Search is not available for this dataset
text
string
meta
dict
module Oscar.Data.Proposequality where open import Agda.Builtin.Equality public using (_≡_) renaming (refl to ∅) public open import Relation.Binary.PropositionalEquality public using (_≢_) public open import Oscar.Category.Setoid open import Relation.Binary.PropositionalEquality using (sym; trans) open import Oscar.Level open import Oscar.Relation instance IsSetoidProposequality : ∀ {a} {A : Set a} → IsSetoid (_≡_ {A = A}) IsSetoid.reflexivity IsSetoidProposequality _ = ∅ IsSetoid.symmetry IsSetoidProposequality = sym IsSetoid.transitivity IsSetoidProposequality = λ ‵ → trans ‵ module _ {a} (A : Set a) where setoid : Setoid a a setoid = ↑ _≡_ {A = A} {- private infixl 7 _∙_ _∙_ : Transitive (_≡_ {A = A}) _∙_ = (λ y≡z x≡y → transitivity x≡y y≡z) -} open import Oscar.Category.Morphism open import Oscar.Function module _ {b} (B : A → A → Set b) where {- private infix 4 _≞_ _≞_ = λ {x} {y} → _≡_ {A = B x y} -} morphism : Morphism a b b morphism = -- ↑ λ {x} {y} → _≞_ {x} {y} -- _≡_ {A = B x y} ↑ λ {x} {y} → _≡_ {A = B x y} open Morphism morphism open import Oscar.Category.Semigroupoid module _ (_∙_ : Transitive _↦_) (associativity : Associative _∙_ _≞_) where instance IsSemigroupoidProposequality : IsSemigroupoid morphism _∙_ IsSemigroupoid.extensionality IsSemigroupoidProposequality ∅ ∅ = ∅ IsSemigroupoid.associativity IsSemigroupoidProposequality = associativity -- instance -- IsSemigroupoidProposequality : ∀ {a} {A : Set a} {b} {B : A → A → Set b} -- → IsSemigroupoid (morphism B) {!!} -- (transitivity ⦃ setoid A ⦄) -- IsSemigroupoidProposequality = {!!} -- IsSemigroupoidProposequality' : ∀ {a} {A : Set a} -- → IsSemigroupoid (morphism (_≡_ {A = A})) (λ y≡z x≡y → transitivity x≡y y≡z) -- (transitivity ⦃ setoid A ⦄) -- IsSemigroupoid.extensionality IsSemigroupoidProposequality' = {!!} -- ∅ ∅ = ∅ -- IsSemigroupoid.associativity IsSemigroupoidProposequality' ∅ _ _ = ∅ -- -- semigroupoid : Semigroupoid -- -- setoid : ∀ {a} (A : Set a) → Setoid a a -- -- setoid A = ↑ _≡_ {A = A} -- -- open import Oscar.Category.Morphism -- -- open import Oscar.Function -- -- morphism : ∀ {a} {A : Set a} {b} (B : A → A → Set b) → Morphism a b b -- -- morphism B = ↑ λ {x} {y} → _≡_ {A = B x y} -- -- open import Oscar.Category.Semigroupoid -- -- infixl 7 _∙_ -- -- _∙_ : ∀ {y z} → y ↦ z → ∀ {x} → x ↦ y → x ↦ z -- -- instance -- -- IsSemigroupoidProposequality : ∀ {a} {A : Set a} {b} {B : A → A → Set b} -- -- → IsSemigroupoid (morphism B) {!!} -- (transitivity ⦃ setoid A ⦄) -- -- IsSemigroupoidProposequality = {!!} -- -- IsSemigroupoidProposequality' : ∀ {a} {A : Set a} -- -- → IsSemigroupoid (morphism (_≡_ {A = A})) (λ y≡z x≡y → transitivity x≡y y≡z) -- (transitivity ⦃ setoid A ⦄) -- -- IsSemigroupoid.extensionality IsSemigroupoidProposequality' = {!!} -- ∅ ∅ = ∅ -- -- IsSemigroupoid.associativity IsSemigroupoidProposequality' ∅ _ _ = ∅ -- -- -- semigroupoid : Semigroupoid
{ "alphanum_fraction": 0.6207008436, "avg_line_length": 30.2156862745, "ext": "agda", "hexsha": "4c2a904250643b13d61de5e8f4881608767bede1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Proposequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Proposequality.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Proposequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1121, "size": 3082 }
-- Andreas, 2017-01-27, issue #2437 -- Polarity checker turns Nonvariant to Unused arg in types, -- thus, reducing them. -- However, this should not happen without need. -- We wish to preserve the types as much as possible. -- {-# OPTIONS -v 20 #-} -- {-# OPTIONS -v tc.polarity:30 #-} -- {-# OPTIONS -v tc.decl:30 #-} -- {-# OPTIONS -v tc.term:30 #-} -- {-# OPTIONS -v tc.conv.coerce:20 #-} -- {-# OPTIONS -v tc.signature:30 #-} -- {-# OPTIONS -v import.iface:100 #-} open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality plus0 : ∀ x → x + 0 ≡ x plus0 zero = refl plus0 (suc x) rewrite plus0 x = refl Identity : ∀{a} {A : Set a} (f : A → A) → Set a Identity f = ∀ x → f x ≡ x plus-0 : Identity (_+ 0) plus-0 = plus0 -- Test (interactive): C-c C-d plus-0 RET -- Expected: Identity (λ section → section + 0) -- Type should be inferred non-reduced, i.e, not as -- ∀ x → x + 0 ≡ x
{ "alphanum_fraction": 0.6176154672, "avg_line_length": 27.3823529412, "ext": "agda", "hexsha": "1a0fe91f86617a9a57f3931a8300774fcdef07df", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2437.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2437.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2437.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 303, "size": 931 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommMonoid.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid.Base private variable ℓ : Level module CommMonoidTheory (M' : CommMonoid ℓ) where open CommMonoidStr (snd M') private M = ⟨ M' ⟩ commAssocl : (x y z : M) → x · (y · z) ≡ y · (x · z) commAssocl x y z = assoc x y z ∙∙ cong (_· z) (comm x y) ∙∙ sym (assoc y x z) commAssocr : (x y z : M) → x · y · z ≡ x · z · y commAssocr x y z = sym (assoc x y z) ∙∙ cong (x ·_) (comm y z) ∙∙ assoc x z y commAssocr2 : (x y z : M) → x · y · z ≡ z · y · x commAssocr2 x y z = commAssocr _ _ _ ∙∙ cong (_· y) (comm _ _) ∙∙ commAssocr _ _ _ commAssocSwap : (x y z w : M) → (x · y) · (z · w) ≡ (x · z) · (y · w) commAssocSwap x y z w = assoc (x · y) z w ∙∙ cong (_· w) (commAssocr x y z) ∙∙ sym (assoc (x · z) y w)
{ "alphanum_fraction": 0.6622284513, "avg_line_length": 33.1860465116, "ext": "agda", "hexsha": "d85d44125090916ceb104299a4f8ab381707ab09", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 486, "size": 1427 }
------------------------------------------------------------------------ -- The derivative operator does not remove any ambiguity ------------------------------------------------------------------------ module TotalParserCombinators.Derivative.RightInverse where open import Data.List open import Data.Maybe open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl) open import Relation.Binary.PropositionalEquality open import TotalParserCombinators.Derivative.SoundComplete import TotalParserCombinators.InitialBag as I open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics hiding (_≅_) mutual sound∘complete : ∀ {Tok R xs x s t} {p : Parser Tok R xs} → (x∈p : x ∈ p · t ∷ s) → sound p (complete x∈p) ≡ x∈p sound∘complete x∈p = H.≅-to-≡ (sound∘complete′ x∈p refl) sound∘complete′ : ∀ {Tok R xs x s′ s t} {p : Parser Tok R xs} (x∈p : x ∈ p · s′) (eq : s′ ≡ t ∷ s) → sound p (complete′ p x∈p eq) ≅ x∈p sound∘complete′ token refl = refl sound∘complete′ (∣-left x∈p₁) refl rewrite sound∘complete x∈p₁ = refl sound∘complete′ (∣-right _ x∈p₂) refl rewrite sound∘complete x∈p₂ = refl sound∘complete′ (<$> x∈p) refl rewrite sound∘complete x∈p = refl sound∘complete′ (_⊛_ {s₁ = _ ∷ _} {fs = nothing} {xs = just _} f∈p₁ x∈p₂) refl rewrite sound∘complete f∈p₁ = refl sound∘complete′ (_⊛_ {s₁ = _ ∷ _} {fs = just _} {xs = just _} f∈p₁ x∈p₂) refl rewrite sound∘complete f∈p₁ = refl sound∘complete′ {Tok} (_⊛_ {s₁ = []} {fs = just _} {xs = just _} f∈p₁ x∈p₂) refl rewrite Return⋆.sound∘complete {Tok = Tok} (I.complete f∈p₁) | I.sound∘complete f∈p₁ | sound∘complete x∈p₂ = refl sound∘complete′ {p = _⊛_ {xs = nothing} _ _} (_⊛_ {s₁ = _ ∷ _} {fs = nothing} {xs = nothing} f∈p₁ x∈p₂) refl rewrite sound∘complete f∈p₁ = refl sound∘complete′ (_⊛_ {s₁ = _ ∷ _} {fs = just _} {xs = nothing} f∈p₁ x∈p₂) refl rewrite sound∘complete f∈p₁ = refl sound∘complete′ {Tok} (_⊛_ {s₁ = []} {fs = just _} {xs = nothing} f∈p₁ x∈p₂) refl rewrite Return⋆.sound∘complete {Tok = Tok} (I.complete f∈p₁) | I.sound∘complete f∈p₁ | sound∘complete x∈p₂ = refl sound∘complete′ (_>>=_ {s₁ = _ ∷ _} {xs = nothing} {f = just _} x∈p₁ y∈p₂x) refl rewrite sound∘complete x∈p₁ = refl sound∘complete′ (_>>=_ {s₁ = _ ∷ _} {xs = just _} {f = just _} x∈p₁ y∈p₂x) refl rewrite sound∘complete x∈p₁ = refl sound∘complete′ {Tok} (_>>=_ {s₁ = []} {xs = just _} {f = just _} x∈p₁ y∈p₂x) refl rewrite Return⋆.sound∘complete {Tok = Tok} (I.complete x∈p₁) | I.sound∘complete x∈p₁ | sound∘complete y∈p₂x = refl sound∘complete′ {p = _>>=_ {xs = nothing} _ _} (_>>=_ {s₁ = _ ∷ _} {xs = nothing} {f = nothing} x∈p₁ y∈p₂x) refl rewrite sound∘complete x∈p₁ = refl sound∘complete′ (_>>=_ {s₁ = _ ∷ _} {xs = just _} {f = nothing} x∈p₁ y∈p₂x) refl rewrite sound∘complete x∈p₁ = refl sound∘complete′ {Tok} (_>>=_ {s₁ = []} {xs = just _} {f = nothing} x∈p₁ y∈p₂x) refl rewrite Return⋆.sound∘complete {Tok = Tok} (I.complete x∈p₁) | I.sound∘complete x∈p₁ | sound∘complete y∈p₂x = refl sound∘complete′ (nonempty x∈p) refl rewrite sound∘complete x∈p = refl sound∘complete′ (cast x∈p) refl rewrite sound∘complete x∈p = refl sound∘complete′ (_⊛_ {s₁ = []} {fs = nothing} f∈p₁ _) _ with I.complete f∈p₁ ... | () sound∘complete′ (_>>=_ {s₁ = []} {xs = nothing} x∈p₁ _) _ with I.complete x∈p₁ ... | () sound∘complete′ return ()
{ "alphanum_fraction": 0.572158022, "avg_line_length": 44.2976190476, "ext": "agda", "hexsha": "f76b2dd4f94eb8299bd82d12fb2b73f90a6dd6fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Derivative/RightInverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Derivative/RightInverse.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Derivative/RightInverse.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1442, "size": 3721 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Data.Nat.Core where open import Agda.Builtin.Nat public renaming (Nat to ℕ) using (suc; zero) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_) open import Classes open import Core instance ℕ-Number : Number ℕ ℕ-Number = record { Constraint = λ _ → ⊤; fromNat = λ n → n } ℕ-Plus : Plus ℕ ℕ-Plus = record { _+_ = _+ℕ_ } ℕ-Times : Times ℕ ℕ-Times = record { _*_ = _*ℕ_ } ℕ,≡ : Equiv ℕ ℕ,≡ = PropEq ℕ module ℕ,≡ = Equiv ℕ,≡ data _≤_ : ℕ → ℕ → Set where instance 0≤s : ∀ {y} → 0 ≤ y instance s≤s : ∀ {x y} → x ≤ y → suc x ≤ suc y infix 4 _≤_ ℕ,≤ : TotalOrder ℕ ℕ,≤ = record { partialOrder = record { Eq = PropEq ℕ; _≤_ = _≤_; antisym = antisym; refl' = refl'; trans = trans }; total = total } where antisym : {x y : ℕ} → x ≤ y → y ≤ x → x ≡ y antisym 0≤s 0≤s = ≡-refl antisym (s≤s p) (s≤s q) = cong suc (antisym p q) refl' : {x y : ℕ} → x ≡ y → x ≤ y refl' {zero} ≡-refl = 0≤s refl' {suc x} ≡-refl = s≤s (refl' ≡-refl) trans : {x y z : ℕ} → x ≤ y → y ≤ z → x ≤ z trans 0≤s q = 0≤s trans (s≤s p) (s≤s q) = s≤s (trans p q) total : (x y : ℕ) → Either (x ≤ y) (y ≤ x) total zero y = Left 0≤s total (suc x) zero = Right 0≤s total (suc x) (suc y) with total x y total (suc x) (suc y) | Left p = Left (s≤s p) total (suc x) (suc y) | Right p = Right (s≤s p) module ℕ,≤ = TotalOrder ℕ,≤ _≤?_ : ∀ x y → Decision (x ≤ y) zero ≤? y = yes 0≤s suc x ≤? zero = no (λ ()) suc x ≤? suc y with x ≤? y suc x ≤? suc y | yes p = yes (s≤s p) suc x ≤? suc y | no np = no (λ { (s≤s p) → np p }) _multiple-of_ : ℕ → ℕ → Set x multiple-of y = ∃ (λ k → k * y ≡ x) module Props where open Equiv (PropEq ℕ) private _!+!_ : ∀ {x1 x2 y1 y2 : ℕ} → x1 ≡ x2 → y1 ≡ y2 → x1 + y1 ≡ x2 + y2 _!+!_ = cong2 _+_ R = λ x → refl {x = x} infixl 6 _!+!_ +-assoc : ∀ x y z → (x + y) + z ≈ x + (y + z) +-assoc zero y z = refl +-assoc (suc x) y z = cong suc (+-assoc x y z) +-left-id : ∀ x → 0 + x ≈ x +-left-id _ = refl +-right-id : ∀ x → x + 0 ≈ x +-right-id zero = refl +-right-id (suc x) = cong suc (+-right-id x) +-comm : ∀ x y → x + y ≈ y + x +-comm zero y = sym (+-right-id y) +-comm (suc x) y = begin suc x + y ≈[ cong suc (+-comm x y) ] suc y + x ≈[ sym (one-comm y x) ] y + suc x qed where one-comm : ∀ x y → x + suc y ≈ suc x + y one-comm zero _ = refl one-comm (suc x) y = cong suc (one-comm x y) +-suc-assoc : ∀ x y → x + suc y ≈ suc (x + y) +-suc-assoc x y = begin x + suc y ≈[ sym (+-assoc x 1 y) ] (x + 1) + y ≈[ +-comm x 1 !+! R y ] suc (x + y) qed *-+-left-dist : ∀ x a b → x * (a + b) ≈ x * a + x * b *-+-left-dist zero a b = refl *-+-left-dist (suc x) a b = begin a + b + x * (a + b) ≈[ R (a + b) !+! *-+-left-dist x a b ] a + b + (x * a + x * b) ≈[ +-assoc a b _ ] a + (b + (x * a + x * b)) ≈[ cong (a +_) $ b + (x * a + x * b) ≈[ sym (+-assoc b (x * a) (x * b)) ] b + x * a + x * b ≈[ +-comm b _ !+! R (x * b) ] x * a + b + x * b ≈[ +-assoc (x * a) _ _ ] x * a + (b + x * b) qed ] a + (x * a + (b + x * b)) ≈[ sym (+-assoc a _ _) ] a + x * a + (b + x * b) qed *-+-right-dist : ∀ a b x → (a + b) * x ≈ a * x + b * x *-+-right-dist zero b x = refl *-+-right-dist (suc a) b x = begin x + (a + b) * x ≈[ R x !+! *-+-right-dist a b x ] x + (a * x + b * x) ≈[ sym (+-assoc x (a * x) (b * x)) ] (x + a * x) + b * x qed *-assoc : ∀ x y z → (x * y) * z ≈ x * (y * z) *-assoc zero y z = refl *-assoc (suc x) y z = begin (y + x * y) * z ≈[ *-+-right-dist y (x * y) z ] y * z + (x * y) * z ≈[ R (y * z) !+! *-assoc x y z ] y * z + x * (y * z) qed *-left-id : ∀ x → 1 * x ≈ x *-left-id = +-right-id *-right-id : ∀ x → x * 1 ≈ x *-right-id zero = refl *-right-id (suc x) = cong suc (*-right-id x) *-right-zero : ∀ x → x * 0 ≈ 0 *-right-zero zero = refl *-right-zero (suc x) = *-right-zero x *-comm : ∀ x y → x * y ≈ y * x *-comm zero y = sym (*-right-zero y) *-comm (suc x) zero = *-comm x zero *-comm (suc x) (suc y) = cong suc $ begin y + x * suc y ≈[ R y !+! (*-+-left-dist x 1 y) ] y + (x * 1 + x * y) ≈[ R y !+! (*-right-id x !+! R (x * y)) ] y + (x + x * y) ≈[ sym (+-assoc y x (x * y)) ] y + x + x * y ≈[ +-comm y x !+! *-comm x y ] x + y + y * x ≈[ +-assoc x y (y * x) ] x + (y + y * x) ≈[ R x !+! (sym (*-right-id y) !+! R (y * x)) ] x + (y * 1 + y * x) ≈[ R x !+! sym (*-+-left-dist y 1 x) ] x + y * suc x qed suc-inj : ∀ {x y} → suc x ≈ suc y → x ≈ y suc-inj ≡-refl = refl sum-mult : ∀ {x1 x2 y} → x1 multiple-of y → x2 multiple-of y → (x1 + x2) multiple-of y sum-mult {x1} {x2} {y} (k1 , p1) (k2 , p2) = k1 + k2 because: (k1 + k2) * y ≈[ *-+-right-dist k1 k2 y ] k1 * y + k2 * y ≈[ p1 !+! p2 ] x1 + x2 qed
{ "alphanum_fraction": 0.4303357777, "avg_line_length": 25.4019607843, "ext": "agda", "hexsha": "873fe2469322d3a5e6ff8b0259e8644835c358c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Data/Nat/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Data/Nat/Core.agda", "max_line_length": 88, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Data/Nat/Core.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 2358, "size": 5182 }
------------------------------------------------------------------------ -- Some boring lemmas used by the ring solver ------------------------------------------------------------------------ -- Note that these proofs use all "almost commutative ring" properties -- except for zero and -‿pres-≈. open import Algebra open import Algebra.RingSolver.AlmostCommutativeRing module Algebra.RingSolver.Lemmas (coeff : RawRing) (r : AlmostCommutativeRing) (morphism : coeff -Raw-AlmostCommutative⟶ r) where private module C = RawRing coeff open AlmostCommutativeRing r open import Algebra.Morphism open _-RawRing⟶_ morphism import Relation.Binary.EqReasoning as EqR; open EqR setoid open import Data.Function open import Data.Product lemma₀ : ∀ x → x + ⟦ C.0# ⟧ ≈ x lemma₀ x = begin x + ⟦ C.0# ⟧ ≈⟨ refl ⟨ +-pres-≈ ⟩ 0-homo ⟩ x + 0# ≈⟨ proj₂ +-identity _ ⟩ x ∎ lemma₁ : ∀ a b c d x → (a + b) * x + (c + d) ≈ (a * x + c) + (b * x + d) lemma₁ a b c d x = begin (a + b) * x + (c + d) ≈⟨ proj₂ distrib _ _ _ ⟨ +-pres-≈ ⟩ refl ⟩ (a * x + b * x) + (c + d) ≈⟨ +-assoc _ _ _ ⟩ a * x + (b * x + (c + d)) ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (+-assoc _ _ _) ⟩ a * x + ((b * x + c) + d) ≈⟨ refl ⟨ +-pres-≈ ⟩ (+-comm _ _ ⟨ +-pres-≈ ⟩ refl) ⟩ a * x + ((c + b * x) + d) ≈⟨ refl ⟨ +-pres-≈ ⟩ +-assoc _ _ _ ⟩ a * x + (c + (b * x + d)) ≈⟨ sym $ +-assoc _ _ _ ⟩ (a * x + c) + (b * x + d) ∎ lemma₂ : ∀ x y z → x + (y + z) ≈ y + (x + z) lemma₂ x y z = begin x + (y + z) ≈⟨ sym $ +-assoc _ _ _ ⟩ (x + y) + z ≈⟨ +-comm _ _ ⟨ +-pres-≈ ⟩ refl ⟩ (y + x) + z ≈⟨ +-assoc _ _ _ ⟩ y + (x + z) ∎ lemma₃ : ∀ a b c x → a * c * x + b * c ≈ (a * x + b) * c lemma₃ a b c x = begin a * c * x + b * c ≈⟨ lem ⟨ +-pres-≈ ⟩ refl ⟩ a * x * c + b * c ≈⟨ sym $ proj₂ distrib _ _ _ ⟩ (a * x + b) * c ∎ where lem = begin a * c * x ≈⟨ *-assoc _ _ _ ⟩ a * (c * x) ≈⟨ refl ⟨ *-pres-≈ ⟩ *-comm _ _ ⟩ a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩ a * x * c ∎ lemma₄ : ∀ a b c x → a * b * x + a * c ≈ a * (b * x + c) lemma₄ a b c x = begin a * b * x + a * c ≈⟨ *-assoc _ _ _ ⟨ +-pres-≈ ⟩ refl ⟩ a * (b * x) + a * c ≈⟨ sym $ proj₁ distrib _ _ _ ⟩ a * (b * x + c) ∎ lemma₅ : ∀ a b c d x → a * c * x * x + ((a * d + b * c) * x + b * d) ≈ (a * x + b) * (c * x + d) lemma₅ a b c d x = begin a * c * x * x + ((a * d + b * c) * x + b * d) ≈⟨ lem₁ ⟨ +-pres-≈ ⟩ (lem₂ ⟨ +-pres-≈ ⟩ refl) ⟩ a * x * (c * x) + (a * x * d + b * (c * x) + b * d) ≈⟨ refl ⟨ +-pres-≈ ⟩ +-assoc _ _ _ ⟩ a * x * (c * x) + (a * x * d + (b * (c * x) + b * d)) ≈⟨ sym $ +-assoc _ _ _ ⟩ a * x * (c * x) + a * x * d + (b * (c * x) + b * d) ≈⟨ sym $ proj₁ distrib _ _ _ ⟨ +-pres-≈ ⟩ proj₁ distrib _ _ _ ⟩ a * x * (c * x + d) + b * (c * x + d) ≈⟨ sym $ proj₂ distrib _ _ _ ⟩ (a * x + b) * (c * x + d) ∎ where lem₁' = begin a * c * x ≈⟨ *-assoc _ _ _ ⟩ a * (c * x) ≈⟨ refl ⟨ *-pres-≈ ⟩ *-comm _ _ ⟩ a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩ a * x * c ∎ lem₁ = begin a * c * x * x ≈⟨ lem₁' ⟨ *-pres-≈ ⟩ refl ⟩ a * x * c * x ≈⟨ *-assoc _ _ _ ⟩ a * x * (c * x) ∎ lem₂ = begin (a * d + b * c) * x ≈⟨ proj₂ distrib _ _ _ ⟩ a * d * x + b * c * x ≈⟨ *-assoc _ _ _ ⟨ +-pres-≈ ⟩ *-assoc _ _ _ ⟩ a * (d * x) + b * (c * x) ≈⟨ (refl ⟨ *-pres-≈ ⟩ *-comm _ _) ⟨ +-pres-≈ ⟩ refl ⟩ a * (x * d) + b * (c * x) ≈⟨ sym $ *-assoc _ _ _ ⟨ +-pres-≈ ⟩ refl ⟩ a * x * d + b * (c * x) ∎ lemma₆ : ∀ a b x → - a * x + - b ≈ - (a * x + b) lemma₆ a b x = begin - a * x + - b ≈⟨ -‿*-distribˡ _ _ ⟨ +-pres-≈ ⟩ refl ⟩ - (a * x) + - b ≈⟨ -‿+-comm _ _ ⟩ - (a * x + b) ∎ lemma₇ : ∀ x → ⟦ C.1# ⟧ * x + ⟦ C.0# ⟧ ≈ x lemma₇ x = begin ⟦ C.1# ⟧ * x + ⟦ C.0# ⟧ ≈⟨ (1-homo ⟨ *-pres-≈ ⟩ refl) ⟨ +-pres-≈ ⟩ 0-homo ⟩ 1# * x + 0# ≈⟨ proj₂ +-identity _ ⟩ 1# * x ≈⟨ proj₁ *-identity _ ⟩ x ∎
{ "alphanum_fraction": 0.3728530534, "avg_line_length": 35.8290598291, "ext": "agda", "hexsha": "9b8c74a2fec83299ce8f1885dcd9d7a2fbabcc90", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Lemmas.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Lemmas.agda", "max_line_length": 82, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Algebra/RingSolver/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1923, "size": 4192 }
module Membership-equality where import Membership-old open import Relation.Binary.PropositionalEquality as PropEq open import Data.List open import Data.List.Any open import Relation.Binary import Relation.Binary.InducedPreorders as Ind open import Function.Related as Related hiding (_∼[_]_) private open module M {a} {A : Set a} = Membership-old (PropEq.setoid A) public hiding (lose; ⊆-preorder) lose : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} → x M.∈ xs → P x → Any P xs lose {P = P} = M.lose (PropEq.subst P) -- _⊆_ is a preorder. ⊆-preorder : ∀ {a} → Set a → Preorder _ _ _ ⊆-preorder A = Ind.InducedPreorder₂ (PropEq.setoid (List A)) _∈_ (PropEq.subst (_∈_ _)) -- Set and bag equality and related preorders. open Related public using (Kind; Symmetric-kind) renaming ( implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag ) [_]-Order : Kind → ∀ {a} → Set a → Preorder _ _ _ [ k ]-Order A = Related.InducedPreorder₂ k (_∈_ {A = A}) [_]-Equality : Symmetric-kind → ∀ {a} → Set a → Setoid _ _ [ k ]-Equality A = Related.InducedEquivalence₂ k (_∈_ {A = A}) infix 4 _∼[_]_ _∼[_]_ : ∀ {a} {A : Set a} → List A → Kind → List A → Set _ _∼[_]_ {A = A} xs k ys = Preorder._∼_ ([ k ]-Order A) xs ys -- Bag equality implies the other relations. bag-=⇒ : ∀ {k a} {A : Set a} {xs ys : List A} → xs ∼[ bag ] ys → xs ∼[ k ] ys bag-=⇒ xs≈ys = ↔⇒ xs≈ys
{ "alphanum_fraction": 0.5894283958, "avg_line_length": 30.1296296296, "ext": "agda", "hexsha": "c94ad1de86ffc91e9d86bc2be0409d48f42fea13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "unused/Membership-equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "unused/Membership-equality.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/singly-typed-actors", "max_stars_repo_path": "unused/Membership-equality.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-29T09:30:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:30:26.000Z", "num_tokens": 534, "size": 1627 }
------------------------------------------------------------------------ -- A small definition of a dependently typed language, using the -- technique from McBride's "Outrageous but Meaningful Coincidences" ------------------------------------------------------------------------ -- The code contains an example, a partial definition of categories, -- which triggers the use of an enormous amount of memory (with the -- development version of Agda which is current at the time of -- writing). I'm not entirely sure if the code is correct: 2.5G heap -- doesn't seem to suffice to typecheck this code. /NAD module Language where ------------------------------------------------------------------------ -- Prelude record ⊤ : Set₁ where record Σ (A : Set₁) (B : A → Set₁) : Set₁ where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ uncurry : ∀ {A : Set₁} {B : A → Set₁} {C : Σ A B → Set₁} → ((x : A) (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y record ↑ (A : Set) : Set₁ where constructor lift field lower : A ------------------------------------------------------------------------ -- Contexts -- The definition of contexts is parametrised by a universe. module Context (U : Set₁) (El : U → Set₁) where mutual -- Contexts. data Ctxt : Set₁ where ε : Ctxt _▻_ : (Γ : Ctxt) → Ty Γ → Ctxt -- Types. Ty : Ctxt → Set₁ Ty Γ = Env Γ → U -- Environments. Env : Ctxt → Set₁ Env ε = ⊤ Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ) -- Variables (de Bruijn indices). infix 4 _∋_ data _∋_ : (Γ : Ctxt) → Ty Γ → Set₁ where zero : ∀ {Γ σ} → Γ ▻ σ ∋ λ γ → σ (proj₁ γ) suc : ∀ {Γ σ τ} (x : Γ ∋ τ) → Γ ▻ σ ∋ λ γ → τ (proj₁ γ) -- A lookup function. lookup : ∀ {Γ σ} → Γ ∋ σ → (γ : Env Γ) → El (σ γ) lookup zero (γ , v) = v lookup (suc x) (γ , v) = lookup x γ ------------------------------------------------------------------------ -- A universe mutual data U : Set₁ where set : U el : Set → U σ π : (a : U) → (El a → U) → U El : U → Set₁ El set = Set El (el A) = ↑ A El (σ a b) = Σ (El a) λ x → El (b x) El (π a b) = (x : El a) → El (b x) open Context U El -- Abbreviations. infixr 20 _⊗_ infixr 10 _⇾_ _⇾_ : U → U → U a ⇾ b = π a λ _ → b _⊗_ : U → U → U a ⊗ b = σ a λ _ → b -- Example. raw-categoryU : U raw-categoryU = σ set λ obj → σ (el obj ⇾ el obj ⇾ set) λ hom → (π (el obj) λ x → el (hom x x)) ⊗ (π (el obj) λ x → π (el obj) λ y → π (el obj) λ z → el (hom x y) ⇾ el (hom y z) ⇾ el (hom x z)) ------------------------------------------------------------------------ -- A language mutual infixl 30 _·_ infix 4 _⊢_ -- Syntax for types. data Type : (Γ : Ctxt) → Ty Γ → Set₁ where set : ∀ {Γ} → Type Γ (λ _ → set) el : ∀ {Γ} (x : Γ ⊢ λ _ → set) → Type Γ (λ γ → el (⟦ x ⟧ γ)) σ : ∀ {Γ a b} → Type Γ a → Type (Γ ▻ a) b → Type Γ (λ γ → σ (a γ) (λ v → b (γ , v))) π : ∀ {Γ a b} → Type Γ a → Type (Γ ▻ a) b → Type Γ (λ γ → π (a γ) (λ v → b (γ , v))) -- Terms. data _⊢_ : (Γ : Ctxt) → Ty Γ → Set₁ where var : ∀ {Γ a} → Γ ∋ a → Γ ⊢ a ƛ : ∀ {Γ a b} → Γ ▻ a ⊢ uncurry b → Γ ⊢ (λ γ → π (a γ) (λ v → b γ v)) _·_ : ∀ {Γ a} {b : (γ : Env Γ) → El (a γ) → U} → Γ ⊢ (λ γ → π (a γ) (λ v → b γ v)) → (t₂ : Γ ⊢ a) → Γ ⊢ (λ γ → b γ (⟦ t₂ ⟧ γ)) -- The semantics of a term. ⟦_⟧ : ∀ {Γ a} → Γ ⊢ a → (γ : Env Γ) → El (a γ) ⟦ var x ⟧ γ = lookup x γ ⟦ ƛ t ⟧ γ = λ v → ⟦ t ⟧ (γ , v) ⟦ t₁ · t₂ ⟧ γ = (⟦ t₁ ⟧ γ) (⟦ t₂ ⟧ γ) -- Example. raw-category : Type ε (λ _ → raw-categoryU) raw-category = -- Objects. σ set -- Morphisms. (σ (π (el (var zero)) (π (el (var (suc zero))) set)) -- Identity. (σ (π (el (var (suc zero))) (el (var (suc zero) · var zero · var zero))) -- Composition. (π (el (var (suc (suc zero)))) -- X. (π (el (var (suc (suc (suc zero))))) -- Y. (π (el (var (suc (suc (suc (suc zero)))))) -- Z. (π (el (var (suc (suc (suc (suc zero)))) · var (suc (suc zero)) · var (suc zero))) -- Hom X Y. (π (el (var (suc (suc (suc (suc (suc zero))))) · var (suc (suc zero)) · var (suc zero))) -- Hom Y Z. (el (var (suc (suc (suc (suc (suc (suc zero)))))) · var (suc (suc (suc (suc zero)))) · var (suc (suc zero))))) -- Hom X Z. ))))))
{ "alphanum_fraction": 0.4132444636, "avg_line_length": 26.2768361582, "ext": "agda", "hexsha": "46c0bd5f6bd76fe452c499d0666bc969054a819c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "benchmark/categories/Language.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "benchmark/categories/Language.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "benchmark/categories/Language.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1712, "size": 4651 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Properties where open import Relation.Binary using (_Preserves_⟶_) open import Categories.Category open import Categories.Functor import Categories.Morphisms as Morphisms module FunctorsAlways {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) where open Functor F module C = Category C module D = Category D resp-Iso : ∀ {A B} {f : C [ A , B ]} {g : C [ B , A ]} → Morphisms.Iso C f g → Morphisms.Iso D (F₁ f) (F₁ g) resp-Iso {f = f} {g} I = record { isoˡ = begin D [ F₁ g ∘ F₁ f ] ↑⟨ homomorphism ⟩ F₁ (C [ g ∘ f ]) ↓⟨ F-resp-≡ I.isoˡ ⟩ F₁ (C.id) ↓⟨ identity ⟩ D.id ∎ ; isoʳ = begin D [ F₁ f ∘ F₁ g ] ↑⟨ homomorphism ⟩ F₁ (C [ f ∘ g ]) ↓⟨ F-resp-≡ I.isoʳ ⟩ F₁ (C.id) ↓⟨ identity ⟩ D.id ∎ } where module I = Morphisms.Iso I open D.HomReasoning resp-≅ : F₀ Preserves Morphisms._≅_ C ⟶ Morphisms._≅_ D resp-≅ I = record { f = F₁ I.f ; g = F₁ I.g ; iso = resp-Iso I.iso } where module I = Morphisms._≅_ I
{ "alphanum_fraction": 0.4861538462, "avg_line_length": 26.5306122449, "ext": "agda", "hexsha": "5a5f89083d6f6ec5088c6e09f2b1160069633cd0", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Properties.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Properties.agda", "max_line_length": 107, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 453, "size": 1300 }
module LibA where import LibB
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 10, "ext": "agda", "hexsha": "f88ae2fa94805707783965197b587e102cc247c5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue5245/LibA.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue5245/LibA.agda", "max_line_length": 17, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue5245/LibA.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 9, "size": 30 }
-- Andreas, 2014-03-02, issue reported by roly.perera -- Test case by Nisse {-# OPTIONS --allow-unsolved-metas #-} -- To see what is going on: -- {-# OPTIONS -v tc.meta.assign.proj:25 #-} record Σ (A : Set) (B : A → Set) : Set where constructor t field proj₁ : A proj₂ : B proj₁ open Σ public map : {A B : Set} {P : A → Set} {Q : B → Set} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g x = t (f (proj₁ x)) (g (proj₂ x)) postulate U : Set El : U → Set mutual data C : Set where c : (x : C) → (F x → U) → C F : C → Set F (c x y) = Σ (F x) λ v → El (y v) f : ∀ x y → F (c x y) → F x f _ _ = proj₁ postulate P : ∀ x y → (F x → F y) → Set p : ∀ x y → P (c _ _) (c x y) (map (f _ _) (λ v → v)) -- WAS: internal error in Records.hs -- NOW: unsolved meta
{ "alphanum_fraction": 0.4969474969, "avg_line_length": 19.0465116279, "ext": "agda", "hexsha": "755f49d2dc2adb884c0821e82ed2b3c169662de9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1069.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1069.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1069.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 343, "size": 819 }
module PrintNat where import PreludeShow open PreludeShow mainS = showNat 42
{ "alphanum_fraction": 0.8227848101, "avg_line_length": 11.2857142857, "ext": "agda", "hexsha": "0d28dff3ae40258bb543b3046254c414b63f4c48", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 79 }
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.NeTypeEq where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- to be moved in Untyped typelevel-injectivity : ∀ {r r' l l'} → [ r , l ] PE.≡ [ r' , l' ] → r PE.≡ r' × l PE.≡ l' typelevel-injectivity PE.refl = PE.refl , PE.refl -- Helper function for the same variable instance of a context have equal types. varTypeEq′ : ∀ {n R rR T rT Γ} → n ∷ R ^ rR ∈ Γ → n ∷ T ^ rT ∈ Γ → R PE.≡ T × rR PE.≡ rT varTypeEq′ here here = PE.refl , PE.refl varTypeEq′ (there n∷R) (there n∷T) with varTypeEq′ n∷R n∷T ... | PE.refl , PE.refl = PE.refl , PE.refl -- The same variable instance of a context have equal types. varTypeEq : ∀ {x A B rA rB Γ} → Γ ⊢ A ^ rA → Γ ⊢ B ^ rB → x ∷ A ^ rA ∈ Γ → x ∷ B ^ rB ∈ Γ → Γ ⊢ A ≡ B ^ rA × rA PE.≡ rB varTypeEq A B x∷A x∷B with varTypeEq′ x∷A x∷B ... | PE.refl , PE.refl = refl A , PE.refl -- The same neutral term have equal types. -- to use this with different relevances rA rB we need unicity of relevance for types neTypeEq : ∀ {t A B rA lA lA' Γ} → Neutral t → Γ ⊢ t ∷ A ^ [ rA , lA ] → Γ ⊢ t ∷ B ^ [ rA , lA' ] → lA PE.≡ lA' × Γ ⊢ A ≡ B ^ [ rA , lA ] neTypeEq (var x) (var x₁ x₂) (var x₃ x₄) = let V , e = varTypeEq (syntacticTerm (var x₃ x₂)) (syntacticTerm (var x₃ x₄)) x₂ x₄ _ , el = typelevel-injectivity e in el , V neTypeEq (∘ₙ neT) (t∷A ∘ⱼ t∷A₁) (t∷B ∘ⱼ t∷B₁) with neTypeEq neT t∷A t∷B ... | e , q = let _ , _ , _ , elG , w = injectivity q in PE.cong _ elG , substTypeEq w (genRefl t∷A₁) neTypeEq (natrecₙ neT) (natrecⱼ x t∷A t∷A₁ t∷A₂) (natrecⱼ x₁ t∷B t∷B₁ t∷B₂) = PE.refl , refl (substType x₁ t∷B₂) neTypeEq Emptyrecₙ (Emptyrecⱼ x t∷A) (Emptyrecⱼ x₁ t∷B) = PE.refl , refl x₁ neTypeEq (Idₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y Z el = next-inj e in e , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (Idℕₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₁ Z₁ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (Idℕ0ₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₂ Z₂ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (IdℕSₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₂ Z₂ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (IdUₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₁ Z₁ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (IdUℕₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₂ Z₂ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq (IdUΠₙ X) (Idⱼ Y Y₁ Y₂) (Idⱼ Z Z₁ Z₂) = let e , q = neTypeEq X Y₂ Z₂ el = ιinj e in PE.cong next el , PE.subst (λ l → _ ⊢ _ ≡ SProp l ^ _) el (refl (Ugenⱼ (wfTerm Y) ) ) neTypeEq X (castⱼ Y Y₁ Y₂ Y₃) (castⱼ Z Z₁ Z₂ Z₃) = PE.refl , refl (univ Y₁) neTypeEq x (conv t∷A x₁) t∷B = let e , q = neTypeEq x t∷A t∷B in e , trans (sym x₁) q neTypeEq x t∷A (conv t∷B x₃) = let e , q = neTypeEq x t∷A t∷B in e , trans q (PE.subst (λ l → _ ⊢ _ ≡ _ ^ [ _ , l ]) (PE.sym e) x₃) natTypeEq : ∀ {A rA lA Γ} → Γ ⊢ ℕ ∷ A ^ [ rA , lA ] → rA PE.≡ ! × lA PE.≡ ι ¹ × Γ ⊢ A ≡ U ⁰ ^ [ ! , ι ¹ ] natTypeEq (ℕⱼ x) = PE.refl , PE.refl , refl (univ (univ 0<1 x)) natTypeEq (conv X x) = let eqrA , eqlA , eqAU = natTypeEq X in eqrA , eqlA , trans (sym (PE.subst (λ l → _ ⊢ _ ≡ _ ^ [ _ , l ] ) eqlA (PE.subst (λ r → _ ⊢ _ ≡ _ ^ [ r , _ ]) eqrA x))) eqAU emptyTypeEq : ∀ {A rA lA Γ l} → Γ ⊢ Empty l ∷ A ^ [ rA , lA ] → rA PE.≡ ! × lA PE.≡ next l × Γ ⊢ A ≡ SProp l ^ [ ! , next l ] emptyTypeEq (Emptyⱼ x) = PE.refl , PE.refl , refl (Ugenⱼ x) emptyTypeEq (conv X x) = let eqrA , eqlA , eqAU = emptyTypeEq X in eqrA , eqlA , trans (sym (PE.subst (λ l → _ ⊢ _ ≡ _ ^ [ _ , l ] ) eqlA (PE.subst (λ r → _ ⊢ _ ≡ _ ^ [ r , _ ]) eqrA x))) eqAU
{ "alphanum_fraction": 0.5813953488, "avg_line_length": 44.29, "ext": "agda", "hexsha": "3ba649135ab3977eff47b402088c244446d6924d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda", "max_line_length": 114, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/NeTypeEq.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 2085, "size": 4429 }
module _ where module M where open M using () renaming () hiding () -- empty lists should not be errors here
{ "alphanum_fraction": 0.7053571429, "avg_line_length": 14, "ext": "agda", "hexsha": "85a59c6b66d77899057dfe3a9646bb5facdd6f4a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/EmptyRenamingAndHiding.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/EmptyRenamingAndHiding.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/EmptyRenamingAndHiding.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 112 }
{-# OPTIONS --universe-polymorphism #-} open import Common.Prelude open import Common.Level open import Common.Reflection module UnquoteSetOmega where `Level : Term `Level = def (quote Level) [] -- while building the syntax of ∀ ℓ → Set ℓ (of type Setω) is harmless `∀ℓ→Setℓ : Term `∀ℓ→Setℓ = pi (vArg `Level) (abs "_" (sort (set (var 0 [])))) -- unquoting it is harmfull ∀ℓ→Setℓ = unquote (give `∀ℓ→Setℓ)
{ "alphanum_fraction": 0.6853658537, "avg_line_length": 24.1176470588, "ext": "agda", "hexsha": "d98d7150d60c53c47b50ab996cd32acd6e1152ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UnquoteSetOmega.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/UnquoteSetOmega.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/UnquoteSetOmega.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 142, "size": 410 }
{- TBA - Talk 'Bout Agda Ulf Norell Chalmers DTP 2008, Nottingham -} module Talk where -- Normal everyday lists data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 40 _::_ map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs -- More boring types: Bool and Maybe data Bool : Set where false : Bool true : Bool data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A fmap : forall {A B} -> (A -> B) -> Maybe A -> Maybe B fmap f nothing = nothing fmap f (just x) = just (f x) -- The intensional equality type data _==_ {A : Set}(x : A) : A -> Set where refl : x == x -- Sigma types data Σ {A : Set}(B : A -> Set) : Set where _,_ : (x : A) -> B x -> Σ B fst : {A : Set}{B : A -> Set} -> Σ B -> A fst (x , y) = x snd : {A : Set}{B : A -> Set}(p : Σ B) -> B (fst p) snd (x , y) = y _×_ : Set -> Set -> Set A × B = Σ {A} (\_ -> B) -- A more interesting type infix 20 _∈_ data _∈_ {A : Set} : A -> List A -> Set where first : forall {x xs} -> x ∈ x :: xs later : forall {x y xs} -> x ∈ xs -> x ∈ y :: xs module Map (K V : Set) (_=?=_ : (x y : K) -> Maybe (x == y)) where Map : Set Map = List (K × V) HasKey : K -> Map -> Set HasKey k m = k ∈ map fst m member : (x : K)(m : Map) -> Maybe (HasKey x m) member x [] = nothing member x ((y , v) :: m) with x =?= y ... | nothing = fmap later (member x m) member x ((.x , v) :: m) | just refl = just first lookup : (x : K)(m : Map) -> HasKey x m -> Σ \v -> (x , v) ∈ m lookup x [] () lookup x ((.x , u) :: m) first = u , first lookup x (e :: m) (later p) with lookup x m p ... | v , q = v , later q
{ "alphanum_fraction": 0.4850028297, "avg_line_length": 20.5465116279, "ext": "agda", "hexsha": "16f5fd33efd676e8abe8615279786b00460fa0d2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/DTP08/ulf/Talk.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/DTP08/ulf/Talk.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/DTP08/ulf/Talk.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 675, "size": 1767 }
open import Agda.Builtin.Equality record IsGroup (G : Set) : Set where field _∙_ : G → G → G open IsGroup ⦃ ... ⦄ record Group : Set₁ where field G : Set ⦃ IsG ⦄ : IsGroup G open Group using () renaming (G to [_]) variable G : Group postulate works : ∀ {G} → (x : [ G ]) → (x ∙ x) ≡ x fails : (x : [ G ]) → (x ∙ x) ≡ x -- WAS: No instance of type IsGroup [ G ]
{ "alphanum_fraction": 0.538071066, "avg_line_length": 17.9090909091, "ext": "agda", "hexsha": "61eb9548f42135ea741162b4f5c03f0f4089308a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3358.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3358.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3358.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 152, "size": 394 }
module Colist where open import Size using (Size ; Size<_) data Colist (i : Size) {a} (A : Set a) : Set a record ∞Colist (i : Size) {a} (A : Set a) : Set a where coinductive constructor delay_ field force : ∀ {j : Size< i} → Colist j A data Colist (i : Size) {a} (A : Set a) where [] : Colist i A _∷_ : (x : A) (xs : ∞Colist i A) → Colist i A
{ "alphanum_fraction": 0.5660377358, "avg_line_length": 24.7333333333, "ext": "agda", "hexsha": "3e719f9dd91611ef7e3dab45f703e183657e7881", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Colist.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Colist.agda", "max_line_length": 56, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Colist.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 141, "size": 371 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Strictness combinators ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Strict where open import Level open import Agda.Builtin.Equality open import Agda.Builtin.Strict renaming ( primForce to force ; primForceLemma to force-≡) public -- Derived combinators module _ {ℓ ℓ′ : Level} {A : Set ℓ} {B : Set ℓ′} where force′ : A → (A → B) → B force′ = force force′-≡ : (a : A) (f : A → B) → force′ a f ≡ f a force′-≡ = force-≡ seq : A → B → B seq a b = force a (λ _ → b) seq-≡ : (a : A) (b : B) → seq a b ≡ b seq-≡ a b = force-≡ a (λ _ → b)
{ "alphanum_fraction": 0.4549071618, "avg_line_length": 23.5625, "ext": "agda", "hexsha": "0fe710d6fd94497e749ee98d41b14cddf0615ab1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Strict.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 231, "size": 754 }
module Common.Predicate where open import Common public open import Common.Context public using (Cx ; VCx ; ∅ ; _,_) -- Predicates. Pred : ∀ {ℓ} → Set ℓ → Set (sucᴸ ℓ) Pred {ℓ} U = U → Set ℓ -- Set membership. module _ {U : Set} where infix 3 _∈ᴾ_ _∈ᴾ_ : U → Pred U → Set A ∈ᴾ P = P A infix 3 _∉ᴾ_ _∉ᴾ_ : U → Pred U → Set A ∉ᴾ P = Not (A ∈ᴾ P) -- Empty set. module _ {U : Set} where ∅ᴾ : Pred U ∅ᴾ = K 𝟘 bot∈ᴾ : ∀ {A} → A ∉ᴾ ∅ᴾ bot∈ᴾ = elim𝟘 -- Universal set. module _ {U : Set} where Uᴾ : Pred U Uᴾ = K 𝟙 top∈ᴾ : ∀ {A} → A ∈ᴾ Uᴾ top∈ᴾ = ∙ -- Set inclusion. module _ {U : Set} where infix 3 _⊆ᴾ_ _⊆ᴾ_ : Pred U → Pred U → Set P ⊆ᴾ Q = ∀ {A : U} → A ∈ᴾ P → A ∈ᴾ Q infix 3 _⊈ᴾ_ _⊈ᴾ_ : Pred U → Pred U → Set P ⊈ᴾ Q = Not (P ⊆ᴾ Q) refl⊆ᴾ : ∀ {P} → P ⊆ᴾ P refl⊆ᴾ = I trans⊆ᴾ : ∀ {P Q R} → P ⊆ᴾ Q → Q ⊆ᴾ R → P ⊆ᴾ R trans⊆ᴾ η η′ = η′ ∘ η bot⊆ᴾ : ∀ {P} → ∅ᴾ ⊆ᴾ P bot⊆ᴾ = elim𝟘 top⊆ᴾ : ∀ {P} → P ⊆ᴾ Uᴾ top⊆ᴾ = K ∙ -- Set equality. module _ {U : Set} where infix 3 _⫗ᴾ_ _⫗ᴾ_ : Pred U → Pred U → Set P ⫗ᴾ Q = (P ⊆ᴾ Q) × (Q ⊆ᴾ P) refl⫗ᴾ : ∀ {P} → P ⫗ᴾ P refl⫗ᴾ {P} = refl⊆ᴾ {P = P} , refl⊆ᴾ {P = P} trans⫗ᴾ : ∀ {P Q R} → P ⫗ᴾ Q → Q ⫗ᴾ R → P ⫗ᴾ R trans⫗ᴾ {P} (η , μ) (η′ , μ′) = trans⊆ᴾ {P = P} η η′ , trans⊆ᴾ {R = P} μ′ μ sym⫗ᴾ : ∀ {P Q} → P ⫗ᴾ Q → Q ⫗ᴾ P sym⫗ᴾ (η , μ) = (μ , η) antisym⊆ᴾ : ∀ {P Q} → ((P ⊆ᴾ Q) × (Q ⊆ᴾ P)) ≡ (P ⫗ᴾ Q) antisym⊆ᴾ = refl -- Predicate-based necessity. module _ {U : Set} where data All (P : Pred U) : Pred (Cx U) where ∅ : All P ∅ _,_ : ∀ {A Γ} → All P Γ → P A → All P (Γ , A) fill : ∀ {Γ P} → (∀ A → P A) → All P Γ fill {∅} f = ∅ fill {Γ , A} f = fill f , f A mapAll : ∀ {P Q} → P ⊆ᴾ Q → All P ⊆ᴾ All Q mapAll η ∅ = ∅ mapAll η (γ , a) = mapAll η γ , η a lastAll : ∀ {A Γ P} → All P (Γ , A) → P A lastAll (γ , a) = a initAll : ∀ {A Γ P} → All P (Γ , A) → All P Γ initAll (γ , a) = γ all : ∀ {P} → (∀ A → Dec (P A)) → (∀ Γ → Dec (All P Γ)) all P? ∅ = yes ∅ all P? (Γ , A) with P? A … | yes a = mapDec (_, a) initAll (all P? Γ) … | no ¬a = no (¬a ∘ lastAll) -- Predicate-based possibility. module _ {U : Set} where data Any (P : Pred U) : Pred (Cx U) where top : ∀ {A Γ} → P A → Any P (Γ , A) pop : ∀ {A Γ} → Any P Γ → Any P (Γ , A) find : ∀ {Γ P} → Any P Γ → Σ U (λ A → P A) find (top {A} a) = A , a find (pop i) = find i mapAny : ∀ {P Q} → P ⊆ᴾ Q → Any P ⊆ᴾ Any Q mapAny η (top a) = top (η a) mapAny η (pop γ) = pop (mapAny η γ) initAny : ∀ {A Γ P} → Not (P A) → Any P (Γ , A) → Any P Γ initAny ¬a (top a) = a ↯ ¬a initAny ¬a (pop γ) = γ any : ∀ {P} → (∀ A → Dec (P A)) → (∀ Γ → Dec (Any P Γ)) any P? ∅ = no λ () any P? (Γ , A) with P? A … | yes a = yes (top a) … | no ¬a = mapDec pop (initAny ¬a) (any P? Γ)
{ "alphanum_fraction": 0.4454764362, "avg_line_length": 20.3286713287, "ext": "agda", "hexsha": "f67fd48553297bab9236f5150c8a010b785eee2c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "Common/Predicate.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "Common/Predicate.agda", "max_line_length": 77, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "Common/Predicate.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1614, "size": 2907 }
open import Agda.Primitive variable a : Level A : Set a x : A postulate P : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Set p : P x postulate H : ∀ a (A : Set a) (x : A) → Set Id : ∀ {a} (A : Set a) → A → A → Set a h : (i : H _ _ x) (j : H a _ _) → Id (H _ A _) i j
{ "alphanum_fraction": 0.4475524476, "avg_line_length": 16.8235294118, "ext": "agda", "hexsha": "00c1b3167e3e781493712284afbafa07b7530f5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4253.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4253.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4253.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 286 }
{- The sheaf property of a presheaf on a distributive lattice or a basis thereof can be expressed as preservation of limits over diagrams defined in this file. -} {-# OPTIONS --safe #-} module Cubical.Categories.DistLatticeSheaf.Diagram where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Empty open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Data.FinData.Order open import Cubical.Data.Sum open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Poset open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Limits.Limits open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Instances.DistLattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.Semilattice open import Cubical.Algebra.DistLattice.BigOps private variable ℓ ℓ' ℓ'' : Level data DLShfDiagOb (n : ℕ) : Type where sing : Fin n → DLShfDiagOb n pair : (i j : Fin n) → i <'Fin j → DLShfDiagOb n data DLShfDiagHom (n : ℕ) : DLShfDiagOb n → DLShfDiagOb n → Type where idAr : {x : DLShfDiagOb n} → DLShfDiagHom n x x singPairL : {i j : Fin n} {i<j : i <'Fin j} → DLShfDiagHom n (sing i) (pair i j i<j) singPairR : {i j : Fin n} {i<j : i <'Fin j}→ DLShfDiagHom n (sing j) (pair i j i<j) module DLShfDiagHomPath where variable n : ℕ -- DLShfDiagHom n x y is a retract of Code x y Code : (x y : DLShfDiagOb n) → Type Code (sing i) (sing j) = i ≡ j Code (sing i) (pair j k j<k) = (Σ[ p ∈ (i ≡ j) ] Σ[ i<k ∈ i <'Fin k ] PathP (λ ι → p ι <'Fin k) i<k j<k) ⊎ (Σ[ p ∈ (i ≡ k) ] Σ[ j<i ∈ j <'Fin i ] PathP (λ ι → j <'Fin p ι) j<i j<k) Code (pair i j i<j) (sing k) = ⊥ Code (pair i j i<j) (pair k l k<l) = Σ[ p ∈ (i ≡ k) × (j ≡ l) ] PathP (λ ι → fst p ι <'Fin snd p ι) i<j k<l isSetCode : ∀ (x y : DLShfDiagOb n) → isSet (Code x y) isSetCode (sing _) (sing _) = isProp→isSet (isSetFin _ _) isSetCode (sing i) (pair j k j<k) = isSet⊎ (isSetΣ (isProp→isSet (isSetFin _ _)) λ _ → isSetΣ (isProp→isSet (≤'FinIsPropValued _ _)) λ _ → isOfHLevelPathP 2 (isProp→isSet (≤'FinIsPropValued _ _)) _ _) (isSetΣ (isProp→isSet (isSetFin _ _)) λ _ → isSetΣ (isProp→isSet (≤'FinIsPropValued _ _)) λ _ → isOfHLevelPathP 2 (isProp→isSet (≤'FinIsPropValued _ _)) _ _) isSetCode (pair _ _ _) (sing _) = isProp→isSet isProp⊥ isSetCode (pair _ _ _) (pair _ _ _) = isSetΣ (isSet× (isProp→isSet (isSetFin _ _)) (isProp→isSet (isSetFin _ _))) λ _ → isOfHLevelPathP 2 (isProp→isSet (≤'FinIsPropValued _ _)) _ _ encode : (x y : DLShfDiagOb n) → DLShfDiagHom n x y → Code x y encode (sing i) (sing .i) idAr = refl encode (sing i) (pair .i j i<j) singPairL = inl (refl , i<j , refl) encode (sing j) (pair i .j i<j) singPairR = inr (refl , i<j , refl) encode (pair i j i<j) (pair .i .j .i<j) idAr = (refl , refl) , refl decode : (x y : DLShfDiagOb n) → Code x y → DLShfDiagHom n x y decode (sing i) (sing j) p = subst (λ k → DLShfDiagHom _ (sing i) (sing k)) p idAr decode (sing i) (pair j k j<k) (inl (p , i<k , q)) = transport (λ ι → DLShfDiagHom _ (sing i) (pair (p ι) k (q ι))) singPairL decode (sing i) (pair k j k<j) (inr (p , k<i , q)) = transport (λ ι → DLShfDiagHom _ (sing i) (pair k (p ι) (q ι))) singPairR decode (pair i j i<j) (pair k l k<l) (_ , p) = transport (λ ι → DLShfDiagHom _ (pair _ _ i<j) (pair _ _ (p ι))) idAr codeRetract : ∀ (x y : DLShfDiagOb n) (f : DLShfDiagHom n x y) → decode x y (encode x y f) ≡ f codeRetract (sing i) (sing .i) idAr = transportRefl idAr codeRetract (sing i) (pair .i k i<k) singPairL = transportRefl singPairL codeRetract (sing i) (pair j .i j<i) singPairR = transportRefl singPairR codeRetract (pair i j i<j) (pair .i .j .i<j) idAr = transportRefl idAr isSetDLShfDiagHom : ∀ (x y : DLShfDiagOb n) → isSet (DLShfDiagHom n x y) isSetDLShfDiagHom x y = isSetRetract (encode x y) (decode x y) (codeRetract x y) (isSetCode x y) open Category DLShfDiag : ℕ → Category ℓ-zero ℓ-zero ob (DLShfDiag n) = DLShfDiagOb n Hom[_,_] (DLShfDiag n) = DLShfDiagHom n id (DLShfDiag n) = idAr _⋆_ (DLShfDiag n) idAr f = f _⋆_ (DLShfDiag n) singPairL idAr = singPairL _⋆_ (DLShfDiag n) singPairR idAr = singPairR ⋆IdL (DLShfDiag n) _ = refl ⋆IdR (DLShfDiag n) idAr = refl ⋆IdR (DLShfDiag n) singPairL = refl ⋆IdR (DLShfDiag n) singPairR = refl ⋆Assoc (DLShfDiag n) idAr _ _ = refl ⋆Assoc (DLShfDiag n) singPairL idAr _ = refl ⋆Assoc (DLShfDiag n) singPairR idAr _ = refl isSetHom (DLShfDiag n) = let open DLShfDiagHomPath in (isSetDLShfDiagHom _ _) module _ (L' : DistLattice ℓ) where private L = fst L' LCat = (DistLatticeCategory L') ^op instance _ = snd L' open DistLatticeStr ⦃...⦄ open Join L' open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetStr (IndPoset .snd) hiding (_≤_) open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L')) using (∧≤RCancel ; ∧≤LCancel) open Order (DistLattice→Lattice L') open Category LCat open Functor open Cone FinVec→Diag : {n : ℕ} → FinVec L n → Functor (DLShfDiag n) LCat F-ob (FinVec→Diag α) (sing i) = α i F-ob (FinVec→Diag α) (pair i j _) = α i ∧l α j F-hom (FinVec→Diag α) idAr = is-refl _ F-hom (FinVec→Diag α) singPairL = ≤m→≤j _ _ (∧≤RCancel _ _) F-hom (FinVec→Diag α) singPairR = ≤m→≤j _ _ (∧≤LCancel _ _) F-id (FinVec→Diag α) = is-prop-valued _ _ _ _ F-seq (FinVec→Diag α) _ _ = is-prop-valued _ _ _ _ ⋁Cone : {n : ℕ} (α : FinVec L n) → Cone (FinVec→Diag α) (⋁ α) coneOut (⋁Cone α) (sing i) = ind≤⋁ α i coneOut (⋁Cone α) (pair i _ _) = is-trans _ (α i) _ (≤m→≤j _ _ (∧≤RCancel _ _)) (ind≤⋁ α i) coneOutCommutes (⋁Cone α) _ = is-prop-valued _ _ _ _ isLimCone⋁Cone : {n : ℕ} (α : FinVec L n) → isLimCone (FinVec→Diag α) (⋁ α) (⋁Cone α) fst (fst (isLimCone⋁Cone α u uCone)) = ⋁IsMax α _ λ i → uCone .coneOut (sing i) snd (fst (isLimCone⋁Cone α u uCone)) _ = is-prop-valued _ _ _ _ snd (isLimCone⋁Cone α _ uCone) _ = Σ≡Prop (λ _ → isPropIsConeMor uCone (⋁Cone α) _) (is-prop-valued _ _ _ _) module PullbacksAsDLShfDiags (C : Category ℓ ℓ') (cspan : Cospan C) (pback : Pullback C cspan) where open Functor open Cone open Cospan ⦃...⦄ open Pullback ⦃...⦄ instance _ = cspan _ = pback cospanAsDiag : Functor (DLShfDiag 2) C F-ob cospanAsDiag (sing zero) = l F-ob cospanAsDiag (sing (suc zero)) = r F-ob cospanAsDiag (pair _ _ _) = m F-hom cospanAsDiag idAr = id C F-hom cospanAsDiag {x = sing zero} singPairL = s₁ F-hom cospanAsDiag {x = sing (suc zero)} singPairL = s₂ F-hom cospanAsDiag {x = sing zero} singPairR = s₁ F-hom cospanAsDiag {x = sing (suc zero)} singPairR = s₂ F-id cospanAsDiag = refl F-seq cospanAsDiag idAr idAr = sym (⋆IdL C _) F-seq cospanAsDiag idAr singPairL = sym (⋆IdL C _) F-seq cospanAsDiag idAr singPairR = sym (⋆IdL C _) F-seq cospanAsDiag singPairL idAr = sym (⋆IdR C _) F-seq cospanAsDiag singPairR idAr = sym (⋆IdR C _) pbPrAsCone : Cone cospanAsDiag pbOb coneOut pbPrAsCone (sing zero) = pbPr₁ coneOut pbPrAsCone (sing (suc zero)) = pbPr₂ coneOut pbPrAsCone (pair _ _ _) = pbPr₁ ⋆⟨ C ⟩ s₁ coneOutCommutes pbPrAsCone idAr = ⋆IdR C _ coneOutCommutes pbPrAsCone (singPairL {zero}) = refl coneOutCommutes pbPrAsCone (singPairL {suc zero}) = sym pbCommutes coneOutCommutes pbPrAsCone (singPairR {zero} {zero}) = refl coneOutCommutes pbPrAsCone (singPairR {zero} {suc zero}) = sym pbCommutes coneOutCommutes pbPrAsCone (singPairR {suc zero} {zero}) = refl coneOutCommutes pbPrAsCone (singPairR {suc zero} {suc zero}) = sym pbCommutes pbAsLimit : isLimCone cospanAsDiag pbOb pbPrAsCone pbAsLimit c cc = uniqueExists (fromPBUnivProp .fst .fst) toConeMor (λ _ → isPropIsConeMor cc pbPrAsCone _) (λ f cf → cong fst (fromPBUnivProp .snd (f , fromConeMor cf))) where fromPBUnivProp : ∃![ hk ∈ C [ c , Pullback.pbOb pback ] ] (coneOut cc (sing zero) ≡ hk ⋆⟨ C ⟩ pbPr₁) × (coneOut cc (sing (suc zero)) ≡ hk ⋆⟨ C ⟩ pbPr₂) fromPBUnivProp = univProp (cc .coneOut (sing zero)) (cc .coneOut (sing (suc zero))) (cc .coneOutCommutes (singPairL {i<j = s≤s z≤}) ∙ sym (cc .coneOutCommutes singPairR)) toConeMor : isConeMor cc pbPrAsCone (fromPBUnivProp .fst .fst) toConeMor (sing zero) = sym (fromPBUnivProp .fst .snd .fst) toConeMor (sing (suc zero)) = sym (fromPBUnivProp .fst .snd .snd) toConeMor (pair zero j _) = path where path : fromPBUnivProp .fst .fst ⋆⟨ C ⟩ (pbPr₁ ⋆⟨ C ⟩ s₁) ≡ cc .coneOut (pair zero j _) path = fromPBUnivProp .fst .fst ⋆⟨ C ⟩ (pbPr₁ ⋆⟨ C ⟩ s₁) ≡⟨ sym (⋆Assoc C _ _ _) ⟩ (fromPBUnivProp .fst .fst ⋆⟨ C ⟩ pbPr₁) ⋆⟨ C ⟩ s₁ ≡⟨ cong (λ f → f ⋆⟨ C ⟩ s₁) (sym (fromPBUnivProp .fst .snd .fst)) ⟩ cc .coneOut (sing zero) ⋆⟨ C ⟩ s₁ ≡⟨ cc .coneOutCommutes singPairL ⟩ cc .coneOut (pair zero j _) ∎ toConeMor (pair (suc zero) j _) = path where path : fromPBUnivProp .fst .fst ⋆⟨ C ⟩ (pbPr₁ ⋆⟨ C ⟩ s₁) ≡ cc .coneOut (pair (suc zero) j _) path = fromPBUnivProp .fst .fst ⋆⟨ C ⟩ (pbPr₁ ⋆⟨ C ⟩ s₁) ≡⟨ cong (λ f → fromPBUnivProp .fst .fst ⋆⟨ C ⟩ f) pbCommutes ⟩ fromPBUnivProp .fst .fst ⋆⟨ C ⟩ (pbPr₂ ⋆⟨ C ⟩ s₂) ≡⟨ sym (⋆Assoc C _ _ _) ⟩ (fromPBUnivProp .fst .fst ⋆⟨ C ⟩ pbPr₂) ⋆⟨ C ⟩ s₂ ≡⟨ cong (λ f → f ⋆⟨ C ⟩ s₂) (sym (fromPBUnivProp .fst .snd .snd)) ⟩ cc .coneOut (sing (suc zero)) ⋆⟨ C ⟩ s₂ ≡⟨ cc .coneOutCommutes singPairL ⟩ cc .coneOut (pair (suc zero) j _) ∎ fromConeMor : {f : C [ c , pbOb ]} → isConeMor cc pbPrAsCone f → (coneOut cc (sing zero) ≡ f ⋆⟨ C ⟩ pbPr₁) × (coneOut cc (sing (suc zero)) ≡ f ⋆⟨ C ⟩ pbPr₂) fst (fromConeMor cf) = sym (cf (sing zero)) snd (fromConeMor cf) = sym (cf (sing (suc zero))) module DLShfDiagsAsPullbacks (C : Category ℓ ℓ') (F : Functor (DLShfDiag 2) C) (limF : LimCone F) where open Cospan open Pullback open Functor ⦃...⦄ open Cone ⦃...⦄ open LimCone ⦃...⦄ instance _ = F _ = limF _ = limF .limCone DiagAsCospan : Cospan C l DiagAsCospan = F-ob (sing zero) m DiagAsCospan = F-ob (pair zero (suc zero) (s≤s z≤)) r DiagAsCospan = F-ob (sing (suc zero)) s₁ DiagAsCospan = F-hom singPairL s₂ DiagAsCospan = F-hom singPairR LimAsPullback : Pullback C DiagAsCospan pbOb LimAsPullback = lim pbPr₁ LimAsPullback = coneOut (sing zero) pbPr₂ LimAsPullback = coneOut (sing (suc zero)) pbCommutes LimAsPullback = coneOutCommutes singPairL ∙ sym (coneOutCommutes singPairR) univProp LimAsPullback {d = d} f g cSq = uniqueExists (fromUnivProp .fst .fst) (sym (fromUnivProp .fst .snd (sing zero)) , sym (fromUnivProp .fst .snd (sing (suc zero)))) (λ _ → isProp× (isSetHom C _ _) (isSetHom C _ _)) λ h' trs → cong fst (fromUnivProp .snd (h' , toConeMor h' trs)) where theCone : Cone F d Cone.coneOut theCone (sing zero) = f Cone.coneOut theCone (sing (suc zero)) = g Cone.coneOut theCone (pair zero zero ()) Cone.coneOut theCone (pair zero (suc zero) (s≤s z≤)) = f ⋆⟨ C ⟩ DiagAsCospan .s₁ Cone.coneOut theCone (pair (suc zero) zero ()) Cone.coneOut theCone (pair (suc zero) (suc zero) (s≤s ())) Cone.coneOutCommutes theCone {u} idAr = cong (seq' C (Cone.coneOut theCone u)) F-id ∙ ⋆IdR C (Cone.coneOut theCone u) Cone.coneOutCommutes theCone {sing zero} {pair ._ (suc zero) (s≤s z≤)} singPairL = refl Cone.coneOutCommutes theCone {sing (suc zero)} {pair ._ (suc zero) (s≤s ())} singPairL Cone.coneOutCommutes theCone {sing (suc zero)} {pair zero ._ (s≤s z≤)} singPairR = sym cSq Cone.coneOutCommutes theCone {sing (suc zero)} {pair (suc zero) ._ (s≤s ())} singPairR fromUnivProp : ∃![ h ∈ C [ d , lim ] ] isConeMor theCone limCone h fromUnivProp = LimCone.univProp limF d theCone toConeMor : ∀ (h' : C [ d , lim ]) → (f ≡ h' ⋆⟨ C ⟩ coneOut (sing zero)) × (g ≡ h' ⋆⟨ C ⟩ coneOut (sing (suc zero))) → isConeMor theCone limCone h' toConeMor h' (tr₁ , tr₂) (sing zero) = sym tr₁ toConeMor h' (tr₁ , tr₂) (sing (suc zero)) = sym tr₂ toConeMor h' (tr₁ , tr₂) (pair zero (suc zero) (s≤s z≤)) = path where path : h' ⋆⟨ C ⟩ coneOut (pair zero (suc zero) (s≤s z≤)) ≡ f ⋆⟨ C ⟩ F-hom singPairL path = h' ⋆⟨ C ⟩ coneOut (pair zero (suc zero) (s≤s z≤)) ≡⟨ cong (seq' C h') (sym (coneOutCommutes singPairL)) ⟩ h' ⋆⟨ C ⟩ (coneOut (sing zero) ⋆⟨ C ⟩ F-hom singPairL) ≡⟨ sym (⋆Assoc C _ _ _) ⟩ (h' ⋆⟨ C ⟩ coneOut (sing zero)) ⋆⟨ C ⟩ F-hom singPairL ≡⟨ cong (λ x → seq' C x (F-hom singPairL)) (sym tr₁) ⟩ f ⋆⟨ C ⟩ F-hom singPairL ∎ toConeMor h' (tr₁ , tr₂) (pair (suc zero) (suc zero) (s≤s ()))
{ "alphanum_fraction": 0.6218588253, "avg_line_length": 40.7675840979, "ext": "agda", "hexsha": "36d0c4fe0620f95e938317285c441e114b0a95b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/DistLatticeSheaf/Diagram.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/DistLatticeSheaf/Diagram.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/DistLatticeSheaf/Diagram.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 5504, "size": 13331 }
module list-thms where -- see list-thms2 for more open import bool open import bool-thms open import functions open import list open import nat open import nat-thms open import product-thms open import logic ++[] : ∀{ℓ}{A : Set ℓ} → (l : 𝕃 A) → l ++ [] ≡ l ++[] [] = refl ++[] (x :: xs) rewrite ++[] xs = refl ++-assoc : ∀ {ℓ}{A : Set ℓ} (l1 l2 l3 : 𝕃 A) → (l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = refl ++-assoc (x :: xs) l2 l3 rewrite ++-assoc xs l2 l3 = refl length-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → length (l1 ++ l2) ≡ (length l1) + (length l2) length-++ [] l2 = refl length-++ (h :: t) l2 rewrite length-++ t l2 = refl map-append : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (f : A → B) (l1 l2 : 𝕃 A) → map f (l1 ++ l2) ≡ (map f l1) ++ (map f l2) map-append f [] l2 = refl map-append f (x :: xs) l2 rewrite map-append f xs l2 = refl map-compose : ∀ {ℓ ℓ' ℓ''} {A : Set ℓ} {B : Set ℓ'}{C : Set ℓ''} → (f : B → C) (g : A → B) (l : 𝕃 A) → map f (map g l) ≡ map (f ∘ g) l map-compose f g [] = refl map-compose f g (x :: xs) rewrite map-compose f g xs = refl foldr-monoid : ∀{ℓ}{A B : Set ℓ}{l₁ l₂ : 𝕃 A}{_⊗_ : B → B → B}{f : A → B}{b : B} {p-sym : ∀{a} → b ⊗ a ≡ a} {p-assoc : ∀{a b c} → a ⊗ (b ⊗ c) ≡ (a ⊗ b) ⊗ c} → (foldr (λ x r → (f x) ⊗ r) b l₁) ⊗ (foldr (λ x r → (f x) ⊗ r) b l₂) ≡ foldr (λ x r → (f x) ⊗ r) b (l₁ ++ l₂) foldr-monoid {ℓ}{A}{B}{[]}{l₂}{_⊗_}{f}{b}{p-sym} rewrite p-sym {foldr (λ x → _⊗_ (f x)) b l₂} = refl foldr-monoid {ℓ}{A}{B}{y :: ys}{l₂}{_⊗_}{f}{b}{p-sym}{p-assoc} rewrite sym (p-assoc {f y}{foldr (λ x → _⊗_ (f x)) b ys}{foldr (λ x → _⊗_ (f x)) b l₂}) | foldr-monoid {l₁ = ys}{l₂}{_⊗_}{f}{b}{p-sym}{p-assoc} = refl foldr-append : ∀{ℓ₂}{B : Set ℓ₂}{l₁ l₂ : 𝕃 (𝕃 B)} → (foldr _++_ [] l₁) ++ (foldr _++_ [] l₂) ≡ foldr _++_ [] (l₁ ++ l₂) foldr-append {l₁ = []}{l₂} = refl foldr-append {_}{B}{l₁ = x :: xs}{l₂} rewrite sym (foldr-append {l₁ = xs}{l₂}) = ++-assoc x (foldr _++_ [] xs) (foldr _++_ [] l₂) foldr-append-fun : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂}{l₁ l₂ : 𝕃 (A → 𝕃 B)}{a : A} → (foldr (λ f → _++_ (f a)) [] l₁) ++ (foldr (λ f → _++_ (f a)) [] l₂) ≡ foldr (λ f → _++_ (f a)) [] (l₁ ++ l₂) foldr-append-fun {l₁ = []}{_}{a} = refl foldr-append-fun {l₁ = x :: l₁}{l₂}{a} rewrite ++-assoc (x a) (foldr (λ f → _++_ (f a)) [] l₁) (foldr (λ f → _++_ (f a)) [] l₂) | foldr-append-fun {l₁ = l₁}{l₂}{a} = refl foldr-map : ∀{ℓ}{A : Set ℓ}{l : 𝕃 A} → l ≡ foldr _++_ [] (map (λ x₁ → x₁ :: []) l) foldr-map {_}{_}{[]} = refl foldr-map {ℓ}{A}{x :: xs} rewrite sym (foldr-map {ℓ}{A}{xs}) = refl invert𝕃 : ∀{ℓ}{A : Set ℓ}{t : A}{ts : 𝕃 A} → t :: ts ≢ [] invert𝕃 () length-repeat : ∀{ℓ}{A : Set ℓ} (n : ℕ) (a : A) → length (repeat n a) ≡ n length-repeat 0 a = refl length-repeat (suc n) a rewrite length-repeat n a = refl map-repeat : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(n : ℕ)(a : A)(f : A → B) → map f (repeat n a) ≡ repeat n (f a) map-repeat 0 a f = refl map-repeat (suc x) a f rewrite map-repeat x a f = refl length-map : ∀{ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B)(l : 𝕃 A) → length (map f l) ≡ length l length-map f [] = refl length-map f (head :: tail) rewrite length-map f tail = refl length-reverse-helper : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → length (reverse-helper h l) ≡ length h + length l length-reverse-helper h [] rewrite +0 (length h) = refl length-reverse-helper h (x :: xs) rewrite length-reverse-helper (x :: h) xs = sym (+suc (length h) (length xs)) length-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → length (reverse l) ≡ length l length-reverse l = length-reverse-helper [] l reverse-++h : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → reverse-helper l1 l2 ≡ reverse-helper [] l2 ++ l1 reverse-++h l1 [] = refl reverse-++h l1 (x :: xs) rewrite reverse-++h (x :: l1) xs | reverse-++h (x :: []) xs | ++-assoc (reverse xs) (x :: []) l1 = refl reverse-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → reverse(l1 ++ l2) ≡ reverse(l2) ++ reverse(l1) reverse-++ [] l2 rewrite ++[] (reverse l2) = refl reverse-++ (x :: xs) l2 rewrite reverse-++h (x :: []) (xs ++ l2) | reverse-++ xs l2 | ++-assoc (reverse l2) (reverse xs) (x :: []) | sym (reverse-++h (x :: []) xs) = refl reverse-involution-aux : ∀{ℓ}{A : Set ℓ}(h h' l : 𝕃 A) → reverse-helper h (reverse-helper h' l) ≡ (reverse-helper [] h') ++ l ++ h reverse-involution-aux h h' [] = reverse-++h h h' reverse-involution-aux h h' (x₁ :: l) rewrite reverse-involution-aux h (x₁ :: h') l | reverse-++h (x₁ :: []) h' | ++-assoc (reverse-helper [] h') (x₁ :: []) (l ++ h) = refl reverse-involution : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → reverse (reverse l) ≡ l reverse-involution l rewrite reverse-involution-aux [] [] l = ++[] l reverse-++-bad : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → reverse-bad (l1 ++ l2) ≡ reverse-bad l2 ++ reverse-bad l1 reverse-++-bad [] l2 = sym (++[] (reverse-bad l2)) reverse-++-bad (x :: l1) l2 rewrite reverse-++-bad l1 l2 = ++-assoc (reverse-bad l2) (reverse-bad l1) (x :: []) reverse-involution-bad : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → reverse-bad (reverse-bad l) ≡ l reverse-involution-bad [] = refl reverse-involution-bad (x :: xs) rewrite reverse-++-bad (reverse-bad xs) (x :: []) | reverse-involution-bad xs = refl =𝕃-refl : ∀{ℓ}{A : Set ℓ}{l1 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → x ≡ y → eq x y ≡ tt) → =𝕃 eq l1 l1 ≡ tt =𝕃-refl{l1 = []} eq rise = refl =𝕃-refl{l1 = x :: xs} eq rise = &&-combo (rise x x refl) (=𝕃-refl{l1 = xs} eq rise) ≡𝕃-from-= : ∀{ℓ}{A : Set ℓ}{l1 l2 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → eq x y ≡ tt → x ≡ y) → =𝕃 eq l1 l2 ≡ tt → l1 ≡ l2 ≡𝕃-from-={l1 = []}{[]} eq drop p = refl ≡𝕃-from-={l1 = x :: xs}{[]} eq drop () ≡𝕃-from-={l1 = []}{y :: ys} eq drop () ≡𝕃-from-={l1 = x :: xs}{y :: ys} eq drop p rewrite ≡𝕃-from-={l1 = xs} eq drop (&&-snd{eq x y}{=𝕃 eq xs ys} p) | drop x y (&&-fst p) = refl =𝕃-from-≡ : ∀{ℓ}{A : Set ℓ}{l1 l2 : 𝕃 A} → (eq : A → A → 𝔹) → ((x y : A) → x ≡ y → eq x y ≡ tt) → l1 ≡ l2 → =𝕃 eq l1 l2 ≡ tt =𝕃-from-≡{l2 = l2} eq rise p rewrite p = =𝕃-refl{l1 = l2} eq rise multi++-assoc : ∀{ℓ}{A : Set ℓ} → (Ls : 𝕃 (𝕃 A)) → (l0 : 𝕃 A) → (foldr _++_ [] Ls) ++ l0 ≡ (foldr _++_ [] (Ls ++ [ l0 ])) multi++-assoc [] l' rewrite ++[] l' = refl multi++-assoc (l :: ls) l' rewrite ++-assoc l (foldr _++_ [] ls) l' | multi++-assoc ls l' = refl concat-foldr : ∀{ℓ}{A : Set ℓ} → (ls : 𝕃 (𝕃 A)) → (l : 𝕃 A) → concat ls ++ l ≡ foldr _++_ l ls concat-foldr [] l = refl concat-foldr (l' :: ls) l rewrite ++-assoc l' (concat ls) l | concat-foldr ls l = refl --concat-foldr (l' :: (l'' :: ls)) l rewrite ++-assoc l' (concat (l'' :: ls)) l | concat-foldr (l'' :: ls) l = refl longer-trans : ∀{ℓ}{A : Set ℓ}(l1 l2 l3 : 𝕃 A) → l1 longer l2 ≡ tt → l2 longer l3 ≡ tt → l1 longer l3 ≡ tt longer-trans [] l2 l3 () q longer-trans (x :: l1) [] l3 p () longer-trans (x :: l1) (x₁ :: l2) [] p q = refl longer-trans (x :: l1) (x₁ :: l2) (x₂ :: l3) p q = longer-trans l1 l2 l3 p q filter-idem : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → (filter p (filter p l)) ≡ (filter p l) filter-idem p [] = refl filter-idem p (x :: l) with keep (p x) filter-idem p (x :: l) | tt , p' rewrite p' | p' | filter-idem p l = refl filter-idem p (x :: l) | ff , p' rewrite p' = filter-idem p l length-filter : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l : 𝕃 A) → length (filter p l) ≤ length l ≡ tt length-filter p [] = refl length-filter p (x :: l) with p x length-filter p (x :: l) | tt = length-filter p l length-filter p (x :: l) | ff = ≤-trans{length (filter p l)} (length-filter p l) (≤-suc (length l)) filter-++ : ∀{ℓ}{A : Set ℓ}(p : A → 𝔹)(l1 l2 : 𝕃 A) → filter p (l1 ++ l2) ≡ filter p l1 ++ filter p l2 filter-++ p [] l2 = refl filter-++ p (x :: l1) l2 with p x filter-++ p (x :: l1) l2 | tt rewrite (filter-++ p l1 l2) = refl filter-++ p (x :: l1) l2 | ff rewrite (filter-++ p l1 l2) = refl remove-++ : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → remove eq a (l1 ++ l2) ≡ remove eq a l1 ++ remove eq a l2 remove-++ eq a l1 l2 = filter-++ (λ x → ~ (eq a x)) l1 l2 ::-injective : ∀{ℓ}{A : Set ℓ}{x y : A}{xs ys : 𝕃 A} → x :: xs ≡ y :: ys → x ≡ y ∧ xs ≡ ys ::-injective refl = refl , refl concat-++ : ∀{ℓ}{A : Set ℓ}(ls1 ls2 : 𝕃 (𝕃 A)) → concat (ls1 ++ ls2) ≡ (concat ls1) ++ (concat ls2) concat-++ [] ls2 = refl concat-++ (l :: ls) ls2 rewrite concat-++ ls ls2 = sym (++-assoc l (concat ls) (concat ls2)) -- This holds as long as we have the equations p₁ and p₂. We know -- that these equations are consistant to adopt, because they are -- equivalent up and an isomorphism, and hence, by univalence they are -- consistent as equations. The respective isomorphisms can be found -- in products-thms.agda. all-pred-append : ∀{X : Set}{f : X → Set}{l₁ l₂} → (p₁ : ∀{ℓ}{A : Set ℓ} → A ≡ ((⊤ {ℓ}) ∧ A)) → (p₂ : ∀{ℓ}{A B C : Set ℓ} → (A ∧ (B ∧ C)) ≡ ((A ∧ B) ∧ C)) → all-pred f (l₁ ++ l₂) ≡ ((all-pred f l₁) ∧ (all-pred f l₂)) all-pred-append {l₁ = []} {l₂} p₁ p₂ = p₁ all-pred-append {X}{f}{x :: l₁} {l₂} p₁ p₂ rewrite all-pred-append {X}{f}{l₁ = l₁} {l₂} p₁ p₂ = p₂ all-pred-triv : {ℓ : Level}{l : 𝕃 (⊤ {ℓ})}(γ : ⊤ {ℓ} → Set ℓ)(p : γ triv) → all-pred γ l all-pred-triv {_}{[]} γ p = triv all-pred-triv {_}{triv :: l} γ p = p , all-pred-triv γ p map-proj-⊎₁ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 A) → proj-⊎₁ {A = A}{B} (map inj₁ l) ≡ l map-proj-⊎₁ [] = refl map-proj-⊎₁ {A = A}{B} (x :: l) rewrite map-proj-⊎₁ {A = A}{B} l = refl map-proj-⊎₂ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 B) → proj-⊎₂ {A = A}{B} (map inj₂ l) ≡ l map-proj-⊎₂ [] = refl map-proj-⊎₂ {A = A}{B} (x :: l) rewrite map-proj-⊎₂ {A = A}{B} l = refl map-proj-⊎₂-[] : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 A) → proj-⊎₂ {A = A}{B} (map inj₁ l) ≡ [] map-proj-⊎₂-[] [] = refl map-proj-⊎₂-[] {A = A}{B} (x :: l) rewrite map-proj-⊎₂-[] {A = A}{B} l = refl map-proj-⊎₁-[] : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (l : 𝕃 B) → proj-⊎₁ {A = A}{B} (map inj₂ l) ≡ [] map-proj-⊎₁-[] [] = refl map-proj-⊎₁-[] {A = A}{B} (x :: l) rewrite map-proj-⊎₁-[] {A = A}{B} l = refl is-empty-++ : ∀{ℓ}{A : Set ℓ}(l1 l2 : 𝕃 A) → is-empty (l1 ++ l2) ≡ is-empty l1 && is-empty l2 is-empty-++ [] l2 = refl is-empty-++ (x :: l1) l2 = refl is-empty-ff-length : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → is-empty l ≡ ff → length l =ℕ 0 ≡ ff is-empty-ff-length [] () is-empty-ff-length (x :: l) p = refl
{ "alphanum_fraction": 0.5093018796, "avg_line_length": 46.972972973, "ext": "agda", "hexsha": "ee1b17cd5fbf3f95539efd673402e28cbfd42fc6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "list-thms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "list-thms.agda", "max_line_length": 172, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "list-thms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4738, "size": 10428 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to vectors ------------------------------------------------------------------------ module Relation.Binary.Vec.Pointwise where open import Category.Applicative.Indexed open import Data.Fin open import Data.Nat open import Data.Plus as Plus hiding (equivalent; map) open import Data.Vec as Vec hiding ([_]; head; tail; map) import Data.Vec.Properties as VecProp open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Equiv using (_⇔_; ⇔-setoid; module Equivalence) import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec -- Functional definition. record Pointwise {ℓ} {A B : Set ℓ} (_∼_ : REL A B ℓ) {n} (xs : Vec A n) (ys : Vec B n) : Set ℓ where constructor ext field app : ∀ i → lookup i xs ∼ lookup i ys -- Inductive definition. infixr 5 _∷_ data Pointwise′ {ℓ} {A B : Set ℓ} (_∼_ : REL A B ℓ) : ∀ {n} (xs : Vec A n) (ys : Vec B n) → Set ℓ where [] : Pointwise′ _∼_ [] [] _∷_ : ∀ {n x y} {xs : Vec A n} {ys : Vec B n} (x∼y : x ∼ y) (xs∼ys : Pointwise′ _∼_ xs ys) → Pointwise′ _∼_ (x ∷ xs) (y ∷ ys) -- The two definitions are equivalent. equivalent : ∀ {ℓ} {A B : Set ℓ} {_∼_ : REL A B ℓ} {n} {xs : Vec A n} {ys : Vec B n} → Pointwise _∼_ xs ys ⇔ Pointwise′ _∼_ xs ys equivalent {A = A} {B} {_∼_} = Equiv.equivalence (to _ _) from where to : ∀ {n} (xs : Vec A n) (ys : Vec B n) → Pointwise _∼_ xs ys → Pointwise′ _∼_ xs ys to [] [] xs∼ys = [] to (x ∷ xs) (y ∷ ys) xs∼ys = Pointwise.app xs∼ys zero ∷ to xs ys (ext (Pointwise.app xs∼ys ∘ suc)) nil : Pointwise _∼_ [] [] nil = ext λ() cons : ∀ {n x y} {xs : Vec A n} {ys : Vec B n} → x ∼ y → Pointwise _∼_ xs ys → Pointwise _∼_ (x ∷ xs) (y ∷ ys) cons {x = x} {y} {xs} {ys} x∼y xs∼ys = ext helper where helper : ∀ i → lookup i (x ∷ xs) ∼ lookup i (y ∷ ys) helper zero = x∼y helper (suc i) = Pointwise.app xs∼ys i from : ∀ {n} {xs : Vec A n} {ys : Vec B n} → Pointwise′ _∼_ xs ys → Pointwise _∼_ xs ys from [] = nil from (x∼y ∷ xs∼ys) = cons x∼y (from xs∼ys) -- Some destructors. head : ∀ {ℓ} {A B : Set ℓ} {_∼_ : REL A B ℓ} {n x y xs} {ys : Vec B n} → Pointwise′ _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y head (x∼y ∷ xs∼ys) = x∼y tail : ∀ {ℓ} {A B : Set ℓ} {_∼_ : REL A B ℓ} {n x y xs} {ys : Vec B n} → Pointwise′ _∼_ (x ∷ xs) (y ∷ ys) → Pointwise′ _∼_ xs ys tail (x∼y ∷ xs∼ys) = xs∼ys -- Pointwise preserves reflexivity. refl : ∀ {ℓ} {A : Set ℓ} {_∼_ : Rel A ℓ} {n} → Reflexive _∼_ → Reflexive (Pointwise _∼_ {n = n}) refl rfl = ext (λ _ → rfl) -- Pointwise preserves symmetry. sym : ∀ {ℓ} {A B : Set ℓ} {P : REL A B ℓ} {Q : REL B A ℓ} {n} → Sym P Q → Sym (Pointwise P) (Pointwise Q {n = n}) sym sm xs∼ys = ext λ i → sm (Pointwise.app xs∼ys i) -- Pointwise preserves transitivity. trans : ∀ {ℓ} {A B C : Set ℓ} {P : REL A B ℓ} {Q : REL B C ℓ} {R : REL A C ℓ} {n} → Trans P Q R → Trans (Pointwise P) (Pointwise Q) (Pointwise R {n = n}) trans trns xs∼ys ys∼zs = ext λ i → trns (Pointwise.app xs∼ys i) (Pointwise.app ys∼zs i) -- Pointwise preserves equivalences. isEquivalence : ∀ {ℓ} {A : Set ℓ} {_∼_ : Rel A ℓ} {n} → IsEquivalence _∼_ → IsEquivalence (Pointwise _∼_ {n = n}) isEquivalence equiv = record { refl = refl (IsEquivalence.refl equiv) ; sym = sym (IsEquivalence.sym equiv) ; trans = trans (IsEquivalence.trans equiv) } -- Pointwise preserves decidability. decidable : ∀ {ℓ} {A B : Set ℓ} {_∼_ : REL A B ℓ} → Decidable _∼_ → ∀ {n} → Decidable (Pointwise _∼_ {n = n}) decidable {_∼_ = _∼_} dec xs ys = Dec.map (Setoid.sym (⇔-setoid _) equivalent) (decidable′ xs ys) where decidable′ : ∀ {n} → Decidable (Pointwise′ _∼_ {n = n}) decidable′ [] [] = yes [] decidable′ (x ∷ xs) (y ∷ ys) with dec x y ... | no ¬x∼y = no (¬x∼y ∘ head) ... | yes x∼y with decidable′ xs ys ... | no ¬xs∼ys = no (¬xs∼ys ∘ tail) ... | yes xs∼ys = yes (x∼y ∷ xs∼ys) -- Pointwise _≡_ is equivalent to _≡_. Pointwise-≡ : ∀ {ℓ} {A : Set ℓ} {n} {xs ys : Vec A n} → Pointwise _≡_ xs ys ⇔ xs ≡ ys Pointwise-≡ {ℓ} {A} = Equiv.equivalence (to ∘ _⟨$⟩_ {f₂ = ℓ} (Equivalence.to equivalent)) (λ xs≡ys → P.subst (Pointwise _≡_ _) xs≡ys (refl P.refl)) where to : ∀ {n} {xs ys : Vec A n} → Pointwise′ _≡_ xs ys → xs ≡ ys to [] = P.refl to (P.refl ∷ xs∼ys) = P.cong (_∷_ _) $ to xs∼ys -- Pointwise and Plus commute when the underlying relation is -- reflexive. ⁺∙⇒∙⁺ : ∀ {ℓ} {A : Set ℓ} {_∼_ : Rel A ℓ} {n} {xs ys : Vec A n} → Plus (Pointwise _∼_) xs ys → Pointwise (Plus _∼_) xs ys ⁺∙⇒∙⁺ [ ρ≈ρ′ ] = ext (λ x → [ Pointwise.app ρ≈ρ′ x ]) ⁺∙⇒∙⁺ (ρ ∼⁺⟨ ρ≈ρ′ ⟩ ρ′≈ρ″) = ext (λ x → _ ∼⁺⟨ Pointwise.app (⁺∙⇒∙⁺ ρ≈ρ′ ) x ⟩ Pointwise.app (⁺∙⇒∙⁺ ρ′≈ρ″) x) ∙⁺⇒⁺∙ : ∀ {ℓ} {A : Set ℓ} {_∼_ : Rel A ℓ} {n} {xs ys : Vec A n} → Reflexive _∼_ → Pointwise (Plus _∼_) xs ys → Plus (Pointwise _∼_) xs ys ∙⁺⇒⁺∙ {ℓ} {A} {_∼_} x∼x = Plus.map (_⟨$⟩_ {f₂ = ℓ} (Equivalence.from equivalent)) ∘ helper ∘ _⟨$⟩_ {f₂ = ℓ} (Equivalence.to equivalent) where helper : ∀ {n} {xs ys : Vec A n} → Pointwise′ (Plus _∼_) xs ys → Plus (Pointwise′ _∼_) xs ys helper [] = [ [] ] helper (_∷_ {x = x} {y = y} {xs = xs} {ys = ys} x∼y xs∼ys) = x ∷ xs ∼⁺⟨ Plus.map (λ x∼y → x∼y ∷ xs∼xs) x∼y ⟩ y ∷ xs ∼⁺⟨ Plus.map (λ xs∼ys → x∼x ∷ xs∼ys) (helper xs∼ys) ⟩∎ y ∷ ys ∎ where xs∼xs : Pointwise′ _∼_ xs xs xs∼xs = _⟨$⟩_ {f₂ = ℓ} (Equivalence.to equivalent) (refl x∼x) -- Note that ∙⁺⇒⁺∙ cannot be defined if the requirement of reflexivity -- is dropped. private module Counterexample where data D : Set where i j x y z : D data _R_ : Rel D Level.zero where iRj : i R j xRy : x R y yRz : y R z xR⁺z : x [ _R_ ]⁺ z xR⁺z = x ∼⁺⟨ [ xRy ] ⟩ y ∼⁺⟨ [ yRz ] ⟩∎ z ∎ ix : Vec D 2 ix = i ∷ x ∷ [] jz : Vec D 2 jz = j ∷ z ∷ [] ix∙⁺jz : Pointwise′ (Plus _R_) ix jz ix∙⁺jz = [ iRj ] ∷ xR⁺z ∷ [] ¬ix⁺∙jz : ¬ Plus′ (Pointwise′ _R_) ix jz ¬ix⁺∙jz [ iRj ∷ () ∷ [] ] ¬ix⁺∙jz ((iRj ∷ xRy ∷ []) ∷ [ () ∷ yRz ∷ [] ]) ¬ix⁺∙jz ((iRj ∷ xRy ∷ []) ∷ (() ∷ yRz ∷ []) ∷ _) counterexample : ¬ (∀ {n} {xs ys : Vec D n} → Pointwise (Plus _R_) xs ys → Plus (Pointwise _R_) xs ys) counterexample ∙⁺⇒⁺∙ = ¬ix⁺∙jz (Equivalence.to Plus.equivalent ⟨$⟩ Plus.map (_⟨$⟩_ (Equivalence.to equivalent)) (∙⁺⇒⁺∙ (Equivalence.from equivalent ⟨$⟩ ix∙⁺jz))) -- Map. map : ∀ {ℓ} {A : Set ℓ} {_R_ _R′_ : Rel A ℓ} {n} → _R_ ⇒ _R′_ → Pointwise _R_ ⇒ Pointwise _R′_ {n} map R⇒R′ xsRys = ext λ i → R⇒R′ (Pointwise.app xsRys i) -- A variant. gmap : ∀ {ℓ} {A A′ : Set ℓ} {_R_ : Rel A ℓ} {_R′_ : Rel A′ ℓ} {f : A → A′} {n} → _R_ =[ f ]⇒ _R′_ → Pointwise _R_ =[ Vec.map {n = n} f ]⇒ Pointwise _R′_ gmap {_R′_ = _R′_} {f} R⇒R′ {i = xs} {j = ys} xsRys = ext λ i → let module M = Morphism (VecProp.lookup-morphism i) in P.subst₂ _R′_ (P.sym $ M.op-<$> f xs) (P.sym $ M.op-<$> f ys) (R⇒R′ (Pointwise.app xsRys i))
{ "alphanum_fraction": 0.5137031643, "avg_line_length": 32.2777777778, "ext": "agda", "hexsha": "722645f72e0babc8d42cef28b4b5f60fe44d13c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Vec/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Vec/Pointwise.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Vec/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 3257, "size": 7553 }
-- Andreas, 2017-01-26. Testing the --no-eta-equality option. -- Records in files without the option (unless Agda runs with this -- option globally), should have eta. module HaveEtaForImportedRecords.EtaRecord where open import Agda.Builtin.Equality public record ⊤ : Set where private test : ∀{x y : ⊤} → x ≡ y test = refl
{ "alphanum_fraction": 0.7185628743, "avg_line_length": 22.2666666667, "ext": "agda", "hexsha": "9c164efe9fa9d5d0a23745941632fff20b1f9463", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/HaveEtaForImportedRecords/EtaRecord.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/HaveEtaForImportedRecords/EtaRecord.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/HaveEtaForImportedRecords/EtaRecord.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 98, "size": 334 }
module _ where open import Agda.Builtin.Nat module Postulates where infixl 5 _<*>_ postulate F : Set → Set pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B test₀ : F Nat → F Nat → F Nat test₀ a b = (| a + b |) test₁ : F Nat test₁ = (| 5 |) test₂ : F Nat → F Nat test₂ a = (| suc a |) test₃ : F Nat → F Nat test₃ a = (| (_+ 5) a |) -- Spaces are required! (Issue #2186) test₄ : Nat → Nat test₄ |n| = suc (|n| + |n|) module Params {F : Set → Set} (pure : ∀ {A} → A → F A) (_<*>_ : ∀ {A B} → F (A → B) → F A → F B) where test₀ : F Nat → F Nat → F Nat test₀ a b = (| a + b |) test₁ : F Nat test₁ = (| 5 |) test₂ : F Nat → F Nat test₂ a = (| suc a |) test₃ : F Nat → F Nat test₃ a = (| (_+ 5) a |)
{ "alphanum_fraction": 0.4499381953, "avg_line_length": 17.5869565217, "ext": "agda", "hexsha": "0983c6f1afec5fdf8fe4c81be796462fd692a8c4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/IdiomBrackets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/IdiomBrackets.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/IdiomBrackets.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 350, "size": 809 }
open import Data.Boolean open import Type module Data.List.Sorting.HeapSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where import Lvl open import Data.List import Data.List.Functions as List open import Data.BinaryTree import Data.BinaryTree.Heap as Heap open import Functional using (_∘_) heapSort : List(T) → List(T) heapSort = Heap.foldOrdered(_≤?_)(_⊰_) ∅ ∘ List.foldᵣ(Heap.insert(_≤?_)) emptyTree module Proofs where
{ "alphanum_fraction": 0.7065462754, "avg_line_length": 24.6111111111, "ext": "agda", "hexsha": "c5e1a6672fe134d6db887f9172c526a211eda593", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Sorting/HeapSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Sorting/HeapSort.agda", "max_line_length": 82, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Sorting/HeapSort.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 139, "size": 443 }
module Lemmachine.Default.Lemmas where open import Lemmachine import Lemmachine.Default import Lemmachine.Lemmas open Lemmachine.Lemmas Lemmachine.Default.resource open import Relation.Binary.PropositionalEquality open import Data.Empty open import Data.Maybe open import Data.Product hiding (map) open import Data.Function using (const) open import Data.List.Any hiding (any) methodAlwaysKnown : ∀ r → any (eqMethod (method r)) (knownMethods r) ≡ true methodAlwaysKnown r with method r ... | HEAD = refl ... | GET = refl ... | PUT = refl ... | DELETE = refl ... | POST = refl ... | TRACE = refl ... | CONNECT = refl ... | OPTIONS = refl
{ "alphanum_fraction": 0.7087087087, "avg_line_length": 26.64, "ext": "agda", "hexsha": "ab900e211f9004a98bc02df76cecbb32d1089246", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Default/Lemmas.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Default/Lemmas.agda", "max_line_length": 51, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Default/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 162, "size": 666 }
-- Andreas, 2020-03-27, issue #3684 -- Warn about duplicate fields instead of hard error. module DuplicateFields where postulate X : Set record D : Set where field x : X d : X → X → D d x y = record{ x = x; x = y }
{ "alphanum_fraction": 0.6515837104, "avg_line_length": 17, "ext": "agda", "hexsha": "c9d24e6cef41de2d7db0f6e2bd544c97d79b725c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/DuplicateFields.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/DuplicateFields.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/DuplicateFields.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 221 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 14-image where import 13-propositional-truncation open 13-propositional-truncation public {- We introduce the image inclusion of a map. -} precomp-emb : { l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} ( i : B ↪ X) (q : hom-slice f (map-emb i)) → {C : UU l4} ( j : C ↪ X) (r : hom-slice (map-emb i) (map-emb j)) → hom-slice f (map-emb j) precomp-emb f i q j r = pair ( ( map-hom-slice (map-emb i) (map-emb j) r) ∘ ( map-hom-slice f (map-emb i) q)) ( ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-slice (map-emb i) (map-emb j) r) ·r ( map-hom-slice f (map-emb i) q))) is-prop-hom-slice : { l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) → is-prop (hom-slice f (map-emb i)) is-prop-hom-slice {X = X} f i = is-prop-is-equiv ( (x : X) → fib f x → fib (map-emb i) x) ( fiberwise-hom-hom-slice f (map-emb i)) ( is-equiv-fiberwise-hom-hom-slice f (map-emb i)) ( is-prop-Π ( λ x → is-prop-Π ( λ p → is-prop-map-is-emb (map-emb i) (is-emb-map-emb i) x))) universal-property-image : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image l {X = X} f i q = ( C : UU l) (j : C ↪ X) → is-equiv (precomp-emb f i q j) universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image' l {X = X} f i q = ( C : UU l) (j : C ↪ X) → hom-slice f (map-emb j) → hom-slice (map-emb i) (map-emb j) universal-property-image-universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → universal-property-image' l f i q → universal-property-image l f i q universal-property-image-universal-property-image' l f i q up' C j = is-equiv-is-prop ( is-prop-hom-slice (map-emb i) j) ( is-prop-hom-slice f j) ( up' C j) -- Section 13.4 is-small : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) is-small l A = Σ (UU l) (λ X → A ≃ X) is-small-map : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (lsuc l ⊔ (l1 ⊔ l2)) is-small-map l {B = B} f = (b : B) → is-small l (fib f b) is-locally-small : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) is-locally-small l A = (x y : A) → is-small l (Id x y) total-subtype : {l1 l2 : Level} {A : UU l1} (P : A → UU-Prop l2) → UU (l1 ⊔ l2) total-subtype {A = A} P = Σ A (λ x → pr1 (P x)) equiv-subtype-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) (C : A → UU-Prop l3) (D : B → UU-Prop l4) → ((x : A) → (C x) ↔ (D (map-equiv e x))) → total-subtype C ≃ total-subtype D equiv-subtype-equiv e C D H = equiv-toto (λ y → type-Prop (D y)) e ( λ x → equiv-iff (C x) (D (map-equiv e x)) (H x)) equiv-comp-equiv' : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → (C : UU l3) → (B ≃ C) ≃ (A ≃ C) equiv-comp-equiv' e C = equiv-subtype-equiv ( equiv-precomp-equiv e C) ( is-equiv-Prop) ( is-equiv-Prop) ( λ g → pair ( is-equiv-comp' g (map-equiv e) (is-equiv-map-equiv e)) ( λ is-equiv-eg → is-equiv-left-factor' g (map-equiv e) is-equiv-eg (is-equiv-map-equiv e))) is-prop-is-small : (l : Level) {l1 : Level} (A : UU l1) → is-prop (is-small l A) is-prop-is-small l A = is-prop-is-contr-if-inh ( λ Xe → is-contr-equiv' ( Σ (UU l) (λ Y → (pr1 Xe) ≃ Y)) ( equiv-tot ((λ Y → equiv-comp-equiv' (pr2 Xe) Y))) ( is-contr-total-equiv (pr1 Xe))) is-prop-is-locally-small : (l : Level) {l1 : Level} (A : UU l1) → is-prop (is-locally-small l A) is-prop-is-locally-small l A = is-prop-Π (λ x → is-prop-Π (λ y → is-prop-is-small l (Id x y)))
{ "alphanum_fraction": 0.5334650531, "avg_line_length": 34.313559322, "ext": "agda", "hexsha": "8598df054fd8413f472a20c194491313debb99bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/14-image.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/14-image.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/14-image.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1734, "size": 4049 }
module Builtin where data Bool : Set where false : Bool true : Bool not : Bool -> Bool not true = false not false = true _||_ : Bool -> Bool -> Bool true || _ = true false || x = x _&&_ : Bool -> Bool -> Bool true && x = x false && _ = false {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} zero' : Nat zero' = 0 one : Nat one = 1 data Int : Set where pos : Nat → Int negsuc : Nat → Int postulate String : Set Float : Set Char : Set {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsuc #-} {-# BUILTIN STRING String #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-} infixr 10 _::_ data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL nil #-} {-# BUILTIN CONS _::_ #-} primitive -- Integer functions primShowInteger : Int -> String -- Floating point functions primNatToFloat : Nat -> Float primFloatPlus : Float -> Float -> Float primFloatMinus : Float -> Float -> Float primFloatTimes : Float -> Float -> Float primFloatDiv : Float -> Float -> Float primFloatLess : Float -> Float -> Bool primFloatSqrt : Float -> Float primRound : Float -> Int primFloor : Float -> Int primCeiling : Float -> Int primExp : Float -> Float primLog : Float -> Float primSin : Float -> Float primShowFloat : Float -> String -- Character functions primCharEquality : Char -> Char -> Bool primIsLower : Char -> Bool primIsDigit : Char -> Bool primIsAlpha : Char -> Bool primIsSpace : Char -> Bool primIsAscii : Char -> Bool primIsLatin1 : Char -> Bool primIsPrint : Char -> Bool primIsHexDigit : Char -> Bool primToUpper : Char -> Char primToLower : Char -> Char primCharToNat : Char -> Nat primNatToChar : Nat -> Char -- partial primShowChar : Char -> String -- String functions primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool primShowString : String -> String isLower : Char -> Bool isLower = primIsLower isAlpha : Char -> Bool isAlpha = primIsAlpha isUpper : Char -> Bool isUpper c = isAlpha c && not (isLower c) infixl 14 _/_ nat0 = primCharToNat '\0' int0 = pos nat0 _/_ = primFloatDiv pi : Float pi = 3.141592653589793 sin : Float -> Float sin = primSin cos : Float -> Float cos x = sin (primFloatMinus (pi / 2.0) x) tan : Float -> Float tan x = sin x / cos x reverse : {A : Set} -> List A -> List A reverse xs = rev xs nil where rev : {A : Set} -> List A -> List A -> List A rev nil ys = ys rev (x :: xs) ys = rev xs (x :: ys) infixr 20 _∘_ _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) map : {A B : Set} -> (A -> B) -> List A -> List B map f nil = nil map f (x :: xs) = f x :: map f xs stringAsList : (List Char -> List Char) -> String -> String stringAsList f = primStringFromList ∘ f ∘ primStringToList revStr : String -> String revStr = stringAsList reverse mapStr : (Char -> Char) -> String -> String mapStr f = stringAsList (map f) -- Testing unicode literals uString = "åäö⊢ξ∀" uChar = '∀' data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x thm-show-pos : primShowInteger (pos 42) ≡ "42" thm-show-pos = refl thm-show-neg : primShowInteger (negsuc 41) ≡ "-42" thm-show-neg = refl thm-floor : primFloor 4.2 ≡ pos 4 thm-floor = refl thm-ceiling : primCeiling -5.1 ≡ negsuc 4 thm-ceiling = refl
{ "alphanum_fraction": 0.5845597728, "avg_line_length": 22.2586206897, "ext": "agda", "hexsha": "9da5c1582ecdc6e43d62a1b0416445c5a10a07e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Builtin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Builtin.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Builtin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1234, "size": 3873 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) -- 'Heterogeneous' identity morphism and some laws about them. module Categories.Morphism.HeterogeneousIdentity {o ℓ e} (C : Category o ℓ e) where open import Level open import Relation.Binary.PropositionalEquality import Categories.Morphism as Morphism open Category C open Morphism C -- If Agda was an extensional type theory, any pair of morphisms -- -- f : A ⇒ B and g : A ⇒ C, -- -- where `A ≡ B`, would belong to the same homset, even if `A` and `B` -- are not definitionally equal. In particular, the identity on `B` -- could be given the type |id {B} : B ⇒ C|. -- -- But Agda is an intensional type theory, so the identity cannot have -- this type, in general. Instead one needs to manually 'transport' -- |id {B}| into the homset |B ⇒ C|. Given |p : B ≡ C| one obtains -- -- subst (B ⇒_) p (id {B}) -- -- Morphisms like thes are no longer identities (in the strict -- sense) but they still enjoy many of the properties identities do. -- -- To make this precise, this module introduces a notion of -- 'heterogeneous identity', which is an identity morphism whose -- domain and codomain are propositionally equal (but not necessarily -- syntically equal). -- A heterogeneous identity is just the transport of an identity -- along a 'strict' equation of objects. hid : ∀ {A B} (p : A ≡ B) → A ⇒ B hid {A} p = subst (A ⇒_) p id -- Lemmas about heterogeneous identities hid-refl : ∀ {A : Obj} → hid refl ≈ id {A} hid-refl = Equiv.refl hid-trans : ∀ {A B C} (p : B ≡ C) (q : A ≡ B) → hid p ∘ hid q ≈ hid (trans q p) hid-trans refl refl = identityˡ hid-symˡ : ∀ {A B} (p : A ≡ B) → hid (sym p) ∘ hid p ≈ id {A} hid-symˡ refl = identityˡ hid-symʳ : ∀ {A B} (p : A ≡ B) → hid p ∘ hid (sym p) ≈ id {B} hid-symʳ refl = identityˡ hid-iso : ∀ {A B} (p : A ≡ B) → Iso (hid p) (hid (sym p)) hid-iso p = record { isoˡ = hid-symˡ p ; isoʳ = hid-symʳ p } hid-cong : ∀ {A B} {p q : A ≡ B} → p ≡ q → hid p ≈ hid q hid-cong refl = Equiv.refl -- Transporting the domain/codomain is the same as -- pre/post-composing with heterogeneous identity. hid-subst-dom : ∀ {A B C} (p : A ≡ B) (f : B ⇒ C) → subst (_⇒ C) (sym p) f ≈ f ∘ hid p hid-subst-dom refl f = Equiv.sym identityʳ hid-subst-cod : ∀ {A B C} (f : A ⇒ B) (p : B ≡ C) → subst (A ⇒_) p f ≈ hid p ∘ f hid-subst-cod f refl = Equiv.sym identityˡ hid-subst₂ : ∀ {A B C D} (p : A ≡ B) (q : C ≡ D) (f : A ⇒ C) → subst₂ (_⇒_) p q f ≈ hid q ∘ f ∘ hid (sym p) hid-subst₂ refl refl f = Equiv.sym (Equiv.trans identityˡ identityʳ)
{ "alphanum_fraction": 0.6248103187, "avg_line_length": 32.5432098765, "ext": "agda", "hexsha": "6f915ec84fd60ee9cb2201cd10356f9f9363c0ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/HeterogeneousIdentity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/HeterogeneousIdentity.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/HeterogeneousIdentity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 896, "size": 2636 }
{-# OPTIONS --allow-unsolved-metas #-} open import Oscar.Class open import Oscar.Class.Smap open import Oscar.Class.Transitivity open import Oscar.Class.Reflexivity open import Oscar.Class.Transleftidentity open import Oscar.Class.Symmetry open import Oscar.Class.Hmap open import Oscar.Data.Proposequality open import Oscar.Data.Substitunction open import Oscar.Data.Term open import Oscar.Prelude module Test.ProblemWithDerivation-3 where postulate A : Set B : Set _~A~_ : A → A → Set _~B~_ : B → B → Set s1 : A → B f1 : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y instance 𝓢urjectivity1 : Smap.class _~A~_ _~B~_ s1 s1 𝓢urjectivity1 .⋆ _ _ = f1 module _ {𝔭} {𝔓 : Ø 𝔭} where open Substitunction 𝔓 open Term 𝔓 test-1-before : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y test-1-before {x} {y} = smap instance HmapFromTransleftidentitySymmetry : ∀ {𝔵} {𝔛 : Ø 𝔵} {𝔞} {𝔄 : 𝔛 → Ø 𝔞} {𝔟} {𝔅 : 𝔛 → Ø 𝔟} (let _∼_ = Arrow 𝔄 𝔅) {ℓ̇} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ̇} {transitivity : Transitivity.type _∼_} {reflexivity : Reflexivity.type _∼_} {ℓ} ⦃ _ : Transleftidentity.class _∼_ _∼̇_ reflexivity transitivity ⦄ ⦃ _ : ∀ {x y} → Symmetry.class (_∼̇_ {x} {y}) ⦄ → ∀ {m n} → Hmap.class (λ (f : m ∼ n) (P : LeftExtensionṖroperty ℓ _∼_ _∼̇_ m) → π₀ (π₀ P) f) (λ f P → π₀ (π₀ P) (transitivity f reflexivity)) HmapFromTransleftidentitySymmetry .⋆ P₁ (π₂ , π₃) = π₃ $ symmetry transleftidentity instance 𝓣ransleftidentityExtension : ∀ {a} {A : Ø a} {b} {B : A → Ø b} → Transleftidentity.class (Extension B) _≡̇_ ¡ (flip _∘′_) 𝓣ransleftidentityExtension .⋆ _ = ∅ TransleftidentityFunction : ∀ {𝔬} → Transleftidentity.class Function⟦ 𝔬 ⟧ _≡̇_ ¡ (flip _∘′_) TransleftidentityFunction .⋆ _ = ∅ -- Oscar.Property.Setoid.Proposextensequality module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} where instance 𝓢ymmetryProposextensequality : Symmetry.class Proposextensequality⟦ 𝔓 ⟧ 𝓢ymmetryProposextensequality .⋆ f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ∅ test-1-after : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y test-1-after {x} {y} = smap -- FIXME confusion somehow due to 𝓣ransleftidentityExtension, which is somewhat redundant (i.e. we don't need it as an instance given TransleftidentityFunction). needs explanation. -- FIXME ah ha! this is fixed by modification of Symmetry.class (or maybe is it b/c we don't have a Symmetry instance). -- FIXME we still need to see why this doesn't work when we use import Everything. -- FIXME answer is seen by adding `𝓢ymmetryProposextensequality`
{ "alphanum_fraction": 0.6524437548, "avg_line_length": 33.0512820513, "ext": "agda", "hexsha": "aebcbb36a6b777ff2222beb0001a41590431ab50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-3.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-3.agda", "max_line_length": 476, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1005, "size": 2578 }
open import Level open import Ordinals module VL {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open OD O open OD.OD open ODAxiom odAxiom -- import ODC open _∧_ open _∨_ open Bool open HOD -- The cumulative hierarchy -- V 0 := ∅ -- V α + 1 := P ( V α ) -- V α := ⋃ { V β | β < α } V : ( β : Ordinal ) → HOD V β = TransFinite V1 β where V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD V1 x V0 with trio< x o∅ V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ V1 x V0 | tri> ¬a ¬b c with Oprev-p x V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) V1 x V0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } -- -- L ⊆ HOD ⊆ V -- -- HOD=V : (x : HOD) → V (odmax x) ∋ x -- HOD=V x = {!!} -- -- Definition for Power Set -- record Definitions : Set (suc n) where field Definition : HOD → HOD open Definitions Df : Definitions → (x : HOD) → HOD Df D x = Power x ∩ Definition D x -- The constructible Sets -- L 0 := ∅ -- L α + 1 := Df (L α) -- Definable Power Set -- V α := ⋃ { L β | β < α } L : ( β : Ordinal ) → Definitions → HOD L β D = TransFinite L1 β where L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD L1 x L0 with trio< x o∅ L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ L1 x L0 | tri> ¬a ¬b c with Oprev-p x L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) L1 x L0 | tri> ¬a ¬b c | no ¬p = record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; odmax = x; <odmax = λ {x} lt → proj1 lt } V=L0 : Set (suc n) V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y }
{ "alphanum_fraction": 0.5618619845, "avg_line_length": 28.1494252874, "ext": "agda", "hexsha": "1865bbbe83213ebca933c206674009ecd0e4fa35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/VL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/VL.agda", "max_line_length": 138, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/VL.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 996, "size": 2449 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Discrete where -- Discrete Category. -- https://ncatlab.org/nlab/show/discrete+category -- says: -- A category is discrete if it is both a groupoid and a preorder. That is, -- every morphism should be invertible, any two parallel morphisms should be equal. -- The idea is that in a discrete category, no two distinct (nonisomorphic) objects -- are connectable by any path (morphism), and an object connects to itself only through -- its identity morphism. open import Level using (Level; suc; _⊔_) open import Categories.Category using (Category) open import Categories.Category.Groupoid using (IsGroupoid) record IsDiscrete {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where open Category C using (Obj; _⇒_; _≈_) field isGroupoid : IsGroupoid C preorder : {A B : Obj} → (f g : A ⇒ B) → f ≈ g record DiscreteCategory (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where field category : Category o ℓ e isDiscrete : IsDiscrete category open IsDiscrete isDiscrete public
{ "alphanum_fraction": 0.708490566, "avg_line_length": 35.3333333333, "ext": "agda", "hexsha": "2773e2ad0667abd1d77506d0834c34c4fb2e3f70", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Discrete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Discrete.agda", "max_line_length": 88, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 305, "size": 1060 }
module Issue417 where data _≡_ (A : Set₁) : Set₁ → Set₂ where refl : A ≡ A abstract A : Set₁ A = Set unfold-A : A ≡ Set unfold-A = refl -- The result of inferring the type of unfold-A is the following: -- -- Set ≡ Set
{ "alphanum_fraction": 0.6127659574, "avg_line_length": 13.8235294118, "ext": "agda", "hexsha": "8cce996cc54af542fb45014d34b28b57c7fbf91c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue417.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue417.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue417.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 235 }
open import Mockingbird.Forest using (Forest) module Mockingbird.Forest.Combination.Vec {b ℓ} (forest : Forest {b} {ℓ}) where open import Mockingbird.Forest.Combination.Vec.Base forest public
{ "alphanum_fraction": 0.7886597938, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "8e9bf71fe1a31238397d57260d983a0e406ea3b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest/Combination/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest/Combination/Vec.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest/Combination/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 56, "size": 194 }
module Serializer.Fin where open import Data.Fin hiding (_+_) open import Data.Nat open import Function using (_∘_ ; _$_ ; _∋_ ; id ; const) open import Function.Bijection open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; setoid ) open import Serializer instance serializerFin : ∀ {n} -> Serializer (Fin n) serializerFin {n} = record { size = n ; from = Function.id ; to = Function.id ; bijection = Function.Bijection.id }
{ "alphanum_fraction": 0.6962025316, "avg_line_length": 24.9473684211, "ext": "agda", "hexsha": "bcea58730055cc9768a4d274871444cd87ed024b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "Serializer/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "Serializer/Fin.agda", "max_line_length": 85, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "Serializer/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 126, "size": 474 }
module List where open import Prelude open import Star [_] : Set -> Rel True [ A ] = \_ _ -> A List : Set -> Set List A = Star [ A ] _ _ -- Actually there isn't really that much interesting stuff to be -- done for lists that isn't generic. {- Note that the "proofs" are the elements of the list. -}
{ "alphanum_fraction": 0.6590163934, "avg_line_length": 17.9411764706, "ext": "agda", "hexsha": "810ac02dff834c9ec7964a98d664abb0a40d29e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM6/Path/List.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM6/Path/List.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM6/Path/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 85, "size": 305 }
{-# OPTIONS --safe #-} {- This file has been split in two due to slow type checking combined with insufficient reductions when the experimental-lossy-unification flag is included. Part 2: Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2 The goal of these two files is to show that π₄(S³) ≅ π₃((S² × S²) ⊔ᴬ S²) where A = S² ∨ S². This is proved in Brunerie (2016) using the James construction and via (S² × S²) ⊔ᴬ S² ≃ J₂(S²). In this file, we prove it directly using the encode-decode method. For the statement of the isomorphism, see part 2. -} module Cubical.Homotopy.Group.Pi4S3.S3PushoutIso where open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Functions.Morphism open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; elim3 to sElim3 ; map to sMap) open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.S1 hiding (decode ; encode) open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.HITs.Join open import Cubical.HITs.Pushout open import Cubical.HITs.Wedge open import Cubical.Homotopy.Freudenthal hiding (Code ; encode) open import Cubical.Homotopy.Connected open import Cubical.HITs.Truncation renaming (rec to trRec ; elim to trElim ; elim2 to trElim2 ; map to trMap) open import Cubical.Foundations.Function open import Cubical.HITs.S2 Pushout⋁↪fold⋁ : ∀ {ℓ} (A : Pointed ℓ) → Type ℓ Pushout⋁↪fold⋁ A = Pushout {A = A ⋁ A} ⋁↪ fold⋁ Pushout⋁↪fold⋁∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ fst (Pushout⋁↪fold⋁∙ A) = Pushout⋁↪fold⋁ A snd (Pushout⋁↪fold⋁∙ A) = inl (pt A , pt A) -- The type of interest -- ''almost`` equivalent to ΩS³ Pushout⋁↪fold⋁S₊2 = Pushout {A = S₊∙ 2 ⋁ S₊∙ 2} ⋁↪ fold⋁ -- Same type, using base/surf definition of S² (easier to work with) Pushout⋁↪fold⋁S² = Pushout⋁↪fold⋁ S²∙ -- Truncated version, to be proved equivalent to ∥ ΩS³ ∥₅ ∥Pushout⋁↪fold⋁S²∥₅ = hLevelTrunc 5 Pushout⋁↪fold⋁S² Ω∥S³∥₆ = Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ ∣ north ∣ -- Elimination into sets for Pushout⋁↪fold⋁S² module _ {ℓ : Level} {P : Pushout⋁↪fold⋁S² → Type ℓ} (hlev : ((x : Pushout⋁↪fold⋁S²) → isSet (P x))) (b : P (inl (base , base))) where private ×fun : (x y : S²) → P (inl (x , y)) ×fun = S²ToSetElim (λ _ → isSetΠ (λ _ → hlev _)) (S²ToSetElim (λ _ → hlev _) b) inrfun : (x : S²) → P (inr x) inrfun = S²ToSetElim (λ _ → hlev _) (subst P (push (inl base)) b) inl-pp : (x : S²) → PathP (λ i → P (push (inl x) i)) (×fun x base) (inrfun x) inl-pp = S²ToSetElim (λ _ → isOfHLevelPathP 2 (hlev _) _ _) λ j → transp (λ i → P (push (inl base) (i ∧ j))) (~ j) b inr-pp : (x : S²) → PathP (λ i → P (push (inr x) i)) (×fun base x) (inrfun x) inr-pp = S²ToSetElim (λ _ → isOfHLevelPathP 2 (hlev _) _ _) (transport (λ j → PathP (λ i → P (push (push tt j) i)) (×fun base base) (inrfun base)) (inl-pp base)) Pushout⋁↪fold⋁S²→Set : (x : Pushout⋁↪fold⋁S²) → P x Pushout⋁↪fold⋁S²→Set (inl x) = ×fun (fst x) (snd x) Pushout⋁↪fold⋁S²→Set (inr x) = inrfun x Pushout⋁↪fold⋁S²→Set (push (inl x) i) = inl-pp x i Pushout⋁↪fold⋁S²→Set (push (inr x) i) = inr-pp x i Pushout⋁↪fold⋁S²→Set (push (push a j) i) = help j i where help : SquareP (λ j i → P (push (push tt j) i)) (λ i → inl-pp base i) (λ i → inr-pp base i) (λ _ → ×fun base base) (λ _ → inrfun base) help = toPathP (isProp→PathP (λ _ → isOfHLevelPathP' 1 (hlev _) _ _) _ _) {- A wedge connectivity lemma for Pushout⋁↪fold⋁S². It can be stated for general dependent types, but it's easier to work with in the special case of path types -} module Pushout⋁↪fold⋁S²WedgeCon {ℓ : Level } {A : Type ℓ} (f g : Pushout⋁↪fold⋁S² → A) (h : isOfHLevel 5 A) (lp : (x : S²) → f (inl (x , base)) ≡ g (inl (x , base))) (rp : (x : S²) → f (inl (base , x)) ≡ g (inl (base , x))) (r≡l : (x : S²) → (sym (cong f (push (inl x))) ∙∙ lp x ∙∙ cong g (push (inl x))) ≡ (sym (cong f (push (inr x))) ∙∙ rp x ∙∙ cong g (push (inr x)))) where btm-filler : I → I → I → A btm-filler k i j = hfill (λ k → λ {(i = i0) → doubleCompPath-filler (sym (cong f (push (inl base)))) (lp base) (cong g (push (inl base))) (~ k) j ; (i = i1) → doubleCompPath-filler (sym (cong f (push (inr base)))) (rp base) (cong g (push (inr base))) (~ k) j ; (j = i0) → f (push (push tt i) (~ k)) ; (j = i1) → g (push (push tt i) (~ k))}) (inS (r≡l base i j)) k lp-base≡rp-base : lp base ≡ rp base lp-base≡rp-base = (λ i j → btm-filler i1 i j) f∘inl≡g∘inl : (x y : S²) → f (inl (x , y)) ≡ g (inl (x , y)) f∘inl≡g∘inl = wedgeconFunS² (λ _ _ → h _ _) lp rp lp-base≡rp-base f∘inl≡g∘inl-base : (x : S²) → f∘inl≡g∘inl x base ≡ lp x f∘inl≡g∘inl-base = wedgeconFunS²Id (λ _ _ → h _ _) lp rp lp-base≡rp-base f∘inr≡g∘inr : (x : S²) → f (inr x) ≡ g (inr x) f∘inr≡g∘inr x = cong f (sym (push (inl x))) ∙∙ lp x ∙∙ cong g (push (inl x)) inlfill : (x : S²) → I → I → I → A inlfill x k i j = hfill (λ k → λ { (i = i0) → f∘inl≡g∘inl-base x (~ k) j ; (i = i1) → doubleCompPath-filler (cong f (sym (push (inl x)))) (lp x) (cong g (push (inl x))) k j ; (j = i0) → f (push (inl x) (i ∧ k)) ; (j = i1) → g (push (inl x) (i ∧ k))}) (inS (lp x j)) k inrfill : (x : S²) → I → I → I → A inrfill x k i j = hfill (λ k → λ { (i = i0) → doubleCompPath-filler (cong f (sym (push (inr x)))) (rp x) (cong g (push (inr x))) (~ k) j ; (i = i1) → f∘inr≡g∘inr x j ; (j = i0) → f (push (inr x) (i ∨ ~ k)) ; (j = i1) → g (push (inr x) (i ∨ ~ k))}) (inS (r≡l x (~ i) j)) k main : (x : Pushout⋁↪fold⋁S²) → f x ≡ g x main (inl x) = f∘inl≡g∘inl (fst x) (snd x) main (inr x) = f∘inr≡g∘inr x main (push (inl x) i) j = inlfill x i1 i j main (push (inr x) i) j = inrfill x i1 i j main (push (push a i) j) k = hcomp (λ r → λ {(i = i0) → inlfill base i1 j k ; (i = i1) → inrfill-side r j k ; (j = i0) → rp base k ; (j = i1) → r≡l base (~ r ∧ i) k ; (k = i0) → f (push (push a i) j) ; (k = i1) → g (push (push a i) j)}) (hcomp (λ r → λ {(i = i0) → inlfill base r j k ; (i = i1) → doubleCompPath-filler (cong f (sym (push (inr base)))) (rp base) (cong g (push (inr base))) (j ∧ r) k ; (j = i0) → lp-base≡rp-base (r ∨ i) k ; (j = i1) → inlfill-side r i k ; (k = i0) → f (push (push a i) (j ∧ r)) ; (k = i1) → g (push (push a i) (j ∧ r))}) (lp-base≡rp-base i k)) where inlfill-side : I → I → I → A inlfill-side r i k = hcomp (λ j → λ { (r = i0) → btm-filler j i k ; (r = i1) → r≡l base i k ; (i = i0) → doubleCompPath-filler (cong f (sym (push (inl base)))) (lp base) (cong g (push (inl base))) (r ∨ ~ j) k ; (i = i1) → doubleCompPath-filler (cong f (sym (push (inr base)))) (rp base) (cong g (push (inr base))) (r ∨ ~ j) k ; (k = i0) → f (push (push a i) (r ∨ ~ j)) ; (k = i1) → g (push (push a i) (r ∨ ~ j))}) (r≡l base i k) inrfill-side : I → I → I → A inrfill-side r j k = hcomp (λ i → λ { (r = i0) → (doubleCompPath-filler (cong f (sym (push (inr base)))) (rp base) (cong g (push (inr base)))) (j ∨ ~ i) k ; (r = i1) → inrfill base i j k ; (j = i0) → inrfill base i i0 k ; (j = i1) → r≡l base (~ r) k ; (k = i0) → f (push (inr base) (j ∨ ~ i)) ; (k = i1) → g (push (inr base) (j ∨ ~ i))}) (r≡l base (~ r ∨ ~ j) k) {- Goal: Prove Ω ∥ SuspS² ∥₆ ≃ ∥ Pushout⋁↪fold⋁S² ∥₅ This will by done via the encode-decode method. For this, we nede a family of equivalences ∥ Pushout⋁↪fold⋁S² ∥₅ ≃ ∥ Pushout⋁↪fold⋁S² ∥₅, indexed by S². In order to define this, we need the following cubes/coherences in ∥ Pushout⋁↪fold⋁S² ∥₅: -} →Ω²∥Pushout⋁↪fold⋁S²∥₅ : (x y : S²) → Square {A = ∥Pushout⋁↪fold⋁S²∥₅} (λ _ → ∣ inl (x , y) ∣ₕ) (λ _ → ∣ inl (x , y) ∣ₕ) (λ _ → ∣ inl (x , y) ∣ₕ) (λ _ → ∣ inl (x , y) ∣ₕ) →Ω²∥Pushout⋁↪fold⋁S²∥₅ = wedgeconFunS² (λ _ _ → isOfHLevelPath 4 (isOfHLevelTrunc 5 _ _) _ _) (λ x → λ i j → ∣ inl (x , surf i j) ∣ₕ) (λ x → λ i j → ∣ inl (surf i j , x) ∣ₕ) λ r i j → ∣ hcomp (λ k → λ { (i = i0) → push (push tt (~ r)) (~ k) ; (i = i1) → push (push tt (~ r)) (~ k) ; (j = i1) → push (push tt (~ r)) (~ k) ; (j = i0) → push (push tt (~ r)) (~ k) ; (r = i0) → push (inr (surf i j)) (~ k) ; (r = i1) → push (inl (surf i j)) (~ k)}) (inr (surf i j)) ∣ₕ →Ω²∥Pushout⋁↪fold⋁S²∥₅Id : (x : S²) → →Ω²∥Pushout⋁↪fold⋁S²∥₅ x base ≡ λ i j → ∣ inl (x , surf i j) ∣ₕ →Ω²∥Pushout⋁↪fold⋁S²∥₅Id = wedgeconFunS²Id (λ _ _ → isOfHLevelPath 4 (isOfHLevelTrunc 5 _ _) _ _) (λ x → λ i j → ∣ inl (x , surf i j) ∣ₕ) (λ x → λ i j → ∣ inl (surf i j , x) ∣ₕ) λ r i j → ∣ hcomp (λ k → λ { (i = i0) → push (push tt (~ r)) (~ k) ; (i = i1) → push (push tt (~ r)) (~ k) ; (j = i1) → push (push tt (~ r)) (~ k) ; (j = i0) → push (push tt (~ r)) (~ k) ; (r = i0) → push (inr (surf i j)) (~ k) ; (r = i1) → push (inl (surf i j)) (~ k)}) (inr (surf i j)) ∣ₕ push-inl∙push-inr⁻ : (y : S²) → Path Pushout⋁↪fold⋁S² (inl (y , base)) (inl (base , y)) push-inl∙push-inr⁻ y i = (push (inl y) ∙ sym (push (inr y))) i push-inl∙push-inr⁻∙ : push-inl∙push-inr⁻ base ≡ refl push-inl∙push-inr⁻∙ = (λ k i → (push (inl base) ∙ sym (push (push tt (~ k)))) i) ∙ rCancel (push (inl base)) push-inl∙push-inr⁻-filler : I → I → I → I → Pushout⋁↪fold⋁S² push-inl∙push-inr⁻-filler r i j k = hfill (λ r → λ { (i = i0) → push-inl∙push-inr⁻∙ (~ r) k ; (i = i1) → push-inl∙push-inr⁻∙ (~ r) k ; (j = i0) → push-inl∙push-inr⁻∙ (~ r) k ; (j = i1) → push-inl∙push-inr⁻∙ (~ r) k ; (k = i0) → inl (surf i j , base) ; (k = i1) → inl (surf i j , base)}) (inS (inl (surf i j , base))) r push-inl∙push-inr⁻-hLevFiller : (y : S²) → Cube {A = ∥Pushout⋁↪fold⋁S²∥₅} (λ j k → ∣ push-inl∙push-inr⁻ y k ∣) (λ j k → ∣ push-inl∙push-inr⁻ y k ∣) (λ j k → ∣ push-inl∙push-inr⁻ y k ∣) (λ j k → ∣ push-inl∙push-inr⁻ y k ∣) (→Ω²∥Pushout⋁↪fold⋁S²∥₅ y (pt (S² , base))) λ i j → ∣ inl (surf i j , y) ∣ push-inl∙push-inr⁻-hLevFiller = S²ToSetElim (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (isOfHLevelPathP' 4 (isOfHLevelTrunc 5) _ _) _ _) _ _) λ i j k → ∣ push-inl∙push-inr⁻-filler i1 i j k ∣ₕ {- We combine the above definitions. The equivalence ∥Pushout⋁↪fold⋁S²∥₅ ≃ ∥Pushout⋁↪fold⋁S²∥₅ (w.r.t. S²) is induced by the following function -} S²→Pushout⋁↪fold⋁S²↺' : (x : S²) → Pushout⋁↪fold⋁S² → ∥Pushout⋁↪fold⋁S²∥₅ S²→Pushout⋁↪fold⋁S²↺' base (inl (x , y)) = ∣ inl (x , y) ∣ S²→Pushout⋁↪fold⋁S²↺' (surf i j) (inl (x , y)) = →Ω²∥Pushout⋁↪fold⋁S²∥₅ x y i j S²→Pushout⋁↪fold⋁S²↺' base (inr z) = ∣ inl (base , z) ∣ₕ S²→Pushout⋁↪fold⋁S²↺' (surf i i₁) (inr z) = ∣ inl (surf i i₁ , z) ∣ₕ S²→Pushout⋁↪fold⋁S²↺' base (push (inl y) k) = ∣ (push (inl y) ∙ sym (push (inr y))) k ∣ S²→Pushout⋁↪fold⋁S²↺' (surf i j) (push (inl y) k) = push-inl∙push-inr⁻-hLevFiller y i j k S²→Pushout⋁↪fold⋁S²↺' base (push (inr y) i) = ∣ inl (base , y) ∣ S²→Pushout⋁↪fold⋁S²↺' (surf i j) (push (inr y) k) = ∣ inl (surf i j , y) ∣ S²→Pushout⋁↪fold⋁S²↺' base (push (push a i₁) i) = ∣ push-inl∙push-inr⁻∙ i₁ i ∣ S²→Pushout⋁↪fold⋁S²↺' (surf i j) (push (push a k) l) = ∣ hcomp (λ r → λ { (i = i0) → push-inl∙push-inr⁻∙ (k ∨ ~ r) l ; (i = i1) → push-inl∙push-inr⁻∙ (k ∨ ~ r) l ; (j = i0) → push-inl∙push-inr⁻∙ (k ∨ ~ r) l ; (j = i1) → push-inl∙push-inr⁻∙ (k ∨ ~ r) l ; (k = i0) → push-inl∙push-inr⁻-filler r i j l ; (k = i1) → inl (surf i j , base) ; (l = i0) → inl (surf i j , base) ; (l = i1) → inl (surf i j , base)}) (inl (surf i j , base)) ∣ₕ {- For easier treatment later, we state its inverse explicitly -} S²→Pushout⋁↪fold⋁S²↺'⁻ : (x : S²) → Pushout⋁↪fold⋁S² → ∥Pushout⋁↪fold⋁S²∥₅ S²→Pushout⋁↪fold⋁S²↺'⁻ base y = S²→Pushout⋁↪fold⋁S²↺' base y S²→Pushout⋁↪fold⋁S²↺'⁻ (surf i j) y = S²→Pushout⋁↪fold⋁S²↺' (surf (~ i) j) y S²→Pushout⋁↪fold⋁S²↺'≡idfun : (x : _) → S²→Pushout⋁↪fold⋁S²↺' base x ≡ ∣ x ∣ S²→Pushout⋁↪fold⋁S²↺'≡idfun (inl x) = refl S²→Pushout⋁↪fold⋁S²↺'≡idfun (inr x) = cong ∣_∣ₕ (push (inr x)) S²→Pushout⋁↪fold⋁S²↺'≡idfun (push (inl x) i) j = ∣ compPath-filler (push (inl x)) (λ i₁ → push (inr x) (~ i₁)) (~ j) i ∣ₕ S²→Pushout⋁↪fold⋁S²↺'≡idfun (push (inr x) i) j = ∣ push (inr x) (j ∧ i) ∣ S²→Pushout⋁↪fold⋁S²↺'≡idfun (push (push a i) j) k = ∣ coh-lem {A = Pushout⋁↪fold⋁S²} (push (inl base)) (push (inr base)) (λ k → push (push tt k)) i j k ∣ₕ where coh-lem : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ y) (r : p ≡ q) → Cube {A = A} (λ j k → compPath-filler p (sym q) (~ k) j) (λ k j → q (k ∧ j)) (λ i k → x) (λ i k → q k) (((λ k → p ∙ sym (r (~ k))) ∙ rCancel p)) r coh-lem {A = A} {x = x} {y = y} = J (λ y p → (q : x ≡ y) (r : p ≡ q) → Cube {A = A} (λ j k → compPath-filler p (sym q) (~ k) j) (λ k j → q (k ∧ j)) (λ i k → x) (λ i k → q k) (((λ k → p ∙ sym (r (~ k))) ∙ rCancel p)) r) λ q → J (λ q r → Cube (λ j k → compPath-filler refl (λ i → q (~ i)) (~ k) j) (λ k j → q (k ∧ j)) (λ i k → x) (λ i k → q k) ((λ k → refl ∙ (λ i → r (~ k) (~ i))) ∙ rCancel refl) r) ((λ z j k → lUnit (sym (rUnit (λ _ → x))) z k j) ◁ (λ i j k → (refl ∙ (λ i₁ → rUnit (λ _ → x) (~ i₁))) (k ∨ i) j)) S²→Pushout⋁↪fold⋁S²↺ : (x : S²) → ∥Pushout⋁↪fold⋁S²∥₅ → ∥Pushout⋁↪fold⋁S²∥₅ S²→Pushout⋁↪fold⋁S²↺ x = trRec (isOfHLevelTrunc 5) (S²→Pushout⋁↪fold⋁S²↺' x) isEq-S²→Pushout⋁↪fold⋁S²↺' : (x : _) → isEquiv (S²→Pushout⋁↪fold⋁S²↺ x) isEq-S²→Pushout⋁↪fold⋁S²↺' = S²ToSetElim (λ _ → isProp→isSet (isPropIsEquiv _)) (subst isEquiv (funExt id≡) (idIsEquiv _)) where id≡ : (x : _) → x ≡ S²→Pushout⋁↪fold⋁S²↺ base x id≡ = trElim (λ _ → isOfHLevelPath 5 (isOfHLevelTrunc 5) _ _) (sym ∘ S²→Pushout⋁↪fold⋁S²↺'≡idfun) S²→Pushout⋁↪fold⋁S²↺⁻¹ : (x : S²) → ∥Pushout⋁↪fold⋁S²∥₅ → ∥Pushout⋁↪fold⋁S²∥₅ S²→Pushout⋁↪fold⋁S²↺⁻¹ x = trRec (isOfHLevelTrunc 5) (S²→Pushout⋁↪fold⋁S²↺'⁻ x) {- S²→Pushout⋁↪fold⋁S²↺⁻¹ is a section of S²→Pushout⋁↪fold⋁S²↺ -} secS²→Pushout⋁↪fold⋁S²↺ : (x : S²) (y : ∥Pushout⋁↪fold⋁S²∥₅) → S²→Pushout⋁↪fold⋁S²↺ x (S²→Pushout⋁↪fold⋁S²↺⁻¹ x y) ≡ y secS²→Pushout⋁↪fold⋁S²↺ x = trElim (λ _ → isOfHLevelPath 5 (isOfHLevelTrunc 5) _ _) (h x) where h : (x : S²) (a : Pushout⋁↪fold⋁S²) → S²→Pushout⋁↪fold⋁S²↺ x (S²→Pushout⋁↪fold⋁S²↺⁻¹ x ∣ a ∣) ≡ ∣ a ∣ h base a = cong (S²→Pushout⋁↪fold⋁S²↺ base) (S²→Pushout⋁↪fold⋁S²↺'≡idfun a) ∙ S²→Pushout⋁↪fold⋁S²↺'≡idfun a h (surf i j) a k = main a k i j where side : (a : Pushout⋁↪fold⋁S²) → _ side a = cong (S²→Pushout⋁↪fold⋁S²↺ base) (S²→Pushout⋁↪fold⋁S²↺'≡idfun a) ∙ S²→Pushout⋁↪fold⋁S²↺'≡idfun a refl-b : Path ∥Pushout⋁↪fold⋁S²∥₅ _ _ refl-b = (refl {x = ∣ inl (base , base) ∣ₕ}) main : (a : Pushout⋁↪fold⋁S²) → Cube (λ i j → S²→Pushout⋁↪fold⋁S²↺ (surf i j) (S²→Pushout⋁↪fold⋁S²↺⁻¹ (surf i j) ∣ a ∣)) (λ _ _ → ∣ a ∣) (λ i _ → side a i) (λ i _ → side a i) (λ i _ → side a i) (λ i _ → side a i) main = Pushout⋁↪fold⋁S²→Set (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (isOfHLevelTrunc 5 _ _) _ _) _ _) λ k i j → hcomp (λ r → λ { (i = i0) → rUnit refl-b r k ; (i = i1) → rUnit refl-b r k ; (j = i0) → rUnit refl-b r k ; (j = i1) → rUnit refl-b r k ; (k = i0) → →Ω²∥Pushout⋁↪fold⋁S²∥₅Id (surf (~ i) j) (~ r) i j ; (k = i1) → μ base base}) (μ-coh k i j) where μ : (x y : S²) → ∥Pushout⋁↪fold⋁S²∥₅ μ x y = ∣ inl (x , y) ∣ₕ μUnit : (x : S²) → μ x base ≡ μ base x μUnit base = refl μUnit (surf i j) k = ∣ hcomp (λ r → λ {(i = i0) → push (push tt k) (~ r) ; (i = i1) → push (push tt k) (~ r) ; (j = i0) → push (push tt k) (~ r) ; (j = i1) → push (push tt k) (~ r) ; (k = i0) → push (inl (surf i j)) (~ r) ; (k = i1) → push (inr (surf i j)) (~ r)}) (inr (surf i j)) ∣ₕ μ-coh : Path (Square {A = ∥Pushout⋁↪fold⋁S²∥₅} (λ _ → ∣ inl (base , base) ∣) (λ _ → ∣ inl (base , base) ∣) (λ _ → ∣ inl (base , base) ∣) (λ _ → ∣ inl (base , base) ∣)) (λ i j → ∣ inl (surf (~ i) j , surf i j) ∣ₕ) refl μ-coh = (cong₂Funct (λ (x y : (Path S² base base)) → cong₂ μ x y) (sym surf) surf ∙ cong (_∙ cong (cong (μ base)) surf) (λ i → cong (cong (λ x → μUnit x i)) (sym surf)) ∙ lCancel (cong (cong (μ base)) surf)) retrS²→Pushout⋁↪fold⋁S²↺ : (x : S²) (y : ∥Pushout⋁↪fold⋁S²∥₅) → S²→Pushout⋁↪fold⋁S²↺⁻¹ x (S²→Pushout⋁↪fold⋁S²↺ x y) ≡ y retrS²→Pushout⋁↪fold⋁S²↺ x = trElim (λ _ → isOfHLevelPath 5 (isOfHLevelTrunc 5) _ _) (main x) where main : (x : S²) (a : Pushout⋁↪fold⋁S²) → S²→Pushout⋁↪fold⋁S²↺⁻¹ x (S²→Pushout⋁↪fold⋁S²↺ x ∣ a ∣) ≡ ∣ a ∣ main base a = secS²→Pushout⋁↪fold⋁S²↺ base ∣ a ∣ main (surf i j) a l = secS²→Pushout⋁↪fold⋁S²↺ (surf (~ i) j) ∣ a ∣ l ∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ : (x : S²) → Iso ∥Pushout⋁↪fold⋁S²∥₅ ∥Pushout⋁↪fold⋁S²∥₅ fun (∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ x) = S²→Pushout⋁↪fold⋁S²↺ x inv (∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ x) = S²→Pushout⋁↪fold⋁S²↺⁻¹ x rightInv (∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ x) = secS²→Pushout⋁↪fold⋁S²↺ x leftInv (∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ x) = retrS²→Pushout⋁↪fold⋁S²↺ x PreCode : (x : Susp S²) → Type PreCode north = ∥Pushout⋁↪fold⋁S²∥₅ PreCode south = ∥Pushout⋁↪fold⋁S²∥₅ PreCode (merid a i) = isoToPath (∥Pushout⋁↪fold⋁S²∥₅≃∥Pushout⋁↪fold⋁S²∥₅ a) i hLevPreCode : (x : Susp S²) → isOfHLevel 5 (PreCode x) hLevPreCode = suspToPropElim base (λ _ → isPropIsOfHLevel 5) (isOfHLevelTrunc 5) Code : (hLevelTrunc 6 (Susp S²)) → Type ℓ-zero Code = fst ∘ trRec {B = TypeOfHLevel ℓ-zero 5} (isOfHLevelTypeOfHLevel 5) λ x → (PreCode x) , (hLevPreCode x) private cong-coherence : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (r : refl ≡ p) → cong (p ∙_) (sym r) ∙ sym (rUnit p) ≡ cong (_∙ p) (sym r) ∙ sym (lUnit p) cong-coherence p = J (λ p r → cong (p ∙_) (sym r) ∙ sym (rUnit p) ≡ cong (_∙ p) (sym r) ∙ sym (lUnit p)) refl {- The function Pushout⋁↪fold⋁S² → Ω∥S³∥₆ will be the obvious one -} Pushout⋁↪fold⋁S²→Ω∥S³∥₆ : Pushout⋁↪fold⋁S² → Ω∥S³∥₆ Pushout⋁↪fold⋁S²→Ω∥S³∥₆ (inl x) = cong ∣_∣ₕ (σ S²∙ (fst x) ∙ σ S²∙ (snd x)) Pushout⋁↪fold⋁S²→Ω∥S³∥₆ (inr x) = cong ∣_∣ₕ (σ S²∙ x) Pushout⋁↪fold⋁S²→Ω∥S³∥₆ (push (inl x) i) j = ∣ (cong (σ S²∙ x ∙_) (rCancel (merid base)) ∙ sym (rUnit (σ S²∙ x))) i j ∣ₕ Pushout⋁↪fold⋁S²→Ω∥S³∥₆ (push (inr x) i) j = ∣ (cong (_∙ σ S²∙ x) (rCancel (merid base)) ∙ sym (lUnit (σ S²∙ x))) i j ∣ₕ Pushout⋁↪fold⋁S²→Ω∥S³∥₆ (push (push a k) i) j = ∣ cong-coherence (σ S²∙ base) (sym (rCancel (merid base))) k i j ∣ₕ {- Truncated version (the equivalence) -} ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ : ∥Pushout⋁↪fold⋁S²∥₅ → Ω∥S³∥₆ ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ = trRec (isOfHLevelTrunc 6 _ _) Pushout⋁↪fold⋁S²→Ω∥S³∥₆ decode' : (x : Susp S²) → Code ∣ x ∣ → Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ ∣ x ∣ decode' north p = ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ p decode' south p = ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ p ∙ cong ∣_∣ₕ (merid base) decode' (merid a i) = main a i where baseId : (x : Pushout⋁↪fold⋁S²) → ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ (S²→Pushout⋁↪fold⋁S²↺' base x) ≡ ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ ∣ x ∣ baseId x = cong ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ (S²→Pushout⋁↪fold⋁S²↺'≡idfun x) mainLemma : (a : S²) (x : Pushout⋁↪fold⋁S²) → ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ (S²→Pushout⋁↪fold⋁S²↺'⁻ a x) ∙ (λ i → ∣ merid a i ∣) ≡ ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ ∣ x ∣ ∙ cong ∣_∣ₕ (merid base) mainLemma base x = cong (_∙ cong ∣_∣ₕ (merid base)) (baseId x) mainLemma (surf i j) x k = surf-filler x k i j where ∙ΩbaseId : (q : typ (Ω (Susp∙ (typ S²∙)))) → q ≡ q ∙ σ S²∙ base ∙ΩbaseId q = rUnit q ∙ cong (q ∙_) (sym (rCancel (merid base))) cubeCoherence : ∀ {ℓ} {A : Type ℓ} {x : A} {p : x ≡ x} → (refl ≡ p) → (q : Square {A = x ≡ x} (λ _ → p) (λ _ → p) (λ _ → p) (λ _ → p)) → Cube {A = Path A x x} (λ i j → q i j ∙ q (~ i) j) (λ _ _ → p ∙ p) (λ k j → p ∙ p) (λ _ _ → p ∙ p) (λ _ _ → p ∙ p) λ _ _ → p ∙ p cubeCoherence {A = A} {x = x} {p = p} = J (λ p _ → (q : Square {A = x ≡ x} (λ _ → p) (λ _ → p) (λ _ → p) (λ _ → p)) → Cube {A = Path A x x} (λ i j → q i j ∙ q (~ i) j) (λ _ _ → p ∙ p) (λ k j → p ∙ p) (λ _ _ → p ∙ p) (λ _ _ → p ∙ p) λ _ _ → p ∙ p) (λ q → (cong₂Funct (λ (x y : Path (x ≡ x) refl refl) → cong₂ _∙_ x y) q (sym q) ∙ transport (λ i → cong (λ (p : (refl {x = x}) ≡ refl) k → rUnit (p k) i) q ∙ cong (λ (p : (refl {x = x}) ≡ refl) k → lUnit (p k) i) (sym q) ≡ refl {x = refl {x = lUnit (refl {x = x}) i}}) (rCancel q))) surf-side : (i j r l : I) → hLevelTrunc 6 (Susp S²) surf-side i j r l = ((cong ∣_∣ₕ (∙ΩbaseId (σ S²∙ (surf (~ i) j)) r)) ∙ cong ∣_∣ₕ (compPath-filler (merid (surf i j)) (sym (merid base)) (~ r))) l side : (r l : I) → hLevelTrunc 6 (Susp S²) side r l = ((cong ∣_∣ₕ (∙ΩbaseId (σ S²∙ base) r)) ∙ cong ∣_∣ₕ (compPath-filler (merid base) (sym (merid base)) (~ r))) l surf-filler : (x : Pushout⋁↪fold⋁S²) → Cube {A = Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ ∣ south ∣} (λ i j → ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ (S²→Pushout⋁↪fold⋁S²↺' (surf (~ i) j) x) ∙ (λ k → ∣ merid (surf i j) k ∣)) (λ _ _ → ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ ∣ x ∣ ∙ cong ∣_∣ₕ (merid base)) (λ k j → baseId x k ∙ (λ i₂ → ∣ merid base i₂ ∣)) (λ k j → baseId x k ∙ (λ i₂ → ∣ merid base i₂ ∣)) (λ k i → baseId x k ∙ (λ i₂ → ∣ merid base i₂ ∣)) (λ k i → baseId x k ∙ (λ i₂ → ∣ merid base i₂ ∣)) surf-filler = Pushout⋁↪fold⋁S²→Set (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (isOfHLevelTrunc 6 _ _ _ _) _ _) _ _) (λ k i j l → hcomp (λ r → λ {(i = i0) → surf-side i0 i0 r l ; (i = i1) → surf-side i0 i0 r l ; (j = i0) → surf-side i0 i0 r l ; (j = i1) → surf-side i0 i0 r l ; (k = i0) → surf-side i j r l ; (k = i1) → surf-side i0 i0 r l ; (l = i0) → ∣ north ∣ₕ ; (l = i1) → ∣ merid base r ∣ₕ}) (cubeCoherence {p = cong ∣_∣ₕ (σ (S²∙) base)} (cong (cong ∣_∣ₕ) (sym (rCancel (merid base)))) (λ i j k → ∣ σ S²∙ (surf (~ i) j) k ∣ₕ) k i j l)) main : (a : S²) → PathP (λ i → Code ∣ merid a i ∣ → Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ ∣ merid a i ∣) ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ λ x → ∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ x ∙ cong ∣_∣ₕ (merid base) main a = toPathP (funExt (trElim (λ _ → isOfHLevelSuc 4 (isOfHLevelTrunc 6 _ _ _ _)) (λ x → (λ j → transp (λ i → Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ ∣ merid a (i ∨ j) ∣) j (compPath-filler (∥Pushout⋁↪fold⋁S²∥₅→Ω∥S³∥₆ (S²→Pushout⋁↪fold⋁S²↺'⁻ a (transportRefl x j))) (cong ∣_∣ₕ (merid a)) j)) ∙ mainLemma a x))) decode : (x : hLevelTrunc 6 (Susp S²)) → Code x → Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ x decode = trElim (λ _ → isOfHLevelΠ 6 λ _ → isOfHLevelPath 6 (isOfHLevelTrunc 6) _ _) decode' decode∙ : decode ∣ north ∣ ∣ inl (base , base) ∣ ≡ refl decode∙ = cong (cong ∣_∣ₕ) (cong (λ x → x ∙ x) (rCancel (merid base)) ∙ sym (rUnit refl)) encode : (x : hLevelTrunc 6 (Susp S²)) → Path (hLevelTrunc 6 (Susp S²)) ∣ north ∣ x → Code x encode x p = subst Code p ∣ inl (base , base) ∣ encode-decode : (x : hLevelTrunc 6 (Susp S²)) → (p : ∣ north ∣ ≡ x) → decode x (encode x p) ≡ p encode-decode x = J (λ x p → decode x (encode x p) ≡ p) (cong (decode ∣ north ∣) (transportRefl ∣ inl (base , base) ∣ₕ) ∙ decode∙) decode-encode : (p : Code ∣ north ∣) → encode ∣ north ∣ (decode ∣ north ∣ p) ≡ p decode-encode = trElim (λ _ → isOfHLevelPath 5 (isOfHLevelTrunc 5) _ _) (Pushout⋁↪fold⋁S²WedgeCon.main ((λ a → encode ∣ north ∣ (decode ∣ north ∣ ∣ a ∣))) ∣_∣ₕ (isOfHLevelTrunc 5) (λ x → cong (encode ∣ north ∣) (cong (cong ∣_∣ₕ) (cong (σ S²∙ x ∙_) (rCancel (merid base)) ∙ sym (rUnit (σ S²∙ x)))) ∙ surf-filler x) (λ x → (cong (encode ∣ north ∣) (cong (cong ∣_∣ₕ) (cong (_∙ σ S²∙ x) (rCancel (merid base)) ∙ sym (lUnit (σ S²∙ x)))) ∙ surf-filler x ∙ cong ∣_∣ₕ (push (inl x)) ∙ cong ∣_∣ₕ (sym (push (inr x))))) λ x → lem (encode ∣ north ∣) (cong (decode ∣ north ∣) (cong ∣_∣ₕ (push (inl x)))) ((cong (decode ∣ north ∣) (cong ∣_∣ₕ (push (inr x))))) (surf-filler x) (cong ∣_∣ₕ (push (inl x))) (cong ∣_∣ₕ (sym (push (inr x))))) where subber = transport (λ j → Code ∣ merid base (~ j) ∣ₕ) lem : ∀ {ℓ} {A B : Type ℓ} {x x' y : A} {l w u : B} (f : A → B) (p : x ≡ y) (p' : x' ≡ y) (q : f y ≡ l) (r : l ≡ w) (r' : w ≡ u) → cong f (sym p) ∙∙ cong f p ∙ q ∙∙ r ≡ (cong f (sym p') ∙∙ (cong f p' ∙ q ∙ (r ∙ r')) ∙∙ sym r') lem {x = x} {x' = x'} {y = y'} {l = l} {w = w} {u = u} f p p' q r r' = (λ i → (λ j → f (p (~ j ∨ i))) ∙∙ (λ j → f (p (j ∨ i))) ∙ q ∙∙ r) ∙∙ (λ i → (λ j → f (p' (~ j ∨ ~ i))) ∙∙ (λ j → f (p' (j ∨ ~ i))) ∙ compPath-filler q r i ∙∙ λ j → r (i ∨ j)) ∙∙ λ i → cong f (sym p') ∙∙ cong f p' ∙ q ∙ compPath-filler r r' i ∙∙ λ j → r' (~ j ∧ i) mainId : (x : S²) → (S²→Pushout⋁↪fold⋁S²↺' x (inl (base , base))) ≡ ∣ inl (x , base) ∣ₕ mainId base = refl mainId (surf i i₁) = refl surf-filler : (x : S²) → encode ∣ north ∣ (λ i → ∣ σ S²∙ x i ∣) ≡ ∣ inl (x , base) ∣ surf-filler x = (λ i → transp (λ j → Code (∣ merid base (i ∧ ~ j) ∣ₕ)) (~ i) (encode ∣ merid base i ∣ λ j → ∣ compPath-filler (merid x) (sym (merid base)) (~ i) j ∣ₕ)) ∙ cong subber (transportRefl (S²→Pushout⋁↪fold⋁S²↺' x (inl (base , base))) ∙ mainId x) IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅ : Iso (hLevelTrunc 5 (typ (Ω (Susp∙ S²)))) (hLevelTrunc 5 Pushout⋁↪fold⋁S²) IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅ = compIso (invIso (PathIdTruncIso _)) is where is : Iso _ _ fun is = encode ∣ north ∣ inv is = decode ∣ north ∣ rightInv is = decode-encode leftInv is = encode-decode ∣ north ∣
{ "alphanum_fraction": 0.4739811496, "avg_line_length": 44.1171303075, "ext": "agda", "hexsha": "fca96aa61123ad52e054b3954562319bfefd479d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 14020, "size": 30132 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Properties.EilenbergMoore where open import Level import Relation.Binary.PropositionalEquality as ≡ open import Categories.Adjoint open import Categories.Adjoint.Properties open import Categories.Category open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Equivalence open import Categories.Monad open import Categories.NaturalTransformation renaming (id to idN) open import Categories.Morphism.HeterogeneousIdentity open import Categories.Adjoint.Construction.EilenbergMoore open import Categories.Category.Construction.EilenbergMoore private variable o ℓ e : Level 𝒞 𝒟 : Category o ℓ e module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where private T : Monad 𝒞 T = adjoint⇒monad F⊣G 𝒞ᵀ : Category _ _ _ 𝒞ᵀ = EilenbergMoore T module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 module 𝒞ᵀ = Category 𝒞ᵀ open 𝒞.HomReasoning module T = Monad T module F = Functor F module G = Functor G open Adjoint F⊣G open NaturalTransformation -- Maclane's Comparison Functor ComparisonF : Functor 𝒟 𝒞ᵀ ComparisonF = record { F₀ = λ X → record { A = G.F₀ X ; action = G.F₁ (counit.η X) ; commute = commute (G ∘ˡ counit) (counit.η X) ; identity = zag } ; F₁ = λ {A} {B} f → record { arr = G.F₁ f ; commute = begin 𝒞 [ G.F₁ f ∘ G.F₁ (counit.η A) ] ≈˘⟨ G.homomorphism ⟩ G.F₁ (𝒟 [ f ∘ (counit.η A) ]) ≈˘⟨ G.F-resp-≈ (counit.commute f) ⟩ G.F₁ (𝒟 [ counit.η B ∘ F.F₁ (G.F₁ f) ]) ≈⟨ G.homomorphism ⟩ 𝒞 [ G.F₁ (counit.η B) ∘ G.F₁ (F.F₁ (G.F₁ f)) ] ∎ } ; identity = G.identity ; homomorphism = G.homomorphism ; F-resp-≈ = G.F-resp-≈ } private K = ComparisonF module K = Functor K module Gᵀ = Functor (Forgetful T) module Fᵀ = Functor (Free T) Comparison∘F≡Free : (ComparisonF ∘F F) ≡F Free T Comparison∘F≡Free = record { eq₀ = λ X → ≡.refl ; eq₁ = λ {A} {B} f → begin Module⇒.arr (𝒞ᵀ [ (hid 𝒞ᵀ ≡.refl) ∘ K.F₁ (F.F₁ f) ]) ≈⟨ hid-refl 𝒞ᵀ {A = K.F₀ (F.F₀ B)} ⟩∘⟨refl ⟩ Module⇒.arr (𝒞ᵀ [ 𝒞ᵀ.id ∘ K.F₁ (F.F₁ f) ]) ≈⟨ 𝒞.identityˡ {f = Module⇒.arr (K.F₁ (F.F₁ f))} ⟩ Module⇒.arr (K.F₁ (F.F₁ f)) ≈⟨ refl ⟩ Module⇒.arr (Fᵀ.F₁ f) ≈˘⟨ 𝒞ᵀ.identityʳ {f = Fᵀ.F₁ f} ⟩ Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ 𝒞ᵀ.id ]) ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞ᵀ {A = Fᵀ.F₀ A} ⟩ Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ (hid 𝒞ᵀ ≡.refl) ]) ∎ } Forgetful∘ComparisonF≡G : (Forgetful T ∘F ComparisonF) ≡F G Forgetful∘ComparisonF≡G = record { eq₀ = λ X → ≡.refl ; eq₁ = λ f → begin 𝒞 [ (hid 𝒞 ≡.refl) ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ hid-refl 𝒞 ⟩∘⟨refl ⟩ 𝒞 [ 𝒞.id ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ 𝒞.identityˡ ⟩ (Gᵀ.F₁ (K.F₁ f)) ≈⟨ refl ⟩ G.F₁ f ≈˘⟨ 𝒞.identityʳ ⟩ 𝒞 [ G.F₁ f ∘ 𝒞.id ] ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞 ⟩ 𝒞 [ G.F₁ f ∘ (hid 𝒞 ≡.refl) ] ∎ }
{ "alphanum_fraction": 0.5461104141, "avg_line_length": 32.8659793814, "ext": "agda", "hexsha": "0e036e3b65998f1899638ae78af17c9f2af3a975", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/EilenbergMoore.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/EilenbergMoore.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/EilenbergMoore.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1362, "size": 3188 }
{-# OPTIONS --without-K #-} module overloading.bundle where open import level record Bundle {i j} {Base : Set i} (Struct : Base → Set j) : Set (lsuc (i ⊔ j)) where constructor bundle field parent : Base struct : Struct parent
{ "alphanum_fraction": 0.6076923077, "avg_line_length": 21.6666666667, "ext": "agda", "hexsha": "026c241fdddc353e47c989d5178c5a509637734e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "overloading/bundle.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/overloading/bundle.agda", "max_line_length": 70, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "overloading/bundle.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 68, "size": 260 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.FromToInit {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d from-to-l-g : (c : A₀₂) → ap (from ∘ to ∘ left) (glue c) == ap left (glue c) from-to-l-g c = ap (from ∘ i₀∙) (glue c) =⟨ ap-∘ from i₀∙ (glue c) ⟩ ap from (ap i₀∙ (glue c)) =⟨ I₀∙.glue-β c |in-ctx ap from ⟩ ap from (glue (left c)) =⟨ From.glue-β (left c) ⟩ ap left (glue c) ∎ module FromToL = PushoutElim {d = span _ _ _ f₀₁ f₀₃} {P = λ a → from (to (left a)) == left a} (λ a → idp) (λ b → idp) (λ c → ↓-='-in (! (from-to-l-g c))) from-to-l : (a : A₀∙) → from (to (left a)) == left a from-to-l = FromToL.f from-to-r-g : (c : A₄₂) → ap (from ∘ to ∘ right) (glue c) == ap right (glue c) from-to-r-g c = ap (from ∘ i₄∙) (glue c) =⟨ ap-∘ from i₄∙ (glue c) ⟩ ap from (ap i₄∙ (glue c)) =⟨ I₄∙.glue-β c |in-ctx ap from ⟩ ap from (glue (right c)) =⟨ From.glue-β (right c) ⟩ ap right (glue c) ∎ module FromToR = PushoutElim {d = span _ _ _ f₄₁ f₄₃} {P = λ b → from (to (right b)) == right b} (λ a → idp) (λ b → idp) (λ c → ↓-='-in (! (from-to-r-g c))) from-to-r : (b : A₄∙) → from (to (right b)) == right b from-to-r = FromToR.f from-to-g-l : (a : A₂₀) → glue (left a) == ap from (ap to (glue (left a))) from-to-g-l a = glue (left a) =⟨ ! (I∙₀.glue-β a) ⟩ ap i∙₀ (glue a) =⟨ ap-∘ from left (glue a) ⟩ ap from (ap left (glue a)) =⟨ ! (To.glue-β (left a)) |in-ctx ap from ⟩ ap from (ap to (glue (left a))) ∎ from-to-g-r : (b : A₂₄) → glue (right b) == ap from (ap to (glue (right b))) from-to-g-r b = glue (right b) =⟨ ! (I∙₄.glue-β b) ⟩ ap i∙₄ (glue b) =⟨ ap-∘ from right (glue b) ⟩ ap from (ap right (glue b)) =⟨ ! (To.glue-β (right b)) |in-ctx ap from ⟩ ap from (ap to (glue (right b))) ∎
{ "alphanum_fraction": 0.5216076059, "avg_line_length": 31.698630137, "ext": "agda", "hexsha": "1140fc09de4fa5b55f13d3ece49c5f4e449d63ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/FromToInit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/FromToInit.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/FromToInit.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1006, "size": 2314 }
module Issue4260 where open import Issue4260.M -- syntax F X = G X H : Set → Set H X = G X
{ "alphanum_fraction": 0.6421052632, "avg_line_length": 10.5555555556, "ext": "agda", "hexsha": "688a773d315d33da316b2546ba23659ccce591b0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4260.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4260.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4260.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 95 }
module plfa-code.Negation where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc) open import Data.Empty using (⊥; ⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import plfa-code.Isomorphism using (_≃_; extensionality) ¬_ : Set → Set ¬ A = A → ⊥ ¬-elim : ∀ {A : Set} → ¬ A → A --- → ⊥ ¬-elim ¬x x = ¬x x infix 3 ¬_ ¬¬-intro : ∀ {A : Set} → A ----- → ¬ ¬ A ¬¬-intro x = λ ¬x → ¬x x ¬¬-intro′ : ∀ {A : Set} → A ----- → ¬ ¬ A ¬¬-intro′ x ¬x = ¬x x ¬¬¬-elim : ∀ {A : Set} → ¬ ¬ ¬ A ------- → ¬ A ¬¬¬-elim ¬¬¬x = λ x → ¬¬¬x (¬¬-intro x) contraposition : ∀ {A B : Set} → (A → B) ------------ → (¬ B → ¬ A) contraposition f ¬y x = ¬y (f x) _≢_ : ∀ {A : Set} → A → A → Set x ≢ y = ¬ (x ≡ y) _ : 1 ≢ 2 _ = λ () peano : ∀ {m : ℕ} → zero ≢ suc m peano = λ () id : ⊥ → ⊥ id x = x id′ : ⊥ → ⊥ id′ () id≡id′ : id ≡ id′ id≡id′ = extensionality (λ ()) assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′ assimilation ¬x ¬x′ = extensionality (λ x → ⊥-elim (¬x′ x)) open Data.Nat using (_<_; _≤_; z≤n; s≤s) open Relation.Binary.PropositionalEquality using (cong) open import Function open Data.Product using (proj₁; proj₂) ---------- practice ---------- <-irreflexive : ∀ {n : ℕ} → ¬ (n < n) <-irreflexive {suc n} (s≤s n<n) = <-irreflexive n<n data Trichotomy (m n : ℕ) : Set where less : m < n → ¬ (n < m) → ¬ (m ≡ n) → Trichotomy m n greater : n < m → ¬ (m ≡ n) → ¬ (m < n) → Trichotomy m n equal : m ≡ n → ¬ (m < n) → ¬ (n < m) → Trichotomy m n inv-< : ∀ {m n} → suc m < suc n → m < n inv-< (s≤s sm<sn) = sm<sn inv-≡ : ∀ {m n} → suc m ≡ suc n → m ≡ n inv-≡ refl = refl <-trichotomy : ∀ (m n : ℕ) → Trichotomy m n <-trichotomy zero zero = equal refl (λ ()) (λ ()) <-trichotomy zero (suc n) = less (s≤s z≤n) (λ ()) (λ ()) <-trichotomy (suc m) zero = greater (s≤s z≤n) (λ ()) (λ ()) <-trichotomy (suc m) (suc n) with <-trichotomy m n ... | less m<n ¬n<m ¬m≡n = less (s≤s m<n) (¬n<m ∘ inv-<) (¬m≡n ∘ inv-≡) ... | greater n<m ¬m≡n ¬m<n = greater (s≤s n<m) (¬m≡n ∘ inv-≡) (¬m<n ∘ inv-<) ... | equal m≡n ¬m<n ¬n<m = equal (cong suc m≡n) (¬m<n ∘ inv-<) (¬n<m ∘ inv-<) ⊎-dual-× : ∀ (A B : Set) → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B) ⊎-dual-× A B = record { to = λ ¬-A⊎B → ⟨ (¬-A⊎B ∘ inj₁) , (¬-A⊎B ∘ inj₂) ⟩ ; from = λ{ ¬A׬B (inj₁ a) → proj₁ ¬A׬B a ; ¬A׬B (inj₂ b) → proj₂ ¬A׬B b } ; from∘to = λ{x → assimilation _ x} ; to∘from = λ{ ⟨ ¬a , ¬b ⟩ → refl} } -- ¬ (A × B) ≃ (¬ A) ⊎ (¬ B) does not hold, but we could say: ⊎¬-implies-¬× : ∀ (A B : Set) → (¬ A) ⊎ (¬ B) → ¬ (A × B) ⊎¬-implies-¬× A B (inj₁ ¬a) = λ ab → ¬a (proj₁ ab) ⊎¬-implies-¬× A B (inj₂ ¬b) = λ ab → ¬b (proj₂ ab) ------------------------------ em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A) em-irrefutable k = k (inj₂ (λ x → k (inj₁ x))) ---------- practice ---------- -- to prove the implying relations among a group of -- proposition P₀ P₁ P₂ ... Pₙ, we just need prove P₀ → P₁, -- P₁ → P₂, ..., Pₙ₋₁ → Pₙ, Pₙ → P₀. P₀ = ∀ {A : Set} → A ⊎ ¬ A P₁ = ∀ {A : Set} → (¬ ¬ A → A) P₂ = ∀ {A B : Set} → ((A → B) → A) → A P₃ = ∀ {A B : Set} → (A → B) → ¬ A ⊎ B P₄ = ∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B P₀⇒P₁ : P₀ → P₁ P₀⇒P₁ p₀ {A} ¬¬a with p₀ {A} ... | inj₁ a = a ... | inj₂ ¬a = ⊥-elim (¬¬a ¬a) P₁⇒P₂ : P₁ → P₂ P₁⇒P₂ p₁ x = p₁ $ λ ¬a → (¬a $ x $ p₁ ∘ const ∘ ¬a) P₂⇒P₃ : P₂ → P₃ P₂⇒P₃ p₂ {A} {B} f = p₂ {¬ A ⊎ B} {⊥} (λ z → inj₁ (z ∘ inj₂ ∘ f)) --- the prove 'P₃⇒P₄' below referenced https://github.com/googleson78/plfa P₃⇒P₀ : P₃ → P₀ P₃⇒P₀ p₃ {A} with p₃ Function.id ... | inj₁ ¬x = inj₂ ¬x ... | inj₂ x = inj₁ x P₁⇒P₄ : P₁ → P₄ P₁⇒P₄ p₁ {A} {B} ¬x = p₁ (λ ¬y → ¬x ⟨ ¬y ∘ inj₁ , ¬y ∘ inj₂ ⟩) P₃⇒P₄ : P₃ → P₄ P₃⇒P₄ = P₁⇒P₄ ∘ P₀⇒P₁ ∘ P₃⇒P₀ P₄⇒P₀ : P₄ → P₀ P₄⇒P₀ p₄ {A} = p₄ {A} {¬ A} $ proj₂ ˢ proj₁ Stable : Set → Set Stable A = ¬ ¬ A → A ¬⇒stable : ∀ {A : Set} → ¬ A → Stable (¬ A) ¬⇒stable ¬a = ¬¬¬-elim ×⇒stable : ∀ {A B : Set} → Stable A → Stable B → Stable (A × B) ×⇒stable a b = λ x → ⟨ (a $ λ z → x (z ∘ proj₁)) , (b $ λ z → x (z ∘ proj₂)) ⟩
{ "alphanum_fraction": 0.4523584906, "avg_line_length": 25.8536585366, "ext": "agda", "hexsha": "9649844cadf8fbfd4657c2aafcbb31bdf3bbf07f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Negation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Negation.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Negation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2106, "size": 4240 }
{-# OPTIONS -Werror -WnoEmptyRewritePragma #-} {-# REWRITE #-}
{ "alphanum_fraction": 0.640625, "avg_line_length": 16, "ext": "agda", "hexsha": "d6177072eec100664108b5abab8cc669eebca7f3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2912.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2912.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2912.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 64 }
{-# OPTIONS --without-K --exact-split #-} module hott-i where import 04-inductive-types open 04-inductive-types public data 𝕀 : UU lzero where left : 𝕀 postulate right : 𝕀 data Path {l : Level} (A : 𝕀 → UU l) : (a : A left) (a' : A right) → UU l where pcon : (f : (x : 𝕀) → A x) → Path A (f left) (f right) apply-path : {l : Level} (A : 𝕀 → UU l) (a : A left) (a' : A right) → Path A a a' → (x : 𝕀) → A x apply-path A .(f left) .(f right) (pcon f) x = f x refl-path : {l : Level} (A : UU l) (a : A) → Path (λ x → A) a a refl-path A a = pcon (λ x → a) apply-path-pcon : {l : Level} (A : 𝕀 → UU l) (f : (x : 𝕀) → A x) → (x : 𝕀) → Path (λ y → A x) (apply-path A (f left) (f right) (pcon f) x) (f x) apply-path-pcon A f x = refl-path (A x) (f x) left-apply-path : {l : Level} (A : 𝕀 → UU l) (a : A left) (a' : A right) (p : Path A a a') → Path (λ y → A left) (apply-path A a a' p left) a left-apply-path A .(f left) .(f right) (pcon f) = refl-path (A left) (f left) right-apply-path : {l : Level} (A : 𝕀 → UU l) (a : A left) (a' : A right) (p : Path A a a') → Path (λ y → A right) (apply-path A a a' p right) a' right-apply-path A .(f left) .(f right) (pcon f) = refl-path (A right) (f right) free-transport-path : {l : Level} (A : 𝕀 → UU l) → A left → (x : 𝕀) → A x free-transport-path A a left = a transport-path : {l : Level} (A : 𝕀 → UU l) → A left → A right transport-path A a = free-transport-path A a right elim-path-lemma : {l : Level} {A : UU l} (f : (x : 𝕀) → A) → (i : 𝕀) → Path (λ j → A) (f left) (f i) elim-path-lemma {A = A} f left = refl-path A (f left) elim-path : {l1 l2 : Level} (A : UU l1) (a : A) (B : (x : A) (p : Path (λ i → A) a x) → UU l2) → B a (refl-path A a) → (x : A) (p : Path (λ i → A) a x) → B x p elim-path A .(f left) B b .(f right) (pcon f) = transport-path (λ i → B (f i) {!elim-path-lemma f i!}) b concat-path : {l : Level} {A : UU l} {x y z : A} → Path (λ i → A) x y → Path (λ i → A) y z → Path (λ i → A) x z concat-path {l} {A} {x} p (pcon f) = transport-path (λ i → Path (λ j → A) x (f i)) p function-extensionality' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} → (H : (x : A) → Path (λ i → B x) (f x) (g x)) → (i : 𝕀) (x : A) → B x function-extensionality' {B = B} {f} {g} H i x = apply-path (λ j → B x) (f x) (g x) (H x) i function-extensionality : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} → (H : (x : A) → Path (λ i → B x) (f x) (g x)) → Path (λ j → (x : A) → B x) f g function-extensionality {l1} {l2} {A} {B} {f} {g} H = concat-path ( concat-path {!!} ( pcon (function-extensionality' H))) ( {!!}) {- pcon-apply-path : {l : Level} (A : 𝕀 → UU l) (a : A left) (a' : A right) (p : Path A a a') → Path (λ y → Path A a a') (pcon (apply-path A a a' p)) ? pcon-apply-path A a a' p = ? -}
{ "alphanum_fraction": 0.5060827251, "avg_line_length": 31.2717391304, "ext": "agda", "hexsha": "9855b797050a29094ad82317eb6c55ad3597a9ad", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/hott-i.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/hott-i.agda", "max_line_length": 80, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/hott-i.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 1294, "size": 2877 }
open import Agda.Primitive open import Agda.Builtin.Bool open import Agda.Builtin.Equality infix 2 _↔_ record _↔_ {a} {b} (p : Set a) (q : Set b) : Set (a ⊔ b) where field l2r : p → q r2l : q → p _&_ : Bool → Bool → Bool true & true = true _ & _ = false [_] : Bool → Set [ P ] = P ≡ true record ∃ {A : Set} (P : A → Bool) : Set where field {witness} : A proof : [ P witness ] postulate U : Set set : Set subset : set → set → Bool int : set → set → set mem : ∀ {A : Set} → A → set → Bool mapsF : set → set → Bool F : ∀ {A B : Set} → A → B → Bool same : ∀ {A B : Set} → A → B → Bool equal : set → set → Bool invF : set → set → set subsetMembershipLaw : ∀ {A} {B} → [ subset A B ] ↔ (∀ {M : Set} {x : M} → [ mem x A ] → [ mem x B ]) -- mapsFLaw : ∀ {A} {B} → [ mapsF A B ] ↔ ((∀ {M : Set} {x : M} → [ mem x A ] → ∃ λ (y : M) → mem y B & F x y) {- Problem #758 same as problem 757 but rewritten with only expressions of first-order logic Given premises: (all A)(all B)((subset A B) <-> (all x)((mem x A) -> (mem x B))) justification = 1.0 (all A)(all B)(some intAB)(IsInt A B intAB) justification = 1.0 (all A)(all B)(all intAB)((IsInt A B intAB) <-> (all x)((mem x intAB) <-> ((mem x A) & (mem x B)))) justification = 1.0 (all A)(all B)((mapsF A B) <-> ((all x)((mem x A) -> (some y)((mem y B) & (F x y))) & (all x)(all y)(all z)(((mem x A) & ((mem y A) & (mem z A))) -> (((F x y) & (F x z)) -> (same y z))))) justification = 1.0 (all A)(all x)(all y)((same x y) -> ((mem x A) -> (mem y A))) justification = 1.0 (all x)(same x x) justification = 1.0 (all x)(all y)((same x y) <-> (same y x)) justification = 1.0 (all x)(all y)(all z)(((same x y) & (same y z)) -> (same x z)) justification = 1.0 (all A)(all B)((equal A B) <-> ((subset A B) & (subset B A))) justification = 1.0 (all A)(all B)(some invFBA)(IsInvF B A invFBA) justification = 1.0 (all A)(all B)(all invFBA)((IsInvF B A invFBA) <-> (all x)((mem x invFBA) <-> ((mem x A) & (some y)((mem y B) & (F x y))))) justification = 1.0 Ultimate epistemic interests: (all A)(all B)(all X)(all Y)(((mapsF A B) & ((subset X B) & (subset Y B))) -> (some intXY)((IsInt X Y intXY) & (some invFIntXYA)((IsInvF intXY A invFIntXYA) & (some invFXA)((IsInvF X A invFXA) & (some invFYA)((IsInvF Y A invFYA) & (some intInvFXAInvFYA)((IsInt invFXA invFYA intInvFXAInvFYA) & (equal invFIntXYA intInvFXAInvFYA))))))) interest = 1.0 -}
{ "alphanum_fraction": 0.5395941106, "avg_line_length": 45.6909090909, "ext": "agda", "hexsha": "37cf864c6c094bb0ba65d6d5de715418c3768300", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/lisp-revised/Problem758.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/lisp-revised/Problem758.agda", "max_line_length": 357, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/lisp-revised/Problem758.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 993, "size": 2513 }
------------------------------------------------------------------------ -- An up-to technique for weak similarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Similarity.Weak.Up-to {ℓ} (lts : LTS ℓ) where open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Equational-reasoning open import Expansion lts using (Expansion) open import Relation open import Similarity.Weak lts import Similarity.Weak.Equational-reasoning-instances import Up-to open LTS lts ------------------------------------------------------------------------ -- The general up-to machinery, instantiated with the StepC container open Up-to StepC public ------------------------------------------------------------------------ -- An example -- Up to expansion to the left and weak similarity to the right. -- -- This is a generalisation of the non-symmetric up-to technique -- presented by Pous and Sangiorgi in Section 6.5.2.4 of "Enhancements -- of the bisimulation proof method". Up-to-expansion-and-weak-similarity : Trans₂ ℓ Proc Up-to-expansion-and-weak-similarity R = Expansion ∞ ⊙ R ⊙ Weak-similarity ∞ -- The relation transformer is monotone. up-to-expansion-and-weak-similarity-monotone : Monotone Up-to-expansion-and-weak-similarity up-to-expansion-and-weak-similarity-monotone R⊆S = Σ-map id (Σ-map id (Σ-map id (Σ-map R⊆S id))) -- The relation transformer is size-preserving. up-to-expansion-and-weak-similarity-size-preserving : Size-preserving Up-to-expansion-and-weak-similarity up-to-expansion-and-weak-similarity-size-preserving = _⇔_.from (monotone→⇔ up-to-expansion-and-weak-similarity-monotone) (λ where {x = p , q} (r , p≳r , s , r≼s , s≼q) → p ∼⟨ p≳r ⟩ r ∼′⟨ r≼s ⟩ ≼: s ∼⟨ s≼q ⟩■ q)
{ "alphanum_fraction": 0.6074619023, "avg_line_length": 31.1967213115, "ext": "agda", "hexsha": "ca1d9907b96d81e2b1ac0696598540066ac6a2b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Similarity/Weak/Up-to.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Similarity/Weak/Up-to.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Similarity/Weak/Up-to.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 505, "size": 1903 }
{-# OPTIONS --without-K #-} module pointed.equality where open import sum open import equality.core open import function.extensionality open import function.isomorphism.core open import function.isomorphism.utils open import pointed.core pmap-eq : ∀ {i j}{X : Set i}{Y : Set j}{x₀ : X}{y₀ : Y} → {f : X → Y}{p : f x₀ ≡ y₀} → {g : X → Y}{q : g x₀ ≡ y₀} → (Σ ((x : X) → f x ≡ g x) λ γ → p ≡ γ x₀ · q) ≅ _≡_ {A = PMap (X , x₀) (Y , y₀)} (f , p) (g , q) pmap-eq {X = X}{Y}{x₀}{y₀} = Σ-ap-iso' strong-funext-iso lem ·≅ Σ-split-iso where lem : {f : X → Y}{p : f x₀ ≡ y₀} → {g : X → Y}{q : g x₀ ≡ y₀} → (h : f ≡ g) → (p ≡ funext-inv h x₀ · q) ≅ (subst (λ u → u x₀ ≡ y₀) h p ≡ q) lem refl = refl≅
{ "alphanum_fraction": 0.5019607843, "avg_line_length": 31.875, "ext": "agda", "hexsha": "46671d620a61ced4624c2c283de882cedd814e90", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/pointed/equality.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/pointed/equality.agda", "max_line_length": 75, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/pointed/equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 318, "size": 765 }
{-# OPTIONS --safe #-} module Cubical.Data.Unit.Pointed where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed.Base open import Cubical.Data.Unit private variable ℓ : Level Unit∙ : Pointed ℓ Unit∙ = Unit* , tt*
{ "alphanum_fraction": 0.7380952381, "avg_line_length": 16.8, "ext": "agda", "hexsha": "b80614d2920a5e2dd4f5ec60cfcadf5281f9e5b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Data/Unit/Pointed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Data/Unit/Pointed.agda", "max_line_length": 44, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Data/Unit/Pointed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 71, "size": 252 }
{-# OPTIONS --cubical --safe #-} module Data.Bits.Fold where open import Data.Bits open import Strict open import Prelude module _ {a} {A : Type a} (zer : A → A) (one : A → A) (base : A) where foldr-bits : Bits → A foldr-bits [] = base foldr-bits (0∷ xs) = zer (foldr-bits xs) foldr-bits (1∷ xs) = one (foldr-bits xs) foldr-universal : ∀ (h : Bits → A) z o e → (h [] ≡ e) → (∀ xs → h (0∷ xs) ≡ z (h xs)) → (∀ xs → h (1∷ xs) ≡ o (h xs)) → ∀ xs → h xs ≡ foldr-bits z o e xs foldr-universal h z o e base zer one [] = base foldr-universal h z o e base zer one (0∷ xs) = zer xs ; cong z (foldr-universal h z o e base zer one xs) foldr-universal h z o e base zer one (1∷ xs) = one xs ; cong o (foldr-universal h z o e base zer one xs) module _ {a} {A : Type a} (zer : A → A) (one : A → A) where foldl-go : Bits → A → A foldl-go [] base = base foldl-go (0∷ xs) base = foldl-go xs $! zer base foldl-go (1∷ xs) base = foldl-go xs $! one base foldl-bits : A → Bits → A foldl-bits = λ base xs → foldl-go xs $! base {-# INLINE foldl-bits #-} foldl-universal : ∀ (h : Bits → A → A) z o e → (∀ xs bs → h (0∷ xs) bs ≡ h xs (z bs)) → (∀ xs bs → h (1∷ xs) bs ≡ h xs (o bs)) → (∀ bs → h [] bs ≡ bs) → ∀ xs → h xs e ≡ foldl-bits z o e xs foldl-universal h z o e zer one bs [] = bs e ; sym ($!-≡ (foldl-go z o []) e) foldl-universal h z o e zer one bs (0∷ xs) = zer xs e ; foldl-universal h z o (z e) zer one bs xs ; sym ($!-≡ (foldl-go z o (0∷ xs)) e) foldl-universal h z o e zer one bs (1∷ xs) = one xs e ; foldl-universal h z o (o e) zer one bs xs ; sym ($!-≡ (foldl-go z o (1∷ xs)) e)
{ "alphanum_fraction": 0.5150997151, "avg_line_length": 41.7857142857, "ext": "agda", "hexsha": "a628a9aec8df66e3074ee6400aec23a2f7513809", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Bits/Fold.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Bits/Fold.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Bits/Fold.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 688, "size": 1755 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders open import Fields.Fields open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Orders.LeastUpperBounds.Definition open import Numbers.ClassicalReals.RealField open import Groups.Definition open import Groups.Homomorphisms.Definition open import Rings.Homomorphisms.Definition open import Sets.EquivalenceRelations open import Semirings.Definition open import Numbers.Naturals.Semiring open import Numbers.Integers.Definition open import Numbers.Integers.RingStructure.Ring module Numbers.ClassicalReals.RealField.AllIsomorphic (ℝ : RealField) where open RealField ℝ open Ring R open Group additiveGroup open Setoid S open Equivalence eq open import Rings.Lemmas R open import Groups.Lemmas additiveGroup fromN : ℕ → A fromN zero = 0R fromN (succ n) = 1R + fromN n fromNPreserves+ : (a b : ℕ) → fromN (a +N b) ∼ (fromN a) + (fromN b) fromNPreserves+ zero b = symmetric identLeft fromNPreserves+ (succ a) b = transitive (+WellDefined reflexive (fromNPreserves+ a b)) +Associative fromNPreserves* : (a b : ℕ) → fromN (a *N b) ∼ (fromN a) * (fromN b) fromNPreserves* zero b = symmetric (transitive *Commutative timesZero) fromNPreserves* (succ a) b = transitive (transitive (fromNPreserves+ b (a *N b)) (+WellDefined (symmetric identIsIdent) (fromNPreserves* a b))) (symmetric *DistributesOver+') fromNWellDefined : {a b : ℕ} → a ≡ b → fromN a ∼ fromN b fromNWellDefined refl = reflexive fromZ : ℤ → A fromZ (nonneg x) = fromN x fromZ (negSucc x) = inverse (fromN (succ x)) private lemma : (a : ℕ) → (b : ℕ) → (1R + fromN (succ a *N b +N a)) ∼ ((1R + fromN a) * (1R + fromN b)) lemma a b = transitive (transitive (transitive (+WellDefined reflexive (transitive (fromNPreserves+ ((succ a) *N b) a) (transitive groupIsAbelian (+WellDefined reflexive (transitive (fromNPreserves+ b (a *N b)) (+WellDefined (symmetric identIsIdent) (fromNPreserves* a b))))))) +Associative) (+WellDefined (transitive (symmetric identIsIdent) *Commutative) (symmetric *DistributesOver+'))) (symmetric *DistributesOver+) fromZPreserves+ : (a b : ℤ) → fromZ (a +Z b) ∼ (fromZ a) + (fromZ b) fromZPreserves+ (nonneg zero) (nonneg y) = symmetric identLeft fromZPreserves+ (nonneg (succ x)) (nonneg y) = transitive (+WellDefined reflexive (fromNPreserves+ x y)) +Associative fromZPreserves+ (nonneg zero) (negSucc y) = symmetric identLeft fromZPreserves+ (nonneg (succ x)) (negSucc zero) = transitive (transitive (transitive (transitive (symmetric identLeft) (+WellDefined (symmetric invLeft) reflexive)) (symmetric +Associative)) (+WellDefined (inverseWellDefined (symmetric identRight)) reflexive)) (groupIsAbelian) fromZPreserves+ (nonneg (succ x)) (negSucc (succ y)) = transitive (fromZPreserves+ (nonneg x) (negSucc y)) (transitive (transitive (transitive (transitive (transitive (transitive (transitive (symmetric identLeft) +Associative) groupIsAbelian) (+WellDefined reflexive (+WellDefined (symmetric invLeft) reflexive))) (+WellDefined reflexive (symmetric +Associative))) +Associative) groupIsAbelian) (+WellDefined reflexive (symmetric invContravariant))) fromZPreserves+ (negSucc zero) (nonneg zero) = symmetric identRight fromZPreserves+ (negSucc zero) (nonneg (succ y)) = transitive (transitive (symmetric identLeft) (+WellDefined (symmetric (transitive (+WellDefined reflexive (symmetric identRight)) invLeft)) reflexive)) (symmetric +Associative) fromZPreserves+ (negSucc (succ x)) (nonneg zero) = symmetric identRight fromZPreserves+ (negSucc (succ x)) (nonneg (succ y)) = transitive (fromZPreserves+ (negSucc x) (nonneg y)) (transitive (transitive (+WellDefined reflexive (transitive (symmetric identLeft) (transitive (+WellDefined (symmetric invLeft) reflexive) (symmetric +Associative)))) +Associative) (+WellDefined (symmetric invContravariant) reflexive)) fromZPreserves+ (negSucc x) (negSucc y) = transitive (transitive invContravariant (transitive (+WellDefined invContravariant reflexive) (transitive (+WellDefined (transitive (transitive (+WellDefined (transitive (inverseWellDefined (fromNPreserves+ x y)) invContravariant) reflexive) (symmetric +Associative)) groupIsAbelian) reflexive) (symmetric +Associative)))) (+WellDefined (symmetric invContravariant) (symmetric invContravariant)) fromZPreserves* : (a b : ℤ) → fromZ (a *Z b) ∼ (fromZ a) * (fromZ b) fromZPreserves* (nonneg a) (nonneg b) = fromNPreserves* a b fromZPreserves* (nonneg zero) (negSucc b) = symmetric (transitive *Commutative timesZero) fromZPreserves* (nonneg (succ a)) (negSucc b) = transitive (inverseWellDefined (lemma a b)) (symmetric ringMinusExtracts) fromZPreserves* (negSucc a) (nonneg zero) = symmetric timesZero fromZPreserves* (negSucc a) (nonneg (succ b)) = transitive (inverseWellDefined (transitive (+WellDefined reflexive (fromNWellDefined {(a +N b *N a) +N b} {(b +N a *N b) +N a} (transitivity (Semiring.commutative ℕSemiring _ b) (transitivity (applyEquality (b +N_) (transitivity (Semiring.commutative ℕSemiring a _) (applyEquality (_+N a) (multiplicationNIsCommutative b a)))) (Semiring.+Associative ℕSemiring b _ a))))) (lemma a b))) (symmetric ringMinusExtracts') fromZPreserves* (negSucc a) (negSucc b) = transitive (transitive (+WellDefined reflexive (fromNWellDefined {b +N a *N succ b} {(b +N a *N b) +N a} (transitivity (applyEquality (b +N_) (transitivity (multiplicationNIsCommutative a (succ b)) (transitivity (Semiring.commutative ℕSemiring a _) (applyEquality (_+N a) (multiplicationNIsCommutative b a))))) (Semiring.+Associative ℕSemiring b _ a)))) (lemma a b)) (symmetric twoNegativesTimes) ringHom : RingHom ℤRing R fromZ RingHom.preserves1 ringHom = identRight RingHom.ringHom ringHom {r} {s} = fromZPreserves* r s GroupHom.groupHom (RingHom.groupHom ringHom) {r} {s} = fromZPreserves+ r s GroupHom.wellDefined (RingHom.groupHom ringHom) refl = reflexive
{ "alphanum_fraction": 0.7632779407, "avg_line_length": 73.0714285714, "ext": "agda", "hexsha": "64378a176c9bd27b5fed9f1cd9209ca9d2f8a2f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/ClassicalReals/RealField/AllIsomorphic.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/ClassicalReals/RealField/AllIsomorphic.agda", "max_line_length": 463, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/ClassicalReals/RealField/AllIsomorphic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1898, "size": 6138 }
-- {-# OPTIONS --allow-unsolved-metas #-} module GUIgeneric.GUIFeaturesPart5 where open import GUIgeneric.Prelude renaming (addButton to addButton') open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI open import GUIgeneric.GUIExampleLib open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton') open import GUIgeneric.GUIFeatures open import GUIgeneric.GUIFeaturesPart2 hiding ( main ; main1 ) open import GUIgeneric.GUIFeaturesPart3 hiding ( main ; Tea ; Cancel) open import GUIgeneric.GUIFeaturesPart4 hiding ( main ; cancelNewStateSM ; cancelStateAdded ; cancelFeatureAdded ) open import GUIgeneric.GUIExample hiding (main ) data StatesBasicVM : Set where pay change soda serveSoda open' close : StatesBasicVM basicVM : FMachine StatesBasicVM basicVM .Features = ⊤ basicVM .AddStateF = ⊥ basicVM .GUIF f (inj₁ pay) = simpleSMState "Pay" (inj₁ change) basicVM .GUIF f (inj₁ change) = simpleSMState "Get Change" (inj₁ soda) basicVM .GUIF f (inj₁ soda) = simpleSMState "Soda" (inj₁ serveSoda) basicVM .GUIF f (inj₁ serveSoda) = simpleSMState "Serve Soda" (inj₁ open') basicVM .GUIF f (inj₁ open') = simpleSMState "Open" (inj₁ close) basicVM .GUIF f (inj₁ close) = simpleSMState "Close" (inj₁ pay) basicVM .GUIF f (inj₂ ()) newState : {A B : Set} → A ⊎ B ⊎ ⊤ newState = (inj₂ (inj₂ tt)) {- handler for the new state to be added to the tea machine -} teaNewStateSM : (fm : FMachine StatesBasicVM) → SMachineState (StatesBasicVM ⊎ fm .AddStateF ⊎ ⊤) newState teaNewStateSM fm = simpleSMState "Serve Tea" (inj₁ open') {- add the new state to the feature machine -} TeaMAddNewState : FMachine StatesBasicVM → FMachine StatesBasicVM TeaMAddNewState fm = addOneStateFMachine fm (teaNewStateSM fm) {- add a dummy feature "FeatureTea" to the feature machine -} TeaMAddFeature : FMachine StatesBasicVM → FMachine StatesBasicVM TeaMAddFeature fm = addDummyFeatures (TeaMAddNewState fm) FeatureTea {- redefine in the feature machine one button -} Tea : FMachine StatesBasicVM → FMachine StatesBasicVM Tea fm .Features = TeaMAddFeature fm .Features Tea fm .AddStateF = TeaMAddFeature fm .AddStateF Tea fm .GUIF (f , yesTea) (inj₁ soda) = addBtn2StateMachine ( TeaMAddFeature fm .GUIF (f , yesTea) (inj₁ soda)) "Tea" newState Tea fm .GUIF f s = TeaMAddFeature fm .GUIF f s {- handler for the new state to be added to the cancel machine -} cancelNewStateSM : (fm : FMachine StatesBasicVM) → SMachineState (StatesBasicVM ⊎ fm .AddStateF ⊎ ⊤) newState cancelNewStateSM fm = simpleSMState "Cancelling" (inj₁ pay) {- add the state to the old feature machine -} cancelStateAdded : FMachine StatesBasicVM → FMachine StatesBasicVM cancelStateAdded fm = addOneStateFMachine fm (cancelNewStateSM fm) {- add a dummy feature "FeatureCancel" to the feature machine -} cancelFeatureAdded : FMachine StatesBasicVM → FMachine StatesBasicVM cancelFeatureAdded fm = addDummyFeatures (cancelStateAdded fm) FeatureCancel {- redefine in the feature machine one button -} Cancel : FMachine StatesBasicVM → FMachine StatesBasicVM Cancel fm .Features = cancelFeatureAdded fm .Features Cancel fm .AddStateF = cancelFeatureAdded fm .AddStateF Cancel fm .GUIF (f , yesCancel) (inj₁ soda) = addBtn2StateMachine (cancelFeatureAdded fm .GUIF (f , yesCancel) (inj₁ soda)) "Cancel" newState Cancel fm .GUIF f s = cancelFeatureAdded fm .GUIF f s {- add the Dummy free feature -} FreeMAddFeature : FMachine StatesBasicVM → FMachine StatesBasicVM FreeMAddFeature fm = addDummyFeatures fm FeatureFree {- redefine the pay button to free in case feature free is yesFree -} Free : FMachine StatesBasicVM → FMachine StatesBasicVM Free fm .Features = FreeMAddFeature fm .Features Free fm .AddStateF = FreeMAddFeature fm .AddStateF Free fm .GUIF (f , yesFree) (inj₁ pay) = simpleSMState "Free" (inj₁ soda) Free fm .GUIF (f , yesFree) (inj₁ open') = simpleSMState "Skip" (inj₁ pay) Free fm .GUIF f s = FreeMAddFeature fm .GUIF f s main1 : NativeIO Unit main1 = compileFeatureVM (Tea (Cancel basicVM)) ((_ , yesCancel) , yesTea) (inj₁ pay) main2 : NativeIO Unit main2 = compileFeatureVM (Free basicVM) (_ , yesFree) (inj₁ pay) -- multiFeatureMachine : FMachine StatesBasicVM multiFeatureMachine = Free (Cancel (Tea basicVM)) main : NativeIO Unit main = compileFeatureVM multiFeatureMachine (((_ , yesTea) , yesCancel) , noFree) (inj₁ pay)
{ "alphanum_fraction": 0.6939744119, "avg_line_length": 38.157480315, "ext": "agda", "hexsha": "fd9e4c7b74a0e4396f0e1cc5bcfdca246269121f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/GUIFeaturesPart5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/GUIFeaturesPart5.agda", "max_line_length": 115, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/GUIFeaturesPart5.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 1383, "size": 4846 }
{-# OPTIONS --safe --cubical #-} module Relation.Binary.Bool where open import Prelude -- record TotalOrder {e} (E : Type e) : Type e where -- field -- _≤?_ : E → E → Bool -- _≤_ : E → E → Type
{ "alphanum_fraction": 0.572815534, "avg_line_length": 17.1666666667, "ext": "agda", "hexsha": "5464e1f13d1da8cfdd1df6056f28349fa0bd8176", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Bool.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 68, "size": 206 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Escape {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties.Reflexivity open import Tools.Product import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- Reducible types are well-formed. escape : ∀ {l Γ A r} → Γ ⊩⟨ l ⟩ A ^ r → Γ ⊢ A ^ r escape (Uᵣ′ _ _ _ _ _ PE.refl [[ ⊢A , ⊢B , D ]]) = ⊢A escape (ℕᵣ [[ ⊢A , ⊢B , D ]]) = ⊢A escape (Emptyᵣ [[ ⊢A , ⊢B , D ]]) = ⊢A escape (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) = ⊢A escape (Πᵣ′ rF lF lG _ _ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) = ⊢A escape (∃ᵣ′ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) = ⊢A escape {ι ¹} (emb X A) = escape A escape {∞} (emb X A) = escape A -- Reducible type equality respect the equality relation. escapeEq : ∀ {l Γ A B r} → ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊢ A ≅ B ^ r escapeEq (Uᵣ′ _ _ _ ⁰ _ PE.refl [[ ⊢A , ⊢B , D ]]) D′ = ≅-red D D′ Uₙ Uₙ (≅-univ (≅-U⁰refl (wf ⊢A))) escapeEq (Uᵣ′ _ _ _ ¹ _ PE.refl [[ ⊢A , ⊢B , D ]]) D′ = ≅-red D D′ Uₙ Uₙ (≅-U¹refl (wf ⊢A)) escapeEq (ℕᵣ [[ ⊢A , ⊢B , D ]]) D′ = ≅-red D D′ ℕₙ ℕₙ (≅-univ (≅ₜ-ℕrefl (wf ⊢A))) escapeEq (Emptyᵣ [[ ⊢A , ⊢B , D ]]) D′ = ≅-red D D′ Emptyₙ Emptyₙ (≅-univ ((≅ₜ-Emptyrefl (wf ⊢A)))) escapeEq (ne′ K D neK K≡K) (ne₌ M D′ neM K≡M) = ≅-red (red D) (red D′) (ne neK) (ne neM) (~-to-≅ K≡M) escapeEq (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ≅-red (red D) D′ Πₙ Πₙ A≡B escapeEq (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ≅-red (red D) D′ ∃ₙ ∃ₙ A≡B escapeEq {ι ¹} (emb X A) A≡B = escapeEq A A≡B escapeEq {∞} (emb X A) A≡B = escapeEq A A≡B -- Reducible terms are well-formed. escapeTerm : ∀ {l Γ A t r} → ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] → Γ ⊢ t ∷ A ^ r escapeTerm (Uᵣ′ _ _ _ _ l< PE.refl D) (Uₜ A [[ ⊢t , ⊢u , d ]] typeA A≡A [A]) = conv ⊢t (sym (subset* (red D))) escapeTerm (ℕᵣ D) (ℕₜ n [[ ⊢t , ⊢u , d ]] t≡t prop) = conv ⊢t (sym (subset* (red D))) escapeTerm (Emptyᵣ D) (Emptyₜ (ne ⊢t)) = conv ⊢t (sym (subset* (red D))) escapeTerm {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ k [[ ⊢t , ⊢u , d ]] nf) = conv ⊢t (sym (subset* (red D))) escapeTerm {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ d) = d escapeTerm {r = [ ! , l ] } (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (f , [[ ⊢t , ⊢u , d ]] , funcF , f≡f , [f] , [f]₁) = conv ⊢t (sym (subset* (red D))) escapeTerm {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (sym (subset* (red D))) escapeTerm (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (sym (subset* (red D))) escapeTerm {ι ¹} (emb X A) t = escapeTerm A t escapeTerm {∞} (emb X A) t = escapeTerm A t -- Reducible term equality respect the equality relation. escapeTermEq : ∀ {l Γ A t u r} → ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] → Γ ⊢ t ≅ u ∷ A ^ r escapeTermEq (Uᵣ′ _ _ _ _ l< PE.refl D) (Uₜ₌ (Uₜ A d typeA A≡A [t]) (Uₜ B d′ typeB B≡B [u]) A≡B [A≡B]) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) Uₙ (typeWhnf typeA) (typeWhnf typeB) A≡B escapeTermEq (ℕᵣ D) (ℕₜ₌ k k′ d d′ k≡k′ prop) = let natK , natK′ = split prop in ≅ₜ-red (red D) (redₜ d) (redₜ d′) ℕₙ (naturalWhnf natK) (naturalWhnf natK′) k≡k′ escapeTermEq (Emptyᵣ D) (Emptyₜ₌ (ne ⊢t ⊢u)) = ~-to-≅ₜ (~-irrelevance ((conv ⊢t (sym (subset* (red D))))) ((conv ⊢u (sym (subset* (red D)))))) escapeTermEq {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ₌ k m d d′ (neNfₜ₌ neT neU t≡u)) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) (ne neK) (ne neT) (ne neU) (~-to-≅ₜ t≡u) escapeTermEq {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ₌ d d′) = ~-to-≅ₜ (~-irrelevance d d′) escapeTermEq {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) Πₙ (functionWhnf funcF) (functionWhnf funcG) f≡g escapeTermEq {r = [ % , l ] } (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (⊢t , ⊢u) = ~-to-≅ₜ (~-irrelevance ((conv ⊢t (sym (subset* (red D))))) ((conv ⊢u (sym (subset* (red D)))))) escapeTermEq (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (⊢t , ⊢u) = ~-to-≅ₜ (~-irrelevance ((conv ⊢t (sym (subset* (red D))))) ((conv ⊢u (sym (subset* (red D)))))) escapeTermEq {ι ¹} (emb X A) t≡u = escapeTermEq A t≡u escapeTermEq {∞} (emb X A) t≡u = escapeTermEq A t≡u escapeEqRefl : ∀ {l Γ A r} → ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊢ A ≅ A ^ r escapeEqRefl [A] = escapeEq [A] (reflEq [A]) escapeEqReflTerm : ∀ {l Γ A t r} → ([A] : Γ ⊩⟨ l ⟩ A ^ r) → ([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A]) → Γ ⊢ t ≅ t ∷ A ^ r escapeEqReflTerm [A] [t] = escapeTermEq [A] (reflEqTerm [A] [t])
{ "alphanum_fraction": 0.5047114252, "avg_line_length": 48.0566037736, "ext": "agda", "hexsha": "46ffbd31999fdb9df7462c389f4d985615b16040", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Escape.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Escape.agda", "max_line_length": 186, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Escape.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 2572, "size": 5094 }
{-# OPTIONS --without-K --safe #-} -- We do not parameterize this module since we do not have access to _+_ or _*_ -- for the fields that we want (real numbers) module FLA.Algebra.Structures where open import Level using (Level) renaming (suc to lsuc) open import Data.Sum using (_⊎_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) private variable ℓ : Level A : Set ℓ record Field (A : Set ℓ) : Set ℓ where infixl 6 _+_ infixl 7 _*_ infixl 9 -_ infixl 10 _⁻¹ field _+_ : A → A → A _*_ : A → A → A 0ᶠ : A 1ᶠ : A -_ : A → A -- + inverse _⁻¹ : A → A -- * inverse +-assoc : (a b c : A) → a + (b + c) ≡ (a + b) + c +-comm : (a b : A) → a + b ≡ b + a +0ᶠ : (a : A) → a + 0ᶠ ≡ a +-inv : (a : A) → - a + a ≡ 0ᶠ *-assoc : (a b c : A) → a * (b * c) ≡ (a * b) * c *-comm : (a b : A) → a * b ≡ b * a *1ᶠ : (a : A) → a * 1ᶠ ≡ a *-inv : (a : A) → (a ≢ 0ᶠ) → a ⁻¹ * a ≡ 1ᶠ *-distr-+ : (a b c : A) → a * (b + c) ≡ a * b + a * c record TotalOrder (A : Set ℓ) : Set (lsuc ℓ) where infixl 5 _≤_ field _≤_ : A → A → Set ℓ total : (x y : A) → x ≤ y ⊎ y ≤ x trans : (x y z : A) → x ≤ y → y ≤ z → x ≤ z anti-sym : (x y : A) → x ≤ y → y ≤ x → x ≡ y record TotalOrderField (A : Set ℓ) : Set (lsuc ℓ) where field ⦃ F ⦄ : Field A ⦃ TO ⦄ : TotalOrder A open Field F public open TotalOrder TO public field x≤y→z+x≤z+y : (x y z : A) → x ≤ y → z + x ≤ z + y 0≤x→0≤y→0≤x*y : (x y : A) → 0ᶠ ≤ x → 0ᶠ ≤ y → 0ᶠ ≤ x * y -- record CompleteOrderedField (A : Set ℓ) : Set (lsuc ℓ) where -- field -- ⦃ TOF ⦄ : TotalOrderField A -- open LinearlyOrderedField LinOrdField -- -- UpperBound : Data.Set.NonEmpty A → Data.Set -- Supremum : (∀ (v : UpperBound(A)) → ∃ [u ∈ UpperBound(A)] [u ≤ v]) -- completeness : (S : Data.Set.NonEmpty A) -- → (ub: ∃ [y ∈ A] (λ x ∈ S → x ≤ y)) -- → Supremum A -- completeness : every non-empty subset of F, bounded above, has a -- supremum in F. If A is a non-empty subset of R, and if A has an upper -- bound, then A has a least upper bound u, such that for every upper -- bound v of A, u ≤ v. -- apparently completeness implies the archimedian principle. {- If we want the reals, we need a few things Linearly ordered set on F, ∀ x, y, z ∈ F Totality : x ≤ y or y ≤ x Transitivity : if x ≤ y and y ≤ z then x ≤ z Anti-symmetry : if x ≤ y and y ≤ x, then x ≡ y Linearly ordered field (F, +, *, ≤) if x ≤ y then z + x ≤ z + y 0 ≤ x and 0 ≤ y then 0 ≤ x*y Complete ordered field (F, +, *, ≤) if (F, +, *, ≤) is a linearly ordered field Completeness : every non-empty subset of F, bounded above, has a supremum in F Archimedian property: (F, +, *, ≤) is a complete ordered field r, s ∈ F. r > 0 ∃ n ∈ ℕ. s < r + ... + r (n times) Roughly speaking, it is the property of having no infinitely large or infinitely small elements Axiom of Archimedies is a formulation of this property for ordered fields: ∀ ε ∈ F. ε > 0 → ∃ n ∈ ℕ . 1/n < ε Cauchy sequences representation of the reals and the Dedekind representation of the reals are both Archimedian completely ordered fields and hence isomorphic to the reals. Note there is a proof that all Archimedian complete ordered fields are isomorphic. References: [1]: https://www.cs.swan.ac.uk/~csetzer/articlesFromOthers/chiMing/chiMingChuangExtractionOfProgramsForExactRealNumberComputation.pdf [2]: https://en.wikipedia.org/wiki/Axiomatic_theory_of_real_numbers -}
{ "alphanum_fraction": 0.5690179806, "avg_line_length": 29.631147541, "ext": "agda", "hexsha": "62dd8324bda485f96c91435f009653effcd0813c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z", "max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "turion/functional-linear-algebra", "max_forks_repo_path": "src/FLA/Algebra/Structures.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "turion/functional-linear-algebra", "max_issues_repo_path": "src/FLA/Algebra/Structures.agda", "max_line_length": 133, "max_stars_count": 21, "max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "turion/functional-linear-algebra", "max_stars_repo_path": "src/FLA/Algebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z", "num_tokens": 1370, "size": 3615 }
{-# OPTIONS --safe #-} module Cubical.Categories.Constructions.FullSubcategory where -- Full subcategory (not necessarily injective on objects) open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Categories.Category open import Cubical.Categories.Functor renaming (𝟙⟨_⟩ to funcId) private variable ℓC ℓC' ℓD ℓD' ℓE ℓE' ℓP ℓQ ℓR : Level module _ (C : Category ℓC ℓC') (P : Category.ob C → Type ℓP) where private module C = Category C open Category open Functor FullSubcategory : Category (ℓ-max ℓC ℓP) ℓC' ob FullSubcategory = Σ[ x ∈ C.ob ] P x Hom[_,_] FullSubcategory (x , p) (y , q) = C.Hom[ x , y ] id FullSubcategory = C.id _⋆_ FullSubcategory = C._⋆_ ⋆IdL FullSubcategory = C.⋆IdL ⋆IdR FullSubcategory = C.⋆IdR ⋆Assoc FullSubcategory = C.⋆Assoc isSetHom FullSubcategory = C.isSetHom FullInclusion : Functor FullSubcategory C F-ob FullInclusion = fst F-hom FullInclusion = idfun _ F-id FullInclusion = refl F-seq FullInclusion f g = refl module _ (C : Category ℓC ℓC') (D : Category ℓD ℓD') (Q : Category.ob D → Type ℓQ) where private module C = Category C module D = Category D open Category open Functor ToFullSubcategory : (F : Functor C D) → ((c : C.ob) → Q (F-ob F c)) → Functor C (FullSubcategory D Q) F-ob (ToFullSubcategory F f) c = F-ob F c , f c F-hom (ToFullSubcategory F f) = F-hom F F-id (ToFullSubcategory F f) = F-id F F-seq (ToFullSubcategory F f) = F-seq F module _ (C : Category ℓC ℓC') (P : Category.ob C → Type ℓP) (D : Category ℓD ℓD') (Q : Category.ob D → Type ℓQ) where private module C = Category C module D = Category D open Category open Functor MapFullSubcategory : (F : Functor C D) → ((c : C.ob) → P c → Q (F-ob F c)) → Functor (FullSubcategory C P) (FullSubcategory D Q) MapFullSubcategory F f = ToFullSubcategory (FullSubcategory C P) D Q (funcComp F (FullInclusion C P) ) λ (c , p) → f c p module _ (C : Category ℓC ℓC') (P : Category.ob C → Type ℓP) where private module C = Category C open Category open Functor MapFullSubcategory-id : MapFullSubcategory C P C P (funcId C) (λ c p → p) ≡ funcId (FullSubcategory C P) MapFullSubcategory-id = Functor≡ (λ (c , p) → refl) (λ γ → refl) module _ (C : Category ℓC ℓC') (P : Category.ob C → Type ℓP) (D : Category ℓD ℓD') (Q : Category.ob D → Type ℓQ) (E : Category ℓE ℓE') (R : Category.ob E → Type ℓR) where private module C = Category C module D = Category D module E = Category E open Category open Functor MapFullSubcategory-seq : (F : Functor C D) → (f : (c : C.ob) → P c → Q (F-ob F c)) → (G : Functor D E) → (g : (d : D.ob) → Q d → R (F-ob G d)) → MapFullSubcategory C P E R (funcComp G F) (λ c p → g (F-ob F c) (f c p)) ≡ funcComp (MapFullSubcategory D Q E R G g) (MapFullSubcategory C P D Q F f) MapFullSubcategory-seq F f G g = Functor≡ (λ (c , p) → refl) (λ γ → refl)
{ "alphanum_fraction": 0.6388432468, "avg_line_length": 31.3711340206, "ext": "agda", "hexsha": "b9daf4ca5dc5a2e7ba3c119b58531175d6e3e73a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Constructions/FullSubcategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Constructions/FullSubcategory.agda", "max_line_length": 104, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Constructions/FullSubcategory.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1102, "size": 3043 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.ListedFiniteSet where open import Cubical.HITs.ListedFiniteSet.Base public open import Cubical.HITs.ListedFiniteSet.Properties public
{ "alphanum_fraction": 0.8058252427, "avg_line_length": 34.3333333333, "ext": "agda", "hexsha": "78c74ed26dd682884eaea46f03fd75d43db82bce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/ListedFiniteSet.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/ListedFiniteSet.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/ListedFiniteSet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 54, "size": 206 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.FunctionProperties.Consequences.Core {a} {A : Set a} where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties.Consequences.Core was deprecated in v1.3. Use Algebra.Consequences.Base instead." #-} open import Algebra.Consequences.Base public
{ "alphanum_fraction": 0.5337301587, "avg_line_length": 28, "ext": "agda", "hexsha": "fe7df6f7707b0da24c9ea6ea1a99ea8604fdbcbc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 86, "size": 504 }
module OldO where open import Data.Product open import Function renaming (_∘_ to _○_) open import Circle ------------------------------------------------------------------------------ -- Abstract interpretation: -- natural numbers with paths equating all even numbers in one -- connected component and all odd numbers in another connected -- component -- module with 0,1,2,3,4 ... this is the concrete domain data N : Set where Zero : N One : N Two : N Three : N Four : N recN : (C : Set) → C → C → C → C → C → N → C recN C c0 c1 c2 c3 c4 Zero = c0 recN C c0 c1 c2 c3 c4 One = c1 recN C c0 c1 c2 c3 c4 Two = c2 recN C c0 c1 c2 c3 c4 Three = c3 recN C c0 c1 c2 c3 c4 Four = c4 indN : (C : N → Set) → C Zero → C One → C Two → C Three → C Four → (n : N) → C n indN C c0 c1 c2 c3 c4 Zero = c0 indN C c0 c1 c2 c3 c4 One = c1 indN C c0 c1 c2 c3 c4 Two = c2 indN C c0 c1 c2 c3 c4 Three = c3 indN C c0 c1 c2 c3 c4 Four = c4 -- module for the abstract domain {even, odd} except that we don't define it -- this way: we simply add paths between the even elements and paths between -- the odd elements module Parity where private data N* : Set where Zero* : N* One* : N* Two* : N* Three* : N* Four* : N* NA : Set NA = N* zero : NA zero = Zero* one : NA one = One* two : NA two = Two* three : NA three = Three* four : NA four = Four* postulate even02 : Zero* ≡ Two* even04 : Zero* ≡ Four* odd13 : One* ≡ Three* recNA : (C : Set) → (c0 c1 c2 c3 c4 : C) → (ceven02 : c0 ≡ c2) → (ceven04 : c0 ≡ c4) → (codd13 : c1 ≡ c3) → NA → C recNA C c0 c1 c2 c3 c4 _ _ _ Zero* = c0 recNA C c0 c1 c2 c3 c4 _ _ _ One* = c1 recNA C c0 c1 c2 c3 c4 _ _ _ Two* = c2 recNA C c0 c1 c2 c3 c4 _ _ _ Three* = c3 recNA C c0 c1 c2 c3 c4 _ _ _ Four* = c4 postulate αrecNA02 : (C : Set) → (c0 c1 c2 c3 c4 : C) → (ceven02 : c0 ≡ c2) → (ceven04 : c0 ≡ c4) → (codd13 : c1 ≡ c3) → ap (recNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13) even02 ≡ ceven02 αrecNA04 : (C : Set) → (c0 c1 c2 c3 c4 : C) → (ceven02 : c0 ≡ c2) → (ceven04 : c0 ≡ c4) → (codd13 : c1 ≡ c3) → ap (recNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13) even04 ≡ ceven04 αrecNA13 : (C : Set) → (c0 c1 c2 c3 c4 : C) → (ceven02 : c0 ≡ c2) → (ceven04 : c0 ≡ c4) → (codd13 : c1 ≡ c3) → ap (recNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13) odd13 ≡ codd13 indNA : (C : NA → Set) → (c0 : C Zero*) → (c1 : C One*) → (c2 : C Two*) → (c3 : C Three*) → (c4 : C Four*) → (ceven02 : transport C even02 c0 ≡ c2) → (ceven04 : transport C even04 c0 ≡ c4) → (codd13 : transport C odd13 c1 ≡ c3) → (n : NA) → C n indNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13 Zero* = c0 indNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13 One* = c1 indNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13 Two* = c2 indNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13 Three* = c3 indNA C c0 c1 c2 c3 c4 ceven02 ceven04 codd13 Four* = c4 open Parity -- Now we define functions back and forth abs : N → NA abs = recN NA zero one two three four con : NA → N con = recNA N Zero One Zero One Zero (refl Zero) (refl Zero) (refl One) conEven02 : ap con even02 ≡ refl Zero conEven02 = αrecNA02 N Zero One Zero One Zero (refl Zero) (refl Zero) (refl One) conEven04 : ap con even04 ≡ refl Zero conEven04 = αrecNA04 N Zero One Zero One Zero (refl Zero) (refl Zero) (refl One) conOdd13 : ap con odd13 ≡ refl One conOdd13 = αrecNA13 N Zero One Zero One Zero (refl Zero) (refl Zero) (refl One) -- Compose both ways absconeven02 : ap (abs ○ con) even02 ≡ refl zero absconeven02 = ap (abs ○ con) even02 ≡⟨ {!!} ⟩ ap abs (ap con even02) ≡⟨ {!!} ⟩ ap abs (refl Zero) ≡⟨ {!!} ⟩ refl zero ∎ absconeven04 : ap (abs ○ con) even04 ≡ refl zero absconeven04 = ap (abs ○ con) even04 ≡⟨ {!!} ⟩ ap abs (ap con even04) ≡⟨ {!!} ⟩ ap abs (refl Zero) ≡⟨ {!!} ⟩ refl zero ∎ absconodd13 : ap (abs ○ con) odd13 ≡ refl one absconodd13 = ap (abs ○ con) odd13 ≡⟨ {!!} ⟩ ap abs (ap con odd13) ≡⟨ {!!} ⟩ ap abs (refl One) ≡⟨ {!!} ⟩ refl one ∎ αeven02 : transport (λ x → (abs ○ con) x ≡ x) even02 (refl zero) ≡ even02 αeven02 = transport (λ x → (abs ○ con) x ≡ x) even02 (refl zero) ≡⟨ {!!} ⟩ ! (ap (abs ○ con) even02) ∘ refl zero ∘ ap id even02 ≡⟨ {!!} ⟩ ! (ap (abs ○ con) even02) ∘ refl zero ∘ even02 ≡⟨ {!!} ⟩ ! (ap (abs ○ con) even02) ∘ even02 ≡⟨ {!!} ⟩ refl zero ∘ even02 ≡⟨ {!!} ⟩ even02 ∎ αeven04 : transport (λ x → (abs ○ con) x ≡ x) even04 (refl zero) ≡ even04 αeven04 = transport (λ x → (abs ○ con) x ≡ x) even04 (refl zero) ≡⟨ {!!} ⟩ even04 ∎ αodd13 : transport (λ x → (abs ○ con) x ≡ x) odd13 (refl one) ≡ odd13 αodd13 = transport (λ x → (abs ○ con) x ≡ x) odd13 (refl one) ≡⟨ {!!} ⟩ odd13 ∎ -- Galois connections... αN : con ○ abs ○ con ○ abs ∼ con ○ abs αN = indN (λ x → (con ○ abs ○ con ○ abs) x ≡ (con ○ abs) x) (refl Zero) (refl One) (refl Zero) (refl One) (refl Zero) αNA : abs ○ con ∼ id αNA = indNA (λ x → (abs ○ con) x ≡ x) (refl zero) (refl one) even02 odd13 even04 αeven02 αeven04 αodd13 -- Computations on N and NA can be related -- Concrete computation incN : N → N incN Zero = One incN One = Two incN Two = Three incN Three = Four incN Four = Zero addN : N → N → N addN Zero b = b addN a Zero = a addN One One = Two addN One Two = Three addN One Three = Four addN One Four = Zero addN Two One = Three addN Two Two = Four addN Two Three = Zero addN Two Four = One addN Three One = Four addN Three Two = Zero addN Three Three = One addN Three Four = Two addN Four One = Zero addN Four Two = One addN Four Three = Two addN Four Four = Three -- we can apply an operation in the abstract domain and report the -- approximate result absF : (N → N) → (NA → NA) absF f = abs ○ f ○ con approx : (N → N) → (N → N) approx f n = con ((absF f) (abs n)) test0 : approx incN Zero ≡ One test0 = refl One test1 : approx incN One ≡ Zero test1 = refl Zero test2 : approx incN Two ≡ One test2 = refl One test3 : approx incN Three ≡ Zero test3 = refl Zero test4 : approx incN Four ≡ One test4 = refl One ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5499241275, "avg_line_length": 25.7421875, "ext": "agda", "hexsha": "5bf86f72270e0b4ce0e4452bf8fb7fb9b3cce589", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "OBT/OldO.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "OBT/OldO.agda", "max_line_length": 81, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "OBT/OldO.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2621, "size": 6590 }
{-# OPTIONS --cubical --safe #-} module Data.Finite where open import Prelude open import Data.Fin 𝒞 : Type a → Type a 𝒞 A = ∃ n × ∥ A ≃ Fin n ∥ ℂ : Type _ ℂ = Σ[ T ⦂ Type ] × 𝒞 T
{ "alphanum_fraction": 0.5815217391, "avg_line_length": 14.1538461538, "ext": "agda", "hexsha": "acd42cd5c7f0e5b290860f2d9e35ef98a69b25e3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Finite.agda", "max_line_length": 32, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Finite.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 76, "size": 184 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import Optics.All open import Util.ByteString open import Util.PKCS open import Util.Prelude open import Yasm.Base open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms -- This module contains the machinery we use for tracking hash collisions for the hash function -- postulated in LibraBFT.ImplShared.Util.Crypto. (Note that, although we call it sha256 to remind -- ourselves that this *represents* a real hash function, in fact it is just postulated and could -- represent any hash function.) We prove our correctness conditions modulo hash collisions of this -- function, which is used to derive IDs for Blocks. Therefore, how we model and reason about such -- collisions is critical to the validity of our proofs. -- -- A common approach is to simply assume (e.g., postulate or state as an axiom) that the function is -- injective. While this is a reasonable pragmatic approach, it does raise an important issue. -- Because practical hash functions have unbounded domains and finite codomains, they are not -- injective. Therefore, assuming that the function represented by the postulated one is injective -- amounts to making an unsatisfiable assumption, from which anything can be proved (false implies -- anything). For this reason, it is not sufficient to show that the desired property holds unless -- a hash collision *exists*. Instead, we must construct evidence of a *specific* hash collision -- (i.e., two values and evidence that their hashes are the same but the values themselves are -- different). Such evidence is captured by the type NonInjective-≡ sha256. Below we elaborate on -- some subtleties and tradeoffs with what we prove in which contexts. -- -- First, when we are dealing with *abstract* Records (as in the Abstract and Concrete modules), it -- is trivial to construct an injectivity failure of Block IDs, simply by constructing two different -- abstract Blocks that have the same ID. In that context, it is important that we prove our -- correctness conditions modulo injectivity failures between Blocks that are actually represented -- in the specific ReachableSystemState about which we're reasoning (because that allows the -- injectivity failure of IDs of the *abstract* Blocks to be related back to concrete blocks whose -- IDs are derived using the hash function). -- -- In contrast, it is far from trivial to construct a specific collision for the *postulated* -- sha256-cr function. It would be possible to prove that *some* collision *exists* by using a -- pigeonhole principle counting argument. In principle, one could then construct a specific -- collision by generating 2 ^ 256 + 1 distinct Records (in case the postulated hash function is -- assumed to produce 256-bit hashes), and asking for each pair of them whether they hash to the -- same value. We could eliminate the possibility that none of these pairs provides a collision -- using the counting argument. -- -- One could not do this "accidentally" (as could potentially occur with Abstract records), and -- furthermore, by examining all proofs that use meta-no-collision, it is not difficult to see that -- the specific collisions are all produced from Records introduced by the proof obligations (i.e., -- Records that are in the ReachableSystemState under consideration). Therefore, we do not consider -- it necessary to explicitly associate any collisions for the postulated hash function with the -- ReachableSystemState. -- -- Having received feedback from some people who were uncomfortable with this argument, we have put -- some effort into explicitly tying each collision to data "in the system" in the -- ReachableSystemState in question. Our exploration convinces us that it's possible, but -- reinforces our view that it is not worthwhile; we elaborate on this in comments below. -- -- Our current position is to keep for illustrative purposes our work so far on explicitly tying -- some hash collisions to particular Records in the system for some cases, but to continue to -- simply construct the evidence of the collision in other cases. The two approaches can coexist -- because proofs can "bail out" when finding a hash collision between Records the proof is -- considering by invoking either of the postulated functions below (meta-no-collision-in-sys and -- meta-no-collsion). Both state that there is no collision, so providing evidence of a specific -- collision is sufficient to bail out of the proof of a condition that might not hold in case of a -- collision. The first requires the specific elements contributing to the collision to be -- precisely located within the current ReachableSystemState, while the second requires only -- evidence of the collision's existence, without specific information about where its elements came -- from. Below we explain our initial approach for meta-no-collision-in-sys, overview some examples -- demonstrating the additional proof burden it creates, and also discuss what would be needed to -- complete this effort, if it were deemed worthwhile. module LibraBFT.ImplShared.Util.HashCollisions (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) where open WithInitAndHandlers iiah -- By placing the constructs below within a module that takes a ReachableSystemState as a module -- parameter, we ensure that a proof that wants to "bail out" due to a hash collision must specify -- a ReachableSystemState and show that the specific collision is between elements represented in -- that state. module PerReachableState {st} (r : ReachableSystemState st) where -- The following datatypes are used in the definition of HashCollisionFound below to enumerate -- the ways in which hash collisions that would undermine correctness can arise in the given -- state st. Note that we do not need to capture all ways in which a ByteString might be -- represented, only those for which our proofs require injectivity properties. Our initial -- work requires capturing hash collisions only for Block IDs. data _∈Block_ : BSL → Block → Set where inB : ∀ {b} → blockData-bsl (b ^∙ bBlockData) ∈Block b open _∈Block_ data _∈ProposalMsg_ (bsl : BSL) (pm : ProposalMsg) : Set where inPM : bsl ∈Block (pm ^∙ pmProposal) → bsl ∈ProposalMsg pm open _∈ProposalMsg_ data _∈nm (bsl : BSL) : Set where inP : ∀ {sndr pm} → (sndr , P pm) ∈ msgPool st → bsl ∈ProposalMsg pm → bsl ∈nm open _∈nm -- We could refine this further (∈BlockTree, ∈btIdToBlock), but I don't think we need to. data _∈BS_ (bsl : BSL) (bs : BlockStore) : Set where inBS : ∀ {eb} → (getBlock (hashBSL bsl) bs ≡ just eb) → bsl ∈Block (eb ^∙ ebBlock) → bsl ∈BS bs data _∈RM_ (bsl : BSL) (rm : RoundManager) : Set where inRM : bsl ∈BS (rm ^∙ lBlockStore) → bsl ∈RM rm -- So far, HashCollisionFound includes two constructors, one (msgRmHC) for a collision between a -- ByteString represented in a message that has been sent (∈nm) and one represented in the -- RoundManager of some peer. The other (msgmsgHC) is unused so far, but would be needed if we -- were to take this work further; it is for cases in which there is a collision between two -- elements in messages that have been sent. data HashCollisionFound : Set where msgRmHC : ∀ {bs1 bs2 pid} → bs1 ∈nm → initialised st pid ≡ initd → bs2 ∈RM (peerStates st pid) → hashBSL bs1 ≡ hashBSL bs2 → bs1 ≢ bs2 → HashCollisionFound msgmsgHC : ∀ {bs1 bs2} → bs1 ∈nm → bs2 ∈nm → hashBSL bs1 ≡ hashBSL bs2 → bs1 ≢ bs2 → HashCollisionFound -- By postulating the lack of existence of HashCollisionFound, we enable any proof to "bail out" -- only if it can construct a *specific* hash collision that is "in the system" represented by -- the specific ReachableSystemState, according to the specific notions thereof captured by the -- constructors for this type. postulate -- Valid assumption: there are no hash collisions among values found in the system meta-no-collision-in-sys : ¬ HashCollisionFound -- Discussion -- -- As noted above, we have applied this approach to some proofs but not others. In particular, -- there are still a number of proofs that use meta-no-collision (below), which does not require -- the constructed collision to be explicitly placed in context of the ReachableSystemState. -- -- We have used meta-no-collision-in-sys for the case of a peer handling a proposal. The -- proposal contains a Block which has an ID, which is supposed to be the hash of some parts of -- the proposal. This condition is verified when the proposal message is first received (see -- verifyWellFormed in LibraBFT.Impl.Consensus.ConsensusTypes.Block), and the knowledge that it -- verified correctly is needed all the way down the stack when the receiving peer inserts the -- block into its BlockTree. If an ExecutedBlock is found in the BlockTree associated with the -- ID of the new Block, then the algorithm assumes it's the same Block (because both the new -- Block and the one inserted previously in the BlockTree have been verified as hashing to the -- same ID). If there were a collision (i.e., these two Blocks that hash to the same ID -- actually have different bits that are hashed to derive the ID), then incorrect behaviour -- would be possible. -- -- To use meta-no-collision-in-sys, we need to construct a value of HashCollisionFound in -- context of the ReachableSystemState under consideration (but see note below). This requires -- carrying the fact that the hash of the newly proposed Block matches its ID from the -- above-mentioned verification all the way down the stack, where it is needed to invoke an -- assumption about the lack of collisions between the new Block and one previously stored when -- proving the Contract for insertBlockESpec. (This is the NOHC1 argument given to the blocks≈ -- field insertBlockESpec.ContrackOk.) Then, each Contract up the stack must receive a similar -- argument enabling it to invoke the Contract of the next function down the stack. See, for -- example, the ebBlock≈ field of executeAndInsertBlockESpec.ContractOk, the voteAttemptCorrect -- field of processProposalMsgMSpec.Contract (and others in the same file), and similarly for -- handleProposalSpec.Contract. Then this argument must be provided by higher level properties -- that wish to invoke the lower-level contracts. Because the higher-level properties are in -- context of a specific ReachableSystemState, they can construct a proof of the absence of the -- potential collision by using meta-no-collision-in-sys for that ReachableSystemState. -- -- As can be seen, connecting a potential hash collision to a specific ReachableSystemState is a -- fair amount of work, which complicates proofs. As explained above, we do not think it is -- worthwhile to continue this effort, just to show that we can. One issue we would want to -- address if taking this work further would be to *ensure* that the ReachableSystemState -- for which a potential collision is considered is the same one about which we're proving the -- given property. This already is the case in our proofs, but our conditions don't *ensure* -- that it is because, in principle, when calling nohc to use meta-no-collision-in-sys to -- eliminate an assumed collision, we could provide *any* ReachableSystemState. To require it -- to be the same ReachableSystemState, we would need to explicitly express for each relevant -- property that it holds unless there is collision in *that state*. So, for example, the -- conclusion of the IncreasingRoundObligation property would have to become something like the -- following (where pre is the state about which IncreasingRoundObligation is proved): -- -- HashCollisionFound pre -- ⊎ v' ^∙ vRound < v ^∙ vRound -- ⊎ VoteForRound∈ pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) (msgPool pre) -- -- The first disjunct is not currently necessary because there is no requirement to place the -- HashCollisionFound in the same ReachableSystemState. We would then need to propagate those -- disjuncts from one proof to another, making even more work and complicating proofs and -- properties further. Importantly, doing so would provide no additional benefit over what we -- have done already, exactly because it is not practical to construct a collision for the -- postulated hash function anyway (and we could not do so "accidentally"): giving ourselves the -- freedom to associate it with a diffferent ReachabeSystemState does not change that. This -- underlines the point that requiring the collision to be associated with a -- ReachableSystemState creates quite a bit of work, and provides little benefit. postulate -- valid assumption. Note that this does *not* say that no collisions *exist*; it -- says a proof cannot escape its obligations unless it can provide specfic evidence -- of a collision; as explained above, doing so other than from Records presented to -- the proof (because they are in the system state under consideration) is -- impractical and impossible to do "accidentally" meta-no-collision : ¬ (NonInjective-≡ sha256) sameSig⇒sameVoteDataNoCol : ∀ {v1 v2 : Vote} {pk} → WithVerSig pk v1 → WithVerSig pk v2 → v1 ^∙ vSignature ≡ v2 ^∙ vSignature → v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData sameSig⇒sameVoteDataNoCol {v1} {v2} wvs1 wvs2 refl with sameSig⇒sameVoteData {v1} {v2} wvs1 wvs2 refl ...| inj₁ hb = ⊥-elim (meta-no-collision hb) ...| inj₂ x = x
{ "alphanum_fraction": 0.7310141752, "avg_line_length": 65.4843049327, "ext": "agda", "hexsha": "025a42afbcee4724a3c2e36081bd9bcd4ef83819", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/ImplShared/Util/HashCollisions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/ImplShared/Util/HashCollisions.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/ImplShared/Util/HashCollisions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3485, "size": 14603 }
-- Andreas, 2020-03-27, issue #4534 -- Better error message for quote. open import Agda.Builtin.Reflection _ : Name _ = quote Set -- Can only quote defined names, but encountered Set -- when checking that the expression quote Set has type Name
{ "alphanum_fraction": 0.7449392713, "avg_line_length": 22.4545454545, "ext": "agda", "hexsha": "016e824aa2da70f73ecdac4fd722ccd6c6c30c07", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4534a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4534a.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4534a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 247 }
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Classical.SequentCalculus (𝔏 : Signature) where open Signature(𝔏) open import Data.List open import Data.List.Functions using () renaming (singleton to · ; _++_ to _∪_) open import Data.List.Relation.Permutation open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional as Fn import Lvl open import Numeral.Finite open import Numeral.Natural open import Type private variable ℓ : Lvl.Level private variable n vars : ℕ _∪·_ : ∀{T : Type{ℓ}} → List(T) → T → List(T) _∪·_ = Fn.swap(_⊰_) infixl 1000 _∪·_ module _ where private variable Γ Γ₁ Γ₂ Γ₃ Δ Δ₁ Δ₂ Δ₃ : List(Formula(vars)) private variable φ φ₁ φ₂ ψ A B C : Formula(vars) private variable p : Prop(n) data _⇒_ : List(Formula(vars)) → List(Formula(vars)) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ)} where axiom : ((· φ) ⇒ (· φ)) weakenₗ : (Γ ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) permuteₗ : .(Γ₁ permutes Γ₂) → (Γ₁ ⇒ Δ) → (Γ₂ ⇒ Δ) contractₗ : ((Γ ∪· A ∪· A) ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) ⊥ₗ : (Γ ∪· ⊥) ⇒ ∅ ∧ₗₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∧ₗᵣ : ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∨ₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∨ B)) ⇒ Δ) ⟶ₗ : (Γ ⇒ (Δ ∪· A)) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ⟶ B)) ⇒ Δ) Ɐₗ : ∀{t} → ((Γ ∪· (substitute0 t A)) ⇒ Δ) → ((Γ ∪· (Ɐ A)) ⇒ Δ) ∃ₗ : ∀{v}{n} → ((Γ ∪· (substituteN n (var v) A)) ⇒ Δ) → ((Γ ∪· (∃ A)) ⇒ Δ) weakenᵣ : (Γ ⇒ Δ) → (Γ ⇒ (Δ ∪· A)) permuteᵣ : .(Δ₁ permutes Δ₂) → (Γ ⇒ Δ₁) → (Γ ⇒ Δ₂) contractᵣ : (Γ ⇒ (Δ ∪· A ∪· A)) → (Γ ⇒ (Δ ∪· A)) ⊤ᵣ : ∅ ⇒ (Δ ∪· ⊤) ∧ᵣ : (Γ ⇒ (Δ ∪· A)) → (Γ ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ∧ B))) ∨ᵣₗ : (Γ ⇒ (Δ ∪· A)) → (Γ ⇒ (Δ ∪· (A ∨ B))) ∨ᵣᵣ : (Γ ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ∨ B))) ⟶ᵣ : ((Γ ∪· A) ⇒ (Δ ∪· B)) → (Γ ⇒ (Δ ∪· (A ⟶ B))) Ɐᵣ : ∀{v}{n} → (Γ ⇒ (Δ ∪· (substituteN n (var v) A))) → (Γ ⇒ (Δ ∪· (Ɐ A))) ∃ᵣ : ∀{t} → (Γ ⇒ (Δ ∪· (substitute0 t A))) → (Γ ⇒ (Δ ∪· (∃ A)))
{ "alphanum_fraction": 0.4849531327, "avg_line_length": 38.2452830189, "ext": "agda", "hexsha": "c89e068e2e91a2c44f9d59a7c75f0a418c11abb9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Classical/SequentCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Classical/SequentCalculus.agda", "max_line_length": 87, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Classical/SequentCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1034, "size": 2027 }
module FreezingTest where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ force : let one : ℕ one = _ -- this meta is not frozen after the end of let in one ≡ suc zero force = refl
{ "alphanum_fraction": 0.5328467153, "avg_line_length": 19.5714285714, "ext": "agda", "hexsha": "ec2e1813dae539999d23becf8b828000e30c84be", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/FreezingTest.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/FreezingTest.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/FreezingTest.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 274 }
postulate C : Set anything : C record I : Set where constructor c field f : C data Wrap : (j : I) → Set where wrap : ∀ {j} → Wrap j works1 : ∀ {j} → Wrap j → C works1 {c ._} (wrap {j = c _}) with anything ... | z = z
{ "alphanum_fraction": 0.5384615385, "avg_line_length": 14.625, "ext": "agda", "hexsha": "ccacd41aa968d0d8b3f1f49cf553a99f196644dc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1605b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1605b.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1605b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 234 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some examples showing where the natural numbers and some related -- operations and properties are defined, and how they can be used ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module README.Data.Nat where -- The natural numbers and various arithmetic operations are defined -- in Data.Nat. open import Data.Nat using (ℕ; _+_; _*_) -- _*_ has precedence 7 over precedence 6 of _+_ -- precedence of both defined in module Agda.Builtin.Nat ex₁ : ℕ ex₁ = 1 + 3 * 4 -- Propositional equality and some related properties can be found -- in Relation.Binary.PropositionalEquality. open import Relation.Binary.PropositionalEquality using (_≡_; refl) ex₂ : 3 + 5 ≡ 2 * 4 ex₂ = refl -- Data.Nat.Properties contains a number of properties about natural -- numbers. open import Data.Nat.Properties using (*-comm; +-identityʳ) ex₃ : ∀ m n → m * n ≡ n * m ex₃ m n = *-comm m n -- The module ≡-Reasoning in Relation.Binary.PropositionalEquality -- provides some combinators for equational reasoning. open Relation.Binary.PropositionalEquality using (cong; module ≡-Reasoning) ex₄ : ∀ m n → m * (n + 0) ≡ n * m ex₄ m n = begin m * (n + 0) ≡⟨ cong (_*_ m) (+-identityʳ n) ⟩ m * n ≡⟨ *-comm m n ⟩ n * m ∎ where open ≡-Reasoning -- The module SemiringSolver in Data.Nat.Solver contains a solver -- for natural number equalities involving variables, constants, _+_ -- and _*_. open import Data.Nat.Solver using (module +-*-Solver) open +-*-Solver using (solve; _:*_; _:+_; con; _:=_) ex₅ : ∀ m n → m * (n + 0) ≡ n * m ex₅ = solve 2 (λ m n → m :* (n :+ con 0) := n :* m) refl
{ "alphanum_fraction": 0.617830778, "avg_line_length": 29.8474576271, "ext": "agda", "hexsha": "60dbf266bfb4312a9d67dd67d76d1055ab9239cc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Data/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Data/Nat.agda", "max_line_length": 75, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 510, "size": 1761 }
module test.IntegerOverflow where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ open import Agda.Builtin.Sigma open import Data.Integer open import Data.Nat open import Data.Empty -- zerepoch/zerepoch-core/test/data/integerOverflow.plc -- This term is impossible as terms are intrinsically sized -- completeting this definition requires an element of the empty type {- intOverflow : ∀{Γ} → Γ ⊢ con integer (size⋆ 1) intOverflow = con (integer 1 (ℤ.pos 128) (-≤+ Σ., +≤+ (gen _ _ {!!}))) -}
{ "alphanum_fraction": 0.7462932455, "avg_line_length": 26.3913043478, "ext": "agda", "hexsha": "5c52651bac5cce9eb18e181dc672a8579fcb0e85", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z", "max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Quantum-One-DLT/zerepoch", "max_forks_repo_path": "zerepoch-metatheory/test/IntegerOverflow.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Quantum-One-DLT/zerepoch", "max_issues_repo_path": "zerepoch-metatheory/test/IntegerOverflow.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Quantum-One-DLT/zerepoch", "max_stars_repo_path": "zerepoch-metatheory/test/IntegerOverflow.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 607 }
--------------------------------------------------------------------- -- This file contains the definition of heterogenous equality and -- -- related facts. A lot of this code is old, and could be written -- -- better. This equality is mainly used for object equivalence. -- -- -- -- Some of it came from the paper: -- -- "Monads Need Not Be Endofunctors" by Altenkirch et al. -- -- -- -- See: http://www.cs.nott.ac.uk/~txa/publ/Relative_Monads.pdf -- --------------------------------------------------------------------- module Equality.Eq where open import Level open import Relation.Relation open import Relation.Binary.PropositionalEquality public renaming (sym to prop-sym ; trans to prop-trans; refl to prop-refl) data _≅_ {l : Level} {A : Set l} (a : A) : {A' : Set l} → A' → Set l where refl : a ≅ a postulate ext : ∀{i j}{A : Set i}{B B' : A → Set j}{f : ∀ a → B a}{g : ∀ a → B' a} → (∀ a → f a ≅ g a) → f ≅ g postulate prop-ext : ∀{i j}{A : Set i}{B : A → Set j}{f : ∀ a → B a}{g : ∀ a → B a} → (∀ a → f a ≡ g a) → f ≡ g ≅-to-≡ : ∀{l : Level}{A : Set l}{a b : A} → a ≅ b → a ≡ b ≅-to-≡ refl = prop-refl -- this could just be derived from ext postulate iext : ∀{i j}{A : Set i}{B B' : A → Set j}{f : ∀ {a} → B a}{g : ∀{a} → B' a} → (∀ a → f {a} ≅ g {a}) → _≅_ {_}{ {a : A} → B a} f { {a : A} → B' a} g sym : ∀{l : Level}{A : Set l }{a b : A} → a ≅ b → b ≅ a sym refl = refl trans : ∀{l : Level}{A : Set l}{a b c : A} → a ≅ b → b ≅ c → a ≅ c trans refl refl = refl isEqRel : ∀{l : Level}{A : Set l} → EqRel {A = A} (λ x y → x ≅ y) isEqRel {l} {A} = record { parEqPf = record { symPf = sym; transPf = trans }; refPf = refl } ir : ∀{l : Level}{A A' : Set l}{a : A}{a' : A'}{p q : a ≅ a'} → p ≅ q ir {p = refl}{q = refl} = refl eqApp : ∀{l l' : Level}{A : Set l}{B : Set l'}{f : A → B}{b c : A} → b ≅ c → (f b) ≅ (f c) eqApp refl = refl subst≅ : {l l' : Level}{A : Set l}{a b : A}{P : A → Set l'} → a ≅ b → P a → P b subst≅ refl x = x -- Cite from relative monads paper. deqApp : ∀{l : Level}{A : Set l}{B : A → Set l}(f : ∀ a → B a){a a' : A} → a ≅ a' → f a ≅ f a' deqApp f refl = refl feqApp : ∀{l l' : Level}{A : Set l}{B : Set l'}{f f' : A → B}{b c : A} → f ≅ f' → b ≅ c → (f b) ≅ (f' c) feqApp refl refl = refl ifeqApp : ∀{i j}{A : Set i}{B : A → Set j}{f f' : {x : A} → B x}(a : A) → _≅_ {_}{ {a : A} → B a} f { {a : A} → B a} f' → f {a} ≅ f' {a} ifeqApp a refl = refl ieqApp : ∀{x y}{A : Set x}{B : A → Set y}(f : ∀ {a} → B a){a a' : A} → a ≅ a' → f {a} ≅ f {a'} ieqApp f refl = refl -- Cite from relative monads paper. eqApp2 : ∀{i j k}{A : Set i}{B : A → Set j}{C : Set k}{a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → (f : (a : A) → B a → C) → f a b ≅ f a' b' eqApp2 refl refl f = refl eqApp3 : ∀{x y z w}{A : Set x}{B : A → Set y}{C : (a : A) → B a → Set z}{E : Set w} (f : (a : A)(b : B a)(c : C a b) → E) → {a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → {c : C a b}{c' : C a' b'} → c ≅ c' → f a b c ≅ f a' b' c' eqApp3 f refl refl refl = refl depfeqApp3a : ∀{l}{A : Set l}{B : Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B)(z : C x) → D) → (f' : (x : A)(y : B)(z : C x) → D) → f ≅ f' → {a : A}{b : B} {c : C a} → f a b c ≅ f' a b c depfeqApp3a {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3b : ∀{l}{A : Set l}{B : A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x)(z : C x) → D) → (f' : (x : A)(y : B x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a} {c : C a} → f a b c ≅ f' a b c depfeqApp3b {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3c : ∀{l}{A : Set l}{B : A → A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x x)(z : C x) → D) → (f' : (x : A)(y : B x x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a a} {c : C a} → f a b c ≅ f' a b c depfeqApp3c {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3d : ∀{l}{A : Set l}{B : A → A → Set (suc l)}{C : A → A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x x)(z : C x x) → D) → (f' : (x : A)(y : B x x)(z : C x x) → D) → f ≅ f' → {a : A}{b : B a a} {c : C a a} → f a b c ≅ f' a b c depfeqApp3d {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3e : ∀{l}{A : Set l}{B : Set (suc l)}{C : A → A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B)(z : C x x) → D) → (f' : (x : A)(y : B)(z : C x x) → D) → f ≅ f' → {a : A}{b : B} {c : C a a} → f a b c ≅ f' a b c depfeqApp3e {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqAppa : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''}{a : A} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D x y) → f ≅ f' → f a ≅ f' a depfeqAppa {l}{l'}{l''}{l'''}{A}{B}{C}{D}{a} f f' p = eqApp {f = λ h → h a} p depfeqApp2a : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''}{a : A} (f : (y : B)(z : C a y) → D a y) → (f' : (y : B)(z : C a y) → D a y) → f ≅ f' → {b : B} {c : C a b} → f b c ≅ f' b c depfeqApp2a f f' p {b} {c} = feqApp {f = f b} {f' = f' b} (eqApp {f = λ h → h b} p) refl depfeqApp3f : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D x y) → f ≅ f' → {a : A}{b : B} {c : C a b} → f a b c ≅ f' a b c depfeqApp3f {_}{_}{_}{_}{A}{B}{C}{D} f f' p {a}{b}{c} = depfeqApp2a {A = A} {B = B}{C = λ o1 o2 → C o1 o2} {D = λ o1₁ o2₁ → D o1₁ o2₁} (f a) (f' a) (eqApp {f = λ h → h a} p) {b} {c} depfeqApp3g : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D D' : A → B → Set l'''} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D' x y) → D ≅ D' → f ≅ f' → {a : A}{b : B} {c : C a b} → f a b c ≅ f' a b c depfeqApp3g {_}{_}{_}{_}{A}{B}{C}{D} f f' refl p {a}{b}{c} = depfeqApp2a {A = A} {B = B} {C = λ o1₁ o2₁ → C o1₁ o2₁} {D = λ o1 o2 → D o1 o2} (f a) (f' a) (eqApp {f = λ h → h a} p) {b} {c} idepfeqApp2a : ∀{l l' l'' l''' l''''}{A : Set l}{B : Set l'}{C : Set l''}{D : A → B → C → Set l'''}{E : A → B → C → Set l''''}{a : A} (f : {x : B}{y : C}(z : D a x y) → E a x y) → (f' : {x : B}{y : C}(z : D a x y) → E a x y) → (∀{x y} → f {x}{y} ≅ f' {x}{y}) → {b : B}{c : C}{m : D a b c} → f {b}{c} m ≅ f' {b} {c} m idepfeqApp2a {l}{l'}{l''}{l'''}{l''''}{A}{B}{C}{D}{E}{a} f f' p {b}{c}{m} = feqApp {f = f {b} {c}} {f' = f' {b} {c}} {m} {m} (ext (λ h → feqApp {f = f {b} {c}} {f' = f' {b} {c}} {h} {h} (p {b}{c}) refl)) refl depfeqApp2b : ∀{l l' l''}{A : Set l}{D : A → A → Set l'}{E E' : A → A → Set l''} (f : (x : A)(y : A)(z : A) → (m1 : D y z) → (m2 : D x y) → E x z) → {f' : (x : A)(y : A)(z : A) → (m1 : D y z) → (m2 : D x y) → E' x z} → E ≅ E' → f ≅ f' → {a a' b b' c c' : A}{m1 : D b c}{m2 : D a b}{m1' : D b' c'}{m2' : D a' b'} → a ≅ a' → b ≅ b' → c ≅ c' → m1 ≅ m1' → m2 ≅ m2' → f a b c m1 m2 ≅ f' a' b' c' m1' m2' depfeqApp2b {_}{_}{_}{A}{D}{E} f refl refl {a = a}{b = b}{c = c}{m1 = m1}{m2 = m2} refl refl refl refl refl = eqApp {f = f a b c m1} {m2}{m2} refl feqApp3 : ∀{l}{A : Set l}{B : A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x)(z : C x) → D) → (f' : (x : A)(y : B x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a} {c : C a} → f a b c ≅ f' a b c feqApp3 {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl coerce : ∀{l}{A B : Set l} → A ≅ B → A → B coerce refl a = a p : ∀{m}{A B : Set m}{a : A}{b : B} → (q : B ≅ A) → _≅_ {m} {A} a {A} (coerce q b) → _≅_ {m} {A} a {B} b p refl refl = refl eqApp4 : ∀{x y z v w}{A : Set x}{B : A → Set y}{C : (a : A) → B a → Set z}{D : (a : A)(b : B a) → C a b → Set v}{E : Set w} (f : (a : A)(b : B a)(c : C a b) → D a b c → E) → {a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → {c : C a b}{c' : C a' b'} → c ≅ c' → {d : D a b c}{d' : D a' b' c'} → d ≅ d' → f a b c d ≅ f a' b' c' d' eqApp4 f refl refl refl refl = refl funCong : ∀{l m : Level}{A : Set l}{B : Set m}{f g : A → B}{a : A}{b : B} → (p : f ≅ g) → (q : f a ≅ b) → (w : g a ≅ b) → q ≅ w funCong refl q w = ir funCong2 : ∀{l : Level}{A B B' X Y : Set l}{f : ∀{X Y} → A → B}{g : ∀{X Y} → A → B'}{a : A}{b : B} → (r : B ≅ B') → (p : (λ {X}{Y} → f {X}{Y}) ≅ (λ {X}{Y} → g {X}{Y})) → (q : f {X}{Y} a ≅ b) → (w : g {X}{Y} a ≅ b) → q ≅ w funCong2 refl refl q w = ir fixtypes : ∀{x}{A A' : Set x}{a a' : A}{a'' a''' : A'}{p : a ≅ a'}{q : a'' ≅ a'''} → a ≅ a'' → a' ≅ a''' → p ≅ q fixtypes refl refl = ir
{ "alphanum_fraction": 0.3654328418, "avg_line_length": 45.5205479452, "ext": "agda", "hexsha": "1116f2f83b517e3f93e6ad0cdd3a427dec0b476d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Equality/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Equality/Eq.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Equality/Eq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4785, "size": 9969 }
open import Oscar.Prelude open import Oscar.Class.Transitivity module Oscar.Class.Congruity where module _ where module _ {ℓ} (_∼_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ) 𝔵 𝔶 where 𝓬ongruity = ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂ record 𝓒ongruity : Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶) where field congruity : 𝓬ongruity open 𝓒ongruity ⦃ … ⦄ public module _ {ℓ} (_∼_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ) {𝔵 𝔶} (𝔛 : Ø 𝔵) (𝔜 : Ø 𝔶) where 𝓬ongruity' = ∀ {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂ record 𝓒ongruity' : Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶) where field congruity' : 𝓬ongruity' open 𝓒ongruity' ⦃ … ⦄ public module _ {ℓ} {𝔬} (_∼_ : ∀ {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ) (𝔛 𝔜 : Ø 𝔬) where 𝓬ongruity'' = ∀ {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂ record 𝓒ongruity'' : Ø ℓ ∙̂ 𝔬 where field congruity'' : 𝓬ongruity'' open 𝓒ongruity'' ⦃ … ⦄ public -- a functional replacement of 𝓒ongruity₂ (but note the additional requirement of 𝓣ransitivity) congruity2 : ∀ {ℓ} {_∼_ : ∀ {x} {X : Ø x} → X → X → Ø ℓ} {𝔵 𝔶 𝔷} ⦃ _ : 𝓒ongruity _∼_ 𝔵 (𝔶 ∙̂ 𝔷) ⦄ ⦃ _ : 𝓒ongruity _∼_ (𝔶 ∙̂ 𝔷) 𝔷 ⦄ ⦃ _ : 𝓒ongruity _∼_ 𝔶 (𝔵 ∙̂ 𝔷) ⦄ ⦃ _ : 𝓒ongruity _∼_ (𝔵 ∙̂ 𝔷) 𝔷 ⦄ ⦃ _ : ∀ {x} {X : Ø x} → Transitivity.class (_∼_ {X = X}) ⦄ → ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {ℨ : Ø 𝔷} {x₁ x₂} {y₁ y₂} (f : 𝔛 → 𝔜 → ℨ) → x₁ ∼ x₂ → y₁ ∼ y₂ → f x₁ y₁ ∼ f x₂ y₂ congruity2 {𝔛 = 𝔛}{𝔜}{ℨ}{x₁}{x₂}{y₁}{y₂} f x₁∼x₂ y₁∼y₂ = let fx1=fx2 = congruity f x₁∼x₂ in let g2 = λ (fx : 𝔜 → ℨ) → fx y₂ in let fx1y2=fx2y2 = congruity g2 fx1=fx2 in let e = flip f in let ey1=ey2 = congruity e y₁∼y₂ in let h1 = λ (ex : 𝔛 → ℨ) → ex x₁ in let fx1y1=fx1y2 = congruity h1 ey1=ey2 in transitivity fx1y1=fx1y2 fx1y2=fx2y2 module _ where record 𝓒ongruity₂ {ℓ} (_∼_ : ∀ {x} {X : Ø x} → X → X → Ø ℓ) 𝔵 𝔶 𝔷 : Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶 ∙̂ 𝔷) where field congruity₂ : ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {ℨ : Ø 𝔷} {x₁ x₂} {y₁ y₂} (f : 𝔛 → 𝔜 → ℨ) → x₁ ∼ x₂ → y₁ ∼ y₂ → f x₁ y₁ ∼ f x₂ y₂ open 𝓒ongruity₂ ⦃ … ⦄ public module _ where module _ 𝔬 𝔭 {ℓ} (_∼̇_ : ∀ {⋆ : Ø 𝔬} {⋆̇ : ⋆ → Ø 𝔭} → ((𝓞 : ⋆) → ⋆̇ 𝓞) → ((𝓞 : ⋆) → ⋆̇ 𝓞) → Ø ℓ) (let infix 4 _∼̇_ ; _∼̇_ = _∼̇_) where record 𝓒̇ongruity : Ø ↑̂ (𝔬 ∙̂ 𝔭) ∙̂ ℓ where field ċongruity : ∀ {⋆ : Ø 𝔬} {⋆̇ : ⋆ → Ø 𝔭} {f₁ f₂ : (𝓞 : ⋆) → ⋆̇ 𝓞} (G : ∀ {𝓞 : ⋆} → ⋆̇ 𝓞 → ⋆̇ 𝓞) → f₁ ∼̇ f₂ → G ∘ f₁ ∼̇ G ∘ f₂ open 𝓒̇ongruity ⦃ … ⦄ public
{ "alphanum_fraction": 0.4790983607, "avg_line_length": 30.8860759494, "ext": "agda", "hexsha": "1313ba8b88ec1a88595204772b2e99aa89db2203", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Congruity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Congruity.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Congruity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1574, "size": 2440 }
module Issue478b where record Ko (Q : Set) : Set₁ where field T : Set foo : T foo = Set -- This previously said Set₁ !=< T r
{ "alphanum_fraction": 0.6086956522, "avg_line_length": 12.5454545455, "ext": "agda", "hexsha": "3b07b12eee7e0811793531b56dc3144974e49218", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue478b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue478b.agda", "max_line_length": 36, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue478b.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 47, "size": 138 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.GradedRing.DirectSumFun where {- This file give a graded ring construction in the case of the fun direct sum. Because of the current proofs this is done only in the case where - Idx is ℕ and for a monoid on it - For the usual ∸ of the Nat library The proof consists in : - Defining a _prod_ operation on the structure - Proving the underlying equivalence respect it - Transporting the proof of RingStr - Deducing an equivalence proof -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Relation.Nullary open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _∸_ to _-ℕ_ ) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.Equiv-DSHIT-DSFun open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.DirectSum.DirectSumHIT.Properties open import Cubical.Algebra.DirectSum.DirectSumFun.Base open import Cubical.Algebra.AbGroup.Instances.NProd open import Cubical.Algebra.AbGroup.Instances.DirectSumFun open import Cubical.Algebra.Ring open import Cubical.Algebra.GradedRing.Base open import Cubical.Algebra.GradedRing.DirectSumHIT open import Cubical.Algebra.CommRing open import Cubical.HITs.PropositionalTruncation as PT private variable ℓ ℓ' : Level open AbGroupStr open AbGroupTheory ----------------------------------------------------------------------------- -- Def, notation, lemma module _ -- monoid (_+n_ : ℕ → ℕ → ℕ) -- need to instantiate on +' (isM : IsMonoid 0 _+n_) (_+≡_ : (n m : ℕ) → n +n m ≡ n +ℕ m) -- needed for the behaviour under -ℕ -- (G : ℕ → Type ℓ) (Gstr : (n : ℕ) → AbGroupStr (G n)) where sameFiber+ : {i n : ℕ} → i ≤ n → i +ℕ (n -ℕ i) ≡ n sameFiber+ {zero} {zero} p = refl sameFiber+ {zero} {suc n} p = refl sameFiber+ {suc i} {zero} p = ⊥.rec (¬-<-zero p) sameFiber+ {suc i} {suc n} p = cong suc (sameFiber+ (pred-≤-pred p)) sameFiber : {i n : ℕ} → (i ≤ n) → i +n (n -ℕ i) ≡ n sameFiber {i} {n} p = (i +≡ (n -ℕ i)) ∙ sameFiber+ p open SubstLemma ℕ G Gstr open IsMonoid isM using () renaming ( ·Assoc to +nAssoc ; ·IdR to +nIdR ; ·IdL to +nIdL ) open AbGroupStr (snd (NProd-AbGroup G Gstr)) using () renaming ( 0g to 0Fun ; _+_ to _+Fun_ ; is-set to isSetFun ) module _ (1⋆ : G 0) (_⋆_ : {k l : ℕ} → G k → G l → G (k +n l)) (0-⋆ : {k l : ℕ} → (b : G l) → (0g (Gstr k)) ⋆ b ≡ 0g (Gstr (k +n l))) (⋆-0 : {k l : ℕ} → (a : G k) → a ⋆ (0g (Gstr l)) ≡ 0g (Gstr (k +n l))) (⋆Assoc : {k l m : ℕ} → (a : G k) → (b : G l) → (c : G m) → _≡_ {A = Σ[ k ∈ ℕ ] G k} ((k +n (l +n m)) , (a ⋆ (b ⋆ c))) (((k +n l) +n m) , ((a ⋆ b) ⋆ c))) (⋆IdR : {k : ℕ} → (a : G k) → _≡_ {A = Σ[ k ∈ ℕ ] G k} ( k +n 0 , a ⋆ 1⋆ ) (k , a)) (⋆IdL : {l : ℕ} → (b : G l) → _≡_ {A = Σ[ k ∈ ℕ ] G k} ( 0 +n l , 1⋆ ⋆ b ) (l , b)) (⋆DistR+ : {k l : ℕ} → (a : G k) → (b c : G l) → a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (k +n l) ._+_ (a ⋆ b) (a ⋆ c)) (⋆DistL+ : {k l : ℕ} → (a b : G k) → (c : G l) → ((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (k +n l) ._+_ (a ⋆ c) (b ⋆ c)) where ----------------------------------------------------------------------------- -- Definition of 1 -- import for pres open Equiv-Properties G Gstr using ( substG ; fun-trad ; fun-trad-eq ; fun-trad-neq ; ⊕HIT→Fun ; ⊕HIT→⊕Fun ; ⊕HIT→⊕Fun-pres+) 1Fun : (n : ℕ) → G n 1Fun zero = 1⋆ 1Fun (suc n) = 0g (Gstr (suc n)) 1⊕Fun : ⊕Fun G Gstr 1⊕Fun = 1Fun , ∣ 0 , helper ∣₁ where helper : AlmostNullProof G Gstr 1Fun 0 helper zero r = ⊥.rec (¬-<-zero r) helper (suc n) r = refl ⊕HIT→Fun-pres1 : (n : ℕ) → ⊕HIT→Fun (base 0 1⋆) n ≡ 1Fun n ⊕HIT→Fun-pres1 zero with discreteℕ 0 0 ... | yes p = cong (λ X → subst G X 1⋆) (isSetℕ _ _ _ _) ∙ transportRefl _ ... | no ¬p = ⊥.rec (¬p refl) ⊕HIT→Fun-pres1 (suc n) with discreteℕ (suc n) 0 ... | yes p = ⊥.rec (snotz p) ... | no ¬p = refl ⊕HIT→⊕Fun-pres1 : ⊕HIT→⊕Fun (base 0 1⋆) ≡ 1⊕Fun ⊕HIT→⊕Fun-pres1 = ΣPathTransport→PathΣ _ _ ((funExt (λ n → ⊕HIT→Fun-pres1 n)) , (squash₁ _ _)) ----------------------------------------------------------------------------- -- Definition of the ring product sumFun : (i n : ℕ) → (i ≤ n) → (f g : (n : ℕ) → G n) → G n sumFun zero n r f g = subst G (sameFiber r) ((f 0) ⋆ (g (n -ℕ 0))) sumFun (ℕ.suc i) n r f g = Gstr n ._+_ (subst G (sameFiber r) ((f (suc i)) ⋆ (g (n -ℕ suc i)))) (sumFun i n (≤-trans ≤-sucℕ r) f g) _prodFun_ : (f g : (n : ℕ) → G n) → (n : ℕ) → G n _prodFun_ f g n = sumFun n n ≤-refl f g -- Proof that it is an almost null sequence prodAn : (f g : (n : ℕ) → G n) → AlmostNull G Gstr f → AlmostNull G Gstr g → AlmostNull G Gstr (f prodFun g) prodAn f g (k , nf) (l , ng) = (k +ℕ l) , λ n pp → sumF0 n n pp ≤-refl where sumF0 : (i n : ℕ) → (pp : k +ℕ l < n) → (r : i ≤ n) → sumFun i n r f g ≡ 0g (Gstr n) sumF0 zero n pp r = cong (subst G (sameFiber r)) (cong (λ X → f 0 ⋆ X) (ng (n -ℕ zero) (<-k+-trans pp)) ∙ ⋆-0 _) ∙ subst0g _ sumF0 (suc i) n pp r with splitℕ-≤ (suc i) k ... | inl x = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (cong (λ X → f (suc i) ⋆ X) (ng (n -ℕ suc i) -- Goal : l < n - suc i -- Proof : l = k + l - k < n - k < n - suc i (subst (λ X → X < n -ℕ suc i) (∸+ l k) (≤<-trans (≤-∸-≥ (k +ℕ l) (suc i) k x) (<-∸-< (k +ℕ l) n (suc i) pp (≤<-trans x (<-+k-trans pp)))))) ∙ ⋆-0 (f (suc i)))) (sumF0 i n pp (≤-trans ≤-sucℕ r)) ∙ +IdR (Gstr n) _ ∙ subst0g _ ... | inr x = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (cong (λ X → X ⋆ g (n -ℕ (suc i))) (nf (suc i) x) ∙ 0-⋆ _)) (sumF0 i n pp (≤-trans ≤-sucℕ r)) ∙ +IdR (Gstr n) _ ∙ subst0g _ _prodF_ : ⊕Fun G Gstr → ⊕Fun G Gstr → ⊕Fun G Gstr _prodF_(f , Anf) (g , Ang) = (f prodFun g) , helper Anf Ang where helper : AlmostNullP G Gstr f → AlmostNullP G Gstr g → AlmostNullP G Gstr (f prodFun g) helper = PT.rec2 squash₁ (λ x y → ∣ (prodAn f g x y) ∣₁) ----------------------------------------------------------------------------- -- Some Ring properties that are needed -- lemma for 0 case prodFunAnnihilL : (f : (n : ℕ) → G n) → 0Fun prodFun f ≡ 0Fun prodFunAnnihilL f = funExt (λ n → sumF0 n n ≤-refl) where sumF0 : (i n : ℕ) → (r : i ≤ n) → sumFun i n r 0Fun f ≡ 0g (Gstr n) sumF0 zero n r = cong (subst G (sameFiber r)) (0-⋆ _) ∙ subst0g _ sumF0 (suc i) n r = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (0-⋆ _)) (sumF0 i n (≤-trans ≤-sucℕ r)) ∙ +IdR (Gstr n) _ ∙ subst0g _ prodFunAnnihilR : (f : (n : ℕ) → (G n)) → f prodFun 0Fun ≡ 0Fun prodFunAnnihilR f = funExt (λ n → sumF0 n n ≤-refl) where sumF0 : (i n : ℕ) → (r : i ≤ n) → sumFun i n r f 0Fun ≡ 0g (Gstr n) sumF0 zero n r = cong (subst G (sameFiber r)) (⋆-0 _) ∙ subst0g _ sumF0 (suc i) n r = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (⋆-0 _)) (sumF0 i n (≤-trans ≤-sucℕ r)) ∙ +IdR (Gstr n) _ ∙ subst0g _ prodFunDistR : (f g h : (n : ℕ) → G n) → f prodFun (g +Fun h) ≡ (f prodFun g) +Fun (f prodFun h) prodFunDistR f g h = funExt (λ n → sumFAssoc n n ≤-refl) where sumFAssoc : (i n : ℕ) → (r : i ≤ n) → sumFun i n r f (g +Fun h) ≡ (Gstr n) ._+_ (sumFun i n r f g) (sumFun i n r f h) sumFAssoc zero n r = cong (subst G (sameFiber r)) (⋆DistR+ _ _ _) ∙ sym (subst+ _ _ _) sumFAssoc (suc i) n r = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (⋆DistR+ _ _ _) ∙ sym (subst+ _ _ _)) (sumFAssoc i n (≤-trans ≤-sucℕ r)) ∙ comm-4 ((G n) , (Gstr n)) _ _ _ _ prodFunDistL : (f g h : (n : ℕ) → G n) → (f +Fun g) prodFun h ≡ (f prodFun h) +Fun (g prodFun h) prodFunDistL f g h = funExt (λ n → sumFAssoc n n ≤-refl) where sumFAssoc : (i n : ℕ) → (r : i ≤ n) → sumFun i n r (f +Fun g) h ≡ (Gstr n) ._+_ (sumFun i n r f h) (sumFun i n r g h) sumFAssoc zero n r = cong (subst G (sameFiber r)) (⋆DistL+ _ _ _) ∙ sym (subst+ _ _ _) sumFAssoc (suc i) n r = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (⋆DistL+ _ _ _) ∙ sym (subst+ _ _ _)) (sumFAssoc i n (≤-trans ≤-sucℕ r)) ∙ comm-4 ((G n) , (Gstr n)) _ _ _ _ ----------------------------------------------------------------------------- -- Preserving the product -- A substitution lemma subst⋆ : {m n k l : ℕ} → (p : m ≡ n) → (q : k ≡ l) → (r : m +n k ≡ n +n l) → (a : G m) → (b : G k) → subst G p a ⋆ subst G q b ≡ subst G r (a ⋆ b) subst⋆ p q r a b = J (λ n p → subst G p a ⋆ subst G q b ≡ subst G (cong₂ _+n_ p q) (a ⋆ b)) (J (λ l q → subst G refl a ⋆ subst G q b ≡ subst G (cong₂ _+n_ refl q) (a ⋆ b)) (cong₂ _⋆_ (transportRefl _) (transportRefl _) ∙ sym (transportRefl _)) q) p ∙ cong (λ X → subst G X (a ⋆ b)) (isSetℕ _ _ _ _) -- Proving the base case open GradedRing-⊕HIT-index (ℕ , (monoidstr 0 _+n_ isM)) G Gstr open GradedRing-⊕HIT-⋆ 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ sumFun≠ : (k : ℕ) → (a : G k) → (l : ℕ) → (b : G l) → (i n : ℕ) → (r : i ≤ n) → (¬pp : k +n l ≡ n → ⊥) → sumFun i n r (fun-trad k a) (fun-trad l b) ≡ 0g (Gstr n) sumFun≠ k a l b zero n r ¬pp with discreteℕ k 0 | discreteℕ l n ... | yes p | yes q = ⊥.rec (¬pp ((k +≡ l) ∙ cong₂ _+ℕ_ p q) ) ... | yes p | no ¬q = cong (subst G (sameFiber r)) (⋆-0 _) ∙ subst0g _ ... | no ¬p | yes q = cong (subst G (sameFiber r)) (0-⋆ _) ∙ subst0g _ ... | no ¬p | no ¬q = cong (subst G (sameFiber r)) (0-⋆ _) ∙ subst0g _ sumFun≠ k a l b (suc i) n r ¬pp with discreteℕ k (suc i) | discreteℕ l (n -ℕ (suc i)) ... | yes p | yes q = ⊥.rec (¬pp (cong₂ _+n_ p q ∙ sameFiber r)) ... | yes p | no ¬q = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (⋆-0 _)) (sumFun≠ k a l b i n (≤-trans ≤-sucℕ r) ¬pp) ∙ +IdR (Gstr n) _ ∙ subst0g _ ... | no ¬p | yes q = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (0-⋆ _)) (sumFun≠ k a l b i n (≤-trans ≤-sucℕ r) ¬pp) ∙ +IdR (Gstr n) _ ∙ subst0g _ ... | no ¬p | no ¬q = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (0-⋆ _)) (sumFun≠ k a l b i n (≤-trans ≤-sucℕ r) ¬pp) ∙ +IdR (Gstr n) _ ∙ subst0g _ -- If k +n l ≡ n then, we unwrap the sum until we reach k. -- Before it is 0, in k the value, then it is 0 sumFun< : (k : ℕ) → (a : G k) → (l : ℕ) → (b : G l) → (i n : ℕ) → (r : i ≤ n) → (i < k) → sumFun i n r (fun-trad k a) (fun-trad l b) ≡ 0g (Gstr n) sumFun< k a l b zero n r pp with discreteℕ k 0 ... | yes p = ⊥.rec (<→≢ pp (sym p)) ... | no ¬p = cong (subst G (sameFiber r)) (0-⋆ _) ∙ subst0g _ sumFun< k a l b (suc i) n r pp with discreteℕ k (suc i) ... | yes p = ⊥.rec (<→≢ pp (sym p)) ... | no ¬p = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (0-⋆ _)) (sumFun< k a l b i n (≤-trans ≤-sucℕ r) (<-trans ≤-refl pp)) ∙ +IdR (Gstr n) _ ∙ subst0g _ sumFun≤ : (k : ℕ) → (a : G k) → (l : ℕ) → (b : G l ) → (i n : ℕ) → (r : i ≤ n) → (pp : k +n l ≡ n) → (k ≤ i) → sumFun i n r (fun-trad k a) (fun-trad l b) ≡ subst G pp (a ⋆ b) sumFun≤ k a l b zero n r pp rr with discreteℕ k 0 | discreteℕ l n ... | yes p | yes q = cong (subst G (sameFiber r)) (subst⋆ p q (pp ∙ sym (+nIdL _)) a b) ∙ sym (substComposite G _ _ _) ∙ cong (λ X → subst G X (a ⋆ b)) (isSetℕ _ _ _ _) ... | yes p | no ¬q = ⊥.rec (¬q (sym (+nIdL l) ∙ cong (λ X → X +n l) (sym p) ∙ pp)) ... | no ¬p | yes q = ⊥.rec (¬p (≤0→≡0 rr)) ... | no ¬p | no ¬q = ⊥.rec (¬p (≤0→≡0 rr)) sumFun≤ k a l b (suc i) n r pp rr with discreteℕ k (suc i) | discreteℕ l (n -ℕ suc i) ... | yes p | yes q = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (subst⋆ p q (pp ∙ sym (sameFiber r)) a b) ∙ sym (substComposite G _ _ _)) (sumFun< k a l b i n (≤-trans ≤-sucℕ r) (0 , (sym p))) ∙ +IdR (Gstr n) _ ∙ cong (λ X → subst G X (a ⋆ b)) (isSetℕ _ _ _ _) ... | yes p | no ¬q = ⊥.rec (¬q (inj-m+ (sym ((suc i) +≡ l) ∙ cong (λ X → X +n l) (sym p) ∙ pp ∙ sym (sameFiber r) ∙ ((suc i) +≡ (n -ℕ suc i))))) ... | no ¬p | yes q = ⊥.rec (¬p (inj-+m (sym (k +≡ (n -ℕ suc i)) ∙ cong (λ X → k +n X) (sym q) ∙ pp ∙ sym (sameFiber r) ∙ ((suc i) +≡ (n -ℕ suc i))))) ... | no ¬p | no ¬q = cong₂ (Gstr n ._+_) (cong (subst G (sameFiber r)) (0-⋆ _) ∙ subst0g _) (sumFun≤ k a l b i n (≤-trans ≤-sucℕ r) pp (≤-suc-≢ rr ¬p)) ∙ +IdL (Gstr n) _ -- If k +n l ≢ n, then it is both zero -- Otherwise, it coincide in (k,l) sumFBase : (k : ℕ) → (a : G k) → (l : ℕ) → (b : G l) → (n : ℕ) → fun-trad (k +n l) (a ⋆ b) n ≡ sumFun n n ≤-refl (fun-trad k a) (fun-trad l b) sumFBase k a l b n with discreteℕ (k +n l) n ... | yes p = sym (sumFun≤ k a l b n n ≤-refl p (l , (+-comm l k ∙ sym (k +≡ l) ∙ p))) ... | no ¬p = sym (sumFun≠ k a l b n n ≤-refl ¬p) -- Proof that ⊕HIT→⊕Fun preserve the cup product ⊕HIT→Fun-pres-prodFun : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→Fun (x prod y) ≡ ((⊕HIT→Fun x) prodFun (⊕HIT→Fun y)) ⊕HIT→Fun-pres-prodFun = DS-Ind-Prop.f _ _ _ _ (λ x → isPropΠ (λ _ → isSetFun _ _)) (λ y → sym (prodFunAnnihilL (⊕HIT→Fun y))) (λ k a → DS-Ind-Prop.f _ _ _ _ (λ _ → isSetFun _ _) (sym (prodFunAnnihilR (⊕HIT→Fun (base k a)))) (λ l b → funExt λ n → sumFBase k a l b n) λ {U V} ind-U ind-V → cong₂ _+Fun_ ind-U ind-V ∙ sym (prodFunDistR _ _ _)) λ {U} {V} ind-U ind-V y → cong₂ _+Fun_ (ind-U y) (ind-V y) ∙ sym (prodFunDistL _ _ _) ⊕HIT→⊕Fun-pres-prodF : (x y : ⊕HIT ℕ G Gstr) → ⊕HIT→⊕Fun (x prod y) ≡ ((⊕HIT→⊕Fun x) prodF (⊕HIT→⊕Fun y)) ⊕HIT→⊕Fun-pres-prodF x y = ΣPathTransport→PathΣ _ _ ((⊕HIT→Fun-pres-prodFun x y) , (squash₁ _ _)) ----------------------------------------------------------------------------- -- Graded Ring Structure open AbGroupStr (snd (⊕Fun-AbGr G Gstr)) using () renaming ( 0g to 0⊕Fun ; _+_ to _+⊕Fun_ ; -_ to -⊕Fun_ ; is-set to isSet⊕Fun) open IsGroupHom ⊕FunGradedRing-Ring : Ring ℓ ⊕FunGradedRing-Ring = InducedRing ⊕HITgradedRing-Ring 0⊕Fun 1⊕Fun _+⊕Fun_ _prodF_ -⊕Fun_ (fst (Equiv-DirectSum G Gstr)) (pres1 (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres1 (pres· (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres-prodF (presinv (snd (Equiv-DirectSum G Gstr))) RingEquiv-DirectSumGradedRing : RingEquiv ⊕HITgradedRing-Ring ⊕FunGradedRing-Ring RingEquiv-DirectSumGradedRing = InducedRingEquiv ⊕HITgradedRing-Ring 0⊕Fun 1⊕Fun _+⊕Fun_ _prodF_ -⊕Fun_ (fst (Equiv-DirectSum G Gstr)) (pres1 (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres1 (pres· (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres-prodF (presinv (snd (Equiv-DirectSum G Gstr))) ⊕Fun-GradedRing : GradedRing ℓ-zero ℓ ⊕Fun-GradedRing = makeGradedRing ⊕FunGradedRing-Ring (ℕ , (monoidstr 0 _+n_ isM)) G Gstr 1⋆ _⋆_ 0-⋆ ⋆-0 ⋆Assoc ⋆IdR ⋆IdL ⋆DistR+ ⋆DistL+ (RingEquivs.invRingEquiv RingEquiv-DirectSumGradedRing) ----------------------------------------------------------------------------- -- CommRing extension module _ (⋆Comm : {k l : ℕ} → (a : G k) → (b : G l) → _≡_ {A = Σ[ k ∈ ℕ ] G k} ((k +n l) , (a ⋆ b)) ((l +n k) , (b ⋆ a))) where open ExtensionCommRing ⋆Comm ⊕FunGradedRing-CommRing : CommRing ℓ ⊕FunGradedRing-CommRing = InducedCommRing ⊕HITgradedRing-CommRing 0⊕Fun 1⊕Fun _+⊕Fun_ _prodF_ -⊕Fun_ (fst (Equiv-DirectSum G Gstr)) (pres1 (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres1 (pres· (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres-prodF (presinv (snd (Equiv-DirectSum G Gstr))) CommRingEquiv-DirectSumGradedRing : CommRingEquiv ⊕HITgradedRing-CommRing ⊕FunGradedRing-CommRing CommRingEquiv-DirectSumGradedRing = InducedCommRingEquiv ⊕HITgradedRing-CommRing 0⊕Fun 1⊕Fun _+⊕Fun_ _prodF_ -⊕Fun_ (fst (Equiv-DirectSum G Gstr)) (pres1 (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres1 (pres· (snd (Equiv-DirectSum G Gstr))) ⊕HIT→⊕Fun-pres-prodF (presinv (snd (Equiv-DirectSum G Gstr)))
{ "alphanum_fraction": 0.4257581725, "avg_line_length": 47.2372093023, "ext": "agda", "hexsha": "59dc0c5ee55aee7b51f8b850449631f02a5d5390", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/GradedRing/DirectSumFun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/GradedRing/DirectSumFun.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/GradedRing/DirectSumFun.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7368, "size": 20312 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Notation for adding an additional point to any set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Construct.Add.Point where open import Data.Maybe.Base using () renaming (Maybe to Pointed; nothing to ∙; just to [_]) public
{ "alphanum_fraction": 0.4680851064, "avg_line_length": 30.2142857143, "ext": "agda", "hexsha": "8384868b1b8c716c8f28350cc1000167f7acb817", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Point.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Point.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Point.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 69, "size": 423 }
{-# OPTIONS --without-K #-} open import M-types.Base.Core module M-types.Base.Prod where ∏ : (X : Ty ℓ₀) → (Y : X → Ty ℓ₁) → Ty (ℓ-max ℓ₀ ℓ₁) ∏ X Y = (x : X) → Y x ∏-syntax : (X : Ty ℓ₀) → (Y : X → Ty ℓ₁) → Ty (ℓ-max ℓ₀ ℓ₁) ∏-syntax = ∏ infix 2 ∏-syntax syntax ∏-syntax X (λ x → Y) = ∏[ x ∈ X ] Y id : {X : Ty ℓ} → (X → X) id = λ x → x infixr 9 _∘_ _∘_ : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {Z : {x : X} → Y x → Ty ℓ₂} → ∏[ g ∈ ({x : X} → ∏[ y ∈ Y x ] Z y) ] ∏[ f ∈ (∏[ x ∈ X ] Y x) ] ∏[ x ∈ X ] Z (f x) f ∘ g = λ x → f (g x)
{ "alphanum_fraction": 0.3714759536, "avg_line_length": 21.5357142857, "ext": "agda", "hexsha": "82028592bbd1aab4d52bed74b07c441b0e16f42e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Prod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Prod.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Prod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 298, "size": 603 }
{-# OPTIONS --cumulativity #-} open import Agda.Primitive module _ (a ℓ : Level) where mutual X : Level X = _ X<=a : Set X → Set a X<=a A = A test : Set₁ test with (lsuc ℓ) ... | _ = Set where a<=X : Set a → Set X a<=X A = A
{ "alphanum_fraction": 0.5095785441, "avg_line_length": 12.4285714286, "ext": "agda", "hexsha": "73ecaa9df78f6b8cc8e3f9a7357a0313e0c09ba7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4203.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4203.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4203.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 261 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import lib.types.TwoSemiCategory module homotopy.HSpace where -- This is just an approximation because -- not all higher cells are killed. record HSpaceStructure {i} (X : Ptd i) : Type i where constructor hSpaceStructure field ⊙μ : (X ⊙× X) ⊙→ X μ : de⊙ X → de⊙ X → de⊙ X μ = curry (fst ⊙μ) field ⊙unit-l : ⊙μ ⊙∘ ⊙×-inr X X ⊙∼ ⊙idf X ⊙unit-r : ⊙μ ⊙∘ ⊙×-inl X X ⊙∼ ⊙idf X unit-l : ∀ x → μ (pt X) x == x unit-l = fst ⊙unit-l unit-r : ∀ x → μ x (pt X) == x unit-r = fst ⊙unit-r coh : unit-l (pt X) == unit-r (pt X) coh = ! (↓-idf=cst-out (snd ⊙unit-l) ∙ ∙-unit-r _) ∙ (↓-idf=cst-out (snd ⊙unit-r) ∙ ∙-unit-r _) record AlternativeHSpaceStructure {i} (X : Ptd i) : Type i where constructor hSpaceStructure field μ : de⊙ X → de⊙ X → de⊙ X unit-l : ∀ x → μ (pt X) x == x unit-r : ∀ x → μ x (pt X) == x coh : unit-l (pt X) == unit-r (pt X) ⊙μ : (X ⊙× X) ⊙→ X ⊙μ = uncurry μ , unit-l (pt X) ⊙unit-l : ⊙μ ⊙∘ ⊙×-inr X X ⊙∼ ⊙idf X ⊙unit-l = unit-l , ↓-idf=cst-in' idp ⊙unit-r : ⊙μ ⊙∘ ⊙×-inl X X ⊙∼ ⊙idf X ⊙unit-r = unit-r , ↓-idf=cst-in' coh from-alt-h-space : ∀ {i} {X : Ptd i} → AlternativeHSpaceStructure X → HSpaceStructure X from-alt-h-space hss = record {AlternativeHSpaceStructure hss} to-alt-h-space : ∀ {i} {X : Ptd i} → HSpaceStructure X → AlternativeHSpaceStructure X to-alt-h-space hss = record {HSpaceStructure hss} module ConnectedHSpace {i} {X : Ptd i} {{_ : is-connected 0 (de⊙ X)}} (hX : HSpaceStructure X) where open HSpaceStructure hX public {- Given that [X] is 0-connected, to prove that each [μ x] is an equivalence we only need to prove that one of them is. But for [x] = [pt X], [μ x] is the identity so we’re done. -} l-is-equiv : ∀ x → is-equiv (λ y → μ y x) l-is-equiv = prop-over-connected {a = pt X} (λ x → (is-equiv (λ y → μ y x) , is-equiv-is-prop)) (transport! is-equiv (λ= unit-r) (idf-is-equiv _)) r-is-equiv : ∀ x → is-equiv (λ y → μ x y) r-is-equiv = prop-over-connected {a = pt X} (λ x → (is-equiv (λ y → μ x y) , is-equiv-is-prop)) (transport! is-equiv (λ= unit-l) (idf-is-equiv _)) l-equiv : de⊙ X → de⊙ X ≃ de⊙ X l-equiv x = _ , l-is-equiv x r-equiv : de⊙ X → de⊙ X ≃ de⊙ X r-equiv x = _ , r-is-equiv x module _ {i} {X : Ptd i} (hX : HSpaceStructure X) where module hX = HSpaceStructure hX associator : Type i associator = ∀ a b c → hX.μ (hX.μ a b) c == hX.μ a (hX.μ b c) coh-unit-l-eq : associator → de⊙ X → de⊙ X → Type i coh-unit-l-eq assoc a b = assoc (pt X) a b ◃∙ hX.unit-l (hX.μ a b) ◃∎ =ₛ ap (λ x → hX.μ x b) (hX.unit-l a) ◃∎ coh-unit-l : associator → Type i coh-unit-l assoc = ∀ a b → coh-unit-l-eq assoc a b coh-unit-r-eq : associator → de⊙ X → de⊙ X → Type i coh-unit-r-eq assoc a b = hX.unit-r (hX.μ a b) ◃∎ =ₛ assoc a b (pt X) ◃∙ ap (hX.μ a) (hX.unit-r b) ◃∎ coh-unit-r : associator → Type i coh-unit-r assoc = ∀ a b → coh-unit-r-eq assoc a b coh-unit-l-r-pentagon : associator → Type i coh-unit-l-r-pentagon assoc = ∀ a' → hX.unit-r (hX.μ (pt X) a') ◃∙ hX.unit-l a' ◃∎ =ₛ assoc (pt X) a' (pt X) ◃∙ hX.unit-l (hX.μ a' (pt X)) ◃∙ hX.unit-r a' ◃∎ coh-unit-l-to-unit-l-r-pentagon : (assoc : associator) → coh-unit-l assoc → coh-unit-l-r-pentagon assoc coh-unit-l-to-unit-l-r-pentagon assoc c a' = hX.unit-r (hX.μ (pt X) a') ◃∙ hX.unit-l a' ◃∎ =ₛ⟨ !ₛ (homotopy-naturality-to-idf (λ x → hX.μ x (pt X)) hX.unit-r (hX.unit-l a')) ⟩ ap (λ x → hX.μ x (pt X)) (hX.unit-l a') ◃∙ hX.unit-r a' ◃∎ =ₛ⟨ 0 & 1 & !ₛ (c a' (pt X)) ⟩ assoc (pt X) a' (pt X) ◃∙ hX.unit-l (hX.μ a' (pt X)) ◃∙ hX.unit-r a' ◃∎ ∎ₛ coh-unit-r-to-unit-l-r-pentagon : (assoc : associator) → coh-unit-r assoc → coh-unit-l-r-pentagon assoc coh-unit-r-to-unit-l-r-pentagon assoc c a' = hX.unit-r (hX.μ (pt X) a') ◃∙ hX.unit-l a' ◃∎ =ₛ⟨ 0 & 1 & c (pt X) a' ⟩ assoc (pt X) a' (pt X) ◃∙ ap (hX.μ (pt X)) (hX.unit-r a') ◃∙ hX.unit-l a' ◃∎ =ₛ⟨ 1 & 3 & homotopy-naturality-to-idf (hX.μ (pt X)) hX.unit-l (hX.unit-r a') ⟩ assoc (pt X) a' (pt X) ◃∙ hX.unit-l (hX.μ a' (pt X)) ◃∙ hX.unit-r a' ◃∎ ∎ₛ coh-assoc-pentagon-eq : (assoc : associator) → (a b c d : de⊙ X) → Type i coh-assoc-pentagon-eq assoc a b c d = assoc (hX.μ a b) c d ◃∙ assoc a b (hX.μ c d) ◃∎ =ₛ ap (λ s → hX.μ s d) (assoc a b c) ◃∙ assoc a (hX.μ b c) d ◃∙ ap (hX.μ a) (assoc b c d) ◃∎ coh-assoc-pentagon : (assoc : associator) → Type i coh-assoc-pentagon assoc = ∀ a b c d → coh-assoc-pentagon-eq assoc a b c d HSpace-2-semi-category : {{X-level : has-level 1 (de⊙ X)}} → (assoc : associator) → coh-assoc-pentagon assoc → TwoSemiCategory lzero i HSpace-2-semi-category assoc assoc-coh = record { El = ⊤ ; Arr = λ _ _ → de⊙ X ; Arr-level = λ _ _ → ⟨⟩ ; two-semi-cat-struct = record { comp = hX.μ ; assoc = assoc ; pentagon-identity = assoc-coh } }
{ "alphanum_fraction": 0.5378216289, "avg_line_length": 29.8786127168, "ext": "agda", "hexsha": "9518b76098a920dd09be14cf5876fb7af858ef59", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/HSpace.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/HSpace.agda", "max_line_length": 93, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/HSpace.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2235, "size": 5169 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap as KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Hash open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.Consensus.Liveness.RoundState as RoundState import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile open import LibraBFT.Impl.IO.OBM.InputOutputHandlers import LibraBFT.Impl.IO.OBM.Start as Start open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.OBM.Time import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.Impl.Consensus.RoundManager open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Util open import LibraBFT.Lemmas open import LibraBFT.Prelude open import LibraBFT.Yasm.Base import LibraBFT.Yasm.Types as LYT open import Optics.All -- This module connects implementation handlers to the interface of the SystemModel. module LibraBFT.Impl.Handle where open EpochConfig ------------------------------------------------------------------------------ -- This function works with any implementation of a RoundManager. -- NOTE: The system layer only cares about this step function. -- 0 is given as a timestamp. peerStep : NodeId → NetworkMsg → RoundManager → RoundManager × List (LYT.Action NetworkMsg) peerStep nid msg st = runHandler st (handle nid msg 0) where -- This invokes an implementation handler. runHandler : RoundManager → LBFT Unit → RoundManager × List (LYT.Action NetworkMsg) runHandler st handler = ×-map₂ (outputsToActions {st}) (proj₂ (LBFT-run handler st)) ------------------------------------------------------------------------------ -- This connects the implementation handler to the system model so it can be initialized. module InitHandler where {- IMPL-DIFF: In Haskell, nodes are started with a filepath of a file containing - number of faults allowed - genesis LedgerInfoWithSignatures - network addresses/name and secret and public keys of all nodes in the genesis epoch Main reads/checks that file then calls a network specific 'run' functions (e.g., ZMQ.hs) that setup the network handlers then eventually call 'Start.startViaConsensusProvider'. That functions calls 'ConsensusProvider.startConsensus' which returns '(EpochManager, [Output]'. 'Start.startViaConsensusProvider' then goes on to create and wire up internal communication channels and starts threads. The most relevant thread starts up `(EpochManager.obmStartLoop epochManager output ...)' to handle the initialization output and then to handle new messages from the network. In Agda below, - we assume 'BootstrapInfo' known to all peers - i.e., the same info that Haskell creates via 'GenKeyFile.create' - the assumed info is given to 'mkSysInitAndHandlers' in 'InitAndHandlers' - System initialization calls 'initHandler' - 'initHandler' eventually calls 'initialize' - 'initialize' calls 'State.startViaConsensusProvider' when then calls 'ConsensusProvider.startConsensus' which returns '(EpochManager, List Output)', just like Haskell. - Since there is no network, internal channels and threads, this is the end of this process. Note: although both the Haskell and Agda version support non-uniform voting, the above initialization process assumes one-vote per peer. -} postulate -- TODO-2: Eliminate when/if timestamps are modeled now : Instant proposalGenerator : ProposalGenerator proposalGenerator = ProposalGenerator∙new 0 initialize' : Instant → GenKeyFile.NfLiwsVsVvPe → Either ErrLog (EpochManager × List Output) initialize' now nfLiwsVsVvPe = Start.startViaConsensusProvider now nfLiwsVsVvPe (TxTypeDependentStuffForNetwork∙new proposalGenerator (StateComputer∙new BlockInfo.gENESIS_VERSION)) abstract initialize : Instant → GenKeyFile.NfLiwsVsVvPe → Either ErrLog (EpochManager × List Output) initialize = initialize' initialize≡ : initialize ≡ initialize' initialize≡ = refl mkNfLiwsVsVvPe : BootstrapInfo → ValidatorSigner → GenKeyFile.NfLiwsVsVvPe mkNfLiwsVsVvPe bsi vs = (bsi ^∙ bsiNumFaults , bsi ^∙ bsiLIWS , vs , bsi ^∙ bsiVV , bsi ^∙ bsiPE) initEMWithOutput' : BootstrapInfo → ValidatorSigner → Either ErrLog (EpochManager × List Output) initEMWithOutput' bsi vs = initialize now (mkNfLiwsVsVvPe bsi vs) initEMWithOutput : BootstrapInfo → ValidatorSigner → EitherD ErrLog (EpochManager × List Output) initEMWithOutput bsi vs = fromEither $ initialize now (mkNfLiwsVsVvPe bsi vs) getEmRm : EpochManager → Either ErrLog RoundManager getEmRm em = case em ^∙ emProcessor of λ where nothing → Left fakeErr (just p) → case p of λ where (RoundProcessorRecovery _) → Left fakeErr (RoundProcessorNormal rm) → Right rm initRMWithOutput' : BootstrapInfo → ValidatorSigner → Either ErrLog (RoundManager × List Output) initRMWithOutput' bsi vs = do (em , lo) ← initEMWithOutput' bsi vs rm ← getEmRm em Right (rm , lo) initRMWithOutput : BootstrapInfo → ValidatorSigner → EitherD ErrLog (RoundManager × List Output) initRMWithOutput bsi vs = do (em , lo) ← initEMWithOutput bsi vs rm ← fromEither $ getEmRm em fromEither $ Right (rm , lo) -- This shows that the Either and EitherD versions are equivalent. -- This is a first step towards eliminating the painful VariantOf stuff, -- so we can have the version that looks (almost) exactly like the Haskell, -- and the EitherD variant, broken into explicit steps, etc. for proving. initEMWithOutput≡ : ∀ {bsi : BootstrapInfo} {vs : ValidatorSigner} → initEMWithOutput' bsi vs ≡ EitherD-run (initEMWithOutput bsi vs) initEMWithOutput≡ {bsi} {vs} with initialize now (mkNfLiwsVsVvPe bsi vs) ... | Left _ = refl ... | Right _ = refl initRMWithOutput≡ : ∀ {bsi : BootstrapInfo} {vs : ValidatorSigner} → initRMWithOutput' bsi vs ≡ EitherD-run (initRMWithOutput bsi vs) initRMWithOutput≡ {bsi} {vs} with initialize now (mkNfLiwsVsVvPe bsi vs) ... | Left _ = refl ... | Right (em , _) with getEmRm em ... | Left _ = refl ... | Right _ = refl abstract initHandler : Author → BootstrapInfo → Maybe (RoundManager × List (LYT.Action NetworkMsg)) initHandler pid bsi = case ValidatorSigner.obmGetValidatorSigner pid (bsi ^∙ bsiVSS) of λ where (Left _) → nothing (Right vs) → case initRMWithOutput' bsi vs of λ where (Left _) → nothing (Right (rm , lo)) → just (rm , outputsToActions {State = rm} lo) InitAndHandlers : SystemInitAndHandlers ℓ-RoundManager ConcSysParms InitAndHandlers = mkSysInitAndHandlers fakeBootstrapInfo fakeInitRM initHandler peerStep where postulate -- TODO-1: eliminate by constructing inhabitants bs : BlockStore pe : ProposerElection rs : RoundState sr : SafetyRules vv : BootstrapInfo → ValidatorVerifier -- For uninitialised peers, so we know nothing about their state. -- Construct a value of type `RoundManager` to ensure it is inhabitable. fakeInitRM : RoundManager fakeInitRM = RoundManager∙new ObmNeedFetch∙new (EpochState∙new 1 (vv fakeBootstrapInfo)) bs rs pe proposalGenerator sr false
{ "alphanum_fraction": 0.7188498403, "avg_line_length": 40.69, "ext": "agda", "hexsha": "6eebf18df5822806536ed6cdbf14270d82835254", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Handle.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Handle.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Handle.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 2180, "size": 8138 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to All ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.All.Properties where open import Axiom.Extensionality.Propositional using (Extensionality) open import Data.Bool.Base using (Bool; T; true; false) open import Data.Bool.Properties using (T-∧) open import Data.Empty open import Data.Fin.Base using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.List.Base as List using ( List; []; _∷_; [_]; _∷ʳ_; fromMaybe; null; _++_; concat; map; mapMaybe ; inits; tails; drop; take; applyUpTo; applyDownFrom; replicate; tabulate ; filter; zipWith; all; derun; deduplicate ) open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties open import Data.List.Relation.Unary.All as All using ( All; []; _∷_; lookup; updateAt ; _[_]=_; here; there ; Null ) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Relation.Binary.Equality.Setoid as ListEq using (_≋_; []; _∷_) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_) open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.All as MAll using (just; nothing) open import Data.Nat.Base using (zero; suc; z≤n; s≤s; _<_) open import Data.Nat.Properties using (≤-refl; ≤-step) open import Data.Product as Prod using (_×_; _,_; uncurry; uncurry′) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; Equivalence) open import Function.Inverse using (_↔_; inverse) open import Function.Surjection using (_↠_; surjection) open import Level using (Level) open import Relation.Binary as B using (REL; Setoid; _Respects_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂; _≗_) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary open import Relation.Nullary.Negation using (¬?; contradiction; decidable-stable) open import Relation.Unary using (Decidable; Pred; Universal) renaming (_⊆_ to _⋐_) private variable a b c p q r ℓ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Properties regarding Null Null⇒null : ∀ {xs : List A} → Null xs → T (null xs) Null⇒null [] = _ null⇒Null : ∀ {xs : List A} → T (null xs) → Null xs null⇒Null {xs = [] } _ = [] null⇒Null {xs = _ ∷ _} () ------------------------------------------------------------------------ -- Properties of the "points-to" relation _[_]=_ module _ {p} {P : Pred A p} where -- Relation _[_]=_ is deterministic: each index points to a single value. []=-injective : ∀ {x xs} {px qx : P x} {pxs : All P xs} {i : x ∈ xs} → pxs [ i ]= px → pxs [ i ]= qx → px ≡ qx []=-injective here here = refl []=-injective (there x↦px) (there x↦qx) = []=-injective x↦px x↦qx -- See also Data.List.Relation.Unary.All.Properties.WithK.[]=-irrelevant. ------------------------------------------------------------------------ -- Lemmas relating Any, All and negation. module _ {P : A → Set p} where ¬Any⇒All¬ : ∀ xs → ¬ Any P xs → All (¬_ ∘ P) xs ¬Any⇒All¬ [] ¬p = [] ¬Any⇒All¬ (x ∷ xs) ¬p = ¬p ∘ here ∷ ¬Any⇒All¬ xs (¬p ∘ there) All¬⇒¬Any : ∀ {xs} → All (¬_ ∘ P) xs → ¬ Any P xs All¬⇒¬Any (¬p ∷ _) (here p) = ¬p p All¬⇒¬Any (_ ∷ ¬p) (there p) = All¬⇒¬Any ¬p p ¬All⇒Any¬ : Decidable P → ∀ xs → ¬ All P xs → Any (¬_ ∘ P) xs ¬All⇒Any¬ dec [] ¬∀ = ⊥-elim (¬∀ []) ¬All⇒Any¬ dec (x ∷ xs) ¬∀ with dec x ... | true because [p] = there (¬All⇒Any¬ dec xs (¬∀ ∘ _∷_ (invert [p]))) ... | false because [¬p] = here (invert [¬p]) Any¬⇒¬All : ∀ {xs} → Any (¬_ ∘ P) xs → ¬ All P xs Any¬⇒¬All (here ¬p) = ¬p ∘ All.head Any¬⇒¬All (there ¬p) = Any¬⇒¬All ¬p ∘ All.tail ¬Any↠All¬ : ∀ {xs} → (¬ Any P xs) ↠ All (¬_ ∘ P) xs ¬Any↠All¬ = surjection (¬Any⇒All¬ _) All¬⇒¬Any to∘from where to∘from : ∀ {xs} (¬p : All (¬_ ∘ P) xs) → ¬Any⇒All¬ xs (All¬⇒¬Any ¬p) ≡ ¬p to∘from [] = refl to∘from (¬p ∷ ¬ps) = cong₂ _∷_ refl (to∘from ¬ps) -- If equality of functions were extensional, then the surjection -- could be strengthened to a bijection. from∘to : Extensionality _ _ → ∀ xs → (¬p : ¬ Any P xs) → All¬⇒¬Any (¬Any⇒All¬ xs ¬p) ≡ ¬p from∘to ext [] ¬p = ext λ () from∘to ext (x ∷ xs) ¬p = ext λ { (here p) → refl ; (there p) → cong (λ f → f p) $ from∘to ext xs (¬p ∘ there) } Any¬⇔¬All : ∀ {xs} → Decidable P → Any (¬_ ∘ P) xs ⇔ (¬ All P xs) Any¬⇔¬All dec = equivalence Any¬⇒¬All (¬All⇒Any¬ dec _) where -- If equality of functions were extensional, then the logical -- equivalence could be strengthened to a surjection. to∘from : Extensionality _ _ → ∀ {xs} (¬∀ : ¬ All P xs) → Any¬⇒¬All (¬All⇒Any¬ dec xs ¬∀) ≡ ¬∀ to∘from ext ¬∀ = ext (⊥-elim ∘ ¬∀) module _ {_~_ : REL A B ℓ} where All-swap : ∀ {xs ys} → All (λ x → All (x ~_) ys) xs → All (λ y → All (_~ y) xs) ys All-swap {ys = []} _ = [] All-swap {ys = y ∷ ys} [] = All.universal (λ _ → []) (y ∷ ys) All-swap {ys = y ∷ ys} ((x~y ∷ x~ys) ∷ pxs) = (x~y ∷ (All.map All.head pxs)) ∷ All-swap (x~ys ∷ (All.map All.tail pxs)) ------------------------------------------------------------------------ -- Defining properties of lookup and _[_]=_ -- -- pxs [ i ]= px if and only if lookup pxs i = px. module _ {P : A → Set p} where -- `i` points to `lookup pxs i` in `pxs`. []=lookup : ∀ {x xs} (pxs : All P xs) (i : x ∈ xs) → pxs [ i ]= lookup pxs i []=lookup (px ∷ pxs) (here refl) = here []=lookup (px ∷ pxs) (there i) = there ([]=lookup pxs i) -- If `i` points to `px` in `pxs`, then `lookup pxs i ≡ px`. []=⇒lookup : ∀ {x xs} {px : P x} {pxs : All P xs} {i : x ∈ xs} → pxs [ i ]= px → lookup pxs i ≡ px []=⇒lookup x↦px = []=-injective ([]=lookup _ _) x↦px -- If `lookup pxs i ≡ px`, then `i` points to `px` in `pxs`. lookup⇒[]= : ∀{x xs} {px : P x} (pxs : All P xs) (i : x ∈ xs) → lookup pxs i ≡ px → pxs [ i ]= px lookup⇒[]= pxs i refl = []=lookup pxs i ------------------------------------------------------------------------ -- Properties of operations over `All` ------------------------------------------------------------------------ -- map module _ {P : Pred A p} {Q : Pred A q} {f : P ⋐ Q} where map-cong : ∀ {xs} {g : P ⋐ Q} (pxs : All P xs) → (∀ {x} → f {x} ≗ g) → All.map f pxs ≡ All.map g pxs map-cong [] _ = refl map-cong (px ∷ pxs) feq = cong₂ _∷_ (feq px) (map-cong pxs feq) map-id : ∀ {xs} (pxs : All P xs) → All.map id pxs ≡ pxs map-id [] = refl map-id (px ∷ pxs) = cong (px ∷_) (map-id pxs) map-compose : ∀ {r} {R : Pred A r} {xs} {g : Q ⋐ R} (pxs : All P xs) → All.map g (All.map f pxs) ≡ All.map (g ∘ f) pxs map-compose [] = refl map-compose (px ∷ pxs) = cong (_ ∷_) (map-compose pxs) lookup-map : ∀ {xs x} (pxs : All P xs) (i : x ∈ xs) → lookup (All.map f pxs) i ≡ f (lookup pxs i) lookup-map (px ∷ pxs) (here refl) = refl lookup-map (px ∷ pxs) (there i) = lookup-map pxs i ------------------------------------------------------------------------ -- _[_]%=_ / updateAt module _ {P : Pred A p} where -- Defining properties of updateAt: -- (+) updateAt actually updates the element at the given index. updateAt-updates : ∀ {x xs} (i : x ∈ xs) {f : P x → P x} {px : P x} (pxs : All P xs) → pxs [ i ]= px → updateAt i f pxs [ i ]= f px updateAt-updates (here refl) (px ∷ pxs) here = here updateAt-updates (there i) (px ∷ pxs) (there x↦px) = there (updateAt-updates i pxs x↦px) -- (-) updateAt i does not touch the elements at other indices. updateAt-minimal : ∀ {x y xs} (i : x ∈ xs) (j : y ∈ xs) → ∀ {f : P y → P y} {px : P x} (pxs : All P xs) → i ≢∈ j → pxs [ i ]= px → updateAt j f pxs [ i ]= px updateAt-minimal (here .refl) (here refl) (px ∷ pxs) i≢j here = ⊥-elim (i≢j refl refl) updateAt-minimal (here .refl) (there j) (px ∷ pxs) i≢j here = here updateAt-minimal (there i) (here refl) (px ∷ pxs) i≢j (there val) = there val updateAt-minimal (there i) (there j) (px ∷ pxs) i≢j (there val) = there (updateAt-minimal i j pxs (there-injective-≢∈ i≢j) val) -- lookup after updateAt reduces. -- For same index this is an easy consequence of updateAt-updates -- using []=↔lookup. lookup∘updateAt : ∀ {x xs} (pxs : All P xs) (i : x ∈ xs) {f : P x → P x} → lookup (updateAt i f pxs) i ≡ f (lookup pxs i) lookup∘updateAt pxs i = []=⇒lookup (updateAt-updates i pxs (lookup⇒[]= pxs i refl)) -- For different indices it easily follows from updateAt-minimal. lookup∘updateAt′ : ∀ {x y xs} (i : x ∈ xs) (j : y ∈ xs) → ∀ {f : P y → P y} {px : P x} (pxs : All P xs) → i ≢∈ j → lookup (updateAt j f pxs) i ≡ lookup pxs i lookup∘updateAt′ i j pxs i≢j = []=⇒lookup (updateAt-minimal i j pxs i≢j (lookup⇒[]= pxs i refl)) -- The other properties are consequences of (+) and (-). -- We spell the most natural properties out. -- Direct inductive proofs are in most cases easier than just using -- the defining properties. -- In the explanations, we make use of shorthand f = g ↾ x -- meaning that f and g agree at point x, i.e. f x ≡ g x. -- updateAt (i : x ∈ xs) is a morphism -- from the monoid of endofunctions P x → P x -- to the monoid of endofunctions All P xs → All P xs. -- 1a. relative identity: f = id ↾ (lookup pxs i) -- implies updateAt i f = id ↾ pxs updateAt-id-relative : ∀ {x xs} (i : x ∈ xs) {f : P x → P x} (pxs : All P xs) → f (lookup pxs i) ≡ lookup pxs i → updateAt i f pxs ≡ pxs updateAt-id-relative (here refl)(px ∷ pxs) eq = cong (_∷ pxs) eq updateAt-id-relative (there i) (px ∷ pxs) eq = cong (px ∷_) (updateAt-id-relative i pxs eq) -- 1b. identity: updateAt i id ≗ id updateAt-id : ∀ {x xs} (i : x ∈ xs) (pxs : All P xs) → updateAt i id pxs ≡ pxs updateAt-id i pxs = updateAt-id-relative i pxs refl -- 2a. relative composition: f ∘ g = h ↾ (lookup i pxs) -- implies updateAt i f ∘ updateAt i g = updateAt i h ↾ pxs updateAt-compose-relative : ∀ {x xs} (i : x ∈ xs) {f g h : P x → P x} (pxs : All P xs) → f (g (lookup pxs i)) ≡ h (lookup pxs i) → updateAt i f (updateAt i g pxs) ≡ updateAt i h pxs updateAt-compose-relative (here refl) (px ∷ pxs) fg=h = cong (_∷ pxs) fg=h updateAt-compose-relative (there i) (px ∷ pxs) fg=h = cong (px ∷_) (updateAt-compose-relative i pxs fg=h) -- 2b. composition: updateAt i f ∘ updateAt i g ≗ updateAt i (f ∘ g) updateAt-compose : ∀ {x xs} (i : x ∈ xs) {f g : P x → P x} → updateAt {P = P} i f ∘ updateAt i g ≗ updateAt i (f ∘ g) updateAt-compose (here refl) (px ∷ pxs) = refl updateAt-compose (there i) (px ∷ pxs) = cong (px ∷_) (updateAt-compose i pxs) -- 3. congruence: updateAt i is a congruence wrt. extensional equality. -- 3a. If f = g ↾ (lookup pxs i) -- then updateAt i f = updateAt i g ↾ pxs updateAt-cong-relative : ∀ {x xs} (i : x ∈ xs) {f g : P x → P x} (pxs : All P xs) → f (lookup pxs i) ≡ g (lookup pxs i) → updateAt i f pxs ≡ updateAt i g pxs updateAt-cong-relative (here refl) (px ∷ pxs) f=g = cong (_∷ pxs) f=g updateAt-cong-relative (there i) (px ∷ pxs) f=g = cong (px ∷_) (updateAt-cong-relative i pxs f=g) -- 3b. congruence: f ≗ g → updateAt i f ≗ updateAt i g updateAt-cong : ∀ {x xs} (i : x ∈ xs) {f g : P x → P x} → f ≗ g → updateAt i f ≗ updateAt i g updateAt-cong i f≗g pxs = updateAt-cong-relative i pxs (f≗g (lookup pxs i)) -- The order of updates at different indices i ≢ j does not matter. -- This a consequence of updateAt-updates and updateAt-minimal -- but easier to prove inductively. updateAt-commutes : ∀ {x y xs} (i : x ∈ xs) (j : y ∈ xs) → ∀ {f : P x → P x} {g : P y → P y} → i ≢∈ j → updateAt i f ∘ updateAt j g ≗ updateAt j g ∘ updateAt i f updateAt-commutes (here refl) (here refl) i≢j (px ∷ pxs) = ⊥-elim (i≢j refl refl) updateAt-commutes (here refl) (there j) i≢j (px ∷ pxs) = refl updateAt-commutes (there i) (here refl) i≢j (px ∷ pxs) = refl updateAt-commutes (there i) (there j) i≢j (px ∷ pxs) = cong (px ∷_) (updateAt-commutes i j (there-injective-≢∈ i≢j) pxs) module _ {P : Pred A p} {Q : Pred A q} where map-updateAt : ∀ {x xs} {f : P ⋐ Q} {g : P x → P x} {h : Q x → Q x} (pxs : All P xs) (i : x ∈ xs) → f (g (lookup pxs i)) ≡ h (f (lookup pxs i)) → All.map f (pxs All.[ i ]%= g) ≡ (All.map f pxs) All.[ i ]%= h map-updateAt (px ∷ pxs) (here refl) = cong (_∷ _) map-updateAt (px ∷ pxs) (there i) feq = cong (_ ∷_) (map-updateAt pxs i feq) ------------------------------------------------------------------------ -- Introduction (⁺) and elimination (⁻) rules for list operations ------------------------------------------------------------------------ -- map module _ {P : B → Set p} {f : A → B} where map⁺ : ∀ {xs} → All (P ∘ f) xs → All P (map f xs) map⁺ [] = [] map⁺ (p ∷ ps) = p ∷ map⁺ ps map⁻ : ∀ {xs} → All P (map f xs) → All (P ∘ f) xs map⁻ {xs = []} [] = [] map⁻ {xs = _ ∷ _} (p ∷ ps) = p ∷ map⁻ ps -- A variant of All.map. module _ {P : A → Set p} {Q : B → Set q} {f : A → B} where gmap : P ⋐ Q ∘ f → All P ⋐ All Q ∘ map f gmap g = map⁺ ∘ All.map g ------------------------------------------------------------------------ -- mapMaybe module _ (P : B → Set p) {f : A → Maybe B} where mapMaybe⁺ : ∀ {xs} → All (MAll.All P) (map f xs) → All P (mapMaybe f xs) mapMaybe⁺ {[]} [] = [] mapMaybe⁺ {x ∷ xs} (px ∷ pxs) with f x ... | nothing = mapMaybe⁺ pxs ... | just v with px ... | just pv = pv ∷ mapMaybe⁺ pxs ------------------------------------------------------------------------ -- _++_ module _ {P : A → Set p} where ++⁺ : ∀ {xs ys} → All P xs → All P ys → All P (xs ++ ys) ++⁺ [] pys = pys ++⁺ (px ∷ pxs) pys = px ∷ ++⁺ pxs pys ++⁻ˡ : ∀ xs {ys} → All P (xs ++ ys) → All P xs ++⁻ˡ [] p = [] ++⁻ˡ (x ∷ xs) (px ∷ pxs) = px ∷ (++⁻ˡ _ pxs) ++⁻ʳ : ∀ xs {ys} → All P (xs ++ ys) → All P ys ++⁻ʳ [] p = p ++⁻ʳ (x ∷ xs) (px ∷ pxs) = ++⁻ʳ xs pxs ++⁻ : ∀ xs {ys} → All P (xs ++ ys) → All P xs × All P ys ++⁻ [] p = [] , p ++⁻ (x ∷ xs) (px ∷ pxs) = Prod.map (px ∷_) id (++⁻ _ pxs) ++↔ : ∀ {xs ys} → (All P xs × All P ys) ↔ All P (xs ++ ys) ++↔ {xs} = inverse (uncurry ++⁺) (++⁻ xs) ++⁻∘++⁺ (++⁺∘++⁻ xs) where ++⁺∘++⁻ : ∀ xs {ys} (p : All P (xs ++ ys)) → uncurry′ ++⁺ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = refl ++⁺∘++⁻ (x ∷ xs) (px ∷ pxs) = cong (_∷_ px) $ ++⁺∘++⁻ xs pxs ++⁻∘++⁺ : ∀ {xs ys} (p : All P xs × All P ys) → ++⁻ xs (uncurry ++⁺ p) ≡ p ++⁻∘++⁺ ([] , pys) = refl ++⁻∘++⁺ (px ∷ pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = refl ------------------------------------------------------------------------ -- concat module _ {P : A → Set p} where concat⁺ : ∀ {xss} → All (All P) xss → All P (concat xss) concat⁺ [] = [] concat⁺ (pxs ∷ pxss) = ++⁺ pxs (concat⁺ pxss) concat⁻ : ∀ {xss} → All P (concat xss) → All (All P) xss concat⁻ {[]} [] = [] concat⁻ {xs ∷ xss} pxs = ++⁻ˡ xs pxs ∷ concat⁻ (++⁻ʳ xs pxs) ------------------------------------------------------------------------ -- take and drop module _ {P : A → Set p} where drop⁺ : ∀ {xs} n → All P xs → All P (drop n xs) drop⁺ zero pxs = pxs drop⁺ (suc n) [] = [] drop⁺ (suc n) (px ∷ pxs) = drop⁺ n pxs take⁺ : ∀ {xs} n → All P xs → All P (take n xs) take⁺ zero pxs = [] take⁺ (suc n) [] = [] take⁺ (suc n) (px ∷ pxs) = px ∷ take⁺ n pxs ------------------------------------------------------------------------ -- applyUpTo module _ {P : A → Set p} where applyUpTo⁺₁ : ∀ f n → (∀ {i} → i < n → P (f i)) → All P (applyUpTo f n) applyUpTo⁺₁ f zero Pf = [] applyUpTo⁺₁ f (suc n) Pf = Pf (s≤s z≤n) ∷ applyUpTo⁺₁ (f ∘ suc) n (Pf ∘ s≤s) applyUpTo⁺₂ : ∀ f n → (∀ i → P (f i)) → All P (applyUpTo f n) applyUpTo⁺₂ f n Pf = applyUpTo⁺₁ f n (λ _ → Pf _) applyUpTo⁻ : ∀ f n → All P (applyUpTo f n) → ∀ {i} → i < n → P (f i) applyUpTo⁻ f (suc n) (px ∷ _) (s≤s z≤n) = px applyUpTo⁻ f (suc n) (_ ∷ pxs) (s≤s (s≤s i<n)) = applyUpTo⁻ (f ∘ suc) n pxs (s≤s i<n) ------------------------------------------------------------------------ -- applyDownFrom module _ {P : A → Set p} where applyDownFrom⁺₁ : ∀ f n → (∀ {i} → i < n → P (f i)) → All P (applyDownFrom f n) applyDownFrom⁺₁ f zero Pf = [] applyDownFrom⁺₁ f (suc n) Pf = Pf ≤-refl ∷ applyDownFrom⁺₁ f n (Pf ∘ ≤-step) applyDownFrom⁺₂ : ∀ f n → (∀ i → P (f i)) → All P (applyDownFrom f n) applyDownFrom⁺₂ f n Pf = applyDownFrom⁺₁ f n (λ _ → Pf _) ------------------------------------------------------------------------ -- tabulate module _ {P : A → Set p} where tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ i → P (f i)) → All P (tabulate f) tabulate⁺ {zero} Pf = [] tabulate⁺ {suc n} Pf = Pf fzero ∷ tabulate⁺ (Pf ∘ fsuc) tabulate⁻ : ∀ {n} {f : Fin n → A} → All P (tabulate f) → (∀ i → P (f i)) tabulate⁻ {suc n} (px ∷ _) fzero = px tabulate⁻ {suc n} (_ ∷ pf) (fsuc i) = tabulate⁻ pf i ------------------------------------------------------------------------ -- remove module _ {P : A → Set p} {Q : A → Set q} where ─⁺ : ∀ {xs} (p : Any P xs) → All Q xs → All Q (xs Any.─ p) ─⁺ (here px) (_ ∷ qs) = qs ─⁺ (there p) (q ∷ qs) = q ∷ ─⁺ p qs ─⁻ : ∀ {xs} (p : Any P xs) → Q (Any.lookup p) → All Q (xs Any.─ p) → All Q xs ─⁻ (here px) q qs = q ∷ qs ─⁻ (there p) q (q′ ∷ qs) = q′ ∷ ─⁻ p q qs ------------------------------------------------------------------------ -- filter module _ {P : A → Set p} (P? : Decidable P) where all-filter : ∀ xs → All P (filter P? xs) all-filter [] = [] all-filter (x ∷ xs) with P? x ... | true because [Px] = invert [Px] ∷ all-filter xs ... | false because _ = all-filter xs module _ {P : A → Set p} {Q : A → Set q} (P? : Decidable P) where filter⁺ : ∀ {xs} → All Q xs → All Q (filter P? xs) filter⁺ {xs = _} [] = [] filter⁺ {xs = x ∷ _} (Qx ∷ Qxs) with does (P? x) ... | false = filter⁺ Qxs ... | true = Qx ∷ filter⁺ Qxs filter⁻ : ∀ {xs} → All Q (filter P? xs) → All Q (filter (¬? ∘ P?) xs) → All Q xs filter⁻ {[]} [] [] = [] filter⁻ {x ∷ xs} all⁺ all⁻ with P? x | ¬? (P? x) filter⁻ {x ∷ xs} all⁺ all⁻ | yes Px | yes ¬Px = contradiction Px ¬Px filter⁻ {x ∷ xs} (qx ∷ all⁺) all⁻ | yes Px | no ¬¬Px = qx ∷ filter⁻ all⁺ all⁻ filter⁻ {x ∷ xs} all⁺ (qx ∷ all⁻) | no _ | yes ¬Px = qx ∷ filter⁻ all⁺ all⁻ filter⁻ {x ∷ xs} all⁺ all⁻ | no ¬Px | no ¬¬Px = contradiction ¬Px ¬¬Px ------------------------------------------------------------------------ -- derun and deduplicate module _ {P : A → Set p} {R : A → A → Set q} (R? : B.Decidable R) where derun⁺ : ∀ {xs} → All P xs → All P (derun R? xs) derun⁺ {[]} [] = [] derun⁺ {x ∷ []} (px ∷ []) = px ∷ [] derun⁺ {x ∷ y ∷ xs} (px ∷ all[P,y∷xs]) with does (R? x y) ... | false = px ∷ derun⁺ all[P,y∷xs] ... | true = derun⁺ all[P,y∷xs] deduplicate⁺ : ∀ {xs} → All P xs → All P (deduplicate R? xs) deduplicate⁺ [] = [] deduplicate⁺ {x ∷ _} (px ∷ all[P,xs]) = px ∷ filter⁺ (¬? ∘ R? x) (deduplicate⁺ all[P,xs]) derun⁻ : P B.Respects (flip R) → ∀ xs → All P (derun R? xs) → All P xs derun⁻ P-resp-R [] [] = [] derun⁻ P-resp-R (x ∷ xs) all[P,x∷xs] = aux x xs all[P,x∷xs] where aux : ∀ x xs → All P (derun R? (x ∷ xs)) → All P (x ∷ xs) aux x [] (px ∷ []) = px ∷ [] aux x (y ∷ xs) all[P,x∷y∷xs] with R? x y aux x (y ∷ xs) all[P,y∷xs] | yes Rxy with aux y xs all[P,y∷xs] aux x (y ∷ xs) all[P,y∷xs] | yes Rxy | r@(py ∷ _) = P-resp-R Rxy py ∷ r aux x (y ∷ xs) (px ∷ all[P,y∷xs]) | no _ = px ∷ aux y xs all[P,y∷xs] module _ (P-resp-R : P B.Respects R) where deduplicate⁻ : ∀ xs → All P (deduplicate R? xs) → All P xs deduplicate⁻ [] [] = [] deduplicate⁻ (x ∷ xs) (px ∷ app[P,dedup[xs]]) = px ∷ deduplicate⁻ xs (filter⁻ (¬? ∘ R? x) app[P,dedup[xs]] (All.tabulate aux)) where aux : ∀ {z} → z ∈ filter (¬? ∘ ¬? ∘ R? x) (deduplicate R? xs) → P z aux {z} z∈filter = P-resp-R (decidable-stable (R? x z) (Prod.proj₂ (∈-filter⁻ (¬? ∘ ¬? ∘ R? x) {z} {deduplicate R? xs} z∈filter))) px ------------------------------------------------------------------------ -- zipWith module _ (P : C → Set p) (f : A → B → C) where zipWith⁺ : ∀ {xs ys} → Pointwise (λ x y → P (f x y)) xs ys → All P (zipWith f xs ys) zipWith⁺ [] = [] zipWith⁺ (Pfxy ∷ Pfxsys) = Pfxy ∷ zipWith⁺ Pfxsys ------------------------------------------------------------------------ -- Operations for constructing lists ------------------------------------------------------------------------ -- singleton module _ {P : A → Set p} where singleton⁻ : ∀ {x} → All P [ x ] → P x singleton⁻ (px ∷ []) = px ------------------------------------------------------------------------ -- snoc module _ {P : A → Set p} {x xs} where ∷ʳ⁺ : All P xs → P x → All P (xs ∷ʳ x) ∷ʳ⁺ pxs px = ++⁺ pxs (px ∷ []) ∷ʳ⁻ : All P (xs ∷ʳ x) → All P xs × P x ∷ʳ⁻ pxs = Prod.map₂ singleton⁻ $ ++⁻ xs pxs ------------------------------------------------------------------------ -- fromMaybe module _ {P : A → Set p} where fromMaybe⁺ : ∀ {mx} → MAll.All P mx → All P (fromMaybe mx) fromMaybe⁺ (just px) = px ∷ [] fromMaybe⁺ nothing = [] fromMaybe⁻ : ∀ mx → All P (fromMaybe mx) → MAll.All P mx fromMaybe⁻ (just x) (px ∷ []) = just px fromMaybe⁻ nothing p = nothing ------------------------------------------------------------------------ -- replicate module _ {P : A → Set p} where replicate⁺ : ∀ n {x} → P x → All P (replicate n x) replicate⁺ zero px = [] replicate⁺ (suc n) px = px ∷ replicate⁺ n px replicate⁻ : ∀ {n x} → All P (replicate (suc n) x) → P x replicate⁻ (px ∷ _) = px ------------------------------------------------------------------------ -- inits module _ {P : A → Set p} where inits⁺ : ∀ {xs} → All P xs → All (All P) (inits xs) inits⁺ [] = [] ∷ [] inits⁺ (px ∷ pxs) = [] ∷ gmap (px ∷_) (inits⁺ pxs) inits⁻ : ∀ xs → All (All P) (inits xs) → All P xs inits⁻ [] pxs = [] inits⁻ (x ∷ []) ([] ∷ p[x] ∷ []) = p[x] inits⁻ (x ∷ xs@(_ ∷ _)) ([] ∷ pxs@(p[x] ∷ _)) = singleton⁻ p[x] ∷ inits⁻ xs (All.map (drop⁺ 1) (map⁻ pxs)) ------------------------------------------------------------------------ -- tails module _ {P : A → Set p} where tails⁺ : ∀ {xs} → All P xs → All (All P) (tails xs) tails⁺ [] = [] ∷ [] tails⁺ pxxs@(_ ∷ pxs) = pxxs ∷ tails⁺ pxs tails⁻ : ∀ xs → All (All P) (tails xs) → All P xs tails⁻ [] pxs = [] tails⁻ (x ∷ xs) (pxxs ∷ _) = pxxs ------------------------------------------------------------------------ -- all module _ (p : A → Bool) where all⁺ : ∀ xs → T (all p xs) → All (T ∘ p) xs all⁺ [] _ = [] all⁺ (x ∷ xs) px∷xs with Equivalence.to (T-∧ {p x}) ⟨$⟩ px∷xs ... | (px , pxs) = px ∷ all⁺ xs pxs all⁻ : ∀ {xs} → All (T ∘ p) xs → T (all p xs) all⁻ [] = _ all⁻ (px ∷ pxs) = Equivalence.from T-∧ ⟨$⟩ (px , all⁻ pxs) ------------------------------------------------------------------------ -- All is anti-monotone. anti-mono : ∀ {P : A → Set p} {xs ys} → xs ⊆ ys → All P ys → All P xs anti-mono xs⊆ys pys = All.tabulate (lookup pys ∘ xs⊆ys) all-anti-mono : ∀ (p : A → Bool) {xs ys} → xs ⊆ ys → T (all p ys) → T (all p xs) all-anti-mono p xs⊆ys = all⁻ p ∘ anti-mono xs⊆ys ∘ all⁺ p _ ------------------------------------------------------------------------ -- Interactions with pointwise equality ------------------------------------------------------------------------ module _ {c ℓ} (S : Setoid c ℓ) where open Setoid S open ListEq S respects : {P : Pred Carrier p} → P Respects _≈_ → (All P) Respects _≋_ respects p≈ [] [] = [] respects p≈ (x≈y ∷ xs≈ys) (px ∷ pxs) = p≈ x≈y px ∷ respects p≈ xs≈ys pxs ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.16 All-all = all⁻ {-# WARNING_ON_USAGE All-all "Warning: All-all was deprecated in v0.16. Please use all⁻ instead." #-} all-All = all⁺ {-# WARNING_ON_USAGE all-All "Warning: all-All was deprecated in v0.16. Please use all⁺ instead." #-} All-map = map⁺ {-# WARNING_ON_USAGE All-map "Warning: All-map was deprecated in v0.16. Please use map⁺ instead." #-} map-All = map⁻ {-# WARNING_ON_USAGE map-All "Warning: map-All was deprecated in v0.16. Please use map⁻ instead." #-} -- Version 1.0 filter⁺₁ = all-filter {-# WARNING_ON_USAGE filter⁺₁ "Warning: filter⁺₁ was deprecated in v1.0. Please use all-filter instead." #-} filter⁺₂ = filter⁺ {-# WARNING_ON_USAGE filter⁺₂ "Warning: filter⁺₂ was deprecated in v1.0. Please use filter⁺ instead." #-} -- Version 1.3 Any¬→¬All = Any¬⇒¬All {-# WARNING_ON_USAGE Any¬→¬All "Warning: Any¬→¬All was deprecated in v1.3. Please use Any¬⇒¬All instead." #-}
{ "alphanum_fraction": 0.4708537044, "avg_line_length": 36.8282548476, "ext": "agda", "hexsha": "9f18f4dd81f1b63ce3a51903cb36c4c84577a5ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All/Properties.agda", "max_line_length": 139, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/All/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 9726, "size": 26590 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pi open import lib.types.Unit open import lib.types.Nat open import lib.types.TLevel open import lib.types.Pointed open import lib.types.Sigma open import lib.NType2 open import lib.types.PathSeq open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.SeqColim open import nicolai.pseudotruncations.wconst-preparation module nicolai.pseudotruncations.heptagon {i} {C : Sequence {i}} (wc : wconst-chain C) (a₀ : fst C O) where {- î-def is defined in this module: -} open wconst-init {i} {C} wc a₀ module _ (n : ℕ) (a : A n) where {- Let us formulate different simplification steps of the heptagon. -} full-hepta : seq-loop (ins (S n) (f n a)) full-hepta = (î-def (S n) (f n a)) ⋯ (‼ (î-def n a) ⋯ toSeq (glue n a)) remove-g : seq-loop (ins (S n) (f n a)) remove-g = (î-def (S n) (f n a)) ⋯ ‼ (ins (S n) (f n a) =⟪ ap (ins (S n)) (wc n _ _) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (lift-point-= C a₀ (S n)) ⟫ ins O a₀ ∎∎) simplify-‼ : seq-loop (ins (S n) (f n a)) simplify-‼ = (î-def (S n) (f n a)) ⋯ (ins O a₀ =⟪ lift-point-= C a₀ (S n) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (ap (ins (S n)) (wc n _ _)) ⟫ ins (S n) (f n a) ∎∎) simplify-one-g : seq-loop (ins {C = C} (S n) (f n a)) simplify-one-g = ins (S n) (f n a) =⟪ glue (S n) (f n a) ⟫ ins (S (S n)) (f (S n) (f n a)) =⟪ ap (ins (S (S n))) (wc (S n) (f n a) (lift-point C a₀ (S n))) ⟫ ins (S (S n)) (lift-point C a₀ (S (S n))) =⟪ ! (glue (S n) (lift-point C a₀ (S n))) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (lift-point-= C a₀ (S n)) ⟫ ins O a₀ =⟪ lift-point-= C a₀ (S n) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ⟫ ins (S n) (f n a) ∎∎ simplify-many-g : seq-loop (ins {C = C} (S n) (f n a)) simplify-many-g = ins (S n) (f n a) =⟪ glue (S n) (f n a) ⟫ ins (S (S n)) (f (S n) (f n a)) =⟪ ap (ins (S (S n))) (wc (S n) (f n a) (lift-point C a₀ (S n))) ⟫ ins (S (S n)) (lift-point C a₀ (S (S n))) =⟪ ! (glue (S n) (lift-point C a₀ (S n))) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ⟫ ins (S n) (f n a) ∎∎ replace-ap-SSn : seq-loop (ins {C = C} (S n) (f n a)) replace-ap-SSn = ins (S n) (f n a) =⟪ glue (S n) (f n a) ⟫ ins (S (S n)) (f (S n) (f n a)) =⟪ ap (ins (S (S n))) (ap (f (S n)) (wc n a (lift-point C a₀ n))) ⟫ ins (S (S n)) (lift-point C a₀ (S (S n))) =⟪ ! (glue (S n) (lift-point C a₀ (S n))) ⟫ ins (S n) (lift-point C a₀ (S n)) =⟪ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ⟫ ins (S n) (f n a) ∎∎ {- Now, let us generalize: x for f n a y for lift-point C a₀ (S n) q for wc n a (lift C a₀ n) Then, we can show that the square commutes by induction on q. -} generalize-square : (x y : A (S n)) (q : x == y) → (↯ ins {C = C} (S n) x =⟪ glue (S n) x ⟫ ins (S (S n)) (f (S n) x) =⟪ ap (ins (S (S n))) (ap (f (S n)) q) ⟫ ins (S (S n)) (f (S n) y) =⟪ ! (glue (S n) y) ⟫ ins (S n) y =⟪ ! (ap (ins (S n)) q) ⟫ ins (S n) x ∎∎ ) == idp generalize-square x .x idp = glue (S n) x ∙ ! (glue (S n) x) ∙ idp =⟨ ap (λ q → (glue (S n) x) ∙ q) (∙-unit-r _) ⟩ glue (S n) x ∙ ! (glue (S n) x) =⟨ !-inv-r (glue (S n) x) ⟩ idp ∎ {- Let us use some ad-hoc lemmas; these could all be done via very tedious concatenations of library lemmas. Of course, our ad-hoc way is somewhat ugly, but it saves a lot of work compared to using concatenations and nestings of library lemmas. The strategy is to formulate the equality that we need and solve it by trivial path induction. This ad-hoc approach is surely not the best way one can think of. The best way to do it would probably be a more principled approach with more powerful high-level lemmas that allow the manipulation of paths; however, such a technology is not implemented so far. -} adhoc-!-∙ : ∀ {i} {X : Type i} {x y z u v w o : X} (p : x == y) (q : y == z) (r : u == z) (s : v == u) (t : v == w) (l : w == o) → (↯ x =⟪ p ⟫ y =⟪ q ⟫ z =⟪ ! (s ∙ r) ⟫ v =⟪ t ⟫ w =⟪ l ⟫ o ∎∎ ) == (↯ x =⟪ p ⟫ y =⟪ q ⟫ z =⟪ ! r ⟫ u =⟪ ! s ⟫ v =⟪ t ⟫ w =⟪ l ⟫ o ∎∎) adhoc-!-∙ idp idp idp idp idp idp = idp adhoc-cancel-inv : ∀ {i} {X : Type i} {x y z u v w : X} (p : x == y) (q : y == z) (r : z == u) (s : v == u) (t : u == w) → (↯ x =⟪ p ⟫ y =⟪ q ⟫ z =⟪ r ⟫ u =⟪ ! s ⟫ v =⟪ s ⟫ u =⟪ t ⟫ w ∎∎ ) == (↯ x =⟪ p ⟫ y =⟪ q ⟫ z =⟪ r ⟫ u =⟪ t ⟫ w ∎∎) adhoc-cancel-inv idp idp idp idp idp = idp {- Now, we are ready to show that the heptagon is trivial! -} ĝ-def : (↯ full-hepta) == idp ĝ-def = (↯ full-hepta) =⟨ ap (λ q → (glue (S n) (f n a)) ∙ ap (ins (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n))) ∙ ! ((lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) ∙ glue (S n) (snd C n (lift-point C a₀ n))) ∙ ! (! (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n))) ∙ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ∙ q ) (!-inv-l (glue n a)) ⟩ (↯ (remove-g ⋯ (toSeq idp))) =⟨ ap (λ q → (glue (S n) (f n a)) ∙ ap (ins (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n))) ∙ ! ((lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) ∙ glue (S n) (snd C n (lift-point C a₀ n))) ∙ ! (! (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n))) ∙ q ) (∙-unit-r (! (ap (ins (S n)) (wc n a (lift-point C a₀ n))))) ⟩ (↯ remove-g) =⟨ ap (λ q → (glue (S n) (f n a)) ∙ ap (ins (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n))) ∙ ! ((lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) ∙ glue (S n) (snd C n (lift-point C a₀ n))) ∙ q ∙ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ) (!-! (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n))) ⟩ (↯ simplify-‼) =⟨ adhoc-!-∙ (glue (S n) (f n a)) (ap (ins (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n)))) (glue (S n) (snd C n (lift-point C a₀ n))) (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) (! (ap (ins (S n)) (wc n a (lift-point C a₀ n)))) ⟩ (↯ simplify-one-g) =⟨ adhoc-cancel-inv (glue (S n) (f n a)) (ap (ins (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n)))) (! (glue (S n) (snd C n (lift-point C a₀ n)))) (lift-point-= C a₀ n ∙ glue n (lift-point C a₀ n)) (! (ap (ins (S n)) (wc n a (lift-point C a₀ n)))) ⟩ (↯ simplify-many-g) =⟨ ap (λ q → (glue (S n) (f n a)) ∙ q ∙ ! (glue (S n) (snd C n (lift-point C a₀ n))) ∙ ! (ap (ins (S n)) (wc n a (lift-point C a₀ n))) ) (ap-wconst (ins (S (S n))) (ins-wconst (S (S n))) (wc (S n) (f n a) (snd C n (lift-point C a₀ n))) (ap (f (S n)) (wc n a (lift-point C a₀ n))) ) ⟩ (↯ replace-ap-SSn) =⟨ generalize-square (f n a) (lift-point C a₀ (S n)) (wc n a (lift-point C a₀ n)) ⟩ idp ∎
{ "alphanum_fraction": 0.3843544858, "avg_line_length": 40.2643171806, "ext": "agda", "hexsha": "e8a293846ffeb402fd4ac2d60bd2bd99a42c82cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/heptagon.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/heptagon.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/heptagon.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3203, "size": 9140 }
module FormalLanguage.ContextFreeGrammar where
{ "alphanum_fraction": 0.914893617, "avg_line_length": 23.5, "ext": "agda", "hexsha": "9d6e23b569c30118894a3e94827d7ed20d6f7234", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "FormalLanguage/ContextFreeGrammar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "FormalLanguage/ContextFreeGrammar.agda", "max_line_length": 46, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "FormalLanguage/ContextFreeGrammar.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8, "size": 47 }
-- Andreas, 2015-02-13 -- Termination errors in parametrized modules module Issue1429 (A : Set) (f : A → A) where test : A → A test a = test (f a) -- should report problematic call -- -- test (f a) -- -- not -- -- test (f₁ a)
{ "alphanum_fraction": 0.5785123967, "avg_line_length": 14.2352941176, "ext": "agda", "hexsha": "eb3a21ef66b7db105ff6af2b22a9b470b5b4479f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1429.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1429.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1429.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 242 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Sign where open import Prelude data Signed {a} (A : Type a) : Type a where ⁻_ : A → Signed A ±0 : Signed A ⁺_ : A → Signed A unsign : (A → B) → B → (A → B) → Signed A → B unsign f g h (⁻ x) = f x unsign f g h ±0 = g unsign f g h (⁺ x) = h x
{ "alphanum_fraction": 0.5598705502, "avg_line_length": 19.3125, "ext": "agda", "hexsha": "2e7ca09e2f274a69fba757f3e4d6128eeabf1a56", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Algebra/Construct/Sign.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Algebra/Construct/Sign.agda", "max_line_length": 45, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Algebra/Construct/Sign.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 123, "size": 309 }
{-# OPTIONS --without-K #-} open import HoTT {- This file contains three proofs of Ω(S¹) = ℤ and the fact that the circle is a 1-type: - Something closely related to Mike’s original proof - Dan’s encode-decode proof - Guillaume’s proof using the flattening lemma. This file is divided in a lot of different parts so that common parts can be factored: 1. Definition of the universal cover and the encoding map (this part is common to all three proofs) 2. Proof that [encode (loop^ n) == n] (this part is common to Mike’s proof and the encode-decode proof) 3. Dan’s encode-decode proof that [Ω S¹ ≃ ℤ] 4. Mike’s proof that [Σ S¹ Cover] is contractible 5. Proof with the flattening lemma that [Σ S¹ S¹Cover] is contractible 6. Proof of [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ S¹Cover] is contractible (common to Mike’s proof and the flattening lemma proof) 7. Encode-decode proof of the whole equivalence 8. Proof that the circle is a 1-type (common to all three proofs) Keep - 1, 2, 3 for the encode-decode proof (+ 7, 8 for S¹ is a 1-type) - 1, 2, 4, 6 for Mike’s proof (+ 8) - 1, 5, 6 for the flattening lemma proof (+ 8) -} module homotopy.LoopSpaceCircle where {- 1. Universal cover and encoding map (common to all three proofs) -} module S¹Cover = S¹RecType ℤ succ-equiv S¹Cover : S¹ → Type₀ S¹Cover = S¹Cover.f encode : {x : S¹} (p : base == x) → S¹Cover x encode p = transport S¹Cover p 0 {- 2. Encoding [loop^ n] (common to Mike’s proof and the encode-decode proof) -} -- We define the element of [Ω S¹] which is supposed to correspond to an -- integer [n], this is the loop winding around the circle [n] times. -- This is easy by induction on [n] loop^ : (n : ℤ) → base == base loop^ (pos O) = idp loop^ (pos (S n)) = loop^ (pos n) ∙ loop loop^ (negsucc O) = ! loop loop^ (negsucc (S n)) = loop^ (negsucc n) ∙ (! loop) -- Compatibility of [loop^] with the successor function -- This is again not difficult by induction on [n] loop^succ : (n : ℤ) → loop^ n ∙ loop == loop^ (succ n) loop^succ (pos n) = idp loop^succ (negsucc O) = !-inv-l loop loop^succ (negsucc (S n)) = (loop^ (negsucc n) ∙ ! loop) ∙ loop =⟨ ∙-assoc (loop^ (negsucc n)) (! loop) loop ⟩ loop^ (negsucc n) ∙ (! loop ∙ loop) =⟨ !-inv-l loop |in-ctx (λ u → loop^ (negsucc n) ∙ u) ⟩ loop^ (negsucc n) ∙ idp =⟨ ∙-unit-r _ ⟩ loop^ (negsucc n) ∎ -- Now we check that encoding [loop^ n] gives indeed [n], again by induction -- on [n] encode-loop^ : (n : ℤ) → encode (loop^ n) == n encode-loop^ (pos O) = idp encode-loop^ (pos (S n)) = encode (loop^ (pos n) ∙ loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (pos n) ∙ loop)) 0 =⟨ ap-∙ S¹Cover (loop^ (pos n)) loop |in-ctx (λ u → coe u 0) ⟩ coe (ap S¹Cover (loop^ (pos n)) ∙ ap S¹Cover loop) 0 =⟨ coe-∙ (ap S¹Cover (loop^ (pos n))) (ap S¹Cover loop) 0 ⟩ coe (ap S¹Cover loop) (coe (ap S¹Cover (loop^ (pos n))) 0) =⟨ encode-loop^ (pos n) |in-ctx coe (ap S¹Cover loop) ⟩ coe (ap S¹Cover loop) (pos n) =⟨ S¹Cover.coe-loop-β (pos n) ⟩ pos (S n) ∎ encode-loop^ (negsucc O) = coe (ap S¹Cover (! loop)) 0 =⟨ coe-ap-! S¹Cover loop 0 ⟩ coe! (ap S¹Cover loop) 0 =⟨ S¹Cover.coe!-loop-β 0 ⟩ negsucc O ∎ encode-loop^ (negsucc (S n)) = encode (loop^ (negsucc n) ∙ ! loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (negsucc n) ∙ ! loop)) 0 =⟨ ap-∙ S¹Cover (loop^ (negsucc n)) (! loop) |in-ctx (λ u → coe u 0) ⟩ coe (ap S¹Cover (loop^ (negsucc n)) ∙ ap S¹Cover (! loop)) 0 =⟨ coe-∙ (ap S¹Cover (loop^ (negsucc n))) (ap S¹Cover (! loop)) 0 ⟩ coe (ap S¹Cover (! loop)) (coe (ap S¹Cover (loop^ (negsucc n))) 0) =⟨ encode-loop^ (negsucc n) |in-ctx coe (ap S¹Cover (! loop)) ⟩ coe (ap S¹Cover (! loop)) (negsucc n) =⟨ coe-ap-! S¹Cover loop (negsucc n) ⟩ coe! (ap S¹Cover loop) (negsucc n) =⟨ S¹Cover.coe!-loop-β (negsucc n) ⟩ negsucc (S n) ∎ {- 3. Dan’s encode-decode proof -} -- The decoding function at [base] is [loop^], but we extend it to the whole -- of [S¹] so that [decode-encode] becomes easier (and we need [loop^succ] to -- be able to extend it) decode : (x : S¹) → (S¹Cover x → base == x) decode = S¹-elim loop^ (↓-→-in (λ {n} q → ↓-cst=idf-in (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)))) decode-encode : (x : S¹) (p : base == x) → decode x (encode p) == p decode-encode _ p = J (λ x p → decode x (encode p) == p) idp p -- Magic! -- And we get the theorem ΩS¹≃ℤ : (base == base) ≃ ℤ ΩS¹≃ℤ = equiv encode (decode base) encode-loop^ (decode-encode base) {- 4. Mike’s proof that [Σ S¹ Cover] is contractible -} -- We want to prove that every point of [Σ S¹ S¹Cover] is equal to [(base , O)] paths-mike : (xt : Σ S¹ S¹Cover) → (base , 0) == xt paths-mike (x , t) = paths-mike-c x t where -- We do it by circle-induction on the first component. When it’s [base], -- we use the [↓-loop^] below (which is essentially [encode-loop^]) and -- for [loop] we use [loop^succ] and the fact that [ℤ] is a set. paths-mike-c : (x : S¹) (t : S¹Cover x) → (base , 0) == (x , t) :> Σ S¹ S¹Cover paths-mike-c = S¹-elim (λ n → pair= (loop^ n) (↓-loop^ n)) (↓-Π-in (λ {n} {n'} q → ↓-cst=idf-in (pair= (loop^ n) (↓-loop^ n) ∙ pair= loop q =⟨ Σ-∙ (↓-loop^ n) q ⟩ pair= (loop^ n ∙ loop) (↓-loop^ n ∙ᵈ q) =⟨ pair== (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)) (set-↓-has-all-paths-↓ ℤ-is-set) ⟩ pair= (loop^ n') (↓-loop^ n') ∎))) where ↓-loop^ : (n : ℤ) → 0 == n [ S¹Cover ↓ loop^ n ] ↓-loop^ n = from-transp _ _ (encode-loop^ n) contr-mike : is-contr (Σ S¹ S¹Cover) contr-mike = ((base , 0) , paths-mike) {- 5. Flattening lemma proof that [Σ S¹ Cover] is contractible -} --We import the flattening lemma for the universal cover of the circle --open FlatteningS¹ ℤ succ-equiv open S¹Cover using (module Wt; Wt; cct; ppt; flattening-S¹) -- We prove that the flattened HIT corresponding to the universal cover of the -- circle (the real line) is contractible Wt-is-contr : is-contr Wt Wt-is-contr = (cct tt 0 , Wt.elim (base* ∘ snd) (loop* ∘ snd)) where -- This is basically [loop^] base* : (n : ℤ) → cct tt 0 == cct tt n base* (pos O) = idp base* (pos (S n)) = base* (pos n) ∙ ppt tt (pos n) base* (negsucc O) = ! (ppt tt (negsucc O)) base* (negsucc (S n)) = base* (negsucc n) ∙ ! (ppt tt (negsucc (S n))) loop* : (n : ℤ) → base* n == base* (succ n) [ (λ x → cct tt 0 == x) ↓ ppt tt n ] loop* n = ↓-cst=idf-in (aux n) where -- This is basically [loop^succ] aux : (n : ℤ) → base* n ∙ ppt tt n == base* (succ n) aux (pos n) = idp aux (negsucc O) = !-inv-l (ppt tt (negsucc O)) aux (negsucc (S n)) = base* (negsucc (S n)) ∙ ppt tt (negsucc (S n)) =⟨ idp ⟩ (base* (negsucc n) ∙ ! (ppt tt (negsucc (S n)))) ∙ ppt tt (negsucc (S n)) =⟨ ∙-assoc (base* (negsucc n)) _ _ ⟩ base* (negsucc n) ∙ (! (ppt tt (negsucc (S n))) ∙ ppt tt (negsucc (S n))) =⟨ !-inv-l (ppt tt (negsucc (S n))) |in-ctx (λ u → base* (negsucc n) ∙ u) ⟩ base* (negsucc n) ∙ idp =⟨ ∙-unit-r _ ⟩ base* (negsucc n) ∎ -- Then, using the flattening lemma we get that the total space of [Cover] is -- contractible contr-flattening : is-contr (Σ S¹ S¹Cover) contr-flattening = transport! is-contr flattening-S¹ Wt-is-contr {- 6. Proof that [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ Cover] is contractible -} tot-encode : Σ S¹ (λ x → base == x) → Σ S¹ S¹Cover tot-encode (x , y) = (x , encode y) -- The previous map induces an equivalence on the total spaces, because both -- total spaces are contractible total-is-equiv : is-equiv tot-encode total-is-equiv = contr-to-contr-is-equiv _ (pathfrom-is-contr base) contr-flattening -- Hence it’s an equivalence fiberwise postulate -- TODO, will be only one line using the fact that an equivalence on -- total spaces induces an equivalence fiberwise encode-is-equiv : (x : S¹) → is-equiv (encode {x}) -- We can then conclude that the loop space of the circle is equivalent to [ℤ] ΩS¹≃ℤ' : (base == base) ≃ ℤ ΩS¹≃ℤ' = (encode {base} , encode-is-equiv base) {- 7. Encode-decode proof of the whole fiberwise equivalence -} -- This is quite similar to [paths-mike], we’re doing it by circle-induction, -- the base case is [encode-loop^] and the loop case is using the fact that [ℤ] -- is a set (and [loop^succ] is already used in [decode]) encode-decode : (x : S¹) (t : S¹Cover x) → encode (decode x t) == t encode-decode = S¹-elim {P = λ x → (t : S¹Cover x) → encode (decode x t) == t} encode-loop^ (↓-Π-in (λ q → prop-has-all-paths-↓ (ℤ-is-set _ _))) encode-is-equiv' : (x : S¹) → is-equiv (encode {x}) encode-is-equiv' x = is-eq encode (decode x) (encode-decode x) (decode-encode x) {- 8. Proof that the circle is a 1-type -} S¹Cover-is-set : (y : S¹) → is-set (S¹Cover y) S¹Cover-is-set = S¹-elim ℤ-is-set (prop-has-all-paths-↓ is-set-is-prop) ΩS¹-is-set : (y : S¹) → is-set (base == y) ΩS¹-is-set y = equiv-preserves-level ((encode {y} , encode-is-equiv y) ⁻¹) (S¹Cover-is-set y) S¹-level : has-level 1 S¹ S¹-level = S¹-elim ΩS¹-is-set (prop-has-all-paths-↓ (Π-level (λ x → is-set-is-prop)))
{ "alphanum_fraction": 0.5961127723, "avg_line_length": 39.5105485232, "ext": "agda", "hexsha": "ad7418a26dc17b815dbb93d097c19183c9ea2c2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/LoopSpaceCircle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/LoopSpaceCircle.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/LoopSpaceCircle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3467, "size": 9364 }
open import FRP.JS.Bool using ( Bool ; _∨_ ; not ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ) open import FRP.JS.Float using ( ℝ ) renaming ( _/?_ to _/?r_ ) open import FRP.JS.Primitive using ( ℕ ; String ) module FRP.JS.Int where infixr 4 _≤_ _<_ _≟_ infixl 6 _+_ _-_ infixl 7 _*_ _/_ _/?_ open import FRP.JS.Primitive public using ( ℤ ) private primitive primIntegerPlus : ℤ -> ℤ -> ℤ primIntegerMinus : ℤ -> ℤ -> ℤ primIntegerTimes : ℤ -> ℤ -> ℤ primIntegerDiv : ℤ -> ℤ -> ℤ primIntegerMod : ℤ -> ℤ -> ℤ primIntegerEquality : ℤ -> ℤ -> Bool primIntegerLess : ℤ -> ℤ -> Bool primIntegerToFloat : ℤ -> ℝ primIntegerAbs : ℤ -> ℕ primShowInteger : ℤ -> String primNatToInteger : ℕ → ℤ primFloatDiv : ℝ → ℝ → ℝ _+_ = primIntegerPlus _-_ = primIntegerMinus _*_ = primIntegerTimes _%_ = primIntegerMod _≟_ = primIntegerEquality _<_ = primIntegerLess float = primIntegerToFloat abs = primIntegerAbs show = primShowInteger {-# COMPILED_JS _+_ function(x) { return function(y) { return x + y; }; } #-} {-# COMPILED_JS _-_ function(x) { return function(y) { return x - y; }; } #-} {-# COMPILED_JS _*_ function(x) { return function(y) { return x * y; }; } #-} {-# COMPILED_JS _%_ function(x) { return function(y) { if (x < 0) { return (x % y) + x; } else { return x % y; } }; } #-} {-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-} {-# COMPILED_JS _<_ function(x) { return function(y) { return x < y; }; } #-} {-# COMPILED_JS float function(x) { return x; } #-} {-# COMPILED_JS abs function(x) { return Math.abs(x); } #-} {-# COMPILED_JS show function(x) { return x.toString(); } #-} +0 = primNatToInteger 0 +1 = primNatToInteger 1 -1 = +0 - +1 -_ : ℤ → ℤ - x = +0 - x _≤_ : ℤ → ℤ → Bool x ≤ y = (x < y) ∨ (x ≟ y) _≠_ : ℤ → ℤ → Bool x ≠ y = not (x ≟ y) _/_ : (x y : ℤ) → {y≠0 : True (y ≠ +0)} → ℝ x / y = primFloatDiv (float x) (float y) _/?_ : ℤ → ℤ → Maybe ℝ x /? y = (float x) /?r (float y) {-# COMPILED_JS _/_ function(x) { return function(y) { return x / y; }; } #-} {-# COMPILED_JS _≤_ function(x) { return function(y) { return x <= y; }; } #-} {-# COMPILED_JS _≠_ function(x) { return function(y) { return x !== y; }; } #-} {-# COMPILED_JS _/_ function(x) { return function(y) { return function() { return x / y; }; }; } #-} {-# COMPILED_JS _/?_ function(x) { return function(y) { if (y === 0) { return null; } else { return x / y; } }; } #-}
{ "alphanum_fraction": 0.5791352638, "avg_line_length": 34.0675675676, "ext": "agda", "hexsha": "c2ac65b2ed461ecae1be084a9d8dec034ae5816d", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Int.agda", "max_line_length": 123, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 910, "size": 2521 }
{- Define finitely generated ideals of commutative rings and show that they are an ideal. Parts of this should be reusable for explicit constructions of free modules over a finite set. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FGIdeal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.FinData hiding (elim ; rec) open import Cubical.Data.Nat renaming ( zero to ℕzero ; suc to ℕsuc ; _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) hiding (elim) open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.Ring.QuotientRing open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.ReflectionSolving open import Cubical.Algebra.Matrix private variable ℓ : Level module _ (Ring@(R , str) : CommRing ℓ) where infixr 5 _holds _holds : hProp ℓ → Type ℓ P holds = fst P open CommRingStr str open RingTheory (CommRing→Ring Ring) open Sum (CommRing→Ring Ring) linearCombination : {n : ℕ} → FinVec R n → FinVec R n → R linearCombination α V = ∑ (λ i → α i · V i) sumDist+ : ∀ {n : ℕ} (α β V : FinVec R n) → linearCombination (λ i → α i + β i) V ≡ linearCombination α V + linearCombination β V sumDist+ α β V = ∑Ext (λ i → ·Ldist+ (α i) (β i) (V i)) ∙ ∑Split (λ i → α i · V i) (λ i → β i · V i) dist- : ∀ {n : ℕ} (α V : FinVec R n) → linearCombination (λ i → - α i) V ≡ - linearCombination α V dist- α V = ∑Ext (λ i → -DistL· (α i) (V i)) ∙ ∑Dist- (λ i → α i · V i) dist0 : ∀ {n : ℕ} (V : FinVec R n) → linearCombination (replicateFinVec n 0r) V ≡ 0r dist0 {n = n} V = ∑Ext (λ i → 0LeftAnnihilates (V i)) ∙ ∑0r n isLinearCombination : {n : ℕ} → FinVec R n → R → Type ℓ isLinearCombination V x = ∃[ α ∈ FinVec R _ ] x ≡ linearCombination α V {- If x and y are linear combinations of l, then (x + y) is a linear combination. -} isLinearCombination+ : {n : ℕ} {x y : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V y → isLinearCombination V (x + y) isLinearCombination+ V = map2 λ α β → (λ i → α .fst i + β .fst i) , cong₂ (_+_) (α .snd) (β .snd) ∙ sym (sumDist+ _ _ V) {- If x is a linear combinations of l, then -x is a linear combination. -} isLinearCombination- : {n : ℕ} {x : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V (- x) isLinearCombination- V = map λ α → (λ i → - α .fst i) , cong (-_) (α .snd) ∙ sym (dist- _ V) {- 0r is the trivial linear Combination -} isLinearCombination0 : {n : ℕ} (V : FinVec R n) → isLinearCombination V 0r isLinearCombination0 V = ∣ _ , sym (dist0 V) ∣ {- Linear combinations are stable under left multiplication -} isLinearCombinationL· : {n : ℕ} (V : FinVec R n) (r : R) {x : R} → isLinearCombination V x → isLinearCombination V (r · x) isLinearCombinationL· V r = map λ α → (λ i → r · α .fst i) , cong (r ·_) (α .snd) ∙∙ ∑Mulrdist r (λ i → α .fst i · V i) ∙∙ ∑Ext λ i → ·Assoc r (α .fst i) (V i) generatedIdeal : {n : ℕ} → FinVec R n → IdealsIn Ring generatedIdeal V = makeIdeal Ring (λ x → isLinearCombination V x , isPropPropTrunc) (isLinearCombination+ V) (isLinearCombination0 V) λ r → isLinearCombinationL· V r open CommIdeal.isCommIdeal genIdeal : {n : ℕ} (R : CommRing ℓ) → FinVec (fst R) n → CommIdeal.CommIdeal R fst (genIdeal R V) x = isLinearCombination R V x , isPropPropTrunc +Closed (snd (genIdeal R V)) = isLinearCombination+ R V contains0 (snd (genIdeal R V)) = isLinearCombination0 R V ·Closed (snd (genIdeal R V)) r = isLinearCombinationL· R V r syntax genIdeal R V = ⟨ V ⟩[ R ] FGIdealIn : (R : CommRing ℓ) → Type (ℓ-suc ℓ) FGIdealIn R = Σ[ I ∈ CommIdeal.CommIdeal R ] ∃[ nV ∈ Σ[ n ∈ ℕ ] FinVec (fst R) n ] I ≡ ⟨ nV .snd ⟩[ R ] -- The lattice laws module _ (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open CommIdeal R' open Sum (CommRing→Ring R') open KroneckerDelta (CommRing→Ring R') private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] inclOfFGIdeal : {n : ℕ} (V : FinVec R n) (I : CommIdeal) → (∀ i → V i ∈ I) → ⟨ V ⟩ ⊆ I inclOfFGIdeal V I ∀i→Vi∈I x = elim (λ _ → I .fst x .snd) inclOfFGIdealΣ where inclOfFGIdealΣ : Σ[ α ∈ FinVec R _ ] x ≡ linearCombination R' α V → x ∈ I inclOfFGIdealΣ (α , x≡α·V) = subst-∈ I (sym x≡α·V) (∑Closed I (λ i → α i · V i) λ i → ·Closed (I .snd) _ (∀i→Vi∈I i)) indInIdeal : ∀ {n : ℕ} (U : FinVec R n) (i : Fin n) → U i ∈ ⟨ U ⟩ indInIdeal U i = ∣ (δ i) , sym (∑Mul1r _ U i) ∣ sucIncl : ∀ {n : ℕ} (U : FinVec R (ℕsuc n)) → ⟨ U ∘ suc ⟩ ⊆ ⟨ U ⟩ sucIncl U x = map λ (α , x≡∑αUsuc) → (λ { zero → 0r ; (suc i) → α i }) , x≡∑αUsuc ∙ path _ _ where path : ∀ s u₀ → s ≡ 0r · u₀ + s path = solve R' emptyFGIdeal : ∀ (V : FinVec R 0) → ⟨ V ⟩ ≡ 0Ideal emptyFGIdeal V = CommIdeal≡Char (λ _ → rec (is-set _ _) snd) (λ _ x≡0 → ∣ (λ ()) , x≡0 ∣) 0FGIdealLIncl : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ⊆ 0Ideal 0FGIdealLIncl x = elim (λ _ → is-set _ _) λ (α , x≡∑α0) → subst-∈ 0Ideal (sym x≡∑α0) (∑Closed 0Ideal (λ i → α i · 0r) λ i → subst-∈ 0Ideal (sym (0RightAnnihilates _)) refl) 0FGIdealRIncl : {n : ℕ} → 0Ideal ⊆ ⟨ replicateFinVec n 0r ⟩ 0FGIdealRIncl x x≡0 = subst-∈ ⟨ replicateFinVec _ 0r ⟩ (sym x≡0) (⟨ replicateFinVec _ 0r ⟩ .snd .contains0) 0FGIdeal : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ≡ 0Ideal 0FGIdeal = CommIdeal≡Char 0FGIdealLIncl 0FGIdealRIncl FGIdealAddLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ⊆ (⟨ U ⟩ +i ⟨ V ⟩) FGIdealAddLemmaLIncl {n = ℕzero} U V x x∈⟨V⟩ = ∣ (0r , x) , ⟨ U ⟩ .snd .contains0 , x∈⟨V⟩ , sym (+Lid x) ∣ FGIdealAddLemmaLIncl {n = ℕsuc n} U V x = rec isPropPropTrunc helperΣ where helperΣ : Σ[ α ∈ FinVec R _ ] (x ≡ ∑ λ i → α i · (U ++Fin V) i) → x ∈ (⟨ U ⟩ +i ⟨ V ⟩) helperΣ (α , p) = subst-∈ (⟨ U ⟩ +i ⟨ V ⟩) (sym p) ((⟨ U ⟩ +i ⟨ V ⟩) .snd .+Closed zeroIncl sumIncl) where zeroIncl : (α zero · U zero) ∈ (⟨ U ⟩ +i ⟨ V ⟩) zeroIncl = +iLincl ⟨ U ⟩ ⟨ V ⟩ (α zero · U zero) (⟨ U ⟩ .snd .·Closed (α zero) (indInIdeal U zero)) sumIncl : (∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i) ∈ (⟨ U ⟩ +i ⟨ V ⟩) sumIncl = let sum = ∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i in +iRespLincl ⟨ U ∘ suc ⟩ ⟨ U ⟩ ⟨ V ⟩ (sucIncl U) sum (FGIdealAddLemmaLIncl (U ∘ suc) V _ ∣ (α ∘ suc) , refl ∣) FGIdealAddLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ +i ⟨ V ⟩) ⊆ ⟨ U ++Fin V ⟩ FGIdealAddLemmaRIncl U V x = rec isPropPropTrunc (uncurry3 helper) where helperΣ : ((y , z) : R × R) → Σ[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → Σ[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helperΣ (y , z) (α , y≡∑αU) (β , z≡∑βV) x≡y+z = ∣ (α ++Fin β) , path ∣ where path : x ≡ ∑ λ i → (α ++Fin β) i · (U ++Fin V) i path = x ≡⟨ x≡y+z ⟩ y + z ≡⟨ cong₂ (_+_) y≡∑αU z≡∑βV ⟩ (∑ λ i → α i · U i) + (∑ λ i → β i · V i) ≡⟨ sym (∑Split++ (λ i → α i · U i) _) ⟩ (∑ ((λ i → α i · U i) ++Fin (λ i → β i · V i))) ≡⟨ ∑Ext (mul++dist α U β V) ⟩ (∑ λ i → (α ++Fin β) i · (U ++Fin V) i) ∎ helper : ((y , z) : R × R) → ∃[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → ∃[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helper _ = rec2 (isPropΠ (λ _ → isPropPropTrunc)) (helperΣ _) FGIdealAddLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ≡ ⟨ U ⟩ +i ⟨ V ⟩ FGIdealAddLemma U V = CommIdeal≡Char (FGIdealAddLemmaLIncl U V) (FGIdealAddLemmaRIncl U V) IdealAddAssoc : {n m k : ℕ} (U : FinVec R n) (V : FinVec R m) (W : FinVec R k) → ⟨ U ++Fin (V ++Fin W) ⟩ ≡ ⟨ (U ++Fin V) ++Fin W ⟩ IdealAddAssoc {n = n} {m = m} {k = k} U V W = let genIdealExpl : (n : ℕ) → FinVec R n → CommIdeal genIdealExpl _ V = ⟨ V ⟩ in cong₂ genIdealExpl (+ℕ-assoc n m k) (++FinAssoc U V W) ++FinComm : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ⟨ V ++Fin W ⟩ ≡ ⟨ W ++Fin V ⟩ ++FinComm V W = FGIdealAddLemma V W ∙∙ +iComm ⟨ V ⟩ ⟨ W ⟩ ∙∙ sym (FGIdealAddLemma W V) open ProdFin R' prodIn··Ideal : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) (x y : R) → (x ∈ ⟨ U ⟩) → (y ∈ ⟨ V ⟩) → (x · y) ∈ ⟨ U ··Fin V ⟩ prodIn··Ideal {n = n} {m = m} U V x y = map2 Σhelper where Σhelper : Σ[ α ∈ FinVec R n ] x ≡ linearCombination R' α U → Σ[ β ∈ FinVec R m ] y ≡ linearCombination R' β V → Σ[ γ ∈ FinVec R (n ·ℕ m) ] (x · y) ≡ linearCombination R' γ (U ··Fin V) Σhelper (α , x≡∑αU) (β , y≡∑βV) = α ··Fin β , path where path : x · y ≡ ∑ λ i → (α ··Fin β) i · (U ··Fin V) i path = x · y ≡⟨ cong₂ (_·_) x≡∑αU y≡∑βV ⟩ (∑ λ i → α i · U i) · (∑ λ i → β i · V i) ≡⟨ ∑Dist··Fin (λ i → α i · U i) _ ⟩ (∑ λ j → ((λ i → α i · U i) ··Fin (λ i → β i · V i)) j) ≡⟨ ∑Ext (·Dist··Fin α U β V) ⟩ (∑ λ i → (α ··Fin β) i · (U ··Fin V) i) ∎ FGIdealMultLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ⊆ (⟨ U ⟩ ·i ⟨ V ⟩) FGIdealMultLemmaLIncl U V x = elim (λ _ → isPropPropTrunc) λ (α , x≡∑αUV) → subst-∈ (⟨ U ⟩ ·i ⟨ V ⟩) (sym x≡∑αUV) --replace x by ∑αᵢⱼUᵢVⱼ (∑Closed (⟨ U ⟩ ·i ⟨ V ⟩) (λ i → α i · (U ··Fin V) i) --show that each αᵢ(U··V)ᵢ is in product λ i → (⟨ U ⟩ ·i ⟨ V ⟩) .snd .·Closed (α i) --drop the α's (flattenElim {P = _∈ (⟨ U ⟩ ·i ⟨ V ⟩)} (toMatrix U V) --show theat UᵢVⱼ is in product (λ j k → prodInProd ⟨ U ⟩ ⟨ V ⟩ (U j) (V k) (indInIdeal U j) (indInIdeal V k)) i)) FGIdealMultLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ ·i ⟨ V ⟩) ⊆ ⟨ U ··Fin V ⟩ FGIdealMultLemmaRIncl U V x = elim (λ _ → isPropPropTrunc) λ (_ , (α , β) , ∀α∈⟨U⟩ , ∀β∈⟨V⟩ , x≡∑αβ) → subst-∈ ⟨ U ··Fin V ⟩ (sym x≡∑αβ) (∑Closed ⟨ U ··Fin V ⟩ _ (λ i → prodIn··Ideal U V (α i) (β i) (∀α∈⟨U⟩ i) (∀β∈⟨V⟩ i))) FGIdealMultLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ≡ ⟨ U ⟩ ·i ⟨ V ⟩ FGIdealMultLemma U V = CommIdeal≡Char (FGIdealMultLemmaLIncl U V) (FGIdealMultLemmaRIncl U V)
{ "alphanum_fraction": 0.5063878194, "avg_line_length": 45.712, "ext": "agda", "hexsha": "0bd4c5e6fc6f6713798322fb1948d0522172ae76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dolio/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dolio/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dolio/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4590, "size": 11428 }
open import MJ.Types as Types import MJ.Classtable.Core as Core module MJ.Semantics.Objects {c}(Ct : Core.Classtable c) where open import Prelude open import Level renaming (suc to lsuc; zero to lzero) open import Data.List open import Data.List.Relation.Unary.All open import Data.List.Prefix open Core c open Classtable Ct open import MJ.Classtable.Membership Ct open import MJ.Semantics.Values Ct open import MJ.LexicalScope c {- Abstract interface for object encodings. -} record ObjEncoding : Set (lsuc lzero) where field Obj : World c → Cid c → Set weaken-obj : ∀ {W W'} cid → W' ⊒ W → Obj W cid → Obj W' cid getter : ∀ {W m a} c → Obj W c → IsMember c FIELD m a → Val W a setter : ∀ {W m a} c → Obj W c → IsMember c FIELD m a → Val W a → Obj W c defaultObject : ∀ {W} c → Obj W c data StoreVal (W : World c) : Ty⁺ c → Set where val : ∀ {ty} → Val W ty → StoreVal W (vty ty) obj : ∀ cid → Obj W cid → StoreVal W (obj cid) Store : World c → Set Store W = All (StoreVal W) W
{ "alphanum_fraction": 0.6656891496, "avg_line_length": 27.6486486486, "ext": "agda", "hexsha": "f6d211a174f1bae263e45a26cd3d7b59f10ea714", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Semantics/Objects.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Semantics/Objects.agda", "max_line_length": 77, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Semantics/Objects.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 328, "size": 1023 }
postulate Nat : Set Fin : Nat → Set Foo : (n : Nat) → Fin n → Set private module M where variable n : Nat m : Fin _ postulate Bar : Foo n m → Set open M public using (Bar) variable n : Nat m : Fin _ l : Foo n m before : Bar l before {n} {m} {l} = {!C-c C-e!} after : Bar l after {n} {m} {l} = {!C-c C-e!}
{ "alphanum_fraction": 0.5263157895, "avg_line_length": 11.7931034483, "ext": "agda", "hexsha": "b7ab9eb5b225ffcb07b6cd20d70a7a6188a795a1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/interaction/Issue3110.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Issue3110.agda", "max_line_length": 32, "max_stars_count": null, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Issue3110.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 134, "size": 342 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.UnivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Univariate.Base open import Cubical.Algebra.Polynomials.Univariate.Properties private variable ℓ : Level UnivariatePoly : (CommRing ℓ) → CommRing ℓ UnivariatePoly R = (PolyMod.Poly R) , str where open CommRingStr --(snd R) str : CommRingStr (PolyMod.Poly R) 0r str = PolyModTheory.0P R 1r str = PolyModTheory.1P R _+_ str = PolyModTheory._Poly+_ R _·_ str = PolyModTheory._Poly*_ R - str = PolyModTheory.Poly- R isCommRing str = makeIsCommRing (PolyMod.isSetPoly R) (PolyModTheory.Poly+Assoc R) (PolyModTheory.Poly+Rid R) (PolyModTheory.Poly+Inverses R) (PolyModTheory.Poly+Comm R) (PolyModTheory.Poly*Associative R) (PolyModTheory.Poly*Rid R) (PolyModTheory.Poly*LDistrPoly+ R) (PolyModTheory.Poly*Commutative R) nUnivariatePoly : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ nUnivariatePoly A' zero = A' nUnivariatePoly A' (suc n) = UnivariatePoly (nUnivariatePoly A' n)
{ "alphanum_fraction": 0.583277592, "avg_line_length": 36.4634146341, "ext": "agda", "hexsha": "bdba5b10af2d3b3cf98014ad6b52275eb62dbde8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 391, "size": 1495 }
module Utils.NatOrdLemmas where open import Data.Nat.Properties.Simple open import Data.Nat open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Function {- Just a bunch of lemmas about the standard ordering on naturals -} data Cmp (a b : ℕ) : Set where LT : a Data.Nat.< b → Cmp a b EQ : a ≡ b → Cmp a b GT : a > b → Cmp a b cmp : ∀ a b → Cmp a b cmp zero zero = EQ refl cmp zero (suc b) = LT (s≤s z≤n) cmp (suc a) zero = GT (s≤s z≤n) cmp (suc a) (suc b) with cmp a b cmp (suc a) (suc b) | LT x = LT (s≤s x) cmp (suc a) (suc .a) | EQ refl = EQ refl cmp (suc a) (suc b) | GT x = GT (s≤s x) a≮a : ∀ a → ¬ (a < a) a≮a zero () a≮a (suc a) (s≤s p) = a≮a a p <-weakenr1 : ∀ a b → a < b → a < suc b <-weakenr1 zero b p = s≤s z≤n <-weakenr1 (suc a) zero () <-weakenr1 (suc a) (suc b) (s≤s p) = s≤s (<-weakenr1 a b p) <-weakenr : ∀ c a b → a < b → a < c + b <-weakenr zero a b p = p <-weakenr (suc c) a b p = <-weakenr1 a (c + b) (<-weakenr c a b p) <-weakenl1 : ∀ a b → suc a < b → a < b <-weakenl1 zero ._ (s≤s p) = s≤s z≤n <-weakenl1 (suc a) zero () <-weakenl1 (suc a) (suc b) (s≤s p) = s≤s (<-weakenl1 a b p) <-weakenl : ∀ c a b → c + a < b → a < b <-weakenl zero a b p = p <-weakenl (suc c) a b p = <-weakenl c a b (<-weakenl1 (c + a) b p) a≢sa : (a : ℕ) → a ≢ suc a a≢sa a () a<b⟶a≢sb : ∀ a b → a < b → a ≢ suc b a<b⟶a≢sb zero b p1 () a<b⟶a≢sb (suc ._) ._ (s≤s p1) refl = a<b⟶a≢sb _ _ p1 refl a<v⟶a≢c+b : ∀ c a b → a < b → a ≢ c + b a<v⟶a≢c+b zero a .a p1 refl = a≮a a p1 a<v⟶a≢c+b (suc c) a b p1 p2 = a<b⟶a≢sb a (c + b) (<-weakenr c a b p1) p2 a<sb+a : ∀ a b → a < suc b + a a<sb+a zero b = s≤s z≤n a<sb+a (suc a) b rewrite +-suc b a = s≤s (a<sb+a a b) a<b+sa : ∀ a b → a < b + suc a a<b+sa a b rewrite +-suc b a = a<sb+a a b ≤-strict : ∀ a b → a ≤ b → a ≢ b → a < b ≤-strict zero zero z≤n p2 = ⊥-elim (p2 refl) ≤-strict zero (suc b) z≤n p2 = s≤s z≤n ≤-strict (suc a) zero () p2 ≤-strict (suc a) (suc b) (s≤s p1) p2 = s≤s (≤-strict a b p1 (p2 ∘ cong suc)) a≢sa+b : ∀ a b → a ≢ suc a + b a≢sa+b zero b () a≢sa+b (suc a) b p = a≢sa+b a b $ cong pred p a≢sb+a : ∀ a b → a ≢ suc b + a a≢sb+a a b p rewrite +-comm b a = a≢sa+b a b p
{ "alphanum_fraction": 0.5395390872, "avg_line_length": 28.0126582278, "ext": "agda", "hexsha": "ec7f60ef72453c20d66b11499809454e3f1d6b0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Utils/NatOrdLemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Utils/NatOrdLemmas.agda", "max_line_length": 76, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Utils/NatOrdLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 1123, "size": 2213 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.PtdMapSequence open import groups.HomSequence open import cohomology.Theory module cohomology.PtdMapSequence {i} (CT : CohomologyTheory i) where open CohomologyTheory CT -- FIXME maybe this should be named [ap-C-seq], -- but I do not know how to name [C-seq-isemap]. -favonia C-seq : ∀ {X Y : Ptd i} (n : ℤ) → PtdMapSequence X Y → HomSequence (C n Y) (C n X) C-seq n (X ⊙⊣|) = C n X ⊣|ᴳ C-seq n (X ⊙→⟨ f ⟩ seq) = HomSeq-snoc (C-seq n seq) (C-fmap n f) C-comm-square : ∀ (n : ℤ) {X₀ X₁ Y₀ Y₁ : Ptd i} → {f₀ : X₀ ⊙→ Y₀} {f₁ : X₁ ⊙→ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → CommSquare (fst f₀) (fst f₁) (fst hX) (fst hY) → CommSquareᴳ (C-fmap n f₁) (C-fmap n f₀) (C-fmap n hY) (C-fmap n hX) C-comm-square n {f₀ = f₀} {f₁} {hX} {hY} (comm-sqr □) = comm-sqrᴳ λ y₁ → ∘-CEl-fmap n hX f₁ y₁ ∙ CEl-fmap-base-indep' n (λ x → ! (□ x)) y₁ ∙ CEl-fmap-∘ n hY f₀ y₁ C-seq-fmap : ∀ {X₀ X₁ Y₀ Y₁ : Ptd i} (n : ℤ) {seq₀ : PtdMapSequence X₀ Y₀} {seq₁ : PtdMapSequence X₁ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → PtdMapSeqMap seq₀ seq₁ hX hY → HomSeqMap (C-seq n seq₁) (C-seq n seq₀) (C-fmap n hY) (C-fmap n hX) C-seq-fmap n (hX ⊙↓|) = C-fmap n hX ↓|ᴳ C-seq-fmap n (hX ⊙↓⟨ □ ⟩ seq) = HomSeqMap-snoc (C-seq-fmap n seq) (C-comm-square n □) C-seq-isemap : ∀ {X₀ X₁ Y₀ Y₁ : Ptd i} (n : ℤ) {seq₀ : PtdMapSequence X₀ Y₀} {seq₁ : PtdMapSequence X₁ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} {seq-map : PtdMapSeqMap seq₀ seq₁ hX hY} → is-⊙seq-equiv seq-map → is-seqᴳ-equiv (C-seq-fmap n seq-map) C-seq-isemap n {seq-map = h ⊙↓|} h-is-equiv = CEl-isemap n h h-is-equiv C-seq-isemap n {seq-map = h ⊙↓⟨ □ ⟩ seq} (h-is-equiv , seq-is-equiv) = is-seqᴳ-equiv-snoc (C-seq-isemap n seq-is-equiv) (CEl-isemap n h h-is-equiv) C-seq-emap : ∀ {X₀ X₁ Y₀ Y₁ : Ptd i} (n : ℤ) {seq₀ : PtdMapSequence X₀ Y₀} {seq₁ : PtdMapSequence X₁ Y₁} {hX : X₀ ⊙→ X₁} {hY : Y₀ ⊙→ Y₁} → PtdMapSeqEquiv seq₀ seq₁ hX hY → HomSeqEquiv (C-seq n seq₁) (C-seq n seq₀) (C-fmap n hY) (C-fmap n hX) C-seq-emap n (seq , seq-ise) = C-seq-fmap n seq , C-seq-isemap n seq-ise
{ "alphanum_fraction": 0.5833714025, "avg_line_length": 42.0961538462, "ext": "agda", "hexsha": "1427954189f82963b4f6260afc2d351c4e6e6262", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/PtdMapSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/PtdMapSequence.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/PtdMapSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1044, "size": 2189 }
module Structure.Category.Equiv where import Lvl open import Structure.Setoid open import Structure.Category -- TODO: https://en.wikipedia.org/wiki/Equivalence_of_categories module _ {ℓₒ ℓₘ : Lvl.Level} {Obj : Type{ℓₒ}} (Morphism : Obj → Obj → Type{ℓₘ}) ⦃ morphism-equiv : ∀{x y} → Equiv(Morphism x y) ⦄ where Category-equiv : Equiv(Category(Morphism)) Category-equiv
{ "alphanum_fraction": 0.7244094488, "avg_line_length": 31.75, "ext": "agda", "hexsha": "0d95dbc7b99a736244985d834f250a3e82fa6184", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Equiv.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 118, "size": 381 }
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.FullReduction where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening open import Definition.Conversion open import Definition.Conversion.Whnf open import Definition.Typed.Consequences.InverseUniv open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE mutual data NfNeutral : Term → Set where var : ∀ n → NfNeutral (var n) ∘ₙ : ∀ {k u} → NfNeutral k → Nf u → NfNeutral (k ∘ u) fstₙ : ∀ {p} → NfNeutral p → NfNeutral (fst p) sndₙ : ∀ {p} → NfNeutral p → NfNeutral (snd p) natrecₙ : ∀ {C c g k} → Nf C → Nf c → Nf g → NfNeutral k → NfNeutral (natrec C c g k) Emptyrecₙ : ∀ {C k} → Nf C → NfNeutral k → NfNeutral (Emptyrec C k) data Nf : Term → Set where Uₙ : Nf U Πₙ : ∀ {A B} → Nf A → Nf B → Nf (Π A ▹ B) Σₙ : ∀ {A B} → Nf A → Nf B → Nf (Σ A ▹ B) ℕₙ : Nf ℕ Emptyₙ : Nf Empty Unitₙ : Nf Unit lamₙ : ∀ {t} → Nf t → Nf (lam t) prodₙ : ∀ {t u} → Nf t → Nf u → Nf (prod t u) zeroₙ : Nf zero sucₙ : ∀ {t} → Nf t → Nf (suc t) starₙ : Nf star ne : ∀ {n} → NfNeutral n → Nf n mutual fullRedNe : ∀ {t A Γ} → Γ ⊢ t ~ t ↑ A → ∃ λ u → NfNeutral u × Γ ⊢ t ≡ u ∷ A fullRedNe (var-refl x _) = var _ , var _ , refl x fullRedNe (app-cong t u) = let t′ , nfT′ , t≡t′ = fullRedNe~↓ t u′ , nfU′ , u≡u′ = fullRedTerm u in (t′ ∘ u′) , (∘ₙ nfT′ nfU′) , app-cong t≡t′ u≡u′ fullRedNe (fst-cong p~p) = let p′ , neP′ , p≡p′ = fullRedNe~↓ p~p ⊢ΣFG , _ , _ = syntacticEqTerm p≡p′ ⊢F , ⊢G = syntacticΣ ⊢ΣFG in fst p′ , fstₙ neP′ , fst-cong ⊢F ⊢G p≡p′ fullRedNe (snd-cong p~p) = let p′ , neP′ , p≡p′ = fullRedNe~↓ p~p ⊢ΣFG , _ , _ = syntacticEqTerm p≡p′ ⊢F , ⊢G = syntacticΣ ⊢ΣFG in snd p′ , sndₙ neP′ , snd-cong ⊢F ⊢G p≡p′ fullRedNe (natrec-cong C z s n) = let C′ , nfC′ , C≡C′ = fullRed C z′ , nfZ′ , z≡z′ = fullRedTerm z s′ , nfS′ , s≡s′ = fullRedTerm s n′ , nfN′ , n≡n′ = fullRedNe~↓ n in natrec C′ z′ s′ n′ , natrecₙ nfC′ nfZ′ nfS′ nfN′ , natrec-cong C≡C′ z≡z′ s≡s′ n≡n′ fullRedNe (Emptyrec-cong C n) = let C′ , nfC′ , C≡C′ = fullRed C n′ , nfN′ , n≡n′ = fullRedNe~↓ n in Emptyrec C′ n′ , Emptyrecₙ nfC′ nfN′ , Emptyrec-cong C≡C′ n≡n′ fullRedNe~↓ : ∀ {t A Γ} → Γ ⊢ t ~ t ↓ A → ∃ λ u → NfNeutral u × Γ ⊢ t ≡ u ∷ A fullRedNe~↓ ([~] A D whnfB k~l) = let u , nf , t≡u = fullRedNe k~l in u , nf , conv t≡u (subset* D) fullRed : ∀ {A Γ} → Γ ⊢ A [conv↑] A → ∃ λ B → Nf B × Γ ⊢ A ≡ B fullRed ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) rewrite whrDet* (D , whnfA′) (D′ , whnfB′) = let B″ , nf , B′≡B″ = fullRedConv↓ A′<>B′ in B″ , nf , trans (subset* D′) B′≡B″ fullRedConv↓ : ∀ {A Γ} → Γ ⊢ A [conv↓] A → ∃ λ B → Nf B × Γ ⊢ A ≡ B fullRedConv↓ (U-refl ⊢Γ) = U , Uₙ , refl (Uⱼ ⊢Γ) fullRedConv↓ (ℕ-refl ⊢Γ) = ℕ , ℕₙ , refl (ℕⱼ ⊢Γ) fullRedConv↓ (Empty-refl ⊢Γ) = Empty , Emptyₙ , refl (Emptyⱼ ⊢Γ) fullRedConv↓ (Unit-refl ⊢Γ) = Unit , Unitₙ , refl (Unitⱼ ⊢Γ) fullRedConv↓ (ne A) = let B , nf , A≡B = fullRedNe~↓ A in B , ne nf , univ A≡B fullRedConv↓ (Π-cong ⊢F F G) = let F′ , nfF′ , F≡F′ = fullRed F G′ , nfG′ , G≡G′ = fullRed G in Π F′ ▹ G′ , Πₙ nfF′ nfG′ , Π-cong ⊢F F≡F′ G≡G′ fullRedConv↓ (Σ-cong ⊢F F G) = let F′ , nfF′ , F≡F′ = fullRed F G′ , nfG′ , G≡G′ = fullRed G in Σ F′ ▹ G′ , Σₙ nfF′ nfG′ , Σ-cong ⊢F F≡F′ G≡G′ fullRedTerm : ∀ {t A Γ} → Γ ⊢ t [conv↑] t ∷ A → ∃ λ u → Nf u × Γ ⊢ t ≡ u ∷ A fullRedTerm ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) rewrite whrDet*Term (d , whnft′) (d′ , whnfu′) = let u″ , nf , u′≡u″ = fullRedTermConv↓ t<>u in u″ , nf , conv (trans (subset*Term d′) u′≡u″) (sym (subset* D)) fullRedTermConv↓ : ∀ {t A Γ} → Γ ⊢ t [conv↓] t ∷ A → ∃ λ u → Nf u × Γ ⊢ t ≡ u ∷ A fullRedTermConv↓ (ℕ-ins t) = let u , nf , t≡u = fullRedNe~↓ t in u , ne nf , t≡u fullRedTermConv↓ (Empty-ins t) = let u , nf , t≡u = fullRedNe~↓ t in u , ne nf , t≡u fullRedTermConv↓ (Unit-ins t) = let u , nf , t≡u = fullRedNe~↓ t in u , ne nf , t≡u fullRedTermConv↓ (ne-ins ⊢t _ _ t) = let u , nfU , t≡u = fullRedNe~↓ t _ , ⊢t∷M , _ = syntacticEqTerm t≡u _ , neT , _ = ne~↓ t in u , ne nfU , conv t≡u (neTypeEq neT ⊢t∷M ⊢t) fullRedTermConv↓ (univ ⊢t _ t) = let u , nf , t≡u = fullRedConv↓ t in u , nf , inverseUnivEq ⊢t t≡u fullRedTermConv↓ (zero-refl ⊢Γ) = zero , zeroₙ , refl (zeroⱼ ⊢Γ) fullRedTermConv↓ (suc-cong t) = let u , nf , t≡u = fullRedTerm t in suc u , sucₙ nf , suc-cong t≡u fullRedTermConv↓ (η-eq ⊢t _ _ _ t∘0) = let u , nf , t∘0≡u = fullRedTerm t∘0 _ , _ , ⊢u = syntacticEqTerm t∘0≡u ⊢F , _ = syntacticΠ (syntacticTerm ⊢t) ΓF⊢ = wf ⊢F ∙ ⊢F wk⊢F = wk (step id) ΓF⊢ ⊢F ΓFF'⊢ = ΓF⊢ ∙ wk⊢F wk⊢u = wkTerm (lift (step id)) ΓFF'⊢ ⊢u λu∘0 = lam (U.wk (lift (step id)) u) ∘ var 0 in lam u , lamₙ nf , η-eq ⊢F ⊢t (lamⱼ ⊢F ⊢u) (trans t∘0≡u (PE.subst₂ (λ x y → _ ⊢ x ≡ λu∘0 ∷ y) (wkSingleSubstId u) (wkSingleSubstId _) (sym (β-red wk⊢F wk⊢u (var ΓF⊢ here))))) fullRedTermConv↓ (Σ-η ⊢t _ tProd _ fstConv sndConv) = let fst′ , nfFst′ , fst≡fst′ = fullRedTerm fstConv snd′ , nfSnd′ , snd≡snd′ = fullRedTerm sndConv _ , _ , ⊢fst′ = syntacticEqTerm fst≡fst′ _ , _ , ⊢snd′₁ = syntacticEqTerm snd≡snd′ ⊢ΣFG = syntacticTerm ⊢t ⊢F , ⊢G = syntacticΣ ⊢ΣFG Gfst≡Gfst′ = substTypeEq (refl ⊢G) fst≡fst′ ⊢snd′ = conv ⊢snd′₁ Gfst≡Gfst′ ⊢prod = prodⱼ ⊢F ⊢G ⊢fst′ ⊢snd′ fstprod≡fst′ = Σ-β₁ ⊢F ⊢G ⊢fst′ ⊢snd′ fst≡fstprod = trans fst≡fst′ (sym fstprod≡fst′) Gfst≡Gfstprod = substTypeEq (refl ⊢G) fst≡fstprod sndprod≡snd′ = conv (Σ-β₂ ⊢F ⊢G ⊢fst′ ⊢snd′) (sym Gfst≡Gfstprod) snd≡sndprod = trans snd≡snd′ (sym sndprod≡snd′) in prod fst′ snd′ , prodₙ nfFst′ nfSnd′ , Σ-η ⊢F ⊢G ⊢t ⊢prod fst≡fstprod snd≡sndprod fullRedTermConv↓ (η-unit ⊢t _ tUnit _) = star , starₙ , η-unit ⊢t (starⱼ (wfTerm ⊢t))
{ "alphanum_fraction": 0.520370094, "avg_line_length": 39.650887574, "ext": "agda", "hexsha": "2c495b0d5062fc89647138dd7cf26067fe30bdcc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/FullReduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/FullReduction.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/FullReduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3094, "size": 6701 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Rings.IntegralDomains.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Primes.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Divisible.Definition R open Ring R open Setoid S open import Rings.Units.Definition R record Prime (x : A) : Set (a ⊔ b) where field isPrime : (r s : A) → (x ∣ (r * s)) → ((x ∣ r) → False) → (x ∣ s) nonzero : (x ∼ 0R) → False nonunit : Unit x → False
{ "alphanum_fraction": 0.6534508076, "avg_line_length": 30.9545454545, "ext": "agda", "hexsha": "adee8eda95577cdb53a2b384459c2c8c4c03a4b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Primes/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Primes/Definition.agda", "max_line_length": 152, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Primes/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 231, "size": 681 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on characters ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Char.Properties where open import Data.Bool.Base using (Bool) open import Data.Char.Base import Data.Nat.Base as ℕ import Data.Nat.Properties as ℕₚ open import Function open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (map′; isYes) open import Relation.Binary open import Relation.Binary.PropositionalEquality.Core import Relation.Binary.Construct.On as On import Relation.Binary.PropositionalEquality as PropEq ------------------------------------------------------------------------ -- Primitive properties open import Agda.Builtin.Char.Properties renaming ( primCharToNatInjective to toℕ-injective) public ------------------------------------------------------------------------ -- Properties of _≈_ ≈⇒≡ : _≈_ ⇒ _≡_ ≈⇒≡ = toℕ-injective _ _ ≈-reflexive : _≡_ ⇒ _≈_ ≈-reflexive = cong toℕ ≈-refl : Reflexive _≈_ ≈-refl = refl ≈-sym : Symmetric _≈_ ≈-sym = sym ≈-trans : Transitive _≈_ ≈-trans = trans ≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ ≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p infix 4 _≈?_ _≈?_ : Decidable _≈_ x ≈? y = toℕ x ℕₚ.≟ toℕ y ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = λ {i} → ≈-refl {i} ; sym = λ {i j} → ≈-sym {i} {j} ; trans = λ {i j k} → ≈-trans {i} {j} {k} } ≈-setoid : Setoid _ _ ≈-setoid = record { isEquivalence = ≈-isEquivalence } ≈-isDecEquivalence : IsDecEquivalence _≈_ ≈-isDecEquivalence = record { isEquivalence = ≈-isEquivalence ; _≟_ = _≈?_ } ≈-decSetoid : DecSetoid _ _ ≈-decSetoid = record { isDecEquivalence = ≈-isDecEquivalence } ------------------------------------------------------------------------ -- Properties of _≡_ infix 4 _≟_ _≟_ : Decidable {A = Char} _≡_ x ≟ y = map′ ≈⇒≡ ≈-reflexive (x ≈? y) ≡-setoid : Setoid _ _ ≡-setoid = PropEq.setoid Char ≡-decSetoid : DecSetoid _ _ ≡-decSetoid = PropEq.decSetoid _≟_ ------------------------------------------------------------------------ -- Boolean equality test. -- -- Why is the definition _==_ = primCharEquality not used? One reason -- is that the present definition can sometimes improve type -- inference, at least with the version of Agda that is current at the -- time of writing: see unit-test below. infix 4 _==_ _==_ : Char → Char → Bool c₁ == c₂ = isYes (c₁ ≟ c₂) private -- The following unit test does not type-check (at the time of -- writing) if _==_ is replaced by primCharEquality. data P : (Char → Bool) → Set where p : (c : Char) → P (c ==_) unit-test : P ('x' ==_) unit-test = p _ ------------------------------------------------------------------------ -- Properties of _<_ infix 4 _<?_ _<?_ : Decidable _<_ _<?_ = On.decidable toℕ ℕ._<_ ℕₚ._<?_ <-isStrictPartialOrder-≈ : IsStrictPartialOrder _≈_ _<_ <-isStrictPartialOrder-≈ = On.isStrictPartialOrder toℕ ℕₚ.<-isStrictPartialOrder <-isStrictTotalOrder-≈ : IsStrictTotalOrder _≈_ _<_ <-isStrictTotalOrder-≈ = On.isStrictTotalOrder toℕ ℕₚ.<-isStrictTotalOrder <-strictPartialOrder-≈ : StrictPartialOrder _ _ _ <-strictPartialOrder-≈ = On.strictPartialOrder ℕₚ.<-strictPartialOrder toℕ <-strictTotalOrder-≈ : StrictTotalOrder _ _ _ <-strictTotalOrder-≈ = On.strictTotalOrder ℕₚ.<-strictTotalOrder toℕ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 toNat-injective = toℕ-injective {-# WARNING_ON_USAGE toℕ-injective "Warning: toNat-injective was deprecated in v1.1. Please use toℕ-injective instead." #-} setoid = ≡-setoid {-# WARNING_ON_USAGE setoid "Warning: setoid was deprecated in v1.1. Please use ≡-setoid instead." #-} decSetoid = ≡-decSetoid {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.1. Please use ≡-decSetoid instead." #-} strictTotalOrder = <-strictTotalOrder-≈ {-# WARNING_ON_USAGE strictTotalOrder "Warning: strictTotalOrder was deprecated in v1.1. Please use <-strictTotalOrder-≈ instead." #-}
{ "alphanum_fraction": 0.5931891394, "avg_line_length": 26.1807228916, "ext": "agda", "hexsha": "86c6db9c14955918c874907fb649d3bbd4fe1161", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Char/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Char/Properties.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Char/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1308, "size": 4346 }
module Dave.Logic.Bool where data Bool : Set where false : Bool true : Bool ¬_ : Bool → Bool ¬ true = false ¬ false = true _∧_ : Bool → Bool → Bool a ∧ true = a a ∧ false = false if_then_else_ : {A : Set} → Bool → A → A → A if false then a else b = b if true then a else b = a identity : {A : Set} → A → A identity a = a
{ "alphanum_fraction": 0.4974874372, "avg_line_length": 18.9523809524, "ext": "agda", "hexsha": "18749005038c4224dd0b5dabb5fc0301239f4ae8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Logic/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Logic/Bool.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Logic/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 128, "size": 398 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Rings.IntegralDomains.Definition open import Vectors open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.UniqueFactorisationDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Units.Definition R open import Rings.Irreducibles.Definition intDom open import Rings.Associates.Definition intDom open import Rings.Primes.Definition intDom open Ring R open Setoid S private power : A → ℕ → A power x zero = 1R power x (succ n) = x * power x n allDistinct : {n : ℕ} → Vec A n → Set (a ⊔ b) allDistinct [] = True' allDistinct (x ,- xs) = (allDistinct xs) && vecAllTrue (λ n → (n ∼ x) → False) xs record Factorisation {r : A} .(nonzero : (r ∼ 0R) → False) .(nonunit : (Unit r) → False) : Set (a ⊔ b) where field len : ℕ factorise : Vec (A && ℕ) len factoriseIsFactorisation : vecFold (λ x y → y * power (_&&_.fst x) (succ (_&&_.snd x))) 1R factorise ∼ r factoriseIsIrreducibles : vecAllTrue Irreducible (vecMap _&&_.fst factorise) distinct : allDistinct (vecMap _&&_.fst factorise) private equality : {n : ℕ} (v1 v2 : Vec (A && ℕ) n) → Set (a ⊔ b) equality [] [] = True' equality {succ n} ((a ,, an) ,- v1) v2 = Sg ℕ (λ index → Sg (index <N succ n) (λ i<n → (Associates (_&&_.fst (vecIndex v2 index i<n)) a) && ((_&&_.snd (vecIndex v2 index i<n) ≡ an) && equality v1 (vecDelete index i<n v2)))) factorisationEquality : {r : A} → .{nonzero : (r ∼ 0R) → False} → .{nonunit : (Unit r) → False} → Factorisation nonzero nonunit → Factorisation nonzero nonunit → Set (a ⊔ b) factorisationEquality record { len = lenA ; factorise = factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = lenB ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } with ℕDecideEquality lenA lenB factorisationEquality record { len = a ; factorise = factoriseA } record { len = .a ; factorise = factoriseB } | inl refl = equality factoriseA factoriseB factorisationEquality record { len = a ; factorise = factoriseA } record { len = b ; factorise = factoriseB } | inr _ = False' record UFD : Set (a ⊔ b) where field factorisation : {r : A} → (nonzero : (r ∼ 0R) → False) → (nonunit : (Unit r) → False) → Factorisation nonzero nonunit uniqueFactorisation : {r : A} → (nonzero : (r ∼ 0R) → False) → (nonunit : (Unit r) → False) → (f1 f2 : Factorisation nonzero nonunit) → factorisationEquality f1 f2 record UFD' : Set (a ⊔ b) where field factorisation : {r : A} → (nonzero : (r ∼ 0R) → False) → (nonunit : (Unit r) → False) → Factorisation nonzero nonunit irreduciblesArePrime : {r : A} → Irreducible r → Prime r
{ "alphanum_fraction": 0.6839592616, "avg_line_length": 53.2542372881, "ext": "agda", "hexsha": "2048777696af76034b2e22d499df9950f944f3c0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/UniqueFactorisationDomains/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/UniqueFactorisationDomains/Definition.agda", "max_line_length": 408, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/UniqueFactorisationDomains/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1029, "size": 3142 }
module Oscar.Function where open import Function public using (id; _∘_; _∘′_; flip; _on_; _$_) renaming (const to const_) infix -1 _∋_ _∋_ : ∀ {a} (A : Set a) → A → A _ ∋ x = x open import Prelude.Function public using (it)
{ "alphanum_fraction": 0.6535087719, "avg_line_length": 20.7272727273, "ext": "agda", "hexsha": "80179b4d0d315872ef8af97ebf349b5c1234cfc2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Function.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Function.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 82, "size": 228 }
{-# OPTIONS --no-termination-check #-} module PiMeadow where open import Level open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality -- infixr 20 _◎_ {- postulate A : Set a b c : A p : a ≡ b q : b ≡ c data <_> {a : Level} {A : Set a} (x : A) : Set a where singleton : {y : A} → y ≡ x -> < x > irr : singleton {_} {A} {b} p ≡ singleton {_} {A} {b} (sym q) irr = {!!} -} data <_> {a : Level} {A : Set a} (x : A) : Set a where singleton : {y : A} → y ≡ x -> < x > -- Courtesy of Wolfram Kahl, a dependent cong₂ cong₂D : {a b c : Level} {A : Set a} {B : A → Set b} {C : Set c} (f : (x : A) → B x → C) → {x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂} → (x₁≡x₂ : x₁ ≡ x₂) → y₁ ≡ subst B (sym x₁≡x₂) y₂ → f x₁ y₁ ≡ f x₂ y₂ cong₂D f refl refl = refl mutual data B : Set₁ where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B SING : (b : B) → ⟦ b ⟧ → B RECIP : (b : B) → ⟦ b ⟧ → B DPAIR : (b : B) → (⟦ b ⟧ → B) → B ⟦_⟧ : B → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS b₁ b₂ ⟧ = ⟦ b₁ ⟧ ⊎ ⟦ b₂ ⟧ ⟦ TIMES b₁ b₂ ⟧ = ⟦ b₁ ⟧ × ⟦ b₂ ⟧ ⟦ SING b v ⟧ = <_> {A = ⟦ b ⟧} v ⟦ RECIP b v ⟧ = <_> {A = ⟦ b ⟧} v → ⊤ ⟦ DPAIR b c ⟧ = Σ ⟦ b ⟧ (λ v → ⟦ c v ⟧) -- Useful abbrev leftIdemp : (b : B) → ⟦ b ⟧ → B leftIdemp b v = TIMES (SING b v) (RECIP b v) mutual data _⟷_ : B → B → Set₁ where unite₊ : {b : B} → PLUS ZERO b ⟷ b uniti₊ : {b : B} → b ⟷ PLUS ZERO b swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) id⟷ : {b : B } → b ⟷ b op : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _◑_ : { b₁ b₂ : B } {c d : ⟦ b₂ ⟧ → B} → (b₁ ⟷ DPAIR b₂ c) → (∀ {v} → c v ⟷ d v ) → (b₁ ⟷ DPAIR b₂ d ) {- _◐_ : { b₁ b₂ : B } {c d : ⟦ b₂ ⟧ → B} → (∀ {v} → c v ⟷ d v ) → (b₁ ⟷ DPAIR b₂ c) → (b₁ ⟷ DPAIR b₂ d ) -} lift : { b₁ b₂ : B } {v : ⟦ b₁ ⟧ } {w : ⟦ b₂ ⟧ } (c : b₁ ⟷ b₂) → (w ≡ eval c v) → (SING b₁ v ⟷ SING b₂ w) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) η : {b : B} → b ⟷ DPAIR b (λ v → leftIdemp b v) ε : {b : B} → (DPAIR b (λ v → leftIdemp b v)) ⟷ b eval : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ eval unite₊ (inj₁ ()) eval unite₊ (inj₂ v) = v eval uniti₊ v = inj₂ v eval swap₊ (inj₁ x) = inj₂ x eval swap₊ (inj₂ y) = inj₁ y eval assocl₊ (inj₁ x) = inj₁ (inj₁ x) eval assocl₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) eval assocl₊ (inj₂ (inj₂ x)) = inj₂ x eval assocr₊ (inj₁ (inj₁ x)) = inj₁ x eval assocr₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) eval assocr₊ (inj₂ y) = inj₂ (inj₂ y) eval unite⋆ (tt , x) = x eval uniti⋆ v = ( tt , v) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (x , (y , z)) = ((x , y), z) eval assocr⋆ ((x , y), z) = (x , (y , z)) eval id⟷ v = v eval (op c) v = evalB c v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ x) = inj₁ (eval c₁ x) eval (c₁ ⊕ c₂) (inj₂ y) = inj₂ (eval c₂ y) eval (c₁ ⊗ c₂) (x , y) = (eval c₁ x , eval c₂ y) eval (η {b}) v = v , ((singleton refl) , (λ x → tt)) eval (ε {b}) (w , c) = w eval (c₁ ◑ c₂) v = proj₁ v₂ , eval (c₂ {proj₁ v₂}) (proj₂ v₂) where v₂ = eval c₁ v {- eval (c₁ ◐ c₂) v = proj₁ v₂ , eval (c₁ {proj₁ v₂}) (proj₂ v₂) where v₂ = eval c₂ v -} eval (lift c z) (singleton {y = v} prf) = singleton {y = eval c v} (trans (cong (eval c) prf) (sym z)) -- eval (lift c z) (singleton {y = v} refl) = singleton {y = eval c v} (sym z) -- eval (lift {- w = .(eval c v) -} c refl) (singleton {y = v} refl) = singleton {y = eval c v} refl evalB : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ evalB uniti₊ (inj₁ ()) evalB uniti₊ (inj₂ v) = v evalB unite₊ v = inj₂ v evalB swap₊ (inj₁ x) = inj₂ x evalB swap₊ (inj₂ y) = inj₁ y evalB assocr₊ (inj₁ x) = inj₁ (inj₁ x) evalB assocr₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) evalB assocr₊ (inj₂ (inj₂ x)) = inj₂ x evalB assocl₊ (inj₁ (inj₁ x)) = inj₁ x evalB assocl₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) evalB assocl₊ (inj₂ y) = inj₂ (inj₂ y) evalB uniti⋆ (tt , x) = x evalB unite⋆ v = ( tt , v) evalB swap⋆ (v₁ , v₂) = (v₂ , v₁) evalB assocr⋆ (x , (y , z)) = ((x , y), z) evalB assocl⋆ ((x , y), z) = (x , (y , z)) evalB id⟷ v = v evalB (op c) v = eval c v evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v) evalB (c₁ ⊕ c₂) (inj₁ x) = inj₁ (evalB c₁ x) evalB (c₁ ⊕ c₂) (inj₂ y) = inj₂ (evalB c₂ y) evalB (c₁ ⊗ c₂) (x , y) = (evalB c₁ x , evalB c₂ y) evalB (η {b}) (w , c) = w evalB (ε {b}) v = v , ((singleton refl) , (λ x → tt)) evalB (c₁ ◑ c₂) (v , x) = evalB c₁ (v , evalB c₂ x) {- evalB (c₁ ◐ c₂) (v , x) = evalB c₂ (v , evalB c₁ x) -} evalB (lift {v = v} c z) _ = eval (lift (op c) (reverse v c)) (singleton {y = eval c v} refl) reverse : {b₁ b₂ : B} (v : ⟦ b₁ ⟧) → (c : b₁ ⟷ b₂) → v ≡ evalB c (eval c v) reverse (inj₁ ()) unite₊ reverse (inj₂ y) unite₊ = refl reverse v uniti₊ = refl reverse (inj₁ x) swap₊ = refl reverse (inj₂ y) swap₊ = refl reverse (inj₁ x) assocl₊ = refl reverse (inj₂ (inj₁ x)) assocl₊ = refl reverse (inj₂ (inj₂ y)) assocl₊ = refl reverse (inj₁ (inj₁ x)) assocr₊ = refl reverse (inj₁ (inj₂ y)) assocr₊ = refl reverse (inj₂ y) assocr₊ = refl reverse v unite⋆ = refl reverse v uniti⋆ = refl reverse v swap⋆ = refl reverse v assocl⋆ = refl reverse v assocr⋆ = refl reverse v id⟷ = refl reverse v (op c) = reverse' c v reverse v (c ◎ c₁) = trans (reverse v c) (cong (evalB c) eq) where eq : eval c v ≡ evalB c₁ (eval c₁ (eval c v)) eq = reverse (eval c v) c₁ reverse v (_◑_ {_} {b₂} {c} c₁ u) = trans eq₁ (cong (evalB c₁) eq₃) where y : Σ ⟦ b₂ ⟧ (λ ww → ⟦ c ww ⟧) y = eval c₁ v eq₁ : v ≡ evalB c₁ y eq₁ = reverse v c₁ eq₂ : proj₂ y ≡ evalB u (eval u (proj₂ y)) eq₂ = reverse (proj₂ y) u eq₃ : y ≡ (proj₁ y , evalB u (eval u (proj₂ y))) eq₃ = cong (λ z → (proj₁ y , z)) eq₂ {- reverse v (_◐_ {_} {b₂} {c} c₁ c₂) = {!!} -} -- reverse (singleton {.v₂} refl) (lift {v = v₂} {.(eval c v₂)} c refl) = {!cong singleton {! proof-irrelevance {! (reverse v₂ c) !} ?!} !} reverse (singleton prf₁) (lift {v = v₂} c prf₂) = cong₂D (λ x e → singleton {y = x} e) (trans prf₁ (reverse v₂ c)) (proof-irrelevance prf₁ _) reverse (inj₁ x) (c ⊕ _) = cong inj₁ (reverse x c) reverse (inj₂ y) (_ ⊕ c) = cong inj₂ (reverse y c) reverse (x , y) (c₁ ⊗ c₂) = cong₂ _,_ (reverse x c₁) (reverse y c₂) reverse v η = refl reverse (_ , (singleton refl , _)) ε = refl reverse' : {b₁ b₂ : B} (c : b₁ ⟷ b₂) → (w : ⟦ b₂ ⟧) → w ≡ eval c (evalB c w) reverse' unite₊ w = refl reverse' uniti₊ (inj₁ ()) reverse' uniti₊ (inj₂ y) = refl reverse' swap₊ (inj₁ x) = refl reverse' swap₊ (inj₂ y) = refl reverse' assocl₊ (inj₁ (inj₁ x)) = refl reverse' assocl₊ (inj₁ (inj₂ y)) = refl reverse' assocl₊ (inj₂ y) = refl reverse' assocr₊ (inj₁ x) = refl reverse' assocr₊ (inj₂ (inj₁ x)) = refl reverse' assocr₊ (inj₂ (inj₂ y)) = refl reverse' unite⋆ w = refl reverse' uniti⋆ w = refl reverse' swap⋆ w = refl reverse' assocl⋆ w = refl reverse' assocr⋆ w = refl reverse' id⟷ w = refl reverse' (op c) w = reverse w c reverse' (c ◎ c₁) w = trans (reverse' c₁ w) (cong (eval c₁) (reverse' c (evalB c₁ w))) reverse' {b₁} {DPAIR b₂ d} (_◑_ {c = c} c₁ c₂) (w₁ , w₂) rewrite (sym (reverse' c₁ (w₁ , evalB c₂ w₂))) | (sym (reverse' c₂ w₂)) = refl {- reverse' (c₁ ◐ c₂) w = {!!} -} reverse' (lift {v = v} {w = .(eval c v)} c refl) (singleton refl) = cong₂D (λ x e → singleton {y = x} e) (reverse' c (eval c v)) (proof-irrelevance refl _) reverse' (c ⊕ _) (inj₁ x) = cong inj₁ (reverse' c x) reverse' (_ ⊕ c) (inj₂ y) = cong inj₂ (reverse' c y) reverse' (c₁ ⊗ c₂) (x , y) = cong₂ _,_ (reverse' c₁ x) (reverse' c₂ y) reverse' η (_ , singleton refl , _ ) = refl reverse' ε w = refl -- they are properly inverse of each other -- easy direction η∘ε : {b : B} (v : ⟦ b ⟧) → eval {b} (η ◎ ε) v ≡ v η∘ε _ = refl -- hard direction. ε∘η : {b : B} (v : ⟦ b ⟧) → { w : Σ < v > (λ _ → < v > → ⊤) } → (eval {DPAIR b (leftIdemp b) } {_} (ε ◎ η) (v , w)) ≡ (v , w) ε∘η {b} v {(singleton refl , r )} = cong f {v , v , (singleton refl)} refl where f : Σ ⟦ b ⟧ (λ x → Σ ⟦ b ⟧ (λ y → < v >)) → Σ ⟦ b ⟧ (λ z → Σ < z > (λ x → < z > → ⊤ )) f (_ , (_ , j)) = (v , j , r) -- Now need to write some actual programs... makeFunc : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → b₁ ⟷ DPAIR b₁ (λ x → TIMES (SING b₂ (eval c x)) (RECIP b₁ x)) makeFunc {b₁} {b₂} c = η {b₁} ◑ (λ {v₁} → (lift c refl) ⊗ id⟷)
{ "alphanum_fraction": 0.4977635783, "avg_line_length": 39.125, "ext": "agda", "hexsha": "d8da139690522cce8a7d469fb16ef0831c39afb2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/PiMeadow.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/PiMeadow.agda", "max_line_length": 157, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/PiMeadow.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4494, "size": 9390 }
------------------------------------------------------------------------------ -- Properties of the alter list ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.UnguardedCorecursion.Alter.PropertiesI where open import FOT.FOTC.UnguardedCorecursion.Alter.Alter open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Data.Stream.Type open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- TODO (23 December 2013). -- alter-Stream : Stream alter -- alter-Stream = Stream-coind A h refl -- where -- A : D → Set -- A xs = xs ≡ alter -- h : ∀ {xs} → A xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs' -- h Ax = true , (false ∷ alter) , trans Ax alter-eq , {!!} -- TODO (23 December 2013). -- alter≈alter' : alter ≈ alter' -- alter≈alter' = ≈-coind B h₁ h₂ -- where -- B : D → D → Set -- B xs ys = xs ≡ xs -- h₁ : B alter alter' → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] -- alter ≡ x' ∷ xs' ∧ alter' ≡ x' ∷ ys' ∧ B xs' ys' -- h₁ _ = true -- , false ∷ alter -- , map not₀ alter' -- , alter-eq -- , alter'-eq -- , refl -- h₂ : B alter alter' -- h₂ = refl
{ "alphanum_fraction": 0.4547339323, "avg_line_length": 29.5306122449, "ext": "agda", "hexsha": "34562899aa5dcc1099db0468ba7dd9a82004dc3e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/UnguardedCorecursion/Alter/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 415, "size": 1447 }