Search is not available for this dataset
text
string
meta
dict
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ infixr 2.5 _≡⟨_⟩≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y z w : A refl : x ≡ x refl {x = x} = λ _ → x {-# INLINE refl #-} sym : x ≡ y → y ≡ x sym p i = p (~ i) {-# INLINE sym #-} symP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ i → A (~ i)) y x symP p j = p (~ j) cong : ∀ (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) {-# INLINE cong #-} cong₂ : ∀ {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) {-# INLINE cong₂ #-} {- The most natural notion of homogenous path composition in a cubical setting is double composition: x ∙ ∙ ∙ > w ^ ^ p⁻¹ | | r ^ | | j | y — — — > z ∙ — > q i `p ∙∙ q ∙∙ r` gives the line at the top, `doubleCompPath-filler p q r` gives the whole square -} doubleComp-faces : {x y z w : A } (p : x ≡ y) (r : z ≡ w) → (i : I) (j : I) → Partial (i ∨ ~ i) A doubleComp-faces p r i j (i = i0) = p (~ j) doubleComp-faces p r i j (i = i1) = r j _∙∙_∙∙_ : w ≡ x → x ≡ y → y ≡ z → w ≡ z (p ∙∙ q ∙∙ r) i = hcomp (doubleComp-faces p r i) (q i) doubleCompPath-filler : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → PathP (λ j → p (~ j) ≡ r j) q (p ∙∙ q ∙∙ r) doubleCompPath-filler p q r j i = hfill (doubleComp-faces p r i) (inS (q i)) j -- any two definitions of double composition are equal compPath-unique : ∀ (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → (α β : Σ[ s ∈ x ≡ w ] PathP (λ j → p (~ j) ≡ r j) q s) → α ≡ β compPath-unique p q r (α , α-filler) (β , β-filler) t = (λ i → cb i1 i) , (λ j i → cb j i) where cb : I → I → _ cb j i = hfill (λ j → λ { (t = i0) → α-filler j i ; (t = i1) → β-filler j i ; (i = i0) → p (~ j) ; (i = i1) → r j }) (inS (q i)) j {- For single homogenous path composition, we take `p = refl`: x ∙ ∙ ∙ > z ‖ ^ ‖ | r ^ ‖ | j | x — — — > y ∙ — > q i `q ∙ r` gives the line at the top, `compPath-filler q r` gives the whole square -} _∙_ : x ≡ y → y ≡ z → x ≡ z p ∙ q = refl ∙∙ p ∙∙ q compPath-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → x ≡ q j) p (p ∙ q) compPath-filler p q = doubleCompPath-filler refl p q -- We could have also defined single composition by taking `r = refl`: _∙'_ : x ≡ y → y ≡ z → x ≡ z p ∙' q = p ∙∙ q ∙∙ refl compPath'-filler : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙' q) compPath'-filler p q = doubleCompPath-filler p q refl -- It's easy to show that `p ∙ q` also has such a filler: compPath-filler' : (p : x ≡ y) (q : y ≡ z) → PathP (λ j → p (~ j) ≡ z) q (p ∙ q) compPath-filler' {z = z} p q j i = hcomp (λ k → λ { (i = i0) → p (~ j) ; (i = i1) → q k ; (j = i0) → q (i ∧ k) }) (p (i ∨ ~ j)) -- Note: We can omit a (j = i1) case here since when (j = i1), the whole expression is -- definitionally equal to `p ∙ q`. (Notice that `p ∙ q` is also an hcomp.) Nevertheless, -- we could have given `compPath-filler p q k i` as the (j = i1) case. -- From this, we can show that these two notions of composition are the same compPath≡compPath' : (p : x ≡ y) (q : y ≡ z) → p ∙ q ≡ p ∙' q compPath≡compPath' p q j = compPath-unique p q refl (p ∙ q , compPath-filler' p q) (p ∙' q , compPath'-filler p q) j .fst -- Heterogeneous path composition and its filler: compPathP : ∀ {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} → PathP A x y → PathP (λ i → B i) y z → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP {A = A} {x = x} {B = B} p q i = comp (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i) compPathP' : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ i → B ((p ∙ q) i)) x' z' compPathP' {B = B} {x' = x'} {p = p} {q = q} P Q i = comp (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (P i) compPathP-filler : ∀ {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} {z : B i1} → (p : PathP A x y) (q : PathP (λ i → B i) y z) → PathP (λ j → PathP (λ k → (compPath-filler (λ i → A i) B j k)) x (q j)) p (compPathP p q) compPathP-filler {A = A} {x = x} {B = B} p q j i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j compPathP'-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} {x' : B x} {y' : B y} {z' : B z} {p : x ≡ y} {q : y ≡ z} (P : PathP (λ i → B (p i)) x' y') (Q : PathP (λ i → B (q i)) y' z') → PathP (λ j → PathP (λ i → B (compPath-filler p q j i)) x' (Q j)) P (compPathP' {x = x} {y = y} {x' = x'} {y' = y'} P Q) compPathP'-filler {B = B} {x' = x'} {p = p} {q = q} P Q j i = fill (λ j → B (compPath-filler p q j i)) (λ j → λ { (i = i0) → x' ; (i = i1) → Q j }) (inS (P i)) j _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡⟨⟩⟨⟩-syntax : (x y : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w ≡⟨⟩⟨⟩-syntax x y p q r = p ∙∙ q ∙∙ r infixr 3 ≡⟨⟩⟨⟩-syntax syntax ≡⟨⟩⟨⟩-syntax x y B C = x ≡⟨ B ⟩≡ y ≡⟨ C ⟩≡ _≡⟨_⟩≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → z ≡ w → x ≡ w _ ≡⟨ x≡y ⟩≡⟨ y≡z ⟩ z≡w = x≡y ∙∙ y≡z ∙∙ z≡w _∎ : (x : A) → x ≡ x _ ∎ = refl -- Transport, subst and functional extensionality -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x transport-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : A) → PathP (λ i → p i) x (transport p x) transport-filler p x i = transp (λ j → p (i ∧ j)) (~ i) x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa subst2 : ∀ {ℓ' ℓ''} {B : Type ℓ'} {z w : B} (C : A → B → Type ℓ'') (p : x ≡ y) (q : z ≡ w) → C x z → C y w subst2 B p q b = transport (λ i → B (p i) (q i)) b substRefl : (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px funExt : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → ((x : A) → PathP (B x) (f x) (g x)) → PathP (λ i → (x : A) → B x i) f g funExt p i x = p x i implicitFunExt : {B : A → I → Type ℓ'} {f : {x : A} → B x i0} {g : {x : A} → B x i1} → ({x : A} → PathP (B x) (f {x}) (g {x})) → PathP (λ i → {x : A} → B x i) f g implicitFunExt p i {x} = p {x} i -- the inverse to funExt (see Functions.FunExtEquiv), converting paths -- between functions to homotopies; `funExt⁻` is called `happly` and -- defined by path induction in the HoTT book (see function 2.9.2 in -- section 2.9) funExt⁻ : {B : A → I → Type ℓ'} {f : (x : A) → B x i0} {g : (x : A) → B x i1} → PathP (λ i → (x : A) → B x i) f g → ((x : A) → PathP (B x) (f x) (g x)) funExt⁻ eq x i = eq i x -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d J-∙ : (p : x ≡ y) (q : y ≡ z) → J (p ∙ q) ≡ transport (λ i → P (q i) (λ j → compPath-filler p q i j)) (J p) J-∙ p q k = transp (λ i → P (q (i ∨ ~ k)) (λ j → compPath-filler p q (i ∨ ~ k) j)) (~ k) (J (λ j → compPath-filler p q (~ k) j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transp (\ i → A i) i0 x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transp (\ i → A i) i0 x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Whiskering a dependent path by a path _◁_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ a₀' : A i0} {a₁ : A i1} → a₀ ≡ a₀' → PathP A a₀' a₁ → PathP A a₀ a₁ (p ◁ q) i = hcomp (λ j → λ {(i = i0) → p (~ j); (i = i1) → q i1}) (q i) _▷_ : ∀ {ℓ} {A : I → Type ℓ} {a₀ : A i0} {a₁ a₁' : A i1} → PathP A a₀ a₁ → a₁ ≡ a₁' → PathP A a₀ a₁' (p ▷ q) i = hcomp (λ j → λ {(i = i0) → p i0; (i = i1) → q j}) (p i) -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Contractibility of singletons singlP : (A : I → Type ℓ) (a : A i0) → Type _ singlP A a = Σ[ x ∈ A i1 ] PathP A a x singl : (a : A) → Type _ singl {A = A} a = singlP (λ _ → A) a isContrSingl : (a : A) → isContr (singl a) isContrSingl a = (a , refl) , λ p i → p .snd i , λ j → p .snd (i ∧ j) isContrSinglP : (A : I → Type ℓ) (a : A i0) → isContr (singlP A a) isContrSinglP A a .fst = _ , transport-filler (λ i → A i) a isContrSinglP A a .snd (x , p) i = _ , λ j → fill (\ i → A i) (λ j → λ {(i = i0) → transport-filler (λ i → A i) a j; (i = i1) → p j}) (inS a) j SquareP : (A : I → I → Type ℓ) {a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁) {a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁) (a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁) → Type ℓ SquareP A a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → PathP (λ j → A i j) (a₋₀ i) (a₋₁ i)) a₀₋ a₁₋ Square : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Type _ Square a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋ isSet' : Type ℓ → Type ℓ isSet' A = {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ Cube : {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Type _ Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = PathP (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ isGroupoid' : Type ℓ → Type ℓ isGroupoid' A = {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ -- Essential consequences of isProp and isContr isProp→PathP : ∀ {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → PathP (λ i → B i) b0 b1 isProp→PathP hB b0 b1 = toPathP (hB _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr (c0 , h0) (c1 , h1) j = h0 c1 j , λ y i → hcomp (λ k → λ { (i = i0) → h0 (h0 c1 j) k; (i = i1) → h0 y k; (j = i0) → h0 (h0 y i) k; (j = i1) → h0 (h1 y i) k}) c0 isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b i = hcomp (λ j → λ { (i = i0) → p a j ; (i = i1) → p b j }) x isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a isProp→isSet' : isProp A → isSet' A isProp→isSet' h {a} p q r s i j = hcomp (λ k → λ { (i = i0) → h a (p j) k ; (i = i1) → h a (q j) k ; (j = i0) → h a (r i) k ; (j = i1) → h a (s i) k}) a isPropIsProp : isProp (isProp A) isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i isPropSingl : {a : A} → isProp (singl a) isPropSingl = isContr→isProp (isContrSingl _) isPropSinglP : {A : I → Type ℓ} {a : A i0} → isProp (singlP A a) isPropSinglP = isContr→isProp (isContrSinglP _ _) -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where constructor lift field lower : A open Lift public liftExt : ∀ {A : Type ℓ} {a b : Lift {ℓ} {ℓ'} A} → (lower a ≡ lower b) → a ≡ b liftExt x i = lift (x i) doubleCompPath-filler∙ : {a b c d : A} (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → PathP (λ i → p i ≡ r (~ i)) (p ∙ q ∙ r) q doubleCompPath-filler∙ {A = A} {b = b} p q r j i = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → side j k ; (j = i1) → q (i ∧ k)}) (p (j ∨ i)) where side : I → I → A side i j = hcomp (λ k → λ { (i = i1) → q j ; (j = i0) → b ; (j = i1) → r (~ i ∧ k)}) (q j) PathP→compPathL : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → sym p ∙ r ∙ q ≡ s PathP→compPathL {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∨ k) ; (i = i1) → q (j ∨ k) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q (~ k) i ; (j = i1) → s i }) (P j i) PathP→compPathR : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → r ≡ p ∙ s ∙ sym q PathP→compPathR {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∧ (~ k)) ; (i = i1) → q (j ∧ (~ k)) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) (~ k) i}) (P j i) -- otherdir compPathL→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → sym p ∙ r ∙ q ≡ s → PathP (λ i → p i ≡ q i) r s compPathL→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (~ k ∨ j) ; (i = i1) → q (~ k ∨ j) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q k i ; (j = i1) → s i}) (P j i) compPathR→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙ s ∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) k i}) (P j i)
{ "alphanum_fraction": 0.4529682521, "avg_line_length": 33.4901185771, "ext": "agda", "hexsha": "86290f97a7cd9a0c1af278d444cba29a336c7184", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Foundations/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Foundations/Prelude.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Foundations/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8025, "size": 16946 }
-- Andreas, 2012-11-18: abstract record values module Issue759 where import Common.Level abstract record Wrap (A : Set) : Set where field wrapped : A open Wrap public wrap : {A : Set} → A → Wrap A wrap a = record { wrapped = a } -- caused 'Not in Scope: recCon-NOT-PRINTED' -- during eta-contraction in serialization -- should work now
{ "alphanum_fraction": 0.6827195467, "avg_line_length": 19.6111111111, "ext": "agda", "hexsha": "ed25dfc4f1cb4cd52153b5d160cfb8a43af1f590", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue759.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue759.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue759.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 353 }
module Structure.Operator.Group where import Lvl open import Logic open import Logic.IntroInstances open import Logic.Predicate open import Structure.Setoid open import Structure.Function open import Structure.Operator.Monoid using (Monoid) open import Structure.Operator.Properties hiding (commutativity) open import Type open import Type.Size -- A type and a binary operator using this type is a group when: -- • It is a monoid. -- • The operator have an inverse in both directions. record Group {ℓ ℓₑ} {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) : Stmt{ℓ Lvl.⊔ ℓₑ} where constructor intro field ⦃ monoid ⦄ : Monoid(_▫_) open Monoid(monoid) public field ⦃ inverse-existence ⦄ : ∃(InverseFunction(_▫_) ⦃ identity-existence ⦄) inv = [∃]-witness inverse-existence field ⦃ inv-function ⦄ : Function(inv) instance inverse : InverseFunction (_▫_) inv inverse = [∃]-proof inverse-existence instance inverseₗ : InverseFunctionₗ (_▫_) inv inverseₗ = InverseFunction.left(inverse) instance inverseᵣ : InverseFunctionᵣ (_▫_) inv inverseᵣ = InverseFunction.right(inverse) inv-op : T → T → T inv-op x y = x ▫ inv y record CommutativeGroup {ℓ ℓₑ} {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) : Stmt{ℓ Lvl.⊔ ℓₑ} where constructor intro field ⦃ group ⦄ : Group (_▫_) ⦃ commutativity ⦄ : Commutativity (_▫_) open Group(group) public {- TODO: See Monoid for how this should be rewritten to fit how it is done in Category module Morphism where module _ {ℓ₁ ℓ₂} {X : Type{ℓ₁}} ⦃ _ : Equiv(X) ⦄ {_▫X_ : X → X → X} ⦃ structureₗ : Group(_▫X_) ⦄ {Y : Type{ℓ₂}} ⦃ _ : Equiv(Y) ⦄ {_▫Y_ : Y → Y → Y} ⦃ structureᵣ : Group(_▫Y_) ⦄ (f : X → Y) where -- Group homomorphism record Homomorphism : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro idₗ = Group.id(structureₗ) idᵣ = Group.id(structureᵣ) invₗ = Group.inv(structureₗ) invᵣ = Group.inv(structureᵣ) field preserve-op : ∀{x y : X} → (f(x ▫X y) ≡ f(x) ▫Y f(y)) -- TODO: These may be unneccessary because they follow from preserve-op when Function(f) preserve-inv : ∀{x : X} → (f(invₗ x) ≡ invᵣ(f(x))) preserve-id : (f(idₗ) ≡ idᵣ) -- Group monomorphism (Injective homomorphism) record Monomorphism : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ homomorphism ⦄ : Homomorphism ⦃ size ⦄ : (X ≼ Y) -- Group epimorphism (Surjective homomorphism) record Epimorphism : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ homomorphism ⦄ : Homomorphism ⦃ size ⦄ : (X ≽ Y) -- Group isomorphism (Bijective homomorphism) record Isomorphism : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ homomorphism ⦄ : Homomorphism ⦃ size ⦄ : (X ≍ Y) _↣_ : ∀{ℓ₁ ℓ₂} → {X : Type{ℓ₁}} → ⦃ _ : Equiv(X) ⦄ → (_▫X_ : X → X → X) → ⦃ structureₗ : Group(_▫X_) ⦄ → {Y : Type{ℓ₂}} → ⦃ _ : Equiv(Y) ⦄ → (_▫Y_ : Y → Y → Y) → ⦃ structureᵣ : Group(_▫Y_) ⦄ → Stmt{ℓ₁ Lvl.⊔ ℓ₂} (_▫X_) ↣ (_▫Y_) = ∃(Monomorphism{_▫X_ = _▫X_}{_▫Y_ = _▫Y_}) _↠_ : ∀{ℓ₁ ℓ₂} → {X : Type{ℓ₁}} → ⦃ _ : Equiv(X) ⦄ → (_▫X_ : X → X → X) → ⦃ structureₗ : Group(_▫X_) ⦄ → {Y : Type{ℓ₂}} → ⦃ _ : Equiv(Y) ⦄ → (_▫Y_ : Y → Y → Y) → ⦃ structureᵣ : Group(_▫Y_) ⦄ → Stmt{ℓ₁ Lvl.⊔ ℓ₂} (_▫X_) ↠ (_▫Y_) = ∃(Epimorphism{_▫X_ = _▫X_}{_▫Y_ = _▫Y_}) _⤖_ : ∀{ℓ₁ ℓ₂} → {X : Type{ℓ₁}} → ⦃ _ : Equiv(X) ⦄ → (_▫X_ : X → X → X) → ⦃ structureₗ : Group(_▫X_) ⦄ → {Y : Type{ℓ₂}} → ⦃ _ : Equiv(Y) ⦄ → (_▫Y_ : Y → Y → Y) → ⦃ structureᵣ : Group(_▫Y_) ⦄ → Stmt{ℓ₁ Lvl.⊔ ℓ₂} (_▫X_) ⤖ (_▫Y_) = ∃(Isomorphism{_▫X_ = _▫X_}{_▫Y_ = _▫Y_}) -}
{ "alphanum_fraction": 0.5867924528, "avg_line_length": 36.3725490196, "ext": "agda", "hexsha": "08da31e18579c9e92373bcd8935616c4c2a80342", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Group.agda", "max_line_length": 212, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1595, "size": 3710 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A bunch of properties ------------------------------------------------------------------------ module Data.Bool.Properties where open import Data.Bool as Bool open import Data.Fin open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Algebra open import Algebra.Structures import Algebra.RingSolver.Simple as Solver import Algebra.RingSolver.AlmostCommutativeRing as ACR open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl) open P.≡-Reasoning import Algebra.FunctionProperties as FP; open FP (_≡_ {A = Bool}) open import Data.Product open import Data.Sum open import Data.Empty ------------------------------------------------------------------------ -- Duality -- Can we take advantage of duality in some (nice) way? ------------------------------------------------------------------------ -- (Bool, ∨, ∧, false, true) forms a commutative semiring private ∨-assoc : Associative _∨_ ∨-assoc true y z = refl ∨-assoc false y z = refl ∧-assoc : Associative _∧_ ∧-assoc true y z = refl ∧-assoc false y z = refl ∨-comm : Commutative _∨_ ∨-comm true true = refl ∨-comm true false = refl ∨-comm false true = refl ∨-comm false false = refl ∧-comm : Commutative _∧_ ∧-comm true true = refl ∧-comm true false = refl ∧-comm false true = refl ∧-comm false false = refl distrib-∧-∨ : _∧_ DistributesOver _∨_ distrib-∧-∨ = distˡ , distʳ where distˡ : _∧_ DistributesOverˡ _∨_ distˡ true y z = refl distˡ false y z = refl distʳ : _∧_ DistributesOverʳ _∨_ distʳ x y z = begin (y ∨ z) ∧ x ≡⟨ ∧-comm (y ∨ z) x ⟩ x ∧ (y ∨ z) ≡⟨ distˡ x y z ⟩ x ∧ y ∨ x ∧ z ≡⟨ P.cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩ y ∧ x ∨ z ∧ x ∎ isCommutativeSemiring-∨-∧ : IsCommutativeSemiring _≡_ _∨_ _∧_ false true isCommutativeSemiring-∨-∧ = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = P.isEquivalence ; assoc = ∨-assoc ; ∙-cong = P.cong₂ _∨_ } ; identityˡ = λ _ → refl ; comm = ∨-comm } ; *-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = P.isEquivalence ; assoc = ∧-assoc ; ∙-cong = P.cong₂ _∧_ } ; identityˡ = λ _ → refl ; comm = ∧-comm } ; distribʳ = proj₂ distrib-∧-∨ ; zeroˡ = λ _ → refl } commutativeSemiring-∨-∧ : CommutativeSemiring _ _ commutativeSemiring-∨-∧ = record { _+_ = _∨_ ; _*_ = _∧_ ; 0# = false ; 1# = true ; isCommutativeSemiring = isCommutativeSemiring-∨-∧ } module RingSolver = Solver (ACR.fromCommutativeSemiring commutativeSemiring-∨-∧) _≟_ ------------------------------------------------------------------------ -- (Bool, ∧, ∨, true, false) forms a commutative semiring private distrib-∨-∧ : _∨_ DistributesOver _∧_ distrib-∨-∧ = distˡ , distʳ where distˡ : _∨_ DistributesOverˡ _∧_ distˡ true y z = refl distˡ false y z = refl distʳ : _∨_ DistributesOverʳ _∧_ distʳ x y z = begin (y ∧ z) ∨ x ≡⟨ ∨-comm (y ∧ z) x ⟩ x ∨ (y ∧ z) ≡⟨ distˡ x y z ⟩ (x ∨ y) ∧ (x ∨ z) ≡⟨ P.cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩ (y ∨ x) ∧ (z ∨ x) ∎ isCommutativeSemiring-∧-∨ : IsCommutativeSemiring _≡_ _∧_ _∨_ true false isCommutativeSemiring-∧-∨ = record { +-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = P.isEquivalence ; assoc = ∧-assoc ; ∙-cong = P.cong₂ _∧_ } ; identityˡ = λ _ → refl ; comm = ∧-comm } ; *-isCommutativeMonoid = record { isSemigroup = record { isEquivalence = P.isEquivalence ; assoc = ∨-assoc ; ∙-cong = P.cong₂ _∨_ } ; identityˡ = λ _ → refl ; comm = ∨-comm } ; distribʳ = proj₂ distrib-∨-∧ ; zeroˡ = λ _ → refl } commutativeSemiring-∧-∨ : CommutativeSemiring _ _ commutativeSemiring-∧-∨ = record { _+_ = _∧_ ; _*_ = _∨_ ; 0# = true ; 1# = false ; isCommutativeSemiring = isCommutativeSemiring-∧-∨ } ------------------------------------------------------------------------ -- (Bool, ∨, ∧, not, true, false) is a boolean algebra private absorptive : Absorptive _∨_ _∧_ absorptive = abs-∨-∧ , abs-∧-∨ where abs-∨-∧ : _∨_ Absorbs _∧_ abs-∨-∧ true y = refl abs-∨-∧ false y = refl abs-∧-∨ : _∧_ Absorbs _∨_ abs-∧-∨ true y = refl abs-∧-∨ false y = refl not-∧-inverse : Inverse false not _∧_ not-∧-inverse = ¬x∧x≡⊥ , (λ x → ∧-comm x (not x) ⟨ P.trans ⟩ ¬x∧x≡⊥ x) where ¬x∧x≡⊥ : LeftInverse false not _∧_ ¬x∧x≡⊥ false = refl ¬x∧x≡⊥ true = refl not-∨-inverse : Inverse true not _∨_ not-∨-inverse = ¬x∨x≡⊤ , (λ x → ∨-comm x (not x) ⟨ P.trans ⟩ ¬x∨x≡⊤ x) where ¬x∨x≡⊤ : LeftInverse true not _∨_ ¬x∨x≡⊤ false = refl ¬x∨x≡⊤ true = refl isBooleanAlgebra : IsBooleanAlgebra _≡_ _∨_ _∧_ not true false isBooleanAlgebra = record { isDistributiveLattice = record { isLattice = record { isEquivalence = P.isEquivalence ; ∨-comm = ∨-comm ; ∨-assoc = ∨-assoc ; ∨-cong = P.cong₂ _∨_ ; ∧-comm = ∧-comm ; ∧-assoc = ∧-assoc ; ∧-cong = P.cong₂ _∧_ ; absorptive = absorptive } ; ∨-∧-distribʳ = proj₂ distrib-∨-∧ } ; ∨-complementʳ = proj₂ not-∨-inverse ; ∧-complementʳ = proj₂ not-∧-inverse ; ¬-cong = P.cong not } booleanAlgebra : BooleanAlgebra _ _ booleanAlgebra = record { _∨_ = _∨_ ; _∧_ = _∧_ ; ¬_ = not ; ⊤ = true ; ⊥ = false ; isBooleanAlgebra = isBooleanAlgebra } ------------------------------------------------------------------------ -- (Bool, xor, ∧, id, false, true) forms a commutative ring private xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y) xor-is-ok true y = refl xor-is-ok false y = P.sym $ proj₂ CS.*-identity _ where module CS = CommutativeSemiring commutativeSemiring-∨-∧ commutativeRing-xor-∧ : CommutativeRing _ _ commutativeRing-xor-∧ = commutativeRing where import Algebra.Properties.BooleanAlgebra as BA open BA booleanAlgebra open XorRing _xor_ xor-is-ok module XorRingSolver = Solver (ACR.fromCommutativeRing commutativeRing-xor-∧) _≟_ ------------------------------------------------------------------------ -- Miscellaneous other properties not-involutive : Involutive not not-involutive true = refl not-involutive false = refl not-¬ : ∀ {x y} → x ≡ y → x ≢ not y not-¬ {true} refl () not-¬ {false} refl () ¬-not : ∀ {x y} → x ≢ y → x ≡ not y ¬-not {true} {true} x≢y = ⊥-elim (x≢y refl) ¬-not {true} {false} _ = refl ¬-not {false} {true} _ = refl ¬-not {false} {false} x≢y = ⊥-elim (x≢y refl) ⇔→≡ : {b₁ b₂ b : Bool} → b₁ ≡ b ⇔ b₂ ≡ b → b₁ ≡ b₂ ⇔→≡ {true } {true } hyp = refl ⇔→≡ {true } {false} {true } hyp = P.sym (Equivalence.to hyp ⟨$⟩ refl) ⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp ⟨$⟩ refl ⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp ⟨$⟩ refl ⇔→≡ {false} {true } {false} hyp = P.sym (Equivalence.to hyp ⟨$⟩ refl) ⇔→≡ {false} {false} hyp = refl T-≡ : ∀ {b} → T b ⇔ b ≡ true T-≡ {false} = equivalence (λ ()) (λ ()) T-≡ {true} = equivalence (const refl) (const _) T-not-≡ : ∀ {b} → T (not b) ⇔ b ≡ false T-not-≡ {false} = equivalence (const refl) (const _) T-not-≡ {true} = equivalence (λ ()) (λ ()) T-∧ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) ⇔ (T b₁ × T b₂) T-∧ {true} {true} = equivalence (const (_ , _)) (const _) T-∧ {true} {false} = equivalence (λ ()) proj₂ T-∧ {false} {_} = equivalence (λ ()) proj₁ T-∨ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) ⇔ (T b₁ ⊎ T b₂) T-∨ {true} {b₂} = equivalence inj₁ (const _) T-∨ {false} {true} = equivalence inj₂ (const _) T-∨ {false} {false} = equivalence inj₁ [ id , id ] proof-irrelevance : ∀ {b} (p q : T b) → p ≡ q proof-irrelevance {true} _ _ = refl proof-irrelevance {false} () () push-function-into-if : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) x {y z} → f (if x then y else z) ≡ (if x then f y else f z) push-function-into-if _ true = P.refl push-function-into-if _ false = P.refl
{ "alphanum_fraction": 0.5038908312, "avg_line_length": 29.0721311475, "ext": "agda", "hexsha": "e420c43930bf33c99931455a7dacb48038adeafd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Bool/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Bool/Properties.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 3254, "size": 8867 }
module x03-842Relations-hc-2 where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) -- added sym open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties using (+-comm; *-comm; *-zeroʳ) ------------------------------------------------------------------------------ -- inequality : ≤ data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} -------- → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n ------------- → suc m ≤ suc n infix 4 _≤_ _ : 2 ≤ 4 -- multiple 'refine' will do this automatically _ = s≤s (s≤s z≤n) _ : 2 ≤ 4 -- implicit args _ = s≤s {1} {3} (s≤s {0} {2} z≤n) _ : 2 ≤ 4 -- named implicit args _ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} z≤n) _ : 2 ≤ 4 -- some implicit named args _ = s≤s {n = 3} (s≤s {m = 0} z≤n) -------------------------------------------------- -- inversion inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n ------------- → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero -------- → m ≡ zero inv-z≤n z≤n = refl -- reflexive ≤-refl : ∀ {n : ℕ} ----- → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s (≤-refl {n}) -------------------------------------------------- -- transitive ≤-trans : ∀ {m n p : ℕ} -- note implicit arguments → m ≤ n → n ≤ p ----- → m ≤ p ≤-trans z≤n n≤p = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) ≤-trans′ : ∀ (m n p : ℕ) -- without implicit arguments → m ≤ n → n ≤ p ----- → m ≤ p ≤-trans′ .0 _ _ z≤n n≤p = z≤n ≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p) -------------------------------------------------- -- antisymmetry ≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m ----- → m ≡ n ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) rewrite ≤-antisym m≤n n≤m = refl -------------------------------------------------- -- total ordering def with parameters data Total (m n : ℕ) : Set where forward : m ≤ n --------- → Total m n flipped : n ≤ m --------- → Total m n -- equivalent def without parameters data Total′ : ℕ → ℕ → Set where forward′ : ∀ {m n : ℕ} → m ≤ n ---------- → Total′ m n flipped′ : ∀ {m n : ℕ} → n ≤ m ---------- → Total′ m n -- prove ≤ is a total order -- using WITH ≤-total : ∀ (m n : ℕ) → Total m n ≤-total zero n = forward z≤n ≤-total (suc m) zero = flipped z≤n ≤-total (suc m) (suc n) with ≤-total m n ... | forward x = forward (s≤s x) ... | flipped x = flipped (s≤s x) ≤-total′ : ∀ (m n : ℕ) → Total m n -- using helper defined in 'where' ≤-total′ zero n = forward z≤n ≤-total′ (suc m) zero = flipped z≤n ≤-total′ (suc m) (suc n) = helper (≤-total m n) where helper : Total m n → Total (suc m) (suc n) helper (forward x) = forward (s≤s x) helper (flipped x) = flipped (s≤s x) -- same but split on n first ≤-totalN : ∀ (m n : ℕ) → Total m n ≤-totalN m zero = flipped z≤n ≤-totalN zero n = forward z≤n ≤-totalN (suc m) (suc n) with ≤-totalN m n ... | forward x = forward (s≤s x) ... | flipped x = flipped (s≤s x) -------------------------------------------------- -- monotonicity of + with respect to ≤ -- inequality added on right +-monoʳ-≤ : ∀ (m p q : ℕ) → p ≤ q ------------- → m + p ≤ m + q +-monoʳ-≤ zero p q p≤q = p≤q +-monoʳ-≤ (suc m) p q p≤q -- suc m + p ≤ suc m + q -- suc (m + p) ≤ suc (m + q) = s≤s (+-monoʳ-≤ m p q p≤q) -- can be done by refine then recurse -- inequality added on left +-monoˡ-≤ : ∀ (p q m : ℕ) → p ≤ q ------------- → p + m ≤ q + m +-monoˡ-≤ p q m p≤q -- p + m ≤ q + m rewrite +-comm p m -- m + p ≤ q + m | +-comm q m -- m + p ≤ m + q = +-monoʳ-≤ m p q p≤q -- combine above +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q ------------- → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoʳ-≤ m p q p≤q ) (+-monoˡ-≤ m n q m≤n) -------------------------------------------------- -- monotonicity of * m≤n→n≡0→n≡0 : ∀ (m : ℕ) → m ≤ zero → m ≡ 0 m≤n→n≡0→n≡0 zero m≤0 = refl -- inequality multiplied on right *-monoʳ-≤ : ∀ (m p q : ℕ) → p ≤ q ------------- → m * p ≤ m * q *-monoʳ-≤ zero p q p≤q = z≤n *-monoʳ-≤ m zero q p≤q -- m * zero ≤ m * q rewrite *-zeroʳ m -- 0 ≤ m * q = z≤n *-monoʳ-≤ m p zero p≤q -- m * p ≤ m * zero rewrite *-zeroʳ m -- m * p ≤ 0 | m≤n→n≡0→n≡0 p p≤q -- m * 0 ≤ 0 | *-zeroʳ m -- 0 ≤ 0 = z≤n *-monoʳ-≤ m (suc p) (suc q) p≤q -- m * suc p ≤ m * suc q rewrite *-comm m (suc p) -- m + p * m ≤ m * suc q | *-comm m (suc q) -- m + p * m ≤ m + q * m | *-comm p m -- m + m * p ≤ m + q * m | *-comm q m -- m + m * p ≤ m + m * q = +-monoʳ-≤ m (m * p) (m * q) (*-monoʳ-≤ m p q (inv-s≤s p≤q)) -- inequality multiplied on left *-monoˡ-≤ : ∀ (p q m : ℕ) → p ≤ q ------------- → p * m ≤ q * m *-monoˡ-≤ p q m p≤q -- p * m ≤ q * m rewrite *-comm p m -- m * p ≤ q * m | *-comm q m -- m * p ≤ m * q = *-monoʳ-≤ m p q p≤q *-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q ------------- → m * p ≤ n * q *-mono-≤ m n p q m≤n p≤q = ≤-trans (*-monoʳ-≤ m p q p≤q ) (*-monoˡ-≤ m n q m≤n) ------------------------------------------------------------------------------ -- strict inequality : < infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n <-trans : ∀ {m n p : ℕ} → m < n → n < p ------- → m < p <-trans z<s (s<s y) = z<s <-trans (s<s x) (s<s y) = s<s (<-trans x y) ------------------------------------------------------------------------------ data Trichotomy (m n : ℕ) : Set where is-< : m < n → Trichotomy m n is-≡ : m ≡ n → Trichotomy m n is-> : n < m → Trichotomy m n suc-injective : ∀ {m n : ℕ} → suc m ≡ suc n → m ≡ n suc-injective refl = refl m≡n→sucm≡sucn : ∀ (m n : ℕ) → m ≡ n → suc m ≡ suc n m≡n→sucm≡sucn zero zero p = refl m≡n→sucm≡sucn zero (suc n) () m≡n→sucm≡sucn (suc m) zero () m≡n→sucm≡sucn (suc m) (suc n) p = cong suc (m≡n→sucm≡sucn m n (suc-injective p)) <-trichotomy : ∀ (m n : ℕ) → Trichotomy m n <-trichotomy zero zero = is-≡ refl <-trichotomy zero (suc n) = is-< z<s <-trichotomy (suc m) zero = is-> z<s <-trichotomy (suc m) (suc n) with <-trichotomy m n ... | is-< m<n = is-< (s<s m<n) ... | is-≡ m≡n = is-≡ (m≡n→sucm≡sucn m n m≡n) ... | is-> n<m = is-> (s<s n<m) ------------------------------------------------------------------------------ -- monotonicity of + with respect to < -- all I did was copy the +-monoʳ-≤ proof and replace ≤ with < - it worked -- inequality added on right +-monoʳ-< : ∀ (m p q : ℕ) → p < q ------------- → m + p < m + q +-monoʳ-< zero p q p<q = p<q +-monoʳ-< (suc m) p q p<q = s<s (+-monoʳ-< m p q p<q) -- inequality added on left +-monoˡ-< : ∀ (p q m : ℕ) → p < q ------------- → p + m < q + m +-monoˡ-< p q m p<q rewrite +-comm p m | +-comm q m = +-monoʳ-< m p q p<q -- combine above +-mono-< : ∀ (m n p q : ℕ) → m < n → p < q ------------- → m + p < n + q +-mono-< m n p q m<n p<q = <-trans (+-monoʳ-< m p q p<q ) (+-monoˡ-< m n q m<n) ------------------------------------------------------------------------------ -- Proofs showing relation between strict inequality and inequality. -- (Do the proofs in the order below, to avoid induction for two of the four proofs.) -------------------------------------------------- -- turn ≤ into < ≤-<-to : ∀ {m n : ℕ} → m ≤ n → m < suc n ≤-<-to {zero} {zero} z≤n = z<s ≤-<-to {zero} {suc n} z≤n = z<s ≤-<-to {suc m} {suc n} (s≤s m≤n) = s<s (≤-<-to m≤n) --- removing unneeded stuff ≤-<-to' : ∀ {m n : ℕ} → m ≤ n → m < suc n ≤-<-to' z≤n = z<s ≤-<-to' (s≤s m≤n) = s<s (≤-<-to' m≤n) ≤-<--to′ : ∀ {m n : ℕ} → suc m ≤ n → m < n ≤-<--to′ (s≤s sm≤n) = ≤-<-to sm≤n -------------------------------------------------- -- turn < into ≤ ≤-<-from : ∀ {m n : ℕ} → m < n → suc m ≤ n ≤-<-from z<s = s≤s z≤n ≤-<-from (s<s m<n) = s≤s (≤-<-from m<n) ≤-<-from′ : ∀ {m n : ℕ} → m < suc n → m ≤ n ≤-<-from′ z<s = z≤n ≤-<-from′ (s<s m<sn) = ≤-<-from m<sn ------------------------------------------------------------------------------ -- use the above to give a proof of <-trans that uses ≤-trans m<n→m<sucn : ∀ {m n : ℕ} → m < n → m < suc n m<n→m<sucn z<s = z<s m<n→m<sucn (s<s m<n) = s<s (m<n→m<sucn m<n) <-trans' : ∀ {m n p : ℕ} → m < n → n < p ------- → m < p <-trans' m<n n<p = ≤-<--to′ (≤-trans (≤-<-from m<n) ( ≤-<-from′ (m<n→m<sucn n<p))) ------------------------------------------------------------------------------ -- Mutually recursive datatypes. Specify types first, then definitions. data even : ℕ → Set data odd : ℕ → Set -- HC : added 'E' suffix to constructors data even where zeroE : --------- even zero sucE : ∀ {n : ℕ} → odd n ------------ → even (suc n) -- HC : added 'O' suffix to constructor data odd where sucO : ∀ {n : ℕ} → even n ----------- → odd (suc n) ------------------------- -- Mutually recursive proofs. Specify types first, then implementations. e+e≡e : ∀ {m n : ℕ} → even m → even n ------------ → even (m + n) o+e≡o : ∀ {m n : ℕ} → odd m → even n ----------- → odd (m + n) e+e≡e zeroE en = en e+e≡e (sucE x) en = sucE (o+e≡o x en) o+e≡o (sucO x) en = sucO (e+e≡e x en) ------------------------- o+o≡e : ∀ {m n : ℕ} → odd m → odd n -------------- → even (m + n) e+o≡o : ∀ {m n : ℕ} → even m → odd n ----------- → odd (m + n) e+o≡o zeroE on = on e+o≡o (sucE m) (sucO n) = sucO (o+o≡e m (sucO n)) o+o≡e (sucO m) on = sucE (e+o≡o m on)
{ "alphanum_fraction": 0.3789341572, "avg_line_length": 24.1445221445, "ext": "agda", "hexsha": "ee558d98e3415e01ff115e636b5f9b7b38303468", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc-2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc-2.agda", "max_line_length": 85, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03-842Relations-hc-2.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 4246, "size": 10358 }
-- Andreas, 2012-04-03, reported by pumpkingod module Issue596 where import Common.Irrelevance open import Common.Level open import Common.Equality open import Common.Prelude renaming (Nat to ℕ) infixl 7 _*_ _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + (m * n) -- inlined from Data.Product record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public syntax Σ A (λ x → B) = Σ[ x ∶ A ] B ∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃ = Σ _ infixr 2 _×_ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∶ A ] B -- inlined from Data.Nat.Divisibility and Data.Nat.Coprimality infix 4 _∣_ data _∣_ : ℕ → ℕ → Set where divides : {m n : ℕ} (q : ℕ) (eq : n ≡ q * m) → m ∣ n Coprime : (m n : ℕ) → Set Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1 record ℚ⁺ : Set where constructor rat⁺ field numerator : ℕ denominator-1 : ℕ denominator : ℕ denominator = suc denominator-1 field .coprime : Coprime numerator denominator -- inlined from Data.Nat.LCM record LCM (i j lcm : ℕ) : Set where constructor is -- Andreas, 2012-04-02 added constructor field -- The lcm is a common multiple. commonMultiple : i ∣ lcm × j ∣ lcm -- The lcm divides all common multiples, i.e. the lcm is the least -- common multiple according to the partial order _∣_. least : ∀ {m} → i ∣ m × j ∣ m → lcm ∣ m postulate lcm : (i j : ℕ) → ∃ λ d → LCM i j d undefined : ∀ {a}{A : Set a} → A 0#⁺ : ℚ⁺ 0#⁺ = rat⁺ 0 0 undefined -- (∣1⇒≡1 ∘ proj₂) _+⁺_ : ℚ⁺ → ℚ⁺ → ℚ⁺ _+⁺_ = undefined -- the offending with-clause +⁺-idˡ : ∀ q → 0#⁺ +⁺ q ≡ q +⁺-idˡ (rat⁺ n d c) with lcm (suc zero) (suc d) ... | q = undefined -- should succeed
{ "alphanum_fraction": 0.569023569, "avg_line_length": 21.2142857143, "ext": "agda", "hexsha": "3ed1dc2ce7fd7dca216e6a70552ee2ab6bb22640", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue596.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue596.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue596.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 725, "size": 1782 }
module Structure.Categorical.Properties where import Functional.Dependent as Fn open import Lang.Instance import Lvl open import Logic open import Logic.Predicate open import Logic.Propositional open import Structure.Setoid import Structure.Categorical.Names as Names import Structure.Operator.Names as Names import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Syntax.Function open import Type open import Type.Properties.Singleton private variable ℓₒ ℓₘ ℓₑ : Lvl.Level private variable Obj : Type{ℓₒ} module Object where module _ (Morphism : Obj → Obj → Type{ℓₘ}) where open Names.ArrowNotation(Morphism) module _ ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(x ⟶ y) ⦄ where -- An initial object is an object in which there is an unique morphism from it to every object. Initial : Obj → Stmt Initial(x) = (∀{y} → IsUnit(x ⟶ y)) -- An terminal object is an object in which there is an unique morphism to it from every object. Terminal : Obj → Stmt Terminal(y) = (∀{x} → IsUnit(x ⟶ y)) module Morphism where module _ {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ equiv-morphism : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ where open Names.ArrowNotation(Morphism) module OperModule (_▫_ : Names.SwappedTransitivity(_⟶_)) where record Associativity : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Associativity{Morphism = Morphism}(_▫_) associativity = inst-fn Associativity.proof module _ {x : Obj} (f : x ⟶ x) where record Idempotent : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Idempotent{Morphism = Morphism}(_▫_)(f) idempotent = inst-fn Idempotent.proof module IdModule (id : Names.Reflexivity(_⟶_)) where record Identityₗ : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Identityₗ(_▫_)(\{a} → id{a}) identityₗ = inst-fn Identityₗ.proof record Identityᵣ : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Identityᵣ(_▫_)(\{a} → id{a}) identityᵣ = inst-fn Identityᵣ.proof Identity = Identityₗ ∧ Identityᵣ identity-left = inst-fn{X = Identity}(Identityₗ.proof Fn.∘ [∧]-elimₗ{Q = Identityᵣ}) identity-right = inst-fn{X = Identity}(Identityᵣ.proof Fn.∘ [∧]-elimᵣ{P = Identityₗ}) module _ {x : Obj} (f : x ⟶ x) where record Involution : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Involution{Morphism = Morphism}(_▫_)(id)(f) involution = inst-fn Involution.proof module _ {x y : Obj} (f : x ⟶ y) where module _ (f⁻¹ : y ⟶ x) where -- A morphism have a right inverse morphism. -- Also called: Split monomorphism, retraction record Inverseₗ : Stmt{ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Inverseₗ(_▫_)(\{a} → id{a})(f)(f⁻¹) inverseₗ = inst-fn Inverseₗ.proof -- A morphism have a right inverse morphism. -- Also called: Split epimorphism, section record Inverseᵣ : Stmt{ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Morphism.Inverseᵣ(_▫_)(\{a} → id{a})(f)(f⁻¹) inverseᵣ = inst-fn Inverseᵣ.proof Inverse = Inverseₗ ∧ Inverseᵣ module Inverse(inverse : Inverse) where instance left : Inverseₗ left = [∧]-elimₗ inverse instance right : Inverseᵣ right = [∧]-elimᵣ inverse Invertibleₗ = ∃(Inverseₗ) Invertibleᵣ = ∃(Inverseᵣ) -- A morphism is an isomorphism when it is invertible with respect to the operator. -- For the set and functions category, it means that f is bijective. Isomorphism : Stmt Isomorphism = ∃(Inverse) module Isomorphism ⦃ iso : Isomorphism ⦄ where instance inverse = [∃]-proof iso instance inverse-left = [∧]-elimₗ inverse instance inverse-right = [∧]-elimᵣ inverse inv : ⦃ Isomorphism ⦄ → (y ⟶ x) inv ⦃ p ⦄ = [∃]-witness p -- Proposition stating that two objects are isomorphic. Isomorphic : Obj → Obj → Stmt Isomorphic(x)(y) = ∃(Isomorphism{x}{y}) _⤖_ = Isomorphic module _ {x : Obj} (f : ⟲ x) where -- A morphism is an automorphism when it is an endomorphism and an isomorphism. Automorphism : Stmt Automorphism = Isomorphism(f) Automorphic : Obj → Stmt Automorphic(x) = ∃(Automorphism{x}) module _ {x y : Obj} (f : x ⟶ y) where -- A morphism is an monomorphism when it is left-cancellable ("injective"). -- ∀{z}{g₁ g₂ : z ⟶ x} → (f ∘ g₁ ≡ f ∘ g₂) → (g₁ ≡ g₂) record Monomorphism : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : ∀{z} → Names.CancellationOnₗ {T₂ = z ⟶ x} (_▫_) (f) cancellationₗ = inst-fn Monomorphism.proof -- A morphism is an epimorphism when it is right-cancellable ("surjective"). -- ∀{z}{g₁ g₂ : y ⟶ z} → (g₁ ∘ f ≡ g₂ ∘ f) → (g₁ ≡ g₂) record Epimorphism : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : ∀{z} → Names.CancellationOnᵣ {T₁ = y ⟶ z} (_▫_) (f) cancellationᵣ = inst-fn Epimorphism.proof -- Proposition stating that two objects are monomorphic. Monomorphic : Obj → Obj → Stmt Monomorphic(x)(y) = ∃(Monomorphism{x}{y}) _↣_ = Monomorphic -- Proposition stating that two objects are epimorphic. Epimorphic : Obj → Obj → Stmt Epimorphic(x)(y) = ∃(Epimorphism{x}{y}) _↠_ = Epimorphic open OperModule public open IdModule public module Polymorphism where module _ {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ equiv-morphism : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ where open Names.ArrowNotation(Morphism) module OperModule (_▫_ : Names.SwappedTransitivity(_⟶_)) where module _ (x y : Obj) (f : ∀{x y} → (x ⟶ y)) where record IdempotentOn : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Polymorphism.IdempotentOn{Morphism = Morphism}(_▫_)(x)(y)(f) idempotent-on = inst-fn IdempotentOn.proof module IdModule (id : Names.Reflexivity(_⟶_)) where module _ (x y : Obj) (f : ∀{x y} → (x ⟶ y)) where record InvolutionOn : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Polymorphism.InvolutionOn{Morphism = Morphism}(_▫_)(id) (x)(y) (f) involution-on = inst-fn InvolutionOn.proof module _ (f : ∀{x y} → (x ⟶ y)) where record Involution : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Polymorphism.Involution{Morphism = Morphism}(_▫_)(id)(f) involution = inst-fn Involution.proof module _ (inv : ∀{x y : Obj} → (x ⟶ y) → (y ⟶ x)) where -- A morphism have a right inverse morphism. -- Also called: Split monomorphism, retraction record Inverterₗ : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : ∀{x y : Obj}{f : x ⟶ y} → Names.Morphism.Inverseₗ(_▫_)(\{a} → id{a})(f)(inv f) instance inverseₗ : ∀{x y : Obj}{f : x ⟶ y} → Morphism.Inverseₗ(_▫_)(\{x} → id{x})(f)(inv f) inverseₗ = Morphism.intro proof inverterₗ = inst-fn Inverterₗ.proof -- A morphism have a right inverse morphism. -- Also called: Split epimorphism, section record Inverterᵣ : Stmt{Lvl.of(Obj) Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where constructor intro field proof : ∀{x y : Obj}{f : x ⟶ y} → Names.Morphism.Inverseᵣ(_▫_)(\{a} → id{a})(f)(inv f) instance inverseᵣ : ∀{x y : Obj}{f : x ⟶ y} → Morphism.Inverseᵣ(_▫_)(\{x} → id{x})(f)(inv f) inverseᵣ = Morphism.intro proof inverterᵣ = inst-fn Inverterᵣ.proof Inverter = Inverterₗ ∧ Inverterᵣ module Inverter(inverter : Inverter) where instance left : Inverterₗ left = [∧]-elimₗ inverter open Inverterₗ(left) public instance right : Inverterᵣ right = [∧]-elimᵣ inverter open Inverterᵣ(right) public module _ {x y : Obj} {f : x ⟶ y} where instance inverse : Morphism.Inverse(_▫_)(\{x} → id{x})(f)(inv f) inverse = [∧]-intro inverseₗ inverseᵣ open Morphism.Inverse(_▫_)(\{x} → id{x})(f)(inv f)(inverse) renaming (left to inverseₗ ; right to inverseᵣ) invertibleₗ : ∀{x y : Obj}{f : x ⟶ y} → Morphism.Invertibleₗ(_▫_)(\{x} → id{x})(f) invertibleₗ {f = f} = [∃]-intro (inv f) ⦃ inverseₗ ⦄ invertibleᵣ : ∀{x y : Obj}{f : x ⟶ y} → Morphism.Invertibleᵣ(_▫_)(\{x} → id{x})(f) invertibleᵣ {f = f} = [∃]-intro (inv f) ⦃ inverseᵣ ⦄ isomorphism : ∀{x y : Obj}{f : x ⟶ y} → Morphism.Isomorphism(_▫_)(\{x} → id{x})(f) isomorphism {f = f} = [∃]-intro (inv f) ⦃ inverse ⦄ open OperModule public open IdModule public
{ "alphanum_fraction": 0.5807520978, "avg_line_length": 41.9695652174, "ext": "agda", "hexsha": "44c769e539caebb422bb890de5f5df2fc39fbcb9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Categorical/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Categorical/Properties.agda", "max_line_length": 121, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Categorical/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3228, "size": 9653 }
open import Relation.Unary open import Relation.Ternary.Separation module Relation.Ternary.Separation.Monad.Error {ℓ} {A : Set ℓ} {{r : RawSep A}} {u} {{_ : IsUnitalSep r u}} where open import Level open import Function open import Data.Unit open import Data.Sum open import Relation.Unary renaming (U to True) open import Relation.Unary.PredicateTransformer using (PT; Pt) open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Binary.PropositionalEquality module _ where record ExceptT (M : Pt A ℓ) (E : Set ℓ) (P : Pred A ℓ) (Φ : A) : Set ℓ where constructor partial field runErr : M ((λ _ → E) ∪ P) Φ open ExceptT public open import Relation.Ternary.Separation.Monad.Identity Except : ∀ E → Pt A ℓ Except E = ExceptT Identity.Id E pattern error e = partial (inj₁ e) pattern ✓ x = partial (inj₂ x) data Err : Set ℓ where err : Err ErrorT : (M : Pt A ℓ) {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} → Pt A ℓ ErrorT M = ExceptT M Err open import Relation.Ternary.Separation.Monad.Identity Error : Pt A ℓ Error = ErrorT Identity.Id module ExceptTrans (M : Pt A ℓ) {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} (Exc : Set ℓ) where open Monads instance except-monad : Monad ⊤ ℓ (λ _ _ → ExceptT M Exc) runErr (Monad.return except-monad px) = return (inj₂ px) runErr (app (Monad.bind except-monad f) (partial mpx) σ) = do inj₂ px ×⟨ σ₂ ⟩ f ← mpx &⟨ _ ─✴ _ ∥ ⊎-comm σ ⟩ f where (inj₁ e ×⟨ σ₂ ⟩ f) → return (inj₁ e) case app f px (⊎-comm σ₂) of λ where (partial z) → z mapExc : ∀ {E₁ E₂ P} → (E₁ → E₂) → ∀[ ExceptT M E₁ P ⇒ ExceptT M E₂ P ] mapExc f (partial mc) = partial (mapM mc λ where (inj₁ e) → inj₁ (f e); (inj₂ px) → inj₂ px) module ExceptMonad (Exc : Set ℓ) where open import Relation.Ternary.Separation.Monad.Identity open ExceptTrans Identity.Id {{ Identity.id-monad }} Exc public module ErrorTrans (M : Pt A ℓ) {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} where open import Relation.Ternary.Separation.Monad.Identity open ExceptTrans M {{ monad }} Err public renaming (except-monad to error-monad) module ErrorMonad where open import Relation.Ternary.Separation.Monad.Identity open ExceptTrans Identity.Id {{ Identity.id-monad }} Err public renaming (except-monad to error-monad)
{ "alphanum_fraction": 0.6661115737, "avg_line_length": 30.025, "ext": "agda", "hexsha": "218120a2971a2d4a006d7a209263a4ce30e10c0c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Error.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Error.agda", "max_line_length": 94, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Error.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 791, "size": 2402 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This is inspired by/copied from: https://github.com/agda/agda-stdlib/blob/master/src/Tactic/MonoidSolver.agda -} module Cubical.Algebra.RingSolver.ReflectionSolving where open import Cubical.Foundations.Prelude hiding (Type) open import Cubical.Functions.Logic open import Agda.Builtin.Reflection hiding (Type) open import Agda.Builtin.String open import Cubical.Reflection.Base open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Data.Nat.Literals public open import Cubical.Data.Int using (fromNegInt; fromNatInt) public open import Cubical.Data.Nat using (ℕ) renaming (_+_ to _+ℕ_) open import Cubical.Data.FinData using () renaming (zero to fzero; suc to fsuc) public open import Cubical.Data.Bool open import Cubical.Data.Bool.SwitchStatement open import Cubical.Data.Vec using (Vec) renaming ([] to emptyVec; _∷_ to _∷vec_) public open import Cubical.Algebra.RingSolver.AlgebraExpression public open import Cubical.Algebra.CommRing open import Cubical.Algebra.RingSolver.RawAlgebra open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.RingSolver.CommRingSolver renaming (solve to ringSolve) private variable ℓ : Level _==_ = primQNameEquality {-# INLINE _==_ #-} record VarInfo : Type ℓ-zero where field varName : String varType : Arg Term index : ℕ getArgs : Term → Maybe (Term × Term) getArgs (def n xs) = if n == (quote PathP) then go xs else nothing where go : List (Arg Term) → Maybe (Term × Term) go (varg x ∷ varg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getArgs _ = nothing constructSolution : ℕ → List VarInfo → Term → Term → Term → Term constructSolution n varInfos R lhs rhs = encloseWithIteratedLambda (map VarInfo.varName varInfos) solverCall where encloseWithIteratedLambda : List String → Term → Term encloseWithIteratedLambda (varName ∷ xs) t = lam visible (abs varName (encloseWithIteratedLambda xs t)) encloseWithIteratedLambda [] t = t variableList : List VarInfo → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varInfo ∷ varInfos) = varg (con (quote _∷vec_) (varg (var (VarInfo.index varInfo) []) ∷ (variableList varInfos) ∷ [])) solverCall = def (quote ringSolve) (varg R ∷ varg lhs ∷ varg rhs ∷ variableList (rev varInfos) ∷ varg (def (quote refl) []) ∷ []) module pr (R : CommRing {ℓ}) {n : ℕ} where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) 0' : Expr ℤAsRawRing (fst R) n 0' = K 0 1' : Expr ℤAsRawRing (fst R) n 1' = K 1 module _ (cring : Term) where private νR = def (quote CommRing→RawℤAlgebra) (varg cring ∷ []) open pr mutual `0` : List (Arg Term) → Term `0` [] = def (quote 0') (varg cring ∷ []) `0` (varg fstcring ∷ xs) = `0` xs `0` (harg _ ∷ xs) = `0` xs `0` _ = unknown `1` : List (Arg Term) → Term `1` [] = def (quote 1') (varg cring ∷ []) `1` (varg fstcring ∷ xs) = `1` xs `1` (harg _ ∷ xs) = `1` xs `1` _ = unknown `_·_` : List (Arg Term) → Term `_·_` (harg _ ∷ xs) = `_·_` xs `_·_` (varg _ ∷ varg x ∷ varg y ∷ []) = con (quote _·'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) `_·_` _ = unknown `_+_` : List (Arg Term) → Term `_+_` (harg _ ∷ xs) = `_+_` xs `_+_` (varg _ ∷ varg x ∷ varg y ∷ []) = con (quote _+'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) `_+_` _ = unknown `-_` : List (Arg Term) → Term `-_` (harg _ ∷ xs) = `-_` xs `-_` (varg _ ∷ varg x ∷ []) = con (quote -'_) (varg (buildExpression x) ∷ []) `-_` _ = unknown K' : List (Arg Term) → Term K' xs = con (quote K) xs finiteNumberAsTerm : ℕ → Term finiteNumberAsTerm ℕ.zero = con (quote fzero) [] finiteNumberAsTerm (ℕ.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm n) ∷ []) buildExpression : Term → Term buildExpression (var index _) = con (quote ∣) (varg (finiteNumberAsTerm index) ∷ []) buildExpression t@(def n xs) = switch (n ==_) cases case (quote CommRingStr.0r) ⇒ `0` xs break case (quote CommRingStr.1r) ⇒ `1` xs break case (quote CommRingStr._·_) ⇒ `_·_` xs break case (quote CommRingStr._+_) ⇒ `_+_` xs break case (quote (CommRingStr.-_)) ⇒ `-_` xs break default⇒ (K' xs) buildExpression t@(con n xs) = switch (n ==_) cases case (quote CommRingStr.0r) ⇒ `0` xs break case (quote CommRingStr.1r) ⇒ `1` xs break case (quote CommRingStr._·_) ⇒ `_·_` xs break case (quote CommRingStr._+_) ⇒ `_+_` xs break case (quote (CommRingStr.-_)) ⇒ `-_` xs break default⇒ (K' xs) buildExpression t = unknown toAlgebraExpression : Maybe (Term × Term) → Maybe (Term × Term) toAlgebraExpression nothing = nothing toAlgebraExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs) private adjustDeBruijnIndex : (n : ℕ) → Term → Term adjustDeBruijnIndex n (var k args) = var (k +ℕ n) args adjustDeBruijnIndex n _ = unknown getVarsAndEquation : Term → Maybe (List VarInfo × Term) getVarsAndEquation t = let (rawVars , equationTerm) = extractVars t maybeVars = addIndices (length rawVars) rawVars in map-Maybe (_, equationTerm) maybeVars where extractVars : Term → List (String × Arg Term) × Term extractVars (pi argType (abs varName t)) with extractVars t ... | xs , equation = (varName , argType) ∷ xs , equation extractVars equation = [] , equation addIndices : ℕ → List (String × Arg Term) → Maybe (List VarInfo) addIndices ℕ.zero [] = just [] addIndices (ℕ.suc countVar) ((varName , argType) ∷ list) = map-Maybe (λ varList → record { varName = varName ; varType = argType ; index = countVar } ∷ varList) (addIndices countVar list) addIndices _ _ = nothing solve-macro : Term → Term → TC Unit solve-macro cring hole = do hole′ ← inferType hole >>= normalise just (varInfos , equation) ← returnTC (getVarsAndEquation hole′) where nothing → typeError (strErr "Something went wrong when getting the variable names in " ∷ termErr hole′ ∷ []) adjustedCring ← returnTC (adjustDeBruijnIndex (length varInfos) cring) just (lhs , rhs) ← returnTC (toAlgebraExpression adjustedCring (getArgs equation)) where nothing → typeError( strErr "Error while trying to buils ASTs for the equation " ∷ termErr equation ∷ []) let solution = constructSolution (length varInfos) varInfos adjustedCring lhs rhs unify hole solution macro solve : Term → Term → TC _ solve = solve-macro fromℤ : (R : CommRing {ℓ}) → ℤ → fst R fromℤ = scalar
{ "alphanum_fraction": 0.6111494411, "avg_line_length": 34.6746411483, "ext": "agda", "hexsha": "ee5155d756287c2ce3333538e5809490a2da578c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2241, "size": 7247 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Empty {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Tools.Unit as TU open import Tools.Product import Tools.PropositionalEquality as PE -- Validity of the Empty type. Emptyᵛ : ∀ {Γ ll l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ Empty ll ^ [ % , ι ll ] / [Γ] Emptyᵛ [Γ] ⊢Δ [σ] = Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ))) , λ _ x₂ → id (univ (Emptyⱼ ⊢Δ)) -- Validity of the Empty type as a term. Emptyᵗᵛ : ∀ {Γ l ll} ([Γ] : ⊩ᵛ Γ) → (l< : ι ll <∞ l) → Γ ⊩ᵛ⟨ l ⟩ Empty ll ∷ Univ % ll ^ [ ! , next ll ] / [Γ] / Uᵛ l< [Γ] Emptyᵗᵛ {ll = ll} [Γ] emb< ⊢Δ [σ] = let ⊢Empty = Emptyⱼ ⊢Δ in Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ')))) , λ x x₁ → Uₜ₌ -- Empty Empty (idRedTerm:*: ⊢Empty) (idRedTerm:*: ⊢Empty) Emptyₙ Emptyₙ (Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x₂ ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ'))))) (Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x₂ ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ'))))) (≅ₜ-Emptyrefl ⊢Δ) λ [ρ] ⊢Δ' → id (univ (Emptyⱼ ⊢Δ')) Emptyᵗᵛ {ll = ll} [Γ] ∞< ⊢Δ [σ] = let ⊢Empty = Emptyⱼ ⊢Δ in Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ')))) , λ x x₁ → Uₜ₌ -- Empty Empty (idRedTerm:*: ⊢Empty) (idRedTerm:*: ⊢Empty) Emptyₙ Emptyₙ (Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x₂ ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ'))))) (Uₜ (Empty ll) (idRedTerm:*: ⊢Empty) Emptyₙ (≅ₜ-Emptyrefl ⊢Δ) (λ x₂ ⊢Δ' → Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ'))))) (≅ₜ-Emptyrefl ⊢Δ) λ [ρ] ⊢Δ' → id (univ (Emptyⱼ ⊢Δ')) Unitᵗᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ∞ ⟩ Unit ∷ (SProp l) ^ [ ! , next l ] / [Γ] / maybeEmbᵛ {A = SProp l} [Γ] (Uᵛ (proj₂ (levelBounded _)) [Γ]) Unitᵗᵛ {Γ} {l} [Γ] = let [SProp] = maybeEmbᵛ {A = SProp l} [Γ] (Uᵛ {rU = %} (proj₂ (levelBounded _)) [Γ]) [Empty] = Emptyᵛ {ll = l} {l = ∞} [Γ] [Γ∙Empty] = (_∙_ {Γ} {Empty l} [Γ] [Empty]) [SProp]₁ : Γ ∙ Empty l ^ [ % , ι l ] ⊩ᵛ⟨ ∞ ⟩ (SProp l) ^ [ ! , next l ] / [Γ∙Empty] [SProp]₁ {Δ} {σ} = maybeEmbᵛ {A = SProp l} [Γ∙Empty] (λ {Δ} {σ} → Uᵛ (proj₂ (levelBounded _)) [Γ∙Empty] {Δ} {σ}) {Δ} {σ} [Empty]₁ = maybeEmbTermᵛ {A = SProp l} {t = Empty l} [Γ] (Uᵛ {rU = %} (proj₂ (levelBounded _)) [Γ]) (Emptyᵗᵛ {ll = l} [Γ] (proj₂ (levelBounded _))) [Empty]₂ = maybeEmbTermᵛ {A = SProp l} {t = Empty l} [Γ∙Empty] (λ {Δ} {σ} → Uᵛ (proj₂ (levelBounded _)) [Γ∙Empty] {Δ} {σ}) (Emptyᵗᵛ {ll = l} [Γ∙Empty] (proj₂ (levelBounded _))) in maybeEmbTermᵛ {A = SProp l} {t = Unit} [Γ] [SProp] (Πᵗᵛ {Empty l} {Empty l} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] ( Emptyᵛ {ll = l} [Γ]) (λ {Δ} {σ} → [SProp]₁ {Δ} {σ}) [Empty]₁ (λ {Δ} {σ} → [Empty]₂ {Δ} {σ})) Unit≡Unit : ∀ {Γ l} (⊢Γ : ⊢ Γ) → Γ ⊢ Unit {l} ≅ Unit {l} ∷ SProp l ^ [ ! , next l ] Unit≡Unit ⊢Γ = ≅ₜ-Π-cong (≡is≤ PE.refl) (≡is≤ PE.refl) (univ (Emptyⱼ ⊢Γ)) (≅ₜ-Emptyrefl ⊢Γ) (≅ₜ-Emptyrefl (⊢Γ ∙ univ (Emptyⱼ ⊢Γ))) Unitᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ι l ⟩ Unit ^ [ % , ι l ] / [Γ] Unitᵛ {Γ} {l} [Γ] = univᵛ {A = Unit} [Γ] (≡is≤ PE.refl) (maybeEmbᵛ {A = SProp l} [Γ] (Uᵛ {rU = %} (proj₂ (levelBounded _)) [Γ])) (Unitᵗᵛ {l = l} [Γ]) UnitType : ∀ {Γ l} (⊢Γ : ⊢ Γ) → Γ ⊩⟨ ι l ⟩ Unit ^ [ % , ι l ] UnitType {Γ} ⊢Γ = proj₁ (Unitᵛ ε {Γ} {idSubst} ⊢Γ TU.tt) EmptyType : ∀ {Γ l} (⊢Γ : ⊢ Γ) → Γ ⊩⟨ ι l ⟩ Empty l ^ [ % , ι l ] EmptyType {Γ} ⊢Γ = proj₁ (Emptyᵛ ε {Γ} {idSubst} ⊢Γ TU.tt)
{ "alphanum_fraction": 0.5138951143, "avg_line_length": 65.6176470588, "ext": "agda", "hexsha": "612b509cb60fcc35c74b636c1fb27f722f64ed78", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_line_length": 201, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 2106, "size": 4462 }
-- Andreas, 2016-02-02 postpone type checking of extended lambda -- See also issue 480 and 1159 open import Common.Maybe open import Common.String record ⊤ : Set where record IOInterface : Set₁ where field Command : Set Response : (m : Command) → Set open IOInterface data IO I A : Set where act' : (c : Command I) (f : Response I c → IO I A) → IO I A return : (a : A) → IO I A -- Alias of constructor which is a function act : ∀{I A} (c : Command I) (f : Response I c → IO I A) → IO I A act c f = act' c f data C : Set where getLine : C putStrLn : String → C R : C → Set R getLine = Maybe String R (putStrLn s) = ⊤ I : IOInterface Command I = C Response I = R works : IO I ⊤ works = act' getLine λ{ nothing → return _ ; (just line) → act (putStrLn line) λ _ → return _ } test : IO I ⊤ test = act getLine λ{ nothing → return _ ; (just line) → act (putStrLn line) λ _ → return _ } -- Test with do-notation _>>=_ : ∀ {A B} → IO I A → (A → IO I B) → IO I B act' c f >>= k = act' c λ x → f x >>= k return a >>= k = k a _>>_ : ∀ {A B} → IO I A → IO I B → IO I B m >> m' = m >>= λ _ → m' getLineIO : IO I (Maybe String) getLineIO = act' getLine return putStrLnIO : String → IO I ⊤ putStrLnIO s = act' (putStrLn s) return works' : IO I ⊤ works' = do just line ← getLineIO where nothing → return _ putStrLnIO line return _
{ "alphanum_fraction": 0.5514950166, "avg_line_length": 23.515625, "ext": "agda", "hexsha": "8054ea985e6fb688c9763320b6afc66cee2b8df3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/Succeed/Issue1811.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/Succeed/Issue1811.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/Succeed/Issue1811.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 514, "size": 1505 }
open import Prelude module Implicits.Semantics where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Semantics.Type public open import Implicits.Semantics.Context public open import Implicits.Semantics.RewriteContext public open import Implicits.Semantics.Term public open import Implicits.Semantics.Preservation public open import SystemF.Everything as F using () module Semantics (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) (⟦_,_⟧r : ∀ {ν n} {K : Ktx ν n} {a} → (proj₂ K) ⊢ᵣ a → K# K → ∃ λ t → ⟦ proj₁ K ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→) where open TypingRules _⊢ᵣ_ open TermSemantics _⊢ᵣ_ ⟦_,_⟧r public open Preservation _⊢ᵣ_ ⟦_,_⟧r public
{ "alphanum_fraction": 0.7173913043, "avg_line_length": 30, "ext": "agda", "hexsha": "ae59a5cacb9dd989a42d69d6d7a40b9659182558", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Semantics.agda", "max_line_length": 63, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 258, "size": 690 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} -- This module provides some scaffolding to define the handlers for our fake/simple "implementation" -- and connect them to the interface of the SystemModel. open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.RoundManager.Properties open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Util.Util open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Types open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) module LibraBFT.Impl.Handle.Properties where open import LibraBFT.Impl.Consensus.RoundManager open import LibraBFT.Impl.Handle -- This proof is complete except for pieces that are directly about the handlers. Our -- fake/simple handler does not yet obey the needed properties, so we can't finish this yet. impl-sps-avp : StepPeerState-AllValidParts -- In our fake/simple implementation, init and handling V and C msgs do not send any messages impl-sps-avp _ hpk (step-init _) m∈outs part⊂m ver = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , V vm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , C cm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) -- These aren't true yet, because processProposalMsgM sends fake votes that don't follow the rules for ValidPartForPK impl-sps-avp preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver ¬init with m∈outs -- Handler sends at most one vote, so it can't be "there" ...| there {xs = xs} imp = ⊥-elim (¬Any[] imp) ...| here refl with v⊂m ...| vote∈qc vs∈qc rbld≈ qc∈m with qc∈m ...| xxx = {!x!} -- We will prove that votes represented in the SyncInfo of a -- proposal message were sent before, so these will be inj₂. -- This will be based on an invariant of the implementation, for -- example that the QCs included in the SyncInfo of a VoteMsg have -- been sent before. We will need to use hash injectivity and -- signature injectivity to ensure a different vote was not sent -- previously with the same signature. impl-sps-avp {pk = pk} {α = α} {st = st} preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver ¬init | here refl | vote∈vm {si} with MsgWithSig∈? {pk} {ver-signature ver} {msgPool st} ...| yes msg∈ = inj₂ msg∈ ...| no msg∉ = inj₁ ( mkPCS4PK {! !} {!!} (inGenInfo refl) {!!} {!!} {!!} -- The implementation will need to provide evidence that the peer is a member of -- the epoch of the message it's sending and that it is assigned pk for that epoch. , msg∉) open Structural impl-sps-avp ----- Properties that bridge the system model gap to the handler ----- msgsToSendWereSent1 : ∀ {pid ts pm vm} {st : RoundManager} → send (V vm) ∈ proj₂ (peerStep pid (P pm) ts st) → ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st) msgsToSendWereSent1 {pid} {ts} {pm} {vm} {st} send∈acts with send∈acts -- The fake handler sends only to node 0 (fakeAuthor), so this doesn't -- need to be very general yet. -- TODO-1: generalize this proof so it will work when the set of recipients is -- not hard coded. -- The system model allows any message sent to be received by any peer (so the list of -- recipients it essentially ignored), meaning that our safety proofs will be for a slightly -- stronger model. Progress proofs will require knowledge of recipients, though, so we will -- keep the implementation model faithful to the implementation. ...| here refl = fakeAuthor ∷ [] , here refl -- This captures which kinds of messages are sent by handling which kind of message. It will -- require additional disjuncts when we implement processVote. msgsToSendWereSent : ∀ {pid nm m} {st : RoundManager} → send m ∈ proj₂ (peerStepWrapper pid nm st) → send m ∈ proj₂ (peerStep pid nm 0 st) × ∃[ vm ] ∃[ pm ] (m ≡ V vm × nm ≡ P pm) msgsToSendWereSent {pid} {nm = nm} {m} {st} m∈outs with nm ...| C _ = ⊥-elim (¬Any[] m∈outs) ...| V _ = ⊥-elim (¬Any[] m∈outs) ...| P pm with m∈outs ...| here v∈outs with m ...| P _ = ⊥-elim (P≢V (action-send-injective v∈outs)) ...| C _ = ⊥-elim (C≢V (action-send-injective v∈outs)) ...| V vm rewrite sym v∈outs = here refl , vm , pm , refl , refl proposalHandlerSentVote : ∀ {pid ts pm vm} {st : RoundManager} → send (V vm) ∈ proj₂ (peerStepWrapper pid (P pm) st) → ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st) proposalHandlerSentVote {pid} {ts} {pm} {vm} {st} m∈outs with msgsToSendWereSent {pid} {P pm} {st = st} m∈outs ...| send∈ , vm , pm' , refl , refl with msgsToSendWereSent1 {pid} {ts} {pm'} {st = st} send∈ ...| αs , sv = αs , sv ----- Properties that relate handler to system state ----- data _∈RoundManager_ (qc : QuorumCert) (rm : RoundManager) : Set where inHQC : qc ≡ ₋rmHighestQC rm → qc ∈RoundManager rm inHCC : qc ≡ ₋rmHighestCommitQC rm → qc ∈RoundManager rm postulate -- TODO-2: this will be proved for the implementation, confirming that honest -- participants only store QCs comprising votes that have actually been sent. -- Votes stored in highesQuorumCert and highestCommitCert were sent before. -- Note that some implementations might not ensure this, but LibraBFT does -- because even the leader of the next round sends its own vote to itself, -- as opposed to using it to construct a QC using its own unsent vote. qcVotesSentB4 : ∀{pid qc vs pk}{st : SystemState} → ReachableSystemState st → initialised st pid ≡ initd → qc ∈RoundManager (peerStates st pid) → vs ∈ qcVotes qc → ¬ (∈GenInfo (proj₂ vs)) → MsgWithSig∈ pk (proj₂ vs) (msgPool st) -- We can prove this easily because we don't yet do epoch changes, -- so only the initial EC is relevant. Later, this will require us to use the fact that -- epoch changes require proof of committing an epoch-changing transaction. availEpochsConsistent : ∀{pid pid' v v' pk}{st : SystemState} → ReachableSystemState st → (pkvpf : PeerCanSignForPK st v pid pk) → (pkvpf' : PeerCanSignForPK st v' pid' pk) → PeerCanSignForPK.𝓔 pkvpf ≡ PeerCanSignForPK.𝓔 pkvpf' availEpochsConsistent r (mkPCS4PK _ _ (inGenInfo refl) _ _ _) (mkPCS4PK _ _ (inGenInfo refl) _ _ _) = refl -- Always true, so far, as no epoch changes. noEpochIdChangeYet : ∀ {pre : SystemState}{pid}{ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (msgPool pre) (initialised pre) ppre (ppost , msgs) → initialised pre pid ≡ initd → (₋rmEC ppre) ^∙ rmEpoch ≡ (₋rmEC ppost) ^∙ rmEpoch noEpochIdChangeYet _ ppre≡ (step-init uni) ini = ⊥-elim (uninitd≢initd (trans (sym uni) ini)) noEpochIdChangeYet _ ppre≡ (step-msg {(_ , m)} _ _) ini with m ...| P p = refl ...| V v = refl ...| C c = refl open SyncInfo -- QCs in VoteMsg come from RoundManager VoteMsgQCsFromRoundManager : ∀ {pid s' outs pk}{pre : SystemState} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → (sps : StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs)) → ∀{v vm qc} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg (V vm) → send (V vm) ∈ outs → qc QC∈SyncInfo (vm ^∙ vmSyncInfo) → qc ∈RoundManager (peerStates pre pid) VoteMsgQCsFromRoundManager r (step-init _) _ _ () VoteMsgQCsFromRoundManager {pid} {pre = pre} r (step-msg {_ , P pm} m∈pool pinit) {v} {vm} hpk v⊂m m∈outs qc∈m with peerStates pre pid ...| rm with proposalHandlerSentVote {pid} {0} {pm} {vm} {rm} m∈outs ...| _ , v∈outs with qc∈m ...| withVoteSIHighQC refl = inHQC (cong ₋siHighestQuorumCert (procPMCerts≡ {0} {pm} {rm} v∈outs)) VoteMsgQCsFromRoundManager {pid} {pre = pre} r (step-msg {_ , P pm} m∈pool pinit) {v} {vm1} hpk v⊂m m∈outs qc∈m | rm | _ , v∈outs | withVoteSIHighCC hqcIsJust with cong ₋siHighestCommitCert (procPMCerts≡ {0} {pm} {rm} v∈outs) ...| refl with (rm ^∙ rmHighestQC) ≟QC (rm ^∙ rmHighestCommitQC) ...| true because (ofʸ refl) = ⊥-elim (maybe-⊥ hqcIsJust refl) ...| false because _ = inHCC (just-injective (sym hqcIsJust)) newVoteSameEpochGreaterRound : ∀ {pre : SystemState}{pid s' outs v m pk} → ReachableSystemState pre → StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , outs) → ¬ (∈GenInfo (₋vSignature v)) → Meta-Honest-PK pk → v ⊂Msg m → send m ∈ outs → (sig : WithVerSig pk v) → ¬ MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → v ^∙ vEpoch ≡ (₋rmEC (peerStates pre pid)) ^∙ rmEpoch × suc ((₋rmEC (peerStates pre pid)) ^∙ rmLastVotedRound) ≡ v ^∙ vRound -- New vote for higher round than last voted × v ^∙ vRound ≡ ((₋rmEC s') ^∙ rmLastVotedRound) -- Last voted round is round of new vote newVoteSameEpochGreaterRound {pre = pre} {pid} {v = v} {m} {pk} r (step-msg {(_ , P pm)} msg∈pool pinit) ¬init hpk v⊂m m∈outs sig vnew rewrite pinit with msgsToSendWereSent {pid} {P pm} {m} {peerStates pre pid} m∈outs ...| _ , vm , _ , refl , refl with proposalHandlerSentVote {pid} {0} {pm} {vm} {peerStates pre pid} m∈outs ...| _ , v∈outs rewrite SendVote-inj-v (Any-singleton⁻ v∈outs) | SendVote-inj-si (Any-singleton⁻ v∈outs) with v⊂m -- Rebuilding keeps the same signature, and the SyncInfo included with the -- VoteMsg sent comprises QCs from the peer's state. Votes represented in -- those QCS have signatures that have been sent before, contradicting the -- assumption that v's signature has not been sent before. ...| vote∈vm {si} = refl , refl , refl ...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m) rewrite cong ₋vSignature v≈rbld | procPMCerts≡ {0} {pm} {peerStates pre pid} {vm} v∈outs with qcVotesSentB4 r pinit (VoteMsgQCsFromRoundManager r (step-msg msg∈pool pinit) hpk v⊂m (here refl) qc∈m) vs∈qc ¬init ...| sentb4 = ⊥-elim (vnew sentb4) -- We resist the temptation to combine this with the noEpochChangeYet because in future there will be epoch changes lastVoteRound-mono : ∀ {pre : SystemState}{pid}{ppre ppost msgs} → ReachableSystemState pre → ppre ≡ peerStates pre pid → StepPeerState pid (msgPool pre) (initialised pre) ppre (ppost , msgs) → initialised pre pid ≡ initd → (₋rmEC ppre) ^∙ rmEpoch ≡ (₋rmEC ppost) ^∙ rmEpoch → (₋rmEC ppre) ^∙ rmLastVotedRound ≤ (₋rmEC ppost) ^∙ rmLastVotedRound lastVoteRound-mono _ ppre≡ (step-init uni) ini = ⊥-elim (uninitd≢initd (trans (sym uni) ini)) lastVoteRound-mono _ ppre≡ (step-msg {(_ , m)} _ _) _ with m ...| P p = const (≤-step (≤-reflexive refl)) ...| V v = const (≤-reflexive refl) ...| C c = const (≤-reflexive refl) postulate -- TODO-1: prove it ¬genVotesRound≢0 : ∀ {pk sig}{st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk sig (msgPool st)) → ¬ (∈GenInfo sig) → (msgPart mws) ^∙ vRound ≢ 0
{ "alphanum_fraction": 0.6065801668, "avg_line_length": 52, "ext": "agda", "hexsha": "1d0db41ef171ee0a6250ca7dff9a47d2d8348a1a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Handle/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Handle/Properties.agda", "max_line_length": 147, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Handle/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3960, "size": 12948 }
module _ where open import Data.Nat using (_+_ ; _≤′_ ; suc) open import Induction.Nat using (<-rec) open import Esterel.Lang.CanFunction open import Function using (_∋_ ; _∘_ ; id ; _$_) open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc) open import utility open import noetherian using (noetherian ; ∥_∥s) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_) open import Relation.Nullary open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; subst ; cong ; trans ; module ≡-Reasoning ; cong₂ ; subst₂ ; inspect) open import Data.Empty open import sn-calculus open import context-properties -- get view, E-views open import Esterel.Lang.Binding open import Data.Maybe using ( just ) -- open import coherence open import Data.List.Any open import Data.List.Any.Properties open import Esterel.Lang.CanFunction.Base open import eval open import blocked open import Data.List.All open import eval open ≡-Reasoning using (_≡⟨_⟩_ ; _≡⟨⟩_ ; _∎) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import sn-calculus-compatconf using (1-step) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open import binding-preserve open import sn-calculus-props open import par-swap open import par-swap.union-properties open import calculus open import calculus.properties evalsn≡ₑ-consistent : ∀{output output'} θ p → CB (ρ⟨ θ , GO ⟩· p) → evalsn≡ₑ p θ output → evalsn≡ₑ p θ output' → output ≡ output' evalsn≡ₑ-consistent θ p ⊢cb-p (evalsn-complete ρθ·p≡q complete-q) (evalsn-complete ρθ·p≡r complete-r) with sn≡ₑ-consistent (proj₂ (sn≡ₑ-preserve-cb ⊢cb-p ρθ·p≡q)) (rtrn (rsym ρθ·p≡q ⊢cb-p) ρθ·p≡r) ... | (s , qsn⟶*s , rsn⟶*s) with inescapability-of-complete-sn complete-q qsn⟶*s ... | complete-s with ρ-stays-ρ-sn⟶* qsn⟶*s | ρ-stays-ρ-sn⟶* rsn⟶*s ... | θq , _ , _ , refl | θr , _ , _ , refl with equality-of-complete-sn⟶* complete-q qsn⟶*s | equality-of-complete-sn⟶* complete-r rsn⟶*s ... | refl , refl | refl , refl = refl eval∥R∪sn≡ₑ-consistent : ∀ {output output'} θ p → CB (ρ⟨ θ , GO ⟩· p) → eval∥R∪sn≡ₑ p θ output → eval∥R∪sn≡ₑ p θ output' → output ≡ output' eval∥R∪sn≡ₑ-consistent θ p ⊢cb-p (eval∥R∪sn-complete ρθ·p≡q complete-q) (eval∥R∪sn-complete ρθ·p≡r complete-r) with ∥R∪sn≡ₑ-consistent (proj₂ (∥R∪sn≡ₑ-preserve-cb ⊢cb-p ρθ·p≡q)) (∪trn (∪sym ρθ·p≡q ⊢cb-p) ρθ·p≡r) ... | (s , qsn⟶*s , rsn⟶*s) with inescapability-of-complete-∪ complete-q qsn⟶*s ... | complete-s with ρ-stays-ρ-∪ qsn⟶*s | ρ-stays-ρ-∪ rsn⟶*s ... | θq , _ , _ , refl | θr , _ , _ , refl with equality-of-complete-∪ complete-q qsn⟶*s | equality-of-complete-∪ complete-r rsn⟶*s ... | refl , refl | refl , refl = refl eval≡ₑ->eval∥R∪sn≡ : ∀ {p θ output} -> eval≡ₑ p θ output → eval∥R∪sn≡ₑ p θ output eval≡ₑ->eval∥R∪sn≡ (eval-complete ρθ·p≡q complete-q) = eval∥R∪sn-complete (≡ₑ-to-∥R∪sn≡ₑ ρθ·p≡q) complete-q eval≡ₑ-consistent : ∀ {output output'} θ p → CB (ρ⟨ θ , GO ⟩· p) → eval≡ₑ p θ output → eval≡ₑ p θ output' → output ≡ output' eval≡ₑ-consistent θ p CBρp eval≡₁ eval≡₂ = eval∥R∪sn≡ₑ-consistent θ p CBρp (eval≡ₑ->eval∥R∪sn≡ eval≡₁) (eval≡ₑ->eval∥R∪sn≡ eval≡₂) sn≡ₑ=>eval : ∀ p θp outputp q θq outputq → CB (ρ⟨ θp , GO ⟩· p) → (ρ⟨ θp , GO ⟩· p) sn≡ₑ (ρ⟨ θq , GO ⟩· q) → evalsn≡ₑ p θp outputp → evalsn≡ₑ q θq outputq → outputp ≡ outputq sn≡ₑ=>eval _ _ _ _ _ _ CB eq (evalsn-complete ρθ·p≡q complete-q) (evalsn-complete ρθ·p≡q₁ complete-q₁) with sn≡ₑ-consistent (proj₂ (sn≡ₑ-preserve-cb CB ρθ·p≡q)) (rtrn (rsym ρθ·p≡q CB) (rtrn eq ρθ·p≡q₁)) ... | (s , qsn⟶*s , rsn⟶*s) with inescapability-of-complete-sn complete-q qsn⟶*s ... | complete-s with ρ-stays-ρ-sn⟶* qsn⟶*s | ρ-stays-ρ-sn⟶* rsn⟶*s ... | θq , _ , _ , refl | θr , _ , _ , refl with equality-of-complete-sn⟶* complete-q qsn⟶*s | equality-of-complete-sn⟶* complete-q₁ rsn⟶*s ... | refl , refl | refl , refl = refl ∥R∪sn≡ₑ=>eval : ∀ p θp outputp q θq outputq → CB (ρ⟨ θp , GO ⟩· p) → (ρ⟨ θp , GO ⟩· p) ∥R∪sn≡ₑ (ρ⟨ θq , GO ⟩· q) → eval∥R∪sn≡ₑ p θp outputp → eval∥R∪sn≡ₑ q θq outputq → outputp ≡ outputq ∥R∪sn≡ₑ=>eval _ _ _ _ _ _ CB eq (eval∥R∪sn-complete ρθ·p≡q complete-q) (eval∥R∪sn-complete ρθ·p≡q₁ complete-q₁) with ∥R∪sn≡ₑ-consistent (proj₂ (∥R∪sn≡ₑ-preserve-cb CB ρθ·p≡q)) (∪trn (∪sym ρθ·p≡q CB) (∪trn eq ρθ·p≡q₁)) ... | (s , qsn⟶*s , rsn⟶*s) with inescapability-of-complete-∪ complete-q qsn⟶*s ... | complete-s with ρ-stays-ρ-∪ qsn⟶*s | ρ-stays-ρ-∪ rsn⟶*s ... | θq , _ , _ , refl | θr , _ , _ , refl with equality-of-complete-∪ complete-q qsn⟶*s | equality-of-complete-∪ complete-q₁ rsn⟶*s ... | refl , refl | refl , refl = refl ≡ₑ=>eval : ∀ p θp outputp q θq outputq → CB (ρ⟨ θp , GO ⟩· p) → (ρ⟨ θp , GO ⟩· p) ≡ₑ (ρ⟨ θq , GO ⟩· q) # [] → eval≡ₑ p θp outputp → eval≡ₑ q θq outputq → outputp ≡ outputq ≡ₑ=>eval p θp outputp q θq outputq CBρp ρp≡ₑρq eval≡₁ eval≡₂ = ∥R∪sn≡ₑ=>eval p θp outputp q θq outputq CBρp (≡ₑ-to-∥R∪sn≡ₑ ρp≡ₑρq) (eval≡ₑ->eval∥R∪sn≡ eval≡₁) (eval≡ₑ->eval∥R∪sn≡ eval≡₂)
{ "alphanum_fraction": 0.6582758621, "avg_line_length": 39.4557823129, "ext": "agda", "hexsha": "fed18ca0449ad4749178e4e4db2be3bf079adeb3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/eval-props.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/eval-props.agda", "max_line_length": 174, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/eval-props.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 2559, "size": 5800 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.ListedFiniteSet.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_; inl; inr) open import Cubical.Functions.Logic private variable ℓ : Level A B : Type ℓ infixr 20 _∷_ -- infix 30 _∈_ infixr 5 _++_ data LFSet (A : Type ℓ) : Type ℓ where [] : LFSet A _∷_ : (x : A) → (xs : LFSet A) → LFSet A dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : isSet (LFSet A) -- Membership. -- -- Doing some proofs with equational reasoning adds an extra "_∙ refl" -- at the end. -- We might want to avoid it, or come up with a more clever equational reasoning. _∈_ : {A : Type ℓ} → A → LFSet A → hProp ℓ z ∈ [] = Lift ⊥.⊥ , isOfHLevelLift 1 isProp⊥ z ∈ (y ∷ xs) = (z ≡ₚ y) ⊔ (z ∈ xs) z ∈ dup x xs i = proof i where -- proof : z ∈ (x ∷ x ∷ xs) ≡ z ∈ (x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ x ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ x) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-idem (z ≡ₚ x)) ⟩ z ≡ₚ x ⊔ z ∈ xs ∎ z ∈ comm x y xs i = proof i where -- proof : z ∈ (x ∷ y ∷ xs) ≡ z ∈ (y ∷ x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ y ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ y) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ y) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-comm (z ≡ₚ x) (z ≡ₚ y)) ⟩ (z ≡ₚ y ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ sym (⊔-assoc (z ≡ₚ y) (z ≡ₚ x) (z ∈ xs)) ⟩ z ≡ₚ y ⊔ (z ≡ₚ x ⊔ z ∈ xs) ∎ x ∈ trunc xs ys p q i j = isSetHProp (x ∈ xs) (x ∈ ys) (cong (x ∈_) p) (cong (x ∈_) q) i j module Elim {ℓ} {B : LFSet A → Type ℓ} ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (comm* : (x y : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b))) (dup* : (x : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (dup x xs i)) (x ∷* (x ∷* b)) (x ∷* b)) (trunc* : (xs : LFSet A) → isSet (B xs)) where f : ∀ x → B x f [] = []* f (x ∷ xs) = x ∷* f xs f (dup x xs i) = dup* x (f xs) i f (comm x y xs i) = comm* x y (f xs) i f (trunc x y p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f x) (f y) (λ i → f (p i)) (λ i → f (q i)) (trunc x y p q) i j module Rec {ℓ} {B : Type ℓ} ([]* : B) (_∷*_ : (x : A) → B → B) (comm* : (x y : A) (xs : B) → (x ∷* (y ∷* xs)) ≡ (y ∷* (x ∷* xs))) (dup* : (x : A) (b : B) → (x ∷* (x ∷* b)) ≡ (x ∷* b)) (trunc* : isSet B) where f : LFSet A → B f = Elim.f []* (λ x xs → x ∷* xs) (λ x y b → comm* x y b) (λ x b → dup* x b) λ _ → trunc* module PropElim {ℓ} {B : LFSet A → Type ℓ} ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (trunc* : (xs : LFSet A) → isProp (B xs)) where f : ∀ x → B x f = Elim.f []* _∷*_ (λ _ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) (λ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) λ xs → isProp→isSet (trunc* xs) _++_ : ∀ (xs ys : LFSet A) → LFSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) dup x xs i ++ ys = dup x (xs ++ ys) i comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j map : (A → B) → LFSet A → LFSet B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs map f (dup x xs i) = dup (f x) (map f xs) i map f (comm x y xs i) = comm (f x) (f y) (map f xs) i map f (trunc xs ys p q i j) = trunc (map f xs) (map f ys) (cong (map f) p) (cong (map f) q) i j disj-union : LFSet A → LFSet B → LFSet (A ⊎ B) disj-union xs ys = map ⊎.inl xs ++ map ⊎.inr ys
{ "alphanum_fraction": 0.4530343008, "avg_line_length": 32.6724137931, "ext": "agda", "hexsha": "f8e27e06ef153be063b073c7534157d28dd9bca8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/ListedFiniteSet/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1794, "size": 3790 }
------------------------------------------------------------------------ -- Pointwise lifting of (binary) initial bag operators to parsers ------------------------------------------------------------------------ open import Data.List open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Binary.BagAndSetEquality using () renaming (_∼[_]_ to _List-∼[_]_) open import Function.Related as Related using (Kind; SK-sym) module TotalParserCombinators.Pointwise (R₁ R₂ : Set) {R₃ : Set} -- Some kinds of equality. {K : Set} (⌊_⌋ : K → Kind) -- An initial bag operator. (_∙_ : List R₁ → List R₂ → List R₃) -- The operator must preserve the given notions of equality. (_∙-cong_ : ∀ {k xs₁ xs₁′ xs₂ xs₂′} → xs₁ List-∼[ ⌊ k ⌋ ] xs₁′ → xs₂ List-∼[ ⌊ k ⌋ ] xs₂′ → (xs₁ ∙ xs₂) List-∼[ ⌊ k ⌋ ] (xs₁′ ∙ xs₂′)) where open import Codata.Musical.Notation open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Function.Inverse using (_↔_; module Inverse) open import TotalParserCombinators.Congruence as C using (_∼[_]P_; _≅P_) import TotalParserCombinators.Congruence.Sound as CS open import TotalParserCombinators.Derivative as D import TotalParserCombinators.InitialBag as I open import TotalParserCombinators.Laws open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics using (_∈_·_) ------------------------------------------------------------------------ -- Lift -- A lifting of the initial bag operator _∙_ to the level of parsers. -- -- Note that this definition is closely related to Theorem 4.4 in -- Brzozowski's paper "Derivatives of Regular Expressions". -- -- Note also that _∙_ is allowed to pattern match on the input -- indices, so it may not be obvious that lift preserves equality. -- This fact is established explicitly below (by making use of -- _∙-cong_). lift : ∀ {Tok xs₁ xs₂} → Parser Tok R₁ xs₁ → Parser Tok R₂ xs₂ → Parser Tok R₃ (xs₁ ∙ xs₂) lift p₁ p₂ = (token >>= λ t → ♯ lift (D t p₁) (D t p₂)) ∣ return⋆ (initial-bag p₁ ∙ initial-bag p₂) ------------------------------------------------------------------------ -- Properties of lift -- D distributes over lift. D-lift : ∀ {Tok xs₁ xs₂ t} (p₁ : Parser Tok R₁ xs₁) (p₂ : Parser Tok R₂ xs₂) → D t (lift p₁ p₂) ≅P lift (D t p₁) (D t p₂) D-lift {xs₁ = xs₁} {xs₂} {t} p₁ p₂ = D t (lift p₁ p₂) ≅⟨ D t (lift p₁ p₂) ∎ ⟩ (return t >>= λ t → lift (D t p₁) (D t p₂)) ∣ D t (return⋆ (xs₁ ∙ xs₂)) ≅⟨ Monad.left-identity t (λ t → lift (D t p₁) (D t p₂)) ∣ D.D-return⋆ (xs₁ ∙ xs₂) ⟩ lift (D t p₁) (D t p₂) ∣ fail ≅⟨ AdditiveMonoid.right-identity (lift (D t p₁) (D t p₂)) ⟩ lift (D t p₁) (D t p₂) ∎ where open C using (_≅⟨_⟩_; _∎; _∣_) -- lift preserves equality. lift-cong : ∀ {k Tok xs₁ xs₁′ xs₂ xs₂′} {p₁ : Parser Tok R₁ xs₁} {p₁′ : Parser Tok R₁ xs₁′} {p₂ : Parser Tok R₂ xs₂} {p₂′ : Parser Tok R₂ xs₂′} → p₁ ∼[ ⌊ k ⌋ ]P p₁′ → p₂ ∼[ ⌊ k ⌋ ]P p₂′ → lift p₁ p₂ ∼[ ⌊ k ⌋ ]P lift p₁′ p₂′ lift-cong {k} {xs₁ = xs₁} {xs₁′} {xs₂} {xs₂′} {p₁} {p₁′} {p₂} {p₂′} p₁≈p₁′ p₂≈p₂′ = lemma ∷ λ t → ♯ ( D t (lift p₁ p₂) ≅⟨ D-lift p₁ p₂ ⟩ lift (D t p₁) (D t p₂) ∼⟨ lift-cong (CS.D-cong p₁≈p₁′) (CS.D-cong p₂≈p₂′) ⟩ lift (D t p₁′) (D t p₂′) ≅⟨ sym (D-lift p₁′ p₂′) ⟩ D t (lift p₁′ p₂′) ∎) where open C using (_≅⟨_⟩_; _∼⟨_⟩_; _∎; sym; _∷_) lemma : (xs₁ ∙ xs₂) List-∼[ ⌊ k ⌋ ] (xs₁′ ∙ xs₂′) lemma = I.cong (CS.sound p₁≈p₁′) ∙-cong I.cong (CS.sound p₂≈p₂′) -- Lifts a property from _∙_ to lift. For examples of its use, see -- TotalParserCombinators.{And,AsymmetricChoice,Not}. lift-property : (P : ∀ {ℓ} → (R₁ → Set ℓ) → (R₂ → Set ℓ) → (R₃ → Set ℓ) → Set ℓ) (P-cong : ∀ {ℓ} {F₁ : R₁ → Set ℓ} {F₂ : R₂ → Set ℓ} {F₃ : R₃ → Set ℓ} {ℓ′} {F₁′ : R₁ → Set ℓ′} {F₂′ : R₂ → Set ℓ′} {F₃′ : R₃ → Set ℓ′} → (∀ x → F₁ x ↔ F₁′ x) → (∀ x → F₂ x ↔ F₂′ x) → (∀ x → F₃ x ↔ F₃′ x) → P F₁ F₂ F₃ ⇔ P F₁′ F₂′ F₃′) → (P-∙ : ∀ {xs₁ xs₂} → P (λ x → x ∈ xs₁) (λ x → x ∈ xs₂) (λ x → x ∈ (xs₁ ∙ xs₂))) → ∀ {Tok xs₁ xs₂ s} (p₁ : Parser Tok R₁ xs₁) (p₂ : Parser Tok R₂ xs₂) → P (λ x → x ∈ p₁ · s) (λ x → x ∈ p₂ · s) (λ x → x ∈ lift p₁ p₂ · s) lift-property P P-cong P-∙ {s = []} p₁ p₂ = Equivalence.from (P (λ x → x ∈ p₁ · []) (λ x → x ∈ p₂ · []) (λ x → x ∈ lift p₁ p₂ · []) ∼⟨ P-cong (λ _ → I.correct) (λ _ → I.correct) (λ _ → I.correct) ⟩ P (λ x → x ∈ initial-bag p₁) (λ x → x ∈ initial-bag p₂) (λ x → x ∈ (initial-bag p₁ ∙ initial-bag p₂)) ∎ ) ⟨$⟩ P-∙ where open Related.EquationalReasoning lift-property P P-cong P-∙ {s = t ∷ s} p₁ p₂ = Equivalence.from (P (λ x → x ∈ p₁ · t ∷ s) (λ x → x ∈ p₂ · t ∷ s) (λ x → x ∈ lift p₁ p₂ · t ∷ s) ∼⟨ SK-sym $ P-cong (λ _ → D.correct) (λ _ → D.correct) (λ _ → D.correct) ⟩ P (λ x → x ∈ D t p₁ · s) (λ x → x ∈ D t p₂ · s) (λ x → x ∈ D t (lift p₁ p₂) · s) ∼⟨ P-cong (λ _ → _ ∎) (λ _ → _ ∎) (λ _ → CS.sound (D-lift p₁ p₂)) ⟩ P (λ x → x ∈ D t p₁ · s) (λ x → x ∈ D t p₂ · s) (λ x → x ∈ lift (D t p₁) (D t p₂) · s) ∎ ) ⟨$⟩ lift-property P P-cong P-∙ (D t p₁) (D t p₂) where open Related.EquationalReasoning
{ "alphanum_fraction": 0.5145822151, "avg_line_length": 39.0839160839, "ext": "agda", "hexsha": "b5841dcfbe76d4e8f8f080fe9cec135de5493544", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Pointwise.agda", "max_line_length": 128, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2224, "size": 5589 }
module Everything where import Library import Terms import Substitution import SN import SN.AntiRename import Reduction import SAT3 import DeclSN import Soundness
{ "alphanum_fraction": 0.8545454545, "avg_line_length": 12.6923076923, "ext": "agda", "hexsha": "e6dd1c184099ac1581bd5afd806c8af11fddcfe4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/Everything.agda", "max_line_length": 23, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 39, "size": 165 }
------------------------------------------------------------------------ -- Code related to the paper "Higher Inductive Type Eliminators -- Without Paths" -- -- Nils Anders Danielsson ------------------------------------------------------------------------ -- Note that the code does not follow the paper exactly, and that some -- of the code has been changed after the paper was published. {-# OPTIONS --cubical --safe #-} module README.HITs-without-paths where import Equality import Equality.Id import Equality.Instances-related import Equality.Path import Equality.Path.Isomorphisms import Equality.Propositional import Function-universe import H-level import H-level.Truncation.Propositional import Quotient import Suspension ------------------------------------------------------------------------ -- 1: Introduction -- The propositional truncation operator. ∥_∥ = H-level.Truncation.Propositional.∥_∥ -- Equality defined as an inductive family with a single constructor -- refl. _≡_ = Equality.Propositional._≡_ ------------------------------------------------------------------------ -- 2: An Axiomatisation of Equality With J -- The code uses an axiomatisation of "equality with J", as discussed -- in the text. The axiomatisation is a little convoluted in order to -- support using equality at all universe levels. Furthermore, also as -- discussed in the text, the axiomatisation supports choosing -- specific definitions for other functions, like cong, to make the -- code more usable when it is instantiated with Cubical Agda paths -- (for which the canonical definition of cong computes in a different -- way than typical definitions obtained using J). -- Equality and reflexivity. ≡-refl = Equality.Reflexive-relation -- The J rule and its computation rule. J-J-refl = Equality.Equality-with-J₀ -- Extended variants of the two definitions above. Equivalence-relation⁺ = Equality.Equivalence-relation⁺ Equality-with-J = Equality.Equality-with-J Equality-with-paths = Equality.Path.Equality-with-paths -- The extended variants are inhabited for all universe levels if the -- basic ones are inhabited for all universe levels. J₀⇒Equivalence-relation⁺ = Equality.J₀⇒Equivalence-relation⁺ J₀⇒J = Equality.J₀⇒J Equality-with-J₀⇒Equality-with-paths = Equality.Path.Equality-with-J₀⇒Equality-with-paths -- To see how the code is axiomatised, see the module header of, say, -- Circle. import Circle -- Any two notions of equality satisfying the axioms are pointwise -- isomorphic, and the isomorphisms map canonical proofs of -- reflexivity to canonical proofs of reflexivity. -- -- Note that in some cases the code uses bijections (_↔_) instead of -- equivalences (_≃_). instances-isomorphic = Equality.Instances-related.all-equality-types-isomorphic -- Cubical Agda paths, the Cubical Agda identity type family, and a -- definition of equality as an inductive family with a single -- constructor refl are instances of the axioms. (The last instance is -- for Equality-with-J rather than Equality-with-paths, because the -- latter definition is defined in Cubical Agda, and the instance is -- not.) paths-instance = Equality.Path.equality-with-paths id-instance = Equality.Id.equality-with-paths inductive-family-instance = Equality.Propositional.equality-with-J ------------------------------------------------------------------------ -- 3: Homogeneous Paths -- The path type constructor. Path = Equality.Path._≡_ -- Zero and one. 0̲ = Equality.Path.0̲ 1̲ = Equality.Path.1̲ -- Reflexivity. reflᴾ = Equality.Path.refl -- Minimum, maximum and negation. min = Equality.Path.min max = Equality.Path.max -_ = Equality.Path.-_ -- The primitive transport operation. open Equality.Path using (transport) -- The J rule and transport-refl. Jᴾ = Equality.Path.elim transport-refl = Equality.Path.transport-refl -- Transitivity (more general than in the paper). transᴾ = Equality.Path.htransʳ ------------------------------------------------------------------------ -- 4: Heterogeneous Paths -- Pathᴴ. Pathᴴ = Equality.Path.[_]_≡_ -- The eliminator elimᴾ for the propositional truncation operator. module ∥_∥ where elimᴾ = H-level.Truncation.Propositional.elimᴾ′ -- Pathᴴ≡Path and Pathᴴ≃Path. Pathᴴ≡Path = Equality.Path.heterogeneous≡homogeneous Pathᴴ≃Path = Equality.Path.heterogeneous↔homogeneous -- The lemma substᴾ. substᴾ = Equality.Path.subst -- The lemmas subst and subst-refl from the axiomatisation. subst = Equality.Equality-with-J.subst subst-refl = Equality.Equality-with-J.subst-refl -- The axiomatisation makes it possible to choose the implementations -- of to-path and from-path. to-path = Equality.Path.Equality-with-paths.to-path from-path = Equality.Path.Equality-with-paths.from-path -- The code mostly uses a pointwise isomorphism between the arbitrary -- notion of equality and paths instead of from-path and to-path. ≡↔≡ = Equality.Path.Derived-definitions-and-properties.≡↔≡ -- The lemmas subst≡substᴾ, subst≡≃Pathᴴ, subst≡→Pathᴴ and -- subst≡→substᴾ≡ (which is formulated as a bijection). subst≡substᴾ = Equality.Path.Isomorphisms.subst≡subst subst≡≃Pathᴴ = Equality.Path.Isomorphisms.subst≡↔[]≡ subst≡→Pathᴴ = Equality.Path.Isomorphisms.subst≡→[]≡ subst≡→substᴾ≡ = Equality.Path.Isomorphisms.subst≡↔subst≡ -- The lemmas congᴰ and congᴰ-refl from the axiomatisation. congᴰ = Equality.Equality-with-J.dcong congᴰ-refl = Equality.Equality-with-J.dcong-refl -- The lemmas congᴴ and congᴰᴾ. congᴴ = Equality.Path.hcong congᴰᴾ = Equality.Path.dcong -- The proofs congᴰ≡congᴰᴾ, congᴰᴾ≡congᴴ, congᴰ≡congᴴ and -- dependent‐computation‐rule‐lemma. congᴰ≡congᴰᴾ = Equality.Path.Isomorphisms.dcong≡dcong congᴰᴾ≡congᴴ = Equality.Path.dcong≡hcong congᴰ≡congᴴ = Equality.Path.Isomorphisms.dcong≡hcong dependent‐computation‐rule‐lemma = Equality.Path.Isomorphisms.dcong-subst≡→[]≡ ------------------------------------------------------------------------ -- 5: The Circle Without Paths -- The circle and loop. 𝕊¹ = Circle.𝕊¹ loop = Circle.loop -- The lemmas cong and cong-refl from the axiomatisation. cong = Equality.Equality-with-J.cong cong-refl = Equality.Equality-with-J.cong-refl -- The lemma non-dependent-computation-rule-lemma. non-dependent-computation-rule-lemma = Equality.Path.Isomorphisms.cong-≡↔≡ -- The lemma trans, which is actually a part of the axiomatisation -- that I use, but which can be proved using the J rule. trans = Equality.Equivalence-relation⁺.trans J₀⇒trans = Equality.J₀⇒Equivalence-relation⁺ -- The lemma subst-const. subst-const = Equality.Derived-definitions-and-properties.subst-const -- The lemma congᴰ≡→cong≡. congᴰ≡→cong≡ = Equality.Derived-definitions-and-properties.dcong≡→cong≡ -- Eliminators and computation rules. module 𝕊¹ where elimᴾ = Circle.elimᴾ recᴾ = Circle.recᴾ elim = Circle.elim elim-loop = Circle.elim-loop rec = Circle.rec rec-loop = Circle.rec-loop rec′ = Circle.rec′ rec′-loop = Circle.rec′-loop ------------------------------------------------------------------------ -- 6: Set Quotients Without Paths -- The definition of h-levels. Contractible = Equality.Derived-definitions-and-properties.Contractible H-level = H-level.H-level Is-proposition = Equality.Derived-definitions-and-properties.Is-proposition Is-set = Equality.Derived-definitions-and-properties.Is-set -- Set quotients. _/_ = Quotient._/_ -- Some lemmas. H-levelᴾ-suc≃H-levelᴾ-Pathᴴ = Equality.Path.H-level-suc↔H-level[]≡ index-irrelevant = Equality.Path.index-irrelevant transport-transport = Equality.Path.transport∘transport heterogeneous-irrelevance = Equality.Path.heterogeneous-irrelevance heterogeneous-UIP = Equality.Path.heterogeneous-UIP H-level≃H-levelᴾ = Equality.Path.Isomorphisms.H-level↔H-level -- A generalisation of Π-cong. Note that equality is provably -- extensional in Cubical Agda. Π-cong = Function-universe.Π-cong extensionality = Equality.Path.ext -- Variants of the constructors. []-respects-relation = Quotient.[]-respects-relation /-is-set = Quotient./-is-set -- Eliminators. module _/_ where elimᴾ′ = Quotient.elimᴾ′ elimᴾ = Quotient.elimᴾ recᴾ = Quotient.recᴾ elim = Quotient.elim rec = Quotient.rec ------------------------------------------------------------------------ -- 7: More Examples -- Suspensions. module Susp where Susp = Suspension.Susp elimᴾ = Suspension.elimᴾ recᴾ = Suspension.recᴾ meridian = Suspension.meridian elim = Suspension.elim elim-meridian = Suspension.elim-meridian rec = Suspension.rec rec-meridian = Suspension.rec-meridian -- The propositional truncation operator. module Propositional-truncation where elimᴾ′ = H-level.Truncation.Propositional.elimᴾ′ elimᴾ = H-level.Truncation.Propositional.elimᴾ recᴾ = H-level.Truncation.Propositional.recᴾ trivial = H-level.Truncation.Propositional.truncation-is-proposition elim = H-level.Truncation.Propositional.elim rec = H-level.Truncation.Propositional.rec ------------------------------------------------------------------------ -- 8: An Alternative Approach -- Circle and Circleᴾ, combined into a single definition. Circle = Circle.Circle -- Circleᴾ≃Circle, circleᴾ and circle. Circleᴾ≃Circle = Circle.Circle≃Circle circleᴾ = Circle.circleᴾ circle = Circle.circle -- The computation rule for the higher constructor. elim-loop-circle = Circle.elim-loop-circle -- Alternative definitions of Circleᴾ≃Circle and circle that (at the -- time of writing) do not give the "correct" computational behaviour -- for the point constructor. Circleᴾ≃Circle′ = Circle.Circle≃Circle′ circle′ = Circle.circle′ ------------------------------------------------------------------------ -- 9: Discussion -- The interval. import Interval -- Pushouts. import Pushout -- A general truncation operator. import H-level.Truncation -- The torus. import Torus
{ "alphanum_fraction": 0.679252704, "avg_line_length": 28.487394958, "ext": "agda", "hexsha": "5d006937c70cf5a3f5935763713f458ff30f42a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "README/HITs-without-paths.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "README/HITs-without-paths.agda", "max_line_length": 75, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "README/HITs-without-paths.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2760, "size": 10170 }
open import Prelude hiding (subst) module Implicits.Substitutions.Term where open import Implicits.Syntax.Type open import Implicits.Syntax.Term open import Data.Fin.Substitution open import Data.Star as Star hiding (map) open import Data.Star.Properties open import Data.Vec hiding ([_]) open import Implicits.Substitutions.Type as TypeSubst using () module TermTypeSubst where module TermTypeApp {T} (l : Lift T Type) where open Lift l hiding (var) open TypeSubst.TypeApp l renaming (_/_ to _/tp_) infixl 8 _/_ -- Apply a type substitution to a term _/_ : ∀ {ν μ n} → Term ν n → Sub T ν μ → Term μ n var x / σ = var x Λ t / σ = Λ (t / σ ↑) λ' a t / σ = λ' (a /tp σ) (t / σ) t [ a ] / σ = (t / σ) [ a /tp σ ] s · t / σ = (s / σ) · (t / σ) ρ a t / σ = ρ (a /tp σ) (t / σ) r ⟨⟩ / σ = (r / σ) ⟨⟩ r with' e / σ = (r / σ) with' (e / σ) open TypeSubst using (varLift; termLift; sub) module Lifted {T} (lift : Lift T Type) {n} where application : Application (λ ν → Term ν n) T application = record { _/_ = TermTypeApp._/_ lift {n = n} } open Application application public open Lifted termLift public -- apply a type variable substitution (renaming) to a term _/Var_ : ∀ {ν μ n} → Term ν n → Sub Fin ν μ → Term μ n _/Var_ = TermTypeApp._/_ varLift -- weaken a term with an additional type variable weaken : ∀ {ν n} → Term ν n → Term (suc ν) n weaken t = t /Var VarSubst.wk infix 8 _[/_] -- shorthand for single-variable type substitutions in terms _[/_] : ∀ {ν n} → Term (suc ν) n → Type ν → Term ν n t [/ b ] = t / sub b module TermTermSubst where -- Substitutions of terms in terms TermSub : (ℕ → ℕ → Set) → ℕ → ℕ → ℕ → Set TermSub T ν m n = Sub (T ν) m n record TermLift (T : ℕ → ℕ → Set) : Set where infix 10 _↑tm _↑tp field lift : ∀ {ν n} → T ν n → Term ν n _↑tm : ∀ {ν m n} → TermSub T ν m n → TermSub T ν (suc m) (suc n) _↑tp : ∀ {ν m n} → TermSub T ν m n → TermSub T (suc ν) m n module TermTermApp {T} (l : TermLift T) where open TermLift l infixl 8 _/_ -- Apply a term substitution to a term _/_ : ∀ {ν m n} → Term ν m → TermSub T ν m n → Term ν n var x / σ = lift $ lookup x σ Λ t / σ = Λ (t / σ ↑tp) λ' a t / σ = λ' a (t / σ ↑tm) t [ a ] / σ = (t / σ) [ a ] s · t / σ = (s / σ) · (t / σ) ρ a t / σ = ρ a (t / σ ↑tm) r ⟨⟩ / σ = (r / σ) ⟨⟩ r with' e / σ = (r / σ) with' (e / σ) Fin′ : ℕ → ℕ → Set Fin′ _ m = Fin m varLift : TermLift Fin′ varLift = record { lift = var; _↑tm = VarSubst._↑; _↑tp = Prelude.id } infixl 8 _/Var_ _/Var_ : ∀ {ν m n} → Term ν m → Sub Fin m n → Term ν n _/Var_ = TermTermApp._/_ varLift private module ExpandSimple {n : ℕ} where simple : Simple (Term n) simple = record { var = var; weaken = λ t → t /Var VarSubst.wk } open Simple simple public open ExpandSimple using (_↑; simple) open TermTypeSubst using () renaming (weaken to weakenTp) termLift : TermLift Term termLift = record { lift = Prelude.id; _↑tm = _↑ ; _↑tp = λ ρ → map weakenTp ρ } private module ExpandSubst {ν : ℕ} where app : Application (Term ν) (Term ν) app = record { _/_ = TermTermApp._/_ termLift {ν = ν} } subst : Subst (Term ν) subst = record { simple = simple ; application = app } open Subst subst public open ExpandSubst public hiding (var; simple) infix 8 _[/_] -- Shorthand for single-variable term substitutions in terms _[/_] : ∀ {ν n} → Term ν (suc n) → Term ν n → Term ν n s [/ t ] = s / sub t
{ "alphanum_fraction": 0.5603981706, "avg_line_length": 28.1590909091, "ext": "agda", "hexsha": "c67a8e3270d3dbac642f5767daf42baa54cec0d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Substitutions/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Substitutions/Term.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Substitutions/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1324, "size": 3717 }
{-# OPTIONS --universe-polymorphism #-} module 13-implicitProofObligations where module Imports where module L where open import Agda.Primitive public using (Level; _⊔_) renaming (lzero to zero; lsuc to suc) -- extract from Data.Unit record ⊤ : Set where constructor tt -- extract from Data.Empty data ⊥ : Set where ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim () -- extract from Function id : ∀ {a} {A : Set a} → A → A id x = x _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- extract from Data.Bool data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true T : Bool → Set T true = ⊤ T false = ⊥ -- extract from Relation.Nullary.Decidable and friends infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false False : ∀ {p} {P : Set p} → Dec P → Set False Q = T (not ⌊ Q ⌋) -- extract from Relation.Binary.PropositionalEquality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl _≢_ : ∀ {a} {A : Set a} → A → A → Set a x ≢ y = ¬ x ≡ y -- extract from Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} pred : ℕ → ℕ pred zero = zero pred (suc n) = n infixl 6 _+_ _+_ : ℕ → ℕ → ℕ -- zero + n = n -- suc m + n = suc (m + n) zero + n = n suc m + n = suc (m + n) _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + m * n _≟_ : (x y : ℕ) → Dec (x ≡ y) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no (prf ∘ cong pred) zero ≟ suc n = no λ() suc m ≟ zero = no λ() -- extract from Data.Fin data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) -- A conversion: toℕ "n" = n. toℕ : ∀ {n} → Fin n → ℕ toℕ zero = 0 toℕ (suc i) = suc (toℕ i) -- extract from Data.Product record Σ {a b} (A : Set a) (B : A → Set b) : Set (a L.⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a L.⊔ b) A × B = Σ A (λ (_ : A) → B) -- extract from Data.Nat.DivMod data DivMod : ℕ → ℕ → Set where result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) → DivMod (toℕ r + q * divisor) divisor data DivMod' (dividend divisor : ℕ) : Set where result : (q : ℕ) (r : Fin divisor) (eq : dividend ≡ (toℕ r + q * divisor)) → DivMod' dividend divisor postulate _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod' dividend divisor open Imports -- Begin of actual example! postulate d : ℕ d≢0 : d ≢ 0 -- d≢0' : d ≢ 0 fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q fromWitnessFalse {Q = yes p} ¬P = ⊥-elim $ ¬P p fromWitnessFalse {Q = no ¬p} ¬P = tt ⋯ : {A : Set} → {{v : A}} → A ⋯ {{v}} = v _divMod′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ × ℕ _divMod′_ a d {{_}} with _divMod_ a d { fromWitnessFalse ⋯ } ._ divMod′ d | (result q r) = q , toℕ r _div′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ _div′_ a b {{_}} with a divMod′ b a div′ b | (q , _) = q --Agda can't resolve hiddens -- test : {d≢0 : False (d ≟ 0)} → ℕ -- test = 5 div d -- test2 : {{d≢0 : d ≢ 0}} → ℕ -- test2 = 5 div′ d test3 = 5 div 2 test4 = 5 div′ 2 where nz : 2 ≢ 0 nz ()
{ "alphanum_fraction": 0.4863953768, "avg_line_length": 23.2011173184, "ext": "agda", "hexsha": "4fe89adef8ac13c6ad922e0352f76dcfe40f8d40", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 1742, "size": 4153 }
------------------------------------------------------------------------------ -- Testing Agda internal term: @Var Nat Args@ when @Args ≠ []@ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --universal-quantified-functions #-} {-# OPTIONS --without-K #-} module NonFOLAgdaInternalTermsVarNonEmptyArgumentsTerm where postulate D : Set _≡_ : D → D → Set -- TODO: 2012-04-29. Are we using Koen's approach in the translation? postulate f-refl : (f : D → D) → ∀ x → f x ≡ f x {-# ATP prove f-refl #-}
{ "alphanum_fraction": 0.4505988024, "avg_line_length": 35.1578947368, "ext": "agda", "hexsha": "5da6fc8b494f7e9d94ea7fc4dcbc3b8544e10d74", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "issues/universal-quantified-functions-option/NonFOLAgdaInternalTermsVarNonEmptyArgumentsTerm.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "issues/universal-quantified-functions-option/NonFOLAgdaInternalTermsVarNonEmptyArgumentsTerm.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "issues/universal-quantified-functions-option/NonFOLAgdaInternalTermsVarNonEmptyArgumentsTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 145, "size": 668 }
{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path module _ where data D (A : Set) : Set where c : D A step : ∀ (x : D A) → c ≡ x data _~_ {A : Set} : (x y : D A) → Set record _~′_ {A : Set} (x y : D A) : Set where coinductive field force : x ~ y open _~′_ data _~_ {A} where c~ : ∀ {x y : D A} → c ~ c step~ : ∀ {x y} → (p : x ~′ y) → PathP (λ i → step x i ~ step y i) c~ (p .force) foo : ∀ {A : Set} (x y : D A) → (x ~ y) → Set₁ foo _ _ (step~ _ _) = {!!} foo _ _ c~ = {!!}
{ "alphanum_fraction": 0.5077989601, "avg_line_length": 20.6071428571, "ext": "agda", "hexsha": "e09f1d1fa2abe48150d85c33bebe4ed4e71e5908", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3661.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3661.agda", "max_line_length": 82, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3661.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 245, "size": 577 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition module Fields.CauchyCompletion.NearlyTotalOrder {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Orders.Lemmas {F = F} {pRing} (record { oRing = order }) open import Setoids.Orders.Partial.Sequences pOrder open import Rings.InitialRing R open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.Cauchy order open import Rings.Orders.Total.AbsoluteValue order open import Fields.Lemmas F open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Group order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Approximation order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.PartiallyOrderedRing order F open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) makeIncreasingLemma : (a : A) (s : Sequence A) → Sequence A Sequence.head (makeIncreasingLemma a s) with totality a (Sequence.head s) ... | inl (inl x) = Sequence.head s ... | inl (inr x) = a ... | inr x = a Sequence.tail (makeIncreasingLemma a s) = makeIncreasingLemma (Sequence.head (makeIncreasingLemma a s)) (Sequence.tail s) makeIncreasingLemmaIsIncreasing : (a : A) (s : Sequence A) → WeaklyIncreasing (makeIncreasingLemma a s) makeIncreasingLemmaIsIncreasing a s zero with totality a (Sequence.head s) makeIncreasingLemmaIsIncreasing a s zero | inl (inl x) with totality (Sequence.head s) (Sequence.head (Sequence.tail s)) makeIncreasingLemmaIsIncreasing a s zero | inl (inl x) | inl (inl y) = inl y makeIncreasingLemmaIsIncreasing a s zero | inl (inl x) | inl (inr y) = inr reflexive makeIncreasingLemmaIsIncreasing a s zero | inl (inl x) | inr y = inr reflexive makeIncreasingLemmaIsIncreasing a s zero | inl (inr x) with totality a (Sequence.head (Sequence.tail s)) ... | inl (inl y) = inl y ... | inl (inr y) = inr reflexive ... | inr y = inr reflexive makeIncreasingLemmaIsIncreasing a s zero | inr x with totality a (Sequence.head (Sequence.tail s)) ... | inl (inl y) = inl y ... | inl (inr y) = inr reflexive ... | inr y = inr reflexive makeIncreasingLemmaIsIncreasing a s (succ m) = makeIncreasingLemmaIsIncreasing (Sequence.head (makeIncreasingLemma a s)) (Sequence.tail s) m makeIncreasing : Sequence A → Sequence A Sequence.head (makeIncreasing x) = Sequence.head x Sequence.tail (makeIncreasing x) = makeIncreasingLemma (Sequence.head x) (Sequence.tail x) makeIncreasingIsIncreasing : (a : Sequence A) → WeaklyIncreasing (makeIncreasing a) makeIncreasingIsIncreasing a zero with totality (Sequence.head a) (Sequence.head (Sequence.tail a)) ... | inl (inl x) = inl x ... | inl (inr x) = inr reflexive ... | inr x = inr reflexive makeIncreasingIsIncreasing a (succ m) = makeIncreasingLemmaIsIncreasing _ _ m approximateIncreasingSeqRaw : CauchyCompletion → Sequence A approximateIncreasingSeqRaw a = funcToSequence f where f : ℕ → A f n with allInvertible (fromN (succ n)) λ n=0 → irreflexive (<WellDefined reflexive n=0 (fromNPreservesOrder (0<1 nontrivial) (succIsPositive n))) ... | 1/n , prN = underlying (approximateBelow a 1/n (reciprocalPositive' (fromN (succ n)) 1/n (fromNPreservesOrder (0<1 nontrivial) (succIsPositive n)) prN)) approximateIncreasingSeq : CauchyCompletion → Sequence A approximateIncreasingSeq a = makeIncreasing (approximateIncreasingSeqRaw a) approximateIncreasingConverges : (a : CauchyCompletion) → cauchy (approximateIncreasingSeq a) approximateIncreasingConverges a e 0<e = {!!} approximateIncreasingIncreases : (a : CauchyCompletion) → WeaklyIncreasing (approximateIncreasingSeq a) approximateIncreasingIncreases a = makeIncreasingIsIncreasing (approximateIncreasingSeqRaw a) approximateIncreasing : CauchyCompletion → CauchyCompletion approximateIncreasing a = record { elts = approximateIncreasingSeq a ; converges = approximateIncreasingConverges a } approximateIncreasingEqual : (a : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (approximateIncreasing a) a approximateIncreasingEqual a e 0<e = {!!} decideSign : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0R) → False) → (a <Cr 0R) || (0R r<C a) decideSign a a!=0 = {!!} where private lemma : (a b : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid ((b +C (-C a)) +C a) b lemma a b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((b +C (-C a)) +C a) }} {record { converges = CauchyCompletion.converges (b +C ((-C a) +C a)) }} {record { converges = CauchyCompletion.converges b }} (Group.+Associative' CGroup {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges (-C a) }} { record { converges = CauchyCompletion.converges a }}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record {converges = CauchyCompletion.converges (b +C ((-C a) +C a))}} {record { converges = CauchyCompletion.converges (b +C (injection 0R))}} {record {converges = CauchyCompletion.converges b}} (Group.+WellDefinedRight CGroup {record {converges = CauchyCompletion.converges b}} {record {converges = CauchyCompletion.converges ((-C a) +C a)}} {record { converges = CauchyCompletion.converges (injection 0R)}} (Group.invLeft CGroup {record { converges = CauchyCompletion.converges a }})) (Group.identRight CGroup {record { converges = CauchyCompletion.converges b }})) nearlyTotal : (a b : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a b → False) → (a <C b) || (b <C a) nearlyTotal a b a!=b with decideSign (b +C (-C a)) λ bad → a!=b (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }} (transferToRight CGroup {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }} bad)) ... | inl x = inr (<CWellDefined (lemma a b) (Group.identLeft CGroup {record { converges = CauchyCompletion.converges a }}) (PartiallyOrderedRing.orderRespectsAddition CpOrderedRing (<CRelaxR x) a)) ... | inr x = inl (<CWellDefined (Group.identLeft CGroup {record { converges = CauchyCompletion.converges a }}) (lemma a b) (PartiallyOrderedRing.orderRespectsAddition CpOrderedRing (<CRelaxL x) a))
{ "alphanum_fraction": 0.7620320856, "avg_line_length": 63.3898305085, "ext": "agda", "hexsha": "43c6a8120de9a59139c5a587abfd3558888470cb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/NearlyTotalOrder.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/NearlyTotalOrder.agda", "max_line_length": 1096, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/NearlyTotalOrder.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2184, "size": 7480 }
------------------------------------------------------------------------ -- Identity and composition for higher lenses ------------------------------------------------------------------------ {-# OPTIONS --cubical #-} import Equality.Path as P module Lens.Non-dependent.Higher.Combinators {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq import Bi-invertibility open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id) renaming (_∘_ to _⊚_) open import Bijection equality-with-J as Bij using (_↔_) open import Category equality-with-J as C using (Category; Precategory) import Circle eq as Circle open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as Trunc open import Surjection equality-with-J using (_↠_) open import Univalence-axiom equality-with-J open import Lens.Non-dependent.Higher eq import Lens.Non-dependent.Traditional eq as Traditional open import Lens.Non-dependent.Traditional.Combinators eq as TC using (Naive-category; Univalent) private variable a b c d : Level A B C : Type a ------------------------------------------------------------------------ -- Lens combinators -- The definition of the identity lens is unique, if the get -- function is required to be the identity (assuming univalence). id-unique : {A : Type a} → Univalence a → (l₁ l₂ : Lens A A) → Lens.get l₁ ≡ P.id → Lens.get l₂ ≡ P.id → l₁ ≡ l₂ id-unique {A = A} univ l₁ l₂ get-l₁≡id get-l₂≡id = $⟨ trans get-l₁≡id (sym get-l₂≡id) ⟩ _≃_.to (_≃_.from f l₁′) ≡ _≃_.to (_≃_.from f l₂′) ↝⟨ Eq.lift-equality ext ⟩ _≃_.from f l₁′ ≡ _≃_.from f l₂′ ↝⟨ _≃_.to $ Eq.≃-≡ (inverse f) {x = l₁′} {y = l₂′} ⟩ l₁′ ≡ l₂′ ↝⟨ cong proj₁ ⟩□ l₁ ≡ l₂ □ where open Lens f : (A ≃ A) ≃ (∃ λ (l : Lens A A) → Is-equivalence (Lens.get l)) f = ≃-≃-Σ-Lens-Is-equivalence-get univ is-equiv : (l : Lens A A) → get l ≡ P.id → Is-equivalence (get l) is-equiv _ get≡id = Eq.respects-extensional-equality (ext⁻¹ $ sym get≡id) (_≃_.is-equivalence Eq.id) l₁′ l₂′ : ∃ λ (l : Lens A A) → Is-equivalence (Lens.get l) l₁′ = l₁ , is-equiv l₁ get-l₁≡id l₂′ = l₂ , is-equiv l₂ get-l₂≡id -- The result of composing two lenses is unique if the codomain type -- is inhabited whenever it is merely inhabited, and we require that -- the resulting setter function is defined in a certain way -- (assuming univalence). ∘-unique : let open Lens in {A : Type a} {C : Type c} → Univalence (a ⊔ c) → (∥ C ∥ → C) → ((comp₁ , _) (comp₂ , _) : ∃ λ (comp : Lens B C → Lens A B → Lens A C) → ∀ l₁ l₂ a c → set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) → comp₁ ≡ comp₂ ∘-unique {A = A} {C = C} univ ∥C∥→C (comp₁ , set₁) (comp₂ , set₂) = ⟨ext⟩ λ l₁ → ⟨ext⟩ λ l₂ → lenses-equal-if-setters-equal univ (comp₁ l₁ l₂) (comp₂ l₁ l₂) (λ _ → ∥C∥→C) $ ⟨ext⟩ λ a → ⟨ext⟩ λ c → set (comp₁ l₁ l₂) a c ≡⟨ set₁ _ _ _ _ ⟩ set l₂ a (set l₁ (get l₂ a) c) ≡⟨ sym $ set₂ _ _ _ _ ⟩∎ set (comp₂ l₁ l₂) a c ∎ where open Lens -- Identity lens. id : Block "id" → Lens A A id {A = A} ⊠ = record { R = ∥ A ∥ ; equiv = A ↔⟨ inverse ∥∥×↔ ⟩□ ∥ A ∥ × A □ ; inhabited = P.id } -- Composition of lenses. -- -- Note that the domains are required to be at least as large as the -- codomains; this should match many use-cases. Without this -- restriction I failed to find a satisfactory definition of -- composition. (I suspect that if Agda had had cumulativity, then -- the domain and codomain could have lived in the same universe -- without any problems.) -- -- The composition operation matches on the lenses to ensure that it -- does not unfold when applied to neutral lenses. -- -- See also Lens.Non-dependent.Equivalent-preimages.⟨_⟩_⊚_. infix 9 ⟨_,_⟩_∘_ ⟨_,_⟩_∘_ : ∀ a b {A : Type (a ⊔ b ⊔ c)} {B : Type (b ⊔ c)} {C : Type c} → Lens B C → Lens A B → Lens A C ⟨_,_⟩_∘_ _ _ {A = A} {B} {C} l₁@(⟨ _ , _ , _ ⟩) l₂@(⟨ _ , _ , _ ⟩) = record { R = R l₂ × R l₁ ; equiv = A ↝⟨ equiv l₂ ⟩ R l₂ × B ↝⟨ F.id ×-cong equiv l₁ ⟩ R l₂ × (R l₁ × C) ↔⟨ ×-assoc ⟩□ (R l₂ × R l₁) × C □ ; inhabited = ∥∥-map (get l₁) ⊚ inhabited l₂ ⊚ proj₁ } where open Lens -- The composition operation implements set in a certain way. ∘-set : let open Lens in ∀ ℓa ℓb {A : Type (ℓa ⊔ ℓb ⊔ c)} {B : Type (ℓb ⊔ c)} {C : Type c} (l₁ : Lens B C) (l₂ : Lens A B) a c → set (⟨ ℓa , ℓb ⟩ l₁ ∘ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c) ∘-set _ _ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ _ _ = refl _ -- A variant of composition for lenses between types with the same -- universe level. infixr 9 _∘_ _∘_ : {A B C : Type a} → Lens B C → Lens A B → Lens A C l₁ ∘ l₂ = ⟨ lzero , lzero ⟩ l₁ ∘ l₂ -- Other definitions of composition match ⟨_,_⟩_∘_, if the codomain -- type is inhabited whenever it is merely inhabited, and the -- resulting setter function is defined in a certain way (assuming -- univalence). composition≡∘ : let open Lens in ∀ a b {A : Type (a ⊔ b ⊔ c)} {B : Type (b ⊔ c)} {C : Type c} → Univalence (a ⊔ b ⊔ c) → (∥ C ∥ → C) → (comp : Lens B C → Lens A B → Lens A C) → (∀ l₁ l₂ a c → set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) → comp ≡ ⟨ a , b ⟩_∘_ composition≡∘ _ _ univ ∥C∥→C comp set-comp = ∘-unique univ ∥C∥→C (comp , set-comp) (_ , λ { ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ _ _ → refl _ }) -- Identity and composition form a kind of precategory (assuming -- univalence). associativity : ∀ a b c {A : Type (a ⊔ b ⊔ c ⊔ d)} {B : Type (b ⊔ c ⊔ d)} {C : Type (c ⊔ d)} {D : Type d} → Univalence (a ⊔ b ⊔ c ⊔ d) → (l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) → ⟨ a ⊔ b , c ⟩ l₁ ∘ (⟨ a , b ⟩ l₂ ∘ l₃) ≡ ⟨ a , b ⊔ c ⟩ (⟨ b , c ⟩ l₁ ∘ l₂) ∘ l₃ associativity _ _ _ univ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ = _↔_.from (equality-characterisation₁ ⊠ univ) (Eq.↔⇒≃ (inverse ×-assoc) , λ _ → refl _) left-identity : ∀ bi a {A : Type (a ⊔ b)} {B : Type b} → Univalence (a ⊔ b) → (l : Lens A B) → ⟨ a , lzero ⟩ id bi ∘ l ≡ l left-identity ⊠ _ {B = B} univ l@(⟨ _ , _ , _ ⟩) = _↔_.from (equality-characterisation₁ ⊠ univ) ( (R × ∥ B ∥ ↔⟨ lemma ⟩□ R □) , λ _ → refl _ ) where open Lens l lemma : R × ∥ B ∥ ↔ R lemma = record { surjection = record { logical-equivalence = record { to = proj₁ ; from = λ r → r , inhabited r } ; right-inverse-of = refl } ; left-inverse-of = λ { (r , _) → cong (λ x → r , x) $ truncation-is-proposition _ _ } } right-identity : ∀ bi a {A : Type (a ⊔ b)} {B : Type b} → Univalence (a ⊔ b) → (l : Lens A B) → ⟨ lzero , a ⟩ l ∘ id bi ≡ l right-identity ⊠ _ {A = A} univ l@(⟨ _ , _ , _ ⟩) = _↔_.from (equality-characterisation₁ ⊠ univ) ( (∥ A ∥ × R ↔⟨ lemma ⟩□ R □) , λ _ → refl _ ) where open Lens l lemma : ∥ A ∥ × R ↔ R lemma = record { surjection = record { logical-equivalence = record { to = proj₂ ; from = λ r → ∥∥-map (λ b → _≃_.from equiv (r , b)) (inhabited r) , r } ; right-inverse-of = refl } ; left-inverse-of = λ { (_ , r) → cong (λ x → x , r) $ truncation-is-proposition _ _ } } ------------------------------------------------------------------------ -- Isomorphisms expressed using lens quasi-inverses private module B {a} (b : Block "id") = Bi-invertibility equality-with-J (Type a) Lens (id b) _∘_ module BM {a} (b : Block "id") (univ : Univalence a) = B.More b (left-identity b _ univ) (right-identity b _ univ) (associativity _ _ _ univ) -- A form of isomorphism between types, expressed using lenses. open B public using () renaming (_≅_ to [_]_≅_; Has-quasi-inverse to Has-quasi-inverse) -- Lenses with quasi-inverses can be converted to equivalences. ≅→≃ : ∀ b → [ b ] A ≅ B → A ≃ B ≅→≃ ⊠ (l@(⟨ _ , _ , _ ⟩) , l⁻¹@(⟨ _ , _ , _ ⟩) , l∘l⁻¹≡id , l⁻¹∘l≡id) = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = get l ; from = get l⁻¹ } ; right-inverse-of = λ b → cong (λ l → get l b) l∘l⁻¹≡id } ; left-inverse-of = λ a → cong (λ l → get l a) l⁻¹∘l≡id }) where open Lens -- There is a split surjection from [ b ] A ≅ B to A ≃ B (assuming -- univalence). ≅↠≃ : {A B : Type a} (b : Block "id") → Univalence a → ([ b ] A ≅ B) ↠ (A ≃ B) ≅↠≃ {A = A} {B = B} b univ = record { logical-equivalence = record { to = ≅→≃ b ; from = from b } ; right-inverse-of = ≅→≃∘from b } where from : ∀ b → A ≃ B → [ b ] A ≅ B from b A≃B = l , l⁻¹ , l∘l⁻¹≡id b , l⁻¹∘l≡id b where l = ≃→lens′ A≃B l⁻¹ = ≃→lens′ (inverse A≃B) l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹ ≡ id b l∘l⁻¹≡id ⊠ = _↔_.from (equality-characterisation₁ ⊠ univ) ( (∥ A ∥ × ∥ B ∥ ↝⟨ Eq.⇔→≃ (×-closure 1 truncation-is-proposition truncation-is-proposition) truncation-is-proposition proj₂ (λ b → ∥∥-map (_≃_.from A≃B) b , b) ⟩ ∥ B ∥ □) , λ _ → cong₂ _,_ (truncation-is-proposition _ _) (_≃_.right-inverse-of A≃B _) ) l⁻¹∘l≡id : ∀ b → l⁻¹ ∘ l ≡ id b l⁻¹∘l≡id ⊠ = _↔_.from (equality-characterisation₁ ⊠ univ) ( (∥ B ∥ × ∥ A ∥ ↝⟨ Eq.⇔→≃ (×-closure 1 truncation-is-proposition truncation-is-proposition) truncation-is-proposition proj₂ (λ a → ∥∥-map (_≃_.to A≃B) a , a) ⟩ ∥ A ∥ □) , λ _ → cong₂ _,_ (truncation-is-proposition _ _) (_≃_.left-inverse-of A≃B _) ) ≅→≃∘from : ∀ b A≃B → ≅→≃ b (from b A≃B) ≡ A≃B ≅→≃∘from ⊠ _ = Eq.lift-equality ext (refl _) -- There is not necessarily a split surjection from -- Is-equivalence (Lens.get l) to Has-quasi-inverse l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalence-get↠Has-quasi-inverse : (b : Block "id") → Univalence a → ¬ ({A B : Type a} (l : Lens A B) → Is-equivalence (Lens.get l) ↠ Has-quasi-inverse b l) ¬Is-equivalence-get↠Has-quasi-inverse b univ surj = $⟨ ⊤-contractible ⟩ Contractible ⊤ ↝⟨ H-level.respects-surjection lemma₃ 0 ⟩ Contractible ((z : Z) → z ≡ z) ↝⟨ mono₁ 0 ⟩ Is-proposition ((z : Z) → z ≡ z) ↝⟨ ¬-prop ⟩□ ⊥ □ where open Lens Z,¬-prop = Circle.¬-type-of-refl-propositional Z = proj₁ Z,¬-prop ¬-prop = proj₂ Z,¬-prop lemma₂ : ∀ b → (∃ λ (eq : R (id b) ≃ R (id b)) → (∀ z → _≃_.to eq (remainder (id b) z) ≡ remainder (id b) z) × ((z : Z) → get (id b) z ≡ get (id b) z)) ≃ ((z : Z) → z ≡ z) lemma₂ ⊠ = (∃ λ (eq : ∥ Z ∥ ≃ ∥ Z ∥) → ((z : Z) → _≃_.to eq ∣ z ∣ ≡ ∣ z ∣) × ((z : Z) → z ≡ z)) ↔⟨ (∃-cong λ _ → drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ _ → +⇒≡ truncation-is-proposition) ⟩ (∥ Z ∥ ≃ ∥ Z ∥) × ((z : Z) → z ≡ z) ↔⟨ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Eq.left-closure ext 0 truncation-is-proposition) F.id ⟩□ ((z : Z) → z ≡ z) □ lemma₃ = ⊤ ↔⟨ inverse $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Eq.propositional ext _) (_≃_.is-equivalence Eq.id) ⟩ Is-equivalence P.id ↔⟨ ≡⇒↝ equivalence $ cong Is-equivalence $ unblock b (λ b → _ ≡ get (id b)) (refl _) ⟩ Is-equivalence (get (id b)) ↝⟨ surj (id b) ⟩ Has-quasi-inverse b (id b) ↔⟨ BM.Has-quasi-inverse≃id≡id-domain b univ (id b , left-identity b _ univ _ , right-identity b _ univ _) ⟩ id b ≡ id b ↔⟨ equality-characterisation₂ ⊠ univ ⟩ (∃ λ (eq : R (id b) ≃ R (id b)) → (∀ z → _≃_.to eq (remainder (id b) z) ≡ remainder (id b) z) × (∀ z → get (id b) z ≡ get (id b) z)) ↔⟨ lemma₂ b ⟩□ ((z : Z) → z ≡ z) □ -- See also ≃≃≅ below. ------------------------------------------------------------------------ -- Equivalences expressed using bi-invertibility for lenses -- A form of equivalence between types, expressed using lenses. open B public using () renaming (_≊_ to [_]_≊_; Has-left-inverse to Has-left-inverse; Has-right-inverse to Has-right-inverse; Is-bi-invertible to Is-bi-invertible) open BM public using () renaming (equality-characterisation-≊ to equality-characterisation-≊) -- Lenses with left inverses have propositional remainder types. has-left-inverse→remainder-propositional : (b : Block "id") (l : Lens A B) → Has-left-inverse b l → Is-proposition (Lens.R l) has-left-inverse→remainder-propositional ⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , l⁻¹∘l≡id) = $⟨ get≡id→remainder-propositional (l⁻¹ ∘ l) (λ a → cong (flip get a) l⁻¹∘l≡id) ⟩ Is-proposition (R (l⁻¹ ∘ l)) ↔⟨⟩ Is-proposition (R l × R l⁻¹) ↝⟨ H-level-×₁ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□ Is-proposition (R l) □ where open Lens -- Lenses with right inverses have propositional remainder types. has-right-inverse→remainder-propositional : (b : Block "id") (l : Lens A B) → Has-right-inverse b l → Is-proposition (Lens.R l) has-right-inverse→remainder-propositional ⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , l∘l⁻¹≡id) = $⟨ get≡id→remainder-propositional (l ∘ l⁻¹) (λ a → cong (flip get a) l∘l⁻¹≡id) ⟩ Is-proposition (R (l ∘ l⁻¹)) ↔⟨⟩ Is-proposition (R l⁻¹ × R l) ↝⟨ H-level-×₂ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□ Is-proposition (R l) □ where open Lens -- There is an equivalence between A ≃ B and [ b ] A ≊ B (assuming -- univalence). ≃≃≊ : {A B : Type a} (b : Block "id") → Univalence a → (A ≃ B) ≃ ([ b ] A ≊ B) ≃≃≊ {A = A} {B = B} b univ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to b ; from = from b } ; right-inverse-of = to∘from b } ; left-inverse-of = from∘to b }) where open Lens to : ∀ b → A ≃ B → [ b ] A ≊ B to b = B.≅→≊ b ⊚ _↠_.from (≅↠≃ b univ) from : ∀ b → [ b ] A ≊ B → A ≃ B from b = _↠_.to (≅↠≃ b univ) ⊚ _↠_.from (BM.≅↠≊ b univ) to∘from : ∀ b A≊B → to b (from b A≊B) ≡ A≊B to∘from b A≊B = _≃_.from (equality-characterisation-≊ b univ _ _) $ _↔_.from (equality-characterisation₂ b univ) ( ∥B∥≃R b A≊B , lemma₁ b A≊B , lemma₂ b A≊B ) where l′ : ∀ b (A≊B : [ b ] A ≊ B) → Lens A B l′ b A≊B = proj₁ (to b (from b A≊B)) ∥B∥≃R : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) → ∥ B ∥ ≃ R l ∥B∥≃R b (l , (l-inv@(l⁻¹ , _) , _)) = Eq.⇔→≃ truncation-is-proposition R-prop (Trunc.rec R-prop (remainder l ⊚ get l⁻¹)) (inhabited l) where R-prop = has-left-inverse→remainder-propositional b l l-inv lemma₁ : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) a → _≃_.to (∥B∥≃R b A≊B) (remainder (l′ b A≊B) a) ≡ remainder l a lemma₁ ⊠ ( l@(⟨ _ , _ , _ ⟩) , (l⁻¹@(⟨ _ , _ , _ ⟩) , l⁻¹∘l≡id) , (⟨ _ , _ , _ ⟩ , _) ) a = remainder l (get l⁻¹ (get l a)) ≡⟨⟩ remainder l (get (l⁻¹ ∘ l) a) ≡⟨ cong (λ l′ → remainder l (get l′ a)) l⁻¹∘l≡id ⟩ remainder l (get (id ⊠) a) ≡⟨⟩ remainder l a ∎ lemma₂ : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) a → get (l′ b A≊B) a ≡ get l a lemma₂ ⊠ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) _ = refl _ from∘to : ∀ b A≃B → _↠_.to (≅↠≃ b univ) (_↠_.from (BM.≅↠≊ b univ) (B.≅→≊ b (_↠_.from (≅↠≃ b univ) A≃B))) ≡ A≃B from∘to ⊠ _ = Eq.lift-equality ext (refl _) -- The right-to-left direction of ≃≃≊ maps bi-invertible lenses to -- their getter functions. to-from-≃≃≊≡get : (b : Block "id") (univ : Univalence a) (A≊B@(l , _) : [ b ] A ≊ B) → _≃_.to (_≃_.from (≃≃≊ b univ) A≊B) ≡ Lens.get l to-from-≃≃≊≡get ⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = refl _ -- A variant of ≃≃≊ that works even if A and B live in different -- universes. -- -- This variant came up in a discussion with Andrea Vezzosi. ≃≃≊′ : {A : Type a} {B : Type b} (b-id : Block "id") → Univalence (a ⊔ b) → (A ≃ B) ≃ ([ b-id ] ↑ b A ≊ ↑ a B) ≃≃≊′ {a = a} {b = b} {A = A} {B = B} b-id univ = A ≃ B ↔⟨ inverse $ Eq.≃-preserves-bijections ext Bij.↑↔ Bij.↑↔ ⟩ ↑ b A ≃ ↑ a B ↝⟨ ≃≃≊ b-id univ ⟩□ [ b-id ] ↑ b A ≊ ↑ a B □ -- The right-to-left direction of ≃≃≊′ maps bi-invertible lenses to a -- variant of their getter functions. to-from-≃≃≊′≡get : {A : Type a} {B : Type b} (b-id : Block "id") (univ : Univalence (a ⊔ b)) → (A≊B@(l , _) : [ b-id ] ↑ b A ≊ ↑ a B) → _≃_.to (_≃_.from (≃≃≊′ b-id univ) A≊B) ≡ lower ⊚ Lens.get l ⊚ lift to-from-≃≃≊′≡get ⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = refl _ -- The getter function of a bi-invertible lens is an equivalence -- (assuming univalence). Is-bi-invertible→Is-equivalence-get : {A : Type a} (b : Block "id") → Univalence a → (l : Lens A B) → Is-bi-invertible b l → Is-equivalence (Lens.get l) Is-bi-invertible→Is-equivalence-get b@⊠ univ l@(⟨ _ , _ , _ ⟩) is-bi-inv@((⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = _≃_.is-equivalence (_≃_.from (≃≃≊ b univ) (l , is-bi-inv)) -- If l is a lens between types in the same universe, then there is an -- equivalence between "l is bi-invertible" and "the getter of l is an -- equivalence" (assuming univalence). Is-bi-invertible≃Is-equivalence-get : {A B : Type a} (b : Block "id") → Univalence a → (l : Lens A B) → Is-bi-invertible b l ≃ Is-equivalence (Lens.get l) Is-bi-invertible≃Is-equivalence-get b univ l = Eq.⇔→≃ (BM.Is-bi-invertible-propositional b univ l) (Eq.propositional ext _) (Is-bi-invertible→Is-equivalence-get b univ l) (λ is-equiv → let l′ = ≃→lens′ Eq.⟨ get l , is-equiv ⟩ in $⟨ proj₂ (_≃_.to (≃≃≊ b univ) Eq.⟨ _ , is-equiv ⟩) ⟩ Is-bi-invertible b l′ ↝⟨ subst (Is-bi-invertible b) (sym $ get-equivalence→≡≃→lens′ univ l is-equiv) ⟩□ Is-bi-invertible b l □) where open Lens -- If A is a set, then there is an equivalence between [ b ] A ≊ B and -- [ b ] A ≅ B (assuming univalence). ≊≃≅ : {A B : Type a} (b : Block "id") → Univalence a → Is-set A → ([ b ] A ≊ B) ≃ ([ b ] A ≅ B) ≊≃≅ b univ A-set = ∃-cong λ _ → BM.Is-bi-invertible≃Has-quasi-inverse-domain b univ (Is-set-closed-domain univ A-set) ------------------------------------------------------------------------ -- A category -- If A is a set, then there is an equivalence between A ≃ B and -- [ b ] A ≅ B (assuming univalence). ≃≃≅ : {A B : Type a} (b : Block "≃≃≅") → Univalence a → Is-set A → (A ≃ B) ≃ ([ b ] A ≅ B) ≃≃≅ {A = A} {B = B} b@⊠ univ A-set = A ≃ B ↝⟨ ≃≃≊ b univ ⟩ [ b ] A ≊ B ↝⟨ ≊≃≅ b univ A-set ⟩□ [ b ] A ≅ B □ -- The equivalence ≃≃≅ maps identity to identity. ≃≃≅-id≡id : {A : Type a} (b : Block "≃≃≅") (univ : Univalence a) (A-set : Is-set A) → proj₁ (_≃_.to (≃≃≅ b univ A-set) F.id) ≡ id b ≃≃≅-id≡id ⊠ univ _ = _↔_.from (equality-characterisation₁ ⊠ univ) (F.id , λ _ → refl _) -- Lenses between sets in the same universe form a precategory -- (assuming univalence). private precategory′ : Block "id" → Univalence a → C.Precategory′ (lsuc a) (lsuc a) precategory′ {a = a} b univ = Set a , (λ (A , A-set) (B , _) → Lens A B , Is-set-closed-domain univ A-set) , id b , _∘_ , left-identity b lzero univ _ , right-identity b lzero univ _ , (λ {_ _ _ _ l₁ l₂ l₃} → associativity lzero lzero lzero univ l₃ l₂ l₁) precategory : Block "precategory" → Univalence a → Precategory (lsuc a) (lsuc a) precategory ⊠ univ .C.Precategory.precategory = block λ b → precategory′ b univ -- Lenses between sets in the same universe form a category -- (assuming univalence). category : Block "category" → Univalence a → Category (lsuc a) (lsuc a) category ⊠ univ = block λ b → C.precategory-with-Set-to-category ext (λ _ _ → univ) (proj₂ $ precategory′ b univ) (λ (_ , A-set) _ → ≃≃≅ b univ A-set) (λ (_ , A-set) → ≃≃≅-id≡id b univ A-set) -- The precategory defined here is equal to the one defined in -- Traditional, if the latter one is lifted (assuming univalence). precategory≡precategory : (b : Block "precategory") → Univalence (lsuc a) → (univ : Univalence a) → precategory b univ ≡ C.lift-precategory-Hom _ TC.precategory precategory≡precategory ⊠ univ⁺ univ = block λ b → _↔_.to (C.equality-characterisation-Precategory ext univ⁺ univ⁺) ( F.id , (λ (X , X-set) (Y , _) → Lens X Y ↔⟨ Lens↔Traditional-lens b univ X-set ⟩ Traditional.Lens X Y ↔⟨ inverse Bij.↑↔ ⟩□ ↑ _ (Traditional.Lens X Y) □) , (λ (_ , X-set) → cong lift $ _↔_.from (Traditional.equality-characterisation-for-sets X-set) (refl _)) , (λ (_ , X-set) (_ , Y-set) _ (lift l₁) (lift l₂) → cong lift (∘-lemma b X-set Y-set l₁ l₂)) ) where ∘-lemma : ∀ b (A-set : Is-set A) (B-set : Is-set B) (l₁ : Traditional.Lens B C) (l₂ : Traditional.Lens A B) → Lens.traditional-lens (_↠_.from (Lens↠Traditional-lens b B-set) l₁ ∘ _↠_.from (Lens↠Traditional-lens b A-set) l₂) ≡ l₁ TC.∘ l₂ ∘-lemma ⊠ A-set _ _ _ = _↔_.from (Traditional.equality-characterisation-for-sets A-set) (refl _) -- The category defined here is equal to the one defined in -- Traditional, if the latter one is lifted (assuming univalence). category≡category : (b : Block "category") → Univalence (lsuc a) → (univ : Univalence a) → category b univ ≡ C.lift-category-Hom _ (TC.category univ) category≡category b univ⁺ univ = _↔_.from (C.≡↔precategory≡precategory ext) (Category.precategory (category b univ) ≡⟨ lemma b ⟩ precategory b univ ≡⟨ precategory≡precategory b univ⁺ univ ⟩∎ Category.precategory (C.lift-category-Hom _ (TC.category univ)) ∎) where lemma : ∀ b → Category.precategory (category b univ) ≡ precategory b univ lemma ⊠ = refl _ -- Types in a fixed universe and higher lenses between them form a -- naive category (assuming univalence). naive-category : Block "id" → Univalence a → Naive-category (lsuc a) (lsuc a) naive-category {a = a} b univ = Type a , Lens , id b , _∘_ , left-identity b lzero univ , right-identity b lzero univ , associativity lzero lzero lzero univ -- This category is univalent. -- -- An anonymous reviewer asked if something like this could be proved, -- given ≃≃≊. The proof of this result is due to Andrea Vezzosi. univalent : (b : Block "id") (univ : Univalence a) → Univalent (naive-category b univ) univalent b univ = BM.≡≃≊→Univalence-≊ b univ λ {A B} → A ≡ B ↝⟨ ≡≃≃ univ ⟩ A ≃ B ↝⟨ ≃≃≊ b univ ⟩□ [ b ] A ≊ B □
{ "alphanum_fraction": 0.4999600511, "avg_line_length": 31.5662042875, "ext": "agda", "hexsha": "89bc669948aa7a089a907cdcbe8358a07b943e19", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Combinators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Combinators.agda", "max_line_length": 136, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Combinators.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 9466, "size": 25032 }
------------------------------------------------------------------------------ -- Common stuff used by the gcd example ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.GCD.Partial.Definitions where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Divisibility.NotBy0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Type ------------------------------------------------------------------------------ -- Common divisor. CD : D → D → D → Set CD m n cd = cd ∣ m ∧ cd ∣ n -- Divisible for any common divisor. Divisible : D → D → D → Set Divisible m n gcd = ∀ cd → N cd → CD m n cd → cd ∣ gcd -- Greatest that any common divisor. GACD : D → D → D → Set GACD m n gcd = ∀ cd → N cd → CD m n cd → cd ≤ gcd -- Greatest common divisor specification. gcdSpec : D → D → D → Set gcdSpec m n gcd = CD m n gcd ∧ GACD m n gcd x≢0≢y : D → D → Set x≢0≢y m n = ¬ (m ≡ zero ∧ n ≡ zero)
{ "alphanum_fraction": 0.4840142096, "avg_line_length": 31.2777777778, "ext": "agda", "hexsha": "d2034c48f81a3ea8c08c4fd122bbb0b12c33577f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/Definitions.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/Definitions.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 292, "size": 1126 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} open import Data.Product open import Data.Empty open import Data.Sum open import Data.Vec open import Data.Fin open import Data.Bool renaming (Bool to 𝔹) open import Relation.Unary using (_∈_; _⊆_; _∉_) open import Relation.Binary.Definitions open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Common open import is-lib.InfSys module FairCompliance-IS {𝕋 : Set} (message : Message 𝕋) where open import SessionType message open import Session message open import Transitions message private U : Set U = SessionType × SessionType data FCompIS-RN : Set where client-end : FCompIS-RN oi io : FCompIS-RN data FCompCOIS-RN : Set where co-oi co-io : FCompCOIS-RN client-end-r : FinMetaRule U client-end-r .Ctx = Σ[ (S , T) ∈ SessionType × SessionType ] Win S × Defined T client-end-r .comp ((S , T) , _) = [] , -------------------- (S , T) OI-r : MetaRule U OI-r .Ctx = Σ[ (f , _) ∈ Continuation × Continuation ] Witness f OI-r .Pos ((f , _) , _) = Σ[ t ∈ 𝕋 ] t ∈ dom f OI-r .prems ((f , g) , _) (t , _) = f t .force , g t .force OI-r .conclu ((f , g) , _) = out f , inp g IO-r : MetaRule U IO-r .Ctx = Σ[ (_ , g) ∈ Continuation × Continuation ] Witness g IO-r .Pos ((_ , g) , _) = Σ[ t ∈ 𝕋 ] t ∈ dom g IO-r .prems ((f , g) , _) (t , _) = f t .force , g t .force IO-r .conclu ((f , g) , _) = inp f , out g co-OI-r : FinMetaRule U co-OI-r .Ctx = Σ[ (f , _ , x) ∈ Continuation × Continuation × 𝕋 ] x ∈ dom f co-OI-r .comp ((f , g , x) , _) = (f x .force , g x .force) ∷ [] , -------------------- (out f , inp g) co-IO-r : FinMetaRule U co-IO-r .Ctx = Σ[ (_ , g , x) ∈ Continuation × Continuation × 𝕋 ] x ∈ dom g co-IO-r .comp ((f , g , x) , _) = (f x .force , g x .force) ∷ [] , -------------------- (inp f , out g) FCompIS : IS U FCompIS .Names = FCompIS-RN FCompIS .rules client-end = from client-end-r FCompIS .rules oi = OI-r FCompIS .rules io = IO-r FCompCOIS : IS U FCompCOIS .Names = FCompCOIS-RN FCompCOIS .rules co-oi = from co-OI-r FCompCOIS .rules co-io = from co-IO-r _⊢_ : SessionType → SessionType → Set S ⊢ T = FCoInd⟦ FCompIS , FCompCOIS ⟧ (S , T) _⊢ᵢ_ : SessionType → SessionType → Set S ⊢ᵢ T = Ind⟦ FCompIS ∪ FCompCOIS ⟧ (S , T) {- Properties -} ¬nil-⊢ : ∀{S} → ¬ (nil ⊢ S) ¬nil-⊢ fc with fc .CoInd⟦_⟧.unfold ... | client-end , ((_ , (() , _)) , _) , refl , _ ⊢ᵢ->succeed : ∀{S T} → S ⊢ᵢ T → MaySucceed (S # T) ⊢ᵢ->succeed (fold (inj₁ client-end , ((S , T) , (win , def)) , refl , _)) = (S # T) , ε , win#def win def ⊢ᵢ->succeed (fold (inj₁ oi , ((f , g) , (t , ok)) , refl , pr)) = let Sys' , red-Sys' , Succ = ⊢ᵢ->succeed (pr (t , ok)) in Sys' , sync (out ok) inp ◅ red-Sys' , Succ ⊢ᵢ->succeed (fold (inj₁ io , ((f , g) , (t , ok)) , refl , pr)) = let Sys' , red-Sys' , Succ = ⊢ᵢ->succeed (pr (t , ok)) in Sys' , sync inp (out ok) ◅ red-Sys' , Succ ⊢ᵢ->succeed (fold (inj₂ co-oi , (_ , ok-b) , refl , pr)) = let Sys' , red-Sys' , Succ = ⊢ᵢ->succeed (pr zero) in Sys' , sync (out ok-b) inp ◅ red-Sys' , Succ ⊢ᵢ->succeed (fold (inj₂ co-io , (_ , ok-b) , refl , pr)) = let Sys' , red-Sys' , Succ = ⊢ᵢ->succeed (pr zero) in Sys' , sync inp (out ok-b) ◅ red-Sys' , Succ maysucceed->⊢ᵢ : ∀{S T Sys} → Reductions (S # T) Sys → Success Sys → S ⊢ᵢ T maysucceed->⊢ᵢ ε (win#def win def) = apply-ind (inj₁ client-end) (_ , (win , def)) λ () maysucceed->⊢ᵢ (sync (out ok) inp ◅ red) Succ = let rec = maysucceed->⊢ᵢ red Succ in apply-ind (inj₂ co-oi) (_ , ok) λ{zero → rec} maysucceed->⊢ᵢ (sync inp (out ok) ◅ red) Succ = let rec = maysucceed->⊢ᵢ red Succ in apply-ind (inj₂ co-io) (_ , ok) λ{zero → rec} {- Soundness -} fc-sound : ∀{S T} → S ⊢ T → FairComplianceS (S # T) fc-sound fc ε = ⊢ᵢ->succeed (fcoind-to-ind fc) fc-sound fc (x ◅ red) with fc .CoInd⟦_⟧.unfold ... | client-end , ((_ , (win , def)) , _) , refl , _ = ⊥-elim (success-not-reduce (win#def win def) x) fc-sound fc (sync (out ok) (inp {x = t}) ◅ red) | oi , (((f , _) , _) , _) , refl , pr = fc-sound (pr (t , ok)) red fc-sound fc (sync (inp {x = t}) (out ok) ◅ red) | io , (((_ , g) , _) , _) , refl , pr = fc-sound (pr (t , ok)) red {- Boundedness -} fc-bounded : ∀{S T} → FairComplianceS (S # T) → S ⊢ᵢ T fc-bounded fc = let _ , red-Sys , Succ = fc ε in maysucceed->⊢ᵢ red-Sys Succ {- Consistency -} fc-consistent : ∀{S T} → FairComplianceS (S # T) → ISF[ FCompIS ] (λ{(S , T) → FairComplianceS (S # T)}) (S , T) fc-consistent fc with fc ε ... | _ , ε , win#def win def = client-end , (_ , (win , def)) , refl , λ () ... | _ , sync (out ok) (inp {x = t}) ◅ _ , _ = oi , (_ , (t , ok)) , refl , λ (t' , ok') red → fc (sync (out ok') (inp {x = t'}) ◅ red) ... | _ , sync (inp {x = t}) (out ok) ◅ _ , _ = io , (_ , (t , ok)) , refl , λ (t' , ok') red → fc (sync (inp {x = t'}) (out ok') ◅ red) {- Completeness -} fc-complete : ∀{S T} → FairComplianceS (S # T) → S ⊢ T fc-complete = let S = λ{(S , T) → FairComplianceS (S # T)} in bounded-coind[ FCompIS , FCompCOIS ] S fc-bounded fc-consistent {- Properties -} fci->defined : ∀{S T} → S ⊢ᵢ T → Defined S × Defined T fci->defined (fold (inj₁ client-end , (_ , (out _ , def)) , refl , _)) = out , def fci->defined (fold (inj₁ oi , _ , refl , _)) = out , inp fci->defined (fold (inj₁ io , _ , refl , _)) = inp , out fci->defined (fold (inj₂ co-oi , _ , refl , _)) = out , inp fci->defined (fold (inj₂ co-io , _ , refl , _)) = inp , out fc->defined : ∀{S T} → S ⊢ T → Defined S × Defined T fc->defined fc = fci->defined (fcoind-to-ind fc) no-fc-with-nil : ∀{S} → ¬ (S ⊢ nil) no-fc-with-nil fc with fc .CoInd⟦_⟧.unfold ... | client-end , ((_ , (_ , ())) , _) , refl , _ {- Auxiliary for FS -} win⊢def : ∀{S} → Defined S → win ⊢ S win⊢def ok = apply-fcoind client-end (_ , (Win-win , ok)) λ () ⊢-after-out : ∀{f g t} → t ∈ dom f → out f ⊢ inp g → f t .force ⊢ g t .force ⊢-after-out ok fc with fc .CoInd⟦_⟧.unfold ... | client-end , ((_ , (out e , _)) , _) , refl , _ = ⊥-elim (e _ ok) ... | oi , _ , refl , pr = pr (_ , ok) ⊢-after-in : ∀{f g t} → t ∈ dom g → inp f ⊢ out g → f t .force ⊢ g t .force ⊢-after-in ok fc with fc .CoInd⟦_⟧.unfold ... | client-end , ((_ , (() , _)) , _) , refl , _ ... | io , _ , refl , pr = pr (_ , ok)
{ "alphanum_fraction": 0.5725429017, "avg_line_length": 37.7058823529, "ext": "agda", "hexsha": "88e1abed593b6eb6ff427ce6f177311b6815507b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/FairCompliance-IS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/FairCompliance-IS.agda", "max_line_length": 117, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/FairCompliance-IS.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 2889, "size": 7692 }
{-# OPTIONS --without-K #-} module container.m.from-nat.coalgebra where open import level open import sum open import equality open import function open import sets.nat.core open import sets.nat.struct open import sets.unit open import container.core open import container.m.from-nat.core open import container.m.from-nat.cone open import hott.level module _ {li la lb} (c : Container li la lb) where open Container c open import container.m.coalgebra c hiding (_≅_; module _≅_) Xⁱ : ℕ → I → Set (la ⊔ lb) Xⁱ zero = λ _ → ↑ _ ⊤ Xⁱ (suc n) = F (Xⁱ n) πⁱ : ∀ n → Xⁱ (suc n) →ⁱ Xⁱ n πⁱ zero = λ _ _ → lift tt πⁱ (suc n) = imap (πⁱ n) module _ (i : I) where X : ℕ → Set (la ⊔ lb) X n = Xⁱ n i π : (n : ℕ) → X (suc n) → X n π n = πⁱ n i open Limit X π public open Limit-shift X π public open F-Limit c X π public pⁱ : (n : ℕ) → L →ⁱ Xⁱ n pⁱ n i = p i n βⁱ : (n : ℕ) → πⁱ n ∘ⁱ pⁱ (suc n) ≡ pⁱ n βⁱ n = funextⁱ (λ i → β i n) abstract outL-iso : ∀ i → F L i ≅ L i outL-iso i = lim-iso i ·≅ shift-iso i outL-lem₀ : (n : ℕ)(i : I)(x : F L i) → p i (suc n) (apply (outL-iso i) x) ≡ imap (pⁱ n) i x outL-lem₀ n i x = refl outL-lem₁' : (n : ℕ)(i : I)(x : F L i) → β i (suc n) (apply (outL-iso i) x) ≡ subst₂ (λ w₁ w₀ → π i (suc n) w₁ ≡ w₀) (sym (outL-lem₀ (suc n) i x)) (sym (outL-lem₀ n i x)) (unapΣ (refl , funext λ b → proj₂ (proj₂ x b) n )) outL-lem₁' n i x = refl inL : F L →ⁱ L inL i = apply (outL-iso i) outL : L →ⁱ F L outL i = invert (outL-iso i) in-out : inL ∘ⁱ outL ≡ idⁱ in-out = funext λ i → funext λ x → _≅_.iso₂ (outL-iso i) x outL-lem₁ : (n : ℕ)(i : I)(x : F L i) → β i (suc n) (apply (outL-iso i) x) ≡ ap (π i (suc n)) (outL-lem₀ (suc n) i x) · unapΣ (refl , funext λ b → proj₂ (proj₂ x b) n) · sym (outL-lem₀ n i x) outL-lem₁ n i x = outL-lem₁' n i x · subst-lem (outL-lem₀ (suc n) i x) (outL-lem₀ n i x) (unapΣ (refl , funext (λ b → proj₂ (proj₂ x b) n))) where P : X i (suc (suc n)) → X i (suc n) → Set _ P y x = π i (suc n) y ≡ x subst-lem : {y₁ y₂ : X i (suc (suc n))}{x₁ x₂ : X i (suc n)} → (p : y₁ ≡ y₂)(q : x₁ ≡ x₂) → (z : P y₂ x₂) → subst₂ P (sym p) (sym q) z ≡ ap (π i (suc n)) p · z · sym q subst-lem refl refl refl = refl 𝓛 : Coalg _ 𝓛 = L , outL module _ {ℓ} (𝓩 : Coalg ℓ) where private Z = proj₁ 𝓩; θ = proj₂ 𝓩 lim-coalg-iso : 𝓩 ⇒ 𝓛 ≅ ⊤ lim-coalg-iso = begin ( Σ (Z →ⁱ L) λ f → outL ∘ⁱ f ≡ step f ) ≅⟨ Σ-ap-iso refl≅ eq-lem ⟩ ( Σ (Z →ⁱ L) λ f → inL ∘ⁱ outL ∘ⁱ f ≡ inL ∘ⁱ step f ) ≅⟨ Ψ-lem ⟩ ( Σ (Z →ⁱ L) λ f → inL ∘ⁱ outL ∘ⁱ f ≡ Ψ f ) ≅⟨ ( Σ-ap-iso refl≅ λ f → trans≡-iso (ap (λ h₁ → h₁ ∘ⁱ f) (sym in-out)) ) ⟩ ( Σ (Z →ⁱ L) λ f → f ≡ Ψ f ) ≅⟨ sym≅ (Σ-ap-iso isom λ _ → refl≅) ⟩ ( Σ Cone λ c → apply isom c ≡ Ψ (apply isom c) ) ≅⟨ ( Σ-ap-iso refl≅ λ c → trans≡-iso' (Φ-Ψ-comm c) ) ⟩ ( Σ Cone λ c → apply isom c ≡ apply isom (Φ c) ) ≅⟨ sym≅ (Σ-ap-iso refl≅ λ c → iso≡ isom ) ⟩ ( Σ Cone λ c → c ≡ Φ c ) ≅⟨ ( Σ-ap-iso refl≅ λ _ → refl≅ ) ⟩ ( Σ Cone λ { (u , q) → (u , q) ≡ (Φ₀ u , Φ₁ u q) } ) ≅⟨ (Σ-ap-iso refl≅ λ { (u , q) → sym≅ Σ-split-iso }) ⟩ ( Σ Cone λ { (u , q) → Σ (u ≡ Φ₀ u) λ p → subst Cone₁ p q ≡ Φ₁ u q } ) ≅⟨ record { to = λ { ((u , q) , p , r) → (u , p) , q , r } ; from = λ { ((u , p) , q , r) → (u , q) , p , r } ; iso₁ = λ { ((u , q) , p , r) → refl } ; iso₂ = λ { ((u , p) , q , r) → refl } } ⟩ ( Σ (Σ Cone₀ λ u → u ≡ Φ₀ u) λ { (u , p) → Σ (Cone₁ u) λ q → subst Cone₁ p q ≡ Φ₁ u q } ) ≅⟨ sym≅ ( Σ-ap-iso (sym≅ (contr-⊤-iso Fix₀-contr)) λ _ → refl≅ ) ·≅ ×-left-unit ⟩ ( Σ (Cone₁ u₀) λ q → subst Cone₁ (funext p₀) q ≡ Φ₁ u₀ q ) ≅⟨ Fix₁-iso ⟩ ⊤ ∎ where open cones c Xⁱ πⁱ 𝓩 X₀-contr : ∀ i → contr (X i 0) X₀-contr i = ↑-level _ ⊤-contr Z→X₀-contr : contr (Z →ⁱ Xⁱ 0) Z→X₀-contr = Π-level λ i → Π-level λ _ → X₀-contr i step : ∀ {ly}{Y : I → Set ly} → (Z →ⁱ Y) → (Z →ⁱ F Y) step v = imap v ∘ⁱ θ Φ₀ : Cone₀ → Cone₀ Φ₀ u 0 = λ _ _ → lift tt Φ₀ u (suc n) = step (u n) Φ₀' : Cone → Cone₀ Φ₀' (u , q) = Φ₀ u Φ₁ : (u : Cone₀) → Cone₁ u → Cone₁ (Φ₀ u) Φ₁ u q zero = refl Φ₁ u q (suc n) = ap step (q n) Φ₁' : (c : Cone) → Cone₁ (Φ₀ (proj₁ c)) Φ₁' (u , q) = Φ₁ u q Φ : Cone → Cone Φ (u , q) = (Φ₀ u , Φ₁ u q) u₀ : Cone₀ u₀ zero = λ _ _ → lift tt u₀ (suc n) = step (u₀ n) p₀ : ∀ n → u₀ n ≡ Φ₀ u₀ n p₀ zero = refl p₀ (suc n) = refl Fix₀ : Set (ℓ ⊔ la ⊔ lb ⊔ li) Fix₀ = Σ Cone₀ λ u → u ≡ Φ₀ u Fix₁ : Fix₀ → Set (ℓ ⊔ la ⊔ lb ⊔ li) Fix₁ (u , p) = Σ (Cone₁ u) λ q → subst Cone₁ p q ≡ Φ₁ u q Fix₀-center : Fix₀ Fix₀-center = u₀ , funext p₀ Fix₀-iso : Fix₀ ≅ (∀ i → Z i → X i 0) Fix₀-iso = begin ( Σ Cone₀ λ u → u ≡ Φ₀ u ) ≅⟨ ( Σ-ap-iso refl≅ λ u → sym≅ strong-funext-iso ·≅ ℕ-elim-shift ) ⟩ ( Σ Cone₀ λ u → (u 0 ≡ λ _ _ → lift tt) × (∀ n → u (suc n) ≡ step (u n)) ) ≅⟨ ( Σ-ap-iso refl≅ λ u → (×-ap-iso (contr-⊤-iso (h↑ Z→X₀-contr _ _)) refl≅) ·≅ ×-left-unit ) ⟩ ( Σ Cone₀ λ u → (∀ n → u (suc n) ≡ step (u n)) ) ≅⟨ Limit-op.lim-contr (λ n → Z →ⁱ Xⁱ n) (λ n → step) ⟩ (∀ i → Z i → X i 0) ∎ where open ≅-Reasoning Fix₀-contr : contr Fix₀ Fix₀-contr = Fix₀-center , contr⇒prop (iso-level (sym≅ Fix₀-iso) Z→X₀-contr) _ Fix₁-iso : Fix₁ Fix₀-center ≅ ⊤ Fix₁-iso = begin ( Σ (Cone₁ u₀) λ q → subst Cone₁ (funext p₀) q ≡ Φ₁ u₀ q ) ≅⟨ ( Σ-ap-iso refl≅ λ q → sym≅ strong-funext-iso ) ⟩ ( Σ (Cone₁ u₀) λ q → ∀ n → subst Cone₁ (funext p₀) q n ≡ Φ₁ u₀ q n ) ≅⟨ ( Σ-ap-iso refl≅ λ q → Π-ap-iso refl≅ λ n → sym≅ (trans≡-iso (subst-lem _ _ p₀ q n)) ) ⟩ ( Σ (Cone₁ u₀) λ q → ∀ n → subst₂ (P n) (p₀ (suc n)) (p₀ n) (q n) ≡ Φ₁ u₀ q n ) ≅⟨ ( Σ-ap-iso refl≅ λ q → ℕ-elim-shift ) ⟩ ( Σ (Cone₁ u₀) λ q → (q 0 ≡ Φ₁ u₀ q 0) × (∀ n → q (suc n) ≡ Φ₁ u₀ q (suc n)) ) ≅⟨ ( Σ-ap-iso refl≅ λ q → ×-ap-iso (contr-⊤-iso (h↑ (h↑ Z→X₀-contr _ _) _ _)) refl≅ ·≅ ×-left-unit ) ⟩ ( Σ (Cone₁ u₀) λ q → ∀ n → q (suc n) ≡ ap step (q n) ) ≅⟨ Limit-op.lim-contr (λ n → πⁱ n ∘ⁱ u₀ (suc n) ≡ u₀ n) (λ n → ap step) ⟩ ( πⁱ 0 ∘ⁱ u₀ 1 ≡ u₀ 0 ) ≅⟨ contr-⊤-iso (h↑ Z→X₀-contr _ _) ⟩ ⊤ ∎ where P = λ m x y → πⁱ m ∘ⁱ x ≡ y subst-lem₁ : (u v : Cone₀)(p : u ≡ v)(q : Cone₁ u)(n : ℕ) → subst Cone₁ p q n ≡ subst₂ (P n) (funext-inv p (suc n)) (funext-inv p n) (q n) subst-lem₁ u .u refl q n = refl subst-lem : (u v : Cone₀)(p : ∀ n → u n ≡ v n)(q : Cone₁ u)(n : ℕ) → subst Cone₁ (funext p) q n ≡ subst₂ (P n) (p (suc n)) (p n) (q n) subst-lem u v p q n = subst-lem₁ u v (funext p) q n · ap (λ p → subst₂ (P n) (p (suc n)) (p n) (q n)) (_≅_.iso₁ strong-funext-iso p) open ≅-Reasoning Ψ : (Z →ⁱ L) → (Z →ⁱ L) Ψ f = inL ∘ⁱ step f Ψ-lem : ( Σ (Z →ⁱ L) λ f → inL ∘ⁱ outL ∘ⁱ f ≡ inL ∘ⁱ step f) ≅ ( Σ (Z →ⁱ L) λ f → inL ∘ⁱ outL ∘ⁱ f ≡ Ψ f ) Ψ-lem = Σ-ap-iso refl≅ λ f → refl≅ Φ-Ψ-comm₀ : (f : Z →ⁱ L) → ∀ n i z → p i n (Ψ f i z) ≡ Φ₀' (invert isom f) n i z Φ-Ψ-comm₀ f 0 i z = h1⇒prop (h↑ (X₀-contr i)) _ _ Φ-Ψ-comm₀ f (suc n) i z = outL-lem₀ n i (imap f i (θ i z)) Φ-Ψ-comm₁' : (f : Z →ⁱ L) → ∀ n i z → β i n (Ψ f i z) ≡ ap (π i n) (Φ-Ψ-comm₀ f (suc n) i z) · funext-invⁱ (Φ₁' (invert isom f) n) i z · sym (Φ-Ψ-comm₀ f n i z) Φ-Ψ-comm₁' f 0 i z = h1⇒prop (h↑ (h↑ (X₀-contr i)) _ _) _ _ Φ-Ψ-comm₁' f (suc n) i z = begin β i (suc n) (inL i (imap f i (θ i z))) ≡⟨ outL-lem₁ n i (imap f i (θ i z)) ⟩ ( ap (π i (suc n)) (Φ-Ψ-comm₀ f (suc (suc n)) i z) · unapΣ (refl , funext λ b → β (r b) n (proj₂ (imap f i (θ i z)) b)) · sym (Φ-Ψ-comm₀ f (suc n) i z) ) ≡⟨ ap (λ ω → ap (π i (suc n)) (Φ-Ψ-comm₀ f (suc (suc n)) i z) · ω · sym (Φ-Ψ-comm₀ f (suc n) i z)) (lem (λ i x → β i n x) i z) ⟩ ( ap (π i (suc n)) (Φ-Ψ-comm₀ f (suc (suc n)) i z) · funext-invⁱ (ap step (funextⁱ (λ i z → β i n (f i z)))) i z · sym (Φ-Ψ-comm₀ f (suc n) i z) ) ∎ where open ≡-Reasoning lem' : {u v : L →ⁱ Xⁱ n}(ω : u ≡ v)(i : I)(z : Z i) → unapΣ (refl , funext λ b → funext-invⁱ ω (r b) (proj₂ (imap f i (θ i z)) b)) ≡ funext-invⁱ (ap step (funextⁱ (λ i z → funext-invⁱ ω i (f i z)))) i z lem' refl i z = begin unapΣ (refl , funext λ b → refl) ≡⟨ ap (λ ω → unapΣ (refl , ω)) (_≅_.iso₂ strong-funext-iso refl) ⟩ refl ≡⟨ sym (ap (λ ω → funext-invⁱ (ap step ω) i z) (_≅_.iso₂ funext-isoⁱ refl)) ⟩ funext-invⁱ (ap step (funextⁱ (λ i z → refl))) i z ∎ where open ≡-Reasoning lem : {u v : L →ⁱ Xⁱ n}(ω : (i : I)(x : L i) → u i x ≡ v i x)(i : I)(z : Z i) → unapΣ (refl , funext λ b → ω (r b) (proj₂ (imap f i (θ i z)) b)) ≡ funext-invⁱ (ap step (funextⁱ (λ i z → ω i (f i z)))) i z lem {u}{v} = invert (Π-ap-iso funext-isoⁱ λ ω → refl≅) lem' Φ-Ψ-comm₁ : (f : Z →ⁱ L) → ∀ n i z → funext-invⁱ (funextⁱ λ i z → β i n (Ψ f i z)) i z ≡ ap (π i n) (Φ-Ψ-comm₀ f (suc n) i z) · funext-invⁱ (Φ₁' (invert isom f) n) i z · sym (Φ-Ψ-comm₀ f n i z) Φ-Ψ-comm₁ f n i z = ap (λ h → h i z) (_≅_.iso₁ funext-isoⁱ (λ i z → β i n (Ψ f i z))) · Φ-Ψ-comm₁' f n i z Φ-Ψ-comm' : (f : Z →ⁱ L) → invert isom (Ψ f) ≡ Φ (invert isom f) Φ-Ψ-comm' f = Cone-eq (Φ-Ψ-comm₀ f) (Φ-Ψ-comm₁ f) Φ-Ψ-comm : (c : Cone) → Ψ (apply isom c) ≡ apply isom (Φ c) Φ-Ψ-comm c = sym (_≅_.iso₂ isom (Ψ (apply isom c))) · ap (apply isom) (Φ-Ψ-comm' (apply isom c) · ap Φ (_≅_.iso₁ isom c)) cone-comp₀ : (f : Z →ⁱ L)(n : ℕ)(i : I)(z : Z i) → proj₁ (invert isom (Ψ f)) n i z ≡ p i n (Ψ f i z) cone-comp₀ f n i z = refl cone-comp₁ : (f : Z →ⁱ L)(n : ℕ) → proj₂ (invert isom (Ψ f)) n ≡ funextⁱ (λ i z → β i n (Ψ f i z)) cone-comp₁ f n = refl eq-lem : (f : Z →ⁱ L) → (outL ∘ⁱ f ≡ step f) ≅ (inL ∘ⁱ outL ∘ⁱ f ≡ inL ∘ⁱ step f) eq-lem f = iso≡ ( Π-ap-iso refl≅ λ i → Π-ap-iso refl≅ λ _ → outL-iso i ) open ≅-Reasoning lim-terminal : contr (𝓩 ⇒ 𝓛) lim-terminal = iso-level (sym≅ lim-coalg-iso) ⊤-contr m-final : Final _ m-final = 𝓛 , lim-terminal -- Theorem 7 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) m-final-contr : contr (Final _) m-final-contr = m-final , λ fin → Final-prop m-final fin
{ "alphanum_fraction": 0.4141307008, "avg_line_length": 37.1424242424, "ext": "agda", "hexsha": "d5fb85e096a207e850e2a324c1e9286e505db0cd", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/from-nat/coalgebra.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/from-nat/coalgebra.agda", "max_line_length": 95, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/from-nat/coalgebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 5318, "size": 12257 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of the heterogeneous prefix relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Prefix.Heterogeneous.Properties where open import Data.Empty open import Data.List.Relation.Unary.All as All using (All; []; _∷_) import Data.List.Relation.Unary.All.Properties as All open import Data.List.Base as List hiding (map; uncons) open import Data.List.Membership.Propositional.Properties using ([]∈inits) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.List.Relation.Binary.Prefix.Heterogeneous as Prefix hiding (PrefixView; _++_) open import Data.Nat.Base using (ℕ; zero; suc; _≤_; z≤n; s≤s) open import Data.Nat.Properties using (suc-injective) open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂; uncurry) open import Function open import Relation.Nullary using (yes; no; ¬_) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary as U using (Pred) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) ------------------------------------------------------------------------ -- First as a decidable partial order (once made homogeneous) module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where fromPointwise : Pointwise R ⇒ Prefix R fromPointwise [] = [] fromPointwise (r ∷ rs) = r ∷ fromPointwise rs toPointwise : ∀ {as bs} → length as ≡ length bs → Prefix R as bs → Pointwise R as bs toPointwise {bs = []} eq [] = [] toPointwise {bs = _ ∷ _} () [] toPointwise eq (r ∷ rs) = r ∷ toPointwise (suc-injective eq) rs module _ {a b c r s t} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r} {S : REL B C s} {T : REL A C t} where trans : Trans R S T → Trans (Prefix R) (Prefix S) (Prefix T) trans rs⇒t [] ss = [] trans rs⇒t (r ∷ rs) (s ∷ ss) = rs⇒t r s ∷ trans rs⇒t rs ss module _ {a b r s e} {A : Set a} {B : Set b} {R : REL A B r} {S : REL B A s} {E : REL A B e} where antisym : Antisym R S E → Antisym (Prefix R) (Prefix S) (Pointwise E) antisym rs⇒e [] [] = [] antisym rs⇒e (r ∷ rs) (s ∷ ss) = rs⇒e r s ∷ antisym rs⇒e rs ss ------------------------------------------------------------------------ -- length module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where length-mono : ∀ {as bs} → Prefix R as bs → length as ≤ length bs length-mono [] = z≤n length-mono (r ∷ rs) = s≤s (length-mono rs) ------------------------------------------------------------------------ -- _++_ module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where ++⁺ : ∀ {as bs cs ds} → Pointwise R as bs → Prefix R cs ds → Prefix R (as ++ cs) (bs ++ ds) ++⁺ [] cs⊆ds = cs⊆ds ++⁺ (r ∷ rs) cs⊆ds = r ∷ (++⁺ rs cs⊆ds) ++⁻ : ∀ {as bs cs ds} → length as ≡ length bs → Prefix R (as ++ cs) (bs ++ ds) → Prefix R cs ds ++⁻ {[]} {[]} eq rs = rs ++⁻ {_ ∷ _} {_ ∷ _} eq (_ ∷ rs) = ++⁻ (suc-injective eq) rs ++⁻ {[]} {_ ∷ _} () ++⁻ {_ ∷ _} {[]} () ------------------------------------------------------------------------ -- map module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {R : REL C D r} where map⁺ : ∀ {as bs} (f : A → C) (g : B → D) → Prefix (λ a b → R (f a) (g b)) as bs → Prefix R (List.map f as) (List.map g bs) map⁺ f g [] = [] map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs map⁻ : ∀ {as bs} (f : A → C) (g : B → D) → Prefix R (List.map f as) (List.map g bs) → Prefix (λ a b → R (f a) (g b)) as bs map⁻ {[]} {bs} f g rs = [] map⁻ {a ∷ as} {[]} f g () map⁻ {a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs ------------------------------------------------------------------------ -- filter module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r} {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) (P⇒Q : ∀ {a b} → R a b → P a → Q b) (Q⇒P : ∀ {a b} → R a b → Q b → P a) where filter⁺ : ∀ {as bs} → Prefix R as bs → Prefix R (filter P? as) (filter Q? bs) filter⁺ [] = [] filter⁺ {a ∷ as} {b ∷ bs} (r ∷ rs) with P? a | Q? b ... | yes pa | yes qb = r ∷ filter⁺ rs ... | yes pa | no ¬qb = ⊥-elim (¬qb (P⇒Q r pa)) ... | no ¬pa | yes qb = ⊥-elim (¬pa (Q⇒P r qb)) ... | no ¬pa | no ¬qb = filter⁺ rs ------------------------------------------------------------------------ -- take module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where take⁺ : ∀ {as bs} n → Prefix R as bs → Prefix R (take n as) (take n bs) take⁺ zero rs = [] take⁺ (suc n) [] = [] take⁺ (suc n) (r ∷ rs) = r ∷ take⁺ n rs take⁻ : ∀ {as bs} n → Prefix R (take n as) (take n bs) → Prefix R (drop n as) (drop n bs) → Prefix R as bs take⁻ zero hds tls = tls take⁻ {[]} (suc n) hds tls = [] take⁻ {a ∷ as} {[]} (suc n) () tls take⁻ {a ∷ as} {b ∷ bs} (suc n) (r ∷ hds) tls = r ∷ take⁻ n hds tls ------------------------------------------------------------------------ -- drop drop⁺ : ∀ {as bs} n → Prefix R as bs → Prefix R (drop n as) (drop n bs) drop⁺ zero rs = rs drop⁺ (suc n) [] = [] drop⁺ (suc n) (r ∷ rs) = drop⁺ n rs drop⁻ : ∀ {as bs} n → Pointwise R (take n as) (take n bs) → Prefix R (drop n as) (drop n bs) → Prefix R as bs drop⁻ zero hds tls = tls drop⁻ {[]} (suc n) hds tls = [] drop⁻ {_ ∷ _} {[]} (suc n) () tls drop⁻ {_ ∷ _} {_ ∷ _} (suc n) (r ∷ hds) tls = r ∷ (drop⁻ n hds tls) ------------------------------------------------------------------------ -- replicate replicate⁺ : ∀ {m n a b} → m ≤ n → R a b → Prefix R (replicate m a) (replicate n b) replicate⁺ z≤n r = [] replicate⁺ (s≤s m≤n) r = r ∷ replicate⁺ m≤n r replicate⁻ : ∀ {m n a b} → m ≢ 0 → Prefix R (replicate m a) (replicate n b) → R a b replicate⁻ {zero} {n} m≢0 r = ⊥-elim (m≢0 P.refl) replicate⁻ {suc m} {zero} m≢0 () replicate⁻ {suc m} {suc n} m≢0 rs = Prefix.head rs ------------------------------------------------------------------------ -- inits module _ {a r} {A : Set a} {R : Rel A r} where inits⁺ : ∀ {as} → Pointwise R as as → All (flip (Prefix R) as) (inits as) inits⁺ [] = [] ∷ [] inits⁺ (r ∷ rs) = [] ∷ All.map⁺ (All.map (r ∷_) (inits⁺ rs)) inits⁻ : ∀ {as} → All (flip (Prefix R) as) (inits as) → Pointwise R as as inits⁻ {as = []} rs = [] inits⁻ {as = a ∷ as} (r ∷ rs) = let (hd , tls) = All.unzip (All.map uncons (All.map⁻ rs)) in All.lookup hd ([]∈inits as) ∷ inits⁻ tls ------------------------------------------------------------------------ -- zip(With) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} {d e f} {D : Set d} {E : Set e} {F : Set f} {r s t} {R : REL A D r} {S : REL B E s} {T : REL C F t} where zipWith⁺ : ∀ {as bs ds es} {f : A → B → C} {g : D → E → F} → (∀ {a b c d} → R a c → S b d → T (f a b) (g c d)) → Prefix R as ds → Prefix S bs es → Prefix T (zipWith f as bs) (zipWith g ds es) zipWith⁺ f [] ss = [] zipWith⁺ f (r ∷ rs) [] = [] zipWith⁺ f (r ∷ rs) (s ∷ ss) = f r s ∷ zipWith⁺ f rs ss module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {r s} {R : REL A C r} {S : REL B D s} where private R×S : REL (A × B) (C × D) _ R×S (a , b) (c , d) = R a c × S b d zip⁺ : ∀ {as bs cs ds} → Prefix R as cs → Prefix S bs ds → Prefix R×S (zip as bs) (zip cs ds) zip⁺ = zipWith⁺ _,_ ------------------------------------------------------------------------ -- Irrelevance module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where irrelevant : Irrelevant R → Irrelevant (Prefix R) irrelevant R-irr [] [] = P.refl irrelevant R-irr (r ∷ rs) (r′ ∷ rs′) = P.cong₂ _∷_ (R-irr r r′) (irrelevant R-irr rs rs′) ------------------------------------------------------------------------ -- Decidability prefix? : Decidable R → Decidable (Prefix R) prefix? R? [] bs = yes [] prefix? R? (a ∷ as) [] = no (λ ()) prefix? R? (a ∷ as) (b ∷ bs) = Dec.map′ (uncurry _∷_) uncons $ R? a b ×-dec prefix? R? as bs
{ "alphanum_fraction": 0.4422069608, "avg_line_length": 37.6798245614, "ext": "agda", "hexsha": "9413d137301e5c86a4be009b24ae7d4de57101f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous/Properties.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Prefix/Heterogeneous/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3066, "size": 8591 }
module Golden.Index where open import Agda.Builtin.Nat open import Agda.Builtin.List open import Agda.Builtin.Bool lst : List Nat lst = 1 ∷ 2 ∷ [] atDef : ∀ {a : Set} → a → List a -> Nat -> a atDef def (x ∷ l) zero = x atDef def (x ∷ l) (suc ix) = atDef def l ix atDef def _ _ = def l0 : Nat l0 = atDef 0 lst 0 l1 : Nat l1 = atDef 0 lst 1 l2 : Nat l2 = atDef 0 lst 2
{ "alphanum_fraction": 0.6300268097, "avg_line_length": 16.2173913043, "ext": "agda", "hexsha": "2273b1cd8b9638cc22ea2ad88de02a6b3353e4b5", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z", "max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-ocaml", "max_forks_repo_path": "test/agda-ocaml/Golden/Index.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-ocaml", "max_issues_repo_path": "test/agda-ocaml/Golden/Index.agda", "max_line_length": 44, "max_stars_count": 48, "max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-ocaml", "max_stars_repo_path": "test/agda-ocaml/Golden/Index.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z", "num_tokens": 155, "size": 373 }
{- This second-order term syntax was created from the following second-order syntax description: syntax TLC | Λ type N : 0-ary _↣_ : 2-ary | r30 𝟙 : 0-ary _⊗_ : 2-ary | l40 𝟘 : 0-ary _⊕_ : 2-ary | l30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 unit : 𝟙 pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β abort : 𝟘 -> α inl : α -> α ⊕ β inr : β -> α ⊕ β case : α ⊕ β α.γ β.γ -> γ ze : N su : N -> N nrec : N α (α,N).α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f (𝟙η) u : 𝟙 |> u = unit (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p (𝟘η) e : 𝟘 c : α |> abort(e) = c (lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a] (rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b] (cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s] (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] (ift) t f : α |> if (true, t, f) = t (iff) t f : α |> if (false, t, f) = f -} module TLC.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import TLC.Signature private variable Γ Δ Π : Ctx α β γ : ΛT 𝔛 : Familyₛ -- Inductive term declaration module Λ:Terms (𝔛 : Familyₛ) where data Λ : Familyₛ where var : ℐ ⇾̣ Λ mvar : 𝔛 α Π → Sub Λ Π Γ → Λ α Γ _$_ : Λ (α ↣ β) Γ → Λ α Γ → Λ β Γ ƛ_ : Λ β (α ∙ Γ) → Λ (α ↣ β) Γ unit : Λ 𝟙 Γ ⟨_,_⟩ : Λ α Γ → Λ β Γ → Λ (α ⊗ β) Γ fst : Λ (α ⊗ β) Γ → Λ α Γ snd : Λ (α ⊗ β) Γ → Λ β Γ abort : Λ 𝟘 Γ → Λ α Γ inl : Λ α Γ → Λ (α ⊕ β) Γ inr : Λ β Γ → Λ (α ⊕ β) Γ case : Λ (α ⊕ β) Γ → Λ γ (α ∙ Γ) → Λ γ (β ∙ Γ) → Λ γ Γ ze : Λ N Γ su : Λ N Γ → Λ N Γ nrec : Λ N Γ → Λ α Γ → Λ α (α ∙ N ∙ Γ) → Λ α Γ infixl 20 _$_ infixr 10 ƛ_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Λᵃ : MetaAlg Λ Λᵃ = record { 𝑎𝑙𝑔 = λ where (appₒ ⋮ a , b) → _$_ a b (lamₒ ⋮ a) → ƛ_ a (unitₒ ⋮ _) → unit (pairₒ ⋮ a , b) → ⟨_,_⟩ a b (fstₒ ⋮ a) → fst a (sndₒ ⋮ a) → snd a (abortₒ ⋮ a) → abort a (inlₒ ⋮ a) → inl a (inrₒ ⋮ a) → inr a (caseₒ ⋮ a , b , c) → case a b c (zeₒ ⋮ _) → ze (suₒ ⋮ a) → su a (nrecₒ ⋮ a , b , c) → nrec a b c ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Λᵃ = MetaAlg Λᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : Λ ⇾̣ 𝒜 𝕊 : Sub Λ Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (ƛ_ a) = 𝑎𝑙𝑔 (lamₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 unit = 𝑎𝑙𝑔 (unitₒ ⋮ tt) 𝕤𝕖𝕞 (⟨_,_⟩ a b) = 𝑎𝑙𝑔 (pairₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (fst a) = 𝑎𝑙𝑔 (fstₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (snd a) = 𝑎𝑙𝑔 (sndₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (abort a) = 𝑎𝑙𝑔 (abortₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (inl a) = 𝑎𝑙𝑔 (inlₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (inr a) = 𝑎𝑙𝑔 (inrₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (case a b c) = 𝑎𝑙𝑔 (caseₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞 ze = 𝑎𝑙𝑔 (zeₒ ⋮ tt) 𝕤𝕖𝕞 (su a) = 𝑎𝑙𝑔 (suₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (nrec a b c) = 𝑎𝑙𝑔 (nrecₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Λᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ Λ α Γ) → 𝕤𝕖𝕞 (Λᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (lamₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (unitₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (pairₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (fstₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (sndₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (abortₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (inlₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (inrₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (caseₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (zeₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (suₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (nrecₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ Λ ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : Λ ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Λᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : Λ α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub Λ Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (ƛ_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! unit = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (⟨_,_⟩ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (fst a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (snd a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (abort a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (inl a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (inr a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (case a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! ze = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (su a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (nrec a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature Λ:Syn : Syntax Λ:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = Λ:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open Λ:Terms 𝔛 in record { ⊥ = Λ ⋉ Λᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax Λ:Syn public open Λ:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Λᵃ public open import SOAS.Metatheory Λ:Syn public -- Derived operations true : Λ 𝔛 B Γ true = inl unit false : Λ 𝔛 B Γ false = inr unit if : Λ 𝔛 B Γ → Λ 𝔛 α Γ → Λ 𝔛 α Γ → Λ 𝔛 α Γ if b t e = case b (Theory.𝕨𝕜 _ t) (Theory.𝕨𝕜 _ e) plus : Λ 𝔛 (N ↣ N ↣ N) Γ plus = ƛ (ƛ (nrec x₁ x₀ (su x₀))) uncurry : Λ 𝔛 ((α ↣ β ↣ γ) ↣ (α ⊗ β) ↣ γ) Γ uncurry = ƛ ƛ x₁ $ fst x₀ $ snd x₀
{ "alphanum_fraction": 0.4533232628, "avg_line_length": 29.9547511312, "ext": "agda", "hexsha": "3a0b1dc9ac44c7d84babdeeaeba5be710493e9c6", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/TLC/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/TLC/Syntax.agda", "max_line_length": 100, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/TLC/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 4454, "size": 6620 }
{-# OPTIONS --without-K #-} open import Base module Integers where succ : ℤ → ℤ succ O = pos O succ (pos n) = pos (S n) succ (neg O) = O succ (neg (S n)) = neg n pred : ℤ → ℤ pred O = neg O pred (pos O) = O pred (pos (S n)) = pos n pred (neg n) = neg (S n) abstract succ-pred : (n : ℤ) → succ (pred n) ≡ n succ-pred O = refl succ-pred (pos O) = refl succ-pred (pos (S n)) = refl succ-pred (neg n) = refl pred-succ : (n : ℤ) → pred (succ n) ≡ n pred-succ O = refl pred-succ (pos n) = refl pred-succ (neg O) = refl pred-succ (neg (S n)) = refl succ-is-equiv : is-equiv succ succ-is-equiv = iso-is-eq succ pred succ-pred pred-succ succ-equiv : ℤ ≃ ℤ succ-equiv = (succ , succ-is-equiv) -- Equality on ℕ and ℤ is decidable and both are sets private ℕ-get-S : ℕ → ℕ ℕ-get-S 0 = 42 ℕ-get-S (S n) = n S-injective : (n m : ℕ) (p : S n ≡ S m) → n ≡ m S-injective n m p = ap ℕ-get-S p ℕ-S≢O-type : ℕ → Set ℕ-S≢O-type O = ⊥ ℕ-S≢O-type (S n) = unit -- Technical note: You need to write "0" and not "O" in the following types -- because S and O are both overloaded so Agda is confused by [S n ≢ O] abstract ℕ-S≢O : (n : ℕ) → S n ≢ 0 ℕ-S≢O n p = transport ℕ-S≢O-type p tt ℕ-S≢O#instance : {n : ℕ} → (S n ≢ 0) ℕ-S≢O#instance {n} = ℕ-S≢O n ℕ-O≢S : (n : ℕ) → (0 ≢ S n) ℕ-O≢S n p = ℕ-S≢O n (! p) ℕ-has-dec-eq : has-dec-eq ℕ ℕ-has-dec-eq O O = inl refl ℕ-has-dec-eq O (S n) = inr (ℕ-O≢S n) ℕ-has-dec-eq (S n) O = inr (ℕ-S≢O n) ℕ-has-dec-eq (S n) (S m) with ℕ-has-dec-eq n m ℕ-has-dec-eq (S n) (S m) | inl p = inl (ap S p) ℕ-has-dec-eq (S n) (S m) | inr p⊥ = inr (λ p → p⊥ (S-injective n m p)) ℕ-is-set : is-set ℕ ℕ-is-set = dec-eq-is-set ℕ-has-dec-eq data _<_ : ℕ → ℕ → Set where <n : {n : ℕ} → n < S n <S : {n m : ℕ} → (n < m) → (n < S m) _+_ : ℕ → ℕ → ℕ 0 + m = m S n + m = S (n + m) +S-is-S+ : (n m : ℕ) → n + S m ≡ S n + m +S-is-S+ O m = refl +S-is-S+ (S n) m = ap S (+S-is-S+ n m) +0-is-id : (n : ℕ) → n + 0 ≡ n +0-is-id O = refl +0-is-id (S n) = ap S (+0-is-id n) private ℤ-get-pos : ℤ → ℕ ℤ-get-pos O = 0 ℤ-get-pos (pos n) = n ℤ-get-pos (neg n) = 0 pos-injective : (n m : ℕ) (p : pos n ≡ pos m) → n ≡ m pos-injective n m p = ap ℤ-get-pos p ℤ-get-neg : ℤ → ℕ ℤ-get-neg O = 0 ℤ-get-neg (pos n) = 0 ℤ-get-neg (neg n) = n neg-injective : (n m : ℕ) (p : neg n ≡ neg m) → n ≡ m neg-injective n m p = ap ℤ-get-neg p ℤ-neg≢O≢pos-type : ℤ → Set ℤ-neg≢O≢pos-type O = unit ℤ-neg≢O≢pos-type (pos n) = ⊥ ℤ-neg≢O≢pos-type (neg n) = ⊥ ℤ-neg≢pos-type : ℤ → Set ℤ-neg≢pos-type O = unit ℤ-neg≢pos-type (pos n) = ⊥ ℤ-neg≢pos-type (neg n) = unit abstract ℤ-O≢pos : (n : ℕ) → O ≢ pos n ℤ-O≢pos n p = transport ℤ-neg≢O≢pos-type p tt ℤ-pos≢O : (n : ℕ) → pos n ≢ O ℤ-pos≢O n p = transport ℤ-neg≢O≢pos-type (! p) tt ℤ-O≢neg : (n : ℕ) → O ≢ neg n ℤ-O≢neg n p = transport ℤ-neg≢O≢pos-type p tt ℤ-neg≢O : (n : ℕ) → neg n ≢ O ℤ-neg≢O n p = transport ℤ-neg≢O≢pos-type (! p) tt ℤ-neg≢pos : (n m : ℕ) → neg n ≢ pos m ℤ-neg≢pos n m p = transport ℤ-neg≢pos-type p tt ℤ-pos≢neg : (n m : ℕ) → pos n ≢ neg m ℤ-pos≢neg n m p = transport ℤ-neg≢pos-type (! p) tt ℤ-has-dec-eq : has-dec-eq ℤ ℤ-has-dec-eq O O = inl refl ℤ-has-dec-eq O (pos n) = inr (ℤ-O≢pos n) ℤ-has-dec-eq O (neg n) = inr (ℤ-O≢neg n) ℤ-has-dec-eq (pos n) O = inr (ℤ-pos≢O n) ℤ-has-dec-eq (pos n) (pos m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (pos n) (pos m) | inl p = inl (ap pos p) ℤ-has-dec-eq (pos n) (pos m) | inr p⊥ = inr (λ p → p⊥ (pos-injective n m p)) ℤ-has-dec-eq (pos n) (neg m) = inr (ℤ-pos≢neg n m) ℤ-has-dec-eq (neg n) O = inr (ℤ-neg≢O n) ℤ-has-dec-eq (neg n) (pos m) = inr (ℤ-neg≢pos n m) ℤ-has-dec-eq (neg n) (neg m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (neg n) (neg m) | inl p = inl (ap neg p) ℤ-has-dec-eq (neg n) (neg m) | inr p⊥ = inr (λ p → p⊥ (neg-injective n m p)) ℤ-is-set : is-set ℤ ℤ-is-set = dec-eq-is-set ℤ-has-dec-eq
{ "alphanum_fraction": 0.533619818, "avg_line_length": 25.6883116883, "ext": "agda", "hexsha": "84f015f7cb0a74ba3abf3f1b8300b65227213bae", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Integers.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Integers.agda", "max_line_length": 78, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Integers.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1948, "size": 3956 }
data Tm : Set where tzero : Tm tsucc : Tm → Tm tdiff : Tm → Tm → Tm variable m n n' : Tm data NotZero : Tm → Set where nzsucc : NotZero (tsucc n) nzdiff : NotZero (tdiff m n) data Equal : Tm → Tm → Set where esucc : NotZero n → Equal (tsucc (tdiff tzero n)) n ediff : Equal n n' → Equal (tdiff m n) (tdiff m n') data Foo : Tm → Set where fleft : Foo m → Foo (tdiff m n) frght : Foo n → Foo (tdiff m (tsucc n)) foo : Foo n → Equal n n' → Foo n' foo (fleft f) e = {!!} foo (frght (frght f)) (ediff (esucc nz)) = {!nz!} -- case-split on nz replaces nz with nzsucc
{ "alphanum_fraction": 0.5962521295, "avg_line_length": 23.48, "ext": "agda", "hexsha": "0ba222165823f2d8c10f51b2c77908b03df20a66", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3650.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3650.agda", "max_line_length": 93, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3650.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 235, "size": 587 }
module Data.QuadTree.Implementation.ValidTypes where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Data.QuadTree.Implementation.Definition {-# FOREIGN AGDA2HS {-# LANGUAGE Safe #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE Rank2Types #-} import Data.Nat import Data.Lens.Lens import Data.Logic import Data.QuadTree.Implementation.Definition #-} ---- Valid types -- Calculates the depth of a quadrant depth : {t : Set} -> Quadrant t -> Nat depth (Leaf x) = 0 depth (Node a b c d) = 1 + max4 (depth a) (depth b) (depth c) (depth d) {-# COMPILE AGDA2HS depth #-} -- Calculates the maximum legal depth of a quadtree maxDepth : {t : Set} -> QuadTree t -> Nat maxDepth (Wrapper (w , h) _) = log2up (max w h) {-# COMPILE AGDA2HS maxDepth #-} -- Converts a tree to its root quadrant treeToQuadrant : {t : Set} -> QuadTree t -> Quadrant t treeToQuadrant (Wrapper _ qd) = qd {-# COMPILE AGDA2HS treeToQuadrant #-} -- Checks whether a quadrant is compressed isCompressed : {t : Set} -> {{eqT : Eq t}} -> Quadrant t -> Bool isCompressed (Leaf _) = true isCompressed (Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)) = not (a == b && b == c && c == d) isCompressed (Node a b c d) = isCompressed a && isCompressed b && isCompressed c && isCompressed d {-# COMPILE AGDA2HS isCompressed #-} -- Checks whether the invariants of a quadrant hold isValid : {t : Set} -> {{eqT : Eq t}} -> (dep : Nat) -> Quadrant t -> Bool isValid dep qd = depth qd <= dep && isCompressed qd {-# COMPILE AGDA2HS isValid #-} -- A type that represents a valid quadrant data VQuadrant (t : Set) {{eqT : Eq t}} {dep : Nat} : Set where CVQuadrant : (qd : Quadrant t) -> {.(IsTrue (isValid dep qd))} -> VQuadrant t {dep} {-# FOREIGN AGDA2HS newtype VQuadrant t = CVQuadrant (Quadrant t) #-} -- A type that represents a valid quadtree data VQuadTree (t : Set) {{eqT : Eq t}} {dep : Nat} : Set where CVQuadTree : (qt : QuadTree t) -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> VQuadTree t {dep} {-# FOREIGN AGDA2HS newtype VQuadTree t = CVQuadTree (QuadTree t) #-} qtToSafe : {t : Set} {{eqT : Eq t}} {dep : Nat} -> (qt : QuadTree t) -> {.(IsTrue (isValid dep (treeToQuadrant qt)))} -> {.(IsTrue (dep == maxDepth qt))} -> VQuadTree t {maxDepth qt} qtToSafe {dep = dep} qt {p} {q} = CVQuadTree qt {useEq (cong (λ g -> isValid g (treeToQuadrant qt)) (eqToEquiv dep (maxDepth qt) q)) p} {eqReflexivity (maxDepth qt)} {-# COMPILE AGDA2HS qtToSafe #-} qtFromSafe : {t : Set} {{eqT : Eq t}} -> {dep : Nat} -> VQuadTree t {dep} -> QuadTree t qtFromSafe (CVQuadTree qt) = qt {-# COMPILE AGDA2HS qtFromSafe #-}
{ "alphanum_fraction": 0.6615785555, "avg_line_length": 37.8309859155, "ext": "agda", "hexsha": "c385f9437ce3ac41ce37ebbd3a4f629b9de19f42", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/Implementation/ValidTypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/Implementation/ValidTypes.agda", "max_line_length": 165, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/Implementation/ValidTypes.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 882, "size": 2686 }
------------------------------------------------------------------------ -- Breadth-first labelling of trees ------------------------------------------------------------------------ module BreadthFirst where open import Codata.Musical.Notation open import Codata.Musical.Colist using ([]; _∷_; concat) open import Function open import Data.Unit open import Data.List.NonEmpty using (_⁺++⁺_) open import Relation.Binary.PropositionalEquality as PropEq using () renaming (refl to ≡-refl) open import BreadthFirst.Universe open import BreadthFirst.Programs open import BreadthFirst.Lemmas open import Tree using (Tree; leaf; node; map) open import Stream using (Stream; _≺_) ------------------------------------------------------------------------ -- Breadth-first labelling label′ : ∀ {A B} → Tree A → Stream B → ElP (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉) label′ t ls = lab t (↓ (⌈ ls ⌉ ≺ ♯ snd (label′ t ls))) label : ∀ {A B} → Tree A → Stream B → Tree B label t ls = ⟦ fst (label′ t ls) ⟧ ------------------------------------------------------------------------ -- Breadth-first labelling preserves the shape of the tree shape-preserved′ : ∀ {A B} (t : Tree A) (lss : ElP (stream ⌈ Stream B ⌉)) → Eq (tree ⌈ ⊤ ⌉) (map (const tt) ⟦ fst (lab t lss) ⟧) (map (const tt) t) shape-preserved′ leaf lss = leaf shape-preserved′ (node l _ r) lss with whnf lss ... | ⌈ x ≺ ls ⌉ ≺ lss′ = node (♯ shape-preserved′ (♭ l) (♭ lss′)) ⌈ ≡-refl ⌉ (♯ shape-preserved′ (♭ r) (snd (lab (♭ l) (♭ lss′)))) shape-preserved : ∀ {A B} (t : Tree A) (ls : Stream B) → Eq (tree ⌈ ⊤ ⌉) (map (const tt) (label t ls)) (map (const tt) t) shape-preserved t ls = shape-preserved′ t (↓ (⌈ ls ⌉ ≺ _)) ------------------------------------------------------------------------ -- Breadth-first labelling uses the right labels invariant : ∀ {A B} (t : Tree A) lss → EqP (stream (stream ⌈ B ⌉)) ⟦ lss ⟧ (zipWith _⁺++∞_ ⟦ flatten ⟦ fst (lab t lss) ⟧ ⟧ ⟦ snd (lab t lss) ⟧) invariant leaf lss = ⟦ lss ⟧ ∎ invariant (node l _ r) lss with whnf lss ... | ⌈ x ≺ ls ⌉ ≺ lss′ = (⌈ ≡-refl ⌉ ≺ ♯ refl (♭ ls)) ≺ ♯ ( ⟦ ♭ lss′ ⟧ ≊⟨ invariant (♭ l) (♭ lss′) ⟩ zipWith _⁺++∞_ ⟦ flatten ⟦ fst l′ ⟧ ⟧ ⟦ snd l′ ⟧ ≊⟨ zipWith-cong ⁺++∞-cong (⟦ flatten ⟦ fst l′ ⟧ ⟧ ∎) (invariant (♭ r) (snd l′)) ⟩ zipWith _⁺++∞_ ⟦ flatten ⟦ fst l′ ⟧ ⟧ (zipWith _⁺++∞_ ⟦ flatten ⟦ fst r′ ⟧ ⟧ ⟦ snd r′ ⟧) ≈⟨ zip-++-assoc (flatten ⟦ fst l′ ⟧) (flatten ⟦ fst r′ ⟧) ⟦ snd r′ ⟧ ⟩ zipWith _⁺++∞_ ⟦ longZipWith _⁺++⁺_ (flatten ⟦ fst l′ ⟧) (flatten ⟦ fst r′ ⟧) ⟧ ⟦ snd r′ ⟧ ∎) where l′ = lab (♭ l) (♭ lss′) r′ = lab (♭ r) (snd l′) prefix-lemma : ∀ {a} xs xss yss → Eq (stream (stream a)) (xs ≺ ♯ xss) (zipWith _⁺++∞_ yss xss) → PrefixOfP a (concat yss) xs prefix-lemma xs xss [] _ = [] prefix-lemma xs (xs′ ≺ xss) (ys ∷ yss) (xs≈ ≺ xss≈) = concat (ys ∷ yss) ≋⟨ concat-lemma ys yss ⟩ ys ⁺++ concat (♭ yss) ⊑⟨ ⁺++-mono ys (♯ prefix-lemma xs′ (♭ xss) (♭ yss) ⟦ lemma ⟧≈) ⟩ ys ⁺++∞ xs′ ≈⟨ sym xs≈ ⟩ xs ∎ where lemma = xs′ ≺ _ {- ♯ ♭ xss -} ≈⟨ refl xs′ ≺ ♯ refl (♭ xss) ⟩ xs′ ≺ xss ≈⟨ ♭ xss≈ ⟩ zipWith _⁺++∞_ (♭ yss) (♭ xss) ∎ is-prefix : ∀ {A B} (t : Tree A) (ls : Stream B) → PrefixOf ⌈ B ⌉ (concat ⟦ flatten (label t ls) ⟧) ls is-prefix {B = B} t ls = ⟦ prefix-lemma ls ⟦ snd l ⟧ ⟦ flatten ⟦ fst l ⟧ ⟧ ⟦ ls ≺ _ {- ♯ ⟦ snd l ⟧ -} ≈⟨ refl ls ≺ ♯ refl ⟦ snd l ⟧ ⟩ ⟦ ↓ (⌈ ls ⌉ ≺ _) ⟧ ≊⟨ invariant t (↓ ⌈ ls ⌉ ≺ _) ⟩ zipWith _⁺++∞_ ⟦ flatten ⟦ fst l ⟧ ⟧ ⟦ snd l ⟧ ∎ ⟧≈ ⟧⊑ where l = label′ t ls
{ "alphanum_fraction": 0.3941472337, "avg_line_length": 42.0576923077, "ext": "agda", "hexsha": "95c665debf817cbe98cafaf464802ed3c9113710", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "BreadthFirst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "BreadthFirst.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "BreadthFirst.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1526, "size": 4374 }
module Compilation.Term where open import Context open import Type.Core open import Type.NbE import Term.Core as Core open import Compilation.Data open import Compilation.Encode.Core open import Function open import Data.Empty open import Data.Sum.Base open import Data.List.Base as List infix 3 _⊢_ data Recursivity : Set where NonRec Rec : Recursivity caseRec : ∀ {ρ} {R : Set ρ} -> Recursivity -> R -> R -> R caseRec NonRec x y = x caseRec Rec x y = y data _⊢_ {Θ} Γ : Star Θ -> Set where letType : ∀ {σ β} -> (α : Θ ⊢ᵗ σ) -> shiftᶜ Γ ⊢ β -> Γ ⊢ β [ α ]ᵗ letTerm : ∀ {α} Δ rec -> Seq (caseRec rec Γ (Γ ▻▻ Δ) ⊢_) Δ -> Γ ▻▻ Δ ⊢ α -> Γ ⊢ α var : ∀ {α} -> α ∈ Γ -> Γ ⊢ α Λ_ : ∀ {σ α} -> shiftᶜ Γ ⊢ α -> Γ ⊢ π σ α _[_] : ∀ {σ β} -> Γ ⊢ π σ β -> (α : Θ ⊢ᵗ σ) -> Γ ⊢ β [ α ]ᵗ ƛ_ : ∀ {α β} -> Γ ▻ α ⊢ β -> Γ ⊢ α ⇒ β _·_ : ∀ {α β} -> Γ ⊢ α ⇒ β -> Γ ⊢ α -> Γ ⊢ β iwrap : ∀ {κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ Core.unfold ψ α -> Γ ⊢ μ ψ α unwrap : ∀ {κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ μ ψ α -> Γ ⊢ Core.unfold ψ α mutual compile : ∀ {Θ} {Γ : Con (Star Θ)} {α} -> Γ ⊢ α -> Γ Core.⊢ α compile (letType α term) = (Core.Λ (compile term)) Core.[ α ] compile (letTerm Δ rec env term) with rec ... | NonRec = Core.instNonRec (map-compile env) (compile term) ... | Rec = Core.instRec (map-compile env) (compile term) compile (var v) = Core.var v compile (Λ body) = Core.Λ (compile body) compile (fun [ α ]) = compile fun Core.[ α ] compile (ƛ body) = Core.ƛ (compile body) compile (fun · arg) = compile fun Core.· compile arg compile (iwrap term) = Core.iwrap (compile term) compile (unwrap term) = Core.unwrap (compile term) -- This is just `mapˢ compile` inlined to convince Agda there are no termination problems. map-compile : ∀ {Θ} {Γ Δ : Con (Star Θ)} -> Seq (Γ ⊢_) Δ -> Seq (Γ Core.⊢_) Δ map-compile ø = ø map-compile (seq ▶ term) = map-compile seq ▶ compile term
{ "alphanum_fraction": 0.5440669621, "avg_line_length": 38.320754717, "ext": "agda", "hexsha": "10d45dbd29e809016392cda861751d755c19a315", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "papers/unraveling-recursion/code/src/Compilation/Term.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "papers/unraveling-recursion/code/src/Compilation/Term.agda", "max_line_length": 92, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "papers/unraveling-recursion/code/src/Compilation/Term.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 785, "size": 2031 }
------------------------------------------------------------------------ -- Descending lists -- -- We present some simple examples to demonstrate -- -- 1. the concatenation operation on sorted lists obtained by -- transporting the one on finite multisets, and -- -- 2. "sorting" finite multisets by converting into sorted lists. ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Cubical.Data.DescendingList.Examples where open import Cubical.Foundations.Everything open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.HITs.FiniteMultiset ------------------------------------------------------------------------ -- The ordering relation on natural numbers -- -- we work with the definition from the standard library. infix 4 _≤_ _≥_ data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n _≥_ : ℕ → ℕ → Set m ≥ n = n ≤ m ≤pred : {n m : ℕ} → suc n ≤ suc m → n ≤ m ≤pred (s≤s r) = r ≥isPropValued : {n m : ℕ} → isProp (n ≥ m) ≥isPropValued z≤n z≤n = refl ≥isPropValued (s≤s p) (s≤s q) = cong s≤s (≥isPropValued p q) ≥dec : (x y : ℕ) → Dec (x ≥ y) ≥dec zero zero = yes z≤n ≥dec zero (suc y) = no (λ ()) ≥dec (suc x) zero = yes z≤n ≥dec (suc x) (suc y) with ≥dec x y ≥dec (suc x) (suc y) | yes p = yes (s≤s p) ≥dec (suc x) (suc y) | no ¬p = no (λ r → ¬p (≤pred r)) ≰→≥ : {x y : ℕ} → ¬ (x ≥ y) → y ≥ x ≰→≥ {zero} {y} f = z≤n ≰→≥ {suc x} {zero} f = ⊥-elim (f z≤n) ≰→≥ {suc x} {suc y} f = s≤s (≰→≥ λ g → f (s≤s g)) ≥trans : {x y z : ℕ} → x ≥ y → y ≥ z → x ≥ z ≥trans z≤n z≤n = z≤n ≥trans (s≤s r) z≤n = z≤n ≥trans (s≤s r) (s≤s s) = s≤s (≥trans r s) ≤≥→≡ : {x y : ℕ} → x ≥ y → y ≥ x → x ≡ y ≤≥→≡ z≤n z≤n = refl ≤≥→≡ (s≤s r) (s≤s s) = cong suc (≤≥→≡ r s) open import Cubical.Data.DescendingList.Base ℕ _≥_ open import Cubical.Data.DescendingList.Properties ℕ _≥_ open isSetDL ≥isPropValued discreteℕ open IsoToFMSet discreteℕ ≥dec ≥isPropValued ≥trans ≰→≥ ≤≥→≡ ------------------------------------------------------------------------ -- A simple example of concatenating sorted lists l1 : DL l1 = cons 4 (cons 3 (cons 2 [] ≥ᴴ[]) (≥ᴴcons (s≤s (s≤s z≤n)))) (≥ᴴcons (s≤s (s≤s (s≤s z≤n)))) l2 : DL l2 = cons 2 (cons 0 [] ≥ᴴ[]) (≥ᴴcons z≤n) l3 : DL l3 = l1 ++ᴰᴸ l2 ValueOfl3 : l3 ≡ cons 4 (cons 3 (cons 2 (cons 2 (cons 0 _ _) _) _) _) _ ValueOfl3 = refl l3=l2++l1 : l3 ≡ l2 ++ᴰᴸ l1 l3=l2++l1 = refl LongerExample : l1 ++ᴰᴸ l2 ++ᴰᴸ l1 ++ᴰᴸ l1 ++ᴰᴸ l2 ≡ l2 ++ᴰᴸ l1 ++ᴰᴸ l2 ++ᴰᴸ l1 ++ᴰᴸ l1 LongerExample = refl ------------------------------------------------------------------------ -- A simple example of sorting finite multisets m1 : FMSet ℕ m1 = 13 ∷ 9 ∷ 78 ∷ 31 ∷ 86 ∷ 3 ∷ 0 ∷ 99 ∷ [] m2 : FMSet ℕ m2 = 3 ∷ 1 ∷ 4 ∷ 1 ∷ 5 ∷ 9 ∷ [] m3 : FMSet ℕ m3 = toFMSet (toDL (m1 ++ m2)) ValueOfm3 : m3 ≡ 99 ∷ 86 ∷ 78 ∷ 31 ∷ 13 ∷ 9 ∷ 9 ∷ 5 ∷ 4 ∷ 3 ∷ 3 ∷ 1 ∷ 1 ∷ 0 ∷ [] ValueOfm3 = refl ValueOfm1++m2 : m1 ++ m2 ≡ 13 ∷ 9 ∷ 78 ∷ 31 ∷ 86 ∷ 3 ∷ 0 ∷ 99 ∷ 3 ∷ 1 ∷ 4 ∷ 1 ∷ 5 ∷ 9 ∷ [] ValueOfm1++m2 = refl m3=m1++m2 : m3 ≡ m1 ++ m2 m3=m1++m2 = toFMSet∘toDL≡id (m1 ++ m2)
{ "alphanum_fraction": 0.5007727975, "avg_line_length": 26.7355371901, "ext": "agda", "hexsha": "6f697ebf034d03e5225944756fbd8e072cc89ab3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList/Examples.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList/Examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1459, "size": 3235 }
module UniDB where open import UniDB.Morph.Depth public open import UniDB.Morph.Pair public open import UniDB.Morph.Reg public open import UniDB.Morph.Shift public open import UniDB.Morph.Shifts public open import UniDB.Morph.ShiftsPrime public open import UniDB.Morph.Sim public open import UniDB.Morph.Star public open import UniDB.Morph.StarPrime public open import UniDB.Morph.Sub public open import UniDB.Morph.Subs public open import UniDB.Morph.Sum public open import UniDB.Morph.Unit public open import UniDB.Morph.Weaken public open import UniDB.Morph.WeakenOne public open import UniDB.Morph.WeakenPrime public open import UniDB.Spec public open import UniDB.Subst public open import UniDB.Subst.Inst public open import UniDB.Subst.Pair public open import UniDB.Subst.Reg public open import UniDB.Subst.Shifts public open import UniDB.Subst.Star public open import UniDB.Subst.StarPrime public open import UniDB.Subst.Subs public open import UniDB.Subst.Sum public
{ "alphanum_fraction": 0.8372569089, "avg_line_length": 32.5666666667, "ext": "agda", "hexsha": "b92f1e53f9b4a1b0934d1f602845028021922c1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 261, "size": 977 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.Eta where infix 7 _≡_ infix 5 ∃ postulate D : Set ∃ : (A : D → Set) → Set _≡_ : D → D → Set syntax ∃ (λ x → e) = ∃[ x ] e postulate t₁ : ∀ d → ∃[ e ] d ≡ e t₂ : ∀ d → ∃ (_≡_ d)
{ "alphanum_fraction": 0.4680306905, "avg_line_length": 18.619047619, "ext": "agda", "hexsha": "554aa2d0e969fabdeb1232a7f10312c2a33bb893", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/CombiningProofs/Eta.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/CombiningProofs/Eta.agda", "max_line_length": 42, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/CombiningProofs/Eta.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 144, "size": 391 }
module WrongDotPattern where data Nat : Set where zero : Nat suc : Nat -> Nat data NonZero : Nat -> Set where nonZ : (n : Nat) -> NonZero (suc n) f : (n : Nat) -> NonZero n -> Nat f .zero (nonZ n) = n
{ "alphanum_fraction": 0.5868544601, "avg_line_length": 15.2142857143, "ext": "agda", "hexsha": "1c55681cdb07269fca0fbfe10d738d4b0a97f291", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/WrongDotPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/WrongDotPattern.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/WrongDotPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 213 }
-- {-# OPTIONS -v tc.polarity:15 #-} module Issue166 where open import Common.Size open import Common.Prelude module M (A : Set) where data SizedNat : {i : Size} → Set where zero : {i : Size} → SizedNat {↑ i} suc : {i : Size} → SizedNat {i} → SizedNat {↑ i} module M′ = M ⊥
{ "alphanum_fraction": 0.6055363322, "avg_line_length": 20.6428571429, "ext": "agda", "hexsha": "bb0595b307c71b52fb0ea1e73a127356ab775d22", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue166.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue166.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue166.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 96, "size": 289 }
open import Prelude hiding (⊥) module Implicits.Resolution.Infinite.Algorithm where open import Data.Bool open import Data.Unit.Base open import Data.Maybe using (is-just; functor) open import Coinduction open import Data.Fin.Substitution open import Data.Vec hiding (_>>=_) open import Data.List hiding (monad) open import Data.List.Any hiding (tail) open import Data.Maybe hiding (monad; module Eq) open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Syntax.Type.Unification open import Implicits.Resolution.Termination open import Category.Monad open import Category.Functor open import Category.Monad.Partiality as P open import Category.Monad.Partiality.All private module M {f} = RawMonad (monad {f}) private module MaybeFunctor {f} = RawFunctor (functor {f}) open import Induction.WellFounded open import Induction.Nat module _ where open P.Workaround m<-Acc : ∀ {m ν} → MetaType m ν → Set m<-Acc {m} {ν} r = Acc _m<_ (m , ν , r) mutual map-bool' : ∀ {A : Set} → A → Bool → Maybe A ⊥P map-bool' u true = now (just u) map-bool' u false = now nothing delayed-resolve' : ∀ {ν} (Δ : ICtx ν) a → Bool ⊥P delayed-resolve' Δ a = (later (♯ (resolve' Δ a))) resolve-context' : ∀ {ν m} (Δ : ICtx ν) a → (Maybe (Sub (flip MetaType ν) m zero)) → (Maybe (Sub (flip MetaType ν) m zero)) ⊥P resolve-context' Δ a (just u) = (delayed-resolve' Δ (from-meta (MetaTypeMetaSubst._/_ a u))) >>= (map-bool' u) resolve-context' Δ a nothing = now nothing -- match' uses MetaType m ν instead of Type ν to be able to distinguish unification variables -- from other, non-unifiable tvars. -- The difference is subtle but the gist is that we can only unify variables that we open -- during matching. Any variables that are already open in the context are fixed. match-u' : ∀ {ν m} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : MetaType m ν) → m<-Acc r → (Maybe (Sub (flip MetaType ν) m zero)) ⊥P -- For rule types we first check if b matches our query τ. -- If this is the case, we use the unifier to instantiate the unification vars in a and -- recursively try to resolve the result. match-u' {ν} {m} Δ τ (a ⇒ b) (acc f) = (match-u' Δ τ b (f _ (b-m<-a⇒b a b))) >>= (resolve-context' Δ a) -- On type vars we simply open it up, adding the tvar to the set of unification variables. -- and recursively try to match. match-u' Δ τ (∀' a) (acc f) = (match-u' Δ τ (open-meta a) (f _ (open-meta-a-m<-∀'a a))) >>= (now ∘ (MaybeFunctor._<$>_ tail)) -- The only thing left to do is to try and unify τ and x. match-u' Δ τ (simpl x) _ = now (mgu (simpl x) τ) match' : ∀ {ν} (Δ : ICtx ν) → (τ : SimpleType ν) → Type ν → Bool ⊥P match' {ν} Δ τ r = match-u' Δ τ (to-meta {zero} r) (m<-well-founded _) >>= (now ∘ is-just) match1st-recover' : ∀ {ν} (Δ ρs : ICtx ν) → (τ : SimpleType ν) → Bool → Bool ⊥P match1st-recover' _ _ _ true = now true match1st-recover' Δ ρs τ false = match1st' Δ ρs τ match1st' : ∀ {ν} (Δ : ICtx ν) → (ρs : ICtx ν) → (τ : SimpleType ν) → Bool ⊥P match1st' Δ List.[] _ = now false match1st' Δ (x List.∷ ρs) τ = match' Δ τ x >>= (match1st-recover' Δ ρs τ) -- resolution in ResP resolve' : ∀ {ν} (Δ : ICtx ν) (a : Type ν) → Bool ⊥P resolve' Δ (simpl x) = match1st' Δ Δ x resolve' Δ (a ⇒ b) = resolve' (a List.∷ Δ) b resolve' Δ (∀' a) = resolve' (ictx-weaken Δ) a module _ where open P.Workaround using (⟦_⟧P) open P.Workaround.Correct open M module Eq {l} {A : Set l} where open import Relation.Binary.PropositionalEquality as PEq using (_≡_) public open module Eq = P.Equality {A = A} _≡_ public open module R = P.Reasoning (PEq.isEquivalence {A = A}) public map-bool : ∀ {A : Set} → A → Bool → (Maybe A) ⊥ map-bool x b = ⟦ map-bool' x b ⟧P delayed-resolve : ∀ {ν} (Δ : ICtx ν) a → Bool ⊥ delayed-resolve Δ a = ⟦ delayed-resolve' Δ a ⟧P resolve-context : ∀ {ν m} (Δ : ICtx ν) a → (Maybe (Sub (flip MetaType ν) m zero)) → (Maybe (Sub (flip MetaType ν) m zero)) ⊥ resolve-context Δ a p = ⟦ resolve-context' Δ a p ⟧P match-u : ∀ {ν m} (Δ : ICtx ν) → SimpleType ν → (r : MetaType m ν) → m<-Acc r → (Maybe (Sub (flip MetaType ν) m zero)) ⊥ match-u Δ τ r f = ⟦ match-u' Δ τ r f ⟧P match : ∀ {ν} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : Type ν) → Bool ⊥ match Δ τ r = ⟦ match' Δ τ r ⟧P match1st-recover : ∀ {ν} (Δ : ICtx ν) → (ρs : ICtx ν) → (τ : SimpleType ν) → Bool → Bool ⊥ match1st-recover Δ ρs τ b = ⟦ match1st-recover' Δ ρs τ b ⟧P match1st : ∀ {ν} (Δ : ICtx ν) → (ρs : ICtx ν) → (τ : SimpleType ν) → Bool ⊥ match1st Δ ρs τ = ⟦ match1st' Δ ρs τ ⟧P resolve : ∀ {ν} (Δ : ICtx ν) (r : Type ν) → Bool ⊥ resolve Δ r = ⟦ resolve' Δ r ⟧P -- -- compositionality of resolution functions -- resolve-context-comp : ∀ {m ν} (Δ : ICtx ν) a u → (resolve-context {ν} {m} Δ a (just u)) Eq.≅ (delayed-resolve Δ (from-meta (MetaTypeMetaSubst._/_ a u)) >>= (map-bool u)) resolve-context-comp {m} {ν} Δ a u = (resolve-context {ν} {m} Δ a (just u)) Eq.≅⟨ >>=-hom (delayed-resolve' Δ (from-meta (MetaTypeMetaSubst._/_ a u))) _ ⟩ (delayed-resolve Δ (from-meta (MetaTypeMetaSubst._/_ a u)) >>= (map-bool u)) Eq.∎ match-u-iabs-comp : ∀ {m ν} (Δ : ICtx ν) τ (a b : MetaType m ν) f → (match-u Δ τ (a ⇒ b) (acc f)) Eq.≅ ((match-u Δ τ b (f _ (b-m<-a⇒b a b))) >>= (resolve-context Δ a)) match-u-iabs-comp Δ τ a b f = (match-u Δ τ (a ⇒ b) (acc f)) Eq.≅⟨ >>=-hom (match-u' Δ τ b (f _ (b-m<-a⇒b a b))) _ ⟩ ((match-u Δ τ b (f _ (b-m<-a⇒b a b))) >>= (resolve-context Δ a)) Eq.∎ match-u-tabs-comp : ∀ {m ν} (Δ : ICtx ν) τ (r : MetaType m (suc ν)) f → (match-u Δ τ (∀' r) (acc f)) Eq.≅ ((match-u Δ τ (open-meta r) (f _ (open-meta-a-m<-∀'a r))) >>= (now ∘ (MaybeFunctor._<$>_ tail))) match-u-tabs-comp Δ τ r f = match-u Δ τ (∀' r) (acc f) Eq.≅⟨ >>=-hom (match-u' Δ τ (open-meta r) (f _ (open-meta-a-m<-∀'a r))) _ ⟩ ((match-u Δ τ (open-meta r) (f _ (open-meta-a-m<-∀'a r))) >>= (now ∘ (MaybeFunctor._<$>_ tail))) Eq.∎ match-comp : ∀ {ν} (Δ : ICtx ν) τ r → match Δ τ r Eq.≅ ((match-u Δ τ (to-meta {zero} r) (m<-well-founded _)) >>= (now ∘ is-just)) match-comp Δ τ r = match Δ τ r Eq.≅⟨ >>=-hom (match-u' Δ τ (to-meta {zero} r) (m<-well-founded _)) _ ⟩ _>>=_ (match-u Δ τ (to-meta {zero} r) (m<-well-founded _)) (now ∘ is-just) Eq.∎ match1st-comp : ∀ {ν} (Δ : ICtx ν) x ρs τ → match1st Δ (x List.∷ ρs) τ Eq.≅ ((match Δ τ x) >>= (match1st-recover Δ ρs τ)) match1st-comp Δ x ρs τ = match1st Δ (x List.∷ ρs) τ Eq.≅⟨ >>=-hom (match' Δ τ x) _ ⟩ ((match Δ τ x) >>= (match1st-recover Δ ρs τ)) Eq.∎
{ "alphanum_fraction": 0.5576789918, "avg_line_length": 41.2628571429, "ext": "agda", "hexsha": "f26291b0d2b22fd01f7e02079c488c7c2613ec08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Infinite/Algorithm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Infinite/Algorithm.agda", "max_line_length": 105, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Infinite/Algorithm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2595, "size": 7221 }
module RAdjunctions where open import Library open import Categories open import Functors open Cat open Fun record RAdj {a b c d e f}{C : Cat {a}{b}}{D : Cat {c}{d}} (J : Fun C D)(E : Cat {e}{f}) : Set (a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ f) where constructor radjunction field L : Fun C E R : Fun E D left : {X : Obj C}{Y : Obj E} → Hom E (OMap L X) Y → Hom D (OMap J X) (OMap R Y) right : {X : Obj C}{Y : Obj E} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y lawa : {X : Obj C}{Y : Obj E}(f : Hom E (OMap L X) Y) → right (left f) ≅ f lawb : {X : Obj C}{Y : Obj E}(f : Hom D (OMap J X) (OMap R Y)) → left (right f) ≅ f natleft : {X X' : Obj C}{Y Y' : Obj E} (f : Hom C X' X)(g : Hom E Y Y') (h : Hom E (OMap L X) Y) → comp D (HMap R g) (comp D (left h) (HMap J f)) ≅ left (comp E g (comp E h (HMap L f))) natright : {X X' : Obj C}{Y Y' : Obj E} (f : Hom C X' X)(g : Hom E Y Y') (h : Hom D (OMap J X) (OMap R Y)) → right (comp D (HMap R g) (comp D h (HMap J f))) ≅ comp E g (comp E (right h) (HMap L f))
{ "alphanum_fraction": 0.3949090909, "avg_line_length": 39.2857142857, "ext": "agda", "hexsha": "3ccd5264bfc5c969404bf6084a1cded11665608c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RAdjunctions.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RAdjunctions.agda", "max_line_length": 77, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RAdjunctions.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 479, "size": 1375 }
------------------------------------------------------------------------ -- Some negative results related to weak bisimilarity and expansion ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude open import Prelude.Size module Delay-monad.Sized.Bisimilarity.Negative {a} {A : Size → Type a} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Function-universe equality-with-J hiding (id; _∘_) open import Delay-monad.Sized open import Delay-monad.Sized.Bisimilarity open import Delay-monad.Sized.Termination ------------------------------------------------------------------------ -- Lemmas stating that functions of certain types cannot be defined if -- ∀ i → A i is inhabited -- An abbreviation. (Note that, because pattern-matching lambdas like -- the one in this definition are—at least at the time of -- writing—compared by "name", Agda rejects the code that one gets if -- this abbreviation is inlined below.) later-now : (∀ i → A i) → ∀ {i} → Delay A i later-now x = later λ { .force {j} → now (x j) } -- If now (x ∞) is an expansion of later-now x for every -- x : ∀ i → A i, then ∀ i → A i is uninhabited. Now≳later-now = (x : ∀ i → A i) → now (x ∞) ≳ later-now x now≳later-now→uninhabited : Now≳later-now → ¬ (∀ i → A i) now≳later-now→uninhabited = Now≳later-now ↝⟨ (λ hyp x → case hyp x of λ ()) ⟩□ ¬ (∀ i → A i) □ -- If a variant of laterˡ⁻¹ for (fully defined) expansion can be -- defined, then ∀ i → A i is uninhabited. Laterˡ⁻¹-≳ = ∀ {x} {y : Delay A ∞} → later x ≳ y → force x ≳ y laterˡ⁻¹-≳→uninhabited : Laterˡ⁻¹-≳ → ¬ (∀ i → A i) laterˡ⁻¹-≳→uninhabited = Laterˡ⁻¹-≳ ↝⟨ (λ hyp _ → hyp (reflexive _)) ⟩ Now≳later-now ↝⟨ now≳later-now→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If the following variants of transitivity can be proved, then -- ∀ i → A i is uninhabited. Transitivity-≈≳≳ = {x y z : Delay A ∞} → x ≈ y → y ≳ z → x ≳ z Transitivity-≳≈≳ = {x y z : Delay A ∞} → x ≳ y → y ≈ z → x ≳ z transitive-≈≳≳→uninhabited : Transitivity-≈≳≳ → ¬ (∀ i → A i) transitive-≈≳≳→uninhabited = Transitivity-≈≳≳ ↝⟨ (λ trans → trans (laterʳ (reflexive _))) ⟩ Laterˡ⁻¹-≳ ↝⟨ laterˡ⁻¹-≳→uninhabited ⟩□ ¬ (∀ i → A i) □ transitive-≳≈≳→uninhabited : Transitivity-≳≈≳ → ¬ (∀ i → A i) transitive-≳≈≳→uninhabited = Transitivity-≳≈≳ ↝⟨ (λ trans x → later⁻¹ {y = λ { .force → later-now x }} (trans (reflexive _) (laterʳ (reflexive _)))) ⟩ Now≳later-now ↝⟨ now≳later-now→uninhabited ⟩□ ¬ (∀ i → A i) □ ------------------------------------------------------------------------ -- Lemmas stating that certain size-preserving functions cannot be -- defined if ∀ i → A i is inhabited, and related results -- If a variant of laterˡ⁻¹ in which one occurrence of weak -- bisimilarity is replaced by strong bisimilarity, and both arguments -- are specialised, can be made size-preserving, then ∀ i → A i is -- uninhabited. -- -- This lemma is used to prove all other similar results below -- (directly or indirectly). Laterˡ⁻¹-∼≈ = ∀ {i} (x : ∀ i → A i) → [ i ] later (λ { .force {j = j} → now (x j) }) ∼ never → [ i ] now {A = A} (x ∞) ≈ never size-preserving-laterˡ⁻¹-∼≈→uninhabited : Laterˡ⁻¹-∼≈ → ¬ (∀ i → A i) size-preserving-laterˡ⁻¹-∼≈→uninhabited laterˡ⁻¹-∼≈ x = contradiction ∞ where mutual now≈never : ∀ {i} → [ i ] now (x ∞) ≈ never now≈never = laterˡ⁻¹-∼≈ x (later now∼never) now∼never : ∀ {i} → [ i ] now (x ∞) ∼′ never force now∼never {j = j} = ⊥-elim (contradiction j) contradiction : Size → ⊥ contradiction i = now≉never (now≈never {i = i}) -- A logically equivalent variant of Laterˡ⁻¹-∼≈ which it is sometimes -- easier to work with. Laterˡ⁻¹-∼≈′ = ∀ {i} (x : ∀ i → A i) → [ i ] later (record { force = λ {j} → now (x j) }) ∼ never → [ i ] now {A = A} (x ∞) ≈ never size-preserving-laterˡ⁻¹-∼≈⇔size-preserving-laterˡ⁻¹-∼≈′ : Laterˡ⁻¹-∼≈ ⇔ Laterˡ⁻¹-∼≈′ size-preserving-laterˡ⁻¹-∼≈⇔size-preserving-laterˡ⁻¹-∼≈′ = record { to = λ laterˡ⁻¹ x → laterˡ⁻¹ x ∘ transitive-∼ˡ (later λ { .force → now }) ; from = λ laterˡ⁻¹ x → laterˡ⁻¹ x ∘ transitive-∼ˡ (later λ { .force → now }) } -- The type Laterˡ⁻¹-∼≈′ is logically equivalent to the similar type -- Laterʳ⁻¹-∼≈′. Laterʳ⁻¹-∼≈′ = ∀ {i} (x : ∀ i → A i) → [ i ] never ∼ later (record { force = λ {j} → now (x j) }) → [ i ] never ≈ now {A = A} (x ∞) size-preserving-laterˡ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≈′ : Laterˡ⁻¹-∼≈′ ⇔ Laterʳ⁻¹-∼≈′ size-preserving-laterˡ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≈′ = record { to = λ laterˡ⁻¹ {_} _ → symmetric ∘ laterˡ⁻¹ _ ∘ symmetric ; from = λ laterʳ⁻¹ {_} _ → symmetric ∘ laterʳ⁻¹ _ ∘ symmetric } -- The type Laterʳ⁻¹-∼≈′ is logically equivalent to the similar type -- Laterʳ⁻¹-∼≳′. Laterʳ⁻¹-∼≳′ = ∀ {i} (x : ∀ i → A i) → [ i ] never ∼ later (record { force = λ {j} → now (x j) }) → [ i ] never ≳ now {A = A} (x ∞) size-preserving-laterʳ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≳′ : Laterʳ⁻¹-∼≈′ ⇔ Laterʳ⁻¹-∼≳′ size-preserving-laterʳ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≳′ = record { to = λ laterʳ⁻¹ {_} _ → ≈→-now ∘ laterʳ⁻¹ _ ; from = λ laterʳ⁻¹ {_} _ → ≳→ ∘ laterʳ⁻¹ _ } -- If Laterʳ⁻¹-∼≳′ is inhabited, then ∀ i → A i is uninhabited. size-preserving-laterʳ⁻¹-∼≳′→uninhabited : Laterʳ⁻¹-∼≳′ → ¬ (∀ i → A i) size-preserving-laterʳ⁻¹-∼≳′→uninhabited = Laterʳ⁻¹-∼≳′ ↝⟨ _⇔_.from size-preserving-laterʳ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≳′ ⟩ Laterʳ⁻¹-∼≈′ ↝⟨ _⇔_.from size-preserving-laterˡ⁻¹-∼≈′⇔size-preserving-laterʳ⁻¹-∼≈′ ⟩ Laterˡ⁻¹-∼≈′ ↝⟨ _⇔_.from size-preserving-laterˡ⁻¹-∼≈⇔size-preserving-laterˡ⁻¹-∼≈′ ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈→uninhabited ⟩□ ¬ (∀ i → A i) □ -- Having a size-preserving variant of laterˡ⁻¹ is logically -- equivalent to having a size-preserving variant of laterʳ⁻¹ (for -- weak bisimilarity). Laterˡ⁻¹-≈ = ∀ {i x} {y : Delay A ∞} → [ i ] later x ≈ y → [ i ] force x ≈ y Laterʳ⁻¹-≈ = ∀ {i} {x : Delay A ∞} {y} → [ i ] x ≈ later y → [ i ] x ≈ force y size-preserving-laterˡ⁻¹-≈⇔size-preserving-laterʳ⁻¹-≈ : Laterˡ⁻¹-≈ ⇔ Laterʳ⁻¹-≈ size-preserving-laterˡ⁻¹-≈⇔size-preserving-laterʳ⁻¹-≈ = record { to = λ laterʳ⁻¹ → symmetric ∘ laterʳ⁻¹ ∘ symmetric ; from = λ laterˡ⁻¹ → symmetric ∘ laterˡ⁻¹ ∘ symmetric } -- If laterˡ⁻¹ can be made size-preserving, then ∀ i → A i is -- uninhabited. size-preserving-laterˡ⁻¹-≈→uninhabited : Laterˡ⁻¹-≈ → ¬ (∀ i → A i) size-preserving-laterˡ⁻¹-≈→uninhabited = Laterˡ⁻¹-≈ ↝⟨ (λ laterˡ⁻¹ _ → laterˡ⁻¹ ∘ ∼→) ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If laterʳ⁻¹ can be made size-preserving for expansion, then -- ∀ i → A i is uninhabited. Laterʳ⁻¹-≳ = ∀ {i} {x : Delay A ∞} {y} → [ i ] x ≳ later y → [ i ] x ≳ force y size-preserving-laterʳ⁻¹-≳→uninhabited : Laterʳ⁻¹-≳ → ¬ (∀ i → A i) size-preserving-laterʳ⁻¹-≳→uninhabited = Laterʳ⁻¹-≳ ↝⟨ (λ laterʳ⁻¹ {_} _ p → laterʳ⁻¹ (∼→ p)) ⟩ Laterʳ⁻¹-∼≳′ ↝⟨ size-preserving-laterʳ⁻¹-∼≳′→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If a variant of ⇓-respects-≈ in which _≈_ is replaced by _∼_ can be -- made size-preserving in the second argument, then ∀ i → A i is -- uninhabited. ⇓-Respects-∼ʳ = ∀ {i} {x y : Delay A ∞} {z} → x ⇓ z → [ i ] x ∼ y → Terminates i y z size-preserving-⇓-respects-∼ʳ→uninhabited : ⇓-Respects-∼ʳ → ¬ (∀ i → A i) size-preserving-⇓-respects-∼ʳ→uninhabited = ⇓-Respects-∼ʳ ↝⟨ (λ resp _ → resp (laterʳ now)) ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If ⇓-respects-≈ can be made size-preserving in the second argument, -- then ∀ i → A i is uninhabited. ⇓-Respects-≈ʳ = ∀ {i} {x y : Delay A ∞} {z} → x ⇓ z → [ i ] x ≈ y → Terminates i y z size-preserving-⇓-respects-≈ʳ→uninhabited : ⇓-Respects-≈ʳ → ¬ (∀ i → A i) size-preserving-⇓-respects-≈ʳ→uninhabited = ⇓-Respects-≈ʳ ↝⟨ (λ trans x⇓z → trans x⇓z ∘ ∼→) ⟩ ⇓-Respects-∼ʳ ↝⟨ size-preserving-⇓-respects-∼ʳ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- Having a transitivity-like proof, taking weak bisimilarity and -- strong bisimilarity to weak bisimilarity, that preserves the size -- of the second argument, is logically equivalent to having a -- transitivity-like proof, taking strong bisimilarity and weak -- bisimilarity to weak bisimilarity, that preserves the size of the -- first argument. Transitivity-≈∼ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ∼ z → [ i ] x ≈ z Transitivity-∼≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ∼ y → y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈∼ʳ⇔size-preserving-transitivity-∼≈ˡ : Transitivity-≈∼ʳ ⇔ Transitivity-∼≈ˡ size-preserving-transitivity-≈∼ʳ⇔size-preserving-transitivity-∼≈ˡ = record { to = λ trans p q → symmetric (trans (symmetric q) (symmetric p)) ; from = λ trans p q → symmetric (trans (symmetric q) (symmetric p)) } -- If there is a transitivity-like proof, taking weak bisimilarity and -- strong bisimilarity to weak bisimilarity, that preserves the size -- of the second argument, then ∀ i → A i is uninhabited. size-preserving-transitivity-≈∼ʳ→uninhabited : Transitivity-≈∼ʳ → ¬ (∀ i → A i) size-preserving-transitivity-≈∼ʳ→uninhabited = Transitivity-≈∼ʳ ↝⟨ (λ trans → trans) ⟩ ⇓-Respects-∼ʳ ↝⟨ size-preserving-⇓-respects-∼ʳ→uninhabited ⟩ ¬ (∀ i → A i) □ -- If there is a transitivity-like proof, taking strong bisimilarity -- and expansion to expansion, that preserves the size of the first -- argument, then ∀ i → A i is uninhabited. Transitivity-∼≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ∼ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivity-∼≳ˡ→uninhabited : Transitivity-∼≳ˡ → ¬ (∀ i → A i) size-preserving-transitivity-∼≳ˡ→uninhabited = Transitivity-∼≳ˡ ↝⟨ (λ trans _ p → trans p (laterˡ now)) ⟩ Laterʳ⁻¹-∼≳′ ↝⟨ size-preserving-laterʳ⁻¹-∼≳′→uninhabited ⟩ ¬ (∀ i → A i) □ -- Having a transitivity proof for weak bisimilarity that preserves -- the size of the first argument is logically equivalent to having -- one that preserves the size of the second argument. Transitivity-≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → y ≈ z → [ i ] x ≈ z Transitivity-≈ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈ˡ⇔size-preserving-transitivity-≈ʳ : Transitivity-≈ˡ ⇔ Transitivity-≈ʳ size-preserving-transitivity-≈ˡ⇔size-preserving-transitivity-≈ʳ = record { to = λ trans p q → symmetric (trans (symmetric q) (symmetric p)) ; from = λ trans p q → symmetric (trans (symmetric q) (symmetric p)) } -- If there is a transitivity proof for weak bisimilarity that -- preserves the size of the second argument, then ∀ i → A i is -- uninhabited. size-preserving-transitivity-≈ʳ→uninhabited : Transitivity-≈ʳ → ¬ (∀ i → A i) size-preserving-transitivity-≈ʳ→uninhabited = Transitivity-≈ʳ ↝⟨ (λ trans → trans) ⟩ ⇓-Respects-≈ʳ ↝⟨ size-preserving-⇓-respects-≈ʳ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If there is a transitivity proof for expansion that preserves the -- size of the first argument, then ∀ i → A i is uninhabited. Transitivity-≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivity-≳ˡ→uninhabited : Transitivity-≳ˡ → ¬ (∀ i → A i) size-preserving-transitivity-≳ˡ→uninhabited = Transitivity-≳ˡ ↝⟨ (λ trans → trans ∘ ∼→) ⟩ Transitivity-∼≳ˡ ↝⟨ size-preserving-transitivity-∼≳ˡ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If there is a fully size-preserving transitivity proof for weak -- bisimilarity, then ∀ i → A i is uninhabited. Transitivity-≈ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈→uninhabited : Transitivity-≈ → ¬ (∀ i → A i) size-preserving-transitivity-≈→uninhabited = Transitivity-≈ ↝⟨ (λ trans → trans) ⟩ Transitivity-≈ʳ ↝⟨ size-preserving-transitivity-≈ʳ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If there is a fully size-preserving transitivity proof for -- expansion, then ∀ i → A i is uninhabited. Transitivity-≳ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → [ i ] y ≳ z → [ i ] x ≳ z size-preserving-transitivity-≳→uninhabited : Transitivity-≳ → ¬ (∀ i → A i) size-preserving-transitivity-≳→uninhabited = Transitivity-≳ ↝⟨ (λ trans → trans) ⟩ Transitivity-≳ˡ ↝⟨ size-preserving-transitivity-≳ˡ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- There is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of the -- first argument, iff there is a transitivity-like proof, taking weak -- bisimilarity and the converse of expansion to weak bisimilarity, -- that preserves the size of the second argument. Transitivity-≳≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → y ≈ z → [ i ] x ≈ z Transitivity-≈≲ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z size-preserving-transitivity-≳≈ˡ⇔size-preserving-transitivity-≈≲ʳ : Transitivity-≳≈ˡ ⇔ Transitivity-≈≲ʳ size-preserving-transitivity-≳≈ˡ⇔size-preserving-transitivity-≈≲ʳ = record { to = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y)) ; from = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y) } -- If there is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of the -- first argument, then ∀ i → A i is uninhabited. size-preserving-transitivity-≳≈ˡ→uninhabited : Transitivity-≳≈ˡ → ¬ (∀ i → A i) size-preserving-transitivity-≳≈ˡ→uninhabited = Transitivity-≳≈ˡ ↝⟨ _∘ ∼→ ⟩ Transitivity-∼≈ˡ ↝⟨ _⇔_.from size-preserving-transitivity-≈∼ʳ⇔size-preserving-transitivity-∼≈ˡ ⟩ Transitivity-≈∼ʳ ↝⟨ size-preserving-transitivity-≈∼ʳ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- There is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of both -- arguments, iff there is a transitivity-like proof, taking weak -- bisimilarity and the converse of expansion to weak bisimilarity, -- that also preserves the size of both arguments. Transitivity-≳≈ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → [ i ] y ≈ z → [ i ] x ≈ z Transitivity-≈≲ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z size-preserving-transitivity-≳≈⇔size-preserving-transitivity-≈≲ : Transitivity-≳≈ ⇔ Transitivity-≈≲ size-preserving-transitivity-≳≈⇔size-preserving-transitivity-≈≲ = record { to = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y)) ; from = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y) } -- If there is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of both -- arguments, then ∀ i → A i is uninhabited. size-preserving-transitivity-≳≈→uninhabited : Transitivity-≳≈ → ¬ (∀ i → A i) size-preserving-transitivity-≳≈→uninhabited = Transitivity-≳≈ ↝⟨ (λ trans → trans) ⟩ Transitivity-≳≈ˡ ↝⟨ size-preserving-transitivity-≳≈ˡ→uninhabited ⟩□ ¬ (∀ i → A i) □ -- If there is a transitivity-like proof, taking weak bisimilarity and -- expansion to weak bisimilarity, that preserves the size of the -- first argument, then ∀ i → A i is uninhabited. Transitivity-≈≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → y ≳ z → [ i ] x ≈ z size-preserving-transitivity-≈≳ˡ→uninhabited : Transitivity-≈≳ˡ → ¬ (∀ i → A i) size-preserving-transitivity-≈≳ˡ→uninhabited = Transitivity-≈≳ˡ ↝⟨ (λ trans {_ _ _} x≈ly → trans x≈ly (laterˡ (reflexive _))) ⟩ Laterʳ⁻¹-≈ ↝⟨ _⇔_.from size-preserving-laterˡ⁻¹-≈⇔size-preserving-laterʳ⁻¹-≈ ⟩ Laterˡ⁻¹-≈ ↝⟨ size-preserving-laterˡ⁻¹-≈→uninhabited ⟩ ¬ (∀ i → A i) □ ------------------------------------------------------------------------ -- Lemmas stating that certain types are inhabited if A ∞ is -- uninhabited -- If A ∞ is uninhabited, then Now≳later-now is inhabited. uninhabited→now≳later-now : ¬ A ∞ → Now≳later-now uninhabited→now≳later-now = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial _ → trivial _ _) ⟩□ Now≳later-now □ -- If A ∞ is uninhabited, then a variant of laterˡ⁻¹ for (fully -- defined) expansion can be defined. uninhabited→laterˡ⁻¹-≳ : ¬ A ∞ → Laterˡ⁻¹-≳ uninhabited→laterˡ⁻¹-≳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _} _ → trivial _ _) ⟩□ Laterˡ⁻¹-≳ □ -- If A ∞ is uninhabited, then a transitivity-like proof taking weak -- bisimilarity and expansion to expansion can be defined. uninhabited→transitivity-≈≳≳ : ¬ A ∞ → Transitivity-≈≳≳ uninhabited→transitivity-≈≳≳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈≳≳ □ -- If A ∞ is uninhabited, then a transitivity-like proof taking -- expansion and weak bisimilarity to expansion can be defined. uninhabited→transitivity-≳≈≳ : ¬ A ∞ → Transitivity-≳≈≳ uninhabited→transitivity-≳≈≳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳≈≳ □ -- If A ∞ is uninhabited, then Laterˡ⁻¹-∼≈ is inhabited. uninhabited→size-preserving-laterˡ⁻¹-∼≈ : ¬ A ∞ → Laterˡ⁻¹-∼≈ uninhabited→size-preserving-laterˡ⁻¹-∼≈ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_} _ _ → trivial _ _) ⟩□ Laterˡ⁻¹-∼≈ □ -- If A ∞ is uninhabited, then laterˡ⁻¹ can be made size-preserving. uninhabited→size-preserving-laterˡ⁻¹ : ¬ A ∞ → Laterˡ⁻¹-≈ uninhabited→size-preserving-laterˡ⁻¹ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□ Laterˡ⁻¹-≈ □ -- If A ∞ is uninhabited, then a variant of ⇓-respects-≈ in which _≈_ -- is replaced by _∼_ can be made size-preserving in the second -- argument. uninhabited→size-preserving-⇓-respects-∼ʳ : ¬ A ∞ → ⇓-Respects-∼ʳ uninhabited→size-preserving-⇓-respects-∼ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ ⇓-Respects-∼ʳ □ -- If A ∞ is uninhabited, then ⇓-respects-≈ can be made -- size-preserving in the second argument. uninhabited→size-preserving-⇓-respects-≈ʳ : ¬ A ∞ → ⇓-Respects-≈ʳ uninhabited→size-preserving-⇓-respects-≈ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ ⇓-Respects-≈ʳ □ -- If A ∞ is uninhabited, then there is a transitivity-like proof, -- taking weak bisimilarity and strong bisimilarity to weak -- bisimilarity, that preserves the size of the second argument. uninhabited→size-preserving-transitivity-≈∼ʳ : ¬ A ∞ → Transitivity-≈∼ʳ uninhabited→size-preserving-transitivity-≈∼ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈∼ʳ □ -- If A ∞ is uninhabited, then there is a transitivity-like proof, -- taking strong bisimilarity and expansion to expansion, that -- preserves the size of the first argument. uninhabited→size-preserving-transitivity-∼≳ˡ : ¬ A ∞ → Transitivity-∼≳ˡ uninhabited→size-preserving-transitivity-∼≳ˡ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-∼≳ˡ □ -- If A ∞ is uninhabited, then there is a transitivity proof for weak -- bisimilarity that preserves the size of the second argument. uninhabited→size-preserving-transitivity-≈ʳ : ¬ A ∞ → Transitivity-≈ʳ uninhabited→size-preserving-transitivity-≈ʳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈ʳ □ -- If A ∞ is uninhabited, then there is a transitivity proof for -- expansion that preserves the size of the first argument. uninhabited→size-preserving-transitivity-≳ˡ : ¬ A ∞ → Transitivity-≳ˡ uninhabited→size-preserving-transitivity-≳ˡ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳ˡ □ -- If A ∞ is uninhabited, then there is a fully size-preserving -- transitivity proof for weak bisimilarity. uninhabited→size-preserving-transitivity-≈ : ¬ A ∞ → Transitivity-≈ uninhabited→size-preserving-transitivity-≈ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈ □ -- If A ∞ is uninhabited, then there is a fully size-preserving -- transitivity proof for expansion. uninhabited→size-preserving-transitivity-≳ : ¬ A ∞ → Transitivity-≳ uninhabited→size-preserving-transitivity-≳ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳ □ -- If A ∞ is uninhabited, then there is a transitivity-like proof, -- taking expansion and weak bisimilarity to weak bisimilarity, that -- preserves the size of the first argument. uninhabited→size-preserving-transitivity-≳≈ˡ : ¬ A ∞ → Transitivity-≳≈ˡ uninhabited→size-preserving-transitivity-≳≈ˡ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳≈ˡ □ -- If A ∞ is uninhabited, then there is a transitivity-like proof, -- taking expansion and weak bisimilarity to weak bisimilarity, that -- preserves the size of both arguments. uninhabited→size-preserving-transitivity-≳≈ : ¬ A ∞ → Transitivity-≳≈ uninhabited→size-preserving-transitivity-≳≈ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳≈ □ -- If A ∞ is uninhabited, then there is a transitivity-like proof, -- taking weak bisimilarity and expansion to weak bisimilarity, that -- preserves the size of the first argument. uninhabited→size-preserving-transitivity-≈≳ˡ : ¬ A ∞ → Transitivity-≈≳ˡ uninhabited→size-preserving-transitivity-≈≳ˡ = ¬ A ∞ ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈≳ˡ □
{ "alphanum_fraction": 0.6005238159, "avg_line_length": 39.0415944541, "ext": "agda", "hexsha": "b18b6b47882027f86257c880fbf17f8d740a3f0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Sized/Bisimilarity/Negative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Sized/Bisimilarity/Negative.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Sized/Bisimilarity/Negative.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9312, "size": 22527 }
{-# OPTIONS --universe-polymorphism #-} -- These examples should now go through with no unsolved metavariables. -- They work since the conversion checker is a little less prone to -- abort checking when there are constraints. In particular if the -- constraints only affect the sorts of the things compared, then it keeps -- going. module Issue211 where open import Common.Level infixr 4 _,_ infixr 3 _×_ data _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where _,_ : A → B → A × B data D₀ : Set₀ where data D₁ : Set₁ where -- Works: ex₁ : (D₁ → D₁) × (D₁ → D₁) ex₁ = ((λ d → d) , (λ d → d)) -- Works: ex₂ : (D₀ → D₀) × (D₀ → D₀) × (D₀ → D₀) ex₂ = ((λ d → d) , (λ d → d) , (λ d → d)) -- Works: ex₃ : (D₁ → D₁) × (D₁ → D₁) × (D₁ → D₁) ex₃ = ((λ d → d) , (λ (d : D₁) → d) , (λ (d : D₁) → d)) -- Does not work: ex₄ : Level × (D₁ → D₁) × (D₁ → D₁) ex₄ = lzero , (λ d → d) , (λ d → d) ex₅ : (D₁ → D₁) × (D₁ → D₁) × (D₁ → D₁) ex₅ = (λ (d : _) → d) , (λ (d : _) → d) , (λ (d : _) → d) -- Does not work: ex₆ : (D₁ → D₁) × (D₁ → D₁) × (D₁ → D₁) ex₆ = (λ d → d) , (λ d → d) , (λ d → d) -- As far as I can tell there is an easily found unique solution for -- the unsolved meta-variables above. Why does not the unification -- machinery find it? Are the meta-variables solved in the wrong -- order?
{ "alphanum_fraction": 0.5654169855, "avg_line_length": 25.1346153846, "ext": "agda", "hexsha": "49cb2ec1fa4fc05501e2827f8603cfd4dccd2bd5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue211.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue211.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue211.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 517, "size": 1307 }
------------------------------------------------------------------------ -- This file contains the definition the category of functors indexed -- -- by two categories. -- ------------------------------------------------------------------------ module Category.CatFunc where open import Level open import Category.NatTrans public CatFunc : {l₁ l₂ : Level} → Cat {l₁} → Cat {l₂} → Cat {l₁ ⊔ l₂} CatFunc ℂ₁ ℂ₂ = record { Obj = Functor ℂ₁ ℂ₂ ; Hom = λ F G → record { el = NatTrans F G ; eq = λ α₁ α₂ → {!!} ; eqRpf = {!!} } ; comp = {!!} ; id = {!!} ; assocPf = {!!} ; idPfCom = {!!} ; idPf = {!!} }
{ "alphanum_fraction": 0.3400758534, "avg_line_length": 37.6666666667, "ext": "agda", "hexsha": "aa54b4dc829c3ad03eb2f12d5d7fbdfb0d2ba59b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/CatFunc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/CatFunc.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/CatFunc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 173, "size": 791 }
open import FRP.LTL.Time using ( Time ; _≤_ ; _<_ ) module FRP.LTL.RSet.Core where -- Reactive types RSet : Set₁ RSet = Time → Set ⟨_⟩ : Set → RSet ⟨ A ⟩ t = A ⟦_⟧ : RSet → Set ⟦ A ⟧ = ∀ {t} → (A t) -- Reactive sets over an interval _[_,_] : RSet → Time → Time → Set A [ s , u ] = ∀ {t} → s ≤ t → t ≤ u → A t _[_,_⟩ : RSet → Time → Time → Set A [ s , u ⟩ = ∀ {t} → s ≤ t → t < u → A t
{ "alphanum_fraction": 0.4961832061, "avg_line_length": 17.0869565217, "ext": "agda", "hexsha": "6ec4ca7495d4bc03c948ddf965824bb3e5d18c3a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/RSet/Core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/RSet/Core.agda", "max_line_length": 51, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/RSet/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 172, "size": 393 }
module Progress where open import Prelude open import T ---- progress module Progress where -- Define a datatype representing that a term satisfies progress data TProgress : ∀{A} → TCExp A → Set where prog-val : ∀{A} {e : TCExp A} → (D : TVal e) → TProgress e prog-step : ∀{A} {e e' : TCExp A} → (D : e ~> e') → TProgress e -- prove that all terms satisfy progress progress : ∀{A} (e : TCExp A) → TProgress e progress (var ()) progress (Λ e) = prog-val val-lam progress (e₁ $ e₂) with progress e₁ progress (e₁ $ e₂) | prog-step D = prog-step (step-app-l D) progress (.(Λ e) $ e₂) | prog-val (val-lam {_} {_} {e}) = prog-step step-beta progress zero = prog-val val-zero progress (suc e) with progress e ... | prog-val D = prog-val (val-suc D) ... | prog-step D' = prog-step (step-suc D') progress (rec e e₀ es) with progress e progress (rec .zero e₀ es) | prog-val val-zero = prog-step step-rec-z progress (rec .(suc _) e₀ es) | prog-val (val-suc y) = prog-step (step-rec-s y) ... | prog-step D = prog-step (step-rec D) open Progress public
{ "alphanum_fraction": 0.6290174472, "avg_line_length": 34.03125, "ext": "agda", "hexsha": "b5ef8f11387206dd4f5669721de841971a7fb682", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "Progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "Progress.agda", "max_line_length": 82, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "Progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 357, "size": 1089 }
module _ where postulate I : Set data P (i : I) : Set where p : P i → P i data Q (i : I) : P i → Set where q : (x : P i) → Q i (p x) module _ (i : I) (x : P i) where g : Q _ x → Set₁ g (q y) = Set
{ "alphanum_fraction": 0.4741784038, "avg_line_length": 13.3125, "ext": "agda", "hexsha": "78d760df639eac0a6ec858003e7524012d947e8f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4259.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4259.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4259.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 98, "size": 213 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} {-# OPTIONS --allow-unsolved-metas #-} module Light.Implementation.Data.Product where open import Light.Library.Data.Product using (Library ; Dependencies) open import Light.Variable.Levels open import Light.Level using (_⊔_) open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality) open import Light.Variable.Sets open import Light.Library.Relation.Binary.Equality using (wrap) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where record Σ (𝕒 : Set aℓ) (𝕓 : 𝕒 → Set bℓ) : Set (aℓ ⊔ bℓ) where constructor both field first : 𝕒 field second : 𝕓 first open Σ public equals : ∀ ⦃ a‐c‐equals : DecidableEquality 𝕒 𝕔 ⦄ ⦃ b‐d‐equals : DecidableEquality 𝕓 𝕕 ⦄ → DecidableEquality (Σ 𝕒 (λ _ → 𝕓)) (Σ 𝕔 (λ _ → 𝕕)) equals = {!!}
{ "alphanum_fraction": 0.6376681614, "avg_line_length": 35.9677419355, "ext": "agda", "hexsha": "510da19965811e4f810d65976dd7f1d01164d252", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/Product.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 287, "size": 1115 }
{-# OPTIONS --without-K --safe #-} open import Level using (Level) open import FLA.Algebra.Structures open import Relation.Binary.PropositionalEquality open ≡-Reasoning module FLA.Algebra.Properties.Field {ℓ : Level } {A : Set ℓ} ⦃ F : Field A ⦄ where open Field F 0ᶠ+0ᶠ≡0ᶠ : 0ᶠ + 0ᶠ ≡ 0ᶠ 0ᶠ+0ᶠ≡0ᶠ = +0ᶠ 0ᶠ 0ᶠ+ : (a : A) → 0ᶠ + a ≡ a 0ᶠ+ a rewrite +-comm 0ᶠ a = +0ᶠ a a*0ᶠ≡0ᶠ : (a : A) → a * 0ᶠ ≡ 0ᶠ a*0ᶠ≡0ᶠ a = begin a * 0ᶠ ≡˘⟨ 0ᶠ+ (a * 0ᶠ) ⟩ 0ᶠ + a * 0ᶠ ≡⟨ cong (_+ a * 0ᶠ) (sym (+-inv a)) ⟩ - a + a + a * 0ᶠ ≡⟨ cong (λ x → - a + x + a * 0ᶠ) (sym (*1ᶠ a)) ⟩ - a + a * 1ᶠ + a * 0ᶠ ≡˘⟨ +-assoc (- a) (a * 1ᶠ) (a * 0ᶠ) ⟩ - a + (a * 1ᶠ + a * 0ᶠ) ≡⟨ cong (- a +_) (sym (*-distr-+ a 1ᶠ 0ᶠ)) ⟩ - a + (a * (1ᶠ + 0ᶠ)) ≡⟨ cong (λ x → - a + (a * x)) (+0ᶠ 1ᶠ) ⟩ - a + (a * 1ᶠ) ≡⟨ cong (- a +_) (*1ᶠ a) ⟩ - a + a ≡⟨ +-inv a ⟩ 0ᶠ ∎ 0ᶠ*a≡0ᶠ : (a : A) → 0ᶠ * a ≡ 0ᶠ 0ᶠ*a≡0ᶠ a = trans (*-comm 0ᶠ a) (a*0ᶠ≡0ᶠ a) -a≡-1ᶠ*a : (a : A) → - a ≡ - 1ᶠ * a -a≡-1ᶠ*a a = begin - a ≡˘⟨ +0ᶠ (- a) ⟩ - a + 0ᶠ ≡⟨ cong (- a +_) (sym (a*0ᶠ≡0ᶠ a)) ⟩ - a + (a * 0ᶠ) ≡⟨ cong (λ x → - a + (a * x)) (sym (+-inv 1ᶠ)) ⟩ - a + (a * (- 1ᶠ + 1ᶠ)) ≡⟨ cong (- a +_) (*-distr-+ a (- 1ᶠ) 1ᶠ) ⟩ - a + (a * - 1ᶠ + a * 1ᶠ) ≡⟨ cong (- a +_) (+-comm (a * - 1ᶠ) (a * 1ᶠ)) ⟩ - a + (a * 1ᶠ + a * - 1ᶠ ) ≡⟨ +-assoc (- a) (a * 1ᶠ) (a * - 1ᶠ) ⟩ - a + a * 1ᶠ + a * - 1ᶠ ≡⟨ cong (λ x → - a + x + a * - 1ᶠ) (*1ᶠ a) ⟩ - a + a + a * - 1ᶠ ≡⟨ cong (_+ a * - 1ᶠ) (+-inv a) ⟩ 0ᶠ + a * - 1ᶠ ≡⟨ 0ᶠ+ (a * - 1ᶠ) ⟩ a * - 1ᶠ ≡⟨ *-comm a (- 1ᶠ) ⟩ - 1ᶠ * a ∎ -a*b≡-[a*b] : (a b : A) → - a * b ≡ - (a * b) -a*b≡-[a*b] a b = begin - a * b ≡⟨ cong (_* b) (-a≡-1ᶠ*a a) ⟩ (- 1ᶠ * a) * b ≡˘⟨ *-assoc (- 1ᶠ) a b ⟩ - 1ᶠ * (a * b) ≡˘⟨ -a≡-1ᶠ*a ((a * b)) ⟩ - (a * b) ∎ a*-b≡-[a*b] : (a b : A) → a * - b ≡ - (a * b) a*-b≡-[a*b] a b = begin a * - b ≡⟨ *-comm a (- b) ⟩ - b * a ≡⟨ -a*b≡-[a*b] b a ⟩ - (b * a) ≡⟨ cong -_ (*-comm b a) ⟩ - (a * b) ∎
{ "alphanum_fraction": 0.3452935694, "avg_line_length": 35.1803278689, "ext": "agda", "hexsha": "1ca4300ec7654b51b3cfd2bfc2c904178e5facc8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z", "max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "turion/functional-linear-algebra", "max_forks_repo_path": "src/FLA/Algebra/Properties/Field.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "turion/functional-linear-algebra", "max_issues_repo_path": "src/FLA/Algebra/Properties/Field.agda", "max_line_length": 82, "max_stars_count": 21, "max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "turion/functional-linear-algebra", "max_stars_repo_path": "src/FLA/Algebra/Properties/Field.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z", "num_tokens": 1397, "size": 2146 }
------------------------------------------------------------------------ -- Collection of most needed import from standard library ------------------------------------------------------------------------ module Library where open import Data.Empty public open import Data.Unit hiding (_≟_; _≤_; _≤?_; decSetoid; decTotalOrder; setoid) public open import Data.Sum public hiding (map) open import Data.Bool hiding (_≟_) public open import Data.Nat hiding (_⊔_) public open import Data.Product hiding (map ; swap) public open import Data.Vec using ([]; _∷_; Vec) public open import Level renaming (zero to ℓ₀; suc to ℓ⁺) public open import Function public open import Size public open import Relation.Binary.PropositionalEquality hiding (decSetoid; preorder; setoid) public open import ContainerMonkeyPatched as Container renaming (map to fmap) public
{ "alphanum_fraction": 0.6506447831, "avg_line_length": 40.619047619, "ext": "agda", "hexsha": "3b7e34543acdbd03dc348cb36448c1f2348764fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "Library.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "Library.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "Library.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 183, "size": 853 }
{-# OPTIONS --cubical-compatible --rewriting #-} module Issue1719.Pushouts where open import Issue1719.Common open import Issue1719.Spans postulate Pushout : (d : Span) → Set left : {d : Span} → (Span.A d) → Pushout d right : {d : Span} → (Span.B d) → Pushout d glue : {d : Span} → (c : Span.C d) → left (Span.f d c) == right (Span.g d c) :> Pushout d module _ {d : Span} {l} {P : Pushout d → Set l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where postulate Pushout-elim : (x : Pushout d) → P x Pushout-left-β : (a : Span.A d) → Pushout-elim (left a) ↦ left* a {-# REWRITE Pushout-left-β #-} Pushout-right-β : (b : Span.B d) → Pushout-elim (right b) ↦ right* b {-# REWRITE Pushout-right-β #-} Pushout-glue-β : (c : Span.C d) → ap Pushout-elim (glue c) ↦ glue* c {-# REWRITE Pushout-glue-β #-}
{ "alphanum_fraction": 0.5706860707, "avg_line_length": 35.6296296296, "ext": "agda", "hexsha": "32a5cce15632a2dd2f855022b8460e5f59f78a51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1719/Pushouts.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1719/Pushouts.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1719/Pushouts.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 365, "size": 962 }
module examplesPaperJFP.Colists where -- open import Function -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). infix 0 case_return_of_ case_of_ case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → ((x : A) → B x) → B x case x return B of f = f x case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = case x return _ of f data ListF A S : Set where nil : ListF A S cons : (a : A) (s : S) → ListF A S record Colist A : Set where coinductive field force : ListF A (Colist A) open Colist using (force) mapF : ∀{A S S′} (f : S → S′) → (ListF A S → ListF A S′) mapF f nil = nil mapF f (cons a s) = cons a (f s) -- As an example, we define mapping over potentially infinite lists using -- copattern matching: map : ∀{A B} (f : A → B) (l : Colist A) → Colist B force (map f l) with force l ... | nil = nil ... | cons x xs = cons (f x) (map f xs) unfold : ∀{A S} (t : S → ListF A S) → (S → Colist A) force (unfold t s) with t s ... | nil = nil ... | cons a s′ = cons a (unfold t s′) fmap : ∀{A B} (f : A → B) (l : Colist A) → Colist B fmap f = unfold λ l → case force l of λ { nil → nil ; (cons a s) → cons (f a) s }
{ "alphanum_fraction": 0.5509881423, "avg_line_length": 24.3269230769, "ext": "agda", "hexsha": "dc0a68d2ab3854831a4e48f179e6ddf588f61862", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/Colists.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/Colists.agda", "max_line_length": 73, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/Colists.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 482, "size": 1265 }
record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst postulate P : {X : Set} → X → Set H : Set R : H → Set x : H y : R x help : (f : H) (p : R f) → P {X = Σ H R} (f , p) record Category : Set₁ where field Hom : Set id : Hom comp : Hom → Hom neut-l : P (comp id) neut-r : Hom slice : Category slice = λ where .Category.Hom → Σ H R .Category.id → (x , y) .Category.comp (f , p) → (f , p) .Category.neut-l → help x _ .Category.neut-r → {!!}
{ "alphanum_fraction": 0.5037593985, "avg_line_length": 17.1612903226, "ext": "agda", "hexsha": "60a9d8fd8508a8d5ef6410a37e4a8cb65d0a34e4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3069.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3069.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3069.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 212, "size": 532 }
module _ where module A where infix 2 _↑ infix 1 c data D : Set where ● : D _↑ : D → D c : {x y : D} → D syntax c {x = x} {y = y} = x ↓ y module B where infix 3 c data D : Set where c : {y x : D} → D syntax c {y = y} {x = x} = y ↓ x open A open B accepted : A.D → A.D accepted (● ↑ ↓ x) = ● ↑ ↓ x accepted _ = ● ↑ ↓ ●
{ "alphanum_fraction": 0.4456521739, "avg_line_length": 12.2666666667, "ext": "agda", "hexsha": "4b9e3bdbf1fc6a095c9c2a551ce299877d42db38", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1436-15.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1436-15.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1436-15.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 156, "size": 368 }
{-# OPTIONS --without-K #-} module Agda.Builtin.Unit where record ⊤ : Set where instance constructor tt {-# BUILTIN UNIT ⊤ #-} {-# COMPILE GHC ⊤ = data () (()) #-}
{ "alphanum_fraction": 0.5976331361, "avg_line_length": 16.9, "ext": "agda", "hexsha": "5c9cc09e52e04c80590caf80f01aacf46918ebf7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_line_length": 36, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 45, "size": 169 }
{-# OPTIONS --rewriting #-} module Properties.ResolveOverloads where open import FFI.Data.Either using (Left; Right) open import Luau.ResolveOverloads using (Resolved; src; srcⁿ; resolve; resolveⁿ; resolveᶠ; resolveˢ; target; yes; no) open import Luau.Subtyping using (_<:_; _≮:_; Language; ¬Language; witness; scalar; unknown; never; function; function-ok; function-err; function-tgt; function-scalar; function-ok₁; function-ok₂; scalar-scalar; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; _,_; left; right) open import Luau.Type using (Type ; Scalar; _⇒_; _∩_; _∪_; nil; boolean; number; string; unknown; never) open import Luau.TypeSaturation using (saturate) open import Luau.TypeNormalization using (normalize) open import Properties.Contradiction using (CONTRADICTION) open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:-∪-right; scalar-≮:-never; <:-∪-left; <:-∪-right; <:-impl-⊇; language-comp) open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; _∪_; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun) open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right) -- Properties of src function-err-srcⁿ : ∀ {T t} → (FunType T) → (¬Language (srcⁿ T) t) → Language T (function-err t) function-err-srcⁿ (S ⇒ T) p = function-err p function-err-srcⁿ (S ∩ T) (p₁ , p₂) = (function-err-srcⁿ S p₁ , function-err-srcⁿ T p₂) ¬function-err-srcᶠ : ∀ {T t} → (FunType T) → (Language (srcⁿ T) t) → ¬Language T (function-err t) ¬function-err-srcᶠ (S ⇒ T) p = function-err p ¬function-err-srcᶠ (S ∩ T) (left p) = left (¬function-err-srcᶠ S p) ¬function-err-srcᶠ (S ∩ T) (right p) = right (¬function-err-srcᶠ T p) ¬function-err-srcⁿ : ∀ {T t} → (Normal T) → (Language (srcⁿ T) t) → ¬Language T (function-err t) ¬function-err-srcⁿ never p = never ¬function-err-srcⁿ unknown (scalar ()) ¬function-err-srcⁿ (S ⇒ T) p = function-err p ¬function-err-srcⁿ (S ∩ T) (left p) = left (¬function-err-srcᶠ S p) ¬function-err-srcⁿ (S ∩ T) (right p) = right (¬function-err-srcᶠ T p) ¬function-err-srcⁿ (S ∪ T) (scalar ()) ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = S ⇒ T} p = function-err p ¬function-err-src {T = nil} p = scalar-function-err nil ¬function-err-src {T = never} p = never ¬function-err-src {T = unknown} (scalar ()) ¬function-err-src {T = boolean} p = scalar-function-err boolean ¬function-err-src {T = number} p = scalar-function-err number ¬function-err-src {T = string} p = scalar-function-err string ¬function-err-src {T = S ∪ T} p = <:-impl-⊇ (<:-normalize (S ∪ T)) _ (¬function-err-srcⁿ (normal (S ∪ T)) p) ¬function-err-src {T = S ∩ T} p = <:-impl-⊇ (<:-normalize (S ∩ T)) _ (¬function-err-srcⁿ (normal (S ∩ T)) p) src-¬function-errᶠ : ∀ {T t} → (FunType T) → Language T (function-err t) → (¬Language (srcⁿ T) t) src-¬function-errᶠ (S ⇒ T) (function-err p) = p src-¬function-errᶠ (S ∩ T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂) src-¬function-errⁿ : ∀ {T t} → (Normal T) → Language T (function-err t) → (¬Language (srcⁿ T) t) src-¬function-errⁿ unknown p = never src-¬function-errⁿ (S ⇒ T) (function-err p) = p src-¬function-errⁿ (S ∩ T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂) src-¬function-errⁿ (S ∪ T) p = never src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = S ⇒ T} (function-err p) = p src-¬function-err {T = unknown} p = never src-¬function-err {T = S ∪ T} p = src-¬function-errⁿ (normal (S ∪ T)) (<:-normalize (S ∪ T) _ p) src-¬function-err {T = S ∩ T} p = src-¬function-errⁿ (normal (S ∩ T)) (<:-normalize (S ∩ T) _ p) fun-¬scalar : ∀ {S T} (s : Scalar S) → FunType T → ¬Language T (scalar s) fun-¬scalar s (S ⇒ T) = function-scalar s fun-¬scalar s (S ∩ T) = left (fun-¬scalar s S) ¬fun-scalar : ∀ {S T t} (s : Scalar S) → FunType T → Language T t → ¬Language S t ¬fun-scalar s (S ⇒ T) function = scalar-function s ¬fun-scalar s (S ⇒ T) (function-ok₁ p) = scalar-function-ok s ¬fun-scalar s (S ⇒ T) (function-ok₂ p) = scalar-function-ok s ¬fun-scalar s (S ⇒ T) (function-err p) = scalar-function-err s ¬fun-scalar s (S ⇒ T) (function-tgt p) = scalar-function-tgt s ¬fun-scalar s (S ∩ T) (p₁ , p₂) = ¬fun-scalar s T p₂ fun-function : ∀ {T} → FunType T → Language T function fun-function (S ⇒ T) = function fun-function (S ∩ T) = (fun-function S , fun-function T) srcⁿ-¬scalar : ∀ {S T t} (s : Scalar S) → Normal T → Language T (scalar s) → (¬Language (srcⁿ T) t) srcⁿ-¬scalar s never (scalar ()) srcⁿ-¬scalar s unknown p = never srcⁿ-¬scalar s (S ⇒ T) (scalar ()) srcⁿ-¬scalar s (S ∩ T) (p₁ , p₂) = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s S) p₁) srcⁿ-¬scalar s (S ∪ T) p = never src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar {T = nil} s p = never src-¬scalar {T = T ⇒ U} s (scalar ()) src-¬scalar {T = never} s (scalar ()) src-¬scalar {T = unknown} s p = never src-¬scalar {T = boolean} s p = never src-¬scalar {T = number} s p = never src-¬scalar {T = string} s p = never src-¬scalar {T = T ∪ U} s p = srcⁿ-¬scalar s (normal (T ∪ U)) (<:-normalize (T ∪ U) (scalar s) p) src-¬scalar {T = T ∩ U} s p = srcⁿ-¬scalar s (normal (T ∩ U)) (<:-normalize (T ∩ U) (scalar s) p) srcⁿ-unknown-≮: : ∀ {T U} → (Normal U) → (T ≮: srcⁿ U) → (U ≮: (T ⇒ unknown)) srcⁿ-unknown-≮: never (witness t p q) = CONTRADICTION (language-comp t q unknown) srcⁿ-unknown-≮: unknown (witness t p q) = witness (function-err t) unknown (function-err p) srcⁿ-unknown-≮: (U ⇒ V) (witness t p q) = witness (function-err t) (function-err q) (function-err p) srcⁿ-unknown-≮: (U ∩ V) (witness t p q) = witness (function-err t) (function-err-srcⁿ (U ∩ V) q) (function-err p) srcⁿ-unknown-≮: (U ∪ V) (witness t p q) = witness (scalar V) (right (scalar V)) (function-scalar V) src-unknown-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ unknown)) src-unknown-≮: {U = nil} (witness t p q) = witness (scalar nil) (scalar nil) (function-scalar nil) src-unknown-≮: {U = T ⇒ U} (witness t p q) = witness (function-err t) (function-err q) (function-err p) src-unknown-≮: {U = never} (witness t p q) = CONTRADICTION (language-comp t q unknown) src-unknown-≮: {U = unknown} (witness t p q) = witness (function-err t) unknown (function-err p) src-unknown-≮: {U = boolean} (witness t p q) = witness (scalar boolean) (scalar boolean) (function-scalar boolean) src-unknown-≮: {U = number} (witness t p q) = witness (scalar number) (scalar number) (function-scalar number) src-unknown-≮: {U = string} (witness t p q) = witness (scalar string) (scalar string) (function-scalar string) src-unknown-≮: {U = T ∪ U} p = <:-trans-≮: (normalize-<: (T ∪ U)) (srcⁿ-unknown-≮: (normal (T ∪ U)) p) src-unknown-≮: {U = T ∩ U} p = <:-trans-≮: (normalize-<: (T ∩ U)) (srcⁿ-unknown-≮: (normal (T ∩ U)) p) unknown-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ unknown)) → (U ≮: src T) unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) unknown-src-≮: r (witness (function-ok s .(scalar s₁)) p (function-ok x (scalar-scalar s₁ () x₂))) unknown-src-≮: r (witness (function-ok s .function) p (function-ok x (scalar-function ()))) unknown-src-≮: r (witness (function-ok s .(function-ok _ _)) p (function-ok x (scalar-function-ok ()))) unknown-src-≮: r (witness (function-ok s .(function-err _)) p (function-ok x (scalar-function-err ()))) unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) unknown-src-≮: r (witness (function-tgt t) p (function-tgt (scalar-function-tgt ()))) -- Properties of resolve resolveˢ-<:-⇒ : ∀ {F V U} → (FunType F) → (Saturated F) → (FunType (V ⇒ U)) → (r : Resolved F V) → (F <: (V ⇒ U)) → (target r <: U) resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ r F<:V⇒U with <:-impl-<:ᵒ Fᶠ Fˢ V⇒Uᶠ F<:V⇒U here resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) F<:V⇒U | defn o o₁ o₂ = <:-trans (tgtʳ o o₁) o₂ resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ (no tgtʳ) F<:V⇒U | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: o₁ (tgtʳ o)) resolveⁿ-<:-⇒ : ∀ {F V U} → (Fⁿ : Normal F) → (Vⁿ : Normal V) → (Uⁿ : Normal U) → (F <: (V ⇒ U)) → (resolveⁿ Fⁿ Vⁿ <: U) resolveⁿ-<:-⇒ (Sⁿ ⇒ Tⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) (Vⁿ ⇒ Uⁿ) (resolveˢ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) Vⁿ (λ o → o)) F<:V⇒U resolveⁿ-<:-⇒ (Fⁿ ∩ Gⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) (Vⁿ ⇒ Uⁿ) (resolveˢ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) Vⁿ (λ o → o)) (<:-trans (saturate-<: (Fⁿ ∩ Gⁿ)) F<:V⇒U) resolveⁿ-<:-⇒ (Sⁿ ∪ Tˢ) Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U (<:-trans-≮: <:-∪-right (scalar-≮:-function Tˢ))) resolveⁿ-<:-⇒ never Vⁿ Uⁿ F<:V⇒U = <:-never resolveⁿ-<:-⇒ unknown Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U unknown-≮:-function) resolve-<:-⇒ : ∀ {F V U} → (F <: (V ⇒ U)) → (resolve F V <: U) resolve-<:-⇒ {F} {V} {U} F<:V⇒U = <:-trans (resolveⁿ-<:-⇒ (normal F) (normal V) (normal U) (<:-trans (normalize-<: F) (<:-trans F<:V⇒U (<:-normalize (V ⇒ U))))) (normalize-<: U) resolve-≮:-⇒ : ∀ {F V U} → (resolve F V ≮: U) → (F ≮: (V ⇒ U)) resolve-≮:-⇒ {F} {V} {U} FV≮:U with dec-subtyping F (V ⇒ U) resolve-≮:-⇒ {F} {V} {U} FV≮:U | Left F≮:V⇒U = F≮:V⇒U resolve-≮:-⇒ {F} {V} {U} FV≮:U | Right F<:V⇒U = CONTRADICTION (<:-impl-¬≮: (resolve-<:-⇒ F<:V⇒U) FV≮:U) <:-resolveˢ-⇒ : ∀ {S T V} → (r : Resolved (S ⇒ T) V) → (V <: S) → T <: target r <:-resolveˢ-⇒ (yes S T here _ _) V<:S = <:-refl <:-resolveˢ-⇒ (no _) V<:S = <:-unknown <:-resolveⁿ-⇒ : ∀ {S T V} → (Sⁿ : Normal S) → (Tⁿ : Normal T) → (Vⁿ : Normal V) → (V <: S) → T <: resolveⁿ (Sⁿ ⇒ Tⁿ) Vⁿ <:-resolveⁿ-⇒ Sⁿ Tⁿ Vⁿ V<:S = <:-resolveˢ-⇒ (resolveˢ (Sⁿ ⇒ Tⁿ) (saturated (Sⁿ ⇒ Tⁿ)) Vⁿ (λ o → o)) V<:S <:-resolve-⇒ : ∀ {S T V} → (V <: S) → T <: resolve (S ⇒ T) V <:-resolve-⇒ {S} {T} {V} V<:S = <:-trans (<:-normalize T) (<:-resolveⁿ-⇒ (normal S) (normal T) (normal V) (<:-trans (normalize-<: V) (<:-trans V<:S (<:-normalize S)))) <:-resolveˢ : ∀ {F G V W} → (r : Resolved F V) → (s : Resolved G W) → (F <:ᵒ G) → (V <: W) → target r <: target s <:-resolveˢ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W with F<:G oˢ <:-resolveˢ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = <:-trans (tgtʳ o (<:-trans (<:-trans V<:W W<:Sˢ) o₁)) o₂ <:-resolveˢ (no r) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W with F<:G oˢ <:-resolveˢ (no r) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: (<:-trans V<:W (<:-trans W<:Sˢ o₁)) (r o)) <:-resolveˢ r (no s) F<:G V<:W = <:-unknown <:-resolveᶠ : ∀ {F G V W} → (Fᶠ : FunType F) → (Gᶠ : FunType G) → (Vⁿ : Normal V) → (Wⁿ : Normal W) → (F <: G) → (V <: W) → resolveᶠ Fᶠ Vⁿ <: resolveᶠ Gᶠ Wⁿ <:-resolveᶠ Fᶠ Gᶠ Vⁿ Wⁿ F<:G V<:W = <:-resolveˢ (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o → o)) (resolveˢ (normal-saturate Gᶠ) (saturated Gᶠ) Wⁿ (λ o → o)) (<:-impl-<:ᵒ (normal-saturate Fᶠ) (saturated Fᶠ) (normal-saturate Gᶠ) (<:-trans (saturate-<: Fᶠ) (<:-trans F<:G (<:-saturate Gᶠ)))) V<:W <:-resolveⁿ : ∀ {F G V W} → (Fⁿ : Normal F) → (Gⁿ : Normal G) → (Vⁿ : Normal V) → (Wⁿ : Normal W) → (F <: G) → (V <: W) → resolveⁿ Fⁿ Vⁿ <: resolveⁿ Gⁿ Wⁿ <:-resolveⁿ (Rⁿ ⇒ Sⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Rⁿ ⇒ Sⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W <:-resolveⁿ (Rⁿ ⇒ Sⁿ) (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Rⁿ ⇒ Sⁿ) (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W <:-resolveⁿ (Eⁿ ∩ Fⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Eⁿ ∩ Fⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W <:-resolveⁿ (Eⁿ ∩ Fⁿ) (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Eⁿ ∩ Fⁿ) (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W <:-resolveⁿ (Fⁿ ∪ Sˢ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:-∪-right (scalar-≮:-function Sˢ))) <:-resolveⁿ unknown (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G unknown-≮:-function) <:-resolveⁿ (Fⁿ ∪ Sˢ) (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:-∪-right (scalar-≮:-fun (Gⁿ ∩ Hⁿ) Sˢ))) <:-resolveⁿ unknown (Gⁿ ∩ Hⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (unknown-≮:-fun (Gⁿ ∩ Hⁿ))) <:-resolveⁿ (Rⁿ ⇒ Sⁿ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (fun-≮:-never (Rⁿ ⇒ Sⁿ))) <:-resolveⁿ (Eⁿ ∩ Fⁿ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (fun-≮:-never (Eⁿ ∩ Fⁿ))) <:-resolveⁿ (Fⁿ ∪ Sˢ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:-∪-right (scalar-≮:-never Sˢ))) <:-resolveⁿ unknown never Vⁿ Wⁿ F<:G V<:W = F<:G <:-resolveⁿ never Gⁿ Vⁿ Wⁿ F<:G V<:W = <:-never <:-resolveⁿ Fⁿ (Gⁿ ∪ Uˢ) Vⁿ Wⁿ F<:G V<:W = <:-unknown <:-resolveⁿ Fⁿ unknown Vⁿ Wⁿ F<:G V<:W = <:-unknown <:-resolve : ∀ {F G V W} → (F <: G) → (V <: W) → resolve F V <: resolve G W <:-resolve {F} {G} {V} {W} F<:G V<:W = <:-resolveⁿ (normal F) (normal G) (normal V) (normal W) (<:-trans (normalize-<: F) (<:-trans F<:G (<:-normalize G))) (<:-trans (normalize-<: V) (<:-trans V<:W (<:-normalize W)))
{ "alphanum_fraction": 0.5956394695, "avg_line_length": 70.2473684211, "ext": "agda", "hexsha": "8de4a875032068744c943929af167ea0f22b5b8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sthagen/Roblox-luau", "max_forks_repo_path": "prototyping/Properties/ResolveOverloads.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sthagen/Roblox-luau", "max_issues_repo_path": "prototyping/Properties/ResolveOverloads.agda", "max_line_length": 307, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Libertus-Lab/luau", "max_stars_repo_path": "prototyping/Properties/ResolveOverloads.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z", "num_tokens": 6225, "size": 13347 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.QuoQ where open import Cubical.HITs.Rationals.QuoQ.Base public open import Cubical.HITs.Rationals.QuoQ.Properties public
{ "alphanum_fraction": 0.7843137255, "avg_line_length": 29.1428571429, "ext": "agda", "hexsha": "6e4630ce59b76445baddb5744d4d000cc24af159", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Rationals/QuoQ.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Rationals/QuoQ.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Rationals/QuoQ.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 204 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Lattice where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Lattice open import Cubical.Categories.Category open import Cubical.Categories.Instances.Semilattice open Category LatticeCategory : ∀ {ℓ} (L : Lattice ℓ) → Category ℓ ℓ LatticeCategory L = SemilatticeCategory (Lattice→JoinSemilattice L)
{ "alphanum_fraction": 0.8020833333, "avg_line_length": 25.6, "ext": "agda", "hexsha": "f491afd6ac33bc65285d43704f32de36c7319a2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Lattice.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Lattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 99, "size": 384 }
module plfa-code.Bin where -- I collect code about Bin there. other definitions I use the std-lib version import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym; trans) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; z≤n; s≤s) open import Data.Nat.Properties using (+-comm; +-suc; +-mono-≤) infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z ------- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 t) = x1 t inc (x1 t) = x0 (inc t) to : ℕ → Bin to zero = x0 nil to (suc n) = inc (to n) from : Bin → ℕ from nil = 0 from (x0 t) = 2 * (from t) from (x1 t) = suc (2 * (from t)) +1≡suc : ∀ {n : ℕ} → n + 1 ≡ suc n +1≡suc {zero} = refl +1≡suc {suc n} = cong suc +1≡suc suc-from-inc : ∀ (x : Bin) → from (inc x) ≡ suc (from x) suc-from-inc nil = refl suc-from-inc (x0 x) rewrite +1≡suc {from x * 2} = refl suc-from-inc (x1 x) rewrite suc-from-inc x | +-suc (from x) (from x + 0) = refl -- t4 is ⊥ , because `to (from nil) ≡ x0 nil ≢ nil` -- t4 : ∀ (x : Bin) → to (from x) ≡ x from-to-const : ∀ (n : ℕ) → from (to n) ≡ n from-to-const zero = refl from-to-const (suc n) rewrite suc-from-inc (to n) | from-to-const n = refl data Can : Bin → Set data One : Bin → Set data One where one : One (x1 nil) x0_ : ∀ {b : Bin} → One b → One(x0 b) x1_ : ∀ {b : Bin} → One b → One(x1 b) data Can where zero : Can (x0 nil) can-one : ∀ {b : Bin} → One b → Can b one-inc : ∀ {x : Bin} → One x → One (inc x) one-inc one = x0 one one-inc (x0 x) = x1 x one-inc (x1 x) = x0 (one-inc x) can-inc : ∀ {x : Bin} → Can x → Can (inc x) can-inc zero = can-one one can-inc (can-one x) = can-one (one-inc x) one-to-n : ∀ (n : ℕ) → One (to (suc n)) one-to-n zero = one one-to-n (suc n) = one-inc (one-to-n n) can-to-n : ∀ (n : ℕ) → Can (to n) can-to-n zero = zero can-to-n (suc n) = can-one (one-to-n n) open Data.Nat.Properties using (+-identityʳ; +-suc) l0 : ∀ (n) → to (suc n) ≡ inc (to n) l0 zero = refl l0 (suc n) = refl 2n-eq-x0 : ∀ (n) → 1 ≤ n → to (n + n) ≡ x0 (to n) 2n-eq-x0 zero () 2n-eq-x0 (suc zero) (s≤s z≤n) = refl 2n-eq-x0 (suc (suc n)) (s≤s z≤n) = begin to (suc (suc n) + suc (suc n)) ≡⟨ cong (λ x → to x) (+-suc (suc (suc n)) (suc n)) ⟩ to (suc (suc (suc n + suc n))) ≡⟨⟩ inc (inc (to (suc n + suc n))) ≡⟨ cong (λ x → (inc (inc x))) (2n-eq-x0 (suc n) (s≤s z≤n)) ⟩ inc (inc (x0 (to (suc n)))) ≡⟨⟩ x0 (inc (to (suc n))) ≡⟨⟩ x0 (to (suc (suc n))) ∎ one-b-iff-1≤b : ∀ (b) → One b → 1 ≤ from b one-b-iff-1≤b (x0 b) (x0 ob) rewrite +-identityʳ (from b) = +-mono-≤ (one-b-iff-1≤b b ob) z≤n where n = from b one-b-iff-1≤b (x1 .nil) one = s≤s z≤n one-b-iff-1≤b (x1 b) (x1 ob) = s≤s z≤n one-tf-eq : ∀ {b} → One b → to (from b) ≡ b one-tf-eq {_} one = refl one-tf-eq {x0 b} (x0 x) = begin to (from (x0 b)) ≡⟨⟩ to (from b + (from b + zero)) ≡⟨ cong (λ n → to (from b + n)) (+-identityʳ (from b)) ⟩ to (from b + from b) ≡⟨ 2n-eq-x0 (from b) (one-b-iff-1≤b b x) ⟩ x0 (to (from b)) ≡⟨ cong x0_ (one-tf-eq x) ⟩ x0 b ∎ one-tf-eq {x1 b} (x1 x) = begin to (from (x1 b)) ≡⟨⟩ inc (to (from b + (from b + zero))) ≡⟨ cong (λ n → inc (to (from b + n))) (+-identityʳ (from b)) ⟩ inc (to (from b + from b)) ≡⟨ cong inc (2n-eq-x0 (from b) (one-b-iff-1≤b b x)) ⟩ inc (x0 (to (from b))) ≡⟨⟩ x1 (to (from b)) ≡⟨ cong x1_ (one-tf-eq x) ⟩ x1 b ∎ can-tf-eq : ∀ {x} → Can x → to (from x) ≡ x can-tf-eq {_} zero = refl can-tf-eq {b} (can-one x) = one-tf-eq x open import Function.LeftInverse using (_↞_) ℕ-embedding-Bin : ℕ ↞ Bin ℕ-embedding-Bin = record { to = record { _⟨$⟩_ = to ; cong = cong to } ; from = record { _⟨$⟩_ = from ; cong = cong from } ; left-inverse-of = from-to-const } open import Function.Inverse using (_↔_) open import Data.Product using (Σ; ∃; Σ-syntax; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Function using (_∘_) one-assim : ∀ {b : Bin} → (x : One b) → (y : One b) → x ≡ y one-assim one one = refl one-assim (x0 x) (x0 y) = sym (cong x0_ (one-assim y x)) one-assim (x1 x) (x1 y) = sym (cong x1_ (one-assim y x)) can-assim : ∀ {b : Bin} → (x : Can b) → (y : Can b) → x ≡ y can-assim zero zero = refl can-assim zero (can-one (x0 ())) can-assim (can-one (x0 ())) zero can-assim (can-one one) (can-one one) = refl can-assim (can-one (x0 x)) (can-one (x0 y)) = cong (can-one ∘ x0_) (one-assim x y) can-assim (can-one (x1 x)) (can-one (x1 y)) = cong (can-one ∘ x1_) (one-assim x y) ∃-proj₁ : {A : Set} {B : A → Set} → ∃[ x ] B x → A ∃-proj₁ ⟨ x , _ ⟩ = x ∃≡ : ∀ {A : Set} {B : A → Set} (p₁ : ∃[ x ](B x)) (p₂ : ∃[ y ](B y)) → ∃-proj₁ p₁ ≡ ∃-proj₁ p₂ → (∀ (x) → (b₁ : B x) → (b₂ : B x) → b₁ ≡ b₂) → p₁ ≡ p₂ ∃≡ ⟨ x , bx ⟩ ⟨ .x , by ⟩ refl f = sym (cong (⟨_,_⟩ x) (f x by bx)) Bin-isomorphism : ℕ ↔ ∃[ x ](Can x) Bin-isomorphism = record { to = record { _⟨$⟩_ = to′; cong = cong to′} ; from = record { _⟨$⟩_ = from′; cong = cong from′} ; inverse-of = record { left-inverse-of = from-to-const ; right-inverse-of = to∘from′ } } where to′ : ℕ → ∃[ x ](Can x) to′ n = ⟨ to n , can-to-n n ⟩ from′ : ∃[ x ](Can x) → ℕ from′ ⟨ b , can-b ⟩ = from b to∘from′ : ∀ y → to′ (from′ y) ≡ y to∘from′ ⟨ b , can-b ⟩ = ∃≡ ⟨ to (from b) , can-to-n (from b) ⟩ ⟨ b , can-b ⟩ (can-tf-eq can-b) (λ x → can-assim {x})
{ "alphanum_fraction": 0.4979224377, "avg_line_length": 29.0251256281, "ext": "agda", "hexsha": "4067a346d2158d593eba1f2fa6f3d803e92ee39e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Bin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Bin.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Bin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2606, "size": 5776 }
{-# OPTIONS --cubical --safe #-} open import Algebra open import Relation.Binary open import Algebra.Monus module Data.MonoidalHeap.Monad {s} (monus : TMAPOM s) where open TMAPOM monus open import Prelude open import Data.List using (List; _∷_; []; foldr; _++_) import Data.Nat as ℕ import Data.Nat.Properties as ℕ 𝒮 : Type s 𝒮 = 𝑆 → 𝑆 ⟦_⇑⟧ : 𝑆 → 𝒮 ⟦_⇑⟧ = _∙_ ⟦_⇓⟧ : 𝒮 → 𝑆 ⟦ x ⇓⟧ = x ε infixl 10 _⊙_ _⊙_ : (𝑆 → A) → 𝑆 → 𝑆 → A f ⊙ x = λ y → f (x ∙ y) mutual data Node (V : 𝑆 → Type a) : Type (a ℓ⊔ s) where leaf : V ε → Node V _⋊_ : (w : 𝑆) → Heap (V ⊙ w) → Node V Heap : (𝑆 → Type a) → Type (a ℓ⊔ s) Heap V = List (Node V) private variable v : Level V : 𝑆 → Type v Root : (𝑆 → Type v) → Type _ Root V = ∃ w × Heap (V ⊙ w) partition : Heap V → List (V ε) × List (Root V) partition = foldr f ([] , []) where f : Node V → List (V ε) × List (∃ w × Heap (V ⊙ w)) → List (V ε) × List (∃ w × Heap (V ⊙ w)) f (leaf x) (ls , hs) = (x ∷ ls) , hs f (w ⋊ x) (ls , hs) = ls , ((w , x) ∷ hs) module _ {V : 𝑆 → Type v} where ⊙-assoc : ∀ x y k → x ≡ y ∙ k → V ⊙ x ≡ V ⊙ y ⊙ k ⊙-assoc x y k x≡y∙k i z = V ((cong (_∙ z) x≡y∙k ; assoc y k z) i) ⊙ε : V ⊙ ε ≡ V ⊙ε i x = V (ε∙ x i) ⊙-rassoc : ∀ x y → V ⊙ (x ∙ y) ≡ V ⊙ x ⊙ y ⊙-rassoc x y i z = V (assoc x y z i) merge : Root V → Root V → Root V merge (x , xs) (y , ys) with x ≤|≥ y ... | inl (k , y≡x∙k) = x , (k ⋊ subst Heap (⊙-assoc y x k y≡x∙k) ys) ∷ xs ... | inr (k , x≡y∙k) = y , (k ⋊ subst Heap (⊙-assoc x y k x≡y∙k) xs) ∷ ys merges⁺ : Root V → List (Root V) → Root V merges⁺ x [] = x merges⁺ x₁ (x₂ ∷ []) = merge x₁ x₂ merges⁺ x₁ (x₂ ∷ x₃ ∷ xs) = merge (merge x₁ x₂) (merges⁺ x₃ xs) merges : List (Root V) → Maybe (Root V) merges [] = nothing merges (x ∷ xs) = just (merges⁺ x xs) popMin : Heap V → List (V ε) × Maybe (Root V) popMin = map₂ merges ∘ partition return : V ε → Heap V return x = leaf x ∷ [] weight : ∃ x × V x → Heap V weight (w , x) = (w ⋊ (leaf (subst V (sym (∙ε w)) x) ∷ [])) ∷ [] _>>=_ : Heap V → (∀ {x} → V x → Heap (V ⊙ x)) → Heap V _>>=_ [] k = [] _>>=_ (leaf x ∷ xs) k = subst Heap ⊙ε (k x) ++ (xs >>= k) _>>=_ {V = V} ((w ⋊ x) ∷ xs) k = (w ⋊ (x >>= (subst Heap (⊙-rassoc {V = V} w _) ∘ k))) ∷ (xs >>= k)
{ "alphanum_fraction": 0.484463895, "avg_line_length": 25.3888888889, "ext": "agda", "hexsha": "69af5bfbf1a2b86d1ca69a76e585f4abbe5d1745", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/MonoidalHeap/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/MonoidalHeap/Monad.agda", "max_line_length": 99, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/MonoidalHeap/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1107, "size": 2285 }
-- Integers modulo N module Numeric.Nat.Modulo where open import Prelude open import Numeric.Nat.DivMod open import Tactic.Nat data IntMod (n : Nat) : Set where modn : ∀ k → k < n → IntMod n {-# DISPLAY modn k (LessNat.diff _ refl) = k #-} negIntMod : ∀ {n} → IntMod n → IntMod n negIntMod (modn 0 lt) = modn 0 lt negIntMod (modn (suc k) (diff j eq)) = modn (suc j) (by (sym eq)) {-# DISPLAY negIntMod a = negate a #-} instance NumberIntMod : ∀ {n} → Number (IntMod (suc n)) Number.Constraint NumberIntMod _ = ⊤ fromNat {{NumberIntMod {n}}} k with k divmod suc n ... | qr _ r lt _ = modn r lt NegativeIntMod : ∀ {n} → Negative (IntMod (suc n)) Negative.Constraint NegativeIntMod _ = ⊤ fromNeg {{NegativeIntMod}} k = negIntMod (fromNat k) addIntMod : ∀ {n} → IntMod (suc n) → IntMod (suc n) → IntMod (suc n) addIntMod {n} (modn a _) (modn b _) = force (a + b) λ a+b → fromNat a+b ofType IntMod (suc n) mulIntMod : ∀ {n} → IntMod (suc n) → IntMod (suc n) → IntMod (suc n) mulIntMod {n} (modn a _) (modn b _) = force (a * b) λ a*b → fromNat a*b ofType IntMod (suc n) subIntMod : ∀ {n} → IntMod (suc n) → IntMod (suc n) → IntMod (suc n) subIntMod a b = addIntMod a (negIntMod b) {-# DISPLAY addIntMod a b = a + b #-} {-# DISPLAY mulIntMod a b = a * b #-} {-# DISPLAY subIntMod a b = a - b #-} instance SemiringIntMod : ∀ {n} → Semiring (IntMod (suc n)) zro {{SemiringIntMod}} = 0 one {{SemiringIntMod}} = 1 _+_ {{SemiringIntMod}} = addIntMod _*_ {{SemiringIntMod}} = mulIntMod SubtractiveIntMod : ∀ {n} → Subtractive (IntMod (suc n)) _-_ {{SubtractiveIntMod}} = subIntMod negate {{SubtractiveIntMod}} = negIntMod
{ "alphanum_fraction": 0.6338962606, "avg_line_length": 31.2830188679, "ext": "agda", "hexsha": "e6c73af8673d20bbb0caa0dae02e485b6728cef7", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/Modulo.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/Modulo.agda", "max_line_length": 93, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/Modulo.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 613, "size": 1658 }
module Languages.FILL.TypeSyntax where open import Utils.HaskellTypes {-# IMPORT Languages.FILL.TypeSyntax #-} data Type : Set where TVar : String → Type Top : Type Bottom : Type Imp : Type → Type → Type Tensor : Type → Type → Type Par : Type → Type → Type {-# COMPILED_DATA Type Languages.FILL.TypeSyntax.Type Languages.FILL.TypeSyntax.TVar Languages.FILL.TypeSyntax.Top Languages.FILL.TypeSyntax.Bottom Languages.FILL.TypeSyntax.Imp Languages.FILL.TypeSyntax.Tensor Languages.FILL.TypeSyntax.Par #-}
{ "alphanum_fraction": 0.5921450151, "avg_line_length": 30.0909090909, "ext": "agda", "hexsha": "4b1ea372ff07c0017da7c001c6fe12632a5e0342", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Languages/FILL/TypeSyntax.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Languages/FILL/TypeSyntax.agda", "max_line_length": 56, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Languages/FILL/TypeSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 127, "size": 662 }
open import Agda.Primitive variable a : Level A : Set a P : A → Set a x : A open import Agda.Builtin.Equality data Box (A : Set a) : Set a where [_] : A → Box A postulate _ : P (λ (_ : x ≡ x) → [ x ])
{ "alphanum_fraction": 0.5596330275, "avg_line_length": 12.8235294118, "ext": "agda", "hexsha": "9696313aa2fc902f6c1ccfa945a57529a2c5792a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4292.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4292.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4292.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 85, "size": 218 }
-- Internal monoid in a strict monoidal category {-# OPTIONS --safe #-} open import Cubical.Categories.Category.Base open import Cubical.Categories.Monoidal.Base open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Categories.Functor.Base open import Cubical.Reflection.RecordEquiv hiding (unit) module Cubical.Categories.Monoidal.Strict.Monoid {ℓ ℓ' : Level} (C : StrictMonCategory ℓ ℓ') where module _ where open StrictMonCategory C record Monoid : Type (ℓ-max ℓ ℓ') where constructor monoid field carrier : ob η : Hom[ unit , carrier ] μ : Hom[ carrier ⊗ carrier , carrier ] assoc-μ : PathP (λ i → Hom[ assoc carrier carrier carrier i , carrier ]) (μ ∘ (id ⊗ₕ μ)) (μ ∘ (μ ⊗ₕ id)) idl-μ : PathP (λ i → Hom[ idl carrier i , carrier ]) (μ ∘ (η ⊗ₕ id)) id idr-μ : PathP (λ i → Hom[ idr carrier i , carrier ]) (μ ∘ (id ⊗ₕ η)) id open Monoid record Monoid[_,_] (monA monB : Monoid) : Type ℓ' where constructor monoidHom field carrierHom : Hom[ carrier monA , carrier monB ] nat-η : carrierHom ∘ η monA ≡ η monB nat-μ : carrierHom ∘ μ monA ≡ μ monB ∘ (carrierHom ⊗ₕ carrierHom) open Monoid[_,_] monoidHomExt : {monA monB : Monoid} (f g : Monoid[ monA , monB ]) → carrierHom f ≡ carrierHom g → f ≡ g carrierHom (monoidHomExt f g p i) = p i nat-η (monoidHomExt {monA} {monB} f g p i) = lemma i where lemma : PathP (λ i₁ → p i₁ ∘ η monA ≡ η monB) (nat-η f) (nat-η g) lemma = toPathP (isSetHom _ _ _ _) nat-μ (monoidHomExt {monA} {monB} f g p i) = lemma i where lemma : PathP (λ i₁ → p i₁ ∘ μ monA ≡ μ monB ∘ (p i₁ ⊗ₕ p i₁)) (nat-μ f) (nat-μ g) lemma = toPathP (isSetHom _ _ _ _) module C = StrictMonCategory C open Category open Monoid open Monoid[_,_] open Functor monoidCategory : Category (ℓ-max ℓ ℓ') ℓ' ob monoidCategory = Monoid Hom[_,_] monoidCategory = Monoid[_,_] carrierHom (id monoidCategory) = C.id nat-η (id monoidCategory {monA}) = C.⋆IdR (η monA) nat-μ (id monoidCategory {monA}) = C.id C.∘ μ monA ≡⟨ C.⋆IdR (μ monA) ⟩ μ monA ≡⟨ sym (C.⋆IdL (μ monA)) ⟩ μ monA C.∘ id C.C ≡⟨ cong (μ monA C.∘_) (sym (F-id C.─⊗─)) ⟩ μ monA C.∘ (C.id C.⊗ₕ C.id) ∎ carrierHom (_⋆_ monoidCategory f g) = carrierHom g C.∘ carrierHom f nat-η (_⋆_ monoidCategory {monA} {monB} {monC} f g) = (carrierHom g C.∘ carrierHom f) C.∘ η monA ≡⟨ sym (C.⋆Assoc (η monA) (carrierHom f) (carrierHom g)) ⟩ carrierHom g C.∘ (carrierHom f C.∘ η monA) ≡⟨ cong (carrierHom g C.∘_) (nat-η f) ⟩ carrierHom g C.∘ η monB ≡⟨ nat-η g ⟩ η monC ∎ nat-μ (_⋆_ monoidCategory {monA} {monB} {monC} f g) = (carrierHom g C.∘ carrierHom f) C.∘ μ monA ≡⟨ sym (C.⋆Assoc (μ monA) (carrierHom f) (carrierHom g)) ⟩ carrierHom g C.∘ (carrierHom f C.∘ μ monA) ≡⟨ cong (carrierHom g C.∘_) (nat-μ f) ⟩ carrierHom g C.∘ (μ monB C.∘ (carrierHom f C.⊗ₕ carrierHom f)) ≡⟨ C.⋆Assoc (carrierHom f C.⊗ₕ carrierHom f) (μ monB) (carrierHom g) ⟩ (carrierHom g C.∘ μ monB) C.∘ (carrierHom f C.⊗ₕ carrierHom f) ≡⟨ cong (C._∘ (carrierHom f C.⊗ₕ carrierHom f)) (nat-μ g) ⟩ (μ monC C.∘ (carrierHom g C.⊗ₕ carrierHom g)) C.∘ (carrierHom f C.⊗ₕ carrierHom f) ≡⟨ sym (C.⋆Assoc (carrierHom f C.⊗ₕ carrierHom f) (carrierHom g C.⊗ₕ carrierHom g) (μ monC)) ⟩ μ monC C.∘ ((carrierHom g C.⊗ₕ carrierHom g) C.∘ (carrierHom f C.⊗ₕ carrierHom f)) ≡⟨ cong (μ monC C.∘_) (sym (F-seq C.─⊗─ (carrierHom f , carrierHom f) (carrierHom g , carrierHom g))) ⟩ μ monC C.∘ ((carrierHom g C.∘ carrierHom f) C.⊗ₕ (carrierHom g C.∘ carrierHom f)) ∎ ⋆IdL monoidCategory {monA} f = monoidHomExt _ _ (C.⋆IdL (carrierHom f)) ⋆IdR monoidCategory {monA} f = monoidHomExt _ _ (C.⋆IdR (carrierHom f)) ⋆Assoc monoidCategory {monA} {monB} {monC} {monD} f g h = monoidHomExt _ _ (C.⋆Assoc (carrierHom f) (carrierHom g) (carrierHom h)) isSetHom monoidCategory {monA} {monB} = isOfHLevelRetractFromIso 2 isoToΣ (isSetΣ C.isSetHom λ _ → isProp→isSet (isProp× (C.isSetHom _ _) (C.isSetHom _ _))) where unquoteDecl isoToΣ = declareRecordIsoΣ isoToΣ (quote Monoid[_,_])
{ "alphanum_fraction": 0.6324298621, "avg_line_length": 42.9183673469, "ext": "agda", "hexsha": "16db85daf082f412a38682920736567a86012c74", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Monoidal/Strict/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Monoidal/Strict/Monoid.agda", "max_line_length": 112, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Monoidal/Strict/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1762, "size": 4206 }
------------------------------------------------------------------------ -- Lifting of weak equality to canonical equality ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Canonical.WeakEquality where open import Data.Product as Prod using (∃; _×_; _,_) open import Relation.Binary.PropositionalEquality using (_≡_; subst; sym; trans) open import FOmegaInt.Syntax open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization open import FOmegaInt.Syntax.WeakEquality open import FOmegaInt.Kinding.Canonical open import FOmegaInt.Kinding.Canonical.HereditarySubstitution ------------------------------------------------------------------------ -- Lifting of weak kind/type equality into canonical equality. -- -- The lemmas below state that a variant of reflexivity is admissible -- in canonical subkinding, subtyping as well as kind and type -- equality, which uses weak equality (instead of syntactic equality) -- along with proofs of canonical well-formedness -- resp. well-kindedness of *both* the kinds resp. types being -- related. open Syntax open ElimCtx open Kinding open ContextNarrowing -- Lifting of weak kind/type equality into canonical -- subkinding/subtyping and type/kind equality. mutual ≋-<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → Γ ⊢ k kd → j ≋ k → Γ ⊢ j <∷ k ≋-<∷ (kd-⋯ a₁⇉a₁⋯a₁ b₁⇉b₁⋯b₁) (kd-⋯ a₂⇉a₂⋯a₂ b₂⇉b₂⋯b₂) (≋-⋯ a₁≈a₂ b₁≈b₂) = <∷-⋯ (≈-<: a₂⇉a₂⋯a₂ a₁⇉a₁⋯a₁ (≈-sym a₁≈a₂)) (≈-<: b₁⇉b₁⋯b₁ b₂⇉b₂⋯b₂ b₁≈b₂) ≋-<∷ (kd-Π j₁-kd k₁-kd) (kd-Π j₂-kd k₂-kd) (≋-Π j₁≋j₂ k₁≋k₂) = let j₂<∷j₁ = ≋-<∷ j₂-kd j₁-kd (≋-sym j₁≋j₂) in <∷-Π j₂<∷j₁ (≋-<∷ (⇓-kd j₂-kd j₂<∷j₁ k₁-kd) k₂-kd k₁≋k₂) (kd-Π j₁-kd k₁-kd) ≈-<: : ∀ {n} {Γ : Ctx n} {a a₁ a₂ b b₁ b₂} → Γ ⊢Nf a ⇉ a₁ ⋯ a₂ → Γ ⊢Nf b ⇉ b₁ ⋯ b₂ → a ≈ b → Γ ⊢ a <: b ≈-<: (⇉-⊥-f Γ-ctx) (⇉-⊥-f _) (≈-∙ ≈-⊥ ≈-[]) = <:-⊥ (⇉-⊥-f Γ-ctx) ≈-<: (⇉-⊥-f _) (⇉-s-i ()) (≈-∙ ≈-⊥ ≈-[]) ≈-<: (⇉-⊤-f Γ-ctx) (⇉-⊤-f _) (≈-∙ ≈-⊤ ≈-[]) = <:-⊤ (⇉-⊤-f Γ-ctx) ≈-<: (⇉-⊤-f _) (⇉-s-i ()) (≈-∙ ≈-⊤ ≈-[]) ≈-<: (⇉-∀-f k₁-kd a₁⇉a₁⋯a₁) (⇉-∀-f k₂-kd a₂⇉a₂⋯a₂) (≈-∙ (≈-∀ k₁≋k₂ a₁≈a₂) ≈-[]) = let k₂<∷k₁ = ≋-<∷ k₂-kd k₁-kd (≋-sym k₁≋k₂) in <:-∀ k₂<∷k₁ (≈-<: (⇓-Nf⇉ k₂-kd k₂<∷k₁ a₁⇉a₁⋯a₁) a₂⇉a₂⋯a₂ a₁≈a₂) (⇉-∀-f k₁-kd a₁⇉a₁⋯a₁) ≈-<: (⇉-∀-f _ _) (⇉-s-i ()) (≈-∙ (≈-∀ _ _) ≈-[]) ≈-<: (⇉-→-f a₁⇉a₁⋯a₁ b₁⇉b₁⋯b₁) (⇉-→-f a₂⇉a₂⋯a₂ b₂⇉b₂⋯b₂) (≈-∙ (≈-→ a₁≈a₂ b₁≈b₂) ≈-[]) = <:-→ (≈-<: a₂⇉a₂⋯a₂ a₁⇉a₁⋯a₁ (≈-sym a₁≈a₂)) (≈-<: b₁⇉b₁⋯b₁ b₂⇉b₂⋯b₂ b₁≈b₂) ≈-<: (⇉-→-f _ _) (⇉-s-i ()) (≈-∙ (≈-→ _ _) ≈-[]) ≈-<: (⇉-s-i (∈-∙ x∈j₁ j₁⇉as₁⇉k₁)) (⇉-s-i (∈-∙ x∈j₂ j₂⇉as₂⇉k₂)) (≈-∙ (≈-var x) as₁≈as₂) = let j , Γ[x]≡kd-j , j<∷j₁ , j-kd , _ = Var∈-inv x∈j₁ j′ , Γ[x]≡kd-j′ , j′<∷j₂ , _ , _ = Var∈-inv x∈j₂ j′≡j = kd-inj (trans (sym Γ[x]≡kd-j′) Γ[x]≡kd-j) j<∷j₂ = subst (_ ⊢_<∷ _) j′≡j j′<∷j₂ c , d , j⇉as₁≃as₂⇉c⋯d = ≈Sp-Sp≃ j-kd j<∷j₁ j<∷j₂ j₁⇉as₁⇉k₁ j₂⇉as₂⇉k₂ as₁≈as₂ in <:-∙ (⇉-var x (Var∈-ctx x∈j₁) Γ[x]≡kd-j) j⇉as₁≃as₂⇉c⋯d ≈-<:⇇ : ∀ {n} {Γ : Ctx n} {a b j} → Γ ⊢ j kd → Γ ⊢Nf a ⇇ j → Γ ⊢Nf b ⇇ j → a ≈ b → Γ ⊢ a <: b ⇇ j ≈-<:⇇ b⋯c-kd (⇇-⇑ a₁⇉b₁⋯c₁ (<∷-⋯ b<:b₁ c₁<:c)) (⇇-⇑ a₂⇉b₂⋯c₂ (<∷-⋯ b<:b₂ c₂<:c)) a₁≈a₂ = <:-⇇ (⇇-⇑ a₁⇉b₁⋯c₁ (<∷-⋯ b<:b₁ c₁<:c)) (⇇-⇑ a₂⇉b₂⋯c₂ (<∷-⋯ b<:b₂ c₂<:c)) (≈-<: (Nf⇉-s-i a₁⇉b₁⋯c₁) (Nf⇉-s-i a₂⇉b₂⋯c₂) a₁≈a₂) ≈-<:⇇ (kd-Π j-kd k-kd) (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd)) (≈-∙ (≈-Λ ⌊k₁⌋≡⌊k₂⌋ a₁≈a₂) ≈-[]) = let a₁⇇k = ⇇-⇑ (⇓-Nf⇉ j-kd j<∷j₁ a₁⇉k₁) k₁<∷k a₂⇇k = ⇇-⇑ (⇓-Nf⇉ j-kd j<∷j₂ a₂⇉k₂) k₂<∷k a₁<:a₂⇇k = ≈-<:⇇ k-kd a₁⇇k a₂⇇k a₁≈a₂ in <:-λ a₁<:a₂⇇k (⇇-⇑ (⇉-Π-i j₁-kd a₁⇉k₁) (<∷-Π j<∷j₁ k₁<∷k Πj₁k₁-kd)) (⇇-⇑ (⇉-Π-i j₂-kd a₂⇉k₂) (<∷-Π j<∷j₂ k₂<∷k Πj₂k₂-kd)) ≈Sp-Sp≃ : ∀ {n} {Γ : Ctx n} {as₁ as₂ j j₁ j₂ b₁ b₂ c₁ c₂} → Γ ⊢ j kd → Γ ⊢ j <∷ j₁ → Γ ⊢ j <∷ j₂ → Γ ⊢ j₁ ⇉∙ as₁ ⇉ b₁ ⋯ c₁ → Γ ⊢ j₂ ⇉∙ as₂ ⇉ b₂ ⋯ c₂ → as₁ ≈Sp as₂ → ∃ λ b → ∃ λ c → Γ ⊢ j ⇉∙ as₁ ≃ as₂ ⇉ b ⋯ c ≈Sp-Sp≃ j-kd (<∷-⋯ b₁<:b c<:c₁) j<∷b₂⋯c₂ ⇉-[] ⇉-[] ≈-[] = _ , _ , ≃-[] ≈Sp-Sp≃ (kd-Π j-kd k-kd) (<∷-Π j₁<∷j k<∷k₁ Πj₁k₁-kd) (<∷-Π j₂<∷j k<∷k₂ Πj₂k₂-kd) (⇉-∷ a₁⇇j₁ j₁-kd k₁[a₁]⇉bs₁⇉c₁⋯d₁) (⇉-∷ a₂⇇j₂ j₂-kd k₂[a₂]⇉bs₂⇉c₂⋯d₂) (≈-∷ a₁≈a₂ bs₁≈bs₂) = let a₁⇇j = Nf⇇-⇑ a₁⇇j₁ j₁<∷j k[a₁]-kd = TK.kd-/⟨⟩ k-kd (⇇-hsub a₁⇇j j-kd (⌊⌋-⌊⌋≡ _)) a₁≃a₂⇇j = ≈-≃ j-kd a₁⇇j (Nf⇇-⇑ a₂⇇j₂ j₂<∷j) a₁≈a₂ k[a₁]<∷k₁[a₁] = subst (λ l → _ ⊢ _ Kind[ _ ∈ l ] <∷ _) (<∷-⌊⌋ j₁<∷j) (TK.<∷-/⟨⟩≃ k<∷k₁ (⇇-hsub a₁⇇j₁ j₁-kd (⌊⌋-⌊⌋≡ _))) k[a₂]<∷k₂[a₂] = subst (λ l → _ ⊢ _ Kind[ _ ∈ l ] <∷ _) (<∷-⌊⌋ j₂<∷j) (TK.<∷-/⟨⟩≃ k<∷k₂ (⇇-hsub a₂⇇j₂ j₂-kd (⌊⌋-⌊⌋≡ _))) k[a₁]<∷k[a₂] = TK.kd-/⟨⟩≃-<∷ k-kd (≃-hsub a₁≃a₂⇇j (⌊⌋-⌊⌋≡ _)) k[a₁]<∷k₂[a₂] = <∷-trans k[a₁]<∷k[a₂] k[a₂]<∷k₂[a₂] c , d , k[a₁]⇉bs₁≃bs₂⇉c⋯d = ≈Sp-Sp≃ k[a₁]-kd k[a₁]<∷k₁[a₁] k[a₁]<∷k₂[a₂] k₁[a₁]⇉bs₁⇉c₁⋯d₁ k₂[a₂]⇉bs₂⇉c₂⋯d₂ bs₁≈bs₂ in c , d , ≃-∷ a₁≃a₂⇇j k[a₁]⇉bs₁≃bs₂⇉c⋯d where module TK = TrackSimpleKindsSubst ≈-≃ : ∀ {n} {Γ : Ctx n} {a b j} → Γ ⊢ j kd → Γ ⊢Nf a ⇇ j → Γ ⊢Nf b ⇇ j → a ≈ b → Γ ⊢ a ≃ b ⇇ j ≈-≃ j-kd a⇇j b⇇j a≈b = <:-antisym j-kd (≈-<:⇇ j-kd a⇇j b⇇j a≈b) (≈-<:⇇ j-kd b⇇j a⇇j (≈-sym a≈b)) ≋-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → Γ ⊢ k kd → j ≋ k → Γ ⊢ j ≅ k ≋-≅ j-kd k-kd j≋k = <∷-antisym j-kd k-kd (≋-<∷ j-kd k-kd j≋k) (≋-<∷ k-kd j-kd (≋-sym j≋k))
{ "alphanum_fraction": 0.4194325021, "avg_line_length": 46.52, "ext": "agda", "hexsha": "8d733b3c2c5229aff0ca9d7ef80efee679a4234f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical/WeakEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical/WeakEquality.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical/WeakEquality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3847, "size": 5815 }
{-# OPTIONS --safe #-} module Cubical.Data.Int.MoreInts.DeltaInt where open import Cubical.Data.Int.MoreInts.DeltaInt.Base public open import Cubical.Data.Int.MoreInts.DeltaInt.Properties public
{ "alphanum_fraction": 0.8020304569, "avg_line_length": 28.1428571429, "ext": "agda", "hexsha": "9c7ad092263176adee9a4a645f9e21a989f73ac1", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Int/MoreInts/DeltaInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Int/MoreInts/DeltaInt.agda", "max_line_length": 64, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Int/MoreInts/DeltaInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 48, "size": 197 }
module Issue442 where postulate A : Set f : (P : A → A → Set) → (∀ {x} → P x x) → (∀ {x y z} → P y z → P x y → A) → A P : A → A → Set reflP : ∀ {x} → P x x g : ∀ {x y z} → P y z → P x y → A a : A a = f _ (λ {x} → reflP {x}) g -- Test case was: -- {-# OPTIONS --allow-unsolved-metas #-} -- a = f _ reflP g
{ "alphanum_fraction": 0.4276923077, "avg_line_length": 18.0555555556, "ext": "agda", "hexsha": "330b542b33e6a21fbeaed20f5188d4fd4a80c915", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue442.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue442.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue442.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 150, "size": 325 }
module Numeric.Rational where open import Prelude open import Numeric.Nat.GCD open import Numeric.Nat.GCD.Extended open import Numeric.Nat.GCD.Properties open import Numeric.Nat.Prime open import Numeric.Nat.Prime.Properties open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.Properties open import Tactic.Nat open import Tactic.Nat.Coprime record Rational : Set where no-eta-equality constructor ratio field numerator : Nat denominator : Nat ⦃ d>0 ⦄ : NonZero denominator n⊥d : Coprime numerator denominator open Rational public using (numerator; denominator) infixl 7 mkratio syntax mkratio p q = p :/ q mkratio : (p q : Nat) {{_ : NonZero q}} → Rational mkratio p q = gcdReduce-r p q λ p′ q′ _ _ _ prf → ratio p′ q′ prf mkratio-sound : (p q : Nat) {{_ : NonZero q}} → p * denominator (mkratio p q) ≡ q * numerator (mkratio p q) mkratio-sound p q with gcd p q ... | gcd-res d (is-gcd (factor! p′) (factor! q′) _) = auto NonZeroQ : Rational → Set NonZeroQ x = NonZero (numerator x) infixl 6 _+Q_ _-Q_ infixl 7 _*Q_ _/Q_ _+Q_ : Rational → Rational → Rational ratio n₁ d₁ n₁/d₁ +Q ratio n₂ d₂ n₂/d₂ = gcdReduce d₁ d₂ λ d₁′ d₂′ g eq₁ eq₂ d₁′/d₂′ → gcdReduce-r (n₁ * d₂′ + n₂ * d₁′) g λ s′ g′ g₁ eqs eqg s′/g′ → let instance _ = mul-nonzero d₁′ d₂′ _ = mul-nonzero (d₁′ * d₂′) g′ in ratio s′ (d₁′ * d₂′ * g′) $ let[ _ := lemma s′ n₁ d₁ n₂ d₂ d₁′ d₂′ g g₁ eqs eq₁ n₁/d₁ d₁′/d₂′ ] let[ _ := lemma s′ n₂ d₂ n₁ d₁ d₂′ d₁′ g g₁ (by eqs) eq₂ n₂/d₂ auto-coprime ] auto-coprime where lemma : ∀ s′ n₁ d₁ n₂ d₂ d₁′ d₂′ g g₁ → s′ * g₁ ≡ n₁ * d₂′ + n₂ * d₁′ → d₁′ * g ≡ d₁ → Coprime n₁ d₁ → Coprime d₁′ d₂′ → Coprime s′ d₁′ lemma s′ n₁ d₁ n₂ d₂ d₁′ d₂′ g g₁ eqs refl n₁/d₁ d₁′/d₂′ = coprimeByPrimes s′ d₁′ λ p isP p|s′ p|d₁′ → let p|n₁d₂′ : p Divides (n₁ * d₂′) p|n₁d₂′ = divides-sub-r {n₁ * d₂′} {n₂ * d₁′} (transport (p Divides_) eqs (divides-mul-l g₁ p|s′)) (divides-mul-r n₂ p|d₁′) p|d₁ : p Divides d₁ p|d₁ = divides-mul-l g p|d₁′ p/n₁ : Coprime p n₁ p/n₁ = case prime-coprime/divide p n₁ isP of λ where (left p/n₁) → p/n₁ (right p|n₁) → ⊥-elim (prime-divide-coprime p n₁ d₁ isP n₁/d₁ p|n₁ p|d₁) p|d₂′ : p Divides d₂′ p|d₂′ = coprime-divide-mul-l p n₁ d₂′ p/n₁ p|n₁d₂′ in divide-coprime p d₁′ d₂′ d₁′/d₂′ p|d₁′ p|d₂′ -- Specification for addition slowAddQ : Rational → Rational → Rational slowAddQ (ratio p q _) (ratio p₁ q₁ _) = mkratio (p * q₁ + p₁ * q) (q * q₁) ⦃ mul-nonzero q q₁ ⦄ _-Q_ : Rational → Rational → Rational ratio p q _ -Q ratio p₁ q₁ _ = mkratio (p * q₁ - p₁ * q) (q * q₁) ⦃ mul-nonzero q q₁ ⦄ -- Fast multiplication based on the same technique as the fast addition, except it's much -- simpler for multiplication. _*Q_ : Rational → Rational → Rational ratio n₁ d₁ _ *Q ratio n₂ d₂ _ = gcdReduce-r n₁ d₂ λ n₁′ d₂′ g₁ n₁′g₁=n₁ d₂′g₁=d₂ _ → gcdReduce-r n₂ d₁ λ n₂′ d₁′ g₂ n₂′g₂=n₂ d₁′g₂=d₁ _ → let instance _ = mul-nonzero d₁′ d₂′ in ratio (n₁′ * n₂′) (d₁′ * d₂′) $ case₄ n₁′g₁=n₁ , d₂′g₁=d₂ , n₂′g₂=n₂ , d₁′g₂=d₁ of λ where refl refl refl refl → auto-coprime -- Specification for multiplication slowMulQ : Rational → Rational → Rational slowMulQ (ratio p q _) (ratio p₁ q₁ _) = mkratio (p * p₁) (q * q₁) {{mul-nonzero q q₁}} recip : (x : Rational) {{_ : NonZeroQ x}} → Rational recip (ratio 0 q eq) {{}} recip (ratio (suc p) q eq) = ratio q (suc p) auto-coprime _/Q_ : (x y : Rational) {{_ : NonZeroQ y}} → Rational x /Q y = x *Q recip y instance FracQ : Fractional Rational Fractional.Constraint FracQ _ y = NonZeroQ y Fractional._/_ FracQ x y = x /Q y {-# DISPLAY _+Q_ a b = a + b #-} {-# DISPLAY _-Q_ a b = a - b #-} {-# DISPLAY _*Q_ a b = a * b #-} {-# DISPLAY ratio a b refl = a / b #-} instance NumberRational : Number Rational Number.Constraint NumberRational _ = ⊤ fromNat {{NumberRational}} n = n :/ 1 SemiringRational : Semiring Rational zro {{SemiringRational}} = 0 :/ 1 one {{SemiringRational}} = 1 :/ 1 _+_ {{SemiringRational}} = _+Q_ _*_ {{SemiringRational}} = _*Q_ ShowRational : Show Rational showsPrec {{ShowRational}} _ (ratio p 1 _) = shows p showsPrec {{ShowRational}} _ (ratio p q _) = shows p ∘ showString "/" ∘ shows q -- Ordering -- private module _ {p q eq p₁ q₁ eq₁} {{_ : NonZero q}} {{_ : NonZero q₁}} where ratio-inj₁ : ratio p q eq ≡ ratio p₁ q₁ eq₁ → p ≡ p₁ ratio-inj₁ refl = refl ratio-inj₂ : ratio p q eq ≡ ratio p₁ q₁ eq₁ → q ≡ q₁ ratio-inj₂ refl = refl cong-ratio : ∀ {p q eq p₁ q₁ eq₁} {nzq : NonZero q} {nzq₁ : NonZero q₁} → p ≡ p₁ → q ≡ q₁ → ratio p q ⦃ nzq ⦄ eq ≡ ratio p₁ q₁ ⦃ nzq₁ ⦄ eq₁ cong-ratio {q = zero} {nzq = ()} cong-ratio {q = suc q} refl refl = ratio _ _ $≡ smashed instance EqRational : Eq Rational _==_ {{EqRational}} (ratio p q prf) (ratio p₁ q₁ prf₁) with p == p₁ | q == q₁ ... | no p≠p₁ | _ = no (p≠p₁ ∘ ratio-inj₁) ... | yes _ | no q≠q₁ = no (q≠q₁ ∘ ratio-inj₂) ... | yes p=p₁ | yes q=q₁ = yes (cong-ratio p=p₁ q=q₁) data LessQ (x y : Rational) : Set where lessQ : numerator x * denominator y < numerator y * denominator x → LessQ x y private lem-unique : ∀ n₁ d₁ n₂ d₂ ⦃ _ : NonZero d₁ ⦄ ⦃ _ : NonZero d₂ ⦄ → Coprime n₁ d₁ → Coprime n₂ d₂ → n₁ * d₂ ≡ n₂ * d₁ → n₁ ≡ n₂ × d₁ ≡ d₂ lem-unique n₁ d₁ n₂ d₂ n₁⊥d₁ n₂⊥d₂ eq = let n₁|n₂ : n₁ Divides n₂ n₁|n₂ = coprime-divide-mul-r n₁ n₂ d₁ n₁⊥d₁ (factor d₂ (by eq)) n₂|n₁ : n₂ Divides n₁ n₂|n₁ = coprime-divide-mul-r n₂ n₁ d₂ n₂⊥d₂ (factor d₁ (by eq)) d₁|d₂ : d₁ Divides d₂ d₁|d₂ = coprime-divide-mul-r d₁ d₂ n₁ auto-coprime (factor n₂ (by eq)) d₂|d₁ : d₂ Divides d₁ d₂|d₁ = coprime-divide-mul-r d₂ d₁ n₂ auto-coprime (factor n₁ (by eq)) in divides-antisym n₁|n₂ n₂|n₁ , divides-antisym d₁|d₂ d₂|d₁ compareQ : ∀ x y → Comparison LessQ x y compareQ (ratio n₁ d₁ n₁⊥d₁) (ratio n₂ d₂ n₂⊥d₂) = case compare (n₁ * d₂) (n₂ * d₁) of λ where (less lt) → less (lessQ lt) (equal eq) → equal (uncurry cong-ratio (lem-unique n₁ d₁ n₂ d₂ n₁⊥d₁ n₂⊥d₂ eq)) (greater gt) → greater (lessQ gt) instance OrdQ : Ord Rational OrdQ = defaultOrd compareQ
{ "alphanum_fraction": 0.5933190316, "avg_line_length": 36.6629213483, "ext": "agda", "hexsha": "ceda205f02ea20312251f7ecabd83979f3fdd033", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Numeric/Rational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Numeric/Rational.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Numeric/Rational.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2635, "size": 6526 }
------------------------------------------------------------------------ -- Semantics of the simplified parsers ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Simplified.Semantics where open import Algebra open import Codata.Musical.Notation open import Data.Bool open import Data.List import Data.List.Properties private module LM {Tok : Set} = Monoid (Data.List.Properties.++-monoid Tok) open import Data.Product as Prod open import Function open import Data.Empty open import Relation.Binary.PropositionalEquality as P using (_≡_) open import StructurallyRecursiveDescentParsing.Simplified open import TotalParserCombinators.Parser using (○; ◌) open import TotalParserCombinators.Semantics as Semantics using ([_-_]_>>=_) renaming (_∈_·_ to _∈′_·_) open Semantics._∈_·_ ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infixl 10 _?>>=_ _!>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R e} → R → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣ˡ : ∀ {R x e₁ e₂ s} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ p₂ x · s₂) → y ∈ p₁ ?>>= p₂ · s₁ ++ s₂ _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ ♭ (p₂ x) · s₂) → y ∈ p₁ !>>= p₂ · s₁ ++ s₂ ------------------------------------------------------------------------ -- _∈_·_ is correct with respect to _∈′_·_ sound : ∀ {Tok e R} {p : Parser Tok e R} {x s} → x ∈ p · s → x ∈′ ⟦ p ⟧ · s sound return = return sound token = token sound (∣ˡ x∈p₁) = cast (∣-left (sound x∈p₁)) sound (∣ʳ _ {p₁} x∈p₂) = cast (∣-right (initial p₁) (sound x∈p₂)) sound (_?>>=_ {p₂ = p₂} x∈p₁ y∈p₂x) = cast ([_-_]_>>=_ ○ ○ {p₂ = λ x → ⟦ p₂ x ⟧} (sound x∈p₁) (sound y∈p₂x)) sound (x∈p₁ !>>= y∈p₂x) = [ ○ - ◌ ] sound x∈p₁ >>= sound y∈p₂x complete : ∀ {Tok e R} (p : Parser Tok e R) {x s} → x ∈′ ⟦ p ⟧ · s → x ∈ p · s complete (return x) return = return complete fail () complete token token = token complete (p₁ ∣ p₂) (cast (∣-left x∈p₁)) = ∣ˡ (complete p₁ x∈p₁) complete (_∣_ {e₁} p₁ p₂) (cast (∣-right ._ x∈p₂)) = ∣ʳ e₁ (complete p₂ x∈p₂) complete (p₁ ?>>= p₂) (cast (x∈p₁ >>= y∈p₂x)) = complete p₁ x∈p₁ ?>>= complete (p₂ _) y∈p₂x complete (p₁ !>>= p₂) (x∈p₁ >>= y∈p₂x) = complete p₁ x∈p₁ !>>= complete (♭ (p₂ _)) y∈p₂x ------------------------------------------------------------------------ -- A lemma -- A simple cast lemma. cast∈ : ∀ {Tok e R} {p p′ : Parser Tok e R} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈ ------------------------------------------------------------------------ -- A variant of the semantics -- The statement x ⊕ s₂ ∈ p · s means that there is some s₁ such that -- s ≡ s₁ ++ s₂ and x ∈ p · s₁. This variant of the semantics is -- perhaps harder to understand, but sometimes easier to work with -- (and it is proved equivalent to the semantics above). infix 4 _⊕_∈_·_ data _⊕_∈_·_ {Tok} : ∀ {R e} → R → List Tok → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} {s} → x ⊕ s ∈ return x · s token : ∀ {x s} → x ⊕ s ∈ token · x ∷ s ∣ˡ : ∀ {R x e₁ e₂ s s₁} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s s₁} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ⊕ s₁ ∈ p₂ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ p₂ x · s₁) → y ⊕ s₂ ∈ p₁ ?>>= p₂ · s _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ ♭ (p₂ x) · s₁) → y ⊕ s₂ ∈ p₁ !>>= p₂ · s -- The definition is sound and complete with respect to the one above. ⊕-sound′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → x ⊕ s₂ ∈ p · s → ∃ λ s₁ → (s ≡ s₁ ++ s₂) × (x ∈ p · s₁) ⊕-sound′ return = ([] , P.refl , return) ⊕-sound′ {x = x} token = ([ x ] , P.refl , token) ⊕-sound′ (∣ˡ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ˡ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ˡ x∈p₁′) ⊕-sound′ (∣ʳ e₁ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ʳ e₁ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ʳ e₁ x∈p₁′) ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ ?>>= y∈p₂x′) ⊕-sound′ (x∈p₁ !>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ !>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ !>>= y∈p₂x′) ⊕-sound : ∀ {Tok R e x s} {p : Parser Tok e R} → x ⊕ [] ∈ p · s → x ∈ p · s ⊕-sound x∈p with ⊕-sound′ x∈p ⊕-sound x∈p | (s , P.refl , x∈p′) with s ++ [] | proj₂ LM.identity s ⊕-sound x∈p | (s , P.refl , x∈p′) | .s | P.refl = x∈p′ extend : ∀ {Tok R e x s s′ s″} {p : Parser Tok e R} → x ⊕ s′ ∈ p · s → x ⊕ s′ ++ s″ ∈ p · s ++ s″ extend return = return extend token = token extend (∣ˡ x∈p₁) = ∣ˡ (extend x∈p₁) extend (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (extend x∈p₂) extend (x∈p₁ ?>>= y∈p₂x) = extend x∈p₁ ?>>= extend y∈p₂x extend (x∈p₁ !>>= y∈p₂x) = extend x∈p₁ !>>= extend y∈p₂x ⊕-complete : ∀ {Tok R e x s} {p : Parser Tok e R} → x ∈ p · s → x ⊕ [] ∈ p · s ⊕-complete return = return ⊕-complete token = token ⊕-complete (∣ˡ x∈p₁) = ∣ˡ (⊕-complete x∈p₁) ⊕-complete (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (⊕-complete x∈p₂) ⊕-complete (x∈p₁ ?>>= y∈p₂x) = extend (⊕-complete x∈p₁) ?>>= ⊕-complete y∈p₂x ⊕-complete (x∈p₁ !>>= y∈p₂x) = extend (⊕-complete x∈p₁) !>>= ⊕-complete y∈p₂x ⊕-complete′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → (∃ λ s₁ → s ≡ s₁ ++ s₂ × x ∈ p · s₁) → x ⊕ s₂ ∈ p · s ⊕-complete′ (s₁ , P.refl , x∈p) = extend (⊕-complete x∈p)
{ "alphanum_fraction": 0.4440308795, "avg_line_length": 44.2317073171, "ext": "agda", "hexsha": "36b4bf417ee4518bc210c2fae908010ddc2a7981", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Simplified/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Simplified/Semantics.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Simplified/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 3058, "size": 7254 }
-- Interpretation of signature arities module SOAS.Syntax.Arguments {T : Set} where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Variable open import SOAS.Families.Core {T} open import Data.List.Base using ([] ; _∷_ ; List) open import Data.Product open import Data.Unit -- List of arities as a product of terms in extended contexts Arg : List (Ctx × T) → Familyₛ → Family Arg [] 𝒳 Γ = ⊤ Arg ((Θ , τ) ∷ []) 𝒳 Γ = 𝒳 τ (Θ ∔ Γ) Arg ((Θ , τ) ∷ as) 𝒳 Γ = 𝒳 τ (Θ ∔ Γ) × Arg as 𝒳 Γ -- Functorial action and laws Arg₁ : {𝒳 𝒴 : Familyₛ} (as : List (Ctx × T)) → (𝒳 ⇾̣ 𝒴) → Arg as 𝒳 ⇾ Arg as 𝒴 Arg₁ [] f tt = tt Arg₁ ((Θ , τ) ∷ []) f t = f t Arg₁ ((Θ , τ) ∷ (Θ′ , τ′) ∷ as) f (t , ts) = (f t) , (Arg₁ ((Θ′ , τ′) ∷ as) f ts) Arg-id : {𝒳 : Familyₛ}{Γ : Ctx}(as : List (Ctx × T))(ts : Arg as 𝒳 Γ) → Arg₁ as id ts ≡ ts Arg-id [] ts = refl Arg-id (x ∷ []) t = refl Arg-id (x ∷ y ∷ ys) (t , ts) = cong (_ ,_) (Arg-id (y ∷ ys) ts) Arg-∘ : {𝒳 𝒴 𝒵 : Familyₛ}{Γ : Ctx}(as : List (Ctx × T)) → {f : 𝒳 ⇾̣ 𝒴}{g : 𝒴 ⇾̣ 𝒵} → (ts : Arg as 𝒳 Γ) → Arg₁ as (g ∘ f) ts ≡ Arg₁ as g (Arg₁ as f ts) Arg-∘ [] ts = refl Arg-∘ (x ∷ []) t = refl Arg-∘ (x ∷ y ∷ ys) (t , ts) = cong (_ ,_) (Arg-∘ (y ∷ ys) ts) Arg-resp : {𝒳 𝒴 : Familyₛ}{Γ : Ctx}(as : List (Ctx × T)) → {f g : 𝒳 ⇾̣ 𝒴} → ({τ : T}{Δ : Ctx}(x : 𝒳 τ Δ) → f x ≡ g x) → (ts : Arg as 𝒳 Γ) → Arg₁ as f ts ≡ Arg₁ as g ts Arg-resp [] p ts = refl Arg-resp (x ∷ []) p t = p t Arg-resp (x ∷ y ∷ ys) p (t , ts) = cong₂ _,_ (p t) (Arg-resp (y ∷ ys) p ts) ArgF : List (Ctx × T) → Functor 𝔽amiliesₛ 𝔽amilies ArgF as = record { F₀ = Arg as ; F₁ = Arg₁ as ; identity = Arg-id as _ ; homomorphism = Arg-∘ as _ ; F-resp-≈ = λ p → Arg-resp as (λ _ → p) _ }
{ "alphanum_fraction": 0.5061452514, "avg_line_length": 30.3389830508, "ext": "agda", "hexsha": "3f5c2639bf3c44afb3e9b8dd5d0ca20c07f4d67a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Syntax/Arguments.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Syntax/Arguments.agda", "max_line_length": 81, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Syntax/Arguments.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 825, "size": 1790 }
------------------------------------------------------------------------ -- Definitions of functions that generate list or vector ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.VecFunction where -- agda-stdlib open import Data.List open import Data.List.NonEmpty as NE using (List⁺) open import Data.Nat import Data.Nat.Properties as ℕₚ open import Data.Product as Prod using (_×_; _,_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Function open import Relation.Binary.PropositionalEquality hiding ([_]) -- agda-combinatorics import Math.Combinatorics.ListFunction as ListFun module _ {a} {A : Set a} where applyEach : ∀ {n} → (A → A) → Vec A n → Vec (Vec A n) n applyEach f [] = [] applyEach f (x ∷ xs) = (f x ∷ xs) ∷ Vec.map (x ∷_) (applyEach f xs) module _ {a} {A : Set a} where -- combinations combinations : ∀ k → List A → List (Vec A k) combinations 0 xs = [ [] ] combinations (suc k) [] = [] combinations (suc k) (x ∷ xs) = map (x ∷_) (combinations k xs) ++ combinations (suc k) xs combinationsWithComplement : ∀ m {n} → Vec A (m + n) → List (Vec A m × Vec A n) combinationsWithComplement 0 xs = [ [] , xs ] combinationsWithComplement m@(suc _) {0} xs = [ subst (Vec A) (ℕₚ.+-identityʳ m) xs , [] ] combinationsWithComplement (suc m) {suc n} (x ∷ xs) = map (Prod.map₁ (x ∷_)) (combinationsWithComplement m xs) ++ map (Prod.map₂ (x ∷_)) (combinationsWithComplement (suc m) xs′) where xs′ = subst (Vec A) (ℕₚ.+-suc m n) xs splits₂ : ∀ {n} → Vec A n → Vec (List A × List A) (1 + n) splits₂ [] = ([] , []) ∷ [] splits₂ xxs@(x ∷ xs) = ([] , Vec.toList xxs) ∷ Vec.map (Prod.map₁ (x ∷_)) (splits₂ xs) splits : ∀ k → List A → List (Vec (List A) k) splits 0 xs = [] splits 1 xs = [ xs ∷ [] ] splits (suc (suc k)) xs = concatMap f (splits (suc k) xs) where f : Vec (List A) (suc k) → List (Vec (List A) (suc (suc k))) f (ys ∷ yss) = map (λ { (as , bs) → as ∷ bs ∷ yss }) (ListFun.splits₂ ys) splits⁺₂ : ∀ {n} → Vec A (1 + n) → Vec (List⁺ A × List⁺ A) n splits⁺₂ (x ∷ []) = [] splits⁺₂ (x ∷ y ∷ xs) = (x NE.∷ [] , y NE.∷ Vec.toList xs) ∷ Vec.map (Prod.map₁ (x NE.∷⁺_)) (splits⁺₂ (y ∷ xs)) splits⁺ : ∀ k → List⁺ A → List (Vec (List⁺ A) k) splits⁺ 0 xs = [] splits⁺ 1 xs = [ xs ∷ [] ] splits⁺ (suc (suc k)) xs = concatMap f (splits⁺ (suc k) xs) where f : Vec (List⁺ A) (suc k) → List (Vec (List⁺ A) (suc (suc k))) f (ys ∷ yss) = map (λ { (as , bs) → as ∷ bs ∷ yss }) (ListFun.splits⁺₂ ys) partitions : ∀ k → List A → List (Vec (List A) k) partitions 0 [] = [ [] ] partitions 0 (x ∷ xs) = [] partitions (suc k) [] = [] partitions (suc k) (x ∷ xs) = map ([ x ] ∷_) (partitions k xs) ++ concatMap (Vec.toList ∘ applyEach (x ∷_)) (partitions (suc k) xs)
{ "alphanum_fraction": 0.508681672, "avg_line_length": 37.9268292683, "ext": "agda", "hexsha": "76f1d109daeb76425c1e07c1eff8aadde2faf1cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/VecFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/VecFunction.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/VecFunction.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 1081, "size": 3110 }
module ListAppend where open import Prelude append : forall {A} -> List A -> List A -> List A append xs ys = {!!} appendP1 : forall {x l l'} -> append (cons x l) l' == cons x (append l l') appendP1 = refl appendP2 : forall {l} -> append nil l == l appendP2 = refl
{ "alphanum_fraction": 0.6305970149, "avg_line_length": 20.6153846154, "ext": "agda", "hexsha": "756563353636edf1a8e2c7af5369684e756736e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "carlostome/martin", "max_forks_repo_path": "data/test-files/ListAppend.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "carlostome/martin", "max_issues_repo_path": "data/test-files/ListAppend.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "carlostome/martin", "max_stars_repo_path": "data/test-files/ListAppend.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 85, "size": 268 }
{-# OPTIONS --safe --warning=error --without-K #-} module Lists.Definition where data List {a : _} (A : Set a) : Set a where [] : List A _::_ : (x : A) (xs : List A) → List A infixr 10 _::_ {-# BUILTIN LIST List #-} [_] : {a : _} {A : Set a} → (a : A) → List A [ a ] = a :: [] _++_ : {a : _} {A : Set a} → List A → List A → List A [] ++ m = m (x :: l) ++ m = x :: (l ++ m)
{ "alphanum_fraction": 0.4607329843, "avg_line_length": 21.2222222222, "ext": "agda", "hexsha": "ad98d878552c6f72035eea9d0dc746bf0605d272", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Definition.agda", "max_line_length": 53, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 152, "size": 382 }
record ⊤ : Set where no-eta-equality constructor tt data D : ⊤ → Set where d : (x : ⊤) → D x test : (g : D tt) → Set test (d tt) = ⊤
{ "alphanum_fraction": 0.5281690141, "avg_line_length": 12.9090909091, "ext": "agda", "hexsha": "6116b63ce6a1e8eacda39387c66acae7d8031025", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2894.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2894.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2894.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 142 }
{-# OPTIONS --cubical --safe #-} module Function.Fiber where open import Level open import Data.Sigma.Base open import Path open import Cubical.Foundations.Everything using (fiber) public
{ "alphanum_fraction": 0.7789473684, "avg_line_length": 21.1111111111, "ext": "agda", "hexsha": "48b473264cd60ebd25a33b7530ed1708e3f1347d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function/Fiber.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function/Fiber.agda", "max_line_length": 63, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function/Fiber.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 46, "size": 190 }
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) module AKS.Nat.WellFounded where open import AKS.Nat.Base using (ℕ; _+_; _∸_; _≤_; _<_; lte) open ℕ open import AKS.Nat.Properties using (+-identityʳ; +-suc; ∸-mono-<ˡ; ∸-mono-<ʳ; suc-injective) data Acc {A : Set} (_≺_ : A → A → Set) (bound : A) : Set where acc : (∀ {lower : A} → lower ≺ bound → Acc _≺_ lower) → Acc _≺_ bound subrelation : ∀ {A : Set} {B : Set} {_≺₁_ : A → A → Set} {_≺₂_ : B → B → Set} {f : B → A} {n : B} → (∀ {x y} → x ≺₂ y → f x ≺₁ f y) → Acc _≺₁_ (f n) → Acc _≺₂_ n subrelation ≺₂⇒≺₁ (acc down) = acc λ x≺₂n → subrelation ≺₂⇒≺₁ (down (≺₂⇒≺₁ x≺₂n)) data _≤ⁱ_ : ℕ → ℕ → Set where ≤-same : ∀ {n} → n ≤ⁱ n ≤-step : ∀ {n m} → n ≤ⁱ m → n ≤ⁱ suc m _<ⁱ_ : ℕ → ℕ → Set n <ⁱ m = suc n ≤ⁱ m <⇒<ⁱ : ∀ {n m} → n < m → n <ⁱ m <⇒<ⁱ {n} {m} (lte zero refl) rewrite +-identityʳ n = ≤-same <⇒<ⁱ {n} {m} (lte (suc k) refl) = ≤-step (<⇒<ⁱ (lte k (sym (+-suc n k)))) <-well-founded : ∀ {n} → Acc _<_ n <-well-founded {n} = wf₁ n where wf₁ : ∀ t → Acc _<_ t wf₂ : ∀ t b → b <ⁱ t → Acc _<_ b wf₁ t = acc λ {b} b<t → wf₂ t b (<⇒<ⁱ b<t) wf₂ (suc t) b ≤-same = wf₁ t wf₂ (suc t) b (≤-step b<ⁱt) = wf₂ t b b<ⁱt record [_,_] (low : ℕ) (high : ℕ) : Set where inductive constructor acc field downward : ∀ {mid} → low ≤ mid → mid < high → [ low , mid ] upward : ∀ {mid} → low < mid → mid ≤ high → [ mid , high ] binary-search : ∀ {n m} → [ n , m ] binary-search {n} {m} = loop n m <-well-founded where loop : ∀ low high → Acc _<_ (high ∸ low) → [ low , high ] loop low high (acc next) = acc (λ {mid} low≤mid mid<high → loop low mid (next {mid ∸ low} (∸-mono-<ˡ low≤mid mid<high))) (λ {mid} low<mid mid≤high → loop mid high (next {high ∸ mid} (∸-mono-<ʳ mid≤high low<mid))) open import AKS.Unsafe using (trustMe) record Interval : Set where constructor [_,_∣_] field inf : ℕ sup : ℕ inf≤sup : inf ≤ sup open Interval width : Interval → ℕ width i = sup i ∸ inf i data _⊂_ (i₁ : Interval) (i₂ : Interval) : Set where downward : inf i₂ ≤ inf i₁ → sup i₁ < sup i₂ → i₁ ⊂ i₂ upward : inf i₂ < inf i₁ → sup i₁ ≤ sup i₂ → i₁ ⊂ i₂ ∸-monoˡ-< : ∀ {l₁ h₁ l₂ h₂} → l₁ ≤ h₁ → l₂ ≤ h₂ → l₂ ≤ l₁ → h₁ < h₂ → h₁ ∸ l₁ < h₂ ∸ l₂ ∸-monoˡ-< {l₁} {h₁} {l₂} {h₂} l₁≤h₁ l₂≤h₂ l₂≤l₁ h₁<h₂ = lte ((h₂ ∸ l₂) ∸ suc (h₁ ∸ l₁)) trustMe -- TODO: EVIL ∸-monoʳ-< : ∀ {l₁ h₁ l₂ h₂} → l₁ ≤ h₁ → l₂ ≤ h₂ → l₂ < l₁ → h₁ ≤ h₂ → h₁ ∸ l₁ < h₂ ∸ l₂ ∸-monoʳ-< {l₁} {h₁} {l₂} {h₂} l₁≤h₁ l₂≤h₂ l₂<l₁ h₁≤h₂ = lte ((h₂ ∸ l₂) ∸ suc (h₁ ∸ l₁)) trustMe ⊂⇒< : ∀ {i₁ i₂} → i₁ ⊂ i₂ → width i₁ < width i₂ ⊂⇒< {[ inf-i₁ , sup-i₁ ∣ inf-i₁≤sup-i₁ ]} {[ inf-i₂ , sup-i₂ ∣ inf-i₂≤sup-i₂ ]} (downward inf-i₂≤inf-i₁ sup-i₁<sup-i₂) = ∸-monoˡ-< inf-i₁≤sup-i₁ inf-i₂≤sup-i₂ inf-i₂≤inf-i₁ sup-i₁<sup-i₂ ⊂⇒< {[ inf-i₁ , sup-i₁ ∣ inf-i₁≤sup-i₁ ]} {[ inf-i₂ , sup-i₂ ∣ inf-i₂≤sup-i₂ ]} (upward inf-i₂<inf-i₁ sup-i₁≤sup-i₂) = ∸-monoʳ-< inf-i₁≤sup-i₁ inf-i₂≤sup-i₂ inf-i₂<inf-i₁ sup-i₁≤sup-i₂ ⊂-well-founded : ∀ {i} → Acc _⊂_ i ⊂-well-founded = subrelation ⊂⇒< <-well-founded
{ "alphanum_fraction": 0.5339961514, "avg_line_length": 33.8913043478, "ext": "agda", "hexsha": "6ad3f1bb806fe5fb883faaa4fe891f1fbbbb89aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Nat/WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Nat/WellFounded.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Nat/WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 1536, "size": 3118 }
{-# OPTIONS --without-K #-} module NTypes where open import Equivalence open import FunExt open import GroupoidStructure open import NTypes.Contractible open import PathOperations open import Transport open import Types isProp : ∀ {a} → Set a → Set _ isProp A = (x y : A) → x ≡ y isSet : ∀ {a} → Set a → Set _ isSet A = (x y : A) (p q : x ≡ y) → p ≡ q set→id-prop : ∀ {a} {A : Set a} → isSet A → {x y : A} → isProp (x ≡ y) set→id-prop A-set = A-set _ _ id-prop→set : ∀ {a} {A : Set a} → ({x y : A} → isProp (x ≡ y)) → isSet A id-prop→set f _ _ = f prop-eq : ∀ {a b} {A : Set a} {B : Set b} → A ≃ B → isProp A → isProp B prop-eq (f , (g , α) , (h , β)) A-prop x y = tr id ( ap (λ z → z ≡ f (g y)) (α x) · ap (λ z → x ≡ z) (α y) ) (ap f (A-prop (g x) (g y))) -- Levels. is-[_-2]-type : ℕ → ∀ {a} → Set a → Set a is-[ n -2]-type = ind (λ _ → Set _ → Set _) (λ _ r A → (x y : A) → r (x ≡ y)) isContr n -- isProp and is-(-1)-type. prop→-1-type : ∀ {a} {A : Set a} → isProp A → is-[ 1 -2]-type A prop→-1-type {A = A} A-prop x y = A-prop x y , path where split-path : {x y : A} (p : x ≡ y) → A-prop x y ≡ p · A-prop y y split-path = J (λ x y p → A-prop x y ≡ p · A-prop y y) (λ _ → refl) _ _ path : {x y : A} (p : x ≡ y) → A-prop x y ≡ p path = J (λ x y p → A-prop x y ≡ p) (λ x → split-path (A-prop x x ⁻¹) · p⁻¹·p (A-prop x x)) _ _ -1-type→prop : ∀ {a} {A : Set a} → is-[ 1 -2]-type A → isProp A -1-type→prop A-1 x y = π₁ (A-1 x y) -- isSet and is-0-type. set→0-type : ∀ {a} {A : Set a} → isSet A → is-[ 2 -2]-type A set→0-type A-set x y = prop→-1-type (A-set x y) 0-type→set : ∀ {a} {A : Set a} → is-[ 2 -2]-type A → isSet A 0-type→set A0 x y = -1-type→prop (A0 x y) -- Cumulativity. n-type-suc : ∀ n {a} {A : Set a} → is-[ n -2]-type A → is-[ suc n -2]-type A n-type-suc n = ind (λ n → ∀ {A} → is-[ n -2]-type A → is-[ suc n -2]-type A) (λ _ r h x y → r (h x y)) (λ h → prop→-1-type λ x y → π₂ h x ⁻¹ · π₂ h y) n -- From lectures. prop→set : ∀ {a} {A : Set a} → isProp A → isSet A prop→set A-prop x y p q = lem p · lem q ⁻¹ where g : _ g = A-prop x lem : (p : x ≡ y) → p ≡ g x ⁻¹ · g y lem p = id·p p ⁻¹ · ap (λ z → z · p) (p⁻¹·p (g x)) ⁻¹ · p·q·r (g x ⁻¹) (g x) p ⁻¹ · ap (λ z → g x ⁻¹ · z) ( tr-post x p (g x) ⁻¹ · apd g p ) isProp-is-prop : ∀ {a} {A : Set a} → isProp (isProp A) isProp-is-prop f g = funext λ x → funext λ y → prop→set f _ _ (f x y) (g x y) isSet-is-prop : ∀ {a} {A : Set a} → isProp (isSet A) isSet-is-prop f g = funext λ x → funext λ y → funext λ p → funext λ q → prop→set (f x y) _ _ (f x y p q) (g x y p q)
{ "alphanum_fraction": 0.4830258303, "avg_line_length": 23.3620689655, "ext": "agda", "hexsha": "1842fc52187acd383680a1444c5e1e7b97a0e9f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1243, "size": 2710 }
module InstanceMeta where data Bool : Set where true false : Bool data Maybe (A : Set) : Set where Nothing : Maybe A Just : A → Maybe A record Eq (A : Set) : Set where constructor eq field _==_ : A → A → Bool open Eq {{...}} public instance eq-Bool : Eq Bool eq-Bool = eq aux where aux : Bool → Bool → Bool aux true true = true aux false false = true aux _ _ = false eq-Maybe : {A : Set} {{_ : Eq A}} → Eq (Maybe A) eq-Maybe {A} = eq aux where aux : Maybe A → Maybe A → Bool aux Nothing Nothing = true aux (Just y) (Just z) = (y == z) aux _ _ = false test : Bool test = {!!} == {!!} -- This should not loop, only produce unsolved metas
{ "alphanum_fraction": 0.5814285714, "avg_line_length": 19.4444444444, "ext": "agda", "hexsha": "b71396b035fd8146a89bb09f39f98d1557e634c2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/InstanceMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/InstanceMeta.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/InstanceMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 228, "size": 700 }
------------------------------------------------------------------------------ -- The alternating bit protocol (ABP) is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the ABP following the -- formalization in Dybjer and Sander (1989). -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.ABP.CorrectnessProofATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesATP using ( not-Bool ) open import FOTC.Data.Stream.Type open import FOTC.Data.Stream.Equality.PropertiesATP open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.Lemma1ATP open import FOTC.Program.ABP.Lemma2ATP open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Terms open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- Main theorem. abpCorrect : ∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is → is ≈ abpTransfer b os₁ os₂ is abpCorrect {b} {os₁} {os₂} {is} Bb Fos₁ Fos₂ Sis = ≈-coind B h₁ h₂ where postulate h₁ : ∀ {ks ls} → B ks ls → ∃[ k' ] ∃[ ks' ] ∃[ ls' ] ks ≡ k' ∷ ks' ∧ ls ≡ k' ∷ ls' ∧ B ks' ls' {-# ATP prove h₁ lemma₁ lemma₂ not-Bool #-} postulate h₂ : B is (abpTransfer b os₁ os₂ is) {-# ATP prove h₂ #-} ------------------------------------------------------------------------------ -- abpTransfer produces a Stream. postulate abpTransfer-Stream : ∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is → Stream (abpTransfer b os₁ os₂ is) {-# ATP prove abpTransfer-Stream ≈→Stream₂ abpCorrect #-} ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter and Sander, Herbert P. (1989). A Functional -- Programming Approach to the Specification and Verification of -- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
{ "alphanum_fraction": 0.5323193916, "avg_line_length": 38.1774193548, "ext": "agda", "hexsha": "26eeff152dcad74d3bb5e9109ee0161f62914cd7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 583, "size": 2367 }
module Sessions.Semantics.Expr where open import Prelude open import Data.Fin open import Relation.Unary.PredicateTransformer hiding (_⊔_) open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Monad.Reader open import Sessions.Syntax.Types open import Sessions.Syntax.Values open import Sessions.Syntax.Expr open import Sessions.Semantics.Commands open import Sessions.Semantics.Runtime open import Relation.Ternary.Separation.Construct.List Type open import Relation.Ternary.Separation.Monad.Free Cmd δ hiding (⟪_⟫) open import Relation.Ternary.Separation.Monad.Error open ErrorTrans Free {{monad = free-monad}} public open ReaderTransformer id-morph Val (ErrorT Free) {{error-monad}} renaming (Reader to M) public open Monads using (Monad; str; _&_) open Monad reader-monad mutual eval⊸ : ∀ {Γ} → ℕ → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ⱼ M Γ [] (Val b) ] eval⊸ n e v = do (clos e env) ×⟨ σ₂ ⟩ v ← ►eval n e & v empty ← append (cons (v ×⟨ ⊎-comm σ₂ ⟩ env)) ►eval n e ►eval : ℕ → Exp a Γ → ε[ M Γ [] (Val a) ] app (►eval zero e) _ _ = partial (pure (inj₁ err)) ►eval (suc n) e = eval n e ⟪_⟫ : ∀ {Γ Φ} → (c : Cmd Φ) → M Γ Γ (δ c) Φ app (⟪_⟫ c) (inj E) σ = partial (impure (c ×⟨ σ ⟩ wand λ r σ' → pure (inj₂ (r ×⟨ ⊎-comm σ' ⟩ E)))) eval : ℕ → Exp a Γ → ε[ M Γ [] (Val a) ] eval n unit = do return tt eval n (var refl) = do (v :⟨ σ ⟩: nil) ← ask case ⊎-id⁻ʳ σ of λ where refl → return v eval n (lam a e) = do env ← ask return (clos e env) eval n (ap (f ×⟨ Γ≺ ⟩ e)) = do v ← frame (⊎-comm Γ≺) (►eval n e) eval⊸ n f v eval n (pairs (e₁ ×⟨ Γ≺ ⟩ e₂)) = do v₁ ← frame Γ≺ (►eval n e₁) v₂⋆v₂ ← ►eval n e₂ & v₁ return (pairs (✴-swap v₂⋆v₂)) eval n (letunit (e₁ ×⟨ Γ≺ ⟩ e₂)) = do tt ← frame Γ≺ (►eval n e₁) ►eval n e₂ eval n (letpair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do pairs (v₁ ×⟨ σ ⟩ v₂) ← frame Γ≺ (►eval n e₁) empty ← prepend (cons (v₁ ×⟨ σ ⟩ singleton v₂)) ►eval n e₂ eval n (send (e₁ ×⟨ Γ≺ ⟩ e₂)) = do v₁ ← frame Γ≺ (►eval n e₁) cref φ ×⟨ σ ⟩ v₁ ← ►eval n e₂ & v₁ φ' ← ⟪ send (φ ×⟨ σ ⟩ v₁) ⟫ return (cref φ') eval n (recv e) = do cref φ ← ►eval n e v ×⟨ σ ⟩ φ' ← ⟪ receive φ ⟫ return (pairs (cref φ' ×⟨ ⊎-comm σ ⟩ v)) eval n (mkchan α) = do φₗ ×⟨ σ ⟩ φᵣ ← ⟪ mkchan α ⟫ return (pairs (cref φₗ ×⟨ σ ⟩ cref φᵣ)) eval n (fork e) = do clos body env ← ►eval n e empty ← ⟪ fork (app (runReader (cons (tt ×⟨ ⊎-idˡ ⟩ env))) (►eval n body) ⊎-idʳ) ⟫ return tt eval n (terminate e) = do cref φ ← ►eval n e empty ← ⟪ close φ ⟫ return tt
{ "alphanum_fraction": 0.5737344094, "avg_line_length": 26.7254901961, "ext": "agda", "hexsha": "10c98468dd70135bd5ff3ec0f98284cf4d934782", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Semantics/Expr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Semantics/Expr.agda", "max_line_length": 80, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Semantics/Expr.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1105, "size": 2726 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids where open import Level open import Relation.Binary using (Setoid; module Setoid; Preorder) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) import Relation.Binary.Reasoning.Setoid as RS open import Function.Equality using (Π) open import Relation.Binary.Indexed.Heterogeneous using (_=[_]⇒_) open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_) import Relation.Binary.Construct.Symmetrize as Symmetrize open Symmetrize hiding (setoid; trans; sym) open import Data.Unit using (⊤; tt) open import Categories.Category using (Category; _[_,_]) open import Categories.Functor open import Categories.Category.Instance.Setoids open import Categories.Diagram.Cocone open import Categories.Category.Construction.Cocones hiding (Cocone) open import Categories.Diagram.Cone open import Categories.Category.Complete open import Categories.Category.Cocomplete Setoids-Cocomplete : (o ℓ e c ℓ′ : Level) → Cocomplete o ℓ e (Setoids (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′)) Setoids-Cocomplete o ℓ e c ℓ′ {J} F = record { initial = record { ⊥ = record { N = ⇛-Setoid ; coapex = record { ψ = λ j → record { _⟨$⟩_ = j ,_ ; cong = λ i≈k → disorient (slish (J.id , identity i≈k)) } ; commute = λ {X} X⇒Y x≈y → disorient (slash (X⇒Y , cong (F₁ X⇒Y) (Setoid.sym (F₀ X) x≈y))) } } ; ! = λ {A} → record { arr = record { _⟨$⟩_ = to-coapex A ; cong = λ eq → minimal ⇛-preorder (Cocone.N A) (to-coapex A) (coapex-cong A) eq } ; commute = λ {X} x≈y → cong (Coapex.ψ (Cocone.coapex A) X) x≈y } ; !-unique = λ {A} cocone⇒ x⇛y → Setoid.trans (Cocone.N A) (Setoid.sym (Cocone.N A) (Cocone⇒.commute cocone⇒ (refl (F₀ _)))) (cong (Cocone⇒.arr cocone⇒) x⇛y) } } where open Setoid open Π open Functor F D = Cocones F module J = Category J C = Setoids _ _ setoid : J.Obj → Category.Obj C setoid j = F₀ j module S (j : J.Obj) = Setoid (setoid j) open S using () renaming (_≈_ to _[_≈_]) vertex-carrier = Σ[ j ∈ J.Obj ] Carrier (setoid j) _⇛_ : (x y : vertex-carrier) → Set _ (X , x) ⇛ (Y , y) = Σ[ f ∈ J [ X , Y ] ] ( Y [ (F₁ f ⟨$⟩ x) ≈ y ]) ⇛-preorder : Preorder _ _ _ ⇛-preorder = record { Carrier = vertex-carrier ; _≈_ = _≡_ ; _∼_ = _⇛_ ; isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = λ { {i , Fi} {.i , .Fi} ≡.refl → J.id , Functor.identity F (refl (F₀ i))} ; trans = λ { {i , Fi} {j , Fj} {k , Fk} i≈j j≈k → proj₁ j≈k J.∘ proj₁ i≈j , let S = F₀ k in let open RS S in begin F₁ (proj₁ j≈k J.∘ proj₁ i≈j) ⟨$⟩ Fi ≈⟨ homomorphism (refl (F₀ i)) ⟩ F₁ (proj₁ j≈k) ⟨$⟩ (F₁ (proj₁ i≈j) ⟨$⟩ Fi) ≈⟨ cong (F₁ (proj₁ j≈k)) (proj₂ i≈j) ⟩ F₁ (proj₁ j≈k) ⟨$⟩ Fj ≈⟨ proj₂ j≈k ⟩ Fk ∎} } } ⇛-Setoid : Setoid (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′) ⇛-Setoid = Symmetrize.setoid ⇛-preorder to-coapex : (A : Cocone F) → vertex-carrier → Carrier (Cocone.N A) to-coapex A (j , Fj) = Cocone.ψ A j ⟨$⟩ Fj coapex-cong : (A : Cocone F) → _⇛_ =[ to-coapex A ]⇒ (_≈_ (Cocone.N A)) coapex-cong A {X , x} {Y , y} (f , fx≈y) = Setoid.trans A.N (Setoid.sym A.N (A.commute f (refl (F₀ X)))) (cong (A.ψ Y) fx≈y) where module A = Cocone A Setoids-Complete : (o ℓ e c ℓ′ : Level) → Complete o ℓ e (Setoids (ℓ′ ⊔ ℓ ⊔ o) (o ⊔ ℓ′)) Setoids-Complete o ℓ e c ℓ′ {J} F = record { terminal = record { ⊤ = record { N = record { Carrier = Σ ((j : Category.Obj J) → Setoid.Carrier (F₀ j)) (λ P → ∀ {X Y} (f : J [ X , Y ]) → Setoid._≈_ (F₀ Y) (F₁ f Π.⟨$⟩ P X) (P Y)) ; _≈_ = λ f g → ∀ (j : Category.Obj J) → Setoid._≈_ (F₀ j) (proj₁ f j) (proj₁ g j) ; isEquivalence = record { refl = λ j → Setoid.refl (F₀ j) ; sym = λ a≈b j → Setoid.sym (F₀ j) (a≈b j) ; trans = λ a≈b b≈c j → Setoid.trans (F₀ j) (a≈b j) (b≈c j) } } ; apex = record { ψ = λ j → record { _⟨$⟩_ = λ x → proj₁ x j ; cong = λ x → x j } ; commute = λ {X} {Y} X⇒Y {x} {y} f≈g → Setoid.trans (F₀ Y) (proj₂ x X⇒Y) (f≈g Y) } } ; ! = λ {A} → record { arr = record { _⟨$⟩_ = λ x → (λ j → ψ A j Π.⟨$⟩ x) , λ {X} {Y} f → commute A f (Setoid.refl (N A)) ; cong = λ a≈b j → Π.cong (ψ A j) a≈b } ; commute = λ {j} x≈y → Π.cong (ψ A j) x≈y } ; !-unique = λ {A} f x≈y j → Setoid.sym (F₀ j) (Cone⇒.commute f (Setoid.sym (N A) x≈y)) } } where open Functor F S : Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) S = Setoids c ℓ open Category S open Cone
{ "alphanum_fraction": 0.5372916667, "avg_line_length": 37.7952755906, "ext": "agda", "hexsha": "5f0ee523914f067745f62db85fcacb432565abf7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Instance/Properties/Setoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Instance/Properties/Setoids.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Instance/Properties/Setoids.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1960, "size": 4800 }
module 040-monoid where -- We need semigroups. open import 030-semigroup -- The next useful structure is a monoid, which is a semigroup with -- (left and right) identity element. record Monoid {M : Set} (_==_ : M -> M -> Set) (_*_ : M -> M -> M) (id : M) : Set1 where field semigroup : SemiGroup _==_ _*_ r*id==r : ∀ {r} -> (r * id) == r id*r==r : ∀ {r} -> (id * r) == r open SemiGroup semigroup public -- Should we define powers? We cannot do this yet: we need natural -- numbers first, which we do not have yet. -- Let us prove some facts. -- Identity can occur on either side of the equality. r==r*id : ∀ {r} -> r == (r * id) r==r*id = symm r*id==r r==id*r : ∀ {r} -> r == (id * r) r==id*r = symm id*r==r -- The identity element is unique (both left and right). idleftunique : ∀ {r} -> (∀ {s} -> (r * s) == s) -> (r == id) idleftunique r*s==s = trans r==r*id r*s==s idrightunique : ∀ {r} -> (∀ {s} -> (s * r) == s) -> (r == id) idrightunique s*r==s = trans r==id*r s*r==s
{ "alphanum_fraction": 0.5500963391, "avg_line_length": 25.3170731707, "ext": "agda", "hexsha": "3bb25b3ff0e2aa3e6794261ff400cd916318b5c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "040-monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "040-monoid.agda", "max_line_length": 68, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "040-monoid.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 378, "size": 1038 }
open import Agda.Builtin.Coinduction open import Agda.Builtin.Equality record Reveal_·_is_ {A : Set} {B : A → Set} (f : (x : A) → B x) (x : A) (y : B x) : Set where constructor [_] field eq : f x ≡ y inspect : {A : Set} {B : A → Set} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A infix 4 _≈_ data _≈_ {A} : Stream A → Stream A → Set where _∷_ : ∀ {x y xs ys} (x≡ : x ≡ y) (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ y ∷ ys map : ∀ {A B} → (A → B) → Stream A → Stream B map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) map₂ : ∀ {A B} → (A → B) → Stream A → Stream B map₂ f (x ∷ xs) with ♭ xs map₂ f (x ∷ xs) | y ∷ ys = f x ∷ ♯ (f y ∷ ♯ map₂ f (♭ ys)) map≈map₂ : ∀ {A B} → (f : A → B) → (xs : Stream A) → map f xs ≈ map₂ f xs map≈map₂ {A} f (x ∷ xs) with ♭ xs | inspect ♭ xs map≈map₂ {A} f (x ∷ xs) | y ∷ ys | [ eq ] = refl ∷ ♯ helper eq where map-f-y∷ys = _ helper : ∀ {xs} → xs ≡ y ∷ ys → map f xs ≈ map-f-y∷ys helper refl = refl ∷ ♯ map≈map₂ f (♭ ys)
{ "alphanum_fraction": 0.465095986, "avg_line_length": 27.9512195122, "ext": "agda", "hexsha": "a96aa047c638690c0f49583c4b14f172aa26f68e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2322.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2322.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2322.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 524, "size": 1146 }
import Lvl open import Structure.Setoid open import Type module Automaton.Deterministic where open import Data.List renaming (∅ to ε ; _⊰_ to _·_) open import Data.List.Setoid open import Data.List.Functions using (postpend ; _++_) open import Data.List.Proofs open import Functional open import Logic open import Sets.ExtensionalPredicateSet using (PredSet ; intro ; _∈_ ; _∋_ ; ⊶ ; [∋]-binaryRelator) import Structure.Function.Names as Names open import Structure.Operator open import Structure.Relator.Properties -- According to http://www.cse.chalmers.se/edu/course/TMV027/lec5.pdf private variable ℓₚ ℓₛ ℓₑ₁ ℓₐ ℓₑ₂ : Lvl.Level module _ {ℓₚ} (State : Type{ℓₛ}) ⦃ equiv-state : Equiv{ℓₑ₁}(State) ⦄ (Alphabet : Type{ℓₐ}) ⦃ equiv-alphabet : Equiv{ℓₑ₂}(Alphabet) ⦄ where -- Deterministic Automata -- `State` (Q) is the set of states. -- `Alphabet` (Σ) is the set of symbols/the alphabet. -- `transition` (δ) is the transition function. -- `start` (q₀) is the start state. -- `Final` (F) is the subset of State which are the final/accepting states. record Deterministic : Type{ℓₛ Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₐ Lvl.⊔ Lvl.𝐒(ℓₚ)} where constructor deterministic field transition : State → Alphabet → State ⦃ transition-binaryOperator ⦄ : BinaryOperator(transition) start : State Final : PredSet{ℓₚ}(State) Word = List(Alphabet) -- Chained transition using a word (list of characters). wordTransition : State → Word → State wordTransition initialState ε = initialState wordTransition initialState (a · l) = wordTransition (transition initialState a) l module LetterNotation where Q = State Σ = Alphabet δ = transition δ̂ = wordTransition q₀ = start F = Final -- A word is accepted by the automaton when it can transition from the start state to a final state. AcceptsWord : Word → Stmt AcceptsWord = (_∈ Final) ∘ wordTransition start transitionedAutomaton : Alphabet → Deterministic transition (transitionedAutomaton _) = transition start (transitionedAutomaton c) = transition start c Final (transitionedAutomaton _) = Final wordTransitionedAutomaton : Word → Deterministic transition (wordTransitionedAutomaton _) = transition start (wordTransitionedAutomaton w) = wordTransition start w Final (wordTransitionedAutomaton _) = Final module _ {State : Type{ℓₛ}} ⦃ equiv-state : Equiv{ℓₑ₁}(State) ⦄ {Alphabet : Type{ℓₐ}} ⦃ equiv-alphabet : Equiv{ℓₑ₂}(Alphabet) ⦄ {d : Deterministic{ℓₚ = ℓₚ}(State)(Alphabet)} where open import Data.List.Equiv open import Structure.Operator.Properties open import Syntax.Transitivity open Deterministic(d) instance wordTransition-binaryOperator : BinaryOperator(wordTransition) wordTransition-binaryOperator = intro p where p : Names.Congruence₂(wordTransition) p {x₂ = ε} {y₂ = ε} xy1 xy2 = xy1 p {x₂ = c₁ · w₁} {y₂ = c₂ · w₂} xy1 xy2 = p{x₂ = w₁}{y₂ = w₂} (congruence₂(transition) xy1 ([⊰]-generalized-cancellationᵣ xy2)) ([⊰]-generalized-cancellationₗ xy2) wordTransition-postpend : ∀{s}{w}{a} → ((wordTransition s (postpend a w)) ≡ transition (wordTransition s w) a) wordTransition-postpend {s}{ε} {a} = reflexivity(_≡_) {x = transition s a} wordTransition-postpend {s}{x · w}{a} = wordTransition-postpend {transition s x}{w}{a} -- Note: ((swap ∘ wordTransition) d (w₁ ++ w₂) ⊜ (swap ∘ wordTransition) d w₂ ∘ (swap ∘ wordTransition) d w₁) wordTransition-[++] : ∀{s}{w₁ w₂} → (wordTransition s (w₁ ++ w₂) ≡ (wordTransition (wordTransition s w₁) w₂)) wordTransition-[++] {s = s} {w₁ = w₁} {w₂ = ε} = wordTransition s (w₁ ++ ε) 🝖[ _≡_ ]-[ congruence₂ᵣ(wordTransition)(s) (identityᵣ(_++_)(ε) {w₁}) ] wordTransition s w₁ 🝖[ _≡_ ]-[] wordTransition (wordTransition s w₁) ε 🝖-end wordTransition-[++] {s = s} {w₁ = w₁} {w₂ = c₂ · w₂} = wordTransition s (w₁ ++ (c₂ · w₂)) 🝖[ _≡_ ]-[ congruence₂ᵣ(wordTransition)(s) ([++]-middle-prepend-postpend{l₁ = w₁}) ]-sym wordTransition s (postpend c₂ w₁ ++ w₂) 🝖[ _≡_ ]-[ wordTransition-[++] {s = s}{w₁ = postpend c₂ w₁}{w₂ = w₂} ] wordTransition (wordTransition s (postpend c₂ w₁)) w₂ 🝖[ _≡_ ]-[ congruence₂ₗ(wordTransition)(w₂) (wordTransition-postpend{s = s}{w = w₁}) ] wordTransition (transition (wordTransition s w₁) c₂) w₂ 🝖-end
{ "alphanum_fraction": 0.6589147287, "avg_line_length": 43, "ext": "agda", "hexsha": "334a7c8be4aecf9d3e0598abd872370f7f91ca50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Automaton/Deterministic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Automaton/Deterministic.agda", "max_line_length": 169, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Automaton/Deterministic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1492, "size": 4515 }
module PiFrac.AuxLemmas where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → ⟨ c ∣ v ∣ κ ⟩ ↦ [ c' ∣ v' ∣ κ' ] → (A ≡ C × B ≡ D) Lemma₁ ↦₁ = refl , refl Lemma₁ ↦₂ = refl , refl Lemma₁ ↦η = refl , refl Lemma₁ ↦ε₁ = refl , refl Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → ⟨ c ∣ v ∣ κ ⟩ ↦ [ c' ∣ v' ∣ κ' ] → c ≡ c' × κ ≡ κ' Lemma₂ ↦₁ = refl , refl Lemma₂ ↦₂ = refl , refl Lemma₂ ↦η = refl , refl Lemma₂ ↦ε₁ = refl , refl Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B} → (r : ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ v' ∣ κ ]) → base c ⊎ dual c ⊎ A ≡ B Lemma₃ (↦₁ {b = b}) = inj₁ b Lemma₃ ↦₂ = inj₂ (inj₂ refl) Lemma₃ ↦η = inj₂ (inj₁ tt) Lemma₃ ↦ε₁ = inj₂ (inj₁ tt) Lemma₄ : ∀ {A v v' κ} {c : A ↔ A} → (r : ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ v' ∣ κ ]) → base c ⊎ c ≡ id↔ Lemma₄ {c = swap₊} ↦₁ = inj₁ tt Lemma₄ {c = swap⋆} ↦₁ = inj₁ tt Lemma₄ ↦₂ = inj₂ refl Lemma₅ : ∀ {A B v v' b κ} {c : A ↔ B ×ᵤ 𝟙/ b} → (r : ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ v' ∣ κ ]) → base c ⊎ (b , ↻) ≡ v' ⊎ ¬ (dual c) Lemma₅ (↦₁ {b = b}) = inj₁ b Lemma₅ ↦₂ = inj₂ (inj₂ (λ ())) Lemma₅ ↦η = inj₂ (inj₁ refl) Lemma₆ : ∀ {A v v' κ} → v ≢ v' → ∄[ st' ] (st' ↦ [ ηₓ {A} v ∣ v' , ↻ ∣ κ ]) Lemma₆ neq (⟨ _ ∣ v ∣ _ ⟩ , r) with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with Lemma₅ r ... | inj₂ (inj₁ refl) = neq refl ... | inj₂ (inj₂ nd) = nd tt
{ "alphanum_fraction": 0.5103857567, "avg_line_length": 29.0517241379, "ext": "agda", "hexsha": "d78d4e4805fafa8d137cbc7da5dbefae4aaf82db", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/AuxLemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/AuxLemmas.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/AuxLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 802, "size": 1685 }
------------------------------------------------------------------------------ -- Testing anonymous module ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- No top-level module postulate D : Set _≡_ : D → D → Set postulate foo : ∀ t → t ≡ t {-# ATP prove foo #-}
{ "alphanum_fraction": 0.3438155136, "avg_line_length": 26.5, "ext": "agda", "hexsha": "104feb59cdacc31b1c29909fd9684ec8f482b7a4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/NonTopLevelModuleName.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/NonTopLevelModuleName.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/NonTopLevelModuleName.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 85, "size": 477 }
module Tactic.Nat.Subtract.Lemmas where open import Prelude open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Container.Bag open import Tactic.Nat.Simpl open import Prelude.Nat.Properties open import Prelude.List.Properties open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Auto open import Tactic.Nat.Simpl open import Tactic.Nat.Subtract.Exp sub-cancel : (a : Nat) → a - a ≡ 0 sub-cancel zero = refl sub-cancel (suc a) = sub-cancel a sub-add-r : (a b c : Nat) → a - (b + c) ≡ a - b - c sub-add-r a zero c = refl sub-add-r zero (suc b) zero = refl sub-add-r zero (suc b) (suc c) = refl sub-add-r (suc a) (suc b) c = sub-add-r a b c lem-sub-zero : (a b c : Nat) → b + c ≡ a → c ≡ a - b lem-sub-zero ._ zero c refl = refl lem-sub-zero ._ (suc b) c refl = lem-sub-zero _ b c refl lem-zero-sub : (a b c : Nat) → b ≡ a + c → 0 ≡ a - b lem-zero-sub zero ._ zero refl = refl lem-zero-sub zero ._ (suc c) refl = refl lem-zero-sub (suc a) ._ c refl = lem-zero-sub a _ c refl lem-sub : (a b u v : Nat) → b + u ≡ a + v → u - v ≡ a - b lem-sub zero zero u ._ refl = sub-cancel u lem-sub zero (suc b) u ._ refl = sym $ lem-zero-sub u (suc b + u) (suc b) auto lem-sub (suc a) zero ._ v refl = sym $ lem-sub-zero (suc a + v) v (suc a) auto lem-sub (suc a) (suc b) u v eq = lem-sub a b u v (suc-inj eq) sub-mul-distr-l : (a b c : Nat) → (a - b) * c ≡ a * c - b * c sub-mul-distr-l zero b c = (_* c) $≡ lem-zero-sub 0 b b refl ʳ⟨≡⟩ lem-zero-sub 0 (b * c) (b * c) refl sub-mul-distr-l (suc a) zero c = refl sub-mul-distr-l (suc a) (suc b) c = sub-mul-distr-l a b c ⟨≡⟩ lem-sub (suc a * c) (suc b * c) (a * c) (b * c) auto sub-mul-distr-r : (a b c : Nat) → a * (b - c) ≡ a * b - a * c sub-mul-distr-r a b c = auto ⟨≡⟩ sub-mul-distr-l b c a ⟨≡⟩ cong₂ _-_ (mul-commute b a) (mul-commute c a) -- The evaluator that doesn't generate x * 1 + 0 is the same as the -- one that does. lem-eval-sns-sn : ∀ n ρ → ⟦ n ⟧sns ρ ≡ ⟦ n ⟧sn ρ private lem-eval-sns-sn-t : ∀ t ρ → ⟦ t ⟧sts ρ ≡ ⟦ t ⟧st ρ lem-eval-sns-sn-a : ∀ a ρ → ⟦ a ⟧sas ρ ≡ ⟦ a ⟧sa ρ lem-eval-sns-sn-a (var x) ρ = refl lem-eval-sns-sn-a (a ⟨-⟩ b) ρ = _-_ $≡ lem-eval-sns-sn a ρ *≡ lem-eval-sns-sn b ρ lem-eval-sns-sn-t [] ρ = refl lem-eval-sns-sn-t (x ∷ []) ρ = lem-eval-sns-sn-a x ρ ⟨≡⟩ auto lem-eval-sns-sn-t (x ∷ y ∷ t) ρ = _*_ $≡ lem-eval-sns-sn-a x ρ *≡ lem-eval-sns-sn-t (y ∷ t) ρ lem-eval-sns-sn [] ρ = refl lem-eval-sns-sn ((k , t) ∷ []) ρ = _*_ k $≡ lem-eval-sns-sn-t t ρ ⟨≡⟩ auto lem-eval-sns-sn ((k , t) ∷ t₁ ∷ n) ρ = _+_ $≡ (_*_ k $≡ lem-eval-sns-sn-t t ρ) *≡ lem-eval-sns-sn (t₁ ∷ n) ρ -- The evaluation that the termination checker lets us write is the -- same as the one we want to write. private lem-eval-sn-n-t : ∀ t ρ → ⟦ t ⟧st ρ ≡ productR (map (atomEnv ρ) t) lem-eval-sn-n-t [] ρ = refl lem-eval-sn-n-t (x ∷ t) ρ = (⟦ x ⟧sa ρ *_) $≡ lem-eval-sn-n-t t ρ lem-eval-sn-n : ∀ n ρ → ⟦ n ⟧sn ρ ≡ ⟦ n ⟧n (atomEnv ρ) lem-eval-sn-n [] ρ = refl lem-eval-sn-n ((k , t) ∷ n) ρ = _+_ $≡ (_*_ k $≡ lem-eval-sn-n-t t ρ) *≡ lem-eval-sn-n n ρ private lem-env : ∀ ρ x → atomEnvS ρ x ≡ atomEnv ρ x lem-env ρ (var x) = refl lem-env ρ (a ⟨-⟩ b) = _-_ $≡ lem-eval-sns-sn a ρ *≡ lem-eval-sns-sn b ρ -- Combining the above equalities. lem-eval-sn-nS : ∀ n ρ → ⟦ n ⟧sn ρ ≡ ⟦ n ⟧n (atomEnvS ρ) lem-eval-sn-nS n ρ = lem-eval-sn-n n ρ ⟨≡⟩ʳ lem-eval-env (atomEnvS ρ) (atomEnv ρ) (lem-env ρ) n lem-eval-sns-nS : ∀ n ρ → ⟦ n ⟧sns ρ ≡ ⟦ n ⟧n (atomEnvS ρ) lem-eval-sns-nS n ρ = lem-eval-sns-sn n ρ ⟨≡⟩ lem-eval-sn-nS n ρ lem-eval-sns-ns : ∀ n ρ → ⟦ n ⟧sns ρ ≡ ⟦ n ⟧ns (atomEnvS ρ) lem-eval-sns-ns n ρ = lem-eval-sns-nS n ρ ⟨≡⟩ʳ ns-sound n (atomEnvS ρ) ⟨-⟩-sound′ : ∀ a b ρ → ⟦ a -nf′ b ⟧n (atomEnv ρ) ≡ ⟦ a ⟧n (atomEnv ρ) - ⟦ b ⟧n (atomEnv ρ) ⟨-⟩-sound′ a b ρ with cancel a b | λ i j → cancel-complete′ i j a b (atomEnv ρ) ⟨-⟩-sound′ a b ρ | d , [] | complete = let u = ⟦ a ⟧n (atomEnv ρ) v = ⟦ b ⟧n (atomEnv ρ) k = ⟦ d ⟧n (atomEnv ρ) in lem-sub-zero u v k (complete v u auto ⟨≡⟩ auto) ⟨-⟩-sound′ a b ρ | [] , d ∷ ds | complete = let u = ⟦ a ⟧n (atomEnv ρ) v = ⟦ b ⟧n (atomEnv ρ) k = ⟦ d ∷ ds ⟧n (atomEnv ρ) in lem-zero-sub u v k (auto ⟨≡⟩ complete v u auto) ⟨-⟩-sound′ a b ρ | u ∷ us , v ∷ vs | complete = let eval = λ x → ⟦ x ⟧n (atomEnv ρ) in (⟦ u ∷ us ⟧sn ρ - ⟦ v ∷ vs ⟧sn ρ) * 1 + 0 + 0 ≡⟨ auto ⟩ ⟦ u ∷ us ⟧sn ρ - ⟦ v ∷ vs ⟧sn ρ ≡⟨ cong₂ _-_ (lem-eval-sn-n (u ∷ us) ρ) (lem-eval-sn-n (v ∷ vs) ρ) ⟩ eval (u ∷ us) - eval (v ∷ vs) ≡⟨ lem-sub (eval a) (eval b) (eval (u ∷ us)) (eval (v ∷ vs)) (complete (eval b) (eval a) auto) ⟩ eval a - eval b ∎ ⟨-⟩-sound : ∀ a b ρ → ⟦ a -nf b ⟧n (atomEnv ρ) ≡ ⟦ a ⟧n (atomEnv ρ) - ⟦ b ⟧n (atomEnv ρ) ⟨-⟩-sound a b ρ with is-subtraction a ⟨-⟩-sound a b ρ | no = ⟨-⟩-sound′ a b ρ ⟨-⟩-sound ._ c ρ | a ⟨-⟩ b = let eval = λ x → ⟦ x ⟧n (atomEnv ρ) in ⟨-⟩-sound′ a (b +nf c) ρ ⟨≡⟩ (eval a -_) $≡ ⟨+⟩-sound b c (atomEnv ρ) ⟨≡⟩ sub-add-r (eval a) (eval b) (eval c) ⟨≡⟩ (_- eval c) $≡ (_-_ $≡ lem-eval-sn-n a ρ *≡ lem-eval-sn-n b ρ) ʳ⟨≡⟩ (_- eval c) $≡ auto ⟨*⟩-sound₁ : ∀ a b ρ → ⟦ a *nf₁ b ⟧n (atomEnv ρ) ≡ ⟦ a ⟧n (atomEnv ρ) * ⟦ b ⟧n (atomEnv ρ) private sound-mul-ktm′ : ∀ t a ρ → ⟦ t *ktm′ a ⟧n (atomEnv ρ) ≡ ⟦ t ⟧t (atomEnv ρ) * ⟦ a ⟧n (atomEnv ρ) sound-mul-tm : ∀ s t ρ → ⟦ s *tm t ⟧n (atomEnv ρ) ≡ ⟦ s ⟧t (atomEnv ρ) * ⟦ t ⟧t (atomEnv ρ) sound-mul-tm s t ρ with is-subtraction-tm t sound-mul-tm (x , a) (y , b) ρ | no = follows-from (x * y *_ $≡ map-merge a b (atomEnv ρ)) sound-mul-tm s ._ ρ | a ⟨-⟩ b = let eval x = ⟦ x ⟧n (atomEnv ρ) evalt x = ⟦ x ⟧t (atomEnv ρ) in ⟨-⟩-sound (s *ktm′ a) (s *ktm′ b) ρ ⟨≡⟩ _-_ $≡ sound-mul-ktm′ s a ρ *≡ sound-mul-ktm′ s b ρ ⟨≡⟩ sub-mul-distr-r (evalt s) (eval a) (eval b) ʳ⟨≡⟩ (evalt s *_) $≡ (_-_ $≡ lem-eval-sn-n a ρ *≡ lem-eval-sn-n b ρ) ʳ⟨≡⟩ auto sound-mul-ktm′ t [] ρ = auto sound-mul-ktm′ t (x ∷ a) ρ = let eval x = ⟦ x ⟧n (atomEnv ρ) evalt x = ⟦ x ⟧t (atomEnv ρ) in ⟨+⟩-sound (t *tm x) (t *ktm′ a) (atomEnv ρ) ⟨≡⟩ _+_ $≡ sound-mul-tm t x ρ *≡ sound-mul-ktm′ t a ρ ⟨≡⟩ʳ mul-distr-l (evalt t) (evalt x) (eval a) sound-mul-ktm : ∀ t a ρ → ⟦ t *ktm a ⟧n (atomEnv ρ) ≡ ⟦ t ⟧t (atomEnv ρ) * ⟦ a ⟧n (atomEnv ρ) sound-mul-ktm t a ρ with is-subtraction-tm t sound-mul-ktm t a ρ | no = sound-mul-ktm′ t a ρ sound-mul-ktm ._ c ρ | a ⟨-⟩ b = let eval x = ⟦ x ⟧n (atomEnv ρ) in ⟨-⟩-sound (a *nf₁ c) (b *nf₁ c) ρ ⟨≡⟩ _-_ $≡ ⟨*⟩-sound₁ a c ρ *≡ ⟨*⟩-sound₁ b c ρ ⟨≡⟩ sub-mul-distr-l (eval a) (eval b) (eval c) ʳ⟨≡⟩ (_* eval c) $≡ (_-_ $≡ lem-eval-sn-n a ρ *≡ lem-eval-sn-n b ρ) ʳ⟨≡⟩ auto ⟨*⟩-sound₁ [] b ρ = refl ⟨*⟩-sound₁ (t ∷ a) b ρ = let eval x = ⟦ x ⟧n (atomEnv ρ) evalt x = ⟦ x ⟧t (atomEnv ρ) in ⟨+⟩-sound (t *ktm b) (a *nf₁ b) (atomEnv ρ) ⟨≡⟩ _+_ $≡ sound-mul-ktm t b ρ *≡ ⟨*⟩-sound₁ a b ρ ⟨≡⟩ʳ mul-distr-r (evalt t) (eval a) (eval b) sound-sub : ∀ e ρ → ⟦ e ⟧se ρ ≡ ⟦ normSub e ⟧sn ρ sound-sub (var x) ρ = auto sound-sub (lit 0) ρ = refl sound-sub (lit (suc n)) ρ = auto sound-sub (e ⟨+⟩ e₁) ρ = cong₂ _+_ (sound-sub e ρ ⟨≡⟩ lem-eval-sn-n (normSub e) ρ) (sound-sub e₁ ρ ⟨≡⟩ lem-eval-sn-n (normSub e₁) ρ) ⟨≡⟩ ⟨+⟩-sound (normSub e) (normSub e₁) (atomEnv ρ) ʳ⟨≡⟩ʳ lem-eval-sn-n (normSub (e ⟨+⟩ e₁)) ρ sound-sub (e ⟨*⟩ e₁) ρ = cong₂ _*_ (sound-sub e ρ ⟨≡⟩ lem-eval-sn-n (normSub e) ρ) (sound-sub e₁ ρ ⟨≡⟩ lem-eval-sn-n (normSub e₁) ρ) ⟨≡⟩ ⟨*⟩-sound₁ (normSub e) (normSub e₁) ρ ʳ⟨≡⟩ʳ lem-eval-sn-n (normSub (e ⟨*⟩ e₁)) ρ sound-sub (e ⟨-⟩ e₁) ρ = cong₂ _-_ (sound-sub e ρ ⟨≡⟩ lem-eval-sn-n (normSub e) ρ) (sound-sub e₁ ρ ⟨≡⟩ lem-eval-sn-n (normSub e₁) ρ) ⟨≡⟩ ⟨-⟩-sound (normSub e) (normSub e₁) ρ ʳ⟨≡⟩ʳ lem-eval-sn-n (normSub (e ⟨-⟩ e₁)) ρ liftNFSubEq : ∀ e₁ e₂ ρ → ⟦ normSub e₁ ⟧sn ρ ≡ ⟦ normSub e₂ ⟧sn ρ → ⟦ e₁ ⟧se ρ ≡ ⟦ e₂ ⟧se ρ liftNFSubEq e₁ e₂ ρ eq = eraseEquality $ sound-sub e₁ ρ ⟨≡⟩ eq ⟨≡⟩ʳ sound-sub e₂ ρ unliftNFSubEq : ∀ e₁ e₂ ρ → ⟦ e₁ ⟧se ρ ≡ ⟦ e₂ ⟧se ρ → ⟦ normSub e₁ ⟧sn ρ ≡ ⟦ normSub e₂ ⟧sn ρ unliftNFSubEq e₁ e₂ ρ eq = eraseEquality $ sound-sub e₁ ρ ʳ⟨≡⟩ eq ⟨≡⟩ sound-sub e₂ ρ SubExpEq : SubExp → SubExp → Env Var → Set SubExpEq e₁ e₂ ρ = ⟦ e₁ ⟧se ρ ≡ ⟦ e₂ ⟧se ρ CancelSubEq : SubExp → SubExp → Env Var → Set CancelSubEq e₁ e₂ ρ = NFEqS (cancel (normSub e₁) (normSub e₂)) (atomEnvS ρ) simplifySubEq : ∀ e₁ e₂ (ρ : Env Var) → CancelSubEq e₁ e₂ ρ → SubExpEq e₁ e₂ ρ simplifySubEq e₁ e₂ ρ H = liftNFSubEq e₁ e₂ ρ $ lem-eval-sn-nS (normSub e₁) ρ ⟨≡⟩ cancel-sound (normSub e₁) (normSub e₂) (atomEnvS ρ) H ⟨≡⟩ʳ lem-eval-sn-nS (normSub e₂) ρ complicateSubEq : ∀ e₁ e₂ ρ → SubExpEq e₁ e₂ ρ → CancelSubEq e₁ e₂ ρ complicateSubEq e₁ e₂ ρ H = cancel-complete (normSub e₁) (normSub e₂) (atomEnvS ρ) $ lem-eval-sn-nS (normSub e₁) ρ ʳ⟨≡⟩ unliftNFSubEq e₁ e₂ ρ H ⟨≡⟩ lem-eval-sn-nS (normSub e₂) ρ
{ "alphanum_fraction": 0.54062707, "avg_line_length": 40.2577777778, "ext": "agda", "hexsha": "b4c063a4772baa1d9c658ceb3f0705aff4c84be0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Subtract/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Subtract/Lemmas.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Subtract/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4447, "size": 9058 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Unary.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function using (id; _∘_) open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.HITs.PropositionalTruncation open import Cubical.Relation.Unary private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Type ℓ ------------------------------------------------------------------------ -- Special sets Empty∅ : Empty {A = A} ∅ Empty∅ _ () UniversalU : Π[ U {A = A} ] UniversalU _ = tt ∁∅≡U : ∁ ∅ ≡ U {A = A} ∁∅≡U = ⇔toPath _ _ ((λ _ → tt) , λ _ ()) ∁U≡∅ : ∁ U ≡ ∅ {A = A} ∁U≡∅ = ⇔toPath _ _ ((λ f → f tt) , λ ()) ------------------------------------------------------------------------ -- Propositions module _ (P : Pred A ℓ₁) (Q : Pred A ℓ₂) where isProp⊆ : isProp (P ⊆ Q) isProp⊆ = isPropImplicitΠ λ _ → isPropΠ λ _ → isProp[ Q ] _ isProp⊂ : isProp (P ⊂ Q) isProp⊂ = isProp× isProp⊆ (isPropΠ λ _ → isProp⊥) isProp⇔ : isProp (P ⇔ Q) isProp⇔ = isProp× isProp⊆ (isPropImplicitΠ λ _ → isPropΠ λ _ → isProp[ P ] _) module _ (P : Pred A ℓ) where isPropEmpty : isProp (Empty P) isPropEmpty = isPropΠ2 λ _ _ → isProp⊥ isPropSatisfiable : isProp ∃⟨ P ⟩ isPropSatisfiable = squash isPropUniversal : isProp Π[ P ] isPropUniversal = isPropΠ isProp[ P ] ------------------------------------------------------------------------ -- Predicate equivalence ⇔-reflexive : (P : Pred A ℓ) → P ⇔ P ⇔-reflexive P = id , id ⇔-symmetric : (P : Pred A ℓ₁) (Q : Pred A ℓ₂) → P ⇔ Q → Q ⇔ P ⇔-symmetric P Q (x , y) = (y , x) ⇔-transitive : (P : Pred A ℓ₁) (Q : Pred A ℓ₂) (R : Pred A ℓ₃) → P ⇔ Q → Q ⇔ R → P ⇔ R ⇔-transitive P Q R (x , y) (w , z) = w ∘ x , y ∘ z
{ "alphanum_fraction": 0.5584545911, "avg_line_length": 24.0120481928, "ext": "agda", "hexsha": "66b6dd76401404fe2827a46ba849ef11ce09e880", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Unary/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Unary/Properties.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Unary/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 741, "size": 1993 }
module EffectUtil where open import Data.List open import Data.List.All open import Data.List.Any open import Level open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function open import Category.Monad open import Data.Product -- open import EffectUtil open import Membership-equality hiding (_⊆_; set) infix 3 _⊆_ -- Sublist without re-ordering, to be improved later... data _⊆_ {a}{A : Set a} : List A → List A → Set a where [] : ∀ {ys} → [] ⊆ ys keep : ∀ {x xs ys} → xs ⊆ ys → x ∷ xs ⊆ x ∷ ys skip : ∀ {x xs ys} → xs ⊆ ys → xs ⊆ x ∷ ys singleton-⊆ : ∀ {a} {A : Set a} {x : A} {xs : List A} → x ∈ xs → [ x ] ⊆ xs singleton-⊆ (here refl) = keep [] singleton-⊆ (there mem) = skip (singleton-⊆ mem) reflexive-⊆ : ∀ {a} {A : Set a} {xs : List A} → xs ⊆ xs reflexive-⊆ {xs = []} = [] reflexive-⊆ {xs = x ∷ xs} = keep reflexive-⊆
{ "alphanum_fraction": 0.6219653179, "avg_line_length": 28.8333333333, "ext": "agda", "hexsha": "3d17c16ff7d4b02453742d2fb6e541d145a740ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "unused/EffectUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "unused/EffectUtil.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/singly-typed-actors", "max_stars_repo_path": "unused/EffectUtil.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-29T09:30:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:30:26.000Z", "num_tokens": 319, "size": 865 }
-- Andreas, 2016-04-26 flight home from AIM XXIII module _ where module M (A : Set) where record R : Set where field f : A module H {A} = M A open M using (R) open M.R using (f) -- f : {A : Set} → R A → A open H.R using (f) -- f : {A : Set} → R A → A r : ∀ A (a : A) → R A f (r A a) = a test : ∀ A (a : A) → A test A a = f (r A a) test' : ∀ A (a : A) → A test' A a = f {A = _} (r A a)
{ "alphanum_fraction": 0.4925, "avg_line_length": 17.3913043478, "ext": "agda", "hexsha": "d702620dcd93dcfd1fda4ff51d9bf326a260ee4c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1944-module-copy.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1944-module-copy.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1944-module-copy.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 175, "size": 400 }
module Numeral.PositiveInteger.Oper where open import Numeral.PositiveInteger infixl 10010 _+_ infixl 10020 _⋅_ infixl 10030 _^_ -- Addition _+_ : ℕ₊ → ℕ₊ → ℕ₊ x + 𝟏 = 𝐒(x) x + 𝐒(y) = 𝐒(x + y) -- Multiplication _⋅_ : ℕ₊ → ℕ₊ → ℕ₊ x ⋅ 𝟏 = x x ⋅ 𝐒(y) = x + (x ⋅ y) -- Exponentiation _^_ : ℕ₊ → ℕ₊ → ℕ₊ x ^ 𝟏 = x x ^ 𝐒(y) = x ⋅ (x ^ y) -- Factorial _! : ℕ₊ → ℕ₊ 𝟏 ! = 𝟏 𝐒(x) ! = 𝐒(x) ⋅ (x !) open import Data.Option open import Data.Option.Functions -- Truncated subtraction _−₀_ : ℕ₊ → ℕ₊ → Option(ℕ₊) 𝟏 −₀ _ = None 𝐒(x) −₀ 𝟏 = Some x 𝐒(x) −₀ 𝐒(y) = x −₀ y open import Data.Boolean open import Type _≤?_ : ℕ₊ → ℕ₊ → Bool 𝟏 ≤? _ = 𝑇 𝐒(x) ≤? 𝟏 = 𝐹 𝐒(x) ≤? 𝐒(y) = x ≤? y
{ "alphanum_fraction": 0.5213068182, "avg_line_length": 16.3720930233, "ext": "agda", "hexsha": "d4c6172b98513180cb52dce565ed2ecbedb3e61e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/PositiveInteger/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/PositiveInteger/Oper.agda", "max_line_length": 41, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/PositiveInteger/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 391, "size": 704 }
------------------------------------------------------------------------ -- Examples for modalities ------------------------------------------------------------------------ module CTL.ModalityExamples where open import Library open import FStream.Containers open import FStream.Core open import CTL.Modalities readDouble : ⟦ ReaderC ℕ ⟧ ℕ readDouble = fmap (_* 2) ask readSuc : ⟦ ReaderC ℕ ⟧ ℕ readSuc = fmap (suc) ask alwaysPos : (n : ℕ) → runReader readSuc n > 0 alwaysPos n = s≤s z≤n alwaysPosC : □ (_> 0) readSuc alwaysPosC = λ p → s≤s z≤n sometimes3 : ◇ (_≡ 3) readSuc sometimes3 = suc (suc zero) , refl sometimes5 : ◇ (_≡ 5) readSuc sometimes5 = suc (suc (suc (suc zero))) , refl -- It is always the case that constantly readSuc outputs ℕ > 0, -- regardless of the environment always>0 : AG (map (_> 0) (constantly readSuc)) nowA (always>0 p) = alwaysPos p laterA (always>0 p) = {!!} {-nowA always>0 = λ p → s≤s z≤n laterA always>0 = λ p → always>0 -} {- nowA always>0 p = s≤s z≤n laterA always>0 p = always>0 -} -- Sums all values in the reader-environment sumFrom : ℕ → FStream (ReaderC ℕ) ℕ proj₁ (inF (sumFrom n0)) = tt head (proj₂ (inF (sumFrom n0)) n) = n0 + n tail (proj₂ (inF (sumFrom n0)) n) = sumFrom (n0 + n) sum : FStream (ReaderC ℕ) ℕ sum = sumFrom 0 -- Eventually the sum is greater than 2 eventuallysometimes>2 : EF (map (_> 2) sum) -- ... having 3 as input, this is of course the case after 1 step eventuallysometimes>2 = ? --alreadyE (suc (suc (suc zero)) , s≤s (s≤s (s≤s z≤n))) -- Always somehow the sum is greater than 2 alwaysSomehow>2 : ∀ {i} → EG {i} (map (_> 2) sum) alwaysSomehow>2 = {!!} {-proj₁ alwaysSomehow>2 = suc (suc (suc zero)) nowE' (proj₂ alwaysSomehow>2) = s≤s (s≤s (s≤s z≤n)) proj₁ (laterE' (proj₂ alwaysSomehow>2)) = zero proj₂ (laterE' (proj₂ alwaysSomehow>2)) = {! !} -} {- nowE alwaysSomehow>2 = (ℕ.suc (ℕ.suc (ℕ.suc ℕ.zero)) , s≤s (s≤s (s≤s z≤n))) laterE alwaysSomehow>2 = ℕ.zero , alwaysSomehow>2 -} --
{ "alphanum_fraction": 0.6054628225, "avg_line_length": 24.4074074074, "ext": "agda", "hexsha": "b0780bfd57e74b630e2f68d859f046bc0e70c1c6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/ModalityExamples.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/ModalityExamples.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/ModalityExamples.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 723, "size": 1977 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.CommRings where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Powerset open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FiberedProduct open import Cubical.Algebra.CommRing.Instances.Unit open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Limits.Terminal open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Limits.Limits open import Cubical.HITs.PropositionalTruncation open Category hiding (_∘_) open isUnivalent open CatIso open Functor open CommRingStr open RingHoms open IsRingHom private variable ℓ ℓ' ℓ'' : Level CommRingsCategory : Category (ℓ-suc ℓ) ℓ ob CommRingsCategory = CommRing _ Hom[_,_] CommRingsCategory = CommRingHom id CommRingsCategory {R} = idCommRingHom R _⋆_ CommRingsCategory {R} {S} {T} = compCommRingHom R S T ⋆IdL CommRingsCategory {R} {S} = compIdCommRingHom {R = R} {S} ⋆IdR CommRingsCategory {R} {S} = idCompCommRingHom {R = R} {S} ⋆Assoc CommRingsCategory {R} {S} {T} {U} = compAssocCommRingHom {R = R} {S} {T} {U} isSetHom CommRingsCategory = isSetRingHom _ _ forgetfulFunctor : Functor CommRingsCategory (SET ℓ) F-ob forgetfulFunctor R = R .fst , CommRingStr.is-set (snd R) F-hom forgetfulFunctor f x = f .fst x F-id forgetfulFunctor = funExt (λ _ → refl) F-seq forgetfulFunctor f g = funExt (λ _ → refl) open Iso CommRingIsoIsoCatIso : {R S : CommRing ℓ} → Iso (CommRingIso R S) (CatIso CommRingsCategory R S) mor (fun CommRingIsoIsoCatIso e) = (e .fst .fun) , (e .snd) inv (fun (CommRingIsoIsoCatIso {R = R} {S}) e) = e .fst .inv , makeIsRingHom (sym (cong (e .fst .inv) (pres1 (e .snd))) ∙ e .fst .leftInv _) (λ x y → let rem = e .fst .rightInv _ ∙∙ (λ i → S .snd ._+_ (e .fst .rightInv x (~ i)) (e .fst .rightInv y (~ i))) ∙∙ sym (pres+ (e .snd) _ _) in injCommRingIso {R = R} {S} e _ _ rem) (λ x y → let rem = e .fst .rightInv _ ∙∙ (λ i → S .snd ._·_ (e .fst .rightInv x (~ i)) (e .fst .rightInv y (~ i))) ∙∙ sym (pres· (e .snd) _ _) in injCommRingIso {R = R} {S} e _ _ rem) sec (fun CommRingIsoIsoCatIso e) = RingHom≡ (funExt (e .fst .rightInv)) ret (fun CommRingIsoIsoCatIso e) = RingHom≡ (funExt (e .fst .leftInv)) fun (fst (inv CommRingIsoIsoCatIso e)) = e .mor .fst inv (fst (inv CommRingIsoIsoCatIso e)) = e .inv .fst rightInv (fst (inv CommRingIsoIsoCatIso e)) x i = fst (e .sec i) x leftInv (fst (inv CommRingIsoIsoCatIso e)) x i = fst (e .ret i) x snd (inv CommRingIsoIsoCatIso e) = e .mor .snd rightInv CommRingIsoIsoCatIso x = CatIso≡ _ _ (RingHom≡ refl) (RingHom≡ refl) leftInv (CommRingIsoIsoCatIso {R = R} {S}) x = Σ≡Prop (λ x → isPropIsRingHom (CommRingStr→RingStr (R .snd)) (x .fun) (CommRingStr→RingStr (S .snd))) (Iso≡Set (is-set (snd R)) (is-set (snd S)) _ _ (λ _ → refl) (λ _ → refl)) isUnivalentCommRingsCategory : ∀ {ℓ} → isUnivalent {ℓ = ℓ-suc ℓ} CommRingsCategory univ isUnivalentCommRingsCategory R S = subst isEquiv (funExt rem) (≡≃CatIso .snd) where CommRingEquivIso≡ : Iso (CommRingEquiv R S) (R ≡ S) CommRingEquivIso≡ = equivToIso (CommRingPath R S) ≡≃CatIso : (R ≡ S) ≃ (CatIso CommRingsCategory R S) ≡≃CatIso = isoToEquiv (compIso (invIso CommRingEquivIso≡) (compIso (CommRingEquivIsoCommRingIso R S) CommRingIsoIsoCatIso)) rem : ∀ p → ≡≃CatIso .fst p ≡ pathToIso p rem p = CatIso≡ _ _ (RingHom≡ (funExt (λ x → cong (transport (λ i → fst (p i))) (sym (transportRefl x))))) (RingHom≡ (funExt (λ x → sym (transportRefl _)))) TerminalCommRing : Terminal {ℓ-suc ℓ-zero} CommRingsCategory fst TerminalCommRing = UnitCommRing fst (fst (snd TerminalCommRing y)) _ = tt* snd (fst (snd TerminalCommRing y)) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl) snd (snd TerminalCommRing y) f = RingHom≡ (funExt (λ _ → refl)) open Pullback {- A x_C B -----> A | | | | α | | V V B --------> C β -} PullbackCommRingsCategory : Pullbacks {ℓ-suc ℓ} CommRingsCategory pbOb (PullbackCommRingsCategory (cospan A C B α β)) = fiberedProduct A B C α β pbPr₁ (PullbackCommRingsCategory (cospan A C B α β)) = fiberedProductPr₁ A B C α β pbPr₂ (PullbackCommRingsCategory (cospan A C B α β)) = fiberedProductPr₂ A B C α β pbCommutes (PullbackCommRingsCategory (cospan A C B α β)) = fiberedProductPr₁₂Commutes A B C α β univProp (PullbackCommRingsCategory (cospan A C B α β)) {d = D} = fiberedProductUnivProp A B C α β D -- General limits module _ {ℓJ ℓJ' : Level} where open LimCone open Cone LimitsCommRingsCategory : Limits {ℓJ} {ℓJ'} CommRingsCategory fst (lim (LimitsCommRingsCategory J D)) = lim {J = J} (completeSET J (funcComp forgetfulFunctor D)) .fst 0r (snd (lim (LimitsCommRingsCategory J D))) = cone (λ v _ → 0r (snd (F-ob D v))) (λ e → funExt (λ _ → F-hom D e .snd .pres0)) 1r (snd (lim (LimitsCommRingsCategory J D))) = cone (λ v _ → 1r (snd (F-ob D v))) (λ e → funExt (λ _ → F-hom D e .snd .pres1)) _+_ (snd (lim (LimitsCommRingsCategory J D))) x y = cone (λ v _ → _+_ (snd (F-ob D v)) _ _) ( λ e → funExt (λ _ → F-hom D e .snd .pres+ _ _ ∙ λ i → _+_ (snd (F-ob D _)) (coneOutCommutes x e i tt*) (coneOutCommutes y e i tt*))) _·_ (snd (lim (LimitsCommRingsCategory J D))) x y = cone (λ v _ → _·_ (snd (F-ob D v)) _ _) ( λ e → funExt (λ _ → F-hom D e .snd .pres· _ _ ∙ λ i → _·_ (snd (F-ob D _)) (coneOutCommutes x e i tt*) (coneOutCommutes y e i tt*))) (- snd (lim (LimitsCommRingsCategory J D))) x = cone (λ v _ → -_ (snd (F-ob D v)) _) ( λ e → funExt (λ z → F-hom D e .snd .pres- _ ∙ λ i → -_ (snd (F-ob D _)) (coneOutCommutes x e i tt*))) isCommRing (snd (lim (LimitsCommRingsCategory J D))) = makeIsCommRing (isSetCone (funcComp forgetfulFunctor D) (Unit* , _)) (λ _ _ _ → cone≡ (λ v → funExt (λ _ → snd (F-ob D v) .+Assoc _ _ _))) (λ _ → cone≡ (λ v → funExt (λ _ → +Rid (snd (F-ob D v)) _))) (λ _ → cone≡ (λ v → funExt (λ _ → +Rinv (snd (F-ob D v)) _))) (λ _ _ → cone≡ (λ v → funExt (λ _ → snd (F-ob D v) .+Comm _ _))) (λ _ _ _ → cone≡ (λ v → funExt (λ _ → snd (F-ob D v) .·Assoc _ _ _))) (λ _ → cone≡ (λ v → funExt (λ _ → ·Rid (snd (F-ob D v)) _))) (λ _ _ _ → cone≡ (λ v → funExt (λ _ → ·Rdist+ (snd (F-ob D v)) _ _ _))) (λ _ _ → cone≡ (λ v → funExt (λ _ → snd (F-ob D v) .·Comm _ _))) fst (coneOut (limCone (LimitsCommRingsCategory J D)) v) = coneOut (limCone (completeSET J (funcComp forgetfulFunctor D))) v pres0 (snd (coneOut (limCone (LimitsCommRingsCategory J D)) v)) = refl pres1 (snd (coneOut (limCone (LimitsCommRingsCategory J D)) v)) = refl pres+ (snd (coneOut (limCone (LimitsCommRingsCategory J D)) v)) = λ _ _ → refl pres· (snd (coneOut (limCone (LimitsCommRingsCategory J D)) v)) = λ _ _ → refl pres- (snd (coneOut (limCone (LimitsCommRingsCategory J D)) v)) = λ _ → refl coneOutCommutes (limCone (LimitsCommRingsCategory J D)) e = RingHom≡ (coneOutCommutes (limCone (completeSET J (funcComp forgetfulFunctor D))) e) univProp (LimitsCommRingsCategory J D) c cc = uniqueExists ( (λ x → limArrow (completeSET J (funcComp forgetfulFunctor D)) (fst c , snd c .is-set) (cone (λ v _ → coneOut cc v .fst x) (λ e → funExt (λ _ → funExt⁻ (cong fst (coneOutCommutes cc e)) x))) x) , makeIsRingHom (cone≡ (λ v → funExt (λ _ → coneOut cc v .snd .pres1))) (λ x y → cone≡ (λ v → funExt (λ _ → coneOut cc v .snd .pres+ _ _))) (λ x y → cone≡ (λ v → funExt (λ _ → coneOut cc v .snd .pres· _ _)))) (λ _ → RingHom≡ refl) (isPropIsConeMor cc (limCone (LimitsCommRingsCategory J D))) (λ a' x → Σ≡Prop (λ _ → isPropIsRingHom _ _ _) (funExt (λ y → cone≡ λ v → funExt (λ _ → sym (funExt⁻ (cong fst (x v)) y)))))
{ "alphanum_fraction": 0.607360578, "avg_line_length": 47.1170212766, "ext": "agda", "hexsha": "25f5a47d054c858012da913334b8f0308ac694c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/CommRings.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/CommRings.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/CommRings.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3074, "size": 8858 }
module DualTail where open import Data.Nat open import Data.Fin hiding (_+_) open import Data.Product open import Data.Vec hiding (map) open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Direction open import Extensionality open import DualCoinductive -- session types restricted to tail recursion -- can be recognized by type of TChan constructor data Type : Set data SType (n : ℕ) : Set data GType (n : ℕ) : Set data Type where TUnit TInt : Type TPair : (t₁ t₂ : Type) → Type TChan : (s : SType 0) → Type data SType n where gdd : (g : GType n) → SType n rec : (g : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType n where transmit : (d : Dir) (t : Type) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n -- naive definition of duality for tail recursive session types -- message types are ignored as they are closed dualS : SType n → SType n dualG : GType n → GType n dualS (gdd g) = gdd (dualG g) dualS (rec g) = rec (dualG g) dualS (var x) = var x dualG (transmit d t s) = transmit (dual-dir d) t (dualS s) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end -- instead of unrolling and substituting, we maintain a stack of bodies of recursive types data Stack : ℕ → Set where ε : Stack 0 ⟪_,_⟫ : Stack n → GType (suc n) → Stack (suc n) -- the dual of a stack dual-stack : Stack n → Stack n dual-stack ε = ε dual-stack ⟪ σ , g ⟫ = ⟪ dual-stack σ , dualG g ⟫ -- obtain an entry from the stack -- technically m = n - i, but we don't need to know get : (i : Fin n) → Stack n → Σ ℕ λ m → Stack m × GType (suc m) get 0F ⟪ σ , x ⟫ = _ , (σ , x) get (suc i) ⟪ σ , x ⟫ = get i σ -- relate a stack entry to the corresponding entry on the dual stack get-dual-stack : (x : Fin n) (σ : Stack n) → get x (dual-stack σ) ≡ map id (map dual-stack dualG) (get x σ) get-dual-stack 0F ⟪ σ , x ⟫ = refl get-dual-stack (suc x) ⟪ σ , x₁ ⟫ = get-dual-stack x σ -- mapping tail recursive session types to coinductive session types -- relies on a stack to unfold variables on the fly tail2coiT : Type → COI.Type tail2coiS : Stack n → SType n → COI.SType tail2coiG : Stack n → GType n → COI.STypeF COI.SType tail2coiT TUnit = COI.TUnit tail2coiT TInt = COI.TInt tail2coiT (TPair t t₁) = COI.TPair (tail2coiT t) (tail2coiT t₁) tail2coiT (TChan s) = COI.TChan (tail2coiS ε s) COI.SType.force (tail2coiS σ (gdd g)) = tail2coiG σ g COI.SType.force (tail2coiS σ (rec g)) = tail2coiG ⟪ σ , g ⟫ g COI.SType.force (tail2coiS σ (var x)) with get x σ ... | m , σ' , gxs = tail2coiG ⟪ σ' , gxs ⟫ gxs tail2coiG σ (transmit d t s) = COI.transmit d (tail2coiT t) (tail2coiS σ s) tail2coiG σ (choice d m alt) = COI.choice d m (tail2coiS σ ∘ alt) tail2coiG σ end = COI.end -- get coinductive bisimulation in scope _≈_ = COI._≈_ _≈'_ = COI._≈'_ -- main proposition dual-tailS : (σ : Stack n) (s : SType n) → COI.dual (tail2coiS σ s) ≈ tail2coiS (dual-stack σ) (dualS s) dual-tailG : (σ : Stack n) (g : GType n) → COI.dualF (tail2coiG σ g) ≈' tail2coiG (dual-stack σ) (dualG g) COI.Equiv.force (dual-tailS σ (gdd g)) = dual-tailG σ g COI.Equiv.force (dual-tailS σ (rec g)) = dual-tailG ⟪ σ , g ⟫ g COI.Equiv.force (dual-tailS σ (var x)) rewrite get-dual-stack x σ with get x σ ... | m , σ' , g = dual-tailG ⟪ σ' , g ⟫ g dual-tailG σ (transmit d t s) = COI.eq-transmit (dual-dir d) COI.≈ᵗ-refl (dual-tailS σ s) dual-tailG σ (choice d m alt) = COI.eq-choice (dual-dir d) (dual-tailS σ ∘ alt) dual-tailG σ end = COI.eq-end -- corrolary for SType 0 dual-tail : ∀ s → COI.dual (tail2coiS ε s) ≈ tail2coiS ε (dualS s) dual-tail = dual-tailS ε
{ "alphanum_fraction": 0.6590234691, "avg_line_length": 29.8951612903, "ext": "agda", "hexsha": "77785ca04f3a4a018168bc884e1e782be7381cea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "kcaliban/dual-session", "max_forks_repo_path": "src/DualTail.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "kcaliban/dual-session", "max_issues_repo_path": "src/DualTail.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "kcaliban/dual-session", "max_stars_repo_path": "src/DualTail.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1455, "size": 3707 }
{-# OPTIONS --without-K #-} module sets.nat.ordering where open import sets.nat.ordering.lt public open import sets.nat.ordering.leq public
{ "alphanum_fraction": 0.7659574468, "avg_line_length": 23.5, "ext": "agda", "hexsha": "f3bf27d6995e35e04aa22fafddc1c75215e42424", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering.agda", "max_line_length": 40, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 35, "size": 141 }
module CompilingCoinduction where open import Common.Coinduction data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# COMPILED_DATA List [] [] (:) #-} postulate Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} -- Strings -- postulate String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} {-# BUILTIN IO IO #-} postulate putStrLn : ∞ String → IO Unit {-# COMPILED putStrLn putStrLn #-} main = putStrLn (♯ "a")
{ "alphanum_fraction": 0.5963687151, "avg_line_length": 15.2340425532, "ext": "agda", "hexsha": "d21aec8ae764fa85f2270062f79ea0cd98c45cc1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/CompilingCoinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/CompilingCoinduction.agda", "max_line_length": 38, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/CompilingCoinduction.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 210, "size": 716 }
------------------------------------------------------------------------ -- Indexed monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. module Category.Monad.Indexed where open import Data.Function open import Category.Applicative.Indexed record RawIMonad {I : Set} (M : IFun I) : Set₁ where infixl 1 _>>=_ _>>_ infixr 1 _=<<_ field return : ∀ {i A} → A → M i i A _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B _>>_ : ∀ {i j k A B} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {i j k A B} → (A → M j k B) → M i j A → M i k B f =<< c = c >>= f join : ∀ {i j k A} → M i j (M j k A) → M i k A join m = m >>= id rawIApplicative : RawIApplicative M rawIApplicative = record { pure = return ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x') } open RawIApplicative rawIApplicative public record RawIMonadZero {I : Set} (M : IFun I) : Set₁ where field monad : RawIMonad M ∅ : ∀ {i j A} → M i j A open RawIMonad monad public record RawIMonadPlus {I : Set} (M : IFun I) : Set₁ where infixr 3 _∣_ field monadZero : RawIMonadZero M _∣_ : ∀ {i j A} → M i j A → M i j A → M i j A open RawIMonadZero monadZero public
{ "alphanum_fraction": 0.4935945742, "avg_line_length": 26.0196078431, "ext": "agda", "hexsha": "86d2622654f1a585f948bd364e4a148dbeb9a5b5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Category/Monad/Indexed.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Category/Monad/Indexed.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Category/Monad/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 482, "size": 1327 }
module Data.HSTrie where open import Class.Map open import Data.List open import Data.String open import Data.String.Instance open import Data.Maybe private variable A B : Set {-# FOREIGN GHC import Data.Trie import Data.Text.Encoding #-} postulate HSTrie : Set -> Set emptyTrie : HSTrie A insertTrie : String -> A -> HSTrie A -> HSTrie A deleteTrie : String -> HSTrie A -> HSTrie A lookupTrie : String -> HSTrie A -> Maybe A fmapTrie : (A -> B) -> HSTrie A -> HSTrie B trieKeysPrim : HSTrie A -> List String submapTrie : String -> HSTrie A -> HSTrie A {-# COMPILE GHC HSTrie = type Trie #-} {-# COMPILE GHC emptyTrie = \ _ -> empty #-} {-# COMPILE GHC insertTrie = \ _ s -> insert (encodeUtf8 s) #-} {-# COMPILE GHC deleteTrie = \ _ s -> delete (encodeUtf8 s) #-} {-# COMPILE GHC lookupTrie = \ _ s -> Data.Trie.lookup (encodeUtf8 s) #-} {-# COMPILE GHC fmapTrie = \ _ _ -> fmap #-} {-# COMPILE GHC trieKeysPrim = \ _ -> fmap decodeUtf8 . keys #-} {-# COMPILE GHC submapTrie = \ _ s -> submap (encodeUtf8 s) #-} instance NDTrie-Map : MapClass String HSTrie NDTrie-Map = record { insert = insertTrie ; remove = deleteTrie ; lookup = lookupTrie ; mapSnd = fmapTrie ; emptyMap = emptyTrie } trieKeys : HSTrie A -> List String trieKeys = trieKeysPrim lookupHSTrie : String -> HSTrie A -> HSTrie A lookupHSTrie = submapTrie
{ "alphanum_fraction": 0.6367461431, "avg_line_length": 26.9056603774, "ext": "agda", "hexsha": "3513b4b2a0503a25a4a8b5a1b7de052dd0090f50", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/HSTrie.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/HSTrie.agda", "max_line_length": 73, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/HSTrie.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 446, "size": 1426 }
------------------------------------------------------------------------------ -- Equivalence: N as the least fixed-point and N using Agda's data constructor ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LFPs.N where open import FOTC.Base open import FOTC.Base.PropertiesI ------------------------------------------------------------------------------ -- Auxiliary definitions and properties flip : {A B C : Set} → (A → B → C) → B → A → C flip f b a = f a b cong : (f : D → D) → ∀ {x y} → x ≡ y → f x ≡ f y cong f refl = refl ------------------------------------------------------------------------------ module LFP where infixl 9 _+_ -- N is a least fixed-point of a functor -- The functor. NatF : (D → Set) → D → Set NatF A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') -- The natural numbers are the least fixed-point of NatF. postulate N : D → Set -- N is a pre-fixed point of NatF, i.e. -- -- NatF N ≤ N. -- -- Peter: It corresponds to the introduction rules. N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n -- The higher-order version. N-in-ho : ∀ {n} → NatF N n → N n -- N is the least pre-fixed point of NatF, i.e. -- -- ∀ A. NatF A ≤ A ⇒ N ≤ A. -- -- Peter: It corresponds to the elimination rule of an inductively -- defined predicate. N-ind : (A : D → Set) → (∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) → ∀ {n} → N n → A n -- Higher-order version. N-ind-ho : (A : D → Set) → (∀ {n} → NatF A n → A n) → ∀ {n} → N n → A n ---------------------------------------------------------------------------- -- N-in and N-in-ho are equivalents N-in₁ : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n N-in₁ = N-in-ho N-in-ho₁ : ∀ {n} → NatF N n → N n N-in-ho₁ = N-in₁ ---------------------------------------------------------------------------- -- N-ind and N-ind-ho are equivalents N-ind-fo : (A : D → Set) → (∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) → ∀ {n} → N n → A n N-ind-fo = N-ind-ho N-ind-ho' : (A : D → Set) → (∀ {n} → NatF A n → A n) → ∀ {n} → N n → A n N-ind-ho' = N-ind ---------------------------------------------------------------------------- -- The data constructors of N. nzero : N zero nzero = N-in (inj₁ refl) nsucc : ∀ {n} → N n → N (succ₁ n) nsucc Nn = N-in (inj₂ (_ , refl , Nn)) ---------------------------------------------------------------------------- -- Because N is the least pre-fixed point of NatF (i.e. N-in and -- N-ind), we can proof that N is also a post-fixed point of NatF. -- N is a post-fixed point of NatF. N-out : ∀ {n} → N n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') N-out = N-ind A h where A : D → Set A m = m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ N m') h : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ A m') → A m h (inj₁ m≡0) = inj₁ m≡0 h (inj₂ (m' , prf , Am')) = inj₂ (m' , prf , helper Am') where helper : A m' → N m' helper (inj₁ prf') = subst N (sym prf') nzero helper (inj₂ (m'' , prf' , Am'')) = subst N (sym prf') (nsucc Am'') -- The higher-order version. N-out-ho : ∀ {n} → N n → NatF N n N-out-ho = N-out ---------------------------------------------------------------------------- -- The induction principle for N *with* the hypothesis N n in the -- induction step using N-ind. N-ind₁ : (A : D → Set) → A zero → (∀ {n} → N n → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₁ A A0 h Nn = ∧-proj₂ (N-ind B h' Nn) where B : D → Set B n = N n ∧ A n h' : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ B m') → B m h' (inj₁ m≡0) = subst B (sym m≡0) (nzero , A0) h' (inj₂ (m' , prf , Nm' , Am')) = (subst N (sym prf) (nsucc Nm')) , subst A (sym prf) (h Nm' Am') ---------------------------------------------------------------------------- -- The induction principle for N *without* the hypothesis N n in the -- induction step using N-ind N-ind₂ : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₂ A A0 h = N-ind A h' where h' : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ A m') → A m h' (inj₁ m≡0) = subst A (sym m≡0) A0 h' (inj₂ (m' , prf , Am')) = subst A (sym prf) (h Am') ---------------------------------------------------------------------------- -- Example: We will use N-ind as the induction principle on N. postulate _+_ : D → D → D +-0x : ∀ d → zero + d ≡ d +-Sx : ∀ d e → (succ₁ d) + e ≡ succ₁ (d + e) +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity n = +-0x n +-N : ∀ {m n} → N m → N n → N (m + n) +-N {n = n} Nm Nn = N-ind A h Nm where A : D → Set A i = N (i + n) h : ∀ {m} → m ≡ zero ∨ (∃[ m' ] m ≡ succ₁ m' ∧ A m') → A m h (inj₁ m≡0) = subst N (cong (flip _+_ n) (sym m≡0)) A0 where A0 : A zero A0 = subst N (sym (+-leftIdentity n)) Nn h (inj₂ (m' , prf , Am')) = subst N (cong (flip _+_ n) (sym prf)) (is Am') where is : ∀ {i} → A i → A (succ₁ i) is {i} Ai = subst N (sym (+-Sx i n)) (nsucc Ai) ---------------------------------------------------------------------------- -- Example: A proof using N-out. pred-N : ∀ {n} → N n → N (pred₁ n) pred-N {n} Nn = case h₁ h₂ (N-out Nn) where h₁ : n ≡ zero → N (pred₁ n) h₁ n≡0 = subst N (sym (trans (predCong n≡0) pred-0)) nzero h₂ : ∃[ n' ] n ≡ succ₁ n' ∧ N n' → N (pred₁ n) h₂ (n' , prf , Nn') = subst N (sym (trans (predCong prf) (pred-S n'))) Nn' ---------------------------------------------------------------------------- -- From/to N as a least fixed-point to/from N as data type. data N' : D → Set where nzero' : N' zero nsucc' : ∀ {n} → N' n → N' (succ₁ n) N'→N : ∀ {n} → N' n → N n N'→N nzero' = nzero N'→N (nsucc' Nn) = nsucc (N'→N Nn) -- Using N-ind₁. N→N' : ∀ {n} → N n → N' n N→N' = N-ind₁ N' nzero' (λ _ → nsucc') -- Using N-ind₂. N→N'₁ : ∀ {n} → N n → N' n N→N'₁ = N-ind₂ N' nzero' nsucc' ------------------------------------------------------------------------------ module Data where data N : D → Set where nzero : N zero nsucc : ∀ {n} → N n → N (succ₁ n) -- The induction principle for N *with* the hypothesis N n in the -- induction step. N-ind₁ : (A : D → Set) → A zero → (∀ {n} → N n → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₁ A A0 h nzero = A0 N-ind₁ A A0 h (nsucc Nn) = h Nn (N-ind₁ A A0 h Nn) -- The induction principle for N *without* the hypothesis N n in the -- induction step. N-ind₂ : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₂ A A0 h nzero = A0 N-ind₂ A A0 h (nsucc Nn) = h (N-ind₂ A A0 h Nn) ---------------------------------------------------------------------------- -- N-in. N-in : ∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n') → N n N-in {n} h = case prf₁ prf₂ h where prf₁ : n ≡ zero → N n prf₁ n≡0 = subst N (sym n≡0) nzero prf₂ : ∃[ n' ] n ≡ succ₁ n' ∧ N n' → N n prf₂ (n' , prf , Nn') = subst N (sym prf) (nsucc Nn') ---------------------------------------------------------------------------- -- From N-ind₂ to N-ind. N-ind' : (A : D → Set) → (∀ {n} → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n') → A n) → ∀ {n} → N n → A n N-ind' A h = N-ind₂ A h₁ h₂ where h₁ : A zero h₁ = h (inj₁ refl) h₂ : ∀ {m} → A m → A (succ₁ m) h₂ {m} Am = h (inj₂ (m , refl , Am))
{ "alphanum_fraction": 0.3892464975, "avg_line_length": 30.5907335907, "ext": "agda", "hexsha": "cfad34fa139d7e68c1c0adf99c81654442191c9d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/fixed-points/LFPs/N.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/fixed-points/LFPs/N.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/fixed-points/LFPs/N.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2832, "size": 7923 }