- inductive step edge (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒞.⨾ mor F ps ≡⟨" definition of edge says it preserves composition "⟩′ (edge ι 𝒮ℯ𝓉.⨾ edge (𝒰₁ F)) e 𝒞.⨾ mor F ps ≡⟨" definition of 𝒰 gives: edge (𝒰₁ F) = mor F "⟩′ (edge ι 𝒮ℯ𝓉.⨾ mor F) e 𝒞.⨾ mor F ps ≡⟨" definition of functional composition 𝒮ℯ𝓉 "⟩′ mor F (edge ι e) 𝒞.⨾ mor F ps ≡⟨ ≡-sym (Functor.comp F) {- i.e., functors preserve composition -} ⟩ mor F (edge ι e ++ ps) ≡⟨" definition of embedding and concatenation "⟩′ mor F (x ⟶[ e ]⟶ ps) ∎ _≈g_ : ∀{G H : Graph} (f g : G ⟶ H) → Set _≈g_ {G} {H} f g = Σ veq ∶ (∀ {v} → ver f v ≡ ver g v) • (∀ {x y e} → edge g {x} {y} e ≡ ≡-subst₂ (λ a b → Graph._⟶_ H a b) veq veq (edge f {x} {y} e)) _≋_ : ∀{𝒞 𝒟 : Category} (f g : 𝒞 ⟶ 𝒟) → Set F ≋ G = 𝒰₁ F ≈g 𝒰₁ G -- proofs (x , y) now replaced with: funcext x y -- Since equality of functors makes use of ~subst~s all over the place, we will need -- a lemma about how ~subst~ factors/distributes over an operator composition. subst-dist : ∀ {S : Set} {v v’ : S → Category.Obj 𝒞} (veq : ∀ {z} → v z ≡ v’ z) → ∀ x t y {ec : v x 𝒞.⟶ v t} {psc : v t 𝒞.⟶ v y} → ≡-subst₂ 𝒞._⟶_ veq veq ec 𝒞.⨾ ≡-subst₂ 𝒞._⟶_ veq veq psc ≡ ≡-subst₂ 𝒞._⟶_ veq veq (ec 𝒞.⨾ psc) subst-dist veq x t y rewrite veq {x} | veq {t} | veq {y} = ≡-refl uniquenessOld : ∀{f : G ⟶ 𝒰₀ 𝒞} {F : 𝒫₀ G ⟶ 𝒞} → f ≈g (ι ⨾ 𝒰₁ F) → lift f ≡ F uniquenessOld {f} {F} (veq , eeq) = funcext veq pf where 𝒮 : ∀{x y} → ver f x 𝒞.⟶ ver f y → obj F x 𝒞.⟶ obj F y 𝒮 m = ≡-subst₂ 𝒞._⟶_ veq veq m pf : ∀{x y} {p : x ⇝ y} → mor F p ≡ 𝒮( mor (lift f) p ) pf {x} {.x} {.x !} rewrite (veq {x})= Functor.id F pf {x} {y} {.x ⟶[ e ]⟶ ps} rewrite (eeq {e = e}) = begin mor F (x ⟶[ e ]⟶ ps) ≡⟨" definition of embedding and concatenation "⟩′ mor F (edge ι e ++ ps) ≡⟨ functor F preserves-composition ⟩ mor F (edge ι e) 𝒞.⨾ mor F ps ≡⟨ ≡-cong₂ 𝒞._⨾_ eeq (pf {p = ps}) ⟩ -- inductive step 𝒮(edge f e) 𝒞.⨾ 𝒮(mor (lift f) ps) ≡⟨ subst-dist veq x _ y ⟩ 𝒮( edge f e 𝒞.⨾ mor (lift f) ps ) ≡⟨" definition of “mor” on “lift”, the inductive clause "⟩′ 𝒮( mor (lift f) (x ⟶[ e ]⟶ ps) ) ∎ lift˘ : Functor (𝒫₀ G) 𝒞 → GraphMap G (𝒰₀ 𝒞) lift˘ F = ι ⨾ 𝒰₁ F -- ≡ record {ver = obj F , edge = mor F ∘ edge ι} rid₀ : ∀ {f : GraphMap G (𝒰₀ 𝒞)} → ver (lift˘ (lift f)) ≡ ver f rid₀ {f} = begin ver (lift˘ (lift f)) ≡⟨" ver of lift˘ ; defn of lift˘ "⟩′ obj (lift f) ≡⟨" defn of lift.obj "⟩′ ver f ∎ -- note that ≡-refl would have suffcied, but we show all the steps for clarity, for human consumption! open Graph G renaming (_⟶_ to _⟶g_) rid₁ : ∀{f : GraphMap G (𝒰₀ 𝒞)} → ∀{x y} {e : x ⟶g y} → edge (lift˘ (lift f)) e ≡ edge f e rid₁ {f} {x} {y} {e} = begin edge (lift˘ (lift f)) e ≡⟨ "lift˘.edge definition" ⟩′ mor (lift f) (edge ι e) ≡⟨ "lift.mor~ on an edge; i.e., the inductive case of fmap" ⟩′ edge f e 𝒞.⨾ Id ≡⟨ 𝒞.rightId ⟩ edge f e ∎ rid : ∀{f : GraphMap G (𝒰₀ 𝒞)} → lift˘ (lift f) ≡ f rid {f} = graphmapext ≡-refl (≡-sym (rid₁ {f})) lid₀ : ∀{F : Functor (𝒫₀ G) 𝒞} → obj (lift (lift˘ F)) ≡ obj F lid₀ {F} = begin obj (lift (lift˘ F)) ≡⟨ "obj of lift" ⟩′ ver (lift˘ F) ≡⟨ "ver of lift˘" ⟩′ obj F ∎ lid₁ : ∀{F : Functor (𝒫₀ G) 𝒞} → ∀ {x y} {p : x ⇝ y} → mor (lift (lift˘ F)) p ≡ mor F p lid₁ {F} {x} {.x} {p = (.x) !} = begin mor (lift (lift˘ F)) (x !) ≡⟨ "mor of lift on !" ⟩′ 𝒞.Id ≡⟨ ≡-sym (Functor.id F) ⟩ -- ! is identity path in ~𝒫G~ and functor preserve identites mor F (x !) ∎ lid₁ {F} {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin mor (lift (lift˘ F)) (x ⟶[ e ]⟶ ps) ≡⟨⟩ -- mor on lift on inductive case edge (lift˘ F) e 𝒞.⨾ mor (lift (lift˘ F)) ps ≡⟨ ≡-cong (λ w → edge (lift˘ F) e 𝒞.⨾ w) (lid₁ {F}) ⟩ edge (lift˘ F) e 𝒞.⨾ mor F ps ≡⟨ "edge on lift˘" ⟩′ mor F (edge ι e) 𝒞.⨾ mor F ps ≡⟨ ≡-sym (Functor.comp F) ⟩ -- factor out Functor.mor mor F (edge ι e ++ ps) ≡⟨ "defn of ++" ⟩′ mor F (x ⟶[ e ]⟶ ps) ∎ lid : ∀ {F : Functor (𝒫₀ G) 𝒞} → lift (lift˘ F) ≡ F lid {F} = funcext ≡-refl (≡-sym (lid₁ {F})) -- old version lift-≈ : ∀{f f’ : GraphMap G (𝒰₀ 𝒞)} → f ≈g f’ → lift f ≋ lift f’ lift-≈ {f} {f’} (veq , eeq) = veq , (λ {x} {y} {p} → pf {x} {y} {p}) where pf : {x y : V} {p : x ⇝ y} → mor (lift f’) p ≡ ≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) p) pf {x} {.x} {p = .x !} rewrite (veq {x}) = ≡-refl pf {x} {y} {p = .x ⟶[ e ]⟶ ps} = begin mor (lift f’) (x ⟶[ e ]⟶ ps) ≡⟨⟩ edge f’ e 𝒞.⨾ mor (lift f’) ps ≡⟨ ≡-cong₂ 𝒞._⨾_ eeq (pf {p = ps}) ⟩ ≡-subst₂ 𝒞._⟶_ veq veq (edge f e) 𝒞.⨾ ≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) ps) ≡⟨ subst-dist veq x _ y ⟩ ≡-subst₂ 𝒞._⟶_ veq veq (mor (lift f) (x ⟶[ e ]⟶ ps)) ∎ uniqueness’ : ∀{f h} → f ≡ (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ h) → lift f ≡ h uniqueness’ {f} {h} f≈ι⨾𝒰₁h = begin lift f ≡⟨ ≡-cong lift f≈ι⨾𝒰₁h ⟩ lift (ι 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ h) ≡⟨" definition of lift˘ "⟩′ lift (lift˘ h) ≡⟨ lid ⟩ h ∎ module _ {G H : Graph} {𝒞 𝒟 : Category {ℓ₀} {ℓ₀}} (g : GraphMap G H) (F : Functor 𝒞 𝒟) where private lift˘ = λ {A} {C} B → freedom.lift˘ A {C} B lift = λ {A} {C} B → freedom.lift A {C} B open Category ⦃...⦄ module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 module 𝒢𝓇𝒶𝓅𝒽 = Category 𝒢𝓇𝒶𝓅𝒽 module 𝒞𝒶𝓉 = Category (𝒞𝒶𝓉 {ℓ₀} {ℓ₀}) module 𝒮ℯ𝓉 = Category (𝒮e𝓉 {ℓ₀}) naturality˘ : ∀ {K : Functor (𝒫₀ H) 𝒞} → lift˘ (𝒫₁ g 𝒞𝒶𝓉.⨾ K 𝒞𝒶𝓉.⨾ F) ≡ (g 𝒢𝓇𝒶𝓅𝒽.⨾ lift˘ K 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) naturality˘ = graphmapext ≡-refl ≡-refl naturality : ∀ {k : GraphMap H (𝒰₀ 𝒞)} → lift (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) ≡ (𝒫₁ g 𝒞𝒶𝓉.⨾ lift k 𝒞𝒶𝓉.⨾ F) naturality {k} = funcext ≡-refl (λ {x y p} → proof {x} {y} {p}) where open TypedPaths ⦃...⦄ instance G′ : Graph ; G′ = G H′ : Graph ; H′ = H proof : ∀ {x y : Graph.V G} {p : x ⇝ y} → mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) p ≡ mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) p proof {p = _ !} = functor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) preserves-identities proof {p = x ⟶[ e ]⟶ ps} = begin mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) (x ⟶[ e ]⟶ ps) ≡⟨" By definition, “mor” distributes over composition "⟩′ (mor (𝒫₁ g) 𝒮ℯ𝓉.⨾ mor (lift {H} {𝒞} k) 𝒮ℯ𝓉.⨾ mor F) (x ⟶[ e ]⟶ ps) ≡⟨" Definitions of function composition and “𝒫₁ ⨾ mor” "⟩′ mor F (mor (lift {H} {𝒞} k) (mor (𝒫₁ g) (x ⟶[ e ]⟶ ps))) -- This explicit path is in G ≡⟨" Lifting graph-map “g” onto a path "⟩′ mor F (mor (lift {H} {𝒞} k) (ver g x ⟶[ edge g e ]⟶ mor (𝒫₁ g) ps)) -- This explicit path is in H ≡⟨" Definition of “lift ⨾ mor” on inductive case for paths "⟩′ mor F (edge k (edge g e) 𝒞.⨾ mor (lift {H} {𝒞} k) (mor (𝒫₁ g) ps)) ≡⟨ functor F preserves-composition ⟩ mor F (edge k (edge g e)) 𝒟.⨾ mor F (mor (lift {H} {𝒞} k) (mor (𝒫₁ g) ps)) ≡⟨" Definition of function composition, for top part "⟩′ (edge g 𝒮ℯ𝓉.⨾ edge k 𝒮ℯ𝓉.⨾ mor F) e -- ≈ mor F ∘ edge k ∘ edge g 𝒟.⨾ (mor (𝒫₁ g) 𝒮ℯ𝓉.⨾ mor (lift {H} {𝒞} k) 𝒮ℯ𝓉.⨾ mor F) ps ≡⟨" “𝒰₁ ⨾ edge = mor” and “edge” and “mor” are functorial by definition "⟩′ edge (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒟.⨾ mor (𝒫₁ g 𝒞𝒶𝓉.⨾ lift {H} {𝒞} k 𝒞𝒶𝓉.⨾ F) ps ≡⟨ {- Inductive Hypothesis: -} ≡-cong₂ 𝒟._⨾_ ≡-refl (proof {p = ps}) ⟩ edge (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F) e 𝒟.⨾ mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) ps ≡⟨" Definition of “lift ⨾ mor” on inductive case for paths "⟩′ mor (lift {G} {𝒟} (g 𝒢𝓇𝒶𝓅𝒽.⨾ k 𝒢𝓇𝒶𝓅𝒽.⨾ 𝒰₁ F)) (x ⟶[ e ]⟶ ps) ∎ 𝒫⊣𝒰 : 𝒫 ⊣ 𝒰 𝒫⊣𝒰 = record{ ⌊_⌋ = lift˘ ; ⌈_⌉ = lift ; lid = lid ; rid = λ {G 𝒞 c} → rid {G} {𝒞} {c} ; lfusion = λ {G H 𝒞 𝒟 f F K} → naturality˘ {G} {H} {𝒞} {𝒟} f K {F} ; rfusion = λ {G H 𝒞 𝒟 f k F} → naturality {G} {H} {𝒞} {𝒟} f F {k} } where module _ {G : Graph} {𝒞 : Category} where open freedom G {𝒞} public module folding (G : Graph) where open TypedPaths G open Graph G -- Given: fold : {X : Set} (v : V → X) -- realise G's vertices as X elements (f : ∀ x {y} (e : x ⟶ y) → X → X) -- realise paths as X elements → (∀ {a b} → a ⇝ b → X) -- Then: Any path is an X value fold v f (b !) = v b fold v f (x ⟶[ e ]⟶ ps) = f x e (fold v f ps) length : ∀{x y} → x ⇝ y → ℕ length = fold (λ _ → 0) -- single walks are length 0. (λ _ _ n → 1 + n) -- edges are one more than the -- length of the remaining walk length-! : ∀{x} → length (x !) ≡ 0 length-! = ≡-refl -- True by definition of “length”: The first argument to the “fold” length-ind : ∀ {x y ω} {e : x ⟶ y} {ps : y ⇝ ω} → length (x ⟶[ e ]⟶ ps) ≡ 1 + length ps length-ind = ≡-refl -- True by definition of “length”: The second-argument to the “fold” path-cost : (c : ∀{x y}(e : x ⟶ y) → ℕ) → ∀{x y}(ps : x ⇝ y) → ℕ path-cost c = fold (λ _ → 0) -- No cost on an empty path. (λ x e n → c e + n) -- Cost of current edge plus -- cost of remainder of path. fold-++ : ∀{X : Set} {v : V → X} {g : ∀ x {y} (e : x ⟶ y) → X} → (_⊕_ : X → X → X) → ∀{x y z : V} {p : x ⇝ y} {q : y ⇝ z} → (unitl : ∀{x y} → y ≡ v x ⊕ y) -- Image of ‘v’ is left unit of ⊕ → (assoc : ∀ {x y z} → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ) -- ⊕ is associative → let f : ∀ x {y} (e : x ⟶ y) → X → X f = λ x e ps → g x e ⊕ ps in fold v f (p ++ q) ≡ fold v f p ⊕ fold v f q fold-++ {g = g} _⊕_ {x = x} {p = .x !} unitl assoc = unitl fold-++ {g = g} _⊕_ {x = x} {p = .x ⟶[ e ]⟶ ps} unitl assoc = ≡-cong (λ exp → g x e ⊕ exp) (fold-++ _⊕_ {p = ps} unitl assoc) ⟨≡≡⟩ assoc module lists (A : Set) where open import Data.Unit listGraph : Graph listGraph = record { V = A ; _⟶_ = λ a a’ → ⊤ } open TypedPaths listGraph open folding listGraph -- Every non-empty list [x₀, …, xₖ] of A’s corresonds to a path x₀ ⇝ xₖ. toPath : ∀{n} (list : Fin (suc n) → A) → list fzero ⇝ list (fromℕ n) toPath {zero} list = list fzero ! toPath {suc n} list = list fzero ⟶[ tt ]⟶ toPath {n} (λ i → list(fsuc i)) -- Note that in the inductive case, “list : Fin (suc (suc n)) → A” -- whereas “suc ⨾ list : Fin (suc n) → A”. -- -- For example, if “list ≈ [x , y , z]” yields -- “fsuc ⨾ list ≈ [y , z ]” and -- “fsuc ⨾ fsuc ⨾ list ≈ [z]”. -- List type former List = λ (X : Set) → Σ n ∶ ℕ • (Fin n → X) -- Usual list folding, but it's in terms of path folding. foldr : ∀{B : Set} (f : A → B → B) (e : B) → List A → B foldr f e (zero , l) = e foldr f e (suc n , l) = fold (λ a → f a e) (λ a _ rem → f a rem) (toPath l) -- example listLength : List A → ℕ -- result should clearly be “proj₁” of the list, anyhow: listLength = foldr (λ a rem → 1 + rem) -- Non-empty list has length 1 more than the remainder. 0 -- Empty list has length 0. -- Empty list [] : ∀{X : Set} → List X [] = 0 , λ () -- Cons for lists _∷_ : ∀{X : Set} → X → List X → List X _∷_ {X} x (n , l) = 1 + n , cons x l where -- “cons a l ≈ λ i : Fin (1 + n) → if i ≈ 0 then a else l i” cons : ∀{n} → X → (Fin n → X) → (Fin (suc n) → X) cons x l fzero = x cons x l (fsuc i) = l i map : ∀ {B} (f : A → B) → List A → List B map f = foldr (λ a rem → f a ∷ rem) [] -- looks like the usual map don’t it ;) -- list concatenation _++ℓ_ : List A → List A → List A l ++ℓ r = foldr _∷_ r l -- fold over ‘l’ by consing its elements infront of ‘r’ -- Exercise: Write path catenation as a path-fold.
{ "alphanum_fraction": 0.4476493509, "avg_line_length": 37.0375747225, "ext": "agda", "hexsha": "d8c951b1f1f650164ac6f353006525fd4e7e65eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "KMx404/selfev.agda", "max_forks_repo_path": "understand/1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "KMx404/selfev.agda", "max_issues_repo_path": "understand/1.agda", "max_line_length": 189, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "KMx404/selfev.agda", "max_stars_repo_path": "understand/1.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-12T15:57:18.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-18T11:22:21.000Z", "num_tokens": 21251, "size": 43371 }
-- Andreas, 2016-12-20, issue #2347, reported by m0davis -- Case splitting in extended lambda with instance argument -- was printed wrongly -- {-# OPTIONS -v interaction.case:100 #-} -- {-# OPTIONS -v reify:100 #-} -- {-# OPTIONS -v reify.clause:100 #-} -- {-# OPTIONS -v extendedlambda:100 #-} -- {-# OPTIONS -v tc.term.extlam:100 #-} data ⊥ : Set where works : ⊥ → Set works = λ {x → {!x!}} works1 : { _ : Set } → ⊥ → Set works1 = λ {x → {!x!}} test : ⦃ _ : Set ⦄ → ⊥ → Set test = λ {x → {!x!}} -- Case splitting on x should succeed in each case
{ "alphanum_fraction": 0.5873873874, "avg_line_length": 23.125, "ext": "agda", "hexsha": "addf38dc84e1439354800db4c90ecc9afca4ea25", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2347.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2347.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2347.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 185, "size": 555 }
module Cats.Util.SetoidMorphism where open import Data.Product using (∃-syntax ; _,_ ; proj₁ ; proj₂) open import Level using (_⊔_ ; suc) open import Relation.Binary using (Rel ; Setoid ; IsEquivalence ; _Preserves_⟶_) open import Relation.Binary.SetoidReasoning open import Cats.Util.Function using () renaming (_∘_ to _⊚_) open Setoid renaming (_≈_ to eq) infixr 9 _∘_ record _⇒_ {l l≈} (A : Setoid l l≈) {l′ l≈′} (B : Setoid l′ l≈′) : Set (l ⊔ l′ ⊔ l≈ ⊔ l≈′) where field arr : Carrier A → Carrier B resp : arr Preserves eq A ⟶ eq B open _⇒_ public using (arr ; resp) module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where infixr 4 _≈_ record _≈_ (f g : A ⇒ B) : Set (l ⊔ l≈ ⊔ l≈′) where constructor ≈-intro field ≈-elim : ∀ {x y} → eq A x y → eq B (arr f x) (arr g y) ≈-elim′ : ∀ {x} → eq B (arr f x) (arr g x) ≈-elim′ = ≈-elim (refl A) open _≈_ public equiv : IsEquivalence _≈_ equiv = record { refl = λ {f} → ≈-intro (resp f) ; sym = λ eq → ≈-intro λ x≈y → sym B (≈-elim eq (sym A x≈y)) ; trans = λ eq₁ eq₂ → ≈-intro (λ x≈y → trans B (≈-elim eq₁ x≈y) (≈-elim′ eq₂)) } setoid : Setoid (l ⊔ l≈ ⊔ l′ ⊔ l≈′) (l ⊔ l≈ ⊔ l≈′) setoid = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } id : ∀ {l l≈} {A : Setoid l l≈} → A ⇒ A id = record { arr = λ x → x ; resp = λ x → x } _∘_ : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} → B ⇒ C → A ⇒ B → A ⇒ C _∘_ f g = record { arr = arr f ⊚ arr g ; resp = resp f ⊚ resp g } ∘-resp : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} → {f f′ : B ⇒ C} {g g′ : A ⇒ B} → f ≈ f′ → g ≈ g′ → f ∘ g ≈ f′ ∘ g′ ∘-resp f≈f′ g≈g′ = ≈-intro (≈-elim f≈f′ ⊚ ≈-elim g≈g′) id-l : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → {f : A ⇒ B} → id ∘ f ≈ f id-l {f = f} = ≈-intro (resp f) id-r : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → {f : A ⇒ B} → f ∘ id ≈ f id-r {f = f} = ≈-intro (resp f) assoc : ∀ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} → ∀ {l″ l≈″} {C : Setoid l″ l≈″} {l‴ l≈‴} {D : Setoid l‴ l≈‴} → {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) assoc {f = f} {g} {h} = ≈-intro (resp f ⊚ resp g ⊚ resp h) module _ {l l≈} {A : Setoid l l≈} {l′ l≈′} {B : Setoid l′ l≈′} where IsInjective : A ⇒ B → Set (l ⊔ l≈ ⊔ l≈′) IsInjective f = ∀ {a b} → eq B (arr f a) (arr f b) → eq A a b IsSurjective : A ⇒ B → Set (l ⊔ l′ ⊔ l≈′) IsSurjective f = ∀ b → ∃[ a ] (eq B b (arr f a))
{ "alphanum_fraction": 0.4674489023, "avg_line_length": 25.1619047619, "ext": "agda", "hexsha": "db4832b6dea3a3b911a0700f73b7c83bedaa8eea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Util/SetoidMorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Util/SetoidMorphism.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Util/SetoidMorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1325, "size": 2642 }
-- Andreas, 2016-03-28, Issue 1920 -- Improve error message when user puts where clause in hole. infix 3 _∎ postulate A : Set begin : A _∎ : A → A works : A works = begin ∎ where b = begin test : A test = {!begin ∎ where b = begin !}
{ "alphanum_fraction": 0.6071428571, "avg_line_length": 12, "ext": "agda", "hexsha": "897ac185b3a8881fa6b1e7ffdc6240427960ec69", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/ParseHoleWhere.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/ParseHoleWhere.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/ParseHoleWhere.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 97, "size": 252 }
module functor where open import level record Functor {ℓ : Level} (F : Set ℓ → Set ℓ) : Set (lsuc ℓ) where constructor mkFunc field fmap : ∀{A B : Set ℓ} → (A → B) → F A → F B open Functor public
{ "alphanum_fraction": 0.6231884058, "avg_line_length": 18.8181818182, "ext": "agda", "hexsha": "2eb5b137c83e6af0052b45c659d16ac8a789c345", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "functor.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "functor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 74, "size": 207 }
{-# OPTIONS --show-implicit #-} module Exegesis where module Superclasses where open import Agda.Primitive open import Agda.Builtin.Equality record Semigroup (A : Set) : Set where field _∙_ : A → A → A assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z open Semigroup ⦃ … ⦄ record Identity {A : Set} (_∙_ : A → A → A) : Set where field ε : A left-identity : ∀ x → ε ∙ x ≡ x right-identity : ∀ x → x ∙ ε ≡ x open Identity ⦃ … ⦄ record Monoid (A : Set) : Set where field ⦃ semigroup ⦄ : Semigroup A ⦃ identity ⦄ : Identity (_∙_ ⦃ semigroup ⦄) open Monoid ⦃ … ⦄ foo : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ⦃ identity ⦄ ≡ x foo x = right-identity x module StandardLibraryMethod where open import Agda.Primitive open import Agda.Builtin.Equality record Semigroup (A : Set) : Set where field _∙_ : A → A → A assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z --open Semigroup ⦃ … ⦄ record Identity (A : Set) (ε : A) (_∙_ : A → A → A) : Set where field left-identity : ∀ x → ε ∙ x ≡ x right-identity : ∀ x → x ∙ ε ≡ x --open Identity ⦃ … ⦄ record Monoid (A : Set) : Set where field s : Semigroup A open Semigroup s public field ε : A i : Identity A ε _∙_ open Identity i public open Monoid ⦃ … ⦄ foo : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≡ x foo x = right-identity x -- right-identity x module Cascade where open import Agda.Primitive open import Agda.Builtin.Equality record Semigroup (A : Set) : Set where field _∙_ : A → A → A assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z open Semigroup ⦃ … ⦄ record RawMonoid (A : Set) ⦃ _ : Semigroup A ⦄ : Set where no-eta-equality field ε : A open RawMonoid ⦃ … ⦄ record Identity (A : Set) (ε : A) (_∙_ : A → A → A) : Set where field left-identity : ∀ x → ε ∙ x ≡ x right-identity : ∀ x → x ∙ ε ≡ x open Identity ⦃ … ⦄ foo : {A : Set} ⦃ _ : Semigroup A ⦄ ⦃ _ : RawMonoid A ⦄ ⦃ i : Identity A ε _∙_ ⦄ → (x : A) → x ∙ ε ≡ x foo ⦃ s ⦄ ⦃ rm ⦄ ⦃ i ⦄ x = right-identity ⦃ i ⦄ x module Buncha where open import Agda.Primitive open import Agda.Builtin.Equality record Semigroup (A : Set) : Set where field _∙_ : A → A → A assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z open Semigroup ⦃ … ⦄ record RawMonoid (A : Set) : Set where field ε : A open RawMonoid ⦃ … ⦄ record Identity {A : Set} (_∙_ : A → A → A) ⦃ _ : RawMonoid A ⦄ : Set where field left-identity : ∀ x → ε ∙ x ≡ x right-identity : ∀ x → x ∙ ε ≡ x open Identity ⦃ … ⦄ record Monoid (A : Set) : Set where field ⦃ semigroup ⦄ : Semigroup A ⦃ rawmonoid ⦄ : RawMonoid A ⦃ identity ⦄ : Identity {A} _∙_ open Monoid ⦃ … ⦄ foo : {A : Set} ⦃ _ : Semigroup A ⦄ ⦃ _ : RawMonoid A ⦄ ⦃ _ : Identity _∙_ ⦄ → (x : A) → x ∙ ε ≡ x foo x = right-identity x bar : {A : Set} ⦃ _ : Monoid A ⦄ → (x : A) → x ∙ ε ≡ x bar x = right-identity x module SomethingThatWorks where open import Agda.Primitive open import Agda.Builtin.Equality record Equivalence (A : Set) : Set₁ where infix 4 _≈_ field _≈_ : A → A → Set reflexive : ∀ x → x ≈ x symmetric : ∀ {x y} → x ≈ y → y ≈ x transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z open Equivalence ⦃ … ⦄ record Operator (A : Set) : Set where field _∙_ : A → A → A record Semigroup (A : Set) : Set₁ where field ⦃ operator ⦄ : Operator A ⦃ equivalence ⦄ : Equivalence A open Operator operator public field assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) cong : ∀ w x y z → w ≡ y → x ≡ z → w ∙ x ≡ y ∙ z open Semigroup ⦃ … ⦄ record IdentityElement (A : Set) : Set where field ε : A module ε where open IdentityElement ⦃ … ⦄ public record Identity {A : Set} (_∙_ : A → A → A) ⦃ _ : IdentityElement A ⦄ : Set where open ε field left-identity : ∀ x → ε ∙ x ≡ x right-identity : ∀ x → x ∙ ε ≡ x open Identity ⦃ … ⦄ record Monoid (A : Set) : Set₁ where field ⦃ semigroup ⦄ : Semigroup A ⦃ identityElement ⦄ : IdentityElement A ⦃ identity ⦄ : Identity {A} _∙_ open Monoid ⦃ … ⦄ bar : {A : Set} ⦃ _ : Monoid A ⦄ {B : Set} ⦃ _ : Monoid B ⦄ (open ε) → (x : A) → x ∙ ε ≡ x bar x = right-identity x module SeparatingIsFromOught where open import Agda.Primitive open import Agda.Builtin.Equality record Equivalence (A : Set) : Set₁ where infix 4 _≈_ field _≈_ : A → A → Set reflexive : ∀ x → x ≈ x symmetric : ∀ {x y} → x ≈ y → y ≈ x transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z open Equivalence ⦃ … ⦄ record Operator (A : Set) : Set where field _∙_ : A → A → A open Operator ⦃ … ⦄ record IsSemigroup (A : Set) ⦃ _ : Operator A ⦄ ⦃ _ : Equivalence A ⦄ : Set where field assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z open IsSemigroup ⦃ … ⦄ record Semigroup (A : Set) : Set₁ where field ⦃ operator ⦄ : Operator A ⦃ equivalence ⦄ : Equivalence A ⦃ isSemigroup ⦄ : IsSemigroup A open Semigroup ⦃ … ⦄ {- record IdentityElement (A : Set) : Set where field ε : A open IdentityElement ⦃ … ⦄ -} record IsIdentity (A : Set) ⦃ _ : Operator A ⦄ {-⦃ _ : IdentityElement A ⦄-} ⦃ _ : Equivalence A ⦄ : Set where -- record IsIdentity {A : Set} (_∙_ : A → A → A) (ε : A) ⦃ _ : Equivalence A ⦄ : Set where field ε : A left-identity : ∀ (x : A) → ε ∙ x ≈ x right-identity : ∀ (x : A) → x ∙ ε ≈ x open IsIdentity ⦃ … ⦄ record Monoid (A : Set) : Set₁ where field ⦃ semigroup ⦄ : Semigroup A --⦃ identityElement ⦄ : IdentityElement A --ε : A --⦃ identity ⦄ : IsIdentity (_∙_ {A}) ε -- ⦃ operator ⦄ : Operator A ⦃ identity ⦄ : IsIdentity A open Monoid ⦃ … ⦄ bar : {A : Set} ⦃ m : Monoid A ⦄ {B : Set} ⦃ _ : Semigroup B ⦄ → (x : A) → x ∙ ε ≈ x bar x = right-identity x bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y : A) → (x ∙ ε) ∙ y ≈ x ∙ (ε ∙ y) bar2 x y = assoc x ε y module FineControl where record IsEquivalence {A : Set} (_≈_ : A → A → Set) : Set₁ where field reflexive : ∀ x → x ≈ x symmetric : ∀ {x y} → x ≈ y → y ≈ x transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z open IsEquivalence ⦃ … ⦄ record Equivalence (A : Set) : Set₁ where infix 4 _≈_ field _≈_ : A → A → Set ⦃ isEquivalence ⦄ : IsEquivalence _≈_ open Equivalence ⦃ … ⦄ record IsSemigroup {A : Set} (_∙_ : A → A → A) ⦃ _ : Equivalence A ⦄ : Set where field assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z open IsSemigroup ⦃ … ⦄ record Semigroup (A : Set) : Set₁ where field ⦃ equivalence ⦄ : Equivalence A _∙_ : A → A → A ⦃ isSemigroup ⦄ : IsSemigroup _∙_ open Semigroup ⦃ … ⦄ record Identity (A : Set) : Set where field ε : A open Identity ⦃ … ⦄ -- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ (ε : A) ⦃ _ : Equivalence B ⦄ : Set where record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set where field left-identity : ∀ x → ε ∙ x ≈ x open IsLeftIdentity ⦃ … ⦄ -- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where record IsRightIdentity {A B : Set} (_∙_ : B → A → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set where field right-identity : ∀ x → x ∙ ε ≈ x open IsRightIdentity ⦃ … ⦄ record Monoid (A : Set) : Set₁ where field ⦃ semigroup ⦄ : Semigroup A --ε : A ⦃ identity ⦄ : Identity A ⦃ lidentity ⦄ : IsLeftIdentity {A = A} _∙_ ⦃ ridentity ⦄ : IsRightIdentity {A = A} _∙_ open Monoid ⦃ … ⦄ bar : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x bar {A} x = right-identity {_∙_ = _∙_} x -- right-identity {_∙_ = _∙_} x bar' : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x bar' x = right-identity x bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y z : A) → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) bar2 x y z = assoc x y z module FineControl2 where record IsEquivalence {A : Set} (_≈_ : A → A → Set) : Set₁ where field reflexive : ∀ x → x ≈ x symmetric : ∀ {x y} → x ≈ y → y ≈ x transitive : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z open IsEquivalence ⦃ … ⦄ record Equivalence (A : Set) : Set₁ where infix 4 _≈_ field _≈_ : A → A → Set ⦃ isEquivalence ⦄ : IsEquivalence _≈_ open Equivalence ⦃ … ⦄ record IsSemigroup {A : Set} (_∙_ : A → A → A) ⦃ _ : Equivalence A ⦄ : Set where field assoc : ∀ (x : A) y z → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) cong : ∀ (w : A) x y z → w ≈ y → x ≈ z → w ∙ x ≈ y ∙ z open IsSemigroup ⦃ … ⦄ record Semigroup (A : Set) : Set₁ where field overlap ⦃ equivalence ⦄ : Equivalence A _∙_ : A → A → A ⦃ isSemigroup ⦄ : IsSemigroup _∙_ open Semigroup ⦃ … ⦄ record Identity (A : Set) : Set where field ε : A open Identity ⦃ … ⦄ -- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where -- record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) : Set₁ where record IsLeftIdentity {A B : Set} (_∙_ : A → B → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set₁ where field left-identity : ∀ x → ε ∙ x ≈ x open IsLeftIdentity ⦃ … ⦄ -- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) (ε : A) ⦃ _ : Equivalence B ⦄ : Set where -- record IsRightIdentity {A B : Set} (_∙_ : B → A → B) : Set₁ where record IsRightIdentity {A B : Set} (_∙_ : B → A → B) ⦃ _ : Identity A ⦄ ⦃ _ : Equivalence B ⦄ : Set₁ where field right-identity : ∀ x → x ∙ ε ≈ x -- open IsRightIdentity ⦃ … ⦄ record Monoid (A : Set) : Set₁ where field ⦃ semigroup ⦄ : Semigroup A --ε : A ⦃ identity ⦄ : Identity A ⦃ lidentity ⦄ : IsLeftIdentity {A = A} _∙_ ⦃ ridentity ⦄ : IsRightIdentity {A = A} _∙_ open IsRightIdentity ridentity public open Monoid ⦃ … ⦄ bar : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x bar {A} x = right-identity x -- right-identity {_∙_ = _∙_} x bar' : {A : Set} ⦃ m : Monoid A ⦄ → (x : A) → x ∙ ε ≈ x bar' x = right-identity x bar2 : {A : Set} ⦃ _ : Monoid A ⦄ → (x y z : A) → (x ∙ y) ∙ z ≈ x ∙ (y ∙ z) bar2 x y z = assoc x y z
{ "alphanum_fraction": 0.5133783909, "avg_line_length": 25.8397129187, "ext": "agda", "hexsha": "d607a024e719c337aaf14c11f8117cbb0e0f6eec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Exegesis.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Exegesis.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Exegesis.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4630, "size": 10801 }
---------------------------------------------------------------------------------- -- Types for parse trees ---------------------------------------------------------------------------------- module cedille-types where open import lib -- open import parse-tree posinfo = string alpha = string alpha-bar-3 = string alpha-range-1 = string alpha-range-2 = string bvar = string bvar-bar-13 = string fpth = string fpth-bar-15 = string fpth-bar-16 = string fpth-bar-17 = string fpth-plus-14 = string fpth-star-18 = string kvar = string kvar-bar-19 = string kvar-star-20 = string num = string num-plus-5 = string numone = string numone-range-4 = string numpunct = string numpunct-bar-10 = string numpunct-bar-6 = string numpunct-bar-7 = string numpunct-bar-8 = string numpunct-bar-9 = string qkvar = string qvar = string var = string var-bar-11 = string var-star-12 = string {-# FOREIGN GHC import qualified CedilleTypes #-} data arg : Set {-# COMPILE GHC arg = type CedilleTypes.Arg #-} data args : Set {-# COMPILE GHC args = type CedilleTypes.Args #-} data opacity : Set {-# COMPILE GHC opacity = type CedilleTypes.Opacity #-} data cmd : Set {-# COMPILE GHC cmd = type CedilleTypes.Cmd #-} data cmds : Set {-# COMPILE GHC cmds = type CedilleTypes.Cmds #-} data decl : Set {-# COMPILE GHC decl = type CedilleTypes.Decl #-} data defDatatype : Set {-# COMPILE GHC defDatatype = type CedilleTypes.DefDatatype #-} data dataConst : Set {-# COMPILE GHC dataConst = type CedilleTypes.DataConst #-} data dataConsts : Set {-# COMPILE GHC dataConsts = type CedilleTypes.DataConsts #-} data defTermOrType : Set {-# COMPILE GHC defTermOrType = type CedilleTypes.DefTermOrType #-} data imports : Set {-# COMPILE GHC imports = type CedilleTypes.Imports #-} data imprt : Set {-# COMPILE GHC imprt = type CedilleTypes.Imprt #-} data kind : Set {-# COMPILE GHC kind = type CedilleTypes.Kind #-} data leftRight : Set {-# COMPILE GHC leftRight = type CedilleTypes.LeftRight #-} data liftingType : Set {-# COMPILE GHC liftingType = type CedilleTypes.LiftingType #-} data lterms : Set {-# COMPILE GHC lterms = type CedilleTypes.Lterms #-} data optType : Set {-# COMPILE GHC optType = type CedilleTypes.OptType #-} data maybeErased : Set {-# COMPILE GHC maybeErased = type CedilleTypes.MaybeErased #-} data maybeMinus : Set {-# COMPILE GHC maybeMinus = type CedilleTypes.MaybeMinus #-} data nums : Set {-# COMPILE GHC nums = type CedilleTypes.Nums #-} data optAs : Set {-# COMPILE GHC optAs = type CedilleTypes.OptAs #-} data optClass : Set {-# COMPILE GHC optClass = type CedilleTypes.OptClass #-} data optGuide : Set {-# COMPILE GHC optGuide = type CedilleTypes.OptGuide #-} data optPlus : Set {-# COMPILE GHC optPlus = type CedilleTypes.OptPlus #-} data optNums : Set {-# COMPILE GHC optNums = type CedilleTypes.OptNums #-} data optPublic : Set {-# COMPILE GHC optPublic = type CedilleTypes.OptPublic #-} data optTerm : Set {-# COMPILE GHC optTerm = type CedilleTypes.OptTerm #-} data params : Set {-# COMPILE GHC params = type CedilleTypes.Params #-} data start : Set {-# COMPILE GHC start = type CedilleTypes.Start #-} data term : Set {-# COMPILE GHC term = type CedilleTypes.Term #-} data theta : Set {-# COMPILE GHC theta = type CedilleTypes.Theta #-} data tk : Set {-# COMPILE GHC tk = type CedilleTypes.Tk #-} data type : Set {-# COMPILE GHC type = type CedilleTypes.Type #-} data vars : Set {-# COMPILE GHC vars = type CedilleTypes.Vars #-} data cases : Set {-# COMPILE GHC cases = type CedilleTypes.Cases #-} data varargs : Set {-# COMPILE GHC varargs = type CedilleTypes.Varargs #-} data arg where TermArg : maybeErased → term → arg TypeArg : type → arg {-# COMPILE GHC arg = data CedilleTypes.Arg (CedilleTypes.TermArg | CedilleTypes.TypeArg) #-} data args where ArgsCons : arg → args → args ArgsNil : args {-# COMPILE GHC args = data CedilleTypes.Args (CedilleTypes.ArgsCons | CedilleTypes.ArgsNil) #-} data opacity where OpacOpaque : opacity OpacTrans : opacity {-# COMPILE GHC opacity = data CedilleTypes.Opacity (CedilleTypes.OpacOpaque | CedilleTypes.OpacTrans) #-} data cmd where DefKind : posinfo → kvar → params → kind → posinfo → cmd DefTermOrType : opacity → defTermOrType → posinfo → cmd DefDatatype : defDatatype → posinfo → cmd ImportCmd : imprt → cmd {-# COMPILE GHC cmd = data CedilleTypes.Cmd (CedilleTypes.DefKind | CedilleTypes.DefTermOrType | CedilleTypes.DefDatatype |CedilleTypes.ImportCmd) #-} data cmds where CmdsNext : cmd → cmds → cmds CmdsStart : cmds {-# COMPILE GHC cmds = data CedilleTypes.Cmds (CedilleTypes.CmdsNext | CedilleTypes.CmdsStart) #-} data decl where Decl : posinfo → posinfo → maybeErased → bvar → tk → posinfo → decl {-# COMPILE GHC decl = data CedilleTypes.Decl (CedilleTypes.Decl) #-} data defDatatype where Datatype : posinfo → posinfo → var → params → kind → dataConsts → posinfo → defDatatype {-# COMPILE GHC defDatatype = data CedilleTypes.DefDatatype (CedilleTypes.Datatype) #-} data dataConst where DataConst : posinfo → var → type → dataConst {-# COMPILE GHC dataConst = data CedilleTypes.DataConst (CedilleTypes.DataConst) #-} data dataConsts where DataNull : dataConsts DataCons : dataConst → dataConsts → dataConsts {-# COMPILE GHC dataConsts = data CedilleTypes.DataConsts (CedilleTypes.DataNull | CedilleTypes.DataCons) #-} data defTermOrType where DefTerm : posinfo → var → optType → term → defTermOrType DefType : posinfo → var → kind → type → defTermOrType {-# COMPILE GHC defTermOrType = data CedilleTypes.DefTermOrType (CedilleTypes.DefTerm | CedilleTypes.DefType) #-} data imports where ImportsNext : imprt → imports → imports ImportsStart : imports {-# COMPILE GHC imports = data CedilleTypes.Imports (CedilleTypes.ImportsNext | CedilleTypes.ImportsStart) #-} data imprt where Import : posinfo → optPublic → posinfo → fpth → optAs → args → posinfo → imprt {-# COMPILE GHC imprt = data CedilleTypes.Imprt (CedilleTypes.Import) #-} data kind where KndArrow : kind → kind → kind KndParens : posinfo → kind → posinfo → kind KndPi : posinfo → posinfo → bvar → tk → kind → kind KndTpArrow : type → kind → kind KndVar : posinfo → qkvar → args → kind Star : posinfo → kind {-# COMPILE GHC kind = data CedilleTypes.Kind (CedilleTypes.KndArrow | CedilleTypes.KndParens | CedilleTypes.KndPi | CedilleTypes.KndTpArrow | CedilleTypes.KndVar | CedilleTypes.Star) #-} data leftRight where Both : leftRight Left : leftRight Right : leftRight {-# COMPILE GHC leftRight = data CedilleTypes.LeftRight (CedilleTypes.Both | CedilleTypes.Left | CedilleTypes.Right) #-} data liftingType where LiftArrow : liftingType → liftingType → liftingType LiftParens : posinfo → liftingType → posinfo → liftingType LiftPi : posinfo → bvar → type → liftingType → liftingType LiftStar : posinfo → liftingType LiftTpArrow : type → liftingType → liftingType {-# COMPILE GHC liftingType = data CedilleTypes.LiftingType (CedilleTypes.LiftArrow | CedilleTypes.LiftParens | CedilleTypes.LiftPi | CedilleTypes.LiftStar | CedilleTypes.LiftTpArrow) #-} data lterms where LtermsCons : maybeErased → term → lterms → lterms LtermsNil : posinfo → lterms {-# COMPILE GHC lterms = data CedilleTypes.Lterms (CedilleTypes.LtermsCons | CedilleTypes.LtermsNil) #-} data optType where SomeType : type → optType NoType : optType {-# COMPILE GHC optType = data CedilleTypes.OptType (CedilleTypes.SomeType | CedilleTypes.NoType) #-} data maybeErased where Erased : maybeErased NotErased : maybeErased {-# COMPILE GHC maybeErased = data CedilleTypes.MaybeErased (CedilleTypes.Erased | CedilleTypes.NotErased) #-} data maybeMinus where EpsHanf : maybeMinus EpsHnf : maybeMinus {-# COMPILE GHC maybeMinus = data CedilleTypes.MaybeMinus (CedilleTypes.EpsHanf | CedilleTypes.EpsHnf) #-} data nums where NumsStart : num → nums NumsNext : num → nums → nums {-# COMPILE GHC nums = data CedilleTypes.Nums (CedilleTypes.NumsStart | CedilleTypes.NumsNext) #-} data optAs where NoOptAs : optAs SomeOptAs : posinfo → var → optAs {-# COMPILE GHC optAs = data CedilleTypes.OptAs (CedilleTypes.NoOptAs | CedilleTypes.SomeOptAs) #-} data optPublic where NotPublic : optPublic IsPublic : optPublic {-# COMPILE GHC optPublic = data CedilleTypes.OptPublic (CedilleTypes.NotPublic | CedilleTypes.IsPublic) #-} data optClass where NoClass : optClass SomeClass : tk → optClass {-# COMPILE GHC optClass = data CedilleTypes.OptClass (CedilleTypes.NoClass | CedilleTypes.SomeClass) #-} data optGuide where NoGuide : optGuide Guide : posinfo → var → type → optGuide {-# COMPILE GHC optGuide = data CedilleTypes.OptGuide (CedilleTypes.NoGuide | CedilleTypes.Guide) #-} data optPlus where RhoPlain : optPlus RhoPlus : optPlus {-# COMPILE GHC optPlus = data CedilleTypes.OptPlus (CedilleTypes.RhoPlain | CedilleTypes.RhoPlus) #-} data optNums where NoNums : optNums SomeNums : nums → optNums {-# COMPILE GHC optNums = data CedilleTypes.OptNums (CedilleTypes.NoNums | CedilleTypes.SomeNums) #-} data optTerm where NoTerm : optTerm SomeTerm : term → posinfo → optTerm {-# COMPILE GHC optTerm = data CedilleTypes.OptTerm (CedilleTypes.NoTerm | CedilleTypes.SomeTerm) #-} data params where ParamsCons : decl → params → params ParamsNil : params {-# COMPILE GHC params = data CedilleTypes.Params (CedilleTypes.ParamsCons | CedilleTypes.ParamsNil) #-} data start where File : posinfo → imports → posinfo → posinfo → qvar → params → cmds → posinfo → start {-# COMPILE GHC start = data CedilleTypes.Start (CedilleTypes.File) #-} data term where App : term → maybeErased → term → term AppTp : term → type → term Beta : posinfo → optTerm → optTerm → term Chi : posinfo → optType → term → term Delta : posinfo → optType → term → term Epsilon : posinfo → leftRight → maybeMinus → term → term Hole : posinfo → term IotaPair : posinfo → term → term → optGuide → posinfo → term IotaProj : term → num → posinfo → term Lam : posinfo → maybeErased → posinfo → bvar → optClass → term → term Let : posinfo → defTermOrType → term → term Open : posinfo → var → term → term Parens : posinfo → term → posinfo → term Phi : posinfo → term → term → term → posinfo → term Rho : posinfo → optPlus → optNums → term → optGuide → term → term Sigma : posinfo → term → term Theta : posinfo → theta → term → lterms → term Mu : posinfo → bvar → term → optType → posinfo → cases → posinfo → term Mu' : posinfo → term → optType → posinfo → cases → posinfo → term Var : posinfo → qvar → term {-# COMPILE GHC term = data CedilleTypes.Term (CedilleTypes.App | CedilleTypes.AppTp | CedilleTypes.Beta | CedilleTypes.Chi | CedilleTypes.Delta | CedilleTypes.Epsilon | CedilleTypes.Hole | CedilleTypes.IotaPair | CedilleTypes.IotaProj | CedilleTypes.Lam | CedilleTypes.Let | CedilleTypes.Open | CedilleTypes.Parens | CedilleTypes.Phi | CedilleTypes.Rho | CedilleTypes.Sigma | CedilleTypes.Theta | CedilleTypes.Mu | CedilleTypes.Mu' | CedilleTypes.Var) #-} data cases where NoCase : cases SomeCase : posinfo → var → varargs → term → cases → cases {-# COMPILE GHC cases = data CedilleTypes.Cases (CedilleTypes.NoCase | CedilleTypes.SomeCase) #-} data varargs where NoVarargs : varargs NormalVararg : bvar → varargs → varargs ErasedVararg : bvar → varargs → varargs TypeVararg : bvar → varargs → varargs {-# COMPILE GHC varargs = data CedilleTypes.Varargs (CedilleTypes.NoVarargs | CedilleTypes.NormalVararg | CedilleTypes.ErasedVararg | CedilleTypes.TypeVararg ) #-} data theta where Abstract : theta AbstractEq : theta AbstractVars : vars → theta {-# COMPILE GHC theta = data CedilleTypes.Theta (CedilleTypes.Abstract | CedilleTypes.AbstractEq | CedilleTypes.AbstractVars) #-} data tk where Tkk : kind → tk Tkt : type → tk {-# COMPILE GHC tk = data CedilleTypes.Tk (CedilleTypes.Tkk | CedilleTypes.Tkt) #-} data type where Abs : posinfo → maybeErased → posinfo → bvar → tk → type → type Iota : posinfo → posinfo → bvar → type → type → type Lft : posinfo → posinfo → var → term → liftingType → type NoSpans : type → posinfo → type TpLet : posinfo → defTermOrType → type → type TpApp : type → type → type TpAppt : type → term → type TpArrow : type → maybeErased → type → type TpEq : posinfo → term → term → posinfo → type TpHole : posinfo → type TpLambda : posinfo → posinfo → bvar → tk → type → type TpParens : posinfo → type → posinfo → type TpVar : posinfo → qvar → type {-# COMPILE GHC type = data CedilleTypes.Type (CedilleTypes.Abs | CedilleTypes.Iota | CedilleTypes.Lft | CedilleTypes.NoSpans | CedilleTypes.TpLet | CedilleTypes.TpApp | CedilleTypes.TpAppt | CedilleTypes.TpArrow | CedilleTypes.TpEq | CedilleTypes.TpHole | CedilleTypes.TpLambda | CedilleTypes.TpParens | CedilleTypes.TpVar) #-} data vars where VarsNext : var → vars → vars VarsStart : var → vars {-# COMPILE GHC vars = data CedilleTypes.Vars (CedilleTypes.VarsNext | CedilleTypes.VarsStart) #-} pattern Pi = NotErased pattern All = Erased -- embedded types: aterm = term atype = type lliftingType = liftingType lterm = term ltype = type pterm = term
{ "alphanum_fraction": 0.7129193867, "avg_line_length": 38.2965116279, "ext": "agda", "hexsha": "aa6341b4ea660b05c8e3a30ef964d63787b9b336", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/cedille-types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/cedille-types.agda", "max_line_length": 456, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/cedille-types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3858, "size": 13174 }
{-# OPTIONS --warning=error #-} -- Useless abstract module Issue476b where abstract data A : Set data A where
{ "alphanum_fraction": 0.6896551724, "avg_line_length": 10.5454545455, "ext": "agda", "hexsha": "8300712ac6415304b44335eb061d3ce7fa22aac9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue476b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue476b.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue476b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 116 }
module RecordInParModule (a : Set) where record Setoid : Set1 where field el : Set postulate S : Setoid A : Setoid.el S postulate X : Set module M (x : X) where record R : Set where module E {x : X} (r : M.R x) where open module M' = M.R x r
{ "alphanum_fraction": 0.6332046332, "avg_line_length": 13.6315789474, "ext": "agda", "hexsha": "34395692706a7e2be7a5e79ec4504d4eaeeabcd7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/RecordInParModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/RecordInParModule.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/RecordInParModule.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 93, "size": 259 }
-- Check that FOREIGN code can have nested pragmas. module _ where open import Common.Prelude {-# FOREIGN GHC {-# NOINLINE plusOne #-} plusOne :: Integer -> Integer plusOne n = n + 1 {-# INLINE plusTwo #-} plusTwo :: Integer -> Integer plusTwo = plusOne . plusOne #-} postulate plusOne : Nat → Nat {-# COMPILE GHC plusOne = plusOne #-}
{ "alphanum_fraction": 0.6724637681, "avg_line_length": 15.6818181818, "ext": "agda", "hexsha": "23e0a1257901658e8a9df4f50662fcca190e78ee", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ForeignPragma.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ForeignPragma.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ForeignPragma.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 345 }
module _ where module M (A : _) where y = Set -- type of A is solved if this is removed x : Set x = A -- WAS: yellow on type of A -- SHOULD: succeed
{ "alphanum_fraction": 0.6100628931, "avg_line_length": 13.25, "ext": "agda", "hexsha": "2fe41ef30669dae674d6bfd3d3d4a8cdbcd106dc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1063.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1063.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1063.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 51, "size": 159 }
open import Prelude open import Nat open import dynamics-core open import contexts open import lemmas-disjointness module contraction where -- in the same style as the proofs of exchange, this argument along with -- trasnport allows you to prove contraction for all the hypothetical -- judgements uniformly. we never explicitly use contraction anywhere, so -- we omit any of the specific instances for concision; they are entirely -- mechanical, as are the specific instances of exchange. one is shown -- below as an example. contract : {A : Set} {x : Nat} {τ : A} (Γ : A ctx) → ((Γ ,, (x , τ)) ,, (x , τ)) == (Γ ,, (x , τ)) contract {A} {x} {τ} Γ = funext guts where guts : (y : Nat) → (Γ ,, (x , τ) ,, (x , τ)) y == (Γ ,, (x , τ)) y guts y with natEQ x y guts .x | Inl refl with Γ x guts .x | Inl refl | Some x₁ = refl guts .x | Inl refl | None with natEQ x x guts .x | Inl refl | None | Inl refl = refl guts .x | Inl refl | None | Inr x≠x = abort (x≠x refl) guts y | Inr x≠y with natEQ x y guts y | Inr x≠y | Inl refl = abort (x≠y refl) guts y | Inr x≠y | Inr x≠y' = refl contract-synth : ∀{Γ x τ e τ'} → (Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' → (Γ ,, (x , τ)) ⊢ e => τ' contract-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} = tr (λ qq → qq ⊢ e => τ') (contract {x = x} {τ = τ} Γ) -- as an aside, this also establishes the other direction which is rarely -- mentioned, since equality is symmetric elab-synth : ∀{Γ x τ e τ'} → (Γ ,, (x , τ)) ⊢ e => τ' → (Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' elab-synth {Γ = Γ} {x = x} {τ = τ} {e = e} {τ' = τ'} = tr (λ qq → qq ⊢ e => τ') (! (contract {x = x} {τ = τ} Γ))
{ "alphanum_fraction": 0.5271708683, "avg_line_length": 42.5, "ext": "agda", "hexsha": "82ae781711a5f383e4d0d001c8852c76be5fff0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "contraction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "contraction.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "contraction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 639, "size": 1785 }
module Numeral.Integer where import Lvl open import Numeral.Natural as ℕ using (ℕ) import Numeral.Natural.Oper as ℕ open import Syntax.Number open import Type -- Integers data ℤ : Type{Lvl.𝟎} where +ₙ_ : ℕ → ℤ -- Positive integers including zero from the naturals (0,1,..). −𝐒ₙ_ : ℕ → ℤ -- Negative integers from the naturals (..,−2,−1). {-# BUILTIN INTEGER ℤ #-} {-# BUILTIN INTEGERPOS +ₙ_ #-} {-# BUILTIN INTEGERNEGSUC −𝐒ₙ_ #-} ------------------------------------------ -- Constructors and deconstructors -- Constructing negative number from ℕ −ₙ_ : ℕ → ℤ −ₙ (ℕ.𝟎) = +ₙ ℕ.𝟎 −ₙ (ℕ.𝐒(x)) = −𝐒ₙ(x) -- Intuitive constructor patterns pattern 𝟎 = +ₙ(ℕ.𝟎) -- Zero (0). pattern +𝐒ₙ_ n = +ₙ(ℕ.𝐒(n)) -- Positive integers from the naturals (1,2,..). pattern 𝟏 = +ₙ(ℕ.𝟏) -- One (1). pattern −𝟏 = −𝐒ₙ(ℕ.𝟎) -- Negative one (−1). {-# DISPLAY ℤ.+ₙ_ ℕ.𝟎 = 𝟎 #-} {-# DISPLAY ℤ.+ₙ_ ℕ.𝟏 = 𝟏 #-} {-# DISPLAY ℤ.−𝐒ₙ_ ℕ.𝟎 = −𝟏 #-} {-# DISPLAY ℤ.+ₙ_(ℕ.𝐒(n)) = +𝐒ₙ_ n #-} -- Absolute value absₙ : ℤ → ℕ absₙ(+ₙ x) = x absₙ(−𝐒ₙ(x)) = ℕ.𝐒(x) -- Syntax instance ℤ-InfiniteNegativeNumeral : InfiniteNegativeNumeral(ℤ) ℤ-InfiniteNegativeNumeral = InfiniteNegativeNumeral.intro(−ₙ_) instance ℤ-InfiniteNumeral : InfiniteNumeral(ℤ) ℤ-InfiniteNumeral = InfiniteNumeral.intro(+ₙ_)
{ "alphanum_fraction": 0.5998492841, "avg_line_length": 27.0816326531, "ext": "agda", "hexsha": "4740a60bcee71601e470fee5fd588cb6d9e5b9e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Integer.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 553, "size": 1327 }
-- Andreas, 2017-08-18, issue #2703, reported by davdar, testcase by gallais -- Underapplied constructor triggers internal error {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.getConType:35 #-} postulate A : Set data Sg : A → Set where sg : ∀ t → Sg t -- Target type depends on constructor argument postulate cut : (∀ t → Sg t) → Set bug : cut sg -- Underapplied constructor bug with A bug | _ = _ -- Was: internal error in 2.5.3 RC1 -- Should succeed with unsolved meta.
{ "alphanum_fraction": 0.6706586826, "avg_line_length": 20.875, "ext": "agda", "hexsha": "fa62b90ea7edcd464e23b3e1c28bfd25524bb4b8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2703.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2703.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2703.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 153, "size": 501 }
module Issue157b where postulate A B : Set R : A → B → Set err : ∀ {a b} → R a b → R b
{ "alphanum_fraction": 0.5208333333, "avg_line_length": 13.7142857143, "ext": "agda", "hexsha": "4cebfb83ba3dc7ca00b7188969dd7efea5fc7976", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue157b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue157b.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/interaction/Issue157b.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 41, "size": 96 }
module Cats.Category.Cat where open import Cats.Functor public using (Functor ; _∘_ ; id) open import Data.Product using (_,_) open import Data.Unit using (⊤ ; tt) open import Level open import Relation.Binary using (IsEquivalence ; _Preserves_⟶_ ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Cats.Category open import Cats.Category.Zero open import Cats.Category.One open import Cats.Trans.Iso as NatIso using (NatIso ; iso ; forth-natural) open import Cats.Util.Simp using (simp!) open Functor open Category._≅_ _⇒_ : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈ → Category lo′ la′ l≈′ → Set _ C ⇒ D = Functor C D module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where infixr 4 _≈_ _≈_ : (F G : C ⇒ D) → Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) F ≈ G = NatIso F G equiv : IsEquivalence _≈_ equiv = record { refl = NatIso.id ; sym = NatIso.sym ; trans = λ eq₁ eq₂ → eq₂ NatIso.∘ eq₁ } module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where ∘-resp : ∀ {lo″ la″ l≈″} {E : Category lo″ la″ l≈″} → {F G : D ⇒ E} {H I : C ⇒ D} → F ≈ G → H ≈ I → F ∘ H ≈ G ∘ I ∘-resp {E = E} {F} {G} {H} {I} record { iso = F≅G ; forth-natural = fnat-GH } record { iso = H≅I ; forth-natural = fnat-HI } = record { iso = E.≅.trans F≅G (fobj-resp G H≅I) ; forth-natural = λ {_} {_} {f} → begin (fmap G (forth H≅I) E.∘ forth F≅G) E.∘ fmap F (fmap H f) ≈⟨ simp! E ⟩ fmap G (forth H≅I) E.∘ forth F≅G E.∘ fmap F (fmap H f) ≈⟨ E.∘-resp-r fnat-GH ⟩ fmap G (forth H≅I) E.∘ fmap G (fmap H f) E.∘ forth F≅G ≈⟨ simp! E ⟩ (fmap G (forth H≅I) E.∘ fmap G (fmap H f)) E.∘ forth F≅G ≈⟨ E.∘-resp-l (fmap-∘ G) ⟩ fmap G (forth H≅I D.∘ fmap H f) E.∘ forth F≅G ≈⟨ E.∘-resp-l (fmap-resp G fnat-HI) ⟩ fmap G (fmap I f D.∘ forth H≅I) E.∘ forth F≅G ≈⟨ E.∘-resp-l (E.≈.sym (fmap-∘ G)) ⟩ (fmap G (fmap I f) E.∘ fmap G (forth H≅I)) E.∘ forth F≅G ≈⟨ simp! E ⟩ fmap G (fmap I f) E.∘ fmap G (forth H≅I) E.∘ forth F≅G ∎ } where module D = Category D module E = Category E open E.≈-Reasoning id-r : {F : C ⇒ D} → F ∘ id ≈ F id-r {F} = record { iso = D.≅.refl ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } where module D = Category D id-l : {F : C ⇒ D} → id ∘ F ≈ F id-l {F} = record { iso = D.≅.refl ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } where module D = Category D assoc : ∀ {lo″ la″ l≈″ lo‴ la‴ l≈‴} → {E : Category lo″ la″ l≈″} {X : Category lo‴ la‴ l≈‴} → (F : E ⇒ X) (G : D ⇒ E) (H : C ⇒ D) → (F ∘ G) ∘ H ≈ F ∘ (G ∘ H) assoc {E = E} {X} _ _ _ = record { iso = X.≅.refl ; forth-natural = X.≈.trans X.id-l (X.≈.sym X.id-r) } where module X = Category X instance Cat : ∀ lo la l≈ → Category (suc (lo ⊔ la ⊔ l≈)) (lo ⊔ la ⊔ l≈) (lo ⊔ la ⊔ l≈) Cat lo la l≈ = record { Obj = Category lo la l≈ ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = ∘-resp ; id-r = id-r ; id-l = id-l ; assoc = λ {_} {_} {_} {_} {F} {G} {H} → assoc F G H }
{ "alphanum_fraction": 0.4847693647, "avg_line_length": 26.5153846154, "ext": "agda", "hexsha": "54afff6963a8565f9345651e109132a6437d0fc3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Cat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Cat.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Cat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1505, "size": 3447 }
open import Peano using (ℕ; zero; succ; _+_; Rel) module Semigroup where infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x record Semigroup {A : Set} (_◇_ : A → A → A) : Set where field associativity : ∀ x y z → (x ◇ y) ◇ z ≡ x ◇ (y ◇ z) record ℕ+-isSemigroup : Semigroup _+_ where field associativity : ∀ x y z → (x + y) + z ≡ x + (y + z)
{ "alphanum_fraction": 0.5260545906, "avg_line_length": 23.7058823529, "ext": "agda", "hexsha": "c343313de40eb46c2bc1bdb3f989926a8f4ec5ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "cantsin/agda-experiments", "max_forks_repo_path": "Semigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "cantsin/agda-experiments", "max_issues_repo_path": "Semigroup.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "cantsin/agda-experiments", "max_stars_repo_path": "Semigroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 164, "size": 403 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core -- slice category (https://ncatlab.org/nlab/show/over+category) -- TODO: Forgetful Functor from Slice to 𝒞 module Categories.Category.Slice {o ℓ e} (𝒞 : Category o ℓ e) where open Category 𝒞 open HomReasoning open import Level open import Function using (_$_) open import Relation.Binary using (Rel) open import Categories.Morphism.Reasoning 𝒞 record SliceObj (X : Obj) : Set (o ⊔ ℓ) where constructor sliceobj field {Y} : Obj arr : Y ⇒ X private variable A : Obj X Y Z : SliceObj A record Slice⇒ {A : Obj} (X Y : SliceObj A) : Set (ℓ ⊔ e) where constructor slicearr module X = SliceObj X module Y = SliceObj Y field {h} : X.Y ⇒ Y.Y △ : Y.arr ∘ h ≈ X.arr Slice : Obj → Category _ _ _ Slice A = record { Obj = SliceObj A ; _⇒_ = Slice⇒ ; _≈_ = λ where (slicearr {f} _) (slicearr {g} _) → f ≈ g ; id = slicearr identityʳ ; _∘_ = _∘′_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record -- must be expanded to get levels to work out { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where _∘′_ : Slice⇒ Y Z → Slice⇒ X Y → Slice⇒ X Z _∘′_ {Y = sliceobj y} {Z = sliceobj z} {X = sliceobj x} (slicearr {g} △) (slicearr {f} △′) = slicearr $ begin z ∘ g ∘ f ≈⟨ pullˡ △ ⟩ y ∘ f ≈⟨ △′ ⟩ x ∎
{ "alphanum_fraction": 0.569669475, "avg_line_length": 25.2950819672, "ext": "agda", "hexsha": "de8ee293971ea29368e0569a4205ea3401d8cf5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Slice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Slice.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Slice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 581, "size": 1543 }
module Holes.Term where open import Holes.Prelude -- TODO: This logically ought to be abstract, but that breaks the `cong!` macro -- because when it is abstract, `⌞ x ⌟ ≡ x` does not hold (at least -- definitionally). Look into a way of fixing this. ⌞_⌟ : ∀ {a}{A : Set a} → A → A ⌞ x ⌟ = x private -- Given a term, if it is a hole, returns the list of arguments given to it. -- Otherwise returns nothing. toHole : Term → Maybe (List (Arg Term)) -- First three arguments are the parameters of `⌞_⌟`, respectively the universe -- level `a`, the set `A` and the explicit parameter (i.e. the thing in the -- hole). So these are ignored. toHole (def (quote ⌞_⌟) (_ ∷ _ ∷ _ ∷ args)) = just args toHole _ = nothing -- A HoleyTerm is an Agda term that has a single 'hole' in it, where another -- term fits data HoleyTerm : Set where hole : (args : List (Arg Term)) → HoleyTerm var : (x : ℕ) (args : List (Arg HoleyTerm)) → HoleyTerm con : (c : Name) (args : List (Arg HoleyTerm)) → HoleyTerm def : (f : Name) (args : List (Arg HoleyTerm)) → HoleyTerm lam : (v : Visibility) (holeyAbs : Abs HoleyTerm) → HoleyTerm pi : (a : Arg HoleyTerm) (b : Abs HoleyTerm) → HoleyTerm agda-sort : (s : Sort) → HoleyTerm lit : (l : Literal) → HoleyTerm unknown : HoleyTerm meta : (x : Meta) (args : List (Arg HoleyTerm)) → HoleyTerm data HoleyErr : Set where noHole : HoleyErr unsupportedTerm : Term → HoleyErr mismatchedHoleTerms : HoleyErr printHoleyErr : Term → HoleyErr → List ErrorPart printHoleyErr goalLhs noHole = strErr "LHS of goal type contains no hole:" ∷ termErr goalLhs ∷ [] printHoleyErr goalLhs (unsupportedTerm x) = strErr "Goal type's LHS" ∷ termErr goalLhs ∷ strErr "contains unsupported term" ∷ termErr x ∷ [] printHoleyErr goalLhs mismatched-hole-terms = strErr "Terms in different holes failed to unify with each other." ∷ strErr "Check that every hole has an identical term in it." ∷ strErr "Offending term:" ∷ termErr goalLhs ∷ [] private mapArglist : {A B : Set} → (A → B) → List (Arg A) → List (Arg B) mapArglist = map ∘ mapArg -- Converts a HoleyTerm to a regular term by filling in the hole with some other -- given term which is a function of the number of binders encountered on the -- way to the hole. -- -- Free variables inside the holey term are detected and modified using the -- provided function, because otherwise they might interact wrongly with -- surrounding terms in the result. {-# TERMINATING #-} fillHoley : (ℕ → ℕ) → ℕ → (ℕ → List (Arg Term) → Term) → HoleyTerm → Term fillHoley freeVarMod binderDepth filler = go binderDepth where go : ℕ → HoleyTerm → Term go depth (hole args) = filler depth args go _ (lit l) = lit l go depth (var x args) = let freeVar = not (x <? depth) in var (if freeVar then freeVarMod x else x) (mapArglist (go depth) args) go depth (con c args) = con c (mapArglist (go depth) args) go depth (def f args) = def f (mapArglist (go depth) args) go depth (meta x args) = meta x (mapArglist (go depth) args) go depth (lam v (abs s holey)) = lam v (abs s (go depth holey)) go depth (pi (arg v a) (abs s b)) = pi (arg v (go depth a)) (abs s (go depth b)) go _ (agda-sort s) = agda-sort s go _ unknown = unknown -- Converts a HoleyTerm to a regular term which abstracts a variable that is -- used to fill the hole. -- -- The `suc` function is provided for `fillHoley`'s `freeVarMod` parameter. -- This is because the binding level of any free variables in the given term -- will need to be lifted over the new lambda that we're introducing. Otherwise -- they'll end up referring to the new lambda's variables, which is wrong. Bound -- variables inside the given term don't need to be changed. holeyToLam : HoleyTerm → Term holeyToLam holey = lam visible (abs "hole" (fillHoley suc 0 var holey)) -- Converts a HoleyTerm to a regular term by filling in the hole with a constant -- other term. fillHoley′ : (List (Arg Term) → Term) → HoleyTerm → Term fillHoley′ filler = fillHoley id 0 (λ _ → filler) private mapPair : ∀ {a b x y}{A : Set a}{B : Set b}{X : Set x}{Y : Set y} → (A → X) → (B → Y) → A × B → X × Y mapPair f g (x , y) = f x , g y pushArg : ∀ {A B : Set} → Arg (A × B) → A × Arg B pushArg (arg i (x , y)) = x , arg i y mutual argHelper : (List (Arg HoleyTerm) → HoleyTerm) → List (Arg Term) → Result HoleyErr (List Term × HoleyTerm) argHelper buildHoley = fmap (mapPair concat buildHoley ∘ unzip) ∘ traverse (fmap pushArg ∘ traverse termToHoleyHelper) {-# TERMINATING #-} termToHoleyHelper : Term → Result HoleyErr (List Term × HoleyTerm) termToHoleyHelper term with toHole term termToHoleyHelper term | just args = ok (term ∷ [] , hole args) termToHoleyHelper (lit l) | nothing = ok ([] , lit l) termToHoleyHelper (var x args) | nothing = argHelper (var x) args termToHoleyHelper (con c args) | nothing = argHelper (con c) args termToHoleyHelper (def f args) | nothing = argHelper (def f) args termToHoleyHelper (meta x args) | nothing = argHelper (meta x) args termToHoleyHelper (lam v (abs s t)) | nothing = mapPair id (λ h → lam v (abs s h)) <$> termToHoleyHelper t termToHoleyHelper (pi (arg v a) (abs s b)) | nothing = termToHoleyHelper a >>=² λ ts₁ a′ → termToHoleyHelper b >>=² λ ts₂ b′ → return (ts₁ ++ ts₂ , pi (arg v a′) (abs s b′)) termToHoleyHelper unknown | nothing = ok ([] , unknown) termToHoleyHelper (agda-sort s) | nothing = ok ([] , agda-sort s) ... | _ = err (unsupportedTerm term) -- If a term has a hole in it, specified by ⌞_⌟ around a subterm, returns a -- HoleyTerm with the hole removed. termToHoley : Term → Result HoleyErr HoleyTerm termToHoley term = proj₂ <$> termToHoleyHelper term -- A variant of `termToHoley` that also returns the term in the hole. If there -- are multiple holes, returns all of the terms that are in them. termToHoley′ : Term → Result HoleyErr (List Term × HoleyTerm) termToHoley′ = termToHoleyHelper private unifyAll : List Term → TC (Maybe Term) unifyAll [] = return nothing unifyAll (x ∷ xs) = traverse- (unify x) xs >> return (just x) checkedTermToHoley : Term → RTC HoleyErr (Term × HoleyTerm) checkedTermToHoley term = liftResult (termToHoley′ term) >>=² λ holeTerms holey → liftTC (unifyAll holeTerms) ⟨ catchRTC ⟩ throw mismatchedHoleTerms >>= λ { nothing → return (fillHoley′ (λ _ → unknown) holey , hole []) ; (just holeTerm) → return (holeTerm , holey) } -- A variant of `termToHoley` that also returns the term in the hole, and checks -- that the holey term is valid by unifying it with the original term. The list -- of error parts given is thrown as a type error if the term could not be -- converted to a holey term. Also, if there are no holes, treats the entire -- expression as a hole. checkedTermToHoley′ : (HoleyErr → List ErrorPart) → Term → TC (Term × HoleyTerm) checkedTermToHoley′ error = runRTC (typeError ∘ error) ∘ checkedTermToHoley -- These macros are useful for debugging and testing macro -- Given a holey term, expands to a function which accepts something to go in -- the hole. lambdaIntoHole : Term → Term → TC ⊤ lambdaIntoHole term target = checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:" ∷ termErr term ∷ []) term >>=² λ _ → unify target ∘ holeyToLam -- Given a holey term, expands to the quoted form of a function which accepts -- something to go in the hole. lambdaIntoHole′ : Term → Term → TC ⊤ lambdaIntoHole′ term target = checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:" ∷ termErr term ∷ []) term >>=² λ _ result → quoteTC (holeyToLam result) >>= unify target -- Quotes a holey term, reifying its abstract syntax tree. quoteHoley : Term → Term → TC ⊤ quoteHoley term target = checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:" ∷ termErr term ∷ []) term >>=² λ _ result → quoteTC result >>= unify target -- Quotes a holey term and also the term in the hole. Expanded type is always -- `Term × HoleyTerm`. quoteHoley′ : Term → Term → TC ⊤ quoteHoley′ term target = checkedTermToHoley′ (λ _ → strErr "Unsupported term for holiness or no hole:" ∷ termErr term ∷ []) term >>= quoteTC >>= unify target private module Tests where open PropEq using (_≡_; refl) data Fin : ℕ → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) eqTyped : ∀ {a}(A : Set a) → A → A → Set a eqTyped _ x y = x ≡ y syntax eqTyped A x y = x ≡[ A ] y -- Holes don't have to match the type of the bigger expression test1 : lambdaIntoHole (4 + 5 * length ⌞ 1 ∷ [] ⌟ + 7) ≡ λ hole → 4 + 5 * length hole + 7 test1 = refl -- Holes can be around functions test2 : lambdaIntoHole (⌞ _+_ ⌟ 3 4) ≡[ ((ℕ → ℕ → ℕ) → ℕ) ] λ hole → hole 3 4 test2 = refl -- Holey terms can contain free variables test3 : ∀ x y z → lambdaIntoHole (⌞ x + y ⌟ + z) ≡ λ hole → hole + z test3 x y z = refl -- Multiple holes are possible test4 : ∀ x y z → lambdaIntoHole (x + ⌞ y + z ⌟ * ⌞ y + z ⌟ + y * z) ≡ λ hole → x + hole * hole + y * z test4 x y z = refl -- Holes into Π types test5 : ∀ x y → lambdaIntoHole (Fin ⌞ x + y ⌟ → ℕ) ≡ λ hole → Fin hole → ℕ test5 x y = refl -- Constructors on the path test6 : (x y : ℕ) → lambdaIntoHole (ℕ.suc (x + ⌞ y ⌟ + y)) ≡ λ hole → suc (x + hole + y) test6 x y = refl
{ "alphanum_fraction": 0.6396616733, "avg_line_length": 38.0348837209, "ext": "agda", "hexsha": "ae6c6891bd91ddf5aa7c843428455f8f8166dca6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "src/Holes/Term.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "src/Holes/Term.agda", "max_line_length": 110, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "src/Holes/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 3122, "size": 9813 }
-- Andreas, 2016-05-04 shrunk from the standard library open import Common.Product record ⊤ : Set where IFun : Set → Set1 IFun I = I → I → Set → Set ------------------------------------------------------------------------ -- Indexed state monads record RawIMonad {I : Set} (M : (i j : I) → Set → Set) : Set1 where field return : ∀ {i A} → A → M i i A _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B record RawIMonadZero {I : Set} (M : IFun I) : Set1 where field monad : RawIMonad M ∅ : ∀ {i j A} → M i j A open RawIMonad monad public record RawIMonadPlus {I : Set} (M : IFun I) : Set1 where field monadZero : RawIMonadZero M _∣_ : ∀ {i j A} → M i j A → M i j A → M i j A open RawIMonadZero monadZero public RawMonad : (Set → Set) → Set1 RawMonad M = RawIMonad {I = ⊤} (λ _ _ → M) RawMonadZero : (Set → Set) → Set1 RawMonadZero M = RawIMonadZero {I = ⊤} (λ _ _ → M) RawMonadPlus : (Set → Set) → Set1 RawMonadPlus M = RawIMonadPlus {I = ⊤} (λ _ _ → M) module RawMonad {M : Set → Set} (Mon : RawMonad M) where open RawIMonad Mon public module RawMonadZero {M : Set → Set} (Mon : RawMonadZero M) where open RawIMonadZero Mon public module RawMonadPlus {M : Set → Set} (Mon : RawMonadPlus M) where open RawIMonadPlus Mon public IStateT : ∀ {I : Set} (S : I → Set) (M : Set → Set) (i j : I) (A : Set) → Set IStateT S M i j A = S i → M (A × S j) StateTIMonad : ∀ {I : Set} (S : I → Set) {M} → RawMonad M → RawIMonad (IStateT S M) StateTIMonad S Mon = record { return = λ x s → return (x , s) ; _>>=_ = λ m f s → m s >>= λ as → let a , s' = as in f a s' } where open RawMonad Mon StateTIMonadZero : ∀ {I : Set} (S : I → Set) {M} → RawMonadZero M → RawIMonadZero (IStateT S M) StateTIMonadZero S Mon = record { monad = StateTIMonad S (RawMonadZero.monad Mon) ; ∅ = λ s → ∅ } where open RawMonadZero Mon StateTIMonadPlus : ∀ {I : Set} (S : I → Set) {M} → RawMonadPlus M → RawIMonadPlus (IStateT S M) StateTIMonadPlus S Mon = record { monadZero = StateTIMonadZero S (RawIMonadPlus.monadZero Mon) ; _∣_ = λ m₁ m₂ s → m₁ s ∣ m₂ s } where open RawMonadPlus Mon -- test = {!RawIMonadPlus.monadZero!} -- test' = {! RawMonadPlus.monadZero !}
{ "alphanum_fraction": 0.5708695652, "avg_line_length": 28.0487804878, "ext": "agda", "hexsha": "a8607915f8a5091fe9c2856e76aaf658aab57f3e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1954a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1954a.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1954a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 865, "size": 2300 }
module Structure.Logic.Constructive.Proofs where open import Functional as Fn open import Lang.Instance open import Logic.Propositional as Logic using (_←_ ; _↔_) open import Logic.Predicate as Logic hiding (∀ₗ) import Lvl import Structure.Logic.Constructive.BoundedPredicate import Structure.Logic.Constructive.Predicate import Structure.Logic.Constructive.Propositional open import Syntax.Function open import Type private variable ℓ ℓₗ ℓₘₗ ℓₒ ℓₚ : Lvl.Level private variable Formula : Type{ℓₗ} private variable Proof : Formula → Type{ℓₘₗ} private variable Predicate : Type{ℓₚ} private variable Domain : Type{ℓₒ} module _ (Proof : Formula → Type{ℓₘₗ}) where open Structure.Logic.Constructive.Propositional(Proof) private variable X Y Z : Formula {- module _ ⦃ logic : ConstructiveLogic ⦄ where [⟵][⟶][∧]-[⟷]-equivalence : Proof(X ⟷ Y) ↔ (Proof(X ⟵ Y) Logic.∧ Proof(X ⟶ Y)) [⟵][⟶][∧]-[⟷]-equivalence {X} {Y} = Logic.[↔]-intro (p ↦ ⟷.intro (⟵.elim(Logic.[∧]-elimₗ p)) (⟶.elim(Logic.[∧]-elimᵣ p))) (p ↦ Logic.[∧]-intro (⟵.intro (⟷.elimₗ p)) (⟶.intro (⟷.elimᵣ p))) -} [⟶]-redundancyₗ : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ (X ⟶ Y)) → Proof(X ⟶ Y) [⟶]-redundancyₗ = ⟶.intro ∘ swap apply₂ ∘ (⟶.elim ∘₂ ⟶.elim) [⟷]-reflexivity : ∀{_⟷_} → ⦃ Equivalence(_⟷_) ⦄ → Proof(X ⟷ X) [⟷]-reflexivity = ⟷.intro id id [⟵]-to-[⟶] : ⦃ con : ∃(Consequence) ⦄ → ∃(Implication) ∃.witness [⟵]-to-[⟶] = swap(_⟵_) Implication.intro (∃.proof [⟵]-to-[⟶]) = ⟵.intro Implication.elim (∃.proof [⟵]-to-[⟶]) = ⟵.elim [⟶]-to-[⟵] : ⦃ impl : ∃(Implication) ⦄ → ∃(Consequence) ∃.witness [⟶]-to-[⟵] = swap(_⟶_) Consequence.intro (∃.proof [⟶]-to-[⟵]) = ⟶.intro Consequence.elim (∃.proof [⟶]-to-[⟵]) = ⟶.elim [⟵][⟶][∧]-to-[⟷] : ⦃ con : ∃(Consequence) ⦄ → ⦃ impl : ∃(Implication) ⦄ → ⦃ or : ∃(Conjunction) ⦄ → ∃(Equivalence) ∃.witness [⟵][⟶][∧]-to-[⟷] X Y = (X ⟵ Y) ∧ (X ⟶ Y) Equivalence.intro (∃.proof [⟵][⟶][∧]-to-[⟷]) yx xy = ∧.intro (⟵.intro yx) (⟶.intro xy) Equivalence.elimₗ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟵.elim ∘ ∧.elimₗ Equivalence.elimᵣ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟶.elim ∘ ∧.elimᵣ [⟶][⟷]-to-[∧] : ⦃ impl : ∃(Implication) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Conjunction) ∃.witness [⟶][⟷]-to-[∧] X Y = (X ⟶ Y) ⟷ X Conjunction.intro (∃.proof [⟶][⟷]-to-[∧]) x y = ⟷.intro (const(⟶.intro(const y))) (const x) Conjunction.elimₗ (∃.proof [⟶][⟷]-to-[∧]) xyx = ⟷.elimᵣ xyx (⟶.intro(swap apply₂(⟶.elim ∘ ⟷.elimₗ xyx))) Conjunction.elimᵣ (∃.proof [⟶][⟷]-to-[∧]) xyx = apply₂(⟷.elimᵣ xyx (⟶.intro(swap apply₂ (⟶.elim ∘ ⟷.elimₗ xyx)))) (⟶.elim ∘ (⟷.elimₗ xyx)) [∨][⟷]-to-[⟶] : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication) ∃.witness [∨][⟷]-to-[⟶] X Y = (X ∨ Y) ⟷ Y Implication.intro (∃.proof [∨][⟷]-to-[⟶]) = ⟷.intro ∨.introᵣ ∘ swap ∨.elim id Implication.elim (∃.proof [∨][⟷]-to-[⟶]) xyy x = ⟷.elimᵣ xyy (∨.introₗ x) [∧][⟷]-to-[⟶] : ⦃ and : ∃(Conjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication) ∃.witness [∧][⟷]-to-[⟶] X Y = (X ∧ Y) ⟷ X Implication.intro (∃.proof [∧][⟷]-to-[⟶]) xy = ⟷.intro (x ↦ ∧.intro x (xy x)) ∧.elimₗ Implication.elim (∃.proof [∧][⟷]-to-[⟶]) xyx x = ∧.elimᵣ(⟷.elimₗ xyx x) [¬][⊤]-to-[⊥] : ⦃ neg : ∃(Negation) ⦄ → ⦃ top : ∃(Top) ⦄ → ∃(Bottom) ∃.witness [¬][⊤]-to-[⊥] = ¬ ⊤ Bottom.elim (∃.proof [¬][⊤]-to-[⊥]) = ¬.elim ⊤.intro [¬][⊥]-to-[⊤] : ⦃ neg : ∃(Negation) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Top) ∃.witness [¬][⊥]-to-[⊤] = ¬ ⊥ Top.intro (∃.proof [¬][⊥]-to-[⊤]) = ¬.intro{Y = ⊥} ⊥.elim ⊥.elim [⟷]-to-[⊤] : Formula → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Top) ∃.witness ([⟷]-to-[⊤] φ) = φ ⟷ φ Top.intro (∃.proof ([⟷]-to-[⊤] φ)) = [⟷]-reflexivity [⟷][⊥]-to-[¬] : ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Negation) ∃.witness [⟷][⊥]-to-[¬] = _⟷ ⊥ Negation.intro (∃.proof [⟷][⊥]-to-[¬]) xy xy⊥ = ⟷.intro ⊥.elim ((⟷.elimᵣ ∘ xy⊥) ∘ₛ xy) Negation.elim (∃.proof [⟷][⊥]-to-[¬]) = ⊥.elim ∘₂ swap ⟷.elimᵣ [∨][⟷][⊥]-adequacy : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → Logic Logic.top [∨][⟷][⊥]-adequacy = [⟷]-to-[⊤] ⊥ Logic.implication [∨][⟷][⊥]-adequacy = [∨][⟷]-to-[⟶] Logic.negation [∨][⟷][⊥]-adequacy = [⟷][⊥]-to-[¬] Logic.conjunction [∨][⟷][⊥]-adequacy = [⟶][⟷]-to-[∧] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy Logic.consequence [∨][⟷][⊥]-adequacy = [⟶]-to-[⟵] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy module _ (Proof : Formula → Type{ℓₘₗ}) where open Structure.Logic.Constructive.Propositional(Proof) private variable X Y Z : Formula open import Data.Tuple as Tuple using () [⊤]-preserving-type : ⦃ top : ∃(Top) ⦄ → Proof(⊤) ↔ Logic.⊤ Tuple.left [⊤]-preserving-type = const ⊤.intro Tuple.right [⊤]-preserving-type = const Logic.[⊤]-intro [∧]-preserving-type : ⦃ and : ∃(Conjunction) ⦄ → Proof(X ∧ Y) ↔ (Proof(X) Logic.∧ Proof(Y)) Tuple.left [∧]-preserving-type (Logic.[∧]-intro x y) = ∧.intro x y Tuple.right [∧]-preserving-type xy = Logic.[∧]-intro (∧.elimₗ xy) (∧.elimᵣ xy) [∨]-preserving-type : ⦃ or : ∃(Disjunction) ⦄ → Proof(X ∨ Y) ← (Proof(X) Logic.∨ Proof(Y)) [∨]-preserving-type = Logic.[∨]-elim ∨.introₗ ∨.introᵣ [⟶]-preserving-type : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ Y) ↔ (Proof(X) → Proof(Y)) Tuple.left [⟶]-preserving-type = ⟶.intro Tuple.right [⟶]-preserving-type = ⟶.elim [⟵]-preserving-type : ⦃ cons : ∃(Consequence) ⦄ → Proof(X ⟵ Y) ↔ (Proof(X) ← Proof(Y)) Tuple.left [⟵]-preserving-type = ⟵.intro Tuple.right [⟵]-preserving-type = ⟵.elim [⟷]-preserving-type : ⦃ eq : ∃(Equivalence) ⦄ → Proof(X ⟷ Y) ↔ (Proof(X) ↔ Proof(Y)) Tuple.left [⟷]-preserving-type xy = ⟷.intro (Logic.[↔]-to-[←] xy) (Logic.[↔]-to-[→] xy) Tuple.right [⟷]-preserving-type xy = Logic.[↔]-intro (⟷.elimₗ xy) (⟷.elimᵣ xy) {- module Test ⦃ logic : Logic ⦄ where pure : ∀{A : Formula} → Proof(A) → Proof(A) pure = id _<*>_ : ∀{A B : Formula} → Proof(A ⟶ B) → Proof(A) → Proof(B) _<*>_ = ⟶.elim test : ∀{A B} → Proof(A ⟶ (A ⟶ B)) → Proof(A) → Proof(B) test ab a = ⦇ ab a a ⦈ module Test2 ⦃ logic : ConstructiveLogic ⦄ {Obj : Type{ℓ}} where private variable P : Obj → Formula module _ ⦃ all : ∃(Universal) ⦄ where pure : ∀{A : Formula} → Proof(A) → Proof(A) pure = id _<*>_ : ∀{P : Obj → Formula} → Proof(∀ₗ P) → (x : Obj) → Proof(P(x)) _<*>_ = ∀ₗ.elim test : ∀{A : Obj → Obj → Formula} → Proof(∀ₗ(x ↦ ∀ₗ(y ↦ A x y))) → (x : Obj) → Proof(A x x) test a x = ⦇ a x x ⦈ -} module _ where open import Data open import Data.Tuple open import Data.Either as Either open Structure.Logic.Constructive.BoundedPredicate renaming (Logic to BoundedPredicateLogic) open Structure.Logic.Constructive.Predicate renaming (Logic to PredicateLogic) open Structure.Logic.Constructive.Propositional renaming (Logic to PropositionalLogic) instance typePropositionalLogic : PropositionalLogic{Formula = Type{ℓ}} id PropositionalLogic.bottom typePropositionalLogic = [∃]-intro Empty ⦃ record{elim = empty} ⦄ PropositionalLogic.top typePropositionalLogic = [∃]-intro Unit ⦃ record{intro = <>} ⦄ PropositionalLogic.implication typePropositionalLogic = [∃]-intro _→ᶠ_ ⦃ record{intro = _$_ ; elim = id} ⦄ PropositionalLogic.conjunction typePropositionalLogic = [∃]-intro _⨯_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄ PropositionalLogic.disjunction typePropositionalLogic = [∃]-intro _‖_ ⦃ record{introₗ = Left ; introᵣ = Right ; elim = Either.map1} ⦄ PropositionalLogic.consequence typePropositionalLogic = [∃]-intro _←ᶠ_ ⦃ record{intro = id ; elim = _$_} ⦄ PropositionalLogic.equivalence typePropositionalLogic = [∃]-intro Logic._↔_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄ PropositionalLogic.negation typePropositionalLogic = [∃]-intro Logic.¬_ ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = empty ∘₂ apply} ⦄ instance typePredicateLogic : ∀{T : Type{ℓₒ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = T → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id PredicateLogic.universal typePredicateLogic = [∃]-intro Logic.∀ₗ ⦃ record{intro = id ; elim = id} ⦄ PredicateLogic.existential typePredicateLogic = [∃]-intro Logic.∃ ⦃ record{intro = \{_}{x} p → Logic.[∃]-intro x ⦃ p ⦄ ; elim = Logic.[∃]-elim} ⦄ open import Type.Dependent instance typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}} → BoundedPredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = (x : T) → ∀{B : T → Type{ℓₒ Lvl.⊔ ℓₗ}} → B(x) → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id BoundedPredicateLogic.universal typeBoundedPredicateLogic = [∃]-intro (\B P → ∀{x} → (bx : B(x)) → P(x){B}(bx)) ⦃ record{intro = \p bx → p bx ; elim = \p bx → p bx} ⦄ BoundedPredicateLogic.existential typeBoundedPredicateLogic = [∃]-intro (\B P → Logic.∃(x ↦ Σ(B(x)) (P(x){B}))) ⦃ record{intro = \{_}{x} bx p → Logic.[∃]-intro x ⦃ intro bx p ⦄ ; elim = \p → Logic.[∃]-elim (\(intro bx px) → p bx px)} ⦄ {- TODO: Maybe have some more assumptions boundedPredicateLogic-to-predicateLogic : ∀{Formula Domain Predicate : Type{ℓₒ}}{Proof : Formula → Type}{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = (Domain → Formula) ⨯ Predicate} {Domain = Σ(Predicate ⨯ Domain) (\(P , x) → Proof((P $ x) {{!!}} {!!}))} {!!} PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L ∃.witness (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.universal L) B P Universal.intro (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) {B , P} p = BoundedUniversal.intro (∃.proof (BoundedPredicateLogic.universal L)) (\{x} pp → p{intro (P , x) {!!}}) Universal.elim (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) = {!!} ∃.witness (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.existential L) B P Existential.intro (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!} Existential.elim (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!} -} {- TODO: Seems to need a duplicate (Domain → Formula) in Predicate. Also, does not work with this generality boundedPredicateLogic-to-predicateLogic : ∀{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Σ((Domain → Formula) ⨯ Domain) (\(B , x) → Proof(B(x)))} (\P (intro(B , x) bx) → (P $ x) {B} bx) PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄ PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄ -} {-instance typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}}{B : T → Type{ℓ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} id {Predicate = (x : T) → ⦃ B(x) ⦄ → Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} {Domain = Σ T B} (\f (intro x b) → f x ⦃ b ⦄) PredicateLogic.universal (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ (∀{x} ⦃ bx ⦄ → f(x) ⦃ bx ⦄)) ⦃ record{intro = \px → px ; elim = \{P} px {x} → px{Σ.left x} ⦃ Σ.right x ⦄} ⦄ PredicateLogic.existential (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ Logic.∃(x ↦ Σ(B(x)) (bx ↦ f x ⦃ bx ⦄)) ) ⦃ record{intro = {!!} ; elim = {!!}} ⦄ -} import Logic.Classical.DoubleNegated as DoubleNegated open import Logic.Names import Logic.Propositional.Theorems as Logic instance doubleNegatedTypeLogic : PropositionalLogic{ℓₘₗ = Lvl.𝟎}(Logic.¬¬_) PropositionalLogic.bottom doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊥ ⦃ record{elim = DoubleNegated.[⊥]-elim} ⦄ PropositionalLogic.top doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊤ ⦃ record{intro = DoubleNegated.[⊤]-intro} ⦄ PropositionalLogic.implication doubleNegatedTypeLogic = Logic.[∃]-intro (_→ᶠ_) ⦃ record{intro = DoubleNegated.[→]-intro ; elim = DoubleNegated.[→]-elim} ⦄ PropositionalLogic.conjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∧_) ⦃ record{intro = DoubleNegated.[∧]-intro ; elimₗ = DoubleNegated.[∧]-elimₗ ; elimᵣ = DoubleNegated.[∧]-elimᵣ} ⦄ PropositionalLogic.disjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∨_) ⦃ record{introₗ = DoubleNegated.[∨]-introₗ ; introᵣ = DoubleNegated.[∨]-introᵣ ; elim = DoubleNegated.[∨]-elim} ⦄ PropositionalLogic.consequence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._←_) ⦃ record{intro = DoubleNegated.[←]-intro ; elim = DoubleNegated.[→]-elim} ⦄ PropositionalLogic.equivalence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._↔_) ⦃ record{intro = DoubleNegated.[↔]-intro ; elimₗ = DoubleNegated.[↔]-elimₗ ; elimᵣ = DoubleNegated.[↔]-elimᵣ} ⦄ PropositionalLogic.negation doubleNegatedTypeLogic = Logic.[∃]-intro (Logic.¬_) ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = const ∘₂ apply} ⦄ open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Boolean.Stmt open import Data.Boolean.Stmt.Proofs instance booleanLogic : PropositionalLogic IsTrue PropositionalLogic.bottom booleanLogic = [∃]-intro 𝐹 ⦃ record{elim = Logic.[⊥]-elim ∘ IsTrue.[𝐹]-elim} ⦄ PropositionalLogic.top booleanLogic = [∃]-intro 𝑇 ⦃ record{intro = IsTrue.[𝑇]-intro} ⦄ PropositionalLogic.conjunction booleanLogic = [∃]-intro _&&_ ⦃ record{intro = IsTrue.[∧]-intro ; elimₗ = IsTrue.[∧]-elimₗ ; elimᵣ = IsTrue.[∧]-elimᵣ} ⦄ PropositionalLogic.disjunction booleanLogic = [∃]-intro _||_ ⦃ record{introₗ = IsTrue.[∨]-introₗ ; introᵣ = IsTrue.[∨]-introᵣ ; elim = IsTrue.[∨]-elim} ⦄ PropositionalLogic.negation booleanLogic = [∃]-intro ! ⦃ record{intro = IsTrue.[!]-intro ; elim = IsTrue.[!]-elim} ⦄ PropositionalLogic.implication booleanLogic = [∃]-intro _→?_ ⦃ record{intro = IsTrue.[→?]-intro ; elim = IsTrue.[→?]-elim} ⦄ PropositionalLogic.consequence booleanLogic = [∃]-intro _←?_ ⦃ record{intro = IsTrue.[←?]-intro ; elim = IsTrue.[←?]-elim} ⦄ PropositionalLogic.equivalence booleanLogic = [∃]-intro _==_ ⦃ record{intro = IsTrue.[==]-intro ; elimₗ = IsTrue.[==]-elimₗ ; elimᵣ = IsTrue.[==]-elimᵣ} ⦄ booleanPredicateLogic : ∀{T : Type{ℓ}}{all exist : (T → Bool) → Bool} → (∀{P} → (∀{x} → IsTrue(P(x))) ↔ IsTrue(all P)) → (∀{P} → (Logic.∃(x ↦ IsTrue(P(x)))) ↔ IsTrue(exist P)) → PredicateLogic IsTrue {Domain = T} id PredicateLogic.universal (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro all ⦃ record{intro = Logic.[↔]-to-[→] all-eq ; elim = Logic.[↔]-to-[←] all-eq} ⦄ PredicateLogic.existential (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro exist ⦃ record{intro = Logic.[↔]-to-[→] exist-eq ∘ (p ↦ [∃]-intro _ ⦃ p ⦄) ; elim = p ↦ ep ↦ p(Logic.[∃]-proof(Logic.[↔]-to-[←] exist-eq ep))} ⦄
{ "alphanum_fraction": 0.6068969954, "avg_line_length": 65.582278481, "ext": "agda", "hexsha": "1b541614b363b26c0e99f54918925738586fcd10", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Logic/Constructive/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Logic/Constructive/Proofs.agda", "max_line_length": 373, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Logic/Constructive/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6270, "size": 15543 }
module Logic where -- The true proposition. data ⊤ : Set where obvious : ⊤ -- The proof of truth. -- The false proposition. data ⊥ : Set where -- There is nothing here so one can never prove false. -- The AND of two statments. data _∧_ (A B : Set) : Set where -- The only way to construct a proof of A ∧ B is by pairing a a -- proof of A with a proof of and B. ⟨_,_⟩ : (a : A) -- Proof of A → (b : B) -- Proof of B → A ∧ B -- Proof of A ∧ B -- The OR of two statements. data _∨_ (A B : Set) : Set where -- There are two ways of constructing a proof of A ∨ B. inl : (a : A) → A ∨ B -- From a proof of A by left introduction inr : (b : B) → A ∨ B -- From a proof of B by right introduction -- The not of statement A ¬_ : (A : Set) → Set ¬ A = A → ⊥ -- Given a proof of A one should be able to get a proof -- of ⊥. -- The statement A ↔ B are equivalent. _↔_ : (A B : Set) → Set A ↔ B = (A → B) -- If ∧ -- and (B → A) -- only if infixr 1 _∧_ infixr 1 _∨_ infixr 0 _↔_ infix 2 ¬_ -- Function composition _∘_ : {A B C : Set} → (B → C) → (A → B) → A → C (f ∘ g) x = f (g x) -- Double negation doubleNegation : ∀ {A : Set} → A → ¬ (¬ A) doubleNegation a negNegA = negNegA a {- doubleNegation' : ∀ {A : Set} → ¬ ( ¬ (¬ A)) → ¬ A -} deMorgan1 : ∀ (A B : Set) → ¬ (A ∨ B) → ¬ A ∧ ¬ B deMorgan1 A B notAorB = ⟨ notAorB ∘ inl , notAorB ∘ inr ⟩ deMorgan2 : ∀ (A B : Set) → ¬ A ∧ ¬ B → ¬ (A ∨ B) deMorgan2 A B ⟨ notA , notB ⟩ (inl a) = notA a deMorgan2 A B ⟨ notA , notB ⟩ (inr b) = notB b deMorgan : ∀ (A B : Set) → ¬ (A ∨ B) ↔ ¬ A ∧ ¬ B deMorgan A B = ⟨ deMorgan1 A B , deMorgan2 A B ⟩
{ "alphanum_fraction": 0.5346475508, "avg_line_length": 24.9850746269, "ext": "agda", "hexsha": "a5c7ead3416ce38aa342d6260aeca46faff6a050", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "piyush-kurur/sample-code", "max_forks_repo_path": "agda/Logic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "piyush-kurur/sample-code", "max_issues_repo_path": "agda/Logic.agda", "max_line_length": 69, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "piyush-kurur/sample-code", "max_stars_repo_path": "agda/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z", "num_tokens": 663, "size": 1674 }
module Data.Option.Categorical where import Lvl import Functional as Fn open import Function.Equals open import Data.Option open import Data.Option.Functions open import Data.Option.Proofs open import Lang.Instance open import Logic open import Logic.Predicate open import Relator.Equals open import Relator.Equals.Proofs.Equiv import Structure.Category.Functor as Functor open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type open import Type.Category private variable ℓ : Lvl.Level private variable T : Type{ℓ} -- Option is a functor by using `map`. instance map-functor : Functor{ℓ}(Option) Functor.map ⦃ map-functor ⦄ = map Functor.map-function ⦃ map-functor ⦄ = map-function Functor.op-preserving ⦃ map-functor ⦄ = map-preserves-[∘] Functor.id-preserving ⦃ map-functor ⦄ = map-preserves-id -- Option is a monad by using `andThen`. instance andThen-monad : Monad{ℓ}(Option) Monad.η ⦃ andThen-monad ⦄ _ = Some Monad.ext ⦃ andThen-monad ⦄ = Fn.swap _andThen_ Monad.ext-function ⦃ andThen-monad ⦄ = andThen-function Monad.ext-inverse ⦃ andThen-monad ⦄ = andThenᵣ-Some Dependent._⊜_.proof (Monad.ext-identity ⦃ andThen-monad ⦄) = [≡]-intro Dependent._⊜_.proof (Monad.ext-distribute ⦃ andThen-monad ⦄ {f = f} {g}) {x} = andThen-associativity {f = g}{g = f}{o = x} -- A monoid is constructed by lifting an associative binary operator using `or-combine`. -- Essentially means that an additional value (None) is added to the type, and it becomes an identity by definition. module _ {_▫_ : T → T → T} where instance or-combine-monoid : ⦃ assoc : Associativity(_▫_) ⦄ → Monoid(or-combine(_▫_) Fn.id Fn.id) Associativity.proof (Monoid.associativity or-combine-monoid) {None} {None} {None} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {None} {None} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {None} {Some y} {None} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {None} {Some y} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {None} {None} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {None} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {Some y} {None} = [≡]-intro Associativity.proof (Monoid.associativity or-combine-monoid) {Some x} {Some y} {Some z} = [≡]-with(Some) (associativity(_▫_)) ∃.witness (Monoid.identity-existence or-combine-monoid) = None Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence or-combine-monoid))) {None} = [≡]-intro Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence or-combine-monoid))) {Some x} = [≡]-intro Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence or-combine-monoid))) {None} = [≡]-intro Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence or-combine-monoid))) {Some x} = [≡]-intro module _ {_▫_ : T → T → T} where open Monoid ⦃ … ⦄ using (id) -- A monoid is still a monoid when lifting a binary operator using `and-combine`. instance and-combine-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(and-combine(_▫_)) Associativity.proof (Monoid.associativity and-combine-monoid) {None} {None} {None} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {None} {None} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {None} {Some y} {None} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {None} {Some y} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {None} {None} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {None} {Some z} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {Some y} {None} = [≡]-intro Associativity.proof (Monoid.associativity and-combine-monoid) {Some x} {Some y} {Some z} = [≡]-with(Some) (associativity(_▫_)) ∃.witness (Monoid.identity-existence and-combine-monoid) = Some(id) Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence and-combine-monoid))) {None} = [≡]-intro Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence and-combine-monoid))) {Some x} = [≡]-with(Some) (identityₗ(_▫_)(_)) Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence and-combine-monoid))) {None} = [≡]-intro Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence and-combine-monoid))) {Some x} = [≡]-with(Some) (identityᵣ(_▫_)(_)) instance and-combine-absorberₗ : Absorberₗ(and-combine(_▫_))(None) Absorberₗ.proof and-combine-absorberₗ = [≡]-intro instance and-combine-absorberᵣ : Absorberᵣ(and-combine(_▫_))(None) Absorberᵣ.proof and-combine-absorberᵣ {None} = [≡]-intro Absorberᵣ.proof and-combine-absorberᵣ {Some x} = [≡]-intro -- `and-combine` essentially adds an additional value (None) to the type, and it becomes an absorber by definition. instance and-combine-absorber : Absorber(and-combine(_▫_))(None) and-combine-absorber = intro
{ "alphanum_fraction": 0.7003305178, "avg_line_length": 56.7291666667, "ext": "agda", "hexsha": "3ceee961b72fe447e51a7f84f6f2f9d3f22b0438", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Categorical.agda", "max_line_length": 139, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Categorical.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1782, "size": 5446 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.FromNegOne where open import Cubical.HITs.Truncation.FromNegOne.Base public open import Cubical.HITs.Truncation.FromNegOne.Properties public
{ "alphanum_fraction": 0.8080357143, "avg_line_length": 37.3333333333, "ext": "agda", "hexsha": "fdbb77ecd12a49b7635e67c6a865c42578a19d8d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/HITs/Truncation/FromNegOne.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 224 }
{-# OPTIONS --without-K #-} import Level open import Data.Empty using (⊥-elim) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Fin using (Fin; zero; suc) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Control.Category module Dimension.PartialWeakening (E : Set) where -- Partial weakenings from n to m are injective maps from Fin n to Fin m -- that can raise exceptions in E. data PWeak : (n m : ℕ) → Set where [] : PWeak 0 0 -- empty _∷_ : ∀ {n m} (e : E) (f : PWeak n m) → PWeak (1 + n) m -- partial lift : ∀ {n m} (f : PWeak n m) → PWeak (1 + n) (1 + m) -- new name weak : ∀ {n m} (f : PWeak n m) → PWeak n (1 + m) -- unused n. -- Empty. empty : ∀ {m} → PWeak 0 m empty {m = 0} = [] empty {m = suc m} = weak (empty {m = m}) -- Identity. id : ∀ {n} → PWeak n n id {n = 0} = [] id {n = suc n} = lift (id {n = n}) -- Composition. comp : ∀ {n m l} → PWeak n m → PWeak m l → PWeak n l comp [] _ = empty comp (e ∷ f) g = e ∷ comp f g comp (lift f) (e ∷ g) = e ∷ comp f g comp (lift f) (lift g) = lift (comp f g) comp (lift f) (weak g) = weak (comp (lift f) g) comp (weak f) (e ∷ g) = comp f g comp (weak f) (lift g) = weak (comp f g) comp (weak f) (weak g) = weak (comp (weak f) g) module Laws where -- Empty is initial (i.e., equal to any (g : PWeak 0 m)) abstract empty-extensional : ∀ {m} (g : PWeak 0 m) → g ≡ empty empty-extensional [] = refl empty-extensional (weak g) = cong weak (empty-extensional g) -- Empty is left dominant abstract empty-comp : ∀ {n m} (g : PWeak n m) → comp empty g ≡ empty empty-comp g = empty-extensional (comp empty g) {- empty-comp [] = refl empty-comp (e ∷ g) = empty-comp g empty-comp (lift g) = cong weak (empty-comp g) empty-comp {n = zero } (weak g) = refl empty-comp {n = suc n} (weak g) = cong weak (empty-comp g) -} -- Left identity. abstract left-id : ∀ {n m} (g : PWeak n m) → comp id g ≡ g left-id [] = refl left-id (e ∷ g) = cong (_∷_ e) (left-id g) left-id (lift g) = cong lift (left-id g) left-id {n = zero} (weak g) = cong weak (sym (empty-extensional g)) left-id {n = suc n} (weak g) = cong weak (left-id g) -- Right identity. abstract right-id : ∀ {n m} (g : PWeak n m) → comp g id ≡ g right-id [] = refl right-id (e ∷ g) = cong (_∷_ e) (right-id g) right-id (lift g) = cong lift (right-id g) right-id {n = zero } (weak g) = cong weak (right-id g) right-id {n = suc n} (weak g) = cong weak (right-id g) -- Associativity. abstract assoc : ∀ {n m l k} (f : PWeak n m) (g : PWeak m l) (h : PWeak l k) → comp (comp f g) h ≡ comp f (comp g h) assoc [] g h = empty-extensional _ assoc (e ∷ f) g h = cong (_∷_ e) (assoc f g h) assoc (lift f) (e ∷ g) h = cong (_∷_ e) (assoc f g h) assoc (lift f) (lift g) (e ∷ h) = cong (_∷_ e) (assoc f g h) assoc (lift f) (lift g) (lift h) = cong lift (assoc f g h) assoc (lift f) (lift g) (weak h) = cong weak (assoc (lift f) (lift g) h) assoc (lift f) (weak g) (e ∷ h) = assoc (lift f) g h assoc (lift f) (weak g) (lift h) = cong weak (assoc (lift f) g h) assoc (lift f) (weak g) (weak h) = cong weak (assoc (lift f) (weak g) h) assoc (weak f) (e ∷ g) h = assoc f g h assoc (weak f) (lift g) (e ∷ h) = assoc f g h assoc (weak f) (lift g) (lift h) = cong weak (assoc f g h) assoc (weak f) (lift g) (weak h) = cong weak (assoc (weak f) (lift g) h) assoc (weak f) (weak g) (e ∷ h) = assoc (weak f) g h assoc (weak f) (weak g) (lift h) = cong weak (assoc (weak f) g h) assoc (weak f) (weak g) (weak h) = cong weak (assoc (weak f) (weak g) h) open Laws -- PWeak is a category with initial object SPWeak = λ n m → setoid (PWeak n m) pWeakIsCategory : IsCategory SPWeak pWeakIsCategory = record { ops = record { id = id ; _⟫_ = comp } ; laws = record { id-first = left-id _ ; id-last = right-id _ ; ∘-assoc = λ f → assoc f _ _ ; ∘-cong = cong₂ comp } } emptyIsInitial : IsInitial SPWeak 0 emptyIsInitial = record { initial = empty ; initial-universal = empty-extensional _ } -- The category PWEAK PWEAK : Category _ _ _ PWEAK = record { Hom = SPWeak; isCategory = pWeakIsCategory } -- -}
{ "alphanum_fraction": 0.5382242785, "avg_line_length": 31.3034482759, "ext": "agda", "hexsha": "ac7816eb4cde3dcd21b63032dab459006c443b5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Dimension/PartialWeakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Dimension/PartialWeakening.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Dimension/PartialWeakening.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1608, "size": 4539 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Homomorphism proofs for multiplication over polynomials ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Tactic.RingSolver.Core.Polynomial.Parameters module Tactic.RingSolver.Core.Polynomial.Homomorphism.Multiplication {r₁ r₂ r₃ r₄} (homo : Homomorphism r₁ r₂ r₃ r₄) where open import Data.Nat.Base as ℕ using (ℕ; suc; zero; _<′_; _≤′_; ≤′-step; ≤′-refl) open import Data.Nat.Properties using (≤′-trans) open import Data.Nat.Induction open import Data.Product using (_×_; _,_; proj₁; proj₂; map₁) open import Data.List.Kleene open import Data.Vec using (Vec) open import Function open import Induction.WellFounded open import Relation.Unary open Homomorphism homo hiding (_^_) open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Lemmas homo open import Tactic.RingSolver.Core.Polynomial.Homomorphism.Addition homo open import Tactic.RingSolver.Core.Polynomial.Base from open import Tactic.RingSolver.Core.Polynomial.Reasoning to open import Tactic.RingSolver.Core.Polynomial.Semantics homo open import Algebra.Operations.Ring rawRing reassoc : ∀ {y} x z → x * (y * z) ≈ y * (x * z) reassoc {y} x z = sym (*-assoc x y z) ⟨ trans ⟩ ((≪* *-comm x y) ⟨ trans ⟩ *-assoc y x z) mutual ⊠-step′-hom : ∀ {n} → (a : Acc _<′_ n) → (xs ys : Poly n) → ∀ ρ → ⟦ ⊠-step′ a xs ys ⟧ ρ ≈ ⟦ xs ⟧ ρ * ⟦ ys ⟧ ρ ⊠-step′-hom a (x ⊐ p) = ⊠-step-hom a x p ⊠-step-hom : ∀ {i n} → (a : Acc _<′_ n) → (xs : FlatPoly i) → (i≤n : i ≤′ n) → (ys : Poly n) → ∀ ρ → ⟦ ⊠-step a xs i≤n ys ⟧ ρ ≈ ⟦ xs ⊐ i≤n ⟧ ρ * ⟦ ys ⟧ ρ ⊠-step-hom a (Κ x) i≤n = ⊠-Κ-hom a x ⊠-step-hom a (⅀ xs) i≤n = ⊠-⅀-hom a xs i≤n ⊠-Κ-hom : ∀ {n} → (a : Acc _<′_ n) → ∀ x → (ys : Poly n) → ∀ ρ → ⟦ ⊠-Κ a x ys ⟧ ρ ≈ ⟦ x ⟧ᵣ * ⟦ ys ⟧ ρ ⊠-Κ-hom (acc _) x (Κ y ⊐ i≤n) ρ = *-homo x y ⊠-Κ-hom (acc wf) x (⅀ xs ⊐ i≤n) ρ = begin ⟦ ⊠-Κ-inj (wf _ i≤n) x xs ⊐↓ i≤n ⟧ ρ ≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i≤n) x xs) i≤n ρ ⟩ ⅀?⟦ ⊠-Κ-inj (wf _ i≤n) x xs ⟧ (drop-1 i≤n ρ) ≈⟨ ⊠-Κ-inj-hom (wf _ i≤n) x xs (drop-1 i≤n ρ) ⟩ ⟦ x ⟧ᵣ * ⅀⟦ xs ⟧ (drop-1 i≤n ρ) ∎ ⊠-Κ-inj-hom : ∀ {n} → (a : Acc _<′_ n) → (x : Raw.Carrier) → (xs : Coeff n +) → ∀ ρ → ⅀?⟦ ⊠-Κ-inj a x xs ⟧ ρ ≈ ⟦ x ⟧ᵣ * ⅀⟦ xs ⟧ ρ ⊠-Κ-inj-hom {n} a x xs (ρ , Ρ) = poly-mapR ρ Ρ (⊠-Κ a x) (⟦ x ⟧ᵣ *_) (*-cong refl) reassoc (distribˡ ⟦ x ⟧ᵣ) (λ ys → ⊠-Κ-hom a x ys Ρ) (zeroʳ _) xs ⊠-⅀-hom : ∀ {i n} → (a : Acc _<′_ n) → (xs : Coeff i +) → (i<n : i <′ n) → (ys : Poly n) → ∀ ρ → ⟦ ⊠-⅀ a xs i<n ys ⟧ ρ ≈ ⅀⟦ xs ⟧ (drop-1 i<n ρ) * ⟦ ys ⟧ ρ ⊠-⅀-hom (acc wf) xs i<n (⅀ ys ⊐ j≤n) = ⊠-match-hom (acc wf) (inj-compare i<n j≤n) xs ys ⊠-⅀-hom (acc wf) xs i<n (Κ y ⊐ _) ρ = begin ⟦ ⊠-Κ-inj (wf _ i<n) y xs ⊐↓ i<n ⟧ ρ ≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i<n) y xs) i<n ρ ⟩ ⅀?⟦ ⊠-Κ-inj (wf _ i<n) y xs ⟧ (drop-1 i<n ρ) ≈⟨ ⊠-Κ-inj-hom (wf _ i<n) y xs (drop-1 i<n ρ) ⟩ ⟦ y ⟧ᵣ * ⅀⟦ xs ⟧ (drop-1 i<n ρ) ≈⟨ *-comm _ _ ⟩ ⅀⟦ xs ⟧ (drop-1 i<n ρ) * ⟦ y ⟧ᵣ ∎ ⊠-⅀-inj-hom : ∀ {i k} → (a : Acc _<′_ k) → (i<k : i <′ k) → (xs : Coeff i +) → (ys : Poly k) → ∀ ρ → ⟦ ⊠-⅀-inj a i<k xs ys ⟧ ρ ≈ ⅀⟦ xs ⟧ (drop-1 i<k ρ) * ⟦ ys ⟧ ρ ⊠-⅀-inj-hom (acc wf) i<k x (⅀ ys ⊐ j≤k) = ⊠-match-hom (acc wf) (inj-compare i<k j≤k) x ys ⊠-⅀-inj-hom (acc wf) i<k x (Κ y ⊐ j≤k) ρ = begin ⟦ ⊠-Κ-inj (wf _ i<k) y x ⊐↓ i<k ⟧ ρ ≈⟨ ⊐↓-hom (⊠-Κ-inj (wf _ i<k) y x) i<k ρ ⟩ ⅀?⟦ ⊠-Κ-inj (wf _ i<k) y x ⟧ (drop-1 i<k ρ) ≈⟨ ⊠-Κ-inj-hom (wf _ i<k) y x (drop-1 i<k ρ) ⟩ ⟦ y ⟧ᵣ * ⅀⟦ x ⟧ (drop-1 i<k ρ) ≈⟨ *-comm _ _ ⟩ ⅀⟦ x ⟧ (drop-1 i<k ρ) * ⟦ y ⟧ᵣ ∎ ⊠-match-hom : ∀ {i j n} → (a : Acc _<′_ n) → {i<n : i <′ n} → {j<n : j <′ n} → (ord : InjectionOrdering i<n j<n) → (xs : Coeff i +) → (ys : Coeff j +) → (Ρ : Vec Carrier n) → ⟦ ⊠-match a ord xs ys ⟧ Ρ ≈ ⅀⟦ xs ⟧ (drop-1 i<n Ρ) * ⅀⟦ ys ⟧ (drop-1 j<n Ρ) ⊠-match-hom {j = j} (acc wf) (inj-lt i≤j-1 j≤n) xs ys Ρ′ = let (ρ , Ρ) = drop-1 j≤n Ρ′ xs′ = ⅀⟦ xs ⟧ (drop-1 (≤′-trans (≤′-step i≤j-1) j≤n) Ρ′) in begin ⟦ poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys ⊐↓ j≤n ⟧ Ρ′ ≈⟨ ⊐↓-hom (poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys) j≤n Ρ′ ⟩ ⅀?⟦ poly-map ( (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs)) ys ⟧ (ρ , Ρ) ≈⟨ poly-mapR ρ Ρ (⊠-⅀-inj (wf _ j≤n) i≤j-1 xs) (_ *_) (*-cong refl) reassoc (distribˡ _) (λ y → ⊠-⅀-inj-hom (wf _ j≤n) i≤j-1 xs y _) (zeroʳ _) ys ⟩ ⅀⟦ xs ⟧ (drop-1 i≤j-1 Ρ) * ⅀⟦ ys ⟧ (ρ , Ρ) ≈⟨ ≪* trans-join-coeffs-hom i≤j-1 j≤n xs Ρ′ ⟩ xs′ * ⅀⟦ ys ⟧ (ρ , Ρ) ∎ ⊠-match-hom (acc wf) (inj-gt i≤n j≤i-1) xs ys Ρ′ = let (ρ , Ρ) = drop-1 i≤n Ρ′ ys′ = ⅀⟦ ys ⟧ (drop-1 (≤′-step j≤i-1 ⟨ ≤′-trans ⟩ i≤n) Ρ′) in begin ⟦ poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs ⊐↓ i≤n ⟧ Ρ′ ≈⟨ ⊐↓-hom (poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs) i≤n Ρ′ ⟩ ⅀?⟦ poly-map ( (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys)) xs ⟧ (ρ , Ρ) ≈⟨ poly-mapR ρ Ρ (⊠-⅀-inj (wf _ i≤n) j≤i-1 ys) (_ *_) (*-cong refl) reassoc (distribˡ _) (λ x → ⊠-⅀-inj-hom (wf _ i≤n) j≤i-1 ys x _) (zeroʳ _) xs ⟩ ⅀⟦ ys ⟧ (drop-1 j≤i-1 Ρ) * ⅀⟦ xs ⟧ (ρ , Ρ) ≈⟨ ≪* trans-join-coeffs-hom j≤i-1 i≤n ys Ρ′ ⟩ ys′ * ⅀⟦ xs ⟧ (ρ , Ρ) ≈⟨ *-comm ys′ _ ⟩ ⅀⟦ xs ⟧ (ρ , Ρ) * ys′ ∎ ⊠-match-hom (acc wf) (inj-eq ij≤n) xs ys Ρ = begin ⟦ ⊠-coeffs (wf _ ij≤n) xs ys ⊐↓ ij≤n ⟧ Ρ ≈⟨ ⊐↓-hom (⊠-coeffs (wf _ ij≤n) xs ys) ij≤n Ρ ⟩ ⅀?⟦ ⊠-coeffs (wf _ ij≤n) xs ys ⟧ (drop-1 ij≤n Ρ) ≈⟨ ⊠-coeffs-hom (wf _ ij≤n) xs ys (drop-1 ij≤n Ρ) ⟩ ⅀⟦ xs ⟧ (drop-1 ij≤n Ρ) * ⅀⟦ ys ⟧ (drop-1 ij≤n Ρ) ∎ ⊠-coeffs-hom : ∀ {n} → (a : Acc _<′_ n) → (xs ys : Coeff n +) → ∀ ρ → ⅀?⟦ ⊠-coeffs a xs ys ⟧ ρ ≈ ⅀⟦ xs ⟧ ρ * ⅀⟦ ys ⟧ ρ ⊠-coeffs-hom a xs (y ≠0 Δ j & []) (ρ , Ρ) = begin ⅀?⟦ poly-map (⊠-step′ a y) xs ⍓* j ⟧ (ρ , Ρ) ≈⟨ sym (pow′-hom j (poly-map (⊠-step′ a y) xs) ρ Ρ) ⟩ ⅀?⟦ poly-map (⊠-step′ a y) xs ⟧ (ρ , Ρ) *⟨ ρ ⟩^ j ≈⟨ pow-mul-cong (poly-mapR ρ Ρ (⊠-step′ a y) (⟦ y ⟧ Ρ *_) (*-cong refl) reassoc (distribˡ _) (λ z → ⊠-step′-hom a y z Ρ) (zeroʳ _) xs) ρ j ⟩ (⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ)) *⟨ ρ ⟩^ j ≈⟨ pow-opt _ ρ j ⟩ (ρ ^ j) * (⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ)) ≈⟨ sym (*-assoc _ _ _) ⟩ (ρ ^ j) * ⟦ y ⟧ Ρ * ⅀⟦ xs ⟧ (ρ , Ρ) ≈⟨ *-comm _ _ ⟩ ⅀⟦ xs ⟧ (ρ , Ρ) * ((ρ ^ j) * ⟦ y ⟧ Ρ) ≈⟨ *≫ sym (pow-opt _ ρ j) ⟩ ⅀⟦ xs ⟧ (ρ , Ρ) * (⟦ y ⟧ Ρ *⟨ ρ ⟩^ j) ∎ ⊠-coeffs-hom a xs (y ≠0 Δ j & ∹ ys) (ρ , Ρ) = let xs′ = ⅀⟦ xs ⟧ (ρ , Ρ) y′ = ⟦ y ⟧ Ρ ys′ = ⅀⟦ ys ⟧ (ρ , Ρ) in begin ⅀?⟦ para (⊠-cons a y ys) xs ⍓* j ⟧ (ρ , Ρ) ≈⟨ sym (pow′-hom j (para (⊠-cons a y ys) xs) ρ Ρ) ⟨ trans ⟩ pow-opt _ ρ j ⟩ ρ ^ j * ⅀?⟦ para (⊠-cons a y ys) xs ⟧ (ρ , Ρ) ≈⟨ *≫ ⊠-cons-hom a y ys xs ρ Ρ ⟩ ρ ^ j * (xs′ * (ρ * ys′ + y′)) ≈⟨ sym (*-assoc _ _ _) ⟨ trans ⟩ (≪* *-comm _ _) ⟨ trans ⟩ *-assoc _ _ _ ⟨ trans ⟩ (*≫ sym (pow-opt _ ρ j))⟩ xs′ * ((ρ * ys′ + y′) *⟨ ρ ⟩^ j) ∎ ⊠-cons-hom : ∀ {n} → (a : Acc _<′_ n) → (y : Poly n) → (ys xs : Coeff n +) → (ρ : Carrier) → (Ρ : Vec Carrier n) → ⅀?⟦ para (⊠-cons a y ys) xs ⟧ (ρ , Ρ) ≈ ⅀⟦ xs ⟧ (ρ , Ρ) * (ρ * ⅀⟦ ys ⟧ (ρ , Ρ) + ⟦ y ⟧ Ρ) -- ⊠-cons-hom a y [] xs ρ Ρ = {!!} ⊠-cons-hom a y ys xs ρ Ρ = poly-foldR ρ Ρ (⊠-cons a y ys) (flip _*_ (ρ * ⅀⟦ ys ⟧ (ρ , Ρ) + ⟦ y ⟧ Ρ)) (flip *-cong refl) (λ x y → sym (*-assoc x y _)) step (zeroˡ _) xs where step = λ { (z ⊐ j≤n) {ys₁} zs ys≋zs → let x′ = ⟦ z ⊐ j≤n ⟧ Ρ xs′ = ⅀?⟦ zs ⟧ (ρ , Ρ) y′ = ⟦ y ⟧ Ρ ys′ = ⅀⟦ ys ⟧ (ρ , Ρ) step = λ y → ⊠-step-hom a z j≤n y Ρ in begin ρ * ⅀?⟦ ⊞-coeffs (poly-map ( (⊠-step a z j≤n)) ys) ys₁ ⟧ (ρ , Ρ) + ⟦ ⊠-step a z j≤n y ⟧ Ρ ≈⟨ (*≫ ⊞-coeffs-hom (poly-map (⊠-step a z j≤n) ys) _ (ρ , Ρ)) ⟨ +-cong ⟩ ⊠-step-hom a z j≤n y Ρ ⟩ ρ * (⅀?⟦ poly-map (⊠-step a z j≤n) ys ⟧ (ρ , Ρ) + ⅀?⟦ ys₁ ⟧ (ρ , Ρ)) + x′ * y′ ≈⟨ ≪+ *≫ (poly-mapR ρ Ρ (⊠-step a z j≤n) (x′ *_) (*-cong refl) reassoc (distribˡ _) step (zeroʳ _) ys ⟨ +-cong ⟩ ys≋zs) ⟩ ρ * (x′ * ys′ + xs′ * (ρ * ys′ + y′)) + (x′ * y′) ≈⟨ ≪+ distribˡ _ _ _ ⟩ ρ * (x′ * ys′) + ρ * (xs′ * (ρ * ys′ + y′)) + (x′ * y′) ≈⟨ (≪+ +-comm _ _) ⟨ trans ⟩ +-assoc _ _ _ ⟩ ρ * (xs′ * (ρ * ys′ + y′)) + (ρ * (x′ * ys′) + (x′ * y′)) ≈⟨ sym (*-assoc _ _ _) ⟨ +-cong ⟩ ((≪+ (sym (*-assoc _ _ _) ⟨ trans ⟩ (≪* *-comm _ _) ⟨ trans ⟩ *-assoc _ _ _)) ⟨ trans ⟩ sym (distribˡ _ _ _)) ⟩ ρ * xs′ * (ρ * ys′ + y′) + x′ * (ρ * ys′ + y′) ≈⟨ sym (distribʳ _ _ _) ⟩ (ρ * xs′ + x′) * (ρ * ys′ + y′) ∎ } ⊠-hom : ∀ {n} (xs ys : Poly n) → ∀ ρ → ⟦ xs ⊠ ys ⟧ ρ ≈ ⟦ xs ⟧ ρ * ⟦ ys ⟧ ρ ⊠-hom (xs ⊐ i≤n) = ⊠-step-hom (<′-wellFounded _) xs i≤n
{ "alphanum_fraction": 0.3893514236, "avg_line_length": 38.1529411765, "ext": "agda", "hexsha": "8f4ea2872183fd756dd2f3a110490a0406d9233b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda", "max_line_length": 169, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Homomorphism/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5082, "size": 9729 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the heterogeneous suffix relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Suffix.Heterogeneous.Properties where open import Data.List as List using (List; []; _∷_; _++_; length; filter; replicate; reverse; reverseAcc) open import Data.List.Relation.Binary.Pointwise as Pw using (Pointwise; []; _∷_; Pointwise-length) open import Data.List.Relation.Binary.Suffix.Heterogeneous as Suffix using (Suffix; here; there; tail) open import Data.List.Relation.Binary.Prefix.Heterogeneous as Prefix using (Prefix) open import Data.Nat open import Data.Nat.Properties open import Function using (_$_; flip) open import Relation.Nullary using (Dec; yes; no; ¬_) import Relation.Nullary.Decidable as Dec open import Relation.Unary as U using (Pred) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary as B using (REL; Rel; Trans; Antisym; Irrelevant; _⇒_) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; sym; subst; subst₂) import Data.List.Properties as Listₚ import Data.List.Relation.Binary.Prefix.Heterogeneous.Properties as Prefixₚ ------------------------------------------------------------------------ -- Suffix and Prefix are linked via reverse module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where fromPrefix : ∀ {as bs} → Prefix R as bs → Suffix R (reverse as) (reverse bs) fromPrefix {as} {bs} p with Prefix.toView p ... | Prefix._++_ {cs} rs ds = subst (Suffix R (reverse as)) (sym (Listₚ.reverse-++-commute cs ds)) (Suffix.fromView (reverse ds Suffix.++ Pw.reverse⁺ rs)) fromPrefix-rev : ∀ {as bs} → Prefix R (reverse as) (reverse bs) → Suffix R as bs fromPrefix-rev pre = subst₂ (Suffix R) (Listₚ.reverse-involutive _) (Listₚ.reverse-involutive _) (fromPrefix pre) toPrefix-rev : ∀ {as bs} → Suffix R as bs → Prefix R (reverse as) (reverse bs) toPrefix-rev {as} {bs} s with Suffix.toView s ... | Suffix._++_ cs {ds} rs = subst (Prefix R (reverse as)) (sym (Listₚ.reverse-++-commute cs ds)) (Prefix.fromView (Pw.reverse⁺ rs Prefix.++ reverse cs)) toPrefix : ∀ {as bs} → Suffix R (reverse as) (reverse bs) → Prefix R as bs toPrefix suf = subst₂ (Prefix R) (Listₚ.reverse-involutive _) (Listₚ.reverse-involutive _) (toPrefix-rev suf) ------------------------------------------------------------------------ -- length module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where length-mono : ∀ {as bs} → Suffix R as bs → length as ≤ length bs length-mono (here rs) = ≤-reflexive (Pointwise-length rs) length-mono (there suf) = ≤-step (length-mono suf) S[as][bs]⇒∣as∣≢1+∣bs∣ : ∀ {as bs} → Suffix R as bs → length as ≢ suc (length bs) S[as][bs]⇒∣as∣≢1+∣bs∣ suf eq = <⇒≱ (≤-reflexive (sym eq)) (length-mono suf) ------------------------------------------------------------------------ -- Pointwise conversion module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where fromPointwise : Pointwise R ⇒ Suffix R fromPointwise = here toPointwise : ∀ {as bs} → length as ≡ length bs → Suffix R as bs → Pointwise R as bs toPointwise eq (here rs) = rs toPointwise eq (there suf) = contradiction eq (S[as][bs]⇒∣as∣≢1+∣bs∣ suf) ------------------------------------------------------------------------ -- Suffix as a partial order module _ {a b c r s t} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r} {S : REL B C s} {T : REL A C t} where trans : Trans R S T → Trans (Suffix R) (Suffix S) (Suffix T) trans rs⇒t (here rs) (here ss) = here (Pw.transitive rs⇒t rs ss) trans rs⇒t (here rs) (there ssuf) = there (trans rs⇒t (here rs) ssuf) trans rs⇒t (there rsuf) ssuf = trans rs⇒t rsuf (tail ssuf) module _ {a b e r s} {A : Set a} {B : Set b} {R : REL A B r} {S : REL B A s} {E : REL A B e} where antisym : Antisym R S E → Antisym (Suffix R) (Suffix S) (Pointwise E) antisym rs⇒e rsuf ssuf = Pw.antisymmetric rs⇒e (toPointwise eq rsuf) (toPointwise (sym eq) ssuf) where eq = ≤-antisym (length-mono rsuf) (length-mono ssuf) ------------------------------------------------------------------------ -- _++_ module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where ++⁺ : ∀ {as bs cs ds} → Suffix R as bs → Pointwise R cs ds → Suffix R (as ++ cs) (bs ++ ds) ++⁺ (here rs) rs′ = here (Pw.++⁺ rs rs′) ++⁺ (there suf) rs′ = there (++⁺ suf rs′) ++⁻ : ∀ {as bs cs ds} → length cs ≡ length ds → Suffix R (as ++ cs) (bs ++ ds) → Pointwise R cs ds ++⁻ {_ ∷ _} {_} {_} {_} eq suf = ++⁻ eq (tail suf) ++⁻ {[]} {[]} {_} {_} eq suf = toPointwise eq suf ++⁻ {[]} {b ∷ bs} {_} {_} eq (there suf) = ++⁻ eq suf ++⁻ {[]} {b ∷ bs} {cs} {ds} eq (here rs) = contradiction (sym eq) (<⇒≢ ds<cs) where open ≤-Reasoning ds<cs : length ds < length cs ds<cs = begin suc (length ds) ≤⟨ s≤s (n≤m+n (length bs) (length ds)) ⟩ suc (length bs + length ds) ≡⟨ sym $ Listₚ.length-++ (b ∷ bs) ⟩ length (b ∷ bs ++ ds) ≡⟨ sym $ Pointwise-length rs ⟩ length cs ∎ ------------------------------------------------------------------------ -- map module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {R : REL C D r} where map⁺ : ∀ {as bs} (f : A → C) (g : B → D) → Suffix (λ a b → R (f a) (g b)) as bs → Suffix R (List.map f as) (List.map g bs) map⁺ f g (here rs) = here (Pw.map⁺ f g rs) map⁺ f g (there suf) = there (map⁺ f g suf) map⁻ : ∀ {as bs} (f : A → C) (g : B → D) → Suffix R (List.map f as) (List.map g bs) → Suffix (λ a b → R (f a) (g b)) as bs map⁻ {as} {b ∷ bs} f g (here rs) = here (Pw.map⁻ f g rs) map⁻ {as} {b ∷ bs} f g (there suf) = there (map⁻ f g suf) map⁻ {x ∷ as} {[]} f g suf with length-mono suf ... | () map⁻ {[]} {[]} f g suf = here [] ------------------------------------------------------------------------ -- filter module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r} {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) (P⇒Q : ∀ {a b} → R a b → P a → Q b) (Q⇒P : ∀ {a b} → R a b → Q b → P a) where filter⁺ : ∀ {as bs} → Suffix R as bs → Suffix R (filter P? as) (filter Q? bs) filter⁺ (here rs) = here (Pw.filter⁺ P? Q? P⇒Q Q⇒P rs) filter⁺ (there {a} suf) with Q? a ... | yes q = there (filter⁺ suf) ... | no ¬q = filter⁺ suf ------------------------------------------------------------------------ -- replicate module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where replicate⁺ : ∀ {m n a b} → m ≤ n → R a b → Suffix R (replicate m a) (replicate n b) replicate⁺ {a = a} {b = b} m≤n r = repl (≤⇒≤′ m≤n) where repl : ∀ {m n} → m ≤′ n → Suffix R (replicate m a) (replicate n b) repl ≤′-refl = here (Pw.replicate⁺ r _) repl (≤′-step m≤n) = there (repl m≤n) ------------------------------------------------------------------------ -- Irrelevant module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where irrelevant : Irrelevant R → Irrelevant (Suffix R) irrelevant irr (here rs) (here rs₁) = P.cong here $ Pw.irrelevant irr rs rs₁ irrelevant irr (here rs) (there rsuf) = contradiction (Pointwise-length rs) (S[as][bs]⇒∣as∣≢1+∣bs∣ rsuf) irrelevant irr (there rsuf) (here rs) = contradiction (Pointwise-length rs) (S[as][bs]⇒∣as∣≢1+∣bs∣ rsuf) irrelevant irr (there rsuf) (there rsuf₁) = P.cong there $ irrelevant irr rsuf rsuf₁ ------------------------------------------------------------------------ -- Decidability suffix? : B.Decidable R → B.Decidable (Suffix R) suffix? R? as bs = Dec.map′ fromPrefix-rev toPrefix-rev $ Prefixₚ.prefix? R? (reverse as) (reverse bs)
{ "alphanum_fraction": 0.5076660988, "avg_line_length": 38.9478672986, "ext": "agda", "hexsha": "f4b199c5a878be541aef5f8e8059004ae2439b51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Suffix/Heterogeneous/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2754, "size": 8218 }
{-# OPTIONS --universe-polymorphism #-} {- This module is really a combination of copumpkin's Semigroup and CommutativeSemigroup modules, available on github at https://github.com/copumpkin/containers.git -} module Permutations where open import Algebra -- import Algebra.FunctionProperties as FunctionProperties open import Data.Empty open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product open import Data.Nat hiding (fold) open import Data.Nat.Properties using (commutativeSemiring; i+j≡0⇒i≡0) open import Data.Fin using (Fin; zero; suc; toℕ) open import Data.Vec open import Relation.Binary open import Relation.Binary.PropositionalEquality renaming (setoid to ≡-setoid) import Relation.Binary.EqReasoning as EqReasoning open CommutativeSemiring commutativeSemiring using (+-identity; +-comm; distrib) -- open import Containers.Semigroup -- Full trees, representing associations data Association : ℕ → Set where leaf : Association 1 node : ∀ {m n} → (l : Association m) → (r : Association n) → Association (m + n) leftA : ∀ {n} → Association (1 + n) leftA {zero} = leaf leftA {suc n} rewrite +-comm 1 n = node (leftA {n}) leaf rightA : ∀ {n} → Association (1 + n) rightA {zero} = leaf rightA {suc n} = node leaf rightA fold : ∀ {n} {a} {A : Set a} → Association n → (A → A → A) → Vec A n → A fold leaf _∙_ (x ∷ xs) = x fold (node {m} l r) _∙_ xs with splitAt m xs ... | ls , rs , pf = fold l _∙_ ls ∙ fold r _∙_ rs foldl₁-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) → (xs : Vec A (1 + n)) → foldl₁ f xs ≡ fold leftA f xs foldl₁-fold {zero} f (x ∷ []) = refl foldl₁-fold {suc n} f xs rewrite +-comm 1 n with splitAt (suc n) xs foldl₁-fold {suc n} f .(ls ++ r ∷ []) | ls , r ∷ [] , refl rewrite sym (foldl₁-fold f ls) = foldl₁-snoc f r ls where foldl₁-snoc : ∀ {a} {A : Set a} {n} f x (xs : Vec A (1 + n)) → foldl₁ f (xs ++ x ∷ []) ≡ f (foldl₁ f xs) x foldl₁-snoc f x₀ (x₁ ∷ []) = refl foldl₁-snoc f x₀ (x₁ ∷ x ∷ xs) = foldl₁-snoc f x₀ (f x₁ x ∷ xs) foldr-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) z (xs : Vec A n) → foldr _ f z xs ≡ fold rightA f (xs ∷ʳ z) foldr-fold f z [] = refl foldr-fold f z (x ∷ xs) = cong (f x) (foldr-fold f z xs) foldl-fold : ∀ {n} {a} {A : Set a} (f : A → A → A) z (xs : Vec A n) → foldl _ f z xs ≡ fold leftA f (z ∷ xs) foldl-fold f z xs rewrite sym (foldl₁-fold f (z ∷ xs)) = refl foldl-elim : ∀ {a b c} {A : Set a} {B : ℕ → Set b} (P : ∀ {n} → Vec A n → B n → Set c) {f : ∀ {n} → B n → A → B (1 + n)} {z : B 0} → P [] z → (∀ {n x′ z′} {xs′ : Vec A n} → P xs′ z′ → P (xs′ ∷ʳ x′) (f z′ x′)) → ∀ {n} (xs : Vec A n) → P xs (foldl B f z xs) foldl-elim P Pz Ps [] = Pz foldl-elim {A} {B} P {f} {z} Pz Ps (x ∷ xs) = foldl-elim (λ xs′ → P (x ∷ xs′)) (Ps Pz) Ps xs foldl-lemma : ∀ {a b} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → B n → A → B (suc n)} {z : B 0} {n} {x} (xs : Vec A n) → f (foldl B f z xs) x ≡ foldl B f z (xs ∷ʳ x) foldl-lemma [] = refl foldl-lemma {B = B} (y ∷ ys) = foldl-lemma {B = λ n → B (suc n)} ys infixr 5 _∷_ data Permutation : ℕ → Set where [] : Permutation 0 _∷_ : {n : ℕ} → (p : Fin (1 + n)) → (ps : Permutation n) → Permutation (1 + n) max : ∀ {n} → Fin (suc n) max {zero} = zero max {suc n} = suc max idP : ∀ {n} → Permutation n idP {zero} = [] idP {suc n} = zero ∷ idP reverseP : ∀ {n} → Permutation n reverseP {zero} = [] reverseP {suc n} = max ∷ reverseP insert : ∀ {n} {a} {A : Set a} → Vec A n → Fin (1 + n) → A → Vec A (1 + n) insert xs zero a = a ∷ xs insert [] (suc ()) a insert (x ∷ xs) (suc i) a = x ∷ insert xs i a permute : ∀ {n} {a} {A : Set a} → Permutation n → Vec A n → Vec A n permute [] [] = [] permute (p ∷ ps) (x ∷ xs) = insert (permute ps xs) p x idP-id : ∀ {n} {a} {A : Set a} (xs : Vec A n) → permute idP xs ≡ xs idP-id [] = refl idP-id (x ∷ xs) = cong (_∷_ x) (idP-id xs) insert-max : ∀ {n} {a} {A : Set a} (ys : Vec A n) x → insert ys max x ≡ ys ∷ʳ x insert-max [] x = refl insert-max (y ∷ ys) x = cong (_∷_ y) (insert-max ys x) reverse-∷ʳ : ∀ {n} {a} {A : Set a} (ys : Vec A n) x → reverse ys ∷ʳ x ≡ reverse (x ∷ ys) reverse-∷ʳ {A = A} xs x = foldl-elim (λ xs b → b ∷ʳ x ≡ reverse (x ∷ xs)) refl (λ {_} {_} {_} {xs} eq → trans (cong (_∷_ _) eq) (foldl-lemma {B = λ n -> Vec A (suc n)} xs)) xs reverseP-reverse : ∀ {n} {a} {A : Set a} (xs : Vec A n) → permute reverseP xs ≡ reverse xs reverseP-reverse [] = refl reverseP-reverse {suc n} {_} {A} (x ∷ xs) = begin insert (permute reverseP xs) max x ≈⟨ insert-max (permute reverseP xs) x ⟩ permute reverseP xs ∷ʳ x ≈⟨ cong (λ q → q ∷ʳ x) (reverseP-reverse xs) ⟩ reverse xs ∷ʳ x ≈⟨ reverse-∷ʳ xs x ⟩ reverse (x ∷ xs) ∎ where open EqReasoning (≡-setoid (Vec A (1 + n))) remove : {n : ℕ} → {A : Set} → (i : Fin (suc n)) → Vec A (suc n) → Vec A n remove {n} zero (x ∷ v) = v remove {zero} (suc ()) _ remove {suc n} (suc i) (x ∷ v) = x ∷ remove i v remove0 : {n : ℕ} {A : Set} → (v : Vec A (suc n)) → v ≡ (lookup zero v) ∷ remove zero v remove0 (x ∷ v) = refl {- _◌_ : ∀ {n} → Permutation n → Permutation n → Permutation n [] ◌ [] = [] (zero ∷ p₁) ◌ (q ∷ q₁) = q ∷ (p₁ ◌ q₁) (suc p ∷ p₁) ◌ (zero ∷ q₁) = {!!} (suc p ∷ p₁) ◌ (suc q ∷ q₁) = {!!} perm◌perm : ∀ {n} {A : Set} → (p q : Permutation n) → (v : Vec A n) → permute q (permute p v) ≡ permute (p ◌ q) v perm◌perm [] [] [] = refl perm◌perm (zero ∷ p₁) (q ∷ q₁) (x ∷ v) = cong (λ y → insert y q x) (perm◌perm p₁ q₁ v) perm◌perm (suc p ∷ p₁) (q ∷ q₁) (x ∷ v) with permute ((suc p) ∷ p₁) (x ∷ v) perm◌perm (suc p ∷ p₁) (zero ∷ q₁) (x ∷ v) | y ∷ w = {!!} perm◌perm (suc p ∷ p₁) (suc q ∷ q₁) (x ∷ v) | y ∷ w = {!!} p1 : Permutation 5 p1 = suc (suc zero) ∷ suc (suc zero) ∷ zero ∷ suc zero ∷ zero ∷ [] p2 : Permutation 5 p2 = suc (suc (suc zero)) ∷ suc (suc (suc zero)) ∷ zero ∷ zero ∷ zero ∷ [] p3 : Permutation 5 p3 = suc (suc (suc (suc zero))) ∷ suc zero ∷ suc zero ∷ suc zero ∷ zero ∷ [] test1 : Vec (Fin 5) 5 test1 = permute p1 (tabulate {5} (λ x → x)) test2 : Vec (Fin 5 ) 5 test2 = permute p2 (tabulate (λ x → x)) test3 : Vec (Fin 5) 5 test3 = permute p1 (test2) test4 : test3 ≡ permute p3 (tabulate (λ x → x)) test4 = refl -}
{ "alphanum_fraction": 0.5429564119, "avg_line_length": 33.8609625668, "ext": "agda", "hexsha": "9f917b2068be22469dda73fe901725f1e7332d5c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/Permutations.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/Permutations.agda", "max_line_length": 113, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/Permutations.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2691, "size": 6332 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to multiplication of integers ------------------------------------------------------------------------ module Data.Integer.Multiplication.Properties where open import Algebra using (module CommutativeSemiring; CommutativeMonoid) import Algebra.FunctionProperties open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid) open import Data.Integer using (ℤ; -[1+_]; +_; ∣_∣; sign; _◃_) renaming (_*_ to ℤ*) open import Data.Nat using (suc; zero) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Product using (proj₂) import Data.Nat.Properties as ℕ open import Data.Sign using () renaming (_*_ to _S*_) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂; isEquivalence) open Algebra.FunctionProperties (_≡_ {A = ℤ}) open CommutativeSemiring ℕ.commutativeSemiring using (+-identity; *-comm) renaming (zero to *-zero) ------------------------------------------------------------------------ -- Multiplication and one form a commutative monoid private identityˡ : LeftIdentity (+ 1) ℤ* identityˡ (+ zero ) = refl identityˡ -[1+ n ] rewrite proj₂ +-identity n = refl identityˡ (+ suc n) rewrite proj₂ +-identity n = refl comm : Commutative ℤ* comm -[1+ a ] -[1+ b ] rewrite *-comm (suc a) (suc b) = refl comm -[1+ a ] (+ b ) rewrite *-comm (suc a) b = refl comm (+ a ) -[1+ b ] rewrite *-comm a (suc b) = refl comm (+ a ) (+ b ) rewrite *-comm a b = refl lemma : ∀ a b c → c ℕ+ (b ℕ+ a ℕ* suc b) ℕ* suc c ≡ c ℕ+ b ℕ* suc c ℕ+ a ℕ* suc (c ℕ+ b ℕ* suc c) lemma = solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c) := c :+ b :* (con 1 :+ c) :+ a :* (con 1 :+ (c :+ b :* (con 1 :+ c)))) refl where open ℕ.SemiringSolver assoc : Associative ℤ* assoc (+ zero) _ _ = refl assoc x (+ zero) _ rewrite proj₂ *-zero ∣ x ∣ = refl assoc x y (+ zero) rewrite proj₂ *-zero ∣ y ∣ | proj₂ *-zero ∣ x ∣ | proj₂ *-zero ∣ sign x S* sign y ◃ ∣ x ∣ ℕ* ∣ y ∣ ∣ = refl assoc -[1+ a ] -[1+ b ] (+ suc c) = cong (+_ ∘ suc) (lemma a b c) assoc -[1+ a ] (+ suc b) -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) assoc (+ suc a) (+ suc b) (+ suc c) = cong (+_ ∘ suc) (lemma a b c) assoc (+ suc a) -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c) assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c) assoc -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] (lemma a b c) assoc (+ suc a) -[1+ b ] (+ suc c) = cong -[1+_] (lemma a b c) assoc (+ suc a) (+ suc b) -[1+ c ] = cong -[1+_] (lemma a b c) isSemigroup : IsSemigroup _ _ isSemigroup = record { isEquivalence = isEquivalence ; assoc = assoc ; ∙-cong = cong₂ ℤ* } isCommutativeMonoid : IsCommutativeMonoid _≡_ ℤ* (+ 1) isCommutativeMonoid = record { isSemigroup = isSemigroup ; identityˡ = identityˡ ; comm = comm } commutativeMonoid : CommutativeMonoid _ _ commutativeMonoid = record { Carrier = ℤ ; _≈_ = _≡_ ; _∙_ = ℤ* ; ε = + 1 ; isCommutativeMonoid = isCommutativeMonoid }
{ "alphanum_fraction": 0.5214560521, "avg_line_length": 36.7282608696, "ext": "agda", "hexsha": "6729c5e9569eaf8314b23b8fbb779c29cd95e3ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Integer/Multiplication/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1153, "size": 3379 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Lists.Lists open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Decidable.Sets open import Numbers.Naturals.Definition open import Numbers.Naturals.Semiring module Computability.LambdaCalculus.ChurchNumeral where open import UnorderedSet.Definition ℕDecideEquality open import Computability.LambdaCalculus.Definition private iter : ℕ → Term iter zero = var 0 iter (succ n) = apply (var 1) (iter n) church : ℕ → Term church n = lam 1 (lam 0 (iter n)) churchSucc : Term churchSucc = lam 0 (lam 1 (lam 2 (apply (var 1) (apply (apply (var 0) (var 1)) (var 2)))))
{ "alphanum_fraction": 0.7415565345, "avg_line_length": 27.24, "ext": "agda", "hexsha": "650c8d3cd84d6ad9764f2b329759bf697de6f706", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda", "max_line_length": 90, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Computability/LambdaCalculus/ChurchNumeral.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 208, "size": 681 }
------------------------------------------------------------------------------ -- The FOTC streams type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.Type where open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- The FOTC streams type (co-inductive predicate for total streams). -- Functional for the Stream predicate. -- StreamF : (D → Set) → D → Set -- StreamF A xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' -- Stream is the greatest fixed-point of StreamF (by Stream-out and -- Stream-coind). postulate Stream : D → Set postulate -- Stream is a post-fixed point of StreamF, i.e. -- -- Stream ≤ StreamF Stream. Stream-out : ∀ {xs} → Stream xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' {-# ATP axiom Stream-out #-} -- Stream is the greatest post-fixed point of StreamF, i.e. -- -- ∀ A. A ≤ StreamF A ⇒ A ≤ Stream. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate Stream-coind : (A : D → Set) → -- A is post-fixed point of StreamF. (∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') → -- Stream is greater than A. ∀ {xs} → A xs → Stream xs
{ "alphanum_fraction": 0.4979973298, "avg_line_length": 31.2083333333, "ext": "agda", "hexsha": "35dbec72e613f68e6c471d21574964a222cec8a4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Stream/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Stream/Type.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Stream/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 391, "size": 1498 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.EilenbergMacLane1 where open import Cubical.HITs.EilenbergMacLane1.Base public open import Cubical.HITs.EilenbergMacLane1.Properties public
{ "alphanum_fraction": 0.8075117371, "avg_line_length": 35.5, "ext": "agda", "hexsha": "28ea97a274fea535ad5ebad0d8790f88010b965b", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/EilenbergMacLane1.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/EilenbergMacLane1.agda", "max_line_length": 60, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/EilenbergMacLane1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 61, "size": 213 }
module Imports.NonTerminating where Foo : Set Foo = Foo
{ "alphanum_fraction": 0.7719298246, "avg_line_length": 11.4, "ext": "agda", "hexsha": "e5d11332a8c5ba241d782a5826db3a694112dec6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Imports/NonTerminating.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Imports/NonTerminating.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Imports/NonTerminating.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 57 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.S1SuspensionS0 where {- To -} module To = S¹Rec (north Bool) (merid _ false ∙ ! (merid _ true)) to : S¹ → Suspension Bool to = To.f {- From -} from-merid : Bool → base == base from-merid true = loop from-merid false = idp module From = SuspensionRec Bool base base from-merid from : Suspension Bool → S¹ from = From.f {- ToFrom and FromTo -} postulate -- TODO, easy and boring to-from : (x : Suspension Bool) → to (from x) == x from-to : (x : S¹) → from (to x) == x e : S¹ ≃ Suspension Bool e = equiv to from to-from from-to
{ "alphanum_fraction": 0.6467661692, "avg_line_length": 18.2727272727, "ext": "agda", "hexsha": "11f0ab4c9565d60d129de2307484c9e1c79fa8d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/S1SuspensionS0.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/S1SuspensionS0.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "homotopy/S1SuspensionS0.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 197, "size": 603 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Homotopy.Connected open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 hiding (elim) open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Empty renaming (rec to ⊥-rec) hiding (elim) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.Data.Nat hiding (_·_ ; elim) open import Cubical.HITs.Susp open import Cubical.Functions.Morphism open import Cubical.Foundations.Path private variable ℓ ℓ' : Level _* = AbGroup→Group EM-raw : (G : AbGroup ℓ) (n : ℕ) → Type ℓ EM-raw G zero = fst G EM-raw G (suc zero) = EM₁ (G *) EM-raw G (suc (suc n)) = Susp (EM-raw G (suc n)) ptEM-raw : {n : ℕ} {G : AbGroup ℓ} → EM-raw G n ptEM-raw {n = zero} {G = G} = AbGroupStr.0g (snd G) ptEM-raw {n = suc zero} {G = G} = embase ptEM-raw {n = suc (suc n)} {G = G} = north raw-elim : (G : AbGroup ℓ) (n : ℕ) {A : EM-raw G (suc n) → Type ℓ'} → ((x : _) → isOfHLevel (suc n) (A x) ) → A ptEM-raw → (x : _) → A x raw-elim G zero hlev b = elimProp _ hlev b raw-elim G (suc n) hlev b north = b raw-elim G (suc n) {A = A} hlev b south = subst A (merid ptEM-raw) b raw-elim G (suc n) {A = A} hlev b (merid a i) = help a i where help : (a : _) → PathP (λ i → A (merid a i)) b (subst A (merid ptEM-raw) b) help = raw-elim G n (λ _ → isOfHLevelPathP' (suc n) (hlev _) _ _) λ i → transp (λ j → A (merid ptEM-raw (j ∧ i))) (~ i) b EM : (G : AbGroup ℓ) (n : ℕ) → Type ℓ EM G zero = EM-raw G zero EM G (suc zero) = EM-raw G 1 EM G (suc (suc n)) = hLevelTrunc (4 + n) (EM-raw G (suc (suc n))) 0ₖ : {G : AbGroup ℓ} (n : ℕ) → EM G n 0ₖ {G = G} zero = AbGroupStr.0g (snd G) 0ₖ (suc zero) = embase 0ₖ (suc (suc n)) = ∣ ptEM-raw ∣ EM∙ : (G : AbGroup ℓ) (n : ℕ) → Pointed ℓ EM∙ G n = EM G n , (0ₖ n) EM-raw∙ : (G : AbGroup ℓ) (n : ℕ) → Pointed ℓ EM-raw∙ G n = EM-raw G n , ptEM-raw hLevelEM : (G : AbGroup ℓ) (n : ℕ) → isOfHLevel (2 + n) (EM G n) hLevelEM G zero = AbGroupStr.is-set (snd G) hLevelEM G (suc zero) = emsquash hLevelEM G (suc (suc n)) = isOfHLevelTrunc (4 + n) EM-raw→EM : (G : AbGroup ℓ) (n : ℕ) → EM-raw G n → EM G n EM-raw→EM G zero x = x EM-raw→EM G (suc zero) x = x EM-raw→EM G (suc (suc n)) = ∣_∣ elim : {G : AbGroup ℓ} (n : ℕ) {A : EM G n → Type ℓ'} → ((x : _) → isOfHLevel (2 + n) (A x)) → ((x : EM-raw G n) → A (EM-raw→EM G n x)) → (x : _) → A x elim zero hlev hyp x = hyp x elim (suc zero) hlev hyp x = hyp x elim (suc (suc n)) hlev hyp = trElim (λ _ → hlev _) hyp
{ "alphanum_fraction": 0.6443438914, "avg_line_length": 35.2659574468, "ext": "agda", "hexsha": "f4d56a4991d64dae6d6cb9c640f91cbffe8d3422", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1294, "size": 3315 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Torus where open import Cubical.HITs.Torus.Base public -- open import Cubical.HITs.Torus.Properties public
{ "alphanum_fraction": 0.7555555556, "avg_line_length": 25.7142857143, "ext": "agda", "hexsha": "656aaf47dc548806cc2de7226bef11d08377026c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Torus.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Torus.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Torus.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 180 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pointed module lib.types.Lift where ⊙Lift : ∀ {i j} → Ptd i → Ptd (lmax i j) ⊙Lift {j = j} (A , a) = ⊙[ Lift {j = j} A , lift a ] ⊙lift : ∀ {i j} {X : Ptd i} → fst (X ⊙→ ⊙Lift {j = j} X) ⊙lift = (lift , idp) ⊙lower : ∀ {i j} {X : Ptd i} → fst (⊙Lift {j = j} X ⊙→ X) ⊙lower = (lower , idp) Lift-level : ∀ {i j} {A : Type i} {n : ℕ₋₂} → has-level n A → has-level n (Lift {j = j} A) Lift-level = equiv-preserves-level ((lift-equiv)⁻¹)
{ "alphanum_fraction": 0.53307393, "avg_line_length": 25.7, "ext": "agda", "hexsha": "897327a39498da4db09d01c83e835f114a61a993", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Lift.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Lift.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 234, "size": 514 }
{-# OPTIONS --without-K #-} -- Large indices are not allowed --without-K data Singleton {a} {A : Set a} : A → Set where [_] : ∀ x → Singleton x
{ "alphanum_fraction": 0.5986394558, "avg_line_length": 24.5, "ext": "agda", "hexsha": "b7a2d5cab58f7bdeafc95ec3a5e686b5d05ac316", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/LargeIndicesWithoutK.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/LargeIndicesWithoutK.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/LargeIndicesWithoutK.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 147 }
{-# OPTIONS --rewriting #-} -- Normalization by Evaluation for Call-By-Push-Value module NfCBPV where -- Imports from the Agda standard library. open import Library hiding (_×̇_) open import Data.Nat using (ℕ) open import Data.Fin using (Fin) pattern here! = here refl -- We postulate a set of generic value types. -- There are no operations defined on these types, thus, -- they play the type of (universal) type variables. postulate Base : Set -- Variants (Σ) (and records (Π), resp.) can in principle have any number of -- constructors (fields, resp.), including infinitely one. -- In general, the constructor (field, resp.) names are given by a set I. -- However, I : Set would make syntax already a big type, living in Set₁. -- To keep it in Set₀, we only consider variants (records) with finitely -- many constructors (fields), thus, I : ℕ. -- Branching over I is then realized as functions out of El I, where -- El I = { i | i < I} = Fin I. set = ℕ El = Fin -- Let I range over arities (constructor/field sets) and i over -- constructor/field names. variable I : set i : El I -- The types of CBPV are classified into value types P : Ty⁺ which we -- refer to as positive types, and computation types N : Ty⁻ which we -- refer to as negative types. mutual -- Value types data Ty⁺ : Set where base : (o : Base) → Ty⁺ -- Base type. _×̇_ : (P₁ P₂ : Ty⁺) → Ty⁺ -- Finite product (tensor). Σ̇ : (I : set) (Ps : El I → Ty⁺) → Ty⁺ -- Variant (sum). □̇ : (N : Ty⁻) → Ty⁺ -- Thunk (U). -- Computation types data Ty⁻ : Set where ◇̇ : (P : Ty⁺) → Ty⁻ -- Comp (F). Π̇ : (I : set) (Ns : El I → Ty⁻) → Ty⁻ -- Record (lazy product). _⇒̇_ : (P : Ty⁺) (N : Ty⁻) → Ty⁻ -- Function type. -- In CBPV, a variable stands for a value. -- Thus, environments only contain values, -- and typing contexts only value types. -- We use introduce syntax in an intrinsically well-typed way -- with variables being de Bruijn indices into the typing context. -- Thus, contexts are just lists of types. Cxt = List Ty⁺ variable Γ Δ Φ : Cxt P P₁ P₂ P' P′ Q : Ty⁺ N N₁ N₂ N' N′ : Ty⁻ Ps : El I → Ty⁺ Ns : El I → Ty⁻ -- Generic values module _ (Var : Ty⁺ → Cxt → Set) (Comp : Ty⁻ → Cxt → Set) where -- Right non-invertible data Val' : (P : Ty⁺) (Γ : Cxt) → Set where var : ∀{Γ P} (x : Var P Γ) → Val' P Γ pair : ∀{Γ P₁ P₂} (v₁ : Val' P₁ Γ) (v₂ : Val' P₂ Γ) → Val' (P₁ ×̇ P₂) Γ inj : ∀{Γ I P} i (v : Val' (P i) Γ) → Val' (Σ̇ I P) Γ thunk : ∀{Γ N} (t : Comp N Γ) → Val' (□̇ N) Γ -- Terms mutual Val = Val' _∈_ Comp data Comp : (N : Ty⁻) (Γ : Cxt) → Set where -- introductions ret : ∀{Γ P} (v : Val P Γ) → Comp (◇̇ P) Γ rec : ∀{Γ I N} (t : ∀ i → Comp (N i) Γ) → Comp (Π̇ I N) Γ abs : ∀{Γ P N} (t : Comp N (P ∷ Γ)) → Comp (P ⇒̇ N) Γ -- positive eliminations split : ∀{Γ P₁ P₂ N} (v : Val (P₁ ×̇ P₂) Γ) (t : Comp N (P₂ ∷ P₁ ∷ Γ)) → Comp N Γ case : ∀{Γ I Ps N} (v : Val (Σ̇ I Ps) Γ) (t : ∀ i → Comp N (Ps i ∷ Γ)) → Comp N Γ bind : ∀{Γ P N} (u : Comp (◇̇ P) Γ) (t : Comp N (P ∷ Γ)) → Comp N Γ -- cut letv : ∀{Γ P N} (v : Val P Γ) (t : Comp N (P ∷ Γ)) → Comp N Γ -- negative eliminations force : ∀{Γ N} (v : Val (□̇ N) Γ) → Comp N Γ prj : ∀{Γ I Ns} i (t : Comp (Π̇ I Ns) Γ) → Comp (Ns i) Γ app : ∀{Γ P N} (t : Comp (P ⇒̇ N) Γ) (v : Val P Γ) → Comp N Γ -- Normal forms ------------------------------------------------------------------------ -- Normal values only reference variables of base type NVar : (P : Ty⁺) (Γ : Cxt) → Set NVar (base o) Γ = base o ∈ Γ NVar _ _ = ⊥ -- Negative neutrals module _ (Val : Ty⁺ → Cxt → Set) where -- Right non-invertible data Ne' : (N : Ty⁻) (Γ : Cxt) → Set where force : ∀{Γ N} (x : □̇ N ∈ Γ) → Ne' N Γ prj : ∀{Γ I N} i (t : Ne' (Π̇ I N) Γ) → Ne' (N i) Γ app : ∀{Γ P N} (t : Ne' (P ⇒̇ N) Γ) (v : Val P Γ) → Ne' N Γ mutual NVal = Val' NVar Nf Ne = Ne' NVal -- Cover monad data ◇ (J : Cxt → Set) (Γ : Cxt) : Set where return : (j : J Γ) → ◇ J Γ bind : ∀{P} (u : Ne (◇̇ P) Γ) (t : ◇ J (P ∷ Γ)) → ◇ J Γ case : ∀{I Ps} (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → ◇ J (Ps i ∷ Γ)) → ◇ J Γ split : ∀{P₁ P₂} (x : (P₁ ×̇ P₂) ∈ Γ) (t : ◇ J (P₂ ∷ P₁ ∷ Γ)) → ◇ J Γ data NComp (Q : Ty⁺) (Γ : Cxt) : Set where ret : (v : NVal Q Γ) → NComp Q Γ -- Invoke RFoc ne : (n : Ne (◇̇ Q) Γ) → NComp Q Γ -- Finish with LFoc -- e.g. app (force f) x -- Use lemma LFoc bind : ∀{P} (u : Ne (◇̇ P) Γ) (t : NComp Q (P ∷ Γ)) → NComp Q Γ -- Left invertible split : ∀{P₁ P₂} (x : (P₁ ×̇ P₂) ∈ Γ) (t : NComp Q (P₂ ∷ P₁ ∷ Γ)) → NComp Q Γ case : ∀{I Ps} (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → NComp Q (Ps i ∷ Γ)) → NComp Q Γ -- Right invertible data Nf : (N : Ty⁻) (Γ : Cxt) → Set where ret : ∀{Γ P} (v : ◇ (NVal P) Γ) → Nf (◇̇ P) Γ -- Invoke RFoc ne : ∀{Γ o} (let N = ◇̇ (base o)) (n : ◇ (Ne N) Γ) → Nf N Γ -- comp : ∀{Γ P} (t : NComp P Γ) → Nf (◇̇ P) Γ rec : ∀{Γ I N} (t : ∀ i → Nf (N i) Γ) → Nf (Π̇ I N) Γ abs : ∀{Γ P N} (t : Nf N (P ∷ Γ)) → Nf (P ⇒̇ N) Γ -- Context-indexed sets ------------------------------------------------------------------------ ISet = (Γ : Cxt) → Set variable A B C : ISet F G : (i : El I) → ISet -- Constructions on ISet 1̂ : ISet 1̂ Γ = ⊤ _×̂_ : (A B : ISet) → ISet (A ×̂ B) Γ = A Γ × B Γ Σ̂ : (I : set) (F : El I → ISet) → ISet (Σ̂ I F) Γ = ∃ λ i → F i Γ _⇒̂_ : (A B : ISet) → ISet (A ⇒̂ B) Γ = A Γ → B Γ Π̂ : (I : set) (F : El I → ISet) → ISet (Π̂ I F) Γ = ∀ i → F i Γ ⟨_⟩ : (P : Ty⁺) (A : ISet) → ISet ⟨ P ⟩ A Γ = A (P ∷ Γ) -- Morphisms between ISets _→̇_ : (A B : Cxt → Set) → Set A →̇ B = ∀{Γ} → A Γ → B Γ ⟨_⊙_⟩→̇_ : (P Q R : Cxt → Set) → Set ⟨ P ⊙ Q ⟩→̇ R = ∀{Γ} → P Γ → Q Γ → R Γ ⟨_⊙_⊙_⟩→̇_ : (P Q R S : Cxt → Set) → Set ⟨ P ⊙ Q ⊙ R ⟩→̇ S = ∀{Γ} → P Γ → Q Γ → R Γ → S Γ Map : (F : (Cxt → Set) → Cxt → Set) → Set₁ Map F = ∀{A B : Cxt → Set} (f : A →̇ B) → F A →̇ F B Π-map : (∀ i → F i →̇ G i) → Π̂ I F →̇ Π̂ I G Π-map f r i = f i (r i) -- -- Introductions and eliminations for ×̂ -- p̂air : ⟨ A ⊙ B ⟩→̇ (A ×̂ B) -- p̂air a b = λ -- Monotonicity ------------------------------------------------------------------------ -- Monotonization □ is a monoidal comonad □ : (A : Cxt → Set) → Cxt → Set □ A Γ = ∀{Δ} (τ : Γ ⊆ Δ) → A Δ extract : □ A →̇ A extract a = a ⊆-refl duplicate : □ A →̇ □ (□ A) duplicate a τ τ′ = a (⊆-trans τ τ′) □-map : Map □ □-map f a τ = f (a τ) extend : (□ A →̇ B) → □ A →̇ □ B extend f = □-map f ∘ duplicate □-weak : □ A →̇ ⟨ P ⟩ (□ A) □-weak a τ = a (⊆-trans (_ ∷ʳ ⊆-refl) τ) □-weak' : □ A →̇ □ (⟨ P ⟩ A) □-weak' a τ = a (_ ∷ʳ τ) □-sum : Σ̂ I (□ ∘ F) →̇ □ (Σ̂ I F) □-sum (i , a) τ = i , a τ -- Monoidality: □-unit : 1̂ →̇ □ 1̂ □-unit = _ □-pair : ⟨ □ A ⊙ □ B ⟩→̇ □ (A ×̂ B) □-pair a b τ = (a τ , b τ) -- Strong functoriality Map! : (F : (Cxt → Set) → Cxt → Set) → Set₁ Map! F = ∀{A B : Cxt → Set} → ⟨ □ (A ⇒̂ B) ⊙ F A ⟩→̇ F B -- Monotonicity Mon : (A : Cxt → Set) → Set Mon A = A →̇ □ A monVar : Mon (P ∈_) monVar x τ = ⊆-lookup τ x -- Positive ISets are monotone □-mon : Mon (□ A) □-mon = duplicate 1-mon : Mon 1̂ 1-mon = □-unit ×-mon : Mon A → Mon B → Mon (A ×̂ B) ×-mon mA mB (a , b) = □-pair (mA a) (mB b) Σ-mon : ((i : El I) → Mon (F i)) → Mon (Σ̂ I F) Σ-mon m (i , a) = □-sum (i , m i a) □-intro : Mon A → (A →̇ B) → (A →̇ □ B) □-intro mA f = □-map f ∘ mA -- Cover monad: a strong monad ------------------------------------------------------------------------ join : ◇ (◇ A) →̇ ◇ A join (return c) = c join (bind u c) = bind u (join c) join (case x t) = case x (join ∘ t) join (split x c) = split x (join c) ◇-map : Map ◇ ◇-map f (return j) = return (f j) ◇-map f (bind u a) = bind u (◇-map f a) ◇-map f (case x t) = case x (λ i → ◇-map f (t i)) ◇-map f (split x a) = split x (◇-map f a) ◇-map! : Map! ◇ ◇-map! f (return j) = return (extract f j) ◇-map! f (bind u a) = bind u (◇-map! (□-weak f) a) ◇-map! f (case x t) = case x (λ i → ◇-map! (□-weak f) (t i)) ◇-map! f (split x a) = split x (◇-map! (□-weak (□-weak f)) a) ◇-bind : A →̇ ◇ B → ◇ A →̇ ◇ B ◇-bind f = join ∘ ◇-map f ◇-record : ◇ (Π̂ I F) →̇ Π̂ I (◇ ∘ F) ◇-record c i = ◇-map (_$ i) c ◇-fun : Mon A → ◇ (A ⇒̂ B) →̇ (A ⇒̂ ◇ B) ◇-fun mA c a = ◇-map! (λ τ f → f (mA a τ)) c -- Monoidal functoriality -- ◇-pair : ⟨ ◇ A ⊙ ◇ B ⟩→̇ ◇ (A ×̂ B) -- does not hold! ◇-pair : ⟨ □ (◇ A) ⊙ ◇ (□ B) ⟩→̇ ◇ (A ×̂ B) ◇-pair ca = join ∘ ◇-map! λ τ b → ◇-map! (λ τ′ a → a , b τ′) (ca τ) _⋉_ = ◇-pair □◇-pair' : ⟨ □ (◇ A) ⊙ □ (◇ (□ B)) ⟩→̇ □ (◇ (A ×̂ B)) □◇-pair' ca cb τ = ◇-pair (□-mon ca τ) (cb τ) □◇-pair : Mon B → ⟨ □ (◇ A) ⊙ □ (◇ B) ⟩→̇ □ (◇ (A ×̂ B)) □◇-pair mB ca cb τ = join $ ◇-map! (λ τ₁ b → ◇-map! (λ τ₂ a → a , mB b τ₂) (ca (⊆-trans τ τ₁))) (cb τ) ◇□-pair' : ⟨ ◇ (□ A) ⊙ □ (◇ (□ B)) ⟩→̇ ◇ (□ (A ×̂ B)) ◇□-pair' ca cb = join (◇-map! (λ τ a → ◇-map! (λ τ₁ b τ₂ → a (⊆-trans τ₁ τ₂) , b τ₂) (cb τ)) ca) ◇□-pair : ⟨ □ (◇ (□ A)) ⊙ ◇ (□ B) ⟩→̇ ◇ (□ (A ×̂ B)) ◇□-pair ca cb = join (◇-map! (λ τ b → ◇-map! (λ τ₁ a τ₂ → a τ₂ , b (⊆-trans τ₁ τ₂)) (ca τ)) cb) -- Runnability Run : (A : Cxt → Set) → Set Run A = ◇ A →̇ A -- Negative ISets are runnable ◇-run : Run (◇ A) ◇-run = join Π-run : (∀ i → Run (F i)) → Run (Π̂ I F) Π-run f = Π-map f ∘ ◇-record ⇒-run : Mon A → Run B → Run (A ⇒̂ B) ⇒-run mA rB f = rB ∘ ◇-fun mA f -- Bind for the ◇ monad ◇-elim : Run B → (A →̇ B) → ◇ A →̇ B ◇-elim rB f = rB ∘ ◇-map f ◇-elim! : Run B → ⟨ □ (A ⇒̂ B) ⊙ ◇ A ⟩→̇ B ◇-elim! rB f = rB ∘ ◇-map! f ◇-elim-□ : Run B → ⟨ □ (A ⇒̂ B) ⊙ □ (◇ A) ⟩→̇ □ B ◇-elim-□ rB f c = □-map (uncurry (◇-elim! rB)) (□-pair (□-mon f) c) ◇-elim-□-alt : Run B → ⟨ □ (A ⇒̂ B) ⊙ □ (◇ A) ⟩→̇ □ B ◇-elim-□-alt rB f c τ = ◇-elim! rB (□-mon f τ) (c τ) bind! : Mon C → Run B → (C →̇ ◇ A) → (C →̇ (A ⇒̂ B)) → C →̇ B bind! mC rB f k γ = ◇-elim! rB (λ τ a → k (mC γ τ) a) (f γ) -- Type interpretation ------------------------------------------------------------------------ mutual ⟦_⟧⁺ : Ty⁺ → ISet ⟦ base o ⟧⁺ = base o ∈_ ⟦ P₁ ×̇ P₂ ⟧⁺ = ⟦ P₁ ⟧⁺ ×̂ ⟦ P₂ ⟧⁺ ⟦ Σ̇ I P ⟧⁺ = Σ̂ I λ i → ⟦ P i ⟧⁺ ⟦ □̇ N ⟧⁺ = □ ⟦ N ⟧⁻ ⟦_⟧⁻ : Ty⁻ → ISet ⟦ ◇̇ P ⟧⁻ = ◇ ⟦ P ⟧⁺ ⟦ Π̇ I N ⟧⁻ = Π̂ I λ i → ⟦ N i ⟧⁻ ⟦ P ⇒̇ N ⟧⁻ = ⟦ P ⟧⁺ ⇒̂ ⟦ N ⟧⁻ ⟦_⟧ᶜ : Cxt → ISet ⟦_⟧ᶜ Γ Δ = All (λ P → ⟦ P ⟧⁺ Δ) Γ -- ⟦ [] ⟧ᶜ = 1̂ -- ⟦ P ∷ Γ ⟧ᶜ = ⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺ -- Positive types are monotone. mon⁺ : (P : Ty⁺) → Mon ⟦ P ⟧⁺ mon⁺ (base o) = monVar mon⁺ (P₁ ×̇ P₂) = ×-mon (mon⁺ P₁) (mon⁺ P₂) mon⁺ (Σ̇ I P) = Σ-mon (mon⁺ ∘ P) mon⁺ (□̇ N) = □-mon monᶜ : (Γ : Cxt) → Mon ⟦ Γ ⟧ᶜ monᶜ Γ γ τ = All.map (λ {P} v → mon⁺ P v τ) γ -- Negative types are runnable. run⁻ : (N : Ty⁻) → Run ⟦ N ⟧⁻ run⁻ (◇̇ P) = ◇-run run⁻ (Π̇ I N) = Π-run (run⁻ ∘ N) run⁻ (P ⇒̇ N) = ⇒-run (mon⁺ P) (run⁻ N) -- monᶜ [] = 1-mon -- monᶜ (P ∷ Γ) = ×-mon (monᶜ Γ) (mon⁺ P) -- Interpretation ------------------------------------------------------------------------ mutual ⦅_⦆⁺ : Val P Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⟧⁺ ⦅ var x ⦆⁺ = λ γ → All.lookup γ x ⦅ pair v₁ v₂ ⦆⁺ = < ⦅ v₁ ⦆⁺ , ⦅ v₂ ⦆⁺ > ⦅ inj i v ⦆⁺ = (i ,_) ∘ ⦅ v ⦆⁺ ⦅ thunk t ⦆⁺ = □-intro (monᶜ _) ⦅ t ⦆⁻ λ⦅_⦆⁻ : Comp N (P ∷ Γ) → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⇒̇ N ⟧⁻ λ⦅ t ⦆⁻ γ a = ⦅ t ⦆⁻ (a ∷ γ) ⦅_⦆⁻ : Comp N Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ N ⟧⁻ ⦅ ret v ⦆⁻ = return ∘ ⦅ v ⦆⁺ ⦅ rec t ⦆⁻ = flip λ i → ⦅ t i ⦆⁻ ⦅ abs t ⦆⁻ = λ⦅ t ⦆⁻ ⦅ split v t ⦆⁻ γ = let (a₁ , a₂) = ⦅ v ⦆⁺ γ in ⦅ t ⦆⁻ (a₂ ∷ (a₁ ∷ γ)) ⦅ case v t ⦆⁻ γ = let (i , a) = ⦅ v ⦆⁺ γ in ⦅ t i ⦆⁻ (a ∷ γ) ⦅ bind {Γ = Γ} {N = N} t t₁ ⦆⁻ = bind! (monᶜ Γ) (run⁻ N) ⦅ t ⦆⁻ λ⦅ t₁ ⦆⁻ ⦅ force v ⦆⁻ = extract ∘ ⦅ v ⦆⁺ ⦅ prj i t ⦆⁻ = (_$ i) ∘ ⦅ t ⦆⁻ ⦅ app t v ⦆⁻ = ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ ⦅ letv v t ⦆⁻ = λ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ -- Reflection and reification mutual fresh□◇□ : ∀ P {Γ} → ⟨ P ⟩ (□ (◇ (□ ⟦ P ⟧⁺))) Γ fresh□◇□ P = reflect⁺□ P ∘ monVar here! fresh□ : ∀ P {Γ} → ⟨ P ⟩ (□ (◇ ⟦ P ⟧⁺)) Γ fresh□ P = ◇-map extract ∘ reflect⁺□ P ∘ monVar here! fresh□ P = reflect⁺ P ∘ monVar here! fresh : ∀ {P Γ} → ⟨ P ⟩ (◇ ⟦ P ⟧⁺) Γ fresh {P} = ◇-map extract (reflect⁺□ P here!) fresh {P} = reflect⁺ P here! fresh◇ : ∀ {P Γ} → ⟨ P ⟩ (◇ (□ ⟦ P ⟧⁺)) Γ fresh◇ {P} = reflect⁺□ P here! fresh◇ {P} = ◇-map (mon⁺ P) fresh -- saves us use of Mon P in freshᶜ reflect⁺□ : (P : Ty⁺) → (P ∈_) →̇ (◇ (□ ⟦ P ⟧⁺)) reflect⁺□ (base o) x = return (monVar x) reflect⁺□ (P₁ ×̇ P₂) x = split x (◇□-pair (reflect⁺□ P₁ ∘ monVar (there here!)) fresh◇) reflect⁺□ (Σ̇ I Ps) x = case x λ i → ◇-map (□-map (i ,_)) fresh◇ reflect⁺□ (□̇ N) x = return (□-mon (reflect⁻ N ∘ force ∘ monVar x)) reflect⁺ : (P : Ty⁺) → (P ∈_) →̇ (◇ ⟦ P ⟧⁺) reflect⁺ (base o) x = return x reflect⁺ (P₁ ×̇ P₂) x = split x (□-weak (fresh□ P₁) ⋉ fresh◇) reflect⁺ (Σ̇ I Ps) x = case x λ i → ◇-map (i ,_) fresh reflect⁺ (□̇ N) x = return λ τ → reflect⁻ N (force (monVar x τ)) reflect⁻ : (N : Ty⁻) → Ne N →̇ ⟦ N ⟧⁻ reflect⁻ (◇̇ P) u = bind u fresh reflect⁻ (Π̇ I Ns) u = λ i → reflect⁻ (Ns i) (prj i u) reflect⁻ (P ⇒̇ N) u = λ a → reflect⁻ N (app u (reify⁺ P a)) reify⁺ : (P : Ty⁺) → ⟦ P ⟧⁺ →̇ NVal P reify⁺ (base o) = var reify⁺ (P₁ ×̇ P₂) (a₁ , a₂) = pair (reify⁺ P₁ a₁) (reify⁺ P₂ a₂) reify⁺ (Σ̇ I Ps) (i , a ) = inj i (reify⁺ (Ps i) a) reify⁺ (□̇ N) a = thunk (reify⁻ N a) reify⁻ : (N : Ty⁻) → □ ⟦ N ⟧⁻ →̇ Nf N reify⁻ (◇̇ P) f = ret (◇-map (reify⁺ P) (extract f)) reify⁻ (Π̇ I Ns) f = rec λ i → reify⁻ (Ns i) (□-map (_$ i) f) reify⁻ (P ⇒̇ N) f = abs $ reify⁻ N $ ◇-elim-□ (run⁻ N) (□-weak f) $ fresh□ P ext : (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟦ P ∷ Γ ⟧ᶜ ext (γ , a) = a ∷ γ ◇-ext : ◇ (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ◇ ⟦ P ∷ Γ ⟧ᶜ ◇-ext = ◇-map ext -- Without the use of ◇-mon! freshᶜ : (Γ : Cxt) → □ (◇ ⟦ Γ ⟧ᶜ) Γ freshᶜ [] = λ τ → return [] freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (fresh□◇□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair (mon⁺ P) (□-weak (freshᶜ Γ)) (fresh□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (◇-map (mon⁺ P) ∘ (fresh□ P)) freshᶜ (P ∷ Γ) = ◇-ext ∘ λ τ → (□-weak (□-mon (freshᶜ Γ)) τ) ⋉ ◇-map (mon⁺ P) (fresh□ P τ) norm : Comp N →̇ Nf N norm {N = N} {Γ = Γ} t = reify⁻ N $ □-map (run⁻ N ∘ ◇-map ⦅ t ⦆⁻) $ freshᶜ Γ norm {N = N} {Γ = Γ} t = reify⁻ N $ run⁻ N ∘ ◇-map ⦅ t ⦆⁻ ∘ freshᶜ Γ -- -} -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.422462406, "avg_line_length": 28.9805447471, "ext": "agda", "hexsha": "7c28072a46db01999fe3d99d9087849601155208", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src-cbpv/NfCBPV.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src-cbpv/NfCBPV.agda", "max_line_length": 96, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src-cbpv/NfCBPV.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 7655, "size": 14896 }
{-# OPTIONS --safe #-} module Generics.Constructions.DecEq where open import Generics.Prelude hiding (lookup; _≟_) open import Generics.Telescope open import Generics.Desc open import Generics.All open import Generics.HasDesc import Generics.Helpers as Helpers import Data.Fin.Properties as Fin import Data.Product.Properties as Product open import Relation.Nullary.Decidable as Decidable open import Data.Empty open import Relation.Nullary open import Relation.Binary using (DecidableEquality) open import Relation.Nullary.Product record DecEq {l} (A : Set l) : Set l where field _≟_ : DecidableEquality A open DecEq ⦃...⦄ public module _ {P I ℓ} {A : Indexed P I ℓ} (H : HasDesc {P} {I} {ℓ} A) where data HigherOrderArgumentsNotSupported : Set where -- Predicate preventing the use of Higher-order inductive arguments OnlyFO : ∀ {V} → ConDesc P V I → Setω OnlyFO (var _) = Liftω ⊤ OnlyFO (π _ _ _) = Liftω HigherOrderArgumentsNotSupported OnlyFO (A ⊗ B) = OnlyFO A ×ω OnlyFO B open HasDesc H open Helpers P I DecEq (const ⊤) OnlyFO DecEqHelpers : ∀ p → Setω DecEqHelpers p = Helpers p D private irr≡ : ∀ {l} (A : Set l) (x y : Irr A) → x ≡ y irr≡ A (irrv _) (irrv _) = refl private module _ {p} (DH : DecEqHelpers p) where variable V : ExTele P v : ⟦ V ⟧tel p i : ⟦ I ⟧tel p mutual decEqIndArg-wf : ∀ (C : ConDesc P V I) → OnlyFO C → (x y : ⟦ C ⟧IndArg A′ (p , v)) → AllIndArgω Acc C x → AllIndArgω Acc C y → Dec (x ≡ y) decEqIndArg-wf (var i) H x y ax ay = decEq-wf x y ax ay decEqIndArg-wf (A ⊗ B) (HA , HB) (xa , xb) (ya , yb) (axa , axb) (aya , ayb) = map′ (λ (p , q) → cong₂ _,_ p q) (λ p → cong proj₁ p , cong proj₂ p) (decEqIndArg-wf _ HA xa ya axa aya ×-dec decEqIndArg-wf _ HB xb yb axb ayb) decEqIndArg-wf (π i S C) () decEqCon-wf : (C : ConDesc P V I) ⦃ H : ConHelper p C ⦄ (x y : ⟦ C ⟧Con A′ (p , v , i)) → AllConω Acc C x → AllConω Acc C y → Dec (x ≡ y) decEqCon-wf ._ ⦃ var ⦄ refl refl _ _ = yes refl decEqCon-wf ._ ⦃ pi-irr ⦃ _ ⦄ ⦃ H ⦄ ⦄ (irrv _ , x) (irrv _ , y) ax ay with decEqCon-wf _ ⦃ H ⦄ x y ax ay ... | yes refl = yes refl ... | no p = no (p ∘ λ {refl → refl}) decEqCon-wf ._ ⦃ pi-rel ⦃ dec ⦄ ⦃ H ⦄ ⦄ (s₁ , x) (s₂ , y) ax ay with dec .DecEq._≟_ s₁ s₂ ... | no p = no (p ∘ (λ { refl → refl })) ... | yes refl with decEqCon-wf _ ⦃ H ⦄ x y ax ay ... | yes refl = yes refl ... | no p = no (p ∘ (λ { refl → refl })) decEqCon-wf ._ ⦃ prod ⦃ HA ⦄ ⦄ (xa , xb) (ya , yb) (axa , axb) (aya , ayb) = map′ (λ (p , q) → cong₂ _,_ p q) (λ p → cong proj₁ p , cong proj₂ p) (decEqIndArg-wf _ HA xa ya axa aya ×-dec decEqCon-wf _ xb yb axb ayb) decEqData-wf : (x y : ⟦ D ⟧Data A′ (p , i)) → AllDataω Acc D x → AllDataω Acc D y → Decω (x ≡ω y) decEqData-wf (k₁ , x) (k₂ , y) ax ay with k₁ Fin.≟ k₂ decEqData-wf (k , x) (k , y) ax ay | yes refl with decEqCon-wf _ ⦃ lookupHelper DH k ⦄ x y ax ay decEqData-wf (k , x) (k , y) ax ay | yes refl | yes refl = yesω refl decEqData-wf (k , x) (k , y) ax ay | yes refl | no x≢y = noω λ { refl → x≢y refl } decEqData-wf (k₁ , x) (k₂ , y) ax ay | no k₁≢k₂ = noω λ { refl → k₁≢k₂ refl } decEq-wf : (x y : A′ (p , i)) → Acc x → Acc y → Dec (x ≡ y) decEq-wf x y (acc ax) (acc ay) with decEqData-wf (split x) (split y) ax ay ... | yesω p = yes (split-injective p) ... | noω p = no (λ e → p (cong≡ω split e)) deriveDecEq : ∀ {p} ⦃ DH : DecEqHelpers p ⦄ {i} → DecEq (A′ (p , i)) deriveDecEq ⦃ DH ⦄ .DecEq._≟_ x y = decEq-wf DH x y (wf x) (wf y)
{ "alphanum_fraction": 0.528174305, "avg_line_length": 36.3, "ext": "agda", "hexsha": "3b04841f1e9ddcdc4513db92e9c8c65d9583fa55", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Constructions/DecEq.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Constructions/DecEq.agda", "max_line_length": 104, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Constructions/DecEq.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 1506, "size": 3993 }
{-# OPTIONS -v tc.size:100 #-} -- {-# OPTIONS -v tc.meta:100 #-} open import Common.Size using (Size; Size<_) postulate A : Set record R (i₀ : Size) (x : A) : Set where coinductive field force : (j : Size< i₀) → R j x postulate P : (A → Set) → Set f : (Q : A → Set) (x : A) {{ c : P Q }} → Q x → Q x g : (i₁ : Size) (x : A) → R i₁ x → R i₁ x instance c : {i₂ : Size} → P (R i₂) accepted rejected : A → (x : A) (i₃ : Size) → R i₃ x → R i₃ x accepted y x i r = g _ _ (f _ _ r) rejected y x i r = g _ _ (f _ x r)
{ "alphanum_fraction": 0.5074074074, "avg_line_length": 20, "ext": "agda", "hexsha": "6082ac25f9964a44ffffa90481c53523e04595e9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1914.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1914.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1914.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 226, "size": 540 }
-- Andreas, AIM XVIII, 2013-09-13 module ProjectionsTakeModuleTelAsParameters where import Common.Level open import Common.Equality module M (A : Set) where record Prod (B : Set) : Set where constructor _,_ field fst : A snd : B open Prod public open M -- underapplied open -- module parameters are hidden in projections myfst : {A B : Set} → Prod A B → A myfst = fst mysnd : {A B : Set} → Prod A B → B mysnd p = snd p
{ "alphanum_fraction": 0.6651884701, "avg_line_length": 17.3461538462, "ext": "agda", "hexsha": "8e65420bb189e8e334a71639597cebe74355d852", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ProjectionsTakeModuleTelAsParameters.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 451 }
open import Relation.Binary.Core module BBHeap.Heapify {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Insert _≤_ tot≤ trans≤ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List heapify : List A → BBHeap bot heapify [] = leaf heapify (x ∷ xs) = insert {x = x} lebx (heapify xs)
{ "alphanum_fraction": 0.6031390135, "avg_line_length": 26.2352941176, "ext": "agda", "hexsha": "a76a6019d73c9694ef6854940aa6663bf71205bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Heapify.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Heapify.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Heapify.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 142, "size": 446 }
-- {-# OPTIONS -v tc.pos:10 #-} -- Andreas, 2014-07-04 record R (A : Set) : Set where field f : R A -- Should complain about missing 'inductive' or 'coinductive'.
{ "alphanum_fraction": 0.628742515, "avg_line_length": 20.875, "ext": "agda", "hexsha": "2b3c82eaf23d26c9918ab4862b1eaedbef518948", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/RecursiveRecordNeedsInductionDeclaration.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 55, "size": 167 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.IntMod where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Semigroup.Base open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.Data.Bool open import Cubical.Data.Fin open import Cubical.Data.Fin.Arithmetic open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Algebra.Group.Instances.Unit renaming (Unit to UnitGroup) open import Cubical.Algebra.Group.Instances.Bool renaming (Bool to BoolGroup) open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Morphisms open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open GroupStr open IsGroup open IsMonoid ℤ/_ : ℕ → Group₀ ℤ/ zero = UnitGroup fst (ℤ/ suc n) = Fin (suc n) 1g (snd (ℤ/ suc n)) = 0 GroupStr._·_ (snd (ℤ/ suc n)) = _+ₘ_ inv (snd (ℤ/ suc n)) = -ₘ_ IsSemigroup.is-set (isSemigroup (isMonoid (isGroup (snd (ℤ/ suc n))))) = isSetFin IsSemigroup.assoc (isSemigroup (isMonoid (isGroup (snd (ℤ/ suc n))))) = λ x y z → sym (+ₘ-assoc x y z) fst (identity (isMonoid (isGroup (snd (ℤ/ suc n)))) x) = +ₘ-rUnit x snd (identity (isMonoid (isGroup (snd (ℤ/ suc n)))) x) = +ₘ-lUnit x fst (inverse (isGroup (snd (ℤ/ suc n))) x) = +ₘ-rCancel x snd (inverse (isGroup (snd (ℤ/ suc n))) x) = +ₘ-lCancel x ℤ/1≅Unit : GroupIso (ℤ/ 1) UnitGroup ℤ/1≅Unit = contrGroupIsoUnit isContrFin1 Bool≅ℤ/2 : GroupIso BoolGroup (ℤ/ 2) Iso.fun (fst Bool≅ℤ/2) false = 1 Iso.fun (fst Bool≅ℤ/2) true = 0 Iso.inv (fst Bool≅ℤ/2) (zero , p) = true Iso.inv (fst Bool≅ℤ/2) (suc zero , p) = false Iso.inv (fst Bool≅ℤ/2) (suc (suc x) , p) = ⊥-rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.rightInv (fst Bool≅ℤ/2) (zero , p) = Σ≡Prop (λ _ → m≤n-isProp) refl Iso.rightInv (fst Bool≅ℤ/2) (suc zero , p) = Σ≡Prop (λ _ → m≤n-isProp) refl Iso.rightInv (fst Bool≅ℤ/2) (suc (suc x) , p) = ⊥-rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.leftInv (fst Bool≅ℤ/2) false = refl Iso.leftInv (fst Bool≅ℤ/2) true = refl snd Bool≅ℤ/2 = makeIsGroupHom λ { false false → refl ; false true → refl ; true false → refl ; true true → refl} ℤ/2≅Bool : GroupIso (ℤ/ 2) BoolGroup ℤ/2≅Bool = invGroupIso Bool≅ℤ/2
{ "alphanum_fraction": 0.6844679984, "avg_line_length": 35.0428571429, "ext": "agda", "hexsha": "6639441bccacc3525e5e52b9253ba88edd996c43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FernandoLarrain/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FernandoLarrain/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z", "num_tokens": 934, "size": 2453 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module Mergesort.Impl1.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Product open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import List.Permutation.Pair A open import List.Permutation.Pair.Properties A open import Mergesort.Impl1 _≤_ tot≤ open import Size open import SList open import SList.Properties open import SOList.Lower _≤_ lemma-deal : {ι : Size} → (xs : SList A {ι}) → unsize A xs ≈ unsize× A (deal xs) lemma-deal snil = ≈[]l [] lemma-deal (x ∙ snil) = ≈[]r (x ∷ []) lemma-deal (x ∙ (y ∙ xs)) with lemma-deal xs ... | xs≈ys,zs = ≈xl (≈xr xs≈ys,zs) lemma-merge : {ι ι' : Size}{b : Bound}(xs : SOList {ι} b)(ys : SOList {ι'} b) → forget (merge xs ys) ≈ (forget xs , forget ys) lemma-merge onil ys = ≈[]l (forget ys) lemma-merge xs onil with xs ... | onil = ≈[]r [] ... | (:< {x = z} b≤z zs) = ≈[]r (z ∷ forget zs) lemma-merge (:< {x = x} b≤x xs) (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = ≈xl (lemma-merge xs (:< (lexy x≤y) ys)) ... | inj₂ y≤x = ≈xr (lemma-merge (:< (lexy y≤x) xs) ys) lemma-mergesort : {ι : Size}(xs : SList A {↑ ι}) → unsize A xs ∼ forget (mergesort xs) lemma-mergesort snil = ∼[] lemma-mergesort (x ∙ snil) = ∼x /head /head ∼[] lemma-mergesort (x ∙ (y ∙ xs)) = lemma≈ (≈xl (≈xr (lemma-deal xs))) (lemma-mergesort (x ∙ ys)) (lemma-mergesort (y ∙ zs)) (lemma-merge (mergesort (x ∙ ys)) (mergesort (y ∙ zs))) where d = deal xs ys = proj₁ d zs = proj₂ d theorem-mergesort-∼ : (xs : List A) → xs ∼ (forget (mergesort (size A xs))) theorem-mergesort-∼ xs = trans∼ (lemma-unsize-size A xs) (lemma-mergesort (size A xs))
{ "alphanum_fraction": 0.598858329, "avg_line_length": 37.7843137255, "ext": "agda", "hexsha": "8d7003eadcd98cb819e64331d80e6432605a96ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda", "max_line_length": 177, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Mergesort/Impl1/Correctness/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 728, "size": 1927 }
{-# OPTIONS --sized-types #-} module SNat.Sum where open import Relation.Binary.PropositionalEquality open import Size open import SNat +-assoc-succ : (m n : SNat) → m + succ n ≡ succ (m + n) +-assoc-succ zero n = refl +-assoc-succ (succ m) n rewrite +-assoc-succ m n = refl +-assoc-right : (a b c : SNat) → (a + b) + c ≡ a + (b + c) +-assoc-right zero b c = refl +-assoc-right (succ n) b c rewrite +-assoc-right n b c = refl +-assoc-left : (a b c : SNat) → a + (b + c) ≡ (a + b) + c +-assoc-left zero b c = refl +-assoc-left (succ n) b c rewrite +-assoc-left n b c = refl +-id : (n : SNat) → n + zero ≡ n +-id zero = refl +-id (succ n) rewrite +-id n = refl +-comm : (m n : SNat) → m + n ≡ n + m +-comm zero n rewrite +-id n = refl +-comm (succ m) n rewrite +-assoc-succ n m | +-comm m n = refl
{ "alphanum_fraction": 0.5875776398, "avg_line_length": 29.8148148148, "ext": "agda", "hexsha": "5dbde2af4dfee7dd7d33ff317d35aa333c7ff4bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SNat/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SNat/Sum.agda", "max_line_length": 62, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SNat/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 289, "size": 805 }
{-# OPTIONS --cubical --safe #-} module Data.Nat.WellFounded where open import Prelude open import Data.Nat open import WellFounded infix 4 _≤_ _<_ data _≤_ (n : ℕ) : ℕ → Type where n≤n : n ≤ n n≤s : ∀ {m} → n ≤ m → n ≤ suc m _<_ : ℕ → ℕ → Type n < m = suc n ≤ m ≤-wellFounded : WellFounded _<_ ≤-wellFounded x = acc (go x) where go : ∀ n m → m < n → Acc _<_ m go (suc n) .n n≤n = acc (go n) go (suc n) m (n≤s m<n) = go n m m<n open import Data.Nat.DivMod open import Agda.Builtin.Nat using (div-helper) import Data.Nat.Properties as ℕ -- Bear in mind the following two functions will not compute -- as currently subst (with --cubical) doesn't work on GADTs. -- -- We could write the functions without using subst. div2≤ : ∀ n → n ÷ 2 ≤ n div2≤ n = subst (n ÷ 2 ≤_) (ℕ.+-idʳ n) (go zero n) where go : ∀ k n → div-helper k 1 n 1 ≤ n + k go k zero = n≤n go k (suc zero) = n≤s n≤n go k (suc (suc n)) = n≤s (subst (div-helper (suc k) 1 n 1 ≤_) (ℕ.+-suc n k) (go (suc k) n)) s≤s : ∀ {n m} → n ≤ m → suc n ≤ suc m s≤s n≤n = n≤n s≤s (n≤s x) = n≤s (s≤s x)
{ "alphanum_fraction": 0.5816326531, "avg_line_length": 25.0697674419, "ext": "agda", "hexsha": "cd51077df41f3e8ce789706e146b37e072f4e7b2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Nat/WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Nat/WellFounded.agda", "max_line_length": 93, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Nat/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 470, "size": 1078 }
------------------------------------------------------------------------------ -- Exclusive disjunction theorems ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.ExclusiveDisjunction.TheoremsATP where -- The theorems below are valid on intuitionistic logic and with an -- empty domain. open import FOL.Base hiding ( D≢∅ ; pem ) open import FOL.ExclusiveDisjunction.Base ------------------------------------------------------------------------------ -- We postulate some propositional formulae (which are translated as -- 0-ary predicates). postulate P Q : Set -- We do not use the _⊻_ operator because its definition is not a -- FOL-definition. postulate p⊻q→p→¬q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → P → ¬ Q {-# ATP prove p⊻q→p→¬q #-} postulate p⊻q→q→¬p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → Q → ¬ P {-# ATP prove p⊻q→q→¬p #-} postulate p⊻q→¬p→q : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ P → Q {-# ATP prove p⊻q→¬p→q #-} postulate p⊻q→¬q→p : ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ¬ Q → P {-# ATP prove p⊻q→¬q→p #-} postulate ¬[p⊻q] : ¬ ((P ∨ Q) ∧ ¬ (P ∧ Q)) → ((P ∧ Q) ∨ (¬ P ∧ ¬ Q)) {-# ATP prove ¬[p⊻q] #-}
{ "alphanum_fraction": 0.4496904025, "avg_line_length": 29.3636363636, "ext": "agda", "hexsha": "12c889a0470cec8f09f26fca7873ef56ed979d18", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/ExclusiveDisjunction/TheoremsATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 404, "size": 1292 }
-- Andreas, 2013-05-02 This ain't a bug, it is a feature. -- {-# OPTIONS -v scope.name:10 #-} module _ where open import Common.Equality module M where record R' : Set₁ where field X : Set open M renaming (R' to R) X : R → Set X = R.X -- Nisse: -- The open directive did not mention the /module/ R, so (I think -- that) the code above should be rejected. -- Andreas: -- NO, it is a feature that projections can also be accessed via -- the record /type/. -- Ulf: -- According to the suggestion in 836, if you rename the module explicitly -- the code above breaks (test/fail/Issue836.agda).
{ "alphanum_fraction": 0.671592775, "avg_line_length": 21, "ext": "agda", "hexsha": "a2243881248f5ceff110987eacf4b06689474b10", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue836b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue836b.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue836b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 174, "size": 609 }
module Generic.Reflection.DeriveEq where open import Generic.Core open import Generic.Function.FoldMono open import Generic.Reflection.ReadData fromToClausesOf : Data Type -> Name -> List Clause fromToClausesOf (packData d a b cs ns) f = unmap (λ {a} -> clauseOf a) ns where vars : ℕ -> ℕ -> Type -> List (Maybe (String × ℕ) × ℕ) vars (suc i) j (explPi r s a b) = if isSomeName d a then (just (s , j) , i) ∷ vars i (suc j) b else (nothing , i) ∷ vars i j b vars i j (pi s a b) = vars i j b vars i j b = [] clauseOf : Type -> Name -> Clause clauseOf c n = clause lhs rhs where es = explPisToNames c i = length es mxs = vars i 0 c xs = mapMaybe proj₁ mxs k = length xs lhs = explRelArg (patCon n (patVars es)) ∷ [] lams = λ t -> foldr (explLam ∘ proj₁) t xs each = λ m i -> maybe (proj₂ >>> λ j -> pureVar (k ∸ suc j)) (pureVar (i + k)) m args = map (uncurry each) mxs grow = lams (vis appCon n args) rs = mapMaybe (uncurry λ m i -> vis# 1 appDef f (pureVar i) <$ m) mxs rhs = vis appDef (quote congn) $ reify k ∷ grow ∷ rs toTypeOf : Data Type -> Name -> Type toTypeOf (packData d a b cs ns) d′ = let ab = appendType a b; k = countPis ab in appendType (implicitize ab) $ appDef d (pisToArgVars k ab) ‵→ appDef d′ (pisToArgVars (suc k) ab) fromTypeOf : Data Type -> Name -> Type fromTypeOf (packData d a b cs ns) d′ = let ab = appendType a b; k = countPis ab in appendType (implicitize ab) $ appDef d′ (pisToArgVars k ab) ‵→ appDef d (pisToArgVars (suc k) ab) fromToTypeOf : Data Type -> Name -> Name -> Name -> Type fromToTypeOf (packData d a b cs ns) d′ to from = let ab = appendType a b; k = countPis ab in appendType (implicitize ab) ∘ pi "x" (explRelArg (appDef d (pisToArgVars k ab))) $ sate _≡_ (vis# 1 appDef from (vis# 1 appDef to (pureVar 0))) (pureVar 0) injTypeOf : Data Type -> Name -> Type injTypeOf (packData d a b cs ns) d′ = let ab = appendType a b k = countPis ab avs = pisToArgVars k ab in appendType (implicitize ab) $ sate _↦_ (appDef d avs) (appDef d′ avs) deriveDesc : Name -> Data Type -> TC Name deriveDesc d D = freshName (showName d ++ˢ "′") >>= λ d′ -> getType d >>= λ a -> declareDef (explRelArg d′) a >> d′ <$ (quoteData D >>= defineTerm d′) deriveTo : Data Type -> Name -> Name -> TC Name deriveTo D d′ fd = freshName ("to" ++ˢ showName d′) >>= λ to -> declareDef (explRelArg to) (toTypeOf D d′) >> to <$ defineTerm to (sateMacro gcoerce (pureDef fd)) deriveFrom : Data Type -> Name -> TC Name deriveFrom D d′ = freshName ("from" ++ˢ showName d′) >>= λ from -> declareDef (explRelArg from) (fromTypeOf D d′) >> from <$ defineTerm from (guncoercePure D) deriveFromTo : Data Type -> Name -> Name -> Name -> TC Name deriveFromTo D d′ to from = freshName ("fromTo" ++ˢ showName d′) >>= λ from-to -> declareDef (explRelArg from-to) (fromToTypeOf D d′ to from) >> from-to <$ defineFun from-to (fromToClausesOf D from-to) deriveInj : Data Type -> Name -> Name -> Name -> Name -> TC Name deriveInj D d′ to from from-to = freshName ("inj" ++ˢ showName d′) >>= λ inj -> declareDef (explRelArg inj) (injTypeOf D d′) >> inj <$ defineTerm inj (sate packInj (pureDef to) (pureDef from) (pureDef from-to)) deriveEqTo : Name -> Name -> TC _ deriveEqTo e d = getData d >>= λ D -> deriveDesc d D >>= λ d′ -> deriveFold d D >>= λ f -> deriveTo D d′ f >>= λ to -> deriveFrom D d′ >>= λ from -> deriveFromTo D d′ to from >>= λ from-to -> deriveInj D d′ to from from-to >>= λ inj -> defineTerm e (sate viaInj (pureDef inj))
{ "alphanum_fraction": 0.6187996711, "avg_line_length": 39.6630434783, "ext": "agda", "hexsha": "07316e18de11f2c928bf0ac39b2afcbd1a026139", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Reflection/DeriveEq.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Reflection/DeriveEq.agda", "max_line_length": 99, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Reflection/DeriveEq.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 1275, "size": 3649 }
------------------------------------------------------------------------ -- M-types for indexed containers, defined using functions ------------------------------------------------------------------------ -- Based on "Non-wellfounded trees in Homotopy Type Theory" by Ahrens, -- Capriotti and Spadotti. {-# OPTIONS --without-K --safe #-} open import Equality module Container.Indexed.M.Function {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq as Bijection using (_↔_) open import Container.Indexed eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq as F hiding (id; _∘_) open import H-level eq as H-level using (H-level) open import H-level.Closure eq import Nat eq as Nat open import Surjection eq using (_↠_) open import Tactic.Sigma-cong eq open import Univalence-axiom eq private variable a ℓ o p s : Level A I O : Type a b ext ext₁ ext₂ i k x : A Q : A → Type p C : Container I s p n : ℕ ------------------------------------------------------------------------ -- Chains -- Chains (indexed). Chain : Type i → ∀ ℓ → Type (i ⊔ lsuc ℓ) Chain {i = i} I ℓ = ∃ λ (P : ℕ → I → Type ℓ) → ∀ n → P (suc n) ⇾ P n -- Limits of chains. Limit : {I : Type i} → Chain I ℓ → I → Type ℓ Limit (P , down) i = ∃ λ (f : ∀ n → P n i) → ∀ n → down n i (f (suc n)) ≡ f n -- A kind of dependent universal property for limits. universal-property-Π : {A : Type a} {I : Type i} {g : A → I} → (X@(P , down) : Chain I ℓ) → ((a : A) → Limit X (g a)) ≃ (∃ λ (f : ∀ n (a : A) → P n (g a)) → ∀ n a → down n (g a) (f (suc n) a) ≡ f n a) universal-property-Π {g = g} X@(P , down) = (∀ a → Limit X (g a)) ↔⟨⟩ (∀ a → ∃ λ (f : ∀ n → P n (g a)) → ∀ n → down n (g a) (f (suc n)) ≡ f n) ↔⟨ ΠΣ-comm ⟩ (∃ λ (f : ∀ a n → P n (g a)) → ∀ a n → down n (g a) (f a (suc n)) ≡ f a n) ↝⟨ Σ-cong-refl Π-comm (λ _ → Π-comm) ⟩□ (∃ λ (f : ∀ n a → P n (g a)) → ∀ n a → down n (g a) (f (suc n) a) ≡ f n a) □ -- A universal property for limits. universal-property : {I : Type i} {P : I → Type p} → (X@(Q , down) : Chain I ℓ) → (P ⇾ Limit X) ↝[ i ∣ p ⊔ ℓ ] (∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n i x → down n i (f (suc n) i x) ≡ f n i x) universal-property {P = P} X@(Q , down) ext = (P ⇾ Limit X) ↔⟨⟩ (∀ i → P i → Limit X i) ↝⟨ (∀-cong ext λ _ → from-equivalence $ universal-property-Π X) ⟩ (∀ i → ∃ λ (f : ∀ n → P i → Q n i) → ∀ n x → down n i (f (suc n) x) ≡ f n x) ↔⟨ ΠΣ-comm ⟩ (∃ λ (f : ∀ i n → P i → Q n i) → ∀ i n x → down n i (f i (suc n) x) ≡ f i n x) ↝⟨ Σ-cong-refl Π-comm (λ _ → Π-comm) ⟩ (∃ λ (f : ∀ n i → P i → Q n i) → ∀ n i x → down n i (f (suc n) i x) ≡ f n i x) ↔⟨⟩ (∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n i x → down n i (f (suc n) i x) ≡ f n i x) □ -- Cones. Cone : {I : Type i} → (I → Type p) → Chain I ℓ → Type (i ⊔ p ⊔ ℓ) Cone P (Q , down) = ∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n → down n ∘⇾ f (suc n) ≡ f n -- A variant of the non-dependent universal property. universal-property-≃ : {I : Type i} {P : I → Type p} → Extensionality (i ⊔ p) (i ⊔ p ⊔ ℓ) → (X : Chain I ℓ) → (P ⇾ Limit X) ≃ Cone P X universal-property-≃ {i = i} {p = p} {ℓ = ℓ} {P = P} ext X@(Q , down) = P ⇾ Limit X ↝⟨ universal-property X (lower-extensionality p i ext) ⟩ (∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n i x → down n i (f (suc n) i x) ≡ f n i x) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality _ lzero ext) λ _ → ∀-cong (lower-extensionality p i ext) λ _ → Eq.extensionality-isomorphism (lower-extensionality (i ⊔ p) (i ⊔ p) ext)) ⟩ (∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n i → down n i ∘ f (suc n) i ≡ f n i) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality _ lzero ext) λ _ → Eq.extensionality-isomorphism (lower-extensionality (i ⊔ p) (i ⊔ p) ext)) ⟩ (∃ λ (f : ∀ n → P ⇾ Q n) → ∀ n → down n ∘⇾ f (suc n) ≡ f n) ↔⟨⟩ Cone P X □ -- Shifts a chain one step. shift : Chain I ℓ → Chain I ℓ shift = Σ-map (_∘ suc) (_∘ suc) -- Shifting does not affect the limit (assuming extensionality). -- -- This is a variant of Lemma 12 in "Non-wellfounded trees in Homotopy -- Type Theory". Limit-shift : ∀ (X : Chain I ℓ) {i} → Limit (shift X) i ↝[ lzero ∣ ℓ ] Limit X i Limit-shift {ℓ = ℓ} X@(P , down) {i = i} ext = Limit (shift X) i ↔⟨⟩ (∃ λ (p : ∀ n → P (suc n) i) → ∀ n → down (suc n) i (p (suc n)) ≡ p n) ↔⟨ (∃-cong λ _ → inverse $ drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩ (∃ λ (p : ∀ n → P (suc n) i) → (∃ λ (p₀ : P 0 i) → down 0 i (p 0) ≡ p₀) × ∀ n → down (suc n) i (p (suc n)) ≡ p n) ↔⟨ Σ-assoc F.∘ ∃-comm F.∘ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) → down 0 i (p 0) ≡ p₀ × ∀ n → down (suc n) i (p (suc n)) ≡ p n) ↝⟨ inverse-ext? (generalise-ext? (_↠_.logical-equivalence lemma₂-↠) (λ ext → _↠_.right-inverse-of lemma₂-↠ , _↔_.left-inverse-of (lemma₂-↔ ext))) ext ⟩ (∃ λ (p : ∀ n → P n i) → ∀ n → down n i (p (suc n)) ≡ p n) ↔⟨⟩ Limit X i □ where lemma₁-↠ : {P : ℕ → Type ℓ} → (∀ n → P n) ↠ (P 0 × (∀ n → P (suc n))) lemma₁-↠ ._↠_.logical-equivalence ._⇔_.to = λ p → p 0 , p ∘ suc lemma₁-↠ ._↠_.logical-equivalence ._⇔_.from = uncurry ℕ-case lemma₁-↠ ._↠_.right-inverse-of = refl lemma₁-↔ : {P : ℕ → Type ℓ} → Extensionality lzero ℓ → (∀ n → P n) ↔ (P 0 × (∀ n → P (suc n))) lemma₁-↔ _ ._↔_.surjection = lemma₁-↠ lemma₁-↔ ext ._↔_.left-inverse-of = λ f → apply-ext ext $ ℕ-case (refl _) λ _ → refl _ lemma₂-↠ : _ ↠ _ lemma₂-↠ = (∃ λ (p : ∀ n → P n i) → ∀ n → down n i (p (suc n)) ≡ p n) ↝⟨ (∃-cong λ _ → lemma₁-↠) ⟩ (∃ λ (p : ∀ n → P n i) → down 0 i (p 1) ≡ p 0 × ∀ n → down (suc n) i (p (2 + n)) ≡ p (1 + n)) ↝⟨ Σ-cong-id-↠ lemma₁-↠ ⟩□ (∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) → down 0 i (p 0) ≡ p₀ × ∀ n → down (suc n) i (p (suc n)) ≡ p n) □ lemma₂-↔ : Extensionality lzero ℓ → _ ↔ _ lemma₂-↔ ext = (∃ λ (p : ∀ n → P n i) → ∀ n → down n i (p (suc n)) ≡ p n) ↝⟨ (∃-cong λ _ → lemma₁-↔ ext) ⟩ (∃ λ (p : ∀ n → P n i) → down 0 i (p 1) ≡ p 0 × ∀ n → down (suc n) i (p (2 + n)) ≡ p (1 + n)) ↝⟨ Σ-cong-id (Eq.↔⇒≃ $ lemma₁-↔ ext) ⟩□ (∃ λ ((p₀ , p) : P 0 i × (∀ n → P (suc n) i)) → down 0 i (p 0) ≡ p₀ × ∀ n → down (suc n) i (p (suc n)) ≡ p n) □ ------------------------------------------------------------------------ -- Cochains -- Cochains (non-indexed). Cochain : ∀ ℓ → Type (lsuc ℓ) Cochain ℓ = ∃ λ (P : ℕ → Type ℓ) → ∀ n → P n → P (suc n) -- There is a pointwise split surjection from the "limit" of a cochain -- to the first element. cochain-limit-↠ : ((P , up) : Cochain ℓ) → (∃ λ (p : ∀ n → P n) → ∀ n → p (suc n) ≡ up n (p n)) ↠ P 0 cochain-limit-↠ (_ , up) = λ where ._↠_.logical-equivalence ._⇔_.to (p , _) → p 0 ._↠_.logical-equivalence ._⇔_.from p₀ .proj₁ → ℕ-rec p₀ up ._↠_.logical-equivalence ._⇔_.from p₀ .proj₂ _ → refl _ ._↠_.right-inverse-of → refl -- The "limit" of a cochain is pointwise equivalent to the first -- element (assuming extensionality). -- -- This is a variant of Lemma 11 in "Non-wellfounded trees in Homotopy -- Type Theory". cochain-limit : ((P , up) : Cochain ℓ) → (∃ λ (p : ∀ n → P n) → ∀ n → p (suc n) ≡ up n (p n)) ↝[ lzero ∣ ℓ ] P 0 cochain-limit X@(_ , up) ext = generalise-ext? (_↠_.logical-equivalence cl) (λ ext → _↠_.right-inverse-of cl , from∘to ext) ext where cl = cochain-limit-↠ X open _↠_ cl from₁∘to : ∀ l n → proj₁ (from (to l)) n ≡ proj₁ l n from₁∘to _ zero = refl _ from₁∘to l@(p , q) (suc n) = up n (proj₁ (from (to l)) n) ≡⟨ cong (up n) $ from₁∘to l n ⟩ up n (p n) ≡⟨ sym $ q n ⟩∎ p (suc n) ∎ from∘to : Extensionality lzero _ → ∀ l → from (to l) ≡ l from∘to ext l@(p , q) = Σ-≡,≡→≡ (apply-ext ext′ (from₁∘to l)) (apply-ext ext λ n → subst (λ p → ∀ n → p (suc n) ≡ up n (p n)) (apply-ext ext′ (from₁∘to l)) (λ _ → refl _) n ≡⟨ sym $ push-subst-application _ _ ⟩ subst (λ p → p (suc n) ≡ up n (p n)) (apply-ext ext′ (from₁∘to l)) (refl _) ≡⟨ trans subst-in-terms-of-trans-and-cong $ cong (trans _) $ trans-reflˡ _ ⟩ trans (sym $ cong (_$ suc n) (apply-ext ext′ (from₁∘to l))) (cong (λ p → up n (p n)) (apply-ext ext′ (from₁∘to l))) ≡⟨ cong₂ trans (cong sym $ Eq.cong-good-ext ext _) (trans (sym $ cong-∘ _ _ _) $ cong (cong _) $ Eq.cong-good-ext ext _) ⟩ trans (sym $ from₁∘to l (suc n)) (cong (up n) $ from₁∘to l n) ≡⟨⟩ trans (sym $ trans (cong (up n) $ from₁∘to l n) (sym $ q n)) (cong (up n) $ from₁∘to l n) ≡⟨ cong (flip trans _) $ trans (sym-trans _ _) $ cong (flip trans _) $ sym-sym _ ⟩ trans (trans (q n) (sym $ cong (up n) $ from₁∘to l n)) (cong (up n) $ from₁∘to l n) ≡⟨ trans-[trans-sym]- _ _ ⟩∎ q n ∎) where ext′ = Eq.good-ext ext -- A variant of cochain-limit-↠ for simple cochains. simple-cochain-limit-↠ : (∃ λ (f : ℕ → A) → ∀ n → f (suc n) ≡ f n) ↠ A simple-cochain-limit-↠ = λ where ._↠_.logical-equivalence ._⇔_.to (f , _) → f 0 ._↠_.logical-equivalence ._⇔_.from f₀ .proj₁ _ → f₀ ._↠_.logical-equivalence ._⇔_.from f₀ .proj₂ _ → refl _ ._↠_.right-inverse-of → refl -- The first projection of the right-to-left direction of -- simple-cochain-limit-↠ computes in a certain way. _ : proj₁ (_↠_.from simple-cochain-limit-↠ x) n ≡ x _ = refl _ -- A variant of cochain-limit for simple cochains. simple-cochain-limit : {A : Type a} → (∃ λ (f : ℕ → A) → ∀ n → f (suc n) ≡ f n) ↝[ lzero ∣ a ] A simple-cochain-limit = generalise-ext? (_↠_.logical-equivalence scl) (λ ext → _↠_.right-inverse-of scl , from∘to ext) where scl = simple-cochain-limit-↠ open _↠_ scl from₁∘to : ∀ l n → proj₁ (from (to l)) n ≡ proj₁ l n from₁∘to _ zero = refl _ from₁∘to l@(f , p) (suc n) = proj₁ (from (to l)) n ≡⟨ from₁∘to l n ⟩ f n ≡⟨ sym $ p n ⟩∎ f (suc n) ∎ from∘to : Extensionality lzero _ → ∀ l → from (to l) ≡ l from∘to ext l@(f , p) = Σ-≡,≡→≡ (apply-ext ext′ (from₁∘to l)) (apply-ext ext λ n → subst (λ f → ∀ n → f (suc n) ≡ f n) (apply-ext ext′ (from₁∘to l)) (λ _ → refl _) n ≡⟨ sym $ push-subst-application _ _ ⟩ subst (λ f → f (suc n) ≡ f n) (apply-ext ext′ (from₁∘to l)) (refl _) ≡⟨ trans subst-in-terms-of-trans-and-cong $ cong (trans _) $ trans-reflˡ _ ⟩ trans (sym $ cong (_$ suc n) (apply-ext ext′ (from₁∘to l))) (cong (_$ n) (apply-ext ext′ (from₁∘to l))) ≡⟨ cong₂ trans (cong sym $ Eq.cong-good-ext ext _) (Eq.cong-good-ext ext _) ⟩ trans (sym $ from₁∘to l (suc n)) (from₁∘to l n) ≡⟨⟩ trans (sym $ trans (from₁∘to l n) (sym $ p n)) (from₁∘to l n) ≡⟨ cong (flip trans _) $ trans (sym-trans _ _) $ cong (flip trans _) $ sym-sym _ ⟩ trans (trans (p n) (sym $ from₁∘to l n)) (from₁∘to l n) ≡⟨ trans-[trans-sym]- _ _ ⟩∎ p n ∎) where ext′ = Eq.good-ext ext -- The first projection of the right-to-left direction of -- simple-cochain-limit computes in a certain way (at least when "k" -- has certain values). _ : proj₁ (_⇔_.from (simple-cochain-limit _) x) n ≡ x _ = refl _ _ : proj₁ (_≃_.from (simple-cochain-limit ext) x) n ≡ x _ = refl _ ------------------------------------------------------------------------ -- Chains and containers -- Containers can be applied to chains. Container-chain : {I : Type i} {O : Type o} → Container₂ I O s p → Chain I ℓ → Chain O (s ⊔ p ⊔ ℓ) Container-chain C = Σ-map (⟦ C ⟧ ∘_) (map C ∘_) -- The polynomial functor (for a container C) of the limit of a chain -- is pointwise equivalent to the limit of C applied to the chain -- (assuming extensionality). -- -- This is a variant of Lemma 13 in "Non-wellfounded trees in Homotopy -- Type Theory". ⟦⟧-Limit≃ : {I : Type i} {O : Type o} → Extensionality p (s ⊔ p ⊔ ℓ) → (C : Container₂ I O s p) (X : Chain I ℓ) {o : O} → ⟦ C ⟧ (Limit X) o ≃ Limit (Container-chain C X) o ⟦⟧-Limit≃ {p = p} {s = s} {ℓ = ℓ} ext C X@(Q , down) {o = o} = ⟦ C ⟧ (Limit X) o ↔⟨⟩ (∃ λ (s : Shape C o) → (p : Position C s) → Limit X (index C p)) ↝⟨ (∃-cong λ _ → universal-property-Π X) ⟩ (∃ λ (s : Shape C o) → ∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) → ∀ n p → down n (index C p) (f (suc n) p) ≡ f n p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong (lower-extensionality p r ext) λ _ → Eq.extensionality-isomorphism (lower-extensionality p r ext)) ⟩ (∃ λ (s : Shape C o) → ∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) → ∀ n → down n _ ∘ f (suc n) ≡ f n) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong (lower-extensionality p r ext) λ _ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ subst-refl _ _) ⟩ (∃ λ (s : Shape C o) → ∃ λ (f : ∀ n (p : Position C s) → Q n (index C p)) → ∀ n → subst (λ s → (p : Position C s) → Q n (index C p)) (refl _) (down n _ ∘ f (suc n)) ≡ f n) ↝⟨ (Σ-cong (inverse $ simple-cochain-limit {k = equivalence} (lower-extensionality p r ext)) λ _ → F.id) ⟩ (∃ λ ((s , eq) : ∃ λ (s : ℕ → Shape C o) → ∀ n → s (suc n) ≡ s n) → ∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) → ∀ n → subst (λ s → (p : Position C s) → Q n (index C p)) (eq n) (down n _ ∘ f (suc n)) ≡ f n) ↔⟨ (∃-cong λ _ → (∃-cong λ _ → (∀-cong (lower-extensionality p r ext) λ _ → Bijection.Σ-≡,≡↔≡) F.∘ inverse ΠΣ-comm) F.∘ ∃-comm) F.∘ inverse Σ-assoc ⟩ (∃ λ (s : ℕ → Shape C o) → ∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) → ∀ n → (s (suc n) , down n _ ∘ f (suc n)) ≡ (s n , f n)) ↔⟨⟩ (∃ λ (s : ℕ → Shape C o) → ∃ λ (f : ∀ n (p : Position C (s n)) → Q n (index C p)) → ∀ n → map C (down n) o (s (suc n) , f (suc n)) ≡ (s n , f n)) ↝⟨ (inverse $ Σ-cong-id (Eq.↔⇒≃ ΠΣ-comm)) F.∘ Eq.↔⇒≃ Σ-assoc ⟩ (∃ λ (f : ∀ n → ∃ λ (s : Shape C o) → (p : Position C s) → Q n (index C p)) → ∀ n → map C (down n) o (f (suc n)) ≡ f n) ↔⟨⟩ Limit (Container-chain C X) o □ where r = s ⊔ p ⊔ ℓ ------------------------------------------------------------------------ -- M-types private -- Up-to C n is the n-fold application of ⟦ C ⟧ to something -- trivial. Up-to : {I : Type i} → Container I s p → ℕ → I → Type (i ⊔ s ⊔ p) Up-to C zero = λ _ → ↑ _ ⊤ Up-to C (suc n) = ⟦ C ⟧ (Up-to C n) -- Up-to C is downwards closed. down : ∀ n → Up-to C (suc n) ⇾ Up-to C n down zero = _ down (suc n) = map _ (down n) -- One can combine Up-to and down into a chain. M-chain : {I : Type i} → Container I s p → Chain I (i ⊔ s ⊔ p) M-chain C = Up-to C , down -- An M-type for a given container. M : {I : Type i} → Container I s p → I → Type (i ⊔ s ⊔ p) M C = Limit (M-chain C) -- M C is, in a certain sense, a fixpoint of ⟦ C ⟧ (assuming -- extensionality). M-fixpoint : Block "M-fixpoint" → {I : Type i} → Extensionality p (i ⊔ s ⊔ p) → {C : Container I s p} {i : I} → ⟦ C ⟧ (M C) i ≃ M C i M-fixpoint ⊠ ext {C = C} {i = i} = ⟦ C ⟧ (M C) i ↔⟨⟩ ⟦ C ⟧ (Limit (M-chain C)) i ↝⟨ ⟦⟧-Limit≃ ext C (M-chain C) ⟩ Limit (Container-chain C (M-chain C)) i ↔⟨⟩ Limit (shift (M-chain C)) i ↝⟨ Limit-shift (M-chain C) (lower-extensionality _ lzero ext) ⟩ Limit (M-chain C) i ↔⟨⟩ M C i □ -- One direction of the fixpoint. out-M : Block "M-fixpoint" → {I : Type i} {C : Container I s p} → Extensionality p (i ⊔ s ⊔ p) → M C ⇾ ⟦ C ⟧ (M C) out-M b ext _ = _≃_.from (M-fixpoint b ext) -- The other direction of the fixpoint. in-M : Block "M-fixpoint" → {I : Type i} {C : Container I s p} → Extensionality p (i ⊔ s ⊔ p) → ⟦ C ⟧ (M C) ⇾ M C in-M b ext _ = _≃_.to (M-fixpoint b ext) -- A "computation" rule for in-M. in-M≡ : (b : Block "M-fixpoint") {I : Type i} (ext : Extensionality p (i ⊔ s ⊔ p)) → let ext′ = apply-ext $ Eq.good-ext $ lower-extensionality p (i ⊔ s ⊔ p) ext in {C : Container I s p} {i : I} (x@(s , f) : ⟦ C ⟧ (M C) i) → in-M b ext _ x ≡ ( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n) , ℕ-case (refl _) (λ n → cong (s ,_) $ ext′ λ p → proj₂ (f p) n) ) in-M≡ {i = i} {p = p} {s = sℓ} ⊠ ext {C = C} x@(s , f) = ( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n) , ℕ-case (refl _) (λ n → Σ-≡,≡→≡ (refl _) (≡⇒→ (cong (_≡ λ p → proj₁ (f p) n) $ sym $ subst-refl _ _) (ext′ λ p → proj₂ (f p) n))) ) ≡⟨ cong (ℕ-case _ (λ n → s , λ p → proj₁ (f p) n) ,_) $ cong (ℕ-case (refl _)) $ apply-ext (lower-extensionality _ lzero ext) lemma ⟩∎ ( ℕ-case _ (λ n → s , λ p → proj₁ (f p) n) , ℕ-case (refl _) (λ n → cong (s ,_) $ ext′ λ p → proj₂ (f p) n) ) ∎ where ext′ = apply-ext $ Eq.good-ext $ lower-extensionality p (i ⊔ sℓ ⊔ p) ext lemma = λ n → Σ-≡,≡→≡ (refl _) (≡⇒→ (cong (_≡ λ p → proj₁ (f p) n) $ sym $ subst-refl _ _) (ext′ λ p → proj₂ (f p) n)) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) $ ≡⇒→ (cong (_≡ λ p → proj₁ (f p) n) $ sym $ subst-refl _ _) (ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $ sym $ subst-id-in-terms-of-≡⇒↝ equivalence ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) $ subst id (cong (_≡ λ p → proj₁ (f p) n) $ sym $ subst-refl _ _) (ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $ sym $ subst-∘ _ _ _ ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) $ subst (_≡ λ p → proj₁ (f p) n) (sym $ subst-refl _ _) (ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ cong (trans _) $ subst-trans _ ⟩ cong (_ ,_) (trans (sym $ subst-refl _ _) $ trans (subst-refl _ _) (ext′ λ p → proj₂ (f p) n)) ≡⟨ cong (cong (_ ,_)) $ trans-sym-[trans] _ _ ⟩∎ cong (_ ,_) (ext′ λ p → proj₂ (f p) n) ∎ -- A coalgebra defined using M and out-M. M-coalgebra : Block "M-fixpoint" → {I : Type i} → Extensionality p (i ⊔ s ⊔ p) → (C : Container I s p) → Coalgebra C M-coalgebra b ext C = M C , out-M b ext -- Definitions used to implement unfold. private module Unfold ((P , f) : Coalgebra C) where up : ∀ n → P ⇾ Up-to C n up zero = _ up (suc n) = map C (up n) ∘⇾ f ok : ∀ n → down n ∘⇾ up (suc n) ≡ up n ok zero = refl _ ok (suc n) = map C (down n ∘⇾ up (suc n)) ∘⇾ f ≡⟨ cong (λ g → map C g ∘⇾ f) $ ok n ⟩∎ map C (up n) ∘⇾ f ∎ -- A direct implementation of an unfold operation. unfold : ((P , _) : Coalgebra C) → P ⇾ M C unfold Y i p = (λ n → up n i p) , (λ n → cong (λ f → f i p) (ok n)) where open Unfold Y -- Definitions used to implement M-final. private module M-final (b : Block "M-fixpoint") {I : Type i} {C : Container I s p} (ext : Extensionality p (i ⊔ s ⊔ p)) (ext′ : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) (Y@(P , f) : Coalgebra C) where step : P ⇾ Q → P ⇾ ⟦ C ⟧ Q step h = map C h ∘⇾ f univ : Cone P (M-chain C) → P ⇾ M C univ = _≃_.from (universal-property-≃ ext′ (M-chain C)) steps₁ : (∀ n → P ⇾ Up-to C n) → (∀ n → P ⇾ Up-to C n) steps₁ g n i p = ℕ-case {P = λ n → Up-to C n i} _ (λ n → step (g n) i p) n Eq : (∀ n → P ⇾ Up-to C n) → Type (i ⊔ s ⊔ p) Eq g = ∀ n → down n ∘⇾ g (suc n) ≡ g n steps₂ : {g : ∀ n → P ⇾ Up-to C n} → Eq g → Eq (steps₁ g) steps₂ p zero = refl _ steps₂ {g = g} p (suc n) = down (suc n) ∘⇾ steps₁ g (suc (suc n)) ≡⟨⟩ step (down n ∘⇾ g (suc n)) ≡⟨ cong step (p n) ⟩∎ step (g n) ∎ steps : Cone P (M-chain C) → Cone P (M-chain C) steps = Σ-map steps₁ steps₂ ext-i : Extensionality i (i ⊔ s ⊔ p) ext-i = lower-extensionality (s ⊔ p) lzero ext′ ext₀ : Extensionality lzero (i ⊔ s ⊔ p) ext₀ = lower-extensionality _ lzero ext ext₀′ : {A : Type} {P : A → Type (i ⊔ s ⊔ p)} → Extensionality′ A P ext₀′ = apply-ext (Eq.good-ext ext₀) ≡univ-steps : ∀ c → in-M b ext ∘⇾ step (univ c) ≡ univ (steps c) ≡univ-steps c@(g , eq) = apply-ext ext-i λ i → apply-ext ext′ λ p → in-M b ext i (step (univ c) i p) ≡⟨ in-M≡ b ext (step (univ c) i p) ⟩ ( (λ n → steps₁ g n i p) , ℕ-case (refl _) (λ n → cong (proj₁ (f i p) ,_) (ext‴ λ p′ → ext⁻¹ (ext⁻¹ (eq n) (index C p′)) (proj₂ (f i p) p′))) ) ≡⟨ cong ((λ n → steps₁ g n i p) ,_) $ ext₀′ $ ℕ-case ( refl _ ≡⟨ sym $ ext⁻¹-refl _ {x = p} ⟩ ext⁻¹ (refl _) p ≡⟨ cong (flip ext⁻¹ p) $ sym $ ext⁻¹-refl _ ⟩ ext⁻¹ (ext⁻¹ {B = λ x → P x → ↑ _ ⊤} (refl _) i) p ≡⟨⟩ ext⁻¹ (ext⁻¹ (steps₂ eq zero) i) p ∎) (λ n → cong (proj₁ (f i p) ,_) (ext‴ λ p′ → ext⁻¹ (ext⁻¹ (eq n) (index C p′)) (proj₂ (f i p) p′)) ≡⟨ elim₁ (λ eq → cong (proj₁ (f i p) ,_) (ext‴ λ p′ → ext⁻¹ (ext⁻¹ eq (index C p′)) (proj₂ (f i p) p′)) ≡ ext⁻¹ (ext⁻¹ (cong (λ g → map C g ∘⇾ f) eq) i) p) ( cong (proj₁ (f i p) ,_) (ext‴ λ p′ → ext⁻¹ (ext⁻¹ (refl (g n)) (index C p′)) (proj₂ (f i p) p′)) ≡⟨ (cong (cong _) $ cong ext‴ $ ext‴ λ _ → trans (cong (flip ext⁻¹ _) $ ext⁻¹-refl _) $ ext⁻¹-refl _) ⟩ cong (proj₁ (f i p) ,_) (ext‴ λ _ → refl _) ≡⟨ trans (cong (cong _) $ Eq.good-ext-refl ext″ _) $ cong-refl _ ⟩ refl _ ≡⟨ sym $ trans (cong (flip ext⁻¹ _) $ trans (cong (flip ext⁻¹ _) $ cong-refl _) $ ext⁻¹-refl _) $ ext⁻¹-refl _ ⟩∎ ext⁻¹ (ext⁻¹ (cong step (refl (g n))) i) p ∎) (eq n) ⟩ ext⁻¹ (ext⁻¹ (cong step (eq n)) i) p ∎) ⟩ ( (λ n → steps₁ g n i p) , (λ n → ext⁻¹ (ext⁻¹ (steps₂ eq n) i) p) ) ≡⟨⟩ univ (steps c) i p ∎ where ext″ = lower-extensionality p (i ⊔ s ⊔ p) ext ext‴ = apply-ext (Eq.good-ext ext″) contr : Contractible (P ⇾ Up-to C 0) contr = Π-closure ext-i 0 λ _ → Π-closure ext′ 0 λ _ → ↑-closure 0 ⊤-contractible steps₁-fixpoint≃ : {g : ∀ n → P ⇾ Up-to C n} → (g ≡ steps₁ g) ≃ (∀ n → g (suc n) ≡ step (g n)) steps₁-fixpoint≃ {g = g} = g ≡ steps₁ g ↝⟨ inverse $ Eq.extensionality-isomorphism ext₀ ⟩ (∀ n → g n ≡ steps₁ g n) ↝⟨ Πℕ≃ ext₀ ⟩ g 0 ≡ steps₁ g 0 × (∀ n → g (suc n) ≡ steps₁ g (suc n)) ↔⟨⟩ (λ _ _ → lift tt) ≡ (λ _ _ → lift tt) × (∀ n → g (suc n) ≡ step (g n)) ↔⟨ (drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ H-level.⇒≡ 0 contr) ⟩□ (∀ n → g (suc n) ≡ step (g n)) □ cochain₁ : Cochain (i ⊔ s ⊔ p) cochain₁ = (λ n → P ⇾ Up-to C n) , (λ _ → step) cl₁← : P ⇾ Up-to C 0 → ∀ n → P ⇾ Up-to C n cl₁← = proj₁ ∘ _↠_.from (cochain-limit-↠ cochain₁) ⇾↔⊤ : (P ⇾ Up-to C 0) ↔ ⊤ ⇾↔⊤ = _⇔_.to contractible⇔↔⊤ contr g₀ : P ⇾ Up-to C 0 g₀ = _↔_.from ⇾↔⊤ _ steps₁-fixpoint : ∀ n → cl₁← g₀ n ≡ steps₁ (cl₁← g₀) n steps₁-fixpoint = ℕ-case (refl _) (λ _ → refl _) steps₁-fixpoint-lemma : {p : Eq (cl₁← g₀)} → subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡ trans (p n) (steps₁-fixpoint n) steps₁-fixpoint-lemma {n = n} {p = p} = subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡⟨⟩ subst Eq (ext₀′ (ℕ-case _ (λ _ → refl _))) p n ≡⟨ cong (λ eq → subst Eq eq p n) $ cong ext₀′ $ cong (flip ℕ-case _) $ H-level.mono (Nat.zero≤ 2) contr _ _ ⟩ subst Eq (ext₀′ steps₁-fixpoint) p n ≡⟨ sym $ push-subst-application _ _ ⟩ subst (λ g → down n ∘⇾ g (suc n) ≡ g n) (ext₀′ steps₁-fixpoint) (p n) ≡⟨ trans subst-in-terms-of-trans-and-cong $ cong (flip trans _) $ cong sym $ sym $ cong-∘ _ _ _ ⟩ trans (sym (cong (down n ∘⇾_) (cong (_$ suc n) (ext₀′ steps₁-fixpoint)))) (trans (p n) (cong (_$ n) (ext₀′ steps₁-fixpoint))) ≡⟨ cong₂ (λ eq₁ eq₂ → trans (sym (cong (down n ∘⇾_) eq₁)) (trans _ eq₂)) (Eq.cong-good-ext ext₀ _) (Eq.cong-good-ext ext₀ _) ⟩ trans (sym (cong (down n ∘⇾_) (steps₁-fixpoint (suc n)))) (trans (p n) (steps₁-fixpoint n)) ≡⟨⟩ trans (sym (cong (down n ∘⇾_) (refl _))) (trans (p n) (steps₁-fixpoint n)) ≡⟨ trans (cong (flip trans _) $ trans (cong sym $ cong-refl _) sym-refl) $ trans-reflˡ _ ⟩∎ trans (p n) (steps₁-fixpoint n) ∎ cochain₂ : Cochain (i ⊔ s ⊔ p) cochain₂ = (λ n → down n ∘⇾ step (cl₁← g₀ n) ≡ cl₁← g₀ n) , (λ _ → cong step) equiv : Block "equiv" → (Y ⇨ M-coalgebra b ext C) ≃ ⊤ equiv ⊠ = Y ⇨ M-coalgebra b ext C ↔⟨⟩ (∃ λ (h : P ⇾ M C) → out-M b ext ∘⇾ h ≡ step h) ↝⟨ (∃-cong λ _ → inverse $ Eq.≃-≡ $ ∀-cong ext-i λ _ → ∀-cong ext′ λ _ → M-fixpoint b ext) ⟩ (∃ λ (h : P ⇾ M C) → (in-M b ext ∘⇾ out-M b ext) ∘⇾ h ≡ in-M b ext ∘⇾ step h) ↝⟨ (∃-cong λ h → ≡⇒↝ _ $ cong (_≡ in-M b ext ∘⇾ step h) $ apply-ext ext-i λ _ → apply-ext ext′ λ _ → _≃_.right-inverse-of (M-fixpoint b ext) _) ⟩ (∃ λ (h : P ⇾ M C) → h ≡ in-M b ext ∘⇾ step h) ↝⟨ (inverse $ Σ-cong (inverse $ universal-property-≃ ext′ (M-chain C)) λ _ → F.id) ⟩ (∃ λ (c : Cone P (M-chain C)) → univ c ≡ in-M b ext ∘⇾ step (univ c)) ↝⟨ (∃-cong λ c → ≡⇒↝ _ $ cong (univ c ≡_) $ ≡univ-steps c) ⟩ (∃ λ (c : Cone P (M-chain C)) → univ c ≡ univ (steps c)) ↝⟨ (∃-cong λ _ → Eq.≃-≡ $ inverse $ universal-property-≃ ext′ (M-chain C)) ⟩ (∃ λ (c : Cone P (M-chain C)) → c ≡ steps c) ↔⟨ (∃-cong λ _ → inverse Bijection.Σ-≡,≡↔≡) ⟩ (∃ λ ((g , p) : Cone P (M-chain C)) → ∃ λ (q : g ≡ steps₁ g) → subst Eq q p ≡ steps₂ p) ↔⟨ Σ-assoc F.∘ (∃-cong λ _ → ∃-comm) F.∘ inverse Σ-assoc ⟩ (∃ λ ((g , q) : ∃ λ (g : ∀ n → P ⇾ Up-to C n) → g ≡ steps₁ g) → ∃ λ (p : Eq g) → subst Eq q p ≡ steps₂ p) ↝⟨ (inverse $ Σ-cong (inverse $ ∃-cong λ _ → steps₁-fixpoint≃) λ _ → F.id) ⟩ (∃ λ ((g , q) : ∃ λ (g : ∀ n → P ⇾ Up-to C n) → ∀ n → g (suc n) ≡ step (g n)) → ∃ λ (p : Eq g) → subst Eq (_≃_.from steps₁-fixpoint≃ q) p ≡ steps₂ p) ↝⟨ (inverse $ Σ-cong (inverse $ cochain-limit cochain₁ {k = equivalence} ext₀) λ _ → F.id) ⟩ (∃ λ (g : P ⇾ Up-to C 0) → ∃ λ (p : Eq (cl₁← g)) → subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p ≡ steps₂ p) ↔⟨ drop-⊤-left-Σ ⇾↔⊤ ⟩ (∃ λ (p : Eq (cl₁← g₀)) → subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p ≡ steps₂ p) ↝⟨ (∃-cong λ _ → inverse $ Eq.extensionality-isomorphism ext₀) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → subst Eq (_≃_.from steps₁-fixpoint≃ (λ _ → refl _)) p n ≡ steps₂ p n) ↝⟨ (∃-cong λ p → ∀-cong ext₀ λ n → ≡⇒↝ _ $ cong (_≡ steps₂ p n) steps₁-fixpoint-lemma) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → trans (p n) (steps₁-fixpoint n) ≡ steps₂ p n) ↝⟨ (∃-cong λ _ → ∀-cong ext₀ λ _ → ≡⇒↝ _ $ [trans≡]≡[≡trans-symʳ] _ _ _) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → p n ≡ trans (steps₂ p n) (sym (steps₁-fixpoint n))) ↝⟨ (∃-cong λ _ → Πℕ≃ ext₀) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → p zero ≡ trans (steps₂ p zero) (sym (steps₁-fixpoint zero)) × (∀ n → p (suc n) ≡ trans (steps₂ p (suc n)) (sym (steps₁-fixpoint (suc n))))) ↔⟨ (∃-cong λ _ → drop-⊤-left-× λ _ → _⇔_.to contractible⇔↔⊤ $ H-level.⇒≡ 0 $ H-level.⇒≡ 0 contr) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → p (suc n) ≡ trans (steps₂ p (suc n)) (sym (steps₁-fixpoint (suc n)))) ↔⟨⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → p (suc n) ≡ trans (cong step (p n)) (sym (refl _))) ↝⟨ (∃-cong λ _ → ∀-cong ext₀ λ _ → ≡⇒↝ _ $ cong (_ ≡_) $ trans (cong (trans _) sym-refl) $ trans-reflʳ _) ⟩ (∃ λ (p : Eq (cl₁← g₀)) → ∀ n → p (suc n) ≡ cong step (p n)) ↝⟨ cochain-limit cochain₂ ext₀ ⟩ down {C = C} 0 ∘⇾ step (cl₁← g₀ 0) ≡ cl₁← g₀ 0 ↔⟨ _⇔_.to contractible⇔↔⊤ $ H-level.⇒≡ 0 contr ⟩□ ⊤ □ -- The definition of M-final is set up so that it returns unfold Y -- rather than the function obtained directly from equiv. Here it is -- shown that the two functions are equal. ≡-unfold : ∀ b → proj₁ (_≃_.from (equiv b) _) ≡ unfold Y ≡-unfold ⊠ = apply-ext ext-i λ i → apply-ext ext′ λ p → Σ-≡,≡→≡ (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)) (lemma₃ i p) where -- Pieces of the function obtained from equiv. -- -- These pieces are rather similar to pieces of unfold. I chose to -- implement unfold using explicit pattern matching rather than -- ℕ-rec to ensure that things do not unfold too much. up′ : ∀ n → P ⇾ Up-to C n up′ = ℕ-rec _ (λ _ ih → map C ih ∘⇾ f) ok′ : ∀ n → down n ∘⇾ up′ (suc n) ≡ up′ n ok′ = ℕ-rec (proj₁ (H-level.⇒≡ 0 contr)) (λ _ → cong step) lemma₁ : ∀ n → up′ n ≡ Unfold.up Y n lemma₁ zero = refl _ lemma₁ (suc n) = step (up′ n) ≡⟨ cong step $ lemma₁ n ⟩∎ step (Unfold.up Y n) ∎ lemma₂ : ∀ n → trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n)))) (trans (ok′ n) (lemma₁ n)) ≡ Unfold.ok Y n lemma₂ zero = trans (sym (cong (const _) (cong step (refl _)))) (trans (proj₁ (H-level.⇒≡ 0 contr)) (refl _)) ≡⟨ trans (cong (flip trans _) $ trans (cong sym $ cong-const _) $ sym-refl) $ trans (trans-reflˡ _) $ trans-reflʳ _ ⟩ proj₁ (H-level.⇒≡ 0 contr) ≡⟨ H-level.mono (Nat.zero≤ 2) contr _ _ ⟩∎ refl _ ∎ lemma₂ (suc n) = trans (sym (cong (down (1 + n) ∘⇾_) (lemma₁ (2 + n)))) (trans (ok′ (1 + n)) (lemma₁ (1 + n))) ≡⟨⟩ trans (sym (cong (map C (down n) ∘⇾_) (cong step (lemma₁ (suc n))))) (trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨ cong (flip trans _) $ cong sym $ cong-∘ _ _ _ ⟩ trans (sym (cong ((map C (down n) ∘⇾_) ∘ step) (lemma₁ (suc n)))) (trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨⟩ trans (sym (cong (step ∘ (down n ∘⇾_)) (lemma₁ (suc n)))) (trans (cong step (ok′ n)) (cong step (lemma₁ n))) ≡⟨ sym $ trans (cong-trans _ _ _) $ cong₂ trans (trans (cong-sym _ _) $ cong sym $ cong-∘ _ _ _) (cong-trans _ _ _) ⟩ cong step (trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n)))) (trans (ok′ n) (lemma₁ n))) ≡⟨ cong (cong _) $ lemma₂ n ⟩ cong step (Unfold.ok Y n) ≡⟨⟩ Unfold.ok Y (1 + n) ∎ lemma₃ : ∀ i p → subst (λ f → ∀ n → down n i (f (suc n)) ≡ f n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)) (cong (_$ p) ∘ cong (_$ i) ∘ ok′) ≡ (λ n → cong (λ f → f i p) (Unfold.ok Y n)) lemma₃ i p = ext₀′ λ n → subst (λ f → ∀ n → down n i (f (suc n)) ≡ f n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)) (cong (_$ p) ∘ cong (_$ i) ∘ ok′) n ≡⟨ sym $ push-subst-application _ _ ⟩ subst (λ f → down n i (f (suc n)) ≡ f n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)) (cong (_$ p) (cong (_$ i) (ok′ n))) ≡⟨ cong (subst (λ f → down n i (f (suc n)) ≡ f n) _) $ cong-∘ _ _ _ ⟩ subst (λ f → down n i (f (suc n)) ≡ f n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)) (cong (λ f → f i p) (ok′ n)) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (λ f → down n i (f (suc n))) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)))) (trans (cong (λ f → f i p) (ok′ n)) (cong (_$ n) (ext₀′ λ n → cong (λ f → f i p) (lemma₁ n)))) ≡⟨ cong₂ (λ eq₁ eq₂ → trans (sym eq₁) (trans (cong (λ f → f i p) (ok′ n)) eq₂)) (trans (sym $ cong-∘ _ _ _) $ cong (cong _) $ Eq.cong-good-ext ext₀ _) (Eq.cong-good-ext ext₀ _) ⟩ trans (sym (cong (down n i) (cong (λ f → f i p) (lemma₁ (suc n))))) (trans (cong (λ f → f i p) (ok′ n)) (cong (λ f → f i p) (lemma₁ n))) ≡⟨ cong (flip trans _) $ cong sym $ cong-∘ _ _ _ ⟩ trans (sym (cong (λ f → down n i (f i p)) (lemma₁ (suc n)))) (trans (cong (λ f → f i p) (ok′ n)) (cong (λ f → f i p) (lemma₁ n))) ≡⟨ sym $ trans (cong-trans _ _ _) $ cong₂ trans (trans (cong-sym _ _) $ cong sym $ cong-∘ _ _ _) (cong-trans _ _ _) ⟩ cong (λ f → f i p) (trans (sym (cong (down n ∘⇾_) (lemma₁ (suc n)))) (trans (ok′ n) (lemma₁ n))) ≡⟨ cong (cong _) $ lemma₂ n ⟩∎ cong (λ f → f i p) (Unfold.ok Y n) ∎ unfold-lemma : Block "equiv" → out-M b ext ∘⇾ unfold Y ≡ map _ (unfold Y) ∘⇾ f unfold-lemma b′ = subst (λ h → out-M b ext ∘⇾ h ≡ map C h ∘⇾ f) (≡-unfold b′) (proj₂ (_≃_.from (equiv b′) _)) unfold-morphism : Block "equiv" → Y ⇨ M-coalgebra b ext C unfold-morphism b = unfold Y , unfold-lemma b ≡-unfold-morphism : ∀ b → _≃_.from (equiv b) _ ≡ unfold-morphism b ≡-unfold-morphism b = Σ-≡,≡→≡ (≡-unfold b) (refl (unfold-lemma b)) M-final : Contractible (Y ⇨ M-coalgebra b ext C) M-final = block λ b → _↔_.from (contractible↔≃⊤ ext′) $ Eq.with-other-inverse (equiv b) (λ _ → unfold-morphism b) (λ _ → ≡-unfold-morphism b) -- Note that unfold is not blocked, but that the other pieces are. M-final-partly-blocked : Block "M-final" → Contractible (Y ⇨ M-coalgebra b ext C) M-final-partly-blocked _ .proj₁ .proj₁ = unfold Y M-final-partly-blocked ⊠ .proj₁ .proj₂ = M-final .proj₁ .proj₂ M-final-partly-blocked ⊠ .proj₂ = M-final .proj₂ -- M-coalgebra b ext C is a final coalgebra (assuming extensionality). -- -- This is a variant of Theorem 7 from "Non-wellfounded trees in -- Homotopy Type Theory". M-final : (b : Block "M-final") {I : Type i} {C : Container I s p} → (ext : Extensionality p (i ⊔ s ⊔ p)) → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → Final (M-coalgebra b ext C) M-final b ext ext′ Y = M-final.M-final-partly-blocked b ext ext′ Y b -- The morphism returned by M-final is definitionally equal to an -- instance of unfold. _ : {Y : Coalgebra C} → proj₁ (proj₁ (M-final b ext₁ ext₂ Y)) ≡ unfold Y _ = refl _ ------------------------------------------------------------------------ -- H-levels -- If the shape types of C have h-level n, then M C i has h-level n -- (assuming extensionality). -- -- This is a variant of Lemma 14 from "Non-wellfounded trees in -- Homotopy Type Theory". H-level-M : Extensionality p (i ⊔ s ⊔ p) → {I : Type i} {C : Container I s p} {i : I} → (∀ i → H-level n (Shape C i)) → H-level n (M C i) H-level-M {p = p} {i = iℓ} {n = m} ext {C = C} hyp = Σ-closure m (Π-closure ext′ m H-level-Up-to) λ _ → Π-closure ext′ m $ H-level.⇒≡ m ∘ H-level-Up-to where ext′ = lower-extensionality _ lzero ext step : ∀ P → (∀ {i} → H-level m (P i)) → (∀ {i} → H-level m (⟦ C ⟧ P i)) step P h = Σ-closure m (hyp _) λ _ → Π-closure ext m λ _ → h H-level-Up-to : ∀ n → H-level m (Up-to C n i) H-level-Up-to (suc n) = step (Up-to C n) (H-level-Up-to n) H-level-Up-to zero = ↑-closure m (H-level.mono (Nat.zero≤ m) ⊤-contractible) -- If the shape types of C have h-level n, then F i has h-level n, -- where F is the carrier of any final coalgebra of C, and "final -- coalgebra" is defined using Final′. (Assuming extensionality.) H-level-final-coalgebra′ : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → {I : Type i} {C : Container I s p} {i : I} → (((X , _) , _) : Final-coalgebra′ C) → (∀ i → H-level n (Shape C i)) → H-level n (X i) H-level-final-coalgebra′ {i = iℓ} {s = s} {n = n} ext {C = C} {i = i} F@((X , _) , _) = block λ b → (∀ i → H-level n (Shape C i)) ↝⟨ H-level-M ext′ ⟩ H-level n (M C i) ↝⟨ H-level-cong _ n $ carriers-of-final-coalgebras-equivalent′ (Final-coalgebra→Final-coalgebra′ $ M-coalgebra b ext′ C , M-final b ext′ ext) F _ ⟩□ H-level n (X i) □ where ext′ = lower-extensionality (iℓ ⊔ s) lzero ext -- The previous result holds also if Final-coalgebra′ is replaced by -- Final-coalgebra. H-level-final-coalgebra : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → {I : Type i} {C : Container I s p} {i : I} → (((X , _) , _) : Final-coalgebra C) → (∀ i → H-level n (Shape C i)) → H-level n (X i) H-level-final-coalgebra ext = H-level-final-coalgebra′ ext ∘ Final-coalgebra→Final-coalgebra′
{ "alphanum_fraction": 0.364529724, "avg_line_length": 42.9165217391, "ext": "agda", "hexsha": "fe205759fe4cbdc3fc660a7c4cb0726cdbdcb014", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/Indexed/M/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/Indexed/M/Function.agda", "max_line_length": 140, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/Indexed/M/Function.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 15731, "size": 49354 }
data Nat : Set where record Ord (A : Set) : Set where field f : A → A instance OrdNat : Ord Nat OrdNat = record { f = λ x → x } postulate T : Nat → Set R : ∀ {A} {{_ : Ord A}} → A → Set -- Before solving the type of m, instance search considers it to -- be a potential candidate for Ord Nat. It then proceeds to check -- uniqueness by comparing m and OrdNat. The problem was that this -- left a constraint m == OrdNat that leaked into the state. foo : Set foo = ∀ (n : Nat) m → R n → T m
{ "alphanum_fraction": 0.6401590457, "avg_line_length": 23.9523809524, "ext": "agda", "hexsha": "1241eeb7ac79c1cc1772efb834b23c3af04095d9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1456.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1456.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1456.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 154, "size": 503 }
{-# OPTIONS --without-K #-} module Inspect where open import Data.Unit.Core open import SimpleHoTT using (refl;_≡_) ------------------------------------------------------------------------ -- Inspect on steroids (borrowed from standard library) -- Inspect on steroids can be used when you want to pattern match on -- the result r of some expression e, and you also need to "remember" -- that r ≡ e. data Reveal_is_ {a} {A : Set a} (x : Hidden A) (y : A) : Set a where ⟪_⟫ : (eq : reveal x ≡ y) → Reveal x is y inspect : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal (hide f x) is (f x) inspect f x = ⟪ refl (f x) ⟫
{ "alphanum_fraction": 0.5407854985, "avg_line_length": 28.7826086957, "ext": "agda", "hexsha": "e3e7c815c78e0ee3246624ff464fb417e4c68fe0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/Inspect.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/Inspect.agda", "max_line_length": 72, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/Inspect.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 205, "size": 662 }
-- Andreas, 2015-06-28 -- {-# OPTIONS -v tc.polarity:20 #-} open import Common.Size -- List should be monotone in both arguments -- (even as phantom type). data List (i : Size) (A : Set) : Set where [] : List i A castL : ∀{i A} → List i A → List ∞ A castL x = x castLL : ∀{i A} → List i (List i A) → List ∞ (List ∞ A) castLL x = x -- Stream should be antitone in the first and monotone in the second argument -- (even with field `tail' missing). record Stream (i : Size) (A : Set) : Set where coinductive field head : A castS : ∀{i A} → Stream ∞ A → Stream i A castS x = x castSS : ∀{i A} → Stream ∞ (Stream ∞ A) → Stream i (Stream i A) castSS x = x
{ "alphanum_fraction": 0.6089552239, "avg_line_length": 21.6129032258, "ext": "agda", "hexsha": "c157bff80643b8992b8063e9cb06546567f588f2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1596.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1596.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1596.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 237, "size": 670 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Rings.Orders.Total.Cauchy {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) where open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order cauchy : Sequence A → Set (m ⊔ o) cauchy s = ∀ (ε : A) → (Ring.0R R < ε) → Sg ℕ (λ N → ∀ {m n : ℕ} → (N <N m) → (N <N n) → abs (Ring._-R_ R (index s m) (index s n)) < ε)
{ "alphanum_fraction": 0.7069943289, "avg_line_length": 46, "ext": "agda", "hexsha": "78b1b2d4859aaefd99cb678d822982a3ca761ae3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/Cauchy.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/Cauchy.agda", "max_line_length": 275, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/Cauchy.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 335, "size": 1058 }
module Class.Listable where open import Class.Equality open import Data.List open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All.Properties open import Data.List.Relation.Unary.Unique.Propositional open import Data.List.Membership.Propositional open import Relation.Binary.PropositionalEquality open import Relation.Nullary record Listable (A : Set) : Set where field listing : List A unique : Unique listing complete : (a : A) → a ∈ listing Listable→Eq : Eq A Listable→Eq ._≟_ a b = helper (complete a) (complete b) unique where helper : ∀ {a b} {l : List A} → (a ∈ l) → (b ∈ l) → Unique l → Dec (a ≡ b) helper {a} {b} {l} h h' u with l | h | h' | u ... | ._ | here refl | here refl | _ = yes refl ... | ._ | here refl | there h | h' ∷ _ = no λ where refl → All¬⇒¬Any h' h ... | ._ | there h | here refl | h' ∷ _ = no λ where refl → All¬⇒¬Any h' h ... | ._ | there h | there h' | _ ∷ u = helper h h' u
{ "alphanum_fraction": 0.6122650841, "avg_line_length": 36.1071428571, "ext": "agda", "hexsha": "7270677fbe3b419c8f1c37c44ac31715f0320a5e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/Listable.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/Listable.agda", "max_line_length": 82, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/Listable.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 326, "size": 1011 }
{-# OPTIONS --without-K #-} {- Ribbon is the explicit covering space construction. This construction is given by Daniel Grayson, Favonia (me) and Guillaume Brunerie together. -} open import Base open import Homotopy.Pointed -- A is the pointed base space. -- Y is intended to be a (group-)set, -- but can be an arbitrarily weird space. module Homotopy.Cover.Ribbon {i} (A⋆ : pType i) {Y : Set i} where open pType A⋆ renaming (∣_∣ to A ; ⋆ to a) open import Homotopy.Truncation open import Homotopy.PathTruncation open import Homotopy.HomotopyGroups open import Algebra.GroupSets (fundamental-group A⋆) -- The HIT ribbon---reconstructed covering space private module Ribbon {act : action Y} where open action act private data #ribbon (a₂ : A) : Set i where #trace : Y → a ≡₀ a₂ → #ribbon a₂ ribbon : A → Set i ribbon = #ribbon -- A point in the fiber a₂. {- y is a point in the fiber a, and p is a path to transport y to fiber a₂. -} trace : ∀ {a₂} → Y → a ≡₀ a₂ → ribbon a₂ trace = #trace {- A loop based at a can used as a group action or for concatination. Both should be equivalent. And after pasting, make the type fiberwise a set. -} postulate -- HIT paste : ∀ {a₂} y loop (p : a ≡₀ a₂) → trace (y ∙ loop) p ≡ trace y (loop ∘₀ p) ribbon-is-set : ∀ a₂ → is-set (ribbon a₂) -- Standard dependent eliminator ribbon-rec : ∀ a₂ {j} (P : ribbon a₂ → Set j) ⦃ P-is-set : ∀ r → is-set (P r) ⦄ (trace* : ∀ y p → P (trace y p)) (paste* : ∀ y loop p → transport P (paste y loop p) (trace* (y ∙ loop) p) ≡ trace* y (loop ∘₀ p)) → (∀ r → P r) ribbon-rec a₂ P trace* paste* (#trace y p) = trace* y p -- Standard non-dependent eliminator ribbon-rec-nondep : ∀ a₂ {j} (P : Set j) ⦃ P-is-set : is-set P ⦄ (trace* : ∀ (y : Y) (p : a ≡₀ a₂) → P) (paste* : ∀ y (loop : a ≡₀ a) p → trace* (y ∙ loop) p ≡ trace* y (loop ∘₀ p)) → (ribbon a₂ → P) ribbon-rec-nondep a₂ P trace* paste* (#trace y p) = trace* y p open Ribbon public hiding (ribbon) module _ (act : action Y) where ribbon : A → Set i ribbon = Ribbon.ribbon {act} trans-trace : ∀ {a₁ a₂} (q : a₁ ≡ a₂) y p → transport ribbon q (trace y p) ≡ trace y (p ∘₀ proj q) trans-trace refl y p = ap (trace y) $ ! $ refl₀-right-unit p
{ "alphanum_fraction": 0.5626984127, "avg_line_length": 30.7317073171, "ext": "agda", "hexsha": "94076f1001d53869e4d3747dc19d0368848096d0", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/Cover/Ribbon.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/Cover/Ribbon.agda", "max_line_length": 85, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/Cover/Ribbon.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 815, "size": 2520 }
------------------------------------------------------------------------------ -- ABP Lemma 1 ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From Dybjer and Sander's paper: The first lemma states that given a -- start state S of the ABP, we will arrive at a state S', where the -- message has been received by the receiver, but where the -- acknowledgement has not yet been received by the sender. module FOT.FOTC.Program.ABP.Lemma1NoHelperATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.Loop open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesATP using ( x≢not-x ) open import FOTC.Data.List open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Fair.PropertiesATP open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- 30 November 2013. If we don't have the following definitions -- outside, the ATPs cannot prove the theorems. as^ : ∀ b i' is' ds → D as^ b i' is' ds = await b i' is' ds {-# ATP definition as^ #-} bs^ : D → D → D → D → D → D bs^ b i' is' ds os₁^ = corrupt os₁^ · (as^ b i' is' ds) {-# ATP definition bs^ #-} cs^ : D → D → D → D → D → D cs^ b i' is' ds os₁^ = ack b · (bs^ b i' is' ds os₁^) {-# ATP definition cs^ #-} ds^ : D → D → D → D → D → D → D ds^ b i' is' ds os₁^ os₂^ = corrupt os₂^ · cs^ b i' is' ds os₁^ {-# ATP definition ds^ #-} os₁^ : D → D → D os₁^ os₁' ft₁^ = ft₁^ ++ os₁' {-# ATP definition os₁^ #-} os₂^ : D → D os₂^ os₂ = tail₁ os₂ {-# ATP definition os₂^ #-} ------------------------------------------------------------------------------ -- From Dybjer and Sander's paper: From the assumption that os₁ ∈ Fair -- and hence by unfolding Fair, we conclude that there are ft₁ :  F*T -- and os₁' : Fair, such that os₁ = ft₁ ++ os₁'. -- -- We proceed by induction on ft₁ : F*T using helper. -- 26 January 2014. Pattern matching after a @with@ it is not accepted -- by the termination checker. See Agda issue 59, comment 18. {-# TERMINATING #-} lemma₁ : ∀ b i' is' os₁ os₂ as bs cs ds js → Bit b → Fair os₁ → Fair os₂ → S b (i' ∷ is') os₁ os₂ as bs cs ds js → ∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ] Fair os₁' ∧ Fair os₂' ∧ S' b i' is' os₁' os₂' as' bs' cs' ds' js' ∧ js ≡ i' ∷ js' lemma₁ b i' is' os₁ os₂ as bs cs ds js Bb Fos₁ Fos₂ s with Fair-out Fos₁ ... | .(true ∷ []) , os₁' , f*tnil , os₁≡ft₁++os₁' , Fos₁' = prf where postulate prf : ∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ js' ] Fair os₁' ∧ Fair os₂' ∧ (as' ≡ await b i' is' ds' ∧ bs' ≡ corrupt os₁' · as' ∧ cs' ≡ ack (not b) · bs' ∧ ds' ≡ corrupt os₂' · (b ∷ cs') ∧ js' ≡ out (not b) · bs') ∧ js ≡ i' ∷ js' {-# ATP prove prf #-} ... | .(F ∷ ft₁^) , os₁' , f*tcons {ft₁^} FTft₁ , os₁≡ft₁++os₁' , Fos₁' = lemma₁ b i' is' (ft₁^ ++ os₁') (tail₁ os₂) (await b i' is' ds) (corrupt (ft₁^ ++ os₁') · await b i' is' ds) (ack b · (corrupt (ft₁^ ++ os₁') · await b i' is' ds)) (corrupt (tail₁ os₂) · (ack b · (corrupt (ft₁^ ++ os₁') · await b i' is' ds))) js Bb (Fair-in (ft₁^ , os₁' , FTft₁ , refl , Fos₁')) (tail-Fair Fos₂) ihS where postulate os₁-eq-helper : os₁ ≡ F ∷ os₁^ os₁' ft₁^ {-# ATP prove os₁-eq-helper #-} postulate as-eq : as ≡ < i' , b > ∷ (as^ b i' is' ds) {-# ATP prove as-eq #-} postulate bs-eq : bs ≡ error ∷ (bs^ b i' is' ds (os₁^ os₁' ft₁^)) {-# ATP prove bs-eq os₁-eq-helper as-eq #-} postulate cs-eq : cs ≡ not b ∷ cs^ b i' is' ds (os₁^ os₁' ft₁^) {-# ATP prove cs-eq bs-eq #-} postulate ds-eq : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) ∨ ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove ds-eq head-tail-Fair cs-eq #-} postulate as^-eq-helper₁ : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) → as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove as^-eq-helper₁ x≢not-x #-} postulate as^-eq-helper₂ : ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) → as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove as^-eq-helper₂ #-} as^-eq : as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq postulate js-eq : js ≡ out b · bs^ b i' is' ds (os₁^ os₁' ft₁^) {-# ATP prove js-eq bs-eq #-} ihS : S b (i' ∷ is') (os₁^ os₁' ft₁^) (os₂^ os₂) (as^ b i' is' ds) (bs^ b i' is' ds (os₁^ os₁' ft₁^)) (cs^ b i' is' ds (os₁^ os₁' ft₁^)) (ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)) js ihS = as^-eq , refl , refl , refl , js-eq
{ "alphanum_fraction": 0.4764475889, "avg_line_length": 35.8066666667, "ext": "agda", "hexsha": "e01fdfa361ad4d27bab06e5e015acc72726ad170", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda", "max_line_length": 84, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/Lemma1NoHelperATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1958, "size": 5371 }
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --sized-types #-} module Lambda.Partiality-monad.Inductive.Virtual-machine where open import Prelude hiding (⊥) open import Partiality-monad.Inductive open import Lambda.Syntax open import Lambda.Virtual-machine open Closure Code -- A functional semantics for the VM. -- -- For an alternative definition, see the semantics in -- Lambda.Simplified.Partiality-monad.Inductive.Virtual-machine, which -- is defined using a fixpoint combinator. steps : State → ℕ → Maybe Value ⊥ steps s n with step s steps s zero | continue s′ = never steps s (suc n) | continue s′ = steps s′ n steps s n | done v = now (just v) steps s n | crash = now nothing steps-increasing : ∀ s n → steps s n ⊑ steps s (suc n) steps-increasing s n with step s steps-increasing s zero | continue s′ = never⊑ _ steps-increasing s (suc n) | continue s′ = steps-increasing s′ n steps-increasing s n | done v = ⊑-refl _ steps-increasing s n | crash = ⊑-refl _ stepsˢ : State → Increasing-sequence (Maybe Value) stepsˢ s = (steps s , steps-increasing s) exec : State → Maybe Value ⊥ exec s = ⨆ (stepsˢ s)
{ "alphanum_fraction": 0.6053811659, "avg_line_length": 31.1162790698, "ext": "agda", "hexsha": "a563332de567925b305e12a00d255b2af7afedd4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Partiality-monad/Inductive/Virtual-machine.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 337, "size": 1338 }
module Cats.Category.Constructions.Initial where open import Data.Product using (proj₁ ; proj₂) open import Level open import Cats.Category.Base import Cats.Category.Constructions.Iso as Iso import Cats.Category.Constructions.Unique as Unique module Build {lo la l≈} (Cat : Category lo la l≈) where open Category Cat open Iso.Build Cat open Unique.Build Cat IsInitial : Obj → Set (lo ⊔ la ⊔ l≈) IsInitial Zero = ∀ X → ∃! Zero X initial→id-unique : ∀ {A} → IsInitial A → IsUnique (id {A}) initial→id-unique {A} init id′ with init A ... | ∃!-intro id″ _ id″-uniq = ≈.trans (≈.sym (id″-uniq _)) (id″-uniq _) initial-unique : ∀ {A B} → IsInitial A → IsInitial B → A ≅ B initial-unique {A} {B} A-init B-init = record { forth = ∃!′.arr (A-init B) ; back = ∃!′.arr (B-init A) ; back-forth = ≈.sym (initial→id-unique A-init _) ; forth-back = ≈.sym (initial→id-unique B-init _) } Initial⇒X-unique : ∀ {Zero} → IsInitial Zero → ∀ {X} {f g : Zero ⇒ X} → f ≈ g Initial⇒X-unique init {X} {f} {g} with init X ... | ∃!-intro x _ x-uniq = ≈.trans (≈.sym (x-uniq _)) (x-uniq _) record HasInitial {lo la l≈} (Cat : Category lo la l≈) : Set (lo ⊔ la ⊔ l≈) where open Category Cat open Build Cat field Zero : Obj isInitial : IsInitial Zero
{ "alphanum_fraction": 0.6165011459, "avg_line_length": 26.18, "ext": "agda", "hexsha": "0a152a9463ec2f2d73b87cb00a4ac2f8c47c86c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Constructions/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Constructions/Initial.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Constructions/Initial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 464, "size": 1309 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Limits where open import Level open import Categories.Category open import Categories.Functor open import Categories.Functor.Properties open import Categories.Object.Terminal open import Categories.Object.Initial open import Categories.Diagram.Limit open import Categories.Diagram.Colimit open import Categories.Diagram.Cone.Properties open import Categories.Diagram.Cocone.Properties open import Categories.Category.Construction.Cones open import Categories.Category.Construction.Cocones private variable o ℓ e : Level 𝒞 𝒟 ℐ : Category o ℓ e module _ (F : Functor 𝒞 𝒟) {J : Functor ℐ 𝒞} where PreservesLimit : (L : Limit J) → Set _ PreservesLimit L = IsTerminal (Cones (F ∘F J)) (F-map-Coneˡ F limit) where open Limit L PreservesColimit : (L : Colimit J) → Set _ PreservesColimit L = IsInitial (Cocones (F ∘F J)) (F-map-Coconeˡ F colimit) where open Colimit L ReflectsLimits : Set _ ReflectsLimits = ∀ (K : Cone J) → IsTerminal (Cones (F ∘F J)) (F-map-Coneˡ F K) → IsTerminal (Cones J) K ReflectsColimits : Set _ ReflectsColimits = ∀ (K : Cocone J) → IsInitial (Cocones (F ∘F J)) (F-map-Coconeˡ F K) → IsInitial (Cocones J) K -- record CreatesLimits : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o″ ⊔ ℓ″) where -- field -- preserves-limits : PreservesLimit -- reflects-limits : ReflectsLimits -- record CreatesColimits : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o″ ⊔ ℓ″) where -- field -- preserves-colimits : PreservesColimit -- reflects-colimits : ReflectsColimits Continuous : ∀ o ℓ e → (F : Functor 𝒞 𝒟) → Set _ Continuous {𝒞 = 𝒞} o ℓ e F = ∀ {𝒥 : Category o ℓ e} {J : Functor 𝒥 𝒞} (L : Limit J) → PreservesLimit F L Cocontinuous : ∀ o ℓ e → (F : Functor 𝒞 𝒟) → Set _ Cocontinuous {𝒞 = 𝒞} o ℓ e F = ∀ {𝒥 : Category o ℓ e} {J : Functor 𝒥 𝒞} (L : Colimit J) → PreservesColimit F L
{ "alphanum_fraction": 0.6769633508, "avg_line_length": 34.1071428571, "ext": "agda", "hexsha": "c0d51cf88665a112f0f2bc7fdfbf4783c8bff8e9", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Limits.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Limits.agda", "max_line_length": 114, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Limits.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 659, "size": 1910 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Maybe open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring module KeyValue.KeyValue {a b : _} (keys : Set a) (values : Set b) where record KeyValue {c : _} (maps : Set c) : Set (a ⊔ b ⊔ c) where field tryFind : maps → keys → Maybe values add : (map : maps) → keys → values → maps empty : maps count : maps → ℕ lookupAfterAdd : (map : maps) → (k : keys) → (v : values) → tryFind (add map k v) k ≡ yes v lookupAfterAdd' : (map : maps) → (k1 : keys) → (v : values) → (k2 : keys) → (k1 ≡ k2) || (tryFind (add map k1 v) k2 ≡ tryFind map k2) countAfterAdd' : (map : maps) → (k : keys) → (v : values) → (tryFind map k ≡ no) → count (add map k v) ≡ succ (count map) countAfterAdd : (map : maps) → (k : keys) → (v1 v2 : values) → (tryFind map k ≡ yes v2) → count (add map k v1) ≡ count map
{ "alphanum_fraction": 0.6027253669, "avg_line_length": 45.4285714286, "ext": "agda", "hexsha": "795c3752764d9411e306093826d4e41a300f377c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "KeyValue/KeyValue.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "KeyValue/KeyValue.agda", "max_line_length": 137, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "KeyValue/KeyValue.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 342, "size": 954 }
module TerminationArgumentSwapping where -- subtyping simple types data Bool : Set where true : Bool false : Bool _&&_ : Bool -> Bool -> Bool true && a = a false && a = false data Ty : Set where bot : Ty top : Ty arr : Ty -> Ty -> Ty subty : Ty -> Ty -> Bool subty bot _ = true subty _ top = true subty (arr a b) (arr a' b') = subty a' a && subty b b' subty _ _ = false -- maximum with happy swapping data Nat : Set where zero : Nat succ : Nat -> Nat -- Maximum of 3 numbers max3 : Nat -> Nat -> Nat -> Nat max3 zero zero z = z max3 zero y zero = y max3 x zero zero = x max3 (succ x) (succ y) zero = succ (max3 x y zero) max3 (succ x) zero (succ z) = succ (max3 x z zero) max3 zero (succ y) (succ z) = succ (max3 y z zero) max3 (succ x) (succ y) (succ z) = succ (max3 z x y) -- can also be done with sized types -- max3 : Nat^i -> Nat^i -> Nat^i -> Nat^i -- swapping with higher-order datatypes data Ord : Set where ozero : Ord olim : (Nat -> Ord) -> Ord foo : Ord -> (Nat -> Ord) -> Ord foo ozero g = ozero foo (olim f) g = olim (\n -> foo (g n) f)
{ "alphanum_fraction": 0.5974499089, "avg_line_length": 20.3333333333, "ext": "agda", "hexsha": "6fd523eccdbd4e9f791a42811bba03a36cf2f428", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/TerminationArgumentSwapping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/TerminationArgumentSwapping.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/TerminationArgumentSwapping.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 385, "size": 1098 }
module Typed.LTLCRef where open import Data.List.Relation.Ternary.Interleaving.Propositional open import Relation.Unary hiding (_∈_) open import Relation.Unary.PredicateTransformer using (Pt) open import Function open import Category.Monad open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Allstar open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Monad.Reader open import Prelude data Ty : Set where unit : Ty ref : Ty → Ty prod : Ty → Ty → Ty _⊸_ : (a b : Ty) → Ty Ctx = List Ty CtxT = List Ty → List Ty open import Relation.Ternary.Separation.Construct.List Ty open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Construct.Product infixr 20 _◂_ _◂_ : Ty → CtxT → CtxT (x ◂ f) Γ = x ∷ f Γ variable a b c : Ty variable ℓv : Level variable τ : Set ℓv variable Γ Γ₁ Γ₂ Γ₃ : List τ data Exp : Ty → Ctx → Set where -- base type tt : ε[ Exp unit ] letunit : ∀[ Exp unit ✴ Exp a ⇒ Exp a ] -- linear λ calculus var : ∀[ Just a ⇒ Exp a ] lam : ∀[ (a ◂ id ⊢ Exp b) ⇒ Exp (a ⊸ b) ] ap : ∀[ Exp (a ⊸ b) ✴ Exp a ⇒ Exp b ] -- products pair : ∀[ Exp a ✴ Exp b ⇒ Exp (prod a b) ] letpair : ∀[ Exp (prod a b) ✴ (λ Γ → a ∷ b ∷ Γ) ⊢ Exp c ⇒ Exp c ] -- state ref : ε[ Exp a ⇒ Exp (ref a) ] swaps : ∀[ Exp (ref a) ✴ Exp b ⇒ Exp (prod a (ref b)) ] del : ε[ Exp (ref unit) ⇒ Exp unit ] -- store types ST = List Ty -- values data Val : Ty → Pred ST 0ℓ where tt : ε[ Val unit ] clos : Exp b (a ∷ Γ) → ∀[ Allstar Val Γ ⇒ Val (a ⊸ b) ] ref : ∀[ Just a ⇒ Val (ref a) ] pair : ∀[ Val a ✴ Val b ⇒ Val (prod a b) ] {- The 'give-it-to-me-straight' semantics -} Store : ST → ST → Set Store = Allstar Val -- {- First attempt -- evaluation without a frame, seems simple enough... -} -- eval₁ : ∀ {Ψ Γ} → Exp a Γ → Allstar Val Γ Φ₁ → Store Ψ Φ₂ → Φ₁ ⊎ Φ₂ ≣ Ψ → -- ∃ λ Ψ' → ∃₂ λ Φ₃ Φ₄ → Store Ψ' Φ₃ × Val a Φ₄ × Φ₃ ⊎ Φ₄ ≣ Ψ' -- eval₁ (num x) nil μ σ = -, -, -, μ , num x , ⊎-comm σ -- eval₁ (lam e) env μ σ = -, -, -, μ , (clos e env) , ⊎-comm σ -- eval₁ (ap (f ×⟨ σ ⟩ e)) env μ σ₂ = -- let -- env₁ ×⟨ σ₃ ⟩ env₂ = repartition σ env -- _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₂ -- {- Oops, store contains more stuff than used; i.e. we have a frame -} -- in case eval₁ f env₁ μ {!τ₂!} of λ where -- (_ , _ , _ , μ' , clos e env₃ , σ₄) → {!!} -- eval₁ (var x) = {!!} -- eval₁ (ref e) = {!!} -- eval₁ (deref e) = {!!} -- eval₁ (asgn x) = {!!} -- {- First attempt -- evaluation *with* a frame. Are you sure want this? -} -- eval₂ : ∀ {Ψ Γ Φf} → Exp a Γ → Allstar Val Γ Φ₁ → Store Ψ Φ₂ → Φ₁ ⊎ Φ₂ ≣ Φ → Φ ⊎ Φf ≣ Ψ → -- ∃₂ λ Φ' Ψ' → ∃₂ λ Φ₃ Φ₄ → Store Ψ' Φ₃ × Val a Φ₄ × Φ₃ ⊎ Φ₄ ≣ Φ' × Φ' ⊎ Φf ≣ Ψ' -- eval₂ (num x) nil μ σ₁ σ₂ = -- case ⊎-id⁻ˡ σ₁ of λ where refl → -, -, -, -, μ , num x , ⊎-idʳ , σ₂ -- eval₂ (lam x) env μ σ₁ σ₂ = {!!} -- eval₂ (pair (e₁ ×⟨ σ ⟩ e₂)) env μ σ₁ σ₂ = -- let -- env₁ ×⟨ σ₃ ⟩ env₂ = repartition σ env -- _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₁ -- separation between sub-env and store -- _ , τ₃ , τ₄ = ⊎-assoc (⊎-comm τ₁) σ₂ -- compute the frame -- in case eval₂ e₁ env₁ μ τ₂ τ₃ of λ where -- (_ , _ , _ , _ , μ' , v₁ , σ₄ , σ₅) → -- let v = eval₂ e₂ env₂ μ' {!τ₁!} {!!} in {!!} -- eval₂ (var x) env μ σ₁ σ₂ = {!!} -- eval₂ (ref e) env μ σ₁ σ₂ = {!!} -- eval₂ (deref e) env μ σ₁ σ₂ = {!!} -- eval₂ (asgn x) env μ σ₁ σ₂ = {!!} -- eval₂ (ap (f ×⟨ σ ⟩ e)) env μ σ₁ σ₂ = {!!} {- The monadic semantics -} module _ {i : Size} where open import Relation.Ternary.Separation.Monad.Delay public open import Relation.Ternary.Separation.Monad.State open import Relation.Ternary.Separation.Monad.State.Heap Val open HeapOps (Delay i) {{ monad = delay-monad }} using (state-monad; newref; read; write; Cells) public open ReaderTransformer id-morph Val (StateT (Delay i) Cells) {{ monad = state-monad }} renaming (Reader to M'; reader-monad to monad) public open Monads.Monad monad public open Monads using (_&_; str; typed-str) public M : Size → (Γ₁ Γ₂ : Ctx) → Pt ST 0ℓ M i = M' {i} mutual eval⊸ : ∀ {i Γ} → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ M i Γ ε (Val b) ] eval⊸ e v = do clos e env ×⟨ σ₂ ⟩ v ← ►eval e & v empty ← append (cons (v ×⟨ ⊎-comm σ₂ ⟩ env)) ►eval e eval : ∀ {i Γ} → Exp a Γ → ε[ M i Γ ε (Val a) ] eval tt = do return tt eval (letunit (e₁ ×⟨ Γ≺ ⟩ e₂)) = do tt ← frame Γ≺ (►eval e₁) ►eval e₂ eval (var refl) = do lookup eval (lam e) = do env ← ask return (clos e env) eval (pair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do v₁ ← frame Γ≺ (►eval e₁) v₂✴v₁ ← ►eval e₂ & v₁ return (pair (✴-swap v₂✴v₁)) eval (letpair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do pair (v₁ ×⟨ σ ⟩ v₂) ← frame Γ≺ (►eval e₁) empty ← prepend (cons (v₁ ×⟨ σ ⟩ (singleton v₂))) ►eval e₂ eval (ap (f ×⟨ Γ≺ ⟩ e)) = do v ← frame (⊎-comm Γ≺) (►eval e) eval⊸ f v eval (ref e) = do v ← ►eval e r ← liftM (newref v) return (ref r) eval (swaps (e₁ ×⟨ Γ≺ ⟩ e₂)) = do ref ra ← frame Γ≺ (►eval e₁) vb ×⟨ σ₁ ⟩ ra ← ►eval e₂ & ra rb ×⟨ σ₂ ⟩ va ← liftM (write (ra ×⟨ ⊎-comm σ₁ ⟩ vb)) return (pair (va ×⟨ (⊎-comm σ₂) ⟩ (ref rb))) eval (del e) = do ref r ← ►eval e liftM (read r) ►eval : ∀ {i Γ} → Exp a Γ → ε[ M i Γ ε (Val a) ] app (app (►eval e) env σ) μ σ' = later (λ where .force → app (app (eval e) env σ) μ σ')
{ "alphanum_fraction": 0.5466139752, "avg_line_length": 28.2588832487, "ext": "agda", "hexsha": "8a78ffde897b8b1cc75e9bb84c1ba3729461d56c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Typed/LTLCRef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Typed/LTLCRef.agda", "max_line_length": 92, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Typed/LTLCRef.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 2284, "size": 5567 }
{- 2010-09-28 Andreas, see issue 336 -} module WhyWeNeedUntypedLambda where IdT = ({A : Set} -> A -> A) data _==_ {A : Set2}(a : A) : A -> Set where refl : a == a -- Untyped lambda succeeds, because checking \ x -> x : X is postponed, -- then the solution X = IdT is found, and upon revisiting the tc problem -- a hidden lambda \ {A} is inserted. foo : ({X : Set1} -> X -> X == IdT -> Set) -> Set foo k = k (\ x -> x) refl -- succeeds {- -- Typed lambda fails, because \ (x : _) -> x has inferred type ?A -> ?A -- but then unification with IdT fails. foo' : ({X : Set1} -> X -> X == IdT -> Set) -> Set foo' k = k (\ (x : _) -> x) refl -- fails -}
{ "alphanum_fraction": 0.5610859729, "avg_line_length": 30.1363636364, "ext": "agda", "hexsha": "4b0977bc42e41cf1089893a5e3a4b6087dfc2eb7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/WhyWeNeedUntypedLambda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 223, "size": 663 }
------------------------------------------------------------------------ -- The parser data type ------------------------------------------------------------------------ -- This hybrid variant is coinductive /and/ includes !_. module RecursiveDescent.Hybrid.Type where open import Data.Bool open import Data.Product.Record open import RecursiveDescent.Index -- A type for parsers which can be implemented using recursive -- descent. The types used ensure that the implemented backends are -- structurally recursive. -- The parsers are indexed on a type of nonterminals. codata Parser (tok : Set) (nt : ParserType) : ParserType₁ where !_ : forall {e c r} -> nt (e , c) r -> Parser tok nt (e , step c) r symbol : Parser tok nt (false , leaf) tok return : forall {r} -> r -> Parser tok nt (true , leaf) r fail : forall {r} -> Parser tok nt (false , leaf) r _?>>=_ : forall {c₁ e₂ c₂ r₁ r₂} -> Parser tok nt (true , c₁) r₁ -> (r₁ -> Parser tok nt (e₂ , c₂) r₂) -> Parser tok nt (e₂ , node c₁ c₂) r₂ _!>>=_ : forall {c₁ r₁ r₂} {i₂ : r₁ -> Index} -> Parser tok nt (false , c₁) r₁ -> ((x : r₁) -> Parser tok nt (i₂ x) r₂) -> Parser tok nt (false , step c₁) r₂ alt : forall e₁ e₂ {c₁ c₂ r} -> Parser tok nt (e₁ , c₁) r -> Parser tok nt (e₂ , c₂) r -> Parser tok nt (e₁ ∨ e₂ , node c₁ c₂) r -- Grammars. Grammar : Set -> ParserType -> Set1 Grammar tok nt = forall {i r} -> nt i r -> Parser tok nt i r
{ "alphanum_fraction": 0.5300581771, "avg_line_length": 35.976744186, "ext": "agda", "hexsha": "deefe192dcb7aa52a6ffecc13d0b7f7cc85bc962", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 450, "size": 1547 }
------------------------------------------------------------------------------ -- No theorem used by the shelltestrunner test ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module NoTheorem where postulate D : Set _≡_ : D → D → Set a b : D postulate foo : a ≡ b {-# ATP prove foo #-}
{ "alphanum_fraction": 0.37, "avg_line_length": 26.3157894737, "ext": "agda", "hexsha": "5bed1870cdc832300c6e3f9b4e87f046da923742", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/NoTheorem.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/NonConjectures/NoTheorem.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/NoTheorem.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 94, "size": 500 }
module Categories.SubCategory where open import Categories.Category open import Data.Product sub-category : ∀ {o ℓ e o′ ℓ′} -> (C : Category o ℓ e) -> let module C = Category C in {A : Set o′} (U : A -> C.Obj) (R : ∀ {a b} -> U a C.⇒ U b -> Set ℓ′) -> (∀ {a} -> R (C.id {U a})) -> (∀ {a b c} {f : U b C.⇒ U c} {g : U a C.⇒ U b} -> R f -> R g -> R (f C.∘ g)) → Category _ _ _ sub-category C {A} U R Rid R∘ = record { Obj = A ; _⇒_ = λ a b → Σ (U a C.⇒ U b) R ; _≡_ = λ f g → proj₁ f C.≡ proj₁ g ; id = C.id , Rid ; _∘_ = λ f g → (proj₁ f C.∘ proj₁ g) , R∘ (proj₂ f) (proj₂ g) ; assoc = C.assoc ; identityˡ = C.identityˡ ; identityʳ = C.identityʳ ; equiv = record { refl = C.Equiv.refl ; sym = C.Equiv.sym ; trans = C.Equiv.trans } ; ∘-resp-≡ = C.∘-resp-≡ } where module C = Category C
{ "alphanum_fraction": 0.4758698092, "avg_line_length": 31.8214285714, "ext": "agda", "hexsha": "8364da7e9f0e6e8711655444b841ae45eb305ce8", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/SubCategory.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/SubCategory.agda", "max_line_length": 122, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/SubCategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 378, "size": 891 }
module EtaAndMetas where record Functor : Set₁ where field F : Set → Set eta : Functor → Functor eta S = record { F = F } where open Functor S postulate Π : (To : Functor) → Set mkΠ : (B : Functor) → Π (eta B) To : Functor π : Π (eta To) π = mkΠ _
{ "alphanum_fraction": 0.5962962963, "avg_line_length": 14.2105263158, "ext": "agda", "hexsha": "a1b365025798f3d2f43105d93c6f6bc0833d7613", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/EtaAndMetas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/EtaAndMetas.agda", "max_line_length": 33, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/EtaAndMetas.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 100, "size": 270 }
module Integer12 where open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥) open import Data.Bool using (Bool; true; false) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong; cong₂; sym) isTrue : Bool → Set isTrue true = ⊤ isTrue false = ⊥ -- 整数のガチな定義 --(succ (succ (pred zero))などはもうできない) mutual data ℤ : Set where zero : ℤ succ : (x : ℤ) → isTrue (zeroOrSucc x) → ℤ pred : (x : ℤ) → isTrue (zeroOrPred x) → ℤ zeroOrSucc : ℤ → Bool zeroOrSucc zero = true zeroOrSucc (succ x p) = true zeroOrSucc (pred x p) = false zeroOrPred : ℤ → Bool zeroOrPred zero = true zeroOrPred (succ x p) = false zeroOrPred (pred x p) = true -- succ (succ zero tt) tt のように使う postulate -- ここだけ ttxS : (x : ℤ) → (isTrue (zeroOrSucc x)) ttxP : (x : ℤ) → (isTrue (zeroOrPred x)) succPred : (x : ℤ)(px : isTrue (zeroOrPred x))(px2 : isTrue (zeroOrSucc (pred x px))) → succ (pred x px) px2 ≡ x predSucc : (x : ℤ)(px : isTrue (zeroOrSucc x))(px2 : isTrue (zeroOrPred (succ x px))) → pred (succ x px) px2 ≡ x pxToTtxS : (x : ℤ)(px : isTrue (zeroOrSucc x)) → px ≡ ttxS x pyToTtxP : (y : ℤ)(py : isTrue (zeroOrPred y)) → py ≡ ttxP y myCong₂S : {x y : ℤ}{u : ⊤}{v : ⊤} → x ≡ y → u ≡ v → succ x (ttxS x) ≡ succ y (ttxS y) myCong₂P : {x y : ℤ}{u : ⊤}{v : ⊤} → x ≡ y → u ≡ v → pred x (ttxP x) ≡ pred y (ttxP y) myCong₂ : {A : Set}(x y : A){B : Set}{C : Set}(f : A → B → C){u v : B} → x ≡ y → u ≡ v → f x u ≡ f y v infixl 40 _+_ infixl 60 _*_ -- 加法 _+_ : ℤ → ℤ → ℤ zero + y = y succ x px + zero = succ x px succ x px + succ y py = let z = succ x px + y in succ z (ttxS z) succ x _ + pred y _ = x + y pred x px + zero = pred x px pred x _ + succ y _ = x + y pred x px + pred y py = let z = pred x px + y in pred z (ttxP z) -- 反数 opposite : ℤ → ℤ opposite zero = zero opposite (succ x px) = pred (opposite x) (ttxP (opposite x)) opposite (pred x px) = succ (opposite x) (ttxS (opposite x)) -- 乗法 _*_ : ℤ → ℤ → ℤ x * zero = zero x * succ y py = (x * y) + x x * pred y py = (x * y) + (opposite x) -- (-1) * (-1) = 1 -1*-1≡1 : pred zero tt * pred zero tt ≡ succ zero tt -1*-1≡1 = refl -- 2 * (-3) = (-6) 2*-3≡-6 : succ (succ zero tt) tt * pred (pred (pred zero tt) tt) tt ≡ pred (pred (pred (pred (pred (pred zero tt) tt) tt) tt) tt) tt 2*-3≡-6 = refl -- 雑多な定理 -- 右から0を足しても変わらない x+zero≡x : (x : ℤ) → x + zero ≡ x x+zero≡x zero = refl x+zero≡x (succ _ _) = refl x+zero≡x (pred _ _) = refl -- ユーティリティ mutual succOut1 : (x y : ℤ)(px : isTrue (zeroOrSucc x)) → succ x px + y ≡ succ (x + y) (ttxS (x + y)) succOut1 x zero px rewrite x+zero≡x x | pxToTtxS x px = refl succOut1 x (succ y py) px rewrite succOut1 x y px | succOut2 x y py = refl succOut1 x (pred y py) _ rewrite predOut2 x y py | succPred (x + y) (ttxP (x + y)) (ttxS (pred (x + y) (ttxP (x + y)))) = refl succOut2 : (x y : ℤ)(py : isTrue (zeroOrSucc y)) → x + succ y py ≡ succ (x + y) (ttxS (x + y)) succOut2 zero y py rewrite pxToTtxS y py = refl succOut2 (succ x px) y py = refl succOut2 (pred x px) y py rewrite predOut1 x y px | succPred (x + y) (ttxP (x + y)) (ttxS (pred (x + y) (ttxP (x + y)))) = refl predOut1 : (x y : ℤ)(px : isTrue (zeroOrPred x)) → pred x px + y ≡ pred (x + y) (ttxP (x + y)) predOut1 x zero px rewrite x+zero≡x x | pyToTtxP x px = refl predOut1 x (succ y py) px rewrite succOut2 x y py | predSucc (x + y) (ttxS (x + y)) (ttxP (succ (x + y) (ttxS (x + y)))) = refl predOut1 x (pred y py) px rewrite predOut1 x y px | predOut2 x y py = refl predOut2 : (x y : ℤ)(py : isTrue (zeroOrPred y)) → x + pred y py ≡ pred (x + y) (ttxP (x + y)) predOut2 zero y py rewrite pyToTtxP y py = refl predOut2 (succ x px) y py rewrite succOut1 x y px | predSucc (x + y) (ttxS (x + y)) (ttxP (succ (x + y) (ttxS (x + y)))) = refl predOut2 (pred x px) y py = refl -- 結合法則 ℤ+-assoc : (x y z : ℤ) → (x + y) + z ≡ x + (y + z) ℤ+-assoc zero y z = refl ℤ+-assoc (succ x px) y z rewrite succOut1 x y px | succOut1 (x + y) z (ttxS (x + y)) | succOut1 x (y + z) px = myCong₂S (ℤ+-assoc x y z) refl ℤ+-assoc (pred x px) y z rewrite predOut1 x y px | predOut1 (x + y) z (ttxP (x + y)) | predOut1 x (y + z) px = myCong₂P (ℤ+-assoc x y z) refl -- 左分配法則 ℤdistL : (x y z : ℤ) → x * (y + z) ≡ (x * y) + (x * z) ℤdistL x y zero rewrite x+zero≡x y | x+zero≡x (x * y) = refl ℤdistL x y (succ z pz) rewrite succOut2 y z pz | ℤdistL x y z = ℤ+-assoc (x * y) (x * z) x ℤdistL x y (pred z pz) rewrite predOut2 y z pz | ℤdistL x y z = ℤ+-assoc (x * y) (x * z) (opposite x) -- oppositeの線形性 oppoLinear : (x y : ℤ) → opposite x + opposite y ≡ opposite (x + y) oppoLinear x zero rewrite x+zero≡x (opposite x) | x+zero≡x x = refl oppoLinear x (succ y py) rewrite predOut2 (opposite x) (opposite y) (ttxP (opposite y)) | succOut2 x y py = myCong₂P (oppoLinear x y) refl oppoLinear x (pred y py) rewrite succOut2 (opposite x) (opposite y) (ttxS (opposite y)) | predOut2 x y py = myCong₂S (oppoLinear x y) refl
{ "alphanum_fraction": 0.4983757907, "avg_line_length": 34.0058139535, "ext": "agda", "hexsha": "3a6dec795eb728d2ac6197f2c5da4b51c132904b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "Integer12.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "Integer12.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "Integer12.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2282, "size": 5849 }
open import SOAS.Common open import SOAS.Families.Core open import Categories.Object.Initial open import SOAS.Coalgebraic.Strength import SOAS.Metatheory.MetaAlgebra -- Monoids with ⅀-algebra structure module SOAS.Metatheory.Monoid {T : Set} (⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F) where open import SOAS.Context open import SOAS.Variable open import SOAS.Construction.Structure as Structure open import SOAS.Abstract.Hom open import SOAS.Abstract.Monoid open import SOAS.Coalgebraic.Map open import SOAS.Coalgebraic.Monoid open import SOAS.Metatheory.Algebra {T} ⅀F open Strength ⅀:Str private variable Γ Δ : Ctx α : T -- Family with compatible monoid and ⅀-algebra structure record ΣMon (ℳ : Familyₛ) : Set where field ᵐ : Mon ℳ 𝑎𝑙𝑔 : ⅀ ℳ ⇾̣ ℳ open Mon ᵐ public field μ⟨𝑎𝑙𝑔⟩ : {σ : Γ ~[ ℳ ]↝ Δ}(t : ⅀ ℳ α Γ) → μ (𝑎𝑙𝑔 t) σ ≡ 𝑎𝑙𝑔 (str ᴮ ℳ (⅀₁ μ t) σ) record ΣMon⇒ {ℳ 𝒩 : Familyₛ}(ℳᴹ : ΣMon ℳ)(𝒩ᴹ : ΣMon 𝒩) (f : ℳ ⇾̣ 𝒩) : Set where private module ℳ = ΣMon ℳᴹ private module 𝒩 = ΣMon 𝒩ᴹ field ᵐ⇒ : Mon⇒ ℳ.ᵐ 𝒩.ᵐ f ⟨𝑎𝑙𝑔⟩ : {t : ⅀ ℳ α Γ} → f (ℳ.𝑎𝑙𝑔 t) ≡ 𝒩.𝑎𝑙𝑔 (⅀₁ f t) open Mon⇒ ᵐ⇒ public -- Category of Σ-monoids module ΣMonoidStructure = Structure 𝔽amiliesₛ ΣMon ΣMonoidCatProps : ΣMonoidStructure.CategoryProps ΣMonoidCatProps = record { IsHomomorphism = ΣMon⇒ ; id-hom = λ {ℳ}{ℳᴹ} → record { ᵐ⇒ = AsMonoid⇒.ᵐ⇒ 𝕄on.id ; ⟨𝑎𝑙𝑔⟩ = cong (ΣMon.𝑎𝑙𝑔 ℳᴹ) (sym ⅀.identity) } ; comp-hom = λ{ {𝐸ˢ = 𝒪ᴹ} g f record { ᵐ⇒ = gᵐ⇒ ; ⟨𝑎𝑙𝑔⟩ = g⟨𝑎𝑙𝑔⟩ } record { ᵐ⇒ = fᵐ⇒ ; ⟨𝑎𝑙𝑔⟩ = f⟨𝑎𝑙𝑔⟩ } → record { ᵐ⇒ = AsMonoid⇒.ᵐ⇒ ((g ⋉ gᵐ⇒) 𝕄on.∘ (f ⋉ fᵐ⇒)) ; ⟨𝑎𝑙𝑔⟩ = trans (cong g f⟨𝑎𝑙𝑔⟩) (trans g⟨𝑎𝑙𝑔⟩ (cong (ΣMon.𝑎𝑙𝑔 𝒪ᴹ) (sym ⅀.homomorphism))) } } } Σ𝕄onoids : Category 1ℓ 0ℓ 0ℓ Σ𝕄onoids = ΣMonoidStructure.StructCat ΣMonoidCatProps module Σ𝕄on = Category Σ𝕄onoids ΣMonoid : Set₁ ΣMonoid = Σ𝕄on.Obj ΣMonoid⇒ : ΣMonoid → ΣMonoid → Set ΣMonoid⇒ = Σ𝕄on._⇒_ module FreeΣMonoid = ΣMonoidStructure.Free ΣMonoidCatProps
{ "alphanum_fraction": 0.6398058252, "avg_line_length": 24.8192771084, "ext": "agda", "hexsha": "917689a3f4921e7cd9e7da034da2be16f0188a5d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Metatheory/Monoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Metatheory/Monoid.agda", "max_line_length": 68, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Metatheory/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1121, "size": 2060 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidTruncation where open import Cubical.HITs.GroupoidTruncation.Base public open import Cubical.HITs.GroupoidTruncation.Properties public
{ "alphanum_fraction": 0.8139534884, "avg_line_length": 35.8333333333, "ext": "agda", "hexsha": "d4b40a07d48ac062ad8f4276cf7b81a2b85cb098", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/GroupoidTruncation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/GroupoidTruncation.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/GroupoidTruncation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 57, "size": 215 }
{-# OPTIONS --safe --cubical #-} module Container where open import Prelude Container : (s p : Level) → Type (ℓsuc (s ℓ⊔ p)) Container s p = Σ[ Shape ⦂ Type s ] × (Shape → Type p) ⟦_⟧ : ∀ {s p ℓ} → Container s p → Set ℓ → Set (s ℓ⊔ p ℓ⊔ ℓ) ⟦ S , P ⟧ X = Σ[ s ⦂ S ] × (P s → X) cmap : ∀ {s p} {C : Container s p} → (A → B) → ⟦ C ⟧ A → ⟦ C ⟧ B cmap f xs = xs .fst , λ i → f (xs .snd i) {-# INLINE cmap #-}
{ "alphanum_fraction": 0.5012224939, "avg_line_length": 25.5625, "ext": "agda", "hexsha": "83cec1fef17ac1ce8612f9da3ea39a7cc04863bf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Container.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Container.agda", "max_line_length": 64, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Container.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 183, "size": 409 }