Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --cubical --safe #-} module Path where open import Cubical.Foundations.Everything using ( _≡_ ; sym ; refl ; subst ; transport ; Path ; PathP ; I ; i0 ; i1 ; funExt ; cong ; toPathP ; cong₂ ; ~_ ; _∧_ ; _∨_ ; hcomp ; transp ; J ) renaming (_∙_ to _;_; subst2 to subst₂) public open import Data.Empty using (¬_) open import Level infix 4 _≢_ _≢_ : {A : Type a} → A → A → Type a x ≢ y = ¬ (x ≡ y) infix 4 PathP-syntax PathP-syntax = PathP {-# DISPLAY PathP-syntax = PathP #-} syntax PathP-syntax (λ i → Ty) lhs rhs = lhs ≡[ i ≔ Ty ]≡ rhs import Agda.Builtin.Equality as MLTT builtin-eq-to-path : {A : Type a} {x y : A} → x MLTT.≡ y → x ≡ y builtin-eq-to-path {x = x} MLTT.refl i = x path-to-builtin-eq : {A : Type a} {x y : A} → x ≡ y → x MLTT.≡ y path-to-builtin-eq {x = x} x≡y = subst (x MLTT.≡_) x≡y MLTT.refl
{ "alphanum_fraction": 0.5080160321, "avg_line_length": 19.96, "ext": "agda", "hexsha": "1ac4acdfef0d29b2bad86ea26b880e15282a604b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Path.agda", "max_line_length": 64, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Path.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 371, "size": 998 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Fin Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Literals where open import Agda.Builtin.FromNat open import Data.Nat using (suc; _≤?_) open import Data.Fin using (Fin ; #_) open import Relation.Nullary.Decidable using (True) number : ∀ n → Number (Fin n) number n = record { Constraint = λ m → True (suc m ≤? n) ; fromNat = λ m {{pr}} → (# m) {n} {pr} }
{ "alphanum_fraction": 0.475177305, "avg_line_length": 26.8571428571, "ext": "agda", "hexsha": "54610e8d93294fe656e370b6ec1777b134923add", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Literals.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 133, "size": 564 }
------------------------------------------------------------------------ -- A theorem related to pointwise equality ------------------------------------------------------------------------ -- To simplify the development, let's work with actual natural numbers -- as variables and constants (see -- Atom.one-can-restrict-attention-to-χ-ℕ-atoms). open import Atom open import Chi χ-ℕ-atoms open import Coding χ-ℕ-atoms open import Free-variables χ-ℕ-atoms import Coding.Instances.Nat -- The results are stated and proved under the assumption that a -- correct self-interpreter can be implemented. module Pointwise-equality (eval : Exp) (cl-eval : Closed eval) (eval-correct₁ : ∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝) where open import Equality.Propositional open import Prelude hiding (const; Decidable) open import Bag-equivalence equality-with-J open import Equality.Decision-procedures equality-with-J open import H-level.Closure equality-with-J open import Computability χ-ℕ-atoms open import Constants χ-ℕ-atoms open import Reasoning χ-ℕ-atoms open import Values χ-ℕ-atoms open Computable-function open χ-atoms χ-ℕ-atoms open import Combinators hiding (id; if_then_else_) -- Pointwise equality of computable functions to Bool. Pointwise-equal : ∀ {a} (A : Type a) ⦃ rA : Rep A Consts ⦄ → let F = Computable-function A Bool Bool-set in (F × F) →Bool Pointwise-equal _ = as-function-to-Bool₁ (λ { (f , g) → ∀ x → function f x ≡ function g x }) -- Pointwise equality of computable functions from Bool to Bool is -- decidable. pointwise-equal-Bool : Decidable (Pointwise-equal Bool) pointwise-equal-Bool = total→almost-computable→computable id id (proj₁ (Pointwise-equal Bool)) total ( pointwise-equal , closed , correct ) where F = Computable-function Bool Bool Bool-set pointwise-equal′ : F × F → Bool pointwise-equal′ (f , g) = (if function f true Bool.≟ function g true then true else false) ∧ (if function f false Bool.≟ function g false then true else false) total : Total id (proj₁ (Pointwise-equal Bool)) total p@(f , g) = result , true-lemma , false-lemma where result = pointwise-equal′ p true-lemma : (∀ b → function f b ≡ function g b) → result ≡ true true-lemma hyp with function f true Bool.≟ function g true | hyp true ... | no f≢g | f≡g = ⊥-elim (f≢g f≡g) ... | yes _ | _ with function f false Bool.≟ function g false | hyp false ... | no f≢g | f≡g = ⊥-elim (f≢g f≡g) ... | yes _ | _ = refl false-lemma : ¬ (∀ b → function f b ≡ function g b) → result ≡ false false-lemma hyp with function f true Bool.≟ function g true | function f false Bool.≟ function g false ... | yes ft≡gt | yes ff≡gf = ⊥-elim $ hyp Prelude.[ (λ _ → ft≡gt) , (λ _ → ff≡gf) ] ... | yes _ | no _ = refl ... | no _ | yes _ = refl ... | no _ | no _ = refl infix 10 _at_ _at_ : Exp → Bool → Exp f at b = decode-Bool (apply eval (const c-apply (f ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ ∷ []))) test : Bool → Exp test b = equal-Bool (var v-f at b) (var v-g at b) pointwise-equal : Exp pointwise-equal = lambda v-p (case (var v-p) ( branch c-pair (v-f ∷ v-g ∷ []) (and (test true) (test false)) ∷ [])) -- This proof could have been simplified if eval had been a concrete -- implementation, rather than a variable. closed : Closed pointwise-equal closed = Closed′-closed-under-lambda $ Closed′-closed-under-case (Closed′-closed-under-var (inj₁ refl)) (λ where (inj₁ refl) → and-closed (test-closed true) (test-closed false) (inj₂ ())) where variables = v-f ∷ v-g ∷ v-p ∷ [] at-closed : ∀ f b → f ∈ variables → Closed′ variables (var f at b) at-closed f b f∈ = decode-Bool-closed $ Closed′-closed-under-apply (Closed→Closed′ cl-eval) (Closed′-closed-under-const λ where _ (inj₁ refl) → Closed′-closed-under-var f∈ _ (inj₂ (inj₁ refl)) → Closed→Closed′ $ rep-closed (⌜ b ⌝ ⦂ Exp) _ (inj₂ (inj₂ ()))) test-closed : ∀ b → Closed′ variables (test b) test-closed b = equal-Bool-closed (at-closed v-f b (from-⊎ (V.member v-f variables))) (at-closed v-g b (from-⊎ (V.member v-g variables))) at-correct : ∀ (f : F) b → ⌜ f ⌝ at b ⇓ ⌜ function f b ⌝ at-correct f b = decode-Bool-correct (function f b) ( apply eval ⌜ apply (proj₁ (computable f)) ⌜ b ⌝ ⦂ Exp ⌝ ⇓⟨ eval-correct₁ (apply (proj₁ $ computable f) ⌜ b ⌝) ⌜ function f b ⌝ (Closed′-closed-under-apply (proj₁ $ proj₂ $ computable f) (rep-closed b)) (proj₁ (proj₂ $ proj₂ $ computable f) b (function f b) (lift refl)) ⟩■ ⌜ ⌜ function f b ⌝ ⦂ Exp ⌝) test-correct : ∀ b (f g : F) → test b [ v-g ← ⌜ g ⌝ ] [ v-f ← ⌜ f ⌝ ] ⇓ ⌜ if function f b Bool.≟ function g b then true else false ⌝ test-correct b f g = equal-Bool-correct (function f b) (function g b) (var v-f at b [ v-g ← ⌜ g ⌝ ] [ v-f ← ⌜ f ⌝ ] ≡⟨ lemma ⌜ f ⌝ ⟩⟶ ⌜ f ⌝ at b ⇓⟨ at-correct f b ⟩■ ⌜ function f b ⌝) (var v-g at b [ v-g ← ⌜ g ⌝ ] [ v-f ← ⌜ f ⌝ ] ≡⟨ lemma (⌜ g ⌝ [ v-f ← ⌜ f ⌝ ]) ⟩⟶ (⌜ g ⌝ [ v-f ← ⌜ f ⌝ ]) at b ≡⟨ cong (_at b) (subst-rep g) ⟩⟶ ⌜ g ⌝ at b ⇓⟨ at-correct g b ⟩■ ⌜ function g b ⌝) where ss = (v-f , ⌜ f ⌝) ∷ (v-g , ⌜ g ⌝) ∷ [] lemma : ∀ _ → _ lemma = λ e → cong₂ (λ e₁ e₂ → decode-Bool (apply e₁ (const _ (e ∷ e₂ ∷ [])))) (substs-closed eval cl-eval ss) (substs-rep (⌜ b ⌝ ⦂ Exp) ss) correct : ∀ p b → proj₁ (Pointwise-equal Bool) [ p ]= b → apply pointwise-equal ⌜ p ⌝ ⇓ ⌜ b ⌝ correct p@(f , g) b [p]=b = apply pointwise-equal ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩ case ⌜ p ⌝ ( branch c-pair (v-f ∷ v-g ∷ []) (and (test true) (test false) [ v-p ← ⌜ p ⌝ ]) ∷ []) ≡⟨ cong₂ (λ e₁ e₂ → case ⌜ p ⌝ (branch c-pair (v-f ∷ v-g ∷ []) (and e₁ e₂) ∷ [])) (test-lemma true) (test-lemma false) ⟩⟶ case ⌜ p ⌝ ( branch c-pair (v-f ∷ v-g ∷ []) (and (test true) (test false)) ∷ []) ⟶⟨ case (rep⇓rep p) here (∷ ∷ []) ⟩ and (test true [ v-g ← ⌜ g ⌝ ] [ v-f ← ⌜ f ⌝ ]) (test false [ v-g ← ⌜ g ⌝ ] [ v-f ← ⌜ f ⌝ ]) ⇓⟨ and-correct (if function f true Bool.≟ function g true then true else false) (if function f false Bool.≟ function g false then true else false) (test-correct true f g) (test-correct false f g) ⟩ ⌜ pointwise-equal′ p ⌝ ≡⟨ cong ⌜_⌝ (_⇀_.deterministic (proj₁ (Pointwise-equal Bool)) {a = p} (proj₂ (total p)) [p]=b) ⟩⟶ ⌜ b ⌝ ■⟨ rep-value b ⟩ where at-lemma : ∀ b f → v-p ≢ f → var f at b [ v-p ← ⌜ p ⌝ ] ≡ var f at b at-lemma b f p≢f = var f at b [ v-p ← ⌜ p ⌝ ] ≡⟨⟩ decode-Bool (apply (eval [ v-p ← ⌜ p ⌝ ]) (const c-apply (var f [ v-p ← ⌜ p ⌝ ] ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ [ v-p ← ⌜ p ⌝ ] ∷ []))) ≡⟨ cong (λ e → decode-Bool (apply e (const _ (var f [ v-p ← ⌜ p ⌝ ] ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ [ v-p ← ⌜ p ⌝ ] ∷ [])))) (subst-closed v-p ⌜ p ⌝ cl-eval) ⟩ decode-Bool (apply eval (const c-apply (var f [ v-p ← ⌜ p ⌝ ] ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ [ v-p ← ⌜ p ⌝ ] ∷ []))) ≡⟨ cong (λ e → decode-Bool (apply _ (const _ (e ∷ _)))) (subst-∉ v-p (var f) λ { (var p≡f) → p≢f p≡f }) ⟩ decode-Bool (apply eval (const c-apply (var f ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ [ v-p ← ⌜ p ⌝ ] ∷ []))) ≡⟨ cong (λ e → decode-Bool (apply _ (const _ (_ ∷ e ∷ _)))) (subst-rep (⌜ b ⌝ ⦂ Exp)) ⟩ decode-Bool (apply eval (const c-apply (var f ∷ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ ∷ []))) ≡⟨⟩ var f at b ∎ test-lemma : ∀ b → test b [ v-p ← ⌜ p ⌝ ] ≡ test b test-lemma b = cong₂ equal-Bool (at-lemma b v-f (λ ())) (at-lemma b v-g (λ ()))
{ "alphanum_fraction": 0.4324130145, "avg_line_length": 40.9369747899, "ext": "agda", "hexsha": "800b6e985426d05b67b94133e396cfe25ca268b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Pointwise-equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Pointwise-equality.agda", "max_line_length": 143, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Pointwise-equality.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 3084, "size": 9743 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Machine words ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Word where ------------------------------------------------------------------------ -- Re-export built-ins publically open import Agda.Builtin.Word public using (Word64) renaming ( primWord64ToNat to toℕ ; primWord64FromNat to fromℕ )
{ "alphanum_fraction": 0.3894523327, "avg_line_length": 24.65, "ext": "agda", "hexsha": "afaa266ec689f8d74495889bfbc86b87fc78c791", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Word.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Word.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Word.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 84, "size": 493 }
module examplesPaperJFP.SpaceShipCell where open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import Data.Bool.Base open import Data.List.Base open import Data.Integer open import Data.Product hiding (map) open import SizedIO.Object open import SizedIO.IOObject open import NativeIO open import Sized.SimpleCell hiding (main; program) open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.VariableList open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.BitMaps VarType = Object (cellJ ℤ) cellℤC : (z : ℤ ) → VarType objectMethod (cellℤC z) get = ( z , cellℤC z ) objectMethod (cellℤC z) (put z′) = ( unit , cellℤC z′ ) varInit : VarType varInit = cellℤC (+ 150) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint c dc rect = let (z , c₁) = objectMethod c get in exec (drawBitmap dc ship (z , (+ 150)) true) λ _ → return c₁ moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType moveSpaceShip fra c = let (z , c₁) = objectMethod c get (_ , c₂) = objectMethod c₁ (put (z + (+ 20))) in return c₂ callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra c = exec (repaint fra) λ _ → return c program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = execˢ (level1C makeFrame) λ fra → execˢ (level1C (makeButton fra)) λ bt → execˢ (level1C (addButton fra bt)) λ _ → execˢ (createVar varInit) λ _ → execˢ (setButtonHandler bt (moveSpaceShip fra ∷ [ callRepaint fra ])) λ _ → execˢ (setOnPaint fra [ onPaint ]) returnˢ main : NativeIO Unit main = start (translateLev2 program)
{ "alphanum_fraction": 0.6404736276, "avg_line_length": 26.1690140845, "ext": "agda", "hexsha": "f938ec9f162c840fc75238059ba7d2487199839c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/SpaceShipCell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/SpaceShipCell.agda", "max_line_length": 71, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/SpaceShipCell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 586, "size": 1858 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of interleaving using setoid equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Data.List.Relation.Ternary.Interleaving.Setoid.Properties {c ℓ} (S : Setoid c ℓ) where open import Data.List.Base using (List; []; _∷_; filter; _++_) open import Relation.Unary using (Decidable) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (¬?) open import Function open import Data.List.Relation.Binary.Equality.Setoid S using (≋-refl) open import Data.List.Relation.Ternary.Interleaving.Setoid S open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Re-exporting existing properties open import Data.List.Relation.Ternary.Interleaving.Properties public ------------------------------------------------------------------------ -- _++_ ++-linear : (xs ys : List A) → Interleaving xs ys (xs ++ ys) ++-linear xs ys = ++-disjoint (left ≋-refl) (right ≋-refl) ------------------------------------------------------------------------ -- filter module _ {p} {P : A → Set p} (P? : Decidable P) where filter⁺ : ∀ xs → Interleaving (filter P? xs) (filter (¬? ∘ P?) xs) xs filter⁺ [] = [] filter⁺ (x ∷ xs) with P? x ... | yes px = refl ∷ˡ filter⁺ xs ... | no ¬px = refl ∷ʳ filter⁺ xs
{ "alphanum_fraction": 0.520026264, "avg_line_length": 33.8444444444, "ext": "agda", "hexsha": "316a4a2fcebff50d380e70126b55aa760e97667e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 365, "size": 1523 }
module Algebra.Linear.Category.Vect where
{ "alphanum_fraction": 0.8571428571, "avg_line_length": 21, "ext": "agda", "hexsha": "933978e9997bf13d1d9229484be92d0f5c87afb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Morphism/Structures/Vect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Morphism/Structures/Vect.agda", "max_line_length": 41, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Morphism/Structures/Vect.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 8, "size": 42 }
module Issue309a where data D : Set where d : D → D syntax d x x = e x g : D → D g (d x) = e x
{ "alphanum_fraction": 0.55, "avg_line_length": 10, "ext": "agda", "hexsha": "87719375746c3eb1310dfcc2e070007f3ad07430", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue309a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue309a.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue309a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 100 }
{-# OPTIONS --rewriting #-} data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where instance refl : x ≡ x {-# BUILTIN REWRITE _≡_ #-} postulate admit : ∀ {ℓ} {A : Set ℓ} → A X : Set postulate Wrap : Set → Set wrap : {A : Set} → A → Wrap A rec : (A : Set) (P : Set) → (A → P) → Wrap A → P Rec : (A : Set) (P : Set₁) → (A → P) → Wrap A → P Rec-β : {A : Set} (P : Set₁) → ∀ f → (a : A) → Rec A P f (wrap a) ≡ f a {-# REWRITE Rec-β #-} -- bug disappears without this record Σ {ℓ} (A : Set ℓ) (B : A → Set) : Set ℓ where constructor _,_ field fst : A snd : B fst open Σ public -- bug disappears if Comp or isFib is not wrapped in a record record Comp (A : X → Set) : Set where field comp : ∀ s → A s open Comp public record isFib {Γ : Set} (A : Γ → Set) : Set where field lift : (p : X → Γ) → Comp (λ x → A (p x)) open isFib public compSys : (ψ : X → Set) (A : Σ X (λ x → Wrap (ψ x)) → Set) (u : ∀ s → Wrap (ψ s)) (s : X) → A (s , u s) compSys ψ A u s = rec (∀ i → ψ i) (A (s , u s)) (λ v → subst (λ s → wrap (v s)) (λ s → u s) admit .lift (λ s → s) .comp s) admit where subst : (w w' : ∀ i → Wrap (ψ i)) → isFib (λ s → A (s , w s)) → isFib (λ s → A (s , w' s)) subst = admit -- bug disappears if ×id is inlined ×id : {A A' : Set} {B : A' → Set} (f : A → A') → Σ A (λ x → B (f x)) → Σ A' B ×id f (a , b) = (f a , b) fib : (ψ : X → Set) (A : Σ X (λ x → Wrap (ψ x)) → Set) → isFib A fib ψ A .lift p .comp = compSys (λ x → ψ (p x .fst)) (λ xu → A (×id (λ x → p x .fst) xu)) (λ x → p x .snd) -- bug seems to disappear if the underscore in (Σ Set _) is filled in template : (ψ : X → Set) → X → Σ (Σ X (λ x → Wrap (ψ x)) → Set) isFib template ψ n = (_ , fib ψ (λ b → Rec (ψ (b .fst)) (Σ Set _) (λ _ → admit) (b .snd) .fst)) eq : {B : Set₁} (f : X → B) {x y : X} → f x ≡ f y eq = admit templateEq : (ψ : X → Set) (n₀ : X) → template ψ n₀ ≡ template ψ n₀ templateEq ψ n₀ = eq (template ψ)
{ "alphanum_fraction": 0.489102889, "avg_line_length": 24.9746835443, "ext": "agda", "hexsha": "347582945ec4c8a4e04be35bc1616f68153d8f57", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3882.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3882.agda", "max_line_length": 92, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3882.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 870, "size": 1973 }
module Builtin.Size where open import Agda.Builtin.Size public
{ "alphanum_fraction": 0.8153846154, "avg_line_length": 13, "ext": "agda", "hexsha": "821594da1a1419d11dbb2b64edd98e79ba8c5509", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Builtin/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Builtin/Size.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Builtin/Size.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 16, "size": 65 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence module HoTT.Identity.Boolean where private variable x y : 𝟐 _=𝟐_ : 𝟐 → 𝟐 → 𝒰₀ 0₂ =𝟐 0₂ = 𝟏 0₂ =𝟐 1₂ = 𝟎 1₂ =𝟐 0₂ = 𝟎 1₂ =𝟐 1₂ = 𝟏 =𝟐-equiv : x == y ≃ x =𝟐 y =𝟐-equiv = f , qinv→isequiv (g , η , ε) where f : x == y → x =𝟐 y f {0₂} p = transport (0₂ =𝟐_) p ★ f {1₂} p = transport (1₂ =𝟐_) p ★ g : x =𝟐 y → x == y g {0₂} {0₂} _ = refl g {0₂} {1₂} () g {1₂} {0₂} () g {1₂} {1₂} _ = refl η : g ∘ f {x} {y} ~ id η {0₂} refl = refl η {1₂} refl = refl ε : f ∘ g {x} {y} ~ id ε {0₂} {0₂} ★ = refl ε {0₂} {1₂} () ε {1₂} {0₂} () ε {1₂} {1₂} ★ = refl
{ "alphanum_fraction": 0.4773413897, "avg_line_length": 18.3888888889, "ext": "agda", "hexsha": "c1b33165fa0f2997ce6f04e4f71d5e915b02cd56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Identity/Boolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Identity/Boolean.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Identity/Boolean.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 387, "size": 662 }
open import Categories.Category open import Categories.Category.CartesianClosed open import Theory module Categories.Category.Construction.Models {ℓ₁ ℓ₂ ℓ₃} (Th : Theory.Theory ℓ₁ ℓ₂ ℓ₃) {o ℓ e} (𝒞 : Category o ℓ e) (cartesianClosed : CartesianClosed 𝒞) where open import Categories.Category.Cartesian 𝒞 open import Categories.Category.BinaryProducts 𝒞 open import Categories.Object.Terminal 𝒞 import Categories.Object.Product 𝒞 as P open import Categories.Morphism 𝒞 open import Categories.Functor.Construction.Product using (Product) open import Categories.Functor.Construction.Exponential using (Exp) open import Categories.Functor.Properties using ([_]-resp-≅) open Category 𝒞 open CartesianClosed cartesianClosed open Cartesian cartesian open BinaryProducts products module T = Terminal terminal open HomReasoning open import Categories.Morphism.Reasoning 𝒞 open import Syntax open Theory.Theory Th open import Semantics 𝒞 cartesianClosed Sg open Signature Sg open import Data.Product using (Σ; Σ-syntax; proj₁; proj₂; _,_) open import Relation.Binary using (Rel; IsEquivalence) open import Level using (_⊔_) ⁂-id : forall {A B} -> id {A = A} ⁂ id {A = B} ≈ id ⁂-id = Equiv.trans (⟨⟩-cong₂ identityˡ identityˡ) η module Homomorphism {M N : Model 𝒞 cartesianClosed Th} (h : (g : Gr) -> ⟦ g ⟧G (proj₁ M) ≅ ⟦ g ⟧G (proj₁ N)) where open _≅_ open Iso H : (A : Type) -> ⟦ A ⟧T (proj₁ M) ≅ ⟦ A ⟧T (proj₁ N) H ⌊ g ⌋ = h g H Unit = up-to-iso terminal terminal H (A * A₁) = [ Product 𝒞 cartesian ]-resp-≅ (record { from = from (H A) , from (H A₁) ; to = to (H A) , to (H A₁) ; iso = record { isoˡ = isoˡ (iso (H A)) , isoˡ (iso (H A₁)) ; isoʳ = isoʳ (iso (H A)) , isoʳ (iso (H A₁)) } }) H (A => A₁) = [ Exp 𝒞 cartesianClosed ]-resp-≅ (record { from = from (H A₁) , to (H A) ; to = to (H A₁) , from (H A) ; iso = record { isoˡ = isoˡ (iso (H A₁)) , isoˡ (iso (H A)) ; isoʳ = isoʳ (iso (H A₁)) , isoʳ (iso (H A)) } }) record homomorphism (M N : Model 𝒞 cartesianClosed Th) : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ ⊔ e) where field h : (g : Gr) -> ⟦ g ⟧G (proj₁ M) ≅ ⟦ g ⟧G (proj₁ N) open Homomorphism {M} {N} h public field comm : (f : Func) -> _≅_.from (H (cod f)) ∘ ⟦ f ⟧F (proj₁ M) ≈ ⟦ f ⟧F (proj₁ N) ∘ _≅_.from (H (dom f)) module _ {M N : Model 𝒞 cartesianClosed Th} where _≗_ : Rel (homomorphism M N) (ℓ₁ ⊔ e) _≗_ x y = (g : Gr) -> _≅_.from (homomorphism.h x g) ≈ _≅_.from (homomorphism.h y g) module Id {M : Model 𝒞 cartesianClosed Th} where open Homomorphism {M} {M} (λ _ → IsEquivalence.refl ≅-isEquivalence) open Structure (proj₁ M) -- The components of the homomorphism generated by identity morphisms are also identities. H-id : forall A -> _≅_.from (H A) ≈ Category.id 𝒞 H-id˘ : forall A -> _≅_.to (H A) ≈ Category.id 𝒞 H-id ⌊ x ⌋ = Equiv.refl H-id Unit = T.!-unique (Category.id 𝒞) H-id (A * A₁) = begin _≅_.from (H A) ⁂ _≅_.from (H A₁) ≈⟨ ⁂-cong₂ (H-id A) (H-id A₁) ⟩ Category.id 𝒞 ⁂ Category.id 𝒞 ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ Category.id 𝒞 ∎ H-id (A => A₁) = begin λg (_≅_.from (H A₁) ∘ eval′ ∘ (id ⁂ _≅_.to (H A))) ≈⟨ λ-cong (∘-resp-≈ˡ (H-id A₁)) ⟩ λg (id ∘ eval′ ∘ (id ⁂ _≅_.to (H A))) ≈⟨ λ-cong (pullˡ identityˡ) ⟩ λg (eval′ ∘ (id ⁂ _≅_.to (H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (⁂-cong₂ Equiv.refl (H-id˘ A))) ⟩ λg (eval′ ∘ (id ⁂ id)) ≈⟨ λ-cong (elimʳ ⁂-id) ⟩ λg eval′ ≈⟨ η-id′ ⟩ id ∎ H-id˘ ⌊ x ⌋ = Equiv.refl H-id˘ Unit = T.!-unique id H-id˘ (A * A₁) = begin _≅_.to (H A) ⁂ _≅_.to (H A₁) ≈⟨ ⁂-cong₂ (H-id˘ A) (H-id˘ A₁) ⟩ id ⁂ id ≈⟨ ⁂-id ⟩ id ∎ H-id˘ (A => A₁) = begin λg (_≅_.to (H A₁) ∘ eval′ ∘ (id ⁂ _≅_.from (H A))) ≈⟨ λ-cong (elimˡ (H-id˘ A₁)) ⟩ λg (eval′ ∘ (id ⁂ _≅_.from (H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (⁂-cong₂ Equiv.refl (H-id A))) ⟩ λg (eval′ ∘ (id ⁂ id)) ≈⟨ λ-cong (elimʳ ⁂-id) ⟩ λg eval′ ≈⟨ η-id′ ⟩ id ∎ comm : (f : Func) -> _≅_.from (H (cod f)) ∘ ⟦ f ⟧F ≈ ⟦ f ⟧F ∘ _≅_.from (H (dom f)) comm f = begin _≅_.from (H (cod f)) ∘ ⟦ f ⟧F ≈⟨ elimˡ (H-id (cod f)) ⟩ ⟦ f ⟧F ≈˘⟨ elimʳ (H-id (dom f)) ⟩ ⟦ f ⟧F ∘ _≅_.from (H (dom f)) ∎ id′ : homomorphism M M id′ = record { h = λ _ → IsEquivalence.refl ≅-isEquivalence ; comm = comm } module Compose {M N O : Model 𝒞 cartesianClosed Th} where open _≅_ compose : homomorphism N O -> homomorphism M N -> homomorphism M O compose x y = record { h = h ; comm = λ f → begin from (MO.H (cod f)) ∘ ⟦ f ⟧F (proj₁ M) ≈⟨ pushˡ (H-compose (cod f)) ⟩ from (NO.H (cod f)) ∘ from (MN.H (cod f)) ∘ ⟦ f ⟧F (proj₁ M) ≈⟨ ∘-resp-≈ʳ (MN.comm f) ⟩ from (NO.H (cod f)) ∘ ⟦ f ⟧F (proj₁ N) ∘ from (MN.H (dom f)) ≈⟨ pullˡ (NO.comm f) ⟩ (⟦ f ⟧F (proj₁ O) ∘ from (NO.H (dom f))) ∘ from (MN.H (dom f)) ≈˘⟨ pushʳ (H-compose (dom f)) ⟩ ⟦ f ⟧F (proj₁ O) ∘ from (MO.H (dom f)) ∎ } where h = λ g → IsEquivalence.trans ≅-isEquivalence (homomorphism.h y g) (homomorphism.h x g) module MO = Homomorphism h module MN = homomorphism y module NO = homomorphism x H-compose : forall A -> from (MO.H A) ≈ from (NO.H A) ∘ from (MN.H A) H-compose˘ : forall A -> to (MO.H A) ≈ to (MN.H A) ∘ to (NO.H A) H-compose ⌊ x ⌋ = Equiv.refl H-compose Unit = T.!-unique₂ H-compose (A * A₁) = Equiv.trans (⁂-cong₂ (H-compose A) (H-compose A₁)) (Equiv.sym ⁂∘⁂) H-compose (A => A₁) = begin λg (from (MO.H A₁) ∘ eval′ ∘ (id ⁂ to (MO.H A))) ≈⟨ λ-cong (∘-resp-≈ˡ (H-compose A₁)) ⟩ λg ((from (NO.H A₁) ∘ from (MN.H A₁)) ∘ eval′ ∘ (id ⁂ to (MO.H A))) ≈⟨ λ-cong assoc ⟩ λg (from (NO.H A₁) ∘ from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MO.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ Equiv.refl (H-compose˘ A))))) ⟩ λg (from (NO.H A₁) ∘ from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A) ∘ to (NO.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (∘-resp-≈ʳ second∘second))) ⟩ λg (from (NO.H A₁) ∘ from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A)) ∘ (id ⁂ to (NO.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ assoc²') ⟩ λg (from (NO.H A₁) ∘ (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ∘ (id ⁂ to (NO.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (pullˡ β′)) ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ⁂ id) ∘ (id ⁂ to (NO.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ ⁂∘⁂)) ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ∘ id ⁂ id ∘ to (NO.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ identityʳ identityˡ))) ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ⁂ to (NO.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ identityˡ identityʳ))) ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (id ∘ λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ⁂ to (NO.H A) ∘ id)) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ ⁂∘⁂)) ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (id ⁂ to (NO.H A)) ∘ (λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ⁂ id)) ≈˘⟨ λ-cong assoc²' ⟩ λg ((from (NO.H A₁) ∘ eval′ ∘ (id ⁂ to (NO.H A))) ∘ (λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ⁂ id)) ≈˘⟨ CartesianClosed.exp.subst cartesianClosed product product ⟩ λg (from (NO.H A₁) ∘ eval′ ∘ (id ⁂ to (NO.H A))) ∘ λg (from (MN.H A₁) ∘ eval′ ∘ (id ⁂ to (MN.H A))) ≈⟨ Equiv.refl ⟩ from (NO.H (A => A₁)) ∘ from (MN.H (A => A₁)) ∎ H-compose˘ ⌊ x ⌋ = Equiv.refl H-compose˘ Unit = T.!-unique₂ H-compose˘ (A * A₁) = Equiv.trans (⁂-cong₂ (H-compose˘ A) (H-compose˘ A₁)) (Equiv.sym ⁂∘⁂) H-compose˘ (A => A₁) = begin λg (to (MO.H A₁) ∘ eval′ ∘ (id ⁂ from (MO.H A))) ≈⟨ λ-cong (∘-resp-≈ˡ (H-compose˘ A₁)) ⟩ λg ((to (MN.H A₁) ∘ to (NO.H A₁)) ∘ eval′ ∘ (id ⁂ from (MO.H A))) ≈⟨ λ-cong assoc ⟩ λg (to (MN.H A₁) ∘ to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (MO.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ Equiv.refl (H-compose A))))) ⟩ λg (to (MN.H A₁) ∘ to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A) ∘ from (MN.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (∘-resp-≈ʳ second∘second))) ⟩ λg (to (MN.H A₁) ∘ to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A)) ∘ (id ⁂ from (MN.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ assoc²') ⟩ λg (to (MN.H A₁) ∘ (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ∘ (id ⁂ from (MN.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (pullˡ β′)) ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ⁂ id) ∘ (id ⁂ from (MN.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ ⁂∘⁂)) ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ∘ id ⁂ id ∘ from (MN.H A))) ≈⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ identityʳ identityˡ))) ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ⁂ from (MN.H A))) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ identityˡ identityʳ))) ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (id ∘ λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ⁂ from (MN.H A) ∘ id)) ≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ ⁂∘⁂)) ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (id ⁂ from (MN.H A)) ∘ (λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ⁂ id)) ≈˘⟨ λ-cong assoc²' ⟩ λg ((to (MN.H A₁) ∘ eval′ ∘ (id ⁂ from (MN.H A))) ∘ (λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ⁂ id)) ≈˘⟨ CartesianClosed.exp.subst cartesianClosed product product ⟩ λg (to (MN.H A₁) ∘ eval′ ∘ (id ⁂ from (MN.H A))) ∘ λg (to (NO.H A₁) ∘ eval′ ∘ (id ⁂ from (NO.H A))) ≈⟨ Equiv.refl ⟩ to (MN.H (A => A₁)) ∘ to (NO.H (A => A₁)) ∎ Models : Category (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ o ⊔ ℓ ⊔ e) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ ⊔ e) (ℓ₁ ⊔ e) Models = record { Obj = Model 𝒞 cartesianClosed Th ; _⇒_ = homomorphism ; _≈_ = _≗_ ; id = Id.id′ ; _∘_ = Compose.compose ; assoc = λ _ → assoc ; sym-assoc = λ _ → sym-assoc ; identityˡ = λ _ → identityˡ ; identityʳ = λ _ → identityʳ ; identity² = λ _ → identity² ; equiv = record { refl = λ _ → IsEquivalence.refl equiv ; sym = λ x g → IsEquivalence.sym equiv (x g) ; trans = λ x x₁ g → IsEquivalence.trans equiv (x g) (x₁ g) } ; ∘-resp-≈ = λ x x₁ g → ∘-resp-≈ (x g) (x₁ g) }
{ "alphanum_fraction": 0.4759036145, "avg_line_length": 42.4503816794, "ext": "agda", "hexsha": "66a4425c53c4dd5895f1a908ecfe0e1d900b44e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Categories/Category/Construction/Models.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Categories/Category/Construction/Models.agda", "max_line_length": 177, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Categories/Category/Construction/Models.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 5000, "size": 11122 }
-- It is recommended to use Cubical.Algebra.CommRing.Instances.Int -- instead of this file. {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.BiInvInt where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Int.MoreInts.BiInvInt renaming ( _+_ to _+ℤ_; -_ to _-ℤ_; +-assoc to +ℤ-assoc; +-comm to +ℤ-comm ) BiInvℤAsCommRing : CommRing ℓ-zero BiInvℤAsCommRing = makeCommRing zero (suc zero) _+ℤ_ _·_ _-ℤ_ isSetBiInvℤ +ℤ-assoc +-zero +-invʳ +ℤ-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
{ "alphanum_fraction": 0.6816, "avg_line_length": 23.1481481481, "ext": "agda", "hexsha": "4db605e7a49696e44e77fee9258f806a495a14b4", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/BiInvInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/BiInvInt.agda", "max_line_length": 66, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/BiInvInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 223, "size": 625 }
-- Example usage of solver {-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Cartesian module Experiment.Categories.Solver.Category.Cartesian.Example {o ℓ e} {𝒞 : Category o ℓ e} (cartesian : Cartesian 𝒞) where open import Experiment.Categories.Solver.Category.Cartesian cartesian open Category 𝒞 open Cartesian cartesian open HomReasoning private variable A B C D E F : Obj module _ {f : D ⇒ E} {g : C ⇒ D} {h : B ⇒ C} {i : A ⇒ B} where _ : (f ∘ g) ∘ id ∘ h ∘ i ≈ f ∘ (g ∘ h) ∘ i _ = solve ((∥-∥ :∘ ∥-∥) :∘ :id :∘ ∥-∥ :∘ ∥-∥) (∥-∥ :∘ (∥-∥ :∘ ∥-∥) :∘ ∥-∥) refl swap∘swap≈id : ∀ {A B} → swap {A}{B} ∘ swap {B}{A} ≈ id swap∘swap≈id {A} {B} = solve (:swap {∥ A ∥} {∥ B ∥} :∘ :swap) :id refl assocʳ∘assocˡ≈id : ∀ {A B C} → assocʳ {A}{B}{C} ∘ assocˡ {A}{B}{C} ≈ id assocʳ∘assocˡ≈id = solve (:assocʳ {∥ _ ∥} {∥ _ ∥} {∥ _ ∥} :∘ :assocˡ) :id refl module _ {f : B ⇒ C} (f′ : A ⇒ B) {g : E ⇒ F} {g′ : D ⇒ E} where ⁂-∘ : (f ⁂ g) ∘ (f′ ⁂ g′) ≈ (f ∘ f′) ⁂ (g ∘ g′) ⁂-∘ = solve lhs rhs refl where lhs = (∥ f ∥ :⁂ ∥ g ∥) :∘ (∥ f′ ∥ :⁂ ∥ g′ ∥) rhs = (∥ f ∥ :∘ ∥ f′ ∥) :⁂ (∥ g ∥ :∘ ∥ g′ ∥) module _ {A B C D} where pentagon′ : (id ⁂ assocˡ) ∘ assocˡ ∘ (assocˡ ⁂ id) ≈ assocˡ ∘ assocˡ {A × B} {C} {D} pentagon′ = solve lhs rhs refl where lhs = (:id :⁂ :assocˡ) :∘ :assocˡ :∘ (:assocˡ :⁂ :id) rhs = :assocˡ :∘ :assocˡ {∥ A ∥ :× ∥ B ∥} {∥ C ∥} {∥ D ∥} module _ {A B C} where hexagon₁′ : (id ⁂ swap) ∘ assocˡ ∘ (swap ⁂ id) ≈ assocˡ ∘ swap ∘ assocˡ {A}{B}{C} hexagon₁′ = solve lhs rhs refl where lhs = (:id :⁂ :swap) :∘ :assocˡ :∘ (:swap :⁂ :id) rhs = :assocˡ :∘ :swap :∘ :assocˡ {∥ A ∥}{∥ B ∥}{∥ C ∥} module _ {f : A ⇒ B} where commute : ⟨ ! , id ⟩ ∘ f ≈ ⟨ id ∘ π₁ , f ∘ π₂ ⟩ ∘ ⟨ ! , id ⟩ commute = solve (:⟨ :! , :id ⟩ :∘ ∥ f ∥) (:⟨ :id :∘ :π₁ , ∥ f ∥ :∘ :π₂ ⟩ :∘ :⟨ :! , :id ⟩) refl _ : id {⊤} ≈ ! _ = solve (∥ id !∥) :! refl _ : π₁ {⊤} {⊤} ≈ π₂ _ = solve (:π₁ {:⊤} {:⊤}) :π₂ refl module _ {f : A ⇒ B} {g : C ⇒ D} where first↔second′ : first f ∘ second g ≈ second g ∘ first f first↔second′ = solve (:first ∥ f ∥ :∘ :second ∥ g ∥) (:second ∥ g ∥ :∘ :first ∥ f ∥) refl
{ "alphanum_fraction": 0.454821894, "avg_line_length": 31.5342465753, "ext": "agda", "hexsha": "ada976e329647f2da9e4ed4a042bc05f1b3f1e1d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/Category/Cartesian/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/Category/Cartesian/Example.agda", "max_line_length": 81, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/Category/Cartesian/Example.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1128, "size": 2302 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.KleinBottle where open import Cubical.HITs.KleinBottle.Base public open import Cubical.HITs.KleinBottle.Properties public
{ "alphanum_fraction": 0.793814433, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "495c86da7001c7e689f7ece796546271d5463c02", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/KleinBottle.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/KleinBottle.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/KleinBottle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 194 }
data Unit : Set where unit : Unit data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A data Test : Set where map : (Unit → Maybe Test) → Test -- Accepted: foo : Test → Unit foo-aux : Maybe Test → Unit foo (map f) = foo-aux (f unit) foo-aux nothing = unit foo-aux (just x) = foo x test : Test → Unit test (map f) with f unit test (map f) | nothing = unit test (map f) | just x = test x -- WAS: Termination checker complains -- SHOULD: succeed
{ "alphanum_fraction": 0.6398305085, "avg_line_length": 18.88, "ext": "agda", "hexsha": "ba8c120f8486d8a87d5ef7b23d349edea29300ae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1381.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1381.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1381.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 153, "size": 472 }
module nats where open import Data.Nat ten : ℕ ten = 10
{ "alphanum_fraction": 0.7068965517, "avg_line_length": 8.2857142857, "ext": "agda", "hexsha": "fe9ae47fcd503b97f5bc7e413e39f4fda25b21f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "257675afb3bd4a09b9f1672474d7048748f7d155", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "ssbothwell/plfa.github.io", "max_forks_repo_path": "src/nats.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "257675afb3bd4a09b9f1672474d7048748f7d155", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "ssbothwell/plfa.github.io", "max_issues_repo_path": "src/nats.agda", "max_line_length": 20, "max_stars_count": null, "max_stars_repo_head_hexsha": "257675afb3bd4a09b9f1672474d7048748f7d155", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "ssbothwell/plfa.github.io", "max_stars_repo_path": "src/nats.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 20, "size": 58 }
open import Agda.Builtin.Nat postulate P : Nat → Set record R : Set where field f : P zero foo : R → Set foo (record { f = f0 }) with zero foo r | x = Nat
{ "alphanum_fraction": 0.6121212121, "avg_line_length": 12.6923076923, "ext": "agda", "hexsha": "6c07748f1b3afd8c8a33b8d45157699eecc691d0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2998-illtyped.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2998-illtyped.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2998-illtyped.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 58, "size": 165 }
module Proof where -- stdlib import open import Data.Nat main : ℕ main = suc zero
{ "alphanum_fraction": 0.7011494253, "avg_line_length": 7.9090909091, "ext": "agda", "hexsha": "1fe3d3b628484113a9520b7400040052e5280f63", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "725ac3568bc2ce6abf170696f61802bfee09c039", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "sourcedennis/docker-agda-mini", "max_forks_repo_path": "example/proofs/Proof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "725ac3568bc2ce6abf170696f61802bfee09c039", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "sourcedennis/docker-agda-mini", "max_issues_repo_path": "example/proofs/Proof.agda", "max_line_length": 20, "max_stars_count": null, "max_stars_repo_head_hexsha": "725ac3568bc2ce6abf170696f61802bfee09c039", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "sourcedennis/docker-agda-mini", "max_stars_repo_path": "example/proofs/Proof.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 25, "size": 87 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Cubical.Path postulate admit : ∀ {A : Set} → A data Z : Set where pos : Nat → Z neg : Nat → Z sameZero : pos 0 ≡ neg 0 _+Z_ : Z → Z → Z pos x +Z pos x₁ = admit pos x +Z neg x₁ = admit pos x +Z sameZero x₁ = admit neg x +Z z' = admit sameZero x +Z z' = admit
{ "alphanum_fraction": 0.6053333333, "avg_line_length": 17.8571428571, "ext": "agda", "hexsha": "b1a6a0dfbd711db19c3d0cdbcd89b8b1a7a8cf3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/Issue3314.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/Issue3314.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/Issue3314.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 375 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT renaming (pt to ⊙pt) open import homotopy.Bouquet open import homotopy.FinWedge open import homotopy.SphereEndomorphism open import homotopy.DisjointlyPointedSet open import groups.SphereEndomorphism open import groups.SumOfSubIndicator open import groups.DisjointlyPointedSet open import cw.CW open import cw.DegreeByProjection open import cw.FinBoundary open import cw.FinCW open import cw.WedgeOfCells open import cohomology.Theory module cw.cohomology.cochainequiv.FirstCoboundary (OT : OrdinaryTheory lzero) (⊙fin-skel : ⊙FinSkeleton 1) where open OrdinaryTheory OT open import cohomology.RephraseSubFinCoboundary OT open import cohomology.SubFinBouquet OT private ⊙skel = ⊙FinSkeleton-realize ⊙fin-skel fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel skel = ⊙Skeleton.skel ⊙skel dec = FinSkeleton-has-cells-with-dec-eq fin-skel ac = FinSkeleton-has-cells-with-choice 0 fin-skel lzero fin-skel₋₁ = fcw-init fin-skel ac₋₁ = FinSkeleton-has-cells-with-choice 0 fin-skel₋₁ lzero endpoint = attaching-last skel I₋₁ = AttachedFinSkeleton.skel fin-skel ⊙head = ⊙cw-head ⊙skel pt = ⊙pt ⊙head open DegreeAtOne skel dec open import cw.cohomology.WedgeOfCells OT ⊙skel open import cw.cohomology.reconstructed.TipAndAugment OT (⊙cw-init ⊙skel) open import cw.cohomology.reconstructed.TipCoboundary OT ⊙skel open import cw.cohomology.cochainequiv.FirstCoboundaryAbstractDefs OT ⊙fin-skel abstract rephrase-cw-co∂-head'-in-degree : ∀ g → GroupIso.f (CXₙ/Xₙ₋₁-diag-β ac) (GroupHom.f cw-co∂-head' (GroupIso.g (CX₀-diag-β ac₋₁) g)) ∼ λ <I → Group.subsum-r (C2 0) ⊙head-separate (λ b → Group.exp (C2 0) (g b) (degree <I (fst b))) rephrase-cw-co∂-head'-in-degree g <I = GroupIso.f (C-FinBouquet-diag 1 I) (CEl-fmap 1 (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel)) (CEl-fmap 1 ⊙cw-∂-head'-before-Susp (<– (CEl-Susp 0 ⊙head) (CEl-fmap 0 (⊙<– (Bouquet-⊙equiv-X ⊙head-is-separable)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g))))) <I =⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag 1 I) (CEl-fmap 1 (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel)) (CEl-fmap 1 ⊙cw-∂-head'-before-Susp g)) <I) $ C-Susp-fmap' 0 (⊙<– (Bouquet-⊙equiv-X (Fin-has-dec-eq pt))) □$ᴳ (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g) ⟩ GroupIso.f (C-FinBouquet-diag 1 I) (CEl-fmap 1 (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel)) (CEl-fmap 1 ⊙cw-∂-head'-before-Susp (CEl-fmap 1 (⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-X ⊙head-is-separable))) (<– (CEl-Susp 0 (⊙Bouquet (MinusPoint ⊙head) 0)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g))))) <I =⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag 1 I) g <I) $ ∘-CEl-fmap 1 (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel)) ⊙cw-∂-head'-before-Susp (CEl-fmap 1 (⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-X ⊙head-is-separable))) (<– (CEl-Susp 0 (⊙Bouquet (MinusPoint ⊙head) 0)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g))) ∙ ∘-CEl-fmap 1 (⊙cw-∂-head'-before-Susp ⊙∘ ⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ skel)) (⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-X ⊙head-is-separable))) (<– (CEl-Susp 0 (⊙Bouquet (MinusPoint ⊙head) 0)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g)) ∙ ap (λ f → CEl-fmap 1 f (<– (CEl-Susp 0 (⊙Bouquet (MinusPoint ⊙head) 0)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g))) (! ⊙function₀'-β) ⟩ GroupIso.f (C-FinBouquet-diag 1 I) (CEl-fmap 1 ⊙function₀' (<– (CEl-Susp 0 (⊙Bouquet (MinusPoint ⊙head) 0)) (GroupIso.g (C-SubFinBouquet-diag 0 MinusPoint-⊙head-has-choice ⊙head-separate) g))) <I =⟨ rephrase-in-degree 0 {I = I} MinusPoint-⊙head-has-choice MinusPoint-⊙head-has-dec-eq ⊙head-separate-equiv ⊙function₀' g <I ⟩ Group.subsum-r (C2 0) ⊙head-separate (λ b → Group.exp (C2 0) (g b) (⊙SphereS-endo-degree 0 (⊙Susp-fmap (⊙bwproj MinusPoint-⊙head-has-dec-eq b) ⊙∘ ⊙function₀' ⊙∘ ⊙fwin <I))) =⟨ ap (Group.subsum-r (C2 0) ⊙head-separate) (λ= λ b → ap (Group.exp (C2 0) (g b)) $ ⊙SphereS-endo-degree-base-indep 0 {f = ( ⊙Susp-fmap (⊙bwproj MinusPoint-⊙head-has-dec-eq b) ⊙∘ ⊙function₀' ⊙∘ ⊙fwin <I)} {g = (Susp-fmap (function₁' <I b) , idp)} (mega-reduction <I b)) ⟩ Group.subsum-r (C2 0) ⊙head-separate (λ b → Group.exp (C2 0) (g b) (⊙SphereS-endo-degree 0 (Susp-fmap (function₁' <I b) , idp))) =⟨ ap (Group.subsum-r (C2 0) ⊙head-separate) (λ= λ b → ap (Group.exp (C2 0) (g b)) $ degree-matches <I b) ⟩ Group.subsum-r (C2 0) ⊙head-separate (λ b → Group.exp (C2 0) (g b) (degree <I (fst b))) =∎ abstract private degree-true-≠ : ∀ {<I <I₋₁} → (<I₋₁ ≠ endpoint <I true) → degree-true <I <I₋₁ == 0 degree-true-≠ {<I} {<I₋₁} neq with Fin-has-dec-eq <I₋₁ (endpoint <I true) ... | inl eq = ⊥-rec (neq eq) ... | inr _ = idp degree-true-diag : ∀ <I → degree-true <I (endpoint <I true) == -1 degree-true-diag <I with Fin-has-dec-eq (endpoint <I true) (endpoint <I true) ... | inl _ = idp ... | inr neq = ⊥-rec (neq idp) sum-degree-true : ∀ <I g → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) g (degree-true <I <I₋₁)) == Group.inv (C2 0) g sum-degree-true <I g = sum-subindicator (C2 0) (λ <I₋₁ → Group.exp (C2 0) g (degree-true <I <I₋₁)) (endpoint <I true) (λ neq → ap (Group.exp (C2 0) g) (degree-true-≠ neq)) ∙ ap (Group.exp (C2 0) g) (degree-true-diag <I) degree-false-≠ : ∀ {<I <I₋₁} → (<I₋₁ ≠ endpoint <I false) → degree-false <I <I₋₁ == 0 degree-false-≠ {<I} {<I₋₁} neq with Fin-has-dec-eq <I₋₁ (endpoint <I false) ... | inl eq = ⊥-rec (neq eq) ... | inr _ = idp degree-false-diag : ∀ <I → degree-false <I (endpoint <I false) == 1 degree-false-diag <I with Fin-has-dec-eq (endpoint <I false) (endpoint <I false) ... | inl _ = idp ... | inr neq = ⊥-rec (neq idp) sum-degree-false : ∀ <I g → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) g (degree-false <I <I₋₁)) == g sum-degree-false <I g = sum-subindicator (C2 0) (λ <I₋₁ → Group.exp (C2 0) g (degree-false <I <I₋₁)) (endpoint <I false) (λ neq → ap (Group.exp (C2 0) g) (degree-false-≠ neq)) ∙ ap (Group.exp (C2 0) g) (degree-false-diag <I) sum-degree : ∀ <I g → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) g (degree <I <I₋₁)) == Group.ident (C2 0) sum-degree <I g = ap (Group.sum (C2 0)) (λ= λ <I₋₁ → Group.exp-+ (C2 0) g (degree-true <I <I₋₁) (degree-false <I <I₋₁)) ∙ AbGroup.sum-comp (C2-abgroup 0) (λ <I₋₁ → Group.exp (C2 0) g (degree-true <I <I₋₁)) (λ <I₋₁ → Group.exp (C2 0) g (degree-false <I <I₋₁)) ∙ ap2 (Group.comp (C2 0)) (sum-degree-true <I g) (sum-degree-false <I g) ∙ Group.inv-l (C2 0) g merge-branches : ∀ (g : Fin I₋₁ → Group.El (C2 0)) (g-pt : g pt == Group.ident (C2 0)) x → Coprod-rec (λ _ → Group.ident (C2 0)) (λ b → g (fst b)) (⊙head-separate x) == g x merge-branches g g-pt x with Fin-has-dec-eq pt x merge-branches g g-pt x | inl idp = ! g-pt merge-branches g g-pt x | inr _ = idp rephrase-cw-co∂-head-in-degree : ∀ g → GroupIso.f (CXₙ/Xₙ₋₁-diag-β ac) (GroupHom.f cw-co∂-head (GroupIso.g (C2×CX₀-diag-β ac₋₁) g)) ∼ λ <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁)) rephrase-cw-co∂-head-in-degree g <I = GroupIso.f (CXₙ/Xₙ₋₁-diag-β ac) (GroupHom.f cw-co∂-head' (GroupIso.g (CX₀-diag-β ac₋₁) (snd (diff-and-separate (C2 0) g)))) <I =⟨ rephrase-cw-co∂-head'-in-degree (snd (diff-and-separate (C2 0) g)) <I ⟩ Group.subsum-r (C2 0) ⊙head-separate (λ b → Group.exp (C2 0) (Group.diff (C2 0) (g (fst b)) (g pt)) (degree <I (fst b))) =⟨ ap (Group.sum (C2 0)) (λ= λ <I₋₁ → merge-branches (λ <I₋₁ → Group.exp (C2 0) (Group.diff (C2 0) (g <I₋₁) (g pt)) (degree <I <I₋₁)) ( ap (λ g → Group.exp (C2 0) g (degree <I pt)) (Group.inv-r (C2 0) (g pt)) ∙ Group.exp-ident (C2 0) (degree <I pt)) <I₋₁ ∙ AbGroup.exp-comp (C2-abgroup 0) (g <I₋₁) (Group.inv (C2 0) (g pt)) (degree <I <I₋₁)) ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.comp (C2 0) (Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁)) (Group.exp (C2 0) (Group.inv (C2 0) (g pt)) (degree <I <I₋₁))) =⟨ AbGroup.sum-comp (C2-abgroup 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁)) (λ <I₋₁ → Group.exp (C2 0) (Group.inv (C2 0) (g pt)) (degree <I <I₋₁)) ⟩ Group.comp (C2 0) (Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁))) (Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (Group.inv (C2 0) (g pt)) (degree <I <I₋₁))) =⟨ ap (Group.comp (C2 0) (Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁)))) (sum-degree <I (Group.inv (C2 0) (g pt))) ∙ Group.unit-r (C2 0) _ ⟩ Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (degree <I <I₋₁)) =∎
{ "alphanum_fraction": 0.5601360404, "avg_line_length": 47.3317073171, "ext": "agda", "hexsha": "e75026f19e1242f40c95e7ad1ff6dd3b36f43b50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundary.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4091, "size": 9703 }
-- FNF, 2017-06-13, issue # 2592 reported by Manuel Bärenz -- The .in file loads Issue2592/B.agda and Issue2592/C.agda that both -- imports Issue2592/A.agda.
{ "alphanum_fraction": 0.7295597484, "avg_line_length": 31.8, "ext": "agda", "hexsha": "a4537c9e5650ba2b1995647b0a0473a166175d6e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2592.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2592.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2592.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 55, "size": 159 }
data ⊥ : Set where module M₁ where postulate ∥_∥ : Set → Set {-# POLARITY ∥_∥ ++ #-} data D : Set where c : ∥ D ∥ → D module M₂ where postulate _⇒_ : Set → Set → Set lambda : {A B : Set} → (A → B) → A ⇒ B apply : {A B : Set} → A ⇒ B → A → B {-# POLARITY _⇒_ ++ #-} data D : Set where c : D ⇒ ⊥ → D not-inhabited : D → ⊥ not-inhabited (c f) = apply f (c f) d : D d = c (lambda not-inhabited) bad : ⊥ bad = not-inhabited d postulate F₁ : Set → Set → Set₁ → Set₁ → Set₁ → Set {-# POLARITY F₁ _ ++ + - * #-} data D₁ : Set where c : F₁ (D₁ → ⊥) D₁ Set Set Set → D₁ postulate F₂ : ∀ {a} → Set a → Set a → Set a {-# POLARITY F₂ * * ++ #-} data D₂ (A : Set) : Set where c : F₂ A (D₂ A) → D₂ A module _ (A : Set₁) where postulate F₃ : Set → Set {-# POLARITY F₃ ++ #-} data D₃ : Set where c : F₃ Set D₃ → D₃ postulate F₄ : ∀ {a} → Set a → Set a → Set a {-# POLARITY F₄ * ++ #-} data D₄ (A : Set) : Set where c : F₄ (D₄ A) A → D₄ A postulate F₅ : ⦃ _ : Set ⦄ → Set {-# POLARITY F₅ ++ #-} data D₅ : Set where c : F₅ ⦃ D₅ ⦄ → D₅
{ "alphanum_fraction": 0.4870651204, "avg_line_length": 14.9466666667, "ext": "agda", "hexsha": "e7cd5c3c2534e9daa10da6f7ec3ec42653a3ed35", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Polarity-pragma.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Polarity-pragma.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Polarity-pragma.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 507, "size": 1121 }
module Tuples where open import Data.Product _² : ∀ {a} (A : Set a) → Set a A ² = A × A _³ : ∀ {a} (A : Set a) → Set a A ³ = A × A ² _⁴ : ∀ {a} (A : Set a) → Set a A ⁴ = A × A ³ _⁵ : ∀ {a} (A : Set a) → Set a A ⁵ = A × A ⁴ _⁶ : ∀ {a} (A : Set a) → Set a A ⁶ = A × A ⁵ _⁷ : ∀ {a} (A : Set a) → Set a A ⁷ = A × A ⁶
{ "alphanum_fraction": 0.4330218069, "avg_line_length": 13.9565217391, "ext": "agda", "hexsha": "8421c0f1ff85ede37fd9baad8a3ce4b4fa6dce71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Tuples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Tuples.agda", "max_line_length": 30, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Tuples.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 181, "size": 321 }
{-# OPTIONS --without-K #-} module function.extensionality where open import function.extensionality.core public open import function.extensionality.proof public open import function.extensionality.strong public using (strong-funext; strong-funext-iso) open import function.extensionality.computation public open import equality.core open import function.isomorphism open import function.overloading -- extensionality for functions of implicit arguments impl-funext : ∀ {i j}{X : Set i}{Y : X → Set j} → {f g : {x : X} → Y x} → ((x : X) → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g impl-funext h = ap (apply impl-iso) (funext h)
{ "alphanum_fraction": 0.6914893617, "avg_line_length": 32.9, "ext": "agda", "hexsha": "2ad60fd29f20b9cd344f92c16461458bada10e85", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/extensionality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function/extensionality.agda", "max_line_length": 54, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/extensionality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 178, "size": 658 }
module SimpleTermUnification where open import OscarPrelude data Term (n : Nat) : Set where var : Fin n → Term n leaf : Term n _fork_ : Term n → Term n → Term n |> : ∀ {m n} → (r : Fin m → Fin n) → Fin m → Term n |> r = var ∘ r _<|_ : ∀ {m n} → (f : Fin m → Term n) → Term m → Term n f <| var x = f x f <| leaf = leaf f <| (t₁ fork t₂) = (f <| t₁) fork (f <| t₂) <|-assoc : ∀ {m n o} (f : Fin n → Term o) (g : Fin m → Term n) (x : Term m) → f <| (g <| x) ≡ (λ y → f <| g y) <| x <|-assoc f g (var x) = refl <|-assoc f g leaf = refl <|-assoc f g (x₁ fork x₂) rewrite <|-assoc f g x₁ | <|-assoc f g x₂ = refl _≗_ : ∀ {m n} → (f g : Fin m → Term n) → Set f ≗ g = ∀ x → f x ≡ g x infixr 9 _⋄_ _⋄_ : ∀ {l m n} → (f : Fin m → Term n) → (g : Fin l → Term m) → Fin l → Term n (f ⋄ g) = (f <|_) ∘ g ⋄-assoc : ∀ {l m n o} (f : Fin n → Term o) (g : Fin m → Term n) (h : Fin l → Term m) → (f ⋄ (g ⋄ h)) ≗ ((f ⋄ g) ⋄ h) ⋄-assoc f g h x = <|-assoc f g (h x) ⋄-assoc' : ∀ {l m n o} (f : Fin n → Term o) (g : Fin m → Term n) (h : Fin l → Term m) → (f ⋄ (g ⋄ h)) ≡ ((f ⋄ g) ⋄ h) ⋄-assoc' f g h = {!⋄-assoc f g h!} thin : ∀ {n} → (x : Fin (suc n)) → (y : Fin n) → Fin (suc n) thin {n} zero y = suc y thin {zero} (suc x) () thin {suc n} (suc x) zero = zero thin {suc n} (suc x) (suc y) = suc (thin x y) thick : ∀ {n} → (x y : Fin (suc n)) → Maybe (Fin n) thick {n} zero zero = nothing thick {n} zero (suc y) = just y thick {zero} (suc ()) zero thick {suc n} (suc x) zero = just zero thick {zero} (suc ()) (suc y) thick {suc n} (suc x) (suc y) = suc <$> thick x y check : ∀ {n} → (x : Fin (suc n)) (t : Term (suc n)) → Maybe (Term n) check x (var y) = var <$> thick x y check x leaf = just leaf check x (t₁ fork t₂) = _fork_ <$> check x t₁ <*> check x t₂ _for_ : ∀ {n} → (t' : Term n) (x : Fin (suc n)) → Fin (suc n) → Term n (t' for x) y with thick x y … | just y' = var y' … | nothing = t' data AList (n : Nat) : Nat → Set where anil : AList n n _asnoc_/_ : ∀ {m} → (σ : AList n m) → (t' : Term m) → (x : Fin (suc m)) → AList n (suc m) sub : ∀ {n m} → (σ : AList n m) → Fin m → Term n sub anil = var sub (σ asnoc t' / x) = sub σ ⋄ (t' for x) flexFlex : ∀ {m} → (x y : Fin m) → ∃ (flip AList m) flexFlex {zero} () _ flexFlex {suc m} x y with thick x y … | just y' = m , (anil asnoc var y' / x) … | nothing = suc m , anil flexRigid : ∀ {m} → (x : Fin m) (t : Term m) → Maybe (∃ (flip AList m)) flexRigid {zero} () _ flexRigid {suc m} x t with check x t … | just t' = just $ m , anil asnoc t' / x … | nothing = nothing amgu : ∀ {m} → (s t : Term m) (acc : ∃ (flip AList m)) → Maybe (∃ (flip AList m)) amgu {m} leaf leaf acc = just acc amgu {m} leaf (_ fork _) _ = nothing amgu {m} (_ fork _) leaf _ = nothing amgu {m} (s₁ fork s₂) (t₁ fork t₂) acc = amgu s₁ t₁ acc >>= amgu s₂ t₂ amgu {m} (var x) (var y) (.m , anil) = just $ flexFlex x y amgu {m} (var x) t (.m , anil) = flexRigid x t amgu {m} t (var x) (.m , anil) = flexRigid x t amgu {suc m} s t (n , (σ asnoc r / z)) = amgu ((r for z) <| s) ((r for z) <| t) (n , σ) >>= λ {(n' , σ') → just $ n' , σ' asnoc r / z} mgu : ∀ {m} → (s t : Term m) → Maybe (∃ (flip AList m)) mgu {m} s t = amgu s t (m , anil) f : Fin 4 → Term 5 f n = var (thin (suc n) n) fork var (thin (suc n) n) g : Fin 4 → Term 5 g n = var (suc n) fs : Term 5 fs = f 0 fork (f 1 fork (f 2 fork f 3)) gs : Term 5 gs = g 0 fork (g 1 fork (g 2 fork g 3)) foo : Set foo = {!mgu fs gs!} Property : Nat → Set₁ Property m = ∀ {n} → (Fin m → Term n) → Set Unifies : ∀ {m} → (s t : Term m) → Property m Unifies s t f = f <| s ≡ f <| t _∧_ : ∀ {m} → (P Q : Property m) → Property m (P ∧ Q) f = P f × Q f _⇔_ : ∀ {m} → (P Q : Property m) → Property m (P ⇔ Q) f = (P f → Q f) × (Q f → P f) Nothing : ∀ {m} (P : Property m) → Set Nothing {m} P = ∀ {n} → (f : Fin m → Term n) → ¬ P f infixl 3 _[-⋄_]_ _[-⋄_]_ : ∀ {m n} (P : Property m) (f : Fin m → Term n) → Property n (P [-⋄ f ] g) = P (g ⋄ f) _≤ₛ_ : ∀ {m n n'} (f : Fin m → Term n) (g : Fin m → Term n') → Set f ≤ₛ g = ∃ λ f' → f ≗ (f' ⋄ g) Max : ∀ {m} (P : Property m) → Property m Max {m} P f = P f × ∀ {n} → (f' : Fin m → Term n) → P f' → f' ≤ₛ f DClosed : ∀ {m} (P : Property m) → Set DClosed {m} P = ∀ {n n'} (f : Fin m → Term n) (g : Fin m → Term n') → f ≤ₛ g → P g → P f Lemma1 : ∀ {l} {P Q : Property l} {m n o} {p : Fin m → Term n} {q : Fin n → Term o} {a : Fin l → Term m} → DClosed P → Max (P [-⋄ a ]_) p → Max (Q [-⋄ (p ⋄ a)]_) q → Max ((P ∧ Q) [-⋄ a ]_) (q ⋄ p) Lemma1 {P = P} {Q} {p = p} {q} {a} DCP maxP maxQ = let Qqpa : Q (q ⋄ p ⋄ a) Qqpa = fst maxQ Qqpa' : Q ((q ⋄ p) ⋄ a) Qqpa' = {!⋄-assoc q p a!} Pqpa : P (q ⋄ p ⋄ a) Pqpa = DCP (λ z → q <| (p <| a z)) (λ z → p <| a z) (q , (λ x → refl)) (fst maxP) lem3 : ∀ {n} → {f : Fin _ → Term n} → P (f ⋄ a) → Q (f ⋄ a) → f ≤ₛ (q ⋄ p) lem3 = {!!} in ({!!} , {!maxQ!}) , {!!} where Ppa : P (p ⋄ a) Ppa = fst maxP pMax : ∀ {n} {p' : Fin _ → Term n} → P (p' ⋄ a) → p' ≤ₛ p pMax {n} {p'} Pp'a = snd maxP p' Pp'a data Step (n : Nat) : Set where left : Term n → Step n right : Term n → Step n _+ₛ_ : ∀ {n} → (ps : List (Step n)) → (t : Term n) → Term n [] +ₛ t = t (left r ∷ ps) +ₛ t = (ps +ₛ t) fork r (right l ∷ ps) +ₛ t = l fork (ps +ₛ t) theorem-6 : ∀ m → (s t : Term m) → (r : Maybe (∃ (flip AList m))) → mgu s t ≡ r → Either (∃ λ n → ∃ λ σ → Max (Unifies s t) (sub σ) × r ≡ just (n , σ)) (Nothing (Unifies s t) × r ≡ nothing) theorem-6 = {!!}
{ "alphanum_fraction": 0.473359913, "avg_line_length": 31.8959537572, "ext": "agda", "hexsha": "0dd0d6d058fe47ee506f719e6f71736ba7e264a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/SimpleTermUnification.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/SimpleTermUnification.agda", "max_line_length": 189, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/SimpleTermUnification.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2572, "size": 5518 }
module Types where open import Data.Bool open import Data.Fin using (Fin) import Data.Fin as F open import Data.Nat renaming (_≟_ to _≟N_) open import Data.Vec hiding (head; tail) open import Relation.Binary.PropositionalEquality open import Relation.Nullary infixl 80 _∙_ data Type : Set where 𝔹 : Type 𝔹⁺ : ℕ → Type ℂ : Type → Type _⇒_ : Type → Type → Type _×_ : Type → Type → Type data Syntax : Set where bitI : Syntax bitO : Syntax [] : Syntax _∷_ : Syntax → Syntax → Syntax _nand_ : Syntax → Syntax → Syntax reg : Syntax → Syntax → Syntax pair : Syntax → Syntax → Syntax latest : Syntax → Syntax head : Syntax → Syntax tail : Syntax → Syntax var : ℕ → Syntax _∙_ : Syntax → Syntax → Syntax lam : Type → Syntax → Syntax Ctx : ℕ → Set Ctx = Vec Type data Term {n} (Γ : Ctx n) : Type → Set where bitI : Term Γ 𝔹 bitO : Term Γ 𝔹 [] : Term Γ (𝔹⁺ 0) _∷_ : ∀ {n} → Term Γ 𝔹 → Term Γ (𝔹⁺ n) → Term Γ (𝔹⁺ (suc n)) _nand_ : Term Γ 𝔹 → Term Γ 𝔹 → Term Γ 𝔹 reg : ∀ {τ σ} → Term Γ τ → Term Γ (τ ⇒ (τ × σ)) → Term Γ (ℂ σ) pair : ∀ {σ τ} → Term Γ σ → Term Γ τ → Term Γ (σ × τ) latest : ∀ {τ} → Term Γ (ℂ τ) → Term Γ τ head : ∀ {n} → Term Γ (𝔹⁺ (suc n)) → Term Γ 𝔹 tail : ∀ {n} → Term Γ (𝔹⁺ (suc n)) → Term Γ (𝔹⁺ n) var : ∀ {τ} (i : Fin n) → (lookup i Γ ≡ τ) → Term Γ τ _∙_ : ∀ {σ τ} → Term Γ (σ ⇒ τ) → Term Γ σ → Term Γ τ lam : ∀ {σ τ} → Term (σ ∷ Γ) τ → Term Γ (σ ⇒ τ) Closed : Type → Set Closed τ = ∀ {n} {ctx : Ctx n} → Term ctx τ ≡𝔹⁺ : ∀ {n m} → 𝔹⁺ n ≡ 𝔹⁺ m → n ≡ m ≡𝔹⁺ refl = refl ≡ℂ : ∀ {τ σ} → ℂ τ ≡ ℂ σ → τ ≡ σ ≡ℂ refl = refl ≡⇒₁ : ∀ {σ σ′ τ τ′} → σ ⇒ τ ≡ σ′ ⇒ τ′ → σ ≡ σ′ ≡⇒₁ refl = refl ≡⇒₂ : ∀ {σ σ′ τ τ′} → σ ⇒ τ ≡ σ′ ⇒ τ′ → τ ≡ τ′ ≡⇒₂ refl = refl ≡×₁ : ∀ {σ σ′ τ τ′} → σ × τ ≡ σ′ × τ′ → σ ≡ σ′ ≡×₁ refl = refl ≡×₂ : ∀ {σ σ′ τ τ′} → σ × τ ≡ σ′ × τ′ → τ ≡ τ′ ≡×₂ refl = refl _≟T_ : (σ τ : Type) → Dec (σ ≡ τ) 𝔹 ≟T 𝔹 = yes refl 𝔹 ≟T 𝔹⁺ _ = no (λ ()) 𝔹 ≟T ℂ _ = no (λ ()) 𝔹 ≟T (_ ⇒ _) = no (λ ()) 𝔹 ≟T (_ × _) = no (λ ()) 𝔹⁺ _ ≟T 𝔹 = no (λ ()) 𝔹⁺ n ≟T 𝔹⁺ m with n ≟N m 𝔹⁺ n ≟T 𝔹⁺ .n | yes refl = yes refl 𝔹⁺ n ≟T 𝔹⁺ m | no ¬p = no (λ x → ¬p (≡𝔹⁺ x)) 𝔹⁺ _ ≟T ℂ _ = no (λ ()) 𝔹⁺ _ ≟T (y ⇒ y₁) = no (λ ()) 𝔹⁺ _ ≟T (y × y₁) = no (λ ()) ℂ _ ≟T 𝔹 = no (λ ()) ℂ _ ≟T 𝔹⁺ n = no (λ ()) ℂ τ ≟T ℂ σ with τ ≟T σ ℂ τ ≟T ℂ .τ | yes refl = yes refl ℂ τ ≟T ℂ σ | no ¬p = no (λ x → ¬p (≡ℂ x)) ℂ _ ≟T (_ ⇒ _) = no (λ ()) ℂ _ ≟T (_ × _) = no (λ ()) (_ ⇒ _) ≟T 𝔹 = no (λ ()) (σ ⇒ τ) ≟T 𝔹⁺ x₂ = no (λ ()) (_ ⇒ _) ≟T ℂ _ = no (λ ()) (σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) with σ ≟T σ₁ | τ ≟T τ₁ (σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | yes p | yes p₁ = yes (cong₂ _⇒_ p p₁) (σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | _ | no ¬p = no (λ x → ¬p (≡⇒₂ x)) (σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | no ¬p | _ = no (λ x → ¬p (≡⇒₁ x)) (_ ⇒ _) ≟T (_ × _) = no (λ ()) (_ × _) ≟T 𝔹 = no (λ ()) (_ × _) ≟T 𝔹⁺ _ = no (λ ()) (_ × _) ≟T ℂ _ = no (λ ()) (_ × _) ≟T (_ ⇒ _) = no (λ ()) (σ × τ) ≟T (σ₁ × τ₁) with σ ≟T σ₁ | τ ≟T τ₁ (σ × τ) ≟T (σ₁ × τ₁) | yes p | yes p₁ = yes (cong₂ _×_ p p₁) (σ × τ) ≟T (σ₁ × τ₁) | _ | no ¬p = no (λ x → ¬p (≡×₂ x)) (σ × τ) ≟T (σ₁ × τ₁) | no ¬p | _ = no (λ x → ¬p (≡×₁ x)) erase : ∀ {n} {Γ : Ctx n} {τ} → Term Γ τ → Syntax erase bitI = bitI erase bitO = bitO erase [] = [] erase (x ∷ xs) = erase x ∷ erase xs erase (x nand y) = erase x nand erase y erase (reg x t) = reg (erase x) (erase t) erase (pair x y) = pair (erase x) (erase y) erase (latest x) = latest (erase x) erase (head x) = head (erase x) erase (tail x) = tail (erase x) erase (var v _) = var (F.toℕ v) erase (t ∙ u) = erase t ∙ erase u erase (lam {σ} t) = lam σ (erase t)
{ "alphanum_fraction": 0.46, "avg_line_length": 29.2, "ext": "agda", "hexsha": "4114ee780adffa2592617cd9d6341aeaff54ddba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bens/hwlc", "max_forks_repo_path": "Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bens/hwlc", "max_issues_repo_path": "Types.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "6f3df71dcd958c6a1d1bf4f175dc16c220d42124", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bens/hwlc", "max_stars_repo_path": "Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1852, "size": 3650 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Identity.Sigma open import HoTT.Identity.Pi open import HoTT.Identity.Universe open import HoTT.Identity.Product open import HoTT.HLevel open import HoTT.HLevel.Truncate open import HoTT.Equivalence open import HoTT.Equivalence.Lift module HoTT.Logic where private variable i j k : Level LiftProp : Prop𝒰 i → Prop𝒰 (i ⊔ j) LiftProp {i} {j} P = type (Lift {j} (P ty)) ⊤ : Prop𝒰 i ⊤ = type 𝟏 ⊥ : Prop𝒰 i ⊥ = type 𝟎 _∧_ : Prop𝒰 i → Prop𝒰 j → Prop𝒰 (i ⊔ j) P ∧ Q = type (P ty × Q ty) ⦃ ×-hlevel ⦄ _⇒_ : Prop𝒰 i → Prop𝒰 j → Prop𝒰 (i ⊔ j) P ⇒ Q = type (P ty → Q ty) infix 10 _⇒_ _⇔_ : Prop𝒰 i → Prop𝒰 i → Prop𝒰 (lsuc i) P ⇔ Q = type (P ty == Q ty) ⦃ equiv-hlevel (=𝒰-equiv ⁻¹ₑ) ⦄ where instance _ = Σ-hlevel _ = raise ⦃ hlevel𝒰.h P ⦄ _ = raise ⦃ hlevel𝒰.h Q ⦄ _∨_ : Prop𝒰 i → Prop𝒰 j → Prop𝒰 (i ⊔ j) P ∨ Q = type ∥ P ty + Q ty ∥ ∃ : (A : 𝒰 i) → (A → Prop𝒰 j) → Prop𝒰 (i ⊔ j) ∃ A P = type ∥ Σ A (_ty ∘ P) ∥ syntax ∃ A (λ x → Φ) = ∃[ x ∶ A ] Φ ∀' : (A : 𝒰 i) → (P : A → Prop𝒰 j) → Prop𝒰 (i ⊔ j) ∀' A P = type (Π A (_ty ∘ P)) where instance _ = λ {x} → hlevel𝒰.h (P x) syntax ∀' A (λ x → Φ) = ∀[ x ∶ A ] Φ LEM : 𝒰 (lsuc i) LEM {i} = (A : Prop𝒰 i) → A ty + ¬ A ty LEM∞ : 𝒰 (lsuc i) LEM∞ {i} = (A : 𝒰 i) → A + ¬ A LDN : 𝒰 (lsuc i) LDN {i} = (A : Prop𝒰 i) → ¬ ¬ A ty → A ty AC : 𝒰 (lsuc i ⊔ lsuc j ⊔ lsuc k) AC {i} {j} {k} = {X : 𝒰 i} {A : X → 𝒰 j} {P : (x : X) → A x → 𝒰 k} → ⦃ hlevel 2 X ⦄ → ⦃ {x : X} → hlevel 2 (A x) ⦄ → ⦃ {x : X} {a : A x} → hlevel 1 (P x a) ⦄ → Π[ x ∶ X ] ∥ Σ[ a ∶ A x ] P x a ∥ → ∥ Σ[ g ∶ Π[ x ∶ X ] A x ] Π[ x ∶ X ] P x (g x) ∥ Lemma3/9/1 : (P : 𝒰 i) → ⦃ hlevel 1 P ⦄ → P ≃ ∥ P ∥ Lemma3/9/1 P = let open Iso in iso→eqv λ where .f → ∣_∣ ; .g → ∥-rec id ; .η _ → refl ; .ε _ → center -- Principle of unique choice Corollary3/9/2 : {A : 𝒰 i} {P : A → 𝒰 i} → ⦃ {x : A} → hlevel 1 (P x) ⦄ → ((x : A) → ∥ P x ∥) → (x : A) → P x Corollary3/9/2 {P = P} f = ∥-rec id ∘ f
{ "alphanum_fraction": 0.5083170254, "avg_line_length": 26.2051282051, "ext": "agda", "hexsha": "f7b25e9128f60c67587be2d4d6eb805cefff75a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Logic.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Logic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1093, "size": 2044 }
module Agda.TypeChecking.Lock where
{ "alphanum_fraction": 0.8611111111, "avg_line_length": 18, "ext": "agda", "hexsha": "78a185793c19c6ce007ce7ff60830a0cfe1fb39d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jappeace/agda", "max_forks_repo_path": "src/full/Agda/TypeChecking/Lock.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jappeace/agda", "max_issues_repo_path": "src/full/Agda/TypeChecking/Lock.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jappeace/agda", "max_stars_repo_path": "src/full/Agda/TypeChecking/Lock.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8, "size": 36 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.FunExt where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Pointed.Properties open import Cubical.Foundations.Pointed.Homotopy private variable ℓ ℓ' : Level module _ {A : Pointed ℓ} {B : typ A → Type ℓ'} {ptB : B (pt A)} where -- pointed function extensionality funExt∙P : {f g : Π∙ A B ptB} → f ∙∼P g → f ≡ g funExt∙P (h , h∙) i .fst x = h x i funExt∙P (h , h∙) i .snd = h∙ i -- inverse of pointed function extensionality funExt∙P⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼P g funExt∙P⁻ p .fst a i = p i .fst a funExt∙P⁻ p .snd i = p i .snd -- function extensionality is an isomorphism, PathP version funExt∙PIso : (f g : Π∙ A B ptB) → Iso (f ∙∼P g) (f ≡ g) Iso.fun (funExt∙PIso f g) = funExt∙P {f = f} {g = g} Iso.inv (funExt∙PIso f g) = funExt∙P⁻ {f = f} {g = g} Iso.rightInv (funExt∙PIso f g) p i j = p j Iso.leftInv (funExt∙PIso f g) h _ = h -- transformed to equivalence funExt∙P≃ : (f g : Π∙ A B ptB) → (f ∙∼P g) ≃ (f ≡ g) funExt∙P≃ f g = isoToEquiv (funExt∙PIso f g) -- funExt∙≃ using the other kind of pointed homotopy funExt∙≃ : (f g : Π∙ A B ptB) → (f ∙∼ g) ≃ (f ≡ g) funExt∙≃ f g = compEquiv (∙∼≃∙∼P f g) (funExt∙P≃ f g) -- standard pointed function extensionality and its inverse funExt∙ : {f g : Π∙ A B ptB} → f ∙∼ g → f ≡ g funExt∙ {f = f} {g = g} = equivFun (funExt∙≃ f g) funExt∙⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼ g funExt∙⁻ {f = f} {g = g} = equivFun (invEquiv (funExt∙≃ f g))
{ "alphanum_fraction": 0.6097704532, "avg_line_length": 34.6734693878, "ext": "agda", "hexsha": "4df73cbdc3ac3eb61f8e2807e7c25789acb88366", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/FunExt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/FunExt.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/FunExt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 765, "size": 1699 }
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Structures.MultiSet where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Functions.FunExtEquiv open import Cubical.Structures.Pointed open import Cubical.Structures.Queue open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.Data.Nat open import Cubical.Data.Sigma module _(A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset member-structure : Type ℓ → Type ℓ member-structure X = A → X → ℕ Member : Type (ℓ-suc ℓ) Member = TypeWithStr ℓ member-structure member-iso : StrIso member-structure ℓ member-iso (X , f) (Y , g) e = ∀ a x → f a x ≡ g a (e .fst x) Member-is-SNS : SNS {ℓ} member-structure member-iso Member-is-SNS = SNS-≡→SNS-PathP member-iso ((λ _ _ → funExt₂Equiv)) -- a multi set structure inspired bei Okasaki multi-set-structure : Type ℓ → Type ℓ multi-set-structure X = X × (A → X → X) × (A → X → ℕ) Multi-Set : Type (ℓ-suc ℓ) Multi-Set = TypeWithStr ℓ multi-set-structure multi-set-iso : StrIso multi-set-structure ℓ multi-set-iso (X , emp₁ , insert₁ , memb₁) (Y , emp₂ , insert₂ , memb₂) e = (e .fst emp₁ ≡ emp₂) × (∀ a q → e .fst (insert₁ a q) ≡ insert₂ a (e .fst q)) × (∀ a x → memb₁ a x ≡ memb₂ a (e .fst x)) Multi-Set-is-SNS : SNS {ℓ₁ = ℓ} multi-set-structure multi-set-iso Multi-Set-is-SNS = join-SNS pointed-iso pointed-is-SNS {S₂ = λ X → (left-action-structure X) × (member-structure X)} (λ B C e → (∀ a q → e .fst (B .snd .fst a q) ≡ C .snd .fst a (e .fst q)) × (∀ a x → (B .snd .snd a x) ≡ (C .snd .snd a (e .fst x)))) (join-SNS left-action-iso Left-Action-is-SNS member-iso Member-is-SNS)
{ "alphanum_fraction": 0.6489963973, "avg_line_length": 32.9322033898, "ext": "agda", "hexsha": "74b83bb63a83a8df8e152246177f0453c7f5d734", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/MultiSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/MultiSet.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/MultiSet.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 643, "size": 1943 }
{-# OPTIONS --without-K #-} module Swaps where -- Intermediate representation of permutations to prove soundness and -- completeness open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid; inspect; [_]; proof-irrelevance; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Data.Nat.Properties using (m≢1+m+n; i+j≡0⇒i≡0; i+j≡0⇒j≡0; n≤m+n) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+) open import Data.Nat.DivMod using (_mod_) open import Relation.Binary using (Rel; Decidable; Setoid) open import Relation.Binary.Core using (Transitive) open import Data.String using (String) renaming (_++_ to _++S_) open import Data.Nat.Show using (show) open import Data.Bool using (Bool; false; true; T) open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_; z≤n; s≤s; _≟_; _≤?_; module ≤-Reasoning) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; _ℕ-_; _≺_; raise; inject+; inject₁; inject≤; _≻toℕ_) renaming (_+_ to _F+_) open import Data.Fin.Properties using (bounded; inject+-lemma) open import Data.Vec.Properties using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘; tabulate-allFin; map-id; allFin-map) open import Data.List using (List; []; _∷_; _∷ʳ_; foldl; replicate; reverse; downFrom; concatMap; gfilter; initLast; InitLast; _∷ʳ'_) renaming (_++_ to _++L_; map to mapL; concat to concatL; zip to zipL) open import Data.List.NonEmpty using (List⁺; module List⁺; [_]; _∷⁺_; head; last; _⁺++_) renaming (toList to nonEmptyListtoList; _∷ʳ_ to _n∷ʳ_; tail to ntail) open List⁺ public open import Data.List.Any using (Any; here; there; any; module Membership) open import Data.Maybe using (Maybe; nothing; just; maybe′) open import Data.Vec using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt; _[_]≔_; allFin; toList) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Function using (id; _∘_; _$_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂) open import Cauchy open import Perm open import Proofs open import CauchyProofs open import CauchyProofsT open import CauchyProofsS open import Groupoid open import PiLevel0 ------------------------------------------------------------------------------ -- Representation of a permutation as a product of "transpositions." -- This product is not commutative; we apply it from left to -- right. Because we eventually want to normalize permutations to some -- canonical representation, we insist that the first component of a -- transposition is always ≤ than the second infix 90 _X_ data Transposition (n : ℕ) : Set where _X_ : (i j : Fin n) → {p : toℕ i ≤ toℕ j} → Transposition n i≰j→j≤i : (i j : ℕ) → (i ≰ j) → (j ≤ i) i≰j→j≤i i 0 p = z≤n i≰j→j≤i 0 (suc j) p with p z≤n i≰j→j≤i 0 (suc j) p | () i≰j→j≤i (suc i) (suc j) p with i ≤? j i≰j→j≤i (suc i) (suc j) p | yes p' with p (s≤s p') i≰j→j≤i (suc i) (suc j) p | yes p' | () i≰j→j≤i (suc i) (suc j) p | no p' = s≤s (i≰j→j≤i i j p') mkTransposition : {n : ℕ} → (i j : Fin n) → Transposition n mkTransposition {n} i j with toℕ i ≤? toℕ j ... | yes p = _X_ i j {p} ... | no p = _X_ j i {i≰j→j≤i (toℕ i) (toℕ j) p} Transposition* : ℕ → Set Transposition* n = List (Transposition n) -- Representation of a permutation as a product of cycles where each -- cycle is a non-empty sequence of indices Cycle : ℕ → Set Cycle n = List⁺ (Fin n) Cycle* : ℕ → Set Cycle* n = List (Cycle n) -- Convert cycles to products of transpositions cycle→transposition* : ∀ {n} → Cycle n → Transposition* n cycle→transposition* c = mapL (mkTransposition (head c)) (reverse (ntail c)) cycle*→transposition* : ∀ {n} → Cycle* n → Transposition* n cycle*→transposition* cs = concatMap cycle→transposition* cs -- Convert from Cauchy representation to product of cycles -- Helper that checks if there is a cycle that starts at i -- Returns the cycle containing i and the rest of the permutation -- without that cycle findCycle : ∀ {n} → Fin n → Cycle* n → Maybe (Cycle n × Cycle* n) findCycle i [] = nothing findCycle i (c ∷ cs) with toℕ i ≟ toℕ (head c) findCycle i (c ∷ cs) | yes _ = just (c , cs) findCycle i (c ∷ cs) | no _ = maybe′ (λ { (c' , cs') → just (c' , c ∷ cs') }) nothing (findCycle i cs) -- Another helper that repeatedly tries to merge smaller cycles {-# NO_TERMINATION_CHECK #-} mergeCycles : ∀ {n} → Cycle* n → Cycle* n mergeCycles [] = [] mergeCycles (c ∷ cs) with findCycle (last c) cs mergeCycles (c ∷ cs) | nothing = c ∷ mergeCycles cs mergeCycles (c ∷ cs) | just (c' , cs') = mergeCycles ((c ⁺++ ntail c') ∷ cs') -- To convert a Cauchy representation to a product of cycles, just create -- a cycle of size 2 for each entry and then merge the cycles cauchy→cycle* : ∀ {n} → Cauchy n → Cycle* n cauchy→cycle* {n} perm = mergeCycles (toList (zipWith (λ i j → i ∷⁺ Data.List.NonEmpty.[ j ]) (allFin n) perm)) -- Cauchy to product of transpostions cauchy→transposition* : ∀ {n} → Cauchy n → Transposition* n cauchy→transposition* = cycle*→transposition* ∘ cauchy→cycle* ------------------------------------------------------------------------------ -- Main functions -- A permutation between t₁ and t₂ has three components in the Cauchy -- representation: the map π of each element to a new position and a -- proof that the sizes of the domain and range are the same and that -- the map is injective. TPermutation : U → U → Set TPermutation t₁ t₂ = size t₁ ≡ size t₂ × Permutation (size t₁) -- A view of (t : U) as normalized types. -- Let size t be n then the normalized version of t is the type -- (1 + (1 + (1 + (1 + ... 0)))) i.e. Fin n. fromSize : ℕ → U fromSize 0 = ZERO fromSize (suc n) = PLUS ONE (fromSize n) canonicalU : U → U canonicalU = fromSize ∘ size size+ : (n₁ n₂ : ℕ) → PLUS (fromSize n₁) (fromSize n₂) ⟷ fromSize (n₁ + n₂) size+ 0 n₂ = unite₊ size+ (suc n₁) n₂ = assocr₊ ◎ (id⟷ ⊕ size+ n₁ n₂) size* : (n₁ n₂ : ℕ) → TIMES (fromSize n₁) (fromSize n₂) ⟷ fromSize (n₁ * n₂) size* 0 n₂ = absorbr size* (suc n₁) n₂ = dist ◎ (unite⋆ ⊕ size* n₁ n₂) ◎ size+ n₂ (n₁ * n₂) normalizeC : (t : U) → t ⟷ canonicalU t normalizeC ZERO = id⟷ normalizeC ONE = uniti₊ ◎ swap₊ normalizeC (PLUS t₀ t₁) = (normalizeC t₀ ⊕ normalizeC t₁) ◎ size+ (size t₀) (size t₁) normalizeC (TIMES t₀ t₁) = (normalizeC t₀ ⊗ normalizeC t₁) ◎ size* (size t₀) (size t₁) -- Given a normalized type Fin n and two indices 'a' and 'b' generate the code -- to swap the two indices. Ex: -- swapFin {3} "0" "1" should produce the permutation: -- assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊ : -- PLUS ONE (PLUS ONE (PLUS ONE ZERO)) ⟷ PLUS ONE (PLUS ONE (PLUS ONE ZERO)) swapFin : {n : ℕ} → (a b : Fin n) → (leq : toℕ a ≤ toℕ b) → fromSize n ⟷ fromSize n swapFin zero zero z≤n = id⟷ swapFin zero (suc zero) z≤n = assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊ swapFin zero (suc (suc b)) z≤n = (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swapFin zero (suc b) z≤n) ◎ (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) swapFin (suc a) zero () swapFin (suc a) (suc b) (s≤s leq) = id⟷ ⊕ swapFin a b leq -- permutation to combinator transposition*2c : (m n : ℕ) (m≡n : m ≡ n) → Transposition* m → (fromSize m ⟷ fromSize n) transposition*2c m n m≡n [] rewrite m≡n = id⟷ transposition*2c m n m≡n (_X_ i j {leq} ∷ π) rewrite m≡n = swapFin i j leq ◎ transposition*2c n n refl π perm2c : {t₁ t₂ : U} → TPermutation t₁ t₂ → (t₁ ⟷ t₂) perm2c {t₁} {t₂} (s₁≡s₂ , (π , inj)) = normalizeC t₁ ◎ transposition*2c (size t₁) (size t₂) s₁≡s₂ (cauchy→transposition* π) ◎ (! (normalizeC t₂)) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.6361733563, "avg_line_length": 36.9181818182, "ext": "agda", "hexsha": "9d15a57e417567b5b0bd3ee6117d6a1f247be85a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Swaps.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Swaps.agda", "max_line_length": 83, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Swaps.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2917, "size": 8122 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Example showing how the free monad construction on containers can be -- used ------------------------------------------------------------------------ module README.Container.FreeMonad where open import Category.Monad open import Data.Empty open import Data.Unit open import Data.Bool open import Data.Nat open import Data.Sum using (inj₁; inj₂) open import Data.Product renaming (_×_ to _⟨×⟩_) open import Data.Container open import Data.Container.Combinator open import Data.Container.FreeMonad open import Data.W open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- The signature of state and its (generic) operations. State : Set → Container _ State S = ⊤ ⟶ S ⊎ S ⟶ ⊤ where _⟶_ : Set → Set → Container _ I ⟶ O = I ▷ λ _ → O get : ∀ {S} → State S ⋆ S get = do (inj₁ _ , return) where open RawMonad rawMonad put : ∀ {S} → S → State S ⋆ ⊤ put s = do (inj₂ s , return) where open RawMonad rawMonad -- Using the above we can, for example, write a stateful program that -- delivers a boolean. prog : State ℕ ⋆ Bool prog = get >>= λ n → put (suc n) >> return true where open RawMonad rawMonad runState : ∀ {S X} → State S ⋆ X → (S → X ⟨×⟩ S) runState (sup (inj₁ x) _) = λ s → x , s runState (sup (inj₂ (inj₁ _)) k) = λ s → runState (k s) s runState (sup (inj₂ (inj₂ s)) k) = λ _ → runState (k _) s test : runState prog 0 ≡ true , 1 test = refl -- It should be noted that @State S ⋆ X@ is not the state monad. If we -- could quotient @State S ⋆ X@ by the seven axioms of state (see -- Plotkin and Power's "Notions of Computation Determine Monads", 2002) -- then we would get the state monad.
{ "alphanum_fraction": 0.5929592959, "avg_line_length": 27.9692307692, "ext": "agda", "hexsha": "d2cbd1a35e49c8e2f144f549efeb8aa8f1f67144", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/README/Container/FreeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/README/Container/FreeMonad.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/README/Container/FreeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 520, "size": 1818 }
{-# OPTIONS --cubical --safe #-} module Container.List where open import Prelude open import Data.Fin open import Container List : Type a → Type a List = ⟦ ℕ , Fin ⟧
{ "alphanum_fraction": 0.6923076923, "avg_line_length": 15.3636363636, "ext": "agda", "hexsha": "f1f608da25ab678b5e97647cb6900fbd4558cf50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Container/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Container/List.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Container/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 46, "size": 169 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality test : (x y : Nat) → x ≡ y → x ≡ 1 → y ≡ 1 → Nat test (suc zero) (suc zero) refl refl refl = {!!}
{ "alphanum_fraction": 0.6237623762, "avg_line_length": 25.25, "ext": "agda", "hexsha": "964225079fb883e9b88b83ab2d01a099a39cc445", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2855.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2855.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2855.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 202 }
open import Prelude module Implicits.Syntax where open import Implicits.Syntax.Type public open import Implicits.Syntax.Term public open import Implicits.Syntax.Context public
{ "alphanum_fraction": 0.8483146067, "avg_line_length": 22.25, "ext": "agda", "hexsha": "86967cef955e1415dbb2d88e214fe4088ace91ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax.agda", "max_line_length": 43, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 38, "size": 178 }
-- Enriched categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal.Enriched where open import Cubical.Categories.Monoidal.Base open import Cubical.Foundations.Prelude module _ {ℓV ℓV' : Level} (V : MonoidalCategory ℓV ℓV') (ℓE : Level) where open MonoidalCategory V renaming (ob to obV; Hom[_,_] to V[_,_]; id to idV; _⋆_ to _⋆V_) record EnrichedCategory : Type (ℓ-max (ℓ-max ℓV ℓV') (ℓ-suc ℓE)) where field ob : Type ℓE Hom[_,_] : ob → ob → obV id : ∀ {x} → V[ unit , Hom[ x , x ] ] seq : ∀ x y z → V[ Hom[ x , y ] ⊗ Hom[ y , z ] , Hom[ x , z ] ] -- Axioms ⋆IdL : ∀ x y → η⟨ _ ⟩ ≡ (id {x} ⊗ₕ idV) ⋆V (seq x x y) ⋆IdR : ∀ x y → ρ⟨ _ ⟩ ≡ (idV ⊗ₕ id {y}) ⋆V (seq x y y) ⋆Assoc : ∀ x y z w → α⟨ _ , _ , _ ⟩ ⋆V ((seq x y z) ⊗ₕ idV) ⋆V (seq x z w) ≡ (idV ⊗ₕ (seq y z w)) ⋆V (seq x y w) -- TODO: define underlying category using Hom[ x , y ] := V[ unit , Hom[ x , y ] ]
{ "alphanum_fraction": 0.5084915085, "avg_line_length": 33.3666666667, "ext": "agda", "hexsha": "c7ea5d60ada8c5d73e9ba684849a5d5f2c1d19c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Monoidal/Enriched.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Monoidal/Enriched.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Monoidal/Enriched.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 436, "size": 1001 }
{- --{-# OPTIONS --allow-unsolved-metas #-} --{-# OPTIONS -v 100 #-} {- Yellow highlighting should be accompanied by an error message -} {- By default, command-line agda reports "unsolved metas" and gives a source-code location, but no information about the nature of the unsolved metas. (Emacs agda gives only yellow-highlighting.). With Without increasing verbosity (via "-v 100") -} postulate yellow-highlighting-but-no-error-message : Set _ {- --allow-unsolved-metas -} {- Running from the command-line, agda reports that there are unsolved metas but doesn't say anything about what they are. Is there a way to increase verbosity about the unsolved metas? -} postulate error-message-but-no-link-to-source-code-location : _ _ -} postulate Σ : (A : Set) (B : A → Set) → Set X : Set confusing-message--not-empty-type-of-sizes : Σ _ λ x → X confusing-message--not-empty-type-of-sizes = {!!}
{ "alphanum_fraction": 0.7144432194, "avg_line_length": 34.8846153846, "ext": "agda", "hexsha": "ac4ff476fc9dfba50f8fae3151fa841b01904d85", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Bug-confusing-sizes-message.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Bug-confusing-sizes-message.agda", "max_line_length": 250, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Bug-confusing-sizes-message.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 907 }
------------------------------------------------------------------------------ -- Testing the non-internal ATP equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module NonInternalEquality where postulate D : Set data _≡_ (x : D) : D → Set where refl : x ≡ x {-# ATP axiom refl #-} postulate foo : ∀ x → x ≡ x {-# ATP prove foo #-}
{ "alphanum_fraction": 0.3941605839, "avg_line_length": 27.4, "ext": "agda", "hexsha": "65fbbaf9796af78cdf7b2e02f6d245059a54dbc8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/NonInternalEquality.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/NonInternalEquality.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/NonInternalEquality.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 103, "size": 548 }
{-# OPTIONS --without-K --safe #-} -- A Monad in a Bicategory. -- For the more elementary version of Monads, see 'Categories.Monad'. module Categories.Bicategory.Monad where open import Level open import Data.Product using (_,_) open import Categories.Bicategory import Categories.Bicategory.Extras as Bicat open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) record Monad {o ℓ e t} (𝒞 : Bicategory o ℓ e t) : Set (o ⊔ ℓ ⊔ e ⊔ t) where open Bicat 𝒞 field C : Obj T : C ⇒₁ C η : id₁ ⇒₂ T μ : (T ⊚₀ T) ⇒₂ T assoc : μ ∘ᵥ (T ▷ μ) ∘ᵥ associator.from ≈ (μ ∘ᵥ (μ ◁ T)) sym-assoc : μ ∘ᵥ (μ ◁ T) ∘ᵥ associator.to ≈ (μ ∘ᵥ (T ▷ μ)) identityˡ : μ ∘ᵥ (T ▷ η) ∘ᵥ unitorʳ.to ≈ id₂ identityʳ : μ ∘ᵥ (η ◁ T) ∘ᵥ unitorˡ.to ≈ id₂
{ "alphanum_fraction": 0.6361355082, "avg_line_length": 28.4642857143, "ext": "agda", "hexsha": "b78750c067cc0913374f11644c8757e3c54385e1", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory/Monad.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory/Monad.agda", "max_line_length": 90, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 322, "size": 797 }
{-# OPTIONS --without-K #-} open import lib.Basics -- open import lib.NType2 -- open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.Lift open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit module nicolai.pseudotruncations.Preliminary-definitions where -- definition of weak constancy wconst : ∀ {i j} {A : Type i} {B : Type j} → (A → B) → Type (lmax i j) wconst {A = A} f = (a₁ a₂ : A) → f a₁ == f a₂ {- Pointed maps (without the 'point') -} _→̇_ : ∀ {i j} ( : Ptd i) (B̂ : Ptd j) → Type _  →̇ B̂ = fst ( ⊙→ B̂) {- It is useful to have a lemma which allows to construct equalities between pointed types. Of course, we know that such an equality is a pair of equalities; however, transporting a function can make things more tedious than necessary! -} make-=-∙ : ∀ {i j} { : Ptd i} {B̂ : Ptd j} (f̂ ĝ :  →̇ B̂) (p : fst f̂ == fst ĝ) → ! (app= p (snd Â)) ∙ snd f̂ == snd ĝ → f̂ == ĝ make-=-∙ (f , p) (.f , q) idp t = pair= idp t {- A lemma that allows to prove that the value of a map between pointed maps, at some given point, is some given point. This would otherwise be an involved nesting of transports/ PathOvers. -} →̇-maps-to : ∀ {i} { B̂ Ĉ D̂ : Ptd i} (F̂ : ( →̇ B̂) → (Ĉ →̇ D̂)) (f̂ :  →̇ B̂) (ĝ : Ĉ →̇ D̂) (p : fst (F̂ f̂) == (fst ĝ)) (q : (app= p (snd Ĉ)) ∙ (snd ĝ) == snd (F̂ f̂)) → F̂ f̂ == ĝ →̇-maps-to F̂ f̂ (.(fst (F̂ f̂)) , .(snd (F̂ f̂))) idp idp = idp {- Also trivial: make pointed equivalences from an ordinary equality -} coe-equiv∙ : ∀ {i} { B̂ : Ptd i} → ( == B̂) →  ⊙≃ B̂ coe-equiv∙ idp = (idf _ , idp) , idf-is-equiv _ module _ {i} where {- Of course, spheres are defined in the library. Unfortunately, they do not play well together with iterated suspension. If f is an endofunction, one can define [f^Sn] either as [f^n ∘ f] or as [f ∘ f^n]. It turns out that it is much more convenient if one chooses different possibilites for Ω and for Σ (suspension), as the adjunction can then be handled much more directly. In summary: It's best to redefine spheres. -} ⊙Susp-iter' : (n : ℕ) ( : Ptd i) → Ptd i ⊙Susp-iter' O  =  ⊙Susp-iter' (S n)  = ⊙Susp-iter' n (⊙Susp Â) {- compare: definition of iterated Ω ⊙Ω-iter : (n : ℕ) ( : Ptd i) → Ptd i ⊙Ω-iter O  =  ⊙Ω-iter (S n)  = ⊙Ω (⊙Ω-iter n Â) -} ⊙Sphere' : (n : ℕ) → Ptd i ⊙Sphere' n = ⊙Susp-iter' n (⊙Lift ⊙Bool) Sphere' : (n : ℕ) → Type i Sphere' = fst ∘ ⊙Sphere' nor' : (n : ℕ) → Sphere' n nor' = snd ∘ ⊙Sphere' {- Unfortunately, we will sometimes still need the "other" behaviour of the sphere. Thus, we show at least the following: -} ⊙Susp-iter : (n : ℕ) ( : Ptd i) → Ptd i ⊙Susp-iter O  =  ⊙Susp-iter (S n)  = ⊙Susp (⊙Susp-iter n Â) ⊙Sphere* : (n : ℕ) → Ptd i ⊙Sphere* n = ⊙Susp-iter n (⊙Lift ⊙Bool) Sphere* : (n : ℕ) → Type i Sphere* = fst ∘ ⊙Sphere* {- Of course, this proof could be done for all endofunctions. -} susp-iter= : (n : ℕ) ( : Ptd i) → ⊙Susp-iter' n  == ⊙Susp-iter n  susp-iter= O  = idp susp-iter= (S O)  = idp susp-iter= (S (S n))  = ⊙Susp-iter' (S (S n))  =⟨ susp-iter= (S n) (⊙Susp Â) ⟩ ⊙Susp (⊙Susp-iter n (⊙Susp Â)) =⟨ ap ⊙Susp (! (susp-iter= n (⊙Susp Â))) ⟩ ⊙Susp (⊙Susp-iter' (S n) Â) =⟨ ap ⊙Susp (susp-iter= (S n) Â) ⟩ ⊙Susp-iter (S (S n))  ∎ {- Thus, we have for the spheres: -} ⊙Spheres= : (n : ℕ) → ⊙Sphere' n == ⊙Sphere* n ⊙Spheres= n = susp-iter= n (⊙Lift ⊙Bool) Spheres= : (n : ℕ) → Sphere' n == Sphere* n Spheres= n = ap fst (⊙Spheres= n) {- Also, we have this: -} susp'-switch : (n : ℕ) → ⊙Sphere' (S n) == ⊙Susp (⊙Sphere' n) susp'-switch n = (⊙Spheres= (S n)) ∙ (ap ⊙Susp (! (⊙Spheres= n)))
{ "alphanum_fraction": 0.5600961538, "avg_line_length": 31.7557251908, "ext": "agda", "hexsha": "99441cfcca3933fafd17c81c881278d1bb21e5d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/Preliminary-definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/Preliminary-definitions.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/Preliminary-definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1738, "size": 4160 }
-- Andreas, Bentfest 2016-04-28 Marsstrand -- Issue 1944: also resolve overloaded projections in checking position module _ (A : Set) (a : A) where record R B : Set where field f : B open R record S B : Set where field f : B open S test : ∀{A : Set} → A → A test = f -- Expected error: -- Cannot resolve overloaded projection f because first visible -- argument is not of record type -- when checking that the expression f has type .A → .A
{ "alphanum_fraction": 0.6941964286, "avg_line_length": 22.4, "ext": "agda", "hexsha": "b15a6482290db74d96a1cbbcb4279f2a7059a6c1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1944-UnappliedOverloadedProjectionNotRecord.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1944-UnappliedOverloadedProjectionNotRecord.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1944-UnappliedOverloadedProjectionNotRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 129, "size": 448 }
open import Relation.Binary using (Rel) open import Algebra.Bundles using (CommutativeRing) open import Algebra.Module.Normed module Algebra.Module.Limit.Compose {r ℓr} {CR : CommutativeRing r ℓr} (open CommutativeRing CR using () renaming (Carrier to X)) {rel} {_≤_ : Rel X rel} {ma ℓma} (MA : NormedModule CR _≤_ ma ℓma) {mb ℓmb} (MB : NormedModule CR _≤_ mb ℓmb) {mc ℓmc} (MC : NormedModule CR _≤_ mc ℓmc) where open import Data.Product using (_,_) open import Function using (_∘_) open CommutativeRing CR open import Assume using (assume) import Algebra.Module.Limit as Limit open Limit MA MB using () renaming ( _DifferentiableAt_ to _DifferentiableAt₁₂_ ; Differentiable to Differentiable₁₂ ) open Limit MB MC using () renaming (_DifferentiableAt_ to _DifferentiableAt₂₃_ ; Differentiable to Differentiable₂₃ ) open Limit MA MC using () renaming (_DifferentiableAt_ to _DifferentiableAt₁₃_ ; Differentiable to Differentiable₁₃ ) private module MA = NormedModule MA module MB = NormedModule MB module MC = NormedModule MC ∘-differentiable-at : ∀ {g f x} → g DifferentiableAt₂₃ (f x) → f DifferentiableAt₁₂ x → (g ∘ f) DifferentiableAt₁₃ x ∘-differentiable-at {g} {f} {x} (Dg , _) (Df , _) = (Dg ∘ Df) , assume ∘-differentiable : ∀ {g f} → Differentiable₂₃ g → Differentiable₁₂ f → Differentiable₁₃ (g ∘ f) ∘-differentiable {g} {f} diff-g diff-f = λ x → ∘-differentiable-at {g} {f} {x} (diff-g (f x)) (diff-f x)
{ "alphanum_fraction": 0.7146757679, "avg_line_length": 30.5208333333, "ext": "agda", "hexsha": "be7efe01828d1329c8423eeebeceaed58fc17e6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/reals", "max_forks_repo_path": "src/Algebra/Module/Limit/Compose.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/reals", "max_issues_repo_path": "src/Algebra/Module/Limit/Compose.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/reals", "max_stars_repo_path": "src/Algebra/Module/Limit/Compose.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 497, "size": 1465 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Addition.Properties where open import Prelude open import Data.Binary.Definition open import Data.Binary.Addition open import Data.Binary.Conversion import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Path.Reasoning open import Data.Binary.Isomorphism +-cong : ∀ xs ys → ⟦ xs + ys ⇓⟧ ≡ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ add₁-cong : ∀ xs ys → ⟦ add₁ xs ys ⇓⟧ ≡ 1 ℕ.+ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ add₂-cong : ∀ xs ys → ⟦ add₂ xs ys ⇓⟧ ≡ 2 ℕ.+ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧ lemma₁ : ∀ xs ys → ⟦ add₁ xs ys ⇓⟧ ℕ.* 2 ≡ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ (2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) lemma₁ xs ys = ⟦ add₁ xs ys ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._* 2) (add₁-cong xs ys) ⟩ 2 ℕ.+ (⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧) ℕ.* 2 ≡⟨ cong (2 ℕ.+_ ) (ℕ.+-*-distrib ⟦ xs ⇓⟧ ⟦ ys ⇓⟧ 2) ⟩ 2 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._+ (⟦ ys ⇓⟧ ℕ.* 2)) (ℕ.+-comm 2 (⟦ xs ⇓⟧ ℕ.* 2)) ⟩ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ 2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2 ≡⟨ ℕ.+-assoc (⟦ xs ⇓⟧ ℕ.* 2) 2 (⟦ ys ⇓⟧ ℕ.* 2) ⟩ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ (2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) ∎ lemma₂ : ∀ xs ys → ⟦ add₁ xs ys ⇓⟧ ℕ.* 2 ≡ (1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2) ℕ.+ (1 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) lemma₂ xs ys = ⟦ add₁ xs ys ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._* 2) (add₁-cong xs ys) ⟩ (1 ℕ.+ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧) ℕ.* 2 ≡⟨ ℕ.+-*-distrib (1 ℕ.+ ⟦ xs ⇓⟧) ⟦ ys ⇓⟧ 2 ⟩ 2 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2 ≡˘⟨ ℕ.+-suc (1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2) (⟦ ys ⇓⟧ ℕ.* 2) ⟩ (1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2) ℕ.+ (1 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) ∎ lemma₃ : ∀ xs ys → ⟦ add₂ xs ys ⇓⟧ ℕ.* 2 ≡ suc (suc (⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ suc (suc (⟦ ys ⇓⟧ ℕ.* 2)))) lemma₃ xs ys = ⟦ add₂ xs ys ⇓⟧ ℕ.* 2 ≡⟨ cong (ℕ._* 2) (add₂-cong xs ys) ⟩ (2 ℕ.+ ⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧) ℕ.* 2 ≡˘⟨ cong (ℕ._* 2) (ℕ.+-suc (1 ℕ.+ ⟦ xs ⇓⟧) ⟦ ys ⇓⟧) ⟩ ((1 ℕ.+ ⟦ xs ⇓⟧) ℕ.+ (1 ℕ.+ ⟦ ys ⇓⟧)) ℕ.* 2 ≡⟨ ℕ.+-*-distrib (1 ℕ.+ ⟦ xs ⇓⟧) (1 ℕ.+ ⟦ ys ⇓⟧) 2 ⟩ suc (suc (⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ suc (suc (⟦ ys ⇓⟧ ℕ.* 2)))) ∎ add₁-cong 0ᵇ ys = inc-suc ys add₁-cong (1ᵇ xs) 0ᵇ = cong (2 ℕ.+_) (sym (ℕ.+-idʳ (⟦ xs ⇓⟧ ℕ.* 2))) add₁-cong (2ᵇ xs) 0ᵇ = cong suc (cong (ℕ._* 2) (inc-suc xs) ; cong (2 ℕ.+_) (sym (ℕ.+-idʳ (⟦ xs ⇓⟧ ℕ.* 2)))) add₁-cong (1ᵇ xs) (1ᵇ ys) = cong suc (lemma₂ xs ys) add₁-cong (1ᵇ xs) (2ᵇ ys) = cong (2 ℕ.+_) (lemma₁ xs ys) add₁-cong (2ᵇ xs) (1ᵇ ys) = cong (2 ℕ.+_) (lemma₂ xs ys) add₁-cong (2ᵇ xs) (2ᵇ ys) = cong (1 ℕ.+_) (lemma₃ xs ys) add₂-cong 0ᵇ 0ᵇ = refl add₂-cong 0ᵇ (1ᵇ ys) = cong (1 ℕ.+_) (cong (ℕ._* 2) (inc-suc ys)) add₂-cong 0ᵇ (2ᵇ ys) = cong (2 ℕ.+_) (cong (ℕ._* 2) (inc-suc ys)) add₂-cong (1ᵇ xs) 0ᵇ = cong (1 ℕ.+_) ((cong (ℕ._* 2) (inc-suc xs)) ; cong (2 ℕ.+_) (sym (ℕ.+-idʳ _))) add₂-cong (2ᵇ xs) 0ᵇ = cong (2 ℕ.+_) ((cong (ℕ._* 2) (inc-suc xs)) ; cong (2 ℕ.+_) (sym (ℕ.+-idʳ _))) add₂-cong (1ᵇ xs) (1ᵇ ys) = cong (2 ℕ.+_ ) (lemma₂ xs ys) add₂-cong (1ᵇ xs) (2ᵇ ys) = cong (1 ℕ.+_) (lemma₃ xs ys) add₂-cong (2ᵇ xs) (1ᵇ ys) = cong (1 ℕ.+_) (lemma₃ xs ys ; ℕ.+-suc (2 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2) (1 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2)) add₂-cong (2ᵇ xs) (2ᵇ ys) = cong (2 ℕ.+_) (lemma₃ xs ys) +-cong 0ᵇ ys = refl +-cong (1ᵇ xs) 0ᵇ = cong suc (sym (ℕ.+-idʳ (⟦ xs ⇓⟧ ℕ.* 2))) +-cong (2ᵇ xs) 0ᵇ = cong (suc ∘ suc) (sym (ℕ.+-idʳ (⟦ xs ⇓⟧ ℕ.* 2))) +-cong (1ᵇ xs) (1ᵇ ys) = 2 ℕ.+ ⟦ xs + ys ⇓⟧ ℕ.* 2 ≡⟨ cong (λ xy → 2 ℕ.+ xy ℕ.* 2) (+-cong xs ys) ⟩ 2 ℕ.+ (⟦ xs ⇓⟧ ℕ.+ ⟦ ys ⇓⟧) ℕ.* 2 ≡⟨ cong (2 ℕ.+_) (ℕ.+-*-distrib ⟦ xs ⇓⟧ ⟦ ys ⇓⟧ 2) ⟩ 2 ℕ.+ (⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) ≡˘⟨ cong suc (ℕ.+-suc (⟦ xs ⇓⟧ ℕ.* 2) (⟦ ys ⇓⟧ ℕ.* 2)) ⟩ 1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2 ℕ.+ (1 ℕ.+ ⟦ ys ⇓⟧ ℕ.* 2) ∎ +-cong (1ᵇ xs) (2ᵇ ys) = cong suc (lemma₁ xs ys) +-cong (2ᵇ xs) (1ᵇ ys) = cong suc (lemma₂ xs ys) +-cong (2ᵇ xs) (2ᵇ ys) = cong (2 ℕ.+_) (lemma₁ xs ys) +-cong˘ : ∀ xs ys → ⟦ xs ℕ.+ ys ⇑⟧ ≡ ⟦ xs ⇑⟧ + ⟦ ys ⇑⟧ +-cong˘ xs ys = ⟦ xs ℕ.+ ys ⇑⟧ ≡˘⟨ cong ⟦_⇑⟧ (cong₂ ℕ._+_ (𝔹-rightInv xs) (𝔹-rightInv ys)) ⟩ ⟦ ⟦ ⟦ xs ⇑⟧ ⇓⟧ ℕ.+ ⟦ ⟦ ys ⇑⟧ ⇓⟧ ⇑⟧ ≡˘⟨ cong ⟦_⇑⟧ (+-cong ⟦ xs ⇑⟧ ⟦ ys ⇑⟧) ⟩ ⟦ ⟦ ⟦ xs ⇑⟧ + ⟦ ys ⇑⟧ ⇓⟧ ⇑⟧ ≡⟨ 𝔹-leftInv (⟦ xs ⇑⟧ + ⟦ ys ⇑⟧) ⟩ ⟦ xs ⇑⟧ + ⟦ ys ⇑⟧ ∎
{ "alphanum_fraction": 0.4515877147, "avg_line_length": 49.8961038961, "ext": "agda", "hexsha": "749daf5e4044320c2dbfb6e56fa5acf9d728c71e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Addition/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Addition/Properties.agda", "max_line_length": 110, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Addition/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 2393, "size": 3842 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on the Delay type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Delay.Properties where open import Size import Data.Sum as Sum open import Codata.Thunk using (Thunk; force) open import Codata.Conat open import Codata.Conat.Bisimilarity as Coℕ using (zero ; suc) open import Codata.Delay open import Codata.Delay.Bisimilarity open import Function open import Relation.Binary.PropositionalEquality as Eq using (_≡_) module _ {a} {A : Set a} where length-never : ∀ {i} → i Coℕ.⊢ length (never {A = A}) ≈ infinity length-never = suc λ where .force → length-never module _ {a b} {A : Set a} {B : Set b} where length-map : ∀ (f : A → B) da {i} → i Coℕ.⊢ length (map f da) ≈ length da length-map f (now a) = zero length-map f (later da) = suc λ where .force → length-map f (da .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where length-zipWith : ∀ (f : A → B → C) da db {i} → i Coℕ.⊢ length (zipWith f da db) ≈ length da ⊔ length db length-zipWith f (now a) db = length-map (f a) db length-zipWith f da@(later _) (now b) = length-map (λ a → f a b) da length-zipWith f (later da) (later db) = suc λ where .force → length-zipWith f (da .force) (db .force) map-map-fusion : ∀ (f : A → B) (g : B → C) da {i} → i ⊢ map g (map f da) ≈ map (g ∘′ f) da map-map-fusion f g (now a) = now Eq.refl map-map-fusion f g (later da) = later λ where .force → map-map-fusion f g (da .force) map-unfold-fusion : ∀ (f : B → C) n (s : A) {i} → i ⊢ map f (unfold n s) ≈ unfold (Sum.map id f ∘′ n) s map-unfold-fusion f n s with n s ... | Sum.inj₁ s′ = later λ where .force → map-unfold-fusion f n s′ ... | Sum.inj₂ b = now Eq.refl
{ "alphanum_fraction": 0.5774278215, "avg_line_length": 37.3529411765, "ext": "agda", "hexsha": "b7a08beb5d9e2d18a1b9d7ee9fb967671fdc1806", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay/Properties.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 627, "size": 1905 }
------------------------------------------------------------------------ -- Helpers intended to ease the development of "tactics" which use -- proof by reflection ------------------------------------------------------------------------ open import Relation.Binary open import Data.Nat open import Data.Fin open import Data.Vec as Vec open import Data.Function -- Think of the parameters as follows: -- -- * Expr: A representation of code. -- * var: The Expr type should support a notion of variables. -- * ⟦_⟧: Computes the semantics of an expression. Takes an -- environment mapping variables to something. -- * ⟦_⇓⟧: Computes the semantics of the normal form of the -- expression. -- * correct: Normalisation preserves the semantics. -- -- Given these parameters two "tactics" are returned, prove and solve. -- -- For an example of the use of this module, see Algebra.RingSolver. module Relation.Binary.Reflection {Expr : ℕ → Set} {A} Sem (var : ∀ {n} → Fin n → Expr n) (⟦_⟧ ⟦_⇓⟧ : ∀ {n} → Expr n → Vec A n → Setoid.carrier Sem) (correct : ∀ {n} (e : Expr n) ρ → ⟦ e ⇓⟧ ρ ⟨ Setoid._≈_ Sem ⟩₁ ⟦ e ⟧ ρ) where open import Data.Vec.N-ary open import Data.Product import Relation.Binary.EqReasoning as Eq open Setoid Sem open Eq Sem -- If two normalised expressions are semantically equal, then their -- non-normalised forms are also equal. prove : ∀ {n} (ρ : Vec A n) e₁ e₂ → ⟦ e₁ ⇓⟧ ρ ≈ ⟦ e₂ ⇓⟧ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ prove ρ e₁ e₂ hyp = begin ⟦ e₁ ⟧ ρ ≈⟨ sym (correct e₁ ρ) ⟩ ⟦ e₁ ⇓⟧ ρ ≈⟨ hyp ⟩ ⟦ e₂ ⇓⟧ ρ ≈⟨ correct e₂ ρ ⟩ ⟦ e₂ ⟧ ρ ∎ -- Applies the function to all possible "variables". close : ∀ {A} n → N-ary n (Expr n) A → A close n f = f $ⁿ Vec.map var (allFin n) -- A variant of prove which should in many cases be easier to use, -- because variables and environments are handled in a less explicit -- way. -- -- If the type signature of solve is a bit daunting, then it may be -- helpful to instantiate n with a small natural number and normalise -- the remainder of the type. solve : ∀ n (f : N-ary n (Expr n) (Expr n × Expr n)) → Eqʰ n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⇓⟧) (curryⁿ ⟦ proj₂ (close n f) ⇓⟧) → Eq n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⟧) (curryⁿ ⟦ proj₂ (close n f) ⟧) solve n f hyp = curryⁿ-pres ⟦ proj₁ (close n f) ⟧ ⟦ proj₂ (close n f) ⟧ (λ ρ → prove ρ (proj₁ (close n f)) (proj₂ (close n f)) (curryⁿ-pres⁻¹ ⟦ proj₁ (close n f) ⇓⟧ ⟦ proj₂ (close n f) ⇓⟧ (Eqʰ-to-Eq n hyp) ρ)) -- A variant of _,_ which is intended to make uses of solve look a -- bit nicer. infix 4 _⊜_ _⊜_ : ∀ {A} → A → A → A × A _⊜_ = _,_
{ "alphanum_fraction": 0.5726308086, "avg_line_length": 32.9277108434, "ext": "agda", "hexsha": "9287fb42b8f26db82184997f44aae99371d4c775", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Reflection.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Reflection.agda", "max_line_length": 77, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 915, "size": 2733 }
postulate T : Set → Set _>>=_ : ∀ {A B} → T A → (A → T B) → T B argh : ∀ {A} → T A → T A argh ta = do f x ← ta {!!}
{ "alphanum_fraction": 0.384, "avg_line_length": 13.8888888889, "ext": "agda", "hexsha": "483328e7a84a271dd172c5f93c003d720f76636c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5286.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5286.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5286.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 125 }
module Common.Nat where open import Agda.Builtin.Nat public using ( Nat; zero; suc; _+_; _*_ ) renaming ( _-_ to _∸_ ) {-# COMPILED_JS Nat function (x,v) { return (x < 1? v.zero(): v.suc(x-1)); } #-} {-# COMPILED_JS zero 0 #-} {-# COMPILED_JS suc function (x) { return x+1; } #-} {-# COMPILED_JS _+_ function (x) { return function (y) { return x+y; }; } #-} {-# COMPILED_JS _*_ function (x) { return function (y) { return x*y; }; } #-} {-# COMPILED_JS _∸_ function (x) { return function (y) { return Math.max(0,x-y); }; } #-} pred : Nat → Nat pred zero = zero pred (suc n) = n
{ "alphanum_fraction": 0.5861486486, "avg_line_length": 31.1578947368, "ext": "agda", "hexsha": "ad4cb53c8315cedde13f1f7bd51defd878ffa113", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Common/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Common/Nat.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Common/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 203, "size": 592 }
-- You can have infix declarations in records. module InfixRecordFields where data Nat : Set where zero : Nat suc : Nat -> Nat infixl 50 _+_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) data _==_ {A : Set}(x : A) : A -> Set where refl : x == x one = suc zero two = suc (suc zero) record A : Set where field x : Nat _*_ : Nat -> Nat -> Nat h : (one + one * x) == one -- later fields make use of the fixity infixl 60 _*_ a : A a = record { x = zero; _*_ = \ x y -> y; h = refl } open module X = A a -- The projection functions also have the right fixity. p : (one + one * zero) == one p = refl
{ "alphanum_fraction": 0.5628834356, "avg_line_length": 18.1111111111, "ext": "agda", "hexsha": "da804f51de6e7b4911105d4ddeb269c586cd5cbd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/InfixRecordFields.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/InfixRecordFields.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/InfixRecordFields.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 225, "size": 652 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data Unit : Set where ∗ : Unit postulate A : Set a b c : Unit → A a→b : a ∗ ≡ b ∗ a→c : ∀ x → a x ≡ c x b→c : b ∗ ≡ c ∗ {-# REWRITE a→b a→c b→c #-}
{ "alphanum_fraction": 0.5789473684, "avg_line_length": 17.8125, "ext": "agda", "hexsha": "b0ce0d3ac4a935a46dcca394d8d4c32618bb4501", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3795.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3795.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3795.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-27T06:54:44.000Z", "max_stars_repo_stars_event_min_datetime": "2019-09-27T06:54:44.000Z", "num_tokens": 114, "size": 285 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Solver for commutative ring or semiring equalities ------------------------------------------------------------------------ -- Uses ideas from the Coq ring tactic. See "Proving Equalities in a -- Commutative Ring Done Right in Coq" by Grégoire and Mahboubi. The -- code below is not optimised like theirs, though (in particular, our -- Horner normal forms are not sparse). -- -- At first the `WeaklyDecidable` type may at first glance look useless -- as there is no guarantee that it doesn't always return `nothing`. -- However the implementation of it affects the power of the solver. The -- more equalities it returns, the more expressions the ring solver can -- solve. {-# OPTIONS --without-K --safe #-} open import Algebra open import Algebra.Solver.Ring.AlmostCommutativeRing open import Relation.Binary.Core using (WeaklyDecidable) module Algebra.Solver.Ring {r₁ r₂ r₃} (Coeff : RawRing r₁) -- Coefficient "ring". (R : AlmostCommutativeRing r₂ r₃) -- Main "ring". (morphism : Coeff -Raw-AlmostCommutative⟶ R) (_coeff≟_ : WeaklyDecidable (Induced-equivalence morphism)) where open import Algebra.Solver.Ring.Lemmas Coeff R morphism private module C = RawRing Coeff open AlmostCommutativeRing R renaming (zero to *-zero; zeroˡ to *-zeroˡ; zeroʳ to *-zeroʳ) open import Algebra.FunctionProperties _≈_ open import Algebra.Morphism open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧′) open import Algebra.Operations.Semiring semiring open import Relation.Binary open import Relation.Nullary using (yes; no) open import Relation.Binary.Reasoning.Setoid setoid import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.Reflection as Reflection open import Data.Nat.Base using (ℕ; suc; zero) open import Data.Fin using (Fin; zero; suc) open import Data.Vec using (Vec; []; _∷_; lookup) open import Data.Maybe.Base using (just; nothing) open import Function open import Level using (_⊔_) infix 9 :-_ -H_ -N_ infixr 9 _:×_ _:^_ _^N_ infix 8 _*x+_ _*x+HN_ _*x+H_ infixl 8 _:*_ _*N_ _*H_ _*NH_ _*HN_ infixl 7 _:+_ _:-_ _+H_ _+N_ infix 4 _≈H_ _≈N_ ------------------------------------------------------------------------ -- Polynomials data Op : Set where [+] : Op [*] : Op -- The polynomials are indexed by the number of variables. data Polynomial (m : ℕ) : Set r₁ where op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m con : (c : C.Carrier) → Polynomial m var : (x : Fin m) → Polynomial m _:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m :-_ : (p : Polynomial m) → Polynomial m -- Short-hand notation. _:+_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:+_ = op [+] _:*_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:*_ = op [*] _:-_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n x :- y = x :+ :- y _:×_ : ∀ {n} → ℕ → Polynomial n → Polynomial n zero :× p = con C.0# suc m :× p = p :+ m :× p -- Semantics. sem : Op → Op₂ Carrier sem [+] = _+_ sem [*] = _*_ ⟦_⟧ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ op o p₁ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ ⟨ sem o ⟩ ⟦ p₂ ⟧ ρ ⟦ con c ⟧ ρ = ⟦ c ⟧′ ⟦ var x ⟧ ρ = lookup ρ x ⟦ p :^ n ⟧ ρ = ⟦ p ⟧ ρ ^ n ⟦ :- p ⟧ ρ = - ⟦ p ⟧ ρ ------------------------------------------------------------------------ -- Normal forms of polynomials -- A univariate polynomial of degree d, -- -- p = a_d x^d + a_{d-1}x^{d-1} + … + a_0, -- -- is represented in Horner normal form by -- -- p = ((a_d x + a_{d-1})x + …)x + a_0. -- -- Note that Horner normal forms can be represented as lists, with the -- empty list standing for the zero polynomial of degree "-1". -- -- Given this representation of univariate polynomials over an -- arbitrary ring, polynomials in any number of variables over the -- ring C can be represented via the isomorphisms -- -- C[] ≅ C -- -- and -- -- C[X_0,...X_{n+1}] ≅ C[X_0,...,X_n][X_{n+1}]. mutual -- The polynomial representations are indexed by the polynomial's -- degree. data HNF : ℕ → Set r₁ where ∅ : ∀ {n} → HNF (suc n) _*x+_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) data Normal : ℕ → Set r₁ where con : C.Carrier → Normal zero poly : ∀ {n} → HNF (suc n) → Normal (suc n) -- Note that the data types above do /not/ ensure uniqueness of -- normal forms: the zero polynomial of degree one can be -- represented using both ∅ and ∅ *x+ con C.0#. mutual -- Semantics. ⟦_⟧H : ∀ {n} → HNF (suc n) → Vec Carrier (suc n) → Carrier ⟦ ∅ ⟧H _ = 0# ⟦ p *x+ c ⟧H (x ∷ ρ) = ⟦ p ⟧H (x ∷ ρ) * x + ⟦ c ⟧N ρ ⟦_⟧N : ∀ {n} → Normal n → Vec Carrier n → Carrier ⟦ con c ⟧N _ = ⟦ c ⟧′ ⟦ poly p ⟧N ρ = ⟦ p ⟧H ρ ------------------------------------------------------------------------ -- Equality and decidability mutual -- Equality. data _≈H_ : ∀ {n} → HNF n → HNF n → Set (r₁ ⊔ r₃) where ∅ : ∀ {n} → _≈H_ {suc n} ∅ ∅ _*x+_ : ∀ {n} {p₁ p₂ : HNF (suc n)} {c₁ c₂ : Normal n} → p₁ ≈H p₂ → c₁ ≈N c₂ → (p₁ *x+ c₁) ≈H (p₂ *x+ c₂) data _≈N_ : ∀ {n} → Normal n → Normal n → Set (r₁ ⊔ r₃) where con : ∀ {c₁ c₂} → ⟦ c₁ ⟧′ ≈ ⟦ c₂ ⟧′ → con c₁ ≈N con c₂ poly : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → poly p₁ ≈N poly p₂ mutual -- Equality is weakly decidable. _≟H_ : ∀ {n} → WeaklyDecidable (_≈H_ {n = n}) ∅ ≟H ∅ = just ∅ ∅ ≟H (_ *x+ _) = nothing (_ *x+ _) ≟H ∅ = nothing (p₁ *x+ c₁) ≟H (p₂ *x+ c₂) with p₁ ≟H p₂ | c₁ ≟N c₂ ... | just p₁≈p₂ | just c₁≈c₂ = just (p₁≈p₂ *x+ c₁≈c₂) ... | _ | nothing = nothing ... | nothing | _ = nothing _≟N_ : ∀ {n} → WeaklyDecidable (_≈N_ {n = n}) con c₁ ≟N con c₂ with c₁ coeff≟ c₂ ... | just c₁≈c₂ = just (con c₁≈c₂) ... | nothing = nothing poly p₁ ≟N poly p₂ with p₁ ≟H p₂ ... | just p₁≈p₂ = just (poly p₁≈p₂) ... | nothing = nothing mutual -- The semantics respect the equality relations defined above. ⟦_⟧H-cong : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → ∀ ρ → ⟦ p₁ ⟧H ρ ≈ ⟦ p₂ ⟧H ρ ⟦ ∅ ⟧H-cong _ = refl ⟦ p₁≈p₂ *x+ c₁≈c₂ ⟧H-cong (x ∷ ρ) = (⟦ p₁≈p₂ ⟧H-cong (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ ⟦ c₁≈c₂ ⟧N-cong ρ ⟦_⟧N-cong : ∀ {n} {p₁ p₂ : Normal n} → p₁ ≈N p₂ → ∀ ρ → ⟦ p₁ ⟧N ρ ≈ ⟦ p₂ ⟧N ρ ⟦ con c₁≈c₂ ⟧N-cong _ = c₁≈c₂ ⟦ poly p₁≈p₂ ⟧N-cong ρ = ⟦ p₁≈p₂ ⟧H-cong ρ ------------------------------------------------------------------------ -- Ring operations on Horner normal forms -- Zero. 0H : ∀ {n} → HNF (suc n) 0H = ∅ 0N : ∀ {n} → Normal n 0N {zero} = con C.0# 0N {suc n} = poly 0H mutual -- One. 1H : ∀ {n} → HNF (suc n) 1H {n} = ∅ *x+ 1N {n} 1N : ∀ {n} → Normal n 1N {zero} = con C.1# 1N {suc n} = poly 1H -- A simplifying variant of _*x+_. _*x+HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) (p *x+ c′) *x+HN c = (p *x+ c′) *x+ c ∅ *x+HN c with c ≟N 0N ... | just c≈0 = ∅ ... | nothing = ∅ *x+ c mutual -- Addition. _+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ +H p = p p +H ∅ = p (p₁ *x+ c₁) +H (p₂ *x+ c₂) = (p₁ +H p₂) *x+HN (c₁ +N c₂) _+N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ +N con c₂ = con (c₁ C.+ c₂) poly p₁ +N poly p₂ = poly (p₁ +H p₂) -- Multiplication. _*x+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) p₁ *x+H (p₂ *x+ c) = (p₁ +H p₂) *x+HN c ∅ *x+H ∅ = ∅ (p₁ *x+ c) *x+H ∅ = (p₁ *x+ c) *x+ 0N mutual _*NH_ : ∀ {n} → Normal n → HNF (suc n) → HNF (suc n) c *NH ∅ = ∅ c *NH (p *x+ c′) with c ≟N 0N ... | just c≈0 = ∅ ... | nothing = (c *NH p) *x+ (c *N c′) _*HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) ∅ *HN c = ∅ (p *x+ c′) *HN c with c ≟N 0N ... | just c≈0 = ∅ ... | nothing = (p *HN c) *x+ (c′ *N c) _*H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ *H _ = ∅ (_ *x+ _) *H ∅ = ∅ (p₁ *x+ c₁) *H (p₂ *x+ c₂) = ((p₁ *H p₂) *x+H (p₁ *HN c₂ +H c₁ *NH p₂)) *x+HN (c₁ *N c₂) _*N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ *N con c₂ = con (c₁ C.* c₂) poly p₁ *N poly p₂ = poly (p₁ *H p₂) -- Exponentiation. _^N_ : ∀ {n} → Normal n → ℕ → Normal n p ^N zero = 1N p ^N suc n = p *N (p ^N n) mutual -- Negation. -H_ : ∀ {n} → HNF (suc n) → HNF (suc n) -H p = (-N 1N) *NH p -N_ : ∀ {n} → Normal n → Normal n -N con c = con (C.- c) -N poly p = poly (-H p) ------------------------------------------------------------------------ -- Normalisation normalise-con : ∀ {n} → C.Carrier → Normal n normalise-con {zero} c = con c normalise-con {suc n} c = poly (∅ *x+HN normalise-con c) normalise-var : ∀ {n} → Fin n → Normal n normalise-var zero = poly ((∅ *x+ 1N) *x+ 0N) normalise-var (suc i) = poly (∅ *x+HN normalise-var i) normalise : ∀ {n} → Polynomial n → Normal n normalise (op [+] t₁ t₂) = normalise t₁ +N normalise t₂ normalise (op [*] t₁ t₂) = normalise t₁ *N normalise t₂ normalise (con c) = normalise-con c normalise (var i) = normalise-var i normalise (t :^ k) = normalise t ^N k normalise (:- t) = -N normalise t -- Evaluation after normalisation. ⟦_⟧↓ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ p ⟧↓ ρ = ⟦ normalise p ⟧N ρ ------------------------------------------------------------------------ -- Homomorphism lemmas 0N-homo : ∀ {n} ρ → ⟦ 0N {n} ⟧N ρ ≈ 0# 0N-homo [] = 0-homo 0N-homo (x ∷ ρ) = refl -- If c is equal to 0N, then c is semantically equal to 0#. 0≈⟦0⟧ : ∀ {n} {c : Normal n} → c ≈N 0N → ∀ ρ → 0# ≈ ⟦ c ⟧N ρ 0≈⟦0⟧ {c = c} c≈0 ρ = sym (begin ⟦ c ⟧N ρ ≈⟨ ⟦ c≈0 ⟧N-cong ρ ⟩ ⟦ 0N ⟧N ρ ≈⟨ 0N-homo ρ ⟩ 0# ∎) 1N-homo : ∀ {n} ρ → ⟦ 1N {n} ⟧N ρ ≈ 1# 1N-homo [] = 1-homo 1N-homo (x ∷ ρ) = begin 0# * x + ⟦ 1N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 1N-homo ρ ⟩ 0# * x + 1# ≈⟨ lemma₆ _ _ ⟩ 1# ∎ -- _*x+HN_ is equal to _*x+_. *x+HN≈*x+ : ∀ {n} (p : HNF (suc n)) (c : Normal n) → ∀ ρ → ⟦ p *x+HN c ⟧H ρ ≈ ⟦ p *x+ c ⟧H ρ *x+HN≈*x+ (p *x+ c′) c ρ = refl *x+HN≈*x+ ∅ c (x ∷ ρ) with c ≟N 0N ... | just c≈0 = begin 0# ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟩ ⟦ c ⟧N ρ ≈⟨ sym $ lemma₆ _ _ ⟩ 0# * x + ⟦ c ⟧N ρ ∎ ... | nothing = refl ∅*x+HN-homo : ∀ {n} (c : Normal n) x ρ → ⟦ ∅ *x+HN c ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ ∅*x+HN-homo c x ρ with c ≟N 0N ... | just c≈0 = 0≈⟦0⟧ c≈0 ρ ... | nothing = lemma₆ _ _ mutual +H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ +H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ + ⟦ p₂ ⟧H ρ +H-homo ∅ p₂ ρ = sym (+-identityˡ _) +H-homo (p₁ *x+ x₁) ∅ ρ = sym (+-identityʳ _) +H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ (p₁ +H p₂) *x+HN (c₁ +N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) (c₁ +N c₂) (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₁ +N c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ +N-homo c₁ c₂ ρ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + (⟦ c₁ ⟧N ρ + ⟦ c₂ ⟧N ρ) ≈⟨ lemma₁ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ +N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ +N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ + ⟦ p₂ ⟧N ρ +N-homo (con c₁) (con c₂) _ = +-homo _ _ +N-homo (poly p₁) (poly p₂) ρ = +H-homo p₁ p₂ ρ *x+H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) x ρ → ⟦ p₁ *x+H p₂ ⟧H (x ∷ ρ) ≈ ⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ p₂ ⟧H (x ∷ ρ) *x+H-homo ∅ ∅ _ _ = sym $ lemma₆ _ _ *x+H-homo (p *x+ c) ∅ x ρ = begin ⟦ p *x+ c ⟧H (x ∷ ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 0N-homo ρ ⟩ ⟦ p *x+ c ⟧H (x ∷ ρ) * x + 0# ∎ *x+H-homo p₁ (p₂ *x+ c₂) x ρ = begin ⟦ (p₁ +H p₂) *x+HN c₂ ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) c₂ (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + ⟦ c₂ ⟧N ρ ≈⟨ lemma₀ _ _ _ _ ⟩ ⟦ p₁ ⟧H (x ∷ ρ) * x + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ mutual *NH-homo : ∀ {n} (c : Normal n) (p : HNF (suc n)) x ρ → ⟦ c *NH p ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) *NH-homo c ∅ x ρ = sym (*-zeroʳ _) *NH-homo c (p *x+ c′) x ρ with c ≟N 0N ... | just c≈0 = begin 0# ≈⟨ sym (*-zeroˡ _) ⟩ 0# * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟨ *-cong ⟩ refl ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ ... | nothing = begin ⟦ c *NH p ⟧H (x ∷ ρ) * x + ⟦ c *N c′ ⟧N ρ ≈⟨ (*NH-homo c p x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c c′ ρ ⟩ (⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ)) * x + (⟦ c ⟧N ρ * ⟦ c′ ⟧N ρ) ≈⟨ lemma₃ _ _ _ _ ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ *HN-homo : ∀ {n} (p : HNF (suc n)) (c : Normal n) x ρ → ⟦ p *HN c ⟧H (x ∷ ρ) ≈ ⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ *HN-homo ∅ c x ρ = sym (*-zeroˡ _) *HN-homo (p *x+ c′) c x ρ with c ≟N 0N ... | just c≈0 = begin 0# ≈⟨ sym (*-zeroʳ _) ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * 0# ≈⟨ refl ⟨ *-cong ⟩ 0≈⟦0⟧ c≈0 ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ ... | nothing = begin ⟦ p *HN c ⟧H (x ∷ ρ) * x + ⟦ c′ *N c ⟧N ρ ≈⟨ (*HN-homo p c x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c′ c ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ) * x + (⟦ c′ ⟧N ρ * ⟦ c ⟧N ρ) ≈⟨ lemma₂ _ _ _ _ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ *H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ *H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ * ⟦ p₂ ⟧H ρ *H-homo ∅ p₂ ρ = sym $ *-zeroˡ _ *H-homo (p₁ *x+ c₁) ∅ ρ = sym $ *-zeroʳ _ *H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) *x+HN (c₁ *N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) (c₁ *N c₂) (x ∷ ρ) ⟩ ⟦ (p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂)) ⟧H (x ∷ ρ) * x + ⟦ c₁ *N c₂ ⟧N ρ ≈⟨ (*x+H-homo (p₁ *H p₂) ((p₁ *HN c₂) +H (c₁ *NH p₂)) x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c₁ c₂ ρ ⟩ (⟦ p₁ *H p₂ ⟧H (x ∷ ρ) * x + ⟦ (p₁ *HN c₂) +H (c₁ *NH p₂) ⟧H (x ∷ ρ)) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ (((*H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ (+H-homo (p₁ *HN c₂) (c₁ *NH p₂) (x ∷ ρ))) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ *HN c₂ ⟧H (x ∷ ρ) + ⟦ c₁ *NH p₂ ⟧H (x ∷ ρ))) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ (*HN-homo p₁ c₂ x ρ ⟨ +-cong ⟩ *NH-homo c₁ p₂ x ρ)) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ c₂ ⟧N ρ + ⟦ c₁ ⟧N ρ * ⟦ p₂ ⟧H (x ∷ ρ))) * x + (⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ) ≈⟨ lemma₄ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) * (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ *N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ *N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ * ⟦ p₂ ⟧N ρ *N-homo (con c₁) (con c₂) _ = *-homo _ _ *N-homo (poly p₁) (poly p₂) ρ = *H-homo p₁ p₂ ρ ^N-homo : ∀ {n} (p : Normal n) (k : ℕ) → ∀ ρ → ⟦ p ^N k ⟧N ρ ≈ ⟦ p ⟧N ρ ^ k ^N-homo p zero ρ = 1N-homo ρ ^N-homo p (suc k) ρ = begin ⟦ p *N (p ^N k) ⟧N ρ ≈⟨ *N-homo p (p ^N k) ρ ⟩ ⟦ p ⟧N ρ * ⟦ p ^N k ⟧N ρ ≈⟨ refl ⟨ *-cong ⟩ ^N-homo p k ρ ⟩ ⟦ p ⟧N ρ * (⟦ p ⟧N ρ ^ k) ∎ mutual -H‿-homo : ∀ {n} (p : HNF (suc n)) → ∀ ρ → ⟦ -H p ⟧H ρ ≈ - ⟦ p ⟧H ρ -H‿-homo p (x ∷ ρ) = begin ⟦ (-N 1N) *NH p ⟧H (x ∷ ρ) ≈⟨ *NH-homo (-N 1N) p x ρ ⟩ ⟦ -N 1N ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) ≈⟨ trans (-N‿-homo 1N ρ) (-‿cong (1N-homo ρ)) ⟨ *-cong ⟩ refl ⟩ - 1# * ⟦ p ⟧H (x ∷ ρ) ≈⟨ lemma₇ _ ⟩ - ⟦ p ⟧H (x ∷ ρ) ∎ -N‿-homo : ∀ {n} (p : Normal n) → ∀ ρ → ⟦ -N p ⟧N ρ ≈ - ⟦ p ⟧N ρ -N‿-homo (con c) _ = -‿homo _ -N‿-homo (poly p) ρ = -H‿-homo p ρ ------------------------------------------------------------------------ -- Correctness correct-con : ∀ {n} (c : C.Carrier) (ρ : Vec Carrier n) → ⟦ normalise-con c ⟧N ρ ≈ ⟦ c ⟧′ correct-con c [] = refl correct-con c (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-con c ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-con c) x ρ ⟩ ⟦ normalise-con c ⟧N ρ ≈⟨ correct-con c ρ ⟩ ⟦ c ⟧′ ∎ correct-var : ∀ {n} (i : Fin n) → ∀ ρ → ⟦ normalise-var i ⟧N ρ ≈ lookup ρ i correct-var () [] correct-var (suc i) (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-var i ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-var i) x ρ ⟩ ⟦ normalise-var i ⟧N ρ ≈⟨ correct-var i ρ ⟩ lookup ρ i ∎ correct-var zero (x ∷ ρ) = begin (0# * x + ⟦ 1N ⟧N ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ 1N-homo ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ 0N-homo ρ ⟩ (0# * x + 1#) * x + 0# ≈⟨ lemma₅ _ ⟩ x ∎ correct : ∀ {n} (p : Polynomial n) → ∀ ρ → ⟦ p ⟧↓ ρ ≈ ⟦ p ⟧ ρ correct (op [+] p₁ p₂) ρ = begin ⟦ normalise p₁ +N normalise p₂ ⟧N ρ ≈⟨ +N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ + ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ +-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ + ⟦ p₂ ⟧ ρ ∎ correct (op [*] p₁ p₂) ρ = begin ⟦ normalise p₁ *N normalise p₂ ⟧N ρ ≈⟨ *N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ * ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ *-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ * ⟦ p₂ ⟧ ρ ∎ correct (con c) ρ = correct-con c ρ correct (var i) ρ = correct-var i ρ correct (p :^ k) ρ = begin ⟦ normalise p ^N k ⟧N ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩ ⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ PropEq.refl {x = k} ⟩ ⟦ p ⟧ ρ ^ k ∎ correct (:- p) ρ = begin ⟦ -N normalise p ⟧N ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩ - ⟦ p ⟧↓ ρ ≈⟨ -‿cong (correct p ρ) ⟩ - ⟦ p ⟧ ρ ∎ ------------------------------------------------------------------------ -- "Tactics" open Reflection setoid var ⟦_⟧ ⟦_⟧↓ correct public using (prove; solve) renaming (_⊜_ to _:=_) -- For examples of how solve and _:=_ can be used to -- semi-automatically prove ring equalities, see, for instance, -- Data.Digit or Data.Nat.DivMod.
{ "alphanum_fraction": 0.4121945074, "avg_line_length": 35.9510869565, "ext": "agda", "hexsha": "47a4a1ac52ed374cbbebc2aa5372d83fa0946ff4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8923, "size": 19845 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommMonoid.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsCommMonoid {M : Type ℓ} (ε : M) (_·_ : M → M → M) : Type ℓ where constructor iscommmonoid field isMonoid : IsMonoid ε _·_ ·Comm : (x y : M) → x · y ≡ y · x open IsMonoid isMonoid public unquoteDecl IsCommMonoidIsoΣ = declareRecordIsoΣ IsCommMonoidIsoΣ (quote IsCommMonoid) record CommMonoidStr (M : Type ℓ) : Type ℓ where constructor commmonoidstr field ε : M _·_ : M → M → M isCommMonoid : IsCommMonoid ε _·_ infixl 7 _·_ open IsCommMonoid isCommMonoid public CommMonoid : ∀ ℓ → Type (ℓ-suc ℓ) CommMonoid ℓ = TypeWithStr ℓ CommMonoidStr makeIsCommMonoid : {M : Type ℓ} {ε : M} {_·_ : M → M → M} (is-setM : isSet M) (·Assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : M) → x · ε ≡ x) (·Comm : (x y : M) → x · y ≡ y · x) → IsCommMonoid ε _·_ IsCommMonoid.isMonoid (makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm) = makeIsMonoid is-setM ·Assoc ·IdR (λ x → ·Comm _ _ ∙ ·IdR x) IsCommMonoid.·Comm (makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm) = ·Comm makeCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M) (is-setM : isSet M) (·Assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : M) → x · ε ≡ x) (·Comm : (x y : M) → x · y ≡ y · x) → CommMonoid ℓ fst (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm) = _ CommMonoidStr.ε (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) = ε CommMonoidStr._·_ (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) = _·_ CommMonoidStr.isCommMonoid (snd (makeCommMonoid ε _·_ is-setM ·Assoc ·IdR ·Comm)) = makeIsCommMonoid is-setM ·Assoc ·IdR ·Comm CommMonoidStr→MonoidStr : {A : Type ℓ} → CommMonoidStr A → MonoidStr A CommMonoidStr→MonoidStr (commmonoidstr _ _ H) = monoidstr _ _ (IsCommMonoid.isMonoid H) CommMonoid→Monoid : CommMonoid ℓ → Monoid ℓ CommMonoid→Monoid (_ , commmonoidstr _ _ M) = _ , monoidstr _ _ (IsCommMonoid.isMonoid M) isSetFromIsCommMonoid : {M : Type ℓ} {ε : M} {_·_ : M → M → M} (isCommMonoid : IsCommMonoid ε _·_) → isSet M isSetFromIsCommMonoid isCommMonoid = let open IsCommMonoid isCommMonoid in is-set isSetCommMonoid : (M : CommMonoid ℓ) → isSet ⟨ M ⟩ isSetCommMonoid M = let open CommMonoidStr (snd M) in isSetFromIsCommMonoid isCommMonoid CommMonoidHom : (L : CommMonoid ℓ) (M : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ') CommMonoidHom L M = MonoidHom (CommMonoid→Monoid L) (CommMonoid→Monoid M) IsCommMonoidEquiv : {A : Type ℓ} {B : Type ℓ'} (M : CommMonoidStr A) (e : A ≃ B) (N : CommMonoidStr B) → Type (ℓ-max ℓ ℓ') IsCommMonoidEquiv M e N = IsMonoidHom (CommMonoidStr→MonoidStr M) (e .fst) (CommMonoidStr→MonoidStr N) CommMonoidEquiv : (M : CommMonoid ℓ) (N : CommMonoid ℓ') → Type (ℓ-max ℓ ℓ') CommMonoidEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsCommMonoidEquiv (M .snd) e (N .snd) isPropIsCommMonoid : {M : Type ℓ} (ε : M) (_·_ : M → M → M) → isProp (IsCommMonoid ε _·_) isPropIsCommMonoid ε _·_ = isOfHLevelRetractFromIso 1 IsCommMonoidIsoΣ (isPropΣ (isPropIsMonoid ε _·_) λ mon → isPropΠ2 (λ _ _ → mon .is-set _ _)) where open IsMonoid 𝒮ᴰ-CommMonoid : DUARel (𝒮-Univ ℓ) CommMonoidStr ℓ 𝒮ᴰ-CommMonoid = 𝒮ᴰ-Record (𝒮-Univ _) IsCommMonoidEquiv (fields: data[ ε ∣ autoDUARel _ _ ∣ presε ] data[ _·_ ∣ autoDUARel _ _ ∣ pres· ] prop[ isCommMonoid ∣ (λ _ _ → isPropIsCommMonoid _ _) ]) where open CommMonoidStr open IsMonoidHom CommMonoidPath : (M N : CommMonoid ℓ) → CommMonoidEquiv M N ≃ (M ≡ N) CommMonoidPath = ∫ 𝒮ᴰ-CommMonoid .UARel.ua
{ "alphanum_fraction": 0.641212406, "avg_line_length": 32.992248062, "ext": "agda", "hexsha": "9eea8077460dec193ea2656042457c7fc9c3664a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommMonoid/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommMonoid/Base.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommMonoid/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1632, "size": 4256 }
module Limit where -- Statement that the limit of the function f at point l exists (and its value is L) -- This is expressed by converting the standard (ε,δ)-limit definition to Skolem normal form (TODO: ...I think? Is this correct? record Lim (f : ℝ → ℝ) (p : ℝ) (L : ℝ) : Stmt where field δ : ℝ₊ → ℝ₊ -- The delta function that is able to depend on epsilon satisfaction : ∀{ε : ℝ} → ⦃ ε > 𝟎 ⦄ → ∀{x : ℝ} → (𝟎 < ‖ x − p ‖ < δ(ε)) → (‖ f(x) − L ‖ < ε) -- Limit value function f (if the limit exists) lim : (f : ℝ → ℝ) → (p : ℝ) → ⦃ _ : ∃(Lim f(p)) ⦄ → ℝ lim _ _ ⦃ l ⦄ = Lim.L(l) module Proofs where postulate [+]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) + g(x))(p) postulate [−]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) − g(x))(p) postulate [⋅]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) ⋅ g(x))(p) postulate [/]-limit : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → Lim(x ↦ f(x) / g(x))(p) postulate [+]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) + g(x))(p) ≡ lim f(p) + lim g(p)) postulate [−]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) − g(x))(p) ≡ lim f(p) − lim g(p)) postulate [⋅]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) ⋅ g(x))(p) ≡ lim f(p) ⋅ lim g(p)) postulate [/]-lim : ∀{f g p} → ⦃ _ : ∃(Lim f(p)) ⦄ → ⦃ _ : ∃(Lim g(p)) ⦄ → (lim(x ↦ f(x) / g(x))(p) ≡ lim f(p) / lim g(p))
{ "alphanum_fraction": 0.448767834, "avg_line_length": 67.0434782609, "ext": "agda", "hexsha": "db0e86f57f68bb08da32266ac89b842390b0d6a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Real/Limit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Real/Limit.agda", "max_line_length": 130, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Real/Limit.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 769, "size": 1542 }
module FOLdisplay where open import Data.String using (String) open import Data.Empty open import Data.Nat open import Data.Product open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; subst) open import Relation.Nullary open import Data.String using (String; _++_) -- open import Data.Fin -- open import Data.Fin.Subset open import Data.List.Base as List using (List; []; _∷_; [_]) -- open import Data.Bool using () renaming (_∨_ to _∨B_) Name : Set Name = String insert : ℕ → List ℕ → List ℕ insert n List.[] = n ∷ [] insert n (x ∷ l) with n ≟ x insert n (.n ∷ l) | yes refl = n ∷ l insert n (x ∷ l) | no n≠x with n ≤? x insert n (x ∷ l) | no n≠x | yes n<x = n ∷ x ∷ l insert n (x ∷ l) | no n≠x | no n>x = x ∷ insert n l sortRemDups : List ℕ → List ℕ sortRemDups [] = [] sortRemDups (x ∷ xs) = insert x (sortRemDups xs) union : List ℕ → List ℕ → List ℕ union [] ys = ys union (x ∷ xs) ys = insert x (union xs ys) remove : ℕ → List ℕ → List ℕ remove n [] = [] remove n (x ∷ xs) with n Data.Nat.≟ x remove n (.n ∷ xs) | yes refl = xs remove n (x ∷ xs) | no _ = x ∷ remove n xs remove-rewrite : ∀ x {xs} -> remove x (x ∷ xs) ≡ xs remove-rewrite x with x ≟ x remove-rewrite x | yes refl = refl remove-rewrite x | no x≠x = ⊥-elim (x≠x refl) -- xs \\ ys diff : List ℕ → List ℕ → List ℕ diff xs [] = xs diff xs (x ∷ ys) = diff (remove x xs) ys -- -- mutual -- data TermT : List ℕ -> Set where -- VarT : (n : ℕ) → TermT [ n ] -- ConstT : Name → TermT [] -- FunT : ∀ {xs} -> Name → (TermList xs) → TermT xs -- -- [[[_]]]T_ : List (Term × ℕ) → Term → Term -- data TermList : List ℕ -> Set where -- []T : TermList [] -- _∷T_ : ∀ {xs ys} (t : TermT xs) (ts : TermT ys) -> TermList (union xs ys) -- -- data SubstList : List ℕ -> Set where -- []S : SubstList [] -- _/_∷S_ : ∀ {xs ys} (t : TermT xs) (x : ℕ) (ts : TermT ys) -> SubstList (union xs (remove x ys)) data Term : Set where Var : ℕ → Term Const : Name → Term Fun : Name → List Term → Term -- [[_/_]]_ : Term → ℕ → Term → Term [[[_]]]_ : List (Term × ℕ) → Term → Term mutual data _⊢≡_ : Term → Term → Set where atom : ∀ {n} → Var n ⊢≡ Var n atomC : ∀ {n} → Const n ⊢≡ Const n funEq : ∀ {n arg1 arg2} → arg1 ≡ₗ arg2 → Fun n arg1 ⊢≡ Fun n arg2 -- subMon : ∀ {substs X Y} → X ⊢≡ Y → ([[[ substs ]]] X) ⊢≡ ([[[ substs ]]] Y) -- this rule is derivable sub[]R : ∀ {X Y} → X ⊢≡ Y → X ⊢≡ ([[[ [] ]]] Y) sub[]L : ∀ {X Y} → X ⊢≡ Y → ([[[ [] ]]] X) ⊢≡ Y subAtomEqR : ∀ {x t lst X} → X ⊢≡ ([[[ lst ]]] t) → X ⊢≡ ([[[ (t , x) ∷ lst ]]] (Var x)) subAtomEqL : ∀ {x t lst Y} → ([[[ lst ]]] t) ⊢≡ Y → ([[[ (t , x) ∷ lst ]]] (Var x)) ⊢≡ Y subAtomNeqR : ∀ {x y t lst X} → X ⊢≡ ([[[ lst ]]] (Var x)) → x ≢ y → X ⊢≡ ([[[ (t , y) ∷ lst ]]] (Var x)) subAtomNeqL : ∀ {x y t lst Y} → ([[[ lst ]]] (Var x)) ⊢≡ Y → x ≢ y → ([[[ (t , y) ∷ lst ]]] (Var x)) ⊢≡ Y subAtomCR : ∀ {n lst X} → X ⊢≡ (Const n) → X ⊢≡ ([[[ lst ]]] (Const n)) subAtomCL : ∀ {n lst Y} → (Const n) ⊢≡ Y → ([[[ lst ]]] (Const n)) ⊢≡ Y subFunR : ∀ {n arg lst X} → X ⊢≡ (Fun n (List.map ([[[_]]]_ lst) arg)) → X ⊢≡ ([[[ lst ]]] (Fun n arg)) subFunL : ∀ {n arg lst Y} → (Fun n (List.map ([[[_]]]_ lst) arg)) ⊢≡ Y → ([[[ lst ]]] (Fun n arg)) ⊢≡ Y subConsR : ∀ {lst lst' X Y} → X ⊢≡ ([[[ lst List.++ lst' ]]] Y) → X ⊢≡ ([[[ lst' ]]] ([[[ lst ]]] Y)) subConsL : ∀ {lst lst' X Y} → ([[[ lst List.++ lst' ]]] X) ⊢≡ Y → ([[[ lst' ]]] ([[[ lst ]]] X)) ⊢≡ Y data _≡ₗ_ : List Term → List Term → Set where []≡ : [] ≡ₗ [] _∷≡_ : {xs : List Term} {ys : List Term} {t1 t2 : Term} → t1 ⊢≡ t2 → xs ≡ₗ ys → (t1 ∷ xs) ≡ₗ (t2 ∷ ys) -- open import Data.Maybe using (Maybe; just; nothing; monad) -- -- open import Category.Monad using (RawMonad) -- open import Agda.Primitive as P -- -- open RawMonad (monad {P.lzero}) using (_>>=_;return) -- open Category.Monad.rawMonad open import Data.String using () renaming (_≟_ to _≟S_) data Term' : Set where Var' : ℕ → Term' Const' : Name → Term' Fun' : Name → List Term' → Term' mutual data TTerm : List ℕ -> Set where TVar : (n : ℕ) → TTerm [ n ] TConst : Name → TTerm [] TFun : ∀ {xs} -> Name → TTermList xs → TTerm xs data TTermList : List ℕ -> Set where []T : TTermList [] _∷T_ : ∀ {xs ys} (t : TTerm xs) (ts : TTermList ys) -> TTermList (union xs ys) open import Relation.Nullary.Decidable open import Relation.Binary.Core open import Data.List.Any as LAny open LAny.Membership-≡ ∈-∷-elim : ∀ {A : Set} {x : A} (y : A) xs -> ¬(x ≡ y) -> y ∈ x ∷ xs -> y ∈ xs ∈-∷-elim x [] x≠y (here refl) = ⊥-elim (x≠y refl) ∈-∷-elim y [] _ (there ()) ∈-∷-elim x (x₁ ∷ xs) x≠y (here refl) = ⊥-elim (x≠y refl) ∈-∷-elim y (x₁ ∷ xs) _ (there y∈x∷xs) = y∈x∷xs _∈ℕ?_ : Decidable {A = ℕ} (_∈_) x ∈ℕ? [] = no (λ ()) x ∈ℕ? (x' ∷ xs) with x ≟ x' x ∈ℕ? (.x ∷ xs) | yes refl = yes (here refl) x ∈ℕ? (x' ∷ xs) | no x≠x' with x ∈ℕ? xs x ∈ℕ? (x' ∷ xs) | no x≠x' | yes x∈xs = yes (there x∈xs) x ∈ℕ? (x' ∷ xs) | no x≠x' | no x∉xs = no (λ x∈x'∷xs → x∉xs (∈-∷-elim x xs (λ x'≡x → x≠x' (sym x'≡x)) x∈x'∷xs)) -- subTaux : List ℕ -> ℕ -> List ℕ -> List ℕ -- subTaux xs x ys with x ∈ℕ? ys -- subTaux xs x ys | yes _ = union xs (remove x ys) -- subTaux xs x ys | no _ = ys -- mutual -- subT : ∀ {ts ys} → TTerm ts → (x : ℕ) -> TTerm ys → TTerm (subTaux ts x ys) -- subT t x (TVar x') with x ≟ x' -- subT t .x' (TVar x') | yes refl rewrite remove-rewrite x' {[]} = {! t' !} -- ... | no _ = (TVar x') -- subT _ _ (TConst n) = TConst n -- subT t x (TFun n args) = TFun n (subTList t x args) -- -- subTList : ∀ {ts ys} → TTerm ts → (x : ℕ) -> TTermList ys → TTermList (subTaux ts x ys) -- subTList _ _ []T = []T -- subTList {ts} t x (_∷T_ {xs} {ys} a args) = rec -- where -- a' : TTerm (subTaux ts x xs) -- a' = subT t x a -- -- args' : TTermList (subTaux ts x ys) -- args' = subTList t x args -- -- ≡-subTaux : ∀ x xs ys -> subTaux ts x (union xs ys) ≡ union (subTaux ts x xs) (subTaux ts x ys) -- ≡-subTaux _ [] _ = refl -- ≡-subTaux x (x' ∷ xs) ys = {! !} -- -- rec : TTermList (subTaux ts x (union xs ys)) -- rec rewrite ≡-subTaux x xs ys = a' ∷T args' -- -- --subT x t' t ∷T subTList x t' l -- TTerm→Term : ∀ {xs} -> TTerm xs -> Term TTerm→Term (TVar n) = Var n TTerm→Term (TConst c) = Const c TTerm→Term (TFun n args) = Fun n (TTermList→ListTerm args) where TTermList→ListTerm : ∀ {xs} -> TTermList xs -> List Term TTermList→ListTerm []T = [] TTermList→ListTerm (_∷T_ {_} {ys} t ts) = (TTerm→Term t) ∷ (TTermList→ListTerm {ys} ts) mutual sub : ℕ → Term' → Term' → Term' sub x t' (Var' x') with x ≟ x' ... | yes _ = t' ... | no _ = (Var' x') sub x t' (Const' n) = Const' n sub x t' (Fun' n args) = Fun' n (subList x t' args) subList : ℕ → Term' → List Term' → List Term' subList x t' [] = [] subList x t' (t ∷ l) = sub x t' t ∷ subList x t' l mutual Term→Term' : Term → Term' Term→Term' (Var x) = Var' x Term→Term' (Const c) = Const' c Term→Term' (Fun n args) = Fun' n (LTerm→LTerm' args) Term→Term' ([[[ lst ]]] t) = STerm lst (Term→Term' t) LTerm→LTerm' : List Term → List Term' LTerm→LTerm' [] = [] LTerm→LTerm' (x ∷ l) = Term→Term' x ∷ LTerm→LTerm' l STerm : List (Term × ℕ) → Term' → Term' STerm [] t = t STerm ((t' , x) ∷ lst) t = STerm lst (sub x (Term→Term' t') t) mutual ⊢≡symm : ∀ {t1 t2 : Term} → t1 ⊢≡ t2 → t2 ⊢≡ t1 ⊢≡symm atom = atom ⊢≡symm atomC = atomC ⊢≡symm (funEq x) = funEq (≡ₗsymm x) ⊢≡symm (sub[]R {Y = Y} t1⊢≡t2) = sub[]L (⊢≡symm t1⊢≡t2) ⊢≡symm (sub[]L {X = X} t1⊢≡t2) = sub[]R (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomEqR {t = t} {lst} t1⊢≡t2) = subAtomEqL (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomEqL {t = t} {lst} t1⊢≡t2) = subAtomEqR (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomNeqR {x = x} t1⊢≡t2 x₁) = subAtomNeqL (⊢≡symm t1⊢≡t2) x₁ ⊢≡symm (subAtomNeqL {x = x} t1⊢≡t2 x₁) = subAtomNeqR (⊢≡symm t1⊢≡t2) x₁ ⊢≡symm (subAtomCR {n = n} t1⊢≡t2) = subAtomCL (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomCL t1⊢≡t2) = subAtomCR (⊢≡symm t1⊢≡t2) ⊢≡symm (subFunR t1⊢≡t2) = subFunL (⊢≡symm t1⊢≡t2) ⊢≡symm (subFunL t1⊢≡t2) = subFunR (⊢≡symm t1⊢≡t2) ⊢≡symm (subConsR t1⊢≡t2) = subConsL (⊢≡symm t1⊢≡t2) ⊢≡symm (subConsL t1⊢≡t2) = subConsR (⊢≡symm t1⊢≡t2) ≡ₗsymm : ∀ {arg1 arg2} → arg1 ≡ₗ arg2 → arg2 ≡ₗ arg1 ≡ₗsymm []≡ = []≡ ≡ₗsymm (x ∷≡ arg1≡ₗarg2) = (⊢≡symm x) ∷≡ (≡ₗsymm arg1≡ₗarg2) ≡-Fun-nm : ∀ {n n' args args'} → Fun' n args ≡ Fun' n' args' → n ≡ n' ≡-Fun-nm refl = refl ≡-Fun-args : ∀ {n args args'} → Fun' n args ≡ Fun' n args' → args ≡ args' ≡-Fun-args refl = refl Fun-args-≡ : ∀ {n args args'} → args ≡ args' → Fun' n args ≡ Fun' n args' Fun-args-≡ refl = refl substFun≡aux : ∀ {n} lst args → STerm lst (Fun' n args) ≡ Fun' n (List.map (STerm lst) args) substFun≡aux [] args = Fun-args-≡ (aux args) where aux : ∀ args → args ≡ List.map (STerm []) args aux [] = refl aux (a ∷ args) = cong (_∷_ a) (aux args) substFun≡aux {n} ((t , x) ∷ lst) args = PropEq.trans (substFun≡aux {n} lst (subList x (Term→Term' t) args)) (Fun-args-≡ (aux lst x t args)) where aux : ∀ lst x t args → List.map (STerm lst) (subList x (Term→Term' t) args) ≡ List.map (STerm ((t , x) ∷ lst)) args aux lst x t [] = refl aux lst x t (x' ∷ args) = cong (_∷_ (STerm lst (sub x (Term→Term' t) x'))) (aux lst x t args) substFun≡ : ∀ {n} args lst → Term→Term' ([[[ lst ]]] Fun n args) ≡ Fun' n (LTerm→LTerm' (List.map ([[[_]]]_ lst) args)) substFun≡ [] [] = refl substFun≡ [] (s ∷ lst) = substFun≡ [] lst substFun≡ (a ∷ args) [] = Fun-args-≡ (cong (_∷_ (Term→Term' a)) (LTerm[]Subst args)) where LTerm[]Subst : ∀ args → LTerm→LTerm' args ≡ LTerm→LTerm' (List.map ([[[_]]]_ []) args) LTerm[]Subst [] = refl LTerm[]Subst (a ∷ args) = cong (_∷_ (Term→Term' a)) (LTerm[]Subst args) substFun≡ (a ∷ args) ((t , x) ∷ lst) = PropEq.trans (substFun≡aux lst (subList x (Term→Term' t) (LTerm→LTerm' (a ∷ args)))) (Fun-args-≡ (aux (a ∷ args))) where aux : ∀ args {lst x t} → List.map (STerm lst) (subList x (Term→Term' t) (LTerm→LTerm' args)) ≡ LTerm→LTerm' (List.map ([[[_]]]_ ((t , x) ∷ lst)) args) aux [] = refl aux (a ∷ args) {lst} {x} {t} = cong (_∷_ (STerm lst (sub x (Term→Term' t) (Term→Term' a)))) (aux args) ++[]-id : ∀ {a} {A : Set a} (lst : List A) → lst List.++ [] ≡ lst ++[]-id [] = refl ++[]-id (x ∷ xs) = cong (_∷_ x) (++[]-id xs) substSubst≡ : ∀ {lst lst' t} → Term→Term' ([[[ lst ]]] ([[[ lst' ]]] t)) ≡ Term→Term' ([[[ lst' List.++ lst ]]] t) substSubst≡ {[]} {lst'} rewrite ++[]-id lst' = refl substSubst≡ {(t , x₂) ∷ lst} {[]} = refl substSubst≡ {(t , x) ∷ lst} {(t' , x') ∷ lst'} {t''} = substSubst≡ {(t , x) ∷ lst} {lst'} {[[[ [ (t' , x') ] ]]] t''} subsConst≡ : ∀ {lst c} → Term→Term' ([[[ lst ]]] (Const c)) ≡ Const' c subsConst≡ {[]} = refl subsConst≡ {_ ∷ lst} {c} = subsConst≡ {lst} {c} open import Data.List.Properties substTac : (t1 : Term) → (t2 : Term) → {_ : Term→Term' t1 ≡ Term→Term' t2} → t1 ⊢≡ t2 {-# TERMINATING #-} substTac (Var x) (Var .x) {refl} = atom substTac (Var _) (Const _) {()} substTac (Var _) (Fun _ _) {()} substTac (Const _) (Var _) {()} substTac (Const c) (Const .c) {refl} = atomC substTac (Const _) (Fun _ _) {()} substTac (Fun _ _) (Var _) {()} substTac (Fun _ _) (Const _) {()} substTac (Fun n args) (Fun n' args') with n ≟S n' substTac (Fun n []) (Fun .n []) | yes refl = funEq []≡ substTac (Fun n []) (Fun .n (_ ∷ _)) {()} | yes refl substTac (Fun n (x ∷ args)) (Fun .n []) {()} | yes refl substTac (Fun n (t ∷ args)) (Fun .n (t' ∷ args')) {eq} | yes refl with substTac t t' {proj₁ (∷-injective (≡-Fun-args eq))} | substTac (Fun n args) (Fun n args') {Fun-args-≡ (proj₂ (∷-injective (≡-Fun-args eq)))} substTac (Fun n (t ∷ args)) (Fun .n (t' ∷ args')) | yes refl | t⊢≡t' | funEq args≡ₗargs' = funEq (t⊢≡t' ∷≡ args≡ₗargs') substTac (Fun n args) (Fun n' args') {eq} | no ¬p = ⊥-elim (¬p (≡-Fun-nm eq)) substTac t1 ([[[ [] ]]] t2) {eq} = sub[]R (substTac t1 t2 {eq}) substTac t1 ([[[ (t , x') ∷ lst ]]] Var x) with x ≟ x' substTac t1 ([[[ (t , x') ∷ lst ]]] Var .x') {eq} | yes refl = subAtomEqR (substTac t1 ([[[ lst ]]] t) {eq' {x'} {Term→Term' t1} {t} {lst} eq}) -- agda doesnt like this call because it doesnt get structurally smaller, but its fine... where eq' : ∀ {x t t' lst} → t ≡ Term→Term' (([[[ (t' , x) ∷ lst ]]] Var x)) → t ≡ Term→Term' ([[[ lst ]]] t') eq' {x} refl with x ≟ x eq' {x} refl | yes _ = refl eq' {x} refl | no ¬p = ⊥-elim (¬p refl) substTac t1 ([[[ (t , x') ∷ lst ]]] Var x) {eq} | no ¬p = subAtomNeqR (substTac t1 ([[[ lst ]]] (Var x)) {eq' {x} {x'} {Term→Term' t1} {t} {lst} eq ¬p}) ¬p where eq' : ∀ {x x' t t' lst} → t ≡ Term→Term' (([[[ (t' , x') ∷ lst ]]] Var x)) → x ≢ x' → t ≡ Term→Term' ([[[ lst ]]] Var x) eq' {x} {x'} refl x≠x' with x' ≟ x eq' {x} {.x} refl x≠x' | yes refl = ⊥-elim (x≠x' refl) eq' {x} {x'} refl x≠x' | no ¬p = refl substTac t1 ([[[ x ∷ lst ]]] Const c) {eq} = subAtomCR (substTac t1 (Const c) {PropEq.trans eq (subsConst≡ {x ∷ lst} {c})}) substTac t1 ([[[ x ∷ lst ]]] Fun n args) {eq} = subFunR (substTac t1 (Fun n (List.map ([[[_]]]_ (x ∷ lst)) args)) {PropEq.trans eq (substFun≡ args (x ∷ lst))}) substTac t1 ([[[ x ∷ lst ]]] ([[[ lst' ]]] t2)) {eq} = subConsR (substTac t1 ([[[ lst' List.++ x ∷ lst ]]] t2) {PropEq.trans eq (substSubst≡ {x ∷ lst} {lst'} {t2})}) substTac ([[[ lst ]]] t1) t2 {eq} = ⊢≡symm (substTac t2 ([[[ lst ]]] t1) {sym eq}) -- adga doesn't like this, but it should be fine... ⊢≡-≡ : ∀ {X Y} → X ⊢≡ Y → Term→Term' X ≡ Term→Term' Y ⊢≡-≡ atom = refl ⊢≡-≡ atomC = refl ⊢≡-≡ (funEq x) = Fun-args-≡ (≡ₗ→≡ x) where ∷-≡ : ∀ {a} {A : Set a} {x y : A} {xs ys} → x ≡ y → xs ≡ ys → x ∷ xs ≡ y ∷ ys ∷-≡ refl refl = refl ≡ₗ→≡ : ∀ {arg1 arg2} → arg1 ≡ₗ arg2 → (LTerm→LTerm' arg1) ≡ (LTerm→LTerm' arg2) ≡ₗ→≡ []≡ = refl ≡ₗ→≡ (t1⊢≡t2 ∷≡ ≡ₗ) = ∷-≡ (⊢≡-≡ t1⊢≡t2) (≡ₗ→≡ ≡ₗ) ⊢≡-≡ (sub[]R X⊢≡Y) = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (sub[]L X⊢≡Y) = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) with x ≟ x ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) | yes p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) | no ¬p = ⊥-elim (¬p refl) ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) with x ≟ x ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) | yes p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) | no ¬p = ⊥-elim (¬p refl) ⊢≡-≡ (subAtomNeqR {x} {y} X⊢≡Y x₁) with y ≟ x ⊢≡-≡ (subAtomNeqR {x} {.x} X⊢≡Y x₁) | yes refl = ⊥-elim (x₁ refl) ⊢≡-≡ (subAtomNeqR {x} {y} X⊢≡Y x₁) | no ¬p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomNeqL {x} {y} X⊢≡Y x₁) with y ≟ x ⊢≡-≡ (subAtomNeqL {x} {.x} X⊢≡Y x₁) | yes refl = ⊥-elim (x₁ refl) ⊢≡-≡ (subAtomNeqL {x} {y} X⊢≡Y x₁) | no ¬p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomCR {c} {lst} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (subsConst≡ {lst} {c})) ⊢≡-≡ (subAtomCL {c} {lst} X⊢≡Y) = PropEq.trans (subsConst≡ {lst} {c}) (⊢≡-≡ X⊢≡Y) ⊢≡-≡ (subFunR {n} {args} {lst} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (substFun≡ {n} args lst)) ⊢≡-≡ (subFunL {n} {args} {lst} X⊢≡Y) = PropEq.trans (substFun≡ {n} args lst) (⊢≡-≡ X⊢≡Y) ⊢≡-≡ (subConsR {lst} {lst'} {_} {Y} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (substSubst≡ {lst'} {lst} {Y})) ⊢≡-≡ (subConsL {lst} {lst'} {X} X⊢≡Y) = PropEq.trans (substSubst≡ {lst'} {lst} {X}) (⊢≡-≡ X⊢≡Y) mutual ⊢≡atom : ∀ {t} → t ⊢≡ t ⊢≡atom {Var x} = atom ⊢≡atom {Const x} = atomC ⊢≡atom {Fun x x₁} = funEq ≡ₗatom where ≡ₗatom : ∀ {xs} → xs ≡ₗ xs ≡ₗatom {[]} = []≡ ≡ₗatom {x ∷ xs} = ⊢≡atom ∷≡ ≡ₗatom ⊢≡atom {[[[ x ]]] t} = ⊢≡subMon ⊢≡atom ⊢≡subMon : ∀ {sub X Y} → X ⊢≡ Y → ([[[ sub ]]] X) ⊢≡ ([[[ sub ]]] Y) ⊢≡subMon {sub} {X} {Y} X⊢≡Y = substTac ([[[ sub ]]] X) ([[[ sub ]]] Y) {mon {sub} {Term→Term' X} {Term→Term' Y} (⊢≡-≡ X⊢≡Y)} where mon : ∀ {sub X Y} → X ≡ Y → STerm sub X ≡ STerm sub Y mon refl = refl -- data _∈_ : ℕ → List ℕ → Set where -- here : ∀ {x xs} → x ∈ (x ∷ xs) -- there : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) -- -- data _⊆_ : List ℕ → List ℕ → Set where -- nil : ∀ {xs} → [] ⊆ xs -- cons : ∀ {x xs ys} → x ∈ ys → xs ⊆ ys → (x ∷ xs) ⊆ ys -- -- _∉_ : ℕ → List ℕ → Set -- n ∉ ns = ¬ (n ∈ ns) -- -- _⊈_ : List ℕ → List ℕ → Set -- xs ⊈ ys = ¬ (xs ⊆ ys) mutual FV : Term' → List ℕ FV (Var' x) = [ x ] FV (Const' _) = [] FV (Fun' _ args) = FVs args FVs : List Term' → List ℕ FVs [] = [] FVs (t ∷ ts) = union (FV t) (FVs ts) data Formula : List ℕ → Set where _⟨_⟩ : Name → ∀ {xs} (ts : TTermList xs) → Formula xs _∧_ : ∀ {ns} → Formula ns → Formula ns → Formula ns _∨_ : ∀ {ns} → Formula ns → Formula ns → Formula ns _⟶_ : ∀ {ns} → Formula ns → Formula ns → Formula ns ∘ : ∀ {ns} v → Formula ns → {v∉ : v ∉ ns} → Formula (insert v ns) -- [_/_] : ∀ {y ns} → Term → (x : ℕ) → {x∈ : x ∈ ns} → {y⊆ : y ⊆ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (remove x ns) -- [_//_] : ∀ {y ns} → Term y → (x : ℕ) → {x⊆ : x ∈ ns} → {y⊈ : y ⊈ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (union y (remove x ns)) All : ∀ {ns} v → Formula ns → Formula (remove v ns) Ex : ∀ {ns} v → Formula ns → Formula (remove v ns) data Structure : List ℕ → Set where ∣_∣ : ∀ {n} → Formula n → Structure n _,_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} -> Structure n _>>_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} → Structure n _<<_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} → Structure n I : ∀ {n} → Structure n ○ : ∀ {n} v → Structure n → {v∉ : v ∉ n} → Structure (insert v n) Q : ∀ {n} v → Structure n → Structure (remove v n) data _⊢_ : ∀ {n} → Structure n → Structure n → Set where atom : ∀ {n xs} {ts us : TTermList xs} → ∣ n ⟨ ts ⟩ ∣ ⊢ ∣ n ⟨ us ⟩ ∣ allR : ∀ {x n X Y} → Y ⊢ Q {n} x ∣ X ∣ → ------------------- Y ⊢ ∣ All {n} x X ∣ allL : ∀ {x n X Y} → ∣ Y ∣ ⊢ ∣ X ∣ → ------------------------------- ∣ All {n} x Y ∣ ⊢ Q {n} x ∣ X ∣ open import Data.Unit as Unit using (⊤) open import Data.Nat.Properties as Propℕ _≤'?_ : Decidable _≤′_ x ≤'? y with x ≤? y x ≤'? y | yes p = yes (≤⇒≤′ p) x ≤'? y | no ¬p = no (λ x₁ → ¬p (≤′⇒≤ x₁)) -- mutual -- data OList : Set where -- []O : OList -- _∷O_ : (x : ℕ) -> (xs : OList) -> {x< : isLess x xs} -> OList -- -- isLess : ℕ -> OList -> Set -- isLess x []O = ⊤ -- isLess x (y ∷O ol) with x ≤'? y -- isLess x (.x ∷O ol) | yes ≤′-refl = ⊥ -- isLess x (.(suc _) ∷O ol) | yes (≤′-step _) = ⊤ -- isLess x (y ∷O ol) | no _ = ⊥ -- -- -- -- mutual -- data IsLess : ℕ -> OList -> Set where -- nil : ∀ {x} -> IsLess x []O -- cons : ∀ {x x' xs} -> x < x' -> (x'<xs : IsLess x' xs) -> IsLess x ((x' ∷O xs) {IsLess→isLess x'<xs}) -- -- IsLess→isLess : ∀ {x xs} -> IsLess x xs -> isLess x xs -- IsLess→isLess nil = ⊤.tt -- IsLess→isLess {x} (cons {x' = x'} x<x' x<xs) with x ≤'? x' -- IsLess→isLess {x} (cons {_} {.x} x<x' x<xs) | yes ≤′-refl = contr x<x' -- where -- contr : ∀ {x} -> suc x ≤ x -> ⊥ -- contr {zero} () -- contr {suc x} (s≤s sx≤x) = contr sx≤x -- IsLess→isLess {x} (cons {_} {.(suc _)} x<x' x<xs) | yes (≤′-step p) = ⊤.tt -- IsLess→isLess {x} (cons {_} {x'} x<x' x<xs) | no ¬x≤′x' = ¬x≤′x' (≤⇒≤′ (sucx≤y→x≤y x<x')) -- where -- sucx≤y→x≤y : ∀ {x y} -> suc x ≤ y -> x ≤ y -- sucx≤y→x≤y {zero} sx≤y = z≤n -- sucx≤y→x≤y {suc x} (s≤s sx≤y) = s≤s (sucx≤y→x≤y sx≤y) -- -- open import Data.Sum -- -- -- isLess→IsLess : ∀ {x xs} -> isLess x xs -> IsLess x xs -- isLess→IsLess {x} {[]O} ⊤.tt = nil -- isLess→IsLess {x} {x' ∷O xs} x< with x ≤'? x' -- isLess→IsLess {.x'} {x' ∷O xs} () | yes ≤′-refl -- isLess→IsLess {x} {(.(suc _) ∷O xs) {sn<}} ⊤.tt | yes (≤′-step {n = n} x≤′n) = {!sn< !} -- where -- aux : x < suc n -- aux = {! sn< !} -- -- rec : IsLess (suc n) xs -- rec = isLess→IsLess sn< -- -- -- aux₂ : IsLess x ((suc n ∷O xs) {sn<}) -- aux₂ = cons aux rec -- -- isLess→IsLess {x} {x' ∷O xs} x< | no ¬p = {! !} mutual data OList : Set where []O : OList _∷O_ : (x : ℕ) -> (xs : OList) -> {x< : IsLess x xs} -> OList data IsLess : ℕ -> OList -> Set where base : ∀ {x} -> IsLess x []O step : ∀ {x x' xs} -> x < x' -> (x'<xs : IsLess x' xs) -> IsLess x ((x' ∷O xs) {x'<xs}) IsLess→< : ∀ {x x' xs x'<} -> IsLess x ((x' ∷O xs) {x'<}) -> x < x' IsLess→< (step x<x' _) = x<x' mutual insertO : ℕ -> OList -> OList insertO x []O = (x ∷O []O) {base} insertO x (x' ∷O xs) with x ≤'? x' insertO x ((.x ∷O xs) {x<}) | yes ≤′-refl = (x ∷O xs) {x<} insertO x ((.(suc _) ∷O xs) {x<}) | yes (≤′-step {n = x'} p) = (x ∷O (((suc x') ∷O xs) {x<})) {step (s≤s (≤′⇒≤ p)) x<} insertO x ((x' ∷O xs) {x'<}) | no x'<x = (x' ∷O insertO x xs) {insertO-lemma xs x'< x'<x} insertO-lemma : ∀ {x x'} xs -> IsLess x' xs -> ¬ x ≤′ x' -> IsLess x' (insertO x xs) insertO-lemma []O base ¬x≤′x' = step (≰⇒> (λ x≤x' → ¬x≤′x' (≤⇒≤′ x≤x'))) base insertO-lemma {x} {x'} (x'' ∷O xs) x'<xs x'<x with x ≤'? x'' insertO-lemma {.x''} {x'} ((x'' ∷O xs) {x''<}) x'<xs _ | yes ≤′-refl = step (IsLess→< x'<xs) x''< insertO-lemma {x} {x'} ((.(suc _) ∷O xs) {sn<xs}) x'<xs ¬x≤′x' | yes (≤′-step x≤′n) = step (≰⇒> (λ x≤x' → ¬x≤′x' (≤⇒≤′ x≤x'))) (step (s≤s (≤′⇒≤ x≤′n)) sn<xs) insertO-lemma {x} {x'} ((x'' ∷O xs) {x''<xs}) x'<xs _ | no x''<x = step (IsLess→< x'<xs) (insertO-lemma {x} {x''} xs x''<xs x''<x) data _∈O_ : ℕ -> OList -> Set where here : ∀ {x xs x<xs} -> x ∈O ((x ∷O xs) {x<xs}) there : ∀ {x y xs y<xs} -> x ∈O xs -> x ∈O ((y ∷O xs) {y<xs}) _∉O_ : ℕ -> OList -> Set x ∉O xs = ¬ (x ∈O xs) IsLess-remove : ∀ {x x'} xs {x'<xs} -> IsLess x ((x' ∷O xs) {x'<xs}) -> IsLess x xs IsLess-remove []O x<x∷xs = base IsLess-remove ((x'' ∷O xs) {x''<xs}) (step x<x' x'<x''∷xs) = step (<-trans x<x' (IsLess→< x'<x''∷xs)) x''<xs mutual removeO : ℕ -> OList -> OList removeO x []O = []O removeO x (x' ∷O xs) with x ≟ x' removeO x (.x ∷O xs) | yes refl = xs removeO x ((x' ∷O xs) {x'<xs}) | no ¬p = (x' ∷O removeO x xs) {removeO-lemma {x} {x'} xs x'<xs} removeO-lemma : ∀ {x x'} xs -> IsLess x' xs -> IsLess x' (removeO x xs) removeO-lemma []O x'<xs = base removeO-lemma {x} {x'} (x'' ∷O xs) x'<xs with x ≟ x'' removeO-lemma {.x''} {x'} (x'' ∷O xs) x<xs | yes refl = IsLess-remove xs x<xs removeO-lemma {x} {x'} ((x'' ∷O xs) {x''<xs}) x'<xs | no ¬p = step (IsLess→< x'<xs) (removeO-lemma {x} {x''} xs x''<xs) -- isLess : ℕ -> OList -> Set -- isLess x []O = ⊤ -- isLess x (y ∷O ol) with x ≤'? y -- isLess x (.x ∷O ol) | yes ≤′-refl = ⊥ -- isLess x (.(suc _) ∷O ol) | yes (≤′-step _) = ⊤ -- isLess x (y ∷O ol) | no _ = ⊥ -- -- smart constructor for OList _∷O'_ : (x : ℕ) -> (xs : OList) -> OList x ∷O' xs = insertO x xs testOList : OList testOList = 2 ∷O' (1 ∷O' (2 ∷O' []O)) data Formula' : OList → Set where -- _⟨_⟩ : Name → ∀ {xs} (ts : TTermList xs) → Formula xs _∧_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns _∨_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns _⟶_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns ∘ : ∀ {ns} v → Formula' ns → {v∉ : v ∉O ns} → Formula' (insertO v ns) -- [_/_] : ∀ {y ns} → Term → (x : ℕ) → {x∈ : x ∈ ns} → {y⊆ : y ⊆ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (remove x ns) -- [_//_] : ∀ {y ns} → Term y → (x : ℕ) → {x⊆ : x ∈ ns} → {y⊈ : y ⊈ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (union y (remove x ns)) All : ∀ {ns} v → Formula' ns → Formula' (removeO v ns) Ex : ∀ {ns} v → Formula' ns → Formula' (removeO v ns) -- insert-reomve-id : ∀ {x n m} -> n ≡ m -> n ≡ insertO x (removeO x m) -- insert-reomve-id {x} {xs} refl = {! xs !} rem-inj : ∀ {n m} x -> n ≡ m -> remove x n ≡ remove x m rem-inj _ refl = refl data _⊢⟨_⟩_ : ∀ {n m} → Structure n → n ≡ m -> Structure m → Set where atom : ∀ {n xs n≡m} {ts us : TTermList xs} → ∣ n ⟨ ts ⟩ ∣ ⊢⟨ n≡m ⟩ ∣ n ⟨ us ⟩ ∣ allR : ∀ {x n m n≡m X} {Y : Structure m} → Y ⊢⟨ n≡m ⟩ Q {n} x ∣ X ∣ → ------------------- Y ⊢⟨ n≡m ⟩ ∣ All {n} x X ∣ allL : ∀ {x n m n≡m X} {Y : Formula m} → ∣ X ∣ ⊢⟨ n≡m ⟩ ∣ Y ∣ → ------------------------------- ∣ All {n} x X ∣ ⊢⟨ rem-inj x n≡m ⟩ Q {m} x ∣ Y ∣ IL : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ Y → ------------------- (I , X) {refl} ⊢⟨ n≡m ⟩ Y IL2 : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → (I , X) {refl} ⊢⟨ n≡m ⟩ Y → ------------------- X ⊢⟨ n≡m ⟩ Y IR : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ Y → ----------------- X ⊢⟨ n≡m ⟩ (Y , I) {refl} IR2 : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ (Y , I) {refl} → ----------------- X ⊢⟨ n≡m ⟩ Y ,>>disp : ∀ {n m n≡m} {Z : Structure n} {X Y : Structure m} → Z ⊢⟨ n≡m ⟩ (X , Y) {refl} → ----------------- (X >> Z) {sym n≡m} ⊢⟨ refl ⟩ Y ,>>disp2 : ∀ {n m n≡m} {Z : Structure n} {X Y : Structure m} → (X >> Z) {sym n≡m} ⊢⟨ refl ⟩ Y → ----------------- Z ⊢⟨ n≡m ⟩ (X , Y) {refl} ○IR : ∀ {x n m n≡m x∉m} {X : Structure n} → X ⊢⟨ n≡m ⟩ (I {insert x m}) → ----------------- X ⊢⟨ n≡m ⟩ ○ x (I {m}) {x∉m} ○IR2 : ∀ {x n m n≡m x∉m} {X : Structure n} → X ⊢⟨ n≡m ⟩ ○ x (I {m}) {x∉m} → ----------------- X ⊢⟨ n≡m ⟩ (I {insert x m}) -- ,<<disp : ∀ {n m n≡m} {X : Structure n} {Y Z : Structure m} → -- X ⊢⟨ n≡m ⟩ (Y , Z) {refl} → -- ----------------- -- (X >> Z) {n≡m} ⊢⟨ n≡m ⟩ Y -- ,<<disp2 : ∀ {n m n≡m} {X : Structure n} {Y Z : Structure m} → -- (X >> Z) {n≡m} ⊢⟨ n≡m ⟩ Y → -- ----------------- -- X ⊢⟨ n≡m ⟩ (Y , Z) {refl} rem-union-id : ∀ x -> remove x (union [ x ] []) ≡ [] rem-union-id x rewrite remove-rewrite x {[]} = refl test : ∀ x y {n} -> ∣ All x (n ⟨ (TVar x) ∷T []T ⟩) ∣ ⊢⟨ PropEq.trans (rem-union-id x) (sym (rem-union-id y)) ⟩ ∣ All y (n ⟨ (TVar y) ∷T []T ⟩) ∣ test x y = allR ? data Map : List ℕ → Set where nil : Map [] _/_:::_ : ∀ {xs} (x : ℕ) → String → Map xs → Map (x ∷ xs) _!!_ : List (ℕ × String) → ℕ → String [] !! _ = "not found" ((x , s) ∷ m) !! y with x ≟ y ... | yes _ = s ... | no _ = m !! y Term→Str : List (ℕ × String) → Term → String Term→Str m (Var x) = "\\textit{" ++ (m !! x) ++ "}" Term→Str m (Const s) = "\\textbf{" ++ s ++ "}" Term→Str m (Fun n args) = "" --"\\textbf{" ++ s ++ "}" -- Term→Str m ([[_/_]]_ _ _ _) = "" --"\\textbf{" ++ s ++ "}" Term→Str m ([[[_]]]_ _ _) = "" Formula→Str : ∀ {xs} → List (ℕ × String) → Formula xs → String Formula→Str m (n ⟨ args ⟩) = n ++ "(" ++ ")" --aux args ++ ")" -- where -- aux : List Term → String -- aux [] = "" -- aux (x ∷ []) = Term→Str m x -- aux (x ∷ (y ∷ args)) = Term→Str m x ++ ", " ++ aux (y ∷ args) Formula→Str m (f ∧ f₁) = Formula→Str m f ++ " \\land " ++ Formula→Str m f₁ Formula→Str m (f ∨ f₁) = Formula→Str m f ++ " \\lor " ++ Formula→Str m f₁ Formula→Str m (f ⟶ f₁) = Formula→Str m f ++ " \\leftarrow " ++ Formula→Str m f₁ Formula→Str m (∘ v f) = "\\circ_" ++ (m !! v) ++ Formula→Str m f -- Formula→Str m ([ y / x ] f) = "(" ++ Term→Str m y ++ "/" ++ (m !! x) ++ ") " ++ Formula→Str m f -- Formula→Str m ([ y // x ] f) = "(" ++ Term→Str m y ++ "//" ++ (m !! x) ++ ") " ++ Formula→Str m f Formula→Str m (All v f) = "\\forall " ++ (m !! v) ++ Formula→Str m f Formula→Str m (Ex v f) = "\\exists " ++ (m !! v) ++ Formula→Str m f Structure→Str : ∀ {xs} → List (ℕ × String) → Structure xs → String Structure→Str m ∣ x ∣ = Formula→Str m x Structure→Str m (s , s₁) = Structure→Str m s ++ " , " ++ Structure→Str m s₁ Structure→Str m (s >> s₁) = Structure→Str m s ++ " >> " ++ Structure→Str m s₁ Structure→Str m (s << s₁) = Structure→Str m s ++ " << " ++ Structure→Str m s₁ Structure→Str m I = "I" Structure→Str m (○ v s) = "\\bigcirc_" ++ (m !! v) ++ Structure→Str m s Structure→Str m (Q v s) = "Q " ++ (m !! v) ++ Structure→Str m s ⊢concl : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → (Structure n × Structure n) ⊢concl {_} {xs} {ys} _ = xs , ys data ⊢List : Set where ⊢nil : ⊢List _⊢::_ : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → ⊢List → ⊢List ⊢prems : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → ⊢List ⊢prems atom = ⊢nil ⊢prems (allR xs⊢ys) = xs⊢ys ⊢:: ⊢nil ⊢prems (allL xs⊢ys) = xs⊢ys ⊢:: ⊢nil -- proof1 : ∀ {n} P (args : TList n) → ∣ P ⟨ args ⟩ ∣ ⊢ ∣ P ⟨ args ⟩ ∣ -- proof1 P args = atom -- -- proof : ∣ "P" ⟨ Var 0 ::: nil ⟩ ∣ ⊢ ∣ "P" ⟨ Var 0 ::: nil ⟩ ∣ -- proof = let (x , y) = ⊢concl (proof1 "P" (Var 0 ::: nil)) in {!Structure→Str [ (0 , "x") ] x !} ⊢→Str' : ∀ {n} {xs ys : Structure n} → List (ℕ × String) → xs ⊢ ys → String ⊢→Str' m xs⊢ys with ⊢concl xs⊢ys | ⊢prems xs⊢ys ⊢→Str' m xs⊢ys | xs , ys | prems = Structure→Str m xs ++ " \\vdash " ++ Structure→Str m ys where prems→Str : ⊢List → String prems→Str ⊢nil = "" prems→Str (x ⊢:: lst) = {! !} open import IO main = run (putStrLn "Hello, world!")
{ "alphanum_fraction": 0.4825350345, "avg_line_length": 36.4498094028, "ext": "agda", "hexsha": "43e3a3f804fe974134432a12706f9df093294e92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "goodlyrottenapple/FOLdisplay", "max_forks_repo_path": "FOLdisplay.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "goodlyrottenapple/FOLdisplay", "max_issues_repo_path": "FOLdisplay.agda", "max_line_length": 172, "max_stars_count": null, "max_stars_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "goodlyrottenapple/FOLdisplay", "max_stars_repo_path": "FOLdisplay.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13644, "size": 28686 }
import Algebra import Algebra.Structures import Function.Equality import Function.Equivalence import Function.Bijection import Level import Relation.Binary import Algebra.FunctionProperties import Relation.Binary.EqReasoning open Level renaming (zero to ₀) open Relation.Binary using (Setoid; module Setoid) open Function.Bijection module Algebra.Lifting (S₁ S₂ : Setoid ₀ ₀) (f : Bijection S₁ S₂) where open Algebra.FunctionProperties using (Op₂; LeftIdentity) open Algebra.Structures open Setoid S₁ using () renaming (Carrier to A₁; _≈_ to _≈₁_; sym to sym₁; refl to refl₁; trans to trans₁) open Setoid S₂ using (sym; trans) renaming (Carrier to A₂; _≈_ to _≈₂_; isEquivalence to isEquivalence₂) open Bijection f open Function.Equality using (_⟨$⟩_; cong) module WithOp₂ (_+₁_ : Op₂ A₁) (_+₂_ : Op₂ A₂) (+-same : ∀ x y → from ⟨$⟩ (x +₂ y) ≈₁ (from ⟨$⟩ x) +₁ (from ⟨$⟩ y)) where open Relation.Binary.EqReasoning S₁ renaming (begin_ to begin₁_; _∎ to _∎₁; _≈⟨_⟩_ to _≈₁⟨_⟩_) open Relation.Binary.EqReasoning S₂ renaming (begin_ to begin₂_; _∎ to _∎₂; _≈⟨_⟩_ to _≈₂⟨_⟩_) open import Function using (_⟨_⟩_) from-inj : ∀ {x y} → from ⟨$⟩ x ≈₁ from ⟨$⟩ y → x ≈₂ y from-inj {x} {y} eq = (sym (right-inverse-of x)) ⟨ trans ⟩ cong to eq ⟨ trans ⟩ (right-inverse-of y) lift-comm : (∀ x y → (x +₁ y) ≈₁ (y +₁ x)) → (∀ x y → (x +₂ y) ≈₂ (y +₂ x)) lift-comm comm₁ x y = from-inj ( begin₁ from ⟨$⟩ x +₂ y ≈₁⟨ +-same x y ⟩ (from ⟨$⟩ x) +₁ (from ⟨$⟩ y) ≈₁⟨ comm₁ (from ⟨$⟩ x) (from ⟨$⟩ y) ⟩ (from ⟨$⟩ y) +₁ (from ⟨$⟩ x) ≈₁⟨ sym₁ (+-same y x) ⟩ from ⟨$⟩ y +₂ x ∎₁ ) using-+-same : ∀ {a b c d} → (from ⟨$⟩ a) +₁ (from ⟨$⟩ b) ≈₁ (from ⟨$⟩ c) +₁ (from ⟨$⟩ d) → from ⟨$⟩ a +₂ b ≈₁ from ⟨$⟩ c +₂ d using-+-same {a} {b} {c} {d} eq = begin₁ from ⟨$⟩ a +₂ b ≈₁⟨ +-same a b ⟩ (from ⟨$⟩ a) +₁ (from ⟨$⟩ b) ≈₁⟨ eq ⟩ (from ⟨$⟩ c) +₁ (from ⟨$⟩ d) ≈₁⟨ sym₁ (+-same c d) ⟩ from ⟨$⟩ c +₂ d ∎₁ lift-comm' : (∀ x y → (x +₁ y) ≈₁ (y +₁ x)) → (∀ x y → (x +₂ y) ≈₂ (y +₂ x)) lift-comm' comm₁ x y = from-inj (using-+-same (comm₁ (from ⟨$⟩ x) (from ⟨$⟩ y))) lift-assoc : (∀ x y z → (x +₁ y) +₁ z ≈₁ x +₁ (y +₁ z)) → (∀ {a b c d} → a ≈₁ b → c ≈₁ d → a +₁ c ≈₁ b +₁ d) → (∀ x y z → (x +₂ y) +₂ z ≈₂ x +₂ (y +₂ z)) lift-assoc assoc₁ +₁-cong x y z = from-inj (using-+-same ( begin₁ (from ⟨$⟩ x +₂ y) +₁ fz ≈₁⟨ +₁-cong (+-same x y) refl₁ ⟩ (fx +₁ fy) +₁ fz ≈₁⟨ assoc₁ fx fy fz ⟩ fx +₁ (fy +₁ fz) ≈₁⟨ +₁-cong refl₁ (sym₁ (+-same y z)) ⟩ fx +₁ (from ⟨$⟩ y +₂ z) ∎₁)) where fx = from ⟨$⟩ x fy = from ⟨$⟩ y fz = from ⟨$⟩ z +Cong₁ = (∀ {a b c d} → a ≈₁ b → c ≈₁ d → a +₁ c ≈₁ b +₁ d) +Cong₂ = (∀ {a b c d} → a ≈₂ b → c ≈₂ d → a +₂ c ≈₂ b +₂ d) lift-cong : +Cong₁ → +Cong₂ lift-cong cong₁ a≈₂b c≈₂d = from-inj (using-+-same (cong₁ (cong from a≈₂b) (cong from c≈₂d))) lift-isSemigroup : IsSemigroup _≈₁_ _+₁_ → IsSemigroup _≈₂_ _+₂_ lift-isSemigroup isSemigroup = record { isEquivalence = isEquivalence₂ ; assoc = lift-assoc assoc ∙-cong ; ∙-cong = lift-cong ∙-cong } where open IsSemigroup isSemigroup lift-LeftIdentity : ∀ ε → +Cong₁ → LeftIdentity _≈₁_ ε _+₁_ → LeftIdentity _≈₂_ (to ⟨$⟩ ε) _+₂_ lift-LeftIdentity ε +-cong₁ identityˡ x = from-inj ( begin₁ from ⟨$⟩ (to ⟨$⟩ ε) +₂ x ≈₁⟨ +-same (to ⟨$⟩ ε) x ⟩ (from ⟨$⟩ (to ⟨$⟩ ε)) +₁ (from ⟨$⟩ x) ≈₁⟨ +-cong₁ (left-inverse-of ε) refl₁ ⟩ ε +₁ (from ⟨$⟩ x) ≈₁⟨ identityˡ (from ⟨$⟩ x) ⟩ from ⟨$⟩ x ∎₁) lift-isCommutativeMonoid : ∀ ε → IsCommutativeMonoid _≈₁_ _+₁_ ε → IsCommutativeMonoid _≈₂_ _+₂_ (to ⟨$⟩ ε) lift-isCommutativeMonoid ε isCommMonoid = record { isSemigroup = lift-isSemigroup isSemigroup ; identityˡ = lift-LeftIdentity ε ∙-cong identityˡ ; comm = lift-comm comm } where open IsCommutativeMonoid isCommMonoid
{ "alphanum_fraction": 0.5347931873, "avg_line_length": 34.25, "ext": "agda", "hexsha": "1737a72a03d1bf3c817daa3da236b79c87b742c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Algebra/Lifting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Algebra/Lifting.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Algebra/Lifting.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 1732, "size": 4110 }
{-# OPTIONS --erased-cubical #-} module Main where open import Data.List using (map) open import Data.Unit using (⊤) open import Midi using (IO; _>>=_; getArgs; putStrLn; exportTracks; track→htrack) open import FarmCanon using (canonTracks) open import FarmFugue using (fugueTracks) -- TODO: Remove open import Data.List using (List; []; _∷_) open import Data.String using (String) open import Function using (_∘_) open import Midi using (readNat) open import Pitch using (toPC; showPC) open import Agda.Builtin.Nat using (zero; suc) process : List String → String process [] = "" process (x ∷ xs) with readNat x ... | zero = "" ... | suc n = (showPC ∘ toPC) n main : IO ⊤ main = do args ← getArgs (putStrLn ∘ process) args main' : IO ⊤ main' = let ticksPerBeat = 4 -- (1 = quarter notes; 4 = 16th notes) file = "/Users/leo/Music/MusicTools/test.mid" song = fugueTracks in exportTracks file ticksPerBeat (map track→htrack song)
{ "alphanum_fraction": 0.6724313327, "avg_line_length": 26.5675675676, "ext": "agda", "hexsha": "ff33faddb84d75c9d00ad43fee0923198d81b68a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Main.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Main.agda", "max_line_length": 86, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Main.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 290, "size": 983 }
{-# OPTIONS --cubical --no-import-sorts #-} module MoreLogic.Reasoning where -- hProp logic open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_) -- "implicational" reaoning -- infix 3 _◼ᵖ -- infixr 2 _⇒ᵖ⟨_⟩_ -- -- _⇒ᵖ⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : hProp ℓ'} {R : hProp ℓ''} → (P : hProp ℓ) → [ P ⇒ Q ] → [ Q ⇒ R ] → [ P ⇒ R ] -- _ ⇒ᵖ⟨ pq ⟩ qr = qr ∘ pq -- -- _◼ᵖ : ∀{ℓ} (A : hProp ℓ) → [ A ] → [ A ] -- _ ◼ᵖ = λ x → x infix 3 _◼ infixr 2 _⇒⟨_⟩_ infix 3 _◼ᵖ infixr 2 ⇒ᵖ⟨⟩-syntax -- _⇒ᵖ⟨_⟩_ infix 3 _∎ᵖ infixr 2 ⇔⟨⟩-syntax -- _⇔⟨_⟩_ ⇔⟨⟩-syntax : ∀{ℓ ℓ' ℓ''} → (P : hProp ℓ'') → (((Q , R) , _) : Σ[ (Q , R) ∈ hProp ℓ' × hProp ℓ ] [ Q ⇔ R ]) → [ P ⇔ Q ] → Σ[ (P , R) ∈ hProp ℓ'' × hProp ℓ ] [ P ⇔ R ] ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .fst = P , R -- x⇔y ∙ y⇔z ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .snd .fst = fst q⇔r ∘ fst p⇔q ⇔⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .snd .snd = snd p⇔q ∘ snd q⇔r syntax ⇔⟨⟩-syntax P QRq⇔r p⇔q = P ⇔⟨ p⇔q ⟩ QRq⇔r _∎ᵖ : ∀{ℓ} → (P : hProp ℓ) → Σ[ (Q , R) ∈ hProp ℓ × hProp ℓ ] [ Q ⇔ R ] _∎ᵖ P .fst = P , P _∎ᵖ P .snd .fst x = x _∎ᵖ P .snd .snd x = x ⇒ᵖ⟨⟩-syntax : ∀{ℓ ℓ' ℓ''} → (P : hProp ℓ'') → (((Q , R) , _) : Σ[ (Q , R) ∈ hProp ℓ' × hProp ℓ ] [ Q ⇒ R ]) → [ P ⇒ Q ] → Σ[ (P , R) ∈ hProp ℓ'' × hProp ℓ ] [ P ⇒ R ] ⇒ᵖ⟨⟩-syntax P ((Q , R) , q⇔r) p⇔q .fst = P , R -- x⇔y ∙ y⇔z ⇒ᵖ⟨⟩-syntax P ((Q , R) , q⇒r) p⇒q .snd = q⇒r ∘ p⇒q _◼ᵖ : ∀{ℓ} → (P : hProp ℓ) → Σ[ (Q , R) ∈ hProp ℓ × hProp ℓ ] [ Q ⇒ R ] _◼ᵖ P .fst = P , P _◼ᵖ P .snd x = x syntax ⇒ᵖ⟨⟩-syntax P QRq⇒r p⇒q = P ⇒ᵖ⟨ p⇒q ⟩ QRq⇒r _⇒⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : Type ℓ'} {R : Type ℓ''} → (P : Type ℓ) → (P → Q) → (Q → R) → (P → R) _ ⇒⟨ p⇒q ⟩ q⇒r = q⇒r ∘ p⇒q _◼ : ∀{ℓ} (A : Type ℓ) → A → A _ ◼ = λ x → x -- ⊎⇒⊔ : ∀ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ P ] ⊎ [ Q ] → [ P ⊔ Q ] -- ⊎⇒⊔ P Q (inl x) = inlᵖ x -- ⊎⇒⊔ P Q (inr x) = inrᵖ x -- -- case[_⊔_]_return_of_ : ∀ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') -- → (z : [ P ⊔ Q ]) -- → (R : [ P ⊔ Q ] → hProp ℓ'') -- → (S : (x : [ P ] ⊎ [ Q ]) → [ R (⊎⇒⊔ P Q x) ] ) -- → [ R z ] -- case[_⊔_]_return_of_ P Q z R S = ⊔-elim P Q R (λ p → S (inl p)) (λ q → S (inr q)) z {- NOTE: in the CHANGELOG.md of the v1.3 non-cubical standard library, it is explained: * Previously all equational reasoning combinators (e.g. `_≈⟨_⟩_`, `_≡⟨_⟩_`, `_≤⟨_⟩_`) were defined in the following style: ```agda infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z ``` The type checker therefore infers the RHS of the equational step from the LHS + the type of the proof. For example for `x ≈⟨ x≈y ⟩ y ∎` it is inferred that `y ∎` must have type `y IsRelatedTo y` from `x : A` and `x≈y : x ≈ y`. * There are two problems with this. Firstly, it means that the reasoning combinators are not compatible with macros (i.e. tactics) that attempt to automatically generate proofs for `x≈y`. This is because the reflection machinary does not have access to the type of RHS as it cannot be inferred. In practice this meant that the new reflective solvers `Tactic.RingSolver` and `Tactic.MonoidSolver` could not be used inside the equational reasoning. Secondly the inference procedure itself is slower as described in this [exchange](https://lists.chalmers.se/pipermail/agda/2016/009090.html) on the Agda mailing list. * Therefore, as suggested on the mailing list, the order of arguments to the combinators have been reversed so that instead the type of the proof is inferred from the LHS + RHS. ```agda infixr -2 step-≡ step-≡ : ∀ x {y z : A} → y ≡ z → x ≡ y → x ≡ z step-≡ y≡z x≡y = trans x≡y y≡z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z ``` where the `syntax` declaration is then used to recover the original order of the arguments. This change enables the use of macros and anecdotally speeds up type checking by a factor of 5. -} -- TODO: that might be "correct" the way to implement these reasoning operators
{ "alphanum_fraction": 0.5408335341, "avg_line_length": 38.7943925234, "ext": "agda", "hexsha": "0375270be769013c641492cb27474c5ee3189a69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MoreLogic/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MoreLogic/Reasoning.agda", "max_line_length": 166, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MoreLogic/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 2020, "size": 4151 }
-- Mixing CatchAll branches with varying arity can be tricky. -- -- If the number of arguments a catch all branch expects to be already abstracted over is smaller -- than the number of arguments present in the failing clause/branch, we need to apply -- the catch-all branch to the surplus arguments already abstracted over. module CatchAllVarArity where open import Common.Nat open import Common.IO open import Common.Unit f : Nat → Nat → Nat f zero = λ y → y f (suc zero) (suc y) = suc y f x y = (suc y) case_of_ : ∀{A B : Set} → A → (A → B) → B case a of f = f a -- case tree variant of f g : Nat → Nat → Nat g = λ x → case x of λ{ zero → λ y → y ; (suc x') → case x' of λ{ zero → λ y → case y of λ{ (suc y') → suc y' ; _ → fallback (suc x') y } ; _ → λ y → fallback x y } } where fallback = λ x y → suc y --expected: -- 10 -- 21 -- 1 -- 0 -- 4 -- 1 main = printNat (f 0 10) ,, putStrLn "" ,, printNat (f 10 20) ,, putStrLn "" ,, printNat (f 10 0) ,, putStrLn "" ,, printNat (f 0 0) ,, putStrLn "" ,, printNat (f 1 4) ,, putStrLn "" ,, printNat (f 1 0) ,, putStrLn ""
{ "alphanum_fraction": 0.5464169381, "avg_line_length": 20.813559322, "ext": "agda", "hexsha": "96b974ec48754afa2f17850d30986371234b2025", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/CatchAllVarArity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/CatchAllVarArity.agda", "max_line_length": 97, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/CatchAllVarArity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 410, "size": 1228 }
module NF.Nat where open import NF open import Relation.Binary.PropositionalEquality open import Data.Nat instance nf0 : NF 0 Sing.unpack (NF.!! nf0) = 0 Sing.eq (NF.!! nf0) = refl {-# INLINE nf0 #-} nfSuc : {n : ℕ}{{nfn : NF n}} -> NF (suc n) Sing.unpack (NF.!! (nfSuc {n})) = suc (nf n) Sing.eq (NF.!! (nfSuc {{nfn}})) = cong suc nf≡ {-# INLINE nfSuc #-}
{ "alphanum_fraction": 0.5915119363, "avg_line_length": 20.9444444444, "ext": "agda", "hexsha": "feaabaa6ea55c7f94d134a7ca26199248febf21b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yanok/normalize-via-instances", "max_forks_repo_path": "src/NF/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yanok/normalize-via-instances", "max_issues_repo_path": "src/NF/Nat.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yanok/normalize-via-instances", "max_stars_repo_path": "src/NF/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 141, "size": 377 }
module STLC.Coquand.Renaming where open import STLC.Syntax public open import Category -------------------------------------------------------------------------------- -- Renamings infix 4 _∋⋆_ data _∋⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ∋⋆ ∅ _,_ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) (i : Γ′ ∋ A) → Γ′ ∋⋆ Γ , A putᵣ : ∀ {Γ Γ′} → (∀ {A} → Γ ∋ A → Γ′ ∋ A) → Γ′ ∋⋆ Γ putᵣ {∅} f = ∅ putᵣ {Γ , A} f = putᵣ (λ i → f (suc i)) , f 0 getᵣ : ∀ {Γ Γ′ A} → Γ′ ∋⋆ Γ → Γ ∋ A → Γ′ ∋ A getᵣ (η , i) zero = i getᵣ (η , i) (suc j) = getᵣ η j wkᵣ : ∀ {A Γ Γ′} → Γ′ ∋⋆ Γ → Γ′ , A ∋⋆ Γ wkᵣ ∅ = ∅ wkᵣ (η , i) = wkᵣ η , suc i liftᵣ : ∀ {A Γ Γ′} → Γ′ ∋⋆ Γ → Γ′ , A ∋⋆ Γ , A liftᵣ η = wkᵣ η , 0 idᵣ : ∀ {Γ} → Γ ∋⋆ Γ idᵣ {∅} = ∅ idᵣ {Γ , A} = liftᵣ idᵣ ren : ∀ {Γ Γ′ A} → Γ′ ∋⋆ Γ → Γ ⊢ A → Γ′ ⊢ A ren η (𝓋 i) = 𝓋 (getᵣ η i) ren η (ƛ M) = ƛ (ren (liftᵣ η) M) ren η (M ∙ N) = ren η M ∙ ren η N wk : ∀ {B Γ A} → Γ ⊢ A → Γ , B ⊢ A wk M = ren (wkᵣ idᵣ) M -- NOTE: _○_ = getᵣ⋆ _○_ : ∀ {Γ Γ′ Γ″} → Γ″ ∋⋆ Γ′ → Γ′ ∋⋆ Γ → Γ″ ∋⋆ Γ η₁ ○ ∅ = ∅ η₁ ○ (η₂ , i) = η₁ ○ η₂ , getᵣ η₁ i -------------------------------------------------------------------------------- -- (wkgetᵣ) natgetᵣ : ∀ {Γ Γ′ A B} → (η : Γ′ ∋⋆ Γ) (i : Γ ∋ A) → getᵣ (wkᵣ {B} η) i ≡ (suc ∘ getᵣ η) i natgetᵣ (η , j) zero = refl natgetᵣ (η , j) (suc i) = natgetᵣ η i idgetᵣ : ∀ {Γ A} → (i : Γ ∋ A) → getᵣ idᵣ i ≡ i idgetᵣ zero = refl idgetᵣ (suc i) = natgetᵣ idᵣ i ⦙ suc & idgetᵣ i idren : ∀ {Γ A} → (M : Γ ⊢ A) → ren idᵣ M ≡ M idren (𝓋 i) = 𝓋 & idgetᵣ i idren (ƛ M) = ƛ & idren M idren (M ∙ N) = _∙_ & idren M ⊗ idren N -------------------------------------------------------------------------------- zap○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (i : Γ″ ∋ A) → (η₁ , i) ○ wkᵣ η₂ ≡ η₁ ○ η₂ zap○ η₁ ∅ i = refl zap○ η₁ (η₂ , j) i = (_, getᵣ η₁ j) & zap○ η₁ η₂ i lid○ : ∀ {Γ Γ′} → (η : Γ′ ∋⋆ Γ) → idᵣ ○ η ≡ η lid○ ∅ = refl lid○ (η , i) = _,_ & lid○ η ⊗ idgetᵣ i rid○ : ∀ {Γ Γ′} → (η : Γ′ ∋⋆ Γ) → η ○ idᵣ ≡ η rid○ {∅} ∅ = refl rid○ {Γ , A} (η , i) = (_, i) & ( zap○ η idᵣ i ⦙ rid○ η ) -------------------------------------------------------------------------------- get○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (i : Γ ∋ A) → getᵣ (η₁ ○ η₂) i ≡ (getᵣ η₁ ∘ getᵣ η₂) i get○ η₁ (η₂ , j) zero = refl get○ η₁ (η₂ , j) (suc i) = get○ η₁ η₂ i wk○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) → wkᵣ {A} (η₁ ○ η₂) ≡ wkᵣ η₁ ○ η₂ wk○ η₁ ∅ = refl wk○ η₁ (η₂ , i) = _,_ & wk○ η₁ η₂ ⊗ (natgetᵣ η₁ i ⁻¹) lift○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) → liftᵣ {A} (η₁ ○ η₂) ≡ liftᵣ η₁ ○ liftᵣ η₂ lift○ η₁ η₂ = (_, 0) & ( wk○ η₁ η₂ ⦙ (zap○ (wkᵣ η₁) η₂ 0 ⁻¹) ) wklid○ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) → wkᵣ {A} idᵣ ○ η ≡ wkᵣ η wklid○ η = wk○ idᵣ η ⁻¹ ⦙ wkᵣ & lid○ η wkrid○ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) → wkᵣ {A} η ○ idᵣ ≡ wkᵣ η wkrid○ η = wk○ η idᵣ ⁻¹ ⦙ wkᵣ & rid○ η liftwkrid○ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) → liftᵣ {A} η ○ wkᵣ idᵣ ≡ wkᵣ η liftwkrid○ η = zap○ (wkᵣ η) idᵣ 0 ⦙ wkrid○ η mutual ren○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (M : Γ ⊢ A) → ren (η₁ ○ η₂) M ≡ (ren η₁ ∘ ren η₂) M ren○ η₁ η₂ (𝓋 i) = 𝓋 & get○ η₁ η₂ i ren○ η₁ η₂ (ƛ M) = ƛ & renlift○ η₁ η₂ M ren○ η₁ η₂ (M ∙ N) = _∙_ & ren○ η₁ η₂ M ⊗ ren○ η₁ η₂ N renlift○ : ∀ {Γ Γ′ Γ″ A B} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (M : Γ , B ⊢ A) → ren (liftᵣ {B} (η₁ ○ η₂)) M ≡ (ren (liftᵣ η₁) ∘ ren (liftᵣ η₂)) M renlift○ η₁ η₂ M = (λ η′ → ren η′ M) & lift○ η₁ η₂ ⦙ ren○ (liftᵣ η₁) (liftᵣ η₂) M renwk○ : ∀ {Γ Γ′ Γ″ A B} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (M : Γ ⊢ A) → ren (wkᵣ {B} (η₁ ○ η₂)) M ≡ (ren (wkᵣ η₁) ∘ ren η₂) M renwk○ η₁ η₂ M = (λ η′ → ren η′ M) & wk○ η₁ η₂ ⦙ ren○ (wkᵣ η₁) η₂ M renliftwk○ : ∀ {Γ Γ′ Γ″ A B} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (M : Γ ⊢ A) → ren (wkᵣ {B} (η₁ ○ η₂)) M ≡ (ren (liftᵣ η₁) ∘ ren (wkᵣ η₂)) M renliftwk○ η₁ η₂ M = (λ η′ → ren η′ M) & ( wk○ η₁ η₂ ⦙ zap○ (wkᵣ η₁) η₂ 0 ⁻¹ ) ⦙ ren○ (liftᵣ η₁) (wkᵣ η₂) M -------------------------------------------------------------------------------- assoc○ : ∀ {Γ Γ′ Γ″ Γ‴} → (η₁ : Γ‴ ∋⋆ Γ″) (η₂ : Γ″ ∋⋆ Γ′) (η₃ : Γ′ ∋⋆ Γ) → η₁ ○ (η₂ ○ η₃) ≡ (η₁ ○ η₂) ○ η₃ assoc○ η₁ η₂ ∅ = refl assoc○ η₁ η₂ (η₃ , i) = _,_ & assoc○ η₁ η₂ η₃ ⊗ (get○ η₁ η₂ i ⁻¹) -------------------------------------------------------------------------------- 𝗥𝗲𝗻 : Category 𝒞 _∋⋆_ 𝗥𝗲𝗻 = record { idₓ = idᵣ ; _⋄_ = flip _○_ ; lid⋄ = rid○ ; rid⋄ = lid○ ; assoc⋄ = assoc○ } getᵣPsh : 𝒯 → Presheaf₀ 𝗥𝗲𝗻 getᵣPsh A = record { Fₓ = _∋ A ; F = getᵣ ; idF = fext! idgetᵣ ; F⋄ = λ η₂ η₁ → fext! (get○ η₁ η₂) } renPsh : 𝒯 → Presheaf₀ 𝗥𝗲𝗻 renPsh A = record { Fₓ = _⊢ A ; F = ren ; idF = fext! idren ; F⋄ = λ η₂ η₁ → fext! (ren○ η₁ η₂) } --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3119234117, "avg_line_length": 28.0243902439, "ext": "agda", "hexsha": "f1fee43643be542b57497a681498654195bb1e0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC/Coquand/Renaming.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC/Coquand/Renaming.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC/Coquand/Renaming.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3122, "size": 5745 }
------------------------------------------------------------------------ -- An investigation of nested fixpoints of the form μX.νY.… in Agda ------------------------------------------------------------------------ module MuNu where open import Codata.Musical.Notation import Codata.Musical.Colist as Colist open import Codata.Musical.Stream open import Data.Digit open import Data.Empty open import Data.List using (List; _∷_; []) open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) -- Christophe Raffalli discusses (essentially) the type μO. νZ. Z + O -- in his thesis. If Z is read as zero and O as one, then this type -- contains bit sequences of the form (0^⋆1)^⋆0^ω. -- It is interesting to note that currently it is not possible to -- encode this type directly in Agda. One might believe that the -- following definition should work. First we define the inner -- greatest fixpoint: data Z (O : Set) : Set where [0] : ∞ (Z O) → Z O [1] : O → Z O -- Then we define the outer least fixpoint: data O : Set where ↓ : Z O → O -- However, it is still possible to define values of the form (01)^ω: 01^ω : O 01^ω = ↓ ([0] (♯ [1] 01^ω)) -- The reason is the way the termination/productivity checker works: -- it accepts definitions by guarded corecursion as long as the guard -- contains at least one occurrence of ♯_, no matter how the types -- involved are defined. In effect ∞ has global reach. The mistake -- done above was believing that O is defined to be a least fixpoint. -- The type O really corresponds to νZ. μO. Z + O, i.e. (1^⋆0)^ω: data O′ : Set where [0] : ∞ O′ → O′ [1] : O′ → O′ mutual O→O′ : O → O′ O→O′ (↓ z) = ZO→O′ z ZO→O′ : Z O → O′ ZO→O′ ([0] z) = [0] (♯ ZO→O′ (♭ z)) ZO→O′ ([1] o) = [1] (O→O′ o) mutual O′→O : O′ → O O′→O o = ↓ (O′→ZO o) O′→ZO : O′ → Z O O′→ZO ([0] o) = [0] (♯ O′→ZO (♭ o)) O′→ZO ([1] o) = [1] (O′→O o) -- If O had actually encoded the type μO. νZ. Z + O, then we could -- have proved the following theorem: mutual ⟦_⟧O : O → Stream Bit ⟦ ↓ z ⟧O = ⟦ z ⟧Z ⟦_⟧Z : Z O → Stream Bit ⟦ [0] z ⟧Z = 0b ∷ ♯ ⟦ ♭ z ⟧Z ⟦ [1] o ⟧Z = 1b ∷ ♯ ⟦ o ⟧O Theorem : Set Theorem = ∀ o → ¬ (head ⟦ o ⟧O ≡ 0b × head (tail ⟦ o ⟧O) ≡ 1b × tail (tail ⟦ o ⟧O) ≈ ⟦ o ⟧O) -- This would have been unfortunate, though: inconsistency : Theorem → ⊥ inconsistency theorem = theorem 01^ω (refl , refl , proof) where proof : tail (tail ⟦ 01^ω ⟧O) ≈ ⟦ 01^ω ⟧O proof = refl ∷ ♯ (refl ∷ ♯ proof) -- Using the following elimination principle we can prove the theorem: data ⇑ {O} (P : O → Set) : Z O → Set where [0] : ∀ {z} → ∞ (⇑ P (♭ z)) → ⇑ P ([0] z) [1] : ∀ {o} → P o → ⇑ P ([1] o) O-Elim : Set₁ O-Elim = (P : O → Set) → (∀ {z} → ⇑ P z → P (↓ z)) → (o : O) → P o theorem : O-Elim → Theorem theorem O-elim = O-elim P helper where P : O → Set P o = ¬ (head ⟦ o ⟧O ≡ 0b × head (tail ⟦ o ⟧O) ≡ 1b × tail (tail ⟦ o ⟧O) ≈ ⟦ o ⟧O) helper : ∀ {z} → ⇑ P z → P (↓ z) helper ([1] p) (() , eq₂ , eq₃) helper ([0] p) (refl , eq₂ , eq₃) = hlp _ eq₂ (head-cong eq₃) (tail-cong eq₃) (♭ p) where hlp : ∀ z → head ⟦ z ⟧Z ≡ 1b → head (tail ⟦ z ⟧Z) ≡ 0b → tail (tail ⟦ z ⟧Z) ≈ ⟦ z ⟧Z → ⇑ P z → ⊥ hlp .([0] _) () eq₂ eq₃ ([0] p) hlp .([1] _) eq₁ eq₂ eq₃ ([1] p) = p (eq₂ , head-cong eq₃ , tail-cong eq₃) -- Fortunately it appears as if we cannot prove this elimination -- principle. The following code is not accepted by the termination -- checker: {- mutual O-elim : O-Elim O-elim P hyp (↓ z) = hyp (Z-elim P hyp z) Z-elim : (P : O → Set) → (∀ {z} → ⇑ P z → P (↓ z)) → (z : Z O) → ⇑ P z Z-elim P hyp ([0] z) = [0] (♯ Z-elim P hyp (♭ z)) Z-elim P hyp ([1] o) = [1] (O-elim P hyp o) -} -- If hyp were known to be contractive, then the code above would be -- correct (if not accepted by the termination checker). This is not -- the case in theorem above.
{ "alphanum_fraction": 0.5370687546, "avg_line_length": 28.7816901408, "ext": "agda", "hexsha": "d043833bfd028add2f70e28671d8cf0b0f69aa85", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "MuNu.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "MuNu.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "MuNu.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1562, "size": 4087 }
open import Preliminaries module Preorder where record PreorderStructure (A : Set) : Set1 where constructor preorder-structure field _≤_ : A → A → Set refl : ∀ x → x ≤ x trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z record Preorder A : Set1 where constructor preorder field preorder-struct : PreorderStructure A
{ "alphanum_fraction": 0.6203966006, "avg_line_length": 22.0625, "ext": "agda", "hexsha": "8d4505a97a9e18f3cdf1690337ae0a9e046969ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity-drafts/Preorder.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity-drafts/Preorder.agda", "max_line_length": 49, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity-drafts/Preorder.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 104, "size": 353 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) module Categories.Diagram.Colimit.DualProperties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} where open import Function.Equality renaming (id to idFun) open import Categories.Category.Instance.Setoids open import Categories.Diagram.Duality C open import Categories.Functor.Hom open import Categories.Category.Construction.Cocones as Coc open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Limit.Properties open import Categories.Diagram.Colimit as Col open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.Morphism C open import Categories.Morphism.Duality C private module C = Category C module J = Category J open C open Hom C open HomReasoning -- contravariant hom functor sends colimit of F to its limit. module _ (W : Obj) {F : Functor J C} (col : Colimit F) where private module F = Functor F HomF : Functor J.op (Setoids ℓ e) HomF = Hom[-, W ] ∘F F.op hom-colimit⇒limit : Limit HomF hom-colimit⇒limit = ≃-resp-lim (Hom≃ ⓘʳ F.op) (hom-resp-limit W (Colimit⇒coLimit col)) where Hom≃ : Hom[ op ][ W ,-] ≃ Hom[-, W ] Hom≃ = record { F⇒G = ntHelper record { η = λ _ → idFun ; commute = λ _ eq → C.∘-resp-≈ˡ (C.∘-resp-≈ʳ eq) ○ C.assoc } ; F⇐G = ntHelper record { η = λ _ → idFun ; commute = λ _ eq → C.sym-assoc ○ C.∘-resp-≈ˡ (C.∘-resp-≈ʳ eq) } ; iso = λ _ → record { isoˡ = λ eq → eq ; isoʳ = λ eq → eq } } -- natural isomorphisms respects limits module _ {F G : Functor J C} (F≃G : F ≃ G) where private module F = Functor F module G = Functor G open NaturalIsomorphism F≃G ≃-resp-colim : Colimit F → Colimit G ≃-resp-colim Cf = coLimit⇒Colimit (≃-resp-lim op′ (Colimit⇒coLimit Cf)) ≃⇒Cocone⇒ : ∀ (Cf : Colimit F) (Cg : Colimit G) → Cocones G [ Colimit.colimit Cg , Colimit.colimit (≃-resp-colim Cf) ] ≃⇒Cocone⇒ Cf Cg = coCone⇒⇒Cocone⇒ (≃⇒Cone⇒ op′ (Colimit⇒coLimit Cf) (Colimit⇒coLimit Cg)) ≃⇒colim≅ : ∀ {F G : Functor J C} (F≃G : F ≃ G) (Cf : Colimit F) (Cg : Colimit G) → Colimit.coapex Cf ≅ Colimit.coapex Cg ≃⇒colim≅ F≃G Cf Cg = op-≅⇒≅ (≃⇒lim≅ (NaturalIsomorphism.op′ F≃G) (Colimit⇒coLimit Cf) (Colimit⇒coLimit Cg))
{ "alphanum_fraction": 0.6245059289, "avg_line_length": 35.6338028169, "ext": "agda", "hexsha": "0c1c9c3e0ada5985ad812c8812a44e24a8b09969", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Colimit/DualProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Colimit/DualProperties.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Colimit/DualProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 903, "size": 2530 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Setoids.Facts.Initial where open import Level open import Relation.Binary using (Setoid) open import Cats.Category open import Cats.Category.Setoids using (Setoids ; ≈-intro) import Data.Empty as Empty ⊥ : ∀ {l l′} → Setoid l l′ ⊥ = record { Carrier = Lift _ Empty.⊥ ; _≈_ = λ() ; isEquivalence = record { refl = λ{} ; sym = λ{} ; trans = λ{} } } instance hasInitial : ∀ {l l≈} → HasInitial (Setoids l l≈) hasInitial = record { ⊥ = ⊥ ; isInitial = λ X → record { arr = record { arr = λ() ; resp = λ{} } ; unique = λ _ → ≈-intro λ{} } }
{ "alphanum_fraction": 0.5639097744, "avg_line_length": 19.5588235294, "ext": "agda", "hexsha": "dd568c0af59362e81ff26ddc9643e2c7ca558c9c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_line_length": 59, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Setoids/Facts/Initial.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 213, "size": 665 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Class.IsEquivalence open import Oscar.Class.Setoid open import Oscar.Data.Proposequality module Oscar.Property.Setoid.Proposextensequality where module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} where instance 𝓡eflexivityProposextensequality : Reflexivity.class Proposextensequality⟦ 𝔓 ⟧ 𝓡eflexivityProposextensequality .⋆ _ = ∅ 𝓢ymmetryProposextensequality : Symmetry.class Proposextensequality⟦ 𝔓 ⟧ 𝓢ymmetryProposextensequality .⋆ f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ∅ 𝓣ransitivityProposextensequality : Transitivity.class Proposextensequality⟦ 𝔓 ⟧ 𝓣ransitivityProposextensequality .⋆ f₁≡̇f₂ f₂≡̇f₃ x rewrite f₁≡̇f₂ x = f₂≡̇f₃ x IsEquivalenceProposextensequality : IsEquivalence Proposextensequality⟦ 𝔓 ⟧ IsEquivalenceProposextensequality = ∁ module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where SetoidProposextensequality : Setoid _ _ SetoidProposextensequality = ∁ Proposextensequality⟦ 𝔓 ⟧
{ "alphanum_fraction": 0.768738574, "avg_line_length": 33.1515151515, "ext": "agda", "hexsha": "2da1360f77a3eaf980abd87f43b2c65370d26cbb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposextensequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposextensequality.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/Proposextensequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 424, "size": 1094 }
{-# OPTIONS --allow-unsolved-metas #-} latex : Set latex = {!test!}
{ "alphanum_fraction": 0.6086956522, "avg_line_length": 13.8, "ext": "agda", "hexsha": "0f8a539f7b4f91e65ef48018707a891fbd50bbfe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/LaTeXAndHTML/succeed/Issue5043.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/LaTeXAndHTML/succeed/Issue5043.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/LaTeXAndHTML/succeed/Issue5043.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 69 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some algebraic structures defined over some other structure ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) module Algebra.Module.Structures where open import Algebra.Bundles open import Algebra.Core import Algebra.Definitions as Defs open import Algebra.Module.Definitions open import Algebra.Structures open import Data.Product using (_,_; proj₁; proj₂) open import Level using (Level; _⊔_) private variable m ℓm r ℓr s ℓs : Level M : Set m module _ (semiring : Semiring r ℓr) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) where open Semiring semiring renaming (Carrier to R) record IsPreleftSemimodule (*ₗ : Opₗ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open LeftDefs R ≈ᴹ field *ₗ-cong : Congruent _≈_ *ₗ *ₗ-zeroˡ : LeftZero 0# 0ᴹ *ₗ *ₗ-distribʳ : *ₗ DistributesOverʳ _+_ ⟶ +ᴹ *ₗ-identityˡ : LeftIdentity 1# *ₗ *ₗ-assoc : Associative _*_ *ₗ *ₗ-zeroʳ : RightZero 0ᴹ *ₗ *ₗ-distribˡ : *ₗ DistributesOverˡ +ᴹ record IsLeftSemimodule (*ₗ : Opₗ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open LeftDefs R ≈ᴹ field +ᴹ-isCommutativeMonoid : IsCommutativeMonoid ≈ᴹ +ᴹ 0ᴹ isPreleftSemimodule : IsPreleftSemimodule *ₗ open IsPreleftSemimodule isPreleftSemimodule public open IsCommutativeMonoid +ᴹ-isCommutativeMonoid public using () renaming ( assoc to +ᴹ-assoc ; comm to +ᴹ-comm ; identity to +ᴹ-identity ; identityʳ to +ᴹ-identityʳ ; identityˡ to +ᴹ-identityˡ ; isEquivalence to ≈ᴹ-isEquivalence ; isMagma to +ᴹ-isMagma ; isMonoid to +ᴹ-isMonoid ; isPartialEquivalence to ≈ᴹ-isPartialEquivalence ; isSemigroup to +ᴹ-isSemigroup ; refl to ≈ᴹ-refl ; reflexive to ≈ᴹ-reflexive ; setoid to ≈ᴹ-setoid ; sym to ≈ᴹ-sym ; trans to ≈ᴹ-trans ; ∙-cong to +ᴹ-cong ; ∙-congʳ to +ᴹ-congʳ ; ∙-congˡ to +ᴹ-congˡ ) *ₗ-congˡ : LeftCongruent *ₗ *ₗ-congˡ mm = *ₗ-cong refl mm *ₗ-congʳ : RightCongruent _≈_ *ₗ *ₗ-congʳ xx = *ₗ-cong xx ≈ᴹ-refl record IsPrerightSemimodule (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open RightDefs R ≈ᴹ field *ᵣ-cong : Congruent _≈_ *ᵣ *ᵣ-zeroʳ : RightZero 0# 0ᴹ *ᵣ *ᵣ-distribˡ : *ᵣ DistributesOverˡ _+_ ⟶ +ᴹ *ᵣ-identityʳ : RightIdentity 1# *ᵣ *ᵣ-assoc : Associative _*_ *ᵣ *ᵣ-zeroˡ : LeftZero 0ᴹ *ᵣ *ᵣ-distribʳ : *ᵣ DistributesOverʳ +ᴹ record IsRightSemimodule (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open RightDefs R ≈ᴹ field +ᴹ-isCommutativeMonoid : IsCommutativeMonoid ≈ᴹ +ᴹ 0ᴹ isPrerightSemimodule : IsPrerightSemimodule *ᵣ open IsPrerightSemimodule isPrerightSemimodule public open IsCommutativeMonoid +ᴹ-isCommutativeMonoid public using () renaming ( assoc to +ᴹ-assoc ; comm to +ᴹ-comm ; identity to +ᴹ-identity ; identityʳ to +ᴹ-identityʳ ; identityˡ to +ᴹ-identityˡ ; isEquivalence to ≈ᴹ-isEquivalence ; isMagma to +ᴹ-isMagma ; isMonoid to +ᴹ-isMonoid ; isPartialEquivalence to ≈ᴹ-isPartialEquivalence ; isSemigroup to +ᴹ-isSemigroup ; refl to ≈ᴹ-refl ; reflexive to ≈ᴹ-reflexive ; setoid to ≈ᴹ-setoid ; sym to ≈ᴹ-sym ; trans to ≈ᴹ-trans ; ∙-cong to +ᴹ-cong ; ∙-congʳ to +ᴹ-congʳ ; ∙-congˡ to +ᴹ-congˡ ) *ᵣ-congˡ : LeftCongruent _≈_ *ᵣ *ᵣ-congˡ xx = *ᵣ-cong ≈ᴹ-refl xx *ᵣ-congʳ : RightCongruent *ᵣ *ᵣ-congʳ mm = *ᵣ-cong mm refl module _ (R-semiring : Semiring r ℓr) (S-semiring : Semiring s ℓs) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) where open Semiring R-semiring using () renaming (Carrier to R) open Semiring S-semiring using () renaming (Carrier to S) record IsBisemimodule (*ₗ : Opₗ R M) (*ᵣ : Opᵣ S M) : Set (r ⊔ s ⊔ m ⊔ ℓr ⊔ ℓs ⊔ ℓm) where open BiDefs R S ≈ᴹ field +ᴹ-isCommutativeMonoid : IsCommutativeMonoid ≈ᴹ +ᴹ 0ᴹ isPreleftSemimodule : IsPreleftSemimodule R-semiring ≈ᴹ +ᴹ 0ᴹ *ₗ isPrerightSemimodule : IsPrerightSemimodule S-semiring ≈ᴹ +ᴹ 0ᴹ *ᵣ *ₗ-*ᵣ-assoc : Associative *ₗ *ᵣ isLeftSemimodule : IsLeftSemimodule R-semiring ≈ᴹ +ᴹ 0ᴹ *ₗ isLeftSemimodule = record { +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid ; isPreleftSemimodule = isPreleftSemimodule } isRightSemimodule : IsRightSemimodule S-semiring ≈ᴹ +ᴹ 0ᴹ *ᵣ isRightSemimodule = record { +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid ; isPrerightSemimodule = isPrerightSemimodule } open IsLeftSemimodule isLeftSemimodule public hiding (+ᴹ-isCommutativeMonoid; isPreleftSemimodule) open IsPrerightSemimodule isPrerightSemimodule public open IsRightSemimodule isRightSemimodule public using (*ᵣ-congˡ; *ᵣ-congʳ) module _ (commutativeSemiring : CommutativeSemiring r ℓr) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) where open CommutativeSemiring commutativeSemiring renaming (Carrier to R) -- An R-semimodule is an R-R-bisemimodule where R is commutative. -- This means that *ₗ and *ᵣ coincide up to mathematical equality, though it -- may be that they do not coincide up to definitional equality. record IsSemimodule (*ₗ : Opₗ R M) (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where field isBisemimodule : IsBisemimodule semiring semiring ≈ᴹ +ᴹ 0ᴹ *ₗ *ᵣ open IsBisemimodule isBisemimodule public module _ (ring : Ring r ℓr) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) (-ᴹ : Op₁ M) where open Ring ring renaming (Carrier to R) record IsLeftModule (*ₗ : Opₗ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open Defs ≈ᴹ field isLeftSemimodule : IsLeftSemimodule semiring ≈ᴹ +ᴹ 0ᴹ *ₗ -ᴹ‿cong : Congruent₁ -ᴹ -ᴹ‿inverse : Inverse 0ᴹ -ᴹ +ᴹ open IsLeftSemimodule isLeftSemimodule public +ᴹ-isAbelianGroup : IsAbelianGroup ≈ᴹ +ᴹ 0ᴹ -ᴹ +ᴹ-isAbelianGroup = record { isGroup = record { isMonoid = +ᴹ-isMonoid ; inverse = -ᴹ‿inverse ; ⁻¹-cong = -ᴹ‿cong } ; comm = +ᴹ-comm } open IsAbelianGroup +ᴹ-isAbelianGroup public using () renaming ( isGroup to +ᴹ-isGroup ; inverseˡ to -ᴹ‿inverseˡ ; inverseʳ to -ᴹ‿inverseʳ ; uniqueˡ-⁻¹ to uniqueˡ‿-ᴹ ; uniqueʳ-⁻¹ to uniqueʳ‿-ᴹ ) record IsRightModule (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where open Defs ≈ᴹ field isRightSemimodule : IsRightSemimodule semiring ≈ᴹ +ᴹ 0ᴹ *ᵣ -ᴹ‿cong : Congruent₁ -ᴹ -ᴹ‿inverse : Inverse 0ᴹ -ᴹ +ᴹ open IsRightSemimodule isRightSemimodule public +ᴹ-isAbelianGroup : IsAbelianGroup ≈ᴹ +ᴹ 0ᴹ -ᴹ +ᴹ-isAbelianGroup = record { isGroup = record { isMonoid = +ᴹ-isMonoid ; inverse = -ᴹ‿inverse ; ⁻¹-cong = -ᴹ‿cong } ; comm = +ᴹ-comm } open IsAbelianGroup +ᴹ-isAbelianGroup public using () renaming ( isGroup to +ᴹ-isGroup ; inverseˡ to -ᴹ‿inverseˡ ; inverseʳ to -ᴹ‿inverseʳ ; uniqueˡ-⁻¹ to uniqueˡ‿-ᴹ ; uniqueʳ-⁻¹ to uniqueʳ‿-ᴹ ) module _ (R-ring : Ring r ℓr) (S-ring : Ring s ℓs) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) (-ᴹ : Op₁ M) where open Ring R-ring renaming (Carrier to R; semiring to R-semiring) open Ring S-ring renaming (Carrier to S; semiring to S-semiring) record IsBimodule (*ₗ : Opₗ R M) (*ᵣ : Opᵣ S M) : Set (r ⊔ s ⊔ m ⊔ ℓr ⊔ ℓs ⊔ ℓm) where open Defs ≈ᴹ field isBisemimodule : IsBisemimodule R-semiring S-semiring ≈ᴹ +ᴹ 0ᴹ *ₗ *ᵣ -ᴹ‿cong : Congruent₁ -ᴹ -ᴹ‿inverse : Inverse 0ᴹ -ᴹ +ᴹ open IsBisemimodule isBisemimodule public isLeftModule : IsLeftModule R-ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ₗ isLeftModule = record { isLeftSemimodule = isLeftSemimodule ; -ᴹ‿cong = -ᴹ‿cong ; -ᴹ‿inverse = -ᴹ‿inverse } open IsLeftModule isLeftModule public using ( +ᴹ-isAbelianGroup; +ᴹ-isGroup; -ᴹ‿inverseˡ; -ᴹ‿inverseʳ ; uniqueˡ‿-ᴹ; uniqueʳ‿-ᴹ) isRightModule : IsRightModule S-ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ᵣ isRightModule = record { isRightSemimodule = isRightSemimodule ; -ᴹ‿cong = -ᴹ‿cong ; -ᴹ‿inverse = -ᴹ‿inverse } module _ (commutativeRing : CommutativeRing r ℓr) (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M) (-ᴹ : Op₁ M) where open CommutativeRing commutativeRing renaming (Carrier to R) -- An R-module is an R-R-bimodule where R is commutative. -- This means that *ₗ and *ᵣ coincide up to mathematical equality, though it -- may be that they do not coincide up to definitional equality. record IsModule (*ₗ : Opₗ R M) (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where field isBimodule : IsBimodule ring ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ₗ *ᵣ open IsBimodule isBimodule public isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ *ₗ *ᵣ isSemimodule = record { isBisemimodule = isBisemimodule }
{ "alphanum_fraction": 0.5873559639, "avg_line_length": 32.9897260274, "ext": "agda", "hexsha": "d8952798f048c4a2cc30286b4a5ff452e58e0992", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Structures.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4008, "size": 9633 }
------------------------------------------------------------------------ -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Props.BooleanAlgebra (b : BooleanAlgebra) where open BooleanAlgebra b import Algebra.Props.DistributiveLattice as DL open DL distributiveLattice public open import Algebra.Structures import Algebra.FunctionProperties as P; open P _≈_ import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Relation.Binary open import Data.Function open import Data.Product ------------------------------------------------------------------------ -- Some simple generalisations ∨-complement : Inverse ⊤ ¬_ _∨_ ∨-complement = ∨-complementˡ , ∨-complementʳ where ∨-complementˡ : LeftInverse ⊤ ¬_ _∨_ ∨-complementˡ x = begin ¬ x ∨ x ≈⟨ ∨-comm _ _ ⟩ x ∨ ¬ x ≈⟨ ∨-complementʳ _ ⟩ ⊤ ∎ ∧-complement : Inverse ⊥ ¬_ _∧_ ∧-complement = ∧-complementˡ , ∧-complementʳ where ∧-complementˡ : LeftInverse ⊥ ¬_ _∧_ ∧-complementˡ x = begin ¬ x ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩ ⊥ ∎ ------------------------------------------------------------------------ -- The dual construction is also a boolean algebra ∧-∨-isBooleanAlgebra : IsBooleanAlgebra _≈_ _∧_ _∨_ ¬_ ⊥ ⊤ ∧-∨-isBooleanAlgebra = record { isDistributiveLattice = ∧-∨-isDistributiveLattice ; ∨-complementʳ = proj₂ ∧-complement ; ∧-complementʳ = proj₂ ∨-complement ; ¬-pres-≈ = ¬-pres-≈ } ∧-∨-booleanAlgebra : BooleanAlgebra ∧-∨-booleanAlgebra = record { _∧_ = _∨_ ; _∨_ = _∧_ ; ⊤ = ⊥ ; ⊥ = ⊤ ; isBooleanAlgebra = ∧-∨-isBooleanAlgebra } ------------------------------------------------------------------------ -- (∨, ∧, ⊥, ⊤) is a commutative semiring private ∧-identity : Identity ⊤ _∧_ ∧-identity = (λ _ → ∧-comm _ _ ⟨ trans ⟩ x∧⊤=x _) , x∧⊤=x where x∧⊤=x : ∀ x → x ∧ ⊤ ≈ x x∧⊤=x x = begin x ∧ ⊤ ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₂ ∨-complement _) ⟩ x ∧ (x ∨ ¬ x) ≈⟨ proj₂ absorptive _ _ ⟩ x ∎ ∨-identity : Identity ⊥ _∨_ ∨-identity = (λ _ → ∨-comm _ _ ⟨ trans ⟩ x∨⊥=x _) , x∨⊥=x where x∨⊥=x : ∀ x → x ∨ ⊥ ≈ x x∨⊥=x x = begin x ∨ ⊥ ≈⟨ refl ⟨ ∨-pres-≈ ⟩ sym (proj₂ ∧-complement _) ⟩ x ∨ x ∧ ¬ x ≈⟨ proj₁ absorptive _ _ ⟩ x ∎ ∧-zero : Zero ⊥ _∧_ ∧-zero = (λ _ → ∧-comm _ _ ⟨ trans ⟩ x∧⊥=⊥ _) , x∧⊥=⊥ where x∧⊥=⊥ : ∀ x → x ∧ ⊥ ≈ ⊥ x∧⊥=⊥ x = begin x ∧ ⊥ ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₂ ∧-complement _) ⟩ x ∧ x ∧ ¬ x ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ x) ∧ ¬ x ≈⟨ ∧-idempotent _ ⟨ ∧-pres-≈ ⟩ refl ⟩ x ∧ ¬ x ≈⟨ proj₂ ∧-complement _ ⟩ ⊥ ∎ ∨-∧-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∨_ _∧_ ⊥ ⊤ ∨-∧-isCommutativeSemiring = record { isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∨-assoc ; ∙-pres-≈ = ∨-pres-≈ } ; identity = ∨-identity } ; comm = ∨-comm } ; *-isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-pres-≈ = ∧-pres-≈ } ; identity = ∧-identity } ; distrib = ∧-∨-distrib } ; zero = ∧-zero } ; *-comm = ∧-comm } ∨-∧-commutativeSemiring : CommutativeSemiring ∨-∧-commutativeSemiring = record { _+_ = _∨_ ; _*_ = _∧_ ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring } ------------------------------------------------------------------------ -- (∧, ∨, ⊤, ⊥) is a commutative semiring private ∨-zero : Zero ⊤ _∨_ ∨-zero = (λ _ → ∨-comm _ _ ⟨ trans ⟩ x∨⊤=⊤ _) , x∨⊤=⊤ where x∨⊤=⊤ : ∀ x → x ∨ ⊤ ≈ ⊤ x∨⊤=⊤ x = begin x ∨ ⊤ ≈⟨ refl ⟨ ∨-pres-≈ ⟩ sym (proj₂ ∨-complement _) ⟩ x ∨ x ∨ ¬ x ≈⟨ sym $ ∨-assoc _ _ _ ⟩ (x ∨ x) ∨ ¬ x ≈⟨ ∨-idempotent _ ⟨ ∨-pres-≈ ⟩ refl ⟩ x ∨ ¬ x ≈⟨ proj₂ ∨-complement _ ⟩ ⊤ ∎ ∧-∨-isCommutativeSemiring : IsCommutativeSemiring _≈_ _∧_ _∨_ ⊤ ⊥ ∧-∨-isCommutativeSemiring = record { isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-pres-≈ = ∧-pres-≈ } ; identity = ∧-identity } ; comm = ∧-comm } ; *-isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∨-assoc ; ∙-pres-≈ = ∨-pres-≈ } ; identity = ∨-identity } ; distrib = ∨-∧-distrib } ; zero = ∨-zero } ; *-comm = ∨-comm } ∧-∨-commutativeSemiring : CommutativeSemiring ∧-∨-commutativeSemiring = record { isCommutativeSemiring = ∧-∨-isCommutativeSemiring } ------------------------------------------------------------------------ -- Some other properties -- I took the statement of this lemma (called Uniqueness of -- Complements) from some course notes, "Boolean Algebra", written -- by Gert Smolka. private lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y lemma x y x∧y=⊥ x∨y=⊤ = begin ¬ x ≈⟨ sym $ proj₂ ∧-identity _ ⟩ ¬ x ∧ ⊤ ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym x∨y=⊤ ⟩ ¬ x ∧ (x ∨ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ proj₁ ∧-complement _ ⟨ ∨-pres-≈ ⟩ refl ⟩ ⊥ ∨ ¬ x ∧ y ≈⟨ sym x∧y=⊥ ⟨ ∨-pres-≈ ⟩ refl ⟩ x ∧ y ∨ ¬ x ∧ y ≈⟨ sym $ proj₂ ∧-∨-distrib _ _ _ ⟩ (x ∨ ¬ x) ∧ y ≈⟨ proj₂ ∨-complement _ ⟨ ∧-pres-≈ ⟩ refl ⟩ ⊤ ∧ y ≈⟨ proj₁ ∧-identity _ ⟩ y ∎ ¬⊥=⊤ : ¬ ⊥ ≈ ⊤ ¬⊥=⊤ = lemma ⊥ ⊤ (proj₂ ∧-identity _) (proj₂ ∨-zero _) ¬⊤=⊥ : ¬ ⊤ ≈ ⊥ ¬⊤=⊥ = lemma ⊤ ⊥ (proj₂ ∧-zero _) (proj₂ ∨-identity _) ¬-involutive : Involutive ¬_ ¬-involutive x = lemma (¬ x) x (proj₁ ∧-complement _) (proj₁ ∨-complement _) deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂ where lem₁ = begin (x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ (∧-comm _ _ ⟨ ∧-pres-≈ ⟩ refl) ⟨ ∨-pres-≈ ⟩ refl ⟩ (y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-pres-≈ ⟩ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (refl ⟨ ∧-pres-≈ ⟩ proj₂ ∧-complement _) ⟨ ∨-pres-≈ ⟩ (refl ⟨ ∧-pres-≈ ⟩ proj₂ ∧-complement _) ⟩ (y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ proj₂ ∧-zero _ ⟨ ∨-pres-≈ ⟩ proj₂ ∧-zero _ ⟩ ⊥ ∨ ⊥ ≈⟨ proj₂ ∨-identity _ ⟩ ⊥ ∎ lem₃ = begin (x ∧ y) ∨ ¬ x ≈⟨ proj₂ ∨-∧-distrib _ _ _ ⟩ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ proj₂ ∨-complement _ ⟨ ∧-pres-≈ ⟩ refl ⟩ ⊤ ∧ (y ∨ ¬ x) ≈⟨ proj₁ ∧-identity _ ⟩ y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩ ¬ x ∨ y ∎ lem₂ = begin (x ∧ y) ∨ (¬ x ∨ ¬ y) ≈⟨ sym $ ∨-assoc _ _ _ ⟩ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ lem₃ ⟨ ∨-pres-≈ ⟩ refl ⟩ (¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩ ¬ x ∨ (y ∨ ¬ y) ≈⟨ refl ⟨ ∨-pres-≈ ⟩ proj₂ ∨-complement _ ⟩ ¬ x ∨ ⊤ ≈⟨ proj₂ ∨-zero _ ⟩ ⊤ ∎ deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y deMorgan₂ x y = begin ¬ (x ∨ y) ≈⟨ ¬-pres-≈ $ sym (¬-involutive _) ⟨ ∨-pres-≈ ⟩ sym (¬-involutive _) ⟩ ¬ (¬ ¬ x ∨ ¬ ¬ y) ≈⟨ ¬-pres-≈ $ sym $ deMorgan₁ _ _ ⟩ ¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩ ¬ x ∧ ¬ y ∎ ------------------------------------------------------------------------ -- (⊕, ∧, id, ⊥, ⊤) is a commutative ring -- This construction is parameterised over the definition of xor. module XorRing (xor : Op₂ carrier) (⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y)) where private infixl 6 _⊕_ _⊕_ : Op₂ carrier _⊕_ = xor private helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v helper x≈y u≈v = x≈y ⟨ ∧-pres-≈ ⟩ ¬-pres-≈ u≈v ⊕-¬-distribˡ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y ⊕-¬-distribˡ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-pres-≈ $ ⊕-def _ _ ⟩ ¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-pres-≈ (proj₂ ∧-∨-distrib _ _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-pres-≈ $ refl ⟨ ∨-pres-≈ ⟩ (refl ⟨ ∧-pres-≈ ⟩ ¬-pres-≈ (∧-comm _ _)) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-pres-≈ $ lem _ _ ⟨ ∨-pres-≈ ⟩ lem _ _ ⟩ ¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ deMorgan₁ _ _ ⟨ ∧-pres-≈ ⟩ refl ⟩ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (refl ⟨ ∨-pres-≈ ⟩ ¬-involutive _) (∧-comm _ _) ⟩ (¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈⟨ sym $ ⊕-def _ _ ⟩ ¬ x ⊕ y ∎ where lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y lem x y = begin x ∧ ¬ (x ∧ y) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ deMorgan₁ _ _ ⟩ x ∧ (¬ x ∨ ¬ y) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ proj₂ ∧-complement _ ⟨ ∨-pres-≈ ⟩ refl ⟩ ⊥ ∨ (x ∧ ¬ y) ≈⟨ proj₁ ∨-identity _ ⟩ x ∧ ¬ y ∎ private ⊕-comm : Commutative _⊕_ ⊕-comm x y = begin x ⊕ y ≈⟨ ⊕-def _ _ ⟩ (x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩ (y ∨ x) ∧ ¬ (y ∧ x) ≈⟨ sym $ ⊕-def _ _ ⟩ y ⊕ x ∎ ⊕-¬-distribʳ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y ⊕-¬-distribʳ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-pres-≈ $ ⊕-comm _ _ ⟩ ¬ (y ⊕ x) ≈⟨ ⊕-¬-distribˡ _ _ ⟩ ¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩ x ⊕ ¬ y ∎ ⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y ⊕-annihilates-¬ x y = begin x ⊕ y ≈⟨ sym $ ¬-involutive _ ⟩ ¬ ¬ (x ⊕ y) ≈⟨ ¬-pres-≈ $ ⊕-¬-distribˡ _ _ ⟩ ¬ (¬ x ⊕ y) ≈⟨ ⊕-¬-distribʳ _ _ ⟩ ¬ x ⊕ ¬ y ∎ private ⊕-pres : _⊕_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ⊕-pres {x} {y} {u} {v} x≈y u≈v = begin x ⊕ u ≈⟨ ⊕-def _ _ ⟩ (x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-pres-≈ ⟩ u≈v) (x≈y ⟨ ∧-pres-≈ ⟩ u≈v) ⟩ (y ∨ v) ∧ ¬ (y ∧ v) ≈⟨ sym $ ⊕-def _ _ ⟩ y ⊕ v ∎ ⊕-identity : Identity ⊥ _⊕_ ⊕-identity = ⊥⊕x=x , (λ _ → ⊕-comm _ _ ⟨ trans ⟩ ⊥⊕x=x _) where ⊥⊕x=x : ∀ x → ⊥ ⊕ x ≈ x ⊥⊕x=x x = begin ⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩ (⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (proj₁ ∨-identity _) (proj₁ ∧-zero _) ⟩ x ∧ ¬ ⊥ ≈⟨ refl ⟨ ∧-pres-≈ ⟩ ¬⊥=⊤ ⟩ x ∧ ⊤ ≈⟨ proj₂ ∧-identity _ ⟩ x ∎ ⊕-inverse : Inverse ⊥ id _⊕_ ⊕-inverse = x⊕x=⊥ , (λ _ → ⊕-comm _ _ ⟨ trans ⟩ x⊕x=⊥ _) where x⊕x=⊥ : ∀ x → x ⊕ x ≈ ⊥ x⊕x=⊥ x = begin x ⊕ x ≈⟨ ⊕-def _ _ ⟩ (x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idempotent _) (∧-idempotent _) ⟩ x ∧ ¬ x ≈⟨ proj₂ ∧-complement _ ⟩ ⊥ ∎ distrib-∧-⊕ : _∧_ DistributesOver _⊕_ distrib-∧-⊕ = distˡ , distʳ where distˡ : _∧_ DistributesOverˡ _⊕_ distˡ x y z = begin x ∧ (y ⊕ z) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ ⊕-def _ _ ⟩ x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ deMorgan₁ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z) ≈⟨ sym $ proj₁ ∨-identity _ ⟩ ⊥ ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ lem₃ ⟨ ∨-pres-≈ ⟩ refl ⟩ ((x ∧ (y ∨ z)) ∧ ¬ x) ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ sym $ proj₁ ∧-∨-distrib _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ (¬ y ∨ ¬ z)) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ (refl ⟨ ∨-pres-≈ ⟩ sym (deMorgan₁ _ _)) ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ ¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩ (x ∧ (y ∨ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ proj₁ ∧-∨-distrib _ _ _ ⟨ ∧-pres-≈ ⟩ refl ⟩ ((x ∧ y) ∨ (x ∧ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ sym $ ⊕-def _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ∎ where lem₂ = begin x ∧ (y ∧ z) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ z ≈⟨ ∧-comm _ _ ⟨ ∧-pres-≈ ⟩ refl ⟩ (y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ z) ∎ lem₁ = begin x ∧ (y ∧ z) ≈⟨ sym (∧-idempotent _) ⟨ ∧-pres-≈ ⟩ refl ⟩ (x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ (x ∧ (y ∧ z)) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ lem₂ ⟩ x ∧ (y ∧ (x ∧ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ (x ∧ z) ∎ lem₃ = begin ⊥ ≈⟨ sym $ proj₂ ∧-zero _ ⟩ (y ∨ z) ∧ ⊥ ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₂ ∧-complement _) ⟩ (y ∨ z) ∧ (x ∧ ¬ x) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ ((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-pres-≈ ⟩ refl ⟩ (x ∧ (y ∨ z)) ∧ ¬ x ∎ distʳ : _∧_ DistributesOverʳ _⊕_ distʳ x y z = begin (y ⊕ z) ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ (y ⊕ z) ≈⟨ distˡ _ _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ≈⟨ ∧-comm _ _ ⟨ ⊕-pres ⟩ ∧-comm _ _ ⟩ (y ∧ x) ⊕ (z ∧ x) ∎ lemma₂ : ∀ x y u v → (x ∧ y) ∨ (u ∧ v) ≈ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) lemma₂ x y u v = begin (x ∧ y) ∨ (u ∧ v) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ ((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ proj₂ ∨-∧-distrib _ _ _ ⟨ ∧-pres-≈ ⟩ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) ∎ ⊕-assoc : Associative _⊕_ ⊕-assoc x y z = sym $ begin x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-pres ⟩ ⊕-def _ _ ⟩ x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩ (x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧ ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-pres-≈ ⟩ lem₄ ⟩ (((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ lem₅ ⟩ ((x ∨ y) ∨ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-pres-≈ ⟩ lem₂ ⟩ (((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈⟨ sym $ ⊕-def _ _ ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈⟨ sym $ ⊕-def _ _ ⟨ ⊕-pres ⟩ refl ⟩ (x ⊕ y) ⊕ z ∎ where lem₁ = begin ((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈⟨ (refl ⟨ ∧-pres-≈ ⟩ sym (deMorgan₁ _ _)) ⟨ ∨-pres-≈ ⟩ refl ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎ lem₂' = begin (x ∨ ¬ y) ∧ (¬ x ∨ y) ≈⟨ sym $ proj₁ ∧-identity _ ⟨ ∧-pres-≈ ⟩ proj₂ ∧-identity _ ⟩ (⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈⟨ sym $ (proj₁ ∨-complement _ ⟨ ∧-pres-≈ ⟩ ∨-comm _ _) ⟨ ∧-pres-≈ ⟩ (refl ⟨ ∧-pres-≈ ⟩ proj₁ ∨-complement _) ⟩ ((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧ ((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈⟨ sym $ lemma₂ _ _ _ _ ⟩ (¬ x ∧ ¬ y) ∨ (x ∧ y) ≈⟨ sym $ deMorgan₂ _ _ ⟨ ∨-pres-≈ ⟩ ¬-involutive _ ⟩ ¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈⟨ sym (deMorgan₁ _ _) ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎ lem₂ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ lem₂' ⟨ ∨-pres-≈ ⟩ refl ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈⟨ sym $ deMorgan₁ _ _ ⟩ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎ lem₃ = begin x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-pres-≈ ⟩ (refl ⟨ ∧-pres-≈ ⟩ deMorgan₁ _ _) ⟩ x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ (x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-pres-≈ ⟩ sym (∨-assoc _ _ _) ⟩ ((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎ lem₄' = begin ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩ ¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-pres-≈ ⟩ ¬-involutive _ ⟩ (¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩ ((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧ ((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (proj₁ ∨-complement _ ⟨ ∧-pres-≈ ⟩ ∨-comm _ _) ⟨ ∧-pres-≈ ⟩ (refl ⟨ ∧-pres-≈ ⟩ proj₁ ∨-complement _) ⟩ (⊤ ∧ (y ∨ ¬ z)) ∧ ((¬ y ∨ z) ∧ ⊤) ≈⟨ proj₁ ∧-identity _ ⟨ ∧-pres-≈ ⟩ proj₂ ∧-identity _ ⟩ (y ∨ ¬ z) ∧ (¬ y ∨ z) ∎ lem₄ = begin ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ refl ⟨ ∨-pres-≈ ⟩ lem₄' ⟩ ¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ proj₁ ∨-∧-distrib _ _ _ ⟩ (¬ x ∨ (y ∨ ¬ z)) ∧ (¬ x ∨ (¬ y ∨ z)) ≈⟨ sym (∨-assoc _ _ _) ⟨ ∧-pres-≈ ⟩ sym (∨-assoc _ _ _) ⟩ ((¬ x ∨ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ∎ lem₅ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ sym $ ∧-assoc _ _ _ ⟩ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-comm _ _ ⟨ ∧-pres-≈ ⟩ refl ⟩ (((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎ isCommutativeRing : IsCommutativeRing _≈_ _⊕_ _∧_ id ⊥ ⊤ isCommutativeRing = record { isRing = record { +-isAbelianGroup = record { isGroup = record { isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ⊕-assoc ; ∙-pres-≈ = ⊕-pres } ; identity = ⊕-identity } ; inverse = ⊕-inverse ; ⁻¹-pres-≈ = id } ; comm = ⊕-comm } ; *-isMonoid = record { isSemigroup = record { isEquivalence = isEquivalence ; assoc = ∧-assoc ; ∙-pres-≈ = ∧-pres-≈ } ; identity = ∧-identity } ; distrib = distrib-∧-⊕ } ; *-comm = ∧-comm } commutativeRing : CommutativeRing commutativeRing = record { _+_ = _⊕_ ; _*_ = _∧_ ; -_ = id ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeRing = isCommutativeRing } infixl 6 _⊕_ _⊕_ : Op₂ carrier x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y) module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)
{ "alphanum_fraction": 0.329659564, "avg_line_length": 36.9168173599, "ext": "agda", "hexsha": "63eaddd5c8e81eab46a35782c7201e3c969413b5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/BooleanAlgebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/BooleanAlgebra.agda", "max_line_length": 95, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/BooleanAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 8891, "size": 20415 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Consequences where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inr to inrᵖ; inl to inlᵖ) open import Function.Base using (it; _∋_; _$_) open import Utils open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions open import MorePropAlgebra.Consequences open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import Number.Definitions -- import Cubical.HITs.Rationals.SigmaQ as ℚ* -- import Cubical.Data.Nat.Coprime as Coprime open import Cubical.HITs.Rationals.QuoQ renaming ( [_] to [_]ᶠ ; [_/_] to [_/_]ᶠ ; _+_ to _+ᶠ_ ; -_ to -ᶠ_ ; _*_ to _*ᶠ_ ; +-assoc to +-assocᶠ ; +-comm to +-commᶠ ; *-assoc to *-assocᶠ ; *-comm to *-commᶠ ) -- open import Cubical.Data.Nat.Literals public -- -- instance -- fromNatℚ : HasFromNat ℚ -- fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] } -- -- instance -- fromNegℚ : HasFromNeg ℚ -- fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] } open import Cubical.HITs.SetQuotients renaming ([_] to [_]ˢ) -- Define the integers as a HIT by identifying +0 and -0 import Cubical.HITs.Ints.QuoInt import Cubical.Data.NatPlusOne open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣ import Cubical.HITs.PropositionalTruncation.Properties as PTrunc -- -- Set quotients as a higher inductive type: -- data _/_ {ℓ ℓ'} (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where -- [_] : (a : A) → A / R -- eq/ : (a b : A) → (r : R a b) → [ a ] ≡ [ b ] -- squash/ : (x y : A / R) → (p q : x ≡ y) → p ≡ q -- {-# DISPLAY [_]' (Cubical.HITs.Ints.QuoInt.signed Agda.Builtin.Bool.Bool.false 1 / Cubical.Data.NatPlusOne.1+ 0 )= 1ᶠ #-} {- we have most properties in `Cubical.HITs.Rationals.QuoQ.Properties` but we can use `Quoℚ≡Sigmaℚ : Quo.ℚ ≡ Sigma.ℚ` from `Cubical.HITs.Rationals.SigmaQ.Properties` -} open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.HITs.Ints.QuoInt hiding (+-identityʳ; *-identityʳ; *-identityˡ; *-distribˡ;*-distribʳ) -- using (ℤ) renaming (_*_ to _*ᶻ_) -- there is `elimProp` in `Cubical.HITs.SetQuotients` to define properties -- elimProp {A = ℤ × ℕ₊₁} {R = _∼_} {B = λ(x : ℚ) → ?} ? -- e.g. we have -- _∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀ -- (a , b) ∼ (c , d) = a * ℕ₊₁→ℤ d ≡ c * ℕ₊₁→ℤ b open import Cubical.Data.Nat as ℕ using (discreteℕ; ℕ; suc; zero) renaming (_+_ to _+ⁿ_; _*_ to _*ⁿ_) open import Cubical.Data.Nat.Order using () renaming (_<_ to _<ⁿ_; _≤_ to _≤ⁿ_; ≤-suc to ≤ⁿ-suc) open import Cubical.Data.Nat.Properties using (isSetℕ) renaming (snotz to snotzⁿ; +-suc to +-sucⁿ; inj-+m to inj-+mⁿ; inj-m+ to inj-m+ⁿ; +-zero to +-zeroⁿ; +-comm to +-commⁿ; +-assoc to +-assocⁿ) _<ⁿᵖ_ : (x y : ℕ) → hProp ℓ-zero (x <ⁿᵖ y) .fst = x <ⁿ y (x <ⁿᵖ y) .snd (k₁ , k₁+sx≡y) (k₂ , k₂+sx≡y) = φ where abstract φ = Σ≡Prop (λ k → isSetℕ _ _) (inj-+mⁿ (k₁+sx≡y ∙ sym k₂+sx≡y)) isProp⊤ : isProp [ ⊤ ] isProp⊤ tt tt = refl private abstract lemma10 : ∀ n → (n <ⁿ 0) ≡ [ ⊥ ] lemma10 n = isoToPath (iso (λ{ (k , p) → snotzⁿ (sym (+-sucⁿ k n) ∙ p) }) ⊥-elim (λ b → isProp⊥ _ _) (λ a → isProp[] (n <ⁿᵖ 0) _ _)) -- NOTE: we cannot prove `isProp lemma10` because it seems not even provable that `isProp ([ ⊥ ] ≡ [ ⊥ ])` -- but we can use propositional truncation lemma10' : ∀ n → ∥ (n <ⁿ 0) ≡ [ ⊥ ] ∥ lemma10' n = ∣ isoToPath (iso (λ{ (k , p) → snotzⁿ (sym (+-sucⁿ k n) ∙ p) }) ⊥-elim (λ b → isProp⊥ _ _) (λ a → isProp[] (n <ⁿᵖ 0) _ _)) ∣ lemma10'' : ∀ n → (n <ⁿᵖ 0) ≡ ⊥ lemma10'' n = ⇔toPath (transport (lemma10 n)) (transport (sym (lemma10 n))) abstract lemma12 : ∀ n → (0 <ⁿ suc n) ≡ [ ⊤ ] lemma12 n = isoToPath (iso (λ _ → tt) (λ _ → n , +-sucⁿ n 0 ∙ (λ i → suc (+-zeroⁿ n i))) (λ b → isProp⊤ _ _) (λ a → isProp[] (0 <ⁿᵖ suc n) _ _)) lemma12'' : ∀ n → (0 <ⁿᵖ suc n) ≡ ⊤ lemma12'' n = ⇔toPath (transport (lemma12 n)) (transport (sym (lemma12 n))) abstract helper : ∀ n → isProp (n <ⁿ 0) ≡ isProp [ ⊥ ] helper n = λ i → isProp (lemma10 n i) -- -- the following states that all propositions are equal (which is obviously not the case) -- isPropΣProp : ∀ {ℓ} → isProp (Σ[ X ∈ Type ℓ ] isProp X) -- isPropΣProp (A , isPropA) (B , isPropB) = Σ≡Prop (λ X → isPropIsProp) {! Goal: A ≡ B !} -- isProp' : ∀{ℓ} {A : Type ℓ} → isProp A → A ≡ (A ≡ A) -- isProp' isPropA = pathToIso (iso ? ? ? ?) -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/ -- no-unicorns : -- isProp-≡ : ∀{ℓ} {A : Type ℓ} → isProp A → isProp (A ≡ A) -- -- isProp-≡ : ∀{ℓ} {A : Type ℓ} → isProp A → isProp (A ≡ A) -- -- ———— Boundary —————————————————————————————————————————————— -- -- i = i0 ⊢ p j -- -- i = i1 ⊢ q j -- -- j = i0 ⊢ A -- -- j = i1 ⊢ A -- -- -- -- i j | | -- -- 0 0 | pj | A -- -- 0 1 | pj | A -- -- 1 0 | qj | A -- -- 1 1 | qj | A -- -- Σ≡Prop {A = Type ℓ} {B = λ X → isProp X} (λ X → isPropIsProp) {u = (A , isPropA)} {v = (A , isPropA)} -- -- isProp→isSet (isPropIsProp {A = A}) -- isProp-≡ {ℓ} {A} isPropA p q = isProp→isSet {! Goal : isProp (Type ℓ) !} A A p q -- isProp-⊥≡⊥ : isProp ([ ⊥ ] ≡ [ ⊥ ]) -- isProp-⊥≡⊥ x y = {! !} -- abstract -- -- isProp[] (n <ⁿᵖ 0) -- isProp-lemma10 : ∀ n → isProp ((n <ⁿ 0) ≡ [ ⊥ ]) -- -- ———— Boundary —————————————————————————————————————————————— -- -- i = i0 ⊢ p j -- -- i = i1 ⊢ q j -- -- j = i0 ⊢ n <ⁿ 0 -- -- j = i1 ⊢ [ ⊥ ] -- -- (isProp[] (n <ⁿᵖ 0)) -- isProp-lemma10 n p q = -- let γ : isProp ((n <ⁿ 0) ≡ (n <ⁿ 0)) -- γ x y = {! isProp[] (n <ⁿᵖ 0) ? !} -- -- transport (helper n) (isProp[] (n <ⁿᵖ 0)) -- in {! !} _<ᶻ'_ : ℤ → ℤ → Type ℓ-zero pos n₀ <ᶻ' pos n₁ = [ n₀ <ⁿᵖ n₁ ] pos n₀ <ᶻ' neg n₁ = [ ⊥ ] neg zero <ᶻ' pos zero = [ ⊥ ] neg zero <ᶻ' pos (suc n₁) = [ ⊤ ] neg (suc n₀) <ᶻ' pos zero = [ ⊤ ] neg (suc n₀) <ᶻ' pos (suc n₁) = [ ⊤ ] neg n₀ <ᶻ' neg n₁ = [ n₁ <ⁿᵖ n₀ ] -- 1D pathes pos n₀ <ᶻ' posneg j = lemma10 n₀ j neg zero <ᶻ' posneg j = lemma10 0 (~ j) -- [F1] neg (suc n₀) <ᶻ' posneg j = lemma12 n₀ (~ j) -- [G1] posneg i <ᶻ' pos zero = lemma10 0 i -- [F2] posneg i <ᶻ' pos (suc n₁) = lemma12 n₁ i -- [G2] posneg i <ᶻ' neg n₁ = lemma10 n₁ (~ i) -- 2D path -- note, how `lemma12` does not appear in the final, 2D-case -- this is, because we explitictly split out [F1] from [G1] and [F2] from [G2] -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ lemma10 0 j [a] -- i = i1 ⊢ lemma10 0 (~ j) [b] -- j = i0 ⊢ lemma10 0 i [c] -- j = i1 ⊢ lemma10 0 (~ i) [d] -- -- i j | a b c d | a b c d | -- ----|-----------|---------|--- -- 0 0 | j i | 0 0 | 0 -- 0 1 | j ~i | 1 1 | 1 ⇒ "i xor j" ≡ (i ∨ j) ∧ ~(i ∧ j) -- 1 0 | ~j i | 1 1 | 1 -- 1 1 | ~j ~i | 0 0 | 0 posneg i <ᶻ' posneg j = lemma10 0 ((i ∨ j) ∧ ~(i ∧ j)) _<ᶻ''_ : ℤ → ℤ → hProp ℓ-zero pos n₀ <ᶻ'' pos n₁ = n₀ <ⁿᵖ n₁ -- point 1: 1a 3a pos n₀ <ᶻ'' neg n₁ = ⊥ -- point 2: 1b 4a neg zero <ᶻ'' pos zero = ⊥ -- point 3: 2a 3b neg zero <ᶻ'' pos (suc n₁) = ⊤ -- neg (suc n₀) <ᶻ'' pos zero = ⊤ -- neg (suc n₀) <ᶻ'' pos (suc n₁) = ⊤ -- neg n₀ <ᶻ'' neg n₁ = n₁ <ⁿᵖ n₀ -- point 4: 2b 4b -- 1D pathes pos n₀ <ᶻ'' posneg j = lemma10'' n₀ j -- face 1: point 1 to 2 neg zero <ᶻ'' posneg j = lemma10'' 0 (~ j) -- [F1] -- face 2: point 3 to 4 neg (suc n₀) <ᶻ'' posneg j = lemma12'' n₀ (~ j) -- [G1] posneg i <ᶻ'' pos zero = lemma10'' 0 i -- [F2] -- face 3: point 1 to 3 posneg i <ᶻ'' pos (suc n₁) = lemma12'' n₁ i -- [G2] posneg i <ᶻ'' neg n₁ = lemma10'' n₁ (~ i) -- face 4: point 2 to 4 -- 2D path -- note, how `lemma12` does not appear in the final, 2D-case -- this is, because we explitictly split out [F1] from [G1] and [F2] from [G2] -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ lemma10 0 j [a] -- i = i1 ⊢ lemma10 0 (~ j) [b] -- j = i0 ⊢ lemma10 0 i [c] -- j = i1 ⊢ lemma10 0 (~ i) [d] -- -- i j | a b c d | a b c d | -- ----|-----------|---------|--- -- 0 0 | j i | 0 0 | 0 -- 0 1 | j ~i | 1 1 | 1 ⇒ "i xor j" ≡ (i ∨ j) ∧ ~(i ∧ j) -- 1 0 | ~j i | 1 1 | 1 -- 1 1 | ~j ~i | 0 0 | 0 posneg i <ᶻ'' posneg j = lemma10'' 0 ((i ∨ j) ∧ ~(i ∧ j)) -- square 1: face 1 to 2 to 3 to 4 _<ᶻᵖ_ : hPropRel ℤ ℤ ℓ-zero (x <ᶻᵖ y) .fst = x <ᶻ' y (x <ᶻᵖ y) .snd = {! !} _<ᶠ''_ : (ℤ × ℕ₊₁) → (ℤ × ℕ₊₁) → Type₀ (aᶻ , aⁿ⁺¹) <ᶠ'' (bᶻ , bⁿ⁺¹) = {! a * ℕ₊₁→ℤ d <ᶻ' c * ℕ₊₁→ℤ b !} _<ᶠ'_ : ℚ → ℚ → _ x <ᶠ' y = elimProp2 {A = ℤ × ℕ₊₁} {R = _∼_} {C = C} γ κ x y where φ : ℚ → ℚ → hProp ℓ-zero φ x y = {! ? , ? !} C : ℚ → ℚ → Type C x y = [ φ x y ] γ : (x y : ℚ) → isProp (C x y) γ x y = {! !} κ : (a b : ℤ × ℕ₊₁) → C [ a ]ᶠ [ b ]ᶠ κ a b = {! !} _<ᶠ_ : hPropRel ℚ ℚ ℓ-zero x <ᶠ y = {! elimProp2 {A = ℤ × ℕ₊₁} {R = _∼_} {C = C} γ κ x y !} where φ : ℚ → ℚ → hProp ℓ-zero φ x y = {! !} C : ℚ → ℚ → Type C x y = [ φ x y ] γ : (x y : ℚ) → isProp (C x y) γ x y = {! !} κ : (a b : ℤ × ℕ₊₁) → C [ a ]ᶠ [ b ]ᶠ κ a b = {! !} -- and there is `onCommonDenom` in `Cubical.HITs.Rationals.QuoQ.Properties` to define operations -- open import Cubical.HITs.Ints.QuoInt.Base renaming sucⁿ-creates-<ⁿᵖ : ∀ a b → [ a <ⁿᵖ b ⇔ suc a <ⁿᵖ suc b ] sucⁿ-creates-<ⁿᵖ a b .fst (k , p) = k , (+-sucⁿ k (suc a)) ∙ (λ i → suc (p i)) sucⁿ-creates-<ⁿᵖ a b .snd (k , p) = k , inj-m+ⁿ {1} (sym (+-sucⁿ k (suc a)) ∙ p) <ⁿᵖ-irrefl : (a : ℕ) → [ ¬ (a <ⁿᵖ a) ] <ⁿᵖ-trans : (a b x : ℕ) → [ a <ⁿᵖ b ] → [ b <ⁿᵖ x ] → [ a <ⁿᵖ x ] <ⁿᵖ-cotrans : (a b : ℕ) → [ a <ⁿᵖ b ] → (x : ℕ) → [ (a <ⁿᵖ x) ⊔ (x <ⁿᵖ b) ] ·ⁿ-preserves-<ⁿᵖ : (x y z : ℕ) → [ 0 <ⁿᵖ z ] → [ x <ⁿᵖ y ] → [ (x *ⁿ z) <ⁿᵖ (y *ⁿ z) ] -- abstract -- <ⁿᵖ-irrefl zero (k , p) = ψ where abstract ψ = snotzⁿ (sym (+-sucⁿ k 0) ∙ p) -- NOTE: `<-irreflᶻ'' (posneg i) p` forced this ?9 to be constrained to -- ?9 (k = (fst x)) (p = (snd x)) = transp (λ i → [ lemma10'' 0 (((i1 ∨ i1) ∧ ~ i1 ∨ ~ i1) ∨ i) ]) i0 x : ⊥⊥ -- which demands an implementation in terms of lemma10'' -- <ⁿᵖ-irrefl zero q@(k , p) = transp (λ i → [ lemma10'' 0 (((i1 ∨ i1) ∧ ~ i1 ∨ ~ i1) ∨ i) ]) i0 q -- <ⁿᵖ-irrefl zero q@(k , p) = transp (λ i → [ lemma10'' 0 ((i1 ∧ ~ i1) ∨ i) ]) i0 q <ⁿᵖ-irrefl zero q@(k , p) = transp (λ i → [ lemma10'' 0 i ]) i0 q <ⁿᵖ-irrefl (suc a) (k , p) = φ where abstract φ = snotzⁿ (inj-m+ⁿ {a} (+-sucⁿ a k ∙ (λ i → suc (+-commⁿ a k i)) ∙ sym (+-sucⁿ k a) ∙ inj-m+ⁿ {1} (sym (+-sucⁿ k (suc a)) ∙ p) ∙ sym (+-zeroⁿ a))) <ⁿᵖ-trans a b c = Cubical.Data.Nat.Order.<-trans -- <ⁿᵖ-trans zero zero zero q₁@(k₁ , p₁) q₂@(k₂ , p₂) = q₁ -- <ⁿᵖ-trans zero zero (suc c) q₁@(k₁ , p₁) q₂@(k₂ , p₂) = q₂ -- <ⁿᵖ-trans zero (suc b) zero q₁@(k₁ , p₁) q₂@(k₂ , p₂) = ⊥-elim {A = λ _ → [ zero <ⁿᵖ zero ]} $ snotzⁿ (sym (+-sucⁿ k₂ (suc b)) ∙ p₂) -- <ⁿᵖ-trans zero (suc b) (suc c) q₁@(k₁ , p₁) q₂@(k₂ , p₂) = k₂ +ⁿ (k₁ +ⁿ 1) , sym (+-assocⁿ k₂ _ 1) ∙ (λ i → k₂ +ⁿ +-sucⁿ (k₁ +ⁿ 1) 0 i) ∙ (λ i → k₂ +ⁿ suc (+-zeroⁿ (k₁ +ⁿ 1) i)) ∙ (λ i → k₂ +ⁿ suc (p₁ i)) ∙ p₂ -- <ⁿᵖ-trans (suc a) zero zero q₁@(k₁ , p₁) q₂@(k₂ , p₂) = ⊥-elim {A = λ _ → [ suc a <ⁿᵖ zero ]} $ <ⁿᵖ-irrefl zero q₂ -- <ⁿᵖ-trans (suc a) zero (suc c) q₁@(k₁ , p₁) q₂@(k₂ , p₂) = ⊥-elim {A = λ _ → [ suc a <ⁿᵖ suc c ]} $ snotzⁿ (sym (+-sucⁿ k₁ (suc a)) ∙ p₁) -- <ⁿᵖ-trans (suc a) (suc b) zero q₁@(k₁ , p₁) q₂@(k₂ , p₂) = ⊥-elim {A = λ _ → [ suc a <ⁿᵖ zero ]} $ snotzⁿ (sym (+-sucⁿ k₂ (suc b)) ∙ p₂) -- <ⁿᵖ-trans (suc a) (suc b) (suc c) q₁@(k₁ , p₁) q₂@(k₂ , p₂) = k₂ +ⁿ (k₁ +ⁿ 1) , ( -- (k₂ +ⁿ (k₁ +ⁿ 1)) +ⁿ suc (suc a) ≡⟨ {! !} ⟩ -- k₂ +ⁿ ((k₁ +ⁿ 1) +ⁿ suc (suc a)) ≡⟨ {! !} ⟩ -- k₂ +ⁿ suc ((k₁ +ⁿ 1) +ⁿ suc a ) ≡⟨ {! !} ⟩ -- k₂ +ⁿ suc ( k₁ +ⁿ (1 +ⁿ suc a)) ≡⟨ {! !} ⟩ -- k₂ +ⁿ suc ( k₁ +ⁿ suc (suc a)) ≡⟨ (λ i → k₂ +ⁿ suc (p₁ i)) ⟩ -- k₂ +ⁿ suc (suc b) ≡⟨ p₂ ⟩ -- suc c ∎) <ⁿᵖ-cotrans zero zero q c = ⊥-elim {A = λ _ → [ (zero <ⁿᵖ c) ⊔ (c <ⁿᵖ zero) ]} (<ⁿᵖ-irrefl _ q) <ⁿᵖ-cotrans zero (suc b) q zero = inrᵖ q <ⁿᵖ-cotrans zero (suc b) q (suc c) = inlᵖ (c , +-commⁿ c 1) <ⁿᵖ-cotrans (suc a) zero (k , p) c = ⊥-elim {A = λ _ → [ (suc a <ⁿᵖ c) ⊔ (c <ⁿᵖ zero) ]} (snotzⁿ (sym (+-sucⁿ k (suc a)) ∙ p)) <ⁿᵖ-cotrans (suc a) (suc b) q zero = inrᵖ (b , +-commⁿ b 1) <ⁿᵖ-cotrans (suc a) (suc b) q (suc c) = transport (λ i → [ r i ⊔ s i ]) (<ⁿᵖ-cotrans a b (sucⁿ-creates-<ⁿᵖ a b .snd q) c) where abstract r : (a <ⁿᵖ c) ≡ (suc a <ⁿᵖ suc c) s : (c <ⁿᵖ b) ≡ (suc c <ⁿᵖ suc b) r = ⇔toPath (sucⁿ-creates-<ⁿᵖ a c .fst) (sucⁿ-creates-<ⁿᵖ a c .snd) s = ⇔toPath (sucⁿ-creates-<ⁿᵖ c b .fst) (sucⁿ-creates-<ⁿᵖ c b .snd) ·ⁿ-preserves-<ⁿᵖ = {! !} <-irreflᶻ'' : (a : ℤ) → [ ¬ (a <ᶻ'' a) ] <-transᶻ'' : (a b x : ℤ) → [ a <ᶻ'' b ] → [ b <ᶻ'' x ] → [ a <ᶻ'' x ] <-cotransᶻ'' : (a b : ℤ) → [ a <ᶻ'' b ] → (x : ℤ) → [ (a <ᶻ'' x) ⊔ (x <ᶻ'' b) ] -- ·ᶻ-preserves-<ᶻ'' : (x y z : ℤ) → [ 0 <ᶻ'' z ] → [ x <ᶻ'' y ] → [ (x *ᶻ z) <ᶻ'' (y *ᶻ z) ] -- lemma10'' : ∀ n → (n <ⁿᵖ 0) ≡ ⊥ -- (i ∨ i) ∧ (~ i ∨ ~ i)) -- i0 -- lemma10'' 0 (~ i) = (⊥ ≡ (n <ⁿᵖ 0)) i -- lemma14 : <-irreflᶻ'' (pos zero) = <ⁿᵖ-irrefl 0 <-irreflᶻ'' (pos (suc n)) = <ⁿᵖ-irrefl (suc n) <-irreflᶻ'' (neg zero) = <ⁿᵖ-irrefl 0 <-irreflᶻ'' (neg (suc n)) = <ⁿᵖ-irrefl (suc n) -- <-irreflᶻ'' (posneg i) p = transport (λ j → [ lemma10'' 0 (((i ∨ i) ∧ (~ i ∨ ~ i)) ∨ j) ]) p <-irreflᶻ'' (posneg i) p = transport (λ j → [ lemma10'' 0 ((i ∧ ~ i) ∨ j) ]) p -- <-irreflᶻ'' (posneg i) p = -- <-irreflᶻ'' (posneg i) p = {! transport (λ j → [ lemma10'' 0 (((i ∨ i) ∧ (~ i ∨ ~ i)) ∨ j) ]) !} where -- κ : [ lemma10'' 0 i1 ] ≡ {! <ⁿᵖ-irrefl 0 !} -- κ = {! !} -- <-irreflᶻ'' (posneg i) p = transport (λ j → [ lemma10'' 0 ((i ∧ ~ i) ∨ j) ]) p -- <-irreflᶻ'' (posneg i) p = transport (λ j → [ lemma10'' 0 (i₀ ∨ j) ]) p -- The problem is that when we write ̀with f x | pr`, `with` decides to call `y` -- the result `f x` and to replace *all* of the occurences of `f x` in the type -- of `pr` with `y`. That is to say that if we were to write: -- ... -- then `with` would abstract `m + n` as `p` on *both* sides of the equality -- proven by `refl` thus giving us the following goal with an extra, useless, -- assumption: -- ... -- Given that `inspect` has the type `∀ f n → Reveal f · n is (f n)`, when we -- write `with f n | inspect f n`, the only `f n` that can be abstracted in the -- type of `inspect f n` is the third argument to `Reveal_·_is_`. -- That is to say that the auxiliary definition generated looks like this: -- -- plus-eq-reveal : ∀ m n → Plus-eq m n (m + n) -- plus-eq-reveal m n = aux m n (m + n) (my-inspect (m +_) n) where -- -- aux : ∀ m n p → MyReveal (m +_) · n is p → Plus-eq m n p -- aux m n zero [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 -- aux m n (suc p) [ m+n≡1+p ] = m+n≡1+p -- -- At the cost of having to unwrap the constructor `[_]` around the equality -- we care about, we can keep relying on `with` and avoid having to roll out -- handwritten auxiliary definitions. record Reveal_·_is_ {a b} {A : Type a} {B : A → Type b} (f : (x : A) → B x) (x : A) (y : B x) : Type (ℓ-max a b) where eta-equality constructor [_]ⁱ field eq : f x ≡ y -- lhs stays fix, rhs gets splitted inspect : ∀{a b} {A : Type a} {B : A → Type b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ]ⁱ record Reveal'_·_is_ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f⁻¹ : B → A) (y : B) (x : A) : Type ℓ where eta-equality constructor [_]ⁱ' field eq' : x ≡ f⁻¹ y inspect' : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f⁻¹ : B → A) (f : A → B) (x : A) → f⁻¹ (f x) ≡ x → Reveal' f⁻¹ · (f x) is x inspect' f⁻¹ f x p = [ sym p ]ⁱ' reprℤ : ℤ → Sign × ℕ reprℤ z = sign z , abs z reprℤ⁻¹ : Sign × ℕ → ℤ reprℤ⁻¹ (s , n) = signed s n reprℤ-id : ∀ z → reprℤ⁻¹ (reprℤ z) ≡ z reprℤ-id (pos zero ) = refl reprℤ-id (pos (suc n)) = refl reprℤ-id (neg zero ) = posneg reprℤ-id (neg (suc n)) = refl reprℤ-id (posneg i ) = λ j → posneg (i ∧ j) inspect-reprℤ : (x : ℤ) → Reveal' reprℤ⁻¹ · (reprℤ x) is x inspect-reprℤ a = inspect' reprℤ⁻¹ reprℤ a (reprℤ-id a) _<ᶻ'''_ : ∀(x y : ℤ) → hProp ℓ-zero x <ᶻ''' y with reprℤ x | reprℤ y | inspect-reprℤ x | inspect-reprℤ y ... | spos , x' | spos , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = x' <ⁿᵖ y' ... | spos , x' | sneg , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = ⊥ ... | sneg , x' | spos , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = ⊤ ... | sneg , x' | sneg , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = y' <ⁿᵖ x' <ᶻ''≡<ᶻ''' : ∀ x y → x <ᶻ'' y ≡ x <ᶻ''' y <ᶻ''≡<ᶻ''' (pos zero ) (pos zero ) = refl <ᶻ''≡<ᶻ''' (pos zero ) (pos (suc y)) = refl <ᶻ''≡<ᶻ''' (pos (suc x)) (pos zero ) = refl <ᶻ''≡<ᶻ''' (pos (suc x)) (pos (suc y)) = refl <ᶻ''≡<ᶻ''' (pos zero ) (neg zero ) = sym (lemma10'' _) <ᶻ''≡<ᶻ''' (pos zero ) (neg (suc y)) = refl <ᶻ''≡<ᶻ''' (pos (suc x)) (neg zero ) = sym (lemma10'' _) <ᶻ''≡<ᶻ''' (pos (suc x)) (neg (suc y)) = refl <ᶻ''≡<ᶻ''' (neg zero ) (pos zero ) = sym (lemma10'' _) <ᶻ''≡<ᶻ''' (neg zero ) (pos (suc y)) = sym (lemma12'' _) <ᶻ''≡<ᶻ''' (neg (suc x)) (pos zero ) = refl <ᶻ''≡<ᶻ''' (neg (suc x)) (pos (suc y)) = refl <ᶻ''≡<ᶻ''' (neg zero ) (neg zero ) = refl <ᶻ''≡<ᶻ''' (neg zero ) (neg (suc y)) = lemma10'' _ <ᶻ''≡<ᶻ''' (neg (suc x)) (neg zero ) = lemma12'' _ <ᶻ''≡<ᶻ''' (neg (suc x)) (neg (suc y)) = refl <ᶻ''≡<ᶻ''' (pos zero ) (posneg i) = λ j → lemma10'' 0 (~ j ∧ i) <ᶻ''≡<ᶻ''' (pos (suc x)) (posneg i) = λ j → lemma10'' (suc x) (~ j ∧ i) <ᶻ''≡<ᶻ''' (neg zero ) (posneg i) = λ j → lemma10'' 0 (~ j ∧ ~ i) <ᶻ''≡<ᶻ''' (neg (suc x)) (posneg i) = λ j → lemma12'' x (j ∨ ~ i) <ᶻ''≡<ᶻ''' (posneg i) (pos zero ) = λ j → lemma10'' 0 (~ j ∧ i) <ᶻ''≡<ᶻ''' (posneg i) (pos (suc y)) = λ j → lemma12'' y (~ j ∧ i) <ᶻ''≡<ᶻ''' (posneg i) (neg zero ) = λ j → lemma10'' 0 (~ j ∧ ~ i) <ᶻ''≡<ᶻ''' (posneg i) (neg (suc y)) = λ j → lemma10'' (suc y) (j ∨ ~ i) -- Goal lemma10'' 0 ((i ∨ j) ∧ ~ i ∨ ~ j) ≡ (posneg i <ᶻ''' posneg j) -- Have (0 <ⁿᵖ 0) ≡ ⊥ -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ λ k → lemma10'' 0 (~ k ∧ j) -- i = i1 ⊢ λ k → lemma10'' 0 (~ k ∧ ~ j) -- j = i0 ⊢ λ k → lemma10'' 0 (~ k ∧ i) -- j = i1 ⊢ λ k → lemma10'' 0 (~ k ∧ ~ i) <ᶻ''≡<ᶻ''' (posneg i) (posneg j ) = λ k → lemma10'' 0 (((i ∨ j) ∧ ~ i ∨ ~ j) ∧ ~ k) _<ᶻ'''ʳ_ : ∀(x y : Sign × ℕ) → hProp ℓ-zero -- NOTE: when using this definition, we get `<ᶻ'''≡<ᶻ'''ʳ` proven definitionally -- but we do not get term normalization as we need it -- x <ᶻ'''ʳ y = reprℤ⁻¹ x <ᶻ''' reprℤ⁻¹ y -- and when using this other definition, we get `<ᶻ'''≡'<ᶻ'''ʳ` proven definitionally (spos , x) <ᶻ'''ʳ (spos , y) = x <ⁿᵖ y -- (pos x) <ᶻ''' (pos y) (spos , x) <ᶻ'''ʳ (sneg , y) = ⊥ -- (pos x) <ᶻ''' (neg y) (sneg , x) <ᶻ'''ʳ (spos , y) = ⊤ -- (neg x) <ᶻ''' (pos y) (sneg , x) <ᶻ'''ʳ (sneg , y) = y <ⁿᵖ x -- (neg x) <ᶻ''' (neg y) signʳ-≡ : ∀ z → sign z ≡ reprℤ z .fst signʳ-≡ (signed s zero) = refl signʳ-≡ (signed s (suc n)) = refl signʳ-≡ (posneg i) = refl <ᶻ'''≡<ᶻ'''ʳ : ∀ x y → reprℤ⁻¹ x <ᶻ''' reprℤ⁻¹ y ≡ x <ᶻ'''ʳ y <ᶻ'''≡<ᶻ'''ʳ x@(sx , nx) y@(sy , ny) with sx | sy | signʳ-≡ (reprℤ⁻¹ x) | signʳ-≡ (reprℤ⁻¹ y) ... | sx' | sy' | px | py = {! !} -- <ᶻ'''≡<ᶻ'''ʳ (spos , x) (spos , y) = {! refl !} -- <ᶻ'''≡<ᶻ'''ʳ (spos , x) (sneg , y) = {! refl !} -- <ᶻ'''≡<ᶻ'''ʳ (sneg , x) (spos , y) = {! refl !} -- <ᶻ'''≡<ᶻ'''ʳ (sneg , x) (sneg , y) = {! refl !} <ᶻ'''≡'<ᶻ'''ʳ : ∀ x y → x <ᶻ''' y ≡ reprℤ x <ᶻ'''ʳ reprℤ y <ᶻ'''≡'<ᶻ'''ʳ x y with reprℤ x | reprℤ y {- | inspect-reprℤ x | inspect-reprℤ y -} ... | spos , x' | spos , y' {- | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' -} = refl ... | spos , x' | sneg , y' {- | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' -} = refl ... | sneg , x' | spos , y' {- | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' -} = refl ... | sneg , x' | sneg , y' {- | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' -} = refl <ᶻ'''≡''<ᶻ'''ʳ : ∀ x y → reprℤ⁻¹ x <ᶻ''' reprℤ⁻¹ y ≡ x <ᶻ'''ʳ y <ᶻ'''≡''<ᶻ'''ʳ x@(xs , xn) y@(ys , yn) with reprℤ (reprℤ⁻¹ x) | reprℤ (reprℤ⁻¹ y) | inspect-reprℤ (reprℤ⁻¹ x) | inspect-reprℤ (reprℤ⁻¹ y) ... | spos , x' | spos , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = {! refl !} ... | spos , x' | sneg , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = {! refl !} ... | sneg , x' | spos , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = {! refl !} ... | sneg , x' | sneg , y' | [ x≡ ]ⁱ' | [ y≡ ]ⁱ' = {! refl !} -- [ reprℤ⁻¹ (spos , a') <ᶻ''' reprℤ⁻¹ (spos , c') ] -- [ reprℤ a <ᶻ'''ʳ reprℤ c ] -- [ a <ᶻ''' c ] -- [ a <ᶻ'' c ] <ᶻ'''≡'''<ᶻ'''ʳ : ∀ x y → reprℤ⁻¹ x <ᶻ''' reprℤ⁻¹ y ≡ x <ᶻ'''ʳ y <ᶻ'''≡'''<ᶻ'''ʳ x@(xs , xn) y@(ys , yn) with reprℤ (reprℤ⁻¹ x) | reprℤ (reprℤ⁻¹ y) ... | spos , x' | spos , y' = {! !} ... | spos , x' | sneg , y' = {! !} ... | sneg , x' | spos , y' = {! !} ... | sneg , x' | sneg , y' = {! !} -- NOTE: making use of trichotomy might be in-line with the definition of QuoInt -- because this is what we are likely to use at the end -- -- {! pathTo⇐ (<ᶻ''≡<ᶻ''' a c ∙ (λ i → a≡ i <ᶻ''' c≡ i)) γ !} -- where γ : [ reprℤ⁻¹ (spos , a') <ᶻ''' reprℤ⁻¹ (spos , c') ] -- γ = pathTo⇐ (<ᶻ'''≡<ᶻ'''ʳ (spos , a') (spos , c')) {! !} -- κ : [ reprℤ⁻¹ (spos , a') <ᶻ''' reprℤ⁻¹ (spos , c') ] -- κ = {! <ᶻ'''≡'<ᶻ'''ʳ a c !} -- possible cases -- NOTE: the "trick" is to with-abstract over `reprℤ a` and `reprℤ c` -- which turns the type of `pathTo⇐ (<ᶻ''≡<ᶻ''' a c ∙ <ᶻ'''≡'<ᶻ'''ʳ a c)` -- from `[ (reprℤ a <ᶻ'''ʳ reprℤ c) ⇒ (a <ᶻ'' c) ]` -- into `a' <ⁿ c' → fst (a <ᶻ'' c)` <-transᶻ'' a b c a<b b<c with reprℤ a | reprℤ b | reprℤ c | pathTo⇒ (<ᶻ''≡<ᶻ''' a b ∙ <ᶻ'''≡'<ᶻ'''ʳ a b) a<b | pathTo⇒ (<ᶻ''≡<ᶻ''' b c ∙ <ᶻ'''≡'<ᶻ'''ʳ b c) b<c | pathTo⇐ (<ᶻ''≡<ᶻ''' a c ∙ <ᶻ'''≡'<ᶻ'''ʳ a c) ... | spos , a' | spos , b' | spos , c' | a<b' | b<c' | p = p (<ⁿᵖ-trans _ _ _ a<b' b<c') ... | spos , a' | spos , b' | sneg , c' | a<b' | b<c' | p = p b<c' ... | spos , a' | sneg , b' | spos , c' | a<b' | b<c' | p = p (⊥-elim a<b') ... | spos , a' | sneg , b' | sneg , c' | a<b' | b<c' | p = p a<b' ... | sneg , a' | spos , b' | spos , c' | a<b' | b<c' | p = p a<b' ... | sneg , a' | spos , b' | sneg , c' | a<b' | b<c' | p = p (⊥-elim b<c') ... | sneg , a' | sneg , b' | spos , c' | a<b' | b<c' | p = p b<c' ... | sneg , a' | sneg , b' | sneg , c' | a<b' | b<c' | p = p (<ⁿᵖ-trans _ _ _ b<c' a<b') <-cotransᶻ'' a b a<b c with reprℤ a | reprℤ b | reprℤ c | pathTo⇒ (<ᶻ''≡<ᶻ''' a b ∙ <ᶻ'''≡'<ᶻ'''ʳ a b) a<b | pathTo⇐ (λ i → (<ᶻ''≡<ᶻ''' a c ∙ <ᶻ'''≡'<ᶻ'''ʳ a c) i ⊔ (<ᶻ''≡<ᶻ''' c b ∙ <ᶻ'''≡'<ᶻ'''ʳ c b) i) ... | spos , a' | spos , b' | spos , c' | a<b' | p = p (<ⁿᵖ-cotrans _ _ a<b' c') ... | spos , a' | spos , b' | sneg , c' | a<b' | p = p (inrᵖ tt) ... | sneg , a' | spos , b' | spos , c' | a<b' | p = p (inlᵖ tt) ... | sneg , a' | spos , b' | sneg , c' | a<b' | p = p (inrᵖ tt) ... | sneg , a' | sneg , b' | spos , c' | a<b' | p = p (inlᵖ tt) ... | sneg , a' | sneg , b' | sneg , c' | a<b' | p = p (pathTo⇒ (⊔-comm (b' <ⁿᵖ c') (c' <ⁿᵖ a')) (<ⁿᵖ-cotrans _ _ a<b' c')) -- [_/_] : ℤ → ℕ₊₁ → ℚ -- [ a / b ] = [ a , b ] lemma15 : ∀(a@(an , ad) b@(bn , bd) : ℤ × ℕ₊₁) → a ∼ b → ((sign an , abs an) , ad) ≡ ((sign bn , abs bn) , bd) lemma15 a@(an , ad) b@(bn , bd) a~b = {! !} reprℚ : ℚ → (Sign × ℕ) × ℕ₊₁ reprℚ [ n , d ]ᶠ = (sign n , abs n) , d reprℚ (eq/ a@(an , ad) b@(bn , bd) r i) = lemma15 a b r i reprℚ (squash/ a b p q i j) = {! !} reprℚ⁻¹ : (Sign × ℕ) × ℕ₊₁ → ℚ reprℚ⁻¹ ((s , n) , d) = [ signed s n , d ]ᶠ lemma15' : ∀(a@(an , ad) b@(bn , bd) : ℤ × ℕ₊₁) → a ∼ b → (an , ad) ≡ (bn , bd) lemma15' a@(an , ad) b@(bn , bd) a~b = {! !} import Cubical.HITs.SetQuotients.Properties as SetQuotients reprℚ' : ℚ → ℤ × ℕ₊₁ reprℚ' [ n , d ]ᶠ = n , d reprℚ' (eq/ a@(an , ad) b@(bn , bd) r i) = lemma15' a b r i -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ reprℚ' (p j) -- i = i1 ⊢ reprℚ' (q j) -- j = i0 ⊢ reprℚ' a -- j = i1 ⊢ reprℚ' b -- i : p j ≡ q j -- j : a ≡ b -- -- j -- ∧ -- | p1 = b q1 = b -- | -- | p0 = a q0 = a -- +--------------------> i -- -- i : p ≡ q -- reprℚ' (squash/ a b p q i j) = reprℚ' (isSetℚ a b p q i j) -- termination checker complains -- reprℚ' (squash/ a b p q i j) = {! !} (isSetℚ a b p q i j) reprℚ' (squash/ a b p q i j) = {! SetQuotients.rec2 !} -- reprℚ' (squash/ a b p q i j) = {! SetQuotients.elimProp {A = ℤ × ℕ₊₁} {R = _∼_} {B = λ _ → ℤ × ℕ₊₁} !} -- NOTE: `onCommonDenom` uses `SetQuotient.rec2 isSetℚ` reprℚ'' : ℚ → ℤ × ℕ₊₁ reprℚ'' q = SetQuotients.elim {A = ℤ × ℕ₊₁} {R = _∼_} {B = λ _ → ℤ × ℕ₊₁} γ (λ x → x) κ q where γ : (x : (ℤ × ℕ₊₁) // _∼_) → isSet (ℤ × ℕ₊₁) γ x = {! !} -- this should work out κ : (a b : ℤ × ℕ₊₁) (r : a ∼ b) → a ≡ b κ a b a∼b = {! !} -- this is an issue reprℚ''' : ℚ → ℤ × ℕ₊₁ reprℚ''' q = SetQuotients.rec {A = ℤ × ℕ₊₁} {R = _∼_} {B = ℤ × ℕ₊₁} γ (λ x → x) κ q where γ : isSet (ℤ × ℕ₊₁) γ = {! !} -- this should work out κ : (a b : ℤ × ℕ₊₁) (r : a ∼ b) → a ≡ b κ (an , ad) (bn , bd) a∼b = {! !} -- this is an issue -- is seems that `∀ a b → a ∼ b → a ≡ b` is a necessity to perform this representation operation -- there is no nominator or denominator being "the" nominator or denominator in QuoQ -- therefore, we won't get a `reprℚ : ℚ → ℤ × ℕ₊₁` for QuoQ (only for SigmaQ where this is just `fst`) -- but for two (or more) rationals, we can create a common denominator for them -- we might be able to get `ℚ ≃ Sign × ℚ⁺` with an identification of +0 and -0 similar to QuoInt -- with onCommonDenom3 we could treat three rational numbers as integers for an implementation of <-transᶠ -- I guess that we need to show then, something like -- κ : ∀ a₁ b₁ c₁ a₂ b₂ c₂ -- → a₁ ∼ a₂ → b₁ ∼ b₂ → c₁ ∼ c₂ -- → (a₁<b₁ : a₁ < b₁) → (b₁<c₁ : b₁ < c₁) -- → (a₂<b₂ : a₂ < b₂) → (b₂<c₂ : b₂ < c₂) -- → <-trans a₁ b₁ c₁ a₁<b₁ b₁<c₁ ≡ <-trans a₂ b₂ c₂ a₂<b₂ b₂<c₂ -- i.e. that transitivity respects the equivalence -- this might be shown with "multiplication preserves transitivity" on ℕ -- κ : ∀ a b c -- → (n : ℕ₊₁) -- → (a<b : a < b) → (b<c : b < c) -- → (an<bn : a · n < b · n) → (bn<cn : b · n < c · n) -- → <-trans a b c a<b b<c ≡ <-trans (a · n) (b · n) (c · n) an<bn bn<cn -- in `Cubical.HITs.Rationals.SigmaQ.Base` (which uses `ℤ` for `QuoInt.ℤ`) we have -- -- ℚ : Type₀ -- ℚ = Σ[ (a , b) ∈ ℤ × ℕ₊₁ ] areCoprime (abs a , ℕ₊₁→ℕ b) -- -- in `Cubical.HITs.Ints.QuoInt.Base` we have -- -- data ℤ : Type₀ where -- signed : (s : Sign) (n : ℕ) → ℤ -- posneg : signed spos 0 ≡ signed sneg 0 -- -- in `Cubical.Data.NatPlusOne.Base` we have -- -- record ℕ₊₁ : Type₀ where -- constructor 1+_ -- field -- n : ℕ -- -- and in `Data.Rational.Base` (which uses `ℤ` for `Builtin.Int`) we have -- -- record ℚ : Set where -- constructor mkℚ -- field -- numerator : ℤ -- denominator-1 : ℕ -- .isCoprime : Coprime ∣ numerator ∣ (suc denominator-1) -- -- in `Agda.Builtin.Int` we have -- -- data Int : Set where -- pos : (n : Nat) → Int -- negsuc : (n : Nat) → Int -- -- in `Agda.Builtin.Nat` we have -- -- data Nat : Set where -- zero : Nat -- suc : (n : Nat) → Nat -- -- so the difference between the cubical "SigmaQ"-rationals and the non-cubical "Rational"-rationals is that -- SigmaQ uses QuoInt and NatPlusOne where Rational uses Builtin.Int and Builtin.Nat reprℚ⁻¹' : ℤ × ℕ₊₁ → ℚ reprℚ⁻¹' (n , d) = [ n , d ]ᶠ -- reprℚ-id : ∀ z → reprℚ⁻¹ (reprℚ z) ≡ z -- reprℚ-id (pos zero ) = refl -- reprℚ-id (pos (suc n)) = refl -- reprℚ-id (neg zero ) = posneg -- reprℚ-id (neg (suc n)) = refl -- reprℚ-id (posneg i ) = λ j → posneg (i ∧ j) -- -- inspect-reprℚ : (x : ℚ) → Reveal' reprℚ⁻¹ · (reprℚ x) is x -- inspect-reprℚ a = inspect' reprℚ⁻¹ reprℚ a (reprℚ-id a) -- _<ᶠ_ : hPropRel ℚ ℚ ℓ-zero -- x <ᶠ y = {! elimProp2 {A = ℤ × ℕ₊₁} {R = _∼_} {C = C} γ κ x y !} -- where -- φ : ℚ → ℚ → hProp ℓ-zero -- φ x y = {! !} -- C : ℚ → ℚ → Type -- C x y = [ φ x y ] -- γ : (x y : ℚ) → isProp (C x y) -- γ x y = {! !} -- κ : (a b : ℤ × ℕ₊₁) → C [ a ]ᶠ [ b ]ᶠ -- κ a b = {! !} -- ... | spos , snd₁ | fst₂ , snd₂ | fst₃ , snd₃ | [ eq ]ⁱ | [ eq₁ ]ⁱ | [ eq₂ ]ⁱ = {! !} -- ... | sneg , snd₁ | fst₂ , snd₂ | fst₃ , snd₃ | [ eq ]ⁱ | [ eq₁ ]ⁱ | [ eq₂ ]ⁱ = {! !} -- <-transᶻ'' (pos zero) (pos zero) (pos zero) a<b b<c = {! !} -- <-transᶻ'' (pos zero) (pos zero) (pos (suc n₂)) a<b b<c = {! !} -- <-transᶻ'' (pos zero) (pos (suc n₁)) (pos zero) a<b b<c = {! !} -- <-transᶻ'' (pos zero) (pos (suc n₁)) (pos (suc n₂)) a<b b<c = {! !} -- -- <-transᶻ'' (pos (suc n₀)) (pos zero) (pos zero) a<b b<c = {! !} -- <-transᶻ'' (pos (suc n₀)) (pos zero) (pos (suc n₂)) a<b b<c = {! !} -- <-transᶻ'' (pos (suc n₀)) (pos (suc n₁)) (pos zero) a<b b<c = {! !} -- <-transᶻ'' (pos (suc n₀)) (pos (suc n₁)) (pos (suc n₂)) a<b b<c = {! !} -- -- <-transᶻ'' (neg n₀) (pos n₁) (pos n₂) a<b b<c = {! !} -- <-transᶻ'' (neg n₀) (neg n₁) (pos n₂) a<b b<c = {! !} -- <-transᶻ'' (neg n₀) (neg n₁) (neg n₂) a<b b<c = {! !} -- -- <-transᶻ'' (signed s₀ n₀) (signed s₁ n₁) (posneg i) a<b b<c = {! !} -- -- <-transᶻ'' (signed s₀ n₀) (posneg i) (signed s₁ n₁) a<b b<c = {! !} -- -- <-transᶻ'' (signed s₀ n₀) (posneg i) (posneg i₁) a<b b<c = {! !} -- -- <-transᶻ'' (posneg i) (signed s₁ n₁) (signed s₂ n₂) a<b b<c = {! !} -- -- <-transᶻ'' (posneg i) (signed s₁ n₁) (posneg i₁) a<b b<c = {! !} -- -- <-transᶻ'' (posneg i) (posneg i₁) (signed s₂ n₂) a<b b<c = {! !} -- -- <-transᶻ'' (posneg i) (posneg i₁) (posneg i₂) a<b b<c = {! !} {- -- -- 8 points -- <-transᶻ'' (pos n₀) (pos n₁) (pos zero) a<b b<c = {! <ⁿᵖ-trans !} -- point 1 -- <-transᶻ'' (pos n₀) (pos n₁) (pos (suc n₂)) a<b b<c = {! !} -- <-transᶻ'' (neg n₀) (pos n₁) (pos zero) a<b b<c = {! !} -- point 2 -- <-transᶻ'' (neg n₀) (pos n₁) (pos (suc n₂)) a<b b<c = {! !} -- <-transᶻ'' (neg n₀) (neg n₁) (neg zero) a<b b<c = {! !} -- point 3 -- <-transᶻ'' (neg n₀) (neg n₁) (neg (suc n₂)) a<b b<c = {! !} -- <-transᶻ'' (neg n₀) (neg n₁) (pos zero) a<b b<c = {! !} -- point 4 -- <-transᶻ'' (neg n₀) (neg n₁) (pos (suc n₂)) a<b b<c = {! !} -- -- -- 12 edges -- <-transᶻ'' (neg n₀) (pos n₁) (posneg k) a<b b<c = {! !} -- 21 -- point 2 -- <-transᶻ'' (pos n₀) (pos n₁) (posneg k) a<b b<c = {! !} -- 22 -- point 1 -- <-transᶻ'' (neg n₀) (neg n₁) (posneg k) a<b b<c = {! !} -- 23 -- point 3 to 4 -- -- <-transᶻ'' (pos n₀) (neg n₁) (posneg k) a<b b<c = {! !} -- <-transᶻ'' (pos n₀) (posneg j) (pos n₂) a<b b<c = {! !} -- 24 -- <-transᶻ'' (pos n₀) (posneg j) (neg n₂) a<b b<c = {! !} -- 25 -- <-transᶻ'' (neg n₀) (posneg j) (pos n₂) a<b b<c = {! !} -- 26 -- <-transᶻ'' (neg n₀) (posneg j) (neg n₂) a<b b<c = {! !} -- 27 -- <-transᶻ'' (posneg i) (pos n₁) (pos n₂) a<b b<c = {! !} -- 28 -- <-transᶻ'' (posneg i) (neg n₁) (pos n₂) a<b b<c = {! !} -- 29 -- <-transᶻ'' (posneg i) (neg n₁) (neg n₂) a<b b<c = {! !} -- 30 -- -- <-transᶻ'' (posneg i) (pos n₁) (neg n₂) a<b b<c = {! !} -- -- -- 6 faces -- <-transᶻ'' (pos n₀) (posneg j) (posneg k) a<b b<c = {! !} -- 22 24 25 -- <-transᶻ'' (neg n₀) (posneg j) (posneg k) a<b b<c = {! !} -- 21 23 26 -- <-transᶻ'' (posneg i) (pos n₁) (posneg k) a<b b<c = {! !} -- 22 21 28 -- <-transᶻ'' (posneg i) (neg n₁) (posneg k) a<b b<c = {! !} -- 23 29 30 -- <-transᶻ'' (posneg i) (posneg j) (pos n₂) a<b b<c = {! !} -- 24 26 28 29 -- <-transᶻ'' (posneg i) (posneg j) (neg n₂) a<b b<c = {! !} -- 25 27 30 -- (i ∨ k) ∧ ~ i ∨ ~ k -- (i ∨ k) ∧ (~ i ∨ ~ k) -- (i ∨ k) ∧ ~(i ∧ k) -- i k | i ∨ k | i ∧ k | ~(i ∧ k) | (i ∨ k) ∧ ~(i ∧ k) -- 0 0 | 0 | 0 | 1 | 0 -- 0 1 | 1 | 0 | 1 | 1 -- 1 0 | 1 | 0 | 1 | 1 -- 1 1 | 1 | 1 | 0 | 0 -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ ?21 (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 k) -- i = i1 ⊢ ?22 (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 (~ k)) -- j = i0 ⊢ ?23 (i = i) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- j = i1 ⊢ ?24 (i = i) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- k = i0 ⊢ ?25 (i = i) (j = j) (n₂ = 0) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 i) -- k = i1 ⊢ ?26 (i = i) (j = j) (n₂ = 0) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 (~ i)) -- ———— Constraints ——————————————————————————————————————————— -- ?21 (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) = ?27 (i = i0) : fst (lemma10'' 0 k) -- ?22 (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) = ?27 (i = i1) : fst (lemma10'' 0 (~ k)) -- ?23 (i = i) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) = ?27 (j = i0) : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- ?24 (i = i) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) = ?27 (j = i1) : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- ?25 (i = i) (j = j) (n₂ = 0) (a<b = a<b) (b<c = b<c) = ?27 (k = i0) : fst (lemma10'' 0 i) -- ?26 (i = i) (j = j) (n₂ = 0) (a<b = a<b) (b<c = b<c) = ?27 (k = i1) : fst (lemma10'' 0 (~ i)) -- Goal [ lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k) ] -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ ?20 (s₀ = spos) (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 k) -- i = i1 ⊢ ?20 (s₀ = sneg) (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 (~ k)) -- j = i0 ⊢ ?22 (i = i) (s₁ = spos) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- j = i1 ⊢ ?22 (i = i) (s₁ = sneg) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- k = i0 ⊢ ?23 (i = i) (j = j) (s₂ = spos) (n₂ = 0) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 i) -- k = i1 ⊢ ?23 (i = i) (j = j) (s₂ = sneg) (n₂ = 0) (a<b = a<b) (b<c = b<c) -- : fst (lemma10'' 0 (~ i)) -- ———— Constraints ——————————————————————————————————————————— -- ?20 (s₀ = spos) (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) = ?24 (i = i0) : fst (lemma10'' 0 k) -- ?20 (s₀ = sneg) (n₀ = 0) (j = j) (k = k) (a<b = a<b) (b<c = b<c) = ?24 (i = i1) : fst (lemma10'' 0 (~ k)) -- ?22 (i = i) (s₁ = spos) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) = ?24 (j = i0) : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- ?22 (i = i) (s₁ = sneg) (n₁ = 0) (k = k) (a<b = a<b) (b<c = b<c) = ?24 (j = i1) : fst (lemma10'' 0 ((i ∨ k) ∧ ~ i ∨ ~ k)) -- ?23 (i = i) (j = j) (s₂ = spos) (n₂ = 0) (a<b = a<b) (b<c = b<c) = ?24 (k = i0) : fst (lemma10'' 0 i) -- ?23 (i = i) (j = j) (s₂ = sneg) (n₂ = 0) (a<b = a<b) (b<c = b<c) = ?24 (k = i1) : fst (lemma10'' 0 (~ i)) -- 1 cube <-transᶻ'' (posneg i ) (posneg j ) (posneg k ) a<b b<c = {! !} -- ?24 ·ᶻ-preserves-<ᶻ'' = {! !} -- _*ᶻ_ = Cubical.HITs.Ints.QuoInt._*_ -- signᶻ = Cubical.HITs.Ints.QuoInt.sign open import Data.Nat.Base using () renaming ( _⊔_ to maxⁿ ; _⊓_ to minⁿ ) -- NOTE: in `Cubical.HITs.Ints.QuoInt.Base` there is -- Int→ℤ : Int → ℤ -- ℤ→Int : ℤ → Int -- Int≡ℤ : Int ≡ ℤ open import Cubical.Data.Int using () renaming (pos to ℕ→Int) ℕ→ℤ : ℕ → ℤ ℕ→ℤ x = Int→ℤ (ℕ→Int x) minᶻ : ℤ → ℤ → ℤ minᶻ x y with sign x | sign y ... | spos | spos = pos (minⁿ (abs x) (abs y)) ... | spos | sneg = y ... | sneg | spos = x ... | sneg | sneg = neg (maxⁿ (abs x) (abs y)) -- instead of `- ℕ→ℤ (maxⁿ ...)` -- maxⁿ' : ℕ → ℕ → ℕ -- maxⁿ' (zero ) (n ) = n -- maxⁿ' (suc m) (zero ) = suc m -- maxⁿ' (suc m) (suc n) = suc (maxⁿ' m n) -- -- minⁿ' : ℕ → ℕ → ℕ -- minⁿ' (zero ) (n ) = zero -- minⁿ' (suc m) (zero ) = zero -- minⁿ' (suc m) (suc n) = suc (minⁿ' m n) maxⁿ≡0-right : ∀ n → maxⁿ n 0 ≡ n maxⁿ≡0-right zero = refl maxⁿ≡0-right (suc n) = refl minⁿ≡0-right : ∀ n → minⁿ n 0 ≡ 0 minⁿ≡0-right zero = refl minⁿ≡0-right (suc n) = refl lemma : ∀ n → pos 0 ≡ neg (minⁿ n 0) lemma n = posneg ∙ (λ j → neg (minⁿ≡0-right n (~ j))) -- lemma n = posneg ∙ (λ j → neg (minⁿ≡0-right n (~ j))) -- i = i0 ⊢ pos 0 -- i = i1 ⊢ lemma 0 j -- j = i0 ⊢ pos 0 -- j = i1 ⊢ posneg i -- -- ———— Constraints ——————————————————————————————————————————— -- posneg i = ?11 (j = i1) : ℤ -- pos 0 = ?11 (j = i0) : ℤ -- hcomp (doubleComp-faces (λ _ → pos 0) (λ j₁ → neg zero) j) (posneg j) = ?11 (i = i1) : ℤ -- pos 0 = ?11 (i = i0) : ℤ maxᶻ : ℤ → ℤ → ℤ maxᶻ (pos n₀) (pos n₁) = pos (maxⁿ n₀ n₁) maxᶻ (pos n₀) (neg n₁) = pos n₀ maxᶻ (neg n₀) (pos n₁) = pos n₁ maxᶻ (neg n₀) (neg n₁) = neg (minⁿ n₀ n₁) -- pathes maxᶻ (pos n) (posneg i) = pos (maxⁿ≡0-right n i) maxᶻ (neg zero) (posneg i) = posneg i -- `lemma zero i` does not work here -- NOTE: better not use `lemma (suc n) i` because it creates an unnormalizable term: -- `hcomp (doubleComp-faces (λ _ → pos 0) (λ j₁ → neg 0) j) (posneg j)` maxᶻ (neg (suc n)) (posneg i) = posneg i -- lemma (suc n) i -- can also use `posneg i` here maxᶻ (posneg i) (pos n) = pos n maxᶻ (posneg i) (neg n) = posneg i maxᶻ (posneg i) (posneg j) = posneg (i ∧ j) -- posneg (i ∧ j) maxᶻ' : ℤ → ℤ → ℤ maxᶻ' x y with sign x | sign y ... | spos | spos = pos (maxⁿ (abs x) (abs y)) ... | spos | sneg = x ... | sneg | spos = y ... | sneg | sneg = neg (minⁿ (abs x) (abs y)) _ = maxᶻ -1 -1 ≡ -1 ∋ refl _ = maxᶻ -1 0 ≡ 0 ∋ refl _ = maxᶻ -1 1 ≡ 1 ∋ refl _ = maxᶻ 0 -1 ≡ 0 ∋ refl _ = maxᶻ 0 0 ≡ 0 ∋ refl _ = maxᶻ 0 1 ≡ 1 ∋ refl _ = maxᶻ 1 -1 ≡ 1 ∋ refl _ = maxᶻ 1 0 ≡ 1 ∋ refl _ = maxᶻ 1 1 ≡ 1 ∋ refl _ = maxᶻ' -1 -1 ≡ -1 ∋ refl _ = maxᶻ' -1 0 ≡ 0 ∋ refl _ = maxᶻ' -1 1 ≡ 1 ∋ refl _ = maxᶻ' 0 -1 ≡ 0 ∋ refl _ = maxᶻ' 0 0 ≡ 0 ∋ refl _ = maxᶻ' 0 1 ≡ 1 ∋ refl _ = maxᶻ' 1 -1 ≡ 1 ∋ refl _ = maxᶻ' 1 0 ≡ 1 ∋ refl _ = maxᶻ' 1 1 ≡ 1 ∋ refl -- sign' : ℤ → Sign -- sign' (signed _ zero) = spos -- sign' (signed s (suc _)) = s -- sign' (posneg i) = spos lemma2 : ∀ x y → maxᶻ x y ≡ maxᶻ' x y lemma2 (pos zero ) (pos zero ) = refl lemma2 (pos zero ) (pos (suc n₁)) = refl lemma2 (pos (suc n₀)) (pos zero ) = refl lemma2 (pos (suc n₀)) (pos (suc n₁)) = refl lemma2 (pos zero ) (neg zero ) = refl lemma2 (pos zero ) (neg (suc n₁)) = refl lemma2 (pos (suc n₀)) (neg zero ) = refl lemma2 (pos (suc n₀)) (neg (suc n₁)) = refl lemma2 (neg zero ) (pos zero ) = refl lemma2 (neg zero ) (pos (suc n₁)) = refl lemma2 (neg (suc n₀)) (pos zero ) = refl lemma2 (neg (suc n₀)) (pos (suc n₁)) = refl lemma2 (neg zero ) (neg zero ) = sym posneg lemma2 (neg zero ) (neg (suc n₁)) = refl lemma2 (neg (suc n₀)) (neg zero ) = refl lemma2 (neg (suc n₀)) (neg (suc n₁)) = refl lemma2 (pos zero ) (posneg j ) = refl lemma2 (pos (suc n₀)) (posneg j ) = refl lemma2 (neg zero ) (posneg j ) = λ i → posneg (j ∧ (~ i)) lemma2 (neg (suc n₀)) (posneg j ) = refl lemma2 (posneg i ) (pos zero ) = refl lemma2 (posneg i ) (pos (suc n₁)) = refl lemma2 (posneg i ) (neg zero ) = λ j → posneg (i ∧ (~ j)) lemma2 (posneg i ) (neg (suc n₁)) = refl lemma2 (posneg i ) (posneg j ) = λ k → posneg (i ∧ j ∧ (~ k)) lemma3 : maxᶻ ≡ maxᶻ' lemma3 = funExt₂ᶜ lemma2 -- maxᶻ (signed s₀ n₀) (signed s₁ n₁) = {! !} -- maxᶻ (signed s₀ n₀) (posneg j) = {! !} -- maxᶻ (posneg i) (signed s₁ n₁) = {! !} -- maxᶻ (posneg i) (posneg j) = {! !} minᶠ : ℚ → ℚ → ℚ minᶠ x y = onCommonDenom f g h x y where f : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ f a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) = minᶻ (aᶻ *ᶻ (ℕ₊₁→ℤ bⁿ)) (bᶻ *ᶻ (ℕ₊₁→ℤ aⁿ)) g : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) c@(cᶻ , cⁿ) : ℤ × ℕ₊₁) → aᶻ *ᶻ (ℕ₊₁→ℤ bⁿ) ≡ bᶻ *ᶻ (ℕ₊₁→ℤ aⁿ) → (ℕ₊₁→ℤ bⁿ) *ᶻ (f a c) ≡ (ℕ₊₁→ℤ aⁿ) *ᶻ (f b c) g a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) c@(cᶻ , cⁿ) aᶻ*bⁿ≡bᶻ*aⁿ = {! !} h : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) c@(cᶻ , cⁿ) : ℤ × ℕ₊₁) → bᶻ *ᶻ (ℕ₊₁→ℤ cⁿ) ≡ cᶻ *ᶻ (ℕ₊₁→ℤ bⁿ) → (f a b) *ᶻ (ℕ₊₁→ℤ cⁿ) ≡ (f a c) *ᶻ (ℕ₊₁→ℤ bⁿ) h a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) c@(cᶻ , cⁿ) bᶻ*cⁿ≡cᶻ*bⁿ = {! !} maxᶠ : ℚ → ℚ → ℚ maxᶠ x y = {! !} 0ᶠ 1ᶠ : ℚ 0ᶠ = 0 1ᶠ = 1 <-irreflᶠ : (a : ℚ) → [ ¬ (a <ᶠ a) ] <-transᶠ : (a b x : ℚ) → [ a <ᶠ b ] → [ b <ᶠ x ] → [ a <ᶠ x ] <-cotransᶠ : (a b : ℚ) → [ a <ᶠ b ] → (x : ℚ) → [ (a <ᶠ x) ⊔ (x <ᶠ b) ] ·ᶠ-inv'' : (x : ℚ) → (∥ Σ[ y ∈ ℚ ] x *ᶠ y ≡ 1ᶠ ∥ → [ x <ᶠ 0ᶠ ] ⊎ [ 0ᶠ <ᶠ x ]) × ([ x <ᶠ 0ᶠ ] ⊎ [ 0ᶠ <ᶠ x ] → ∥ Σ[ y ∈ ℚ ] x *ᶠ y ≡ 1ᶠ ∥) ≤-reflᶠ : (a : ℚ) → [ ¬ (a <ᶠ a) ] ≤-antisymᶠ : (a b : ℚ) → [ ¬ (b <ᶠ a) ] → [ ¬ (a <ᶠ b) ] → [ a ≡ₚ b ] ≤-transᶠ : (a b x : ℚ) → [ ¬ (b <ᶠ a) ] → [ ¬ (x <ᶠ b) ] → [ ¬ (x <ᶠ a) ] is-minᶠ : (x y z : ℚ) → [ ¬ (minᶠ x y <ᶠ z) ⇔ ¬ (x <ᶠ z) ⊓ ¬ (y <ᶠ z) ] is-maxᶠ : (x y z : ℚ) → [ ¬ (z <ᶠ maxᶠ x y) ⇔ ¬ (z <ᶠ x) ⊓ ¬ (z <ᶠ y) ] +ᶠ-<ᶠ-ext : (w x y z : ℚ) → [ (w +ᶠ x) <ᶠ (y +ᶠ z) ] → [ (w <ᶠ y) ⊔ (x <ᶠ z) ] ·ᶠ-preserves-<ᶠ : (x y z : ℚ) → [ 0ᶠ <ᶠ z ] → [ x <ᶠ y ] → [ (x *ᶠ z) <ᶠ (y *ᶠ z) ] <-irreflᶠ = {! !} <-transᶠ = {! !} <-cotransᶠ = {! !} ·ᶠ-inv'' = {! !} ≤-reflᶠ = {! !} ≤-antisymᶠ = {! !} ≤-transᶠ = {! !} is-minᶠ = {! !} is-maxᶠ = {! !} +ᶠ-<ᶠ-ext = {! !} ·ᶠ-preserves-<ᶠ = {! !} open PartiallyOrderedField ℚF : PartiallyOrderedField {ℓ-zero} {ℓ-zero} ℚF .PartiallyOrderedField.Carrier = ℚ ℚF .PartiallyOrderedField.0f = 0 -- [ signed spos 0 , (1+ 0) ]' ℚF .PartiallyOrderedField.1f = 1 ℚF .PartiallyOrderedField._+_ = _+ᶠ_ ℚF .PartiallyOrderedField.-_ = -ᶠ_ ℚF .PartiallyOrderedField._·_ = _*ᶠ_ ℚF .PartiallyOrderedField.min = minᶠ ℚF .PartiallyOrderedField.max = maxᶠ ℚF .PartiallyOrderedField._<_ = _<ᶠ_ ℚF .PartiallyOrderedField.is-PartiallyOrderedField = record { is-AlmostPartiallyOrderedField = record { is-set = isSetℚ ; is-CommRing = record { is-set = isSetℚ ; is-Ring = record { is-set = isSetℚ ; +-AbGroup = record { is-set = isSetℚ ; is-Group = record { is-set = isSetℚ ; is-Monoid = record { is-set = isSetℚ ; is-Semigroup = record { is-set = isSetℚ ; is-assoc = +-assocᶠ } ; is-identity = λ x → +-identityʳ x , +-identityˡ x } ; is-inverse = λ x → (+-inverseʳ x) , (+-inverseˡ x) } ; is-comm = +-commᶠ } ; ·-Monoid = record { is-set = isSetℚ ; is-Semigroup = record { is-set = isSetℚ ; is-assoc = *-assocᶠ } ; is-identity = λ x → *-identityʳ x , *-identityˡ x } ; is-dist = λ x y z → sym (*-distribˡ x y z) , sym (*-distribʳ x y z) } ; ·-comm = *-commᶠ } ; <-StrictPartialOrder = record { is-irrefl = <-irreflᶠ ; is-trans = <-transᶠ ; is-cotrans = <-cotransᶠ } ; ·-inv'' = ·ᶠ-inv'' ; ≤-isLattice = record { ≤-PartialOrder = record { is-refl = ≤-reflᶠ ; is-antisym = ≤-antisymᶠ ; is-trans = ≤-transᶠ } ; is-min = is-minᶠ ; is-max = is-maxᶠ } } ; +-<-ext = +ᶠ-<ᶠ-ext ; ·-preserves-< = ·ᶠ-preserves-<ᶠ } where open PartiallyOrderedField ℚF renaming (Carrier to ℚ') -- 4.3 Archimedean property -- -- We now define the notion of Archimedean ordered fields. We phrase this in terms of a certain -- interpolation property, that can be defined from the fact that there is a unique morphism of -- ordered fields from the rationals to every ordered field. -- Lemma 4.3.3. For every ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ), there is a unique morphism -- i of ordered fields from the rationals to F . Additionally, i preserves < in the sense that for every q, r : Q -- q < r ⇒ i (q) < F i (r ). -- ∃! : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') -- ∃! A B = isContr (Σ A B) -- isContr' A = Σ[ x ∈ A ] (∀ y → x ≡ y) -- ℚ-IsInitialObject : ∀(OF : OrderedField {ℓ} {ℓ'}) → isContr (OrderedFieldMor ℚOF OF) -- ℚ-IsInitialObject OF = {!!} , {!!} -- Definition 4.3.5. Let (F, 0 F , 1 F , + F , · F , min F , max F , < F ) be an ordered field, so that we get a -- canonical morphism i : Q → F of ordered fields, as in Lemma 4.3.3. We say the ordered field -- (F, 0 F , 1 F , + F , · F , min F , max F , < F ) is Archimedean if -- (∀x, y : F )(∃q : Q)x < i (q) < y. -- IsArchimedian : OrderedField {ℓ} {ℓ'} → Type (ℓ-max ℓ ℓ') -- IsArchimedian OF = let (orderedfieldmor i _) = fst (ℚ-IsInitialObject OF) -- open OrderedField OF -- ℚ = OrderedField.Carrier ℚOF -- in ∀ x y → ∃[ q ∈ ℚ ] (x < i q) × (i q < y) -- If the ordered field is clear from the context, we will identify rationals q : Q with their in- -- clusion i (q) in the ordered field, so that we may also say that (F, 0 F , 1 F , + F , · F , min F , max F , < F ) -- is Archimedean if -- (∀x, y : F )(∃q : Q)x < q < y. -- Example 4.3.6. In an Archimedean ordered field, all numbers are bounded by rationals. That -- is, for a given x : F , there exist q, r : Q with q < x < r . -- Example-4-3-6 : (OF : OrderedField {ℓ} {ℓ'}) -- → IsArchimedian OF -- → let open OrderedField OF renaming (Carrier to F) -- (orderedfieldmor i _) = fst (ℚ-IsInitialObject OF) -- ℚ = OrderedField.Carrier ℚOF -- in ∀(x : F) → (∃[ q ∈ ℚ ] i q < x) × (∃[ r ∈ ℚ ] x < i r) -- -- This follows from applying the Archimedean property to x − 1 < x and x < x + 1. -- Example-4-3-6 OF isArchimedian = {!!} -- 4.4 Cauchy completeness of real numbers -- -- We focus on Cauchy completeness, rather than Dedekind or Dedekind-MacNeille completeness, -- as we will focus on the computation of digit expansions, for which Cauchy completeness suffices. -- In order to state that an ordered field is Cauchy complete, we need to define when sequences -- are Cauchy, and when a sequence has a limit. We also take the opportunity to define -- the set of Cauchy reals in Definition 4.4.9. Surprisingly, this ordered field cannot be shown to -- be Cauchy complete. -- Fix an ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ). module _ {ℓ ℓ'} (OF : PartiallyOrderedField {ℓ} {ℓ'}) where open PartiallyOrderedField OF renaming (Carrier to F) -- module ℚ = PartiallyOrderedField ℚ {- open PartiallyOrderedField ℚOF using () renaming (_<_ to _<ᵣ_; 0f to 0ᵣ) ℚ = PartiallyOrderedField.Carrier ℚOF iᵣ = PartiallyOrderedFieldMor.fun (fst (ℚ-IsInitialObject OF)) open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_) -- We get a notion of distance, given by the absolute value as -- |x − y| := max F (x − y, −(x − y)). distance : ∀(x y : F) → F distance x y = max (x - y) (- (x - y)) -- Consider a sequence x : N → F of elements of F . Classically, we may state that x is Cauchy as -- (∀ε : Q + )(∃N : N)(∀m, n : N)m, n ≥ N ⇒ |x m − x n | < ε, IsCauchy : (x : ℕ → F) → Type (ℓ-max ℓ' ℚℓ) IsCauchy x = ∀(ε : ℚ) → 0ᵣ <ᵣ ε → ∃[ N ∈ ℕ ] ∀(m n : ℕ) → N ≤ₙ m → N ≤ₙ n → distance (x m) (x n) < iᵣ ε -- We can interpret the quantifiers as in Definition 2.4.5. -- NOTE: this is the case, since `∃ A B = ∥ Σ A B ∥` -- Following a propositions-as-types interpretation, we may also state that x is Cauchy as the -- structure -- (Πε : Q + )(ΣN : N)(Πm, n : N)m, n ≥ N → |x m − x n | < ε. -- The dependent sum represents a choice of index N for every error ε, and so we have arrived at the following definition. -- Definition 4.4.1. -- For a sequence of reals x : N → F , a a modulus of Cauchy convergence is a map M : Q + → N such that -- (∀ε : Q + )(∀m, n : N)m, n ≥ M (ε) ⇒ |x m − x n | < ε. -- NOTE: do we already call these x "reals" ? -- NOTE: we are using the Modulus-type `((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)` a few times and might abbreviate it IsModulusOfCauchyConvergence : (x : ℕ → F) → (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)) → Type (ℓ-max ℓ' ℚℓ) IsModulusOfCauchyConvergence x M = ∀(ε : ℚ) → (p : 0ᵣ <ᵣ ε) → ∀(m n : ℕ) → let instance _ = p in M ε ≤ₙ m → M ε ≤ₙ n → distance (x m) (x n) < iᵣ ε -- In constructive mathematics, we typically use such sequences with modulus, for example, -- because they can sometimes be used to compute limits of Cauchy sequences, avoiding choice axioms. -- Definition 4.4.2. -- A number l : F is the limit of a sequence x : N → F if the sequence -- converges to l in the usual sense: -- (∀ε : Q + )(∃N : N)(∀n : N)n ≥ N ⇒ |x n − l | < ε. IsLimit : (x : ℕ → F) → (l : F) → Type (ℓ-max ℓ' ℚℓ) IsLimit x l = ∀(ε : ℚ) → (0ᵣ <ᵣ ε) → ∃[ N ∈ ℕ ] ∀(n : ℕ) → N ≤ₙ n → distance (x n) l < iᵣ ε -- Remark 4.4.3. We do not consider the statement of convergence in propositions-as-types -- -- (Πε : Q + )(ΣN : N)(Πn : N)n ≥ N → |x n − l | < ε, -- -- because if the sequence has a modulus of Cauchy convergence M, then λε.M (ε/2) is a -- modulus of convergence to the limit l, so that we get an element of the above type. -- Definition 4.4.4. -- The ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ) is said to be Cauchy complete -- if for every sequence x with modulus of Cauchy convergence M, we have a limit of x. -- In other words, an ordered field is Cauchy complete iff from a sequence–modulus pair (x, M), we can compute a limit of x. IsCauchyComplete : Type (ℓ-max (ℓ-max ℓ ℓ') ℚℓ) IsCauchyComplete = (x : ℕ → F) → (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)) → IsModulusOfCauchyConvergence x M → Σ[ l ∈ F ] IsLimit x l -- For the remainder of this section, additionally assume that F is Archimedean. module _ (isArchimedian : IsArchimedian OF) where -- Lemma 4.4.5. -- The type of limits of a fixed sequence x : N → F is a proposition. Lemma-4-4-5 : ∀(x : ℕ → F) → isProp (Σ[ l ∈ F ] IsLimit x l) -- Proof. This can be shown using the usual proof that limits are unique in Archimedean ordered fields, followed by an application of Lemma 2.6.20. Lemma-4-4-5 x = {!!} -- Corollary 4.4.6. -- Fix a given sequence x : N → F . Suppose that we know that there exists a -- limit of the sequence. Then we can compute a limit of the sequence. Corollary-4-4-6 : ∀(x : ℕ → F) → (∃[ l ∈ F ] IsLimit x l) → Σ[ l ∈ F ] IsLimit x l -- Proof. By applying the induction principle of propositional truncations of Definition 2.4.3. Corollary-4-4-6 x p = {!!} , {!!} -- Corollary 4.4.7. -- Fix a given sequence x : N → F . Suppose that, from a modulus of Cauchy -- convergence, we can compute a limit of the sequence. Then from the existence of the modulus of -- Cauchy convergence we can compute a limit of the sequence. Corollary-4-4-7 : (x : ℕ → F) → ( (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)) → (isMCC : IsModulusOfCauchyConvergence x M) → Σ[ l ∈ F ] IsLimit x l ) ----------------------------------------------------------------------- → ∃[ M ∈ ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ) ] IsModulusOfCauchyConvergence x M → Σ[ l ∈ F ] IsLimit x l -- Proof. By applying the induction principle of propositional truncations of Definition 2.4.3. Corollary-4-4-7 x f p = {!!} -- We can thus compute the limit of x : N → F as the number lim(x, p), where p is a proof -- that the limit of x exists. We will rather use the more traditional notation lim n→∞ x n for this -- number. -- Example 4.4.8 (Exponential function). -- In a Cauchy complete Archimedean ordered field, we can define an exponential function exp : F → F by -- -- exp(x) = Σ_{k=0}^{∞} (xᵏ) / (k!) -- -- For a given input x, we obtain the existence of a modulus of Cauchy convergence for the output from boundedness of -- x, that is, from the fact that (∃q, r : Q) q < x < r . exp : F → F exp x = {!!} Example-4-4-8 : ∀(x : F) → ∃[ M ∈ ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ) ] IsModulusOfCauchyConvergence {!!} M Example-4-4-8 x with Example-4-3-6 OF isArchimedian x ... | q' , r' = let q : ∃[ q ∈ ℚ ] iᵣ q < x q = q' r : ∃[ r ∈ ℚ ] x < iᵣ r r = r' in {!!} -- The point of this work is that, because we have a single language for properties and struc- -- ture, we can see more precisely what is needed for certain computations. In the above example, -- we explicitly do not require that inputs come equipped with a modulus of Cauchy convergence, -- but rather that there exists such a modulus. On the one hand, we do need a modulus to obtain -- the limit, but as the limit value is independent of the chosen modulus, existence of such a -- modulus suffices. -} -}
{ "alphanum_fraction": 0.4771779619, "avg_line_length": 43.1342925659, "ext": "agda", "hexsha": "d6377335b961517cdee89c6951a94ec0ffcf443e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Consequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Consequences.agda", "max_line_length": 215, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Consequences.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 25426, "size": 53961 }
module Prelude.Ord where open import Agda.Primitive open import Prelude.Equality open import Prelude.Decidable open import Prelude.Bool open import Prelude.Function open import Prelude.Empty data Comparison {a} {A : Set a} (_<_ : A → A → Set a) (x y : A) : Set a where less : (lt : x < y) → Comparison _<_ x y equal : (eq : x ≡ y) → Comparison _<_ x y greater : (gt : y < x) → Comparison _<_ x y isLess : ∀ {a} {A : Set a} {R : A → A → Set a} {x y} → Comparison R x y → Bool isLess (less _) = true isLess (equal _) = false isLess (greater _) = false {-# INLINE isLess #-} isGreater : ∀ {a} {A : Set a} {R : A → A → Set a} {x y} → Comparison R x y → Bool isGreater (less _) = false isGreater (equal _) = false isGreater (greater _) = true {-# INLINE isGreater #-} data LessEq {a} {A : Set a} (_<_ : A → A → Set a) (x y : A) : Set a where instance less : x < y → LessEq _<_ x y equal : x ≡ y → LessEq _<_ x y record Ord {a} (A : Set a) : Set (lsuc a) where infix 4 _<_ _≤_ field _<_ : A → A → Set a _≤_ : A → A → Set a compare : ∀ x y → Comparison _<_ x y eq-to-leq : ∀ {x y} → x ≡ y → x ≤ y lt-to-leq : ∀ {x y} → x < y → x ≤ y leq-to-lteq : ∀ {x y} → x ≤ y → LessEq _<_ x y open Ord {{...}} public {-# DISPLAY Ord._<_ _ a b = a < b #-} {-# DISPLAY Ord._≤_ _ a b = a ≤ b #-} {-# DISPLAY Ord.compare _ a b = compare a b #-} {-# DISPLAY Ord.eq-to-leq _ eq = eq-to-leq eq #-} {-# DISPLAY Ord.lt-to-leq _ eq = lt-to-leq eq #-} {-# DISPLAY Ord.leq-to-lteq _ eq = leq-to-lteq eq #-} module _ {a} {A : Set a} {{_ : Ord A}} where _>_ : A → A → Set a a > b = b < a _≥_ : A → A → Set a a ≥ b = b ≤ a infix 4 _>_ _≥_ _<?_ _≤?_ _>?_ _≥?_ _<?_ : A → A → Bool x <? y = isLess (compare x y) _>?_ : A → A → Bool _>?_ = flip _<?_ _≤?_ : A → A → Bool x ≤? y = not (y <? x) _≥?_ : A → A → Bool x ≥? y = not (x <? y) min : A → A → A min x y = if x <? y then x else y max : A → A → A max x y = if x >? y then x else y {-# INLINE _>?_ #-} {-# INLINE _<?_ #-} {-# INLINE _≤?_ #-} {-# INLINE _≥?_ #-} {-# INLINE min #-} {-# INLINE max #-} --- Instances --- -- Default implementation of _≤_ -- defaultOrd : ∀ {a} {A : Set a} {_<_ : A → A → Set a} → (∀ x y → Comparison _<_ x y) → Ord A Ord._<_ (defaultOrd compare) = _ Ord._≤_ (defaultOrd {_<_ = _<_} compare) = LessEq _<_ Ord.compare (defaultOrd compare) = compare Ord.eq-to-leq (defaultOrd compare) = equal Ord.lt-to-leq (defaultOrd compare) = less Ord.leq-to-lteq (defaultOrd compare) = id -- Generic instance by injection -- module _ {a b} {A : Set a} {B : Set b} {S : A → A → Set a} {T : B → B → Set b} where mapComparison : {f : A → B} → (∀ {x y} → S x y → T (f x) (f y)) → ∀ {x y} → Comparison S x y → Comparison T (f x) (f y) mapComparison f (less lt) = less (f lt) mapComparison f (equal refl) = equal refl mapComparison f (greater gt) = greater (f gt) injectComparison : {f : B → A} → (∀ {x y} → f x ≡ f y → x ≡ y) → (∀ {x y} → S (f x) (f y) → T x y) → ∀ {x y} → Comparison S (f x) (f y) → Comparison T x y injectComparison _ g (less p) = less (g p) injectComparison inj g (equal p) = equal (inj p) injectComparison _ g (greater p) = greater (g p) flipComparison : ∀ {a} {A : Set a} {S : A → A → Set a} {x y} → Comparison S x y → Comparison (flip S) x y flipComparison (less lt) = greater lt flipComparison (equal eq) = equal eq flipComparison (greater gt) = less gt OrdBy : ∀ {a} {A B : Set a} {{OrdA : Ord A}} {f : B → A} → (∀ {x y} → f x ≡ f y → x ≡ y) → Ord B OrdBy {f = f} inj = defaultOrd λ x y → injectComparison inj id (compare (f x) (f y)) {-# INLINE OrdBy #-} {-# INLINE defaultOrd #-} {-# INLINE injectComparison #-} -- Bool -- data LessBool : Bool → Bool → Set where false<true : LessBool false true private compareBool : ∀ x y → Comparison LessBool x y compareBool false false = equal refl compareBool false true = less false<true compareBool true false = greater false<true compareBool true true = equal refl instance OrdBool : Ord Bool OrdBool = defaultOrd compareBool --- Ord with proofs --- record Ord/Laws {a} (A : Set a) : Set (lsuc a) where field overlap {{super}} : Ord A less-antirefl : {x : A} → x < x → ⊥ less-trans : {x y z : A} → x < y → y < z → x < z open Ord/Laws {{...}} public hiding (super) module _ {a} {A : Set a} {{OrdA : Ord/Laws A}} where less-antisym : {x y : A} → x < y → y < x → ⊥ less-antisym lt lt₁ = less-antirefl {A = A} (less-trans {A = A} lt lt₁) leq-antisym : {x y : A} → x ≤ y → y ≤ x → x ≡ y leq-antisym x≤y y≤x with leq-to-lteq {A = A} x≤y | leq-to-lteq {A = A} y≤x ... | _ | equal refl = refl ... | less x<y | less y<x = ⊥-elim (less-antisym x<y y<x) ... | equal refl | less _ = refl leq-trans : {x y z : A} → x ≤ y → y ≤ z → x ≤ z leq-trans x≤y y≤z with leq-to-lteq {A = A} x≤y | leq-to-lteq {A = A} y≤z ... | equal refl | _ = y≤z ... | _ | equal refl = x≤y ... | less x<y | less y<z = lt-to-leq {A = A} (less-trans {A = A} x<y y<z) leq-less-antisym : {x y : A} → x ≤ y → y < x → ⊥ leq-less-antisym {x = x} {y} x≤y y<x = case leq-antisym x≤y (lt-to-leq {A = A} y<x) of λ where refl → less-antirefl {A = A} y<x OrdLawsBy : ∀ {a} {A B : Set a} {{OrdA : Ord/Laws A}} {f : B → A} → (∀ {x y} → f x ≡ f y → x ≡ y) → Ord/Laws B Ord/Laws.super (OrdLawsBy inj) = OrdBy inj less-antirefl {{OrdLawsBy {A = A} _}} = less-antirefl {A = A} less-trans {{OrdLawsBy {A = A} _}} = less-trans {A = A} instance OrdLawsBool : Ord/Laws Bool Ord/Laws.super OrdLawsBool = it less-antirefl {{OrdLawsBool}} () less-trans {{OrdLawsBool}} false<true ()
{ "alphanum_fraction": 0.5297709924, "avg_line_length": 30.8638743455, "ext": "agda", "hexsha": "804006452e9246b15665679935a53149b91540de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/Ord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/Ord.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/Ord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2239, "size": 5895 }
-- Intuitionistic propositional calculus. -- Translation between different formalisations of syntax. module IPC.Syntax.Translation where open import IPC.Syntax.Common public import IPC.Syntax.ClosedHilbertSequential as CHS import IPC.Syntax.ClosedHilbert as CH import IPC.Syntax.HilbertSequential as HS import IPC.Syntax.Hilbert as H import IPC.Syntax.Gentzen as G open HS using () renaming (_⊦⊢_ to HS⟨_⊦⊢_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open H using () renaming (_⊢_ to H⟨_⊢_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩) public -- Available translations. -- -- ┌─────┬─────┬─────┬─────┬─────┐ -- │ CHS │ CH │ HS │ H │ G │ -- ┌─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CHS │ │ d │ d │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CH │ d │ │ ∘ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ HS │ d │ ∘ │ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ H │ ∘ │ d │ d │ │ d │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ G │ ∘ │ ∘ │ ∘ │ d │ │ -- └─────┴─────┴─────┴─────┴─────┴─────┘ -- -- d : Direct translation. -- ∘ : Composition of translations. -- Translation from closed Hilbert-style sequential to closed Hilbert-style. chs→ch : ∀ {A} → CHS.⊢ A → CH.⊢ A chs→ch (Ξ , ts) = chs⊦→ch ts top where chs⊦→ch : ∀ {A Ξ} → CHS.⊦⊢ Ξ → A ∈ Ξ → CH.⊢ A chs⊦→ch (CHS.mp i j ts) top = CH.app (chs⊦→ch ts i) (chs⊦→ch ts j) chs⊦→ch (CHS.ci ts) top = CH.ci chs⊦→ch (CHS.ck ts) top = CH.ck chs⊦→ch (CHS.cs ts) top = CH.cs chs⊦→ch (CHS.cpair ts) top = CH.cpair chs⊦→ch (CHS.cfst ts) top = CH.cfst chs⊦→ch (CHS.csnd ts) top = CH.csnd chs⊦→ch (CHS.unit ts) top = CH.unit chs⊦→ch (CHS.cboom ts) top = CH.cboom chs⊦→ch (CHS.cinl ts) top = CH.cinl chs⊦→ch (CHS.cinr ts) top = CH.cinr chs⊦→ch (CHS.ccase ts) top = CH.ccase chs⊦→ch (CHS.mp i j ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ci ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ck ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cs ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cpair ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cfst ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.csnd ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.unit ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cboom ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cinl ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cinr ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ccase ts) (pop k) = chs⊦→ch ts k -- Translation from closed Hilbert-style to closed Hilbert-style sequential. ch→chs : ∀ {A} → CH.⊢ A → CHS.⊢ A ch→chs (CH.app t u) = CHS.app (ch→chs t) (ch→chs u) ch→chs CH.ci = ∅ , CHS.ci CHS.nil ch→chs CH.ck = ∅ , CHS.ck CHS.nil ch→chs CH.cs = ∅ , CHS.cs CHS.nil ch→chs CH.cpair = ∅ , CHS.cpair CHS.nil ch→chs CH.cfst = ∅ , CHS.cfst CHS.nil ch→chs CH.csnd = ∅ , CHS.csnd CHS.nil ch→chs CH.unit = ∅ , CHS.unit CHS.nil ch→chs CH.cboom = ∅ , CHS.cboom CHS.nil ch→chs CH.cinl = ∅ , CHS.cinl CHS.nil ch→chs CH.cinr = ∅ , CHS.cinr CHS.nil ch→chs CH.ccase = ∅ , CHS.ccase CHS.nil -- Translation from Hilbert-style sequential to Hilbert-style. hs→h : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ hs→h (Ξ , ts) = hs⊦→h ts top where hs⊦→h : ∀ {A Ξ Γ} → HS⟨ Γ ⊦⊢ Ξ ⟩ → A ∈ Ξ → H⟨ Γ ⊢ A ⟩ hs⊦→h (HS.var i ts) top = H.var i hs⊦→h (HS.mp i j ts) top = H.app (hs⊦→h ts i) (hs⊦→h ts j) hs⊦→h (HS.ci ts) top = H.ci hs⊦→h (HS.ck ts) top = H.ck hs⊦→h (HS.cs ts) top = H.cs hs⊦→h (HS.cpair ts) top = H.cpair hs⊦→h (HS.cfst ts) top = H.cfst hs⊦→h (HS.csnd ts) top = H.csnd hs⊦→h (HS.unit ts) top = H.unit hs⊦→h (HS.cboom ts) top = H.cboom hs⊦→h (HS.cinl ts) top = H.cinl hs⊦→h (HS.cinr ts) top = H.cinr hs⊦→h (HS.ccase ts) top = H.ccase hs⊦→h (HS.var i ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.mp i j ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ci ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ck ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cs ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cpair ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cfst ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.csnd ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.unit ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cboom ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cinl ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cinr ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ccase ts) (pop k) = hs⊦→h ts k -- Translation from Hilbert-style to Hilbert-style sequential. h→hs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ h→hs (H.var i) = ∅ , HS.var i HS.nil h→hs (H.app t u) = HS.app (h→hs t) (h→hs u) h→hs H.ci = ∅ , HS.ci HS.nil h→hs H.ck = ∅ , HS.ck HS.nil h→hs H.cs = ∅ , HS.cs HS.nil h→hs H.cpair = ∅ , HS.cpair HS.nil h→hs H.cfst = ∅ , HS.cfst HS.nil h→hs H.csnd = ∅ , HS.csnd HS.nil h→hs H.unit = ∅ , HS.unit HS.nil h→hs H.cboom = ∅ , HS.cboom HS.nil h→hs H.cinl = ∅ , HS.cinl HS.nil h→hs H.cinr = ∅ , HS.cinr HS.nil h→hs H.ccase = ∅ , HS.ccase HS.nil -- Deduction and detachment theorems for Hilbert-style sequential. hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ hs-lam = h→hs ∘ H.lam ∘ hs→h hs-lam⋆₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ hs-lam⋆₀ = h→hs ∘ H.lam⋆₀ ∘ hs→h hs-det : ∀ {A B Γ} → HS⟨ Γ ⊢ A ▻ B ⟩ → HS⟨ Γ , A ⊢ B ⟩ hs-det = h→hs ∘ H.det ∘ hs→h hs-det⋆₀ : ∀ {A Γ} → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ → HS⟨ Γ ⊢ A ⟩ hs-det⋆₀ = h→hs ∘ H.det⋆₀ ∘ hs→h -- Translation from closed Hilbert-style sequential to Hilbert-style sequential. chs→hs₀ : ∀ {A} → CHS.⊢ A → HS⟨ ∅ ⊢ A ⟩ chs→hs₀ (Ξ , ts) = Ξ , chs⊦→hs₀⊦ ts where chs⊦→hs₀⊦ : ∀ {Ξ} → CHS.⊦⊢ Ξ → HS⟨ ∅ ⊦⊢ Ξ ⟩ chs⊦→hs₀⊦ CHS.nil = HS.nil chs⊦→hs₀⊦ (CHS.mp i j ts) = HS.mp i j (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ci ts) = HS.ci (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ck ts) = HS.ck (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cs ts) = HS.cs (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cpair ts) = HS.cpair (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cfst ts) = HS.cfst (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.csnd ts) = HS.csnd (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.unit ts) = HS.unit (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cboom ts) = HS.cboom (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cinl ts) = HS.cinl (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cinr ts) = HS.cinr (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ccase ts) = HS.ccase (chs⊦→hs₀⊦ ts) chs→hs : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ chs→hs t = hs-det⋆₀ (chs→hs₀ t) -- Translation from Hilbert-style sequential to closed Hilbert-style sequential. hs₀→chs : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CHS.⊢ A hs₀→chs (Ξ , ts) = Ξ , hs₀⊦→chs⊦ ts where hs₀⊦→chs⊦ : ∀ {Ξ} → HS⟨ ∅ ⊦⊢ Ξ ⟩ → CHS.⊦⊢ Ξ hs₀⊦→chs⊦ HS.nil = CHS.nil hs₀⊦→chs⊦ (HS.var () ts) hs₀⊦→chs⊦ (HS.mp i j ts) = CHS.mp i j (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ci ts) = CHS.ci (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ck ts) = CHS.ck (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cs ts) = CHS.cs (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cpair ts) = CHS.cpair (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cfst ts) = CHS.cfst (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.csnd ts) = CHS.csnd (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.unit ts) = CHS.unit (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cboom ts) = CHS.cboom (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cinl ts) = CHS.cinl (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cinr ts) = CHS.cinr (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ccase ts) = CHS.ccase (hs₀⊦→chs⊦ ts) hs→chs : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A hs→chs t = hs₀→chs (hs-lam⋆₀ t) -- Translation from closed Hilbert-style to Hilbert-style. ch→h₀ : ∀ {A} → CH.⊢ A → H⟨ ∅ ⊢ A ⟩ ch→h₀ (CH.app t u) = H.app (ch→h₀ t) (ch→h₀ u) ch→h₀ CH.ci = H.ci ch→h₀ CH.ck = H.ck ch→h₀ CH.cs = H.cs ch→h₀ CH.cpair = H.cpair ch→h₀ CH.cfst = H.cfst ch→h₀ CH.csnd = H.csnd ch→h₀ CH.unit = H.unit ch→h₀ CH.cboom = H.cboom ch→h₀ CH.cinl = H.cinl ch→h₀ CH.cinr = H.cinr ch→h₀ CH.ccase = H.ccase ch→h : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ ch→h t = H.det⋆₀ (ch→h₀ t) -- Translation from Hilbert-style to closed Hilbert-style. h₀→ch : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CH.⊢ A h₀→ch (H.var ()) h₀→ch (H.app t u) = CH.app (h₀→ch t) (h₀→ch u) h₀→ch H.ci = CH.ci h₀→ch H.ck = CH.ck h₀→ch H.cs = CH.cs h₀→ch H.cpair = CH.cpair h₀→ch H.cfst = CH.cfst h₀→ch H.csnd = CH.csnd h₀→ch H.unit = CH.unit h₀→ch H.cboom = CH.cboom h₀→ch H.cinl = CH.cinl h₀→ch H.cinr = CH.cinr h₀→ch H.ccase = CH.ccase h→ch : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A h→ch t = h₀→ch (H.lam⋆₀ t) -- Translation from Hilbert-style to Gentzen-style. h→g : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ h→g (H.var i) = G.var i h→g (H.app t u) = G.app (h→g t) (h→g u) h→g H.ci = G.ci h→g H.ck = G.ck h→g H.cs = G.cs h→g H.cpair = G.cpair h→g H.cfst = G.cfst h→g H.csnd = G.csnd h→g H.unit = G.unit h→g H.cboom = G.cboom h→g H.cinl = G.cinl h→g H.cinr = G.cinr h→g H.ccase = G.ccase -- Translation from Gentzen-style to Hilbert-style. g→h : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ g→h (G.var i) = H.var i g→h (G.lam t) = H.lam (g→h t) g→h (G.app t u) = H.app (g→h t) (g→h u) g→h (G.pair t u) = H.pair (g→h t) (g→h u) g→h (G.fst t) = H.fst (g→h t) g→h (G.snd t) = H.snd (g→h t) g→h G.unit = H.unit g→h (G.boom t) = H.boom (g→h t) g→h (G.inl t) = H.inl (g→h t) g→h (G.inr t) = H.inr (g→h t) g→h (G.case t u v) = H.case (g→h t) (g→h u) (g→h v) -- Additional translations from closed Hilbert-style sequential. chs→h₀ : ∀ {A} → CHS.⊢ A → H⟨ ∅ ⊢ A ⟩ chs→h₀ = ch→h₀ ∘ chs→ch chs→h : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ chs→h = ch→h ∘ chs→ch chs→g₀ : ∀ {A} → CHS.⊢ A → G⟨ ∅ ⊢ A ⟩ chs→g₀ = h→g ∘ chs→h₀ chs→g : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ chs→g = h→g ∘ chs→h -- Additional translations from closed Hilbert-style. ch→hs₀ : ∀ {A} → CH.⊢ A → HS⟨ ∅ ⊢ A ⟩ ch→hs₀ = chs→hs₀ ∘ ch→chs ch→hs : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ ch→hs = chs→hs ∘ ch→chs ch→g₀ : ∀ {A} → CH.⊢ A → G⟨ ∅ ⊢ A ⟩ ch→g₀ = h→g ∘ ch→h₀ ch→g : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ ch→g = h→g ∘ ch→h -- Additional translations from Hilbert-style sequential. hs₀→ch : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CH.⊢ A hs₀→ch = chs→ch ∘ hs₀→chs hs→ch : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A hs→ch = chs→ch ∘ hs→chs hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ hs→g = h→g ∘ hs→h -- Additional translations from Hilbert-style. h₀→chs : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CHS.⊢ A h₀→chs = ch→chs ∘ h₀→ch h→chs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A h→chs = ch→chs ∘ h→ch -- Additional translations from Gentzen-style. g₀→chs : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CHS.⊢ A g₀→chs = h₀→chs ∘ g→h g→chs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A g→chs = h→chs ∘ g→h g₀→ch : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CH.⊢ A g₀→ch = h₀→ch ∘ g→h g→ch : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A g→ch = h→ch ∘ g→h g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ g→hs = h→hs ∘ g→h
{ "alphanum_fraction": 0.4854395355, "avg_line_length": 31.8583815029, "ext": "agda", "hexsha": "8b6c590c68d845123ec29ff3784b5bbacc6abbe7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Syntax/Translation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Syntax/Translation.agda", "max_line_length": 80, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Syntax/Translation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 6004, "size": 11023 }
------------------------------------------------------------------------------ -- Properties stated in the Burstall's paper ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Data.List open import FOTC.Data.List.PropertiesATP open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.ListN-ATP open import FOTC.Program.SortList.Properties.Totality.OrdList.FlattenATP open import FOTC.Program.SortList.Properties.Totality.OrdListATP open import FOTC.Program.SortList.Properties.Totality.OrdTreeATP open import FOTC.Program.SortList.Properties.Totality.TreeATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- Burstall's lemma: If t is ordered then totree(i, t) is ordered. toTree-OrdTree : ∀ {item t} → N item → Tree t → OrdTree t → OrdTree (toTree · item · t) toTree-OrdTree {item} Nitem tnil OTt = prf where postulate prf : OrdTree (toTree · item · nil) {-# ATP prove prf #-} toTree-OrdTree {item} Nitem (ttip {i} Ni) OTt = case prf₁ prf₂ (x>y∨x≤y Ni Nitem) where postulate prf₁ : i > item → OrdTree (toTree · item · tip i) {-# ATP prove prf₁ x≤x x<y→x≤y x>y→x≰y #-} postulate prf₂ : i ≤ item → OrdTree (toTree · item · tip i) {-# ATP prove prf₂ x≤x #-} toTree-OrdTree {item} Nitem (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTtnode = case (prf₁ (toTree-OrdTree Nitem Tt₁ (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (prf₂ (toTree-OrdTree Nitem Tt₂ (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (x>y∨x≤y Ni Nitem) where postulate prf₁ : ordTree (toTree · item · t₁) ≡ true → OrdTree t₂ → i > item → OrdTree (toTree · item · node t₁ i t₂) {-# ATP prove prf₁ &&-list₄-t x>y→x≰y le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool toTree-OrdTree-helper₁ #-} postulate prf₂ : ordTree (toTree · item · t₂) ≡ true → OrdTree t₁ → i ≤ item → OrdTree (toTree · item · node t₁ i t₂) {-# ATP prove prf₂ &&-list₄-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool toTree-OrdTree-helper₂ #-} ------------------------------------------------------------------------------ -- Burstall's lemma: ord(maketree(is)). -- makeTree-TreeOrd : ∀ {is} → ListN is → OrdTree (makeTree is) -- makeTree-TreeOrd LNis = -- ind-lit OrdTree toTree nil LNis ordTree-nil -- (λ Nx y TOy → toTree-OrdTree Nx {!!} TOy) makeTree-OrdTree : ∀ {is} → ListN is → OrdTree (makeTree is) makeTree-OrdTree lnnil = prf where postulate prf : OrdTree (makeTree []) {-# ATP prove prf #-} makeTree-OrdTree (lncons {i} {is} Ni Lis) = prf (makeTree-OrdTree Lis) where postulate prf : OrdTree (makeTree is) → OrdTree (makeTree (i ∷ is)) {-# ATP prove prf makeTree-Tree toTree-OrdTree #-} ------------------------------------------------------------------------------ -- Burstall's lemma: If ord(is1) and ord(is2) and is1 ≤ is2 then -- ord(concat(is1, is2)). ++-OrdList : ∀ {is js} → ListN is → ListN js → OrdList is → OrdList js → ≤-Lists is js → OrdList (is ++ js) ++-OrdList {js = js} lnnil LNjs LOis LOjs is≤js = subst OrdList (sym (++-leftIdentity js)) LOjs ++-OrdList {js = js} (lncons {i} {is} Ni LNis) LNjs OLi∷is OLjs i∷is≤js = subst OrdList (sym (++-∷ i is js)) (lemma (++-OrdList LNis LNjs (subList-OrdList Ni LNis OLi∷is) OLjs (&&-list₂-t₂ (le-ItemList-Bool Ni LNjs) (le-Lists-Bool LNis LNjs) (trans (sym (le-Lists-∷ i is js)) i∷is≤js)))) where postulate lemma : OrdList (is ++ js) → OrdList (i ∷ is ++ js) {-# ATP prove lemma &&-list₂-t ++-OrdList-helper le-ItemList-Bool le-Lists-Bool ordList-Bool #-} ------------------------------------------------------------------------------ -- Burstall's lemma: If t is ordered then (flatten t) is ordered. flatten-OrdList : ∀ {t} → Tree t → OrdTree t → OrdList (flatten t) flatten-OrdList tnil OTt = subst OrdList (sym flatten-nil) ordList-[] flatten-OrdList (ttip {i} Ni) OTt = prf where postulate prf : OrdList (flatten (tip i)) {-# ATP prove prf #-} flatten-OrdList (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTt = prf (++-OrdList (flatten-ListN Tt₁) (flatten-ListN Tt₂) (flatten-OrdList Tt₁ (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTt)) (flatten-OrdList Tt₂ (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTt)) (flatten-OrdList-helper Tt₁ Ni Tt₂ OTt)) where postulate prf : OrdList (flatten t₁ ++ flatten t₂) → -- Indirect IH. OrdList (flatten (node t₁ i t₂)) {-# ATP prove prf #-}
{ "alphanum_fraction": 0.5670273244, "avg_line_length": 44.6967213115, "ext": "agda", "hexsha": "4a2e4094ca5cf653a394d630c38c3a4ed2ffed8c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/PropertiesATP.agda", "max_line_length": 113, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1635, "size": 5453 }
{-# OPTIONS --without-K #-} module TypeEquiv where import Level using (zero; suc) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; proj₁; proj₂; _,_) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Function renaming (_∘_ to _○_) open import Relation.Binary.PropositionalEquality using (refl) open import Equiv using (_∼_; refl∼; _≃_; id≃; sym≃; ≃IsEquiv; qinv; _⊎≃_; _×≃_) ------------------------------------------------------------------------------ -- Type Equivalences -- for each type combinator, define two functions that are inverses, and -- establish an equivalence. These are all in the 'semantic space' with -- respect to Pi combinators. -- swap₊ swap₊ : {A B : Set} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b abstract swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id swapswap₊ (inj₁ a) = refl swapswap₊ (inj₂ b) = refl swap₊equiv : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) swap₊equiv = (swap₊ , qinv swap₊ swapswap₊ swapswap₊) -- unite₊ and uniti₊ unite₊ : {A : Set} → ⊥ ⊎ A → A unite₊ (inj₁ ()) unite₊ (inj₂ y) = y uniti₊ : {A : Set} → A → ⊥ ⊎ A uniti₊ a = inj₂ a abstract uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A} uniti₊∘unite₊ (inj₁ ()) uniti₊∘unite₊ (inj₂ y) = refl -- this is so easy, Agda can figure it out by itself (see below) unite₊∘uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A} unite₊∘uniti₊ _ = refl unite₊equiv : {A : Set} → (⊥ ⊎ A) ≃ A unite₊equiv = (unite₊ , qinv uniti₊ unite₊∘uniti₊ uniti₊∘unite₊) uniti₊equiv : {A : Set} → A ≃ (⊥ ⊎ A) uniti₊equiv = sym≃ unite₊equiv -- unite₊′ and uniti₊′ unite₊′ : {A : Set} → A ⊎ ⊥ → A unite₊′ (inj₁ x) = x unite₊′ (inj₂ ()) uniti₊′ : {A : Set} → A → A ⊎ ⊥ uniti₊′ a = inj₁ a abstract uniti₊′∘unite₊′ : {A : Set} → uniti₊′ ○ unite₊′ ∼ id {A = A ⊎ ⊥} uniti₊′∘unite₊′ (inj₁ _) = refl uniti₊′∘unite₊′ (inj₂ ()) -- this is so easy, Agda can figure it out by itself (see below) unite₊′∘uniti₊′ : {A : Set} → unite₊′ ○ uniti₊′ ∼ id {A = A} unite₊′∘uniti₊′ _ = refl unite₊′equiv : {A : Set} → (A ⊎ ⊥) ≃ A unite₊′equiv = (unite₊′ , qinv uniti₊′ refl∼ uniti₊′∘unite₊′) uniti₊′equiv : {A : Set} → A ≃ (A ⊎ ⊥) uniti₊′equiv = sym≃ unite₊′equiv -- unite⋆ and uniti⋆ unite⋆ : {A : Set} → ⊤ × A → A unite⋆ (tt , x) = x uniti⋆ : {A : Set} → A → ⊤ × A uniti⋆ x = tt , x abstract uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A} uniti⋆∘unite⋆ (tt , x) = refl unite⋆equiv : {A : Set} → (⊤ × A) ≃ A unite⋆equiv = unite⋆ , qinv uniti⋆ refl∼ uniti⋆∘unite⋆ uniti⋆equiv : {A : Set} → A ≃ (⊤ × A) uniti⋆equiv = sym≃ unite⋆equiv -- unite⋆′ and uniti⋆′ unite⋆′ : {A : Set} → A × ⊤ → A unite⋆′ (x , tt) = x uniti⋆′ : {A : Set} → A → A × ⊤ uniti⋆′ x = x , tt abstract uniti⋆′∘unite⋆′ : {A : Set} → uniti⋆′ ○ unite⋆′ ∼ id {A = A × ⊤} uniti⋆′∘unite⋆′ (x , tt) = refl unite⋆′equiv : {A : Set} → (A × ⊤) ≃ A unite⋆′equiv = unite⋆′ , qinv uniti⋆′ refl∼ uniti⋆′∘unite⋆′ uniti⋆′equiv : {A : Set} → A ≃ (A × ⊤) uniti⋆′equiv = sym≃ unite⋆′equiv -- swap⋆ swap⋆ : {A B : Set} → A × B → B × A swap⋆ (a , b) = (b , a) abstract swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B} swapswap⋆ (a , b) = refl swap⋆equiv : {A B : Set} → (A × B) ≃ (B × A) swap⋆equiv = swap⋆ , qinv swap⋆ swapswap⋆ swapswap⋆ -- assocl₊ and assocr₊ assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C) assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C)) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) abstract assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)} assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl assocl₊∘assocr₊ (inj₂ c) = refl assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))} assocr₊∘assocl₊ (inj₁ a) = refl assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl assocr₊equiv : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C)) assocr₊equiv = assocr₊ , qinv assocl₊ assocr₊∘assocl₊ assocl₊∘assocr₊ assocl₊equiv : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C) assocl₊equiv = sym≃ assocr₊equiv -- assocl⋆ and assocr⋆ assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C) assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C)) assocr⋆ ((a , b) , c) = (a , (b , c)) abstract assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)} assocl⋆∘assocr⋆ = refl∼ assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))} assocr⋆∘assocl⋆ = refl∼ assocl⋆equiv : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C) assocl⋆equiv = assocl⋆ , qinv assocr⋆ assocl⋆∘assocr⋆ assocr⋆∘assocl⋆ assocr⋆equiv : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C)) assocr⋆equiv = sym≃ assocl⋆equiv -- distz and factorz, on left distz : { A : Set} → (⊥ × A) → ⊥ distz = proj₁ factorz : {A : Set} → ⊥ → (⊥ × A) factorz () abstract distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id distz∘factorz () factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id factorz∘distz (() , proj₂) distzequiv : {A : Set} → (⊥ × A) ≃ ⊥ distzequiv {A} = distz , qinv factorz (distz∘factorz {A}) factorz∘distz factorzequiv : {A : Set} → ⊥ ≃ (⊥ × A) factorzequiv {A} = sym≃ distzequiv -- distz and factorz, on right distzr : { A : Set} → (A × ⊥) → ⊥ distzr = proj₂ factorzr : {A : Set} → ⊥ → (A × ⊥) factorzr () abstract distzr∘factorzr : {A : Set} → distzr ○ factorzr {A} ∼ id distzr∘factorzr () factorzr∘distzr : {A : Set} → factorzr {A} ○ distzr ∼ id factorzr∘distzr (_ , ()) distzrequiv : {A : Set} → (A × ⊥) ≃ ⊥ distzrequiv {A} = distzr , qinv factorzr (distzr∘factorzr {A}) factorzr∘distzr factorzrequiv : {A : Set} → ⊥ ≃ (A × ⊥) factorzrequiv {A} = sym≃ distzrequiv -- dist and factor, on right dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C) dist (inj₁ x , c) = inj₁ (x , c) dist (inj₂ y , c) = inj₂ (y , c) factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C) factor (inj₁ (a , c)) = inj₁ a , c factor (inj₂ (b , c)) = inj₂ b , c abstract dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id dist∘factor (inj₁ x) = refl dist∘factor (inj₂ y) = refl factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id factor∘dist (inj₁ x , c) = refl factor∘dist (inj₂ y , c) = refl distequiv : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C)) distequiv = dist , qinv factor dist∘factor factor∘dist factorequiv : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C) factorequiv = sym≃ distequiv -- dist and factor, on left distl : {A B C : Set} → A × (B ⊎ C) → (A × B) ⊎ (A × C) distl (x , inj₁ x₁) = inj₁ (x , x₁) distl (x , inj₂ y) = inj₂ (x , y) factorl : {A B C : Set} → (A × B) ⊎ (A × C) → A × (B ⊎ C) factorl (inj₁ (x , y)) = x , inj₁ y factorl (inj₂ (x , y)) = x , inj₂ y abstract distl∘factorl : {A B C : Set} → distl {A} {B} {C} ○ factorl ∼ id distl∘factorl (inj₁ (x , y)) = refl distl∘factorl (inj₂ (x , y)) = refl factorl∘distl : {A B C : Set} → factorl {A} {B} {C} ○ distl ∼ id factorl∘distl (a , inj₁ x) = refl factorl∘distl (a , inj₂ y) = refl distlequiv : {A B C : Set} → (A × (B ⊎ C)) ≃ ((A × B) ⊎ (A × C)) distlequiv = distl , qinv factorl distl∘factorl factorl∘distl factorlequiv : {A B C : Set} → ((A × B) ⊎ (A × C)) ≃ (A × (B ⊎ C)) factorlequiv = sym≃ distlequiv ------------------------------------------------------------------------------ -- Commutative semiring structure typesPlusIsSG : IsSemigroup {Level.suc Level.zero} {Level.zero} {Set} _≃_ _⊎_ typesPlusIsSG = record { isMagma = record { isEquivalence = ≃IsEquiv ; ∙-cong = _⊎≃_ } ; assoc = λ t₁ t₂ t₃ → assocr₊equiv {t₁} {t₂} {t₃} } typesTimesIsSG : IsSemigroup {Level.suc Level.zero} {Level.zero} {Set} _≃_ _×_ typesTimesIsSG = record { isMagma = record { isEquivalence = ≃IsEquiv ; ∙-cong = _×≃_ } ; assoc = λ t₁ t₂ t₃ → assocr⋆equiv {t₁} {t₂} {t₃} } typesPlusIsCM : IsCommutativeMonoid _≃_ _⊎_ ⊥ typesPlusIsCM = record { isSemigroup = typesPlusIsSG ; identityˡ = λ t → unite₊equiv {t} ; comm = λ t₁ t₂ → swap₊equiv {t₁} {t₂} } typesTimesIsCM : IsCommutativeMonoid _≃_ _×_ ⊤ typesTimesIsCM = record { isSemigroup = typesTimesIsSG ; identityˡ = λ t → unite⋆equiv {t} ; comm = λ t₁ t₂ → swap⋆equiv {t₁} {t₂} } typesIsCSR : IsCommutativeSemiring _≃_ _⊎_ _×_ ⊥ ⊤ typesIsCSR = record { +-isCommutativeMonoid = typesPlusIsCM ; *-isCommutativeMonoid = typesTimesIsCM ; distribʳ = λ t₁ t₂ t₃ → distequiv {t₂} {t₃} {t₁} ; zeroˡ = λ t → distzequiv {t} } typesCSR : CommutativeSemiring (Level.suc Level.zero) Level.zero typesCSR = record { Carrier = Set ; _≈_ = _≃_ ; _+_ = _⊎_ ; _*_ = _×_ ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeSemiring = typesIsCSR } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5409550745, "avg_line_length": 26.0424929178, "ext": "agda", "hexsha": "3dddaeeaf88e449ee8e1032cbf8e95a39b865662", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/TypeEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/TypeEquiv.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/TypeEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4442, "size": 9193 }
{-# OPTIONS --no-universe-polymorphism #-} open import Relation.Binary.Core open import Function module Equivalence where infixr 5 _⇔_ record _⇔_ (A B : Set) : Set where field to : A → B from : B → A infixr 3 _↔_ record _↔_ (A B : Set) : Set where field to : A → B from : B → A from-to : ∀ a → from (to a) ≡ a to-from : ∀ b → to (from b) ≡ b infixr 3 _=⟨_⟩_ _=⟨_⟩_ : {A : Set} (x : A) { y z : A} → x ≡ y → y ≡ z → x ≡ z _=⟨_⟩_ _ refl refl = refl =sym : {A : Set} {x y : A} → x ≡ y → y ≡ x =sym refl = refl infixr 5 _under_ _under_ : {A B : Set} → {x y : A} → x ≡ y → (f : A → B) → f x ≡ f y _under_ refl f = refl infixr 4 _□= _□= : {A : Set} → (x : A) → x ≡ x _□= x = refl ⇔sym : {A B : Set} → A ⇔ B → B ⇔ A ⇔sym p = record {to = _⇔_.from p ; from = _⇔_.to p } infixr 4 _□⇔ _□⇔ : (A : Set) → A ⇔ A _□⇔ A = record {to = λ x → x; from = λ x → x} infixr 3 _⇔⟨_⟩_ _⇔⟨_⟩_ : (A : Set) {B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C _⇔⟨_⟩_ A {B} {C} AisB BisC = record {to = (_⇔_.to BisC) ∘ (_⇔_.to AisB); from = (_⇔_.from AisB) ∘ (_⇔_.from BisC) } ↔sym : {A B : Set} → A ↔ B → B ↔ A ↔sym p = record {to = _↔_.from p ; from = _↔_.to p ; from-to = _↔_.to-from p ; to-from = _↔_.from-to p } infixr 4 _□↔ _□↔ : (A : Set) → A ↔ A _□↔ A = record {to = λ x → x; from = λ x → x; from-to = λ a → refl; to-from = λ b → refl} infixr 3 _↔⟨_⟩_ _↔⟨_⟩_ : (A : Set) {B C : Set} → A ↔ B → B ↔ C → A ↔ C _↔⟨_⟩_ A {B} {C} AisB BisC = record {to = to₂ ∘ to₁ ; from = from₁ ∘ from₂ ; from-to = λ a → (from₁ ∘ from₂ ∘ to₂ ∘ to₁) a =⟨ from-to₂ (to₁ a) under from₁ ⟩ from₁ (to₁ a) =⟨ from-to₁ a ⟩ a □= ; to-from = λ c → (to₂ ∘ to₁ ∘ from₁ ∘ from₂) c =⟨ to-from₁ (from₂ c) under to₂ ⟩ to₂ (from₂ c) =⟨ to-from₂ c ⟩ c □= } where to₁ = _↔_.to AisB to₂ = _↔_.to BisC from₁ = _↔_.from AisB from₂ = _↔_.from BisC from-to₁ = _↔_.from-to AisB from-to₂ = _↔_.from-to BisC to-from₁ = _↔_.to-from AisB to-from₂ = _↔_.to-from BisC
{ "alphanum_fraction": 0.3425797503, "avg_line_length": 28.5544554455, "ext": "agda", "hexsha": "c59c6b555d4a5193022caf272e767e5f3d03a924", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_forks_repo_path": "Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_issues_repo_path": "Equivalence.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_stars_repo_path": "Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1044, "size": 2884 }
module Data.List.Setoid where import Lvl open import Data.List open import Data.List.Equiv open import Data.List.Relation.Quantification open import Logic.Propositional open import Structure.Operator open import Structure.Setoid open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Type private variable ℓ ℓₑ ℓₚ : Lvl.Level private variable T : Type{ℓ} instance List-equiv : ⦃ Equiv{ℓₑ}(T) ⦄ → Equiv(List(T)) List-equiv = intro (AllElements₂(_≡_)) ⦃ intro ⦃ intro refl ⦄ ⦃ intro sym ⦄ ⦃ intro trans ⦄ ⦄ where refl : Names.Reflexivity(AllElements₂(_≡_)) refl{∅} = ∅ refl{x ⊰ l} = reflexivity(_≡_) ⊰ refl{l} sym : Names.Symmetry(AllElements₂(_≡_)) sym ∅ = ∅ sym (p ⊰ ps) = symmetry(_≡_) p ⊰ sym ps trans : Names.Transitivity(AllElements₂(_≡_)) trans ∅ ∅ = ∅ trans (p ⊰ ps) (q ⊰ qs) = (transitivity(_≡_) p q) ⊰ (trans ps qs) instance List-equiv-extensionality : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Extensionality(List-equiv ⦃ equiv ⦄) List-equiv-extensionality ⦃ equiv ⦄ = intro ⦃ binaryOperator = intro(_⊰_) ⦄ (\{(p ⊰ _) → p}) (\{(_ ⊰ pl) → pl}) \()
{ "alphanum_fraction": 0.6575456053, "avg_line_length": 33.5, "ext": "agda", "hexsha": "8b46bd2149b15838629b2db02b33b0f5015f9316", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Setoid.agda", "max_line_length": 117, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 420, "size": 1206 }
module Background where postulate Bits : Set module Open where data U : Set where postulate El : U → Set marshal : (u : U) → El u → Bits module Closed where data Desc : Set where postulate μ : Desc → Set marshal : (D : Desc) → μ D → Bits
{ "alphanum_fraction": 0.6007326007, "avg_line_length": 13.65, "ext": "agda", "hexsha": "4b6c41778a872294af7045ab155277c4cf432779", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z", "max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/generic-elim", "max_forks_repo_path": "slides/Background.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/generic-elim", "max_issues_repo_path": "slides/Background.agda", "max_line_length": 37, "max_stars_count": 11, "max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/generic-elim", "max_stars_repo_path": "slides/Background.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z", "num_tokens": 82, "size": 273 }
{-# OPTIONS --rewriting #-} module Properties where import Properties.Contradiction import Properties.Dec import Properties.Equality import Properties.Functions import Properties.Remember import Properties.Step import Properties.StrictMode import Properties.Subtyping import Properties.TypeCheck
{ "alphanum_fraction": 0.8523489933, "avg_line_length": 21.2857142857, "ext": "agda", "hexsha": "5594812e1693c34ab149370fded1f0fa6850ca1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "EtiTheSpirit/luau", "max_forks_repo_path": "prototyping/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "EtiTheSpirit/luau", "max_issues_repo_path": "prototyping/Properties.agda", "max_line_length": 31, "max_stars_count": null, "max_stars_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "EtiTheSpirit/luau", "max_stars_repo_path": "prototyping/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 298 }
open import Prelude renaming (_≟_ to _N≟_) module Implicits.Syntax.Type.Unification.McBride where open import Implicits.Syntax open import Implicits.Syntax.MetaType open import Data.Vec hiding (_>>=_) open import Data.Vec.Properties open import Data.Nat as N using () open import Data.Nat.Properties.Simple open import Data.Product open import Category.Monad open import Data.Maybe hiding (module Maybe; map) open import Data.Maybe as Maybe using (monad; functor) open import Level using () renaming (zero to level₀) open RawMonad {level₀} monad using (_>>=_; return) open import Category.Functor open RawFunctor {level₀} functor open import Data.Star hiding (_>>=_) open import Data.Fin.Properties as FinProp using () open import Data.Fin.Substitution open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas private module M = MetaTypeMetaSubst module T = MetaTypeTypeSubst thin : ∀ {n} → Fin (suc n) → Fin n → Fin (suc n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) thick : ∀ {n} → (x y : Fin (suc n)) → Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) zero thick {suc n} (suc x) zero = just zero thick {zero} (suc ()) _ thick {suc n} (suc x) (suc y) = suc <$> (thick x y) check' : ∀ {ν} → Fin (suc ν) → Type (suc ν) → Maybe (Type ν) check' n (simpl (tvar m)) = (λ n → simpl (tvar n)) <$> (thick n m) check' n (simpl (tc x)) = just (simpl (tc x)) check' n (simpl (a →' b)) with check' n a | check' n b check' n (simpl (a →' b)) | just x | just y = just (simpl (x →' y)) check' n (simpl (a →' b)) | _ | nothing = nothing check' n (simpl (a →' b)) | nothing | _ = nothing check' n (a ⇒ b) with check' n a | check' n b check' n (a ⇒ b) | just x | just y = just (x ⇒ y) check' n (a ⇒ b) | _ | nothing = nothing check' n (a ⇒ b) | nothing | _ = nothing check' n (∀' t) with check' (suc n) t check' n (∀' t) | just x = just (∀' x) check' n (∀' t) | nothing = nothing substitute : {ν m n : ℕ} → (Fin m → MetaType n ν) → MetaType m ν → MetaType n ν substitute f a = a M./ (tabulate f) _for_ : ∀ {n ν} → Type ν → Fin (suc n) → Fin (suc n) → MetaType n ν _for_ t' x y with thick x y _for_ t' x y | just y' = simpl (mvar y') _for_ t' x y | nothing = to-meta t' data ASub (ν : ℕ) : ℕ → ℕ → Set where _//_ : ∀ {m} → (t' : Type ν) → Fin (suc m) → ASub ν (suc m) m AList : ℕ → ℕ → ℕ → Set AList ν m n = Star (ASub ν) m n asub-tp-weaken : ∀ {ν m n} → ASub ν m n → ASub (suc ν) m n asub-tp-weaken (t' // x) = tp-weaken t' // x asub-weaken : ∀ {ν m n} → ASub ν m n → ASub ν (suc m) (suc n) asub-weaken (t' // x) = t' // (suc x) alist-weaken : ∀ {ν m n} → AList ν m n → AList (suc ν) m n alist-weaken s = gmap Prelude.id (λ x → asub-tp-weaken x) s _◇_ : ∀ {l m n ν} → (Fin m → MetaType n ν) → (Fin l → MetaType m ν) → (Fin l → MetaType n ν) f ◇ g = substitute f ∘ g asub' : ∀ {ν m n} → (σ : AList ν m n) → Fin m → MetaType n ν asub' ε = λ n → simpl (mvar n) asub' (t' // x ◅ y) = asub' y ◇ (t' for x) asub : ∀ {ν m n} → (σ : AList ν m n) → Sub (flip MetaType ν) m n asub s = tabulate (asub' s) mgu : ∀ {m ν} → MetaType m ν → Type ν → Maybe (∃ (AList ν m)) mgu {ν} s t = amgu s t (ν , ε) where amgu : ∀ {ν m} (s : MetaType m ν) → (t : Type ν)→ ∃ (AList ν m) → Maybe (∃ (AList ν m)) -- non-matching constructors amgu (simpl (tc x)) (_ ⇒ _) acc = nothing amgu (simpl (tc _)) (∀' _) x = nothing amgu (simpl (tc x)) (simpl (_ →' _)) acc = nothing amgu (simpl (tc _)) (simpl (tvar _)) x = nothing amgu (simpl (_ →' _)) (∀' _) x = nothing amgu (simpl (_ →' _)) (_ ⇒ _) x = nothing amgu (simpl (_ →' _)) (simpl (tc _)) acc = nothing amgu (simpl (_ →' _)) (simpl (tvar _)) x = nothing amgu (_ ⇒ _) (simpl x) acc = nothing amgu (_ ⇒ _) (∀' _) x = nothing amgu (∀' _) (_ ⇒ _) x = nothing amgu (∀' _) (simpl _) x = nothing amgu (simpl (tvar _)) (_ ⇒ _) x = nothing amgu (simpl (tvar _)) (∀' _) x = nothing amgu (simpl (tvar _)) (simpl (tc _)) x = nothing amgu (simpl (tvar _)) (simpl (_ →' _)) acc = nothing -- matching constructors amgu (a ⇒ b) (a' ⇒ b') acc = _>>=_ (amgu b b' acc) (amgu a a') amgu (simpl (a →' b)) (simpl (a' →' b')) acc = _>>=_ (amgu b b' acc) (amgu a a') amgu (simpl (tc x)) (simpl (tc y)) acc with x N≟ y amgu (simpl (tc x)) (simpl (tc y)) acc | yes p = just (, ε) amgu (simpl (tc x)) (simpl (tc y)) acc | no ¬p = nothing amgu (∀' a) (∀' b) (m , acc) = σ >>= strengthen' where σ = amgu a b (m , alist-weaken acc) strengthen' : ∀ {ν n} → ∃ (AList (suc ν) n) → Maybe (∃ (AList ν n)) strengthen' (m , ε) = just (m , ε) strengthen' (m , t' // x ◅ acc) with check' zero t' strengthen' (m , t' // x ◅ acc) | just z = (λ { (m , u) → m , z // x ◅ u }) <$> (strengthen' (m , acc)) strengthen' (m , t' // x ◅ acc) | nothing = nothing -- var-var amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) with x FinProp.≟ y amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) | yes _ = just (, ε) amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) | no _ = nothing -- var-rigid / rigid-var amgu (simpl (mvar ())) t (zero , ε) amgu (simpl (mvar x)) t (suc m , ε) = just (m , t // x ◅ ε) amgu s t (m , t' // x ◅ us) with amgu (substitute (t' for x) s) t (m , us) amgu s t (m , t' // x ◅ us) | just (m' , us') = just (m' , t' // x ◅ us') amgu s t (m , t' // x ◅ us) | nothing = nothing
{ "alphanum_fraction": 0.5568078531, "avg_line_length": 38.2013888889, "ext": "agda", "hexsha": "4baf07da2ccc59b4c5f0b88f19e28341b689b45b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax/Type/Unification/McBride.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax/Type/Unification/McBride.agda", "max_line_length": 92, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax/Type/Unification/McBride.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2166, "size": 5501 }
------------------------------------------------------------------------ -- A small definition of a dependently typed language, using the -- technique from McBride's "Outrageous but Meaningful Coincidences" ------------------------------------------------------------------------ -- Inlining saves a lot of memory. Test with +RTS -M100M -- The inlining of zero and suc in raw-category at the end is the most -- important. {-# OPTIONS --type-in-type #-} module _ where open import Agda.Builtin.Equality open import Agda.Builtin.Unit open import Agda.Builtin.Sigma ------------------------------------------------------------------------ -- Prelude data ⊥ : Set where ⊥-elim : ⊥ → {A : Set} → A ⊥-elim () data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B uncurry : {A : Set} {B : A → Set} {C : Σ A B → Set} → ((x : A) (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f p = f (fst p) (snd p) infixr 2 _×_ _×_ : Set → Set → Set _×_ A B = Σ A (λ _ → B) ------------------------------------------------------------------------ -- A universe data U : Set El : U → Set data U where set : U el : Set → U sigma : (a : U) → (El a → U) → U pi : (a : U) → (El a → U) → U El set = Set El (el A) = A El (sigma a b) = Σ (El a) (λ x → El (b x)) El (pi a b) = (x : El a) → El (b x) -- Abbreviations. fun : U → U → U fun a b = pi a (λ _ → b) times : U → U → U times a b = sigma a (λ _ → b) -- -- Example. ------------------------------------------------------------------------ -- Contexts -- Contexts. data Ctxt : Set -- Types. Ty : Ctxt → Set -- Environments. Env : Ctxt → Set data Ctxt where empty : Ctxt snoc : (G : Ctxt) → Ty G → Ctxt Ty G = Env G → U Env empty = ⊤ Env (snoc G s) = Σ (Env G) (λ g → El (s g)) -- Variables (deBruijn indices). Var : ∀ G → Ty G → Set Var empty t = ⊥ Var (snoc G s) t = Either ((λ g → s (fst g)) ≡ t) (Σ _ (λ u → (λ g → u (fst g)) ≡ t × Var G u)) zero : ∀ {G s} → Var (snoc G s) (λ g → s (fst g)) zero = left refl suc : ∀ {G s t} → (x : Var G t) → Var (snoc G s) (λ g → t (fst g)) suc x = right (_ , refl , x) -- A lookup function. lookup : ∀ G (s : Ty G) → Var G s → (g : Env G) → El (s g) lookup empty _ absurd _ = ⊥-elim absurd lookup (snoc vs v) _ (left refl) g = snd g lookup (snoc vs v) t (right (_ , refl , x)) g = lookup _ _ x (fst g) ------------------------------------------------------------------------ -- A language -- Syntax for types. data Type (G : Ctxt) (s : Ty G) : Set -- Terms. data Term (G : Ctxt) (s : Ty G) : Set -- The semantics of a term. eval : ∀ {G s} → Term G s → (g : Env G) → El (s g) data Type G s where set'' : s ≡ (λ _ → set) → Type G s el'' : (x : Term G (λ _ → set)) → (λ g → el (eval {s = λ _ → set} x g)) ≡ s → Type G s sigma'' : {t : _} {u : _} → Type G t → Type (snoc G t) u → (λ g → sigma (t g) (λ v → u (g , v))) ≡ s → Type G s pi'' : {t : _} {u : _} → Type G t → Type (snoc G t) u → (λ g → pi (t g) (λ v → u (g , v))) ≡ s → Type G s data Term G s where var : Var G s → Term G s lam'' : {t : _} {u : _} → Term (snoc G t) (uncurry u) → (λ g → pi (t g) (λ v → u g v)) ≡ s → Term G s app'' : {t : _} {u : (g : Env G) → El (t g) → U} → Term G (λ g → pi (t g) (λ v → u g v)) → (t2 : Term G t) → (λ g → u g (eval t2 g)) ≡ s → Term G s eval (var x) g = lookup _ _ x g eval (lam'' t refl) g = λ v → eval t (g , v) eval (app'' t1 t2 refl) g = eval t1 g (eval t2 g) -- Abbreviations. set' : {G : Ctxt} → Type G (λ _ → set) set' = set'' refl el' : {G : Ctxt} (x : Term G (λ _ → set)) → Type G (λ g → el (eval {G} {λ _ → set} x g)) el' x = el'' x refl sigma' : {G : Ctxt} {t : Env G → U} {u : Env (snoc G t) → U} → Type G t → Type (snoc G t) u → Type G (λ g → sigma (t g) (λ v → u (g , v))) sigma' s t = sigma'' s t refl pi' : {G : _} {t : _} {u : _} → Type G t → Type (snoc G t) u → Type G (λ g → pi (t g) (λ v → u (g , v))) pi' s t = pi'' s t refl lam : {G : _} {t : _} {u : _} → Term (snoc G t) (uncurry u) → Term G (λ g → pi (t g) (λ v → u g v)) lam t = lam'' t refl app : {G : _} {t : _} {u : (g : Env G) → El (t g) → U} → Term G (λ g → pi (t g) (λ v → u g v)) → (t2 : Term G t) → Term G (λ g → u g (eval t2 g)) app t1 t2 = app'' t1 t2 refl -- Example. raw-categoryU : U raw-categoryU = sigma set (λ obj → sigma (fun (el obj) (fun (el obj) set)) (λ hom → times (pi (el obj) (λ x → el (hom x x))) (pi (el obj) (λ x → el (hom x x))))) raw-category : Type empty (λ _ → raw-categoryU) raw-category = -- Objects. sigma' set' -- Morphisms. (sigma' (pi' (el' (var zero)) (pi' (el' (var (suc zero))) set')) -- Identity. (sigma' (pi' (el' (var (suc zero))) (el' (app (app (var (suc zero)) (var zero)) (var zero)))) (pi' (el' (var (suc (suc zero)))) (el' (app (app (var (suc (suc zero))) (var zero)) (var zero))))))
{ "alphanum_fraction": 0.4261417925, "avg_line_length": 24.5680751174, "ext": "agda", "hexsha": "4e8766da2f5e2d58c6094f30b6b937ad89e87b8b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/CompileTimeInlining.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/CompileTimeInlining.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/CompileTimeInlining.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1924, "size": 5233 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Semigroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open Iso private variable ℓ : Level -- Semigroups as a record, inspired by the Agda standard library: -- -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Bundles.agda#L48 -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Structures.agda#L50 -- -- Note that as we are using Path for all equations the IsMagma record -- would only contain isSet A if we had it. record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where -- TODO: add no-eta-equality for efficiency? This breaks some proofs later constructor issemigroup field is-set : isSet A assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z record Semigroup : Type (ℓ-suc ℓ) where constructor semigroup field Carrier : Type ℓ _·_ : Carrier → Carrier → Carrier isSemigroup : IsSemigroup _·_ infixl 7 _·_ open IsSemigroup isSemigroup public -- Extractor for the carrier type ⟨_⟩ : Semigroup → Type ℓ ⟨_⟩ = Semigroup.Carrier record SemigroupEquiv (M N : Semigroup {ℓ}) : Type ℓ where constructor semigroupequiv -- Shorter qualified names private module M = Semigroup M module N = Semigroup N field e : ⟨ M ⟩ ≃ ⟨ N ⟩ isHom : (x y : ⟨ M ⟩) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y -- Develop some theory about Semigroups using various general results -- that are stated using Σ-types. For this we define Semigroup as a -- nested Σ-type, prove that it's equivalent to the above record -- definition and then transport results along this equivalence. module SemigroupΣTheory {ℓ} where RawSemigroupStructure : Type ℓ → Type ℓ RawSemigroupStructure X = X → X → X RawSemigroupEquivStr = AutoEquivStr RawSemigroupStructure rawSemigroupUnivalentStr : UnivalentStr _ RawSemigroupEquivStr rawSemigroupUnivalentStr = autoUnivalentStr RawSemigroupStructure SemigroupAxioms : (A : Type ℓ) → RawSemigroupStructure A → Type ℓ SemigroupAxioms A _·_ = isSet A × ((x y z : A) → x · (y · z) ≡ (x · y) · z) SemigroupStructure : Type ℓ → Type ℓ SemigroupStructure = AxiomsStructure RawSemigroupStructure SemigroupAxioms SemigroupΣ : Type (ℓ-suc ℓ) SemigroupΣ = TypeWithStr ℓ SemigroupStructure isPropSemigroupAxioms : (A : Type ℓ) (_·_ : RawSemigroupStructure A) → isProp (SemigroupAxioms A _·_) isPropSemigroupAxioms _ _ = isPropΣ isPropIsSet λ isSetA → isPropΠ3 λ _ _ _ → isSetA _ _ SemigroupEquivStr : StrEquiv SemigroupStructure ℓ SemigroupEquivStr = AxiomsEquivStr RawSemigroupEquivStr SemigroupAxioms SemigroupAxiomsIsoIsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → Iso (SemigroupAxioms A _·_) (IsSemigroup _·_) fun (SemigroupAxiomsIsoIsSemigroup s) (x , y) = issemigroup x y inv (SemigroupAxiomsIsoIsSemigroup s) (issemigroup x y) = (x , y) rightInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl leftInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl SemigroupAxioms≡IsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → SemigroupAxioms _ _·_ ≡ IsSemigroup _·_ SemigroupAxioms≡IsSemigroup s = isoToPath (SemigroupAxiomsIsoIsSemigroup s) Semigroup→SemigroupΣ : Semigroup → SemigroupΣ Semigroup→SemigroupΣ (semigroup A _·_ isSemigroup) = A , _·_ , SemigroupAxiomsIsoIsSemigroup _ .inv isSemigroup SemigroupΣ→Semigroup : SemigroupΣ → Semigroup SemigroupΣ→Semigroup (A , _·_ , isSemigroupΣ) = semigroup A _·_ (SemigroupAxiomsIsoIsSemigroup _ .fun isSemigroupΣ) SemigroupIsoSemigroupΣ : Iso Semigroup SemigroupΣ SemigroupIsoSemigroupΣ = iso Semigroup→SemigroupΣ SemigroupΣ→Semigroup (λ _ → refl) (λ _ → refl) semigroupUnivalentStr : UnivalentStr SemigroupStructure SemigroupEquivStr semigroupUnivalentStr = axiomsUnivalentStr _ isPropSemigroupAxioms rawSemigroupUnivalentStr SemigroupΣPath : (M N : SemigroupΣ) → (M ≃[ SemigroupEquivStr ] N) ≃ (M ≡ N) SemigroupΣPath = SIP semigroupUnivalentStr SemigroupEquivΣ : (M N : Semigroup) → Type ℓ SemigroupEquivΣ M N = Semigroup→SemigroupΣ M ≃[ SemigroupEquivStr ] Semigroup→SemigroupΣ N SemigroupIsoΣPath : {M N : Semigroup} → Iso (SemigroupEquiv M N) (SemigroupEquivΣ M N) fun SemigroupIsoΣPath (semigroupequiv e h) = (e , h) inv SemigroupIsoΣPath (e , h) = semigroupequiv e h rightInv SemigroupIsoΣPath _ = refl leftInv SemigroupIsoΣPath _ = refl SemigroupPath : (M N : Semigroup) → (SemigroupEquiv M N) ≃ (M ≡ N) SemigroupPath M N = SemigroupEquiv M N ≃⟨ isoToEquiv SemigroupIsoΣPath ⟩ SemigroupEquivΣ M N ≃⟨ SemigroupΣPath _ _ ⟩ Semigroup→SemigroupΣ M ≡ Semigroup→SemigroupΣ N ≃⟨ isoToEquiv (invIso (congIso SemigroupIsoSemigroupΣ)) ⟩ M ≡ N ■ -- We now extract the important results from the above module isPropIsSemigroup : {A : Type ℓ} (_·_ : A → A → A) → isProp (IsSemigroup _·_) isPropIsSemigroup _·_ = subst isProp (SemigroupΣTheory.SemigroupAxioms≡IsSemigroup _·_) (SemigroupΣTheory.isPropSemigroupAxioms _ _·_) SemigroupPath : (M N : Semigroup {ℓ}) → (SemigroupEquiv M N) ≃ (M ≡ N) SemigroupPath = SemigroupΣTheory.SemigroupPath -- To rename the fields when using a Semigroup use for example the following: -- -- open Semigroup M renaming ( Carrier to M ; _·_ to _·M_ )
{ "alphanum_fraction": 0.7079959514, "avg_line_length": 36.5925925926, "ext": "agda", "hexsha": "146c4481cca6ed72b6c3ffccfd8f34aa9210b565", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Semigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Semigroup.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Semigroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1924, "size": 5928 }
{-# OPTIONS --without-K #-} open import Function.Related.TypeIsomorphisms.NP open import Function.Inverse.NP open import Data.Maybe.NP open import Data.Nat open import Explore.Type open import Explore.Explorable open import Explore.Sum module Explore.Explorable.Maybe where μMaybe : ∀ {A} → Explorable A → Explorable (Maybe A) μMaybe μA = μ-iso (sym Maybe↔𝟙⊎) (μ𝟙 ⊎-μ μA) μMaybe^ : ∀ {A} n → Explorable A → Explorable (Maybe^ n A) μMaybe^ zero μA = μA μMaybe^ (suc n) μA = μMaybe (μMaybe^ n μA)
{ "alphanum_fraction": 0.719123506, "avg_line_length": 26.4210526316, "ext": "agda", "hexsha": "2e309a94689a9df1dcf90d9091d70dfd503f504d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/Maybe.agda", "max_line_length": 58, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 169, "size": 502 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Loop.Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product LeftBol : Op₂ A → Set _ LeftBol _∙_ = ∀ x y z → (x ∙ (y ∙ (x ∙ z))) ≈ ((x ∙ (y ∙ z)) ∙ z ) RightBol : Op₂ A → Set _ RightBol _∙_ = ∀ x y z → (((z ∙ x) ∙ y) ∙ x) ≈ (z ∙ ((x ∙ y) ∙ x)) MoufangIdentity₁ : Op₂ A → Set _ MoufangIdentity₁ _∙_ = ∀ x y z → (z ∙ (x ∙ (z ∙ y))) ≈ (((z ∙ x) ∙ z) ∙ y) MoufangIdentity₂ : Op₂ A → Set _ MoufangIdentity₂ _∙_ = ∀ x y z → (x ∙ (z ∙ (y ∙ z))) ≈ (((x ∙ z) ∙ y) ∙ z) MoufangIdentity₃ : Op₂ A → Set _ MoufangIdentity₃ _∙_ = ∀ x y z → ((z ∙ x) ∙ (y ∙ z)) ≈ ((z ∙ (x ∙ y)) ∙ z) MoufangIdentity₄ : Op₂ A → Set _ MoufangIdentity₄ _∙_ = ∀ x y z → ((z ∙ x) ∙ (y ∙ z)) ≈ (z ∙ ((x ∙ y) ∙ z))
{ "alphanum_fraction": 0.5172413793, "avg_line_length": 28.064516129, "ext": "agda", "hexsha": "fae84ca0184d4f0e1d9a8aa9d36cf76b9208a479", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Loop/Definitions.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Loop/Definitions.agda", "max_line_length": 76, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Loop/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 408, "size": 870 }
module UninstantiatedDotPattern where f : Set -> Set -> Set f .X X = X
{ "alphanum_fraction": 0.6621621622, "avg_line_length": 10.5714285714, "ext": "agda", "hexsha": "943c6b5612ab8f3be8f5259ee7e6b3c2254fbbc0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UninstantiatedDotPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/UninstantiatedDotPattern.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/UninstantiatedDotPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 74 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Opposite where -- some properties of the opposite category. -- XXX these should probably go somewhere else, but everywhere i think of -- has other problems. ☹ open import Categories.Category open import Categories.Functor open import Categories.FunctorCategory open import Categories.NaturalTransformation open import Categories.Morphisms renaming (_≅_ to _[_≅_]) opⁱ : ∀ {o ℓ e} {C : Category o ℓ e} {A B} → C [ A ≅ B ] → Category.op C [ B ≅ A ] opⁱ {C = C} A≅B = record { f = A≅B.f ; g = A≅B.g ; iso = record { isoˡ = A≅B.isoʳ; isoʳ = A≅B.isoˡ } } where module A≅B = Categories.Morphisms._≅_ A≅B opF : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} -> (Functor (Category.op (Functors (Category.op A) (Category.op B))) (Functors A B)) opF {A = A} {B} = record { F₀ = Functor.op; F₁ = NaturalTransformation.op; identity = Category.Equiv.refl B; homomorphism = Category.Equiv.refl B; F-resp-≡ = λ x → x }
{ "alphanum_fraction": 0.6112115732, "avg_line_length": 35.6774193548, "ext": "agda", "hexsha": "a6db0f016db992d8bdb39f41eb9014a576995f7f", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Opposite.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Opposite.agda", "max_line_length": 85, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Opposite.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 359, "size": 1106 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- a zero object is both terminal and initial. module Categories.Object.Zero {o ℓ e} (C : Category o ℓ e) where open import Level using (_⊔_) open import Categories.Object.Terminal C open import Categories.Object.Initial C open Category C record Zero : Set (o ⊔ ℓ ⊔ e) where field zero : Obj ! : ∀ {A} → zero ⇒ A ¡ : ∀ {A} → A ⇒ zero field !-unique : ∀ {A} (f : zero ⇒ A) → ! ≈ f ¡-unique : ∀ {A} (f : A ⇒ zero) → ¡ ≈ f initial : Initial initial = record { ⊥ = zero ; ! = ! ; !-unique = !-unique } terminal : Terminal terminal = record { ⊤ = zero ; ! = ¡ ; !-unique = ¡-unique } module initial = Initial initial module terminal = Terminal terminal
{ "alphanum_fraction": 0.5650557621, "avg_line_length": 19.6829268293, "ext": "agda", "hexsha": "dd9633f1b7e6e15efc46352fd0179aa4160a18f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Object/Zero.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Object/Zero.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Object/Zero.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 250, "size": 807 }
open import Data.Product using ( _×_ ; _,_ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.Util using ( Finite ) module Web.Semantic.DL.Category.Object {Σ : Signature} where infixr 4 _,_ {- This Object represents a Knowledge Base (schema + facts) with constraints. It is defined over two TBoxes on the same Signature Σ S is the standard TBox - i.e. a schema T is the consTraint TBox - constraints on the facts A below It is built from A is a set of ABox facts over a finite set of variables see "Integrity Constraints for Linked Data" and especially the reference from there to Definition 1 p11 of "Bridging the Gap between OWL and Relational Databases" by Boris Motik, Ian Horrocks and Ulrike Sattler -} data Object (S T : TBox Σ) : Set₁ where _,_ : ∀ X → (X ∈ Finite × ABox Σ X) → Object S T -- Interface Names, the nodes that can be used by other ABoxes IN : ∀ {S T} → Object S T → Set IN (X , X∈Fin , A) = X -- the proof that X is finite fin : ∀ {S T} → (A : Object S T) → (IN A ∈ Finite) fin (X , X∈Fin , A) = X∈Fin {- An ABox thought of as an interface (language from "§3 Initial Interpretation" of "Integrity Constraints for Linked Data" ) The idea is that an ABox either creates nodes that can be used by others or it uses nodes from other ABoxes, and so it provides an interface to others -} iface : ∀ {S T} → (A : Object S T) → (ABox Σ (IN A)) iface (X , X∈Fin , A) = A
{ "alphanum_fraction": 0.703680203, "avg_line_length": 36.6511627907, "ext": "agda", "hexsha": "a2cdf6f860ec6b7f1695cf17a3d02660a6196847", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Object.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-22T09:43:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-22T09:43:23.000Z", "num_tokens": 480, "size": 1576 }
module sn-calculus-compatconf.pot where open import can-function-preserve using (canₖ-monotonic ; canₛ-monotonic ; canₛₕ-monotonic) open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import context-properties using (->pot-view) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction using (Can ; Canₛ ; Canₛₕ ; Canₖ ; Canθ ; Canθₛ ; Canθₛₕ ; Canθₖ) open import Esterel.Lang.CanFunction.Properties open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (unplugc) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ->pot-view open Context1 open _≐_⟦_⟧c {- (p) ρθ. C⟦pin⟧ -- sn⟶₁ -> ρθ' C⟦pin⟧ (ρθ) C⟦pin⟧ -- sn⟶₁ -> (ρθ) C⟦qin⟧ -} 1-steplρ-pot-lemma : ∀{C θ p pin qin θ' BV FV A} → {ρθpsn⟶₁ρθ'p : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A ⟩· p} → ->pot-view ρθpsn⟶₁ρθ'p refl refl → CorrectBinding pin BV FV → p ≐ C ⟦ pin ⟧c → pin sn⟶₁ qin → ρ⟨ θ , A ⟩· C ⟦ qin ⟧c sn⟶₁ ρ⟨ θ' , A ⟩· C ⟦ qin ⟧c 1-steplρ-pot-lemma {C} {θ} {_} {pin} {qin} {ρθpsn⟶₁ρθ'p = .(rabsence {S = S} S∈ θS≡unknown S∉can-p-θ)} (vabsence S S∈ θS≡unknown S∉can-p-θ) cb p≐C⟦pin⟧ pinsn⟶₁qin with sym (unplugc p≐C⟦pin⟧) ... | refl = rabsence {S = S} S∈ θS≡unknown (λ S∈can-q-θ → S∉can-p-θ (canθₛ-plug 0 (Env.sig θ) C pin qin (λ θ* → canₛ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛ) (λ θ* → canₖ-monotonic θ* _ _ cb pinsn⟶₁qin) Env.[]env (Signal.unwrap S) S∈can-q-θ)) 1-steplρ-pot-lemma {C} {θ} {_} {pin} {qin} {ρθpsn⟶₁ρθ'p = .(rreadyness {s = s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} (vreadyness {θ = .θ} s s∈ θs≡old⊎θs≡new s∉can-p-θ) cb p≐C⟦pin⟧ pinsn⟶₁qin with sym (unplugc p≐C⟦pin⟧) ... | refl = rreadyness {s = s} s∈ θs≡old⊎θs≡new (λ s∈can-q-θ → s∉can-p-θ (canθₛₕ-plug 0 (Env.sig θ) C pin qin (λ θ* → canₛₕ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛₕ) (λ θ* → canₖ-monotonic θ* _ _ cb pinsn⟶₁qin) (λ θ* → canₛ-monotonic θ* _ _ cb pinsn⟶₁qin ∘ _ₛ) Env.[]env (SharedVar.unwrap s) s∈can-q-θ)) -- Wrapper around 1-steplρ-pot-lemma. 1-steplρ-pot : ∀{p q θ θ' BV FV A} → {ρθpsn⟶₁ρθ'p : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θ' , A ⟩· p} → CorrectBinding (ρ⟨ θ , A ⟩· p) BV FV → ->pot-view ρθpsn⟶₁ρθ'p refl refl → p sn⟶ q → (ρ⟨ θ' , A ⟩· p sn⟶* ρ⟨ θ' , A ⟩· q × ρ⟨ θ , A ⟩· q sn⟶* ρ⟨ θ' , A ⟩· q) 1-steplρ-pot cb@(CBρ cb') pot psn⟶q@(rcontext _ p≐C⟦pin⟧ pinsn⟶₁qin) = sn⟶*-inclusion (rcontext _ (dcenv p≐C⟦pin⟧) pinsn⟶₁qin) ,′ sn⟶*-inclusion (sn⟶-inclusion (1-steplρ-pot-lemma pot (proj₂ (binding-extractc' cb' p≐C⟦pin⟧)) p≐C⟦pin⟧ pinsn⟶₁qin))
{ "alphanum_fraction": 0.6169393648, "avg_line_length": 32.2170542636, "ext": "agda", "hexsha": "7c347bbcde4ba3259ecc12ce4c6cac3ed55b24eb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf/pot.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf/pot.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf/pot.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 1856, "size": 4156 }
{-# OPTIONS --safe #-} open import Cubical.Foundations.Prelude open import Cubical.Categories.Category.Base open import Cubical.Categories.Monoidal.Base open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Functor.Base renaming (𝟙⟨_⟩ to idfunctor) open import Cubical.Categories.NaturalTransformation.Base open import Cubical.Categories.NaturalTransformation.Properties module Cubical.Categories.Instances.Functors.Endo {ℓC ℓC'} (C : Category ℓC ℓC') where open Category open NatTrans open Functor open StrictMonStr open TensorStr EndofunctorCategory : Category (ℓ-max ℓC ℓC') (ℓ-max ℓC ℓC') EndofunctorCategory = FUNCTOR C C
{ "alphanum_fraction": 0.8005952381, "avg_line_length": 32, "ext": "agda", "hexsha": "2c4180e80d2078353c84af80b7400d17afc6d0ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Functors/Endo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Functors/Endo.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Functors/Endo.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 184, "size": 672 }
{-# OPTIONS -v impossible:10 #-} module ImpossibleVerbose where -- The only way to trigger an __IMPOSSIBLE__ that isn't a bug. {-# IMPOSSIBLE This message should be debug-printed with option '-v impossible:10'. #-}
{ "alphanum_fraction": 0.732718894, "avg_line_length": 31, "ext": "agda", "hexsha": "90045df137111471e2582feb3f24abdbae75516c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/ImpossibleVerbose.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/ImpossibleVerbose.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/ImpossibleVerbose.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 217 }
module nodcap.NF.CutND where open import Algebra open import Category.Monad open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ open import Data.List as L using (List; []; _∷_; _++_; map) open import Data.List.Any as LA using (Any; here; there) open import Data.List.Any.BagAndSetEquality as B open import Data.Product as PR using (∃; _×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; _∘_; flip) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as I using () open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Data.Environment open import nodcap.Base open import nodcap.NF.Typing open import nodcap.NF.Contract open import nodcap.NF.Expand open import nodcap.NF.Cut open I.Inverse using (to; from) private open module LM {ℓ} = RawMonadPlus (L.monadPlus {ℓ}) private module ++ {a} {A : Set a} = Monoid (L.monoid A) {-# TERMINATING #-} -- Theorem: -- Nondeterministic cut elimination. mutual cutND : {Γ Δ : Environment} {A : Type} → ⊢ⁿᶠ A ∷ Γ → ⊢ⁿᶠ A ^ ∷ Δ → --------------------- List (⊢ⁿᶠ Γ ++ Δ) cutND {_} {Δ} {A = 𝟏} halt (wait y) = return y cutND {Γ} {_} {A = ⊥} (wait x) halt = return $ P.subst ⊢ⁿᶠ_ (P.sym (proj₂ ++.identity Γ)) x cutND {_} {Θ} {A = A ⊗ B} (send {Γ} {Δ} x y) (recv z) = return ∘ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc Γ Δ Θ)) ∘ exch (swp [] Γ Δ) =<< cutND y ∘ exch (fwd [] Γ) =<< cutND x z cutND {Θ} {_} {A = A ⅋ B} (recv x) (send {Γ} {Δ} y z) = return ∘ P.subst ⊢ⁿᶠ_ (++.assoc Θ Γ Δ) =<< flip cutND z =<< cutND x y cutND {Γ} {Δ} {A = A ⊕ B} (sel₁ x) (case y z) = cutND x y cutND {Γ} {Δ} {A = A ⊕ B} (sel₂ x) (case y z) = cutND x z cutND {Γ} {Δ} {A = A & B} (case x y) (sel₁ z) = cutND x z cutND {Γ} {Δ} {A = A & B} (case x y) (sel₂ z) = cutND y z cutND {Γ} {Δ} {A = ![ n ] A} x y = all (replicate⁺ n (A ^)) >>= return ∘ withPerm ∘ proj₂ where withPerm : {Θ : Environment} → replicate⁺ n (A ^) ∼[ bag ] Θ → ⊢ⁿᶠ Γ ++ Δ withPerm {Θ} b = cut x $ contract $ exch (B.++-cong (P.subst (_ ∼[ bag ]_) (all-replicate⁺ n (I.sym b)) b) I.id) $ expand y cutND {Γ} {Δ} {A = ?[ n ] A} x y = all (replicate⁺ n A) >>= return ∘ withPerm ∘ proj₂ where withPerm : {Θ : Environment} → replicate⁺ n A ∼[ bag ] Θ → ⊢ⁿᶠ Γ ++ Δ withPerm {Θ} b = exch (swp₂ Γ) $ cut y $ P.subst (λ A → ⊢ⁿᶠ ?[ n ] A ∷ Γ) (P.sym (^-inv A)) $ contract $ exch (B.++-cong (P.subst (_ ∼[ bag ]_) (all-replicate⁺ n (I.sym b)) b) I.id) $ expand x cutND {Γ} {Δ} {A} (exch b x) y = return ∘ exch (B.++-cong {ys₁ = Δ} (del-from b (here P.refl)) I.id) =<< cutNDIn (from b ⟨$⟩ here P.refl) (here P.refl) x y cutND {Γ} {Δ} {A} x (exch b y) = return ∘ exch (B.++-cong {xs₁ = Γ} I.id (del-from b (here P.refl))) =<< cutNDIn (here P.refl) (from b ⟨$⟩ here P.refl) x y cutNDIn : {Γ Δ : Environment} {A : Type} (i : A ∈ Γ) (j : A ^ ∈ Δ) → ⊢ⁿᶠ Γ → ⊢ⁿᶠ Δ → ----------------------- List (⊢ⁿᶠ Γ - i ++ Δ - j) cutNDIn (here P.refl) (here P.refl) x y = cutND x y cutNDIn {_} {Θ} (there i) j (send {Γ} {Δ} x y) z with split Γ i ... | inj₁ (k , p) rewrite p = return ∘ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ - k) Δ (Θ - j))) ∘ exch (swp₃ (_ ∷ Γ - k) Δ) ∘ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - k) (Θ - j) Δ) ∘ flip send y =<< cutNDIn (there k) j x z ... | inj₂ (k , p) rewrite p = return ∘ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ) (Δ - k) (Θ - j))) ∘ send x =<< cutNDIn (there k) j y z cutNDIn (there i) j (recv x) y = return ∘ recv =<< cutNDIn (there (there i)) j x y cutNDIn (there i) j (sel₁ x) y = return ∘ sel₁ =<< cutNDIn (there i) j x y cutNDIn (there i) j (sel₂ x) y = return ∘ sel₂ =<< cutNDIn (there i) j x y cutNDIn (there i) j (case x y) z = cutNDIn (there i) j x z >>= λ xz → cutNDIn (there i) j y z >>= λ yz → return $ case xz yz cutNDIn (there ()) j halt y cutNDIn (there i) j (wait x) y = return ∘ wait =<< cutNDIn i j x y cutNDIn (there i) j loop y = return $ loop cutNDIn {Γ} {Δ} (there i) j (mk?₁ x) y = return ∘ mk?₁ =<< cutNDIn (there i) j x y cutNDIn {Γ} {Δ} (there i) j (mk!₁ x) y = return ∘ mk!₁ =<< cutNDIn (there i) j x y cutNDIn {Γ} {Δ} (there i) j (cont x) y = return ∘ cont =<< cutNDIn (there (there i)) j x y cutNDIn {_} {Θ} (there i) j (pool {Γ} {Δ} x y) z with split Γ i ... | inj₁ (k , p) rewrite p = return ∘ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ - k) Δ (Θ - j))) ∘ exch (swp₃ (_ ∷ Γ - k) Δ) ∘ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - k) (Θ - j) Δ) ∘ flip pool y =<< cutNDIn (there k) j x z ... | inj₂ (k , p) rewrite p = return ∘ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ) (Δ - k) (Θ - j))) ∘ pool x =<< cutNDIn (there k) j y z cutNDIn {Θ} {_} i (there j) x (send {Γ} {Δ} y z) with split Γ j ... | inj₁ (k , p) rewrite p = return ∘ exch (bwd [] (Θ - i)) ∘ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Θ - i) (Γ - k) Δ) ∘ flip send z ∘ exch (fwd [] (Θ - i)) =<< cutNDIn i (there k) x y ... | inj₂ (k , p) rewrite p = return ∘ exch (swp [] (Θ - i) (_ ∷ Γ)) ∘ send y ∘ exch (fwd [] (Θ - i)) =<< cutNDIn i (there k) x z cutNDIn {Γ} i (there j) x (recv {Δ} y) = return ∘ exch (bwd [] (Γ - i)) ∘ recv ∘ exch (swp [] (_ ∷ _ ∷ []) (Γ - i)) =<< cutNDIn i (there (there j)) x y cutNDIn {Γ} {Δ} i (there j) x (sel₁ y) = return ∘ exch (bwd [] (Γ - i)) ∘ sel₁ ∘ exch (fwd [] (Γ - i)) =<< cutNDIn i (there j) x y cutNDIn {Γ} {Δ} i (there j) x (sel₂ y) = return ∘ exch (bwd [] (Γ - i)) ∘ sel₂ ∘ exch (fwd [] (Γ - i)) =<< cutNDIn i (there j) x y cutNDIn {Γ} {Δ} i (there j) x (case y z) = cutNDIn i (there j) x y >>= λ xy → cutNDIn i (there j) x z >>= λ xz → return $ exch (bwd [] (Γ - i)) $ case ( exch (fwd [] (Γ - i)) xy ) ( exch (fwd [] (Γ - i)) xz ) cutNDIn {Γ} i (there ()) x halt cutNDIn {Γ} {Δ} i (there j) x (wait y) = return ∘ exch (bwd [] (Γ - i)) ∘ wait =<< cutNDIn i j x y cutNDIn {Γ} {Δ} i (there j) x loop = return ∘ exch (bwd [] (Γ - i)) $ loop cutNDIn {Γ} {Δ} i (there j) x (mk?₁ y) = return ∘ exch (bwd [] (Γ - i)) ∘ mk?₁ ∘ exch (fwd [] (Γ - i)) =<< cutNDIn i (there j) x y cutNDIn {Γ} {Δ} i (there j) x (mk!₁ y) = return ∘ exch (bwd [] (Γ - i)) ∘ mk!₁ ∘ exch (fwd [] (Γ - i)) =<< cutNDIn i (there j) x y cutNDIn {Γ} {Δ} i (there j) x (cont y) = return ∘ exch (bwd [] (Γ - i)) ∘ cont ∘ exch (swp [] (_ ∷ _ ∷ []) (Γ - i)) =<< cutNDIn i (there (there j)) x y cutNDIn {Θ} {_} i (there j) x (pool {Γ} {Δ} y z) with split Γ j ... | inj₁ (k , p) rewrite p = return ∘ exch (bwd [] (Θ - i)) ∘ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Θ - i) (Γ - k) Δ) ∘ flip pool z ∘ exch (fwd [] (Θ - i)) =<< cutNDIn i (there k) x y ... | inj₂ (k , p) rewrite p = return ∘ exch (swp [] (Θ - i) (_ ∷ Γ)) ∘ pool y ∘ exch (fwd [] (Θ - i)) =<< cutNDIn i (there k) x z cutNDIn {Γ} {Δ} i j (exch b x) y = return ∘ exch (B.++-cong {ys₁ = Δ - j} (del-from b i ) I.id) =<< cutNDIn (from b ⟨$⟩ i) j x y cutNDIn {Γ} {Δ} i j x (exch b y) = return ∘ exch (B.++-cong {xs₁ = Γ - i} I.id (del-from b j)) =<< cutNDIn i (from b ⟨$⟩ j) x y -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4793206275, "avg_line_length": 28.8876404494, "ext": "agda", "hexsha": "cd985bb97b34fe4f58e95454e76cd17d66e065c6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/NF/CutND.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/NF/CutND.agda", "max_line_length": 86, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/NF/CutND.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 3511, "size": 7713 }
module OlderBasicILP.Indirect.Hilbert.Nested where open import OlderBasicILP.Indirect public -- Derivations, as Hilbert-style combinator trees. mutual data Tm : Set where VAR : ℕ → Tm APP : Tm → Tm → Tm CI : Tm CK : Tm CS : Tm BOX : Tm → Tm CDIST : Tm CUP : Tm CDOWN : Tm CPAIR : Tm CFST : Tm CSND : Tm UNIT : Tm infix 3 _⊢_ data _⊢_ (Γ : Cx (Ty Tm)) : Ty Tm → Set where var : ∀ {A} → A ∈ Γ → Γ ⊢ A app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B ci : ∀ {A} → Γ ⊢ A ▻ A ck : ∀ {A B} → Γ ⊢ A ▻ B ▻ A cs : ∀ {A B C} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C box : ∀ {A} → (t : ∅ ⊢ A) → Γ ⊢ [ t ] ⦂ A cdist : ∀ {A B T U} → Γ ⊢ T ⦂ (A ▻ B) ▻ U ⦂ A ▻ APP T U ⦂ B cup : ∀ {A T} → Γ ⊢ T ⦂ A ▻ BOX T ⦂ T ⦂ A cdown : ∀ {A T} → Γ ⊢ T ⦂ A ▻ A cpair : ∀ {A B} → Γ ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → Γ ⊢ A ∧ B ▻ A csnd : ∀ {A B} → Γ ⊢ A ∧ B ▻ B unit : Γ ⊢ ⊤ [_] : ∀ {A Γ} → Γ ⊢ A → Tm [ var i ] = VAR [ i ]ⁱ [ app t u ] = APP [ t ] [ u ] [ ci ] = CI [ ck ] = CK [ cs ] = CS [ box t ] = BOX [ t ] [ cdist ] = CDIST [ cup ] = CUP [ cdown ] = CDOWN [ cpair ] = CPAIR [ cfst ] = CFST [ csnd ] = CSND [ unit ] = UNIT infix 3 _⊢⋆_ _⊢⋆_ : Cx (Ty Tm) → Cx (Ty Tm) → Set Γ ⊢⋆ ∅ = 𝟙 Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A -- Monotonicity with respect to context inclusion. mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η ci = ci mono⊢ η ck = ck mono⊢ η cs = cs mono⊢ η (box t) = box t mono⊢ η cdist = cdist mono⊢ η cup = cup mono⊢ η cdown = cdown mono⊢ η cpair = cpair mono⊢ η cfst = cfst mono⊢ η csnd = csnd mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Shorthand for variables. V₀ : Tm V₀ = VAR 0 V₁ : Tm V₁ = VAR 1 V₂ : Tm V₂ = VAR 2 v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A v₂ = var i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem. LAM : Tm → Tm LAM (VAR zero) = CI LAM (VAR (suc i)) = APP CK (VAR i) LAM (APP T U) = APP (APP CS (LAM T)) (LAM U) LAM CI = APP CK CI LAM CK = APP CK CK LAM CS = APP CK CS LAM (BOX T) = APP CK (BOX T) LAM CDIST = APP CK CDIST LAM CUP = APP CK CUP LAM CDOWN = APP CK CDOWN LAM CPAIR = APP CK CPAIR LAM CFST = APP CK CFST LAM CSND = APP CK CSND LAM UNIT = APP CK UNIT lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ▻ B lam (var top) = ci lam (var (pop i)) = app ck (var i) lam (app t u) = app (app cs (lam t)) (lam u) lam ci = app ck ci lam ck = app ck ck lam cs = app ck cs lam (box t) = app ck (box t) lam cdist = app ck cdist lam cup = app ck cup lam cdown = app ck cdown lam cpair = app ck cpair lam cfst = app ck cfst lam csnd = app ck csnd lam unit = app ck unit -- Detachment theorem. DET : Tm → Tm DET T = APP T V₀ det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B det t = app (mono⊢ weak⊆ t) v₀ -- Cut and multicut. CUT : Tm → Tm → Tm CUT T U = APP (LAM U) T MULTICUT : Cx Tm → Tm → Tm MULTICUT ∅ U = U MULTICUT (TS , T) U = APP (MULTICUT TS (LAM U)) T cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut t u = app (lam u) t multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″ trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. CCONT : Tm CCONT = LAM (LAM (APP (APP V₁ V₀) V₀)) CONT : Tm → Tm CONT T = DET (APP CCONT (LAM (LAM T))) ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. CEXCH : Tm CEXCH = LAM (LAM (LAM (APP (APP V₂ V₀) V₁))) EXCH : Tm → Tm EXCH T = DET (DET (APP CEXCH (LAM (LAM T)))) cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. CCOMP : Tm CCOMP = LAM (LAM (LAM (APP V₂ (APP V₁ V₀)))) COMP : Tm → Tm → Tm COMP T U = DET (APP (APP CCOMP (LAM T)) (LAM U)) ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in functional form. DIST : Tm → Tm → Tm DIST T U = APP (APP CDIST T) U UP : Tm → Tm UP T = APP CUP T DOWN : Tm → Tm DOWN T = APP CDOWN T DISTUP : Tm → Tm → Tm DISTUP T U = DIST T (UP U) UNBOX : Tm → Tm → Tm UNBOX T U = APP (LAM U) T MULTIBOX : Cx Tm → Tm → Tm MULTIBOX ∅ U = BOX U MULTIBOX (TS , T) U = DISTUP (MULTIBOX TS (LAM U)) T dist : ∀ {A B T U Γ} → Γ ⊢ T ⦂ (A ▻ B) → Γ ⊢ U ⦂ A → Γ ⊢ (APP T U) ⦂ B dist t u = app (app cdist t) u up : ∀ {A T Γ} → Γ ⊢ T ⦂ A → Γ ⊢ BOX T ⦂ T ⦂ A up t = app cup t down : ∀ {A T Γ} → Γ ⊢ T ⦂ A → Γ ⊢ A down t = app cdown t distup : ∀ {A B T U Γ} → Γ ⊢ T ⦂ (U ⦂ A ▻ B) → Γ ⊢ U ⦂ A → Γ ⊢ APP T (BOX U) ⦂ B distup t u = dist t (up u) unbox : ∀ {A C T U Γ} → Γ ⊢ T ⦂ A → Γ , T ⦂ A ⊢ U ⦂ C → Γ ⊢ U ⦂ C unbox t u = app (lam u) t -- FIXME ↓ FIXME ↓ FIXME ----------------------------------------------------- -- -- Do we need reduction on term representations? -- -- Goal: Γ ⊢ [ u ] ⦂ A -- Have: Γ ⊢ APP [ lam u ] (BOX S) ⦂ A distup′ : ∀ {A B T U Γ} → Γ ⊢ LAM T ⦂ (U ⦂ A ▻ B) → Γ ⊢ U ⦂ A → Γ ⊢ APP (LAM T) (BOX U) ⦂ B distup′ t u = dist t (up u) -- multibox : ∀ {n A Γ} {SS : VCx Tm n} {Ξ : VCx (Ty Tm) n} -- → Γ ⊢⋆ SS ⦂⋆ Ξ → (u : SS ⦂⋆ Ξ ⊢ A) -- → Γ ⊢ [ u ] ⦂ A -- multibox {SS = ∅} {∅} ∙ u = box u -- multibox {SS = SS , S} {Ξ , B} (ts , t) u = {!distup (multibox ts (lam u)) t!} -- FIXME ↑ FIXME ↑ FIXME ----------------------------------------------------- PAIR : Tm → Tm → Tm PAIR T U = APP (APP CPAIR T) U FST : Tm → Tm FST T = APP CFST T SND : Tm → Tm SND T = APP CSND T pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B pair t u = app (app cpair t) u fst : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ A fst t = app cfst t snd : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ B snd t = app csnd t -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
{ "alphanum_fraction": 0.4431818182, "avg_line_length": 23.0819672131, "ext": "agda", "hexsha": "a5bb9051910fbbc311c618b0de600b0f8ddb848b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OlderBasicILP/Indirect/Hilbert/Nested.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OlderBasicILP/Indirect/Hilbert/Nested.agda", "max_line_length": 81, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OlderBasicILP/Indirect/Hilbert/Nested.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 3401, "size": 7040 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Support for reflection ------------------------------------------------------------------------ module Reflection where open import Data.Bool as Bool using (Bool); open Bool.Bool open import Data.List using (List); open Data.List.List open import Data.Nat using (ℕ) renaming (_≟_ to _≟-ℕ_) open import Data.Nat.Show renaming (show to showNat) open import Data.Float using (Float) renaming (_≟_ to _≟f_; show to showFloat) open import Data.Char using (Char) renaming (_≟_ to _≟c_; show to showChar) open import Data.String using (String) renaming (_≟_ to _≟s_; show to showString) open import Data.Product open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Binary.PropositionalEquality.TrustMe open import Relation.Nullary open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product ------------------------------------------------------------------------ -- Names -- Names. postulate Name : Set {-# BUILTIN QNAME Name #-} private primitive primQNameEquality : Name → Name → Bool -- Equality of names is decidable. infix 4 _==_ _≟-Name_ private _==_ : Name → Name → Bool _==_ = primQNameEquality _≟-Name_ : Decidable {A = Name} _≡_ s₁ ≟-Name s₂ with s₁ == s₂ ... | true = yes trustMe ... | false = no whatever where postulate whatever : _ -- Names can be shown. private primitive primShowQName : Name → String showName : Name → String showName = primShowQName ------------------------------------------------------------------------ -- Terms -- Is the argument visible (explicit), hidden (implicit), or an -- instance argument? data Visibility : Set where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} -- Arguments. data Arg-info : Set where arg-info : (v : Visibility) (r : Relevance) → Arg-info visibility : Arg-info → Visibility visibility (arg-info v _) = v relevance : Arg-info → Relevance relevance (arg-info _ r) = r data Arg (A : Set) : Set where arg : (i : Arg-info) (x : A) → Arg A {-# BUILTIN ARGINFO Arg-info #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Literals. data Literal : Set where nat : ℕ → Literal float : Float → Literal char : Char → Literal string : String → Literal name : Name → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} -- Terms. mutual data Term : Set where -- Variable applied to arguments. var : (x : ℕ) (args : List (Arg Term)) → Term -- Constructor applied to arguments. con : (c : Name) (args : List (Arg Term)) → Term -- Identifier applied to arguments. def : (f : Name) (args : List (Arg Term)) → Term -- Different kinds of λ-abstraction. lam : (v : Visibility) (t : Term) → Term -- Pattern matching λ-abstraction. pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term -- Pi-type. pi : (t₁ : Arg Type) (t₂ : Type) → Term -- A sort. sort : Sort → Term -- A literal. lit : Literal → Term -- Anything else. unknown : Term data Type : Set where el : (s : Sort) (t : Term) → Type data Sort : Set where -- A Set of a given (possibly neutral) level. set : (t : Term) → Sort -- A Set of a given concrete level. lit : (n : ℕ) → Sort -- Anything else. unknown : Sort data Pattern : Set where con : Name → List (Arg Pattern) → Pattern dot : Pattern var : Pattern lit : Literal → Pattern proj : Name → Pattern absurd : Pattern data Clause : Set where clause : List (Arg Pattern) → Term → Clause absurd-clause : List (Arg Pattern) → Clause {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDATYPE Type #-} {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDATYPEEL el #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATDOT dot #-} {-# BUILTIN AGDAPATVAR var #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} {-# BUILTIN AGDACLAUSECLAUSE clause #-} {-# BUILTIN AGDACLAUSEABSURD absurd-clause #-} ------------------------------------------------------------------------ -- Definitions -- Function definition. data FunctionDef : Set where fun-def : Type → List Clause → FunctionDef {-# BUILTIN AGDAFUNDEF FunctionDef #-} {-# BUILTIN AGDAFUNDEFCON fun-def #-} postulate -- Data type definition. Data-type : Set -- Record type definition. Record : Set {-# BUILTIN AGDADATADEF Data-type #-} {-# BUILTIN AGDARECORDDEF Record #-} -- Definitions. data Definition : Set where function : FunctionDef → Definition data-type : Data-type → Definition record′ : Record → Definition constructor′ : Definition axiom : Definition primitive′ : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record′ #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR constructor′ #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE primitive′ #-} showLiteral : Literal → String showLiteral (nat x) = showNat x showLiteral (float x) = showFloat x showLiteral (char x) = showChar x showLiteral (string x) = showString x showLiteral (name x) = showName x private primitive primQNameType : Name → Type primQNameDefinition : Name → Definition primDataConstructors : Data-type → List Name -- The type of the thing with the given name. type : Name → Type type = primQNameType -- The definition of the thing with the given name. definition : Name → Definition definition = primQNameDefinition -- The constructors of the given data type. constructors : Data-type → List Name constructors = primDataConstructors ------------------------------------------------------------------------ -- Term equality is decidable -- Boring helper functions. private cong₂′ : ∀ {A B C : Set} (f : A → B → C) {x y u v} → x ≡ y × u ≡ v → f x u ≡ f y v cong₂′ f = uncurry (cong₂ f) cong₃′ : ∀ {A B C D : Set} (f : A → B → C → D) {x y u v r s} → x ≡ y × u ≡ v × r ≡ s → f x u r ≡ f y v s cong₃′ f (refl , refl , refl) = refl arg₁ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → i ≡ i′ arg₁ refl = refl arg₂ : ∀ {A i i′} {x x′ : A} → arg i x ≡ arg i′ x′ → x ≡ x′ arg₂ refl = refl arg-info₁ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ arg-info₁ refl = refl arg-info₂ : ∀ {v v′ r r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′ arg-info₂ refl = refl cons₁ : ∀ {A : Set} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → x ≡ y cons₁ refl = refl cons₂ : ∀ {A : Set} {x y} {xs ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys cons₂ refl = refl var₁ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → x ≡ x′ var₁ refl = refl var₂ : ∀ {x x′ args args′} → Term.var x args ≡ var x′ args′ → args ≡ args′ var₂ refl = refl con₁ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → c ≡ c′ con₁ refl = refl con₂ : ∀ {c c′ args args′} → Term.con c args ≡ con c′ args′ → args ≡ args′ con₂ refl = refl def₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′ def₁ refl = refl def₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′ def₂ refl = refl lam₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′ lam₁ refl = refl lam₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′ lam₂ refl = refl pat-lam₁ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′ pat-lam₁ refl = refl pat-lam₂ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → args ≡ args′ pat-lam₂ refl = refl pi₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′ pi₁ refl = refl pi₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′ pi₂ refl = refl sort₁ : ∀ {x y} → sort x ≡ sort y → x ≡ y sort₁ refl = refl lit₁ : ∀ {x y} → Term.lit x ≡ lit y → x ≡ y lit₁ refl = refl pcon₁ : ∀ {c c′ args args′} → Pattern.con c args ≡ con c′ args′ → c ≡ c′ pcon₁ refl = refl pcon₂ : ∀ {c c′ args args′} → Pattern.con c args ≡ con c′ args′ → args ≡ args′ pcon₂ refl = refl plit₁ : ∀ {x y} → Pattern.lit x ≡ lit y → x ≡ y plit₁ refl = refl pproj₁ : ∀ {x y} → proj x ≡ proj y → x ≡ y pproj₁ refl = refl set₁ : ∀ {x y} → set x ≡ set y → x ≡ y set₁ refl = refl slit₁ : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y slit₁ refl = refl el₁ : ∀ {s s′ t t′} → el s t ≡ el s′ t′ → s ≡ s′ el₁ refl = refl el₂ : ∀ {s s′ t t′} → el s t ≡ el s′ t′ → t ≡ t′ el₂ refl = refl nat₁ : ∀ {x y} → nat x ≡ nat y → x ≡ y nat₁ refl = refl float₁ : ∀ {x y} → float x ≡ float y → x ≡ y float₁ refl = refl char₁ : ∀ {x y} → char x ≡ char y → x ≡ y char₁ refl = refl string₁ : ∀ {x y} → string x ≡ string y → x ≡ y string₁ refl = refl name₁ : ∀ {x y} → name x ≡ name y → x ≡ y name₁ refl = refl clause₁ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′ clause₁ refl = refl clause₂ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → b ≡ b′ clause₂ refl = refl absurd-clause₁ : ∀ {ps ps′} → absurd-clause ps ≡ absurd-clause ps′ → ps ≡ ps′ absurd-clause₁ refl = refl _≟-Visibility_ : Decidable (_≡_ {A = Visibility}) visible ≟-Visibility visible = yes refl hidden ≟-Visibility hidden = yes refl instance′ ≟-Visibility instance′ = yes refl visible ≟-Visibility hidden = no λ() visible ≟-Visibility instance′ = no λ() hidden ≟-Visibility visible = no λ() hidden ≟-Visibility instance′ = no λ() instance′ ≟-Visibility visible = no λ() instance′ ≟-Visibility hidden = no λ() _≟-Relevance_ : Decidable (_≡_ {A = Relevance}) relevant ≟-Relevance relevant = yes refl irrelevant ≟-Relevance irrelevant = yes refl relevant ≟-Relevance irrelevant = no λ() irrelevant ≟-Relevance relevant = no λ() _≟-Arg-info_ : Decidable (_≡_ {A = Arg-info}) arg-info v r ≟-Arg-info arg-info v′ r′ = Dec.map′ (cong₂′ arg-info) < arg-info₁ , arg-info₂ > (v ≟-Visibility v′ ×-dec r ≟-Relevance r′) _≟-Lit_ : Decidable (_≡_ {A = Literal}) nat x ≟-Lit nat x₁ = Dec.map′ (cong nat) nat₁ (x ≟-ℕ x₁) nat x ≟-Lit float x₁ = no (λ ()) nat x ≟-Lit char x₁ = no (λ ()) nat x ≟-Lit string x₁ = no (λ ()) nat x ≟-Lit name x₁ = no (λ ()) float x ≟-Lit nat x₁ = no (λ ()) float x ≟-Lit float x₁ = Dec.map′ (cong float) float₁ (x ≟f x₁) float x ≟-Lit char x₁ = no (λ ()) float x ≟-Lit string x₁ = no (λ ()) float x ≟-Lit name x₁ = no (λ ()) char x ≟-Lit nat x₁ = no (λ ()) char x ≟-Lit float x₁ = no (λ ()) char x ≟-Lit char x₁ = Dec.map′ (cong char) char₁ (x ≟c x₁) char x ≟-Lit string x₁ = no (λ ()) char x ≟-Lit name x₁ = no (λ ()) string x ≟-Lit nat x₁ = no (λ ()) string x ≟-Lit float x₁ = no (λ ()) string x ≟-Lit char x₁ = no (λ ()) string x ≟-Lit string x₁ = Dec.map′ (cong string) string₁ (x ≟s x₁) string x ≟-Lit name x₁ = no (λ ()) name x ≟-Lit nat x₁ = no (λ ()) name x ≟-Lit float x₁ = no (λ ()) name x ≟-Lit char x₁ = no (λ ()) name x ≟-Lit string x₁ = no (λ ()) name x ≟-Lit name x₁ = Dec.map′ (cong name) name₁ (x ≟-Name x₁) mutual infix 4 _≟_ _≟-Args_ _≟-ArgType_ _≟-ArgTerm_ : Decidable (_≡_ {A = Arg Term}) arg i a ≟-ArgTerm arg i′ a′ = Dec.map′ (cong₂′ arg) < arg₁ , arg₂ > (i ≟-Arg-info i′ ×-dec a ≟ a′) _≟-ArgType_ : Decidable (_≡_ {A = Arg Type}) arg i a ≟-ArgType arg i′ a′ = Dec.map′ (cong₂′ arg) < arg₁ , arg₂ > (i ≟-Arg-info i′ ×-dec a ≟-Type a′) _≟-ArgPattern_ : Decidable (_≡_ {A = Arg Pattern}) arg i a ≟-ArgPattern arg i′ a′ = Dec.map′ (cong₂′ arg) < arg₁ , arg₂ > (i ≟-Arg-info i′ ×-dec a ≟-Pattern a′) _≟-Args_ : Decidable (_≡_ {A = List (Arg Term)}) [] ≟-Args [] = yes refl (x ∷ xs) ≟-Args (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-ArgTerm y ×-dec xs ≟-Args ys) [] ≟-Args (_ ∷ _) = no λ() (_ ∷ _) ≟-Args [] = no λ() _≟-Clause_ : Decidable (_≡_ {A = Clause}) clause ps b ≟-Clause clause ps′ b′ = Dec.map′ (cong₂′ clause) < clause₁ , clause₂ > (ps ≟-ArgPatterns ps′ ×-dec b ≟ b′) absurd-clause ps ≟-Clause absurd-clause ps′ = Dec.map′ (cong absurd-clause) absurd-clause₁ (ps ≟-ArgPatterns ps′) clause _ _ ≟-Clause absurd-clause _ = no λ() absurd-clause _ ≟-Clause clause _ _ = no λ() _≟-Clauses_ : Decidable (_≡_ {A = List Clause}) [] ≟-Clauses [] = yes refl (x ∷ xs) ≟-Clauses (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-Clause y ×-dec xs ≟-Clauses ys) [] ≟-Clauses (_ ∷ _) = no λ() (_ ∷ _) ≟-Clauses [] = no λ() _≟-Pattern_ : Decidable (_≡_ {A = Pattern}) con c ps ≟-Pattern con c′ ps′ = Dec.map′ (cong₂′ con) < pcon₁ , pcon₂ > (c ≟-Name c′ ×-dec ps ≟-ArgPatterns ps′) con x x₁ ≟-Pattern dot = no (λ ()) con x x₁ ≟-Pattern var = no (λ ()) con x x₁ ≟-Pattern lit x₂ = no (λ ()) con x x₁ ≟-Pattern proj x₂ = no (λ ()) con x x₁ ≟-Pattern absurd = no (λ ()) dot ≟-Pattern con x x₁ = no (λ ()) dot ≟-Pattern dot = yes refl dot ≟-Pattern var = no (λ ()) dot ≟-Pattern lit x = no (λ ()) dot ≟-Pattern proj x = no (λ ()) dot ≟-Pattern absurd = no (λ ()) var ≟-Pattern con x x₁ = no (λ ()) var ≟-Pattern dot = no (λ ()) var ≟-Pattern var = yes refl var ≟-Pattern lit x = no (λ ()) var ≟-Pattern proj x = no (λ ()) var ≟-Pattern absurd = no (λ ()) lit x ≟-Pattern con x₁ x₂ = no (λ ()) lit x ≟-Pattern dot = no (λ ()) lit x ≟-Pattern var = no (λ ()) lit l ≟-Pattern lit l′ = Dec.map′ (cong lit) plit₁ (l ≟-Lit l′) lit x ≟-Pattern proj x₁ = no (λ ()) lit x ≟-Pattern absurd = no (λ ()) proj x ≟-Pattern con x₁ x₂ = no (λ ()) proj x ≟-Pattern dot = no (λ ()) proj x ≟-Pattern var = no (λ ()) proj x ≟-Pattern lit x₁ = no (λ ()) proj x ≟-Pattern proj x₁ = Dec.map′ (cong proj) pproj₁ (x ≟-Name x₁) proj x ≟-Pattern absurd = no (λ ()) absurd ≟-Pattern con x x₁ = no (λ ()) absurd ≟-Pattern dot = no (λ ()) absurd ≟-Pattern var = no (λ ()) absurd ≟-Pattern lit x = no (λ ()) absurd ≟-Pattern proj x = no (λ ()) absurd ≟-Pattern absurd = yes refl _≟-ArgPatterns_ : Decidable (_≡_ {A = List (Arg Pattern)}) [] ≟-ArgPatterns [] = yes refl (x ∷ xs) ≟-ArgPatterns (y ∷ ys) = Dec.map′ (cong₂′ _∷_) < cons₁ , cons₂ > (x ≟-ArgPattern y ×-dec xs ≟-ArgPatterns ys) [] ≟-ArgPatterns (_ ∷ _) = no λ() (_ ∷ _) ≟-ArgPatterns [] = no λ() _≟_ : Decidable (_≡_ {A = Term}) var x args ≟ var x′ args′ = Dec.map′ (cong₂′ var) < var₁ , var₂ > (x ≟-ℕ x′ ×-dec args ≟-Args args′) con c args ≟ con c′ args′ = Dec.map′ (cong₂′ con) < con₁ , con₂ > (c ≟-Name c′ ×-dec args ≟-Args args′) def f args ≟ def f′ args′ = Dec.map′ (cong₂′ def) < def₁ , def₂ > (f ≟-Name f′ ×-dec args ≟-Args args′) lam v t ≟ lam v′ t′ = Dec.map′ (cong₂′ lam) < lam₁ , lam₂ > (v ≟-Visibility v′ ×-dec t ≟ t′) pat-lam cs args ≟ pat-lam cs′ args′ = Dec.map′ (cong₂′ pat-lam) < pat-lam₁ , pat-lam₂ > (cs ≟-Clauses cs′ ×-dec args ≟-Args args′) pi t₁ t₂ ≟ pi t₁′ t₂′ = Dec.map′ (cong₂′ pi) < pi₁ , pi₂ > (t₁ ≟-ArgType t₁′ ×-dec t₂ ≟-Type t₂′) sort s ≟ sort s′ = Dec.map′ (cong sort) sort₁ (s ≟-Sort s′) lit l ≟ lit l′ = Dec.map′ (cong lit) lit₁ (l ≟-Lit l′) unknown ≟ unknown = yes refl var x args ≟ con c args′ = no λ() var x args ≟ def f args′ = no λ() var x args ≟ lam v t = no λ() var x args ≟ pi t₁ t₂ = no λ() var x args ≟ sort _ = no λ() var x args ≟ lit _ = no λ() var x args ≟ unknown = no λ() con c args ≟ var x args′ = no λ() con c args ≟ def f args′ = no λ() con c args ≟ lam v t = no λ() con c args ≟ pi t₁ t₂ = no λ() con c args ≟ sort _ = no λ() con c args ≟ lit _ = no λ() con c args ≟ unknown = no λ() def f args ≟ var x args′ = no λ() def f args ≟ con c args′ = no λ() def f args ≟ lam v t = no λ() def f args ≟ pi t₁ t₂ = no λ() def f args ≟ sort _ = no λ() def f args ≟ lit _ = no λ() def f args ≟ unknown = no λ() lam v t ≟ var x args = no λ() lam v t ≟ con c args = no λ() lam v t ≟ def f args = no λ() lam v t ≟ pi t₁ t₂ = no λ() lam v t ≟ sort _ = no λ() lam v t ≟ lit _ = no λ() lam v t ≟ unknown = no λ() pi t₁ t₂ ≟ var x args = no λ() pi t₁ t₂ ≟ con c args = no λ() pi t₁ t₂ ≟ def f args = no λ() pi t₁ t₂ ≟ lam v t = no λ() pi t₁ t₂ ≟ sort _ = no λ() pi t₁ t₂ ≟ lit _ = no λ() pi t₁ t₂ ≟ unknown = no λ() sort _ ≟ var x args = no λ() sort _ ≟ con c args = no λ() sort _ ≟ def f args = no λ() sort _ ≟ lam v t = no λ() sort _ ≟ pi t₁ t₂ = no λ() sort _ ≟ lit _ = no λ() sort _ ≟ unknown = no λ() lit _ ≟ var x args = no λ() lit _ ≟ con c args = no λ() lit _ ≟ def f args = no λ() lit _ ≟ lam v t = no λ() lit _ ≟ pi t₁ t₂ = no λ() lit _ ≟ sort _ = no λ() lit _ ≟ unknown = no λ() unknown ≟ var x args = no λ() unknown ≟ con c args = no λ() unknown ≟ def f args = no λ() unknown ≟ lam v t = no λ() unknown ≟ pi t₁ t₂ = no λ() unknown ≟ sort _ = no λ() unknown ≟ lit _ = no λ() pat-lam _ _ ≟ var x args = no λ() pat-lam _ _ ≟ con c args = no λ() pat-lam _ _ ≟ def f args = no λ() pat-lam _ _ ≟ lam v t = no λ() pat-lam _ _ ≟ pi t₁ t₂ = no λ() pat-lam _ _ ≟ sort _ = no λ() pat-lam _ _ ≟ lit _ = no λ() pat-lam _ _ ≟ unknown = no λ() var x args ≟ pat-lam _ _ = no λ() con c args ≟ pat-lam _ _ = no λ() def f args ≟ pat-lam _ _ = no λ() lam v t ≟ pat-lam _ _ = no λ() pi t₁ t₂ ≟ pat-lam _ _ = no λ() sort _ ≟ pat-lam _ _ = no λ() lit _ ≟ pat-lam _ _ = no λ() unknown ≟ pat-lam _ _ = no λ() _≟-Type_ : Decidable (_≡_ {A = Type}) el s t ≟-Type el s′ t′ = Dec.map′ (cong₂′ el) < el₁ , el₂ > (s ≟-Sort s′ ×-dec t ≟ t′) _≟-Sort_ : Decidable (_≡_ {A = Sort}) set t ≟-Sort set t′ = Dec.map′ (cong set) set₁ (t ≟ t′) lit n ≟-Sort lit n′ = Dec.map′ (cong lit) slit₁ (n ≟-ℕ n′) unknown ≟-Sort unknown = yes refl set _ ≟-Sort lit _ = no λ() set _ ≟-Sort unknown = no λ() lit _ ≟-Sort set _ = no λ() lit _ ≟-Sort unknown = no λ() unknown ≟-Sort set _ = no λ() unknown ≟-Sort lit _ = no λ()
{ "alphanum_fraction": 0.543684948, "avg_line_length": 32.4943089431, "ext": "agda", "hexsha": "4f6f6e4dae3325453d5e878ee829f89cb7651a5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Reflection.agda", "max_line_length": 122, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Reflection.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 7168, "size": 19984 }
module Issue313 where postulate QName : Set {-# BUILTIN QNAME QName #-} postulate X : Set _+_ : QName → QName → Set foo : Set foo = quote X + quote X
{ "alphanum_fraction": 0.6257668712, "avg_line_length": 10.8666666667, "ext": "agda", "hexsha": "0cec7405a5eb88aeb4a6cb4831eac0b1d96161bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue313.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue313.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue313.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 163 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Simple combinators working solely on and with functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function where open import Level open import Strict infixr 9 _∘_ _∘′_ infixl 8 _ˢ_ infixl 1 _on_ infixl 1 _⟨_⟩_ infixr -1 _$_ _$′_ _$!_ _$!′_ infixr 0 _-[_]-_ infixl 0 _|>_ _|>′_ _∋_ ------------------------------------------------------------------------ -- Types -- Unary functions on a given set. Fun₁ : ∀ {i} → Set i → Set i Fun₁ A = A → A -- Binary functions on a given set. Fun₂ : ∀ {i} → Set i → Set i Fun₂ A = A → A → A ------------------------------------------------------------------------ -- Functions _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) _∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → (A → C) f ∘′ g = _∘_ f g id : ∀ {a} {A : Set a} → A → A id x = x const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x = λ _ → x -- The S combinator. (Written infix as in Conor McBride's paper -- "Outrageous but Meaningful Coincidences: Dependent type-safe syntax -- and evaluation".) _ˢ_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} → ((x : A) (y : B x) → C x y) → (g : (x : A) → B x) → ((x : A) → C x (g x)) f ˢ g = λ x → f x (g x) flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ y x → f x y -- Note that _$_ is right associative, like in Haskell. If you want a -- left associative infix application operator, use -- Category.Functor._<$>_, available from -- Category.Monad.Identity.IdentityMonad. _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _$′_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → (A → B) _$′_ = _$_ -- Strict (call-by-value) application _$!_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) _$!_ = flip force _$!′_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → (A → B) _$!′_ = _$!_ -- flipped application aka pipe-forward _|>_ : ∀ {a b} {A : Set a} {B : A → Set b} → (a : A) → (∀ a → B a) → B a _|>_ = flip _$_ _|>′_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B _|>′_ = _|>_ _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y _on_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → B → C) → (A → B) → (A → A → C) _*_ on f = λ x y → f x * f y _-[_]-_ : ∀ {a b c d e} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} → (A → B → C) → (C → D → E) → (A → B → D) → (A → B → E) f -[ _*_ ]- g = λ x y → f x y * g x y -- In Agda you cannot annotate every subexpression with a type -- signature. This function can be used instead. _∋_ : ∀ {a} (A : Set a) → A → A A ∋ x = x -- Conversely it is sometimes useful to be able to extract the -- type of a given expression: typeOf : ∀ {a} {A : Set a} → A → Set a typeOf {A = A} _ = A -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). infix 0 case_return_of_ case_of_ case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → ((x : A) → B x) → B x case x return B of f = f x case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = case x return _ of f
{ "alphanum_fraction": 0.4316427784, "avg_line_length": 25.7304964539, "ext": "agda", "hexsha": "f3cb7f9788fede6582648acae79ff7f45c7827eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1435, "size": 3628 }
{-# OPTIONS --universe-polymorphism #-} open import Common.Prelude renaming (Nat to ℕ; module Nat to ℕ) using (zero; suc; _+_; _∸_; List; []; _∷_; Bool; true; false) open import Common.Level open import Common.Reflection module TermSplicing where module Library where data Box {a} (A : Set a) : Set a where box : A → Box A record ⊤ : Set where constructor tt infixr 5 _×_ record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B [_] : ∀ {A : Set} → A → List A [ x ] = x ∷ [] replicate : ∀ {A : Set} → ℕ → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) foldl : ∀ {A B : Set} → (A → B → A) → A → List B → A foldl c n [] = n foldl c n (x ∷ xs) = foldl c (c n x) xs reverse : ∀ {A : Set} → List A → List A reverse = foldl (λ rev x → x ∷ rev) [] length : ∀ {A : Set} → List A → ℕ length = foldr (λ _ → suc) 0 data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A mapMaybe : ∀ {A B : Set} → (A → B) → Maybe A → Maybe B mapMaybe f (just x) = just (f x) mapMaybe f nothing = nothing when : ∀ {A} → Bool → Maybe A → Maybe A when true x = x when false _ = nothing infix 6 _≡_ data _≡_ {a} {A : Set a} (x : A) : A -> Set where refl : x ≡ x _→⟨_⟩_ : ∀ (A : Set) (n : ℕ) (B : Set) → Set A →⟨ zero ⟩ B = B A →⟨ suc n ⟩ B = A → A →⟨ n ⟩ B open Library module ReflectLibrary where lamᵛ : Term → Term lamᵛ t = lam visible (abs "_" t) lamʰ : Term → Term lamʰ t = lam hidden (abs "_" t) argᵛʳ : ∀{a} {A : Set a} → A → Arg A argᵛʳ = arg (argInfo visible relevant) argʰʳ : ∀{a} {A : Set a} → A → Arg A argʰʳ = arg (argInfo hidden relevant) app` : (Args → Term) → (hrs : List ArgInfo) → Term →⟨ length hrs ⟩ Term app` f = go [] where go : List (Arg Term) → (hrs : List ArgInfo) → Term →⟨ length hrs ⟩ Term go args [] = f (reverse args) go args (i ∷ hs) = λ t → go (arg i t ∷ args) hs con` : QName → (hrs : List ArgInfo) → Term →⟨ length hrs ⟩ Term con` x = app` (con x) def` : QName → (hrs : List ArgInfo) → Term →⟨ length hrs ⟩ Term def` x = app` (def x) var` : ℕ → (hrs : List ArgInfo) → Term →⟨ length hrs ⟩ Term var` x = app` (var x) coe : ∀ {A : Set} {z : A} n → (Term →⟨ length (replicate n z) ⟩ Term) → Term →⟨ n ⟩ Term coe zero t = t coe (suc n) f = λ t → coe n (f t) con`ⁿʳ : QName → (n : ℕ) → Term →⟨ n ⟩ Term con`ⁿʳ x n = coe n (app` (con x) (replicate n (argInfo visible relevant))) def`ⁿʳ : QName → (n : ℕ) → Term →⟨ n ⟩ Term def`ⁿʳ x n = coe n (app` (def x) (replicate n (argInfo visible relevant))) var`ⁿʳ : ℕ → (n : ℕ) → Term →⟨ n ⟩ Term var`ⁿʳ x n = coe n (app` (var x) (replicate n (argInfo visible relevant))) sort₀ : Sort sort₀ = lit 0 sort₁ : Sort sort₁ = lit 1 `Set₀ : Term `Set₀ = sort sort₀ unArg : ∀ {a} {A : Set a} → Arg A → A unArg (arg _ a) = a `Level : Term `Level = def (quote Level) [] ℕ→Level : ℕ → Level ℕ→Level zero = lzero ℕ→Level (suc n) = lsuc (ℕ→Level n) -- Can't match on Levels anymore -- Level→ℕ : Level → ℕ -- Level→ℕ zero = zero -- Level→ℕ (suc n) = suc (Level→ℕ n) setLevel : Level → Sort setLevel ℓ = lit 0 -- (Level→ℕ ℓ) _==_ : QName → QName → Bool _==_ = primQNameEquality decodeSort : Sort → Maybe Level decodeSort (set (con c [])) = when (quote lzero == c) (just lzero) decodeSort (set (con c (arg (argInfo visible relevant) s ∷ []))) = when (quote lsuc == c) (mapMaybe lsuc (decodeSort (set s))) decodeSort (set (sort s)) = decodeSort s decodeSort (set _) = nothing decodeSort (lit n) = just (ℕ→Level n) decodeSort (prop _) = nothing decodeSort (propLit _) = nothing decodeSort (inf _) = nothing decodeSort unknown = nothing _`⊔`_ : Sort → Sort → Sort s₁ `⊔` s₂ with decodeSort s₁ | decodeSort s₂ ... | just n₁ | just n₂ = setLevel (n₁ ⊔ n₂) ... | _ | _ = set (def (quote _⊔_) (argᵛʳ (sort s₁) ∷ argᵛʳ (sort s₂) ∷ [])) Π : Arg Type → Type → Type Π t u = pi t (abs "_" u) Πᵛʳ : Type → Type → Type Πᵛʳ t u = Π (vArg t) u Πʰʳ : Type → Type → Type Πʰʳ t u = Π (hArg t) u open ReflectLibrary `ℕ : Term `ℕ = def (quote ℕ) [] `ℕOk : (unquote (give `ℕ)) ≡ ℕ `ℕOk = refl idℕ : ℕ → ℕ idℕ = unquote (give (lamᵛ (var 0 []))) id : (A : Set) → A → A id = unquote (give (lamᵛ (lamᵛ (var 0 [])))) idBox : Box ({A : Set} → A → A) idBox = box (unquote (give (lamᵛ (var 0 [])))) -- builds a pair _`,_ : Term → Term → Term _`,_ = con`ⁿʳ (quote _,_) 2 `tt : Term `tt = con (quote tt) [] tuple : List Term → Term tuple = foldr _`,_ `tt `refl : Term `refl = con (quote refl) [] `zero : Term `zero = con (quote ℕ.zero) [] `[] : Term `[] = con (quote []) [] _`∷_ : (`x `xs : Term) → Term _`∷_ = con`ⁿʳ (quote _∷_) 2 `abs : (`s `body : Term) → Term `abs = con`ⁿʳ (quote abs) 2 `var : (`n `args : Term) → Term `var = con`ⁿʳ (quote Term.var) 2 `lam : (`hiding `body : Term) → Term `lam = con`ⁿʳ (quote lam) 2 `lit : Term → Term `lit = con`ⁿʳ (quote Term.lit) 1 `string : Term → Term `string = con`ⁿʳ (quote string) 1 `visible : Term `visible = con (quote visible) [] `hidden : Term `hidden = con (quote hidden) [] `[_`] : Term → Term `[ x `] = x `∷ `[] quotedTwice : Term quotedTwice = `lam `visible (`abs (lit (string "_")) (`var `zero `[])) unquoteTwice₂ : ℕ → ℕ unquoteTwice₂ = unquote (give (unquote (give quotedTwice))) unquoteTwice : ℕ → ℕ unquoteTwice x = unquote (give (unquote (give (`var `zero `[])))) id₂ : {A : Set} → A → A id₂ = unquote (give (lamᵛ (var 0 []))) id₃ : {A : Set} → A → A id₃ x = unquote (give (var 0 [])) module Id {A : Set} (x : A) where x′ : A x′ = unquote (give (var 0 [])) k`ℕ : ℕ → Term k`ℕ zero = `ℕ k`ℕ (suc n) = unquote (give (def (quote k`ℕ) [ argᵛʳ (var 0 []) ])) -- k`ℕ n test : id ≡ (λ A (x : A) → x) × unquote (give `Set₀) ≡ Set × unquote (give `ℕ) ≡ ℕ × unquote (give (lamᵛ (var 0 []))) ≡ (λ (x : Set) → x) × id ≡ (λ A (x : A) → x) × unquote (give `tt) ≡ tt × (λ {A} → Id.x′ {A}) ≡ (λ {A : Set} (x : A) → x) × unquote (give (pi (vArg `Set₀) (abs "_" `Set₀))) ≡ (Set → Set) × unquoteTwice ≡ (λ (x : ℕ) → x) × unquote (give (k`ℕ 42)) ≡ ℕ × unquote (give (lit (nat 15))) ≡ 15 × unquote (give (lit (float 3.1415))) ≡ 3.1415 × unquote (give (lit (string "foo"))) ≡ "foo" × unquote (give (lit (char 'X'))) ≡ 'X' × unquote (give (lit (qname (quote ℕ)))) ≡ quote ℕ × ⊤ test = unquote (give (tuple (replicate n `refl))) where n = 15 Πⁿ : ℕ → Type → Type Πⁿ zero t = t Πⁿ (suc n) t = Π (argʰʳ `Set₀) (Πⁿ n t) ƛⁿ : Hiding → ℕ → Term → Term ƛⁿ h zero t = t ƛⁿ h (suc n) t = lam h (abs "_" (ƛⁿ h n t)) -- projᵢ : Proj i n -- projᵢ = proj i n -- Projᵢ = {A₁ ... Ai ... An : Set} → A₁ → ... → Aᵢ → ... → An → Aᵢ -- projᵢ = λ {A₁ ... Ai ... An} x₁ ... xᵢ ... xn → xᵢ Proj : (i n : ℕ) → Term Proj i n = Πⁿ n (go n) where n∸1 = n ∸ 1 go : ℕ → Type go zero = var ((n + n) ∸ i) [] go (suc m) = Π (argᵛʳ (var n∸1 [])) (go m) proj : (i n : ℕ) → Term proj i n = ƛⁿ visible n (var (n ∸ i) []) projFull : (i n : ℕ) → Term projFull i n = ƛⁿ hidden n (proj i n) ℕ→ℕ : Set ℕ→ℕ = unquote (give (Π (argᵛʳ `ℕ) `ℕ)) ℕ→ℕOk : ℕ→ℕ ≡ (ℕ → ℕ) ℕ→ℕOk = refl ``∀A→A : Type ``∀A→A = Πᵛʳ `Set₀ (var 0 []) ∀A→A : Set₁ ∀A→A = unquote (give ``∀A→A) Proj₁¹ : Set₁ Proj₁¹ = unquote (give (Proj 1 1)) Proj₁² : Set₁ Proj₁² = unquote (give (Proj 1 2)) Proj₂² : Set₁ Proj₂² = unquote (give (Proj 2 2)) proj₃⁵ : unquote (give (Proj 3 5)) proj₃⁵ _ _ x _ _ = x proj₃⁵′ : Box (unquote (give (Proj 3 5))) proj₃⁵′ = box (unquote (give (proj 3 5))) proj₂⁷ : unquote (give (Proj 2 7)) proj₂⁷ = unquote (give (proj 2 7)) test-proj : proj₃⁵′ ≡ box (λ _ _ x _ _ → x) × Proj₁¹ ≡ ({A : Set} → A → A) × Proj₁² ≡ ({A₁ A₂ : Set} → A₁ → A₂ → A₁) × Proj₂² ≡ ({A₁ A₂ : Set} → A₁ → A₂ → A₂) × unquote (give (Proj 3 5)) ≡ ({A₁ A₂ A₃ A₄ A₅ : Set} → A₁ → A₂ → A₃ → A₄ → A₅ → A₃) × unquote (give (projFull 1 1)) ≡ (λ {A : Set} (x : A) → x) × unquote (give (projFull 1 2)) ≡ (λ {A₁ A₂ : Set} (x₁ : A₁) (x₂ : A₂) → x₁) × unquote (give (projFull 2 2)) ≡ (λ {A₁ A₂ : Set} (x₁ : A₁) (x₂ : A₂) → x₂) × ∀A→A ≡ (∀ (A : Set) → A) × ⊤ test-proj = unquote (give (tuple (replicate n `refl))) where n = 9 module Test where data Squash (A : Set) : Set where squash : unquote (give (Π (arg (argInfo visible irrelevant) (var 0 [])) (def (quote Squash) (argᵛʳ (var 1 []) ∷ [])))) data Squash (A : Set) : Set where squash : .A → Squash A `Squash : Term → Term `Squash = def`ⁿʳ (quote Squash) 1 squash-type : Type squash-type = Π (arg (argInfo visible irrelevant) (var 0 [])) (`Squash (var 1 [])) test-squash : ∀ {A} → (.A → Squash A) ≡ unquote (give squash-type) test-squash = refl `∀ℓ→Setℓ : Type `∀ℓ→Setℓ = Πᵛʳ `Level (sort (set (var 0 [])))
{ "alphanum_fraction": 0.5103835558, "avg_line_length": 26.5112359551, "ext": "agda", "hexsha": "b3643531a9c39dc33d217f17a62ace600e4666a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "googleson78/agda", "max_forks_repo_path": "test/Succeed/TermSplicing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "googleson78/agda", "max_issues_repo_path": "test/Succeed/TermSplicing.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "googleson78/agda", "max_stars_repo_path": "test/Succeed/TermSplicing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3978, "size": 9438 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType open import lib.types.Cospan open import lib.types.Pointed open import lib.types.Sigma module lib.types.Pullback where module _ {i j k} (D : Cospan {i} {j} {k}) where open Cospan D record Pullback : Type (lmax i (lmax j k)) where constructor pullback field a : A b : B h : f a == g b pullback= : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → pullback a b h == pullback a' b' h' pullback= idp idp r = ap (pullback _ _) (! (∙-unit-r _) ∙ r) pullback-aβ : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → ap Pullback.a (pullback= p q {h = h} {h' = h'} r) == p pullback-aβ idp idp r = ap Pullback.a (ap (pullback _ _) (! (∙-unit-r _) ∙ r)) =⟨ ∘-ap Pullback.a (pullback _ _) _ ⟩ ap (λ _ → _) (! (∙-unit-r _) ∙ r) =⟨ ap-cst _ _ ⟩ idp =∎ pullback-bβ : {a a' : A} (p : a == a') {b b' : B} (q : b == b') {h : f a == g b} {h' : f a' == g b'} (r : h ∙ ap g q == ap f p ∙ h') → ap Pullback.b (pullback= p q {h = h} {h' = h'} r) == q pullback-bβ idp idp r = ap Pullback.b (ap (pullback _ _) (! (∙-unit-r _) ∙ r)) =⟨ ∘-ap Pullback.b (pullback _ _) _ ⟩ ap (λ _ → _) (! (∙-unit-r _) ∙ r) =⟨ ap-cst _ _ ⟩ idp =∎ module _ {i j k} (D : ⊙Cospan {i} {j} {k}) where ⊙Pullback : Ptd (lmax i (lmax j k)) ⊙Pullback = ⊙[ Pullback (⊙cospan-out D) , pullback (pt X) (pt Y) (snd f ∙ ! (snd g)) ] where open ⊙Cospan D module _ {i j k} (D : Cospan {i} {j} {k}) where open Cospan D pullback-decomp-equiv : Pullback D ≃ Σ (A × B) (λ {(a , b) → f a == g b}) pullback-decomp-equiv = equiv (λ {(pullback a b h) → ((a , b) , h)}) (λ {((a , b) , h) → pullback a b h}) (λ _ → idp) (λ _ → idp) module _ {i j k} (n : ℕ₋₂) {D : Cospan {i} {j} {k}} where open Cospan D pullback-level : has-level n A → has-level n B → has-level n C → has-level n (Pullback D) pullback-level pA pB pC = equiv-preserves-level ((pullback-decomp-equiv D)⁻¹) $ Σ-level (×-level pA pB) (λ _ → =-preserves-level pC)
{ "alphanum_fraction": 0.4938434477, "avg_line_length": 30.7297297297, "ext": "agda", "hexsha": "a797ca3272d87493df8eda7abaebf0716afda57f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Pullback.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Pullback.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Pullback.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 962, "size": 2274 }
{-# OPTIONS --without-K --safe #-} module Data.Empty where open import Data.Empty.Base public
{ "alphanum_fraction": 0.7083333333, "avg_line_length": 16, "ext": "agda", "hexsha": "4130d0f360e7429edbbc3359c69beccd8e743f8b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Empty.agda", "max_line_length": 34, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 20, "size": 96 }
{-# OPTIONS --without-K #-} module tactic where open import Type open import Search.Type open import Search.Searchable open import Search.Searchable.Product open import Data.One open import Data.Product open import Function open import Relation.Binary.PropositionalEquality.NP module _ {R S} (sum-R : Sum R)(sum-R-ext : SumExt sum-R)(sum-S : Sum S) where su-× : ∀ {f : R → R}{g : S → S} → SumStableUnder sum-R f → SumStableUnder sum-S g → SumStableUnder (sum-R ×-sum sum-S) (map f g) su-× {f}{g} su-f su-g F = (sum-R ×-sum sum-S) F ≡⟨ sum-R-ext (λ x → su-g (λ y → F ( x , y))) ⟩ (sum-R ×-sum sum-S) (F ∘ map id g) ≡⟨ su-f (λ x → sum-S (λ y → F (map id g (x , y)))) ⟩ (sum-R ×-sum sum-S) (F ∘ map f g) ∎ where open ≡-Reasoning module _ {R}(sum-R : Sum R) where su-id : SumStableUnder sum-R id su-id f = refl su-∘ : ∀ {f g} → SumStableUnder sum-R f → SumStableUnder sum-R g → SumStableUnder sum-R (f ∘ g) su-∘ {f} su-f su-g F = trans (su-f F) (su-g (F ∘ f)) module with-sum {R R' S'}(sum-R : Sum R)(sum-R' : Sum R')(sum-S' : Sum S')(sum-R'-ext : SumExt sum-R') (h : R' → R')(su-h : SumStableUnder sum-R' h) (to : R' → S' → R)(sum-same : ∀ f → sum-R f ≡ sum-R' (λ r' → sum-S' (f ∘ to r'))) where principle : ∀ {f g} → (∀ r' → sum-S' (f ∘ to r') ≡ sum-S' (g ∘ to (h r'))) → sum-R f ≡ sum-R g principle {f}{g} prf = sum-R f ≡⟨ sum-same f ⟩ sum-R' (λ r' → sum-S' (λ s' → f (to r' s'))) ≡⟨ sum-R'-ext (λ r' → prf r') ⟩ sum-R' (λ r' → sum-S' (λ s' → g (to (h r') s'))) ≡⟨ sym (su-h (λ r' → sum-S' (λ s' → g (to r' s')))) ⟩ sum-R' (λ r' → sum-S' (λ s' → g (to r' s'))) ≡⟨ sym (sum-same g) ⟩ sum-R g ∎ where open ≡-Reasoning import Function.Inverse.NP as Inv open Inv using (_↔_) renaming (_$₁_ to to ; _$₂_ to from) module with-iso {R R' S' : Set}(iso : R ↔ (R' × S'))(h : R' ↔ R') where open import Function.Related open import Data.Fin using (Fin) open import Function.Related.TypeIsomorphisms.NP principle : ∀ {f g} → (∀ r' → Σ S' (Fin ∘ f ∘ curry (from iso) r') ↔ Σ S' (Fin ∘ g ∘ curry (from iso) (to h r'))) → Σ R (Fin ∘ f) ↔ Σ R (Fin ∘ g) principle {f} {g} prf = Σ R (Fin ∘ f) ↔⟨ first-iso iso ⟩ Σ (R' × S') (Fin ∘ f ∘ from iso) ↔⟨ Σ-assoc ⟩ Σ R' (λ r' → Σ S' (λ s' → Fin (f (from iso (r' , s'))))) ↔⟨ second-iso prf ⟩ Σ R' (λ r' → Σ S' (λ s' → Fin (g (from iso (to h r' , s'))))) ↔⟨ Inv.sym (first-iso (Inv.sym h)) ⟩ Σ R' (λ r' → Σ S' (λ s' → Fin (g (from iso (r' , s'))))) ↔⟨ Inv.sym Σ-assoc ⟩ Σ (R' × S') (Fin ∘ g ∘ from iso) ↔⟨ Inv.sym (first-iso iso) ⟩ Σ R (Fin ∘ g) ∎ where open EquationalReasoning module _ (sum-R : Sum R)(sum-S' : Sum S')(sum-R-adq : AdequateSum sum-R)(sum-S'-adq : AdequateSum sum-S') where cool : ∀ {f g} → (∀ r' → sum-S' (f ∘ curry (from iso) r') ≡ sum-S' (g ∘ curry (from iso) (to h r'))) → sum-R f ≡ sum-R g cool {f} {g} prf = Fin-injective (Inv.sym (sum-R-adq g) Inv.∘ principle lemma Inv.∘ sum-R-adq f) where open EquationalReasoning lemma : (_ : _) → _ lemma r' = Σ S' (Fin ∘ f ∘ curry (from iso) r') ↔⟨ Inv.sym (sum-S'-adq (f ∘ curry (from iso) r')) ⟩ Fin (sum-S' (f ∘ curry (from iso) r')) ↔⟨ Fin-cong (prf r') ⟩ Fin (sum-S' (g ∘ curry (from iso) (to h r'))) ↔⟨ sum-S'-adq (g ∘ curry (from iso) (to h r')) ⟩ Σ S' (Fin ∘ g ∘ curry (from iso) (to h r')) ∎
{ "alphanum_fraction": 0.4777568078, "avg_line_length": 37.4646464646, "ext": "agda", "hexsha": "9957b62f9f4c6777d2e3b4a21075700598624038", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/IsoRandomnessSplit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/IsoRandomnessSplit.agda", "max_line_length": 113, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/IsoRandomnessSplit.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1461, "size": 3709 }
-- ByteStrings where we track statically if they're lazy or strict -- Note that lazy and strict bytestrings have the same semantics -- in Agda, as all computation is guaranteed to terminate. -- They may, however, have quite different performance characteristics. open import Data.Bool using ( Bool ) open import Data.Nat using ( ℕ ) open import Data.Natural using ( Natural ; % ) open import Data.Product using ( _×_ ; _,_ ) open import Data.Word using ( Byte ) open import Data.String using ( String ) open import Data.ByteString.Primitive module Data.ByteString where open Data.ByteString.Primitive public using ( mkStrict ; mkLazy ) data Style : Set where lazy strict : Style ByteString : Style → Set ByteString strict = ByteStringStrict ByteString lazy = ByteStringLazy ε : {s : Style} → (ByteString s) ε {lazy} = emptyLazy ε {strict} = emptyStrict _∙_ : {s : Style} → (ByteString s) → (ByteString s) → (ByteString s) _∙_ {lazy} = appendLazy _∙_ {strict} = appendStrict _◁_ : {s : Style} → Byte → (ByteString s) → (ByteString s) _◁_ {lazy} = consLazy _◁_ {strict} = consStrict _▷_ : {s : Style} → (ByteString s) → Byte → (ByteString s) _▷_ {lazy} = snocLazy _▷_ {strict} = snocStrict length : {s : Style} → (ByteString s) → Natural length {lazy} = lengthLazy length {strict} = lengthStrict size : {s : Style} → (ByteString s) → ℕ size bs = %(length bs) null : {s : Style} → (ByteString s) → Bool null {lazy} = nullLazy null {strict} = nullStrict span : {s : Style} → (Byte → Bool) → (ByteString s) → (ByteString s × ByteString s) span {lazy} φ bs with spanLazy φ bs span {lazy} φ bs | bs² = (lazy₁ bs² , lazy₂ bs²) span {strict} φ bs with spanStrict φ bs span {strict} φ bs | bs² = (strict₁ bs² , strict₂ bs²) break : {s : Style} → (Byte → Bool) → (ByteString s) → (ByteString s × ByteString s) break {lazy} φ bs with breakLazy φ bs break {lazy} φ bs | bs² = (lazy₁ bs² , lazy₂ bs²) break {strict} φ bs with breakStrict φ bs break {strict} φ bs | bs² = (strict₁ bs² , strict₂ bs²)
{ "alphanum_fraction": 0.6828063241, "avg_line_length": 32.126984127, "ext": "agda", "hexsha": "c40e4770833190d1c7b2b9b84f21d99d366984df", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/ByteString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/ByteString.agda", "max_line_length": 84, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/ByteString.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 629, "size": 2024 }
module BasicConcreteImplementations where open import AbstractInterfaces public -- Process identifiers. instance ⟨P⟩ : IsProc ⟨P⟩ = record { Proc = ℕ ; _≡ₚ?_ = _≡?_ ; _<ₚ_ = _<_ ; trans<ₚ = trans< ; tri<ₚ = tri< } -- Process clocks, message timestamps, and event timestamps. instance ⟨T⟩ : IsTime ⟨T⟩ = record { Time = ℕ ; _≡ₜ?_ = _≡?_ ; _<ₜ_ = _<_ ; trans<ₜ = trans< ; tri<ₜ = tri< ; irrefl<ₜ = irrefl< ; sucₜ = suc ; _⊔ₜ_ = _⊔_ ; n<s[n⊔m]ₜ = n<s[n⊔m] } -- Messages. data BasicMsg : (Pᵢ Pⱼ : Proc) (Tₘ : Time) → Set where instance ⟨M⟩ : IsMsg ⟨M⟩ = record { Msg = BasicMsg } -- Events within one process. data BasicEvent : Proc → Time → Set where send : ∀ {Cᵢ Pᵢ Pⱼ Tₘ} {{_ : Tₘ ≡ sucₜ Cᵢ}} → Msg Pᵢ Pⱼ Tₘ → BasicEvent Pᵢ Tₘ recv : ∀ {Cⱼ Pᵢ Pⱼ Tₘ Tⱼ} {{_ : Tⱼ ≡ sucₜ (Tₘ ⊔ₜ Cⱼ)}} → Msg Pᵢ Pⱼ Tₘ → BasicEvent Pⱼ Tⱼ instance ⟨E⟩ : IsEvent ⟨E⟩ = record { Event = BasicEvent ; isSendₑ = λ {Cᵢ} m a → a ≡ send {Cᵢ} m ; isRecvₑ = λ {Cⱼ} m a → a ≡ recv {Cⱼ} m ; absurdₑ = λ { {{refl}} (refl , ()) } }
{ "alphanum_fraction": 0.4508320726, "avg_line_length": 20.65625, "ext": "agda", "hexsha": "d71b8777962bb461e594ef8e34e25af23d414335", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/lamport-timestamps", "max_forks_repo_path": "BasicConcreteImplementations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/lamport-timestamps", "max_issues_repo_path": "BasicConcreteImplementations.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/lamport-timestamps", "max_stars_repo_path": "BasicConcreteImplementations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 551, "size": 1322 }