Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi module lib.types.Group where record GroupStructure {i} (El : Type i) --(El-level : has-level 0 El) : Type i where constructor group-structure field ident : El inv : El → El comp : El → El → El unitl : ∀ a → comp ident a == a unitr : ∀ a → comp a ident == a assoc : ∀ a b c → comp (comp a b) c == comp a (comp b c) invl : ∀ a → (comp (inv a) a) == ident invr : ∀ a → (comp a (inv a)) == ident record Group i : Type (lsucc i) where constructor group field El : Type i El-level : has-level 0 El group-struct : GroupStructure El open GroupStructure group-struct public ⊙El : Σ (Type i) (λ A → A) ⊙El = (El , ident) Group₀ : Type (lsucc lzero) Group₀ = Group lzero is-abelian : ∀ {i} → Group i → Type i is-abelian G = (a b : Group.El G) → Group.comp G a b == Group.comp G b a module _ where open GroupStructure abstract group-structure= : ∀ {i} {A : Type i} (pA : has-level 0 A) {id₁ id₂ : A} {inv₁ inv₂ : A → A} {comp₁ comp₂ : A → A → A} → ∀ {unitl₁ unitl₂} → ∀ {unitr₁ unitr₂} → ∀ {assoc₁ assoc₂} → ∀ {invr₁ invr₂} → ∀ {invl₁ invl₂} → (id₁ == id₂) → (inv₁ == inv₂) → (comp₁ == comp₂) → Path {A = GroupStructure A} (group-structure id₁ inv₁ comp₁ unitl₁ unitr₁ assoc₁ invl₁ invr₁) (group-structure id₂ inv₂ comp₂ unitl₂ unitr₂ assoc₂ invl₂ invr₂) group-structure= pA {id₁ = id₁} {inv₁ = inv₁} {comp₁ = comp₁} idp idp idp = ap5 (group-structure id₁ inv₁ comp₁) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → Π-level (λ _ → Π-level (λ _ → pA _ _)))) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) where ap5 : ∀ {j} {C D E F G H : Type j} {c₁ c₂ : C} {d₁ d₂ : D} {e₁ e₂ : E} {f₁ f₂ : F} {g₁ g₂ : G} (f : C → D → E → F → G → H) → (c₁ == c₂) → (d₁ == d₂) → (e₁ == e₂) → (f₁ == f₂) → (g₁ == g₂) → f c₁ d₁ e₁ f₁ g₁ == f c₂ d₂ e₂ f₂ g₂ ap5 f idp idp idp idp idp = idp ↓-group-structure= : ∀ {i} {A B : Type i} (A-level : has-level 0 A) {GS : GroupStructure A} {HS : GroupStructure B} (p : A == B) → (ident GS == ident HS [ (λ C → C) ↓ p ]) → (inv GS == inv HS [ (λ C → C → C) ↓ p ]) → (comp GS == comp HS [ (λ C → C → C → C) ↓ p ]) → GS == HS [ GroupStructure ↓ p ] ↓-group-structure= A-level idp = group-structure= A-level module _ {i} (G : Group i) where private open Group G infix 80 _⊙_ _⊙_ = comp group-inv-unique-l : (g h : El) → (g ⊙ h == ident) → inv h == g group-inv-unique-l g h p = inv h =⟨ ! (unitl (inv h)) ⟩ ident ⊙ inv h =⟨ ! p |in-ctx (λ w → w ⊙ inv h) ⟩ (g ⊙ h) ⊙ inv h =⟨ assoc g h (inv h) ⟩ g ⊙ (h ⊙ inv h) =⟨ invr h |in-ctx (λ w → g ⊙ w) ⟩ g ⊙ ident =⟨ unitr g ⟩ g ∎ group-inv-unique-r : (g h : El) → (g ⊙ h == ident) → inv g == h group-inv-unique-r g h p = inv g =⟨ ! (unitr (inv g)) ⟩ inv g ⊙ ident =⟨ ! p |in-ctx (λ w → inv g ⊙ w) ⟩ inv g ⊙ (g ⊙ h) =⟨ ! (assoc (inv g) g h) ⟩ (inv g ⊙ g) ⊙ h =⟨ invl g |in-ctx (λ w → w ⊙ h) ⟩ ident ⊙ h =⟨ unitl h ⟩ h ∎ group-inv-ident : inv ident == ident group-inv-ident = group-inv-unique-l ident ident (unitl ident) group-inv-comp : (g₁ g₂ : El) → inv (g₁ ⊙ g₂) == inv g₂ ⊙ inv g₁ group-inv-comp g₁ g₂ = group-inv-unique-r (g₁ ⊙ g₂) (inv g₂ ⊙ inv g₁) $ (g₁ ⊙ g₂) ⊙ (inv g₂ ⊙ inv g₁) =⟨ assoc g₁ g₂ (inv g₂ ⊙ inv g₁) ⟩ g₁ ⊙ (g₂ ⊙ (inv g₂ ⊙ inv g₁)) =⟨ ! (assoc g₂ (inv g₂) (inv g₁)) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ ((g₂ ⊙ inv g₂) ⊙ inv g₁) =⟨ invr g₂ |in-ctx (λ w → g₁ ⊙ (w ⊙ inv g₁)) ⟩ g₁ ⊙ (ident ⊙ inv g₁) =⟨ unitl (inv g₁) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ inv g₁ =⟨ invr g₁ ⟩ ident ∎ group-inv-inv : (g : El) → inv (inv g) == g group-inv-inv g = group-inv-unique-r (inv g) g (invl g) group-cancel-l : (g : El) {h k : El} → g ⊙ h == g ⊙ k → h == k group-cancel-l g {h} {k} p = h =⟨ ! (unitl h) ⟩ ident ⊙ h =⟨ ap (λ w → w ⊙ h) (! (invl g)) ⟩ (inv g ⊙ g) ⊙ h =⟨ assoc (inv g) g h ⟩ inv g ⊙ (g ⊙ h) =⟨ ap (λ w → inv g ⊙ w) p ⟩ inv g ⊙ (g ⊙ k) =⟨ ! (assoc (inv g) g k) ⟩ (inv g ⊙ g) ⊙ k =⟨ ap (λ w → w ⊙ k) (invl g) ⟩ ident ⊙ k =⟨ unitl k ⟩ k ∎ group-cancel-r : (g : El) {h k : El} → h ⊙ g == k ⊙ g → h == k group-cancel-r g {h} {k} p = h =⟨ ! (unitr h) ⟩ h ⊙ ident =⟨ ap (λ w → h ⊙ w) (! (invr g)) ⟩ h ⊙ (g ⊙ inv g) =⟨ ! (assoc h g (inv g)) ⟩ (h ⊙ g) ⊙ inv g =⟨ ap (λ w → w ⊙ inv g) p ⟩ (k ⊙ g) ⊙ inv g =⟨ assoc k g (inv g) ⟩ k ⊙ (g ⊙ inv g) =⟨ ap (λ w → k ⊙ w) (invr g) ⟩ k ⊙ ident =⟨ unitr k ⟩ k ∎
{ "alphanum_fraction": 0.4665751813, "avg_line_length": 35.9225352113, "ext": "agda", "hexsha": "41ea9411d3aa8703445d85791a28a1a2da5e8f5d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Group.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2173, "size": 5101 }
{-# OPTIONS --allow-unsolved-metas --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Groups open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Fields.CauchyCompletion.Field {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open PartiallyOrderedRing pRing open SetoidPartialOrder pOrder open Equivalence eq open SetoidTotalOrder (TotallyOrderedRing.total order) open Field F open Group (Ring.additiveGroup R) open import Rings.Orders.Total.Cauchy order open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Multiplication order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Group order F open import Fields.CauchyCompletion.Ring order F open import Fields.CauchyCompletion.Comparison order F Cnontrivial : (pr : Setoid._∼_ cauchyCompletionSetoid (injection (Ring.0R R)) (injection (Ring.1R R))) → False Cnontrivial pr with pr (Ring.1R R) (0<1 nontrivial) Cnontrivial pr | N , b with b {succ N} (le 0 refl) ... | bl rewrite indexAndApply (constSequence 0G) (map inverse (constSequence (Ring.1R R))) _+_ {N} | indexAndConst 0G N | equalityCommutative (mapAndIndex (constSequence (Ring.1R R)) inverse N) | indexAndConst (Ring.1R R) N = irreflexive {Ring.1R R} (<WellDefined (Equivalence.transitive eq (absWellDefined _ _ identLeft) (Equivalence.transitive eq (Equivalence.symmetric eq (absNegation (Ring.1R R))) abs1Is1)) (Equivalence.reflexive eq) bl) boundedMap : A → A boundedMap a with totality 0G a boundedMap a | inl (inl x) = underlying (allInvertible a λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr x)) boundedMap a | inl (inr x) = underlying (allInvertible a λ pr → irreflexive (<WellDefined pr (Equivalence.reflexive eq) x)) boundedMap a | inr x = Ring.1R R -- TODO: make a real which is equivalent by approximating from above; -- make a real which is equivalent by approximating from below. -- Use not-zero to show that one of those sequences must pass 0 at some point. aNonzeroImpliesBounded : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → (a <Cr 0G) || 0G r<C a aNonzeroImpliesBounded a a!=0 = {!!} 1/aConverges : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → cauchy (map boundedMap (CauchyCompletion.elts a)) 1/aConverges a a!=0 e 0<e = {!!} 1/a : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → CauchyCompletion 1/a a a!=0 = record { elts = map boundedMap (CauchyCompletion.elts a) ; converges = 1/aConverges a a!=0 } 1/a*a=1 : (a : CauchyCompletion) (pr : Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → Setoid._∼_ cauchyCompletionSetoid ((1/a a pr) *C a) (injection (Ring.1R R)) 1/a*a=1 a a!=0 e 0<e = {!!} CField : Field CRing Field.allInvertible CField a a!=0 = (1/a a a!=0) , 1/a*a=1 a a!=0 Field.nontrivial CField = Cnontrivial
{ "alphanum_fraction": 0.7561874671, "avg_line_length": 53.4929577465, "ext": "agda", "hexsha": "a810d6bc6a24246f5bffca25e6c90c885323f887", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Field.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Field.agda", "max_line_length": 443, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Field.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1198, "size": 3798 }
{-# OPTIONS --universe-polymorphism --allow-unsolved-metas --no-termination-check #-} module Issue202 where Foo : ∀ {A} → A → Set Foo x = Foo x -- Previously resulted in the following (cryptic) error: -- Bug.agda:6,13-14 -- _5 !=< _5 -- when checking that the expression x has type _5
{ "alphanum_fraction": 0.6864111498, "avg_line_length": 26.0909090909, "ext": "agda", "hexsha": "9c6594566925bdee82d8355cdc90f75d285747c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue202.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue202.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue202.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 85, "size": 287 }
------------------------------------------------------------------------ -- Operations and lemmas related to application of substitutions ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application.Application1 {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Application.Application22 open import deBruijn.Substitution.Data.Basics open import deBruijn.Substitution.Data.Map open import deBruijn.Substitution.Data.Simple open import Function using (_$_) open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open P.≡-Reasoning -- More operations and lemmas related to application. In this module -- the application operator is assumed to be homogeneous, so some -- previously proved lemmas can be stated in a less complicated way. record Application₁ {t} (T : Term-like t) : Set (i ⊔ u ⊔ e ⊔ t) where open Term-like T field -- Simple substitutions. simple : Simple T -- The homogeneous variant is defined in terms of the -- heterogeneous one. application₂₂ : Application₂₂ simple simple ([id] {T = T}) open Simple simple public open Application₂₂ application₂₂ public hiding ( ∘⋆; ∘⋆-cong; /∋-∘⋆ ; trans-cong; id-∘; map-trans-wk-subst; map-trans-↑; wk-∘-↑ ) -- Composition of multiple substitutions. -- -- Note that singleton sequences are handled specially, to avoid the -- introduction of unnecessary identity substitutions. ∘⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → Sub T ρ̂ ∘⋆ ε = id ∘⋆ (ε ▻ ρ) = ρ ∘⋆ (ρs ▻ ρ) = ∘⋆ ρs ∘ ρ -- A congruence lemma. ∘⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} → ρs₁ ≅-⇨⋆ ρs₂ → ∘⋆ ρs₁ ≅-⇨ ∘⋆ ρs₂ ∘⋆-cong P.refl = P.refl abstract -- Applying a composed substitution to a variable is equivalent to -- applying all the substitutions one after another. /∋-∘⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρs : Subs T ρ̂) → x /∋ ∘⋆ ρs ≅-⊢ var · x /⊢⋆ ρs /∋-∘⋆ x ε = begin [ x /∋ id ] ≡⟨ /∋-id x ⟩ [ var · x ] ∎ /∋-∘⋆ x (ε ▻ ρ) = begin [ x /∋ ρ ] ≡⟨ P.sym $ var-/⊢ x ρ ⟩ [ var · x /⊢ ρ ] ∎ /∋-∘⋆ x (ρs ▻ ρ₁ ▻ ρ₂) = begin [ x /∋ ∘⋆ (ρs ▻ ρ₁) ∘ ρ₂ ] ≡⟨ /∋-∘ x (∘⋆ (ρs ▻ ρ₁)) ρ₂ ⟩ [ x /∋ ∘⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ≡⟨ /⊢-cong (/∋-∘⋆ x (ρs ▻ ρ₁)) P.refl ⟩ [ var · x /⊢⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ∎ -- Yet another variant of var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆. ∘⋆-⇒-/⊢⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T ρ̂) (ρs₂ : Subs T ρ̂) → ∘⋆ ρs₁ ≅-⇨ ∘⋆ ρs₂ → ∀ {σ} (t : Γ ⊢ σ) → t /⊢⋆ ρs₁ ≅-⊢ t /⊢⋆ ρs₂ ∘⋆-⇒-/⊢⋆ ρs₁ ρs₂ hyp = var-/⊢⋆-⇒-/⊢⋆ ρs₁ ρs₂ (λ x → begin [ var · x /⊢⋆ ρs₁ ] ≡⟨ P.sym $ /∋-∘⋆ x ρs₁ ⟩ [ x /∋ ∘⋆ ρs₁ ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) hyp ⟩ [ x /∋ ∘⋆ ρs₂ ] ≡⟨ /∋-∘⋆ x ρs₂ ⟩ [ var · x /⊢⋆ ρs₂ ] ∎) -- id is a left identity of _∘_. id-∘ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) → id ∘ ρ ≅-⇨ ρ id-∘ ρ = begin [ id ∘ ρ ] ≡⟨ Application₂₂.id-∘ application₂₂ ρ ⟩ [ map [id] ρ ] ≡⟨ map-[id] ρ ⟩ [ ρ ] ∎ -- The wk substitution commutes with any other (modulo lifting -- etc.). wk-∘-↑ : ∀ {Γ Δ} σ {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) → ρ ∘ wk {σ = σ / ρ} ≅-⇨ wk {σ = σ} ∘ ρ ↑ wk-∘-↑ σ ρ = begin [ ρ ∘ wk ] ≡⟨ ∘-cong (P.sym $ map-[id] ρ) P.refl ⟩ [ map [id] ρ ∘ wk ] ≡⟨ Application₂₂.wk-∘-↑ application₂₂ σ ρ ⟩ [ wk {σ = σ} ∘ ρ ↑ ] ∎ -- Applying a composed substitution is equivalent to applying one -- substitution and then the other. /⊢-∘ : ∀ {Γ Δ Ε σ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (t : Γ ⊢ σ) (ρ₁ : Sub T ρ̂₁) (ρ₂ : Sub T ρ̂₂) → t /⊢ ρ₁ ∘ ρ₂ ≅-⊢ t /⊢ ρ₁ /⊢ ρ₂ /⊢-∘ t ρ₁ ρ₂ = ∘⋆-⇒-/⊢⋆ (ε ▻ ρ₁ ∘ ρ₂) (ε ▻ ρ₁ ▻ ρ₂) P.refl t -- _∘_ is associative. ∘-∘ : ∀ {Γ Δ Ε Ζ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {ρ̂₃ : Ε ⇨̂ Ζ} (ρ₁ : Sub T ρ̂₁) (ρ₂ : Sub T ρ̂₂) (ρ₃ : Sub T ρ̂₃) → ρ₁ ∘ (ρ₂ ∘ ρ₃) ≅-⇨ (ρ₁ ∘ ρ₂) ∘ ρ₃ ∘-∘ ρ₁ ρ₂ ρ₃ = extensionality P.refl λ x → begin [ x /∋ ρ₁ ∘ (ρ₂ ∘ ρ₃) ] ≡⟨ /∋-∘ x ρ₁ (ρ₂ ∘ ρ₃) ⟩ [ x /∋ ρ₁ /⊢ ρ₂ ∘ ρ₃ ] ≡⟨ /⊢-∘ (x /∋ ρ₁) ρ₂ ρ₃ ⟩ [ x /∋ ρ₁ /⊢ ρ₂ /⊢ ρ₃ ] ≡⟨ /⊢-cong (P.sym $ /∋-∘ x ρ₁ ρ₂) (P.refl {x = [ ρ₃ ]}) ⟩ [ x /∋ ρ₁ ∘ ρ₂ /⊢ ρ₃ ] ≡⟨ P.sym $ /∋-∘ x (ρ₁ ∘ ρ₂) ρ₃ ⟩ [ x /∋ (ρ₁ ∘ ρ₂) ∘ ρ₃ ] ∎ -- If sub t is applied to variable zero then t is returned. zero-/⊢-sub : ∀ {Γ σ} (t : Γ ⊢ σ) → var · zero /⊢ sub t ≅-⊢ t zero-/⊢-sub t = begin [ var · zero /⊢ sub t ] ≡⟨ var-/⊢ zero (sub t) ⟩ [ zero /∋ sub t ] ≡⟨ P.refl ⟩ [ t ] ∎ -- The sub substitution commutes with any other (modulo lifting -- etc.). ↑-∘-sub : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢ σ) (ρ : Sub T ρ̂) → sub t ∘ ρ ≅-⇨ ρ ↑ σ ∘ sub (t /⊢ ρ) ↑-∘-sub t ρ = let lemma = begin [ id ∘ ρ ] ≡⟨ id-∘ ρ ⟩ [ ρ ] ≡⟨ P.sym $ wk-subst-∘-sub ρ (t /⊢ ρ) ⟩ [ wk-subst ρ ∘ sub (t /⊢ ρ) ] ∎ in begin [ sub t ∘ ρ ] ≡⟨ P.refl ⟩ [ (id ▻ t) ∘ ρ ] ≡⟨ ▻-∘ id t ρ ⟩ [ id ∘ ρ ▻ t /⊢ ρ ] ≡⟨ ▻⇨-cong P.refl lemma (P.sym $ zero-/⊢-sub (t /⊢ ρ)) ⟩ [ wk-subst ρ ∘ sub (t /⊢ ρ) ▻ var · zero /⊢ sub (t /⊢ ρ) ] ≡⟨ P.sym $ ▻-∘ (wk-subst ρ) (var · zero) (sub (t /⊢ ρ)) ⟩ [ (wk-subst ρ ▻ var · zero) ∘ sub (t /⊢ ρ) ] ≡⟨ ∘-cong (P.sym $ unfold-↑ ρ) P.refl ⟩ [ ρ ↑ ∘ sub (t /⊢ ρ) ] ∎ -- wk-subst⁺ can be expressed using composition and wk⁺. ∘-wk⁺ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) (Δ⁺ : Ctxt⁺ Δ) → ρ ∘ wk⁺ Δ⁺ ≅-⇨ wk-subst⁺ Δ⁺ ρ ∘-wk⁺ ρ ε = begin [ ρ ∘ wk⁺ ε ] ≡⟨ P.refl ⟩ [ ρ ∘ id ] ≡⟨ ∘-id ρ ⟩ [ ρ ] ≡⟨ P.refl ⟩ [ wk-subst⁺ ε ρ ] ∎ ∘-wk⁺ ρ (Δ⁺ ▻ σ) = begin [ ρ ∘ wk⁺ (Δ⁺ ▻ σ) ] ≡⟨ ∘-cong (P.refl {x = [ ρ ]}) (wk⁺-▻ Δ⁺) ⟩ [ ρ ∘ (wk⁺ Δ⁺ ∘ wk) ] ≡⟨ ∘-∘ ρ (wk⁺ Δ⁺) wk ⟩ [ (ρ ∘ wk⁺ Δ⁺) ∘ wk ] ≡⟨ ∘-cong (∘-wk⁺ ρ Δ⁺) P.refl ⟩ [ wk-subst⁺ Δ⁺ ρ ∘ wk ] ≡⟨ ∘-wk (wk-subst⁺ Δ⁺ ρ) ⟩ [ wk-subst (wk-subst⁺ Δ⁺ ρ) ] ≡⟨ P.refl ⟩ [ wk-subst⁺ (Δ⁺ ▻ σ) ρ ] ∎ mutual -- wk-subst₊ can be expressed using composition and wk₊. ∘-wk₊ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T ρ̂) (Δ₊ : Ctxt₊ Δ) → ρ ∘ wk₊ Δ₊ ≅-⇨ wk-subst₊ Δ₊ ρ ∘-wk₊ ρ ε = begin [ ρ ∘ wk₊ ε ] ≡⟨ P.refl ⟩ [ ρ ∘ id ] ≡⟨ ∘-id ρ ⟩ [ ρ ] ≡⟨ P.refl ⟩ [ wk-subst₊ ε ρ ] ∎ ∘-wk₊ ρ (σ ◅ Δ₊) = begin [ ρ ∘ wk₊ (σ ◅ Δ₊) ] ≡⟨ ∘-cong (P.refl {x = [ ρ ]}) (wk₊-◅ Δ₊) ⟩ [ ρ ∘ (wk ∘ wk₊ Δ₊) ] ≡⟨ ∘-∘ ρ wk (wk₊ Δ₊) ⟩ [ (ρ ∘ wk) ∘ wk₊ Δ₊ ] ≡⟨ ∘-cong (∘-wk ρ) P.refl ⟩ [ wk-subst ρ ∘ wk₊ Δ₊ ] ≡⟨ ∘-wk₊ (wk-subst ρ) Δ₊ ⟩ [ wk-subst₊ Δ₊ (wk-subst ρ) ] ≡⟨ P.refl ⟩ [ wk-subst₊ (σ ◅ Δ₊) ρ ] ∎ -- Unfolding lemma for wk₊. wk₊-◅ : ∀ {Γ σ} (Γ₊ : Ctxt₊ (Γ ▻ σ)) → wk₊ (σ ◅ Γ₊) ≅-⇨ wk ∘ wk₊ Γ₊ wk₊-◅ {σ = σ} Γ₊ = begin [ wk₊ (σ ◅ Γ₊) ] ≡⟨ P.refl ⟩ [ wk-subst₊ Γ₊ wk ] ≡⟨ P.sym $ ∘-wk₊ wk Γ₊ ⟩ [ wk ∘ wk₊ Γ₊ ] ∎ -- A consequence of wk₊-◅. /∋-wk₊-◅ : ∀ {Γ τ σ} (x : Γ ∋ τ) (Γ₊ : Ctxt₊ (Γ ▻ σ)) → x /∋ wk₊ (σ ◅ Γ₊) ≅-⊢ suc x /∋ wk₊ Γ₊ /∋-wk₊-◅ {σ = σ} x Γ₊ = begin [ x /∋ wk₊ (σ ◅ Γ₊) ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) (wk₊-◅ Γ₊) ⟩ [ x /∋ wk ∘ wk₊ Γ₊ ] ≡⟨ /∋-∘ x wk (wk₊ Γ₊) ⟩ [ x /∋ wk /⊢ wk₊ Γ₊ ] ≡⟨ /⊢-cong (/∋-wk x) P.refl ⟩ [ var · suc x /⊢ wk₊ Γ₊ ] ≡⟨ var-/⊢ (suc x) (wk₊ Γ₊) ⟩ [ suc x /∋ wk₊ Γ₊ ] ∎
{ "alphanum_fraction": 0.3990306947, "avg_line_length": 38.5023923445, "ext": "agda", "hexsha": "33ab230cf6fe9a8a0d4a6b842a9537db645141e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Application/Application1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Application/Application1.agda", "max_line_length": 125, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Application/Application1.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 4355, "size": 8047 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointers into star-lists ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Star.Pointer {ℓ} {I : Set ℓ} where open import Data.Maybe.Base using (Maybe; nothing; just) open import Data.Star.Decoration open import Data.Unit open import Function open import Level open import Relation.Binary open import Relation.Binary.Construct.Closure.ReflexiveTransitive -- Pointers into star-lists. The edge pointed to is decorated with Q, -- while other edges are decorated with P. data Pointer {r p q} {T : Rel I r} (P : EdgePred p T) (Q : EdgePred q T) : Rel (Maybe (NonEmpty (Star T))) (p ⊔ q) where step : ∀ {i j k} {x : T i j} {xs : Star T j k} (p : P x) → Pointer P Q (just (nonEmpty (x ◅ xs))) (just (nonEmpty xs)) done : ∀ {i j k} {x : T i j} {xs : Star T j k} (q : Q x) → Pointer P Q (just (nonEmpty (x ◅ xs))) nothing -- Any P Q xs means that some edge in xs satisfies Q, while all -- preceding edges satisfy P. A star-list of type Any Always Always xs -- is basically a prefix of xs; the existence of such a prefix -- guarantees that xs is non-empty. Any : ∀ {r p q} {T : Rel I r} (P : EdgePred p T) (Q : EdgePred q T) → EdgePred (ℓ ⊔ (r ⊔ (p ⊔ q))) (Star T) Any P Q xs = Star (Pointer P Q) (just (nonEmpty xs)) nothing module _ {r p q} {T : Rel I r} {P : EdgePred p T} {Q : EdgePred q T} where this : ∀ {i j k} {x : T i j} {xs : Star T j k} → Q x → Any P Q (x ◅ xs) this q = done q ◅ ε that : ∀ {i j k} {x : T i j} {xs : Star T j k} → P x → Any P Q xs → Any P Q (x ◅ xs) that p = _◅_ (step p) -- Safe lookup. data Result {r p q} (T : Rel I r) (P : EdgePred p T) (Q : EdgePred q T) : Set (ℓ ⊔ r ⊔ p ⊔ q) where result : ∀ {i j} {x : T i j} (p : P x) (q : Q x) → Result T P Q -- The first argument points out which edge to extract. The edge is -- returned, together with proofs that it satisfies Q and R. module _ {t p q} {T : Rel I t} {P : EdgePred p T} {Q : EdgePred q T} where lookup : ∀ {r} {R : EdgePred r T} {i j} {xs : Star T i j} → Any P Q xs → All R xs → Result T Q R lookup (done q ◅ ε) (↦ r ◅ _) = result q r lookup (step p ◅ ps) (↦ r ◅ rs) = lookup ps rs lookup (done _ ◅ () ◅ _) _ -- We can define something resembling init. prefixIndex : ∀ {i j} {xs : Star T i j} → Any P Q xs → I prefixIndex (done {i = i} q ◅ _) = i prefixIndex (step p ◅ ps) = prefixIndex ps prefix : ∀ {i j} {xs : Star T i j} → (ps : Any P Q xs) → Star T i (prefixIndex ps) prefix (done q ◅ _) = ε prefix (step {x = x} p ◅ ps) = x ◅ prefix ps -- Here we are taking the initial segment of ps (all elements but the -- last, i.e. all edges satisfying P). init : ∀ {i j} {xs : Star T i j} → (ps : Any P Q xs) → All P (prefix ps) init (done q ◅ _) = ε init (step p ◅ ps) = ↦ p ◅ init ps -- One can simplify the implementation by not carrying around the -- indices in the type: last : ∀ {i j} {xs : Star T i j} → Any P Q xs → NonEmptyEdgePred T Q last ps with lookup {r = p} ps (decorate (const (lift tt)) _) ... | result q _ = nonEmptyEdgePred q
{ "alphanum_fraction": 0.5448564593, "avg_line_length": 35.9569892473, "ext": "agda", "hexsha": "f54241ecceca9de6828f28e8dcd0677f72098d66", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Pointer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Pointer.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Pointer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1107, "size": 3344 }
-- (Pre)additive categories {-# OPTIONS --safe #-} module Cubical.Categories.Additive.Base where open import Cubical.Algebra.AbGroup.Base open import Cubical.Categories.Category.Base open import Cubical.Categories.Limits.Initial open import Cubical.Categories.Limits.Terminal open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level -- Preadditive categories module _ (C : Category ℓ ℓ') where open Category C record PreaddCategoryStr : Type (ℓ-max ℓ (ℓ-suc ℓ')) where field homAbStr : (x y : ob) → AbGroupStr Hom[ x , y ] -- Polymorphic abelian group operations 0h = λ {x} {y} → AbGroupStr.0g (homAbStr x y) -_ = λ {x} {y} → AbGroupStr.-_ (homAbStr x y) _+_ = λ {x} {y} → AbGroupStr._+_ (homAbStr x y) _-_ : ∀ {x y} (f g : Hom[ x , y ]) → Hom[ x , y ] f - g = f + (- g) infixr 7 _+_ infixl 7.5 _-_ infix 8 -_ field ⋆distl+ : {x y z : ob} → (f : Hom[ x , y ]) → (g g' : Hom[ y , z ]) → f ⋆ (g + g') ≡ (f ⋆ g) + (f ⋆ g') ⋆distr+ : {x y z : ob} → (f f' : Hom[ x , y ]) → (g : Hom[ y , z ]) → (f + f') ⋆ g ≡ (f ⋆ g) + (f' ⋆ g) record PreaddCategory (ℓ ℓ' : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field cat : Category ℓ ℓ' preadd : PreaddCategoryStr cat open Category cat public open PreaddCategoryStr preadd public -- Additive categories module _ (C : PreaddCategory ℓ ℓ') where open PreaddCategory C -- Zero object record ZeroObject : Type (ℓ-max ℓ ℓ') where field z : ob zInit : isInitial cat z zTerm : isTerminal cat z -- Biproducts record IsBiproduct {x y x⊕y : ob} (i₁ : Hom[ x , x⊕y ]) (i₂ : Hom[ y , x⊕y ]) (π₁ : Hom[ x⊕y , x ]) (π₂ : Hom[ x⊕y , y ]) : Type (ℓ-max ℓ ℓ') where field i₁⋆π₁ : i₁ ⋆ π₁ ≡ id i₁⋆π₂ : i₁ ⋆ π₂ ≡ 0h i₂⋆π₁ : i₂ ⋆ π₁ ≡ 0h i₂⋆π₂ : i₂ ⋆ π₂ ≡ id ∑π⋆i : π₁ ⋆ i₁ + π₂ ⋆ i₂ ≡ id record Biproduct (x y : ob) : Type (ℓ-max ℓ ℓ') where field x⊕y : ob i₁ : Hom[ x , x⊕y ] i₂ : Hom[ y , x⊕y ] π₁ : Hom[ x⊕y , x ] π₂ : Hom[ x⊕y , y ] isBipr : IsBiproduct i₁ i₂ π₁ π₂ open IsBiproduct isBipr public -- Additive categories record AdditiveCategoryStr : Type (ℓ-max ℓ (ℓ-suc ℓ')) where field zero : ZeroObject biprod : ∀ x y → Biproduct x y -- Biproduct notation open Biproduct _⊕_ = λ (x y : ob) → biprod x y .x⊕y infixr 6 _⊕_ record AdditiveCategory (ℓ ℓ' : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field preaddcat : PreaddCategory ℓ ℓ' addit : AdditiveCategoryStr preaddcat open PreaddCategory preaddcat public open AdditiveCategoryStr addit public
{ "alphanum_fraction": 0.5663585952, "avg_line_length": 24.1517857143, "ext": "agda", "hexsha": "02dc206ca1a4e2f9efb13f1c473aa5aa4c743ae7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Additive/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Additive/Base.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Additive/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1098, "size": 2705 }
-- Andreas, 2013-01-08, Reported by andres.sicard.ramirez, Jan 7 -- {-# OPTIONS -v term:10 -v term.matrices:40 #-} -- The difference between @bar@ and @bar'@ is the position of the -- hypothesis (n : ℕ). While @bar@ is accepted by the termination -- checker, @bar'@ is rejected for it. open import Common.Prelude renaming (Nat to ℕ) open import Common.Product open import Common.Coinduction open import Common.Equality data Foo : ℕ → Set where foo : (n : ℕ) → ∞ (Foo n) → Foo (suc n) module NoWith where bar : (A : ℕ → Set) (n : ℕ) → ((m : ℕ) → A m → ∃ λ m' → m ≡ suc m' × A m') → A n → Foo n bar A n h An = subst Foo (sym (proj₁ (proj₂ (h n An)))) (foo (proj₁ (h n An)) (♯ (bar A (proj₁ (h n An)) h (proj₂ (proj₂ (h n An)))))) module CorrectlyRejected where -- Proof rejected by the termination checker. -- -- (If I do pattern matching on @n≡Sn'@, the proof is accepted.) bar' : (A : ℕ → Set) → ((m : ℕ) → A m → ∃ λ m' → m ≡ suc m' × A m') → (n : ℕ) → A n → Foo n bar' A h n An with h n An ... | (n' , n≡Sn' , An') = subst Foo (sym n≡Sn') (foo n' (♯ (bar' A h n' An'))) postulate A : ℕ → Set h : (m : ℕ) → A m → ∃ λ m' → suc m' ≡ m × A m' -- Proof rejected by the termination checker. bar : (n : ℕ) → A n → Foo n bar n An with h n An ... | (n' , p , An') = subst Foo p (foo n' (♯ (bar n' An'))) module WasAccepted1 where -- Proof wrongly accepted by the termination checker. bar : (A : ℕ → Set) (n : ℕ) → ((m : ℕ) → A m → ∃ λ m' → m ≡ suc m' × A m') → A n → Foo n bar A n h An with h n An ... | (n' , n≡Sn' , An') = subst Foo (sym n≡Sn') (foo n' (♯ (bar A n' h An'))) -- Proof was wrongly accepted by the termination checker. postulate A : ℕ → Set H = (m : ℕ) → A m → ∃ λ m' → suc m' ≡ m × A m' -- argument h was essential for faulty behavior bar : (n : ℕ) → H → A n → Foo n bar n h An with h n An ... | (n' , p , An') = subst Foo p (foo n' (♯ (bar n' h An'))) {- termination checking clause of bar lhs: 5 4 3 (_,_ 2 (_,_ 1 0)) rhs: subst Foo p (foo n' (.Issue1014.♯-0 n h An n' p An')) kept call from bar 5 4 3 (_,_ 2 (_,_ 1 0)) to .Issue1014.♯-0 (n) (h) (An) (n') (p) (An') call matrix (with guardedness): [[.,.,.,.,.] ,[.,0,.,.,.] ,[.,.,0,.,.] ,[.,.,.,0,.] ,[.,.,.,.,0] ,[.,.,.,.,0] ,[.,.,.,.,0]] termination checking body of .Issue1014.♯-0 : (n : ℕ) (h : (m : ℕ) → A m → Σ ℕ (λ m' → Σ (suc m' ≡ m) (λ x → A m'))) (An : A n) (n' : ℕ) (p : suc n' ≡ n) (An' : A n') → ∞ (Foo n') termination checking delayed clause of .Issue1014.♯-0 lhs: 5 4 3 2 1 0 rhs: ♯ bar n' h An' kept call from .Issue1014.♯-0 5 4 3 2 1 0 to bar (n') (h) (An') call matrix (with guardedness): [[-1,.,.,.,.,.,.] ,[.,.,.,.,0,.,.] ,[.,.,0,.,.,.,.] ,[.,.,.,.,.,.,0]] [Issue1014.bar] does termination check -}
{ "alphanum_fraction": 0.5123762376, "avg_line_length": 29.1546391753, "ext": "agda", "hexsha": "7eb175b8cf8ba365ebc5f7205ebbb3e7de7a3ce4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1014.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1014.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1014.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 1145, "size": 2828 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Diagram.Pullback module Categories.Bicategory.Construction.Spans {o ℓ e} {𝒞 : Category o ℓ e} (_×ₚ_ : ∀ {X Y Z} → (f : 𝒞 [ X , Z ]) (g : 𝒞 [ Y , Z ]) → Pullback 𝒞 f g) where open import Level open import Function using (_$_) open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂; uncurry) open import Categories.Bicategory open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl; sym) open import Categories.Category.Diagram.Span 𝒞 open import Categories.Category.Construction.Spans 𝒞 renaming (Spans to Spans₁) open import Categories.Morphism open import Categories.Morphism.Reasoning 𝒞 private module Spans₁ X Y = Category (Spans₁ X Y) open Category 𝒞 open HomReasoning open Equiv open Span open Span⇒ open Pullback open Compositions _×ₚ_ private variable A B C D E : Obj -------------------------------------------------------------------------------- -- Proofs about span compositions ⊚₁-identity : ∀ (f : Span B C) → (g : Span A B) → Spans₁ A C [ Spans₁.id B C {f} ⊚₁ Spans₁.id A B {g} ≈ Spans₁.id A C ] ⊚₁-identity f g = ⟺ (unique ((cod g) ×ₚ (dom f)) id-comm id-comm) ⊚₁-homomorphism : {f f′ f″ : Span B C} {g g′ g″ : Span A B} → (α : Span⇒ f f′) → (α′ : Span⇒ f′ f″) → (β : Span⇒ g g′) → (β′ : Span⇒ g′ g″) → Spans₁ A C [ (Spans₁ B C [ α′ ∘ α ]) ⊚₁ (Spans₁ A B [ β′ ∘ β ]) ≈ Spans₁ A C [ α′ ⊚₁ β′ ∘ α ⊚₁ β ] ] ⊚₁-homomorphism {A} {B} {C} {f} {f′} {f″} {g} {g′} {g″} α α′ β β′ = let pullback = (cod g) ×ₚ (dom f) pullback′ = (cod g′) ×ₚ(dom f′) pullback″ = (cod g″) ×ₚ (dom f″) α-chase = begin p₂ pullback″ ∘ universal pullback″ _ ∘ universal pullback′ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback″) ⟩ (arr α′ ∘ p₂ pullback′) ∘ universal pullback′ _ ≈⟨ extendˡ (p₂∘universal≈h₂ pullback′) ⟩ (arr α′ ∘ arr α) ∘ p₂ pullback ∎ β-chase = begin p₁ pullback″ ∘ universal pullback″ _ ∘ universal pullback′ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback″) ⟩ (arr β′ ∘ p₁ pullback′) ∘ universal pullback′ _ ≈⟨ extendˡ (p₁∘universal≈h₁ pullback′) ⟩ (arr β′ ∘ arr β) ∘ p₁ pullback ∎ in ⟺ (unique pullback″ β-chase α-chase) -------------------------------------------------------------------------------- -- Associators module _ (f : Span C D) (g : Span B C) (h : Span A B) where private pullback-fg = (cod g) ×ₚ (dom f) pullback-gh = (cod h) ×ₚ (dom g) pullback-⟨fg⟩h = (cod h) ×ₚ (dom (f ⊚₀ g)) pullback-f⟨gh⟩ = (cod (g ⊚₀ h)) ×ₚ (dom f) ⊚-assoc : Span⇒ ((f ⊚₀ g) ⊚₀ h) (f ⊚₀ (g ⊚₀ h)) ⊚-assoc = record { arr = universal pullback-f⟨gh⟩ {h₁ = universal pullback-gh (commute pullback-⟨fg⟩h ○ assoc)} $ begin (cod g ∘ p₂ pullback-gh) ∘ universal pullback-gh _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-gh) ⟩ cod g ∘ p₁ pullback-fg ∘ p₂ pullback-⟨fg⟩h ≈⟨ extendʳ (commute pullback-fg) ⟩ dom f ∘ p₂ pullback-fg ∘ p₂ pullback-⟨fg⟩h ∎ ; commute-dom = begin ((dom h ∘ p₁ pullback-gh) ∘ p₁ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullʳ (p₁∘universal≈h₁ pullback-f⟨gh⟩) ⟩ (dom h ∘ p₁ pullback-gh) ∘ universal pullback-gh _ ≈⟨ pullʳ (p₁∘universal≈h₁ pullback-gh) ⟩ dom h ∘ p₁ pullback-⟨fg⟩h ∎ ; commute-cod = begin (cod f ∘ p₂ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ extendˡ (p₂∘universal≈h₂ pullback-f⟨gh⟩) ⟩ (cod f ∘ p₂ pullback-fg) ∘ p₂ pullback-⟨fg⟩h ∎ } ⊚-assoc⁻¹ : Span⇒ (f ⊚₀ (g ⊚₀ h)) ((f ⊚₀ g) ⊚₀ h) ⊚-assoc⁻¹ = record { arr = universal pullback-⟨fg⟩h {h₁ = p₁ pullback-gh ∘ p₁ pullback-f⟨gh⟩} {h₂ = universal pullback-fg (⟺ assoc ○ commute pullback-f⟨gh⟩)} $ begin cod h ∘ p₁ pullback-gh ∘ p₁ pullback-f⟨gh⟩ ≈⟨ extendʳ (commute pullback-gh) ⟩ dom g ∘ p₂ pullback-gh ∘ p₁ pullback-f⟨gh⟩ ≈⟨ pushʳ (⟺ (p₁∘universal≈h₁ pullback-fg)) ⟩ (dom g ∘ p₁ pullback-fg) ∘ universal pullback-fg _ ∎ ; commute-dom = begin (dom h ∘ p₁ pullback-⟨fg⟩h) ∘ universal pullback-⟨fg⟩h _ ≈⟨ extendˡ (p₁∘universal≈h₁ pullback-⟨fg⟩h) ⟩ (dom h ∘ p₁ pullback-gh) ∘ p₁ pullback-f⟨gh⟩ ∎ ; commute-cod = begin ((cod f ∘ p₂ pullback-fg) ∘ p₂ pullback-⟨fg⟩h) ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-⟨fg⟩h) ⟩ (cod f ∘ p₂ pullback-fg) ∘ universal pullback-fg _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-fg) ⟩ cod f ∘ p₂ pullback-f⟨gh⟩ ∎ } ⊚-assoc-iso : Iso (Spans₁ A D) ⊚-assoc ⊚-assoc⁻¹ ⊚-assoc-iso = record { isoˡ = let lemma-fgˡ = begin p₁ pullback-fg ∘ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-fg) ⟩ (p₂ pullback-gh ∘ p₁ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullʳ (p₁∘universal≈h₁ pullback-f⟨gh⟩) ⟩ p₂ pullback-gh ∘ universal pullback-gh _ ≈⟨ p₂∘universal≈h₂ pullback-gh ⟩ p₁ pullback-fg ∘ p₂ pullback-⟨fg⟩h ∎ lemma-fgʳ = begin p₂ pullback-fg ∘ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-fg) ⟩ p₂ pullback-f⟨gh⟩ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ p₂∘universal≈h₂ pullback-f⟨gh⟩ ⟩ p₂ pullback-fg ∘ p₂ pullback-⟨fg⟩h ∎ lemmaˡ = begin p₁ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-⟨fg⟩h) ⟩ (p₁ pullback-gh ∘ p₁ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullʳ (p₁∘universal≈h₁ pullback-f⟨gh⟩) ⟩ p₁ pullback-gh ∘ universal pullback-gh _ ≈⟨ p₁∘universal≈h₁ pullback-gh ⟩ p₁ pullback-⟨fg⟩h ∎ lemmaʳ = begin p₂ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-⟨fg⟩h) ⟩ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ≈⟨ unique-diagram pullback-fg lemma-fgˡ lemma-fgʳ ⟩ p₂ pullback-⟨fg⟩h ∎ in unique pullback-⟨fg⟩h lemmaˡ lemmaʳ ○ ⟺ (Pullback.id-unique pullback-⟨fg⟩h) ; isoʳ = let lemma-ghˡ = begin p₁ pullback-gh ∘ universal pullback-gh _ ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-gh) ⟩ p₁ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ≈⟨ p₁∘universal≈h₁ pullback-⟨fg⟩h ⟩ p₁ pullback-gh ∘ p₁ pullback-f⟨gh⟩ ∎ lemma-ghʳ = begin p₂ pullback-gh ∘ universal pullback-gh _ ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-gh) ⟩ (p₁ pullback-fg ∘ p₂ pullback-⟨fg⟩h) ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-⟨fg⟩h) ⟩ p₁ pullback-fg ∘ universal pullback-fg _ ≈⟨ p₁∘universal≈h₁ pullback-fg ⟩ p₂ pullback-gh ∘ p₁ pullback-f⟨gh⟩ ∎ lemmaˡ = begin p₁ pullback-f⟨gh⟩ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-f⟨gh⟩) ⟩ universal pullback-gh _ ∘ universal pullback-⟨fg⟩h _ ≈⟨ unique-diagram pullback-gh lemma-ghˡ lemma-ghʳ ⟩ p₁ pullback-f⟨gh⟩ ∎ lemmaʳ = begin p₂ pullback-f⟨gh⟩ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-f⟨gh⟩) ⟩ (p₂ pullback-fg ∘ p₂ pullback-⟨fg⟩h) ∘ universal pullback-⟨fg⟩h _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-⟨fg⟩h) ⟩ p₂ pullback-fg ∘ universal pullback-fg _ ≈⟨ p₂∘universal≈h₂ pullback-fg ⟩ p₂ pullback-f⟨gh⟩ ∎ in unique pullback-f⟨gh⟩ lemmaˡ lemmaʳ ○ ⟺ (Pullback.id-unique pullback-f⟨gh⟩) } ⊚-assoc-commute : ∀ {f f′ : Span C D} {g g′ : Span B C} {h h′ : Span A B} → (α : Span⇒ f f′) → (β : Span⇒ g g′) → (γ : Span⇒ h h′) → Spans₁ A D [ Spans₁ A D [ ⊚-assoc f′ g′ h′ ∘ (α ⊚₁ β) ⊚₁ γ ] ≈ Spans₁ A D [ α ⊚₁ (β ⊚₁ γ) ∘ ⊚-assoc f g h ] ] ⊚-assoc-commute {f = f} {f′ = f′} {g = g} {g′ = g′} {h = h} {h′ = h′} α β γ = let pullback-fg = (cod g) ×ₚ (dom f) pullback-fg′ = (cod g′) ×ₚ (dom f′) pullback-gh = (cod h) ×ₚ (dom g) pullback-gh′ = (cod h′) ×ₚ (dom g′) pullback-f⟨gh⟩ = (cod (g ⊚₀ h)) ×ₚ (dom f) pullback-f⟨gh⟩′ = (cod (g′ ⊚₀ h′)) ×ₚ (dom f′) pullback-⟨fg⟩h = (cod h) ×ₚ (dom (f ⊚₀ g)) pullback-⟨fg⟩h′ = (cod h′) ×ₚ (dom (f′ ⊚₀ g′)) lemma-ghˡ′ = begin p₁ pullback-gh′ ∘ universal pullback-gh′ _ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-gh′) ⟩ p₁ pullback-⟨fg⟩h′ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ p₁∘universal≈h₁ pullback-⟨fg⟩h′ ⟩ arr γ ∘ p₁ pullback-⟨fg⟩h ≈⟨ pushʳ (⟺ (p₁∘universal≈h₁ pullback-gh)) ⟩ (arr γ ∘ p₁ pullback-gh) ∘ universal pullback-gh _ ≈⟨ pushˡ (⟺ (p₁∘universal≈h₁ pullback-gh′)) ⟩ p₁ pullback-gh′ ∘ universal pullback-gh′ _ ∘ universal pullback-gh _ ∎ lemma-ghʳ′ = begin p₂ pullback-gh′ ∘ universal pullback-gh′ _ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-gh′) ⟩ (p₁ pullback-fg′ ∘ p₂ pullback-⟨fg⟩h′) ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-⟨fg⟩h′) ⟩ p₁ pullback-fg′ ∘ universal pullback-fg′ _ ∘ p₂ pullback-⟨fg⟩h ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-fg′) ⟩ (arr β ∘ p₁ pullback-fg) ∘ p₂ pullback-⟨fg⟩h ≈⟨ extendˡ (⟺ (p₂∘universal≈h₂ pullback-gh)) ⟩ (arr β ∘ p₂ pullback-gh) ∘ universal pullback-gh _ ≈⟨ pushˡ (⟺ (p₂∘universal≈h₂ pullback-gh′)) ⟩ p₂ pullback-gh′ ∘ universal pullback-gh′ _ ∘ universal pullback-gh _ ∎ lemmaˡ = begin p₁ pullback-f⟨gh⟩′ ∘ universal pullback-f⟨gh⟩′ _ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-f⟨gh⟩′) ⟩ universal pullback-gh′ _ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ unique-diagram pullback-gh′ lemma-ghˡ′ lemma-ghʳ′ ⟩ universal pullback-gh′ _ ∘ universal pullback-gh _ ≈⟨ pushʳ (⟺ (p₁∘universal≈h₁ pullback-f⟨gh⟩)) ⟩ (universal pullback-gh′ _ ∘ p₁ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pushˡ (⟺ (p₁∘universal≈h₁ pullback-f⟨gh⟩′)) ⟩ p₁ pullback-f⟨gh⟩′ ∘ universal pullback-f⟨gh⟩′ _ ∘ universal pullback-f⟨gh⟩ _ ∎ lemmaʳ = begin p₂ pullback-f⟨gh⟩′ ∘ universal pullback-f⟨gh⟩′ _ ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-f⟨gh⟩′) ⟩ (p₂ pullback-fg′ ∘ p₂ pullback-⟨fg⟩h′) ∘ universal pullback-⟨fg⟩h′ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pullback-⟨fg⟩h′) ⟩ p₂ pullback-fg′ ∘ universal pullback-fg′ _ ∘ p₂ pullback-⟨fg⟩h ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-fg′) ⟩ (arr α ∘ p₂ pullback-fg) ∘ p₂ pullback-⟨fg⟩h ≈⟨ extendˡ (⟺ (p₂∘universal≈h₂ pullback-f⟨gh⟩)) ⟩ (arr α ∘ p₂ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ≈⟨ pushˡ (⟺ (p₂∘universal≈h₂ pullback-f⟨gh⟩′)) ⟩ p₂ pullback-f⟨gh⟩′ ∘ universal pullback-f⟨gh⟩′ _ ∘ universal pullback-f⟨gh⟩ _ ∎ in unique-diagram pullback-f⟨gh⟩′ lemmaˡ lemmaʳ -------------------------------------------------------------------------------- -- Unitors module _ (f : Span A B) where private pullback-dom-f = id ×ₚ (dom f) pullback-cod-f = (cod f) ×ₚ id ⊚-unitˡ : Span⇒ (id-span ⊚₀ f) f ⊚-unitˡ = record { arr = p₁ pullback-cod-f ; commute-dom = refl ; commute-cod = commute pullback-cod-f } ⊚-unitˡ⁻¹ : Span⇒ f (id-span ⊚₀ f) ⊚-unitˡ⁻¹ = record { arr = universal pullback-cod-f id-comm ; commute-dom = cancelʳ (p₁∘universal≈h₁ pullback-cod-f) ; commute-cod = pullʳ (p₂∘universal≈h₂ pullback-cod-f) ○ identityˡ } ⊚-unitˡ-iso : Iso (Spans₁ A B) ⊚-unitˡ ⊚-unitˡ⁻¹ ⊚-unitˡ-iso = record { isoˡ = unique-diagram pullback-cod-f (pullˡ (p₁∘universal≈h₁ pullback-cod-f) ○ id-comm-sym) (pullˡ (p₂∘universal≈h₂ pullback-cod-f) ○ commute pullback-cod-f ○ id-comm-sym) ; isoʳ = p₁∘universal≈h₁ pullback-cod-f } ⊚-unitʳ : Span⇒ (f ⊚₀ id-span) f ⊚-unitʳ = record { arr = p₂ pullback-dom-f ; commute-dom = ⟺ (commute pullback-dom-f) ; commute-cod = refl } ⊚-unitʳ⁻¹ : Span⇒ f (f ⊚₀ id-span) ⊚-unitʳ⁻¹ = record { arr = universal pullback-dom-f id-comm-sym ; commute-dom = pullʳ (p₁∘universal≈h₁ pullback-dom-f) ○ identityˡ ; commute-cod = pullʳ (p₂∘universal≈h₂ pullback-dom-f) ○ identityʳ } ⊚-unitʳ-iso : Iso (Spans₁ A B) ⊚-unitʳ ⊚-unitʳ⁻¹ ⊚-unitʳ-iso = record { isoˡ = unique-diagram pullback-dom-f (pullˡ (p₁∘universal≈h₁ pullback-dom-f) ○ ⟺ (commute pullback-dom-f) ○ id-comm-sym) (pullˡ (p₂∘universal≈h₂ pullback-dom-f) ○ id-comm-sym) ; isoʳ = p₂∘universal≈h₂ pullback-dom-f } ⊚-unitˡ-commute : ∀ {f f′ : Span A B} → (α : Span⇒ f f′) → Spans₁ A B [ Spans₁ A B [ ⊚-unitˡ f′ ∘ Spans₁.id B B ⊚₁ α ] ≈ Spans₁ A B [ α ∘ ⊚-unitˡ f ] ] ⊚-unitˡ-commute {f′ = f′} α = p₁∘universal≈h₁ ((cod f′) ×ₚ id) ⊚-unitʳ-commute : ∀ {f f′ : Span A B} → (α : Span⇒ f f′) → Spans₁ A B [ Spans₁ A B [ ⊚-unitʳ f′ ∘ α ⊚₁ Spans₁.id A A ] ≈ Spans₁ A B [ α ∘ ⊚-unitʳ f ] ] ⊚-unitʳ-commute {f′ = f′} α = p₂∘universal≈h₂ (id ×ₚ (dom f′)) -------------------------------------------------------------------------------- -- Coherence Conditions triangle : (f : Span A B) → (g : Span B C) → Spans₁ A C [ Spans₁ A C [ Spans₁.id B C {g} ⊚₁ ⊚-unitˡ f ∘ ⊚-assoc g id-span f ] ≈ ⊚-unitʳ g ⊚₁ Spans₁.id A B {f} ] triangle f g = let pullback-dom-g = id ×ₚ (dom g) pullback-cod-f = (cod f) ×ₚ id pullback-fg = (cod f) ×ₚ (dom g) pullback-id-fg = (cod (id-span ⊚₀ f)) ×ₚ (dom g) pullback-f-id-g = (cod f) ×ₚ (dom (id-span ⊚₀ g)) in unique pullback-fg (pullˡ (p₁∘universal≈h₁ pullback-fg) ○ pullʳ (p₁∘universal≈h₁ pullback-id-fg) ○ p₁∘universal≈h₁ pullback-cod-f ○ ⟺ identityˡ) (pullˡ (p₂∘universal≈h₂ pullback-fg) ○ pullʳ (p₂∘universal≈h₂ pullback-id-fg) ○ identityˡ) pentagon : (f : Span A B) → (g : Span B C) → (h : Span C D) → (i : Span D E) → Spans₁ A E [ Spans₁ A E [ (Spans₁.id D E {i}) ⊚₁ (⊚-assoc h g f) ∘ Spans₁ A E [ ⊚-assoc i (h ⊚₀ g) f ∘ ⊚-assoc i h g ⊚₁ Spans₁.id A B {f} ] ] ≈ Spans₁ A E [ ⊚-assoc i h (g ⊚₀ f) ∘ ⊚-assoc (i ⊚₀ h) g f ] ] pentagon {A} {B} {C} {D} {E} f g h i = let pullback-fg = (cod f) ×ₚ (dom g) pullback-gh = (cod g) ×ₚ (dom h) pullback-hi = (cod h) ×ₚ (dom i) pullback-f⟨gh⟩ = (cod f) ×ₚ (dom (h ⊚₀ g)) pullback-⟨fg⟩h = (cod (g ⊚₀ f)) ×ₚ (dom h) pullback-⟨gh⟩i = (cod (h ⊚₀ g)) ×ₚ (dom i) pullback-g⟨hi⟩ = (cod g) ×ₚ (dom (i ⊚₀ h)) pullback-⟨⟨fg⟩h⟩i = (cod (h ⊚₀ (g ⊚₀ f))) ×ₚ (dom i) pullback-⟨f⟨gh⟩⟩i = (cod ((h ⊚₀ g) ⊚₀ f)) ×ₚ (dom i) pullback-⟨fg⟩⟨hi⟩ = (cod (g ⊚₀ f)) ×ₚ (dom (i ⊚₀ h)) pullback-f⟨⟨gh⟩i⟩ = (cod f) ×ₚ (dom (i ⊚₀ (h ⊚₀ g))) pullback-f⟨g⟨hi⟩⟩ = (cod f) ×ₚ (dom ((i ⊚₀ h) ⊚₀ g)) lemma-fgˡ = begin p₁ pullback-fg ∘ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-fg) ⟩ p₁ pullback-f⟨gh⟩ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-f⟨gh⟩) ⟩ p₁ pullback-f⟨⟨gh⟩i⟩ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ p₁∘universal≈h₁ pullback-f⟨⟨gh⟩i⟩ ⟩ id ∘ p₁ pullback-f⟨g⟨hi⟩⟩ ≈⟨ identityˡ ⟩ p₁ pullback-f⟨g⟨hi⟩⟩ ≈˘⟨ p₁∘universal≈h₁ pullback-fg ⟩ p₁ pullback-fg ∘ universal pullback-fg _ ∎ lemma-fgʳ = begin p₂ pullback-fg ∘ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-fg) ⟩ (p₁ pullback-gh ∘ p₂ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center (p₂∘universal≈h₂ pullback-f⟨gh⟩) ⟩ p₁ pullback-gh ∘ (p₁ pullback-⟨gh⟩i ∘ p₂ pullback-f⟨⟨gh⟩i⟩) ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center⁻¹ refl (p₂∘universal≈h₂ pullback-f⟨⟨gh⟩i⟩) ⟩ (p₁ pullback-gh ∘ p₁ pullback-⟨gh⟩i) ∘ universal pullback-⟨gh⟩i _ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ center (p₁∘universal≈h₁ pullback-⟨gh⟩i) ⟩ p₁ pullback-gh ∘ universal pullback-gh _ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-gh) ⟩ p₁ pullback-g⟨hi⟩ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈˘⟨ p₂∘universal≈h₂ pullback-fg ⟩ p₂ pullback-fg ∘ universal pullback-fg _ ∎ lemma-⟨fg⟩hˡ = begin p₁ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-⟨fg⟩h) ⟩ universal pullback-fg _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ unique-diagram pullback-fg lemma-fgˡ lemma-fgʳ ⟩ universal pullback-fg _ ≈˘⟨ p₁∘universal≈h₁ pullback-⟨fg⟩⟨hi⟩ ⟩ p₁ pullback-⟨fg⟩⟨hi⟩ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ≈⟨ pushˡ (⟺ (p₁∘universal≈h₁ pullback-⟨fg⟩h)) ⟩ p₁ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ∎ lemma-⟨fg⟩hʳ = begin p₂ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-⟨fg⟩h) ⟩ (p₂ pullback-gh ∘ p₂ pullback-f⟨gh⟩) ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center (p₂∘universal≈h₂ pullback-f⟨gh⟩) ⟩ p₂ pullback-gh ∘ (p₁ pullback-⟨gh⟩i ∘ p₂ pullback-f⟨⟨gh⟩i⟩) ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center⁻¹ refl (p₂∘universal≈h₂ pullback-f⟨⟨gh⟩i⟩) ⟩ (p₂ pullback-gh ∘ p₁ pullback-⟨gh⟩i) ∘ universal pullback-⟨gh⟩i _ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ center (p₁∘universal≈h₁ pullback-⟨gh⟩i) ⟩ p₂ pullback-gh ∘ universal pullback-gh _ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ extendʳ (p₂∘universal≈h₂ pullback-gh) ⟩ p₁ pullback-hi ∘ p₂ pullback-g⟨hi⟩ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ pushʳ (⟺ (p₂∘universal≈h₂ pullback-⟨fg⟩⟨hi⟩)) ⟩ (p₁ pullback-hi ∘ p₂ pullback-⟨fg⟩⟨hi⟩) ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ≈⟨ pushˡ (⟺ (p₂∘universal≈h₂ pullback-⟨fg⟩h)) ⟩ p₂ pullback-⟨fg⟩h ∘ universal pullback-⟨fg⟩h _ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ∎ lemmaˡ = begin p₁ pullback-⟨⟨fg⟩h⟩i ∘ universal pullback-⟨⟨fg⟩h⟩i _ ∘ universal pullback-⟨f⟨gh⟩⟩i _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₁∘universal≈h₁ pullback-⟨⟨fg⟩h⟩i) ⟩ (universal pullback-⟨fg⟩h _ ∘ p₁ pullback-⟨f⟨gh⟩⟩i) ∘ universal pullback-⟨f⟨gh⟩⟩i _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center (p₁∘universal≈h₁ pullback-⟨f⟨gh⟩⟩i) ⟩ universal pullback-⟨fg⟩h _ ∘ universal pullback-f⟨gh⟩ _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ unique-diagram pullback-⟨fg⟩h lemma-⟨fg⟩hˡ lemma-⟨fg⟩hʳ ⟩ universal pullback-⟨fg⟩h _ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ≈⟨ pushˡ (⟺ (p₁∘universal≈h₁ pullback-⟨⟨fg⟩h⟩i)) ⟩ p₁ pullback-⟨⟨fg⟩h⟩i ∘ universal pullback-⟨⟨fg⟩h⟩i _ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ∎ lemmaʳ = begin p₂ pullback-⟨⟨fg⟩h⟩i ∘ universal pullback-⟨⟨fg⟩h⟩i _ ∘ universal pullback-⟨f⟨gh⟩⟩i _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-⟨⟨fg⟩h⟩i) ⟩ (id ∘ p₂ pullback-⟨f⟨gh⟩⟩i) ∘ universal pullback-⟨f⟨gh⟩⟩i _ ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center (p₂∘universal≈h₂ pullback-⟨f⟨gh⟩⟩i) ⟩ id ∘ (p₂ pullback-⟨gh⟩i ∘ p₂ pullback-f⟨⟨gh⟩i⟩) ∘ universal pullback-f⟨⟨gh⟩i⟩ _ ≈⟨ center⁻¹ identityˡ (p₂∘universal≈h₂ pullback-f⟨⟨gh⟩i⟩) ⟩ p₂ pullback-⟨gh⟩i ∘ universal pullback-⟨gh⟩i _ ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ pullˡ (p₂∘universal≈h₂ pullback-⟨gh⟩i) ⟩ (p₂ pullback-hi ∘ p₂ pullback-g⟨hi⟩) ∘ p₂ pullback-f⟨g⟨hi⟩⟩ ≈⟨ extendˡ (⟺ (p₂∘universal≈h₂ pullback-⟨fg⟩⟨hi⟩)) ⟩ (p₂ pullback-hi ∘ p₂ pullback-⟨fg⟩⟨hi⟩) ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ≈⟨ pushˡ (⟺ (p₂∘universal≈h₂ pullback-⟨⟨fg⟩h⟩i)) ⟩ p₂ pullback-⟨⟨fg⟩h⟩i ∘ universal pullback-⟨⟨fg⟩h⟩i _ ∘ universal pullback-⟨fg⟩⟨hi⟩ _ ∎ in unique-diagram pullback-⟨⟨fg⟩h⟩i lemmaˡ lemmaʳ Spans : Bicategory (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) e o Spans = record { enriched = record { Obj = Obj ; hom = Spans₁ ; id = λ {A} → record { F₀ = λ _ → id-span ; F₁ = λ _ → Spans₁.id A A ; identity = refl ; homomorphism = ⟺ identity² ; F-resp-≈ = λ _ → refl } ; ⊚ = record { F₀ = λ (f , g) → f ⊚₀ g ; F₁ = λ (α , β) → α ⊚₁ β ; identity = λ {(f , g)} → ⊚₁-identity f g ; homomorphism = λ {X} {Y} {Z} {(α , α′)} {(β , β′)} → ⊚₁-homomorphism α β α′ β′ ; F-resp-≈ = λ {(f , g)} {(f′ , g′)} {_} {_} (α-eq , β-eq) → universal-resp-≈ ((cod g′) ×ₚ (dom f′)) (∘-resp-≈ˡ β-eq) (∘-resp-≈ˡ α-eq) } ; ⊚-assoc = niHelper record { η = λ ((f , g) , h) → ⊚-assoc f g h ; η⁻¹ = λ ((f , g) , h) → ⊚-assoc⁻¹ f g h ; commute = λ ((α , β) , γ) → ⊚-assoc-commute α β γ ; iso = λ ((f , g) , h) → ⊚-assoc-iso f g h } ; unitˡ = niHelper record { η = λ (_ , f) → ⊚-unitˡ f ; η⁻¹ = λ (_ , f) → ⊚-unitˡ⁻¹ f ; commute = λ (_ , α) → ⊚-unitˡ-commute α ; iso = λ (_ , f) → ⊚-unitˡ-iso f } ; unitʳ = niHelper record { η = λ (f , _) → ⊚-unitʳ f ; η⁻¹ = λ (f , _) → ⊚-unitʳ⁻¹ f ; commute = λ (α , _) → ⊚-unitʳ-commute α ; iso = λ (f , _) → ⊚-unitʳ-iso f } } ; triangle = λ {_} {_} {_} {f} {g} → triangle f g ; pentagon = λ {_} {_} {_} {_} {_} {f} {g} {h} {i} → pentagon f g h i }
{ "alphanum_fraction": 0.513757542, "avg_line_length": 62.3173333333, "ext": "agda", "hexsha": "b62a5452bdc6ebc8852319933d84f97b1b1066dc", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory/Construction/Spans.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory/Construction/Spans.agda", "max_line_length": 216, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory/Construction/Spans.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 9758, "size": 23369 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.NaturalTransformation where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Categories.Functor private variable ℓC ℓC' ℓD ℓD' : Level module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where -- syntax for sequencing in category D _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g record NatTrans (F G : Functor C D) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where open Precategory open Functor field -- components of the natural transformation N-ob : (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] -- naturality condition N-hom : {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (N-ob y) ≡ (N-ob x) ⋆ᴰ (G .F-hom f) open Precategory open Functor open NatTrans idTrans : (F : Functor C D) → NatTrans F F idTrans F .N-ob x = D .id (F .F-ob x) idTrans F .N-hom f = (F .F-hom f) ⋆ᴰ (idTrans F .N-ob _) ≡⟨ D .⋆IdR _ ⟩ F .F-hom f ≡⟨ sym (D .⋆IdL _) ⟩ (D .id (F .F-ob _)) ⋆ᴰ (F .F-hom f) ∎ seqTrans : {F G H : Functor C D} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H seqTrans α β .N-ob x = (α .N-ob x) ⋆ᴰ (β .N-ob x) seqTrans {F} {G} {H} α β .N-hom f = (F .F-hom f) ⋆ᴰ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((F .F-hom f) ⋆ᴰ (α .N-ob _)) ⋆ᴰ (β .N-ob _) ≡[ i ]⟨ (α .N-hom f i) ⋆ᴰ (β .N-ob _) ⟩ ((α .N-ob _) ⋆ᴰ (G .F-hom f)) ⋆ᴰ (β .N-ob _) ≡⟨ D .⋆Assoc _ _ _ ⟩ (α .N-ob _) ⋆ᴰ ((G .F-hom f) ⋆ᴰ (β .N-ob _)) ≡[ i ]⟨ (α .N-ob _) ⋆ᴰ (β .N-hom f i) ⟩ (α .N-ob _) ⋆ᴰ ((β .N-ob _) ⋆ᴰ (H .F-hom f)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ⋆ᴰ (H .F-hom f) ∎ module _ ⦃ D-category : isCategory D ⦄ {F G : Functor C D} {α β : NatTrans F G} where open Precategory open Functor open NatTrans makeNatTransPath : α .N-ob ≡ β .N-ob → α ≡ β makeNatTransPath p i .N-ob = p i makeNatTransPath p i .N-hom f = rem i where rem : PathP (λ i → (F .F-hom f) ⋆ᴰ (p i _) ≡ (p i _) ⋆ᴰ (G .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (D-category .isSetHom _ _ _ _) module _ (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') ⦃ _ : isCategory D ⦄ where open Precategory open NatTrans open Functor FUNCTOR : Precategory (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) FUNCTOR .ob = Functor C D FUNCTOR .Hom[_,_] = NatTrans FUNCTOR .id = idTrans FUNCTOR ._⋆_ = seqTrans FUNCTOR .⋆IdL α = makeNatTransPath λ i x → D .⋆IdL (α .N-ob x) i FUNCTOR .⋆IdR α = makeNatTransPath λ i x → D .⋆IdR (α .N-ob x) i FUNCTOR .⋆Assoc α β γ = makeNatTransPath λ i x → D .⋆Assoc (α .N-ob x) (β .N-ob x) (γ .N-ob x) i
{ "alphanum_fraction": 0.5330766538, "avg_line_length": 32.8390804598, "ext": "agda", "hexsha": "d540f18817be25550f844c843e7b3e09587d065a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "apabepa10/cubical", "max_forks_repo_path": "Cubical/Categories/NaturalTransformation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "apabepa10/cubical", "max_issues_repo_path": "Cubical/Categories/NaturalTransformation.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "apabepa10/cubical", "max_stars_repo_path": "Cubical/Categories/NaturalTransformation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1356, "size": 2857 }
{- Part 3: Univalence and the SIP - Univalence from ua and uaβ - Transporting with ua (examples: ua not : Bool = Bool, ua suc : Z = Z, ...) - Subst using ua - The SIP as a consequence of ua - Examples of using the SIP for math and programming (algebra, data structures, etc.) -} {-# OPTIONS --cubical #-} module Part3 where open import Cubical.Foundations.Prelude hiding (refl ; transport ; subst ; sym) open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Int open import Part2 public -- Another key concept in HoTT/UF is the Univalence Axiom. In Cubical -- Agda this is provable, we hence refer to it as the Univalence -- Theorem. -- The univalence theorem: equivalences of types give paths of types ua' : {A B : Type ℓ} → A ≃ B → A ≡ B ua' = ua -- Any isomorphism of types gives rise to an equivalence isoToEquiv' : {A B : Type ℓ} → Iso A B → A ≃ B isoToEquiv' = isoToEquiv -- And hence to a path isoToPath' : {A B : Type ℓ} → Iso A B → A ≡ B isoToPath' e = ua' (isoToEquiv' e) -- ua satisfies the following computation rule -- This suffices to be able to prove the standard formulation of univalence. uaβ' : {A B : Type ℓ} (e : A ≃ B) (x : A) → transport (ua' e) x ≡ fst e x uaβ' e x = transportRefl (equivFun e x) -- Time for an example! -- Booleans data Bool : Type₀ where false true : Bool not : Bool → Bool not false = true not true = false notPath : Bool ≡ Bool notPath = isoToPath' (iso not not rem rem) where rem : (b : Bool) → not (not b) ≡ b rem false = refl rem true = refl _ : transport notPath true ≡ false _ = refl -- Another example, integers: sucPath : Int ≡ Int sucPath = isoToPath' (iso sucInt predInt sucPred predSuc) _ : transport sucPath (pos 0) ≡ pos 1 _ = refl _ : transport (sucPath ∙ sucPath) (pos 0) ≡ pos 2 _ = refl _ : transport (sym sucPath) (pos 0) ≡ negsuc 0 _ = refl ------------------------------------------------------------------------- -- The structure identity principle -- A more efficient version of finite multisets based on association lists open import Cubical.HITs.AssocList.Base -- data AssocList (A : Type) : Type where -- ⟨⟩ : AssocList A -- ⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A -- per : (a b : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs -- agg : (a : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs ≡ ⟨ a , m + n ⟩∷ xs -- del : (a : A) (xs : AssocList A) → ⟨ a , 0 ⟩∷ xs ≡ xs -- trunc : (xs ys : AssocList A) (p q : xs ≡ ys) → p ≡ q -- Programming and proving is more complicated with AssocList compared -- to FMSet. This kind of example occurs everywhere in programming and -- mathematics: one representation is easier to work with, but not -- efficient, while another is efficient but difficult to work with. -- Solution: substitute using univalence substIso : {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : Iso A B) → P A → P B substIso P e = subst P (isoToPath e) -- Can transport for example Monoid structure from FMSet to AssocList -- this way, but the achieved Monoid structure is not very efficient -- to work with. A better solution is to prove that FMSet and -- AssocList are equal *as monoids*, but how to do this? -- Solution: structure identity principle (SIP) -- This is a very useful consequence of univalence open import Cubical.Foundations.SIP {- sip' : {ℓ : Level} {S : Type ℓ → Type ℓ} {ι : StrEquiv S ℓ} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ S) → A ≃[ ι ] B → A ≡ B sip' = sip -} -- The tricky thing is to prove that (S,ι) is a univalent structure. -- Luckily we provide automation for this in the library, see for example: -- open import Cubical.Algebra.Monoid.Base -- Another cool application of the SIP: matrices represented as -- functions out of pairs of Fin's and vectors are equal as abelian -- groups: open import Cubical.Algebra.Matrix
{ "alphanum_fraction": 0.6552677898, "avg_line_length": 29.2426470588, "ext": "agda", "hexsha": "3a4671b2636af99a7a6c69d76969358acf18d42c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tomdjong/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/Part3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tomdjong/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/Part3.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tomdjong/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/Part3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1261, "size": 3977 }
{-# OPTIONS --cubical --safe #-} module Fin where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract) open import Data.Fin using (Fin; toℕ; fromℕ<; #_; _≟_) renaming (zero to fz; suc to fs) open import Data.Nat using (ℕ; zero; suc; _<_; _>_; z≤n; s≤s) -- Alternate representation of Fin as a number and proof of its upper bound. record Fin1 (n : ℕ) : Type where constructor fin1 field r : ℕ r<n : r < n fin1suc : {n : ℕ} → Fin1 n → Fin1 (suc n) fin1suc (fin1 r r<n) = fin1 (suc r) (s≤s r<n) -- From Data.Fin.Properites -- They need to be re-defined here since Cubical uses a different ≡ fromℕ<-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i < m) → fromℕ< i<m ≡ i fromℕ<-toℕ fz (s≤s z≤n) = refl fromℕ<-toℕ (fs i) (s≤s (s≤s m≤n)) = cong fs (fromℕ<-toℕ i (s≤s m≤n)) toℕ-fromℕ< : ∀ {m n} (m<n : m < n) → toℕ (fromℕ< m<n) ≡ m toℕ-fromℕ< (s≤s z≤n) = refl toℕ-fromℕ< (s≤s (s≤s m<n)) = cong suc (toℕ-fromℕ< (s≤s m<n)) toℕ<n : ∀ {n} (i : Fin n) → toℕ i < n toℕ<n fz = s≤s z≤n toℕ<n (fs i) = s≤s (toℕ<n i) ------------------- -- Equivalence of Fin and Fin1 fin→fin1 : {n : ℕ} → Fin n → Fin1 n fin→fin1 fz = fin1 0 (s≤s z≤n) fin→fin1 (fs x) = let fin1 r r<n = fin→fin1 x in fin1 (suc r) (s≤s r<n) fin1→fin : {n : ℕ} → Fin1 n → Fin n fin1→fin (fin1 _ r<n) = fromℕ< r<n fin→fin1→fin : {n : ℕ} → (r : Fin n) → (fin1→fin ∘ fin→fin1) r ≡ r fin→fin1→fin fz = refl fin→fin1→fin (fs r) = cong fs (fin→fin1→fin r) fin1→fin→fin1 : {n : ℕ} → (r : Fin1 n) → (fin→fin1 ∘ fin1→fin) r ≡ r fin1→fin→fin1 (fin1 zero (s≤s z≤n)) = refl fin1→fin→fin1 (fin1 (suc r) (s≤s (s≤s r<n))) = cong fin1suc (fin1→fin→fin1 (fin1 r (s≤s r<n))) fin≃fin1 : {n : ℕ} → Iso (Fin n) (Fin1 n) fin≃fin1 = iso fin→fin1 fin1→fin fin1→fin→fin1 fin→fin1→fin fin≡fin1 : {n : ℕ} → Fin n ≡ Fin1 n fin≡fin1 = isoToPath fin≃fin1 -- Equivalence of toℕ and Fin1.r toℕ≡Fin1r1 : {n : ℕ} → (r : Fin n) → toℕ r ≡ Fin1.r (fin→fin1 r) toℕ≡Fin1r1 fz = refl toℕ≡Fin1r1 (fs r) = cong suc (toℕ≡Fin1r1 r) toℕ≡Fin1r : {n : ℕ} → toℕ {n} ≡ Fin1.r ∘ fin→fin1 toℕ≡Fin1r = funExt toℕ≡Fin1r1 Fin1r≡toℕ1 : {n : ℕ} → (r : Fin1 n) → toℕ (fin1→fin r) ≡ Fin1.r r Fin1r≡toℕ1 (fin1 r r<n) = toℕ-fromℕ< r<n Fin1r≡toℕ : {n : ℕ} → toℕ {n} ∘ fin1→fin ≡ Fin1.r Fin1r≡toℕ = funExt Fin1r≡toℕ1
{ "alphanum_fraction": 0.5875048506, "avg_line_length": 33.0384615385, "ext": "agda", "hexsha": "9c56b13cf32352bd7ed8ef8d82fe5e1e5dc419e4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Fin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Fin.agda", "max_line_length": 117, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1251, "size": 2577 }
---------------------------------------------------------------------- -- Functional big-step evaluation of terms in the partiality monad -- (alternative version not productivity checker workarounds) ---------------------------------------------------------------------- module SystemF.Eval.NoWorkarounds where open import Codata.Musical.Notation using (∞; ♯_; ♭) open import Category.Monad open import Category.Monad.Partiality.All open import Data.Fin using (Fin; zero; suc) open import Data.Maybe as Maybe using (just; nothing) open import Data.Maybe.Relation.Unary.Any as MaybeAny using (just) open import Data.Nat using (_+_) open import Data.Vec using ([]) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import PartialityAndFailure as PF open PF.Equality hiding (fail) private open module M {f} = RawMonad (PF.monad {f}) using (return; _>>=_) open import SystemF.Type open import SystemF.Term open import SystemF.WtTerm open TypeSubst using () renaming (_[/_] to _[/tp_]) open TermTypeSubst using () renaming (_[/_] to _[/tmTp_]) open TermTermSubst using () renaming (_[/_] to _[/tmTm_]) open WtTermTypeSubst using () renaming (_[/_]′ to _[/⊢tmTp_]) open WtTermTermSubst using () renaming (_[/_] to _[/⊢tmTm_]) open import SystemF.Eval as E using (Comp; _⊢comp_∈_; does-not-fail) ---------------------------------------------------------------------- -- Functional big-step semantics (alternative version) -- -- The evaluation function _⇓ given below differs from that in -- SystemF.Eval in that it evaluates terms directly in the -- partiality-and-failure monad (rather than first evaluating them in -- PartialityAndFailure.Workaround._?⊥P and subsequently interpreting -- the result in PartialityAndFailure._?⊥). This is achieved by -- manually expanding and inlining every application of the monadic -- bind operation. -- -- We give a separate type soundness proof formulated with respect to -- the alternative semantics, as well as a proof that the two -- semantics are equivalent (i.e. the two evaluations of any given -- term are bisimilar). -- -- The definition of the alternative semantics is more verbose and -- arguably less readable. However the associated type soundness -- proof is simpler in that it requires no additional compositionality -- lemmas. module _ where open M mutual infix 7 _⇓ _[_]⇓ _·⇓_ -- Evaluation of untyped (open) terms. _⇓ : ∀ {m n} → Term m n → Comp m n var x ⇓ = fail Λ t ⇓ = return (Λ t) λ' a t ⇓ = return (λ' a t) μ a t ⇓ = later (♯ (t [/tmTm μ a t ] ⇓)) (t [ a ]) ⇓ with t ⇓ ... | c = c [ a ]⇓ (s · t) ⇓ with s ⇓ | t ⇓ ... | f | c = f ·⇓ c fold a t ⇓ with t ⇓ ... | c = fold⇓ a c unfold a t ⇓ with t ⇓ ... | c = unfold⇓ a c -- Evaluation of type application. _[_]⇓ : ∀ {m n} → Comp m n → Type n → Comp m n now (just (Λ t)) [ a ]⇓ = later (♯ (t [/tmTp a ] ⇓)) now (just _) [ _ ]⇓ = fail now nothing [ _ ]⇓ = fail later c [ a ]⇓ = later (♯ ((♭ c) [ a ]⇓)) -- Evaluation of term application. _·⇓_ : ∀ {m n} → Comp m n → Comp m n → Comp m n now (just (λ' _ t)) ·⇓ now (just v) = later (♯ (t [/tmTm ⌜ v ⌝ ] ⇓)) now (just _) ·⇓ now _ = fail now nothing ·⇓ _ = fail now f ·⇓ later c = later (♯ (now f ·⇓ (♭ c))) later f ·⇓ c = later (♯ ((♭ f) ·⇓ c)) -- Evaluation of recursive type folding. fold⇓ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n fold⇓ a (now (just v)) = now (just (fold a v)) fold⇓ _ (now nothing) = fail fold⇓ a (later c) = later (♯ fold⇓ a (♭ c)) -- Evaluation of recursive type unfolding. unfold⇓ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n unfold⇓ _ (now (just (fold _ v))) = now (just v) unfold⇓ a (now (just _)) = fail unfold⇓ a (now nothing) = fail unfold⇓ a (later c) = later (♯ unfold⇓ a (♭ c)) ---------------------------------------------------------------------- -- Type soundness wrt. to the alternative semantics infix 4 ⊢comp_∈_ -- Short hand for closed well-typed computations. ⊢comp_∈_ : Comp 0 0 → Type 0 → Set ⊢comp c ∈ a = [] ⊢comp c ∈ a mutual infix 7 ⊢_⇓ ⊢_[_]⇓ ⊢_·⇓_ -- Evaluation of closed terms preserves well-typedness. ⊢_⇓ : ∀ {t a} → [] ⊢ t ∈ a → ⊢comp t ⇓ ∈ a ⊢ var () ⇓ ⊢ Λ ⊢t ⇓ = now (just (Λ ⊢t)) ⊢ λ' a ⊢t ⇓ = now (just (λ' a ⊢t)) ⊢ μ a ⊢t ⇓ = later (♯ ⊢ ⊢t [/⊢tmTm μ a ⊢t ] ⇓) ⊢ ⊢t [ a ] ⇓ with ⊢ ⊢t ⇓ ... | ⊢c = ⊢ ⊢c [ a ]⇓ ⊢ ⊢s · ⊢t ⇓ with ⊢ ⊢s ⇓ | ⊢ ⊢t ⇓ ... | ⊢f | ⊢c = ⊢ ⊢f ·⇓ ⊢c ⊢ fold a ⊢t ⇓ with ⊢ ⊢t ⇓ ... | ⊢c = ⊢fold⇓ a ⊢c ⊢ unfold a ⊢t ⇓ with ⊢ ⊢t ⇓ ... | ⊢c = ⊢unfold⇓ a ⊢c -- Evaluation of type application preserves well-typedness. ⊢_[_]⇓ : ∀ {c a} → ⊢comp c ∈ ∀' a → ∀ b → ⊢comp c [ b ]⇓ ∈ a [/tp b ] ⊢ now (just (Λ ⊢t)) [ a ]⇓ = later (♯ ⊢ ⊢t [/⊢tmTp a ] ⇓) ⊢ later ⊢c [ a ]⇓ = later (♯ ⊢ (♭ ⊢c) [ a ]⇓) -- Evaluation of term application preserves well-typedness. ⊢_·⇓_ : ∀ {f c a b} → ⊢comp f ∈ a →' b → ⊢comp c ∈ a → ⊢comp f ·⇓ c ∈ b ⊢ now (just (λ' a ⊢t)) ·⇓ now (just ⊢v) = later (♯ (⊢ ⊢t [/⊢tmTm ⊢⌜ ⊢v ⌝ ] ⇓)) ⊢ now (just (λ' a ⊢t)) ·⇓ later ⊢c = later (♯ (⊢ now (just (λ' a ⊢t)) ·⇓ ♭ ⊢c)) ⊢ later ⊢f ·⇓ ⊢c = later (♯ (⊢ ♭ ⊢f ·⇓ ⊢c)) -- Evaluation of recursive type folding preserves well-typedness. ⊢fold⇓ : ∀ {c} a → ⊢comp c ∈ a [/tp μ a ] → ⊢comp fold⇓ a c ∈ μ a ⊢fold⇓ a (now (just ⊢v)) = now (just (fold a ⊢v)) ⊢fold⇓ a (later ⊢c) = later (♯ ⊢fold⇓ a (♭ ⊢c)) -- Evaluation of recursive type unfolding preserves well-typedness. ⊢unfold⇓ : ∀ {c} a → ⊢comp c ∈ μ a → ⊢comp unfold⇓ a c ∈ a [/tp μ a ] ⊢unfold⇓ _ (now (just (fold ._ ⊢v))) = now (just ⊢v) ⊢unfold⇓ a (later ⊢c) = later (♯ ⊢unfold⇓ a (♭ ⊢c)) -- Type soundness: evaluation of well-typed terms does not fail. type-soundness : ∀ {t a} → [] ⊢ t ∈ a → ¬ t ⇓ ≈ fail type-soundness ⊢t = does-not-fail ⊢ ⊢t ⇓ ---------------------------------------------------------------------- -- Equivalence (bisimilarity) of big-step semantics open PF.Workaround using (⟦_⟧P) open PF.Equivalence hiding (sym) open PF.AlternativeEquality renaming (return to returnP; fail to failP; _>>=_ to _>>=P_) -- Bind-expanded variants of the various helpers of of _⇓. _[_]⇓′ : ∀ {m n} → Comp m n → Type n → Comp m n c [ a ]⇓′ = c >>= λ v → (return v) [ a ]⇓ _·⇓′_ : ∀ {m n} → Comp m n → Comp m n → Comp m n c ·⇓′ d = c >>= λ f → d >>= λ v → (return f) ·⇓ (return v) fold⇓′ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n fold⇓′ a c = c >>= λ v → fold⇓ a (return v) unfold⇓′ : ∀ {m n} → Type (1 + n) → Comp m n → Comp m n unfold⇓′ a c = c >>= λ v → unfold⇓ a (return v) -- The two variants of _[_]⇓ are strongly bisimilar. _[_]⇓≅ : ∀ {m n} (c : Comp m n) (a : Type n) → c [ a ]⇓ ≅ c [ a ]⇓′ now (just _) [ _ ]⇓≅ = refl P.refl now nothing [ _ ]⇓≅ = now P.refl later c [ a ]⇓≅ = later (♯ ((♭ c) [ a ]⇓≅)) -- The two variants of _·⇓_ are strongly bisimilar. _·⇓≅_ : ∀ {m n} (c : Comp m n) (d : Comp m n) → c ·⇓ d ≅ c ·⇓′ d now (just _) ·⇓≅ now (just _) = refl P.refl now (just (Λ t)) ·⇓≅ now nothing = now P.refl now (just (λ' a t)) ·⇓≅ now nothing = now P.refl now (just (fold a t)) ·⇓≅ now nothing = now P.refl now nothing ·⇓≅ now v = now P.refl now (just (Λ t)) ·⇓≅ later d = later (♯ (now (just (Λ t)) ·⇓≅ ♭ d)) now (just (λ' a t)) ·⇓≅ later d = later (♯ (now (just (λ' a t)) ·⇓≅ ♭ d)) now (just (fold a t)) ·⇓≅ later d = later (♯ (now (just (fold a t)) ·⇓≅ ♭ d)) now nothing ·⇓≅ later d = now P.refl later c ·⇓≅ d = later (♯ ((♭ c) ·⇓≅ d)) -- The two variants of fold⇓ are strongly bisimilar. fold⇓≅ : ∀ {m n} (a : Type (1 + n)) (c : Comp m n) → fold⇓ a c ≅ fold⇓′ a c fold⇓≅ a (now (just v)) = now P.refl fold⇓≅ a (now nothing) = now P.refl fold⇓≅ a (later c) = later (♯ fold⇓≅ a (♭ c)) -- The two variants of unfold⇓ are strongly bisimilar. unfold⇓≅ : ∀ {m n} (a : Type (1 + n)) (c : Comp m n) → unfold⇓ a c ≅ unfold⇓′ a c unfold⇓≅ a (now (just v)) = refl P.refl unfold⇓≅ a (now nothing) = now P.refl unfold⇓≅ a (later c) = later (♯ unfold⇓≅ a (♭ c)) mutual -- Helper lemma relating the two semantics of type application. []-E⇓≅⇓′ : ∀ {m n} (v : Val m n) (a : Type n) → ⟦ v E.[ a ]′ ⟧P ≅P (return v) [ a ]⇓ []-E⇓≅⇓′ (Λ t) a = later (♯ E⇓≅⇓′ (t [/tmTp a ] )) []-E⇓≅⇓′ (λ' _ _) _ = failP []-E⇓≅⇓′ (fold _ _) _ = failP -- Helper lemma relating the two semantics of term application. ·-E⇓≅⇓′ : ∀ {m n} (f : Val m n) (v : Val m n) → ⟦ f E.·′ v ⟧P ≅P (return f) ·⇓ (return v) ·-E⇓≅⇓′ (Λ _) _ = failP ·-E⇓≅⇓′ (λ' a t) v = later (♯ E⇓≅⇓′ (t [/tmTm ⌜ v ⌝ ])) ·-E⇓≅⇓′ (fold _ _) _ = failP -- Helper lemma relating the two semantics of recursive type -- unfolding. unfold-E⇓≅⇓′ : ∀ {m n} (a : Type (1 + n)) (v : Val m n) → ⟦ E.unfold′ a v ⟧P ≅P unfold⇓ a (return v) unfold-E⇓≅⇓′ _ (Λ _) = failP unfold-E⇓≅⇓′ _ (λ' _ _) = failP unfold-E⇓≅⇓′ _ (fold _ _) = returnP P.refl -- The two semantics are ≅P-equivalent. E⇓≅⇓′ : ∀ {m n} (t : Term m n) → t E.⇓ ≅P t ⇓ E⇓≅⇓′ (var x) = failP E⇓≅⇓′ (Λ t) = returnP P.refl E⇓≅⇓′ (λ' a t) = returnP P.refl E⇓≅⇓′ (μ a t) = later (♯ E⇓≅⇓′ (t [/tmTm μ a t ])) E⇓≅⇓′ (t [ a ]) = t [ a ] E.⇓ ≅⟨ complete (E.[]-comp t a) ⟩ (t E.⇓) E.[ a ]⇓ ≅⟨ (E⇓≅⇓′ t >>=P λ v → []-E⇓≅⇓′ v a) ⟩ (t ⇓) [ a ]⇓′ ≅⟨ sym (complete ((t ⇓) [ a ]⇓≅)) ⟩ t [ a ] ⇓ ∎ E⇓≅⇓′ (s · t) = s · t E.⇓ ≅⟨ complete (E.·-comp s t) ⟩ (s E.⇓) E.·⇓ (t E.⇓) ≅⟨ (E⇓≅⇓′ s >>=P λ f → E⇓≅⇓′ t >>=P λ v → ·-E⇓≅⇓′ f v) ⟩ (s ⇓) ·⇓′ (t ⇓) ≅⟨ sym (complete ((s ⇓) ·⇓≅ (t ⇓))) ⟩ s · t ⇓ ∎ E⇓≅⇓′ (fold a t) = fold a t E.⇓ ≅⟨ complete (E.fold-comp a t) ⟩ E.fold⇓ a (t E.⇓) ≅⟨ (E⇓≅⇓′ t >>=P λ v → return (fold a v) ∎) ⟩ fold⇓′ a (t ⇓) ≅⟨ sym (complete (fold⇓≅ a (t ⇓))) ⟩ fold a t ⇓ ∎ E⇓≅⇓′ (unfold a t) = unfold a t E.⇓ ≅⟨ complete (E.unfold-comp a t) ⟩ E.unfold⇓ a (t E.⇓) ≅⟨ (E⇓≅⇓′ t >>=P λ v → unfold-E⇓≅⇓′ a v) ⟩ unfold⇓′ a (t ⇓) ≅⟨ sym (complete (unfold⇓≅ a (t ⇓))) ⟩ unfold a t ⇓ ∎ -- The two big-step semantics are strongly bisimliar. E⇓≅⇓ : ∀ {m n} (t : Term m n) → t E.⇓ ≅ t ⇓ E⇓≅⇓ t = sound (E⇓≅⇓′ t)
{ "alphanum_fraction": 0.4878957169, "avg_line_length": 39.0545454545, "ext": "agda", "hexsha": "ae0f8e39dc6b305fad21d749c96046a283942a8d", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/SystemF/Eval/NoWorkarounds.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/SystemF/Eval/NoWorkarounds.agda", "max_line_length": 77, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/SystemF/Eval/NoWorkarounds.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 4640, "size": 10740 }
module Agda.Builtin.Int where open import Agda.Builtin.Nat open import Agda.Builtin.String infix 8 pos -- Standard library uses this as +_ data Int : Set where pos : (n : Nat) → Int negsuc : (n : Nat) → Int {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsuc #-} primitive primShowInteger : Int → String
{ "alphanum_fraction": 0.6568364611, "avg_line_length": 20.7222222222, "ext": "agda", "hexsha": "22267f9d48c8c8ea2569c21eced19c1eb01bc3c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Int.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 108, "size": 373 }
module Stack where open import Prelude public -- Stacks, or snoc-lists. data Stack (X : Set) : Set where ∅ : Stack X _,_ : Stack X → X → Stack X -- Stack membership, or de Bruijn indices. module _ {X : Set} where infix 3 _∈_ data _∈_ (A : X) : Stack X → Set where top : ∀ {Γ} → A ∈ Γ , A pop : ∀ {B Γ} → A ∈ Γ → A ∈ Γ , B i₀ : ∀ {A Γ} → A ∈ Γ , A i₀ = top i₁ : ∀ {A B Γ} → A ∈ Γ , A , B i₁ = pop i₀ i₂ : ∀ {A B C Γ} → A ∈ Γ , A , B , C i₂ = pop i₁ -- Stack inclusion, or order-preserving embeddings. module _ {X : Set} where infix 3 _⊆_ data _⊆_ : Stack X → Stack X → Set where done : ∅ ⊆ ∅ skip : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ Γ′ , A keep : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ , A ⊆ Γ′ , A bot⊆ : ∀ {Γ} → ∅ ⊆ Γ bot⊆ {∅} = done bot⊆ {Γ , A} = skip bot⊆ refl⊆ : ∀ {Γ} → Γ ⊆ Γ refl⊆ {∅} = done refl⊆ {Γ , A} = keep refl⊆ trans⊆ : ∀ {Γ Γ′ Γ″} → Γ ⊆ Γ′ → Γ′ ⊆ Γ″ → Γ ⊆ Γ″ trans⊆ p done = p trans⊆ p (skip p′) = skip (trans⊆ p p′) trans⊆ (skip p) (keep p′) = skip (trans⊆ p p′) trans⊆ (keep p) (keep p′) = keep (trans⊆ p p′) weak⊆ : ∀ {A Γ} → Γ ⊆ Γ , A weak⊆ = skip refl⊆ idtrans⊆ : ∀ {Γ Γ′ } → (p : Γ ⊆ Γ′) → trans⊆ refl⊆ p ≡ p idtrans⊆ done = refl idtrans⊆ (skip p) = cong skip (idtrans⊆ p) idtrans⊆ (keep p) = cong keep (idtrans⊆ p) idtrans⊆′ : ∀ {Γ Γ′} → (p : Γ ⊆ Γ′) → trans⊆ p refl⊆ ≡ p idtrans⊆′ done = refl idtrans⊆′ (skip p) = cong skip (idtrans⊆′ p) idtrans⊆′ (keep p) = cong keep (idtrans⊆′ p) assoctrans⊆ : ∀ {Γ Γ′ Γ″ Γ‴} → (p : Γ ⊆ Γ′) (p′ : Γ′ ⊆ Γ″) (p″ : Γ″ ⊆ Γ‴) → trans⊆ (trans⊆ p p′) p″ ≡ trans⊆ p (trans⊆ p′ p″) assoctrans⊆ p p′ done = refl assoctrans⊆ p p′ (skip p″) = cong skip (assoctrans⊆ p p′ p″) assoctrans⊆ p (skip p′) (keep p″) = cong skip (assoctrans⊆ p p′ p″) assoctrans⊆ (skip p) (keep p′) (keep p″) = cong skip (assoctrans⊆ p p′ p″) assoctrans⊆ (keep p) (keep p′) (keep p″) = cong keep (assoctrans⊆ p p′ p″) -- Monotonicity of stack membership with respect to stack inclusion. module _ {X : Set} where mono∈ : ∀ {A : X} {Γ Γ′} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′ mono∈ done () mono∈ (skip p) i = pop (mono∈ p i) mono∈ (keep p) top = top mono∈ (keep p) (pop i) = pop (mono∈ p i) idmono∈ : ∀ {A : X} {Γ} → (i : A ∈ Γ) → mono∈ refl⊆ i ≡ i idmono∈ top = refl idmono∈ (pop i) = cong pop (idmono∈ i) -- Stack thinning. module _ {X : Set} where _∖_ : ∀ {A} → (Γ : Stack X) → A ∈ Γ → Stack X ∅ ∖ () (Γ , A) ∖ top = Γ (Γ , B) ∖ pop i = Γ ∖ i , B thin⊆ : ∀ {A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊆ Γ thin⊆ top = weak⊆ thin⊆ (pop i) = keep (thin⊆ i) -- Decidable equality of stack membership. module _ {X : Set} where data _=∈_ {A} {Γ : Stack X} (i : A ∈ Γ) : ∀ {B} → B ∈ Γ → Set where same : i =∈ i diff : ∀ {B} → (j : B ∈ Γ ∖ i) → i =∈ mono∈ (thin⊆ i) j _≟∈_ : ∀ {A B Γ} → (i : A ∈ Γ) (j : B ∈ Γ) → i =∈ j top ≟∈ top = same top ≟∈ pop j rewrite sym (idmono∈ j) = diff j pop i ≟∈ top = diff top pop i ≟∈ pop j with i ≟∈ j pop i ≟∈ pop .i | same = same pop i ≟∈ pop ._ | diff j = diff (pop j)
{ "alphanum_fraction": 0.467438948, "avg_line_length": 27.2991452991, "ext": "agda", "hexsha": "b38d91bd3744dabb69075e96a4ef069c79c3ff59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/nbe-correctness", "max_forks_repo_path": "src/Stack.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/nbe-correctness", "max_issues_repo_path": "src/Stack.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/nbe-correctness", "max_stars_repo_path": "src/Stack.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z", "num_tokens": 1561, "size": 3194 }
module examplesPaperJFP.loadAllOOAgdaPart2 where -- This is a continuation of the file loadAllOOAgdaPart1 -- giving the code from the ooAgda paper -- This file was split into two because of a builtin IO which -- makes loading files from part1 and part2 incompatible. -- Note that some files which are directly in the libary can be found -- in loadAllOOAgdaFilesAsInLibrary -- Sect 1 - 7 are in loadAllOOAgdaPart1.agda -- 8. State-Dependent Objects and IO -- 8.1 State-Dependent Interfaces import examplesPaperJFP.StatefulObject -- 8.2 State-Dependent Objects -- 8.2.1. Example of Use of Safe Stack import examplesPaperJFP.safeFibStackMachineObjectOriented -- 8.3 Reasoning About Stateful Objects import examplesPaperJFP.StackBisim -- 8.3.1. Bisimilarity -- 8.3.2. Verifying stack laws} -- 8.3.3. Bisimilarity of different stack implementations -- 8.4. State-Dependent IO import examplesPaperJFP.StateDependentIO -- 9. A Drawing Program in Agda -- code as in paper adapted to new Agda open import examplesPaperJFP.IOGraphicsLib -- code as in library see loadAllOOAgdaFilesAsInLibrary.agda -- open import SizedIO.IOGraphicsLib open import examplesPaperJFP.ExampleDrawingProgram -- 10. A Graphical User Interface using an Object -- 10.1. wxHaskell -- 10.2. A Library for Object-Based GUIs in Agda open import examplesPaperJFP.VariableList open import examplesPaperJFP.WxGraphicsLib open import examplesPaperJFP.VariableListForDispatchOnly -- 10.3 Example: A GUI controlling a Space Ship in Agda open import examplesPaperJFP.SpaceShipSimpleVar open import examplesPaperJFP.SpaceShipCell open import examplesPaperJFP.SpaceShipAdvanced -- 11. Related Work open import examplesPaperJFP.agdaCodeBrady -- 12. Conclusion -- Bibliography
{ "alphanum_fraction": 0.8012564249, "avg_line_length": 26.5303030303, "ext": "agda", "hexsha": "d1f6908ea2209c507a5aa73e684b862edd5d5b63", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart2.agda", "max_line_length": 69, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/loadAllOOAgdaPart2.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 491, "size": 1751 }
-- {-# OPTIONS -v tc.meta:20 #-} -- Andreas, 2011-04-21 module PruneLHS where data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a data Bool : Set where true false : Bool test : let X : Bool -> Bool -> Bool -> Bool X = _ in (C : Set) -> (({x y : Bool} -> X x y x ≡ x) -> ({x y : Bool} -> X x x y ≡ x) -> C) -> C test C k = k refl refl -- by the first equation, X cannot depend its second argument -- by the second equation, X cannot depend on its third argument
{ "alphanum_fraction": 0.5402750491, "avg_line_length": 28.2777777778, "ext": "agda", "hexsha": "b5687c8ca45d8c412d437fc5f9d5c064d3b40d89", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PruneLHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PruneLHS.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PruneLHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 509 }
{- This file contains a diagonalization procedure simpler than Smith normalization. For any matrix M, it provides two invertible matrices P, Q, one diagonal matrix D and an equality M = P·D·Q. The only difference from Smith is, the numbers in D are allowed to be arbitrary, instead of being consecutively divisible. But it is enough to establish important properties of finitely presented abelian groups. Also, it can be computed much more efficiently (than Smith, only). -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Diagonalization where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+ℕ_ ; +-assoc to +Assocℕ) open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility using (m∣n→m≤n) renaming (∣-trans to ∣ℕ-trans ; ∣-refl to ∣-reflℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; _-_ ; -_ ; addEq) open import Cubical.Data.Int.Divisibility open import Cubical.Data.FinData open import Cubical.Data.Empty as Empty open import Cubical.Data.Unit as Unit open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.Elementaries open import Cubical.Algebra.IntegerMatrix.Base open import Cubical.Algebra.IntegerMatrix.Elementaries open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to ℤRing) open import Cubical.Relation.Nullary open import Cubical.Induction.WellFounded private variable m n k : ℕ open CommRingStr (ℤRing .snd) open Coefficient ℤRing open Sim open ElemTransformation ℤRing open ElemTransformationℤ open SwapPivot open RowsImproved open ColsImproved -- Sequence of non-zero integers isNonZero : List ℤ → Type isNonZero [] = Unit isNonZero (x ∷ xs) = (¬ x ≡ 0) × isNonZero xs isPropIsNonZero : (xs : List ℤ) → isProp (isNonZero xs) isPropIsNonZero [] = isPropUnit isPropIsNonZero (x ∷ xs) = isProp× (isPropΠ (λ _ → isProp⊥)) (isPropIsNonZero xs) NonZeroList : Type NonZeroList = Σ[ xs ∈ List ℤ ] isNonZero xs cons : (n : ℤ)(xs : NonZeroList) → ¬ n ≡ 0 → NonZeroList cons n (xs , _) _ .fst = n ∷ xs cons n ([] , _) p .snd = p , tt cons n (x ∷ xs , q) p .snd = p , q -- Smith normal matrix _+length_ : NonZeroList → ℕ → ℕ xs +length n = length (xs .fst) +ℕ n diagMat : (xs : List ℤ)(m n : ℕ) → Mat (length xs +ℕ m) (length xs +ℕ n) diagMat [] _ _ = 𝟘 diagMat (x ∷ xs) _ _ = x ⊕ diagMat xs _ _ diagMat⊕ : (a : ℤ)(xs : NonZeroList){m n : ℕ} → (p : ¬ a ≡ 0) → a ⊕ diagMat (xs .fst) m n ≡ diagMat (cons a xs p .fst) m n diagMat⊕ _ _ _ = refl -- Diagonal matrix with non-zero diagonal elements -- Notice that we allow non-square matrices. record isDiagonal (M : Mat m n) : Type where field divs : NonZeroList rowNull : ℕ colNull : ℕ rowEq : divs +length rowNull ≡ m colEq : divs +length colNull ≡ n matEq : PathP (λ t → Mat (rowEq t) (colEq t)) (diagMat (divs .fst) rowNull colNull) M open isDiagonal row col : {M : Mat m n} → isDiagonal M → ℕ row isNorm = isNorm .divs +length isNorm .rowNull col isNorm = isNorm .divs +length isNorm .colNull isDiagonal𝟘 : isDiagonal (𝟘 {m = m} {n = n}) isDiagonal𝟘 .divs = [] , tt isDiagonal𝟘 {m = m} .rowNull = m isDiagonal𝟘 {n = n} .colNull = n isDiagonal𝟘 .rowEq = refl isDiagonal𝟘 .colEq = refl isDiagonal𝟘 .matEq = refl isDiagonalEmpty : (M : Mat 0 n) → isDiagonal M isDiagonalEmpty _ .divs = [] , tt isDiagonalEmpty _ .rowNull = 0 isDiagonalEmpty {n = n} _ .colNull = n isDiagonalEmpty _ .rowEq = refl isDiagonalEmpty _ .colEq = refl isDiagonalEmpty _ .matEq = isContr→isProp isContrEmpty _ _ isDiagonalEmptyᵗ : (M : Mat m 0) → isDiagonal M isDiagonalEmptyᵗ _ .divs = [] , tt isDiagonalEmptyᵗ {m = m} _ .rowNull = m isDiagonalEmptyᵗ _ .colNull = 0 isDiagonalEmptyᵗ _ .rowEq = refl isDiagonalEmptyᵗ _ .colEq = refl isDiagonalEmptyᵗ _ .matEq = isContr→isProp isContrEmptyᵗ _ _ -- Induction step towards diagonalization data DivStatus (a : ℤ)(M : Mat (suc m) (suc n)) : Type where badCol : (i : Fin m)(p : ¬ a ∣ M (suc i) zero) → DivStatus a M badRow : (j : Fin n)(p : ¬ a ∣ M zero (suc j)) → DivStatus a M allDone : ((i : Fin m) → a ∣ M (suc i) zero) → ((j : Fin n) → a ∣ M zero (suc j)) → DivStatus a M divStatus : (a : ℤ)(M : Mat (suc m) (suc n)) → DivStatus a M divStatus a M = let col? = ∀Dec (λ i → a ∣ M (suc i) zero) (λ _ → dec∣ _ _) row? = ∀Dec (λ j → a ∣ M zero (suc j)) (λ _ → dec∣ _ _) in case col? return (λ _ → DivStatus a M) of λ { (inr p) → badCol (p .fst) (p .snd) ; (inl p) → case row? return (λ _ → DivStatus a M) of λ { (inr q) → badRow (q .fst) (q .snd) ; (inl q) → allDone p q }} record DiagStep (M : Mat (suc m) (suc n)) : Type where field sim : Sim M firstColClean : (i : Fin m) → sim .result (suc i) zero ≡ 0 firstRowClean : (j : Fin n) → sim .result zero (suc j) ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 open DiagStep simDiagStep : {M : Mat (suc m) (suc n)}(sim : Sim M) → DiagStep (sim .result) → DiagStep M simDiagStep simM diag .sim = compSim simM (diag .sim) simDiagStep _ diag .firstColClean = diag .firstColClean simDiagStep _ diag .firstRowClean = diag .firstRowClean simDiagStep _ diag .nonZero = diag .nonZero private diagStep-helper : (M : Mat (suc m) (suc n)) → (p : ¬ M zero zero ≡ 0)(h : Norm (M zero zero)) → (div? : DivStatus (M zero zero) M) → DiagStep M diagStep-helper M p (acc ind) (badCol i q) = let improved = improveRows M p normIneq = ind _ (stDivIneq p q (improved .div zero) (improved .div (suc i))) in simDiagStep (improved .sim) (diagStep-helper _ (improved .nonZero) normIneq (divStatus _ _)) diagStep-helper M p (acc ind) (badRow j q) = let improved = improveCols M p normIneq = ind _ (stDivIneq p q (improved .div zero) (improved .div (suc j))) in simDiagStep (improved .sim) (diagStep-helper _ (improved .nonZero) normIneq (divStatus _ _)) diagStep-helper M p (acc ind) (allDone div₁ div₂) = let improveColM = improveCols M p invCol = bézoutRows-inv _ p div₂ divCol = (λ i → transport (λ t → invCol t zero ∣ invCol t (suc i)) (div₁ i)) improveRowM = improveRows (improveColM .sim .result) (improveColM .nonZero) invCol = bézoutRows-inv _ (improveColM .nonZero) divCol in record { sim = compSim (improveColM .sim) (improveRowM .sim) ; firstColClean = improveRowM .vanish ; firstRowClean = (λ j → (λ t → invCol (~ t) (suc j)) ∙ improveColM .vanish j) ; nonZero = improveRowM .nonZero } diagStep-getStart : (M : Mat (suc m) (suc n)) → NonZeroOrNot M → DiagStep M ⊎ (M ≡ 𝟘) diagStep-getStart _ (allZero p) = inr p diagStep-getStart M (hereIs i j p) = let swapM = swapPivot i j M swapNonZero = (λ r → p (swapM .swapEq ∙ r)) diagM = diagStep-helper _ swapNonZero (<-wellfounded _) (divStatus _ _) in inl (simDiagStep (swapM .sim) diagM) diagStep : (M : Mat (suc m) (suc n)) → DiagStep M ⊎ (M ≡ 𝟘) diagStep _ = diagStep-getStart _ (findNonZero _) -- The diagonalization record Diag (M : Mat m n) : Type where field sim : Sim M isdiag : isDiagonal (sim .result) open Diag simDiag : {M : Mat m n}(sim : Sim M) → Diag (sim .result) → Diag M simDiag simM diag .sim = compSim simM (diag .sim) simDiag _ diag .isdiag = diag .isdiag diag𝟘 : Diag (𝟘 {m = m} {n = n}) diag𝟘 .sim = idSim _ diag𝟘 .isdiag = isDiagonal𝟘 diagEmpty : (M : Mat 0 n) → Diag M diagEmpty _ .sim = idSim _ diagEmpty M .isdiag = isDiagonalEmpty M diagEmptyᵗ : (M : Mat m 0) → Diag M diagEmptyᵗ _ .sim = idSim _ diagEmptyᵗ M .isdiag = isDiagonalEmptyᵗ M decompDiagStep : (M : Mat (suc m) (suc n))(step : DiagStep M) → step .sim .result ≡ step .sim .result zero zero ⊕ sucMat (step .sim .result) decompDiagStep M step t zero zero = step .sim .result zero zero decompDiagStep M step t zero (suc j) = step .firstRowClean j t decompDiagStep M step t (suc i) zero = step .firstColClean i t decompDiagStep M step t (suc i) (suc j) = step .sim .result (suc i) (suc j) consIsDiagonal : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → isDiagonal M → isDiagonal (a ⊕ M) consIsDiagonal a _ p diag .divs = cons a (diag .divs) p consIsDiagonal _ _ _ diag .rowNull = diag .rowNull consIsDiagonal _ _ _ diag .colNull = diag .colNull consIsDiagonal _ _ _ diag .rowEq = (λ t → suc (diag .rowEq t)) consIsDiagonal _ _ _ diag .colEq = (λ t → suc (diag .colEq t)) consIsDiagonal a _ _ diag .matEq = (λ t → a ⊕ diag .matEq t) diagReduction : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → Diag M → Diag (a ⊕ M) diagReduction a _ _ diag .sim = ⊕Sim a (diag .sim) diagReduction a _ p diag .isdiag = consIsDiagonal a _ p (diag .isdiag) -- The Existence of Diagonalization diagonalize : (M : Mat m n) → Diag M diagonalize {m = 0} = diagEmpty diagonalize {m = suc m} {n = 0} = diagEmptyᵗ diagonalize {m = suc m} {n = suc n} M = helper (diagStep _) where helper : DiagStep M ⊎ (M ≡ 𝟘) → Diag M helper (inr p) = subst Diag (sym p) diag𝟘 helper (inl stepM) = let sucM = sucMat (stepM .sim .result) diagM = diagReduction _ _ (stepM .nonZero) (diagonalize sucM) in simDiag (compSim (stepM .sim) (≡Sim (decompDiagStep _ stepM))) diagM
{ "alphanum_fraction": 0.6582624225, "avg_line_length": 33.4, "ext": "agda", "hexsha": "2ebb999f040658076f172ff72c93098a04fa9b90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Diagonalization.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Diagonalization.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Diagonalization.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3465, "size": 9519 }
module constants where open import lib cedille-extension : string cedille-extension = "ced" self-name : string self-name = "self" pattern ignored-var = "_" pattern meta-var-pfx = '?' pattern qual-local-chr = '@' pattern qual-global-chr = '.' meta-var-pfx-str = 𝕃char-to-string [ meta-var-pfx ] qual-local-str = 𝕃char-to-string [ qual-local-chr ] qual-global-str = 𝕃char-to-string [ qual-global-chr ] options-file-name : string options-file-name = "options" global-error-string : string → string global-error-string msg = "{\"error\":\"" ^ msg ^ "\"" ^ "}" dot-cedille-directory : string → string dot-cedille-directory dir = combineFileNames dir ".cedille"
{ "alphanum_fraction": 0.6971514243, "avg_line_length": 22.2333333333, "ext": "agda", "hexsha": "c576fef6a38cf9fcf13635156427a0568895b2d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/constants.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/constants.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/constants.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 174, "size": 667 }
open import Agda.Builtin.Char open import Agda.Builtin.String open import Agda.Builtin.Maybe open import Agda.Builtin.Sigma open import Common.IO printTail : String → IO _ printTail str with primStringUncons str ... | just (_ , tl) = putStr tl ... | nothing = putStr "" main : _ main = printTail "/test/Compiler/simple/uncons.agda"
{ "alphanum_fraction": 0.7323529412, "avg_line_length": 24.2857142857, "ext": "agda", "hexsha": "a28cc1f584553eb4942400b0ed7d65a04b81455b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Compiler/simple/uncons.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/uncons.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/uncons.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 340 }
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Char where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Equality postulate Char : Set {-# BUILTIN CHAR Char #-} primitive primIsLower primIsDigit primIsAlpha primIsSpace primIsAscii primIsLatin1 primIsPrint primIsHexDigit : Char → Bool primToUpper primToLower : Char → Char primCharToNat : Char → Nat primNatToChar : Nat → Char primCharEquality : Char → Char → Bool primCharToNatInjective : ∀ a b → primCharToNat a ≡ primCharToNat b → a ≡ b
{ "alphanum_fraction": 0.7470288625, "avg_line_length": 29.45, "ext": "agda", "hexsha": "fa7330d98fb0b9e6e42ef39851fb2095eee44c49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Char.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Char.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 170, "size": 589 }
open import Oscar.Prelude module Oscar.Class.Amgu where record Amgu {𝔵} {X : Ø 𝔵} {𝔱} (T : X → Ø 𝔱) {𝔞} (A : X → Ø 𝔞) {𝔪} (M : Ø 𝔞 → Ø 𝔪) : Ø 𝔵 ∙̂ 𝔱 ∙̂ 𝔞 ∙̂ 𝔪 where field amgu : ∀ {x} → T x → T x → A x → M (A x) open Amgu ⦃ … ⦄ public
{ "alphanum_fraction": 0.4979253112, "avg_line_length": 24.1, "ext": "agda", "hexsha": "4faeec8548d6fa5692d8ed8858f5ea2966ece34b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Amgu.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Amgu.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Amgu.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 143, "size": 241 }
module FOLsequent where open import Data.Empty open import Data.Nat open import Data.Nat.Properties open import Data.String using (String) open import Data.Sum open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; subst) open import Relation.Nullary open import Data.List.Base as List using (List; []; _∷_; [_]; _++_) open import Data.List.Any as LAny open LAny.Membership-≡ data Term : Set where $ : ℕ → Term Fun : String → List Term → Term Const : String -> Term Const n = Fun n [] data Formula : Set where _⟨_⟩ : String → List Term → Formula _∧_ : Formula → Formula → Formula _∨_ : Formula → Formula → Formula _⟶_ : Formula → Formula → Formula ~_ : Formula → Formula All : (Term → Formula) → Formula Ex : (Term → Formula) → Formula -- data Structure : Set where -- ∣_∣ : Formula → Structure -- _,,_ : Structure → Structure → Structure -- Ø : Structure Structure = List Formula mutual FVt : Term → List ℕ FVt ($ x) = [ x ] FVt (Fun _ args) = FVlst args FVlst : List Term -> List ℕ FVlst [] = [] FVlst (x ∷ xs) = (FVt x) ++ (FVlst xs) FVf : Formula → List ℕ FVf (_ ⟨ lst ⟩) = FVlst lst FVf (f ∧ f₁) = FVf f ++ FVf f₁ FVf (f ∨ f₁) = FVf f ++ FVf f₁ FVf (f ⟶ f₁) = FVf f ++ FVf f₁ FVf (~ f) = FVf f FVf (All x) = FVf (x (Const "")) FVf (Ex x) = FVf (x (Const "")) FV : Structure → List ℕ FV [] = [] FV (f ∷ l) = FVf f ++ FV l _#_ : ℕ -> List ℕ -> Set x # xs = x ∉ xs ∪ : List ℕ -> ℕ ∪ [] = 0 ∪ (x ∷ xs) = x ⊔ (∪ xs) ∃# : List ℕ -> ℕ ∃# xs = suc (∪ xs) ------------------------------------------------------------------------------------ ℕ-meet-dist : ∀ {x y z : ℕ} -> (x ≤ y) ⊎ (x ≤ z) -> x ≤ y ⊔ z ℕ-meet-dist {zero} x≤y⊎x≤z = z≤n ℕ-meet-dist {suc x} {zero} {zero} (inj₁ ()) ℕ-meet-dist {suc x} {zero} {zero} (inj₂ ()) ℕ-meet-dist {suc x} {zero} {suc z} (inj₁ ()) ℕ-meet-dist {suc x} {zero} {suc z} (inj₂ sx≤sz) = sx≤sz ℕ-meet-dist {suc x} {suc y} {zero} (inj₁ sx≤sy) = sx≤sy ℕ-meet-dist {suc x} {suc y} {zero} (inj₂ ()) ℕ-meet-dist {suc x} {suc y} {suc z} (inj₁ (s≤s x≤y)) = s≤s (ℕ-meet-dist (inj₁ x≤y)) ℕ-meet-dist {suc x} {suc y} {suc z} (inj₂ (s≤s y≤z)) = s≤s (ℕ-meet-dist {_} {y} {z} (inj₂ y≤z)) ------------------------------------------------------------------------------------ ≤-refl : ∀ {x : ℕ} -> x ≤ x ≤-refl {zero} = z≤n ≤-refl {suc x} = s≤s ≤-refl ------------------------------------------------------------------------------------ ∈-cons : ∀ {L} {x y : ℕ} -> x ∈ (y ∷ L) -> ¬(x ≡ y) -> x ∈ L ∈-cons {[]} (here refl) ¬x≡y = ⊥-elim (¬x≡y refl) ∈-cons {[]} (there ()) ¬x≡y ∈-cons {y ∷ L} {x} (here refl) ¬x≡y = ⊥-elim (¬x≡y refl) ∈-cons {y ∷ L} {x} (there x∈L) ¬x≡y = x∈L ------------------------------------------------------------------------------------ ∃#-lemma' : ∀ x L -> x ∈ L -> x ≤ ∪ L ∃#-lemma' x [] () ∃#-lemma' x (y ∷ L) x∈y∷L with x ≟ y ∃#-lemma' x (.x ∷ L) x∈y∷L | yes refl = ℕ-meet-dist {x} {x} (inj₁ ≤-refl) ∃#-lemma' x (y ∷ L) x∈y∷L | no ¬x≡y = ℕ-meet-dist {x} {y} (inj₂ (∃#-lemma' x L (∈-cons x∈y∷L ¬x≡y))) ------------------------------------------------------------------------------------ ∃#-lemma'' : ∀ x L -> x ∈ L -> ¬ (x ≡ ∃# L) ∃#-lemma'' .(suc (∪ L)) L x∈L refl = 1+n≰n {∪ L} (∃#-lemma' (suc (∪ L)) L x∈L) ------------------------------------------------------------------------------------ ∃#-lemma : ∀ L -> ∃# L ∉ L ∃#-lemma L ∃#L∈L = ∃#-lemma'' (∃# L) L ∃#L∈L refl data _⊢_ : Structure → Structure → Set where I : ∀ {A} → [ A ] ⊢ [ A ] Cut : ∀ A {Γ Σ Δ Π} → Γ ⊢ (Δ ++ [ A ]) → ([ A ] ++ Σ) ⊢ Π → ------------------------------------ (Γ ++ Σ) ⊢ (Δ ++ Π) ∧L₁ : ∀ {Γ Δ A B} → (Γ ++ [ A ]) ⊢ Δ → (Γ ++ [ A ∧ B ]) ⊢ Δ ∧L₂ : ∀ {Γ Δ A B} → (Γ ++ [ B ]) ⊢ Δ → (Γ ++ [ A ∧ B ]) ⊢ Δ ∧R : ∀ {Γ Σ Δ Π A B} → Γ ⊢ ([ A ] ++ Δ) → Σ ⊢ ([ B ] ++ Π) → ----------------------------------- (Γ ++ Σ) ⊢ ([ A ∧ B ] ++ Δ ++ Π) ∨R₁ : ∀ {Γ Δ A B} → Γ ⊢ ([ A ] ++ Δ) → Γ ⊢ ([ A ∨ B ] ++ Δ) ∨R₂ : ∀ {Γ Δ A B} → Γ ⊢ ([ B ] ++ Δ) → Γ ⊢ ([ A ∨ B ] ++ Δ) ∨L : ∀ {Γ Σ Δ Π A B} → (Γ ++ [ A ]) ⊢ Δ → (Σ ++ [ B ]) ⊢ Π → ----------------------------------- (Γ ++ Σ ++ [ A ∨ B ]) ⊢ (Δ ++ Π) ⟶L : ∀ {Γ Σ Δ Π A B} → Γ ⊢ ([ A ] ++ Δ) → (Σ ++ [ B ]) ⊢ Π → ------------------------------------ (Γ ++ Σ ++ [ A ⟶ B ]) ⊢ (Δ ++ Π) ⟶R : ∀ {Γ Δ A B} → (Γ ++ [ A ]) ⊢ ([ B ] ++ Δ) → Γ ⊢ ([ A ⟶ B ] ++ Δ) ~L : ∀ {Γ Δ A} → Γ ⊢ ([ A ] ++ Δ) → (Γ ++ [ ~ A ]) ⊢ Δ ~R : ∀ {Γ Δ A} → (Γ ++ [ A ]) ⊢ Δ → Γ ⊢ ([ ~ A ] ++ Δ) AllL : ∀ {Γ Δ A t} → (Γ ++ [ A t ]) ⊢ Δ → (Γ ++ [ All A ]) ⊢ Δ AllR : ∀ {Γ Δ A y} → Γ ⊢ ([ A ($ y) ] ++ Δ) → (y-fresh : y # FV (Γ ++ Δ)) → ---------------------- Γ ⊢ ([ All A ] ++ Δ) ExL : ∀ {Γ Δ A y} → (Γ ++ [ A ($ y) ]) ⊢ Δ → (y-fresh : y # FV (Γ ++ Δ)) → ---------------------- (Γ ++ [ Ex A ]) ⊢ Δ ExR : ∀ {Γ Δ A t} → Γ ⊢ ([ A t ] ++ Δ) → Γ ⊢ ([ Ex A ] ++ Δ) WL : ∀ {Γ Δ A} → Γ ⊢ Δ → (Γ ++ [ A ]) ⊢ Δ WR : ∀ {Γ Δ A} → Γ ⊢ Δ → Γ ⊢ ([ A ] ++ Δ) CL : ∀ {Γ Δ A} → (Γ ++ [ A ] ++ [ A ]) ⊢ Δ → (Γ ++ [ A ]) ⊢ Δ CR : ∀ {Γ Δ A} → Γ ⊢ ([ A ] ++ [ A ] ++ Δ) → Γ ⊢ ([ A ] ++ Δ) PL : ∀ {Γ₁ Γ₂ Δ A B} → (Γ₁ ++ [ A ] ++ [ B ] ++ Γ₂) ⊢ Δ → ------------------------------------ (Γ₁ ++ [ B ] ++ [ A ] ++ Γ₂) ⊢ Δ PR : ∀ {Γ Δ₁ Δ₂ A B} → Γ ⊢ (Δ₁ ++ [ A ] ++ [ B ] ++ Δ₂) → ------------------------------------ Γ ⊢ (Δ₁ ++ [ B ] ++ [ A ] ++ Δ₂) PL' : ∀ {A B Δ} -> (A ∷ [ B ]) ⊢ Δ → (B ∷ [ A ]) ⊢ Δ PL' {A} {B} A,B⊢Δ = PL {[]} {[]} {_} {A} {B} A,B⊢Δ PR' : ∀ {A B Γ} -> Γ ⊢ (A ∷ [ B ]) → Γ ⊢ (B ∷ [ A ]) PR' {A} {B} Γ⊢A,B = PR {_} {[]} {[]} {A} {B} Γ⊢A,B _>>_ : ∀ {A B : Set} -> (A → B) -> A -> B A→B >> A = A→B A open import Data.Product _>>₂_ : ∀ {A B C : Set} -> (A → B → C) -> A × B -> C A→B→C >>₂ (A , B) = A→B→C A B infixr 4 _>>_ infixr 4 _>>₂_ lemma : ∀ {A B C} -> [] ⊢ [ (A ⟶ (B ∨ C)) ⟶ (((B ⟶ (~ A)) ∧ (~ C)) ⟶ (~ A)) ] lemma {A} {B} {C} = ⟶R >> ⟶R >> PL' >> CR >> ⟶L {[]} {[ (B ⟶ (~ A)) ∧ (~ C) ]} {[ ~ A ]} {[ ~ A ]} >>₂ (PR' >> ~R >> I) , PL' >> CL {[ B ∨ C ]} {A = (B ⟶ (~ A)) ∧ (~ C)} >> ∧L₂ {(B ∨ C) ∷ [ (B ⟶ (~ A)) ∧ (~ C) ]} >> PL {[ B ∨ C ]} {[]} >> ∧L₁ {(B ∨ C) ∷ [ ~ C ]} >> ⟶L {(B ∨ C) ∷ [ ~ C ]} {[]} {[]} >>₂ (~L {[ B ∨ C ]} >> PR' >> ∨L {[]} {[]} {[ B ]} >>₂ I , I) , I -- AllR {y = y} (AllL {[]} {t = $ y} I) y-fresh -- where -- y = ∃# (FV [ All (λ x → P ⟨ [ x ] ⟩) ]) -- y-fresh = ∃#-lemma (FV [ All (λ x → P ⟨ [ x ] ⟩) ]) AllR# : ∀ {Γ Δ A} → Γ ⊢ ([ A ($ (∃# (FV (Γ ++ Δ)))) ] ++ Δ) → Γ ⊢ ([ All A ] ++ Δ) AllR# {Γ} {Δ} Γ⊢[y/x]A,Δ = AllR Γ⊢[y/x]A,Δ (∃#-lemma (FV (Γ ++ Δ))) ExL# : ∀ {Γ Δ A} → (Γ ++ [ A ($ (∃# (FV (Γ ++ Δ)))) ]) ⊢ Δ → (Γ ++ [ Ex A ]) ⊢ Δ ExL# {Γ} {Δ} Γ,[y/x]A⊢Δ = ExL {Γ} Γ,[y/x]A⊢Δ (∃#-lemma (FV (Γ ++ Δ))) lemma₁ : ∀ {P} → [ All (λ x → P ⟨ [ x ] ⟩) ] ⊢ [ All (λ y → P ⟨ [ y ] ⟩) ] lemma₁ {P} = AllR# (AllL {[]} I) lemma₂ : ∀ {P} → [ Ex (λ y → All (λ x → P ⟨ x ∷ [ y ] ⟩)) ] ⊢ [ All (λ x → Ex (λ y → P ⟨ x ∷ [ y ] ⟩)) ] lemma₂ {P} = AllR# >> ExL# {[]} >> ExR >> AllL {[]} >> I
{ "alphanum_fraction": 0.3375071144, "avg_line_length": 33.4666666667, "ext": "agda", "hexsha": "46a1d051bce0214a790f216cc534f3dd53bcc206", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "goodlyrottenapple/FOLdisplay", "max_forks_repo_path": "FOLsequent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "goodlyrottenapple/FOLdisplay", "max_issues_repo_path": "FOLsequent.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "b4f3ce288633417ce309a0a1371ad0907a007b30", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "goodlyrottenapple/FOLdisplay", "max_stars_repo_path": "FOLsequent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3337, "size": 7028 }
open import Agda.Builtin.Nat open import Agda.Builtin.Sigma open import Agda.Builtin.Equality data Maybe {a} (A : Set a) : Set a where just : A → Maybe A nothing : Maybe A record RawRoutingAlgebra : Set₁ where field PathWeight : Set module _ (A : RawRoutingAlgebra) where open RawRoutingAlgebra A PathWeight⁺ : Set PathWeight⁺ = Maybe (Σ PathWeight λ _ → Nat) data P : PathWeight⁺ → Set where [_] : ∀ {k} → snd k ≡ 0 → P (just k) badness : (r : PathWeight⁺) → P r → Set badness r [ refl ] = Nat
{ "alphanum_fraction": 0.6559546314, "avg_line_length": 20.3461538462, "ext": "agda", "hexsha": "b040795dd91d725998b27c2d65e3b9b0bef76a7c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5424.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5424.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5424.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 183, "size": 529 }
module Data.Boolean where import Lvl open import Type -- Boolean type data Bool : Type{Lvl.𝟎} where 𝑇 : Bool -- Represents truth 𝐹 : Bool -- Represents falsity {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE 𝑇 #-} {-# BUILTIN FALSE 𝐹 #-} elim : ∀{ℓ}{T : Bool → Type{ℓ}} → T(𝑇) → T(𝐹) → ((b : Bool) → T(b)) elim t _ 𝑇 = t elim _ f 𝐹 = f not : Bool → Bool not 𝑇 = 𝐹 not 𝐹 = 𝑇 {-# COMPILE GHC not = not #-} -- Control-flow if-else expression if_then_else_ : ∀{ℓ}{T : Type{ℓ}} → Bool → T → T → T if b then t else f = elim t f b
{ "alphanum_fraction": 0.5875706215, "avg_line_length": 19.6666666667, "ext": "agda", "hexsha": "5065f13c75df4ba68fcfb4f294e4bf9ab7d2a742", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Boolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Boolean.agda", "max_line_length": 67, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Boolean.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 212, "size": 531 }
{-# OPTIONS --erased-cubical --safe #-} module FarmCanon where open import Data.List using (List; _∷_; []) open import Data.Nat using (ℕ) open import Data.Sign renaming (+ to s+ ; - to s-) open import Data.Vec using (Vec; _∷_; []; map) open import Canon using (makeCanon2) open import Instruments using (pianos) open import Interval open import MakeTracks using (makeTrackList) open import MidiEvent open import Note open import Pitch subject : List Note subject = tone qtr (c 5) ∷ tone qtr (d 5) ∷ tone half (e 5) ∷ tone 8th (e 5) ∷ tone 8th (e 5) ∷ tone 8th (d 5) ∷ tone 8th (d 5) ∷ tone half (e 5) ∷ [] transpositions : Vec Opi 4 transpositions = map (makeSigned s-) (per1 ∷ per5 ∷ per8 ∷ per12 ∷ []) repeats : ℕ repeats = 3 delay : Duration delay = half canon : Vec (List Note) 4 canon = makeCanon2 subject delay transpositions tempo : ℕ tempo = 120 canonTracks : List MidiTrack canonTracks = makeTrackList pianos tempo canon
{ "alphanum_fraction": 0.6541129832, "avg_line_length": 21.4680851064, "ext": "agda", "hexsha": "e1ab3263526ca06fdb2d702f546f8f79db200016", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/FarmCanon.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/FarmCanon.agda", "max_line_length": 70, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/FarmCanon.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 343, "size": 1009 }
------------------------------------------------------------------------------ -- ABP Lemma 2 ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From Dybjer and Sander's paper: The second lemma states that given -- a state of the latter kind (see Lemma 1) we will arrive at a new -- start state, which is identical to the old start state except that -- the bit has alternated and the first item in the input stream has -- been removed. module FOTC.Program.ABP.Lemma2I where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Base.Loop open import FOTC.Base.PropertiesI open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Fair.PropertiesI open import FOTC.Program.ABP.PropertiesI open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- Helper function for Lemma 2. helper₂ : ∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} → Bit b → Fair os₁' → S' b i' is' os₁' os₂' as' bs' cs' ds' js' → ∀ ft₂ os₂'' → F*T ft₂ → Fair os₂'' → os₂' ≡ ft₂ ++ os₂'' → ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ] Fair os₁'' ∧ Fair os₂'' ∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js' helper₂ {b} {i'} {is'} {os₁'} {os₂'} {as'} {bs'} {cs'} {ds'} {js'} Bb Fos₁' (as'S' , bs'S' , cs'S' , ds'S' , js'S') .(T ∷ []) os₂'' f*tnil Fos₂'' os₂'-eq = os₁' , os₂'' , as'' , bs'' , cs'' , ds'' , Fos₁' , Fos₂'' , as''-eq , bs''-eq , cs''-eq , refl , js'-eq where os₂'-eq-helper : os₂' ≡ T ∷ os₂'' os₂'-eq-helper = os₂' ≡⟨ os₂'-eq ⟩ (T ∷ []) ++ os₂'' ≡⟨ ++-∷ T [] os₂'' ⟩ T ∷ [] ++ os₂'' ≡⟨ ∷-rightCong (++-leftIdentity os₂'') ⟩ T ∷ os₂'' ∎ ds'' : D ds'' = corrupt os₂'' · cs' ds'-eq : ds' ≡ ok b ∷ ds'' ds'-eq = ds' ≡⟨ ds'S' ⟩ corrupt os₂' · (b ∷ cs') ≡⟨ ·-leftCong (corruptCong os₂'-eq-helper) ⟩ corrupt (T ∷ os₂'') · (b ∷ cs') ≡⟨ corrupt-T os₂'' b cs' ⟩ ok b ∷ corrupt os₂'' · cs' ≡⟨ refl ⟩ ok b ∷ ds'' ∎ as'' : D as'' = as' as''-eq : as'' ≡ send (not b) · is' · ds'' as''-eq = as'' ≡⟨ as'S' ⟩ await b i' is' ds' ≡⟨ awaitCong₄ ds'-eq ⟩ await b i' is' (ok b ∷ ds'') ≡⟨ await-ok≡ b b i' is' ds'' refl ⟩ send (not b) · is' · ds'' ∎ bs'' : D bs'' = bs' bs''-eq : bs'' ≡ corrupt os₁' · as' bs''-eq = bs'S' cs'' : D cs'' = cs' cs''-eq : cs'' ≡ ack (not b) · bs' cs''-eq = cs'S' js'-eq : js' ≡ out (not b) · bs'' js'-eq = js'S' helper₂ {b} {i'} {is'} {os₁'} {os₂'} {as'} {bs'} {cs'} {ds'} {js'} Bb Fos₁' (as'S' , bs'S' , cs'S' , ds'S' , js'S') .(F ∷ ft₂) os₂'' (f*tcons {ft₂} FTft₂) Fos₂'' os₂'-eq = helper₂ Bb (tail-Fair Fos₁') ihS' ft₂ os₂'' FTft₂ Fos₂'' refl where os₁^ : D os₁^ = tail₁ os₁' os₂^ : D os₂^ = ft₂ ++ os₂'' os₂'-eq-helper : os₂' ≡ F ∷ os₂^ os₂'-eq-helper = os₂' ≡⟨ os₂'-eq ⟩ (F ∷ ft₂) ++ os₂'' ≡⟨ ++-∷ _ _ _ ⟩ F ∷ ft₂ ++ os₂'' ≡⟨ refl ⟩ F ∷ os₂^ ∎ ds^ : D ds^ = corrupt os₂^ · cs' ds'-eq : ds' ≡ error ∷ ds^ ds'-eq = ds' ≡⟨ ds'S' ⟩ corrupt os₂' · (b ∷ cs') ≡⟨ ·-leftCong (corruptCong os₂'-eq-helper) ⟩ corrupt (F ∷ os₂^) · (b ∷ cs') ≡⟨ corrupt-F _ _ _ ⟩ error ∷ corrupt os₂^ · cs' ≡⟨ refl ⟩ error ∷ ds^ ∎ as^ : D as^ = await b i' is' ds^ as'-eq : as' ≡ < i' , b > ∷ as^ as'-eq = as' ≡⟨ as'S' ⟩ await b i' is' ds' ≡⟨ awaitCong₄ ds'-eq ⟩ await b i' is' (error ∷ ds^) ≡⟨ await-error _ _ _ _ ⟩ < i' , b > ∷ await b i' is' ds^ ≡⟨ refl ⟩ < i' , b > ∷ as^ ∎ bs^ : D bs^ = corrupt os₁^ · as^ bs'-eq-helper₁ : os₁' ≡ T ∷ tail₁ os₁' → bs' ≡ ok < i' , b > ∷ bs^ bs'-eq-helper₁ h = bs' ≡⟨ bs'S' ⟩ corrupt os₁' · as' ≡⟨ subst₂ (λ t t' → corrupt os₁' · as' ≡ corrupt t · t') h as'-eq refl ⟩ corrupt (T ∷ tail₁ os₁') · (< i' , b > ∷ as^) ≡⟨ corrupt-T _ _ _ ⟩ ok < i' , b > ∷ corrupt (tail₁ os₁') · as^ ≡⟨ refl ⟩ ok < i' , b > ∷ bs^ ∎ bs'-eq-helper₂ : os₁' ≡ F ∷ tail₁ os₁' → bs' ≡ error ∷ bs^ bs'-eq-helper₂ h = bs' ≡⟨ bs'S' ⟩ corrupt os₁' · as' ≡⟨ subst₂ (λ t t' → corrupt os₁' · as' ≡ corrupt t · t') h as'-eq refl ⟩ corrupt (F ∷ tail₁ os₁') · (< i' , b > ∷ as^) ≡⟨ corrupt-F _ _ _ ⟩ error ∷ corrupt (tail₁ os₁') · as^ ≡⟨ refl ⟩ error ∷ bs^ ∎ bs'-eq : bs' ≡ ok < i' , b > ∷ bs^ ∨ bs' ≡ error ∷ bs^ bs'-eq = case (λ h → inj₁ (bs'-eq-helper₁ h)) (λ h → inj₂ (bs'-eq-helper₂ h)) (head-tail-Fair Fos₁') cs^ : D cs^ = ack (not b) · bs^ cs'-eq-helper₁ : bs' ≡ ok < i' , b > ∷ bs^ → cs' ≡ b ∷ cs^ cs'-eq-helper₁ h = cs' ≡⟨ cs'S' ⟩ ack (not b) · bs' ≡⟨ ·-rightCong h ⟩ ack (not b) · (ok < i' , b > ∷ bs^) ≡⟨ ack-ok≢ _ _ _ _ (not-x≢x Bb) ⟩ not (not b) ∷ ack (not b) · bs^ ≡⟨ ∷-leftCong (not-involutive Bb) ⟩ b ∷ ack (not b) · bs^ ≡⟨ refl ⟩ b ∷ cs^ ∎ cs'-eq-helper₂ : bs' ≡ error ∷ bs^ → cs' ≡ b ∷ cs^ cs'-eq-helper₂ h = cs' ≡⟨ cs'S' ⟩ ack (not b) · bs' ≡⟨ ·-rightCong h ⟩ ack (not b) · (error ∷ bs^) ≡⟨ ack-error _ _ ⟩ not (not b) ∷ ack (not b) · bs^ ≡⟨ ∷-leftCong (not-involutive Bb) ⟩ b ∷ ack (not b) · bs^ ≡⟨ refl ⟩ b ∷ cs^ ∎ cs'-eq : cs' ≡ b ∷ cs^ cs'-eq = case cs'-eq-helper₁ cs'-eq-helper₂ bs'-eq js'-eq-helper₁ : bs' ≡ ok < i' , b > ∷ bs^ → js' ≡ out (not b) · bs^ js'-eq-helper₁ h = js' ≡⟨ js'S' ⟩ out (not b) · bs' ≡⟨ ·-rightCong h ⟩ out (not b) · (ok < i' , b > ∷ bs^) ≡⟨ out-ok≢ (not b) b i' bs^ (not-x≢x Bb) ⟩ out (not b) · bs^ ∎ js'-eq-helper₂ : bs' ≡ error ∷ bs^ → js' ≡ out (not b) · bs^ js'-eq-helper₂ h = js' ≡⟨ js'S' ⟩ out (not b) · bs' ≡⟨ ·-rightCong h ⟩ out (not b) · (error ∷ bs^) ≡⟨ out-error (not b) bs^ ⟩ out (not b) · bs^ ∎ js'-eq : js' ≡ out (not b) · bs^ js'-eq = case js'-eq-helper₁ js'-eq-helper₂ bs'-eq ds^-eq : ds^ ≡ corrupt os₂^ · (b ∷ cs^) ds^-eq = ·-rightCong cs'-eq ihS' : S' b i' is' os₁^ os₂^ as^ bs^ cs^ ds^ js' ihS' = refl , refl , refl , ds^-eq , js'-eq -- From Dybjer and Sander's paper: From the assumption that -- os₂' ∈ Fair and hence by unfolding Fair, we conclude that there are -- ft₂ : F*T and os₂'' : Fair, such that os₂' = ft₂ ++ os₂''. -- -- We proceed by induction on ft₂ : F*T using helper. lemma₂ : ∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} → Bit b → Fair os₁' → Fair os₂' → S' b i' is' os₁' os₂' as' bs' cs' ds' js' → ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ] Fair os₁'' ∧ Fair os₂'' ∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js' lemma₂ {b} {is' = is'} {os₂' = os₂'} {js' = js'} Bb Fos₁' Fos₂' s' = helper₁ (Fair-out Fos₂') where helper₁ : (∃[ ft₂ ] ∃[ os₂'' ] F*T ft₂ ∧ os₂' ≡ ft₂ ++ os₂'' ∧ Fair os₂'') → ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ] Fair os₁'' ∧ Fair os₂'' ∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js' helper₁ (ft₂ , os₂'' , FTft₂ , os₂'-eq , Fos₂'') = helper₂ Bb Fos₁' s' ft₂ os₂'' FTft₂ Fos₂'' os₂'-eq
{ "alphanum_fraction": 0.4271962958, "avg_line_length": 32.05859375, "ext": "agda", "hexsha": "7abdf7a61cf79ba103743029e5e009bb2bd823c9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/ABP/Lemma2I.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/ABP/Lemma2I.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/ABP/Lemma2I.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 3344, "size": 8207 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.CoHSpace module homotopy.Cogroup where record CogroupStructure {i} (X : Ptd i) : Type i where field co-h-struct : CoHSpaceStructure X ⊙inv : X ⊙→ X open CoHSpaceStructure co-h-struct public inv : de⊙ X → de⊙ X inv = fst ⊙inv field ⊙inv-l : ⊙Wedge-rec ⊙inv (⊙idf X) ⊙∘ ⊙coμ ⊙∼ ⊙cst ⊙assoc : ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ ⊙∼ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ {- module _ {i j : ULevel} {X : Ptd i} (CGS : CogroupStructure X) where open CogroupStructure CGS private lemma-inv : ⊙Wedge-rec (⊙Lift-fmap ⊙inv) (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} == ⊙cst abstract lemma-inv = ! (⊙λ= (⊙∘-assoc (⊙Wedge-rec (⊙Lift-fmap ⊙inv) (⊙idf (⊙Lift {j = j} X))) (⊙∨-fmap ⊙lift ⊙lift) (⊙coμ ⊙∘ ⊙lower))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (⊙λ= (⊙Wedge-rec-fmap (⊙Lift-fmap ⊙inv) (⊙idf _) ⊙lift ⊙lift)) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (! (⊙λ= (⊙Wedge-rec-post∘ ⊙lift ⊙inv (⊙idf _)))) ∙ ⊙λ= (⊙∘-assoc ⊙lift (⊙Wedge-rec ⊙inv (⊙idf X)) (⊙coμ ⊙∘ ⊙lower)) ∙ ap ⊙Lift-fmap (⊙λ= ⊙inv-l) private ⊙coμ' : ⊙Lift {j = j} X ⊙→ ⊙Lift {j = j} X ⊙∨ ⊙Lift {j = j} X ⊙coμ' = ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} private lemma-assoc' : ⊙–> (⊙∨-assoc (⊙Lift {j = j} X) (⊙Lift {j = j} X) (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ == ⊙∨-fmap (⊙idf (⊙Lift {j = j} X)) ⊙coμ' ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ abstract lemma-assoc' = ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙lift ⊙lift ⊙∘ ⊙coμ =⟨ ! $ ap (⊙–> (⊙∨-assoc _ _ _) ⊙∘_) $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift X))) (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ (⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift X)) ⊙∘ ⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙coμ =⟨ ap (λ f → ⊙–> (⊙∨-assoc _ _ _ ) ⊙∘ f ⊙∘ ⊙coμ) $ ! (⊙λ= $ ⊙∨-fmap-∘ ⊙coμ' ⊙lift (⊙idf (⊙Lift X)) ⊙lift) ∙ (⊙λ= $ ⊙∨-fmap-∘ (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⊙lift (⊙idf X)) ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X)) ⊙∘ ⊙coμ =⟨ ap (⊙–> (⊙∨-assoc _ _ _ ) ⊙∘_) $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) (⊙∨-fmap ⊙coμ (⊙idf X)) ⊙coμ ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X))) (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ (⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) $ ⊙λ= $ ⊙∨-assoc-nat ⊙lift ⊙lift ⊙lift ⟩ (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙–> (⊙∨-assoc X X X)) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift)) (⊙–> (⊙∨-assoc X X X)) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ ⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ap (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘_) $ ⊙λ= ⊙assoc ⟩ ⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift)) (⊙∨-fmap (⊙idf X) ⊙coμ) ⊙coμ ⟩ (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) $ ! (⊙λ= $ ⊙∨-fmap-∘ ⊙lift (⊙idf X) (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ) ∙ (⊙λ= $ ⊙∨-fmap-∘ (⊙idf (⊙Lift X)) ⊙lift ⊙coμ' ⊙lift) ⟩ (⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ' ⊙∘ ⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ') (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⟩ ⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ' ⊙∘ ⊙∨-fmap ⊙lift ⊙lift ⊙∘ ⊙coμ =∎ private lemma-assoc : ⊙–> (⊙∨-assoc (⊙Lift {j = j} X) (⊙Lift {j = j} X) (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙coμ' == ⊙∨-fmap (⊙idf (⊙Lift {j = j} X)) ⊙coμ' ⊙∘ ⊙coμ' abstract lemma-assoc = ap (_⊙∘ ⊙lower) lemma-assoc' Lift-cogroup-structure : CogroupStructure (⊙Lift {j = j} X) Lift-cogroup-structure = record { co-h-struct = Lift-co-h-space-structure {j = j} co-h-struct ; ⊙inv = ⊙lift ⊙∘ ⊙inv ⊙∘ ⊙lower ; ⊙inv-l = ⊙app= lemma-inv ; ⊙assoc = ⊙app= lemma-assoc } -} module _ {i j} {X : Ptd i} (cogroup-struct : CogroupStructure X) (Y : Ptd j) where private module CGS = CogroupStructure cogroup-struct ⊙coμ = CGS.⊙coμ comp : (X ⊙→ Y) → (X ⊙→ Y) → (X ⊙→ Y) comp f g = ⊙Wedge-rec f g ⊙∘ ⊙coμ inv : (X ⊙→ Y) → (X ⊙→ Y) inv = _⊙∘ CGS.⊙inv abstract unit-l : ∀ f → comp ⊙cst f == f unit-l f = ⊙Wedge-rec ⊙cst f ⊙∘ ⊙coμ =⟨ ap2 (λ f g → ⊙Wedge-rec f g ⊙∘ ⊙coμ) (! $ ⊙λ= (⊙∘-cst-r f)) (! $ ⊙λ= (⊙∘-unit-r f)) ⟩ ⊙Wedge-rec (f ⊙∘ ⊙cst) (f ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) (! $ ⊙λ= $ ⊙Wedge-rec-post∘ f ⊙cst (⊙idf X)) ⟩ (f ⊙∘ ⊙Wedge-rec ⊙cst (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc f (⊙Wedge-rec ⊙cst (⊙idf X)) ⊙coμ ⟩ f ⊙∘ (⊙Wedge-rec ⊙cst (⊙idf X) ⊙∘ ⊙coμ) =⟨ ap (f ⊙∘_) (⊙λ= CGS.⊙unit-l) ⟩ f ⊙∘ ⊙idf X =⟨ ⊙λ= (⊙∘-unit-r f) ⟩ f =∎ assoc : ∀ f g h → comp (comp f g) h == comp f (comp g h) assoc f g h = ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) h ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= (⊙∘-unit-r h) |in-ctx (λ h → ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) h ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) (h ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= (⊙Wedge-rec-fmap (⊙Wedge-rec f g) h ⊙coμ (⊙idf X)) |in-ctx _⊙∘ ⊙coμ ⟩ (⊙Wedge-rec (⊙Wedge-rec f g) h ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec (⊙Wedge-rec f g) h) (⊙∨-fmap ⊙coμ (⊙idf X)) ⊙coμ ⟩ ⊙Wedge-rec (⊙Wedge-rec f g) h ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙Wedge-rec-assoc f g h) |in-ctx _⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ ⟩ (⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X X X)) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec f (⊙Wedge-rec g h)) (⊙–> (⊙∨-assoc X X X)) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= CGS.⊙assoc |in-ctx ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘_ ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec f (⊙Wedge-rec g h)) (⊙∨-fmap (⊙idf X) ⊙coμ) ⊙coμ ⟩ (⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙Wedge-rec-fmap f (⊙Wedge-rec g h) (⊙idf X) ⊙coμ) |in-ctx _⊙∘ ⊙coμ ⟩ ⊙Wedge-rec (f ⊙∘ ⊙idf X) (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙∘-unit-r f) |in-ctx (λ f → ⊙Wedge-rec f (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ =∎ inv-l : ∀ f → comp (inv f) f == ⊙cst inv-l f = ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) f ⊙∘ ⊙coμ =⟨ ap (λ g → ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) g ⊙∘ ⊙coμ) (! $ ⊙λ= (⊙∘-unit-r f)) ⟩ ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) (f ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) (! $ ⊙λ= $ ⊙Wedge-rec-post∘ f CGS.⊙inv (⊙idf X)) ⟩ (f ⊙∘ ⊙Wedge-rec CGS.⊙inv (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc f (⊙Wedge-rec CGS.⊙inv (⊙idf X)) ⊙coμ ⟩ f ⊙∘ (⊙Wedge-rec CGS.⊙inv (⊙idf X) ⊙∘ ⊙coμ) =⟨ ap (f ⊙∘_) (⊙λ= CGS.⊙inv-l) ⟩ f ⊙∘ ⊙cst =⟨ ⊙λ= (⊙∘-cst-r f) ⟩ ⊙cst =∎ cogroup⊙→-group-structure : GroupStructure (X ⊙→ Y) cogroup⊙→-group-structure = record { ident = ⊙cst ; inv = inv ; comp = comp ; unit-l = unit-l ; assoc = assoc ; inv-l = inv-l }
{ "alphanum_fraction": 0.4110953058, "avg_line_length": 40.3636363636, "ext": "agda", "hexsha": "203aa9469741fbdf41b86000b9e5e81d000cef59", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Cogroup.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Cogroup.agda", "max_line_length": 116, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Cogroup.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 5148, "size": 8436 }
{-# OPTIONS --without-K #-} module Common.Integer where open import Agda.Builtin.Int public renaming (Int to Integer)
{ "alphanum_fraction": 0.7478991597, "avg_line_length": 23.8, "ext": "agda", "hexsha": "f9e3a1b361b0b645782fd8f1e1fecd88d654bd2a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Common/Integer.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Common/Integer.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Common/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 119 }
{-# OPTIONS --without-K #-} module sets.nat.ordering.lt.level where open import sum open import equality.core open import hott.level.core open import hott.level.closure open import sets.nat.core open import sets.nat.ordering.lt.core open import sets.nat.ordering.leq.level open import sets.empty open import container.core open import container.w <-level : ∀ {m n} → h 1 (m < n) <-level = ≤-level
{ "alphanum_fraction": 0.7518796992, "avg_line_length": 23.4705882353, "ext": "agda", "hexsha": "31e459ca9abe5eb71cd4c842ac31f91cbcb963e3", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering/lt/level.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering/lt/level.agda", "max_line_length": 39, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering/lt/level.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 105, "size": 399 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core open import Categories.Category.Monoidal.Core module Categories.Object.Monoid {o ℓ e} {𝒞 : Category o ℓ e} (C : Monoidal 𝒞) where open import Level -- a monoid object is a generalization of the idea from algebra of a monoid, -- extended into any monoidal category open Category 𝒞 open Monoidal C record IsMonoid (M : Obj) : Set (ℓ ⊔ e) where field μ : M ⊗₀ M ⇒ M η : unit ⇒ M field assoc : μ ∘ μ ⊗₁ id ≈ μ ∘ id ⊗₁ μ ∘ associator.from identityˡ : unitorˡ.from ≈ μ ∘ η ⊗₁ id identityʳ : unitorʳ.from ≈ μ ∘ id ⊗₁ η record Monoid : Set (o ⊔ ℓ ⊔ e) where field Carrier : Obj isMonoid : IsMonoid Carrier open IsMonoid isMonoid public open Monoid record Monoid⇒ (M M′ : Monoid) : Set (ℓ ⊔ e) where field arr : Carrier M ⇒ Carrier M′ preserves-μ : arr ∘ μ M ≈ μ M′ ∘ arr ⊗₁ arr preserves-η : arr ∘ η M ≈ η M′
{ "alphanum_fraction": 0.6430868167, "avg_line_length": 23.9230769231, "ext": "agda", "hexsha": "0a08952111a166c4e3dc8922f865bc302ad29845", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Monoid.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Monoid.agda", "max_line_length": 83, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 341, "size": 933 }
module AKS.Everything where open import AKS.Binary open import AKS.Exponentiation open import AKS.Extended open import AKS.Fin -- open import AKS.Modular.Quotient -- open import AKS.Polynomial open import AKS.Primality open import AKS.Nat open import AKS.Nat.GCD
{ "alphanum_fraction": 0.8143939394, "avg_line_length": 22, "ext": "agda", "hexsha": "179d6b418cfb822852431c15413d1d4f4f6b4264", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Everything.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 79, "size": 264 }
------------------------------------------------------------------------ -- Quotiented queues: any two queues representing the same sequence -- are equal ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Queue.Quotiented {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level.Closure equality-with-J open import List equality-with-J as L hiding (map) import Queue equality-with-J as Q open import Quotient eq as Quotient open import Sum equality-with-J private variable a b : Level A B : Type a s s′ s₁ s₂ : Is-set A q q₁ q₂ x x₁ x₂ : A f g : A → B xs : List A ------------------------------------------------------------------------ -- Queues -- The queue type family is parametrised. module _ -- The underlying queue type family. (Q : ∀ {ℓ} → Type ℓ → Type ℓ) -- Note that the predicate is required to be trivial. Perhaps the -- code could be made more general, but I have not found a use for -- such generality. ⦃ is-queue : ∀ {ℓ} → Q.Is-queue Q (λ _ → ↑ _ ⊤) ℓ ⦄ where abstract private -- The quotienting relation: Two queues are seen as equal if -- they represent the same list. _∼_ : {A : Type a} (_ _ : Q A) → Type a q₁ ∼ q₂ = Q.to-List _ q₁ ≡ Q.to-List _ q₂ -- Queues. -- -- The type is abstract to ensure that a change to a different -- underlying queue type family does not break code that uses this -- module. -- -- Ulf Norell suggested to me that I could use parametrisation -- instead of abstract. (Because if the underlying queue type -- family is a parameter, then the underlying queues do not -- compute.) I decided to use both. (Because I want to have the -- flexibility that comes with parametrisation, but I do not want -- to force users to work in a parametrised setting.) Queue : Type a → Type a Queue A = Q A / _∼_ -- The remainder of the code uses an implicit underlying queue type -- family parameter, and an extra instance argument. module _ {Q : ∀ {ℓ} → Type ℓ → Type ℓ} ⦃ is-queue : ∀ {ℓ} → Q.Is-queue Q (λ _ → ↑ _ ⊤) ℓ ⦄ ⦃ is-queue-with-map : ∀ {ℓ₁ ℓ₂} → Q.Is-queue-with-map Q ℓ₁ ℓ₂ ⦄ where abstract -- Queue A is a set. Queue-is-set : Is-set (Queue Q A) Queue-is-set = /-is-set ------------------------------------------------------------------------ -- Conversion functions abstract -- Converts queues to lists. (The carrier type is required to be a -- set.) to-List : Is-set A → Queue Q A → List A to-List s = Quotient.rec λ where .[]ʳ → Q.to-List _ .[]-respects-relationʳ → id .is-setʳ → H-level-List 0 s -- Converts lists to queues. from-List : List A → Queue Q A from-List = [_] ∘ Q.from-List -- The function from-List is a right inverse of to-List s. to-List-from-List : to-List s (from-List q) ≡ q to-List-from-List = Q.to-List-from-List -- The function from-List is a left inverse of to-List s. from-List-to-List : (q : Queue Q A) → _≡_ {A = Queue Q A} (from-List (to-List s q)) q from-List-to-List = Quotient.elim-prop λ where .[]ʳ q → []-respects-relation ( Q.to-List ⦃ is-queue = is-queue ⦄ _ (Q.from-List (Q.to-List _ q)) ≡⟨ Q.to-List-from-List ⟩∎ Q.to-List _ q ∎) .is-propositionʳ _ → Queue-is-set -- If A is a set, then there is a bijection between Queue Q A and -- List A. Queue↔List : Is-set A → Queue Q A ↔ List A Queue↔List s = record { surjection = record { logical-equivalence = record { to = to-List s ; from = from-List } ; right-inverse-of = λ _ → to-List-from-List } ; left-inverse-of = from-List-to-List } ------------------------------------------------------------------------ -- Queue operations abstract private -- Helper functions that can be used to define unary functions -- on queues. unary : {A : Type a} {B : Type b} (f : List A → List B) (g : Q A → Q B) → (∀ {q} → Q.to-List _ (g q) ≡ f (Q.to-List _ q)) → Queue Q A → Queue Q B unary f g h = g /-map λ q₁ q₂ q₁∼q₂ → Q.to-List _ (g q₁) ≡⟨ h ⟩ f (Q.to-List _ q₁) ≡⟨ cong f q₁∼q₂ ⟩ f (Q.to-List _ q₂) ≡⟨ sym h ⟩∎ Q.to-List _ (g q₂) ∎ to-List-unary : ∀ {h : ∀ {q} → _} q → to-List s₁ (unary f g (λ {q} → h {q = q}) q) ≡ f (to-List s₂ q) to-List-unary {s₁ = s₁} {f = f} {g = g} {s₂ = s₂} {h = h} = Quotient.elim-prop λ where .[]ʳ q → to-List s₁ (unary f g h [ q ]) ≡⟨⟩ Q.to-List _ (g q) ≡⟨ h ⟩ f (Q.to-List _ q) ≡⟨⟩ f (to-List s₂ [ q ]) ∎ .is-propositionʳ _ → H-level-List 0 s₁ -- Generalisations of the functions above. unary′ : {A : Type a} {F : Type a → Type b} → (∀ {A} → Is-set A → Is-set (F A)) → (map : ∀ {A B} → (A → B) → F A → F B) → (∀ {A} {x : F A} → map id x ≡ x) → (∀ {A B C} {f : B → C} {g : A → B} x → map (f ∘ g) x ≡ map f (map g x)) → (f : List A → F (List B)) (g : Q A → F (Q B)) → (∀ {q} → map (Q.to-List _) (g q) ≡ f (Q.to-List _ q)) → Is-set B → Queue Q A → F (Queue Q B) unary′ F-set map map-id map-∘ f g h s = Quotient.rec λ where .[]ʳ → map [_] ∘ g .[]-respects-relationʳ {x = q₁} {y = q₂} q₁∼q₂ → lemma₂ ( map (to-List s) (map [_] (g q₁)) ≡⟨ sym $ map-∘ _ ⟩ map (Q.to-List _) (g q₁) ≡⟨ h ⟩ f (Q.to-List _ q₁) ≡⟨ cong f q₁∼q₂ ⟩ f (Q.to-List _ q₂) ≡⟨ sym h ⟩ map (Q.to-List _) (g q₂) ≡⟨ map-∘ _ ⟩∎ map (to-List s) (map [_] (g q₂)) ∎) .is-setʳ → F-set Queue-is-set where lemma₁ : map from-List (map (to-List s) x) ≡ x lemma₁ {x = x} = map from-List (map (to-List s) x) ≡⟨ sym $ map-∘ _ ⟩ map (from-List ∘ to-List s) x ≡⟨ cong (flip map x) $ ⟨ext⟩ $ _↔_.left-inverse-of (Queue↔List s) ⟩ map id x ≡⟨ map-id ⟩∎ x ∎ lemma₂ : map (to-List s) x₁ ≡ map (to-List s) x₂ → x₁ ≡ x₂ lemma₂ {x₁ = x₁} {x₂ = x₂} eq = x₁ ≡⟨ sym lemma₁ ⟩ map from-List (map (to-List s) x₁) ≡⟨ cong (map from-List) eq ⟩ map from-List (map (to-List s) x₂) ≡⟨ lemma₁ ⟩∎ x₂ ∎ to-List-unary′ : {F : Type a → Type b} (F-set : ∀ {A} → Is-set A → Is-set (F A)) (map : ∀ {A B} → (A → B) → F A → F B) (map-id : ∀ {A} {x : F A} → map id x ≡ x) (map-∘ : ∀ {A B C} {f : B → C} {g : A → B} x → map (f ∘ g) x ≡ map f (map g x)) (f : List A → F (List B)) (g : Q A → F (Q B)) (h : ∀ {q} → map (Q.to-List _) (g q) ≡ f (Q.to-List _ q)) (s : Is-set B) → ∀ q → map (to-List s) (unary′ F-set map map-id map-∘ f g h s q) ≡ f (to-List s′ q) to-List-unary′ {s′ = s′} F-set map map-id map-∘ f g h s = Quotient.elim-prop λ where .[]ʳ q → map (to-List s) (unary′ F-set map map-id map-∘ f g h s [ q ]) ≡⟨⟩ map (to-List s) (map [_] (g q)) ≡⟨ sym $ map-∘ _ ⟩ map (Q.to-List _) (g q) ≡⟨ h ⟩ f (Q.to-List _ q) ≡⟨⟩ f (to-List s′ [ q ]) ∎ .is-propositionʳ _ → F-set (H-level-List 0 s) -- Enqueues an element. enqueue : A → Queue Q A → Queue Q A enqueue x = unary (_++ x ∷ []) (Q.enqueue x) Q.to-List-enqueue to-List-enqueue : to-List s (enqueue x q) ≡ to-List s q ++ x ∷ [] to-List-enqueue {q = q} = to-List-unary q -- Dequeues an element, if possible. (The carrier type is required -- to be a set.) dequeue : Is-set A → Queue Q A → Maybe (A × Queue Q A) dequeue s = unary′ (Maybe-closure 0 ∘ ×-closure 2 s) (λ f → ⊎-map id (Σ-map id f)) ⊎-map-id ⊎-map-∘ (_↔_.to List↔Maybe[×List]) (Q.dequeue _) Q.to-List-dequeue s to-List-dequeue : ⊎-map id (Σ-map id (to-List s)) (dequeue s q) ≡ _↔_.to List↔Maybe[×List] (to-List s q) to-List-dequeue {q = q} = to-List-unary′ (Maybe-closure 0 ∘ ×-closure 2 _) (λ f → ⊎-map id (Σ-map id f)) ⊎-map-id ⊎-map-∘ _ (Q.dequeue _) _ _ q -- The "inverse" of the dequeue operation. dequeue⁻¹ : Maybe (A × Queue Q A) → Queue Q A dequeue⁻¹ nothing = [ Q.empty ] dequeue⁻¹ (just (x , q)) = unary (x ∷_) (Q.cons x) Q.to-List-cons q to-List-dequeue⁻¹ : to-List s (dequeue⁻¹ x) ≡ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List s)) x) to-List-dequeue⁻¹ {x = nothing} = Q.to-List-empty to-List-dequeue⁻¹ {x = just (_ , q)} = to-List-unary q -- A map function. map : (A → B) → Queue Q A → Queue Q B map f = unary (L.map f) (Q.map f) Q.to-List-map to-List-map : to-List s₁ (map f q) ≡ L.map f (to-List s₂ q) to-List-map {q = q} = to-List-unary q
{ "alphanum_fraction": 0.4720678856, "avg_line_length": 32.3496732026, "ext": "agda", "hexsha": "9aa562023843180170654e41f7f145edde040cd3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Queue/Quotiented.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Queue/Quotiented.agda", "max_line_length": 112, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Queue/Quotiented.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3423, "size": 9899 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Right-biased universe-sensitive functor and monad instances for These. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). -- See the Data.Product.Categorical.Examples for how this is done in a -- Product-based similar setting. ------------------------------------------------------------------------ -- This functor can be understood as a notion of computation which can -- either fail (that), succeed (this) or accumulate warnings whilst -- delivering a successful computation (these). -- It is a good alternative to Data.Product.Categorical when the notion -- of warnings does not have a neutral element (e.g. List⁺). {-# OPTIONS --without-K --safe #-} open import Level open import Algebra module Data.These.Categorical.Right (a : Level) {c ℓ} (W : Semigroup c ℓ) where open Semigroup W open import Data.These.Categorical.Right.Base a Carrier public open import Data.These open import Category.Applicative open import Category.Monad module _ {a b} {A : Set a} {B : Set b} where applicative : RawApplicative Theseᵣ applicative = record { pure = this ; _⊛_ = ap } where ap : ∀ {A B}→ Theseᵣ (A → B) → Theseᵣ A → Theseᵣ B ap (this f) t = map₁ f t ap (that w) t = that w ap (these f w) t = map f (w ∙_) t monad : RawMonad Theseᵣ monad = record { return = this ; _>>=_ = bind } where bind : ∀ {A B} → Theseᵣ A → (A → Theseᵣ B) → Theseᵣ B bind (this t) f = f t bind (that w) f = that w bind (these t w) f = map₂ (w ∙_) (f t)
{ "alphanum_fraction": 0.6181172291, "avg_line_length": 29.6315789474, "ext": "agda", "hexsha": "7691a0d71e842b1a53683dc57b42d265d15d47d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Right.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Right.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Right.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 483, "size": 1689 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Choosing between elements based on the result of applying a function ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Construct.LiftedChoice where open import Algebra.Consequences.Base open import Relation.Binary open import Relation.Nullary using (¬_; yes; no) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Product using (_×_; _,_) open import Level using (Level; _⊔_) open import Function.Base using (id; _on_) open import Function.Injection using (Injection) open import Function.Equality using (Π) open import Relation.Binary using (Setoid; _Preserves_⟶_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Unary using (Pred) open import Relation.Nullary.Negation using (contradiction) import Relation.Binary.Reasoning.Setoid as EqReasoning private variable a b p ℓ : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definition module _ (_≈_ : Rel B ℓ) (_•_ : Op₂ B) where Lift : Selective _≈_ _•_ → (A → B) → Op₂ A Lift ∙-sel f x y with ∙-sel (f x) (f y) ... | inj₁ _ = x ... | inj₂ _ = y ------------------------------------------------------------------------ -- Algebraic properties module _ {_≈_ : Rel B ℓ} {_∙_ : Op₂ B} (∙-isSelectiveMagma : IsSelectiveMagma _≈_ _∙_) where private module M = IsSelectiveMagma ∙-isSelectiveMagma open M hiding (sel; isMagma) open EqReasoning setoid module _ (f : A → B) where private _◦_ = Lift _≈_ _∙_ M.sel f sel-≡ : Selective _≡_ _◦_ sel-≡ x y with M.sel (f x) (f y) ... | inj₁ _ = inj₁ P.refl ... | inj₂ _ = inj₂ P.refl distrib : ∀ x y → ((f x) ∙ (f y)) ≈ f (x ◦ y) distrib x y with M.sel (f x) (f y) ... | inj₁ fx∙fy≈fx = fx∙fy≈fx ... | inj₂ fx∙fy≈fy = fx∙fy≈fy module _ (f : A → B) {_≈′_ : Rel A ℓ} (≈-reflexive : _≡_ ⇒ _≈′_) where private _◦_ = Lift _≈_ _∙_ M.sel f sel : Selective _≈′_ _◦_ sel x y = Sum.map ≈-reflexive ≈-reflexive (sel-≡ f x y) idem : Idempotent _≈′_ _◦_ idem = sel⇒idem _≈′_ sel module _ {f : A → B} {_≈′_ : Rel A ℓ} (f-injective : ∀ {x y} → f x ≈ f y → x ≈′ y) where private _◦_ = Lift _≈_ _∙_ M.sel f cong : f Preserves _≈′_ ⟶ _≈_ → Congruent₂ _≈′_ _◦_ cong f-cong {x} {y} {u} {v} x≈y u≈v with M.sel (f x) (f u) | M.sel (f y) (f v) ... | inj₁ fx∙fu≈fx | inj₁ fy∙fv≈fy = x≈y ... | inj₂ fx∙fu≈fu | inj₂ fy∙fv≈fv = u≈v ... | inj₁ fx∙fu≈fx | inj₂ fy∙fv≈fv = f-injective (begin f x ≈⟨ sym fx∙fu≈fx ⟩ f x ∙ f u ≈⟨ ∙-cong (f-cong x≈y) (f-cong u≈v) ⟩ f y ∙ f v ≈⟨ fy∙fv≈fv ⟩ f v ∎) ... | inj₂ fx∙fu≈fu | inj₁ fy∙fv≈fy = f-injective (begin f u ≈⟨ sym fx∙fu≈fu ⟩ f x ∙ f u ≈⟨ ∙-cong (f-cong x≈y) (f-cong u≈v) ⟩ f y ∙ f v ≈⟨ fy∙fv≈fy ⟩ f y ∎) assoc : Associative _≈_ _∙_ → Associative _≈′_ _◦_ assoc ∙-assoc x y z = f-injective (begin f ((x ◦ y) ◦ z) ≈˘⟨ distrib f (x ◦ y) z ⟩ f (x ◦ y) ∙ f z ≈˘⟨ ∙-congʳ (distrib f x y) ⟩ (f x ∙ f y) ∙ f z ≈⟨ ∙-assoc (f x) (f y) (f z) ⟩ f x ∙ (f y ∙ f z) ≈⟨ ∙-congˡ (distrib f y z) ⟩ f x ∙ f (y ◦ z) ≈⟨ distrib f x (y ◦ z) ⟩ f (x ◦ (y ◦ z)) ∎) comm : Commutative _≈_ _∙_ → Commutative _≈′_ _◦_ comm ∙-comm x y = f-injective (begin f (x ◦ y) ≈˘⟨ distrib f x y ⟩ f x ∙ f y ≈⟨ ∙-comm (f x) (f y) ⟩ f y ∙ f x ≈⟨ distrib f y x ⟩ f (y ◦ x) ∎) ------------------------------------------------------------------------ -- Algebraic structures module _ {_≈′_ : Rel A ℓ} {f : A → B} (f-injective : ∀ {x y} → f x ≈ f y → x ≈′ y) (f-cong : f Preserves _≈′_ ⟶ _≈_) (≈′-isEquivalence : IsEquivalence _≈′_) where private module E = IsEquivalence ≈′-isEquivalence _◦_ = Lift _≈_ _∙_ M.sel f isMagma : IsMagma _≈′_ _◦_ isMagma = record { isEquivalence = ≈′-isEquivalence ; ∙-cong = cong (λ {x y} → f-injective {x} {y}) f-cong } isSemigroup : Associative _≈_ _∙_ → IsSemigroup _≈′_ _◦_ isSemigroup ∙-assoc = record { isMagma = isMagma ; assoc = assoc (λ {x y} → f-injective {x} {y}) ∙-assoc } isBand : Associative _≈_ _∙_ → IsBand _≈′_ _◦_ isBand ∙-assoc = record { isSemigroup = isSemigroup ∙-assoc ; idem = idem f E.reflexive } isSemilattice : Associative _≈_ _∙_ → Commutative _≈_ _∙_ → IsSemilattice _≈′_ _◦_ isSemilattice ∙-assoc ∙-comm = record { isBand = isBand ∙-assoc ; comm = comm (λ {x y} → f-injective {x} {y}) ∙-comm } isSelectiveMagma : IsSelectiveMagma _≈′_ _◦_ isSelectiveMagma = record { isMagma = isMagma ; sel = sel f E.reflexive } ------------------------------------------------------------------------ -- Other properties module _ {P : Pred A p} (f : A → B) where private _◦_ = Lift _≈_ _∙_ M.sel f preservesᵒ : (∀ {x y} → P x → (f x ∙ f y) ≈ f y → P y) → (∀ {x y} → P y → (f x ∙ f y) ≈ f x → P x) → ∀ x y → P x ⊎ P y → P (x ◦ y) preservesᵒ left right x y (inj₁ px) with M.sel (f x) (f y) ... | inj₁ _ = px ... | inj₂ fx∙fy≈fx = left px fx∙fy≈fx preservesᵒ left right x y (inj₂ py) with M.sel (f x) (f y) ... | inj₁ fx∙fy≈fy = right py fx∙fy≈fy ... | inj₂ _ = py preservesʳ : (∀ {x y} → P y → (f x ∙ f y) ≈ f x → P x) → ∀ x {y} → P y → P (x ◦ y) preservesʳ right x {y} Py with M.sel (f x) (f y) ... | inj₁ fx∙fy≈fx = right Py fx∙fy≈fx ... | inj₂ fx∙fy≈fy = Py preservesᵇ : ∀ {x y} → P x → P y → P (x ◦ y) preservesᵇ {x} {y} Px Py with M.sel (f x) (f y) ... | inj₁ _ = Px ... | inj₂ _ = Py forcesᵇ : (∀ {x y} → P x → (f x ∙ f y) ≈ f x → P y) → (∀ {x y} → P y → (f x ∙ f y) ≈ f y → P x) → ∀ x y → P (x ◦ y) → P x × P y forcesᵇ presˡ presʳ x y P[x∙y] with M.sel (f x) (f y) ... | inj₁ fx∙fy≈fx = P[x∙y] , presˡ P[x∙y] fx∙fy≈fx ... | inj₂ fx∙fy≈fy = presʳ P[x∙y] fx∙fy≈fy , P[x∙y]
{ "alphanum_fraction": 0.4797751054, "avg_line_length": 32.015, "ext": "agda", "hexsha": "562e0f01e5e9defaa26a13812935fa923bd9b4ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Construct/LiftedChoice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Construct/LiftedChoice.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Construct/LiftedChoice.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2617, "size": 6403 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.IntegralDomains.Definition open import Rings.Definition module Rings.Irreducibles.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Irreducibles.Definition intDom open import Rings.Divisible.Definition R open import Rings.Units.Definition R open Setoid S open Equivalence eq open Ring R dividesIrreducibleImpliesUnit : {r c : A} → Irreducible r → c ∣ r → (r ∣ c → False) → Unit c dividesIrreducibleImpliesUnit {r} {c} irred (x , cx=r) notAssoc = Irreducible.irreducible irred x c (transitive *Commutative cx=r) nonunit where nonunit : Unit x → False nonunit (a , xa=1) = notAssoc (a , transitive (transitive (transitive (transitive (*WellDefined (symmetric cx=r) reflexive) (symmetric *Associative)) *Commutative) (*WellDefined xa=1 reflexive)) identIsIdent)
{ "alphanum_fraction": 0.7359767892, "avg_line_length": 43.0833333333, "ext": "agda", "hexsha": "62dc11da9352abd9351b4456727678f85b499f29", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Irreducibles/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Irreducibles/Lemmas.agda", "max_line_length": 212, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Irreducibles/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 321, "size": 1034 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.CupProduct where open import Cubical.Algebra.Group.EilenbergMacLane.Base renaming (elim to EM-elim) open import Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity open import Cubical.Algebra.Group.EilenbergMacLane.GroupStructure open import Cubical.Algebra.Group.EilenbergMacLane.Properties open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Functions.Morphism open import Cubical.Homotopy.Loopspace open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 renaming (rec to EMrec) open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.Data.Nat hiding (_·_) renaming (elim to ℕelim) open import Cubical.HITs.Susp open import Cubical.Algebra.AbGroup.TensorProduct open import Cubical.Algebra.Group open AbGroupStr renaming (_+_ to _+Gr_ ; -_ to -Gr_) open PlusBis private variable ℓ ℓ' ℓ'' : Level -- Lemma for distributativity of cup product (used later) pathType : ∀ {ℓ} {G : AbGroup ℓ} (n : ℕ) (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → Type ℓ pathType n x p = sym (rUnitₖ (2 + n) x) ∙ (λ i → x +ₖ p i) ≡ sym (lUnitₖ (2 + n) x) ∙ λ i → p i +ₖ x pathTypeMake : ∀ {ℓ} {G : AbGroup ℓ} (n : ℕ) (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → pathType n x p pathTypeMake n x = J (λ x p → pathType n x p) refl -- Definition of cup product (⌣ₖ, given by ·₀ when first argument is in K(G,0)) module _ {G' : AbGroup ℓ} {H' : AbGroup ℓ'} where private G = fst G' H = fst H' strG = snd G' strH = snd H' 0G = 0g strG 0H = 0g strH _+G_ = _+Gr_ strG _+H_ = _+Gr_ strH -H_ = -Gr_ strH -G_ = -Gr_ strG ·₀' : H → (m : ℕ) → EM G' m → EM (G' ⨂ H') m ·₀' h = elim+2 (_⊗ h) (elimGroupoid _ (λ _ → emsquash) embase (λ g → emloop (g ⊗ h)) λ g l → compPathR→PathP (sym (∙assoc _ _ _ ∙∙ cong₂ _∙_ (sym (emloop-comp _ _ _) ∙ cong emloop (sym (⊗DistL+⊗ g l h))) refl ∙∙ rCancel _))) λ n f → trRec (isOfHLevelTrunc (4 + n)) λ { north → 0ₖ (suc (suc n)) ; south → 0ₖ (suc (suc n)) ; (merid a i) → EM→ΩEM+1 (suc n) (f (EM-raw→EM _ _ a)) i} ·₀ : G → (m : ℕ) → EM H' m → EM (G' ⨂ H') m ·₀ g = elim+2 (λ h → g ⊗ h) (elimGroupoid _ (λ _ → emsquash) embase (λ h → emloop (g ⊗ h)) λ h l → compPathR→PathP (sym (∙assoc _ _ _ ∙∙ cong₂ _∙_ (sym (emloop-comp _ _ _) ∙ cong emloop (sym (⊗DistR+⊗ g h l))) refl ∙∙ rCancel _))) λ n f → trRec (isOfHLevelTrunc (4 + n)) λ { north → 0ₖ (suc (suc n)) ; south → 0ₖ (suc (suc n)) ; (merid a i) → EM→ΩEM+1 (suc n) (f (EM-raw→EM _ _ a)) i} ·₀-distr : (g h : G) → (m : ℕ) (x : EM H' m) → ·₀ (g +G h) m x ≡ ·₀ g m x +ₖ ·₀ h m x ·₀-distr g h = elim+2 (⊗DistL+⊗ g h) (elimSet _ (λ _ → emsquash _ _) refl (λ w → compPathR→PathP (sym ((λ i → emloop (⊗DistL+⊗ g h w i) ∙ (lUnit (sym (cong₂+₁ (emloop (g ⊗ w)) (emloop (h ⊗ w)) i)) (~ i))) ∙∙ cong₂ _∙_ (emloop-comp _ (g ⊗ w) (h ⊗ w)) refl ∙∙ rCancel _)))) λ m ind → trElim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → refl ; (merid a i) k → z m ind a k i} where z : (m : ℕ) → ((x : EM H' (suc m)) → ·₀ (g +G h) (suc m) x ≡ ·₀ g (suc m) x +ₖ ·₀ h (suc m) x) → (a : EM-raw H' (suc m)) → cong (·₀ (g +G h) (suc (suc m))) (cong ∣_∣ₕ (merid a)) ≡ cong₂ _+ₖ_ (cong (·₀ g (suc (suc m))) (cong ∣_∣ₕ (merid a))) (cong (·₀ h (suc (suc m))) (cong ∣_∣ₕ (merid a))) z m ind a = (λ i → EM→ΩEM+1 _ (ind (EM-raw→EM _ _ a) i)) ∙∙ EM→ΩEM+1-hom _ (·₀ g (suc m) (EM-raw→EM H' (suc m) a)) (·₀ h (suc m) (EM-raw→EM H' (suc m) a)) ∙∙ sym (cong₂+₂ m (cong (·₀ g (suc (suc m))) (cong ∣_∣ₕ (merid a))) (cong (·₀ h (suc (suc m))) (cong ∣_∣ₕ (merid a)))) ·₀0 : (m : ℕ) → (g : G) → ·₀ g m (0ₖ m) ≡ 0ₖ m ·₀0 zero = ⊗AnnihilR ·₀0 (suc zero) g = refl ·₀0 (suc (suc m)) g = refl ·₀'0 : (m : ℕ) (h : H) → ·₀' h m (0ₖ m) ≡ 0ₖ m ·₀'0 zero = ⊗AnnihilL ·₀'0 (suc zero) g = refl ·₀'0 (suc (suc m)) g = refl 0·₀ : (m : ℕ) → (x : _) → ·₀ 0G m x ≡ 0ₖ m 0·₀ = elim+2 ⊗AnnihilL (elimSet _ (λ _ → emsquash _ _) refl λ g → compPathR→PathP ((sym (emloop-1g _) ∙ cong emloop (sym (⊗AnnihilL g))) ∙∙ (λ i → rUnit (rUnit (cong (·₀ 0G 1) (emloop g)) i) i) ∙∙ sym (∙assoc _ _ _))) λ n f → trElim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → refl ; (merid a i) j → (cong (EM→ΩEM+1 (suc n)) (f (EM-raw→EM _ _ a)) ∙ EM→ΩEM+1-0ₖ _) j i} 0·₀' : (m : ℕ) (g : _) → ·₀' 0H m g ≡ 0ₖ m 0·₀' = elim+2 ⊗AnnihilR (elimSet _ (λ _ → emsquash _ _) refl λ g → compPathR→PathP (sym (∙assoc _ _ _ ∙∙ sym (rUnit _) ∙ sym (rUnit _) ∙∙ (cong emloop (⊗AnnihilR g) ∙ emloop-1g _)))) λ n f → trElim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → refl ; (merid a i) j → (cong (EM→ΩEM+1 (suc n)) (f (EM-raw→EM _ _ a)) ∙ EM→ΩEM+1-0ₖ _) j i} -- Definition of the cup product cup∙ : ∀ n m → EM G' n → EM∙ H' m →∙ EM∙ (G' ⨂ H') (n +' m) cup∙ = ℕelim (λ m g → (·₀ g m) , ·₀0 m g) λ n f → ℕelim (λ g → (λ h → ·₀' h (suc n) g) , 0·₀' (suc n) g) λ m _ → main n m f where main : (n m : ℕ) (ind : ((m : ℕ) → EM G' n → EM∙ H' m →∙ EM∙ (G' ⨂ H') (n +' m))) → EM G' (suc n) → EM∙ H' (suc m) →∙ EM∙ (G' ⨂ H') (suc (suc (n + m))) main zero m ind = elimGroupoid _ (λ _ → isOfHLevel↑∙ _ _) ((λ _ → 0ₖ (2 + m)) , refl) (f m) λ n h → finalpp m n h where f : (m : ℕ) → G → typ (Ω (EM∙ H' (suc m) →∙ EM∙ (G' ⨂ H') (suc (suc m)) ∙)) fst (f m g i) x = EM→ΩEM+1 _ (·₀ g _ x) i snd (f zero g i) j = EM→ΩEM+1-0ₖ (suc zero) j i snd (f (suc m) g i) j = EM→ΩEM+1-0ₖ (suc (suc m)) j i f-hom-fst : (m : ℕ) (g h : G) → cong fst (f m (g +G h)) ≡ cong fst (f m g ∙ f m h) f-hom-fst m g h = (λ i j x → EM→ΩEM+1 _ (·₀-distr g h (suc m) x i) j) ∙∙ (λ i j x → EM→ΩEM+1-hom _ (·₀ g (suc m) x) (·₀ h (suc m) x) i j) ∙∙ sym (cong-∙ fst (f m g) (f m h)) f-hom : (m : ℕ) (g h : G) → f m (g +G h) ≡ f m g ∙ f m h f-hom m g h = →∙Homogeneous≡Path (isHomogeneousEM _) _ _ (f-hom-fst m g h) finalpp : (m : ℕ) (g h : G) → PathP (λ i → f m g i ≡ f m (g +G h) i) refl (f m h) finalpp m g h = compPathR→PathP (sym (rCancel _) ∙∙ cong (_∙ sym (f m (g +G h))) (f-hom m g h) ∙∙ sym (∙assoc _ _ _)) main (suc n) m ind = trElim (λ _ → isOfHLevel↑∙ (2 + n) m) λ { north → (λ _ → 0ₖ (3 + (n + m))) , refl ; south → (λ _ → 0ₖ (3 + (n + m))) , refl ; (merid a i) → Iso.inv (ΩfunExtIso _ _) (EM→ΩEM+1∙ _ ∘∙ ind (suc m) (EM-raw→EM _ _ a)) i} _⌣ₖ_ : {n m : ℕ} (x : EM G' n) (y : EM H' m) → EM (G' ⨂ H') (n +' m) _⌣ₖ_ x y = cup∙ _ _ x .fst y ⌣ₖ-0ₖ : (n m : ℕ) (x : EM G' n) → (x ⌣ₖ 0ₖ m) ≡ 0ₖ (n +' m) ⌣ₖ-0ₖ n m x = cup∙ n m x .snd 0ₖ-⌣ₖ : (n m : ℕ) (x : EM H' m) → ((0ₖ n) ⌣ₖ x) ≡ 0ₖ (n +' m) 0ₖ-⌣ₖ zero m = 0·₀ _ 0ₖ-⌣ₖ (suc zero) zero x = refl 0ₖ-⌣ₖ (suc (suc n)) zero x = refl 0ₖ-⌣ₖ (suc zero) (suc m) x = refl 0ₖ-⌣ₖ (suc (suc n)) (suc m) x = refl module LeftDistributivity {G' : AbGroup ℓ} {H' : AbGroup ℓ'} where private distrl1 : (n m : ℕ) → EM H' m → EM H' m → EM∙ G' n →∙ EM∙ (G' ⨂ H') (n +' m) fst (distrl1 n m x y) z = z ⌣ₖ (x +ₖ y) snd (distrl1 n m x y) = 0ₖ-⌣ₖ n m _ distrl2 : (n m : ℕ) → EM H' m → EM H' m → EM∙ G' n →∙ EM∙ (G' ⨂ H') (n +' m) fst (distrl2 n m x y) z = (z ⌣ₖ x) +ₖ (z ⌣ₖ y) snd (distrl2 n m x y) = cong₂ _+ₖ_ (0ₖ-⌣ₖ n m x) (0ₖ-⌣ₖ n m y) ∙ rUnitₖ _ (0ₖ (n +' m)) hLevLem : (n m : ℕ) → isOfHLevel (suc (suc m)) (EM∙ G' (suc n) →∙ EM∙ (G' ⨂ H') ((suc n) +' m)) hLevLem n m = subst (isOfHLevel (suc (suc m))) (λ i → EM∙ G' (suc n) →∙ EM∙ (G' ⨂ H') ((cong suc (+-comm m n) ∙ sym (+'≡+ (suc n) m)) i)) (isOfHLevel↑∙ m n) mainDistrL : (n m : ℕ) (x y : EM H' (suc m)) → distrl1 (suc n) (suc m) x y ≡ distrl2 (suc n) (suc m) x y mainDistrL n zero = wedgeConEM.fun H' H' 0 0 (λ _ _ → hLevLem _ _ _ _) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt λ z → l x z)) (λ y → →∙Homogeneous≡ (isHomogeneousEM _) (funExt λ z → r y z )) λ i → →∙Homogeneous≡ (isHomogeneousEM (suc (suc (n + 0)))) (funExt (λ z → l≡r z i)) where l : (x : EM H' 1) (z : _) → (distrl1 (suc n) 1 embase x .fst z) ≡ (distrl2 (suc n) 1 embase x .fst z) l x z = cong (z ⌣ₖ_) (lUnitₖ _ x) ∙∙ sym (lUnitₖ _ (z ⌣ₖ x)) ∙∙ λ i → (⌣ₖ-0ₖ (suc n) (suc zero) z (~ i)) +ₖ (z ⌣ₖ x) r : (z : EM H' 1) (x : EM G' (suc n)) → (distrl1 (suc n) 1 z embase .fst x) ≡ (distrl2 (suc n) 1 z embase .fst x) r y z = cong (z ⌣ₖ_) (rUnitₖ _ y) ∙∙ sym (rUnitₖ _ (z ⌣ₖ y)) ∙∙ λ i → (z ⌣ₖ y) +ₖ (⌣ₖ-0ₖ (suc n) (suc zero) z (~ i)) l≡r : (z : EM G' (suc n)) → l embase z ≡ r embase z l≡r z = sym (pathTypeMake _ _ (sym (⌣ₖ-0ₖ (suc n) (suc zero) z))) mainDistrL n (suc m) = elim2 (λ _ _ → isOfHLevelPath (4 + m) (hLevLem _ _) _ _) (wedgeConEM.fun H' H' (suc m) (suc m) (λ x y p q → isOfHLevelPlus {n = suc (suc m)} (suc m) (hLevLem n (suc (suc m)) (distrl1 (suc n) (suc (suc m)) ∣ x ∣ ∣ y ∣) (distrl2 (suc n) (suc (suc m)) ∣ x ∣ ∣ y ∣) p q)) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (l x))) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (r x))) λ i → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (λ z → l≡r z i))) where l : (x : EM-raw H' (suc (suc m))) (z : EM G' (suc n)) → (distrl1 (suc n) (suc (suc m)) (0ₖ _) ∣ x ∣ₕ .fst z) ≡ (distrl2 (suc n) (suc (suc m)) (0ₖ _) ∣ x ∣ₕ .fst z) l x z = cong (z ⌣ₖ_) (lUnitₖ (suc (suc m)) ∣ x ∣) ∙∙ sym (lUnitₖ _ (z ⌣ₖ ∣ x ∣)) ∙∙ λ i → (⌣ₖ-0ₖ (suc n) (suc (suc m)) z (~ i)) +ₖ (z ⌣ₖ ∣ x ∣) r : (x : EM-raw H' (suc (suc m))) (z : EM G' (suc n)) → (distrl1 (suc n) (suc (suc m)) ∣ x ∣ₕ (0ₖ _) .fst z) ≡ (distrl2 (suc n) (suc (suc m)) ∣ x ∣ₕ (0ₖ _) .fst z) r x z = cong (z ⌣ₖ_) (rUnitₖ (suc (suc m)) ∣ x ∣) ∙∙ sym (rUnitₖ _ (z ⌣ₖ ∣ x ∣)) ∙∙ λ i → (z ⌣ₖ ∣ x ∣) +ₖ (⌣ₖ-0ₖ (suc n) (suc (suc m)) z (~ i)) l≡r : (z : EM G' (suc n)) → l north z ≡ r north z l≡r z = sym (pathTypeMake _ _ (sym (⌣ₖ-0ₖ (suc n) (suc (suc m)) z))) module RightDistributivity {G' : AbGroup ℓ} {H' : AbGroup ℓ'} where private G = fst G' H = fst H' strG = snd G' strH = snd H' 0G = 0g strG 0H = 0g strH _+G_ = _+Gr_ strG _+H_ = _+Gr_ strH -H_ = -Gr_ strH -G_ = -Gr_ strG distrr1 : (n m : ℕ) → EM G' n → EM G' n → EM∙ H' m →∙ EM∙ (G' ⨂ H') (n +' m) fst (distrr1 n m x y) z = (x +ₖ y) ⌣ₖ z snd (distrr1 n m x y) = ⌣ₖ-0ₖ n m _ distrr2 : (n m : ℕ) → EM G' n → EM G' n → EM∙ H' m →∙ EM∙ (G' ⨂ H') (n +' m) fst (distrr2 n m x y) z = (x ⌣ₖ z) +ₖ (y ⌣ₖ z) snd (distrr2 n m x y) = cong₂ _+ₖ_ (⌣ₖ-0ₖ n m x) (⌣ₖ-0ₖ n m y) ∙ rUnitₖ _ (0ₖ (n +' m)) mainDistrR : (n m : ℕ) (x y : EM G' (suc n)) → distrr1 (suc n) (suc m) x y ≡ distrr2 (suc n) (suc m) x y mainDistrR zero m = wedgeConEM.fun G' G' 0 0 (λ _ _ → isOfHLevel↑∙ 1 m _ _) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (l x))) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (r x))) λ i → →∙Homogeneous≡ (isHomogeneousEM _) (funExt λ z → l≡r z i) where l : (x : _) (z : _) → _ ≡ _ l x z = (λ i → (lUnitₖ 1 x i) ⌣ₖ z) ∙∙ sym (lUnitₖ _ (x ⌣ₖ z)) ∙∙ λ i → 0ₖ-⌣ₖ _ _ z (~ i) +ₖ (x ⌣ₖ z) r : (x : _) (z : _) → _ ≡ _ r x z = ((λ i → (rUnitₖ 1 x i) ⌣ₖ z)) ∙∙ sym (rUnitₖ _ _) ∙∙ λ i → (_⌣ₖ_ {n = 1} {m = suc m} x z) +ₖ 0ₖ-⌣ₖ (suc zero) (suc m) z (~ i) l≡r : (z : _) → l embase z ≡ r embase z l≡r z = pathTypeMake _ _ _ mainDistrR (suc n) m = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevel↑∙ (2 + n) m) _ _) (wedgeConEM.fun _ _ _ _ (λ x y → isOfHLevelPath ((2 + n) + (2 + n)) (transport (λ i → isOfHLevel (((λ i → (+-comm n 2 (~ i) + (2 + n))) ∙ sym (+-assoc n 2 (2 + n))) (~ i)) (EM∙ H' (suc m) →∙ EM∙ ((fst (AbGroupPath (G' ⨂ H') (H' ⨂ G'))) ⨂-comm (~ i)) ((+'-comm (suc m) (suc (suc n))) i))) (isOfHLevelPlus n (LeftDistributivity.hLevLem m (suc (suc n))))) _ _) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (l x))) (λ x → →∙Homogeneous≡ (isHomogeneousEM _) (funExt (r x))) λ i → →∙Homogeneous≡ (isHomogeneousEM _) (funExt λ z → r≡l z i)) where l : (x : _) (z : _) → _ ≡ _ l x z = (λ i → (lUnitₖ _ ∣ x ∣ i) ⌣ₖ z) ∙∙ sym (lUnitₖ _ (∣ x ∣ ⌣ₖ z)) ∙∙ λ i → 0ₖ-⌣ₖ _ _ z (~ i) +ₖ (∣ x ∣ ⌣ₖ z) r : (x : _) (z : _) → _ ≡ _ r x z = (λ i → (rUnitₖ _ ∣ x ∣ i) ⌣ₖ z) ∙∙ sym (rUnitₖ _ (∣ x ∣ ⌣ₖ z)) ∙∙ λ i → (∣ x ∣ ⌣ₖ z) +ₖ 0ₖ-⌣ₖ _ _ z (~ i) r≡l : (z : _) → l north z ≡ r north z r≡l z = pathTypeMake _ _ _ -- TODO: Summarise distributivity proofs -- TODO: Associativity and graded commutativity, following Cubical.ZCohomology.RingStructure -- The following lemmas will be needed to make the types match up.
{ "alphanum_fraction": 0.4423064711, "avg_line_length": 38.8814814815, "ext": "agda", "hexsha": "27b9757ef629d9f15cec7f384adc4912958a4ebe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/CupProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/CupProduct.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/CupProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6848, "size": 15747 }
{-# OPTIONS --without-K --rewriting #-} module Axiom.LEM where open import Basics open import Flat open import lib.Basics postulate LEM : {@♭ i : ULevel} (@♭ P : PropT i) → Dec (P holds)
{ "alphanum_fraction": 0.6381909548, "avg_line_length": 22.1111111111, "ext": "agda", "hexsha": "30f7bc8aa04e7977dab32d8b748e4f09d1c5e761", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Axiom/LEM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Axiom/LEM.agda", "max_line_length": 66, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Axiom/LEM.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 63, "size": 199 }
module Generic.Test.Reify where open import Generic.Core open import Generic.Property.Reify open import Generic.Test.Data.Fin open import Generic.Test.Data.Vec open import Data.Fin renaming (Fin to StdFin) open import Data.Vec renaming (Vec to StdVec) xs : Vec (Fin 4) 3 xs = fsuc (fsuc (fsuc fzero)) ∷ᵥ fzero ∷ᵥ fsuc fzero ∷ᵥ []ᵥ xs′ : StdVec (StdFin 4) 3 xs′ = suc (suc (suc zero)) ∷ zero ∷ (suc zero) ∷ [] test : reflect xs ≡ xs′ test = refl
{ "alphanum_fraction": 0.7066666667, "avg_line_length": 23.6842105263, "ext": "agda", "hexsha": "4ffce7a8da956fa2d543df18884422506e3b4ac4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Reify.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Reify.agda", "max_line_length": 59, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Reify.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 161, "size": 450 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Prelims where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Pointed open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.Homotopy.Loopspace open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec) open import Cubical.HITs.SetTruncation renaming (elim to sElim ; map to sMap ; rec to sRec) infixr 33 _⋄_ _⋄_ : _ _⋄_ = compIso -- We strengthen the elimination rule for Hⁿ(S¹). We show that we only need to work with elements ∣ f ∣₂ (definitionally) sending loop to some loop p -- and sending base to 0 elimFunS¹ : (n : ℕ) → (p : typ (Ω (coHomK-ptd (suc n)))) → S¹ → coHomK (suc n) elimFunS¹ n p base = ∣ ptSn (suc n) ∣ elimFunS¹ n p (loop i) = p i coHomPointedElimS¹ : ∀ {ℓ} (n : ℕ) {B : coHom (suc n) S¹ → Type ℓ} → ((x : coHom (suc n) S¹) → isProp (B x)) → ((p : typ (Ω (coHomK-ptd (suc n)))) → B ∣ elimFunS¹ n p ∣₂) → (x : coHom (suc n) S¹) → B x coHomPointedElimS¹ n {B = B} x p = coHomPointedElim n base x λ f Id → subst B (cong ∣_∣₂ (funExt (λ {base → sym Id ; (loop i) j → doubleCompPath-filler (sym Id) (cong f loop) Id (~ j) i}))) (p (sym Id ∙∙ (cong f loop) ∙∙ Id)) coHomPointedElimS¹2 : ∀ {ℓ} (n : ℕ) {B : (x y : coHom (suc n) S¹) → Type ℓ} → ((x y : coHom (suc n) S¹) → isProp (B x y)) → ((p q : typ (Ω (coHomK-ptd (suc n)))) → B ∣ elimFunS¹ n p ∣₂ ∣ elimFunS¹ n q ∣₂) → (x y : coHom (suc n) S¹) → B x y coHomPointedElimS¹2 n {B = B} x p = coHomPointedElim2 _ base x λ f g fId gId → subst2 B (cong ∣_∣₂ (funExt (λ {base → sym fId ; (loop i) j → doubleCompPath-filler (sym (fId)) (cong f loop) fId (~ j) i}))) (cong ∣_∣₂ (funExt (λ {base → sym gId ; (loop i) j → doubleCompPath-filler (sym (gId)) (cong g loop) gId (~ j) i}))) (p (sym fId ∙∙ cong f loop ∙∙ fId) (sym gId ∙∙ cong g loop ∙∙ gId)) -- We do the same thing for Sⁿ, n ≥ 2. elimFunSⁿ : (n m : ℕ) (p : S₊ (suc m) → typ (Ω (coHomK-ptd (suc n)))) → (S₊ (2 + m)) → coHomK (suc n) elimFunSⁿ n m p north = ∣ ptSn (suc n) ∣ elimFunSⁿ n m p south = ∣ ptSn (suc n) ∣ elimFunSⁿ n m p (merid a i) = p a i coHomPointedElimSⁿ : ∀ {ℓ} (n m : ℕ) {B : (x : coHom (suc n) (S₊ (2 + m))) → Type ℓ} → ((x : coHom (suc n) (S₊ (2 + m))) → isProp (B x)) → ((p : _) → B ∣ elimFunSⁿ n m p ∣₂) → (x : coHom (suc n) (S₊ (2 + m))) → B x coHomPointedElimSⁿ n m {B = B} isprop ind = coHomPointedElim n north isprop λ f fId → subst B (cong ∣_∣₂ (funExt (λ {north → sym fId ; south → sym fId ∙' cong f (merid (ptSn (suc m))) ; (merid a i) j → hcomp (λ k → λ {(i = i0) → fId (~ j ∧ k) ; (i = i1) → compPath'-filler (sym fId) (cong f (merid (ptSn (suc m)))) k j ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ {(i = i0) → f north ; (i = i1) → f (merid (ptSn (suc m)) (j ∨ ~ k)) ; (j = i1) → f (merid a i)}) (f (merid a i)))}))) (ind λ a → sym fId ∙∙ cong f (merid a) ∙ cong f (sym (merid (ptSn (suc m)))) ∙∙ fId) 0₀ = 0ₖ 0 0₁ = 0ₖ 1 0₂ = 0ₖ 2 0₃ = 0ₖ 3 0₄ = 0ₖ 4 S¹map : hLevelTrunc 3 S¹ → S¹ S¹map = trRec isGroupoidS¹ (idfun _) S¹map-id : (x : hLevelTrunc 3 S¹) → Path (hLevelTrunc 3 S¹) ∣ S¹map x ∣ x S¹map-id = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ a → refl -- We prove that (S¹ → ∥ S¹ ∥) ≃ S¹ × ℤ (Needed for H¹(S¹)). Note that the truncation doesn't really matter, since S¹ is a groupoid. -- Given a map f : S¹ → S¹, the idea is to send this to (f(base) , winding (f(loop))). For this to be -- well-typed, we need to translate f(loop) into an element in Ω(S¹,base). S¹→S¹≡S¹×Int : Iso (S¹ → hLevelTrunc 3 S¹) (S¹ × Int) Iso.fun S¹→S¹≡S¹×Int f = S¹map (f base) , winding (basechange2⁻ (S¹map (f base)) λ i → S¹map (f (loop i))) Iso.inv S¹→S¹≡S¹×Int (s , int) base = ∣ s ∣ Iso.inv S¹→S¹≡S¹×Int (s , int) (loop i) = ∣ basechange2 s (intLoop int) i ∣ Iso.rightInv S¹→S¹≡S¹×Int (s , int) = ΣPathP (refl , ((λ i → winding (basechange2-retr s (λ i → intLoop int i) i)) ∙ windingIntLoop int)) Iso.leftInv S¹→S¹≡S¹×Int f = funExt λ { base → S¹map-id (f base) ; (loop i) j → helper j i} where helper : PathP (λ i → S¹map-id (f base) i ≡ S¹map-id (f base) i) (λ i → ∣ basechange2 (S¹map (f base)) (intLoop (winding (basechange2⁻ (S¹map (f base)) (λ i₁ → S¹map (f (loop i₁)))))) i ∣) (cong f loop) helper i j = hcomp (λ k → λ { (i = i0) → cong ∣_∣ (basechange2 (S¹map (f base)) (intLoop (winding (basechange2⁻ (S¹map (f base)) (λ i₁ → S¹map (f (loop i₁))))))) j ; (i = i1) → S¹map-id (f (loop j)) k ; (j = i0) → S¹map-id (f base) (i ∧ k) ; (j = i1) → S¹map-id (f base) (i ∧ k)}) (helper2 i j) where helper2 : Path (Path (hLevelTrunc 3 _) _ _) (cong ∣_∣ (basechange2 (S¹map (f base)) (intLoop (winding (basechange2⁻ (S¹map (f base)) (λ i₁ → S¹map (f (loop i₁)))))))) λ i → ∣ S¹map (f (loop i)) ∣ helper2 i j = ∣ ((cong (basechange2 (S¹map (f base))) (decodeEncode base (basechange2⁻ (S¹map (f base)) (λ i₁ → S¹map (f (loop i₁))))) ∙ basechange2-sect (S¹map (f base)) (λ i → S¹map (f (loop i)))) i) j ∣ {- Proof that (S¹ → K₁) ≃ K₁ × ℤ. Needed for H¹(T²) -} S1→K₁≡S1×Int : Iso ((S₊ 1) → coHomK 1) (coHomK 1 × Int) S1→K₁≡S1×Int = S¹→S¹≡S¹×Int ⋄ prodIso (invIso (truncIdempotentIso 3 (isGroupoidS¹))) idIso module _ (key : Unit') where module P = lockedCohom key private _+K_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+K_ {n = n} = P.+K n -K_ : {n : ℕ} → coHomK n → coHomK n -K_ {n = n} = P.-K n _-K_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _-K_ {n = n} = P.-Kbin n infixr 55 _+K_ infixr 55 -K_ infixr 56 _-K_ {- Proof that S¹→K2 is isomorphic to K2×K1 (as types). Needed for H²(T²) -} S1→K2≡K2×K1' : Iso (S₊ 1 → coHomK 2) (coHomK 2 × coHomK 1) Iso.fun S1→K2≡K2×K1' f = f base , ΩKn+1→Kn 1 (sym (P.rCancelK 2 (f base)) ∙∙ cong (λ x → (f x) -K f base) loop ∙∙ P.rCancelK 2 (f base)) Iso.inv S1→K2≡K2×K1' = invmap where invmap : (∥ Susp S¹ ∥ 4) × (∥ S¹ ∥ 3) → S¹ → ∥ Susp S¹ ∥ 4 invmap (a , b) base = a +K 0₂ invmap (a , b) (loop i) = a +K Kn→ΩKn+1 1 b i Iso.rightInv S1→K2≡K2×K1' (a , b) = ΣPathP ((P.rUnitK 2 a) , (cong (ΩKn+1→Kn 1) (doubleCompPath-elim' (sym (P.rCancelK 2 (a +K 0₂))) (λ i → (a +K Kn→ΩKn+1 1 b i) -K (a +K 0₂)) (P.rCancelK 2 (a +K 0₂))) ∙∙ cong (ΩKn+1→Kn 1) (congHelper2 (Kn→ΩKn+1 1 b) (λ x → (a +K x) -K (a +K 0₂)) (funExt (λ x → sym (cancelHelper a x))) (P.rCancelK 2 (a +K 0₂))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 1) b)) module _ where cancelHelper : (a b : coHomK 2) → (a +K b) -K (a +K 0₂) ≡ b cancelHelper a b = cong (λ x → (a +K b) -K x) (P.rUnitK 2 a) ∙ P.-cancelLK 2 a b congHelper2 : (p : 0₂ ≡ 0₂) (f : coHomK 2 → coHomK 2) (id : (λ x → x) ≡ f) → (q : (f 0₂) ≡ 0₂) → (sym q) ∙ cong f p ∙ q ≡ p congHelper2 p f = J (λ f _ → (q : (f 0₂) ≡ 0₂) → (sym q) ∙ cong f p ∙ q ≡ p) λ q → (cong (sym q ∙_) (isCommΩK 2 p _) ∙∙ assoc _ _ _ ∙∙ cong (_∙ p) (lCancel q)) ∙ sym (lUnit p) conghelper3 : (x : coHomK 2) (p : x ≡ x) (f : coHomK 2 → coHomK 2) (id : (λ x → x) ≡ f) (q : f x ≡ x) → (sym q) ∙ cong f p ∙ q ≡ p conghelper3 x p f = J (λ f _ → (q : (f x) ≡ x) → (sym q) ∙ cong f p ∙ q ≡ p) λ q → (cong (sym q ∙_) (isCommΩK-based 2 x p _) ∙∙ assoc _ _ _ ∙∙ cong (_∙ p) (lCancel q)) ∙ sym (lUnit p) Iso.leftInv S1→K2≡K2×K1' a i base = P.rUnitK _ (a base) i Iso.leftInv S1→K2≡K2×K1' a i (loop j) = loop-helper i j where loop-helper : PathP (λ i → P.rUnitK _ (a base) i ≡ P.rUnitK _ (a base) i) (cong (a base +K_) (Kn→ΩKn+1 1 (ΩKn+1→Kn 1 ((sym (P.rCancelK 2 (a base)) ∙∙ (λ i → a (loop i) -K (a (base))) ∙∙ P.rCancelK 2 (a base)))))) (cong a loop) loop-helper i j = hcomp (λ k → λ { (i = i0) → (G (doubleCompPath-elim' (sym rP) (λ i₁ → a (loop i₁) -K a base) rP (~ k))) j ; (i = i1) → cong a loop j ; (j = i0) → P.rUnitK 2 (a base) i ; (j = i1) → P.rUnitK 2 (a base) i}) (loop-helper2 i j) where F : typ (Ω (coHomK-ptd 2)) → a base +K snd (coHomK-ptd 2) ≡ a base +K snd (coHomK-ptd 2) F = cong (_+K_ {n = 2} (a base)) G : 0ₖ 2 ≡ 0ₖ 2 → a base +K snd (coHomK-ptd 2) ≡ a base +K snd (coHomK-ptd 2) G p = F (Kn→ΩKn+1 1 (ΩKn+1→Kn 1 p)) rP : P.+K 2 (a base) (P.-K 2 (a base)) ≡ 0ₖ 2 rP = P.rCancelK 2 (a base) lem : (x : coHomK 2) (p : x ≡ x) (q : 0₂ ≡ x) → Kn→ΩKn+1 1 (ΩKn+1→Kn 1 (q ∙ p ∙ sym q)) ≡ q ∙ p ∙ sym q lem x p q = Iso.rightInv (Iso-Kn-ΩKn+1 1) (q ∙ p ∙ sym q) subtr-lem : (a b : hLevelTrunc 4 (S₊ 2)) → a +K (b -K a) ≡ b subtr-lem a b = P.commK 2 a (b -K a) ∙ P.-+cancelK 2 b a subtr-lem-coher : PathP (λ i → subtr-lem (a base) (a base) i ≡ subtr-lem (a base) (a base) i) (cong (a base +K_) (λ i₁ → a (loop i₁) -K a base)) λ i → a (loop i) subtr-lem-coher i j = subtr-lem (a base) (a (loop j)) i abstract helperFun2 : {A : Type₀} {0A a b : A} (main : 0A ≡ 0A) (start : b ≡ b) (p : a ≡ a) (q : a ≡ b) (r : b ≡ 0A) (Q : a ≡ 0A) (R : PathP (λ i → Q i ≡ Q i) p main) → start ≡ sym q ∙ p ∙ q → isComm∙ (A , 0A) → sym r ∙ start ∙ r ≡ main helperFun2 main start p q r Q R startId comm = sym r ∙ start ∙ r ≡[ i ]⟨ sym r ∙ startId i ∙ r ⟩ sym r ∙ (sym q ∙ p ∙ q) ∙ r ≡[ i ]⟨ sym r ∙ assoc (sym q) (p ∙ q) r (~ i) ⟩ sym r ∙ sym q ∙ (p ∙ q) ∙ r ≡[ i ]⟨ sym r ∙ sym q ∙ assoc p q r (~ i) ⟩ sym r ∙ sym q ∙ p ∙ q ∙ r ≡[ i ]⟨ assoc (sym r) (rUnit (sym q) i) (p ∙ lUnit (q ∙ r) i) i ⟩ (sym r ∙ sym q ∙ refl) ∙ p ∙ refl ∙ q ∙ r ≡[ i ]⟨ (sym r ∙ sym q ∙ λ j → Q (i ∧ j)) ∙ R i ∙ (λ j → Q ( i ∧ (~ j))) ∙ q ∙ r ⟩ (sym r ∙ sym q ∙ Q) ∙ main ∙ sym Q ∙ q ∙ r ≡[ i ]⟨ (sym r ∙ sym q ∙ Q) ∙ main ∙ sym Q ∙ symDistr (sym r) (sym q) (~ i) ⟩ (sym r ∙ sym q ∙ Q) ∙ main ∙ sym Q ∙ sym (sym r ∙ sym q) ≡[ i ]⟨ (assoc (sym r) (sym q) Q i) ∙ main ∙ symDistr (sym r ∙ sym q) Q (~ i) ⟩ ((sym r ∙ sym q) ∙ Q) ∙ main ∙ sym ((sym r ∙ sym q) ∙ Q) ≡[ i ]⟨ ((sym r ∙ sym q) ∙ Q) ∙ comm main (sym ((sym r ∙ sym q) ∙ Q)) i ⟩ ((sym r ∙ sym q) ∙ Q) ∙ sym ((sym r ∙ sym q) ∙ Q) ∙ main ≡⟨ assoc ((sym r ∙ sym q) ∙ Q) (sym ((sym r ∙ sym q) ∙ Q)) main ⟩ (((sym r ∙ sym q) ∙ Q) ∙ sym ((sym r ∙ sym q) ∙ Q)) ∙ main ≡[ i ]⟨ rCancel (((sym r ∙ sym q) ∙ Q)) i ∙ main ⟩ refl ∙ main ≡⟨ sym (lUnit main) ⟩ main ∎ congFunct₃ : ∀ {A B : Type₀} {a b c d : A} (f : A → B) (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → cong f (p ∙ q ∙ r) ≡ cong f p ∙ cong f q ∙ cong f r congFunct₃ f p q r = congFunct f p (q ∙ r) ∙ cong (cong f p ∙_) (congFunct f q r) lem₀ : G (sym rP ∙ (λ i₁ → a (loop i₁) -K a base) ∙ rP) ≡ F (sym rP ∙ (λ i₁ → a (loop i₁) -K a base) ∙ rP) lem₀ = cong F (lem (a base -K (a base)) (λ i₁ → a (loop i₁) -K a base) (sym (P.rCancelK 2 (a base)))) lem₁ : G (sym rP ∙ (λ i₁ → a (loop i₁) -K a base) ∙ rP) ≡ sym (λ i₁ → a base +K P.rCancelK 2 (a base) i₁) ∙ cong (a base +K_) (λ i₁ → a (loop i₁) -K a base) ∙ (λ i₁ → a base +K P.rCancelK 2 (a base) i₁) lem₁ = lem₀ ∙ congFunct₃ (a base +K_) (sym rP) (λ i₁ → a (loop i₁) -K a base) rP loop-helper2 : PathP (λ i → P.rUnitK _ (a base) i ≡ P.rUnitK _ (a base) i) (cong (a base +K_) (Kn→ΩKn+1 1 (ΩKn+1→Kn 1 ((sym (P.rCancelK 2 (a base)) ∙ (λ i → a (loop i) -K (a (base))) ∙ P.rCancelK 2 (a base)))))) (cong a loop) loop-helper2 = compPathL→PathP (helperFun2 (cong a loop) _ _ (cong (a base +K_) (P.rCancelK 2 (a base))) _ _ subtr-lem-coher lem₁ (isCommΩK-based 2 (a base))) S1→K2≡K2×K1 : Iso (S₊ 1 → coHomK 2) (coHomK 2 × coHomK 1) S1→K2≡K2×K1 = S1→K2≡K2×K1' unlock
{ "alphanum_fraction": 0.4297649116, "avg_line_length": 54.9501779359, "ext": "agda", "hexsha": "e3711a2590d307d34e32a57b31afe0f6d3dbd392", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Prelims.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Prelims.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Prelims.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5885, "size": 15441 }
module Everything where import Algebra.Structures.Field import Algebra.Structures.Bundles.Field import Algebra.Linear.Core import Algebra.Linear.Space import Algebra.Linear.Space.Hom import Algebra.Linear.Space.Product import Algebra.Linear.Space.FiniteDimensional import Algebra.Linear.Space.FiniteDimensional.Hom import Algebra.Linear.Space.FiniteDimensional.Product import Algebra.Linear.Construct import Algebra.Linear.Construct.Vector import Algebra.Linear.Construct.Matrix import Algebra.Linear.Morphism import Algebra.Linear.Morphism.Definitions import Algebra.Linear.Morphism.VectorSpace import Algebra.Linear.Morphism.Bundles import Algebra.Linear.Morphism.Bundles.VectorSpace import Algebra.Linear.Structures import Algebra.Linear.Structures.VectorSpace import Algebra.Linear.Structures.FiniteDimensional import Algebra.Linear.Structures.Bundles import Algebra.Linear.Structures.Bundles.FiniteDimensional
{ "alphanum_fraction": 0.8729641694, "avg_line_length": 30.7, "ext": "agda", "hexsha": "d74a356d2d22cbb83a59df2f69296dd0a4a22127", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "Everything.agda", "max_line_length": 58, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 176, "size": 921 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to maybes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Relation.Binary.Pointwise where open import Level open import Data.Maybe.Base using (Maybe; just; nothing) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data Pointwise {a b ℓ} {A : Set a} {B : Set b} (R : REL A B ℓ) : REL (Maybe A) (Maybe B) (a ⊔ b ⊔ ℓ) where just : ∀ {x y} → R x y → Pointwise R (just x) (just y) nothing : Pointwise R nothing nothing ------------------------------------------------------------------------ -- Properties module _ {a b ℓ} {A : Set a} {B : Set b} {R : REL A B ℓ} where drop-just : ∀ {x y} → Pointwise R (just x) (just y) → R x y drop-just (just p) = p just-equivalence : ∀ {x y} → R x y ⇔ Pointwise R (just x) (just y) just-equivalence = equivalence just drop-just ------------------------------------------------------------------------ -- Relational properties module _ {a r} {A : Set a} {R : Rel A r} where refl : Reflexive R → Reflexive (Pointwise R) refl R-refl {just _} = just R-refl refl R-refl {nothing} = nothing reflexive : _≡_ ⇒ R → _≡_ ⇒ Pointwise R reflexive reflexive P.refl = refl (reflexive P.refl) module _ {a b r₁ r₂} {A : Set a} {B : Set b} {R : REL A B r₁} {S : REL B A r₂} where sym : Sym R S → Sym (Pointwise R) (Pointwise S) sym R-sym (just p) = just (R-sym p) sym R-sym nothing = nothing module _ {a b c r₁ r₂ r₃} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r₁} {S : REL B C r₂} {T : REL A C r₃} where trans : Trans R S T → Trans (Pointwise R) (Pointwise S) (Pointwise T) trans R-trans (just p) (just q) = just (R-trans p q) trans R-trans nothing nothing = nothing module _ {a r} {A : Set a} {R : Rel A r} where dec : Decidable R → Decidable (Pointwise R) dec R-dec (just x) (just y) = Dec.map just-equivalence (R-dec x y) dec R-dec (just x) nothing = no (λ ()) dec R-dec nothing (just y) = no (λ ()) dec R-dec nothing nothing = yes nothing isEquivalence : IsEquivalence R → IsEquivalence (Pointwise R) isEquivalence R-isEquivalence = record { refl = refl R.refl ; sym = sym R.sym ; trans = trans R.trans } where module R = IsEquivalence R-isEquivalence isDecEquivalence : IsDecEquivalence R → IsDecEquivalence (Pointwise R) isDecEquivalence R-isDecEquivalence = record { isEquivalence = isEquivalence R.isEquivalence ; _≟_ = dec R._≟_ } where module R = IsDecEquivalence R-isDecEquivalence module _ {c ℓ} where setoid : Setoid c ℓ → Setoid c (c ⊔ ℓ) setoid S = record { isEquivalence = isEquivalence S.isEquivalence } where module S = Setoid S decSetoid : DecSetoid c ℓ → DecSetoid c (c ⊔ ℓ) decSetoid S = record { isDecEquivalence = isDecEquivalence S.isDecEquivalence } where module S = DecSetoid S
{ "alphanum_fraction": 0.5754257908, "avg_line_length": 33.8969072165, "ext": "agda", "hexsha": "fbb818299e981749aaaf394300a7e19a216d6686", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 998, "size": 3288 }
module _ where open import Agda.Builtin.Equality postulate A : Set P : A → Set data Flat (@♭ A : Set) : Set where con : (@♭ x : A) → Flat A -- it should not be able to unify x and y, -- because the equality is not @♭. test4 : (@♭ x : A) (@♭ y : A) → (x ≡ y) → P x → P y test4 x y refl p = {!!}
{ "alphanum_fraction": 0.5526315789, "avg_line_length": 19, "ext": "agda", "hexsha": "781f02b7bb81b928f60231a839d5e2fa261393b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/FlatSplitFail.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/FlatSplitFail.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/FlatSplitFail.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 304 }
{-# OPTIONS --without-K #-} open import Base module Homotopy.Pointed where open import Integers open import Homotopy.Truncation open import Homotopy.Connected record pType (i : Level) : Set (suc i) where constructor ⋆[_,_] field ∣_∣ : Set i -- \| ⋆ : ∣_∣ -- \* open pType public pType₀ : Set₁ pType₀ = pType zero _→⋆_ : ∀ {i j} → (pType i → pType j → pType (max i j)) _→⋆_ A B = ⋆[ Σ (∣ A ∣ → ∣ B ∣) (λ f → f (⋆ A) ≡ ⋆ B), ((λ _ → ⋆ B) , refl) ] τ⋆ : ∀ {i} → (ℕ₋₂ → pType i → pType i) τ⋆ n ⋆[ X , x ] = ⋆[ τ n X , proj x ] is-contr⋆ : ∀ {i} → (pType i → Set i) is-contr⋆ ⋆[ X , x ] = is-contr X is-connected⋆ : ∀ {i} → ℕ₋₂ → (pType i → Set i) is-connected⋆ n ⋆[ X , x ] = is-connected n X connected⋆-lt : ∀ {i} (k n : ℕ) (lt : k < S n) (X : pType i) → (is-connected⋆ ⟨ n ⟩ X → is-contr⋆ (τ⋆ ⟨ k ⟩ X)) connected⋆-lt .n n <n X p = p connected⋆-lt k O (<S ()) X p connected⋆-lt k (S n) (<S lt) X p = connected⋆-lt k n lt X (connected-S-is-connected ⟨ n ⟩ p) _≃⋆_ : ∀ {i j} → (pType i → pType j → Set (max i j)) ⋆[ X , x ] ≃⋆ ⋆[ Y , y ] = Σ (X ≃ Y) (λ f → π₁ f x ≡ y) id-equiv⋆ : ∀ {i} (X : pType i) → X ≃⋆ X id-equiv⋆ ⋆[ X , x ] = (id-equiv X , refl) equiv-compose⋆ : ∀ {i j k} {A : pType i} {B : pType j} {C : pType k} → (A ≃⋆ B → B ≃⋆ C → A ≃⋆ C) equiv-compose⋆ (f , pf) (g , pg) = (equiv-compose f g , (ap (π₁ g) pf ∘ pg)) pType-eq-raw : ∀ {i} {X Y : pType i} (p : ∣ X ∣ ≡ ∣ Y ∣) (q : transport (λ X → X) p (⋆ X) ≡ ⋆ Y) → X ≡ Y pType-eq-raw {i} {⋆[ X , x ]} {⋆[ .X , .x ]} refl refl = refl pType-eq : ∀ {i} {X Y : pType i} → (X ≃⋆ Y → X ≡ Y) pType-eq (e , p) = pType-eq-raw (eq-to-path e) (trans-id-eq-to-path e _ ∘ p)
{ "alphanum_fraction": 0.490942029, "avg_line_length": 29.5714285714, "ext": "agda", "hexsha": "1fccbff47b622ed659cb13c9c9a560bd34569427", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/Pointed.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/Pointed.agda", "max_line_length": 77, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/Pointed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 851, "size": 1656 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Definition where open import Prelude infixr 5 _∷_ data 𝒦 (A : Type a) : Type a where [] : 𝒦 A _∷_ : A → 𝒦 A → 𝒦 A com : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs trunc : isSet (𝒦 A)
{ "alphanum_fraction": 0.5442622951, "avg_line_length": 21.7857142857, "ext": "agda", "hexsha": "b347a91d20e971712e22e349f029fe1191b34689", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Algebra/Construct/Free/Semilattice/Definition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Algebra/Construct/Free/Semilattice/Definition.agda", "max_line_length": 58, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Algebra/Construct/Free/Semilattice/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 137, "size": 305 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence module HoTT.Identity.Universe {i} {A B : 𝒰 i} where -- Axiom 2.10.3 - univalence postulate idtoeqv-equiv : isequiv (idtoeqv {A = A} {B = B}) =𝒰-equiv : (A == B) ≃ (A ≃ B) =𝒰-equiv = idtoeqv , idtoeqv-equiv module _ where open qinv (isequiv→qinv idtoeqv-equiv) abstract ua : A ≃ B → A == B ua = g =𝒰-η : ua ∘ idtoeqv ~ id =𝒰-η = η =𝒰-β : idtoeqv ∘ ua ~ id =𝒰-β = ε _=𝒰_ = _≃_
{ "alphanum_fraction": 0.5807770961, "avg_line_length": 19.56, "ext": "agda", "hexsha": "263911ee88276a4d9e5d195aded8395f449ebc05", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Identity/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Identity/Universe.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Identity/Universe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 224, "size": 489 }
module hott.types.int where open import hott.functions open import hott.core import hott.types.nat as nat open nat using (ℕ) data ℤ : Type₀ where zero : ℤ +ve : ℕ → ℤ -ve : ℕ → ℤ fromNat : ℕ → ℤ fromNat nat.zero = zero fromNat (nat.succ n) = +ve n neg : ℤ → ℤ neg zero = zero neg (+ve n) = -ve n neg (-ve n) = +ve n suc : ℤ → ℤ suc zero = +ve 0 suc (+ve x) = +ve (nat.succ x) suc (-ve 0) = zero suc (-ve (nat.succ x)) = -ve x pred : ℤ → ℤ pred zero = -ve 0 pred (-ve x) = -ve (nat.succ x) pred (+ve 0) = zero pred (+ve (nat.succ x)) = +ve x suc∘pred~id : suc ∘ pred ~ id suc∘pred~id zero = refl suc∘pred~id (+ve 0) = refl suc∘pred~id (+ve (nat.succ x)) = refl suc∘pred~id (-ve x) = refl pred∘suc~id : pred ∘ suc ~ id pred∘suc~id zero = refl pred∘suc~id (+ve x) = refl pred∘suc~id (-ve 0) = refl pred∘suc~id (-ve (nat.succ x)) = refl
{ "alphanum_fraction": 0.4985221675, "avg_line_length": 19.9019607843, "ext": "agda", "hexsha": "4d5ec9a2b93a6697edf34ee3d1d023236100c2f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/types/int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/types/int.agda", "max_line_length": 44, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/types/int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 397, "size": 1015 }
------------------------------------------------------------------------ -- Second-order abstract syntax -- -- Examples of the formalisation framework in use ------------------------------------------------------------------------ module Examples where -- | Algebraic structures -- Monoids import Monoid.Signature import Monoid.Syntax import Monoid.Equality -- Commutative monoids import CommMonoid.Signature import CommMonoid.Syntax import CommMonoid.Equality -- Groups import Group.Signature import Group.Syntax import Group.Equality -- Commutative groups import CommGroup.Signature import CommGroup.Syntax import CommGroup.Equality -- Group actions import GroupAction.Signature import GroupAction.Syntax import GroupAction.Equality -- Semirings import Semiring.Signature import Semiring.Syntax import Semiring.Equality -- Rings import Ring.Signature import Ring.Syntax import Ring.Equality -- Commutative rings import CommRing.Signature import CommRing.Syntax import CommRing.Equality -- | Logic -- Propositional logic import PropLog.Signature import PropLog.Syntax import PropLog.Equality -- First-order logic (with example proofs) import FOL.Signature import FOL.Syntax import FOL.Equality -- | Computational calculi -- Combinatory logic import Combinatory.Signature import Combinatory.Syntax import Combinatory.Equality -- Untyped λ-calculus import UTLC.Signature import UTLC.Syntax import UTLC.Equality -- Simply-typed λ-calculus (with operational semantics and environment model) import STLC.Signature import STLC.Syntax import STLC.Equality import STLC.Model -- Typed λ-calculus with product and sum types, and naturals (with example derivation) import TLC.Signature import TLC.Syntax import TLC.Equality -- PCF import PCF.Signature import PCF.Syntax import PCF.Equality -- | Miscellaneous -- Lenses import Lens.Signature import Lens.Syntax import Lens.Equality -- Inception algebras import Inception.Signature import Inception.Syntax import Inception.Equality -- Substitution algebras import Sub.Signature import Sub.Syntax import Sub.Equality -- Partial differentiation (with some example proofs) import PDiff.Signature import PDiff.Syntax import PDiff.Equality
{ "alphanum_fraction": 0.762380736, "avg_line_length": 18.974137931, "ext": "agda", "hexsha": "024711177c6a9655ab3507d16cfa804fed862f19", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Examples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Examples.agda", "max_line_length": 86, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 495, "size": 2201 }
{-# OPTIONS --without-K --safe #-} module Experiment.Zero where open import Level using (_⊔_) -- Empty type data ⊥ : Set where -- Unit type record ⊤ : Set where constructor tt -- Boolean data Bool : Set where true false : Bool -- Natural number data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- Propositional Equality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x -- Sum type data _⊎_ {a} {b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B -- Dependent Product type record Σ {a} {b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B fst -- Induction ⊤-ind : ∀ {p} {P : ⊤ → Set p} → P tt → ∀ x → P x ⊤-ind P⊤ tt = P⊤ ⊥-ind : ∀ {p} {P : ⊥ → Set p} → ∀ x → P x ⊥-ind () Bool-ind : ∀ {p} {P : Bool → Set p} → P true → P false → ∀ x → P x Bool-ind t e true = t Bool-ind t e false = e ℕ-ind : ∀ {p} {P : ℕ → Set p} → P zero → (∀ m → P m → P (suc m)) → ∀ n → P n ℕ-ind P0 Ps zero = P0 ℕ-ind P0 Ps (suc n) = Ps n (ℕ-ind P0 Ps n) ≡-ind : ∀ {a p} {A : Set a} (P : (x y : A) → x ≡ y → Set p) → (∀ x → P x x refl) → ∀ x y (eq : x ≡ y) → P x y eq ≡-ind P Pr x .x refl = Pr x ⊎-ind : ∀ {a b p} {A : Set a} {B : Set b} {P : A ⊎ B → Set p} → (∀ x → P (inj₁ x)) → (∀ y → P (inj₂ y)) → ∀ s → P s ⊎-ind i1 i2 (inj₁ x) = i1 x ⊎-ind i1 i2 (inj₂ y) = i2 y Σ-ind : ∀ {a b p} {A : Set a} {B : A → Set b} {P : Σ A B → Set p} → (∀ x y → P (x , y)) → ∀ p → P p Σ-ind f (x , y) = f x y
{ "alphanum_fraction": 0.4674983585, "avg_line_length": 22.3970588235, "ext": "agda", "hexsha": "15211498c51d3fdb09bda4ed4d919c6c6228a802", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Zero.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Zero.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Zero.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 703, "size": 1523 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Intersection where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Product as P open import Data.Product using (_×_; _,_; swap; proj₁; proj₂) open import Relation.Binary using (REL) -- Local imports open import Dodo.Binary.Equality -- # Definitions infixl 30 _∩₂_ _∩₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) _∩₂_ P Q x y = P x y × Q x y -- # Properties module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where ∩₂-idem : (R ∩₂ R) ⇔₂ R ∩₂-idem = ⇔: ⊆-proof ⊇-proof where ⊆-proof : (R ∩₂ R) ⊆₂' R ⊆-proof _ _ = proj₁ ⊇-proof : R ⊆₂' (R ∩₂ R) ⊇-proof _ _ Rxy = (Rxy , Rxy) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-comm : (P ∩₂ Q) ⇔₂ (Q ∩₂ P) ∩₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-assoc : P ∩₂ (Q ∩₂ R) ⇔₂ (P ∩₂ Q) ∩₂ R ∩₂-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : P ∩₂ (Q ∩₂ R) ⊆₂' (P ∩₂ Q) ∩₂ R ⊆-proof _ _ (Pxy , (Qxy , Rxy)) = ((Pxy , Qxy) , Rxy) ⊇-proof : (P ∩₂ Q) ∩₂ R ⊆₂' P ∩₂ (Q ∩₂ R) ⊇-proof _ _ ((Pxy , Qxy) , Rxy) = (Pxy , (Qxy , Rxy)) -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-combine-⊆₂ : P ⊆₂ Q → P ⊆₂ R → P ⊆₂ (Q ∩₂ R) ∩₂-combine-⊆₂ (⊆: P⊆Q) (⊆: P⊆R) = ⊆: (λ x y Pxy → (P⊆Q x y Pxy , P⊆R x y Pxy)) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-introˡ-⊆₂ : (P ∩₂ Q) ⊆₂ Q ∩₂-introˡ-⊆₂ = ⊆: λ _ _ → proj₂ ∩₂-introʳ-⊆₂ : (P ∩₂ Q) ⊆₂ P ∩₂-introʳ-⊆₂ = ⊆: λ _ _ → proj₁ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-elimˡ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ R ∩₂-elimˡ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₂ (P⊆[Q∩R] x y Pxy)) ∩₂-elimʳ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ Q ∩₂-elimʳ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₁ (P⊆[Q∩R] x y Pxy)) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∩₂ R) ⊆₂ (Q ∩₂ R) ∩₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₁ (P⊆Q x y)) ∩₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∩₂ P) ⊆₂ (R ∩₂ Q) ∩₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₂ (P⊆Q x y)) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ : P ⇔₂ Q → (P ∩₂ R) ⇔₂ (Q ∩₂ R) ∩₂-substˡ = ⇔₂-compose ∩₂-substˡ-⊆₂ ∩₂-substˡ-⊆₂ ∩₂-substʳ : P ⇔₂ Q → (R ∩₂ P) ⇔₂ (R ∩₂ Q) ∩₂-substʳ = ⇔₂-compose ∩₂-substʳ-⊆₂ ∩₂-substʳ-⊆₂
{ "alphanum_fraction": 0.4826388889, "avg_line_length": 26.6666666667, "ext": "agda", "hexsha": "2e865f5cd9acf803096cfd59165c026e7fd0db7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Intersection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Intersection.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Intersection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1663, "size": 2880 }
-- Andreas, 2015-12-10, issue reported by Andrea Vezzosi open import Common.Equality open import Common.Bool id : Bool → Bool id true = true id false = false is-id : ∀ x → x ≡ id x is-id true = refl is-id false = refl postulate P : Bool → Set b : Bool p : P (id b) proof : P b proof rewrite is-id b = p
{ "alphanum_fraction": 0.6487341772, "avg_line_length": 15.0476190476, "ext": "agda", "hexsha": "478dc932ec6e61f96c2ecca03135ebf691c10ea2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue520.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue520.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue520.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 316 }
module Selective where open import Prelude.Equality open import Agda.Builtin.TrustMe ----------------------------------------------------------------- -- id : ∀ {a} {A : Set a} → A → A -- id x = x id : ∀ {A : Set} → A → A id x = x {-# INLINE id #-} infixl -10 id syntax id {A = A} x = x ofType A const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x _ = x {-# INLINE const #-} flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → (∀ x y → C x y) → ∀ y x → C x y flip f x y = f y x {-# INLINE flip #-} infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → ∀ x → C x (g x) (f ∘ g) x = f (g x) {-# INLINE _∘_ #-} infixr -20 _$_ _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x f $ x = f x ------------------------------------------------------------------ data Either (A : Set) (B : Set) : Set where left : A → Either A B right : B → Either A B either : ∀ {A : Set} {B : Set} {C : Set} → (A → C) → (B → C) → Either A B → C either f g (left x) = f x either f g (right x) = g x data Pair (a b : Set) : Set where _×_ : a → b → Pair a b ------------------------------------------------------------------ record Functor (F : Set → Set) : Set₁ where infixl 5 _<$>_ field fmap : ∀ {A B} → (A → B) → F A → F B -- Functor laws fmap-id : ∀ {A} {x : F A} → fmap id x ≡ id x fmap-compose : ∀ {A B C} {f : A → B} {g : B → C} {x : F A} → fmap (g ∘ f) x ≡ (fmap g ∘ fmap f) x _<$>_ = fmap open Functor {{...}} public instance FunctorFunction : {X : Set} → Functor (λ Y → (X → Y)) fmap {{FunctorFunction}} f g = λ x → (f ∘ g) x fmap-id {{FunctorFunction}} = refl fmap-compose {{FunctorFunction}} = refl record Applicative (F : Set → Set) : Set₁ where infixl 5 _<*>_ _<*_ _*>_ field overlap {{functor}} : Functor F pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B -- Applicative laws ap-identity : ∀ {A B} {f : F (A → B)} → (pure id <*> f) ≡ f ap-homomorphism : ∀ {A B} {x : A} {f : A → B} → pure f <*> pure x ≡ pure (f x) ap-interchange : ∀ {A B} {x : A} {f : F (A → B)} → f <*> pure x ≡ pure (_$ x) <*> f -- ap-composition : ∀ {A B C} {x : F A} {f : F (A → B)} {g : F (B → C)} → -- (pure (_∘_) <*> g <*> f <*> x) ≡ (g <*> (f <*> x)) fmap-pure-ap : ∀ {A B} {x : F A} {f : A → B} → f <$> x ≡ pure f <*> x _<*_ : ∀ {A B} → F A → F B → F A a <* b = ⦇ const a b ⦈ _*>_ : ∀ {A B} → F A → F B → F B a *> b = ⦇ (const id) a b ⦈ open Applicative {{...}} public instance ApplicativeFunction : {X : Set} → Applicative (λ Y → (X → Y)) pure {{ApplicativeFunction}} f = const f _<*>_ {{ApplicativeFunction}} f g = λ x → f x (g x) -- Applicative laws ap-identity {{ApplicativeFunction}} = refl ap-homomorphism {{ApplicativeFunction}} = refl ap-interchange {{ApplicativeFunction}} = refl fmap-pure-ap {{ApplicativeFunction}} {_} {_} {x} {f} = primTrustMe -- f <$> x -- f <$> x -- ≡⟨ {!!} ⟩ -- pure f <*> x -- ∎ record Bifunctor (P : Set → Set → Set) : Set₁ where field bimap : ∀ {A B C D} → (A → B) → (C → D) → P A C → P B D first : ∀ {A B C} → (A -> B) -> P A C -> P B C second : ∀ {A B C} → (B -> C) -> P A B -> P A C open Bifunctor {{...}} public instance BifunctorEither : Bifunctor Either bimap {{BifunctorEither}} f _ (left a) = left (f a) bimap {{BifunctorEither}} _ g (right b) = right (g b) first {{BifunctorEither}} f = bimap f id second {{BifunctorEither}} = bimap id record Selective (F : Set → Set) : Set₁ where field overlap {{applicative}} : Applicative F handle : ∀ {A B} → F (Either A B) → F (A → B) → F B -- Laws: -- (F1) Apply a pure function to the result: f1 : ∀ {A B C} {f : B → C} {x : F (Either A B)} {y : F (A → B)} → (f <$> (handle x y)) ≡ handle (second f <$> x) ((f ∘_) <$> y) -- (F2) Apply a pure function to the left (error) branch: f2 : ∀ {A B C} {f : A -> C} {x : F (Either A B)} {y : F (C → B)} → handle (first f <$> x) y ≡ handle x ((_∘ f) <$> y) -- (F3) Apply a pure function to the handler: f3 : ∀ {A B C} {f : C → A → B} {x : F (Either A B)} {y : F C} → (handle x (f <$> y)) ≡ handle (first (flip f) <$> x) (flip (_$_) <$> y) -- (P1) Apply a pure handler: p1 : ∀ {A B} {x : F (Either A B)} {y : A → B} → handle x (pure y) ≡ (either y id <$> x) -- (P2) Handle a pure error: p2 : ∀ {A B} {x : A} {y : F (A → B)} → handle (pure (left x)) y ≡ ((_$ x) <$> y) -- -- (A1) Associativity -- a1 : ∀ {A B C} {x : F (Either A B)} -- {y : F (Either C (A → B))} -- {z : F (C → A → B)} → -- handle x (handle y z) ≡ -- handle (handle ((λ x → right x) <$> x) (λ a → bimap (λ x → (x × a)) (_$ a) y)) -- A1: handle x (handle y z) = handle (handle (f <$> x) (g <$> y)) (h <$> z) -- where f x = Right <$> x -- g y = \a -> bimap (,a) ($a) y -- h z = uncurry z -- a1 :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b -- a1 x y z = handle x (handle y z) === handle (handle (f <$> x) (g <$> y)) (h <$> z) -- where -- f x = Right <$> x -- g y = \a -> bimap (,a) ($a) y -- h z = uncurry z open Selective {{...}} public -- | 'Selective' is more powerful than 'Applicative': we can recover the -- application operator '<*>'. In particular, the following 'Applicative' laws -- hold when expressed using 'apS': -- -- * Identity : pure id <*> v = v -- * Homomorphism : pure f <*> pure x = pure (f x) -- * Interchange : u <*> pure y = pure ($y) <*> u -- * Composition : (.) <$> u <*> v <*> w = u <*> (v <*> w) apS : ∀ {A B : Set} {F : Set → Set} {{_ : Selective F}} → F (A → B) → F A → F B apS f x = handle (left <$> f) (flip (_$_) <$> x) ---------------------------------------------------------------------
{ "alphanum_fraction": 0.4336835194, "avg_line_length": 32.4042553191, "ext": "agda", "hexsha": "679fbda37c4875d2e57ad788d041c35f0cf40a00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tuura/selective-theory-agda", "max_forks_repo_path": "src/Selective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tuura/selective-theory-agda", "max_issues_repo_path": "src/Selective.agda", "max_line_length": 90, "max_stars_count": 7, "max_stars_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tuura/selective-theory-agda", "max_stars_repo_path": "src/Selective.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-22T12:31:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-11T14:42:19.000Z", "num_tokens": 2301, "size": 6092 }
module SizedIO.ConsoleObject where open import Size open import SizedIO.Console open import SizedIO.Object open import SizedIO.IOObject -- A console object is an IO object for the IO interface of console ConsoleObject : (i : Size) → (iface : Interface) → Set ConsoleObject i iface = IOObject consoleI iface i
{ "alphanum_fraction": 0.7753164557, "avg_line_length": 22.5714285714, "ext": "agda", "hexsha": "2361a0c96969340cb498a86dbc385c823a478277", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedIO/ConsoleObject.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedIO/ConsoleObject.agda", "max_line_length": 68, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedIO/ConsoleObject.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 76, "size": 316 }
module Acc where data Rel(A : Set) : Set1 where rel : (A -> A -> Set) -> Rel A _is_than_ : {A : Set} -> A -> Rel A -> A -> Set x is rel f than y = f x y data Acc {A : Set} (less : Rel A) (x : A) : Set where acc : ((y : A) -> x is less than y -> Acc less y) -> Acc less x data WO {A : Set} (less : Rel A) : Set where wo : ((x : A) -> Acc less x) -> WO less data False : Set where data True : Set where tt : True data Nat : Set where Z : Nat S : Nat -> Nat data ∏ {A : Set} (f : A -> Set) : Set where ∏I : ((z : A) -> f z) -> ∏ f data Ord : Set where z : Ord lim : (Nat -> Ord) -> Ord zp : Ord -> Ord zp z = z zp (lim f) = lim (\x -> zp (f x)) _<_ : Ord -> Ord -> Set z < _ = True lim _ < z = False lim f < lim g = ∏ \(n : Nat) -> f n < g n ltNat : Nat -> Nat -> Set ltNat Z Z = False ltNat Z (S n) = True ltNat (S m) (S n) = ltNat m n ltNat (S m) Z = False ltNatRel : Rel Nat ltNatRel = rel ltNat postulate woltNat : WO ltNatRel
{ "alphanum_fraction": 0.5222797927, "avg_line_length": 18.5576923077, "ext": "agda", "hexsha": "ef0d111c0f92b5241460c7533b2ec51566eb6e6d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/Termination/Acc.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/Termination/Acc.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/Termination/Acc.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 387, "size": 965 }
{-# OPTIONS --cumulativity #-} open import Agda.Builtin.Equality mutual X : Set X = _ Y : Set₁ Y = Set test : _≡_ {A = Set₁} X Y test = refl
{ "alphanum_fraction": 0.5732484076, "avg_line_length": 11.2142857143, "ext": "agda", "hexsha": "56fc09d6c554e24cb1021773835fd84f6f4d09a8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Cumulativity-bad-meta-solution2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Cumulativity-bad-meta-solution2.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Cumulativity-bad-meta-solution2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 157 }
------------------------------------------------------------------------ -- Potentially cyclic precedence graphs ------------------------------------------------------------------------ module Mixfix.Cyclic.PrecedenceGraph where open import Data.Fin using (Fin) open import Data.Nat using (ℕ) open import Data.Vec as Vec using (allFin) open import Data.List using (List) open import Data.Product using (∃) open import Mixfix.Fixity open import Mixfix.Operator open import Mixfix.Expr hiding (module PrecedenceGraph) -- Precedence graphs are represented by the number of precedence -- levels, plus functions mapping node identifiers (precedences) to -- node contents and successor precedences. record PrecedenceGraph : Set where field -- The number of precedence levels. levels : ℕ -- Precedence levels. Precedence : Set Precedence = Fin levels field -- The precedence level's operators. ops : Precedence → (fix : Fixity) → List (∃ (Operator fix)) -- The immediate successors of the precedence level. ↑ : Precedence → List Precedence -- All precedence levels. anyPrecedence : List Precedence anyPrecedence = Vec.toList (allFin levels) -- Potentially cyclic precedence graphs. cyclic : PrecedenceGraphInterface cyclic = record { PrecedenceGraph = PrecedenceGraph ; Precedence = PrecedenceGraph.Precedence ; ops = PrecedenceGraph.ops ; ↑ = PrecedenceGraph.↑ ; anyPrecedence = PrecedenceGraph.anyPrecedence }
{ "alphanum_fraction": 0.6588940706, "avg_line_length": 29.431372549, "ext": "agda", "hexsha": "ac039581a6fad6f15934984e45ccfa7ae0655c13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Cyclic/PrecedenceGraph.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Cyclic/PrecedenceGraph.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "Mixfix/Cyclic/PrecedenceGraph.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 352, "size": 1501 }
------------------------------------------------------------------------ -- This module establishes that the recognisers are as expressive as -- possible when the alphabet is Bool (this could be generalised to -- arbitrary finite alphabets), whereas this is not the case when the -- alphabet is ℕ ------------------------------------------------------------------------ module TotalRecognisers.LeftRecursion.ExpressiveStrength where open import Algebra open import Codata.Musical.Notation open import Data.Bool as Bool hiding (_∧_) open import Data.Empty open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Data.List import Data.List.Properties as ListProp open import Data.List.Reverse open import Data.Nat as Nat open import Data.Nat.InfinitelyOften as Inf import Data.Nat.Properties as NatProp open import Data.Product open import Data.Sum open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation private module ListMonoid {A : Set} = Monoid (ListProp.++-monoid A) module NatOrder = DecTotalOrder NatProp.≤-decTotalOrder import TotalRecognisers.LeftRecursion open TotalRecognisers.LeftRecursion Bool using (_∧_; left-zero) private open module LR {Tok : Set} = TotalRecognisers.LeftRecursion Tok hiding (P; ∞⟨_⟩P; _∧_; left-zero; _∷_) P : Set → Bool → Set P Tok = LR.P {Tok} ∞⟨_⟩P : Bool → Set → Bool → Set ∞⟨ b ⟩P Tok n = LR.∞⟨_⟩P {Tok} b n open import TotalRecognisers.LeftRecursion.Lib Bool hiding (_∷_) ------------------------------------------------------------------------ -- A boring lemma private lemma : (f : List Bool → Bool) → (false ∧ f [ true ] ∨ false ∧ f [ false ]) ∨ f [] ≡ f [] lemma f = cong₂ (λ b₁ b₂ → (b₁ ∨ b₂) ∨ f []) (left-zero (f [ true ])) (left-zero (f [ false ])) ------------------------------------------------------------------------ -- Expressive strength -- For every grammar there is an equivalent decidable predicate. grammar⇒pred : ∀ {Tok n} (p : P Tok n) → ∃ λ (f : List Tok → Bool) → ∀ {s} → s ∈ p ⇔ T (f s) grammar⇒pred p = ((λ s → ⌊ s ∈? p ⌋) , λ {_} → equivalence fromWitness toWitness) -- When the alphabet is Bool the other direction holds: for every -- decidable predicate there is a corresponding grammar. -- -- Note that the grammars constructed by the proof are all "infinite -- LL(1)". pred⇒grammar : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where p : (f : List Bool → Bool) → P Bool (f []) p f = cast (lemma f) ( ♯? (sat id ) · ♯ p (f ∘ _∷_ true ) ∣ ♯? (sat not) · ♯ p (f ∘ _∷_ false) ∣ accept-if-true (f []) ) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (cast (∣-right s∈)) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (cast (∣-left (∣-left (t∈ · s∈)))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (f ∘ _∷_ true ) s∈ ... | sat {t = false} () p-sound f (cast (∣-left (∣-right (t∈ · s∈)))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (f ∘ _∷_ false) s∈ ... | sat {t = true} () p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f [] ok = cast (∣-right {n₁ = false ∧ f [ true ] ∨ false ∧ f [ false ]} $ AcceptIfTrue.complete ok) p-complete f (true ∷ bs) ok = cast (∣-left $ ∣-left $ add-♭♯ (f [ true ]) (sat _) · p-complete (f ∘ _∷_ true ) bs ok) p-complete f (false ∷ bs) ok = cast (∣-left $ ∣-right {n₁ = false ∧ f [ true ]} $ add-♭♯ (f [ false ]) (sat _) · p-complete (f ∘ _∷_ false) bs ok) -- An alternative proof which uses a left recursive definition of the -- grammar to avoid the use of a cast. pred⇒grammar′ : (f : List Bool → Bool) → ∃ λ (p : P Bool (f [])) → ∀ {s} → s ∈ p ⇔ T (f s) pred⇒grammar′ f = (p f , λ {s} → equivalence (p-sound f) (p-complete f s)) where extend : {A B : Set} → (List A → B) → A → (List A → B) extend f x = λ xs → f (xs ∷ʳ x) p : (f : List Bool → Bool) → P Bool (f []) p f = ♯ p (extend f true ) · ♯? (sat id ) ∣ ♯ p (extend f false) · ♯? (sat not) ∣ accept-if-true (f []) p-sound : ∀ f {s} → s ∈ p f → T (f s) p-sound f (∣-right s∈) with AcceptIfTrue.sound (f []) s∈ ... | (refl , ok) = ok p-sound f (∣-left (∣-left (s∈ · t∈))) with drop-♭♯ (f [ true ]) t∈ ... | sat {t = true} _ = p-sound (extend f true ) s∈ ... | sat {t = false} () p-sound f (∣-left (∣-right (s∈ · t∈))) with drop-♭♯ (f [ false ]) t∈ ... | sat {t = false} _ = p-sound (extend f false) s∈ ... | sat {t = true} () p-complete′ : ∀ f {s} → Reverse s → T (f s) → s ∈ p f p-complete′ f [] ok = ∣-right {n₁ = false} $ AcceptIfTrue.complete ok p-complete′ f (bs ∶ rs ∶ʳ true ) ok = ∣-left {n₁ = false} $ ∣-left {n₁ = false} $ p-complete′ (extend f true ) rs ok · add-♭♯ (f [ true ]) (sat _) p-complete′ f (bs ∶ rs ∶ʳ false) ok = ∣-left {n₁ = false} $ ∣-right {n₁ = false} $ p-complete′ (extend f false) rs ok · add-♭♯ (f [ false ]) (sat _) p-complete : ∀ f s → T (f s) → s ∈ p f p-complete f s = p-complete′ f (reverseView s) -- If infinite alphabets are allowed the result is different: there -- are decidable predicates which cannot be realised as grammars. The -- proof below shows that a recogniser for natural number strings -- cannot accept exactly the strings of the form "nn". module NotExpressible where -- A "pair" is a string containing two equal elements. pair : ℕ → List ℕ pair n = n ∷ n ∷ [] -- OnlyPairs p is inhabited iff p only accepts pairs and empty -- strings. (Empty strings are allowed due to the presence of the -- nonempty combinator.) OnlyPairs : ∀ {n} → P ℕ n → Set OnlyPairs p = ∀ {n s} → n ∷ s ∈ p → s ≡ [ n ] -- ManyPairs p is inhabited iff p accepts infinitely many pairs. ManyPairs : ∀ {n} → P ℕ n → Set ManyPairs p = Inf (λ n → pair n ∈ p) -- AcceptsNonEmptyString p is inhabited iff p accepts a non-empty -- string. AcceptsNonEmptyString : ∀ {Tok n} → P Tok n → Set AcceptsNonEmptyString p = ∃₂ λ t s → t ∷ s ∈ p -- If a recogniser does not accept any non-empty string, then it -- either accepts the empty string or no string at all. nullable-or-fail : ∀ {Tok n} {p : P Tok n} → ¬ AcceptsNonEmptyString p → [] ∈ p ⊎ (∀ s → ¬ s ∈ p) nullable-or-fail {p = p} ¬a with [] ∈? p ... | yes []∈p = inj₁ []∈p ... | no []∉p = inj₂ helper where helper : ∀ s → ¬ s ∈ p helper [] = []∉p helper (t ∷ s) = ¬a ∘ _,_ t ∘ _,_ s -- If p₁ · p₂ accepts infinitely many pairs, and nothing but pairs -- (or the empty string), then at most one of p₁ and p₂ accepts a -- non-empty string. This follows because p₁ and p₂ are independent -- of each other. For instance, if p₁ accepted n and p₂ accepted i -- and j, then p₁ · p₂ would accept both ni and nj, and if p₁ -- accepted mm and p₂ accepted n then p₁ · p₂ would accept mmn. at-most-one : ∀ {n₁ n₂} {p₁ : ∞⟨ n₂ ⟩P ℕ n₁} {p₂ : ∞⟨ n₁ ⟩P ℕ n₂} → OnlyPairs (p₁ · p₂) → ManyPairs (p₁ · p₂) → AcceptsNonEmptyString (♭? p₁) → AcceptsNonEmptyString (♭? p₂) → ⊥ at-most-one op mp (n₁ , s₁ , n₁s₁∈p₁) (n₂ , s₂ , n₂s₂∈p₂) with op (n₁s₁∈p₁ · n₂s₂∈p₂) at-most-one _ _ (_ , _ ∷ [] , _) (_ , _ , _) | () at-most-one _ _ (_ , _ ∷ _ ∷ _ , _) (_ , _ , _) | () at-most-one {p₁ = p₁} {p₂} op mp (n , [] , n∈p₁) (.n , .[] , n∈p₂) | refl = twoDifferentWitnesses mp helper where ¬pair : ∀ {i s} → s ∈ p₁ · p₂ → n ≢ i → s ≢ pair i ¬pair (_·_ {s₁ = []} _ ii∈p₂) n≢i refl with op (n∈p₁ · ii∈p₂) ... | () ¬pair (_·_ {s₁ = i ∷ []} i∈p₁ _) n≢i refl with op (i∈p₁ · n∈p₂) ¬pair (_·_ {s₁ = .n ∷ []} n∈p₁ _) n≢n refl | refl = n≢n refl ¬pair (_·_ {s₁ = i ∷ .i ∷ []} ii∈p₁ _) n≢i refl with op (ii∈p₁ · n∈p₂) ... | () ¬pair (_·_ {s₁ = _ ∷ _ ∷ _ ∷ _} _ _) _ () helper : ¬ ∃₂ λ i j → i ≢ j × pair i ∈ p₁ · p₂ × pair j ∈ p₁ · p₂ helper (i , j , i≢j , ii∈ , jj∈) with Nat._≟_ n i helper (.n , j , n≢j , nn∈ , jj∈) | yes refl = ¬pair jj∈ n≢j refl helper (i , j , i≢j , ii∈ , jj∈) | no n≢i = ¬pair ii∈ n≢i refl -- OnlyPairs and ManyPairs are mutually exclusive. ¬pairs : ∀ {n} (p : P ℕ n) → OnlyPairs p → ManyPairs p → ⊥ ¬pairs fail op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ fail helper () ¬pairs empty op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ empty helper () ¬pairs (sat f) op mp = witness mp (helper ∘ proj₂) where helper : ∀ {t} → ¬ pair t ∈ sat f helper () ¬pairs (nonempty p) op mp = ¬pairs p (op ∘ nonempty) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ nonempty p → pair n ∈ p helper (nonempty pr) = pr ¬pairs (cast eq p) op mp = ¬pairs p (op ∘ cast) (Inf.map helper mp) where helper : ∀ {n} → pair n ∈ cast eq p → pair n ∈ p helper (cast pr) = pr -- The most interesting cases are _∣_ and _·_. For the choice -- combinator we make use of the fact that if p₁ ∣ p₂ accepts -- infinitely many pairs, then at least one of p₁ and p₂ do. (We are -- deriving a contradiction, so the use of classical reasoning is -- unproblematic.) ¬pairs (p₁ ∣ p₂) op mp = commutes-with-∪ (Inf.map split mp) helper where helper : ¬ (ManyPairs p₁ ⊎ ManyPairs p₂) helper (inj₁ mp₁) = ¬pairs p₁ (op ∘ ∣-left) mp₁ helper (inj₂ mp₂) = ¬pairs p₂ (op ∘ ∣-right {p₁ = p₁}) mp₂ split : ∀ {s} → s ∈ p₁ ∣ p₂ → s ∈ p₁ ⊎ s ∈ p₂ split (∣-left s∈p₁) = inj₁ s∈p₁ split (∣-right s∈p₂) = inj₂ s∈p₂ -- For the sequencing combinator we make use of the fact that the -- argument recognisers cannot both accept non-empty strings. ¬pairs (p₁ · p₂) op mp = excluded-middle λ a₁? → excluded-middle λ a₂? → helper a₁? a₂? where continue : {n n′ : Bool} (p : ∞⟨ n′ ⟩P ℕ n) → n′ ≡ true → OnlyPairs (♭? p) → ManyPairs (♭? p) → ⊥ continue p eq with forced? p continue p refl | true = ¬pairs p continue p () | false helper : Dec (AcceptsNonEmptyString (♭? p₁)) → Dec (AcceptsNonEmptyString (♭? p₂)) → ⊥ helper (yes a₁) (yes a₂) = at-most-one op mp a₁ a₂ helper (no ¬a₁) _ with nullable-or-fail ¬a₁ ... | inj₁ []∈p₁ = continue p₂ (⇒ []∈p₁) (op ∘ _·_ []∈p₁) (Inf.map right mp) where right : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₂ right (_·_ {s₁ = []} _ ∈p₂) = ∈p₂ right (_·_ {s₁ = _ ∷ _} ∈p₁ _) = ⊥-elim (¬a₁ (-, -, ∈p₁)) ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (∈p₁ · _) = is-fail _ ∈p₁ helper _ (no ¬a₂) with nullable-or-fail ¬a₂ ... | inj₁ []∈p₂ = continue p₁ (⇒ []∈p₂) (op ∘ (λ ∈p₁ → cast∈ (proj₂ ListMonoid.identity _) refl (∈p₁ · []∈p₂))) (Inf.map left mp) where left : ∀ {s} → s ∈ p₁ · p₂ → s ∈ ♭? p₁ left (_·_ {s₂ = _ ∷ _} _ ∈p₂) = ⊥-elim (¬a₂ (-, -, ∈p₂)) left (_·_ {s₁ = s₁} {s₂ = []} ∈p₁ _) = cast∈ (sym $ proj₂ ListMonoid.identity s₁) refl ∈p₁ ... | inj₂ is-fail = witness mp (∉ ∘ proj₂) where ∉ : ∀ {s} → ¬ s ∈ p₁ · p₂ ∉ (_ · ∈p₂) = is-fail _ ∈p₂ -- Note that it is easy to decide whether a string is a pair or not. pair? : List ℕ → Bool pair? (m ∷ n ∷ []) = ⌊ Nat._≟_ m n ⌋ pair? _ = false -- This means that there are decidable predicates over token strings -- which cannot be realised using the recogniser combinators. not-realisable : ¬ ∃₂ (λ n (p : P ℕ n) → ∀ {s} → s ∈ p ⇔ T (pair? s)) not-realisable (_ , p , hyp) = ¬pairs p op mp where op : OnlyPairs p op {n} {[]} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) op {n} { m ∷ []} s∈p with toWitness (Equivalence.to hyp ⟨$⟩ s∈p) op {n} {.n ∷ []} s∈p | refl = refl op {n} {_ ∷ _ ∷ _} s∈p = ⊥-elim (Equivalence.to hyp ⟨$⟩ s∈p) mp : ManyPairs p mp (i , ¬pair) = ¬pair i NatOrder.refl $ Equivalence.from hyp ⟨$⟩ fromWitness refl not-expressible : ∃₂ λ (Tok : Set) (f : List Tok → Bool) → ¬ ∃₂ (λ n (p : P Tok n) → ∀ {s} → s ∈ p ⇔ T (f s)) not-expressible = (ℕ , pair? , not-realisable) where open NotExpressible
{ "alphanum_fraction": 0.5351679546, "avg_line_length": 36.7594202899, "ext": "agda", "hexsha": "664a1bbc974bca3735d0e7640d056d7c16d5edc2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalRecognisers/LeftRecursion/ExpressiveStrength.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalRecognisers/LeftRecursion/ExpressiveStrength.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalRecognisers/LeftRecursion/ExpressiveStrength.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 4665, "size": 12682 }
module Lemmachine.Spike where open import Data.Fin open import Data.Digit -- 3.9 Quality Values DIGIT = Decimal data qvalue : DIGIT → DIGIT → DIGIT → Set where zero : (d₁ d₂ d₃ : DIGIT) → qvalue d₁ d₂ d₃ one : qvalue zero zero zero
{ "alphanum_fraction": 0.7112970711, "avg_line_length": 19.9166666667, "ext": "agda", "hexsha": "f878c0580018411c80cb6854059771b003ffab8a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Spike.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Spike.agda", "max_line_length": 47, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Spike.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 83, "size": 239 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Commutativity where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} where open Precategory C compSq : ∀ {x y z w u v} {f : C [ x , y ]} {g h} {k : C [ z , w ]} {l} {m} {n : C [ u , v ]} -- square 1 → f ⋆ g ≡ h ⋆ k -- square 2 (sharing g) → k ⋆ l ≡ m ⋆ n → f ⋆ (g ⋆ l) ≡ (h ⋆ m) ⋆ n compSq {f = f} {g} {h} {k} {l} {m} {n} p q = f ⋆ (g ⋆ l) ≡⟨ sym (⋆Assoc _ _ _) ⟩ (f ⋆ g) ⋆ l ≡⟨ cong (_⋆ l) p ⟩ (h ⋆ k) ⋆ l ≡⟨ ⋆Assoc _ _ _ ⟩ h ⋆ (k ⋆ l) ≡⟨ cong (h ⋆_) q ⟩ h ⋆ (m ⋆ n) ≡⟨ sym (⋆Assoc _ _ _) ⟩ (h ⋆ m) ⋆ n ∎
{ "alphanum_fraction": 0.4427480916, "avg_line_length": 23.1176470588, "ext": "agda", "hexsha": "815052f20b9a0360ec06d656e53bdc54009cf618", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Categories/Commutativity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Categories/Commutativity.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Categories/Commutativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 388, "size": 786 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic induction ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Induction.Lexicographic where open import Data.Product open import Induction open import Level -- The structure of lexicographic induction. Σ-Rec : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → (∀ x → RecStruct (B x) ℓ₁ ℓ₃) → RecStruct (Σ A B) _ _ Σ-Rec RecA RecB P (x , y) = -- Either x is constant and y is "smaller", ... RecB x (λ y' → P (x , y')) y × -- ...or x is "smaller" and y is arbitrary. RecA (λ x' → ∀ y' → P (x' , y')) x _⊗_ : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → RecStruct B ℓ₁ ℓ₃ → RecStruct (A × B) _ _ RecA ⊗ RecB = Σ-Rec RecA (λ _ → RecB) -- Constructs a recursor builder for lexicographic induction. Σ-rec-builder : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : ∀ x → RecStruct (B x) ℓ₁ ℓ₃} → RecursorBuilder RecA → (∀ x → RecursorBuilder (RecB x)) → RecursorBuilder (Σ-Rec RecA RecB) Σ-rec-builder {RecA = RecA} {RecB = RecB} recA recB P f (x , y) = (p₁ x y p₂x , p₂x) where p₁ : ∀ x y → RecA (λ x' → ∀ y' → P (x' , y')) x → RecB x (λ y' → P (x , y')) y p₁ x y x-rec = recB x (λ y' → P (x , y')) (λ y y-rec → f (x , y) (y-rec , x-rec)) y p₂ : ∀ x → RecA (λ x' → ∀ y' → P (x' , y')) x p₂ = recA (λ x → ∀ y → P (x , y)) (λ x x-rec y → f (x , y) (p₁ x y x-rec , x-rec)) p₂x = p₂ x [_⊗_] : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : RecStruct B ℓ₁ ℓ₃} → RecursorBuilder RecA → RecursorBuilder RecB → RecursorBuilder (RecA ⊗ RecB) [ recA ⊗ recB ] = Σ-rec-builder recA (λ _ → recB) ------------------------------------------------------------------------ -- Example private open import Data.Nat open import Induction.Nat as N -- The Ackermann function à la Rózsa Péter. ackermann : ℕ → ℕ → ℕ ackermann m n = build [ N.recBuilder ⊗ N.recBuilder ] (λ _ → ℕ) (λ { (zero , n) _ → 1 + n ; (suc m , zero) (_ , ackm•) → ackm• 1 ; (suc m , suc n) (ack[1+m]n , ackm•) → ackm• ack[1+m]n }) (m , n)
{ "alphanum_fraction": 0.4536741214, "avg_line_length": 30.5365853659, "ext": "agda", "hexsha": "bfa30777eaf75ec27b9d722039bea801c4576c60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Induction/Lexicographic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Induction/Lexicographic.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Induction/Lexicographic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 943, "size": 2504 }
{- This file contains: - Fibers of induced map between set truncations is the set truncation of fibers modulo a certain equivalence relation defined by π₁ of the base. -} {-# OPTIONS --safe #-} module Cubical.HITs.SetTruncation.Fibers where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.HITs.SetQuotients as SetQuot open import Cubical.Relation.Binary private variable ℓ ℓ' : Level module _ {X : Type ℓ } {Y : Type ℓ'} (f : X → Y) where private ∥f∥₂ : ∥ X ∥₂ → ∥ Y ∥₂ ∥f∥₂ = Set.map f module _ (y : Y) where open Iso isSetFiber∥∥₂ : isSet (fiber ∥f∥₂ ∣ y ∣₂) isSetFiber∥∥₂ = isOfHLevelΣ 2 squash₂ (λ _ → isProp→isSet (squash₂ _ _)) fiberRel : ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ → Type ℓ fiberRel a b = Set.map fst a ≡ Set.map fst b private proj : ∥ fiber f y ∥₂ / fiberRel → ∥ X ∥₂ proj = SetQuot.rec squash₂ (Set.map fst) (λ _ _ p → p) ∥fiber∥₂/R→fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R→fiber∥∥₂ = SetQuot.rec isSetFiber∥∥₂ ∥fiber∥₂→fiber∥∥₂ feq where fiber→fiber∥∥₂ : fiber f y → fiber ∥f∥₂ ∣ y ∣₂ fiber→fiber∥∥₂ (x , p) = ∣ x ∣₂ , cong ∣_∣₂ p ∥fiber∥₂→fiber∥∥₂ : ∥ fiber f y ∥₂ → fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂→fiber∥∥₂ = Set.rec isSetFiber∥∥₂ fiber→fiber∥∥₂ feq : (a b : ∥ fiber f y ∥₂) (r : fiberRel a b) → ∥fiber∥₂→fiber∥∥₂ a ≡ ∥fiber∥₂→fiber∥∥₂ b feq = Set.elim2 (λ _ _ → isProp→isSet (isPropΠ (λ _ → isSetFiber∥∥₂ _ _))) λ _ _ p → ΣPathP (p , isSet→isSet' squash₂ _ _ _ _) mereFiber→∥fiber∥₂/R : (x : X) → ∥ f x ≡ y ∥ → ∥ fiber f y ∥₂ / fiberRel mereFiber→∥fiber∥₂/R x = Prop.rec→Set squash/ (λ p → [ ∣ _ , p ∣₂ ]) (λ _ _ → eq/ _ _ refl) fiber∥∥₂→∥fiber∥₂/R : fiber ∥f∥₂ ∣ y ∣₂ → ∥ fiber f y ∥₂ / fiberRel fiber∥∥₂→∥fiber∥₂/R = uncurry (Set.elim (λ _ → isSetΠ λ _ → squash/) λ x p → mereFiber→∥fiber∥₂/R x (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→fst : (q : ∥ fiber f y ∥₂ / fiberRel) → ∥fiber∥₂/R→fiber∥∥₂ q .fst ≡ proj q ∥fiber∥₂/R→fiber∥∥₂→fst = SetQuot.elimProp (λ _ → squash₂ _ _) (Set.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ _ → refl)) fiber∥∥₂→∥fiber∥₂/R→proj : (x : fiber ∥f∥₂ ∣ y ∣₂) → proj (fiber∥∥₂→∥fiber∥₂/R x) ≡ x .fst fiber∥∥₂→∥fiber∥₂/R→proj = uncurry (Set.elim (λ _ → isSetΠ λ _ → isProp→isSet (squash₂ _ _)) λ x p → Prop.elim {P = λ t → proj (mereFiber→∥fiber∥₂/R x t) ≡ ∣ x ∣₂} (λ _ → squash₂ _ _) (λ _ → refl) (PathIdTrunc₀Iso .fun p)) ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R : (x : ∥ fiber f y ∥₂ / fiberRel) → fiber∥∥₂→∥fiber∥₂/R (∥fiber∥₂/R→fiber∥∥₂ x) ≡ x ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R = SetQuot.elimProp (λ _ → squash/ _ _) (Set.elim (λ _ → isProp→isSet (squash/ _ _)) (λ _ → eq/ _ _ refl)) fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ : (x : fiber ∥f∥₂ ∣ y ∣₂) → ∥fiber∥₂/R→fiber∥∥₂ (fiber∥∥₂→∥fiber∥₂/R x) ≡ x fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ x = Σ≡Prop (λ _ → squash₂ _ _) (∥fiber∥₂/R→fiber∥∥₂→fst (fiber∥∥₂→∥fiber∥₂/R x) ∙ fiber∥∥₂→∥fiber∥₂/R→proj x) Iso-∥fiber∥₂/R-fiber∥∥₂ : Iso (∥ fiber f y ∥₂ / fiberRel) (fiber ∥f∥₂ ∣ y ∣₂) Iso-∥fiber∥₂/R-fiber∥∥₂ .fun = ∥fiber∥₂/R→fiber∥∥₂ Iso-∥fiber∥₂/R-fiber∥∥₂ .inv = fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .leftInv = ∥fiber∥₂/R→fiber∥∥₂→∥fiber∥₂/R Iso-∥fiber∥₂/R-fiber∥∥₂ .rightInv = fiber∥∥₂→∥fiber∥₂/R→fiber∥∥₂ -- main results ∥fiber∥₂/R≃fiber∥∥₂ : ∥ fiber f y ∥₂ / fiberRel ≃ fiber ∥f∥₂ ∣ y ∣₂ ∥fiber∥₂/R≃fiber∥∥₂ = isoToEquiv Iso-∥fiber∥₂/R-fiber∥∥₂ -- the relation is an equivalence relation open BinaryRelation open isEquivRel isEquivRelFiberRel : isEquivRel fiberRel isEquivRelFiberRel .reflexive _ = refl isEquivRelFiberRel .symmetric _ _ = sym isEquivRelFiberRel .transitive _ _ _ = _∙_ -- alternative characterization of the relation in terms of equality in Y and fiber f y ∣transport∣ : ∥ y ≡ y ∥₂ → ∥ fiber f y ∥₂ → ∥ fiber f y ∥₂ ∣transport∣ = Set.rec2 squash₂ (λ s (x , q) → ∣ x , q ∙ s ∣₂) fiberRel2 : (x x' : ∥ fiber f y ∥₂) → Type (ℓ-max ℓ ℓ') fiberRel2 x x' = ∥ Σ[ s ∈ ∥ y ≡ y ∥₂ ] ∣transport∣ s x ≡ x' ∥ fiberRel2→1 : ∀ x x' → fiberRel2 x x' → fiberRel x x' fiberRel2→1 = Set.elim2 (λ _ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → Prop.rec (squash₂ _ _) (uncurry (Set.elim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ _ → cong (Set.map fst))) fiberRel1→2 : ∀ x x' → fiberRel x x' → fiberRel2 x x' fiberRel1→2 = Set.elim2 (λ _ _ → isSetΠ λ _ → isProp→isSet squash) λ a b p → Prop.rec squash (λ q → let filler = doubleCompPath-filler (sym (a .snd)) (cong f q) (b .snd) in ∣ ∣ filler i1 ∣₂ , cong ∣_∣₂ (ΣPathP (q , adjustLemma (flipSquare filler))) ∣) (PathIdTrunc₀Iso .Iso.fun p) where adjustLemma : {x y z w : Y} {p : x ≡ y} {q : x ≡ z} {r : z ≡ w} {s : y ≡ w} → PathP (λ i → p i ≡ r i) q s → PathP (λ i → p i ≡ w) (q ∙ r) s adjustLemma {p = p} {q} {r} {s} α i j = hcomp (λ k → λ { (i = i0) → compPath-filler q r k j ; (i = i1) → s j ; (j = i0) → p i ; (j = i1) → r (i ∨ k)}) (α i j) fiberRel1≃2 : ∀ x x' → fiberRel x x' ≃ fiberRel2 x x' fiberRel1≃2 _ _ = propBiimpl→Equiv (squash₂ _ _) squash (fiberRel1→2 _ _) (fiberRel2→1 _ _)
{ "alphanum_fraction": 0.5641581845, "avg_line_length": 35.0467836257, "ext": "agda", "hexsha": "f183bc1eb2b419a34b6ae2da6930130dd9128352", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/HITs/SetTruncation/Fibers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/HITs/SetTruncation/Fibers.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/HITs/SetTruncation/Fibers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2666, "size": 5993 }
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2021 Victor C Miraldo. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Unit.NonEta open import Data.Empty open import Data.Sum open import Data.Product open import Data.Product.Properties open import Data.Fin hiding (_<_; _≤_) open import Data.Fin.Properties using () renaming (_≟_ to _≟Fin_) open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_) open import Data.Nat.Properties open import Data.List renaming (map to List-map) open import Data.List.Properties using (∷-injective; length-map) open import Data.List.Relation.Unary.Any renaming (map to Any-map) open import Data.List.Relation.Unary.All renaming (lookup to All-lookup; map to All-map) open import Data.List.Relation.Unary.All.Properties hiding (All-map) open import Data.List.Relation.Unary.Any.Properties renaming (map⁺ to Any-map⁺) open import Data.List.Relation.Binary.Pointwise using (decidable-≡) open import Data.Bool hiding (_<_; _≤_) open import Data.Maybe renaming (map to Maybe-map) open import Function open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Relation.Nullary -- This module defines the DepRel type, which represents the class of AAOSLs we -- consider, and proves properties about any DepRel. module AAOSL.Abstract.DepRel where open import AAOSL.Lemmas open import AAOSL.Abstract.Hash -- TODO-1: make names same as paper (lvlof -> maxlvl, etc.) -- The important bit is that we must have a dependency relation -- between these indexes. record DepRel : Set₁ where field lvlof : ℕ → ℕ lvlof-z : lvlof 0 ≡ 0 lvlof-s : ∀ m → 0 < lvlof (suc m) HopFrom : ℕ → Set HopFrom = Fin ∘ lvlof field hop-tgt : {m : ℕ} → HopFrom m → ℕ hop-tgt-inj : {m : ℕ}{h h' : HopFrom m} → hop-tgt h ≡ hop-tgt h' → h ≡ h' hop-< : {m : ℕ}(h : HopFrom m) → hop-tgt h < m -- This property requires that any pair of hops is either nested or -- non-overlapping. When nonoverlapping, one end may coincide and -- when nested, both ends may coincide. As a diagram, -- -- h₂ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- ∣ ∣ -- ∣ h₁ ∣ -- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- tgt h₂ <I tgt h₁ ⋯ j₁ j₂ -- ↑ -- The only option for j₁ -- is right here. It can be -- the same as j₂ though. -- For more intuition on this, check -- Hops.agda -- hops-nested-or-nonoverlapping : ∀{j₁ j₂}{h₁ : HopFrom j₁}{h₂ : HopFrom j₂} → hop-tgt h₂ < hop-tgt h₁ → hop-tgt h₁ < j₂ → j₁ ≤ j₂ _≟Hop_ : {s : ℕ}(h l : HopFrom s) → Dec (h ≡ l) _≟Hop_ = _≟Fin_
{ "alphanum_fraction": 0.5685483871, "avg_line_length": 37.9294117647, "ext": "agda", "hexsha": "70902783d0cfe7d7ebac3c37ce08771d13c7d315", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-02-18T04:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-22T00:01:03.000Z", "max_forks_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/aaosl-agda", "max_forks_repo_path": "AAOSL/Abstract/DepRel.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_issues_repo_issues_event_max_datetime": "2021-02-12T04:16:40.000Z", "max_issues_repo_issues_event_min_datetime": "2021-01-04T03:45:34.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/aaosl-agda", "max_issues_repo_path": "AAOSL/Abstract/DepRel.agda", "max_line_length": 111, "max_stars_count": 9, "max_stars_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/aaosl-agda", "max_stars_repo_path": "AAOSL/Abstract/DepRel.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-31T10:16:38.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-22T00:01:00.000Z", "num_tokens": 961, "size": 3224 }
-- Andreas, 2012-01-30, bug reported by Nisse -- {-# OPTIONS -v tc.term.absurd:50 -v tc.signature:30 -v tc.conv.atom:30 -v tc.conv.elim:50 #-} module Issue557 where data ⊥ : Set where postulate A : Set a : (⊥ → ⊥) → A F : A → Set f : (a : A) → F a module M (I : Set → Set) where x : A x = a (λ ()) y : A y = M.x (λ A → A) z : F y z = f y -- cause was absurd lambda in a module, i.e., under a telescope (I : Set -> Set) -- (λ ()) must be replaced by (absurd I) not just by (absurd)
{ "alphanum_fraction": 0.562, "avg_line_length": 19.2307692308, "ext": "agda", "hexsha": "4e0ca7e6bd1ca737b7b4b7252e4f18163452cd0f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue557.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue557.agda", "max_line_length": 96, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue557.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 194, "size": 500 }
module Data.Real.Complete where import Prelude import Data.Real.Gauge import Data.Rational open Prelude open Data.Real.Gauge open Data.Rational Complete : Set -> Set Complete A = Gauge -> A unit : {A : Set} -> A -> Complete A unit x ε = x join : {A : Set} -> Complete (Complete A) -> Complete A join f ε = f ε2 ε2 where ε2 = ε / fromNat 2 infixr 10 _==>_ data _==>_ (A B : Set) : Set where uniformCts : (Gauge -> Gauge) -> (A -> B) -> A ==> B modulus : {A B : Set} -> (A ==> B) -> Gauge -> Gauge modulus (uniformCts μ _) = μ forgetUniformCts : {A B : Set} -> (A ==> B) -> A -> B forgetUniformCts (uniformCts _ f) = f mapC : {A B : Set} -> (A ==> B) -> Complete A -> Complete B mapC (uniformCts μ f) x ε = f (x (μ ε)) bind : {A B : Set} -> (A ==> Complete B) -> Complete A -> Complete B bind f x = join $ mapC f x mapC2 : {A B C : Set} -> (A ==> B ==> C) -> Complete A -> Complete B -> Complete C mapC2 f x y ε = mapC ≈fx y ε2 where ε2 = ε / fromNat 2 ≈fx = mapC f x ε2 _○_ : {A B C : Set} -> (B ==> C) -> (A ==> B) -> A ==> C f ○ g = uniformCts μ h where μ = modulus f ∘ modulus g h = forgetUniformCts f ∘ forgetUniformCts g constCts : {A B : Set} -> A -> B ==> A constCts a = uniformCts (const $ fromNat 1) (const a)
{ "alphanum_fraction": 0.5661124307, "avg_line_length": 22.9636363636, "ext": "agda", "hexsha": "55da491507b12e7c0527511f13c4ac936eddb00e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Complete.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Complete.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 472, "size": 1263 }
module Issue1148 where foo : Set → Set foo = {!!}
{ "alphanum_fraction": 0.5925925926, "avg_line_length": 6.75, "ext": "agda", "hexsha": "83ef832691ba45f5f6c35e34b13a05ee79f06c25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue1148.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue1148.agda", "max_line_length": 22, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/interaction/Issue1148.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 16, "size": 54 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Any predicate transformer for fresh lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Fresh.Relation.Unary.Any where open import Level using (Level; _⊔_; Lift) open import Data.Empty open import Data.Product using (∃; _,_; -,_) open import Data.Sum.Base using (_⊎_; [_,_]′; inj₁; inj₂) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary as U open import Relation.Binary as B using (Rel) open import Data.List.Fresh using (List#; []; cons; _∷#_; _#_) private variable a p q r : Level A : Set a module _ {A : Set a} {R : Rel A r} (P : Pred A p) where data Any : List# A R → Set (p ⊔ a ⊔ r) where here : ∀ {x xs pr} → P x → Any (cons x xs pr) there : ∀ {x xs pr} → Any xs → Any (cons x xs pr) module _ {R : Rel A r} {P : Pred A p} {x} {xs : List# A R} {pr} where head : ¬ Any P xs → Any P (cons x xs pr) → P x head ¬tail (here p) = p head ¬tail (there ps) = ⊥-elim (¬tail ps) tail : ¬ P x → Any P (cons x xs pr) → Any P xs tail ¬head (here p) = ⊥-elim (¬head p) tail ¬head (there ps) = ps toSum : Any P (cons x xs pr) → P x ⊎ Any P xs toSum (here p) = inj₁ p toSum (there ps) = inj₂ ps fromSum : P x ⊎ Any P xs → Any P (cons x xs pr) fromSum = [ here , there ]′ ⊎⇔Any : (P x ⊎ Any P xs) ⇔ Any P (cons x xs pr) ⊎⇔Any = equivalence fromSum toSum module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} where map : {xs : List# A R} → ∀[ P ⇒ Q ] → Any P xs → Any Q xs map p⇒q (here p) = here (p⇒q p) map p⇒q (there p) = there (map p⇒q p) module _ {R : Rel A r} {P : Pred A p} where witness : {xs : List# A R} → Any P xs → ∃ P witness (here p) = -, p witness (there ps) = witness ps remove : (xs : List# A R) → Any P xs → List# A R remove-# : ∀ {x} {xs : List# A R} p → x # xs → x # (remove xs p) remove (_ ∷# xs) (here _) = xs remove (cons x xs pr) (there k) = cons x (remove xs k) (remove-# k pr) remove-# (here x) (p , ps) = ps remove-# (there k) (p , ps) = p , remove-# k ps infixl 4 _─_ _─_ = remove module _ {R : Rel A r} {P : Pred A p} (P? : Decidable P) where any? : (xs : List# A R) → Dec (Any P xs) any? [] = no (λ ()) any? (x ∷# xs) = Dec.map ⊎⇔Any (P? x ⊎-dec any? xs)
{ "alphanum_fraction": 0.5398264984, "avg_line_length": 30.1904761905, "ext": "agda", "hexsha": "9be2df423fb4eaed64dedc9b941989252fe5e136", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 922, "size": 2536 }
module Prelude where open import Level public hiding (zero) renaming (suc to sucℓ) open import Size public open import Function public open import Data.List using (List; _∷_; []; [_]) public open import Data.Unit using (⊤; tt) public open import Data.Nat using (ℕ; suc; zero; _+_) public open import Data.Sum using (inj₁; inj₂) renaming (_⊎_ to _⊕_)public open import Data.Product public hiding (map; zip) open import Codata.Thunk public open import Relation.Unary hiding (_∈_; Empty) public open import Relation.Binary.PropositionalEquality hiding ([_]) public open import Relation.Ternary.Separation public open import Relation.Ternary.Separation.Allstar public
{ "alphanum_fraction": 0.7784431138, "avg_line_length": 35.1578947368, "ext": "agda", "hexsha": "db4ab0c5f89bc72f11eb538d66aaed883e62161b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 69, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 179, "size": 668 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} record Box (P : Set) : Set where constructor box field unbox : P open Box public postulate A : Set a : A f : Box A → A f= : f (box a) ≡ a {-# REWRITE f= #-} [a] : Box A unbox [a] = a -- Works thanks to eta test1 : [a] ≡ box a test1 = refl -- Should work as well test2 : f [a] ≡ f (box a) test2 = refl
{ "alphanum_fraction": 0.5811138015, "avg_line_length": 14.2413793103, "ext": "agda", "hexsha": "d1ab79fdfd7c8139b3e00b5484b6de33d182e1ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/Issue3335.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/Issue3335.agda", "max_line_length": 33, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/Issue3335.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 154, "size": 413 }
{-# OPTIONS --without-K #-} module Data.Word8 where import Data.Word8.Primitive as Prim open Prim renaming (primWord8fromNat to to𝕎; primWord8toNat to from𝕎) public open import Agda.Builtin.Bool using (Bool; true; false) open import Relation.Nullary using (yes; no) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) infix 4 _≟_ _≟_ : Decidable {A = Word8} _≡_ w₁ ≟ w₂ with w₁ == w₂ ... | true = yes trustMe ... | false = no whatever where postulate whatever : _ -- toℕ : Word8 → Nat -- toℕ = primWord8toNat
{ "alphanum_fraction": 0.7405159332, "avg_line_length": 26.36, "ext": "agda", "hexsha": "ff498d78d2b89802cf054c9d02c3d52e84a583ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bytes-agda", "max_forks_repo_path": "src/Data/Word8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bytes-agda", "max_issues_repo_path": "src/Data/Word8.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bytes-agda", "max_stars_repo_path": "src/Data/Word8.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 198, "size": 659 }
{-# OPTIONS --copatterns #-} module Issue939 where record Sigma (A : Set)(P : A → Set) : Set where field fst : A .snd : P fst open Sigma postulate A : Set P : A → Set x : A .p : P x ex : Sigma A P ex = record { fst = x ; snd = p } ex' : Sigma A P fst ex' = x snd ex' = p -- Giving p yields the following error: -- Identifier p is declared irrelevant, so it cannot be used here -- when checking that the expression p has type P (fst ex') -- Fixed. Andreas, 2013-11-05
{ "alphanum_fraction": 0.586407767, "avg_line_length": 15.6060606061, "ext": "agda", "hexsha": "1647bfb11f27975f408277d5e2b7a2a3d95b2461", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue939.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue939.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue939.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 168, "size": 515 }
module plfa-code.Decidable where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using () renaming (contradiction to ¬¬-intro) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import plfa-code.Relations using (_<_; z<s; s<s) open import plfa-code.Isomorphism using (_⇔_) data Bool : Set where true : Bool false : Bool open Data.Nat using (_≤_; z≤n; s≤s) infix 4 _≤ᵇ_ _≤ᵇ_ : ℕ → ℕ → Bool zero ≤ᵇ n = true suc m ≤ᵇ zero = false suc m ≤ᵇ suc n = m ≤ᵇ n _ : (2 ≤ᵇ 4) ≡ true _ = begin 2 ≤ᵇ 4 ≡⟨⟩ 1 ≤ᵇ 3 ≡⟨⟩ 0 ≤ᵇ 2 ≡⟨⟩ true ∎ _ : (4 ≤ᵇ 2) ≡ false _ = begin 4 ≤ᵇ 2 ≡⟨⟩ 3 ≤ᵇ 1 ≡⟨⟩ 2 ≤ᵇ 0 ≡⟨⟩ false ∎ T : Bool → Set T true = ⊤ T false = ⊥ T→≡ : ∀ (b : Bool) → T b → b ≡ true T→≡ true tt = refl T→≡ false () ≡→T : ∀ {b : Bool} → b ≡ true → T b ≡→T refl = tt ≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n ≤ᵇ→≤ zero n tt = z≤n ≤ᵇ→≤ (suc m) zero () ≤ᵇ→≤ (suc m) (suc n) t = s≤s (≤ᵇ→≤ m n t) ≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n) ≤→≤ᵇ z≤n = tt ≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A ¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero) ¬s≤z () ¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n) ¬s≤s ¬m≤n (s≤s m≤n) = ¬m≤n m≤n _≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n) zero ≤? n = yes z≤n suc m ≤? zero = no ¬s≤z suc m ≤? suc n with m ≤? n ... | yes m≤n = yes (s≤s m≤n) ... | no ¬m≤n = no (¬s≤s ¬m≤n) ---------- practice ---------- open Eq using (cong) _<?_ : ∀ (m n : ℕ) → Dec (m < n) zero <? zero = no (λ ()) zero <? suc n = yes z<s suc m <? zero = no (λ ()) suc m <? suc n with m <? n ... | yes m<n = yes (s<s m<n) ... | no ¬m<n = no λ{ (s<s m<n) → ¬m<n m<n} _≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n) zero ≡ℕ? zero = yes refl zero ≡ℕ? suc n = no (λ ()) suc m ≡ℕ? zero = no (λ ()) suc m ≡ℕ? suc n with m ≡ℕ? n (suc m ≡ℕ? suc n) | yes m≡n = yes (cong suc m≡n) (suc m ≡ℕ? suc n) | no ¬m≡n = no λ{ refl → ¬m≡n refl} ------------------------------ _≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n) m ≤?′ n with m ≤ᵇ n | ≤ᵇ→≤ m n | ≤→≤ᵇ {m} {n} ... | true | p | _ = yes (p tt) ... | false | _ | ¬p = no ¬p ⌊_⌋ : ∀ {A : Set} → Dec A → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false _≤ᵇ′_ : ℕ → ℕ → Bool m ≤ᵇ′ n = ⌊ m ≤? n ⌋ toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A toWitness {A} {yes x} tt = x toWitness {A} {no ¬x} () fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋ fromWitness {A} {yes x} _ = tt fromWitness {A} {no ¬x} x = ¬x x ≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n ≤ᵇ′→≤ = toWitness ≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n) ≤→≤ᵇ′ = fromWitness infixr 6 _∧_ _∧_ : Bool → Bool → Bool true ∧ true = true false ∧ _ = false _ ∧ false = false infixr 6 _×-dec_ _×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B) yes x ×-dec yes y = yes ⟨ x , y ⟩ no ¬x ×-dec _ = no λ{ ⟨ x , y ⟩ → ¬x x} _ ×-dec no ¬y = no λ{ ⟨ x , y ⟩ → ¬y y} infixr 5 _∨_ _∨_ : Bool → Bool → Bool true ∨ _ = true _ ∨ true = true false ∨ false = false infixr 5 _⊎-dec_ _⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B) yes x ⊎-dec _ = yes (inj₁ x) _ ⊎-dec yes y = yes (inj₂ y) no ¬x ⊎-dec no ¬y = no λ{ (inj₁ x) → ¬x x ; (inj₂ y) → ¬y y } not : Bool → Bool not true = false not false = true ¬? : ∀ {A : Set} → Dec A → Dec (¬ A) ¬? (yes x) = no (¬¬-intro x) ¬? (no ¬x) = yes ¬x _⊃_ : Bool → Bool → Bool _ ⊃ true = true false ⊃ _ = true true ⊃ false = false _→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B) _ →-dec yes y = yes (λ _ → y) no ¬x →-dec _ = yes (λ x → ⊥-elim (¬x x)) yes x →-dec no ¬y = no (λ f → ¬y (f x)) ---------- practice ---------- ∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋ ∧-× (yes x) (yes y) = refl ∧-× (yes x) (no ¬y) = refl ∧-× (no x) _ = refl -- I think there is a typo, so I write ∨-⊎ instead of the origin ∨-× ∨-⊎ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋ ∨-⊎ (yes x) _ = refl ∨-⊎ (no ¬x) (yes y) = refl ∨-⊎ (no ¬x) (no ¬y) = refl not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋ not-¬ (yes x) = refl not-¬ (no ¬x) = refl
{ "alphanum_fraction": 0.4428320141, "avg_line_length": 22.8542713568, "ext": "agda", "hexsha": "37120dcd9255d4ede41e428d38f223e559bf5474", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Decidable.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Decidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2336, "size": 4548 }
module IrrelevantProjections where import Common.Irrelevance record [_] (A : Set) : Set where field .inflate : A open [_] using (inflate) -- Should fail, since proj isn't declared irrelevant. proj : ∀ {A} → [ A ] → A proj x = inflate x
{ "alphanum_fraction": 0.6734693878, "avg_line_length": 18.8461538462, "ext": "agda", "hexsha": "558f9d3b9e734019fc096c156335407901af49d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/IrrelevantProjections.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/IrrelevantProjections.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/IrrelevantProjections.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 72, "size": 245 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.SuspAdjointLoop where module SuspAdjointLoop {i j} (X : Ptd i) (Y : Ptd j) where private A = fst X; a₀ = snd X B = fst Y; b₀ = snd Y R : {b : B} → Σ (Suspension A → B) (λ h → h (north A) == b) → Σ (A → (b == b)) (λ k → k a₀ == idp) R (h , idp) = (λ a → ap h (merid A a ∙ ! (merid A a₀))) , ap (ap h) (!-inv-r (merid A a₀)) L : {b : B} → Σ (A → (b == b)) (λ k → k a₀ == idp) → Σ (Suspension A → B) (λ h → h (north A) == b) L {b} (k , _) = (SuspensionRec.f A b b k) , idp {- Show that R ∘ L ∼ idf -} R-L : {b : B} → ∀ K → R {b} (L K) == K R-L {b} (k , kpt) = ⊙λ= R-L-fst R-L-snd where R-L-fst : (a : A) → ap (SuspensionRec.f A b b k) (merid A a ∙ ! (merid A a₀)) == k a R-L-fst a = ap-∙ (SuspensionRec.f A b b k) (merid A a) (! (merid A a₀)) ∙ ap2 _∙_ (SuspensionRec.glue-β A b b k a) (ap-! (SuspensionRec.f A b b k) (merid A a₀) ∙ ap ! (SuspensionRec.glue-β A b b k a₀ ∙ kpt)) ∙ ∙-unit-r (k a) -- lemmas generalize to do some path induction for R-L-snd lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₁ a₂ : A} (p : a₁ == a₂) {q r : f a₁ == f a₂} {s : f a₁ == f a₁} (α : ap f p == q) (β : q == r) (γ : q ∙ ! r == s) (δ : s == idp) (σ : !-inv-r r == transport (λ t → t ∙ ! r == idp) β (γ ∙ δ)) → ap (ap f) (!-inv-r p) == (ap-∙ f p (! p) ∙ ap2 _∙_ α (ap-! f p ∙ ap ! (α ∙ β)) ∙ γ) ∙ δ lemma₁ f idp idp idp γ idp σ = σ lemma₂ : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → idp == transport (λ t → t ∙ idp == idp) α (∙-unit-r p ∙ α) lemma₂ idp = idp R-L-snd : ap (ap (SuspensionRec.f A b b k)) (!-inv-r (merid A a₀)) == R-L-fst a₀ ∙ kpt R-L-snd = ap (ap (SuspensionRec.f A b b k)) (!-inv-r (merid A a₀)) =⟨ lemma₁ (SuspensionRec.f A b b k) (merid A a₀) (SuspensionRec.glue-β A b b k a₀) kpt (∙-unit-r (k a₀)) kpt (lemma₂ kpt) ⟩ R-L-fst a₀ ∙ kpt ∎ {- Show that L ∘ R ∼ idf -} L-R : {b : B} → ∀ H → L {b} (R H) == H L-R (h , idp) = ⊙λ= L-R-fst idp where fst-lemma : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (f : A → B) (p : x == y) (q : z == y) → ap f p == ap f (p ∙ ! q) ∙' ap f q fst-lemma _ idp idp = idp L-R-fst : (σ : Suspension A) → SuspensionRec.f A (h (north _)) (h (north _)) (fst (R (h , idp))) σ == h σ L-R-fst = Suspension-elim A idp (ap h (merid A a₀)) (λ a → ↓-='-in $ ap h (merid A a) =⟨ fst-lemma h (merid A a) (merid A a₀) ⟩ ap h (merid A a ∙ ! (merid A a₀)) ∙' ap h (merid A a₀) =⟨ ! (SuspensionRec.glue-β A _ _ (fst (R (h , idp))) a) |in-ctx (λ w → w ∙' (ap h (merid A a₀))) ⟩ ap (fst (L (R (h , idp)))) (merid A a) ∙' ap h (merid A a₀) ∎) {- Show that R respects basepoint -} pres-ident : {b : B} → R {b} ((λ _ → b) , idp) == ((λ _ → idp) , idp) pres-ident {b} = ⊙λ= (λ a → ap-cst b (merid A a ∙ ! (merid A a₀))) (ap (ap (λ _ → b)) (!-inv-r (merid A a₀)) =⟨ lemma (merid A a₀) b ⟩ ap-cst b (merid A a₀ ∙ ! (merid A a₀)) =⟨ ! (∙-unit-r _) ⟩ ap-cst b (merid A a₀ ∙ ! (merid A a₀)) ∙ idp ∎) where lemma : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (p : x == y) (b : B) → ap (ap (λ _ → b)) (!-inv-r p) == ap-cst b (p ∙ ! p) lemma idp b = idp {- Show that if there is a composition operation ⊙ on B, then R respects that composition, that is R {b ⊙ c} (F ⊙ G) == R {b} F ∙ R {c} G -} -- lift a composition operation on the codomain to the function space comp-lift : ∀ {i j} {A : Type i} {B C D : Type j} (a : A) (b : B) (c : C) (_⊙_ : B → C → D) → Σ (A → B) (λ f → f a == b) → Σ (A → C) (λ g → g a == c) → Σ (A → D) (λ h → h a == b ⊙ c) comp-lift a b c _⊙_ (f , fpt) (g , gpt) = (λ x → f x ⊙ g x) , ap2 _⊙_ fpt gpt pres-comp-fst : ∀ {i j} {A : Type i} {B : Type j} (f g : A → B) (_⊙_ : B → B → B) {a₁ a₂ : A} (p : a₁ == a₂) → ap (λ x → f x ⊙ g x) p == ap2 _⊙_ (ap f p) (ap g p) pres-comp-fst f g _⊙_ idp = idp pres-comp-snd : ∀ {i j} {A : Type i} {B : Type j} (f g : A → B) (_⊙_ : B → B → B) {a₁ a₂ : A} (q : a₁ == a₂) → ap (ap (λ x → f x ⊙ g x)) (!-inv-r q) == pres-comp-fst f g _⊙_ (q ∙ ! q) ∙ ap2 (ap2 _⊙_) (ap (ap f) (!-inv-r q)) (ap (ap g) (!-inv-r q)) pres-comp-snd f g _⊙_ idp = idp pres-comp : {b c : B} (_⊙_ : B → B → B) (F : Σ (Suspension A → B) (λ f → f (north A) == b)) (G : Σ (Suspension A → B) (λ f → f (north A) == c)) → R (comp-lift (north A) b c _⊙_ F G) == comp-lift a₀ idp idp (ap2 _⊙_) (R F) (R G) pres-comp _⊙_ (f , idp) (g , idp) = ⊙λ= (λ a → pres-comp-fst f g _⊙_ (merid A a ∙ ! (merid A a₀))) (pres-comp-snd f g _⊙_ (merid A a₀)) eqv : fst (⊙Susp X ⊙→ Y) ≃ fst (X ⊙→ ⊙Ω Y) eqv = equiv R L R-L L-R ⊙path : (⊙Susp X ⊙→ Y) == (X ⊙→ ⊙Ω Y) ⊙path = ⊙ua eqv pres-ident
{ "alphanum_fraction": 0.4377231257, "avg_line_length": 36.273381295, "ext": "agda", "hexsha": "fbc6248e11a68734ff420525f97f46d4dd1e9679", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "homotopy/SuspAdjointLoop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "homotopy/SuspAdjointLoop.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "homotopy/SuspAdjointLoop.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2357, "size": 5042 }
{-# OPTIONS --without-K --safe #-} -- Monoidal natural transformations between lax and strong symmetric -- monoidal functors. -- -- NOTE. Symmetric monoidal natural transformations are really just -- monoidal natural transformations that happen to go between -- symmetric monoidal functors. No additional conditions are -- necessary. Nevertheless, the definitions in this module are useful -- when one is working in a symmetric monoidal setting. They also -- help Agda's type checker by bundling the (symmetric monoidal) -- categories and functors involved. -- -- See -- * John Baez, Some definitions everyone should know, -- https://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf -- * https://ncatlab.org/nlab/show/monoidal+natural+transformation module Categories.NaturalTransformation.Monoidal.Symmetric where open import Level open import Categories.Category.Monoidal using (SymmetricMonoidalCategory) import Categories.Functor.Monoidal.Symmetric as BMF open import Categories.Functor.Monoidal.Properties using () renaming (∘-SymmetricMonoidal to _∘Fˡ_; ∘-StrongSymmetricMonoidal to _∘Fˢ_) open import Categories.NaturalTransformation as NT using (NaturalTransformation) import Categories.NaturalTransformation.Monoidal as MNT module Lax where open BMF.Lax using (SymmetricMonoidalFunctor) open MNT.Lax using (IsMonoidalNaturalTransformation) open SymmetricMonoidalFunctor using () renaming (F to UF; monoidalFunctor to MF) module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural transformations between symmetric monoidal functors. record SymmetricMonoidalNaturalTransformation (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalTransformation (UF F) (UF G) isMonoidal : IsMonoidalNaturalTransformation (MF F) (MF G) U open NaturalTransformation U public open IsMonoidalNaturalTransformation isMonoidal public -- To shorten some definitions private _⇛_ = SymmetricMonoidalNaturalTransformation module U = MNT.Lax module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Conversions ⌊_⌋ : {F G : SymmetricMonoidalFunctor C D} → F ⇛ G → U.MonoidalNaturalTransformation (MF F) (MF G) ⌊ α ⌋ = record { U = U ; isMonoidal = isMonoidal } where open SymmetricMonoidalNaturalTransformation α ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalTransformation (MF F) (MF G) → F ⇛ G ⌈ α ⌉ = record { U = U ; isMonoidal = isMonoidal } where open U.MonoidalNaturalTransformation α -- Identity and compositions infixr 9 _∘ᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ⇛ F id = ⌈ U.id ⌉ _∘ᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H α ∘ᵥ β = ⌈ ⌊ α ⌋ U.∘ᵥ ⌊ β ⌋ ⌉ module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_ _∘ₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ⇛ I → F ⇛ G → (H ∘Fˡ F) ⇛ (I ∘Fˡ G) α ∘ₕ β = ⌈ ⌊ α ⌋ U.∘ₕ ⌊ β ⌋ ⌉ _∘ˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ⇛ G → (H ∘Fˡ F) ⇛ (H ∘Fˡ G) H ∘ˡ α = id {F = H} ∘ₕ α _∘ʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ⇛ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˡ F) ⇛ (H ∘Fˡ F) α ∘ʳ F = α ∘ₕ id {F = F} module Strong where open BMF.Strong using (SymmetricMonoidalFunctor) open MNT.Strong using (IsMonoidalNaturalTransformation) open SymmetricMonoidalFunctor using () renaming ( F to UF ; monoidalFunctor to MF ; laxSymmetricMonoidalFunctor to laxBMF ) module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural transformations between symmetric strong -- monoidal functors. record SymmetricMonoidalNaturalTransformation (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalTransformation (UF F) (UF G) isMonoidal : IsMonoidalNaturalTransformation (MF F) (MF G) U laxBNT : Lax.SymmetricMonoidalNaturalTransformation (laxBMF F) (laxBMF G) laxBNT = record { U = U ; isMonoidal = isMonoidal } open Lax.SymmetricMonoidalNaturalTransformation laxBNT public hiding (U; isMonoidal) -- To shorten some definitions private _⇛_ = SymmetricMonoidalNaturalTransformation module U = MNT.Strong module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Conversions ⌊_⌋ : {F G : SymmetricMonoidalFunctor C D} → F ⇛ G → U.MonoidalNaturalTransformation (MF F) (MF G) ⌊ α ⌋ = record { U = U ; isMonoidal = isMonoidal } where open SymmetricMonoidalNaturalTransformation α ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalTransformation (MF F) (MF G) → F ⇛ G ⌈ α ⌉ = record { U = U ; isMonoidal = isMonoidal } where open U.MonoidalNaturalTransformation α -- Identity and compositions infixr 9 _∘ᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ⇛ F id = ⌈ U.id ⌉ _∘ᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H α ∘ᵥ β = ⌈ ⌊ α ⌋ U.∘ᵥ ⌊ β ⌋ ⌉ module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_ _∘ₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ⇛ I → F ⇛ G → (H ∘Fˢ F) ⇛ (I ∘Fˢ G) -- NOTE: this definition is clearly equivalent to -- -- α ∘ₕ β = ⌈ ⌊ α ⌋ U.∘ₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ∘ₕ β = record { U = C.U ; isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalTransformation (⌊ α ⌋ U.∘ₕ ⌊ β ⌋) _∘ˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ⇛ G → (H ∘Fˢ F) ⇛ (H ∘Fˢ G) H ∘ˡ α = id {F = H} ∘ₕ α _∘ʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ⇛ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˢ F) ⇛ (H ∘Fˢ F) α ∘ʳ F = α ∘ₕ id {F = F}
{ "alphanum_fraction": 0.625090331, "avg_line_length": 35.3010204082, "ext": "agda", "hexsha": "1d32d9db34a34c51095ee8befdebe03e9810ef6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/Monoidal/Symmetric.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/Monoidal/Symmetric.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "602ed2ae05dd449d77fc299c07a1cdd02ee5b823", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/Monoidal/Symmetric.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2403, "size": 6919 }
{-# OPTIONS --rewriting #-} module Properties.DecSubtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; function-tgt; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_) open import Luau.TypeNormalization using (_∪ⁿ_; _∩ⁿ_) open import Luau.TypeSaturation using (saturate) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (<:-refl; <:-trans; ≮:-trans-<:; <:-trans-≮:; <:-never; <:-unknown; <:-∪-left; <:-∪-right; <:-∪-lub; ≮:-∪-left; ≮:-∪-right; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-∩-left; ≮:-∩-right; dec-language; scalar-<:; <:-everything; <:-function; ≮:-function-left; ≮:-function-right; <:-impl-¬≮:; <:-intersect; <:-function-∩-∪; <:-function-∩; <:-union; ≮:-left-∪; ≮:-right-∪; <:-∩-distr-∪; <:-impl-⊇; language-comp) open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; _∪_; _⇒_; normal; <:-normalize; normalize-<:; normal-∩ⁿ; normal-∪ⁿ; ∪-<:-∪ⁿ; ∪ⁿ-<:-∪; ∩ⁿ-<:-∩; ∩-<:-∩ⁿ; normalᶠ; fun-top; fun-function; fun-¬scalar) open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; defn; here; left; right; ov-language; ov-<:; saturated; normal-saturate; normal-overload-src; normal-overload-tgt; saturate-<:; <:-saturate; <:ᵒ-impl-<:; _>>=ˡ_; _>>=ʳ_) open import Properties.Equality using (_≢_) -- Honest this terminates, since saturation maintains the depth of nested arrows {-# TERMINATING #-} dec-subtypingˢⁿ : ∀ {T U} → Scalar T → Normal U → Either (T ≮: U) (T <: U) dec-subtypingˢᶠ : ∀ {F G} → FunType F → Saturated F → FunType G → Either (F ≮: G) (F <:ᵒ G) dec-subtypingᶠ : ∀ {F G} → FunType F → FunType G → Either (F ≮: G) (F <: G) dec-subtypingᶠⁿ : ∀ {F U} → FunType F → Normal U → Either (F ≮: U) (F <: U) dec-subtypingⁿ : ∀ {T U} → Normal T → Normal U → Either (T ≮: U) (T <: U) dec-subtyping : ∀ T U → Either (T ≮: U) (T <: U) dec-subtypingˢⁿ T U with dec-language _ (scalar T) dec-subtypingˢⁿ T U | Left p = Left (witness (scalar T) (scalar T) p) dec-subtypingˢⁿ T U | Right p = Right (scalar-<: T p) dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) = result (top Fᶠ (λ o → o)) where data Top G : Set where defn : ∀ Sᵗ Tᵗ → Overloads F (Sᵗ ⇒ Tᵗ) → (∀ {S′ T′} → Overloads G (S′ ⇒ T′) → (S′ <: Sᵗ)) → ------------- Top G top : ∀ {G} → (FunType G) → (G ⊆ᵒ F) → Top G top {S′ ⇒ T′} _ G⊆F = defn S′ T′ (G⊆F here) (λ { here → <:-refl }) top (Gᶠ ∩ Hᶠ) G⊆F with top Gᶠ (G⊆F ∘ left) | top Hᶠ (G⊆F ∘ right) top (Gᶠ ∩ Hᶠ) G⊆F | defn Rᵗ Sᵗ p p₁ | defn Tᵗ Uᵗ q q₁ with sat-∪ p q top (Gᶠ ∩ Hᶠ) G⊆F | defn Rᵗ Sᵗ p p₁ | defn Tᵗ Uᵗ q q₁ | defn n r r₁ = defn _ _ n (λ { (left o) → <:-trans (<:-trans (p₁ o) <:-∪-left) r ; (right o) → <:-trans (<:-trans (q₁ o) <:-∪-right) r }) result : Top F → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T)) result (defn Sᵗ Tᵗ oᵗ srcᵗ) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ oᵗ) result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Left (witness s Ss ¬Sᵗs) = Left (witness (function-err s) (ov-language Fᶠ (λ o → function-err (<:-impl-⊇ (srcᵗ o) s ¬Sᵗs))) (function-err Ss)) result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Right S<:Sᵗ = result₀ (largest Fᶠ (λ o → o)) where data LargestSrc (G : Type) : Set where yes : ∀ S₀ T₀ → Overloads F (S₀ ⇒ T₀) → T₀ <: T → (∀ {S′ T′} → Overloads G (S′ ⇒ T′) → T′ <: T → (S′ <: S₀)) → ----------------------- LargestSrc G no : ∀ S₀ T₀ → Overloads F (S₀ ⇒ T₀) → T₀ ≮: T → (∀ {S′ T′} → Overloads G (S′ ⇒ T′) → T₀ <: T′) → ----------------------- LargestSrc G largest : ∀ {G} → (FunType G) → (G ⊆ᵒ F) → LargestSrc G largest {S′ ⇒ T′} (S′ⁿ ⇒ T′ⁿ) G⊆F with dec-subtypingⁿ T′ⁿ Tⁿ largest {S′ ⇒ T′} (S′ⁿ ⇒ T′ⁿ) G⊆F | Left T′≮:T = no S′ T′ (G⊆F here) T′≮:T λ { here → <:-refl } largest {S′ ⇒ T′} (S′ⁿ ⇒ T′ⁿ) G⊆F | Right T′<:T = yes S′ T′ (G⊆F here) T′<:T (λ { here _ → <:-refl }) largest (Gᶠ ∩ Hᶠ) GH⊆F with largest Gᶠ (GH⊆F ∘ left) | largest Hᶠ (GH⊆F ∘ right) largest (Gᶠ ∩ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ with sat-∩ o₁ o₂ largest (Gᶠ ∩ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt with dec-subtypingⁿ (normal-overload-tgt Fᶠ o) Tⁿ largest (Gᶠ ∩ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt | Left T₀≮:T = no _ _ o T₀≮:T (λ { (left o) → <:-trans tgt (<:-trans <:-∩-left (tgt₁ o)) ; (right o) → <:-trans tgt (<:-trans <:-∩-right (tgt₂ o)) }) largest (Gᶠ ∩ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt | Right T₀<:T = yes _ _ o T₀<:T (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₁ o) T₁≮:T)) ; (right o) p → CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₂ o) T₂≮:T)) }) largest (Gᶠ ∩ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | yes S₂ T₂ o₂ T₂<:T src₂ = yes S₂ T₂ o₂ T₂<:T (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₁ o) T₁≮:T)) ; (right o) p → src₂ o p }) largest (Gᶠ ∩ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ = yes S₁ T₁ o₁ T₁<:T (λ { (left o) p → src₁ o p ; (right o) p → CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₂ o) T₂≮:T)) }) largest (Gᶠ ∩ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | yes S₂ T₂ o₂ T₂<:T src₂ with sat-∪ o₁ o₂ largest (Gᶠ ∩ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | yes S₂ T₂ o₂ T₂<:T src₂ | defn o src tgt = yes _ _ o (<:-trans tgt (<:-∪-lub T₁<:T T₂<:T)) (λ { (left o) T′<:T → <:-trans (src₁ o T′<:T) (<:-trans <:-∪-left src) ; (right o) T′<:T → <:-trans (src₂ o T′<:T) (<:-trans <:-∪-right src) }) result₀ : LargestSrc F → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T)) result₀ (no S₀ T₀ o₀ (witness t T₀t ¬Tt) tgt₀) = Left (witness (function-tgt t) (ov-language Fᶠ (λ o → function-tgt (tgt₀ o t T₀t))) (function-tgt ¬Tt)) result₀ (yes S₀ T₀ o₀ T₀<:T src₀) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ o₀) result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right λ { here → defn o₀ S<:S₀ T₀<:T } result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Left (witness s Ss ¬S₀s) = Left (result₁ (smallest Fᶠ (λ o → o))) where data SmallestTgt (G : Type) : Set where defn : ∀ S₁ T₁ → Overloads F (S₁ ⇒ T₁) → Language S₁ s → (∀ {S′ T′} → Overloads G (S′ ⇒ T′) → Language S′ s → (T₁ <: T′)) → ----------------------- SmallestTgt G smallest : ∀ {G} → (FunType G) → (G ⊆ᵒ F) → SmallestTgt G smallest {S′ ⇒ T′} _ G⊆F with dec-language S′ s smallest {S′ ⇒ T′} _ G⊆F | Left ¬S′s = defn Sᵗ Tᵗ oᵗ (S<:Sᵗ s Ss) λ { here S′s → CONTRADICTION (language-comp s ¬S′s S′s) } smallest {S′ ⇒ T′} _ G⊆F | Right S′s = defn S′ T′ (G⊆F here) S′s (λ { here _ → <:-refl }) smallest (Gᶠ ∩ Hᶠ) GH⊆F with smallest Gᶠ (GH⊆F ∘ left) | smallest Hᶠ (GH⊆F ∘ right) smallest (Gᶠ ∩ Hᶠ) GH⊆F | defn S₁ T₁ o₁ R₁s tgt₁ | defn S₂ T₂ o₂ R₂s tgt₂ with sat-∩ o₁ o₂ smallest (Gᶠ ∩ Hᶠ) GH⊆F | defn S₁ T₁ o₁ R₁s tgt₁ | defn S₂ T₂ o₂ R₂s tgt₂ | defn o src tgt = defn _ _ o (src s (R₁s , R₂s)) (λ { (left o) S′s → <:-trans (<:-trans tgt <:-∩-left) (tgt₁ o S′s) ; (right o) S′s → <:-trans (<:-trans tgt <:-∩-right) (tgt₂ o S′s) }) result₁ : SmallestTgt F → (F ≮: (S ⇒ T)) result₁ (defn S₁ T₁ o₁ S₁s tgt₁) with dec-subtypingⁿ (normal-overload-tgt Fᶠ o₁) Tⁿ result₁ (defn S₁ T₁ o₁ S₁s tgt₁) | Right T₁<:T = CONTRADICTION (language-comp s ¬S₀s (src₀ o₁ T₁<:T s S₁s)) result₁ (defn S₁ T₁ o₁ S₁s tgt₁) | Left (witness t T₁t ¬Tt) = witness (function-ok s t) (ov-language Fᶠ lemma) (function-ok Ss ¬Tt) where lemma : ∀ {S′ T′} → Overloads F (S′ ⇒ T′) → Language (S′ ⇒ T′) (function-ok s t) lemma {S′} o with dec-language S′ s lemma {S′} o | Left ¬S′s = function-ok₁ ¬S′s lemma {S′} o | Right S′s = function-ok₂ (tgt₁ o S′s t T₁t) dec-subtypingˢᶠ F Fˢ (G ∩ H) with dec-subtypingˢᶠ F Fˢ G | dec-subtypingˢᶠ F Fˢ H dec-subtypingˢᶠ F Fˢ (G ∩ H) | Left F≮:G | _ = Left (≮:-∩-left F≮:G) dec-subtypingˢᶠ F Fˢ (G ∩ H) | _ | Left F≮:H = Left (≮:-∩-right F≮:H) dec-subtypingˢᶠ F Fˢ (G ∩ H) | Right F<:G | Right F<:H = Right (λ { (left o) → F<:G o ; (right o) → F<:H o }) dec-subtypingᶠ F G with dec-subtypingˢᶠ (normal-saturate F) (saturated F) G dec-subtypingᶠ F G | Left H≮:G = Left (<:-trans-≮: (saturate-<: F) H≮:G) dec-subtypingᶠ F G | Right H<:G = Right (<:-trans (<:-saturate F) (<:ᵒ-impl-<: (normal-saturate F) G H<:G)) dec-subtypingᶠⁿ T never = Left (witness function (fun-function T) never) dec-subtypingᶠⁿ T unknown = Right <:-unknown dec-subtypingᶠⁿ T (U ⇒ V) = dec-subtypingᶠ T (U ⇒ V) dec-subtypingᶠⁿ T (U ∩ V) = dec-subtypingᶠ T (U ∩ V) dec-subtypingᶠⁿ T (U ∪ V) with dec-subtypingᶠⁿ T U dec-subtypingᶠⁿ T (U ∪ V) | Left (witness t p q) = Left (witness t p (q , fun-¬scalar V T p)) dec-subtypingᶠⁿ T (U ∪ V) | Right p = Right (<:-trans p <:-∪-left) dec-subtypingⁿ never U = Right <:-never dec-subtypingⁿ unknown unknown = Right <:-refl dec-subtypingⁿ unknown U with dec-subtypingᶠⁿ (never ⇒ unknown) U dec-subtypingⁿ unknown U | Left p = Left (<:-trans-≮: <:-unknown p) dec-subtypingⁿ unknown U | Right p₁ with dec-subtypingˢⁿ number U dec-subtypingⁿ unknown U | Right p₁ | Left p = Left (<:-trans-≮: <:-unknown p) dec-subtypingⁿ unknown U | Right p₁ | Right p₂ with dec-subtypingˢⁿ string U dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Left p = Left (<:-trans-≮: <:-unknown p) dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ with dec-subtypingˢⁿ nil U dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Left p = Left (<:-trans-≮: <:-unknown p) dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ with dec-subtypingˢⁿ boolean U dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ | Left p = Left (<:-trans-≮: <:-unknown p) dec-subtypingⁿ unknown U | Right p₁ | Right p₂ | Right p₃ | Right p₄ | Right p₅ = Right (<:-trans <:-everything (<:-∪-lub p₁ (<:-∪-lub p₂ (<:-∪-lub p₃ (<:-∪-lub p₄ p₅))))) dec-subtypingⁿ (S ⇒ T) U = dec-subtypingᶠⁿ (S ⇒ T) U dec-subtypingⁿ (S ∩ T) U = dec-subtypingᶠⁿ (S ∩ T) U dec-subtypingⁿ (S ∪ T) U with dec-subtypingⁿ S U | dec-subtypingˢⁿ T U dec-subtypingⁿ (S ∪ T) U | Left p | q = Left (≮:-∪-left p) dec-subtypingⁿ (S ∪ T) U | Right p | Left q = Left (≮:-∪-right q) dec-subtypingⁿ (S ∪ T) U | Right p | Right q = Right (<:-∪-lub p q) dec-subtyping T U with dec-subtypingⁿ (normal T) (normal U) dec-subtyping T U | Left p = Left (<:-trans-≮: (normalize-<: T) (≮:-trans-<: p (<:-normalize U))) dec-subtyping T U | Right p = Right (<:-trans (<:-normalize T) (<:-trans p (normalize-<: U))) -- As a corollary, for saturated functions -- <:ᵒ coincides with <:, that is F is a subtype of (S ⇒ T) precisely -- when one of its overloads is. <:-impl-<:ᵒ : ∀ {F G} → FunType F → Saturated F → FunType G → (F <: G) → (F <:ᵒ G) <:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G with dec-subtypingˢᶠ Fᶠ Fˢ Gᶠ <:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G | Left F≮:G = CONTRADICTION (<:-impl-¬≮: F<:G F≮:G) <:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G | Right F<:ᵒG = F<:ᵒG
{ "alphanum_fraction": 0.5785267547, "avg_line_length": 65.7828571429, "ext": "agda", "hexsha": "8dc7a44630fa3b8a19e6af5a10e0ed2f9490594e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sthagen/Roblox-luau", "max_forks_repo_path": "prototyping/Properties/DecSubtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sthagen/Roblox-luau", "max_issues_repo_path": "prototyping/Properties/DecSubtyping.agda", "max_line_length": 442, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Libertus-Lab/luau", "max_stars_repo_path": "prototyping/Properties/DecSubtyping.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z", "num_tokens": 5278, "size": 11512 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.JoinFunc where module F {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} (f : A → C) (g : B → D) where fg-glue : (ab : A × B) → left (f (fst ab)) == right (g (snd ab)) :> (C * D) fg-glue (a , b) = glue (f a , g b) to : A * B → C * D to = To.f module M where module To = PushoutRec (left ∘ f) (right ∘ g) fg-glue open M public module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} where _**_[_] : (A → C) → (B → D) → A * B → C * D f ** g [ ab ] = M.to ab where module M = F f g
{ "alphanum_fraction": 0.4735152488, "avg_line_length": 24.92, "ext": "agda", "hexsha": "ee09c161067d566f33339f55efc6ae8bcb0f2819", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_forks_repo_path": "homotopy/JoinFunc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_issues_repo_path": "homotopy/JoinFunc.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/JoinFunc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 623 }
module Function.Multi where open import Data open import Data.Tuple open import Data.Tuple.Raise open import Data.Tuple.RaiseTypeᵣ open import Functional import Lvl import Lvl.MultiFunctions as Lvl open import Numeral.Natural open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable n : ℕ infixr 0 _⇉_ -- The type of a multivariate function (nested by repeated application of (_→_)) of different types and levels constructed by a tuple list of types. -- This is useful when one needs a function of arbitrary length or by arbitrary argument types. -- Essentially: -- ((A,B,C,D,..) ⇉ R) -- = (A → (B → (C → (D → (.. → R))))) -- = (A → B → C → D → .. → R) -- Example: -- open import Syntax.Number -- f : (Unit{0} , Unit{1} , Unit{2}) ⇉ Unit{3} -- f <> <> <> = <> _⇉_ : ∀{ℓ𝓈 : Lvl.Level ^ n} → Types(ℓ𝓈) → Type{ℓ} → Type{ℓ Lvl.⊔ (Lvl.⨆ ℓ𝓈)} _⇉_ {n = 0} _ B = B _⇉_ {n = 1} A B = A → B _⇉_ {n = 𝐒(𝐒(n))} (A , As) B = A → (As ⇉ B) -- TODO: Does it work with Functional.swap(foldᵣ(_→ᶠ_)) ? _⇉ᵢₘₚₗ_ : ∀{ℓ𝓈 : Lvl.Level ^ n} → Types(ℓ𝓈) → Type{ℓ} → Type{ℓ Lvl.⊔ (Lvl.⨆ ℓ𝓈)} _⇉ᵢₘₚₗ_ {n = 0} _ B = B _⇉ᵢₘₚₗ_ {n = 1} A B = {A} → B _⇉ᵢₘₚₗ_ {n = 𝐒(𝐒(n))} (A , As) B = {A} → (As ⇉ᵢₘₚₗ B) _⇉ᵢₙₛₜ_ : ∀{ℓ𝓈 : Lvl.Level ^ n} → Types(ℓ𝓈) → Type{ℓ} → Type{ℓ Lvl.⊔ (Lvl.⨆ ℓ𝓈)} _⇉ᵢₙₛₜ_ {n = 0} _ B = B _⇉ᵢₙₛₜ_ {n = 1} A B = ⦃ A ⦄ → B _⇉ᵢₙₛₜ_ {n = 𝐒(𝐒(n))} (A , As) B = ⦃ A ⦄ → (As ⇉ᵢₙₛₜ B)
{ "alphanum_fraction": 0.5447811448, "avg_line_length": 34.5348837209, "ext": "agda", "hexsha": "c9369c803cda918da51084e53d9a118cfbdaf2d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Multi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Multi.agda", "max_line_length": 148, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Multi.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 757, "size": 1485 }
------------------------------------------------------------------------------ -- Equivalence of definitions of total lists ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LFPs.List where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ module LFP where -- List is a least fixed-point of a functor -- The functor. ListF : (D → Set) → D → Set ListF A xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') -- List is the least fixed-point of ListF. i.e. postulate List : D → Set -- List is a pre-fixed point of ListF, i.e. -- -- ListF List ≤ List. -- -- Peter: It corresponds to the introduction rules. List-in : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ List xs') → List xs -- The higher-order version. List-in-ho : {xs : D} → ListF List xs → List xs -- List is the least pre-fixed point of ListF, i.e. -- -- ∀ A. ListF A ≤ A ⇒ List ≤ A. -- -- Peter: It corresponds to the elimination rule of an inductively -- defined predicate. List-ind : (A : D → Set) → (∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') → A xs) → ∀ {xs} → List xs → A xs -- Higher-order version. List-ind-ho : (A : D → Set) → (∀ {xs} → ListF A xs → A xs) → ∀ {xs} → List xs → A xs ---------------------------------------------------------------------------- -- List-in and List-in-ho are equivalents List-in-fo : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ List xs') → List xs List-in-fo = List-in-ho List-in-ho' : {xs : D} → ListF List xs → List xs List-in-ho' = List-in-ho ---------------------------------------------------------------------------- -- List-ind and List-ind-ho are equivalents List-ind-fo : (A : D → Set) → (∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') → A xs) → ∀ {xs} → List xs → A xs List-ind-fo = List-ind-ho List-ind-ho' : (A : D → Set) → (∀ {xs} → ListF A xs → A xs) → ∀ {xs} → List xs → A xs List-ind-ho' = List-ind ---------------------------------------------------------------------------- -- The data constructors of List. lnil : List [] lnil = List-in (inj₁ refl) lcons : ∀ x {xs} → List xs → List (x ∷ xs) lcons x {xs} Lxs = List-in (inj₂ (x , xs , refl , Lxs)) ---------------------------------------------------------------------------- -- The type theoretical induction principle for List. List-ind' : (A : D → Set) → A [] → (∀ x {xs} → A xs → A (x ∷ xs)) → ∀ {xs} → List xs → A xs List-ind' A A[] is = List-ind A prf where prf : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') → A xs prf (inj₁ xs≡[]) = subst A (sym xs≡[]) A[] prf (inj₂ (x' , xs' , h₁ , Axs')) = subst A (sym h₁) (is x' Axs') ---------------------------------------------------------------------------- -- Example xs : D xs = 0' ∷ true ∷ 1' ∷ false ∷ [] xs-List : List xs xs-List = lcons 0' (lcons true (lcons 1' (lcons false lnil))) ------------------------------------------------------------------------------ module Data where data List : D → Set where lnil : List [] lcons : ∀ x {xs} → List xs → List (x ∷ xs) -- Induction principle. List-ind : (A : D → Set) → A [] → (∀ x {xs} → A xs → A (x ∷ xs)) → ∀ {xs} → List xs → A xs List-ind A A[] h lnil = A[] List-ind A A[] h (lcons x Lxs) = h x (List-ind A A[] h Lxs) ---------------------------------------------------------------------------- -- List-in List-in : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ List xs') → List xs List-in {xs} h = case prf₁ prf₂ h where prf₁ : xs ≡ [] → List xs prf₁ xs≡[] = subst List (sym xs≡[]) lnil prf₂ : ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ List xs' → List xs prf₂ (x' , xs' , prf , Lxs') = subst List (sym prf) (lcons x' Lxs') ---------------------------------------------------------------------------- -- The fixed-point induction principle for List. List-ind' : (A : D → Set) → (∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') → A xs) → ∀ {xs} → List xs → A xs List-ind' A h Lxs = List-ind A h₁ h₂ Lxs where h₁ : A [] h₁ = h (inj₁ refl) h₂ : ∀ y {ys} → A ys → A (y ∷ ys) h₂ y {ys} Ays = h (inj₂ (y , ys , refl , Ays))
{ "alphanum_fraction": 0.3843252305, "avg_line_length": 31.1895424837, "ext": "agda", "hexsha": "11089e25fc9714c377e6102dc8b0e36c80a1030f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/fixed-points/LFPs/List.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/fixed-points/LFPs/List.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/fixed-points/LFPs/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1529, "size": 4772 }
{- https://github.com/mietek/lamport-timestamps An Agda formalisation of Lamport timestamps. Made by Miëtek Bak. Published under the MIT X11 license. -} module Everything where import Prelude -- Processes, clocks, timestamps, messages, and events are defined as abstract interfaces. import AbstractInterfaces import BasicConcreteImplementations -- Lamport’s clock condition yields a strict total order on events across all processes. import OrdersAndEqualities
{ "alphanum_fraction": 0.8016877637, "avg_line_length": 18.96, "ext": "agda", "hexsha": "46845e567fe789439016a81bf307a052d75400f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/lamport-timestamps", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/lamport-timestamps", "max_issues_repo_path": "Everything.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/lamport-timestamps", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 101, "size": 474 }
------------------------------------------------------------------------ -- A language of parser equivalence proofs ------------------------------------------------------------------------ -- This module defines yet another set of equivalence relations and -- preorders for parsers. For symmetric kinds these relations are -- equalities (compatible equivalence relations) by construction, and -- they are sound and complete with respect to the previously defined -- equivalences (see TotalParserCombinators.Congruence.Sound for the -- soundness proof). This means that parser and language equivalence -- are also equalities. The related orderings are compatible -- preorders. module TotalParserCombinators.Congruence where open import Codata.Musical.Notation open import Data.List open import Data.List.Relation.Binary.BagAndSetEquality using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe hiding (_>>=_) open import Data.Nat hiding (_^_) open import Data.Product open import Data.Vec.Recursive open import Function open import Function.Related using (Symmetric-kind; ⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_; _≗_) open import TotalParserCombinators.Derivative using (D) open import TotalParserCombinators.CoinductiveEquality as CE using (_∼[_]c_; _∷_) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics hiding ([_-_]_⊛_; [_-_]_>>=_) infixl 50 [_-_]_⊛_ [_-_-_-_]_⊛_ _<$>_ infix 10 [_-_]_>>=_ [_-_-_-_]_>>=_ infixl 5 _∣_ infix 5 _∷_ infix 4 _∼[_]P_ ∞⟨_⟩_∼[_]P_ _≅P_ _≈P_ infix 3 _∎ infixr 2 _∼⟨_⟩_ _≅⟨_⟩_ ------------------------------------------------------------------------ -- Helper functions flatten₁ : {A : Set} → Maybe (Maybe A ^ 2) → Maybe A flatten₁ nothing = nothing flatten₁ (just (m , _)) = m flatten₂ : {A : Set} → Maybe (Maybe A ^ 2) → Maybe A flatten₂ nothing = nothing flatten₂ (just (_ , m)) = m ------------------------------------------------------------------------ -- Equivalence proof programs mutual _≅P_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≅P p₂ = p₁ ∼[ parser ]P p₂ _≈P_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≈P p₂ = p₁ ∼[ language ]P p₂ data _∼[_]P_ {Tok} : ∀ {R xs₁ xs₂} → Parser Tok R xs₁ → Kind → Parser Tok R xs₂ → Set₁ where -- This constructor, which corresponds to CE._∷_, ensures that the -- relation is complete. _∷_ : ∀ {k R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (xs₁≈xs₂ : xs₁ List-∼[ k ] xs₂) (Dp₁≈Dp₂ : ∀ t → ∞ (D t p₁ ∼[ k ]P D t p₂)) → p₁ ∼[ k ]P p₂ -- Equational reasoning. _∎ : ∀ {k R xs} (p : Parser Tok R xs) → p ∼[ k ]P p _∼⟨_⟩_ : ∀ {k R xs₁ xs₂ xs₃} (p₁ : Parser Tok R xs₁) {p₂ : Parser Tok R xs₂} {p₃ : Parser Tok R xs₃} (p₁≈p₂ : p₁ ∼[ k ]P p₂) (p₂≈p₃ : p₂ ∼[ k ]P p₃) → p₁ ∼[ k ]P p₃ _≅⟨_⟩_ : ∀ {k R xs₁ xs₂ xs₃} (p₁ : Parser Tok R xs₁) {p₂ : Parser Tok R xs₂} {p₃ : Parser Tok R xs₃} (p₁≅p₂ : p₁ ≅P p₂) (p₂≈p₃ : p₂ ∼[ k ]P p₃) → p₁ ∼[ k ]P p₃ sym : ∀ {k : Symmetric-kind} {R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (p₁≈p₂ : p₁ ∼[ ⌊ k ⌋ ]P p₂) → p₂ ∼[ ⌊ k ⌋ ]P p₁ -- Congruences. return : ∀ {k R} {x₁ x₂ : R} (x₁≡x₂ : x₁ ≡ x₂) → return x₁ ∼[ k ]P return x₂ fail : ∀ {k R} → fail {R = R} ∼[ k ]P fail {R = R} token : ∀ {k} → token ∼[ k ]P token _∣_ : ∀ {k R xs₁ xs₂ xs₃ xs₄} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} {p₃ : Parser Tok R xs₃} {p₄ : Parser Tok R xs₄} (p₁≈p₃ : p₁ ∼[ k ]P p₃) (p₂≈p₄ : p₂ ∼[ k ]P p₄) → p₁ ∣ p₂ ∼[ k ]P p₃ ∣ p₄ _<$>_ : ∀ {k R₁ R₂} {f₁ f₂ : R₁ → R₂} {xs₁ xs₂} {p₁ : Parser Tok R₁ xs₁} {p₂ : Parser Tok R₁ xs₂} (f₁≗f₂ : f₁ ≗ f₂) (p₁≈p₂ : p₁ ∼[ k ]P p₂) → f₁ <$> p₁ ∼[ k ]P f₂ <$> p₂ [_-_]_⊛_ : ∀ {k R₁ R₂} xs₁xs₂ fs₁fs₂ → let xs₁ = flatten₁ xs₁xs₂; xs₂ = flatten₂ xs₁xs₂ fs₁ = flatten₁ fs₁fs₂; fs₂ = flatten₂ fs₁fs₂ in {p₁ : ∞⟨ xs₁ ⟩Parser Tok (R₁ → R₂) (flatten fs₁)} {p₂ : ∞⟨ fs₁ ⟩Parser Tok R₁ (flatten xs₁)} {p₃ : ∞⟨ xs₂ ⟩Parser Tok (R₁ → R₂) (flatten fs₂)} {p₄ : ∞⟨ fs₂ ⟩Parser Tok R₁ (flatten xs₂)} (p₁≈p₃ : ∞⟨ xs₁xs₂ ⟩ p₁ ∼[ k ]P p₃) (p₂≈p₄ : ∞⟨ fs₁fs₂ ⟩ p₂ ∼[ k ]P p₄) → p₁ ⊛ p₂ ∼[ k ]P p₃ ⊛ p₄ [_-_]_>>=_ : ∀ {k R₁ R₂} (f₁f₂ : Maybe (Maybe (R₁ → List R₂) ^ 2)) xs₁xs₂ → let f₁ = flatten₁ f₁f₂; f₂ = flatten₂ f₁f₂ xs₁ = flatten₁ xs₁xs₂; xs₂ = flatten₂ xs₁xs₂ in {p₁ : ∞⟨ f₁ ⟩Parser Tok R₁ (flatten xs₁)} {p₂ : (x : R₁) → ∞⟨ xs₁ ⟩Parser Tok R₂ (apply f₁ x)} {p₃ : ∞⟨ f₂ ⟩Parser Tok R₁ (flatten xs₂)} {p₄ : (x : R₁) → ∞⟨ xs₂ ⟩Parser Tok R₂ (apply f₂ x)} (p₁≈p₃ : ∞⟨ f₁f₂ ⟩ p₁ ∼[ k ]P p₃) (p₂≈p₄ : ∀ x → ∞⟨ xs₁xs₂ ⟩ p₂ x ∼[ k ]P p₄ x) → p₁ >>= p₂ ∼[ k ]P p₃ >>= p₄ nonempty : ∀ {k R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (p₁≈p₂ : p₁ ∼[ k ]P p₂) → nonempty p₁ ∼[ k ]P nonempty p₂ cast : ∀ {k R xs₁ xs₂ xs₁′ xs₂′} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} {xs₁≈xs₁′ : xs₁ List-∼[ bag ] xs₁′} {xs₂≈xs₂′ : xs₂ List-∼[ bag ] xs₂′} (p₁≈p₂ : p₁ ∼[ k ]P p₂) → cast xs₁≈xs₁′ p₁ ∼[ k ]P cast xs₂≈xs₂′ p₂ -- Certain proofs can be coinductive if both sides are delayed. ∞⟨_⟩_∼[_]P_ : ∀ {Tok R xs₁ xs₂} {A : Set} (m₁m₂ : Maybe (Maybe A ^ 2)) → ∞⟨ flatten₁ m₁m₂ ⟩Parser Tok R xs₁ → Kind → ∞⟨ flatten₂ m₁m₂ ⟩Parser Tok R xs₂ → Set₁ ∞⟨ nothing ⟩ p₁ ∼[ k ]P p₂ = ∞ (♭ p₁ ∼[ k ]P ♭ p₂) ∞⟨ just _ ⟩ p₁ ∼[ k ]P p₂ = ♭? p₁ ∼[ k ]P ♭? p₂ ------------------------------------------------------------------------ -- Some derived combinators [_-_-_-_]_⊛_ : ∀ {k Tok R₁ R₂} xs₁ xs₂ fs₁ fs₂ {p₁ : ∞⟨ xs₁ ⟩Parser Tok (R₁ → R₂) (flatten fs₁)} {p₂ : ∞⟨ fs₁ ⟩Parser Tok R₁ (flatten xs₁)} {p₃ : ∞⟨ xs₂ ⟩Parser Tok (R₁ → R₂) (flatten fs₂)} {p₄ : ∞⟨ fs₂ ⟩Parser Tok R₁ (flatten xs₂)} → ♭? p₁ ∼[ k ]P ♭? p₃ → ♭? p₂ ∼[ k ]P ♭? p₄ → p₁ ⊛ p₂ ∼[ k ]P p₃ ⊛ p₄ [ xs₁ - xs₂ - fs₁ - fs₂ ] p₁≈p₃ ⊛ p₂≈p₄ = [ just (xs₁ , xs₂) - just (fs₁ , fs₂) ] p₁≈p₃ ⊛ p₂≈p₄ [_-_-_-_]_>>=_ : ∀ {k Tok R₁ R₂} (f₁ f₂ : Maybe (R₁ → List R₂)) xs₁ xs₂ {p₁ : ∞⟨ f₁ ⟩Parser Tok R₁ (flatten xs₁)} {p₂ : (x : R₁) → ∞⟨ xs₁ ⟩Parser Tok R₂ (apply f₁ x)} {p₃ : ∞⟨ f₂ ⟩Parser Tok R₁ (flatten xs₂)} {p₄ : (x : R₁) → ∞⟨ xs₂ ⟩Parser Tok R₂ (apply f₂ x)} → ♭? p₁ ∼[ k ]P ♭? p₃ → (∀ x → ♭? (p₂ x) ∼[ k ]P ♭? (p₄ x)) → p₁ >>= p₂ ∼[ k ]P p₃ >>= p₄ [ f₁ - f₂ - xs₁ - xs₂ ] p₁≈p₃ >>= p₂≈p₄ = [ just (f₁ , f₂) - just (xs₁ , xs₂) ] p₁≈p₃ >>= p₂≈p₄ ------------------------------------------------------------------------ -- Completeness complete : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ] p₂ → p₁ ∼[ k ]P p₂ complete = complete′ ∘ CE.complete where complete′ : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ]c p₂ → p₁ ∼[ k ]P p₂ complete′ (xs₁≈xs₂ ∷ Dp₁≈Dp₂) = xs₁≈xs₂ ∷ λ t → ♯ complete′ (♭ (Dp₁≈Dp₂ t))
{ "alphanum_fraction": 0.4891952804, "avg_line_length": 36.2644230769, "ext": "agda", "hexsha": "1b931f8ffe5ab413a9fc40bf5daa62f3bb437db9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Congruence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Congruence.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Congruence.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 3188, "size": 7543 }
module Logics.Or where open import Function open import Logics.And ------------------------------------------------------------------------ -- definitions infixl 4 _∨_ data _∨_ (P Q : Set) : Set where ∨-intro₀ : P → P ∨ Q ∨-intro₁ : Q → P ∨ Q ------------------------------------------------------------------------ -- internal stuffs private p→r+q→r+p∨q=r : ∀ {P Q n} {R : Set n} → (P → R) → (Q → R) → (P ∨ Q) → R p→r+q→r+p∨q=r pr _ (∨-intro₀ p) = pr p p→r+q→r+p∨q=r _ qr (∨-intro₁ q) = qr q ∨-comm′ : ∀ {P Q} → (P ∨ Q) → (Q ∨ P) ∨-comm′ (∨-intro₀ p) = ∨-intro₁ p ∨-comm′ (∨-intro₁ q) = ∨-intro₀ q ∨-assoc₀ : ∀ {P Q R} → ((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)) ∨-assoc₀ (∨-intro₀ (∨-intro₀ x)) = ∨-intro₀ x ∨-assoc₀ (∨-intro₀ (∨-intro₁ x)) = ∨-intro₁ $ ∨-intro₀ x ∨-assoc₀ (∨-intro₁ x) = ∨-intro₁ $ ∨-intro₁ x ∨-assoc₁ : ∀ {P Q R} → (P ∨ (Q ∨ R)) → ((P ∨ Q) ∨ R) ∨-assoc₁ (∨-intro₀ x) = ∨-intro₀ $ ∨-intro₀ x ∨-assoc₁ (∨-intro₁ (∨-intro₀ x)) = ∨-intro₀ $ ∨-intro₁ x ∨-assoc₁ (∨-intro₁ (∨-intro₁ x)) = ∨-intro₁ x ∨-elim : ∀ {P Q n} {R : Set n} → (P → R) → (Q → R) → (P ∨ Q) → R ∨-elim = p→r+q→r+p∨q=r ∨-comm : ∀ {P Q} → (P ∨ Q) ⇔ (Q ∨ P) ∨-comm = ∧-intro ∨-comm′ ∨-comm′ ∨-assoc : ∀ {P Q R} → (P ∨ (Q ∨ R)) ⇔ ((P ∨ Q) ∨ R) ∨-assoc = ∧-intro ∨-assoc₁ ∨-assoc₀ ------------------------------------------------------------------------ -- public aliases or-elim : ∀ {P Q n} {R : Set n} → (P → R) → (Q → R) → (P ∨ Q) → R or-elim = ∨-elim or-comm : ∀ {P Q} → (P ∨ Q) ⇔ (Q ∨ P) or-comm = ∨-comm or-assoc : ∀ {P Q R} → (P ∨ (Q ∨ R)) ⇔ ((P ∨ Q) ∨ R) or-assoc = ∨-assoc
{ "alphanum_fraction": 0.3891992551, "avg_line_length": 27.775862069, "ext": "agda", "hexsha": "9edc424100a393a68869bdbf3aafafd26a70e512", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Logics/Or.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Logics/Or.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Logics/Or.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 776, "size": 1611 }
{-# OPTIONS --without-K #-} module function.isomorphism.coherent where open import sum open import equality.core open import equality.calculus open import equality.reasoning open import function.core open import function.isomorphism.core open import function.overloading open import overloading.core coherent : ∀ {i j} {X : Set i}{Y : Set j} → X ≅ Y → Set _ coherent f = ∀ x → ap to (iso₁ x) ≡ iso₂ (to x) -- this definition says that the two possible proofs that -- to (from (to x)) ≡ to x -- are equal where open _≅_ f coherent' : ∀ {i j} {X : Set i}{Y : Set j} → X ≅ Y → Set _ coherent' f = ∀ y → ap from (iso₂ y) ≡ iso₁ (from y) where open _≅_ f -- coherent isomorphisms _≅'_ : ∀ {i j} → (X : Set i)(Y : Set j) → Set _ X ≅' Y = Σ (X ≅ Y) coherent instance iso'-is-fun : ∀ {i j}{X : Set i}{Y : Set j} → Coercion (X ≅' Y) (X → Y) iso'-is-fun = record { coerce = λ isom → apply (proj₁ isom) } iso'-is-iso : ∀ {i j}{X : Set i}{Y : Set j} → Coercion (X ≅' Y) (X ≅ Y) iso'-is-iso = record { coerce = proj₁ } -- technical lemma: substiting a fixpoint proof into itself is like -- applying the function lem-subst-fixpoint : ∀ {i}{X : Set i} (f : X → X)(x : X) (p : f x ≡ x) → subst (λ x → f x ≡ x) (sym p) p ≡ ap f p lem-subst-fixpoint {i}{X} f x p = begin subst (λ x → f x ≡ x) (p ⁻¹) p ≡⟨ lem (f x) (sym p) ⟩ ap f (sym (sym p)) · p · sym p ≡⟨ ap (λ z → ap f z · p · sym p) (double-inverse p) ⟩ ap f p · p · sym p ≡⟨ associativity (ap f p) p (sym p) ⟩ ap f p · (p · sym p) ≡⟨ ap (λ z → ap f p · z) (left-inverse p) ⟩ ap f p · refl ≡⟨ left-unit (ap f p) ⟩ ap f p ∎ where open ≡-Reasoning lem : (y : X) (q : x ≡ y) → subst (λ z → f z ≡ z) q p ≡ ap f (sym q) · p · q lem .x refl = sym (left-unit p) lem-whiskering : ∀ {i} {X : Set i} (f : X → X) (H : (x : X) → f x ≡ x) (x : X) → ap f (H x) ≡ H (f x) lem-whiskering f H x = begin ap f (H x) ≡⟨ sym (lem-subst-fixpoint f x (H x)) ⟩ subst (λ z → f z ≡ z) (sym (H x)) (H x) ≡⟨ ap' H (sym (H x)) ⟩ H (f x) ∎ where open ≡-Reasoning lem-homotopy-nat : ∀ {i j}{X : Set i}{Y : Set j} {x x' : X}{f g : X → Y} (H : (x : X) → f x ≡ g x) (p : x ≡ x') → H x · ap g p ≡ ap f p · H x' lem-homotopy-nat H refl = left-unit _ co-coherence : ∀ {i j}{X : Set i}{Y : Set j} (isom : X ≅ Y) → coherent isom → coherent' isom co-coherence (iso f g H K) coherence y = subst (λ z → ap g (K z) ≡ H (g z)) (K y) lem where open ≡-Reasoning lem : ap g (K (f (g y))) ≡ H (g (f (g y))) lem = begin ap g (K (f (g y))) ≡⟨ ap (ap g) (sym (coherence (g y))) ⟩ ap g (ap f (H (g y))) ≡⟨ ap-hom f g _ ⟩ ap (g ∘ f) (H (g y)) ≡⟨ lem-whiskering (g ∘ f) H (g y) ⟩ H (g (f (g y))) ∎ sym≅' : ∀ {i j}{X : Set i}{Y : Set j} → X ≅' Y → Y ≅' X sym≅' (isom , γ) = sym≅ isom , co-coherence isom γ --- Vogt's lemma. See http://ncatlab.org/nlab/show/homotopy+equivalence vogt-lemma : ∀ {i j}{X : Set i}{Y : Set j} → (isom : X ≅ Y) → let open _≅_ isom in Σ ((y : Y) → to (from y) ≡ y) λ iso' → coherent (iso to from iso₁ iso') vogt-lemma {X = X}{Y = Y} isom = K' , γ where open _≅_ isom renaming (to to f ; from to g ; iso₁ to H ; iso₂ to K) -- Outline of the proof -- -------------------- -- -- We want to find a homotopy K' : f g → id such that f K' ≡ H f. -- -- To do so, we first prove that the following diagram of -- homotopies: -- -- f H g f -- f g f g f ---------> f g f -- | | -- f g K f | | K f -- | | -- v v -- f g f -------------> f -- f H -- -- commutes. We then observe that f appears on the right side of -- every element in the diagram, except the bottom row, so if we -- define: -- -- K' = (f g K) ⁻¹ · (f H g f) · (K f) -- -- we get that K' f must be equal to the bottom row, which is -- exactly the required coherence condition. open ≡-Reasoning -- the diagram above commutes lem : (x : X) → ap f (H (g (f x))) · K (f x) ≡ ap (f ∘ g) (K (f x)) · ap f (H x) lem x = begin ap f (H (g (f x))) · K (f x) ≡⟨ ap (λ z → ap f z · K (f x)) (sym (lem-whiskering (g ∘ f) H x)) ⟩ ap f (ap (g ∘ f) (H x)) · K (f x) ≡⟨ ap (λ z → z · K (f x)) (ap-hom (g ∘ f) f (H x)) ⟩ ap (f ∘ g ∘ f) (H x) · K (f x) ≡⟨ sym (lem-homotopy-nat (λ x → K (f x)) (H x)) ⟩ K (f (g (f x))) · ap f (H x) ≡⟨ ap (λ z → z · ap f (H x)) (sym (lem-whiskering (f ∘ g) K (f x))) ⟩ ap (f ∘ g) (K (f x)) · ap f (H x) ∎ K' : (y : Y) → f (g y) ≡ y K' y = ap (f ∘ g) (sym (K y)) · ap f (H (g y)) · K y iso' = iso f g H K' -- now we can just compute using the groupoid laws γ : coherent iso' γ x = sym $ begin K' (f x) ≡⟨ refl ⟩ ap (f ∘ g) (sym (K (f x))) · ap f (H (g (f x))) · K (f x) ≡⟨ associativity (ap (f ∘ g) (sym (K (f x)))) (ap f (H (g (f x)))) (K (f x)) ⟩ ap (f ∘ g) (sym (K (f x))) · (ap f (H (g (f x))) · K (f x)) ≡⟨ ap (λ z → ap (f ∘ g) (sym (K (f x))) · z) (lem x) ⟩ ap (f ∘ g) (sym (K (f x))) · (ap (f ∘ g) (K (f x)) · ap f (H x)) ≡⟨ ap (λ z → z · (ap (f ∘ g) (K (f x)) · ap f (H x))) (ap-inv (f ∘ g) (K (f x))) ⟩ sym (ap (f ∘ g) (K (f x))) · (ap (f ∘ g) (K (f x)) · ap f (H x)) ≡⟨ sym (associativity (sym (ap (f ∘ g) (K (f x)))) (ap (f ∘ g) (K (f x))) (ap f (H x))) ⟩ ( sym (ap (f ∘ g) (K (f x))) · ap (f ∘ g) (K (f x)) ) · ap f (H x) ≡⟨ ap (λ z → z · ap f (H x)) (right-inverse (ap (f ∘ g) (K (f x)))) ⟩ refl · ap f (H x) ≡⟨ right-unit (ap f (H x)) ⟩ ap f (H x) ∎ ≅⇒≅' : ∀ {i j} {X : Set i}{Y : Set j} → X ≅ Y → X ≅' Y ≅⇒≅' {X = X}{Y = Y} isom = iso to from iso₁ (proj₁ v) , proj₂ v where open _≅_ isom open import sum abstract v : Σ ((y : Y) → to (from y) ≡ y) λ iso₂' → coherent (iso to from iso₁ iso₂') v = vogt-lemma isom
{ "alphanum_fraction": 0.4127126231, "avg_line_length": 30.7431192661, "ext": "agda", "hexsha": "ae9371af346d87a060079242c4e12f933a7e8791", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/isomorphism/coherent.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/function/isomorphism/coherent.agda", "max_line_length": 71, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/isomorphism/coherent.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 2668, "size": 6702 }
open import Prelude module Implicits.Improved.Stack.Expressiveness where open import Coinduction open import Data.Fin.Substitution open import Implicits.Oliveira.Types open import Implicits.Oliveira.Terms open import Implicits.Oliveira.Contexts open import Implicits.Oliveira.Substitutions open import Implicits.Oliveira.Deterministic.Resolution as D open import Implicits.Oliveira.Ambiguous.Resolution as A open import Implicits.Improved.Stack.Resolution as F open import Implicits.Improved.Infinite.Resolution as ∞ module Finite⊆Infinite where p : ∀ {ν} {a} {Δ : ICtx ν} {s} → Δ F.& s ⊢ᵣ a → Δ ∞.⊢ᵣ a p (r-simp a a↓τ) = r-simp a (lem a↓τ) where lem : ∀ {ν} {a τ r} {Δ : ICtx ν} {r∈Δ : r List.∈ Δ} {s : Stack Δ} → Δ F.& s , r∈Δ ⊢ a ↓ τ → Δ ∞.⊢ a ↓ τ lem (i-simp τ) = i-simp τ lem (i-iabs _ ⊢ᵣa b↓τ) = i-iabs (♯ (p ⊢ᵣa)) (lem b↓τ) lem (i-tabs b a[/b]↓τ) = i-tabs b (lem a[/b]↓τ) p (r-iabs x) = r-iabs (p x) p (r-tabs x) = r-tabs (p x) module Finite⊆OliveiraAmbiguous where p : ∀ {ν} {a} {Δ : ICtx ν} {s} → Δ F.& s ⊢ᵣ a → Δ A.⊢ᵣ a p (r-simp a a↓τ) = lem a↓τ (r-ivar a) where lem : ∀ {ν} {a r τ} {Δ : ICtx ν} {r∈Δ : r List.∈ Δ} {s} → Δ F.& s , r∈Δ ⊢ a ↓ τ → Δ A.⊢ᵣ a → Δ A.⊢ᵣ simpl τ lem (i-simp τ) K⊢ᵣτ = K⊢ᵣτ lem (i-iabs _ ⊢ᵣa b↓τ) K⊢ᵣa⇒b = lem b↓τ (r-iapp K⊢ᵣa⇒b (p ⊢ᵣa)) lem (i-tabs b a[/b]↓τ) K⊢ᵣ∀a = lem a[/b]↓τ (r-tapp b K⊢ᵣ∀a) p (r-iabs x) = r-iabs (p x) p (r-tabs x) = r-tabs (p x) module OliveiraDeterministic⊆Finite where open FirstLemmas -- Oliveira's termination condition is part of the well-formdness of types -- So we assume here that ⊢term x holds for all types x p : ∀ {ν} {a : Type ν} {Δ : ICtx ν} s → (∀ {μ} (x : Type μ) → ⊢term x) → Δ D.⊢ᵣ a → Δ F.& s ⊢ᵣ a p s term (r-simp {ρ = r} x r↓a) = r-simp (proj₁ $ FirstLemmas.first⟶∈ x) (lem (proj₁ $ first⟶∈ x) s r↓a) where lem : ∀ {ν r'} {Δ : ICtx ν} (r∈Δ : r' List.∈ Δ) {a r} s → Δ D.⊢ r ↓ a → Δ F.& s , r∈Δ ⊢ r ↓ a lem r∈Δ s (i-simp a) = i-simp a lem r∈Δ s (i-iabs {ρ₁ = ρ₁} ⊢ᵣρ₁ ρ₂↓τ) = i-iabs (push< s r∈Δ {!!}) (p (s push ρ₁ for r∈Δ) term ⊢ᵣρ₁) (lem r∈Δ s ρ₂↓τ) lem r∈Δ s (i-tabs b x₁) = i-tabs b (lem r∈Δ s x₁) p s term (r-iabs ρ₁ {ρ₂ = ρ₂} x) = r-iabs (p (s prepend ρ₂) term x) p s term (r-tabs x) = r-tabs (p (stack-weaken s) term x)
{ "alphanum_fraction": 0.5660059047, "avg_line_length": 39.5166666667, "ext": "agda", "hexsha": "9f3afe4176fdba102979efd8f01f5501ff1095e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Stack/Expressiveness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Stack/Expressiveness.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Stack/Expressiveness.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1149, "size": 2371 }
module PointedFrac where open import Data.Sum open import Data.Product record ∙_ (A : Set) : Set where constructor ⇡ field focus : A open ∙_ -- Paths between values---identical to dynamic semantics? data _⟷_ : {A B : Set} → ∙ A → ∙ B → Set1 where id : {A : Set} → (x : A) → (⇡ x) ⟷ (⇡ x) swap₊₁ : {A B : Set} → {x : A} → _⟷_ {A ⊎ B} {B ⊎ A} (⇡ (inj₁ x)) (⇡ (inj₂ x)) swap₊₂ : {A B : Set} → {y : B} → _⟷_ {A ⊎ B} {B ⊎ A} (⇡ (inj₂ y)) (⇡ (inj₁ y)) swap× : {A B : Set} → {x : A} → {y : B} ‌→ ⇡ (x , y) ⟷ ⇡ (y , x) -- ...and so on -- shorter arrow for a shorter definition! data _↔_ : Set → Set → Set1 where id : {A : Set} → A ↔ A swap₊ : {A B : Set} → (A ⊎ B) ↔ (B ⊎ A) swap× : {A B : Set} → (A × B) ↔ (B × A) -- Theorem, equivalent to stepping: if c : A ↔ B and v : A, then there exists v' : B and c' : (∙ v) ⟷ (∙ v') eval : {A B : Set} → (A ↔ B) → (v : A) → Σ[ v' ∈ B ] ((⇡ v) ⟷ (⇡ v')) eval id v = v , id v eval swap₊ (inj₁ x) = inj₂ x , swap₊₁ eval swap₊ (inj₂ y) = inj₁ y , swap₊₂ eval swap× (x , y) = (y , x) , swap× -- Theorem, equivalent to backwards stepping: -- if c : A ↔ B and v' : B, then there exists v : A and c' : (∙ v) ⟷ (∙ v') evalB : {A B : Set} → (A ↔ B) → (v' : B) → Σ[ v ∈ A ] ((⇡ v) ⟷ (⇡ v')) evalB id v = v , id v evalB swap₊ (inj₁ x) = inj₂ x , swap₊₂ evalB swap₊ (inj₂ y) = inj₁ y , swap₊₁ evalB swap× (x , y) = (y , x) , swap× -- if c : A ↔ B and v : A, then evalB c (eval c v) ⟷ v right-inv : {A B : Set} → (c : A ↔ B) → (v : A) → ⇡ (proj₁ (evalB c (proj₁ (eval c v)))) ⟷ ⇡ v right-inv id v = id v right-inv swap₊ (inj₁ x) = id (inj₁ x) right-inv swap₊ (inj₂ y) = id (inj₂ y) right-inv swap× v = id v -- left-inv should be just as easy. -- we should also be able to make a statement about proj₂ associated with back-and-forth -- and create a function that maps c to its inverse, and 'prove' eval c = evalB @ inverse c -- "forget" the extra structure ↓ : {A B : Set} → {x : A} → {y : B} → (⇡ x) ⟷ (⇡ y) → A ↔ B ↓ {A} {.A} {x} (id .x) = id ↓ swap₊₁ = swap₊ ↓ swap₊₂ = swap₊ ↓ swap× = swap×
{ "alphanum_fraction": 0.5082846004, "avg_line_length": 33.0967741935, "ext": "agda", "hexsha": "5e5db90c8ba503142c58fbeaf7ada8d5adceed2b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "PointedFrac.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "PointedFrac.agda", "max_line_length": 108, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "PointedFrac.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 931, "size": 2052 }
{-# OPTIONS --without-K --exact-split #-} module localizations-rings where import subrings open subrings public is-invertible-Ring : {l1 : Level} (R : Ring l1) (x : type-Ring R) → UU l1 is-invertible-Ring R = is-invertible-Monoid (multiplicative-monoid-Ring R) is-prop-is-invertible-Ring : {l1 : Level} (R : Ring l1) (x : type-Ring R) → is-prop (is-invertible-Ring R x) is-prop-is-invertible-Ring R = is-prop-is-invertible-Monoid (multiplicative-monoid-Ring R) -------------------------------------------------------------------------------- {- We introduce homomorphism that invert specific elements -} inverts-element-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (x : type-Ring R1) → (f : hom-Ring R1 R2) → UU l2 inverts-element-hom-Ring R1 R2 x f = is-invertible-Ring R2 (map-hom-Ring R1 R2 f x) is-prop-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → is-prop (inverts-element-hom-Ring R S x f) is-prop-inverts-element-hom-Ring R S x f = is-prop-is-invertible-Ring S (map-hom-Ring R S f x) inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → type-Ring S inv-inverts-element-hom-Ring R S x f H = pr1 H is-left-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( inv-inverts-element-hom-Ring R S x f H) ( map-hom-Ring R S f x)) ( unit-Ring S) is-left-inverse-inv-inverts-element-hom-Ring R S x f H = pr1 (pr2 H) is-right-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( map-hom-Ring R S f x) ( inv-inverts-element-hom-Ring R S x f H)) ( unit-Ring S) is-right-inverse-inv-inverts-element-hom-Ring R S x f H = pr2 (pr2 H) inverts-element-comp-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → inverts-element-hom-Ring R T x (comp-hom-Ring R S T g f) inverts-element-comp-hom-Ring R S T x g f H = pair ( map-hom-Ring S T g (inv-inverts-element-hom-Ring R S x f H)) ( pair ( ( inv ( preserves-mul-hom-Ring S T g ( inv-inverts-element-hom-Ring R S x f H) ( map-hom-Ring R S f x))) ∙ ( ( ap ( map-hom-Ring S T g) ( is-left-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-unit-hom-Ring S T g))) ( ( inv ( preserves-mul-hom-Ring S T g ( map-hom-Ring R S f x) ( inv-inverts-element-hom-Ring R S x f H))) ∙ ( ( ap ( map-hom-Ring S T g) ( is-right-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-unit-hom-Ring S T g)))) {- We state the universal property of the localization of a Ring at a single element x ∈ R. -} precomp-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-element-hom-Ring R T x) precomp-universal-property-localization-Ring R S T x f H g = pair (comp-hom-Ring R S T g f) (inverts-element-comp-hom-Ring R S T x g f H) universal-property-localization-Ring : (l : Level) {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-localization-Ring l R S x f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-Ring R S T x f H) unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → is-contr (Σ (hom-Ring S T) (λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h)) unique-extension-universal-property-localization-Ring R S T x f H up-f h K = is-contr-equiv' ( fib (precomp-universal-property-localization-Ring R S T x f H) (pair h K)) ( equiv-tot ( λ g → ( equiv-htpy-hom-Ring-eq R T (comp-hom-Ring R S T g f) h) ∘e ( equiv-Eq-total-subtype-eq ( is-prop-inverts-element-hom-Ring R T x) ( precomp-universal-property-localization-Ring R S T x f H g) ( pair h K)))) ( is-contr-map-is-equiv (up-f T) (pair h K)) center-unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → Σ (hom-Ring S T) (λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h) center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K = center ( unique-extension-universal-property-localization-Ring R S T x f H up-f h K) map-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → hom-Ring S T map-universal-property-localization-Ring R S T x f H up-f h K = pr1 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K) htpy-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → (up-f : universal-property-localization-Ring l3 R S x f H) → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → htpy-hom-Ring R T (comp-hom-Ring R S T (map-universal-property-localization-Ring R S T x f H up-f h K) f) h htpy-universal-property-localization-Ring R S T x f H up-f h K = pr2 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K) {- We show that the type of localizations of a ring R at an element x is contractible. -} is-equiv-up-localization-up-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (inverts-f : inverts-element-hom-Ring R S x f) → (g : hom-Ring R T) (inverts-g : inverts-element-hom-Ring R T x g) → (h : hom-Ring S T) (H : htpy-hom-Ring R T (comp-hom-Ring R S T h f) g) → ({l : Level} → universal-property-localization-Ring l R S x f inverts-f) → ({l : Level} → universal-property-localization-Ring l R T x g inverts-g) → is-iso-hom-Ring S T h is-equiv-up-localization-up-localization-Ring R S T x f inverts-f g inverts-g h H up-f up-g = {!is-iso-is-equiv-hom-Ring!} -------------------------------------------------------------------------------- {- We introduce homomorphisms that invert all elements of a subset of a ring -} inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → UU (l1 ⊔ l2 ⊔ l3) inverts-subset-hom-Ring R S P f = (x : type-Ring R) (p : type-Prop (P x)) → inverts-element-hom-Ring R S x f is-prop-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → is-prop (inverts-subset-hom-Ring R S P f) is-prop-inverts-subset-hom-Ring R S P f = is-prop-Π (λ x → is-prop-Π (λ p → is-prop-inverts-element-hom-Ring R S x f)) inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → type-Ring S inv-inverts-subset-hom-Ring R S P f H x p = inv-inverts-element-hom-Ring R S x f (H x p) is-left-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id (mul-Ring S (inv-inverts-subset-hom-Ring R S P f H x p) (map-hom-Ring R S f x)) (unit-Ring S) is-left-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-left-inverse-inv-inverts-element-hom-Ring R S x f (H x p) is-right-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id (mul-Ring S (map-hom-Ring R S f x) (inv-inverts-subset-hom-Ring R S P f H x p)) (unit-Ring S) is-right-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-right-inverse-inv-inverts-element-hom-Ring R S x f (H x p) inverts-subset-comp-hom-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → inverts-subset-hom-Ring R T P (comp-hom-Ring R S T g f) inverts-subset-comp-hom-Ring R S T P g f H x p = inverts-element-comp-hom-Ring R S T x g f (H x p) {- We state the universal property of the localization of a Ring at a subset of R. -} precomp-universal-property-localization-subset-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) → (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-subset-hom-Ring R T P) precomp-universal-property-localization-subset-Ring R S T P f H g = pair (comp-hom-Ring R S T g f) (inverts-subset-comp-hom-Ring R S T P g f H) universal-property-localization-subset-Ring : (l : Level) {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-localization-subset-Ring l R S P f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-subset-Ring R S T P f H)
{ "alphanum_fraction": 0.6197770238, "avg_line_length": 45.2412280702, "ext": "agda", "hexsha": "4aab197725fc3d963bcb4d4e3f8c37467bb6dac2", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/localizations-rings.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/localizations-rings.agda", "max_line_length": 122, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/localizations-rings.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 3810, "size": 10315 }
module reflnat where data ℕ : Set where Z : ℕ S : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ n + Z = n n + S m = S (n + m) infixr 10 _+_ infixr 20 _*_ _*_ : ℕ -> ℕ -> ℕ n * Z = Z n * S m = n * m + n data Bool : Set where tt : Bool ff : Bool data ⊤ : Set where true : ⊤ data ⊥ : Set where Atom : Bool -> Set Atom tt = ⊤ Atom ff = ⊥ _==Bool_ : ℕ -> ℕ -> Bool Z ==Bool Z = tt (S n) ==Bool (S m) = n ==Bool m _ ==Bool _ = ff -- Z ==Bool (S _) = ff -- (S _) ==Bool Z = ff _==_ : ℕ -> ℕ -> Set n == m = Atom ( n ==Bool m) Refl : Set Refl = (n : ℕ) -> n == n refl : Refl refl Z = true refl (S n) = refl n
{ "alphanum_fraction": 0.4324734446, "avg_line_length": 10.9833333333, "ext": "agda", "hexsha": "4a55f09bdd1af018bea62646a338e27c696c9252", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/reflnat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/reflnat.agda", "max_line_length": 32, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/reflnat.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 281, "size": 659 }
{-# OPTIONS --cubical-compatible #-} variable @0 A : Set data D : Set₁ where c : A → D
{ "alphanum_fraction": 0.5806451613, "avg_line_length": 11.625, "ext": "agda", "hexsha": "a7f8d8e8915d3157e75461a5ad4b385002daf228", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5410-3.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5410-3.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5410-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 31, "size": 93 }
module Logic.Predicate where open import Functional import Lvl open import Logic open import Logic.Propositional open import Type open import Type.Properties.Inhabited ------------------------------------------ -- Existential quantification (Existance, Exists) module _ {ℓ₁}{ℓ₂} where record ∃ {Obj : Type{ℓ₁}} (Pred : Obj → Stmt{ℓ₂}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where eta-equality constructor [∃]-intro field witness : Obj ⦃ proof ⦄ : Pred(witness) [∃]-witness : ∀{Obj}{Pred} → ∃{Obj}(Pred) → Obj [∃]-witness([∃]-intro(x) ⦃ _ ⦄ ) = x [∃]-proof : ∀{Obj}{Pred} → (e : ∃{Obj}(Pred)) → Pred([∃]-witness(e)) [∃]-proof([∃]-intro(_) ⦃ proof ⦄ ) = proof [∃]-elim : ∀{ℓ₃}{Obj}{Pred}{Z : Stmt{ℓ₃}} → (∀{x : Obj} → Pred(x) → Z) → (∃{Obj} Pred) → Z [∃]-elim (f) ([∃]-intro(_) ⦃ proof ⦄) = f(proof) syntax ∃{T}(λ x → y) = ∃❪ x ꞉ T ❫․ y {- TODO: This would allow the syntax: ∃ₗ x ↦ P(x) ∃ₗ_ = ∃ infixl 1 ∃ₗ_ -} private variable ℓ : Lvl.Level private variable Obj X Y Z W : Type{ℓ} private variable Pred P Q R : X → Type{ℓ} [∃]-map-proof : (∀{x} → P(x) → Q(x)) → ((∃ P) → (∃ Q)) [∃]-map-proof (f) ([∃]-intro(x) ⦃ proof ⦄) = [∃]-intro(x) ⦃ f(proof) ⦄ [∃]-map : (f : X → X) → (∀{x} → P(x) → Q(f(x))) → ((∃ P) → (∃ Q)) [∃]-map f p ([∃]-intro(x) ⦃ proof ⦄) = [∃]-intro(f(x)) ⦃ p(proof) ⦄ [∃]-map₂ : (f : X → Y → Z) → (∀{x y} → P(x) → Q(y) → R(f x y)) → ((∃ P) → (∃ Q) → (∃ R)) [∃]-map₂ f p ([∃]-intro(x) ⦃ proof₁ ⦄) ([∃]-intro(y) ⦃ proof₂ ⦄) = [∃]-intro(f x y) ⦃ p proof₁ proof₂ ⦄ [∃]-map-proof-dependent : (ep : ∃ P) → (P(∃.witness ep) → Q(∃.witness ep)) → (∃ Q) [∃]-map-proof-dependent ([∃]-intro(x) ⦃ proof ⦄) f = [∃]-intro(x) ⦃ f(proof) ⦄ ------------------------------------------ -- Universal quantification (Forall, All) ∀ₗ : (Pred : Obj → Stmt{ℓ}) → Stmt ∀ₗ (Pred) = (∀{x} → Pred(x)) [∀]-intro : ((a : Obj) → Pred(a)) → ∀ₗ(x ↦ Pred(x)) [∀]-intro p{a} = p(a) [∀]-elim : ∀ₗ(x ↦ Pred(x)) → (a : Obj) → Pred(a) [∀]-elim p(a) = p{a} -- Eliminates universal quantification for a non-empty domain using a witnessed existence which proves that the domain is non-empty. [∀ₑ]-elim : ⦃ _ : ◊ Obj ⦄ → ∀{P : Obj → Stmt{ℓ}} → ∀ₗ(x ↦ P(x)) → P([◊]-existence) [∀ₑ]-elim {Obj = Obj} ⦃ proof ⦄ {P} apx = [∀]-elim {Obj = Obj}{P} apx(◊.existence(proof)) syntax ∀ₗ{T}(λ x → y) = ∀❪ x ꞉ T ❫․ y ∀⁰ : (Pred : Stmt{ℓ}) → Stmt ∀⁰ = id ∀¹ : (Pred : X → Stmt{ℓ}) → Stmt ∀¹ (Pred) = ∀⁰(∀ₗ ∘₀ Pred) -- ∀¹ (Pred) = (∀{x} → Pred(x)) ∀² : (Pred : X → Y → Stmt{ℓ}) → Stmt ∀² (Pred) = ∀¹(∀ₗ ∘₁ Pred) -- ∀² (Pred) = (∀{x}{y} → Pred(x)(y)) ∀³ : (Pred : X → Y → Z → Stmt{ℓ}) → Stmt ∀³ (Pred) = ∀²(∀ₗ ∘₂ Pred) -- ∀³ (Pred) = (∀{x}{y}{z} → Pred(x)(y)(z)) ∀⁴ : (Pred : X → Y → Z → W → Stmt{ℓ}) → Stmt ∀⁴ (Pred) = ∀³(∀ₗ ∘₃ Pred) -- ∀⁴ (Pred) = (∀{x}{y}{z}{w} → Pred(x)(y)(z)(w))
{ "alphanum_fraction": 0.4782298358, "avg_line_length": 31.4831460674, "ext": "agda", "hexsha": "afbf66122eaac1cd17eb8ed66e0d7c1bb93c3152", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Predicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Predicate.agda", "max_line_length": 132, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Predicate.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1330, "size": 2802 }
------------------------------------------------------------------------ -- Parsing of matching parentheses, along with a correctness proof ------------------------------------------------------------------------ -- A solution to an exercise set by Helmut Schwichtenberg. module TotalRecognisers.LeftRecursion.MatchingParentheses where open import Algebra open import Codata.Musical.Notation open import Data.Bool open import Data.List open import Data.List.Properties open import Data.Product open import Function.Equivalence open import Relation.Binary hiding (_⇔_) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Decidable as Decidable private module ListMonoid {A : Set} = Monoid (++-monoid A) import TotalRecognisers.LeftRecursion as LR import TotalRecognisers.LeftRecursion.Lib as Lib -- Parentheses. data Paren : Set where ⟦ ⟧ : Paren -- Strings of matching parentheses. data Matching : List Paren → Set where nil : Matching [] app : ∀ {xs ys} (p₁ : Matching xs) (p₂ : Matching ys) → Matching (xs ++ ys) par : ∀ {xs} (p : Matching xs) → Matching ([ ⟦ ] ++ xs ++ [ ⟧ ]) -- Our goal: decide Matching. Goal : Set Goal = ∀ xs → Dec (Matching xs) -- Equality of parentheses is decidable. _≟-Paren_ : Decidable (_≡_ {A = Paren}) ⟦ ≟-Paren ⟦ = yes P.refl ⟦ ≟-Paren ⟧ = no λ() ⟧ ≟-Paren ⟦ = no λ() ⟧ ≟-Paren ⟧ = yes P.refl open LR Paren hiding (_∷_) private open module Tok = Lib.Tok Paren _≟-Paren_ using (tok) -- A (left and right recursive) grammar for matching parentheses. Note -- the use of nonempty; without the two occurrences of nonempty the -- grammar would not be well-formed. matching : P _ matching = empty ∣ ♯ nonempty matching · ♯ nonempty matching ∣ ♯ (tok ⟦ · ♯ matching) · ♯ tok ⟧ -- We can decide membership of matching. decide-matching : ∀ xs → Dec (xs ∈ matching) decide-matching xs = xs ∈? matching -- Membership of matching is equivalent to satisfaction of Matching. ∈m⇔M : ∀ {xs} → (xs ∈ matching) ⇔ Matching xs ∈m⇔M = equivalence to from where to : ∀ {xs} → xs ∈ matching → Matching xs to (∣-left (∣-left empty)) = nil to (∣-left (∣-right (nonempty p₁ · nonempty p₂))) = app (to p₁) (to p₂) to (∣-right (⟦∈ · p · ⟧∈)) rewrite Tok.sound ⟦∈ | Tok.sound ⟧∈ = par (to p) from : ∀ {xs} → Matching xs → xs ∈ matching from nil = ∣-left (∣-left empty) from (app {xs = []} p₁ p₂) = from p₂ from (app {xs = x ∷ xs} {ys = []} p₁ p₂) rewrite proj₂ ListMonoid.identity xs = from p₁ from (app {xs = _ ∷ _} {ys = _ ∷ _} p₁ p₂) = ∣-left (∣-right {n₁ = true} (nonempty (from p₁) · nonempty (from p₂))) from (par p) = ∣-right {n₁ = true} (Tok.complete · from p · Tok.complete) -- And thus we reach our goal. goal : Goal goal xs = Decidable.map ∈m⇔M (decide-matching xs) -- Some examples. ex₁ : Dec (Matching []) ex₁ = goal _ -- = yes nil ex₂ : Dec (Matching (⟦ ∷ ⟧ ∷ [])) ex₂ = goal _ -- = yes (par nil) ex₃ : Dec (Matching (⟦ ∷ ⟧ ∷ ⟦ ∷ ⟧ ∷ [])) ex₃ = goal _ -- = yes (app (par nil) (par nil)) ex₄ : Dec (Matching (⟦ ∷ ⟧ ∷ ⟦ ∷ [])) ex₄ = goal _ -- = no (λ x → …)
{ "alphanum_fraction": 0.5926153846, "avg_line_length": 30.0925925926, "ext": "agda", "hexsha": "8d79b628da43c5bb60aa19409c3cf1a908a32de3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalRecognisers/LeftRecursion/MatchingParentheses.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalRecognisers/LeftRecursion/MatchingParentheses.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalRecognisers/LeftRecursion/MatchingParentheses.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 996, "size": 3250 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where every pair of elements are related (symmetrically) ------------------------------------------------------------------------ -- Core modules are not meant to be used directly outside of the -- standard library. -- This module should be removable if and when Agda issue -- https://github.com/agda/agda/issues/3210 is fixed {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel) module Data.List.Relation.Unary.AllPairs.Core {a ℓ} {A : Set a} (R : Rel A ℓ) where open import Level open import Data.List.Base open import Data.List.Relation.Unary.All ------------------------------------------------------------------------ -- Definition -- AllPairs R xs means that every pair of elements (x , y) in xs is a -- member of relation R (as long as x comes before y in the list). infixr 5 _∷_ data AllPairs : List A → Set (a ⊔ ℓ) where [] : AllPairs [] _∷_ : ∀ {x xs} → All (R x) xs → AllPairs xs → AllPairs (x ∷ xs)
{ "alphanum_fraction": 0.5463049579, "avg_line_length": 30.5428571429, "ext": "agda", "hexsha": "0a4cd7f4815006cbc67b0585bbb0b9ca3015adb3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 249, "size": 1069 }
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Inference.ConstraintGen(x : X) where import OutsideIn.Constraints as C import OutsideIn.TypeSchema as TS import OutsideIn.Expressions as E import OutsideIn.Environments as V open X(x) renaming (funType to _⟶_; appType to _··_) open C(x) open TS(x) open E(x) open V(x) open import Data.Vec private module PlusN-m n = Monad (PlusN-is-monad {n}) module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n})) module TypeSchema-f {n} = Functor (type-schema-is-functor {n}) module Type-f = Functor (type-is-functor) module QC-f = Functor (qconstraint-is-functor) module Exp-f₁ {tv} {r} = Functor (expression-is-functor₁ {tv} {r}) module Exp-f₂ {ev} {r} = Functor (expression-is-functor₂ {ev} {r}) module Constraint-f {s} = Functor (constraint-is-functor {s}) module Vec-f {n} = Functor (vec-is-functor {n}) open Monad (type-is-monad) using () renaming (unit to TVar) private upindex : {X : Set → Set}{tv : Set} → ⦃ is-functor : Functor X ⦄ → X tv → X (Ⓢ tv) upindex ⦃ is-functor ⦄ e = suc <$> e where open Functor (is-functor) _↑c : {tv : Set}{s : Strata} → (Constraint tv s) → (Constraint (Ⓢ tv) s) _↑c {s = s} = upindex ⦃ constraint-is-functor {s} ⦄ _↑e : {ev tv : Set}{r : Shape} → (Expression ev tv r) → (Expression ev (Ⓢ tv) r) _↑e = upindex ⦃ expression-is-functor₂ ⦄ _↑a : {ev tv : Set}{r : Shape} → (Alternatives ev tv r) → (Alternatives ev (Ⓢ tv) r) _↑a = upindex ⦃ alternatives-is-functor₂ ⦄ _↑t : {tv : Set} → (Type tv) → (Type (Ⓢ tv)) _↑t = upindex ⦃ type-is-functor ⦄ _↑q : {tv : Set} → (QConstraint tv) → (QConstraint (Ⓢ tv)) _↑q = upindex ⦃ qconstraint-is-functor ⦄ infixr 7 _↑e infixr 7 _↑c infixr 7 _↑t infixr 7 _↑a applyAll : ∀{tv}(n : ℕ) → Type tv → Type (tv ⨁ n) applyAll zero x = x applyAll (suc n) x = applyAll n ((x ↑t) ·· (TVar zero)) funType : ∀{tv}{n} → Vec (Type tv) n → Type tv → Type tv funType [] t = t funType (x ∷ xs) t = x ⟶ (funType xs t) upType : ∀ {n}{tv} → Type tv → Type (tv ⨁ n) upType {n} t = Type-f.map (Monad.unit (PlusN-is-monad {n})) t upGamma : ∀ {n}{ev}{tv} → Environment ev tv → Environment ev (tv ⨁ n) upGamma {n} Γ = TypeSchema-f.map (Monad.unit (PlusN-is-monad {n})) ∘ Γ upExp : ∀ {n}{ev}{tv}{r} → Expression ev tv r → Expression ev (tv ⨁ n) r upExp {n} e = Exp-f₂.map (Monad.unit (PlusN-is-monad {n})) e upAlts : ∀ {n}{ev}{tv}{r} → Alternatives ev tv r → Alternatives ev (tv ⨁ n) r upAlts {n} e = Functor.map alternatives-is-functor₂ (Monad.unit (PlusN-is-monad {n})) e mutual syntax alternativeConstraintGen Γ α₀ α₁ alt C = Γ ►′ alt ∶ α₀ ⟶ α₁ ↝ C data alternativeConstraintGen {ev : Set}{tv : Set}(Γ : Environment ev tv)(α₀ α₁ : Type tv) : {r : Shape} → Alternative ev tv r → Constraint tv Extended → Set where Simple : ∀ {r}{n}{v : Name ev (Datacon n)}{e : Expression _ _ r}{a}{τs}{T}{C} → let δ = TVar zero in Γ v ≡ DC∀ a · τs ⟶ T → addAll (Vec-f.map (_↑t) τs) (upGamma {a} Γ ↑Γ) ► (upExp {a} e ↑e) ∶ δ ↝ C → Γ ►′ v →′ e ∶ α₀ ⟶ α₁ ↝ Ⅎ′ a · (Ⅎ δ ∼′ (upType {a} α₁ ↑t) ∧′ C) ∧′ applyAll a (TVar T) ∼′ upType {a} α₀ GADT : ∀ {r}{n}{v : Name ev (Datacon n)}{e : Expression _ _ r}{a}{b}{Q}{τs}{T}{C} → let δ = TVar zero in Γ v ≡ DC∀′ a , b · Q ⇒ τs ⟶ T → addAll (Vec-f.map (_↑t) τs) (upGamma {b} (upGamma {a} Γ) ↑Γ) ► (upExp {b} (upExp {a} e) ↑e) ∶ δ ↝ C → Γ ►′ v →′ e ∶ α₀ ⟶ α₁ ↝ Ⅎ′ a · Ⅎ′ b · (Imp′ Q (Ⅎ (C ∧′ δ ∼′ (upType {b} (upType {a} α₁) ↑t)))) ∧′ upType {b} (upType {a} α₀) ∼′ Type-f.map (PlusN-m.unit b) (applyAll a (TVar T)) syntax alternativesConstraintGen Γ α₀ α₁ alts C = Γ ►► alts ∶ α₀ ⟶ α₁ ↝ C data alternativesConstraintGen {ev : Set}{tv : Set}(Γ : Environment ev tv)(α₀ α₁ : Type tv) : {r : Shape} → Alternatives ev tv r → Constraint tv Extended → Set where NoAlternative : Γ ►► esac ∶ α₀ ⟶ α₁ ↝ ε′ AnAlternative : ∀ {r₁ r₂}{a : Alternative _ _ r₁}{as : Alternatives _ _ r₂}{C₁}{C₂} → Γ ►′ a ∶ α₀ ⟶ α₁ ↝ C₁ → Γ ►► as ∶ α₀ ⟶ α₁ ↝ C₂ → Γ ►► a ∣ as ∶ α₀ ⟶ α₁ ↝ C₂ syntax constraintGen a c b d = a ► b ∶ c ↝ d data constraintGen {ev : Set}{tv : Set} (Γ : Environment ev tv)(τ : Type tv) : {r : Shape} → Expression ev tv r → Constraint tv Extended → Set where VarCon₁ : ∀ {v}{n}{q}{t} → Γ (N v) ≡ ∀′ n · q ⇒ t → Γ ► Var (N v) ∶ τ ↝ Ⅎ′ n · QC q ∧′ upType {n} τ ∼′ t VarCon₂ : ∀ {n}{d}{a}{τs : Vec _ n}{k} → Γ (DC d) ≡ DC∀ a · τs ⟶ k → Γ ► Var (DC d) ∶ τ ↝ Ⅎ′ a · upType {a} τ ∼′ funType τs (applyAll a (TVar k)) VarCon₃ : ∀ {n}{d}{a}{b}{Q}{τs : Vec _ n}{k} → Γ (DC d) ≡ DC∀′ a , b · Q ⇒ τs ⟶ k → Γ ► Var (DC d) ∶ τ ↝ Ⅎ′ a · Ⅎ′ b · QC Q ∧′ upType {b} (upType {a} τ) ∼′ funType τs (upType {b} (applyAll a (TVar k))) App : ∀ {r₁}{r₂}{e₁ : Expression _ _ r₁}{e₂ : Expression _ _ r₂}{C₁}{C₂} → let α₀ = TVar zero α₁ = TVar (suc zero) α₂ = TVar (suc (suc zero)) in upGamma {3} Γ ► upExp {3} e₁ ∶ α₀ ↝ C₁ → upGamma {3} Γ ► upExp {3} e₂ ∶ α₁ ↝ C₂ → Γ ► e₁ · e₂ ∶ τ ↝ Ⅎ Ⅎ Ⅎ C₁ ∧′ C₂ ∧′ α₀ ∼′ (α₁ ⟶ α₂) ∧′ upType {3} τ ∼′ α₂ Abs : ∀ {r}{e : Expression _ _ r}{C} → let α₀ = TVar zero α₁ = TVar (suc zero) in ⟨ ∀′ 0 · ε ⇒ α₀ ⟩, upGamma {2} Γ ► upExp {2} e ∶ α₁ ↝ C → Γ ► λ′ e ∶ τ ↝ Ⅎ Ⅎ C ∧′ upType {2} τ ∼′ (α₀ ⟶ α₁) Let : ∀{r₁}{r₂}{x : Expression _ _ r₁}{y : Expression _ _ r₂}{C₁}{C₂} → let α₀ = TVar zero α₁ = TVar (suc zero) in upGamma {2} Γ ► upExp {2} x ∶ α₀ ↝ C₁ → ⟨ ∀′ 0 · ε ⇒ α₀ ⟩, upGamma {2} Γ ► upExp {2} y ∶ α₁ ↝ C₂ → Γ ► let₁ x in′ y ∶ τ ↝ Ⅎ Ⅎ C₁ ∧′ C₂ ∧′ upType {2} τ ∼′ α₁ LetA : ∀{r₁}{r₂}{x : Expression _ _ r₁}{y : Expression _ _ r₂}{t}{C₁}{C₂} → let α₀ = TVar zero α₁ = TVar (suc zero) in upGamma {2} Γ ► upExp {2} x ∶ α₀ ↝ C₁ → ⟨ ∀′ 0 · ε ⇒ α₀ ⟩, upGamma {2} Γ ► upExp {2} y ∶ α₁ ↝ C₂ → Γ ► let₂ x ∷ t in′ y ∶ τ ↝ Ⅎ Ⅎ C₁ ∧′ C₂ ∧′ upType {2} τ ∼′ α₁ ∧′ upType {2} t ∼′ α₀ GLetA : ∀{n}{r₁}{r₂}{x : Expression _ _ r₁}{y : Expression _ _ r₂}{Q}{t}{C}{C₂} → let α₀ = upType {n} (TVar zero) α₁ = upType {n} (TVar (suc zero)) up2 = PlusN-f.map n (PlusN-m.unit 2) in upGamma {n} (upGamma {2} Γ) ► Exp-f₂.map up2 x ∶ α₀ ↝ C → upGamma {n} (upGamma {2} (⟨ ∀′ n · Q ⇒ t ⟩, Γ)) ► upExp {n} (upExp {2} y) ∶ α₁ ↝ C₂ → Γ ► let₃ n · x ∷ Q ⇒ t in′ y ∶ τ ↝ Ⅎ Ⅎ Ⅎ′ n · Imp′ (QC-f.map up2 Q) (C ∧′ α₀ ∼′ Type-f.map up2 t) ∧′ C₂ ∧′ upType {n} (upType {2} τ) ∼′ α₁ Case : ∀{r₁}{r₂}{x : Expression _ _ r₁}{alts : Alternatives _ _ r₂}{C₁}{C₂} → let α₀ = TVar zero α₁ = TVar (suc zero) in upGamma {2} Γ ► upExp {2} x ∶ α₀ ↝ C₁ → upGamma {2} Γ ►► upAlts {2} alts ∶ α₀ ⟶ α₁ ↝ C₂ → Γ ► case x of alts ∶ τ ↝ Ⅎ Ⅎ C₁ ∧′ C₂ genConstraint : {ev : Set}{tv : Set}{r : Shape} (Γ : Environment ev tv)(e : Expression ev tv r)(τ : Type tv) → ∃ (λ C → Γ ► e ∶ τ ↝ C) genConstraintAlternative : {ev : Set}{tv : Set}{r : Shape} (Γ : Environment ev tv)(a : Alternative ev tv r)(α₀ α₁ : Type tv) → ∃ (λ C → Γ ►′ a ∶ α₀ ⟶ α₁ ↝ C) genConstraintAlternative Γ (n →′ e) α₀ α₁ with Γ n | inspect Γ n ... | DC∀ a · τs ⟶ k | iC p with genConstraint (addAll (Vec-f.map _↑t τs) (upGamma {a} Γ ↑Γ)) (upExp {a} e ↑e) (TVar zero) ... | C , p₂ = _ , Simple p p₂ genConstraintAlternative Γ (n →′ e) α₀ α₁ | DC∀′ a , b · Q ⇒ τs ⟶ k | iC p with genConstraint (addAll (Vec-f.map _↑t τs) (upGamma {b} (upGamma {a} Γ) ↑Γ)) (upExp {b} (upExp {a} e) ↑e) (TVar zero) ... | C , p₂ = _ , GADT p p₂ genConstraintAlternatives : {ev : Set}{tv : Set}{r : Shape} (Γ : Environment ev tv)(a : Alternatives ev tv r)(α₀ α₁ : Type tv) → ∃ (λ C → Γ ►► a ∶ α₀ ⟶ α₁ ↝ C) genConstraintAlternatives Γ esac α₀ α₁ = _ , NoAlternative genConstraintAlternatives Γ (a ∣ as) α₀ α₁ with genConstraintAlternative Γ a α₀ α₁ | genConstraintAlternatives Γ as α₀ α₁ ... | C₁ , p₁ | C₂ , p₂ = _ , AnAlternative p₁ p₂ genConstraint Γ (Var (N v)) τ with Γ (N v) | inspect Γ (N v) ... | ∀′ n · q ⇒ t | iC prf = _ , VarCon₁ prf genConstraint Γ (Var (DC d)) τ with Γ (DC d) | inspect Γ (DC d) ... | DC∀ a · τs ⟶ k | iC prf = _ , VarCon₂ prf ... | DC∀′ a , b · q ⇒ τs ⟶ k | iC prf = _ , VarCon₃ prf genConstraint Γ (e₁ · e₂) τ with genConstraint (upGamma {3} Γ) (upExp {3} e₁) (TVar zero) | genConstraint (upGamma {3} Γ) (upExp {3} e₂) (TVar (suc zero)) ... | C₁ , p₁ | C₂ , p₂ = _ , App p₁ p₂ genConstraint Γ (λ′ e′) τ with genConstraint (⟨ ∀′ 0 · ε ⇒ TVar zero ⟩, upGamma {2} Γ) (upExp {2} e′) (TVar (suc zero)) ... | C , p = _ , Abs p genConstraint Γ (let₁ x in′ y) τ with genConstraint (upGamma {2} Γ) (upExp {2} x) (TVar zero) | genConstraint (⟨ ∀′ 0 · ε ⇒ TVar zero ⟩, upGamma {2} Γ) (upExp {2} y) (TVar (suc zero)) ... | C₁ , p₁ | C₂ , p₂ = _ , Let p₁ p₂ genConstraint Γ (let₂ x ∷ t in′ y) τ with genConstraint (upGamma {2} Γ) (upExp {2} x) (TVar zero) | genConstraint (⟨ ∀′ 0 · ε ⇒ TVar zero ⟩, upGamma {2} Γ) (upExp {2} y) (TVar (suc zero)) ... | C₁ , p₁ | C₂ , p₂ = _ , LetA p₁ p₂ genConstraint Γ (let₃ n · x ∷ Q ⇒ t in′ y) τ with genConstraint (upGamma {n} (upGamma {2} Γ)) (Exp-f₂.map (PlusN-f.map n (PlusN-m.unit 2)) x) (upType {n} (TVar zero)) | genConstraint (upGamma {n} (upGamma {2} (⟨ ∀′ n · Q ⇒ t ⟩, Γ))) (upExp {n} (upExp {2} y)) (upType {n} (TVar (suc zero))) ... | C₁ , p₁ | C₂ , p₂ = _ , GLetA p₁ p₂ genConstraint Γ (case x of alts) τ with genConstraint (upGamma {2} Γ) (upExp {2} x) (TVar zero) | genConstraintAlternatives (upGamma {2} Γ) (upAlts {2} alts) (TVar zero) (TVar (suc zero)) ... | C₁ , p₁ | C₂ , p₂ = _ , Case p₁ p₂
{ "alphanum_fraction": 0.4611688652, "avg_line_length": 59.0051546392, "ext": "agda", "hexsha": "42d7ba3674d2136ea21e6eb9fe43ab419426ea6d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Inference/ConstraintGen.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Inference/ConstraintGen.agda", "max_line_length": 132, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Inference/ConstraintGen.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 4290, "size": 11447 }
------------------------------------------------------------------------ -- The coinductive type family Coherently ------------------------------------------------------------------------ -- This type family is used to define the lenses in -- Lens.Non-dependent.Higher.Coinductive and -- Lens.Non-dependent.Higher.Coinductive.Small. {-# OPTIONS --cubical --guardedness #-} import Equality.Path as P module Lens.Non-dependent.Higher.Coherently.Coinductive {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq import Equality.Path.Univalence as EPU open import Prelude open import Bijection equality-with-J as B using (_↔_) import Bijection P.equality-with-J as PB open import Container.Indexed equality-with-J open import Container.Indexed.M.Codata eq import Container.Indexed.M.Function equality-with-J as F open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence P.equality-with-J as PEq open import Function-universe equality-with-J hiding (id; _∘_) import Function-universe P.equality-with-J as PF open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional.One-step eq as O using (∥_∥¹; ∣_∣) open import Univalence-axiom equality-with-J import Univalence-axiom P.equality-with-J as PU import Lens.Non-dependent.Higher.Coherently.Not-coinductive eq as NC private variable a b ℓ p p₁ p₂ : Level A A₁ A₂ B C : Type a f q x y : A n : ℕ ------------------------------------------------------------------------ -- The type family -- Coherently P step f means that f and all variants of f built using -- step (in a certain way) satisfy the property P. -- -- Paolo Capriotti came up with a coinductive definition of lenses. -- Andrea Vezzosi suggested that one could use a kind of indexed -- M-type to make it easier to prove that two variants of coinductive -- lenses are equivalent: the lemma Coherently-cong-≡ below is based -- on his idea, and Coherently is a less general variant of the M-type -- that he suggested. See also Coherently-with-restriction′ below, -- which is defined as an indexed M-type. record Coherently {A : Type a} {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) (f : A → B) : Type p where coinductive field property : P f coherent : Coherently P step (step f property) open Coherently public ------------------------------------------------------------------------ -- An equivalence -- Coherently is pointwise equivalent to NC.Coherently (assuming -- univalence). Coherently≃Not-coinductive-coherently : {B : Type b} {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → Univalence (lsuc a ⊔ b ⊔ p) → Univalence (lsuc a ⊔ b) → Coherently P step f ≃ NC.Coherently P step f Coherently≃Not-coinductive-coherently {a = a} {B = B} {P = P} {step = step} {f = f} univ₁ univ₂ = block λ b → Coherently P step f ↝⟨ Eq.↔→≃ to from (_↔_.from ≡↔≡ ∘ to-from) (_↔_.from ≡↔≡ ∘ from-to) ⟩ M (CC step) (_ , f) ↝⟨ carriers-of-final-coalgebras-equivalent (M-coalgebra (CC step) , M-final univ₁ univ₂) (F.M-coalgebra b ext (CC step) , F.M-final b ext ext) _ ⟩ F.M (CC step) (_ , f) ↔⟨⟩ NC.Coherently P step f □ where CC = NC.Coherently-container P to : {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → Coherently P step f → M (CC step) (_ , f) to c .out-M .proj₁ = c .property to c .out-M .proj₂ _ = to (c .coherent) from : {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → M (CC step) (_ , f) → Coherently P step f from c .property = c .out-M .proj₁ from c .coherent = from (c .out-M .proj₂ _) to-from : {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → (c : M (CC step) (_ , f)) → to (from c) P.≡ c to-from c i .out-M .proj₁ = c .out-M .proj₁ to-from c i .out-M .proj₂ _ = to-from (c .out-M .proj₂ _) i from-to : {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → (c : Coherently P step f) → from (to c) P.≡ c from-to c i .property = c .property from-to c i .coherent = from-to (c .coherent) i ------------------------------------------------------------------------ -- Preservation lemmas private -- A preservation lemma for Coherently. -- -- The lemma does not use the univalence argument, instead it uses -- EPU.univ (and EPU.≃⇒≡) directly. Coherently-cong-≡ : Block "Coherently-cong-≡" → {A : Type a} {P₁ P₂ : {A : Type a} → (A → B) → Type p} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} → Univalence p → (P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) → ({A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) → Coherently P₁ step₁ f P.≡ Coherently P₂ step₂ f Coherently-cong-≡ {a = a} {B = B} {p = p} ⊠ {P₁ = P₁} {P₂ = P₂} {step₁ = step₁} {step₂ = step₂} {f = f} _ P₁≃P₂′ step₁≡step₂ = P.cong (λ ((P , step) : ∃ λ (P : (A : Type a) → (A → B) → Type p) → {A : Type a} (f : A → B) → P A f → ∥ A ∥¹ → B) → Coherently (P _) step f) $ P.Σ-≡,≡→≡′ (P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f)) (P.implicit-extensionality P.ext λ A → P.⟨ext⟩ λ f → P.subst (λ P → {A : Type a} (f : A → B) → P A f → ∥ A ∥¹ → B) (P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f)) step₁ f P.≡⟨ P.trans (P.cong (_$ f) $ P.sym $ P.push-subst-implicit-application (P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f)) (λ P A → (f : A → B) → P A f → ∥ A ∥¹ → B) {f = const _} {g = step₁}) $ P.sym $ P.push-subst-application (P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f)) (λ P f → P A f → ∥ A ∥¹ → B) {f = const f} {g = step₁} ⟩ P.subst (λ P → P A f → ∥ A ∥¹ → B) (P.⟨ext⟩ λ A → P.⟨ext⟩ λ (f : A → B) → EPU.≃⇒≡ (P₁≃P₂ f)) (step₁ f) P.≡⟨⟩ P.subst (λ P → P → ∥ A ∥¹ → B) (EPU.≃⇒≡ (P₁≃P₂ f)) (step₁ f) P.≡⟨ P.sym $ PU.transport-theorem (λ P → P → ∥ A ∥¹ → B) (PF.→-cong₁ _) (λ _ → P.refl) EPU.univ (P₁≃P₂ f) (step₁ f) ⟩ PF.→-cong₁ _ (P₁≃P₂ f) (step₁ f) P.≡⟨⟩ step₁ f ∘ PEq._≃_.from (P₁≃P₂ f) P.≡⟨ P.⟨ext⟩ (_↔_.to ≡↔≡ ∘ step₁≡step₂ f) ⟩∎ step₂ f ∎) where P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f PEq.≃ P₂ f P₁≃P₂ f = _↔_.to ≃↔≃ (P₁≃P₂′ f) -- A "computation rule". to-Coherently-cong-≡-property : (bl : Block "Coherently-cong-≡") {A : Type a} {B : Type b} {P₁ P₂ : {A : Type a} → (A → B) → Type p} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} (univ : Univalence p) (P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) (step₁≡step₂ : {A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) (c : Coherently P₁ step₁ f) → PU.≡⇒→ (Coherently-cong-≡ bl univ P₁≃P₂ step₁≡step₂) c .property P.≡ _≃_.to (P₁≃P₂ f) (c .property) to-Coherently-cong-≡-property ⊠ {P₁ = P₁} {P₂ = P₂} {f = f} _ P₁≃P₂ step₁≡step₂ c = P.transport (λ _ → P₂ f) P.0̲ (_≃_.to (P₁≃P₂ f) (P.transport (λ _ → P₁ f) P.0̲ (c .property))) P.≡⟨ P.cong (_$ _≃_.to (P₁≃P₂ f) (P.transport (λ _ → P₁ f) P.0̲ (c .property))) $ P.transport-refl P.0̲ ⟩ _≃_.to (P₁≃P₂ f) (P.transport (λ _ → P₁ f) P.0̲ (c .property)) P.≡⟨ P.cong (λ g → _≃_.to (P₁≃P₂ f) (g (c .property))) $ P.transport-refl P.0̲ ⟩∎ _≃_.to (P₁≃P₂ f) (c .property) ∎ -- Another "computation rule". from-Coherently-cong-≡-property : (bl : Block "Coherently-cong-≡") {A : Type a} {B : Type b} {P₁ P₂ : {A : Type a} → (A → B) → Type p} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} (univ : Univalence p) (P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) (step₁≡step₂ : {A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) (c : Coherently P₂ step₂ f) → PEq._≃_.from (PU.≡⇒≃ (Coherently-cong-≡ bl {step₁ = step₁} univ P₁≃P₂ step₁≡step₂)) c .property P.≡ _≃_.from (P₁≃P₂ f) (c .property) from-Coherently-cong-≡-property ⊠ {P₁ = P₁} {P₂ = P₂} {f = f} _ P₁≃P₂ step₁≡step₂ c = P.transport (λ _ → P₁ f) P.0̲ (_≃_.from (P₁≃P₂ f) (P.transport (λ _ → P₂ f) P.0̲ (c .property))) P.≡⟨ P.cong (_$ _≃_.from (P₁≃P₂ f) (P.transport (λ _ → P₂ f) P.0̲ (c .property))) $ P.transport-refl P.0̲ ⟩ _≃_.from (P₁≃P₂ f) (P.transport (λ _ → P₂ f) P.0̲ (c .property)) P.≡⟨ P.cong (λ g → _≃_.from (P₁≃P₂ f) (g (c .property))) $ P.transport-refl P.0̲ ⟩∎ _≃_.from (P₁≃P₂ f) (c .property) ∎ -- A preservation lemma for Coherently. -- -- The two directions of this equivalence compute the property -- fields in certain ways, see the "unit tests" below. -- -- Note that P₁ and P₂ have to target the same universe. A more -- general result is given below (Coherently-cong). Coherently-cong-≃ : {A : Type a} {P₁ P₂ : {A : Type a} → (A → B) → Type p} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} → Univalence p → (P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) → ({A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) → Coherently P₁ step₁ f ≃ Coherently P₂ step₂ f Coherently-cong-≃ {P₁ = P₁} {P₂ = P₂} {step₁ = step₁} {step₂ = step₂} {f = f} univ P₁≃P₂ step₁≡step₂ = block λ bl → Eq.with-other-inverse (Eq.with-other-function (equiv bl) (to bl) (_↔_.from ≡↔≡ ∘ ≡to bl)) (from bl) (_↔_.from ≡↔≡ ∘ ≡from bl) where equiv : Block "Coherently-cong-≡" → Coherently P₁ step₁ f ≃ Coherently P₂ step₂ f equiv bl = _↔_.from ≃↔≃ $ PU.≡⇒≃ $ Coherently-cong-≡ bl univ P₁≃P₂ step₁≡step₂ to : Block "Coherently-cong-≡" → Coherently P₁ step₁ f → Coherently P₂ step₂ f to _ c .property = _≃_.to (P₁≃P₂ f) (c .property) to bl c .coherent = P.subst (Coherently P₂ step₂) (P.cong (step₂ f) $ to-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c) $ _≃_.to (equiv bl) c .coherent ≡to : ∀ bl c → _≃_.to (equiv bl) c P.≡ to bl c ≡to bl c i .property = to-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c i ≡to bl c i .coherent = lemma i where lemma : P.[ (λ i → Coherently P₂ step₂ (step₂ f (to-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c i))) ] _≃_.to (equiv bl) c .coherent ≡ P.subst (Coherently P₂ step₂) (P.cong (step₂ f) $ to-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c) (_≃_.to (equiv bl) c .coherent) lemma = PB._↔_.from (P.heterogeneous↔homogeneous _) P.refl from : Block "Coherently-cong-≡" → Coherently P₂ step₂ f → Coherently P₁ step₁ f from _ c .property = _≃_.from (P₁≃P₂ f) (c .property) from bl c .coherent = P.subst (Coherently P₁ step₁) (P.cong (step₁ f) $ from-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c) $ _≃_.from (equiv bl) c .coherent ≡from : ∀ bl c → _≃_.from (equiv bl) c P.≡ from bl c ≡from bl c i .property = from-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c i ≡from bl c i .coherent = lemma i where lemma : P.[ (λ i → Coherently P₁ step₁ (step₁ f (from-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c i))) ] _≃_.from (equiv bl) c .coherent ≡ P.subst (Coherently P₁ step₁) (P.cong (step₁ f) $ from-Coherently-cong-≡-property bl univ P₁≃P₂ step₁≡step₂ c) (_≃_.from (equiv bl) c .coherent) lemma = PB._↔_.from (P.heterogeneous↔homogeneous _) P.refl -- Unit tests that ensure that Coherently-cong-≃ computes the -- property fields in certain ways. module _ {A : Type a} {P₁ P₂ : {A : Type a} → (A → B) → Type p} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} {univ : Univalence p} {P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f} {step₁≡step₂ : {A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x} where _ : {c : Coherently P₁ step₁ f} → _≃_.to (Coherently-cong-≃ univ P₁≃P₂ step₁≡step₂) c .property ≡ _≃_.to (P₁≃P₂ f) (c .property) _ = refl _ _ : {c : Coherently P₂ step₂ f} → _≃_.from (Coherently-cong-≃ {step₁ = step₁} univ P₁≃P₂ step₁≡step₂) c .property ≡ _≃_.from (P₁≃P₂ f) (c .property) _ = refl _ -- A lemma involving Coherently and ↑. Coherently-↑ : {A : Type a} {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → Coherently (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f ≃ Coherently P step f Coherently-↑ {ℓ = ℓ} {P = P} {step = step} = Eq.↔→≃ to from (_↔_.from ≡↔≡ ∘ to-from) (_↔_.from ≡↔≡ ∘ from-to) where to : Coherently (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f → Coherently P step f to c .property = lower (c .property) to c .coherent = to (c .coherent) from : Coherently P step f → Coherently (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f from c .property = lift (c .property) from c .coherent = from (c .coherent) to-from : (c : Coherently P step f) → to (from c) P.≡ c to-from c i .property = c .property to-from c i .coherent = to-from (c .coherent) i from-to : (c : Coherently (↑ ℓ ∘ P) ((_∘ lower) ∘ step) f) → from (to c) P.≡ c from-to c i .property = c .property from-to c i .coherent = from-to (c .coherent) i -- A preservation lemma for Coherently. -- -- The two directions of this equivalence compute the property -- fields in certain ways, see the "unit tests" below. Coherently-cong : {A : Type a} {P₁ : {A : Type a} → (A → B) → Type p₁} {P₂ : {A : Type a} → (A → B) → Type p₂} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} → Univalence (p₁ ⊔ p₂) → (P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f) → ({A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x) → Coherently P₁ step₁ f ≃ Coherently P₂ step₂ f Coherently-cong {p₁ = p₁} {p₂ = p₂} {P₁ = P₁} {P₂ = P₂} {step₁ = step₁} {step₂ = step₂} {f = f} univ P₁≃P₂ step₁≡step₂ = Coherently P₁ step₁ f ↝⟨ inverse Coherently-↑ ⟩ Coherently (↑ p₂ ∘ P₁) ((_∘ lower) ∘ step₁) f ↝⟨ Coherently-cong-≃ univ (λ f → ↑ p₂ (P₁ f) ↔⟨ B.↑↔ ⟩ P₁ f ↝⟨ P₁≃P₂ f ⟩ P₂ f ↔⟨ inverse B.↑↔ ⟩□ ↑ p₁ (P₂ f) □) ((_∘ lower) ∘ step₁≡step₂) ⟩ Coherently (↑ p₁ ∘ P₂) ((_∘ lower) ∘ step₂) f ↝⟨ Coherently-↑ ⟩□ Coherently P₂ step₂ f □ -- Unit tests that ensure that Coherently-cong computes the -- property fields in certain ways. module _ {A : Type a} {P₁ : {A : Type a} → (A → B) → Type p₁} {P₂ : {A : Type a} → (A → B) → Type p₂} {step₁ : {A : Type a} (f : A → B) → P₁ f → ∥ A ∥¹ → B} {step₂ : {A : Type a} (f : A → B) → P₂ f → ∥ A ∥¹ → B} {f : A → B} {univ : Univalence (p₁ ⊔ p₂)} {P₁≃P₂ : {A : Type a} (f : A → B) → P₁ f ≃ P₂ f} {step₁≡step₂ : {A : Type a} (f : A → B) (x : P₂ f) → step₁ f (_≃_.from (P₁≃P₂ f) x) ≡ step₂ f x} where _ : {c : Coherently P₁ step₁ f} → _≃_.to (Coherently-cong univ P₁≃P₂ step₁≡step₂) c .property ≡ _≃_.to (P₁≃P₂ f) (c .property) _ = refl _ _ : {c : Coherently P₂ step₂ f} → _≃_.from (Coherently-cong {step₁ = step₁} univ P₁≃P₂ step₁≡step₂) c .property ≡ _≃_.from (P₁≃P₂ f) (c .property) _ = refl _ -- Another preservation lemma for Coherently. Coherently-cong′ : {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} → Univalence a → (A₁≃A₂ : A₁ ≃ A₂) → Coherently P step (f ∘ _≃_.to A₁≃A₂) ≃ Coherently P step f Coherently-cong′ {f = f} {P = P} {step = step} univ A₁≃A₂ = ≃-elim₁ univ (λ A₁≃A₂ → Coherently P step (f ∘ _≃_.to A₁≃A₂) ≃ Coherently P step f) Eq.id A₁≃A₂ ------------------------------------------------------------------------ -- Another lemma -- A "computation rule". subst-Coherently-property : ∀ {A : C → Type a} {B : Type b} {P : C → {A : Type a} → (A → B) → Type p} {step : (c : C) {A : Type a} (f : A → B) → P c f → ∥ A ∥¹ → B} {f : (c : C) → A c → B} {eq : x ≡ y} {c} → subst (λ x → Coherently (P x) (step x) (f x)) eq c .property ≡ subst (λ x → P x (f x)) eq (c .property) subst-Coherently-property {P = P} {step = step} {f = f} {eq = eq} {c = c} = elim¹ (λ eq → subst (λ x → Coherently (P x) (step x) (f x)) eq c .property ≡ subst (λ x → P x (f x)) eq (c .property)) (subst (λ x → Coherently (P x) (step x) (f x)) (refl _) c .property ≡⟨ cong property $ subst-refl _ _ ⟩ c .property ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → P x (f x)) (refl _) (c .property) ∎) eq ------------------------------------------------------------------------ -- Coherently-with-restriction -- A variant of Coherently. An extra predicate Q is included, so that -- one can restrict the "f" functions (and their domains). record Coherently-with-restriction {A : Type a} {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) (f : A → B) (Q : {A : Type a} → (A → B) → Type q) (pres : {A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)) (q : Q f) : Type p where coinductive field property : P f coherent : Coherently-with-restriction P step (step f property) Q pres (pres q) open Coherently-with-restriction public -- Coherently P step f is equivalent to -- Coherently-with-restriction P step f Q pres q. Coherently≃Coherently-with-restriction : {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} {Q : {A : Type a} → (A → B) → Type q} {pres : {A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)} {q : Q f} → Coherently P step f ≃ Coherently-with-restriction P step f Q pres q Coherently≃Coherently-with-restriction {P = P} {step = step} {Q = Q} {pres = pres} = Eq.↔→≃ to (from _) (λ c → _↔_.from ≡↔≡ (to-from c)) (λ c → _↔_.from ≡↔≡ (from-to _ c)) where to : Coherently P step f → Coherently-with-restriction P step f Q pres q to c .property = c .property to c .coherent = to (c .coherent) from : ∀ q → Coherently-with-restriction P step f Q pres q → Coherently P step f from _ c .property = c .property from _ c .coherent = from _ (c .coherent) to-from : (c : Coherently-with-restriction P step f Q pres q) → to (from q c) P.≡ c to-from c i .property = c .property to-from c i .coherent = to-from (c .coherent) i from-to : ∀ q (c : Coherently P step f) → from q (to c) P.≡ c from-to _ c i .property = c .property from-to q c i .coherent = from-to (pres q) (c .coherent) i -- A container that is used to define Coherently-with-restriction′. Coherently-with-restriction-container : {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) → (Q : {A : Type a} → (A → B) → Type q) → ({A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)) → Container (∃ λ (A : Type a) → ∃ λ (f : A → B) → Q f) p lzero Coherently-with-restriction-container P step _ pres = λ where .Shape (_ , f , _) → P f .Position _ → ⊤ .index {o = A , f , q} {s = p} _ → ∥ A ∥¹ , step f p , pres q -- A variant of Coherently-with-restriction, defined using an indexed -- container. Coherently-with-restriction′ : {A : Type a} {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) → (f : A → B) → (Q : {A : Type a} → (A → B) → Type q) → ({A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)) → Q f → Type (lsuc a ⊔ b ⊔ p ⊔ q) Coherently-with-restriction′ P step f Q pres q = M (Coherently-with-restriction-container P step Q pres) (_ , f , q) -- Coherently-with-restriction P step f Q pres q is equivalent to -- Coherently-with-restriction′ P step f Q pres q. Coherently-with-restriction≃Coherently-with-restriction′ : {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} {Q : {A : Type a} → (A → B) → Type q} {pres : {A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)} {q : Q f} → Coherently-with-restriction P step f Q pres q ≃ Coherently-with-restriction′ P step f Q pres q Coherently-with-restriction≃Coherently-with-restriction′ {P = P} {step = step} {Q = Q} {pres = pres} = Eq.↔→≃ to (from _) (λ c → _↔_.from ≡↔≡ (to-from _ c)) (λ c → _↔_.from ≡↔≡ (from-to c)) where to : Coherently-with-restriction P step f Q pres q → Coherently-with-restriction′ P step f Q pres q to c .out-M .proj₁ = c .property to c .out-M .proj₂ _ = to (c .coherent) from : ∀ q → Coherently-with-restriction′ P step f Q pres q → Coherently-with-restriction P step f Q pres q from _ c .property = c .out-M .proj₁ from _ c .coherent = from _ (c .out-M .proj₂ _) to-from : ∀ q (c : Coherently-with-restriction′ P step f Q pres q) → to (from q c) P.≡ c to-from _ c i .out-M .proj₁ = c .out-M .proj₁ to-from q c i .out-M .proj₂ _ = to-from (pres q) (c .out-M .proj₂ _) i from-to : (c : Coherently-with-restriction P step f Q pres q) → from q (to c) P.≡ c from-to c i .property = c .property from-to c i .coherent = from-to (c .coherent) i ------------------------------------------------------------------------ -- H-levels -- I think that Paolo Capriotti suggested that one could prove that -- certain instances of Coherently have certain h-levels by using the -- result (due to Ahrens, Capriotti and Spadotti, see "Non-wellfounded -- trees in Homotopy Type Theory") that M-types for indexed containers -- have h-level n if all shapes have h-level n. The use of containers -- with "restrictions" is my idea. -- If P f has h-level n for every function f for which Q holds, then -- Coherently-with-restriction P step f Q pres q has h-level n -- (assuming univalence). H-level-Coherently-with-restriction : Univalence (lsuc a ⊔ b ⊔ p ⊔ q) → Univalence (lsuc a ⊔ b ⊔ q) → {B : Type b} {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} {Q : {A : Type a} → (A → B) → Type q} {pres : {A : Type a} {f : A → B} {p : P f} → Q f → Q (step f p)} {q : Q f} → ({A : Type a} {f : A → B} → Q f → H-level n (P f)) → H-level n (Coherently-with-restriction P step f Q pres q) H-level-Coherently-with-restriction {n = n} univ₁ univ₂ {B = B} {P = P} {step = step} {f = f} {Q = Q} {pres = pres} {q = q} = (∀ {A} {f : A → B} → Q f → H-level n (P f)) ↝⟨ (λ h (_ , _ , q) → h q) ⟩ (((_ , f , _) : ∃ λ A → ∃ λ (f : A → B) → Q f) → H-level n (P f)) ↝⟨ (λ h → H-level-M univ₁ univ₂ h) ⟩ H-level n (Coherently-with-restriction′ P step f Q pres q) ↝⟨ H-level-cong _ n (inverse Coherently-with-restriction≃Coherently-with-restriction′) ⟩□ H-level n (Coherently-with-restriction P step f Q pres q) □ -- If P f has h-level n, and (for any f and p) P (step f p) has -- h-level n when P f has h-level n, then Coherently P step f has -- h-level n (assuming univalence). H-level-Coherently : {B : Type b} {P : {A : Type a} → (A → B) → Type p} {step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B} {f : A → B} → Univalence (lsuc a ⊔ b ⊔ p) → H-level n (P f) → ({A : Type a} {f : A → B} {p : P f} → H-level n (P f) → H-level n (P (step f p))) → H-level n (Coherently P step f) H-level-Coherently {n = n} {P = P} {step = step} {f = f} univ h₁ h₂ = $⟨ H-level-Coherently-with-restriction univ univ id ⟩ H-level n (Coherently-with-restriction P step f (λ f → H-level n (P f)) h₂ h₁) ↝⟨ H-level-cong _ n (inverse Coherently≃Coherently-with-restriction) ⦂ (_ → _) ⟩□ H-level n (Coherently P step f) □ -- A variant of H-level-Coherently for type-valued functions. H-level-Coherently-→Type : {P : {A : Type a} → (A → Type f) → Type p} {step : {A : Type a} (F : A → Type f) → P F → ∥ A ∥¹ → Type f} {F : A → Type f} → Univalence (lsuc a ⊔ p ⊔ lsuc f) → Univalence (lsuc (a ⊔ f)) → ((a : A) → H-level n (F a)) → ({A : Type a} {F : A → Type f} → ((a : A) → H-level n (F a)) → H-level n (P F)) → ({A : Type a} {F : A → Type f} {p : P F} → ((a : A) → H-level n (F a)) → (a : A) → H-level n (step F p ∣ a ∣)) → H-level n (Coherently P step F) H-level-Coherently-→Type {a = a} {f = f} {n = n} {P = P} {step = step} {F = F} univ₁ univ₂ h₁ h₂ h₃ = $⟨ H-level-Coherently-with-restriction univ₁ univ₂ h₂ ⟩ H-level n (Coherently-with-restriction P step F (λ F → ∀ a → H-level n (F a)) h₃′ h₁) ↝⟨ H-level-cong _ n (inverse Coherently≃Coherently-with-restriction) ⦂ (_ → _) ⟩□ H-level n (Coherently P step F) □ where h₃′ : {A : Type a} {F : A → Type f} {p : P F} → ((a : A) → H-level n (F a)) → (a : ∥ A ∥¹) → H-level n (step F p a) h₃′ h = O.elim λ where .O.∣∣ʳ → h₃ h .O.∣∣-constantʳ _ _ → H-level-propositional ext n _ _
{ "alphanum_fraction": 0.4678757543, "avg_line_length": 37.9791666667, "ext": "agda", "hexsha": "edd4458b091a824a6c8e0cbda4a77030366cadd1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive.agda", "max_line_length": 145, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Coinductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 10900, "size": 29168 }
module Haskell.Prim.Real where open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Enum open import Haskell.Prim.Num open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.Integer -- infixr 8 _^_ _^^_ -- infixl 7 _/_ _`quot`_ _`rem`_ _`div`_ _`mod`_ -- infixl 7 _%_ data Ratio (a : Set) : Set where _:%_ : a -> a -> Ratio a record Integral (a : Set) : Set where field toInteger : a -> Integer open Integral ⦃ ... ⦄ public instance isIntegralInt : Integral Int isIntegralInt . toInteger n = intToInteger n infinity : Ratio Integer notANumber : Ratio Integer infinity = (toInteger 1) :% (toInteger 0) notANumber = (toInteger 0) :% (toInteger 0) -- _%_ : {{Integral a}} -> a -> a -> Ratio a numerator : Ratio a -> a denominator : Ratio a -> a -- reduce : {{Integral a}} -> a -> a -> Ratio a numerator (x :% _) = x denominator (_ :% y) = y -- record Real {Num a} (a : Set) : Set where -- field -- toRational : a -> Ratio Integer
{ "alphanum_fraction": 0.6466019417, "avg_line_length": 20.6, "ext": "agda", "hexsha": "1cc20f5c1cbe629f0e4dac5a32b27de74d94f21f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Real.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Real.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Real.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 334, "size": 1030 }
------------------------------------------------------------------------------ -- The gcd is commutative ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.GCD.Total.CommutativeI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI open import FOTC.Program.GCD.Total.ConversionRulesI open import FOTC.Program.GCD.Total.GCD ------------------------------------------------------------------------------ -- Informal proof: -- 1. gcd 0 n = n -- gcd def -- = gcd n 0 -- gcd def -- 2. gcd n 0 = n -- gcd def -- = gcd 0 n -- gcd def -- 3.1. Case: S m > S n -- gcd (S m) (S n) = gcd (S m - S n) (S n) -- gcd def -- = gcd (S n) (S m - S n) -- IH -- = gcd (S n) (S m) -- gcd def -- 3.2. Case: S m ≮ S n -- gcd (S m) (S n) = gcd (S m) (S n - S m) -- gcd def -- = gcd (S n - S m) (S m) -- IH -- = gcd (S n) (S m) -- gcd def ------------------------------------------------------------------------------ -- Commutativity property. Comm : D → D → Set Comm t t' = gcd t t' ≡ gcd t' t {-# ATP definition Comm #-} x>y→y≯x : ∀ {m n} → N m → N n → m > n → n ≯ m x>y→y≯x nzero Nn 0>n = ⊥-elim (0>x→⊥ Nn 0>n) {-# CATCHALL #-} x>y→y≯x Nm nzero _ = 0≯x Nm x>y→y≯x (nsucc {m} Nm) (nsucc {n} Nn) Sm>Sn = trans (lt-SS m n) (x>y→y≯x Nm Nn (trans (sym (lt-SS n m)) Sm>Sn)) postulate x≯Sy→Sy>x : ∀ {m n} → N m → N n → m ≯ succ₁ n → succ₁ n > m -- x≯Sy→Sy>x {n = n} nzero Nn _ = <-0S n -- x≯Sy→Sy>x {n = n} (nsucc {m} Nm) Nn h = {!!} ------------------------------------------------------------------------------ -- gcd 0 0 is commutative. gcd-00-comm : Comm zero zero gcd-00-comm = refl ------------------------------------------------------------------------------ -- gcd (succ₁ n) 0 is commutative. gcd-S0-comm : ∀ n → Comm (succ₁ n) zero gcd-S0-comm n = trans (gcd-S0 n) (sym (gcd-0S n)) ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is commutative. gcd-S>S-comm : ∀ {m n} → N m → N n → Comm (succ₁ m ∸ succ₁ n) (succ₁ n) → succ₁ m > succ₁ n → Comm (succ₁ m) (succ₁ n) gcd-S>S-comm {m} {n} Nm Nn ih Sm>Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ gcd-S>S m n Sm>Sn ⟩ gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ≡⟨ ih ⟩ gcd (succ₁ n) (succ₁ m ∸ succ₁ n) ≡⟨ sym (gcd-S≯S n m (x>y→y≯x (nsucc Nm) (nsucc Nn) Sm>Sn)) ⟩ gcd (succ₁ n) (succ₁ m) ∎ ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is commutative. gcd-S≯S-comm : ∀ {m n} → N m → N n → Comm (succ₁ m) (succ₁ n ∸ succ₁ m) → succ₁ m ≯ succ₁ n → Comm (succ₁ m) (succ₁ n) gcd-S≯S-comm {m} {n} Nm Nn ih Sm≯Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ gcd-S≯S m n Sm≯Sn ⟩ gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ≡⟨ ih ⟩ gcd (succ₁ n ∸ succ₁ m) (succ₁ m) ≡⟨ sym (gcd-S>S n m (x≯Sy→Sy>x (nsucc Nm) Nn Sm≯Sn)) ⟩ gcd (succ₁ n) (succ₁ m) ∎ ------------------------------------------------------------------------------ -- gcd m n when m > n is commutative. gcd-x>y-comm : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → Comm o p) → m > n → Comm m n gcd-x>y-comm nzero Nn _ 0>n = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-comm (nsucc {n} _) nzero _ _ = gcd-S0-comm n gcd-x>y-comm (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn = gcd-S>S-comm Nm Nn ih Sm>Sn where -- Inductive hypothesis. ih : Comm (succ₁ m ∸ succ₁ n) (succ₁ n) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd m n when m ≯ n is commutative. gcd-x≯y-comm : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → Comm o p) → m ≯ n → Comm m n gcd-x≯y-comm nzero nzero _ _ = gcd-00-comm gcd-x≯y-comm nzero (nsucc {n} _) _ _ = sym (gcd-S0-comm n) gcd-x≯y-comm (nsucc _) nzero _ Sm≯0 = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-comm (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn = gcd-S≯S-comm Nm Nn ih Sm≯Sn where -- Inductive hypothesis. ih : Comm (succ₁ m) (succ₁ n ∸ succ₁ m) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd is commutative. gcd-comm : ∀ {m n} → N m → N n → Comm m n gcd-comm = Lexi-wfind A h where A : D → D → Set A i j = Comm i j h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-comm Ni Nj ah) (gcd-x≯y-comm Ni Nj ah) (x>y∨x≯y Ni Nj)
{ "alphanum_fraction": 0.4241926656, "avg_line_length": 36.298013245, "ext": "agda", "hexsha": "2e00de36f1d93b8fb9376fef886c1ab206489fb9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1964, "size": 5481 }
{-# OPTIONS --type-in-type #-} module TooFewArgsWrongType where open import AgdaPrelude myFun : Vec Nat Zero -> Nat -> Nat myFun x y = y myApp : Nat myApp = (myFun Zero)
{ "alphanum_fraction": 0.683908046, "avg_line_length": 15.8181818182, "ext": "agda", "hexsha": "21ccd0a4aabac35e51b1689421f4572fc266d4e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "thesisExamples/TooFewArgsWrongType.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "thesisExamples/TooFewArgsWrongType.agda", "max_line_length": 34, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "thesisExamples/TooFewArgsWrongType.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 54, "size": 174 }
module HoleFilling where data Bool : Set where false : Bool true : Bool _∧_ : Bool → Bool → Bool false ∧ b = false true ∧ b = b
{ "alphanum_fraction": 0.6323529412, "avg_line_length": 13.6, "ext": "agda", "hexsha": "a4053dee3d7726f01456b79bbee80e14b36dbdc3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-06-03T06:32:26.000Z", "max_forks_repo_forks_event_min_datetime": "2015-12-02T02:10:26.000Z", "max_forks_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shouya/thinking-dumps", "max_forks_repo_path": "learyouanagda/HoleFilling.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc", "max_issues_repo_issues_event_max_datetime": "2015-08-04T22:05:11.000Z", "max_issues_repo_issues_event_min_datetime": "2015-06-14T06:07:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shouya/thinking-dumps", "max_issues_repo_path": "learyouanagda/HoleFilling.agda", "max_line_length": 24, "max_stars_count": 24, "max_stars_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shouya/thinking-dumps", "max_stars_repo_path": "learyouanagda/HoleFilling.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T01:02:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-14T17:18:34.000Z", "num_tokens": 47, "size": 136 }
open import Agda.Builtin.Nat record R : Set where field x : Nat open R {{...}} f₁ f₂ : R -- This is fine. x ⦃ f₁ ⦄ = 0 -- WAS: THIS WORKS BUT MAKES NO SENSE!!! f₂ ⦃ .x ⦄ = 0 -- Error: -- Cannot eliminate type R with pattern ⦃ .x ⦄ (suggestion: write .(x) -- for a dot pattern, or remove the braces for a postfix projection) -- when checking the clause left hand side -- f₂ ⦃ .x ⦄
{ "alphanum_fraction": 0.6208651399, "avg_line_length": 17.0869565217, "ext": "agda", "hexsha": "dc84e610cb9ad064c6efc346c0c7372184093270", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue3289.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue3289.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue3289.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 393 }
module _ where postulate F : Set → Set A : Set module A (X : Set) where postulate T : Set module B where private module M = A A open M postulate t : F T postulate op : {A : Set} → A → A → A open A A foo : F T foo = op B.t {!!} -- ?0 : F .ReduceNotInScope.B.M.T
{ "alphanum_fraction": 0.573943662, "avg_line_length": 12.347826087, "ext": "agda", "hexsha": "4c6f12d22a73d93c44dbab8e13ac273d4d2f910a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue721.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue721.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue721.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 284 }
module Formalization.ClassicalPropositionalLogic.Syntax where import Lvl open import Functional open import Sets.PredicateSet using (PredSet) open import Type private variable ℓₚ ℓ : Lvl.Level module _ (P : Type{ℓₚ}) where -- Formulas. -- Inductive definition of the grammatical elements of the language of propositional logic. -- Note: It is possible to reduce the number of formula variants to for example {•,¬,∨} or {•,¬,∧} (This is called propositional adequacy/functional completeness). data Formula : Type{ℓₚ} where •_ : P → Formula -- Propositional constants ⊤ : Formula -- Tautology (Top / True) ⊥ : Formula -- Contradiction (Bottom / False) ¬_ : Formula → Formula -- Negation (Not) _∧_ : Formula → Formula → Formula -- Conjunction (And) _∨_ : Formula → Formula → Formula -- Disjunction (Or) _⟶_ : Formula → Formula → Formula -- Implication _⟷_ : Formula → Formula → Formula -- Equivalence Formulas : Type{ℓₚ Lvl.⊔ Lvl.𝐒(ℓ)} Formulas{ℓ} = PredSet{ℓ}(Formula) infix 1011 •_ infix 1010 ¬_ ¬¬_ infixr 1005 _∧_ infixr 1004 _∨_ infixr 1000 _⟷_ _⟶_ module _ {P : Type{ℓₚ}} where -- Double negation -- ¬¬_ : Formula(P) → Formula(P) -- ¬¬_ : (¬_) ∘ (¬_) -- Reverse implication _⟵_ : Formula(P) → Formula(P) → Formula(P) _⟵_ = swap(_⟶_) -- (Nor) _⊽_ : Formula(P) → Formula(P) → Formula(P) _⊽_ = (¬_) ∘₂ (_∨_) -- (Nand) _⊼_ : Formula(P) → Formula(P) → Formula(P) _⊼_ = (¬_) ∘₂ (_∧_) -- (Exclusive or / Xor) _⊻_ : Formula(P) → Formula(P) → Formula(P) _⊻_ = (¬_) ∘₂ (_⟷_) infixl 1000 _⟵_
{ "alphanum_fraction": 0.6286972939, "avg_line_length": 27.3965517241, "ext": "agda", "hexsha": "cd77557cf5ec8446ee245ee6d428fa161204acf1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/Syntax.agda", "max_line_length": 165, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 574, "size": 1589 }
-- 2010-10-15 module Issue331 where record ⊤ : Set where constructor tt data Wrap (I : Set) : Set where wrap : I → Wrap I data B (I : Set) : Wrap I → Set₁ where b₁ : ∀ i → B I (wrap i) b₂ : {w : Wrap I} → B I w → B I w b₃ : (X : Set){w : Wrap I}(f : X → B I w) → B I w ok : B ⊤ (wrap tt) ok = b₂ (b₁ _) -- Issue 331 was: Unsolved meta: _45 : ⊤ bad : Set → B ⊤ (wrap tt) bad X = b₃ X λ x → b₁ _
{ "alphanum_fraction": 0.5304136253, "avg_line_length": 17.8695652174, "ext": "agda", "hexsha": "66a009c9d309da28b11da27935980d025ad50281", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue331.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue331.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue331.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 411 }
open import guarded-recursion.prelude module guarded-recursion.model where -- ℂʷᵒᵖ (ℂ^{ω}^{op}) -- Notation: -- For the category ℂ we use superscript 'c' to disambiguate (e.g. _→ᶜ_) -- We use ᵖ for the presheaf category. module Presheaf {o m} (Objᶜ : Type_ o) (_→ᶜ_ : Objᶜ → Objᶜ → Type_ m) (idᶜ : {A : Objᶜ} → A →ᶜ A) (_∘ᶜ_ : {A B C : Objᶜ} → (B →ᶜ C) → (A →ᶜ B) → (A →ᶜ C)) (∘-idᶜ : {A B : Objᶜ} {f : A →ᶜ B} → f ∘ᶜ idᶜ ≡ f) (id-∘ᶜ : {A B : Objᶜ} {f : A →ᶜ B} → idᶜ ∘ᶜ f ≡ f) (∘-assocᶜ : {A B C D : Objᶜ} {f : C →ᶜ D} {g : B →ᶜ C} {h : A →ᶜ B} → (f ∘ᶜ g) ∘ᶜ h ≡ f ∘ᶜ (g ∘ᶜ h)) (𝟙ᶜ : Objᶜ) (!ᶜ : {A : Objᶜ} → A →ᶜ 𝟙ᶜ) (!-uniqᶜ : {A : Objᶜ} {f : A →ᶜ 𝟙ᶜ} → f ≡ !ᶜ) where -- Index preserving maps _→ᶜ°_ : (A B : ℕ → Objᶜ) → Type_ _ A →ᶜ° B = (n : ℕ) → A n →ᶜ B n Endoᶜ° : (ℕ → Objᶜ) → Type_ _ Endoᶜ° A = A →ᶜ° A -- Restriction maps Rmap : (ℕ → Objᶜ) → Type_ _ Rmap A = (A ∘ S) →ᶜ° A Objᵖ : Type_ _ Objᵖ = Σ (ℕ → Objᶜ) Rmap _→ᵖ_ : Objᵖ → Objᵖ → Type_ _ (A , rᴬ) →ᵖ (B , rᴮ) = Σ (A →ᶜ° B) λ f → (n : ℕ) → f n ∘ᶜ rᴬ n ≡ rᴮ n ∘ᶜ f (1 + n) [_]ᵖ : Objᶜ → Objᵖ [ A ]ᵖ = (λ _ → A) , (λ _ → idᶜ) ⟨_⟩ᵖ : {A B : Objᶜ} → A →ᶜ B → [ A ]ᵖ →ᵖ [ B ]ᵖ ⟨ f ⟩ᵖ = (λ _ → f) , (λ n → ∘-idᶜ ∙ ! id-∘ᶜ) idᵖ : {A : Objᵖ} → A →ᵖ A idᵖ = (λ n → idᶜ) , (λ n → id-∘ᶜ ∙ ! ∘-idᶜ) {- B ---f--> D ^ ^ | | g h | | A ---i--> C -} module _ {A B C D} (f : B →ᶜ D) (g : A →ᶜ B) (h : C →ᶜ D) (i : A →ᶜ C) where Squareᶜ = f ∘ᶜ g ≡ h ∘ᶜ i module _ {A B C} {f f' : B →ᶜ C} {g g' : A →ᶜ B} where ap-∘ᶜ : f ≡ f' → g ≡ g' → f ∘ᶜ g ≡ f' ∘ᶜ g' ap-∘ᶜ p q = ap (λ x → x ∘ᶜ g) p ∙ ap (_∘ᶜ_ f') q !-irrᶜ : {A : Objᶜ} {f g : A →ᶜ 𝟙ᶜ} → f ≡ g !-irrᶜ = !-uniqᶜ ∙ ! !-uniqᶜ ∘-!ᶜ : {A : Objᶜ} {f : 𝟙ᶜ →ᶜ A} { !g : 𝟙ᶜ →ᶜ 𝟙ᶜ} → f ∘ᶜ !g ≡ f ∘-!ᶜ = ap-∘ᶜ idp !-irrᶜ ∙ ∘-idᶜ with-∘-assocᶜ : {A B C C' D : Objᶜ} {f : C →ᶜ D} {g : B →ᶜ C} {f' : C' →ᶜ D} {g' : B →ᶜ C'} {h : A →ᶜ B} → f ∘ᶜ g ≡ f' ∘ᶜ g' → f ∘ᶜ (g ∘ᶜ h) ≡ f' ∘ᶜ (g' ∘ᶜ h) with-∘-assocᶜ p = ! ∘-assocᶜ ∙ ap-∘ᶜ p idp ∙ ∘-assocᶜ with-!∘-assocᶜ : {A B B' C D : Objᶜ} {f : C →ᶜ D} {g : B →ᶜ C} {h : A →ᶜ B} {g' : B' →ᶜ C} {h' : A →ᶜ B'} → g ∘ᶜ h ≡ g' ∘ᶜ h' → (f ∘ᶜ g) ∘ᶜ h ≡ (f ∘ᶜ g') ∘ᶜ h' with-!∘-assocᶜ p = ∘-assocᶜ ∙ ap-∘ᶜ idp p ∙ ! ∘-assocᶜ {- B ---f--> D ---e--> F ^ ^ ^ | | | g L h R j | | | A ---i--> C ---k--> E -} module _ {A B C D E F} {f : B →ᶜ D} {g : A →ᶜ B} {h : C →ᶜ D} {i : A →ᶜ C} {e : D →ᶜ F} {j : E →ᶜ F} {k : C →ᶜ E} (L : Squareᶜ f g h i) (R : Squareᶜ e h j k) where private efg-ehi : (e ∘ᶜ f) ∘ᶜ g ≡ e ∘ᶜ (h ∘ᶜ i) efg-ehi = ∘-assocᶜ ∙ ap-∘ᶜ idp L ehi-jki : e ∘ᶜ (h ∘ᶜ i) ≡ j ∘ᶜ (k ∘ᶜ i) ehi-jki = ! ∘-assocᶜ ∙ ap-∘ᶜ R idp ∙ ∘-assocᶜ LR : Squareᶜ (e ∘ᶜ f) g j (k ∘ᶜ i) LR = efg-ehi ∙ ehi-jki {- X / . \ / . \ / . \ f/ .u! \g / . \ v v v A <---fst--- A×B ---snd---> B -} module _ {A B A×B X : Objᶜ} {fstᶜ : A×B →ᶜ A} {sndᶜ : A×B →ᶜ B} {f : X →ᶜ A} {g : X →ᶜ B} (u! : X →ᶜ A×B) (fst-u! : fstᶜ ∘ᶜ u! ≡ f) (snd-u! : sndᶜ ∘ᶜ u! ≡ g) where 1-ProductDiagram = fst-u! , snd-u! module ProductDiagram {A B A×B : Objᶜ} {fstᶜ : A×B →ᶜ A} {sndᶜ : A×B →ᶜ B} {<_,_>ᶜ : ∀ {X} → X →ᶜ A → X →ᶜ B → X →ᶜ A×B} (fst-<,> : ∀ {X} {f : X →ᶜ A} {g : X →ᶜ B} → fstᶜ ∘ᶜ < f , g >ᶜ ≡ f) (snd-<,> : ∀ {X} {f : X →ᶜ A} {g : X →ᶜ B} → sndᶜ ∘ᶜ < f , g >ᶜ ≡ g) (<,>-uniq! : ∀ {A B X : Objᶜ} {f : X →ᶜ A×B} → < fstᶜ ∘ᶜ f , sndᶜ ∘ᶜ f >ᶜ ≡ f) where module _ {X} {f : X →ᶜ A} {g : X →ᶜ B} where 1-productDiagram = 1-ProductDiagram < f , g >ᶜ fst-<,> snd-<,> infixr 9 _∘ᵖ_ _∘ᵖ_ : {A B C : Objᵖ} → (B →ᵖ C) → (A →ᵖ B) → (A →ᵖ C) (f , ☐f) ∘ᵖ (g , ☐g) = (λ n → f n ∘ᶜ g n) , (λ n → LR (☐g n) (☐f n)) -- TODO: the real thing™ _≡ᵖ_ : {A B : Objᵖ} (f g : A →ᵖ B) → Type_ _ (f , _) ≡ᵖ (g , _) = ∀ n → f n ≡ g n infix 2 _≡ᵖ_ ∘-idᵖ : {A B : Objᵖ} {f : A →ᵖ B} → f ∘ᵖ idᵖ ≡ᵖ f ∘-idᵖ _ = ∘-idᶜ id-∘ᵖ : {A B : Objᵖ} {f : A →ᵖ B} → idᵖ ∘ᵖ f ≡ᵖ f id-∘ᵖ _ = id-∘ᶜ ∘-assocᵖ : {A B C D : Objᵖ} {f : C →ᵖ D} {g : B →ᵖ C} {h : A →ᵖ B} → (f ∘ᵖ g) ∘ᵖ h ≡ᵖ f ∘ᵖ (g ∘ᵖ h) ∘-assocᵖ _ = ∘-assocᶜ 𝟙ᵖ : Objᵖ 𝟙ᵖ = (λ _ → 𝟙ᶜ) , (λ _ → idᶜ) !ᵖ : {A : Objᵖ} → A →ᵖ 𝟙ᵖ !ᵖ = (λ _ → !ᶜ) , (λ _ → !-irrᶜ) !-uniqᵖ : {A : Objᵖ} {f : A →ᵖ 𝟙ᵖ} → f ≡ᵖ !ᵖ !-uniqᵖ _ = !-uniqᶜ ▸ : Objᵖ → Objᵖ ▸ (A , rᴬ) = ▸A , ▸rᴬ module Later where ▸A : ℕ → Objᶜ ▸A 0 = 𝟙ᶜ ▸A (S n) = A n ▸rᴬ : (n : ℕ) → ▸A (1 + n) →ᶜ ▸A n ▸rᴬ 0 = !ᶜ ▸rᴬ (S n) = rᴬ n -- ▸ functor action on morphisms ▸[_] : {A B : Objᵖ} → (A →ᵖ B) → ▸ A →ᵖ ▸ B ▸[_] {A , rᴬ} {B , rᴮ} (f , ☐) = ▸f , ▸☐ module Later[] where open Later A rᴬ open Later B rᴮ renaming (▸A to ▸B; ▸rᴬ to ▸rᴮ) ▸f : ▸A →ᶜ° ▸B ▸f 0 = !ᶜ ▸f (S n) = f n ▸☐ : (n : ℕ) → ▸f n ∘ᶜ ▸rᴬ n ≡ ▸rᴮ n ∘ᶜ ▸f (1 + n) ▸☐ 0 = !-irrᶜ ▸☐ (S n) = ☐ n ▸-id : {A : Objᵖ} → ▸[ idᵖ {A} ] ≡ᵖ idᵖ ▸-id 0 = !-irrᶜ ▸-id (S n) = idp ▸-∘ : {A B C : Objᵖ} {f : B →ᵖ C} {g : A →ᵖ B} → ▸[ f ∘ᵖ g ] ≡ᵖ ▸[ f ] ∘ᵖ ▸[ g ] ▸-∘ 0 = !-irrᶜ ▸-∘ (S n) = idp {- ▸-[]ᵖ : {A : Objᶜ} → ▸ [ A ]ᵖ →ᵖ [ A ]ᵖ ▸-[]ᵖ {A} = ▸f , ▸☐ where open Later (λ _ → A) (λ _ → idᶜ) ▸f : ▸A →ᶜ° (λ _ → A) ▸f O = {!!} ▸f (S n) = idᶜ ▸☐ : (n : ℕ) → ▸f n ∘ᶜ ▸rᴬ n ≡ idᶜ ∘ᶜ ▸f (1 + n) ▸☐ O = {!!} ▸☐ (S n) = idp -} next : {A : Objᵖ} → A →ᵖ ▸ A next {A , rᴬ} = f , ☐ module Next where open Later A rᴬ f : (n : ℕ) → A n →ᶜ ▸A n f 0 = !ᶜ f (S n) = rᴬ n ☐ : (n : ℕ) → f n ∘ᶜ rᴬ n ≡ ▸rᴬ n ∘ᶜ f (1 + n) ☐ 0 = idp ☐ (S n) = idp next-nat : {A B : Objᵖ} {f : A →ᵖ B} → ▸[ f ] ∘ᵖ next ≡ᵖ next ∘ᵖ f next-nat 0 = !-irrᶜ next-nat {f = f , ☐} (S n) = ☐ n module _ {A : Objᵖ} (f : A →ᵖ A) where Contractive = Σ (▸ A →ᵖ A) λ g → f ≡ᵖ g ∘ᵖ next module _ {A B : Objᶜ} {i : B →ᶜ B} {f : A →ᶜ B} where id-∘ᶜ' : i ≡ idᶜ → i ∘ᶜ f ≡ f id-∘ᶜ' p = ap-∘ᶜ p idp ∙ id-∘ᶜ module _ {A B : Objᶜ} {i : A →ᶜ A} {f : A →ᶜ B} where ∘-idᶜ' : i ≡ idᶜ → f ∘ᶜ i ≡ f ∘-idᶜ' p = ap-∘ᶜ idp p ∙ ∘-idᶜ fix1 : {A : Objᵖ} (f : ▸ A →ᵖ A) → 𝟙ᵖ →ᵖ A fix1 {A , rᴬ} (f , ☐) = fixf , λ n → ∘-idᶜ ∙ fix☐ n module Fix1 where open Later A rᴬ fixf : (n : ℕ) → 𝟙ᶜ →ᶜ A n fixf 0 = f 0 fixf (S n) = f (S n) ∘ᶜ fixf n fix☐ : (n : ℕ) → fixf n ≡ rᴬ n ∘ᶜ fixf (1 + n) fix☐ 0 = ! ∘-!ᶜ ∙ with-∘-assocᶜ (☐ 0) fix☐ (S n) = ap-∘ᶜ idp (fix☐ n) ∙ with-∘-assocᶜ (☐ (S n)) module WithProducts (_×ᶜ_ : Objᶜ → Objᶜ → Objᶜ) -- projections (fstᶜ : ∀ {A B} → (A ×ᶜ B) →ᶜ A) (sndᶜ : ∀ {A B} → (A ×ᶜ B) →ᶜ B) -- injection (pair creation) (<_,_>ᶜ : ∀ {A B C} → A →ᶜ B → A →ᶜ C → A →ᶜ (B ×ᶜ C)) -- computation rules (fst-<,> : ∀ {A B C} {f : A →ᶜ B} {g : A →ᶜ C} → fstᶜ ∘ᶜ < f , g >ᶜ ≡ f) (snd-<,> : ∀ {A B C} {f : A →ᶜ B} {g : A →ᶜ C} → sndᶜ ∘ᶜ < f , g >ᶜ ≡ g) -- universal property (<,>-uniq! : ∀ {A B X : Objᶜ} {f : X →ᶜ (A ×ᶜ B)} → < fstᶜ ∘ᶜ f , sndᶜ ∘ᶜ f >ᶜ ≡ f) where firstᶜ : ∀ {A B C} → A →ᶜ B → (A ×ᶜ C) →ᶜ (B ×ᶜ C) firstᶜ f = < f ∘ᶜ fstᶜ , sndᶜ >ᶜ secondᶜ : ∀ {A B C} → B →ᶜ C → (A ×ᶜ B) →ᶜ (A ×ᶜ C) secondᶜ f = < fstᶜ , f ∘ᶜ sndᶜ >ᶜ <_×_>ᶜ : ∀ {A B C D} (f : A →ᶜ C) (g : B →ᶜ D) → (A ×ᶜ B) →ᶜ (C ×ᶜ D) < f × g >ᶜ = < f ∘ᶜ fstᶜ , g ∘ᶜ sndᶜ >ᶜ module _ {A B C} {f f' : A →ᶜ B} {g g' : A →ᶜ C} where ≡<_,_> : f ≡ f' → g ≡ g' → < f , g >ᶜ ≡ < f' , g' >ᶜ ≡< p , q > = ap (λ f → < f , g >ᶜ) p ∙ ap (λ g → < f' , g >ᶜ) q module _ {A B C X} {f₀ : A →ᶜ B} {f₁ : A →ᶜ C} {g : X →ᶜ A} where <,>-∘ : < f₀ , f₁ >ᶜ ∘ᶜ g ≡ < f₀ ∘ᶜ g , f₁ ∘ᶜ g >ᶜ <,>-∘ = ! <,>-uniq! ∙ ≡< ! ∘-assocᶜ ∙ ap-∘ᶜ fst-<,> idp , ! ∘-assocᶜ ∙ ap-∘ᶜ snd-<,> idp > module _ {A B} where -- η-rule <fst,snd> : < fstᶜ , sndᶜ >ᶜ ≡ idᶜ {A ×ᶜ B} <fst,snd> = ≡< ! ∘-idᶜ , ! ∘-idᶜ > ∙ <,>-uniq! <fst,id∘snd> : < fstᶜ , idᶜ ∘ᶜ sndᶜ >ᶜ ≡ idᶜ {A ×ᶜ B} <fst,id∘snd> = ≡< idp , id-∘ᶜ > ∙ <fst,snd> _×ᶜ°_ : (A B : ℕ → Objᶜ) → ℕ → Objᶜ (A ×ᶜ° B) n = A n ×ᶜ B n _×ʳ_ : {A B : ℕ → Objᶜ} → Rmap A → Rmap B → Rmap (A ×ᶜ° B) (rᴬ ×ʳ rᴮ) n = < rᴬ n × rᴮ n >ᶜ _×ᵖ_ : Objᵖ → Objᵖ → Objᵖ (A , rᴬ) ×ᵖ (B , rᴮ) = (A ×ᶜ° B) , (rᴬ ×ʳ rᴮ) fstᵖ : ∀ {A B} → (A ×ᵖ B) →ᵖ A fstᵖ = (λ _ → fstᶜ) , (λ _ → fst-<,>) sndᵖ : ∀ {A B} → (A ×ᵖ B) →ᵖ B sndᵖ = (λ _ → sndᶜ) , (λ _ → snd-<,>) <_,_>ᵖ : ∀ {A B C} → A →ᵖ B → A →ᵖ C → A →ᵖ (B ×ᵖ C) <_,_>ᵖ {A , rᴬ} {B , rᴮ} {C , rᶜ} (f , f☐) (g , g☐) = (λ n → < f n , g n >ᶜ) , (λ n → <,>-∘ ∙ ≡< f☐ n ∙ ap-∘ᶜ idp (! fst-<,>) ∙ ! ∘-assocᶜ , g☐ n ∙ ap-∘ᶜ idp (! snd-<,>) ∙ ! ∘-assocᶜ > ∙ ! <,>-∘) firstᵖ : ∀ {A B C} → A →ᵖ B → (A ×ᵖ C) →ᵖ (B ×ᵖ C) firstᵖ f = < f ∘ᵖ fstᵖ , sndᵖ >ᵖ ▸-× : {A B : Objᵖ} → ▸(A ×ᵖ B) →ᵖ (▸ A ×ᵖ ▸ B) ▸-× {A , rᴬ} {B , rᴮ} = ▸f , ▸☐ module LaterProduct where open Later A rᴬ open Later B rᴮ renaming (▸A to ▸B; ▸rᴬ to ▸rᴮ) open Later (A ×ᶜ° B) (rᴬ ×ʳ rᴮ) renaming (▸A to ▸AB; ▸rᴬ to ▸rᴬᴮ) ▸f : ▸AB →ᶜ° (▸A ×ᶜ° ▸B) ▸f 0 = < !ᶜ , !ᶜ >ᶜ ▸f (S n) = idᶜ ▸☐ : (n : ℕ) → ▸f n ∘ᶜ ▸rᴬᴮ n ≡ (▸rᴬ ×ʳ ▸rᴮ) n ∘ᶜ ▸f (1 + n) ▸☐ 0 = <,>-∘ ∙ ≡< !-irrᶜ , !-irrᶜ > ∙ ! ∘-idᶜ ▸☐ (S n) = id-∘ᶜ ∙ ! ∘-idᶜ _^_ : Objᶜ → ℕ → Objᶜ A ^ 0 = 𝟙ᶜ A ^(S n) = A ×ᶜ (A ^ n) fix : {A B : Objᵖ} (f : (B ×ᵖ ▸ A) →ᵖ A) → B →ᵖ A fix {A , rᴬ} {B , rᴮ} (f , ☐) = fixf , fix☐ module Fix where open Later A rᴬ open Later B rᴮ renaming (▸A to ▸B; ▸rᴬ to ▸rᴮ) fixf : (n : ℕ) → B n →ᶜ A n fixf 0 = f 0 ∘ᶜ < idᶜ , !ᶜ >ᶜ fixf (S n) = f (S n) ∘ᶜ < idᶜ , fixf n ∘ᶜ rᴮ n >ᶜ fix☐ : (n : ℕ) → fixf n ∘ᶜ rᴮ n ≡ rᴬ n ∘ᶜ fixf (1 + n) fix☐ 0 = ∘-assocᶜ ∙ ap-∘ᶜ idp (<,>-∘ ∙ ≡< id-∘ᶜ ∙ ! (∘-idᶜ' fst-<,>) ∙ ! ∘-assocᶜ , !-irrᶜ > ∙ ! <,>-∘) ∙ with-∘-assocᶜ (☐ 0) fix☐ (S n) = ∘-assocᶜ ∙ ap-∘ᶜ idp (<,>-∘ ∙ ≡< id-∘ᶜ ∙ ! (∘-idᶜ' fst-<,>) ∙ ! ∘-assocᶜ , h > ∙ ! <,>-∘) ∙ with-∘-assocᶜ (☐ (S n)) where h = ap-∘ᶜ (fix☐ n) idp ∙ with-!∘-assocᶜ (! snd-<,>) module _ {A} where initᶜ : ∀ n → (A ^(1 + n)) →ᶜ (A ^ n) initᶜ 0 = !ᶜ initᶜ (S n) = secondᶜ (initᶜ n) module Str1 (A : Objᶜ) where Aᵖ = [ A ]ᵖ Str : ℕ → Objᶜ Str n = A ^(1 + n) rStr : (n : ℕ) → Str (1 + n) →ᶜ Str n rStr = λ n → initᶜ (1 + n) Strᵖ : Objᵖ Strᵖ = Str , rStr open Later Str (snd Strᵖ) renaming (▸A to ▸Str; ▸rᴬ to ▸rStr) roll : (n : ℕ) → (A ^ n) →ᶜ ▸Str n roll 0 = !ᶜ -- or idᶜ {𝟙ᶜ} roll (S n) = idᶜ unroll : (n : ℕ) → ▸Str n →ᶜ (A ^ n) unroll 0 = !ᶜ -- or idᶜ {𝟙ᶜ} unroll (S n) = idᶜ hdᵖ : Strᵖ →ᵖ Aᵖ hdᵖ = (λ _ → fstᶜ) , (λ n → fst-<,> ∙ ! id-∘ᶜ) tlᵖ : Strᵖ →ᵖ ▸ Strᵖ tlᵖ = f , ☐ where f : (n : ℕ) → Str n →ᶜ ▸Str n f n = roll n ∘ᶜ sndᶜ ☐ : (n : ℕ) → f n ∘ᶜ rStr n ≡ ▸rStr n ∘ᶜ f (1 + n) ☐ 0 = !-irrᶜ ☐ (S n) = ∘-assocᶜ ∙ id-∘ᶜ ∙ snd-<,> ∙ ap-∘ᶜ idp (! id-∘ᶜ) ∷ᵖ : (Aᵖ ×ᵖ ▸ Strᵖ) →ᵖ Strᵖ ∷ᵖ = f , ☐ where f : (n : ℕ) → (A ×ᶜ ▸Str n) →ᶜ Str n f n = secondᶜ (unroll n) ☐ : (n : ℕ) → f n ∘ᶜ snd (Aᵖ ×ᵖ ▸ Strᵖ) n ≡ rStr n ∘ᶜ f (1 + n) ☐ 0 = <,>-∘ ∙ ≡< fst-<,> ∙ id-∘ᶜ , !-irrᶜ > ∙ !(∘-idᶜ' <fst,id∘snd>) ☐ (S n) = id-∘ᶜ' <fst,id∘snd> ∙ ≡< id-∘ᶜ , idp > ∙ !(∘-idᶜ' <fst,id∘snd>) repeatᵖ : (𝟙ᵖ →ᵖ Aᵖ) → 𝟙ᵖ →ᵖ Strᵖ repeatᵖ f = fix1 it where it : ▸ Strᵖ →ᵖ Strᵖ it = ∷ᵖ ∘ᵖ < f ∘ᵖ !ᵖ , idᵖ >ᵖ {- iterate f x = x ∷ iterate f (f x) or iterate f = (∷) id (iterate f ∘ f) -} {- iterateᵖ : (Aᵖ →ᵖ Aᵖ) → Aᵖ →ᵖ Strᵖ iterateᵖ f = fix it -- sndᵖ ∘ᵖ fix it ∘ᵖ !ᵖ where it : Aᵖ ×ᵖ ▸ Strᵖ →ᵖ Strᵖ it = < fstᵖ , ∷ᵖ >ᵖ ∘ᵖ firstᵖ (f ∘ᵖ {!!}) ∘ᵖ ▸-× -} {- mapᵖ : ([ A ]ᵖ →ᵖ [ A ]ᵖ) → Strᵖ →ᵖ Strᵖ mapᵖ f = {!fix!} -} Objᶜ↑ : ℕ → Endo (ℕ → Objᶜ) Objᶜ↑ k A n = A (n + k) ↑ᶜ° : ∀ k {A B} → A →ᶜ° B → Objᶜ↑ k A →ᶜ° Objᶜ↑ k B ↑ᶜ° k f n = f (n + k) ↑r : ∀ k {A} → Rmap A → Rmap (Objᶜ↑ k A) ↑r k rᴬ n = rᴬ (n + k) Objᵖ↑ : ℕ → Endo Objᵖ Objᵖ↑ k (A , rᴬ) = Objᶜ↑ k A , ↑r k rᴬ r* : {A : ℕ → Objᶜ} (rᴬ : Rmap A) (n : ℕ) → A (1 + n) →ᶜ A 0 r* rᴬ 0 = rᴬ 0 r* rᴬ (S n) = r* rᴬ n ∘ᶜ rᴬ (S n) module _ {A B : ℕ → Objᶜ} {rᴬ : (n : ℕ) → A (1 + n) →ᶜ A n} {rᴮ : (n : ℕ) → B (1 + n) →ᶜ B n} (f : (n : ℕ) → A n →ᶜ B n) (☐f : (n : ℕ) → f n ∘ᶜ rᴬ n ≡ rᴮ n ∘ᶜ f (1 + n)) where ☐* : (n : ℕ) → f 0 ∘ᶜ r* rᴬ n ≡ r* rᴮ n ∘ᶜ f (1 + n) ☐* 0 = ☐f 0 ☐* (S n) = ! ∘-assocᶜ ∙ ap-∘ᶜ (☐* n) idp ∙ ∘-assocᶜ ∙ ap-∘ᶜ idp (☐f (S n)) ∙ ! ∘-assocᶜ module _ {A B : ℕ → Objᶜ} {rᴬ : (n : ℕ) → A (1 + n) →ᶜ A n} {rᴮ : (n : ℕ) → B (1 + n) →ᶜ B n} (f : (n : ℕ) → A n →ᶜ B n) (☐f : (n : ℕ) → f n ∘ᶜ rᴬ n ≡ rᴮ n ∘ᶜ f (1 + n)) (k : ℕ) where --☐*' : (n : ℕ) → f k ∘ᶜ r* (↑r k rᴬ) n ≡ r* (↑r k rᴮ) n ∘ᶜ f ((1 + n) + k) --☐*' n = ☐* (↑ᶜ° k f) {!!} n module WithMore -- TODO upto topos -- Initial object (𝟘ᶜ : Objᶜ) (¡ᶜ : {A : Objᶜ} → 𝟘ᶜ →ᶜ A) (¡-uniqᶜ : {A : Objᶜ} {f : 𝟘ᶜ →ᶜ A} → ¡ᶜ ≡ f) -- Coproducts (_+ᶜ_ : Objᶜ → Objᶜ → Objᶜ) -- injections (inlᶜ : ∀ {A B} → A →ᶜ (A +ᶜ B)) (inrᶜ : ∀ {A B} → B →ᶜ (A +ᶜ B)) -- projection (coproduct elimination) ([_,_]ᶜ : ∀ {A B C} → B →ᶜ A → C →ᶜ A → (B +ᶜ C) →ᶜ A) -- computation rules ([,]-inl : ∀ {A B C} {f : B →ᶜ A} {g : C →ᶜ A} → [ f , g ]ᶜ ∘ᶜ inlᶜ ≡ f) ([,]-inr : ∀ {A B C} {f : B →ᶜ A} {g : C →ᶜ A} → [ f , g ]ᶜ ∘ᶜ inrᶜ ≡ g) -- universal property ([,]-uniq! : ∀ {A B X : Objᶜ} {f : (A +ᶜ B) →ᶜ X} → [ f ∘ᶜ inlᶜ , f ∘ᶜ inrᶜ ]ᶜ ≡ f) where -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.3440874462, "avg_line_length": 29.3106796117, "ext": "agda", "hexsha": "f032f20f76590b23868086b91291c0bb9de216b4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-16T16:21:54.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-19T12:37:53.000Z", "max_forks_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "np/guarded-recursion", "max_forks_repo_path": "guarded-recursion/model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "np/guarded-recursion", "max_issues_repo_path": "guarded-recursion/model.agda", "max_line_length": 139, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "np/guarded-recursion", "max_stars_repo_path": "guarded-recursion/model.agda", "max_stars_repo_stars_event_max_datetime": "2016-12-06T23:04:56.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-06T23:04:56.000Z", "num_tokens": 9497, "size": 15095 }