Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --cubical #-}
open import Agda.Primitive.Cubical
| {
"alphanum_fraction": 0.7096774194,
"avg_line_length": 15.5,
"ext": "agda",
"hexsha": "5b72644777bd2aed59e8c05de0c4f81149754e33",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Cubical-primitives-are-not-supported.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Cubical-primitives-are-not-supported.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Cubical-primitives-are-not-supported.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 62
} |
-- Andreas, 2016-09-08, issue #2167 reported by effectfully
loop : Set₁
loop = .Set
-- WAS: looping of type checker
-- NOW: proper error about invalid dotted expression
| {
"alphanum_fraction": 0.730994152,
"avg_line_length": 21.375,
"ext": "agda",
"hexsha": "21c48cabcf3e4af0a7d67d73be8ab35bfdb22b46",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2167.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2167.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2167.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 48,
"size": 171
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Cartesian.Properties {o ℓ e} (C : Category o ℓ e) where
open import Level using (_⊔_)
open import Function using (_$_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (Σ; _,_; proj₁) renaming (_×_ to _&_)
open import Data.Product.Properties
open import Data.List as List
open import Data.List.Relation.Unary.Any as Any using (here; there)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Membership.Propositional
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.Any as AnyV using (here; there)
open import Data.Vec.Relation.Unary.Any.Properties
open import Data.Vec.Membership.Propositional renaming (_∈_ to _∈ᵥ_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality as ≡ using (refl; _≡_)
import Data.List.Membership.Propositional.Properties as ∈ₚ
import Data.Vec.Membership.Propositional.Properties as ∈ᵥₚ
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C
open import Categories.Morphism.Reasoning C
private
open Category C
open HomReasoning
variable
A B X Y : Obj
f g : A ⇒ B
-- all binary products and pullbacks implies equalizers
module _ (prods : BinaryProducts) (pullbacks : ∀ {A B X} (f : A ⇒ X) (g : B ⇒ X) → Pullback f g) where
open BinaryProducts prods
open HomReasoning
prods×pullbacks⇒equalizers : Equalizer f g
prods×pullbacks⇒equalizers {f = f} {g = g} = record
{ arr = pb′.p₁
; equality = begin
f ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ helper₁ ⟩
f ∘ pb.p₁ ∘ pb′.p₂ ≈⟨ pullˡ pb.commute ⟩
(g ∘ pb.p₂) ∘ pb′.p₂ ≈˘⟨ pushʳ helper₂ ⟩
g ∘ pb′.p₁ ∎
; equalize = λ {_ i} eq → pb′.universal $ begin
⟨ id , id ⟩ ∘ i ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ i , id ∘ i ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ i , i ⟩ ≈˘⟨ ⟨⟩-cong₂ pb.p₁∘universal≈h₁ pb.p₂∘universal≈h₂ ⟩
⟨ pb.p₁ ∘ pb.universal eq , pb.p₂ ∘ pb.universal eq ⟩ ≈˘⟨ ⟨⟩∘ ⟩
h ∘ pb.universal eq ∎
; universal = ⟺ pb′.p₁∘universal≈h₁
; unique = λ eq → pb′.unique (⟺ eq) (pb.unique (pullˡ (⟺ helper₁) ○ ⟺ eq) (pullˡ (⟺ helper₂) ○ ⟺ eq))
}
where pb : Pullback f g
pb = pullbacks _ _
module pb = Pullback pb
h = ⟨ pb.p₁ , pb.p₂ ⟩
pb′ : Pullback ⟨ id , id ⟩ h
pb′ = pullbacks _ _
module pb′ = Pullback pb′
helper₁ : pb′.p₁ ≈ pb.p₁ ∘ pb′.p₂
helper₁ = begin
pb′.p₁ ≈˘⟨ cancelˡ project₁ ⟩
π₁ ∘ ⟨ id , id ⟩ ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ pb′.commute ⟩
π₁ ∘ h ∘ pb′.p₂ ≈⟨ pullˡ project₁ ⟩
pb.p₁ ∘ pb′.p₂ ∎
helper₂ : pb′.p₁ ≈ pb.p₂ ∘ pb′.p₂
helper₂ = begin
pb′.p₁ ≈˘⟨ cancelˡ project₂ ⟩
π₂ ∘ ⟨ id , id ⟩ ∘ pb′.p₁ ≈⟨ refl⟩∘⟨ pb′.commute ⟩
π₂ ∘ h ∘ pb′.p₂ ≈⟨ pullˡ project₂ ⟩
pb.p₂ ∘ pb′.p₂ ∎
module Prods (car : Cartesian) where
open Cartesian car
-- for lists
prod : List Obj → Obj
prod objs = foldr _×_ ⊤ objs
π[_] : ∀ {x xs} → x ∈ xs → prod xs ⇒ x
π[ here refl ] = π₁
π[ there x∈xs ] = π[ x∈xs ] ∘ π₂
data _⇒_* : Obj → List Obj → Set (o ⊔ ℓ) where
_~[] : ∀ x → x ⇒ [] *
_∷_ : ∀ {x y ys} → x ⇒ y → x ⇒ ys * → x ⇒ y ∷ ys *
⟨_⟩* : ∀ {x ys} (fs : x ⇒ ys *) → x ⇒ prod ys
⟨ x ~[] ⟩* = !
⟨ f ∷ fs ⟩* = ⟨ f , ⟨ fs ⟩* ⟩
∈⇒mor : ∀ {x y ys} (fs : x ⇒ ys *) (y∈ys : y ∈ ys) → x ⇒ y
∈⇒mor (x ~[]) ()
∈⇒mor (f ∷ fs) (here refl) = f
∈⇒mor (f ∷ fs) (there y∈ys) = ∈⇒mor fs y∈ys
project* : ∀ {x y ys} (fs : x ⇒ ys *) (y∈ys : y ∈ ys) → π[ y∈ys ] ∘ ⟨ fs ⟩* ≈ ∈⇒mor fs y∈ys
project* (x ~[]) ()
project* (f ∷ fs) (here refl) = project₁
project* (f ∷ fs) (there y∈ys) = pullʳ project₂ ○ project* fs y∈ys
uniqueness* : ∀ {x ys} {g h : x ⇒ prod ys} → (∀ {y} (y∈ys : y ∈ ys) → π[ y∈ys ] ∘ g ≈ π[ y∈ys ] ∘ h) → g ≈ h
uniqueness* {x} {[]} uni = !-unique₂
uniqueness* {x} {y ∷ ys} uni = unique′ (uni (here ≡.refl)) (uniqueness* λ y∈ys → sym-assoc ○ uni (there y∈ys) ○ assoc)
module _ {a} {A : Set a} (f : A → Obj) where
uniqueness*′ : ∀ {x ys} {g h : x ⇒ prod (map f ys)} → (∀ {y} (y∈ys : y ∈ ys) → π[ ∈ₚ.∈-map⁺ f y∈ys ] ∘ g ≈ π[ ∈ₚ.∈-map⁺ f y∈ys ] ∘ h) → g ≈ h
uniqueness*′ {x} {[]} uni = !-unique₂
uniqueness*′ {x} {y ∷ ys} uni = unique′ (uni (here ≡.refl)) (uniqueness*′ λ y∈ys → sym-assoc ○ uni (there y∈ys) ○ assoc)
module _ {x} (g : ∀ a → x ⇒ f a) where
build-mors : (l : List A) → x ⇒ map f l *
build-mors [] = _ ~[]
build-mors (y ∷ l) = g y ∷ build-mors l
build-proj≡ : ∀ {a l} (a∈l : a ∈ l) → g a ≡ ∈⇒mor (build-mors l) (∈ₚ.∈-map⁺ f a∈l)
build-proj≡ (here refl) = ≡.refl
build-proj≡ (there a∈l) = build-proj≡ a∈l
build-proj : ∀ {a l} (a∈l : a ∈ l) → g a ≈ π[ ∈ₚ.∈-map⁺ f a∈l ] ∘ ⟨ build-mors l ⟩*
build-proj {_} {l} a∈l = reflexive (build-proj≡ a∈l) ○ ⟺ (project* (build-mors l) _)
build-⟨⟩*∘ : ∀ {x y} (g : ∀ a → x ⇒ f a) (h : y ⇒ x) → ∀ l → ⟨ build-mors g l ⟩* ∘ h ≈ ⟨ build-mors (λ a → g a ∘ h) l ⟩*
build-⟨⟩*∘ g h [] = !-unique₂
build-⟨⟩*∘ g h (x ∷ l) = begin
⟨ build-mors g (x ∷ l) ⟩* ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ g x ∘ h , ⟨ build-mors g l ⟩* ∘ h ⟩ ≈⟨ ⟨⟩-congˡ (build-⟨⟩*∘ g h l) ⟩
⟨ g x ∘ h , ⟨ build-mors (λ a → g a ∘ h) l ⟩* ⟩ ∎
build-uniqueness* : ∀ {x} {g h : ∀ a → x ⇒ f a} → (∀ a → g a ≈ h a) → ∀ l → ⟨ build-mors g l ⟩* ≈ ⟨ build-mors h l ⟩*
build-uniqueness* {x} {g} {h} uni [] = Equiv.refl
build-uniqueness* {x} {g} {h} uni (y ∷ l) = ⟨⟩-cong₂ (uni y) (build-uniqueness* uni l)
-- for vectors
prodᵥ : ∀ {n} → Vec Obj (suc n) → Obj
prodᵥ v = Vec.foldr₁ _×_ v
π[_]ᵥ : ∀ {n x} {xs : Vec Obj (suc n)} → x ∈ᵥ xs → prodᵥ xs ⇒ x
π[_]ᵥ {.0} {.x} {x ∷ []} (here refl) = id
π[_]ᵥ {.(suc _)} {.x} {x ∷ y ∷ xs} (here refl) = π₁
π[_]ᵥ {.(suc _)} {x} {_ ∷ y ∷ xs} (there x∈xs) = π[ x∈xs ]ᵥ ∘ π₂
data [_]_⇒ᵥ_* : ∀ n → Obj → Vec Obj n → Set (o ⊔ ℓ) where
_~[] : ∀ x → [ 0 ] x ⇒ᵥ [] *
_∷_ : ∀ {x y n} {ys : Vec Obj n} → x ⇒ y → [ n ] x ⇒ᵥ ys * → [ suc n ] x ⇒ᵥ y ∷ ys *
⟨_⟩ᵥ* : ∀ {n x ys} (fs : [ suc n ] x ⇒ᵥ ys *) → x ⇒ prodᵥ ys
⟨ f ∷ (x ~[]) ⟩ᵥ* = f
⟨ f ∷ (g ∷ fs) ⟩ᵥ* = ⟨ f , ⟨ g ∷ fs ⟩ᵥ* ⟩
∈⇒morᵥ : ∀ {n x y ys} (fs : [ n ] x ⇒ᵥ ys *) (y∈ys : y ∈ᵥ ys) → x ⇒ y
∈⇒morᵥ (x ~[]) ()
∈⇒morᵥ (f ∷ fs) (here refl) = f
∈⇒morᵥ (f ∷ fs) (there y∈ys) = ∈⇒morᵥ fs y∈ys
projectᵥ* : ∀ {n x y ys} (fs : [ suc n ] x ⇒ᵥ ys *) (y∈ys : y ∈ᵥ ys) → π[ y∈ys ]ᵥ ∘ ⟨ fs ⟩ᵥ* ≈ ∈⇒morᵥ fs y∈ys
projectᵥ* (f ∷ (x ~[])) (here ≡.refl) = identityˡ
projectᵥ* (f ∷ g ∷ fs) (here ≡.refl) = project₁
projectᵥ* (f ∷ g ∷ fs) (there y∈ys) = pullʳ project₂ ○ projectᵥ* (g ∷ fs) y∈ys
uniquenessᵥ* : ∀ {x n ys} {g h : x ⇒ prodᵥ {n} ys} → (∀ {y} (y∈ys : y ∈ᵥ ys) → π[ y∈ys ]ᵥ ∘ g ≈ π[ y∈ys ]ᵥ ∘ h) → g ≈ h
uniquenessᵥ* {x} {.0} {y ∷ []} uni = ⟺ identityˡ ○ uni (here ≡.refl) ○ identityˡ
uniquenessᵥ* {x} {.(suc _)} {y ∷ z ∷ ys} uni = unique′ (uni (here ≡.refl)) (uniquenessᵥ* (λ y∈ys → sym-assoc ○ uni (there y∈ys) ○ assoc))
module _ {a} {A : Set a} (f : A → Obj) where
uniquenessᵥ*′ : ∀ {x n ys} {g h : x ⇒ prodᵥ {n} (Vec.map f ys)} → (∀ {y} (y∈ys : y ∈ᵥ ys) → π[ ∈ᵥₚ.∈-map⁺ f y∈ys ]ᵥ ∘ g ≈ π[ ∈ᵥₚ.∈-map⁺ f y∈ys ]ᵥ ∘ h) → g ≈ h
uniquenessᵥ*′ {x} {.0} {y ∷ []} uni = ⟺ identityˡ ○ uni (here ≡.refl) ○ identityˡ
uniquenessᵥ*′ {x} {.(suc _)} {y ∷ z ∷ ys} uni = unique′ (uni (here ≡.refl)) (uniquenessᵥ*′ (λ y∈ys → sym-assoc ○ uni (there y∈ys) ○ assoc))
module _ {x} (g : ∀ a → x ⇒ f a) where
buildᵥ-mors : ∀ {n} (l : Vec A n) → [ n ] x ⇒ᵥ Vec.map f l *
buildᵥ-mors [] = _ ~[]
buildᵥ-mors (y ∷ []) = g y ∷ _ ~[]
buildᵥ-mors (y ∷ z ∷ l) = g y ∷ buildᵥ-mors (z ∷ l)
buildᵥ-proj≡ : ∀ {a n} {l : Vec A n} (a∈l : a ∈ᵥ l) → g a ≡ ∈⇒morᵥ (buildᵥ-mors l) (∈ᵥₚ.∈-map⁺ f a∈l)
buildᵥ-proj≡ {_} {_} {y ∷ []} (here refl) = ≡.refl
buildᵥ-proj≡ {_} {_} {y ∷ z ∷ l} (here refl) = ≡.refl
buildᵥ-proj≡ {_} {_} {y ∷ z ∷ l} (there a∈l) = buildᵥ-proj≡ a∈l
buildᵥ-proj : ∀ {a n} {l : Vec A (suc n)} (a∈l : a ∈ᵥ l) → g a ≈ π[ ∈ᵥₚ.∈-map⁺ f a∈l ]ᵥ ∘ ⟨ buildᵥ-mors l ⟩ᵥ*
buildᵥ-proj {_} {_} {l} a∈l = reflexive (buildᵥ-proj≡ a∈l) ○ ⟺ (projectᵥ* (buildᵥ-mors l) _)
buildᵥ-⟨⟩*∘ : ∀ {x y} (g : ∀ a → x ⇒ f a) (h : y ⇒ x) → ∀ {n} (l : Vec A (suc n)) → ⟨ buildᵥ-mors g l ⟩ᵥ* ∘ h ≈ ⟨ buildᵥ-mors (λ a → g a ∘ h) l ⟩ᵥ*
buildᵥ-⟨⟩*∘ g h (x ∷ []) = Equiv.refl
buildᵥ-⟨⟩*∘ g h (x ∷ y ∷ []) = ⟨⟩∘
buildᵥ-⟨⟩*∘ g h (x ∷ y ∷ z ∷ l) = begin
⟨ g x , ⟨ buildᵥ-mors g (y ∷ z ∷ l) ⟩ᵥ* ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ g x ∘ h , ⟨ buildᵥ-mors g (y ∷ z ∷ l) ⟩ᵥ* ∘ h ⟩ ≈⟨ ⟨⟩-congˡ (buildᵥ-⟨⟩*∘ g h (y ∷ z ∷ l)) ⟩
⟨ g x ∘ h , ⟨ buildᵥ-mors (λ a₁ → g a₁ ∘ h) (y ∷ z ∷ l) ⟩ᵥ* ⟩ ∎
buildᵥ-uniqueness* : ∀ {x} {g h : ∀ a → x ⇒ f a} → (∀ a → g a ≈ h a) → ∀ {n} (l : Vec A (suc n)) → ⟨ buildᵥ-mors g l ⟩ᵥ* ≈ ⟨ buildᵥ-mors h l ⟩ᵥ*
buildᵥ-uniqueness* {x} {g} {h} uni (y ∷ []) = uni y
buildᵥ-uniqueness* {x} {g} {h} uni (y ∷ z ∷ []) = ⟨⟩-cong₂ (uni y) (uni z)
buildᵥ-uniqueness* {x} {g} {h} uni (y ∷ z ∷ w ∷ l) = ⟨⟩-cong₂ (uni y) (buildᵥ-uniqueness* uni (z ∷ w ∷ l))
| {
"alphanum_fraction": 0.4729477612,
"avg_line_length": 45.5094339623,
"ext": "agda",
"hexsha": "8c1bf855b420cb9bf0ddf6b550f098fe7fa21d3f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Cartesian/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Cartesian/Properties.agda",
"max_line_length": 162,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Cartesian/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4608,
"size": 9648
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
postulate
A : Set
a b : A
f : Level → A
g h : Level
f-g : f (lsuc g) ≡ a
f-h : f (lsuc h) ≡ b
g-h : g ≡ h
{-# REWRITE f-g f-h g-h #-}
| {
"alphanum_fraction": 0.6112956811,
"avg_line_length": 17.7058823529,
"ext": "agda",
"hexsha": "58d8200f1f23dac3a98c6659474d4957efda3142",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3817.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3817.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3817.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 112,
"size": 301
} |
open import Relation.Binary using (Rel; Reflexive; Trans)
open import Level using (Level; _⊔_; suc)
open import Data.Product using (Σ; _×_; _,_; Σ-syntax; ∃-syntax; proj₁; proj₂)
data Star {t r} {T : Set t} (R : Rel T r) : Rel T (t ⊔ r) where
ε : Reflexive (Star R)
_▻_ : Trans (Star R) R (Star R)
_▻▻_ : ∀ {t r} {T : Set t} {R : Rel T r} {M L N : T}
→ Star R M L
→ Star R L N
→ Star R M N
ML ▻▻ ε = ML
ML ▻▻ (LL′ ▻ L′N) = (ML ▻▻ LL′) ▻ L′N
Semi-Confluence : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Semi-Confluence R = ∀ {M A B}
→ R M A → Star R M B
--------------------------------
→ ∃[ N ] (Star R A N × Star R B N)
Confluence : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Confluence R = ∀ {M A B}
→ Star R M A → Star R M B
--------------------------------
→ ∃[ N ] (Star R A N × Star R B N)
semi-to-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Semi-Confluence R → Confluence R
semi-to-confluence sc {B = B} ε M*B = B , M*B , ε
semi-to-confluence sc (M*M′ ▻ M′A) M*B
with semi-to-confluence sc M*M′ M*B
... | N , M′*N , B*N
with sc M′A M′*N
... | N′ , A*N′ , N*N′
= N′ , A*N′ , B*N ▻▻ N*N′
Z : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Z {t}{r}{T} R =
Σ[ _* ∈ (T → T) ]
(∀ {A B : T} → R A B → Star {t}{r} R B (A *))
× (∀ {A B : T} → R A B → Star {t}{r} R (A *) (B *))
z-monotonic : ∀ {t r} {T : Set t} {R : Rel T r}
→ (z : Z R)
------------------------------------------
→ (∀ {A B} → Star R A B
→ Star R (proj₁ z A) (proj₁ z B))
z-monotonic z ε = ε
z-monotonic z@(_* , Z₁ , Z₂) (A*A′ ▻ A′B) = z-monotonic z A*A′ ▻▻ Z₂ A′B
z-semi-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Z R → Semi-Confluence R
z-semi-confluence (_* , Z₁ , Z₂) {A = A} MA ε = A , ε , (ε ▻ MA)
z-semi-confluence z@(_* , Z₁ , Z₂) MA (_▻_ {j = M′} M*M′ M′B) =
M′ * , Z₁ MA ▻▻ z-monotonic z M*M′ , Z₁ M′B
z-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Z R → Confluence R
z-confluence z = semi-to-confluence (z-semi-confluence z)
| {
"alphanum_fraction": 0.4518013632,
"avg_line_length": 29.768115942,
"ext": "agda",
"hexsha": "7277da0776f9841fb81661bc9451a774f12765d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "Z.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "Z.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "Z.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 899,
"size": 2054
} |
module Basic.EqvSemantics where
open import Data.Vec
open import Function
open import Data.Product
open import Data.Maybe
open import Utils.Decidable
open import Basic.AST
open import Basic.BigStep
open import Basic.SmallStep
{-
Equivalence of big step and small step semantics (Theorem 2.26 in the book).
The main difference from the book is the proof for the
⟨ S , s ⟩ k ⟶ s' → ⟨ S , s ⟩⟱ s'
direction. The book does case analysis directly on the transition the
"cons" case of the computation sequence, and then uses Lemma 2.19 (which
I named "seq-split" in the SmallStep module) to split the sequence into
two parts corresponding to the two parts of a composite statement.
The problem with this is that it relies on the usual well-ordering of natural
numbers, and it's not immediately structurally recursive. In other words, it relies
on the fact that the resulting parts of a split sequence are both shorter than the
original sequence.
However, the book omits the proof that no splitting ever produces computation
sequences of length zero. This is required for the recursion to be well-founded,
and in Agda we would indeed have to prove this too.
It's simpler to use "prepend". It essentially digs down to the leftmost "edge" of
a small-step transition, and composes it with a big-step derivation. It's evidently
structurally recursive and I find it a bit neater than the proof in the book.
-}
Small≡Big : ∀ {n}{S : St n}{s s'} → ⟨ S , s ⟩⟱ s' ⇔ ⟨ S , s ⟩⟶* s'
Small≡Big {n} = to , from ∘ proj₂
where
to : ∀ {S s s'} → ⟨ S , s ⟩⟱ s' → ⟨ S , s ⟩⟶* s'
to ass = , ass stop
to skip = , skip stop
to (A , B) = , append (proj₂ $ to A) (proj₂ $ to B)
to (if-true x p) = , if-true x ∷ proj₂ (to p)
to (if-false x p) = , if-false x ∷ proj₂ (to p)
to (while-true x p p₁) = , while ∷ if-true x ∷ append (proj₂ $ to p) (proj₂ $ to p₁)
to (while-false x) = , while ∷ if-false x ∷ skip stop
mutual
prepend :
∀ {s₁ s₂ s₃}{S₁ S₂ : St n}
→ ⟨ S₁ , s₁ ⟩⟶⟨ S₂ , s₂ ⟩
→ ⟨ S₂ , s₂ ⟩⟱ s₃
→ ⟨ S₁ , s₁ ⟩⟱ s₃
prepend (p1 ◄) (p2 , p3) = prepend p1 p2 , p3
prepend (x ∙) p2 = from (x stop) , p2
prepend (if-true x) p2 = if-true x p2
prepend (if-false x) p2 = if-false x p2
prepend while (if-true x (p2 , p3)) = while-true x p2 p3
prepend while (if-false x skip) = while-false x
from : ∀ {k S s s'} → ⟨ S , s ⟩ k ⟶ s' → ⟨ S , s ⟩⟱ s'
from (ass stop) = ass
from (skip stop) = skip
from (x ∷ p) = prepend x (from p)
| {
"alphanum_fraction": 0.6176024279,
"avg_line_length": 34.2337662338,
"ext": "agda",
"hexsha": "5f6d95d02a2511c442caa1e9d9d7f05f70e9a862",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/EqvSemantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/EqvSemantics.agda",
"max_line_length": 86,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/EqvSemantics.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 852,
"size": 2636
} |
module Categories.Comonad where
open import Level using (_⊔_)
open import Categories.Category using (Category)
open import Categories.Functor hiding (_≡_; assoc; identityˡ; identityʳ)
open import Categories.NaturalTransformation renaming (id to idN)
record Comonad {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
field
F : Endofunctor C
ε : NaturalTransformation F id
δ : NaturalTransformation F (F ∘ F)
open Functor F
field
.assoc : (δ ∘ʳ F) ∘₁ δ ≡ (F ∘ˡ δ) ∘₁ δ
.identityˡ : (F ∘ˡ ε) ∘₁ δ ≡ idN
.identityʳ : (ε ∘ʳ F) ∘₁ δ ≡ idN
| {
"alphanum_fraction": 0.6585365854,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "8e938fc1644d03427f8c9f141a4573b1b75199a6",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/categories",
"max_forks_repo_path": "Categories/Comonad.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/categories",
"max_issues_repo_path": "Categories/Comonad.agda",
"max_line_length": 72,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Comonad.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 210,
"size": 574
} |
-- A module which imports every Web.Semantic module.
module Web.Semantic.Everything where
import Web.Semantic.DL.ABox
import Web.Semantic.DL.ABox.Interp
import Web.Semantic.DL.ABox.Interp.Meet
import Web.Semantic.DL.ABox.Interp.Morphism
import Web.Semantic.DL.ABox.Model
import Web.Semantic.DL.ABox.Skolemization
import Web.Semantic.DL.Category
import Web.Semantic.DL.Category.Composition
import Web.Semantic.DL.Category.Morphism
import Web.Semantic.DL.Category.Object
import Web.Semantic.DL.Category.Properties
import Web.Semantic.DL.Category.Properties.Composition
import Web.Semantic.DL.Category.Properties.Composition.Assoc
import Web.Semantic.DL.Category.Properties.Composition.LeftUnit
import Web.Semantic.DL.Category.Properties.Composition.Lemmas
import Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv
import Web.Semantic.DL.Category.Properties.Composition.RespectsWiring
import Web.Semantic.DL.Category.Properties.Composition.RightUnit
import Web.Semantic.DL.Category.Properties.Equivalence
import Web.Semantic.DL.Category.Properties.Tensor
import Web.Semantic.DL.Category.Properties.Tensor.AssocNatural
import Web.Semantic.DL.Category.Properties.Tensor.Coherence
import Web.Semantic.DL.Category.Properties.Tensor.Functor
import Web.Semantic.DL.Category.Properties.Tensor.Isomorphisms
import Web.Semantic.DL.Category.Properties.Tensor.Lemmas
import Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv
import Web.Semantic.DL.Category.Properties.Tensor.RespectsWiring
import Web.Semantic.DL.Category.Properties.Tensor.SymmNatural
import Web.Semantic.DL.Category.Properties.Tensor.UnitNatural
import Web.Semantic.DL.Category.Tensor
import Web.Semantic.DL.Category.Unit
import Web.Semantic.DL.Category.Wiring
import Web.Semantic.DL.Concept
import Web.Semantic.DL.Concept.Model
import Web.Semantic.DL.Concept.Skolemization
import Web.Semantic.DL.FOL
import Web.Semantic.DL.FOL.Model
import Web.Semantic.DL.Integrity
import Web.Semantic.DL.Integrity.Closed
import Web.Semantic.DL.Integrity.Closed.Alternate
import Web.Semantic.DL.Integrity.Closed.Properties
import Web.Semantic.DL.KB
import Web.Semantic.DL.KB.Model
import Web.Semantic.DL.KB.Skolemization
import Web.Semantic.DL.Role
import Web.Semantic.DL.Role.Model
import Web.Semantic.DL.Role.Skolemization
import Web.Semantic.DL.Sequent
import Web.Semantic.DL.Sequent.Model
import Web.Semantic.DL.Signature
import Web.Semantic.DL.TBox
import Web.Semantic.DL.TBox.Interp
import Web.Semantic.DL.TBox.Interp.Morphism
import Web.Semantic.DL.TBox.Minimizable
import Web.Semantic.DL.TBox.Model
import Web.Semantic.DL.TBox.Skolemization
| {
"alphanum_fraction": 0.8530878404,
"avg_line_length": 42.737704918,
"ext": "agda",
"hexsha": "10380419b26b51991cebef1380a603d499af5036",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/Everything.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/Everything.agda",
"max_line_length": 69,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 706,
"size": 2607
} |
{-# OPTIONS --safe --without-K #-}
module Generics.Mu where
open import Generics.Prelude hiding (lookup)
open import Generics.Telescope
open import Generics.Desc
private
variable
P : Telescope ⊤
V I : ExTele P
p : ⟦ P ⟧tel tt
ℓ : Level
n : ℕ
⟦_⟧IndArgω : ConDesc P V I → (⟦ P , I ⟧xtel → Setω) → ⟦ P , V ⟧xtel → Setω
⟦ var f ⟧IndArgω X (p , v) = X (p , f (p , v))
⟦ π (n , ai) S C ⟧IndArgω X (p , v) = (s : < relevance ai > S (p , v)) → ⟦ C ⟧IndArgω X (p , v , s)
⟦ A ⊗ B ⟧IndArgω X pv = ⟦ A ⟧IndArgω X pv ×ω ⟦ B ⟧IndArgω X pv
⟦_⟧Conω : ConDesc P V I → (⟦ P , I ⟧xtel → Setω) → ⟦ P , V & I ⟧xtel → Setω
⟦ var f ⟧Conω X (p , v , i) = Liftω (i ≡ f (p , v))
⟦ π (n , ai) S C ⟧Conω X (p , v , i) = Σω (< relevance ai > S _) λ s → ⟦ C ⟧Conω X (p , (v , s) , i)
⟦ A ⊗ B ⟧Conω X (p , v , i) = ⟦ A ⟧IndArgω X (p , v) ×ω ⟦ B ⟧Conω X (p , v , i)
⟦_⟧Dataω : DataDesc P I n → (⟦ P , I ⟧xtel → Setω) → ⟦ P , I ⟧xtel → Setω
⟦_⟧Dataω {n = n} D X (p , i) = Σω (Fin n) λ k → ⟦ lookupCon D k ⟧Conω X (p , tt , i)
data μ (D : DataDesc P I n) (pi : ⟦ P , I ⟧xtel) : Setω where
⟨_⟩ : ⟦ D ⟧Dataω (μ D) pi → μ D pi
| {
"alphanum_fraction": 0.4943132108,
"avg_line_length": 34.6363636364,
"ext": "agda",
"hexsha": "3cfab5623429ae84f43eaa2cf221ebe581a9b200",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Mu.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Mu.agda",
"max_line_length": 100,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Mu.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 563,
"size": 1143
} |
{-# OPTIONS --cubical --no-import-sorts --safe --postfix-projections #-}
module Cubical.Data.FinSet.Binary.Small.Properties where
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Functions.Embedding
open import Cubical.Functions.Involution
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.FinSet.Binary.Small.Base
open import Cubical.Data.Bool
import Cubical.Data.FinSet.Binary.Large as FS
open FS using (isBinary)
open import Cubical.Foundations.Univalence.Universe Binary El un (λ _ → refl)
private
variable
ℓ : Level
B : Type ℓ
isBinaryEl : ∀ b → isBinary (El b)
isBinaryEl ℕ₂ = ∣ idEquiv Bool ∣
isBinaryEl (un b c e i)
= squash
(transp (λ j → ∥ Bool ≃ ua e (i ∧ j) ∥) (~ i) (isBinaryEl b))
(transp (λ j → ∥ Bool ≃ ua e (i ∨ ~ j) ∥) i (isBinaryEl c))
i
isBinaryEl' : ∀ ℓ b → isBinary (Lift {j = ℓ} (El b))
isBinaryEl' ℓ ℕ₂ = ∣ LiftEquiv ∣
isBinaryEl' ℓ (un b c e i)
= squash
(transp (λ j → ∥ Bool ≃ Lift {j = ℓ} (ua e (i ∧ j)) ∥) (~ i) (isBinaryEl' ℓ b))
(transp (λ j → ∥ Bool ≃ Lift {j = ℓ} (ua e (i ∨ ~ j)) ∥) i (isBinaryEl' ℓ c))
i
isPropIsSetEl : isOfHLevelDep 1 (λ b → isSet (El b))
isPropIsSetEl = isOfHLevel→isOfHLevelDep 1 (λ b → isPropIsSet)
isSetEl : ∀ b → isSet (El b)
isSetEl ℕ₂ = isSetBool
isSetEl (un b c e i)
= isPropIsSetEl (isSetEl b) (isSetEl c) (un b c e) i
isGroupoidBinary : isGroupoid Binary
isGroupoidBinary b c = isOfHLevelRetract 2 fun inv leftInv sub
where
open Iso (pathIso b c)
sub : isSet (El b ≡ El c)
sub = isOfHLevel≡ 2 (isSetEl b) (isSetEl c)
module Reflection where
bigger : Binary → FS.Binary _
bigger b = El b , isBinaryEl b
open Iso
lemma : ∀(B : Type₀) → ∥ Bool ≃ B ∥ → Σ[ b ∈ Binary ] El b ≃ B
lemma B = rec Sprp (_,_ ℕ₂)
where
Fprp : isProp (fiber El B)
Fprp = isEmbedding→hasPropFibers isEmbeddingEl B
Sprp : isProp (Σ[ b ∈ Binary ] El b ≃ B)
Sprp = isOfHLevelRetract 1 (map-snd ua) (map-snd pathToEquiv)
(λ{ (A , e) → ΣPathP (refl , pathToEquiv-ua e) }) Fprp
smaller : FS.Binary ℓ-zero → Binary
smaller (B , tp) = lemma B tp .fst
bigger-smaller : ∀ p → bigger (smaller p) ≡ p
bigger-smaller (B , tp)
= ΣPathP (b≡B , ∥∥-isPropDep (λ B → Bool ≃ B) (isBinaryEl b) tp b≡B)
where
b = smaller (B , tp)
b≡B = ua (lemma B tp .snd)
smaller-bigger : ∀ b → smaller (bigger b) ≡ b
smaller-bigger b = equivIso _ _ .inv (lemma (El b) (isBinaryEl b) .snd)
reflectIso : Iso Binary (FS.Binary ℓ-zero)
reflectIso .fun = bigger
reflectIso .inv = smaller
reflectIso .rightInv = bigger-smaller
reflectIso .leftInv = smaller-bigger
reflect : Binary ≃ FS.Binary ℓ-zero
reflect = isoToEquiv Reflection.reflectIso
structureᵤ : FS.BinStructure Binary
structureᵤ = λ where
.base → bs .base .lower
.loop i → bs .loop i .lower
.loop² i j → bs .loop² i j .lower
.trunc → isGroupoidBinary
where
open FS.BinStructure
path : Lift Binary ≡ FS.Binary _
path = ua (compEquiv (invEquiv LiftEquiv) reflect)
bs : FS.BinStructure (Lift Binary)
bs = subst⁻ FS.BinStructure path FS.structure₀
| {
"alphanum_fraction": 0.6691133294,
"avg_line_length": 29.3620689655,
"ext": "agda",
"hexsha": "cef7d92e0f207d72d2550845eae6be8716dc4442",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Binary/Small/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Binary/Small/Properties.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Binary/Small/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1218,
"size": 3406
} |
{-# OPTIONS --without-K #-}
module FinEquivEquivTimes where
open import Data.Product using (_×_; proj₁; proj₂)
open import Equiv using (refl∼; sym∼; sym≃; _⊎≃_; id≃; _≃_; _●_; _×≃_; qinv)
open import FinEquivPlusTimes using (F0≃⊥; Fin1≃⊤; module Plus; module Times)
open Plus using (⊎≃+; +≃⊎)
open Times using (×≃*; *≃×)
open import FinEquivTypeEquiv
using (_fin≃_; module PlusE; module TimesE; module PlusTimesE)
open PlusE using (_+F_; unite+; uniti+; unite+r; uniti+r; assocr+; assocl+;
swap+; sswap+)
open TimesE using (_*F_; unite*; uniti*; unite*r; uniti*r; assocr*; assocl*;
swap*; sswap*)
open PlusTimesE using (distz; factorz; distzr; factorzr;
dist; factor; distl; factorl)
open import EquivEquiv
open import TypeEquiv
using (unite⋆equiv; unite⋆′equiv; assocl⋆equiv)
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Data.Nat using (ℕ; _+_; _*_)
open import Data.Fin using (Fin)
open import Data.Sum using (_⊎_)
open import Data.Product using (_,_)
import Relation.Binary.PropositionalEquality as P using (refl)
import TypeEquivEquiv as T
using (id×id≋id; ×●≋●×; _×≋_; sym≃-distrib×;
unite⋆-nat; assocl⋆-nat;
[g*1]●[1*f]≋[1*f]●[g*1]; unite⋆′-nat)
------------------------------------------------------------------------------
-- Equivalences for the multiplicative structure
id1≃ : Fin 1 ≃ Fin 1
id1≃ = id≃ {A = Fin 1}
id*id≋id : ∀ {m n : ℕ} →
id≃ {A = Fin m} *F id≃ {A = Fin n} ≋ id≃
id*id≋id {m} {n} =
let em = id≃ {A = Fin m} in
let en = id≃ {A = Fin n} in
let em×en = id≃ {A = Fin m × Fin n} in
let em*n = id≃ {A = Fin (m * n)} in
let f≋ = id≋ {x = ×≃* {m} {n}} in
let g≋ = id≋ {x = *≃× {m} {n}} in
begin (
em *F en
≋⟨ id≋ ⟩
×≃* ● (em ×≃ en) ● *≃×
≋⟨ f≋ ◎ (T.id×id≋id ◎ g≋) ⟩
×≃* ● id≃ {A = Fin m × Fin n} ● *≃×
≋⟨ f≋ ◎ lid≋ {f = *≃×} ⟩
×≃* {m} ● *≃×
≋⟨ rinv≋ (×≃* {m}) ⟩
em*n ∎)
where open ≋-Reasoning
intro-inv-r* : {m n : ℕ} {B : Set} (f : (Fin m × Fin n) ≃ B) → f ≋ (f ● *≃×) ● ×≃*
intro-inv-r* f =
begin (
f
≋⟨ sym≋ rid≋ ⟩
f ● id≃
≋⟨ id≋ {x = f} ◎ sym≋ (linv≋ ×≃*) ⟩
f ● (*≃× ● ×≃*)
≋⟨ ●-assocl ⟩
(f ● *≃×) ● ×≃* ∎)
where open ≋-Reasoning
*●≋●* : {A B C D E F : ℕ} →
{f : A fin≃ C} {g : B fin≃ D} {h : C fin≃ E} {i : D fin≃ F} →
(h ● f) *F (i ● g) ≋ (h *F i) ● (f *F g)
*●≋●* {f = f} {g} {h} {i} =
let f≋ = id≋ {x = ×≃*} in
let g≋ = id≋ {x = *≃×} in
let id≋fg = id≋ {x = f ×≃ g} in
begin (
(h ● f) *F (i ● g)
≋⟨ id≋ ⟩
×≃* ● ((h ● f) ×≃ (i ● g)) ● *≃×
≋⟨ f≋ ◎ (T.×●≋●× ◎ g≋) ⟩ -- the real work, rest is shuffling
×≃* ● ((h ×≃ i) ● (f ×≃ g)) ● *≃×
≋⟨ ●-assocl ⟩
(×≃* ● ((h ×≃ i) ● (f ×≃ g))) ● *≃×
≋⟨ ●-assocl ◎ g≋ ⟩
((×≃* ● h ×≃ i) ● f ×≃ g) ● *≃×
≋⟨ ((f≋ ◎ intro-inv-r* (h ×≃ i)) ◎ id≋fg) ◎ g≋ ⟩
((×≃* ● (h ×≃ i ● *≃×) ● ×≃*) ● f ×≃ g) ● *≃×
≋⟨ (●-assocl ◎ id≋fg) ◎ g≋ ⟩
(((×≃* ● (h ×≃ i ● *≃×)) ● ×≃*) ● f ×≃ g) ● *≃×
≋⟨ id≋ ⟩ -- the left part is done, show it
((h *F i ● ×≃*) ● f ×≃ g) ● *≃×
≋⟨ ●-assoc {f = f ×≃ g} {×≃*} {h *F i} ◎ g≋ ⟩
(h *F i ● (×≃* ● f ×≃ g)) ● *≃×
≋⟨ ●-assoc {f = *≃×} {×≃* ● f ×≃ g} {h *F i}⟩
(h *F i) ● ((×≃* ● f ×≃ g) ● *≃×)
≋⟨ id≋ {x = h *F i} ◎ ●-assoc {f = *≃×} {f ×≃ g} {×≃*}⟩
(h *F i) ● (f *F g) ∎)
where open ≋-Reasoning
_*≋_ : {A B C D : ℕ} {f₁ g₁ : A fin≃ B} {f₂ g₂ : C fin≃ D} →
(f₁ ≋ g₁) → (f₂ ≋ g₂) → (f₁ *F f₂ ≋ g₁ *F g₂)
_*≋_ {A} {B} {C} {D} {f₁} {g₁} {f₂} {g₂} f₁≋g₁ f₂≋g₂ =
let f≋ = id≋ {x = ×≃*} in
let g≋ = id≋ {x = *≃×} in
begin (
f₁ *F f₂
≋⟨ id≋ ⟩
×≃* ● (f₁ ×≃ f₂) ● *≃×
≋⟨ f≋ ◎ (T._×≋_ f₁≋g₁ f₂≋g₂ ◎ g≋) ⟩
×≃* ● (g₁ ×≃ g₂) ● *≃×
≋⟨ id≋ ⟩
g₁ *F g₂ ∎)
where open ≋-Reasoning
unite⋆-nat : {m n : ℕ} {f : m fin≃ n} →
unite* ● (id1≃ *F f) ≋ f ● unite*
unite⋆-nat {m} {n} {f} =
begin (
unite* ● (id1≃ *F f)
≋⟨ id≋ ⟩
(unite⋆equiv ● (Fin1≃⊤ ×≃ id≃) ● *≃×) ● ×≃* ● ((id≃ ×≃ f) ● *≃×)
≋⟨ ●-assocl {f = (id≃ ×≃ f) ● *≃×} {×≃*} {unite⋆equiv ● (Fin1≃⊤ ×≃ id≃) ● *≃×} ⟩
((unite⋆equiv ● ((Fin1≃⊤ ×≃ id≃) ● *≃×)) ● ×≃*) ● ((id≃ ×≃ f) ● *≃×)
≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩
(((unite⋆equiv ● (Fin1≃⊤ ×≃ id≃)) ● *≃×) ● ×≃*) ● (id≃ ×≃ f) ● *≃×
≋⟨ sym≋ (intro-inv-r* (unite⋆equiv ● (Fin1≃⊤ ×≃ id≃))) ◎ id≋ ⟩
(unite⋆equiv ● (Fin1≃⊤ ×≃ id≃)) ● (id≃ ×≃ f) ● *≃×
≋⟨ ●-assocl ⟩
((unite⋆equiv ● (Fin1≃⊤ ×≃ id≃)) ● (id≃ ×≃ f)) ● *≃×
≋⟨ ●-assoc ◎ id≋ ⟩
(unite⋆equiv ● (Fin1≃⊤ ×≃ id≃) ● (id≃ ×≃ f)) ● *≃×
≋⟨ (id≋ ◎ (T.[g*1]●[1*f]≋[1*f]●[g*1] {f = f} {Fin1≃⊤})) ◎ id≋ ⟩
(unite⋆equiv ● ((id≃ ×≃ f) ● (Fin1≃⊤ ×≃ id≃))) ● *≃×
≋⟨ ●-assocl ◎ id≋ ⟩
((unite⋆equiv ● (id≃ ×≃ f)) ● (Fin1≃⊤ ×≃ id≃)) ● *≃×
≋⟨ ●-assoc ⟩
(unite⋆equiv ● (id≃ ×≃ f)) ● (Fin1≃⊤ ×≃ id≃) ● *≃×
≋⟨ T.unite⋆-nat ◎ id≋ ⟩
(f ● unite⋆equiv) ● (Fin1≃⊤ ×≃ id≃) ● *≃×
≋⟨ ●-assoc ⟩
f ● unite⋆equiv ● (Fin1≃⊤ ×≃ id≃) ● *≃×
≋⟨ id≋ ⟩
f ● unite* ∎)
where open ≋-Reasoning
-- sym≃ distributes over *F
sym*F : ∀ {A B C D} {f : A fin≃ B} {g : C fin≃ D} →
sym≃ (f *F g) ≋ sym≃ f *F sym≃ g
sym*F {f = f} {g = g} =
begin (
sym≃ (f *F g)
≋⟨ id≋ ⟩
sym≃ (×≃* ● (f ×≃ g ● *≃×))
≋⟨ sym≃● ⟩
sym≃ (f ×≃ g ● *≃×) ● sym≃ ×≃*
≋⟨ sym≃● ◎ id≋ ⟩
(sym≃ *≃× ● sym≃ (f ×≃ g)) ● sym≃ ×≃*
≋⟨ (id≋ ◎ T.sym≃-distrib×) ◎ id≋ ⟩
(sym≃ *≃× ● (sym≃ f ×≃ sym≃ g)) ● sym≃ ×≃*
≋⟨ ●-assoc ⟩
sym≃ *≃× ● ((sym≃ f ×≃ sym≃ g) ● sym≃ ×≃*)
≋⟨ id≋ ⟩
sym≃ f *F sym≃ g ∎)
where open ≋-Reasoning
uniti⋆-nat : ∀ {A B} {f : A fin≃ B} →
uniti* ● f ≋ (id1≃ *F f) ● uniti*
uniti⋆-nat {f = f} =
begin (
uniti* ● f
≋⟨ id≋ ⟩
sym≃ unite* ● sym≃ (sym≃ f)
≋⟨ sym≋ sym≃● ⟩
sym≃ (sym≃ f ● unite*)
≋⟨ flip-sym≋ unite⋆-nat ⟩
sym≃ (unite* ● (id1≃ *F sym≃ f))
≋⟨ sym≃● ⟩
sym≃ (id1≃ *F sym≃ f) ● uniti*
≋⟨ sym*F ◎ id≋ {x = uniti*} ⟩
(id1≃ *F sym≃ (sym≃ f)) ● uniti*
≋⟨ id≋ ⟩
(id1≃ *F f) ● uniti* ∎)
where open ≋-Reasoning
unite⋆r-nat : {m n : ℕ} {f : m fin≃ n} →
unite*r ● (f *F id1≃) ≋ f ● unite*r
unite⋆r-nat {m} {n} {f} =
let 1*⊥ = id≃ ×≃ Fin1≃⊤ in
let f*1 = f ×≃ id≃ in
let g≋ = id≋ {x = *≃×} in
let rhs≋ = id≋ {x = f*1 ● *≃×} in
begin (
unite*r ● (f *F id1≃)
≋⟨ id≋ ⟩
(unite⋆′equiv ● 1*⊥ ● *≃×) ● ×≃* ● (f*1 ● *≃×)
≋⟨ ●-assocl ⟩
((unite⋆′equiv ● 1*⊥ ● *≃×) ● ×≃*) ● (f*1 ● *≃×)
≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩
(((unite⋆′equiv ● 1*⊥) ● *≃×) ● ×≃*) ● (f*1 ● *≃×)
≋⟨ sym≋ (intro-inv-r* (unite⋆′equiv ● 1*⊥)) ◎ rhs≋ ⟩
(unite⋆′equiv ● 1*⊥) ● (f*1 ● *≃×)
≋⟨ trans≋ ●-assocl (●-assoc ◎ id≋) ⟩
(unite⋆′equiv ● (1*⊥ ● f*1)) ● *≃×
≋⟨ (id≋ {x = unite⋆′equiv} ◎ sym≋ (T.[g*1]●[1*f]≋[1*f]●[g*1] {f = Fin1≃⊤} {f})) ◎ g≋ ⟩
(unite⋆′equiv ● (f ×≃ id≃) ● (id≃ ×≃ Fin1≃⊤)) ● *≃× -- the id≃ are at different types!
≋⟨ ●-assocl ◎ id≋ ⟩
((unite⋆′equiv ● (f ×≃ id≃)) ● (id≃ ×≃ Fin1≃⊤)) ● *≃×
≋⟨ ●-assoc ⟩
(unite⋆′equiv ● (f ×≃ id≃)) ● (id≃ ×≃ Fin1≃⊤) ● *≃×
≋⟨ T.unite⋆′-nat ◎ id≋ {x = (id≃ ×≃ Fin1≃⊤) ● *≃×} ⟩
(f ● unite⋆′equiv) ● (id≃ ×≃ Fin1≃⊤) ● *≃×
≋⟨ ●-assoc ⟩ -- assoc * defn
f ● unite*r ∎)
where open ≋-Reasoning
uniti₊r-nat : {m n : ℕ} {f : m fin≃ n} →
uniti*r ● f ≋ (f *F id1≃) ● uniti*r
uniti₊r-nat {f = f} =
begin (
uniti*r ● f
≋⟨ id≋ ⟩
sym≃ unite*r ● sym≃ (sym≃ f)
≋⟨ sym≋ sym≃● ⟩
sym≃ (sym≃ f ● unite*r)
≋⟨ flip-sym≋ unite⋆r-nat ⟩
sym≃ (unite*r ● (sym≃ f *F id1≃))
≋⟨ sym≃● ⟩
sym≃ (sym≃ f *F id1≃) ● uniti*r
≋⟨ sym*F ◎ id≋ {x = uniti*r} ⟩
(sym≃ (sym≃ f) *F id1≃) ● uniti*r
≋⟨ id≋ ⟩
(f *F id1≃) ● uniti*r ∎)
where open ≋-Reasoning
-- assocl* is the one which is defined directly (?)
assocl⋆-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
assocl* {m'} {n'} {o'} ● (f *F (g *F h)) ≋
((f *F g) *F h) ● assocl* {m} {n} {o}
-- expand the definitions right away, the pattern is clear
assocl⋆-nat {m} {n} {o} {m'} {n'} {o'} {f} {g} {h} =
let αmno' = assocl⋆equiv {Fin m'} {Fin n'} {Fin o'} in
let αmno = assocl⋆equiv {Fin m} {Fin n} {Fin o} in
begin (
(×≃* ● ×≃* ×≃ id≃ ● αmno' ● id≃ ×≃ *≃× ● *≃×) ●
×≃* ● ((f ×≃ (×≃* ● g ×≃ h ● *≃×)) ● *≃×)
≋⟨ ●-assocl ⟩
((×≃* ● ×≃* ×≃ id≃ ● assocl⋆equiv ● id≃ ×≃ *≃× ● *≃×) ● ×≃*) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ ((id≋ ◎ (id≋ ◎ ●-assocl)) ◎ id≋) ◎ id≋ ⟩
((×≃* ● ×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×) ● *≃×) ● ×≃*) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ ((id≋ ◎ ●-assocl) ◎ id≋) ◎ id≋ ⟩
((×≃* ● (×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×)) ● *≃×) ● ×≃*) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ (●-assocl ◎ id≋) ◎ id≋ ⟩
(((×≃* ● (×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×))) ● *≃×) ● ×≃*) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ sym≋ (intro-inv-r* (×≃* ● (×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×)))) ◎ id≋ ⟩
(×≃* ● (×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×))) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ ●-assoc ⟩
×≃* ● (×≃* ×≃ id≃ ● (assocl⋆equiv ● id≃ ×≃ *≃×)) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ id≋ ◎ (●-assocl ◎ id≋) ⟩
×≃* ● ((×≃* ×≃ id≃ ● assocl⋆equiv) ● id≃ ×≃ *≃×) ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×)
≋⟨ id≋ ◎ ●-assoc ⟩
×≃* ● (×≃* ×≃ id≃ ● assocl⋆equiv) ● (id≃ ×≃ *≃× ●
(f ×≃ (×≃* ● g ×≃ h ● *≃×) ● *≃×))
≋⟨ id≋ ◎ (id≋ ◎ ●-assocl) ⟩
×≃* ● (×≃* ×≃ id≃ ● assocl⋆equiv) ● ((id≃ ×≃ *≃× ●
f ×≃ (×≃* ● g ×≃ h ● *≃×)) ● *≃×)
≋⟨ id≋ ◎ (id≋ ◎ (sym≋ T.×●≋●× ◎ id≋)) ⟩
×≃* ● (×≃* ×≃ id≃ ● assocl⋆equiv) ● ((id≃ ● f) ×≃ (*≃× ● (×≃* ● g ×≃ h ● *≃×))) ● *≃×
≋⟨ id≋ ◎ (id≋ ◎ (T._×≋_
(trans≋ lid≋ (sym≋ rid≋))
(trans≋ ●-assocl (trans≋ (linv≋ ×≃* ◎ id≋) lid≋)) ◎ id≋)) ⟩
×≃* ● (×≃* ×≃ id≃ ● assocl⋆equiv) ● ((f ● id≃) ×≃ (g ×≃ h ● *≃×)) ● *≃×
≋⟨ id≋ ◎ (id≋ ◎ (T.×●≋●× ◎ id≋)) ⟩
×≃* ● (×≃* ×≃ id≃ ● assocl⋆equiv) ● (f ×≃ (g ×≃ h) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ ●-assocl ⟩
×≃* ● ((×≃* ×≃ id≃ ● assocl⋆equiv) ● (f ×≃ (g ×≃ h) ● id≃ ×≃ *≃×)) ● *≃×
≋⟨ id≋ ◎ (●-assocl ◎ id≋) ⟩
×≃* ● (((×≃* ×≃ id≃ ● assocl⋆equiv) ● f ×≃ (g ×≃ h)) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ ((●-assoc ◎ id≋) ◎ id≋) ⟩
×≃* ● ((×≃* ×≃ id≃ ● (assocl⋆equiv ● f ×≃ (g ×≃ h))) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ ( ((id≋ ◎ T.assocl⋆-nat) ◎ id≋) ◎ id≋) ⟩
×≃* ● ((×≃* ×≃ id≃ ● ((f ×≃ g) ×≃ h) ● assocl⋆equiv) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ ((●-assocl ◎ id≋) ◎ id≋) ⟩
×≃* ● (((×≃* ×≃ id≃ ● (f ×≃ g) ×≃ h) ● assocl⋆equiv) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ (((T*1-nat ◎ id≋) ◎ id≋) ◎ id≋) ⟩
×≃* ● ((((×≃* ● f ×≃ g ● *≃×) ● ×≃*) ×≃ (h ● id≃) ● assocl⋆equiv) ● id≃ ×≃ *≃×) ● *≃×
≋⟨ id≋ ◎ ●-assoc ⟩
×≃* ● (((×≃* ● f ×≃ g ● *≃×) ● ×≃*) ×≃ (h ● id≃) ● assocl⋆equiv) ● (id≃ ×≃ *≃× ● *≃×)
≋⟨ id≋ ◎ ●-assoc ⟩
×≃* ● ((×≃* ● f ×≃ g ● *≃×) ● ×≃*) ×≃ (h ● id≃) ● (assocl⋆equiv ● id≃ ×≃ *≃× ● *≃×)
≋⟨ ●-assocl ⟩
(×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ● ×≃*) ×≃ (h ● id≃)) ● (αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ (id≋ ◎ T.×●≋●× ) ◎ id≋ ⟩
(×≃* ● (((×≃* ● (f ×≃ g) ● *≃×) ×≃ h) ● (×≃* ×≃ id≃))) ●
(αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ ●-assocl ◎ id≋ ⟩
((×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h)) ● (×≃* ×≃ id≃)) ●
(αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ ●-assoc ⟩
(×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h)) ●
(×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ id≋ ◎ sym≋ lid≋ ⟩
(×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h)) ●
id≃ ● (×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ id≋ ◎ (sym≋ (rinv≋ *≃×) ◎ id≋) ⟩
(×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h)) ●
(*≃× ● ×≃*) ● (×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ id≋ ◎ ●-assoc ⟩
((×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h))) ●
(*≃× ● ×≃* ● ×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ ●-assocl ⟩
((×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h)) ● *≃×) ●
(×≃* ● ×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×)
≋⟨ ●-assoc ◎ id≋ ⟩
(×≃* ● ((×≃* ● (f ×≃ g) ● *≃×) ×≃ h) ● *≃×) ●
(×≃* ● ×≃* ×≃ id≃ ● αmno ● id≃ ×≃ *≃× ● *≃×) ∎)
where
open ≋-Reasoning
T*1-nat : ×≃* ×≃ id≃ ● (f ×≃ g) ×≃ h ≋ ((×≃* ● f ×≃ g ● *≃×) ● ×≃*) ×≃ (h ● id≃)
T*1-nat = begin (
×≃* ×≃ id≃ ● (f ×≃ g) ×≃ h
≋⟨ sym≋ (T.×●≋●×) ⟩
(×≃* ● f ×≃ g) ×≃ (id≃ ● h)
≋⟨ id≋ T.×≋ (trans≋ lid≋ (sym≋ rid≋))⟩
(×≃* ● f ×≃ g) ×≃ (h ● id≃)
≋⟨ trans≋ (intro-inv-r* ((×≃* ● f ×≃ g))) ●-assoc T.×≋ id≋ ⟩
((×≃* ● f ×≃ g) ● *≃× ● ×≃*) ×≃ (h ● id≃)
≋⟨ trans≋ ●-assocl (●-assoc ◎ id≋) T.×≋ id≋ ⟩
((×≃* ● f ×≃ g ● *≃×) ● ×≃*) ×≃ (h ● id≃) ∎)
assocr₊-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
assocr* {m'} {n'} {o'} ● ((f *F g) *F h) ≋
(f *F (g *F h)) ● assocr* {m} {n} {o}
assocr₊-nat {m} {n} {o} {m'} {n'} {o'} {f} {g} {h} = begin (
assocr* {m'} {n'} {o'} ● ((f *F g) *F h)
≋⟨ id≋ ⟩
sym≃ assocl* ● sym≃ (sym≃ ((f *F g) *F h))
≋⟨ sym≋ (sym≃● {f = assocl*}) ⟩
sym≃ (sym≃ ((f *F g) *F h) ● assocl* {m'} {n'} {o'})
≋⟨ flip≋ ((trans≋ sym*F (sym*F *≋ id≋ )) ◎ id≋) ⟩
sym≃ (((sym≃ f *F sym≃ g) *F sym≃ h) ● assocl* {m'})
≋⟨ flip-sym≋ assocl⋆-nat ⟩
sym≃ (assocl* {m} {n} {o} ● (sym≃ f *F (sym≃ g *F sym≃ h)))
≋⟨ flip≋ (id≋ ◎ (trans≋ (id≋ *≋ (sym≋ sym*F)) (sym≋ sym*F))) ⟩
sym≃ ( assocl* ● sym≃ (f *F (g *F h)))
≋⟨ sym≃● ⟩
sym≃ (sym≃ (f *F (g *F h))) ● sym≃ (assocl* {m} {n} {o})
≋⟨ id≋ ⟩
(f *F (g *F h)) ● (assocr* {m} {n} {o}) ∎)
where open ≋-Reasoning
unite-assocr*-coh : {m n : ℕ} →
unite*r {m = m} *F id≃ {A = Fin n} ≋
(id≃ {A = Fin m} *F unite* {m = n}) ● assocr* {m} {1} {n}
unite-assocr*-coh = {!!}
assocr*-coh : {m n o p : ℕ} →
assocr* {m} {n} {o * p} ● assocr* {m * n} {o} {p} ≋
(id≃ {A = Fin m} *F assocr* {n} {o} {p}) ●
assocr* {m} {n * o} {p} ● (assocr* {m} {n} {o} *F id≃ {A = Fin p})
assocr*-coh = {!!}
swap*-nat : {m n o p : ℕ} {f : m fin≃ o} {g : n fin≃ p} →
swap* {o} {p} ● (f *F g) ≋ (g *F f) ● swap* {m} {n}
swap*-nat = {!!}
sswap*-nat : {m n o p : ℕ} {f : m fin≃ o} {g : n fin≃ p} →
sswap* {o} {p} ● (g *F f) ≋ (f *F g) ● sswap* {m} {n}
sswap*-nat = {!!}
assocr*-swap*-coh : {m n o : ℕ} →
assocr* {n} {o} {m} ● swap* {m} {n * o} ● assocr* {m} {n} {o} ≋
(id≃ {A = Fin n} *F swap* {m} {o}) ●
assocr* {n} {m} {o} ● (swap* {m} {n} *F id≃ {A = Fin o})
assocr*-swap*-coh = {!!}
assocl*-swap*-coh : {m n o : ℕ} →
assocl* {o} {m} {n} ● swap* {m * n} {o} ● assocl* {m} {n} {o} ≋
(swap* {m} {o} *F id≃ {A = Fin n}) ●
assocl* {m} {o} {n} ● (id≃ {A = Fin m} *F swap* {n} {o})
assocl*-swap*-coh = {!!}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3363225676,
"avg_line_length": 37.0775,
"ext": "agda",
"hexsha": "6aee1f7d9fbec2280d283dba68d8c3be3686ac26",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/FinEquivEquivTimes.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/FinEquivEquivTimes.agda",
"max_line_length": 92,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/FinEquivEquivTimes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 9059,
"size": 14831
} |
-- Now you don't need a mutual keyword anymore!
module Issue162 where
data Odd : Set
data Even : Set where
zero : Even
suc : Odd → Even
data Odd where
suc : Even → Odd
-- This means you can have all kinds of things in
-- mutual blocks.
-- Like postulates
_o+e_ : Odd → Even → Odd
_e+e_ : Even → Even → Even
zero e+e m = m
suc n e+e m = suc (n o+e m)
postulate todo : Even
suc n o+e m = suc todo
-- Or modules
_e+o_ : Even → Odd → Odd
_o+o_ : Odd → Odd → Even
suc n o+o m = suc (n e+o m)
module Helper where
f : Even → Odd → Odd
f zero m = m
f (suc n) m = suc (n o+o m)
n e+o m = Helper.f n m
-- Multiplication just for the sake of it
_o*o_ : Odd → Odd → Odd
_e*o_ : Even → Odd → Even
zero e*o m = zero
suc n e*o m = m o+o (n o*o m)
suc n o*o m = m o+e (n e*o m)
| {
"alphanum_fraction": 0.603034134,
"avg_line_length": 17.5777777778,
"ext": "agda",
"hexsha": "2f27cab5b76333f2659af032f70239ec8ad794d6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue162.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue162.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue162.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 305,
"size": 791
} |
module Data.Tuple.Proofs where
import Lvl
open import Data using (Unit ; <>)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Data.Tuple.Equiv
open import Function.Equals
open import Logic.Predicate
open import Logic.Propositional
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ ℓₑ₆ : Lvl.Level
private variable A B A₁ B₁ A₂ B₂ : Type{ℓ}
private variable f g : A → B
private variable p : A ⨯ B
module _
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
⦃ equiv-AB : Equiv{ℓₑ}(A ⨯ B) ⦄ ⦃ ext-AB : Extensionality(equiv-AB) ⦄
where
open Extensionality(ext-AB)
[,]-left-right-inverses : ∀{x : A ⨯ B} → ((Tuple.left x , Tuple.right x) ≡ x)
[,]-left-right-inverses {_ , _} = reflexivity(_≡_)
left-right-[,]-inverses : ∀{a : A}{b : B} → ((Tuple.left(a , b) ≡ a) ∧ (Tuple.right(a , b) ≡ b))
left-right-[,]-inverses = [∧]-intro (reflexivity(_≡_)) (reflexivity(_≡_))
instance
[,]ₗ-injective : ∀{r : B} → Injective(_, r)
Injective.proof [,]ₗ-injective = congruence₁(Tuple.left)
instance
[,]ᵣ-injective : ∀{l : A} → Injective(l ,_)
Injective.proof [,]ᵣ-injective = congruence₁(Tuple.right)
module _
⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄
⦃ equiv-B₁ : Equiv{ℓₑ₂}(B₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₑ₃}(A₂) ⦄
⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄
⦃ equiv-AB₁ : Equiv{ℓₑ₅}(A₁ ⨯ B₁) ⦄ ⦃ equiv-AB₁ : Extensionality(equiv-AB₁) ⦄
⦃ equiv-AB₂ : Equiv{ℓₑ₆}(A₂ ⨯ B₂) ⦄ ⦃ equiv-AB₂ : Extensionality(equiv-AB₂) ⦄
{f : A₁ → A₂}
{g : B₁ → B₂}
where
instance
map-function : BinaryOperator(Tuple.map {A₁ = A₁}{A₂ = A₂}{B₁ = B₁}{B₂ = B₂})
_⊜_.proof (BinaryOperator.congruence map-function (intro eq₁) (intro eq₂)) {_ , _} = congruence₂(_,_) eq₁ eq₂
instance
map-injective : ⦃ inj-f : Injective(f) ⦄ → ⦃ inj-g : Injective(g) ⦄ → Injective(Tuple.map f g)
Injective.proof map-injective {_ , _} {_ , _} p = congruence₂(_,_) (injective(f) (congruence₁(Tuple.left) p)) (injective(g) (congruence₁(Tuple.right) p))
instance
map-surjective : ⦃ surj-f : Surjective(f) ⦄ → ⦃ surj-g : Surjective(g) ⦄ → Surjective(Tuple.map f g)
∃.witness (Surjective.proof map-surjective {l , r}) = ([∃]-witness(surjective(f) {l}) , [∃]-witness(surjective(g) {r}))
∃.proof (Surjective.proof map-surjective {l , r}) = congruence₂(_,_) ([∃]-proof(surjective(f) {l})) ([∃]-proof(surjective(g) {r}))
instance
map-bijective : ⦃ bij-f : Bijective(f) ⦄ → ⦃ bij-g : Bijective(g) ⦄ → Bijective(Tuple.map f g)
map-bijective = injective-surjective-to-bijective(Tuple.map f g) where
instance
inj-f : Injective(f)
inj-f = bijective-to-injective(f)
instance
inj-g : Injective(g)
inj-g = bijective-to-injective(g)
instance
surj-f : Surjective(f)
surj-f = bijective-to-surjective(f)
instance
surj-g : Surjective(g)
surj-g = bijective-to-surjective(g)
| {
"alphanum_fraction": 0.6382087629,
"avg_line_length": 37.3975903614,
"ext": "agda",
"hexsha": "fccd20fc24a6f0fec1eb59df70a1d125813f1f51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Tuple/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Tuple/Proofs.agda",
"max_line_length": 157,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Tuple/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1215,
"size": 3104
} |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.JoinComm where
module _ {i j} {A : Type i} {B : Type j} where
swap : A * B → B * A
swap = Swap.f module _ where
swap-glue : (a : A) (b : B) → right a == left b
swap-glue a b = ! (glue (b , a))
module Swap = PushoutRec right left (uncurry swap-glue)
{- ∞TT:
swap : A * B → B * A
swap (left a) = right a
swap (right b) = left b
ap swap (glue (a , b)) = ! (glue (b , a))
-}
module _ {i j} {A : Type i} {B : Type j} where
swap-swap : (x : A * B) → swap (swap x) == x
swap-swap = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in swap swap
(swap-swap-glue c)) where
swap-swap-glue : (c : A × B) → ap swap (ap swap (glue c)) == glue c
swap-swap-glue (a , b) =
ap swap (ap swap (glue (a , b))) =⟨ Swap.glue-β (a , b) |in-ctx ap swap ⟩
ap swap (! (glue (b , a))) =⟨ ap-! swap (glue (b , a)) ⟩
! (ap swap (glue (b , a))) =⟨ Swap.glue-β (b , a) |in-ctx ! ⟩
! (! (glue (a , b))) =⟨ !-! (glue (a , b)) ⟩
glue (a , b) ∎
{- ∞TT:
swap-swap : (x : A * B) → swap (swap x) == x
swap-swap (left a) = idp
swap-swap (right b) = idp
apd swap-swap (glue (a , b)) = !-! (glue (a , b))
-}
module _ {i j} {A : Type i} {B : Type j} where
swap-equiv : (A * B) ≃ (B * A)
swap-equiv = equiv swap swap swap-swap swap-swap
swap-path : (A * B) == (B * A)
swap-path = ua swap-equiv
| {
"alphanum_fraction": 0.4893029676,
"avg_line_length": 26.8333333333,
"ext": "agda",
"hexsha": "f91ef98474ed2bbda518ab1b40e345372f7c1cd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/JoinComm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/JoinComm.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/JoinComm.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 596,
"size": 1449
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by bounded lattice
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Lattice
module Relation.Binary.Properties.BoundedLattice
{c ℓ₁ ℓ₂} (L : BoundedLattice c ℓ₁ ℓ₂) where
open BoundedLattice L
open import Algebra.FunctionProperties _≈_
open import Data.Product using (_,_)
open import Relation.Binary using (Setoid)
open import Relation.Binary.Properties.MeetSemilattice meetSemilattice
open import Relation.Binary.Properties.JoinSemilattice joinSemilattice
open Setoid setoid renaming (trans to ≈-trans)
∧-zeroʳ : RightZero ⊥ _∧_
∧-zeroʳ x = y≤x⇒x∧y≈y (minimum x)
∧-zeroˡ : LeftZero ⊥ _∧_
∧-zeroˡ x = ≈-trans (∧-comm ⊥ x) (∧-zeroʳ x)
∧-zero : Zero ⊥ _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∨-zeroʳ : RightZero ⊤ _∨_
∨-zeroʳ x = x≤y⇒x∨y≈y (maximum x)
∨-zeroˡ : LeftZero ⊤ _∨_
∨-zeroˡ x = ≈-trans (∨-comm ⊤ x) (∨-zeroʳ x)
∨-zero : Zero ⊤ _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
| {
"alphanum_fraction": 0.6029411765,
"avg_line_length": 26.5365853659,
"ext": "agda",
"hexsha": "8400aee1d572f8e632c216825f70fb937ef961d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedLattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedLattice.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/BoundedLattice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 374,
"size": 1088
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Boolean.Definition where
data Bool : Set where
BoolTrue : Bool
BoolFalse : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE BoolTrue #-}
{-# BUILTIN FALSE BoolFalse #-}
if_then_else_ : {a : _} → {A : Set a} → Bool → A → A → A
if BoolTrue then tr else fls = tr
if BoolFalse then tr else fls = fls
not : Bool → Bool
not BoolTrue = BoolFalse
not BoolFalse = BoolTrue
boolAnd : Bool → Bool → Bool
boolAnd BoolTrue y = y
boolAnd BoolFalse y = BoolFalse
boolOr : Bool → Bool → Bool
boolOr BoolTrue y = BoolTrue
boolOr BoolFalse y = y
xor : Bool → Bool → Bool
xor BoolTrue BoolTrue = BoolFalse
xor BoolTrue BoolFalse = BoolTrue
xor BoolFalse b = b
| {
"alphanum_fraction": 0.6908150065,
"avg_line_length": 22.7352941176,
"ext": "agda",
"hexsha": "d27015c58418edd509071ced38381107ed7336d5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Boolean/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Boolean/Definition.agda",
"max_line_length": 58,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Boolean/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 236,
"size": 773
} |
module root2 where
open import Data.Nat
open import Data.Nat.Properties
open import Data.Empty
open import Data.Unit using (⊤ ; tt)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Definitions
import gcd as GCD
open import even
open import nat
open import logic
record Rational : Set where
field
i j : ℕ
coprime : GCD.gcd i j ≡ 1
-- record Dividable (n m : ℕ ) : Set where
-- field
-- factor : ℕ
-- is-factor : factor * n + 0 ≡ m
gcd : (i j : ℕ) → ℕ
gcd = GCD.gcd
gcd-euclid : ( p a b : ℕ ) → 1 < p → 0 < a → 0 < b → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1)
→ Dividable p (a * b) → Dividable p a ∨ Dividable p b
gcd-euclid = GCD.gcd-euclid
gcd-div1 : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j )
→ Dividable k ( gcd i j )
gcd-div1 = GCD.gcd-div
open _∧_
open import prime
divdable^2 : ( n k : ℕ ) → 1 < k → 1 < n → Prime k → Dividable k ( n * n ) → Dividable k n
divdable^2 zero zero () 1<n pk dn2
divdable^2 (suc n) (suc k) 1<k 1<n pk dn2 with decD {suc k} {suc n} 1<k
... | yes y = y
... | no non with gcd-euclid (suc k) (suc n) (suc n) 1<k (<-trans a<sa 1<n) (<-trans a<sa 1<n) (Prime.isPrime pk) dn2
... | case1 dn = dn
... | case2 dm = dm
-- p * n * n ≡ m * m means (m/n)^2 = p
-- rational m/n requires m and n is comprime each other which contradicts the condition
root-prime-irrational : ( n m p : ℕ ) → n > 1 → Prime p → m > 1 → p * n * n ≡ m * m → ¬ (gcd n m ≡ 1)
root-prime-irrational n m 0 n>1 pn m>1 pnm = ⊥-elim ( nat-≡< refl (<-trans a<sa (Prime.p>1 pn)))
root-prime-irrational n m (suc p0) n>1 pn m>1 pnm = rot13 ( gcd-div1 n m (suc p0) 1<sp dn dm ) where
p = suc p0
1<sp : 1 < p
1<sp = Prime.p>1 pn
rot13 : {m : ℕ } → Dividable (suc p0) m → m ≡ 1 → ⊥
rot13 d refl with Dividable.factor d | Dividable.is-factor d
... | zero | () -- gcd 0 m ≡ 1
... | suc n | x = ⊥-elim ( nat-≡< (sym x) rot17 ) where -- x : (suc n * p + 0) ≡ 1
rot17 : suc n * (suc p0) + 0 > 1
rot17 = begin
2 ≡⟨ refl ⟩
suc (1 * 1 ) ≤⟨ 1<sp ⟩
suc p0 ≡⟨ cong suc (+-comm 0 _) ⟩
suc (p0 + 0) ≤⟨ s≤s (+-monoʳ-≤ p0 z≤n) ⟩
suc (p0 + n * p ) ≡⟨ +-comm 0 _ ⟩
suc n * p + 0 ∎ where open ≤-Reasoning
dm : Dividable p m
dm = divdable^2 m p 1<sp m>1 pn record { factor = n * n ; is-factor = begin
(n * n) * p + 0 ≡⟨ +-comm _ 0 ⟩
(n * n) * p ≡⟨ *-comm (n * n) p ⟩
p * (n * n) ≡⟨ sym (*-assoc p n n) ⟩
(p * n) * n ≡⟨ pnm ⟩
m * m ∎ } where open ≡-Reasoning
-- p * n * n = 2m' 2m'
-- n * n = m' 2m'
df = Dividable.factor dm
dn : Dividable p n
dn = divdable^2 n p 1<sp n>1 pn record { factor = df * df ; is-factor = begin
df * df * p + 0 ≡⟨ *-cancelʳ-≡ _ _ {p0} ( begin
(df * df * p + 0) * p ≡⟨ cong (λ k → k * p) (+-comm (df * df * p) 0) ⟩
((df * df) * p ) * p ≡⟨ cong (λ k → k * p) (*-assoc df df p ) ⟩
(df * (df * p)) * p ≡⟨ cong (λ k → (df * k ) * p) (*-comm df p) ⟩
(df * (p * df)) * p ≡⟨ sym ( cong (λ k → k * p) (*-assoc df p df ) ) ⟩
((df * p) * df) * p ≡⟨ *-assoc (df * p) df p ⟩
(df * p) * (df * p) ≡⟨ cong₂ (λ j k → j * k ) (+-comm 0 (df * p)) (+-comm 0 _) ⟩
(df * p + 0) * (df * p + 0) ≡⟨ cong₂ (λ j k → j * k) (Dividable.is-factor dm ) (Dividable.is-factor dm )⟩
m * m ≡⟨ sym pnm ⟩
p * n * n ≡⟨ cong (λ k → k * n) (*-comm p n) ⟩
n * p * n ≡⟨ *-assoc n p n ⟩
n * (p * n) ≡⟨ cong (λ k → n * k) (*-comm p n) ⟩
n * (n * p) ≡⟨ sym (*-assoc n n p) ⟩
n * n * p ∎ ) ⟩
n * n ∎ } where open ≡-Reasoning
Rational* : (r s : Rational) → Rational
Rational* r s = record { i = {!!} ; j = {!!} ; coprime = {!!} }
_r=_ : Rational → ℕ → Set
r r= n = (Rational.i r ≡ n) ∧ (Rational.j r ≡ 1)
root-prime-irrational1 : ( p : ℕ ) → Prime p → ¬ ( ( r : Rational ) → Rational* r r r= p )
root-prime-irrational1 = {!!}
| {
"alphanum_fraction": 0.4777506112,
"avg_line_length": 38.5849056604,
"ext": "agda",
"hexsha": "1722dbc7fa3a59a121075bf6a960bcb291897301",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/root2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/root2.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/root2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1772,
"size": 4090
} |
module Data.List.Proofs where
import Lvl
open import Functional
open import Data.Option using (Option ; Some ; None)
open import Data.List
open import Data.List.Equiv
open import Data.List.Functions
open import Logic
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Proofs
open import Relator.Equals renaming (_≡_ to _≡ₑ_ ; _≢_ to _≢ₑ_)
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Multi
import Structure.Function.Names as Names
import Structure.Operator.Names as Names
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₑ ℓₑₗ ℓₑₒ ℓₑ₁ ℓₑ₂ ℓₑₗ₁ ℓₑₗ₂ : Lvl.Level
private variable T A B : Type{ℓ}
private variable n : ℕ
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ equiv-List : Equiv{ℓₑₗ}(List(T)) ⦄ ⦃ extensionality : Extensionality(equiv-List) ⦄ where
private variable l l₁ l₂ : List(T)
private variable a b x : T
private variable P : List(T) → Stmt{ℓ}
open Equiv(equiv-List) using () renaming (_≡_ to _≡ₗ_)
instance
tail-function : Function(tail)
Function.congruence tail-function {∅} {∅} p = p
Function.congruence tail-function {∅} {x ⊰ y} p with () ← [∅][⊰]-unequal p
Function.congruence tail-function {x ⊰ xl} {∅} p with () ← [∅][⊰]-unequal (symmetry(_≡_) p)
Function.congruence tail-function {x ⊰ xl} {y ⊰ yl} p = [⊰]-generalized-cancellationₗ p
instance
first-function : ⦃ equiv-Option : Equiv{ℓₑₒ}(Option(T)) ⦄ ⦃ Some-function : Function(Some) ⦄ → Function(first)
Function.congruence first-function {∅} {∅} p = reflexivity(_≡_)
Function.congruence first-function {∅} {y ⊰ yl} p with () ← [∅][⊰]-unequal p
Function.congruence first-function {x ⊰ xl} {∅} p with () ← [∅][⊰]-unequal (symmetry(_≡_) p)
Function.congruence first-function {x ⊰ xl} {y ⊰ yl} p = congruence₁(Some) ([⊰]-generalized-cancellationᵣ p)
instance
[⊰]-cancellationₗ : Cancellationₗ(_⊰_)
Cancellationₗ.proof([⊰]-cancellationₗ) = [⊰]-generalized-cancellationₗ
instance
[⊰]-cancellationᵣ : Cancellationᵣ(_⊰_)
Cancellationᵣ.proof([⊰]-cancellationᵣ) = [⊰]-generalized-cancellationᵣ
[⊰]-unequal : (x ⊰ l ≢ l)
[⊰]-unequal {l = ∅} = [∅][⊰]-unequal ∘ symmetry(_≡_)
[⊰]-unequal {l = x ⊰ l} = [⊰]-unequal {l = l} ∘ [⊰]-generalized-cancellationₗ
postpend-of-prepend : (postpend a (b ⊰ l) ≡ b ⊰ postpend a l)
postpend-of-prepend = reflexivity(_≡_)
instance
postpend-function : BinaryOperator(postpend)
postpend-function = intro p where
p : Names.Congruence₂(postpend)
p {x₂ = ∅} {y₂ = ∅} px pl = congruence₂(_⊰_) px pl
p {x₂ = ∅} {y₂ = y₂ ⊰ yl₂} px pl with () ← [∅][⊰]-unequal pl
p {x₂ = x₂ ⊰ xl₂} {y₂ = ∅} px pl with () ← [∅][⊰]-unequal (symmetry(_≡_) pl)
p {x₂ = x₂ ⊰ xl₂} {y₂ = y₂ ⊰ yl₂} px pl = congruence₂(_⊰_) ([⊰]-generalized-cancellationᵣ pl) (p{x₂ = xl₂} {y₂ = yl₂} px ([⊰]-generalized-cancellationₗ pl))
instance
reverse-function : Function(reverse)
reverse-function = intro p where
p : Names.Congruence₁(reverse)
p {∅} {∅} pl = reflexivity(_≡_)
p {∅} {y ⊰ yl} pl with () ← [∅][⊰]-unequal pl
p {x ⊰ xl} {∅} pl with () ← [∅][⊰]-unequal (symmetry(_≡_) pl)
p {x ⊰ xl} {y ⊰ yl} pl = congruence₂(postpend) ([⊰]-generalized-cancellationᵣ pl) (p([⊰]-generalized-cancellationₗ pl))
instance
[++]-identityₗ : Identityₗ(_++_) ∅
Identityₗ.proof([++]-identityₗ) = reflexivity(_≡_)
instance
[++]-identityᵣ : Identityᵣ(_++_) ∅
Identityᵣ.proof([++]-identityᵣ) {x = l} = elim (reflexivity(_≡_)) (\x l → congruence₂ᵣ(_⊰_)(x) {l ++ ∅}{l}) l
instance
[++]-associativity : Associativity(_++_)
Associativity.proof([++]-associativity) {l₁}{l₂}{l₃} = elim (reflexivity(_≡_)) (\x l → congruence₂ᵣ(_⊰_)(x) {(l ++ l₂) ++ l₃}{l ++ (l₂ ++ l₃)}) l₁
reverse-postpend : (reverse(postpend a l) ≡ a ⊰ reverse l)
reverse-postpend {a = a}{l = l} = elim (reflexivity(_≡ₗ_)) (\x l p → congruence₂ᵣ(postpend) ⦃ postpend-function ⦄ (x) {reverse(postpend a l)}{a ⊰ reverse l} p) l
prepend-[++] : (a ⊰ l ≡ singleton{T = T}(a) ++ l)
prepend-[++] = reflexivity(_≡_)
postpend-[++] : (postpend{T = T} a l ≡ l ++ singleton(a))
postpend-[++] {a = a}{l = l} = elim (reflexivity(_≡_)) (\x l → congruence₂ᵣ(_⊰_)(x) {postpend a l}{l ++ (singleton a)}) l
postpend-of-[++] : (postpend{T = T} a (l₁ ++ l₂) ≡ l₁ ++ postpend a l₂)
postpend-of-[++] {a = a} {l₁}{l₂} = elim (reflexivity(_≡_)) (\x l → congruence₂ᵣ(_⊰_)(x) {postpend a (l ++ l₂)}{l ++ (postpend a l₂)}) l₁
reverse-[++] : (reverse(l₁ ++ l₂) ≡ reverse(l₂) ++ reverse(l₁))
reverse-[++] {l₁ = l₁} {l₂ = l₂} = elim
(congruence₁(reverse) (identityₗ(_++_)(∅) {l₂}) 🝖 symmetry(_≡_) (identityᵣ(_++_)(∅) {reverse l₂}))
(\x l₁ p → congruence₂ᵣ(postpend) ⦃ postpend-function ⦄ (x) {reverse (l₁ ++ l₂)}{reverse l₂ ++ reverse l₁} p 🝖 postpend-of-[++] {l₁ = reverse l₂} {l₂ = reverse l₁})
l₁
[∅]-postpend-unequal : (postpend x l ≢ ∅)
[∅]-postpend-unequal {l = ∅} = [∅][⊰]-unequal ∘ symmetry(_≡_)
[∅]-postpend-unequal {l = _ ⊰ l} = [∅][⊰]-unequal ∘ symmetry(_≡_)
postpend-unequal : (postpend x l ≢ l)
postpend-unequal {l = ∅} = [∅][⊰]-unequal ∘ symmetry(_≡_)
postpend-unequal {l = y ⊰ l} = postpend-unequal {l = l} ∘ cancellationₗ(_⊰_)
[++]-middle-prepend-postpend : postpend x l₁ ++ l₂ ≡ l₁ ++ (x ⊰ l₂)
[++]-middle-prepend-postpend {l₁ = ∅} {l₂ = ∅} = reflexivity(_≡_)
[++]-middle-prepend-postpend {l₁ = ∅} {l₂ = x ⊰ l₂} = reflexivity(_≡_)
[++]-middle-prepend-postpend {l₁ = x ⊰ l₁} {l₂ = l₂} = congruence₂ᵣ(_⊰_)(x) ([++]-middle-prepend-postpend {l₁ = l₁} {l₂ = l₂})
instance
[++]-cancellationₗ : Cancellationₗ(_++_)
Cancellationₗ.proof [++]-cancellationₗ {x}{y}{z} = proof {x}{y}{z} where
proof : Names.Cancellationₗ (_++_)
proof {∅} p = p
proof {x ⊰ l} p = proof {l} (cancellationₗ(_⊰_) p)
instance
[++]-cancellationᵣ : Cancellationᵣ(_++_)
Cancellationᵣ.proof([++]-cancellationᵣ) {a}{b} = proof {a}{b} where
proof : Names.Cancellationᵣ(_++_)
proof {z} {∅} {∅} p = reflexivity(_≡_)
proof {z} {x ⊰ xl} {y ⊰ yl} p = congruence₂(_⊰_) ([⊰]-generalized-cancellationᵣ p) (proof {z}{xl}{yl} ([⊰]-generalized-cancellationₗ p))
proof {∅} {∅} {y ⊰ yl} p with () ← [∅][⊰]-unequal {l = yl} (p 🝖 identityᵣ(_++_)(∅))
proof {z ⊰ zl} {∅} {y ⊰ yl} p with () ← [∅]-postpend-unequal(symmetry(_≡_) (proof{zl}{∅}{postpend z yl} ([⊰]-generalized-cancellationₗ p 🝖 symmetry(_≡_) ([++]-middle-prepend-postpend {x = z}{l₁ = yl}{l₂ = zl}))))
proof {∅} {x ⊰ xl} {∅} p with () ← [∅][⊰]-unequal {l = xl} (symmetry(_≡_) p 🝖 identityᵣ(_++_)(∅))
proof {z ⊰ zl} {x ⊰ xl} {∅} p with () ← [∅]-postpend-unequal(proof{zl}{postpend z xl}{∅} ([++]-middle-prepend-postpend {x = z}{l₁ = xl}{l₂ = zl} 🝖 [⊰]-generalized-cancellationₗ p))
reverse-involution-raw : Names.Involution(reverse{T = T})
reverse-involution-raw {x = ∅} = reflexivity(_≡_)
reverse-involution-raw {x = x ⊰ l} = reverse-postpend {a = x}{l = reverse l} 🝖 congruence₂ᵣ(_⊰_)(x) (reverse-involution-raw {x = l})
instance
reverse-involution : Involution(reverse{T = T})
Involution.proof reverse-involution = reverse-involution-raw
initial-of-∅ : (initial(n)(∅ {T = T}) ≡ ∅)
initial-of-∅ {n = 𝟎} = reflexivity(_≡_)
initial-of-∅ {n = 𝐒(n)} = reflexivity(_≡_)
module _ where
open import Relator.Equals.Proofs.Equiv {T = ℕ}
foldᵣ-constant-[+]ᵣ : ∀{init step} → (foldᵣ (const(_+ step)) init l ≡ₑ (step ⋅ length(l)) + init)
foldᵣ-constant-[+]ᵣ {l = ∅} = reflexivity(_≡ₑ_)
foldᵣ-constant-[+]ᵣ {l = x ⊰ l} {init}{step} =
const(_+ step) x (foldᵣ (const(_+ step)) init l) 🝖[ _≡_ ]-[]
(foldᵣ (const(_+ step)) init l) + step 🝖[ _≡_ ]-[ congruence₁(_+ step) (foldᵣ-constant-[+]ᵣ {l = l} {init}{step}) ]
((step ⋅ length(l)) + init) + step 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {a = step ⋅ length(l)}{init}{step} ]
((step ⋅ length(l)) + step) + init 🝖[ _≡_ ]-[ congruence₁(_+ init) (commutativity(_+_) {step ⋅ length(l)}{step}) ]
(step + (step ⋅ length(l))) + init 🝖-end
foldᵣ-constant-[+]ₗ : ∀{init step} → (foldᵣ (const(step +_)) init l ≡ (length(l) ⋅ step) + init)
foldᵣ-constant-[+]ₗ {l = ∅} = reflexivity(_≡_)
foldᵣ-constant-[+]ₗ {l = x ⊰ l} {init}{step} =
foldᵣ(const(step +_)) init (x ⊰ l) 🝖[ _≡_ ]-[]
step + foldᵣ(const(step +_)) init l 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(step) (foldᵣ-constant-[+]ₗ {l = l} {init}{step}) ]
step + ((length(l) ⋅ step) + init) 🝖[ _≡_ ]-[ associativity(_+_) {step}{length(l) ⋅ step}{init} ]-sym
(step + (length(l) ⋅ step)) + init 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(init) (commutativity(_+_) {step}{length(l) ⋅ step}) ]
((length(l) ⋅ step) + step) + init 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(init) ([⋅]-with-[𝐒]ₗ {length(l)}{step}) ]-sym
(𝐒(length(l)) ⋅ step) + init 🝖[ _≡_ ]-[]
(length(x ⊰ l) ⋅ step) + init 🝖-end
open import Structure.Setoid
module _
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-List₁ : Equiv{ℓₑₗ₁}(List(A)) ⦄ ⦃ extensionality-A : Extensionality(equiv-List₁) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-List₂ : Equiv{ℓₑₗ₂}(List(B)) ⦄ ⦃ extensionality-B : Extensionality(equiv-List₂) ⦄
where
private variable l l₁ l₂ : List(T)
private variable a b x : T
private variable P : List(T) → Stmt{ℓ}
private variable f : A → B
map-postpend : (map f(postpend a l) ≡ postpend (f(a)) (map f(l)))
map-postpend {f = f} {a = a}{l = l} = elim (reflexivity(_≡_)) (\x l → congruence₂ᵣ(_⊰_)(f(x)) {map f (postpend a l)}{postpend (f(a)) (map f l)}) l
instance
map-preserves-[++] : Preserving₂(map f)(_++_)(_++_)
Preserving.proof (map-preserves-[++] {f = f}) {l₁} {l₂} = elim (reflexivity(_≡_)) (\x l₁ → congruence₂ᵣ(_⊰_)(f(x)) {map f(l₁ ++ l₂)}{(map f l₁) ++ (map f l₂)}) l₁
| {
"alphanum_fraction": 0.5858219916,
"avg_line_length": 51.3216080402,
"ext": "agda",
"hexsha": "9c983bc46321bf53f54e35badad8d33e97a05edb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Proofs.agda",
"max_line_length": 223,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4216,
"size": 10213
} |
{-# OPTIONS --safe #-}
{-# OPTIONS --sized-types #-}
module ++-Identity where
open import Size
-- +-identityʳ : ∀ (n : ℕ) → n + 0 ≅ n
-- +-identityʳ zero = refl
-- +-identityʳ (suc n) = cong suc (+-identityʳ n)
-- ∷-≅ : ∀ {m n : ℕ} {A : Set} (x : A) (xs : Vec A m) (ys : Vec A n) → m ≅ n → xs ≅ ys → (x ∷ xs) ≅ (x ∷ ys)
-- ∷-≅ x xs .xs refl refl = refl
-- ++-identityʳ : ∀ {n} {A : Set} (xs : Vec A n) → xs ++ [] ≅ xs
-- ++-identityʳ {.0} {A} [] = refl
-- ++-identityʳ {suc n} {A} (x ∷ xs) = ∷-≅ x (xs ++ []) xs (+-identityʳ n) (++-identityʳ xs)
data Nat : {i : Size} -> Set where
zero : {i : Size} -> Nat {↑ i}
suc : {i : Size} -> Nat {i} -> Nat {↑ i}
sub : {i : Size} -> Nat {i} -> Nat {∞} -> Nat {i}
sub zero n = zero
sub (suc m) zero = suc m
sub (suc m) (suc n) = sub m n
div : {i : Size} -> Nat {i} -> Nat -> Nat {i}
div zero n = zero
div (suc m) n = suc (div (sub m n) n)
| {
"alphanum_fraction": 0.4707865169,
"avg_line_length": 29.6666666667,
"ext": "agda",
"hexsha": "7af0dfd1f90491b8c94bf34f5f0cfe07c8a4375f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/++-Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/++-Identity.agda",
"max_line_length": 108,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/++-Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 388,
"size": 890
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import Boolean.Definition
open import LogicalFormulae
open import Decidable.Lemmas
module Numbers.Naturals.Definition where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
infix 100 succ
{-# BUILTIN NATURAL ℕ #-}
succInjective : {a b : ℕ} → (succ a ≡ succ b) → a ≡ b
succInjective {a} {.a} refl = refl
naughtE : {a : ℕ} → zero ≡ succ a → False
naughtE ()
aIsNotSuccA : (a : ℕ) → (a ≡ succ a) → False
aIsNotSuccA zero pr = naughtE pr
aIsNotSuccA (succ a) pr = aIsNotSuccA a (succInjective pr)
ℕDecideEquality : (a b : ℕ) → ((a ≡ b) || ((a ≡ b) → False))
ℕDecideEquality zero zero = inl refl
ℕDecideEquality zero (succ b) = inr (λ ())
ℕDecideEquality (succ a) zero = inr (λ ())
ℕDecideEquality (succ a) (succ b) with ℕDecideEquality a b
ℕDecideEquality (succ a) (succ b) | inl x = inl (applyEquality succ x)
ℕDecideEquality (succ a) (succ b) | inr x = inr λ pr → x (succInjective pr)
ℕDecideEquality' : (a b : ℕ) → Bool
ℕDecideEquality' a b with ℕDecideEquality a b
ℕDecideEquality' a b | inl x = BoolTrue
ℕDecideEquality' a b | inr x = BoolFalse
record _=N'_ (a b : ℕ) : Set where
field
.eq : a ≡ b
squashN : {a b : ℕ} → a =N' b → a ≡ b
squashN record { eq = eq } = squash ℕDecideEquality eq
collapseN : {a b : ℕ} → a ≡ b → a =N' b
collapseN refl = record { eq = refl }
=N'Refl : {a b : ℕ} → (p1 p2 : a =N' b) → p1 ≡ p2
=N'Refl p1 p2 = refl
| {
"alphanum_fraction": 0.6426043878,
"avg_line_length": 27.1730769231,
"ext": "agda",
"hexsha": "2263738d62f6598ee28eb16851293a3e88944048",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Naturals/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Naturals/Definition.agda",
"max_line_length": 75,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Naturals/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 546,
"size": 1413
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Rust.Duration as Duration
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Consensus.Liveness.ExponentialTimeInterval where
new : Duration → F64 → Usize → ExponentialTimeInterval
new base exponentBase maxExponent =
{- TODO-1
if | maxExponent >= 32
-> errorExit [ "ExponentialTimeInterval", "new"
, "maxExponent for PacemakerTimeInterval should be < 32", show maxExponent ]
| ceiling (exponentBase ** fromIntegral maxExponent) >= {-F64-} (maxBound::Int)
-> errorExit [ "ExponentialTimeInterval", "new"
, "maximum interval multiplier should be less then u32::Max"]
| otherwise
->
-} mkExponentialTimeInterval
(Duration.asMillis base)
exponentBase
maxExponent
| {
"alphanum_fraction": 0.710483871,
"avg_line_length": 38.75,
"ext": "agda",
"hexsha": "659edb63d8f0e5072c8b310d65bc8c005b94ba12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ExponentialTimeInterval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ExponentialTimeInterval.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ExponentialTimeInterval.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 312,
"size": 1240
} |
module AllTests where
import Issue14
import LanguageConstructs
import Numbers
import Pragmas
import Sections
import Test
import Tuples
import Where
{-# FOREIGN AGDA2HS
import Issue14
import LanguageConstructs
import Numbers
import Pragmas
import Sections
import Test
import Tuples
import Where
#-}
| {
"alphanum_fraction": 0.8405315615,
"avg_line_length": 13.0869565217,
"ext": "agda",
"hexsha": "9178f10841766f9c91f26e3d6a1ec18fd1945e38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/agda2hs",
"max_forks_repo_path": "test/AllTests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/agda2hs",
"max_issues_repo_path": "test/AllTests.agda",
"max_line_length": 25,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/agda2hs",
"max_stars_repo_path": "test/AllTests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 76,
"size": 301
} |
-- Task:
-- Try to compile a function that requires a proof as input.
-- It should be similar to what exportSqrt does in the ℝ but
-- for Nats (ℕ)
| {
"alphanum_fraction": 0.7074829932,
"avg_line_length": 29.4,
"ext": "agda",
"hexsha": "8854828a669816aeb9da7f6bb0d59d1a2ce75db8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/reals-with-restrictions/playground.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/reals-with-restrictions/playground.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/reals-with-restrictions/playground.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 40,
"size": 147
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.NaturalTransformation where
open import Categories.Category
open import Categories.Functor hiding (equiv) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_)
open import Categories.NaturalTransformation.Core public
infixr 9 _∘ˡ_ _∘ʳ_
_∘ˡ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
→ {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂}
→ {F G : Functor C D}
→ (H : Functor D E) → (η : NaturalTransformation F G) → NaturalTransformation (H ∘F F) (H ∘F G)
_∘ˡ_ {C = C} {D} {E} {F} {G} H η′ = record
{ η = λ X → Functor.F₁ H (NaturalTransformation.η η′ X)
; commute = commute′
}
where
module C = Category C
module D = Category D renaming (_∘_ to _∘D_; _≡_ to _≡D_)
module E = Category E renaming (_∘_ to _∘E_; _≡_ to _≡E_)
module H = Functor H
open D
open E
.commute′ : ∀ {X Y} (f : C [ X , Y ]) →
Functor.F₁ H (NaturalTransformation.η η′ Y) ∘E Functor.F₁ H (Functor.F₁ F f) ≡E
Functor.F₁ H (Functor.F₁ G f) ∘E Functor.F₁ H (NaturalTransformation.η η′ X)
commute′ {X} {Y} f =
begin
Functor.F₁ H (NaturalTransformation.η η′ Y) ∘E Functor.F₁ H (Functor.F₁ F f)
↑⟨ H.homomorphism ⟩
Functor.F₁ H (NaturalTransformation.η η′ Y ∘D Functor.F₁ F f)
↓⟨ H.F-resp-≡ (NaturalTransformation.commute η′ f) ⟩
Functor.F₁ H (Functor.F₁ G f ∘D NaturalTransformation.η η′ X)
↓⟨ H.homomorphism ⟩
Functor.F₁ H (Functor.F₁ G f) ∘E Functor.F₁ H (NaturalTransformation.η η′ X)
∎
where
open E.HomReasoning
_∘ʳ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
→ {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂}
→ {F G : Functor C D}
→ (η : NaturalTransformation F G) → (K : Functor E C) → NaturalTransformation (F ∘F K) (G ∘F K)
_∘ʳ_ η K = record
{ η = λ X → NaturalTransformation.η η (Functor.F₀ K X)
; commute = λ f → NaturalTransformation.commute η (Functor.F₁ K f)
}
-- The vertical versions
.identity₁ˡ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} {X : NaturalTransformation F G}
→ id ∘₁ X ≡ X
identity₁ˡ {D = D} = Category.identityˡ D
.identity₁ʳ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} {X : NaturalTransformation F G}
→ X ∘₁ id ≡ X
identity₁ʳ {D = D} = Category.identityʳ D
.assoc₁ : ∀ {o ℓ e o′ ℓ′ e′}
{P : Category o ℓ e} {Q : Category o′ ℓ′ e′} {A B C D : Functor P Q}
{X : NaturalTransformation A B} {Y : NaturalTransformation B C} {Z : NaturalTransformation C D}
→ (Z ∘₁ Y) ∘₁ X ≡ Z ∘₁ (Y ∘₁ X)
assoc₁ {Q = Q} = Category.assoc Q
-- The horizontal ones
.identity₀ˡ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} {X : NaturalTransformation F G}
→ id {F = idF} ∘₀ X ≡ X
identity₀ˡ {D = D} = Category.identityʳ D
.identity₀ʳ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} {X : NaturalTransformation F G}
→ X ∘₀ id {F = idF} ≡ X
identity₀ʳ {C = C} {D} {F} {G} {X} =
begin
G₁ C.id ∘ (η _)
↓⟨ ∘-resp-≡ˡ G.identity ⟩
D.id ∘ (η _)
↓⟨ D.identityˡ ⟩
η _
∎
where
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡)
open NaturalTransformation X
open D.HomReasoning
open F
open G
open D
open import Categories.Functor.Core using () renaming ( _∘_ to _∘F_)
.assoc₀ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃}
{C₀ : Category o₀ ℓ₀ e₀} {C₁ : Category o₁ ℓ₁ e₁} {C₂ : Category o₂ ℓ₂ e₂} {C₃ : Category o₃ ℓ₃ e₃}
{F G : Functor C₀ C₁} {H I : Functor C₁ C₂} {J K : Functor C₂ C₃}
→ {X : NaturalTransformation F G} → {Y : NaturalTransformation H I} → {Z : NaturalTransformation J K}
→ (Z ∘₀ Y) ∘₀ X ≡ (_∘₀_ {F = H ∘F F} {I ∘F G} Z (_∘₀_ {C = C₀} {C₁} {C₂} Y X))
assoc₀ {C₀ = C₀} {C₁} {C₂} {C₃} {F} {G} {H} {I} {J} {K} {X} {Y} {Z} =
begin
K₁ (I₁ (X.η _)) ∘C₃ (K₁ (Y.η (F₀ _)) ∘C₃ Z.η (H₀ (F₀ _)))
↑⟨ C₃.assoc ⟩
(K₁ (I₁ (X.η _)) ∘C₃ K₁ (Y.η (F₀ _))) ∘C₃ Z.η (H₀ (F₀ _))
↑⟨ C₃.∘-resp-≡ˡ K.homomorphism ⟩
(K₁ ((I₁ (X.η _)) ∘C₂ Y.η (F₀ _))) ∘C₃ Z.η (H₀ (F₀ _))
∎
where
module C₂ = Category C₂ renaming (_∘_ to _∘C₂_; _≡_ to _≡C₂_)
module C₃ = Category C₃ renaming (_∘_ to _∘C₃_; _≡_ to _≡C₃_)
module F = Functor F
module G = Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡)
module H = Functor H renaming (F₀ to H₀; F₁ to H₁; F-resp-≡ to H-resp-≡)
module I = Functor I renaming (F₀ to I₀; F₁ to I₁; F-resp-≡ to I-resp-≡)
module J = Functor J renaming (F₀ to J₀; F₁ to J₁; F-resp-≡ to J-resp-≡)
module K = Functor K renaming (F₀ to K₀; F₁ to K₁; F-resp-≡ to K-resp-≡)
module X = NaturalTransformation X
module Y = NaturalTransformation Y
module Z = NaturalTransformation Z
open C₃.HomReasoning
open C₂
open C₃
open F
open H
open I
open K
.interchange : ∀ {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂}
{C₀ : Category o₀ ℓ₀ e₀} {C₁ : Category o₁ ℓ₁ e₁} {C₂ : Category o₂ ℓ₂ e₂}
{F₀ F₁ F₅ : Functor C₀ C₁} {F₂ F₃ F₄ : Functor C₁ C₂}
{α : NaturalTransformation F₃ F₄}
{β : NaturalTransformation F₁ F₅}
{γ : NaturalTransformation F₂ F₃}
{δ : NaturalTransformation F₀ F₁}
→ (α ∘₀ β) ∘₁ (γ ∘₀ δ) ≡ (α ∘₁ γ) ∘₀ (β ∘₁ δ)
interchange {C₀ = C₀} {C₁} {C₂} {F₀} {F₁} {F₅} {F₂} {F₃} {F₄} {α} {β} {γ} {δ} =
begin
(F₄.F₁ (β.η _) ∘ α.η (F₁.F₀ _)) ∘ (F₃.F₁ (δ.η _) ∘ γ.η (F₀.F₀ _))
↓⟨ C₂.assoc ⟩
F₄.F₁ (β.η _) ∘ (α.η (F₁.F₀ _) ∘ (F₃.F₁ (δ.η _) ∘ γ.η (F₀.F₀ _)))
↑⟨ C₂.∘-resp-≡ʳ C₂.assoc ⟩
F₄.F₁ (β.η _) ∘ ((α.η (F₁.F₀ _) ∘ (F₃.F₁ (δ.η _))) ∘ γ.η (F₀.F₀ _))
↓⟨ C₂.∘-resp-≡ʳ (C₂.∘-resp-≡ˡ (α.commute (δ.η _))) ⟩
F₄.F₁ (β.η _) ∘ ((F₄.F₁ (δ.η _) ∘ α.η (F₀.F₀ _)) ∘ γ.η (F₀.F₀ _))
↓⟨ C₂.∘-resp-≡ʳ C₂.assoc ⟩
F₄.F₁ (β.η _) ∘ (F₄.F₁ (δ.η _) ∘ (α.η (F₀.F₀ _) ∘ γ.η (F₀.F₀ _)))
↑⟨ C₂.assoc ⟩
(F₄.F₁ (β.η _) ∘ F₄.F₁ (δ.η _)) ∘ (α.η (F₀.F₀ _) ∘ γ.η (F₀.F₀ _))
↑⟨ C₂.∘-resp-≡ˡ F₄.homomorphism ⟩
F₄.F₁ (β.η _ ∘C₁ δ.η _) ∘ (α.η (F₀.F₀ _) ∘ γ.η (F₀.F₀ _))
∎
where
module C₁ = Category C₁ renaming (_∘_ to _∘C₁_; _≡_ to _≡C₁_)
module C₂ = Category C₂
module F₀ = Functor F₀
module F₁ = Functor F₁
module F₂ = Functor F₂
module F₃ = Functor F₃
module F₄ = Functor F₄
module F₅ = Functor F₅
module α = NaturalTransformation α
module β = NaturalTransformation β
module γ = NaturalTransformation γ
module δ = NaturalTransformation δ
open C₁
open C₂
open C₂.HomReasoning
.∘₁-resp-≡ : ∀ {o ℓ e} {o′ ℓ′ e′}
{D : Category o ℓ e} {E : Category o′ ℓ′ e′}
{A B C : Functor D E}
{f h : NaturalTransformation B C} {g i : NaturalTransformation A B}
→ f ≡ h → g ≡ i → f ∘₁ g ≡ h ∘₁ i
∘₁-resp-≡ {E = E} f≡h g≡i = Category.∘-resp-≡ E f≡h g≡i
.∘₀-resp-≡ : ∀ {o ℓ e} {o′ ℓ′ e′} {o″ ℓ″ e″}
{C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o″ ℓ″ e″}
{F F′ : Functor C D} {G G′ : Functor D E}
{f h : NaturalTransformation G G′} {g i : NaturalTransformation F F′}
→ f ≡ h → g ≡ i → f ∘₀ g ≡ h ∘₀ i
∘₀-resp-≡ {E = E} {G′ = G′} f≡h g≡i = Category.∘-resp-≡ E (Functor.F-resp-≡ G′ g≡i) f≡h
| {
"alphanum_fraction": 0.5484043263,
"avg_line_length": 39.835106383,
"ext": "agda",
"hexsha": "d3b8f594984e717d3a39152eed15c5788c30b7ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/NaturalTransformation.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 3401,
"size": 7489
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.CofiberSequence
open import cohomology.Exactness
open import cohomology.ExactPairIso
open import cohomology.FunctionOver
open import cohomology.MayerVietoris
open import cohomology.SplitExactRight
open import cohomology.Theory
module cohomology.Coproduct {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
open import cohomology.ConstantFunction cohomology-theory
open import cohomology.Functor cohomology-theory
open import cohomology.Sn OT
{- Cⁿ(X ⊔ Y) == Cⁿ(X ∨ Y) × Cⁿ(S⁰). The proof is by constructing a
- splitting exact sequence
0 → Cⁿ(X ∨ Y) → Cⁿ(X ⊔ Y) → C(S⁰)
- by defining a map [select : S⁰ → X ⊔ Y] such that
[Cofiber select == X ∨ Y] and [select] has a left inverse. -}
module CofSelect (X Y : Ptd i) where
select : Sphere {i} 0 → fst (X ⊙⊔ Y)
select (lift true) = inl (snd X)
select (lift false) = inr (snd Y)
⊙select : fst (⊙Sphere {i} 0 ⊙→ X ⊙⊔ Y)
⊙select = (select , idp)
module Into = CofiberRec select {C = X ∨ Y}
(winl (snd X))
add-wglue
(λ {(lift true) → idp; (lift false) → wglue})
module Out = WedgeRec {X = X} {Y = Y} {C = Cofiber select}
(λ x → cfcod _ (inl x))
(λ y → cfcod _ (inr y))
(! (cfglue _ (lift true)) ∙ cfglue _ (lift false))
into = Into.f
out = Out.f
into-out : ∀ w → into (out w) == w
into-out = Wedge-elim
(λ x → idp)
(λ y → idp)
(↓-∘=idf-in into out $
ap into (ap out wglue)
=⟨ ap (ap into) Out.glue-β ⟩
ap into (! (cfglue _ (lift true)) ∙ cfglue _ (lift false))
=⟨ ap-∙ into (! (cfglue _ (lift true))) (cfglue _ (lift false)) ⟩
ap into (! (cfglue _ (lift true))) ∙ ap into (cfglue _ (lift false))
=⟨ ap-! into (cfglue _ (lift true)) ∙ ap ! (Into.glue-β (lift true))
|in-ctx (λ w → w ∙ ap into (cfglue _ (lift false))) ⟩
ap into (cfglue _ (lift false))
=⟨ Into.glue-β (lift false) ⟩
wglue ∎)
out-into : ∀ κ → out (into κ) == κ
out-into = Cofiber-elim _
(! (cfglue _ (lift true)))
(λ {(inl x) → idp; (inr y) → idp})
(λ {(lift true) → ↓-∘=idf-from-square out into $
ap (ap out) (Into.glue-β (lift true)) ∙v⊡ bl-square _;
(lift false) → ↓-∘=idf-from-square out into $
(ap (ap out) (Into.glue-β (lift false)) ∙ Out.glue-β)
∙v⊡ lt-square (! (cfglue _ (lift true))) ⊡h vid-square})
eq : Cofiber select ≃ X ∨ Y
eq = equiv into out into-out out-into
⊙path : ⊙Cof ⊙select == X ⊙∨ Y
⊙path = ⊙ua eq idp
cfcod-over : ⊙cfcod ⊙select == ⊙add-wglue
[ (λ U → fst (X ⊙⊔ Y ⊙→ U)) ↓ ⊙path ]
cfcod-over = codomain-over-⊙equiv _ _ _ ▹ pair= idp lemma
where
lemma : ap into (! (cfglue _ (lift true))) ∙ idp == idp
lemma = ∙-unit-r _ ∙ ap-! into (cfglue _ (lift true))
∙ ap ! (Into.glue-β (lift true))
ext-glue-cst :
⊙ext-glue == ⊙cst {X = ⊙Cof ⊙select} {Y = ⊙Sphere 1}
ext-glue-cst = ⊙λ=
(Cofiber-elim _
idp
(λ {(inl _) → ! (merid _ (lift true));
(inr _) → ! (merid _ (lift false))})
(λ {(lift true) → ↓-='-from-square $
ExtGlue.glue-β (lift true)
∙v⊡ tr-square (merid _ (lift true))
⊡v∙ ! (ap-cst (north _) (glue (lift true)));
(lift false) → ↓-='-from-square $
ExtGlue.glue-β (lift false)
∙v⊡ tr-square (merid _ (lift false))
⊡v∙ ! (ap-cst (north _) (glue (lift false)))}))
idp
ext-over : ⊙ext-glue == ⊙cst
[ (λ U → fst (U ⊙→ ⊙Sphere 1)) ↓ ⊙path ]
ext-over = ext-glue-cst ◃ domain-over-⊙equiv _ _ _
module C⊔ (n : ℤ) (m : ℕ) (X Y : Ptd i) where
open CofSelect X Y
ed : {G : Group i} (φ : GroupHom (C n (⊙Susp^ m (X ⊙⊔ Y))) G)
→ ExactDiag _ _
ed {G} φ =
C n (⊙Susp^ m (⊙Sphere 1))
⟨ cst-hom ⟩→
C n (⊙Susp^ m (X ⊙∨ Y))
⟨ CF-hom n (⊙susp^-fmap m ⊙add-wglue) ⟩→
C n (⊙Susp^ m (X ⊙⊔ Y))
⟨ φ ⟩→ -- CF-hom n (⊙susp^-fmap m ⊙select)
G ⊣| -- C n (⊙Susp^ m (⊙Sphere 0))
es : ExactSeq (ed (CF-hom n (⊙susp^-fmap m ⊙select)))
es = exact-build (ed (CF-hom n (⊙susp^-fmap m ⊙select)))
(transport
(λ g → is-exact g (CF n (⊙susp^-fmap m ⊙add-wglue)))
(ap (CF n) (⊙susp^-fmap-cst m) ∙ ap GroupHom.⊙f (CF-cst n))
(transport
(λ {(_ , g , h) → is-exact (CF n (⊙susp^-fmap m h))
(CF n (⊙susp^-fmap m g))})
(pair= ⊙path (↓-×-in cfcod-over ext-over))
(transport
(λ {(_ , g , h) → is-exact (CF n h) (CF n g)})
(suspend^-cof= m (⊙cfcod ⊙select) (⊙ext-glue)
(pair= (Cof².space-path ⊙select) (Cof².cfcod²-over ⊙select)))
(C-exact n (⊙susp^-fmap m (⊙cfcod ⊙select))))))
(transport
(λ {(_ , g) → is-exact (CF n (⊙susp^-fmap m g))
(CF n (⊙susp^-fmap m ⊙select))})
(pair= ⊙path cfcod-over)
(transport
(λ {(_ , g , h) → is-exact (CF n h) (CF n g)})
(suspend^-cof= m ⊙select _ idp)
(C-exact n (⊙susp^-fmap m ⊙select))))
module Nonzero (neq : n ≠ ℕ-to-ℤ m) where
iso : C n (⊙Susp^ m (X ⊙∨ Y)) == C n (⊙Susp^ m (X ⊙⊔ Y))
iso = exact-pair-iso $
transport (λ {(G , φ) → ExactSeq (ed {G} φ)})
(pair= (ap (C n) (⊙Susp^-+ m O
∙ ap (λ k → ⊙Susp^ k (⊙Sphere 0)) (+-unit-r m))
∙ C-Sphere-≠ n m neq)
(prop-has-all-paths-↓
{B = λ G → GroupHom (C n (⊙Susp^ m (X ⊙⊔ Y))) G}
(contr-is-prop 0ᴳ-hom-in-level)))
es
add-wglue-over :
idhom _ == CF-hom n (⊙susp^-fmap m ⊙add-wglue)
[ (λ G → GroupHom (C n (⊙Susp^ m (X ⊙∨ Y))) G) ↓ iso ]
add-wglue-over = codomain-over-iso _ _ _ _ $ codomain-over-equiv _ _
module Any where
deselect : fst (X ⊙⊔ Y) → Sphere {i} 0
deselect (inl _) = lift true
deselect (inr _) = lift false
⊙deselect : fst (X ⊙⊔ Y ⊙→ ⊙Sphere {i} 0)
⊙deselect = (deselect , idp)
deselect-select : ⊙deselect ⊙∘ ⊙select == ⊙idf _
deselect-select = ⊙λ= (λ {(lift true) → idp; (lift false) → idp}) idp
module SER = SplitExactRight (C-abelian n _)
(CF-hom n (⊙susp^-fmap m ⊙add-wglue))
(CF-hom n (⊙susp^-fmap m ⊙select))
es
(CF-hom n (⊙susp^-fmap m ⊙deselect))
(app= $ ap GroupHom.f $ CF-inverse n
(⊙susp^-fmap m ⊙select)
(⊙susp^-fmap m ⊙deselect)
(! (⊙susp^-fmap-∘ m ⊙deselect ⊙select)
∙ ap (⊙susp^-fmap m) deselect-select
∙ ⊙susp^-fmap-idf m _))
iso : C n (⊙Susp^ m (X ⊙⊔ Y))
== C n (⊙Susp^ m (X ⊙∨ Y)) ×ᴳ C n (⊙Susp^ m (⊙Sphere 0))
iso = SER.iso
add-wglue-over :
CF-hom n (⊙susp^-fmap m ⊙add-wglue) == ×ᴳ-inl
[ (λ G → GroupHom (C n (⊙Susp^ m (X ⊙∨ Y))) G) ↓ iso ]
add-wglue-over = SER.φ-over-iso
| {
"alphanum_fraction": 0.5168968557,
"avg_line_length": 34.3737373737,
"ext": "agda",
"hexsha": "247ddddd76358bfc6ee34960f8033f15e08278c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/Coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/Coproduct.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2785,
"size": 6806
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
| {
"alphanum_fraction": 0.7944444444,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "d31b5b36a474f4e475a53713ba2390659279eee4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary/Properties.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 43,
"size": 180
} |
------------------------------------------------------------------------
-- Indexed containers
------------------------------------------------------------------------
-- Partly based on "Indexed containers" by Altenkirch, Ghani, Hancock,
-- McBride and Morris, and partly based on "Non-wellfounded trees in
-- Homotopy Type Theory" by Ahrens, Capriotti and Spadotti.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Container.Indexed
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude
import Bijection eq as B
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq as F hiding (id; _∘_)
open import H-level.Closure eq
open import Univalence-axiom eq
private
variable
a ℓ p p₁ p₂ q s : Level
A I O : Type a
P Q R : A → Type p
ext f i k o : A
------------------------------------------------------------------------
-- _⇾_
-- A kind of function space for indexed types.
infix 4 _⇾_
_⇾_ :
{A : Type a} →
(A → Type p) → (A → Type q) → Type (a ⊔ p ⊔ q)
P ⇾ Q = ∀ x → P x → Q x
-- An identity function.
id⇾ : P ⇾ P
id⇾ _ = id
-- Composition for _⇾_.
infixr 9 _∘⇾_
_∘⇾_ : Q ⇾ R → P ⇾ Q → P ⇾ R
f ∘⇾ g = λ i → f i ∘ g i
------------------------------------------------------------------------
-- Containers
-- Doubly indexed containers.
record Container₂ (I : Type i) (O : Type o) s p :
Type (i ⊔ o ⊔ lsuc (s ⊔ p)) where
field
Shape : O → Type s
Position : ∀ {o} → Shape o → Type p
index : ∀ {o} {s : Shape o} → Position s → I
open Container₂ public
-- Singly indexed containers.
Container : Type i → ∀ s p → Type (i ⊔ lsuc (s ⊔ p))
Container I = Container₂ I I
private
variable
C : Container₂ I O s p
-- Container₂ can be expressed as a nested Σ-type.
Container≃Σ :
Container₂ I O s p ≃
(∃ λ (S : O → Type s) →
∃ λ (P : ∀ {o} → S o → Type p) →
∀ {o} {s : S o} → P s → I)
Container≃Σ = Eq.↔→≃
(λ C → C .Shape , C .Position , C .index)
(λ (S , P , i) → record { Shape = S; Position = P; index = i })
refl
refl
------------------------------------------------------------------------
-- Polynomial functors
-- The polynomial functor associated to a container.
⟦_⟧ :
{I : Type i} {O : Type o} →
Container₂ I O s p → (I → Type ℓ) → O → Type (ℓ ⊔ s ⊔ p)
⟦ C ⟧ P i = ∃ λ (s : Shape C i) → (p : Position C s) → P (index C p)
-- A map function.
map : (C : Container₂ I O s p) → P ⇾ Q → ⟦ C ⟧ P ⇾ ⟦ C ⟧ Q
map C f _ (s , g) = s , f _ ∘ g
-- Functor laws.
map-id : map C (id⇾ {P = P}) ≡ id⇾
map-id = refl _
map-∘ :
(f : Q ⇾ R) (g : P ⇾ Q) →
map C (f ∘⇾ g) ≡ map C f ∘⇾ map C g
map-∘ _ _ = refl _
-- A preservation lemma.
⟦⟧-cong :
{I : Type i} {P₁ : I → Type p₁} {P₂ : I → Type p₂} →
Extensionality? k p (p₁ ⊔ p₂) →
(C : Container₂ I O s p) →
(∀ i → P₁ i ↝[ k ] P₂ i) →
(∀ o → ⟦ C ⟧ P₁ o ↝[ k ] ⟦ C ⟧ P₂ o)
⟦⟧-cong {P₁ = P₁} {P₂ = P₂} ext C P₁↝P₂ o =
(∃ λ (s : Shape C o) → (p : Position C s) → P₁ (index C p)) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → P₁↝P₂ _) ⟩□
(∃ λ (s : Shape C o) → (p : Position C s) → P₂ (index C p)) □
-- The forward direction of ⟦⟧-cong is an instance of map (at least
-- when k is equivalence).
_ : _≃_.to (⟦⟧-cong ext C f o) ≡ map C (_≃_.to ∘ f) o
_ = refl _
-- The shapes of a container are pointwise equivalent to the
-- polynomial functor of the container applied to the constant
-- function yielding the unit type.
--
-- (This lemma was suggested to me by an anonymous reviewer of a
-- paper.)
Shape≃⟦⟧⊤ :
(C : Container₂ I O s p) →
Shape C o ≃ ⟦ C ⟧ (λ _ → ⊤) o
Shape≃⟦⟧⊤ {o = o} C =
Shape C o ↔⟨ inverse $ drop-⊤-right (λ _ → →-right-zero) ⟩□
(∃ λ (s : Shape C o) → Position C s → ⊤) □
------------------------------------------------------------------------
-- Coalgebras
-- The type of coalgebras for a (singly indexed) container.
Coalgebra : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p))
Coalgebra {i = i} {s = s} {p = p} {I = I} C =
∃ λ (P : I → Type (i ⊔ s ⊔ p)) → P ⇾ ⟦ C ⟧ P
-- Coalgebra morphisms.
infix 4 _⇨_
_⇨_ :
{I : Type i} {C : Container I s p} →
Coalgebra C → Coalgebra C → Type (i ⊔ s ⊔ p)
(P , f) ⇨ (Q , g) = ∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f
private
variable
X Y Z : Coalgebra C
-- An identity morphism.
id⇨ : X ⇨ X
id⇨ = id⇾ , refl _
-- Composition for _⇨_.
infix 9 [_]_∘⇨_
[_]_∘⇨_ : ∀ Z → Y ⇨ Z → X ⇨ Y → X ⇨ Z
[_]_∘⇨_ {Y = _ , g} {X = _ , f} (_ , h) (f₁ , eq₁) (f₂ , eq₂) =
f₁ ∘⇾ f₂
, (h ∘⇾ (f₁ ∘⇾ f₂) ≡⟨⟩
(h ∘⇾ f₁) ∘⇾ f₂ ≡⟨ cong (_∘⇾ f₂) eq₁ ⟩
(map _ f₁ ∘⇾ g) ∘⇾ f₂ ≡⟨⟩
map _ f₁ ∘⇾ (g ∘⇾ f₂) ≡⟨ cong (map _ f₁ ∘⇾_) eq₂ ⟩
map _ f₁ ∘⇾ (map _ f₂ ∘⇾ f) ≡⟨⟩
map _ (f₁ ∘⇾ f₂) ∘⇾ f ∎)
-- The property of being a final coalgebra.
Final :
{I : Type i} {C : Container I s p} →
Coalgebra C → Type (lsuc (i ⊔ s ⊔ p))
Final X = ∀ Y → Contractible (Y ⇨ X)
-- A perhaps more traditional definition of what it means to be final.
Final′ :
{I : Type i} {C : Container I s p} →
Coalgebra C → Type (lsuc (i ⊔ s ⊔ p))
Final′ X =
∀ Y → ∃ λ (m : Y ⇨ X) → (m′ : Y ⇨ X) → proj₁ m ≡ proj₁ m′
-- Final X implies Final′ X.
Final→Final′ : (X : Coalgebra C) → Final X → Final′ X
Final→Final′ _ =
∀-cong _ λ _ → ∃-cong λ _ → ∀-cong _ λ _ → cong proj₁
-- Final is pointwise propositional (assumption extensionality).
Final-propositional :
{I : Type i} {C : Container I s p} →
Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) →
(X : Coalgebra C) →
Is-proposition (Final X)
Final-propositional ext _ =
Π-closure ext 1 λ _ →
Contractible-propositional (lower-extensionality _ lzero ext)
-- Final coalgebras.
Final-coalgebra :
{I : Type i} →
Container I s p → Type (lsuc (i ⊔ s ⊔ p))
Final-coalgebra C = ∃ λ (X : Coalgebra C) → Final X
-- Final coalgebras, defined using Final′.
Final-coalgebra′ :
{I : Type i} →
Container I s p → Type (lsuc (i ⊔ s ⊔ p))
Final-coalgebra′ C = ∃ λ (X : Coalgebra C) → Final′ X
-- Final-coalgebra C implies Final-coalgebra′ C.
Final-coalgebra→Final-coalgebra′ :
Final-coalgebra C → Final-coalgebra′ C
Final-coalgebra→Final-coalgebra′ =
∃-cong Final→Final′
-- Carriers of final coalgebras (defined using Final′) for a given
-- container are pointwise equivalent.
carriers-of-final-coalgebras-equivalent′ :
(((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra′ C) →
∀ i → P₁ i ≃ P₂ i
carriers-of-final-coalgebras-equivalent′ (X₁ , final₁) (X₂ , final₂) i =
Eq.↔→≃ (proj₁ to i) (proj₁ from i) to∘from from∘to
where
to : X₁ ⇨ X₂
to = proj₁ (final₂ X₁)
from : X₂ ⇨ X₁
from = proj₁ (final₁ X₂)
to∘from : ∀ x → proj₁ ([ X₂ ] to ∘⇨ from) i x ≡ x
to∘from x =
proj₁ ([ X₂ ] to ∘⇨ from) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₂ X₂) $ [ X₂ ] to ∘⇨ from ⟩
proj₁ (proj₁ (final₂ X₂)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₂ X₂) id⇨ ⟩
proj₁ (id⇨ {X = X₂}) i x ≡⟨⟩
x ∎
from∘to : ∀ x → proj₁ ([ X₁ ] from ∘⇨ to) i x ≡ x
from∘to x =
proj₁ ([ X₁ ] from ∘⇨ to) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₁ X₁) $ [ X₁ ] from ∘⇨ to ⟩
proj₁ (proj₁ (final₁ X₁)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₁ X₁) id⇨ ⟩
proj₁ (id⇨ {X = X₁}) i x ≡⟨⟩
x ∎
-- The previous lemma relates the "out" functions of the two final
-- coalgebras in a certain way.
out-related′ :
{C : Container I s p}
(F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra′ C) →
map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂) ∘⇾
out₁
≡
out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂)
out-related′ (X₁ , _) (_ , final₂) =
sym $ proj₂ (proj₁ (final₂ X₁))
-- Carriers of final coalgebras for a given container are pointwise
-- equivalent.
carriers-of-final-coalgebras-equivalent :
(((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra C) →
∀ i → P₁ i ≃ P₂ i
carriers-of-final-coalgebras-equivalent =
carriers-of-final-coalgebras-equivalent′ on
Final-coalgebra→Final-coalgebra′
-- The previous lemma relates the "out" functions of the two final
-- coalgebras in a certain way.
out-related :
{C : Container I s p}
(F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra C) →
map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂) ∘⇾ out₁
≡
out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂)
out-related = out-related′ on Final-coalgebra→Final-coalgebra′
-- If X and Y are final coalgebras (with finality defined using
-- Final′), then—assuming extensionality—finality of X (defined using
-- Final) is equivalent to finality of Y.
Final′→Final≃Final :
{I : Type i} {C : Container I s p}
((X , _) (Y , _) : Final-coalgebra′ C) →
Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) →
Final X ↝[ lsuc (i ⊔ s ⊔ p) ∣ i ⊔ s ⊔ p ] Final Y
Final′→Final≃Final {i = i} {s = s} {p = p} {C = C}
((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ext {k = k} ext′ =
∀-cong ext′ λ Y@(_ , f) →
H-level-cong
(lower-extensionality? k _ lzero ext′)
0
(Σ-cong (lemma₂ Y) λ g →
out₁ ∘⇾ g ≡ map C g ∘⇾ f ↝⟨ inverse $ Eq.≃-≡ (lemma₃ Y) ⟩
_≃_.to (lemma₃ Y) (out₁ ∘⇾ g) ≡
_≃_.to (lemma₃ Y) (map C g ∘⇾ f) ↔⟨⟩
map C (_≃_.to ∘ lemma₁) ∘⇾ out₁ ∘⇾ g ≡
map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↝⟨ ≡⇒↝ _ $ cong (λ h → h ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f) $
out-related′ ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ⟩
out₂ ∘⇾ (_≃_.to ∘ lemma₁) ∘⇾ g ≡
map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↔⟨⟩
out₂ ∘⇾ _≃_.to (lemma₂ Y) g ≡
map C (_≃_.to (lemma₂ Y) g) ∘⇾ f □)
where
ext₁ = lower-extensionality (s ⊔ p) lzero ext
ext₂ = lower-extensionality (i ⊔ s) lzero ext
lemma₁ : ∀ i → X₁ i ≃ X₂ i
lemma₁ =
carriers-of-final-coalgebras-equivalent′
((X₁ , out₁) , final₁)
((X₂ , out₂) , final₂)
lemma₂ : ((Y , _) : Coalgebra C) → (Y ⇾ X₁) ≃ (Y ⇾ X₂)
lemma₂ _ =
∀-cong ext₁ λ _ →
∀-cong ext λ _ →
lemma₁ _
lemma₃ : ((Y , _) : Coalgebra C) → (Y ⇾ ⟦ C ⟧ X₁) ≃ (Y ⇾ ⟦ C ⟧ X₂)
lemma₃ _ =
∀-cong ext₁ λ _ →
∀-cong ext λ _ →
⟦⟧-cong ext₂ C lemma₁ _
-- If there is a final C-coalgebra, and we have Final′ X for some
-- C-coalgebra X, then we also have Final X (assuming extensionality).
Final′→Final :
{I : Type i} {C : Container I s p} →
Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) →
Final-coalgebra C →
((X , _) : Final-coalgebra′ C) →
Final X
Final′→Final ext F₁@(_ , final₁) F₂ =
Final′→Final≃Final
(Final-coalgebra→Final-coalgebra′ F₁) F₂
ext _ final₁
-- Final-coalgebra is pointwise propositional, assuming extensionality
-- and univalence.
--
-- This is a variant of Lemma 5 from "Non-wellfounded trees in
-- Homotopy Type Theory".
Final-coalgebra-propositional :
{I : Type i} {C : Container I s p} →
Extensionality (lsuc (i ⊔ s ⊔ p)) (lsuc (i ⊔ s ⊔ p)) →
Univalence (i ⊔ s ⊔ p) →
Is-proposition (Final-coalgebra C)
Final-coalgebra-propositional {I = I} {C = C}
ext univ F₁@((P₁ , out₁) , _) F₂@(X₂@(P₂ , out₂) , _) =
block λ b →
Σ-≡,≡→≡ (Σ-≡,≡→≡ (lemma₁ b) (lemma₂ b))
(Final-propositional (lower-extensionality lzero _ ext) X₂ _ _)
where
ext₁′ = lower-extensionality _ lzero ext
ext₁ = Eq.good-ext ext₁′
lemma₀ : Block "lemma₀" → ∀ i → P₁ i ≃ P₂ i
lemma₀ ⊠ = carriers-of-final-coalgebras-equivalent F₁ F₂
lemma₀-lemma :
∀ b x →
map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡
out₂ i x
lemma₀-lemma {i = i} ⊠ x =
map C (_≃_.to ∘ lemma₀ ⊠) i (out₁ i (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (λ f → f _ (_≃_.from (lemma₀ ⊠ i) x)) $
out-related F₁ F₂ ⟩
out₂ i (_≃_.to (lemma₀ ⊠ i) (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (out₂ _) $
_≃_.right-inverse-of (lemma₀ ⊠ i) _ ⟩∎
out₂ i x ∎
lemma₁ : Block "lemma₀" → P₁ ≡ P₂
lemma₁ b =
apply-ext ext₁ λ i →
≃⇒≡ univ (lemma₀ b i)
lemma₁-lemma₁ = λ b i →
sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _) ≡⟨ cong sym Σ-≡,≡→≡-subst-const-refl ⟩
sym $ cong₂ _,_ (sym (lemma₁ b)) (refl _) ≡⟨ sym cong₂-sym ⟩
cong₂ _,_ (sym (sym (lemma₁ b))) (sym (refl _)) ≡⟨ cong₂ (cong₂ _) (sym-sym _) sym-refl ⟩
cong₂ _,_ (lemma₁ b) (refl i) ≡⟨ cong₂-reflʳ _ ⟩∎
cong (_, i) (lemma₁ b) ∎
lemma₁-lemma₂ = λ b i x →
subst (_$ i) (sym (lemma₁ b)) x ≡⟨⟩
subst (_$ i) (sym (apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (flip (subst (_$ i)) _) $ sym $
Eq.good-ext-sym ext₁′ _ ⟩
subst (_$ i) (apply-ext ext₁ λ i → sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩
subst id (sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ subst-id-in-terms-of-inverse∘≡⇒↝ equivalence ⟩
_≃_.from (≡⇒≃ (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (λ eq → _≃_.from eq _) $
_≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎
_≃_.from (lemma₀ b i) x ∎
lemma₁-lemma₃ = λ b i _ f p →
subst (λ P → P (index C p)) (lemma₁ b) (f p) ≡⟨⟩
subst (λ P → P (index C p))
(apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i)) (f p) ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩
subst id (≃⇒≡ univ (lemma₀ b (index C p))) (f p) ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩
≡⇒→ (≃⇒≡ univ (lemma₀ b (index C p))) (f p) ≡⟨ cong (λ eq → _≃_.to eq _) $
_≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎
_≃_.to (lemma₀ b (index C p)) (f p) ∎
lemma₂ = λ b →
apply-ext (lower-extensionality _ _ ext) λ i →
apply-ext (lower-extensionality _ _ ext) λ x →
subst (λ P → P ⇾ ⟦ C ⟧ P) (lemma₁ b) out₁ i x ≡⟨⟩
subst (λ P → ∀ i → P i → ⟦ C ⟧ P i) (lemma₁ b) out₁ i x ≡⟨ cong (_$ x) subst-∀ ⟩
subst (uncurry λ P i → P i → ⟦ C ⟧ P i)
(sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _))
(out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡⟨ elim¹
(λ {i′} eq →
subst (uncurry λ P i → P i → ⟦ C ⟧ P i)
(sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _))
(out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡
subst (uncurry λ P i → P i → ⟦ C ⟧ P i)
(sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) eq)
(out₁ i′) x)
(refl _)
_ ⟩
subst (uncurry λ P i → P i → ⟦ C ⟧ P i)
(sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _))
(out₁ i) x ≡⟨ cong (λ eq → subst (uncurry λ P i → P i → ⟦ C ⟧ P i) eq _ _) $
lemma₁-lemma₁ b i ⟩
subst (uncurry λ P i → P i → ⟦ C ⟧ P i)
(cong (_, _) (lemma₁ b))
(out₁ i) x ≡⟨ cong (_$ x) $ sym $ subst-∘ _ _ _ ⟩
subst (λ P → P i → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i) x ≡⟨ subst-→ ⟩
subst (λ P → ⟦ C ⟧ P i) (lemma₁ b)
(out₁ i (subst (_$ i) (sym (lemma₁ b)) x)) ≡⟨ cong (subst (λ P → ⟦ C ⟧ P i) _) $ cong (out₁ _) $
lemma₁-lemma₂ b i x ⟩
subst (λ P → ⟦ C ⟧ P i) (lemma₁ b)
(out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨⟩
subst (λ P → ∃ λ (s : Shape C i) → ∀ p → P (index C p))
(lemma₁ b)
(out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ push-subst-pair-× _ _ ⟩
(let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in
s , subst (λ P → (p : Position C s) → P (index C p)) (lemma₁ b) f) ≡⟨ (let s , _ = out₁ i (_≃_.from (lemma₀ b i) x) in
cong (s ,_) $ apply-ext (lower-extensionality _ _ ext) λ _ → sym $
push-subst-application _ _) ⟩
(let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in
s , λ p → subst (λ P → P (index C p)) (lemma₁ b) (f p)) ≡⟨ (let _ , f = out₁ i (_≃_.from (lemma₀ b i) x) in
cong (_ ,_) $ apply-ext (lower-extensionality _ _ ext) $
lemma₁-lemma₃ b i x f) ⟩
(let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in
s , λ p → _≃_.to (lemma₀ b (index C p)) (f p)) ≡⟨⟩
map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ lemma₀-lemma b x ⟩∎
out₂ i x ∎
------------------------------------------------------------------------
-- Lifting the position type family
-- One can lift the position type family so that it is in a universe
-- that is at least as large as that containing the input indices.
lift-positions :
{I : Type i} →
Container₂ I O s p → Container₂ I O s (i ⊔ p)
lift-positions {i = i} C = λ where
.Shape → C .Shape
.Position s → ↑ i (C .Position s)
.index (lift p) → C .index p
-- The result of ⟦_⟧ is not affected by lift-positions (up to
-- pointwise equivalence, assuming extensionality).
⟦⟧≃⟦lift-positions⟧ :
{I : Type i}
(C : Container₂ I O s p) (P : I → Type ℓ) →
⟦ C ⟧ P o ↝[ i ⊔ p ∣ ℓ ] ⟦ lift-positions C ⟧ P o
⟦⟧≃⟦lift-positions⟧ {o = o} C P ext =
∃-cong λ s →
(( p : Position C s) → P (index C p)) ↝⟨ inverse-ext? (λ ext → Π-cong ext B.↑↔ λ _ → F.id) ext ⟩□
(((lift p) : ↑ _ (Position C s)) → P (index C p)) □
-- The definition of coalgebras is not affected by lift-positions (up
-- to pointwise equivalence, assuming extensionality).
Coalgebra≃Coalgebra-lift-positions :
{I : Type i} {C : Container I s p} →
Coalgebra C ↝[ i ⊔ s ⊔ p ∣ i ⊔ s ⊔ p ] Coalgebra (lift-positions C)
Coalgebra≃Coalgebra-lift-positions
{i = i} {s = s} {p = p} {C = C} {k = k} ext =
(∃ λ P → P ⇾ ⟦ C ⟧ P) ↝⟨ (∃-cong λ P →
∀-cong (lower-extensionality? k l lzero ext) λ _ →
∀-cong (lower-extensionality? k l lzero ext) λ _ →
⟦⟧≃⟦lift-positions⟧ C P (lower-extensionality? k l lzero ext)) ⟩□
(∃ λ P → P ⇾ ⟦ lift-positions C ⟧ P) □
where
l = i ⊔ s ⊔ p
-- The definition of coalgebra morphisms is not affected by
-- lift-positions (in a certain sense, assuming extensionality).
⇨≃⇨-lift-positions :
{I : Type i} {C : Container I s p}
(ext : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) →
(X Y : Coalgebra C) →
(X ⇨ Y) ≃
(_≃_.to (Coalgebra≃Coalgebra-lift-positions ext) X ⇨
_≃_.to (Coalgebra≃Coalgebra-lift-positions ext) Y)
⇨≃⇨-lift-positions {i = i} {s = s} {p = p} {C = C} ext (P , f) (Q , g) =
(∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f) ↝⟨ (∃-cong λ _ → inverse $
Eq.≃-≡ $
∀-cong (lower-extensionality l lzero ext) λ _ →
∀-cong (lower-extensionality l lzero ext) λ _ →
⟦⟧≃⟦lift-positions⟧ C Q (lower-extensionality l lzero ext)) ⟩□
(∃ λ (h : P ⇾ Q) →
(Σ-map id (_∘ lower) ∘_) ∘ (g ∘⇾ h) ≡
(Σ-map id (_∘ lower) ∘_) ∘ (map _ h ∘⇾ f)) □
where
l = i ⊔ s ⊔ p
| {
"alphanum_fraction": 0.4634324009,
"avg_line_length": 36.7058823529,
"ext": "agda",
"hexsha": "5a9ce81da53763055dfb0960effee0f39e1b0dfc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Container/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Container/Indexed.agda",
"max_line_length": 143,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Container/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 7719,
"size": 20592
} |
module Data.List.Relation.Membership.Proofs where
import Lvl
open import Functional
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.List
open import Data.List.Functions hiding (skip)
open import Data.List.Relation.Membership
open import Data.List.Relation.Quantification hiding (use ; skip)
open import Data.List.Relation.Quantification.Proofs
import Data.Tuple as Tuple
open import Logic
open import Logic.Predicate
open import Logic.Propositional
open import Numeral.Natural
open import Structure.Function
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable T A B C : Type{ℓ}
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
private variable l l₁ l₂ : List(T)
private variable a b c x : T
instance
[∈]-relatorₗ : UnaryRelator(_∈ l)
[∈]-relatorₗ = intro p where
p : Names.Substitution₁(_∈ l)
p{x ⊰ _} xy (• q) = • (symmetry(_≡ₛ_) xy 🝖 q)
p{x ⊰ y ⊰ l} xy (⊰ q) = ⊰ p{y ⊰ l} xy q
[∈]-self : AllElements(_∈ l)(l)
[∈]-self {∅} = ∅
[∈]-self {x ⊰ l} = (• reflexivity(_≡ₛ_)) ⊰ AllElements-fn (⊰_) ([∈]-self {l})
[∉]-empty : (a ∉ ∅)
[∉]-empty ()
[∈]-in-singleton : (a ∈ singleton(a))
[∈]-in-singleton = use(reflexivity(_≡ₛ_))
[∈]-singleton : (a ∈ singleton(b)) ↔ (a ≡ₛ b)
[∈]-singleton = [↔]-intro L R where
L : (a ∈ singleton(b)) ← (a ≡ₛ b)
L p = substitute₁(_∈ _) (symmetry(_≡ₛ_) p) [∈]-in-singleton
R : (a ∈ singleton(b)) → (a ≡ₛ b)
R(use p) = p
R(skip ())
[∈][++] : (a ∈ (l₁ ++ l₂)) ↔ ((a ∈ l₁) ∨ (a ∈ l₂))
[∈][++] = [↔]-intro L R where
L : (a ∈ (l₁ ++ l₂)) ← ((a ∈ l₁) ∨ (a ∈ l₂))
L {l₁ = ∅} ([∨]-introᵣ p) = p
L {l₁ = x ⊰ l₁} ([∨]-introₗ (• p)) = • p
L {l₁ = x ⊰ l₁} ([∨]-introₗ (⊰ p)) = ⊰ L {l₁ = l₁} ([∨]-introₗ p)
L {l₁ = x ⊰ l₁} ([∨]-introᵣ p) = ⊰ L {l₁ = l₁} ([∨]-introᵣ p)
R : (a ∈ (l₁ ++ l₂)) → ((a ∈ l₁) ∨ (a ∈ l₂))
R {l₁ = ∅} p = [∨]-introᵣ p
R {l₁ = x ⊰ l₁} (• p) = [∨]-introₗ (• p)
R {l₁ = x ⊰ l₁} (⊰ p) with R {l₁ = l₁} p
... | [∨]-introₗ q = [∨]-introₗ (⊰ q)
... | [∨]-introᵣ q = [∨]-introᵣ q
[∈]-postpend : (a ∈ postpend a l)
[∈]-postpend{l = ∅} = use (reflexivity(_≡ₛ_))
[∈]-postpend{l = _ ⊰ l} = skip([∈]-postpend{l = l})
{-
open import Data.Boolean.Proofs
[∈]-filter : ∀{f} ⦃ func : Function(f) ⦄ → (a ∈ filter f(l)) ↔ ((a ∈ l) ∧ IsTrue(f(a)))
[∈]-filter{l = ll}{f = f} = [↔]-intro (Tuple.uncurry L) (x ↦ [∧]-intro (R₁ x) (R₂{l = ll} x)) where
postulate L : (a ∈ l) → IsTrue(f(a)) → (a ∈ filter f(l))
{-L {a = a}{l = x ⊰ ∅} (• p) t with _ ← substitute₁ ⦃ {![≡]-equiv {T = Bool}!} ⦄ (IsTrue) ⦃ {!!} ⦄ p t | 𝑇 ← f(x) = {!!}
L {a = a}{l = x ⊰ y ⊰ l} (• p) _ = {!!}
L {a = a}{l = x ⊰ y ⊰ l} (⊰ p) _ = {!!}-}
postulate R₁ : (a ∈ filter f(l)) → (a ∈ l)
-- R₁ {l = x ⊰ ∅} p = {!p!}
-- R₁ {l = x ⊰ x₁ ⊰ l} p = {!!}
postulate R₂ : (a ∈ filter f(l)) → IsTrue(f(a))
-}
module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where
private variable f : A → B
private variable l l₁ l₂ : List(T)
private variable a b c x : T
[∈]-map : ⦃ func-f : Function(f) ⦄ → (a ∈ l) → (f(a) ∈ (map f(l)))
[∈]-map {f = f} (use p) = use (congruence₁(f) p)
[∈]-map (skip p) = skip([∈]-map p)
{- TODO: Stuff below is supposed to be moved to Structure.Sets.Proofs
[∈][++]-expandₗ : (a ∈ l₂) → (a ∈ (l₁ ++ l₂))
[∈][++]-expandₗ {l₂ = l₂}{l₁ = l₁} = [↔]-to-[←] ([∈][++] {l₁ = l₁}{l₂ = l₂}) ∘ [∨]-introᵣ
[∈][++]-expandᵣ : (a ∈ l₁) → (a ∈ (l₁ ++ l₂))
[∈][++]-expandᵣ {l₁ = l₁}{l₂ = l₂} = [↔]-to-[←] ([∈][++] {l₁ = l₁}{l₂ = l₂}) ∘ [∨]-introₗ
[∈][⊰]-reorderₗ : (a ∈ (l₁ ++ (x ⊰ l₂))) → (a ∈ (x ⊰ (l₁ ++ l₂)))
[∈][⊰]-reorderₗ (a∈l₁++xl₂) = [∨]-elim left right ([↔]-to-[→] [∈]-[++] (a∈l₁++xl₂)) where
left : (a ∈ l₁) → (a ∈ (x ⊰ (l₁ ++ l₂)))
left (a∈l₁) = [∈][⊰]-expand ([∈][++]-expandᵣ {a}{l₁}{l₂} (a∈l₁))
right : ∀{a} → (a ∈ (x ⊰ l₂)) → (a ∈ (x ⊰ (l₁ ++ l₂)))
{-right ([∈]-id) = use
right ([∈][⊰]-expand (a∈l₂)) = [∈][⊰]-expand ([∈][++]-expandₗ {_}{l₁}{l₂} (a∈l₂))-}
-- [∈][⊰]-reorderᵣ : ∀{a x}{l₁ l₂} → (a ∈ (x ⊰ (l₁ ++ l₂))) → (a ∈ (l₁ ++ (x ⊰ l₂)))
-- [∈][⊰]-reorderᵣ {a}{x}{l₁}{l₂} ([∈]-id) =
-- [∈][⊰]-reorderᵣ {a}{x}{l₁}{l₂} ([∈][⊰]-expand (a∈l₁++l₂)) =
[∈]-in-middle : (a ∈ (l₁ ++ singleton(a) ++ l₂))
[∈]-in-middle{a}{l₁}{l₂} = [↔]-to-[←] ([∈]-[++] {a}{l₁ ++ singleton(a)}{l₂}) ([∨]-introₗ ([∈]-at-last{l = l₁}))
module _ where
private variable ℓ₂ : Lvl.Level
[⊆]-substitution : ∀{l₁ l₂ : List(T)} → (l₁ ⊆ l₂) → ∀{P : T → Stmt{ℓ₂}} → (∀{a} → (a ∈ l₂) → P(a)) → (∀{a} → (a ∈ l₁) → P(a))
[⊆]-substitution (l₁⊆l₂) proof = proof ∘ (l₁⊆l₂)
[⊇]-substitution : ∀{l₁ l₂ : List(T)} → (l₁ ⊇ l₂) → ∀{P : T → Stmt{ℓ₂}} → (∀{a} → (a ∈ l₁) → P(a)) → (∀{a} → (a ∈ l₂) → P(a))
[⊇]-substitution (l₁⊇l₂) proof = proof ∘ (l₁⊇l₂)
[≡]-substitutionₗ : ∀{l₁ l₂ : List(T)} → (l₁ ≡ l₂) → ∀{P : T → Stmt{ℓ₂}} → (∀{a} → (a ∈ l₁) → P(a)) → (∀{a} → (a ∈ l₂) → P(a))
[≡]-substitutionₗ (l₁≡l₂) = [⊆]-substitution ([↔]-to-[←] (l₁≡l₂))
[≡]-substitutionᵣ : ∀{l₁ l₂ : List(T)} → (l₁ ≡ l₂) → ∀{P : T → Stmt{ℓ₂}} → (∀{a} → (a ∈ l₂) → P(a)) → (∀{a} → (a ∈ l₁) → P(a))
[≡]-substitutionᵣ (l₁≡l₂) = [⊆]-substitution ([↔]-to-[→] (l₁≡l₂))
-}
{-
open import Structure.Relator.Properties
instance
[⊆]-reflexivity : Reflexivity(_⊆_)
Reflexivity.proof [⊆]-reflexivity = id
instance
[⊆]-antisymmetry : Antisymmetry(_⊆_)(_≡_)
Antisymmetry.proof [⊆]-antisymmetry = swap [↔]-intro
instance
[⊆]-transitivity : Transitivity(_⊆_)
Transitivity.proof [⊆]-transitivity xy yz = yz ∘ xy
instance
[⊆]-reflexivity : Reflexivity(_⊆_)
[≡]-reflexivity : ∀{L} → (L ≡ L)
-- [≡]-reflexivity = [↔]-intro [⊆]-reflexivity [⊆]-reflexivity
[≡]-symmetry : ∀{l₁ l₂} → (l₁ ≡ l₂) → (l₂ ≡ l₁)
[≡]-symmetry (l₁≡l₂) {x} with (l₁≡l₂){x}
... | [↔]-intro l r = [↔]-intro r l
[≡]-transitivity : ∀{l₁ l₂ L₃} → (l₁ ≡ l₂) → (l₂ ≡ L₃) → (l₁ ≡ L₃)
[≡]-transitivity (l₁≡l₂) (l₂≡L₃) {x} with [∧]-intro ((l₁≡l₂){x}) ((l₂≡L₃){x})
... | ([∧]-intro (lr₁) (lr₂)) = [↔]-transitivity (lr₁) (lr₂)
-- [⊆]-application : ∀{l₁ l₂} → (l₁ ⊆ l₂) → ∀{f} → (map f(l₁))⊆(map f(l₂))
-- [⊆]-application proof fl₁ = [∈]-proof.application ∘ proof
-- (∀{x} → (x ∈ l₂) → (x ∈ l₁)) → ∀{f} → (∀{x} → (x ∈ map f(l₂)) → (x ∈ map f(l₁)))
{-
[≡]-included-in : ∀{L : List(T)}{x} → (x ∈ L) → ((x ⊰ L) ≡ L)
[≡]-included-in xL = [⊆]-antisymmetry (sub xL) (super xL) where
super : ∀{L : List(T)}{x} → (x ∈ L) → ((x ⊰ L) ⊇ L)
super [∈]-id [∈]-id = [∈]-id
super [∈]-id (skip p) = skip ?
super (skip p) [∈]-id = skip(use ?)
super (skip p ) (skip q) = skip(skip ?)
sub : ∀{L : List(T)}{x} → (x ∈ L) → ((x ⊰ L) ⊆ L)
sub use use = use
sub use (skip ⦃ p ⦄) = p
sub skip use = skip
sub skip (skip ⦃ p ⦄) = p
-}
postulate [≡]-included-subset : ∀{l₁ l₂ : List(T)} → (l₁ ⊆ l₂) → ((l₁ ++ l₂) ≡ l₂)
postulate [≡]-subset-[++] : ∀{L l₁ l₂ : List(T)} → (l₁ ⊆ L) → (l₂ ⊆ L) → (l₁ ++ l₂ ⊆ L)
[⊆]-with-[⊰] : ∀{l₁ l₂ : List(T)} → (l₁ ⊆ l₂) → ∀{b} → (l₁ ⊆ (b ⊰ l₂))
[⊆]-with-[⊰] (l₁⊆l₂) (x∈l₁) = [∈][⊰]-expand ((l₁⊆l₂) (x∈l₁))
[⊆]-with-[++]ₗ : ∀{l₁ l₂ : List(T)} → (l₁ ⊆ l₂) → ∀{L₃} → (l₁ ⊆ (L₃ ++ l₂))
-- [⊆]-with-[++]ₗ {l₁}{l₂} (l₁⊆l₂) {L₃} (x∈l₁) = [∈][++]-expandₗ {_}{L₃}{l₂} ((l₁⊆l₂) (x∈l₁))
[⊆]-with-[++]ᵣ : ∀{l₁ l₂ : List(T)} → (l₁ ⊆ l₂) → ∀{L₃} → (l₁ ⊆ (l₂ ++ L₃))
[⊆]-with-[++]ᵣ {l₁}{l₂} (l₁⊆l₂) {L₃} (x∈l₁) = [∈][++]-expandᵣ {_}{l₂}{L₃} ((l₁⊆l₂) (x∈l₁))
-- TODO: Does this work? It would be easier to "port" all (∈)-theorems to (⊆)-theorems then.
-- [∈]-to-[⊆]-property : ∀{l₂}{f : List(T) → List(T)} → (∀{a} → (a ∈ l₂) → (a ∈ f(l₂))) → (∀{l₁} → (l₁ ⊆ l₂) → (l₁ ⊆ f(l₂)))
-}
module _ where
open import Relator.Equals as Id
open import Relator.Equals.Proofs.Equiv
non-empty-inclusion-existence : ∀{l : List(T)} → (l Id.≢ ∅) → ∃(_∈ l)
non-empty-inclusion-existence {l = ∅} p with () ← p(reflexivity(Id._≡_))
non-empty-inclusion-existence {l = x ⊰ l} p = [∃]-intro x ⦃ •(reflexivity(Id._≡_)) ⦄
| {
"alphanum_fraction": 0.480790475,
"avg_line_length": 37.0318181818,
"ext": "agda",
"hexsha": "6db5261c285342b4f2b5235a902305d85b694ea7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Membership/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Membership/Proofs.agda",
"max_line_length": 128,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Membership/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4110,
"size": 8147
} |
module Base.Free.Instance.Maybe where
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥)
open import Base.Free using (Free; pure; impure)
open import Base.Partial using (Partial)
open Partial
-- Representation of the `Maybe` monad using Free.
Shape : Set
Shape = ⊤
Position : Shape → Set
Position _ = ⊥
Maybe : Set → Set
Maybe = Free Shape Position
Nothing : ∀ {A} → Maybe A
Nothing = impure tt λ()
Just : ∀ {A} → A → Maybe A
Just x = pure x
instance
maybePartial : Partial Shape Position
undefined maybePartial = Nothing
error maybePartial _ = Nothing
| {
"alphanum_fraction": 0.6853377265,
"avg_line_length": 19.5806451613,
"ext": "agda",
"hexsha": "283f17194579553139452e0df98e4e310c0980bd",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z",
"max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "FreeProving/free-compiler",
"max_forks_repo_path": "base/agda/Base/Free/Instance/Maybe.agda",
"max_issues_count": 120,
"max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "FreeProving/free-compiler",
"max_issues_repo_path": "base/agda/Base/Free/Instance/Maybe.agda",
"max_line_length": 51,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "FreeProving/free-compiler",
"max_stars_repo_path": "base/agda/Base/Free/Instance/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z",
"num_tokens": 165,
"size": 607
} |
open import Nat
open import Prelude
open import List
open import judgemental-erase
open import lemmas-matching
open import statics-core
open import synth-unicity
module moveerase where
-- type actions don't change the term other than moving the cursor
-- around
moveeraset : {t t' : ztyp} {δ : direction} →
(t + move δ +> t') →
(t ◆t) == (t' ◆t)
moveeraset TMArrChild1 = refl
moveeraset TMArrChild2 = refl
moveeraset TMArrParent1 = refl
moveeraset TMArrParent2 = refl
moveeraset (TMArrZip1 {t2 = t2} m) = ap1 (λ x → x ==> t2) (moveeraset m)
moveeraset (TMArrZip2 {t1 = t1} m) = ap1 (λ x → t1 ==> x) (moveeraset m)
moveeraset TMPlusChild1 = refl
moveeraset TMPlusChild2 = refl
moveeraset TMPlusParent1 = refl
moveeraset TMPlusParent2 = refl
moveeraset (TMPlusZip1 {t2 = t2} m) = ap1 (λ x → x ⊕ t2) (moveeraset m)
moveeraset (TMPlusZip2 {t1 = t1} m) = ap1 (λ x → t1 ⊕ x) (moveeraset m)
moveeraset TMProdChild1 = refl
moveeraset TMProdChild2 = refl
moveeraset TMProdParent1 = refl
moveeraset TMProdParent2 = refl
moveeraset (TMProdZip1 {t2 = t2} m) = ap1 (λ x → x ⊠ t2) (moveeraset m)
moveeraset (TMProdZip2 {t1 = t1} m) = ap1 (λ x → t1 ⊠ x) (moveeraset m)
-- the actual movements don't change the erasure
moveerase : {e e' : zexp} {δ : direction} →
(e + move δ +>e e') →
(e ◆e) == (e' ◆e)
moveerase EMAscChild1 = refl
moveerase EMAscChild2 = refl
moveerase EMAscParent1 = refl
moveerase EMAscParent2 = refl
moveerase EMLamChild1 = refl
moveerase EMLamParent = refl
moveerase EMHalfLamChild1 = refl
moveerase EMHalfLamChild2 = refl
moveerase EMHalfLamParent1 = refl
moveerase EMHalfLamParent2 = refl
moveerase EMPlusChild1 = refl
moveerase EMPlusChild2 = refl
moveerase EMPlusParent1 = refl
moveerase EMPlusParent2 = refl
moveerase EMApChild1 = refl
moveerase EMApChild2 = refl
moveerase EMApParent1 = refl
moveerase EMApParent2 = refl
moveerase EMNEHoleChild1 = refl
moveerase EMNEHoleParent = refl
moveerase EMInlChild1 = refl
moveerase EMInlParent = refl
moveerase EMInrChild1 = refl
moveerase EMInrParent = refl
moveerase EMCaseParent1 = refl
moveerase EMCaseParent2 = refl
moveerase EMCaseParent3 = refl
moveerase EMCaseChild1 = refl
moveerase EMCaseChild2 = refl
moveerase EMCaseChild3 = refl
moveerase EMPairChild1 = refl
moveerase EMPairChild2 = refl
moveerase EMPairParent1 = refl
moveerase EMPairParent2 = refl
moveerase EMFstChild1 = refl
moveerase EMFstParent = refl
moveerase EMSndChild1 = refl
moveerase EMSndParent = refl
-- this form is essentially the same as above, but for judgemental
-- erasure, which is sometimes more convenient.
moveerasee' : {e e' : zexp} {e◆ : hexp} {δ : direction} →
erase-e e e◆ →
e + move δ +>e e' →
erase-e e' e◆
moveerasee' er1 m with erase-e◆ er1
... | refl = ◆erase-e _ _ (! (moveerase m))
moveeraset' : ∀{t t◆ t'' δ} →
erase-t t t◆ →
t + move δ +> t'' →
erase-t t'' t◆
moveeraset' er m with erase-t◆ er
moveeraset' er m | refl = ◆erase-t _ _ (! (moveeraset m))
-- movements don't change either the type or expression under expression
-- actions
mutual
moveerase-synth : ∀{Γ e e' e◆ t t' δ } →
erase-e e e◆ →
Γ ⊢ e◆ => t →
Γ ⊢ e => t ~ move δ ~> e' => t' →
(e ◆e) == (e' ◆e) × t == t'
moveerase-synth er wt (SAMove x) = moveerase x , refl
moveerase-synth (EEPlusL er) (SPlus x x₁) (SAZipPlus1 x₂) =
ap1 (λ q → q ·+ _) (moveerase-ana er x x₂) , refl
moveerase-synth (EEPlusR er) (SPlus x x₁) (SAZipPlus2 x₂) =
ap1 (λ q → _ ·+ q) (moveerase-ana er x₁ x₂) , refl
moveerase-synth (EEAscL er) (SAsc x) (SAZipAsc1 x₁) =
ap1 (λ q → q ·: _) (moveerase-ana er x x₁) , refl
moveerase-synth er wt (SAZipAsc2 x x₁ x₂ x₃)
with moveeraset x
... | qq = ap1 (λ q → _ ·: q) qq , eq-ert-trans qq x₂ x₁
moveerase-synth (EEHalfLamL x) (SLam x₁ wt) (SAZipLam1 x₂ x₃ x₄ x₅ x₆ x₇)
with erase-t◆ x₃
... | refl with erase-t◆ x₄
... | refl with moveeraset x₅
... | qq rewrite qq with synthunicity x₇ x₆
... | refl = refl , refl
moveerase-synth (EEHalfLamR er) (SLam x wt) (SAZipLam2 x₁ x₂ x₃ x₄)
with moveerase-synth x₂ x₃ x₄
... | qq , refl rewrite qq = refl , refl
moveerase-synth (EEApL er) (SAp wt x x₁) (SAZipApArr x₂ x₃ x₄ d x₅)
with erasee-det x₃ er
... | refl with synthunicity wt x₄
... | refl with moveerase-synth er x₄ d
... | pp , refl with ▸arr-unicity x x₂
... | refl = (ap1 (λ q → q ∘ _) pp ) , refl
moveerase-synth (EEApR er) (SAp wt x x₁) (SAZipApAna x₂ x₃ x₄)
with synthunicity x₃ wt
... | refl with ▸arr-unicity x x₂
... | refl = ap1 (λ q → _ ∘ q) (moveerase-ana er x₁ x₄ ) , refl
moveerase-synth er wt (SAZipNEHole x x₁ d) =
ap1 ⦇⌜_⌟⦈[ _ ] (π1 (moveerase-synth x x₁ d)) , refl
moveerase-synth er wt (SAZipPair1 x x₁ x₂ x₃) with moveerase-synth x x₁ x₂
... | π1 , refl = (ap1 (λ q → ⟨ q , _ ⟩) π1) , refl
moveerase-synth er wt (SAZipPair2 x x₁ x₂ x₃) with moveerase-synth x₁ x₂ x₃
... | π1 , refl = (ap1 (λ q → ⟨ _ , q ⟩) π1) , refl
moveerase-synth er wt (SAZipFst x x₁ x₂ x₃ x₄)
with moveerase-synth x₂ x₃ x₄
... | π1 , refl with ▸prod-unicity x₁ x
... | refl = (ap1 fst π1) , refl
moveerase-synth er wt (SAZipSnd x x₁ x₂ x₃ x₄)
with moveerase-synth x₂ x₃ x₄
... | π1 , refl with ▸prod-unicity x₁ x
... | refl = (ap1 snd π1) , refl
moveerase-ana : ∀{Γ e e' e◆ t δ } →
erase-e e e◆ →
Γ ⊢ e◆ <= t →
Γ ⊢ e ~ move δ ~> e' ⇐ t →
(e ◆e) == (e' ◆e)
moveerase-ana er wt (AASubsume x x₁ x₂ x₃) = π1 (moveerase-synth x x₁ x₂)
moveerase-ana er wt (AAMove x) = moveerase x
moveerase-ana (EELam er) (ASubsume () x₂) _
moveerase-ana (EELam er) (ALam x₁ x₂ wt) (AAZipLam x₃ x₄ d) with ▸arr-unicity x₂ x₄
... | refl = ap1 (λ q → ·λ _ q) (moveerase-ana er wt d)
moveerase-ana (EEInl er) (ASubsume () x₁) (AAZipInl x₂ d)
moveerase-ana (EEInl er) (AInl x wt) (AAZipInl x₁ d) with ▸sum-unicity x x₁
... | refl = ap1 inl (moveerase-ana er wt d)
moveerase-ana (EEInr er) (ASubsume () x₁) (AAZipInr x₂ d)
moveerase-ana (EEInr er) (AInr x wt) (AAZipInr x₁ d) with ▸sum-unicity x x₁
... | refl = ap1 inr (moveerase-ana er wt d)
moveerase-ana er wt (AAZipCase1 x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) =
ap1 (λ q → case q _ _ _ _) (π1(moveerase-synth x₃ x₄ x₅))
moveerase-ana (EECase2 er) (ASubsume () x₂) (AAZipCase2 x₃ x₄ x₅ x₆ d)
moveerase-ana (EECase2 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) (AAZipCase2 x₅ x₆ x₇ x₈ d)
with synthunicity x₄ x₇
... | refl with ▸sum-unicity x₃ x₈
... | refl = ap1 (λ q → case _ _ q _ _) (moveerase-ana er wt d)
moveerase-ana (EECase3 er) (ASubsume () x₂) (AAZipCase3 x₃ x₄ x₅ x₆ d)
moveerase-ana (EECase3 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) (AAZipCase3 x₅ x₆ x₇ x₈ d)
with synthunicity x₄ x₇
... | refl with ▸sum-unicity x₃ x₈
... | refl = ap1 (λ q → case _ _ _ _ q) (moveerase-ana er wt₁ d)
| {
"alphanum_fraction": 0.6118114552,
"avg_line_length": 41.9425287356,
"ext": "agda",
"hexsha": "b30d6e5517b9b68cac74f3ba3b717262e6e09a7d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "moveerase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "moveerase.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "moveerase.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2889,
"size": 7298
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some code related to indexed AVL trees that relies on the K rule
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst)
module Data.AVL.Indexed.WithK
{k r} (Key : Set k) {_<_ : Rel Key r}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where
strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder }
open import Data.Product
open import Data.AVL.Indexed strictTotalOrder as AVL hiding (Value)
module _ {v} {V′ : Key → Set v} where
private
V : AVL.Value v
V = AVL.MkValue V′ (subst V′)
node-injectiveˡ : ∀ {hˡ hʳ h l u k}
{lk₁ : Tree V l [ proj₁ k ] hˡ} {lk₂ : Tree V l [ proj₁ k ] hˡ}
{ku₁ : Tree V [ proj₁ k ] u hʳ} {ku₂ : Tree V [ proj₁ k ] u hʳ}
{bal₁ bal₂ : hˡ ∼ hʳ ⊔ h} →
node k lk₁ ku₁ bal₁ ≡ node k lk₂ ku₂ bal₂ → lk₁ ≡ lk₂
node-injectiveˡ refl = refl
node-injectiveʳ : ∀ {hˡ hʳ h l u k}
{lk₁ : Tree V l [ proj₁ k ] hˡ} {lk₂ : Tree V l [ proj₁ k ] hˡ}
{ku₁ : Tree V [ proj₁ k ] u hʳ} {ku₂ : Tree V [ proj₁ k ] u hʳ}
{bal₁ bal₂ : hˡ ∼ hʳ ⊔ h} →
node k lk₁ ku₁ bal₁ ≡ node k lk₂ ku₂ bal₂ → ku₁ ≡ ku₂
node-injectiveʳ refl = refl
node-injective-bal : ∀ {hˡ hʳ h l u k}
{lk₁ : Tree V l [ proj₁ k ] hˡ} {lk₂ : Tree V l [ proj₁ k ] hˡ}
{ku₁ : Tree V [ proj₁ k ] u hʳ} {ku₂ : Tree V [ proj₁ k ] u hʳ}
{bal₁ bal₂ : hˡ ∼ hʳ ⊔ h} →
node k lk₁ ku₁ bal₁ ≡ node k lk₂ ku₂ bal₂ → bal₁ ≡ bal₂
node-injective-bal refl = refl
| {
"alphanum_fraction": 0.559976247,
"avg_line_length": 35.829787234,
"ext": "agda",
"hexsha": "870eaad02b0956162b92f22d219a292df2cd448b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed/WithK.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Indexed/WithK.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 611,
"size": 1684
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Semigroup where
open import Cubical.Algebra.Semigroup.Base public
| {
"alphanum_fraction": 0.7521367521,
"avg_line_length": 23.4,
"ext": "agda",
"hexsha": "53e0c0385c431a379685772c128820cfc2717aec",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/Semigroup.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/Semigroup.agda",
"max_line_length": 50,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 28,
"size": 117
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Empty
open import lib.types.Group
open import lib.types.Int
open import lib.types.List
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Sigma
module lib.types.Word {i} where
module _ (A : Type i) where
PlusMinus : Type i
PlusMinus = Coprod A A
Word : Type i
Word = List PlusMinus
module _ {A : Type i} where
flip : PlusMinus A → PlusMinus A
flip (inl a) = inr a
flip (inr a) = inl a
flip-flip : ∀ x → flip (flip x) == x
flip-flip (inl x) = idp
flip-flip (inr x) = idp
Word-flip : Word A → Word A
Word-flip = map flip
Word-flip-flip : ∀ w → Word-flip (Word-flip w) == w
Word-flip-flip nil = idp
Word-flip-flip (x :: l) = ap2 _::_ (flip-flip x) (Word-flip-flip l)
Word-inverse : Word A → Word A
Word-inverse = reverse ∘ Word-flip
Word-inverse-inverse : ∀ w → Word-inverse (Word-inverse w) == w
Word-inverse-inverse w =
Word-inverse (Word-inverse w)
=⟨ reverse-map flip (Word-inverse w) ⟩
Word-flip (reverse (reverse (Word-flip w)))
=⟨ ap Word-flip (reverse-reverse (Word-flip w)) ⟩
Word-flip (Word-flip w)
=⟨ Word-flip-flip w ⟩
w =∎
Word-exp : A → ℤ → Word A
Word-exp a (pos 0) = nil
Word-exp a (pos (S n)) = inl a :: Word-exp a (pos n)
Word-exp a (negsucc 0) = inr a :: nil
Word-exp a (negsucc (S n)) = inr a :: Word-exp a (negsucc n)
module _ {A : Type i} {j} (G : Group j) where
private
module G = Group G
module _ (f : A → G.El) where
PlusMinus-extendᴳ : PlusMinus A → G.El
PlusMinus-extendᴳ (inl a) = f a
PlusMinus-extendᴳ (inr a) = G.inv (f a)
PlusMinus-extendᴳ-flip : ∀ x → PlusMinus-extendᴳ (flip x) == G.inv (PlusMinus-extendᴳ x)
PlusMinus-extendᴳ-flip (inl a) = idp
PlusMinus-extendᴳ-flip (inr a) = ! (G.inv-inv (f a))
Word-extendᴳ : Word A → G.El
Word-extendᴳ = foldr' G.comp G.ident ∘ map PlusMinus-extendᴳ
abstract
Word-extendᴳ-++ : ∀ f l₁ l₂
→ Word-extendᴳ f (l₁ ++ l₂) == G.comp (Word-extendᴳ f l₁) (Word-extendᴳ f l₂)
Word-extendᴳ-++ f nil l₂ = ! $ G.unit-l _
Word-extendᴳ-++ f (x₁ :: nil) nil = ! (G.unit-r _)
Word-extendᴳ-++ f (x₁ :: nil) (x₂ :: l₂) = idp
Word-extendᴳ-++ f (x₁ :: l₁@(_ :: _)) l₂ =
G.comp (PlusMinus-extendᴳ f x₁) (Word-extendᴳ f (l₁ ++ l₂))
=⟨ ap (G.comp (PlusMinus-extendᴳ f x₁)) (Word-extendᴳ-++ f l₁ l₂) ⟩
G.comp (PlusMinus-extendᴳ f x₁) (G.comp (Word-extendᴳ f l₁) (Word-extendᴳ f l₂))
=⟨ ! (G.assoc _ _ _) ⟩
G.comp (G.comp (PlusMinus-extendᴳ f x₁) (Word-extendᴳ f l₁)) (Word-extendᴳ f l₂) =∎
module _ {A : Type i} {j} (G : AbGroup j) where
private
module G = AbGroup G
abstract
PlusMinus-extendᴳ-comp : ∀ (f g : A → G.El) x
→ PlusMinus-extendᴳ G.grp (λ a → G.comp (f a) (g a)) x
== G.comp (PlusMinus-extendᴳ G.grp f x) (PlusMinus-extendᴳ G.grp g x)
PlusMinus-extendᴳ-comp f g (inl a) = idp
PlusMinus-extendᴳ-comp f g (inr a) = G.inv-comp (f a) (g a) ∙ G.comm (G.inv (g a)) (G.inv (f a))
Word-extendᴳ-comp : ∀ (f g : A → G.El) l
→ Word-extendᴳ G.grp (λ a → G.comp (f a) (g a)) l
== G.comp (Word-extendᴳ G.grp f l) (Word-extendᴳ G.grp g l)
Word-extendᴳ-comp f g nil = ! (G.unit-l G.ident)
Word-extendᴳ-comp f g (x :: nil) = PlusMinus-extendᴳ-comp f g x
Word-extendᴳ-comp f g (x :: l@(_ :: _)) =
G.comp (PlusMinus-extendᴳ G.grp (λ a → G.comp (f a) (g a)) x)
(Word-extendᴳ G.grp (λ a → G.comp (f a) (g a)) l)
=⟨ ap2 G.comp (PlusMinus-extendᴳ-comp f g x) (Word-extendᴳ-comp f g l) ⟩
G.comp (G.comp (PlusMinus-extendᴳ G.grp f x) (PlusMinus-extendᴳ G.grp g x))
(G.comp (Word-extendᴳ G.grp f l) (Word-extendᴳ G.grp g l))
=⟨ G.interchange (PlusMinus-extendᴳ G.grp f x) (PlusMinus-extendᴳ G.grp g x)
(Word-extendᴳ G.grp f l) (Word-extendᴳ G.grp g l) ⟩
G.comp (G.comp (PlusMinus-extendᴳ G.grp f x) (Word-extendᴳ G.grp f l))
(G.comp (PlusMinus-extendᴳ G.grp g x) (Word-extendᴳ G.grp g l)) =∎
module RelationRespectingFunctions (A : Type i) {m} (R : Rel (Word A) m) {j} (G : Group j) where
private
module G = Group G
respects-rel : (A → G.El) → Type (lmax (lmax i j) m)
respects-rel f = ∀ {l₁ l₂} → R l₁ l₂ → Word-extendᴳ G f l₁ == Word-extendᴳ G f l₂
abstract
respects-rel-is-prop : ∀ f → is-prop (respects-rel f)
respects-rel-is-prop f =
Πi-level $ λ l₁ →
Πi-level $ λ l₂ →
Π-level $ λ r →
has-level-apply G.El-level _ _
record RelationRespectingFunction : Type (lmax (lmax i j) m) where
constructor rel-res-fun
field
f : A → G.El
respects : respects-rel f
RelationRespectingFunction= : {lf lg : RelationRespectingFunction}
→ RelationRespectingFunction.f lf == RelationRespectingFunction.f lg
→ lf == lg
RelationRespectingFunction= {rel-res-fun f f-respect} {rel-res-fun .f g-respect} idp =
ap (rel-res-fun f) (prop-path (respects-rel-is-prop f) f-respect g-respect)
{- For the empty relation, this is exactly the type of functions -}
module _ (A : Type i) {j} (G : Group j) where
private
module G = Group G
open RelationRespectingFunctions A empty-rel G
every-function-respects-empty-rel : ∀ (f : A → G.El) → RelationRespectingFunction
every-function-respects-empty-rel f = rel-res-fun f (λ {_} {_} ())
every-function-respects-empty-rel-equiv : (A → G.El) ≃ RelationRespectingFunction
every-function-respects-empty-rel-equiv =
equiv every-function-respects-empty-rel
RelationRespectingFunction.f
(λ lf → RelationRespectingFunction= idp)
(λ f → idp)
| {
"alphanum_fraction": 0.6123163051,
"avg_line_length": 35.9496855346,
"ext": "agda",
"hexsha": "9eb40c4a9cec4734dbfd6abc534cbadef6a0e0c0",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Word.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Word.agda",
"max_line_length": 100,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Word.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2129,
"size": 5716
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
open import cohomology.ChainComplex
module cw.cohomology.ReconstructedCochainsEquivCellularCochains
(OT : OrdinaryTheory lzero) where
open OrdinaryTheory OT
open import cw.cohomology.cellular.ChainComplex as CCC
open import cw.cohomology.reconstructed.cochain.Complex OT as RCC
open import cw.cohomology.ReconstructedCochainsIsoCellularCochains OT
open import cw.cohomology.cochainequiv.AugmentCommSquare OT
open import cw.cohomology.cochainequiv.FirstCoboundaryCommSquare OT
open import cw.cohomology.cochainequiv.HigherCoboundaryCommSquare OT
private
frcc-comm-fccc-Type : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
(coboundary : AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?)
→ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?))
(boundary : AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?)
→ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?))
→ Type₀
frcc-comm-fccc-Type {n} ⊙fin-skel {m} m≤n? Sm≤n? coboundary boundary =
CommSquareᴳ
coboundary
(pre∘ᴳ-hom (C2-abgroup 0) boundary)
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
CCC-boundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?)
→ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?)
CCC-boundary-template' ⊙fin-skel =
CCC.boundary-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
RCC-coboundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?)
→ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?)
RCC-coboundary-template' ⊙fin-skel = RCC.coboundary-template ⊙⦉ ⊙fin-skel ⦊
abstract
{- This can be directly generalized to the non-finite cases. -}
frcc-comm-fccc-above : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≰n : ¬ (S m ≤ n))
→ frcc-comm-fccc-Type ⊙fin-skel m≤n? (inr Sm≰n)
(RCC-coboundary-template' ⊙fin-skel m≤n? (inr Sm≰n))
(CCC-boundary-template' ⊙fin-skel m≤n? (inr Sm≰n))
frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n =
(comm-sqrᴳ λ g → group-hom= $ λ= λ _ →
! $ GroupHom.pres-ident
(GroupIso.f
(rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n?
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)) g))
frcc-comm-fccc-nth-zero : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (0≤n : 0 ≤ n) (1≤n : 1 ≤ n)
→ frcc-comm-fccc-Type ⊙fin-skel (inl 0≤n) (inl 1≤n)
(RCC-coboundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n))
(CCC-boundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n))
frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inl 1=0) = ⊥-rec (ℕ-S≠O O 1=0)
frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inr ())
frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inl 1=1) =
transport!
(λ 1=1 → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl 1=1))
(RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1)))
(CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1))))
(prop-has-all-paths 1=1 idp)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = O} (inl (inr ltS)) (inl (inl idp)) p₁ p₂)
(RCC.coboundary-first-template-β ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(fst (first-coboundary-comm-sqrᴳ ⊙fin-skel)))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inr (ltSR ()))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR 0<n)) (inl 1=Sn) = ⊥-rec (<-to-≠ (<-ap-S 0<n) 1=Sn)
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR ltS)) (inr 1<2) =
transport!
(λ 1<2 → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2))
(RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2)))
(CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2))))
(prop-has-all-paths 1<2 ltS)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂)
(RCC.coboundary-first-template-descend-from-two ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp)))
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR ()))) (inr ltS)
frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR 0<n))) (inr (ltSR 1<Sn)) =
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR 0<n)))) (inl (inr (ltSR 1<Sn))) p₁ p₂)
(RCC.coboundary-first-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR 0<n) 1<Sn)
(CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(ltSR 0<n) 1<Sn))
(frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr (ltSR 0<n)) (inr 1<Sn)))
frcc-comm-fccc-nth-higher : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (Sm≤n : S m ≤ n) (SSm≤n : S (S m) ≤ n)
→ frcc-comm-fccc-Type ⊙fin-skel (inl Sm≤n) (inl SSm≤n)
(RCC-coboundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n))
(CCC-boundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n))
frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inl SSm=Sm) = ⊥-rec (<-to-≠ ltS (! SSm=Sm))
frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inr SSm<Sm) = ⊥-rec (<-to-≠ (<-trans SSm<Sm ltS) idp)
frcc-comm-fccc-nth-higher ⊙fin-skel {m} (inr ltS) (inl SSm=SSm) =
transport!
(λ SSm=SSm → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl SSm=SSm))
(RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm)))
(CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm))))
(prop-has-all-paths SSm=SSm idp)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = S m} (inl (inr ltS)) (inl (inl idp)) p₁ p₂)
(RCC.coboundary-higher-template-β ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(fst (higher-coboundary-comm-sqrᴳ ⊙fin-skel)))
frcc-comm-fccc-nth-higher ⊙fin-skel (inr ltS) (inr SSm<SSm) = ⊥-rec (<-to-≠ SSm<SSm idp)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR Sm<n)) (inl SSm=Sn) = ⊥-rec (<-to-≠ (<-ap-S Sm<n) SSm=Sn)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR ltS)) (inr SSm<SSSm) =
transport!
(λ SSm<SSSm → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm))
(RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm)))
(CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm))))
(prop-has-all-paths SSm<SSSm ltS)
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂)
(RCC.coboundary-higher-template-descend-from-one-above ⊙⦉ ⊙fin-skel ⦊)
(CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))))
(frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp)))
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<Sm))) (inr ltS) = ⊥-rec (<-to-≠ Sm<Sm idp)
frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<n))) (inr (ltSR SSm<Sn)) =
(coe!
(ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR Sm<n)))) (inl (inr (ltSR SSm<Sn))) p₁ p₂)
(RCC.coboundary-higher-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR Sm<n) SSm<Sn)
(CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(ltSR Sm<n) SSm<Sn))
(frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr (ltSR Sm<n)) (inr SSm<Sn)))
frcc-comm-fccc-template : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
{m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n))
→ frcc-comm-fccc-Type ⊙fin-skel m≤n? Sm≤n?
(RCC-coboundary-template' ⊙fin-skel m≤n? Sm≤n?)
(CCC-boundary-template' ⊙fin-skel m≤n? Sm≤n?)
frcc-comm-fccc-template ⊙fin-skel m≤n? (inr Sm≰n) = frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n
frcc-comm-fccc-template ⊙fin-skel (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n)
frcc-comm-fccc-template ⊙fin-skel {m = O} (inl m≤n) (inl Sm≤n) = frcc-comm-fccc-nth-zero ⊙fin-skel m≤n Sm≤n
frcc-comm-fccc-template ⊙fin-skel {m = S m} (inl Sm≤n) (inl SSm≤n) = frcc-comm-fccc-nth-higher ⊙fin-skel Sm≤n SSm≤n
frcc-comm-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) m
→ frcc-comm-fccc-Type ⊙fin-skel (≤-dec m n) (≤-dec (S m) n)
(RCC-coboundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n))
(CCC-boundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n))
frcc-comm-fccc {n} ⊙fin-skel m =
frcc-comm-fccc-template ⊙fin-skel {m} (≤-dec m n) (≤-dec (S m) n)
frcc-comm-fccc-augment : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n)
→ CommSquareᴳ
(CochainComplex.augment (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊))
(pre∘ᴳ-hom (C2-abgroup 0) (FreeAbGroup-extend (Lift-abgroup {j = lzero} ℤ-abgroup) λ _ → lift 1))
(GroupIso.f-hom rhead-iso-chead)
(GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ (inl (O≤ n))
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)))
frcc-comm-fccc-augment {n = O} ⊙fin-skel =
fst (augment-comm-sqrᴳ ⊙fin-skel)
frcc-comm-fccc-augment {n = S O} ⊙fin-skel =
frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel)
frcc-comm-fccc-augment {n = S (S n)} ⊙fin-skel =
frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel)
frcc-equiv-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) →
CochainComplexEquiv
(RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊)
(CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
frcc-equiv-fccc {n} ⊙fin-skel = record
{ head = rhead-iso-chead
; cochain = λ m → rcc-iso-ccc ⊙⦉ ⊙fin-skel ⦊ m (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)
; augment = frcc-comm-fccc-augment ⊙fin-skel
; coboundary = frcc-comm-fccc ⊙fin-skel}
frc-iso-fcc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (m : ℤ)
→ cohomology-group (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) m
≃ᴳ cohomology-group
(CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
m
frc-iso-fcc ⊙fin-skel = cohomology-group-emap (frcc-equiv-fccc ⊙fin-skel)
| {
"alphanum_fraction": 0.5909664197,
"avg_line_length": 60.4095238095,
"ext": "agda",
"hexsha": "5814af5d6f6444f3c3fa158b708322333324e12f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5146,
"size": 12686
} |
{- This file describes properties of computable relations. -}
open import bool
open import level
open import eq
open import product
open import product-thms
open import negation
module relations where
-- Decidable relations.
-- This was taken from the Agda STDLIB.
data Dec {p} (P : Set p) : Set p where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
module relationsOld {ℓ ℓ' : level}{A : Set ℓ} (_≥A_ : A → A → Set ℓ') where
reflexive : Set (ℓ ⊔ ℓ')
reflexive = ∀ {a : A} → a ≥A a
transitive : Set (ℓ ⊔ ℓ')
transitive = ∀ {a b c : A} → a ≥A b → b ≥A c → a ≥A c
preorder : Set (ℓ ⊔ ℓ')
preorder = reflexive ∧ transitive
_iso_ : A → A → Set ℓ'
d iso d' = d ≥A d' ∧ d' ≥A d
iso-intro : ∀{x y : A} → x ≥A y → y ≥A x → x iso y
iso-intro p1 p2 = p1 , p2
| {
"alphanum_fraction": 0.5581113801,
"avg_line_length": 22.9444444444,
"ext": "agda",
"hexsha": "06c3a3467f89f5b487ee8d79b7ea1fc04af1a53b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "relations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "relations.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "relations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 307,
"size": 826
} |
-- Andreas, 2016-09-20 test whether --no-eta-equality is respected
{-# OPTIONS --no-eta-equality #-}
record ⊤ : Set where
test : ⊤
test = _ -- should remain unsolved
| {
"alphanum_fraction": 0.6686390533,
"avg_line_length": 18.7777777778,
"ext": "agda",
"hexsha": "12c5b3f15bad75952cfb0e7867a97db3a19529de",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NoEtaEquality.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NoEtaEquality.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NoEtaEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 169
} |
module BasicIPC.Metatheory.ClosedHilbert-BasicTarski where
open import BasicIPC.Syntax.ClosedHilbert public
open import BasicIPC.Semantics.BasicTarski public
-- Soundness with respect to all models, or evaluation, for closed terms only.
eval₀ : ∀ {A} → ⊢ A → ⊨ A
eval₀ (app t u) = eval₀ t $ eval₀ u
eval₀ ci = I
eval₀ ck = K
eval₀ cs = S
eval₀ cpair = _,_
eval₀ cfst = π₁
eval₀ csnd = π₂
eval₀ unit = ∙
-- Correctness of evaluation with respect to conversion.
eval₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → eval₀ t ≡ eval₀ t′
eval₀✓ refl⋙ = refl
eval₀✓ (trans⋙ p q) = trans (eval₀✓ p) (eval₀✓ q)
eval₀✓ (sym⋙ p) = sym (eval₀✓ p)
eval₀✓ (congapp⋙ p q) = cong² _$_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congi⋙ p) = cong I (eval₀✓ p)
eval₀✓ (congk⋙ p q) = cong² K (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congs⋙ p q r) = cong³ S (eval₀✓ p) (eval₀✓ q) (eval₀✓ r)
eval₀✓ (congpair⋙ p q) = cong² _,_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congfst⋙ p) = cong π₁ (eval₀✓ p)
eval₀✓ (congsnd⋙ p) = cong π₂ (eval₀✓ p)
eval₀✓ beta▻ₖ⋙ = refl
eval₀✓ beta▻ₛ⋙ = refl
eval₀✓ beta∧₁⋙ = refl
eval₀✓ beta∧₂⋙ = refl
eval₀✓ eta∧⋙ = refl
eval₀✓ eta⊤⋙ = refl
| {
"alphanum_fraction": 0.5765838011,
"avg_line_length": 31.9743589744,
"ext": "agda",
"hexsha": "fce0e967c2b8541d43796e9883142a0c5ef5a612",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Metatheory/ClosedHilbert-BasicTarski.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Metatheory/ClosedHilbert-BasicTarski.agda",
"max_line_length": 78,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Metatheory/ClosedHilbert-BasicTarski.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 563,
"size": 1247
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.PushoutDef
open import Homotopy.PushoutUP as PushoutUP
open import Homotopy.Truncation
open import Homotopy.PullbackDef
open import Homotopy.PullbackInvariantEquiv
module Homotopy.TruncationRightExact {i} (n : ℕ₋₂) (d : pushout-diag i) where
open pushout-diag d
open import Homotopy.PushoutIsPushout d
τd : pushout-diag i
τd = diag (τ n A), (τ n B), (τ n C), (τ-fmap f), (τ-fmap g)
module H = PushoutUP d (cst unit)
module τH = PushoutUP τd (is-truncated n)
-- I want to prove that [τ n d.pushout] is a pushout in [is-truncated n]. It
-- first needs to be equipped with a cocone
cocone-τpushout : τH.cocone (τ n (pushout d))
cocone-τpushout = (τ-fmap left , τ-fmap right ,
τ-extend ⦃ λ _ → ≡-is-truncated _ (τ-is-truncated _ _) ⦄
(ap proj ◯ glue))
-- We have a map [(τ n (pushout d) → E) → τH.cocone E] with [E] in [P] given by
-- [τH.compose-cocone-map] and we want to prove that it’s an equivalence
-- The idea is that it’s the composite of five equivalences:
-- [equiv1 : τ n (pushout d) → E ≃ (pushout d) → E]
-- by the universal property of truncations
-- [equiv2 : (pushout d) → E ≃ H.cocone E]
-- by the universal property of pushout in Type
-- [equiv3 : H.cocone E ≃ pullback … (without truncations)]
-- via [cocone-is-pullback]
-- [equiv4 : pullback … (without truncations) ≃ pullback … (with truncations)]
-- by the universal property of truncations and invariance of pullback wrt
-- equivalence of diagrams
-- [equiv5 : pullback … (with truncations) ≃ τH.cocone E]
-- via [cocone-is-pullback]
module _ (E : Set i) ⦃ P-E : is-truncated n E ⦄ where
private
≡E-is-truncated#instance : {x y : E} → is-truncated n (x ≡ y)
≡E-is-truncated#instance = ≡-is-truncated n P-E
λ-≡E-is-truncated#instance : {A : Set i} {u v : A → E}
→ ((x : A) → is-truncated n (u x ≡ v x))
λ-≡E-is-truncated#instance = λ _ → ≡E-is-truncated#instance
≡≡E-is-truncated#instance : {x y : E} {p q : x ≡ y} → is-truncated n (p ≡ q)
≡≡E-is-truncated#instance = ≡-is-truncated n (≡-is-truncated n P-E)
λ-≡≡E-is-truncated#instance : {A : Set i} {x y : A → E}
{p q : (a : A) → x a ≡ y a} → ((a : A) → is-truncated n (p a ≡ q a))
λ-≡≡E-is-truncated#instance = λ _ → ≡≡E-is-truncated#instance
equiv1 : (τ n (pushout d) → E) ≃ (pushout d → E)
equiv1 = ((λ u → u ◯ proj) , τ-up n _ _)
equiv2 : (pushout d → E) ≃ H.cocone E
equiv2 = ((λ f → ((f ◯ left) , (f ◯ right) , (ap f ◯ glue)))
, pushout-is-pushout E)
-- (could be defined more generally somewhere else)
diag-hom : pullback-diag i
diag-hom = diag (A → E), (B → E), (C → E), (λ u → u ◯ f), (λ u → u ◯ g)
τdiag-hom : pullback-diag i
τdiag-hom = diag (τ n A → E), (τ n B → E), (τ n C → E),
(λ u → u ◯ τ-fmap f) , (λ u → u ◯ τ-fmap g)
equiv3 : H.cocone E ≃ pullback diag-hom
equiv3 = H.cocone-equiv-pullback E
p₀ : (a : A → E) (x : τ n C)
→ τ-extend-nondep a (τ-fmap f x) ≡ τ-extend-nondep (a ◯ f) x
p₀ a = τ-extend (λ x → refl)
p : (a : A → E) → (τ-extend-nondep a) ◯ τ-fmap f ≡ τ-extend-nondep (a ◯ f)
p a = funext (p₀ a)
q₀ : (b : B → E) (x : τ n C)
→ τ-extend-nondep (b ◯ g) x ≡ τ-extend-nondep b (τ-fmap g x)
q₀ b = τ-extend (λ x → refl)
q : (b : B → E) → τ-extend-nondep (b ◯ g) ≡ (τ-extend-nondep b) ◯ τ-fmap g
q b = funext (q₀ b)
equiv4 : pullback diag-hom ≃ pullback τdiag-hom
equiv4 = pullback-invariant-equiv diag-hom τdiag-hom
(τ-extend-equiv n A E) (τ-extend-equiv n B E)
(τ-extend-equiv n C E) p q
equiv5 : pullback τdiag-hom ≃ τH.cocone E
equiv5 = τH.pullback-equiv-cocone E
-- We have defined the five equivalences, now we want to prove that the
-- composite is what we want. We start by computing the composite of the
-- equivalences 3, 4 and 5.
map-543 : H.cocone E → τH.cocone E
map-543 (a , b , e) = (τ-extend-nondep a , τ-extend-nondep b , τ-extend e)
map-543-correct : (x : H.cocone E)
→ equiv5 ☆ (equiv4 ☆ (equiv3 ☆ x)) ≡ map-543 x
map-543-correct (a , b , h) =
ap (λ u → _ , _ , u)
(funext (τ-extend
(λ x →
ap-concat (λ u → u (proj x)) (p a)
(ap τ-extend-nondep (funext h) ∘ q b)
∘ (whisker-right _ (happly (happly-funext (p₀ a)) (proj x))
∘ (ap-concat (λ u → u (proj x))
(ap τ-extend-nondep (funext h)) (q b)
∘ (whisker-right _
(compose-ap (λ u → u (proj x)) τ-extend-nondep (funext h))
∘ (whisker-right _ (happly (happly-funext h) x)
∘ (whisker-left (h x)
(happly (happly-funext (q₀ b)) (proj x))
∘ refl-right-unit (h x)))))))))
-- We now study the full composite
map-54321 : (τ n (pushout d) → E) → τH.cocone E
map-54321 = τH.compose-cocone-map _ _ cocone-τpushout
map-21-A₀ : (f : τ n (pushout d) → E) (u : τ n A)
→ τH.A→top (map-543 (equiv2 ☆ (equiv1 ☆ f))) u ≡ τH.A→top (map-54321 f) u
map-21-A₀ f = τ-extend (λ x → refl)
map-21-A : (f : τ n (pushout d) → E)
→ τH.A→top (map-543 (equiv2 ☆ (equiv1 ☆ f))) ≡ τH.A→top (map-54321 f)
map-21-A f = funext (map-21-A₀ f)
map-21-B₀ : (f : τ n (pushout d) → E) (u : τ n B)
→ τH.B→top (map-543 (equiv2 ☆ (equiv1 ☆ f))) u ≡ τH.B→top (map-54321 f) u
map-21-B₀ f = τ-extend (λ x → refl)
map-21-B : (f : τ n (pushout d) → E)
→ τH.B→top (map-543 (equiv2 ☆ (equiv1 ☆ f))) ≡ τH.B→top (map-54321 f)
map-21-B f = funext (map-21-B₀ f)
map-21-correct : (h : τ n (pushout d) → E)
→ map-543 (equiv2 ☆ (equiv1 ☆ h)) ≡ map-54321 h
map-21-correct h = τH.cocone-eq _ (map-21-A h) (map-21-B h)
(τ-extend
(λ x →
whisker-right _ (happly (happly-funext (map-21-A₀ h)) (proj (f x)))
∘ (compose-ap h proj _
∘ (! (refl-right-unit (ap (h ◯ proj) (glue x)))
∘ whisker-left (ap (h ◯ proj) (glue x))
(! (happly (happly-funext (map-21-B₀ h)) (proj (g x))))))))
map-54321-correct : (f : τ n (pushout d) → E)
→ equiv5 ☆ (equiv4 ☆ (equiv3 ☆ (equiv2 ☆ (equiv1 ☆ f)))) ≡ map-54321 f
map-54321-correct f = map-543-correct (equiv2 ☆ (equiv1 ☆ f))
∘ map-21-correct f
map-54321-is-equiv : is-equiv map-54321
map-54321-is-equiv =
transport is-equiv (funext map-54321-correct)
(compose-is-equiv
((λ f₁ → equiv4 ☆ (equiv3 ☆ (equiv2 ☆ (equiv1 ☆ f₁))))
, compose-is-equiv
((λ f₁ → equiv3 ☆ (equiv2 ☆ (equiv1 ☆ f₁)))
, compose-is-equiv
((λ f₁ → equiv2 ☆ (equiv1 ☆ f₁))
, compose-is-equiv equiv1 equiv2)
equiv3)
equiv4)
equiv5)
abstract
τpushout-is-pushout : τH.is-pushout (τ n (pushout d)) cocone-τpushout
τpushout-is-pushout E = map-54321-is-equiv E
| {
"alphanum_fraction": 0.5553965073,
"avg_line_length": 38.3846153846,
"ext": "agda",
"hexsha": "4827e52e85b05a6ab720de9a7cdf170561e6abc4",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/TruncationRightExact.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/TruncationRightExact.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/TruncationRightExact.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2598,
"size": 6986
} |
{-# OPTIONS --cubical --safe #-}
module Container.Stream where
open import Prelude
open import Data.Fin
open import Container
Stream : Type a → Type a
Stream = ⟦ ⊤ , const ℕ ⟧
| {
"alphanum_fraction": 0.6983240223,
"avg_line_length": 16.2727272727,
"ext": "agda",
"hexsha": "b318988f73b271d2e2176b13d6879e7f0a50f6d5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Container/Stream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Container/Stream.agda",
"max_line_length": 32,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Container/Stream.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 48,
"size": 179
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Groups
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Setoids.Functions.Extension
module Groups.SymmetricGroups.CycleType where
| {
"alphanum_fraction": 0.817551963,
"avg_line_length": 27.0625,
"ext": "agda",
"hexsha": "a407a6879944e22bed03f23f7c1572f21d403c49",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/SymmetricGroups/CycleType.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/SymmetricGroups/CycleType.agda",
"max_line_length": 58,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/SymmetricGroups/CycleType.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 104,
"size": 433
} |
module Structure.Setoid.Proofs where
import Lvl
open import Functional
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Structure.Function
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
{-
module _ where
private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level
private variable A B : Type{ℓ}
private variable P : Stmt{ℓ}
Choice : (A → B → Stmt{ℓ}) → Stmt
Choice{A = A}{B = B}(_▫_) = (∀{x} → ∃(y ↦ x ▫ y)) → (∃{Obj = A → B}(f ↦ ∀{x} → (x ▫ f(x))))
module _ ⦃ choice : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Type{ℓ₁}}{B : Type{ℓ₂}}{_▫_ : A → B → Stmt{ℓ₃}} → Choice(_▫_) ⦄ where
open import Data.Boolean
open import Structure.Relator.Properties
open import Structure.Relator.Properties.Proofs
open import Relator.Equals.Proofs.Equiv
thing : Stmt{ℓ} → Bool → Bool → Stmt
thing P a b = (a ≡ b) ∨ P
thing-functionallyTotal : ∀{x} → ∃(y ↦ thing P x y)
thing-functionallyTotal {x = x} = [∃]-intro x ⦃ [∨]-introₗ (reflexivity(_≡_)) ⦄
thing-choice : ∃(f ↦ ∀{x} → thing(P) x (f(x)))
thing-choice {P = P} = choice{_▫_ = thing P} thing-functionallyTotal
instance
thing-reflexivity : Reflexivity(thing(P))
Reflexivity.proof thing-reflexivity = [∨]-introₗ(reflexivity(_≡_))
instance
thing-symmetry : Symmetry(thing(P))
Symmetry.proof thing-symmetry = [∨]-elim2 (symmetry(_≡_)) id
instance
thing-transitivity : Transitivity(thing(P))
Transitivity.proof thing-transitivity ([∨]-introₗ xy) ([∨]-introₗ yz) = [∨]-introₗ (transitivity(_) xy yz)
Transitivity.proof thing-transitivity ([∨]-introₗ xy) ([∨]-introᵣ p) = [∨]-introᵣ p
Transitivity.proof thing-transitivity ([∨]-introᵣ p) _ = [∨]-introᵣ p
thing-ext : let ([∃]-intro f) = thing-choice{P = P} in ∀{a b} → thing(P) a b → (f(a) ≡ f(b))
thing-ext ([∨]-introₗ ab) = congruence₁([∃]-witness thing-choice) ab
thing-ext {a = a} {b = b} ([∨]-introᵣ p) = {!!}
thing-eq : let ([∃]-intro f) = thing-choice{P = P} in (P ↔ (f(𝐹) ≡ f(𝑇)))
_⨯_.left (thing-eq {P = P}) ft with [∃]-proof (thing-choice{P = P}){𝐹}
_⨯_.left (thing-eq {P = P}) ft | [∨]-introₗ ff = [∨]-syllogismₗ ([∃]-proof (thing-choice{P = P}){𝑇}) ((symmetry(_≢_) ⦃ negated-symmetry ⦄ ∘ [↔]-to-[←] [≢][𝑇]-is-[𝐹] ∘ symmetry(_≡_)) (transitivity(_≡_) ff ft))
_⨯_.left (thing-eq {P = P}) ft | [∨]-introᵣ p = p
_⨯_.right (thing-eq {P = P}) p = thing-ext ([∨]-introᵣ p)
bool-eq-classical : Classical₂ {X = Bool} (_≡_)
choice-to-classical : Classical(P)
excluded-middle ⦃ choice-to-classical {P = P} ⦄ with excluded-middle ⦃ bool-eq-classical {[∃]-witness (thing-choice{P = P}) 𝐹} {[∃]-witness (thing-choice{P = P}) 𝑇} ⦄
excluded-middle ⦃ choice-to-classical {P = P} ⦄ | [∨]-introₗ ft = [∨]-introₗ ([↔]-to-[←] thing-eq ft)
excluded-middle ⦃ choice-to-classical {P = P} ⦄ | [∨]-introᵣ nft = [∨]-introᵣ (nft ∘ [↔]-to-[→] thing-eq)
module _ ⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ where
proof-irrelevance : ∀{p₁ p₂ : P} → (p₁ ≡ p₂)
proof-irrelevance with excluded-middle
proof-irrelevance {P = P}{p₁}{p₂} | [∨]-introₗ p = {!!}
proof-irrelevance {P = P}{p₁}{p₂} | [∨]-introᵣ np = [⊥]-elim(np p₁)
-}
| {
"alphanum_fraction": 0.5948116121,
"avg_line_length": 42.0519480519,
"ext": "agda",
"hexsha": "4a9618d71d47c10172dd683ba2354c3cc0a1dc58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Setoid/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Setoid/Proofs.agda",
"max_line_length": 212,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Setoid/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1301,
"size": 3238
} |
module Data.NDTrie where
open import Class.Map
open import Data.Char
open import Data.Char.Instance
open import Data.List
open import Data.List.Instance
open import Data.AVL.Value
open import Data.Product
import Data.Char.Properties as Char
import Data.Trie Char.<-strictTotalOrder-≈ as T
NDTrie : Set -> Set
NDTrie A = T.Trie (const _ A) _
instance
NDTrie-Map : MapClass (List Char) NDTrie
NDTrie-Map = record
{ insert = T.insert
; remove = T.deleteValue
; lookup = T.lookupValue
; mapSnd = λ f -> T.map f
; emptyMap = T.empty
}
trieKeys : ∀ {A} -> NDTrie A -> List (List Char)
trieKeys t = Data.List.map proj₁ (T.toList t)
lookupNDTrie : ∀ {A} -> List Char -> NDTrie A -> NDTrie A
lookupNDTrie [] t = t
lookupNDTrie (c ∷ cs) t = lookupNDTrie cs (T.lookupTrie c t)
| {
"alphanum_fraction": 0.6555819477,
"avg_line_length": 25.5151515152,
"ext": "agda",
"hexsha": "442abbb4daf3dbafa227faf579361bb29e9ddf01",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/NDTrie.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/NDTrie.agda",
"max_line_length": 60,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/NDTrie.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 254,
"size": 842
} |
-- New feature by Jesper Cockx in commit be89d4a8b264dd2719cb8c601a2c7f45a95ba220 :
-- disabling the universe check for a data or record type.
-- Andreas, 2018-10-27, re issue #3327: restructured test cases.
-- Andreas, 2019-07-16, issue #3916:
-- {-# NO_UNIVERSE_CHECK #-} should also disable the index sort check
-- for --cubical-compatible.
{-# OPTIONS --cubical-compatible #-}
module _ where
-- Switch off the index sort check
module BigHetEq where
{-# NO_UNIVERSE_CHECK #-}
data _≅_ {a}{A : Set a} (x : A) : {B : Set a} → B → Set where
refl : x ≅ x
module PittsHetEq where
{-# NO_UNIVERSE_CHECK #-}
data _≅_ {a}{A : Set a} (x : A) : {B : Set a} → B → Set a where
refl : x ≅ x
-- Pragma is naturally attached to definition.
module DataDef where
data U : Set
T : U → Set
{-# NO_UNIVERSE_CHECK #-}
data U where
pi : (A : Set)(b : A → U) → U
T (pi A b) = (x : A) → T (b x)
-- Pragma can also be attached to signature.
module DataSig where
{-# NO_UNIVERSE_CHECK #-}
data U : Set
T : U → Set
data U where
pi : (A : Set)(b : A → U) → U
T (pi A b) = (x : A) → T (b x)
-- Works also for explicit mutual blocks.
module Mutual where
{-# NO_UNIVERSE_CHECK #-}
data U : Set where
pi : (A : Set)(b : A → U) → U
T : U → Set
T (pi A b) = (x : A) → T (b x)
-- Records:
module Records where
{-# NO_UNIVERSE_CHECK #-}
record R : Set where
field out : Set
{-# NO_UNIVERSE_CHECK #-}
record S : Set
record S where
field out : Set
| {
"alphanum_fraction": 0.6011865524,
"avg_line_length": 19.4487179487,
"ext": "agda",
"hexsha": "5a5733930453604f10d1cacfe6a2c348cd54043e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/NoUniverseCheckPragma.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/NoUniverseCheckPragma.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/NoUniverseCheckPragma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 525,
"size": 1517
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module CombiningProofs.CommDisjunction where
open import Common.FOL.FOL
postulate
A B : Set
∨-comm : A ∨ B → B ∨ A
{-# ATP prove ∨-comm #-}
| {
"alphanum_fraction": 0.5548589342,
"avg_line_length": 22.7857142857,
"ext": "agda",
"hexsha": "120227048b7f3309dcacc92c994095b4006b6ce9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunction.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunction.agda",
"max_line_length": 44,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/CombiningProofs/CommDisjunction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 83,
"size": 319
} |
-- Andreas, 2016-08-04, issue #964
-- Allow open metas and interaction points in imported files
-- {-# OPTIONS -v import:100 #-}
-- {-# OPTIONS -v meta.postulate:20 #-}
-- {-# OPTIONS -v tc.conv.level:50 #-}
open import Common.Level
open import Common.Equality
postulate something : Set₁
open import Common.Issue964.UnsolvedMetas something
test = M.N.meta3
shouldFail : _≡_ {A = Level} meta (lsuc (lsuc lzero))
shouldFail = refl
-- WAS: WEIRD ERROR:
-- Set (Set .Issue964.UnsolvedMetas.1) != Set₂
-- when checking that the expression refl has type
-- meta ≡ lsuc (lsuc lzero)
-- NOW:
-- Set (.Issue964.UnsolvedMetas.unsolved#meta.1 something) != Set₂
-- when checking that the expression refl has type
-- meta ≡ lsuc (lsuc lzero)
| {
"alphanum_fraction": 0.700947226,
"avg_line_length": 25.4827586207,
"ext": "agda",
"hexsha": "d0d38d0f4a6938430aeacc047283871f70e2a763",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue964.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue964.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue964.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 223,
"size": 739
} |
{-# OPTIONS --cubical #-}
module Agda.Primitive.Cubical where
{-# BUILTIN INTERVAL I #-} -- I : Setω
{-# BUILTIN IZERO i0 #-}
{-# BUILTIN IONE i1 #-}
infix 30 primINeg
infixr 20 primIMin primIMax
primitive
primIMin : I → I → I
primIMax : I → I → I
primINeg : I → I
{-# BUILTIN ISONE IsOne #-} -- IsOne : I → Setω
postulate
itIsOne : IsOne i1
IsOne1 : ∀ i j → IsOne i → IsOne (primIMax i j)
IsOne2 : ∀ i j → IsOne j → IsOne (primIMax i j)
{-# BUILTIN ITISONE itIsOne #-}
{-# BUILTIN ISONE1 IsOne1 #-}
{-# BUILTIN ISONE2 IsOne2 #-}
{-# BUILTIN PARTIAL Partial #-}
{-# BUILTIN PARTIALP PartialP #-}
postulate
isOneEmpty : ∀ {a} {A : Partial i0 (Set a)} → PartialP i0 A
{-# BUILTIN ISONEEMPTY isOneEmpty #-}
primitive
primPFrom1 : ∀ {a} {A : I → Set a} → A i1 → ∀ i j → Partial i (A (primIMax i j))
primPOr : ∀ {a} (i j : I) {A : Partial (primIMax i j) (Set a)}
→ PartialP i (λ z → A (IsOne1 i j z)) → PartialP j (λ z → A (IsOne2 i j z))
→ PartialP (primIMax i j) A
primComp : ∀ {a} (A : (i : I) → Set (a i)) (φ : I) → (∀ i → Partial φ (A i)) → (a : A i0) → A i1
syntax primPOr p q u t = [ p ↦ u , q ↦ t ]
primitive
primTransp : ∀ {a} (A : (i : I) → Set (a i)) (φ : I) → (a : A i0) → A i1
primHComp : ∀ {a} {A : Set a} {φ : I} → (∀ i → Partial φ A) → A → A
| {
"alphanum_fraction": 0.5273124545,
"avg_line_length": 29.847826087,
"ext": "agda",
"hexsha": "513798fc6910b494de6e09dc3c28bc68241968a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "bennn/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "bennn/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "bennn/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Primitive/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 546,
"size": 1373
} |
module Sessions.Semantics.Expr where
open import Prelude
open import Data.Fin
open import Relation.Unary.PredicateTransformer hiding (_⊔_)
open import Relation.Ternary.Separation.Morphisms
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Monad.Reader
open import Sessions.Syntax.Types
open import Sessions.Syntax.Values
open import Sessions.Syntax.Expr
-- open import Sessions.Semantics.Commands
open import Sessions.Semantics.Runtime
open import Relation.Ternary.Separation.Construct.List Type
-- open import Relation.Ternary.Separation.Monad.Free Cmd δ
open import Relation.Ternary.Separation.Monad.Delay
module _ where
mutual
data Cmd : Pred RCtx 0ℓ where
fork : ∀[ Thread unit ⇒ Cmd ]
mkchan : ∀ α → ε[ Cmd ]
send : ∀ {a α} → ∀[ (Endptr (a ! α) ✴ Val a) ⇒ Cmd ]
receive : ∀ {a α} → ∀[ Endptr (a ¿ α) ⇒ Cmd ]
close : ∀[ Endptr end ⇒ Cmd ]
yield : ε[ Cmd ]
Cont : ∀ i {Δ} → Cmd Δ → Pt RCtx 0ℓ
Cont i c P = δ c ─✴ Free i P
data Free i : Pt RCtx 0ℓ where
pure : ∀ {P} → ∀[ P ⇒ Free i P ]
impure : ∀ {P Φ} → Thunk (λ j → (∃[ Cmd ]✴ (λ c → Cont j c P)) Φ) i → Free i P Φ
δ : ∀ {Δ} → Cmd Δ → Pred RCtx 0ℓ
δ (fork {α} _) = Emp
δ (mkchan α) = Endptr α ✴ Endptr (α ⁻¹)
δ (send {α = α} _) = Endptr α
δ (receive {a} {α} _) = Val a ✴ Endptr α
δ (close _) = Emp
δ yield = Emp
Thread : Type → Pred RCtx _
Thread a = Free ∞ (Val a)
open Monads using (Monad; str; _&_) public
m-monad : ∀ {i} → Monad ⊤ _ (λ _ _ → Free i)
Monad.return m-monad px = pure px
app (Monad.bind m-monad f) (pure px) σ = app f px σ
app (Monad.bind m-monad f) (impure tx) σ =
impure λ where
.force →
let
cmd ×⟨ σ₁ ⟩ κ = tx .force
_ , σ₂ , σ₃ = ⊎-assoc σ₁ (⊎-comm σ)
in cmd ×⟨ σ₂ ⟩ wand λ r σ₄ →
let _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₄ in
app (Monad.bind m-monad f) (app κ r τ₂) τ₁
module _ {i} where
open ReaderTransformer id-morph Val (Free i) {{m-monad}} renaming (Reader to T) public
M : Size → LCtx → LCtx → Pt RCtx 0ℓ
M i Γ₁ Γ₂ P = T {i} Γ₁ Γ₂ P
-- open import Relation.Ternary.Separation.Monad.Free Cmd δ renaming (Cont to Cont')
⟪_⟫ : ∀ {i Φ} → (c : Cmd Φ) → Free i (δ c) Φ
⟪_⟫ c =
impure (λ where .force → c ×⟨ ⊎-idʳ ⟩ wand λ r σ → case ⊎-id⁻ˡ σ of λ where refl → pure r )
open Monad reader-monad public
mutual
eval : ∀ {i} → Exp a Γ → ε[ M i Γ [] (Val a) ]
eval unit = do
return tt
eval (var refl) = do
(v :⟨ σ ⟩: nil) ← ask
case ⊎-id⁻ʳ σ of λ where
refl → return v
eval (lam a e) = do
env ← ask
return (clos e env)
eval (ap (f ×⟨ Γ≺ ⟩ e)) = do
v ← frame (⊎-comm Γ≺) (►eval e)
{!!} -- eval⊸ f v
eval (pairs (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
v₁ ← frame Γ≺ (►eval e₁)
v₂⋆v₂ ← ►eval e₂ & v₁
return (pairs (✴-swap v₂⋆v₂))
eval (letpair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
pairs (v₁ ×⟨ σ ⟩ v₂) ← frame Γ≺ (►eval e₁)
empty ← prepend (cons (v₁ ×⟨ σ ⟩ singleton v₂))
►eval e₂
eval (send (e₁ ×⟨ Γ≺ ⟩ e₂)) = do
v₁ ← frame Γ≺ (►eval e₁)
cref φ ×⟨ σ ⟩ v₁ ← ►eval e₂ & v₁
φ' ← liftM ⟪ send (φ ×⟨ σ ⟩ v₁) ⟫
return (cref φ')
eval (recv e) = do
cref φ ← ►eval e
v ×⟨ σ ⟩ φ' ← liftM ⟪ receive φ ⟫
return (pairs (cref φ' ×⟨ ⊎-comm σ ⟩ v))
eval (fork e) = do
clos body env ← ►eval e
empty ← liftM ⟪ fork (app (runReader (cons (tt ×⟨ ⊎-idˡ ⟩ env))) (►eval body) ⊎-idʳ) ⟫ -- (app (runReader (cons (tt ×⟨ ⊎-idˡ ⟩ env))) (►eval body) ⊎-idʳ)
return tt
eval (terminate e) = do
cref φ ← ►eval e
empty ← liftM ⟪ close φ ⟫
return tt
-- eval⊸ : ∀ {i Γ} → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ⱼ M i Γ [] (Val b) ]
-- eval⊸ e v = do
-- (clos e env) ×⟨ σ₂ ⟩ v ← ►eval e & v
-- empty ← append (cons (v ×⟨ ⊎-comm σ₂ ⟩ env))
-- ►eval e
-- ►eval⊸ : ∀ {i Γ} → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ⱼ M i Γ [] (Val b) ]
-- app (►eval⊸ e v) E σ = impure λ where
-- .force →
-- yield
-- ×⟨ ⊎-idˡ ⟩
-- wand (λ where empty σ' → case ⊎-id⁻ʳ σ' of λ where refl → app (eval⊸ e v) E σ )
►eval : ∀ {i} → Exp a Γ → ε[ M i Γ [] (Val a) ]
app (►eval e) E σ = impure λ where
.force →
yield
×⟨ ⊎-idˡ ⟩
wand (λ where empty σ' → case ⊎-id⁻ʳ σ' of λ where refl → app (eval e) E σ )
| {
"alphanum_fraction": 0.5238416554,
"avg_line_length": 30.2448979592,
"ext": "agda",
"hexsha": "47a539392af8fb6999ccaf7bc6575f6192e97b4a",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Sessions/Semantics/Struggle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Sessions/Semantics/Struggle.agda",
"max_line_length": 157,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Sessions/Semantics/Struggle.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 1788,
"size": 4446
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Impl.Consensus.Types
-- This module defines the LBFT monad used by our (fake/simple,
-- for now) "implementation", along with some utility functions
-- to facilitate reasoning about it.
module LibraBFT.Impl.Util.Util where
open import LibraBFT.Impl.Util.RWST public
----------------
-- LBFT Monad --
----------------
-- Global 'LBFT'; works over the whole state.
LBFT : Set → Set
LBFT = RWST Unit Output EventProcessor
LBFT-run : ∀ {A} → LBFT A → EventProcessor → (A × EventProcessor × List Output)
LBFT-run m = RWST-run m unit
LBFT-post : ∀ {A} → LBFT A → EventProcessor → EventProcessor
LBFT-post m ep = proj₁ (proj₂ (LBFT-run m ep))
LBFT-outs : ∀ {A} → LBFT A → EventProcessor → List Output
LBFT-outs m ep = proj₂ (proj₂ (LBFT-run m ep))
-- Local 'LBFT' monad; which operates only over the part of
-- the state that /depends/ on the ec; not the part
-- of the state that /defines/ the ec.
--
-- This is very convenient to define functions that
-- do not alter the ec.
LBFT-ec : EpochConfig → Set → Set
LBFT-ec ec = RWST Unit Output (EventProcessorWithEC ec)
-- Lifting a function that does not alter the pieces that
-- define the epoch config is easy
liftEC : {A : Set}(f : ∀ ec → LBFT-ec ec A) → LBFT A
liftEC f = rwst λ _ st
→ let ec = α-EC (₋epEC st , ₋epEC-correct st)
res , stec' , acts = RWST-run (f ec) unit (₋epWithEC st)
in res , record st { ₋epWithEC = stec' } , acts
-- Type that captures a proof that a computation in the LBFT monad
-- satisfies a given contract.
LBFT-Contract : ∀{A} → LBFT A
→ (EventProcessor → Set)
→ (EventProcessor → Set)
→ Set
LBFT-Contract f Pre Post =
∀ ep → Pre ep × Post (proj₁ (proj₂ (RWST-run f unit ep)))
| {
"alphanum_fraction": 0.6446555819,
"avg_line_length": 36.2931034483,
"ext": "agda",
"hexsha": "2ae6fd4a26ed4ca0776b51e9ccff90e26b7c7f21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Util/Util.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Util/Util.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Util/Util.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 628,
"size": 2105
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat where
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Data.Nat.Base public
------------------------------------------------------------------------
-- Publicly re-export queries
open import Data.Nat.Properties public
using
( _≟_
; _≤?_ ; _≥?_ ; _<?_ ; _>?_
; _≤′?_; _≥′?_; _<′?_; _>′?_
; _≤″?_; _<″?_; _≥″?_; _>″?_
)
------------------------------------------------------------------------
-- Deprecated
-- Version 0.17
open import Data.Nat.Properties public
using (≤-pred)
| {
"alphanum_fraction": 0.3480861244,
"avg_line_length": 24.5882352941,
"ext": "agda",
"hexsha": "d07ea617123bd7b81b2d32c51e25699ab862e857",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 177,
"size": 836
} |
-- https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
module Sandbox.PolyTest where
open import Data.Nat
open import Data.Nat.Properties.Extra
open import Relation.Binary.PropositionalEquality
_^_ : ℕ → ℕ → ℕ
x ^ zero = suc zero
x ^ suc y = x * (x ^ y)
-- data Poly : ℕ → Set where
-- κ : ℕ → Poly 0
-- ι : Poly 1
-- _⊕_ : ∀ {l m} → Poly l → Poly m → Poly (l ⊓ m)
-- _⊗_ : ∀ {l m} → Poly l → Poly m → Poly (l * m)
--
-- ⟦_⟧_ : ∀ {n} → Poly n → ℕ → ℕ
-- ⟦ κ c ⟧ x = c
-- ⟦ ι ⟧ x = x
-- ⟦ p ⊕ q ⟧ x = ⟦ p ⟧ x + ⟦ q ⟧ x
-- ⟦ p ⊗ q ⟧ x = ⟦ p ⟧ x * ⟦ q ⟧ x
--
-- Δ : ∀ {n} → Poly (suc n) → Poly n
-- Δ p = {! p !}
-- -- I'm not sure if there should be a case for the constructor _⊕_,
-- -- because I get stuck when trying to solve the following unification
-- -- problems (inferred index ≟ expected index):
-- -- l ⊓ m ≟ suc n
-- -- when checking that the expression ? has type Poly .n
-- data Poly : ℕ → Set where
-- κ : ℕ → Poly 0
-- ι : Poly 1
-- plus : ∀ {l m n} → Poly l → Poly m → (l ⊓ m) ≡ n → Poly n
-- times : ∀ {l m n} → Poly l → Poly m → (l * m) ≡ n → Poly n
--
-- ⟦_⟧_ : ∀ {n} → Poly n → ℕ → ℕ
-- ⟦ κ c ⟧ x = c
-- ⟦ ι ⟧ x = x
-- ⟦ plus p q eq ⟧ x = ⟦ p ⟧ x + ⟦ q ⟧ x
-- ⟦ times p q eq ⟧ x = ⟦ p ⟧ x * ⟦ q ⟧ x
-- Δ : ∀ {n} → Poly (suc n) → Poly n
-- Δ ι = κ 1
-- Δ (plus (κ x) q ())
-- Δ (plus ι (κ x) ())
-- Δ (plus ι ι eq) = plus (Δ ι) (Δ ι) (cancel-suc eq)
-- Δ (plus ι (plus p₂ q₂ eq₂) eq) = plus (Δ ι) (Δ {! (plus p₂ q₂ eq₂) !}) {! !}
-- Δ (plus ι (times p₂ q₂ eq₂) eq) = {! !}
-- -- Δ (plus ι q eq) = plus (Δ ι) (Δ {! !}) {! !}
-- Δ (plus (plus p q' eq') q eq) = {! !}
-- Δ (plus (times p q' eq') q eq) = {! !}
-- Δ (times p q eq) = {! !}
-- data Poly : ℕ → Set where
-- κ : ∀ {n} → ℕ → Poly n
-- ι : ∀ {n} → Poly (suc n)
-- plus : ∀ {n} → Poly n → Poly n → Poly n
-- times : ∀ {l m n} → Poly l → Poly m → (l * m) ≡ n → Poly n
--
-- -- ∆(p ⊗ r) = ∆p ⊗ (r · (1+)) ⊕ p ⊗ ∆r
-- Δ : ∀ {n} → Poly (suc n) → Poly n
-- Δ (κ x) = κ 0
-- Δ ι = κ 1
-- Δ (plus p q) = plus (Δ p) (Δ q)
-- Δ (times p q eq) = times (Δ {! p !}) {! !} {! !}
data Add : ℕ → ℕ → ℕ → Set where
0+n : ∀ {n} → Add 0 n n
n+0 : ∀ {n} → Add n 0 n
m+n : ∀ {l m n} → Add l m n → Add (suc l) (suc m) (suc (suc n))
data Poly : ℕ → Set where
κ : ∀ {n} → ℕ → Poly n
ι : ∀ {n} → Poly (suc n)
↑ : ∀ {n} → Poly n → Poly n
_⊕_ : ∀ {n} → Poly n → Poly n → Poly n
times : ∀ {l m n} → Poly l → Poly m → Add l m n → Poly n
infixl 5 _⊕_
⟦_⟧_ : ∀ {n} → Poly n → ℕ → ℕ
⟦ κ c ⟧ x = c
⟦ ι ⟧ x = x
⟦ ↑ p ⟧ x = ⟦ p ⟧ suc x
⟦ p ⊕ q ⟧ x = ⟦ p ⟧ x + ⟦ q ⟧ x
⟦ times p q add ⟧ x = ⟦ p ⟧ x * ⟦ q ⟧ x
sucl : ∀ {l m n} → Add l m n → Add (suc l) m (suc n)
sucl (0+n {zero}) = n+0
sucl (0+n {suc n}) = m+n 0+n
sucl (n+0 {zero}) = n+0
sucl (n+0 {suc n}) = n+0
sucl (m+n add) = m+n (sucl add)
sucr : ∀ {l m n} → Add l m n → Add l (suc m) (suc n)
sucr 0+n = 0+n
sucr (n+0 {zero}) = 0+n
sucr (n+0 {suc n}) = m+n n+0
sucr (m+n add) = m+n (sucr add)
-- -- ∆(p ⊗ q) = (∆p ⊗ (q · (1+))) ⊕ (p ⊗ ∆q)
Δ : ∀ {n} → Poly (suc n) → Poly n
Δ (κ c) = κ 0
Δ ι = κ 1
Δ (↑ p) = ↑ (Δ p)
Δ (p ⊕ q) = Δ p ⊕ Δ q
Δ (times p q 0+n) = times (κ (⟦ p ⟧ 0)) (Δ q) 0+n
Δ (times p q n+0) = times (Δ p) (κ (⟦ q ⟧ 0)) n+0
Δ (times p q (m+n add)) = times (Δ p) (↑ q) (sucr add) ⊕ times p (Δ q) (sucl add)
add : ∀ l m → Add l m (l + m)
add zero m = 0+n
add (suc l) m = sucl (add l m)
_⊗_ : ∀ {l m} → Poly l → Poly m → Poly (l + m)
_⊗_ {l} {m} p q = times p q (add l m)
infixr 6 _⊗_
ι₁ : Poly 1
ι₁ = ι
κ₀ : ℕ → Poly 0
κ₀ c = κ c
_⊛_ : ∀ {m} → Poly m → (n : ℕ) → Poly (n * m)
p ⊛ zero = κ 1
p ⊛ suc n = {! !}
| {
"alphanum_fraction": 0.408764736,
"avg_line_length": 29.5606060606,
"ext": "agda",
"hexsha": "c6e90785c346ee96215384404941cf1f0b12c715",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Sandbox/PolyTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Sandbox/PolyTest.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Sandbox/PolyTest.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1840,
"size": 3902
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Experiments.NatMinusTwo.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne using (ℕ₋₁)
open import Cubical.Experiments.NatMinusTwo.Base
-2+Path : ℕ ≡ ℕ₋₂
-2+Path = isoToPath (iso -2+_ 2+_ (λ _ → refl) (λ _ → refl))
| {
"alphanum_fraction": 0.7548076923,
"avg_line_length": 34.6666666667,
"ext": "agda",
"hexsha": "12d9e3eabc73044131214bae4cd0b8f34d53f4f0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Experiments/NatMinusTwo/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Experiments/NatMinusTwo/Properties.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Experiments/NatMinusTwo/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 130,
"size": 416
} |
{-# OPTIONS --safe #-}
open import Generics.Prelude hiding (lookup; pi; curry)
open import Generics.Telescope
open import Generics.Desc
open import Generics.All
open import Generics.HasDesc
import Generics.Helpers as Helpers
module Generics.Constructions.Fold
{P I ℓ} {A : Indexed P I ℓ} (H : HasDesc {P} {I} {ℓ} A)
{p c} {X : Pred′ I λ i → Set c}
where
open HasDesc H
private
variable
V : ExTele P
i : ⟦ I ⟧tel p
v : ⟦ V ⟧tel p
X′ : ⟦ I ⟧tel p → Set c
X′ i = unpred′ I _ X i
------------------------
-- Types of the algebra
levelAlg : ConDesc P V I → Level
levelAlg (var _) = c
levelAlg (π {ℓ} _ _ C) = ℓ ⊔ levelAlg C
levelAlg (A ⊗ B) = levelAlg A ⊔ levelAlg B
AlgIndArg : (C : ConDesc P V I) → ⟦ V ⟧tel p → Set (levelAlg C)
AlgIndArg (var f) v = X′ (f (p , v))
AlgIndArg (π ia S C) v = Π< ia > (S (p , v)) λ s → AlgIndArg C (v , s)
AlgIndArg (A ⊗ B) v = AlgIndArg A v × AlgIndArg B v
AlgCon : (C : ConDesc P V I) → ⟦ V ⟧tel p → Set (levelAlg C)
AlgCon (var f) v = X′ (f (p , v))
AlgCon (π ia S C) v = Π< ia > (S (p , v)) λ s → AlgCon C (v , s)
AlgCon (A ⊗ B) v = AlgIndArg A v → AlgCon B v
Algebra : ∀ k → Set (levelAlg (lookupCon D k))
Algebra k = AlgCon (lookupCon D k) tt
----------------
-- Generic fold
module _ (algs : Els Algebra) where
fold-wf : (x : A′ (p , i)) → Acc x → X′ i
foldData-wf : (x : ⟦ D ⟧Data A′ (p , i)) → AllDataω Acc D x → X′ i
foldData-wf {i} (k , x) = foldCon (lookupCon D k) (algs k) x
where
foldIndArg : (C : ConDesc P V I)
(x : ⟦ C ⟧IndArg A′ (p , v))
→ AllIndArgω Acc C x
→ AlgIndArg C v
foldIndArg (var f) x a = fold-wf x a
foldIndArg (π ia S C) x a = fun< ia > λ s → foldIndArg C (app< ia > x s) (a s)
foldIndArg (A ⊗ B) (xa , xb) (aa , ab)
= foldIndArg A xa aa
, foldIndArg B xb ab
foldCon : (C : ConDesc P V I)
(alg : AlgCon C v)
(x : ⟦ C ⟧Con A′ (p , v , i))
→ AllConω Acc C x
→ X′ i
foldCon (var _) alg refl _ = alg
foldCon (π ia S C) alg (s , x) a = foldCon C (app< ia > alg s) x a
foldCon (A ⊗ B) alg (xa , xb) (aa , ab)
= foldCon B (alg (foldIndArg A xa aa)) xb ab
fold-wf x (acc a) = foldData-wf (split x) a
fold : A′ (p , i) → X′ i
fold x = fold-wf x (wf x)
deriveFold : Arrows Algebra (Pred′ I λ i → A′ (p , i) → X′ i)
deriveFold = curryₙ λ m → pred′ I _ λ i → fold m
| {
"alphanum_fraction": 0.5288852726,
"avg_line_length": 28.5813953488,
"ext": "agda",
"hexsha": "9d1fadf841221b959c6e4747d3e4bab3efd016a8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Constructions/Fold.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Constructions/Fold.agda",
"max_line_length": 84,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Constructions/Fold.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 954,
"size": 2458
} |
module Either where
data Either (A : Set) (B : Set) : Set where
left : A → Either A B
right : B → Either A B
[_,_] : ∀ {A B} {C : Set} → (A → C) → (B → C) → Either A B → C
[ f , g ] (left x) = f x
[ f , g ] (right x) = g x
| {
"alphanum_fraction": 0.4545454545,
"avg_line_length": 24.2,
"ext": "agda",
"hexsha": "8fcd569cd5c399d8485ad6d63d917990460b7608",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "cantsin/agda-experiments",
"max_forks_repo_path": "Either.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "cantsin/agda-experiments",
"max_issues_repo_path": "Either.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "cantsin/agda-experiments",
"max_stars_repo_path": "Either.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 102,
"size": 242
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Cats where
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Category.Construction.Functors
using (Functors; eval; module curry)
open import Categories.Category.Cartesian using (Cartesian)
import Categories.Category.CartesianClosed as CCC
import Categories.Category.CartesianClosed.Canonical as Canonical
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Monoidal.Instance.Cats
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Construction.Constant using (constNat)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation
using (NaturalTransformation; _∘ˡ_) renaming (id to idNT)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; _≃_; module LeftRightId)
-- It's easier to define exponentials with respect to the *canonical*
-- product. The more generic version can then be given by appealing
-- to uniqueness (up to iso) of products.
module CanonicallyCartesianClosed {l} where
private
module Cats = Category (Cats l l l)
module Cart = Cartesian (Product.Cats-is {l} {l} {l})
open Cats using (_⇒_) renaming (Obj to Cat)
open Cart hiding (η)
infixr 9 _^_
_^_ : Cat → Cat → Cat
B ^ A = Functors A B
-- The β law (aka computation principle) for exponential objects
eval-comp : ∀ {A B C} {G : C × A ⇒ B} → eval ∘F (curry.F₀ G ⁂ idF) ≃ G
eval-comp {A} {B} {C} {G} = record
{ F⇒G = record
{ η = λ _ → id B
; commute = λ _ → ∘-resp-≈ʳ B commute ○ MR.id-comm-sym B
; sym-commute = λ _ → ⟺ (∘-resp-≈ʳ B commute ○ MR.id-comm-sym B)
}
; F⇐G = record
{ η = λ _ → id B
; commute = λ _ → ⟺ (MR.id-comm B ○ ∘-resp-≈ʳ B commute)
; sym-commute = λ _ → MR.id-comm B ○ ∘-resp-≈ʳ B commute
}
; iso = iso-id-id
}
where
open Functor G renaming (F₀ to G₀; F₁ to G₁)
open Category hiding (_∘_)
open Category B using (_∘_)
open HomReasoning B
open LeftRightId G
commute : ∀ {a₁ a₂ b₁ b₂} {f₁ : C [ a₁ , b₁ ]} {f₂ : A [ a₂ , b₂ ]} →
B [ (G₁ (f₁ , id A) ∘ G₁ (id C , f₂)) ≈ G₁ (f₁ , f₂) ]
commute {_} {_} {_} {_} {f₁} {f₂} = begin
G₁ (f₁ , id A) ∘ G₁ (id C , f₂)
≈˘⟨ homomorphism ⟩
G₁ (C [ f₁ ∘ id C ] , A [ id A ∘ f₂ ])
≈⟨ F-resp-≈ (identityʳ C , identityˡ A) ⟩
G₁ (f₁ , f₂)
∎
-- The η law (aka uniqueness principle) for exponential objects
η-exp : ∀ {A B C} {H : C ⇒ B ^ A} → H ≃ curry.F₀ (eval ∘F (H ⁂ idF))
η-exp {A} {B} {C} {H} = record
{ F⇒G = record
{ η = λ _ → record
{ η = λ _ → id B
; commute = λ f → ⟺ (MR.id-comm B ○ ∘-resp-≈ʳ B (commute₁ f))
; sym-commute = λ f → MR.id-comm B ○ ∘-resp-≈ʳ B (commute₁ f)
}
; commute = λ f → ⟺ (MR.id-comm B ○ ∘-resp-≈ʳ B (commute₂ f))
; sym-commute = λ f → MR.id-comm B ○ ∘-resp-≈ʳ B (commute₂ f)
}
; F⇐G = record
{ η = λ _ → record
{ η = λ _ → id B
; commute = λ f → ∘-resp-≈ʳ B (commute₁ f) ○ MR.id-comm-sym B
; sym-commute = λ f → ⟺ (∘-resp-≈ʳ B (commute₁ f) ○ MR.id-comm-sym B)
}
; commute = λ f → ∘-resp-≈ʳ B (commute₂ f) ○ MR.id-comm-sym B
; sym-commute = λ f → ⟺ (∘-resp-≈ʳ B (commute₂ f) ○ MR.id-comm-sym B)
}
; iso = λ _ → record { isoˡ = identity² B; isoʳ = identity² B }
}
where
open Functor using (identity) renaming (F₁ to _$₁_)
open Functor H hiding (identity) renaming (F₀ to H₀; F₁ to H₁)
open Category hiding (_∘_)
open Category B using (_∘_)
open HomReasoning B
open NaturalTransformation
open LeftRightId H
commute₁ : ∀ {a b c} (f : A [ a , b ]) →
B [ (η (H₁ (id C)) b ∘ (H₀ c $₁ f)) ≈ H₀ c $₁ f ]
commute₁ {_} {b} {c} f = begin
η (H₁ (id C)) b ∘ (H₀ c $₁ f) ≈⟨ ∘-resp-≈ˡ B (identity H) ⟩
id B ∘ (H₀ c $₁ f) ≈⟨ identityˡ B ⟩
H₀ c $₁ f ∎
commute₂ : ∀ {c₁ c₂} (f : C [ c₁ , c₂ ]) {a} →
B [ (η (H₁ f) a ∘ (H₀ c₁ $₁ id A)) ≈ η (H₁ f) a ]
commute₂ {c} {_} f {a} = begin
η (H₁ f) a ∘ (H₀ c $₁ id A) ≈⟨ ∘-resp-≈ʳ B (identity (H₀ c)) ⟩
η (H₁ f) a ∘ id B ≈⟨ identityʳ B ⟩
η (H₁ f) a ∎
curry-unique : ∀ {A B C} {G : C ⇒ B ^ A} {H : C × A ⇒ B} →
eval ∘F (G ⁂ idF) ≃ H → G ≃ curry.F₀ H
curry-unique {A} {B} {C} {G} {H} hyp =
begin
G
≈⟨ η-exp {A} {B} {C} {G} ⟩
curry.F₀ (eval ∘F (G ⁂ idF))
≈⟨ curry.resp-NI {F = eval ∘F (G ⁂ idF)} {H} hyp ⟩
curry.F₀ H
∎
where
open Functor
open Cats.HomReasoning
Cats-CCC : Canonical.CartesianClosed (Cats l l l)
Cats-CCC = record
{ ! = !
; π₁ = π₁
; π₂ = π₂
; ⟨_,_⟩ = ⟨_,_⟩
; !-unique = !-unique
; π₁-comp = λ {_} {_} {F} {_} {G} → project₁ {h = F} {i = G}
; π₂-comp = λ {_} {_} {F} {_} {G} → project₂ {h = F} {i = G}
; ⟨,⟩-unique = unique
; eval = eval
; curry = curry.F₀
; eval-comp = λ {_} {_} {_} {G} → eval-comp {G = G}
; curry-resp-≈ = λ {_} {_} {_} {G} {H} → curry.resp-NI {F = G} {H}
; curry-unique = λ {_} {_} {_} {G} {H} → curry-unique {G = G} {H}
}
open Canonical.CartesianClosed Cats-CCC
Cats-CCC : ∀ {l} → CCC.CartesianClosed (Cats l l l)
Cats-CCC =
Canonical.Equivalence.fromCanonical _ CanonicallyCartesianClosed.Cats-CCC
module CartesianClosed {l} = CCC.CartesianClosed (Cats-CCC {l})
| {
"alphanum_fraction": 0.5332426458,
"avg_line_length": 37.2215189873,
"ext": "agda",
"hexsha": "f21b35bcf4201a2d245f14dd5c4d3716d998efd2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Properties/Cats.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Properties/Cats.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Properties/Cats.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2181,
"size": 5881
} |
module Data.QuadTree.LensProofs.Valid-LensLeaf where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Agda.Primitive
open import Data.Lens.Proofs.LensLaws
open import Data.Lens.Proofs.LensPostulates
open import Data.Lens.Proofs.LensComposition
open import Data.QuadTree.InternalAgda
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
--- Lens laws for lensLeaf
ValidLens-Leaf-ViewSet : {t : Set} {{eqT : Eq t}} -> ViewSet (lensLeaf {t})
ValidLens-Leaf-ViewSet v (CVQuadrant (Leaf x)) = refl
ValidLens-Leaf-SetView :
{t : Set} {{eqT : Eq t}}
-> SetView (lensLeaf {t})
ValidLens-Leaf-SetView (CVQuadrant (Leaf x)) = refl
ValidLens-Leaf-SetSet :
{t : Set} {{eqT : Eq t}}
-> SetSet (lensLeaf {t})
ValidLens-Leaf-SetSet v1 v2 (CVQuadrant (Leaf x)) = refl
ValidLens-Leaf :
{t : Set} {{eqT : Eq t}}
-> ValidLens (VQuadrant t {0}) t
ValidLens-Leaf = CValidLens lensLeaf ValidLens-Leaf-ViewSet ValidLens-Leaf-SetView ValidLens-Leaf-SetSet | {
"alphanum_fraction": 0.7443082312,
"avg_line_length": 34.6060606061,
"ext": "agda",
"hexsha": "55c0f7f863a5c17a04b2f0feebfe3169d96c95e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensLeaf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensLeaf.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensLeaf.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 352,
"size": 1142
} |
{-# OPTIONS --without-K #-}
-- Borrowed from OldUnivalence/Equivalences.agda, without HoTT
-- and then upgraded to work on Setoid rather than just on ≡
module SetoidEquiv where
open import Level using (Level; zero; _⊔_)
open import Data.Empty using (⊥)
open import Data.Sum using (_⊎_; inj₁; inj₂)
import Function as Fun using (id)
open import Function.Equality using (id; _∘_; _⟶_; _⟨$⟩_; _⇨_; cong)
open import Relation.Binary using (Setoid; module Setoid)
open import Relation.Binary.PropositionalEquality as P using (setoid; →-to-⟶)
open Setoid
-- Equivalence of setoids
infix 4 _≃S_
------------------------------------------------------------------------------
-- A setoid gives us a set and an equivalence relation on that set.
-- The setoids constructed in PropositionalEquality (P) use ≡ as the
-- equivalence relation
-- the empty set with ≡
{--
0S : Setoid zero zero
0S = P.setoid ⊥
--}
-- sum of setoids
-- we take the disjoint union of the carriers and construct a new
-- equivalence relation that uses the underlying relations on each
-- summand (and is undefined on elements that come from different
-- summands)
{--
_⊎S_ : (AS : Setoid zero zero) (BS : Setoid zero zero) → Setoid zero zero
_⊎S_ AS BS = record
{ Carrier = A ⊎ B
; _≈_ = _∼₁_
; isEquivalence = record
{ refl = λ { {inj₁ _} → refl AS ; {inj₂ _} → refl BS}
; sym = λ {x} {y} → sym∼₁ {x} {y}
; trans = λ {x} {y} {z} → trans∼₁ {x} {y} {z} }
}
where
A = Carrier AS
B = Carrier BS
_∼₁_ : A ⊎ B → A ⊎ B → Set
inj₁ x ∼₁ inj₁ x₁ = _≈_ AS x x₁
inj₁ x ∼₁ inj₂ y = ⊥
inj₂ y ∼₁ inj₁ x = ⊥
inj₂ y ∼₁ inj₂ y₁ = _≈_ BS y y₁
sym∼₁ : {x y : A ⊎ B} → x ∼₁ y → y ∼₁ x
sym∼₁ {inj₁ _} {inj₁ _} x~y = sym AS x~y
sym∼₁ {inj₁ _} {inj₂ _} ()
sym∼₁ {inj₂ _} {inj₁ _} ()
sym∼₁ {inj₂ _} {inj₂ _} x~y = sym BS x~y
trans∼₁ : Relation.Binary.Transitive _∼₁_
trans∼₁ {inj₁ x} {inj₁ x₁} {inj₁ x₂} i~j j~k = trans AS i~j j~k
trans∼₁ {inj₁ x} {inj₁ x₁} {inj₂ y} i~j ()
trans∼₁ {inj₁ x} {inj₂ y} {inj₁ x₁} i~j ()
trans∼₁ {inj₁ x} {inj₂ y} () j~k
trans∼₁ {inj₂ y} {inj₁ x} () j~k
trans∼₁ {inj₂ y} {inj₂ y₁} {inj₁ x} i~j ()
trans∼₁ {inj₂ y} {inj₂ y₁} {inj₂ y₂} i~j j~k = trans BS i~j j~k
--}
------------------------------------------------------------------------------
-- Equivalence of setoids
-- Two setoids are equivalent if
record _≃S_ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} (A : Setoid ℓ₁ ℓ₂) (B : Setoid ℓ₃ ℓ₄) :
Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
constructor equiv
field
f : A ⟶ B
g : B ⟶ A
α : ∀ {x y} → _≈_ B x y → _≈_ B ((f ∘ g) ⟨$⟩ x) y
β : ∀ {x y} → _≈_ A x y → _≈_ A ((g ∘ f) ⟨$⟩ x) y
{--
id≃S : ∀ {ℓ₁ ℓ₂} {A : Setoid ℓ₁ ℓ₂} → A ≃S A
id≃S {A = A} = equiv id id Fun.id Fun.id
sym≃S : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Setoid ℓ₁ ℓ₂} {B : Setoid ℓ₃ ℓ₄} →
(A ≃S B) → B ≃S A
sym≃S eq = equiv e.g e.f e.β e.α
where module e = _≃S_ eq
trans≃S : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆}
{A : Setoid ℓ₁ ℓ₂} {B : Setoid ℓ₃ ℓ₄} {C : Setoid ℓ₅ ℓ₆} →
A ≃S B → B ≃S C → A ≃S C
trans≃S {A = A} {B} {C} A≃B B≃C = equiv f g α' β'
where
module fm = _≃S_ A≃B
module gm = _≃S_ B≃C
f : A ⟶ C
f = gm.f ∘ fm.f
g : C ⟶ A
g = fm.g ∘ gm.g
α' : _≈_ (C ⇨ C) (f ∘ g) id
α' = λ z → trans C (cong gm.f (fm.α (cong gm.g (refl C)))) (gm.α z)
β' : _≈_ (A ⇨ A) (g ∘ f) id
β' = λ z → trans A (cong fm.g (gm.β (cong fm.f (refl A)))) (fm.β z)
_✴_ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Setoid ℓ₁ ℓ₂} {B : Setoid ℓ₃ ℓ₄} →
(A ≃S B) → (x : Carrier A) → Carrier B
(equiv f _ _ _) ✴ x = f ⟨$⟩ x
--}
-- can't use id because it is not sufficiently dependently typed!
{--
0≃S : 0S ≃S 0S
0≃S = equiv id id (λ x → x) (λ x → x)
--}
-- just to make things prettier
_≃S≡_ : ∀ {ℓ₁} → (A B : Set ℓ₁) → Set ℓ₁
A ≃S≡ B = (P.setoid A) ≃S (P.setoid B)
-- Need to be able to take ⊎ of ≃S-Setoids
{--
_⊎≃S_ : {A B C D : Set} → A ≃S≡ B → C ≃S≡ D → (A ⊎ C) ≃S≡ (B ⊎ D)
_⊎≃S_ {A} {B} {C} {D} (equiv f g α β) (equiv f₁ g₁ α₁ β₁) =
equiv (→-to-⟶ ff) (→-to-⟶ gg) αα ββ
where
ff : A ⊎ C → B ⊎ D
ff (inj₁ x) = inj₁ (f ⟨$⟩ x)
ff (inj₂ y) = inj₂ (f₁ ⟨$⟩ y)
gg : B ⊎ D → A ⊎ C
gg (inj₁ x) = inj₁ (g ⟨$⟩ x)
gg (inj₂ y) = inj₂ (g₁ ⟨$⟩ y)
αα : {x y : B ⊎ D} → x P.≡ y → ff (gg x) P.≡ y
αα {inj₁ x} P.refl = P.cong inj₁ (α P.refl)
αα {inj₂ y} P.refl = P.cong inj₂ (α₁ P.refl)
ββ : {x y : A ⊎ C} → x P.≡ y → gg (ff x) P.≡ y
ββ {inj₁ x} P.refl = P.cong inj₁ (β P.refl)
ββ {inj₂ y} P.refl = P.cong inj₂ (β₁ P.refl)
--}
-- note that this appears to be redundant (especially when looking at
-- the proofs), but having both f and g is needed for inference of
-- other aspects to succeed.
record _≋_ {ℓ₁} {A B : Set ℓ₁} (eq₁ eq₂ : A ≃S≡ B) : Set ℓ₁ where
constructor equivS
field
f≡ : ∀ (x : A) → P._≡_ (_≃S_.f eq₁ ⟨$⟩ x) (_≃S_.f eq₂ ⟨$⟩ x)
g≡ : ∀ (x : B) → P._≡_ (_≃S_.g eq₁ ⟨$⟩ x) (_≃S_.g eq₂ ⟨$⟩ x)
id≋ : ∀ {ℓ} {A B : Set ℓ} {x : A ≃S≡ B} → x ≋ x
id≋ = record { f≡ = λ x → P.refl ; g≡ = λ x → P.refl }
sym≋ : ∀ {ℓ} {A B : Set ℓ} {x y : A ≃S≡ B} → x ≋ y → y ≋ x
sym≋ (equivS f≡ g≡) = equivS (λ a → P.sym (f≡ a)) (λ b → P.sym (g≡ b))
trans≋ : ∀ {ℓ} {A B : Set ℓ} {x y z : A ≃S≡ B} → x ≋ y → y ≋ z → x ≋ z
trans≋ (equivS f≡ g≡) (equivS h≡ i≡) =
equivS (λ a → P.trans (f≡ a) (h≡ a)) (λ b → P.trans (g≡ b) (i≡ b))
-- WARNING: this is not generic, but specific to ≡-Setoids of functions.
≃S-Setoid : ∀ {ℓ₁} → (A B : Set ℓ₁) → Setoid ℓ₁ ℓ₁
≃S-Setoid {ℓ₁} A B = record
{ Carrier = AS ≃S BS
; _≈_ = _≋_
; isEquivalence = record
{ refl = id≋
; sym = sym≋
; trans = trans≋
}
}
where
open _≃S_
AS = P.setoid A
BS = P.setoid B
-- equivalences are injective
{--
inj≃ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Setoid ℓ₁ ℓ₂} {B : Setoid ℓ₃ ℓ₄} →
(eq : A ≃S B) → {x y : Carrier A} →
_≈_ B (eq ✴ x) (eq ✴ y) → _≈_ A x y
inj≃ {A = A'} (equiv f g _ β) p =
A.trans (A.sym (β A.refl)) (A.trans (cong g p) (β A.refl))
where
module A = Setoid A'
--}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4890371783,
"avg_line_length": 30.8529411765,
"ext": "agda",
"hexsha": "bdd8365ec2fce27c66ebbeb13d280031b39c45e6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/SetoidEquiv.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/SetoidEquiv.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/SetoidEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2891,
"size": 6294
} |
------------------------------------------------------------------------------
-- Well-founded induction on the natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Induction.Acc.WF-I where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Type
open import FOTC.Induction.WF
------------------------------------------------------------------------------
-- The relation _<_ is well-founded.
module <-WF where
<-wf : WellFounded _<_
<-wf Nn = acc (helper Nn)
where
-- N.B. The helper function is the same that the function used by
-- FOTC.Data.Nat.Induction.NonAcc.WellFoundedInductionATP.
helper : ∀ {n m} → N n → N m → m < n → Acc N _<_ m
helper nzero Nm m<0 = ⊥-elim (x<0→⊥ Nm m<0)
helper (nsucc _) nzero 0<Sn = acc (λ Nm' m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
helper (nsucc {n} Nn) (nsucc {m} Nm) Sm<Sn =
acc (λ {m'} Nm' m'<Sm →
let m<n : m < n
m<n = Sx<Sy→x<y Sm<Sn
m'<n : m' < n
m'<n = case (λ m'<m → <-trans Nm' Nm Nn m'<m m<n)
(λ m'≡m → x≡y→y<z→x<z m'≡m m<n)
(x<Sy→x<y∨x≡y Nm' Nm m'<Sm)
in helper Nn Nm' m'<n
)
-- Well-founded induction on the natural numbers.
<-wfind : (A : D → Set) →
(∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) →
∀ {n} → N n → A n
<-wfind A = WellFoundedInduction <-wf
------------------------------------------------------------------------------
-- The relation _<_ is well-founded (a different proof).
module <-WF' where
<-wf : WellFounded {N} _<_
<-wf nzero = acc (λ Nm m<0 → ⊥-elim (x<0→⊥ Nm m<0))
<-wf (nsucc Nn) = acc (λ Nm m<Sn → helper Nm Nn (<-wf Nn)
(x<Sy→x≤y Nm Nn m<Sn))
where
helper : ∀ {n m} → N n → N m → Acc N _<_ m → n ≤ m → Acc N _<_ n
helper {n} {m} Nn Nm (acc h) n≤m = case (λ n<m → h Nn n<m)
(λ n≡m → helper₁ (sym n≡m) (acc h))
(x≤y→x<y∨x≡y Nn Nm n≤m)
where
helper₁ : ∀ {a b} → a ≡ b → Acc N _<_ a → Acc N _<_ b
helper₁ refl h = h
| {
"alphanum_fraction": 0.4316939891,
"avg_line_length": 39.4153846154,
"ext": "agda",
"hexsha": "25d7673752528cf7390d10e9e1c4a644b21ba1d1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Induction/Acc/WF-I.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 819,
"size": 2562
} |
module Prelude.Ord.Properties where
open import Prelude.Ord
open import Prelude.Empty
open import Prelude.Equality
open import Prelude.Equality.Inspect
open import Prelude.Function
open import Prelude.Decidable
open import Prelude.Bool
open import Prelude.Bool.Properties
-- Ord/Laws extra lemmas
module _ {ℓ} {A : Set ℓ} {{_ : Ord/Laws A}} where
<⇒≤ : {a b : A} → a < b → a ≤ b
<⇒≤ = lt-to-leq
≡⇒≮ : {a b : A} → a ≡ b → a ≮ b
≡⇒≮ refl a<b = less-antisym a<b a<b
<⇒≱ : {a b : A} → a < b → a ≱ b
<⇒≱ = flip leq-less-antisym
≮⇒≥ : {a b : A} → a ≮ b → a ≥ b
≮⇒≥ {a = a} {b = b} ¬a<b
with compare a b
...| less a<b = ⊥-elim (¬a<b a<b)
...| equal a≡b = eq-to-leq (sym a≡b)
...| greater a>b = lt-to-leq a>b
≰⇒> : {a b : A} → a ≰ b → a > b
≰⇒> {a = a} {b = b} a≰b
with compare a b
...| less a<b = ⊥-elim (a≰b (lt-to-leq a<b))
...| equal a≡b = ⊥-elim (a≰b (eq-to-leq a≡b))
...| greater b>a = b>a
≰⇒≥ : {a b : A} → a ≰ b → a ≥ b
≰⇒≥ = <⇒≤ ∘ ≰⇒>
<?⇒< : {a b : A} → (a <? b) ≡ true → a < b
<?⇒< {a = a} {b = b} a<?b
with compare a b
...| less a<b = a<b
...| equal a≡b rewrite a≡b = case a<?b of λ ()
...| greater _ = case a<?b of λ ()
≮?⇒≮ : {a b : A} → (a <? b) ≡ false → a ≮ b
≮?⇒≮ {a = a} {b = b} a≮?b
with compare a b
...| less _ = case a≮?b of λ ()
...| equal a≡b rewrite a≡b = λ a<b → ⊥-elim (less-antirefl a<b)
...| greater a>b = λ a<b → ⊥-elim (less-antisym a>b a<b)
≤?⇒≤ : {a b : A} → (a ≤? b) ≡ true → a ≤ b
≤?⇒≤ {a = a} {b = b} a≤?b
with inspect (compare b a)
...| less a<b with≡ compare≡ rewrite compare≡ =
case a≤?b of λ ()
...| equal a≡b with≡ _ = eq-to-leq (sym a≡b)
...| greater a>b with≡ _ = lt-to-leq a>b
≰?⇒≰ : {a b : A} → (a ≤? b) ≡ false → a ≰ b
≰?⇒≰ {a = a} {b = b} a≰?b
with (compare b a)
...| less b<a = <⇒≱ b<a
...| equal a≡b rewrite a≡b = case a≰?b of λ ()
...| greater _ = case a≰?b of λ ()
≰?⇒≥ : {a b : A} → (a ≤? b) ≡ false → a ≥ b
≰?⇒≥ = ≰⇒≥ ∘ ≰?⇒≰
| {
"alphanum_fraction": 0.4597298649,
"avg_line_length": 27.0135135135,
"ext": "agda",
"hexsha": "81d850fac68c926158dab591a0f1528def3000f5",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Ord/Properties.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Ord/Properties.agda",
"max_line_length": 65,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Ord/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1017,
"size": 1999
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.ZariskiLattice.BasicOpens where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.Algebra.CommRing.Localisation.UniversalProperty
open import Cubical.Algebra.CommRing.Localisation.InvertingElements
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommAlgebra.Properties
open import Cubical.Algebra.CommAlgebra.Localisation
open import Cubical.Algebra.RingSolver.ReflectionSolving
open import Cubical.Algebra.Semilattice
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open Iso
open BinaryRelation
open isEquivRel
private
variable
ℓ ℓ' : Level
module Presheaf (A' : CommRing ℓ) where
open CommRingStr (snd A') renaming (_·_ to _·r_ ; ·-comm to ·r-comm ; ·Assoc to ·rAssoc
; ·Lid to ·rLid ; ·Rid to ·rRid)
open Exponentiation A'
open CommRingTheory A'
open isMultClosedSubset
open CommAlgebraStr ⦃...⦄
private
A = fst A'
A[1/_] : A → CommAlgebra A' ℓ
A[1/ x ] = AlgLoc.S⁻¹RAsCommAlg A' ([_ⁿ|n≥0] A' x) (powersFormMultClosedSubset _ _)
A[1/_]ˣ : (x : A) → ℙ (fst A[1/ x ])
A[1/ x ]ˣ = (CommAlgebra→CommRing A[1/ x ]) ˣ
_≼_ : A → A → Type ℓ
x ≼ y = ∃[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y -- rad(x) ⊆ rad(y)
-- ≼ is a pre-order:
Refl≼ : isRefl _≼_
Refl≼ x = PT.∣ 1 , 1r , ·r-comm _ _ ∣
Trans≼ : isTrans _≼_
Trans≼ x y z = map2 Trans≼Σ
where
Trans≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y
→ Σ[ n ∈ ℕ ] Σ[ a ∈ A ] y ^ n ≡ a ·r z
→ Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r z
Trans≼Σ (n , a , p) (m , b , q) = n ·ℕ m , (a ^ m ·r b) , path
where
path : x ^ (n ·ℕ m) ≡ a ^ m ·r b ·r z
path = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩
(x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩
(a ·r y) ^ m ≡⟨ ^-ldist-· a y m ⟩
a ^ m ·r y ^ m ≡⟨ cong (a ^ m ·r_) q ⟩
a ^ m ·r (b ·r z) ≡⟨ ·rAssoc _ _ _ ⟩
a ^ m ·r b ·r z ∎
R : A → A → Type ℓ
R x y = x ≼ y × y ≼ x -- rad(x) ≡ rad(y)
RequivRel : isEquivRel R
RequivRel .reflexive x = Refl≼ x , Refl≼ x
RequivRel .symmetric _ _ Rxy = (Rxy .snd) , (Rxy .fst)
RequivRel .transitive _ _ _ Rxy Ryz = Trans≼ _ _ _ (Rxy .fst) (Ryz .fst)
, Trans≼ _ _ _ (Ryz .snd) (Rxy .snd)
RpropValued : isPropValued R
RpropValued x y = isProp× isPropPropTrunc isPropPropTrunc
powerIs≽ : (x a : A) → x ∈ ([_ⁿ|n≥0] A' a) → a ≼ x
powerIs≽ x a = map powerIs≽Σ
where
powerIs≽Σ : Σ[ n ∈ ℕ ] (x ≡ a ^ n) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] (a ^ n ≡ z ·r x)
powerIs≽Σ (n , p) = n , 1r , sym p ∙ sym (·rLid _)
module ≼ToLoc (x y : A) where
private
instance
_ = snd A[1/ x ]
lemma : x ≼ y → y ⋆ 1a ∈ A[1/ x ]ˣ -- y/1 ∈ A[1/x]ˣ
lemma = PT.rec (A[1/ x ]ˣ (y ⋆ 1a) .snd) lemmaΣ
where
path1 : (y z : A) → 1r ·r (y ·r 1r ·r z) ·r 1r ≡ z ·r y
path1 = solve A'
path2 : (xn : A) → xn ≡ 1r ·r 1r ·r (1r ·r 1r ·r xn)
path2 = solve A'
lemmaΣ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → y ⋆ 1a ∈ A[1/ x ]ˣ
lemmaΣ (n , z , p) = [ z , (x ^ n) , PT.∣ n , refl ∣ ] -- xⁿ≡zy → y⁻¹ ≡ z/xⁿ
, eq/ _ _ ((1r , powersFormMultClosedSubset _ _ .containsOne)
, (path1 _ _ ∙∙ sym p ∙∙ path2 _))
module ≼PowerToLoc (x y : A) (x≼y : x ≼ y) where
private
[yⁿ|n≥0] = [_ⁿ|n≥0] A' y
instance
_ = snd A[1/ x ]
lemma : ∀ (s : A) → s ∈ [yⁿ|n≥0] → s ⋆ 1a ∈ A[1/ x ]ˣ
lemma _ s∈[yⁿ|n≥0] = ≼ToLoc.lemma _ _ (Trans≼ _ y _ x≼y (powerIs≽ _ _ s∈[yⁿ|n≥0]))
𝓞ᴰ : A / R → CommAlgebra A' ℓ
𝓞ᴰ = rec→Gpd.fun isGroupoidCommAlgebra (λ a → A[1/ a ]) RCoh LocPathProp
where
RCoh : ∀ a b → R a b → A[1/ a ] ≡ A[1/ b ]
RCoh a b (a≼b , b≼a) = fst (isContrS₁⁻¹R≡S₂⁻¹R (≼PowerToLoc.lemma _ _ b≼a)
(≼PowerToLoc.lemma _ _ a≼b))
where
open AlgLocTwoSubsets A' ([_ⁿ|n≥0] A' a) (powersFormMultClosedSubset _ _)
([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _)
LocPathProp : ∀ a b → isProp (A[1/ a ] ≡ A[1/ b ])
LocPathProp a b = isPropS₁⁻¹R≡S₂⁻¹R
where
open AlgLocTwoSubsets A' ([_ⁿ|n≥0] A' a) (powersFormMultClosedSubset _ _)
([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _)
-- The quotient A/R corresponds to the basic opens of the Zariski topology.
-- Multiplication lifts to the quotient and corresponds to intersection
-- of basic opens, i.e. we get a meet-semilattice with:
_∧/_ : A / R → A / R → A / R
_∧/_ = setQuotSymmBinOp (RequivRel .reflexive) (RequivRel .transitive) _·r_
(λ a b → subst (λ x → R (a ·r b) x) (·r-comm a b) (RequivRel .reflexive (a ·r b))) ·r-lcoh
where
·r-lcoh-≼ : (x y z : A) → x ≼ y → (x ·r z) ≼ (y ·r z)
·r-lcoh-≼ x y z = map ·r-lcoh-≼Σ
where
path : (x z a y zn : A) → x ·r z ·r (a ·r y ·r zn) ≡ x ·r zn ·r a ·r (y ·r z)
path = solve A'
·r-lcoh-≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y
→ Σ[ n ∈ ℕ ] Σ[ a ∈ A ] (x ·r z) ^ n ≡ a ·r (y ·r z)
·r-lcoh-≼Σ (n , a , p) = suc n , (x ·r z ^ n ·r a) , (cong (x ·r z ·r_) (^-ldist-· _ _ _)
∙∙ cong (λ v → x ·r z ·r (v ·r z ^ n)) p
∙∙ path _ _ _ _ _)
·r-lcoh : (x y z : A) → R x y → R (x ·r z) (y ·r z)
·r-lcoh x y z Rxy = ·r-lcoh-≼ x y z (Rxy .fst) , ·r-lcoh-≼ y x z (Rxy .snd)
BasicOpens : Semilattice ℓ
BasicOpens = makeSemilattice [ 1r ] _∧/_ squash/
(elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong [_] (·rAssoc _ _ _))
(elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rRid _))
(elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rLid _))
(elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong [_] (·r-comm _ _))
(elimProp (λ _ → squash/ _ _) λ a → eq/ _ _ -- R a a²
(∣ 1 , a , ·rRid _ ∣ , ∣ 2 , 1r , cong (a ·r_) (·rRid a) ∙ sym (·rLid _) ∣))
-- The induced partial order
open MeetSemilattice BasicOpens renaming (_≤_ to _≼/_ ; IndPoset to BasicOpensAsPoset)
-- coincides with our ≼
≼/CoincidesWith≼ : ∀ (x y : A) → ([ x ] ≼/ [ y ]) ≡ (x ≼ y)
≼/CoincidesWith≼ x y = [ x ] ≼/ [ y ] -- ≡⟨ refl ⟩ [ x ·r y ] ≡ [ x ]
≡⟨ isoToPath (isEquivRel→effectiveIso RpropValued RequivRel _ _) ⟩
R (x ·r y) x
≡⟨ isoToPath Σ-swap-Iso ⟩
R x (x ·r y)
≡⟨ hPropExt (RpropValued _ _) isPropPropTrunc ·To≼ ≼To· ⟩
x ≼ y ∎
where
x≼xy→x≼yΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y)
→ Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y
x≼xy→x≼yΣ (n , z , p) = n , (z ·r x) , p ∙ ·rAssoc _ _ _
·To≼ : R x (x ·r y) → x ≼ y
·To≼ (x≼xy , _) = PT.map x≼xy→x≼yΣ x≼xy
x≼y→x≼xyΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y
→ Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y)
x≼y→x≼xyΣ (n , z , p) = suc n , z , cong (x ·r_) p ∙ ·-commAssocl _ _ _
≼To· : x ≼ y → R x ( x ·r y)
≼To· x≼y = PT.map x≼y→x≼xyΣ x≼y , PT.∣ 1 , y , ·rRid _ ∙ ·r-comm _ _ ∣
open IsPoset
open PosetStr
Refl≼/ : isRefl _≼/_
Refl≼/ = BasicOpensAsPoset .snd .isPoset .is-refl
Trans≼/ : isTrans _≼/_
Trans≼/ = BasicOpensAsPoset .snd .isPoset .is-trans
-- The restrictions:
ρᴰᴬ : (a b : A) → a ≼ b → isContr (CommAlgebraHom A[1/ b ] A[1/ a ])
ρᴰᴬ _ b a≼b = A[1/b]HasUniversalProp _ (≼PowerToLoc.lemma _ _ a≼b)
where
open AlgLoc A' ([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _)
renaming (S⁻¹RHasAlgUniversalProp to A[1/b]HasUniversalProp)
ρᴰᴬId : ∀ (a : A) (r : a ≼ a) → ρᴰᴬ a a r .fst ≡ idAlgHom
ρᴰᴬId a r = ρᴰᴬ a a r .snd _
ρᴰᴬComp : ∀ (a b c : A) (l : a ≼ b) (m : b ≼ c)
→ ρᴰᴬ a c (Trans≼ _ _ _ l m) .fst ≡ ρᴰᴬ a b l .fst ∘a ρᴰᴬ b c m .fst
ρᴰᴬComp a _ c l m = ρᴰᴬ a c (Trans≼ _ _ _ l m) .snd _
ρᴰ : (x y : A / R) → x ≼/ y → CommAlgebraHom (𝓞ᴰ y) (𝓞ᴰ x)
ρᴰ = elimContr2 λ _ _ → isContrΠ
λ [a]≼/[b] → ρᴰᴬ _ _ (transport (≼/CoincidesWith≼ _ _) [a]≼/[b])
ρᴰId : ∀ (x : A / R) (r : x ≼/ x) → ρᴰ x x r ≡ idAlgHom
ρᴰId = SQ.elimProp (λ _ → isPropΠ (λ _ → isSetAlgebraHom _ _ _ _))
λ a r → ρᴰᴬId a (transport (≼/CoincidesWith≼ _ _) r)
ρᴰComp : ∀ (x y z : A / R) (l : x ≼/ y) (m : y ≼/ z)
→ ρᴰ x z (Trans≼/ _ _ _ l m) ≡ ρᴰ x y l ∘a ρᴰ y z m
ρᴰComp = SQ.elimProp3 (λ _ _ _ → isPropΠ2 (λ _ _ → isSetAlgebraHom _ _ _ _))
λ a b c _ _ → sym (ρᴰᴬ a c _ .snd _) ∙ ρᴰᴬComp a b c _ _
| {
"alphanum_fraction": 0.5327210103,
"avg_line_length": 38.4779116466,
"ext": "agda",
"hexsha": "83fed7d2bb154981930e14c7f8f0f691d9d4f2c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/ZariskiLattice/BasicOpens.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/ZariskiLattice/BasicOpens.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/ZariskiLattice/BasicOpens.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4234,
"size": 9581
} |
-- NB. This test fail if Agda is called with the --no-sharing option.
module Issue1351 where
open import Common.Equality
open import Common.Prelude
f1 : Nat → Nat
f1 x = x + x
f2 : Nat → Nat
f2 x = f1 (f1 x)
f4 : Nat → Nat
f4 x = f2 (f2 x)
f8 : Nat → Nat
f8 x = f4 (f4 x)
f16 : Nat → Nat
f16 x = f8 (f8 x)
f32 : Nat → Nat
f32 x = f16 (f16 x)
thm : f32 1 ≡ 4294967296
thm = refl
| {
"alphanum_fraction": 0.6201550388,
"avg_line_length": 13.8214285714,
"ext": "agda",
"hexsha": "bccab92da77da65bb779680607fa875d13a833e7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1351.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1351.agda",
"max_line_length": 69,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1351.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 161,
"size": 387
} |
-- {-# OPTIONS --without-K #-}
module kripke where
open import common
infixl 2 _▻_
infixl 3 _‘’_
infixr 1 _‘→’_
infixr 1 _‘‘→’’_
infixr 1 _ww‘‘‘→’’’_
infixl 3 _‘’ₐ_
infixl 3 _w‘‘’’ₐ_
infixr 2 _‘∘’_
infixr 2 _‘×’_
infixr 2 _‘‘×’’_
infixr 2 _w‘‘×’’_
mutual
data Context : Set where
ε : Context
_▻_ : (Γ : Context) → Type Γ → Context
data Type : Context → Set where
W : ∀ {Γ A} → Type Γ → Type (Γ ▻ A)
W1 : ∀ {Γ A B} → Type (Γ ▻ B) → Type (Γ ▻ A ▻ (W {Γ = Γ} {A = A} B))
_‘’_ : ∀ {Γ A} → Type (Γ ▻ A) → Term {Γ} A → Type Γ
‘Type’ : ∀ Γ → Type Γ
‘Term’ : ∀ {Γ} → Type (Γ ▻ ‘Type’ Γ)
_‘→’_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ
_‘×’_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ
Quine : ∀ {Γ} → Type (Γ ▻ ‘Type’ Γ) → Type Γ
‘⊤’ : ∀ {Γ} → Type Γ
‘⊥’ : ∀ {Γ} → Type Γ
data Term : {Γ : Context} → Type Γ → Set where
⌜_⌝ : ∀ {Γ} → Type Γ → Term {Γ} (‘Type’ Γ)
⌜_⌝t : ∀ {Γ T} → Term {Γ} T → Term {Γ} (‘Term’ ‘’ ⌜ T ⌝)
‘⌜‘VAR₀’⌝t’ : ∀ {Γ T} → Term {Γ ▻ ‘Term’ ‘’ ⌜ T ⌝} (W (‘Term’ ‘’ ⌜ ‘Term’ ‘’ ⌜ T ⌝ ⌝))
‘⌜‘VAR₀’⌝’ : ∀ {Γ} → Term {Γ ▻ ‘Type’ Γ} (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))
‘λ∙’ : ∀ {Γ A B} → Term {Γ ▻ A} (W B) → Term {Γ} (A ‘→’ B)
‘VAR₀’ : ∀ {Γ T} → Term {Γ ▻ T} (W T)
_‘’ₐ_ : ∀ {Γ A B} → Term {Γ} (A ‘→’ B) → Term {Γ} A → Term {Γ} B
‘‘×'’’ : ∀ {Γ} → Term {Γ} (‘Type’ Γ ‘→’ ‘Type’ Γ ‘→’ ‘Type’ Γ)
quine→ : ∀ {Γ φ} → Term {Γ} (Quine φ ‘→’ φ ‘’ ⌜ Quine φ ⌝)
quine← : ∀ {Γ φ} → Term {Γ} (φ ‘’ ⌜ Quine φ ⌝ ‘→’ Quine φ)
‘tt’ : ∀ {Γ} → Term {Γ} ‘⊤’
SW : ∀ {Γ X A} {a : Term A} → Term {Γ} (W X ‘’ a) → Term X
→SW1SV→W : ∀ {Γ T X A B} {x : Term X}
→ Term {Γ} (T ‘→’ (W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x)
→ Term {Γ} (T ‘→’ A ‘’ x ‘→’ B)
←SW1SV→W : ∀ {Γ T X A B} {x : Term X}
→ Term {Γ} ((W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x ‘→’ T)
→ Term {Γ} ((A ‘’ x ‘→’ B) ‘→’ T)
→SW1SV→SW1SV→W : ∀ {Γ T X A B} {x : Term X}
→ Term {Γ} (T ‘→’ (W1 A ‘’ ‘VAR₀’ ‘→’ W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x)
→ Term {Γ} (T ‘→’ A ‘’ x ‘→’ A ‘’ x ‘→’ B)
←SW1SV→SW1SV→W : ∀ {Γ T X A B} {x : Term X}
→ Term {Γ} ((W1 A ‘’ ‘VAR₀’ ‘→’ W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x ‘→’ T)
→ Term {Γ} ((A ‘’ x ‘→’ A ‘’ x ‘→’ B) ‘→’ T)
w : ∀ {Γ A T} → Term {Γ} A → Term {Γ ▻ T} (W A)
w→ : ∀ {Γ A B X} → Term {Γ ▻ X} (W (A ‘→’ B)) → Term {Γ ▻ X} (W A ‘→’ W B)
→w : ∀ {Γ A B X} → Term {Γ ▻ X} (W A ‘→’ W B) → Term {Γ ▻ X} (W (A ‘→’ B))
ww→ : ∀ {Γ A B X Y} → Term {Γ ▻ X ▻ Y} (W (W (A ‘→’ B))) → Term {Γ ▻ X ▻ Y} (W (W A) ‘→’ W (W B))
→ww : ∀ {Γ A B X Y} → Term {Γ ▻ X ▻ Y} (W (W A) ‘→’ W (W B)) → Term {Γ ▻ X ▻ Y} (W (W (A ‘→’ B)))
_‘∘’_ : ∀ {Γ A B C} → Term {Γ} (B ‘→’ C) → Term {Γ} (A ‘→’ B) → Term {Γ} (A ‘→’ C)
_w‘‘’’ₐ_ : ∀ {Γ A B T} → Term {Γ ▻ T} (W (‘Term’ ‘’ ⌜ A ‘→’ B ⌝)) → Term {Γ ▻ T} (W (‘Term’ ‘’ ⌜ A ⌝)) → Term {Γ ▻ T} (W (‘Term’ ‘’ ⌜ B ⌝))
‘‘’ₐ’ : ∀ {Γ A B} → Term {Γ} (‘Term’ ‘’ ⌜ A ‘→’ B ⌝ ‘→’ ‘Term’ ‘’ ⌜ A ⌝ ‘→’ ‘Term’ ‘’ ⌜ B ⌝)
-- _w‘‘’’_ : ∀ {Γ A B T} → Term {Γ ▻ T} (‘Type’ (Γ ▻ T)) → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ T ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Type’ Γ)))
‘‘□’’ : ∀ {Γ A B} → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Type’ Γ)))
-- ‘‘’’' : ∀ {Γ A} → Term {Γ ▻ A} (‘Type’ (Γ ▻ A) ‘→’ W (‘Term’ ‘’ ⌜ A ⌝) ‘→’ W (‘Type’ Γ))
_‘‘→’’_ : ∀ {Γ} → Term {Γ} (‘Type’ Γ) → Term {Γ} (‘Type’ Γ) → Term {Γ} (‘Type’ Γ)
_ww‘‘‘→’’’_ : ∀ {Γ A B} → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝)))
_ww‘‘‘×’’’_ : ∀ {Γ A B} → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝)))
□ : Type ε → Set _
□ = Term {ε}
‘□’ : ∀ {Γ} → Type Γ → Type Γ
‘□’ T = ‘Term’ ‘’ ⌜ T ⌝
_‘‘×’’_ : ∀ {Γ} → Term {Γ} (‘Type’ Γ) → Term {Γ} (‘Type’ Γ) → Term {Γ} (‘Type’ Γ)
A ‘‘×’’ B = ‘‘×'’’ ‘’ₐ A ‘’ₐ B
max-level : Level
max-level = lzero
mutual
Context⇓ : (Γ : Context) → Set (lsuc max-level)
Context⇓ ε = ⊤
Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (Type⇓ {Γ} T)
Type⇓ : {Γ : Context} → Type Γ → Context⇓ Γ → Set max-level
Type⇓ (W T) Γ⇓ = Type⇓ T (Σ.proj₁ Γ⇓)
Type⇓ (W1 T) Γ⇓ = Type⇓ T ((Σ.proj₁ (Σ.proj₁ Γ⇓)) , (Σ.proj₂ Γ⇓))
Type⇓ (T ‘’ x) Γ⇓ = Type⇓ T (Γ⇓ , Term⇓ x Γ⇓)
Type⇓ (‘Type’ Γ) Γ⇓ = Lifted (Type Γ)
Type⇓ ‘Term’ Γ⇓ = Lifted (Term (lower (Σ.proj₂ Γ⇓)))
Type⇓ (A ‘→’ B) Γ⇓ = Type⇓ A Γ⇓ → Type⇓ B Γ⇓
Type⇓ (A ‘×’ B) Γ⇓ = Type⇓ A Γ⇓ × Type⇓ B Γ⇓
Type⇓ ‘⊤’ Γ⇓ = ⊤
Type⇓ ‘⊥’ Γ⇓ = ⊥
Type⇓ (Quine φ) Γ⇓ = Type⇓ φ (Γ⇓ , (lift (Quine φ)))
Term⇓ : ∀ {Γ : Context} {T : Type Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Type⇓ T Γ⇓
Term⇓ ⌜ x ⌝ Γ⇓ = lift x
Term⇓ ⌜ x ⌝t Γ⇓ = lift x
Term⇓ ‘⌜‘VAR₀’⌝t’ Γ⇓ = lift ⌜ (lower (Σ.proj₂ Γ⇓)) ⌝t
Term⇓ ‘⌜‘VAR₀’⌝’ Γ⇓ = lift ⌜ (lower (Σ.proj₂ Γ⇓)) ⌝
Term⇓ (f ‘’ₐ x) Γ⇓ = Term⇓ f Γ⇓ (Term⇓ x Γ⇓)
Term⇓ ‘tt’ Γ⇓ = tt
Term⇓ (quine→ {φ}) Γ⇓ x = x
Term⇓ (quine← {φ}) Γ⇓ x = x
Term⇓ (‘λ∙’ f) Γ⇓ x = Term⇓ f (Γ⇓ , x)
Term⇓ ‘VAR₀’ Γ⇓ = Σ.proj₂ Γ⇓
Term⇓ (SW t) = Term⇓ t
Term⇓ (←SW1SV→W f) = Term⇓ f
Term⇓ (→SW1SV→W f) = Term⇓ f
Term⇓ (←SW1SV→SW1SV→W f) = Term⇓ f
Term⇓ (→SW1SV→SW1SV→W f) = Term⇓ f
Term⇓ (w x) Γ⇓ = Term⇓ x (Σ.proj₁ Γ⇓)
Term⇓ (w→ f) Γ⇓ = Term⇓ f Γ⇓
Term⇓ (→w f) Γ⇓ = Term⇓ f Γ⇓
Term⇓ (ww→ f) Γ⇓ = Term⇓ f Γ⇓
Term⇓ (→ww f) Γ⇓ = Term⇓ f Γ⇓
Term⇓ ‘‘×'’’ Γ⇓ A B = lift (lower A ‘×’ lower B)
Term⇓ (g ‘∘’ f) Γ⇓ x = Term⇓ g Γ⇓ (Term⇓ f Γ⇓ x)
Term⇓ (f w‘‘’’ₐ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ₐ lower (Term⇓ x Γ⇓))
Term⇓ ‘‘’ₐ’ Γ⇓ f x = lift (lower f ‘’ₐ lower x)
-- Term⇓ (f w‘‘’’ x) Γ⇓ = lift {!!} --(lower (Term⇓ f Γ⇓) ‘’ lower (Term⇓ x Γ⇓))
Term⇓ (‘‘□’’ {Γ} T) Γ⇓ = lift (‘Term’ ‘’ lower (Term⇓ T Γ⇓))
Term⇓ (A ‘‘→’’ B) Γ⇓ = lift ((lower (Term⇓ A Γ⇓)) ‘→’ (lower (Term⇓ B Γ⇓)))
Term⇓ (A ww‘‘‘→’’’ B) Γ⇓ = lift ((lower (Term⇓ A Γ⇓)) ‘‘→’’ (lower (Term⇓ B Γ⇓)))
Term⇓ (A ww‘‘‘×’’’ B) Γ⇓ = lift ((lower (Term⇓ A Γ⇓)) ‘‘×’’ (lower (Term⇓ B Γ⇓)))
module inner (‘X’ : Type ε) (‘f’ : Term {ε} (‘□’ ‘X’ ‘→’ ‘X’)) where
‘H’ : Type ε
‘H’ = Quine (W1 ‘Term’ ‘’ ‘VAR₀’ ‘→’ W ‘X’)
‘toH’ : □ ((‘□’ ‘H’ ‘→’ ‘X’) ‘→’ ‘H’)
‘toH’ = ←SW1SV→W quine←
‘fromH’ : □ (‘H’ ‘→’ (‘□’ ‘H’ ‘→’ ‘X’))
‘fromH’ = →SW1SV→W quine→
‘□‘H’→□‘X’’ : □ (‘□’ ‘H’ ‘→’ ‘□’ ‘X’)
‘□‘H’→□‘X’’ = ‘λ∙’ (w ⌜ ‘fromH’ ⌝t w‘‘’’ₐ ‘VAR₀’ w‘‘’’ₐ ‘⌜‘VAR₀’⌝t’)
‘h’ : Term ‘H’
‘h’ = ‘toH’ ‘’ₐ (‘f’ ‘∘’ ‘□‘H’→□‘X’’)
Lӧb : □ ‘X’
Lӧb = ‘fromH’ ‘’ₐ ‘h’ ‘’ₐ ⌜ ‘h’ ⌝t
Lӧb : ∀ {X} → Term {ε} (‘□’ X ‘→’ X) → Term {ε} X
Lӧb {X} f = inner.Lӧb X f
⌞_⌟ : Type ε → Set _
⌞ T ⌟ = Type⇓ T tt
‘¬’_ : ∀ {Γ} → Type Γ → Type Γ
‘¬’ T = T ‘→’ ‘⊥’
_w‘‘×’’_ : ∀ {Γ X} → Term {Γ ▻ X} (W (‘Type’ Γ)) → Term {Γ ▻ X} (W (‘Type’ Γ)) → Term {Γ ▻ X} (W (‘Type’ Γ))
A w‘‘×’’ B = w→ (w→ (w ‘‘×'’’) ‘’ₐ A) ‘’ₐ B
lӧb : ∀ {‘X’} → □ (‘□’ ‘X’ ‘→’ ‘X’) → ⌞ ‘X’ ⌟
lӧb f = Term⇓ (Lӧb f) tt
incompleteness : ¬ □ (‘¬’ (‘□’ ‘⊥’))
incompleteness = lӧb
soundness : ¬ □ ‘⊥’
soundness x = Term⇓ x tt
non-emptyness : Σ (Type ε) (λ T → □ T)
non-emptyness = ‘⊤’ , ‘tt’
module helpers where
Wₕ : ∀ {Γ A} → Type Γ → Type (Γ ▻ A)
Wₕ ‘⊤’ = ‘⊤’
Wₕ ‘⊥’ = ‘⊥’
Wₕ (T ‘→’ T₂) = Wₕ T ‘→’ Wₕ T₂
Wₕ (T ‘×’ T₂) = Wₕ T ‘×’ Wₕ T₂
Wₕ (W T₂) = W (Wₕ T₂)
Wₕ T = W T
_‘’ₕ_ : ∀ {Γ A} → Type (Γ ▻ A) → Term A → Type Γ
‘⊤’ ‘’ₕ x₁ = ‘⊤’
‘⊥’ ‘’ₕ x₁ = ‘⊥’
W f ‘’ₕ x₁ = f
‘Term’ ‘’ₕ ⌜ ‘⊤’ ⌝ = ‘⊤’
(f ‘→’ f₁) ‘’ₕ x₁ = (f ‘’ₕ x₁) ‘→’ (f₁ ‘’ₕ x₁)
(f ‘×’ f₁) ‘’ₕ x₁ = (f ‘’ₕ x₁) ‘×’ (f₁ ‘’ₕ x₁)
f ‘’ₕ x = f ‘’ x
_‘→’ₕ_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ
‘⊤’ ‘→’ₕ B = B
‘⊥’ ‘→’ₕ B = ‘⊤’
A ‘→’ₕ ‘⊤’ = ‘⊤’
A ‘→’ₕ B = A ‘→’ B
_‘×’ₕ_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ
‘⊤’ ‘×’ₕ B = B
‘⊥’ ‘×’ₕ B = ‘⊥’
A ‘×’ₕ ‘⊤’ = A
A ‘×’ₕ ‘⊥’ = ‘⊥’
A ‘×’ₕ B = A ‘×’ B
open helpers
mutual
simplify-type : ∀ {Γ} → Type Γ → Type Γ
simplify-type ‘⊤’ = ‘⊤’
simplify-type ‘⊥’ = ‘⊥’
simplify-type (T ‘→’ T₁) = simplify-type T ‘→’ₕ simplify-type T₁
simplify-type (T ‘×’ T₁) = simplify-type T ‘×’ₕ simplify-type T₁
simplify-type (T₁ ‘’ x) = simplify-type T₁ ‘’ₕ simplify-term x
simplify-type (W T₁) = Wₕ (simplify-type T₁)
simplify-type (W1 T₂) = W1ₕ (simplify-type T₂)
where W1ₕ : ∀ {Γ A B} → Type (Γ ▻ A) → Type (Γ ▻ B ▻ W A)
W1ₕ ‘⊤’ = ‘⊤’
W1ₕ ‘⊥’ = ‘⊥’
W1ₕ (T ‘→’ T₂) = W1ₕ T ‘→’ W1ₕ T₂
W1ₕ (T ‘×’ T₂) = W1ₕ T ‘×’ W1ₕ T₂
W1ₕ (W T₂) = W (Wₕ T₂)
W1ₕ (W1 T₂) = W1 (W1ₕ T₂)
W1ₕ T = W1 T
simplify-type (‘Type’ Γ) = ‘Type’ Γ
simplify-type ‘Term’ = ‘Term’
simplify-type (Quine T) = Quine (simplify-type T)
simplify-term : ∀ {Γ T} → Term {Γ} T → Term T
simplify-term ⌜ x ⌝ = ⌜ simplify-type x ⌝
simplify-term ⌜ t ⌝t = ⌜ simplify-term t ⌝t
simplify-term ‘⌜‘VAR₀’⌝t’ = ‘⌜‘VAR₀’⌝t’
simplify-term ‘⌜‘VAR₀’⌝’ = ‘⌜‘VAR₀’⌝’
simplify-term (‘λ∙’ t) = ‘λ∙’ (simplify-term t)
simplify-term ‘VAR₀’ = ‘VAR₀’
simplify-term (t ‘’ₐ t₁) = simplify-term t ‘’ₐₕ simplify-term t₁
where _‘’ₐₕ_ : ∀ {Γ A T} → Term {Γ} (A ‘→’ T) → Term A → Term T
‘λ∙’ ‘⌜‘VAR₀’⌝t’ ‘’ₐₕ x = ⌜ x ⌝t
‘λ∙’ ‘⌜‘VAR₀’⌝’ ‘’ₐₕ x = ⌜ x ⌝t
‘λ∙’ ‘VAR₀’ ‘’ₐₕ x = x
‘λ∙’ (f ‘’ₐ f₁) ‘’ₐₕ x = ‘λ∙’ (f ‘’ₐₕ f₁) ‘’ₐ x
‘λ∙’ (w f) ‘’ₐₕ x = f
(f ‘’ₐ f₁) ‘’ₐₕ x = (f ‘’ₐₕ f₁) ‘’ₐ x
(f ‘∘’ f₁) ‘’ₐₕ x = f ‘’ₐₕ (f₁ ‘’ₐₕ x)
f ‘’ₐₕ x = f ‘’ₐ x
simplify-term ‘‘×'’’ = ‘‘×'’’
simplify-term quine→ = quine→
simplify-term quine← = quine←
simplify-term ‘tt’ = ‘tt’
simplify-term (SW t₁) = SW (simplify-term t₁)
simplify-term (→SW1SV→W t₁) = →SW1SV→W (simplify-term t₁)
simplify-term (←SW1SV→W t₁) = ←SW1SV→W (simplify-term t₁)
simplify-term (→SW1SV→SW1SV→W t₁) = →SW1SV→SW1SV→W (simplify-term t₁)
simplify-term (←SW1SV→SW1SV→W t₁) = ←SW1SV→SW1SV→W (simplify-term t₁)
simplify-term (w t) = w (simplify-term t)
simplify-term (w→ t) = w→ (simplify-term t)
simplify-term (→w t) = →w (simplify-term t)
simplify-term (ww→ t) = ww→ (simplify-term t)
simplify-term (→ww t) = →ww (simplify-term t)
simplify-term (t ‘∘’ t₁) = simplify-term t ‘∘’ simplify-term t₁
simplify-term (t w‘‘’’ₐ t₁) = simplify-term t w‘‘’’ₐ simplify-term t₁
simplify-term ‘‘’ₐ’ = ‘‘’ₐ’
simplify-term (‘‘□’’ t) = ‘‘□’’ (simplify-term t)
simplify-term (t ‘‘→’’ t₁) = simplify-term t ‘‘→’’ simplify-term t₁
simplify-term (t ww‘‘‘→’’’ t₁) = simplify-term t ww‘‘‘→’’’ simplify-term t₁
simplify-term (t ww‘‘‘×’’’ t₁) = simplify-term t ww‘‘‘×’’’ simplify-term t₁
{-
mutual
simplify-type⇓→ : ∀ {Γ T Γ⇓} → Type⇓ {Γ} T Γ⇓ → Type⇓ {Γ} (simplify-type T) Γ⇓
simplify-type⇓→ {T = T ‘→’ T₁} T⇓ = {!!}
simplify-type⇓→ {T = W T₁} T⇓ = {!!}
simplify-type⇓→ {T = W1 T₂} T⇓ = {!!}
simplify-type⇓→ {T = T₁ ‘’ x} T⇓ = {!!}
simplify-type⇓→ {T = ‘Type’ ._} T⇓ = {!!}
simplify-type⇓→ {T = ‘Term’} T⇓ = {!!}
simplify-type⇓→ {T = T ‘×’ T₁} T⇓ = {!!}
simplify-type⇓→ {T = Quine T} T⇓ = {!!}
simplify-type⇓→ {T = ‘⊤’} T⇓ = tt
simplify-type⇓→ {T = ‘⊥’} T⇓ = T⇓
simplify-type⇓← : ∀ {Γ T Γ⇓} → Type⇓ {Γ} (simplify-type T) Γ⇓ → Type⇓ {Γ} T Γ⇓
simplify-type⇓← {T = W T₁} T⇓ = {!!}
simplify-type⇓← {T = W1 T₂} T⇓ = {!!}
simplify-type⇓← {T = T₁ ‘’ x} T⇓ = {!!}
simplify-type⇓← {T = ‘Type’ ._} T⇓ = {!!}
simplify-type⇓← {T = ‘Term’} T⇓ = {!!}
simplify-type⇓← {T = T ‘→’ T₁} T⇓ x = {!!}
simplify-type⇓← {Γ} {T ‘×’ T₁} {Γ⇓} T⇓ = helper {Γ} {simplify-type T} {simplify-type T₁} {T} {T₁} {Γ⇓} (simplify-type⇓← {T = T}) (simplify-type⇓← {T = T₁}) T⇓
where helper : ∀ {Γ A B A' B'} {Γ⇓ : Context⇓ Γ}
→ (Type⇓ A Γ⇓ → Type⇓ A' Γ⇓)
→ (Type⇓ B Γ⇓ → Type⇓ B' Γ⇓)
→ Type⇓ (A ‘×’ₕ B) Γ⇓
→ Type⇓ (A' ‘×’ B') Γ⇓
helper {A = ‘⊤’} f g x = f tt , g x
helper {A = ‘⊥’} f g ()
helper {A = W A₁} {‘⊤’} f g x = f x , g tt
helper {A = W1 A₂} {‘⊤’} f g x = f x , g tt
helper {A = A₁ ‘’ x} {‘⊤’} f g x₁ = f x₁ , g tt
helper {A = ‘Type’ ._} {‘⊤’} f g x = f x , g tt
helper {A = ‘Term’} {‘⊤’} f g x = f x , g tt
helper {A = A ‘→’ A₁} {‘⊤’} f g x = f x , g tt
helper {A = A ‘×’ A₁} {‘⊤’} f g x = f x , g tt
helper {A = Quine A} {‘⊤’} f g x = f x , g tt
helper {A = W A₁} {‘⊥’} {Γ⇓ = proj₁ , proj₂} f g ()
helper {A = W1 A₂} {‘⊥’} {Γ⇓ = proj₁ , proj₂ , proj₃} f g ()
helper {A = A₁ ‘’ x} {‘⊥’} f g ()
helper {A = ‘Type’ ._} {‘⊥’} f g ()
helper {A = ‘Term’} {‘⊥’} {Γ⇓ = proj₁ , proj₂} f g ()
helper {A = A ‘→’ A₁} {‘⊥’} f g ()
helper {A = A ‘×’ A₁} {‘⊥’} f g ()
helper {A = Quine A} {‘⊥’} f g ()
helper {A = W A₁} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = W1 A₂} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = A₂ ‘’ _} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = {!f (Σ.proj₁ x) , g (Σ.proj₂ x)!}
helper {A = ‘Type’ ._} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = ‘Term’} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = A₁ ‘→’ A₂} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = A₁ ‘×’ A₂} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {A = Quine A₁} {W B₁} {Γ⇓ = proj₁ , proj₂} f g x = f (Σ.proj₁ x) , g (Σ.proj₂ x)
helper {B = W1 B₂} f g x = {!!}
helper {B = B₁ ‘’ x} f g x₁ = {!!}
helper {B = ‘Type’ ._} f g x = {!!}
helper {B = ‘Term’} f g x = {!!}
helper {B = B ‘→’ B₁} f g x = {!!}
helper {B = B ‘×’ B₁} f g x = {!!}
helper {B = Quine B} f g x = {!!} {-
helper {A = W A₁} f g x = {!!}
helper {A = W1 A₂} f g x = {!!}
helper {A = A₁ ‘’ x} f g x₁ = {!!}
helper {A = ‘Type’ ._} f g x = {!!}
helper {A = ‘Term’} f g x = {!!}
helper {A = A ‘→’ A₁} f g x = {!!}
helper {A = A ‘×’ A₁} f g x = {!!}
helper {A = Quine A} f g x = {!!} -}
simplify-type⇓← {T = Quine T} T⇓ = {!!}
simplify-type⇓← {T = ‘⊤’} T⇓ = tt
simplify-type⇓← {T = ‘⊥’} T⇓ = T⇓
-}
module modal-fixpoint where
context-to-term : Context → Set
context-to-term ε = ⊤
context-to-term (Γ ▻ x) = Σ (context-to-term Γ) (λ _ → Term x)
context-to-term⇓ : ∀ {Γ} → context-to-term Γ → Context⇓ Γ
context-to-term⇓ {ε} v = tt
context-to-term⇓ {Γ ▻ x} v = (context-to-term⇓ (Σ.proj₁ v)) , (Term⇓ (Σ.proj₂ v) (context-to-term⇓ (Σ.proj₁ v)))
Type-in : ∀ {Γ} → Type Γ → context-to-term Γ → Type ε
Type-in {ε} T v = T
Type-in (T ‘→’ T₁) v = (Type-in T v) ‘→’ (Type-in T₁ v)
Type-in ‘⊤’ v = ‘⊤’
Type-in ‘⊥’ v = ‘⊥’
Type-in {Γ ▻ x} T v = Type-in (T ‘’ Σ.proj₂ v) (Σ.proj₁ v)
postulate hold : ∀ {Γ} → ℕ → Type Γ → Type Γ
postulate hold-t : ∀ {Γ T} → ℕ → Term {Γ} T → Term T
helper-ikf : ∀ {Γ A} world (T₁ : Type (Γ ▻ A)) (x : Term A) → Type Γ
helper-ikf zero ‘Term’ x₁ = ‘⊤’
helper-ikf world f (x₁ ‘‘→’’ x₂) = helper-ikf world f x₁ ‘→’ helper-ikf world f x₂
helper-ikf (suc world) ‘Term’ ⌜ x₁ ⌝ = x₁
helper-ikf (suc world) ‘Term’ (x₁ ‘’ₐ x₂) = hold (suc world) (‘Term’ ‘’ (x₁ ‘’ₐ x₂))
helper-ikf (suc world) ‘Term’ (SW x₂) = hold (suc world) (‘Term’ ‘’ SW x₂)
helper-ikf world (W T₂) x₁ = T₂
helper-ikf world (W1 T₄) x₁ = hold world (W1 T₄ ‘’ x₁)
helper-ikf world (T₃ ‘’ x₁) x₂ = hold world (T₃ ‘’ x₁ ‘’ x₂)
helper-ikf world (‘Type’ ._) x₁ = hold world (‘Type’ _ ‘’ x₁)
helper-ikf world (T₂ ‘→’ T₃) x₁ = helper-ikf world T₂ x₁ ‘→’ helper-ikf world T₃ x₁
helper-ikf world (T₂ ‘×’ T₃) x₁ = helper-ikf world T₂ x₁ ‘×’ helper-ikf world T₃ x₁
helper-ikf world (Quine T₂) x₁ = hold world (Quine T₂ ‘’ x₁)
helper-ikf world ‘⊤’ x₁ = ‘⊤’
helper-ikf world ‘⊥’ x₁ = ‘⊥’
mutual
{- _‘’ₐₕ_ : ∀ {Γ A B} {world} (f : Term {Γ} (A ‘→’ B)) (x : Term A) → Term B
‘λ∙’ ‘⌜‘VAR₀’⌝t’ ‘’ₐₕ x₂ = ⌜ x₂ ⌝t
‘λ∙’ ‘⌜‘VAR₀’⌝’ ‘’ₐₕ x₂ = ⌜ x₂ ⌝t
‘λ∙’ ‘VAR₀’ ‘’ₐₕ x₂ = x₂
‘λ∙’ (f ‘’ₐ f₁) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (SW f₁) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (w f) ‘’ₐₕ x₂ = f
‘λ∙’ (→w (‘λ∙’ ‘VAR₀’)) ‘’ₐₕ x₂ = ‘λ∙’ ‘VAR₀’
‘λ∙’ (→w (‘λ∙’ (f ‘’ₐ f₁))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (‘λ∙’ (SW f₁))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (‘λ∙’ (w f))) ‘’ₐₕ x₂ = ‘λ∙’ (w (‘λ∙’ f ‘’ₐₕ x₂))
‘λ∙’ (→w (‘λ∙’ (→ww f))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (‘λ∙’ (‘‘□’’ f))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (‘λ∙’ (f ww‘‘‘→’’’ f₁))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (‘λ∙’ (f ww‘‘‘×’’’ f₁))) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (f ‘’ₐ f₁)) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (SW f₁)) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (w→ f)) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (ww→ f)) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→w (f ‘∘’ f₁)) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (→ww f) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (f w‘‘’’ₐ f₁) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (‘‘□’’ f) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (f ww‘‘‘→’’’ f₁) ‘’ₐₕ x₂ = {!!}
‘λ∙’ (f ww‘‘‘×’’’ f₁) ‘’ₐₕ x₂ = {!!}
_‘’ₐₕ_ {world = world} (f ‘’ₐ f₁) x₂ = hold-t world ((_‘’ₐₕ_ {world = world} f f₁) ‘’ₐ x₂)
_‘’ₐₕ_ {world = world} ‘‘×'’’ x₂ = {!!}
_‘’ₐₕ_ {world = world} quine→ x₂ = {!!}
_‘’ₐₕ_ {world = world} quine← x₂ = {!!}
_‘’ₐₕ_ {world = world} (SW f₁) x₂ = {!!}
_‘’ₐₕ_ {world = world} (→SW1SV→W f₁) x₂ = {!!}
_‘’ₐₕ_ {world = world} (←SW1SV→W f₁) x₂ = {!!}
→SW1SV→SW1SV→W (‘λ∙’ f₁) ‘’ₐₕ x₂ = {!!}
→SW1SV→SW1SV→W (f₁ ‘’ₐ f₂) ‘’ₐₕ x₂ = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ⌜ x ⌝) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ⌜ x₃ ⌝t) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘⌜‘VAR₀’⌝t’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘⌜‘VAR₀’⌝’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ ‘⌜‘VAR₀’⌝t’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ ‘⌜‘VAR₀’⌝’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ ‘VAR₀’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (x₃ ‘’ₐ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (SW x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (w x₃)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ ‘VAR₀’))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (x₃ ‘’ₐ x₄)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (SW x₄)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w ‘⌜‘VAR₀’⌝t’)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w ‘⌜‘VAR₀’⌝’)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w ‘VAR₀’)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (x₃ ‘’ₐ x₄))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (SW x₄))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (‘λ∙’ x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ x₃ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (SW x₃ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→W (‘λ∙’ x₃) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→W (x₃ ‘’ₐ x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→W (SW x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→W (x₃ ‘∘’ x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W (‘λ∙’ x₃) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W (x₃ ‘’ₐ x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W quine← ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))) = ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W (SW x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W (x₃ ‘∘’ x₄) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₁ ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ ((x₂ ‘∘’ x₃) ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x ⌝))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ⌜ x₃ ⌝t))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘⌜‘VAR₀’⌝t’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘⌜‘VAR₀’⌝’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (‘λ∙’ x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘VAR₀’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ ‘’ₐ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘‘×'’’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w quine→))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w quine←))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘tt’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (SW x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (→SW1SV→W x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (←SW1SV→W x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (→SW1SV→SW1SV→W x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (←SW1SV→SW1SV→W x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (w x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (w→ x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (→w x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (ww→ x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (→ww x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ ‘∘’ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ w‘‘’’ₐ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w ‘‘’ₐ’))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (‘‘□’’ x₃)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ ‘‘→’’ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ ww‘‘‘→’’’ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (w (x₃ ww‘‘‘×’’’ x₄)))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (→w x₃))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (→ww x₃))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (x₃ w‘‘’’ₐ x₄))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (‘‘□’’ x₃))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (x₃ ww‘‘‘→’’’ x₄))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (w (x₃ ww‘‘‘×’’’ x₄))))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (→ww x₃)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (‘‘□’’ x₃)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (x₃ ww‘‘‘→’’’ x₄)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (‘λ∙’ (x₃ ww‘‘‘×’’’ x₄)))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (x₃ ‘’ₐ x₄))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (SW x₄))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (w→ x₃))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (ww→ x₃))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→w (x₃ ‘∘’ x₄))) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (→ww x₃)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (x₃ w‘‘’’ₐ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (‘‘□’’ x₃)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (x₃ ww‘‘‘→’’’ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘λ∙’ (x₃ ww‘‘‘×’’’ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘VAR₀’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ (x₃ ‘’ₐ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘‘×'’’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ quine→) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ quine←) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘tt’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ SW x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ →SW1SV→W x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ←SW1SV→W x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ →SW1SV→SW1SV→W x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ←SW1SV→SW1SV→W x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ w x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ w→ x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ →w x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ww→ x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ →ww x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ (x₃ ‘∘’ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ (x₃ w‘‘’’ₐ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘‘’ₐ’) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ ‘‘□’’ x₃) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ (x₃ ‘‘→’’ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ (x₃ ww‘‘‘→’’’ x₄)) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (x₂ ‘’ₐ x₃ ww‘‘‘×’’’ x₄) = {!!}
→SW1SV→SW1SV→W quine→ ‘’ₐₕ SW x₃ = {!!}
→SW1SV→SW1SV→W (SW f₂) ‘’ₐₕ x₂ = {!!}
→SW1SV→SW1SV→W (←SW1SV→W f₂) ‘’ₐₕ x₂ = {!!}
→SW1SV→SW1SV→W (←SW1SV→SW1SV→W f₂) ‘’ₐₕ x₂ = {!!}
→SW1SV→SW1SV→W (f₁ ‘∘’ f₂) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W (‘λ∙’ f₁) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W (f₁ ‘’ₐ f₂) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W quine← ‘’ₐₕ x₂ = {!!} -- ←SW1SV→SW1SV→W quine← ‘’ₐ x₂
←SW1SV→SW1SV→W (SW f₂) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W (→SW1SV→W f₂) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W (→SW1SV→SW1SV→W f₂) ‘’ₐₕ x₂ = {!!}
←SW1SV→SW1SV→W (f₁ ‘∘’ f₂) ‘’ₐₕ x₂ = {!!}
_‘’ₐₕ_ {world = world} (w→ f) x₂ = w→ f ‘’ₐ x₂
_‘’ₐₕ_ {world = world} (ww→ f) x₂ = {!!}
_‘’ₐₕ_ {world = world} (f ‘∘’ f₁) x₂ = _‘’ₐₕ_ {world = world} f (_‘’ₐₕ_ {world = world} f₁ x₂)
_‘’ₐₕ_ {world = world} ‘‘’ₐ’ x₂ = {!!}
‘‘□’’ₕ : ∀ {Γ A B} → Term {Γ ▻ A ▻ B} (W (W (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝))) → Term {Γ ▻ A ▻ B} (W (W (‘Type’ Γ)))
‘‘□’’ₕ t = ‘‘□’’ t
_‘∘’ₕ_ : ∀ {Γ A B C} {world} (g : Term {Γ} (B ‘→’ C)) (f : Term (A ‘→’ B)) → Term (A ‘→’ C)
f ‘∘’ₕ g = f ‘∘’ g-}
in-kripke-frame-c : ∀ (world : ℕ) → Context → Context
in-kripke-frame : ∀ {Γ} (world : ℕ) → Type Γ → Type (in-kripke-frame-c world Γ)
in-kripke-frame-t : ∀ {Γ} (world : ℕ) {T : Type Γ} → Term T → Term (in-kripke-frame world T)
in-kripke-frame-c world ε = ε
in-kripke-frame-c world (Γ ▻ x) = in-kripke-frame-c world Γ ▻ in-kripke-frame world x
_‘’ₐₕ_ : ∀ {Γ A B} → Term {Γ} (A ‘→’ B) → Term {Γ} A → Term {Γ} B
(f₁ ‘’ₐ f₂) ‘’ₐₕ x₁ = (f₁ ‘’ₐₕ f₂) ‘’ₐ x₁
→SW1SV→SW1SV→W quine→ ‘’ₐₕ (←SW1SV→SW1SV→W quine← ‘’ₐ f) = f
f ‘’ₐₕ x = {!!}
in-kripke-frame world (T ‘→’ T₁) = (in-kripke-frame world T) ‘→’ (in-kripke-frame world T₁)
in-kripke-frame world (‘Type’ Γ) = ‘Type’ (in-kripke-frame-c world Γ)
in-kripke-frame world (W T₁) = W (in-kripke-frame world T₁)
in-kripke-frame world (W1 T₂) = W1 (in-kripke-frame world T₂)
in-kripke-frame zero (‘Term’ ‘’ x) = ‘⊤’
in-kripke-frame {Γ = Γ} (suc world) (‘Term’ ‘’ (f ‘’ₐ x)) = helper helper'
where helper' : Term (in-kripke-frame world (‘Type’ Γ))
helper' = simplify-term (in-kripke-frame-t world f) ‘’ₐₕ simplify-term (in-kripke-frame-t world x)
helper : ∀ {Γ} → Term (in-kripke-frame world (‘Type’ Γ)) → Type (in-kripke-frame-c (suc world) Γ)
helper x = {!!}
in-kripke-frame (suc world) (‘Term’ ‘’ x) = {!in-kripke-frame world x!}
in-kripke-frame world (T₁ ‘’ x) = {!!}
in-kripke-frame world ‘Term’ = {!!}
in-kripke-frame world (T ‘×’ T₁) = {!!}
in-kripke-frame world (Quine T) = {!!}
in-kripke-frame world ‘⊤’ = ‘⊤’
in-kripke-frame world ‘⊥’ = ‘⊥’
in-kripke-frame-t world ⌜ x ⌝ = ⌜ (in-kripke-frame world x) ⌝
in-kripke-frame-t zero ⌜ t ⌝t = ‘tt’
in-kripke-frame-t (suc world) ⌜ t ⌝t = {!!}
in-kripke-frame-t world ‘⌜‘VAR₀’⌝t’ = {!!}
in-kripke-frame-t world ‘⌜‘VAR₀’⌝’ = {!!}
in-kripke-frame-t world (‘λ∙’ t) = ‘λ∙’ (in-kripke-frame-t world t)
in-kripke-frame-t world ‘VAR₀’ = ‘VAR₀’
in-kripke-frame-t world (t ‘’ₐ t₁) = in-kripke-frame-t world t ‘’ₐₕ in-kripke-frame-t world t₁
in-kripke-frame-t world ‘‘×'’’ = {!!}
in-kripke-frame-t world quine→ = {!!}
in-kripke-frame-t world quine← = {!!}
in-kripke-frame-t world ‘tt’ = ‘tt’
in-kripke-frame-t world (SW t₁) = {!!}
in-kripke-frame-t world (→SW1SV→W t₁) = {!!}
in-kripke-frame-t world (←SW1SV→W t₁) = {!!}
in-kripke-frame-t world (→SW1SV→SW1SV→W t₁) = {!!}
in-kripke-frame-t world (←SW1SV→SW1SV→W t₁) = {!!}
in-kripke-frame-t world (w t) = w (in-kripke-frame-t world t)
in-kripke-frame-t world (w→ t) = w→ (in-kripke-frame-t world t)
in-kripke-frame-t world (→w t) = →w (in-kripke-frame-t world t)
in-kripke-frame-t world (ww→ t) = ww→ (in-kripke-frame-t world t)
in-kripke-frame-t world (→ww t) = →ww (in-kripke-frame-t world t)
in-kripke-frame-t world (t ‘∘’ t₁) = {!!}
in-kripke-frame-t world (t w‘‘’’ₐ t₁) = {!!}
in-kripke-frame-t world ‘‘’ₐ’ = {!!}
in-kripke-frame-t zero (‘‘□’’ t) = w (w ⌜ ‘⊤’ ⌝)
in-kripke-frame-t {Γ = Γ ▻ A ▻ B} (suc world) (‘‘□’’ t) = helper {lzero} (‘‘□’’ₕ (in-kripke-frame-t world t))
where ‘‘□’’ₕ : ∀ {Γ A B} → Term {in-kripke-frame-c world Γ ▻ A ▻ B} (W (W (in-kripke-frame world (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝)))) → Term {in-kripke-frame-c world Γ ▻ A ▻ B} (W (W (‘Type’ (in-kripke-frame-c world Γ))))
‘‘□’’ₕ T = {!!}
helper : ∀ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} → A → B
helper t = {!!}
in-kripke-frame-t world (t ‘‘→’’ t₁) = {!!}
in-kripke-frame-t world (t ww‘‘‘→’’’ t₁) = {!!}
in-kripke-frame-t world (t ww‘‘‘×’’’ t₁) = {!!}
{-
in-kripke-frame zero ‘Term’ = ‘⊤’
in-kripke-frame {Γ} world (T ‘→’ T₁) = simplify-type (in-kripke-frame world T ‘→’ in-kripke-frame world T₁)
in-kripke-frame {Γ} world (T ‘×’ T₁) = simplify-type (in-kripke-frame world T ‘×’ in-kripke-frame world T₁)
in-kripke-frame world (W T) = simplify-type (W (in-kripke-frame world T))
in-kripke-frame world (W1 T) = simplify-type (W1 (in-kripke-frame world T))
in-kripke-frame world (T₁ ‘’ x) = simplify-type (helper-ikf world (simplify-type (in-kripke-frame world T₁)) (simplify-term (in-kripke-frame-t world x)))
in-kripke-frame world ‘⊤’ = ‘⊤’
in-kripke-frame world ‘⊥’ = ‘⊥’
in-kripke-frame world (‘Type’ Γ) = hold world (‘Type’ Γ)
in-kripke-frame world (Quine T) = hold world (Quine T)
in-kripke-frame {Γ ▻ .(‘Type’ Γ)} (suc world) ‘Term’ = ‘Term’ {-helper (in-kripke-frame-t world T v) v
where
helper : ∀ {Γ} → Term (‘Type’ Γ) → context-to-term Γ → Type ε
helper ⌜ x ⌝ v = Type-in x v
helper (t ‘‘→’’ t₁) v = helper t v ‘→’ helper t₁ v
helper (t ‘’ₐ t₁) v = {!!}
helper (SW t₁) v = {!!}-}
in-kripke-frame-t : ∀ {Γ} (world : ℕ) → {T : Type Γ} → Term T → Term (in-kripke-frame world T)
in-kripke-frame-t world ⌜ x ⌝ = ⌜ in-kripke-frame world x ⌝
in-kripke-frame-t world ⌜ x ⌝t = ⌜ in-kripke-frame-t world x ⌝t
in-kripke-frame-t world ‘⌜‘VAR₀’⌝t’ = ‘⌜‘VAR₀’⌝t’
in-kripke-frame-t world ‘⌜‘VAR₀’⌝’ = ‘⌜‘VAR₀’⌝’
in-kripke-frame-t world (‘λ∙’ x) = ‘λ∙’ (in-kripke-frame-t world x)
in-kripke-frame-t world ‘VAR₀’ = ‘VAR₀’
in-kripke-frame-t world (x ‘’ₐ x₁) = _‘’ₐₕ_ {world = world} (simplify-term (in-kripke-frame-t world x)) (simplify-term (in-kripke-frame-t world x₁))
in-kripke-frame-t world ‘‘×'’’ = ‘‘×'’’
in-kripke-frame-t world quine→ = quine→
in-kripke-frame-t world quine← = quine←
in-kripke-frame-t world ‘tt’ = ‘tt’
in-kripke-frame-t world (SW x₁) = SW (in-kripke-frame-t world x₁)
in-kripke-frame-t world (→SW1SV→W x₁) = →SW1SV→W (in-kripke-frame-t world x₁)
in-kripke-frame-t world (←SW1SV→W x₁) = ←SW1SV→W (in-kripke-frame-t world x₁)
in-kripke-frame-t world (→SW1SV→SW1SV→W x₁) = →SW1SV→SW1SV→W (in-kripke-frame-t world x₁)
in-kripke-frame-t world (←SW1SV→SW1SV→W x₁) = ←SW1SV→SW1SV→W (in-kripke-frame-t world x₁)
in-kripke-frame-t world (w x) = w (in-kripke-frame-t world x)
in-kripke-frame-t world (w→ x) = w→ (in-kripke-frame-t world x)
in-kripke-frame-t world (→w x) = →w (in-kripke-frame-t world x)
in-kripke-frame-t world (ww→ x) = ww→ (in-kripke-frame-t world x)
in-kripke-frame-t world (→ww x) = →ww (in-kripke-frame-t world x)
in-kripke-frame-t world (x ‘∘’ x₁) = _‘∘’ₕ_ {world = world} (simplify-term (in-kripke-frame-t world x)) (simplify-term (in-kripke-frame-t world x₁))
in-kripke-frame-t world (x w‘‘’’ₐ x₁) = simplify-term (in-kripke-frame-t world x) w‘‘’’ₐ simplify-term (in-kripke-frame-t world x₁)
in-kripke-frame-t world ‘‘’ₐ’ = ‘‘’ₐ’
in-kripke-frame-t zero (‘‘□’’ x) = w (w ⌜ ‘⊤’ ⌝)
in-kripke-frame-t (suc world) (‘‘□’’ x) = ‘‘□’’ₕ (simplify-term (in-kripke-frame-t world x))
in-kripke-frame-t world (x ‘‘→’’ x₁) = {!!}
in-kripke-frame-t world (x ww‘‘‘→’’’ x₁) = {!!}
in-kripke-frame-t world (x ww‘‘‘×’’’ x₁) = {!!}
-}
kripke-reduce : ∀ {Γ} → Type Γ → context-to-term Γ → Type ε
kripke-reduce (W x₁) v = kripke-reduce x₁ (Σ.proj₁ v)
kripke-reduce (W1 x₂) v = kripke-reduce x₂ ((Σ.proj₁ (Σ.proj₁ v)) , (‘λ∙’ (Σ.proj₂ v) ‘’ₐ Σ.proj₂ (Σ.proj₁ v)))
kripke-reduce (T₁ ‘’ x) v = kripke-reduce T₁ (v , x)
kripke-reduce (‘Type’ Γ) v = Type-in (‘Type’ Γ) v
-- kripke-reduce ‘TVAR₀’ v = {!!}
kripke-reduce ‘Term’ (v , T) = {!!} {- Type-in (lower (Term⇓ (Σ.proj₂ v) (context-to-term⇓ (Σ.proj₁ v)))) (Σ.proj₁ v) -}
kripke-reduce (T ‘→’ T₁) v = kripke-reduce T v ‘→’ kripke-reduce T₁ v
kripke-reduce (T ‘×’ T₁) v = kripke-reduce T v ‘×’ kripke-reduce T₁ v
kripke-reduce (Quine x) v = {!!}
kripke-reduce ‘⊤’ v = ‘⊤’
kripke-reduce ‘⊥’ v = ‘⊥’
kripke-eval' : ∀ {Γ} → ℕ → Type Γ → context-to-term Γ → Type ε
kripke-eval' 0 T v = Type-in T v
kripke-eval' (suc n) T v = kripke-eval' n (kripke-reduce T v) tt
kripke-finalize : ∀ {Γ} → Type Γ → context-to-term Γ → Type ε
kripke-finalize (W x₁) v = kripke-finalize x₁ (Σ.proj₁ v)
kripke-finalize (W1 x₂) v = kripke-finalize x₂ ((Σ.proj₁ (Σ.proj₁ v)) , (‘λ∙’ (Σ.proj₂ v) ‘’ₐ Σ.proj₂ (Σ.proj₁ v)))
kripke-finalize (T₁ ‘’ x) v = kripke-finalize T₁ (v , x)
kripke-finalize (‘Type’ Γ) v = Type-in (‘Type’ Γ) v
-- kripke-finalize ‘TVAR₀’ v = {!!}
kripke-finalize ‘Term’ v = ‘⊤’
kripke-finalize (T ‘→’ T₁) v = kripke-finalize T v ‘→’ kripke-finalize T₁ v
kripke-finalize (T ‘×’ T₁) v = kripke-finalize T v ‘×’ kripke-finalize T₁ v
kripke-finalize (Quine x) v = {!!}
kripke-finalize ‘⊤’ v = ‘⊤’
kripke-finalize ‘⊥’ v = ‘⊥’
mutual
kripke-count : ∀ {Γ} → Type Γ → ℕ
kripke-count (W T₁) = kripke-count T₁
kripke-count (W1 T₂) = kripke-count T₂
kripke-count (T₁ ‘’ x) = kripke-count T₁ + kripke-count-t x
kripke-count (‘Type’ Γ) = 0
-- kripke-count ‘TVAR₀’ = 0
kripke-count ‘Term’ = 1
kripke-count (T ‘→’ T₁) = kripke-count T + kripke-count T₁
kripke-count (T ‘×’ T₁) = kripke-count T + kripke-count T₁
kripke-count (Quine T) = kripke-count T
kripke-count ‘⊤’ = 0
kripke-count ‘⊥’ = 0
kripke-count-t : ∀ {Γ T} → Term {Γ} T → ℕ
kripke-count-t ⌜ x ⌝ = kripke-count x
kripke-count-t (x ‘’ₐ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-count-t ⌜ x ⌝t = kripke-count-t x
kripke-count-t ‘⌜‘VAR₀’⌝t’ = 0
kripke-count-t ‘⌜‘VAR₀’⌝’ = 0
kripke-count-t (‘λ∙’ x) = kripke-count-t x
kripke-count-t ‘VAR₀’ = 0
kripke-count-t quine→ = 0
kripke-count-t quine← = 0
kripke-count-t ‘tt’ = 0
kripke-count-t (SW x₁) = kripke-count-t x₁
kripke-count-t (→SW1SV→W x₁) = kripke-count-t x₁
kripke-count-t (←SW1SV→W x₁) = kripke-count-t x₁
kripke-count-t (→SW1SV→SW1SV→W x₁) = kripke-count-t x₁
kripke-count-t (←SW1SV→SW1SV→W x₁) = kripke-count-t x₁
kripke-count-t (w x) = kripke-count-t x
kripke-count-t (w→ x) = kripke-count-t x
kripke-count-t (→w x) = kripke-count-t x
kripke-count-t (ww→ x) = kripke-count-t x
kripke-count-t (→ww x) = kripke-count-t x
kripke-count-t ‘‘×'’’ = 0
kripke-count-t (x ‘∘’ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-count-t (x w‘‘’’ₐ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-count-t ‘‘’ₐ’ = 0
-- kripke-count-t (f w‘‘’’ x) = kripke-count-t f + kripke-count-t x
kripke-count-t (‘‘□’’ T) = 1 + kripke-count-t T
kripke-count-t (x ‘‘→’’ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-count-t (x ww‘‘‘→’’’ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-count-t (x ww‘‘‘×’’’ x₁) = kripke-count-t x + kripke-count-t x₁
kripke-normalize' : ∀ {Γ} → Type Γ → context-to-term Γ → Type ε
kripke-normalize' T v = kripke-eval' (kripke-count T) T v
kripke-normalize'' : ∀ {Γ} → (T : Type Γ) → Type (in-kripke-frame-c (kripke-count T) Γ)
kripke-normalize'' T = in-kripke-frame (kripke-count T) T
open modal-fixpoint
‘Bot’ : ∀ {Γ} → Type Γ
‘Bot’ {Γ} = Quine (W1 ‘Term’ ‘’ ‘VAR₀’ ‘→’ W1 ‘Term’ ‘’ ‘VAR₀’ ‘→’ W (‘Type’ Γ)) {- a bot takes in the source code for itself, for another bot, and spits out the assertion that it cooperates with this bot -}
_cooperates-with_ : □ ‘Bot’ → □ ‘Bot’ → Type ε
b1 cooperates-with b2 = lower (Term⇓ b1 tt (lift b1) (lift b2))
‘eval-bot'’ : ∀ {Γ} → Term {Γ} (‘Bot’ ‘→’ (‘□’ ‘Bot’ ‘→’ ‘□’ ‘Bot’ ‘→’ ‘Type’ Γ))
‘eval-bot'’ = →SW1SV→SW1SV→W quine→
‘‘eval-bot'’’ : ∀ {Γ} → Term {Γ} (‘□’ ‘Bot’ ‘→’ ‘□’ ({- other -} ‘□’ ‘Bot’ ‘→’ ‘Type’ Γ))
‘‘eval-bot'’’ = ‘λ∙’ (w ⌜ ‘eval-bot'’ ⌝t w‘‘’’ₐ ‘VAR₀’ w‘‘’’ₐ ‘⌜‘VAR₀’⌝t’)
‘other-cooperates-with’ : ∀ {Γ} → Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ ‘Bot’)) ‘→’ W (W (‘□’ (‘Type’ Γ))))
‘other-cooperates-with’ {Γ} = ‘eval-other'’ ‘∘’ w→ (w (w→ (w (‘λ∙’ ‘⌜‘VAR₀’⌝t’))))
where
‘eval-other’ : Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ (‘□’ ‘Bot’ ‘→’ ‘Type’ Γ))))
‘eval-other’ = w→ (w (w→ (w ‘‘eval-bot'’’))) ‘’ₐ ‘VAR₀’
‘eval-other'’ : Term (W (W (‘□’ (‘□’ ‘Bot’))) ‘→’ W (W (‘□’ (‘Type’ Γ))))
‘eval-other'’ = ww→ (w→ (w (w→ (w ‘‘’ₐ’))) ‘’ₐ ‘eval-other’)
‘self’ : ∀ {Γ} → Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ ‘Bot’)))
‘self’ = w ‘VAR₀’
‘other’ : ∀ {Γ} → Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ ‘Bot’)))
‘other’ = ‘VAR₀’
make-bot : ∀ {Γ} → Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘Type’ Γ))) → Term {Γ} ‘Bot’
make-bot t = ←SW1SV→SW1SV→W quine← ‘’ₐ ‘λ∙’ (→w (‘λ∙’ t))
ww‘‘‘¬’’’_ : ∀ {Γ A B}
→ Term {Γ ▻ A ▻ B} (W (W (‘□’ (‘Type’ Γ))))
→ Term {Γ ▻ A ▻ B} (W (W (‘□’ (‘Type’ Γ))))
ww‘‘‘¬’’’ T = T ww‘‘‘→’’’ w (w ⌜ ⌜ ‘⊥’ ⌝ ⌝t)
‘DefectBot’ : □ ‘Bot’
‘CooperateBot’ : □ ‘Bot’
‘FairBot’ : □ ‘Bot’
‘PrudentBot’ : □ ‘Bot’
‘DefectBot’ = make-bot (w (w ⌜ ‘⊥’ ⌝))
‘CooperateBot’ = make-bot (w (w ⌜ ‘⊤’ ⌝))
‘FairBot’ = make-bot (‘‘□’’ (‘other-cooperates-with’ ‘’ₐ ‘self’))
‘PrudentBot’ = make-bot (‘‘□’’ (φ₀ ww‘‘‘×’’’ (¬□⊥ ww‘‘‘→’’’ other-defects-against-DefectBot)))
where
φ₀ : ∀ {Γ} → Term {Γ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ (‘Type’ Γ))))
φ₀ = ‘other-cooperates-with’ ‘’ₐ ‘self’
other-defects-against-DefectBot : Term {_ ▻ ‘□’ ‘Bot’ ▻ W (‘□’ ‘Bot’)} (W (W (‘□’ (‘Type’ _))))
other-defects-against-DefectBot = ww‘‘‘¬’’’ (‘other-cooperates-with’ ‘’ₐ w (w ⌜ ‘DefectBot’ ⌝t))
¬□⊥ : ∀ {Γ A B} → Term {Γ ▻ A ▻ B} (W (W (‘□’ (‘Type’ Γ))))
¬□⊥ = w (w ⌜ ⌜ ‘¬’ (‘□’ ‘⊥’) ⌝ ⌝t)
data KnownBot : Set where
DefectBot : KnownBot
CooperateBot : KnownBot
FairBot : KnownBot
PrudentBot : KnownBot
KnownBot⇓ : KnownBot → □ ‘Bot’
KnownBot⇓ DefectBot = ‘DefectBot’
KnownBot⇓ CooperateBot = ‘CooperateBot’
KnownBot⇓ FairBot = ‘FairBot’
KnownBot⇓ PrudentBot = ‘PrudentBot’
DB-defects : ∀ {b} → □ (‘¬’ (‘DefectBot’ cooperates-with b))
CB-cooperates : ∀ {b} → □ (‘CooperateBot’ cooperates-with b)
FB-spec : KnownBot → □ ‘Bot’ → Type ε
FB-spec DefectBot b = ‘¬’ (‘FairBot’ cooperates-with b)
FB-spec CooperateBot b = ‘FairBot’ cooperates-with b
FB-spec FairBot b = ‘FairBot’ cooperates-with b
FB-spec PrudentBot b = ‘FairBot’ cooperates-with b
FB-good : ∀ {b} → □ (FB-spec b (KnownBot⇓ b))
DB-defects {b} = ‘λ∙’ ‘VAR₀’
CB-cooperates {b} = ‘tt’
FB-good {DefectBot} = {!!}
FB-good {CooperateBot} = {!!}
FB-good {FairBot} = {!!}
FB-good {PrudentBot} = {!!}
{-
data Bot : Set where
DefectBot : Bot
CooperateBot : Bot
FairBot : Bot
PrudentBot : Bot
data Opponent : Set where
Self : Opponent
Other : Type ε → Opponent
_cooperates-with-me : ∀ {Γ} → Term {Γ} (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝ ‘→’ ‘Type’ Γ) → Term {Γ ▻ ‘Type’ Γ} (W ‘Type’ Γ)
x cooperates-with-me = w→ (w x) ‘’ₐ ‘⌜‘VAR₀’⌝’
{-
‘cooperates-with'’ : □ (‘Bot’ ‘→’ ‘Bot’ ‘→’ ‘Type’ Γ)
‘cooperates-with'’ = ‘λ∙’ (→w ((‘eval-bot’ ‘VAR₀’) ‘∘’ (w→ (w {!!}))))
where ‘eval-bot'’ : Term (‘Bot’ ‘→’ (‘□’ ‘Bot’ ‘→’ ‘Type’ Γ))
‘eval-bot'’ = →SW1SV→W quine→
‘eval-bot’_ : Term {ε ▻ ‘Bot’} (W ‘Bot’) → Term (W (‘□’ ‘Bot’) ‘→’ W ‘Type’ Γ)
‘eval-bot’ b = w→ (w→ (w ‘eval-bot'’) ‘’ₐ b)
get-bot-source : Term {ε} (‘Bot’ ‘→’ ‘□’ ‘Bot’)
get-bot-source = {!!}-}
_‘cooperates’ : Bot → Term {ε} (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝ ‘→’ ‘Type’ Γ)
DefectBot ‘cooperates’ = ‘λ∙’ (w ⌜ ‘⊥’ ⌝)
CooperateBot ‘cooperates’ = ‘λ∙’ (w ⌜ ‘⊤’ ⌝)
FairBot ‘cooperates’ = ‘λ∙’ {!!}
PrudentBot ‘cooperates’ = {!!}
_‘cooperates-with'’_ : Bot → Term {ε} (‘Term’ ‘’ ⌜ ‘Type’ Γ ⌝ ‘→’ ‘Type’ Γ) → Type ε
FairBot ‘cooperates-with'’ x = Quine (W1 ‘Term’ ‘’ (x cooperates-with-me))
DefectBot ‘cooperates-with'’ b2 = ‘⊥’
CooperateBot ‘cooperates-with'’ b2 = ‘⊤’
PrudentBot ‘cooperates-with'’ x = Quine (W1 ‘Term’ ‘’ (x cooperates-with-me w‘‘×’’ w ⌜ (‘¬’ (‘Term’ ‘’ ⌜ ‘⊥’ ⌝) ‘→’ ‘¬’ {!!}) ⌝))
-}
{-
box-free? : ∀ {Γ} → Type Γ → context-to-term Γ → Set
box-free? (T₁ ‘’ x) v = box-free? T₁ (v , x)
box-free? ‘Type’ Γ v = ⊤
box-free? ‘Term’ v = ⊥
box-free? (T ‘→’ T₁) v = box-free? T v × box-free? T₁ v
box-free? ‘⊤’ v = ⊤
box-free? ‘⊥’ v = ⊤
mutual
kripke-lift→ : ∀ (n : ℕ) (T : Type ε) → box-free? (kripke-eval' n T) tt
→ Term (kripke-eval' n T ‘→’ T)
kripke-lift→ zero T H = ‘λx∙x’
kripke-lift→ (suc n) (T₁ ‘’ x) H = {!!}
kripke-lift→ (suc n) (T ‘→’ T₁) H = {!!} ‘∘’ (kripke-lift→ n (kripke-reduce (T ‘→’ T₁) tt) H)
kripke-lift→ (suc n) ‘Type’ Γ H = kripke-lift→ n _ H
kripke-lift→ (suc n) ‘⊤’ H = kripke-lift→ n _ H
kripke-lift→ (suc n) ‘⊥’ H = kripke-lift→ n _ H
kripke-lift← : ∀ (n : ℕ) (T : Type ε) → box-free? (kripke-eval' n T) tt
→ Term (kripke-eval' n T)
→ Term T
kripke-lift← n T H t = {!!}
{- kripke-lift : ∀ {Γ} (T : Type Γ) v → Term (kripke-reduce T v ‘→’ Type-in T v)
kripke-lift (T₁ ‘’ x) = {!!}
kripke-lift ‘Type’ Γ v = {!!}
kripke-lift ‘Term’ v = {!!}
kripke-lift {ε} (T ‘→’ T₁) v = {!!}
kripke-lift {Γ ▻ x} (T ‘→’ T₁) v = {!!}
kripke-lift ‘⊤’ v = {!!}
kripke-lift ‘⊥’ v = {!!}-}
Quine : Type (ε ▻ ‘Type’ Γ) → Type ε
Quine φ = {!!}
quine→ : ∀ {φ} → Term {ε} (Quine φ ‘→’ φ ‘’ ⌜ Quine φ ⌝)
quine← : ∀ {φ} → Term {ε} (φ ‘’ ⌜ Quine φ ⌝ ‘→’ Quine φ)
quine→ = {!!}
quine← = {!!}
-}
| {
"alphanum_fraction": 0.4656734541,
"avg_line_length": 47.3716814159,
"ext": "agda",
"hexsha": "3bce46db14d7e4905f5e1244dc7e3643ab20ab78",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/kripke.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/kripke.agda",
"max_line_length": 218,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/kripke.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 23765,
"size": 42824
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Which Maybe type which calls out to Haskell via the FFI
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module Foreign.Haskell.Maybe where
open import Level
open import Data.Maybe.Base as Data using (just; nothing)
private
variable
a : Level
A : Set a
------------------------------------------------------------------------
-- Definition
data Maybe (A : Set a) : Set a where
just : A → Maybe A
nothing : Maybe A
{-# FOREIGN GHC type AgdaMaybe l a = Maybe a #-}
{-# COMPILE GHC Maybe = data AgdaMaybe (Just | Nothing) #-}
------------------------------------------------------------------------
-- Conversion
toForeign : Data.Maybe A → Maybe A
toForeign (just x) = just x
toForeign nothing = nothing
fromForeign : Maybe A → Data.Maybe A
fromForeign (just x) = just x
fromForeign nothing = nothing
| {
"alphanum_fraction": 0.4822335025,
"avg_line_length": 25.2564102564,
"ext": "agda",
"hexsha": "e09ea311eb2257e5c5a22f0f080b774f4c55cace",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Foreign/Haskell/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Foreign/Haskell/Maybe.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Foreign/Haskell/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 191,
"size": 985
} |
-- Andreas, 2017-01-18, issue #5 is fixed
-- reported by Ulf 2007-10-24
data Nat : Set where
zero : Nat
data Vec : Nat -> Set where
[] : Vec zero
f : (n : Nat) -> Vec n -> Nat
f n@._ [] = n
| {
"alphanum_fraction": 0.5628140704,
"avg_line_length": 16.5833333333,
"ext": "agda",
"hexsha": "ab58d60b47fd57d45645ac17b6053b47f6c9f828",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue5.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 199
} |
{-# OPTIONS --without-K #-}
module function.extensionality.core where
open import level using (lsuc; _⊔_)
open import equality.core
Extensionality : ∀ i j → Set (lsuc (i ⊔ j))
Extensionality i j = {X : Set i}{Y : Set j}
→ {f g : X → Y}
→ ((x : X) → f x ≡ g x)
→ f ≡ g
Extensionality' : ∀ i j → Set (lsuc (i ⊔ j))
Extensionality' i j = {X : Set i}{Y : X → Set j}
→ {f g : (x : X) → Y x}
→ ((x : X) → f x ≡ g x)
→ f ≡ g
StrongExt : ∀ i j → Set (lsuc (i ⊔ j))
StrongExt i j = {X : Set i}{Y : X → Set j}
→ {f g : (x : X) → Y x}
→ (∀ x → f x ≡ g x) ≡ (f ≡ g)
funext-inv : ∀ {i j}{X : Set i}{Y : X → Set j}
→ {f g : (x : X) → Y x}
→ f ≡ g
→ (x : X) → f x ≡ g x
funext-inv refl x = refl
| {
"alphanum_fraction": 0.3957845433,
"avg_line_length": 29.4482758621,
"ext": "agda",
"hexsha": "a12bd13d60a5db10678b774d4f2d2349e216f95f",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "function/extensionality/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/function/extensionality/core.agda",
"max_line_length": 48,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/extensionality/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 307,
"size": 854
} |
-- This file gives the definition of Gaussian Integers, and common
-- operations on them.
{-# OPTIONS --without-K --safe #-}
module GauInt.Base where
open import Data.Bool using (Bool ; true ; false ; T ; not ; _∧_)
open import Data.Nat using (ℕ ; _≡ᵇ_)
open import Data.Integer renaming (-_ to -ℤ_ ; _-_ to _-ℤ_ ; _+_ to _+ℤ_ ; _*_ to _*ℤ_ ) hiding (NonZero)
infix 4 _==_ -- boolean equality on 𝔾.
infix 4 _==ℤ_ -- boolean equality on ℤ.
infixl 6 _+_ _-_
infixl 7 _*_
infix 8 -_
infixl 9 _ᶜ -- conjugation on 𝔾.
-- A Gaussian integer is a pair of integers.
infix 5 _+_i
data 𝔾 : Set where
_+_i : ℤ -> ℤ -> 𝔾
-- Addition.
_+_ : 𝔾 -> 𝔾 -> 𝔾
(a + b i) + (c + d i) = x + y i where
x = a +ℤ c
y = b +ℤ d
-- Additive identity.
0𝔾 : 𝔾
0𝔾 = 0ℤ + 0ℤ i
-- Additive inverse.
-_ : 𝔾 -> 𝔾
- (a + b i) = (-ℤ a) + (-ℤ b) i
-- Subtraction.
_-_ : 𝔾 -> 𝔾 -> 𝔾
_-_ x y = x + (- y)
-- Multiplication.
_*_ : 𝔾 -> 𝔾 -> 𝔾
(a + b i) * (c + d i) = x + y i where
x = a *ℤ c -ℤ b *ℤ d
y = (a *ℤ d) +ℤ b *ℤ c
-- Multiplicative identity.
1𝔾 : 𝔾
1𝔾 = 1ℤ + 0ℤ i
-- imaginary unit i.
iG : 𝔾
iG = 0ℤ + 1ℤ i
-- Real and imaginary part.
Re : 𝔾 -> ℤ
Re (a + b i) = a
Im : 𝔾 -> ℤ
Im (a + b i) = b
-- Conjugation of complex numbers retricted to Gaussian integers.
_ᶜ : 𝔾 -> 𝔾
_ᶜ (a + b i) = a + (-ℤ b) i
-- Rank.
rank : 𝔾 -> ℕ
rank (a + b i) = ∣ a *ℤ a +ℤ b *ℤ b ∣
-- Boolean equality on ℤ.
_==ℤ_ : ℤ -> ℤ -> Bool
+_ n ==ℤ +_ m = n ≡ᵇ m
+_ n ==ℤ -[1+_] n₁ = false
-[1+_] n ==ℤ +_ n₁ = false
-[1+_] n ==ℤ -[1+_] m = n ≡ᵇ m
-- Boolean equality on 𝔾.
_==_ : 𝔾 -> 𝔾 -> Bool
a + b i == c + d i = (a ==ℤ c) ∧ (b ==ℤ d)
-- NonZero predicate. Intended to use as implicit argument to deal
-- with the zero divisor case.
record NonZero (x : 𝔾) : Set where
field
nonZero : T (not ( x == 0𝔾))
-- ----------------------------------------------------------------------
-- Injections
-- I don't have good notation for this.
infix 5 _+0i'
_+0i' : ℤ -> 𝔾
_+0i' n = n + 0ℤ i
-- Injection of naturals are used more often.
infix 5 _+0i
_+0i : ℕ -> 𝔾
_+0i n = + n +0i'
| {
"alphanum_fraction": 0.5300387597,
"avg_line_length": 19.8461538462,
"ext": "agda",
"hexsha": "bde8de6dc5d11fe75c6a92303bd44f818e89012c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "onestruggler/EucDomain",
"max_forks_repo_path": "GauInt/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "onestruggler/EucDomain",
"max_issues_repo_path": "GauInt/Base.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "onestruggler/EucDomain",
"max_stars_repo_path": "GauInt/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 932,
"size": 2064
} |
module Category.Instance where
open import Level
open import Category.Core
𝟙 : Category _ _
𝟙 = record
{ Objects = record
{ Carrier = ⊤
; _≈_ = λ _ _ → ⊤
; isEquivalence = _
}
; Morphisms = record
{ Carrier = λ x → ⊤
; _≈_ = λ _ _ → ⊤
; isEquivalence = _
; _∘_ = λ _ _ → tt
; id = λ a → tt
; isMorphism = _
}
}
where
open import Data.Unit
-- "pointing" an element with a functor from 𝟙
point : ∀ {𝒸 ℓ} → {C : Category 𝒸 ℓ} → Category.Object C → Functor 𝟙 C
point {_} {_} {C} c = record
{ mapObject = λ _ → c
; mapMorphism = λ _ → id c
; isFunctor = record
{ preserve-id = λ a → MorphEq.refl
; preserve-∘ = λ _ _ → MorphEq.sym (left-identity (id c))
}
}
where
open Category C
open import Relation.Binary.Indexed
module MorphEq = IsEquivalence (MorphismStructure.isEquivalence Morphisms)
open IsMorphism isMorphism
-- the identity functo
identity : ∀ {𝒸 ℓ} → (C : Category 𝒸 ℓ) → Functor C C
identity C = record
{ mapObject = λ x → x
; mapMorphism = λ x → x
; isFunctor = record
{ preserve-id = λ a → MorphEq.refl
; preserve-∘ = λ f g → MorphEq.refl
}
}
where
open Category C
open import Relation.Binary.Indexed
module MorphEq = IsEquivalence (MorphismStructure.isEquivalence Morphisms)
open IsMorphism isMorphism
| {
"alphanum_fraction": 0.5587044534,
"avg_line_length": 25.5517241379,
"ext": "agda",
"hexsha": "b540b772a3eea129c949c04eb4056a1deac317a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/categories",
"max_forks_repo_path": "src/Category/Instance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/categories",
"max_issues_repo_path": "src/Category/Instance.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/categories",
"max_stars_repo_path": "src/Category/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z",
"num_tokens": 458,
"size": 1482
} |
{-# OPTIONS --enable-prop #-}
data TestProp : Prop where
p₁ p₂ : TestProp
data _≡Prop_ {A : Prop} (x : A) : A → Set where
refl : x ≡Prop x
p₁≢p₂ : {P : Prop} → p₁ ≡Prop p₂ → P
p₁≢p₂ ()
| {
"alphanum_fraction": 0.5625,
"avg_line_length": 17.4545454545,
"ext": "agda",
"hexsha": "2a8271d587cec1e61cbfc057aa625bcdb07f3adf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Fail/Prop-NoDisjointConstructors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Fail/Prop-NoDisjointConstructors.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Fail/Prop-NoDisjointConstructors.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 83,
"size": 192
} |
------------------------------------------------------------------------
-- Up-to techniques for the standard coinductive definition of weak
-- bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Weak.Up-to {ℓ} (lts : LTS ℓ) where
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Prelude.Size
open import Bisimilarity.Weak lts
import Bisimilarity.Weak.Equational-reasoning-instances
open import Equational-reasoning
open import Expansion lts as E using (Expansion; _≲_; ≳:_)
import Expansion.Equational-reasoning-instances
open import Indexed-container
open import Relation
import Similarity.Weak lts as S
import Up-to
open LTS lts
import Similarity.Step lts _[_]⇒̂_ as SS
------------------------------------------------------------------------
-- The general up-to machinery, instantiated with the StepC container
open Up-to StepC public
------------------------------------------------------------------------
-- Up to expansion
-- Up to expansion.
--
-- I took this definition from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi.
Up-to-expansion : Trans₂ ℓ Proc
Up-to-expansion R = Expansion ∞ ⊙ R ⊙ Expansion ∞ ⁻¹
-- Up to expansion is monotone.
up-to-expansion-monotone : Monotone Up-to-expansion
up-to-expansion-monotone R⊆S =
Σ-map id (Σ-map id (Σ-map id (Σ-map R⊆S id)))
-- Up to expansion is size-preserving.
up-to-expansion-size-preserving : Size-preserving Up-to-expansion
up-to-expansion-size-preserving =
_⇔_.from (monotone→⇔ up-to-expansion-monotone)
(λ where
{x = p , q} (r , p≳r , s , r≈s , s≲q) →
p ∼⟨ p≳r ⟩
r ∼′⟨ r≈s ⟩ ≳:
s ∽⟨ s≲q ⟩■
q)
------------------------------------------------------------------------
-- A generalisation of up to expansion
mutual
-- A monolithic implementation of a non-symmetric variant of up to
-- expansion, based on the technique presented in Section 6.5.2.4 of
-- "Enhancements of the bisimulation proof method" by Pous and
-- Sangiorgi.
--
-- It is at the time of writing not clear to me if there is some
-- size-preserving proof that matches this technique.
6-5-2-4 :
{R : Rel₂ ℓ Proc} →
(∀ {P P′ Q μ} →
R (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⇒̂ Q′ ×
(Expansion ∞ ⊙ R ⊙ Weak-bisimilarity ∞) (P′ , Q′)) →
(∀ {P Q Q′ μ} →
R (P , Q) → Q [ μ ]⟶ Q′ →
∃ λ P′ → P [ μ ]⇒̂ P′ ×
(Weak-bisimilarity ∞ ⊙ R ⊙ Expansion ∞ ⁻¹) (P′ , Q′)) →
R ⊆ Weak-bisimilarity ∞
6-5-2-4 {R} lr⟶ rl⟶ =
6-5-2-4′ (λ PRQ → S.⟨ lr⟶ PRQ ⟩)
(λ PR⁻¹Q → S.⟨ Σ-map id (Σ-map id lemma) ∘ rl⟶ PR⁻¹Q ⟩)
where
lemma :
Weak-bisimilarity ∞ ⊙ R ⊙ Expansion ∞ ⁻¹ ⊆
(Expansion ∞ ⊙ R ⁻¹ ⊙ Weak-bisimilarity ∞) ⁻¹
lemma (_ , P₁≈P₂ , _ , P₂RP₃ , P₃≲P₄) =
(_ , P₃≲P₄ , _ , P₂RP₃ , symmetric P₁≈P₂)
-- A variant of 6-5-2-4.
6-5-2-4′ :
let Prog = λ (R : Rel₂ ℓ Proc) →
R ⊆ ⟦ S.StepC ⟧ (Expansion ∞ ⊙ R ⊙ Weak-bisimilarity ∞) in
∀ {R} → Prog R → Prog (R ⁻¹) → R ⊆ Weak-bisimilarity ∞
6-5-2-4′ {R} lr⟶ rl⟶ =
R ⊆⟨ ⊆≈≈ ⟩
≈ R ≈ ⊆⟨ unfold _ (λ P≈R≈Q →
StepC.⟨ SS.Step.challenge (lemma lr⟶ P≈R≈Q)
, Σ-map id (Σ-map id ≈≈-sym) ∘
SS.Step.challenge (lemma rl⟶ (≈≈-sym P≈R≈Q))
⟩) ⟩∎
Weak-bisimilarity ∞ ∎
where
≈_≈ : Rel₂ ℓ Proc → Rel₂ ℓ Proc
≈ R ≈ = Weak-bisimilarity ∞ ⊙ R ⊙ Weak-bisimilarity ∞
⊆≈≈ : ∀ {R} → R ⊆ ≈ R ≈
⊆≈≈ r = _ , reflexive , _ , r , reflexive
≳_≈ : Rel₂ ℓ Proc → Rel₂ ℓ Proc
≳ R ≈ = Expansion ∞ ⊙ R ⊙ Weak-bisimilarity ∞
⊆≳≈ : ∀ {R} → R ⊆ ≳ R ≈
⊆≳≈ r = _ , reflexive , _ , r , reflexive
≈≈-sym : ∀ {R} → ≈ R ≈ ⊆ ≈ R ⁻¹ ≈ ⁻¹
≈≈-sym (_ , P₁≈P₂ , _ , P₂RP₃ , P₃≈P₄) =
(_ , symmetric P₃≈P₄ , _ , P₂RP₃ , symmetric P₁≈P₂)
lemma : ∀ {R} → R ⊆ ⟦ S.StepC ⟧ ≳ R ≈ → ≈ R ≈ ⊆ SS.Step ≈ R ≈
lemma {R} lr⟶ = λ where
(P₁ , P≈P₁ , Q₁ , P₁RQ₁ , Q₁≈Q) .SS.Step.challenge P⟶P₁ →
let P₁′ , P₁⟶̂P₁′ , P′≈′P₁′ = left-to-right P≈P₁ P⟶P₁
Q₁′ , Q₁⇒̂Q₁′ , P₁″ ,
P₁′≳P₁″ , Q₁″ ,
P₁″RQ₁″ , Q₁″≈Q₁′ = lr≳≈⇒̂ (⊆≳≈ P₁RQ₁) P₁⟶̂P₁′
Q′ , Q⇒̂Q′ , Q₁′≈Q′ = weak-is-weak⇒̂ Q₁≈Q Q₁⇒̂Q₁′
in Q′ , Q⇒̂Q′ , P₁″
, transitive′ {a = ℓ} (force P′≈′P₁′) P₁′≳P₁″
, Q₁″ , P₁″RQ₁″ , transitive {a = ℓ} Q₁″≈Q₁′ Q₁′≈Q′
where
lr⟶̂ :
∀ {P P′ Q μ} →
R (P , Q) → P [ μ ]⟶̂ P′ → ∃ λ Q′ → Q [ μ ]⇒̂ Q′ × ≳ R ≈ (P′ , Q′)
lr⟶̂ PRQ (done s) = _ , silent s done , ⊆≳≈ PRQ
lr⟶̂ PRQ (step P⟶P′) = S.challenge (lr⟶ PRQ) P⟶P′
lr≳≈⟶ :
∀ {P P′ Q μ} →
≳ R ≈ (P , Q) → P [ μ ]⟶ P′ →
∃ λ Q′ → Q [ μ ]⇒̂ Q′ × ≳ R ≈ (P′ , Q′)
lr≳≈⟶ (P₁ , P≳P₁ , Q₁ , P₁RQ₁ , Q₁≈Q) P⟶P′ =
let P₁′ , P₁⟶̂P₁′ , P′≳P₁′ = E.left-to-right P≳P₁ P⟶P′
Q₁′ , Q₁⇒̂Q₁′ , P₁″ , P₁′≳P₁″ ,
Q₁″ , P₁″RQ₁″ , Q₁″≈Q₁′ = lr⟶̂ P₁RQ₁ P₁⟶̂P₁′
Q′ , Q⇒̂Q′ , Q₁′≈Q′ = weak-is-weak⇒̂ Q₁≈Q Q₁⇒̂Q₁′
in Q′ , Q⇒̂Q′ ,
P₁″ , transitive {a = ℓ} P′≳P₁′ P₁′≳P₁″ ,
Q₁″ , P₁″RQ₁″ , transitive {a = ℓ} Q₁″≈Q₁′ Q₁′≈Q′
lr≳≈⇒ :
∀ {P P′ Q} →
≳ R ≈ (P , Q) → P ⇒ P′ → ∃ λ Q′ → Q ⇒ Q′ × ≳ R ≈ (P′ , Q′)
lr≳≈⇒ P≳R≈Q done = _ , done , P≳R≈Q
lr≳≈⇒ P≳R≈Q (step s P⟶P′ P′⇒P″) =
let Q′ , Q⇒̂Q′ , P′≳R≈Q′ = lr≳≈⟶ P≳R≈Q P⟶P′
Q″ , Q′⇒Q″ , P″≳R≈Q″ = lr≳≈⇒ P′≳R≈Q′ P′⇒P″
in Q″ , ⇒-transitive (⇒̂→⇒ s Q⇒̂Q′) Q′⇒Q″ , P″≳R≈Q″
lr≳≈[]⇒ :
∀ {P P′ Q μ} →
¬ Silent μ →
≳ R ≈ (P , Q) → P [ μ ]⇒ P′ →
∃ λ Q′ → Q [ μ ]⇒ Q′ × ≳ R ≈ (P′ , Q′)
lr≳≈[]⇒ ¬s P≳R≈Q (steps P⇒P′ P′⟶P″ P″⇒P‴) =
let Q′ , Q⇒Q′ , P′≳R≈Q′ = lr≳≈⇒ P≳R≈Q P⇒P′
Q″ , Q′⇒̂Q″ , P″≳R≈Q″ = lr≳≈⟶ P′≳R≈Q′ P′⟶P″
Q‴ , Q″⇒Q‴ , P‴≳R≈Q‴ = lr≳≈⇒ P″≳R≈Q″ P″⇒P‴
in Q‴
, []⇒⇒-transitive (⇒[]⇒-transitive Q⇒Q′ (⇒̂→[]⇒ ¬s Q′⇒̂Q″)) Q″⇒Q‴
, P‴≳R≈Q‴
lr≳≈⇒̂ :
∀ {P P′ Q μ} →
≳ R ≈ (P , Q) → P [ μ ]⇒̂ P′ →
∃ λ Q′ → Q [ μ ]⇒̂ Q′ × ≳ R ≈ (P′ , Q′)
lr≳≈⇒̂ PRQ = λ where
(silent s P⇒P′) → Σ-map id (Σ-map (silent s) id)
(lr≳≈⇒ PRQ P⇒P′)
(non-silent ¬s P⇒P′) → Σ-map id (Σ-map (non-silent ¬s) id)
(lr≳≈[]⇒ ¬s PRQ P⇒P′)
------------------------------------------------------------------------
-- Up to weak bisimilarity
-- Up to weak bisimilarity.
--
-- I based this definition on Definition 4.2.13 in Milner's
-- "Operational and Algebraic Semantics of Concurrent Processes".
Up-to-weak-bisimilarity : Trans₂ ℓ Proc
Up-to-weak-bisimilarity R =
Weak-bisimilarity ∞ ⊙ R ⊙ Weak-bisimilarity ∞
-- Up to weak bisimilarity is monotone.
up-to-weak-bisimilarity-monotone : Monotone Up-to-weak-bisimilarity
up-to-weak-bisimilarity-monotone R⊆S =
Σ-map id (Σ-map id (Σ-map id (Σ-map R⊆S id)))
-- If transitivity of weak bisimilarity is size-preserving in the
-- first argument, then "up to weak bisimilarity" is size-preserving.
size-preserving-transitivity→up-to-weak-bisimilarity-size-preserving :
(∀ {i x y z} → [ i ] x ≈ y → [ ∞ ] y ≈ z → [ i ] x ≈ z) →
Size-preserving Up-to-weak-bisimilarity
size-preserving-transitivity→up-to-weak-bisimilarity-size-preserving
trans =
_⇔_.from (monotone→⇔ up-to-weak-bisimilarity-monotone) λ where
{x = p , q} (r , p≈r , s , r≈s , s≈q) →
p ≈∞⟨ p≈r ⟩
r ≈⟨ r≈s ⟩∞
s ∼⟨ s≈q ⟩■
q
where
infixr -2 _≈⟨_⟩∞_ _≈∞⟨_⟩_
_≈⟨_⟩∞_ : ∀ {i} x {y z} → [ i ] x ≈ y → [ ∞ ] y ≈ z → [ i ] x ≈ z
_ ≈⟨ p ⟩∞ q = trans p q
_≈∞⟨_⟩_ : ∀ {i} x {y z} → [ ∞ ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z
_ ≈∞⟨ p ⟩ q = symmetric (trans (symmetric q) (symmetric p))
-- If transitivity of weak bisimilarity is size-preserving in both
-- arguments, then weak bisimulations up to weak bisimilarity are
-- contained in weak bisimilarity.
size-preserving-transitivity→up-to-weak-bisimilarity-up-to :
(∀ {i x y z} → [ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z) →
Up-to-technique Up-to-weak-bisimilarity
size-preserving-transitivity→up-to-weak-bisimilarity-up-to =
size-preserving→up-to ∘
size-preserving-transitivity→up-to-weak-bisimilarity-size-preserving
| {
"alphanum_fraction": 0.4672016748,
"avg_line_length": 35.3827160494,
"ext": "agda",
"hexsha": "5e574ef391ab29ed216d5e6a07a26934398ae1c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Up-to.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Up-to.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Up-to.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3867,
"size": 8598
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.FGIdeal where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat
open import Cubical.Data.Vec
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FGIdeal renaming (generatedIdeal to generatedIdealCommRing)
open import Cubical.Algebra.CommAlgebra
open import Cubical.Algebra.CommAlgebra.Ideal
private
variable
ℓ : Level
module _ {R : CommRing ℓ} (A : CommAlgebra R ℓ) where
open CommAlgebraStr (snd A)
generatedIdeal : {n : ℕ} → FinVec (fst A) n → IdealsIn A
generatedIdeal = generatedIdealCommRing (CommAlgebra→CommRing A)
| {
"alphanum_fraction": 0.7868852459,
"avg_line_length": 29.1739130435,
"ext": "agda",
"hexsha": "5c5c546b70a0ba8698da7a7d734456acb2042a90",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_line_length": 96,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FGIdeal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 188,
"size": 671
} |
{-# OPTIONS --allow-unsolved-metas #-}
record ⊤ : Set where
constructor tt
data I : Set where
i : ⊤ → I
data D : I → Set where
d : D (i tt)
postulate
P : (x : I) → D x → Set
foo : (y : _) → P _ y
foo d = {!!}
| {
"alphanum_fraction": 0.518018018,
"avg_line_length": 13.0588235294,
"ext": "agda",
"hexsha": "7e64b14381f606a9ce4c00a97d8118503b0890d4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue1863.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue1863.agda",
"max_line_length": 38,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue1863.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 84,
"size": 222
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Semigroup.Construct.Unit where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Semigroup
open import Cubical.Data.Unit
import Cubical.Algebra.Magma.Construct.Unit as ⊤Magma
open ⊤Magma public hiding (⊤-isMagma; ⊤-Magma)
◯-assoc : Associative _◯_
◯-assoc _ _ _ = refl
⊤-isSemigroup : IsSemigroup ⊤ _◯_
⊤-isSemigroup = record
{ isMagma = ⊤Magma.⊤-isMagma
; assoc = ◯-assoc
}
⊤-Semigroup : Semigroup ℓ-zero
⊤-Semigroup = record { isSemigroup = ⊤-isSemigroup }
| {
"alphanum_fraction": 0.73089701,
"avg_line_length": 24.08,
"ext": "agda",
"hexsha": "9c94f702c865784cfb9f63632738db493ea02c41",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Unit.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 213,
"size": 602
} |
------------------------------------------------------------------------
-- Some properties that hold for Erased do not hold for every
-- accessible modality
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Erased.Counterexamples.Cubical
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as B using (_↔_)
open import Erased.Cubical eq
using (Σ-closed-reflective-subuniverse; Accessible)
open import Equality.Decision-procedures equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Path-split equality-with-J as PS
using (_-Null_; Is-∞-extendable-along-[_])
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as T
using (∥_∥; ∣_∣; Axiom-of-choice)
open import Preimage equality-with-J using (_⁻¹_)
private
variable
a b ℓ ℓ′ p : Level
A : Type a
-- A type is modal with respect to the modality ∥_∥ if it is a
-- proposition.
∥∥-modal : Type ℓ → Type ℓ
∥∥-modal = Is-proposition
-- Propositional truncation is a Σ-closed reflective subuniverse.
--
-- This proof is based on "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
∥∥-modality : Σ-closed-reflective-subuniverse ℓ
∥∥-modality {ℓ = ℓ} = λ where
.◯ → ∥_∥
.η → ∣_∣
.Is-modal → ∥∥-modal
.Is-modal-propositional → λ ext → H-level-propositional ext 1
.Is-modal-◯ → T.truncation-is-proposition
.Is-modal-respects-≃ → H-level-cong _ 1
.extendable-along-η → extendable
.Σ-closed → Σ-closure 1
where
open Σ-closed-reflective-subuniverse
extendable :
{A B : Type ℓ} →
Is-proposition B →
Is-∞-extendable-along-[ ∣_∣ ] (λ (_ : ∥ A ∥) → B)
extendable {A = A} {B = B} =
Is-proposition B →⟨ (λ prop →
_≃_.is-equivalence $
Eq.↔→≃
_
(T.rec prop)
refl
(λ f → ⟨ext⟩ $
T.elim
_
(λ _ → ⇒≡ 1 prop)
(λ _ → refl _))) ⟩
Is-equivalence (λ (f : ∥ A ∥ → B) → f ∘ ∣_∣) ↔⟨ inverse $ PS.Is-∞-extendable-along≃Is-equivalence ext ⟩□
Is-∞-extendable-along-[ ∣_∣ ] (λ (_ : ∥ A ∥) → B) □
-- The propositional truncation modality is accessible.
--
-- This proof is based on "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
∥∥-accessible : Accessible ℓ′ (∥∥-modality {ℓ = ℓ})
∥∥-accessible {ℓ′ = ℓ′} {ℓ = ℓ} =
↑ ℓ′ ⊤
, (λ _ → ↑ ℓ′ Bool)
, (λ A →
Is-proposition A ↝⟨ record { from = from; to = to } ⟩
(λ _ → ↑ ℓ′ Bool) -Null A ↔⟨ inverse $ PS.Π-Is-∞-extendable-along≃Null ext ⟩□
(↑ ℓ′ ⊤ → Is-∞-extendable-along-[ _ ] (λ _ → A)) □)
where
to : Is-proposition A → (λ _ → ↑ ℓ′ Bool) -Null A
to prop _ =
_≃_.is-equivalence $
Eq.⇔→≃
prop
(Π-closure ext 1 λ _ → prop)
_
(_$ lift true)
from : (λ _ → ↑ ℓ′ Bool) -Null A → Is-proposition A
from {A = A} null x y =
x ≡⟨⟩
case true ⦂ Bool of if_then x else y ≡⟨ cong (_$ true) $ sym $ E.right-inverse-of _ ⟩
E.to (E.from (if_then x else y)) true ≡⟨⟩
E.from (if_then x else y) ≡⟨⟩
E.to (E.from (if_then x else y)) false ≡⟨ cong (_$ false) $ E.right-inverse-of _ ⟩
case false ⦂ Bool of if_then x else y ≡⟨⟩
y ∎
where
≃Bool→ : A ≃ (Bool → A)
≃Bool→ =
A ↝⟨ Eq.⟨ _ , null _ ⟩ ⟩
(↑ ℓ′ Bool → A) ↝⟨ Eq.↔→≃ (_∘ lift) (_∘ lower) refl refl ⟩□
(Bool → A) □
module E = _≃_ ≃Bool→
-- It is not the case that, for all types A and B and functions
-- f : A → B, "f is ∥∥-connected" implies ∥ Is-equivalence f ∥.
¬[∥∥-connected→∥Is-equivalence∥] :
¬ ({A : Type a} {B : Type b} {f : A → B} →
(∀ y → Contractible ∥ f ⁻¹ y ∥) → ∥ Is-equivalence f ∥)
¬[∥∥-connected→∥Is-equivalence∥] hyp =
$⟨ (λ _ → ∣ lift true , refl _ ∣) ⟩
((y : ↑ _ ⊤) → ∥ (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ⁻¹ y ∥) →⟨ (∀-cong _ λ _ →
propositional⇒inhabited⇒contractible T.truncation-is-proposition) ⟩
((y : ↑ _ ⊤) →
Contractible ∥ (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ⁻¹ y ∥) →⟨ hyp ⟩
∥ Is-equivalence (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ∥ ↔⟨ T.∥∥↔ (Eq.propositional ext _) ⟩
Is-equivalence (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) →⟨ Eq.⟨ _ ,_⟩ ⟩
↑ _ Bool ≃ ↑ _ ⊤ →⟨ (λ eq → Eq.↔⇒≃ B.↑↔ F.∘ eq F.∘ Eq.↔⇒≃ (inverse B.↑↔)) ⟩
Bool ≃ ⊤ →⟨ (λ eq → H-level-cong _ 1 (inverse eq) (mono₁ 0 ⊤-contractible)) ⟩
Is-proposition Bool →⟨ ¬-Bool-propositional ⟩□
⊥ □
-- It is not the case that, for all types A and B and functions
-- f : A → B, "f is ∥∥-connected" is equivalent to
-- ∥ Is-equivalence f ∥.
--
-- Compare with
-- Erased.Level-1.[]-cong₂-⊔.Erased-connected↔Erased-Is-equivalence.
¬[∥∥-connected≃∥Is-equivalence∥] :
¬ ({A : Type a} {B : Type b} {f : A → B} →
(∀ y → Contractible ∥ f ⁻¹ y ∥) ≃ ∥ Is-equivalence f ∥)
¬[∥∥-connected≃∥Is-equivalence∥] hyp =
¬[∥∥-connected→∥Is-equivalence∥] (_≃_.to hyp)
-- If (x : A) → ∥ P x ∥ implies ∥ ((x : A) → P x) ∥ for all types A
-- and type families P over A, then the axiom of choice holds.
[Π∥∥→∥Π∥]→Axiom-of-choice :
({A : Type a} {P : A → Type p} →
((x : A) → ∥ P x ∥) → ∥ ((x : A) → P x) ∥) →
Axiom-of-choice a p
[Π∥∥→∥Π∥]→Axiom-of-choice hyp = λ _ → hyp
-- If ∥ ((x : A) → P x) ∥ is isomorphic to (x : A) → ∥ P x ∥ for all
-- types A and type families P over A, then the axiom of choice holds.
--
-- Compare with Erased.Level-1.Erased-Π↔Π.
[∥Π∥↔Π∥∥]→Axiom-of-choice :
({A : Type a} {P : A → Type p} →
∥ ((x : A) → P x) ∥ ↔ ((x : A) → ∥ P x ∥)) →
Axiom-of-choice a p
[∥Π∥↔Π∥∥]→Axiom-of-choice hyp =
[Π∥∥→∥Π∥]→Axiom-of-choice (_↔_.from hyp)
-- If ∥ A ∥ → ∥ B ∥ implies ∥ (A → B) ∥ for all types A and B in the
-- same universe, then ∥ (∥ A ∥ → A) ∥ holds for every type A in this
-- universe. This is a variant of the axiom of choice of which Kraus
-- et al. state that "We expect that this makes it possible to show
-- that, in MLTT with weak propositional truncation, [a logically
-- equivalent variant of the axiom] is not derivable" (see "Notions of
-- Anonymous Existence in Martin-Löf Type Theory").
[[∥∥→∥∥]→∥→∥]→Axiom-of-choice :
({A B : Type a} → (∥ A ∥ → ∥ B ∥) → ∥ (A → B) ∥) →
({A : Type a} → ∥ (∥ A ∥ → A) ∥)
[[∥∥→∥∥]→∥→∥]→Axiom-of-choice hyp {A = A} =
$⟨ T.rec T.truncation-is-proposition id ⟩
(∥ ∥ A ∥ ∥ → ∥ A ∥) →⟨ hyp ⟩□
∥ (∥ A ∥ → A) ∥ □
-- If ∥ (A → B) ∥ is isomorphic to ∥ A ∥ → ∥ B ∥ for all types A and B
-- in the same universe, then ∥ (∥ A ∥ → A) ∥ holds for every type A
-- in this universe. This is a variant of the axiom of choice of which
-- Kraus et al. state that "We expect that this makes it possible to
-- show that, in MLTT with weak propositional truncation, [a logically
-- equivalent variant of the axiom] is not derivable" (see "Notions of
-- Anonymous Existence in Martin-Löf Type Theory").
--
-- Compare with Erased.Level-1.Erased-Π↔Π-Erased.
[∥→∥↔[∥∥→∥∥]]→Axiom-of-choice :
({A B : Type a} → ∥ (A → B) ∥ ↔ (∥ A ∥ → ∥ B ∥)) →
({A : Type a} → ∥ (∥ A ∥ → A) ∥)
[∥→∥↔[∥∥→∥∥]]→Axiom-of-choice hyp =
[[∥∥→∥∥]→∥→∥]→Axiom-of-choice (_↔_.from hyp)
-- It is not the case that, for every type A, if A is ∥∥-modal, then A
-- is (λ (A : Type a) → ∥∥-modal A)-null.
¬[∥∥-modal→∥∥-modal-Null] :
¬ ({A : Type a} → ∥∥-modal A → (λ (A : Type a) → ∥∥-modal A) -Null A)
¬[∥∥-modal→∥∥-modal-Null] hyp = $⟨ ⊥-propositional ⟩
Is-proposition ⊥ →⟨ hyp ⟩
(∀ A → Is-equivalence (const ⦂ (⊥ → Is-proposition A → ⊥))) →⟨ _$ _ ⟩
Is-equivalence (const ⦂ (⊥ → Is-proposition (↑ _ Bool) → ⊥)) →⟨ Eq.⟨ _ ,_⟩ ⟩
⊥ ≃ (Is-proposition (↑ _ Bool) → ⊥) →⟨ →-cong ext
(Eq.↔⇒≃ $ inverse $
B.⊥↔uninhabited (¬-Bool-propositional ∘ ↑⁻¹-closure 1))
Eq.id F.∘_ ⟩
⊥ ≃ (⊥₀ → ⊥) →⟨ Π⊥↔⊤ ext F.∘_ ⟩
⊥ ≃ ⊤ →⟨ (λ eq → ⊥-elim $ _≃_.from eq _) ⟩□
⊥ □
-- It is not the case that, for every type A, there is an equivalence
-- between "A is ∥∥-modal" and (λ (A : Type a) → ∥∥-modal A) -Null A.
--
-- Compare with Erased.Stability.Very-stable≃Very-stable-Null.
¬[∥∥-modal≃∥∥-modal-Null] :
¬ ({A : Type a} → ∥∥-modal A ≃ (λ (A : Type a) → ∥∥-modal A) -Null A)
¬[∥∥-modal≃∥∥-modal-Null] hyp =
¬[∥∥-modal→∥∥-modal-Null] (_≃_.to hyp)
-- It is not the case that, for every type A : Type a and proof of
-- Extensionality a a, there is an equivalence between "A is ∥∥-modal"
-- and (λ (A : Type a) → ∥∥-modal A) -Null A.
--
-- Compare with Erased.Stability.Very-stable≃Very-stable-Null.
¬[∥∥-modal≃∥∥-modal-Null]′ :
¬ ({A : Type a} →
Extensionality a a →
∥∥-modal A ≃ (λ (A : Type a) → ∥∥-modal A) -Null A)
¬[∥∥-modal≃∥∥-modal-Null]′ hyp =
¬[∥∥-modal≃∥∥-modal-Null] (hyp ext)
| {
"alphanum_fraction": 0.4681830999,
"avg_line_length": 41.7215686275,
"ext": "agda",
"hexsha": "0dd5d8d42cf9f2c807bd289777812c1c8788789d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/Counterexamples/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/Counterexamples/Cubical.agda",
"max_line_length": 138,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/Counterexamples/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3913,
"size": 10639
} |
data U : Set
T : U → Set
{-# NO_UNIVERSE_CHECK #-}
data U where
pi : (A : Set)(b : A → U) → U
T (pi A b) = (x : A) → T (b x)
| {
"alphanum_fraction": 0.4615384615,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "cdffbc4589790235cf5e76342ae28e5f2ed4ab14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/NoUniverseCheckPragma2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/NoUniverseCheckPragma2.agda",
"max_line_length": 31,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/NoUniverseCheckPragma2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z",
"num_tokens": 58,
"size": 130
} |
module Examples.TrafficLight where
open import Data.Bool
open import Data.Empty
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Library
open import FStream.Core
open import FStream.FVec
open import FStream.Containers
open import CTL.Modalities
open import CTL.Proof
data Colour : Set where
red : Colour
green : Colour
_<$>_ = fmap
boolToColour : Bool → Colour
boolToColour false = green
boolToColour true = red
trafficLight : FStream (ReaderC Bool) Colour
trafficLight = ⟨ returnReader green ▻ (boolToColour <$> ask) ▻ returnReader green ▻ returnReader red ⟩ ▻⋯
-- TODO Consider replacing Colour by Bool for simplification
boolLight : FStream (ReaderC Bool) Bool
boolLight = ⟨ returnReader true ▻ returnReader true ▻ returnReader false ⟩ ▻⋯
-- TODO This only proves that right now (in the first tick), liveness is satisfied, but not in the later ticks!
isLive : AF (map (_≡ green) trafficLight)
isLive p = alreadyA refl
trafficLight₂ : FStream (ReaderC Bool) Colour
trafficLight₂ = ⟨ returnReader red ▻ (boolToColour <$> ask) ▻ returnReader red ▻ returnReader green ⟩ ▻⋯
boolLight₂ : FStream (ReaderC Bool) Bool
boolLight₂ = ⟨ returnReader false ▻ returnReader false ▻ returnReader true ⟩ ▻⋯
-- FIND-OUT how to call this / what this actually means
isLive₂ : EF (map (_≡ true) boolLight₂)
isLive₂ p = notYetE (true , (notYetE (true , (alreadyE refl))))
-- notYetE (true , (notYetE (true , (alreadyE (false , refl)))))
trafficLight₃ : ∀ {i} → FStream {i} (ReaderC Bool) Colour
trafficLight₃ = ⟨ returnReader green ▻ (boolToColour <$> ask) ▻ returnReader red ▻ returnReader green ⟩ ▻⋯
boolLight₃ : FStream (ReaderC Bool) Bool
boolLight₃ = ⟨ returnReader true ▻ returnReader false ▻ returnReader true ⟩ ▻⋯
isLive₄ : ∀ {i} → AG {i} (AFₛ (map (_≡ green) (trafficLight₃)))
nowA (isLive₄ p) = alreadyA refl
nowA (laterA (isLive₄ p) false) = alreadyA refl
nowA (laterA (isLive₄ p) true) = notYetA (const (notYetA (const (alreadyA refl))))
nowA (laterA (laterA (isLive₄ p) p₁) p₂) = notYetA (λ p₃ → alreadyA refl)
nowA (laterA (laterA (laterA (isLive₄ p) p₁) p₂) p₃) = alreadyA refl
laterA (laterA (laterA (laterA (isLive₄ p) p₁) p₂) p₃) p₄ = isLive₄ true
mutual
-- This fellow switches between false and true every time a "true" is entered as input
trueEgde : ∀ {i} → FStream {i} (ReaderC Bool) Bool
proj₁ (inF trueEgde) = tt
head (proj₂ (inF trueEgde) true) = false
tail (proj₂ (inF trueEgde) true) = falseEgde
head (proj₂ (inF trueEgde) false) = true
tail (proj₂ (inF trueEgde) false) = trueEgde
falseEgde : ∀ {i} → FStream {i} (ReaderC Bool) Bool
proj₁ (inF falseEgde) = tt
head (proj₂ (inF falseEgde) true) = true
tail (proj₂ (inF falseEgde) true) = trueEgde
head (proj₂ (inF falseEgde) false) = false
tail (proj₂ (inF falseEgde) false) = falseEgde
-- At every point in time, it is possible (by correct input) to output true
mutual
edgeResponsive : ∀ {i} → AG {i} (EFₛ (map (_≡ true) trueEgde ))
nowA (edgeResponsive false) = alreadyE refl
nowA (edgeResponsive true) = notYetE (true , alreadyE refl)
laterA (edgeResponsive false) = edgeResponsive
laterA (edgeResponsive true) = edgeResponsive'
edgeResponsive' : ∀ {i} → AG {i} (EFₛ (map (_≡ true) falseEgde))
edgeResponsive' = {! !}
-- Exercise for you, dear reader!
frob : ∀ {i} → Bool → FStream {i} (ReaderC Bool) Bool
proj₁ (inF (frob b)) = tt
head (proj₂ (inF (frob b)) false) = b
tail (proj₂ (inF (frob b)) false) = frob b
head (proj₂ (inF (frob b)) true) = not b
tail (proj₂ (inF (frob b)) true) = frob (not b)
frobResponsive : ∀ {i} → (b : Bool) → AG {i} (EFₛ (map (_≡ true) (frob b) ))
nowA (frobResponsive false false) = notYetE (true , alreadyE refl)
nowA (frobResponsive false true) = alreadyE refl
nowA (frobResponsive true false) = alreadyE refl
nowA (frobResponsive true true) = notYetE (true , (alreadyE refl))
laterA (frobResponsive b false) = frobResponsive b
laterA (frobResponsive b true) = frobResponsive (not b)
-- Prove that a series of ⊤ is always true, under any circumstance
tautology : AG ⟨ returnReader ⊤ ⟩ ▻⋯
-- We create a cyclical stream of proofs
tautology = ⟨ const tt ⟩AG ▻AG
tautology₂ : ∀ {i} → AG {i} ⟨ returnReader ⊤ ⟩ ▻⋯
nowA (tautology₂ p) = tt
laterA (tautology₂ p) = tautology₂
-- p is the position of the first side effect
-- TODO Find something that this satisfies
identity : ∀ {A} → FStream (ReaderC A) A
identity = ⟨ ask ⟩ ▻⋯
alwaysGreen : ∀ {i} → FStream {i} (ReaderC Bool) Colour
alwaysGreen = ⟨ (returnReader green) ▻ returnReader green ⟩ ▻⋯
isAlwaysGreen : ∀ {i} → AG {i} (map (_≡ green) alwaysGreen)
nowA (isAlwaysGreen p) = refl
nowA (laterA (isAlwaysGreen p) p₁) = refl
laterA (laterA (isAlwaysGreen p) p₁) p₂ = isAlwaysGreen p
{-
nowA isAlwaysGreen _ = refl
nowA (laterA isAlwaysGreen _) _ = refl
laterA (laterA isAlwaysGreen _) _ = isAlwaysGreen
-}
isAlwaysGreen' : ∀ {i} → AG {i} (map (_≡ green) alwaysGreen)
isAlwaysGreen' = {! !} -- TODO Would like to use bisimulation
isGreenOrRed : ∀ {i} → AG {i} (map (λ x → (x ≡ green) ⊎ (x ≡ red)) ⟨ returnReader green ▻ returnReader red ⟩ ▻⋯)
nowA (isGreenOrRed p) = inj₁ refl
nowA (laterA (isGreenOrRed p) p₁) = inj₂ refl
laterA (laterA (isGreenOrRed p) p₁) p₂ = isGreenOrRed p
trafficLight₄ : ∀ {i} → FStream {i} (ReaderC Bool) Bool
trafficLight₄ = ⟨ returnReader true ▻ ask ⟩ ▻⋯
liveness₄ : ∀ {i} → AG {i} (AFₛ (map (true ≡_) trafficLight₄))
nowA (liveness₄ p) = alreadyA refl
nowA (laterA (liveness₄ p) p₁) = notYetA (λ p₂ → alreadyA refl)
laterA (laterA (liveness₄ p) p₁) = liveness₄
responsivity : ∀ {i} → EG {i} (map (true ≡_) trafficLight₄)
proj₁ responsivity = false
nowE (proj₂ responsivity) = refl
proj₁ (laterE (proj₂ responsivity)) = true
nowE (proj₂ (laterE (proj₂ responsivity))) = refl
laterE (proj₂ (laterE (proj₂ responsivity))) = responsivity
responsivity₁ : ∀ {i} → EG {i} (map (true ≡_) trafficLight₄)
responsivity₁ = mapEG ⟨ refl ⟩EGᵢ ▻EG
responsivity₁' : ∀ {i} → EG {i} (map (true ≡_) trafficLight₄)
responsivity₁' = mapEG ⟨ refl ▻EGᵢ refl ⟩EGᵢ ▻EG
responsivity₂ : ∀ {i} → EG {i} (⟨ vmap (true ≡_) (returnReader true ▻ ask ⟩) ▻⋯)
proj₁ responsivity₂ = false
nowE (proj₂ responsivity₂) = refl
proj₁ (laterE (proj₂ responsivity₂)) = true
nowE (proj₂ (laterE (proj₂ responsivity₂))) = refl
laterE (proj₂ (laterE (proj₂ responsivity₂))) = responsivity₂
responsoSmall : EN (⟨ vmap (true ≡_) (returnReader true ▻ ask ⟩) ▻⋯)
proj₁ responsoSmall = true
proj₁ (proj₂ responsoSmall) = true
proj₂ (proj₂ responsoSmall) = refl
responso : AG (ENₛ (⟨ vmap (true ≡_) (returnReader true ▻ ask ⟩) ▻⋯))
nowA (responso p) with fmap EN'ₛ (inF ⟨ FCons (fmap (vmap' (λ section → true ≡ section)) (fmap (λ x → x , ask ⟩) (returnReader true))) ▻⋯)
nowA (responso p) | proj₃ , proj₄ with EN' (_aux_ ((true ≡ true) , FCons (tt , (λ x → (true ≡ x) , FNil))) (FCons (tt , (λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))))))
... | bla = {! !}
nowA (laterA (responso p) p₁) = {! !}
laterA (laterA (responso p) p₁) p₂ = {! !}
{-
head
(EN'ₛ
(((true ≡ true) , FCons (tt , (λ x → (true ≡ x) , FNil))) aux
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))))))
EN'
(((true ≡ true) , FCons (tt , (λ x → (true ≡ x) , FNil))) aux
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil)))))
EPred head (inF (tail
(((true ≡ true) , FCons (tt , (λ x → (true ≡ x) , FNil))) aux
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil)))))))
EPred head (inF
(( FCons (tt , (λ x → (true ≡ x) , FNil))) pre⟨
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))) ▻⋯ )))
EPred head (fmap (_aux
(FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))) ▻⋯ ))) (tt , (λ x → (true ≡ x) , FNil)) )
EPred head (tt , (λ x → (true ≡ x) , FNil) aux
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))) ▻⋯ ) )
∃ p → head ((λ x → (true ≡ x) , FNil) aux
FCons
(tt ,
(λ x → (true ≡ true) , FCons (tt , (λ x₁ → (true ≡ x₁) , FNil))) ▻⋯ ) )
-}
tautology₄ : EG ⟨ returnReader ⊤ ⟩ ▻⋯
tautology₄ = ⟨ ConsEG (23 , tt , []EG) ▻EG
tautology₅ : EG ⟨ returnReader ⊤ ⟩ ▻⋯
tautology₅ = ⟨ (23 , tt) ⟩EG ▻EG
tautology₆ : EG ⟨ returnReader ⊤ ▻ returnReader ⊤ ⟩ ▻⋯
tautology₆ = ⟨ (23 , tt) ▻EG (42 , tt) ⟩EG ▻EG
-- In lots of cases, Agda can infer the input that will validate the proof
easy : EG ⟨ (true ≡_) <$> ask ▻ returnReader ⊤ ⟩ ▻⋯
easy = ⟨ refl ▻EGᵢ tt ⟩EGᵢ ▻EG
timesTwo : ∀ {i} → FStream {i} (ReaderC ℕ) ℕ
timesTwo = map (_* 2) ⟨ ask ⟩ ▻⋯
even : ℕ → Set
even n = ∃ λ m → n ≡ m * 2
alwaysEven : ∀ {i} → AG {i} (map even timesTwo)
nowA (alwaysEven p) = p , refl
laterA (alwaysEven p) = alwaysEven
alwaysEven₁ : ∀ {i} → AG {i} (map even timesTwo)
-- alwaysEven₁ = mapAG ([]AG pre⟨ {! !} ▻AG) -- TODO Report internal error on refining
alwaysEven₁ = mapAG ⟨ (λ p → p) ⟩AG ▻AG
| {
"alphanum_fraction": 0.647425203,
"avg_line_length": 36.1084337349,
"ext": "agda",
"hexsha": "33427a4aa2a2fed71851b1c7d967f52a82a4e345",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "Examples/TrafficLight.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "Examples/TrafficLight.agda",
"max_line_length": 187,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "Examples/TrafficLight.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 3481,
"size": 8991
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.S2.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
data S² : Type₀ where
base : S²
surf : PathP (λ i → base ≡ base) refl refl
S²ToSetRec : ∀ {ℓ} {A : S² → Type ℓ}
→ ((x : S²) → isSet (A x))
→ A base
→ (x : S²) → A x
S²ToSetRec set b base = b
S²ToSetRec set b (surf i j) =
isOfHLevel→isOfHLevelDep 2 set b b {a0 = refl} {a1 = refl} refl refl surf i j
| {
"alphanum_fraction": 0.6146245059,
"avg_line_length": 28.1111111111,
"ext": "agda",
"hexsha": "559a98d8fd361979cb8c7a45091657736a6deefa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/S2/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/S2/Base.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/S2/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 187,
"size": 506
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-2 as ECP-LBFT-OBM-Diff-2
import LibraBFT.Impl.Storage.DiemDB.LedgerStore.LedgerStore as LedgerStore
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Storage.DiemDB.DiemDB where
------------------------------------------------------------------------------
getEpochEndingLedgerInfosImpl
: DiemDB → Epoch → Epoch → Epoch {-Usize-}
→ Either ErrLog (List LedgerInfoWithSignatures × Bool)
getLatestLedgerInfo
: DiemDB
→ Either ErrLog LedgerInfoWithSignatures
------------------------------------------------------------------------------
mAX_NUM_EPOCH_ENDING_LEDGER_INFO : Epoch -- Usize
mAX_NUM_EPOCH_ENDING_LEDGER_INFO = 100
------------------------------------------------------------------------------
-- impl DiemDB
-- Returns ledger infos for epoch changes starting with the given epoch.
-- If there are less than `MAX_NUM_EPOCH_ENDING_LEDGER_INFO` results, it returns all of them.
-- Otherwise the first `MAX_NUM_EPOCH_ENDING_LEDGER_INFO` results are returned
-- and a flag is set to True to indicate there are more.
getEpochEndingLedgerInfos
: DiemDB → Epoch → Epoch
→ Either ErrLog (List LedgerInfoWithSignatures × Bool)
getEpochEndingLedgerInfos self startEpoch endEpoch =
getEpochEndingLedgerInfosImpl self startEpoch endEpoch mAX_NUM_EPOCH_ENDING_LEDGER_INFO
-- TODO-2: provide EitherD variants before writing proofs about this function;
-- TODO-2: then use `whenD` in place of the two `if`s below
getEpochEndingLedgerInfosImpl self startEpoch endEpoch limit = do
if (not ⌊ (startEpoch ≤? endEpoch) ⌋)
then
(Left fakeErr {-here ["bad epoch range", lsE startEpoch, lsE endEpoch]-})
else pure unit
-- the latest epoch can be the same as the current epoch (in most cases), or
-- current_epoch + 1 (when the latest ledger_info carries next validator set)
latestEpoch ← getLatestLedgerInfo self >>= pure ∘ (_^∙ liwsLedgerInfo ∙ liNextBlockEpoch)
if (not ⌊ (endEpoch ≤? latestEpoch) ⌋)
then
(Left fakeErr) -- [ "unable to provide epoch change ledger info for still open epoch"
-- , "asked upper bound", lsE endEpoch
-- , "last sealed epoch", lsE (latestEpoch - 1) ])))
-- -1 is OK because genesis LedgerInfo has .next_block_epoch() == 1
else pure unit
let (pagingEpoch , more) =
ECP-LBFT-OBM-Diff-2.e_DiemDB_getEpochEndingLedgerInfosImpl_limit startEpoch endEpoch limit
lis0 ← LedgerStore.getEpochEndingLedgerInfoIter (self ^∙ ddbLedgerStore) startEpoch pagingEpoch
let lis = LedgerStore.obmEELIICollect lis0
if -- genericLength lis /= (pagingEpoch^.eEpoch) - (startEpoch^.eEpoch)
length lis + (startEpoch {-^∙ eEpoch-}) /= (pagingEpoch {-^∙ eEpoch-}) -- rewritten to avoid monus
then Left fakeErr -- [ "DB corruption: missing epoch ending ledger info"
-- , lsE startEpoch, lsE endEpoch, lsE pagingEpoch ]
else pure (lis , more)
{-
where
here t = "DiemDB":"getEpochEndingLedgerInfosImpl":t
-}
------------------------------------------------------------------------------
-- impl DbReader for DiemDB
getLatestLedgerInfo self =
maybeS (self ^∙ ddbLedgerStore ∙ lsLatestLedgerInfo)
(Left fakeErr {-["DiemDB.Lib", "getLatestLedgerInfo", "Nothing"]-})
pure
getEpochEndingLedgerInfo : DiemDB → Version → Either ErrLog LedgerInfoWithSignatures
getEpochEndingLedgerInfo = LedgerStore.getEpochEndingLedgerInfo ∘ _ddbLedgerStore
------------------------------------------------------------------------------
-- impl DbWriter for DiemDB
-- LBFT-OBM-DIFF : entire impl
module saveTransactions (self : DiemDB)
{- → [TransactionToCommit] → Version-}
(mliws : Maybe LedgerInfoWithSignatures) where
VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL
VariantFor EL = EL ErrLog DiemDB
step₁ : LedgerInfoWithSignatures → VariantFor EitherD
step₀ : VariantFor EitherD
step₀ = maybeSD mliws (LeftD fakeErr) step₁
step₁ liws = do
-- TODO-2: Make an EitherD variant of putLedgerInfo and make D version default
ls ← fromEither $ LedgerStore.putLedgerInfo (self ^∙ ddbLedgerStore) liws
RightD (self & ddbLedgerStore ∙~ (ls & lsLatestLedgerInfo ?~ liws))
E : VariantFor Either
E = toEither step₀
D : VariantFor EitherD
D = fromEither E
saveTransactions = saveTransactions.D
| {
"alphanum_fraction": 0.6663188648,
"avg_line_length": 42.407079646,
"ext": "agda",
"hexsha": "16978e7678b4b9b5360ef28759e1fefdfe6ef392",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/DiemDB.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/DiemDB.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/DiemDB.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1289,
"size": 4792
} |
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Data.Empty renaming (rec to EmptyRec)
open import Cubical.Data.Sigma
open import Cubical.Data.Fin
open import Cubical.Data.SumFin renaming (Fin to SumFin) hiding (discreteFin)
open import Cubical.Data.FinSet.Base
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Relation.Nullary.HLevels
private
variable
ℓ ℓ' ℓ'' : Level
A : Type ℓ
B : Type ℓ'
-- infix operator to more conveniently compose equivalences
_⋆_ = compEquiv
infixr 30 _⋆_
-- useful implications
EquivPresIsFinSet : A ≃ B → isFinSet A → isFinSet B
EquivPresIsFinSet e = rec isPropIsFinSet (λ (n , p) → ∣ n , compEquiv (invEquiv e) p ∣)
isFinSetFin : {n : ℕ} → isFinSet (Fin n)
isFinSetFin = ∣ _ , pathToEquiv refl ∣
isFinSetUnit : isFinSet Unit
isFinSetUnit = ∣ 1 , Unit≃Fin1 ∣
isFinSet→Discrete : isFinSet A → Discrete A
isFinSet→Discrete = rec isPropDiscrete (λ (_ , p) → EquivPresDiscrete (invEquiv p) discreteFin)
isContr→isFinSet : isContr A → isFinSet A
isContr→isFinSet h = ∣ 1 , isContr→≃Unit* h ⋆ invEquiv (Unit≃Unit* ) ⋆ Unit≃Fin1 ∣
isDecProp→isFinSet : isProp A → Dec A → isFinSet A
isDecProp→isFinSet h (yes p) = isContr→isFinSet (inhProp→isContr p h)
isDecProp→isFinSet h (no ¬p) = ∣ 0 , uninhabEquiv ¬p ¬Fin0 ∣
{-
Alternative definition of finite sets
A set is finite if it is merely equivalent to `Fin n` for some `n`. We
can translate this to code in two ways: a truncated sigma of a nat and
an equivalence, or a sigma of a nat and a truncated equivalence. We
prove that both formulations are equivalent.
-}
isFinSet' : Type ℓ → Type ℓ
isFinSet' A = Σ[ n ∈ ℕ ] ∥ A ≃ Fin n ∥
FinSet' : (ℓ : Level) → Type (ℓ-suc ℓ)
FinSet' ℓ = TypeWithStr _ isFinSet'
isPropIsFinSet' : isProp (isFinSet' A)
isPropIsFinSet' {A = A} (n , equivn) (m , equivm) =
Σ≡Prop (λ _ → isPropPropTrunc) n≡m
where
Fin-n≃Fin-m : ∥ Fin n ≃ Fin m ∥
Fin-n≃Fin-m = rec
isPropPropTrunc
(rec
(isPropΠ λ _ → isPropPropTrunc)
(λ hm hn → ∣ Fin n ≃⟨ invEquiv hn ⟩ A ≃⟨ hm ⟩ Fin m ■ ∣)
equivm
)
equivn
Fin-n≡Fin-m : ∥ Fin n ≡ Fin m ∥
Fin-n≡Fin-m = rec isPropPropTrunc (∣_∣ ∘ ua) Fin-n≃Fin-m
∥n≡m∥ : ∥ n ≡ m ∥
∥n≡m∥ = rec isPropPropTrunc (∣_∣ ∘ Fin-inj n m) Fin-n≡Fin-m
n≡m : n ≡ m
n≡m = rec (isSetℕ n m) (λ p → p) ∥n≡m∥
-- logical equivalence of two definitions
isFinSet→isFinSet' : isFinSet A → isFinSet' A
isFinSet→isFinSet' ∣ n , equiv ∣ = n , ∣ equiv ∣
isFinSet→isFinSet' (squash p q i) = isPropIsFinSet' (isFinSet→isFinSet' p) (isFinSet→isFinSet' q) i
isFinSet'→isFinSet : isFinSet' A → isFinSet A
isFinSet'→isFinSet (n , ∣ isFinSet-A ∣) = ∣ n , isFinSet-A ∣
isFinSet'→isFinSet (n , squash p q i) = isPropIsFinSet (isFinSet'→isFinSet (n , p)) (isFinSet'→isFinSet (n , q)) i
isFinSet≡isFinSet' : isFinSet A ≡ isFinSet' A
isFinSet≡isFinSet' {A = A} = hPropExt isPropIsFinSet isPropIsFinSet' isFinSet→isFinSet' isFinSet'→isFinSet
FinSet→FinSet' : FinSet ℓ → FinSet' ℓ
FinSet→FinSet' (A , isFinSetA) = A , isFinSet→isFinSet' isFinSetA
FinSet'→FinSet : FinSet' ℓ → FinSet ℓ
FinSet'→FinSet (A , isFinSet'A) = A , isFinSet'→isFinSet isFinSet'A
FinSet≃FinSet' : FinSet ℓ ≃ FinSet' ℓ
FinSet≃FinSet' =
isoToEquiv
(iso FinSet→FinSet' FinSet'→FinSet
(λ _ → Σ≡Prop (λ _ → isPropIsFinSet') refl)
(λ _ → Σ≡Prop (λ _ → isPropIsFinSet) refl))
FinSet≡FinSet' : FinSet ℓ ≡ FinSet' ℓ
FinSet≡FinSet' = ua FinSet≃FinSet'
-- cardinality of finite sets
card : FinSet ℓ → ℕ
card = fst ∘ snd ∘ FinSet→FinSet'
-- definitions to reduce problems about FinSet to SumFin
≃Fin : Type ℓ → Type ℓ
≃Fin A = Σ[ n ∈ ℕ ] A ≃ Fin n
≃SumFin : Type ℓ → Type ℓ
≃SumFin A = Σ[ n ∈ ℕ ] A ≃ SumFin n
≃Fin→SumFin : ≃Fin A → ≃SumFin A
≃Fin→SumFin (n , e) = n , compEquiv e (invEquiv (SumFin≃Fin _))
≃SumFin→Fin : ≃SumFin A → ≃Fin A
≃SumFin→Fin (n , e) = n , compEquiv e (SumFin≃Fin _)
transpFamily :
{A : Type ℓ}{B : A → Type ℓ'}
→ ((n , e) : ≃SumFin A) → (x : A) → B x ≃ B (invEq e (e .fst x))
transpFamily {B = B} (n , e) x = pathToEquiv (λ i → B (retEq e x (~ i)))
| {
"alphanum_fraction": 0.6762259194,
"avg_line_length": 29.8562091503,
"ext": "agda",
"hexsha": "d0064b1c52d105bbf7325b9022f70204022663bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Properties.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 1812,
"size": 4568
} |
open import Data.Boolean
open import Type
module Data.List.Sorting.SelectionSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
import Lvl
open import Data.List
open import Data.List.Functions as List using (_++_)
import Data.List.Functions.Multi as List
open import Data.List.Sorting.Functions(_≤?_)
open import Data.Option
open import Data.Tuple
import Numeral.Finite.Conversions as 𝕟
open import Functional using (_∘_)
{-# TERMINATING #-}
selectionSort : List(T) → List(T)
selectionSort l with extractMinimal l
... | Some(x , xs) = x ⊰ selectionSort(xs)
... | None = l
module Proofs where
| {
"alphanum_fraction": 0.7071197411,
"avg_line_length": 26.8695652174,
"ext": "agda",
"hexsha": "3dc3adc5cbfe1da27b25fcc6759401e3b85c90a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Sorting/SelectionSort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Sorting/SelectionSort.agda",
"max_line_length": 84,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Sorting/SelectionSort.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 169,
"size": 618
} |
module Induct where
open import Data.Nat
open import Data.Sum
open import Relation.Binary.PropositionalEquality
{- The downward closure of a set. -}
data downset : (ℕ → Set) → ℕ → Set where
downset-lit : {φ : ℕ → Set} → {x : ℕ} → φ x → downset φ x
downset-pred : {φ : ℕ → Set} → {x : ℕ} → downset φ (suc x) → downset φ x
{- Example 1: The downset of a downset is itself. Simple induction. -}
downset-downset : ∀ {φ} → ∀ {x} → downset (downset φ) x → downset φ x
downset-downset (downset-lit p) = p
downset-downset (downset-pred p) = downset-pred (downset-downset p)
{- Example 2: Downsets are downward closed. Needs lemmata. -}
lemma-larger : ∀ x y → x ≤ y → (suc x ≤ y) ⊎ (x ≡ y)
lemma-larger 0 0 z≤n = inj₂ refl
lemma-larger 0 (suc y) z≤n = inj₁ (s≤s z≤n)
lemma-larger (suc x) (suc y) (s≤s x-leq-y) with lemma-larger x y x-leq-y
lemma-larger (suc x) (suc y) (s≤s x-leq-y) | inj₁ sx-leq-y = inj₁ (s≤s sx-leq-y)
lemma-larger (suc x) (suc y) (s≤s x-leq-y) | inj₂ x-eq-y = inj₂ (cong suc x-eq-y)
downset-zero : ∀ {φ} → ∀ y → downset φ y → downset φ zero
downset-zero zero d-phi-y = d-phi-y
downset-zero (suc y) d-phi-y = downset-zero y (downset-pred d-phi-y)
downset-downward-closed : ∀ {φ} → ∀ x y → downset φ y → x ≤ y → downset φ x
downset-downward-closed 0 y d-phi-y x-leq-y = downset-zero y d-phi-y
downset-downward-closed
(suc x) (suc y) d-phi-y (s≤s x-leq-y) with lemma-larger x y x-leq-y
... | inj₁ sx-leq-y = downset-downward-closed (suc x) y (downset-pred d-phi-y) sx-leq-y
... | inj₂ refl = d-phi-y
| {
"alphanum_fraction": 0.6427631579,
"avg_line_length": 43.4285714286,
"ext": "agda",
"hexsha": "a5cee158283ad4273214770c9ab30e8bf42a80cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3992f5c15305c5d1ae3dcaa657defc7c92ef0a07",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zaklogician/induct-agda-isabelle",
"max_forks_repo_path": "Induct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3992f5c15305c5d1ae3dcaa657defc7c92ef0a07",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zaklogician/induct-agda-isabelle",
"max_issues_repo_path": "Induct.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3992f5c15305c5d1ae3dcaa657defc7c92ef0a07",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zaklogician/induct-agda-isabelle",
"max_stars_repo_path": "Induct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 616,
"size": 1520
} |
{-# OPTIONS --cubical --safe #-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
module Cubical.Data.W.Indexed where
open _≅_
private
variable
ℓX ℓS ℓP : Level
module Types {X : Type ℓX} (S : X → Type ℓS) (P : ∀ x → S x → Type ℓP) (inX : ∀ x (s : S x) → P x s → X) where
data IW (x : X) : Type (ℓ-max ℓX (ℓ-max ℓS ℓP)) where
node : (s : S x) → (subtree : (p : P x s) → IW (inX x s p)) → IW x
Subtree : ∀ {x} → (s : S x) → Type (ℓ-max (ℓ-max ℓX ℓS) ℓP)
Subtree {x} s = (p : P x s) → IW (inX x s p)
RepIW : (x : X) → Type (ℓ-max (ℓ-max ℓX ℓS) ℓP)
RepIW x = Σ[ s ∈ S x ] Subtree s
open Types public
module _ {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type ℓP} {inX : ∀ x (s : S x) → P x s → X} where
getShape : ∀ {x} → IW S P inX x → S x
getShape (node s subtree) = s
getSubtree : ∀ {x} → (w : IW S P inX x) → (p : P x (getShape w)) → IW S P inX (inX x (getShape w) p)
getSubtree (node s subtree) = subtree
wExt : ∀ {x} (w w' : IW S P inX x)
→ (ps : getShape w ≡ getShape w')
→ (pw : PathP (λ i → Subtree S P inX (ps i)) (getSubtree w) (getSubtree w'))
→ w ≡ w'
wExt (node s subtree) (node s' subtree') ps psubtree = cong₂ node ps psubtree
isoRepIW : (x : X) → IW S P inX x ≅ RepIW S P inX x
fun (isoRepIW x) (node s subtree) = s , subtree
inv (isoRepIW x) (s , subtree) = node s subtree
rightInv (isoRepIW x) (s , subtree) = refl
leftInv (isoRepIW x) (node s subtree) = refl
equivRepIW : (x : X) → IW S P inX x ≃ RepIW S P inX x
equivRepIW x = isoToEquiv (isoRepIW x)
pathRepIW : (x : X) → IW S P inX x ≡ RepIW S P inX x
pathRepIW x = ua (equivRepIW x)
isPropIW : (∀ x → isProp (S x)) → ∀ x → isProp (IW S P inX x)
isPropIW isPropS x (node s subtree) (node s' subtree') =
cong₂ node (isPropS x s s') (toPathP (funExt λ p → isPropIW isPropS _ _ (subtree' p)))
module IWPathTypes {X : Type ℓX} (S : X → Type ℓS) (P : ∀ x → S x → Type ℓP) (inX : ∀ x (s : S x) → P x s → X) where
--somewhat inspired by https://github.com/jashug/IWTypes , but different.
IndexCover : Type (ℓ-max (ℓ-max ℓX ℓS) ℓP)
IndexCover = Σ[ x ∈ X ] IW S P inX x × IW S P inX x
ShapeCover : IndexCover → Type ℓS
ShapeCover (x , w , w') = getShape w ≡ getShape w'
ArityCover : ∀ xww' → ShapeCover xww' → Type ℓP
ArityCover (x , w , w') ps = P x (getShape w')
inXCover : ∀ xww' → (ps : ShapeCover xww') → ArityCover xww' ps → IndexCover
inXCover (x , w , w') ps p = (inX x (getShape w') p) , (subst (Subtree S P inX) ps (getSubtree w) p , getSubtree w' p)
Cover : ∀ {x : X} → (w w' : IW S P inX x) → Type (ℓ-max (ℓ-max ℓX ℓS) ℓP)
Cover {x} w w' = IW ShapeCover ArityCover inXCover (x , w , w')
module IWPath {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type ℓP} {inX : ∀ x (s : S x) → P x s → X} where
open IWPathTypes S P inX
isoEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≅ Cover w w'
isoEncodeSubtree : ∀ {x} (w w' : IW S P inX x) (ps : ShapeCover (x , w , w'))
→ (PathP (λ i → Subtree S P inX (ps i)) (getSubtree w) (getSubtree w'))
≅
(∀ (p : P x (getShape w')) → IW ShapeCover ArityCover inXCover (inXCover (x , w , w') ps p))
isoEncodeSubtree w w'@(node s' subtree') ps =
PathPIsoPath (λ i → Subtree S P inX (ps i)) (getSubtree w) (getSubtree w') ⟫
invIso (funExtIso) ⟫
codomainIsoDep (λ p → isoEncode _ (subtree' p))
where _⟫_ = compIso
infixr 10 _⟫_
fun (isoEncode w@(node s subtree) w'@(node s' subtree')) pw =
node (cong getShape pw) (fun (isoEncodeSubtree w w' (cong getShape pw)) (cong getSubtree pw))
inv (isoEncode w@(node s subtree) w'@(node s' subtree')) cw@(node ps csubtree) =
cong₂ node ps (inv (isoEncodeSubtree w w' ps) csubtree)
rightInv (isoEncode w@(node s subtree) w'@(node s' subtree')) cw@(node ps csubtree) =
cong (node ps) (
fun (isoEncodeSubtree w w' ps) (inv (isoEncodeSubtree w w' ps) csubtree)
≡⟨ rightInv (isoEncodeSubtree w w' ps) csubtree ⟩
csubtree ∎
)
leftInv (isoEncode w@(node s subtree) w'@(node s' subtree')) pw =
cong₂ node (cong getShape pw)
(inv (isoEncodeSubtree w w' (cong getShape pw))
(fun (isoEncodeSubtree w w' (cong getShape pw))
(cong getSubtree pw)
)
)
≡⟨ cong (cong₂ node (cong getShape pw)) (leftInv (isoEncodeSubtree w w' (cong getShape pw)) (cong getSubtree pw)) ⟩
cong₂ node (cong getShape pw) (cong getSubtree pw)
≡⟨ flipSquare (λ i → wExt (node (getShape (pw i)) (getSubtree (pw i))) (pw i) refl refl) ⟩
pw ∎
encode : ∀ {x} (w w' : IW S P inX x) → w ≡ w' → Cover w w'
encode w w' = fun (isoEncode w w')
decode : ∀ {x} (w w' : IW S P inX x) → Cover w w' → w ≡ w'
decode w w' = inv (isoEncode w w')
decodeEncode : ∀ {x} (w w' : IW S P inX x) → (pw : w ≡ w') → decode w w' (encode w w' pw) ≡ pw
decodeEncode w w' = leftInv (isoEncode w w')
encodeDecode : ∀ {x} (w w' : IW S P inX x) → (cw : Cover w w') → encode w w' (decode w w' cw) ≡ cw
encodeDecode w w' = rightInv (isoEncode w w')
equivEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≃ Cover w w'
equivEncode w w' = isoToEquiv (isoEncode w w')
pathEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≡ Cover w w'
pathEncode w w' = ua (equivEncode w w')
open IWPathTypes
open IWPath
isOfHLevelSuc-IW : {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type ℓP} {inX : ∀ x (s : S x) → P x s → X} →
(n : HLevel) → (∀ x → isOfHLevel (suc n) (S x)) → ∀ x → isOfHLevel (suc n) (IW S P inX x)
isOfHLevelSuc-IW zero isHS x = isPropIW isHS x
isOfHLevelSuc-IW (suc n) isHS x w w' =
subst (isOfHLevel (suc n)) (λ i → pathEncode w w' (~ i))
(isOfHLevelSuc-IW n
(λ (y , v , v') → isHS y (getShape v) (getShape v'))
(x , w , w')
)
| {
"alphanum_fraction": 0.5913100294,
"avg_line_length": 40.5430463576,
"ext": "agda",
"hexsha": "71a56811ff78d2e7d2e98034906a3b345e157f65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/W/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/W/Indexed.agda",
"max_line_length": 121,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/W/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 2463,
"size": 6122
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Setoids.Subset
open import Setoids.Functions.Definition
open import LogicalFormulae
open import Functions
open import Lists.Lists
open import Setoids.Orders
open import Rings.Orders.Partial.Definition
open import Rings.Definition
module LectureNotes.MetAndTop.Chapter2 {a b c : _} {R : Set a} {S : Setoid {a} {b} R} {_<_ : Rel {a} {c} R} {_+_ _*_ : R → R → R} {ring : Ring S _+_ _*_} {ps : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing ring ps) where
open Setoid S renaming (_∼_ to _∼R_)
open Ring ring
record Metric {d1 e : _} {A : Set d1} {T : Setoid {d1} {e} A} (d : A → A → R) : Set (a ⊔ b ⊔ c ⊔ d1 ⊔ e) where
open Setoid T
field
dWellDefined : (x y v w : A) → x ∼ y → v ∼ w → (d x v) ∼R (d w y)
dZero : (x y : A) → (d x y) ∼R 0R → x ∼ y
dZero' : (x y : A) → x ∼ y → (d x y) ∼R 0R
dSymmetric : (x y : A) → (d x y) ∼R (d y x)
dTriangle : (x y z : A) → ((d x z) < ((d x y) + (d y z))) || ((d x z) ∼R ((d x y) + (d y z)))
dNonnegative : (x y : A) → (0R < d x y) || (0R ∼R (d x y))
dNonnegative x y = {!!}
| {
"alphanum_fraction": 0.5892116183,
"avg_line_length": 40.1666666667,
"ext": "agda",
"hexsha": "3c5d665af2f4a8aa908a8462d6007461465c590a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "LectureNotes/MetAndTop/Chapter2.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "LectureNotes/MetAndTop/Chapter2.agda",
"max_line_length": 230,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "LectureNotes/MetAndTop/Chapter2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 485,
"size": 1205
} |
-- Andreas, 2017-08-13, issue #2686
-- Overloaded constructor where only one alternative is not abstract.
-- Not ambiguous, since abstract constructors are not in scope!
-- {-# OPTIONS -v tc.check.term:40 #-}
abstract
data A : Set where
c : A
data D : Set where
c : D
test = c
match : D → D
match c = c
| {
"alphanum_fraction": 0.6613924051,
"avg_line_length": 17.5555555556,
"ext": "agda",
"hexsha": "2368e995ee5c5449d9308baeccda21314a82a308",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2686.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2686.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2686.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 316
} |
module Prelude.Nat where
open import Prelude.Unit
open import Prelude.Empty
open import Prelude.Bool
open import Prelude.Decidable
open import Prelude.Equality
open import Prelude.Equality.Unsafe using (eraseEquality)
open import Prelude.Ord
open import Prelude.Number
open import Prelude.Semiring
open import Prelude.Function
open import Prelude.Smashed
open import Prelude.Nat.Properties
open import Prelude.Nat.Core public
--- Equality ---
private
eqNatSound : ∀ n m → IsTrue (eqNat n m) → n ≡ m
eqNatSound zero zero _ = refl
eqNatSound zero (suc m) ()
eqNatSound (suc n) zero ()
eqNatSound (suc n) (suc m) p rewrite eqNatSound n m p = refl
eqNatComplete : ∀ n m → IsFalse (eqNat n m) → ¬ (n ≡ m)
eqNatComplete zero zero () eq
eqNatComplete zero (suc m) neq ()
eqNatComplete (suc n) zero neq ()
eqNatComplete (suc n) (suc m) neq eq = eqNatComplete n m neq (suc-inj eq)
decEqNat : (n m : Nat) → Dec (n ≡ m)
decEqNat n m with eqNat n m | eqNatSound n m | eqNatComplete n m
... | true | eq | _ = yes (eraseEquality (eq true))
... | false | _ | neq = no (eraseNegation (neq false))
{-# INLINE decEqNat #-}
instance
EqNat : Eq Nat
_==_ {{EqNat}} = decEqNat
--- Comparison ---
data LessNat n m : Set where
diff : ∀ k (eq : m ≡ suc k +N n) → LessNat n m
{-# DISPLAY LessNat a b = a < b #-}
pattern diff! k = diff k refl
private
lemLessNatMinus : ∀ n m → IsTrue (lessNat n m) → m ≡ suc (m - suc n) + n
lemLessNatMinus _ zero ()
lemLessNatMinus zero (suc m) _ = sym (suc $≡ add-zero-r m)
lemLessNatMinus (suc n) (suc m) n<m = suc $≡ (lemLessNatMinus n m n<m ⟨≡⟩ʳ add-suc-r (m - suc n) n)
lemNoLessEqual : ∀ n m → ¬ IsTrue (lessNat n m) → ¬ IsTrue (lessNat m n) → n ≡ m
lemNoLessEqual zero zero _ _ = refl
lemNoLessEqual zero (suc m) h₁ h₂ = ⊥-elim (h₁ true)
lemNoLessEqual (suc n) zero h₁ h₂ = ⊥-elim (h₂ true)
lemNoLessEqual (suc n) (suc m) h₁ h₂ = cong suc (lemNoLessEqual n m h₁ h₂)
-- Using eraseEquality here lets us not worry about the performance of the
-- proofs.
compareNat : ∀ n m → Comparison LessNat n m
compareNat n m with decBool (lessNat n m)
... | yes p = less (diff (m - suc n) (eraseEquality (lemLessNatMinus n m p)))
... | no np₁ with decBool (lessNat m n)
... | yes p = greater (diff (n - suc m) (eraseEquality (lemLessNatMinus m n p)))
... | no np₂ = equal (eraseEquality (lemNoLessEqual n m np₁ np₂))
{-# INLINE compareNat #-}
private
nat-lt-to-leq : ∀ {x y} → LessNat x y → LessNat x (suc y)
nat-lt-to-leq (diff k eq) = diff (suc k) (cong suc eq)
nat-eq-to-leq : ∀ {x y} → x ≡ y → LessNat x (suc y)
nat-eq-to-leq eq = diff 0 (cong suc (sym eq))
nat-from-leq : ∀ {x y} → LessNat x (suc y) → LessEq LessNat x y
nat-from-leq (diff zero eq) = equal (sym (suc-inj eq))
nat-from-leq (diff (suc k) eq) = less (diff k (suc-inj eq))
nat-lt-antirefl : ∀ {a} → LessNat a a → ⊥
nat-lt-antirefl {a} (diff k eq) = case add-inj₁ 0 (suc k) a eq of λ ()
nat-lt-antisym : ∀ {a b} → LessNat a b → LessNat b a → ⊥
nat-lt-antisym {a} (diff! k) (diff j eq) =
case add-inj₁ 0 (suc j + suc k) a (eq ⟨≡⟩ suc $≡ add-assoc j (suc k) a) of λ ()
nat-lt-trans : ∀ {a b c} → LessNat a b → LessNat b c → LessNat a c
nat-lt-trans (diff k eq) (diff j eq₁) = diff (j + suc k) (eraseEquality
(case eq of λ where refl → case eq₁ of λ where refl → add-assoc (suc j) (suc k) _))
instance
OrdNat : Ord Nat
Ord._<_ OrdNat = LessNat
Ord._≤_ OrdNat a b = LessNat a (suc b)
Ord.compare OrdNat = compareNat
Ord.eq-to-leq OrdNat = nat-eq-to-leq
Ord.lt-to-leq OrdNat = nat-lt-to-leq
Ord.leq-to-lteq OrdNat = nat-from-leq
OrdNatLaws : Ord/Laws Nat
Ord/Laws.super OrdNatLaws = it
less-antirefl {{OrdNatLaws}} = nat-lt-antirefl
less-trans {{OrdNatLaws}} = nat-lt-trans
instance
SmashedNatLess : {a b : Nat} → Smashed (a < b)
smashed {{SmashedNatLess}} {diff! k} {diff k₁ eq} with add-inj₁ (suc k) (suc k₁) _ eq | eq
... | refl | refl = refl
SmashedNatComp : {a b : Nat} → Smashed (Comparison _<_ a b)
smashed {{SmashedNatComp}} {less _ } {less _ } = less $≡ smashed
smashed {{SmashedNatComp}} {less lt } {equal refl} = ⊥-elim (less-antirefl {A = Nat} lt)
smashed {{SmashedNatComp}} {less lt } {greater gt} = ⊥-elim (less-antisym {A = Nat} lt gt)
smashed {{SmashedNatComp}} {equal refl} {less lt } = ⊥-elim (less-antirefl {A = Nat} lt)
smashed {{SmashedNatComp}} {equal _ } {equal _ } = equal $≡ smashed
smashed {{SmashedNatComp}} {equal refl} {greater gt} = ⊥-elim (less-antirefl {A = Nat} gt)
smashed {{SmashedNatComp}} {greater gt} {less lt } = ⊥-elim (less-antisym {A = Nat} lt gt)
smashed {{SmashedNatComp}} {greater gt} {equal refl} = ⊥-elim (less-antirefl {A = Nat} gt)
smashed {{SmashedNatComp}} {greater _ } {greater _ } = greater $≡ smashed
suc-monotone : {a b : Nat} → a < b → Nat.suc a < suc b
suc-monotone (diff! k) = diff k (sym (add-suc-r (suc k) _))
inv-suc-monotone : ∀{t v} → suc t < suc v → t < v
inv-suc-monotone (diff! k) = diff k (add-suc-r k _)
suc-comparison : {a b : Nat} → Comparison _<_ a b → Comparison _<_ (Nat.suc a) (suc b)
suc-comparison (less lt) = less (suc-monotone lt)
suc-comparison (equal eq) = equal (suc $≡ eq)
suc-comparison (greater gt) = greater (suc-monotone gt)
| {
"alphanum_fraction": 0.6277290539,
"avg_line_length": 39.1167883212,
"ext": "agda",
"hexsha": "781b58cc4e42ff7f8c2bb36d68fd101632c526e3",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Nat.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Nat.agda",
"max_line_length": 101,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1974,
"size": 5359
} |
open import Oscar.Prelude
open import Oscar.Data.Proposequality
open import Oscar.Class.Congruity
module Oscar.Class.Congruity.Proposequality where
instance
𝓒ongruityProposequality : ∀ {a b} → 𝓒ongruity Proposequality a b
𝓒ongruityProposequality .𝓒ongruity.congruity _ ∅ = !
𝓒ongruity₂Proposequality : ∀ {a b c} → 𝓒ongruity₂ Proposequality a b c
𝓒ongruity₂Proposequality .𝓒ongruity₂.congruity₂ _ ∅ ∅ = !
| {
"alphanum_fraction": 0.7841726619,
"avg_line_length": 27.8,
"ext": "agda",
"hexsha": "f09db044bd06756bc5b3790100220861d32f417c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposequality.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Congruity/Proposequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 155,
"size": 417
} |
module Data.DynamicTree where
import Lvl
open import Data.List
open import Data.Option
open import Functional as Fn
open import Type
private variable ℓ ℓᵢ : Lvl.Level
private variable T A B : Type{ℓ}
data Node (T : Type{ℓ}) : Type{ℓ} where
node : T → List(Node(T)) → Node(T)
DynamicTree : Type{ℓ} → Type{ℓ}
DynamicTree(T) = Option(Node(T))
| {
"alphanum_fraction": 0.7037037037,
"avg_line_length": 20.6470588235,
"ext": "agda",
"hexsha": "45751f91c93f28ebe77e137ab7d1b250a241256e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/DynamicTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/DynamicTree.agda",
"max_line_length": 39,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/DynamicTree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 110,
"size": 351
} |
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v tc.pos:20 -v tc.meta.eta:100 #-}
-- {-# OPTIONS -v tc.lhs:100 #-}
module LinearTemporalLogic where
import Common.Level
record Stream (A : Set) : Set where
coinductive
field head : A
tail : Stream A
-- Stream properties
Proposition : Set → Set₁
Proposition A = Stream A → Set
Now : {A : Set} → (A → Set) → Proposition A
Now P s = P (Stream.head s)
-- Next time
◌ : {A : Set} → Proposition A → Proposition A
◌ P s = P (Stream.tail s)
-- Forever
record ▢ {A : Set} (P : Proposition A) (s : Stream A) : Set where
coinductive
field head : P s
tail : ◌ (▢ P) s
-- Sometimes
data ◇ {A : Set} (P : Proposition A) (s : Stream A) : Set where
now : P s → ◇ P s
later : ◌ (◇ P) s → ◇ P s
-- Infinitely often
▢◇ : {A : Set} → Proposition A → Proposition A
▢◇ P = ▢ (◇ P)
-- Next inf. often implies inf. often
◌▢◇⇒▢◇ : {A : Set}{P : Proposition A}{s : Stream A} →
◌ (▢◇ P) s → ▢◇ P s
▢.head (◌▢◇⇒▢◇ f) = later (▢.head f)
▢.tail (◌▢◇⇒▢◇ f) = ◌▢◇⇒▢◇ (▢.tail f)
-- Forever implies inf. oft.
▢⇒▢◇ : {A : Set}{P : Proposition A}{s : Stream A} →
▢ P s → ▢◇ P s
▢.head (▢⇒▢◇ f) = now (▢.head f)
▢.tail (▢⇒▢◇ f) = ▢⇒▢◇ (▢.tail f)
-- Eventually
◇▢ : {A : Set} → Proposition A → Proposition A
◇▢ P = ◇ (▢ P)
-- Eventually implies inf. oft.
◇▢⇒▢◇ : {A : Set}{P : Proposition A}{s : Stream A} →
◇▢ P s → ▢◇ P s
◇▢⇒▢◇ (now forever) = ▢⇒▢◇ forever
◇▢⇒▢◇ (later event) = ◌▢◇⇒▢◇ (◇▢⇒▢◇ event)
-- We now prove that inf. oft. does not imply eventually
-- by exhibiting a counter example
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
True : Bool → Set
True true = ⊤
True false = ⊥
open Stream
alternate : Stream Bool
( (head alternate)) = true
(head (tail alternate)) = false
(tail (tail alternate)) = alternate
-- alternate contains infinitely many 'true's
thm1 : ▢◇ (Now True) alternate
( (▢.head thm1)) = now tt
(▢.head (▢.tail thm1)) = later (now tt)
(▢.tail (▢.tail thm1)) = thm1
-- alternate does not eventually contain only 'true's
mutual
thm2 : ◇▢ (Now True) alternate → ⊥
thm2 (now forever⊤) = ▢.head (▢.tail forever⊤)
thm2 (later event) = thm2′ event
thm2′ : ◇▢ (Now True) (tail alternate) → ⊥
thm2′ (now forever⊤) = ▢.head forever⊤
thm2′ (later event) = thm2 event
| {
"alphanum_fraction": 0.5686106346,
"avg_line_length": 23.5555555556,
"ext": "agda",
"hexsha": "2b7fb55bb42f7b9ead1bb42c4c1edcedad0e07b0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/LinearTemporalLogic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/LinearTemporalLogic.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/LinearTemporalLogic.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 1000,
"size": 2332
} |
module HC-Lec1 where
-- ==============================================================================
-- Lecture 1 : Programs and Proofs
-- https://www.youtube.com/watch?v=O4oczQry9Jw&t=1412s
------------------------------------------------------------------------------
-- some basic logical types
-- 13:22 -- like Haskell Void
data Zero : Set where
-- No constructors, so no inhabitants
-- Represents logical impossibility.
-- 16:45 -- like Haskell ()
record One : Set where
constructor <> -- added in video Lecture 2 4:50
-- This record has no fields.
-- This record has exactly one inhabitant.
-- 18:42 -- like Haskell Either
data _+_ (S : Set) (T : Set) : Set where
inl : S -> S + T -- left constructor
inr : T -> S + T -- right constructor
-- 24:50 -- like Haskell pair ( , )
record _*_ (S : Set) (T : Set) : Set where
constructor _,_ -- added in video Lecture 2 4:58
field
fst : S
snd : T
------------------------------------------------------------------------------
-- examples
-- 28:36
comm-* : {A : Set} {B : Set} -> A * B -> B * A
comm-* record { fst = a ; snd = b } = record { fst = b ; snd = a }
-- 43:00
assocLR-+ : {A B C : Set} -> (A + B) + C -> A + (B + C)
assocLR-+ (inl (inl a)) = inl a
assocLR-+ (inl (inr b)) = inr (inl b)
assocLR-+ (inr c) = inr (inr c)
-- 47:34
-- If you can arrive at a contradiction, then you can derive any conclusion.
-- Given a Zero, must produce an X for ANY X.
-- But there are no inhabitants of Zero.
-- So use 'absurd' pattern that indicates something that is IMPOSSIBLE.
naughtE : {X : Set} -> Zero -> X
naughtE ()
-- standard composition: f << g is "f after g"
_<<_ : {X Y Z : Set} -> (Y -> Z) -> (X -> Y) -> (X -> Z)
(f << g) x = f (g x)
-- diagrammatic composition: f >> g is "f then g"
_>>_ : {X Y Z : Set} -> (X -> Y) -> (Y -> Z) -> (X -> Z)
-- ^^^^^^^^ dominoes!
(f >> g) x = g (f x)
-- infix application
_$_ : {S : Set}{T : S -> Set}(f : (x : S) -> T x)(s : S) -> T s
f $ s = f s
infixl 2 _$_
-- ==============================================================================
-- Lecture 2 : more Programs and Proof, Introducing "with"
-- https://www.youtube.com/watch?v=qcVZxQTouDk
-- 2:25
_$*_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A * B -> A' * B'
(a→a' $* b→b') (a , b) = (a→a' a) , (b→b' b)
-- 6:53
_$+_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A + B -> A' + B'
(a→a' $+ b→b') (inl a) = inl (a→a' a)
(a→a' $+ b→b') (inr b) = inr (b→b' b)
-- 8:52 -- like Haskell const ; this is pure for applicative functor needing an E
combinatorK : {A E : Set} -> A -> E -> A
combinatorK a _ = a
-- 11:25 -- this is application
combinatorS : {S T E : Set} -> (E -> S -> T) -> (E -> S) -> E -> T
combinatorS e→s→t e→s e = e→s→t e (e→s e)
-- 14:50
idK : {X : Set} -> X -> X
idK x = combinatorK x x
-- 19:00
idSKK : {X : Set} -> X -> X
idSKK {X} = combinatorS combinatorK (combinatorK {E = X}) -- 'Zero' and 'One' also work
id : {X : Set} -> X -> X
-- id x = x -- is the easy way; let's do it a funny way to make a point
id = combinatorS combinatorK (combinatorK {_} {Zero})
-- no choice for -^ ^^^^- could be anything
-- 30:25
-- naughtE
------------------------------------------------------------------------------
-- from logic to data
-- 32:05
data Nat : Set where
zero : Nat
suc : Nat -> Nat -- recursive data type
{-# BUILTIN NATURAL Nat #-} -- enables decimal notation
-- 32:58
_+N_ : Nat -> Nat -> Nat
zero +N y = y
suc x +N y = suc (x +N y)
four : Nat
four = 2 +N 2
------------------------------------------------------------------------------
-- and back to logic
-- 36:46
data _==_ {X : Set} : X -> X -> Set where
refl : (x : X) -> x == x -- the relation that is "only reflexive"
{-# BUILTIN EQUALITY _==_ #-}
see4 : (2 +N 2) == 4
see4 = refl 4
-- 42:35
-- application of equalities
_=$=_ : {X Y : Set} {f f' : X -> Y} {x x' : X}
-> f == f'
-> x == x'
-> f x == f' x
refl f =$= refl x = refl (f x)
------------------------------------------------------------------------------
-- computing types
-- 45:00
_>=_ : Nat -> Nat -> Set
x >= zero = One -- i.e., true
zero >= suc y = Zero -- i.e., false
suc x >= suc y = x >= y
--a0 : 2 >= 4
--a0 = {!!}
a1 : 4 >= 2
a1 = <>
refl->= : (n : Nat) -> n >= n
refl->= zero = <>
refl->= (suc n) = refl->= n
trans->= : (x y z : Nat) -> x >= y -> y >= z -> x >= z
trans->= zero zero z x>=y y>=z = y>=z
trans->= (suc x) zero zero x>=y y>=z = <>
trans->= (suc x) (suc y) zero x>=y y>=z = <>
trans->= (suc x) (suc y) (suc z) x>=y y>=z = trans->= x y z x>=y y>=z
------------------------------------------------------------------------------
-- construction by proof
-- 47:38
record Sg (S : Set) (T : S -> Set) : Set where -- Sg is short for "Sigma"
constructor _,_
field
fst : S -- a value
snd : T fst -- some evidence about that value
difference : (m n : Nat) -> m >= n -> Sg Nat λ d -> m == (n +N d)
difference m zero m>=n = m , refl m
difference zero (suc n) ()
difference (suc m) (suc n) m>=n
with difference m n m>=n
...| d , e
= d , xxx m n d e
where
xxx : ∀ (m n d : Nat) -> m == (n +N d) -> suc m == suc (n +N d)
xxx m n d p rewrite p = refl (suc (n +N d))
-- ==============================================================================
-- Lecture 3 : Proof by induction
-- https://www.youtube.com/watch?v=8xFT9FPlm18
-- 6:20
-- Nat with zero, +N and assocLR-+ form a monoid.
-- 8:48
zero-+N : (n : Nat) -> (zero +N n) == n
zero-+N n = refl n -- by definition
-- 9:36
-- version in video
-- +N-zero' : (n : Nat) -> (n +N zero) == n
-- +N-zero' zero = refl zero -- by definition
-- +N-zero' (suc n) = refl suc =$= +N-zero' n -- TODO : does not compile
-- HC alternate version
+N-zero : (n : Nat) -> (n +N zero) == n
+N-zero zero = refl zero -- by definition
+N-zero (suc n)
with +N-zero n
...| n+N0==n
rewrite n+N0==n
= refl (suc n)
-- 26:00
-- version in video
-- assocLR-+N' : (x y z : Nat) -> ((x +N y) +N z) == (x +N (y +N z))
-- assocLR-+N' zero y z = refl (y +N z)
-- assocLR-+N' (suc x) y z = refl suc =$= assocLR-+N' x y z -- TODO : does not compile
-- 30:21
assocLR-+N : (x y z : Nat) -> ((x +N y) +N z) == (x +N (y +N z))
assocLR-+N zero y z = refl (y +N z)
assocLR-+N (suc x) y z
rewrite assocLR-+N x y z
= refl (suc (x +N (y +N z)))
------------------------------------------------------------------------------
-- computing types
-- 34:46
refl->=' : (n : Nat) -> n >= n
refl->=' zero = <>
refl->=' (suc n) = refl->=' n
-- 41:00
trans->=' : (x y z : Nat) -> x >= y -> y >= z -> x >= z
-- start with 'z'
trans->=' x y zero x>=y y>=z = <>
trans->=' (suc x) (suc y) (suc z) x>=y y>=z = trans->=' x y z x>=y y>=z
-- ==============================================================================
-- Lecture 4 : Sigma, Difference, Vector Take
-- https://www.youtube.com/watch?v=OZeDRtRmgkw
-- 0:46 Sigma type (see above)
-- 5:10 -- make _*_ from Sg
_*'_ : (S : Set) -> (T : Set) -> Set
s *' t = Sg s λ _ -> t
-- 10:55 difference (see above)
difference' : (m n : Nat) -> m >= n -> Sg Nat λ d -> m == (n +N d)
-- 1st clause of >= matches on right, so start with 'n'
difference' m zero m>=n = m , refl m
difference' (suc m) (suc n) m>=n
with difference' m n m>=n
...| d , m==n+Nd
rewrite m==n+Nd
= d , refl (suc (n +N d)) -- video also uses refl suc =$= m==n+Nd
-- 27:24 -- pattern match on proof of equation ; here 'm==n+Nd'
difference'' : (m n : Nat) -> m >= n -> Sg Nat λ d -> m == (n +N d)
-- 1st clause of >= matches on right, so start with 'n'
difference'' m zero m>=n = m , refl m
difference'' (suc m) (suc n) m>=n
with difference'' m n m>=n
...| d , m==n+Nd
with m==n+Nd
... | refl .(n +N d) = d , (refl (suc (n +N d)))
tryMe = difference 42 37
-- dontTryMe = difference 37 42 {!!}
------------------------------------------------------------------------------
-- things to remember to say
{-
-- 34:22 : = VIZ ==
= : makes a definition (part of Agda programming language)
== : makes a type (by user built definition)
function type is both IMPLICATION and UNIVERSAL QUANTIFICATION : why call Pi?
why is Sigma called Sigma?
-- 38:50 : B or not B
must be able to return a
- inl B for any B : not possible because nothing known about B
- inR B→Zero for any B : not possible because Zero has no elements
exMiddle : {B : Set} -> B + (B -> Zero)
exMiddle = ?
-- 40:45
-- not possible to "look inside" 'notAandB' to determine 'inl' or 'inr'
deMorgan : {A B : Set} -> ((A * B) -> Zero) -> (A -> Zero) + (B -> Zero)
deMorgan notAandB = {!!}
-}
| {
"alphanum_fraction": 0.4688611079,
"avg_line_length": 28.6809210526,
"ext": "agda",
"hexsha": "745c976e72a62b33388de67f988026eb069f69dd",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec1.agda",
"max_line_length": 87,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3049,
"size": 8719
} |
module Tait where
-- Boilerplate for contexts and substitutions inspired by:
-- https://plfa.github.io/DeBruijn/
-- Proof technique from "How to (Re)Invent Tait's Method":
-- http://www.cs.cmu.edu/~rwh/courses/chtt/pdfs/tait.pdf
open import Data.Sum
open import Data.Product
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe)
infix 4 _⊢_
infix 4 _∋_
infixl 7 _·_
infix 9 `_
data Type : Set where
unit : Type
bool : Type
_∧_ : Type → Type → Type
_⊃_ : Type → Type → Type
data Ctx : Set where
∅ : Ctx
_#_ : Ctx → Type → Ctx
data _∋_ : Ctx → Type → Set where
Z : ∀ {Γ A} → (Γ # A) ∋ A
S_ : ∀ {Γ A B} → Γ ∋ A → (Γ # B) ∋ A
ext : ∀ {Γ Δ}
→ (∀ {A} → Γ ∋ A → Δ ∋ A)
---------------------------------
→ (∀ {A B} → Γ # B ∋ A → Δ # B ∋ A)
ext ρ Z = Z
ext ρ (S x) = S (ρ x)
data _⊢_ : Ctx → Type → Set where
`_ : ∀ {Γ A} → Γ ∋ A → Γ ⊢ A
⋆ : ∀ {Γ} → Γ ⊢ unit
yes no : ∀ {Γ} → Γ ⊢ bool
⟨_,_⟩ : ∀ {Γ A₁ A₂} → Γ ⊢ A₁ → Γ ⊢ A₂ → Γ ⊢ (A₁ ∧ A₂)
fst : ∀ {Γ A₁ A₂} → Γ ⊢ (A₁ ∧ A₂) → Γ ⊢ A₁
snd : ∀ {Γ A₁ A₂} → Γ ⊢ (A₁ ∧ A₂) → Γ ⊢ A₂
ƛ : ∀ {Γ A₁ A₂} → (Γ # A₁) ⊢ A₂ → Γ ⊢ (A₁ ⊃ A₂)
_·_ : ∀ {Γ A₁ A₂} → Γ ⊢ (A₁ ⊃ A₂) → Γ ⊢ A₁ → Γ ⊢ A₂
rename : ∀ {Γ Δ}
→ (∀ {A} → Γ ∋ A → Δ ∋ A)
-----------------------
→ (∀ {A} → Γ ⊢ A → Δ ⊢ A)
rename ρ (` x) = ` (ρ x)
rename ρ ⋆ = ⋆
rename ρ yes = yes
rename ρ no = no
rename ρ ⟨ M₁ , M₂ ⟩ = ⟨ rename ρ M₁ , rename ρ M₂ ⟩
rename ρ (fst M) = fst (rename ρ M)
rename ρ (snd M) = snd (rename ρ M)
rename ρ (ƛ N) = ƛ (rename (ext ρ) N)
rename ρ (L · M) = (rename ρ L) · (rename ρ M)
Subst : (Γ Δ : Ctx) → Set
Subst Γ Δ = ∀ {A} → Γ ∋ A → Δ ⊢ A
exts : ∀ {Γ Δ} → Subst Γ Δ → ∀ {A} → Subst (Γ # A) (Δ # A)
exts σ Z = ` Z
exts σ (S x) = rename S_ (σ x)
extend : ∀ {Γ Δ A} → Δ ⊢ A → Subst Γ Δ → Subst (Γ # A) Δ
extend M γ Z = M
extend M γ (S x) = γ x
subst : ∀ {Γ Δ} → Subst Γ Δ → (∀ {A} → Γ ⊢ A → Δ ⊢ A)
subst σ (` x) = σ x
subst σ ⋆ = ⋆
subst σ yes = yes
subst σ no = no
subst σ ⟨ M₁ , M₂ ⟩ = ⟨ subst σ M₁ , subst σ M₂ ⟩
subst σ (fst M) = fst (subst σ M)
subst σ (snd M) = snd (subst σ M)
subst σ (ƛ M) = ƛ (subst (exts σ) M)
subst σ (M₁ · M₂) = subst σ M₁ · subst σ M₂
_[_] : ∀ {Γ A B}
→ Γ # B ⊢ A
→ Γ ⊢ B
---------
→ Γ ⊢ A
_[_] {Γ} {A} {B} N M = subst {Γ # B} {Γ} (extend M `_) {A} N
data _final : ∀ {A} → ∅ ⊢ A → Set where
yes : yes final
no : no final
⋆ : ⋆ final
pair : ∀ {A₁ A₂} → (M₁ : ∅ ⊢ A₁) → (M₂ : ∅ ⊢ A₂) → ⟨ M₁ , M₂ ⟩ final
ƛ : ∀ {A₁ A₂} → (M : (∅ # A₁) ⊢ A₂) → (ƛ M) final
data _↦_ : {A : Type} → ∅ ⊢ A → ∅ ⊢ A → Set where
fst-step : ∀ {A₁ A₂} → {M M' : ∅ ⊢ A₁ ∧ A₂} → (M ↦ M') → (fst M ↦ fst M')
snd-step : ∀ {A₁ A₂} → {M M' : ∅ ⊢ A₁ ∧ A₂} → (M ↦ M') → (snd M ↦ snd M')
fst : ∀ {A₁ A₂} → {M₁ : ∅ ⊢ A₁} → {M₂ : ∅ ⊢ A₂} → (fst ⟨ M₁ , M₂ ⟩ ↦ M₁)
snd : ∀ {A₁ A₂} → {M₁ : ∅ ⊢ A₁} → {M₂ : ∅ ⊢ A₂} → (snd ⟨ M₁ , M₂ ⟩ ↦ M₂)
app-step : ∀ {A₁ A₂} → {M₁ M₁' : ∅ ⊢ A₁ ⊃ A₂} → {M₂ : ∅ ⊢ A₁} → (M₁ ↦ M₁') → (M₁ · M₂) ↦ (M₁' · M₂)
app : ∀ {A₁ A₂} → {M : ∅ # A₁ ⊢ A₂} → {M₂ : ∅ ⊢ A₁} → (ƛ M · M₂) ↦ (M [ M₂ ])
data _↦*_ : {A : Type} → ∅ ⊢ A → ∅ ⊢ A → Set where
refl : ∀ {A} → {M : ∅ ⊢ A} → M ↦* M
step : ∀ {A} → {M M' M'' : ∅ ⊢ A} → M ↦ M' → M' ↦* M'' → M ↦* M''
step-trans : ∀ {A} → {M M' M'' : ∅ ⊢ A} → M ↦* M' → M' ↦* M'' → M ↦* M''
step-trans refl s₂ = s₂
step-trans (step x s₁) s₂ = step x (step-trans s₁ s₂)
compatible : ∀ {A B} → ∀ {M M' : ∅ ⊢ A} → {p : ∅ ⊢ A → ∅ ⊢ B} → (∀ {N N'} → N ↦ N' → p N ↦ p N') → M ↦* M' → p M ↦* p M'
compatible lift refl = refl
compatible lift (step x s) = step (lift x) (compatible lift s)
ht : (A : Type) → ∅ ⊢ A → Set
ht unit M = M ↦* ⋆
ht bool M = (M ↦* yes) ⊎ (M ↦* no)
ht (A₁ ∧ A₂) M = ∃ λ N₁ → ∃ λ N₂ → (M ↦* ⟨ N₁ , N₂ ⟩) × (ht A₁ N₁ × ht A₂ N₂)
ht (A₂ ⊃ A) M = ∃ λ N → (M ↦* ƛ N) × (∀ N₂ → ht A₂ N₂ → ht A (N [ N₂ ]))
HT : ∀ {Γ} → Subst Γ ∅ → Set
HT {Γ} γ = ∀ {A} → (x : Γ ∋ A) → ht A (γ x)
ht-reverse-step : ∀ {A M M'} → M ↦ M' → ht A M' → ht A M
ht-reverse-step {unit} = step
ht-reverse-step {bool} s = [ (inj₁ ∘ step s) , (inj₂ ∘ step s) ]
ht-reverse-step {A ∧ A₁} s (N₁ , N₂ , term , ht₁ , ht₂) = N₁ , N₂ , step s term , ht₁ , ht₂
ht-reverse-step {A ⊃ A₁} s (N , term , ht') = N , step s term , ht'
ht-reverse-steps : ∀ {A M M'} → M ↦* M' → ht A M' → ht A M
ht-reverse-steps refl h = h
ht-reverse-steps (step x s) h = ht-reverse-step x (ht-reverse-steps s h)
-- Primary Theorem
_>>_∋_ : (Γ : Ctx) → (A : Type) → Γ ⊢ A → Set
Γ >> A ∋ M = (γ : Subst Γ ∅) → (h : HT γ) → ht A (subst γ M)
tait : ∀ {Γ A} → (M : Γ ⊢ A) → Γ >> A ∋ M
tait (` x) γ h = h x
tait ⋆ γ h = refl
tait yes γ h = inj₁ refl
tait no γ h = inj₂ refl
tait ⟨ M₁ , M₂ ⟩ γ h = subst γ M₁ , subst γ M₂ , refl , tait M₁ γ h , tait M₂ γ h
tait (fst M) γ h = let _ , _ , step-to-pair , ht-M₁ , _ = tait M γ h in
ht-reverse-steps (step-trans (compatible fst-step step-to-pair) (step fst refl)) ht-M₁
tait (snd M) γ h = let _ , _ , step-to-pair , _ , ht-M₂ = tait M γ h in
ht-reverse-steps (step-trans (compatible snd-step step-to-pair) (step snd refl)) ht-M₂
tait (ƛ M₂) γ h = subst (exts γ) M₂ , refl , λ M₁ ht₁ →
let ht₂ = tait M₂ (extend M₁ γ) λ { Z → ht₁ ; (S x) → h x } in
Eq.subst (ht _) trustMe ht₂ -- FIXME
tait (M₁ · M₂) γ h = let _ , step-to-lam , ht₁ = tait M₁ γ h in
let ht₂ = tait M₂ γ h in
ht-reverse-steps (step-trans (compatible app-step step-to-lam) (step app refl)) (ht₁ (subst γ M₂) ht₂ )
-- Corollary
subst-lemma : ∀ {Γ A} → (M : Γ ⊢ A) → subst `_ M ≡ M
subst-lemma (` x) = Eq.refl
subst-lemma ⋆ = Eq.refl
subst-lemma yes = Eq.refl
subst-lemma no = Eq.refl
subst-lemma ⟨ M₁ , M₂ ⟩ = Eq.cong₂ ⟨_,_⟩ (subst-lemma M₁) (subst-lemma M₂)
subst-lemma (fst M) = Eq.cong fst (subst-lemma M)
subst-lemma (snd M) = Eq.cong snd (subst-lemma M)
subst-lemma (ƛ M) = trustMe -- FIXME
subst-lemma (M₁ · M₂) = Eq.cong₂ _·_ (subst-lemma M₁) (subst-lemma M₂)
bools-terminate : (M : ∅ ⊢ bool) → M ↦* yes ⊎ M ↦* no
bools-terminate M = Eq.subst (λ M → M ↦* yes ⊎ M ↦* no) (subst-lemma M) (tait M `_ (λ {_} ()))
| {
"alphanum_fraction": 0.4571428571,
"avg_line_length": 36.5642458101,
"ext": "agda",
"hexsha": "c00e434d56bbbf9b2ed2389301382938008b2a7b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_forks_repo_path": "tait/Tait.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_issues_repo_path": "tait/Tait.agda",
"max_line_length": 126,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "b140aabd0ce35d926093dcfe0b5f18a95d757e24",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "HarrisonGrodin/computational-type-theory-2021",
"max_stars_repo_path": "tait/Tait.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-03T18:24:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-08T12:27:39.000Z",
"num_tokens": 3021,
"size": 6545
} |
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Extensionality where
open import Prelude
open import Algebra.Construct.Free.Semilattice.Definition
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Relation.Unary
open import Algebra.Construct.Free.Semilattice.Union
open import HITs.PropositionalTruncation.Sugar
import HITs.PropositionalTruncation as PropTrunc
open import HITs.PropositionalTruncation.Properties
open import Path.Reasoning
infix 4 _↭_
_↭_ : 𝒦 A → 𝒦 A → Type _
xs ↭ ys = ∀ x → x ∈ xs ↔ x ∈ ys
in-cons : (x : A) (xs : 𝒦 A) → x ∈ xs → xs ≡ x ∷ xs
in-cons = λ x → ∥ in-cons′ x ∥⇓
where
in-cons′ : ∀ x → xs ∈𝒦 A ⇒∥ (x ∈ xs → xs ≡ x ∷ xs) ∥
∥ in-cons′ y ∥-prop {xs} p q i y∈xs = trunc xs (y ∷ xs) (p y∈xs) (q y∈xs) i
∥ in-cons′ y ∥[] ()
∥ in-cons′ y ∥ x ∷ xs ⟨ Pxs ⟩ = PropTrunc.rec (trunc _ _)
λ { (inl x≡y) → sym (dup x xs) ; cong (_∷ x ∷ xs) x≡y
; (inr y∈xs) → cong (x ∷_) (Pxs y∈xs) ; com x y xs
}
subset-ext : ∀ xs ys → (∀ (x : A) → x ∈ xs → x ∈ ys) → xs ∪ ys ≡ ys
subset-ext = ∥ subset-ext′ ∥⇓
where
subset-ext′ : xs ∈𝒦 A ⇒∥ (∀ ys → (∀ x → x ∈ xs → x ∈ ys) → xs ∪ ys ≡ ys) ∥
∥ subset-ext′ ∥-prop {xs} p q i ys perm = trunc (xs ∪ ys) ys (p ys perm) (q ys perm) i
∥ subset-ext′ ∥[] _ _ = refl
∥ subset-ext′ ∥ x ∷ xs ⟨ Pxs ⟩ ys perm =
(x ∷ xs) ∪ ys ≡⟨ cons-distrib-∪ x xs ys ⟩
xs ∪ (x ∷ ys) ≡⟨ Pxs (x ∷ ys) (λ y y∈xs → ∣ inr (perm y ∣ inr y∈xs ∣) ∣) ⟩
x ∷ ys ≡˘⟨ in-cons x ys (perm x ∣ inl refl ∣) ⟩
ys ∎
extensional : (xs ys : 𝒦 A) → (xs ↭ ys) → xs ≡ ys
extensional xs ys xs↭ys =
xs ≡˘⟨ subset-ext ys xs (inv ∘ xs↭ys) ⟩
ys ∪ xs ≡⟨ ∪-comm ys xs ⟩
xs ∪ ys ≡⟨ subset-ext xs ys (fun ∘ xs↭ys) ⟩
ys ∎
| {
"alphanum_fraction": 0.5737797957,
"avg_line_length": 34.5490196078,
"ext": "agda",
"hexsha": "97cc45e226a852c351bb389034b1e4cc7617eb5e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Extensionality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Extensionality.agda",
"max_line_length": 88,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Extensionality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 792,
"size": 1762
} |
{-
My first Proof in Agda
-}
-- define Natural numbers
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- Simply defining 1
one : ℕ
one = suc(zero)
two : ℕ
two = suc(suc(zero))
-- define addition of natural numbers
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
-- Define equality
data _≡_ {A : Set} (a : A) : A → Set where
refl : a ≡ a
-- small test for equality
-- oneplusoneistwo : one + one ≡ two
-- oneplusoneistwo = refl
-- Prove n+0 = n
| {
"alphanum_fraction": 0.5818965517,
"avg_line_length": 12.8888888889,
"ext": "agda",
"hexsha": "d7ca397f86765e0071cdde3c5b09d23c99e75ab9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c506d7e317366443d6d17be943b95e46409c1570",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "adithyaselv/Learn-Agda",
"max_forks_repo_path": "Hello-Agda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c506d7e317366443d6d17be943b95e46409c1570",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "adithyaselv/Learn-Agda",
"max_issues_repo_path": "Hello-Agda.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c506d7e317366443d6d17be943b95e46409c1570",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "adithyaselv/Learn-Agda",
"max_stars_repo_path": "Hello-Agda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 169,
"size": 464
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; subst; setoid)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap)
import Function.Equality
-- open import Relation.Binary using (Setoid)
-- import Relation.Binary.Reasoning.Setoid as SetoidR
import Categories.Category
import Categories.Functor
import Categories.Category.Instance.Setoids
import Categories.Monad.Relative
import Categories.Category.Equivalence
import Categories.Category.Cocartesian
import Categories.Category.Construction.Functors
import Categories.Category.Product
import Categories.NaturalTransformation
import Categories.NaturalTransformation.NaturalIsomorphism
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
import SecondOrder.VRenaming
import SecondOrder.MRenaming
import SecondOrder.Term
import SecondOrder.Substitution
import SecondOrder.RelativeMonadMorphism
import SecondOrder.Instantiation
import SecondOrder.IndexedCategory
import SecondOrder.RelativeKleisli
module SecondOrder.Mslot
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.Metavariable Σ
open SecondOrder.Term Σ
open SecondOrder.VRenaming Σ
open SecondOrder.MRenaming Σ
-- open SecondOrder.Substitution Σ
-- open import SecondOrder.RelativeMonadMorphism
-- open SecondOrder.Instantiation
open Categories.Category
open Categories.Functor using (Functor)
open Categories.NaturalTransformation renaming (id to idNt)
open Categories.NaturalTransformation.NaturalIsomorphism renaming (refl to reflNt; sym to symNt; trans to transNt)
open Categories.Category.Construction.Functors
open Categories.Category.Instance.Setoids
open Categories.Category.Product
open Function.Equality using () renaming (setoid to Π-setoid)
open SecondOrder.IndexedCategory
-- open import SecondOrder.RelativeKleisli
MTele = MContexts
VTele = VContexts
-- the codomain category of the MSlots functor. It should be equivalent to the
-- functor category [ MTele x VTele , < Setoid >ₛₒᵣₜ ]
-- objects are functors, which are really pairs of functions, one on objects
-- one on morphisms
-- morphisms in this category are natural transformations
module _ where
open Category
open NaturalTransformation
open Function.Equality renaming (_∘_ to _∙_)
Mslots : Functor MContexts (IndexedCategory VContext (IndexedCategory sort (Setoids ℓ ℓ)))
Mslots =
let open Categories.NaturalTransformation in
let open NaturalTransformation in
let open Relation.Binary.PropositionalEquality.≡-Reasoning in
record
{ F₀ = λ Θ Γ A → setoid ([ Γ , A ]∈ Θ)
; F₁ = λ ι Γ A → record { _⟨$⟩_ = λ M → ι M ; cong = λ M≡N → cong ι M≡N }
; identity = λ {Θ} Γ A {M} {N} M≡N → cong idᵐ M≡N
; homomorphism = λ {Θ} {Ψ} {Ξ} {ι} {μ} Γ A M≡N → cong (μ ∘ᵐ ι) M≡N
; F-resp-≈ = λ {Θ} {Ψ} {ι} {μ} ι≡ᵐμ Γ A {M} {N} M≡N →
begin
ι M ≡⟨ cong ι M≡N ⟩
ι N ≡⟨ ι≡ᵐμ N ⟩
μ N
∎
}
| {
"alphanum_fraction": 0.7280513919,
"avg_line_length": 36.3222222222,
"ext": "agda",
"hexsha": "27ffbcca21fd109e5a7d3d3d390b99381925fcd3",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cilinder/formaltt",
"max_forks_repo_path": "src/SecondOrder/Mslot.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cilinder/formaltt",
"max_issues_repo_path": "src/SecondOrder/Mslot.agda",
"max_line_length": 116,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/Mslot.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 939,
"size": 3269
} |
module STLC3 where
open import Data.Nat
open import Data.Nat.Properties using (≤-antisym; ≤-trans; ≰⇒>)
-- open import Data.List
open import Data.Empty using (⊥-elim)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst)
open import Relation.Nullary.Decidable using (map)
open import Relation.Nullary
open import Data.Product
-- de Bruijn indexed lambda calculus
infix 5 ƛ_
infixl 7 _∙_
infix 9 var_
-- indexed by the number of binders out there
data Term : ℕ → Set where
-- if x < n
-- then var x is bound
-- else var x is free
var_ : ∀ {n} → (x : ℕ) → Term n
ƛ_ : ∀ {n} → Term (suc n) → Term n
_∙_ : ∀ {n} → Term n → Term n → Term n
data Var : Set where
Bound : ∀ {n x} → (bound : n > x) → Var
FreeIncr : ∀ {n x depth} → (free : suc x ≰ n) → (prop : depth ≡ suc x) → Var
Free : ∀ {n x depth} →(free : suc x ≰ n) → (safe : suc x ≰ depth) → Var
sort : (n x depth : ℕ) → suc n ≥ depth → Var
sort n x depth P with n >? x
sort n x depth P | yes p = Bound p
sort n x depth P | no ¬p with depth >? x
sort n x depth P | no ¬p | yes q = FreeIncr ¬p (≤-antisym (≤-trans P (≰⇒> ¬p)) q)
sort n x depth P | no ¬p | no ¬q = Free ¬p ¬q
-- only "shift" the variable when
-- 1. it's free
-- 2. it will be captured after substitution
shift : ∀ {n} → (i : ℕ) → suc n ≥ i → Term n → Term (suc n)
shift {n} depth P (var x) with sort n x depth P
shift {n} depth P (var x) | Bound bound = var x
shift {n} depth P (var x) | FreeIncr free prop = var suc x
shift {n} depth P (var x) | Free free safe = var x
shift depth P (ƛ M) = ƛ shift (suc depth) (s≤s P) M
shift depth P (M ∙ N) = shift depth P M ∙ shift depth P N
infixl 10 _[_/_/_]
_[_/_/_] : ∀ {n} → Term (suc n) → Term n → (i : ℕ) → n ≥ i → Term n
(var x) [ N / i / n≥i ] with x ≟ i
(var x) [ N / i / n≥i ] | yes p = N
(var x) [ N / i / n≥i ] | no ¬p = var x
(ƛ M) [ N / i / n≥i ] = ƛ (M [ shift (suc i) (s≤s n≥i) N / suc i / s≤s n≥i ])
(L ∙ M) [ N / i / n≥i ] = L [ N / i / n≥i ] ∙ M [ N / i / n≥i ]
-- substitution
infixl 10 _[_]
_[_] : ∀ {n} → Term (suc n) → Term n → Term n
M [ N ] = M [ N / zero / z≤n ]
-- β reduction
infix 3 _β→_
data _β→_ {n : ℕ} : Term n → Term n → Set where
β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ M [ N ]
β-ƛ : ∀ {M N} → M β→ N → ƛ M β→ ƛ N
β-∙-l : ∀ {L M N} → M β→ N → M ∙ L β→ N ∙ L
β-∙-r : ∀ {L M N} → M β→ N → L ∙ M β→ L ∙ N
-- the reflexive and transitive closure of _β→_
infix 2 _β→*_
infixr 4 _→*_
data _β→*_ {n : ℕ} : Term n → Term n → Set where
∎ : ∀ {M} → M β→* M
_→*_ : ∀ {L M N}
→ L β→ M
→ M β→* N
--------------
→ L β→* N
infixl 3 _<β>_
_<β>_ : ∀ {n} {M N O : Term n} → M β→* N → N β→* O → M β→* O
∎ <β> N→O = N→O
L→M →* M→N <β> N→O = L→M →* (M→N <β> N→O)
hop : ∀ {n} {M N : Term n} → M β→ N → M β→* N
hop M→N = M→N →* ∎
-- infix 2 _-↠_
infixr 2 _→⟨_⟩_
_→⟨_⟩_
: ∀ {n} {M N : Term n}
→ ∀ L
→ L β→ M
→ M β→* N
--------------
→ L β→* N
L →⟨ P ⟩ Q = P →* Q
infixr 2 _→*⟨_⟩_
_→*⟨_⟩_
: ∀ {n} {M N : Term n}
→ ∀ L
→ L β→* M
→ M β→* N
--------------
→ L β→* N
L →*⟨ P ⟩ Q = P <β> Q
infix 3 _→∎
_→∎ : ∀ {n} (M : Term n) → M β→* M
M →∎ = ∎
-- the symmetric closure of _β→*_
infix 1 _β≡_
data _β≡_ {n : ℕ} : Term n → Term n → Set where
β-sym : ∀ {M N}
→ M β→* N
→ N β→* M
-------
→ M β≡ N
infixr 2 _=*⟨_⟩_
_=*⟨_⟩_
: ∀ {n} {M N : Term n}
→ ∀ L
→ L β≡ M
→ M β≡ N
--------------
→ L β≡ N
L =*⟨ β-sym A B ⟩ β-sym C D = β-sym (A <β> C) (D <β> B)
infixr 2 _=*⟨⟩_
_=*⟨⟩_
: ∀ {n} {N : Term n}
→ ∀ L
→ L β≡ N
--------------
→ L β≡ N
L =*⟨⟩ β-sym C D = β-sym C D
infix 3 _=∎
_=∎ : ∀ {n} → (M : Term n) → M β≡ M
M =∎ = β-sym ∎ ∎
forward : ∀ {n} {M N : Term n} → M β≡ N → M β→* N
forward (β-sym A _) = A
backward : ∀ {n} {M N : Term n} → M β≡ N → N β→* M
backward (β-sym _ B) = B
-- data Normal : Set where
Normal : ∀ {n} → Term n → Set
Normal M = ¬ ∃ (λ N → M β→ N)
normal : ∀ {n} {M N : Term n} → Normal M → M β→* N → M ≡ N
normal P ∎ = refl
normal P (M→L →* L→N) = ⊥-elim (P (_ , M→L))
cong-ƛ : ∀ {n} {M N : Term (suc n)} → M β→* N → ƛ M β→* ƛ N
cong-ƛ ∎ = ∎
cong-ƛ (M→N →* N→O) = β-ƛ M→N →* cong-ƛ N→O
cong-∙-l : ∀ {n} {L M N : Term n} → M β→* N → M ∙ L β→* N ∙ L
cong-∙-l ∎ = ∎
cong-∙-l (M→N →* N→O) = β-∙-l M→N →* cong-∙-l N→O
cong-∙-r : ∀ {n} {L M N : Term n} → M β→* N → L ∙ M β→* L ∙ N
cong-∙-r ∎ = ∎
cong-∙-r (M→N →* N→O) = β-∙-r M→N →* cong-∙-r N→O
cong-shift! : ∀ {n i} (M : Term (suc n)) (N : Term n) → (n≥i : n ≥ i) → shift (suc i) (s≤s n≥i) ((ƛ M) ∙ N) β→ shift (suc i) (s≤s n≥i) (M [ N ])
cong-shift! (var x) N n≥i = {! !}
cong-shift! (ƛ M) N n≥i = {! !}
cong-shift! (M ∙ L) N n≥i = {! !}
cong-shift : ∀ {n i} {M N : Term n} → (n≥i : n ≥ i) → M β→ N → shift (suc i) (s≤s n≥i) M β→ shift (suc i) (s≤s n≥i) N
cong-shift n≥i (β-ƛ-∙ {M} {N}) = cong-shift! M N n≥i
cong-shift n≥i (β-ƛ M→N) = β-ƛ (cong-shift (s≤s n≥i) M→N)
cong-shift n≥i (β-∙-l M→N) = β-∙-l (cong-shift n≥i M→N)
cong-shift n≥i (β-∙-r M→N) = β-∙-r (cong-shift n≥i M→N)
-- cong-shift : ∀ {n i} {M N : Term n} → n ≥ i → M β→ N → shift (suc i) M β→ shift (suc i) N
-- cong-shift {n} n≥i (β-ƛ-∙ {var x} {var y}) with suc n >? x
-- cong-shift {n} n≥i (β-ƛ-∙ {var x} {var y}) | yes p with suc y ≤? n
-- cong-shift {n} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | yes q with n >? y
-- cong-shift {n} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | yes q | yes r = β-ƛ-∙
-- cong-shift {n} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | yes q | no ¬r = ⊥-elim (¬r q)
-- cong-shift {n} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | yes q with n >? suc x
-- cong-shift {n} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | yes q | yes r = {! !} -- dump
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | yes q | no ¬r with suc i >? suc x
-- -- ≤-antisym p
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | yes q | no ¬r | yes s = {! (≰⇒> ¬r) !} -- fishy
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | yes q | no ¬r | no ¬s = {! !} -- dump
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var x} {var y}) | yes p | no ¬q with suc i >? y
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | no ¬q | yes r with n >? y
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | no ¬q | yes r | yes s = ⊥-elim (¬q s)
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | no ¬q | yes r | no ¬s with suc i >? y
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | no ¬q | yes r | no ¬s | yes t = β-ƛ-∙
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var zero} {var y}) | yes p | no ¬q | yes r | no ¬s | no ¬t = ⊥-elim (¬t r)
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | no ¬q | yes r with n >? suc x
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | no ¬q | yes r | yes t = {! !} -- dump
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | no ¬q | yes r | no ¬t with suc i >? suc x
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | no ¬q | yes r | no ¬t | yes u = {! !} -- fishy
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var suc x} {var y}) | yes p | no ¬q | yes r | no ¬t | no ¬u = β-ƛ-∙
-- cong-shift {n} {i} n≥i (β-ƛ-∙ {var x} {var y}) | yes p | no ¬q | no ¬r = {! !}
-- cong-shift {n} n≥i (β-ƛ-∙ {var x} {var y}) | no ¬p = {! !}
-- cong-shift {n} n≥i (β-ƛ-∙ {var x} {ƛ N}) = {! !}
-- cong-shift {n} n≥i (β-ƛ-∙ {var x} {N ∙ O}) = {! !}
-- -- cong-shift {n} (β-ƛ-∙ {var x} {N}) with suc n >? x
-- -- cong-shift {n} (β-ƛ-∙ {var zero} {N}) | yes p = β-ƛ-∙
-- -- cong-shift {n} (β-ƛ-∙ {var suc x} {N}) | yes (s≤s p) with n >? suc x
-- -- cong-shift {n} (β-ƛ-∙ {var suc x} {N}) | yes (s≤s p) | yes q = {! !}
-- -- cong-shift {n} {i} (β-ƛ-∙ {var suc x} {N}) | yes (s≤s p) | no ¬q with suc i >? suc x
-- -- cong-shift {n} {i} (β-ƛ-∙ {var suc x} {N}) | yes (s≤s p) | no ¬q | yes r = {! !} -- fishy
-- -- cong-shift {n} {i} (β-ƛ-∙ {var suc x} {N}) | yes (s≤s p) | no ¬q | no ¬r = {! !}
-- -- cong-shift {n} (β-ƛ-∙ {var zero} {var x}) | no ¬p = {! !}
-- -- cong-shift {n} (β-ƛ-∙ {var zero} {ƛ N}) | no ¬p = {! !}
-- -- cong-shift {n} (β-ƛ-∙ {var zero} {N ∙ O}) | no ¬p = {! !}
-- -- cong-shift {n} (β-ƛ-∙ {var suc x} {N}) | no ¬p = {! !}
-- cong-shift n≥i (β-ƛ-∙ {ƛ M} {N}) = {! !}
-- cong-shift n≥i (β-ƛ-∙ {L ∙ var x} {N}) = {! !}
-- cong-shift n≥i (β-ƛ-∙ {L ∙ (ƛ M)} {N}) = {! !}
-- cong-shift n≥i (β-ƛ-∙ {L ∙ (M ∙ K)} {N}) = {! !}
-- cong-shift n≥i (β-ƛ M→N) = β-ƛ (cong-shift _ M→N)
-- cong-shift n≥i (β-∙-l M→N) = β-∙-l (cong-shift _ M→N)
-- cong-shift n≥i (β-∙-r M→N) = β-∙-r (cong-shift _ M→N)
-- -- cong-[] : ∀ {n i} {M N : Term n} → (L : Term (suc n)) → M β→ N → L [ M / i ] β→* L [ N / i ]
-- -- cong-[] {i = i} (var x) M→N with x ≟ i
-- -- cong-[] {i = i} (var x) M→N | yes p = hop M→N
-- -- cong-[] {i = i} (var x) M→N | no ¬p = ∎
-- -- cong-[] {n} {i} (ƛ L) M→N = {! !}
-- -- -- cong-ƛ (cong-[] L (cong-shift M→N))
-- -- cong-[] {i = i} {M} {N} (L ∙ K) M→N =
-- -- L [ M / i ] ∙ K [ M / i ]
-- -- →*⟨ cong-∙-l (cong-[] L M→N) ⟩
-- -- L [ N / i ] ∙ K [ M / i ]
-- -- →*⟨ cong-∙-r (cong-[] K M→N) ⟩
-- -- L [ N / i ] ∙ K [ N / i ]
-- -- →∎
-- cong-[]2 : ∀ {n i} {M N : Term n} → (L : Term (suc n)) → n ≥ i → M β→ N → L [ M / i ] β→* L [ N / i ]
-- cong-[]2 {n} {i} (var x) n≥i M→N with x ≟ i
-- cong-[]2 {n} {i} (var x) n≥i M→N | yes p = hop M→N
-- cong-[]2 {n} {i} (var x) n≥i M→N | no ¬p = ∎
-- cong-[]2 {n} {i} (ƛ M) n≥i M→N = cong-ƛ (cong-[]2 M (s≤s n≥i) {! cong-shift !})
-- cong-[]2 {n} {i} {M} {N} (L ∙ K) n≥i M→N =
-- L [ M / i ] ∙ K [ M / i ]
-- →*⟨ cong-∙-l (cong-[]2 L _ M→N) ⟩
-- L [ N / i ] ∙ K [ M / i ]
-- →*⟨ cong-∙-r (cong-[]2 K _ M→N) ⟩
-- L [ N / i ] ∙ K [ N / i ]
-- →∎
-- β→confluent : ∀ {n} (M N O : Term n) → (M β→ N) → (M β→ O) → ∃ (λ P → (N β→* P) × (O β→* P))
-- β→confluent .((ƛ M) ∙ N) _ _ (β-ƛ-∙ {M} {N}) β-ƛ-∙ = (M [ N ]) , (∎ , ∎)
-- β→confluent .((ƛ M) ∙ N) _ .(O ∙ N) (β-ƛ-∙ {M} {N}) (β-∙-l {N = O} M→O) = (O ∙ N) , ({! !} , ∎)
-- β→confluent .((ƛ M) ∙ N) _ .((ƛ M) ∙ O) (β-ƛ-∙ {M} {N}) (β-∙-r {N = O} N→O) = (M [ O ]) , (cong-[]2 M z≤n N→O , (hop β-ƛ-∙))
-- β→confluent .(ƛ M) .(ƛ N) .(ƛ O) (β-ƛ {M} {N} M→N) (β-ƛ {N = O} M→O) with β→confluent M N O M→N M→O
-- β→confluent .(ƛ M) .(ƛ N) .(ƛ O) (β-ƛ {M} {N} M→N) (β-ƛ {N = O} M→O) | P , N→P , O→P = (ƛ P) , ((cong-ƛ N→P) , (cong-ƛ O→P))
-- β→confluent .((ƛ M) ∙ L) .(N ∙ L) _ (β-∙-l {L} {N = N} M→N) (β-ƛ-∙ {M}) = (N ∙ L) , (∎ , {! !})
-- β→confluent .(M ∙ L) .(N ∙ L) .(K ∙ L) (β-∙-l {L} {M} {N} M→N) (β-∙-l {N = K} M→O) with β→confluent M N K M→N M→O
-- β→confluent .(M ∙ L) .(N ∙ L) .(K ∙ L) (β-∙-l {L} {M} {N} M→N) (β-∙-l {N = K} M→O) | P , N→P , K→P = P ∙ L , ((cong-∙-l N→P) , cong-∙-l K→P)
-- β→confluent .(M ∙ L) .(N ∙ L) .(M ∙ K) (β-∙-l {L} {M} {N} M→N) (β-∙-r {N = K} M→O) = N ∙ K , hop (β-∙-r M→O) , hop (β-∙-l M→N)
-- β→confluent .((ƛ L) ∙ M) .((ƛ L) ∙ N) _ (β-∙-r {M = M} {N} M→N) (β-ƛ-∙ {L}) = (L [ N ]) , (hop β-ƛ-∙ , cong-[]2 L _ M→N)
-- β→confluent .(K ∙ M) .(K ∙ N) .(L ∙ M) (β-∙-r {K} {M} {N} M→N) (β-∙-l {N = L} K→L) = (L ∙ N) , ((hop (β-∙-l K→L)) , hop (β-∙-r M→N))
-- β→confluent .(_ ∙ M) .(_ ∙ N) .(_ ∙ O) (β-∙-r {M = M} {N} M→N) (β-∙-r {N = O} M→O) with β→confluent M N O M→N M→O
-- β→confluent .(L ∙ M) .(L ∙ N) .(L ∙ O) (β-∙-r {L} {M} {N} M→N) (β-∙-r {N = O} M→O) | P , N→P , O→P = (L ∙ P) , (cong-∙-r N→P , cong-∙-r O→P)
-- β→*-confluent : ∀ {n} {M N O : Term n} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P))
-- β→*-confluent {n} {M} {.M} {O} ∎ M→O = O , M→O , ∎
-- β→*-confluent {n} {M} {N} {.M} (M→L →* L→N) ∎ = N , ∎ , (M→L →* L→N)
-- β→*-confluent {n} {M} {N} {O} (M→L →* L→N) (M→K →* K→O) = {! !}
-- normal-unique : ∀ {n} {M N O : Term n} → Normal N → Normal O → M β→* N → M β→* O → N ≡ O
-- normal-unique P Q M→N M→O = let X = β→*-confluent M→N M→O in trans (normal P (proj₁ (proj₂ X))) (sym (normal Q (proj₂ (proj₂ X))))
| {
"alphanum_fraction": 0.4219590958,
"avg_line_length": 39.5967213115,
"ext": "agda",
"hexsha": "d7fc3537349ba48516ff29a87ff0d2694912069a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/stash/STLC3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/stash/STLC3.agda",
"max_line_length": 144,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/stash/STLC3.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 6460,
"size": 12077
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vector equality over propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.Vec.Relation.Binary.Equality.Propositional {a} {A : Set a} where
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Vec
open import Data.Vec.Relation.Binary.Pointwise.Inductive
using (Pointwise-≡⇒≡; ≡⇒Pointwise-≡)
import Data.Vec.Relation.Binary.Equality.Setoid as SEq
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Publically re-export everything from setoid equality
open SEq (setoid A) public
------------------------------------------------------------------------
-- ≋ is propositional
≋⇒≡ : ∀ {n} {xs ys : Vec A n} → xs ≋ ys → xs ≡ ys
≋⇒≡ = Pointwise-≡⇒≡
≡⇒≋ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → xs ≋ ys
≡⇒≋ = ≡⇒Pointwise-≡
-- See also Data.Vec.Relation.Binary.Equality.Propositional.WithK.≋⇒≅.
| {
"alphanum_fraction": 0.5112511251,
"avg_line_length": 31.7428571429,
"ext": "agda",
"hexsha": "beb812ac12e3769a0ae0cba19dc13ed6d7503a3d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 300,
"size": 1111
} |
module Issue589 where
data N : Set where
zero : N
suc : N -> N
_+_ : N -> N -> N
zero + y = y
suc x + y = suc ?
| {
"alphanum_fraction": 0.5169491525,
"avg_line_length": 11.8,
"ext": "agda",
"hexsha": "2206c58e6804f6adc8ad4a0c27f5f1bf503e8c48",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue589.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue589.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue589.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 118
} |
module neq where
open import eq
open import negation
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infix 4 _≢_
----------------------------------------------------------------------
-- defined types
----------------------------------------------------------------------
_≢_ : ∀ {ℓ}{A : Set ℓ} → A → A → Set ℓ
x ≢ y = ¬ (x ≡ y) | {
"alphanum_fraction": 0.200913242,
"avg_line_length": 25.7647058824,
"ext": "agda",
"hexsha": "cbf404f256b327fb8dc47e6827658e38262802ed",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "neq.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "neq.agda",
"max_line_length": 70,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "neq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 73,
"size": 438
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Functor.Const where
open import Function using (const)
open import Cats.Category
open import Cats.Functor using (Functor)
module _ {lo la l≈ lo′ la′ l≈′}
(C : Category lo la l≈) {D : Category lo′ la′ l≈′}
where
open Category D
Const : Obj → Functor C D
Const d = record
{ fobj = const d
; fmap = const id
; fmap-resp = const ≈.refl
; fmap-id = ≈.refl
; fmap-∘ = id-l
}
| {
"alphanum_fraction": 0.6039387309,
"avg_line_length": 18.28,
"ext": "agda",
"hexsha": "71a3bd2ec5ace0b27e3652f79d1850373987eea5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Functor/Const.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Functor/Const.agda",
"max_line_length": 52,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Functor/Const.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 155,
"size": 457
} |
module Epic where
data Nat : Set where
Z : Nat
S : Nat -> Nat
_+_ : Nat -> Nat -> Nat
Z + m = m
S n + m = S (n + m)
_*_ : Nat -> Nat -> Nat
Z * m = Z
S n * m = m + (n * m)
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
data Unit : Set where
unit : Unit
postulate
IO : Set -> Set
printNat : Nat -> IO Unit
{-# COMPILED_EPIC printNat (a : BigInt, u : Unit) -> Unit = putStrLn (bigIntToStr(a)) #-}
main : IO Unit
main = printNat (7 * 191)
| {
"alphanum_fraction": 0.5407554672,
"avg_line_length": 16.2258064516,
"ext": "agda",
"hexsha": "3d75ba8f5c0ad68ce5be70b8ceccf6359446a423",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Epic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Epic.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Epic.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 175,
"size": 503
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties about signs
------------------------------------------------------------------------
module Data.Sign.Properties where
open import Data.Empty
open import Function
open import Data.Sign
open import Relation.Binary.PropositionalEquality
-- The opposite of a sign is not equal to the sign.
opposite-not-equal : ∀ s → s ≢ opposite s
opposite-not-equal - ()
opposite-not-equal + ()
-- Sign multiplication is right cancellative.
cancel-*-right : ∀ s₁ s₂ {s} → s₁ * s ≡ s₂ * s → s₁ ≡ s₂
cancel-*-right - - _ = refl
cancel-*-right - + eq = ⊥-elim (opposite-not-equal _ $ sym eq)
cancel-*-right + - eq = ⊥-elim (opposite-not-equal _ eq)
cancel-*-right + + _ = refl
| {
"alphanum_fraction": 0.5596446701,
"avg_line_length": 29.1851851852,
"ext": "agda",
"hexsha": "55f627831908e83a7df9773f9494b8f780aac70a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Sign/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Sign/Properties.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Sign/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 190,
"size": 788
} |
module Cats.Category.Constructions.Mono where
open import Level
open import Cats.Category.Base
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
IsMono : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈)
IsMono {A} f = ∀ {C} {g h : C ⇒ A} → f ∘ g ≈ f ∘ h → g ≈ h
| {
"alphanum_fraction": 0.6121212121,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "21ac19de552de4a3588a86e161ea144b5a45ee72",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Mono.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Mono.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Mono.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 122,
"size": 330
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor where
open import Level
open import Relation.Binary using (IsEquivalence)
open import Relation.Binary.PropositionalEquality
using ()
renaming (_≡_ to _≣_)
open import Relation.Nullary using (¬_)
open import Data.Product using (Σ; _×_; ∃; proj₁)
open import Categories.Category
open import Categories.Functor.Core public
import Categories.Morphisms as Morphisms
infix 4 _≡_
_≡_ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → (F G : Functor C D) → Set (e′ ⊔ ℓ′ ⊔ ℓ ⊔ o)
_≡_ {C = C} {D} F G = ∀ {A B} → (f : C [ A , B ]) → Functor.F₁ F f ∼ Functor.F₁ G f
where open Heterogeneous D
≡⇒≣ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
→ (F G : Functor C D)
→ F ≡ G
→ (∀ x → Functor.F₀ F x ≣ Functor.F₀ G x)
≡⇒≣ {C = C} {D} F G F≡G x = domain-≣ (F≡G (Category.id C {x}))
where
open Heterogeneous D
.assoc : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃}
{C₀ : Category o₀ ℓ₀ e₀} {C₁ : Category o₁ ℓ₁ e₁} {C₂ : Category o₂ ℓ₂ e₂} {C₃ : Category o₃ ℓ₃ e₃}
{F : Functor C₀ C₁} {G : Functor C₁ C₂} {H : Functor C₂ C₃}
→ (H ∘ G) ∘ F ≡ H ∘ (G ∘ F)
assoc {C₃ = C₃} f = refl
where open Heterogeneous C₃
.identityˡ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} → id ∘ F ≡ F
identityˡ {C = C} {D} {F} f = refl
where open Heterogeneous D
.identityʳ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} → F ∘ id ≡ F
identityʳ {C = C} {D} {F} f = refl
where open Heterogeneous D
.equiv : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → IsEquivalence (_≡_ {C = C} {D = D})
equiv {C = C} {D} = record
{ refl = λ f → refl
; sym = λ F∼G f → sym (F∼G f)
; trans = λ F∼G G∼H f → trans (F∼G f) (G∼H f)
}
where open Heterogeneous D
.∘-resp-≡ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
{A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂}
{F H : Functor B C} {G I : Functor A B}
→ F ≡ H → G ≡ I → F ∘ G ≡ H ∘ I
∘-resp-≡ {B = B} {C} {F} {I = I} F≡H G≡I q = helper (G≡I q) (F≡H (Functor.F₁ I q))
where
open Heterogeneous C
module C = Category C
helper : ∀ {a b c d} {z w} {f : B [ a , b ]} {h : B [ c , d ]} {i : C [ z , w ]}
→ B [ f ∼ h ] → C [ Functor.F₁ F h ∼ i ] → C [ Functor.F₁ F f ∼ i ]
helper (≡⇒∼ f≡h) (≡⇒∼ g≡i) = ≡⇒∼ (C.Equiv.trans (Functor.F-resp-≡ F f≡h) g≡i)
Faithful : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → Set (o ⊔ ℓ ⊔ e ⊔ e′)
Faithful {C = C} {D} F = ∀ {X Y} → (f g : C [ X , Y ]) → D [ F₁ f ≡ F₁ g ] → C [ f ≡ g ]
where
module C = Category C
module D = Category D
open Functor F
-- Is this convoluted double-negated definition really necessary? A naive constructive definition of surjectivity
-- requires a right inverse, which would probably restrict the things we can provide proofs for
Full : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′)
Full {C = C} {D} F = ∀ {X Y} → ¬ Σ (D [ F₀ X , F₀ Y ]) (λ f → ¬ Σ (C [ X , Y ]) (λ g → D [ F₁ g ≡ f ]))
where
module C = Category C
module D = Category D
open Functor F
FullyFaithful : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → Set (o ⊔ ℓ ⊔ e ⊔ ℓ′ ⊔ e′)
FullyFaithful F = Full F × Faithful F
{-
[02:22:21 AM] <ddarius> copumpkin: So I think the normal statement is fine. You should be requiring F_1 to be a setoid function, i.e. forall x ~ x'. f(x) ~ f(x'). The function that would be required by the forall y.exists x. ... is not a setoid function and thus doesn't necessarily produce an inverse. That is, you'll have a function g such that f(g(y)) ~ y but not necessarily f(g(y)) = y and it is not necessary that for y ~ y' that
[02:22:22 AM] <ddarius> g(y) ~ g(y'), they could be different w.r.t. the domain setoid as long as f still maps them to equivalent elements in the codomain.
[02:27:53 AM] <ddarius> For example, let f : 2/= -> 2/~ (where True ~ False). Then, we need g(True) and g(False) and we could use g = not, even though True /= False and f(g(y)) /= y (assuming say f is id on the carrier), because it is still the case that f(g(y)) ~ y.
[02:28:55 AM] <ddarius> So g isn't an inverse on the carrier sets, and g isn't a setoid function inverse because it's not even a setoid function.
-}
EssentiallySurjective : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor C D → Set _
EssentiallySurjective {D = D} F = ∀ d → ∃ (λ c → F₀ c ≅ d)
where
open Functor F
open Morphisms D | {
"alphanum_fraction": 0.5765765766,
"avg_line_length": 48.5625,
"ext": "agda",
"hexsha": "f2fd56a6dfdde5b8ceea432a8ff83f02a9b7c84a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor.agda",
"max_line_length": 438,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 1949,
"size": 4662
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.