Search is not available for this dataset
text
string | meta
dict |
---|---|
module Nat where
open import Prelude
open import Star
Nat : Set
Nat = Star One _ _
zero : Nat
zero = ε
suc : Nat -> Nat
suc n = _ • n
infixl 50 _+_ _-_
infixl 60 _*_
_+_ : Nat -> Nat -> Nat
_+_ = _++_
_*_ : Nat -> Nat -> Nat
x * y = bind id (\ _ -> y) x
_-_ : Nat -> Nat -> Nat
n - ε = n
ε - m = ε
(_ • n) - (_ • m) = n - m
test : Nat
test = suc (suc zero) * suc (suc zero)
| {
"alphanum_fraction": 0.4975490196,
"avg_line_length": 12.75,
"ext": "agda",
"hexsha": "c929e730dfcddaad970f9657882cbd72b99e751e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/Path/Nat.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/Path/Nat.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/Path/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 158,
"size": 408
} |
data N : Set where
Z : N
suc : N -> N
| {
"alphanum_fraction": 0.4761904762,
"avg_line_length": 10.5,
"ext": "agda",
"hexsha": "075f59875b6fe544b09e583ccb7f300d4ac1e9b0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hjorthjort/IdrisToAgda",
"max_forks_repo_path": "agdaData.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_issues_repo_issues_event_max_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hjorthjort/IdrisToAgda",
"max_issues_repo_path": "agdaData.agda",
"max_line_length": 18,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hjorthjort/IdrisToAgda",
"max_stars_repo_path": "agdaData.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-29T20:42:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-16T23:22:50.000Z",
"num_tokens": 18,
"size": 42
} |
open import Prelude
module RW.Data.RTrie.Decl where
open import RW.Language.RTerm public
open import RW.Language.RTermIdx public
open import RW.Data.PMap (RTermᵢ ⊥) as IdxMap
data Rule : Set where
Gr : ℕ → Rule
Tr : ℕ → ℕ → Rule
Fr : ℕ → Name → Rule
mutual
Cell : Set
Cell = IdxMap.to RTrie default -- Map from indexes to tries,
× List (ℕ × List Rule) -- Binding symbols,
data RTrie : Set where
Fork : List Cell → RTrie
Leaf : List Rule → RTrie
BTrieEmpty : RTrie
BTrieEmpty = Fork $ []
| {
"alphanum_fraction": 0.6144366197,
"avg_line_length": 22.72,
"ext": "agda",
"hexsha": "c6b54e1c6047ec4165ab10befd70d480009db8a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Data/RTrie/Decl.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Data/RTrie/Decl.agda",
"max_line_length": 68,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Data/RTrie/Decl.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 169,
"size": 568
} |
{-# OPTIONS --without-K #-}
module TypeEquivCat where
-- We will define a rig category whose objects are types and whose
-- morphisms are type equivalences; and where the equivalence of
-- morphisms ≋ is extensional
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Data.Sum using (_⊎_)
open import Data.Product using (_,_; _×_; uncurry)
open import Data.Fin using (Fin; zero; suc) -- needed for distributivity
import Relation.Binary.PropositionalEquality as P
using (sym)
open import Categories.Category using (Category)
open import Categories.Groupoid using (Groupoid)
open import Categories.Monoidal using (Monoidal)
open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors)
open import Categories.Bifunctor using (Bifunctor)
open import Categories.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Monoidal.Braided using (Braided)
open import Categories.Monoidal.Symmetric using (Symmetric)
open import Categories.RigCategory
using (RigCategory; module BimonoidalHelperFunctors)
open import Equiv
using (_≃_; id≃; sym≃; _●_; _⊎≃_; _×≃_)
open import EquivEquiv
using (_≋_; eq; id≋; sym≋; trans≋; ●-assoc; _◎_;
linv≋; rinv≋; lid≋; rid≋; flip-sym≋)
-- list all explicitly, but these are all equivalences
open import TypeEquiv
using (unite₊equiv; uniti₊equiv; unite₊′equiv; uniti₊′equiv;
assocr₊equiv; assocl₊equiv;
unite⋆equiv; uniti⋆equiv; unite⋆′equiv; uniti⋆′equiv;
assocr⋆equiv; assocl⋆equiv; swap₊equiv;
swap⋆equiv;
distequiv; factorequiv;
distlequiv; factorlequiv;
distzequiv; factorzequiv;
distzrequiv; factorzrequiv)
open import TypeEquivEquiv -- need them all!
-- convenience
one two : Fin 3
one = suc zero
two = suc (suc zero)
------------------------------------------------------------------------------
-- We show that types with type equivalences are a commutative rig
-- groupoid
-- First it is a category
TypeEquivCat : Category (lsuc lzero) lzero lzero
TypeEquivCat = record
{ Obj = Set
; _⇒_ = _≃_
; _≡_ = _≋_
; id = id≃
; _∘_ = _●_
; assoc = λ { {f = f} {g} {h} → ●-assoc {f = f} {g} {h} }
; identityˡ = lid≋
; identityʳ = rid≋
; equiv = record { refl = id≋ ; sym = sym≋ ; trans = trans≋ }
; ∘-resp-≡ = _◎_
}
-- The category has inverses and hence a groupoid
TypeEquivGroupoid : Groupoid TypeEquivCat
TypeEquivGroupoid = record
{ _⁻¹ = sym≃
; iso = λ { {f = A≃B} → record
{ isoˡ = linv≋ A≃B
; isoʳ = rinv≋ A≃B
} }
}
-- The additive structure is monoidal
⊎-bifunctor : Bifunctor TypeEquivCat TypeEquivCat TypeEquivCat
⊎-bifunctor = record
{ F₀ = uncurry _⊎_
; F₁ = uncurry _⊎≃_
; identity = [id,id]≋id
; homomorphism = ⊎●≋●⊎
; F-resp-≡ = uncurry _⊎≋_
}
module ⊎h = MonoidalHelperFunctors TypeEquivCat ⊎-bifunctor ⊥
0⊎x≡x : NaturalIsomorphism ⊎h.id⊗x ⊎h.x
0⊎x≡x = record
{ F⇒G = record
{ η = λ X → unite₊equiv {X zero}
; commute = λ f → unite₊-nat {f = f zero} }
; F⇐G = record
{ η = λ X → uniti₊equiv {X zero}
; commute = λ f → uniti₊-nat {f = f zero} }
; iso = λ _ → record
{ isoˡ = linv≋ unite₊equiv
; isoʳ = rinv≋ unite₊equiv
}
}
x⊎0≡x : NaturalIsomorphism ⊎h.x⊗id ⊎h.x
x⊎0≡x = record
{ F⇒G = record
{ η = λ X → unite₊′equiv {X zero}
; commute = λ f → unite₊′-nat {f = f zero}
}
; F⇐G = record
{ η = λ X → uniti₊′equiv {X zero}
; commute = λ f → uniti₊′-nat {f = f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ unite₊′equiv
; isoʳ = rinv≋ unite₊′equiv
}
}
[x⊎y]⊎z≡x⊎[y⊎z] : NaturalIsomorphism ⊎h.[x⊗y]⊗z ⊎h.x⊗[y⊗z]
[x⊎y]⊎z≡x⊎[y⊎z] = record
{ F⇒G = record
{ η = λ X → assocr₊equiv {X zero} {X one} {X two}
; commute = λ f → assocr₊-nat {f₀ = f zero} {f one} {f two}
}
; F⇐G = record
{ η = λ X → assocl₊equiv {X zero} {X one} {X two}
; commute = λ f → assocl₊-nat {f₀ = f zero} {f one} {f two}
}
; iso = λ X → record
{ isoˡ = linv≋ assocr₊equiv
; isoʳ = rinv≋ assocr₊equiv
}
}
CPM⊎ : Monoidal TypeEquivCat
CPM⊎ = record
{ ⊗ = ⊎-bifunctor
; id = ⊥
; identityˡ = 0⊎x≡x
; identityʳ = x⊎0≡x
; assoc = [x⊎y]⊎z≡x⊎[y⊎z]
; triangle = unite-assocr₊-coh
; pentagon = assocr₊-coh
}
-- The multiplicative structure is also monoidal
×-bifunctor : Bifunctor TypeEquivCat TypeEquivCat TypeEquivCat
×-bifunctor = record
{ F₀ = uncurry _×_
; F₁ = uncurry _×≃_
; identity = id×id≋id
-- the following would have unresolved metas without the extra precision
; homomorphism = λ { {f = (f , g)} {h , i} → ×●≋●× {f = f} {g} {h} {i}}
; F-resp-≡ = uncurry _×≋_
}
module ×h = MonoidalHelperFunctors TypeEquivCat ×-bifunctor ⊤
1×y≡y : NaturalIsomorphism ×h.id⊗x ×h.x
1×y≡y = record
{ F⇒G = record
{ η = λ X → unite⋆equiv {X zero}
; commute = λ f → unite⋆-nat {f = f zero}
}
; F⇐G = record
{ η = λ X → uniti⋆equiv {X zero}
; commute = λ f → uniti⋆-nat {f = f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ unite⋆equiv
; isoʳ = rinv≋ unite⋆equiv
}
}
y×1≡y : NaturalIsomorphism ×h.x⊗id ×h.x
y×1≡y = record
{ F⇒G = record
{ η = λ X → unite⋆′equiv {X zero}
; commute = λ f → unite⋆′-nat {f = f zero}
}
; F⇐G = record
{ η = λ X → uniti⋆′equiv {X zero}
; commute = λ f → uniti⋆′-nat {f = f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ unite⋆′equiv
; isoʳ = rinv≋ unite⋆′equiv
}
}
[x×y]×z≡x×[y×z] : NaturalIsomorphism ×h.[x⊗y]⊗z ×h.x⊗[y⊗z]
[x×y]×z≡x×[y×z] = record
{ F⇒G = record
{ η = λ X → assocr⋆equiv {X zero} {X one} {X two}
; commute = λ f → assocr⋆-nat {f₀ = f zero} {f one} {f two}}
; F⇐G = record
{ η = λ X → assocl⋆equiv {X zero} {X one} {X two}
; commute = λ f → assocl⋆-nat {f₀ = f zero} {f one} {f two}}
; iso = λ X → record
{ isoˡ = linv≋ assocr⋆equiv
; isoʳ = rinv≋ assocr⋆equiv }
}
CPM× : Monoidal TypeEquivCat
CPM× = record
{ ⊗ = ×-bifunctor
; id = ⊤
; identityˡ = 1×y≡y
; identityʳ = y×1≡y
; assoc = [x×y]×z≡x×[y×z]
; triangle = unite-assocr⋆-coh
; pentagon = assocr⋆-coh
}
-- The monoidal structures are symmetric
x⊎y≈y⊎x : NaturalIsomorphism ⊎h.x⊗y ⊎h.y⊗x
x⊎y≈y⊎x = record
{ F⇒G = record
{ η = λ X → swap₊equiv {X zero} {X (suc zero)}
; commute = λ f → swap₊-nat {f = f zero} {f (suc zero)}
}
; F⇐G = record
{ η = λ X → sym≃ (swap₊equiv {X zero} {X (suc zero)})
; commute = λ f → swap₊-nat {f = f (suc zero)} {f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ swap₊equiv
; isoʳ = rinv≋ swap₊equiv
}
}
BM⊎ : Braided CPM⊎
BM⊎ = record
{ braid = x⊎y≈y⊎x
; unit-coh = unite₊l-coh
; hexagon₁ = assocr₊-swap₊-coh
; hexagon₂ = assocl₊-swap₊-coh
}
x×y≈y×x : NaturalIsomorphism ×h.x⊗y ×h.y⊗x
x×y≈y×x = record
{ F⇒G = record
{ η = λ X → swap⋆equiv
; commute = λ _ → swap⋆-nat
}
; F⇐G = record
{ η = λ X → sym≃ swap⋆equiv
; commute = λ f → swap⋆-nat
}
; iso = λ X → record
{ isoˡ = linv≋ swap⋆equiv
; isoʳ = rinv≋ swap⋆equiv
}
}
BM× : Braided CPM×
BM× = record
{ braid = x×y≈y×x
; unit-coh = unite⋆l-coh
; hexagon₁ = assocr⋆-swap⋆-coh
; hexagon₂ = assocl⋆-swap⋆-coh
}
SBM⊎ : Symmetric BM⊎
SBM⊎ = record { symmetry = linv≋ swap₊equiv }
SBM× : Symmetric BM×
SBM× = record { symmetry = linv≋ swap⋆equiv }
-- And finally the multiplicative structure distributes over the
-- additive one
module r = BimonoidalHelperFunctors BM⊎ BM×
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z]
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record
{ F⇒G = record
{ η = λ X → distlequiv {X zero} {X one} {X two}
; commute = λ f → distl-nat {f = f zero} {f one} {f two}
}
; F⇐G = record
{ η = λ X → factorlequiv {X zero} {X one} {X two}
; commute = λ f → factorl-nat {f = f zero} {f one} {f two}
}
; iso = λ X → record { isoˡ = linv≋ distlequiv
; isoʳ = rinv≋ distlequiv }
}
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z]
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record
{ F⇒G = record
{ η = λ X → distequiv
; commute = λ f → dist-nat
}
; F⇐G = record
{ η = λ X → factorequiv
; commute = λ f → factor-nat
}
; iso = λ X → record { isoˡ = linv≋ distequiv
; isoʳ = rinv≋ distequiv }
}
x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑
x⊗0≡0 = record
{ F⇒G = record
{ η = λ X → distzrequiv {X zero}
; commute = λ f → distzr-nat {f = f zero}
}
; F⇐G = record
{ η = λ X → factorzrequiv {X zero}
; commute = λ f → factorzr-nat {f = f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ distzrequiv
; isoʳ = rinv≋ distzrequiv
}
}
0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑
0⊗x≡0 = record
{ F⇒G = record
{ η = λ X → distzequiv {X zero}
; commute = λ f → distz-nat {f = f zero}
}
; F⇐G = record
{ η = λ X → factorzequiv {X zero}
; commute = λ f → factorz-nat {f = f zero}
}
; iso = λ X → record
{ isoˡ = linv≋ (distzequiv {X zero})
; isoʳ = rinv≋ distzequiv
}
}
TERig : RigCategory SBM⊎ SBM×
TERig = record
-- new combinators
{ distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z]
; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z]
; annₗ = 0⊗x≡0
; annᵣ = x⊗0≡0
-- derived identities which are ``coherent'' in that the
-- two natural programs, using the new combinators and
-- the underlying ones of the symmetric bimonoidal groupoid
-- are in fact to be identified.
; laplazaI = λ {X} → A×[B⊎C]≃[A×C]⊎[A×B] {X zero} {X one} {X two}
; laplazaII = λ {X} → [A⊎B]×C≃[C×A]⊎[C×B] {X zero} {X one} {X two}
; laplazaIV = λ {X} → [A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D {X zero} {X (suc zero)}
{X (suc (suc zero))} {X (suc (suc (suc zero)))}
; laplazaVI = λ {X} → A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D {X zero} {X (suc zero)}
{X (suc (suc zero))} {X (suc (suc (suc zero)))}
; laplazaIX = λ {X} → [A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D {X zero} {X (suc zero)}
{X (suc (suc zero))} {X (suc (suc (suc zero)))}
; laplazaX = 0×0≃0
; laplazaXI = λ {X} → 0×[A⊎B]≃0 {X zero} {X (suc zero)}
; laplazaXIII = 0×1≃0
; laplazaXV = λ {X} → A×0≃0 {X zero}
; laplazaXVI = λ {X} → 0×A×B≃0 {X zero} {X (suc zero)}
; laplazaXVII = λ {X} → A×0×B≃0 {X zero} {X (suc zero)}
; laplazaXIX = λ {X} → A×[0+B]≃A×B {X zero} {X (suc zero)}
; laplazaXXIII = λ {X} → 1×[A⊎B]≃A⊎B {X zero} {X (suc zero)}
}
-- Notes from Laplaza, 72
-- All of 2, 9, 10, 15
-- one of each of {1,3}, {4,5}, {6,7}, {9, 12},{13,,14},
-- {19,20,21,22}, {23,24}
-- two-of-three of {16,17,18}
--
-- for natural isos
-- α : A × (B × C) → (A × B) × C
-- γ : A × B → B × A
-- λ : U × A → A (so that U is 1)
-- ρ : A × U → A
-- λ* : N × A → N (so that N is 0)
-- ρ* : A × n → N
-- and ' versions for ⊕
-- as well as natural monomorphisms
-- δ : A × (B ⊎ C) → (A × B) ⊎ (A × C)
-- δ# : (A ⊎ B) × C → (A × C) ⊎ (B × C)
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5325868253,
"avg_line_length": 28.7934508816,
"ext": "agda",
"hexsha": "42e331719a44e6531917ad56c5d493e942475249",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/TypeEquivCat.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/TypeEquivCat.agda",
"max_line_length": 80,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/TypeEquivCat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 5055,
"size": 11431
} |
module _ where
data X : Set where
data R (x : X) : Set where
module SUListSepElemTypes where
module M2 (Elem : Set) where
data InclWith : Set where
module M1 where
module InclZip1 (R : X → Set) where
open M2 X public
module InclZipUnion (Y : Set) where
module SepElemTypes = SUListSepElemTypes
module Zip⊆ = SepElemTypes.M1.InclZip1 R
module Zip⊆∪ = Zip⊆.InclZipUnion X
| {
"alphanum_fraction": 0.6957605985,
"avg_line_length": 19.0952380952,
"ext": "agda",
"hexsha": "ac930c33bb0f68c37c8b3cfacb0224e58f93aad6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1701e.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1701e.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1701e.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 138,
"size": 401
} |
open import Everything
module Test.Test5
{𝔵} {𝔛 : Ø 𝔵}
{𝔞} {𝔒₁ : 𝔛 → Ø 𝔞}
{𝔟} {𝔒₂ : 𝔛 → Ø 𝔟}
{ℓ}
{ℓ̇} (_↦_ : ∀ {x} → 𝔒₂ x → 𝔒₂ x → Ø ℓ̇)
⦃ _ : [ExtensibleType] _↦_ ⦄
⦃ _ : Smap!.class (Arrow 𝔒₁ 𝔒₂) (Extension 𝔒₂) ⦄
⦃ _ : Surjextensionality!.class (Arrow 𝔒₁ 𝔒₂) (Pointwise _↦_) (Extension 𝔒₂) (Pointwise _↦_) ⦄
-- ⦃ _ : [𝓢urjectivity] (Arrow 𝔒₁ 𝔒₂) (Extension $ ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_) ⦄
where
test[∙] : ∀ {x y} → ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ x → Arrow 𝔒₁ 𝔒₂ x y → ArrowExtensionṖroperty ℓ 𝔒₁ 𝔒₂ _↦_ y
test[∙] P f = f ◃ P
| {
"alphanum_fraction": 0.5757042254,
"avg_line_length": 33.4117647059,
"ext": "agda",
"hexsha": "c50ffa5cd957bd24dae5e6d58f6dbd39d08d4d60",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Test5.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Test5.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Test5.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 346,
"size": 568
} |
module Div2 where
record True : Set where
data False : Set where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
NonZero : Nat -> Set
NonZero zero = False
NonZero (suc _) = True
divHelp : Nat -> Nat -> Nat -> Nat
divHelp zero zero c = suc zero
divHelp zero (suc y) c = zero
divHelp (suc x) zero c = suc (divHelp x c c)
divHelp (suc x) (suc y) c = divHelp x y c
div : (x y : Nat) -> {p : NonZero y} -> Nat
div x zero {}
div zero (suc y) = zero
div (suc x) (suc y) = divHelp (suc x) (suc y) y
n1 = suc zero
n2 = suc n1
n3 = suc n2
n4 = suc n3
n5 = suc n4
n6 = suc n5
n7 = suc n6
n8 = suc n7
n9 = suc n8
n10 = suc n9
n11 = suc n10
n12 = suc n11
test1 : Nat
test1 = div n12 n7
| {
"alphanum_fraction": 0.593006993,
"avg_line_length": 16.6279069767,
"ext": "agda",
"hexsha": "cd2224be080cfed5fb524d6ecabf83b3a8b3ec86",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Div2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Div2.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Div2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 299,
"size": 715
} |
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.IO where
postulate IO : ∀ {a} → Set a → Set a
{-# BUILTIN IO IO #-}
{-# FOREIGN GHC type AgdaIO a b = IO b #-}
{-# COMPILE GHC IO = type AgdaIO #-}
| {
"alphanum_fraction": 0.6083333333,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "b9309adf477cc4051dbd8d2fa20aee3c1a43235e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/IO.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 70,
"size": 240
} |
open import Oscar.Prelude
module Oscar.Class.Pure where
module _
{𝔬 𝔣}
(𝔉 : Ø 𝔬 → Ø 𝔣)
where
𝓹ure = ∀ {𝔒 : Ø 𝔬} → 𝔒 → 𝔉 𝔒
record 𝓟ure : Ø 𝔣 ∙̂ ↑̂ 𝔬 where
field pure : 𝓹ure
open 𝓟ure ⦃ … ⦄ public
| {
"alphanum_fraction": 0.570754717,
"avg_line_length": 15.1428571429,
"ext": "agda",
"hexsha": "ad2fd123812882ef050956109e1c446d11f4f0f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Pure.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Pure.agda",
"max_line_length": 33,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Pure.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 119,
"size": 212
} |
record R₁ : Set₁ where
field
A : Set
open R₁ ⦃ … ⦄
record R₂ : Set₁ where
field
⦃ r₁ ⦄ : R₁
B : Set
B = A
| {
"alphanum_fraction": 0.5079365079,
"avg_line_length": 9,
"ext": "agda",
"hexsha": "7c44bf48fd8a932a3a0cb9d1bca78815351aea8a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2320.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2320.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2320.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 126
} |
module Data.Bindings.Everything where
import Data.ByteString
import Data.ByteString.Primitive
import Data.ByteString.UTF8
import Data.ByteString.UTF8.Primitive
import Data.Char.Classifier
import Data.Char.Classifier.Primitive
import Data.List.Primitive
import Data.Maybe.Primitive
import Data.Natural
import Data.Natural.Primitive
import Data.Strict
import Data.Strict.Primitive
import Data.Word
import Data.Word.Primitive
| {
"alphanum_fraction": 0.858490566,
"avg_line_length": 24.9411764706,
"ext": "agda",
"hexsha": "6632436b822e7f5f3b988b15b9ce2bdd59b0de38",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:40:14.000Z",
"max_forks_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-data-bindings",
"max_forks_repo_path": "src/Data/Bindings/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-data-bindings",
"max_issues_repo_path": "src/Data/Bindings/Everything.agda",
"max_line_length": 37,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "84d51967e20bf248e9f73af37f52972922ffc77c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-data-bindings",
"max_stars_repo_path": "src/Data/Bindings/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T13:51:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-02T23:17:59.000Z",
"num_tokens": 91,
"size": 424
} |
------------------------------------------------------------------------
-- Suspensions
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- The beginning of this module follows the HoTT book rather closely.
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining suspensions uses path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Suspension
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J as Bijection using (_↔_)
open import Embedding equality-with-J as Embedding using (Embedding)
open import Equality.Decision-procedures equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J using (_≃_)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Injection equality-with-J using (_↣_)
open import Interval eq as Interval using (Interval; [0]; [1]; 0≡1)
import Nat equality-with-J as Nat
open import Pointed-type equality-with-J
using (Pointed-type; _→ᴮ_; Ω)
open import Surjection equality-with-J using (_↠_)
private
variable
a b ℓ ℓ₁ ℓ₂ p : Level
A B : Type a
C : Pointed-type a
x y : A
f g : A → B
n : ℕ
-- Suspensions.
data Susp (A : Type a) : Type a where
north south : Susp A
meridianᴾ : A → north P.≡ south
-- Meridians.
meridian : A → _≡_ {A = Susp A} north south
meridian = _↔_.from ≡↔≡ ∘ meridianᴾ
-- A dependent eliminator, expressed using paths.
elimᴾ :
(P : Susp A → Type p)
(n : P north)
(s : P south) →
(∀ x → P.[ (λ i → P (meridianᴾ x i)) ] n ≡ s) →
(x : Susp A) → P x
elimᴾ _ n s n≡s = λ where
north → n
south → s
(meridianᴾ x i) → n≡s x i
-- A non-dependent eliminator, expressed using paths.
recᴾ : (n s : B) → (A → n P.≡ s) → Susp A → B
recᴾ = elimᴾ _
-- A dependent eliminator.
module Elim
(P : Susp A → Type p)
(n : P north)
(s : P south)
(n≡s : ∀ x → subst P (meridian x) n ≡ s)
where
elim : ∀ x → P x
elim = elimᴾ P n s (subst≡→[]≡ ∘ n≡s)
-- "Computation" rule for meridians.
elim-meridian : dcong elim (meridian x) ≡ n≡s x
elim-meridian = dcong-subst≡→[]≡ (refl _)
open Elim public
-- A non-dependent eliminator.
module Rec
{B : Type b}
(n s : B)
(n≡s : A → n ≡ s)
where
rec : Susp A → B
rec = recᴾ n s (_↔_.to ≡↔≡ ∘ n≡s)
rec-meridian : cong rec (meridian x) ≡ n≡s x
rec-meridian = cong-≡↔≡ (refl _)
open Rec public
-- The universal property of suspensions.
universal-property :
(Susp A → B) ↔ (∃ λ (n : B) → ∃ λ (s : B) → A → n ≡ s)
universal-property = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → f north , f south , cong f ∘ meridian
; from = λ { (n , s , f) → rec n s f }
}
; right-inverse-of = λ { (n , s , f) →
n , s , cong (rec n s f) ∘ meridian ≡⟨ cong (λ f → n , s , f) $ ⟨ext⟩ (λ _ → rec-meridian n s f) ⟩∎
n , s , f ∎ }
}
; left-inverse-of = λ f →
let module R = Rec (f north) (f south) (cong f ∘ meridian) in
R.rec ≡⟨ ⟨ext⟩ $ elim _ (refl _) (refl _) (λ x →
subst (λ x → R.rec x ≡ f x) (meridian x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym $ cong R.rec (meridian x))
(trans (refl _) (cong f (meridian x))) ≡⟨ cong₂ (λ p q → trans (sym p) q) R.rec-meridian (trans-reflˡ _) ⟩
trans (sym $ cong f (meridian x)) (cong f (meridian x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎) ⟩∎
f ∎
}
-- Based maps from suspensions of pointed types (using north as the
-- point) are isomorphic to based maps to loop spaces.
Susp→ᴮ↔ : (Susp A , north) →ᴮ C ↔ (A , x) →ᴮ Ω C
Susp→ᴮ↔ {A = A} {C = B , y} {x = x} =
(Susp A , north) →ᴮ (B , y) ↔⟨⟩
(∃ λ (f : Susp A → B) → f north ≡ y) ↝⟨ Σ-cong universal-property (λ _ → F.id) ⟩
(∃ λ (f : ∃ λ n → ∃ λ s → A → n ≡ s) → proj₁ f ≡ y) ↝⟨ inverse Σ-assoc ⟩
(∃ λ n → (∃ λ s → A → n ≡ s) × n ≡ y) ↝⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩
(∃ λ n → ∃ λ s → (A → n ≡ s) × n ≡ y) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ×-comm) ⟩
(∃ λ n → ∃ λ s → n ≡ y × (A → n ≡ s)) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩
(∃ λ n → n ≡ y × ∃ λ s → A → n ≡ s) ↝⟨ Σ-assoc ⟩
(∃ λ (p : ∃ λ n → n ≡ y) → ∃ λ s → A → proj₁ p ≡ s) ↝⟨ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ singleton-contractible _ ⟩
(∃ λ s → A → y ≡ s) ↝⟨ (∃-cong λ _ → inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∃ λ s → ∃ λ (f : A → y ≡ s) → ∃ λ (eq : y ≡ s) → f x ≡ eq) ↝⟨ (∃-cong λ _ → ∃-comm) ⟩
(∃ λ s → ∃ λ (eq : y ≡ s) → ∃ λ (f : A → y ≡ s) → f x ≡ eq) ↝⟨ Σ-assoc ⟩
(∃ λ (p : ∃ λ s → y ≡ s) → ∃ λ (f : A → y ≡ proj₁ p) → f x ≡ proj₂ p) ↝⟨ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _ ⟩
(∃ λ (f : A → y ≡ y) → f x ≡ refl y) ↔⟨⟩
(A , x) →ᴮ (Ω (B , y)) □
-- The type of booleans can be expressed as a suspension.
Bool↔Susp-⊥ : Bool ↔ Susp (⊥ {ℓ = ℓ})
Bool↔Susp-⊥ = record
{ surjection = record
{ logical-equivalence = record
{ to = if_then north else south
; from = rec true false (λ ())
}
; right-inverse-of = elim _ (refl _) (refl _) (λ ())
}
; left-inverse-of = λ where
true → refl _
false → refl _
}
private
-- A lemma used in some proofs below.
subst-in-terms-of-trans-and-cong′ :
{x≡y : x ≡ y} {fgx≡x : f (g x) ≡ x} →
subst (λ z → f (g z) ≡ z) x≡y fgx≡x ≡
trans (sym (cong f (cong g x≡y))) (trans fgx≡x x≡y)
subst-in-terms-of-trans-and-cong′
{f = f} {g = g} {x≡y = x≡y} {fgx≡x = fgx≡x} =
subst (λ z → f (g z) ≡ z) x≡y fgx≡x ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (f ∘ g) x≡y)) (trans fgx≡x (cong id x≡y)) ≡⟨ sym $ cong₂ (λ p q → trans (sym p) (trans fgx≡x q)) (cong-∘ _ _ _) (cong-id _) ⟩∎
trans (sym (cong f (cong g x≡y))) (trans fgx≡x x≡y) ∎
-- The remainder of this module is not based on the HoTT book.
-- The interval can be expressed as a suspension.
Interval↔Susp-⊤ : Interval ↔ Susp ⊤
Interval↔Susp-⊤ = record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = elim
_
(refl _)
(refl _)
(λ _ →
subst (λ x → to (from x) ≡ x) (meridian tt) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong′ ⟩
trans (sym (cong to (cong from (meridian tt))))
(trans (refl _) (meridian tt)) ≡⟨ cong₂ (λ p q → trans (sym (cong to p)) q)
(rec-meridian _ _ _)
(trans-reflˡ _) ⟩
trans (sym (cong to 0≡1)) (meridian tt) ≡⟨ cong (λ p → trans (sym p) (meridian tt)) $ Interval.rec-0≡1 _ _ _ ⟩
trans (sym (meridian tt)) (meridian tt) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
}
; left-inverse-of = Interval.elim
_
(refl _)
(refl _)
(subst (λ x → from (to x) ≡ x) 0≡1 (refl _) ≡⟨ subst-in-terms-of-trans-and-cong′ ⟩
trans (sym (cong from (cong to 0≡1))) (trans (refl _) 0≡1) ≡⟨ cong₂ (λ p q → trans (sym (cong from p)) q)
(Interval.rec-0≡1 _ _ _)
(trans-reflˡ _) ⟩
trans (sym (cong from (meridian tt))) 0≡1 ≡⟨ cong (λ p → trans (sym p) 0≡1) $ rec-meridian _ _ _ ⟩
trans (sym 0≡1) 0≡1 ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
}
where
to = Interval.rec north south (meridian tt)
from = rec [0] [1] λ _ → 0≡1
-- A map function.
map : (A → B) → Susp A → Susp B
map A→B = rec north south (meridian ∘ A→B)
private
-- A helper function used to implement cong-↠ and cong-↔.
map∘map :
(∀ x → f (g x) ≡ x) →
∀ x → map f (map g x) ≡ x
map∘map {f = f} {g = g} hyp = elim
_
(refl _)
(refl _)
(λ x →
subst (λ x → map f (map g x) ≡ x) (meridian x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong′ ⟩
trans (sym $ cong (map f) $ cong (map g) (meridian x))
(trans (refl _) (meridian x)) ≡⟨ cong₂ (λ p q → trans (sym $ cong (map f) p) q)
(rec-meridian _ _ _)
(trans-reflˡ _) ⟩
trans (sym $ cong (map f) $ meridian (g x)) (meridian x) ≡⟨ cong (λ p → trans (sym p) (meridian x)) $ rec-meridian _ _ _ ⟩
trans (sym $ meridian (f (g x))) (meridian x) ≡⟨ cong (λ y → trans (sym $ meridian y) (meridian x)) $ hyp x ⟩
trans (sym $ meridian x) (meridian x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- Some preservation lemmas.
cong-⇔ : A ⇔ B → Susp A ⇔ Susp B
cong-⇔ A⇔B = record
{ to = map (_⇔_.to A⇔B)
; from = map (_⇔_.from A⇔B)
}
cong-↠ : A ↠ B → Susp A ↠ Susp B
cong-↠ A↠B = record
{ logical-equivalence = cong-⇔ (_↠_.logical-equivalence A↠B)
; right-inverse-of = map∘map (_↠_.right-inverse-of A↠B)
}
cong-↔ : A ↔ B → Susp A ↔ Susp B
cong-↔ A↔B = record
{ surjection = cong-↠ (_↔_.surjection A↔B)
; left-inverse-of = map∘map (_↔_.left-inverse-of A↔B)
}
cong-≃ : A ≃ B → Susp A ≃ Susp B
cong-≃ = from-isomorphism ∘ cong-↔ ∘ from-isomorphism
private
-- Lemmas used to implement ¬-cong-↣ and ¬-cong-Embedding.
⊥↣⊤ : ⊥ {ℓ = ℓ₁} ↣ ↑ ℓ₂ ⊤
⊥↣⊤ = record
{ to = λ ()
; injective = λ {}
}
¬Susp⊥↣Susp⊤ : ¬ (Susp (⊥ {ℓ = ℓ₁}) ↣ Susp (↑ ℓ₂ ⊤))
¬Susp⊥↣Susp⊤ =
Susp ⊥ ↣ Susp (↑ _ ⊤) ↝⟨ (λ f → from-isomorphism (cong-↔ Bijection.↑↔) F.∘ f F.∘
from-isomorphism (cong-↔ ⊥↔⊥)) ⟩
Susp ⊥₀ ↣ Susp ⊤ ↝⟨ (λ f → from-isomorphism (inverse Interval↔Susp-⊤) F.∘ f F.∘
from-isomorphism Bool↔Susp-⊥) ⟩
Bool ↣ Interval ↝⟨ (λ inj → _↣_.to inj , _↣_.injective inj) ⟩
(∃ λ (f : Bool → Interval) → f true ≡ f false → true ≡ false) ↝⟨ Σ-map id (λ f → f (mono₁ 0 Interval.interval-contractible _ _)) ⟩
(Bool → Interval) × true ≡ false ↝⟨ proj₂ ⟩
true ≡ false ↝⟨ Bool.true≢false ⟩□
⊥ □
-- Some negative preservation results.
¬-cong-↣ :
¬ (∀ {A : Type a} {B : Type b} → A ↣ B → Susp A ↣ Susp B)
¬-cong-↣ {a = a} {b = b} =
(∀ {A B} → A ↣ B → Susp A ↣ Susp B) ↝⟨ (λ hyp → hyp) ⟩
(⊥ ↣ ↑ _ ⊤ → Susp ⊥ ↣ Susp (↑ _ ⊤)) ↝⟨ _$ ⊥↣⊤ ⟩
Susp ⊥ ↣ Susp (↑ _ ⊤) ↝⟨ ¬Susp⊥↣Susp⊤ ⟩□
⊥ □
¬-cong-Embedding :
¬ (∀ {A : Type a} {B : Type b} →
Embedding A B → Embedding (Susp A) (Susp B))
¬-cong-Embedding =
(∀ {A B} → Embedding A B → Embedding (Susp A) (Susp B)) ↝⟨ (λ hyp → hyp) ⟩
(Embedding ⊥ (↑ _ ⊤) → Embedding (Susp ⊥) (Susp (↑ _ ⊤))) ↝⟨ _$ Emb-⊥-⊤ ⟩
Embedding (Susp ⊥) (Susp (↑ _ ⊤)) ↝⟨ Embedding.injection ⟩
Susp ⊥ ↣ Susp (↑ _ ⊤) ↝⟨ ¬Susp⊥↣Susp⊤ ⟩□
⊥ □
where
Emb-⊥-⊤ : Embedding ⊥ (↑ _ ⊤)
Emb-⊥-⊤ =
_↔_.to (Embedding.↣↔Embedding
ext
(mono₁ 1 ⊥-propositional)
(mono (Nat.zero≤ 2) (↑-closure 0 ⊤-contractible)))
⊥↣⊤
| {
"alphanum_fraction": 0.4391118572,
"avg_line_length": 38.2099125364,
"ext": "agda",
"hexsha": "4a1e283ee4af22e47551bd091adb988d2e4d5e50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Suspension.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Suspension.agda",
"max_line_length": 148,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Suspension.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 4645,
"size": 13106
} |
open import Agda.Primitive using (lzero; lsuc; _⊔_)
import SecondOrder.Arity
import SecondOrder.MContext
import SecondOrder.Signature
module SecondOrder.Metavariable
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.MContext VContext sort public
| {
"alphanum_fraction": 0.7885714286,
"avg_line_length": 21.875,
"ext": "agda",
"hexsha": "8e7af91e1c9d899b65f80317c090e49eabde9548",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Metavariable.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Metavariable.agda",
"max_line_length": 51,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/Metavariable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 106,
"size": 350
} |
module BTree.Equality {A : Set} where
open import BTree {A}
data _≃_ : BTree → BTree → Set where
≃lf : leaf ≃ leaf
≃nd : {l r l' r' : BTree}
(x x' : A)
→ l ≃ r
→ l ≃ l'
→ l' ≃ r'
→ node x l r ≃ node x' l' r'
| {
"alphanum_fraction": 0.3544303797,
"avg_line_length": 24.3076923077,
"ext": "agda",
"hexsha": "b47fb79c2964c190529b26bc2f6725cecc3cb61b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BTree/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BTree/Equality.agda",
"max_line_length": 48,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BTree/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 110,
"size": 316
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This module contains definitions of properties of only the behavior of the
-- handlers, nothing concerning the system state.
open import LibraBFT.Base.Types
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Concrete.Records
open import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
open import LibraBFT.Impl.Consensus.EpochManagerTypes
import LibraBFT.Impl.Handle as Handle
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.ByteString
open import Util.KVMap as Map
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
open import LibraBFT.ImplShared.Util.HashCollisions Handle.InitHandler.initAndHandlers
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers
open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms
Handle.InitHandler.initAndHandlers
PeerCanSignForPK PeerCanSignForPK-stable
module LibraBFT.Impl.Properties.Util where
module Meta where
getLastVoteEpoch : SafetyData → Epoch
getLastVoteEpoch sd = (Maybe-maybe{B = const Epoch} (_^∙ vEpoch) (sd ^∙ sdEpoch)) ∘ (_^∙ sdLastVote) $ sd
-- getLastVoteEpoch rm = (maybe{B = const Epoch} (_^∙ vEpoch) (rm ^∙ pssSafetyData-rm ∙ sdEpoch)) ∘ (_^∙ pssSafetyData-rm ∙ sdLastVote) $ rm
getLastVoteRound : SafetyData → Round
getLastVoteRound = (Maybe-maybe{B = const Round} (_^∙ vRound) 0) ∘ (_^∙ sdLastVote)
-- getLastVoteRound = maybe{B = const Round} (_^∙ vRound) 0 ∘ (_^∙ pssSafetyData-rm ∙ sdLastVote)
subst-getLastVoteRound : ∀ {sd1 sd2} → sd1 ≡ sd2 → getLastVoteRound sd1 ≡ getLastVoteRound sd2
subst-getLastVoteRound refl = refl
module OutputProps where
module _ (outs : List Output) where
None : Set
None = outs ≡ []
NoVotes = NoneOfKind outs isSendVote?
NoProposals = NoneOfKind outs isBroadcastProposal?
NoSyncInfos = NoneOfKind outs isBroadcastSyncInfo?
NoMsgs = NoneOfKind outs isOutputMsg?
NoErrors = NoneOfKind outs isLogErr?
NoMsgs⇒× : NoMsgs → NoProposals × NoVotes × NoSyncInfos
proj₁ (NoMsgs⇒× noMsgs) =
filter-∪?-[]₁ outs isBroadcastProposal? _ noMsgs
proj₁ (proj₂ (NoMsgs⇒× noMsgs)) =
filter-∪?-[]₂ outs _ isSendVote?
(filter-∪?-[]₂ outs _ _ noMsgs)
proj₂ (proj₂ (NoMsgs⇒× noMsgs)) =
filter-∪?-[]₁ outs isBroadcastSyncInfo? _
(filter-∪?-[]₂ outs _ _ noMsgs)
NoMsgs⇒NoProposals : NoMsgs → NoProposals
NoMsgs⇒NoProposals = proj₁ ∘ NoMsgs⇒×
NoMsgs⇒NoVotes : NoMsgs → NoVotes
NoMsgs⇒NoVotes = proj₁ ∘ proj₂ ∘ NoMsgs⇒×
OneVote : VoteMsg → List Author → Set
OneVote vm pids = List-filter isSendVote? outs ≡ (SendVote vm pids ∷ [])
++-NoMsgs = λ xs ys → ++-NoneOfKind xs ys isOutputMsg?
++-NoVotes = λ xs ys → ++-NoneOfKind xs ys isSendVote?
++-NoProposals = λ xs ys → ++-NoneOfKind xs ys isBroadcastProposal?
++-NoVotes-OneVote : ∀ xs ys {vm} {pids} → NoVotes xs → OneVote ys vm pids
→ OneVote (xs ++ ys) vm pids
++-NoVotes-OneVote xs ys nv ov
rewrite List-filter-++ isSendVote? xs ys
| nv = ov
++-OneVote-NoVotes : ∀ xs {vm pids} ys → OneVote xs vm pids → NoVotes ys
→ OneVote (xs ++ ys) vm pids
++-OneVote-NoVotes xs ys ov nv
rewrite List-filter-++ isSendVote? xs ys
| nv
| ov = refl
module BlockProps (b : Block) where
∈BlockTree_ : BlockTree → Set
∈BlockTree bt = ∃[ eb ] (btGetBlock (b ^∙ bId) bt ≡ just eb)
∈BlockStore_ : BlockStore → Set
∈BlockStore bs = ∈BlockTree (bs ^∙ bsInner)
∈RoundManager_ : RoundManager → Set
∈RoundManager rm = ∈BlockStore (rm ^∙ lBlockStore)
module QCProps where
data _∈BlockTree_ (qc : QuorumCert) (bt : BlockTree) : Set where
inHQC : qc ≡ bt ^∙ btHighestQuorumCert → qc ∈BlockTree bt
inHCC : qc ≡ bt ^∙ btHighestCommitCert → qc ∈BlockTree bt
_∈RoundManager_ : (qc : QuorumCert) (rm : RoundManager) → Set
qc ∈RoundManager rm = qc ∈BlockTree (rm ^∙ lBlockStore ∙ bsInner)
∈Post⇒∈PreOr' : ∀ {A : Set} (_QC∈_ : QuorumCert → A → Set) (Q : QuorumCert → Set) (pre post : A) → Set
∈Post⇒∈PreOr' _QC∈_ Q pre post = ∀ qc → qc QC∈ post → qc QC∈ pre ⊎ Q qc
∈Post⇒∈PreOr'-∙ : ∀ {A B : Set}
→ (l : Lens A B)
→ (_QC∈B_ : QuorumCert → B → Set)
→ (_QC∈A_ : QuorumCert → A → Set)
→ (∀ {q st} → q QC∈B (st ^∙ l) → q QC∈A st)
→ (∀ {q st} → q QC∈A st → q QC∈B (st ^∙ l))
→ (Q : QuorumCert → Set)
→ (pre post : A)
→ ∈Post⇒∈PreOr' _QC∈B_ Q (pre ^∙ l) (post ^∙ l)
→ ∈Post⇒∈PreOr' _QC∈A_ Q pre post
∈Post⇒∈PreOr'-∙ l _QC∈B_ _QC∈A_ prfBA prfAB Q pre post QCB qc qc∈Apost =
⊎-map₁ prfBA (QCB qc (prfAB qc∈Apost))
∈Post⇒∈PreOr-∙-BT-RM : _
∈Post⇒∈PreOr-∙-BT-RM = ∈Post⇒∈PreOr'-∙ lBlockTree _∈BlockTree_ _∈RoundManager_ id id
∈Post⇒∈PreOrBT : (Q : QuorumCert → Set) (pre post : BlockTree) → Set
∈Post⇒∈PreOrBT = ∈Post⇒∈PreOr' _∈BlockTree_
∈BlockTree-upd-hqc : ∀ {bt1 bt2}
→ {Q : QuorumCert → Set}
→ bt1 ≡L bt2 at btHighestCommitCert
→ Q (bt2 ^∙ btHighestQuorumCert)
→ ∈Post⇒∈PreOrBT Q bt1 bt2
∈BlockTree-upd-hqc refl Q _ (inHQC refl) = inj₂ Q
∈BlockTree-upd-hqc refl _ _ (inHCC refl) = inj₁ (inHCC refl)
∈BlockTree-upd-hcc : ∀ {bt1 bt2}
→ {Q : QuorumCert → Set}
→ bt1 ≡L bt2 at btHighestQuorumCert
→ Q (bt2 ^∙ btHighestCommitCert)
→ ∈Post⇒∈PreOrBT Q bt1 bt2
∈BlockTree-upd-hcc refl _ _ (inHQC refl) = inj₁ (inHQC refl)
∈BlockTree-upd-hcc refl Q _ (inHCC refl) = inj₂ Q
∈Post⇒∈PreOr : (Q : QuorumCert → Set) (pre post : RoundManager) → Set
∈Post⇒∈PreOr = ∈Post⇒∈PreOr' _∈RoundManager_
∈Post⇒∈PreOr'-refl : ∀ {A : Set}
→ (_QC∈_ : QuorumCert → A → Set) (Q : QuorumCert → Set)
→ ∀ {pre : A}
→ ∈Post⇒∈PreOr' _QC∈_ Q pre pre
∈Post⇒∈PreOr'-refl _ _ _ = inj₁
∈Post⇒∈PreOrBT-QCs≡ : ∀ {bt1 bt2}
→ (Q : QuorumCert → Set)
→ bt1 ≡L bt2 at btHighestCommitCert
→ bt1 ≡L bt2 at btHighestQuorumCert
→ ∈Post⇒∈PreOrBT Q bt1 bt2
∈Post⇒∈PreOrBT-QCs≡ Q refl refl _ (inHQC refl) = inj₁ (inHQC refl)
∈Post⇒∈PreOrBT-QCs≡ Q refl refl _ (inHCC refl) = inj₁ (inHCC refl)
∈Post⇒∈PreOr'-trans : ∀ {A : Set}
→ (_QC∈_ : QuorumCert → A → Set) (Q : QuorumCert → Set)
→ ∀ {pre int post : A}
→ ∈Post⇒∈PreOr' _QC∈_ Q pre int
→ ∈Post⇒∈PreOr' _QC∈_ Q int post
→ ∈Post⇒∈PreOr' _QC∈_ Q pre post
∈Post⇒∈PreOr'-trans _QC∈_ Q pre→int int→post qc qc∈post
with int→post qc qc∈post
... | Right y = Right y
... | Left x
with pre→int qc x
... | Right y = Right y
... | Left x₁ = Left x₁
∈Post⇒∈PreOrBT-trans : ∀ (Q : QuorumCert → Set) {pre int post}
→ ∈Post⇒∈PreOrBT Q pre int
→ ∈Post⇒∈PreOrBT Q int post
→ ∈Post⇒∈PreOrBT Q pre post
∈Post⇒∈PreOrBT-trans = ∈Post⇒∈PreOr'-trans _∈BlockTree_
-- TODO-1: Factor out a property about a single output:
-- λ out → ∃₂ λ qc nm → qc QC∈NM nm × nm Msg∈Out out
OutputQc∈RoundManager : List Output → RoundManager → Set
OutputQc∈RoundManager outs rm =
All (λ out → ∀ qc nm → qc QC∈NM nm → nm Msg∈Out out → qc ∈RoundManager rm) outs
¬OutputQc : List Output → Set
¬OutputQc outs = All (λ out → ∀ qc nm → qc QC∈NM nm → nm Msg∈Out out → ⊥) outs
++-OutputQc∈RoundManager
: ∀ {rm outs₁ outs₂}
→ OutputQc∈RoundManager outs₁ rm → OutputQc∈RoundManager outs₂ rm
→ OutputQc∈RoundManager (outs₁ ++ outs₂) rm
++-OutputQc∈RoundManager = All-++
++-¬OutputQc : ∀ {outs₁ outs₂} → ¬OutputQc outs₁ → ¬OutputQc outs₂
→ ¬OutputQc (outs₁ ++ outs₂)
++-¬OutputQc = All-++
NoMsgs⇒¬OutputQc : ∀ outs → OutputProps.NoMsgs outs → ¬OutputQc outs
NoMsgs⇒¬OutputQc outs noMsgs =
All-map help (noneOfKind⇒All¬ outs _ noMsgs)
where
help : ∀ {out : Output} → ¬ IsOutputMsg out → ∀ qc nm → qc QC∈NM nm → nm Msg∈Out out → ⊥
help ¬msg qc .(P _) qc∈m inBP = ¬msg (Left tt)
help ¬msg qc .(V _) qc∈m inSV = ¬msg (Right (Right tt))
¬OutputQc⇒OutputQc∈RoundManager : ∀ outs rm → ¬OutputQc outs → OutputQc∈RoundManager outs rm
¬OutputQc⇒OutputQc∈RoundManager outs rm noOutQcs =
All-map (λ ¬outqc qc nm qc∈nm nm∈out → ⊥-elim (¬outqc qc nm qc∈nm nm∈out))
noOutQcs
NoMsgs⇒OutputQc∈RoundManager : ∀ outs rm → OutputProps.NoMsgs outs → OutputQc∈RoundManager outs rm
NoMsgs⇒OutputQc∈RoundManager outs rm noMsgs =
¬OutputQc⇒OutputQc∈RoundManager outs rm (NoMsgs⇒¬OutputQc outs noMsgs)
SigForVote∈Rm-SentB4 : Vote → PK → QuorumCert → RoundManager → SentMessages → Set
SigForVote∈Rm-SentB4 v pk qc rm pool =
qc ∈RoundManager rm
→ WithVerSig pk v →
∀ {vs : Author × Signature} → let (pid , sig) = vs in
vs ∈ qcVotes qc → rebuildVote qc vs ≈Vote v
→ ¬(∈BootstrapInfo-impl fakeBootstrapInfo sig)
→ MsgWithSig∈ pk sig pool
SigsForVotes∈Rm-SentB4 : SentMessages → RoundManager → Set
SigsForVotes∈Rm-SentB4 pool rm = ∀ {qc v pk} → SigForVote∈Rm-SentB4 v pk qc rm pool
++-SigsForVote∈Rm-SentB4
: ∀ {pool rm} → (msgs : SentMessages) → SigsForVotes∈Rm-SentB4 pool rm
→ SigsForVotes∈Rm-SentB4 (msgs ++ pool) rm
++-SigsForVote∈Rm-SentB4{pool} msgs sfvb4 qc∈rm sig vs∈qc rbld≈v ¬bootstrap =
MsgWithSig∈-++ʳ{ms = msgs} (sfvb4 qc∈rm sig vs∈qc rbld≈v ¬bootstrap)
module Invariants where
------------ properties for BlockTree validity
-- The property that a block tree `bt` has only valid QCs with respect to epoch config `𝓔`
AllValidQCs : (𝓔 : EpochConfig) (bt : BlockTree) → Set
AllValidQCs 𝓔 bt = (hash : HashValue) → Maybe-maybe (WithEC.MetaIsValidQC 𝓔) ⊤ (lookup hash (bt ^∙ btIdToQuorumCert))
AllValidBlocks : BlockTree → Set
AllValidBlocks bt = ∀ {bid eb}
→ btGetBlock bid bt ≡ just eb
→ BlockId-correct (eb ^∙ ebBlock) × BlockHash≡ (eb ^∙ ebBlock) bid
------------ types for and definitions of invariants for BlockTree, BlockStore, SafetyData, SafetyRules
record ECinfo : Set where
constructor mkECinfo
field
ecVV : ValidatorVerifier
ecEP : Epoch
open ECinfo
WithECinfo : Set → Set
WithECinfo A = A × ECinfo
BlockTree-EC = WithECinfo BlockTree
BlockStore-EC = WithECinfo BlockStore
module _ (btEC : BlockTree-EC) where
private
bt = proj₁ btEC
eci = proj₂ btEC
vv = ecVV eci
ep = ecEP eci
record BlockTreeInv : Set where
constructor mkBlockTreeInv
field
allValidQCs : (vvC : ValidatorVerifier-correct $ vv) → AllValidQCs (α-EC-VV (vv , vvC) ep) bt
allValidBlocks : AllValidBlocks bt
open BlockTreeInv
module _ (bsEC : BlockStore-EC) where
private
bs = proj₁ bsEC
eci = proj₂ bsEC
record BlockStoreInv : Set where
constructor mkBlockStoreInv
field
blockTreeValid : BlockTreeInv (bs ^∙ bsInner , eci)
open BlockStoreInv
module _ (sd : SafetyData) where
-- SafetyRules invariants
record SafetyDataInv : Set where
constructor mkSafetyDataInv
field
lvEpoch≡ : Meta.getLastVoteEpoch sd ≡ sd ^∙ sdEpoch
lvRound≤ : Meta.getLastVoteRound sd ≤ sd ^∙ sdLastVotedRound
open SafetyDataInv
subst-SafetyDataInv : ∀ {sd1 sd2}
→ sd1 ^∙ sdLastVote ≡ sd2 ^∙ sdLastVote
→ sd1 ^∙ sdEpoch ≡ sd2 ^∙ sdEpoch
→ sd1 ^∙ sdLastVotedRound ≡ sd2 ^∙ sdLastVotedRound
→ SafetyDataInv sd1 → SafetyDataInv sd2
subst-SafetyDataInv refl refl refl (mkSafetyDataInv lvEpoch≡₁ lvRound≤₁) =
mkSafetyDataInv lvEpoch≡₁ lvRound≤₁
module _ (sr : SafetyRules) where
-- SafetyRules invariants
record SafetyRulesInv : Set where
constructor mkSafetyRulesInv
field
sdInv : SafetyDataInv (sr ^∙ srPersistentStorage ∙ pssSafetyData)
open SafetyRulesInv
------------ types for and definition of RoundManagerInv
EpochsMatch : RoundManager → Set
EpochsMatch rm = rm ^∙ rmEpochState ∙ esEpoch ≡ rm ^∙ pssSafetyData-rm ∙ sdEpoch
rm→ECinfo : RoundManager → ECinfo
rm→ECinfo rm = mkECinfo (rm ^∙ rmEpochState ∙ esVerifier) (rm ^∙ rmEpoch)
rm→BlockTree-EC : RoundManager → BlockTree-EC
rm→BlockTree-EC rm = (rm ^∙ lBlockStore ∙ bsInner , rm→ECinfo rm)
rm→BlockStore-EC : RoundManager → BlockStore-EC
rm→BlockStore-EC rm = (rm ^∙ lBlockStore , rm→ECinfo rm)
-- NOTE: This will be proved by induction on reachable states using the
-- property that peer handlers preserve invariants. That is to say, many of
-- these cannot be proven as a post-condition of the peer handler: one can
-- only prove of the handler that if the invariant holds for the prestate,
-- then it holds for the poststate.
record RoundManagerInv (rm : RoundManager) : Set where
constructor mkRoundManagerInv
field
rmCorrect : ValidatorVerifier-correct (rm ^∙ rmValidatorVerifer)
rmEpochsMatch : EpochsMatch rm
rmBlockStoreInv : BlockStoreInv (rm→BlockStore-EC rm)
rmSafetyRulesInv : SafetyRulesInv (rm ^∙ lSafetyRules)
open RoundManagerInv
-- This is just the beginning of the invariant for EpochManager, collecting properties we already
-- expect to be required even though the top-level peer state is RoundManager for now (in future,
-- when we prove properties related to epoch change, the peers state will become EpochManager).
record EpochManagerInv (em : EpochManager) : Set where
constructor mkEpochManagerInv
field
-- SafetyRule properties
emiSRI : ∀ {sr} → em ^∙ emSafetyRulesManager ∙ srmInternalSafetyRules ≡ SRWLocal sr
→ SafetyRulesInv sr × sr ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVote ≡ nothing
open EpochManagerInv
hash≡⇒≈Block : ∀ {b1 b2 : Block}
→ BlockId-correct b1
→ BlockId-correct b2
→ BlockHash≡ b1 (b2 ^∙ bId)
→ b1 ≈Block b2
hash≡⇒≈Block {b1} {b2} refl refl hashb1≡idb2
with hashBD-inj hashb1≡idb2
...| bdInj = sameBlockData⇒≈ {b1} {b2} hashb1≡idb2 bdInj
module Reqs (b : Block) (bt : BlockTree) where
-- TODO: State and use assumptions about hash collisions. The following is one example that will
-- likely need to be refined.
NoHC1 = ∀ {eb}
→ btGetBlock (b ^∙ bId) bt ≡ just eb
→ BlockId-correct b
→ (eb ^∙ ebBlock) ≈Block b
-- TODO: probably don't need this generality, consider moving into Handle.Properties (only place
-- it is used so far), then we could streamline as rmi is required only to avoid cyclic lookups
module _ {st} (reach : ReachableSystemState st)
{pm : ProposalMsg} {sndr : NodeId} (nm∈pool : (sndr , P pm) ∈ msgPool st)
(pid : NodeId) (ini : initialised st pid ≡ initd) where
open PerReachableState reach
private
rm = peerStates st pid
bt = rm ^∙ lBlockTree
b = pm ^∙ pmProposal
nohc : RoundManagerInv rm
→ rm ^∙ lBlockTree ≡ bt
→ BlockId-correct b
→ Reqs.NoHC1 b bt
nohc rmi refl refl {eb} jeb refl
with allValidBlocks (blockTreeValid (rmBlockStoreInv rmi)) jeb
...| bidCorr , bid
with (blockData-bsl (b ^∙ bBlockData)) ≟-BSL (blockData-bsl (eb ^∙ ebBlock ∙ bBlockData))
...| yes bsls≡ = hash≡⇒≈Block {eb ^∙ ebBlock} {b} bidCorr refl bid
...| no neq rewrite sym bid
= ⊥-elim (meta-no-collision-in-sys (msgRmHC (inP nm∈pool (inPM inB))
ini
(inRM (inBS jeb inB))
(sym bid)
neq))
-- Valid blocks have IDs computed by the hash of their BlockData
-- These are passed as module parameters through the proofs
ValidBlock = Σ Block BlockId-correct
vbBlock : ValidBlock → Block
vbBlock = proj₁
vbValid : (vb : ValidBlock) → BlockId-correct (vbBlock vb)
vbValid = proj₂
------------ Preserves and related definitions and utilities
Preserves : ∀ {ℓ} {A : Set} → (P : A → Set ℓ) (pre post : A) → Set ℓ
Preserves Pred pre post = Pred pre → Pred post
PreservesL : ∀ {ℓ} {A B : Set}
→ (P : A → Set ℓ) (l : Lens A B)
→ (b₁ b₂ : B) → Set ℓ
PreservesL Pred l b₁ b₂ = ∀ a → Preserves Pred (a & l ∙~ b₁) (a & l ∙~ b₂)
reflPreserves : ∀ {ℓ} {A : Set} (P : A → Set ℓ) → Reflexive (Preserves P)
reflPreserves Pred = id
reflPreservesRoundManagerInv : Reflexive (Preserves RoundManagerInv)
reflPreservesRoundManagerInv = reflPreserves RoundManagerInv
transPreserves : ∀ {ℓ} {A : Set} (P : A → Set ℓ) → Transitive (Preserves P)
transPreserves Pred p₁ p₂ = p₂ ∘ p₁
transPreservesL : ∀ {ℓ} {A B : Set}
→ (P : A → Set ℓ) (l : Lens A B)
→ {b₁ b₂ b₃ : B}
→ PreservesL P l b₁ b₂
→ PreservesL P l b₂ b₃
→ PreservesL P l b₁ b₃
transPreservesL Pred l p₁ p₂ a = transPreserves Pred (p₁ a) (p₂ a)
transPreservesRoundManagerInv : Transitive (Preserves RoundManagerInv)
transPreservesRoundManagerInv = transPreserves RoundManagerInv
BSInv⇒BTInv-pres : ∀ {eci} {pre post : BlockStore}
→ Preserves BlockStoreInv (pre , eci) (post , eci)
→ Preserves BlockTreeInv (pre ^∙ bsInner , eci) (post ^∙ bsInner , eci)
BSInv⇒BTInv-pres presBS btiPre = BlockStoreInv.blockTreeValid (presBS $ mkBlockStoreInv btiPre)
mkPreservesSafetyRulesInv
: ∀ {pre post}
→ Preserves SafetyDataInv (pre ^∙ srPersistentStorage ∙ pssSafetyData) (post ^∙ srPersistentStorage ∙ pssSafetyData)
→ Preserves SafetyRulesInv pre post
mkPreservesSafetyRulesInv lvP (mkSafetyRulesInv lv) = mkSafetyRulesInv (lvP lv)
mkPreservesRoundManagerInv
: ∀ {pre post}
→ Preserves ValidatorVerifier-correct (pre ^∙ rmValidatorVerifer) (post ^∙ rmValidatorVerifer)
→ Preserves EpochsMatch pre post
→ Preserves BlockStoreInv (rm→BlockStore-EC pre) (rm→BlockStore-EC post)
→ Preserves SafetyRulesInv (pre ^∙ rmSafetyRules) (post ^∙ rmSafetyRules)
→ Preserves RoundManagerInv pre post
mkPreservesRoundManagerInv rmP emP bsP srP (mkRoundManagerInv rmCorrect epochsMatch bsInv srInv) =
mkRoundManagerInv (rmP rmCorrect) (emP epochsMatch) (bsP bsInv) (srP srInv)
module InitProofDefs where
open Invariants
-- RoundManager properties
_IsNormalRoundManagerOf_ : RoundManager → EpochManager → Set
_IsNormalRoundManagerOf_ rm em =
em ^∙ emProcessor ≡ just (RoundProcessorNormal rm)
IsNormalRoundManagerOf-inj :
∀ {em} {rm1} {rm2}
→ rm1 IsNormalRoundManagerOf em
→ rm2 IsNormalRoundManagerOf em
→ rm1 ≡ rm2
IsNormalRoundManagerOf-inj refl refl = refl
InitSdLV≡ : RoundManager → Maybe Vote → Set
InitSdLV≡ rm mv = rm ^∙ rmSafetyRules ∙ srPersistentStorage
∙ pssSafetyData ∙ sdLastVote ≡ mv
InitSigs∈bs : RoundManager → Set
InitSigs∈bs rm = ∀ {bsi vs qc}
→ vs ∈ qcVotes qc
→ qc QCProps.∈RoundManager rm
→ ∈BootstrapInfo-impl bsi (proj₂ vs)
-- Message properties
-- During epoch initialisation, no messages are sent
-- EXCEPT the leader of Round 1 SENDS a ProposalMsg during initialization.
-- Rust/Haskell impls do not include signatures in the genesis QC's LIWS.
-- The initial proposal for (Epoch N) (Round 1) is built on a QC with empty signatures.
InitIsInitPM' : NetworkMsg → Set
InitIsInitPM' m = ∃[ pm ] ( m ≡ P pm
× ∀ {vs qc}
→ vs ∈ qcVotes qc
→ qc QC∈NM m
→ ⊥)
InitIsInitPM : List (Action NetworkMsg) → Set
InitIsInitPM acts = ∀ {m}
→ send m ∈ acts
→ InitIsInitPM' m
record InitContractOk (mv : Maybe Vote) (rm : RoundManager) (outs : List Output) : Set where
constructor mkInitContractOk
field
rmInv : RoundManagerInv rm
sdLV≡ : InitSdLV≡ rm mv
sigs∈bs : InitSigs∈bs rm
isInitPM : InitIsInitPM (outputsToActions {State = rm} outs)
open InitContractOk
EMInitCond : Maybe Vote → EpochManager × List Output → Set
EMInitCond mv (em , outs) = ∃[ rm ] ( rm IsNormalRoundManagerOf em × InitContractOk mv rm outs )
InitContract : Maybe Vote → EitherD-Post ErrLog (EpochManager × List Output)
InitContract _ (Left x) = ⊤
InitContract mv (Right em×outs) = EMInitCond mv em×outs
module RoundManagerTransProps where
-- Relations between the pre/poststate which may or may not hold, depending on
-- the particular peer handler invoked
-- - The epoch is unchanged
NoEpochChange : (pre post : RoundManager) → Set
NoEpochChange pre post = pre ≡L post at rmEpoch
reflNoEpochChange : Reflexive NoEpochChange
reflNoEpochChange = refl
transNoEpochChange : Transitive NoEpochChange
transNoEpochChange = trans
NoSafetyDataChange : (pre post : RoundManager) → Set
NoSafetyDataChange pre post = pre ≡L post at pssSafetyData-rm
reflNoSafetyDataChange : Reflexive NoSafetyDataChange
reflNoSafetyDataChange = refl
transNoSafetyDataChange : Transitive NoSafetyDataChange
transNoSafetyDataChange = trans
-- - state changes from generating or not generating a vote
LastVoteIs : RoundManager → Vote → Set
LastVoteIs rm v = just v ≡ rm ^∙ pssSafetyData-rm ∙ sdLastVote
module _ (pre post : RoundManager) (vote : Vote) where
record VoteOldGenerated : Set where
constructor mkVoteOldGenerated
field
-- NOTE: The implementation maintains an invariant that the round
-- associated with `sdLastVote` (if the vote exists) is less than or
-- equal to the field `sdLastVotedRound`.
lvr≡ : pre ≡L post at pssSafetyData-rm ∙ sdLastVotedRound
lv≡ : pre ≡L post at pssSafetyData-rm ∙ sdLastVote
record VoteNewGenerated : Set where
constructor mkVoteNewGenerated
field
lvr< : pre [ _<_ ]L post at pssSafetyData-rm ∙ sdLastVotedRound
lvr≡ : vote ^∙ vRound ≡ post ^∙ pssSafetyData-rm ∙ sdLastVotedRound
-- NOTE: This is saying that /state changes/ associated to generating a vote
-- have occurred, not that the generated vote has been sent.
record VoteGenerated : Set where
constructor mkVoteGenerated
field
lv≡v : LastVoteIs post vote
voteSrc : VoteOldGenerated ⊎ VoteNewGenerated
isVoteNewGenerated : VoteGenerated → Bool
isVoteNewGenerated = isRight ∘ VoteGenerated.voteSrc
reflVoteOldGenerated : ∀ {v} → Reflexive (λ pre post → VoteOldGenerated pre post v)
reflVoteOldGenerated = mkVoteOldGenerated refl refl
VoteGeneratedNotSaved : (pre post : RoundManager) → Set
VoteGeneratedNotSaved pre post = ∃[ v ] VoteGenerated pre post v
module _ (pre post : RoundManager) where
-- In
-- `LibraBFT.Impl.Consensus.SafetyRules.SafetyRules.agda::contructAndSignVoteM`,
-- it is possible for us to update the field `pssSafetyData-rm ∙ sdLastVotedRound`
-- without actually returning a vote. Therefore, the most we can say after
-- returing from this function is that this field in the poststate is greater
-- than or equal to the value it started at in the prestate.
--
-- However, it is also possible to return a vote *without* updating the last
-- voted round. Many functions in `LibraBFT.Impl.Consensus.RoundManager` neither
-- return a vote nor update the last voted round, and the lemma
-- `pseudotransVoteSent` in those cases -- but is unprovable if we do not
-- distinguish the cases where the last voted round cannot be increased.
-- Therefore, it is convenient to track in the type of `NoVoteSent`, with the
-- parameter `lvr≡?`, which case we are dealing with
record VoteNotGenerated (lvr≡? : Bool) : Set where
constructor mkVoteNotGenerated
field
lv≡ : pre ≡L post at pssSafetyData-rm ∙ sdLastVote
lvr≤ : pre [ if lvr≡? then _≡_ else _<_ ]L post at pssSafetyData-rm ∙ sdLastVotedRound
reflVoteNotGenerated : Reflexive (λ pre post → VoteNotGenerated pre post true)
reflVoteNotGenerated = mkVoteNotGenerated refl refl
transVoteNotGenerated
: ∀ {s₁ s₂ s₃ lvr≡?₁ lvr≡?₂}
→ VoteNotGenerated s₁ s₂ lvr≡?₁ → VoteNotGenerated s₂ s₃ lvr≡?₂
→ VoteNotGenerated s₁ s₃ (lvr≡?₁ ∧ lvr≡?₂)
transVoteNotGenerated {lvr≡?₁ = false} {false} (mkVoteNotGenerated lv≡ lvr≤) (mkVoteNotGenerated lv≡₁ lvr≤₁) =
mkVoteNotGenerated (trans lv≡ lv≡₁) (<-trans lvr≤ lvr≤₁)
transVoteNotGenerated {lvr≡?₁ = false} {true} (mkVoteNotGenerated lv≡ lvr≤) (mkVoteNotGenerated lv≡₁ lvr≤₁) =
mkVoteNotGenerated (trans lv≡ lv≡₁) (≤-trans lvr≤ (≡⇒≤ lvr≤₁))
transVoteNotGenerated {lvr≡?₁ = true} {false} (mkVoteNotGenerated lv≡ lvr≤) (mkVoteNotGenerated lv≡₁ lvr≤₁) =
mkVoteNotGenerated (trans lv≡ lv≡₁) (≤-trans (s≤s (≡⇒≤ lvr≤)) lvr≤₁)
transVoteNotGenerated {lvr≡?₁ = true} {true} (mkVoteNotGenerated lv≡ lvr≤) (mkVoteNotGenerated lv≡₁ lvr≤₁) =
mkVoteNotGenerated (trans lv≡ lv≡₁) (trans lvr≤ lvr≤₁)
glue-VoteGenerated-VoteNotGenerated
: ∀ {s₁ s₂ s₃ v} → VoteGenerated s₁ s₂ v → VoteNotGenerated s₂ s₃ true
→ VoteGenerated s₁ s₃ v
glue-VoteGenerated-VoteNotGenerated (mkVoteGenerated lv≡v (inj₁ (mkVoteOldGenerated lvr≡₁ lv≡₁))) (mkVoteNotGenerated lv≡ lvr≤) =
mkVoteGenerated (trans lv≡v lv≡) (inj₁ (mkVoteOldGenerated (trans lvr≡₁ lvr≤) (trans lv≡₁ lv≡)))
glue-VoteGenerated-VoteNotGenerated (mkVoteGenerated lv≡v (inj₂ (mkVoteNewGenerated lvr< lvr≡))) (mkVoteNotGenerated lv≡ lvr≤) =
mkVoteGenerated ((trans lv≡v lv≡)) (inj₂ (mkVoteNewGenerated (≤-trans lvr< (≡⇒≤ lvr≤)) (trans lvr≡ lvr≤)))
glue-VoteNotGenerated-VoteGenerated
: ∀ {s₁ s₂ s₃ v} → VoteNotGenerated s₁ s₂ true → VoteGenerated s₂ s₃ v
→ VoteGenerated s₁ s₃ v
glue-VoteNotGenerated-VoteGenerated (mkVoteNotGenerated lv≡ lvr≤) (mkVoteGenerated lv≡v (inj₁ (mkVoteOldGenerated lvr≡₁ lv≡₁))) =
mkVoteGenerated lv≡v (inj₁ (mkVoteOldGenerated (trans lvr≤ lvr≡₁) (trans lv≡ lv≡₁)))
glue-VoteNotGenerated-VoteGenerated (mkVoteNotGenerated lv≡ lvr≤) (mkVoteGenerated lv≡v (inj₂ (mkVoteNewGenerated lvr<₁ lvr≡₁))) =
mkVoteGenerated lv≡v (inj₂ (mkVoteNewGenerated (≤-trans (s≤s (≡⇒≤ lvr≤)) lvr<₁) lvr≡₁))
glue-VoteNotGenerated-VoteGeneratedNotSaved
: ∀ {s₁ s₂ s₃} → VoteNotGenerated s₁ s₂ true → VoteGeneratedNotSaved s₂ s₃
→ VoteGeneratedNotSaved s₁ s₃
glue-VoteNotGenerated-VoteGeneratedNotSaved vng (v , vg) =
v , glue-VoteNotGenerated-VoteGenerated vng vg
-- Properties for voting
module Voting where
open Invariants
VoteEpochIs : (vote : Vote) (e : Epoch) → Set
VoteEpochIs vote e = vote ^∙ vEpoch ≡ e
VoteRoundIs : (vote : Vote) (r : Round) → Set
VoteRoundIs vote r = vote ^∙ vRound ≡ r
record VoteMadeFromBlock (vote : Vote) (block : Block) : Set where
constructor mkVoteMadeFromBlock
field
epoch≡ : vote ^∙ vEpoch ≡ block ^∙ bEpoch
round≡ : vote ^∙ vRound ≡ block ^∙ bRound
proposedId≡ : vote ^∙ vProposedId ≡ block ^∙ bId
VoteMadeFromBlock⇒VoteEpochRoundIs : ∀ {v b} → VoteMadeFromBlock v b → VoteEpochIs v (b ^∙ bEpoch) × VoteRoundIs v (b ^∙ bRound)
VoteMadeFromBlock⇒VoteEpochRoundIs (mkVoteMadeFromBlock epoch≡ round≡ proposedID) = epoch≡ , round≡
VoteTriggeredByBlock : (vote : Vote) (block : Block) (new? : Bool) → Set
VoteTriggeredByBlock vote block true = VoteMadeFromBlock vote block
VoteTriggeredByBlock vote block false = VoteRoundIs vote (block ^∙ bRound)
record VoteGeneratedCorrect (pre post : RoundManager) (vote : Vote) (block : Block) : Set where
constructor mkVoteGeneratedCorrect
field
state : RoundManagerTransProps.VoteGenerated pre post vote
voteNew? = RoundManagerTransProps.isVoteNewGenerated pre post vote state
field
blockTriggered : VoteTriggeredByBlock vote block voteNew?
substVoteGeneratedCorrect
: ∀ {pre post vote} (block₁ block₂ : Block) → block₁ ≈Block block₂
→ VoteGeneratedCorrect pre post vote block₁ → VoteGeneratedCorrect pre post vote block₂
substVoteGeneratedCorrect block₁ block₂ bd≡ (mkVoteGeneratedCorrect state blockTriggered)
with state
...| RoundManagerTransProps.mkVoteGenerated lv≡v voteSrc
with voteSrc
...| Left vog rewrite bd≡ =
mkVoteGeneratedCorrect (RoundManagerTransProps.mkVoteGenerated lv≡v (Left vog)) blockTriggered
...| Right vng
with blockTriggered
...| mkVoteMadeFromBlock epoch≡ round≡ proposedID rewrite bd≡
= mkVoteGeneratedCorrect
(RoundManagerTransProps.mkVoteGenerated lv≡v (Right vng))
(mkVoteMadeFromBlock epoch≡ round≡ proposedID)
record VoteGeneratedUnsavedCorrect (pre post : RoundManager) (block : Block) : Set where
constructor mkVoteGeneratedUnsavedCorrect
field
vote : Vote
voteGenCorrect : VoteGeneratedCorrect pre post vote block
glue-VoteGeneratedCorrect-VoteNotGenerated
: ∀ {s₁ s₂ s₃ vote block}
→ VoteGeneratedCorrect s₁ s₂ vote block
→ RoundManagerTransProps.VoteNotGenerated s₂ s₃ true
→ VoteGeneratedCorrect s₁ s₃ vote block
glue-VoteGeneratedCorrect-VoteNotGenerated vgc@(mkVoteGeneratedCorrect vg@(RoundManagerTransProps.mkVoteGenerated lv≡v (inj₁ oldVG)) blockTriggered) vng =
mkVoteGeneratedCorrect (RoundManagerTransProps.glue-VoteGenerated-VoteNotGenerated vg vng) blockTriggered
glue-VoteGeneratedCorrect-VoteNotGenerated vgc@(mkVoteGeneratedCorrect vg@(RoundManagerTransProps.mkVoteGenerated lv≡v (inj₂ newVG)) blockTriggered) vng =
mkVoteGeneratedCorrect (RoundManagerTransProps.glue-VoteGenerated-VoteNotGenerated vg vng) blockTriggered
glue-VoteNotGenerated-VoteGeneratedCorrect
: ∀ {s₁ s₂ s₃ vote block}
→ RoundManagerTransProps.VoteNotGenerated s₁ s₂ true
→ VoteGeneratedCorrect s₂ s₃ vote block
→ VoteGeneratedCorrect s₁ s₃ vote block
glue-VoteNotGenerated-VoteGeneratedCorrect vng (mkVoteGeneratedCorrect vg@(RoundManagerTransProps.mkVoteGenerated lv≡v (inj₁ oldVG)) blockTriggered) =
mkVoteGeneratedCorrect (RoundManagerTransProps.glue-VoteNotGenerated-VoteGenerated vng vg) blockTriggered
glue-VoteNotGenerated-VoteGeneratedCorrect vng (mkVoteGeneratedCorrect vg@(RoundManagerTransProps.mkVoteGenerated lv≡v (inj₂ newVG)) blockTriggered) =
mkVoteGeneratedCorrect (RoundManagerTransProps.glue-VoteNotGenerated-VoteGenerated vng vg)
blockTriggered
glue-VoteNotGenerated-VoteGeneratedUnsavedCorrect
: ∀ {s₁ s₂ s₃ block}
→ RoundManagerTransProps.VoteNotGenerated s₁ s₂ true
→ VoteGeneratedUnsavedCorrect s₂ s₃ block
→ VoteGeneratedUnsavedCorrect s₁ s₃ block
glue-VoteNotGenerated-VoteGeneratedUnsavedCorrect vng (mkVoteGeneratedUnsavedCorrect vote voteGenCorrect) =
mkVoteGeneratedUnsavedCorrect vote (glue-VoteNotGenerated-VoteGeneratedCorrect vng voteGenCorrect)
-- The handler correctly voted (including state updates) on `block`, assuming
-- the safety data epoch matches the block epoch.
record VoteSentCorrect (pre post : RoundManager) (outs : List Output) (block : Block) : Set where
constructor mkVoteSentCorrect
field
vm : VoteMsg
pid : Author
voteMsgOuts : OutputProps.OneVote outs vm (pid ∷ [])
vgCorrect : VoteGeneratedCorrect pre post (vm ^∙ vmVote) block
open VoteGeneratedCorrect vgCorrect
-- The handler correctly did not vote on `block`
record VoteUnsentCorrect (pre post : RoundManager) (outs : List Output) (block : Block) (lvr≡? : Bool) : Set where
constructor mkVoteUnsentCorrect
field
noVoteMsgOuts : OutputProps.NoVotes outs
nvg⊎vgusc : RoundManagerTransProps.VoteNotGenerated pre post lvr≡? ⊎ VoteGeneratedUnsavedCorrect pre post block
glue-VoteNotGenerated-VoteUnsentCorrect
: ∀ {s₁ s₂ s₃ outs₁ outs₂ block lvr≡?}
→ RoundManagerTransProps.VoteNotGenerated s₁ s₂ true → OutputProps.NoVotes outs₁
→ VoteUnsentCorrect s₂ s₃ outs₂ block lvr≡?
→ VoteUnsentCorrect s₁ s₃ (outs₁ ++ outs₂) block lvr≡?
glue-VoteNotGenerated-VoteUnsentCorrect{outs₁ = outs₁} vng₁ nvo (mkVoteUnsentCorrect noVoteMsgOuts (inj₁ vng₂)) =
mkVoteUnsentCorrect (OutputProps.++-NoVotes outs₁ _ nvo noVoteMsgOuts) (inj₁ (RoundManagerTransProps.transVoteNotGenerated vng₁ vng₂))
glue-VoteNotGenerated-VoteUnsentCorrect{outs₁ = outs₁} vng₁ nvo (mkVoteUnsentCorrect noVoteMsgOuts (inj₂ vgus)) =
mkVoteUnsentCorrect ((OutputProps.++-NoVotes outs₁ _ nvo noVoteMsgOuts)) (inj₂ (glue-VoteNotGenerated-VoteGeneratedUnsavedCorrect vng₁ vgus))
-- The handler correctly attempted to vote on `block`, assuming the safety
-- data epoch matches the block epoch.
VoteAttemptCorrect : (pre post : RoundManager) (outs : List Output) (block : Block) → Set
VoteAttemptCorrect pre post outs block =
(∃[ lvr≡? ] VoteUnsentCorrect pre post outs block lvr≡?) ⊎ VoteSentCorrect pre post outs block
-- The voting process ended before `pssSafetyData-rm` could be updated
voteAttemptBailed : ∀ {rm block} outs → OutputProps.NoVotes outs → VoteAttemptCorrect rm rm outs block
voteAttemptBailed outs noVotesOuts = inj₁ (true , mkVoteUnsentCorrect noVotesOuts (inj₁ RoundManagerTransProps.reflVoteNotGenerated))
glue-VoteNotGenerated-VoteAttemptCorrect
: ∀ {s₁ s₂ s₃ outs₁ outs₂ block}
→ RoundManagerTransProps.VoteNotGenerated s₁ s₂ true → OutputProps.NoVotes outs₁
→ VoteAttemptCorrect s₂ s₃ outs₂ block
→ VoteAttemptCorrect s₁ s₃ (outs₁ ++ outs₂) block
glue-VoteNotGenerated-VoteAttemptCorrect{outs₁ = outs₁} vng nvo (inj₁ (lvr≡? , vusCorrect)) =
inj₁ (lvr≡? , glue-VoteNotGenerated-VoteUnsentCorrect{outs₁ = outs₁} vng nvo vusCorrect)
glue-VoteNotGenerated-VoteAttemptCorrect{outs₁ = outs₁} vng nvo (inj₂ (mkVoteSentCorrect vm pid voteMsgOuts vgCorrect)) =
inj₂ (mkVoteSentCorrect vm pid (OutputProps.++-NoVotes-OneVote outs₁ _ nvo voteMsgOuts) (glue-VoteNotGenerated-VoteGeneratedCorrect vng vgCorrect))
VoteAttemptEpochReq : ∀ {pre post outs block} → VoteAttemptCorrect pre post outs block → Set
VoteAttemptEpochReq (inj₁ (_ , mkVoteUnsentCorrect _ (inj₁ _))) =
⊤
VoteAttemptEpochReq{pre}{block = block} (inj₁ (_ , mkVoteUnsentCorrect _ (inj₂ _))) =
pre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ (block ^∙ bEpoch)
VoteAttemptEpochReq{pre}{block = block} (inj₂ _) =
pre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ (block ^∙ bEpoch)
voteAttemptEpochReq!
: ∀ {pre post outs block} → (vac : VoteAttemptCorrect pre post outs block)
→ pre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ block ^∙ bEpoch → VoteAttemptEpochReq vac
voteAttemptEpochReq! (inj₁ (_ , mkVoteUnsentCorrect _ (inj₁ _))) eq = tt
voteAttemptEpochReq! (inj₁ (_ , mkVoteUnsentCorrect _ (inj₂ _))) eq = eq
voteAttemptEpochReq! (inj₂ _) eq = eq
record VoteAttemptCorrectWithEpochReq (pre post : RoundManager) (outs : List Output) (block : Block) : Set where
constructor mkVoteAttemptCorrectWithEpochReq
field
voteAttempt : VoteAttemptCorrect pre post outs block
sdEpoch≡? : VoteAttemptEpochReq voteAttempt
voteAttemptCorrectAndSent⇒voteSentCorrect : ∀ {pre post outs block vm}
→ send (V vm) ∈ outputsToActions{pre} outs
→ VoteAttemptCorrectWithEpochReq pre post outs block
→ VoteSentCorrect pre post outs block
voteAttemptCorrectAndSent⇒voteSentCorrect{pre}{outs = outs} vm∈outs (mkVoteAttemptCorrectWithEpochReq (Left (_ , mkVoteUnsentCorrect noVoteMsgOuts _)) _) =
⊥-elim (sendVote∉actions{outs}{st = pre} (sym noVoteMsgOuts) vm∈outs)
voteAttemptCorrectAndSent⇒voteSentCorrect{pre}{outs = outs}{vm = vm} vm∈outs (mkVoteAttemptCorrectWithEpochReq (Right vsc) _) = vsc
| {
"alphanum_fraction": 0.6674340502,
"avg_line_length": 45.4145141451,
"ext": "agda",
"hexsha": "053ac88813632e7fdce3b665cb97eaffc806b9a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Properties/Util.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Properties/Util.agda",
"max_line_length": 157,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Properties/Util.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11823,
"size": 36922
} |
module UselessPrivateImport2 where
private
open import Common.Issue481ParametrizedModule Set
| {
"alphanum_fraction": 0.875,
"avg_line_length": 19.2,
"ext": "agda",
"hexsha": "053ea4b411e0574448138713c4b7995d55f2538b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/UselessPrivateImport2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/UselessPrivateImport2.agda",
"max_line_length": 51,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/UselessPrivateImport2.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 23,
"size": 96
} |
module ATPRepeteadConjecture where
-- This error is detected by TypeChecking.Monad.Signature.
postulate
D : Set
_≡_ : D → D → Set
p : ∀ d e → d ≡ e
-- The conjecture foo is rejected because it is repetead.
postulate foo : ∀ d e → d ≡ e
{-# ATP prove foo #-}
{-# ATP prove foo p #-}
| {
"alphanum_fraction": 0.6372881356,
"avg_line_length": 21.0714285714,
"ext": "agda",
"hexsha": "add326a2fcf64cfb76d89fccc7b06b28d25b2577",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPRepeteadConjecture.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPRepeteadConjecture.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPRepeteadConjecture.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 93,
"size": 295
} |
{-# OPTIONS --allow-exec #-}
open import Agda.Builtin.FromNat
open import Data.Bool.Base using (T; Bool; if_then_else_)
open import Data.String using (String; _++_; lines)
open import Data.Nat.Base using (ℕ)
open import Data.Fin using (Fin)
import Data.Fin.Literals as Fin
import Data.Nat.Literals as Nat
open import Data.Vec.Base using (Vec)
open import Data.Float.Base using (Float; _≤ᵇ_)
open import Data.List.Base using (List; []; _∷_)
open import Data.Unit.Base using (⊤; tt)
open import Relation.Nullary using (does)
open import Relation.Binary.Core using (Rel)
open import Reflection.Argument
open import Reflection.Term
open import Reflection.External
open import Reflection.TypeChecking.Monad
open import Reflection.TypeChecking.Monad.Syntax
open import Reflection.Show using (showTerm)
open import Vehicle.Utils
module Vehicle where
------------------------------------------------------------------------
-- Metadata
------------------------------------------------------------------------
VEHICLE_COMMAND : String
VEHICLE_COMMAND = "vehicle"
------------------------------------------------------------------------
-- Execution
------------------------------------------------------------------------
record EvaluateArgs : Set where
field
projectFile : String
networkUUID : String
evaluateCmd : EvaluateArgs → CmdSpec
evaluateCmd args = cmdSpec VEHICLE_COMMAND
( "evaluate"
∷ ("--databaseFile=" ++ projectFile)
∷ networkUUID
∷ []) ""
where open EvaluateArgs args
-- TODO
postulate evaluate : EvaluateArgs →
∀ {a b} {A : Set a} {B : Set b} →
A → B
------------------------------------------------------------------------
-- Checking
------------------------------------------------------------------------
record CheckArgs : Set where
field
projectFile : String
propertyUUID : String
checkCmd : CheckArgs → CmdSpec
checkCmd checkArgs = cmdSpec VEHICLE_COMMAND
( "check"
∷ ("--databaseFile=" ++ projectFile)
∷ ("--property=" ++ propertyUUID)
∷ []) ""
where open CheckArgs checkArgs
checkSuccessful : String → Bool
checkSuccessful output = "Valid" ⊆ output
postulate valid : ∀ {a} {A : Set a} → A
`valid : Term
`valid = def (quote valid) (hArg unknown ∷ [])
checkPropertyMacro : CheckArgs → Term → TC ⊤
checkPropertyMacro args hole = do
goal ← inferType hole
-- (showTerm goal)
output ← runCmdTC (checkCmd args)
if checkSuccessful output
then unify hole `valid
else typeError (strErr ("Error: " ++ output) ∷ [])
macro
checkProperty : CheckArgs → Term → TC ⊤
checkProperty = checkPropertyMacro
------------------------------------------------------------------------
-- Other
------------------------------------------------------------------------
instance
finNumber : ∀ {n} -> Number (Fin n)
finNumber {n} = Fin.number n
natNumber : Number ℕ
natNumber = Nat.number
ze : Fin 5
ze = 0
| {
"alphanum_fraction": 0.5611338798,
"avg_line_length": 26.8623853211,
"ext": "agda",
"hexsha": "361fb0adc2fcc7b38115ad458211bfa6f1dd240b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "src/agda/Vehicle.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "src/agda/Vehicle.agda",
"max_line_length": 72,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "src/agda/Vehicle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 648,
"size": 2928
} |
{-# OPTIONS --without-K #-}
module Types where
import Level
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary
--
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
U∼ : U → Set₁
U∼ u = Rel ⟦ u ⟧ (Level.zero)
record Typ : Set₁ where
field
carr : U
auto : U∼ carr
BOOL : U
BOOL = PLUS ONE ONE
FALSE TRUE : ⟦ BOOL ⟧
FALSE = inj₁ tt
TRUE = inj₂ tt
data ONE∼ : U∼ ONE where
id : ONE∼ tt tt
data BOOL∼ : U∼ BOOL where
idff : BOOL∼ FALSE FALSE
idft : BOOL∼ FALSE TRUE
idtf : BOOL∼ TRUE FALSE
idtt : BOOL∼ TRUE TRUE
--
{--
Then < Bool , ~* > is essentially < Unit , ~= >
Now we need to define what it means to say < U1, ~1> + < U2, ~2 > etc.
and then what it means for two types to be equivalent etc. etc. etc.
--}
| {
"alphanum_fraction": 0.5726055613,
"avg_line_length": 16.4576271186,
"ext": "agda",
"hexsha": "7ebaae9dd02bbb5afe8ab2a29386d487ebf46b9b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/2D/Types.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/2D/Types.agda",
"max_line_length": 70,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/2D/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 372,
"size": 971
} |
{-# OPTIONS --without-K #-}
module Pi1Examples where
open import PiU using (U; ONE)
open import PiLevel0 using (_⟷_; _◎_; _⊗_; id⟷;
swap₊; unite⋆l; unite⋆r;
swap⋆; uniti⋆l; uniti⋆r)
open import Pi0Examples using (BOOL)
open import PiLevel1 using (_⇔_; id⇔; trans⇔; _⊡_;
assoc◎l; swapl⋆⇔; assoc◎r; linv◎l; idl◎l; idr◎l; unitil⋆⇔l)
------------------------------------------------------------------------------
-- Better syntax for writing 2paths
infix 2 _▤
infixr 2 _⇔⟨_⟩_
_⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} →
(c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃)
_ ⇔⟨ α ⟩ β = trans⇔ α β
_▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c)
_▤ c = id⇔
------------------------------------------------------------------------------
-- a nice example of 2 paths
neg₁ neg₂ neg₃ neg₄ neg₅ : BOOL ⟷ BOOL
neg₁ = swap₊
neg₂ = id⟷ ◎ swap₊
neg₃ = swap₊ ◎ swap₊ ◎ swap₊
neg₄ = swap₊ ◎ id⟷
neg₅ = uniti⋆l ◎ swap⋆ ◎ (swap₊ ⊗ id⟷) ◎ swap⋆ ◎ unite⋆l
neg₆ = uniti⋆r ◎ (swap₊ {ONE} {ONE} ⊗ id⟷) ◎ unite⋆r
negEx : neg₅ ⇔ neg₁
negEx = uniti⋆l ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆l)))
⇔⟨ id⇔ ⊡ assoc◎l ⟩
uniti⋆l ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆l))
⇔⟨ id⇔ ⊡ (swapl⋆⇔ ⊡ id⇔) ⟩
uniti⋆l ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆l))
⇔⟨ id⇔ ⊡ assoc◎r ⟩
uniti⋆l ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆l)))
⇔⟨ id⇔ ⊡ (id⇔ ⊡ assoc◎l) ⟩
uniti⋆l ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆l))
⇔⟨ id⇔ ⊡ (id⇔ ⊡ (linv◎l ⊡ id⇔)) ⟩
uniti⋆l ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆l))
⇔⟨ id⇔ ⊡ (id⇔ ⊡ idl◎l) ⟩
uniti⋆l ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆l)
⇔⟨ assoc◎l ⟩
(uniti⋆l ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆l
⇔⟨ unitil⋆⇔l ⊡ id⇔ ⟩
(swap₊ ◎ uniti⋆l) ◎ unite⋆l
⇔⟨ assoc◎r ⟩
swap₊ ◎ (uniti⋆l ◎ unite⋆l)
⇔⟨ id⇔ ⊡ linv◎l ⟩
swap₊ ◎ id⟷
⇔⟨ idr◎l ⟩
swap₊ ▤
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.400885391,
"avg_line_length": 32.2698412698,
"ext": "agda",
"hexsha": "523d41f1eff9aedecab7f74a570e42d566908370",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Pi1Examples.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Pi1Examples.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Pi1Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1101,
"size": 2033
} |
module FamilyPattern where
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
postulate C : {A : Set} -> A -> Set
-- We can't solve unify x = y since the type is a meta variable.
subst : {A : Set}{x y : A} -> x == y -> C y -> C x
subst refl cx = cx
-- subst {A} refl cx = cx -- works
-- subst {x = x} .{x} refl cx = cx -- works
| {
"alphanum_fraction": 0.5270655271,
"avg_line_length": 23.4,
"ext": "agda",
"hexsha": "c4f29572ec642c806fe4eabcd5062ef15bffb7f0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/bugs/FamilyPattern.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/bugs/FamilyPattern.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/bugs/FamilyPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 123,
"size": 351
} |
open import Level hiding ( suc ; zero )
open import Algebra
module sym3n where
open import Symmetric
open import Data.Unit
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function
open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
open import Relation.Nullary
open import Data.Empty
open import Data.Product
open import Gutil
open import Putil
open import Solvable using (solvable)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Fin
open import Data.Fin.Permutation hiding (_∘ₚ_)
infixr 200 _∘ₚ_
_∘ₚ_ = Data.Fin.Permutation._∘ₚ_
sym3solvable : solvable (Symmetric 3)
solvable.dervied-length sym3solvable = 2
solvable.end sym3solvable x d = solved1 x d where
open import Data.List using ( List ; [] ; _∷_ )
open Solvable (Symmetric 3)
open import FLutil
open import Data.List.Fresh hiding ([_])
open import Relation.Nary using (⌊_⌋)
p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid
p0id = pleq _ _ refl
open import Data.List.Fresh.Relation.Unary.Any
open import FLComm
stage3FList : CommFListN 3 2 ≡ cons (zero :: zero :: zero :: f0) [] (Level.lift tt)
stage3FList = refl
solved1 : (x : Permutation 3 3) → deriving 2 x → x =p= pid
solved1 x dr = CommSolved 3 x ( CommFListN 3 2 ) stage3FList p0id solved2 where
solved2 : Any (perm→FL x ≡_) ( CommFListN 3 2 )
solved2 = CommStage→ 3 2 x dr
| {
"alphanum_fraction": 0.6974500345,
"avg_line_length": 27.9038461538,
"ext": "agda",
"hexsha": "ef6192515c9400199d5c3935555a7bc70e83662b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/sym3n.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/sym3n.agda",
"max_line_length": 86,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/sym3n.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 482,
"size": 1451
} |
{-# OPTIONS --cubical-compatible #-}
module WithoutK-PatternMatchingLambdas2 where
-- Equality defined with two indices.
data _≡_ {A : Set} : A → A → Set where
refl : ∀ x → x ≡ x
-- The --cubical-compatible option works with pattern matching lambdas.
K : (A : Set) (x : A) (P : x ≡ x → Set) → P (refl x) → (p : x ≡ x ) → P p
K = λ { A .x P pr (refl x) → pr }
| {
"alphanum_fraction": 0.5945205479,
"avg_line_length": 30.4166666667,
"ext": "agda",
"hexsha": "39d9c884e82badb77a535bca2a2e4dd2be835e34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK-PatternMatchingLambdas2.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK-PatternMatchingLambdas2.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK-PatternMatchingLambdas2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 131,
"size": 365
} |
module Sized.Parrot where
open import Data.Product
open import Data.String.Base
open import SizedIO.IOObject
open import SizedIO.Base
open import SizedIO.Console hiding (main)
open import SizedIO.ConsoleObject
open import NativeIO
open import Sized.SimpleCell hiding (program; main)
open import Size
record Wrap A : Set where
constructor wrap
field unwrap : A
parrotI = cellJ (Wrap String)
ParrotC : (i : Size) → Set
ParrotC i = ConsoleObject i parrotI
-- but reusing cellC from SimpleCell, as interface is ident!
-- class Parrot implements Cell {
-- Cell cell;
-- Parrot (Cell c) { cell = c; }
-- public String get() {
-- return "(" + cell.get() + ") is what parrot got";
-- }
-- public void put (String s) {
-- cell.put("parrot puts (" + s + ")");
-- }
-- }
-- parrotP is constructor for the consoleObject for interface (cellI String)
parrotP : ∀{i} (c : CellC i) → ParrotC i
(method (parrotP c) get) =
method c get >>= λ { (s , c') →
return (wrap ("(" ++ s ++ ") is what parrot got") , parrotP c' ) }
(method (parrotP c) (put (wrap s))) =
method c (put ("parrot puts (" ++ s ++ ")")) >>= λ { (_ , c') →
return (_ , parrotP c') }
-- public static void main (String[] args) {
-- Parrot c = new Parrot(new SimpleCell("Start"));
-- System.out.println(c.get());
-- c.put(args[1]);
-- System.out.println(c.get());
-- }
-- }
program : String → IOConsole ∞ Unit
program arg =
let c₀ = parrotP (cellP "Start") in
method c₀ get >>= λ{ (wrap s , c₁) →
exec1 (putStrLn s) >>
method c₁ (put (wrap arg)) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (wrap s' , c₃) →
exec1 (putStrLn s') }}}
main : NativeIO Unit
main = translateIOConsole (program "hello")
-- -}
| {
"alphanum_fraction": 0.5927374302,
"avg_line_length": 24.5205479452,
"ext": "agda",
"hexsha": "c2536213f778fdf88bb3910f39e7fca3897b3eab",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/Sized/Parrot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/Sized/Parrot.agda",
"max_line_length": 76,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/Sized/Parrot.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 537,
"size": 1790
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.FinWedge where
module _ {i} {I} (X : Fin I → Ptd i) where
{- the function for cofiber -}
finwedge-f : Fin I → Σ (Fin I) (de⊙ ∘ X)
finwedge-f = bigwedge-f X
FinWedge : Type i
FinWedge = BigWedge X
⊙FinWedge : Ptd i
⊙FinWedge = ⊙BigWedge X
module _ {i} {I} {X : Fin I → Ptd i} where
fwbase : FinWedge X
fwbase = bwbase
fwin : (<I : Fin I) → de⊙ (X <I) → FinWedge X
fwin = bwin
⊙fwin : (<I : Fin I) → X <I ⊙→ ⊙FinWedge X
⊙fwin = ⊙bwin
fwglue : (<I : Fin I) → fwbase == fwin <I (pt (X <I))
fwglue = cfglue
module _ {i} {I} {X : Ptd i} where
⊙fwproj-in : Fin I → Fin I → X ⊙→ X
⊙fwproj-in = ⊙bwproj-in Fin-has-dec-eq
module FinWedgeProj (<I : Fin I) = BigWedgeProj Fin-has-dec-eq {X = X} <I
fwproj : Fin I → FinWedge (λ _ → X) → de⊙ X
fwproj = FinWedgeProj.f
⊙fwproj : Fin I → ⊙FinWedge (λ _ → X) ⊙→ X
⊙fwproj <I = fwproj <I , idp
fwproj-fwin-diag : (<I : Fin I) → fwproj <I ∘ fwin <I ∼ idf (de⊙ X)
fwproj-fwin-diag <I = bwproj-bwin-diag Fin-has-dec-eq <I
fwproj-fwin-≠ : ∀ {<I <I'} → <I ≠ <I' → fwproj <I ∘ fwin <I' ∼ cst (pt X)
fwproj-fwin-≠ = bwproj-bwin-≠ Fin-has-dec-eq
module _ {i₀ i₁} {I} {X₀ : Fin I → Ptd i₀} {X₁ : Fin I → Ptd i₁}
(Xeq : ∀ <I → X₀ <I ⊙≃ X₁ <I) where
finwedge-span-emap-r : SpanEquiv (cofiber-span (finwedge-f X₀)) (cofiber-span (finwedge-f X₁))
finwedge-span-emap-r = bigwedge-span-emap-r Xeq
FinWedge-emap-r : FinWedge X₀ ≃ FinWedge X₁
FinWedge-emap-r = BigWedge-emap-r Xeq
⊙FinWedge-emap-r : ⊙FinWedge X₀ ⊙≃ ⊙FinWedge X₁
⊙FinWedge-emap-r = ⊙BigWedge-emap-r Xeq
module _ {i j} {I} {X : Ptd i} (<I : Fin I) where
abstract
fwproj-FinWedge-emap-r-lift :
fwproj {X = ⊙Lift {j = j} X} <I ∘ –> (FinWedge-emap-r (λ _ → ⊙lift-equiv {j = j}))
∼ lift {j = j} ∘ fwproj {X = X} <I
fwproj-FinWedge-emap-r-lift = bwproj-BigWedge-emap-r-lift Fin-has-dec-eq <I
| {
"alphanum_fraction": 0.5837173579,
"avg_line_length": 27.9,
"ext": "agda",
"hexsha": "b0cb8ec0c027645d195166d89ed88e698381702b",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/FinWedge.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/FinWedge.agda",
"max_line_length": 96,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/FinWedge.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 898,
"size": 1953
} |
open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; _⇒_ )
open import FRP.JS.Time using ( Time )
module FRP.JS.Product where
-- We define _∧_ directly, rather than as λ t → (A t × B t)
-- in order to make _∧_ invertable. (If we used the obvious defn,
-- (A ∧ B) would only be invertable if A and B were invertable.
infixr 2 _∧_
infixr 4 _,_
data _∧_ (A B : RSet) (t : Time) : Set where
_,_ : A t → B t → (A ∧ B) t
proj₁ : ∀ {A B} → ⟦ A ∧ B ⇒ A ⟧
proj₁ (a , b) = a
proj₂ : ∀ {A B} → ⟦ A ∧ B ⇒ B ⟧
proj₂ (a , b) = b
swap : ∀ {A B} → ⟦ A ∧ B ⇒ B ∧ A ⟧
swap (a , b) = (b , a)
| {
"alphanum_fraction": 0.547826087,
"avg_line_length": 23.9583333333,
"ext": "agda",
"hexsha": "fc515d8770cbdd144f71b359fa7afc8303977d51",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Product.agda",
"max_line_length": 65,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 251,
"size": 575
} |
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture
module Lec4 where
open import Lec1Done
open import Lec2Done
open import Lec3Done
-- the identity functor (the identity action on objects and arrows)
ID : {C : Category} -> C => C
ID = id~> where open Category CATEGORY
-- composition of functors (composition of actions on objects and arrows)
_>F>_ : {C D E : Category} -> (C => D) -> (D => E) -> (C => E)
F >F> G = F >~> G where open Category CATEGORY
-- EXAMPLES
data Maybe (X : Set) : Set where
yes : (x : X) -> Maybe X
no : Maybe X
{-# COMPILE GHC Maybe = data Maybe (Just | Nothing) #-}
maybe : {X Y : Set} -> (X -> Y) -> Maybe X -> Maybe Y
maybe f (yes x) = yes (f x)
maybe f no = no
MAYBE : SET => SET
MAYBE = record
{ F-Obj = Maybe
; F-map = maybe
; F-map-id~> = extensionality \ { (yes x) -> refl (yes x) ; no -> refl no }
-- extensionality \ { (yes x) -> refl (yes x) ; no -> refl no }
; F-map->~> = \ f g -> extensionality \ { (yes x) -> refl (yes (g (f x))) ; no -> refl no }
}
module MAYBE-CAT where
open Category SET
open _=>_ MAYBE
{-
unMaybe : {T : Set} -> Maybe T -> T
unMaybe (yes t) = t
unMaybe no = {!!}
-}
joinMaybe : {T : Set} -> Maybe (Maybe T) -> Maybe T
joinMaybe (yes mt) = mt
joinMaybe no = no
MAYBE-CAT : Category
MAYBE-CAT = record
{ Obj = Set
; _~>_ = \ S T -> S -> Maybe T
; id~> = yes
; _>~>_ = \ f g -> f >> (F-map g >> joinMaybe)
; law-id~>>~> = \ f -> refl f
; law->~>id~> = \ f -> extensionality \ x -> help f x
; law->~>>~> = \ f g h -> extensionality \ x -> yelp f g h x
} where
help : forall {S T} (f : S -> Maybe T)
(x : S) ->
joinMaybe (maybe yes (f x)) == f x
help f x with f x
help f x | yes y = refl (yes y)
help f x | no = refl no
yelp : forall {Q R S T}
(f : Q -> Maybe R) (g : R -> Maybe S)(h : S -> Maybe T)
(x : Q) ->
joinMaybe (maybe h (joinMaybe (maybe g (f x)))) ==
joinMaybe
(maybe (\ y → joinMaybe (maybe h (g y))) (f x))
yelp f g h x with f x
yelp f g h x | yes y = refl (joinMaybe (maybe h (g y)))
yelp f g h x | no = refl no
open MAYBE-CAT
module NATURAL-TRANSFORMATION {C D : Category} where
open Category
open _=>_
record _~~>_ (F G : C => D) : Set where
field
-- one operation
xf : {X : Obj C} -> _~>_ D (F-Obj F X) (F-Obj G X)
-- one law
naturality : {X Y : Obj C}(f : _~>_ C X Y) ->
_>~>_ D (F-map F f) (xf {Y})
==
_>~>_ D (xf {X}) (F-map G f)
module FUNCTOR-CP {C D E : Category} where
open _=>_
open Category
_>=>_ : C => D -> D => E -> C => E
F-Obj (F >=> G) = F-Obj F >> F-Obj G
F-map (F >=> G) = F-map F >> F-map G
F-map-id~> (F >=> G) =
F-map G (F-map F (id~> C))
=[ refl (F-map G) =$= F-map-id~> F >=
F-map G (id~> D)
=[ F-map-id~> G >=
id~> E
[QED]
F-map->~> (F >=> G) f g =
F-map G (F-map F (_>~>_ C f g))
=[ refl (F-map G) =$= F-map->~> F f g >=
F-map G (_>~>_ D (F-map F f) (F-map F g))
=[ F-map->~> G (F-map F f) (F-map F g) >=
_>~>_ E (F-map G (F-map F f)) (F-map G (F-map F g))
[QED]
open FUNCTOR-CP
open NATURAL-TRANSFORMATION public
open _~~>_ public
UNIT-MAYBE : ID ~~> MAYBE
xf UNIT-MAYBE = yes
naturality UNIT-MAYBE f = refl _
MULT-MAYBE : (MAYBE >=> MAYBE) ~~> MAYBE
MULT-MAYBE = record { xf = joinMaybe
; naturality = \ f -> extensionality \ {
(yes x) → refl (maybe f x)
; no → refl no } }
module MONAD {C : Category}(M : C => C) where
open Category C
open _=>_ M
record Monad : Set where
field
unit : ID ~~> M
mult : (M >=> M) ~~> M
unitMult : {X : Obj} -> (xf unit >~> xf mult) == id~> {F-Obj X}
multUnit : {X : Obj} -> (F-map (xf unit) >~> xf mult) == id~> {F-Obj X}
multMult : {X : Obj} -> (xf mult >~> xf mult) == (F-map (xf mult) >~> xf mult {X})
KLEISLI : Category
KLEISLI = record
{ Obj = Obj
; _~>_ = \ S T -> S ~> F-Obj T
; id~> = xf unit
; _>~>_ = \ f g -> f >~> F-map g >~> xf mult
; law-id~>>~> = \ f ->
xf unit >~> F-map f >~> xf mult
=< law->~>>~> _ _ _ ]=
(xf unit >~> F-map f) >~> xf mult
=< refl (_>~> xf mult) =$= naturality unit f ]=
(f >~> xf unit) >~> xf mult
=[ law->~>>~> _ _ _ >=
f >~> (xf unit >~> xf mult)
=[ refl (f >~>_) =$= unitMult >=
f >~> id~>
=[ law->~>id~> f >=
f [QED]
; law->~>id~> = \ f ->
f >~> (F-map (xf unit) >~> xf mult)
=[ refl (f >~>_) =$= multUnit >=
f >~> id~>
=[ law->~>id~> f >=
f [QED]
; law->~>>~> = \ f g h ->
(f >~> F-map g >~> xf mult) >~> F-map h >~> xf mult
=[ law->~>>~> _ _ _ >=
f >~> (F-map g >~> xf mult) >~> (F-map h >~> xf mult)
=[ refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ >=
f >~> F-map g >~> xf mult >~> F-map h >~> xf mult
=< refl (\ x -> _ >~> _ >~> x) =$= assocn (naturality mult _) ]=
f >~> F-map g >~> F-map (F-map h) >~> xf mult >~> xf mult
=[ refl (\ x -> _ >~> _ >~> _ >~> x) =$= multMult >=
f >~> F-map g >~> F-map (F-map h) >~> F-map (xf mult) >~> xf mult
=< refl (\ x -> _ >~> _ >~> x) =$= law->~>>~> _ _ _ ]=
f >~> F-map g >~> (F-map (F-map h) >~> F-map (xf mult)) >~> xf mult
=< refl (\ x -> _ >~> _ >~> x >~> _) =$= F-map->~> _ _ ]=
f >~> F-map g >~> F-map (F-map h >~> xf mult) >~> xf mult
=< refl (\ x -> _ >~> x) =$= law->~>>~> _ _ _ ]=
f >~> (F-map g >~> F-map (F-map h >~> xf mult)) >~> xf mult
=< refl (\ x -> _ >~> x >~> _) =$= F-map->~> _ _ ]=
f >~> F-map (g >~> F-map h >~> xf mult) >~> xf mult
[QED]
}
open MONAD public
MAYBE-Monad : Monad MAYBE
MAYBE-Monad = record
{ unit = UNIT-MAYBE
; mult = MULT-MAYBE
; unitMult = refl _
; multUnit = extensionality \ { (yes x) -> refl _ ; no -> refl _ }
; multMult = extensionality \ { (yes mmx) -> refl _ ; no -> refl _ }
}
data List (X : Set) : Set where
[] : List X
_,-_ : (x : X)(xs : List X) -> List X
{-# COMPILE GHC List = data [] ([] | (:)) #-}
list : {X Y : Set} -> (X -> Y) -> List X -> List Y
list f [] = []
list f (x ,- xs) = f x ,- list f xs
LIST : SET => SET
LIST = record
{ F-Obj = List
; F-map = list
; F-map-id~> = extensionality listId
; F-map->~> = \ f g -> extensionality (listCp f g)
} where
open Category SET
listId : {T : Set}(xs : List T) -> list id xs == xs
listId [] = refl []
listId (x ,- xs) = refl (_,-_ x) =$= listId xs
listCp : {R S T : Set} (f : R -> S) (g : S -> T) (xs : List R) →
list (f >~> g) xs == (list f >~> list g) xs
listCp f g [] = refl []
listCp f g (x ,- xs) = refl (_,-_ (g (f x))) =$= listCp f g xs
data Two : Set where tt ff : Two
{- BUILTIN BOOL Two -}
{- BUILTIN FALSE ff -}
{- BUILTIN TRUE tt -}
{-# COMPILE GHC Two = data Bool (True | False) #-}
data BitProcess (X : Set) : Set where -- in what way is X used?
stop : (x : X) -> BitProcess X -- stop with value x
send : (b : Two)(k : BitProcess X) -> BitProcess X -- send b, continue as k
recv : (kt kf : BitProcess X) -> BitProcess X -- receive bit, continue as
-- kt if tt, kf if ff
{-(-}
send1 : (b : Two) -> BitProcess One
send1 b = send b (stop <>)
{-)-}
{-(-}
recv1 : BitProcess Two
recv1 = recv (stop tt) (stop ff)
{-)-}
{-(-}
bpRun : forall {X} -> BitProcess X -- a process to run
-> List Two -- a list of bits waiting to be input
-> List Two -- the list of bits output
* Maybe -- and, if we don't run out of input
( X -- the resulting value
* List Two -- and the unused input
)
bpRun (stop x) bs = [] , yes (x , bs)
bpRun (send b px) bs = let os , mz = bpRun px bs in (b ,- os) , mz
bpRun (recv pxt pxf) [] = [] , no
bpRun (recv pxt pxf) (tt ,- bs) = bpRun pxt bs
bpRun (recv pxt pxf) (ff ,- bs) = bpRun pxf bs
{-)-}
example = bpRun recv1 (tt ,- [])
bitProcess : {X Y : Set} -> (X -> Y) -> BitProcess X -> BitProcess Y
bitProcess f (stop x) = stop (f x)
bitProcess f (send b k) = send b (bitProcess f k)
bitProcess f (recv kt kf) = recv (bitProcess f kt) (bitProcess f kf)
BITPROCESS : SET => SET -- actions on *values* lift to processes
BITPROCESS = record
{ F-Obj = BitProcess
; F-map = bitProcess
; F-map-id~> = extensionality helpId
; F-map->~> = \ f g -> extensionality (helpCp f g)
} where
open Category SET
helpId : {T : Set} (p : BitProcess T) -> bitProcess id p == p
helpId (stop x) = refl (stop x)
helpId (send b k) rewrite helpId k = refl (send b k)
helpId (recv kt kf) rewrite helpId kt | helpId kf = refl (recv kt kf)
helpCp : {R S T : Set} (f : R -> S)(g : S -> T) (p : BitProcess R) ->
bitProcess (f >~> g) p == (bitProcess f >~> bitProcess g) p
helpCp f g (stop x) = refl (stop (g (f x)))
helpCp f g (send b k) rewrite helpCp f g k = refl (send b (bitProcess g (bitProcess f k)))
helpCp f g (recv kt kf) rewrite helpCp f g kt | helpCp f g kf
= refl (recv (bitProcess g (bitProcess f kt)) (bitProcess g (bitProcess f kf)))
{-(-}
UNIT-BP : ID ~~> BITPROCESS
UNIT-BP = record { xf = stop
; naturality = \ f -> refl _
}
{-)-}
join-BP : {X : Set} -> BitProcess (BitProcess X) -> BitProcess X
join-BP (stop px) = px
join-BP (send b ppx) = send b (join-BP ppx)
join-BP (recv ppxt ppxf) = recv (join-BP ppxt) (join-BP ppxf)
{-(-}
MULT-BP : (BITPROCESS >=> BITPROCESS) ~~> BITPROCESS
MULT-BP = record
{ xf = join-BP
; naturality = \ f -> extensionality (help f )
} where
help : ∀ {X Y} (f : X → Y) (x : BitProcess (BitProcess X)) →
join-BP (bitProcess (bitProcess f) x) == bitProcess f (join-BP x)
help f (stop x) = refl (bitProcess f x)
help f (send b p) rewrite help f p
= refl (send b (bitProcess f (join-BP p)))
help f (recv pt pf) rewrite help f pf | help f pt
= refl (recv (bitProcess f (join-BP pt)) (bitProcess f (join-BP pf)))
{-)-}
{-(-}
BITPROCESS-Monad : Monad BITPROCESS
BITPROCESS-Monad = record
{ unit = UNIT-BP
; mult = MULT-BP
; unitMult = refl id
; multUnit = extensionality help
; multMult = extensionality yelp
} where
help : ∀ {X} (x : BitProcess X) → join-BP (bitProcess stop x) == x
help (stop x) = refl (stop x)
help (send b p) rewrite help p = refl (send b p)
help (recv pt pf) rewrite help pt | help pf = refl (recv pt pf)
yelp : ∀ {X} (x : BitProcess (BitProcess (BitProcess X))) →
join-BP (join-BP x) == join-BP (bitProcess join-BP x)
yelp (stop x) = refl _
yelp (send b p) rewrite yelp p = refl _
yelp (recv pt pf) rewrite yelp pt | yelp pf = refl _
{-)-}
module BIND {F : SET => SET}(M : Monad F) where
open _=>_ F public
open Monad M public
open Category KLEISLI public
{-(-}
_>>=_ : {S T : Set} -> F-Obj S -> (S -> F-Obj T) -> F-Obj T
fs >>= k = (id >~> k) fs
{-)-}
open BIND BITPROCESS-Monad
bpEcho : BitProcess One
bpEcho = recv1 >>= \ b ->
send1 b
BP-SEM : Set -> Set
BP-SEM X = List Two -- a list of bits waiting to be input
-> List Two -- the list of bits output
* Maybe -- and, if we don't run out of input
( X -- the resulting value
* List Two -- and the unused input
)
record _**_ (S T : Set) : Set where
constructor _,_
field
outl : S
outr : T
open _**_
{-# COMPILE GHC _**_ = data (,) ((,)) #-}
infixr 4 _**_ _,_
postulate -- Haskell has a monad for doing IO, which we use at the top level
IO : Set -> Set
mainLoop : {S : Set} -> S -> (S -> Two -> (List Two ** Maybe S)) -> IO One
mainOutIn : {S : Set} -> S -> (S -> (List Two ** Maybe (Two -> S))) -> IO One
{-# BUILTIN IO IO #-}
{-# COMPILE GHC IO = type IO #-}
{-# COMPILE GHC mainLoop = (\ _ -> Lec4HS.mainLoop) #-}
{-# COMPILE GHC mainOutIn = (\ _ -> Lec4HS.mainOutIn) #-}
{-# FOREIGN GHC import qualified Lec4HS #-}
STATE : Set
STATE = Two -> BitProcess One
step : STATE -> Two -> (List Two ** Maybe STATE)
step s b = go (s b)
where
go : BitProcess One → List Two ** Maybe (Two → BitProcess One)
go (stop <>) = [] , no
go (send b p) with go p
... | bs , ms = (b ,- bs) , ms
go (recv pt pf) = [] , yes \ { tt → pt ; ff → pf }
myState : STATE
myState tt = bpEcho >>= \ _ -> bpEcho
myState ff = bpEcho
{-
main : IO One
main = mainLoop myState step
-}
example2 = bpRun (myState ff) (tt ,- ff ,- [])
outIn : BitProcess One -> List Two ** Maybe (Two -> BitProcess One)
outIn (stop <>) = [] , no
outIn (send b p) with outIn p
... | os , mk = (b ,- os) , mk
outIn (recv pt pf) = [] , yes \ { tt → pt ; ff → pf }
main : IO One
main = mainOutIn (send1 ff >>= \ _ -> bpEcho >>= \ _ -> bpEcho) outIn
_-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set)
(S -:> T) i = S i -> T i
[_] : {I : Set} -> (I -> Set) -> Set
[ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i
_->SET : Set -> Category
I ->SET = record
{ Obj = I -> Set -- I-indexed sets
; _~>_ = \ S T -> [ S -:> T ] -- index-respecting functions
; id~> = \ i -> id -- the identity at every index
; _>~>_ = \ f g i -> f i >> g i -- composition at every index
; law-id~>>~> = refl -- and the laws are very boring
; law->~>id~> = refl
; law->~>>~> = \ f g h -> refl _
}
All : {X : Set} -> (X -> Set) -> (List X -> Set)
All P [] = One
All P (x ,- xs) = P x * All P xs
example3 : All (Vec Two) (1 ,- 2 ,- 3 ,- [])
example3 = (tt ,- [])
, (tt ,- ff ,- [])
, (tt ,- ff ,- tt ,- [])
, <>
record _|>_ (I O : Set) : Set where
field
Cuts : O -> Set -- given o : O, how may we cut it?
inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are
-- the shapes of its pieces?
-- Let us have some examples right away!
copy : Nat -> List One
copy zero = []
copy (suc n) = <> ,- copy n
VecCut : One |> Nat -- cut numbers into boring pieces
VecCut = record
{ Cuts = \ n -> One -- there is one way to cut n
; inners = \ {n} _ -> copy n -- and you get n pieces
}
-- Here's a less boring example. You can cut a number into *two* pieces
-- by finding two numbers that add to it.
NatCut : Nat |> Nat
NatCut = record
{ Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn
; inners = \ { (m , n , _) -> m ,- n ,- [] }
}
-- The point is that we can make data structures that record how we
-- built an O-shaped thing from I-shaped pieces.
record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where
constructor _8><_ -- "scissors"
open _|>_ C
field
cut : Cuts o -- we decide how to cut o
pieces : All P (inners cut) -- then we give all the pieces.
infixr 3 _8><_
example4 : Cutting NatCut (Vec Two) 5
example4 = (3 , 2 , refl 5) 8>< ((tt ,- tt ,- tt ,- []) , (ff ,- ff ,- []) , <>)
data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where
-- either...
tile : T i -> Interior C T i -- we have a tile that fits, or...
<_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces.
Interior C T i
MayC : One |> One
MayC = record { Cuts = \ _ -> One ; inners = \ _ -> [] }
Maybe' : Set -> Set
Maybe' X = Interior MayC (\ _ -> X) <>
yes' : {X : Set} -> X -> Maybe' X
yes' x = tile x
no' : {X : Set} -> Maybe' X
no' = < <> 8>< <> >
BPC : One |> One
BPC = record { Cuts = \ _ -> Two + One
; inners = \ { (inl x) → <> ,- []
; (inr x) → <> ,- <> ,- []
}
}
data Type : Set where nat two : Type
Val : Type -> Set
Val nat = Nat
Val two = Two
data Op : Type -> Set where
val : {T : Type} -> Val T -> Op T
add : Op nat
if : {T : Type} -> Op T
Syntax : Type |> Type
_|>_.Cuts Syntax T = Op T
_|>_.inners Syntax {T} (val x) = []
_|>_.inners Syntax {.nat} add = nat ,- nat ,- []
_|>_.inners Syntax {T} if = two ,- T ,- T ,- []
eval : {T : Type}{X : Type -> Set} -> Interior Syntax X T ->
({T : Type} -> X T -> Val T) -> Val T
eval (tile x) g = g x
eval < val v 8>< <> > g = v
eval < add 8>< e1 , e2 , <> > g = eval e1 g +N eval e2 g
eval < if 8>< e1 , e2 , e3 , <> > g with eval e1 g
eval < if 8>< e1 , e2 , e3 , <> > g | tt = eval e2 g
eval < if 8>< e1 , e2 , e3 , <> > g | ff = eval e3 g
| {
"alphanum_fraction": 0.4783621644,
"avg_line_length": 31.2732240437,
"ext": "agda",
"hexsha": "31bab9ded5314949c629f47299cf3f70319f6a3e",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda",
"max_line_length": 93,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec4.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 5982,
"size": 17169
} |
------------------------------------------------------------------------
-- Code for converting Vec n A → B to and from n-ary functions
------------------------------------------------------------------------
module Data.Vec.N-ary where
open import Data.Nat
open import Data.Vec
open import Data.Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- N-ary functions
N-ary : ℕ → Set → Set → Set
N-ary zero A B = B
N-ary (suc n) A B = A → N-ary n A B
------------------------------------------------------------------------
-- Conversion
curryⁿ : ∀ {n A B} → (Vec A n → B) → N-ary n A B
curryⁿ {zero} f = f []
curryⁿ {suc n} f = λ x → curryⁿ (f ∘ _∷_ x)
_$ⁿ_ : ∀ {n A B} → N-ary n A B → (Vec A n → B)
f $ⁿ [] = f
f $ⁿ (x ∷ xs) = f x $ⁿ xs
------------------------------------------------------------------------
-- N-ary function equality
Eq : ∀ {A B} n → Rel B → (f g : N-ary n A B) → Set
Eq zero _∼_ f g = f ∼ g
Eq (suc n) _∼_ f g = ∀ x → Eq n _∼_ (f x) (g x)
-- A variant where all the arguments are implicit (hidden).
Eqʰ : ∀ {A B} n → Rel B → (f g : N-ary n A B) → Set
Eqʰ zero _∼_ f g = f ∼ g
Eqʰ (suc n) _∼_ f g = ∀ {x} → Eqʰ n _∼_ (f x) (g x)
------------------------------------------------------------------------
-- Some lemmas
-- The functions curryⁿ and _$ⁿ_ are inverses.
left-inverse : ∀ {n A B} (f : Vec A n → B) →
∀ xs → curryⁿ f $ⁿ xs ≡ f xs
left-inverse f [] = refl
left-inverse f (x ∷ xs) = left-inverse (f ∘ _∷_ x) xs
right-inverse : ∀ {A B} n (f : N-ary n A B) →
Eq n _≡_ (curryⁿ (_$ⁿ_ {n} f)) f
right-inverse zero f = refl
right-inverse (suc n) f = λ x → right-inverse n (f x)
-- Conversion preserves equality.
curryⁿ-pres : ∀ {n A B _∼_} (f g : Vec A n → B) →
(∀ xs → f xs ∼ g xs) →
Eq n _∼_ (curryⁿ f) (curryⁿ g)
curryⁿ-pres {zero} f g hyp = hyp []
curryⁿ-pres {suc n} f g hyp = λ x →
curryⁿ-pres (f ∘ _∷_ x) (g ∘ _∷_ x) (λ xs → hyp (x ∷ xs))
curryⁿ-pres⁻¹ : ∀ {n A B _∼_} (f g : Vec A n → B) →
Eq n _∼_ (curryⁿ f) (curryⁿ g) →
∀ xs → f xs ∼ g xs
curryⁿ-pres⁻¹ f g hyp [] = hyp
curryⁿ-pres⁻¹ f g hyp (x ∷ xs) =
curryⁿ-pres⁻¹ (f ∘ _∷_ x) (g ∘ _∷_ x) (hyp x) xs
appⁿ-pres : ∀ {n A B _∼_} (f g : N-ary n A B) →
Eq n _∼_ f g →
(xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)
appⁿ-pres f g hyp [] = hyp
appⁿ-pres f g hyp (x ∷ xs) = appⁿ-pres (f x) (g x) (hyp x) xs
appⁿ-pres⁻¹ : ∀ {n A B _∼_} (f g : N-ary n A B) →
((xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) →
Eq n _∼_ f g
appⁿ-pres⁻¹ {zero} f g hyp = hyp []
appⁿ-pres⁻¹ {suc n} f g hyp = λ x →
appⁿ-pres⁻¹ (f x) (g x) (λ xs → hyp (x ∷ xs))
-- Eq and Eqʰ are equivalent.
Eq-to-Eqʰ : ∀ {A B} n {_∼_ : Rel B} {f g : N-ary n A B} →
Eq n _∼_ f g → Eqʰ n _∼_ f g
Eq-to-Eqʰ zero eq = eq
Eq-to-Eqʰ (suc n) eq = Eq-to-Eqʰ n (eq _)
Eqʰ-to-Eq : ∀ {A B} n {_∼_ : Rel B} {f g : N-ary n A B} →
Eqʰ n _∼_ f g → Eq n _∼_ f g
Eqʰ-to-Eq zero eq = eq
Eqʰ-to-Eq (suc n) eq = λ _ → Eqʰ-to-Eq n eq
| {
"alphanum_fraction": 0.4362437186,
"avg_line_length": 32.1616161616,
"ext": "agda",
"hexsha": "d4734d612b2f638df646610b23a00a49e4d7bd81",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Vec/N-ary.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Vec/N-ary.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Vec/N-ary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1273,
"size": 3184
} |
{-# OPTIONS --without-K #-}
module CauchyProofsS where
-- Proofs about permutations defined in module Cauchy (multiplicative2)
open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid;
proof-irrelevance; module ≡-Reasoning)
open import Relation.Binary.PropositionalEquality.TrustMe
using (trustMe)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Data.Nat.Properties
using (m≤m+n; n≤m+n; n≤1+n; cancel-+-left; cancel-*-right; strictTotalOrder;
cancel-*-right-≤; ≰⇒>; ¬i+1+j≤i; 1+n≰n; ≤⇒pred≤)
open import Data.Nat.Properties.Simple
using (+-right-identity; +-suc; +-assoc; +-comm;
*-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc)
open import Data.Nat.DivMod using (DivMod; result; _divMod_; _div_; _mod_)
open import Relation.Binary
using (Rel; Decidable; Setoid; StrictTotalOrder; IsStrictTotalOrder;
tri<; tri≈; tri>)
open import Relation.Binary.Core using (Transitive; _⇒_)
open import Data.String using (String)
renaming (_++_ to _++S_)
open import Data.Nat.Show using (show)
open import Data.Bool using (Bool; false; true; _∨_)
open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_;
_≥_; z≤n; s≤s; _≟_; _≤?_; ≤-pred; module ≤-Reasoning)
open import Data.Fin
using (Fin; zero; suc; toℕ; fromℕ; fromℕ≤; _ℕ-_; _≺_; reduce≥;
raise; inject+; inject₁; inject≤; _≻toℕ_; #_)
renaming (_+_ to _F+_)
open import Data.Fin.Properties
using (bounded; inject+-lemma; to-from; toℕ-injective; inject≤-lemma;
toℕ-fromℕ≤; fromℕ≤-toℕ)
open import Data.Vec.Properties
using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘;
tabulate-allFin; allFin-map; lookup-++-inject+; lookup-++-≥;
module UsingVectorEquality)
open import Data.Product using (Σ; swap)
open import Data.List
using (List; []; _∷_; _∷ʳ_; foldl; replicate; reverse; downFrom;
concatMap; gfilter; initLast; InitLast; _∷ʳ'_)
renaming (_++_ to _++L_; map to mapL; concat to concatL; zip to zipL)
open import Data.List.NonEmpty
using (List⁺; [_]; _∷⁺_; head; last; _⁺++_)
renaming (toList to nonEmptyListtoList; _∷ʳ_ to _n∷ʳ_; tail to ntail)
open import Data.List.Any using (Any; here; there; any; module Membership)
open import Data.Maybe using (Maybe; nothing; just; maybe′)
open import Data.Vec
using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt;
_[_]≔_; allFin; toList)
renaming (_++_ to _++V_; map to mapV; concat to concatV)
open import Function using (id; _∘_; _$_; _∋_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import DivModUtils using (mod-lemma)
open import Proofs
open import Cauchy
open import Perm
open import CauchyProofs
open import CauchyProofsT
------------------------------------------------------------------------------
-- Main lemma swap⋆idemp
subst-allFin : ∀ {m n} → (eq : m ≡ n) → subst Cauchy eq (allFin m) ≡ allFin n
subst-allFin refl = refl
concat-simplify : {A : Set} → (m n : ℕ) → (f : Fin (suc m) → Vec A (suc n)) →
concatV (mapV f (allFin (suc m))) ≡
f zero ++V concatV (mapV (f ∘ suc) (allFin m))
concat-simplify m n f =
begin (concatV (mapV f (allFin (suc m)))
≡⟨ cong
(λ x → concatV (mapV f x))
(allFin-map m) ⟩
concatV (mapV f (zero ∷ mapV suc (allFin m)))
≡⟨ refl ⟩
concatV (f zero ∷ mapV f (mapV suc (allFin m)))
≡⟨ cong (λ x → concatV (f zero ∷ x)) (sym (map-∘ f suc (allFin m))) ⟩
f zero ++V concatV (mapV (λ a → f (suc a)) (allFin m)) ∎)
where open ≡-Reasoning
concat-simplify-inject : {A : Set} → (m n : ℕ) (i : Fin (suc (suc n))) →
(f : Fin (suc (suc m)) → Vec A (suc (suc n))) →
lookup
(inject+ (suc m * suc (suc n)) i)
(concatV (mapV f (allFin (suc (suc m))))) ≡
lookup i (f zero)
concat-simplify-inject m n i f =
begin (lookup
(inject+ (suc m * suc (suc n)) i)
(concatV (mapV f (allFin (suc (suc m)))))
≡⟨ cong
(lookup (inject+ (suc m * suc (suc n)) i))
(concat-simplify (suc m) (suc n) f) ⟩
lookup
(inject+ (suc m * suc (suc n)) i)
(f zero ++V concatV (mapV (λ a → f (suc a)) (allFin (suc m))))
≡⟨ lookup-++-inject+
(f zero) (concatV (mapV (λ a → f (suc a)) (allFin (suc m)))) i ⟩
lookup i (f zero) ∎)
where open ≡-Reasoning
concat-simplify-raise : {A : Set} → (m n : ℕ) (i : Fin (suc m * suc (suc n))) →
(f : Fin (suc (suc m)) → Vec A (suc (suc n))) →
lookup
(raise (suc (suc n)) i)
(concatV (mapV f (allFin (suc (suc m))))) ≡
lookup i (concatV (mapV (λ a → f (suc a)) (allFin (suc m))))
concat-simplify-raise m n i f =
begin (lookup
(raise (suc (suc n)) i)
(concatV (mapV f (allFin (suc (suc m)))))
≡⟨ cong
(lookup (raise (suc (suc n)) i))
(concat-simplify (suc m) (suc n) f) ⟩
lookup
(raise (suc (suc n)) i)
(f zero ++V concatV (mapV (λ a → f (suc a)) (allFin (suc m))))
≡⟨ lookup-++-raise
(f zero) (concatV (mapV (λ a → f (suc a)) (allFin (suc m)))) i ⟩
lookup i (concatV (mapV (λ a → f (suc a)) (allFin (suc m)))) ∎)
where open ≡-Reasoning
lookup-subst-1 : ∀ {m m'}
(i : Fin m') (xs : Vec (Fin m) m) (eq : m ≡ m') (eq' : m' ≡ m)
(irr : sym eq ≡ eq') →
lookup i (subst (λ s → Vec (Fin s) s) eq xs) ≡
subst Fin eq (lookup (subst Fin eq' i) xs)
lookup-subst-1 i xs refl .refl refl = refl
subst-inject-mod : ∀ {n m m'} → (eq : suc (suc m) ≡ suc (suc m')) →
subst Fin eq (inject≤ (n mod (suc m)) (i≤si (suc m))) ≡
inject≤ (n mod (suc m')) (i≤si (suc m'))
subst-inject-mod refl = refl
cmp = IsStrictTotalOrder.compare
(StrictTotalOrder.isStrictTotalOrder strictTotalOrder)
max-b-d : (m n : ℕ) → (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) →
(p= : suc (toℕ b * suc (suc n) + toℕ d) ≡ suc (suc m) * suc (suc n)) →
(toℕ b ≡ suc m × toℕ d ≡ suc n)
max-b-d m n b d p= with cmp (toℕ b) (suc m) | cmp (toℕ d) (suc n)
max-b-d m n b d p= | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (1+n≰n contra)
where contra = begin (1 + suc (toℕ b * suc (suc n) + toℕ d)
≡⟨ cong suc (sym (+-suc (toℕ b * suc (suc n)) (toℕ d))) ⟩
1 + (toℕ b * suc (suc n) + suc (toℕ d))
≡⟨ sym (+-suc (toℕ b * suc (suc n)) (suc (toℕ d))) ⟩
toℕ b * suc (suc n) + suc (suc (toℕ d))
≤⟨ cong+l≤ (s≤s a₁) (toℕ b * suc (suc n)) ⟩
toℕ b * suc (suc n) + suc (suc n)
≡⟨ +-comm (toℕ b * suc (suc n)) (suc (suc n)) ⟩
suc (toℕ b) * suc (suc n)
≤⟨ cong*r≤ (≰⇒> ¬c) (suc (suc n)) ⟩
suc (suc m) * suc (suc n)
≡⟨ sym p= ⟩
suc (toℕ b * suc (suc n) + toℕ d) ∎)
where open ≤-Reasoning
max-b-d m n b d p= | tri< a ¬b= ¬c | tri≈ ¬a d= ¬c₁ =
⊥-elim (¬b= (cancel-+-left 1
(cancel-*-right (suc (toℕ b)) (suc (suc m)) {suc n} contra)))
where
contra : suc (toℕ b) * suc (suc n) ≡ suc (suc m) * suc (suc n)
contra = begin (suc (toℕ b) * suc (suc n)
≡⟨ refl ⟩
suc (suc n) + toℕ b * suc (suc n)
≡⟨ +-comm (suc (suc n)) (toℕ b * suc (suc n)) ⟩
toℕ b * suc (suc n) + suc (suc n)
≡⟨ +-suc (toℕ b * suc (suc n)) (suc n) ⟩
suc (toℕ b * suc (suc n) + suc n)
≡⟨ cong (λ x → suc (toℕ b * suc (suc n) + x)) (sym d=) ⟩
suc (toℕ b * suc (suc n) + toℕ d)
≡⟨ p= ⟩
suc (suc m) * suc (suc n) ∎)
where open ≡-Reasoning
max-b-d m n b d p= | tri< a ¬b ¬c | tri> ¬a ¬b₁ c =
⊥-elim (1+n≰n (trans≤ (bounded d) c))
max-b-d m n b d p= | tri≈ ¬a b= ¬c | tri< a ¬d= ¬c₁ =
⊥-elim (¬d= (cancel-+-left 1
(cancel-+-left (suc m * suc (suc n)) contra)))
where
contra : suc m * suc (suc n) + suc (toℕ d) ≡ suc m * suc (suc n) + suc (suc n)
contra = begin (suc m * suc (suc n) + suc (toℕ d)
≡⟨ cong (λ x → x * suc (suc n) + suc (toℕ d)) (sym b=) ⟩
toℕ b * suc (suc n) + suc (toℕ d)
≡⟨ +-suc (toℕ b * suc (suc n)) (toℕ d) ⟩
suc (toℕ b * suc (suc n) + toℕ d)
≡⟨ p= ⟩
suc (suc m) * suc (suc n)
≡⟨ +-comm (suc (suc n)) (suc m * suc (suc n)) ⟩
suc m * suc (suc n) + suc (suc n) ∎)
where open ≡-Reasoning
max-b-d m n b d p= | tri≈ ¬a b₁ ¬c | tri≈ ¬a₁ b₂ ¬c₁ = (b₁ , b₂)
max-b-d m n b d p= | tri≈ ¬a b₁ ¬c | tri> ¬a₁ ¬b c =
⊥-elim (1+n≰n (trans≤ (bounded d) c))
max-b-d m n b d p= | tri> ¬a ¬b c | tri< a ¬b₁ ¬c =
⊥-elim (1+n≰n (trans≤ (bounded b) c))
max-b-d m n b d p= | tri> ¬a ¬b c | tri≈ ¬a₁ b₁ ¬c =
⊥-elim (1+n≰n (trans≤ (bounded b) c))
max-b-d m n b d p= | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ =
⊥-elim (1+n≰n (trans≤ (bounded d) c₁))
subst-fin : (a b : ℕ) → (eq : suc a ≡ suc b) → subst Fin eq (fromℕ a) ≡ fromℕ b
subst-fin a .a refl = refl
lookup-fromℕ-allFin : {A : Set} → (n : ℕ) → (f : Fin (suc n) → A) →
lookup (fromℕ n) (tabulate {suc n} f) ≡ f (fromℕ n)
lookup-fromℕ-allFin 0 f = refl
lookup-fromℕ-allFin (suc n) f = lookup-fromℕ-allFin n (f ∘ suc)
fin=1 : (m n : ℕ) →
fromℕ (suc m + suc n * suc (suc m)) ≡
fromℕ (suc (m + suc (suc (m + n * suc (suc m)))))
fin=1 m n = toℕ-injective p
where p = begin (toℕ (fromℕ (suc m + suc n * suc (suc m)))
≡⟨ to-from (suc m + suc n * suc (suc m)) ⟩
suc m + suc n * suc (suc m)
≡⟨ refl ⟩
suc (m + suc (suc (m + n * suc (suc m))))
≡⟨ sym (to-from (suc (m + suc (suc (m + n * suc (suc m)))))) ⟩
toℕ (fromℕ (suc (m + suc (suc (m + n * suc (suc m)))))) ∎)
where open ≡-Reasoning
concat-map-map-tabulate : (m n : ℕ) → (f : Fin m × Fin n → Fin (m * n)) →
concatV (mapV (λ b → mapV (λ d → f (b , d)) (allFin n)) (allFin m)) ≡
tabulate (λ k → f (fin-project m n k))
concat-map-map-tabulate m n f =
begin (concatV (mapV (λ b → mapV (λ d → f (b , d)) (allFin n)) (allFin m))
≡⟨ cong concatV (sym (tabulate-∘ (λ b → mapV (λ d → f (b , d)) (allFin n)) id)) ⟩
concatV (tabulate (λ b → mapV (λ d → f (b , d)) (allFin n)))
≡⟨ cong concatV
(finext (λ b → sym (tabulate-∘ (λ d → f (b , d)) id))) ⟩
concatV (tabulate (λ b → tabulate (λ d → f (b , d))))
≡⟨ tabulate-concat f ⟩
tabulate (λ k → f (fin-project m n k)) ∎)
where open ≡-Reasoning
fin-project-2 : (n m : ℕ) →
fin-project (suc (suc n)) (suc (suc m)) (fromℕ (suc m + suc n * suc (suc m)))
≡ (fromℕ (suc n) , fromℕ (suc m))
fin-project-2 n m with toℕ (fromℕ (suc m + suc n * suc (suc m))) divMod (suc (suc m))
fin-project-2 n m | result q r k≡r+q*sn with suc (suc n) ≤? q
fin-project-2 n m | result q r k≡r+q*sn | yes p =
⊥-elim (absurd (suc n) (suc m) q r (fromℕ (suc m + suc n * suc (suc m))) k≡r+q*sn p)
fin-project-2 n m | result q r k≡r+q*sn | no ¬p =
let (b= , d=) = max-b-d n m (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) r pr
in cong₂ _,_
(toℕ-injective (trans b= (sym (to-from (suc n)))))
(toℕ-injective (trans d= (sym (to-from (suc m)))))
where
pr : suc (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc (suc m) + toℕ r) ≡
suc (suc n) * suc (suc m)
pr =
begin (_
-- agda bug?
-- replacing _ by the actual term:
-- suc (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc (suc m) + toℕ r)
-- gives an occurs check error
≡⟨ cong
(λ x → suc (x * suc (suc m) + toℕ r))
(toℕ-fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) ⟩
suc (q * suc (suc m) + toℕ r)
≡⟨ cong suc (+-comm (q * suc (suc m)) (toℕ r)) ⟩
suc (toℕ r + q * suc (suc m))
≡⟨ cong suc (sym k≡r+q*sn) ⟩
suc (suc (toℕ (fromℕ (m + suc (suc (m + n * suc (suc m)))))))
≡⟨ cong
(λ x → suc (suc x))
(to-from (m + suc (suc (m + n * suc (suc m))))) ⟩
suc (suc n) * suc (suc m) ∎)
where open ≡-Reasoning
-- index (b,d) in matrix becomes (d,b) in transpose
-- And yes, it is obvious:
-- (b*n+d)*m = b*n*m + d*m -- expand
-- = b*(n*m -1) + b*1 + d*m -- add 0 = b*1 - b*1
-- = b + d*m -- modulus
num-lem : (m n : ℕ) → (b : Fin (suc (suc m))) → (d : Fin (suc (suc n))) →
(((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) ≡
(toℕ d * suc (suc m) + toℕ b) + toℕ b * suc (m + suc n * suc (suc m))
num-lem m n b d =
begin (((toℕ b * suc (suc n)) + toℕ d) * suc (suc m)
≡⟨ distribʳ-*-+ (suc (suc m)) (toℕ b * suc (suc n)) (toℕ d) ⟩
(toℕ b * suc (suc n)) * suc (suc m) + toℕ d * suc (suc m)
≡⟨ cong
(λ x → x + toℕ d * suc (suc m))
(trans
(*-assoc (toℕ b) (suc (suc n)) (suc (suc m)))
(*-comm (toℕ b) (suc (suc n) * suc (suc m)))) ⟩
(suc (suc n) * suc (suc m)) * toℕ b + toℕ d * suc (suc m)
≡⟨ refl ⟩
suc (suc m + suc n * suc (suc m)) * toℕ b + toℕ d * suc (suc m)
≡⟨ refl ⟩
(toℕ b + (suc m + suc n * suc (suc m)) * toℕ b) + toℕ d * suc (suc m)
≡⟨ cong
(λ x → x + toℕ d * suc (suc m))
(+-comm (toℕ b) ((suc m + suc n * suc (suc m)) * toℕ b)) ⟩
((suc m + suc n * suc (suc m)) * toℕ b + toℕ b) + toℕ d * suc (suc m)
≡⟨ +-assoc
((suc m + suc n * suc (suc m)) * toℕ b)
(toℕ b)
(toℕ d * suc (suc m)) ⟩
(suc m + suc n * suc (suc m)) * toℕ b + (toℕ b + toℕ d * suc (suc m))
≡⟨ cong₂ _+_
(*-comm (suc m + suc n * suc (suc m)) (toℕ b))
(+-comm (toℕ b) (toℕ d * suc (suc m))) ⟩
toℕ b * (suc m + suc n * suc (suc m)) + (toℕ d * suc (suc m) + toℕ b)
≡⟨ +-comm
(toℕ b * (suc m + suc n * suc (suc m)))
(toℕ d * suc (suc m) + toℕ b) ⟩
(toℕ d * suc (suc m) + toℕ b) + toℕ b * (suc m + suc n * suc (suc m)) ∎)
where open ≡-Reasoning
mod-lem : (m n : ℕ) → (b : Fin (suc (suc m))) → (d : Fin (suc (suc n))) →
(leq : suc (toℕ d * suc (suc m) + toℕ b) ≤ suc m + suc n * suc (suc m)) →
((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m)))
mod (suc m + suc n * suc (suc m)))
≡ inject≤ (fromℕ (toℕ d * suc (suc m) + toℕ b)) leq
mod-lem m n b d leq =
begin (((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m)))
mod (suc m + suc n * suc (suc m)))
≡⟨ cong
(λ x → x mod (suc m + suc n * suc (suc m)))
(num-lem m n b d) ⟩
(((toℕ d * suc (suc m) + toℕ b) + (toℕ b * (suc m + suc n * suc (suc m))))
mod (suc m + suc n * suc (suc m)))
≡⟨ cong
(λ x → ((x + (toℕ b * (suc m + suc n * suc (suc m))))
mod (suc m + suc n * suc (suc m))))
(trans
(sym (to-from (toℕ d * suc (suc m) + toℕ b)))
(sym (inject≤-lemma (fromℕ (toℕ d * suc (suc m) + toℕ b)) leq) )) ⟩
(((toℕ (inject≤ (fromℕ (toℕ d * suc (suc m) + toℕ b)) leq)) +
(toℕ b * (suc m + suc n * suc (suc m))))
mod (suc m + suc n * suc (suc m)))
≡⟨ mod-lemma (toℕ b) (m + suc n * suc (suc m))
(inject≤ (fromℕ (toℕ d * suc (suc m) + toℕ b)) leq) ⟩
inject≤ (fromℕ (toℕ d * suc (suc m) + toℕ b)) leq ∎)
where open ≡-Reasoning
not-max-b-d : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n)))
(p≠ : ¬ suc (toℕ b * suc (suc n) + toℕ d) ≡ suc (suc m) * suc (suc n)) →
suc (toℕ b * suc (suc n) + toℕ d) ≤ suc n + suc m * suc (suc n)
not-max-b-d m n b d p≠ with
cmp (suc (toℕ b * suc (suc n) + toℕ d)) (suc (suc m) * suc (suc n))
... | tri< a ¬b ¬c = ≤-pred a
... | tri≈ ¬a b≡ ¬c = ⊥-elim (p≠ b≡)
... | tri> ¬a ¬b c = ⊥-elim (1+n≰n contra)
where contra = begin (suc (suc (suc m) * suc (suc n))
≤⟨ c ⟩
suc (toℕ b * suc (suc n) + toℕ d)
≡⟨ sym (+-suc (toℕ b * suc (suc n)) (toℕ d)) ⟩
toℕ b * suc (suc n) + suc (toℕ d)
≤⟨ cong+l≤ (bounded d) (toℕ b * suc (suc n)) ⟩
toℕ b * suc (suc n) + suc (suc n)
≤⟨ cong+r≤
(cong*r≤ (bounded' (suc m) b) (suc (suc n)))
(suc (suc n)) ⟩
suc m * suc (suc n) + suc (suc n)
≡⟨ +-comm (suc m * suc (suc n)) (suc (suc n)) ⟩
suc (suc m) * suc (suc n) ∎)
where open ≤-Reasoning
not-max-b-d' : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n)))
(p≠ : ¬ suc (toℕ b * suc (suc n) + toℕ d) ≡ suc (suc m) * suc (suc n)) →
(¬ suc (toℕ d * suc (suc m) + toℕ b) ≡ suc (suc n) * suc (suc m))
not-max-b-d' m n b d p≠ with
(suc (toℕ d * suc (suc m) + toℕ b)) ≟ (suc (suc n) * suc (suc m))
... | no ¬w = ¬w
... | yes w =
let (d≡sn , b≡sm) = max-b-d n m d b w in ⊥-elim (p≠ (contra b≡sm d≡sn))
where contra : (b≡sm : toℕ b ≡ suc m) (d≡sn : toℕ d ≡ suc n) →
suc (toℕ b * suc (suc n) + toℕ d) ≡ suc (suc m) * suc (suc n)
contra b≡sm d≡sn =
begin (suc (toℕ b * suc (suc n) + toℕ d)
≡⟨ cong₂ (λ x y → suc (x * suc (suc n) + y)) b≡sm d≡sn ⟩
suc (suc m * suc (suc n) + suc n)
≡⟨ sym (+-suc (suc m * suc (suc n)) (suc n)) ⟩
suc m * suc (suc n) + suc (suc n)
≡⟨ +-comm (suc m * suc (suc n)) (suc (suc n)) ⟩
suc (suc m) * suc (suc n) ∎)
where open ≡-Reasoning
inject-mod : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n)))
(leq : suc (toℕ b * suc (suc n) + toℕ d) ≤ suc n + suc m * suc (suc n)) →
inject≤
(((toℕ d * suc (suc m) + toℕ b) * suc (suc n)) mod
(suc n + suc m * suc (suc n)))
(i≤si (suc n + suc m * suc (suc n)))
≡ inject≤
(fromℕ (toℕ b * suc (suc n) + toℕ d))
(i*n+k≤m*n b d)
inject-mod m n b d leq =
begin (inject≤
(((toℕ d * suc (suc m) + toℕ b) * suc (suc n)) mod
(suc n + suc m * suc (suc n)))
(i≤si (suc n + suc m * suc (suc n)))
≡⟨ cong₂D!
inject≤
(sym (mod-lem n m d b leq))
(≤-proof-irrelevance
(subst
(λ _ →
suc n + suc m * suc (suc n) ≤ suc (suc n + suc m * suc (suc n)))
(sym (mod-lem n m d b leq))
(i≤si (suc n + suc m * suc (suc n))))
(i≤si (suc n + suc m * suc (suc n)))) ⟩
inject≤
(inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) leq)
(i≤si (suc n + suc m * suc (suc n)))
≡⟨ toℕ-injective
(trans
(inject≤-lemma
(inject≤ (fromℕ (toℕ b * suc (suc n) + toℕ d)) leq)
(i≤si (suc n + suc m * suc (suc n))))
(trans
(inject≤-lemma (fromℕ (toℕ b * suc (suc n) + toℕ d)) leq)
(sym (inject≤-lemma
(fromℕ (toℕ b * suc (suc n) + toℕ d))
(i*n+k≤m*n b d))))) ⟩
inject≤
(fromℕ (toℕ b * suc (suc n) + toℕ d))
(i*n+k≤m*n b d) ∎)
where open ≡-Reasoning
fin-project-3 : (m n : ℕ) (b : Fin (suc (suc m))) (d : Fin (suc (suc n))) →
(p≠ : ¬ suc (toℕ d * suc (suc m) + toℕ b) ≡ suc (suc n) * suc (suc m)) →
fin-project (suc (suc n)) (suc (suc m))
(inject≤
((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod
(suc m + suc n * suc (suc m)))
(i≤si (suc m + suc n * suc (suc m))))
≡ (d , b)
fin-project-3 m n b d p≠ with
(toℕ (inject≤
((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod
(suc m + suc n * suc (suc m)))
(i≤si (suc m + suc n * suc (suc m))))) divMod (suc (suc m))
fin-project-3 m n b d p≠ | result q r k≡r+q*sn with suc (suc n) ≤? q
fin-project-3 m n b d p≠ | result q r k≡r+q*sn | yes p =
⊥-elim (absurd (suc n) (suc m) q r
(inject≤
((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod
(suc m + suc n * suc (suc m)))
(i≤si (suc m + suc n * suc (suc m))))
k≡r+q*sn
p)
fin-project-3 m n b d p≠ | result q r k≡r+q*sn | no ¬p =
let (r≡b , q≡d) = addMul-lemma′ q (toℕ d) (suc m) r b (sym simplified)
in cong₂ _,_ (toℕ-injective (trans (toℕ-fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) q≡d)) r≡b
where simplified : toℕ d * suc (suc m) + toℕ b ≡ q * suc (suc m) + toℕ r
simplified = begin (toℕ d * suc (suc m) + toℕ b
≡⟨ sym (to-from (toℕ d * suc (suc m) + toℕ b)) ⟩
toℕ (fromℕ (toℕ d * suc (suc m) + toℕ b))
≡⟨ sym (inject≤-lemma
(fromℕ (toℕ d * suc (suc m) + toℕ b))
(i*n+k≤m*n d b)) ⟩
toℕ (inject≤
(fromℕ (toℕ d * suc (suc m) + toℕ b))
(i*n+k≤m*n d b))
≡⟨ cong toℕ
(sym (inject-mod n m d b (not-max-b-d n m d b p≠))) ⟩
toℕ (inject≤
((((toℕ b * suc (suc n)) + toℕ d) * (suc (suc m))) mod
(suc m + suc n * suc (suc m)))
(i≤si (suc m + suc n * suc (suc m))))
≡⟨ k≡r+q*sn ⟩
toℕ r + q * suc (suc m)
≡⟨ +-comm (toℕ r) (q * suc (suc m)) ⟩
q * suc (suc m) + toℕ r ∎)
where open ≡-Reasoning
transpose2 : (m n : ℕ) (i : Fin (m * n)) →
let fin-result b d dec dec' = fin-divMod m n i
fin-result bt dt dect dec't =
fin-divMod n m (subst Fin (*-comm m n) (transposeIndex m n b d)) in
toℕ (transposeIndex n m bt dt) ≡ toℕ i
transpose2 m n i =
let fin-result b d dec dec' = fin-divMod m n i
fin-result bt dt dect dec't =
fin-divMod n m (subst Fin (*-comm m n) (transposeIndex m n b d))
(dbt≡ , bdt≡) = fin-addMul-lemma n m d bt b dt pr
in fpr
where pr = let fin-result b d dec dec' = fin-divMod m n i
fin-result bt dt dect dec't =
fin-divMod n m (subst Fin (*-comm m n) (transposeIndex m n b d)) in
begin (toℕ d * m + toℕ b
≡⟨ sym (to-from _) ⟩
toℕ (fromℕ (toℕ d * m + toℕ b))
≡⟨ sym (inject≤-lemma _ _) ⟩
toℕ (transposeIndex m n b d)
≡⟨ sym (toℕ-fin (m * n) (n * m) (*-comm m n)
(transposeIndex m n b d)) ⟩
toℕ (subst Fin (*-comm m n) (transposeIndex m n b d))
≡⟨ dect ⟩
toℕ dt + toℕ bt * m
≡⟨ +-comm (toℕ dt) (toℕ bt * m) ⟩
toℕ bt * m + toℕ dt ∎)
where open ≡-Reasoning
fpr = let fin-result b d dec dec' = fin-divMod m n i
fin-result bt dt dect dec't =
fin-divMod n m (subst Fin (*-comm m n) (transposeIndex m n b d))
(dbt≡ , bdt≡) = fin-addMul-lemma n m d bt b dt pr in
begin (toℕ (transposeIndex n m bt dt)
≡⟨ inject≤-lemma _ _ ⟩
toℕ (fromℕ (toℕ dt * n + toℕ bt))
≡⟨ to-from _ ⟩
toℕ dt * n + toℕ bt
≡⟨ cong₂ (λ x y → toℕ x * n + toℕ y)
(sym bdt≡) (sym dbt≡) ⟩
toℕ b * n + toℕ d
≡⟨ +-comm (toℕ b * n) (toℕ d) ⟩
toℕ d + toℕ b * n
≡⟨ sym dec ⟩
toℕ i ∎)
where open ≡-Reasoning
lookup-transpose : (m n : ℕ) (i : Fin (m * n)) →
lookup
(lookup i
(concatV
(mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin n))
(allFin m))))
(subst Cauchy (*-comm n m)
(concatV
(mapV (λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n))))
≡ i
lookup-transpose m n i =
let fin-result b d dec dec' = fin-divMod m n i
fin-result bt dt dect dect' =
fin-divMod n m (subst Fin (*-comm m n) (transposeIndex m n b d)) in
begin (lookup
(lookup i
(concatV
(mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin n))
(allFin m))))
(subst Cauchy (*-comm n m)
(concatV
(mapV (λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n))))
≡⟨ cong (λ x → lookup x
(subst Cauchy (*-comm n m)
(concatV
(mapV
(λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n)))))
(trans (lookup-2d m n i (allFin m) (allFin n)
(λ {(b , d) → transposeIndex m n b d}))
(cong₂ (transposeIndex m n)
(lookup-allFin b) (lookup-allFin d))) ⟩
lookup
(transposeIndex m n b d)
(subst Cauchy (*-comm n m)
(concatV
(mapV (λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n))))
≡⟨ lookup-subst-1
(transposeIndex m n b d)
(concatV
(mapV
(λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n)))
(*-comm n m)
(*-comm m n)
(proof-irrelevance (sym (*-comm n m)) (*-comm m n)) ⟩
subst Fin (*-comm n m)
(lookup
(subst Fin (*-comm m n) (transposeIndex m n b d))
(concatV
(mapV
(λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n))))
≡⟨ cong (λ x → subst Fin (*-comm n m) x)
(trans
(lookup-2d n m (subst Fin (*-comm m n) (transposeIndex m n b d))
(allFin n) (allFin m)
(λ {(d , b) → transposeIndex n m d b}))
(cong₂ (transposeIndex n m)
(lookup-allFin bt) (lookup-allFin dt))) ⟩
subst Fin (*-comm n m) (transposeIndex n m bt dt)
≡⟨ toℕ-injective
(trans
(toℕ-fin (n * m) (m * n) (*-comm n m) (transposeIndex n m bt dt))
(transpose2 m n i)) ⟩
i ∎)
where open ≡-Reasoning
swap⋆idemp : (m n : ℕ) →
scompcauchy
(swap⋆cauchy m n)
(subst Cauchy (*-comm n m) (swap⋆cauchy n m))
≡
allFin (m * n)
swap⋆idemp m n =
begin (scompcauchy
(concatV
(mapV
(λ b → mapV (λ d → transposeIndex m n b d) (allFin n))
(allFin m)))
(subst Cauchy (*-comm n m)
(concatV
(mapV
(λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n))))
≡⟨ refl ⟩
tabulate (λ i →
lookup
(lookup i
(concatV
(mapV
(λ b → mapV (λ d → transposeIndex m n b d) (allFin n))
(allFin m))))
(subst Cauchy (*-comm n m)
(concatV
(mapV
(λ d → mapV (λ b → transposeIndex n m d b) (allFin m))
(allFin n)))))
≡⟨ finext (lookup-transpose m n) ⟩
allFin (m * n) ∎)
where open ≡-Reasoning
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.445013963,
"avg_line_length": 44.4795597484,
"ext": "agda",
"hexsha": "c0978cc55c21119003d460a41836d4cbfae7ec25",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/CauchyProofsS.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/CauchyProofsS.agda",
"max_line_length": 88,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/CauchyProofsS.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 10999,
"size": 28289
} |
-- Andreas, 2017-07-28, issue 1077
open import Issue1077
foz = foo
baz = bar
-- WAS: bar not in scope
-- NOW: import fails because module Issue1077 is rejected
| {
"alphanum_fraction": 0.7134146341,
"avg_line_length": 14.9090909091,
"ext": "agda",
"hexsha": "d577bda6f3e4ae6f296385b1c89040ed6f479133",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1077Main.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1077Main.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1077Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 52,
"size": 164
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.Nat.Order where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Sigma
open import Cubical.Data.Sum as ⊎
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Induction.WellFounded
open import Cubical.Relation.Nullary
infix 4 _≤_ _<_
_≤_ : ℕ → ℕ → Type₀
m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n
_<_ : ℕ → ℕ → Type₀
m < n = suc m ≤ n
data Trichotomy (m n : ℕ) : Type₀ where
lt : m < n → Trichotomy m n
eq : m ≡ n → Trichotomy m n
gt : n < m → Trichotomy m n
private
variable
k l m n : ℕ
private
witness-prop : ∀ j → isProp (j + m ≡ n)
witness-prop {m} {n} j = isSetℕ (j + m) n
m≤n-isProp : isProp (m ≤ n)
m≤n-isProp {m} {n} (k , p) (l , q)
= Σ≡Prop witness-prop lemma
where
lemma : k ≡ l
lemma = inj-+m (p ∙ (sym q))
zero-≤ : 0 ≤ n
zero-≤ {n} = n , +-zero n
suc-≤-suc : m ≤ n → suc m ≤ suc n
suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p)
≤-+k : m ≤ n → m + k ≤ n + k
≤-+k {m} {k = k} (i , p)
= i , +-assoc i m k ∙ cong (_+ k) p
≤-k+ : m ≤ n → k + m ≤ k + n
≤-k+ {m} {n} {k}
= subst (_≤ k + n) (+-comm m k)
∘ subst (m + k ≤_) (+-comm n k)
∘ ≤-+k
pred-≤-pred : suc m ≤ suc n → m ≤ n
pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p)
≤-refl : m ≤ m
≤-refl = 0 , refl
≤-suc : m ≤ n → m ≤ suc n
≤-suc (k , p) = suc k , cong suc p
≤-predℕ : predℕ n ≤ n
≤-predℕ {zero} = ≤-refl
≤-predℕ {suc n} = ≤-suc ≤-refl
≤-trans : k ≤ m → m ≤ n → k ≤ n
≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q)
where
l1 : j + i + k ≡ j + m
l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p)
l2 : i + j + k ≡ j + i + k
l2 = cong (_+ k) (+-comm i j)
≤-antisym : m ≤ n → n ≤ m → m ≡ n
≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p
where
l1 : j + i + m ≡ m
l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q)
l2 : j + i ≡ 0
l2 = m+n≡n→m≡0 l1
l3 : 0 ≡ i
l3 = sym (snd (m+n≡0→m≡0×n≡0 l2))
≤-k+-cancel : k + m ≤ k + n → m ≤ n
≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p)
where
sub : ∀ k m → k + (l + m) ≡ l + (k + m)
sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m)
≤-+k-cancel : m + k ≤ n + k → m ≤ n
≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled
where
cancelled : l + m ≡ n
cancelled = inj-+m (sym (+-assoc l m k) ∙ p)
≤-·k : m ≤ n → m · k ≤ n · k
≤-·k {m} {n} {k} (d , r) = d · k , reason where
reason : d · k + m · k ≡ n · k
reason = d · k + m · k ≡⟨ ·-distribʳ d m k ⟩
(d + m) · k ≡⟨ cong (_· k) r ⟩
n · k ∎
<-k+-cancel : k + m < k + n → m < n
<-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m))
¬-<-zero : ¬ m < 0
¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p)
¬m<m : ¬ m < m
¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m}
≤0→≡0 : n ≤ 0 → n ≡ 0
≤0→≡0 {zero} ineq = refl
≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq)
predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n)
predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl
predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤
predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq)
predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq
¬m+n<m : ¬ m + n < m
¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m))
<-weaken : m < n → m ≤ n
<-weaken (k , p) = suc k , sym (+-suc k _) ∙ p
≤<-trans : l ≤ m → m < n → l < n
≤<-trans p = ≤-trans (suc-≤-suc p)
<≤-trans : l < m → m ≤ n → l < n
<≤-trans = ≤-trans
<-trans : l < m → m < n → l < n
<-trans p = ≤<-trans (<-weaken p)
<-asym : m < n → ¬ n ≤ m
<-asym m<n = ¬m<m ∘ <≤-trans m<n
<-+k : m < n → m + k < n + k
<-+k p = ≤-+k p
<-k+ : m < n → k + m < k + n
<-k+ {m} {n} {k} p = subst (λ km → km ≤ k + n) (+-suc k m) (≤-k+ p)
<-·sk : m < n → m · suc k < n · suc k
<-·sk {m} {n} {k} (d , r) = (d · suc k + k) , reason where
reason : (d · suc k + k) + suc (m · suc k) ≡ n · suc k
reason = (d · suc k + k) + suc (m · suc k) ≡⟨ sym (+-assoc (d · suc k) k _) ⟩
d · suc k + (k + suc (m · suc k)) ≡[ i ]⟨ d · suc k + +-suc k (m · suc k) i ⟩
d · suc k + suc m · suc k ≡⟨ ·-distribʳ d (suc m) (suc k) ⟩
(d + suc m) · suc k ≡⟨ cong (_· suc k) r ⟩
n · suc k ∎
≤-∸-+-cancel : m ≤ n → (n ∸ m) + m ≡ n
≤-∸-+-cancel {zero} {n} _ = +-zero _
≤-∸-+-cancel {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n)
≤-∸-+-cancel {suc m} {suc n} m+1≤n+1 = +-suc _ _ ∙ cong suc (≤-∸-+-cancel (pred-≤-pred m+1≤n+1))
left-≤-max : m ≤ max m n
left-≤-max {zero} {n} = zero-≤
left-≤-max {suc m} {zero} = ≤-refl
left-≤-max {suc m} {suc n} = suc-≤-suc left-≤-max
right-≤-max : n ≤ max m n
right-≤-max {zero} {m} = zero-≤
right-≤-max {suc n} {zero} = ≤-refl
right-≤-max {suc n} {suc m} = suc-≤-suc right-≤-max
min-≤-left : min m n ≤ m
min-≤-left {zero} {n} = ≤-refl
min-≤-left {suc m} {zero} = zero-≤
min-≤-left {suc m} {suc n} = suc-≤-suc min-≤-left
min-≤-right : min m n ≤ n
min-≤-right {zero} {n} = zero-≤
min-≤-right {suc m} {zero} = ≤-refl
min-≤-right {suc m} {suc n} = suc-≤-suc min-≤-right
Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n)
Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n)
Trichotomy-suc (eq m=n) = eq (cong suc m=n)
Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m)
_≟_ : ∀ m n → Trichotomy m n
zero ≟ zero = eq refl
zero ≟ suc n = lt (n , +-comm n 1)
suc m ≟ zero = gt (m , +-comm m 1)
suc m ≟ suc n = Trichotomy-suc (m ≟ n)
<-split : m < suc n → (m < n) ⊎ (m ≡ n)
<-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred
<-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤)
<-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred
private
acc-suc : Acc _<_ n → Acc _<_ (suc n)
acc-suc a
= acc λ y y<sn
→ case <-split y<sn of λ
{ (inl y<n) → access a y y<n
; (inr y≡n) → subst _ (sym y≡n) a
}
<-wellfounded : WellFounded _<_
<-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero
<-wellfounded (suc n) = acc-suc (<-wellfounded n)
<→≢ : n < m → ¬ n ≡ m
<→≢ {n} {m} p q = ¬m<m (subst (_< m) q p)
module _
(b₀ : ℕ)
(P : ℕ → Type₀)
(base : ∀ n → n < suc b₀ → P n)
(step : ∀ n → P n → P (suc b₀ + n))
where
open WFI (<-wellfounded)
private
dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)
dichotomy b n
= case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ
{ (lt o) → inl o
; (eq p) → inr (0 , p ∙ sym (+-zero b))
; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b)
}
dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b
dichotomy<≡ b n n<b
= case dichotomy b n return (λ d → d ≡ inl n<b) of λ
{ (inl x) → cong inl (m≤n-isProp x n<b)
; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m)))
}
dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p)
dichotomy+≡ b m n p
= case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ
{ (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p))
; (inr (m' , q))
→ cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p)))
}
b = suc b₀
lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x
lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p
subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n
subStep n _ (inl l) = base n l
subStep n rec (inr (m , p))
= transport (cong P (sym p)) (step m (rec m (lemma₁ p)))
wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n
wfStep n rec = subStep n rec (dichotomy b n)
wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b
wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b)
wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl))
wfStepLemma₁ n rec
= cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl)
∙ transportRefl _
+induction : ∀ n → P n
+induction = induction wfStep
+inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l
+inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _
+inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n)
+inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _
module <-Reasoning where
-- TODO: would it be better to mirror the way it is done in the agda-stdlib?
infixr 2 _<⟨_⟩_ _≤<⟨_⟩_ _≤⟨_⟩_ _<≤⟨_⟩_ _≡<⟨_⟩_ _≡≤⟨_⟩_ _<≡⟨_⟩_ _≤≡⟨_⟩_
_<⟨_⟩_ : ∀ k → k < n → n < m → k < m
_ <⟨ p ⟩ q = <-trans p q
_≤<⟨_⟩_ : ∀ k → k ≤ n → n < m → k < m
_ ≤<⟨ p ⟩ q = ≤<-trans p q
_≤⟨_⟩_ : ∀ k → k ≤ n → n ≤ m → k ≤ m
_ ≤⟨ p ⟩ q = ≤-trans p q
_<≤⟨_⟩_ : ∀ k → k < n → n ≤ m → k < m
_ <≤⟨ p ⟩ q = <≤-trans p q
_≡≤⟨_⟩_ : ∀ k → k ≡ l → l ≤ m → k ≤ m
_ ≡≤⟨ p ⟩ q = subst (λ k → k ≤ _) (sym p) q
_≡<⟨_⟩_ : ∀ k → k ≡ l → l < m → k < m
_ ≡<⟨ p ⟩ q = _ ≡≤⟨ cong suc p ⟩ q
_≤≡⟨_⟩_ : ∀ k → k ≤ l → l ≡ m → k ≤ m
_ ≤≡⟨ p ⟩ q = subst (λ l → _ ≤ l) q p
_<≡⟨_⟩_ : ∀ k → k < l → l ≡ m → k < m
_ <≡⟨ p ⟩ q = _ ≤≡⟨ p ⟩ q
| {
"alphanum_fraction": 0.4672239331,
"avg_line_length": 29.2347266881,
"ext": "agda",
"hexsha": "e3444d8048660972f01aba1c7f931658a6e4c928",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Order.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Order.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4521,
"size": 9092
} |
module O where
open import Data.Product
open import Function renaming (_∘_ to _○_)
open import Circle
------------------------------------------------------------------------------
-- Abstract interpretation:
-- natural numbers with paths equating all even numbers in one
-- connected component and all odd numbers in another connected
-- component
-- module with 0,1,2,3,4 ... this is the concrete domain
data N : Set where
Zero : N
One : N
Two : N
Three : N
Four : N
recN : (C : Set) → C → C → C → C → C → N → C
recN C c0 c1 c2 c3 c4 Zero = c0
recN C c0 c1 c2 c3 c4 One = c1
recN C c0 c1 c2 c3 c4 Two = c2
recN C c0 c1 c2 c3 c4 Three = c3
recN C c0 c1 c2 c3 c4 Four = c4
-- module for the abstract domain {even, odd} except that we don't define it
-- this way: we simply add paths between the even elements and paths between
-- the odd elements
module Parity where
private
data N* : Set where
Zero* : N*
One* : N*
Two* : N*
Three* : N*
Four* : N*
NA : Set
NA = N*
zero : NA
zero = Zero*
one : NA
one = One*
two : NA
two = Two*
three : NA
three = Three*
four : NA
four = Four*
postulate
even02 : Zero* ≡ Two*
even04 : Zero* ≡ Four*
odd13 : One* ≡ Three*
recNA : (C : Set) → (c0 c1 c2 c3 c4 : C) →
(ceven02 : c0 ≡ c2) → (ceven04 : c0 ≡ c4) → (codd13 : c1 ≡ c3) →
NA → C
recNA C c0 c1 c2 c3 c4 _ _ _ Zero* = c0
recNA C c0 c1 c2 c3 c4 _ _ _ One* = c1
recNA C c0 c1 c2 c3 c4 _ _ _ Two* = c2
recNA C c0 c1 c2 c3 c4 _ _ _ Three* = c3
recNA C c0 c1 c2 c3 c4 _ _ _ Four* = c4
open Parity
-- Now we define functions back and forth
abs : N → NA
abs = recN NA zero one two three four
con : NA → N
con = recNA N Two Three Two Three Two (refl Two) (refl Two) (refl Three)
-- Computations on N and NA can be related
-- Concrete computation
incN : N → N
incN Zero = One
incN One = Two
incN Two = Three
incN Three = Four
incN Four = Zero
-- we can apply an operation in the abstract domain and report the
-- approximate result
absF : (N → N) → (NA → NA)
absF f = abs ○ f ○ con
approx : (N → N) → (N → N)
approx f n = con ((absF f) (abs n))
test0 : approx incN Zero ≡ Three
test0 = refl Three
test1 : approx incN One ≡ Two
test1 = refl Two
test2 : approx incN Two ≡ Three
test2 = refl Three
test3 : approx incN Three ≡ Two
test3 = refl Two
test4 : approx incN Four ≡ Three
test4 = refl Three
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5505873437,
"avg_line_length": 21.631147541,
"ext": "agda",
"hexsha": "a85c30fa9a2712cb42e5dd80c8d6c3c58928b07e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "OBT/O.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "OBT/O.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "OBT/O.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 881,
"size": 2639
} |
{-# OPTIONS --prop #-}
{-# TERMINATING #-}
makeloop : {P : Prop} → P → P
makeloop p = makeloop p
postulate
A : Set
B C : A → Prop
record AB : Set where
no-eta-equality -- the problem goes away if this is left out
constructor _,_
field
a : A
b : B a
open AB public
-- -- Same problem if replacing the no-eta record by a datatype
-- data AB : Set where
-- _,_ : (a : A) → B a → AB
-- a : AB → A
-- a (x , y) = x
-- b : (z : AB) → B (a z)
-- b (x , y) = y
record ABC : Set where
constructor _,_
field
ab : AB
c : C (a ab) -- the problem goes away if this field is left out
open ABC public
f : AB → ABC
f ab = (a ab , makeloop (b ab)) , {!!}
postulate
P : ABC → Prop
g : (ab : AB) → P (f ab)
works : (ab : AB) → P (f ab)
works ab = g ab
loops : (ab : AB) → P (f ab)
loops ab = g _
-- WAS: Agda loops while typechecking @loops@
-- SHOULD: succeed (with unsolved metas)
| {
"alphanum_fraction": 0.5612691466,
"avg_line_length": 17.9215686275,
"ext": "agda",
"hexsha": "a9c1a3b5aec68878487262818032e08d62bbb3f9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4118.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4118.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4118.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 324,
"size": 914
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.SuspAdjointLoop
open import groups.ToOmega
open import cohomology.Theory
{- A spectrum (family (Eₙ | n : ℤ) such that ΩEₙ₊₁ = Eₙ)
- gives rise to a cohomology theory C with Cⁿ(S⁰) = π₁(Eₙ₊₁). -}
module cohomology.SpectrumModel
{i} (E : ℤ → Ptd i) (spectrum : (n : ℤ) → ⊙Ω (E (succ n)) ⊙≃ E n) where
module SpectrumModel where
{- Definition of cohomology group C -}
module _ (n : ℤ) (X : Ptd i) where
C : Group i
C = Trunc-⊙→Ω-group X (E (succ n))
{- convenient abbreviations -}
CEl = Group.El C
⊙CEl = Group.⊙El C
Cid = Group.ident C
{- before truncation -}
uCEl = X ⊙→ ⊙Ω (E (succ n))
{- Cⁿ(X) is an abelian group -}
C-is-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X)
C-is-abelian n X =
iso-preserves-abelian (Trunc-⊙→Ω-group-emap-codom X (spectrum (succ n))) $
Trunc-group-abelian (⊙→Ω-group-structure _ _) $ λ {(f , fpt) (g , gpt) →
⊙λ=' (λ x → Ω^2-∙-comm (f x) (g x)) (pt-lemma fpt gpt)}
where
pt-lemma : ∀ {i} {A : Type i} {x : A} {p q : idp {a = x} == idp {a = x}}
(α : p == idp) (β : q == idp)
→ ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt α β) idp
== ⊙∘-pt (fst ⊙Ω-∙) (⊙fanout-pt β α) idp
[ _== idp ↓ Ω^2-∙-comm p q ]
pt-lemma idp idp = idp
{- C-fmap, the functorial action of C:
- contravariant functor from pointed spaces to abelian groups -}
module _ (n : ℤ) {X Y : Ptd i} where
C-fmap : X ⊙→ Y → (C n Y →ᴳ C n X)
C-fmap f = Trunc-⊙→Ω-group-fmap-dom f (E (succ n))
CEl-fmap : X ⊙→ Y → CEl n Y → CEl n X
CEl-fmap F = GroupHom.f (C-fmap F)
⊙CEl-fmap : X ⊙→ Y → ⊙CEl n Y ⊙→ ⊙CEl n X
⊙CEl-fmap F = GroupHom.⊙f (C-fmap F)
{- C-fmap is a functor from pointed spaces to abelian groups -}
module _ (n : ℤ) {X : Ptd i} where
C-fmap-idf : ∀ x → CEl-fmap n {X} {X} (⊙idf X) x == x
C-fmap-idf x = ap (λ h → GroupHom.f h x) (Trunc-⊙→Ω-group-fmap-dom-idf (E (succ n)))
C-fmap-∘ : {Y Z : Ptd i} (g : Y ⊙→ Z) (f : X ⊙→ Y)
→ ∀ x → CEl-fmap n (g ⊙∘ f) x == CEl-fmap n f (CEl-fmap n g x)
C-fmap-∘ g f x = ap (λ h → GroupHom.f h x) (Trunc-⊙→Ω-group-fmap-dom-∘ g f (E (succ n)))
-- Eilenberg-Steenrod Axioms
{- Susp Axiom -}
private
C-Susp' : {E₁ E₀ : Ptd i} (iso : ⊙Ω E₁ ⊙≃ E₀) (X : Ptd i)
→ Trunc-⊙→Ω-group (⊙Susp X) E₁ ≃ᴳ Trunc-⊙→Ω-group X E₀
C-Susp' {E₁ = E₁} iso X = Trunc-⊙→Ω-group-emap-codom X iso
∘eᴳ Trunc-⊙→Ω-iso-Trunc-⊙→Ω X E₁
-- This can be further simplified
C-Susp-fmap' : {E₁ E₀ : Ptd i} (iso : ⊙Ω E₁ ⊙≃ E₀) {X Y : Ptd i} (f : X ⊙→ Y)
→ CommSquareᴳ
(Trunc-⊙→Ω-group-fmap-dom (⊙Susp-fmap f) E₁)
(Trunc-⊙→Ω-group-fmap-dom f E₀)
(fst (C-Susp' iso Y)) (fst (C-Susp' iso X))
C-Susp-fmap' {E₁} {E₀} iso {X} {Y} f = comm-sqrᴳ λ x →
GroupHom.f (Trunc-⊙→Ω-group-fmap-codom X (fst iso))
(GroupIso.f (Trunc-⊙→Ω-iso-Trunc-⊙→Ω X E₁)
(GroupHom.f (Trunc-⊙→Ω-group-fmap-dom (⊙Susp-fmap f) E₁) x))
=⟨ Trunc-⊙→Ω-iso-Trunc-⊙→Ω-nat-dom f E₁
|in-ctx (λ h → GroupHom.f h x)
|in-ctx GroupHom.f (Trunc-⊙→Ω-group-fmap-codom X (fst iso)) ⟩
GroupHom.f (Trunc-⊙→Ω-group-fmap-codom X (fst iso))
(GroupHom.f (Trunc-⊙→Ω-group-fmap-dom f (⊙Ω E₁))
(GroupIso.f (Trunc-⊙→Ω-iso-Trunc-⊙→Ω Y E₁) x))
=⟨ ! $ Trunc-⊙→Ω-group-fmap-nat f (fst iso)
|in-ctx GroupHom.f
|in-ctx (λ h → h (GroupIso.f (Trunc-⊙→Ω-iso-Trunc-⊙→Ω Y E₁) x)) ⟩
GroupHom.f (Trunc-⊙→Ω-group-fmap-dom f E₀)
(GroupHom.f (Trunc-⊙→Ω-group-fmap-codom Y (fst iso))
(GroupIso.f (Trunc-⊙→Ω-iso-Trunc-⊙→Ω Y E₁) x))
=∎
C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) ≃ᴳ C n X
C-Susp n X = C-Susp' (spectrum (succ n)) X
C-Susp-fmap : (n : ℤ) {X Y : Ptd i} (f : X ⊙→ Y)
→ CommSquareᴳ
(C-fmap (succ n) (⊙Susp-fmap f)) (C-fmap n f)
(fst (C-Susp n Y)) (fst (C-Susp n X))
C-Susp-fmap n f = C-Susp-fmap' (spectrum (succ n)) f
{- Non-truncated Exactness Axiom -}
module _ (n : ℤ) {X Y : Ptd i} where
{- precomposing [⊙cfcod' f] and then [f] gives [0] -}
im-sub-ker-lemma : (f : X ⊙→ Y) (g : uCEl n (⊙Cofiber f))
→ (g ⊙∘ ⊙cfcod' f) ⊙∘ f == ⊙cst
im-sub-ker-lemma (f , fpt) (g , gpt) = ⊙λ='
(λ x → ap g (! (cfglue' f x)) ∙ gpt)
(↓-idf=cst-in
(ap (g ∘ cfcod) fpt
∙ ap g (ap cfcod (! fpt) ∙ ! (cfglue (pt X))) ∙ gpt
=⟨ lemma cfcod g fpt (! (cfglue (pt X))) gpt ⟩
ap g (! (cfglue (pt X))) ∙ gpt
=⟨ ! (∙-unit-r _) ⟩
(ap g (! (cfglue (pt X))) ∙ gpt) ∙ idp ∎))
where
lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{a₁ a₂ : A} {b : B} {c : C} (f : A → B) (g : B → C)
(p : a₁ == a₂) (q : f a₁ == b) (r : g b == c)
→ ap (g ∘ f) p ∙ ap g (ap f (! p) ∙ q) ∙ r == ap g q ∙ r
lemma f g idp idp idp = idp
{- if g ⊙∘ f is constant then g factors as h ⊙∘ ⊙cfcod' f -}
ker-sub-im-lemma : (f : X ⊙→ Y) (g : uCEl n Y)
→ g ⊙∘ f == ⊙cst
→ Σ (uCEl n (⊙Cofiber f)) (λ h → h ⊙∘ ⊙cfcod' f == g)
ker-sub-im-lemma (f , fpt) (h , hpt) p =
((g , ! q ∙ hpt) ,
pair= idp (! (∙-assoc q (! q) hpt) ∙ ap (_∙ hpt) (!-inv-r q)))
where
g : Cofiber f → Ω (E (succ n))
g = CofiberRec.f idp h (! ∘ app= (ap fst p))
q : h (pt Y) == g (cfbase' f)
q = ap g (snd (⊙cfcod' (f , fpt)))
{- Truncated Exactness Axiom -}
module _ (n : ℤ) {X Y : Ptd i} where
abstract
C-im-sub-ker : (f : X ⊙→ Y)
→ im-propᴳ (C-fmap n (⊙cfcod' f)) ⊆ᴳ ker-propᴳ (C-fmap n f)
C-im-sub-ker f =
im-sub-ker-in (C-fmap n (⊙cfcod' f)) (C-fmap n f) $
Trunc-elim
(ap [_] ∘ im-sub-ker-lemma n f)
abstract
C-ker-sub-im : (f : X ⊙→ Y)
→ ker-propᴳ (C-fmap n f) ⊆ᴳ im-propᴳ (C-fmap n (⊙cfcod' f))
C-ker-sub-im f =
Trunc-elim
{{λ _ → Π-level (λ _ → raise-level _ Trunc-level)}}
(λ h tp → Trunc-rec (lemma h) (–> (Trunc=-equiv _ _) tp))
where
lemma : (h : uCEl n Y) → h ⊙∘ f == ⊙cst
→ Trunc -1 (Σ (CEl n (⊙Cofiber f))
(λ tk → fst (⊙CEl-fmap n (⊙cfcod' f)) tk == [ h ]))
lemma h p = [ [ fst wit ] , ap [_] (snd wit) ]
where
wit : Σ (uCEl n (⊙Cofiber f)) (λ k → k ⊙∘ ⊙cfcod' f == h)
wit = ker-sub-im-lemma n f h p
C-exact : (f : X ⊙→ Y) → is-exact (C-fmap n (⊙cfcod' f)) (C-fmap n f)
C-exact f = record {im-sub-ker = C-im-sub-ker f; ker-sub-im = C-ker-sub-im f}
{- Additivity Axiom -}
module _ (n : ℤ) {A : Type i} (X : A → Ptd i)
(ac : has-choice 0 A i)
where
into : CEl n (⊙BigWedge X) → Trunc 0 (Π A (uCEl n ∘ X))
into = Trunc-rec (λ H → [ (λ a → H ⊙∘ ⊙bwin a) ])
module Out' (K : Π A (uCEl n ∘ X)) = BigWedgeRec
idp
(fst ∘ K)
(! ∘ snd ∘ K)
out : Trunc 0 (Π A (uCEl n ∘ X)) → CEl n (⊙BigWedge X)
out = Trunc-rec (λ K → [ Out'.f K , idp ])
into-out : ∀ y → into (out y) == y
into-out = Trunc-elim
(λ K → ap [_] (λ= (λ a → pair= idp $
ap (Out'.f K) (! (bwglue a)) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap (Out'.f K) (! (bwglue a))
=⟨ ap-! (Out'.f K) (bwglue a) ⟩
! (ap (Out'.f K) (bwglue a))
=⟨ ap ! (Out'.glue-β K a) ⟩
! (! (snd (K a)))
=⟨ !-! (snd (K a)) ⟩
snd (K a) ∎)))
out-into : ∀ x → out (into x) == x
out-into = Trunc-elim
{P = λ tH → out (into tH) == tH}
(λ {(h , hpt) → ap [_] $ ⊙λ=' (out-into-fst (h , hpt)) (↓-idf=cst-in (! (!-inv-l hpt)))})
where
lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₁ a₂ : A} {b : B} (p : a₁ == a₂) (q : f a₁ == b)
→ ! q ∙ ap f p == ! (ap f (! p) ∙ q)
lemma f idp idp = idp
out-into-fst : (H : ⊙BigWedge X ⊙→ ⊙Ω (E (succ n)))
→ ∀ w → Out'.f (λ a → H ⊙∘ ⊙bwin a) w == fst H w
out-into-fst (h , hpt) = BigWedge-elim
(! hpt)
(λ _ _ → idp)
(λ a → ↓-='-in' $
! hpt ∙ ap h (bwglue a)
=⟨ lemma h (bwglue a) hpt ⟩
! (ap h (! (bwglue a)) ∙ hpt)
=⟨ ! (Out'.glue-β (λ a → (h , hpt) ⊙∘ ⊙bwin a) a) ⟩
ap (Out'.f (λ a → (h , hpt) ⊙∘ ⊙bwin a)) (bwglue a) ∎)
abstract
C-additive-is-equiv : is-equiv (GroupHom.f (Πᴳ-fanout (C-fmap n ∘ ⊙bwin {X = X})))
C-additive-is-equiv = transport is-equiv
(λ= $ Trunc-elim
(λ _ → idp))
((ac (uCEl n ∘ X)) ∘ise (is-eq into out into-out out-into))
open SpectrumModel
spectrum-cohomology : CohomologyTheory i
spectrum-cohomology = record {
C = C;
C-fmap = C-fmap;
C-fmap-idf = C-fmap-idf;
C-fmap-∘ = C-fmap-∘;
C-is-abelian = C-is-abelian;
C-Susp = C-Susp;
C-Susp-fmap = C-Susp-fmap;
C-exact = C-exact;
C-additive-is-equiv = C-additive-is-equiv}
spectrum-C-S⁰ : (n : ℤ) → C n (⊙Lift ⊙S⁰) ≃ᴳ πS 0 (E (succ n))
spectrum-C-S⁰ n = Trunc-⊙Bool→Ω-iso-π₁ (E (succ n)) ∘eᴳ Trunc-⊙→Ω-group-emap-dom ⊙lift-equiv (E (succ n))
| {
"alphanum_fraction": 0.4769416146,
"avg_line_length": 36.6626506024,
"ext": "agda",
"hexsha": "78f5db8d65c788ee8281d51979d361eab7a03de2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SpectrumModel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SpectrumModel.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SpectrumModel.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4185,
"size": 9129
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Automatic solvers for equations over naturals
------------------------------------------------------------------------
-- See README.Nat for examples of how to use this solver
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Solver where
import Algebra.Solver.Ring.Simple as Solver
import Algebra.Solver.Ring.AlmostCommutativeRing as ACR
open import Data.Nat using (_≟_)
open import Data.Nat.Properties
------------------------------------------------------------------------
-- A module for automatically solving propositional equivalences
-- containing _+_ and _*_
module +-*-Solver =
Solver (ACR.fromCommutativeSemiring *-+-commutativeSemiring) _≟_
| {
"alphanum_fraction": 0.5480519481,
"avg_line_length": 32.0833333333,
"ext": "agda",
"hexsha": "70d500552a3adf2fa4c2243af3db1e6ae2486f47",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Solver.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Solver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 145,
"size": 770
} |
module PreludeAll where
import PreludeBool public
import PreludeNat
import PreludeShow
open PreludeBool
open PreludeNat
open PreludeShow | {
"alphanum_fraction": 0.8832116788,
"avg_line_length": 17.125,
"ext": "agda",
"hexsha": "16c3cdd7b1d5a35abf0cbc7f30d16e87514d528c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeAll.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeAll.agda",
"max_line_length": 25,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeAll.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 29,
"size": 137
} |
open import Agda.Builtin.Equality
postulate
X : Set
rigid0 : ((@0 x : X) → X) → X
mutual
H : ((@ω x : X) → X) → X
H f = rigid0 _
testω : (f : (@0 x : X) → X) → H (\ (@ω x) → f x) ≡ rigid0 (\ (@0 x) → f x)
testω f = refl
| {
"alphanum_fraction": 0.4638297872,
"avg_line_length": 18.0769230769,
"ext": "agda",
"hexsha": "328c46bc595d90356b1d557df36442e17c9bb1e5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4390erasure.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4390erasure.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4390erasure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 235
} |
------------------------------------------------------------------------
-- Small prelude
------------------------------------------------------------------------
module Prelude where
infixl 6 _+_
infixr 5 _∷_ _++_
infixr 3 _∨_
infix 2 ¬_
------------------------------------------------------------------------
-- Some "logic"
data ⊥ : Set where
¬_ : Set -> Set
¬ a = a -> ⊥
------------------------------------------------------------------------
-- Maybe and Dec
data Maybe (a : Set) : Set where
just : a -> Maybe a
nothing : Maybe a
data Dec (a : Set) : Set where
yes : a -> Dec a
no : ¬ a -> Dec a
------------------------------------------------------------------------
-- Lists
data [_] (a : Set) : Set where
[] : [ a ]
_∷_ : a -> [ a ] -> [ a ]
_++_ : forall {a} -> [ a ] -> [ a ] -> [ a ]
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
------------------------------------------------------------------------
-- Natural numbers
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
_+_ : ℕ -> ℕ -> ℕ
zero + n = n
suc m + n = suc (m + n)
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN NATPLUS _+_ #-}
------------------------------------------------------------------------
-- Booleans
data Bool : Set where
true : Bool
false : Bool
_∨_ : Bool -> Bool -> Bool
true ∨ _ = true
false ∨ b = b
| {
"alphanum_fraction": 0.3061516452,
"avg_line_length": 20.5588235294,
"ext": "agda",
"hexsha": "852853bb07f57c66a289c7a3f10c0398df7a280b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/Prelude.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 359,
"size": 1398
} |
-- Functors from one category into another
module Control.Category.Functor where
open import Level using (suc; _⊔_)
open import Relation.Binary.PropositionalEquality
open import Control.Category
open Category using () renaming (Obj to obj; Hom to hom)
-- Operations of a functor.
-- Module T-FunctorOps C D F provides notation A ⇒ A' for homset C(A,A')
-- and notation B ⇉ B' for homset D(B,B') and the type T-map for the
-- functorial action.
module T-FunctorOps
{co ch ce} (C : Category co ch ce)
{δo dh de} (D : Category δo dh de)
(F : obj C → obj D)
where
open HomSet (hom C) using (_⇒_)
open HomSet (hom D) using () renaming (_⇒_ to _⇉_)
-- Type of the map function.
T-map = ∀ {A B} → (A ⇒ B) → F A ⇉ F B
-- Record FunctorOps C D F can be instantiated to define the functorial action
-- map of F.
record FunctorOps
{co ch ce} (C : Category co ch ce)
{δo dh de} (D : Category δo dh de) (F : obj C → obj D) : Set (co ⊔ ch ⊔ ce ⊔ δo ⊔ dh ⊔ de)
where
open T-FunctorOps C D F
-- The functorial action (map function).
field
map : T-map
-- Laws of a functor.
-- Module T-FunctorLaws ops provides notation...
module T-FunctorLaws
{co ch ce} {C : Category co ch ce}
{δo dh de} {D : Category δo dh de} {F : obj C → obj D}
(ops : FunctorOps C D F) where
open FunctorOps ops public
open Category C using (_⇒_) renaming
(Obj to ObjC; id to idC; _∘_ to _∘C_)
open Category D using (_≈_) renaming
(Obj to ObjD; _⇒_ to _⇉_; id to idD; _∘_ to _∘D_)
-- First functor law: identity
T-map-id = ∀ {A} →
map (idC {A = A}) ≈ idD
-- Second functor law: composition.
T-map-∘ = ∀ {A B C} (f : A ⇒ B) {g : B ⇒ C} →
map (g ∘C f) ≈ (map g ∘D map f)
record FunctorLaws
{co ch ce} {C : Category co ch ce}
{δo dh de} {D : Category δo dh de} {F : obj C → obj D}
(ops : FunctorOps C D F) : Set ((co ⊔ ch ⊔ ce ⊔ δo ⊔ dh ⊔ de)) where
open T-FunctorLaws ops
field
map-id : T-map-id
map-∘ : T-map-∘
-- Functoriality.
record IsFunctor
{co ch ce} {C : Category co ch ce}
{δo dh de} {D : Category δo dh de} (F : obj C → obj D) : Set (co ⊔ ch ⊔ ce ⊔ δo ⊔ dh ⊔ de) where
field
ops : FunctorOps C D F
laws : FunctorLaws ops
open FunctorOps ops public
open FunctorLaws laws public
-- -}
| {
"alphanum_fraction": 0.6115451389,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "2ad16cb55709b1ae46808915966facb1d3928b14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Category/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Category/Functor.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Category/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 832,
"size": 2304
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Trichotomous where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; _≢_; refl; cong; subst; subst₂) renaming (sym to ≡-sym)
open import Level using (Level)
open import Function using (flip; _∘_; _∘₂_)
open import Data.Empty using (⊥-elim)
open import Data.Product using (_,_)
open import Relation.Unary using (Pred)
open import Relation.Binary using (Rel; Irreflexive; Trichotomous; Tri; tri<; tri≈; tri>)
open import Relation.Binary.Construct.Closure.Transitive using ([_])
-- Local imports
open import Dodo.Unary.Equality
open import Dodo.Binary.Equality
open import Dodo.Binary.Immediate
open import Dodo.Binary.Filter
-- # Definitions
tri-immˡ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂}
→ Trichotomous _≈_ R → {x y z : A}
→ immediate R x z → immediate R y z
---------------------------------
→ x ≈ y
tri-immˡ triR {x} {y} {z} (Rxz , ¬∃y) (Ryz , ¬∃x) with triR x y
... | tri< Rxy x≢y ¬Ryx = ⊥-elim (¬∃y (y , Rxy , [ Ryz ]))
... | tri≈ ¬Rxy x≡y ¬Ryx = x≡y
... | tri> ¬Rxy x≢y Ryx = ⊥-elim (¬∃x (x , Ryx , [ Rxz ]))
tri-immʳ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂}
→ Trichotomous _≈_ R → {x y z : A}
→ immediate R x y → immediate R x z
---------------------------------
→ y ≈ z
tri-immʳ triR {x} {y} {z} (Rxy , ¬∃z) (Rxz , ¬∃y) with triR y z
... | tri< Ryz y≢z ¬Rzy = ⊥-elim (¬∃y (y , Rxy , [ Ryz ]))
... | tri≈ ¬Ryz y≡z ¬Rzy = y≡z
... | tri> ¬Ryz y≢z Rzy = ⊥-elim (¬∃z (z , Rxz , [ Rzy ]))
tri-irreflexive : {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂}
→ Trichotomous _≈_ _<_
--------------------
→ Irreflexive _≈_ _<_
tri-irreflexive triR {x} {y} x≈y x<y with triR x y
... | tri< x<y x≉y x≯y = x≉y x≈y
... | tri≈ x≮y x≈y x≯y = x≮y x<y
... | tri> x≮y x≉y x>y = x≉y x≈y
tri-flip : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ}
→ {x y : A}
→ Tri (R x y) (x ≡ y) (R y x)
-------------------------------------
→ Tri (flip R x y) (x ≡ y) (flip R y x)
tri-flip (tri< Rxy x≢y ¬Ryx) = tri> ¬Ryx x≢y Rxy
tri-flip (tri≈ ¬Rxy x≡y ¬Ryx) = tri≈ ¬Ryx x≡y ¬Rxy
tri-flip (tri> ¬Rxy x≢y Ryx) = tri< Ryx x≢y ¬Rxy
trichotomous-flip : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ}
→ Trichotomous _≡_ R
-------------------------
→ Trichotomous _≡_ (flip R)
trichotomous-flip {R = R} triR = tri-flip {R = R} ∘₂ triR
| {
"alphanum_fraction": 0.5408205553,
"avg_line_length": 33.985915493,
"ext": "agda",
"hexsha": "028ddec51d216bf7d3bee175e1677daf87e37fdc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Trichotomous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Trichotomous.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Trichotomous.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1062,
"size": 2413
} |
open import Data.Bool using (Bool; true; false; _∧_; _∨_; T)
open import Data.Bool.Properties using (∨-identityˡ; ∨-zeroˡ)
open import Data.List using (List; []; _∷_; any; map; foldl)
open import Data.List.Relation.Unary.Any using (Any; here; there; lookup; satisfied)
open import Data.Product as Prod using (∃; _,_; proj₁; proj₂)
open import Data.Unit using (⊤; tt)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong; subst; sym; trans; module ≡-Reasoning)
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import Data.Nat using (ℕ; zero; suc)
≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T refl = tt
any-val : ∀ {a} {A : Set a} (f) (ns : List A)
→ any f ns ≡ true
→ Any (λ x → T (f x)) ns
any-val f (n ∷ ns) any-f-⟨n∷ns⟩≡true with f n | P.inspect f n
... | true | P.[ fn≡t ] = here (≡→T fn≡t)
... | false | _ = there (any-val f ns any-f-⟨n∷ns⟩≡true)
get-val : ∀ {a} {A : Set a} {f} (ns : List A)
→ any f ns ≡ true
→ A
get-val {_} {_} {f} ns any≡true = lookup {xs = ns} (any-val f ns any≡true)
get-prop : ∀ {a} {A : Set a} {f} (ns : List A)
→ any f ns ≡ true
→ ∃ (λ x → T (f x))
get-prop {_} {_} {f} ns any≡true = satisfied {xs = ns} (any-val f ns any≡true)
is-not-zero : ℕ → Bool
is-not-zero zero = false
is-not-zero _ = true
eg1 : any is-not-zero (0 ∷ 0 ∷ 3 ∷ []) ≡ true
eg1 = refl
--proj₁ (get-prop {f = λ x → x} (true ∷ false ∷ []) _)
--proj₁ (get-prop {f = is-not-zero} (0 ∷ 0 ∷ 3 ∷ []) refl)
--data Singleton {a} {A : Set a} (x : A) : Set a where
-- _with≡_ : (y : A) → x ≡ y → Singleton x
--
--inspect : ∀ {a} {A : Set a} (x : A) → Singleton x
--inspect x = x with≡ refl
any-val' : ∀ {a} {A : Set a} (f : A → Bool) (ns : List A)
→ any f ns ≡ true
→ (∃ λ x → T (f x))
any-val' f [] ()
any-val' f (n ∷ ns) anyfnns≡true with f n | P.inspect f n
... | true | P.[ fn≡t ] = n , ≡→T fn≡t
... | false | P.[ fn≡f ] = any-val' f ns anyfnns≡true
-- where
-- anyfns≡true =
-- begin
-- any f ns ≡⟨ sym (∨-identityˡ (any f ns)) ⟩
-- false ∨ any f ns ≡⟨ cong (_∨ any f ns) (sym ?) ⟩
-- f n ∨ any f ns ≡⟨ anyfnns≡true ⟩
-- true
-- ∎
| {
"alphanum_fraction": 0.5318584071,
"avg_line_length": 34.7692307692,
"ext": "agda",
"hexsha": "88c6955c76890f7148024d44cb596fee089caae7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/general-exercises/lifting-bool-to-property.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/general-exercises/lifting-bool-to-property.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/general-exercises/lifting-bool-to-property.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 906,
"size": 2260
} |
------------------------------------------------------------------------------
-- Well-founded relation on lists based on their length
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.WF-Relation.LT-Length where
open import FOTC.Base
open import FOTC.Data.List
open import FOTC.Data.Nat.Inequalities
------------------------------------------------------------------------------
-- Well-founded relation on lists based on their length.
LTL : D → D → Set
LTL xs ys = length xs < length ys
| {
"alphanum_fraction": 0.437150838,
"avg_line_length": 35.8,
"ext": "agda",
"hexsha": "422a148c5218e4b64a08bc1f62537a29e1b042c9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Length.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 122,
"size": 716
} |
------------------------------------------------------------------------
-- Forcing of parsers (can be used for inspection/debugging purposes)
------------------------------------------------------------------------
{-# OPTIONS --termination-depth=2 #-}
module TotalParserCombinators.Force where
open import Codata.Musical.Notation
import Data.List.Categorical as ListMonad
open import Data.Maybe hiding (_>>=_)
open import Data.Nat
open import Function
import Relation.Binary.PropositionalEquality as P
open import TotalParserCombinators.Congruence
open import TotalParserCombinators.Laws
open import TotalParserCombinators.Parser
-- force n p returns p, but with the first n layers of delay
-- constructors removed.
force : ∀ {Tok R xs} → ℕ → Parser Tok R xs → Parser Tok R xs
force zero p = p
force n (return x) = return x
force n fail = fail
force n token = token
force n (p₁ ∣ p₂) = force n p₁ ∣ force n p₂
force n (f <$> p) = f <$> force n p
force n (nonempty p) = nonempty (force n p)
force n (cast xs₁≈xs₂ p) = cast xs₁≈xs₂ (force n p)
force (suc n) (p₁ ⊛ p₂) with forced? p₁ | forced? p₂
... | just xs | nothing = force (suc n) p₁ ⊛ force n (♭ p₂)
... | just xs | just fs = force (suc n) p₁ ⊛ force (suc n) p₂
... | nothing | nothing = force n (♭ p₁) ⊛ force n (♭ p₂)
... | nothing | just fs =
P.subst (Parser _ _) (ListMonad.Applicative.right-zero fs) $
force n (♭ p₁) ⊛ force (suc n) p₂
force (suc n) (p₁ >>= p₂) with forced? p₁ | forced?′ p₂
... | just f | nothing = force (suc n) p₁ >>= λ x → force n (♭ (p₂ x))
... | just f | just xs = force (suc n) p₁ >>= λ x → force (suc n) (p₂ x)
... | nothing | nothing = force n (♭ p₁) >>= λ x → force n (♭ (p₂ x))
... | nothing | just xs =
P.subst (Parser _ _) (ListMonad.MonadProperties.right-zero xs) $
force n (♭ p₁) >>= λ x → force (suc n) (p₂ x)
-- force preserves the semantics of its argument.
correct : ∀ {Tok R xs} (n : ℕ) (p : Parser Tok R xs) → force n p ≅P p
correct zero p = p ∎
correct (suc n) (return x) = return x ∎
correct (suc n) fail = fail ∎
correct (suc n) token = token ∎
correct (suc n) (p₁ ∣ p₂) = correct (suc n) p₁ ∣ correct (suc n) p₂
correct (suc n) (f <$> p) = (λ _ → P.refl) <$> correct (suc n) p
correct (suc n) (nonempty p) = nonempty (correct (suc n) p)
correct (suc n) (cast xs₁≈xs₂ p) = cast (correct (suc n) p)
correct (suc n) (p₁ ⊛ p₂) with forced? p₁ | forced? p₂
... | just xs | nothing = [ ○ - ○ - ○ - ◌ ] correct (suc n) p₁ ⊛ correct n (♭ p₂)
... | just xs | just fs = [ ○ - ○ - ○ - ○ ] correct (suc n) p₁ ⊛ correct (suc n) p₂
... | nothing | nothing = [ ○ - ◌ - ○ - ◌ ] correct n (♭ p₁) ⊛ correct n (♭ p₂)
... | nothing | just fs =
P.subst (Parser _ _) lemma forced ≅⟨ Subst.correct lemma ⟩
forced ≅⟨ [ ○ - ◌ - ○ - ○ ] correct n (♭ p₁) ⊛ correct (suc n) p₂ ⟩
p₁ ⊛ p₂ ∎
where
lemma = ListMonad.Applicative.right-zero fs
forced = force n (♭ p₁) ⊛ force (suc n) p₂
correct (suc n) (p₁ >>= p₂) with forced? p₁ | forced?′ p₂
... | just f | nothing = [ ○ - ○ - ○ - ◌ ] correct (suc n) p₁ >>= λ x → correct n (♭ (p₂ x))
... | just f | just xs = [ ○ - ○ - ○ - ○ ] correct (suc n) p₁ >>= λ x → correct (suc n) (p₂ x)
... | nothing | nothing = [ ○ - ◌ - ○ - ◌ ] correct n (♭ p₁) >>= λ x → correct n (♭ (p₂ x))
... | nothing | just xs =
P.subst (Parser _ _) lemma forced ≅⟨ Subst.correct lemma ⟩
forced ≅⟨ [ ○ - ◌ - ○ - ○ ] correct n (♭ p₁) >>= (λ x → correct (suc n) (p₂ x)) ⟩
p₁ >>= p₂ ∎
where
forced = force n (♭ p₁) >>= λ x → force (suc n) (p₂ x)
lemma = ListMonad.MonadProperties.right-zero xs
| {
"alphanum_fraction": 0.5056490083,
"avg_line_length": 49.7875,
"ext": "agda",
"hexsha": "e4afda8aa1e11df94fbe866364ee47c6c20286ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Force.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Force.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Force.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1373,
"size": 3983
} |
-- Christian Sattler, 2017-08-05
-- Nullary extended lambdas are useful in the interaction mode
-- for case splitting on the result inside an expression.
module NullaryExtendedLambda where
f : {A : Set} → A → A
f a = λ { → a }
g : {A : Set} → A → A
g a = λ where
→ a
| {
"alphanum_fraction": 0.6605166052,
"avg_line_length": 22.5833333333,
"ext": "agda",
"hexsha": "ef112434b8f4a4fe5bd44754a4d35dd01f406eda",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/NullaryExtendedLambda.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/NullaryExtendedLambda.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/NullaryExtendedLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 87,
"size": 271
} |
module binio where
open import Data.Word8
import Data.ByteString as BS
import Data.ByteString.IO as BSIO
open import Data.Fin using (Fin; toℕ)
open import Data.Vec using (Vec; toList; tabulate)
open import Data.List using (List)
open import Data.Colist using (Colist; fromList)
open import Agda.Builtin.Nat using (Nat; zero; suc; _<_)
open import IO
open import Coinduction using (♯_)
{-
instance
finN<N : {n : Nat} {f : Fin n} → IsTrue (toℕ f < n)
finN<N {.(suc _)} {Fin.zero} = itis
finN<N {.(suc _)} {Fin.suc f} = finN<N {_} {f}
fin256 : Fin 256 → Word8
fin256 f = fromNat (toℕ f) {{finN<N {256} {f}}}
b256 : Colist Word8
b256 = fromList (toList (tabulate {256} fin256))
-}
fin256 : Fin 256 → Word8
fin256 f = primWord8fromNat (toℕ f)
b256 : List Word8
b256 = toList (tabulate {256} fin256)
b256′ : Colist Word8
b256′ = fromList b256
-- main = run (writeBinaryFile "256.bin" b256)
-- main = run (♯ readBinaryFile "256.bin" >>= λ x → ♯ writeBinaryFile "256'.bin" x)
-- main = run (readFile "256.bin")
main = run (BSIO.writeBinaryFile′ "256.bin" b256)
-- main = run (BS.IO.writeBinaryFile′ "256'.bin" b256′)
-- main = run (BS.IO.writeBinaryFile′ "256.bin" b256 >> BS.IO.writeBinaryFile′ "256'.bin" b256′)
| {
"alphanum_fraction": 0.6753883892,
"avg_line_length": 27.1777777778,
"ext": "agda",
"hexsha": "c8ef428de838b3c7ec83a66c9cb5412f641e0b50",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bytes-agda",
"max_forks_repo_path": "app/binio.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bytes-agda",
"max_issues_repo_path": "app/binio.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98a53f35fca27e3379cf851a9a6bdfe5bd8c9626",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bytes-agda",
"max_stars_repo_path": "app/binio.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 431,
"size": 1223
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Comma where
open import Data.Product using (_×_; ∃; _,_; proj₁; proj₂; zip; map)
open import Level
open import Relation.Binary using (Rel)
open import Categories.Category.Instance.One
open import Categories.Category using (Category; _[_,_]; _[_∘_])
open import Categories.Functor using (Functor)
open import Categories.Functor.Construction.Constant using (const!)
import Categories.Morphism.Reasoning as MR
private
variable
o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level
-- things go odd with generalized variables for A B C, use anonymous module instead
module _ {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} where
private
module C = Category C
module A = Category A
module B = Category B
record CommaObj (T : Functor A C) (S : Functor B C) : Set (o₁ ⊔ o₂ ⊔ ℓ₃) where
open Category
open Functor T renaming (F₀ to T₀)
open Functor S renaming (F₀ to S₀)
field
{α} : Obj A
{β} : Obj B
f : C [ T₀ α , S₀ β ]
record Comma⇒ {T : Functor A C} {S : Functor B C} (X₁ X₂ : CommaObj T S) : Set (ℓ₁ ⊔ ℓ₂ ⊔ e₃) where
open CommaObj X₁ renaming (α to α₁; β to β₁; f to f₁)
open CommaObj X₂ renaming (α to α₂; β to β₂; f to f₂)
open Functor T renaming (F₁ to T₁)
open Functor S renaming (F₁ to S₁)
field
g : A [ α₁ , α₂ ]
h : B [ β₁ , β₂ ]
commute : C.CommutativeSquare f₁ (T₁ g) (S₁ h) f₂
Comma : Functor A C → Functor B C → Category _ _ _
Comma T S = record
{ Obj = CommaObj T S
; _⇒_ = Comma⇒
; _≈_ = λ a₁ a₂ → g a₁ A.≈ g a₂ × h a₁ B.≈ h a₂
; _∘_ = _∘′_
; id = record { g = A.id ; h = B.id ; commute = id-comm }
; assoc = A.assoc , B.assoc
; sym-assoc = A.sym-assoc , B.sym-assoc
; identityˡ = A.identityˡ , B.identityˡ
; identityʳ = A.identityʳ , B.identityʳ
; identity² = A.identity² , B.identity²
; equiv = record
{ refl = A.Equiv.refl , B.Equiv.refl
; sym = map A.Equiv.sym B.Equiv.sym
; trans = zip A.Equiv.trans B.Equiv.trans
}
; ∘-resp-≈ = zip A.∘-resp-≈ B.∘-resp-≈
} module Comma
where
module T = Functor T
module S = Functor S
open T using () renaming (F₀ to T₀; F₁ to T₁)
open S using () renaming (F₀ to S₀; F₁ to S₁)
open Comma⇒
id-comm : {E : CommaObj T S} → let open CommaObj E in
(S₁ B.id C.∘ f) C.≈ f C.∘ T₁ A.id
id-comm {E} = begin
(S₁ B.id C.∘ f) ≈⟨ S.identity ⟩∘⟨refl ⟩
C.id C.∘ f ≈⟨ id-comm-sym ⟩
f C.∘ C.id ≈˘⟨ refl⟩∘⟨ T.identity ⟩
f C.∘ T₁ A.id ∎
where
open C.HomReasoning
open CommaObj E
open MR C
_∘′_ : ∀ {X₁ X₂ X₃} → Comma⇒ X₂ X₃ → Comma⇒ X₁ X₂ → Comma⇒ X₁ X₃
_∘′_ {X₁} {X₂} {X₃} a₁ a₂ = record
{ g = A [ g₁ ∘ g₂ ]
; h = B [ h₁ ∘ h₂ ]
; commute = begin
S₁ (h₁ B.∘ h₂) C.∘ f₁ ≈⟨ S.homomorphism ⟩∘⟨refl ○ C.assoc ⟩
S₁ h₁ C.∘ (S₁ h₂ C.∘ f₁) ≈⟨ refl⟩∘⟨ commutes₂ ⟩
S₁ h₁ C.∘ (f₂ C.∘ T₁ g₂) ≈˘⟨ C.assoc ⟩
(S₁ h₁ C.∘ f₂) C.∘ T₁ g₂ ≈⟨ commutes₁ ⟩∘⟨refl ⟩
(f₃ C.∘ T₁ g₁) C.∘ T₁ g₂ ≈⟨ C.assoc ○ refl⟩∘⟨ ⟺ T.homomorphism ⟩
f₃ C.∘ T₁ (g₁ A.∘ g₂) ∎
}
where
open C.HomReasoning
open Comma⇒ a₁ renaming (g to g₁; h to h₁; commute to commutes₁)
open Comma⇒ a₂ renaming (g to g₂; h to h₂; commute to commutes₂)
open CommaObj X₁ renaming (α to α₁; β to β₁; f to f₁)
open CommaObj X₂ renaming (α to α₂; β to β₂; f to f₂)
open CommaObj X₃ renaming (α to α₃; β to β₃; f to f₃)
infix 4 _↓_
_↓_ : (S : Functor A C) (T : Functor B C) → Category _ _ _
S ↓ T = Comma S T
Dom : (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) A
Dom T S = record
{ F₀ = CommaObj.α
; F₁ = Comma⇒.g
; identity = refl
; homomorphism = refl
; F-resp-≈ = proj₁
}
where
open Comma T S
open A.Equiv
Cod : (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) B
Cod T S = record
{ F₀ = CommaObj.β
; F₁ = Comma⇒.h
; identity = refl
; homomorphism = refl
; F-resp-≈ = proj₂
}
where
open Comma T S
open B.Equiv
module _ {C : Category o₁ ℓ₁ e₁} {D : Category o₂ ℓ₂ e₂} where
private
module C = Category C
infix 4 _↙_ _↘_
_↙_ : (X : C.Obj) (T : Functor D C) → Category _ _ _
X ↙ T = const! X ↓ T
_↘_ : (S : Functor D C) (X : C.Obj) → Category _ _ _
S ↘ X = S ↓ const! X
| {
"alphanum_fraction": 0.5450010844,
"avg_line_length": 32.7021276596,
"ext": "agda",
"hexsha": "30069030edb3e4e23261c838f804afadc7666242",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Construction/Comma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Construction/Comma.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Construction/Comma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1874,
"size": 4611
} |
module Lib.Maybe where
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A
{-# COMPILED_DATA Maybe Maybe Nothing Just #-}
| {
"alphanum_fraction": 0.6447368421,
"avg_line_length": 15.2,
"ext": "agda",
"hexsha": "1a4fb508e80332c3195be2b67d53abf31ca3c48c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/simple-lib/Lib/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/simple-lib/Lib/Maybe.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "examples/simple-lib/Lib/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 42,
"size": 152
} |
-- A memoised implementation of the Fibonacci sequence, following
-- Hinze's "Memo functions, polytypically!".
module Issue2918 where
open import Agda.Builtin.IO
open import Agda.Builtin.Nat renaming (Nat to ℕ)
open import Agda.Builtin.Size
open import Agda.Builtin.Unit
record _×_ (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
open _×_ public
mutual
data Nat (i : Size) : Set where
zero : Nat i
suc : Nat′ i → Nat i
data Nat′ (i : Size) : Set where
[_] : {j : Size< i} → Nat j → Nat′ i
mutual
ℕ→Nat : ℕ → Nat ∞
ℕ→Nat zero = zero
ℕ→Nat (suc n) = suc (ℕ→Nat′ n)
ℕ→Nat′ : ℕ → Nat′ ∞
ℕ→Nat′ n = [ ℕ→Nat n ]
mutual
Nat′[_]→ : Size → Set → Set
Nat′[ i ]→ A = A × Nat′[ i ]→′ A
record Nat′[_]→′ (i : Size) (A : Set) : Set where
coinductive
field
force : {j : Size< i} → Nat′[ j ]→ A
open Nat′[_]→′ public
tabulate : ∀ {i} {A : Set} → (Nat′ i → A) → Nat′[ i ]→′ A
force (tabulate f) = f [ zero ] , tabulate (λ n → f [ suc n ])
lookup : ∀ {i} {A : Set} → Nat′[ i ]→′ A → Nat′ i → A
lookup t [ zero ] = proj₁ (force t)
lookup t [ suc n ] = lookup (proj₂ (force t)) n
memo-fix :
{A : Set} →
(∀ {i} → (Nat′ i → A) → (Nat i → A)) →
∀ {i} → Nat′ i → A
memo-fix f =
wrapper λ { [ n ] → f (lookup (tabulate (memo-fix f))) n }
where
wrapper : ∀ {i} {A : Set} → (Nat′ i → A) → (Nat′ i → A)
wrapper f [ n ] = f [ n ]
fib-step : ∀ {i} → (Nat′ i → ℕ) → (Nat i → ℕ)
fib-step fib zero = 0
fib-step fib (suc [ zero ]) = 1
fib-step fib (suc [ suc n ]) = fib n + fib [ suc n ]
fib : ℕ → ℕ
fib n = memo-fix fib-step [ ℕ→Nat n ]
postulate
crash-after-ten-seconds : ℕ → IO ⊤
{-# FOREIGN GHC
import qualified Control.Exception
import qualified System.Timeout
crashAfterTenSeconds c = do
r <- System.Timeout.timeout (10 * 10^6)
(Control.Exception.evaluate c)
case r of
Nothing -> error "The computation timed out"
Just _ -> return ()
#-}
{-# COMPILE GHC crash-after-ten-seconds = crashAfterTenSeconds #-}
main : IO ⊤
main = crash-after-ten-seconds (fib 300)
| {
"alphanum_fraction": 0.5555555556,
"avg_line_length": 22.8387096774,
"ext": "agda",
"hexsha": "a01f8262bef18a8364c9200e12475c734d1f74d5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2918.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2918.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2918.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 761,
"size": 2124
} |
{-# OPTIONS --cubical #-}
module leibniz where
open import Cubical.Data.Equality
open import Cubical.Foundations.Function using (_∘_)
module Martin-Löf {ℓ} {A : Set ℓ} where
reflexive≡ : {a : A} → a ≡p a
reflexive≡ = reflp
symmetric≡ : {a b : A} → a ≡p b → b ≡p a
symmetric≡ reflp = reflp
transitive≡ : {a b c : A} → a ≡p b → b ≡p c → a ≡p c
transitive≡ reflp reflp = reflp
open Martin-Löf public
ext : ∀ {ℓ ℓ′} {A : Set ℓ} {B : A → Set ℓ′} {f g : (a : A) → B a} →
(∀ (a : A) → f a ≡p g a) → f ≡p g
ext p = ctop (funExt (ptoc ∘ p))
module Leibniz {A : Set} where
_≐_ : (a b : A) → Set₁
a ≐ b = (P : A → Set) → P a → P b
reflexive≐ : {a : A} → a ≐ a
reflexive≐ P Pa = Pa
transitive≐ : {a b c : A} → a ≐ b → b ≐ c → a ≐ c
transitive≐ a≐b b≐c P Pa = b≐c P (a≐b P Pa)
symmetric≐ : {a b : A} → a ≐ b → b ≐ a
symmetric≐ {a} {b} a≐b P = Qb
where
Q : A → Set
Q c = P c → P a
Qa : Q a
Qa = reflexive≐ P
Qb : Q b
Qb = a≐b Q Qa
open Leibniz
T : Set → Set₁
T A = ∀ (X : Set) → (A → X) → X
module WarmUp (A : Set) where
postulate
paramT : (t : T A) → (X X′ : Set) (R : X → X′ → Set) →
(k : A → X) (k′ : A → X′) (kR : (a : A) → R (k a) (k′ a)) →
R (t X k) (t X′ k′)
i : A → T A
i a X k = k a
id : A → A
id a = a
j : T A → A
j t = t A id
ji : (a : A) → (j (i a) ≡p a)
ji a = reflp
ijₑₓₜ : (t : T A) (X : Set) (k : A → X) → (i (j t) X k ≡p t X k)
ijₑₓₜ t X k = paramT t A X R id k (λ a → reflp)
where
R : A → X → Set
R a x = k a ≡p x
ij : (t : T A) → (i (j t) ≡p t)
ij t = ext (λ X → ext (λ k → ijₑₓₜ t X k))
module MainResult (A : Set) where
postulate
param≐ : {a b : A} (a≐b : a ≐ b) →
(P P′ : A → Set) → (R : (c : A) → P c → P′ c → Set) →
(Pa : P a) (P′a : P′ a) → R a Pa P′a →
R b (a≐b P Pa) (a≐b P′ P′a)
i : {a b : A} (a≡b : a ≡p b) → a ≐ b
i reflp P Pa = Pa
j : {a b : A} → a ≐ b → a ≡p b
j {a} {b} a≐b = Qb
where
Q : A → Set
Q c = a ≡p c
Qa : Q a
Qa = reflexive≡
Qb : Q b
Qb = a≐b Q Qa
ji : {a b : A} (a≡b : a ≡p b) → j (i a≡b) ≡p a≡b
ji reflp = reflp
ijₑₓₜ : {a b : A} (a≐b : a ≐ b) →
(P : A → Set) (Pa : P a) → i (j a≐b) P Pa ≡p a≐b P Pa
ijₑₓₜ {a} a≐b P Pa = param≐ a≐b Q P R reflp Pa reflp
where
Q : A → Set
Q c = a ≡p c
R : (c : A) (Qc : Q c) (Pc : P c) → Set
R c Qc Pc = i Qc P Pa ≡p Pc
ij : {a b : A} (a≐b : a ≐ b) → i (j a≐b) ≡p a≐b
ij a≐b = ext (λ P → ext (ijₑₓₜ a≐b P))
| {
"alphanum_fraction": 0.4194540561,
"avg_line_length": 22.4224137931,
"ext": "agda",
"hexsha": "495867af44997eb175065d8474a903d8d1a54477",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/Equality",
"max_forks_repo_path": "leibniz.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/Equality",
"max_issues_repo_path": "leibniz.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/Equality",
"max_stars_repo_path": "leibniz.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-01T06:04:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-01T06:04:21.000Z",
"num_tokens": 1333,
"size": 2601
} |
import cedille-options
module to-string (options : cedille-options.options) where
open import lib
open import cedille-types
open import constants
open import syntax-util
open import ctxt
open import rename
open import general-util
data expr-side : Set where
left : expr-side
right : expr-side
neither : expr-side
not-left : expr-side → 𝔹
not-left left = ff
not-left _ = tt
not-right : expr-side → 𝔹
not-right right = ff
not-right _ = tt
no-parens : {ed : exprd} → {ed' : exprd} → ⟦ ed ⟧ → ⟦ ed' ⟧ → expr-side → 𝔹
no-parens {_} {TERM} _ (IotaPair pi t t' og pi') lr = tt
no-parens {_} {TYPE} _ (TpEq _ t t' _) lr = tt
no-parens {_} {TERM} _ (Beta pi ot ot') lr = tt
no-parens {_} {TERM} _ (Phi pi eq t t' pi') right = tt
no-parens {_} {TERM} _ (Phi pi eq t t' pi') neither = tt
no-parens {_} {TERM} _ (Rho _ _ _ _ _ _) right = tt
no-parens {_} {TERM} _ (Chi _ _ _) right = tt
no-parens {_} {TERM} _ (Delta _ _ _) right = tt
no-parens {_} {TERM} _ (Let _ _ _) lr = tt
no-parens {_} {TERM} _ (Lam _ _ _ _ _ _) lr = tt
no-parens {_} {TERM} _ (Mu _ _ _ _ _ _ _) lr = tt
no-parens {_} {TERM} _ (Mu' _ _ _ _ _ _) lr = tt
no-parens {_} {TYPE} _ (TpLambda _ _ _ _ _) lr = tt
no-parens {_} {TYPE} _ (Abs _ _ _ _ _ _) lr = tt
no-parens {_} {KIND} _ (KndPi _ _ _ _ _) lr = tt
no-parens {_} {TYPE} _ (Iota _ _ _ _ _) lr = tt
no-parens {_} {LIFTINGTYPE} _ (LiftPi _ _ _ _) lr = tt
no-parens{TERM} (App t me t') p lr = is-term-level-app p && not-right lr
no-parens{TERM} (AppTp t T) p lr = is-term-level-app p && not-right lr
no-parens{TERM} (Beta pi ot ot') p lr = tt
no-parens{TERM} (Chi pi mT t) p lr = ff
no-parens{TERM} (Delta pi mT t) p lr = ff
no-parens{TERM} (Epsilon pi lr' m t) p lr = is-eq-op p
no-parens{TERM} (Hole pi) p lr = tt
no-parens{TERM} (IotaPair pi t t' og pi') p lr = tt
no-parens{TERM} (IotaProj t n pi) p lr = tt
no-parens{TERM} (Lam pi l' pi' x oc t) p lr = ff
no-parens{TERM} (Let pi dtT t) p lr = ff
no-parens{TERM} (Open _ _ _) p lr = tt
no-parens{TERM} (Parens pi t pi') p lr = tt
no-parens{TERM} (Phi pi eq t t' pi') p lr = ff
no-parens{TERM} (Rho pi op on eq og t) p lr = ff
no-parens{TERM} (Sigma pi t) p lr = is-eq-op p
no-parens{TERM} (Theta pi theta t lts) p lr = ff
no-parens{TERM} (Var pi x) p lr = tt
no-parens{TERM} (Mu _ _ _ _ _ _ _) p lr = tt
no-parens{TERM} (Mu' _ _ _ _ _ _) p lr = tt
no-parens{TYPE} (Abs pi b pi' x Tk T) p lr = is-arrow p && not-left lr
no-parens{TYPE} (Iota pi pi' x oT T) p lr = ff
no-parens{TYPE} (Lft pi pi' x t lT) p lr = ff
no-parens{TYPE} (NoSpans T pi) p lr = tt
no-parens{TYPE} (TpApp T T') p lr = is-arrow p || (is-type-level-app p && not-right lr)
no-parens{TYPE} (TpAppt T t) p lr = is-arrow p || (is-type-level-app p && not-right lr)
no-parens{TYPE} (TpArrow T a T') p lr = is-arrow p && not-left lr
no-parens{TYPE} (TpEq _ t t' _) p lr = tt
no-parens{TYPE} (TpHole pi) p lr = tt
no-parens{TYPE} (TpLambda pi pi' x Tk T) p lr = ff
no-parens{TYPE} (TpParens pi T pi') p lr = tt
no-parens{TYPE} (TpVar pi x) p lr = tt
no-parens{TYPE} (TpLet _ _ _) _ _ = ff
no-parens{KIND} (KndArrow k k') p lr = is-arrow p && not-left lr
no-parens{KIND} (KndParens pi k pi') p lr = tt
no-parens{KIND} (KndPi pi pi' x Tk k) p lr = is-arrow p && not-left lr
no-parens{KIND} (KndTpArrow T k) p lr = is-arrow p && not-left lr
no-parens{KIND} (KndVar pi x as) p lr = tt
no-parens{KIND} (Star pi) p lr = tt
no-parens{LIFTINGTYPE} (LiftArrow lT lT') p lr = is-arrow p && not-left lr
no-parens{LIFTINGTYPE} (LiftParens pi lT pi') p lr = tt
no-parens{LIFTINGTYPE} (LiftPi pi x T lT) p lr = is-arrow p && not-left lr
no-parens{LIFTINGTYPE} (LiftStar pi) p lr = tt
no-parens{LIFTINGTYPE} (LiftTpArrow T lT) p lr = is-arrow p && not-left lr
no-parens{TK} _ _ _ = tt
no-parens{QUALIF} _ _ _ = tt
no-parens{ARG} _ _ _ = tt
pattern ced-ops-drop-spine = cedille-options.options.mk-options _ _ _ _ ff _ ff
pattern ced-ops-conv-arr = cedille-options.options.mk-options _ _ _ _ _ _ ff
pattern ced-ops-conv-abs = cedille-options.options.mk-options _ _ _ _ _ _ tt
drop-spine : cedille-options.options → {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧
drop-spine ced-ops-drop-spine = h
where
drop-mod-args : ctxt → maybeErased → spineApp → spineApp
drop-mod-args Γ me (v , as) =
let qv = unqual-all (ctxt-get-qualif Γ) v in qv ,
maybe-else' (maybe-if (~ v =string qv) ≫maybe ctxt-qualif-args-length Γ me qv)
as (λ n → reverse (drop n (reverse as)))
h : {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧
h {TERM} Γ t = maybe-else' (term-to-spapp t) t (spapp-term ∘ drop-mod-args Γ Erased)
h {TYPE} Γ T = maybe-else' (type-to-spapp T) T (spapp-type ∘ drop-mod-args Γ NotErased)
h Γ x = x
drop-spine ops Γ x = x
to-string-rewrite : {ed : exprd} → ctxt → cedille-options.options → ⟦ ed ⟧ → Σi exprd ⟦_⟧
to-string-rewrite{TERM} Γ ops (Parens _ t _) = to-string-rewrite Γ ops t
to-string-rewrite{TYPE} Γ ops (TpParens _ T _) = to-string-rewrite Γ ops T
to-string-rewrite{KIND} Γ ops (KndParens _ k _) = to-string-rewrite Γ ops k
to-string-rewrite{LIFTINGTYPE} Γ ops (LiftParens _ lT _) = to-string-rewrite Γ ops lT
to-string-rewrite{TK} Γ ops (Tkt T) = to-string-rewrite Γ ops T
to-string-rewrite{TK} Γ ops (Tkk k) = to-string-rewrite Γ ops k
to-string-rewrite{TYPE} Γ ced-ops-conv-arr (Abs _ me _ ignored-var (Tkt T) T') = , TpArrow T me T'
to-string-rewrite{KIND} Γ ced-ops-conv-arr (KndPi _ _ ignored-var (Tkt T) k) = , KndTpArrow T k
to-string-rewrite{KIND} Γ ced-ops-conv-arr (KndPi _ _ ignored-var (Tkk k) k') = , KndArrow k k'
to-string-rewrite{LIFTINGTYPE} Γ ced-ops-conv-arr (LiftPi _ ignored-var T lT) = , LiftTpArrow T lT
to-string-rewrite{TYPE} Γ ced-ops-conv-abs (TpArrow T me T') = , Abs posinfo-gen me posinfo-gen ignored-var (Tkt T) T'
to-string-rewrite{KIND} Γ ced-ops-conv-abs (KndTpArrow T k) = , KndPi posinfo-gen posinfo-gen ignored-var (Tkt T) k
to-string-rewrite{KIND} Γ ced-ops-conv-abs (KndArrow k k') = , KndPi posinfo-gen posinfo-gen ignored-var (Tkk k) k'
to-string-rewrite{LIFTINGTYPE} Γ ced-ops-conv-abs (LiftTpArrow T lT) = , LiftPi posinfo-gen ignored-var T lT
to-string-rewrite{TERM} Γ ops (Sigma pi (Sigma pi' t)) = to-string-rewrite Γ ops t
to-string-rewrite Γ ops x = , drop-spine ops Γ x
-------------------------------
strM : Set
strM = ∀ {ed} → rope → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → rope × ℕ × 𝕃 tag
to-stringh : {ed : exprd} → ⟦ ed ⟧ → strM
strM-Γ : (ctxt → strM) → strM
strM-Γ f s n ts Γ = f Γ s n ts Γ
infixr 4 _≫str_
_≫str_ : strM → strM → strM
(m ≫str m') s n ts Γ pe lr with m s n ts Γ pe lr
(m ≫str m') s n ts Γ pe lr | s' , n' , ts' = m' s' n' ts' Γ pe lr
strAdd : string → strM
strAdd s s' n ts Γ pe lr = s' ⊹⊹ [[ s ]] , n + string-length s , ts
strΓ' : defScope → var → strM → strM
strΓ' ds v m s n ts Γ@(mk-ctxt (fn , mn , ps , q) syms i symb-occs d) pe =
let gl = ds iff globalScope
v' = if gl then (mn # v) else v in
m s n ts (mk-ctxt
(fn , mn , ps , qualif-insert-params q v' (unqual-local v) (if gl then ps else ParamsNil))
syms (trie-insert i v' (var-decl , ("missing" , "missing"))) symb-occs d) pe
strΓ : var → strM → strM
strΓ x m s n ts Γ = m s n ts (ctxt-var-decl x Γ)
ctxt-get-file-id : ctxt → (filename : string) → ℕ
ctxt-get-file-id (mk-ctxt mod (syms , mn-fn , mn-ps , ids , id) is os _) =
trie-lookup-else 0 ids
make-loc-tag : ctxt → (filename start-to end-to : string) → (start-from end-from : ℕ) → tag
make-loc-tag Γ fn s e = make-tag "loc"
(("fn" , [[ ℕ-to-string (ctxt-get-file-id Γ fn) ]]) ::
("s" , [[ s ]]) :: ("e" , [[ e ]]) :: [])
var-loc-tag : ctxt → location → var → (start-from end-from : ℕ) → 𝕃 tag
var-loc-tag Γ ("missing" , "missing") x start end = []
var-loc-tag Γ (fn , pos) x start end =
[ make-loc-tag Γ fn pos (posinfo-plus-str pos (unqual-local x)) start end ]
var-tags : ctxt → qvar → var → ℕ → ℕ → 𝕃 tag
var-tags Γ qv uqv s e with qv =string (qualif-var Γ uqv)
...| tt = var-loc-tag Γ (ctxt-var-location Γ qv) uqv s e
...| ff = make-tag "shadowed" [] s e :: var-loc-tag Γ (ctxt-var-location Γ qv) uqv s e
strVar : var → strM
strVar v s n ts Γ pe lr =
let uqv = unqual-local $ unqual-all (ctxt-get-qualif Γ) v
uqv' = if cedille-options.options.show-qualified-vars options then v else uqv
n' = n + (string-length uqv') in
s ⊹⊹ [[ uqv' ]] , n' , var-tags Γ (qualif-var Γ v) uqv n n' ++ ts
-- Only necessary to unqual-local because of module parameters
strBvar : var → (class body : strM) → strM
strBvar v cm bm = strAdd (unqual-local v) ≫str cm ≫str strΓ v bm
strMetaVar : var → span-location → strM
strMetaVar x (fn , pi , pi') s n ts Γ pe lr =
let n' = n + string-length x in
s ⊹⊹ [[ x ]] , n' , make-loc-tag Γ fn pi pi' n n' :: ts
strEmpty : strM
strEmpty s n ts Γ pe lr = s , n , ts
{-# TERMINATING #-}
term-to-stringh : term → strM
type-to-stringh : type → strM
kind-to-stringh : kind → strM
liftingType-to-stringh : liftingType → strM
tk-to-stringh : tk → strM
constructors-to-string : dataConsts → strM
params-to-string : params → strM
params-to-string' : strM → params → strM
file-to-string : start → strM
cmds-to-string : cmds → strM → strM
cmd-to-string : cmd → strM → strM
optTerm-to-string : optTerm → string → string → strM
optClass-to-string : optClass → strM
optGuide-to-string : optGuide → strM
optNums-to-string : optNums → strM
optType-to-string : optType → strM
maybeCheckType-to-string : optType → strM
lterms-to-string : lterms → strM
arg-to-string : arg → strM
args-to-string : args → strM
binder-to-string : maybeErased → string
opacity-to-string : opacity → string
maybeErased-to-string : maybeErased → string
lam-to-string : maybeErased → string
leftRight-to-string : leftRight → string
vars-to-string : vars → strM
nums-to-string : nums → strM
theta-to-string : theta → strM
arrowtype-to-string : maybeErased → string
maybeMinus-to-string : maybeMinus → string
optPlus-to-string : optPlus → string
optPublic-to-string : optPublic → string
optAs-to-string : optAs → strM
to-string-ed : {ed : exprd} → ⟦ ed ⟧ → strM
to-string-ed{TERM} = term-to-stringh
to-string-ed{TYPE} = type-to-stringh
to-string-ed{KIND} = kind-to-stringh
to-string-ed{LIFTINGTYPE} = liftingType-to-stringh
to-string-ed{TK} = tk-to-stringh
to-string-ed{ARG} = arg-to-string
to-string-ed{QUALIF} q = strEmpty
to-stringh' : {ed : exprd} → expr-side → ⟦ ed ⟧ → strM
to-stringh' {ed} lr t {ed'} s n ts Γ mp lr' =
elim-Σi (to-string-rewrite Γ options t) λ t' →
parens-unless (~ isJust (mp ≫=maybe λ pe → maybe-if (~ no-parens t' pe lr)))
(to-string-ed t') s n ts Γ (just t') lr
where
parens-unless : 𝔹 → strM → strM
parens-unless p s = if p then s else (strAdd "(" ≫str s ≫str strAdd ")")
to-stringl : {ed : exprd} → ⟦ ed ⟧ → strM
to-stringr : {ed : exprd} → ⟦ ed ⟧ → strM
to-stringl = to-stringh' left
to-stringr = to-stringh' right
to-stringh = to-stringh' neither
constructors-to-string DataNull = strEmpty
constructors-to-string (DataCons (DataConst _ x t) ds) =
strAdd " | " ≫str
strAdd x ≫str
strAdd " : " ≫str
type-to-stringh t ≫str
constructors-to-string ds
tk-to-stringh (Tkt T) = to-stringh T
tk-to-stringh (Tkk k) = to-stringh k
term-to-stringh (App t me t') = to-stringl t ≫str strAdd (" " ^ maybeErased-to-string me) ≫str to-stringr t'
term-to-stringh (AppTp t T) = to-stringl t ≫str strAdd " · " ≫str to-stringr T
term-to-stringh (Beta pi ot ot') = strAdd "β" ≫str optTerm-to-string ot " < " " >" ≫str optTerm-to-string ot' " { " " }"
term-to-stringh (Chi pi mT t) = strAdd "χ" ≫str optType-to-string mT ≫str strAdd " - " ≫str to-stringr t
term-to-stringh (Delta pi mT t) = strAdd "δ" ≫str optType-to-string mT ≫str strAdd " - " ≫str to-stringr t
term-to-stringh (Epsilon pi lr m t) = strAdd "ε" ≫str strAdd (leftRight-to-string lr) ≫str strAdd (maybeMinus-to-string m) ≫str to-stringh t
term-to-stringh (Hole pi) = strAdd "●"
term-to-stringh (IotaPair pi t t' og pi') = strAdd "[ " ≫str to-stringh t ≫str strAdd " , " ≫str to-stringh t' ≫str optGuide-to-string og ≫str strAdd " ]"
term-to-stringh (IotaProj t n pi) = to-stringh t ≫str strAdd ("." ^ n)
term-to-stringh (Lam pi l pi' x oc t) = strAdd (lam-to-string l) ≫str strAdd " " ≫str strBvar x (optClass-to-string oc) (strAdd " . " ≫str to-stringr t)
term-to-stringh (Let pi dtT t) with dtT
...| DefTerm pi' x m t' = strAdd "[ " ≫str strBvar x (maybeCheckType-to-string m ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t)
...| DefType pi' x k t' = strAdd "[ " ≫str strBvar x (strAdd " ◂ " ≫str to-stringh k ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t)
term-to-stringh (Open pi x t) = strAdd "open " ≫str strVar x ≫str strAdd " - " ≫str to-stringh t
term-to-stringh (Parens pi t pi') = to-stringh t
term-to-stringh (Phi pi eq t t' pi') = strAdd "φ " ≫str to-stringl eq ≫str strAdd " - " ≫str to-stringh t ≫str strAdd " {" ≫str to-stringr t' ≫str strAdd "}"
term-to-stringh (Rho pi op on eq og t) = strAdd "ρ" ≫str strAdd (optPlus-to-string op) ≫str optNums-to-string on ≫str strAdd " " ≫str to-stringl eq ≫str optGuide-to-string og ≫str strAdd " - " ≫str to-stringr t
term-to-stringh (Sigma pi t) = strAdd "ς " ≫str to-stringh t
term-to-stringh (Theta pi theta t lts) = theta-to-string theta ≫str to-stringh t ≫str lterms-to-string lts
term-to-stringh (Var pi x) = strVar x
term-to-stringh (Mu pi x t ot pi' cs pi'') = strAdd "μ " ≫str strBvar x (strAdd " . " ≫str to-stringh t) strEmpty ≫str optType-to-string ot ≫str strAdd "TODO"
term-to-stringh (Mu' pi t ot pi' cs pi'') = strAdd "μ' " ≫str to-stringh t ≫str strAdd " . " ≫str optType-to-string ot ≫str strAdd "TODO"
type-to-stringh (Abs pi b pi' x Tk T) = strAdd (binder-to-string b ^ " ") ≫str strBvar x (strAdd " : " ≫str tk-to-stringh Tk ≫str strAdd " . ") (to-stringh T)
type-to-stringh (Iota pi pi' x T T') = strAdd "ι " ≫str strBvar x (strAdd " : " ≫str to-stringh T ≫str strAdd " . ") (to-stringh T')
type-to-stringh (Lft pi pi' x t lT) = strAdd "↑ " ≫str strBvar x (strAdd " . ") (to-stringh t) ≫str strAdd " : " ≫str to-stringh lT
type-to-stringh (NoSpans T pi) = to-string-ed T
type-to-stringh (TpApp T T') = to-stringl T ≫str strAdd " · " ≫str to-stringr T'
type-to-stringh (TpAppt T t) = to-stringl T ≫str strAdd " " ≫str to-stringr t
type-to-stringh (TpArrow T a T') = to-stringl T ≫str strAdd (arrowtype-to-string a) ≫str to-stringr T'
type-to-stringh (TpEq _ t t' _) = strAdd "{ " ≫str to-stringh (erase-term t) ≫str strAdd " ≃ " ≫str to-stringh (erase-term t') ≫str strAdd " }"
type-to-stringh (TpHole pi) = strAdd "●"
type-to-stringh (TpLambda pi pi' x Tk T) = strAdd "λ " ≫str strBvar x (strAdd " : " ≫str tk-to-stringh Tk ≫str strAdd " . ") (to-stringr T)
type-to-stringh (TpParens pi T pi') = to-stringh T
type-to-stringh (TpVar pi x) = strVar x
type-to-stringh (TpLet pi dtT t) with dtT
...| DefTerm pi' x m t' = strAdd "[ " ≫str strBvar x (maybeCheckType-to-string m ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t)
...| DefType pi' x k t' = strAdd "[ " ≫str strBvar x (strAdd " ◂ " ≫str to-stringh k ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t)
kind-to-stringh (KndArrow k k') = to-stringl k ≫str strAdd " ➔ " ≫str to-stringr k'
kind-to-stringh (KndParens pi k pi') = to-stringh k
kind-to-stringh (KndPi pi pi' x Tk k) = strAdd "Π " ≫str strBvar x (strAdd " : " ≫str tk-to-stringh Tk ≫str strAdd " . ") (to-stringh k)
kind-to-stringh (KndTpArrow T k) = to-stringl T ≫str strAdd " ➔ " ≫str to-stringr k
kind-to-stringh (KndVar pi x as) = strVar x ≫str args-to-string as
kind-to-stringh (Star pi) = strAdd "★"
liftingType-to-stringh (LiftArrow lT lT') = to-stringl lT ≫str strAdd " ➔↑ " ≫str to-stringr lT'
liftingType-to-stringh (LiftParens pi lT pi') = strAdd "(" ≫str to-string-ed lT ≫str strAdd ")"
liftingType-to-stringh (LiftPi pi x T lT) = strAdd "Π↑ " ≫str strBvar x (strAdd " : " ≫str to-stringh T ≫str strAdd " . ") (to-stringh lT)
liftingType-to-stringh (LiftStar pi) = strAdd "☆"
liftingType-to-stringh (LiftTpArrow T lT) = to-stringl T ≫str strAdd " ➔↑ " ≫str to-stringr lT
optTerm-to-string NoTerm c1 c2 = strEmpty
optTerm-to-string (SomeTerm t _) c1 c2 = strAdd c1 ≫str to-stringh (erase-term t) ≫str strAdd c2
optClass-to-string NoClass = strEmpty
optClass-to-string (SomeClass Tk) = strAdd " : " ≫str tk-to-stringh Tk
optGuide-to-string NoGuide = strEmpty
optGuide-to-string (Guide pi v T) = strAdd " @ " ≫str strBvar v (strAdd " . ") (to-stringh T)
optType-to-string NoType = strEmpty
optType-to-string (SomeType T) = strAdd " " ≫str to-stringh T
maybeCheckType-to-string NoType = strEmpty
maybeCheckType-to-string (SomeType T) = strAdd " ◂ " ≫str to-stringh T
lterms-to-string (LtermsCons m t ts) = strAdd (" " ^ maybeErased-to-string m) ≫str to-stringh t ≫str lterms-to-string ts
lterms-to-string (LtermsNil _) = strEmpty
arg-to-string (TermArg me t) = strAdd (maybeErased-to-string me) ≫str to-stringh t
arg-to-string (TypeArg T) = strAdd "· " ≫str to-stringh T
args-to-string (ArgsCons t ts) = strAdd " " ≫str arg-to-string t ≫str args-to-string ts
args-to-string ArgsNil = strEmpty
binder-to-string All = "∀"
binder-to-string Pi = "Π"
opacity-to-string OpacOpaque = "opaque "
opacity-to-string OpacTrans = ""
maybeErased-to-string Erased = "-"
maybeErased-to-string NotErased = ""
lam-to-string Erased = "Λ"
lam-to-string NotErased = "λ"
leftRight-to-string Left = "l"
leftRight-to-string Right = "r"
leftRight-to-string Both = ""
vars-to-string (VarsStart v) = strVar v
vars-to-string (VarsNext v vs) = strVar v ≫str strAdd " " ≫str vars-to-string vs
theta-to-string Abstract = strAdd "θ "
theta-to-string AbstractEq = strAdd "θ+ "
theta-to-string (AbstractVars vs) = strAdd "θ<" ≫str vars-to-string vs ≫str strAdd "> "
nums-to-string (NumsStart n) = strAdd n
nums-to-string (NumsNext n ns) = strAdd n ≫str strAdd " " ≫str nums-to-string ns
optNums-to-string NoNums = strEmpty
optNums-to-string (SomeNums ns) = strAdd "<" ≫str nums-to-string ns ≫str strAdd ">"
arrowtype-to-string NotErased = " ➔ "
arrowtype-to-string Erased = " ➾ "
maybeMinus-to-string EpsHnf = ""
maybeMinus-to-string EpsHanf = "-"
optPlus-to-string RhoPlain = ""
optPlus-to-string RhoPlus = "+"
optPublic-to-string NotPublic = ""
optPublic-to-string IsPublic = "public "
optAs-to-string NoOptAs = strEmpty
optAs-to-string (SomeOptAs _ x) = strAdd " as " ≫str strAdd x
braceL : maybeErased → string
braceL Erased = "{"
braceL NotErased = "("
braceR : maybeErased → string
braceR Erased = "}"
braceR NotErased = ")"
param-to-string : decl → strM → strM
param-to-string (Decl _ pi me v atk _) f =
strAdd (braceL me) ≫str
strAdd (unqual-local v) ≫str
strAdd " : " ≫str
tk-to-stringh atk ≫str
strAdd (braceR me) ≫str
strΓ' localScope v f
params-to-string' f ParamsNil = f
params-to-string' f (ParamsCons p ParamsNil) = param-to-string p f
params-to-string' f (ParamsCons p ps) = param-to-string p (strAdd " " ≫str params-to-string' f ps)
params-to-string = params-to-string' strEmpty
file-to-string (File _ is _ _ mn ps cs _) =
cmds-to-string (imps-to-cmds is)
(strAdd "module " ≫str
strAdd mn ≫str
strAdd " " ≫str
params-to-string'
(strAdd "." ≫str strAdd "\n" ≫str
cmds-to-string cs strEmpty) ps)
cmds-to-string CmdsStart f = f
cmds-to-string (CmdsNext c cs) f =
strAdd "\n" ≫str
cmd-to-string c
(strAdd "\n" ≫str
cmds-to-string cs f)
cmd-to-string (DefTermOrType op (DefTerm pi x mcT t) _) f =
strM-Γ λ Γ →
let ps = ctxt-get-current-params Γ in
strAdd (opacity-to-string op) ≫str
strAdd x ≫str
maybeCheckType-to-string (case mcT of λ where
NoType → NoType
(SomeType T) → SomeType (abs-expand-type ps T)) ≫str
strAdd " = " ≫str
to-stringh (lam-expand-term ps t) ≫str
strAdd " ." ≫str
strΓ' globalScope x f
cmd-to-string (DefTermOrType op (DefType pi x k T) _) f =
strM-Γ λ Γ →
let ps = ctxt-get-current-params Γ in
strAdd (opacity-to-string op) ≫str
strAdd x ≫str
strAdd " ◂ " ≫str
to-stringh (abs-expand-kind ps k) ≫str
strAdd " = " ≫str
to-stringh (lam-expand-type ps T) ≫str
strAdd " ." ≫str
strΓ' globalScope x f
cmd-to-string (DefKind pi x ps k _) f =
strM-Γ λ Γ →
let ps' = ctxt-get-current-params Γ in
strAdd x ≫str
params-to-string (append-params ps' ps) ≫str
strAdd " = " ≫str
to-stringh k ≫str
strAdd " ." ≫str
strΓ' globalScope x f
cmd-to-string (ImportCmd (Import _ op _ fn oa as _)) f =
strAdd "import " ≫str
strAdd (optPublic-to-string op) ≫str
strAdd fn ≫str
optAs-to-string oa ≫str
args-to-string as ≫str
strAdd " ." ≫str
f
cmd-to-string (DefDatatype (Datatype pi pix x ps k cs pi') pi'') f =
strAdd "data " ≫str
strAdd x ≫str
strAdd " " ≫str
params-to-string ps ≫str
strAdd " : " ≫str
kind-to-stringh k ≫str
strAdd " = " ≫str
constructors-to-string cs ≫str
strΓ' globalScope x f
strRun : ctxt → strM → rope
strRun Γ m = fst (m {TERM} [[]] 0 [] Γ nothing neither)
strRunTag : (name : string) → ctxt → strM → tagged-val
strRunTag name Γ m with m {TERM} [[]] 0 [] Γ nothing neither
...| s , n , ts = name , s , ts
to-string-tag : {ed : exprd} → string → ctxt → ⟦ ed ⟧ → tagged-val
to-string-tag name Γ t = strRunTag name Γ
(to-stringh
(if cedille-options.options.erase-types options
then erase t
else t))
to-string : {ed : exprd} → ctxt → ⟦ ed ⟧ → rope
to-string Γ t = strRun Γ (to-stringh t)
tk-to-string : ctxt → tk → rope
tk-to-string Γ atk = strRun Γ (tk-to-stringh atk)
params-to-string-tag : string → ctxt → params → tagged-val
params-to-string-tag name Γ ps = strRunTag name Γ (params-to-string ps)
| {
"alphanum_fraction": 0.6523619118,
"avg_line_length": 44.9958158996,
"ext": "agda",
"hexsha": "cb29732e715d0246f8e59474d528f1e12c231f2d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/to-string.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/to-string.agda",
"max_line_length": 210,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/to-string.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8021,
"size": 21508
} |
{-# OPTIONS --without-K --safe #-}
open import Polynomial.Parameters
module Polynomial.Homomorphism.Semantics
{c r₁ r₂ r₃}
(homo : Homomorphism c r₁ r₂ r₃)
where
open import Data.Product using (_,_)
open import Data.List using ([])
open import Data.Vec as Vec using (Vec)
open import Data.Fin using (Fin)
open import Function
open import Polynomial.Homomorphism.Lemmas homo
open import Polynomial.NormalForm homo
open Homomorphism homo
open import Polynomial.Reasoning ring
open import Polynomial.Exponentiation rawRing
κ-hom : ∀ {n}
→ (x : Raw.Carrier)
→ (Ρ : Vec Carrier n)
→ ⟦ κ x ⟧ Ρ ≈ ⟦ x ⟧ᵣ
κ-hom x _ = refl
ι-hom : ∀ {n} → (i : Fin n) → (Ρ : Vec Carrier n) → ⟦ ι i ⟧ Ρ ≈ Vec.lookup Ρ i
ι-hom i Ρ′ =
let (ρ , Ρ) = drop-1 (Fin⇒≤ i) Ρ′
in
begin
⟦ (κ Raw.1# Δ 1 ∷↓ []) Π↓ Fin⇒≤ i ⟧ Ρ′
≈⟨ Π↓-hom (κ Raw.1# Δ 1 ∷↓ []) (Fin⇒≤ i) Ρ′ ⟩
Σ?⟦ κ Raw.1# Δ 1 ∷↓ [] ⟧ (ρ , Ρ)
≈⟨ ∷↓-hom-s (κ Raw.1#) 0 [] ρ Ρ ⟩
ρ * ⟦ κ Raw.1# ⟧ Ρ
≈⟨ *≫ 1-homo ⟩
ρ * 1#
≈⟨ *-identityʳ ρ ⟩
ρ
≡⟨ drop-1⇒lookup i Ρ′ ⟩
Vec.lookup Ρ′ i
∎
| {
"alphanum_fraction": 0.5670009116,
"avg_line_length": 22.8541666667,
"ext": "agda",
"hexsha": "c6b88686bf9b0672ca99cf9e09dcf2f1d5b32d35",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Homomorphism/Semantics.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Homomorphism/Semantics.agda",
"max_line_length": 78,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Homomorphism/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 488,
"size": 1097
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Setoid.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Subset.Setoid.Properties where
open import Data.List.Relation.Binary.Subset.Setoid.Properties public
| {
"alphanum_fraction": 0.5200892857,
"avg_line_length": 34.4615384615,
"ext": "agda",
"hexsha": "e2a5a42626521dab4a4f4aeedae78d04e8c50484",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 448
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.TLevel
open import lib.types.Group
open import lib.types.LoopSpace
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
module lib.groups.LoopSpace where
{- A loop space is a pregroup, and a group if it has the right level -}
module _ {i} (n : ℕ) (X : Ptd i) where
Ω^S-group-structure : GroupStructure (Ω^ (S n) X)
Ω^S-group-structure = record {
ident = idp^ (S n);
inv = Ω^S-! n;
comp = Ω^S-∙ n;
unit-l = Ω^S-∙-unit-l n;
assoc = Ω^S-∙-assoc n;
inv-l = Ω^S-!-inv-l n
}
Ω^S-group : has-level ⟨ S n ⟩ (de⊙ X) → Group i
Ω^S-group pX = group
(Ω^ (S n) X)
(Ω^-level 0 (S n) X $
transport (λ t → has-level t (de⊙ X)) (! (+2+0 ⟨ S n ⟩₋₂)) pX)
Ω^S-group-structure
module _ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} where
Ω^S-group-structure-fmap : X ⊙→ Y
→ GroupStructureHom (Ω^S-group-structure n X) (Ω^S-group-structure n Y)
Ω^S-group-structure-fmap F = group-structure-hom (Ω^-fmap (S n) F) (Ω^S-fmap-∙ n F)
Ω^S-group-structure-isemap : {F : X ⊙→ Y}
→ is-equiv (fst F) → is-equiv (GroupStructureHom.f (Ω^S-group-structure-fmap F))
Ω^S-group-structure-isemap {F} F-is-equiv = Ω^-isemap (S n) F F-is-equiv
Ω^S-group-structure-emap : X ⊙≃ Y
→ Ω^S-group-structure n X ≃ᴳˢ Ω^S-group-structure n Y
Ω^S-group-structure-emap (F , F-is-equiv) =
Ω^S-group-structure-fmap F , Ω^S-group-structure-isemap F-is-equiv
module _ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
(X-level : has-level ⟨ S n ⟩ (de⊙ X))
(Y-level : has-level ⟨ S n ⟩ (de⊙ Y))
where
Ω^S-group-fmap : X ⊙→ Y → Ω^S-group n X X-level →ᴳ Ω^S-group n Y Y-level
Ω^S-group-fmap = →ᴳˢ-to-→ᴳ ∘ Ω^S-group-structure-fmap n
Ω^S-group-emap : X ⊙≃ Y → Ω^S-group n X X-level ≃ᴳ Ω^S-group n Y Y-level
Ω^S-group-emap = ≃ᴳˢ-to-≃ᴳ ∘ Ω^S-group-structure-emap n
| {
"alphanum_fraction": 0.605179704,
"avg_line_length": 33.7857142857,
"ext": "agda",
"hexsha": "5d85023bbb2df73ad20d5f8dc5eaec84357f9dc2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/LoopSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/LoopSpace.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/LoopSpace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 810,
"size": 1892
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
open import lemmas-general
open import preservation
module eval-checks where
eval-unicity : ∀{⛽ Δ Σ' Γ E e τ r r' K K'} →
Δ , Σ' , Γ ⊢ E →
Δ , Σ' , Γ ⊢ e :: τ →
E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ K →
E ⊢ e ⌊ ⛽ ⌋⇒ r' ⊣ K' →
r == r' ∧ K == K'
xc-unicity : ∀{Δ Σ' r1 r2 τ K K'} →
Δ , Σ' ⊢ r1 ·: τ →
Δ , Σ' ⊢ r2 ·: τ →
Constraints⦃ r1 , r2 ⦄:= K →
Constraints⦃ r1 , r2 ⦄:= K' →
K == K'
eval-unicity Γ⊢E (TAFix _) EFix EFix = refl , refl
eval-unicity Γ⊢E (TAVar _) (EVar h) (EVar h') = ctxunicity h h' , refl
eval-unicity Γ⊢E (TAApp _ ta-f ta-arg) (EAppFix f1 form eval-f eval-arg eval) (EAppFix f2 form' eval-f' eval-arg' eval')
rewrite form | form'
with eval-unicity Γ⊢E ta-f eval-f eval-f' | eval-unicity Γ⊢E ta-arg eval-arg eval-arg'
... | refl , refl | refl , refl
with preservation Γ⊢E ta-f eval-f
... | TAFix Γ'⊢Ef (TAFix ta-ef)
rewrite Fuel-depletion-unicity f1 f2
with eval-unicity (EnvInd (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-f eval-f)) (preservation Γ⊢E ta-arg eval-arg)) ta-ef eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E TAUnit EUnit EUnit = refl , refl
eval-unicity Γ⊢E (TAApp x ta-e ta-e₁) (EAppFix x₁ form eval eval₁ eval₂) (EAppUnfinished eval' nf eval'')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl
rewrite form
= abort (nf refl)
eval-unicity Γ⊢E (TAApp x ta-e ta-e₁) (EAppUnfinished eval nf eval₁) (EAppFix x₂ form eval' eval'' eval''')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl
rewrite form
= abort (nf refl)
eval-unicity Γ⊢E (TAApp x ta-f ta-arg) (EAppUnfinished eval-f x₁ eval-arg) (EAppUnfinished eval-f' x₂ eval-arg')
with eval-unicity Γ⊢E ta-f eval-f eval-f' | eval-unicity Γ⊢E ta-arg eval-arg eval-arg'
... | refl , refl | refl , refl = refl , refl
eval-unicity Γ⊢E (TAPair x ta-e1 ta-e2) (EPair eval1 eval2) (EPair eval1' eval2')
with eval-unicity Γ⊢E ta-e1 eval1 eval1' | eval-unicity Γ⊢E ta-e2 eval2 eval2'
... | refl , refl | refl , refl = refl , refl
eval-unicity Γ⊢E (TAFst ta-e) (EFst eval) (EFst eval')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TAFst ta-e) (EFst eval) (EFstUnfinished eval' np)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (np refl)
eval-unicity Γ⊢E (TAFst ta-e) (EFstUnfinished eval np) (EFst eval')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (np refl)
eval-unicity Γ⊢E (TAFst ta-e) (EFstUnfinished eval x) (EFstUnfinished eval' x₁)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TASnd ta-e) (ESnd eval) (ESnd eval')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TASnd ta-e) (ESnd eval) (ESndUnfinished eval' np)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (np refl)
eval-unicity Γ⊢E (TASnd ta-e) (ESndUnfinished eval np) (ESnd eval')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (np refl)
eval-unicity Γ⊢E (TASnd ta-e) (ESndUnfinished eval x) (ESndUnfinished eval' x₁)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TACtor x x₁ ta-e) (ECtor eval) (ECtor eval')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TACase d∈σ' ta-e x₁ ta-rules) (EMatch f1 form eval-e eval-ec) (EMatch f2 form' eval'-e eval'-ec)
with eval-unicity Γ⊢E ta-e eval-e eval'-e
... | refl , refl
with ctxunicity form form'
... | refl
with ta-rules form
... | _ , _ , _ , c∈cctx , ta-ec
with preservation Γ⊢E ta-e eval-e
... | TACtor d∈'σ' c∈'cctx ta-r'
rewrite ctxunicity d∈σ' d∈'σ' | ctxunicity c∈cctx c∈'cctx | Fuel-depletion-unicity f1 f2
with eval-unicity (EnvInd Γ⊢E ta-r') ta-ec eval-ec eval'-ec
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatch x₃ x₄ eval eval₁) (EMatchUnfinished eval' nc)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (nc refl)
eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatchUnfinished eval nc) (EMatch x₄ x₅ eval' eval'')
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = abort (nc refl)
eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatchUnfinished eval x₃) (EMatchUnfinished eval' x₄)
with eval-unicity Γ⊢E ta-e eval eval'
... | refl , refl = refl , refl
eval-unicity Γ⊢E (TAHole x) EHole EHole = refl , refl
eval-unicity Γ⊢E (TAAsrt x ta-e1 ta-e2) (EAsrt eval1 eval2 xc) (EAsrt eval1' eval2' xc')
with eval-unicity Γ⊢E ta-e1 eval1 eval1' | eval-unicity Γ⊢E ta-e2 eval2 eval2'
... | refl , refl | refl , refl
rewrite xc-unicity (preservation Γ⊢E ta-e1 eval1) (preservation Γ⊢E ta-e2 eval2) xc xc'
= refl , refl
xc-unicity ta1 ta2 RCRefl RCRefl = refl
xc-unicity ta1 ta2 RCRefl (RCPair x rc2 rc3) = abort (x refl)
xc-unicity ta1 ta2 RCRefl (RCCtor x rc2) = abort (x refl)
xc-unicity ta1 ta2 RCRefl (RCVal1 x x₁ x₂ x₃) = abort (x refl)
xc-unicity ta1 ta2 RCRefl (RCVal2 x x₁ x₂ x₃) = abort (x refl)
xc-unicity ta1 ta2 (RCPair x rc1 rc2) RCRefl = abort (x refl)
xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCPair x rc1 rc2) (RCPair x₁ rc3 rc4)
rewrite xc-unicity ta1 ta3 rc1 rc3 | xc-unicity ta2 ta4 rc2 rc4
= refl
xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal1 x₁ (Inl x₂) x₃ x₄) = abort (x₂ refl)
xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal1 x₁ (Inr x₂) x₃ x₄) = abort (x₂ refl)
xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal2 x₁ (Inl x₂) x₃ x₄) = abort (x₂ refl)
xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal2 x₁ (Inr x₂) x₃ x₄) = abort (x₂ refl)
xc-unicity ta1 ta2 (RCCtor x rc1) RCRefl = abort (x refl)
xc-unicity (TACtor d∈σ' c∈cctx ta1) (TACtor d∈'σ' c∈'cctx ta2) (RCCtor x rc1) (RCCtor x₁ rc2)
rewrite ctxunicity d∈σ' d∈'σ' | ctxunicity c∈cctx c∈'cctx
= xc-unicity ta1 ta2 rc1 rc2
xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal1 x₁ x₂ (Inl x₃) x₄) = abort (x₃ refl)
xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal1 x₁ x₂ (Inr x₃) x₄) = abort (x₃ refl)
xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal2 x₁ x₂ (Inl x₃) x₄) = abort (x₃ refl)
xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal2 x₁ x₂ (Inr x₃) x₄) = abort (x₃ refl)
xc-unicity ta1 ta2 (RCVal1 x x₁ x₂ x₃) RCRefl = abort (x refl)
xc-unicity ta1 ta2 (RCVal1 x (Inl x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal1 x (Inr x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal1 x _ (Inl x₁) x₃) (RCCtor x₄ rc2) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal1 x _ (Inr x₁) x₃) (RCCtor x₄ rc2) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal1 x x₁ x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇)
rewrite Coerce-unicity x₃ x₇
= refl
xc-unicity TAUnit TAUnit (RCVal1 x x₁ x₂ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₄ refl)
xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal1 x (Inl x₂) _ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₂ refl)
xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal1 x (Inr x₂) _ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₂ refl)
xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal1 x x₁ (Inl h) x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal1 x x₁ (Inr h) x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity ta1 ta2 (RCVal2 x x₁ x₂ x₃) RCRefl = abort (x refl)
xc-unicity ta1 ta2 (RCVal2 x (Inl x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal2 x (Inr x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl)
xc-unicity ta1 ta2 (RCVal2 x x₁ (Inl x₂) x₃) (RCCtor x₄ rc2) = abort (x₂ refl)
xc-unicity ta1 ta2 (RCVal2 x x₁ (Inr x₂) x₃) (RCCtor x₄ rc2) = abort (x₂ refl)
xc-unicity TAUnit TAUnit (RCVal2 x x₁ x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (x refl)
xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal2 x (Inl h) x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal2 x (Inr h) x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal2 x x₁ (Inl h) x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal2 x x₁ (Inr h) x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl)
xc-unicity ta1 ta2 (RCVal2 x x₁ x₂ x₃) (RCVal2 x₄ x₅ x₆ x₇)
rewrite Coerce-unicity x₃ x₇
= refl
-- useful in practice, since threading type-checks around everywhere can be a pain
-- note that this does not prove unicity of constraints, which isn't true for poorly-typed terms
untyped-eval-unicity : ∀{⛽ E e r r' K K'} →
E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ K →
E ⊢ e ⌊ ⛽ ⌋⇒ r' ⊣ K' →
r == r'
untyped-eval-unicity EFix EFix = refl
untyped-eval-unicity (EVar h) (EVar h') = ctxunicity h h'
untyped-eval-unicity (EAppFix f1 form eval-f eval-arg eval) (EAppFix f2 form' eval-f' eval-arg' eval')
rewrite form | form'
with untyped-eval-unicity eval-f eval-f' | untyped-eval-unicity eval-arg eval-arg'
... | refl | refl
rewrite Fuel-depletion-unicity f1 f2 | untyped-eval-unicity eval eval'
= refl
untyped-eval-unicity EUnit EUnit = refl
untyped-eval-unicity (EAppFix x₁ form eval eval₁ eval₂) (EAppUnfinished eval' nf eval'')
rewrite untyped-eval-unicity eval eval' | form
= abort (nf refl)
untyped-eval-unicity (EAppUnfinished eval nf eval₁) (EAppFix x₂ form eval' eval'' eval''')
rewrite untyped-eval-unicity eval eval' | form
= abort (nf refl)
untyped-eval-unicity (EAppUnfinished eval-f x₁ eval-arg) (EAppUnfinished eval-f' x₂ eval-arg')
rewrite untyped-eval-unicity eval-f eval-f' | untyped-eval-unicity eval-arg eval-arg'
= refl
untyped-eval-unicity (EPair eval1 eval2) (EPair eval1' eval2')
rewrite untyped-eval-unicity eval1 eval1' | untyped-eval-unicity eval2 eval2'
= refl
untyped-eval-unicity (EFst eval) (EFst eval')
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity (EFst eval) (EFstUnfinished eval' np)
with untyped-eval-unicity eval eval'
... | refl = abort (np refl)
untyped-eval-unicity (EFstUnfinished eval np) (EFst eval')
with untyped-eval-unicity eval eval'
... | refl = abort (np refl)
untyped-eval-unicity (EFstUnfinished eval x) (EFstUnfinished eval' x₁)
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity (ESnd eval) (ESnd eval')
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity (ESnd eval) (ESndUnfinished eval' np)
with untyped-eval-unicity eval eval'
... | refl = abort (np refl)
untyped-eval-unicity (ESndUnfinished eval np) (ESnd eval')
with untyped-eval-unicity eval eval'
... | refl = abort (np refl)
untyped-eval-unicity (ESndUnfinished eval x) (ESndUnfinished eval' x₁)
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity (ECtor eval) (ECtor eval')
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity (EMatch f1 form eval-e eval-ec) (EMatch f2 form' eval'-e eval'-ec)
with untyped-eval-unicity eval-e eval'-e
... | refl
with ctxunicity form form'
... | refl
rewrite Fuel-depletion-unicity f1 f2
with untyped-eval-unicity eval-ec eval'-ec
... | refl = refl
untyped-eval-unicity (EMatch x₃ x₄ eval eval₁) (EMatchUnfinished eval' nc)
with untyped-eval-unicity eval eval'
... | refl = abort (nc refl)
untyped-eval-unicity (EMatchUnfinished eval nc) (EMatch x₄ x₅ eval' eval'')
with untyped-eval-unicity eval eval'
... | refl = abort (nc refl)
untyped-eval-unicity (EMatchUnfinished eval x₃) (EMatchUnfinished eval' x₄)
with untyped-eval-unicity eval eval'
... | refl = refl
untyped-eval-unicity EHole EHole = refl
untyped-eval-unicity (EAsrt eval1 eval2 xc) (EAsrt eval1' eval2' xc')
with untyped-eval-unicity eval1 eval1' | untyped-eval-unicity eval2 eval2'
... | refl | refl = refl
| {
"alphanum_fraction": 0.6430976431,
"avg_line_length": 52.4870689655,
"ext": "agda",
"hexsha": "7c214579c8bbfabc4b51aab519b603d77fce3b46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "eval-checks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "eval-checks.agda",
"max_line_length": 128,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "eval-checks.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 5110,
"size": 12177
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommAlgebra.Localisation where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Reflection.StrictEquiv
open import Cubical.Structures.Axioms
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommRing.Base
open import Cubical.Algebra.CommRing.Properties
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.Algebra.CommRing.Localisation.UniversalProperty
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommAlgebra.Properties
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
private
variable
ℓ ℓ′ : Level
module AlgLoc (R' : CommRing ℓ)
(S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where
open isMultClosedSubset
private R = fst R'
open CommAlgebraStr
open IsAlgebraHom
open CommRingStr (snd R') renaming (_+_ to _+r_ ; _·_ to _·r_ ; ·Rid to ·rRid)
open RingTheory (CommRing→Ring R')
open CommRingTheory R'
open Loc R' S' SMultClosedSubset
open S⁻¹RUniversalProp R' S' SMultClosedSubset
open CommAlgChar R'
S⁻¹RAsCommAlg : CommAlgebra R' ℓ
S⁻¹RAsCommAlg = toCommAlg (S⁻¹RAsCommRing , /1AsCommRingHom)
hasLocAlgUniversalProp : (A : CommAlgebra R' ℓ)
→ (∀ s → s ∈ S' → _⋆_ (snd A) s (1a (snd A)) ∈ (CommAlgebra→CommRing A) ˣ)
→ Type (ℓ-suc ℓ)
hasLocAlgUniversalProp A _ = (B : CommAlgebra R' ℓ)
→ (∀ s → s ∈ S' → _⋆_ (snd B) s (1a (snd B)) ∈ (CommAlgebra→CommRing B) ˣ)
→ isContr (CommAlgebraHom A B)
S⋆1⊆S⁻¹Rˣ : ∀ s → s ∈ S' → _⋆_ (snd S⁻¹RAsCommAlg) s (1a (snd S⁻¹RAsCommAlg)) ∈ S⁻¹Rˣ
S⋆1⊆S⁻¹Rˣ s s∈S' = subst-∈ S⁻¹Rˣ
(cong [_] (≡-× (sym (·rRid s)) (Σ≡Prop (λ x → S' x .snd) (sym (·rRid _)))))
(S/1⊆S⁻¹Rˣ s s∈S')
S⁻¹RHasAlgUniversalProp : hasLocAlgUniversalProp S⁻¹RAsCommAlg S⋆1⊆S⁻¹Rˣ
S⁻¹RHasAlgUniversalProp B' S⋆1⊆Bˣ = χᴬ , χᴬuniqueness
where
B = fromCommAlg B' .fst
φ = fromCommAlg B' .snd
open CommRingStr (snd B) renaming (_·_ to _·b_ ; 1r to 1b ; ·Lid to ·bLid)
χ : CommRingHom S⁻¹RAsCommRing B
χ = S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .fst .fst
χcomp : ∀ r → fst χ (r /1) ≡ fst φ r
χcomp = funExt⁻ (S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .fst .snd)
χᴬ : CommAlgebraHom S⁻¹RAsCommAlg B'
fst χᴬ = fst χ
pres0 (snd χᴬ) = IsRingHom.pres0 (snd χ)
pres1 (snd χᴬ) = IsRingHom.pres1 (snd χ)
pres+ (snd χᴬ) = IsRingHom.pres+ (snd χ)
pres· (snd χᴬ) = IsRingHom.pres· (snd χ)
pres- (snd χᴬ) = IsRingHom.pres- (snd χ)
pres⋆ (snd χᴬ) r x = path
where
path : fst χ ((r /1) ·ₗ x) ≡ _⋆_ (snd B') r (fst χ x)
path = fst χ ((r /1) ·ₗ x) ≡⟨ IsRingHom.pres· (snd χ) _ _ ⟩
fst χ (r /1) ·b fst χ x ≡⟨ cong (_·b fst χ x) (χcomp r) ⟩
fst φ r ·b fst χ x ≡⟨ refl ⟩
_⋆_ (snd B') r 1b ·b fst χ x ≡⟨ ⋆-lassoc (snd B') _ _ _ ⟩
_⋆_ (snd B') r (1b ·b fst χ x) ≡⟨ cong (_⋆_ (snd B') r) (·bLid _) ⟩
_⋆_ (snd B') r (fst χ x) ∎
χᴬuniqueness : (ψ : CommAlgebraHom S⁻¹RAsCommAlg B') → χᴬ ≡ ψ
χᴬuniqueness ψ = Σ≡Prop (λ _ → isPropIsAlgebraHom _ _ _ _)
(cong (fst ∘ fst) (χuniqueness (ψ' , funExt ψ'r/1≡φr)))
where
χuniqueness = S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .snd
ψ' : CommRingHom S⁻¹RAsCommRing B
fst ψ' = fst ψ
IsRingHom.pres0 (snd ψ') = pres0 (snd ψ)
IsRingHom.pres1 (snd ψ') = pres1 (snd ψ)
IsRingHom.pres+ (snd ψ') = pres+ (snd ψ)
IsRingHom.pres· (snd ψ') = pres· (snd ψ)
IsRingHom.pres- (snd ψ') = pres- (snd ψ)
ψ'r/1≡φr : ∀ r → fst ψ (r /1) ≡ fst φ r
ψ'r/1≡φr r =
fst ψ (r /1) ≡⟨ cong (fst ψ) (sym (·ₗ-rid _)) ⟩
fst ψ (_⋆_ (snd S⁻¹RAsCommAlg) r (1a (snd S⁻¹RAsCommAlg))) ≡⟨ pres⋆ (snd ψ) _ _ ⟩
_⋆_ (snd B') r (fst ψ (1a (snd S⁻¹RAsCommAlg))) ≡⟨ cong (_⋆_ (snd B') r) (pres1 (snd ψ)) ⟩
_⋆_ (snd B') r 1b ∎
-- an immediate corollary:
isContrHomS⁻¹RS⁻¹R : isContr (CommAlgebraHom S⁻¹RAsCommAlg S⁻¹RAsCommAlg)
isContrHomS⁻¹RS⁻¹R = S⁻¹RHasAlgUniversalProp S⁻¹RAsCommAlg S⋆1⊆S⁻¹Rˣ
module AlgLocTwoSubsets (R' : CommRing ℓ)
(S₁ : ℙ (fst R')) (S₁MultClosedSubset : isMultClosedSubset R' S₁)
(S₂ : ℙ (fst R')) (S₂MultClosedSubset : isMultClosedSubset R' S₂) where
open isMultClosedSubset
open CommRingStr (snd R') hiding (is-set)
open RingTheory (CommRing→Ring R')
open Loc R' S₁ S₁MultClosedSubset renaming (S⁻¹R to S₁⁻¹R ;
S⁻¹RAsCommRing to S₁⁻¹RAsCommRing)
open Loc R' S₂ S₂MultClosedSubset renaming (S⁻¹R to S₂⁻¹R ;
S⁻¹RAsCommRing to S₂⁻¹RAsCommRing)
open AlgLoc R' S₁ S₁MultClosedSubset renaming ( S⁻¹RAsCommAlg to S₁⁻¹RAsCommAlg
; S⋆1⊆S⁻¹Rˣ to S₁⋆1⊆S₁⁻¹Rˣ
; S⁻¹RHasAlgUniversalProp to S₁⁻¹RHasAlgUniversalProp
; isContrHomS⁻¹RS⁻¹R to isContrHomS₁⁻¹RS₁⁻¹R)
open AlgLoc R' S₂ S₂MultClosedSubset renaming ( S⁻¹RAsCommAlg to S₂⁻¹RAsCommAlg
; S⋆1⊆S⁻¹Rˣ to S₂⋆1⊆S₂⁻¹Rˣ
; S⁻¹RHasAlgUniversalProp to S₂⁻¹RHasAlgUniversalProp
; isContrHomS⁻¹RS⁻¹R to isContrHomS₂⁻¹RS₂⁻¹R)
open IsAlgebraHom
open CommAlgebraStr ⦃...⦄
private
R = fst R'
S₁⁻¹Rˣ = S₁⁻¹RAsCommRing ˣ
S₂⁻¹Rˣ = S₂⁻¹RAsCommRing ˣ
instance
_ = snd S₁⁻¹RAsCommAlg
_ = snd S₂⁻¹RAsCommAlg
isContrS₁⁻¹R≡S₂⁻¹R : (∀ s₁ → s₁ ∈ S₁ → s₁ ⋆ 1a ∈ S₂⁻¹Rˣ)
→ (∀ s₂ → s₂ ∈ S₂ → s₂ ⋆ 1a ∈ S₁⁻¹Rˣ)
→ isContr (S₁⁻¹RAsCommAlg ≡ S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≡S₂⁻¹R S₁⊆S₂⁻¹Rˣ S₂⊆S₁⁻¹Rˣ = isOfHLevelRetractFromIso 0
(equivToIso (invEquiv (CommAlgebraPath _ _ _)))
isContrS₁⁻¹R≅S₂⁻¹R
where
χ₁ : CommAlgebraHom S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg
χ₁ = S₁⁻¹RHasAlgUniversalProp S₂⁻¹RAsCommAlg S₁⊆S₂⁻¹Rˣ .fst
χ₂ : CommAlgebraHom S₂⁻¹RAsCommAlg S₁⁻¹RAsCommAlg
χ₂ = S₂⁻¹RHasAlgUniversalProp S₁⁻¹RAsCommAlg S₂⊆S₁⁻¹Rˣ .fst
χ₁∘χ₂≡id : χ₁ ∘a χ₂ ≡ idAlgHom
χ₁∘χ₂≡id = isContr→isProp isContrHomS₂⁻¹RS₂⁻¹R _ _
χ₂∘χ₁≡id : χ₂ ∘a χ₁ ≡ idAlgHom
χ₂∘χ₁≡id = isContr→isProp isContrHomS₁⁻¹RS₁⁻¹R _ _
IsoS₁⁻¹RS₂⁻¹R : Iso S₁⁻¹R S₂⁻¹R
Iso.fun IsoS₁⁻¹RS₂⁻¹R = fst χ₁
Iso.inv IsoS₁⁻¹RS₂⁻¹R = fst χ₂
Iso.rightInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
Iso.leftInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)
isContrS₁⁻¹R≅S₂⁻¹R : isContr (CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≅S₂⁻¹R = center , uniqueness
where
center : CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg
fst center = isoToEquiv IsoS₁⁻¹RS₂⁻¹R
pres0 (snd center) = pres0 (snd χ₁)
pres1 (snd center) = pres1 (snd χ₁)
pres+ (snd center) = pres+ (snd χ₁)
pres· (snd center) = pres· (snd χ₁)
pres- (snd center) = pres- (snd χ₁)
pres⋆ (snd center) = pres⋆ (snd χ₁)
uniqueness : (φ : CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg) → center ≡ φ
uniqueness φ = Σ≡Prop (λ _ → isPropIsAlgebraHom _ _ _ _)
(equivEq (cong fst
(S₁⁻¹RHasAlgUniversalProp S₂⁻¹RAsCommAlg S₁⊆S₂⁻¹Rˣ .snd
(AlgebraEquiv→AlgebraHom φ))))
isPropS₁⁻¹R≡S₂⁻¹R : isProp (S₁⁻¹RAsCommAlg ≡ S₂⁻¹RAsCommAlg)
isPropS₁⁻¹R≡S₂⁻¹R S₁⁻¹R≡S₂⁻¹R =
isContr→isProp (isContrS₁⁻¹R≡S₂⁻¹R S₁⊆S₂⁻¹Rˣ S₂⊆S₁⁻¹Rˣ) S₁⁻¹R≡S₂⁻¹R
where
S₁⊆S₂⁻¹Rˣ : ∀ s₁ → s₁ ∈ S₁ → s₁ ⋆ 1a ∈ S₂⁻¹Rˣ
S₁⊆S₂⁻¹Rˣ s₁ s₁∈S₁ =
transport (λ i → _⋆_ ⦃ S₁⁻¹R≡S₂⁻¹R i .snd ⦄ s₁ (1a ⦃ S₁⁻¹R≡S₂⁻¹R i .snd ⦄)
∈ (CommAlgebra→CommRing (S₁⁻¹R≡S₂⁻¹R i)) ˣ) (S₁⋆1⊆S₁⁻¹Rˣ s₁ s₁∈S₁)
S₂⊆S₁⁻¹Rˣ : ∀ s₂ → s₂ ∈ S₂ → s₂ ⋆ 1a ∈ S₁⁻¹Rˣ
S₂⊆S₁⁻¹Rˣ s₂ s₂∈S₂ =
transport (λ i → _⋆_ ⦃ (sym S₁⁻¹R≡S₂⁻¹R) i .snd ⦄ s₂ (1a ⦃ (sym S₁⁻¹R≡S₂⁻¹R) i .snd ⦄)
∈ (CommAlgebra→CommRing ((sym S₁⁻¹R≡S₂⁻¹R) i)) ˣ) (S₂⋆1⊆S₂⁻¹Rˣ s₂ s₂∈S₂)
| {
"alphanum_fraction": 0.6072752549,
"avg_line_length": 39.5963302752,
"ext": "agda",
"hexsha": "a0d9ecaab474f10660b3b714584589b226bebbe1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Localisation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Localisation.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Localisation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3976,
"size": 8632
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The identity function
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Construct.Composition where
open import Data.Product using (_,_)
open import Function
open import Level
open import Relation.Binary
private
variable
a b c ℓ₁ ℓ₂ ℓ₃ : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Properties
module _ (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) (≈₃ : Rel C ℓ₃)
{f : A → B} {g : B → C}
where
congruent : Congruent ≈₁ ≈₂ f → Congruent ≈₂ ≈₃ g →
Congruent ≈₁ ≈₃ (g ∘ f)
congruent f-cong g-cong = g-cong ∘ f-cong
injective : Injective ≈₁ ≈₂ f → Injective ≈₂ ≈₃ g →
Injective ≈₁ ≈₃ (g ∘ f)
injective f-inj g-inj = f-inj ∘ g-inj
surjective : Transitive ≈₃ → Congruent ≈₂ ≈₃ g →
Surjective ≈₁ ≈₂ f → Surjective ≈₂ ≈₃ g →
Surjective ≈₁ ≈₃ (g ∘ f)
surjective trans g-cong f-sur g-sur x with g-sur x
... | y , fy≈x with f-sur y
... | z , fz≈y = z , trans (g-cong fz≈y) fy≈x
bijective : Transitive ≈₃ → Congruent ≈₂ ≈₃ g →
Bijective ≈₁ ≈₂ f → Bijective ≈₂ ≈₃ g →
Bijective ≈₁ ≈₃ (g ∘ f)
bijective trans g-cong (f-inj , f-sur) (g-inj , g-sur) =
injective f-inj g-inj , surjective trans g-cong f-sur g-sur
module _ (≈₁ : Rel A ℓ₁) (≈₂ : Rel B ℓ₂) (≈₃ : Rel C ℓ₃)
(f : A → B) {f⁻¹ : B → A} {g : B → C} (g⁻¹ : C → B)
where
inverseˡ : Transitive ≈₃ → Congruent ≈₂ ≈₃ g →
Inverseˡ ≈₁ ≈₂ f f⁻¹ → Inverseˡ ≈₂ ≈₃ g g⁻¹ →
Inverseˡ ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
inverseˡ trn g-cong f-inv g-inv x = trn (g-cong (f-inv _)) (g-inv x)
inverseʳ : Transitive ≈₁ → Congruent ≈₂ ≈₁ f⁻¹ →
Inverseʳ ≈₁ ≈₂ f f⁻¹ → Inverseʳ ≈₂ ≈₃ g g⁻¹ →
Inverseʳ ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
inverseʳ trn f⁻¹-cong f-inv g-inv x = trn (f⁻¹-cong (g-inv _)) (f-inv x)
inverseᵇ : Transitive ≈₁ → Transitive ≈₃ →
Congruent ≈₂ ≈₃ g → Congruent ≈₂ ≈₁ f⁻¹ →
Inverseᵇ ≈₁ ≈₂ f f⁻¹ → Inverseᵇ ≈₂ ≈₃ g g⁻¹ →
Inverseᵇ ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
inverseᵇ trn₁ trn₃ g-cong f⁻¹-cong (f-invˡ , f-invʳ) (g-invˡ , g-invʳ) =
inverseˡ trn₃ g-cong f-invˡ g-invˡ , inverseʳ trn₁ f⁻¹-cong f-invʳ g-invʳ
------------------------------------------------------------------------
-- Structures
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {≈₃ : Rel C ℓ₃}
{f : A → B} {g : B → C}
where
isCongruent : IsCongruent ≈₁ ≈₂ f → IsCongruent ≈₂ ≈₃ g →
IsCongruent ≈₁ ≈₃ (g ∘ f)
isCongruent f-cong g-cong = record
{ cong = G.cong ∘ F.cong
; isEquivalence₁ = F.isEquivalence₁
; isEquivalence₂ = G.isEquivalence₂
} where module F = IsCongruent f-cong; module G = IsCongruent g-cong
isInjection : IsInjection ≈₁ ≈₂ f → IsInjection ≈₂ ≈₃ g →
IsInjection ≈₁ ≈₃ (g ∘ f)
isInjection f-inj g-inj = record
{ isCongruent = isCongruent F.isCongruent G.isCongruent
; injective = injective ≈₁ ≈₂ ≈₃ F.injective G.injective
} where module F = IsInjection f-inj; module G = IsInjection g-inj
isSurjection : IsSurjection ≈₁ ≈₂ f → IsSurjection ≈₂ ≈₃ g →
IsSurjection ≈₁ ≈₃ (g ∘ f)
isSurjection f-surj g-surj = record
{ isCongruent = isCongruent F.isCongruent G.isCongruent
; surjective = surjective ≈₁ ≈₂ ≈₃ G.Eq₂.trans G.cong F.surjective G.surjective
} where module F = IsSurjection f-surj; module G = IsSurjection g-surj
isBijection : IsBijection ≈₁ ≈₂ f → IsBijection ≈₂ ≈₃ g →
IsBijection ≈₁ ≈₃ (g ∘ f)
isBijection f-bij g-bij = record
{ isInjection = isInjection F.isInjection G.isInjection
; surjective = surjective ≈₁ ≈₂ ≈₃ G.Eq₂.trans G.cong F.surjective G.surjective
} where module F = IsBijection f-bij; module G = IsBijection g-bij
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {≈₃ : Rel C ℓ₃}
{f : A → B} {g : B → C} {f⁻¹ : B → A} {g⁻¹ : C → B}
where
isLeftInverse : IsLeftInverse ≈₁ ≈₂ f f⁻¹ → IsLeftInverse ≈₂ ≈₃ g g⁻¹ →
IsLeftInverse ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
isLeftInverse f-invˡ g-invˡ = record
{ isCongruent = isCongruent F.isCongruent G.isCongruent
; cong₂ = congruent ≈₃ ≈₂ ≈₁ G.cong₂ F.cong₂
; inverseˡ = inverseˡ ≈₁ ≈₂ ≈₃ f _ G.Eq₂.trans G.cong₁ F.inverseˡ G.inverseˡ
} where module F = IsLeftInverse f-invˡ; module G = IsLeftInverse g-invˡ
isRightInverse : IsRightInverse ≈₁ ≈₂ f f⁻¹ → IsRightInverse ≈₂ ≈₃ g g⁻¹ →
IsRightInverse ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
isRightInverse f-invʳ g-invʳ = record
{ isCongruent = isCongruent F.isCongruent G.isCongruent
; cong₂ = congruent ≈₃ ≈₂ ≈₁ G.cong₂ F.cong₂
; inverseʳ = inverseʳ ≈₁ ≈₂ ≈₃ _ g⁻¹ F.Eq₁.trans F.cong₂ F.inverseʳ G.inverseʳ
} where module F = IsRightInverse f-invʳ; module G = IsRightInverse g-invʳ
isInverse : IsInverse ≈₁ ≈₂ f f⁻¹ → IsInverse ≈₂ ≈₃ g g⁻¹ →
IsInverse ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
isInverse f-inv g-inv = record
{ isLeftInverse = isLeftInverse F.isLeftInverse G.isLeftInverse
; inverseʳ = inverseʳ ≈₁ ≈₂ ≈₃ _ g⁻¹ F.Eq₁.trans F.cong₂ F.inverseʳ G.inverseʳ
} where module F = IsInverse f-inv; module G = IsInverse g-inv
------------------------------------------------------------------------
-- Setoid bundles
module _ {R : Setoid a ℓ₁} {S : Setoid b ℓ₂} {T : Setoid c ℓ₃} where
open Setoid renaming (_≈_ to ≈)
injection : Injection R S → Injection S T → Injection R T
injection inj₁ inj₂ = record
{ f = G.f ∘ F.f
; cong = congruent (≈ R) (≈ S) (≈ T) F.cong G.cong
; injective = injective (≈ R) (≈ S) (≈ T) F.injective G.injective
} where module F = Injection inj₁; module G = Injection inj₂
surjection : Surjection R S → Surjection S T → Surjection R T
surjection surj₁ surj₂ = record
{ f = G.f ∘ F.f
; cong = congruent (≈ R) (≈ S) (≈ T) F.cong G.cong
; surjective = surjective (≈ R) (≈ S) (≈ T) G.Eq₂.trans G.cong F.surjective G.surjective
} where module F = Surjection surj₁; module G = Surjection surj₂
bijection : Bijection R S → Bijection S T → Bijection R T
bijection bij₁ bij₂ = record
{ f = G.f ∘ F.f
; cong = congruent (≈ R) (≈ S) (≈ T) F.cong G.cong
; bijective = bijective (≈ R) (≈ S) (≈ T) (trans T) G.cong F.bijective G.bijective
} where module F = Bijection bij₁; module G = Bijection bij₂
equivalence : Equivalence R S → Equivalence S T → Equivalence R T
equivalence equiv₁ equiv₂ = record
{ f = G.f ∘ F.f
; g = F.g ∘ G.g
; cong₁ = congruent (≈ R) (≈ S) (≈ T) F.cong₁ G.cong₁
; cong₂ = congruent (≈ T) (≈ S) (≈ R) G.cong₂ F.cong₂
} where module F = Equivalence equiv₁; module G = Equivalence equiv₂
leftInverse : LeftInverse R S → LeftInverse S T → LeftInverse R T
leftInverse invˡ₁ invˡ₂ = record
{ f = G.f ∘ F.f
; g = F.g ∘ G.g
; cong₁ = congruent (≈ R) (≈ S) (≈ T) F.cong₁ G.cong₁
; cong₂ = congruent (≈ T) (≈ S) (≈ R) G.cong₂ F.cong₂
; inverseˡ = inverseˡ (≈ R) (≈ S) (≈ T) F.f _ (trans T) G.cong₁ F.inverseˡ G.inverseˡ
} where module F = LeftInverse invˡ₁; module G = LeftInverse invˡ₂
rightInverse : RightInverse R S → RightInverse S T → RightInverse R T
rightInverse invʳ₁ invʳ₂ = record
{ f = G.f ∘ F.f
; g = F.g ∘ G.g
; cong₁ = congruent (≈ R) (≈ S) (≈ T) F.cong₁ G.cong₁
; cong₂ = congruent (≈ T) (≈ S) (≈ R) G.cong₂ F.cong₂
; inverseʳ = inverseʳ (≈ R) (≈ S) (≈ T) _ G.g (trans R) F.cong₂ F.inverseʳ G.inverseʳ
} where module F = RightInverse invʳ₁; module G = RightInverse invʳ₂
inverse : Inverse R S → Inverse S T → Inverse R T
inverse inv₁ inv₂ = record
{ f = G.f ∘ F.f
; f⁻¹ = F.f⁻¹ ∘ G.f⁻¹
; cong₁ = congruent (≈ R) (≈ S) (≈ T) F.cong₁ G.cong₁
; cong₂ = congruent (≈ T) (≈ S) (≈ R) G.cong₂ F.cong₂
; inverse = inverseᵇ (≈ R) (≈ S) (≈ T) _ G.f⁻¹ (trans R) (trans T) G.cong₁ F.cong₂ F.inverse G.inverse
} where module F = Inverse inv₁; module G = Inverse inv₂
------------------------------------------------------------------------
-- Propositional bundles
infix 8 _∘-↣_ _∘-↠_ _∘-⤖_ _∘-⇔_ _∘-↩_ _∘-↪_ _∘-↔_
_∘-↣_ : A ↣ B → B ↣ C → A ↣ C
_∘-↣_ = injection
_∘-↠_ : A ↠ B → B ↠ C → A ↠ C
_∘-↠_ = surjection
_∘-⤖_ : A ⤖ B → B ⤖ C → A ⤖ C
_∘-⤖_ = bijection
_∘-⇔_ : A ⇔ B → B ⇔ C → A ⇔ C
_∘-⇔_ = equivalence
_∘-↩_ : A ↩ B → B ↩ C → A ↩ C
_∘-↩_ = leftInverse
_∘-↪_ : A ↪ B → B ↪ C → A ↪ C
_∘-↪_ = rightInverse
_∘-↔_ : A ↔ B → B ↔ C → A ↔ C
_∘-↔_ = inverse
| {
"alphanum_fraction": 0.5419318182,
"avg_line_length": 39.4618834081,
"ext": "agda",
"hexsha": "ae8cbd09b78876a0d3ae4f112ca5a8a6f9276c51",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function/Construct/Composition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function/Construct/Composition.agda",
"max_line_length": 106,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function/Construct/Composition.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3670,
"size": 8800
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module MorePropAlgebra.Bundles where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Foundations.Logic
open import MoreLogic.Definitions
open import Utils
open import MorePropAlgebra.Structures
-- taken from the cubical standard library and adapted to hProps:
-- Semigroup
-- Monoid
-- Group
-- AbGroup
-- Ring
-- CommRing
record Semigroup : Type (ℓ-suc ℓ) where
constructor semigroup
field
Carrier : Type ℓ
_·_ : Carrier → Carrier → Carrier
is-Semigroup : IsSemigroup _·_
infixl 7 _·_
open IsSemigroup is-Semigroup public
record Monoid : Type (ℓ-suc ℓ) where
constructor monoid
field
Carrier : Type ℓ
ε : Carrier
_·_ : Carrier → Carrier → Carrier
is-Monoid : IsMonoid ε _·_
infixl 7 _·_
open IsMonoid is-Monoid public
record Group : Type (ℓ-suc ℓ) where
constructor group
field
Carrier : Type ℓ
0g : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
is-Group : IsGroup 0g _+_ -_
infix 8 -_
infixr 7 _+_
open IsGroup is-Group public
record AbGroup : Type (ℓ-suc ℓ) where
constructor abgroup
field
Carrier : Type ℓ
0g : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
is-AbGroup : IsAbGroup 0g _+_ -_
infix 8 -_
infixl 7 _+_
open IsAbGroup is-AbGroup public
record Ring : Type (ℓ-suc ℓ) where
constructor ring
field
Carrier : Type ℓ
0r : Carrier
1r : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
is-Ring : IsRing 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsRing is-Ring public
record CommRing : Type (ℓ-suc ℓ) where
constructor commring
field
Carrier : Type ℓ
0r : Carrier
1r : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
is-CommRing : IsCommRing 0r 1r _+_ _·_ -_
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsCommRing is-CommRing public
record ClassicalField : Type (ℓ-suc ℓ) where
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_⁻¹ : (x : Carrier) → {{ ! ¬ᵗ(x ≡ 0f) }} → Carrier -- WARNING: we do not have `_⁻¹` as an assuption
is-ClassicalField : [ isClassicalField 0f 1f _+_ _·_ -_ _⁻¹ ]
infix 9 _⁻¹
infix 8 -_
infixl 7 _·_
infixl 6 _+_
open IsClassicalField is-ClassicalField public
record ConstructiveField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor constructivefield
field
Carrier : Type ℓ
0f : Carrier
1f : Carrier
_+_ : Carrier → Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_#_ : hPropRel Carrier Carrier ℓ'
is-ConstructiveField : [ isConstructiveField 0f 1f _+_ _·_ -_ _#_ ]
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _#_
open IsConstructiveField is-ConstructiveField public
record Lattice : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor lattice
field
Carrier : Type ℓ
_≤_ : hPropRel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
is-Lattice : [ isLattice _≤_ min max ]
infixl 4 _≤_
open IsLattice is-Lattice public
record AlmostPartiallyOrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor almostpartiallyorderedfield
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
field
is-AlmostPartiallyOrderedField : [ isAlmostPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max {- _⁻¹ -} ] -- defines `_≤_` and `_#_`
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _<_
open IsAlmostPartiallyOrderedField is-AlmostPartiallyOrderedField public
record PartiallyOrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor partiallyorderedfield
field
Carrier : Type ℓ
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
field
is-PartiallyOrderedField : [ isPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max ] -- defines `_≤_` and `_#_`
infixl 7 _·_
infix 6 -_
infixl 5 _+_
infixl 4 _<_
open IsPartiallyOrderedField is-PartiallyOrderedField public
-- abstract
-- -- NOTE: there might be some reason not to "do" (or "open") all the theory of a record within that record
-- +-preserves-< : ∀ a b x → a < b → a + x < b + x
-- +-preserves-< a b x a<b = (
-- a < b ⇒⟨ transport (λ i → sym (fst (+-identity a)) i < sym (fst (+-identity b)) i) ⟩
-- a + 0f < b + 0f ⇒⟨ transport (λ i → a + sym (+-rinv x) i < b + sym (+-rinv x) i) ⟩
-- a + (x - x) < b + (x - x) ⇒⟨ transport (λ i → +-assoc a x (- x) i < +-assoc b x (- x) i) ⟩
-- (a + x) - x < (b + x) - x ⇒⟨ +-<-extensional (- x) (a + x) (- x) (b + x) ⟩
-- (a + x < b + x) ⊎ (- x < - x) ⇒⟨ (λ{ (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line
-- ; (inr -x<-x ) → ⊥-elim {A = λ _ → (a + x < b + x)} (<-irrefl (- x) -x<-x) }) ⟩
-- a + x < b + x ◼) a<b
--
-- ≤-isPreorder : IsPreorder _≤_
-- ≤-isPreorder = ≤-isPreorder' {_<_ = _<_} {<-isStrictPartialOrder}
| {
"alphanum_fraction": 0.5929439175,
"avg_line_length": 27.9488372093,
"ext": "agda",
"hexsha": "fc106ce38fe4dadfe6059ec9a239badeff251b27",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Bundles.agda",
"max_line_length": 136,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 2105,
"size": 6009
} |
-- Andreas, 2018-11-23, 2019-07-22, issue #3353
--
-- Preserved names of named arguments under case splitting.
-- {-# OPTIONS -v tc.lhs:40 #-}
-- {-# OPTIONS -v interaction.case:60 -v reify:30 #-}
open import Agda.Builtin.Nat
test : {m n : Nat} → Nat
test {m} {n = n} = {!n!} -- C-c C-c
-- Splitting on n gives:
-- test {m} {zero} = {!!}
-- test {m} {suc n} = {!!}
-- Expected:
-- test {m} {n = zero} = {!!}
-- test {m} {n = suc n} = {!!}
data Vec (A : Set) : Nat → Set where
_∷_ : ∀{n} (x : A) (xs : Vec A n) → Vec A (suc n)
foo : ∀{A n} → Vec A n → Vec A n
foo (_∷_ {n = n} x xs) = {!n!} -- C-c C-c
-- Expected:
-- foo (_∷_ {n = suc n} x xs) = {!!}
| {
"alphanum_fraction": 0.5007541478,
"avg_line_length": 22.8620689655,
"ext": "agda",
"hexsha": "357c59b16c9c35221ec6aeff8f40579dc60dbad2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3353.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3353.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3353.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 272,
"size": 663
} |
-- mathematical integers; see int.agda for imported machine integers from Haskell.
module integer where
open import bool
open import bool-thms2
open import eq
open import nat
open import nat-thms
open import product
open import product-thms
open import sum
open import unit
ℤ-pos-t : ℕ → Set
ℤ-pos-t 0 = ⊤
ℤ-pos-t (suc _) = 𝔹
{- In mkℤ n a, the argument a tells whether the integer is positive or negative, if n is nonzero.
If n is zero, then a is just triv : ⊤, so there is a unique integer value for 0. -}
data ℤ : Set where
mkℤ : (n : ℕ) → ℤ-pos-t n → ℤ
0ℤ : ℤ
0ℤ = mkℤ 0 triv
1ℤ : ℤ
1ℤ = mkℤ 1 tt
-1ℤ : ℤ
-1ℤ = mkℤ 1 ff
abs-val : ℤ → ℕ
abs-val (mkℤ n _) = n
is-evenℤ : ℤ → 𝔹
is-evenℤ (mkℤ n _) = is-even n
is-oddℤ : ℤ → 𝔹
is-oddℤ (mkℤ n _) = is-odd n
{- subtract the second natural number from the first, returning an integer.
This is mostly a helper for _+ℤ_ -}
diffℤ : ℕ → ℕ → ℤ
diffℤ n m with ℕ-trichotomy n m
diffℤ n m | inj₁ p with <∸suc{m}{n} p -- n < m
diffℤ n m | inj₁ p | x , _ = mkℤ (suc x) ff
diffℤ n m | inj₂ (inj₁ p) = mkℤ 0 triv -- n = m
diffℤ n m | inj₂ (inj₂ p) with <∸suc{n}{m} p
diffℤ n m | inj₂ (inj₂ p) | x , _ = mkℤ (suc x) tt -- m < n
_+ℤ_ : ℤ → ℤ → ℤ
(mkℤ 0 _) +ℤ x = x
x +ℤ (mkℤ 0 _) = x
(mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) with p1 xor p2
(mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) | ff = mkℤ (suc n + suc m) p1
(mkℤ (suc n) p1) +ℤ (mkℤ (suc m) p2) | tt = if p1 imp p2 then diffℤ m n else diffℤ n m
test-+ℤ1 : (mkℤ 2 ff) +ℤ (mkℤ 4 tt) ≡ (mkℤ 2 tt)
test-+ℤ1 = refl
test-+ℤ2 : (mkℤ 2 tt) +ℤ (mkℤ 4 ff) ≡ (mkℤ 2 ff)
test-+ℤ2 = refl
_≤ℤ_ : ℤ → ℤ → 𝔹
(mkℤ 0 triv) ≤ℤ (mkℤ 0 triv) = tt
(mkℤ 0 triv) ≤ℤ (mkℤ (suc _) pos) = pos
(mkℤ (suc _) pos) ≤ℤ (mkℤ 0 triv) = ~ pos
(mkℤ (suc x) pos1) ≤ℤ (mkℤ (suc y) pos2) with pos1 xor pos2
(mkℤ (suc x) pos1) ≤ℤ (mkℤ (suc y) pos2) | tt = pos1 imp pos2
(mkℤ (suc x) pos1) ≤ℤ (mkℤ (suc y) pos2) | ff = if pos1 then x ≤ y else y ≤ x
≤ℤ-antisymm : ∀(x y : ℤ) → x ≤ℤ y ≡ tt → y ≤ℤ x ≡ tt → x ≡ y
≤ℤ-antisymm (mkℤ zero triv) (mkℤ zero triv) p q = refl
≤ℤ-antisymm (mkℤ zero triv) (mkℤ (suc y) pos2) p q rewrite p with q
≤ℤ-antisymm (mkℤ zero triv) (mkℤ (suc y) pos2) p q | ()
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ zero triv) p q rewrite q with p
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ zero triv) p q | ()
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q with keep (pos1 xor pos2)
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | tt , rp rewrite rp | xor-comm pos1 pos2 | rp with imp-antisymm{pos1} p q
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | tt , rp | pp rewrite pp | xor-anti-idem pos2 with rp
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | tt , rp | pp | ()
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | ff , rp
rewrite rp | xor-comm pos1 pos2 | rp | xor-≡{pos2}rp with pos1
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | ff , rp | tt rewrite ≤-antisym{x} p q = refl
≤ℤ-antisymm (mkℤ (suc x) pos1) (mkℤ (suc y) pos2) p q | ff , rp | ff rewrite ≤-antisym{y} p q = refl
| {
"alphanum_fraction": 0.598679868,
"avg_line_length": 35.2325581395,
"ext": "agda",
"hexsha": "24b8630d5b930a67e5128584a927627d8841247f",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "integer.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "integer.agda",
"max_line_length": 129,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "integer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 1522,
"size": 3030
} |
{-# OPTIONS --rewriting --prop --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
{-
Axiomatisation of ExTT
-}
postulate raise : (A : Set ℓ) → A
-- we now state rewrite rules for raise
postulate raise-Pi : (A : Set ℓ) (B : A → Set ℓ₁) →
raise ((a : A) → B a) ≡ λ a → raise (B a)
{-# REWRITE raise-Pi #-}
postulate raise-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) →
raise (Σ A B) ≡ (raise A , raise (B (raise A)))
{-# REWRITE raise-Sigma #-}
nat-rec : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) → (n : Nat) → P n
nat-rec P P0 PS zero = P0
nat-rec P P0 PS (suc n) = PS n (nat-rec P P0 PS n)
postulate raise-nat-rec : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
nat-rec P P0 PS (raise Nat) ≡ raise (P (raise Nat))
{-# REWRITE raise-nat-rec #-}
postulate catch-nat : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → (n : Nat) → P n
postulate catch-nat-zero : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → catch-nat P P0 PS Praise 0 ≡ P0
postulate catch-nat-suc : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → (n : Nat) →
catch-nat P P0 PS Praise (suc n) ≡ PS n (catch-nat P P0 PS Praise n)
postulate catch-nat-raise : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → catch-nat P P0 PS Praise (raise Nat) ≡ Praise
{-# REWRITE catch-nat-zero #-}
{-# REWRITE catch-nat-suc #-}
{-# REWRITE catch-nat-raise #-}
record Unk ℓ : Set (lsuc ℓ) where
constructor box
field
type : Set ℓ
elem : type
postulate raise-Unk : ∀ ℓ → raise (Unk ℓ) ≡ box (raise (Set ℓ)) (raise _)
{-# REWRITE raise-Unk #-}
| {
"alphanum_fraction": 0.5425812116,
"avg_line_length": 32.0845070423,
"ext": "agda",
"hexsha": "c2b923af194b56e7dbda99101998847720c54cc8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_forks_repo_licenses": [
"WTFPL"
],
"max_forks_repo_name": "kyoDralliam/exceptional-tt",
"max_forks_repo_path": "agda-rr/ett-rr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"WTFPL"
],
"max_issues_repo_name": "kyoDralliam/exceptional-tt",
"max_issues_repo_path": "agda-rr/ett-rr.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_stars_repo_licenses": [
"WTFPL"
],
"max_stars_repo_name": "kyoDralliam/exceptional-tt",
"max_stars_repo_path": "agda-rr/ett-rr.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 816,
"size": 2278
} |
module m-types where
-- Basic definitions
import container.core
-- Construction of M-types as limits
import container.m.from-nat
-- M-types via Agda coinduction
import container.m.core
| {
"alphanum_fraction": 0.7819148936,
"avg_line_length": 17.0909090909,
"ext": "agda",
"hexsha": "114f191b4b5983771bff621b8e6c15d10636f523",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "m-types.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "m-types.agda",
"max_line_length": 36,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "m-types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 43,
"size": 188
} |
module Data.Vec.Any.Membership.Propositional.Properties where
open import Algebra
open import Data.Vec as Vec
open import Data.Vec.Any
open import Data.Vec.Any.Membership.Propositional
open import Data.Vec.Any.Properties
import Data.Vec.Any.Membership.Properties as Membershipᵖ
open import Function
open import Function.Inverse as Inv using (_↔_)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Relation.Binary.PropositionalEquality as P
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Unary using (_⟨×⟩_)
open import Data.Product
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
-- map
module _ {a b} {A : Set a} {B : Set b} {f : A → B} where
∈′-map⁺ : ∀ {n x}{xs : Vec A n} → x ∈′ xs → f x ∈′ Vec.map f xs
∈′-map⁺ = Membershipᵖ.∈′-map⁺ (P.setoid _) (P.setoid _) (P.cong f)
∈′-map⁻ : ∀ {n y}{xs : Vec A n} → y ∈′ Vec.map f xs → ∃ λ x → x ∈′ xs × y ≡ f x
∈′-map⁻ = Membershipᵖ.∈′-map⁻ (P.setoid _) (P.setoid _)
map-∈′↔ : ∀ {n y}{xs : Vec A n} →
(∃ λ x → x ∈′ xs × y ≡ f x) ↔ y ∈′ Vec.map f xs
map-∈′↔ {n}{y}{xs} =
(∃ λ x → x ∈′ xs × y ≡ f x) ↔⟨ Any↔ ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ ⟩
y ∈′ Vec.map f xs ∎
where open Related.EquationalReasoning
| {
"alphanum_fraction": 0.6306027821,
"avg_line_length": 32.35,
"ext": "agda",
"hexsha": "def8beb0d3af3c2344973483f7234d7c03224db4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-vector-any",
"max_forks_repo_path": "src/Data/Vec/Any/Membership/Propositional/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-vector-any",
"max_issues_repo_path": "src/Data/Vec/Any/Membership/Propositional/Properties.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-vector-any",
"max_stars_repo_path": "src/Data/Vec/Any/Membership/Propositional/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 486,
"size": 1294
} |
{-# OPTIONS --cubical #-}
module _ where
module _ where
open import Agda.Primitive.Cubical public
postulate
Path' : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATH Path' #-}
{-# BUILTIN PATHP PathP #-}
infix 4 _≡_
_≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
_≡_ {A = A} = PathP (λ _ → A)
Path = _≡_
refl : ∀ {a} {A : Set a} {x : A} → x ≡ x
refl {x = x} = \ _ → x
-- Here there's no solution for H, pattern unification will try
-- H := \ i -> b, but the equality constraints from
-- H : Path b a should rule out that assignment.
testPath : ∀ {A : Set} {b a : A} (let H : Path b a; H = _) → ∀ i → H i ≡ b
testPath i = refl
| {
"alphanum_fraction": 0.5047233468,
"avg_line_length": 25.5517241379,
"ext": "agda",
"hexsha": "1b85f19a4da045bd7fa0949cf4dd114973be94b3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Fail/Issue2650.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Fail/Issue2650.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Fail/Issue2650.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 294,
"size": 741
} |
module Generic.Test.ReadData where
open import Generic.Main
data D {α β} (A : Set α) (B : ℕ -> Set β) : ∀ {n} -> B n -> List ℕ -> Set (α ⊔ β) where
c₁ : ∀ {n} (y : B n) xs -> A -> D A B y xs
c₂ : ∀ {y : B 0} -> (∀ {n} (y : B n) {{xs}} -> D A B y xs) -> .(List A) -> D A B y []
-- No longer works: Failed to solve the following constraints: Has bigger sort: Setω
-- D′ : TypeOf D
D′ : ∀ {α β} -> (A : Set α) -> (B : ℕ -> Set β) -> ∀ {n} -> B n -> List ℕ -> Set (α ⊔ β)
D′ = readData D
unquoteDecl foldD = deriveFoldTo foldD (quote D)
inj : ∀ {α β} {A : Set α} {B : ℕ -> Set β} {n xs} {y : B n} -> D A B y xs -> D′ A B y xs
inj = gcoerce foldD
outj : ∀ {α β} {A : Set α} {B : ℕ -> Set β} {n xs} {y : B n} -> D′ A B y xs -> D A B y xs
outj d = guncoerce d
pattern c₁′ {n} y xs x = #₀ (relv n , relv y , relv xs , relv x , lrefl)
pattern c₂′ {y} r ys = !#₁ (relv y , r , irrv ys , lrefl)
inj′ : ∀ {α β} {A : Set α} {B : ℕ -> Set β} {n xs} {y : B n} -> D A B y xs -> D′ A B y xs
inj′ (c₁ y xs x) = c₁′ y xs x
inj′ (c₂ r ys) = c₂′ (λ y -> inj′ (r y)) ys
outj′ : ∀ {α β} {A : Set α} {B : ℕ -> Set β} {n xs} {y : B n} -> D′ A B y xs -> D A B y xs
outj′ (c₁′ y xs x) = c₁ y xs x
outj′ (c₂′ r ys) = c₂ (λ y -> outj′ (r y)) ys
| {
"alphanum_fraction": 0.4765372168,
"avg_line_length": 38.625,
"ext": "agda",
"hexsha": "c1fe5e77062963fc51ab92ef8dcede9aefe3684a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/ReadData.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/ReadData.agda",
"max_line_length": 90,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/ReadData.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 572,
"size": 1236
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
postulate
A : Set
a b : A
f : (X : Set) → X → A
g : (X : Set) → X
rewf₁ : f (A → A) (λ _ → a) ≡ a
rewf₂ : (X : Set) → f X (g X) ≡ b
rewg : (x : A) → g (A → A) x ≡ a
test = f (A → A) (λ x → g (A → A) x)
{-# REWRITE rewf₁ rewg #-}
foo : test ≡ a
foo = refl
{-# REWRITE rewf₂ #-}
bar : test ≡ b
bar = refl
fails : a ≡ b
fails = refl
| {
"alphanum_fraction": 0.5209205021,
"avg_line_length": 14.9375,
"ext": "agda",
"hexsha": "b08eb9b79cdd66e9d350888c749900ccff372394",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3810b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3810b.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3810b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 201,
"size": 478
} |
open import Data.Nat
open import Data.List as List hiding (null)
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All
open import Data.List.Prefix
open import Data.Integer
open import Data.Product
-- This file contains the definition of values for the definitional
-- interpreter for MJ using scopes and frames, described in Section 5
-- of the paper.
module MJSF.Values (k : ℕ) where
open import MJSF.Syntax k
open import ScopesFrames.ScopesFrames k Ty
module ValuesG (g : Graph) where
open SyntaxG g
open UsesGraph g public
open import Common.Weakening
------------
-- VALUES --
------------
-- The values used in our interpreter at run time are either:
--
-- * object references `ref`, represented in terms of a frame scoped
-- by a class scope;
--
-- * null values (`ref` typed);
--
-- * an integer number literal (`int` typed); or
--
-- * `void` (`void typed -- note that there is no expression syntax
-- for producing a `void` value directly, but method bodies still
-- return `void`; we regard `void` as a unit type)
data Val : VTy → List Scope → Set where
ref : ∀ {s s' Σ} → s <: s' → Frame s Σ → Val (ref s') Σ
null : ∀ {s Σ} → Val (ref s) Σ
num : ∀ {Σ} → ℤ → Val int Σ
void : ∀ {Σ} → Val void Σ
-- There are three kinds of values stored in frame slots at run
-- time, corresponding to each of the three kinds of declarations
-- defined in `MJSF.Syntax`:
--
-- * values, as defined above;
--
-- * methods, where a method records a "self" frame `Frame s Σ` and
-- a well-typed method definition `Meth s ts rt`, such that the
-- scope of the method corresponds to the "self"; and
--
-- * classes which record a well-typed class definition and a
-- witness that the class has a finite inheritance chain, both
-- used for initializing new object instances, as well as a frame
-- pointer to the root frame (class table).
data Valᵗ : Ty → List Scope → Set where
vᵗ : ∀ {t Σ} → Val t Σ → Valᵗ (vᵗ t) Σ
mᵗ : ∀ {s ts rt Σ} → (self : Frame s Σ) → (body : Meth s ts rt) → Valᵗ (mᵗ ts rt) Σ
cᵗ : ∀ {sʳ s s' Σ} → (class-def : Class sʳ s) → (ic : Inherits s s') → (root : Frame sʳ Σ) → Valᵗ (cᵗ sʳ s) Σ
---------------
-- WEAKENING --
---------------
-- We define notions of weakening for each of the values summarized above:
val-weaken : ∀ {t Σ Σ'} → Σ ⊑ Σ' → Val t Σ → Val t Σ'
val-weaken ext (num i) = num i
val-weaken ext (ref i f) = ref i (wk ext f)
val-weaken ext null = null
val-weaken ext void = void
instance
val-weakenable : ∀ {t} → Weakenable (Val t)
val-weakenable = record { wk = val-weaken }
valᵗ-weaken : ∀ {t Σ Σ'} → Σ ⊑ Σ' → Valᵗ t Σ → Valᵗ t Σ'
valᵗ-weaken ext (vᵗ v) = vᵗ (val-weaken ext v)
valᵗ-weaken ext (mᵗ f m) = mᵗ (wk ext f) m
valᵗ-weaken ext (cᵗ c ic f) = cᵗ c ic (wk ext f)
-- And pass these to the scope graph definition:
open UsesVal Valᵗ valᵗ-weaken renaming (getFrame to getFrame')
--------------
-- COERCION --
--------------
-- Our definition of sub-typing gives rise to a notion of sub-type
-- coercion, defined below. Coercions essentially traverse the
-- inheritance links of the frame hierarchy for an object instance,
-- as described in the paper.
upcastRef : ∀ {t t' Σ} → t <: t' → Val (ref t) Σ → Val (ref t') Σ
upcastRef i (ref i' f) = ref (concatₚ i' i) f
upcastRef i null = null
| {
"alphanum_fraction": 0.6217058657,
"avg_line_length": 32.9813084112,
"ext": "agda",
"hexsha": "6f6a8740306779b0285318b7c020d05a3755ebd0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJSF/Values.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJSF/Values.agda",
"max_line_length": 113,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJSF/Values.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 1166,
"size": 3529
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
------------------------------------------------------------------------------
import LibraBFT.Impl.Consensus.SafetyRules.PersistentSafetyStorage as PersistentSafetyStorage
import LibraBFT.Impl.Consensus.SafetyRules.SafetyRules as SafetyRules
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
module LibraBFT.Impl.Consensus.SafetyRules.SafetyRulesManager where
storage
: SafetyRulesConfig -> Author -> SK
→ Either ErrLog PersistentSafetyStorage
storage config obmMe obmSK = do
pure $ PersistentSafetyStorage.new -- internalStorage
obmMe
(config ^∙ srcObmGenesisWaypoint)
obmSK
newLocal : PersistentSafetyStorage → Bool → Either ErrLog SafetyRulesManager
new
: SafetyRulesConfig → Author → SK
→ Either ErrLog SafetyRulesManager
new config obmMe obmSK = do
storage0 ← storage config obmMe obmSK
let exportConsensusKey = config ^∙ srcExportConsensusKey
case config ^∙ srcService of λ where
SRSLocal → newLocal storage0 exportConsensusKey
newLocal storage0 exportConsensusKey = do
safetyRules ← SafetyRules.new storage0 exportConsensusKey
pure (mkSafetyRulesManager (SRWLocal safetyRules))
client : SafetyRulesManager → SafetyRules
client self = case self ^∙ srmInternalSafetyRules of λ where
(SRWLocal safetyRules) → safetyRules
| {
"alphanum_fraction": 0.700814901,
"avg_line_length": 38.1777777778,
"ext": "agda",
"hexsha": "51dfa7019caeca9f7ec3b235ef1541bb9645d2eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRulesManager.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRulesManager.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/SafetyRulesManager.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 407,
"size": 1718
} |
open import Type
module Graph.Walk.Functions {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where
import Lvl
open import Graph{ℓ₁}{ℓ₂}(V)
open import Graph.Properties
open import Graph.Walk{ℓ₁}{ℓ₂}{V}
open import Numeral.Natural
open import Syntax.Function
open import Type.Dependent
open import Type.Dependent.Functions
module _ {_⟶_ : Graph} where
edge : ∀{a b} → (a ⟶ b) → (Walk(_⟶_) a b)
edge e = prepend e at
join : ∀{a b c} → (a ⟶ b) → (b ⟶ c) → (Walk(_⟶_) a c)
join e₁ e₂ = prepend e₁ (edge e₂)
_++_ : ∀{a b c} → Walk(_⟶_) a b → Walk(_⟶_) b c → Walk(_⟶_) a c
at ++ w₂ = w₂
prepend e₁ w₁ ++ w₂ = prepend e₁ (w₁ ++ w₂)
postpend : ∀{a b c} → (Walk(_⟶_) a b) → (b ⟶ c) → (Walk(_⟶_) a c)
postpend at e₂ = edge e₂
postpend (prepend e₁ w) e₂ = prepend e₁ (postpend w e₂)
reverse : ⦃ Undirected(_⟶_) ⦄ → ∀{a b} → Walk(_⟶_) a b → Walk(_⟶_) b a
reverse at = at
reverse (prepend e w) = postpend (reverse w) (undirected-reverse(_⟶_) e)
prelop : ∀{a c} → (Walk(_⟶_) a c) → Σ(_)(b ↦ Walk(_⟶_) b c)
prelop at = intro _ at
prelop (prepend e w) = intro _ w
postlop : ∀{a c} → (Walk(_⟶_) a c) → Σ(_)(b ↦ Walk(_⟶_) a b)
postlop at = intro _ at
postlop (prepend e at) = intro _ at
postlop (prepend e₁ (prepend e₂ w)) = [Σ]-applyᵣ (postlop(prepend e₂ w)) (prepend e₁)
length : ∀{a b} → (Walk(_⟶_) a b) → ℕ
length at = 𝟎
length (prepend _ w) = 𝐒(length w)
| {
"alphanum_fraction": 0.5557065217,
"avg_line_length": 32.7111111111,
"ext": "agda",
"hexsha": "822329698503b06a8bbb7410d793aa4389e5341e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Graph/Walk/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Graph/Walk/Functions.agda",
"max_line_length": 87,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Graph/Walk/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 595,
"size": 1472
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
import homotopy.WedgeExtension as WedgeExt
module homotopy.Pi2HSusp where
module Pi2HSusp {i} {X : Ptd i} (gA : has-level 1 (de⊙ X))
(cA : is-connected 0 (de⊙ X)) (H-X : HSS X)
where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ ((x : A) → coe p x == coe q x) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (Subtype=-out is-equiv-prop (λ= α))
∙ ua-η q
open HSS H-X
open ConnectedHSpace cA H-X
private
A = de⊙ X
e = pt X
P : Susp A → Type i
P x = Trunc 1 (north == x)
module Codes = SuspRec A A (λ a → ua (μ-e-r-equiv a))
Codes : Susp A → Type i
Codes = Codes.f
Codes-level : (x : Susp A) → has-level 1 (Codes x)
Codes-level = Susp-elim gA gA
(λ _ → prop-has-all-paths-↓ has-level-is-prop)
encode₀ : {x : Susp A} → (north == x) → Codes x
encode₀ α = transport Codes α e
encode : {x : Susp A} → P x → Codes x
encode {x} = Trunc-rec (Codes-level x) encode₀
decode' : A → P north
decode' a = [ (merid a ∙ ! (merid e)) ]
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid a)) a'
=⟨ Codes.merid-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ-e-r-equiv a)) a'
=⟨ coe-β (μ-e-r-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes (! (merid e)) a == a
transport-Codes-mer-e-! a =
coe (ap Codes (! (merid e))) a
=⟨ ap-! Codes (merid e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid e))) a
=⟨ Codes.merid-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ-e-r-equiv e))) a
=⟨ Type=-ext (ua (μ-e-r-equiv e)) idp (λ x → coe-β _ x ∙ μ-e-l x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode-decode' : (a : A) → encode (decode' a) == a
encode-decode' a =
transport Codes (merid a ∙ ! (merid e)) e
=⟨ transp-∙ {B = Codes} (merid a) (! (merid e)) e ⟩
transport Codes (! (merid e)) (transport Codes (merid a) e)
=⟨ transport-Codes-mer a e ∙ μ-e-r a
|in-ctx (λ w → transport Codes (! (merid e)) w) ⟩
transport Codes (! (merid e)) a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
abstract
homomorphism : (a a' : A)
→ Path {A = Trunc 1 (north == south)}
[ merid (μ a a' ) ] [ merid a' ∙ ! (merid e) ∙ merid a ]
homomorphism = WedgeExt.ext args
where
args : WedgeExt.args {a₀ = e} {b₀ = e}
args = record {m = -1; n = -1; cA = cA; cB = cA;
P = λ a a' → (_ , Trunc-level {n = 1} _ _);
f = λ a → ap [_] $
merid (μ a e)
=⟨ ap merid (μ-e-r a) ⟩
merid a
=⟨ ap (λ w → w ∙ merid a) (! (!-inv-r (merid e)))
∙ ∙-assoc (merid e) (! (merid e)) (merid a) ⟩
merid e ∙ ! (merid e) ∙ merid a ∎;
g = λ a' → ap [_] $
merid (μ e a')
=⟨ ap merid (μ-e-l a') ⟩
merid a'
=⟨ ! (∙-unit-r (merid a'))
∙ ap (λ w → merid a' ∙ w) (! (!-inv-l (merid e))) ⟩
merid a' ∙ ! (merid e) ∙ merid e ∎ ;
p = ap (λ {(p₁ , p₂) → ap [_] $
merid (μ e e) =⟨ p₁ ⟩
merid e =⟨ p₂ ⟩
merid e ∙ ! (merid e) ∙ merid e ∎})
(pair×= (ap (λ x → ap merid x) (! μ-coh)) (coh (merid e)))}
where coh : {B : Type i} {b b' : B} (p : b == b')
→ ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p
== ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p))
coh idp = idp
decode : {x : Susp A} → Codes x → P x
decode {x} = Susp-elim {P = λ x → Codes x → P x}
decode'
(λ a → [ merid a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid a) (decode' a')
== [ merid (transport Codes (merid a) a') ]
STS a a' =
transport P (merid a) [ merid a' ∙ ! (merid e) ]
=⟨ transport-Trunc (north ==_) (merid a) _ ⟩
[ transport (north ==_) (merid a) (merid a' ∙ ! (merid e)) ]
=⟨ ap [_] (transp-cst=idf {A = Susp A} (merid a) _) ⟩
[ (merid a' ∙ ! (merid e)) ∙ merid a ]
=⟨ ap [_] (∙-assoc (merid a') (! (merid e)) (merid a)) ⟩
[ merid a' ∙ ! (merid e) ∙ merid a ]
=⟨ ! (homomorphism a a') ⟩
[ merid (μ a a') ]
=⟨ ap ([_] ∘ merid) (! (transport-Codes-mer a a')) ⟩
[ merid (transport Codes (merid a) a') ] ∎
abstract
decode-encode : {x : Susp A} (tα : P x)
→ decode {x} (encode {x} tα) == tα
decode-encode {x} = Trunc-elim
{P = λ tα → decode {x} (encode {x} tα) == tα}
(λ _ → =-preserves-level Trunc-level)
(J (λ y p → decode {y} (encode {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid e))))
main-lemma-eq : Trunc 1 (north' A == north) ≃ A
main-lemma-eq = equiv encode decode' encode-decode' decode-encode
⊙main-lemma : ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙≃ X
⊙main-lemma = ≃-to-⊙≃ main-lemma-eq idp
abstract
main-lemma-iso : Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp X))) Trunc-level
≃ᴳ Ω^S-group 0 (⊙Trunc 1 X) Trunc-level
main-lemma-iso = (record {f = f; pres-comp = pres-comp} , ie)
where
h : ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙→ ⊙Trunc 1 X
h = (λ x → [ encode x ]) , idp
f : Ω (⊙Trunc 1 (⊙Ω (⊙Susp X))) → Ω (⊙Trunc 1 X)
f = Ω-fmap h
pres-comp : (p q : Ω^ 1 (⊙Trunc 1 (⊙Ω (⊙Susp X))))
→ f (Ω^S-∙ 0 p q) == Ω^S-∙ 0 (f p) (f q)
pres-comp = Ω^S-fmap-∙ 0 h
ie : is-equiv f
ie = Ω^-isemap 1 h (snd $ ((unTrunc-equiv A gA)⁻¹ ∘e main-lemma-eq))
abstract
π₂-Susp : πS 1 (⊙Susp X) ≃ᴳ πS 0 X
π₂-Susp =
πS 1 (⊙Susp X)
≃ᴳ⟨ πS-Ω-split-iso 0 (⊙Susp X) ⟩
πS 0 (⊙Ω (⊙Susp X))
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 (⊙Ω (⊙Susp X)) ⁻¹ᴳ ⟩
Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp X))) Trunc-level
≃ᴳ⟨ main-lemma-iso ⟩
Ω^S-group 0 (⊙Trunc 1 X) Trunc-level
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 X ⟩
πS 0 X ≃ᴳ∎
| {
"alphanum_fraction": 0.4594000314,
"avg_line_length": 34.6032608696,
"ext": "agda",
"hexsha": "7fbd10235c85e77fa655cf28a75254c91eca8ca8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2651,
"size": 6367
} |
module Issue1076 where
{-# OPTIONS --no-coverage-check #-}
-- WAS: Parse error
-- NOW:
-- OPTIONS pragma only allowed at beginning of file, before top module
-- declaration
-- when checking the pragma OPTIONS --no-coverage-check
| {
"alphanum_fraction": 0.724137931,
"avg_line_length": 21.0909090909,
"ext": "agda",
"hexsha": "466f0ab53bdf0896e9667776a86159da5f976295",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue1076.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue1076.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue1076.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 52,
"size": 232
} |
-- Andreas, 2012-07-31, issue reported by Nicolas Pouillard
-- {-# OPTIONS -v tc:100 -v term:100 #-}
-- {-# OPTIONS -v tc.def.alias:20 #-}
-- {-# OPTIONS -v tc:0 -v term:0 #-}
module Issue655 where
-- import Common.Level -- this should not be necessary
module TypeAliases where
postulate A : Set
B = A → A
module Ex0 where
postulate
f : ∀ {A : Set} → A → A
yellow = f
boring : ∀ {A : Set} → A → A
boring = f
boring' = λ {A} → f {A}
module Ex1 where
postulate
A : Set
f : ∀ {x : A} → A
yellow = f
boring : ∀ {x : A} → A
boring {x} = f {x}
boring' = λ {x} → f {x}
module Ex2 where
postulate
A : Set
f : ∀ {B : Set} (x : B) {y : A} → A
a : A
yellow = f a
boring : ∀ {y : A} → A
boring {y} = f a {y}
boring' = λ {y} → f a {y}
-- no longer yellow...
| {
"alphanum_fraction": 0.5352644836,
"avg_line_length": 15.2692307692,
"ext": "agda",
"hexsha": "85e46dbd3689ecfabf2875070036aaae31add27c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue655.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue655.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue655.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 296,
"size": 794
} |
module Human.Nat where
open import Human.Bool
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
infix 4 _==_ _<_
infixl 6 _+_ _-_
infixl 7 _*_
-- add theses guys on infixl 7: _div_ _%_
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}
_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = m + n * m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
_<_ : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}
div-helper : (k m n j : Nat) → Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}
mod-helper : (k m n j : Nat) → Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}
| {
"alphanum_fraction": 0.5509868421,
"avg_line_length": 19.6129032258,
"ext": "agda",
"hexsha": "217ce689042fb6ba6ffc8fde87a5b16c8970f432",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/Nat.agda",
"max_line_length": 57,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 460,
"size": 1216
} |
module Univalence where
------------------------------------------------------------------------------
-- Basic utilities
open import LeqLemmas
open import FinNatLemmas
open import FiniteFunctions
open import VectorLemmas -- only _!!_ and lookupassoc are needed
open import Proofs
-- Proofs is a wrapper over all the basic utilities
-- The only thing imported from now on is Proofs
------------------------------------------------------------------------------
-- Structures (Definitions)
-- We use (and extend) the package Categories.
open import Categories.Category
open import Categories.Groupoid
open import Categories.Monoidal
open import Categories.Monoidal.Helpers
open import Categories.Functor
open import Categories.Bifunctor
open import Categories.NaturalIsomorphism
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Symmetric
open import Categories.RigCategory
open import Categories.Bicategory
------------------------------------------------------------------------------
-- General
--
-- We have three representations of types: Agda types, Pi types, and
-- Fin types. We have three equivalence relations between types:
-- extensional equivalences, Pi combinators, and Vec
-- permutations. Each type representation suggests a natural choice
-- for the equivalence relation:
--
-- Agda_Type <===== extensional equivalence =====> Agda_Type
-- Pi_Type <===== Pi combinator =====> Pi_Type
-- Fin_Type <===== Vec permutation =====> Fin_Type
--
--
------------------------------------------------------------------------------
-- Equivalences
open import Equiv
-- Defines extensional equality of functions ∼; quasi-inverses; and
-- then equivalences ≃ between spaces
open import EquivEquiv
-- Defines an extensional equivalence relation to be used to equate
-- equivalences so we can talk about equivalences up to equivalence
------------------------------------------------------------------------------
-- Equivalences between Agda types (extensional type isomorphisms)
open import TypeEquiv
-- Proves that types and type equivalences form a commutative semiring
-- in the Algebra sense
open import TypeEquivEquiv
-- All the equivalences between (type) equivalences
open import Data.Sum.Properties
-- Proves simple properties about type equivalences such as:
-- uniti₊ (unite₊ x) ≡ x
open import Data.SumProd.Properties
-- Proves simple properties about type equivalences such as:
-- distzr x ≡ distz (swap⋆ x)
open import TypeEquivCat
-- Proves that types and type equivalences form a symmetric rig
-- groupoid up to extensional equality of equivalences
------------------------------------------------------------------------------
-- Equivalences between Pi types (combinators)
--
-- Because Pi does not rely on extensionality it is easy to iterate
-- equivalences up and down. The following shows levels -2, -1, 0, and
-- 1.
open import PiU
-- First we introduce a univere U of finite types
open import PiLevelm2
open import Pim2Cat
-- A trivial relation on finite types is to identify all the types;
-- this makes U a contractible (-2)-type, i.e., a singleton.
--
-- The Pi types with the trivial relation that identifies all the
-- types form a trivial symmetric rig groupoid up to propositional
-- equality.
--
-- A (-1)-type is either empty or a singleton. The previous setup at
-- level -2 collapsed U to a singleton and hence also makes U a
-- (-1)-type
open import PiLevel0
open import Pi0Cat
-- If the relation on finite types is modeled after type isomorphisms
-- and all isomorphisms of the same type are equated, we collapse U to
-- the set of natural numbers which makes it a 0-type. (We do not
-- distinguish 'id' and 'not'.)
open import Pi0Examples
-- Pi0 is interesting as a programming language for reversible
-- circuits. This module has a few examples.
open import PiLevel1
open import Pi1Cat
-- If the relation on finite types is modeled after type isomorphisms
-- and only the isomorphisms corresponding to the coherence conditions
-- of rig categories are equated, we make U a 1-type. (We do
-- distinguish 'id' and 'not'.) The higher-level equality on the
-- 2-morphisms is trivial, i.e., all two level morphisms are
-- equated. This should yield a weak 2-category (i.e., a bicategory).
open import Pi1Examples
-- Pi1 is interesting as a programming language for reversible
-- circuits that has its own optimizer. This module has a few
-- examples.
open import PiEquiv
-- Each pi combinator is an equivalence
-- How to make U a 2-type, 3-type, etc. ???
------------------------------------------------------------------------------
-- Equivalences between Fin types (permutations)
--
-- A finite type is a set Fin n for some n. It is possible to directly
-- write permutations between finite types but this is extremely
-- tedious especially if we want to prove that we have enough
-- structure to model a symmetric rig groupoid. What we will do
-- instead is to derive these permutations from equivalences as
-- illustrated by the digram below:
--
-- Fin m <—-Equivalence-—> Fin n
-- ||
-- || Univalence
-- ||
-- Fin m <—-Permutation-—> Fin n
--
-- The vertical line is evocative of the univalence postulate: it is
-- an equivalence between equivalences and concrete identifications
-- expressed as permutations. It is relatively easy to establish the
-- symmetric rig groupoid structure in the top line and then
-- automatically transport it to the bottom line.
open import ConcretePermutation
-- Defines a permutation of a finite set 'Fin m' using two vectors of
-- the form Vec (Fin m) m. The first occurrence of m bounds the values
-- in the vector and the second bounds the length of the vector. In
-- general, a permutation 'Vec (Fin m) n' can be viewed as a function
-- that maps indices in 'Fin n' to values in 'Fin m'. To guarantee
-- that each value in Fin m occurs exactly once in the vector, the
-- representation of permutations includes two proofs that the
-- composition of the two vectors is the identity permutation (in both
-- directions). A crucial property of such permutations is that they
-- can be compared for equality using just ≡ which is elaborated on in
-- the module.
--
-- Ultimately we want to prove that finite sets and permutations form
-- a symmetric rig groupoid. Although it is possible to prove this
-- directly, it is extremely tedious. We will instead develop all the
-- infrastructure using equivalences on finite sets and transport it
-- using a specialized instance of 'univalence'.
open import FinEquivPlusTimes
open import FinEquivTypeEquiv
-- Defines the top line. We prove various equivalences between
-- Fin types like:
-- Fin (m + n) ≃ Fin m ⊎ Fin n
-- and
-- Fin (m * n) ≃ Fin m × Fin n
-- We make sure we have enough equivalences to model a commutative
-- semiring.
-- open import FinEquivEquivPlus
-- open import FinEquivEquivTimes
-- open import FinEquivEquivPlusTimes
-- open import FinEquivCat
-- Establishes that finite types and equivalences for a symmetric rig
-- groupoid. This is the structure we want to transport to permutations.
open import SEquivSCPermEquiv
-- An instance of univalence that allows us to transport all the
-- structure from FinEquivCat to permutations
-- open import CPermCat
-- Establishes that CPerm m n is a symmetric rig category by
-- transporting the structure from FinEquivCat using univalence
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Wavefront ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Composes previously defined equivalences to establish things like:
-- FiniteType (A ⊎ B) (m + n) ≃ FiniteType (B ⊎ A) (n + m)
-- FiniteTpyeEquivCat
-- show that Finite types and equivalences for a symmetric rig groupoid
-- define Permutation
-- should be simple definition
-- define EquivPerm
-- big thm
-- define EquivPermTransport
-- might be just an application of thm to derive the symmetric rig
-- structure on permutations
-- Finding a good representation of permutations is tricky.
-- We can compose equivalences from FinEquiv and TypeEquiv to get
-- equivalences that correspond to permutations on finite sets, e.g.,
-- Fin (m + n) ≃ Fin m ⊎ Fin n ≃ Fin n ⊎ Fin m ≃ Fin (n + m)
-- At this point these permutations are represented as extensional
-- functions. In FinVec, we represent these extensional functions
-- using the one-line notation of permutations represented in Agda as
-- the type 'Vec (Fin m) n' (which we abbreviate as 'FinVec m n').
-- The setup allows us to directly extract one-line permutations from
-- the equivalences. For example, the one-line notation for:
-- FinVec ((m + n) + o) (m + (n + o))
-- is extracted using 'tabulate' of the equivalence between:
-- Fin ((m + n) + o) and Fin (m + (n + o))
-- The fact that we have equivalences for the entire commutative
-- semiring axioms means that we also easily define the one-line
-- notation for composing permutations:
-- FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ + n₁) (m₂ + n₂)
-- FinVec m₁ m₂ → FinVec n₁ n₂ → FinVec (m₁ * n₁) (m₂ * n₂)
-- What remains now is to explicitly include proofs that the one-line
-- notation has an inverse and that the two compositions yield the
-- identity permutation. This is one in ConcretePermutation and
-- consists mostly of making explicit the proofs that are implicit in
-- FinEquiv and FinVec.
-- open import FinEquiv
-- Establishes that Fin m ≃ Fin n is a commutative semiring
-- open import ConcretePermutation
-- Establishes that CPerm m n is a commutative semiring (including
-- symmetry now)
-- open import ConcretePermutationProperties
-- Establishes properties of concrete permutations that are necessary
-- to show that it is symmetric rig category
-- open import CPermCat
-- Establishes that CPerm m n is a symmetric rig category
-- FiniteType ???
-- SCEquivSCPermEquiv ???
-- We have so far presented each instance separately. Now we focus on
-- relating the different type representations.
--
-- Now we want to relate Pi-types and type equivalences. The punchline
-- would be that TypeEquivCat is isomorphic to Pi1Cat. But the setup
-- for Pi1Cat allows us to keep going up and down the levels unlike
-- the setup for TypeEquivCat which has extensional equivalence
-- hardwired and can't be generalized to level 2.
-- Are they really really necessary as a stepping stone to prove the
-- correspondence between TypeEquivCat and Pi1Cat ???
-- Equivalences between finite sets (enumerations and permutations);
-- Equivalences between setoids; Equivalences between equivalences;
-- Unfinished files; Unused files
-- open import EnumEquiv
-- equivalence between A and Fin m is an enumeration of A
-- open import SetoidEquiv
-- do a version of EquivSetoid specialized for finite sets that
-- include an enumeration just like quasi-inverses include one
-- particular function to specify the equivalence; must really be done
-- in conjection with SEquivSCPermEquiv so let's wait until
-- dependencies satisfied...
-- open import SEquivSCPermEquiv
-- open import PiPerm
-- open import PiEquiv
-- open import SkFinSetCategory
-- open import Pim1Cat
-- open import LeftCancellation
-- Proves that ((⊤ ⊎ A) ≃ (⊤ ⊎ B)) → A ≃ B
-- open import RepresPerm
-- open import Groupoid
-- should be subsumed by Categories.Groupoid
-- Old proofs
-- open import SubstLemmas
-- open import PathLemmas
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.6954760879,
"avg_line_length": 36.4937106918,
"ext": "agda",
"hexsha": "727c019acf4bb20355cf4a08f2a9d95785f4848e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Univalence.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Univalence.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Univalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2696,
"size": 11605
} |
module Numeral.Finite where
import Lvl
open import Syntax.Number
open import Data.Boolean.Stmt
open import Functional
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural hiding (𝐏)
open import Type
-- A structure corresponding to a finite set of natural numbers (0,..,n−1).
-- Specifically an upper bounded set of natural numbers, and the boundary is strictly lesser than the parameter.
-- Positive integers including zero less than a specified integer (0≤_<n).
-- Or represented using a set: {(i∊ℕ). 0≤i<n}.
-- The structure works in the following way:
-- • 𝟎 can be constructed for any non-zero upper bound (n).
-- • 𝐒 can be constructed from only a smaller upper bounded 𝕟.
-- Example: A 𝕟 constructed through 𝐒{3} can only be the following:
-- 0 ≡ 𝟎{3}
-- 1 ≡ 𝐒{3} (𝟎{2})
-- 2 ≡ 𝐒{3} (𝐒{2} (𝟎{1}))
-- 3 ≡ 𝐒{3} (𝐒{2} (𝐒{1} (𝟎{0})))
-- because there is nothing that could fill the blank in (𝐒{3} (𝐒{2} (𝐒{1} (𝐒{0} (_))))).
-- The smallest upper bound that can be is 0 (from using ℕ and its definition).
-- This limits how many successors (𝐒) that can "fit".
data 𝕟 : ℕ → Type{Lvl.𝟎} where
𝟎 : ∀{n} → 𝕟(ℕ.𝐒(n)) -- Zero
𝐒 : ∀{n} → 𝕟(n) → 𝕟(ℕ.𝐒(n)) -- Successor function
{-# INJECTIVE 𝕟 #-}
𝕟₌ = 𝕟 ∘ 𝐒
bound : ∀{n} → 𝕟(n) → ℕ
bound{n} _ = n
minimum : ∀{n} → 𝕟(ℕ.𝐒(n))
minimum{_} = 𝟎
maximum : ∀{n} → 𝕟(ℕ.𝐒(n))
maximum{𝟎} = 𝟎
maximum{𝐒(n)} = 𝐒(maximum{n})
𝕟-to-ℕ : ∀{n} → 𝕟(n) → ℕ
𝕟-to-ℕ {ℕ.𝟎} ()
𝕟-to-ℕ {ℕ.𝐒(_)} (𝟎) = ℕ.𝟎
𝕟-to-ℕ {ℕ.𝐒(_)} (𝐒(n)) = ℕ.𝐒(𝕟-to-ℕ (n))
ℕ-to-𝕟 : (x : ℕ) → ∀{n} → . ⦃ _ : IsTrue(x <? n) ⦄ → 𝕟(n)
ℕ-to-𝕟 (ℕ.𝟎) {ℕ.𝟎} ⦃ ⦄
ℕ-to-𝕟 (ℕ.𝐒(x)) {ℕ.𝟎} ⦃ ⦄
ℕ-to-𝕟 (ℕ.𝟎) {ℕ.𝐒(_)} ⦃ _ ⦄ = 𝟎
ℕ-to-𝕟 (ℕ.𝐒(x)) {ℕ.𝐒(n)} ⦃ p ⦄ = 𝐒(ℕ-to-𝕟 (x) {n} ⦃ p ⦄)
instance
𝕟-from-ℕ : ∀{N} → Numeral(𝕟(N))
Numeral.restriction-ℓ ( 𝕟-from-ℕ {N} ) = Lvl.𝟎
Numeral.restriction ( 𝕟-from-ℕ {N} ) (n) = IsTrue(n <? N)
num ⦃ 𝕟-from-ℕ {N} ⦄ (n) ⦃ proof ⦄ = ℕ-to-𝕟 (n) {N} ⦃ proof ⦄
| {
"alphanum_fraction": 0.5615615616,
"avg_line_length": 33.8644067797,
"ext": "agda",
"hexsha": "0250fb2136f816e1dd73bf00e998105faf584ebd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite.agda",
"max_line_length": 112,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1006,
"size": 1998
} |
module Monads.StateT where
open import Class.Monad
open import Class.Functor
open import Class.MonadTrans
open import Class.Monad.State
open import Class.Monad.Writer
open import Data.Product
open import Data.Unit.Polymorphic
open import Function
open import Level
private
variable
a : Level
S : Set a
StateT : (Set a → Set a) → Set a → Set a → Set (a)
StateT M S A = S → M (A × S)
module _ {M : Set a → Set a} {{_ : Monad M}} {S} where
instance
StateT-Monad : Monad (StateT M S)
StateT-Monad = record { _>>=_ = helper ; return = λ a → λ s → return (a , s) }
where
helper : ∀ {A B} → StateT M S A → (A → StateT M S B) → StateT M S B
helper x f = λ s → do
(a' , s') ← x s
f a' s'
StateT-MonadState : MonadState (StateT M S) S
MonadState.get StateT-MonadState s = return (s , s)
MonadState.put StateT-MonadState s = λ s' → return (tt , s)
instance
StateT-MonadTrans : MonadTrans (λ M → StateT M S)
StateT-MonadTrans = record { embed = λ x s → (_, s) <$> x }
StateT-MonadWriter : ∀ {M W} {{_ : Monad M}} {{_ : MonadWriter M W}}
→ MonadWriter (StateT M S) W
StateT-MonadWriter = record
{ tell = λ w s → tell w >>= λ _ → return (tt , s)
; listen = λ x s → listen (x s) >>= λ { ((a , s') , w) → return ((a , w) , s') }
; pass = λ x s → x s >>= λ { (x' , s') → pass (return x') >>= λ a → return (a , s') } }
| {
"alphanum_fraction": 0.5778251599,
"avg_line_length": 30.5869565217,
"ext": "agda",
"hexsha": "a08bbc5afaae60cc6bce3a0d22b1f99a8eb9c58d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Monads/StateT.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Monads/StateT.agda",
"max_line_length": 91,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Monads/StateT.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 482,
"size": 1407
} |
------------------------------------------------------------------------------
-- Test the consistency of GroupTheory.Base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- In the module GroupTheory.Base we declare Agda postulates as FOL
-- axioms. We test if it is possible to prove an unprovable theorem
-- from these axioms.
module GroupTheory.Base.Consistency.Axioms where
open import GroupTheory.Base
------------------------------------------------------------------------------
postulate impossible : (d e : G) → d ≡ e
{-# ATP prove impossible #-}
| {
"alphanum_fraction": 0.4522875817,
"avg_line_length": 34.7727272727,
"ext": "agda",
"hexsha": "1d7f2cfb5c99a798a37ee2d65aa63298db1d097d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/GroupTheory/Base/Consistency/Axioms.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/GroupTheory/Base/Consistency/Axioms.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/GroupTheory/Base/Consistency/Axioms.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 126,
"size": 765
} |
{-
This file contains:
- Properties of groupoid truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.GroupoidTruncation.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.HITs.GroupoidTruncation.Base
rec : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (gB : isGroupoid B) → (A → B) → (∥ A ∥₁ → B)
rec gB f ∣ x ∣₁ = f x
rec gB f (squash₁ x y p q r s i j k) =
gB _ _ _ _
(λ m n → rec gB f (r m n))
(λ m n → rec gB f (s m n))
i j k
elim : ∀ {ℓ ℓ'} {A : Type ℓ} {B : ∥ A ∥₁ → Type ℓ'}
(bG : (x : ∥ A ∥₁) → isGroupoid (B x))
(f : (x : A) → B ∣ x ∣₁) (x : ∥ A ∥₁) → B x
elim bG f (∣ x ∣₁) = f x
elim bG f (squash₁ x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 bG _ _ _ _
(λ j k → elim bG f (r j k)) (λ j k → elim bG f (s j k))
(squash₁ x y p q r s)
i j k
| {
"alphanum_fraction": 0.5604651163,
"avg_line_length": 26.875,
"ext": "agda",
"hexsha": "0845d1822434b6ca8a62f6421d11227b04bfd796",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 380,
"size": 860
} |
{-# OPTIONS --safe #-}
module Cubical.Data.Nat.Divisibility where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Empty as ⊥
open import Cubical.HITs.PropositionalTruncation as PropTrunc
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Order
open import Cubical.Relation.Nullary
private
variable
l m n : ℕ
_∣_ : ℕ → ℕ → Type₀
m ∣ n = ∃[ c ∈ ℕ ] c · m ≡ n
isProp∣ : isProp (m ∣ n)
isProp∣ = squash
prediv : ℕ → ℕ → Type₀
prediv m n = Σ[ c ∈ ℕ ] c · m ≡ n
-- an alternate definition of m ∣ n that doesn't use truncation
_∣'_ : ℕ → ℕ → Type₀
zero ∣' n = zero ≡ n
suc m ∣' n = Σ[ c ∈ ℕ ] c · suc m ≡ n
isProp∣' : isProp (m ∣' n)
isProp∣' {zero} {n} = isSetℕ _ _
isProp∣' {suc m} {n} (c₁ , p₁) (c₂ , p₂) =
Σ≡Prop (λ _ → isSetℕ _ _) (inj-·sm {c₁} {m} {c₂} (p₁ ∙ sym p₂))
∣≃∣' : (m ∣ n) ≃ (m ∣' n)
∣≃∣' {zero} = propBiimpl→Equiv isProp∣ isProp∣'
(PropTrunc.rec (isSetℕ _ _) λ { (c , p) → 0≡m·0 c ∙ p })
(λ p → ∣ zero , p ∣)
∣≃∣' {suc m} = propTruncIdempotent≃ isProp∣'
∣-untrunc : m ∣ n → Σ[ c ∈ ℕ ] c · m ≡ n
∣-untrunc {zero} p = zero , equivFun ∣≃∣' p
∣-untrunc {suc m} = equivFun ∣≃∣'
-- basic properties of ∣
∣-refl : m ≡ n → m ∣ n
∣-refl p = ∣ 1 , +-zero _ ∙ p ∣
∣-trans : l ∣ m → m ∣ n → l ∣ n
∣-trans = PropTrunc.map2 λ {
(c₁ , p) (c₂ , q) → (c₂ · c₁ , sym (·-assoc c₂ c₁ _) ∙ cong (c₂ ·_) p ∙ q) }
∣-left : ∀ k → m ∣ (m · k)
∣-left k = ∣ k , ·-comm k _ ∣
∣-right : ∀ k → m ∣ (k · m)
∣-right k = ∣ k , refl ∣
∣-cancelʳ : ∀ k → (m · suc k) ∣ (n · suc k) → m ∣ n
∣-cancelʳ k = PropTrunc.map λ {
(c , p) → (c , inj-·sm (sym (·-assoc c _ (suc k)) ∙ p)) }
∣-multʳ : ∀ k → m ∣ n → (m · k) ∣ (n · k)
∣-multʳ k = PropTrunc.map λ {
(c , p) → (c , ·-assoc c _ k ∙ cong (_· k) p) }
∣-zeroˡ : zero ∣ m → zero ≡ m
∣-zeroˡ = equivFun ∣≃∣'
∣-zeroʳ : ∀ m → m ∣ zero
∣-zeroʳ m = ∣ zero , refl ∣
∣-oneˡ : ∀ m → 1 ∣ m
∣-oneˡ m = ∣ m , ·-identityʳ m ∣
-- if n > 0, then the constant c (s.t. c · m ≡ n) is also > 0
∣s-untrunc : m ∣ suc n → Σ[ c ∈ ℕ ] (suc c) · m ≡ suc n
∣s-untrunc ∣p∣ with ∣-untrunc ∣p∣
... | (zero , p) = ⊥.rec (znots p)
... | (suc c , p) = (c , p)
m∣sn→m≤sn : m ∣ suc n → m ≤ suc n
m∣sn→m≤sn {m} {n} = f ∘ ∣s-untrunc
where f : Σ[ c ∈ ℕ ] (suc c) · m ≡ suc n → Σ[ c ∈ ℕ ] c + m ≡ suc n
f (c , p) = (c · m) , (+-comm (c · m) m ∙ p)
m∣n→m≤n : {m n : ℕ} → ¬ n ≡ 0 → m ∣ n → m ≤ n
m∣n→m≤n {m = m} {n = n} p q =
let n≡sd = suc-predℕ _ p
m≤sd = m∣sn→m≤sn (subst (λ a → m ∣ a) n≡sd q)
in subst (λ a → m ≤ a) (sym n≡sd) m≤sd
m∣sn→z<m : m ∣ suc n → zero < m
m∣sn→z<m {zero} p = ⊥.rec (znots (∣-zeroˡ p))
m∣sn→z<m {suc m} p = suc-≤-suc zero-≤
antisym∣ : ∀ {m n} → m ∣ n → n ∣ m → m ≡ n
antisym∣ {zero} {n} z∣n _ = ∣-zeroˡ z∣n
antisym∣ {m} {zero} _ z∣m = sym (∣-zeroˡ z∣m)
antisym∣ {suc m} {suc n} p q = ≤-antisym (m∣sn→m≤sn p) (m∣sn→m≤sn q)
-- Inequality for strict divisibility
stDivIneq : ¬ m ≡ 0 → ¬ m ∣ n → l ∣ m → l ∣ n → l < m
stDivIneq {m = 0} p = ⊥.rec (p refl)
stDivIneq {n = 0} _ q = ⊥.rec (q (∣-zeroʳ _))
stDivIneq {m = suc m} {n = n} {l = l} _ q h h' =
case (≤-split (m∣sn→m≤sn h))
return (λ _ → l < suc m) of
λ { (inl r) → r
; (inr r) → ⊥.rec (q (subst (λ a → a ∣ n) r h')) }
| {
"alphanum_fraction": 0.5133750711,
"avg_line_length": 28.112,
"ext": "agda",
"hexsha": "89d251740c50c04c4a2bf2911338dae99825eab0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Divisibility.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1763,
"size": 3514
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Meta.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary
open import Cubical.DStructures.Base
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓX ℓ≅X ℓD ℓ≅D : Level
-- the total space of a DURGS is a URGS
𝒮ᴰ→𝒮 : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
→ URGStr (Σ A B) (ℓ-max ℓ≅A ℓ≅B)
𝒮ᴰ→𝒮 {A = A} 𝒮-A {B = B} 𝒮ᴰ-B
= make-𝒮 {_≅_ = _≅Σ_} ρΣ contrTotalΣ
where
open URGStr 𝒮-A
open URGStrᴰ 𝒮ᴰ-B
-- in the context of a fixed point (a , b)
module _ ((a , b) : Σ A B) where
-- the graph relation on the total space
_≅Σ_ = λ ((a' , b') : Σ A B)
→ Σ[ e ∈ a ≅ a' ] (b ≅ᴰ⟨ e ⟩ b')
-- reflexivity for that relation
ρΣ = ρ a , ρᴰ b
-- contractability of the corresponding total space
contrTotalA : isContr (Σ[ a' ∈ A ] (a ≅ a'))
contrTotalA = isUnivalent→contrRelSingl _≅_ ρ uni a
contrTotalB : isContr (Σ[ b' ∈ B a ] (b ≅ᴰ⟨ ρ a ⟩ b'))
contrTotalB = isUnivalent→contrRelSingl (_≅ᴰ⟨ ρ a ⟩_) ρᴰ uniᴰ b
contrTotalΣ
= isContrRespectEquiv (relSinglAt (_≅ᴰ⟨ ρ a ⟩_) b
≃⟨ idEquiv (relSinglAt (_≅ᴰ⟨ ρ a ⟩_) b) ⟩
Σ[ b' ∈ B a ] (b ≅ᴰ⟨ ρ a ⟩ b')
-- ≃⟨ invEquiv (Σ-contractFst contrTotalA') ⟩
≃⟨ invEquiv (Σ-contractFst-recenter contrTotalA (a , ρ a)) ⟩
Σ[ (a' , e) ∈ (Σ[ a' ∈ A ] (a ≅ a')) ] Σ[ b' ∈ B a' ] (b ≅ᴰ⟨ e ⟩ b')
≃⟨ Σ-assoc-≃ ⟩
Σ[ a' ∈ A ] Σ[ e ∈ (a ≅ a') ] Σ[ b' ∈ B a' ] (b ≅ᴰ⟨ e ⟩ b')
≃⟨ Σ-cong-equiv-snd (λ a' → invEquiv Σ-assoc-≃) ⟩
Σ[ a' ∈ A ] Σ[ (e , b') ∈ (a ≅ a') × B a' ] (b ≅ᴰ⟨ e ⟩ b')
≃⟨ Σ-cong-equiv-snd (λ a' → Σ-cong-equiv-fst Σ-swap-≃) ⟩
Σ[ a' ∈ A ] Σ[ (b' , e) ∈ (B a' × (a ≅ a')) ] (b ≅ᴰ⟨ e ⟩ b')
≃⟨ Σ-cong-equiv-snd (λ a' → Σ-assoc-≃) ⟩
Σ[ a' ∈ A ] Σ[ b' ∈ B a' ] Σ[ e ∈ (a ≅ a') ] (b ≅ᴰ⟨ e ⟩ b')
≃⟨ invEquiv Σ-assoc-≃ ⟩
Σ[ (a' , b') ∈ Σ A B ] Σ[ e ∈ (a ≅ a') ] (b ≅ᴰ⟨ e ⟩ b') ■)
contrTotalB
-- integral notation like in the disp cats paper
∫⟨_⟩_ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
→ URGStr (Σ A B) (ℓ-max ℓ≅A ℓ≅B)
∫⟨_⟩_ 𝒮-A {B} DispStrB .URGStr._≅_ = 𝒮ᴰ→𝒮 𝒮-A DispStrB .URGStr._≅_
∫⟨_⟩_ 𝒮-A {B} DispStrB .URGStr.ρ = 𝒮ᴰ→𝒮 𝒮-A DispStrB .URGStr.ρ
∫⟨_⟩_ 𝒮-A {B} DispStrB .URGStr.uni = 𝒮ᴰ→𝒮 𝒮-A DispStrB .URGStr.uni
-- transport URG structures along an equivalence
𝒮-transport : {A : Type ℓA} {A' : Type ℓA'}
(e : A ≃ A') (StrA : URGStr A ℓ≅A)
→ URGStr A' ℓ≅A
𝒮-transport {A = A} {A' = A'} e StrA =
make-𝒮 {_≅_ = λ a a' → e- a ≅ e- a'}
(λ a → ρ (e- a))
λ a → isContrRespectEquiv (Σ[ x ∈ A ] e- a ≅ x
≃⟨ Σ-cong-equiv-snd (λ x → pathToEquiv (cong (e- a ≅_)
(sym (Iso.leftInv (equivToIso e)
x)))) ⟩
Σ[ x ∈ A ] e- a ≅ e- (e* x)
≃⟨ Σ-cong-equiv-fst e ⟩
Σ[ a' ∈ A' ] e- a ≅ e- a' ■)
(𝒮→cTS StrA (e- a))
where
open URGStr StrA
e⁻¹ = invEquiv e
e- = equivFun e⁻¹
e* = equivFun e
-- obtain a path from a relation
𝒮-≅→≡ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{a a' : A} (p : URGStr._≅_ 𝒮-A a a')
→ a ≡ a'
𝒮-≅→≡ 𝒮-A {a} {a'} p = equivFun (invEquiv (isUnivalent→isUnivalent' _≅_ ρ uni a a')) p
where
open URGStr 𝒮-A
-- context: structure on A, B and C displayed over A
-- then B can be lifted to be displayed over ∫⟨ 𝒮-A ⟩ 𝒮ᴰ-C
VerticalLift-𝒮ᴰ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB}
(𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : A → Type ℓC}
(𝒮ᴰ-C : URGStrᴰ 𝒮-A C ℓ≅C)
→ URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-C) (λ (a , _) → B a) ℓ≅B
VerticalLift-𝒮ᴰ {ℓ≅B = ℓ≅B} 𝒮-A {B = B} 𝒮ᴰ-B 𝒮ᴰ-C =
urgstrᴰ (λ b (pA , _) b' → b ≅ᴰ⟨ pA ⟩ b')
ρᴰ
uniᴰ
where open URGStrᴰ 𝒮ᴰ-B
VerticalLift2-𝒮ᴰ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{X : A → Type ℓX} (𝒮ᴰ-X : URGStrᴰ 𝒮-A X ℓ≅X)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} (𝒮ᴰ-C : URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) C ℓ≅C)
→ URGStrᴰ (∫⟨ ∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B ⟩ 𝒮ᴰ-C)
(λ ((a , b) , c) → X a)
ℓ≅X
VerticalLift2-𝒮ᴰ 𝒮-A 𝒮ᴰ-X 𝒮ᴰ-B 𝒮ᴰ-C =
VerticalLift-𝒮ᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B)
(VerticalLift-𝒮ᴰ 𝒮-A 𝒮ᴰ-X 𝒮ᴰ-B)
𝒮ᴰ-C
-- context: 𝒮-A on A, 𝒮ᴰ-B / A, 𝒮ᴰ-C / ∫⟨𝒮-A⟩ 𝒮ᴰ-B
-- then 𝒮ᴰ-C can be rebased to 𝒮-A
splitTotal-𝒮ᴰ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} (𝒮ᴰ-C : URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) C ℓ≅C)
→ URGStrᴰ 𝒮-A
(λ a → Σ[ b ∈ B a ] C (a , b))
(ℓ-max ℓ≅B ℓ≅C)
splitTotal-𝒮ᴰ {A = A} 𝒮-A {B} 𝒮ᴰ-B {C} 𝒮ᴰ-C
= make-𝒮ᴰ (λ (b , c) eA (b' , c') → Σ[ eB ∈ b B≅ᴰ⟨ eA ⟩ b' ] c ≅ᴰ⟨ eA , eB ⟩ c')
(λ (b , c) → Bρᴰ b , ρᴰ c)
q
where
open URGStrᴰ 𝒮ᴰ-C
open URGStr 𝒮-A
_B≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-B
Bρᴰ = URGStrᴰ.ρᴰ 𝒮ᴰ-B
Buniᴰ = URGStrᴰ.uniᴰ 𝒮ᴰ-B
module _ (a : A) (b : B a) where
abstract
contrTotalB : isContr (Σ[ b' ∈ B a ] b B≅ᴰ⟨ ρ a ⟩ b')
contrTotalB = isUnivalent→contrRelSingl (_B≅ᴰ⟨ ρ a ⟩_) Bρᴰ Buniᴰ b
contrTotalC : (c : C (a , b)) → isContr (Σ[ c' ∈ C (a , b) ] c ≅ᴰ⟨ ρ a , Bρᴰ b ⟩ c')
contrTotalC = isUnivalent→contrRelSingl (λ c₁ c₂ → c₁ ≅ᴰ⟨ ρ a , Bρᴰ b ⟩ c₂) ρᴰ uniᴰ
abstract
q = λ a (b , c) → isContrRespectEquiv (Σ[ c' ∈ C (a , b) ] c ≅ᴰ⟨ ρ a , Bρᴰ b ⟩ c'
≃⟨ invEquiv (Σ-contractFst-recenter (contrTotalB a b) (b , Bρᴰ b)) ⟩
Σ[ (b' , eB) ∈ Σ[ b' ∈ B a ] b B≅ᴰ⟨ ρ a ⟩ b' ] (Σ[ c' ∈ C (a , b') ] (c ≅ᴰ⟨ ρ a , eB ⟩ c'))
≃⟨ compEquiv Σ-assoc-≃
(compEquiv (Σ-cong-equiv-snd (λ b' → compEquiv (invEquiv Σ-assoc-≃)
(compEquiv (Σ-cong-equiv-fst Σ-swap-≃)
Σ-assoc-≃)))
(invEquiv Σ-assoc-≃)) ⟩
Σ[ (b' , c') ∈ Σ[ b' ∈ B a ] C (a , b') ] (Σ[ eB ∈ b B≅ᴰ⟨ ρ a ⟩ b' ] (c ≅ᴰ⟨ ρ a , eB ⟩ c')) ■)
(contrTotalC a b c)
-- pullback in the (∞,1)-topos of DURGs,
-- combine two DURGs over the same URG to one
combine-𝒮ᴰ : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A}
{B : A → Type ℓB} {C : A → Type ℓC}
(𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
(𝒮ᴰ-C : URGStrᴰ 𝒮-A C ℓ≅C)
→ URGStrᴰ 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C)
combine-𝒮ᴰ {𝒮-A = 𝒮-A} 𝒮ᴰ-B 𝒮ᴰ-C = splitTotal-𝒮ᴰ 𝒮-A 𝒮ᴰ-B (VerticalLift-𝒮ᴰ 𝒮-A 𝒮ᴰ-C 𝒮ᴰ-B)
-- old stuff, not sure if relevant
-- extract the relational family from a DURG
SplitTotal-𝒮ᴰ→RelFamily : {ℓ≅A ℓ≅B ℓ≅C : Level}
{A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} (𝒮ᴰ-C : URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) C ℓ≅C)
→ Σ[ _≅_ ∈ Rel A A ℓ≅A ]
({a a' : A} ((b , c) : Σ[ b ∈ B a ] C (a , b)) (e : a ≅ a') ((b' , c') : (Σ[ b' ∈ B a' ] C (a' , b'))) → Type (ℓ-max ℓ≅B ℓ≅C))
SplitTotal-𝒮ᴰ→RelFamily 𝒮-A {B = B} 𝒮ᴰ-B {C = C} 𝒮ᴰ-C .fst = _≅_
where
open URGStr 𝒮-A
SplitTotal-𝒮ᴰ→RelFamily 𝒮-A {B = B} 𝒮ᴰ-B {C = C} 𝒮ᴰ-C .snd (b , c) e (b' , c') = Σ[ eB ∈ b B≅ᴰ⟨ e ⟩ b' ] (c ≅ᴰ⟨ e , eB ⟩ c')
where
open URGStr 𝒮-A
_B≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-B
open URGStrᴰ 𝒮ᴰ-C
SplitTotal-𝒮ᴰ→RelFamily' : {ℓ≅A ℓ≅B ℓ≅C : Level}
{A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} (𝒮ᴰ-C : URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) C ℓ≅C)
→ RelFamily A (ℓ-max ℓB ℓC) (ℓ-max ℓ≅B ℓ≅C)
SplitTotal-𝒮ᴰ→RelFamily' 𝒮-A {B = B} 𝒮ᴰ-B {C = C} 𝒮ᴰ-C .fst a = Σ[ b ∈ B a ] C (a , b)
SplitTotal-𝒮ᴰ→RelFamily' 𝒮-A {B = B} 𝒮ᴰ-B {C = C} 𝒮ᴰ-C .snd {a = a} (b , c) (b' , c') = Σ[ p ∈ b B≅ᴰ⟨ ρ a ⟩ b' ] (c C≅ᴰ⟨ ρ a , p ⟩ c')
where
open URGStr 𝒮-A
_B≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-B
_C≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-C
-- combine two structures 𝒮-B and 𝒮-C over 𝒮-A to a structure 𝒮-B × 𝒮-C over A, direct proof
combine'-𝒮ᴰ : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A}
{B : A → Type ℓB} {C : A → Type ℓC}
(𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
(𝒮ᴰ-C : URGStrᴰ 𝒮-A C ℓ≅C)
→ URGStrᴰ 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C)
combine'-𝒮ᴰ {ℓ≅B = ℓ≅B} {ℓ≅C = ℓ≅C} {A = A} {𝒮-A = 𝒮-A} {B = B} {C = C} 𝒮ᴰ-B 𝒮ᴰ-C =
make-𝒮ᴰ -- equality in the combined structure is defined componentwise
(λ (b , c) p (b' , c') → b B≅ᴰ⟨ p ⟩ b' × c C≅ᴰ⟨ p ⟩ c')
-- reflexivity follows from B and C reflexivity
(λ (b , c) → Bρᴰ b , Cρᴰ c)
-- so does univalence
contrTot
where
ρ = URGStr.ρ 𝒮-A
_B≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-B
_C≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-C
Bρᴰ = URGStrᴰ.ρᴰ 𝒮ᴰ-B
Cρᴰ = URGStrᴰ.ρᴰ 𝒮ᴰ-C
Buniᴰ = URGStrᴰ.uniᴰ 𝒮ᴰ-B
Cuniᴰ = URGStrᴰ.uniᴰ 𝒮ᴰ-C
contrTot : (a : A) ((b , c) : B a × C a) → isContr (Σ[ (b' , c') ∈ B a × C a ] (b B≅ᴰ⟨ ρ a ⟩ b' × c C≅ᴰ⟨ ρ a ⟩ c') )
contrTot = λ (a : A) ((b , c) : B a × C a)
→ isContrRespectEquiv (Σ[ b' ∈ B a ] (b B≅ᴰ⟨ ρ a ⟩ b')
≃⟨ invEquiv (Σ-contractSnd (λ _ → isUnivalent→contrRelSingl (_C≅ᴰ⟨ ρ a ⟩_) Cρᴰ Cuniᴰ c)) ⟩
(Σ[ b' ∈ B a ] (b B≅ᴰ⟨ ρ a ⟩ b')) × (Σ[ c' ∈ C a ] (c C≅ᴰ⟨ ρ a ⟩ c'))
≃⟨ Σ-assoc-≃ ⟩
(Σ[ b' ∈ B a ] Σ[ _ ∈ b B≅ᴰ⟨ ρ a ⟩ b' ] Σ[ c' ∈ C a ] (c C≅ᴰ⟨ ρ a ⟩ c'))
≃⟨ Σ-cong-equiv-snd (λ b' → compEquiv (invEquiv Σ-assoc-≃) (compEquiv (Σ-cong-equiv-fst Σ-swap-≃) Σ-assoc-≃)) ⟩
(Σ[ b' ∈ B a ] Σ[ c' ∈ C a ] Σ[ _ ∈ b B≅ᴰ⟨ ρ a ⟩ b' ] (c C≅ᴰ⟨ ρ a ⟩ c'))
≃⟨ invEquiv Σ-assoc-≃ ⟩
(Σ[ (b' , c') ∈ B a × C a ] (b B≅ᴰ⟨ ρ a ⟩ b' × c C≅ᴰ⟨ ρ a ⟩ c') ) ■)
(isUnivalent→contrRelSingl (_B≅ᴰ⟨ ρ a ⟩_) Bρᴰ Buniᴰ b)
| {
"alphanum_fraction": 0.4003187117,
"avg_line_length": 47.692,
"ext": "agda",
"hexsha": "476ba2ad54ba452691d1bd4435290d8e7a1b79b9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Meta/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Meta/Properties.agda",
"max_line_length": 157,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Meta/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5839,
"size": 11923
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.Pointed where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Foundations.Pointed.Base
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
private
variable
ℓ : Level
-- Pointed types with SNS
pointed-structure : Type ℓ → Type ℓ
pointed-structure X = X
pointed-iso : StrIso pointed-structure ℓ
pointed-iso A B f = equivFun f (pt A) ≡ pt B
pointed-is-SNS : SNS {ℓ} pointed-structure pointed-iso
pointed-is-SNS f = invEquiv (ua-ungluePath-Equiv f)
pointed-SIP : (A B : Pointed ℓ) → A ≃[ pointed-iso ] B ≃ (A ≡ B)
pointed-SIP = SIP pointed-structure pointed-iso pointed-is-SNS
pointed-sip : (A B : Pointed ℓ) → A ≃[ pointed-iso ] B → (A ≡ B)
pointed-sip A B = equivFun (pointed-SIP A B) -- ≡ λ (e , p) i → ua e i , ua-gluePath e p i
| {
"alphanum_fraction": 0.725708502,
"avg_line_length": 29.0588235294,
"ext": "agda",
"hexsha": "24f5cb8be7b8b5a02702a9fc4e14917a1b658ce1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Structures/Pointed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Structures/Pointed.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Structures/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 330,
"size": 988
} |
{-# OPTIONS --without-K --safe #-}
--------------------------------------------------------------------------------
-- Simple implementation of sets of ℕ.
--------------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Table where
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.List as List using (List; _∷_; [])
open import Function
Table : Set
Table = List ℕ
para : ∀ {a b} {A : Set a} {B : Set b} → (A → List A → B → B) → B → List A → B
para f b [] = b
para f b (x ∷ xs) = f x xs (para f b xs)
insert : ℕ → Table → Table
insert x xs = para (go zero) (_∷ []) xs x
where
go : ℕ → ℕ → Table → (ℕ → Table) → ℕ → Table
go k zero xs g zero = k ∷ xs
go k zero xs g (suc i) = k ∷ g i
go k (suc x) xs g zero = k ∷ x ∷ xs
go k (suc x) xs g (suc i) = go (suc k) x xs g i
open import Data.Maybe as Maybe using (Maybe; just; nothing)
member : ℕ → Table → Maybe ℕ
member x xs = List.foldr go (const (const nothing)) xs x 0
where
go : ℕ → (ℕ → ℕ → Maybe ℕ) → ℕ → ℕ → Maybe ℕ
go zero ys zero k = just k
go zero ys (suc x) k = ys x (suc k)
go (suc y) ys zero _ = nothing
go (suc y) ys (suc x) k = go y ys x k
fromList : List ℕ → Table
fromList = List.foldr insert []
toList : Table → List ℕ
toList = tail′ ∘ List.map ℕ.pred ∘ List.scanl (λ x y → suc (y ℕ.+ x)) 0
where
tail′ : List ℕ → List ℕ
tail′ [] = []
tail′ (_ ∷ xs) = xs
private
open import Relation.Binary.PropositionalEquality
example₁ : fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ []) ≡ (0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ [])
example₁ = refl
example₂ : member 3 (fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ [])) ≡ just 3
example₂ = refl
example₃ : toList (fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ [])) ≡ (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ [])
example₃ = refl
| {
"alphanum_fraction": 0.5055370986,
"avg_line_length": 29.1290322581,
"ext": "agda",
"hexsha": "9a6c4e934adf4480572f8425c84cdd601ae2ba32",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Data/Nat/Table.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Data/Nat/Table.agda",
"max_line_length": 82,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Data/Nat/Table.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 662,
"size": 1806
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Light.Implementation.Relation.Decidable where
open import Light.Variable.Levels
open import Light.Variable.Sets
open import Light.Library.Relation.Decidable using (Library ; Dependencies)
open import Light.Library.Data.Empty as Empty using (Empty)
open import Light.Library.Data.Unit as Unit using (Unit ; unit)
open import Light.Library.Data.Both as Both using (Both)
import Light.Library.Data.Product as Product
open import Light.Library.Data.These as These using (These)
import Light.Implementation.Data.Empty
import Light.Implementation.Data.Unit
import Light.Implementation.Data.Product
import Light.Implementation.Data.These
import Light.Package
instance dependencies : Dependencies
dependencies = record {}
instance library : Library dependencies
library = record
{
Implementation ;
to‐witness = λ ⦃ a ⦄ → Implementation.to‐witness a ;
to‐false‐witness = λ ⦃ a ⦄ → Implementation.to‐false‐witness a ;
from‐witness = λ ⦃ a ⦄ → Implementation.from‐witness a ;
from‐false‐witness = λ ⦃ a ⦄ → Implementation.from‐false‐witness a
}
where
module Implementation where
open import Light.Implementation.Relation.Sets using (base) public
data Decidable (𝕒 : Set ℓ) : Set ℓ where
yes : 𝕒 → Decidable 𝕒
no : (𝕒 → Empty) → Decidable 𝕒
module Style where
true : Decidable Unit
true = yes unit
false : Decidable Empty
false = no λ a → a
¬_ : Decidable 𝕒 → Decidable (𝕒 → Empty)
¬ yes a = no λ f → f a
¬ no a = yes a
_∧_ : ∀ {𝕒 : Set aℓ} {𝕓 : Set bℓ} (a? : Decidable 𝕒) (b? : Decidable 𝕓) → Decidable (Both 𝕒 𝕓)
yes a ∧ yes b = yes (Both.both a b)
no f ∧ _ = no λ both → f (Both.first both)
_ ∧ no f = no λ both → f (Both.second both)
_∨_ : ∀ {𝕒 : Set aℓ} {𝕓 : Set bℓ} (a? : Decidable 𝕒) (b? : Decidable 𝕓) → Decidable (These 𝕒 𝕓)
no af ∨ no bf = no {!!}
yes a ∨ yes b = yes (These.these a b)
yes a ∨ no _ = yes (These.this a)
no _ ∨ yes b = yes (These.that b)
_⇢_ : ∀ {𝕒 : Set aℓ} {𝕓 : Set bℓ} (a? : Decidable 𝕒) (b? : Decidable 𝕓) → Decidable (𝕒 → 𝕓)
_ ⇢ yes b = yes λ _ → b
no af ⇢ _ = yes λ a → Empty.eliminate (af a)
yes a ⇢ no bf = no λ f → bf (f a)
True False : Decidable 𝕒 → Set
True (yes _) = Unit
True (no _) = Empty
False a? = True (¬ a?)
style = record { Style }
if′_then_else_ : Decidable 𝕒 → 𝕓 → 𝕓 → 𝕓
if′ yes _ then a else _ = a
if′ no _ then _ else a = a
if_then_else_ :
∀ (a : Decidable 𝕒)
→ (∀ ⦃ witness : 𝕒 ⦄ → 𝕓)
→ (∀ ⦃ witness : 𝕒 → Empty ⦄ → 𝕓)
→ 𝕓
if yes w then a else _ = a ⦃ witness = w ⦄
if no w then _ else a = a ⦃ witness = w ⦄
to‐witness : ∀ {a? : Decidable 𝕒} → Style.True a? → 𝕒
to‐false‐witness : ∀ {a? : Decidable 𝕒} → Style.False a? → 𝕒 → Empty
from‐witness : ∀ {a? : Decidable 𝕒} → 𝕒 → Style.True a?
from‐false‐witness : ∀ {a? : Decidable 𝕒} → (𝕒 → Empty) → Style.False a?
to‐witness {a? = yes a} _ = a
to‐false‐witness {a? = no f} _ = f
from‐witness {a? = yes a} _ = _
from‐witness {a? = no f} w = f w
from‐false‐witness {a? = no f} _ = _
from‐false‐witness {a? = yes a} w = w a
| {
"alphanum_fraction": 0.4860240964,
"avg_line_length": 41.5,
"ext": "agda",
"hexsha": "dbd5754fba7833bd08a7fa92d8cb1a86e05a0962",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation/Relation/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation/Relation/Decidable.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation/Relation/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 1186,
"size": 4150
} |
------------------------------------------------------------------------------
-- Properties of the inequalities of unary numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.PropertiesATP
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
postulate x<x+1 : ∀ {n} → N n → n < n + 1'
{-# ATP prove x<x+1 x<Sx +-comm #-}
postulate x<x+11 : ∀ {n} → N n → n < n + 11'
{-# ATP prove x<x+11 x<x+Sy #-}
| {
"alphanum_fraction": 0.481277533,
"avg_line_length": 34.9230769231,
"ext": "agda",
"hexsha": "6bd828a1adf4e51121bc3354cd744eb5a990bcef",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/Inequalities/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/Inequalities/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers/Inequalities/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 201,
"size": 908
} |
data Nat : Set where
O : Nat
S : Nat → Nat
syntax S x = suc x
test : Nat → Nat
test _ = suc O
syntax lim (λ n → m) = limit n at m
data lim (f : Nat → Nat) : Set where
syntax foo (λ _ → n) = const-foo n
postulate
foo : (Nat → Nat) → Nat
| {
"alphanum_fraction": 0.5702811245,
"avg_line_length": 13.1052631579,
"ext": "agda",
"hexsha": "5dec026cdc9701186e14ff3604abc5654914557e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue758b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue758b.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue758b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 249
} |
{-# OPTIONS --type-in-type --no-pattern-matching #-}
open import Spire.DarkwingDuck.Primitive
open import Spire.DarkwingDuck.Derived
module Spire.DarkwingDuck.Examples where
----------------------------------------------------------------------
NatN : String
NatN = "Nat"
NatE : Enum
NatE = "zero" ∷ "suc" ∷ []
NatP : Tel
NatP = Emp
NatI : Indices NatP
NatI = indices NatP Emp
NatC : Constrs NatE NatP NatI
NatC = constrs NatE NatP NatI
(End tt , Rec tt (End tt) , tt)
Nat : Former NatP NatI
Nat = Form NatN NatE NatP NatI NatC
zero : Inj NatN NatE NatP NatI NatC here
zero = inj NatN NatE NatP NatI NatC here
suc : Inj NatN NatE NatP NatI NatC (there here)
suc = inj NatN NatE NatP NatI NatC (there here)
elimNat : Elim NatN NatE NatP NatI NatC
elimNat = elim NatN NatE NatP NatI NatC
----------------------------------------------------------------------
VecN : String
VecN = "Vec"
VecE : Enum
VecE = "nil" ∷ "cons" ∷ []
VecP : Tel
VecP = Ext Set λ _ → Emp
VecI : Indices VecP
VecI = indices VecP λ A → Ext Nat λ _ → Emp
VecC : Constrs VecE VecP VecI
VecC = constrs VecE VecP VecI λ A →
End (zero , tt)
, Arg Nat (λ n → Arg A λ _ → Rec (n , tt) (End (suc n , tt)))
, tt
Vec : Former VecP VecI
Vec = Form VecN VecE VecP VecI VecC
nil : Inj VecN VecE VecP VecI VecC here
nil = inj VecN VecE VecP VecI VecC here
cons : Inj VecN VecE VecP VecI VecC (there here)
cons = inj VecN VecE VecP VecI VecC (there here)
elimVec : Elim VecN VecE VecP VecI VecC
elimVec = elim VecN VecE VecP VecI VecC
----------------------------------------------------------------------
add : Nat → Nat → Nat
add = elimNat
(λ n → Nat → Nat)
(λ n → n)
(λ m ih n → suc (ih n))
mult : Nat → Nat → Nat
mult = elimNat
(λ n → Nat → Nat)
(λ n → zero)
(λ m ih n → add n (ih n))
append : (A : Set) (m n : Nat) (xs : Vec A m) (ys : Vec A n) → Vec A (add m n)
append A m n = elimVec A
(λ m xs → (ys : Vec A n) → Vec A (add m n))
(λ ys → ys)
(λ m' x xs ih ys → cons A (add m' n) x (ih ys))
m
concat : (A : Set) (m n : Nat) (xss : Vec (Vec A m) n) → Vec A (mult n m)
concat A m n = elimVec (Vec A m)
(λ n xss → Vec A (mult n m))
(nil A)
(λ m' xs xss ih → append A m (mult m' m) xs ih)
n
----------------------------------------------------------------------
one : Nat
one = suc zero
two : Nat
two = suc one
three : Nat
three = suc two
[1,2] : Vec Nat two
[1,2] = cons Nat one one (cons Nat zero two (nil Nat))
[3] : Vec Nat one
[3] = cons Nat zero three (nil Nat)
[1,2,3] : Vec Nat three
[1,2,3] = cons Nat two one (cons Nat one two (cons Nat zero three (nil Nat)))
test-append : [1,2,3] ≡ append Nat two one [1,2] [3]
test-append = refl
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.5448577681,
"avg_line_length": 22.85,
"ext": "agda",
"hexsha": "08b55174e9e2de6cee9c557669e69dd5fcd0c304",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/DarkwingDuck/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/DarkwingDuck/Examples.agda",
"max_line_length": 78,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/DarkwingDuck/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 934,
"size": 2742
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.FinSet.Binary.Small.Base where
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Data.Bool hiding (isSetBool)
data Binary : Type₀
El : Binary → Type₀
data Binary where
ℕ₂ : Binary
un : ∀ x y → El x ≃ El y → x ≡ y
El ℕ₂ = Bool
El (un _ _ e i) = ua e i
| {
"alphanum_fraction": 0.7146226415,
"avg_line_length": 20.1904761905,
"ext": "agda",
"hexsha": "8cbabbde2ca179d1bc24d3692d97cb2de5b83115",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Binary/Small/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Binary/Small/Base.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Binary/Small/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 129,
"size": 424
} |
------------------------------------------------------------------------
-- Examples
------------------------------------------------------------------------
module RecursiveDescent.InductiveWithFix.Examples where
open import Data.List
open import Data.Nat
import Data.Char as C
import Data.String as S
open C using (Char)
open S using (String)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Utilities
open import RecursiveDescent.Index
open import RecursiveDescent.InductiveWithFix
open import RecursiveDescent.InductiveWithFix.Lib
open Token C.decSetoid
-- A function used to simplify the examples a little.
_∈?_/_ : forall {nt i r}
-> String -> Parser Char nt i r -> Grammar Char nt -> List r
s ∈? p / g = parse-complete p g (S.toList s)
module Ex₁ where
-- e ∷= 0 + e | 0
data Nonterminal : ParserType₁ where
e : Nonterminal _ Char
grammar : Grammar Char Nonterminal
grammar e = sym '0' ⊛> sym '+' ⊛> ! e
∣ sym '0'
ex₁ : "0+0" ∈? (! e) / grammar ≡ '0' ∷ []
ex₁ = refl
module Ex₂ where
-- e ∷= f + e | f
-- f ∷= 0 | 0 * f | ( e )
data Nonterminal : ParserType₁ where
expr : Nonterminal _ Char
factor : Nonterminal _ Char
grammar : Grammar Char Nonterminal
grammar expr = ! factor ⊛> sym '+' ⊛> ! expr
∣ ! factor
grammar factor = sym '0'
∣ sym '0' ⊛> sym '*' ⊛> ! factor
∣ sym '(' ⊛> ! expr <⊛ sym ')'
ex₁ : "(0*)" ∈? (! expr) / grammar ≡ []
ex₁ = refl
ex₂ : "0*(0+0)" ∈? (! expr) / grammar ≡ '0' ∷ []
ex₂ = refl
{-
module Ex₃ where
-- This is not allowed:
-- e ∷= f + e | f
-- f ∷= 0 | f * 0 | ( e )
data Nonterminal : ParserType₁ where
expr : Nonterminal _ Char
factor : Nonterminal _ Char
grammar : Grammar Char Nonterminal
grammar expr = ! factor ⊛> sym '+' ⊛> ! expr
∣ ! factor
grammar factor = sym '0'
∣ ! factor ⊛> sym '*' ⊛> sym '0'
∣ sym '(' ⊛> ! expr <⊛ sym ')'
-}
module Ex₄ where
-- The language aⁿbⁿcⁿ, which is not context free.
-- The non-terminal top returns the number of 'a' characters parsed.
data NT : ParserType₁ where
top : NT _ ℕ -- top ∷= aⁿbⁿcⁿ
as : ℕ -> NT _ ℕ -- as n ∷= aˡ⁺¹bⁿ⁺ˡ⁺¹cⁿ⁺ˡ⁺¹
bcs : Char -> ℕ -> NT _ ℕ -- bcs x n ∷= xⁿ⁺¹
grammar : Grammar Char NT
grammar top = return 0 ∣ ! as zero
grammar (as n) = suc <$ sym 'a' ⊛
( ! as (suc n)
∣ _+_ <$> ! bcs 'b' n ⊛ ! bcs 'c' n
)
grammar (bcs c zero) = sym c ⊛> return 0
grammar (bcs c (suc n)) = sym c ⊛> ! bcs c n
ex₁ : "aaabbbccc" ∈? (! top) / grammar ≡ 3 ∷ []
ex₁ = refl
ex₂ : "aaabbccc" ∈? (! top) / grammar ≡ []
ex₂ = refl
module Ex₅ where
-- A grammar making use of a parameterised parser from the library.
data NT : ParserType₁ where
a : NT _ Char
as : NT _ ℕ
grammar : Grammar Char NT
grammar a = sym 'a'
grammar as = length <$> ! a ⋆
ex₁ : "aaaaa" ∈? (! as) / grammar ≡ 5 ∷ []
ex₁ = refl
module Ex₆ where
-- A grammar which uses the chain₁ combinator.
data NT : ParserType₁ where
op : NT _ (ℕ -> ℕ -> ℕ)
expr : Assoc -> NT _ ℕ
grammar : Grammar Char NT
grammar op = _+_ <$ sym '+'
∣ _*_ <$ sym '*'
∣ _∸_ <$ sym '∸'
grammar (expr a) = chain₁ a number (! op)
ex₁ : "12345" ∈? number / grammar ≡ 12345 ∷ []
ex₁ = refl
ex₂ : "1+5*2∸3" ∈? (! expr left) / grammar ≡ 9 ∷ []
ex₂ = refl
ex₃ : "1+5*2∸3" ∈? (! expr right) / grammar ≡ 1 ∷ []
ex₃ = refl
module Ex₇ where
-- A proper expression example.
data NT : ParserType₁ where
expr : NT _ ℕ
term : NT _ ℕ
factor : NT _ ℕ
addOp : NT _ (ℕ -> ℕ -> ℕ)
mulOp : NT _ (ℕ -> ℕ -> ℕ)
grammar : Grammar Char NT
grammar expr = chain₁ left (! term) (! addOp)
grammar term = chain₁ left (! factor) (! mulOp)
grammar factor = sym '(' ⊛> ! expr <⊛ sym ')'
∣ number
grammar addOp = _+_ <$ sym '+'
∣ _∸_ <$ sym '∸'
grammar mulOp = _*_ <$ sym '*'
ex₁ : "1+5*2∸3" ∈? (! expr) / grammar ≡ 8 ∷ []
ex₁ = refl
ex₂ : "1+5*(2∸3)" ∈? (! expr) / grammar ≡ 1 ∷ []
ex₂ = refl
| {
"alphanum_fraction": 0.5055350554,
"avg_line_length": 25.2093023256,
"ext": "agda",
"hexsha": "87af31b7bba24370de78617bd6c237c8f8fa397c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/InductiveWithFix/Examples.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/InductiveWithFix/Examples.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/InductiveWithFix/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1470,
"size": 4336
} |
module Logic.Leibniz where
-- Leibniz equality
_≡_ : {A : Set} -> A -> A -> Set1
x ≡ y = (P : _ -> Set) -> P x -> P y
≡-refl : {A : Set}(x : A) -> x ≡ x
≡-refl x P px = px
≡-sym : {A : Set}(x y : A) -> x ≡ y -> y ≡ x
≡-sym x y xy P py = xy (\z -> P z -> P x) (\px -> px) py
≡-trans : {A : Set}(x y z : A) -> x ≡ y -> y ≡ z -> x ≡ z
≡-trans x y z xy yz P px = yz P (xy P px)
≡-subst : {A : Set}(P : A -> Set)(x y : A) -> x ≡ y -> P x -> P y
≡-subst P _ _ xy = xy P
| {
"alphanum_fraction": 0.4203821656,
"avg_line_length": 23.55,
"ext": "agda",
"hexsha": "f997267f7a77265f75c2f70a4036485f167e3775",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Leibniz.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Leibniz.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Leibniz.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 236,
"size": 471
} |
------------------------------------------------------------------------
-- One form of induction for natural numbers
------------------------------------------------------------------------
-- I want universe polymorphism.
module Induction1.Nat where
open import Data.Nat
import Induction1.WellFounded as WF
------------------------------------------------------------------------
-- Complete induction based on <′
open WF _<′_ using (Acc; acc)
allAcc : ∀ n → Acc n
allAcc n = acc (helper n)
where
helper : ∀ n m → m <′ n → Acc m
helper zero _ ()
helper (suc n) .n ≤′-refl = acc (helper n)
helper (suc n) m (≤′-step m<′n) = helper n m m<′n
open WF _<′_ public using () renaming (WfRec to <-Rec)
open WF.All _<′_ allAcc public
renaming ( wfRec-builder to <-rec-builder
; wfRec to <-rec
)
| {
"alphanum_fraction": 0.4601664685,
"avg_line_length": 28.0333333333,
"ext": "agda",
"hexsha": "15846f13010cfe1136a4bd9b364b55f60e34010a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Induction1/Nat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Induction1/Nat.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Induction1/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 208,
"size": 841
} |
-- Checks that UHC FFI calls using non-magic datatypes work
module UHC-FFI where
data Nat : Set where
Zero : Nat
Suc : Nat -> Nat
{-# COMPILE UHC Nat = data UHC.Agda.Builtins.Nat (Zero | Suc) #-}
{-# FOREIGN UHC __IMPORT__ Data.Char #-}
open import Common.IO
open import Common.Unit
open import Common.String
open import Common.Char
postulate toLower : Char -> Char
{-# COMPILE UHC toLower = Data.Char.toLower #-}
main : IO Unit
main = putStr (charToStr (toLower 'A'))
| {
"alphanum_fraction": 0.7041666667,
"avg_line_length": 20.8695652174,
"ext": "agda",
"hexsha": "b6c480971e21a4d9ae0fffacdb1124bfd827c5f6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:39:14.000Z",
"max_forks_repo_head_hexsha": "e40569fe401cd73cf80be2356e455ab95a4c9498",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-uhc",
"max_forks_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "e40569fe401cd73cf80be2356e455ab95a4c9498",
"max_issues_repo_issues_event_max_datetime": "2017-02-24T19:38:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-02-24T19:27:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-uhc",
"max_issues_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_line_length": 65,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "e40569fe401cd73cf80be2356e455ab95a4c9498",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-uhc",
"max_stars_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-02-24T16:53:22.000Z",
"num_tokens": 135,
"size": 480
} |
-- Andreas, 2014-06-27, issue raised by fsfbugs
-- {-# OPTIONS -v interaction.give:10 -v tc:20 -v tc.conv.sort:30 #-}
open import Common.Level
record R (p r : Level) : Set (lsuc (p ⊔ r)) where
field
P : Set p
_~_ : P -> P -> Set r
f : (p p' : P) -> {!p ~ p'!} -- Give (p ~ p') here!
-- PROBLEM WAS:
-- When issuing C-c C-SPC, Agda complains
-- Set (r ⊔ p) != Set (suc r ⊔ suc p)
-- even though removing the hole manually (by removing '{!' and '!}')
-- gives a well-typed definition.
-- REASON WAS:
-- Conversion.leqSort produced equality rather than subtyping constraint
-- upon postponement:
-- does (f : (p p' : P) → ?0 p r P _~_ p p') → f
-- of sort Setω
-- fit in Set (lsuc r ⊔ lsuc p) ?
-- adding constraint [0] dLub (Set p)
-- (λ p → dLub (Set p) (λ p' → Set (_4 p r P _~_ p p')))
-- == Set (lsuc r ⊔ lsuc p)
-- WORKS NOW
| {
"alphanum_fraction": 0.5402425579,
"avg_line_length": 30.2333333333,
"ext": "agda",
"hexsha": "72ee7ec89a42e69719090a66d041e9f0c4922f97",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1205.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1205.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1205.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 318,
"size": 907
} |
module Unify-revised-correct where
--open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Prelude.Function
postulate
Nat : Set
Term : Nat → Set
_~>_ : Nat → Nat → Set -- Fin → Term
_=>_ : Nat → Nat → Set -- Fin → Fin
ε : ∀ {m n} → m ~> n
▹ : ∀ {m n} -> m => n -> m ~> n
_◃_ : ∀ {m n} → m ~> n → Term m → Term n
_≐_ : {m n : Nat} → (m ~> n) → (m ~> n) → Set
◃ext : ∀ {m n} {f g : m ~> n} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t
_◇_ : ∀ {l m n : Nat} → m ~> n → l ~> m → l ~> n
_◆_ : ∀ {l m n : Nat} → m ~> n → l => m → l ~> n
≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) → f ≐ g → (h ◇ f) ≐ (h ◇ g)
≐-sym : ∀ {m n} {f : m ~> n} {g} → f ≐ g → g ≐ f
subFact1 : ∀ {n} → (t : Term n) → ε ◃ t ≡ t
subFact2 : ∀ {l m n} → (f : m ~> n) (g : _) (t : Term l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
subFact3 : ∀ {l m n} (f : m ~> n) (r : l => m) -> f ◇ ▹ r ≡ f ◆ r
open import Prelude.Equality
◃ext' : ∀ {m n o} {f : m ~> n}{g : m ~> o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t)
◃ext' p t = trans (◃ext p t) (subFact2 _ _ t)
| {
"alphanum_fraction": 0.4011299435,
"avg_line_length": 34.2580645161,
"ext": "agda",
"hexsha": "cf51e326dd8d483ea381ca5109f5f9f4c682944a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Unify-revised-correct.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Unify-revised-correct.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Unify-revised-correct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 531,
"size": 1062
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Reflexivity
open import Oscar.Class.Symmetry
open import Oscar.Class.Transitivity
open import Oscar.Class.IsEquivalence
open import Oscar.Data.ProductIndexEquivalence
import Oscar.Data.Constraint
module Oscar.Property.Setoid.ProductIndexEquivalence where
module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {ℓ} ⦃ _ : HasEquivalence 𝔒 ℓ ⦄ where
instance
𝓡eflexivityExtensionṖropertyEquivalence : Reflexivity.class ProductIndexEquivalence⟦ 𝔒 / 𝔓 ⟧
𝓡eflexivityExtensionṖropertyEquivalence .⋆ .π₀ = reflexivity
𝓢ymmetryExtensionṖropertyEquivalence : Symmetry.class ProductIndexEquivalence⟦ 𝔒 / 𝔓 ⟧
𝓢ymmetryExtensionṖropertyEquivalence .⋆ (∁ P≈Q) .π₀ = symmetry P≈Q
𝓣ransitivityExtensionṖropertyEquivalence : Transitivity.class ProductIndexEquivalence⟦ 𝔒 / 𝔓 ⟧
𝓣ransitivityExtensionṖropertyEquivalence .⋆ (∁ P≈Q) (∁ Q≈R) .π₀ = transitivity P≈Q Q≈R
IsEquivalenceExtensionṖroperty : IsEquivalence ProductIndexEquivalence⟦ 𝔒 / 𝔓 ⟧
IsEquivalenceExtensionṖroperty = ∁
| {
"alphanum_fraction": 0.7792792793,
"avg_line_length": 38.275862069,
"ext": "agda",
"hexsha": "6f659a85b9db1705abac3116533e7da678f9fc1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/ProductIndexEquivalence.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/ProductIndexEquivalence.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Setoid/ProductIndexEquivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 383,
"size": 1110
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Impl.Consensus.EpochManagerTypes
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.EitherD
import LibraBFT.Impl.Properties.Util as Util
open import LibraBFT.Prelude
open import Optics.All
module LibraBFT.Impl.Handle.InitProperties where
module initHandlerSpec
(pid : Author)
(bsi : BootstrapInfo)
where
import LibraBFT.Yasm.Types as LYT
record ContractOk (rm : RoundManager) (acts : List (LYT.Action NetworkMsg)) : Set where
constructor mkContractOk
field
rmInv : Util.Invariants.RoundManagerInv rm
sigs∈bs : ∀ {vs qc}
→ vs ∈ qcVotes qc
→ qc Util.QCProps.∈RoundManager rm
→ ∈BootstrapInfo-impl bsi (proj₂ vs)
-- During epoch initialisation, no messages are sent
-- EXCEPT the leader of Round 1 SENDS a ProposalMsg during initialization.
-- Rust/Haskell impls do not include signatures in the genesis QC's LIWS.
-- The initial proposal for (Epoch N) (Round 1) is built on a QC with empty signatures.
isInitPM : ∀ {m}
→ LYT.send m ∈ acts
→ ∃[ pm ] ( m ≡ P pm
× ∀ {vs qc}
→ vs ∈ qcVotes qc
→ qc QC∈NM m
→ ⊥)
sdLVNothing : rm ^∙ rmSafetyRules ∙ srPersistentStorage
∙ pssSafetyData ∙ sdLastVote ≡ nothing
Contract : Maybe (RoundManager × List (LYT.Action NetworkMsg)) → Set
Contract nothing = ⊤
Contract (just (rm , acts)) = ContractOk rm acts
import LibraBFT.Impl.Handle as Handle
open Handle.InitHandler
postulate
contract : ∀ {x} → initHandler pid bsi ≡ x → Contract x
-- contract = EitherD-contract {!!} Contract contract'
| {
"alphanum_fraction": 0.6320447136,
"avg_line_length": 37.6666666667,
"ext": "agda",
"hexsha": "37fea119c1eb7de4bf2d50dd705999ec5bc6ae9a",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "oracle/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Handle/InitProperties.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "oracle/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Handle/InitProperties.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "oracle/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Handle/InitProperties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 562,
"size": 2147
} |
module Basic where
open import Level
open import Data.Product
open import Relation.Binary
open Setoid renaming (_≈_ to eqSetoid)
module Map where
record Map {c₀ c₀′ ℓ ℓ′ : Level} (A : Setoid c₀ ℓ) (B : Setoid c₀′ ℓ′) : Set (suc (c₀ ⊔ ℓ ⊔ c₀′ ⊔ ℓ′)) where
field
mapping : Carrier A → Carrier B
preserveEq : {x y : Carrier A} → (eqSetoid A x y) → eqSetoid B (mapping x) (mapping y)
open Map public
equality : {c₀ ℓ : Level} {A B : Setoid c₀ ℓ} (f g : Map A B) → Set _
equality {A = A} {B = B} f g = ∀(x : Carrier A) → eqSetoid B (mapping f x) (mapping g x)
compose : {c₀ ℓ : Level} {A B C : Setoid c₀ ℓ} (f : Map B C) (g : Map A B) → Map A C
compose {C = C} f g = record {
mapping = λ x → mapping f (mapping g x);
preserveEq = λ x₁ → (preserveEq f (preserveEq g x₁)) }
identity : {c₀ ℓ : Level} {A : Setoid c₀ ℓ} → Map A A
identity = record { mapping = λ x → x ; preserveEq = λ x₁ → x₁ }
subst : ∀{c₀ ℓ} {A B : Setoid c₀ ℓ} {f g : Map A B} (a : Carrier A) → equality f g → eqSetoid B (mapping f a) (mapping g a)
subst a eq = eq a
LiftSetoid : ∀ {a b ℓ ℓ′} (A : Setoid a ℓ) → Setoid (a ⊔ b) (ℓ ⊔ ℓ′)
LiftSetoid {a} {b} {ℓ} {ℓ′} A = record {
Carrier = Lift {a} {b} (Carrier A) ;
_≈_ = λ x x₁ → Lift {ℓ} {ℓ′} (eqSetoid A (lower x) (lower x₁)) ;
isEquivalence = record {
refl = lift (refl A) ;
sym = λ x → lift (sym A (lower x)) ;
trans = λ x x₁ → lift (trans A (lower x) (lower x₁)) } }
liftMap : {c₀ c₀′ d ℓ ℓ′ ℓ″ : Level} {A : Setoid c₀ ℓ} {B : Setoid c₀′ ℓ′} → (f : Map.Map A B) → Map.Map (LiftSetoid {_} {c₀ ⊔ d} {_} {ℓ ⊔ ℓ″} A) (LiftSetoid {_} {c₀′ ⊔ d} {_} {ℓ′ ⊔ ℓ″} B)
liftMap f = record {
mapping = λ x → lift (Map.mapping f (lower x)) ;
preserveEq = λ x≈y → lift (Map.preserveEq f (lower x≈y)) }
lowerMap : {c₀ c₀′ d ℓ ℓ′ ℓ″ : Level} {A : Setoid c₀ ℓ} {B : Setoid c₀′ ℓ′} → (f : Map.Map (LiftSetoid {_} {c₀ ⊔ d} {_} {ℓ ⊔ ℓ″} A) (LiftSetoid {_} {c₀′ ⊔ d} {_} {ℓ′ ⊔ ℓ″} B)) → Map.Map A B
lowerMap f = record {
mapping = λ x → lower (Map.mapping f (lift x)) ;
preserveEq = λ x≈y → lower (Map.preserveEq f (lift x≈y)) }
| {
"alphanum_fraction": 0.5611613517,
"avg_line_length": 42.8775510204,
"ext": "agda",
"hexsha": "51a454bae89aaebad7ea6c7c6078aed47be1c7e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "myuon/agda-cate",
"max_forks_repo_path": "src/Basic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "myuon/agda-cate",
"max_issues_repo_path": "src/Basic.agda",
"max_line_length": 189,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "myuon/agda-cate",
"max_stars_repo_path": "src/Basic.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-02T07:30:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-28T04:59:31.000Z",
"num_tokens": 903,
"size": 2101
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import groups.ExactSequence
open import groups.Exactness
open import groups.HomSequence
open import groups.KernelImageUniqueFactorization
import cw.cohomology.GridPtdMap as GPM
open import cw.CW
module cw.cohomology.HigherCohomologyGroupsOnDiag {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S (S n))) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where
private
n≤SSn : n ≤ S (S n)
n≤SSn = lteSR lteS
⊙skel₋₁ = ⊙cw-init ⊙skel
ac₋₁ = ⊙init-has-cells-with-choice ⊙skel ac
⊙skel₋₂ = ⊙cw-take n≤SSn ⊙skel
ac₋₂ = ⊙take-has-cells-with-choice n≤SSn ⊙skel ac
open OrdinaryTheory OT
open import cw.cohomology.Descending OT
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.HigherCoboundary OT ⊙skel
open import cw.cohomology.HigherCoboundaryGrid OT ⊙skel ac
{-
Coker ≃ C(X₂/X₀) ≃ C(X)
^
|
|
C(X₁/X₀)
WoC
WoC := Wedges of Cells
-}
private
C-apex : Group i
C-apex = C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel))
open import cohomology.LongExactSequence cohomology-theory
(ℕ-to-ℤ (S n)) (⊙cw-incl-tail n≤SSn ⊙skel)
C-apex-iso-C-cw : C-apex ≃ᴳ C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧
C-apex-iso-C-cw = Exact2.G-trivial-and-L-trivial-implies-H-iso-K
(exact-seq-index 1 C-cofiber-exact-seq)
(exact-seq-index 2 C-cofiber-exact-seq)
(C-cw-at-higher ⊙skel₋₂ ltS ac₋₂)
(C-cw-at-higher ⊙skel₋₂ (ltSR ltS) ac₋₂)
open import groups.KernelImage (cst-hom {H = Lift-group {j = i} Unit-group}) cw-co∂-last
(CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n))))
open import groups.KernelCstImage (Lift-group {j = i} Unit-group) cw-co∂-last
(CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n))))
C-cw-iso-ker/im : C (ℕ-to-ℤ (S (S n))) ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im
C-cw-iso-ker/im = (C-apex-iso-C-cw ∘eᴳ Coker-cw-co∂-last ∘eᴳ Ker-cst-quot-Im) ⁻¹ᴳ
| {
"alphanum_fraction": 0.6512820513,
"avg_line_length": 29.5454545455,
"ext": "agda",
"hexsha": "c5699424064ae764646e525fe6ffe22214328478",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/HigherCohomologyGroupsOnDiag.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 841,
"size": 1950
} |
module BasicIPC.Metatheory.ClosedHilbert-TarskiGluedClosedImplicit where
open import BasicIPC.Syntax.ClosedHilbert public
open import BasicIPC.Semantics.TarskiGluedClosedImplicit public
open ImplicitSyntax (⊢_) public
-- Completeness with respect to a particular model.
module _ {{_ : Model}} where
reify : ∀ {A} → ⊩ A → ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
-- Additional useful equipment.
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A
⟪K⟫ a = app ck (reify a) ⅋ K a
⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ →
app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂
_⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B
_⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a
-- Soundness with respect to all models, or evaluation, for closed terms only.
eval₀ : ∀ {A} → ⊢ A → ⊨ A
eval₀ (app t u) = eval₀ t ⟪$⟫ eval₀ u
eval₀ ci = ci ⅋ I
eval₀ ck = ck ⅋ ⟪K⟫
eval₀ cs = cs ⅋ ⟪S⟫′
eval₀ cpair = cpair ⅋ _⟪,⟫′_
eval₀ cfst = cfst ⅋ π₁
eval₀ csnd = csnd ⅋ π₂
eval₀ unit = ∙
-- Correctness of evaluation with respect to conversion.
eval₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → eval₀ t ≡ eval₀ t′
eval₀✓ refl⋙ = refl
eval₀✓ (trans⋙ p q) = trans (eval₀✓ p) (eval₀✓ q)
eval₀✓ (sym⋙ p) = sym (eval₀✓ p)
eval₀✓ (congapp⋙ p q) = cong² _⟪$⟫_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congi⋙ p) = cong I (eval₀✓ p)
eval₀✓ (congk⋙ p q) = cong² K (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congs⋙ p q r) = cong³ ⟪S⟫ (eval₀✓ p) (eval₀✓ q) (eval₀✓ r)
eval₀✓ (congpair⋙ p q) = cong² _,_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congfst⋙ p) = cong π₁ (eval₀✓ p)
eval₀✓ (congsnd⋙ p) = cong π₂ (eval₀✓ p)
eval₀✓ beta▻ₖ⋙ = refl
eval₀✓ beta▻ₛ⋙ = refl
eval₀✓ beta∧₁⋙ = refl
eval₀✓ beta∧₂⋙ = refl
eval₀✓ eta∧⋙ = refl
eval₀✓ eta⊤⋙ = refl
-- The canonical model.
private
instance
canon : Model
canon = record
{ ⊩ᵅ_ = λ P → ⊢ α P
}
-- Completeness with respect to all models, or quotation, for closed terms only.
quot₀ : ∀ {A} → ⊨ A → ⊢ A
quot₀ s = reify s
-- Normalisation by evaluation, for closed terms only.
norm₀ : ∀ {A} → ⊢ A → ⊢ A
norm₀ = quot₀ ∘ eval₀
-- Correctness of normalisation with respect to conversion.
norm₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → norm₀ t ≡ norm₀ t′
norm₀✓ p = cong reify (eval₀✓ p)
| {
"alphanum_fraction": 0.5533199195,
"avg_line_length": 26.7204301075,
"ext": "agda",
"hexsha": "22a14df9b2241300df87b0aa413bf54fd41bc47b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda",
"max_line_length": 80,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1131,
"size": 2485
} |
module resugar where
open import cedille-types
open import general-util
open import syntax-util
open import type-util
{-# TERMINATING #-}
resugar : ∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧'
resugar-tk : tpkd → ex-tk
resugar {TERM} (App t t') =
ExApp (resugar t) ff (resugar t')
resugar {TERM} (AppE t tT) =
either-else' tT (ExApp (resugar t) tt ∘ resugar) (ExAppTp (resugar t) ∘ resugar)
resugar {TERM} (Beta t t') =
ExBeta pi-gen (just (PosTm (resugar t) pi-gen)) (just (PosTm (resugar t') pi-gen))
resugar {TERM} (Delta b? T t) =
ExDelta pi-gen (just (resugar T)) (resugar t)
resugar {TERM} (Hole pi) =
ExHole pi
resugar {TERM} (IotaPair t₁ t₂ x Tₓ) =
ExIotaPair pi-gen (resugar t₁) (resugar t₂) (just (ExGuide pi-gen x (resugar Tₓ))) pi-gen
resugar {TERM} (IotaProj t n) =
ExIotaProj (resugar t) (if n iff ι1 then "1" else "2") pi-gen
resugar {TERM} (Lam me x tk? t) =
ExLam pi-gen me pi-gen x (maybe-map resugar-tk tk?) (resugar t)
resugar {TERM} (LetTm me x T? t t') =
ExLet pi-gen me (ExDefTerm pi-gen x (maybe-map resugar T?) (resugar t)) (resugar t')
resugar {TERM} (LetTp x k T t) =
ExLet pi-gen tt (ExDefType pi-gen x (resugar k) (resugar T)) (resugar t)
resugar {TERM} (Phi t₌ t₁ t₂) =
ExPhi pi-gen (resugar t₌) (resugar t₁) (resugar t₂) pi-gen
resugar {TERM} (Rho t₌ x Tₓ t) =
ExRho pi-gen ff nothing (resugar t₌) (just (ExGuide pi-gen x (resugar Tₓ))) (resugar t)
resugar {TERM} (Sigma t) =
ExSigma pi-gen (resugar t)
resugar {TERM} (Mu μ t Tₘ? f~ ms) =
ExMu
pi-gen
(either-else' μ (λ t → ExIsMu' (resugar <$> t)) (ExIsMu pi-gen))
(resugar t)
(maybe-map resugar Tₘ?)
pi-gen
(map (λ {(Case x cas t _) → ExCase pi-gen x
(map (λ {(CaseArg me x tk?) →
let me' = case (me , tk?) of uncurry λ where
ff _ → ExCaseArgTm
tt (just (Tkk _)) → ExCaseArgTp
tt _ → ExCaseArgEr in
ExCaseArg me' pi-gen x}) cas) (resugar t)}) ms)
pi-gen
resugar {TERM} (Var x) =
ExVar pi-gen x
resugar {TYPE} (TpAbs me x tk T) =
ExTpAbs pi-gen me pi-gen x (resugar-tk tk) (resugar T)
resugar {TYPE} (TpApp T tT) =
either-else' tT (ExTpAppt (resugar T) ∘ resugar) (ExTpApp (resugar T) ∘ resugar)
resugar {TYPE} (TpEq t₁ t₂) =
ExTpEq pi-gen (resugar t₁) (resugar t₂) pi-gen
resugar {TYPE} (TpHole pi) =
ExTpHole pi
resugar {TYPE} (TpIota x T₁ T₂) =
ExTpIota pi-gen pi-gen x (resugar T₁) (resugar T₂)
resugar {TYPE} (TpLam x tk T) =
ExTpLam pi-gen pi-gen x (resugar-tk tk) (resugar T)
resugar {TYPE} (TpVar x) =
ExTpVar pi-gen x
resugar {KIND} (KdAbs x tk k) =
ExKdAbs pi-gen pi-gen x (resugar-tk tk) (resugar k)
resugar {KIND} (KdHole pi) =
ExKdHole pi
resugar {KIND} KdStar =
ExKdStar pi-gen
resugar-tk = either-else (ExTkt ∘ resugar) (ExTkk ∘ resugar)
| {
"alphanum_fraction": 0.6292700467,
"avg_line_length": 35.6538461538,
"ext": "agda",
"hexsha": "482e446de4b37cbe4e9ff20d18958db62b99b5f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/resugar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/resugar.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/resugar.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1102,
"size": 2781
} |
open import Prelude
module Implicits.Resolution.GenericFinite.Algorithm.Completeness where
open import Induction.WellFounded
open import Induction.Nat
open import Data.Fin.Substitution
open import Data.Nat.Base using (_<′_)
open import Data.Maybe as Maybe
open import Data.Nat hiding (_<_)
open import Data.Nat.Properties
open import Relation.Binary using (module DecTotalOrder)
open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans)
open import Data.Unit
open import Implicits.Syntax
open import Implicits.Syntax.Type.Unification
open import Implicits.Syntax.Type.Unification.Lemmas as mgu hiding (complete)
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Implicits.Resolution.GenericFinite.Resolution
open import Implicits.Resolution.GenericFinite.Algorithm
open import Implicits.Resolution.GenericFinite.TerminationCondition
open import Implicits.Resolution.Termination
open import Extensions.Bool as Bool
private
module M = MetaTypeMetaSubst
module ResolutionComplete (cond : TerminationCondition) where
open TerminationCondition cond
open ResolutionAlgorithm cond
open ResolutionRules cond
open Lemmas
lemx : ∀ {ν m} {Δ : ICtx ν} {Φ} r c τ (u : M.MetaSub MetaType ν m zero) →
Δ , Φ ⊢ from-meta (r M./ u M.↑tp) tp[/tp c ] ↓ τ →
Δ , Φ ⊢ from-meta (open-meta r M./ (to-meta c ∷ u)) ↓ τ
lemx r c τ u p = {!!}
mutual
match'-complete : ∀ {ν m} (Δ : ICtx ν) (Φ : TCtx) τ (r : MetaType m ν) →
(Φ↓ : T-Acc Φ) → (m↓ : m<-Acc r) →
(∃ λ u → Δ , Φ ⊢ from-meta (r M./ u) ↓ τ) →
Is-just (match' Δ Φ τ r Φ↓ m↓)
match'-complete Δ Φ τ (a ⇒ b) f (acc g) (proj₁ , i-iabs x y b↓τ)
with match' Δ Φ τ b f (g _ (b-m<-a⇒b a b))
| match'-complete Δ Φ τ b f (g _ (b-m<-a⇒b a b)) (, b↓τ)
match'-complete Δ Φ τ (a ⇒ b) f (acc g) (u , i-iabs x y b↓τ) | nothing | ()
match'-complete Δ Φ τ (a ⇒ b) f (acc g) (u , i-iabs x₁ y b↓τ) | just u' | just px
with (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) <? Φ
match'-complete Δ Φ τ (a ⇒ b) f (acc g) (u , i-iabs x₁ y b↓τ) | just u' | just px | yes p = {!!}
match'-complete Δ Φ τ (a ⇒ b) f (acc g) (u , i-iabs x₁ y b↓τ) | just u' | just px | no ¬p = {!¬p!}
-- match'-complete Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ<
-- with resolve' Δ (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ)
-- (from-meta (a M./ u)) (f _ Φ<)
-- match'-complete Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | true = just u
-- match'-complete Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | false = nothing
-- match'-complete Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | no φ> = nothing
match'-complete Δ Φ τ (∀' r) Φ↓ (acc m↓) (u , i-tabs b open-r↓τ)
with match' Δ Φ τ (open-meta r) Φ↓ (m↓ _ (open-meta-a-m<-∀'a r))
| match'-complete Δ Φ τ (open-meta r) Φ↓ (m↓ _ (open-meta-a-m<-∀'a r))
(, lemx r b τ u open-r↓τ)
match'-complete Δ Φ τ (∀' r) Φ↓ (acc m↓) (u , i-tabs b open-r↓τ) | just x | just px = just tt
match'-complete Δ Φ τ (∀' r) Φ↓ (acc m↓) (u , i-tabs b open-r↓τ) | nothing | ()
match'-complete Δ Φ .(tvar x) (simpl (tvar x)) Φ↓ m↓ (u , i-simp .(tvar x)) =
mgu.complete (simpl (tvar x)) (tvar x) u refl
match'-complete Δ Φ τ (simpl (mvar x)) Φ↓ m↓ (u , proj₂) =
let (u' , u'-uni) = mvar-unifiable x τ in mgu.complete (simpl (mvar x)) τ u' u'-uni
match'-complete Δ Φ ._ (simpl (a →' b)) Φ↓ m↓ (u , i-simp ._) =
mgu.complete (simpl (a →' b)) _ u refl
match'-complete Δ Φ .(tc x) (simpl (tc x)) Φ↓ m↓ (u , ResolutionRules.i-simp .(tc x)) =
mgu.complete (simpl (tc x)) _ u refl
match-complete : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) → (τ : SimpleType ν) → (r : Type ν) →
(Φ↓ : T-Acc Φ) →
Δ , Φ ⊢ r ↓ τ →
Is-true (match Δ Φ τ r Φ↓)
match-complete Δ Φ τ r Φ↓ p
with match' Δ Φ τ (to-meta {zero} r) Φ↓ (m<-well-founded _)
| match'-complete Δ Φ τ (to-meta {zero} r) Φ↓ (m<-well-founded _)
([] , subst (λ z → Δ , Φ ⊢ z ↓ τ) (sym $ from-to-meta-/-vanishes) p)
match-complete Δ Φ τ r Φ↓ p | just x | just px = true tt
match-complete Δ Φ τ r Φ↓ p | nothing | ()
match1st-complete : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) (ρs : ICtx ν) → (τ : SimpleType ν) →
(Φ↓ : T-Acc Φ) →
(∃ λ r → r List.∈ ρs × Δ , Φ ⊢ r ↓ τ) →
Is-true (match1st Δ Φ ρs τ Φ↓)
match1st-complete Δ Φ List.[] τ Φ↓ (_ , () , _)
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (.x , here refl , r↓τ)
with match Δ Φ τ x Φ↓
| match-complete Δ Φ τ x Φ↓ r↓τ
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (.x , here refl , r↓τ) | true | true _ = true tt
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (.x , here refl , r↓τ) | false | ()
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (proj₁ , there p , r↓τ) with match Δ Φ τ x Φ↓
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (r , there r∈ρs , r↓τ) | true = true tt
match1st-complete Δ Φ (x List.∷ ρs) τ Φ↓ (r , there r∈ρs , r↓τ) | false =
match1st-complete Δ Φ ρs τ Φ↓ (r , r∈ρs , r↓τ)
complete' : ∀ {ν} (Δ : ICtx ν) Φ {r} → (Φ↓ : T-Acc Φ) → Δ , Φ ⊢ᵣ r → Is-true (resolve' Δ Φ r Φ↓)
complete' Δ Φ Φ↓ (r-simp x∈Δ x↓τ) = match1st-complete Δ Φ Δ _ Φ↓ (_ , x∈Δ , x↓τ)
complete' Δ Φ Φ↓ (r-iabs ρ₁ p) = complete' (ρ₁ List.∷ Δ) Φ Φ↓ p
complete' Δ Φ Φ↓ (r-tabs p) = complete' (ictx-weaken Δ) Φ Φ↓ p
complete : ∀ {ν} (Δ : ICtx ν) Φ {r} → (Φ↓ : T-Acc Φ) → Δ , Φ ⊢ᵣ r → Is-true (resolve Δ Φ r)
complete Δ Φ Φ↓ p = complete' Δ Φ (wf-< _) p
| {
"alphanum_fraction": 0.5512042973,
"avg_line_length": 51.0707964602,
"ext": "agda",
"hexsha": "bf5022ecfb410b5b7f9e76d7d3fd4e49af277323",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Completeness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Completeness.agda",
"max_line_length": 102,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm/Completeness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 2251,
"size": 5771
} |
------------------------------------------------------------------------
-- A well-typed representation of a dependently typed language
------------------------------------------------------------------------
-- The code is parametrised by an arbitrary (small, unindexed)
-- universe.
import Level
open import Data.Universe
module README.DependentlyTyped.Term
(Uni₀ : Universe Level.zero Level.zero)
where
open import Data.Product as Prod renaming (curry to c; uncurry to uc)
open import Data.Unit
open import Data.Universe.Indexed
import deBruijn.Context
open import Function hiding (_∋_) renaming (const to k)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Wrapper types
-- Used to make El "constructor-headed", which in turn makes Agda
-- infer more types for us.
record U₀ : Set where
field a : Universe.U Uni₀
record El₀ (a : U₀) : Set where
field El : Universe.El Uni₀ (U₀.a a)
------------------------------------------------------------------------
-- An indexed universe
-- A type which represents the "spine" of a universe code (or type).
data Spine : Set where
⋆ el : Spine
π : (sp₁ sp₂ : Spine) → Spine
-- The universe contains the universe above and is closed under
-- Π-types.
--
-- The universe could be defined using induction-recursion, but the
-- following recursive definition has the advantage that more things
-- are definitionally equal. Previously I used induction-recursion,
-- and then I proved π-fst-snd (below) using the assumption of
-- extensionality of functions, and I used a cast in the definition of
-- README.DependentlyTyped.NBE.Value.řeflect.
--
-- TODO: Find out if the use of spines is compatible with large
-- elimination.
mutual
U : Spine → Set
U ⋆ = ⊤
U el = U₀
U (π sp₁ sp₂) = Σ (U sp₁) λ a → El a → U sp₂
El : ∀ {sp} → U sp → Set
El {⋆} _ = U₀
El {el} a = El₀ a
El {π sp₁ sp₂} (a , b) = (x : El a) → El (b x)
Uni : IndexedUniverse _ _ _
Uni = record { I = Spine; U = U; El = El }
-- Some synonyms/specialisations.
U-⋆ : U ⋆
U-⋆ = _
U-el : U₀ → U el
U-el = id
U-π : ∀ {sp₁} {sp₂} (a : U sp₁) → (El a → U sp₂) → U (π sp₁ sp₂)
U-π = _,_
------------------------------------------------------------------------
-- Contexts and variables
-- We get these for free.
open deBruijn.Context Uni public
renaming (_·_ to _⊙_; ·-cong to ⊙-cong)
-- Some abbreviations.
IType-π : ∀ {Γ} (σ : Type Γ) (τ : Type (Γ ▻ σ)) →
IType Γ (π (index σ) (index τ))
IType-π σ τ = k U-π ˢ indexed-type σ ˢ c (indexed-type τ)
Type-π : ∀ {Γ} (σ : Type Γ) → Type (Γ ▻ σ) → Type Γ
Type-π σ τ = -, IType-π σ τ
------------------------------------------------------------------------
-- Projections
-- Types with π-spines can be split up into a first and a second part.
ifst : ∀ {Γ sp₁ sp₂} → IType Γ (π sp₁ sp₂) → IType Γ sp₁
ifst σ γ = proj₁ (σ γ)
fst : ∀ {Γ sp₁ sp₂} → IType Γ (π sp₁ sp₂) → Type Γ
fst σ = -, ifst σ
isnd : ∀ {Γ sp₁ sp₂} (σ : IType Γ (π sp₁ sp₂)) →
IType (Γ ▻ fst σ) sp₂
isnd σ (γ , v) = proj₂ (σ γ) v
snd : ∀ {Γ sp₁ sp₂} (σ : IType Γ (π sp₁ sp₂)) → Type (Γ ▻ fst σ)
snd σ = -, isnd σ
-- The split is correct.
π-fst-snd : ∀ {Γ sp₁ sp₂} (σ : IType Γ (π sp₁ sp₂)) →
σ ≡ IType-π (fst σ) (snd σ)
π-fst-snd σ = P.refl
------------------------------------------------------------------------
-- Well-typed terms
mutual
infixl 9 _·_
infix 3 _⊢_
-- Terms.
data _⊢_ (Γ : Ctxt) : Type Γ → Set where
var : ∀ {σ} (x : Γ ∋ σ) → Γ ⊢ σ
ƛ : ∀ {σ τ} (t : Γ ▻ σ ⊢ τ) → Γ ⊢ Type-π σ τ
_·_ : ∀ {sp₁ sp₂ σ}
(t₁ : Γ ⊢ π sp₁ sp₂ , σ) (t₂ : Γ ⊢ fst σ) →
Γ ⊢ snd σ /̂ ŝub ⟦ t₂ ⟧
-- Semantics of terms.
⟦_⟧ : ∀ {Γ σ} → Γ ⊢ σ → Value Γ σ
⟦ var x ⟧ γ = lookup x γ
⟦ ƛ t ⟧ γ = λ v → ⟦ t ⟧ (γ , v)
⟦ t₁ · t₂ ⟧ γ = (⟦ t₁ ⟧ γ) (⟦ t₂ ⟧ γ)
-- Terms are "term-like".
Tm : Term-like _
Tm = record { _⊢_ = _⊢_; ⟦_⟧ = ⟦_⟧ }
open Term-like Tm public hiding (_⊢_; ⟦_⟧)
------------------------------------------------------------------------
-- Syntactic contexts and types
-- Syntactic types.
infix 3 _⊢_type
data _⊢_type (Γ : Ctxt) : Type Γ → Set where
⋆ : Γ ⊢ -, k U-⋆ type
el : (t : Γ ⊢ -, k U-⋆) → Γ ⊢ -, k U-el ˢ ⟦ t ⟧ type
π : ∀ {sp₁ sp₂ σ τ}
(σ′ : Γ ⊢ sp₁ , σ type) (τ′ : Γ ▻ (-, σ) ⊢ sp₂ , τ type) →
Γ ⊢ -, k U-π ˢ σ ˢ c τ type
-- Syntactic contexts.
infixl 5 _▻_
infix 3 _ctxt
data _ctxt : Ctxt → Set where
ε : ε ctxt
_▻_ : ∀ {Γ σ} (Γ′ : Γ ctxt) (σ′ : Γ ⊢ σ type) → Γ ▻ σ ctxt
-- Semantics of types.
⟦_⟧type : ∀ {Γ σ} → Γ ⊢ σ type → Type Γ
⟦_⟧type {σ = σ} _ = σ
-- We can project out the first and second components of a syntactic
-- Π-type.
fst′ : ∀ {Γ sp₁ sp₂} {σ : IType Γ (π sp₁ sp₂)} →
Γ ⊢ -, σ type → Γ ⊢ fst σ type
fst′ (π σ′ τ′) = σ′
snd′ : ∀ {Γ sp₁ sp₂} {σ : IType Γ (π sp₁ sp₂)} →
Γ ⊢ -, σ type → Γ ▻ fst σ ⊢ snd σ type
snd′ (π σ′ τ′) = τ′
------------------------------------------------------------------------
-- Examples
-- The polymorphic identity function.
identity : ∀ {Γ} →
Γ ⊢ ⟦ π ⋆ (π (el (var zero)) (el (var (suc zero)))) ⟧type
identity = ƛ {σ = ⟦ ⋆ ⟧type} (ƛ {σ = ⟦ el (var zero) ⟧type} (var zero))
-- The polymorphic identity function, with the type written in a less
-- compact way.
identity′ : ∀ {Γ} →
Γ ⊢ -, k U-π ˢ k U-⋆ ˢ
c (k U-π ˢ (k U-el ˢ ⟦ var zero ⟧) ˢ
c (k U-el ˢ ⟦ var (suc zero) ⟧))
identity′ = ƛ {σ = ⟦ ⋆ ⟧type} (ƛ {σ = ⟦ el (var zero) ⟧type} (var zero))
-- The polymorphic identity function applied to some variables from
-- the context.
identity· : ∀ {Γ} → Γ ▻ ⟦ ⋆ ⟧type ▻ ⟦ el (var zero) ⟧type ⊢
⟦ el (var (suc zero)) ⟧type
identity· =
ƛ {σ = ⟦ ⋆ ⟧type} (ƛ {σ = ⟦ el (var zero) ⟧type} (var zero)) ·
var (suc zero) · var zero
------------------------------------------------------------------------
-- Equality
-- Syntactic type telescopes.
record [type] : Set where
constructor [_]
field
{Γ} : Ctxt
{σ} : Type Γ
σ′ : Γ ⊢ σ type
-- Equality of syntactic types.
infix 4 _≅-type_
_≅-type_ : ∀ {Γ₁ σ₁} (σ′₁ : Γ₁ ⊢ σ₁ type)
{Γ₂ σ₂} (σ′₂ : Γ₂ ⊢ σ₂ type) → Set
σ′₁ ≅-type σ′₂ = _≡_ {A = [type]} [ σ′₁ ] [ σ′₂ ]
-- If the indices are equal, then _≅-type_ coincides with _≡_.
≅-type-⇒-≡ : ∀ {Γ σ} {σ′₁ σ′₂ : Γ ⊢ σ type} →
σ′₁ ≅-type σ′₂ → σ′₁ ≡ σ′₂
≅-type-⇒-≡ P.refl = P.refl
-- Certain uses of substitutivity can be removed.
drop-subst-⊢-type :
∀ {a} {A : Set a} {x₁ x₂ : A} {Γ}
(f : A → Type Γ) {σ′} (eq : x₁ ≡ x₂) →
P.subst (λ x → Γ ⊢ f x type) eq σ′ ≅-type σ′
drop-subst-⊢-type f P.refl = P.refl
-- Some congruence lemmas.
IType-π-cong : ∀ {Γ₁ σ₁} {τ₁ : Type (Γ₁ ▻ σ₁)}
{Γ₂ σ₂} {τ₂ : Type (Γ₂ ▻ σ₂)} →
τ₁ ≅-Type τ₂ → IType-π σ₁ τ₁ ≅-IType IType-π σ₂ τ₂
IType-π-cong P.refl = P.refl
Type-π-cong : ∀ {Γ₁ σ₁} {τ₁ : Type (Γ₁ ▻ σ₁)}
{Γ₂ σ₂} {τ₂ : Type (Γ₂ ▻ σ₂)} →
τ₁ ≅-Type τ₂ → Type-π σ₁ τ₁ ≅-Type Type-π σ₂ τ₂
Type-π-cong P.refl = P.refl
ifst-cong : ∀ {Γ₁ sp₁₁ sp₂₁} {σ₁ : IType Γ₁ (π sp₁₁ sp₂₁)}
{Γ₂ sp₁₂ sp₂₂} {σ₂ : IType Γ₂ (π sp₁₂ sp₂₂)} →
σ₁ ≅-IType σ₂ → ifst σ₁ ≅-IType ifst σ₂
ifst-cong P.refl = P.refl
fst-cong : ∀ {Γ₁ sp₁₁ sp₂₁} {σ₁ : IType Γ₁ (π sp₁₁ sp₂₁)}
{Γ₂ sp₁₂ sp₂₂} {σ₂ : IType Γ₂ (π sp₁₂ sp₂₂)} →
σ₁ ≅-IType σ₂ → fst σ₁ ≅-Type fst σ₂
fst-cong P.refl = P.refl
isnd-cong : ∀ {Γ₁ sp₁₁ sp₂₁} {σ₁ : IType Γ₁ (π sp₁₁ sp₂₁)}
{Γ₂ sp₁₂ sp₂₂} {σ₂ : IType Γ₂ (π sp₁₂ sp₂₂)} →
σ₁ ≅-IType σ₂ → isnd σ₁ ≅-IType isnd σ₂
isnd-cong P.refl = P.refl
snd-cong : ∀ {Γ₁ sp₁₁ sp₂₁} {σ₁ : IType Γ₁ (π sp₁₁ sp₂₁)}
{Γ₂ sp₁₂ sp₂₂} {σ₂ : IType Γ₂ (π sp₁₂ sp₂₂)} →
σ₁ ≅-IType σ₂ → snd σ₁ ≅-Type snd σ₂
snd-cong P.refl = P.refl
-- Note that _ˢ_ and curry are the semantic counterparts of
-- application and abstraction.
ˢ-cong :
∀ {Γ₁ sp₁₁ sp₂₁ σ₁} {v₁ : Value Γ₁ (fst σ₁)}
{f₁ : Value Γ₁ (π sp₁₁ sp₂₁ , σ₁)}
{Γ₂ sp₁₂ sp₂₂ σ₂} {v₂ : Value Γ₂ (fst σ₂)}
{f₂ : Value Γ₂ (π sp₁₂ sp₂₂ , σ₂)} →
f₁ ≅-Value f₂ → v₁ ≅-Value v₂ → f₁ ˢ v₁ ≅-Value f₂ ˢ v₂
ˢ-cong P.refl P.refl = P.refl
curry-cong :
∀ {Γ₁ σ₁ τ₁} {v₁ : Value (Γ₁ ▻ σ₁) τ₁}
{Γ₂ σ₂ τ₂} {v₂ : Value (Γ₂ ▻ σ₂) τ₂} →
v₁ ≅-Value v₂ → c v₁ ≅-Value c v₂
curry-cong P.refl = P.refl
uncurry-cong :
∀ {Γ₁ sp₁₁ sp₂₁ σ₁} {v₁ : Value Γ₁ (π sp₁₁ sp₂₁ , σ₁)}
{Γ₂ sp₁₂ sp₂₂ σ₂} {v₂ : Value Γ₂ (π sp₁₂ sp₂₂ , σ₂)} →
v₁ ≅-Value v₂ →
_≅-Value_ {σ₁ = snd σ₁} (uc v₁) {σ₂ = snd σ₂} (uc v₂)
uncurry-cong P.refl = P.refl
⋆-cong : {Γ₁ Γ₂ : Ctxt} →
Γ₁ ≅-Ctxt Γ₂ → ⋆ {Γ = Γ₁} ≅-type ⋆ {Γ = Γ₂}
⋆-cong P.refl = P.refl
el-cong : ∀ {Γ₁} {t₁ : Γ₁ ⊢ -, k U-⋆}
{Γ₂} {t₂ : Γ₂ ⊢ -, k U-⋆} →
t₁ ≅-⊢ t₂ → el t₁ ≅-type el t₂
el-cong P.refl = P.refl
π-cong : ∀ {Γ₁ σ₁ τ₁} {σ′₁ : Γ₁ ⊢ σ₁ type} {τ′₁ : Γ₁ ▻ σ₁ ⊢ τ₁ type}
{Γ₂ σ₂ τ₂} {σ′₂ : Γ₂ ⊢ σ₂ type} {τ′₂ : Γ₂ ▻ σ₂ ⊢ τ₂ type} →
σ′₁ ≅-type σ′₂ → τ′₁ ≅-type τ′₂ → π σ′₁ τ′₁ ≅-type π σ′₂ τ′₂
π-cong P.refl P.refl = P.refl
var-cong : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
x₁ ≅-∋ x₂ → var x₁ ≅-⊢ var x₂
var-cong P.refl = P.refl
ƛ-cong : ∀ {Γ₁ σ₁ τ₁} {t₁ : Γ₁ ▻ σ₁ ⊢ τ₁}
{Γ₂ σ₂ τ₂} {t₂ : Γ₂ ▻ σ₂ ⊢ τ₂} →
t₁ ≅-⊢ t₂ → ƛ t₁ ≅-⊢ ƛ t₂
ƛ-cong P.refl = P.refl
·-cong : ∀ {Γ₁ sp₁₁ sp₂₁ σ₁}
{t₁₁ : Γ₁ ⊢ π sp₁₁ sp₂₁ , σ₁} {t₂₁ : Γ₁ ⊢ fst σ₁}
{Γ₂ sp₁₂ sp₂₂ σ₂}
{t₁₂ : Γ₂ ⊢ π sp₁₂ sp₂₂ , σ₂} {t₂₂ : Γ₂ ⊢ fst σ₂} →
t₁₁ ≅-⊢ t₁₂ → t₂₁ ≅-⊢ t₂₂ → t₁₁ · t₂₁ ≅-⊢ t₁₂ · t₂₂
·-cong P.refl P.refl = P.refl
| {
"alphanum_fraction": 0.497696796,
"avg_line_length": 28.7323529412,
"ext": "agda",
"hexsha": "f5e4e5b88b4c167344faaefc1555801365a4a895",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README/DependentlyTyped/Term.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README/DependentlyTyped/Term.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README/DependentlyTyped/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 4141,
"size": 9769
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.