Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Total.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {c : _} {_<_ : A → A → Set c} {P : SetoidPartialOrder S _<_} (T : SetoidTotalOrder P) where open SetoidTotalOrder T open SetoidPartialOrder P open Setoid S open Equivalence eq maxInequalitiesR : {a b c : A} → (a < b) → (a < c) → (a < max b c) maxInequalitiesR {a} {b} {c} a<b a<c with totality b c ... | inl (inl x) = a<c ... | inl (inr x) = a<b ... | inr x = a<c minInequalitiesR : {a b c : A} → (a < b) → (a < c) → (a < min b c) minInequalitiesR {a} {b} {c} a<b a<c with totality b c ... | inl (inl x) = a<b ... | inl (inr x) = a<c ... | inr x = a<b maxInequalitiesL : {a b c : A} → (a < c) → (b < c) → (max a b < c) maxInequalitiesL {a} {b} {c} a<b a<c with totality a b ... | inl (inl x) = a<c ... | inl (inr x) = a<b ... | inr x = a<c minInequalitiesL : {a b c : A} → (a < c) → (b < c) → (min a b < c) minInequalitiesL {a} {b} {c} a<b a<c with totality a b ... | inl (inl x) = a<b ... | inl (inr x) = a<c ... | inr x = a<b minLessL : (a b : A) → min a b <= a minLessL a b with totality a b ... | inl (inl x) = inr reflexive ... | inl (inr x) = inl x ... | inr x = inr reflexive minLessR : (a b : A) → min a b <= b minLessR a b with totality a b ... | inl (inl x) = inl x ... | inl (inr x) = inr reflexive ... | inr x = inr x maxGreaterL : (a b : A) → a <= max a b maxGreaterL a b with totality a b ... | inl (inl x) = inl x ... | inl (inr x) = inr reflexive ... | inr x = inr x maxGreaterR : (a b : A) → b <= max a b maxGreaterR a b with totality a b ... | inl (inl x) = inr reflexive ... | inl (inr x) = inl x ... | inr x = inr reflexive
{ "alphanum_fraction": 0.5949926362, "avg_line_length": 29.9558823529, "ext": "agda", "hexsha": "3290a14407d76955c104ffdbf3b244331194f72b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Orders/Total/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Orders/Total/Lemmas.agda", "max_line_length": 171, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Orders/Total/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 827, "size": 2037 }
-- {-# OPTIONS -v tc.lhs.shadow:30 #-} module PatternShadowsConstructor3 where data Bool : Set where true false : Bool module A where data B : Set where x : B data C : Set where c : B → C open A using (C; c) T : Bool → Set T true = C → C T false = Bool f : (b : Bool) → T b f true (c x) = x f false = true
{ "alphanum_fraction": 0.5884146341, "avg_line_length": 13.12, "ext": "agda", "hexsha": "a9f5b4fac66572af1199039a4a690029aa704638", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/PatternShadowsConstructor3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/PatternShadowsConstructor3.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/PatternShadowsConstructor3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 114, "size": 328 }
{-# OPTIONS --without-K #-} open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.Commutes {i} (d : Span^2 {i}) where open Span^2 d open M using (Pushout^2) open To d open From d open import homotopy.3x3.FromTo open import homotopy.3x3.ToFrom abstract theorem : Pushout^2 d ≃ Pushout^2 (transpose d) theorem = equiv to from (to-from d) (from-to d)
{ "alphanum_fraction": 0.7459349593, "avg_line_length": 22.3636363636, "ext": "agda", "hexsha": "43aefb94d1eb82c794faf4184c1afafa793acf60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/Commutes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/Commutes.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/Commutes.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 174, "size": 492 }
module Data.ListSized.Proofs where import Lvl open import Data.ListSized open import Data.ListSized.Functions open import Functional open import Function.Equals open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Function open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A A₁ A₂ B B₁ B₂ C C₁ C₂ Result : Type{ℓ} private variable a b n n₁ n₂ : ℕ private variable f : B → C private variable g : A → B private variable l l₁ l₂ : List(T)(n) private variable x : T map-id : (map{A = A}{n = n} id ⊜ id) _⊜_.proof map-id {∅} = reflexivity(_≡_) _⊜_.proof map-id {x ⊰ l} = congruence₂ᵣ(_⊰_)(_) (_⊜_.proof map-id {l}) map-[∘] : (map{n = n} (f ∘ g) ⊜ (map f) ∘ (map g)) _⊜_.proof map-[∘] {∅} = reflexivity(_≡_) _⊜_.proof map-[∘] {x ⊰ l} = congruence₂ᵣ(_⊰_)(_) (_⊜_.proof map-[∘] {l}) map-[++] : map f(l₁ ++ l₂) ≡ map f(l₁) ++ map f(l₂) map-[++] {l₁ = ∅} = reflexivity(_≡_) map-[++] {l₁ = x₁ ⊰ l₁} = congruence₂ᵣ(_⊰_)(_) (map-[++] {l₁ = l₁}) map-repeat : map f(repeat x n) ≡ repeat (f(x)) n map-repeat {n = 𝟎} = reflexivity(_≡_) map-repeat {n = 𝐒 n} = congruence₂ᵣ(_⊰_)(_) (map-repeat {n = n}) [+][++]-repeat : repeat x (n₁ + n₂) ≡ repeat x n₁ ++ repeat x n₂ [+][++]-repeat {n₁ = 𝟎} = reflexivity(_≡_) [+][++]-repeat {n₁ = 𝐒 n₁} = congruence₂ᵣ(_⊰_)(_) ([+][++]-repeat {n₁ = n₁})
{ "alphanum_fraction": 0.6462116468, "avg_line_length": 33.9787234043, "ext": "agda", "hexsha": "df9cfe14188744d93f880e9fb974eb5bedb92e7f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/ListSized/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/ListSized/Proofs.agda", "max_line_length": 76, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/ListSized/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 627, "size": 1597 }
module functions where open import level open import eq open import product {- Note that the Agda standard library has an interesting generalization of the following basic composition operator, with more dependent typing. -} _∘_ : ∀{ℓ ℓ' ℓ''}{A : Set ℓ}{B : Set ℓ'}{C : Set ℓ''} → (B → C) → (A → B) → (A → C) f ∘ g = λ x → f (g x) ∘-assoc : ∀{ℓ ℓ' ℓ'' ℓ'''}{A : Set ℓ}{B : Set ℓ'}{C : Set ℓ''}{D : Set ℓ'''} (f : C → D)(g : B → C)(h : A → B) → (f ∘ g) ∘ h ≡ f ∘ (g ∘ h) ∘-assoc f g h = refl id : ∀{ℓ}{A : Set ℓ} → A → A id x = x ∘-id : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(f : A → B) → f ∘ id ≡ f ∘-id f = refl id-∘ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(f : A → B) → id ∘ f ≡ f id-∘ f = refl extensionality : {ℓ₁ ℓ₂ : Level} → Set (lsuc ℓ₁ ⊔ lsuc ℓ₂) extensionality {ℓ₁}{ℓ₂} = ∀{A : Set ℓ₁}{B : Set ℓ₂}{f g : A → B} → (∀{a : A} → f a ≡ g a) → f ≡ g record Iso {ℓ₁ ℓ₂ : Level} (A : Set ℓ₁) (B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where constructor isIso field l-inv : A → B r-inv : B → A l-cancel : r-inv ∘ l-inv ≡ id r-cancel : l-inv ∘ r-inv ≡ id curry : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → ((A × B) → C) → (A → B → C) curry f x y = f (x , y) uncurry : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → (A → B → C) → ((A × B) → C) uncurry f (x , y) = f x y compose-cong : ∀{ℓ}{A : Set ℓ}{B : Set ℓ}{C : Set ℓ}{f f' : A → B}{g g' : B → C} → f ≡ f' → g ≡ g' → g ∘ f ≡ g' ∘ f' compose-cong refl refl = refl
{ "alphanum_fraction": 0.4816354816, "avg_line_length": 31.3695652174, "ext": "agda", "hexsha": "91606426cce89b57481ac826173ccfe0be8b172e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "functions.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "functions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 722, "size": 1443 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 06-universes where import 05-identity-types open 05-identity-types public -- Section 6.3 Pointed types -- Definition 6.3.1 UU-pt : (i : Level) → UU (lsuc i) UU-pt i = Σ (UU i) (λ X → X) type-UU-pt : {i : Level} → UU-pt i → UU i type-UU-pt = pr1 pt-UU-pt : {i : Level} (A : UU-pt i) → type-UU-pt A pt-UU-pt = pr2 -- Definition 6.3.2 _→*_ : {i j : Level} → UU-pt i → UU-pt j → UU-pt (i ⊔ j) A →* B = pair ( Σ (type-UU-pt A → type-UU-pt B) (λ f → Id (f (pt-UU-pt A)) (pt-UU-pt B))) ( pair ( const (type-UU-pt A) (type-UU-pt B) (pt-UU-pt B)) ( refl)) -- Definition 6.3.3 Ω : {i : Level} → UU-pt i → UU-pt i Ω A = pair (Id (pt-UU-pt A) (pt-UU-pt A)) refl -- Definition 6.3.4 iterated-loop-space : {i : Level} → ℕ → UU-pt i → UU-pt i iterated-loop-space zero-ℕ A = A iterated-loop-space (succ-ℕ n) A = Ω (iterated-loop-space n A) -- Section 6.4 Families and relations on the natural numbers -- Definition 6.4.1 Fin : ℕ → UU lzero Fin zero-ℕ = empty Fin (succ-ℕ n) = coprod (Fin n) unit -- Definition 6.4.2 -- Observational equality on the natural numbers Eq-ℕ : ℕ → (ℕ → UU lzero) Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.4.3 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -- Exercises -- Exercise 6.1 {- In this exercise we were asked to show that the observational equality on ℕ is an equivalence relation. -} symmetric-Eq-ℕ : (m n : ℕ) → Eq-ℕ m n → Eq-ℕ n m symmetric-Eq-ℕ zero-ℕ zero-ℕ star = star symmetric-Eq-ℕ (succ-ℕ m) (succ-ℕ n) t = symmetric-Eq-ℕ m n t transitive-Eq-ℕ : (l m n : ℕ) → Eq-ℕ l m → Eq-ℕ m n → Eq-ℕ l n transitive-Eq-ℕ zero-ℕ zero-ℕ zero-ℕ p q = star transitive-Eq-ℕ (succ-ℕ l) (succ-ℕ m) (succ-ℕ n) p q = transitive-Eq-ℕ l m n p q -- Exercise 6.2 {- In this exercise we were asked to show that any function on the natural numbers preserves observational equality. The quick solution uses the fact that observational equality is the least reflexive relation. -} preserve_Eq-ℕ : (f : ℕ → ℕ) (n m : ℕ) → (Eq-ℕ n m) → (Eq-ℕ (f n) (f m)) preserve_Eq-ℕ f = least-reflexive-Eq-ℕ ( λ x y → Eq-ℕ (f x) (f y)) ( λ x → refl-Eq-ℕ (f x)) -- Exercise 6.3 {- In this exercise we were asked to construct the relations ≤ and < on the natural numbers, and show basic properties about them. -} -- Exercise 6.3(a) -- The definition of ≤ leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ reflexive-leq-ℕ : (n : ℕ) → n ≤ n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) -- Exercise 6.5 {- In this exercise we were asked to construct observational equality on the booleans. This construction is analogous to, but simpler than, the construction of observational equality on the natural numbers. -} Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star least-reflexive-Eq-𝟚 : {i : Level} (R : bool → bool → UU i) (ρ : (x : bool) → R x x) (x y : bool) → Eq-𝟚 x y → R x y least-reflexive-Eq-𝟚 R ρ true true p = ρ true least-reflexive-Eq-𝟚 R ρ true false p = ind-empty p least-reflexive-Eq-𝟚 R ρ false true p = ind-empty p least-reflexive-Eq-𝟚 R ρ false false p = ρ false -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring leq-eq-ℕ : {m m' n n' : ℕ} → Id m m' → Id n n' → leq-ℕ m n → leq-ℕ m' n' leq-eq-ℕ refl refl = id left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = leq-eq-ℕ ( commutative-add-ℕ m k) ( commutative-add-ℕ n k) ( left-law-leq-add-ℕ k m n H) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) n -} {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n)
{ "alphanum_fraction": 0.5843433505, "avg_line_length": 30.0399002494, "ext": "agda", "hexsha": "21745cd3dd0658a48c528e6cfec7f08eedbaef17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/06-universes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/06-universes.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/06-universes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5684, "size": 12046 }
module PatternSynonymMutualBlock where data D : Set where c : D mutual pattern p = c
{ "alphanum_fraction": 0.7252747253, "avg_line_length": 11.375, "ext": "agda", "hexsha": "c8b5fe6d4884e3ed94c385a5192c5ea837876318", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/PatternSynonymMutualBlock.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/PatternSynonymMutualBlock.agda", "max_line_length": 38, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/PatternSynonymMutualBlock.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 29, "size": 91 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.CartesianClosed.Properties where open import Level open import Data.Product using (Σ; _,_; Σ-syntax; proj₁; proj₂) open import Categories.Category open import Categories.Category.CartesianClosed module _ {o ℓ e} {𝒞 : Category o ℓ e} (𝓥 : CartesianClosed 𝒞) where open Category 𝒞 open CartesianClosed 𝓥 open HomReasoning PointSurjective : ∀ {A X Y : Obj} → (X ⇒ Y ^ A) → Set (ℓ ⊔ e) PointSurjective {A = A} {X = X} {Y = Y} ϕ = ∀ (f : A ⇒ Y) → Σ[ x ∈ ⊤ ⇒ X ] (∀ (a : ⊤ ⇒ A) → eval′ ∘ first ϕ ∘ ⟨ x , a ⟩ ≈ f ∘ a) lawvere-fixed-point : ∀ {A B : Obj} → (ϕ : A ⇒ B ^ A) → PointSurjective ϕ → (f : B ⇒ B) → Σ[ s ∈ ⊤ ⇒ B ] f ∘ s ≈ s lawvere-fixed-point {A = A} {B = B} ϕ surjective f = g ∘ x , g-fixed-point where g : A ⇒ B g = f ∘ eval′ ∘ ⟨ ϕ , id ⟩ x : ⊤ ⇒ A x = proj₁ (surjective g) g-surjective : eval′ ∘ first ϕ ∘ ⟨ x , x ⟩ ≈ g ∘ x g-surjective = proj₂ (surjective g) x lemma : ∀ {A B C D} → (f : B ⇒ C) → (g : B ⇒ D) → (h : A ⇒ B) → (f ⁂ g) ∘ ⟨ h , h ⟩ ≈ ⟨ f , g ⟩ ∘ h lemma f g h = begin (f ⁂ g) ∘ ⟨ h , h ⟩ ≈⟨ ⁂∘⟨⟩ ⟩ ⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ f , g ⟩ ∘ h ∎ g-fixed-point : f ∘ (g ∘ x) ≈ g ∘ x g-fixed-point = begin f ∘ g ∘ x ≈⟨ refl⟩∘⟨ sym g-surjective ⟩ f ∘ eval′ ∘ first ϕ ∘ ⟨ x , x ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ lemma ϕ id x ⟩ f ∘ eval′ ∘ ⟨ ϕ , id ⟩ ∘ x ≈˘⟨ ∘-resp-≈ˡ sym-assoc ○ assoc ○ assoc ⟩ (f ∘ eval′ ∘ ⟨ ϕ , id ⟩) ∘ x ≈⟨ refl ⟩ g ∘ x ∎
{ "alphanum_fraction": 0.4504283966, "avg_line_length": 35.5217391304, "ext": "agda", "hexsha": "fcc9b882fcc1ff386bbafdecf54e40afd202ec5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/CartesianClosed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/CartesianClosed/Properties.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/CartesianClosed/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 712, "size": 1634 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. module FOTC.Program.GCD.Partial.CorrectnessProofI where open import FOTC.Base open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI using ( 0∤x ; x∣S→x≤S ) open import FOTC.Data.Nat.Type open import FOTC.Program.GCD.Partial.CommonDivisorI using ( gcdCD ) open import FOTC.Program.GCD.Partial.Definitions open import FOTC.Program.GCD.Partial.DivisibleI using ( gcdDivisible ) open import FOTC.Program.GCD.Partial.GCD using ( gcd ) import FOTC.Program.GCD.Partial.GreatestAnyCommonDivisor open module GreatestAnyCommonDivisorI = FOTC.Program.GCD.Partial.GreatestAnyCommonDivisor x∣S→x≤S 0∤x using ( gcdGACD ) open import FOTC.Program.GCD.Partial.TotalityI using ( gcd-N ) ------------------------------------------------------------------------------ -- The gcd is correct. gcdCorrect : ∀ {m n} → N m → N n → x≢0≢y m n → gcdSpec m n (gcd m n) gcdCorrect Nm Nn m≢0≢n = gcdCD Nm Nn m≢0≢n , gcdGACD (gcd-N Nm Nn m≢0≢n) (gcdCD Nm Nn m≢0≢n) (gcdDivisible Nm Nn m≢0≢n)
{ "alphanum_fraction": 0.5561391989, "avg_line_length": 40.0789473684, "ext": "agda", "hexsha": "6e81d8ae38a9a060c5c673031626e8af013db8c0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/CorrectnessProofI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 404, "size": 1523 }
-- Andreas, 2013-05-02 This ain't a bug, it is a feature. -- {-# OPTIONS -v scope.name:10 #-} module Issue836 where open import Common.Equality module M where record R : Set₁ where field X : Set open M using (R) X : R → Set X = R.X -- The open directive did not mention the /module/ R, so (I think -- that) the code above should be rejected. -- NO, it is a feature that projections can also be accessed via -- the record /type/. -- The following directive is (and should be) rejected: -- open R -- Bug.agda:19,6-7 -- No such module R -- when scope checking the declaration -- open R module N where data D : Set₁ where c : Set → D open N using (D) renaming (module D to MD) twoWaysToQualify : D.c ≡ MD.c twoWaysToQualify = refl
{ "alphanum_fraction": 0.6653543307, "avg_line_length": 17.7209302326, "ext": "agda", "hexsha": "00bf8d9a60f6af172308c78029046050b4b677b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue836.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue836.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue836.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 229, "size": 762 }
module AnyBoolean where open import Data.Bool open import Data.Nat open import Data.List hiding (any) open import Relation.Binary.PropositionalEquality even : ℕ → Bool even zero = true even (suc zero) = false even (suc (suc n)) = even n test-6-even : even 6 ≡ true test-6-even = refl odd : ℕ → Bool odd zero = false odd (suc zero) = true odd (suc (suc n)) = odd n test-5-odd : odd 5 ≡ true test-5-odd = refl any : {A : Set} → (A → Bool) → List A → Bool any _ [] = false any p (x ∷ xs) with p x ... | true = true ... | false = any p xs test-any-even-true : any even (3 ∷ 6 ∷ 9 ∷ []) ≡ true test-any-even-true = refl test-any-even-false : any even (3 ∷ 7 ∷ 9 ∷ []) ≡ false test-any-even-false = refl test-any-odd-true : any odd (4 ∷ 7 ∷ 10 ∷ []) ≡ true test-any-odd-true = refl test-any-odd-false : any odd (4 ∷ 8 ∷ 10 ∷ []) ≡ false test-any-odd-false = refl
{ "alphanum_fraction": 0.6195899772, "avg_line_length": 19.9545454545, "ext": "agda", "hexsha": "d08ca99a2258f57dc222ad2fa643095efa5a90e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T12:03:09.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T12:03:09.000Z", "max_forks_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/bahug-april2010", "max_forks_repo_path": "AnyBoolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/bahug-april2010", "max_issues_repo_path": "AnyBoolean.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/bahug-april2010", "max_stars_repo_path": "AnyBoolean.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 334, "size": 878 }
------------------------------------------------------------------------------ -- Definition of the gcd of two natural numbers using the Euclid's algorithm ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.GCD.Partial.GCD where open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Loop ------------------------------------------------------------------------------ -- In GHC ≤ 7.0.4 the gcd is a partial function, i.e. gcd 0 0 = undefined. -- Let T = D → D → D be a type. Instead of defining gcdh : T → T, we -- use the LTC-PCF λ-abstraction and application to avoid use a -- polymorphic fixed-point operator. gcdh : D → D gcdh g = lam (λ m → lam (λ n → if (iszero₁ n) then (if (iszero₁ m) then error else m) else (if (iszero₁ m) then n else (if (gt m n) then g · (m ∸ n) · n else g · m · (n ∸ m))))) gcd : D → D → D gcd m n = fix gcdh · m · n
{ "alphanum_fraction": 0.4431372549, "avg_line_length": 35.4166666667, "ext": "agda", "hexsha": "a74d1347874ccd802e6976f489226a4c1d8ffbc9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GCD.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GCD.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GCD.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 299, "size": 1275 }
{-# OPTIONS --without-K #-} module Interval where open import Pitch open import Data.Bool using (Bool; true; false; _∨_; _∧_; not; if_then_else_) open import Data.Integer using (+_; _-_; sign; ∣_∣) open import Data.Fin using (toℕ) open import Data.Nat using (ℕ; _≡ᵇ_) open import Data.Nat.DivMod using (_mod_) open import Data.Product using (_×_; _,_; Σ; proj₁; proj₂) open import Data.Sign using (Sign) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_) PitchPair : Set PitchPair = Pitch × Pitch data Interval : Set where interval : ℕ → Interval infix 4 _==_ _==_ : Interval → Interval → Bool (interval a) == (interval b) = a ≡ᵇ b intervalWithinOctave : Interval → Interval intervalWithinOctave (interval i) = interval (toℕ (i mod chromaticScaleSize)) SignedInterval : Set SignedInterval = Sign × Interval -- Names for intervals per1 = interval 0 min2 = interval 1 maj2 = interval 2 min3 = interval 3 maj3 = interval 4 per4 = interval 5 aug4 = interval 6 per5 = interval 7 min6 = interval 8 maj6 = interval 9 min7 = interval 10 maj7 = interval 11 per8 = interval 12 min9 = interval 13 maj9 = interval 14 min10 = interval 15 maj10 = interval 16 isConsonant : Interval → Bool isConsonant iv = (i == per1) ∨ (i == min3) ∨ (i == maj3) ∨ (i == per5) ∨ (i == min6) ∨ (i == maj6) ∨ (i == per8) where i = intervalWithinOctave iv isDissonant : Interval → Bool isDissonant = not ∘ isConsonant isPerfect : Interval → Bool isPerfect iv = (i == per1) ∨ (i == per4) ∨ (i == per5) ∨ (i == per8) where i = intervalWithinOctave iv isUnison : Interval → Bool isUnison i = i == per1 isThird : Interval → Bool isThird i = (i == min3) ∨ (i == maj3) -- Half or whole step; ignores key for now. isStep : Interval → Bool isStep i = (i == min2) ∨ (i == maj2) PitchInterval : Set PitchInterval = Pitch × Interval pitchIntervalToPitchPair : PitchInterval → PitchPair pitchIntervalToPitchPair (p , interval n) = (p , transposePitch (+ n) p) secondPitch : PitchInterval → Pitch secondPitch = proj₂ ∘ pitchIntervalToPitchPair pitchPairToSignedInterval : PitchPair → SignedInterval pitchPairToSignedInterval (pitch p , pitch q) = let d = (+ q) - (+ p) in sign d , interval ∣ d ∣ -- Assumes p ≤ q pitchPairToPitchInterval : PitchPair → PitchInterval pitchPairToPitchInterval pq = proj₁ pq , proj₂ (pitchPairToSignedInterval pq) stepUp : Pitch → Pitch → Bool stepUp p q with pitchPairToSignedInterval (p , q) ... | Sign.- , _ = false ... | Sign.+ , i = isStep i stepDown : Pitch → Pitch → Bool stepDown p q with pitchPairToSignedInterval (p , q) ... | Sign.- , i = isStep i ... | Sign.+ , _ = false -- Check if q is a passing tone between p and r -- The interval between end points need to be a 3rd isPassingTone : Pitch → Pitch → Pitch → Bool isPassingTone p q r = (stepUp p q ∧ stepUp q r) ∨ (stepDown p q ∧ stepDown q r) ∨ (isThird (proj₂ (pitchPairToSignedInterval (p , r)))) moveUp : Pitch → Pitch → Bool moveUp p q with pitchPairToSignedInterval (p , q) ... | Sign.- , _ = false ... | Sign.+ , i = true moveDown : Pitch → Pitch → Bool moveDown p q with pitchPairToSignedInterval (p , q) ... | Sign.- , i = true ... | Sign.+ , _ = false -- Check if q is left by step in the opposite direction from its approach isOppositeStep : Pitch → Pitch → Pitch → Bool isOppositeStep p q r = (moveUp p q ∧ stepDown q r) ∨ (moveDown p q ∧ stepUp q r)
{ "alphanum_fraction": 0.6703926627, "avg_line_length": 25.4671532847, "ext": "agda", "hexsha": "36299027d4baa3c9fc0f5075bb9f1b91d6f49900", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "doc/icfp20/code/Interval.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "doc/icfp20/code/Interval.agda", "max_line_length": 83, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "doc/icfp20/code/Interval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1143, "size": 3489 }
------------------------------------------------------------------------------ -- All the LTC-PCF modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Everything where open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Bool open import LTC-PCF.Data.Bool.Properties open import LTC-PCF.Data.Bool.Type open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Divisibility.By0 open import LTC-PCF.Data.Nat.Divisibility.By0.Properties open import LTC-PCF.Data.Nat.Divisibility.NotBy0 open import LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties open import LTC-PCF.Data.Nat.Induction.NonAcc.Lexicographic open import LTC-PCF.Data.Nat.Induction.NonAcc.WF open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.ConversionRules open import LTC-PCF.Data.Nat.Inequalities.EliminationProperties open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.Rec open import LTC-PCF.Data.Nat.Rec.ConversionRules open import LTC-PCF.Data.Nat.Type open import LTC-PCF.Data.Nat.UnaryNumbers open import LTC-PCF.Data.Nat.UnaryNumbers.Totality open import LTC-PCF.Loop open import LTC-PCF.Program.Division.ConversionRules open import LTC-PCF.Program.Division.CorrectnessProof open import LTC-PCF.Program.Division.Division open import LTC-PCF.Program.Division.Result open import LTC-PCF.Program.Division.Specification open import LTC-PCF.Program.Division.Totality open import LTC-PCF.Program.GCD.Partial.CommonDivisor open import LTC-PCF.Program.GCD.Partial.ConversionRules open import LTC-PCF.Program.GCD.Partial.CorrectnessProof open import LTC-PCF.Program.GCD.Partial.Definitions open import LTC-PCF.Program.GCD.Partial.Divisible open import LTC-PCF.Program.GCD.Partial.GCD open import LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor open import LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor open import LTC-PCF.Program.GCD.Partial.Totality open import LTC-PCF.Program.GCD.Total.CommonDivisor open import LTC-PCF.Program.GCD.Total.CorrectnessProof open import LTC-PCF.Program.GCD.Total.ConversionRules open import LTC-PCF.Program.GCD.Total.Definitions open import LTC-PCF.Program.GCD.Total.Divisible open import LTC-PCF.Program.GCD.Total.GCD open import LTC-PCF.Program.GCD.Total.Totality
{ "alphanum_fraction": 0.7594488189, "avg_line_length": 40.3174603175, "ext": "agda", "hexsha": "ef1a528ca68699952c98a4210168ca1e2ba263cd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Everything.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 664, "size": 2540 }
module Tactic.Nat where open import Prelude open import Tactic.Nat.Generic (quote _≤_) (quote id) (quote id) public {- All tactics know about addition, multiplication and subtraction of natural numbers, and can prove equalities and inequalities (_<_). The available tactics are: * auto Prove an equation or inequality. * by eq Prove the goal using the given assumption. For equalities it simplifies the goal and the assumption and checks if they match any of the following forms (up to symmetry): a ≡ b → a ≡ b a + b ≡ 0 → a ≡ 0 For inequalities, to prove a < b -> c < d, it simplifies the assumption and goal and then tries to prove c′ ≤ a′ and b′ ≤ d′. When proving that an inequality follows from an equality a ≡ b, the equality is weakened to a ≤ b before applying the above procedure. Proving an equality from an inequality works if the inequality simplifies to a ≤ 0 (or a < 0 in which case it's trivial). It then reduces that to a ≡ 0 and tries to prove the goal from that. * refute eq Proves an arbitrary proposition given a false equation. Works for equations that simplify to 0 ≡ suc n (or symmetric) or n < 0, for some n. * simplify-goal ? Simplify the current goal and let you keep working on the new goal. In most cases 'by prf' works better than 'simplify-goal prf' since it will also simplify prf. The advantage of simplify-goal is that it allows holes in prf. * simplify eq λ x → ? Simplify the given equation (and the current goal) and bind the simplified equation to x in the new goal. * induction Prove a goal ∀ n → P n using induction. Applies 'auto' in the base case and 'by IH' in the step case. -}
{ "alphanum_fraction": 0.6919566458, "avg_line_length": 30.224137931, "ext": "agda", "hexsha": "749535db8027af7b2904a7344cd65c67e01ce85e", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat.agda", "max_line_length": 80, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 458, "size": 1753 }
module cantor where data Empty : Set where data One : Set where one : One data coprod (A : Set1) (B : Set1) : Set1 where inl : ∀ (a : A) -> coprod A B inr : ∀ (b : B) -> coprod A B postulate exmid : ∀ (A : Set1) -> coprod A (A -> Empty) data Eq1 {A : Set1} (x : A) : A -> Set1 where refleq1 : Eq1 x x cast : ∀ { A B } -> Eq1 A B -> A -> B cast refleq1 a = a Eq1cong : ∀ {f g : Set -> Set} a -> Eq1 f g -> Eq1 (f a) (g a) Eq1cong a refleq1 = refleq1 Eq1sym : ∀ {A : Set1} { x y : A } -> Eq1 x y -> Eq1 y x Eq1sym refleq1 = refleq1 Eq1trans : ∀ {A : Set1} { x y z : A } -> Eq1 x y -> Eq1 y z -> Eq1 x z Eq1trans refleq1 refleq1 = refleq1 data I : (Set -> Set) -> Set where Iinj : ∀ { x y : Set -> Set } -> Eq1 (I x) (I y) -> Eq1 x y Iinj refleq1 = refleq1 data invimageI (a : Set) : Set1 where invelmtI : forall x -> (Eq1 (I x) a) -> invimageI a J : Set -> (Set -> Set) J a with exmid (invimageI a) J a | inl (invelmtI x y) = x J a | inr b = λ x → Empty data invimageJ (x : Set -> Set) : Set1 where invelmtJ : forall a -> (Eq1 (J a) x) -> invimageJ x IJIeqI : ∀ x -> Eq1 (I (J (I x))) (I x) IJIeqI x with exmid (invimageI (I x)) IJIeqI x | inl (invelmtI x' y) = y IJIeqI x | inr b with b (invelmtI x refleq1) IJIeqI x | inr b | () J_srj : ∀ (x : Set -> Set) -> invimageJ x J_srj x = invelmtJ (I x) (Iinj (IJIeqI x)) cantor : Set -> Set cantor a with exmid (Eq1 (J a a) Empty) cantor a | inl a' = One cantor a | inr b = Empty OneNeqEmpty : Eq1 One Empty -> Empty OneNeqEmpty p = cast p one cantorone : ∀ a -> Eq1 (J a a) Empty -> Eq1 (cantor a) One cantorone a p with exmid (Eq1 (J a a) Empty) cantorone a p | inl a' = refleq1 cantorone a p | inr b with b p cantorone a p | inr b | () cantorempty : ∀ a -> (Eq1 (J a a) Empty -> Empty) -> Eq1 (cantor a) Empty cantorempty a p with exmid (Eq1 (J a a) Empty) cantorempty a p | inl a' with p a' cantorempty a p | inl a' | () cantorempty a p | inr b = refleq1 cantorcase : ∀ a -> Eq1 cantor (J a) -> Empty cantorcase a pf with exmid (Eq1 (J a a) Empty) cantorcase a pf | inl a' = OneNeqEmpty (Eq1trans (Eq1trans (Eq1sym (cantorone a a')) (Eq1cong a pf)) a') cantorcase a pf | inr b = b (Eq1trans (Eq1sym (Eq1cong a pf)) (cantorempty a b)) absurd : Empty absurd with (J_srj cantor) absurd | invelmtJ a y = cantorcase a (Eq1sym y)
{ "alphanum_fraction": 0.571369637, "avg_line_length": 29.5609756098, "ext": "agda", "hexsha": "601a973a0a5b99e75e318bdf143fbe58ea21eaa1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1bcdcc1bc160aa70dafcff5030077021c61d9c38", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/AN201710", "max_forks_repo_path": "Learn/cantor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1bcdcc1bc160aa70dafcff5030077021c61d9c38", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/AN201710", "max_issues_repo_path": "Learn/cantor.agda", "max_line_length": 106, "max_stars_count": 4, "max_stars_repo_head_hexsha": "1bcdcc1bc160aa70dafcff5030077021c61d9c38", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/NomicCoin201710", "max_stars_repo_path": "Learn/cantor.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-24T08:57:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-22T03:25:59.000Z", "num_tokens": 1040, "size": 2424 }
------------------------------------------------------------------------ -- Precedence-correct expressions ------------------------------------------------------------------------ module Mixfix.Expr where open import Data.Vec using (Vec) open import Data.List using (List; []; _∷_) open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product using (∃; _,_) open import Mixfix.Fixity open import Mixfix.Operator ------------------------------------------------------------------------ -- An abstract definition of precedence graphs -- The interface of precedence graphs. record PrecedenceGraphInterface : Set₁ where field -- Precedence graphs. PrecedenceGraph : Set -- Precedence levels. Precedence : PrecedenceGraph → Set -- The operators of the given precedence. ops : (g : PrecedenceGraph) → Precedence g → (fix : Fixity) → List (∃ (Operator fix)) -- The immediate successors of the precedence level. ↑ : (g : PrecedenceGraph) → Precedence g → List (Precedence g) -- All precedence levels in the graph. anyPrecedence : (g : PrecedenceGraph) → List (Precedence g) -- When a precedence graph is given the following module may be -- convenient to avoid having to write "g" all the time. module PrecedenceGraph (i : PrecedenceGraphInterface) (g : PrecedenceGraphInterface.PrecedenceGraph i) where PrecedenceGraph : Set PrecedenceGraph = PrecedenceGraphInterface.PrecedenceGraph i Precedence : Set Precedence = PrecedenceGraphInterface.Precedence i g ops : Precedence → (fix : Fixity) → List (∃ (Operator fix)) ops = PrecedenceGraphInterface.ops i g ↑ : Precedence → List Precedence ↑ = PrecedenceGraphInterface.↑ i g anyPrecedence : List Precedence anyPrecedence = PrecedenceGraphInterface.anyPrecedence i g ------------------------------------------------------------------------ -- Precedence-correct operator applications -- Parameterised on a precedence graph. module PrecedenceCorrect (i : PrecedenceGraphInterface) (g : PrecedenceGraphInterface.PrecedenceGraph i) where open PrecedenceGraph i g public mutual infixl 4 _⟨_⟩ˡ_ infixr 4 _⟨_⟩ʳ_ infix 4 _⟨_⟩_ _⟨_⟫ ⟪_⟩_ _∙_ -- Expr ps contains expressions where the outermost operator has -- one of the precedences in ps. data Expr (ps : List Precedence) : Set where _∙_ : ∀ {p assoc} (p∈ps : p ∈ ps) (e : ExprIn p assoc) → Expr ps -- ExprIn p assoc contains expressions where the outermost -- operator has precedence p (is /in/ precedence level p) and the -- associativity assoc. data ExprIn (p : Precedence) : Associativity → Set where ⟪_⟫ : (op : Inner (ops p closed )) → ExprIn p non _⟨_⟫ : (l : Outer p left) (op : Inner (ops p postfx )) → ExprIn p left ⟪_⟩_ : (op : Inner (ops p prefx )) (r : Outer p right) → ExprIn p right _⟨_⟩_ : (l : Expr (↑ p) ) (op : Inner (ops p (infx non ))) (r : Expr (↑ p) ) → ExprIn p non _⟨_⟩ˡ_ : (l : Outer p left) (op : Inner (ops p (infx left ))) (r : Expr (↑ p) ) → ExprIn p left _⟨_⟩ʳ_ : (l : Expr (↑ p) ) (op : Inner (ops p (infx right))) (r : Outer p right) → ExprIn p right -- Outer p fix contains expressions where the head operator either -- ⑴ has precedence p and associativity assoc or -- ⑵ binds strictly tighter than p. data Outer (p : Precedence) (assoc : Associativity) : Set where similar : (e : ExprIn p assoc) → Outer p assoc tighter : (e : Expr (↑ p)) → Outer p assoc -- Inner ops contains the internal parts (operator plus -- internal arguments) of operator applications. The operators -- have to be members of ops. data Inner {fix} (ops : List (∃ (Operator fix))) : Set where _∙_ : ∀ {arity op} (op∈ops : (arity , op) ∈ ops) (args : Vec (Expr anyPrecedence) arity) → Inner ops -- "Weakening". weakenE : ∀ {p ps} → Expr ps → Expr (p ∷ ps) weakenE (p∈ps ∙ e) = there p∈ps ∙ e weakenI : ∀ {fix ops} {op : ∃ (Operator fix)} → Inner ops → Inner (op ∷ ops) weakenI (op∈ops ∙ args) = there op∈ops ∙ args
{ "alphanum_fraction": 0.5883971566, "avg_line_length": 35.1693548387, "ext": "agda", "hexsha": "59b551fa69f581476c2f012f5d2041a3201469ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Expr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Expr.agda", "max_line_length": 104, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "Mixfix/Expr.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1231, "size": 4361 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Semigroup.Subsemigroup where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra open import Cubical.Algebra.Semigroup.Morphism open import Cubical.Algebra.Magma.Submagma open import Cubical.Relation.Unary open import Cubical.Relation.Unary.Subtype record IsSubsemigroup {c ℓ} (S : Semigroup c) (Member : Pred ⟨ S ⟩ ℓ) : Type (ℓ-max c ℓ) where constructor issubsemigroup private module S = Semigroup S field closed : S._•_ Preserves₂ Member isSubmagma : IsSubmagma S.magma Member isSubmagma = record { closed = closed } open IsSubmagma isSubmagma hiding (closed) public assoc : Associative _•_ assoc _ _ _ = ΣPathTransport→PathΣ _ _ (S.assoc _ _ _ , isProp[ Member ] _ _ _) isSemigroup : IsSemigroup Carrier _•_ isSemigroup = record { isMagma = isMagma ; assoc = assoc } semigroup : Semigroup _ semigroup = record { isSemigroup = isSemigroup } open Semigroup semigroup using (_^_) public record Subsemigroup {c} (S : Semigroup c) ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where constructor mksubsemigroup private module S = Semigroup S field Member : Pred ⟨ S ⟩ ℓ isSubsemigroup : IsSubsemigroup S Member open IsSubsemigroup isSubsemigroup public submagma : Submagma S.magma ℓ submagma = record { isSubmagma = isSubmagma } instance SubsemigroupCarrier : ∀ {c ℓ} {S : Semigroup c} → HasCarrier (Subsemigroup S ℓ) _ SubsemigroupCarrier = record { ⟨_⟩ = Subsemigroup.Carrier } module _ {ℓ} (S : Semigroup ℓ) where open Semigroup S ∅-isSubsemigroup : IsSubsemigroup S ∅ ∅-isSubsemigroup = record { closed = λ () } ∅-subsemigroup : Subsemigroup S _ ∅-subsemigroup = record { isSubsemigroup = ∅-isSubsemigroup } U-isSubsemigroup : IsSubsemigroup S U U-isSubsemigroup = record {} -- trivial U-subsemigroup : Subsemigroup S _ U-subsemigroup = record { isSubsemigroup = U-isSubsemigroup }
{ "alphanum_fraction": 0.7237728585, "avg_line_length": 25.3414634146, "ext": "agda", "hexsha": "a3ef64c1033a38963f001c62c3937fedd0181904", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Semigroup/Subsemigroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Semigroup/Subsemigroup.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Semigroup/Subsemigroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 657, "size": 2078 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.CohomologyRings.Unit where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_) open import Cubical.Data.Int open import Cubical.Data.Vec open import Cubical.Data.FinData open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG) open import Cubical.Algebra.DirectSum.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP) open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.A[X]X-A open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ open import Cubical.HITs.Truncation open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_) open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.CohomologyRing open import Cubical.ZCohomology.Groups.Unit open Iso module Equiv-Unit-Properties where open CommRingStr (snd ℤCR) using () renaming ( 0r to 0ℤ ; 1r to 1ℤ ; _+_ to _+ℤ_ ; -_ to -ℤ_ ; _·_ to _·ℤ_ ; +Assoc to +ℤAssoc ; +Identity to +ℤIdentity ; +Lid to +ℤLid ; +Rid to +ℤRid ; +Inv to +ℤInv ; +Linv to +ℤLinv ; +Rinv to +ℤRinv ; +Comm to +ℤComm ; ·Assoc to ·ℤAssoc ; ·Identity to ·ℤIdentity ; ·Lid to ·ℤLid ; ·Rid to ·ℤRid ; ·Rdist+ to ·ℤRdist+ ; ·Ldist+ to ·ℤLdist+ ; is-set to isSetℤ ) open RingStr (snd (H*R Unit)) using () renaming ( 0r to 0H* ; 1r to 1H* ; _+_ to _+H*_ ; -_ to -H*_ ; _·_ to _cup_ ; +Assoc to +H*Assoc ; +Identity to +H*Identity ; +Lid to +H*Lid ; +Rid to +H*Rid ; +Inv to +H*Inv ; +Linv to +H*Linv ; +Rinv to +H*Rinv ; +Comm to +H*Comm ; ·Assoc to ·H*Assoc ; ·Identity to ·H*Identity ; ·Lid to ·H*Lid ; ·Rid to ·H*Rid ; ·Rdist+ to ·H*Rdist+ ; ·Ldist+ to ·H*Ldist+ ; is-set to isSetH* ) open CommRingStr (snd ℤ[X]) using () renaming ( 0r to 0Pℤ ; 1r to 1Pℤ ; _+_ to _+Pℤ_ ; -_ to -Pℤ_ ; _·_ to _·Pℤ_ ; +Assoc to +PℤAssoc ; +Identity to +PℤIdentity ; +Lid to +PℤLid ; +Rid to +PℤRid ; +Inv to +PℤInv ; +Linv to +PℤLinv ; +Rinv to +PℤRinv ; +Comm to +PℤComm ; ·Assoc to ·PℤAssoc ; ·Identity to ·PℤIdentity ; ·Lid to ·PℤLid ; ·Rid to ·PℤRid ; ·Rdist+ to ·PℤRdist+ ; ·Ldist+ to ·PℤLdist+ ; is-set to isSetPℤ ) open CommRingStr (snd ℤ[X]/X) using () renaming ( 0r to 0PℤI ; 1r to 1PℤI ; _+_ to _+PℤI_ ; -_ to -PℤI_ ; _·_ to _·PℤI_ ; +Assoc to +PℤIAssoc ; +Identity to +PℤIIdentity ; +Lid to +PℤILid ; +Rid to +PℤIRid ; +Inv to +PℤIInv ; +Linv to +PℤILinv ; +Rinv to +PℤIRinv ; +Comm to +PℤIComm ; ·Assoc to ·PℤIAssoc ; ·Identity to ·PℤIIdentity ; ·Lid to ·PℤILid ; ·Rid to ·PℤIRid ; ·Rdist+ to ·PℤIRdist+ ; ·Ldist+ to ·PℤILdist+ ; is-set to isSetPℤI ) ----------------------------------------------------------------------------- -- Direct Sens on ℤ[x] ℤ[x]→H*-Unit : ℤ[x] → H* Unit ℤ[x]→H*-Unit = Poly-Rec-Set.f _ _ _ isSetH* 0H* base-trad _+H*_ +H*Assoc +H*Rid +H*Comm base-neutral-eq base-add-eq where base-trad : _ base-trad (zero ∷ []) a = base zero (inv (fst H⁰-Unit≅ℤ) a) base-trad (suc n ∷ []) a = 0H* base-neutral-eq : _ base-neutral-eq (zero ∷ []) = base-neutral _ base-neutral-eq (suc n ∷ []) = refl base-add-eq : _ base-add-eq (zero ∷ []) a b = base-add _ _ _ base-add-eq (suc n ∷ []) a b = +H*Rid _ ℤ[x]→H*-Unit-pres1Pℤ : ℤ[x]→H*-Unit (1Pℤ) ≡ 1H* ℤ[x]→H*-Unit-pres1Pℤ = refl ℤ[x]→H*-Unit-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x +Pℤ y) ≡ ℤ[x]→H*-Unit x +H* ℤ[x]→H*-Unit y ℤ[x]→H*-Unit-pres+ x y = refl -- Proving the morphism on the cup product T0 : (z : ℤ) → coHom 0 Unit T0 = λ z → inv (fst H⁰-Unit≅ℤ) z T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso H⁰-Unit≅ℤ) .fun) (coHomGr 0 Unit .snd) T0g = snd (invGroupIso H⁰-Unit≅ℤ) -- idea : control of the unfolding + simplification of T0 on the left pres·-base-case-00 : (a : ℤ) → (b : ℤ) → T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b) pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g) pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b))) ∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b)) pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically ! ∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b) ∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b) (IsGroupHom.presinv T0g b) pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) → ℤ[x]→H*-Unit (baseP (n ∷ []) a ·Pℤ baseP (m ∷ []) b) ≡ ℤ[x]→H*-Unit (baseP (n ∷ []) a) cup ℤ[x]→H*-Unit (baseP (m ∷ []) b) pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b) pres·-base-case-int zero a (suc m) b = refl pres·-base-case-int (suc n) a m b = refl pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) → ℤ[x]→H*-Unit (baseP v a ·Pℤ baseP v' b) ≡ ℤ[x]→H*-Unit (baseP v a) cup ℤ[x]→H*-Unit (baseP v' b) pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b ℤ[x]→H*-Unit-pres· : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x ·Pℤ y) ≡ ℤ[x]→H*-Unit x cup ℤ[x]→H*-Unit y ℤ[x]→H*-Unit-pres· = Poly-Ind-Prop.f _ _ _ (λ x p q i y j → isSetH* _ _ (p y) (q y) i j) (λ y → refl) base-case λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y) where base-case : _ base-case (n ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _) (sym (RingTheory.0RightAnnihilates (H*R Unit) _)) (λ v' b → pres·-base-case-vec (n ∷ []) a v' b) λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _) -- raising to the product ℤ[x]→H*-Unit-cancelX : (k : Fin 1) → ℤ[x]→H*-Unit (<X> k) ≡ 0H* ℤ[x]→H*-Unit-cancelX zero = refl ℤ[X]→H*-Unit : RingHom (CommRing→Ring ℤ[X]) (H*R Unit) fst ℤ[X]→H*-Unit = ℤ[x]→H*-Unit snd ℤ[X]→H*-Unit = makeIsRingHom ℤ[x]→H*-Unit-pres1Pℤ ℤ[x]→H*-Unit-pres+ ℤ[x]→H*-Unit-pres· ℤ[X]/X→H*R-Unit : RingHom (CommRing→Ring ℤ[X]/X) (H*R Unit) ℤ[X]/X→H*R-Unit = Quotient-FGideal-CommRing-Ring.f ℤ[X] (H*R Unit) ℤ[X]→H*-Unit <X> ℤ[x]→H*-Unit-cancelX ℤ[x]/x→H*-Unit : ℤ[x]/x → H* Unit ℤ[x]/x→H*-Unit = fst ℤ[X]/X→H*R-Unit ----------------------------------------------------------------------------- -- Converse Sens on ℤ[X] H*-Unit→ℤ[x] : H* Unit → ℤ[x] H*-Unit→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ 0Pℤ base-trad _+Pℤ_ +PℤAssoc +PℤRid +PℤComm base-neutral-eq base-add-eq where base-trad : (n : ℕ) → coHom n Unit → ℤ[x] base-trad zero a = baseP (0 ∷ []) (fun (fst H⁰-Unit≅ℤ) a) base-trad (suc n) a = 0Pℤ base-neutral-eq : _ base-neutral-eq zero = base-0P _ base-neutral-eq (suc n) = refl base-add-eq : _ base-add-eq zero a b = base-poly+ _ _ _ ∙ cong (baseP (0 ∷ [])) (sym (IsGroupHom.pres· (snd H⁰-Unit≅ℤ) a b)) base-add-eq (suc n) a b = +PℤRid _ H*-Unit→ℤ[x]-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x] ( x +H* y) ≡ H*-Unit→ℤ[x] x +Pℤ H*-Unit→ℤ[x] y H*-Unit→ℤ[x]-pres+ x y = refl H*-Unit→ℤ[x]/x : H* Unit → ℤ[x]/x H*-Unit→ℤ[x]/x = [_] ∘ H*-Unit→ℤ[x] H*-Unit→ℤ[x]/x-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x]/x (x +H* y) ≡ (H*-Unit→ℤ[x]/x x) +PℤI (H*-Unit→ℤ[x]/x y) H*-Unit→ℤ[x]/x-pres+ x y = cong [_] (H*-Unit→ℤ[x]-pres+ x y) ----------------------------------------------------------------------------- -- Section e-sect : (x : H* Unit) → ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x x) ≡ x e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _) refl base-case λ {U V} ind-U ind-V → cong ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x-pres+ U V) ∙ IsRingHom.pres+ (snd ℤ[X]/X→H*R-Unit) (H*-Unit→ℤ[x]/x U) (H*-Unit→ℤ[x]/x V) ∙ cong₂ _+H*_ ind-U ind-V where base-case : _ base-case zero a = cong (base 0) (leftInv (fst H⁰-Unit≅ℤ) a) base-case (suc n) a = (sym (base-neutral (suc n))) ∙ (cong (base (suc n)) ((isContr→isProp (isContrHⁿ-Unit n) _ a))) ----------------------------------------------------------------------------- -- Retraction e-retr : (x : ℤ[x]/x) → H*-Unit→ℤ[x]/x (ℤ[x]/x→H*-Unit x) ≡ x e-retr = SQ.elimProp (λ _ → isSetPℤI _ _) (Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _) refl base-case λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V) where base-case : _ base-case (zero ∷ []) a = refl base-case (suc n ∷ []) a = eq/ 0Pℤ (baseP (suc n ∷ []) a) ∣ ((λ x → baseP (n ∷ []) (-ℤ a)) , foo) ∣₁ where foo : (0P poly+ baseP (suc n ∷ []) (- a)) ≡ (baseP (n +n 1 ∷ []) (- a · pos 1) poly+ 0P) foo = (0P poly+ baseP (suc n ∷ []) (- a)) ≡⟨ +PℤLid _ ⟩ baseP (suc n ∷ []) (- a) ≡⟨ cong₂ baseP (cong (λ X → X ∷ []) (sym ((+-suc n 0) ∙ (cong suc (+-zero n))))) (sym (·ℤRid _)) ⟩ baseP (n +n suc 0 ∷ []) (- a ·ℤ 1ℤ) ≡⟨ refl ⟩ baseP (n +n 1 ∷ []) (- a · pos 1) ≡⟨ sym (+PℤRid _) ⟩ (baseP (n +n 1 ∷ []) (- a · pos 1) poly+ 0P) ∎ ----------------------------------------------------------------------------- -- Computation of the Cohomology Ring module _ where open Equiv-Unit-Properties open RingEquivs Unit-CohomologyRingP : RingEquiv (CommRing→Ring ℤ[X]/X) (H*R Unit) fst Unit-CohomologyRingP = isoToEquiv is where is : Iso ℤ[x]/x (H* Unit) fun is = ℤ[x]/x→H*-Unit inv is = H*-Unit→ℤ[x]/x rightInv is = e-sect leftInv is = e-retr snd Unit-CohomologyRingP = snd ℤ[X]/X→H*R-Unit CohomologyRing-UnitP : RingEquiv (H*R Unit) (CommRing→Ring ℤ[X]/X) CohomologyRing-UnitP = invEquivRing Unit-CohomologyRingP Unit-CohomologyRingℤ : RingEquiv (CommRing→Ring ℤCR) (H*R Unit) Unit-CohomologyRingℤ = compRingEquiv (invEquivRing Equiv-ℤ[X]/X-ℤ) Unit-CohomologyRingP CohomologyRing-Unitℤ : RingEquiv (H*R Unit) (CommRing→Ring ℤCR) CohomologyRing-Unitℤ = compRingEquiv CohomologyRing-UnitP Equiv-ℤ[X]/X-ℤ
{ "alphanum_fraction": 0.495, "avg_line_length": 36.5781710914, "ext": "agda", "hexsha": "37ed3aef5ef5a64c4e9fb76492018730a67b6477", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4705, "size": 12400 }
-- Andreas, 2016-12-30, issue #1886 -- Make sure we do not duplicate types of parameters. -- {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.data:40 -v scope.data.def:40 -v tc.decl:10 -v tc:20 #-} data D {A : Set} (x y : {!!}) : Set where -- Expected: only one type and one sort meta.
{ "alphanum_fraction": 0.6212624585, "avg_line_length": 27.3636363636, "ext": "agda", "hexsha": "3686b2a4b1abddd74cf92ae5d6fab6c4dc45c43d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1886-dont-duplicate-ip.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1886-dont-duplicate-ip.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1886-dont-duplicate-ip.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 97, "size": 301 }
-- 2014-08-25 reported by Wolfram Kahl, test case shrunk by Ulf, fixed by Andreas and Ulf -- {-# OPTIONS --show-implicit -v tc.cover.splittree:10 -v tc.with:40 -v tc.cc:12 #-} postulate K : Set data SUList : K → Set where cons : ∀ {k} (es : SUList k) → SUList k data Tri : Set where tri< tri> : Tri postulate k : K compareK : Tri dummy : Set es : SUList k diff : SUList k → SUList k → Tri → Set diff (cons _) _ tri< = K diff es₁ (cons es₂) tri> = diff es₁ es₂ compareK test = diff (cons es) (cons es) tri> -- normalizing test -- gives WRONG diff (cons k es) es compareK -- should be diff (cons {k} es) es compareK -- Problem was in the clause compiler -- Trigger the bug: from : (es : SUList k) (c : Tri) → diff (cons es) (cons es) c → Set from es tri< d = K from es tri> d with dummy ... | _ = K -- WAS: -- Expected a hidden argument, but found a visible argument -- when checking that the type -- Set → (es₁ : SUList k) (d : diff (cons k es₁) es₁ compareK) → Set -- of the generated with function is well-formed
{ "alphanum_fraction": 0.6439539347, "avg_line_length": 27.4210526316, "ext": "agda", "hexsha": "fdae369b33e33d5842936777f1421c1298d02c5b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1186.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1186.agda", "max_line_length": 89, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1186.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 352, "size": 1042 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of pointwise equality for containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Relation.Binary.Pointwise.Properties where open import Axiom.Extensionality.Propositional open import Data.Container.Core open import Data.Container.Relation.Binary.Pointwise open import Data.Product using (_,_; Σ-syntax; -,_) open import Level using (_⊔_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; cong) module _ {s p x r} {X : Set x} (C : Container s p) (R : Rel X r) where refl : Reflexive R → Reflexive (Pointwise C R) refl R-refl = P.refl , λ p → R-refl sym : Symmetric R → Symmetric (Pointwise C R) sym R-sym (P.refl , f) = P.refl , λ p → R-sym (f p) trans : Transitive R → Transitive (Pointwise C R) trans R-trans (P.refl , f) (P.refl , g) = P.refl , λ p → R-trans (f p) (g p) private -- Note that, if propositional equality were extensional, then -- Eq _≡_ and _≡_ would coincide. Eq⇒≡ : ∀ {s p x} {C : Container s p} {X : Set x} {xs ys : ⟦ C ⟧ X} → Extensionality p x → Pointwise C _≡_ xs ys → xs ≡ ys Eq⇒≡ ext (P.refl , f≈f′) = cong -,_ (ext f≈f′)
{ "alphanum_fraction": 0.5918215613, "avg_line_length": 34.4871794872, "ext": "agda", "hexsha": "773d23ea03ebd8a2aa5083486522533b5f7e4974", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise/Properties.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 397, "size": 1345 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Groups.Definition open import Groups.Homomorphisms.Definition open import Groups.SymmetricGroups.Definition open import Groups.Actions.Definition open import Sets.EquivalenceRelations module Groups.ActionIsSymmetry {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A → A → A} {G : Group S _+_} (gAction : GroupAction G T) where open Group G open GroupAction gAction actionPermutation : (g : A) → SymmetryGroupElements T actionPermutation g = sym {f = λ x → action g x} (record { inj = record { injective = inj ; wellDefined = actionWellDefined2 } ; surj = record { surjective = surj ; wellDefined = actionWellDefined2 } }) where open Setoid T open Equivalence eq inj : {x y : B} → (Setoid._∼_ T (action g x) (action g y)) → Setoid._∼_ T x y inj {x} {y} gx=gy = transitive (symmetric identityAction) (transitive (transitive (symmetric (actionWellDefined1 (invLeft {g}))) (transitive (transitive associativeAction (transitive (actionWellDefined2 gx=gy) (symmetric associativeAction))) (actionWellDefined1 (invLeft {g})))) identityAction) surj : {x : B} → Sg B (λ a → action g a ∼ x) surj {x} = action (inverse g) x , transitive (symmetric associativeAction) (transitive (actionWellDefined1 invRight) identityAction) actionPermutationMapIsHom : GroupHom G (symmetricGroup T) actionPermutation GroupHom.groupHom actionPermutationMapIsHom = associativeAction GroupHom.wellDefined actionPermutationMapIsHom x=y = actionWellDefined1 x=y
{ "alphanum_fraction": 0.7353485503, "avg_line_length": 55.8965517241, "ext": "agda", "hexsha": "fe44bac8933b6251979a2a14431476d900b4a19b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/ActionIsSymmetry.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/ActionIsSymmetry.agda", "max_line_length": 298, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/ActionIsSymmetry.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 480, "size": 1621 }
module tests.Arith where open import Prelude.IO open import Prelude.Nat open import Prelude.Unit test : Nat test = 4 foobar : Nat -> Nat foobar Z = Z foobar (S n) = S (S n) main : IO Unit main = -- n <- readNat , printNat 0 ,, printNat (0 + 1) ,, printNat (1 * 2) ,, printNat (S (S (S (S Z))) - S Z) ,, printNat test ,, printNat (foobar 4) ,, -- printNat n ,, return unit
{ "alphanum_fraction": 0.5974683544, "avg_line_length": 15.8, "ext": "agda", "hexsha": "9c14dd7ca679747b51a57e1cf8f1c0f79c1211cc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/epic/tests/Arith.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/epic/tests/Arith.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/epic/tests/Arith.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 143, "size": 395 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists ------------------------------------------------------------------------ module Data.List where open import Data.Nat open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Data.Bool open import Data.Maybe using (Maybe; nothing; just) open import Data.Product as Prod using (_×_; _,_) open import Function open import Algebra import Relation.Binary.PropositionalEquality as PropEq import Algebra.FunctionProperties as FunProp infixr 5 _∷_ _++_ ------------------------------------------------------------------------ -- Types data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# IMPORT Data.FFI #-} {-# COMPILED_DATA List Data.FFI.AgdaList [] (:) #-} ------------------------------------------------------------------------ -- Some operations -- * Basic functions [_] : ∀ {a} {A : Set a} → A → List A [ x ] = x ∷ [] _++_ : ∀ {a} {A : Set a} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) -- Snoc. infixl 5 _∷ʳ_ _∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A xs ∷ʳ x = xs ++ [ x ] null : ∀ {a} {A : Set a} → List A → Bool null [] = true null (x ∷ xs) = false -- * List transformations map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs replicate : ∀ {a} {A : Set a} → (n : ℕ) → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x zipWith : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → List A → List B → List C zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys zipWith f _ _ = [] zip : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B) zip = zipWith (_,_) intersperse : ∀ {a} {A : Set a} → A → List A → List A intersperse x [] = [] intersperse x (y ∷ []) = [ y ] intersperse x (y ∷ z ∷ zs) = y ∷ x ∷ intersperse x (z ∷ zs) -- * Reducing lists (folds) foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) foldl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → A foldl c n [] = n foldl c n (x ∷ xs) = foldl c (c n x) xs -- ** Special folds concat : ∀ {a} {A : Set a} → List (List A) → List A concat = foldr _++_ [] concatMap : ∀ {a b} {A : Set a} {B : Set b} → (A → List B) → List A → List B concatMap f = concat ∘ map f and : List Bool → Bool and = foldr _∧_ true or : List Bool → Bool or = foldr _∨_ false any : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool any p = or ∘ map p all : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool all p = and ∘ map p sum : List ℕ → ℕ sum = foldr _+_ 0 product : List ℕ → ℕ product = foldr _*_ 1 length : ∀ {a} {A : Set a} → List A → ℕ length = foldr (λ _ → suc) 0 reverse : ∀ {a} {A : Set a} → List A → List A reverse = foldl (λ rev x → x ∷ rev) [] -- * Building lists -- ** Scans scanr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → List B scanr f e [] = e ∷ [] scanr f e (x ∷ xs) with scanr f e xs ... | [] = [] -- dead branch ... | y ∷ ys = f x y ∷ y ∷ ys scanl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → List A scanl f e [] = e ∷ [] scanl f e (x ∷ xs) = e ∷ scanl f (f e x) xs -- ** Unfolding -- Unfold. Uses a measure (a natural number) to ensure termination. unfold : ∀ {a b} {A : Set a} (B : ℕ → Set b) (f : ∀ {n} → B (suc n) → Maybe (A × B n)) → ∀ {n} → B n → List A unfold B f {n = zero} s = [] unfold B f {n = suc n} s with f s ... | nothing = [] ... | just (x , s') = x ∷ unfold B f s' -- downFrom 3 = 2 ∷ 1 ∷ 0 ∷ []. downFrom : ℕ → List ℕ downFrom n = unfold Singleton f (wrap n) where data Singleton : ℕ → Set where wrap : (n : ℕ) → Singleton n f : ∀ {n} → Singleton (suc n) → Maybe (ℕ × Singleton n) f {n} (wrap .(suc n)) = just (n , wrap n) -- ** Conversions fromMaybe : ∀ {a} {A : Set a} → Maybe A → List A fromMaybe (just x) = [ x ] fromMaybe nothing = [] -- * Sublists -- ** Extracting sublists take : ∀ {a} {A : Set a} → ℕ → List A → List A take zero xs = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n xs drop : ∀ {a} {A : Set a} → ℕ → List A → List A drop zero xs = xs drop (suc n) [] = [] drop (suc n) (x ∷ xs) = drop n xs splitAt : ∀ {a} {A : Set a} → ℕ → List A → (List A × List A) splitAt zero xs = ([] , xs) splitAt (suc n) [] = ([] , []) splitAt (suc n) (x ∷ xs) with splitAt n xs ... | (ys , zs) = (x ∷ ys , zs) takeWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A takeWhile p [] = [] takeWhile p (x ∷ xs) with p x ... | true = x ∷ takeWhile p xs ... | false = [] dropWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A dropWhile p [] = [] dropWhile p (x ∷ xs) with p x ... | true = dropWhile p xs ... | false = x ∷ xs span : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) span p [] = ([] , []) span p (x ∷ xs) with p x ... | true = Prod.map (_∷_ x) id (span p xs) ... | false = ([] , x ∷ xs) break : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) break p = span (not ∘ p) inits : ∀ {a} {A : Set a} → List A → List (List A) inits [] = [] ∷ [] inits (x ∷ xs) = [] ∷ map (_∷_ x) (inits xs) tails : ∀ {a} {A : Set a} → List A → List (List A) tails [] = [] ∷ [] tails (x ∷ xs) = (x ∷ xs) ∷ tails xs infixl 5 _∷ʳ'_ data InitLast {a} {A : Set a} : List A → Set a where [] : InitLast [] _∷ʳ'_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x) initLast : ∀ {a} {A : Set a} (xs : List A) → InitLast xs initLast [] = [] initLast (x ∷ xs) with initLast xs initLast (x ∷ .[]) | [] = [] ∷ʳ' x initLast (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y -- * Searching lists -- ** Searching with a predicate -- A generalised variant of filter. gfilter : ∀ {a b} {A : Set a} {B : Set b} → (A → Maybe B) → List A → List B gfilter p [] = [] gfilter p (x ∷ xs) with p x ... | just y = y ∷ gfilter p xs ... | nothing = gfilter p xs filter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A filter p = gfilter (λ x → if p x then just x else nothing) partition : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) partition p [] = ([] , []) partition p (x ∷ xs) with p x | partition p xs ... | true | (ys , zs) = (x ∷ ys , zs) ... | false | (ys , zs) = (ys , x ∷ zs) ------------------------------------------------------------------------ -- List monoid monoid : ∀ {ℓ} → Set ℓ → Monoid _ _ monoid A = record { Carrier = List A ; _≈_ = _≡_ ; _∙_ = _++_ ; ε = [] ; isMonoid = record { isSemigroup = record { isEquivalence = PropEq.isEquivalence ; assoc = assoc ; ∙-cong = cong₂ _++_ } ; identity = ((λ _ → refl) , identity) } } where open PropEq open FunProp _≡_ identity : RightIdentity [] _++_ identity [] = refl identity (x ∷ xs) = cong (_∷_ x) (identity xs) assoc : Associative _++_ assoc [] ys zs = refl assoc (x ∷ xs) ys zs = cong (_∷_ x) (assoc xs ys zs) ------------------------------------------------------------------------ -- List monad open import Category.Monad monad : ∀ {ℓ} → RawMonad (List {ℓ}) monad = record { return = λ x → x ∷ [] ; _>>=_ = λ xs f → concat (map f xs) } monadZero : ∀ {ℓ} → RawMonadZero (List {ℓ}) monadZero = record { monad = monad ; ∅ = [] } monadPlus : ∀ {ℓ} → RawMonadPlus (List {ℓ}) monadPlus = record { monadZero = monadZero ; _∣_ = _++_ } ------------------------------------------------------------------------ -- Monadic functions private module Monadic {m} {M : Set m → Set m} (Mon : RawMonad M) where open RawMonad Mon sequence : ∀ {A} → List (M A) → M (List A) sequence [] = return [] sequence (x ∷ xs) = _∷_ <$> x ⊛ sequence xs mapM : ∀ {a} {A : Set a} {B} → (A → M B) → List A → M (List B) mapM f = sequence ∘ map f open Monadic public
{ "alphanum_fraction": 0.4647016012, "avg_line_length": 25.6822429907, "ext": "agda", "hexsha": "cf4e080c2c1d7f38332eeb79d660ce0c4afca9d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/List.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/List.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 3033, "size": 8244 }
open import Everything module Test.Transassociativity where test-transassociativity-≡ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Transitivity.class _∼_ ⦄ ⦃ _ : Transassociativity!.class _∼_ Proposequality ⦄ → ∀ {w x y z} (f : w ∼ x) (g : x ∼ y) (h : y ∼ z) → (h ∙ g) ∙ f ≡ h ∙ g ∙ f test-transassociativity-≡ f g h rewrite transassociativity![ Proposequality ] f g h = ∅ -- transassociativity
{ "alphanum_fraction": 0.6082725061, "avg_line_length": 31.6153846154, "ext": "agda", "hexsha": "65944f9c3adb51a92e8349207f006d9dda16c437", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Transassociativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Transassociativity.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Transassociativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 411 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Unit open import Agda.Builtin.Equality data Unit : Set where unit : Unit A : Unit → Set A unit = ⊤ postulate a b : (u : Unit) → A u mutual _X : Unit _X = {!unit!} test : a _X ≡ b _X test = refl
{ "alphanum_fraction": 0.6204379562, "avg_line_length": 13.7, "ext": "agda", "hexsha": "b710bf47138999397cb37a479f7d17a4f289e6a7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3776.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3776.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3776.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 98, "size": 274 }
module Issue289 where data D : Set where d : D record ⊤ : Set where foo : (x y : D) → ⊤ foo d y = {!y!} -- WAS: -- Right hand side must be a single hole when making a case -- distinction. -- when checking that the expression ? has type ⊤ -- NOW: (Andreas, 2013-03-22) -- Since goal is solved, further case distinction is not supported; -- try `Solve constraints' instead -- when checking that the expression ? has type ⊤
{ "alphanum_fraction": 0.6728971963, "avg_line_length": 21.4, "ext": "agda", "hexsha": "ce1761c7979fc902848caa589d9c194042b0c779", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue289.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue289.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue289.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 124, "size": 428 }
{-# OPTIONS --without-K --exact-split --safe #-} module 04-inductive-types where import 03-natural-numbers open 03-natural-numbers public -------------------------------------------------------------------------------- -- Section 4.2 The unit type -- Definition 4.2.1 data unit : UU lzero where star : unit 𝟙 = unit ind-unit : {i : Level} {P : unit → UU i} → P star → ((x : unit) → P x) ind-unit p star = p -------------------------------------------------------------------------------- -- Section 4.3 The empty type -- Definition 4.3.1 data empty : UU lzero where 𝟘 = empty ind-empty : {i : Level} {P : empty → UU i} → ((x : empty) → P x) ind-empty () ex-falso : {i : Level} {A : UU i} → empty → A ex-falso = ind-empty -- Definition 4.3.2 ¬ : {i : Level} → UU i → UU i ¬ A = A → empty -- Proposition 4.3.3 functor-neg : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → Q) → (¬ Q → ¬ P) functor-neg f nq p = nq (f p) -------------------------------------------------------------------------------- -- Section 4.4 The booleans -- Definition 4.4.1 data bool : UU lzero where true false : bool -- Example 4.4.2 neg-𝟚 : bool → bool neg-𝟚 true = false neg-𝟚 false = true conjunction-𝟚 : bool → (bool → bool) conjunction-𝟚 true true = true conjunction-𝟚 true false = false conjunction-𝟚 false true = false conjunction-𝟚 false false = false disjunction-𝟚 : bool → (bool → bool) disjunction-𝟚 true true = true disjunction-𝟚 true false = true disjunction-𝟚 false true = true disjunction-𝟚 false false = false -------------------------------------------------------------------------------- -- Section 4.5 Coproducts -- Definition 4.5.1 data coprod {i j : Level} (A : UU i) (B : UU j) : UU (i ⊔ j) where inl : A → coprod A B inr : B → coprod A B ind-coprod : {i j k : Level} {A : UU i} {B : UU j} (C : coprod A B → UU k) → ((x : A) → C (inl x)) → ((y : B) → C (inr y)) → (t : coprod A B) → C t ind-coprod C f g (inl x) = f x ind-coprod C f g (inr x) = g x -- Remark 4.5.2 functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} → (A → A') → (B → B') → coprod A B → coprod A' B' functor-coprod f g (inl x) = inl (f x) functor-coprod f g (inr y) = inr (g y) -- Proposition 4.5.3 coprod-elim-left : {i j : Level} (A : UU i) (B : UU j) → ¬ B → coprod A B → A coprod-elim-left A B nb (inl a) = a coprod-elim-left A B nb (inr b) = ex-falso (nb b) coprod-elim-right : {i j : Level} (A : UU i) (B : UU j) → ¬ A → coprod A B → B coprod-elim-right A B na (inl a) = ex-falso (na a) coprod-elim-right A B na (inr b) = b -------------------------------------------------------------------------------- -- Section 4.6 Dependent pair types -- Definition 4.6.1 data Σ {i j : Level} (A : UU i) (B : A → UU j) : UU (i ⊔ j) where pair : (x : A) → (B x → Σ A B) ind-Σ : {i j k : Level} {A : UU i} {B : A → UU j} {C : Σ A B → UU k} → ((x : A) (y : B x) → C (pair x y)) → ((t : Σ A B) → C t) ind-Σ f (pair x y) = f x y -- Remark 4.6.2 ev-pair : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : Σ A B → UU l3} → ((t : Σ A B) → C t) → (x : A) (y : B x) → C (pair x y) ev-pair f x y = f (pair x y) -- Definition 4.6.3 pr1 : {i j : Level} {A : UU i} {B : A → UU j} → Σ A B → A pr1 (pair a b) = a pr2 : {i j : Level} {A : UU i} {B : A → UU j} → (t : Σ A B) → B (pr1 t) pr2 (pair a b) = b -- Definition 4.6.4 prod : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j) prod A B = Σ A (λ a → B) pair' : {i j : Level} {A : UU i} {B : UU j} → A → B → prod A B pair' = pair _×_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j) A × B = prod A B -------------------------------------------------------------------------------- -- Section 4.7 The type of integers -- Definition 4.7.1 -- The type of integers ℤ : UU lzero ℤ = coprod ℕ (coprod unit ℕ) -- Inclusion of the negative integers in-neg : ℕ → ℤ in-neg n = inl n -- Negative one neg-one-ℤ : ℤ neg-one-ℤ = in-neg zero-ℕ -- Zero zero-ℤ : ℤ zero-ℤ = inr (inl star) -- One one-ℤ : ℤ one-ℤ = inr (inr zero-ℕ) -- Inclusion of the positive integers in-pos : ℕ → ℤ in-pos n = inr (inr n) -- Inclusion of the natural numbers int-ℕ : ℕ → ℤ int-ℕ zero-ℕ = zero-ℤ int-ℕ (succ-ℕ n) = in-pos n -- Proposition 4.7.2 ind-ℤ : {i : Level} (P : ℤ → UU i) → P neg-one-ℤ → ((n : ℕ) → P (inl n) → P (inl (succ-ℕ n))) → P zero-ℤ → P one-ℤ → ((n : ℕ) → P (inr (inr (n))) → P (inr (inr (succ-ℕ n)))) → (k : ℤ) → P k ind-ℤ P p-1 p-S p0 p1 pS (inl zero-ℕ) = p-1 ind-ℤ P p-1 p-S p0 p1 pS (inl (succ-ℕ x)) = p-S x (ind-ℤ P p-1 p-S p0 p1 pS (inl x)) ind-ℤ P p-1 p-S p0 p1 pS (inr (inl star)) = p0 ind-ℤ P p-1 p-S p0 p1 pS (inr (inr zero-ℕ)) = p1 ind-ℤ P p-1 p-S p0 p1 pS (inr (inr (succ-ℕ x))) = pS x (ind-ℤ P p-1 p-S p0 p1 pS (inr (inr (x)))) -- Definition 4.7.3 succ-ℤ : ℤ → ℤ succ-ℤ (inl zero-ℕ) = zero-ℤ succ-ℤ (inl (succ-ℕ x)) = inl x succ-ℤ (inr (inl star)) = one-ℤ succ-ℤ (inr (inr x)) = inr (inr (succ-ℕ x)) -------------------------------------------------------------------------------- -- Exercises -- Exercise 4.1 (a) pred-ℤ : ℤ → ℤ pred-ℤ (inl x) = inl (succ-ℕ x) pred-ℤ (inr (inl star)) = inl zero-ℕ pred-ℤ (inr (inr zero-ℕ)) = inr (inl star) pred-ℤ (inr (inr (succ-ℕ x))) = inr (inr x) -- Exercise 4.1 (b) -- Addition on ℤ add-ℤ : ℤ → ℤ → ℤ add-ℤ (inl zero-ℕ) l = pred-ℤ l add-ℤ (inl (succ-ℕ x)) l = pred-ℤ (add-ℤ (inl x) l) add-ℤ (inr (inl star)) l = l add-ℤ (inr (inr zero-ℕ)) l = succ-ℤ l add-ℤ (inr (inr (succ-ℕ x))) l = succ-ℤ (add-ℤ (inr (inr x)) l) add-ℤ' : ℤ → ℤ → ℤ add-ℤ' x y = add-ℤ y x -- The negative of an integer neg-ℤ : ℤ → ℤ neg-ℤ (inl x) = inr (inr x) neg-ℤ (inr (inl star)) = inr (inl star) neg-ℤ (inr (inr x)) = inl x -- Exercise 4.1 (c) -- Multiplication on ℤ mul-ℤ : ℤ → ℤ → ℤ mul-ℤ (inl zero-ℕ) l = neg-ℤ l mul-ℤ (inl (succ-ℕ x)) l = add-ℤ (neg-ℤ l) (mul-ℤ (inl x) l) mul-ℤ (inr (inl star)) l = zero-ℤ mul-ℤ (inr (inr zero-ℕ)) l = l mul-ℤ (inr (inr (succ-ℕ x))) l = add-ℤ l (mul-ℤ (inr (inr x)) l) mul-ℤ' : ℤ → ℤ → ℤ mul-ℤ' x y = mul-ℤ y x -- Exercise 4.2 ¬¬ : {l : Level} → UU l → UU l ¬¬ P = ¬ (¬ P) ¬¬¬ : {l : Level} → UU l → UU l ¬¬¬ P = ¬ (¬ (¬ P)) -- Exercise 4.2 (a) no-fixed-points-neg : {l1 : Level} (A : UU l1) → ¬ ((A → ¬ A) × (¬ A → A)) no-fixed-points-neg A (pair f g) = ( λ (h : ¬ A) → h (g h)) (λ (a : A) → f a a) -- Exercise 4.2 (b) intro-dn : {l : Level} {P : UU l} → P → ¬¬ P intro-dn p f = f p -- Exercise 4.2 (c) functor-dn : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → Q) → (¬¬ P → ¬¬ Q) functor-dn f = functor-neg (functor-neg f) -- Exercise 4.2 (d) {- In this exercise we were asked to show that (A + ¬A) implies (¬¬A → A). In other words, we get double negation elimination for the types that are decidable. -} double-negation-elim-is-decidable : {i : Level} (P : UU i) → coprod P (¬ P) → (¬¬ P → P) double-negation-elim-is-decidable P (inl x) p = x double-negation-elim-is-decidable P (inr x) p = ind-empty (p x) -- Exercise 4.2 (e) dn-is-decidable : {l : Level} {P : UU l} → ¬¬ (coprod P (¬ P)) dn-is-decidable {P = P} f = functor-neg (inr {A = P} {B = ¬ P}) f ( functor-neg (inl {A = P} {B = ¬ P}) f) -- Exercise 4.2 (f) dn-dn-elim : {l : Level} {P : UU l} → ¬¬ (¬¬ P → P) dn-dn-elim {P = P} f = ( λ (np : ¬ P) → f (λ (nnp : ¬¬ P) → ind-empty {P = λ x → P} (nnp np))) ( λ (p : P) → f (λ (nnp : ¬¬ P) → p)) -- Exercise 4.2 (g) tautology-4-2-f : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → ¬¬ (((P → Q) → P) → P) tautology-4-2-f {P = P} {Q} f = ( λ (np : ¬ P) → f (λ h → h (λ p → ex-falso (np p)))) ( λ (p : P) → f (λ h → p)) -- Exercise 4.2 (h) dn-linearity-implication : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → ¬¬ (coprod (P → Q) (Q → P)) dn-linearity-implication {P = P} {Q = Q} f = ( λ (np : ¬ P) → functor-neg (inl {A = P → Q} {B = Q → P}) f (λ p → ind-empty (np p))) ( λ (p : P) → functor-neg (inr {A = P → Q} {B = Q → P}) f (λ q → p)) -- Exercise 4.2 (i) dn-elim-neg : {l : Level} (P : UU l) → ¬¬¬ P → ¬ P dn-elim-neg P f p = f (λ g → g p) -- Exercise 4.2 (j) dn-extend : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → ¬¬ Q) → (¬¬ P → ¬¬ Q) dn-extend {P = P} {Q = Q} f = dn-elim-neg (¬ Q) ∘ (functor-dn f) -- Exercise 4.2 (k) dn-elim-exp : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → ¬¬ (P → ¬¬ Q) → (P → ¬¬ Q) dn-elim-exp {P = P} {Q = Q} f p = dn-elim-neg (¬ Q) (functor-dn (λ (g : P → ¬¬ Q) → g p) f) -- Exercise 4.2 (l) dn-elim-prod : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → ¬¬ ((¬¬ P) × (¬¬ Q)) → (¬¬ P) × (¬¬ Q) dn-elim-prod {P = P} {Q = Q} f = pair ( dn-elim-neg (¬ P) (functor-dn pr1 f)) ( dn-elim-neg (¬ Q) (functor-dn pr2 f)) -- Exercise 4.3 -- Exercise 4.3 (a) data list {l : Level} (A : UU l) : UU l where nil : list A cons : A → list A → list A in-list : {l : Level} {A : UU l} → A → list A in-list a = cons a nil -- Exercise 4.3 (b) fold-list : {l1 l2 : Level} {A : UU l1} {B : UU l2} (b : B) (μ : A → (B → B)) → list A → B fold-list b μ nil = b fold-list b μ (cons a l) = μ a (fold-list b μ l) -- Exercise 4.3 (c) length-list : {l : Level} {A : UU l} → list A → ℕ length-list = fold-list zero-ℕ (λ a → succ-ℕ) -- Exercise 4.3 (d) sum-list-ℕ : list ℕ → ℕ sum-list-ℕ = fold-list zero-ℕ add-ℕ -- Exercise 4.3 (e) concat-list : {l : Level} {A : UU l} → list A → (list A → list A) concat-list {l} {A} = fold-list id (λ a f → (cons a) ∘ f) -- Exercise 4.3 (f) flatten-list : {l : Level} {A : UU l} → list (list A) → list A flatten-list = fold-list nil concat-list -- Exercise 4.3 (g) reverse-list : {l : Level} {A : UU l} → list A → list A reverse-list nil = nil reverse-list (cons a l) = concat-list (reverse-list l) (in-list a)
{ "alphanum_fraction": 0.4923805601, "avg_line_length": 23.2901678657, "ext": "agda", "hexsha": "2ace4ccdc98984838a2527d8411354264aa06989", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/04-inductive-types.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/04-inductive-types.agda", "max_line_length": 80, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/04-inductive-types.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 4381, "size": 9712 }
-- Andreas, 2016-12-30, issues #555 and #1886, reported by nad -- Hidden parameters can be omitted in the repetition -- of the parameter list. record R {a} (A : Set a) : Set a record R A where field f : A data D {a} (A : Set a) : Set a data D A where c : A → D A
{ "alphanum_fraction": 0.6323529412, "avg_line_length": 18.1333333333, "ext": "agda", "hexsha": "83b8ae494b0ad27d527971fd65a56eb9764a6dbd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue1886-omit-hidden.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 93, "size": 272 }
module BuiltinSucWarning where data Nat : Set where zero : Nat suc : (n : Nat) → Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} foo : Nat foo = 13
{ "alphanum_fraction": 0.6073298429, "avg_line_length": 13.6428571429, "ext": "agda", "hexsha": "5450c0a63f2135394f81e86ded5aff1383d65ee6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/BuiltinSucWarning.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/BuiltinSucWarning.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/BuiltinSucWarning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 191 }
------------------------------------------------------------------------------ -- Non-intuitionistic logic theorems ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.NonIntuitionistic.TheoremsATP where open import FOL.Base hiding ( pem ) ------------------------------------------------------------------------------ -- The principle of the excluded middle. postulate pem : ∀ {A} → A ∨ ¬ A {-# ATP prove pem #-} -- The principle of indirect proof (proof by contradiction). postulate ¬-elim : ∀ {A} → (¬ A → ⊥) → A {-# ATP prove ¬-elim #-} -- Double negation elimination. postulate ¬¬-elim : ∀ {A} → ¬ ¬ A → A {-# ATP prove ¬¬-elim #-} -- The reductio ab absurdum rule. (Some authors uses this name for the -- principle of indirect proof). postulate raa : ∀ {A} → (¬ A → A) → A {-# ATP prove raa #-} -- ∃ in terms of ∀ and ¬. postulate ¬∃¬→∀ : {A : D → Set} → ¬ (∃[ x ] ¬ A x) → ∀ {x} → A x {-# ATP prove ¬∃¬→∀ #-}
{ "alphanum_fraction": 0.4479717813, "avg_line_length": 32.4, "ext": "agda", "hexsha": "f5b897be8dfab087eba42b6dcebcbab05e62c0d9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/NonIntuitionistic/TheoremsATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 278, "size": 1134 }
------------------------------------------------------------------------ -- Subtyping defined in terms of finite approximations ------------------------------------------------------------------------ module RecursiveTypes.Subtyping.Semantic.Inductive where open import Data.Nat open import Data.Fin open import Codata.Musical.Notation open import RecursiveTypes.Syntax open import RecursiveTypes.Semantics -- Finite trees. infixr 10 _⟶_ data FinTree (n : ℕ) : Set where ⊥ : FinTree n ⊤ : FinTree n var : (x : Fin n) → FinTree n _⟶_ : (σ τ : FinTree n) → FinTree n -- Functions which prune a possibly infinite tree. infix 8 _↑_ _↓_ mutual _↑_ : ∀ {n} → Tree n → ℕ → FinTree n τ ↑ zero = ⊤ ⊥ ↑ suc k = ⊥ ⊤ ↑ suc k = ⊤ var x ↑ suc k = var x σ ⟶ τ ↑ suc k = (♭ σ ↓ k) ⟶ (♭ τ ↑ k) _↓_ : ∀ {n} → Tree n → ℕ → FinTree n τ ↓ zero = ⊥ ⊥ ↓ suc k = ⊥ ⊤ ↓ suc k = ⊤ var x ↓ suc k = var x σ ⟶ τ ↓ suc k = (♭ σ ↑ k) ⟶ (♭ τ ↓ k) -- Subtyping for finite trees. infix 4 _≤Fin_ _≤↓_ _≤↑_ _≤Ind_ data _≤Fin_ {n} : FinTree n → FinTree n → Set where ⊥ : ∀ {τ} → ⊥ ≤Fin τ ⊤ : ∀ {σ} → σ ≤Fin ⊤ refl : ∀ {τ} → τ ≤Fin τ _⟶_ : ∀ {σ₁ σ₂ τ₁ τ₂} (τ₁≤σ₁ : τ₁ ≤Fin σ₁) (σ₂≤τ₂ : σ₂ ≤Fin τ₂) → σ₁ ⟶ σ₂ ≤Fin τ₁ ⟶ τ₂ -- Subtyping for possibly infinite trees, defined in terms of -- subtyping for finite trees. _≤↓_ : ∀ {n} → Tree n → Tree n → Set σ ≤↓ τ = ∀ k → σ ↓ k ≤Fin τ ↓ k _≤↑_ : ∀ {n} → Tree n → Tree n → Set σ ≤↑ τ = ∀ k → σ ↑ k ≤Fin τ ↑ k -- Subtyping for recursive types, defined in terms of subtyping for -- possibly infinite trees. _≤Ind_ : ∀ {n} → Ty n → Ty n → Set σ ≤Ind τ = ⟦ σ ⟧ ≤↓ ⟦ τ ⟧
{ "alphanum_fraction": 0.4979228487, "avg_line_length": 24.0714285714, "ext": "agda", "hexsha": "6dd6c72528acadfa9c9e56998f41b434b833d698", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "RecursiveTypes/Subtyping/Semantic/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "RecursiveTypes/Subtyping/Semantic/Inductive.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "RecursiveTypes/Subtyping/Semantic/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 647, "size": 1685 }
module Computability.Data.Nat.Iteration where open import Computability.Prelude iterate : {A : Set} → (A → A) → ℕ → A → A iterate f zero a = a iterate f (suc n) a = f (iterate f n a) split-iterate : {A : Set}(f : A → A)(a : A) → (n m : ℕ) → iterate f (n + m) a ≡ iterate f n (iterate f m a) split-iterate f a zero m = refl split-iterate f a (suc n) m rewrite split-iterate f a n m = refl
{ "alphanum_fraction": 0.5880952381, "avg_line_length": 28, "ext": "agda", "hexsha": "3a4784c65b216bdf89ce7c22deebc388e0d31bc9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Data/Nat/Iteration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Data/Nat/Iteration.agda", "max_line_length": 65, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Data/Nat/Iteration.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 140, "size": 420 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Coprimality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Coprimality where open import Data.Empty open import Data.Fin using (toℕ; fromℕ≤) open import Data.Fin.Properties using (toℕ-fromℕ≤) open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.GCD open import Data.Nat.GCD.Lemmas open import Data.Nat.Primality open import Data.Nat.Properties open import Data.Product as Prod open import Function open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; cong; subst; module ≡-Reasoning) open import Relation.Nullary open import Relation.Binary ------------------------------------------------------------------------ -- Coprime m n is inhabited iff m and n are coprime (relatively -- prime), i.e. if their only common divisor is 1. Coprime : Rel ℕ 0ℓ Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1 ------------------------------------------------------------------------ -- Relationship between GCD and coprimality coprime-gcd : ∀ {m n} → Coprime m n → GCD m n 1 coprime-gcd {m} {n} c = GCD.is (1∣ m , 1∣ n) greatest where greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ 1 greatest cd with c cd ... | refl = 1∣ 1 gcd-coprime : ∀ {m n} → GCD m n 1 → Coprime m n gcd-coprime g cd with GCD.greatest g cd ... | divides q eq = i*j≡1⇒j≡1 q _ (P.sym eq) ------------------------------------------------------------------------ -- Coprime is decidable. private 0≢1 : 0 ≢ 1 0≢1 () 2+≢1 : ∀ {n} → suc (suc n) ≢ 1 2+≢1 () coprime? : Decidable Coprime coprime? i j with gcd i j ... | (0 , g) = no (0≢1 ∘ GCD.unique g ∘ coprime-gcd) ... | (1 , g) = yes (gcd-coprime g) ... | (suc (suc d) , g) = no (2+≢1 ∘ GCD.unique g ∘ coprime-gcd) -- The coprimality relation is symmetric. sym : Symmetric Coprime sym c = c ∘ swap -- Everything is coprime to 1. 1-coprimeTo : ∀ m → Coprime 1 m 1-coprimeTo m = ∣1⇒≡1 ∘ proj₁ -- Nothing except for 1 is coprime to 0. 0-coprimeTo-m⇒m≡1 : ∀ {m} → Coprime 0 m → m ≡ 1 0-coprimeTo-m⇒m≡1 {m} c = c (m ∣0 , ∣-refl) -- If m and n are coprime, then n + m and n are also coprime. coprime-+ : ∀ {m n} → Coprime m n → Coprime (n + m) n coprime-+ c (d₁ , d₂) = c (∣m+n∣m⇒∣n d₁ d₂ , d₂) -- If the "gcd" in Bézout's identity is non-zero, then the "other" -- divisors are coprime. Bézout-coprime : ∀ {i j d} → Bézout.Identity (suc d) (i * suc d) (j * suc d) → Coprime i j Bézout-coprime (Bézout.+- x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ y q₂ x q₁ eq Bézout-coprime (Bézout.-+ x y eq) (divides q₁ refl , divides q₂ refl) = lem₁₀ x q₁ y q₂ eq -- Coprime numbers satisfy Bézout's identity. coprime-Bézout : ∀ {i j} → Coprime i j → Bézout.Identity 1 i j coprime-Bézout = Bézout.identity ∘ coprime-gcd -- If i divides jk and is coprime to j, then it divides k. coprime-divisor : ∀ {k i j} → Coprime i j → i ∣ j * k → i ∣ k coprime-divisor {k} c (divides q eq′) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * k ∸ y * q) (lem₈ x y eq eq′) ... | Bézout.-+ x y eq = divides (y * q ∸ x * k) (lem₉ x y eq eq′) -- If d is a common divisor of mk and nk, and m and n are coprime, -- then d divides k. coprime-factors : ∀ {d m n k} → Coprime m n → d ∣ m * k × d ∣ n * k → d ∣ k coprime-factors c (divides q₁ eq₁ , divides q₂ eq₂) with coprime-Bézout c ... | Bézout.+- x y eq = divides (x * q₁ ∸ y * q₂) (lem₁₁ x y eq eq₁ eq₂) ... | Bézout.-+ x y eq = divides (y * q₂ ∸ x * q₁) (lem₁₁ y x eq eq₂ eq₁) -- A variant of GCD. data GCD′ : ℕ → ℕ → ℕ → Set where gcd-* : ∀ {d} q₁ q₂ (c : Coprime q₁ q₂) → GCD′ (q₁ * d) (q₂ * d) d -- The two definitions are equivalent. gcd-gcd′ : ∀ {d m n} → GCD m n d → GCD′ m n d gcd-gcd′ g with GCD.commonDivisor g gcd-gcd′ {zero} g | (divides q₁ refl , divides q₂ refl) with q₁ * 0 | *-comm 0 q₁ | q₂ * 0 | *-comm 0 q₂ ... | .0 | refl | .0 | refl = gcd-* 1 1 (1-coprimeTo 1) gcd-gcd′ {suc d} g | (divides q₁ refl , divides q₂ refl) = gcd-* q₁ q₂ (Bézout-coprime (Bézout.identity g)) gcd′-gcd : ∀ {m n d} → GCD′ m n d → GCD m n d gcd′-gcd (gcd-* q₁ q₂ c) = GCD.is (n∣m*n q₁ , n∣m*n q₂) (coprime-factors c) -- Calculates (the alternative representation of) the gcd of the -- arguments. gcd′ : ∀ m n → ∃ λ d → GCD′ m n d gcd′ m n = Prod.map id gcd-gcd′ (gcd m n) -- Primality implies coprimality. prime⇒coprime : ∀ m → Prime m → ∀ n → 0 < n → n < m → Coprime m n prime⇒coprime 0 () _ _ _ _ prime⇒coprime 1 () _ _ _ _ prime⇒coprime (suc (suc m)) _ 0 () _ _ prime⇒coprime (suc (suc m)) _ _ _ _ {1} _ = refl prime⇒coprime (suc (suc m)) p _ _ _ {0} (divides q 2+m≡q*0 , _) = ⊥-elim $ i+1+j≢i 0 (begin 2 + m ≡⟨ 2+m≡q*0 ⟩ q * 0 ≡⟨ *-zeroʳ q ⟩ 0 ∎) where open ≡-Reasoning prime⇒coprime (suc (suc m)) p (suc n) _ 1+n<2+m {suc (suc i)} (2+i∣2+m , 2+i∣1+n) = ⊥-elim (p _ 2+i′∣2+m) where i<m : i < m i<m = +-cancelˡ-< 2 (begin-strict 2 + i ≤⟨ ∣⇒≤ 2+i∣1+n ⟩ 1 + n <⟨ 1+n<2+m ⟩ 2 + m ∎) where open ≤-Reasoning 2+i′∣2+m : 2 + toℕ (fromℕ≤ i<m) ∣ 2 + m 2+i′∣2+m = subst (_∣ 2 + m) (P.sym (cong (2 +_) (toℕ-fromℕ≤ i<m))) 2+i∣2+m
{ "alphanum_fraction": 0.5378508124, "avg_line_length": 31.6725146199, "ext": "agda", "hexsha": "603f3b91cb5f4f877986cd982e01d4cf187b5f36", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Coprimality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Coprimality.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Coprimality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2224, "size": 5416 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- a zero object is both terminal and initial. module Categories.Object.Zero {o ℓ e} (C : Category o ℓ e) where open import Level using (_⊔_) open import Categories.Object.Terminal C open import Categories.Object.Initial C open import Categories.Morphism C open Category C open HomReasoning record Zero : Set (o ⊔ ℓ ⊔ e) where field zero : Obj ! : ∀ {A} → zero ⇒ A ¡ : ∀ {A} → A ⇒ zero zero⇒ : ∀ {A B : Obj} → A ⇒ B zero⇒ {A} = ! ∘ ¡ field !-unique : ∀ {A} (f : zero ⇒ A) → ! ≈ f ¡-unique : ∀ {A} (f : A ⇒ zero) → ¡ ≈ f ¡-unique₂ : ∀ {A} (f g : A ⇒ zero) → f ≈ g ¡-unique₂ f g = ⟺ (¡-unique f) ○ ¡-unique g !-unique₂ : ∀ {A} (f g : zero ⇒ A) → f ≈ g !-unique₂ f g = ⟺ (!-unique f) ○ !-unique g initial : Initial initial = record { ⊥ = zero ; ⊥-is-initial = record { ! = ! ; !-unique = !-unique } } terminal : Terminal terminal = record { ⊤ = zero ; ⊤-is-terminal = record { ! = ¡ ; !-unique = ¡-unique } } module initial = Initial initial module terminal = Terminal terminal !-Mono : ∀ {A} → Mono (! {A}) !-Mono = from-⊤-is-Mono {t = terminal} ! ¡-Epi : ∀ {A} → Epi (¡ {A}) ¡-Epi = to-⊥-is-Epi {i = initial} ¡
{ "alphanum_fraction": 0.5244274809, "avg_line_length": 20.46875, "ext": "agda", "hexsha": "1a926f3d4dfe5857f1a8684fa23fc2303ffe5441", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FintanH/agda-categories", "max_forks_repo_path": "src/Categories/Object/Zero.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FintanH/agda-categories", "max_issues_repo_path": "src/Categories/Object/Zero.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FintanH/agda-categories", "max_stars_repo_path": "src/Categories/Object/Zero.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 476, "size": 1310 }
-- Andreas, 2014-01-21, Issue 1209 reported by Andrea {-# OPTIONS --cubical-compatible #-} {-# OPTIONS --copatterns #-} {-# OPTIONS --sized-types #-} open import Common.Size record R (i : Size) : Set where coinductive field force : (j : Size< i) → R j postulate f : ∀ {i} → R i → R i t : (i : Size) → R i R.force (t i) j = f (t j) -- should termination check
{ "alphanum_fraction": 0.5973333333, "avg_line_length": 17.8571428571, "ext": "agda", "hexsha": "74f6e406da8fd20b21f32bcd034d41ecd68ac40e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1409.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1409.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1409.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 125, "size": 375 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some algebraic structures (not packed up with sets, operations, -- etc.) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) -- The structures are parameterised by an equivalence relation module Algebra.Structures {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Algebra.FunctionProperties _≈_ import Algebra.FunctionProperties.Consequences as Consequences open import Data.Product using (_,_; proj₁; proj₂) open import Level using (_⊔_) ------------------------------------------------------------------------ -- Semigroups record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∙-cong : Congruent₂ ∙ open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ∙-congˡ : LeftCongruent ∙ ∙-congˡ y≈z = ∙-cong refl y≈z ∙-congʳ : RightCongruent ∙ ∙-congʳ y≈z = ∙-cong y≈z refl record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ assoc : Associative ∙ open IsMagma isMagma public record IsBand (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ idem : Idempotent ∙ open IsSemigroup isSemigroup public record IsSemilattice (∧ : Op₂ A) : Set (a ⊔ ℓ) where field isBand : IsBand ∧ comm : Commutative ∧ open IsBand isBand public renaming (∙-cong to ∧-cong; ∙-congˡ to ∧-congˡ; ∙-congʳ to ∧-congʳ) ------------------------------------------------------------------------ -- Monoids record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identity : Identity ε ∙ open IsSemigroup isSemigroup public identityˡ : LeftIdentity ε ∙ identityˡ = proj₁ identity identityʳ : RightIdentity ε ∙ identityʳ = proj₂ identity record IsCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identityˡ : LeftIdentity ε ∙ comm : Commutative ∙ open IsSemigroup isSemigroup public identityʳ : RightIdentity ε ∙ identityʳ = Consequences.comm+idˡ⇒idʳ setoid comm identityˡ identity : Identity ε ∙ identity = (identityˡ , identityʳ) isMonoid : IsMonoid ∙ ε isMonoid = record { isSemigroup = isSemigroup ; identity = identity } record IsIdempotentCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isCommutativeMonoid : IsCommutativeMonoid ∙ ε idem : Idempotent ∙ open IsCommutativeMonoid isCommutativeMonoid public ------------------------------------------------------------------------ -- Groups record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isMonoid : IsMonoid _∙_ ε inverse : Inverse ε _⁻¹ _∙_ ⁻¹-cong : Congruent₁ _⁻¹ open IsMonoid isMonoid public infixl 7 _-_ _-_ : Op₂ A x - y = x ∙ (y ⁻¹) inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse inverseʳ : RightInverse ε _⁻¹ _∙_ inverseʳ = proj₂ inverse uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹) uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique setoid ∙-cong assoc identity inverseʳ uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹) uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique setoid ∙-cong assoc identity inverseˡ record IsAbelianGroup (∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isGroup : IsGroup ∙ ε ⁻¹ comm : Commutative ∙ open IsGroup isGroup public isCommutativeMonoid : IsCommutativeMonoid ∙ ε isCommutativeMonoid = record { isSemigroup = isSemigroup ; identityˡ = identityˡ ; comm = comm } ------------------------------------------------------------------------ -- Semirings record IsNearSemiring (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isMonoid : IsMonoid + 0# *-isSemigroup : IsSemigroup * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ) open IsSemigroup *-isSemigroup public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; isMagma to *-isMagma ) record IsSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isSemigroup : IsSemigroup * distrib : * DistributesOver + zero : Zero 0# * open IsCommutativeMonoid +-isCommutativeMonoid public using () renaming ( isMonoid to +-isMonoid ; comm to +-comm ) zeroˡ : LeftZero 0# * zeroˡ = proj₁ zero zeroʳ : RightZero 0# * zeroʳ = proj₂ zero isNearSemiring : IsNearSemiring + * 0# isNearSemiring = record { +-isMonoid = +-isMonoid ; *-isSemigroup = *-isSemigroup ; distribʳ = proj₂ distrib ; zeroˡ = zeroˡ } open IsNearSemiring isNearSemiring public hiding (+-isMonoid; zeroˡ) record IsSemiringWithoutAnnihilatingZero (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field -- Note that these structures do have an additive unit, but this -- unit does not necessarily annihilate multiplication. +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + distribˡ : * DistributesOverˡ + distribˡ = proj₁ distrib distribʳ : * DistributesOverʳ + distribʳ = proj₂ distrib open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) record IsSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne + * 0# isSemiringWithoutOne = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isSemigroup = *-isSemigroup ; distrib = distrib ; zero = zero } open IsSemiringWithoutOne isSemiringWithoutOne public using ( isNearSemiring ; zeroˡ ; zeroʳ ) record IsCommutativeSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutOne : IsSemiringWithoutOne + * 0# *-comm : Commutative * open IsSemiringWithoutOne isSemiringWithoutOne public record IsCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isCommutativeMonoid : IsCommutativeMonoid * 1# distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * private module +-CM = IsCommutativeMonoid +-isCommutativeMonoid open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public using () renaming (comm to *-comm) distribˡ : * DistributesOverˡ + distribˡ = Consequences.comm+distrʳ⇒distrˡ +-CM.setoid +-CM.∙-cong *-comm distribʳ distrib : * DistributesOver + distrib = (distribˡ , distribʳ) zeroʳ : RightZero 0# * zeroʳ = Consequences.comm+zeˡ⇒zeʳ +-CM.setoid *-comm zeroˡ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isSemiring : IsSemiring + * 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-CM.isMonoid ; distrib = distrib } ; zero = zero } open IsSemiring isSemiring public hiding ( distrib; distribʳ; distribˡ ; zero; zeroˡ; zeroʳ ; +-isCommutativeMonoid ) isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne + * 0# isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne ; *-comm = *-CM.comm } ------------------------------------------------------------------------ -- Rings record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; inverse to -‿inverse ; inverseˡ to -‿inverseˡ ; inverseʳ to -‿inverseʳ ; ⁻¹-cong to -‿cong ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeMonoid to +-isCommutativeMonoid ; isGroup to +-isGroup ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) zeroˡ : LeftZero 0# * zeroˡ = Consequences.assoc+distribʳ+idʳ+invʳ⇒zeˡ setoid +-cong *-cong +-assoc (proj₂ distrib) +-identityʳ -‿inverseʳ zeroʳ : RightZero 0# * zeroʳ = Consequences.assoc+distribˡ+idʳ+invʳ⇒zeʳ setoid +-cong *-cong +-assoc (proj₁ distrib) +-identityʳ -‿inverseʳ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-isMonoid ; distrib = distrib } isSemiring : IsSemiring + * 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero ; zero = zero } open IsSemiring isSemiring public using (distribˡ; distribʳ; isNearSemiring; isSemiringWithoutOne) record IsCommutativeRing (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isRing : IsRing + * - 0# 1# *-comm : Commutative * open IsRing isRing public *-isCommutativeMonoid : IsCommutativeMonoid * 1# *-isCommutativeMonoid = record { isSemigroup = *-isSemigroup ; identityˡ = *-identityˡ ; comm = *-comm } isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# isCommutativeSemiring = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isCommutativeMonoid = *-isCommutativeMonoid ; distribʳ = distribʳ ; zeroˡ = zeroˡ } open IsCommutativeSemiring isCommutativeSemiring public using ( isCommutativeSemiringWithoutOne ) ------------------------------------------------------------------------ -- Lattices -- Note that this record is not defined in terms of IsSemilattice -- because the idempotence laws of ∨ and ∧ can be derived from the -- absorption laws, which makes the corresponding "idem" fields -- redundant. The derived idempotence laws are stated and proved in -- Algebra.Properties.Lattice along with the fact that every lattice -- consists of two semilattices. record IsLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∨-comm : Commutative ∨ ∨-assoc : Associative ∨ ∨-cong : Congruent₂ ∨ ∧-comm : Commutative ∧ ∧-assoc : Associative ∧ ∧-cong : Congruent₂ ∧ absorptive : Absorptive ∨ ∧ open IsEquivalence isEquivalence public ∨-absorbs-∧ : ∨ Absorbs ∧ ∨-absorbs-∧ = proj₁ absorptive ∧-absorbs-∨ : ∧ Absorbs ∨ ∧-absorbs-∨ = proj₂ absorptive ∧-congˡ : LeftCongruent ∧ ∧-congˡ y≈z = ∧-cong refl y≈z ∧-congʳ : RightCongruent ∧ ∧-congʳ y≈z = ∧-cong y≈z refl ∨-congˡ : LeftCongruent ∨ ∨-congˡ y≈z = ∨-cong refl y≈z ∨-congʳ : RightCongruent ∨ ∨-congʳ y≈z = ∨-cong y≈z refl record IsDistributiveLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isLattice : IsLattice ∨ ∧ ∨-∧-distribʳ : ∨ DistributesOverʳ ∧ open IsLattice isLattice public record IsBooleanAlgebra (∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set (a ⊔ ℓ) where field isDistributiveLattice : IsDistributiveLattice ∨ ∧ ∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧ ¬-cong : Congruent₁ ¬ open IsDistributiveLattice isDistributiveLattice public
{ "alphanum_fraction": 0.579599141, "avg_line_length": 28.2222222222, "ext": "agda", "hexsha": "38c3919c242189b4a5dce1ca6bde8eabbfffb444", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Structures.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Structures.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4802, "size": 13970 }
-- Andreas, 2014-09-02 module _ where module Data where data D : Set where A : D module _ (A : Set) where open Data using (D; A) x : D x = A
{ "alphanum_fraction": 0.5786163522, "avg_line_length": 9.9375, "ext": "agda", "hexsha": "1f0dec81a09222f3ce3c20d80008263360790eba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1266b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1266b.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1266b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 159 }
-- Andreas, 2011-04-07 module IrrelevantFamilyIndex where data Nat : Set where zero : Nat suc : Nat -> Nat -- irrelevant index data Fin : .Nat -> Set where zero : .(n : Nat) -> Fin (suc n) suc : .(n : Nat) -> Fin n -> Fin (suc n) t : Fin zero t = zero zero -- the following is ok, since Fin _ is really just Nat toNat : Fin zero -> Nat toNat (zero _) = zero toNat (suc _ i) = suc (toNat i) data Pos : Nat -> Set where pos : (n : Nat) -> Pos (suc n) f : (n : Nat) -> Fin n -> Pos n f .(suc n) (zero n) = pos n f .(suc n) (suc n i) = pos n -- cannot infer value of dot pattern {- f : (n : Nat) -> Fin n -> Pos n f .(suc _) (zero _) = pos _ f .(suc _) (suc _ _) = pos _ f' : (n : Nat) -> Fin n -> Pos n f' _ (zero _) = pos _ f' _ (suc _ _) = pos _ -}
{ "alphanum_fraction": 0.5496774194, "avg_line_length": 18.9024390244, "ext": "agda", "hexsha": "4ed3df28736257727b9e37c92ef3bba3df79094a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IrrelevantFamilyIndex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IrrelevantFamilyIndex.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantFamilyIndex.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 301, "size": 775 }
{- Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Product where import Data.Product open Data.Product using (_×_; proj₁; proj₂; _,_; _,′_; curry; uncurry; uncurry′) public module Product where
{ "alphanum_fraction": 0.7706919946, "avg_line_length": 32.0434782609, "ext": "agda", "hexsha": "3aad69dc37102e0b18c73be27c35ff40b5822277", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "bbarenblat/B", "max_forks_repo_path": "Prelude/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "bbarenblat/B", "max_issues_repo_path": "Prelude/Product.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "bbarenblat/B", "max_stars_repo_path": "Prelude/Product.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z", "num_tokens": 178, "size": 737 }
------------------------------------------------------------------------ -- The Agda standard library -- -- N-ary products ------------------------------------------------------------------------ -- Vectors (as in Data.Vec) also represent n-ary products, so what is -- the point of this module? The n-ary products below are intended to -- be used with a fixed n, in which case the nil constructor can be -- avoided: pairs are represented as pairs (x , y), not as triples -- (x , y , unit). {-# OPTIONS --without-K --safe #-} module Data.Product.N-ary where open import Data.Nat as Nat hiding (_^_) open import Data.Fin hiding (lift) open import Data.Product as P using (_×_ ; _,_ ; ∃₂ ; uncurry) open import Data.Sum using (_⊎_) open import Data.Unit open import Data.Empty open import Function open import Level using (Lift; lift) open import Relation.Binary.PropositionalEquality using (_≡_) -- Types and patterns ------------------------------------------------------------------------ pattern 2+_ n = suc (suc n) infix 8 _^_ _^_ : ∀ {ℓ} → Set ℓ → ℕ → Set ℓ A ^ 0 = Lift _ ⊤ A ^ 1 = A A ^ 2+ n = A × A ^ suc n pattern [] = lift tt module _ {a} {A : Set a} where infix 3 _∈[_]_ _∈[_]_ : A → ∀ n → A ^ n → Set a a ∈[ 0 ] as = Lift _ ⊥ a ∈[ 1 ] a′ = a ≡ a′ a ∈[ 2+ n ] a′ , as = a ≡ a′ ⊎ a ∈[ suc n ] as -- Basic operations ------------------------------------------------------------------------ module _ {a} {A : Set a} where cons : ∀ n → A → A ^ n → A ^ suc n cons 0 a _ = a cons (suc n) a as = a , as uncons : ∀ n → A ^ suc n → A × A ^ n uncons 0 a = a , lift tt uncons (suc n) (a , as) = a , as head : ∀ n → A ^ suc n → A head n as = P.proj₁ (uncons n as) tail : ∀ n → A ^ suc n → A ^ n tail n as = P.proj₂ (uncons n as) lookup : ∀ {n} (k : Fin n) → A ^ n → A lookup {suc n} zero = head n lookup {suc n} (suc k) = lookup k ∘′ tail n replicate : ∀ n → A → A ^ n replicate 0 a = [] replicate 1 a = a replicate (2+ n) a = a , replicate (suc n) a tabulate : ∀ n → (Fin n → A) → A ^ n tabulate 0 f = [] tabulate 1 f = f zero tabulate (2+ n) f = f zero , tabulate (suc n) (f ∘′ suc) append : ∀ m n → A ^ m → A ^ n → A ^ (m Nat.+ n) append 0 n xs ys = ys append 1 n x ys = cons n x ys append (2+ m) n (x , xs) ys = x , append (suc m) n xs ys splitAt : ∀ m n → A ^ (m Nat.+ n) → A ^ m × A ^ n splitAt 0 n xs = [] , xs splitAt (suc m) n xs = let (ys , zs) = splitAt m n (tail (m Nat.+ n) xs) in cons m (head (m Nat.+ n) xs) ys , zs -- Manipulating N-ary products ------------------------------------------------------------------------ module _ {a b} {A : Set a} {B : Set b} where map : (A → B) → ∀ n → A ^ n → B ^ n map f 0 as = lift tt map f 1 a = f a map f (2+ n) (a , as) = f a , map f (suc n) as ap : ∀ n → (A → B) ^ n → A ^ n → B ^ n ap 0 fs ts = [] ap 1 f t = f t ap (2+ n) (f , fs) (t , ts) = f t , ap (suc n) fs ts module _ {a p} {A : Set a} {P : ℕ → Set p} where foldr : P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldr p0 p1 p2+ 0 as = p0 foldr p0 p1 p2+ 1 a = p1 a foldr p0 p1 p2+ (2+ n) (a , as) = p2+ n a (foldr p0 p1 p2+ (suc n) as) foldl : ∀ {a p} {A : Set a} (P : ℕ → Set p) → P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldl P p0 p1 p2+ 0 as = p0 foldl P p0 p1 p2+ 1 a = p1 a foldl P p0 p1 p2+ (2+ n) (a , as) = let p1′ = p1 a in foldl (P ∘′ suc) p1′ (λ a → p2+ 0 a p1′) (p2+ ∘ suc) (suc n) as module _ {a} {A : Set a} where reverse : ∀ n → A ^ n → A ^ n reverse = foldl (A ^_) [] id (λ n → _,_) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where zipWith : (A → B → C) → ∀ n → A ^ n → B ^ n → C ^ n zipWith f 0 as bs = [] zipWith f 1 a b = f a b zipWith f (2+ n) (a , as) (b , bs) = f a b , zipWith f (suc n) as bs unzipWith : (A → B × C) → ∀ n → A ^ n → B ^ n × C ^ n unzipWith f 0 as = [] , [] unzipWith f 1 a = f a unzipWith f (2+ n) (a , as) = P.zip _,_ _,_ (f a) (unzipWith f (suc n) as) module _ {a b} {A : Set a} {B : Set b} where zip : ∀ n → A ^ n → B ^ n → (A × B) ^ n zip = zipWith _,_ unzip : ∀ n → (A × B) ^ n → A ^ n × B ^ n unzip = unzipWith id
{ "alphanum_fraction": 0.4374164811, "avg_line_length": 30.3378378378, "ext": "agda", "hexsha": "6cd10fa451e3a74b4209ce4425dd81b366468fb9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1744, "size": 4490 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Concrete.System.Parameters import LibraBFT.Concrete.Properties.VotesOnce as VO import LibraBFT.Concrete.Properties.LockedRound as LR open import LibraBFT.Yasm.Properties ConcSysParms -- This module collects in one place the obligations an -- implementation must meet in order to enjoy the properties -- proved in Abstract.Properties. module LibraBFT.Concrete.Obligations where record ImplObligations : Set₁ where field -- Structural obligations: sps-cor : StepPeerState-AllValidParts -- Semantic obligations: -- -- VotesOnce: vo₁ : VO.ImplObligation₁ vo₂ : VO.ImplObligation₂ -- LockedRound: lr₁ : LR.ImplObligation₁
{ "alphanum_fraction": 0.7481481481, "avg_line_length": 30.4838709677, "ext": "agda", "hexsha": "74727b839233b3302269d830bc0fa2bc5317349b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_forks_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_issues_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1", "max_stars_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 240, "size": 945 }
-- Andreas, 2016-11-03, issue #2291, reported by Aerate -- {-# OPTIONS -v interaction.helper:100 #-} record Foo : Set where coinductive field one : Foo open Foo someFoo : Foo someFoo .one = {! {R} -> Foo.one R !} -- WAS: C-c C-h gives: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/ConcreteToAbstract.hs:1248 -- NOW: -- Expected an argument of the form f e1 e2 .. en -- when checking that the expression ? has type Foo
{ "alphanum_fraction": 0.6891089109, "avg_line_length": 25.25, "ext": "agda", "hexsha": "7024f83ff33d07acbba98725481d90c46a463259", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2291.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2291.agda", "max_line_length": 85, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2291.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 148, "size": 505 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Unit.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Unit.Base open import Cubical.Data.Prod.Base isContrUnit : isContr Unit isContrUnit = tt , λ {tt → refl} isPropUnit : isProp Unit isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit isOfHLevelUnit : (n : ℕ) → isOfHLevel n Unit isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit diagonal-unit : Unit ≡ Unit × Unit diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt}) where open import Cubical.Foundations.Isomorphism
{ "alphanum_fraction": 0.7419354839, "avg_line_length": 29.76, "ext": "agda", "hexsha": "95b20ffb667cce8bee897d1ba3a7b9958d7d0cc9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Data/Unit/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Data/Unit/Properties.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Data/Unit/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 227, "size": 744 }
module Axiom.FunctionExtensionality where open import Level using (zero) open import Relation.Binary.PropositionalEquality postulate fun-ext : Extensionality zero zero
{ "alphanum_fraction": 0.8372093023, "avg_line_length": 21.5, "ext": "agda", "hexsha": "2a73b2d90e06a0de880225485e2671979a2ec256", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Axiom/FunctionExtensionality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Axiom/FunctionExtensionality.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Axiom/FunctionExtensionality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 37, "size": 172 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --show-implicit #-} open import Oscar.Prelude open import Oscar.Class -- classes open import Oscar.Class.Transitivity -- data open import Oscar.Data.Substitunction open import Oscar.Data.Term module Test.EquivalentCandidates where module _ {a} where instance 𝓣ransitivityFunction₁ : Transitivity.class Function⟦ a ⟧ 𝓣ransitivityFunction₁ .⋆ f g = g ∘ f 𝓣ransitivityFunction₂ : Transitivity.class Function⟦ a ⟧ 𝓣ransitivityFunction₂ .⋆ f g = g ∘ f module _ (𝔓 : Ø₀) where open Substitunction 𝔓 open Term 𝔓 non-unique non-unique-2-hole unique-1-hole unsolved-meta : ∀ {m n} (f : Substitunction m n) → Substitunction m n non-unique {m} {n} f = {!transitivity {𝔒 = Ø₀} f (¡ {𝔒 = Term n})!} {- Candidates: [ 𝓣ransitivityFunction₁ : {a : Ł} → Transitivity.class Function⟦ a ⟧ , 𝓣ransitivityFunction₂ : {a : Ł} → Transitivity.class Function⟦ a ⟧ ] -} non-unique-2-hole f = {!transitivity {𝔒 = Ø₀} {!!} {!!}!} {- Candidates: [ 𝓣ransitivityFunction₁ : {a : Ł} → Transitivity.class Function⟦ a ⟧ , 𝓣ransitivityFunction₂ : {a : Ł} → Transitivity.class Function⟦ a ⟧ ] -} unique-1-hole f = transitivity {_∼_ = Function} f {!!} unsolved-meta {m} {n} f = transitivity {𝔒 = Ø₀} ⦃ {!!} ⦄ f (¡ {𝔒 = Term n})
{ "alphanum_fraction": 0.6517789553, "avg_line_length": 26.9591836735, "ext": "agda", "hexsha": "f5b94b3526c78bf399075e2bf535dc3a3cdca335", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/EquivalentCandidates.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/EquivalentCandidates.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/EquivalentCandidates.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 469, "size": 1321 }
{-# OPTIONS --allow-unsolved-metas #-} open import MultiSorted.AlgebraicTheory import MultiSorted.Interpretation as Interpretation import MultiSorted.SyntacticCategory as SyntacticCategory import MultiSorted.Substitution as Substitution import Agda.Builtin.Equality as Eq open import Relation.Binary.PropositionalEquality using (_≡_; refl ; cong) module MultiSorted.UniversalInterpretation {ℓt} {𝓈 ℴ} {Σ : Signature {𝓈} {ℴ}} (T : Theory ℓt Σ) where open Theory T open Substitution T open SyntacticCategory T -- The universal interpretation in the syntactic category interp-oper-𝒮 : ∀ (f : oper) → (prod-𝒮 (oper-arity f)) ⇒s (ctx-slot (oper-sort f)) interp-oper-𝒮 f _ = tm-oper f λ i → tm-var i ℐ : Interpretation.Interpretation Σ cartesian-𝒮 ℐ = record { interp-sort = ctx-slot ; interp-ctx = producted-𝒮 ; interp-oper = interp-oper-𝒮 } open Interpretation.Interpretation ℐ interp-term-self : ∀ {Γ} {A} (t : Term Γ A) (y : var (interp-sort A)) → ⊢ Γ ∥ (interp-term t y) ≈ t ⦂ A interp-term-self (tm-var x) _ = eq-refl interp-term-self (tm-oper f xs) _ = eq-congr (λ i → interp-term-self (xs i) var-var)
{ "alphanum_fraction": 0.6937553464, "avg_line_length": 29.9743589744, "ext": "agda", "hexsha": "65a719342689f0c3f8196afd44af0f998ae0bd8a", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/MultiSorted/UniversalInterpretation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/MultiSorted/UniversalInterpretation.agda", "max_line_length": 105, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/MultiSorted/UniversalInterpretation.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 379, "size": 1169 }
import Level open import Relation.Binary using (Decidable ; Rel ; IsStrictTotalOrder ; Tri) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; sym ; module ≡-Reasoning ; inspect ; subst) open import Data.Nat as Nat using (ℕ ; suc ; zero ; _≤′_ ; _≤_ ; _+_ ; s≤s ; z≤n ; ≤′-refl ; ≤′-step) open import Data.Nat.Properties as NatP using (≤⇒≤′ ; ≤′⇒≤ ; m≤m+n ; s≤′s) open import Data.Nat.Properties.Simple as NatPS using (+-comm ; +-suc) open import Data.Product using (∃) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) import Relation.Unary as U open import Data.MoreNatProp module Data.OrderedListMap (Key : Set) (inject : Key → ℕ) (Value : Set) where open import utility open import Data.Maybe using (just ; nothing ; Maybe) open import Function using (_∘_ ; _∋_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _++_ ; [_] ; [] ; _∷_ ; map) open import Data.List.All as All using (All) open import Data.Product using (Σ ; Σ-syntax ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_ ; ∃-syntax) open import Data.Sum using (inj₁ ; inj₂ ; _⊎_) open import Data.Unit using (⊤ ; tt) open import Relation.Nullary using (yes ; no ; ¬_) open import Data.List.Any using (here ; there) open import Data.List.Any.Properties using (∷↔ ; ⊥↔Any[]) renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Function using (_∘_) open import Function.Inverse using (_↔_ ; Inverse) open import Function.Equality using (Π) open import Data.Bool using (Bool ; true ; false) infix 6 _U_ LMap : Set LMap = List (Maybe Value) m-insert : Maybe Value → ℕ → LMap → LMap m-insert v zero [] = [ v ] m-insert nothing zero (x ∷ l) = x ∷ l m-insert (just v) zero (x ∷ l) = (just v) ∷ l m-insert v (suc n) [] = nothing ∷ (m-insert v n []) m-insert v (suc n) (x ∷ l) = x ∷ (m-insert v n l) insert : Key → Value → LMap → LMap insert k v l = m-insert (just v) (inject k) l Dom' : LMap → List ℕ Dom' [] = [] Dom' ((just _) ∷ l) = 0 ∷ (map suc (Dom' l)) Dom' (nothing ∷ l) = (map suc (Dom' l)) _U_ : LMap → LMap → LMap [] U m2 = m2 (x ∷ m1) U [] = (x ∷ m1) (just x ∷ m1) U (just x₁ ∷ m2) = just x₁ ∷ (m1 U m2) (just x ∷ m1) U (nothing ∷ m2) = just x ∷ (m1 U m2) (nothing ∷ m1) U (just x ∷ m2) = just x ∷ (m1 U m2) (nothing ∷ m1) U (nothing ∷ m2) = nothing ∷ (m1 U m2) dist'::b : ∀{V1 V2 S1 S2} → (distinct'{ℕ} (S1 ∷ V1) (S2 ∷ V2)) → (distinct' V1 V2) dist'::b d = dist'-sym (dist':: (dist'-sym (dist':: d))) dist-cons : ∀{k k' l l'} → distinct'{ℕ} (k ∷ l) (k' ∷ l') → ¬ k ≡ k' dist-cons {k} d refl = d k (here refl) (here refl) data dist-dom : LMap → LMap → Set where el : ∀{l} → dist-dom [] l le : ∀{l} → dist-dom l [] cl : ∀{l1 l2 v} → dist-dom l1 l2 → dist-dom (nothing ∷ l1) ((just v) ∷ l2) lc : ∀{l1 l2 v} → dist-dom l1 l2 → dist-dom ((just v) ∷ l1) (nothing ∷ l2) nn : ∀{l1 l2} → dist-dom l1 l2 → dist-dom (nothing ∷ l1) (nothing ∷ l2) ∈→⊥ : ∀{A} {z : A} → z ∈ [] → ⊥ ∈→⊥{A}{z} () -- Π._⟨$⟩_ (Inverse.from (⊥↔Any[]{A = A}{P = _≡_ z})) x dist-b : ∀{l l' x} → distinct' (x ∷ l) (x ∷ l') → ⊥ dist-b{x = x} d with (dist-cons d) ... | relf = d x (here refl) (here refl) sucin : ∀{z n} → z ∈ n → (suc z) ∈ (map suc n) sucin {z} {.(_ ∷ _)} (here px) rewrite px = here refl sucin {z} {.(_ ∷ _)} (there I) = (there (sucin I)) suc≡ : ∀{z w} → suc z ≡ suc w → z ≡ w suc≡ refl = refl sucout : ∀{z n} → (suc z) ∈ (map suc n) → z ∈ n sucout {z} {[]} () sucout {z} {x ∷ n} (here px) rewrite suc≡ px = (here refl) sucout {z} {x ∷ n} (there I) = (there (sucout I)) dist-map : ∀{m n} → distinct' (map suc m) (map suc n) → distinct' m n dist-map {[]} {[]} d = λ z x x₁ → ∈→⊥ x dist-map {[]} {x ∷ n} d = λ z x₁ x₂ → ∈→⊥ x₁ dist-map {x ∷ m} {[]} d = λ z x₁ x₂ → ∈→⊥ x₂ dist-map {zero ∷ m} {zero ∷ n} d = ⊥-elim (dist-b d) dist-map {zero ∷ m} {suc y ∷ n} d z x x₁ = d (suc z) (sucin x) (sucin x₁) dist-map {suc y ∷ m} {zero ∷ n} d z x x₁ = d (suc z) (sucin x) (sucin x₁) dist-map {suc _ ∷ m} {suc y ∷ n} d z x x₁ = d (suc z) (sucin x) (sucin x₁) dist-in : ∀{m1 m2 x y} → distinct' (Dom' (x ∷ m1)) (Dom' (y ∷ m2)) → distinct' (Dom' m1) (Dom' m2) dist-in {[]} {[]} {x} {y} dd = λ z x₁ x₂ → ∈→⊥ x₁ dist-in {[]} {x ∷ m2} {x₁} {y} dd = λ z x₂ x₃ → ∈→⊥ x₂ dist-in {x ∷ m1} {[]} {x₁} {y} dd = λ z x₂ x₃ → ∈→⊥ x₃ dist-in {h₁ ∷ m1} {h₂ ∷ m2} {just x} {just x₁} dd = ⊥-elim (dist-b dd) dist-in {h₁ ∷ m1} {h₂ ∷ m2} {just x} {nothing} dd = λ z x₁ x₂ → (dist'-sym (dist':: (dist'-sym dd))) _ (sucin x₁) (sucin x₂) dist-in {h₁ ∷ m1} {h₂ ∷ m2} {nothing} {just x} dd = λ z x₁ x₂ → (dist':: dd) _ (sucin x₁) (sucin x₂) dist-in {h₁ ∷ m1} {h₂ ∷ m2} {nothing} {nothing} dd = dist-map dd -- ((Π._⟨$⟩_ (Inverse.to (∷↔ (_≡_ _)))) (inj₂ x₂)) dist-gen : ∀{m1 m2} → distinct' (Dom' m1) (Dom' m2) → dist-dom m1 m2 dist-gen {[]} {[]} dd = el dist-gen {[]} {x ∷ m2} dd = el dist-gen {x ∷ m1} {[]} dd = le dist-gen {just x ∷ m1} {just x₁ ∷ m2} dd = ⊥-elim (dist-b dd) dist-gen {just x ∷ m1} {nothing ∷ m2} dd = lc (dist-gen (dist-in{m1}{m2}{just x}{nothing} dd)) dist-gen {nothing ∷ m1} {just x ∷ m2} dd = cl (dist-gen (dist-in{m1}{m2}{nothing}{just x} dd)) dist-gen {nothing ∷ m1} {nothing ∷ m2} dd = nn (dist-gen (dist-in{m1}{m2}{nothing}{nothing} dd)) U-comm' : ∀{m1 m2} → dist-dom m1 m2 → (m1 U m2) ≡ (m2 U m1) U-comm' {.[]} {[]} el = refl U-comm' {.[]} {x ∷ m2} el = refl U-comm' {[]} {.[]} le = refl U-comm' {x ∷ m1} {.[]} le = refl U-comm' {.(nothing ∷ _)} {.(just _ ∷ _)} (cl dd) rewrite U-comm' dd = refl U-comm' {.(just _ ∷ _)} {.(nothing ∷ _)} (lc dd) rewrite U-comm' dd = refl U-comm' {.(nothing ∷ _)} {.(nothing ∷ _)} (nn dd) rewrite U-comm' dd = refl U-comm : ∀{m1 m2} → distinct' (Dom' m1) (Dom' m2) → (m1 U m2) ≡ (m2 U m1) U-comm{m1}{m2} dd = U-comm'{m1}{m2} (dist-gen dd) U-assoc' : ∀ m1 m2 m3 → m1 U (m2 U m3) ≡ (m1 U m2) U m3 U-assoc' [] m2 m3 = refl U-assoc' (x ∷ m1) [] m3 = refl U-assoc' (x ∷ m1) (x₁ ∷ m2) [] rewrite U-comm {(x ∷ m1) U (x₁ ∷ m2)} {[]} (λ _ _ ()) = refl U-assoc' (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (just x ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (just x ∷ m1) (nothing ∷ m2) (just x₁ ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (just x ∷ m1) (nothing ∷ m2) (nothing ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (nothing ∷ m1) (just x ∷ m2) (just x₁ ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (nothing ∷ m1) (just x ∷ m2) (nothing ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (nothing ∷ m1) (nothing ∷ m2) (just x ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc' (nothing ∷ m1) (nothing ∷ m2) (nothing ∷ m3) rewrite U-assoc' m1 m2 m3 = refl U-assoc : ∀ m1 m2 m3 → m1 U (m2 U m3) ≡ (m1 U m2) U m3 U-assoc m1 m2 m3 = U-assoc' m1 m2 m3 0∈S : ∀{l} → 0 ∈ (map suc l) → ⊥ 0∈S {[]} () 0∈S {x ∷ l} (here ()) 0∈S {x ∷ l} (there p) = 0∈S p n∈S : ∀{n x l} → suc n ∈ Dom' (x ∷ l) → n ∈ Dom' l n∈S {n} {just x} {[]} (here ()) n∈S {n} {just x} {[]} (there ()) n∈S {n} {just x} {x₁ ∷ l} (here ()) n∈S {n} {just x} {x₁ ∷ l} (there p) = sucout p n∈S {n} {nothing} {[]} () n∈S {n} {nothing} {x ∷ l} p = sucout p n+1∈S : ∀ {n x m} → n ∈ (Dom' m) → (suc n) ∈ (Dom' (x ∷ m)) n+1∈S {n} {just x} {m} n∈ = there (sucin n∈) n+1∈S {n} {nothing} {m} n∈ = sucin n∈ deref : (n : ℕ) → (l : LMap) → n ∈ (Dom' l) → Value deref zero [] () deref zero (just x ∷ l) p = x deref zero (nothing ∷ l) p = ⊥-elim (0∈S p) deref (suc n) [] () deref (suc n) (x ∷ l) p = deref n l (n∈S{n}{x}{l} p) -- thrms deref-∈-irr : ∀{k l} → (∈1 : k ∈ (Dom' l)) → (∈2 : k ∈ (Dom' l)) → deref k l ∈1 ≡ deref k l ∈2 deref-∈-irr {zero} {[]} () ∈2 deref-∈-irr {suc k} {[]} () ∈2 deref-∈-irr {zero} {just x ∷ l} ∈1 ∈2 = refl deref-∈-irr {zero} {nothing ∷ l} ∈1 ∈2 = ⊥-elim (0∈S ∈1) deref-∈-irr {suc k} {x ∷ l} ∈1 ∈2 = deref-∈-irr (n∈S{k}{x}{l} ∈1) (n∈S{k}{x}{l} ∈2) insert-mono' : ∀{l d l' d' n n' v} → n ∈ d → d ≡ (Dom' l) → d' ≡ (Dom' l') → l' ≡ (m-insert (just v) n' l) → n ∈ d' insert-mono' {[]} {.[]} {[]} {.[]} {zero} {zero} () refl refl l'eq insert-mono' {[]} {.[]} {[]} {.[]} {zero} {suc n'} () refl refl l'eq insert-mono' {[]} {.[]} {[]} {.[]} {suc n} {zero} () refl refl l'eq insert-mono' {[]} {.[]} {[]} {.[]} {suc n} {suc n'} () refl refl l'eq insert-mono' {[]} {.[]} {x ∷ l'} {.(Dom' (x ∷ l'))} {zero} {zero} () refl refl l'eq insert-mono' {[]} {.[]} {x ∷ l'} {.(Dom' (x ∷ l'))} {zero} {suc n'} () refl refl l'eq insert-mono' {[]} {.[]} {x ∷ l'} {.(Dom' (x ∷ l'))} {suc n} {zero} () refl refl l'eq insert-mono' {[]} {.[]} {x ∷ l'} {.(Dom' (x ∷ l'))} {suc n} {suc n'} () refl refl l'eq insert-mono' {x ∷ l} {.(Dom' (x ∷ l))} {[]} {.[]} {zero} {zero} n∈ refl refl () insert-mono' {x ∷ l} {.(Dom' (x ∷ l))} {[]} {.[]} {zero} {suc n'} n∈ refl refl () insert-mono' {x ∷ l} {.(Dom' (x ∷ l))} {[]} {.[]} {suc n} {zero} n∈ refl refl () insert-mono' {x ∷ l} {.(Dom' (x ∷ l))} {[]} {.[]} {suc n} {suc n'} n∈ refl refl () insert-mono' {just x₁ ∷ l} {.(0 ∷ map suc (Dom' l))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {zero} {zero} {v} N∈ refl refl l'eq = here refl insert-mono' {just x₁ ∷ l} {.(0 ∷ map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {zero} {zero} {v} N∈ refl refl () insert-mono' {nothing ∷ .l'} {.(map suc (Dom' l'))} {.(just _) ∷ l'} {.(0 ∷ map suc (Dom' l'))} {zero} {zero} n∈ refl refl refl = here refl insert-mono' {just x₁ ∷ l} {.(0 ∷ map suc (Dom' l))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {zero} {suc n'} n∈ refl refl l'eq = here refl insert-mono' {nothing ∷ l} {.(map suc (Dom' l))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {zero} {suc n'} n∈ refl refl l'eq = here refl insert-mono' {just x₁ ∷ .l'} {.(0 ∷ map suc (Dom' l'))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {suc n} {zero} (here ()) refl refl refl insert-mono' {just x₁ ∷ .l'} {.(0 ∷ map suc (Dom' l'))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {suc n} {zero} (there n∈) refl refl refl = there n∈ insert-mono' {nothing ∷ .l'} {.(map suc (Dom' l'))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {suc n} {zero} n∈ refl refl refl = there n∈ insert-mono' {just x ∷ l} {.(0 ∷ map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {suc n} {zero} n∈ refl refl () insert-mono' {nothing ∷ l} {.(map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {suc n} {zero} n∈ refl refl () insert-mono' {just x₁ ∷ l} {.(0 ∷ map suc (Dom' l))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {suc n} {suc n'} (here ()) refl refl l'eq insert-mono' {just x₁ ∷ l} {.(0 ∷ map suc (Dom' l))} {just .x₁ ∷ .(m-insert (just _) n' l)} {.(0 ∷ map suc (Dom' (m-insert (just _) n' l)))} {suc n} {suc n'} {v} (there n∈) refl refl refl = there (sucin (insert-mono'{l = l}{l' = (m-insert (just _) n' l)}{n = n}{n' = n'}{v} (sucout n∈) refl refl refl)) insert-mono' {just x ∷ l} {.(0 ∷ map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {suc n} {suc n'} (here ()) refl refl l'eq insert-mono' {just x ∷ l} {.(0 ∷ map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {suc n} {suc n'} {v} (there n∈) refl refl () insert-mono' {nothing ∷ l} {.(map suc (Dom' l))} {just x ∷ l'} {.(0 ∷ map suc (Dom' l'))} {suc n} {suc n'} n∈ refl refl () insert-mono' {nothing ∷ l} {.(map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {suc n} {suc n'} {v} n∈ refl refl refl = sucin (insert-mono'{l = l}{l' = l'}{n = n}{n' = n'}{v = v} (sucout n∈) refl refl refl) insert-mono' {just x ∷ l} {.(0 ∷ map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {zero} {suc n'} n∈ refl refl () insert-mono' {nothing ∷ l} {.(map suc (Dom' l))} {nothing ∷ l'} {.(map suc (Dom' l'))} {zero} {suc n'} n∈ refl refl l'eq = ⊥-elim (0∈S n∈) insert-mono : ∀{m n n' v} → n ∈ (Dom' m) → n ∈ (Dom' (m-insert (just v) n' m)) insert-mono{m}{n}{n'}{v} i = insert-mono'{m}{Dom' m}{(m-insert (just v) n' m)}{(Dom' (m-insert (just v) n' m))}{n}{n'}{v} i refl refl refl U-mono : ∀{m m' n} → n ∈ (Dom' m) → n ∈ (Dom' (m U m')) U-mono {[]} {m'} {n} () U-mono {just x ∷ m} {[]} {n} (here px) = here px U-mono {just x ∷ m} {just x₁ ∷ m'} {n} (here px) = here px U-mono {just x ∷ m} {nothing ∷ m'} {n} (here px) = here px U-mono {just x ∷ m} {[]} {n} (there ∈) = there ∈ U-mono {just x ∷ m} {just x₁ ∷ m'} {zero} (there ∈) = here refl U-mono {just x ∷ m} {nothing ∷ m'} {zero} (there ∈) = here refl U-mono {just x ∷ m} {just x₁ ∷ m'} {suc n} (there ∈) = there (sucin (U-mono{m}{m'}{n} (sucout ∈))) U-mono {just x ∷ m} {nothing ∷ m'} {suc n} (there ∈) = there (sucin (U-mono{m}{m'}{n} (sucout ∈))) U-mono {nothing ∷ m} {[]} {n} ∈ = ∈ U-mono {nothing ∷ m} {just x ∷ m'} {zero} ∈ = here refl U-mono {nothing ∷ m} {just x ∷ m'} {suc n} ∈ = there (sucin (U-mono{m}{m'}{n} (sucout ∈))) U-mono {nothing ∷ m} {nothing ∷ m'} {zero} ∈ = ⊥-elim (0∈S ∈) U-mono {nothing ∷ m} {nothing ∷ m'} {suc n} ∈ = (sucin (U-mono{m}{m'}{n} (sucout ∈))) U⁻ : ∀ {m m' n} → n ∈ Dom' (m U m') → (n ∈ Dom' m) ⊎ (n ∈ Dom' m') U⁻ {[]} {[]} {n} n∈Dom⟨mUm'⟩ = inj₁ n∈Dom⟨mUm'⟩ U⁻ {[]} {x ∷ m'} {n} n∈Dom⟨mUm'⟩ = inj₂ n∈Dom⟨mUm'⟩ U⁻ {x ∷ m} {[]} {n} n∈Dom⟨mUm'⟩ = inj₁ n∈Dom⟨mUm'⟩ U⁻ {just x ∷ m} {just x₁ ∷ m'} {zero} n∈Dom⟨mUm'⟩ = inj₁ (here refl) U⁻ {just x ∷ m} {just x₁ ∷ m'} {suc n} (here ()) U⁻ {just x ∷ m} {just x₁ ∷ m'} {suc n} (there n∈Dom⟨mUm'⟩) with U⁻ {m} {m'} {n} (sucout n∈Dom⟨mUm'⟩) ... | inj₁ ∈Dom-m = inj₁ (there (sucin ∈Dom-m)) ... | inj₂ ∈Dom-m' = inj₂ (there (sucin ∈Dom-m')) U⁻ {just x ∷ m} {nothing ∷ m'} {zero} n∈Dom⟨mUm'⟩ = inj₁ (here refl) U⁻ {just x ∷ m} {nothing ∷ m'} {suc n} (here ()) U⁻ {just x ∷ m} {nothing ∷ m'} {suc n} (there n∈Dom⟨mUm'⟩) with U⁻ {m} {m'} {n} (sucout n∈Dom⟨mUm'⟩) ... | inj₁ ∈Dom-m = inj₁ (there (sucin ∈Dom-m)) ... | inj₂ ∈Dom-m' = inj₂ (sucin ∈Dom-m') U⁻ {nothing ∷ m} {just x ∷ m'} {zero} n∈Dom⟨mUm'⟩ = inj₂ (here refl) U⁻ {nothing ∷ m} {just x ∷ m'} {suc n} (here ()) U⁻ {nothing ∷ m} {just x ∷ m'} {suc n} (there n∈Dom⟨mUm'⟩) with U⁻ {m} {m'} {n} (sucout n∈Dom⟨mUm'⟩) ... | inj₁ ∈Dom-m = inj₁ (sucin ∈Dom-m) ... | inj₂ ∈Dom-m' = inj₂ (there (sucin ∈Dom-m')) U⁻ {nothing ∷ m} {nothing ∷ m'} {zero} n∈Dom⟨mUm'⟩ = ⊥-elim (0∈S n∈Dom⟨mUm'⟩) U⁻ {nothing ∷ m} {nothing ∷ m'} {suc n} n∈Dom⟨mUm'⟩ with U⁻ {m} {m'} {n} (sucout n∈Dom⟨mUm'⟩) ... | inj₁ ∈Dom-m = inj₁ (sucin ∈Dom-m) ... | inj₂ ∈Dom-m' = inj₂ (sucin ∈Dom-m') Dom'-1map : ∀ n v → Dom' (m-insert (just v) n []) ≡ (n ∷ []) Dom'-1map zero v = refl Dom'-1map (suc n) v rewrite Dom'-1map n v = refl Dom'-2map : ∀ n₁ v₁ n₂ v₂ → (Dom' (m-insert (just v₂) n₂ (m-insert (just v₁) n₁ [])) ≡ n₁ ∷ [] × n₁ ≡ n₂) ⊎ (Dom' (m-insert (just v₂) n₂ (m-insert (just v₁) n₁ [])) ≡ n₁ ∷ n₂ ∷ []) ⊎ (Dom' (m-insert (just v₂) n₂ (m-insert (just v₁) n₁ [])) ≡ n₂ ∷ n₁ ∷ []) Dom'-2map zero v₁ zero v₂ = inj₁ (refl , refl) Dom'-2map zero v₁ (suc n₂) v₂ rewrite Dom'-1map n₂ v₂ = inj₂ (inj₁ refl) Dom'-2map (suc n₁) v₁ zero v₂ rewrite Dom'-1map n₁ v₁ = inj₂ (inj₂ refl) Dom'-2map (suc n₁) v₁ (suc n₂) v₂ with Dom'-2map n₁ v₁ n₂ v₂ ... | inj₁ (xs≡[n₁] , refl) rewrite xs≡[n₁] = inj₁ (refl , refl) ... | inj₂ (inj₁ xs≡[n₁,n₂]) rewrite xs≡[n₁,n₂] = inj₂ (inj₁ refl) ... | inj₂ (inj₂ xs≡[n₂,n₁]) rewrite xs≡[n₂,n₁] = inj₂ (inj₂ refl) negsucun : ∀{k k'} → ¬ (suc k ≡ suc k') → k ≡ k' → ⊥ negsucun neg = (λ eq → neg (cong suc eq)) -- sucout : ∀{z n} → (suc z) ∈ (map suc n) → z ∈ n sucinout : ∀{k nn} → (kin : (suc k) ∈ (map suc nn)) → sucin (sucout kin) ≡ kin sucinout {zero} {[]} () sucinout {zero} {.0 ∷ nn₁} (here refl) = refl sucinout {zero} {x ∷ nn₁} (there kin) rewrite (sucinout{zero}{nn₁} kin) = refl sucinout {suc k} {[]} () sucinout {suc k} {.(suc k) ∷ nn₁} (here refl) = refl sucinout {suc k} {x ∷ nn₁} (there kin) rewrite (sucinout{(suc k)}{nn₁} kin) = refl domzero : ∀{m} → zero ∈ (Dom' (nothing ∷ m)) → ⊥ domzero {[]} = λ () domzero {x ∷ m} = 0∈S domin : ∀{x m z} → x ∈ Dom' m → suc x ∈ Dom' (z ∷ m) domin {x} {m} {just z} x∈Dom'm = there (sucin x∈Dom'm) domin {x} {m} {nothing} x∈Dom'm = sucin x∈Dom'm n∈Sbij : ∀{k x m} → ∀{kin : (suc k) ∈ (Dom' (x ∷ m))} → ∀{kin2 : (suc k) ∈ (Dom' (x ∷ m))} → (n∈S{k}{x}{m} kin) ≡ (n∈S{k}{x}{m} kin2) → kin ≡ kin2 n∈Sbij {k} {just x} {[]} {here ()} {kin2} eq n∈Sbij {k} {just x} {[]} {there ()} {kin2} eq n∈Sbij {k} {just x} {x₁ ∷ m} {here ()} {kin2} eq n∈Sbij {k} {just x} {x₁ ∷ m} {there kin} {here ()} eq n∈Sbij {k} {just x} {x₁ ∷ m} {there kin} {there kin2} eq with (cong sucin eq) ... | eq2 rewrite (sucinout kin) | (sucinout kin2) = cong there eq2 n∈Sbij {k} {nothing} {[]} {kin} {()} eq n∈Sbij {k} {nothing} {x ∷ m} {kin} {kin2} eq with cong sucin eq ... | eq2 rewrite (sucinout kin) | (sucinout kin2) = eq2 ineq : ∀{k m} → (kin1 : k ∈ (Dom' m)) → (kin2 : k ∈ (Dom' m)) → kin1 ≡ kin2 ineq {zero} {[]} () kin2 ineq {zero} {just x ∷ m} (here refl) (here refl) = refl ineq {zero} {just x ∷ m} (here refl) (there kin2) = ⊥-elim (0∈S kin2) ineq {zero} {just x ∷ m} (there kin1) (here px) = ⊥-elim (0∈S kin1) ineq {zero} {just x ∷ m} (there kin1) (there kin2) = ⊥-elim (0∈S kin1) ineq {zero} {nothing ∷ m} kin1 kin2 = ⊥-elim (domzero{m} kin1) ineq {suc k} {[]} () kin2 ineq {suc k} {just x ∷ m} (here ()) (here px₁) ineq {suc k} {just x ∷ m} (here ()) (there kin2) ineq {suc k} {just x ∷ m} (there kin1) (here ()) ineq {suc k} {just x ∷ m} (there kin1) (there kin2) rewrite sym (sucinout kin1) | sym (sucinout kin2) = cong there (cong sucin (ineq{k}{m} (sucout kin1) (sucout kin2))) ineq {suc k} {nothing ∷ m} kin1 kin2 = n∈Sbij{k}{nothing}{m} (ineq{k}{m} (n∈S{x = nothing}{l = m} kin1) (n∈S{x = nothing}{l = m} kin2)) Dom'-comm : ∀ m1 m2 → Dom' (m1 U m2) ≡ Dom' (m2 U m1) Dom'-comm [] m2 rewrite U-comm {m2} {[]} (λ _ _ ()) = refl Dom'-comm (x ∷ m1) [] = refl Dom'-comm (just x ∷ m1) (just x₁ ∷ m2) rewrite Dom'-comm m1 m2 = refl Dom'-comm (just x ∷ m1) (nothing ∷ m2) rewrite Dom'-comm m1 m2 = refl Dom'-comm (nothing ∷ m1) (just x ∷ m2) rewrite Dom'-comm m1 m2 = refl Dom'-comm (nothing ∷ m1) (nothing ∷ m2) rewrite Dom'-comm m1 m2 = refl Dom'-assoc-comm : ∀ m1 m2 m3 → Dom' ((m1 U m2) U m3) ≡ Dom' ((m1 U m3) U m2) Dom'-assoc-comm [] m2 m3 = Dom'-comm m2 m3 Dom'-assoc-comm (x ∷ m1) [] m3 rewrite Dom'-comm ((x ∷ m1) U m3) [] = refl Dom'-assoc-comm (x ∷ m1) (x₁ ∷ m2) [] rewrite Dom'-comm ((x ∷ m1) U (x₁ ∷ m2)) [] = refl Dom'-assoc-comm (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (just x ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (just x ∷ m1) (nothing ∷ m2) (just x₁ ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (just x ∷ m1) (nothing ∷ m2) (nothing ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (nothing ∷ m1) (just x ∷ m2) (just x₁ ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (nothing ∷ m1) (just x ∷ m2) (nothing ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (nothing ∷ m1) (nothing ∷ m2) (just x ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl Dom'-assoc-comm (nothing ∷ m1) (nothing ∷ m2) (nothing ∷ m3) rewrite Dom'-assoc-comm m1 m2 m3 = refl putputget-neq : ∀{k k' m v v'} → ¬ (k ≡ k') → (kin : k ∈ (Dom' m)) → (kin2 : k ∈ (Dom' (m-insert (just v') k' m))) → (deref k m kin) ≡ v → (deref k (m-insert (just v') k' m) kin2) ≡ v putputget-neq {k} {k'} {[]} neq () kin2 eq putputget-neq {.0} {zero} {just x ∷ m} neq (here refl) (here refl) refl = ⊥-elim (neq refl) putputget-neq {.0} {zero} {just x ∷ m} neq (here refl) (there kin2) refl = ⊥-elim (neq refl) putputget-neq {.0} {suc k'} {just x ∷ m} neq (here refl) (here refl) refl = refl putputget-neq {.0} {suc k'} {just x ∷ m} neq (here refl) (there kin2) refl = refl putputget-neq {zero} {zero} {just x ∷ m} neq (there kin) kin2 refl = ⊥-elim (neq refl) putputget-neq {zero} {suc k'} {just x ∷ m} neq (there kin) kin2 refl = refl putputget-neq {suc k} {suc k'} {just x ∷ m} neq (there kin) (here ()) refl putputget-neq {zero} {zero} {nothing ∷ m} neq kin kin2 refl = ⊥-elim (neq refl) putputget-neq {zero} {suc k'} {nothing ∷ m} neq kin kin2 refl = ⊥-elim (0∈S kin) putputget-neq {suc k} {zero} {nothing ∷ m} neq kin (here ()) refl putputget-neq {suc k} {suc k'} {just x ∷ m} {v} {v'} neq (there kin) (there kin2) refl rewrite ineq{k}{m-insert (just v') k' m} (n∈S{k}{just x}{m-insert (just v') k' m} (there kin2)) (sucout kin2) = putputget-neq{k}{k'}{m}{v}{v'} (negsucun neq) (sucout kin) (sucout kin2) (deref-∈-irr{k}{m} (sucout kin) (n∈S{k}{x = just x}{m} (there kin))) putputget-neq {suc k} {suc k'} {nothing ∷ m} {v} {v'} neq kin kin2 refl rewrite ineq{k}{m-insert (just v') k' m} (n∈S{k}{nothing}{m-insert (just v') k' m} kin2) (sucout kin2) = putputget-neq{k}{k'}{m} (negsucun neq) (sucout kin) ((sucout kin2)) ((deref-∈-irr{k}{m} (sucout kin) (n∈S{k}{x = nothing}{m} kin))) putputget-neq {suc k} {zero} {x ∷ m} {v} {v'} neq kin kin2 refl = deref-∈-irr{k}{m} (n∈S{k}{just v'}{m} kin2) (n∈S{k}{x}{m} kin) putputget-eq : ∀ k m v v' → (m-insert (just v') k (m-insert (just v) k m)) ≡ (m-insert (just v') k m) putputget-eq zero [] v v' = refl putputget-eq zero (x ∷ m) v v' = refl putputget-eq (suc k) [] v v' rewrite putputget-eq k [] v v' = refl putputget-eq (suc k) (x ∷ m) v v' rewrite putputget-eq k m v v' = refl getput : ∀ k m → (kin : k ∈ Dom' m) → m ≡ m-insert (just (deref k m kin)) k m getput k [] () getput zero (just x ∷ m) kin = refl getput zero (nothing ∷ m) kin = ⊥-elim (0∈S kin) getput (suc k) (just x ∷ m) kin rewrite sym (getput k m (n∈S {k} {just x} {m} kin)) = refl getput (suc k) (nothing ∷ m) kin rewrite sym (getput k m (n∈S {k} {nothing} {m} kin)) = refl putget : ∀{k m v} → (kin : k ∈ (Dom' (m-insert (just v) k m))) → (deref k (m-insert (just v) k m) kin) ≡ v putget {zero} {[]} {v} (here refl) = refl putget {zero} {[]} {v} (there ()) putget {zero} {just x ∷ m} {v} (here refl) = refl putget {zero} {just x ∷ m} {v} (there kin) = refl putget {zero} {nothing ∷ m} {v} kin = refl putget {suc k} {[]} {v} kin = putget{k}{[]}{v} ( (n∈S{k}{nothing}{(m-insert (just v) k [])} kin) ) putget {suc k} {x ∷ m} {v} kin = putget{k}{m}{v} ( (n∈S{k}{x} kin) ) put-U-U : ∀ k v m1 m2 → (kin1 : k ∈ Dom' m1) → (kin2 : k ∈ Dom' m2) → m1 U m2 ≡ (m-insert (just v) k m1) U m2 put-U-U k v [] m2 () kin2 put-U-U k v (x ∷ m1) [] kin1 () put-U-U zero v (just x ∷ m1) (just x₁ ∷ m2) kin1 kin2 = refl put-U-U zero v (just x ∷ m1) (nothing ∷ m2) kin1 kin2 = ⊥-elim (0∈S kin2) put-U-U zero v (nothing ∷ m1) (x₁ ∷ m2) kin1 kin2 = ⊥-elim (0∈S kin1) put-U-U (suc k) v (just x ∷ m1) (just x₁ ∷ m2) kin1 kin2 rewrite put-U-U k v m1 m2 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {just x₁} {m2} kin2) = refl put-U-U (suc k) v (just x ∷ m1) (nothing ∷ m2) kin1 kin2 rewrite put-U-U k v m1 m2 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) = refl put-U-U (suc k) v (nothing ∷ m1) (just x ∷ m2) kin1 kin2 rewrite put-U-U k v m1 m2 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {just x} {m2} kin2) = refl put-U-U (suc k) v (nothing ∷ m1) (nothing ∷ m2) kin1 kin2 rewrite put-U-U k v m1 m2 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) = refl insert-comm : ∀{m k1 k2 v1 v2} → ¬ k1 ≡ k2 → (m-insert (just v2) k2 (m-insert (just v1) k1 m)) ≡ (m-insert (just v1) k1 (m-insert (just v2) k2 m)) insert-comm {m} {zero} {zero} {v1} {v2} ¬k1≡k2 = ⊥-elim (¬k1≡k2 refl) insert-comm {[]} {zero} {suc k2} {v1} {v2} ¬k1≡k2 = refl insert-comm {x ∷ m} {zero} {suc k2} {v1} {v2} ¬k1≡k2 = refl insert-comm {[]} {suc k1} {zero} {v1} {v2} ¬k1≡k2 = refl insert-comm {x ∷ m} {suc k1} {zero} {v1} {v2} ¬k1≡k2 = refl insert-comm {[]} {suc k1} {suc k2} {v1} {v2} ¬k1≡k2 rewrite insert-comm{[]}{k1}{k2}{v1}{v2} (λ x → ¬k1≡k2 (cong suc x)) = refl insert-comm {x ∷ m} {suc k1} {suc k2} {v1} {v2} ¬k1≡k2 rewrite insert-comm{m}{k1}{k2}{v1}{v2} (λ x → ¬k1≡k2 (cong suc x)) = refl insert-U-comm : ∀ k v m m' → ¬ (k ∈ Dom' m') → (m-insert (just v) k m) U m' ≡ m-insert (just v) k (m U m') insert-U-comm k v m [] k∉Domm' rewrite U-comm {m} {[]} (λ _ _ ()) | U-comm {m-insert (just v) k m} {[]} (λ _ _ ()) = refl insert-U-comm zero v [] (just x ∷ m') k∉Domm' = ⊥-elim (k∉Domm' (here refl)) insert-U-comm zero v [] (nothing ∷ m') k∉Domm' = refl insert-U-comm (suc k) v [] (just x ∷ m') k∉Domm' rewrite insert-U-comm k v [] m' (k∉Domm' ∘ there ∘ sucin {k} {Dom' m'}) = refl insert-U-comm (suc k) v [] (nothing ∷ m') k∉Domm' rewrite insert-U-comm k v [] m' (k∉Domm' ∘ sucin {k} {Dom' m'}) = refl insert-U-comm zero v (x ∷ m) (just x₁ ∷ m') k∉Domm' = ⊥-elim (k∉Domm' (here refl)) insert-U-comm zero v (just x ∷ m) (nothing ∷ m') k∉Domm' = refl insert-U-comm zero v (nothing ∷ m) (nothing ∷ m') k∉Domm' = refl insert-U-comm (suc k) v (just x ∷ m) (just x₁ ∷ m') k∉Domm' rewrite insert-U-comm k v m m' (k∉Domm' ∘ there ∘ sucin {k} {Dom' m'}) = refl insert-U-comm (suc k) v (nothing ∷ m) (just x₁ ∷ m') k∉Domm' rewrite insert-U-comm k v m m' (k∉Domm' ∘ there ∘ sucin {k} {Dom' m'}) = refl insert-U-comm (suc k) v (just x ∷ m) (nothing ∷ m') k∉Domm' rewrite insert-U-comm k v m m' (k∉Domm' ∘ sucin {k} {Dom' m'}) = refl insert-U-comm (suc k) v (nothing ∷ m) (nothing ∷ m') k∉Domm' rewrite insert-U-comm k v m m' (k∉Domm' ∘ sucin {k} {Dom' m'}) = refl deref-U-right-irr : ∀ k m1 m2 kin12 kin2 → deref k (m1 U m2) kin12 ≡ deref k m2 kin2 deref-U-right-irr k m1 [] kin12 () deref-U-right-irr zero [] (x ∷ m2) kin12 kin2 = deref-∈-irr {l = x ∷ m2} kin12 kin2 deref-U-right-irr zero (just x ∷ m1) (just x₁ ∷ m2) kin12 kin2 = refl deref-U-right-irr zero (nothing ∷ m1) (just x ∷ m2) kin12 kin2 = refl deref-U-right-irr zero (x ∷ m1) (nothing ∷ m2) kin12 kin2 = ⊥-elim (0∈S kin2) deref-U-right-irr (suc k) [] (x ∷ m2) kin12 kin2 = deref-∈-irr {l = m2} (n∈S {k} {x} kin12) (n∈S {k} {x} kin2) deref-U-right-irr (suc k) (just x ∷ m1) (just x₁ ∷ m2) kin12 kin2 = deref-U-right-irr k m1 m2 (n∈S {k} {just x₁} {m1 U m2} kin12) (n∈S {k} {just x₁} {m2} kin2) deref-U-right-irr (suc k) (nothing ∷ m1) (just x₁ ∷ m2) kin12 kin2 = deref-U-right-irr k m1 m2 (n∈S {k} {just x₁} {m1 U m2} kin12) (n∈S {k} {just x₁} {m2} kin2) deref-U-right-irr (suc k) (just x ∷ m1) (nothing ∷ m2) kin12 kin2 = deref-U-right-irr k m1 m2 (n∈S {k} {just x} {m1 U m2} kin12) (n∈S {k} {nothing} {m2} kin2) deref-U-right-irr (suc k) (nothing ∷ m1) (nothing ∷ m2) kin12 kin2 = deref-U-right-irr k m1 m2 (n∈S {k} {nothing} {m1 U m2} kin12) (n∈S {k} {nothing} {m2} kin2) ∈-deref-U-irr : ∀ k m1 m2 m3 kin1 kin2 → (kin3 : k ∈ Dom' m3) → deref k (m1 U m3) kin1 ≡ deref k (m2 U m3) kin2 ∈-deref-U-irr k [] m2 m3 kin1 kin2 kin3 rewrite deref-U-right-irr k m2 m3 kin2 kin3 = deref-∈-irr kin1 kin3 ∈-deref-U-irr k (x ∷ m1) [] m3 kin1 kin2 kin3 rewrite deref-U-right-irr k (x ∷ m1) m3 kin1 kin3 = deref-∈-irr kin3 kin2 ∈-deref-U-irr k (x ∷ m1) (x₁ ∷ m2) [] kin1 kin2 () ∈-deref-U-irr zero (x ∷ m1) (x₁ ∷ m2) (nothing ∷ m3) kin1 kin2 kin3 = ⊥-elim (0∈S kin3) ∈-deref-U-irr zero (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = refl ∈-deref-U-irr zero (just x ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = refl ∈-deref-U-irr zero (nothing ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = refl ∈-deref-U-irr zero (nothing ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = refl ∈-deref-U-irr (suc k) (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x₂} {m1 U m3} kin1) (n∈S {k} {just x₂} {m2 U m3} kin2) (n∈S {k} {just x₂} {m3} kin3) ∈-deref-U-irr (suc k) (just x ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x₂} {m1 U m3} kin1) (n∈S {k} {just x₂} {m2 U m3} kin2) (n∈S {k} {just x₂} {m3} kin3) ∈-deref-U-irr (suc k) (nothing ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x₂} {m1 U m3} kin1) (n∈S {k} {just x₂} {m2 U m3} kin2) (n∈S {k} {just x₂} {m3} kin3) ∈-deref-U-irr (suc k) (nothing ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x₂} {m1 U m3} kin1) (n∈S {k} {just x₂} {m2 U m3} kin2) (n∈S {k} {just x₂} {m3} kin3) ∈-deref-U-irr (suc k) (just x ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x} {m1 U m3} kin1) (n∈S {k} {just x₁} {m2 U m3} kin2) (n∈S {k} {nothing} {m3} kin3) ∈-deref-U-irr (suc k) (just x ∷ m1) (nothing ∷ m2) (nothing ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {just x} {m1 U m3} kin1) (n∈S {k} {nothing} {m2 U m3} kin2) (n∈S {k} {nothing} {m3} kin3) ∈-deref-U-irr (suc k) (nothing ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {nothing} {m1 U m3} kin1) (n∈S {k} {just x₁} {m2 U m3} kin2) (n∈S {k} {nothing} {m3} kin3) ∈-deref-U-irr (suc k) (nothing ∷ m1) (nothing ∷ m2) (nothing ∷ m3) kin1 kin2 kin3 = ∈-deref-U-irr k m1 m2 m3 (n∈S {k} {nothing} {m1 U m3} kin1) (n∈S {k} {nothing} {m2 U m3} kin2) (n∈S {k} {nothing} {m3} kin3) deref-U-both-irr : ∀ k m1 m2 m3 kin1 kin2 kin13 kin23 → deref k m1 kin1 ≡ deref k m2 kin2 → deref k (m1 U m3) kin13 ≡ deref k (m2 U m3) kin23 deref-U-both-irr k [] m2 m3 () kin2 kin13 kin23 m1[k]≡m2[k] deref-U-both-irr k (x ∷ m1) [] m3 kin1 () kin13 kin23 m1[k]≡m2[k] deref-U-both-irr k (x ∷ m1) (x₁ ∷ m2) [] kin1 kin2 kin13 kin23 m1[k]≡m2[k] rewrite deref-∈-irr {l = x ∷ m1} kin13 kin1 | deref-∈-irr {l = x₁ ∷ m2} kin23 kin2 = m1[k]≡m2[k] deref-U-both-irr zero (just x ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) _ _ _ _ m1[k]≡m2[k] = m1[k]≡m2[k] deref-U-both-irr zero (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) _ _ _ _ _ = refl deref-U-both-irr zero (just x ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) _ _ _ _ _ = refl deref-U-both-irr zero (nothing ∷ m1) (just x ∷ m2) (just x₂ ∷ m3) _ _ _ _ _ = refl deref-U-both-irr zero (nothing ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) _ _ _ _ _ = refl deref-U-both-irr zero (nothing ∷ m1) (just x ∷ m2) (nothing ∷ m3) kin1 _ _ _ _ = ⊥-elim (0∈S kin1) deref-U-both-irr zero (nothing ∷ m1) (nothing ∷ m2) (nothing ∷ m3) kin1 _ _ _ _ = ⊥-elim (0∈S kin1) deref-U-both-irr zero (just x ∷ m1) (nothing ∷ m2) (nothing ∷ m3) _ kin2 _ _ _ = ⊥-elim (0∈S kin2) deref-U-both-irr (suc k) (just x ∷ m1) (just x₁ ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {just x₁} {m2} kin2) (n∈S {k} {just x₂} {m1 U m3} kin13) (n∈S {k} {just x₂} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (just x ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) (n∈S {k} {just x₂} {m1 U m3} kin13) (n∈S {k} {just x₂} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (nothing ∷ m1) (just x ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {just x} {m2} kin2) (n∈S {k} {just x₂} {m1 U m3} kin13) (n∈S {k} {just x₂} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (nothing ∷ m1) (nothing ∷ m2) (just x₂ ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) (n∈S {k} {just x₂} {m1 U m3} kin13) (n∈S {k} {just x₂} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (just x ∷ m1) (just x₁ ∷ m2) (nothing ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {just x₁} {m2} kin2) (n∈S {k} {just x} {m1 U m3} kin13) (n∈S {k} {just x₁} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (just x ∷ m1) (nothing ∷ m2) (nothing ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {just x} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) (n∈S {k} {just x} {m1 U m3} kin13) (n∈S {k} {nothing} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (nothing ∷ m1) (just x ∷ m2) (nothing ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {just x} {m2} kin2) (n∈S {k} {nothing} {m1 U m3} kin13) (n∈S {k} {just x} {m2 U m3} kin23) m1[k]≡m2[k] deref-U-both-irr (suc k) (nothing ∷ m1) (nothing ∷ m2) (nothing ∷ m3) kin1 kin2 kin13 kin23 m1[k]≡m2[k] = deref-U-both-irr k m1 m2 m3 (n∈S {k} {nothing} {m1} kin1) (n∈S {k} {nothing} {m2} kin2) (n∈S {k} {nothing} {m1 U m3} kin13) (n∈S {k} {nothing} {m2 U m3} kin23) m1[k]≡m2[k] U-domout : ∀ {k m₁ m₂} x x₁ → suc k ∈ Dom' ((x ∷ m₁) U (x₁ ∷ m₂)) → k ∈ Dom' (m₁ U m₂) U-domout (just x₂) (just x₃) (here ()) U-domout (just x₂) (just x₃) (there suck∈'') = sucout suck∈'' U-domout (just x₂) nothing (here ()) U-domout (just x₂) nothing (there suck∈'') = sucout suck∈'' U-domout nothing (just x₂) (here ()) U-domout nothing (just x₂) (there suck∈'') = sucout suck∈'' U-domout nothing nothing suck∈'' = sucout suck∈'' U-∉-irr-get-help-help : ∀ k x x₁ m₁ m₂ → (k∈ : suc k ∈ Dom' ((x ∷ m₁) U (x₁ ∷ m₂))) → deref (suc k) ((x ∷ m₁) U (x₁ ∷ m₂)) k∈ ≡ deref k (m₁ U m₂) (U-domout x x₁ k∈) U-∉-irr-get-help-help k (just x) (just x₁) m₁ m₂ (here ()) U-∉-irr-get-help-help k (just x) (just x₁) m₁ m₂ (there k∈) = deref-∈-irr {k} {m₁ U m₂} (n∈S {k} {just x₁} {m₁ U m₂} (there k∈)) (sucout k∈) U-∉-irr-get-help-help k (just x) nothing m₁ m₂ (here ()) U-∉-irr-get-help-help k (just x) nothing m₁ m₂ (there k∈) = deref-∈-irr {k} {m₁ U m₂} (n∈S {k} {just x} {m₁ U m₂} (there k∈)) (sucout k∈) U-∉-irr-get-help-help k nothing (just x) m₁ m₂ (here ()) U-∉-irr-get-help-help k nothing (just x) m₁ m₂ (there k∈) = deref-∈-irr {k} {m₁ U m₂} (n∈S {k} {just x} {m₁ U m₂} (there k∈)) (sucout k∈) U-∉-irr-get-help-help k nothing nothing m₁ m₂ k∈ = deref-∈-irr {k} {m₁ U m₂} (n∈S {k} {nothing} {m₁ U m₂} k∈) (sucout k∈) U-∉-irr-get-help : ∀ {m₁ m₂ k} → (k∈ : k ∈ Dom' m₁) → k ∉ Dom' m₂ → (k∈' : k ∈ Dom' (m₁ U m₂)) → deref k m₁ k∈ ≡ deref k (m₁ U m₂) k∈' U-∉-irr-get-help {[]} {[]} {k} () k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ U-∉-irr-get-help {[]} {x ∷ m₂} {k} () k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ U-∉-irr-get-help {x ∷ m₁} {[]} {k} k∈Dom⟨m₁⟩ k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ rewrite deref-∈-irr {k} {x ∷ m₁} k∈Dom⟨m₁⟩ k∈Dom⟨m₁Um₂⟩ = refl U-∉-irr-get-help {x ∷ m₁} {just x₁ ∷ m₂} {zero} k∈Dom⟨m₁⟩ k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ = ⊥-elim (k∉Dom⟨m₂⟩ (here refl)) U-∉-irr-get-help {just x ∷ m₁} {nothing ∷ m₂} {zero} k∈Dom⟨m₁⟩ k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ = refl U-∉-irr-get-help {nothing ∷ m₁} {nothing ∷ m₂} {zero} k∈Dom⟨m₁⟩ k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ = ⊥-elim (0∈S k∈Dom⟨m₁⟩) U-∉-irr-get-help {x ∷ m₁} {x₁ ∷ m₂} {suc k} k∈Dom⟨m₁⟩ k∉Dom⟨m₂⟩ k∈Dom⟨m₁Um₂⟩ with U-∉-irr-get-help {m₁} {m₂} {k} (n∈S {k} {x} k∈Dom⟨m₁⟩) (λ x₂ → k∉Dom⟨m₂⟩ (domin {k} {m₂} {x₁} x₂)) (U-domout x x₁ k∈Dom⟨m₁Um₂⟩) ... | eq rewrite U-∉-irr-get-help-help k x x₁ m₁ m₂ k∈Dom⟨m₁Um₂⟩ = eq U-∉-irr-get : ∀ {m₁ m₂ k} → (k∈ : k ∈ Dom' m₁) → k ∉ Dom' m₂ → ∃ λ k∈' → deref k m₁ k∈ ≡ deref k (m₁ U m₂) k∈' U-∉-irr-get {m₁} {m₂} {k} k∈Dom'm₁ k∉Dom'm₂ = _ , U-∉-irr-get-help {m₁} {m₂} {k} k∈Dom'm₁ k∉Dom'm₂ (U-mono {m₁} {m₂} k∈Dom'm₁) split : ∀{a b : ℕ} {l l'} → a ∷ l ≡ b ∷ l' → ((_≡_ a b) × (_≡_ l l')) split refl = refl , refl mapsuc≡ : ∀{l l'} → map suc l ≡ map suc l' → l ≡ l' mapsuc≡ {[]} {[]} eq = refl mapsuc≡ {[]} {x ∷ l'} () mapsuc≡ {x ∷ l} {[]} () mapsuc≡ {x ∷ l} {x₁ ∷ l'} eq with split eq ... | (a , b) rewrite (suc≡ a) | (mapsuc≡ b) = refl U-=-irr : ∀ m m' → (Dom' m) ≡ (Dom' m') → ∀ k k∈ k∈2 → deref k (m U m') k∈ ≡ deref k m' k∈2 U-=-irr [] [] eq k () U-=-irr [] (nothing ∷ m') eq k x with (subst (λ l → k ∈ l) (sym eq) x) ... | () U-=-irr [] (just x ∷ m') () U-=-irr (just x ∷ m) [] () U-=-irr (nothing ∷ m) [] eq k k∈ () U-=-irr (just x ∷ m) (nothing ∷ m') eq = ⊥-elim (0∈S{Dom' m'} (subst (λ x → 0 ∈ x) eq ((0 ∈ (0 ∷ (map suc (Dom' m)))) ∋ (here refl)))) U-=-irr (nothing ∷ m) (just x ∷ m') eq = ⊥-elim (0∈S{Dom' m} (subst (λ x → 0 ∈ x) (sym eq) ((0 ∈ (0 ∷ (map suc (Dom' m')))) ∋ (here refl)))) U-=-irr (nothing ∷ m) (nothing ∷ m') eq zero k∈ k∈2 = ⊥-elim (0∈S k∈) U-=-irr (nothing ∷ m) (nothing ∷ m') eq (suc k) k∈ k∈2 = U-=-irr m m' (mapsuc≡ eq) k (n∈S{k}{nothing}{m U m'} k∈) (n∈S{k}{nothing}{m'} k∈2) U-=-irr (just x ∷ m) (just x₁ ∷ m') eq zero = λ k∈ k∈2 → refl U-=-irr (just x ∷ m) (just x₁ ∷ m') eq (suc k) k∈ k∈2 = U-=-irr m m' ((mapsuc≡ (proj₂ (split eq)))) k (n∈S{k}{just x₁}{m U m'} k∈) (n∈S{k}{just x₁}{m'} k∈2) U-single-overwrite : ∀ k v1 v2 → (m-insert (just v1) k []) U (m-insert (just v2) k []) ≡ (m-insert (just v2) k []) U-single-overwrite zero v1 v2 = refl U-single-overwrite (suc k) v1 v2 rewrite U-single-overwrite k v1 v2 = refl set-single-val : ∀ k v k∈ → (deref k (m-insert (just v) k []) k∈) ≡ v set-single-val zero v (here refl) = refl set-single-val zero v (there ()) set-single-val (suc k) v k∈ = set-single-val k v (n∈S{k}{nothing}{(m-insert (just v) k [])} k∈) overwrite-single-val : ∀ k v m → k ∈ (Dom' m) → ((m-insert (just v) k []) U m) ≡ m overwrite-single-val zero v [] () overwrite-single-val zero v (just x ∷ m) k∈ = refl overwrite-single-val zero v (nothing ∷ m) k∈ = ⊥-elim (0∈S k∈) overwrite-single-val (suc k) v [] () overwrite-single-val (suc k) v (just x ∷ m) (here ()) overwrite-single-val (suc k) v (just x ∷ m) (there k∈) rewrite overwrite-single-val k v m (sucout k∈) = refl overwrite-single-val (suc k) v (nothing ∷ m) k∈ rewrite overwrite-single-val k v m (sucout k∈) = refl U-insert-eq : ∀ k v m → (m-insert (just v) k m) ≡ m U (m-insert (just v) k []) U-insert-eq zero v [] = refl U-insert-eq zero v (just x ∷ m) rewrite U-comm{m}{[]} (λ z _ → λ ()) = refl U-insert-eq zero v (nothing ∷ m) rewrite U-comm{m}{[]} (λ z _ → λ ()) = refl U-insert-eq (suc k) v [] = refl U-insert-eq (suc k) v (just x ∷ m) rewrite U-insert-eq k v m = refl U-insert-eq (suc k) v (nothing ∷ m) rewrite U-insert-eq k v m = refl insert-domain-eq : ∀ k v m → k ∈ (Dom' m) → (Dom' m) ≡ (Dom' (m-insert (just v) k m)) insert-domain-eq zero v [] () insert-domain-eq zero v (just x ∷ m) k∈ = refl insert-domain-eq zero v (nothing ∷ m) k∈ = ⊥-elim (0∈S k∈) insert-domain-eq (suc k) v [] () insert-domain-eq (suc k) v (just x ∷ m) (here ()) insert-domain-eq (suc k) v (just x ∷ m) (there k∈) rewrite insert-domain-eq k v m (sucout k∈) = refl insert-domain-eq (suc k) v (nothing ∷ m) k∈ rewrite insert-domain-eq k v m (sucout k∈) = refl insert-in-domain : ∀ m k v → k ∈ (Dom' (m-insert (just v) k m)) insert-in-domain [] zero v = here refl insert-in-domain (x ∷ m) zero v = here refl insert-in-domain [] (suc k) v = sucin (insert-in-domain [] k v) insert-in-domain (x ∷ m) (suc k) v = domin{z = x} (insert-in-domain m k v) insert-one-eq : ∀ k v k∈ → (deref k (m-insert (just v) k []) k∈) ≡ v insert-one-eq zero v k∈ = refl insert-one-eq (suc k) v k∈ = insert-one-eq k v (n∈S{k}{nothing}{(m-insert (just v) k [])} k∈) insert-two-eq-one : ∀ k1 k2 v k1∈ → (deref k1 (m-insert (just v) k2 (m-insert (just v) k1 [])) k1∈) ≡ v insert-two-eq-one zero zero v k1∈ = refl insert-two-eq-one zero (suc k2) v k1∈ = refl insert-two-eq-one (suc k1) zero v k1∈ = insert-one-eq k1 v ( (n∈S{k1}{just v}{l = (m-insert (just v) k1 [])} k1∈) ) insert-two-eq-one (suc k1) (suc k2) v k1∈ = insert-two-eq-one k1 k2 v ( (n∈S{k1}{nothing}{(m-insert (just v) k2 (m-insert (just v) k1 []))} k1∈)) insert-two-eq-two : ∀ k1 k2 v k2∈ → (deref k2 (m-insert (just v) k2 (m-insert (just v) k1 [])) k2∈) ≡ v insert-two-eq-two zero zero v k2∈ = refl insert-two-eq-two zero (suc k2) v k2∈ = insert-one-eq k2 v ( (n∈S{k2}{just v}{l = (m-insert (just v) k2 [])} k2∈) ) insert-two-eq-two (suc k1) zero v k2∈ = refl insert-two-eq-two (suc k1) (suc k2) v k2∈ = insert-two-eq-two k1 k2 v ( (n∈S{k2}{nothing}{(m-insert (just v) k2 (m-insert (just v) k1 []))} k2∈)) data AllMap {i} (F : Value → Set i) : LMap → Set i where all : ∀ (m : LMap) → All (Data.Maybe.All F) m → AllMap F m allMap : ∀ {i} m → {F : Value → Set i} → U.Decidable F → Dec (AllMap F m) allMap m {F} dec with All.all (Data.Maybe.allDec dec) m allMap m {F} dec | yes p = yes (all m p) allMap m {F} dec | no ¬p = no (λ { (all _ x) → ¬p x}) -- All.all (Data.Maybe.allDec F) m deref∈ : ∀ {m} → (n : ℕ) → (n∈ : n ∈ (Dom' m)) → just (deref n m n∈) ∈ m deref∈ {[]} zero () deref∈ {[]} (suc n) () deref∈ {just x ∷ m} zero n∈ = here refl deref∈ {nothing ∷ m} zero n∈ = ⊥-elim (0∈S n∈) deref∈ {just x ∷ m} (suc n) n∈ = there (deref∈ n (n∈S{n}{just x}{m} n∈)) deref∈ {nothing ∷ m} (suc n) n∈ = there (deref∈ n (n∈S{n}{nothing}{m} n∈)) allMap-lookup : ∀ {i} {F : Value → Set i} {m} → AllMap F m → ∀ (n : ℕ) → (k∈ : n ∈ (Dom' m)) → (F (deref n m k∈ )) allMap-lookup {i} {F} (all m x) n n∈ with (All.lookup x) {just (deref n m n∈)} (deref∈ n n∈) allMap-lookup {i} {F} (all m x) n n∈ | just px = px allMap-tabulate : ∀ {i} {F : Value → Set i} {m} → (∀ (n : ℕ) → (k∈ : n ∈ (Dom' m)) → (F (deref n m k∈ ))) → AllMap F m allMap-tabulate {m = []} FF = all [] All.[] allMap-tabulate {F = F} {m = just x ∷ m} FF with allMap-tabulate{F = F} {m = m} (λ n k∈ → subst F (deref-∈-irr (n∈S{n}{just x}{m} (there (sucin k∈))) k∈) (FF (suc n) (n+1∈S{n}{just x}{m} k∈))) allMap-tabulate {_} {F} {just x ∷ m} FF | all .m x₁ = all (just x ∷ m) ((just (FF 0 (here refl))) All.∷ x₁) allMap-tabulate {F = F} {m = nothing ∷ m} FF with allMap-tabulate {m = m} (λ n k∈ → subst F (deref-∈-irr (n∈S{n}{nothing}{m} (sucin k∈)) k∈) (FF (suc n) (n+1∈S{n}{nothing}{m} k∈)) ) allMap-tabulate {_} {_} {nothing ∷ m} FF | all .m x = all (nothing ∷ m) (nothing All.∷ x) andmap : ∀ {i} {F : Value → Set i} → U.Decidable F → (m : LMap) → Dec ∀ (n : ℕ) → (n∈ : n ∈ (Dom' m)) → (F (deref n m n∈)) andmap Fp m with allMap m Fp andmap Fp m | yes p = yes (allMap-lookup p) andmap Fp m | no ¬p = no (λ x → ¬p (allMap-tabulate x)) ocount : (Value -> Bool) -> LMap -> ℕ ocount p [] = 0 ocount p (just x ∷ m) with p x ocount p (just x ∷ m) | false = ocount p m ocount p (just x ∷ m) | true = suc (ocount p m) ocount p (nothing ∷ m) = ocount p m change-one-ocount-goes-down : ∀ (m : LMap) -> (p : Value -> Bool) -> (n : ℕ) -> (k∈ : n ∈ (Dom' m)) -> p (deref n m k∈) ≡ true -> (v : Value) -> p v ≡ false -> ocount p m ≡ suc (ocount p (m-insert (just v) n m)) change-one-ocount-goes-down = f where f : ∀ (m : LMap) -> (p : Value -> Bool) -> (n : ℕ) -> (k∈ : n ∈ (Dom' m)) -> p (deref n m k∈) ≡ true -> (v : Value) -> p v ≡ false -> ocount p m ≡ suc (ocount p (m-insert (just v) n m)) f [] p zero () p[derefnmk∈]≡true v pv≡false f (just x ∷ m) p zero k∈ p[derefnmk∈]≡true v pv≡false with p x ... | true with p v f (just x ∷ m) p zero k∈ p[derefnmk∈]≡true v () | true | true ... | false = refl f (just x ∷ m) p zero k∈ () v pv≡false | false f (nothing ∷ m) p zero k∈ p[derefnmk∈]≡true v pv≡false = ⊥-elim (0∈S k∈) f [] p (suc n) () p[derefnmk∈]≡true v pv≡false f (just x ∷ m) p (suc n) k∈ p[derefnmk∈]≡true v pv≡false with p x ... | true = cong suc (f m p n (n∈S{x = just x}{l = m} k∈) p[derefnmk∈]≡true v pv≡false) ... | false = f m p n (n∈S{x = just x}{l = m} k∈) p[derefnmk∈]≡true v pv≡false f (nothing ∷ m) p (suc n) k∈ p[derefnmk∈]≡true v pv≡false = f m p n (n∈S{x = nothing}{l = m} k∈) p[derefnmk∈]≡true v pv≡false change-nothing-ocount-stays-same : ∀ (m : LMap) -> (p : Value -> Bool) -> (n : ℕ) -> (k∈ : n ∈ (Dom' m)) -> (v : Value) -> p (deref n m k∈) ≡ p v -> ocount p m ≡ ocount p (m-insert (just v) n m) change-nothing-ocount-stays-same = f where f : ∀ (m : LMap) -> (p : Value -> Bool) -> (n : ℕ) -> (k∈ : n ∈ (Dom' m)) -> (v : Value) -> p (deref n m k∈) ≡ p v -> ocount p m ≡ ocount p (m-insert (just v) n m) f [] p zero () v pold≡pv f (just x ∷ m) p zero k∈ v pold≡pv with p x | p v f (just x ∷ m) p zero k∈ v pold≡pv | false | false = refl f (just x ∷ m) p zero k∈ v () | false | true f (just x ∷ m) p zero k∈ v () | true | false f (just x ∷ m) p zero k∈ v pold≡pv | true | true = refl f (nothing ∷ m) p zero k∈ v pold≡pv with p v f (nothing ∷ m) p zero k∈ v pold≡pv | false = refl f (nothing ∷ m) p zero k∈ v pold≡pv | true = ⊥-elim (0∈S k∈) f [] p (suc n) () v pold≡pv f (just x ∷ m) p (suc n) k∈ v pold≡pv with p x f (just x ∷ m) p (suc n) k∈ v pold≡pv | true = cong suc (f m p n (n∈S{x = just x}{l = m} k∈) v pold≡pv) f (just x ∷ m) p (suc n) k∈ v pold≡pv | false = f m p n (n∈S{x = just x}{l = m} k∈) v pold≡pv f (nothing ∷ m) p (suc n) k∈ v pold≡pv = f m p n (n∈S{x = nothing}{l = m} k∈) v pold≡pv ocount-merge≤′sum-ocount : ∀ (m1 m2 : LMap) -> (p : Value -> Bool) -> ocount p (m1 U m2) ≤′ ocount p m1 + ocount p m2 ocount-merge≤′sum-ocount = f where f : ∀ (m1 m2 : LMap) -> (p : Value -> Bool) -> ocount p (m1 U m2) ≤′ ocount p m1 + ocount p m2 f [] [] p = ≤′-refl f [] (x ∷ m2) p = ≤′-refl f (x ∷ m1) [] p = ≤⇒≤′ (m≤m+n (ocount p (x ∷ m1)) 0) f (just x ∷ m1) (just x₁ ∷ m2) p with p x | p x₁ | f m1 m2 p f (just x ∷ m1) (just x₁ ∷ m2) p | false | false | R = R f (just x ∷ m1) (just x₁ ∷ m2) p | false | true | R = ≤′-trans {y = suc (ocount p m1 + ocount p m2)} (s≤′s R) (≡is≤′ (sym (+-suc (ocount p m1) (ocount p m2)))) f (just x ∷ m1) (just x₁ ∷ m2) p | true | false | R = ≤′-step R f (just x ∷ m1) (just x₁ ∷ m2) p | true | true | R = s≤′s (≤′-trans {y = ocount p m1 + ocount p m2} R (≤′+r {ocount p m2} {suc (ocount p m2)} {ocount p m1} (≤′-step ≤′-refl))) f (just x ∷ m1) (nothing ∷ m2) p with p x | f m1 m2 p f (just x ∷ m1) (nothing ∷ m2) p | false | R = R f (just x ∷ m1) (nothing ∷ m2) p | true | R = s≤′s R f (nothing ∷ m1) (just x ∷ m2) p with p x | f m1 m2 p f (nothing ∷ m1) (just x ∷ m2) p | false | R = R f (nothing ∷ m1) (just x ∷ m2) p | true | R = ≤′-trans {y = suc (ocount p m1 + ocount p m2)} (s≤′s R) (≡is≤′ (sym (+-suc (ocount p m1) (ocount p m2)))) f (nothing ∷ m1) (nothing ∷ m2) p with f m1 m2 p ... | R = R Dom'+∈ : (L : LMap) → List (∃[ n ] (n ∈ (Dom' L))) Dom'+∈ L = help (Dom' L) where help : (x : List ℕ) → (List (∃[ y ] (y ∈ x))) help [] = [] help (x ∷ x₁) = (x , here refl) ∷ map (λ {(a , b) → a , there b}) (help x₁)
{ "alphanum_fraction": 0.5347456716, "avg_line_length": 49.62113127, "ext": "agda", "hexsha": "99b641b568276939e34479591206845158f5d3bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Data/OrderedListMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Data/OrderedListMap.agda", "max_line_length": 187, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Data/OrderedListMap.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 22584, "size": 46495 }
------------------------------------------------------------------------------ -- Testing the class AgdaInternal.RemoveProofTerms.RemoveVar: Lam term ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module RemoveVar.LamTerm where -- We add 3 to the fixities of the standard library. infixr 8 _∷_ infixr 7 _,_ infix 7 _≡_ _≈_ infixr 5 _∧_ infix 5 ∃ ------------------------------------------------------------------------------ postulate D : Set _∷_ : D → D → D Stream : D → Set _≈_ : D → D → Set data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B data ∃ (A : D → Set) : Set where _,_ : (t : D) → A t → ∃ A syntax ∃ (λ x → e) = ∃[ x ] e data _≡_ (x : D) : D → Set where refl : x ≡ x postulate Stream-gfp₂ : (P : D → Set) → -- P is post-fixed point of StreamF. (∀ {xs} → P xs → ∃[ x' ] ∃[ xs' ] P xs' ∧ xs ≡ x' ∷ xs') → -- Stream is greater than P. ∀ {xs} → P xs → Stream xs postulate ≈-gfp₁ : ∀ {xs ys} → xs ≈ ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs' ≈ ys' ∧ xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' {-# ATP axiom ≈-gfp₁ #-} -- See Issue #81. P : D → Set P ws = ∃[ zs ] ws ≈ zs {-# ATP definition P #-} ≈→Stream : ∀ {xs ys} → xs ≈ ys → Stream xs ≈→Stream {xs} {ys} xs≈ys = Stream-gfp₂ P helper (ys , xs≈ys) where postulate helper : ∀ {ws} → P ws → ∃[ w' ] ∃[ ws' ] P ws' ∧ ws ≡ w' ∷ ws' {-# ATP prove helper #-}
{ "alphanum_fraction": 0.4091189156, "avg_line_length": 27.05, "ext": "agda", "hexsha": "cae833671d7ae7a4eea3b5479519df4cda2d8d48", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/RemoveVar/LamTerm.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/RemoveVar/LamTerm.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/RemoveVar/LamTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 553, "size": 1623 }
module modal-lob-reduced where data TYP : Set where ARR : TYP → TYP → TYP -- the type of implications, or function types BOX : TYP → TYP -- the modal □ operator, denoted to TERM LӦB-SENTENCE : TYP → TYP -- the Lӧbian sentence "If this sentence is provable, then A" -- this is the modal fixpoint of λ Ψ. □ Ψ → A data TERM : TYP → Set where k : {A : TYP} → TERM A → TERM (BOX A) -- from A, we deduce □ A distr : {A B : TYP} → TERM (ARR (BOX (ARR A B)) (ARR (BOX A) (BOX B))) -- we deduce □ (A → B) → □ A → □ B s4 : {A : TYP} → TERM (ARR (BOX A) (BOX (BOX A))) -- we deduce □ A → □ □ A app : {A B : TYP} → TERM (ARR A B) → TERM A → TERM B -- from A → B, and A, we deduce B lӧb→ : {A : TYP} → TERM (ARR (LӦB-SENTENCE A) (ARR (BOX (LӦB-SENTENCE A)) A)) -- LӦB-SENTENCE A is Ψ such that Ψ → (□ Ψ → A) lӧb← : {A : TYP} → TERM (ARR (ARR (BOX (LӦB-SENTENCE A)) A) (LӦB-SENTENCE A)) -- LӦB-SENTENCE A is Ψ such that (□ Ψ → A) → Ψ compose : {A B C : TYP} → TERM (ARR A B) → TERM (ARR B C) → TERM (ARR A C) -- from A → B and B → C, we deduce A → C compose2 : {A B C : TYP} → TERM (ARR A B) → TERM (ARR A (ARR B C)) → TERM (ARR A C) -- from A → B and A → B → C, we deduce A → C ⟦_⟧ᵀ : TYP → Set ⟦ ARR A B ⟧ᵀ = ⟦ A ⟧ᵀ → ⟦ B ⟧ᵀ ⟦ BOX T ⟧ᵀ = TERM T ⟦ LӦB-SENTENCE A ⟧ᵀ = TERM (LӦB-SENTENCE A) → ⟦ A ⟧ᵀ ⟦_⟧ᵗ : {T : TYP} → TERM T → ⟦ T ⟧ᵀ ⟦ k e ⟧ᵗ = e ⟦ distr ⟧ᵗ box-a-b box-a = app box-a-b box-a ⟦ s4 ⟧ᵗ = k ⟦ app f x ⟧ᵗ = ⟦ f ⟧ᵗ ⟦ x ⟧ᵗ ⟦ lӧb→ ⟧ᵗ = λ x → x -- this implication is true because on denotation, the two are judgmentally equal ⟦ lӧb← ⟧ᵗ = λ x → x -- this implication is true because on denotation, the two are judgmentally equal ⟦ compose f g ⟧ᵗ = λ x → ⟦ g ⟧ᵗ (⟦ f ⟧ᵗ x) ⟦ compose2 f g ⟧ᵗ = λ x → ⟦ g ⟧ᵗ x (⟦ f ⟧ᵗ x) Lӧb′s-Theorem : {A : TYP} → TERM (ARR (BOX A) A) → TERM A -- from □ A → A, we deduce A Lӧb′s-Theorem {A} interp = app prog (k (app lӧb← prog)) where prog : TERM (ARR (BOX (LӦB-SENTENCE A)) A) prog = compose (compose2 s4 (compose (app distr (k lӧb→)) distr)) interp
{ "alphanum_fraction": 0.5543584721, "avg_line_length": 55.1891891892, "ext": "agda", "hexsha": "72020ee26d973f71fa125658fc6191aa994e5e28", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/modal-logic-lob-reduced.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/modal-logic-lob-reduced.agda", "max_line_length": 130, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/modal-logic-lob-reduced.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 958, "size": 2042 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Notation for freely adding an infimum to any set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Construct.Add.Infimum where open import Relation.Nullary.Construct.Add.Point renaming (Pointed to _₋; ∙ to ⊥₋) public
{ "alphanum_fraction": 0.4685990338, "avg_line_length": 29.5714285714, "ext": "agda", "hexsha": "de90924eda5afd78259944d2e9e24ca251158533", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Infimum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Infimum.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Construct/Add/Infimum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 75, "size": 414 }
{- Copyright © 1992–2002 The University of Glasgow Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Monad where import Category.Monad import Data.List import Data.Maybe open import Function using (const) open Category.Monad using (RawMonad) public open Category.Monad.RawMonad ⦃...⦄ using (_>>=_; _>>_; return) public instance Monad-List : ∀ {ℓ} → RawMonad (Data.List.List {ℓ}) Monad-List = Data.List.monad Monad-Maybe : ∀ {ℓ} → RawMonad (Data.Maybe.Maybe {ℓ}) Monad-Maybe = Data.Maybe.monad Monad-Function : ∀ {ℓ} {r : Set ℓ} → RawMonad (λ s → (r → s)) Monad-Function {r} = record { return = const {r} ; _>>=_ = λ f k → λ r → k (f r) r }
{ "alphanum_fraction": 0.6991869919, "avg_line_length": 30.75, "ext": "agda", "hexsha": "657dd55c64559b521fb9b33284f43a64b40b38c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "bbarenblat/B", "max_forks_repo_path": "Prelude/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "bbarenblat/B", "max_issues_repo_path": "Prelude/Monad.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "bbarenblat/B", "max_stars_repo_path": "Prelude/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z", "num_tokens": 337, "size": 1230 }
------------------------------------------------------------------------ -- Up-to techniques via ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Up-to.Via where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Bijection equality-with-J as Bijection using (_↔_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level.Closure equality-with-J using (ext⁻¹) open import Indexed-container open import Indexed-container.Combinators hiding (id) renaming (_∘_ to _⊚_) open import Relation open import Up-to -- The property of being an up-to technique via another (or the same) -- relation transformer. This is an adaptation of Definition 6.3.25 in -- Pous and Sangiorgi's "Enhancements of the bisimulation proof -- method". Up-to-technique-via : ∀ {ℓ} {I : Type ℓ} → Container I I → Trans ℓ I → Trans ℓ I → Type (lsuc ℓ) Up-to-technique-via C F G = Extensive G × (∀ R → R ⊆ ⟦ C ⟧ (F R) → G R ⊆ ⟦ C ⟧ (G R)) -- If F is an up-to technique via G, then F is an up-to technique. -- -- A corresponding result is mentioned by Pous and Sangiorgi right -- after Definition 6.3.25. up-to-via→up-to : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F G} → Up-to-technique-via C F G → Up-to-technique C F up-to-via→up-to {C = C} {F} {G} up-to {R} = R ⊆ ⟦ C ⟧ (F R) ↝⟨ proj₂ up-to _ ⟩ G R ⊆ ⟦ C ⟧ (G R) ↝⟨ unfold C ⟩ G R ⊆ ν C ∞ ↝⟨ (λ hyp {_} x → hyp (proj₁ up-to R x)) ⟩□ R ⊆ ν C ∞ □ -- If F is an up-to technique, then F is an up-to technique via -- _∪ ν C ∞. up-to→up-to-via : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F} → Up-to-technique C F → Up-to-technique-via C F (_∪ ν C ∞) up-to→up-to-via {C = C} {F} up-to = (λ R → R ⊆⟨ inj₁ ⟩∎ R ∪ ν C ∞ ∎) , λ R → R ⊆ ⟦ C ⟧ (F R) ↝⟨ up-to ⟩ R ⊆ ν C ∞ ↝⟨ (λ hyp {_} → R ∪ ν C ∞ ⊆⟨ [ hyp {_} , id ] ⟩ ν C ∞ ⊆⟨ ν-out _ ⟩ ⟦ C ⟧ (ν C ∞) ⊆⟨ map C inj₂ ⟩∎ ⟦ C ⟧ (R ∪ ν C ∞) ∎) ⟩ R ∪ ν C ∞ ⊆ ⟦ C ⟧ (R ∪ ν C ∞) □ -- A lemma that corresponds to Pous and Sangiorgi's Lemma 6.3.27: If G -- satisfies certain properties, then Up-to-technique-via C F is -- closed under G ∘_. up-to-via-∘ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F G H} → Extensive G → (∀ R → R ⊆ ⟦ C ⟧ R → G R ⊆ ⟦ C ⟧ (G R)) → Up-to-technique-via C F H → Up-to-technique-via C F (G ∘ H) up-to-via-∘ {C = C} {F} {G} {H} extensive pres up-to = (λ R → R ⊆⟨ proj₁ up-to _ ⟩ H R ⊆⟨ extensive _ ⟩∎ G (H R) ∎) , λ R → R ⊆ ⟦ C ⟧ (F R) ↝⟨ proj₂ up-to _ ⟩ H R ⊆ ⟦ C ⟧ (H R) ↝⟨ pres _ ⟩□ G (H R) ⊆ ⟦ C ⟧ (G (H R)) □ mutual -- If the container F is an up-to technique via a symmetric relation -- transformer, then ν ⟷[ C ⊚ F ] ∞ is contained in ν ⟷[ C ] ∞. This -- result corresponds to Pous and Sangiorgi's Proposition 6.3.28. up-to-via→ν-∘⊆ν : ∀ {ℓ} {I : Type ℓ} {C : Container (I × I) (I × I)} {F G} → Symmetric swap G → Up-to-technique-via C ⟦ F ⟧ G → ν ⟷[ C ⊚ F ] ∞ ⊆ ν ⟷[ C ] ∞ up-to-via→ν-∘⊆ν symm up-to = up-to-via²→ν-∘⊆ν refl symm up-to up-to -- A generalisation of the result above. up-to-via²→ν-∘⊆ν : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container I I} {F₁ F₂ G} {f : I → I} → f ∘ f ≡ id → Symmetric f G → Up-to-technique-via C₁ ⟦ F₁ ⟧ G → Up-to-technique-via C₂ ⟦ F₂ ⟧ G → ν (C₁ ⊚ F₁ ⊗ reindex f (C₂ ⊚ F₂)) ∞ ⊆ ν (C₁ ⊗ reindex f C₂) ∞ up-to-via²→ν-∘⊆ν {ℓ} {I} {C₁} {C₂} {F₁} {F₂} {G} {f} inv symm up-to₁ up-to₂ = $⟨ (λ {_} → ν-out _) ⟩ R ⊆ ⟦ C₁ ⊚ F₁ ⊗ reindex f (C₂ ⊚ F₂) ⟧ R ↝⟨ ⊆-congʳ _ $ ⟦⊗⟧↔ _ (C₁ ⊚ F₁) (reindex f (C₂ ⊚ F₂)) ⟩ R ⊆ ⟦ C₁ ⊚ F₁ ⟧ R ∩ ⟦ reindex f (C₂ ⊚ F₂) ⟧ R ↝⟨ from-isomorphism implicit-ΠΣ-comm F.∘ implicit-∀-cong _ (from-isomorphism ΠΣ-comm) ⟩ R ⊆ ⟦ C₁ ⊚ F₁ ⟧ R × R ⊆ ⟦ reindex f (C₂ ⊚ F₂) ⟧ R ↝⟨ Σ-map lemma₁ lemma₂ ⟩ G R ⊆ ⟦ C₁ ⟧ (G R) × G R ⊆ ⟦ reindex f C₂ ⟧ (G R) ↝⟨ _⇔_.from (from-isomorphism implicit-ΠΣ-comm F.∘ implicit-∀-cong _ (from-isomorphism ΠΣ-comm)) ⟩ G R ⊆ ⟦ C₁ ⟧ (G R) ∩ ⟦ reindex f C₂ ⟧ (G R) ↝⟨ _⇔_.from $ ⊆-congʳ _ $ ⟦⊗⟧↔ _ C₁ (reindex f C₂) ⟩ G R ⊆ ⟦ C₁ ⊗ reindex f C₂ ⟧ (G R) ↝⟨ unfold (C₁ ⊗ reindex f C₂) ⟩ G R ⊆ ν (C₁ ⊗ reindex f C₂) ∞ ↝⟨ (λ hyp {_} x → hyp (proj₁ up-to₁ R x)) ⟩□ R ⊆ ν (C₁ ⊗ reindex f C₂) ∞ □ where R = ν (C₁ ⊚ F₁ ⊗ reindex f (C₂ ⊚ F₂)) ∞ I↔I : I ↔ I I↔I = Bijection.bijection-from-involutive-family (λ _ _ → f) (λ _ _ → ext⁻¹ inv) tt tt ∘⊆⇔⊆∘ : {S₁ S₂ : Rel ℓ I} → S₁ ∘ f ⊆ S₂ ⇔ S₁ ⊆ S₂ ∘ f ∘⊆⇔⊆∘ {S₁ = S₁} {S₂} = (∀ {p} → S₁ (f p) → S₂ p) ↔⟨ Bijection.implicit-Π↔Π ⟩ (∀ p → S₁ (f p) → S₂ p) ↝⟨ Π-cong _ I↔I (λ _ → →-cong _ F.id (≡⇒↝ _ $ cong S₂ $ ext⁻¹ (sym inv) _)) ⟩ (∀ p → S₁ p → S₂ (f p)) ↔⟨ inverse Bijection.implicit-Π↔Π ⟩□ (∀ {p} → S₁ p → S₂ (f p)) □ lemma₁ = R ⊆ ⟦ C₁ ⊚ F₁ ⟧ R ↝⟨ ⊆-congʳ _ (⟦∘⟧↔ _ C₁) ⟩ R ⊆ ⟦ C₁ ⟧ (⟦ F₁ ⟧ R) ↝⟨ proj₂ up-to₁ _ ⟩□ G R ⊆ ⟦ C₁ ⟧ (G R) □ lemma₂ = R ⊆ ⟦ reindex f (C₂ ⊚ F₂) ⟧ R ↝⟨ ⊆-congʳ _ $ ⟦reindex⟧↔ _ (C₂ ⊚ F₂) ⟩ R ⊆ ⟦ C₂ ⊚ F₂ ⟧ (R ∘ f) ∘ f ↝⟨ ⊆-congʳ _ (⟦∘⟧↔ _ C₂) ⟩ R ⊆ ⟦ C₂ ⟧ (⟦ F₂ ⟧ (R ∘ f)) ∘ f ↝⟨ _⇔_.from ∘⊆⇔⊆∘ ⟩ R ∘ f ⊆ ⟦ C₂ ⟧ (⟦ F₂ ⟧ (R ∘ f)) ↝⟨ proj₂ up-to₂ _ ⟩ G (R ∘ f) ⊆ ⟦ C₂ ⟧ (G (R ∘ f)) ↝⟨ involution→other-symmetry G inv symm _ ⊆-cong-→ ⟦⟧-cong _ C₂ (symm _) ⟩ G R ∘ f ⊆ ⟦ C₂ ⟧ (G R ∘ f) ↝⟨ _⇔_.to ∘⊆⇔⊆∘ ⟩ G R ⊆ ⟦ C₂ ⟧ (G R ∘ f) ∘ f ↝⟨ _⇔_.from $ ⊆-congʳ _ $ ⟦reindex⟧↔ _ C₂ ⟩ G R ⊆ ⟦ reindex f C₂ ⟧ (G R) □ -- If F is monotone and compatible, then F is an up-to technique via -- F ^ω_. This result corresponds to Pous and Sangiorgi's -- Theorem 6.3.26. monotone→compatible→up-to-via : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F} → Monotone F → Compatible C F → Up-to-technique-via C F (F ^ω_) monotone→compatible→up-to-via {C = C} {F} mono comp = (λ R → R ⊆⟨ 0 ,_ ⟩∎ F ^ω R ∎) , λ R R⊆ → F ^ω R ⊆⟨ compatible→^ω-post-fixpoint _ mono comp R⊆ ⟩∎ ⟦ C ⟧ (F ^ω R) ∎
{ "alphanum_fraction": 0.4549705838, "avg_line_length": 38.7660818713, "ext": "agda", "hexsha": "c341b578c7a435a0ac6ccfe978d562336e4d7530", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Up-to/Via.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Up-to/Via.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Up-to/Via.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3061, "size": 6629 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.System.Parameters import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.Properties.QuorumCert as QuorumCertProps import LibraBFT.Impl.Consensus.ConsensusTypes.Properties.VoteData as VoteDataProps import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData open import LibraBFT.Impl.Consensus.SafetyRules.SafetyRules import LibraBFT.Impl.Handle as Handle open import LibraBFT.Impl.Properties.Util open import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures open import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output import LibraBFT.ImplShared.Util.Crypto as Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Hash open import Util.KVMap as Map open import Util.Lemmas open import Util.PKCS open import Util.Prelude open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms Handle.InitHandler.initAndHandlers PeerCanSignForPK PeerCanSignForPK-stable open Invariants open RoundManagerTransProps module LibraBFT.Impl.Consensus.SafetyRules.Properties.SafetyRules where module verifyAndUpdatePreferredRoundDefs (quorumCert : QuorumCert) (safetyData : SafetyData) where preferredRound = safetyData ^∙ sdPreferredRound oneChainRound = quorumCert ^∙ qcCertifiedBlock ∙ biRound twoChainRound = quorumCert ^∙ qcParentBlock ∙ biRound C₁ = oneChainRound < preferredRound C₂ = twoChainRound > preferredRound C₃ = twoChainRound < preferredRound C₄ = twoChainRound ≡ preferredRound safetyData' = safetyData & sdPreferredRound ∙~ twoChainRound module verifyAndUpdatePreferredRoundMSpec (quorumCert : QuorumCert) (safetyData : SafetyData) where open verifyAndUpdatePreferredRoundDefs quorumCert safetyData module _ (pre : RoundManager) where record setPR (sd : SafetyData) : Set where field cond : C₂ eff : sd ≡ safetyData' record noChanges (sd : SafetyData) : Set where field noUpd : sd ≡ safetyData record ConditionCorrectR (sd : SafetyData) : Set where field ep≡ : sd ≡L safetyData at sdEpoch qcr≤pr : quorumCert ^∙ qcParentBlock ∙ biRound ≤ sd ^∙ sdPreferredRound conds : noChanges sd ⊎ setPR sd open ConditionCorrectR public ConditionCorrect : Either ErrLog SafetyData → Set ConditionCorrect (Left _) = ⊤ ConditionCorrect (Right sd) = ConditionCorrectR sd record Contract (r : Either ErrLog SafetyData) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field noOuts : OutputProps.NoMsgs outs noEff : post ≡ pre condCorr : ConditionCorrect r contract : ∀ pre → LBFT-weakestPre (verifyAndUpdatePreferredRoundM quorumCert safetyData) (Contract pre) pre proj₁ (contract pre) _ = mkContract refl refl tt proj₂ (contract pre) x rewrite x with <-cmp twoChainRound preferredRound ...| tri< lt _ _ = λ where ._ refl ._ refl → mkContract refl refl (record { ep≡ = refl ; qcr≤pr = <⇒≤ lt ; conds = inj₁ (record { noUpd = refl }) }) ...| tri≈ _ refl _ = λ where ._ refl → mkContract refl refl (record { ep≡ = refl ; qcr≤pr = ≤-refl ; conds = inj₁ (record { noUpd = refl }) }) ...| tri> _ _ gt = λ where ._ refl ._ refl → mkContract refl refl (record { ep≡ = refl ; qcr≤pr = ≤-refl ; conds = inj₂ (record { cond = gt ; eff = refl }) }) module extensionCheckSpec (voteProposal : VoteProposal) where proposedBlock = voteProposal ^∙ vpBlock obmAEP = voteProposal ^∙ vpAccumulatorExtensionProof voteData = (VoteData.new (Block.genBlockInfo proposedBlock -- OBM-LBFT-DIFF: completely different (Crypto.obmHashVersion (obmAEP ^∙ aepObmNumLeaves)) (obmAEP ^∙ aepObmNumLeaves) (voteProposal ^∙ vpNextEpochState)) (proposedBlock ^∙ bQuorumCert ∙ qcCertifiedBlock)) contract -- TODO-1: refine (waiting on: extensionCheckM) : ∀ {ℓ} (Post : Either ErrLog VoteData → Set ℓ) → (∀ e → Post (Left e)) → (Post (pure voteData)) → Post (extensionCheck voteProposal) contract Post pfBail pfOk = pfOk module constructLedgerInfoMSpec (proposedBlock : Block) (consensusDataHash : HashValue) where -- This is a place-holder contract that requires refinement once -- `constructLedgerInfoM is implemented. postulate -- TODO-1: refine and prove contract : ∀ P pre → P (inj₁ fakeErr) pre [] → (∀ ledgerInfo → P (inj₂ ledgerInfo) pre []) → LBFT-weakestPre (constructLedgerInfoM proposedBlock consensusDataHash) P pre -- TUTORIAL: Weakest preconditions generated from conditionals, translating a -- boolean equality test to proofs of (in)equality. module verifyEpochMSpec (epoch : Epoch) (safetyData : SafetyData) where -- The body of `verifyEpochM` is: -- > ifM not ⌊ epoch ≟ℕ safetyData ^∙ sdEpoch ⌋ -- > then bail fakeErr -- log: error: incorrect epoch -- > else ok unit contract : ∀ P pre → (epoch ≢ safetyData ^∙ sdEpoch → P (inj₁ fakeErr) pre []) → (epoch ≡ safetyData ^∙ sdEpoch → P (inj₂ unit) pre []) → LBFT-weakestPre (verifyEpochM epoch safetyData) P pre -- The outermost node of the AST of `verifyEpochM` is `ifM_then_else_ ...`, so -- our goal is to return a product: one proof corresponding to the "then" case -- one and one proof corresponding to the "else" case. -- -- 1. In the "then" case, we recieve a proof `e≢` that -- > toBool (not ⌊ epoch ≟ℕ safetyData ^∙ sdEpoch ⌋) ≡ true proj₁ (contract Post pre pfBail pfOk) e≢ -- - abstract over the expression that prevents us from analyzing this evidence with epoch ≟ℕ safetyData ^∙ sdEpoch -- - Agda can tell that `yes pf` is not an option, since e≢ would have type -- `false ≡ true` in that case ...| no pf = pfBail pf -- 2. In the "else" case, we receive a proof `e≡` that -- > toBool (not ⌊ epoch ≟ℕ safetyData ^∙ sdEpoch ⌋) ≡ false proj₂ (contract Post pre pfBail pfOk) e≡ -- - perform the same `with` abstraction as the previous case with epoch ≟ℕ safetyData ^∙ sdEpoch -- - Agda can tell that `no pf` is not an option ...| yes pf = pfOk pf -- TUTORIAL: Translating boolean comparison tests to proofs. module verifyAndUpdateLastVoteRoundMSpec (round : Round) (safetyData : SafetyData) where safetyData' = safetyData & sdLastVotedRound ∙~ round -- This example shows that we could have further simplified the proof of the -- contract for `verifyEpochM`. In `Util.Prelude`, we define lemmas -- > toWitnessT : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ true → P -- > toWitnessF : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ false → ¬ P -- which extract the underlying proof used to construct `d` given evidence -- that "lowering" `d` to a boolean produces `true` or `false`. contract : ∀ P pre → ((r>lvr : round > safetyData ^∙ sdLastVotedRound) → P (Right safetyData') pre []) → ((r≤lvr : ¬ (round > safetyData ^∙ sdLastVotedRound)) → P (Left fakeErr) pre []) → LBFT-weakestPre (verifyAndUpdateLastVoteRoundM round safetyData) P pre proj₁ (contract Post pre pfOk pfBail) r>lvr = pfOk (toWitnessT r>lvr) proj₂ (contract Post pre pfOk pfBail) ¬r>lvr = pfBail (toWitnessF ¬r>lvr) module verifyQcMSpec (self : QuorumCert) where getVv : RoundManager → ValidatorVerifier getVv = _^∙ (rmEpochState ∙ esVerifier) -- See comment on contract below to understand the motivation for stating and proving the property -- this way. Contract : RoundManager → RWS-Post Output RoundManager (Either ErrLog Unit) Contract pre (Left _) post outs = post ≡ pre × outs ≡ [] Contract pre (Right _) post outs = post ≡ pre × outs ≡ [] × QuorumCertProps.Contract self (getVv pre) contract' : ∀ pre → RWS-weakestPre (verifyQcM self) (Contract pre) unit pre contract' _ _ _ (Left x₂) _ = refl , refl contract' pre vv refl (Right unit) x₁ = refl , refl , QuorumCertProps.contract self vv (Right unit) refl (sym x₁) -- Suppose verifyQcM runs from prestate pre, and we wish to ensure that postcondition Post holds -- afterwards. If P holds provided verifyQcM does not modify the state and does not produce any -- Outputs, and, if verifyQcM succeeds (returns Right unit), P holds provided -- QuorumCertProps.Contract holds for the given QuorumCert and the ValidatorVerifier of the -- prestate, then verifyQcM ensures P holds. Proving this directly is painful because it's -- difficult to construct a QuorumCertProps.Contract self (getVv pre) that Agda understands allows -- us to invoke the rPrf (condition on P in case verifyQcM succeeds). Therefore, we restate the -- conditions on P (as P', above) and prove that P' implies P, and then use LBFT-⇒ to achieve -- the desired result. contract : ∀ P pre → (∀ {e} → P (Left e) pre []) -- verifyQcM does not emit any outputs, it just propagates a Left ErrLog, hence [] → (QuorumCertProps.Contract self (getVv pre) → P (Right unit) pre []) → RWS-weakestPre (verifyQcM self) P unit pre contract Post pre lPrf rPrf = LBFT-⇒ (verifyQcM self) pre (contract' pre) (λ { (Left x₁) st outs (refl , refl) → lPrf ; (Right unit) st outs (refl , refl , prf) → rPrf prf }) module constructAndSignVoteMSpec where VoteResultCorrect : (pre post : RoundManager) (block : Block) (lvr≡? : Bool) (r : Either ErrLog Vote) → Set VoteResultCorrect pre post block lvr≡? (Left e) = VoteNotGenerated pre post lvr≡? VoteResultCorrect pre post block lvr≡? (Right vote) = Voting.VoteGeneratedCorrect pre post vote block record Contract (pre : RoundManager) (block : Block) (r : Either ErrLog Vote) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General properties / invariants rmInv : Preserves RoundManagerInv pre post noEpochChange : NoEpochChange pre post noMsgOuts : OutputProps.NoMsgs outs -- Voting lvr≡? : Bool voteResCorrect : VoteResultCorrect pre post block lvr≡? r private contractBail : ∀ {pre block e} outs → OutputProps.NoMsgs outs → Contract pre block (Left e) pre outs contractBail{pre} outs noMsgs = mkContract reflPreservesRoundManagerInv (reflNoEpochChange{pre}) noMsgs true reflVoteNotGenerated module continue2 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData : SafetyData) where open constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock safetyData record Requirements (pre : RoundManager) : Set where constructor mkRequirements field es≡₁ : (pre ^∙ pssSafetyData-rm) ≡L safetyData at sdEpoch es≡₂ : voteProposal ^∙ vpBlock ∙ bEpoch ≡ safetyData ^∙ sdEpoch lv≡ : (pre ^∙ pssSafetyData-rm) ≡L safetyData at sdLastVote lvr≡ : (pre ^∙ pssSafetyData-rm) ≡L safetyData at sdLastVotedRound vp≡pb : proposedBlock ≡ voteProposal ^∙ vpBlock contract' : ∀ pre → Requirements pre → LBFT-weakestPre (constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock safetyData) (Contract pre proposedBlock) pre contract' pre reqs = verifyAndUpdateLastVoteRoundMSpec.contract (proposedBlock ^∙ bRound) safetyData (RWS-weakestPre-ebindPost unit step₁ (Contract pre proposedBlock)) pre contract-step₁ (λ r≤lvr → contractBail _ refl) where module _ (r>lvr : proposedBlock ^∙ bRound > safetyData ^∙ sdLastVotedRound) where -- Shared definitions module _ where safetyData1 = verifyAndUpdateLastVoteRoundMSpec.safetyData' (proposedBlock ^∙ bRound) safetyData preUpdatedSD = pre & pssSafetyData-rm ∙~ safetyData1 author = validatorSigner ^∙ vsAuthor -- State invariants module _ where bsip₁ : Preserves BlockStoreInv (rm→BlockStore-EC pre) (rm→BlockStore-EC preUpdatedSD) bsip₁ = id emP : Preserves EpochsMatch pre preUpdatedSD emP eq = trans eq (Requirements.es≡₁ reqs) srPre = pre ^∙ lSafetyRules srPost = preUpdatedSD ^∙ lSafetyRules srP : Preserves SafetyRulesInv srPre srPost srP = mkPreservesSafetyRulesInv λ where (mkSafetyDataInv epoch≡ round≤) → mkSafetyDataInv (epoch≡P epoch≡) (round≤P round≤) where epoch≡P : Preserves (λ sd → Meta.getLastVoteEpoch sd ≡ sd ^∙ sdEpoch) (srPre ^∙ (srPersistentStorage ∙ pssSafetyData)) (srPost ^∙ (srPersistentStorage ∙ pssSafetyData)) epoch≡P epoch≡ rewrite sym (Requirements.lv≡ reqs) | sym (Requirements.es≡₁ reqs) = epoch≡ round≤P : Preserves (λ sd → Meta.getLastVoteRound sd ≤ sd ^∙ sdLastVotedRound) (srPre ^∙ (srPersistentStorage ∙ pssSafetyData)) (srPost ^∙ (srPersistentStorage ∙ pssSafetyData)) round≤P round≤ with pre ^∙ pssSafetyData-rm ∙ sdLastVote | inspect (_^∙ pssSafetyData-rm ∙ sdLastVote) pre ...| nothing | [ lv≡ ] rewrite (trans (sym (Requirements.lv≡ reqs)) lv≡) = z≤n ...| just x | [ lv≡ ] rewrite (trans (sym (Requirements.lv≡ reqs)) lv≡) = ≤-trans round≤ (≤-trans (≡⇒≤ (Requirements.lvr≡ reqs)) (<⇒≤ r>lvr)) invP₁ : Preserves RoundManagerInv pre preUpdatedSD invP₁ = mkPreservesRoundManagerInv id emP bsip₁ srP -- Some lemmas module _ where lvr<pbr : pre ^∙ pssSafetyData-rm ∙ sdLastVotedRound < proposedBlock ^∙ bRound lvr<pbr rewrite (Requirements.lvr≡ reqs) = r>lvr vpr≡pbr : (voteProposal ^∙ vpBlock) ≡L proposedBlock at bRound vpr≡pbr rewrite Requirements.vp≡pb reqs = refl bailAfterSetSafetyData : ∀ e → Contract pre proposedBlock (Left e) preUpdatedSD [] bailAfterSetSafetyData e = mkContract invP₁ refl refl false (mkVoteNotGenerated (Requirements.lv≡ reqs) lvr<pbr) contract-step₁ : RWS-weakestPre-ebindPost unit step₁ (Contract pre proposedBlock) (Right _) pre [] contract-step₂ : RWS-weakestPre-ebindPost unit (step₂ safetyData1) (Contract pre proposedBlock) (Right _) preUpdatedSD [] contract-step₁ ._ refl ._ refl .unit refl = extensionCheckSpec.contract voteProposal (λ r → RWS-weakestPre-ebindPost unit (step₂ safetyData1) (Contract pre proposedBlock) r preUpdatedSD []) bailAfterSetSafetyData contract-step₂ contract-step₂ voteData@._ refl = constructLedgerInfoMSpec.contract proposedBlock (hashVD voteData) (RWS-weakestPre-∙^∙Post unit (withErrCtx ("" ∷ [])) (RWS-weakestPre-ebindPost unit (step₃ safetyData1 voteData author) (Contract pre proposedBlock))) preUpdatedSD (λ where .(Left fakeErr) refl → bailAfterSetSafetyData fakeErr) contract-step₃ where contract-step₃ : ∀ ledgerInfo → RWS-weakestPre-∙^∙Post unit (withErrCtx ("" ∷ [])) (RWS-weakestPre-ebindPost unit (step₃ safetyData1 _ author) (Contract pre proposedBlock)) (Right ledgerInfo) preUpdatedSD [] contract-step₃ ledgerInfo ._ refl ._ refl ._ refl .unit refl unit refl = mkContract invP₂ refl refl false (Voting.mkVoteGeneratedCorrect (mkVoteGenerated refl (inj₂ (mkVoteNewGenerated lvr<pbr vpr≡pbr))) voteFromBlock) where vote = Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo) preUpdatedSD₂ = preUpdatedSD & pssSafetyData-rm ∙~ (safetyData1 & sdLastVote ?~ vote) pb≡vpb = sym (Requirements.vp≡pb reqs) voteFromBlock : Voting.VoteMadeFromBlock vote proposedBlock voteFromBlock = Voting.mkVoteMadeFromBlock (cong (_^∙ bEpoch) pb≡vpb) (cong (_^∙ bRound) pb≡vpb) (cong (_^∙ bId) pb≡vpb) -- State invariants module _ where bsiP₂ : Preserves BlockStoreInv (rm→BlockStore-EC pre) (rm→BlockStore-EC preUpdatedSD₂) bsiP₂ = id srP₂ : Preserves SafetyRulesInv (pre ^∙ lSafetyRules) (preUpdatedSD₂ ^∙ lSafetyRules) srP₂ = mkPreservesSafetyRulesInv (const $ mkSafetyDataInv (Requirements.es≡₂ reqs) (≡⇒≤ (cong (_^∙ bRound) pb≡vpb))) invP₂ : Preserves RoundManagerInv pre preUpdatedSD₂ invP₂ = mkPreservesRoundManagerInv id emP bsiP₂ srP₂ contract : ∀ pre Post → Requirements pre → RWS-Post-⇒ (Contract pre proposedBlock) Post → LBFT-weakestPre (constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock safetyData) Post pre contract pre Post reqs pf = LBFT-⇒ (constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock safetyData) pre (contract' pre reqs) pf module continue1 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData0 : SafetyData) where open constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0 record Requirements (pre : RoundManager) : Set where constructor mkRequirements field sd≡ : pre ^∙ pssSafetyData-rm ≡ safetyData0 es≡ : voteProposal ^∙ vpBlock ∙ bEpoch ≡ safetyData0 ^∙ sdEpoch vp≡pb : proposedBlock ≡ voteProposal ^∙ vpBlock contract : ∀ pre → Requirements pre → LBFT-weakestPre (constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0) (Contract pre proposedBlock) pre contract pre reqs = verifyQcMSpec.contract (proposedBlock ^∙ bQuorumCert) (RWS-weakestPre-ebindPost unit (λ _ → step₁) (Contract pre proposedBlock)) pre (contractBail _ refl) contract-step₁ where contract-step₁ : QuorumCertProps.Contract _ _ → RWS-weakestPre-ebindPost unit (const step₁) (Contract pre proposedBlock) (Right unit) pre [] contract-step₁ qcCon ._ refl validatorVerifier@._ refl with Block.validateSignature proposedBlock validatorVerifier ... | Left e = contractBail _ refl ... | Right unit = λ where ._ refl → contract-step₃ where contract-step₃ : RWS-weakestPre step₃ (Contract pre proposedBlock) unit pre contract-step₃ = LBFT-⇒ (verifyAndUpdatePreferredRoundM (proposedBlock ^∙ bQuorumCert) safetyData0) pre (verifyAndUpdatePreferredRoundMSpec.contract (proposedBlock ^∙ bQuorumCert) safetyData0 pre) pf-step₃ -- verifyAndUpdatePreferredRoundMSpec.contract (proposedBlock ^∙ bQuorumCert) safetyData0 -- Pred pre (λ r≤pr → contractBail _ refl) cases where VAUPContract = verifyAndUpdatePreferredRoundMSpec.Contract (proposedBlock ^∙ bQuorumCert) safetyData0 Pred = RWS-weakestPre-ebindPost unit (constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock) (Contract pre proposedBlock) reqs₁ : continue2.Requirements voteProposal validatorSigner proposedBlock safetyData0 pre reqs₁ with Requirements.sd≡ reqs ...| refl = continue2.mkRequirements refl (Requirements.es≡ reqs) refl refl (Requirements.vp≡pb reqs) reqs₂ : continue2.Requirements voteProposal validatorSigner proposedBlock (verifyAndUpdatePreferredRoundDefs.safetyData' (proposedBlock ^∙ bQuorumCert) safetyData0) pre reqs₂ with Requirements.sd≡ reqs ...| refl = continue2.mkRequirements refl (Requirements.es≡ reqs) refl refl (Requirements.vp≡pb reqs) pf-step₃ : ∀ r st outs → VAUPContract pre r st outs → Pred r st outs pf-step₃ r st outs (verifyAndUpdatePreferredRoundMSpec.mkContract noOuts refl condCorr) = pf r condCorr where pf-Con++outs : RWS-Post-⇒ (Contract pre proposedBlock) (RWS-Post++ (Contract pre proposedBlock) outs) pf-Con++outs r' st' outs' (mkContract rmInv noEpochChange noMsgOuts lvr≡? voteResCorrect) = mkContract rmInv noEpochChange (OutputProps.++-NoMsgs outs outs' noOuts noMsgOuts) lvr≡? voteResCorrect pf : (r : Either ErrLog SafetyData) (cc : verifyAndUpdatePreferredRoundMSpec.ConditionCorrect _ _ pre r) → Pred r st outs pf (Left e) tt = contractBail outs noOuts pf (Right .safetyData0) record { ep≡ = ep≡ ; qcr≤pr = qcr≤pr ; conds = (Left record { noUpd = refl }) } ._ refl = continue2.contract voteProposal validatorSigner proposedBlock safetyData0 pre (RWS-Post++ (Contract pre proposedBlock) outs) reqs₁ pf-Con++outs pf (Right safetyData1@._) record { ep≡ = ep≡ ; qcr≤pr = qcr≤pr ; conds = (Right record { eff = refl }) } ._ refl = continue2.contract voteProposal validatorSigner proposedBlock safetyData1 pre (RWS-Post++ (Contract pre proposedBlock) outs) reqs₂ pf-Con++outs module continue0 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) where open constructAndSignVoteM-continue0 voteProposal validatorSigner contract : ∀ pre → LBFT-weakestPre (constructAndSignVoteM-continue0 voteProposal validatorSigner) (Contract pre proposedBlock) pre contract pre safetyData0@._ refl = -- NOTE: There is a redundant check for this (that the proposal epoch -- matches the safety data epoch) in `LibraBFT.Impl.Consensus.Network` verifyEpochMSpec.contract (proposedBlock ^∙ bEpoch) safetyData0 (RWS-weakestPre-ebindPost unit (const (step₁ safetyData0)) (Contract pre proposedBlock)) pre (λ e≢sde → contractBail _ refl) contract-step₁ where module _ (e≡sde : proposedBlock ^∙ bEpoch ≡ pre ^∙ pssSafetyData-rm ∙ sdEpoch) where contract-step₁ : RWS-weakestPre-ebindPost unit (const (step₁ safetyData0)) (Contract pre proposedBlock) (Right unit) pre [] proj₁ (contract-step₁ .unit refl) ≡nothing = continue1.contract voteProposal validatorSigner proposedBlock safetyData0 pre (continue1.mkRequirements refl e≡sde refl) proj₁ (proj₂ (contract-step₁ .unit refl) vote vote≡) lvr≡pbr = mkContract reflPreservesRoundManagerInv (reflNoEpochChange{pre}) refl true (Voting.mkVoteGeneratedCorrect (mkVoteGenerated (sym vote≡) (inj₁ reflVoteOldGenerated)) (toWitnessT lvr≡pbr)) proj₂ (proj₂ (contract-step₁ .unit refl) vote vote≡) lvr≢pbr = continue1.contract voteProposal validatorSigner proposedBlock safetyData0 pre (continue1.mkRequirements refl e≡sde refl) module _ (maybeSignedVoteProposal : MaybeSignedVoteProposal) where voteProposal = maybeSignedVoteProposal ^∙ msvpVoteProposal proposedBlock = voteProposal ^∙ vpBlock contract' : ∀ pre → LBFT-weakestPre (constructAndSignVoteM maybeSignedVoteProposal) (Contract pre proposedBlock) pre contract' pre nothing vs≡ = mkContract reflPreservesRoundManagerInv (reflNoEpochChange{pre}) refl true reflVoteNotGenerated contract' pre (just validatorSigner) vs≡ = continue0.contract voteProposal validatorSigner pre contract : ∀ pre Post → RWS-Post-⇒ (Contract pre proposedBlock) Post → LBFT-weakestPre (constructAndSignVoteM maybeSignedVoteProposal) Post pre contract pre Post pf = RWS-⇒ (constructAndSignVoteM maybeSignedVoteProposal) unit pre (contract' pre) pf private module Tutorial (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData : SafetyData) where -- After some experience with these proofs, it (allegedly) -- becomes fairly straightforward to let Agda do a lot of the -- work, and unfold the proof as we go. However, it is -- important to understand what's going on under the hood to be -- able to reliably do this. For the proof below, we do it in -- excruciating detail "by hand" in comments as an example to -- help ourselves understand. -- For this example, we will prove that `step₃` of (and old version of) -- `constructAndSignVoteM-continue2` produces no output. Contract : LBFT-Post (Either ErrLog Vote) Contract x post outs = outs ≡ [] step₃ : SafetyData → VoteData → Author → LedgerInfo → LBFT (Either ErrLog Vote) step₃ safetyData1 voteData author ledgerInfo = do let signature = ValidatorSigner.sign validatorSigner ledgerInfo vote = Vote.newWithSignature voteData author ledgerInfo signature pssSafetyData-rm ∙= (safetyData1 & sdLastVote ?~ vote) ok vote step₃-contract : ∀ pre safetyData1 voteData author ledgerInfo → LBFT-weakestPre (step₃ safetyData1 voteData author ledgerInfo) Contract pre step₃-contract pre safetyData1 voteData author ledgerInfo {- The proof can be as simple as this: = λ _ _ _ _ → refl Easy, right?! Oh, you want a little more detail? Sure here you go: = λ where .pre refl → λ where .unit refl → refl -- Indenting important for parsing Still not crystal clear? OK, let's explore in a little more detail. The initial goal looks like this: RWS-weakestPre-bindPost unit (λ st → RWS-put (LibraBFT.ImplShared.Consensus.Types.s st ((λ { F rf f (SafetyRules∙new v vv vvv) → (rf Category.Functor.RawFunctor.<$> (λ y' → SafetyRules∙new y' vv vvv)) (f v) }) (λ x → x) Optics.Functorial.if ((λ { F rf f (PersistentSafetyStorage∙new v vv) → (rf Category.Functor.RawFunctor.<$> (λ y' → PersistentSafetyStorage∙new y' vv)) (f v) }) (λ x → x) Optics.Functorial.if (λ _ → safetyData1 & sdLastVote ?~ Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo))) (LibraBFT.ImplShared.Consensus.Types.g st)))) (RWS-weakestPre-bindPost unit (λ _ → RWS-return (inj₂ (Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo)))) Contract) pre pre [] It looks a bit ugly, but if we use C-u C-c C-, we get a more readable version that is exactly what we expect: LBFT-weakestPre (step₃ safetyData1 voteData author ledgerInfo) Contract pre Let's start refining by hand to understand. By desugaring the definition of "step₃ safetyData voteData author ledgerInfo" a bit, we can see that it is (using some shorthand in "quotes" to keep it concise at the expense of accuracy): (RWS-bind (RWS-bind (RWS-gets id) -- Fetch the state. (λ st → RWS-put (st & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")))-- Modify the state returned by RWS-get. (λ _ → RWS-return (inj₂ "vote")) -- The Unit returned by RWS-bind -- via RWS-put is ignored Note that "vote" is: Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo) Rewriting our goal with this yields (the annotations on the right show how we instantiate the rules in the next step): RWS-weakestPre (RWS-bind (RWS-bind = m (RWS-gets id) (λ st → RWS-put (st & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) (λ _ → RWS-return (inj₂ "vote")) = f Contract = P unit = ev pre = st Applying the definition of RWS-weakestPre (RWS-bind...), we need: RWS-weakestPre (RWS-bind (RWS-gets id) = m (λ st → RWS-put (st & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) = f (RWS-weakestPre-bindPost unit = P (λ _ → RWS-return (inj₂ vote)) Contract) unit = ev pre = pre Applying the definition of RWS-weakestPre (RWS-bind...) again, we have: RWS-weakestPre (RWS-gets id) (RWS-weakestPre-bindPost unit = P (λ st → RWS-put (st & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) (RWS-weakestPre-bindPost unit (λ _ → RWS-return (inj₂ vote)) Contract)) unit = ev pre = pre Now applying the definition of RWS-weakestPre RWS-gets, we want: (RWS-weakestPre-bindPost unit = ev (λ st → RWS-put (st & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) = f (RWS-weakestPre-bindPost unit = Post (λ _ → RWS-return (inj₂ "vote")) Contract)) pre = x pre = post [] = outs Take a moment to compare this with our initial goal above. They look identical, except for the shorthand. Next, we apply the definition of RWS-weakestPre-bindPost: ∀ r → r ≡ pre → RWS-weakestPre (RWS-put (r & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) (RWS-Post++ (RWS-weakestPre-bindPost unit = P (λ _ → RWS-return (inj₂ "vote")) Contract) []) = outs unit pre Notice that our "f" (the put operation) is applied to the quantified variable "r". This is to reduce the size of the refined goal after substitution (instead of "pre", in general "r" could be equal to a much more complex expression). Applying the definition of RWS-Post++, we have: ∀ r → r ≡ pre → RWS-weakestPre (RWS-put (r & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) (λ x post outs₁ → (RWS-weakestPre-bindPost unit (λ _ → RWS-return (inj₂ "vote")) Contract) x post ([] ++ outs₁)) unit pre Our proof begins by peeling of the two first parameters, the first of which must be pre, due to the second: -} = λ where .pre refl → {- At this point, our goal looks like (using C-u C-c C-,): RWS-weakestPre (RWS-put (over pssSafetyData-rm (λ _ → safetyData1 & sdLastVote ?~ Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo)) pre)) (λ x post outs₁ → RWS-weakestPre-bindPost unit (λ _ → RWS-return (inj₂ (Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo)))) Contract x post ([] ++ outs₁)) unit pre We can see that this is a more precise version of what we have above (without the shorthand), repeated here: RWS-weakestPre (RWS-put (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote"))) = post (λ x post outs₁ → (RWS-weakestPre-bindPost unit = P (λ _ → RWS-return (inj₂ "vote")) Contract) x post ([] ++ outs₁)) unit pre Next, we apply the definition of RWS-weakestPre (RWS-put ...) (λ x post outs₁ → (RWS-weakestPre-bindPost unit (λ _ → RWS-return (inj₂ "vote")) Contract) x post ([] ++ outs₁)) unit (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) [] Instantiating, RWS-weakestPre-bindPost unit = ev (λ _ → RWS-return (inj₂ "vote")) = f Contract = Post unit = x (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) = post ([] ++ [])) = outs Applying the definition of RWS-weakestPre-bindPost once again, we have: ∀ r → r ≡ unit → RWS-weakestPre (RWS-return (inj₂ "vote")) (RWS-Post++ Contract = P ([] ++ []))) = outs unit (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) And applying the definition of RWS-Post++ yields: ∀ r → r ≡ unit → RWS-weakestPre (RWS-return (inj₂ "vote")) (λ x post outs₁ → Contract rm x post ([] ++ [] ++ outs₁)) unit (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) Peeling off another couple of parameters (the first must be unit because of the second): -} λ where .unit refl → {- The goal now looks like (using C-c C-,): Contract (inj₂ (Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo))) (LibraBFT.ImplShared.Consensus.Types.s pre ((λ { F rf f (SafetyRules∙new v vv vvv) → (rf Category.Functor.RawFunctor.<$> (λ y' → SafetyRules∙new y' vv vvv)) (f v) }) (λ x → x) Optics.Functorial.if ((λ { F rf f (PersistentSafetyStorage∙new v vv) → (rf Category.Functor.RawFunctor.<$> (λ y' → PersistentSafetyStorage∙new y' vv)) (f v) }) (λ x → x) Optics.Functorial.if (λ _ → safetyData1 & sdLastVote ?~ Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo))) (LibraBFT.ImplShared.Consensus.Types.g pre))) [] Applying our shorthand, this yields: Contract (inj₂ "vote") (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) [] Or (using C-u C-c C-,), we have the following goal: RWS-weakestPre (RWS-return (inj₂ (Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo)))) (λ x post outs₁ → Contract x post (([] ++ []) ++ outs₁)) unit (over pssSafetyData-rm (λ _ → safetyData1 & sdLastVote ?~ Vote.newWithSignature voteData author ledgerInfo (ValidatorSigner.sign validatorSigner ledgerInfo)) pre) Applying our shorthand, this yields: RWS-weakestPre (RWS-return (inj₂ "vote")) = x (λ x post outs₁ → Contract x post ([] ++ [] ++ outs₁)) = P unit = ev (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) = pre Again, this looks like what we expect from above, so we can press on. Now, applying the definition of RWS-weakestPre (RWS-return ...): (λ x post outs₁ → Contract x post ([] ++ [] ++ outs₁)) (RWS-return (inj₂ "vote")) (pre & pssSafetyData-rm ∙~ ("safetyData1" & sdLastVote ?~ "vote")) [] Finally, this reduces to the goal of: [] ≡ [] which we prove with -} refl
{ "alphanum_fraction": 0.5909620843, "avg_line_length": 46.2014051522, "ext": "agda", "hexsha": "cf6dcc41020be720e217aefd3947a75c43d3a412", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/Properties/SafetyRules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/Properties/SafetyRules.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/SafetyRules/Properties/SafetyRules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10295, "size": 39456 }
------------------------------------------------------------------------------ -- Propositional equality without using pattern matching on refl ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.Common.FOL.Relation.Binary.PropositionalEquality.NoPatternMatchingOnRefl where open import Common.FOL.FOL using ( D ) -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Relation/Binary/Core.agda). infix 7 _≡_ ------------------------------------------------------------------------------ -- The identity type on the universe of discourse. data _≡_ (x : D) : D → Set where refl : x ≡ x -- Elimination rule. subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax -- Identity properties sym : ∀ {x y} → x ≡ y → y ≡ x sym {x} h = subst (λ y' → y' ≡ x) h refl trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans {x} h₁ h₂ = subst (_≡_ x) h₂ h₁ trans₂ : ∀ {w x y z} → w ≡ x → x ≡ y → y ≡ z → w ≡ z trans₂ h₁ h₂ h₃ = trans (trans h₁ h₂) h₃ subst₂ : (A : D → D → Set) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≡ y₁ → x₂ ≡ y₂ → A x₁ x₂ → A y₁ y₂ subst₂ A {x₁} {x₂} {y₁} {y₂} h₁ h₂ h₃ = subst (λ y₁' → A y₁' y₂) h₁ (subst (A x₁) h₂ h₃) cong : (f : D → D) → ∀ {x y} → x ≡ y → f x ≡ f y cong f {x} h = subst (λ x' → f x ≡ f x') h refl cong₂ : (f : D → D → D) → ∀ {x₁ x₂ y₁ y₂} → x₁ ≡ y₁ → x₂ ≡ y₂ → f x₁ x₂ ≡ f y₁ y₂ cong₂ f {x₁} {x₂} {y₁} {y₂} h₁ h₂ = subst (λ x₁' → f x₁ x₂ ≡ f x₁' y₂) h₁ (subst (λ x₂' → f x₁ x₂ ≡ f x₁ x₂') h₂ refl)
{ "alphanum_fraction": 0.4537521815, "avg_line_length": 30.6964285714, "ext": "agda", "hexsha": "953ee33e98942cd93acf242cd2694cdc02d24e00", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/NoPatternMatchingOnRefl.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/NoPatternMatchingOnRefl.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/NoPatternMatchingOnRefl.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 638, "size": 1719 }
-- Andreas, 2015-11-17, issue reported by Martin Stone Davis module _ where module Sub (let open import oops) where -- WAS: internal error -- EXPECTED: Not a valid let-declaration -- when scope checking the declaration -- module Sub (let open import oops) where
{ "alphanum_fraction": 0.7279411765, "avg_line_length": 22.6666666667, "ext": "agda", "hexsha": "dfeb2eeaea3f135cb012a9d8b685283306437906", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1718.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1718.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1718.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 272 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Equality over lists parameterised by some setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Data.List.Relation.Binary.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.List.Base using (List) open import Level open import Relation.Binary renaming (Rel to Rel₂) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Data.List.Relation.Binary.Pointwise as PW using (Pointwise) open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definition of equality infix 4 _≋_ _≋_ : Rel₂ (List A) (a ⊔ ℓ) _≋_ = Pointwise _≈_ open Pointwise public using ([]; _∷_) ------------------------------------------------------------------------ -- Relational properties ≋-refl : Reflexive _≋_ ≋-refl = PW.refl refl ≋-reflexive : _≡_ ⇒ _≋_ ≋-reflexive P.refl = ≋-refl ≋-sym : Symmetric _≋_ ≋-sym = PW.symmetric sym ≋-trans : Transitive _≋_ ≋-trans = PW.transitive trans ≋-isEquivalence : IsEquivalence _≋_ ≋-isEquivalence = PW.isEquivalence isEquivalence ≋-setoid : Setoid _ _ ≋-setoid = PW.setoid S ------------------------------------------------------------------------ -- Operations open PW public using ( tabulate⁺ ; tabulate⁻ ; ++⁺ ; concat⁺ )
{ "alphanum_fraction": 0.5312075984, "avg_line_length": 24.1639344262, "ext": "agda", "hexsha": "3893da3f99ab7696d4d8eb1ee61e2a6adf596f8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/Setoid.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 378, "size": 1474 }
module plfa.part1.Midterm where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) -- you can add any import definitions that you need open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; _>_; z≤n; s≤s; _≤?_; _<?_; _^_) open import Data.Nat.Properties using (+-assoc; +-suc; +-comm; *-comm) open import Relation.Nullary using (yes; no; Dec) -- used for rewrite simplify : ∀ {A : Set} (x : A) → x ≡ x simplify x = refl sum : ℕ → ℕ sum 0 = 0 sum n@(suc sn) = sum sn + n -- Problem 1 -- remove the "postulate" and prove this theorem, which is a version of -- sum n ≡ n * (n - 1) / 2 --- my solution from Induction HW, copied here instead of importing for ease of grading *-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ zero n p = begin (zero + n) * p ≡⟨⟩ n * p ≡⟨⟩ zero + n * p ≡⟨⟩ zero * p + n * p ∎ *-distrib-+ (suc m) n p = begin (suc m + n) * p ≡⟨⟩ (suc (m + n)) * p ≡⟨⟩ p + ((m + n) * p) ≡⟨ cong (λ x -> p + x) (*-distrib-+ m n p) ⟩ p + (m * p + n * p) ≡⟨ sym (+-assoc p (m * p) (n * p))⟩ (p + m * p) + n * p ≡⟨⟩ suc m * p + n * p ∎ 1-suc : ∀ ( n : ℕ ) → n + 1 ≡ suc n 1-suc (zero) = refl 1-suc (suc n) = begin suc n + 1 ≡⟨ (+-comm (suc n) 1) ⟩ 1 + suc n ≡⟨⟩ suc ( 1 + n) ≡⟨ cong suc (+-comm 1 n) ⟩ suc ( n + 1) ≡⟨ cong suc (1-suc n) ⟩ suc ( suc n ) ∎ simple : ∀ (n : ℕ) → (sum n) * 2 ≡ (suc n) * n simple zero = refl simple (suc n) = begin (sum (suc n)) * 2 ≡⟨⟩ ((sum n) + (suc n)) * 2 ≡⟨ cong (λ x -> x) (*-distrib-+ (sum n) (suc n) 2 )⟩ (sum n) * 2 + (suc n) * 2 ≡⟨ cong (λ x -> x + (suc n) * 2) (simple (n))⟩ (suc n) * n + (suc n) * 2 ≡⟨ cong (λ x → x + (suc n) * 2) (*-comm (suc n) n)⟩ n * (suc n) + (suc n) * 2 ≡⟨ cong (λ x → n * (suc n) + x) (*-comm (suc n) 2)⟩ n * (suc n) + 2 * (suc n) ≡⟨ cong (λ x → x) (sym (*-distrib-+ n 2 (suc n)))⟩ (n + 2) * (suc n) ≡⟨⟩ (n + suc 1) * (suc n) ≡⟨ cong (λ x → x * (suc n)) (+-suc n 1)⟩ (suc (n + 1)) * (suc n) ≡⟨ cong (λ x → (suc (x)) * (suc n)) (1-suc n)⟩ (suc (suc n)) * (suc n) ∎ -- Problem 2 -- remove the postulate and implement this function, which gives an Natural -- number approximation of square root if_then_else_ : { A : Set } → Dec A → ℕ → ℕ → ℕ if yes A then a else b = a if no A then a else b = b sqrt : ℕ → ℕ rt_sub_ : ℕ → ℕ → ℕ rt_sub_ n sqrtn = if ((suc n) <? (((sqrtn) + 1) ^ 2)) then (sqrtn) else ((sqrtn) + 1) sqrt 0 = 0 sqrt (suc n) = rt n sub (sqrt n) -- you can run these test cases _ : sqrt 0 ≡ 0 _ = refl _ : sqrt 1 ≡ 1 _ = refl _ : sqrt 2 ≡ 1 _ = refl _ : sqrt 3 ≡ 1 _ = refl _ : sqrt 4 ≡ 2 _ = refl _ : sqrt 5 ≡ 2 _ = refl _ : sqrt 6 ≡ 2 _ = refl _ : sqrt 7 ≡ 2 _ = refl _ : sqrt 8 ≡ 2 _ = refl _ : sqrt 9 ≡ 3 _ = refl _ : sqrt 10 ≡ 3 _ = refl _ : sqrt 11 ≡ 3 _ = refl _ : sqrt 12 ≡ 3 _ = refl _ : sqrt 13 ≡ 3 _ = refl _ : sqrt 14 ≡ 3 _ = refl _ : sqrt 15 ≡ 3 _ = refl _ : sqrt 16 ≡ 4 _ = refl _ : sqrt 17 ≡ 4 _ = refl _ : sqrt 18 ≡ 4 _ = refl _ : sqrt 19 ≡ 4 _ = refl _ : sqrt 20 ≡ 4 _ = refl _ : sqrt 21 ≡ 4 _ = refl _ : sqrt 22 ≡ 4 _ = refl _ : sqrt 23 ≡ 4 _ = refl _ : sqrt 24 ≡ 4 _ = refl _ : sqrt 24 ≡ 4 _ = refl _ : sqrt 24 ≡ 4 _ = refl _ : sqrt 25 ≡ 5 _ = refl _ : sqrt 26 ≡ 5 _ = refl _ : sqrt 27 ≡ 5 _ = refl _ : sqrt 100 ≡ 10 _ = refl _ : sqrt 101 ≡ 10 _ = refl
{ "alphanum_fraction": 0.4941961695, "avg_line_length": 19.1444444444, "ext": "agda", "hexsha": "27df10a43119b29b877295fbdeb8338b7f4456a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1961af3a34b519106824bf13f4a9d9b7d63a0a9b", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "billyang98/plfa.github.io", "max_forks_repo_path": "src/plfa/part1/Midterm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1961af3a34b519106824bf13f4a9d9b7d63a0a9b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "billyang98/plfa.github.io", "max_issues_repo_path": "src/plfa/part1/Midterm.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "1961af3a34b519106824bf13f4a9d9b7d63a0a9b", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "billyang98/plfa.github.io", "max_stars_repo_path": "src/plfa/part1/Midterm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1714, "size": 3446 }
-- Andreas, 2016-12-30, issue #1886, reported by nad -- -- Change of parameter names is an error. -- Reason: the parameter names become names of hidden arguments -- in the constructors. There should be no ambiguity. data D (X : Set) : Set data D (Y : Set) where c : Y → D Y
{ "alphanum_fraction": 0.6810035842, "avg_line_length": 25.3636363636, "ext": "agda", "hexsha": "2764c8065cd011d96be912134b0cfd0d2a51e1ac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue1886-wrong-name.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue1886-wrong-name.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue1886-wrong-name.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 81, "size": 279 }
module Categories.Object.Zero where
{ "alphanum_fraction": 0.8611111111, "avg_line_length": 18, "ext": "agda", "hexsha": "393678dacb153b3ba087998acd2809e96d7cfe5c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Zero.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Zero.agda", "max_line_length": 35, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Zero.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 6, "size": 36 }
module Loop where {- data _=>_ (A, B : Set) : Set where lam : (A -> B) -> A => B app : {A, B : Set} -> (A => B) -> A -> B app (lam f) = f delta = lam (\x -> app x x) loop = app delta delta -} lam : (A, B : Set) -> (A -> B) -> A -> B lam A B f = f app : (A, B : Set) -> (A -> B) -> A -> B app A B f = f postulate Nat : Set zero : Nat wrap : (F : Nat -> Set) -> F zero -> F zero wrap F x = x delta : (Nat -> Nat) -> Nat delta = \x -> x (wrap _ x) loop : Nat loop = delta (wrap _ delta) -- delta : _ -> _ -- delta = \x -> app _ _ x x -- lam _ _ (\x -> app _ _ x x) -- -- loop = app _ _ delta (wrap _ delta)
{ "alphanum_fraction": 0.4669887279, "avg_line_length": 16.3421052632, "ext": "agda", "hexsha": "155282cae3046703055b786089b320b47a7714b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "notes/papers/implicit/examples/Loop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "notes/papers/implicit/examples/Loop.agda", "max_line_length": 59, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "notes/papers/implicit/examples/Loop.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 244, "size": 621 }
------------------------------------------------------------------------------ -- Properties of the divisibility relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP where open import FOTC.Base open import FOTC.Base.PropertiesATP open import FOTC.Data.Nat open import FOTC.Data.Nat.Divisibility.NotBy0 open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.PropertiesATP ------------------------------------------------------------------------------ -- Any positive number divides 0. postulate S∣0 : ∀ n → succ₁ n ∣ zero {-# ATP prove S∣0 #-} -- 0 doesn't divide any number. postulate 0∤x : ∀ {n} → ¬ (zero ∣ n) {-# ATP prove 0∤x #-} -- The divisibility relation is reflexive for positive numbers. -- -- For the proof using the ATPs we added the helper hypothesis -- -- N (succ zero). postulate ∣-refl-S-ah : ∀ {n} → N n → N (succ₁ zero) → succ₁ n ∣ succ₁ n {-# ATP prove ∣-refl-S-ah *-leftIdentity #-} ∣-refl-S : ∀ {n} → N n → succ₁ n ∣ succ₁ n ∣-refl-S Nn = ∣-refl-S-ah Nn (nsucc nzero) -- If x divides y and z then x divides y ∸ z. postulate x∣y→x∣z→x∣y∸z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * succ₁ m → o ≡ k' * succ₁ m → n ∸ o ≡ (k ∸ k') * succ₁ m {-# ATP prove x∣y→x∣z→x∣y∸z-helper *∸-leftDistributive #-} x∣y→x∣z→x∣y∸z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n ∸ o x∣y→x∣z→x∣y∸z nzero _ _ (0≢0 , _) m∣o = ⊥-elim (0≢0 refl) x∣y→x∣z→x∣y∸z (nsucc Nm) Nn No (_ , k , Nk , h₁) (_ , k' , Nk' , h₂) = (λ S≡0 → ⊥-elim (S≢0 S≡0)) , k ∸ k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and z then x divides y + z. postulate x∣y→x∣z→x∣y+z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * succ₁ m → o ≡ k' * succ₁ m → n + o ≡ (k + k') * succ₁ m {-# ATP prove x∣y→x∣z→x∣y+z-helper *+-leftDistributive #-} x∣y→x∣z→x∣y+z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n + o x∣y→x∣z→x∣y+z nzero _ _ (0≢0 , _) m∣o = ⊥-elim (0≢0 refl) x∣y→x∣z→x∣y+z (nsucc Nm) Nn No (_ , k , Nk , h₁) (_ , k' , Nk' , h₂) = (λ S≡0 → ⊥-elim (S≢0 S≡0)) , k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and y is positive, then x ≤ y. postulate x∣S→x≤S-ah₁ : ∀ {m n} → succ₁ n ≡ zero * succ₁ m → ⊥ {-# ATP prove x∣S→x≤S-ah₁ #-} -- Nice proof by the ATP. postulate x∣S→x≤S-ah₂ : ∀ {m n o} → N m → N n → N o → succ₁ n ≡ succ₁ o * succ₁ m → succ₁ m ≤ succ₁ n {-# ATP prove x∣S→x≤S-ah₂ x≤x+y *-N #-} x∣S→x≤S : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n x∣S→x≤S nzero Nn (0≢0 , _) = ⊥-elim (0≢0 refl) x∣S→x≤S (nsucc Nm) Nn (_ , .zero , nzero , Sn≡0*Sm) = ⊥-elim (x∣S→x≤S-ah₁ Sn≡0*Sm) x∣S→x≤S (nsucc {m} Nm) Nn (_ , .(succ₁ k) , nsucc {k} Nk , Sn≡Sk*Sm) = x∣S→x≤S-ah₂ Nm Nn Nk Sn≡Sk*Sm
{ "alphanum_fraction": 0.47053407, "avg_line_length": 37.4482758621, "ext": "agda", "hexsha": "9169fb48e1123a53df32bf0cea8620ef5a3d9f26", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0/PropertiesATP.agda", "max_line_length": 82, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1375, "size": 3258 }
------------------------------------------------------------------------ -- Unary and binary relations ------------------------------------------------------------------------ {-# OPTIONS --safe #-} module Relation where open import Equality.Propositional open import Prelude open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decision-procedures equality-with-J import Equality.Groupoid equality-with-J as EG open import Function-universe equality-with-J hiding (id; _∘_) open import Groupoid equality-with-J -- Unary relations. Rel : ∀ {ℓ₁} ℓ₂ → Type ℓ₁ → Type (ℓ₁ ⊔ lsuc ℓ₂) Rel ℓ A = A → Type ℓ -- Homogeneous binary relations. Rel₂ : ∀ {ℓ₁} ℓ₂ → Type ℓ₁ → Type (ℓ₁ ⊔ lsuc ℓ₂) Rel₂ ℓ A = Rel ℓ (A × A) -- One kind of unary relation transformer. Trans : ∀ {a} ℓ → Type a → Type (a ⊔ lsuc ℓ) Trans ℓ A = Rel ℓ A → Rel ℓ A -- One kind of binary relation transformer. Trans₂ : ∀ {a} ℓ → Type a → Type (a ⊔ lsuc ℓ) Trans₂ ℓ A = Trans ℓ (A × A) -- The converse of a binary relation. infixr 10 _⁻¹ _⁻¹ : ∀ {a ℓ} {A : Type a} → Rel₂ ℓ A → Rel₂ ℓ A R ⁻¹ = R ∘ swap -- Composition of binary relations. infixr 9 _⊙_ _⊙_ : ∀ {a ℓ₁ ℓ₂} {A : Type a} → Rel₂ ℓ₁ A → Rel₂ ℓ₂ A → Rel₂ (a ⊔ ℓ₁ ⊔ ℓ₂) A (R ⊙ S) (x , z) = ∃ λ y → R (x , y) × S (y , z) -- Composition of a relation with itself, with the base case as a -- parameter. composition : ∀ {a} {A : Type a} → Rel₂ a A → Rel₂ a A → ℕ → Rel₂ a A composition R S zero = R composition R S (suc n) = S ⊙ composition R S n -- Composition of a binary relation with itself, with the relation -- itself as the base case. infix 10 _^^[1+_] _^^[1+_] : ∀ {a} {A : Type a} → Rel₂ a A → ℕ → Rel₂ a A R ^^[1+ n ] = composition R R n -- Composition of a binary relation with itself, with equality as the -- base case. infix 10 _^^_ _^^_ : ∀ {a} {A : Type a} → Rel₂ a A → ℕ → Rel₂ a A R ^^ n = composition (uncurry _≡_) R n -- Intersection of relations. infixr 8 _∩_ _∩_ : ∀ {a ℓ₁ ℓ₂} {A : Type a} → Rel ℓ₁ A → Rel ℓ₂ A → Rel (ℓ₁ ⊔ ℓ₂) A R ∩ S = λ x → R x × S x -- Union of relations. infixr 7 _∪_ _∪_ : ∀ {a ℓ₁ ℓ₂} {A : Type a} → Rel ℓ₁ A → Rel ℓ₂ A → Rel (ℓ₁ ⊔ ℓ₂) A R ∪ S = λ x → R x ⊎ S x -- Reflexive closure of binary relations. _⁼ : ∀ {a ℓ} {A : Type a} → Rel₂ ℓ A → Rel₂ (a ⊔ ℓ) A R ⁼ = R ∪ uncurry _≡_ -- Transitive closure of binary relations. _⁺ : ∀ {a} {A : Type a} → Rel₂ a A → Rel₂ a A (R ⁺) x = ∃ λ n → (R ^^[1+ n ]) x -- Reflexive transitive closure of binary relations. _* : ∀ {a} {A : Type a} → Rel₂ a A → Rel₂ a A (R *) x = ∃ λ n → (R ^^ n) x -- Repeated composition of a function with itself. infix 10 _^[_]_ _^[_]_ : ∀ {a} {A : Type a} → (A → A) → ℕ → A → A f ^[ zero ] x = x f ^[ suc n ] x = f (f ^[ n ] x) -- Unions of families of relation transformers. ⋃ : ∀ {a b} ℓ {A : Type a} {B : Type b} → (A → Trans (a ⊔ ℓ) B) → Trans (a ⊔ ℓ) B ⋃ _ F R = λ b → ∃ λ a → F a R b -- An analogue of ⋃ₙ Fⁿ. infix 10 _^ω_ _^ω_ : ∀ {a ℓ} {A : Type a} → Trans ℓ A → Trans ℓ A _^ω_ F = ⋃ _ (F ^[_]_) -- Relation containment. infix 4 _⊆_ _⊆_ : ∀ {a ℓ₁ ℓ₂} {A : Type a} → Rel ℓ₁ A → Rel ℓ₂ A → Type (a ⊔ ℓ₁ ⊔ ℓ₂) R ⊆ S = ∀ {x} → R x → S x -- "Equational" reasoning combinators. infix -1 finally-⊆ infixr -2 _⊆⟨_⟩_ _⊆⟨⟩_ _⊆⟨_⟩_ : ∀ {a p q r} {A : Type a} (P : Rel p A) {Q : Rel q A} {R : Rel r A} → P ⊆ Q → Q ⊆ R → P ⊆ R _ ⊆⟨ P⊆Q ⟩ Q⊆R = Q⊆R ∘ P⊆Q _⊆⟨⟩_ : ∀ {a p q} {A : Type a} (P : Rel p A) {Q : Rel q A} → P ⊆ Q → P ⊆ Q _ ⊆⟨⟩ P⊆Q = P⊆Q finally-⊆ : ∀ {a p q} {A : Type a} (P : Rel p A) (Q : Rel q A) → P ⊆ Q → P ⊆ Q finally-⊆ _ _ P⊆Q = P⊆Q syntax finally-⊆ P Q P⊆Q = P ⊆⟨ P⊆Q ⟩∎ Q ∎ -- Preservation lemmas for _⊆_. infix 4 _⊆-cong-→_ ⊆-cong : ∀ {k a r₁ r₂ s₁ s₂} {A : Type a} {R₁ : Rel r₁ A} {S₁ : Rel s₁ A} {R₂ : Rel r₂ A} {S₂ : Rel s₂ A} → Extensionality? ⌊ k ⌋-sym (a ⊔ r₁ ⊔ r₂) (r₁ ⊔ r₂ ⊔ s₁ ⊔ s₂) → (∀ {x} → R₁ x ↝[ ⌊ k ⌋-sym ] R₂ x) → (∀ {x} → S₁ x ↝[ ⌊ k ⌋-sym ] S₂ x) → R₁ ⊆ S₁ ↝[ ⌊ k ⌋-sym ] R₂ ⊆ S₂ ⊆-cong {k} {a} {r₁} {r₂} ext R₁↝R₂ S₁↝S₂ = implicit-∀-cong (lower-extensionality? ⌊ k ⌋-sym (r₁ ⊔ r₂) lzero ext) $ →-cong (lower-extensionality? ⌊ k ⌋-sym a (r₁ ⊔ r₂) ext) R₁↝R₂ S₁↝S₂ _⊆-cong-→_ : ∀ {a r₁ r₂ s₁ s₂} {A : Type a} {R₁ : Rel r₁ A} {S₁ : Rel s₁ A} {R₂ : Rel r₂ A} {S₂ : Rel s₂ A} → R₂ ⊆ R₁ → S₁ ⊆ S₂ → R₁ ⊆ S₁ → R₂ ⊆ S₂ R₂→R₁ ⊆-cong-→ S₁→S₂ = implicit-∀-cong _ $ →-cong-→ R₂→R₁ S₁→S₂ ⊆-congʳ : ∀ {k a r s₁ s₂} {A : Type a} {R : Rel r A} {S₁ : Rel s₁ A} {S₂ : Rel s₂ A} → Extensionality? k (a ⊔ r) (r ⊔ s₁ ⊔ s₂) → (∀ {x} → S₁ x ↝[ k ] S₂ x) → R ⊆ S₁ ↝[ k ] R ⊆ S₂ ⊆-congʳ {k} {a} {r} ext S₁↝S₂ = implicit-∀-cong (lower-extensionality? k r lzero ext) $ ∀-cong (lower-extensionality? k a r ext) λ _ → S₁↝S₂ -- Relation containment (_⊆_) is not antisymmetric (with respect to -- propositional equality) if the index type is inhabited. ⊆-not-antisymmetric : ∀ {ℓ x} {X : Type x} → X → ¬ ({R S : Rel ℓ X} → R ⊆ S → S ⊆ R → R ≡ S) ⊆-not-antisymmetric {ℓ} {X = X} x antisym = Bool.true≢false true≡false where R S : Rel ℓ X R = λ _ → ↑ _ ⊤ S = λ _ → ↑ _ Bool R≡S : R ≡ S R≡S = antisym (λ _ → lift true) _ ⊤≡Bool : ↑ _ ⊤ ≡ ↑ _ Bool ⊤≡Bool = cong (_$ x) R≡S ⊤↔Bool : ⊤ ↔ Bool ⊤↔Bool = ⊤ ↝⟨ inverse Bijection.↑↔ ⟩ ↑ _ ⊤ ↝⟨ ≡⇒↝ _ ⊤≡Bool ⟩ ↑ _ Bool ↝⟨ Bijection.↑↔ ⟩□ Bool □ true≡false : true ≡ false true≡false = true ≡⟨ sym $ _↔_.right-inverse-of ⊤↔Bool _ ⟩ _↔_.to ⊤↔Bool (_↔_.from ⊤↔Bool true) ≡⟨⟩ _↔_.to ⊤↔Bool tt ≡⟨⟩ _↔_.to ⊤↔Bool (_↔_.from ⊤↔Bool false) ≡⟨ _↔_.right-inverse-of ⊤↔Bool _ ⟩∎ false ∎ -- Monotonicity of relation transformers. Monotone : ∀ {a ℓ} {A : Type a} → Trans ℓ A → Type (a ⊔ lsuc ℓ) Monotone F = ∀ {R S} → R ⊆ S → F R ⊆ F S -- A relation transformer is extensive if the input is always -- contained in the output. Extensive : ∀ {ℓ} {I : Type ℓ} → Trans ℓ I → Type (lsuc ℓ) Extensive G = ∀ R → R ⊆ G R -- A definition that turns into a notion of symmetry if the first -- argument is instantiated with the swap function. In that case this -- definition is similar to one of those given by Pous and Sangiorgi -- in Section 6.3.4.1 of "Enhancements of the bisimulation proof -- method". Symmetric : ∀ {ℓ} {I : Type ℓ} → (I → I) → Trans ℓ I → Type (lsuc ℓ) Symmetric f F = ∀ R → F (R ∘ f) ⊆ F R ∘ f -- If f is an involution, then the inclusion in Symmetric f F holds -- also in the other direction. involution→other-symmetry : ∀ {ℓ} {I : Type ℓ} (F : Trans ℓ I) {f : I → I} → f ∘ f ≡ id → Symmetric f F → ∀ R → F R ∘ f ⊆ F (R ∘ f) involution→other-symmetry F {f} inv symm R = F R ∘ f ⊆⟨ (λ {x} → subst (λ g → F (R ∘ g) (f x)) (sym inv)) ⟩ F (R ∘ f ∘ f) ∘ f ⊆⟨ symm _ ⟩ F (R ∘ f) ∘ f ∘ f ⊆⟨ (λ {x} → subst (λ g → F (R ∘ f) (g x)) inv) ⟩∎ F (R ∘ f) ∎ -- Composition is associative. ⊙-assoc : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Type a} → (R₁ : Rel₂ ℓ₁ A) {R₂ : Rel₂ ℓ₂ A} (R₃ : Rel₂ ℓ₃ A) → ∀ p → (R₁ ⊙ (R₂ ⊙ R₃)) p ↔ ((R₁ ⊙ R₂) ⊙ R₃) p ⊙-assoc R₁ {R₂} R₃ (a , d) = (∃ λ b → R₁ (a , b) × ∃ λ c → R₂ (b , c) × R₃ (c , d)) ↝⟨ ∃-cong (λ _ → ∃-comm) ⟩ (∃ λ b → ∃ λ c → R₁ (a , b) × R₂ (b , c) × R₃ (c , d)) ↝⟨ ∃-comm ⟩ (∃ λ c → ∃ λ b → R₁ (a , b) × R₂ (b , c) × R₃ (c , d)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → Σ-assoc) ⟩ (∃ λ c → ∃ λ b → (R₁ (a , b) × R₂ (b , c)) × R₃ (c , d)) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩□ (∃ λ c → (∃ λ b → R₁ (a , b) × R₂ (b , c)) × R₃ (c , d)) □ -- Several forms of composition preserve several kinds of functions. ⊙-cong : ∀ {k a r₁ r₂ s₁ s₂} {A : Type a} → {R₁ : Rel₂ r₁ A} {R₂ : Rel₂ r₂ A} → {S₁ : Rel₂ s₁ A} {S₂ : Rel₂ s₂ A} → (∀ p → R₁ p ↝[ k ] R₂ p) → (∀ p → S₁ p ↝[ k ] S₂ p) → ∀ p → (R₁ ⊙ S₁) p ↝[ k ] (R₂ ⊙ S₂) p ⊙-cong {R₁ = R₁} {R₂} {S₁} {S₂} R₁↝R₂ S₁↝S₂ (x , z) = (∃ λ y → R₁ (x , y) × S₁ (y , z)) ↝⟨ ∃-cong (λ _ → R₁↝R₂ _ ×-cong S₁↝S₂ _) ⟩□ (∃ λ y → R₂ (x , y) × S₂ (y , z)) □ composition-cong : ∀ {k a} {A : Type a} {R₁ R₂ S₁ S₂ : Rel₂ a A} → (∀ p → R₁ p ↝[ k ] R₂ p) → (∀ p → S₁ p ↝[ k ] S₂ p) → ∀ n p → composition R₁ S₁ n p ↝[ k ] composition R₂ S₂ n p composition-cong R₁↝R₂ S₁↝S₂ = λ where zero → R₁↝R₂ (suc n) → ⊙-cong S₁↝S₂ (composition-cong R₁↝R₂ S₁↝S₂ n) ^^[1+]-cong : ∀ {k a} {A : Type a} {R₁ R₂ : Rel₂ a A} → (∀ p → R₁ p ↝[ k ] R₂ p) → ∀ n p → (R₁ ^^[1+ n ]) p ↝[ k ] (R₂ ^^[1+ n ]) p ^^[1+]-cong R₁↝R₂ = composition-cong R₁↝R₂ R₁↝R₂ ^^-cong : ∀ {k a} {A : Type a} {R₁ R₂ : Rel₂ a A} → (∀ p → R₁ p ↝[ k ] R₂ p) → ∀ n p → (R₁ ^^ n) p ↝[ k ] (R₂ ^^ n) p ^^-cong R₁↝R₂ = composition-cong (λ _ → _ □) R₁↝R₂ ⁺-cong : ∀ {k a} {A : Type a} {R₁ R₂ : Rel₂ a A} → (∀ p → R₁ p ↝[ k ] R₂ p) → ∀ p → (R₁ ⁺) p ↝[ k ] (R₂ ⁺) p ⁺-cong R₁↝R₂ p = ∃-cong λ n → ^^[1+]-cong R₁↝R₂ n p *-cong : ∀ {k a} {A : Type a} {R₁ R₂ : Rel₂ a A} → (∀ p → R₁ p ↝[ k ] R₂ p) → ∀ p → (R₁ *) p ↝[ k ] (R₂ *) p *-cong R₁↝R₂ p = ∃-cong λ n → ^^-cong R₁↝R₂ n p -- Two lemmas relating composition and _⊙_. composition-⊙-comm : ∀ {k a} {A : Type a} {R S : Rel₂ a A} → (∀ p → (R ⊙ S) p ↝[ k ] (S ⊙ R) p) → ∀ n p → (composition R S n ⊙ S) p ↝[ k ] (S ⊙ composition R S n) p composition-⊙-comm hyp zero = hyp composition-⊙-comm {R = R} {S} hyp (suc n) = λ p → ((S ⊙ composition R S n) ⊙ S) p ↔⟨ inverse $ ⊙-assoc S S _ ⟩ (S ⊙ (composition R S n ⊙ S)) p ↝⟨ ⊙-cong (λ p → S p □) (composition-⊙-comm hyp n) _ ⟩□ (S ⊙ (S ⊙ composition R S n)) p □ composition⊙composition : ∀ {k a} {A : Type a} {R S : Rel₂ a A} m n₁ {n₂} → (∀ p → (R ⊙ composition R S n₁) p ↝[ k ] composition R S n₂ p) → ∀ p → (composition R S m ⊙ composition R S n₁) p ↝[ k ] composition R S (m + n₂) p composition⊙composition {R = R} {S} = λ where zero n₁ {n₂} hyp p → (R ⊙ composition R S n₁) p ↝⟨ hyp _ ⟩ composition R S n₂ p □ (suc m) n₁ {n₂} hyp p → ((S ⊙ composition R S m) ⊙ composition R S n₁) p ↔⟨ inverse $ ⊙-assoc S (composition R S n₁) _ ⟩ (S ⊙ (composition R S m ⊙ composition R S n₁)) p ↝⟨ ⊙-cong (λ p → S p □) (composition⊙composition m n₁ hyp) _ ⟩□ (S ⊙ composition R S (m + n₂)) p □ -- The transitive closure is transitive. ⁺-trans : ∀ {a} {A : Type a} {R : Rel₂ a A} {x y z} → (R ⁺) (x , y) → (R ⁺) (y , z) → (R ⁺) (x , z) ⁺-trans (m , xR¹⁺ᵐy) (n , yR¹⁺ⁿz) = m + suc n , composition⊙composition m n (λ _ → id) _ (_ , xR¹⁺ᵐy , yR¹⁺ⁿz) -- The reflexive transitive closure is transitive. *-trans : ∀ {a} {A : Type a} {R : Rel₂ a A} {x y z} → (R *) (x , y) → (R *) (y , z) → (R *) (x , z) *-trans {R = R} (m , xRᵐy) (n , yRⁿz) = m + n , composition⊙composition m n lemma _ (_ , xRᵐy , yRⁿz) where lemma : ∀ p → (uncurry _≡_ ⊙ (R ^^ n)) p → (R ^^ n) p lemma _ (_ , refl , r) = r -- Lemmas relating different forms of composition and swap. ⊙-swap : ∀ {k a r s} {A : Type a} {R : Rel₂ r A} {S : Rel₂ s A} → (∀ p → R p ↝[ k ] R (swap p)) → (∀ p → S p ↝[ k ] S (swap p)) → ∀ p → (R ⊙ S) p ↝[ k ] (S ⊙ R) (swap p) ⊙-swap {R = R} {S} R↝ S↝ (x , z) = (∃ λ y → R (x , y) × S (y , z)) ↝⟨ ∃-cong (λ _ → R↝ _ ×-cong S↝ _) ⟩ (∃ λ y → R (y , x) × S (z , y)) ↔⟨ ∃-cong (λ _ → ×-comm) ⟩□ (∃ λ y → S (z , y) × R (y , x)) □ composition-swap : ∀ {k a} {A : Type a} {R S : Rel₂ a A} → (∀ p → R p ↝[ k ] R (swap p)) → (∀ p → S p ↝[ k ] S (swap p)) → (∀ p → (R ⊙ S) p ↝[ k ] (S ⊙ R) p) → ∀ n p → composition R S n p ↝[ k ] composition R S n (swap p) composition-swap {R = R} {S} R↝ S↝ hyp = λ where zero p → R p ↝⟨ R↝ _ ⟩□ R (swap p) □ (suc n) p → (S ⊙ composition R S n) p ↝⟨ ⊙-swap S↝ (composition-swap R↝ S↝ hyp n) _ ⟩ (composition R S n ⊙ S) (swap p) ↝⟨ composition-⊙-comm hyp n _ ⟩□ (S ⊙ composition R S n) (swap p) □ ^^[1+]-swap : ∀ {k a} {A : Type a} {R : Rel₂ a A} → (∀ p → R p ↝[ k ] R (swap p)) → ∀ n p → (R ^^[1+ n ]) p ↝[ k ] (R ^^[1+ n ]) (swap p) ^^[1+]-swap R↝ = composition-swap R↝ R↝ (λ _ → _ □) ^^-swap : ∀ {k a} {A : Type a} {R : Rel₂ a A} → (∀ p → R p ↝[ k ] R (swap p)) → ∀ n p → (R ^^ n) p ↝[ k ] (R ^^ n) (swap p) ^^-swap {R = R} R↝ = composition-swap lemma₁ R↝ lemma₂ where lemma₁ = λ { (x , y) → x ≡ y ↔⟨ Groupoid.⁻¹-bijection (EG.groupoid _) ⟩□ y ≡ x □ } lemma₂ = λ { (x , z) → (∃ λ y → x ≡ y × R (y , z)) ↔⟨ ∃-cong (λ _ → ×-comm) ⟩ (∃ λ y → R (y , z) × x ≡ y) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → lemma₁ _) ⟩ (∃ λ y → R (y , z) × y ≡ x) ↔⟨ inverse $ ∃-intro _ _ ⟩ R (x , z) ↔⟨ ∃-intro _ _ ⟩□ (∃ λ y → R (x , y) × y ≡ z) □} ⁺-swap : ∀ {k a} {A : Type a} {R : Rel₂ a A} → (∀ p → R p ↝[ k ] R (swap p)) → ∀ p → (R ⁺) p ↝[ k ] (R ⁺) (swap p) ⁺-swap {R = R} R↝ p = (R ⁺) p ↔⟨⟩ (∃ λ n → (R ^^[1+ n ]) p) ↝⟨ ∃-cong (λ n → ^^[1+]-swap R↝ n _) ⟩ (∃ λ n → (R ^^[1+ n ]) (swap p)) ↔⟨⟩ (R ⁺) (swap p) □ *-swap : ∀ {k a} {A : Type a} {R : Rel₂ a A} → (∀ p → R p ↝[ k ] R (swap p)) → ∀ p → (R *) p ↝[ k ] (R *) (swap p) *-swap {R = R} R↝ p = (R *) p ↔⟨⟩ (∃ λ n → (R ^^ n) p) ↝⟨ ∃-cong (λ n → ^^-swap R↝ n _) ⟩ (∃ λ n → (R ^^ n) (swap p)) ↔⟨⟩ (R *) (swap p) □ -- ⋃ constructs least upper bounds. ⊆-⋃ : ∀ {a b ℓ} {A : Type a} {B : Type b} (F : A → Trans (a ⊔ ℓ) B) a → ∀ R → F a R ⊆ ⋃ ℓ F R ⊆-⋃ {ℓ = ℓ} F a R = F a R ⊆⟨ a ,_ ⟩ (λ x → ∃ λ a → F a R x) ⊆⟨ id ⟩∎ ⋃ ℓ F R ∎ ⋃-⊆ : ∀ {a b ℓ} {A : Type a} {B : Type b} (F : A → Trans (a ⊔ ℓ) B) (G : Trans (a ⊔ ℓ) B) → (∀ {a} R → F a R ⊆ G R) → ∀ R → ⋃ ℓ F R ⊆ G R ⋃-⊆ {ℓ = ℓ} F G hyp R = ⋃ ℓ F R ⊆⟨⟩ (λ x → ∃ λ a → F a R x) ⊆⟨ hyp _ ∘ proj₂ ⟩∎ G R ∎
{ "alphanum_fraction": 0.4593027418, "avg_line_length": 30.6337719298, "ext": "agda", "hexsha": "85c4f7d7da268b8ac5c74c2045a0f2e02e33f5bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Relation.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6864, "size": 13969 }
{-# OPTIONS --universe-polymorphism #-} module LevelWithBug where open import Common.Level postulate take : ∀ a → Set a → Set a : Level A : Set a Goal : Set → Set goal : ∀ X → Goal X -- The meta got solved by Level (Max [Plus 0 (NeutralLevel a)]) which -- didn't match the argument in the with expression which is simply a. -- Now the level noise should go away when it's not useful. foo : Goal (take _ A) foo with take a A ... | z = goal z -- Here's another more complicated one. data List {a}(A : Set a) : Set a where [] : List A _∷_ : A → List A → List A data _≡_ {a}{A : Set a}(x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} -- Sums commute with Any (for a fixed list). data Any {a p} {A : Set a} (P : A → Set p) : List A → Set (a ⊔ p) where there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) amap : ∀ {a p q} {A : Set a} {P : A → Set p} → {Q : A → Set q} → (∀ {x} → P x → Q x) → ∀ {xs} → Any P xs → Any Q xs amap g (there pxs) = there (amap g pxs) data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inl : (x : A) → A + B inr : (y : B) → A + B smap : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (A → C) → (B → D) → (A + B → C + D) smap f g (inl x) = inl (f x) smap f g (inr y) = inr (g y) postulate p q : Level P : A → Set p Q : A → Set q to : ∀ xs → Any P xs + Any Q xs → Any (λ x → P x + Q x) xs to xs (inl pxs) = amap inl pxs to xs (inr pxs) = amap inr pxs from : ∀ xs → Any (λ x → P x + Q x) xs → Any P xs + Any Q xs from ._ (there p) = smap there there (from _ p) -- Here the abstraction didn't work because a NeutralLevel was replaced -- by an UnreducedLevel during abstraction. fromto : ∀ xs (p : Any P xs + Any Q xs) → from xs (to xs p) ≡ p fromto .(x ∷ xs) (inl (there {x}{xs} p)) rewrite fromto xs (inl p) = refl fromto .(x ∷ xs) (inr (there {x}{xs} q)) rewrite fromto xs (inr q) = refl
{ "alphanum_fraction": 0.5523465704, "avg_line_length": 28.1014492754, "ext": "agda", "hexsha": "81167636f3d0e79aaac8071112370098a567e4b3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/LevelWithBug.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/LevelWithBug.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/LevelWithBug.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 762, "size": 1939 }
module Structure.Operator.Ring.Rings where import Lvl open import Structure.Operator.Ring open import Structure.Setoid open import Type open import Type.Properties.Singleton private variable ℓ ℓₑ : Lvl.Level private variable T U : Type{ℓ} postulate trivialRing : ∀{_+_ _⋅_ : U → U → U} → ⦃ equiv : Equiv{ℓₑ}(U) ⦄ ⦃ singleton : IsUnit(U) ⦄ → Ring(_+_)(_⋅_) {-Ring.[+]-commutative-group trivialRing = {!!} Ring.[⋅]-binary-operator trivialRing = {!!} Ring.[⋅]-associativity trivialRing = {!!} Ring.[⋅][+]-distributivityₗ trivialRing = {!!} Ring.[⋅][+]-distributivityᵣ trivialRing = {!!} -}
{ "alphanum_fraction": 0.6771523179, "avg_line_length": 31.7894736842, "ext": "agda", "hexsha": "c88490d5d643c7de35a322d9ba85b4d2dcb6ab87", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Ring/Rings.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Ring/Rings.agda", "max_line_length": 116, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Ring/Rings.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 204, "size": 604 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Bool.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Bool.Base open import Cubical.Data.Empty open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq notnot : ∀ x → not (not x) ≡ x notnot true = refl notnot false = refl notIsEquiv : isEquiv not notIsEquiv = isoToIsEquiv (iso not not notnot notnot) notEquiv : Bool ≃ Bool notEquiv = (not , notIsEquiv) notEq : Bool ≡ Bool notEq = ua notEquiv private -- This computes to false as expected nfalse : Bool nfalse = transp (λ i → notEq i) i0 true -- Sanity check nfalsepath : nfalse ≡ false nfalsepath = refl isSetBool : isSet Bool isSetBool = Discrete→isSet _≟_ true≢false : ¬ true ≡ false true≢false p = subst (λ b → if b then Bool else ⊥) p true false≢true : ¬ false ≡ true false≢true p = subst (λ b → if b then ⊥ else Bool) p true not≢const : ∀ x → ¬ not x ≡ x not≢const false = true≢false not≢const true = false≢true zeroˡ : ∀ x → true or x ≡ true zeroˡ false = refl zeroˡ true = refl zeroʳ : ∀ x → x or true ≡ true zeroʳ false = refl zeroʳ true = refl or-identityˡ : ∀ x → false or x ≡ x or-identityˡ false = refl or-identityˡ true = refl or-identityʳ : ∀ x → x or false ≡ x or-identityʳ false = refl or-identityʳ true = refl or-comm : ∀ x y → x or y ≡ y or x or-comm false y = false or y ≡⟨ or-identityˡ y ⟩ y ≡⟨ sym (or-identityʳ y) ⟩ y or false ∎ or-comm true y = true or y ≡⟨ zeroˡ y ⟩ true ≡⟨ sym (zeroʳ y) ⟩ y or true ∎ or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z or-assoc false y z = false or (y or z) ≡⟨ or-identityˡ _ ⟩ y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩ ((false or y) or z) ∎ or-assoc true y z = true or (y or z) ≡⟨ zeroˡ _ ⟩ true ≡⟨ sym (zeroˡ _) ⟩ true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩ (true or y) or z ∎ or-idem : ∀ x → x or x ≡ x or-idem false = refl or-idem true = refl ⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x ⊕-comm false false = refl ⊕-comm false true = refl ⊕-comm true false = refl ⊕-comm true true = refl ⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ⊕-assoc false y z = refl ⊕-assoc true false z = refl ⊕-assoc true true z = notnot z not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y not-⊕ˡ false y = refl not-⊕ˡ true y = notnot y ⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y ⊕-invol false x = refl ⊕-invol true x = notnot x isEquiv-⊕ : ∀ x → isEquiv (x ⊕_) isEquiv-⊕ x = isoToIsEquiv (iso _ (x ⊕_) (⊕-invol x) (⊕-invol x))
{ "alphanum_fraction": 0.6222876057, "avg_line_length": 23.850877193, "ext": "agda", "hexsha": "fa87e2dede478aada74163d50c9f722ac1bf214f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Data/Bool/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Data/Bool/Properties.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1118, "size": 2719 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Theorems of ∧ connective. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Conjunction ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Syntax n open import Data.PropFormula.Theorems.Classical n open import Function using ( _$_ ; _∘_ ) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-assoc₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∧ (ψ ∧ γ) → Γ ⊢ (φ ∧ ψ) ∧ γ -- Proof. ∧-assoc₁ Γ⊢φ∧ψ∧γ = ∧-intro (∧-intro (∧-proj₁ Γ⊢φ∧ψ∧γ) ((∧-proj₁ ∘ ∧-proj₂) Γ⊢φ∧ψ∧γ)) ((∧-proj₂ ∘ ∧-proj₂) Γ⊢φ∧ψ∧γ) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-assoc₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∧ ψ) ∧ γ → Γ ⊢ φ ∧ (ψ ∧ γ) -- Proof. ∧-assoc₂ Γ⊢φ∧ψ∧γ = ∧-intro (∧-proj₁ (∧-proj₁ Γ⊢φ∧ψ∧γ)) (∧-intro (∧-proj₂ (∧-proj₁ Γ⊢φ∧ψ∧γ)) (∧-proj₂ Γ⊢φ∧ψ∧γ)) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-assoc : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∧ (ψ ∧ γ)) ⇔ ((φ ∧ ψ) ∧ γ) -- Proof. ∧-assoc {Γ} {φ}{ψ}{γ} = ⇔-intro (∧-assoc₁ (assume (φ ∧ (ψ ∧ γ)))) (∧-assoc₂ (assume (φ ∧ ψ ∧ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-comm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ∧ ψ → Γ ⊢ ψ ∧ φ -- Proof. ∧-comm Γ⊢φ∧ψ = ∧-intro (∧-proj₂ Γ⊢φ∧ψ) (∧-proj₁ Γ⊢φ∧ψ) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dist₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∧ (ψ ∨ γ) → Γ ⊢ (φ ∧ ψ) ∨ (φ ∧ γ) -- Proof. ∧-dist₁ {φ = φ}{ψ}{γ} Γ⊢φ∧ψ∨γ = ⊃-elim (⊃-intro $ ∨-elim (∨-intro₁ (φ ∧ γ) (∧-intro (weaken ψ (∧-proj₁ Γ⊢φ∧ψ∨γ)) (assume ψ))) (∨-intro₂ (φ ∧ ψ) (∧-intro (weaken γ (∧-proj₁ Γ⊢φ∧ψ∨γ)) (assume γ)))) (∧-proj₂ Γ⊢φ∧ψ∨γ) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dist₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ∧ ψ) ∨ (φ ∧ γ) → Γ ⊢ φ ∧ (ψ ∨ γ) -- Proof. ∧-dist₂ {φ = φ}{ψ}{γ} = ⊃-elim (⊃-intro (∨-elim (∧-intro (∧-proj₁ (assume (φ ∧ ψ))) (∨-intro₁ γ (∧-proj₂ (assume (φ ∧ ψ))))) (∧-intro (∧-proj₁ (assume (φ ∧ γ))) (∨-intro₂ ψ (∧-proj₂ (assume (φ ∧ γ))))))) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dist : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ∧ (ψ ∨ γ) ⇔ (φ ∧ ψ) ∨ (φ ∧ γ) -- Proof. ∧-dist {φ = φ}{ψ}{γ} = ⇔-intro (∧-dist₁ (assume (φ ∧ (ψ ∨ γ)))) (∧-dist₂ (assume (φ ∧ ψ ∨ (φ ∧ γ)))) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dmorgan₁ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ (φ ∧ ψ) → Γ ⊢ ¬ φ ∨ ¬ ψ ¬∧-to-¬∨¬ = ∧-dmorgan₁ -- Proof. ∧-dmorgan₁ {Γ}{φ}{ψ} = ⊃-elim $ ⊃-intro $ RAA $ ¬-elim (weaken (¬ (¬ φ ∨ ¬ ψ)) $ assume $ ¬ (φ ∧ ψ)) (∧-intro (RAA (¬-elim (weaken (¬ φ) $ assume {Γ = Γ , ¬ (φ ∧ ψ)} $ ¬ (¬ φ ∨ ¬ ψ)) (∨-intro₁ (¬ ψ) (assume {Γ = Γ , ¬ (φ ∧ ψ) , ¬ (¬ φ ∨ ¬ ψ)} $ ¬ φ)))) (RAA (¬-elim {Γ = Γ , ¬ (φ ∧ ψ) , ¬ (¬ φ ∨ ¬ ψ) , ¬ ψ} (weaken (¬ ψ) $ assume {Γ = Γ , ¬ (φ ∧ ψ)} $ ¬ (¬ φ ∨ ¬ ψ)) (∨-intro₂ (¬ φ) (assume {Γ = Γ , ¬ (φ ∧ ψ) , ¬ (¬ φ ∨ ¬ ψ)} $ ¬ ψ ))))) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dmorgan₂ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ∨ ¬ ψ → Γ ⊢ ¬ (φ ∧ ψ) ¬∨¬-to-¬∧ = ∧-dmorgan₂ -- Proof. ∧-dmorgan₂ {Γ}{φ}{ψ} = ⊃-elim $ ⊃-intro $ ∨-elim {Γ = Γ} (¬-intro $ ¬-elim (weaken (φ ∧ ψ) $ assume (¬ φ)) (∧-proj₁ $ assume {Γ = Γ , ¬ φ} (φ ∧ ψ))) (¬-intro $ ¬-elim (weaken (φ ∧ ψ) $ assume (¬ ψ)) (∧-proj₂ $ assume {Γ = Γ , ¬ ψ} (φ ∧ ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. ∧-dmorgan : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ∨ ¬ ψ ⇔ ¬ (φ ∧ ψ) ¬∨¬-⇔-¬∧ = ∧-dmorgan -- Proof. ∧-dmorgan {Γ}{φ}{ψ} = ⇔-intro (∧-dmorgan₂ (assume (¬ φ ∨ ¬ ψ))) (∧-dmorgan₁ (assume (¬ (φ ∧ ψ)))) -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢∧₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ⊃ γ → Γ ⊢ φ ∧ ψ → Γ ⊢ γ ∧ ψ -- Proof. subst⊢∧₁ Γ⊢φ⊃ψ Γ⊢φ∧ψ = ∧-intro (⊃-elim (∧-proj₁ (∧-intro Γ⊢φ⊃ψ Γ⊢φ∧ψ)) (∧-proj₁ Γ⊢φ∧ψ)) (∧-proj₂ Γ⊢φ∧ψ) -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢∧₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ ψ ⊃ γ → Γ ⊢ φ ∧ ψ → Γ ⊢ φ ∧ γ -- Proof. subst⊢∧₂ {Γ}{φ}{ψ} Γ⊢φ⊃ψ Γ⊢φ∧ψ = ∧-intro (∧-proj₁ Γ⊢φ∧ψ) (⊃-elim Γ⊢φ⊃ψ (∧-proj₂ Γ⊢φ∧ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ¬∧-to-⊥ : ∀ {Γ} {φ} → Γ ⊢ ¬ φ ∧ φ → Γ ⊢ ⊥ -- Proof. ¬∧-to-⊥ {Γ}{φ} Γ⊢φ = ¬-elim (∧-proj₁ Γ⊢φ) (∧-proj₂ Γ⊢φ) -------------------------------------------------------------------------- ∎
{ "alphanum_fraction": 0.2662397072, "avg_line_length": 22.6763485477, "ext": "agda", "hexsha": "7ddec09b1e5f811dd269c3789ddd56dab39f3529", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Theorems/Conjunction.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Theorems/Conjunction.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Theorems/Conjunction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 2251, "size": 5465 }
------------------------------------------------------------------------ -- Descending lists -- -- Anders Mörtberg and Chuangjie Xu, October 2019 -- -- We define descending lists via simultaneous definitions and show -- that they are isomorphic to finite multisets. The conversion from -- finite multisets to descending lists is exactly insertion sort. We -- obtain the concatenation operation on descending lists and its -- properties by transporting those on finite multisets. ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} open import Cubical.Foundations.Everything open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.List using (List ; [] ; _∷_) open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.HITs.FiniteMultiset hiding ([_]) module Cubical.Data.DescendingList.Properties (A : Type₀) (_≥_ : A → A → Type₀) where open import Cubical.Data.DescendingList.Base A _≥_ toFMSet : DL → FMSet A toFMSet [] = [] toFMSet (cons x u _) = x ∷ toFMSet u toList : DL → List A toList [] = [] toList (cons x u _) = x ∷ toList u -- "x ≥ ALL the elements of u" data _≥ᴬ_ (x : A) : List A → Type₀ where ≥ᴬ[] : x ≥ᴬ [] ≥ᴬcons : {y : A} {u : List A} → x ≥ y → x ≥ᴬ u → x ≥ᴬ (y ∷ u) data descending : List A → Type₀ where []-descending : descending [] cons-descending : {x : A} {u : List A} → x ≥ᴬ u → descending u → descending (x ∷ u) module DescendingDL (≥trans : {x y z : A} → x ≥ y → y ≥ z → x ≥ z) where ≥≥ᴴtrans : {x y : A} {u : DL} → x ≥ y → y ≥ᴴ u → x ≥ᴴ u ≥≥ᴴtrans _ ≥ᴴ[] = ≥ᴴ[] ≥≥ᴴtrans x≥y (≥ᴴcons y≥z) = ≥ᴴcons (≥trans x≥y y≥z) ≥ᴴ→≥ᴬ : {x : A} {u : DL} → x ≥ᴴ u → x ≥ᴬ toList u ≥ᴴ→≥ᴬ ≥ᴴ[] = ≥ᴬ[] ≥ᴴ→≥ᴬ (≥ᴴcons {r = y≥u} x≥y) = ≥ᴬcons x≥y (≥ᴴ→≥ᴬ (≥≥ᴴtrans x≥y y≥u)) descendingDL : (u : DL) → descending (toList u) descendingDL [] = []-descending descendingDL (cons x u x≥u) = cons-descending (≥ᴴ→≥ᴬ x≥u) (descendingDL u) ------------------------------------------------------------------------ -- Descending lists are a set. head≡ : {x y : A} {u v : DL} {r : x ≥ᴴ u} {s : y ≥ᴴ v} → cons x u r ≡ cons y v s → x ≡ y head≡ {x} = cong head where head : DL → A head [] = x head (cons z _ _) = z tail≡ : {x y : A} {u v : DL} {r : x ≥ᴴ u} {s : y ≥ᴴ v} → cons x u r ≡ cons y v s → u ≡ v tail≡ = cong tail where tail : DL → DL tail [] = [] tail (cons _ u _) = u caseDL : ∀ {ℓ} → {X : Type ℓ} → (x y : X) → DL → X caseDL x y [] = x caseDL x y (cons _ _ _) = y []≢cons : {x : A} {u : DL} {r : x ≥ᴴ u} → ¬ ([] ≡ cons x u r) []≢cons p = subst (caseDL Unit ⊥) p tt cons≢[] : {x : A} {u : DL} {r : x ≥ᴴ u} → ¬ (cons x u r ≡ []) cons≢[] p = subst (caseDL ⊥ Unit) p tt module isSetDL (≥isPropValued : {x y : A} → isProp (x ≥ y)) (discreteA : Discrete A) where ≥ᴴisPropValued : {x : A} {u : DL} → isProp (x ≥ᴴ u) ≥ᴴisPropValued ≥ᴴ[] ≥ᴴ[] = refl ≥ᴴisPropValued (≥ᴴcons x≥y) (≥ᴴcons x≥y') = cong ≥ᴴcons (≥isPropValued x≥y x≥y') cons≡ : {x y : A} {u v : DL} {r : x ≥ᴴ u} {s : y ≥ᴴ v} → x ≡ y → u ≡ v → cons x u r ≡ cons y v s cons≡ {x} p = subst P p d where P : A → Type₀ P y = {u v : DL} {r : x ≥ᴴ u} {s : y ≥ᴴ v} → u ≡ v → cons x u r ≡ cons y v s d : P x d {u} q = subst Q q c where Q : (v : DL) → Type₀ Q v = {r : x ≥ᴴ u} {s : x ≥ᴴ v} → cons x u r ≡ cons x v s c : Q u c = cong (cons x u) (≥ᴴisPropValued _ _) discreteDL : Discrete DL discreteDL [] [] = yes refl discreteDL [] (cons y v s) = no []≢cons discreteDL (cons x u r) [] = no cons≢[] discreteDL (cons x u r) (cons y v s) with discreteA x y discreteDL (cons x u r) (cons y v s) | yes x≡y with discreteDL u v discreteDL (cons x u r) (cons y v s) | yes x≡y | yes u≡v = yes (cons≡ x≡y u≡v) discreteDL (cons x u r) (cons y v s) | yes x≡y | no u≢v = no (λ e → u≢v (tail≡ e)) discreteDL (cons x u r) (cons y v s) | no x≢y = no (λ e → x≢y (head≡ e)) isSetDL : isSet DL isSetDL = Discrete→isSet discreteDL ------------------------------------------------------------------------ -- Descending lists are isomorphic to finite multisets. module IsoToFMSet (discreteA : Discrete A) (≥dec : (x y : A) → Dec (x ≥ y)) (≥isPropValued : {x y : A} → isProp (x ≥ y)) (≥trans : {x y z : A} → x ≥ y → y ≥ z → x ≥ z) (≰→≥ : {x y : A} → ¬ (x ≥ y) → y ≥ x) (≤≥→≡ : {x y : A} → x ≥ y → y ≥ x → x ≡ y) where ------------------------------------------------------------------------ -- The insert function -- -- The type DL is defined simultaneously with the relation _≥ᴴ_. -- Hence the insert function has to be defined by simultaneously -- proving a property of _≥ᴴ_. insert : A → DL → DL ≥ᴴinsert : {x y : A} {u : DL} → y ≥ᴴ u → ¬ (x ≥ y) → y ≥ᴴ insert x u insert x [] = [ x ] insert x (cons y u r) with ≥dec x y insert x (cons y u r) | yes x≥y = cons x (cons y u r) (≥ᴴcons x≥y) insert x (cons y u r) | no x≱y = cons y (insert x u) (≥ᴴinsert r x≱y) ≥ᴴinsert ≥ᴴ[] x≱y = ≥ᴴcons (≰→≥ x≱y) ≥ᴴinsert {x} {y} {cons z u z≥u} (≥ᴴcons y≥z) x≱y with ≥dec x z ≥ᴴinsert {x} {y} {cons z u z≥u} (≥ᴴcons y≥z) x≱y | yes x≥z = ≥ᴴcons (≰→≥ x≱y) ≥ᴴinsert {x} {y} {cons z u z≥u} (≥ᴴcons y≥z) x≱y | no x≱z = ≥ᴴcons y≥z open isSetDL ≥isPropValued discreteA insert-swap : (x y : A) (u : DL) → insert x (insert y u) ≡ insert y (insert x u) insert-swap x y [] with ≥dec x y insert-swap x y [] | yes x≥y with ≥dec y x insert-swap x y [] | yes x≥y | yes y≥x = cons≡ (≤≥→≡ x≥y y≥x) (cons≡ (≤≥→≡ y≥x x≥y) refl) insert-swap x y [] | yes x≥y | no y≱x = cons≡ refl (cons≡ refl refl) insert-swap x y [] | no x≱y with ≥dec y x insert-swap x y [] | no x≱y | yes y≥x = cons≡ refl (cons≡ refl refl) insert-swap x y [] | no x≱y | no y≱x = ⊥-elim (x≱y (≰→≥ y≱x)) insert-swap x y (cons z u z≥u) with ≥dec y z insert-swap x y (cons z u z≥u) | yes y≥z with ≥dec x y insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y with ≥dec x z insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | yes x≥z with ≥dec y x insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | yes x≥z | yes y≥x = cons≡ (≤≥→≡ x≥y y≥x) (cons≡ (≤≥→≡ y≥x x≥y) refl) insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | yes x≥z | no y≱x with ≥dec y z insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | yes x≥z | no y≱x | yes y≥z' = cons≡ refl (cons≡ refl refl) insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | yes x≥z | no y≱x | no y≱z = ⊥-elim (y≱z y≥z) insert-swap x y (cons z u z≥u) | yes y≥z | yes x≥y | no x≱z = ⊥-elim (x≱z (≥trans x≥y y≥z)) insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y with ≥dec x z insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | yes x≥z with ≥dec y x insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | yes x≥z | yes y≥x = cons≡ refl (cons≡ refl refl) insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | yes x≥z | no y≱x = ⊥-elim (x≱y (≰→≥ y≱x)) insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | no x≱z with ≥dec y z insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | no x≱z | yes y≥z' = cons≡ refl (cons≡ refl refl) insert-swap x y (cons z u z≥u) | yes y≥z | no x≱y | no x≱z | no y≱z = ⊥-elim (y≱z y≥z) insert-swap x y (cons z u z≥u) | no y≱z with ≥dec x z insert-swap x y (cons z u z≥u) | no y≱z | yes x≥z with ≥dec y x insert-swap x y (cons z u z≥u) | no y≱z | yes x≥z | yes y≥x = ⊥-elim (y≱z (≥trans y≥x x≥z)) insert-swap x y (cons z u z≥u) | no y≱z | yes x≥z | no y≱x with ≥dec y z insert-swap x y (cons z u z≥u) | no y≱z | yes x≥z | no y≱x | yes y≥z = ⊥-elim (y≱z y≥z) insert-swap x y (cons z u z≥u) | no y≱z | yes x≥z | no y≱x | no y≱z' = cons≡ refl (cons≡ refl refl) insert-swap x y (cons z u z≥u) | no y≱z | no x≱z with ≥dec y z insert-swap x y (cons z u z≥u) | no y≱z | no x≱z | yes y≥z = ⊥-elim (y≱z y≥z) insert-swap x y (cons z u z≥u) | no y≱z | no x≱z | no y≱z' = cons≡ refl (insert-swap x y u) -- Insertion sort toDL : FMSet A → DL toDL = FMSetRec.f isSetDL [] insert insert-swap {- toDL [] = [] toDL (x ∷ u) = insert x (toDL u) toDL (comm x y u i) = insert-swap x y (toDL u) i toDL (trunc x y p q i j) = isSetDL (toDL x) (toDL y) (cong toDL p) (cong toDL q) i j -} insert-cons : (x : A) (u : DL) (r : x ≥ᴴ u) → insert x u ≡ cons x u r insert-cons x [] _ = cons≡ refl refl insert-cons x (cons y u _) _ with ≥dec x y insert-cons x (cons y u _) _ | yes x≥y = cons≡ refl refl insert-cons x (cons y u _) (≥ᴴcons x≥y) | no x≱y = ⊥-elim (x≱y x≥y) toDL∘toFMSet≡id : (u : DL) → toDL (toFMSet u) ≡ u toDL∘toFMSet≡id [] = refl toDL∘toFMSet≡id (cons x u r) i = hcomp (λ j → λ { (i = i0) → insert x (toDL∘toFMSet≡id u (~ j)) ; (i = i1) → cons x u r }) (insert-cons x u r i) insert-∷ : (x : A) (u : DL) → toFMSet (insert x u) ≡ x ∷ toFMSet u insert-∷ x [] = refl insert-∷ x (cons y u _) with ≥dec x y insert-∷ x (cons y u _) | yes x≥y = refl insert-∷ x (cons y u _) | no x≱y = cong (λ z → y ∷ z) (insert-∷ x u) ∙ comm y x (toFMSet u) toFMSet∘toDL≡id : (u : FMSet A) → toFMSet (toDL u) ≡ u toFMSet∘toDL≡id = FMSetElimProp.f (trunc _ _) refl (λ x {u} p → insert-∷ x (toDL u) ∙ cong (λ z → x ∷ z) p) FMSet≡DL : FMSet A ≡ DL FMSet≡DL = isoToPath (iso toDL toFMSet toDL∘toFMSet≡id toFMSet∘toDL≡id) ------------------------------------------------------------------------ -- Concatenation of sorted lists -- -- Defined by transporting the one on finite multisets infixr 30 _++ᴰᴸ_ _++ᴰᴸ_ : DL → DL → DL _++ᴰᴸ_ = transport (λ i → FMSet≡DL i → FMSet≡DL i → FMSet≡DL i) _++_ []Path : PathP (λ i → FMSet≡DL i) [] [] []Path i = transp (λ j → FMSet≡DL (i ∧ j)) (~ i) [] ++Path : PathP (λ i → FMSet≡DL i → FMSet≡DL i → FMSet≡DL i) _++_ _++ᴰᴸ_ ++Path i = transp (λ j → FMSet≡DL (i ∧ j) → FMSet≡DL (i ∧ j) → FMSet≡DL (i ∧ j)) (~ i) _++_ unitl-++ᴰᴸ : ∀ u → [] ++ᴰᴸ u ≡ u unitl-++ᴰᴸ = transport (λ i → (u : FMSet≡DL i) → ++Path i ([]Path i) u ≡ u) unitl-++ unitr-++ᴰᴸ : ∀ u → u ++ᴰᴸ [] ≡ u unitr-++ᴰᴸ = transport (λ i → (u : FMSet≡DL i) → ++Path i u ([]Path i) ≡ u) unitr-++ assoc-++ᴰᴸ : ∀ u v w → u ++ᴰᴸ (v ++ᴰᴸ w) ≡ (u ++ᴰᴸ v) ++ᴰᴸ w assoc-++ᴰᴸ = transport (λ i → (u v w : FMSet≡DL i) → ++Path i u (++Path i v w) ≡ ++Path i (++Path i u v) w) assoc-++ comm-++ᴰᴸ : ∀ u v → u ++ᴰᴸ v ≡ v ++ᴰᴸ u comm-++ᴰᴸ = transport (λ i → (u v : FMSet≡DL i) → ++Path i u v ≡ ++Path i v u) comm-++ ------------------------------------------------------------------------ -- Converting multisets to (descending) lists FMSet→List : FMSet A → List A FMSet→List u = toList (toDL u)
{ "alphanum_fraction": 0.5072091101, "avg_line_length": 38.8892857143, "ext": "agda", "hexsha": "a7e5c0404e3fdd1838b89e438a1c650c2e8f616e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList/Properties.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4849, "size": 10889 }
module main where open import lib import string-format -- for parser for Cedille open import cedille-types -- for parser for options files import options-types import cedille-options -- for parser for Cedille comments & whitespace import cws-types open import constants open import general-util createOptionsFile : (dot-ced-dir : string) → IO ⊤ createOptionsFile dot-ced-dir = let ops-fp = combineFileNames dot-ced-dir options-file-name in createDirectoryIfMissing ff (takeDirectory ops-fp) >> withFile ops-fp WriteMode (flip hPutRope (cedille-options.options-to-rope cedille-options.default-options)) str-bool-to-𝔹 : options-types.str-bool → 𝔹 str-bool-to-𝔹 options-types.StrBoolTrue = tt str-bool-to-𝔹 options-types.StrBoolFalse = ff opts-to-options : filepath → options-types.opts → IO cedille-options.options opts-to-options ofp (options-types.OptsCons (options-types.Lib fps) ops) = opts-to-options ofp ops >>= λ ops → paths-to-stringset fps >>=r λ ip → record ops { include-path = ip } where paths-to-stringset : options-types.paths → IO (𝕃 string × stringset) paths-to-stringset (options-types.PathsCons fp fps) = let rfp = combineFileNames (takeDirectory (takeDirectory ofp)) fp in paths-to-stringset fps >>= λ ps → doesDirectoryExist rfp >>= λ rfpₑ → doesDirectoryExist fp >>= λ fpₑ → (if rfpₑ then (canonicalizePath rfp >>= λ rfp → return (cedille-options.include-path-insert rfp ps)) else return ps) >>= λ ps → if fpₑ then (canonicalizePath fp >>= λ fp → return (cedille-options.include-path-insert fp ps)) else return ps paths-to-stringset options-types.PathsNil = return ([] , empty-stringset) opts-to-options ofp (options-types.OptsCons (options-types.UseCedeFiles b) ops) = opts-to-options ofp ops >>=r λ ops → record ops { use-cede-files = str-bool-to-𝔹 b } opts-to-options ofp (options-types.OptsCons (options-types.MakeRktFiles b) ops) = opts-to-options ofp ops >>=r λ ops → record ops { make-rkt-files = str-bool-to-𝔹 b } opts-to-options ofp (options-types.OptsCons (options-types.GenerateLogs b) ops) = opts-to-options ofp ops >>=r λ ops → record ops { generate-logs = str-bool-to-𝔹 b } opts-to-options ofp (options-types.OptsCons (options-types.ShowQualifiedVars b) ops) = opts-to-options ofp ops >>=r λ ops → record ops { show-qualified-vars = str-bool-to-𝔹 b } opts-to-options ofp (options-types.OptsCons (options-types.EraseTypes b) ops) = opts-to-options ofp ops >>=r λ ops → record ops { erase-types = str-bool-to-𝔹 b } opts-to-options ofp options-types.OptsNil = return cedille-options.default-options -- helper function to try to parse the options file processOptions : filepath → string → IO (string ⊎ cedille-options.options) processOptions filename s with options-types.scanOptions s ...| options-types.Left cs = return (inj₁ ("Parse error in file " ^ filename ^ " " ^ cs ^ ".")) ...| options-types.Right (options-types.File oo) = opts-to-options filename oo >>= λ opts → if cedille-options.options.make-rkt-files opts then return ∘ inj₁ $ "Racket compilation disabled, please set to false in " ^ filename ^ "." else (return ∘ inj₂ $ opts) getOptionsFile : (filepath : string) → string getOptionsFile fp = combineFileNames (dot-cedille-directory fp) options-file-name findOptionsFile : (filepath : string) → IO (maybe string) findOptionsFile fp = h fp (pred (length (splitPath fp))) where h : string → ℕ → IO (maybe string) h fp 0 = return nothing h fp (suc n) = let fpc = getOptionsFile fp in doesFileExist fpc >>= λ where ff → h (takeDirectory fp) n tt → return (just fpc) readOptions : IO (string × cedille-options.options) readOptions = getCurrentDirectory >>= canonicalizePath >>= findOptionsFile >>= λ where nothing → getHomeDirectory >>= canonicalizePath >>= λ home → createOptionsFile (dot-cedille-directory home) >>r dot-cedille-directory home , cedille-options.default-options (just fp) → readFiniteFile fp >>= λ fc → processOptions fp fc >>= λ where (inj₁ err) → putStrLn (global-error-string err) >>r fp , cedille-options.default-options (inj₂ ops) → return (fp , ops) module main-with-options (compileTime : UTC) (options-filepath : filepath) (options : cedille-options.options) where open import ctxt open import monad-instances open import process-cmd options {IO} open import parser open import spans options {IO} open import syntax-util open import to-string options open import toplevel-state options {IO} import interactive-cmds open import rkt options open import elaboration options logFilepath : IO filepath logFilepath = getHomeDirectory >>=r λ home → combineFileNames (dot-cedille-directory home) "log" maybeClearLogFile : IO ⊤ maybeClearLogFile = if cedille-options.options.generate-logs options then logFilepath >>= clearFile else return triv logRope : rope → IO ⊤ logRope s with cedille-options.options.generate-logs options ...| ff = return triv ...| tt = getCurrentTime >>= λ time → logFilepath >>= λ fn → withFile fn AppendMode λ hdl → hPutRope hdl ([[ "([" ^ utcToString time ^ "] " ]] ⊹⊹ s ⊹⊹ [[ ")\n" ]]) logMsg : (message : string) → IO ⊤ logMsg msg = logRope [[ msg ]] sendProgressUpdate : string → IO ⊤ sendProgressUpdate msg = putStr "progress: " >> putStr msg >> putStr "\n" progressUpdate : (filename : string) → (do-check : 𝔹) → IO ⊤ progressUpdate filename do-check = sendProgressUpdate ((if do-check then "Checking " else "Skipping ") ^ filename) fileBaseName : filepath → string fileBaseName fn = base-filename (takeFileName fn) {------------------------------------------------------------------------------- .cede support -------------------------------------------------------------------------------} cede-suffix = ".cede" rkt-suffix = ".rkt" ced-aux-filename : (suffix ced-path : filepath) → filepath ced-aux-filename sfx ced-path = let dir = takeDirectory ced-path in combineFileNames (dot-cedille-directory dir) (fileBaseName ced-path ^ sfx) cede-filename = ced-aux-filename cede-suffix rkt-filename = ced-aux-filename rkt-suffix maybe-write-aux-file : include-elt → (create-dot-ced-if-missing : IO ⊤) → (filename file-suffix : filepath) → (cedille-options.options → 𝔹) → (include-elt → 𝔹) → rope → IO ⊤ maybe-write-aux-file ie mk-dot-ced fn sfx f f' r with f options && ~ f' ie ...| ff = return triv ...| tt = mk-dot-ced >> logMsg ("Starting writing " ^ sfx ^ " file " ^ fn) >> writeRopeToFile fn r >> logMsg ("Finished writing " ^ sfx ^ " file " ^ fn) write-aux-files : toplevel-state → filepath → IO ⊤ write-aux-files s filename with get-include-elt-if s filename ...| nothing = return triv ...| just ie = let dot-ced = createDirectoryIfMissing ff (dot-cedille-directory (takeDirectory filename)) in maybe-write-aux-file ie dot-ced (cede-filename filename) cede-suffix cedille-options.options.use-cede-files include-elt.cede-up-to-date ((if include-elt.err ie then [[ "e" ]] else [[]]) ⊹⊹ include-elt-spans-to-rope ie) >> maybe-write-aux-file ie dot-ced (rkt-filename filename) rkt-suffix cedille-options.options.make-rkt-files include-elt.rkt-up-to-date (to-rkt-file filename (toplevel-state.Γ s) ie rkt-filename) -- we assume the cede file is known to exist at this point read-cede-file : (ced-path : filepath) → IO (𝔹 × string) read-cede-file ced-path = let cede = cede-filename ced-path in logMsg ("Started reading .cede file " ^ cede) >> get-file-contents cede >>= finish >≯ logMsg ("Finished reading .cede file " ^ cede) where finish : maybe string → IO (𝔹 × string) finish nothing = return (tt , global-error-string ("Could not read the file " ^ cede-filename ced-path ^ ".")) finish (just ss) with string-to-𝕃char ss finish (just ss) | ('e' :: ss') = forceFileRead ss >>r tt , 𝕃char-to-string ss' finish (just ss) | _ = forceFileRead ss >>r ff , ss add-cedille-extension : string → string add-cedille-extension x = x ^ "." ^ cedille-extension -- Allows you to say "import FOO.BAR.BAZ" rather than "import FOO/BAR/BAZ" replace-dots : filepath → filepath replace-dots s = 𝕃char-to-string (h (string-to-𝕃char s)) where h : 𝕃 char → 𝕃 char h ('.' :: '.' :: cs) = '.' :: '.' :: h cs h ('.' :: cs) = pathSeparator :: h cs h (c :: cs) = c :: h cs h [] = [] find-imported-file : (dirs : 𝕃 filepath) → (unit-name : string) → IO (maybe filepath) find-imported-file [] unit-name = return nothing find-imported-file (dir :: dirs) unit-name = let e = combineFileNames dir (add-cedille-extension unit-name) in doesFileExist e >>= λ where ff → find-imported-file dirs unit-name tt → canonicalizePath e >>=r just find-imported-files : (dirs : 𝕃 filepath) → (imports : 𝕃 string) → IO (𝕃 (string × filepath)) find-imported-files dirs (u :: us) = find-imported-file dirs (replace-dots u) >>= λ where nothing → logMsg ("Error finding file: " ^ replace-dots u) >> find-imported-files dirs us (just fp) → logMsg ("Found import: " ^ fp) >> find-imported-files dirs us >>=r (u , fp) ::_ find-imported-files dirs [] = return [] {- new parser test integration -} reparse : toplevel-state → filepath → IO toplevel-state reparse st filename = doesFileExist filename >>= λ b → (if b then (readFiniteFile filename >>= λ s → getCurrentTime >>= λ time → processText s >>=r λ ie → set-last-parse-time-include-elt ie time) else return (error-include-elt ("The file " ^ filename ^ " could not be opened for reading."))) >>=r set-include-elt st filename where processText : string → IO include-elt processText x with parseStart x processText x | Left (Left cs) = return (error-span-include-elt ("Error in file " ^ filename ^ ".") "Lexical error." cs) processText x | Left (Right cs) = return (error-span-include-elt ("Error in file " ^ filename ^ ".") "Parsing error." cs) processText x | Right t with cws-types.scanComments x processText x | Right t | t2 = find-imported-files (fst (cedille-options.include-path-insert (takeDirectory filename) (toplevel-state.include-path st))) (get-imports t) >>= λ deps → logMsg ("deps for file " ^ filename ^ ": " ^ 𝕃-to-string (λ {(a , b) → "short: " ^ a ^ ", long: " ^ b}) ", " deps) >>r new-include-elt filename deps t t2 nothing reparse-file : filepath → toplevel-state → IO toplevel-state reparse-file filename s = reparse s filename >>=r λ s → set-include-elt s filename (set-cede-file-up-to-date-include-elt (set-do-type-check-include-elt (get-include-elt s filename) tt) ff) infixl 1 _&&>>_ _&&>>_ : IO 𝔹 → IO 𝔹 → IO 𝔹 (a &&>> b) = a >>= λ a → if a then b else return ff aux-up-to-date : filepath → toplevel-state → IO toplevel-state aux-up-to-date filename s = let rkt = rkt-filename filename in doesFileExist rkt &&>> fileIsOlder filename rkt >>=r (set-include-elt s filename ∘ (set-rkt-file-up-to-date-include-elt (get-include-elt s filename))) ie-up-to-date : filepath → include-elt → IO 𝔹 ie-up-to-date filename ie = getModificationTime filename >>=r λ mt → maybe-else ff (λ lpt → lpt utc-after mt) (include-elt.last-parse-time ie) import-changed : toplevel-state → filepath → (import-file : string) → IO 𝔹 import-changed s filename import-file = let dtc = include-elt.do-type-check (get-include-elt s import-file) cede = cede-filename filename cede' = cede-filename import-file in case cedille-options.options.use-cede-files options of λ where ff → return dtc tt → doesFileExist cede &&>> doesFileExist cede' >>= λ where ff → return ff tt → fileIsOlder cede cede' >>=r λ fio → dtc || fio any-imports-changed : toplevel-state → filepath → (imports : 𝕃 string) → IO 𝔹 any-imports-changed s filename [] = return ff any-imports-changed s filename (h :: t) = import-changed s filename h >>= λ where tt → return tt ff → any-imports-changed s filename t file-after-compile : filepath → IO 𝔹 file-after-compile fn = getModificationTime fn >>= λ mt → case mt utc-after compileTime of λ where tt → doesFileExist options-filepath &&>> fileIsOlder options-filepath fn ff → return ff ensure-ast-depsh : filepath → toplevel-state → IO toplevel-state ensure-ast-depsh filename s with get-include-elt-if s filename ...| just ie = ie-up-to-date filename ie >>= λ where ff → reparse-file filename s tt → return s ...| nothing = let cede = cede-filename filename in return (cedille-options.options.use-cede-files options) &&>> doesFileExist cede &&>> fileIsOlder filename cede &&>> file-after-compile cede >>= λ where ff → reparse-file filename s tt → reparse s filename >>= λ s → read-cede-file filename >>= λ where (err , ss) → return (set-include-elt s filename (set-do-type-check-include-elt (set-need-to-add-symbols-to-context-include-elt (set-spans-string-include-elt (get-include-elt s filename) err ss) tt) ff)) {- helper function for update-asts, which keeps track of the files we have seen so we avoid importing the same file twice, and also avoid following cycles in the import graph. -} {-# TERMINATING #-} update-astsh : stringset {- seen already -} → toplevel-state → filepath → IO (stringset {- seen already -} × toplevel-state) update-astsh seen s filename = if stringset-contains seen filename then return (seen , s) else (ensure-ast-depsh filename s >>= aux-up-to-date filename >>= cont (stringset-insert seen filename)) where cont : stringset → toplevel-state → IO (stringset × toplevel-state) cont seen s with get-include-elt s filename cont seen s | ie with include-elt.deps ie cont seen s | ie | ds = proc seen s ds where proc : stringset → toplevel-state → 𝕃 string → IO (stringset × toplevel-state) proc seen s [] = any-imports-changed s filename ds >>=r λ changed → seen , set-include-elt s filename (set-do-type-check-include-elt ie (include-elt.do-type-check ie || changed)) proc seen s (d :: ds) = update-astsh seen s d >>= λ p → proc (fst p) (snd p) ds {- this function updates the ast associated with the given filename in the toplevel state. So if we do not have an up-to-date .cede file (i.e., there is no such file at all, or it is older than the given file), reparse the file. We do this recursively for all dependencies (i.e., imports) of the file. -} update-asts : toplevel-state → filepath → IO toplevel-state update-asts s filename = update-astsh empty-stringset s filename >>=r snd log-files-to-check : toplevel-state → IO ⊤ log-files-to-check s = logRope ([[ "\n" ]] ⊹⊹ (h (trie-mappings (toplevel-state.is s)))) where h : 𝕃 (string × include-elt) → rope h [] = [[]] h ((fn , ie) :: t) = [[ "file: " ]] ⊹⊹ [[ fn ]] ⊹⊹ [[ "\nadd-symbols: " ]] ⊹⊹ [[ 𝔹-to-string (include-elt.need-to-add-symbols-to-context ie) ]] ⊹⊹ [[ "\ndo-type-check: " ]] ⊹⊹ [[ 𝔹-to-string (include-elt.do-type-check ie) ]] ⊹⊹ [[ "\n\n" ]] ⊹⊹ h t {- this function checks the given file (if necessary), updates .cede and .rkt files (again, if necessary), and replies on stdout if appropriate -} checkFile : toplevel-state → filepath → (should-print-spans : 𝔹) → IO toplevel-state checkFile s filename should-print-spans = update-asts s filename >>= λ s → log-files-to-check s >> logMsg (𝕃-to-string (λ {(im , fn) → "im: " ^ im ^ ", fn: " ^ fn}) "; " (trie-mappings (include-elt.import-to-dep (get-include-elt s filename)))) >> process-file progressUpdate s filename (fileBaseName filename) >>= finish where reply : toplevel-state → IO ⊤ reply s with get-include-elt-if s filename reply s | nothing = putStrLn (global-error-string ("Internal error looking up information for file " ^ filename ^ ".")) reply s | just ie = if should-print-spans then putRopeLn (include-elt-spans-to-rope ie) else return triv finish : toplevel-state × mod-info → IO toplevel-state finish (s @ (mk-toplevel-state ip mod is Γ) , ret-mod) = logMsg ("Started reply for file " ^ filename) >> -- Lazy, so checking has not been calculated yet? reply s >> logMsg ("Finished reply for file " ^ filename) >> logMsg ("Files with updated spans:\n" ^ 𝕃-to-string (λ x → x) "\n" mod) >> let Γ = ctxt-set-current-mod Γ ret-mod in writeo mod >>r -- Should process-file now always add files to the list of modified ones because now the cede-/rkt-up-to-date fields take care of whether to rewrite them? mk-toplevel-state ip mod is Γ where writeo : 𝕃 string → IO ⊤ writeo [] = return triv writeo (f :: us) = writeo us >> -- let ie = get-include-elt s f in write-aux-files s f -- (if cedille-options.options.make-rkt-files options && ~ include-elt.rkt-up-to-date ie then (write-rkt-file f (toplevel-state.Γ s) ie rkt-filename) else return triv) -- this is the function that handles requests (from the frontend) on standard input {-# TERMINATING #-} readCommandsFromFrontend : toplevel-state → IO ⊤ readCommandsFromFrontend s = getLine >>= λ input → logMsg ("Frontend input: " ^ input) >> let input-list : 𝕃 string input-list = (string-split (undo-escape-string input) delimiter) in (handleCommands input-list s) >>= λ s → readCommandsFromFrontend s where delimiter : char delimiter = '§' errorCommand : 𝕃 string → toplevel-state → IO ⊤ errorCommand ls s = putStrLn (global-error-string "Invalid command sequence \\\\\"" ^ (𝕃-to-string (λ x → x) ", " ls) ^ "\\\\\".") debugCommand : toplevel-state → IO ⊤ debugCommand s = putStrLn (escape-string (toplevel-state-to-string s)) checkCommand : 𝕃 string → toplevel-state → IO toplevel-state checkCommand (input :: []) s = canonicalizePath input >>= λ input-filename → checkFile (set-include-path s (cedille-options.include-path-insert (takeDirectory input-filename) (toplevel-state.include-path s))) input-filename tt {- should-print-spans -} checkCommand ls s = errorCommand ls s >>r s {- findCommand : 𝕃 string → toplevel-state → IO toplevel-state findCommand (symbol :: []) s = putStrLn (find-symbols-to-JSON symbol (toplevel-state-lookup-occurrences symbol s)) >>= λ x → return s findCommand _ s = errorCommand s -} handleCommands : 𝕃 string → toplevel-state → IO toplevel-state handleCommands ("progress stub" :: xs) = return handleCommands ("status ping" :: xs) s = putStrLn "idle" >> return s handleCommands ("check" :: xs) s = checkCommand xs s handleCommands ("debug" :: []) s = debugCommand s >>r s handleCommands ("elaborate" :: x :: x' :: []) s = elab-all s x x' >>r s handleCommands ("interactive" :: xs) s = interactive-cmds.interactive-cmd options xs s >>r s -- handleCommands ("find" :: xs) s = findCommand xs s handleCommands xs s = errorCommand xs s >>r s -- function to process command-line arguments processArgs : 𝕃 string → IO ⊤ -- this is the case for when we are called with a single command-line argument, the name of the file to process processArgs (input-filename :: []) = canonicalizePath input-filename >>= λ input-filename → checkFile (new-toplevel-state (cedille-options.include-path-insert (takeDirectory input-filename) (cedille-options.options.include-path options))) input-filename ff {- should-print-spans -} >>= finish input-filename where finish : string → toplevel-state → IO ⊤ finish input-filename s = return triv {- let ie = get-include-elt s input-filename in if include-elt.err ie then (putRopeLn (include-elt-spans-to-rope ie)) else return triv -} -- this is the case where we will go into a loop reading commands from stdin, from the fronted processArgs [] = readCommandsFromFrontend (new-toplevel-state (cedille-options.options.include-path options)) -- all other cases are errors processArgs xs = putStrLn ("Run with the name of one file to process, or run with no command-line arguments and enter the\n" ^ "names of files one at a time followed by newlines (this is for the emacs mode).") main' : IO ⊤ main' = maybeClearLogFile >> logMsg ("Started Cedille process (compiled at: " ^ utcToString compileTime ^ ")") >> getArgs >>= processArgs postulate initializeStdinToUTF8 : IO ⊤ setStdinNewlineMode : IO ⊤ compileTime : UTC templatesDir : filepath {-# FOREIGN GHC {-# LANGUAGE TemplateHaskell #-} #-} {-# FOREIGN GHC import qualified System.IO #-} {-# FOREIGN GHC import qualified Data.Time.Clock #-} {-# FOREIGN GHC import qualified Data.Time.Format #-} {-# FOREIGN GHC import qualified Data.Time.Clock.POSIX #-} {-# FOREIGN GHC import qualified Language.Haskell.TH.Syntax #-} {-# COMPILE GHC initializeStdinToUTF8 = System.IO.hSetEncoding System.IO.stdin System.IO.utf8 #-} {-# COMPILE GHC setStdinNewlineMode = System.IO.hSetNewlineMode System.IO.stdin System.IO.universalNewlineMode #-} {-# COMPILE GHC compileTime = maybe (Data.Time.Clock.POSIX.posixSecondsToUTCTime (fromIntegral 0)) id (Data.Time.Format.parseTimeM True Data.Time.Format.defaultTimeLocale "%s" $(Language.Haskell.TH.Syntax.runIO (Data.Time.Clock.getCurrentTime >>= \ t -> return (Language.Haskell.TH.Syntax.LitE (Language.Haskell.TH.Syntax.StringL (Data.Time.Format.formatTime Data.Time.Format.defaultTimeLocale "%s" t))))) :: Maybe Data.Time.Clock.UTCTime) #-} -- main entrypoint for the backend main : IO ⊤ main = initializeStdoutToUTF8 >> initializeStdinToUTF8 >> setStdoutNewlineMode >> setStdinNewlineMode >> setToLineBuffering >> readOptions >>= uncurry (main-with-options.main' compileTime)
{ "alphanum_fraction": 0.6324940822, "avg_line_length": 48.3056133056, "ext": "agda", "hexsha": "6c445e2e02226c3fdd5d4c769962b6ab818102e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/main.agda", "max_line_length": 251, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/main.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6247, "size": 23235 }
{-# OPTIONS --without-K #-} module Story where {-- PiCat level 0: Objects: Finite sets viewed as discrete-groupoids Morphisms: Permutations between finite sets viewed as permutation-groupoids Equivalence: Strong Equivalence of categories Discrete-Groupoids: Objects: Parameterized Morphisms: Only id Equivalence: ≡ Permutation-Groupoids: each permutation is a 1-1 function Objects: Finite Sets (or Enumerations) Morphisms: A morphism represents a swap of two elements by the permutation Equivalence: ≡ ------ PiCat level 1: Objects: Finite sets viewed as discrete-groupoids Morphisms: Permutations between finite sets viewed as permutation-groupoids Equivalence: Equivalence-of-Permutations-groupoids Discrete-Groupoids: Objects: Parameterized Morphisms: Only id Equivalence: ≡ Permutation-Groupoids: each permutation is a 1-1 function Objects: Finite Sets (or Enumerations) Morphisms: A morphism represents a swap of two elements by the permutation Equivalence: ≡ Equivalance-of-Permutations-Groupoids: Objects: Permutation-Groupoids Morphisms: ?? Equivalence: Strong Equivalence of categories --}
{ "alphanum_fraction": 0.7462437396, "avg_line_length": 26.0434782609, "ext": "agda", "hexsha": "ce82272c7d96498e850ee9a38d763e028f6c42ea", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Story.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Story.agda", "max_line_length": 79, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Story.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 309, "size": 1198 }
------------------------------------------------------------------------------ -- Testing the existential quantifier ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Existential where postulate D : Set A : D → Set ∃ : (A : D → Set) → Set postulate foo : (∃ λ x → A x) → (∃ λ x → A x) {-# ATP prove foo #-}
{ "alphanum_fraction": 0.3619047619, "avg_line_length": 27.6315789474, "ext": "agda", "hexsha": "dc5a5bd85c61671e3b00a528ca64d81c3f0c1517", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Existential.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Existential.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Existential.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 103, "size": 525 }
{-# OPTIONS --without-K #-} module Homotopy where open import GroupoidStructure open import PathOperations open import Types infix 1 _∼_ _∼_ : ∀ {a b} {A : Set a} {B : Set b} (f g : A → B) → Set _ f ∼ g = ∀ x → f x ≡ g x naturality : ∀ {a b} {A : Set a} {B : Set b} {x y : A} (f g : A → B) (H : f ∼ g) (p : x ≡ y) → H x · ap g p ≡ ap f p · H y naturality f g H = J (λ x y p → H x · ap g p ≡ ap f p · H y) (λ _ → p·id _) _ _
{ "alphanum_fraction": 0.5056947608, "avg_line_length": 21.95, "ext": "agda", "hexsha": "01ff81d2d11e8d7c15ce158970eb7a4c279fe19c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Homotopy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Homotopy.agda", "max_line_length": 54, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Homotopy.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 197, "size": 439 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.Equivalence2 open import lib.Relation2 open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel module lib.NType2 where module _ {i} {A : Type i} where abstract has-dec-onesided-eq-is-prop : {x : A} → is-prop (has-dec-onesided-eq x) has-dec-onesided-eq-is-prop {x = x} = inhab-to-prop-is-prop λ dec → Π-level λ y → Dec-level (dec-onesided-eq-is-prop x dec y) has-dec-eq-is-prop : is-prop (has-dec-eq A) has-dec-eq-is-prop = Π-level (λ _ → has-dec-onesided-eq-is-prop) module _ {i j} {A : Type i} {B : A → Type j} where abstract ↓-level : {a b : A} {p : a == b} {u : B a} {v : B b} {n : ℕ₋₂} → has-level (S n) (B b) → has-level n (u == v [ B ↓ p ]) ↓-level {p = idp} k = has-level-apply k _ _ ↓-preserves-level : {a b : A} {p : a == b} {u : B a} {v : B b} {n : ℕ₋₂} → has-level n (B b) → has-level n (u == v [ B ↓ p ]) ↓-preserves-level {p = idp} = =-preserves-level prop-has-all-paths-↓ : {x y : A} {p : x == y} {u : B x} {v : B y} {{_ : is-prop (B y)}} → u == v [ B ↓ p ] prop-has-all-paths-↓ {p = idp} = prop-has-all-paths _ _ set-↓-has-all-paths-↓ : ∀ {k} {C : Type k} {x y : C → A} {p : (t : C) → x t == y t} {u : (t : C) → B (x t)} {v : (t : C) → B (y t)} {a b : C} {q : a == b} {α : u a == v a [ B ↓ p a ]} {β : u b == v b [ B ↓ p b ]} {{_ : is-set (B (y a))}} → α == β [ (λ t → u t == v t [ B ↓ p t ]) ↓ q ] set-↓-has-all-paths-↓ {q = idp} {{p}} = lemma _ p where lemma : {x y : A} (p : x == y) {u : B x} {v : B y} {α β : u == v [ B ↓ p ]} → is-set (B y) → α == β lemma idp k = contr-center (has-level-apply (has-level-apply k _ _) _ _) abstract -- Every map between contractible types is an equivalence contr-to-contr-is-equiv : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → (is-contr A → is-contr B → is-equiv f) contr-to-contr-is-equiv f cA cB = is-eq f (λ _ → contr-center cA) (λ b → ! (contr-path cB _) ∙ contr-path cB b) (contr-path cA) is-contr-is-prop : ∀ {i} {A : Type i} → is-prop (is-contr A) is-contr-is-prop {A = A} = all-paths-is-prop is-contr-is-prop-aux where lemma : (x : is-contr A) (b a : A) (p : b == a) → contr-path x a == contr-path x b ∙' p lemma x b ._ idp = idp is-contr-is-prop-aux : (x y : is-contr A) → x == y is-contr-is-prop-aux x y = ap has-level-in (pair= (contr-path x (contr-center y)) (↓-Π-cst-app-in (λ a → ↓-idf=cst-in' (lemma x (contr-center y) a (contr-path y a))))) has-level-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i} → is-prop (has-level n A) has-level-is-prop {n = ⟨-2⟩} = is-contr-is-prop has-level-is-prop {n = S n} {A} = equiv-preserves-level e {{has-level-aux-prop}} where has-level-aux-prop : is-prop (has-level-aux (S n) A) has-level-aux-prop = Π-level (λ x → Π-level (λ y → has-level-is-prop)) e : has-level-aux (S n) A ≃ has-level (S n) A fst e = has-level-in is-equiv.g (snd e) = has-level-apply is-equiv.f-g (snd e) = λ _ → idp is-equiv.g-f (snd e) = λ _ → idp is-equiv.adj (snd e) = λ _ → idp instance has-level-level : ∀ {i} {n m : ℕ₋₂} {A : Type i} → has-level (S m) (has-level n A) has-level-level {m = ⟨-2⟩} = has-level-is-prop has-level-level {m = S m} = raise-level _ has-level-level {- Subtypes. -} module _ {i j} {A : Type i} (P : SubtypeProp A j) where private module P = SubtypeProp P instance Subtype-level : ∀ {n : ℕ₋₂} {{_ : has-level (S n) A}} → has-level (S n) (Subtype P) Subtype-level = Σ-level ⟨⟩ (λ x → prop-has-level-S (P.level x)) Subtype= : (x y : Subtype P) → Type i Subtype= x y = fst x == fst y Subtype=-out : ∀ {x y : Subtype P} → Subtype= x y → x == y Subtype=-out p = pair= p (prop-has-all-paths-↓ {{P.level _}}) Subtype=-β : {x y : Subtype P} (p : Subtype= x y) → fst= (Subtype=-out {x = x} {y = y} p) == p Subtype=-β idp = fst=-β idp _ Subtype=-η : {x y : Subtype P} (p : x == y) → Subtype=-out (fst= p) == p Subtype=-η idp = ap (pair= idp) (contr-has-all-paths {{has-level-apply (P.level _) _ _}} _ _) Subtype=-econv : (x y : Subtype P) → (Subtype= x y) ≃ (x == y) Subtype=-econv x y = equiv Subtype=-out fst= Subtype=-η Subtype=-β abstract Subtype-∙ : ∀ {x y z : Subtype P} (p : Subtype= x y) (q : Subtype= y z) → (Subtype=-out {x} {y} p ∙ Subtype=-out {y} {z} q) == Subtype=-out {x} {z} (p ∙ q) Subtype-∙ {x} {y} {z} p q = Subtype=-out p ∙ Subtype=-out q =⟨ Σ-∙ {p = p} {p' = q} (prop-has-all-paths-↓ {{P.level (fst y)}}) (prop-has-all-paths-↓ {{P.level (fst z)}}) ⟩ pair= (p ∙ q) (prop-has-all-paths-↓ {p = p} {{P.level (fst y)}} ∙ᵈ prop-has-all-paths-↓ {{P.level (fst z)}}) =⟨ contr-has-all-paths {{↓-level (P.level (fst z))}} _ (prop-has-all-paths-↓ {{P.level (fst z)}}) |in-ctx pair= (p ∙ q) ⟩ Subtype=-out (p ∙ q) =∎ -- Groupoids is-gpd : {i : ULevel} → Type i → Type i is-gpd = has-level 1 -- Type of all n-truncated types -- TODO: redefine it like that, so that instance arguments can work -- record _-Type_ (n : ℕ₋₂) (i : ULevel) : Type (lsucc i) where -- constructor _,_ -- field -- El : Type i -- {{El-level}} : has-level n El -- open _-Type_ public has-level-prop : ∀ {i} → ℕ₋₂ → SubtypeProp (Type i) i has-level-prop n = has-level n , λ _ → has-level-is-prop _-Type_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i) n -Type i = Subtype (has-level-prop {i} n) hProp : (i : ULevel) → Type (lsucc i) hProp i = -1 -Type i hSet : (i : ULevel) → Type (lsucc i) hSet i = 0 -Type i _-Type₀ : (n : ℕ₋₂) → Type₁ n -Type₀ = n -Type lzero hProp₀ = hProp lzero hSet₀ = hSet lzero -- [n -Type] is an (n+1)-type abstract ≃-contr : ∀ {i j} {A : Type i} {B : Type j} → is-contr A → is-contr B → is-contr (A ≃ B) ≃-contr pA pB = has-level-in ((cst (contr-center pB) , contr-to-contr-is-equiv _ pA pB) , (λ e → pair= (λ= (λ _ → contr-path pB _)) (from-transp is-equiv _ (prop-path is-equiv-is-prop _ _)))) instance ≃-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → (has-level n A → has-level n B → has-level n (A ≃ B)) ≃-level {n = ⟨-2⟩} = ≃-contr ≃-level {n = S n} pA pB = Σ-level ⟨⟩ ⟨⟩ where instance _ = pA; _ = pB universe-=-level : ∀ {i} {n : ℕ₋₂} {A B : Type i} → (has-level n A → has-level n B → has-level n (A == B)) universe-=-level pA pB = equiv-preserves-level ua-equiv where instance _ = pA; _ = pB module _ {i} {n} where private prop : SubtypeProp {lsucc i} (Type i) i prop = has-level-prop n nType= : (A B : n -Type i) → Type (lsucc i) nType= = Subtype= prop nType=-out : {A B : n -Type i} → nType= A B → A == B nType=-out = Subtype=-out prop abstract nType=-β : {A B : n -Type i} (p : nType= A B) → fst= (nType=-out {A = A} {B = B} p) == p nType=-β = Subtype=-β prop nType=-η : {A B : n -Type i} (p : A == B) → nType=-out (fst= p) == p nType=-η = Subtype=-η prop nType=-econv : (A B : n -Type i) → (nType= A B) ≃ (A == B) nType=-econv = Subtype=-econv prop nType-∙ : {A B C : n -Type i} (p : nType= A B) (q : nType= B C) → (nType=-out {A = A} p ∙ nType=-out {A = B} q) == nType=-out {A = A} {B = C} (p ∙ q) nType-∙ = Subtype-∙ prop abstract instance _-Type-level_ : (n : ℕ₋₂) (i : ULevel) → has-level (S n) (n -Type i) (n -Type-level i) = has-level-in (λ { (A , pA) (B , pB) → aux A B pA pB}) where aux : (A B : Type i) (pA : has-level n A) (pB : has-level n B) → has-level n ((A , pA) == (B , pB)) aux A B pA pB = equiv-preserves-level (nType=-econv (A , ⟨⟩) (B , ⟨⟩)) where instance _ = pA; _ = pB hProp-is-set : (i : ULevel) → is-set (hProp i) hProp-is-set i = -1 -Type-level i hSet-level : (i : ULevel) → has-level 1 (hSet i) hSet-level i = 0 -Type-level i {- The following two lemmas are in NType2 instead of NType because of cyclic dependencies -} module _ {i} {A : Type i} where abstract raise-level-<T : {m n : ℕ₋₂} → (m <T n) → has-level m A → has-level n A raise-level-<T ltS = raise-level _ raise-level-<T (ltSR lt) = raise-level _ ∘ raise-level-<T lt raise-level-≤T : {m n : ℕ₋₂} → (m ≤T n) → has-level m A → has-level n A raise-level-≤T (inl p) = transport (λ t → has-level t A) p raise-level-≤T (inr lt) = raise-level-<T lt
{ "alphanum_fraction": 0.5313964386, "avg_line_length": 35.1275720165, "ext": "agda", "hexsha": "873aeb0340226e68875c0729779f80ccf25f3e49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/NType2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/NType2.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/NType2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3394, "size": 8536 }
{-# OPTIONS --without-K --safe #-} module RealsRefactored where open import Algebra open import Data.Bool.Base using (Bool; if_then_else_) open import Function.Base using (_∘_) open import Data.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_]) import Data.Integer.Properties as ℤP open import Data.Integer.DivMod as ℤD open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties as ℕP using (≤-step) import Data.Nat.DivMod as ℕD open import Level using (0ℓ) open import Data.Product open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Nullary.Decidable open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong; sym; subst; trans; ≢-sym) open import Relation.Binary open import Data.Rational.Unnormalised as ℚ using (ℚᵘ; mkℚᵘ; _≢0; _/_; 0ℚᵘ; 1ℚᵘ; ↥_; ↧_; ↧ₙ_) import Data.Rational.Unnormalised.Properties as ℚP open import Algebra.Bundles open import Algebra.Structures open import Data.Empty open import Data.Sum open import Data.Maybe.Base import NonReflectiveQ as ℚ-Solver import NonReflectiveZ as ℤ-Solver open import Data.List open ℚᵘ record ℝ : Set where constructor mkℝ field -- No n≢0 condition for seq seq : ℕ -> ℚᵘ reg : ∀ (m n : ℕ) -> {m≢0 : m ≢0} -> {n≢0 : n ≢0} -> ℚ.∣ seq m ℚ.- seq n ∣ ℚ.≤ ((+ 1) / m) {m≢0} ℚ.+ ((+ 1) / n) {n≢0} open ℝ infix 4 _≃_ data _≃_ : Rel ℝ 0ℓ where *≃* : ∀ {x y : ℝ} -> (∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 2 / n) {n≢0}) -> x ≃ y ≃-refl : Reflexive _≃_ ≃-refl {x} = *≃* λ { (suc k₁) → let n = suc k₁ in begin ℚ.∣ seq x n ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning ∣p-q∣≃∣q-p∣ : ∀ p q -> ℚ.∣ p ℚ.- q ∣ ℚ.≃ ℚ.∣ q ℚ.- p ∣ ∣p-q∣≃∣q-p∣ p q = begin-equality ℚ.∣ p ℚ.- q ∣ ≈⟨ ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (p ℚ.- q)) ⟩ ℚ.∣ ℚ.- (p ℚ.- q) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ p q -> (⊝ (p ⊖ q)) ⊜ (q ⊖ p)) ℚP.≃-refl p q) ⟩ ℚ.∣ q ℚ.- p ∣ ∎ where open ℚP.≤-Reasoning open ℚ-Solver ≃-symm : Symmetric _≃_ ≃-symm {x} {y} (*≃* x₁) = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ seq y n ℚ.- seq x n ∣ ≈⟨ ∣p-q∣≃∣q-p∣ (seq y n) (seq x n) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ x₁ n ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ≃-reflexive : ∀ {x y} -> (∀ n -> {n ≢0} -> seq x n ℚ.≃ seq y n) -> x ≃ y ≃-reflexive {x} {y} hyp = *≃* (λ {(suc n-1) -> let n = suc n-1 in begin ℚ.∣ seq x n ℚ.- seq y n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq x n) (ℚP.-‿cong (ℚP.≃-sym (hyp n)))) ⟩ ℚ.∣ seq x n ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning m≤∣m∣ : ∀ m -> m ℤ.≤ + ℤ.∣ m ∣ m≤∣m∣ (+_ n) = ℤP.≤-refl m≤∣m∣ (-[1+_] n) = ℤ.-≤+ archimedean-ℚ : ∀ p r -> ℚ.Positive p -> ∃ λ (N : ℕ) -> r ℚ.< ((+ N) ℤ.* ↥ p) / (↧ₙ p) archimedean-ℚ (mkℚᵘ +[1+ g ] q-1) (mkℚᵘ u v-1) posp = let p = suc g; q = suc q-1; v = suc v-1 ; r = (u ℤ.* + q) modℕ (p ℕ.* v); t = (u ℤ.* + q) divℕ (p ℕ.* v) in suc ℤ.∣ t ∣ , ℚ.*<* (begin-strict u ℤ.* + q ≡⟨ a≡a%ℕn+[a/ℕn]*n (u ℤ.* + q) (p ℕ.* v) ⟩ + r ℤ.+ t ℤ.* (+ p ℤ.* + v) <⟨ ℤP.+-monoˡ-< (t ℤ.* (+ p ℤ.* + v)) (ℤ.+<+ (n%d<d (u ℤ.* + q) (+ p ℤ.* + v))) ⟩ + p ℤ.* + v ℤ.+ t ℤ.* (+ p ℤ.* + v) ≡⟨ solve 3 (λ p v t -> ((p ⊗ v) ⊕ (t ⊗ (p ⊗ v))) ⊜ ((Κ (+ 1) ⊕ t) ⊗ (p ⊗ v))) refl (+ p) (+ v) t ⟩ (+ 1 ℤ.+ t) ℤ.* (+ p ℤ.* + v) ≤⟨ ℤP.*-monoʳ-≤-nonNeg (p ℕ.* v) (m≤∣m∣ (+ 1 ℤ.+ t)) ⟩ + ℤ.∣ + 1 ℤ.+ t ∣ ℤ.* (+ p ℤ.* + v) ≤⟨ ℤP.*-monoʳ-≤-nonNeg (p ℕ.* v) (ℤ.+≤+ (ℤP.∣m+n∣≤∣m∣+∣n∣ (+ 1) t)) ⟩ + suc ℤ.∣ t ∣ ℤ.* (+ p ℤ.* + v) ≡⟨ sym (ℤP.*-assoc (+ suc ℤ.∣ t ∣) (+ p) (+ v)) ⟩ (+ suc ℤ.∣ t ∣ ℤ.* + p) ℤ.* + v ∎) where open ℤP.≤-Reasoning open ℤ-Solver abstract fast-archimedean-ℚ : ∀ p r -> ℚ.Positive p -> ∃ λ (N : ℕ) -> r ℚ.< ((+ N) ℤ.* ↥ p) / (↧ₙ p) fast-archimedean-ℚ = archimedean-ℚ q≤r⇒+p/r≤+p/q : ∀ p q r -> {q≢0 : q ≢0} -> {r≢0 : r ≢0} -> q ℕ.≤ r -> (+ p / r) {r≢0} ℚ.≤ (+ p / q) {q≢0} q≤r⇒+p/r≤+p/q p (suc k₁) (suc k₂) q≤r = ℚ.*≤* (ℤP.*-monoˡ-≤-nonNeg p (ℤ.+≤+ q≤r)) q<r⇒+p/r<+p/q : ∀ p q r -> {p ≢0} -> {q≢0 : q ≢0} -> {r≢0 : r ≢0} -> q ℕ.< r -> (+ p / r) {r≢0} ℚ.< (+ p / q) {q≢0} q<r⇒+p/r<+p/q (suc k₁) (suc k₂) (suc k₃) q<r = ℚ.*<* (ℤP.*-monoˡ-<-pos k₁ (ℤ.+<+ q<r)) p≤q⇒p/r≤q/r : ∀ (p q : ℤ) -> ∀ (r : ℕ) -> {r≢0 : r ≢0} -> p ℤ.≤ q -> (p / r) {r≢0} ℚ.≤ (q / r) {r≢0} p≤q⇒p/r≤q/r p q (suc k₁) p≤q = ℚ.*≤* (ℤP.*-monoʳ-≤-nonNeg (suc k₁) p≤q) archimedean-ℚ₂ : ∀ (p : ℚᵘ) -> ∀ (r : ℤ) -> ℚ.Positive p -> ∃ λ (N-1 : ℕ) -> r / (suc N-1) ℚ.< p archimedean-ℚ₂ (mkℚᵘ (+_ p) q-1) r posp/q = let q = suc q-1; N-1 = proj₁ (fast-archimedean-ℚ (+ p / q) (r / 1) posp/q); N = suc N-1 in N-1 , (begin-strict r / N ≈⟨ ℚ.*≡* (sym (ℤP.*-assoc r (+ 1) (+ N))) ⟩ r / 1 ℚ.* (+ 1 / N) <⟨ ℚP.*-monoˡ-<-pos _ (proj₂ (fast-archimedean-ℚ (+ p / q) (r / 1) posp/q)) ⟩ (+ N-1 ℤ.* + p) / q ℚ.* (+ 1 / N) ≤⟨ ℚP.*-monoˡ-≤-nonNeg _ (p≤q⇒p/r≤q/r (+ N-1 ℤ.* + p) (+ N ℤ.* + p) q (ℤP.*-monoʳ-≤-nonNeg p (ℤ.+≤+ (ℕP.n≤1+n N-1)))) ⟩ (+ N ℤ.* + p) / q ℚ.* (+ 1 / N) ≈⟨ ℚ.*≡* (solve 3 (λ N p q -> (((N ⊗ p) ⊗ Κ (+ 1)) ⊗ q) ⊜ (p ⊗ (q ⊗ N))) refl (+ N) (+ p) (+ q)) ⟩ + p / q ∎) where open ℚP.≤-Reasoning open ℤ-Solver abstract fast-archimedean-ℚ₂ : ∀ (p : ℚᵘ) -> ∀ (r : ℤ) -> ℚ.Positive p -> ∃ λ (N-1 : ℕ) -> r / (suc N-1) ℚ.< p fast-archimedean-ℚ₂ = archimedean-ℚ₂ equality-lemma-if : ∀ x y -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0} equality-lemma-if x y (*≃* x₁) (suc k₁) = let j = suc k₁ in 2 ℕ.* j , let N = 2 ℕ.* j in λ { (suc k₂) n≥N → let n = suc k₂ in begin ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ x₁ n ⟩ + 2 / n ≤⟨ ℚ.*≤* (ℤP.*-monoˡ-≤-nonNeg 2 (ℤ.+≤+ n≥N)) ⟩ + 2 / N ≈⟨ ℚ.*≡* (sym (ℤP.*-identityˡ (+ 2 ℤ.* + j))) ⟩ + 1 / j ∎} where open ℚP.≤-Reasoning abstract fast-equality-lemma-if : ∀ x y -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0} fast-equality-lemma-if = equality-lemma-if p<q⇒0<q-p : ∀ p q -> p ℚ.< q -> 0ℚᵘ ℚ.< q ℚ.- p p<q⇒0<q-p p q p<q = begin-strict 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ p) ⟩ p ℚ.- p <⟨ ℚP.+-monoˡ-< (ℚ.- p) p<q ⟩ q ℚ.- p ∎ where open ℚP.≤-Reasoning equality-lemma-onlyif : ∀ x y -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0}) -> x ≃ y equality-lemma-onlyif x y hyp1 = *≃* λ { n {n≢0} -> lem n {n≢0} (∣xₙ-yₙ∣≤2/n+3/j n {n≢0})} where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) ∣xₙ-yₙ∣≤2/n+3/j : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 2 / n) {n≢0} ℚ.+ (+ 3 / j) {j≢0} ∣xₙ-yₙ∣≤2/n+3/j (suc k₁) (suc k₂) = let n = suc k₁; j = suc k₂; Nⱼ = suc (proj₁ (hyp1 j)); m = j ℕ.⊔ Nⱼ in begin ℚ.∣ seq x n ℚ.- seq y n ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ xₘ yₘ xₙ yₙ -> (xₙ ⊖ yₙ) ⊜ ((xₙ ⊖ xₘ) ⊕ (xₘ ⊖ yₘ) ⊕ (yₘ ⊖ yₙ))) ℚP.≃-refl (seq x m) (seq y m) (seq x n) (seq y n)) ⟩ ℚ.∣ seq x n ℚ.- seq x m ℚ.+ (seq x m ℚ.- seq y m) ℚ.+ (seq y m ℚ.- seq y n) ∣ ≤⟨ ℚP.≤-trans (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq x m ℚ.+ (seq x m ℚ.- seq y m)) (seq y m ℚ.- seq y n)) (ℚP.+-monoˡ-≤ ℚ.∣ seq y m ℚ.- seq y n ∣ (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq x m) (seq x m ℚ.- seq y m))) ⟩ ℚ.∣ seq x n ℚ.- seq x m ∣ ℚ.+ ℚ.∣ seq x m ℚ.- seq y m ∣ ℚ.+ ℚ.∣ seq y m ℚ.- seq y n ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.+-mono-≤ (reg x n m) (proj₂ (hyp1 j) m (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred Nⱼ)) (ℕP.m≤n⊔m j Nⱼ)))) (reg y m n) ⟩ (+ 1 / n ℚ.+ + 1 / m) ℚ.+ + 1 / j ℚ.+ (+ 1 / m ℚ.+ + 1 / n) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ j m n -> (((κ (+ 1) :* m :+ κ (+ 1) :* n) :* j :+ κ (+ 1) :* (n :* m)) :* (m :* n) :+ ((κ (+ 1) :* n :+ κ (+ 1) :* m) :* (n :* m :* j))) :* (n :* (m :* j)) := (κ (+ 2) :* (m :* j) :+ (κ (+ 2) :* j :+ κ (+ 1) :* m) :* n) :* ((n :* m :* j) :* (m :* n))) refl (+ j) (+ m) (+ n)) ⟩ + 2 / n ℚ.+ (+ 2 / m ℚ.+ + 1 / j) ≤⟨ ℚP.+-monoʳ-≤ (+ 2 / n) {+ 2 / m ℚ.+ + 1 / j} {+ 3 / j} (ℚP.≤-respʳ-≃ {+ 2 / m ℚ.+ + 1 / j} {+ 2 / j ℚ.+ + 1 / j} {+ 3 / j} (ℚ.*≡* {+ 2 / j ℚ.+ + 1 / j} {+ 3 / j} (ℤsolve 1 (λ j -> (κ (+ 2) :* j :+ κ (+ 1) :* j) :* j := κ (+ 3) :* (j :* j)) refl (+ j))) (ℚP.+-monoˡ-≤ (+ 1 / j) {+ 2 / m} {+ 2 / j} (ℚ.*≤* (ℤP.*-monoˡ-≤-nonNeg 2 (ℤP.i≤i⊔j (+ j) (+ Nⱼ)))))) ⟩ + 2 / n ℚ.+ + 3 / j ∎ lem : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 2 / n) {n≢0} ℚ.+ (+ 3 / j) {j≢0}) -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 2 / n) {n≢0} lem (suc k₂) hyp2 = let n = suc k₂ in ℚP.≮⇒≥ (λ {hyp3 -> let arch = fast-archimedean-ℚ₂ (ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.- + 2 / n) (+ 3) (ℚ.positive (p<q⇒0<q-p (+ 2 / n) ℚ.∣ seq x n ℚ.- seq y n ∣ hyp3)) ; j = suc (proj₁ arch) ; Nⱼ = suc (proj₁ (hyp1 j)) ; m = j ℕ.⊔ Nⱼ in ℚP.<-irrefl ℚP.≃-refl (begin-strict + 2 / n ℚ.+ + 3 / j ≈⟨ ℚP.+-comm (+ 2 / n) (+ 3 / j) ⟩ + 3 / j ℚ.+ + 2 / n <⟨ ℚP.+-monoˡ-< (+ 2 / n) (proj₂ arch) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.- + 2 / n ℚ.+ + 2 / n ≈⟨ solve 2 (λ a b -> a ⊖ b ⊕ b ⊜ a) ℚP.≃-refl ℚ.∣ seq x n ℚ.- seq y n ∣ (+ 2 / n) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ ∣xₙ-yₙ∣≤2/n+3/j n j ⟩ + 2 / n ℚ.+ + 3 / j ∎)}) ≃-trans : Transitive _≃_ ≃-trans {x} {y} {z} x≃y y≃z = equality-lemma-onlyif x z (λ { (suc k₁) -> let j = suc k₁; eqxy = fast-equality-lemma-if x y x≃y; eqyz = fast-equality-lemma-if y z y≃z ; N₁ = proj₁ (eqxy (2 ℕ.* j)); N₂ = proj₁ (eqyz (2 ℕ.* j)); N = suc (N₁ ℕ.⊔ N₂) in N , λ { (suc k₂) n≥N → let n = suc k₂ ; N₁⊔N₂≤n = ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N)) n≥N in begin ℚ.∣ seq x n ℚ.- seq z n ∣ ≈⟨ ℚP.∣-∣-cong (solve 3 (λ xₙ yₙ zₙ -> xₙ ⊖ zₙ ⊜ (xₙ ⊖ yₙ ⊕ (yₙ ⊖ zₙ))) ℚP.≃-refl (seq x n) (seq y n) (seq z n)) ⟩ ℚ.∣ seq x n ℚ.- seq y n ℚ.+ (seq y n ℚ.- seq z n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq y n) (seq y n ℚ.- seq z n) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.+ ℚ.∣ seq y n ℚ.- seq z n ∣ ≤⟨ ℚP.+-mono-≤ (proj₂ (eqxy (2 ℕ.* j)) n (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) N₁⊔N₂≤n)) (proj₂ (eqyz (2 ℕ.* j)) n (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) N₁⊔N₂≤n)) ⟩ + 1 / (2 ℕ.* j) ℚ.+ + 1 / (2 ℕ.* j) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ j -> (κ (+ 1) :* (κ (+ 2) :* j) :+ κ (+ 1) :* (κ (+ 2) :* j)) :* j := κ (+ 1) :* ((κ (+ 2) :* j) :* (κ (+ 2) :* j))) refl (+ j)) ⟩ + 1 / j ∎}}) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = record { refl = ≃-refl ; sym = ≃-symm ; trans = ≃-trans } ≃-setoid : Setoid 0ℓ 0ℓ ≃-setoid = record { isEquivalence = ≃-isEquivalence } module ≃-Reasoning where open import Relation.Binary.Reasoning.Setoid ≃-setoid public antidensity-ℤ : ¬(∃ λ (n : ℤ) -> + 0 ℤ.< n × n ℤ.< + 1) antidensity-ℤ (.(+[1+ n ]) , ℤ.+<+ {n = suc n} m<n , ℤ.+<+ (ℕ.s≤s ())) p≤∣p∣ : ∀ p -> p ℚ.≤ ℚ.∣ p ∣ p≤∣p∣ (mkℚᵘ (+_ n) denominator-2) = ℚP.≤-refl p≤∣p∣ (mkℚᵘ (-[1+_] n) denominator-2) = ℚ.*≤* ℤ.-≤+ infixl 6 _+_ _-_ _⊔_ _⊓_ _⊓₂_ infixl 7 _*_ infix 8 -_ _⋆ --_⁻¹ _+_ : ℝ -> ℝ -> ℝ seq (x + y) n = seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n) reg (x + y) (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂ in begin ℚ.∣ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ℚ.- (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ xₘ yₘ xₙ yₙ -> xₘ ⊕ yₘ ⊖ (xₙ ⊕ yₙ) ⊜ (xₘ ⊖ xₙ ⊕ (yₘ ⊖ yₙ))) ℚP.≃-refl (seq x (2 ℕ.* m)) (seq y (2 ℕ.* m)) (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n) ℚ.+ (seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n)) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n)) (seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n)) ⟩ ℚ.∣ seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n) ∣ ℚ.+ ℚ.∣ seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n) ∣ ≤⟨ ℚP.+-mono-≤ (reg x (2 ℕ.* m) (2 ℕ.* n)) (reg y (2 ℕ.* m) (2 ℕ.* n)) ⟩ + 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n) ℚ.+ (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) ≈⟨ ℚ.*≡* (ℤsolve 2 (λ m n -> (((κ (+ 1) :* (κ (+ 2) :* n) :+ κ (+ 1) :* (κ (+ 2) :* m)) :* ((κ (+ 2) :* m) :* (κ (+ 2) :* n))) :+ (κ (+ 1) :* (κ (+ 2) :* n) :+ κ (+ 1) :* (κ (+ 2) :* m)) :* ((κ (+ 2) :* m) :* (κ (+ 2) :* n))) :* (m :* n) := (κ (+ 1) :* n :+ κ (+ 1) :* m) :* (((κ (+ 2) :* m) :* (κ (+ 2) :* n)) :* (((κ (+ 2) :* m) :* (κ (+ 2) :* n))))) _≡_.refl (+ m) (+ n)) ⟩ + 1 / m ℚ.+ + 1 / n ∎ where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) -_ : ℝ -> ℝ seq (- x) n = ℚ.- seq x n reg (- x) (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂ in begin ℚ.∣ ℚ.- seq x m ℚ.- ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.≃-sym (ℚP.≃-reflexive (ℚP.neg-distrib-+ (seq x m) (ℚ.- seq x n)))) ⟩ ℚ.∣ ℚ.- (seq x m ℚ.- seq x n) ∣ ≤⟨ ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x m ℚ.- seq x n))) (reg x m n) ⟩ + 1 / m ℚ.+ + 1 / n ∎ where open ℚP.≤-Reasoning _-_ : ℝ -> ℝ -> ℝ x - y = x + (- y) _⊔_ : ℝ -> ℝ -> ℝ seq (x ⊔ y) n = (seq x n) ℚ.⊔ (seq y n) reg (x ⊔ y) (suc k₁) (suc k₂) = [ left , right ]′ (ℚP.≤-total (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n)) where open ℚP.≤-Reasoning open ℚ-Solver m = suc k₁ n = suc k₂ lem : ∀ (a b c d : ℚᵘ) -> a ℚ.≤ b -> ∀ (r s : ℕ) -> {r≢0 : r ≢0} -> {s≢0 : s ≢0} -> ℚ.∣ b ℚ.- d ∣ ℚ.≤ ((+ 1) / r) {r≢0} ℚ.+ ((+ 1) / s) {s≢0} -> (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ℚ.≤ ((+ 1) / r) {r≢0} ℚ.+ ((+ 1) / s) {s≢0} lem a b c d a≤b r s hyp = begin (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ≤⟨ ℚP.+-monoʳ-≤ (a ℚ.⊔ b) (ℚP.neg-mono-≤ (ℚP.p≤q⊔p c d)) ⟩ (a ℚ.⊔ b) ℚ.- d ≈⟨ ℚP.+-congˡ (ℚ.- d) (ℚP.p≤q⇒p⊔q≃q a≤b) ⟩ b ℚ.- d ≤⟨ p≤∣p∣ (b ℚ.- d) ⟩ ℚ.∣ b ℚ.- d ∣ ≤⟨ hyp ⟩ ((+ 1) / r) ℚ.+ ((+ 1) / s) ∎ left : seq x m ℚ.⊔ seq y m ℚ.≤ seq x n ℚ.⊔ seq y n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) left hyp1 = [ xn≤yn , yn≤xn ]′ (ℚP.≤-total (seq x n) (seq y n)) where xn≤yn : seq x n ℚ.≤ seq y n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) xn≤yn hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> (⊝ (a ⊖ b)) ⊜ (b ⊖ a)) ℚP.≃-refl (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n))) ⟩ ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ≤⟨ lem (seq x n) (seq y n) (seq x m) (seq y m) hyp2 m n (ℚP.≤-respʳ-≃ (ℚP.+-comm (+ 1 / n) (+ 1 / m)) (reg y n m)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ yn≤xn : seq y n ℚ.≤ seq x n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) yn≤xn hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> (⊝ (a ⊖ b)) ⊜ (b ⊖ a)) ℚP.≃-refl (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n))) ⟩ ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ≈⟨ ℚP.≃-trans (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n) (ℚP.-‿cong {seq x m ℚ.⊔ seq y m} {seq y m ℚ.⊔ seq x m} (ℚP.⊔-comm (seq x m) (seq y m)))) (ℚP.+-congˡ (ℚ.- (seq y m ℚ.⊔ seq x m)) (ℚP.⊔-comm (seq x n) (seq y n))) ⟩ (seq y n ℚ.⊔ seq x n) ℚ.- (seq y m ℚ.⊔ seq x m) ≤⟨ lem (seq y n) (seq x n) (seq y m) (seq x m) hyp2 m n (ℚP.≤-respʳ-≃ (ℚP.+-comm (+ 1 / n) (+ 1 / m)) (reg x n m)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ right : seq x n ℚ.⊔ seq y n ℚ.≤ seq x m ℚ.⊔ seq y m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) right hyp1 = [ xm≤ym , ym≤xm ]′ (ℚP.≤-total (seq x m) (seq y m)) where xm≤ym : seq x m ℚ.≤ seq y m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) xm≤ym hyp2 = ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1))) (lem (seq x m) (seq y m) (seq x n) (seq y n) hyp2 m n (reg y m n)) ym≤xm : seq y m ℚ.≤ seq x m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) ym≤xm hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ≈⟨ ℚP.≃-trans (ℚP.+-congˡ (ℚ.- (seq x n ℚ.⊔ seq y n)) (ℚP.⊔-comm (seq x m) (seq y m))) (ℚP.+-congʳ (seq y m ℚ.⊔ seq x m) (ℚP.-‿cong {seq x n ℚ.⊔ seq y n} {seq y n ℚ.⊔ seq x n} (ℚP.⊔-comm (seq x n) (seq y n)))) ⟩ (seq y m ℚ.⊔ seq x m) ℚ.- (seq y n ℚ.⊔ seq x n) ≤⟨ lem (seq y m) (seq x m) (seq y n) (seq x n) hyp2 m n (reg x m n) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ -- Alternative definition of minimum for convenience. Equivalent to Bishop's, of course. _⊓_ : ℝ -> ℝ -> ℝ seq (x ⊓ y) n = seq x n ℚ.⊓ seq y n reg (x ⊓ y) (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂; xₘ = seq x m; yₘ = seq y m; xₙ = seq x n; yₙ = seq y n in begin ℚ.∣ xₘ ℚ.⊓ yₘ ℚ.- xₙ ℚ.⊓ yₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.⊓-cong (ℚP.≃-sym (ℚP.neg-involutive xₘ)) (ℚP.≃-sym (ℚP.neg-involutive yₘ))) (ℚP.-‿cong (ℚP.⊓-cong (ℚP.≃-sym (ℚP.neg-involutive xₙ)) (ℚP.≃-sym (ℚP.neg-involutive yₙ))))) ⟩ ℚ.∣ ((ℚ.- (ℚ.- xₘ)) ℚ.⊓ (ℚ.- (ℚ.- yₘ))) ℚ.- ((ℚ.- (ℚ.- xₙ)) ℚ.⊓ (ℚ.- (ℚ.- yₙ))) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.≃-sym (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₘ) (ℚ.- yₘ))) (ℚP.-‿cong (ℚP.≃-sym (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₙ) (ℚ.- yₙ))))) ⟩ ℚ.∣ ℚ.- ((ℚ.- xₘ) ℚ.⊔ (ℚ.- yₘ)) ℚ.- (ℚ.- ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ))) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ m n -> ((⊝ m) ⊖ (⊝ n)) ⊜ (n ⊖ m)) ℚP.≃-refl ((ℚ.- xₘ) ℚ.⊔ (ℚ.- yₘ)) ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ))) ⟩ ℚ.∣ ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ)) ℚ.- ((ℚ.- xₘ) ℚ.⊔ (ℚ.- yₘ)) ∣ ≤⟨ reg (- x ⊔ - y) n m ⟩ + 1 / n ℚ.+ + 1 / m ≈⟨ ℚP.+-comm (+ 1 / n) (+ 1 / m) ⟩ + 1 / m ℚ.+ + 1 / n ∎ where open ℚP.≤-Reasoning open ℚ-Solver _⊓₂_ : ℝ -> ℝ -> ℝ x ⊓₂ y = - ((- x) ⊔ (- y)) ∣∣p∣-∣q∣∣≤∣p-q∣ : ∀ p q -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ ∣∣p∣-∣q∣∣≤∣p-q∣ p q = [ left p q , right p q ]′ (ℚP.≤-total ℚ.∣ q ∣ ℚ.∣ p ∣) where open ℚP.≤-Reasoning open ℚ-Solver left : ∀ p q -> ℚ.∣ q ∣ ℚ.≤ ℚ.∣ p ∣ -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ left p q hyp = begin ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp) ⟩ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ≈⟨ ℚP.+-congˡ (ℚ.- ℚ.∣ q ∣) (ℚP.∣-∣-cong (solve 2 (λ p q -> p ⊜ (p ⊖ q ⊕ q)) ℚP.≃-refl p q)) ⟩ ℚ.∣ p ℚ.- q ℚ.+ q ∣ ℚ.- ℚ.∣ q ∣ ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- ℚ.∣ q ∣) (ℚP.∣p+q∣≤∣p∣+∣q∣ (p ℚ.- q) q) ⟩ ℚ.∣ p ℚ.- q ∣ ℚ.+ ℚ.∣ q ∣ ℚ.- ℚ.∣ q ∣ ≈⟨ solve 2 (λ x y -> x ⊕ y ⊖ y ⊜ x) ℚP.≃-refl ℚ.∣ p ℚ.- q ∣ ℚ.∣ q ∣ ⟩ ℚ.∣ p ℚ.- q ∣ ∎ right : ∀ p q -> ℚ.∣ p ∣ ℚ.≤ ℚ.∣ q ∣ -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ right p q hyp = begin ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣))) (ℚP.∣-∣-cong (solve 2 (λ p q -> ⊝ (p ⊖ q) ⊜ (q ⊖ p)) ℚP.≃-refl ℚ.∣ p ∣ ℚ.∣ q ∣)) ⟩ ℚ.∣ ℚ.∣ q ∣ ℚ.- ℚ.∣ p ∣ ∣ ≤⟨ left q p hyp ⟩ ℚ.∣ q ℚ.- p ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (q ℚ.- p))) (ℚP.∣-∣-cong (solve 2 (λ p q -> ⊝ (q ⊖ p) ⊜ (p ⊖ q)) ℚP.≃-refl p q)) ⟩ ℚ.∣ p ℚ.- q ∣ ∎ least-ℤ>ℚ : ∀ (p : ℚᵘ) -> ∃ λ (K : ℤ) -> p ℚ.< K / 1 × ∀ (n : ℤ) -> p ℚ.< n / 1 -> K ℤ.≤ n least-ℤ>ℚ p/q = let p = ↥ p/q; q = ↧ₙ p/q; r = p modℕ q; t = p divℕ q in + 1 ℤ.+ t , greater , least where open ℤP.≤-Reasoning open ℤ-Solver greater : p/q ℚ.< (+ 1 ℤ.+ (↥ p/q divℕ ↧ₙ p/q)) / 1 greater = let p = ↥ p/q; q = ↧ₙ p/q; r = p modℕ q; t = p divℕ q in ℚ.*<* (begin-strict p ℤ.* + 1 ≡⟨ trans (ℤP.*-identityʳ p) (a≡a%ℕn+[a/ℕn]*n p q) ⟩ + r ℤ.+ t ℤ.* + q <⟨ ℤP.+-monoˡ-< (t ℤ.* (+ q)) (ℤ.+<+ (n%ℕd<d p q)) ⟩ + q ℤ.+ t ℤ.* + q ≡⟨ solve 2 (λ q t -> q ⊕ t ⊗ q ⊜ (Κ (+ 1) ⊕ t) ⊗ q) _≡_.refl (+ q) t ⟩ (+ 1 ℤ.+ t) ℤ.* + q ∎) least : ∀ (n : ℤ) -> p/q ℚ.< n / 1 -> + 1 ℤ.+ (↥ p/q divℕ ↧ₙ p/q) ℤ.≤ n least n p/q<n = ℤP.≮⇒≥ (λ {hyp -> antidensity-ℤ (n ℤ.- (↥ p/q divℕ ↧ₙ p/q) , 0<n-t hyp , n-t<1 hyp)}) where 0<n-t : n ℤ.< + 1 ℤ.+ (↥ p/q divℕ ↧ₙ p/q) -> + 0 ℤ.< n ℤ.- (↥ p/q divℕ ↧ₙ p/q) 0<n-t hyp = let p = ↥ p/q; q = ↧ₙ p/q; r = p modℕ q; t = p divℕ q in ℤP.*-cancelʳ-<-nonNeg q (begin-strict + 0 ℤ.* + q ≡⟨ ℤP.*-zeroˡ (+ q) ⟩ + 0 ≤⟨ ℤ.+≤+ ℕ.z≤n ⟩ + r ≡⟨ solve 3 (λ r t q -> r ⊜ (r ⊕ t ⊗ q ⊖ t ⊗ q)) _≡_.refl (+ r) t (+ q) ⟩ + r ℤ.+ t ℤ.* + q ℤ.- t ℤ.* + q ≡⟨ cong (λ x -> x ℤ.- t ℤ.* + q) (sym (a≡a%ℕn+[a/ℕn]*n p q)) ⟩ p ℤ.- t ℤ.* + q <⟨ ℤP.+-monoˡ-< (ℤ.- (t ℤ.* + q)) (subst (ℤ._< n ℤ.* + q) (ℤP.*-identityʳ p) (ℚP.drop-*<* p/q<n)) ⟩ n ℤ.* + q ℤ.- t ℤ.* + q ≡⟨ solve 3 (λ n t q -> n ⊗ q ⊖ t ⊗ q ⊜ (n ⊖ t) ⊗ q) _≡_.refl n t (+ q) ⟩ (n ℤ.- t) ℤ.* + q ∎) n-t<1 : n ℤ.< + 1 ℤ.+ (↥ p/q divℕ ↧ₙ p/q) -> n ℤ.- (↥ p/q divℕ ↧ₙ p/q) ℤ.< + 1 n-t<1 hyp = let t = ↥ p/q divℕ ↧ₙ p/q in begin-strict n ℤ.- t <⟨ ℤP.+-monoˡ-< (ℤ.- t) hyp ⟩ + 1 ℤ.+ t ℤ.- t ≡⟨ solve 1 (λ t -> Κ (+ 1) ⊕ t ⊖ t ⊜ Κ (+ 1)) _≡_.refl t ⟩ + 1 ∎ 2ℚᵘ : ℚᵘ 2ℚᵘ = + 2 / 1 K : ℝ -> ℕ K x = let p = ↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ); q = ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) in suc ℤ.∣ p divℕ q ∣ private abstract Kx=1+t : ∀ x -> + K x ≡ + 1 ℤ.+ ((↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ))) Kx=1+t x = let t = (↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) in begin-equality + K x ≡⟨ _≡_.refl ⟩ + 1 ℤ.+ + ℤ.∣ t ∣ ≡⟨ cong (λ x -> + 1 ℤ.+ x) (ℤP.0≤n⇒+∣n∣≡n (0≤n⇒0≤n/ℕd (↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) (↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) (ℚP.≥0⇒↥≥0 (ℚP.≤-trans (ℚP.0≤∣p∣ (seq x 1)) (ℚP.p≤p+q {ℚ.∣ seq x 1 ∣} {2ℚᵘ} _))))) ⟩ + 1 ℤ.+ t ∎ where open ℤP.≤-Reasoning -- We could do a rewrite Kx=1+t here to get a one-line proof, but the performance becomes abysmal -- (Around 30sec to typecheck rewrite). abstract canonical-well-defined : ∀ (x : ℝ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< + K x / 1 × ∀ (n : ℤ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< n / 1 -> + K x ℤ.≤ n canonical-well-defined x = left , right where left : ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< + K x / 1 left = let t = ↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) in begin-strict ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ <⟨ proj₁ (proj₂ (least-ℤ>ℚ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ))) ⟩ (+ 1 ℤ.+ t) / 1 ≈⟨ ℚP.≃-reflexive (ℚP./-cong (sym (Kx=1+t x)) _≡_.refl _ _) ⟩ + K x / 1 ∎ where open ℚP.≤-Reasoning right : ∀ (n : ℤ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< n / 1 -> + K x ℤ.≤ n right n hyp = let t = ↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) in begin + K x ≡⟨ Kx=1+t x ⟩ + 1 ℤ.+ t ≤⟨ proj₂ (proj₂ (least-ℤ>ℚ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ))) n hyp ⟩ n ∎ where open ℤP.≤-Reasoning 1/n≤1 : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> (+ 1 / n) {n≢0} ℚ.≤ 1ℚᵘ 1/n≤1 (suc k₁) = let n = suc k₁ in ℚ.*≤* (ℤP.*-monoˡ-≤-nonNeg 1 {+ 1} {+ n} (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n))) canonical-strict-upper-bound : ∀ (x : ℝ) -> ∀ (n : ℕ) -> {n ≢0} -> ℚ.∣ seq x n ∣ ℚ.< + K x / 1 canonical-strict-upper-bound x (suc k₁) = let n = suc k₁ in begin-strict ℚ.∣ seq x n ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ xₙ x₁ -> xₙ ⊜ (x₁ ⊕ (xₙ ⊖ x₁))) ℚP.≃-refl (seq x n) (seq x 1)) ⟩ ℚ.∣ seq x 1 ℚ.+ (seq x n ℚ.- seq x 1)∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x 1) (seq x n ℚ.- seq x 1) ⟩ ℚ.∣ seq x 1 ∣ ℚ.+ ℚ.∣ seq x n ℚ.- seq x 1 ∣ ≤⟨ ℚP.+-monoʳ-≤ ℚ.∣ seq x 1 ∣ (reg x n 1) ⟩ ℚ.∣ seq x 1 ∣ ℚ.+ (+ 1 / n ℚ.+ ℚ.1ℚᵘ) ≤⟨ ℚP.+-monoʳ-≤ ℚ.∣ seq x 1 ∣ (ℚP.+-monoˡ-≤ ℚ.1ℚᵘ {+ 1 / n} {1ℚᵘ} (1/n≤1 n)) ⟩ ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ <⟨ proj₁ (canonical-well-defined x) ⟩ + K x / 1 ∎ where open ℚP.≤-Reasoning open ℚ-Solver p≤r⇒p/q≤r/q : ∀ (p r : ℤ) -> ∀ (q : ℕ) -> {q≢0 : q ≢0} -> p ℤ.≤ r -> (p / q) {q≢0} ℚ.≤ (r / q) {q≢0} p≤r⇒p/q≤r/q p r (suc k₁) p≤r = let q = suc k₁ in ℚ.*≤* (ℤP.*-monoʳ-≤-nonNeg q p≤r) _*_ : ℝ -> ℝ -> ℝ seq (x * y) n = seq x (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ℚ.* seq y (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) reg (x * y) (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂; k = K x ℕ.⊔ K y; 2km = 2 ℕ.* k ℕ.* m; 2kn = 2 ℕ.* k ℕ.* n ; x₂ₖₘ = seq x 2km; y₂ₖₘ = seq y 2km; x₂ₖₙ = seq x 2kn; y₂ₖₙ = seq y 2kn ; ∣x₂ₖₘ∣≤k = ℚP.≤-trans (ℚP.<⇒≤ (canonical-strict-upper-bound x 2km)) (p≤r⇒p/q≤r/q (+ K x) (+ k) 1 (ℤP.i≤i⊔j (+ K x) (+ K y))) ; ∣y₂ₖₙ∣≤k = ℚP.≤-trans (ℚP.<⇒≤ (canonical-strict-upper-bound y 2kn)) (p≤r⇒p/q≤r/q (+ K y) (+ k) 1 (ℤP.i≤j⊔i (+ K x) (+ K y))) in begin ℚ.∣ x₂ₖₘ ℚ.* y₂ₖₘ ℚ.- x₂ₖₙ ℚ.* y₂ₖₙ ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ xm ym xn yn -> (xm ⊗ ym ⊖ xn ⊗ yn) ⊜ (xm ⊗ (ym ⊖ yn) ⊕ yn ⊗ (xm ⊖ xn))) ℚP.≃-refl x₂ₖₘ y₂ₖₘ x₂ₖₙ y₂ₖₙ) ⟩ ℚ.∣ x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ) ℚ.+ y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ)) (y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ)) ⟩ ℚ.∣ x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ) ∣ ℚ.+ ℚ.∣ y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ) ∣ ≈⟨ ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ₖₘ (y₂ₖₘ ℚ.- y₂ₖₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ₖₙ (x₂ₖₘ ℚ.- x₂ₖₙ)) ⟩ ℚ.∣ x₂ₖₘ ∣ ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣ ℚ.+ ℚ.∣ y₂ₖₙ ∣ ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣} _ ∣x₂ₖₘ∣≤k) (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣} _ ∣y₂ₖₙ∣≤k) ⟩ (+ k / 1) ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣ ℚ.+ (+ k / 1) ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.*-monoʳ-≤-nonNeg {+ k / 1} _ (reg y 2km 2kn)) (ℚP.*-monoʳ-≤-nonNeg {+ k / 1} _ (reg x 2km 2kn)) ⟩ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ℚ.+ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ≈⟨ ℚP.≃-sym (ℚP.*-distribˡ-+ (+ k / 1) ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn))) ⟩ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn) ℚ.+ ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ k m n -> {- Function for the solver -} ((k :* ((((κ (+ 1) :* (κ (+ 2) :* k :* n)) :+ (κ (+ 1) :* (κ (+ 2) :* k :* m))) :* ((κ (+ 2) :* k :* m) :* (κ (+ 2) :* k :* n))) :+ (((κ (+ 1) :* (κ (+ 2) :* k :* n)) :+ (κ (+ 1) :* (κ (+ 2) :* k :* m))) :* ((κ (+ 2) :* k :* m) :* (κ (+ 2) :* k :* n))))) :* (m :* n)) := ((κ (+ 1) :* n :+ κ (+ 1) :* m) :* (κ (+ 1) :* (((κ (+ 2) :* k :* m) :* (κ (+ 2) :* k :* n)):* ((κ (+ 2) :* k :* m) :* (κ (+ 2) :* k :* n)))))) -- Other solver inputs refl (+ k) (+ m) (+ n)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) _⋆ : ℚᵘ -> ℝ seq (p ⋆) n = p reg (p ⋆) (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂ in begin ℚ.∣ p ℚ.- p ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ p) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 1 / m ℚ.+ + 1 / n ∎ where open ℚP.≤-Reasoning -- Properties of _+_ +-cong : Congruent₂ _≃_ _+_ +-cong {x} {z} {y} {w} (*≃* x₁) (*≃* x₂) = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n) ℚ.- (seq z (2 ℕ.* n) ℚ.+ seq w (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ x y z w -> (x ⊕ y ⊖ (z ⊕ w)) ⊜ ((x ⊖ z) ⊕ (y ⊖ w))) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)) (seq z (2 ℕ.* n)) (seq w (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq z (2 ℕ.* n) ℚ.+ (seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n)) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* n) ℚ.- seq z (2 ℕ.* n)) (seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n)) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq z (2 ℕ.* n) ∣ ℚ.+ ℚ.∣ seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n) ∣ ≤⟨ ℚP.+-mono-≤ (x₁ (2 ℕ.* n)) (x₂ (2 ℕ.* n)) ⟩ + 2 / (2 ℕ.* n) ℚ.+ + 2 / (2 ℕ.* n) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ n -> (κ (+ 2) :* (κ (+ 2) :* n) :+ κ (+ 2) :* (κ (+ 2) :* n)) :* n := (κ (+ 2) :* ((κ (+ 2) :* n) :* (κ (+ 2) :* n)))) refl (+ n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) +-congʳ : ∀ x {y z} -> y ≃ z -> x + y ≃ x + z +-congʳ x y≃z = +-cong ≃-refl y≃z +-congˡ : ∀ x {y z} -> y ≃ z -> y + x ≃ z + x +-congˡ x y≃z = +-cong y≃z ≃-refl +-comm : Commutative _≃_ _+_ +-comm x y = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ℚ.- (seq y (2 ℕ.* n) ℚ.+ seq x (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ x y -> (x ⊕ y) ⊖ (y ⊕ x) ⊜ Κ 0ℚᵘ) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ (+ 2) / n ∎}) where open ℚP.≤-Reasoning open ℚ-Solver +-assoc : Associative _≃_ _+_ +-assoc x y z = *≃* (λ { (suc k₁) -> let n = suc k₁; 2n = 2 ℕ.* n; 4n = 2 ℕ.* 2n in begin ℚ.∣ ((seq x 4n ℚ.+ seq y 4n) ℚ.+ seq z 2n) ℚ.- (seq x 2n ℚ.+ (seq y 4n ℚ.+ seq z 4n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 5 (λ x4 y4 z2 x2 z4 -> (((x4 ⊕ y4) ⊕ z2) ⊖ (x2 ⊕ (y4 ⊕ z4))) ⊜ ((x4 ⊖ x2) ⊕ (z2 ⊖ z4))) ℚP.≃-refl (seq x 4n) (seq y 4n) (seq z 2n) (seq x 2n) (seq z 4n)) ⟩ ℚ.∣ (seq x 4n ℚ.- seq x 2n) ℚ.+ (seq z 2n ℚ.- seq z 4n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x 4n ℚ.- seq x 2n) (seq z 2n ℚ.- seq z 4n) ⟩ ℚ.∣ seq x 4n ℚ.- seq x 2n ∣ ℚ.+ ℚ.∣ seq z 2n ℚ.- seq z 4n ∣ ≤⟨ ℚP.+-mono-≤ (reg x 4n 2n) (reg z 2n 4n) ⟩ ((+ 1 / 4n) ℚ.+ (+ 1 / 2n)) ℚ.+ ((+ 1 / 2n) ℚ.+ (+ 1 / 4n)) ≈⟨ ℚ.*≡* (ℤsolve 1 ((λ 2n -> ((κ (+ 1) :* 2n :+ κ (+ 1) :* (κ (+ 2) :* 2n)) :* (2n :* (κ (+ 2) :* 2n)) :+ (κ (+ 1) :* (κ (+ 2) :* 2n) :+ κ (+ 1) :* 2n) :* ((κ (+ 2) :* 2n) :* 2n)) :* 2n := κ (+ 3) :* (((κ (+ 2) :* 2n) :* 2n) :* (2n :* (κ (+ 2) :* 2n))))) refl (+ 2n)) ⟩ + 3 / 2n ≤⟨ ℚ.*≤* (ℤP.*-monoʳ-≤-nonNeg 2n (ℤ.+≤+ (ℕ.s≤s (ℕ.s≤s (ℕ.s≤s (ℕ.z≤n {1})))))) ⟩ + 4 / 2n ≈⟨ ℚ.*≡* (ℤsolve 1 (λ n -> κ (+ 4) :* n := κ (+ 2) :* (κ (+ 2) :* n)) refl (+ n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) 0ℝ : ℝ 0ℝ = 0ℚᵘ ⋆ 1ℝ : ℝ 1ℝ = 1ℚᵘ ⋆ +-identityˡ : LeftIdentity _≃_ 0ℝ _+_ +-identityˡ x = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ (0ℚᵘ ℚ.+ seq x (2 ℕ.* n)) ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- seq x n) (ℚP.+-identityˡ (seq x (2 ℕ.* n)))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq x n ∣ ≤⟨ reg x (2 ℕ.* n) n ⟩ (+ 1 / (2 ℕ.* n)) ℚ.+ (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (Κ (+ 1) ⊗ n ⊕ Κ (+ 1) ⊗ (Κ (+ 2) ⊗ n)) ⊗ (Κ (+ 2) ⊗ n) ⊜ Κ (+ 3) ⊗ ((Κ (+ 2) ⊗ n) ⊗ n)) refl (+ n)) ⟩ + 3 / (2 ℕ.* n) ≤⟨ ℚ.*≤* (ℤP.*-monoʳ-≤-nonNeg (2 ℕ.* n) (ℤ.+≤+ (ℕ.s≤s (ℕ.s≤s (ℕ.s≤s (ℕ.z≤n {1})))))) ⟩ + 4 / (2 ℕ.* n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> Κ (+ 4) ⊗ n ⊜ Κ (+ 2) ⊗ (Κ (+ 2) ⊗ n)) refl (+ n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℤ-Solver +-identityʳ : RightIdentity _≃_ 0ℝ _+_ +-identityʳ x = ≃-trans (+-comm x 0ℝ) (+-identityˡ x) +-identity : Identity _≃_ 0ℝ _+_ +-identity = +-identityˡ , +-identityʳ +-inverseʳ : RightInverse _≃_ 0ℝ -_ _+_ +-inverseʳ x = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ (seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n)) ℚ.+ 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (solve 1 (λ x -> x ⊖ x ⊕ Κ 0ℚᵘ ⊜ Κ 0ℚᵘ) ℚP.≃-refl (seq x (2 ℕ.* n))) ⟩ 0ℚᵘ ≤⟨ ℚ.*≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (ℤ.+≤+ ℕ.z≤n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℚ-Solver +-inverseˡ : LeftInverse _≃_ 0ℝ -_ _+_ +-inverseˡ x = ≃-trans (+-comm (- x) x) (+-inverseʳ x) +-inverse : Inverse _≃_ 0ℝ -_ _+_ +-inverse = +-inverseˡ , +-inverseʳ -- Properties of _⋆ ⋆-cong : ∀ {p} {q} -> p ℚ.≃ q -> p ⋆ ≃ q ⋆ ⋆-cong {p} {q} p≃q = *≃* (λ {(suc k₁) -> let n = suc k₁ in begin ℚ.∣ p ℚ.- q ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.p≃q⇒p-q≃0 p q p≃q) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ⋆-distrib-+ : ∀ (p r : ℚᵘ) -> (p ℚ.+ r) ⋆ ≃ p ⋆ + r ⋆ ⋆-distrib-+ x y = *≃* (λ { (suc k₁) -> let n = suc k₁; p = ↥ x; q = ↧ₙ x; u = ↥ y; v = ↧ₙ y in begin ℚ.∣ ((p / q) ℚ.+ (u / v)) ℚ.- ((p / q) ℚ.+ (u / v)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ((p / q) ℚ.+ (u / v))) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ (+ 2) / n ∎}) where open ℚP.≤-Reasoning ⋆-distrib-* : ∀ p q -> (p ℚ.* q) ⋆ ≃ p ⋆ * q ⋆ ⋆-distrib-* p q = *≃* (λ {(suc n-1) -> let n = suc n-1 in begin ℚ.∣ p ℚ.* q ℚ.- p ℚ.* q ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (p ℚ.* q)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ⋆-distrib-neg : ∀ (p : ℚᵘ) -> (ℚ.- p) ⋆ ≃ - (p ⋆) ⋆-distrib-neg p = *≃* λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.- p ℚ.- (ℚ.- p) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (ℚ.- p)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ (+ 2) / n ∎} where open ℚP.≤-Reasoning -- Properties of _*_ regular⇒cauchy : ∀ (x : ℝ) -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> m ℕ.≥ N -> n ℕ.≥ N -> ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.≤ (+ 1 / j) {j≢0} regular⇒cauchy x (suc k₁) = let j = suc k₁ in 2 ℕ.* j , λ { (suc k₂) (suc k₃) m≥N n≥N → let m = suc k₂; n = suc k₃ in begin ℚ.∣ seq x m ℚ.- seq x n ∣ ≤⟨ reg x m n ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ≤⟨ ℚP.+-mono-≤ (q≤r⇒+p/r≤+p/q 1 (2 ℕ.* j) m m≥N) (q≤r⇒+p/r≤+p/q 1 (2 ℕ.* j) n n≥N) ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (Κ (+ 1) ⊗ (Κ (+ 2) ⊗ j) ⊕ Κ (+ 1) ⊗ (Κ (+ 2) ⊗ j)) ⊗ j ⊜ (Κ (+ 1) ⊗ ((Κ (+ 2) ⊗ j) ⊗ (Κ (+ 2) ⊗ j)))) refl (+ j)) ⟩ + 1 / j ∎} where open ℚP.≤-Reasoning open ℤ-Solver abstract fast-regular⇒cauchy : ∀ (x : ℝ) -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> m ℕ.≥ N -> n ℕ.≥ N -> ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.≤ (+ 1 / j) {j≢0} fast-regular⇒cauchy = regular⇒cauchy equals-to-cauchy : ∀ x y -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> m ℕ.≥ N -> n ℕ.≥ N -> ℚ.∣ seq x m ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0} equals-to-cauchy x y x≃y (suc k₁) = let j = suc k₁; N₁ = suc (proj₁ (fast-equality-lemma-if x y x≃y (2 ℕ.* j))) ; N₂ = proj₁ (regular⇒cauchy x (2 ℕ.* j)); N = N₁ ℕ.⊔ N₂ in N , λ { (suc k₂) (suc k₃) m≥N n≥N -> let m = suc k₂; n = suc k₃ in begin ℚ.∣ seq x m ℚ.- seq y n ∣ ≈⟨ ℚP.∣-∣-cong (solve 3 (λ xm yn xn -> (xm ⊖ yn) ⊜ ((xm ⊖ xn) ⊕ (xn ⊖ yn))) ℚP.≃-refl (seq x m) (seq y n) (seq x n)) ⟩ ℚ.∣ (seq x m ℚ.- seq x n) ℚ.+ (seq x n ℚ.- seq y n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x m ℚ.- seq x n) (seq x n ℚ.- seq y n) ⟩ ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.+ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ ℚP.+-mono-≤ (proj₂ (regular⇒cauchy x (2 ℕ.* j)) m n (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) m≥N) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) n≥N)) (proj₂ (fast-equality-lemma-if x y x≃y (2 ℕ.* j)) n (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N₁)) (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) n≥N))) ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ j -> (κ (+ 1) :* (κ (+ 2) :* j) :+ (κ (+ 1) :* (κ (+ 2) :* j))) :* j := (κ (+ 1) :* ((κ (+ 2) :* j) :* (κ (+ 2) :* j)))) refl (+ j)) ⟩ + 1 / j ∎} where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) abstract fast-equals-to-cauchy : ∀ x y -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> m ℕ.≥ N -> n ℕ.≥ N -> ℚ.∣ seq x m ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0} fast-equals-to-cauchy = equals-to-cauchy *-cong : Congruent₂ _≃_ _*_ *-cong {x} {z} {y} {w} x≃z y≃w = equality-lemma-onlyif (x * y) (z * w) partA where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) partA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * y) n ℚ.- seq (z * w) n ∣ ℚ.≤ (+ 1 / j) {j≢0} partA (suc k₁) = N , partB where j = suc k₁ r = K x ℕ.⊔ K y t = K z ℕ.⊔ K w N₁ = proj₁ (fast-equals-to-cauchy x z x≃z (K y ℕ.* (2 ℕ.* j))) N₂ = proj₁ (fast-equals-to-cauchy y w y≃w (K z ℕ.* (2 ℕ.* j))) N = suc (N₁ ℕ.⊔ N₂) partB : ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * y) n ℚ.- seq (z * w) n ∣ ℚ.≤ (+ 1 / j) partB (suc k₂) n≥N = let n = suc k₂ ; x₂ᵣₙ = seq x (2 ℕ.* r ℕ.* n) ; y₂ᵣₙ = seq y (2 ℕ.* r ℕ.* n) ; z₂ₜₙ = seq z (2 ℕ.* t ℕ.* n) ; w₂ₜₙ = seq w (2 ℕ.* t ℕ.* n) in begin ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ℚ.- z₂ₜₙ ℚ.* w₂ₜₙ ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ x y z w -> (x ⊗ y ⊖ z ⊗ w) ⊜ (y ⊗ (x ⊖ z) ⊕ z ⊗ (y ⊖ w))) ℚP.≃-refl x₂ᵣₙ y₂ᵣₙ z₂ₜₙ w₂ₜₙ) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ) ℚ.+ z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ)) (z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ) ∣ ℚ.+ ℚ.∣ z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ) ∣ ≈⟨ ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ᵣₙ ((x₂ᵣₙ ℚ.- z₂ₜₙ))) (ℚP.∣p*q∣≃∣p∣*∣q∣ z₂ₜₙ (y₂ᵣₙ ℚ.- w₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- z₂ₜₙ ∣ ℚ.+ ℚ.∣ z₂ₜₙ ∣ ℚ.* ℚ.∣ y₂ᵣₙ ℚ.- w₂ₜₙ ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- z₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound y (2 ℕ.* r ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K y / 1} _ (proj₂ (fast-equals-to-cauchy x z x≃z (K y ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₁≤ (2 ℕ.* r ℕ.* n) (N≤2kn r)) (N₁≤ (2 ℕ.* t ℕ.* n) (N≤2kn t))))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₂ᵣₙ ℚ.- w₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound z (2 ℕ.* t ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K z / 1} _ (proj₂ (fast-equals-to-cauchy y w y≃w (K z ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₂≤ (2 ℕ.* r ℕ.* n) (N≤2kn r)) (N₂≤ (2 ℕ.* t ℕ.* n) (N≤2kn t))))) ⟩ (+ K y / 1) ℚ.* (+ 1 / (K y ℕ.* (2 ℕ.* j))) ℚ.+ (+ K z / 1) ℚ.* (+ 1 / (K z ℕ.* (2 ℕ.* j))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ Ky Kz j -> -- Function for solver ((Ky :* κ (+ 1)) :* (κ (+ 1) :* (Kz :* (κ (+ 2) :* j))) :+ (Kz :* κ (+ 1) :* (κ (+ 1) :* (Ky :* (κ (+ 2) :* j))))) :* j := κ (+ 1) :* ((κ (+ 1) :* (Ky :* (κ (+ 2) :* j))) :* (κ (+ 1) :* (Kz :* (κ (+ 2) :* j))))) refl (+ K y) (+ K z) (+ j)) ⟩ + 1 / j ∎ where N≤2kn : ∀ (k : ℕ) -> {k ≢0} -> N ℕ.≤ 2 ℕ.* k ℕ.* (suc k₂) N≤2kn (suc k) = ℕP.≤-trans n≥N (ℕP.m≤n*m (suc k₂) {2 ℕ.* (suc k)} ℕP.0<1+n) N₁≤ : ∀ (k : ℕ) -> N ℕ.≤ k -> N₁ ℕ.≤ k N₁≤ k N≤k = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N)) N≤k) N₂≤ : ∀ (k : ℕ) -> N ℕ.≤ k -> N₂ ℕ.≤ k N₂≤ k N≤k = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N)) N≤k) *-congˡ : LeftCongruent _≃_ _*_ *-congˡ y≃z = *-cong ≃-refl y≃z *-congʳ : RightCongruent _≃_ _*_ *-congʳ y≃z = *-cong y≃z ≃-refl *-comm : Commutative _≃_ _*_ *-comm x y = *≃* λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ seq (x * y) n ℚ.- seq (y * x) n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq (x * y) n) (ℚP.-‿cong (ℚP.≃-sym (xyℚ≃yxℚ n)))) ⟩ ℚ.∣ seq (x * y) n ℚ.- seq (x * y) n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq (x * y) n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning xyℚ≃yxℚ : ∀ (n : ℕ) -> seq (x * y) n ℚ.≃ seq (y * x) n xyℚ≃yxℚ n = begin-equality seq x (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ℚ.* seq y (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ≡⟨ cong (λ r -> seq x (2 ℕ.* r ℕ.* n) ℚ.* seq y (2 ℕ.* r ℕ.* n)) (ℕP.⊔-comm (K x) (K y)) ⟩ seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ℚ.* seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ≈⟨ ℚP.*-comm (seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n)) (seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n)) ⟩ seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ℚ.* seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ∎ *-assoc : Associative _≃_ _*_ *-assoc x y z = equality-lemma-onlyif (x * y * z) (x * (y * z)) lemA where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * y * z) n ℚ.- seq (x * (y * z)) n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where j = suc k₁ N₁ = proj₁ (fast-regular⇒cauchy x (K y ℕ.* K z ℕ.* (3 ℕ.* j))) N₂ = proj₁ (fast-regular⇒cauchy y (K x ℕ.* K z ℕ.* (3 ℕ.* j))) N₃ = proj₁ (fast-regular⇒cauchy z (K x ℕ.* K y ℕ.* (3 ℕ.* j))) N = suc (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) lemB : ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * y * z) n ℚ.- seq (x * (y * z)) n ∣ ℚ.≤ + 1 / j lemB (suc k₂) n≥N = begin ℚ.∣ x₄ᵣₛₙ ℚ.* y₄ᵣₛₙ ℚ.* z₂ₛₙ ℚ.- x₂ᵤₙ ℚ.* (y₄ₜᵤₙ ℚ.* z₄ₜᵤₙ) ∣ ≈⟨ ℚP.∣-∣-cong (solve 6 (λ a b c d e f -> (a ⊗ b ⊗ c ⊖ d ⊗ (e ⊗ f)) ⊜ ((b ⊗ c) ⊗ (a ⊖ d) ⊕ d ⊗ (c ⊗ (b ⊖ e) ⊕ e ⊗ (c ⊖ f)))) ℚP.≃-refl x₄ᵣₛₙ y₄ᵣₛₙ z₂ₛₙ x₂ᵤₙ y₄ₜᵤₙ z₄ₜᵤₙ) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ℚ.+ x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ)) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ ((y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ)) (x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ)) ∣ ≤⟨ ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.+-congʳ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ᵤₙ (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))))) (ℚP.+-monoʳ-≤ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ (ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ x₂ᵤₙ ∣} _ (ℚP.∣p+q∣≤∣p∣+∣q∣ (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ)) (y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))))) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≈⟨ ℚP.+-congˡ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣)) (ℚP.≃-trans (ℚP.∣p*q∣≃∣p∣*∣q∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) (x₄ᵣₛₙ ℚ.- x₂ᵤₙ)) (ℚP.*-congʳ (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ᵣₛₙ z₂ₛₙ))) ⟩ ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≈⟨ ℚP.+-congʳ (ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣) (ℚP.*-distribˡ-+ ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ⟩ ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.+ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≤⟨ ℚP.≤-trans (ℚP.+-monoʳ-≤ (ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣) (ℚP.≤-trans (ℚP.+-monoʳ-≤ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣) part3) (ℚP.+-monoˡ-≤ (+ 1 / (3 ℕ.* j)) part2))) (ℚP.+-monoˡ-≤ (+ 1 / (3 ℕ.* j) ℚ.+ + 1 / (3 ℕ.* j)) part1) ⟩ (+ 1 / (3 ℕ.* j)) ℚ.+ ((+ 1 / (3 ℕ.* j)) ℚ.+ (+ 1 / (3 ℕ.* j))) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ j -> (κ (+ 1) :* ((κ (+ 3) :* j) :* (κ (+ 3) :* j)) :+ ((κ (+ 1) :* (κ (+ 3) :* j)) :+ (κ (+ 1) :* (κ (+ 3) :* j))) :* (κ (+ 3) :* j)) :* j := (κ (+ 1) :* ((κ (+ 3) :* j) :* ((κ (+ 3) :* j) :* (κ (+ 3) :* j))))) refl (+ j)) ⟩ + 1 / j ∎ where n = suc k₂ r = K x ℕ.⊔ K y s = K (x * y) ℕ.⊔ K z u = K x ℕ.⊔ K (y * z) t = K y ℕ.⊔ K z x₄ᵣₛₙ = seq x (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) y₄ᵣₛₙ = seq y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) z₂ₛₙ = seq z (2 ℕ.* s ℕ.* n) x₂ᵤₙ = seq x (2 ℕ.* u ℕ.* n) y₄ₜᵤₙ = seq y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) z₄ₜᵤₙ = seq z (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) N≤2an : ∀ (a : ℕ) -> {a ≢0} -> N ℕ.≤ 2 ℕ.* a ℕ.* n N≤2an (suc a) = ℕP.≤-trans n≥N (ℕP.m≤n*m n {2 ℕ.* (suc a)} ℕP.0<1+n) N≤4abn : ∀ (a b : ℕ) -> {a ≢0} -> {b ≢0} -> N ℕ.≤ 2 ℕ.* a ℕ.* (2 ℕ.* b ℕ.* n) N≤4abn (suc a) (suc b) = let a = suc a; b = suc b in ℕP.≤-trans (N≤2an b) (ℕP.m≤n*m (2 ℕ.* b ℕ.* n) {2 ℕ.* a} ℕP.0<1+n) N₁≤_ : {m : ℕ} -> N ℕ.≤ m -> N₁ ℕ.≤ m N₁≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃) (ℕP.n≤1+n (ℕ.pred N)))) N≤m N₂≤_ : {m : ℕ} -> N ℕ.≤ m -> N₂ ℕ.≤ m N₂≤_ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃) (ℕP.n≤1+n (ℕ.pred N)))) N≤m N₃≤ : {m : ℕ} -> N ℕ.≤ m -> N₃ ℕ.≤ m N₃≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) (ℕP.n≤1+n (ℕ.pred N))) N≤m part1 : ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.≤ + 1 / (3 ℕ.* j) part1 = begin ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {(+ K y) / 1} _ (ℚP.<⇒≤ (canonical-strict-upper-bound z (2 ℕ.* s ℕ.* n))))) ⟩ (+ (K y ℕ.* K z) / 1) ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K y ℕ.* K z) / 1} _ (proj₂ (fast-regular⇒cauchy x (K y ℕ.* K z ℕ.* (3 ℕ.* j))) (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) (2 ℕ.* u ℕ.* n) (N₁≤ (N≤4abn r s)) (N₁≤ (N≤2an u))) ⟩ (+ (K y ℕ.* K z) / 1) ℚ.* (+ 1 / (K y ℕ.* K z ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ Ky Kz j -> ((Ky :* Kz) :* κ (+ 1)) :* (κ (+ 3) :* j) := (κ (+ 1) :* (κ (+ 1) :* (Ky :* Kz :* (κ (+ 3) :* j))))) refl (+ K y) (+ K z) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ part2 : ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.≤ + 1 / (3 ℕ.* j) part2 = begin ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ≈⟨ ℚP.≃-trans (ℚP.*-congˡ {ℚ.∣ x₂ᵤₙ ∣} (ℚP.∣p*q∣≃∣p∣*∣q∣ z₂ₛₙ (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ))) (ℚP.≃-sym (ℚP.*-assoc ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ z₂ₛₙ ∣ ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣)) ⟩ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound x (2 ℕ.* u ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (ℚP.<⇒≤ (canonical-strict-upper-bound z (2 ℕ.* s ℕ.* n))))) ⟩ (+ (K x ℕ.* K z) / 1) ℚ.* ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K x ℕ.* K z) / 1} _ (proj₂ (fast-regular⇒cauchy y (K x ℕ.* K z ℕ.* (3 ℕ.* j))) (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) (N₂≤ (N≤4abn r s)) (N₂≤ (N≤4abn t u))) ⟩ (+ (K x ℕ.* K z) / 1) ℚ.* (+ 1 / (K x ℕ.* K z ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ Kx Kz j -> (Kx :* Kz :* κ (+ 1)) :* (κ (+ 3) :* j) := (κ (+ 1) :* (κ (+ 1) :* (Kx :* Kz :* (κ (+ 3) :* j))))) refl (+ K x) (+ K z) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ part3 : ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣ ℚ.≤ + 1 / (3 ℕ.* j) part3 = begin ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣ ≈⟨ ℚP.≃-trans (ℚP.*-congˡ {ℚ.∣ x₂ᵤₙ ∣} (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ₜᵤₙ (z₂ₛₙ ℚ.- z₄ₜᵤₙ))) (ℚP.≃-sym (ℚP.*-assoc ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ y₄ₜᵤₙ ∣ ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣)) ⟩ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ₜᵤₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound x (2 ℕ.* u ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (ℚP.<⇒≤ (canonical-strict-upper-bound y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)))))) ⟩ (+ (K x ℕ.* K y) / 1) ℚ.* ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K x ℕ.* K y) / 1} _ (proj₂ (fast-regular⇒cauchy z (K x ℕ.* K y ℕ.* (3 ℕ.* j))) (2 ℕ.* s ℕ.* n) (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) (N₃≤ (N≤2an s)) (N₃≤ (N≤4abn t u))) ⟩ (+ (K x ℕ.* K y) / 1) ℚ.* (+ 1 / (K x ℕ.* K y ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ Kx Ky j -> (((Kx :* Ky) :* κ (+ 1)) :* (κ (+ 3) :* j)) := (κ (+ 1) :* (κ (+ 1) :* (Kx :* Ky :* (κ (+ 3) :* j))))) refl (+ K x) (+ K y) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ *-distribˡ-+ : _DistributesOverˡ_ _≃_ _*_ _+_ *-distribˡ-+ x y z = equality-lemma-onlyif (x * (y + z)) ((x * y) + (x * z)) lemA where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * (y + z)) n ℚ.- seq ((x * y) + (x * z)) n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where j = suc k₁ r = K x ℕ.⊔ K (y + z) s = K x ℕ.⊔ K y t = K x ℕ.⊔ K z N₁ = proj₁ (fast-regular⇒cauchy x (K y ℕ.* (4 ℕ.* j))) N₂ = proj₁ (fast-regular⇒cauchy y (K x ℕ.* (4 ℕ.* j))) N₃ = proj₁ (fast-regular⇒cauchy x (K z ℕ.* (4 ℕ.* j))) N₄ = proj₁ (fast-regular⇒cauchy z (K x ℕ.* (4 ℕ.* j))) N = suc (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃ ℕ.⊔ N₄) lemB : ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ seq (x * (y + z)) n ℚ.- seq ((x * y) + (x * z)) n ∣ ℚ.≤ + 1 / j lemB (suc k₂) n≥N = let x₂ᵣₙ = seq x (2 ℕ.* r ℕ.* n) ; x₄ₛₙ = seq x (2 ℕ.* s ℕ.* (2 ℕ.* n)) ; x₄ₜₙ = seq x (2 ℕ.* t ℕ.* (2 ℕ.* n)) ; y₄ᵣₙ = seq y (2 ℕ.* (2 ℕ.* r ℕ.* n)) ; y₄ₛₙ = seq y (2 ℕ.* s ℕ.* (2 ℕ.* n)) ; z₄ᵣₙ = seq z (2 ℕ.* (2 ℕ.* r ℕ.* n)) ; z₄ₜₙ = seq z (2 ℕ.* t ℕ.* (2 ℕ.* n)) in begin ℚ.∣ x₂ᵣₙ ℚ.* (y₄ᵣₙ ℚ.+ z₄ᵣₙ) ℚ.- (x₄ₛₙ ℚ.* y₄ₛₙ ℚ.+ x₄ₜₙ ℚ.* z₄ₜₙ) ∣ ≈⟨ ℚP.∣-∣-cong (solve 7 (λ a b c d e f g -> (a ⊗ (b ⊕ c) ⊖ (d ⊗ e ⊕ f ⊗ g)) ⊜ ((b ⊗ (a ⊖ d) ⊕ (d ⊗ (b ⊖ e)) ⊕ ((c ⊗ (a ⊖ f)) ⊕ (f ⊗ (c ⊖ g)))))) ℚP.≃-refl x₂ᵣₙ y₄ᵣₙ z₄ᵣₙ x₄ₛₙ y₄ₛₙ x₄ₜₙ z₄ₜₙ) ⟩ ℚ.∣ y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ℚ.+ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ) ℚ.+ (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ℚ.+ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ)) ∣ ≤⟨ ℚP.≤-trans (ℚP.∣p+q∣≤∣p∣+∣q∣ (y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ℚ.+ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ)) (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ℚ.+ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ))) (ℚP.+-mono-≤ (ℚP.∣p+q∣≤∣p∣+∣q∣ (y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ)) ( x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ))) (ℚP.∣p+q∣≤∣p∣+∣q∣ (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ)) ( x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ)))) ⟩ ℚ.∣ y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ∣ ℚ.+ ℚ.∣ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ) ∣ ℚ.+ (ℚ.∣ z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ∣ ℚ.+ ℚ.∣ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ) ∣) ≈⟨ ℚP.+-cong (ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ᵣₙ (x₂ᵣₙ ℚ.- x₄ₛₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ x₄ₛₙ (y₄ᵣₙ ℚ.- y₄ₛₙ))) (ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ z₄ᵣₙ (x₂ᵣₙ ℚ.- x₄ₜₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ x₄ₜₙ (z₄ᵣₙ ℚ.- z₄ₜₙ))) ⟩ ℚ.∣ y₄ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- x₄ₛₙ ∣ ℚ.+ ℚ.∣ x₄ₛₙ ∣ ℚ.* ℚ.∣ y₄ᵣₙ ℚ.- y₄ₛₙ ∣ ℚ.+ (ℚ.∣ z₄ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- x₄ₜₙ ∣ ℚ.+ ℚ.∣ x₄ₜₙ ∣ ℚ.* ℚ.∣ z₄ᵣₙ ℚ.- z₄ₜₙ ∣) ≤⟨ ℚP.+-mono-≤ (ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- x₄ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound y (2 ℕ.* (2 ℕ.* r ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K y / 1} _ (proj₂ (fast-regular⇒cauchy x (K y ℕ.* (4 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* s ℕ.* (2 ℕ.* n)) (N₁≤ N≤2rn) (N₁≤ N≤4sn)))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ᵣₙ ℚ.- y₄ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound x (2 ℕ.* s ℕ.* (2 ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (proj₂ (fast-regular⇒cauchy y (K x ℕ.* (4 ℕ.* j))) (2 ℕ.* (2 ℕ.* r ℕ.* n)) (2 ℕ.* s ℕ.* (2 ℕ.* n)) (N₂≤ N≤4rn) (N₂≤ N≤4sn))))) (ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- x₄ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound z (2 ℕ.* (2 ℕ.* r ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K z / 1} _ (proj₂ (fast-regular⇒cauchy x (K z ℕ.* (4 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* (2 ℕ.* n)) (N₃≤ N≤2rn) (N₃≤ N≤4tn)))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₄ᵣₙ ℚ.- z₄ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-strict-upper-bound x (2 ℕ.* t ℕ.* (2 ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (proj₂ (fast-regular⇒cauchy z (K x ℕ.* (4 ℕ.* j))) (2 ℕ.* (2 ℕ.* r ℕ.* n)) (2 ℕ.* t ℕ.* (2 ℕ.* n)) (N₄≤ N≤4rn) (N₄≤ N≤4tn))))) ⟩ (+ K y / 1) ℚ.* (+ 1 / (K y ℕ.* (4 ℕ.* j))) ℚ.+ (+ K x / 1) ℚ.* (+ 1 / (K x ℕ.* (4 ℕ.* j))) ℚ.+ ((+ K z / 1) ℚ.* (+ 1 / (K z ℕ.* (4 ℕ.* j))) ℚ.+ (+ K x / 1) ℚ.* (+ 1 / (K x ℕ.* (4 ℕ.* j)))) ≈⟨ ℚ.*≡* (ℤsolve 4 (λ Kx Ky Kz j -> {- Function for solver -} (((Ky :* κ (+ 1)) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j))) :+ ((Kx :* κ (+ 1)) :* (κ (+ 1) :* (Ky :* (κ (+ 4) :* j))))) :* ((κ (+ 1) :* (Kz :* (κ (+ 4) :* j))) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j)))) :+ (((Kz :* κ (+ 1)) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j)))) :+ ((Kx :* κ (+ 1)) :* (κ (+ 1) :* (Kz :* (κ (+ 4) :* j))))) :* ((κ (+ 1) :* (Ky :* (κ (+ 4) :* j))) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j))))) :* j := κ (+ 1) :* (((κ (+ 1) :* (Ky :* (κ (+ 4) :* j))) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j)))) :* ((κ (+ 1) :* (Kz :* (κ (+ 4) :* j))) :* (κ (+ 1) :* (Kx :* (κ (+ 4) :* j)))))) refl (+ K x) (+ K y) (+ K z) (+ j)) ⟩ + 1 / j ∎ where n : ℕ n = suc k₂ N≤2rn : N ℕ.≤ 2 ℕ.* r ℕ.* n N≤2rn = ℕP.≤-trans n≥N (ℕP.m≤n*m n {2 ℕ.* r} ℕP.0<1+n) N≤4sn : N ℕ.≤ 2 ℕ.* s ℕ.* (2 ℕ.* n) N≤4sn = ℕP.≤-trans (ℕP.≤-trans n≥N (ℕP.m≤n*m n {2} ℕP.0<1+n)) (ℕP.m≤n*m (2 ℕ.* n) {2 ℕ.* s} ℕP.0<1+n) N≤4rn : N ℕ.≤ 2 ℕ.* (2 ℕ.* r ℕ.* n) N≤4rn = ℕP.≤-trans (ℕP.≤-trans n≥N (ℕP.m≤n*m n {2 ℕ.* r} ℕP.0<1+n)) (ℕP.m≤n*m (2 ℕ.* r ℕ.* n) {2} ℕP.0<1+n) N≤4tn : N ℕ.≤ 2 ℕ.* t ℕ.* (2 ℕ.* n) N≤4tn = ℕP.≤-trans (ℕP.≤-trans n≥N (ℕP.m≤n*m n {2} ℕP.0<1+n)) (ℕP.m≤n*m (2 ℕ.* n) {2 ℕ.* t} ℕP.0<1+n) N₁≤_ : {m : ℕ} -> N ℕ.≤ m -> N₁ ℕ.≤ m N₁≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) (ℕP.n≤1+n (ℕ.pred N)))) N≤m N₂≤_ : {m : ℕ} -> N ℕ.≤ m -> N₂ ℕ.≤ m N₂≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) (ℕP.n≤1+n (ℕ.pred N)))) N≤m N₃≤_ : {m : ℕ} -> N ℕ.≤ m -> N₃ ℕ.≤ m N₃≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄)) (ℕP.n≤1+n (ℕ.pred N))) N≤m N₄≤_ : {m : ℕ} -> N ℕ.≤ m -> N₄ ℕ.≤ m N₄≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) (ℕP.n≤1+n (ℕ.pred N))) N≤m *-distribʳ-+ : _DistributesOverʳ_ _≃_ _*_ _+_ *-distribʳ-+ x y z = begin (y + z) * x ≈⟨ *-comm (y + z) x ⟩ x * (y + z) ≈⟨ *-distribˡ-+ x y z ⟩ x * y + x * z ≈⟨ +-cong (*-comm x y) (*-comm x z) ⟩ y * x + z * x ∎ where open ≃-Reasoning *-distrib-+ : _DistributesOver_ _≃_ _*_ _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ *-identityˡ : LeftIdentity _≃_ 1ℝ _*_ *-identityˡ x = *≃* (λ { (suc k₁) → let n = suc k₁; k = K 1ℝ ℕ.⊔ K x in begin ℚ.∣ ℚ.1ℚᵘ ℚ.* seq x (2 ℕ.* k ℕ.* n) ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- seq x n) (ℚP.*-identityˡ (seq x (2 ℕ.* k ℕ.* n)))) ⟩ ℚ.∣ seq x (2 ℕ.* k ℕ.* n) ℚ.- seq x n ∣ ≤⟨ reg x (2 ℕ.* k ℕ.* n) n ⟩ (+ 1 / (2 ℕ.* k ℕ.* n)) ℚ.+ (+ 1 / n) ≤⟨ ℚP.+-monoˡ-≤ (+ 1 / n) {+ 1 / (2 ℕ.* k ℕ.* n)} {+ 1 / n} (ℚ.*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (ℤ.+≤+ (ℕP.m≤n*m n {2 ℕ.* k} ℕP.0<1+n)))) ⟩ (+ 1 / n) ℚ.+ (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> ((Κ (+ 1) ⊗ n ⊕ Κ (+ 1) ⊗ n) ⊗ n) ⊜ (Κ (+ 2) ⊗ (n ⊗ n))) refl (+ n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℤ-Solver *-identityʳ : RightIdentity _≃_ 1ℝ _*_ *-identityʳ x = ≃-trans (*-comm x 1ℝ) (*-identityˡ x) *-identity : Identity _≃_ 1ℝ _*_ *-identity = *-identityˡ , *-identityʳ -‿cong : Congruent₁ _≃_ (-_) -‿cong {x} {y} (*≃* x₁) = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.- seq x n ℚ.- (ℚ.- seq y n) ∣ ≡⟨ trans (cong (λ x → ℚ.∣ x ∣) (sym (ℚP.neg-distrib-+ (seq x n) (ℚ.- seq y n)))) (ℚP.∣-p∣≡∣p∣ (seq x n ℚ.- seq y n)) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ x₁ n ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning *-zeroˡ : LeftZero _≃_ 0ℝ _*_ *-zeroˡ x = *≃* (λ { (suc k₁) -> let n = suc k₁; k = K 0ℝ ℕ.⊔ K x in begin ℚ.∣ 0ℚᵘ ℚ.* seq x (2 ℕ.* k ℕ.* n) ℚ.- 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- 0ℚᵘ) (ℚP.*-zeroˡ (seq x (2 ℕ.* k ℕ.* n)))) ⟩ 0ℚᵘ ≤⟨ ℚ.*≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (ℤ.+≤+ ℕ.z≤n)) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning *-zeroʳ : RightZero _≃_ 0ℝ _*_ *-zeroʳ x = ≃-trans (*-comm x 0ℝ) (*-zeroˡ x) *-zero : Zero _≃_ 0ℝ _*_ *-zero = *-zeroˡ , *-zeroʳ -- Algebraic structures +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≃_ ; _∙_ = _+_ } +-rawMonoid : RawMonoid 0ℓ 0ℓ +-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℝ } +-0-rawGroup : RawGroup 0ℓ 0ℓ +-0-rawGroup = record { Carrier = ℝ ; _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℝ ; _⁻¹ = -_ } +-*-rawSemiring : RawSemiring 0ℓ 0ℓ +-*-rawSemiring = record { Carrier = ℝ ; _≈_ = _≃_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0ℝ ; 1# = 1ℝ } +-*-rawRing : RawRing 0ℓ 0ℓ +-*-rawRing = record { Carrier = ℝ ; _≈_ = _≃_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0ℝ ; 1# = 1ℝ } abstract ≃-isEquivalence₂ = ≃-isEquivalence +-cong₂ : Congruent₂ _≃_ _+_ +-cong₂ = +-cong -‿cong₂ : Congruent₁ _≃_ (-_) -‿cong₂ = -‿cong +-inverse₂ : Inverse _≃_ 0ℝ -_ _+_ +-inverse₂ = +-inverse +-identity₂ : Identity _≃_ 0ℝ _+_ +-identity₂ = +-identity +-assoc₂ : Associative _≃_ _+_ +-assoc₂ = +-assoc +-comm₂ : Commutative _≃_ _+_ +-comm₂ = +-comm +-isMagma : IsMagma _≃_ _+_ +-isMagma = record { isEquivalence = ≃-isEquivalence₂ ; ∙-cong = +-cong₂ } +-isSemigroup : IsSemigroup _≃_ _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc₂ } +-0-isMonoid : IsMonoid _≃_ _+_ 0ℝ +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity₂ } +-0-isCommutativeMonoid : IsCommutativeMonoid _≃_ _+_ 0ℝ +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = +-comm } +-0-isGroup : IsGroup _≃_ _+_ 0ℝ (-_) +-0-isGroup = record { isMonoid = +-0-isMonoid ; inverse = +-inverse₂ ; ⁻¹-cong = -‿cong₂ } +-0-isAbelianGroup : IsAbelianGroup _≃_ _+_ 0ℝ (-_) +-0-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = +-comm₂ } +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-group : Group 0ℓ 0ℓ +-0-group = record { isGroup = +-0-isGroup } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-0-isAbelianGroup } *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≃_ ; _∙_ = _*_ } *-rawMonoid : RawMonoid 0ℓ 0ℓ *-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _*_ ; ε = 1ℝ } abstract *-cong₂ : Congruent₂ _≃_ _*_ *-cong₂ = *-cong *-isMagma : IsMagma _≃_ _*_ *-isMagma = record { isEquivalence = ≃-isEquivalence₂ ; ∙-cong = *-cong₂ } abstract *-assoc₂ : Associative _≃_ _*_ *-assoc₂ = *-assoc *-isSemigroup : IsSemigroup _≃_ _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc₂ } abstract *-identity₂ : Identity _≃_ 1ℝ _*_ *-identity₂ = *-identity *-1-isMonoid : IsMonoid _≃_ _*_ 1ℝ *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-isCommutativeMonoid : IsCommutativeMonoid _≃_ _*_ 1ℝ *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = *-comm } abstract *-distrib-+₂ : (_≃_ DistributesOver _*_) _+_ *-distrib-+₂ = *-distrib-+ *-zero₂ : Zero _≃_ 0ℝ _*_ *-zero₂ = *-zero *-comm₂ : Commutative _≃_ _*_ *-comm₂ = *-comm +-*-isRing : IsRing _≃_ _+_ _*_ -_ 0ℝ 1ℝ +-*-isRing = record { +-isAbelianGroup = +-0-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+₂ ; zero = *-zero₂ } +-*-isCommutativeRing : IsCommutativeRing _≃_ _+_ _*_ -_ 0ℝ 1ℝ +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm₂ } +-*-isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≃_ _+_ _*_ 0ℝ 1ℝ +-*-isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-0-isCommutativeMonoid ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ } +-*-isSemiring : IsSemiring _≃_ _+_ _*_ 0ℝ 1ℝ +-*-isSemiring = record { isSemiringWithoutAnnihilatingZero = +-*-isSemiringWithoutAnnihilatingZero ; zero = *-zero } +-*-isCommutativeSemiring : IsCommutativeSemiring _≃_ _+_ _*_ 0ℝ 1ℝ +-*-isCommutativeSemiring = record { isSemiring = +-*-isSemiring ; *-comm = *-comm } *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-semiring : Semiring 0ℓ 0ℓ +-*-semiring = record { isSemiring = +-*-isSemiring } +-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ +-*-commutativeSemiring = record { isCommutativeSemiring = +-*-isCommutativeSemiring } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } {- module ℝ-+-*-Solver = Solver +-*-rawRing (ACR.fromCommutativeRing +-*-commutativeRing) (ACR.-raw-almostCommutative⟶ (ACR.fromCommutativeRing +-*-commutativeRing)) (λ x y -> nothing) {- The ring solver for ℝ is very weak! It cannot even solve involution of negatives, while the solver for ℚ can. -} {- testing : ∀ x -> - (- x) ≃ x testing x = solve 1 (λ x -> :- (:- x) := x) {!≃-refl!} {!!} where open ℝ-+-*-Solver test : ∀ p -> ℚ.- (ℚ.- p) ℚ.≃ p test p = solve 1 (λ p -> :- (:- p) := p) ℚP.≃-refl p where open ℚ-Solver.+-*-Solver -}-} --Properties of -_ neg-involutive : Involutive _≃_ (-_) neg-involutive x = *≃* λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.- (ℚ.- seq x n) ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseˡ (ℚ.- seq x n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning neg-distrib-+ : ∀ x y -> - (x + y) ≃ (- x) + (- y) neg-distrib-+ x y = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.- (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ℚ.- (ℚ.- seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ x y -> (⊝ (x ⊕ y) ⊖ (⊝ x ⊖ y)) ⊜ Κ (0ℚᵘ)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning open ℚ-Solver --Properties of _⊔_ ⊔-cong : Congruent₂ _≃_ _⊔_ ⊔-cong {x} {z} {y} {w} (*≃* x≃z) (*≃* y≃w) = *≃* partA where partA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ seq (x ⊔ y) n ℚ.- seq (z ⊔ w) n ∣ ℚ.≤ (+ 2 / n) {n≢0} partA (suc k₁) = [ left , right ]′ (ℚP.≤-total (seq x n ℚ.⊔ seq y n) (seq z n ℚ.⊔ seq w n)) where open ℚP.≤-Reasoning open ℚ-Solver n = suc k₁ partB : ∀ a b c d -> a ℚ.≤ b -> ℚ.∣ b ℚ.- d ∣ ℚ.≤ + 2 / n -> (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ℚ.≤ + 2 / n partB a b c d a≤b hyp = begin (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ≤⟨ ℚP.+-mono-≤ (ℚP.≤-reflexive (ℚP.p≤q⇒p⊔q≃q a≤b)) (ℚP.neg-mono-≤ (ℚP.p≤q⊔p c d)) ⟩ b ℚ.- d ≤⟨ p≤∣p∣ (b ℚ.- d) ⟩ ℚ.∣ b ℚ.- d ∣ ≤⟨ hyp ⟩ + 2 / n ∎ left : seq x n ℚ.⊔ seq y n ℚ.≤ seq z n ℚ.⊔ seq w n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n left hyp1 = [ zn≤wn , wn≤zn ]′ (ℚP.≤-total (seq z n) (seq w n)) where first : ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≃ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) first = begin-equality ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> (⊝ (a ⊖ b)) ⊜ (b ⊖ a)) ℚP.≃-refl (seq x n ℚ.⊔ seq y n) (seq z n ℚ.⊔ seq w n))) ⟩ ℚ.∣ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ∎ zn≤wn : seq z n ℚ.≤ seq w n -> ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n zn≤wn hyp2 = begin ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ first ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ≤⟨ partB (seq z n) (seq w n) (seq x n) (seq y n) hyp2 (ℚP.≤-respˡ-≃ (∣p-q∣≃∣q-p∣ (seq y n) (seq w n)) (y≃w n)) ⟩ + 2 / n ∎ wn≤zn : seq w n ℚ.≤ seq z n -> ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n wn≤zn hyp2 = begin ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ first ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ≈⟨ ℚP.+-cong (ℚP.⊔-comm (seq z n) (seq w n)) (ℚP.-‿cong (ℚP.⊔-comm (seq x n) (seq y n))) ⟩ (seq w n ℚ.⊔ seq z n) ℚ.- (seq y n ℚ.⊔ seq x n) ≤⟨ partB (seq w n) (seq z n) (seq y n) (seq x n) hyp2 (ℚP.≤-respˡ-≃ (∣p-q∣≃∣q-p∣ (seq x n) (seq z n)) (x≃z n)) ⟩ + 2 / n ∎ right : seq z n ℚ.⊔ seq w n ℚ.≤ seq x n ℚ.⊔ seq y n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n right hyp1 = [ xn≤yn , yn≤xn ]′ (ℚP.≤-total (seq x n) (seq y n)) where xn≤yn : seq x n ℚ.≤ seq y n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n xn≤yn hyp2 = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ≤⟨ partB (seq x n) (seq y n) (seq z n) (seq w n) hyp2 (y≃w n) ⟩ + 2 / n ∎ yn≤xn : seq y n ℚ.≤ seq x n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n yn≤xn hyp2 = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ≈⟨ ℚP.+-cong (ℚP.⊔-comm (seq x n) (seq y n)) (ℚP.-‿cong (ℚP.⊔-comm (seq z n) (seq w n))) ⟩ seq y n ℚ.⊔ seq x n ℚ.- (seq w n ℚ.⊔ seq z n) ≤⟨ partB (seq y n) (seq x n) (seq w n) (seq z n) hyp2 (x≃z n) ⟩ + 2 / n ∎ ⊔-congˡ : LeftCongruent _≃_ _⊔_ ⊔-congˡ y≃z = ⊔-cong ≃-refl y≃z ⊔-congʳ : RightCongruent _≃_ _⊔_ ⊔-congʳ y≃z = ⊔-cong y≃z ≃-refl ⊔-comm : Commutative _≃_ _⊔_ ⊔-comm x y = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq y n ℚ.⊔ seq x n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n) (ℚP.-‿cong (ℚP.⊔-comm (seq y n) (seq x n)))) ⟩ ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n ℚ.⊔ seq y n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ⊔-assoc : Associative _≃_ _⊔_ ⊔-assoc x y z = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n ℚ.- (seq x n ℚ.⊔ (seq y n ℚ.⊔ seq z n)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n) (ℚP.-‿cong (ℚP.≃-sym (ℚP.⊔-assoc (seq x n) (seq y n) (seq z n))))) ⟩ ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n ℚ.- (seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning -- Properties of _⊓_ x⊓y≃x⊓₂y : ∀ x y -> x ⊓ y ≃ x ⊓₂ y x⊓y≃x⊓₂y x y = *≃* (λ { (suc k₁) -> let n = suc k₁; xₙ = seq x n; yₙ = seq y n in begin ℚ.∣ xₙ ℚ.⊓ yₙ ℚ.- ℚ.- ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (xₙ ℚ.⊓ yₙ) (ℚP.-‿cong (ℚP.≃-trans (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₙ) (ℚ.- yₙ)) (ℚP.⊓-cong (ℚP.neg-involutive xₙ) (ℚP.neg-involutive yₙ))))) ⟩ ℚ.∣ xₙ ℚ.⊓ yₙ ℚ.- xₙ ℚ.⊓ yₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (xₙ ℚ.⊓ yₙ)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ⊓₂-cong : Congruent₂ _≃_ _⊓₂_ ⊓₂-cong x≃y u≃v = -‿cong (⊔-cong (-‿cong x≃y) (-‿cong u≃v)) ⊓₂-congˡ : LeftCongruent _≃_ _⊓₂_ ⊓₂-congˡ y≃z = ⊓₂-cong ≃-refl y≃z ⊓₂-congʳ : RightCongruent _≃_ _⊓₂_ ⊓₂-congʳ y≃z = ⊓₂-cong y≃z ≃-refl ⊓₂-comm : Commutative _≃_ _⊓₂_ ⊓₂-comm x y = -‿cong (⊔-comm (- x) (- y)) ⊓₂-assoc : Associative _≃_ _⊓₂_ ⊓₂-assoc x y z = -‿cong (begin (- (- (- x ⊔ - y))) ⊔ (- z) ≈⟨ ⊔-congʳ (neg-involutive (- x ⊔ - y)) ⟩ (- x ⊔ - y) ⊔ (- z) ≈⟨ ⊔-assoc (- x) (- y) (- z) ⟩ (- x) ⊔ (- y ⊔ - z) ≈⟨ ⊔-congˡ (≃-symm (neg-involutive (- y ⊔ - z))) ⟩ (- x) ⊔ (- (- (- y ⊔ - z))) ∎) where open ≃-Reasoning ⊓-cong : Congruent₂ _≃_ _⊓_ ⊓-cong {x} {u} {y} {v} x≃u y≃v = begin x ⊓ y ≈⟨ x⊓y≃x⊓₂y x y ⟩ x ⊓₂ y ≈⟨ ⊓₂-cong x≃u y≃v ⟩ u ⊓₂ v ≈⟨ ≃-symm (x⊓y≃x⊓₂y u v) ⟩ u ⊓ v ∎ where open ≃-Reasoning ⊓-congˡ : LeftCongruent _≃_ _⊓_ ⊓-congˡ y≃z = ⊓-cong ≃-refl y≃z ⊓-congʳ : RightCongruent _≃_ _⊓_ ⊓-congʳ y≃z = ⊓-cong y≃z ≃-refl ⊓-comm : Commutative _≃_ _⊓_ ⊓-comm x y = begin x ⊓ y ≈⟨ x⊓y≃x⊓₂y x y ⟩ x ⊓₂ y ≈⟨ ⊓₂-comm x y ⟩ y ⊓₂ x ≈⟨ ≃-symm (x⊓y≃x⊓₂y y x) ⟩ y ⊓ x ∎ where open ≃-Reasoning ⊓-assoc : Associative _≃_ _⊓_ ⊓-assoc x y z = begin x ⊓ y ⊓ z ≈⟨ ≃-trans (⊓-congʳ (x⊓y≃x⊓₂y x y)) (x⊓y≃x⊓₂y (x ⊓₂ y) z) ⟩ x ⊓₂ y ⊓₂ z ≈⟨ ⊓₂-assoc x y z ⟩ x ⊓₂ (y ⊓₂ z) ≈⟨ ≃-trans (⊓₂-congˡ (≃-symm (x⊓y≃x⊓₂y y z))) (≃-symm (x⊓y≃x⊓₂y x (y ⊓ z))) ⟩ x ⊓ (y ⊓ z) ∎ where open ≃-Reasoning -- Alternative definition than Bishop's, but equivalent. ∣_∣ : ℝ -> ℝ seq ∣ x ∣ n = ℚ.∣ seq x n ∣ reg ∣ x ∣ (suc k₁) (suc k₂) = let m = suc k₁; n = suc k₂ in begin ℚ.∣ ℚ.∣ seq x m ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≤⟨ ∣∣p∣-∣q∣∣≤∣p-q∣ (seq x m) (seq x n) ⟩ ℚ.∣ seq x m ℚ.- seq x n ∣ ≤⟨ reg x m n ⟩ + 1 / m ℚ.+ + 1 / n ∎ where open ℚP.≤-Reasoning ∣-∣-cong : Congruent₁ _≃_ ∣_∣ ∣-∣-cong {x} {y} (*≃* x≃y) = *≃* (λ { (suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- ℚ.∣ seq y n ∣ ∣ ≤⟨ ∣∣p∣-∣q∣∣≤∣p-q∣ (seq x n) (seq y n) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ x≃y n ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning ∣x*y∣≃∣x∣*∣y∣ : ∀ x y -> ∣ x * y ∣ ≃ ∣ x ∣ * ∣ y ∣ ∣x*y∣≃∣x∣*∣y∣ x y = *≃* (λ { (suc k₁) -> let n = suc k₁; r = K x ℕ.⊔ K y in begin ℚ.∣ ℚ.∣ seq (x * y) n ∣ ℚ.- seq (∣ x ∣ * ∣ y ∣) n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ ℚ.∣ seq (x * y) n ∣ (ℚP.-‿cong (ℚP.≃-sym (ℚP.∣p*q∣≃∣p∣*∣q∣ (seq x (2 ℕ.* r ℕ.* n)) (seq y (2 ℕ.* r ℕ.* n)))))) ⟩ ℚ.∣ ℚ.∣ seq (x * y) n ∣ ℚ.- ℚ.∣ seq (x * y) n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ℚ.∣ seq (x * y) n ∣) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning -- Sign predicates data Positive : Pred ℝ 0ℓ where pos* : ∀ {x} -> (∃ λ (n-1 : ℕ) -> seq x (suc n-1) ℚ.> + 1 / (suc n-1)) -> Positive x data NonNegative : Pred ℝ 0ℓ where nonNeg* : ∀ {x} -> (∀ (n : ℕ) -> {n≢0 : n ≢0} -> seq x n ℚ.≥ ℚ.- ((+ 1 / n) {n≢0})) -> NonNegative x -- Compare this to lemma2-8-1a in Reals.agda. This is much more readable and it's shorter! lemma-2-8-1-if : ∀ {x} -> Positive x -> ∃ λ (N-1 : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N-1 -> seq x m ℚ.≥ + 1 / (suc N-1) lemma-2-8-1-if {x} (pos* (n-1 , posx)) = let n = suc n-1 ; arch = fast-archimedean-ℚ₂ (seq x n ℚ.- + 1 / n) (+ 2) (ℚ.positive (p<q⇒0<q-p (+ 1 / n) (seq x n) posx)) ; N = suc (proj₁ arch) in ℕ.pred N , λ { (suc k₁) m≥N -> let m = suc k₁ in begin + 1 / N ≈⟨ ℚ.*≡* (ℤsolve 1 (λ N -> κ (+ 1) :* (N :* N) := ((κ (+ 2) :* N :- κ (+ 1) :* N) :* N)) refl (+ N)) ⟩ + 2 / N ℚ.- + 1 / N ≤⟨ ℚP.+-mono-≤ (ℚP.<⇒≤ (proj₂ arch)) (ℚP.neg-mono-≤ (q≤r⇒+p/r≤+p/q 1 N m m≥N)) ⟩ seq x n ℚ.- + 1 / n ℚ.- + 1 / m ≈⟨ solve 3 (λ xₙ n⁻¹ m⁻¹ -> (xₙ ⊖ n⁻¹ ⊖ m⁻¹) ⊜ (xₙ ⊖ (n⁻¹ ⊕ m⁻¹))) ℚP.≃-refl (seq x n) (+ 1 / n) (+ 1 / m) ⟩ seq x n ℚ.- (+ 1 / n ℚ.+ + 1 / m) ≤⟨ ℚP.+-monoʳ-≤ (seq x n) (ℚP.neg-mono-≤ (reg x n m)) ⟩ seq x n ℚ.- ℚ.∣ seq x n ℚ.- seq x m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x n) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x n ℚ.- seq x m))) ⟩ seq x n ℚ.- (seq x n ℚ.- seq x m) ≈⟨ solve 2 (λ xₙ xₘ -> (xₙ ⊖ (xₙ ⊖ xₘ)) ⊜ xₘ) ℚP.≃-refl (seq x n) (seq x m) ⟩ seq x m ∎} where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊖_ to _:-_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) abstract fast-lemma-2-8-1-if : ∀ {x} -> Positive x -> ∃ λ (N-1 : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N-1 -> seq x m ℚ.≥ + 1 / (suc N-1) fast-lemma-2-8-1-if = lemma-2-8-1-if lemma-2-8-1-onlyif : ∀ {x : ℝ} -> (∃ λ (N-1 : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N-1 -> seq x m ℚ.≥ + 1 / (suc N-1)) -> Positive x lemma-2-8-1-onlyif {x} (N-1 , proof) = let N = suc N-1 in pos* (N , (begin-strict + 1 / (suc N) <⟨ ℚ.*<* (ℤP.*-monoˡ-<-pos 0 (ℤ.+<+ (ℕP.n<1+n N))) ⟩ + 1 / N ≤⟨ proof (suc N) (ℕP.n≤1+n N) ⟩ seq x (suc N) ∎)) where open ℚP.≤-Reasoning lemma-2-8-2-if : ∀ {x : ℝ} -> NonNegative x -> ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) lemma-2-8-2-if {x} (nonNeg* nonx) (suc k₁) = let n = suc k₁ in n , _ , λ {(suc k₂) m≥n -> let m = suc k₂ in begin ℚ.- (+ 1 / n) ≤⟨ ℚP.neg-mono-≤ (q≤r⇒+p/r≤+p/q 1 n m m≥n) ⟩ ℚ.- (+ 1 / m) ≤⟨ nonx m ⟩ seq x m ∎} where open ℚP.≤-Reasoning abstract fast-lemma-2-8-2-if : ∀ {x : ℝ} -> NonNegative x -> ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) fast-lemma-2-8-2-if = lemma-2-8-2-if p-q≤j⁻¹⇒p≤q : ∀ {p q : ℚᵘ} -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> p ℚ.- q ℚ.≤ (+ 1 / j) {j≢0}) -> p ℚ.≤ q p-q≤j⁻¹⇒p≤q {p} {q} hyp = ℚP.≮⇒≥ λ q<p -> let arch = fast-archimedean-ℚ₂ (p ℚ.- q) (+ 1) (ℚ.positive (p<q⇒0<q-p q p q<p)); j = suc (proj₁ arch) in ℚP.<⇒≱ (proj₂ arch) (hyp j) p-j⁻¹≤q⇒p≤q : ∀ {p q : ℚᵘ} -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> p ℚ.- (+ 1 / j) {j≢0} ℚ.≤ q) -> p ℚ.≤ q p-j⁻¹≤q⇒p≤q {p} {q} hyp = p-q≤j⁻¹⇒p≤q λ { (suc k₁) -> let j = suc k₁ in begin p ℚ.- q ≈⟨ solve 3 (λ p q j⁻¹ -> (p ⊖ q) ⊜ (p ⊖ j⁻¹ ⊖ q ⊕ j⁻¹)) ℚP.≃-refl p q (+ 1 / j) ⟩ p ℚ.- + 1 / j ℚ.- q ℚ.+ + 1 / j ≤⟨ ℚP.+-monoˡ-≤ (+ 1 / j) (ℚP.+-monoˡ-≤ (ℚ.- q) (hyp j)) ⟩ q ℚ.- q ℚ.+ + 1 / j ≈⟨ solve 2 (λ q j⁻¹ -> (q ⊖ q ⊕ j⁻¹) ⊜ j⁻¹) ℚP.≃-refl q (+ 1 / j) ⟩ + 1 / j ∎} where open ℚP.≤-Reasoning open ℚ-Solver lemma-2-8-2-onlyif : ∀ {x : ℝ} -> (∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0})) -> NonNegative x lemma-2-8-2-onlyif {x} hyp = nonNeg* (λ { (suc k₁) -> let n = suc k₁ in p-j⁻¹≤q⇒p≤q (λ { (suc k₂) -> let j = suc k₂; N₂ⱼ = suc (proj₁ (hyp (2 ℕ.* j))); m = N₂ⱼ ℕ.⊔ (2 ℕ.* j) in begin ℚ.- (+ 1 / n) ℚ.- (+ 1 / j) ≈⟨ ℚP.+-congʳ (ℚ.- (+ 1 / n)) {ℚ.- (+ 1 / j)} {ℚ.- (+ 1 / (2 ℕ.* j) ℚ.+ + 1 / (2 ℕ.* j))} (ℚP.-‿cong (ℚ.*≡* (ℤsolve 1 (λ j -> κ (+ 1) :* (κ (+ 2) :* j :* (κ (+ 2) :* j)) := (((κ (+ 1) :* (κ (+ 2) :* j) :+ κ (+ 1) :* (κ (+ 2) :* j)) :* j))) refl (+ j)))) ⟩ ℚ.- (+ 1 / n) ℚ.- (+ 1 / (2 ℕ.* j) ℚ.+ + 1 / (2 ℕ.* j)) ≤⟨ ℚP.+-monoʳ-≤ (ℚ.- (+ 1 / n)) (ℚP.neg-mono-≤ (ℚP.+-monoˡ-≤ (+ 1 / (2 ℕ.* j)) (q≤r⇒+p/r≤+p/q 1 (2 ℕ.* j) m (ℕP.m≤n⊔m N₂ⱼ (2 ℕ.* j))))) ⟩ ℚ.- (+ 1 / n) ℚ.- (+ 1 / m ℚ.+ + 1 / (2 ℕ.* j)) ≈⟨ solve 3 (λ n⁻¹ m⁻¹ k⁻¹ -> (⊝ n⁻¹ ⊖ (m⁻¹ ⊕ k⁻¹)) ⊜ (⊝ k⁻¹ ⊖ (m⁻¹ ⊕ n⁻¹))) ℚP.≃-refl (+ 1 / n) (+ 1 / m) (+ 1 / (2 ℕ.* j)) ⟩ ℚ.- (+ 1 / (2 ℕ.* j)) ℚ.- (+ 1 / m ℚ.+ + 1 / n) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ (hyp (2 ℕ.* j))) m (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N₂ⱼ)) (ℕP.m≤m⊔n N₂ⱼ (2 ℕ.* j)))) (ℚP.neg-mono-≤ (reg x m n)) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq x n ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq x n))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq x n) ≈⟨ solve 2 (λ xₘ xₙ -> (xₘ ⊖ (xₘ ⊖ xₙ)) ⊜ xₙ) ℚP.≃-refl (seq x m) (seq x n) ⟩ seq x n ∎})}) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) pos-cong : ∀ {x y} -> x ≃ y -> Positive x -> Positive y pos-cong {x} {y} x≃y posx = let fromPosx = fast-lemma-2-8-1-if posx; N₁ = suc (proj₁ fromPosx); fromx≃y = fast-equality-lemma-if x y x≃y (2 ℕ.* N₁) ; N₂ = suc (proj₁ fromx≃y); N = N₁ ℕ.⊔ N₂ in lemma-2-8-1-onlyif {y} (ℕ.pred (2 ℕ.* N) , λ { (suc k₁) m≥2N -> let m = suc k₁ in begin + 1 / (2 ℕ.* N) ≤⟨ q≤r⇒+p/r≤+p/q 1 (2 ℕ.* N₁) (2 ℕ.* N) (ℕP.*-monoʳ-≤ 2 (ℕP.m≤m⊔n N₁ N₂)) ⟩ + 1 / (2 ℕ.* N₁) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ N₁ -> κ (+ 1) :* (N₁ :* (κ (+ 2) :* N₁)) := (κ (+ 1) :* (κ (+ 2) :* N₁) :+ (:- κ (+ 1)) :* N₁) :* (κ (+ 2) :* N₁)) refl (+ N₁)) ⟩ + 1 / N₁ ℚ.- + 1 / (2 ℕ.* N₁) ≤⟨ ℚP.+-mono-≤ (proj₂ fromPosx m (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.m≤n*m N {2} ℕP.0<1+n) m≥2N))) (ℚP.neg-mono-≤ (proj₂ fromx≃y m (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N₂)) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.m≤n*m N {2} ℕP.0<1+n) m≥2N))))) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq y m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq y m))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq y m) ≈⟨ solve 2 (λ xₘ yₘ -> (xₘ ⊖ (xₘ ⊖ yₘ)) ⊜ yₘ) ℚP.≃-refl (seq x m) (seq y m) ⟩ seq y m ∎}) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; ⊝_ to :-_ ; _⊜_ to _:=_ ; Κ to κ ) pos⇒nonNeg : ∀ {x} -> Positive x -> NonNegative x pos⇒nonNeg {x} posx = let fromPosx = fast-lemma-2-8-1-if posx; N = suc (proj₁ fromPosx) in lemma-2-8-2-onlyif (λ { (suc k₁) -> let n = suc k₁ in N , _ , λ { (suc k₂) m≥N -> let m = suc k₂ in begin ℚ.- (+ 1 / n) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 1 / N ≤⟨ proj₂ fromPosx m m≥N ⟩ seq x m ∎}}) where open ℚP.≤-Reasoning posx,y⇒posx+y : ∀ {x y} -> Positive x -> Positive y -> Positive (x + y) posx,y⇒posx+y {x} {y} posx posy = let fromPosx = fast-lemma-2-8-1-if posx; fromPosy = fast-lemma-2-8-1-if posy ; N₁ = suc (proj₁ fromPosx); N₂ = suc (proj₁ fromPosy); N = N₁ ℕ.⊔ N₂ in lemma-2-8-1-onlyif (ℕ.pred N , λ { (suc k₁) m≥N -> let m = suc k₁ in begin + 1 / N ≤⟨ ℚP.p≤p+q {+ 1 / N} {+ 1 / N} _ ⟩ + 1 / N ℚ.+ + 1 / N ≤⟨ ℚP.+-mono-≤ (q≤r⇒+p/r≤+p/q 1 N₁ N (ℕP.m≤m⊔n N₁ N₂)) (q≤r⇒+p/r≤+p/q 1 N₂ N (ℕP.m≤n⊔m N₁ N₂)) ⟩ + 1 / N₁ ℚ.+ + 1 / N₂ ≤⟨ ℚP.+-mono-≤ (proj₂ fromPosx (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) m≥N) (ℕP.m≤n*m m {2} ℕP.0<1+n))) (proj₂ fromPosy (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) m≥N) (ℕP.m≤n*m m {2} ℕP.0<1+n))) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎}) where open ℚP.≤-Reasoning nonNegx,y⇒nonNegx+y : ∀ {x y} -> NonNegative x -> NonNegative y -> NonNegative (x + y) nonNegx,y⇒nonNegx+y {x} {y} nonx nony = lemma-2-8-2-onlyif (λ { (suc k₁) -> let n = suc k₁; fromNonx = fast-lemma-2-8-2-if nonx (2 ℕ.* n); fromNony = fast-lemma-2-8-2-if nony (2 ℕ.* n) ; Nx = proj₁ fromNonx; Ny = proj₁ fromNony; N = suc (Nx ℕ.⊔ Ny) ; Nx≤N = ℕP.≤-trans (ℕP.m≤m⊔n Nx Ny) (ℕP.n≤1+n (ℕ.pred N)) ; Ny≤N = ℕP.≤-trans (ℕP.m≤n⊔m Nx Ny) (ℕP.n≤1+n (ℕ.pred N)) in N , _ , λ { (suc k₂) m≥N -> let m = suc k₂; m≤2m = ℕP.m≤n*m m {2} ℕP.0<1+n in begin ℚ.- (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (⊝ Κ (+ 1)) ⊗ (Κ (+ 2) ⊗ n ⊗ (Κ (+ 2) ⊗ n)) ⊜ (((⊝ Κ (+ 1)) ⊗ (Κ (+ 2) ⊗ n) ⊕ ((⊝ Κ (+ 1)) ⊗ (Κ (+ 2) ⊗ n))) ⊗ n)) refl (+ n)) ⟩ ℚ.- (+ 1 / (2 ℕ.* n)) ℚ.- (+ 1 / (2 ℕ.* n)) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ fromNonx) (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans Nx≤N m≥N) m≤2m)) (proj₂ (proj₂ fromNony) (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans Ny≤N m≥N) m≤2m)) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎}}) where open ℚP.≤-Reasoning open ℤ-Solver nonNeg-cong : ∀ {x y} -> x ≃ y -> NonNegative x -> NonNegative y nonNeg-cong {x} {y} x≃y nonx = lemma-2-8-2-onlyif λ { (suc k₁) -> let n = suc k₁; fromNonx = fast-lemma-2-8-2-if nonx (2 ℕ.* n); fromx≃y = fast-equality-lemma-if x y x≃y (2 ℕ.* n) ; N₁ = proj₁ fromNonx; N₂ = proj₁ fromx≃y; N = suc (N₁ ℕ.⊔ N₂) ; N₁≤N = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.n≤1+n (ℕ.pred N)) ; N₂≤N = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.n≤1+n (ℕ.pred N)) in N , _ , λ { (suc k₂) m≥N -> let m = suc k₂ in begin ℚ.- (+ 1 / n) ≈⟨ ℚ.*≡* (ℤsolve 1 (λ n -> (:- κ (+ 1)) :* (κ (+ 2) :* n :* (κ (+ 2) :* n)) := (((:- κ (+ 1)) :* (κ (+ 2) :* n) :+ ((:- κ (+ 1)) :* (κ (+ 2) :* n))) :* n)) refl (+ n)) ⟩ ℚ.- (+ 1 / (2 ℕ.* n)) ℚ.- (+ 1 / (2 ℕ.* n)) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ fromNonx) m (ℕP.≤-trans N₁≤N m≥N)) (ℚP.neg-mono-≤ (proj₂ fromx≃y m (ℕP.≤-trans N₂≤N m≥N))) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq y m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq y m))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq y m) ≈⟨ solve 2 (λ x y -> (x ⊖ (x ⊖ y)) ⊜ y) ℚP.≃-refl (seq x m) (seq y m) ⟩ seq y m ∎}} where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; ⊝_ to :-_ ; _⊜_ to _:=_ ; Κ to κ ) posx∧nonNegy⇒posx+y : ∀ {x y} -> Positive x -> NonNegative y -> Positive (x + y) posx∧nonNegy⇒posx+y {x} {y} posx nony = let fromPosx = fast-lemma-2-8-1-if posx; N₁ = suc (proj₁ fromPosx) ; fromNony = fast-lemma-2-8-2-if nony (2 ℕ.* N₁) ; N₂ = suc (proj₁ fromNony); N = 2 ℕ.* (N₁ ℕ.⊔ N₂) ; N₁≤N = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤n*m (N₁ ℕ.⊔ N₂) {2} ℕP.0<1+n) ; N₂-1≤N = ℕP.≤-trans (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N₂)) (ℕP.m≤n⊔m N₁ N₂)) (ℕP.m≤n*m (N₁ ℕ.⊔ N₂) {2} ℕP.0<1+n) in lemma-2-8-1-onlyif (ℕ.pred N , (λ { (suc k₁) m≥N -> let m = suc k₁ in begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 (2 ℕ.* N₁) N (ℕP.*-monoʳ-≤ 2 (ℕP.m≤m⊔n N₁ N₂)) ⟩ + 1 / (2 ℕ.* N₁) ≈⟨ ℚ.*≡* (solve 1 (λ N₁ -> Κ (+ 1) ⊗ (N₁ ⊗ (Κ (+ 2) ⊗ N₁)) ⊜ (Κ (+ 1) ⊗ (Κ (+ 2) ⊗ N₁) ⊕ (⊝ Κ (+ 1)) ⊗ N₁) ⊗ (Κ (+ 2) ⊗ N₁)) refl (+ N₁)) ⟩ + 1 / N₁ ℚ.- + 1 / (2 ℕ.* N₁) ≤⟨ ℚP.+-mono-≤ (proj₂ fromPosx (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans N₁≤N m≥N) (ℕP.m≤n*m m {2} ℕP.0<1+n))) (proj₂ (proj₂ fromNony) (2 ℕ.* m) (ℕP.≤-trans (ℕP.≤-trans N₂-1≤N m≥N) (ℕP.m≤n*m m {2} ℕP.0<1+n))) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎})) where open ℚP.≤-Reasoning open ℤ-Solver nonNeg∣x∣ : ∀ x -> NonNegative ∣ x ∣ nonNeg∣x∣ x = nonNeg* (λ { (suc k₁) -> let n = suc k₁ in ℚP.≤-trans (ℚP.nonPositive⁻¹ _) (ℚP.0≤∣p∣ (seq x n))}) nonNegx⇒∣x∣≃x : ∀ {x} -> NonNegative x -> ∣ x ∣ ≃ x nonNegx⇒∣x∣≃x {x} nonx = equality-lemma-onlyif ∣ x ∣ x partA where open ℚP.≤-Reasoning open ℤ-Solver partA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ℚ.≤ (+ 1 / j) {j≢0} partA (suc k₁) = N , partB where j = suc k₁ fromNonx = fast-lemma-2-8-2-if nonx (2 ℕ.* j) N = suc (proj₁ fromNonx) partB : ∀ (n : ℕ) -> n ℕ.≥ N -> ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ℚ.≤ + 1 / j partB (suc k₂) n≥N = [ left , right ]′ (ℚP.≤-total (seq x n) 0ℚᵘ) where n = suc k₂ -xₙ≤1/2j = begin ℚ.- seq x n ≤⟨ ℚP.neg-mono-≤ (proj₂ (proj₂ fromNonx) n (ℕP.≤-trans (ℕP.n≤1+n (ℕ.pred N)) n≥N)) ⟩ ℚ.- (ℚ.- (+ 1 / (2 ℕ.* j))) ≈⟨ ℚP.neg-involutive (+ 1 / (2 ℕ.* j)) ⟩ + 1 / (2 ℕ.* j) ∎ left : seq x n ℚ.≤ 0ℚᵘ -> ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ℚ.≤ + 1 / j left hyp = begin ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p≤∣p∣ (seq x n))) ⟩ ℚ.∣ seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x n))) ⟩ ℚ.∣ ℚ.- seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.0≤p⇒∣p∣≃p (ℚP.neg-mono-≤ hyp)) ⟩ ℚ.- seq x n ℚ.- seq x n ≤⟨ ℚP.+-mono-≤ -xₙ≤1/2j -xₙ≤1/2j ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (Κ (+ 1) ⊗ (Κ (+ 2) ⊗ j) ⊕ Κ (+ 1) ⊗ (Κ (+ 2) ⊗ j)) ⊗ j ⊜ (Κ (+ 1) ⊗ (Κ (+ 2) ⊗ j ⊗ (Κ (+ 2) ⊗ j)))) refl (+ j)) ⟩ + 1 / j ∎ right : 0ℚᵘ ℚ.≤ seq x n -> ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ℚ.≤ + 1 / j right hyp = begin ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p≤∣p∣ (seq x n))) ⟩ ℚ.∣ seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.0≤p⇒∣p∣≃p hyp) ⟩ seq x n ℚ.- seq x n ≈⟨ ℚP.+-inverseʳ (seq x n) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 1 / j ∎ nonNegx,y⇒nonNegx*y : ∀ {x y} -> NonNegative x -> NonNegative y -> NonNegative (x * y) nonNegx,y⇒nonNegx*y {x} {y} nonx nony = nonNeg-cong lem (nonNeg∣x∣ (x * y)) where open ≃-Reasoning lem : ∣ x * y ∣ ≃ x * y lem = begin ∣ x * y ∣ ≈⟨ ∣x*y∣≃∣x∣*∣y∣ x y ⟩ ∣ x ∣ * ∣ y ∣ ≈⟨ *-cong (nonNegx⇒∣x∣≃x nonx) (nonNegx⇒∣x∣≃x nony) ⟩ x * y ∎ ℚ-*-mono-≤ : ∀ {p q r s} -> ℚ.NonNegative p -> ℚ.NonNegative r -> p ℚ.≤ q -> r ℚ.≤ s -> p ℚ.* r ℚ.≤ q ℚ.* s ℚ-*-mono-≤ {p} {q} {r} {s} nonp nonr p≤q r≤s = begin p ℚ.* r ≤⟨ ℚP.*-monoˡ-≤-nonNeg nonr p≤q ⟩ q ℚ.* r ≤⟨ ℚP.*-monoʳ-≤-nonNeg {q} (ℚ.nonNegative (ℚP.≤-trans (ℚP.nonNegative⁻¹ nonp) p≤q)) r≤s ⟩ q ℚ.* s ∎ where open ℚP.≤-Reasoning posx,y⇒posx*y : ∀ {x y} -> Positive x -> Positive y -> Positive (x * y) posx,y⇒posx*y {x} {y} posx posy = let k = K x ℕ.⊔ K y; fromPosx = fast-lemma-2-8-1-if posx; fromPosy = fast-lemma-2-8-1-if posy ; N₁ = suc (proj₁ fromPosx); N₂ = suc (proj₁ fromPosy); N = N₁ ℕ.⊔ N₂ ; N₁≤N² = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤n*m N {N} ℕP.0<1+n) ; N₂≤N² = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.m≤n*m N {N} ℕP.0<1+n) in lemma-2-8-1-onlyif (ℕ.pred (N ℕ.* N) , λ {(suc k₁) m≥N² -> let m = suc k₁; N²≤2km = ℕP.≤-trans m≥N² (ℕP.m≤n*m m {2 ℕ.* k} ℕP.0<1+n) in begin + 1 / N ℚ.* (+ 1 / N) ≤⟨ q≤r⇒+p/r≤+p/q 1 (N₁ ℕ.* N₂) (N ℕ.* N) (ℕP.*-mono-≤ (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤n⊔m N₁ N₂)) ⟩ + 1 / N₁ ℚ.* (+ 1 / N₂) ≤⟨ ℚ-*-mono-≤ _ _ (proj₂ fromPosx (2 ℕ.* k ℕ.* m) (ℕP.≤-trans N₁≤N² N²≤2km)) (proj₂ fromPosy (2 ℕ.* k ℕ.* m) (ℕP.≤-trans N₂≤N² N²≤2km)) ⟩ seq x (2 ℕ.* k ℕ.* m) ℚ.* seq y (2 ℕ.* k ℕ.* m) ∎}) where open ℚP.≤-Reasoning posx⇒posx⊔y : ∀ {x y} -> Positive x -> Positive (x ⊔ y) posx⇒posx⊔y {x} {y} posx = let fromPosx = fast-lemma-2-8-1-if posx; N = suc (proj₁ fromPosx) in lemma-2-8-1-onlyif (ℕ.pred N , λ {(suc k₁) m≥N -> let m = suc k₁ in begin + 1 / N ≤⟨ proj₂ fromPosx m m≥N ⟩ seq x m ≤⟨ ℚP.p≤p⊔q (seq x m) (seq y m) ⟩ seq x m ℚ.⊔ seq y m ∎}) where open ℚP.≤-Reasoning nonNegx⇒nonNegx⊔y : ∀ {x y} -> NonNegative x -> NonNegative (x ⊔ y) nonNegx⇒nonNegx⊔y {x} {y} nonx = lemma-2-8-2-onlyif (λ {(suc k₁) -> let n = suc k₁; fromNonx = fast-lemma-2-8-2-if nonx n ; N = proj₁ fromNonx in N , proj₁ (proj₂ fromNonx) , λ m m≥N -> begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ fromNonx) m m≥N ⟩ seq x m ≤⟨ ℚP.p≤p⊔q (seq x m) (seq y m) ⟩ seq x m ℚ.⊔ seq y m ∎}) where open ℚP.≤-Reasoning nonNegx,y⇒nonNegx⊓y : ∀ {x y} -> NonNegative x -> NonNegative y -> NonNegative (x ⊓ y) nonNegx,y⇒nonNegx⊓y {x} {y} nonx nony = lemma-2-8-2-onlyif partA where open ℚP.≤-Reasoning partA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x ⊓ y) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) partA (suc k₁) = N , _ , partB where n = suc k₁ fromNonx = fast-lemma-2-8-2-if nonx n Nx = proj₁ fromNonx fromNony = fast-lemma-2-8-2-if nony n Ny = proj₁ fromNony N = suc (Nx ℕ.⊔ Ny) Nx≤N = ℕP.≤-trans (ℕP.m≤m⊔n Nx Ny) (ℕP.n≤1+n (ℕ.pred N)) Ny≤N = ℕP.≤-trans (ℕP.m≤n⊔m Nx Ny) (ℕP.n≤1+n (ℕ.pred N)) partB : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x ⊓ y) m ℚ.≥ ℚ.- (+ 1 / n) partB m m≥N = [ left , right ]′ (ℚP.≤-total (seq x m) (seq y m)) where left : seq x m ℚ.≤ seq y m -> seq (x ⊓ y) m ℚ.≥ ℚ.- (+ 1 / n) left hyp = begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ fromNonx) m (ℕP.≤-trans Nx≤N m≥N) ⟩ seq x m ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊓q≃p hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ right : seq y m ℚ.≤ seq x m -> seq (x ⊓ y) m ℚ.≥ ℚ.- (+ 1 / n) right hyp = begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ fromNony) m (ℕP.≤-trans Ny≤N m≥N) ⟩ seq y m ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊓q≃q hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ posx,y⇒posx⊓y : ∀ x y -> Positive x -> Positive y -> Positive (x ⊓ y) posx,y⇒posx⊓y x y posx posy = lemma-2-8-1-onlyif (ℕ.pred N , lem) where open ℚP.≤-Reasoning fromPosx = fast-lemma-2-8-1-if posx Nx = suc (proj₁ fromPosx) fromPosy = fast-lemma-2-8-1-if posy Ny = suc (proj₁ fromPosy) N = Nx ℕ.⊔ Ny Nx≤N = ℕP.m≤m⊔n Nx Ny Ny≤N = ℕP.m≤n⊔m Nx Ny lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x ⊓ y) m ℚ.≥ + 1 / N lem m m≥N = [ left , right ]′ (ℚP.≤-total (seq x m) (seq y m)) where left : seq x m ℚ.≤ seq y m -> seq (x ⊓ y) m ℚ.≥ + 1 / N left hyp = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 Nx N Nx≤N ⟩ + 1 / Nx ≤⟨ proj₂ fromPosx m (ℕP.≤-trans Nx≤N m≥N) ⟩ seq x m ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊓q≃p hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ right : seq y m ℚ.≤ seq x m -> seq (x ⊓ y) m ℚ.≥ + 1 / N right hyp = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 Ny N Ny≤N ⟩ + 1 / Ny ≤⟨ proj₂ fromPosy m (ℕP.≤-trans Ny≤N m≥N) ⟩ seq y m ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊓q≃q hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ module ℝ-Solver where open import Data.Bool.Base open import Tactic.RingSolver.Core.Polynomial.Parameters open import Tactic.RingSolver.Core.AlmostCommutativeRing open import Data.Maybe.Base using (nothing) ℚ-isZero : ℚᵘ -> Bool ℚ-isZero p with p ℚP.≃? 0ℚᵘ ... | .true because ofʸ p₁ = true ... | .false because ofⁿ ¬p = false ℚ-coeff : RawCoeff _ _ ℚ-coeff = record { rawRing = ℚP.+-*-rawRing ; isZero = ℚ-isZero } abstract ⋆-distrib-+₂ = ⋆-distrib-+ ⋆-distrib-*₂ = ⋆-distrib-* ⋆-distrib-neg₂ = ⋆-distrib-neg getMorphism : _-Raw-AlmostCommutative⟶_ ℚP.+-*-rawRing (fromCommutativeRing +-*-commutativeRing (λ x -> nothing)) getMorphism = record { ⟦_⟧ = λ p -> p ⋆ ; +-homo = ⋆-distrib-+₂ ; *-homo = ⋆-distrib-*₂ ; -‿homo = ⋆-distrib-neg₂ ; 0-homo = ≃-refl ; 1-homo = ≃-refl } zero-checker : ∀ p -> T (ℚ-isZero p) -> 0ℝ ≃ p ⋆ zero-checker p hyp with p ℚP.≃? 0ℚᵘ ... | .true because ofʸ p₁ = ⋆-cong (ℚP.≃-sym p₁) homo : Homomorphism _ _ _ _ homo = record { from = ℚ-coeff ; to = fromCommutativeRing +-*-commutativeRing (λ x -> nothing) ; morphism = getMorphism ; Zero-C⟶Zero-R = zero-checker } open import NonReflective homo public open import Tactic.RingSolver.Core.Expression public infix 4 _<_ _>_ _≤_ _≥_ _<_ : Rel ℝ 0ℓ x < y = Positive (y - x) _>_ : Rel ℝ 0ℓ x > y = y < x _≤_ : Rel ℝ 0ℓ x ≤ y = NonNegative (y - x) _≥_ : Rel ℝ 0ℓ x ≥ y = y ≤ x Negative : Pred ℝ 0ℓ Negative x = Positive (- x) neg-cong : ∀ {x y} -> x ≃ y -> Negative x -> Negative y neg-cong x≃y negx = pos-cong (-‿cong x≃y) negx <⇒≤ : _<_ ⇒ _≤_ <⇒≤ {x} {y} x<y = pos⇒nonNeg x<y -- Helper lemmas often used in the next few order property proofs private z-y+y-x≃z-x : ∀ {x y z} -> (z - y) + (y - x) ≃ z - x z-y+y-x≃z-x {x} {y} {z} = solve 3 (λ x y z -> ((z ⊖ y) ⊕ (y ⊖ x)) ⊜ (z ⊖ x)) ≃-refl x y z where open ℝ-Solver z-x+t-y≃z+t-x+y : ∀ {x y z t} -> (z - x) + (t - y) ≃ (z + t) - (x + y) z-x+t-y≃z+t-x+y {x} {y} {z} {t} = solve 4 (λ x y z t -> ((z ⊖ x) ⊕ (t ⊖ y)) ⊜ ((z ⊕ t) ⊖ (x ⊕ y))) ≃-refl x y z t where open ℝ-Solver <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans {x} {y} {z} x<y y≤z = pos-cong (≃-trans (+-comm (y - x) (z - y)) z-y+y-x≃z-x) (posx∧nonNegy⇒posx+y x<y y≤z) ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans {x} {y} {z} x≤y y<z = pos-cong z-y+y-x≃z-x (posx∧nonNegy⇒posx+y y<z x≤y) <-trans : Transitive _<_ <-trans = ≤-<-trans ∘ <⇒≤ ≤-trans : Transitive _≤_ ≤-trans {x} {y} {z} x≤y y≤z = nonNeg-cong z-y+y-x≃z-x (nonNegx,y⇒nonNegx+y y≤z x≤y) nonNeg0 : NonNegative 0ℝ nonNeg0 = nonNeg* (λ {(suc k₁) -> ℚP.<⇒≤ (ℚP.negative⁻¹ _)}) nonNeg-refl : ∀ {x} -> NonNegative (x - x) nonNeg-refl {x} = nonNeg-cong (≃-symm (+-inverseʳ x)) nonNeg0 +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ x≤z y≤t = nonNeg-cong z-x+t-y≃z+t-x+y (nonNegx,y⇒nonNegx+y x≤z y≤t) +-monoʳ-≤ : ∀ (x : ℝ) -> (_+_ x) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ x y≤z = +-mono-≤ nonNeg-refl y≤z +-monoˡ-≤ : ∀ (x : ℝ) -> (_+ x) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ x y≤z = +-mono-≤ y≤z nonNeg-refl +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< x<z y<t = pos-cong z-x+t-y≃z+t-x+y (posx,y⇒posx+y x<z y<t) +-monoʳ-< : ∀ x -> (_+_ x) Preserves _<_ ⟶ _<_ +-monoʳ-< x {y} {z} y<z = pos-cong (solve 3 (λ x y z -> (z ⊖ y) ⊜ (x ⊕ z ⊖ (x ⊕ y))) ≃-refl x y z) y<z where open ℝ-Solver +-monoˡ-< : ∀ x → (_+ x) Preserves _<_ ⟶ _<_ +-monoˡ-< x {y} {z} y<z = pos-cong (+-cong (+-comm x z) (-‿cong (+-comm x y))) (+-monoʳ-< x y<z) neg-distribˡ-* : ∀ x y -> - (x * y) ≃ - x * y neg-distribˡ-* = solve 2 (λ x y -> (⊝ (x ⊗ y)) ⊜ ((⊝ x) ⊗ y)) ≃-refl where open ℝ-Solver neg-distribʳ-* : ∀ x y -> - (x * y) ≃ x * (- y) neg-distribʳ-* = solve 2 (λ x y -> (⊝ (x ⊗ y)) ⊜ (x ⊗ (⊝ y))) ≃-refl where open ℝ-Solver ≤-reflexive : _≃_ ⇒ _≤_ ≤-reflexive {x} x≃y = nonNeg-cong (+-congˡ (- x) x≃y) nonNeg-refl ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive ≃-refl ≤-isPreorder : IsPreorder _≃_ _≤_ ≤-isPreorder = record { isEquivalence = ≃-isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-respʳ-≃ : _≤_ Respectsʳ _≃_ ≤-respʳ-≃ {x} {y} {z} y≃z x≤y = nonNeg-cong (+-congˡ (- x) y≃z) x≤y ≤-respˡ-≃ : _≤_ Respectsˡ _≃_ ≤-respˡ-≃ {x} {y} {z} y≃z y≤x = nonNeg-cong (+-congʳ x (-‿cong y≃z)) y≤x <-respʳ-≃ : _<_ Respectsʳ _≃_ <-respʳ-≃ y≃z x<y = <-≤-trans x<y (≤-reflexive y≃z) <-respˡ-≃ : _<_ Respectsˡ _≃_ <-respˡ-≃ y≃z y<x = ≤-<-trans (≤-reflexive (≃-symm y≃z)) y<x <-resp-≃ : _<_ Respects₂ _≃_ <-resp-≃ = <-respʳ-≃ , <-respˡ-≃ module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-trans <-resp-≃ <⇒≤ <-≤-trans ≤-<-trans public *-monoʳ-≤-nonNeg : ∀ {x y z} -> x ≤ z -> NonNegative y -> x * y ≤ z * y *-monoʳ-≤-nonNeg {x} {y} {z} x≤z nony = nonNeg-cong (solve 3 (λ x y z -> ((z ⊖ x) ⊗ y) ⊜ (z ⊗ y ⊖ x ⊗ y)) ≃-refl x y z) (nonNegx,y⇒nonNegx*y x≤z nony) where open ℝ-Solver *-monoˡ-≤-nonNeg : ∀ {x y z} -> x ≤ z -> NonNegative y -> y * x ≤ y * z *-monoˡ-≤-nonNeg {x} {y} {z} x≤z nony = begin y * x ≈⟨ *-comm y x ⟩ x * y ≤⟨ *-monoʳ-≤-nonNeg x≤z nony ⟩ z * y ≈⟨ *-comm z y ⟩ y * z ∎ where open ≤-Reasoning *-monoʳ-<-pos : ∀ {y} -> Positive y -> (_*_ y) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos {y} posy {x} {z} x<z = pos-cong (solve 3 (λ x y z -> (y ⊗ (z ⊖ x)) ⊜ (y ⊗ z ⊖ y ⊗ x)) ≃-refl x y z) (posx,y⇒posx*y posy x<z) where open ℝ-Solver *-monoˡ-<-pos : ∀ {y} -> Positive y -> (_* y) Preserves _<_ ⟶ _<_ *-monoˡ-<-pos {y} posy {x} {z} x<z = begin-strict x * y ≈⟨ *-comm x y ⟩ y * x <⟨ *-monoʳ-<-pos posy x<z ⟩ y * z ≈⟨ *-comm y z ⟩ z * y ∎ where open ≤-Reasoning neg-mono-< : -_ Preserves _<_ ⟶ _>_ neg-mono-< {x} {y} x<y = pos-cong (solve 2 (λ x y -> (y ⊖ x) ⊜ (⊝ x ⊖ (⊝ y))) ≃-refl x y) x<y where open ℝ-Solver neg-mono-≤ : -_ Preserves _≤_ ⟶ _≥_ neg-mono-≤ {x} {y} x≤y = nonNeg-cong (solve 2 (λ x y -> (y ⊖ x) ⊜ (⊝ x ⊖ (⊝ y))) ≃-refl x y) x≤y where open ℝ-Solver x≤x⊔y : ∀ x y -> x ≤ x ⊔ y x≤x⊔y x y = nonNeg* (λ {(suc k₁) -> let n = suc k₁ in begin ( ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (seq x (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- seq x (2 ℕ.* n)) (ℚP.p≤p⊔q (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.⊔ seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ∎)}) where open ℚP.≤-Reasoning x≤y⊔x : ∀ x y -> x ≤ y ⊔ x x≤y⊔x x y = begin x ≤⟨ x≤x⊔y x y ⟩ x ⊔ y ≈⟨ ⊔-comm x y ⟩ y ⊔ x ∎ where open ≤-Reasoning x⊓y≤x : ∀ x y -> x ⊓ y ≤ x x⊓y≤x x y = nonNeg* λ {(suc k₁) -> let n = suc k₁ in begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (seq x (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ ℚP.+-monoʳ-≤ (seq x (2 ℕ.* n)) (ℚP.neg-mono-≤ (ℚP.p⊓q≤p (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)))) ⟩ seq x (2 ℕ.* n) ℚ.- seq (x ⊓ y) (2 ℕ.* n) ∎} where open ℚP.≤-Reasoning x⊓y≤y : ∀ x y -> x ⊓ y ≤ y x⊓y≤y x y = begin x ⊓ y ≈⟨ ⊓-comm x y ⟩ y ⊓ x ≤⟨ x⊓y≤x y x ⟩ y ∎ where open ≤-Reasoning ≤-antisym : Antisymmetric _≃_ _≤_ ≤-antisym {x} {y} (nonNeg* x≤y) (nonNeg* y≤x) = ≃-symm partB where partA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ seq (x - y) n ℚ.- 0ℚᵘ ∣ ℚ.≤ (+ 2 / n) {n≢0} partA (suc k₁) = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ℚ.- 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-identityʳ (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≤⟨ [ left , right ]′ (ℚP.≤-total (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open ℚ-Solver n = suc k₁ left : seq x (2 ℕ.* n) ℚ.≤ seq y (2 ℕ.* n) -> ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ℚ.≤ + 2 / n left hyp = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)))) (ℚP.0≤p⇒∣p∣≃p (ℚP.neg-mono-≤ (ℚP.p≤q⇒p-q≤0 hyp))) ⟩ ℚ.- (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)) ≤⟨ ℚP.≤-respʳ-≃ (ℚP.neg-involutive (+ 1 / n)) (ℚP.neg-mono-≤ (y≤x n)) ⟩ + 1 / n ≤⟨ p≤q⇒p/r≤q/r (+ 1) (+ 2) n (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n)) ⟩ + 2 / n ∎ right : seq y (2 ℕ.* n) ℚ.≤ seq x (2 ℕ.* n) -> ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ℚ.≤ + 2 / n right hyp = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp) ⟩ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ≈⟨ solve 2 (λ x y -> (x ⊖ y) ⊜ (⊝ (y ⊖ x))) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)) ⟩ ℚ.- (seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n)) ≤⟨ ℚP.≤-respʳ-≃ (ℚP.neg-involutive (+ 1 / n)) (ℚP.neg-mono-≤ (x≤y n)) ⟩ + 1 / n ≤⟨ p≤q⇒p/r≤q/r (+ 1) (+ 2) n (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n)) ⟩ + 2 / n ∎ partB : y ≃ x partB = begin y ≈⟨ ≃-symm (+-identityʳ y) ⟩ y + 0ℝ ≈⟨ +-congʳ y (≃-symm (*≃* partA)) ⟩ y + (x - y) ≈⟨ +-congʳ y (+-comm x (- y)) ⟩ y + (- y + x) ≈⟨ ≃-symm (+-assoc y (- y) x) ⟩ y - y + x ≈⟨ +-congˡ x (+-inverseʳ y) ⟩ 0ℝ + x ≈⟨ +-identityˡ x ⟩ x ∎ where open ≃-Reasoning -- Strange new interaction: 0 = -0 is no longer provable by reflexivity. 0≃-0 : 0ℝ ≃ - 0ℝ 0≃-0 = ⋆-distrib-neg 0ℚᵘ private -- Helper for the next few proofs x-0≃x : ∀ {x} -> x - 0ℝ ≃ x x-0≃x {x} = ≃-trans (+-congʳ x (≃-symm 0≃-0)) (+-identityʳ x) 0<x⇒posx : ∀ {x} -> 0ℝ < x -> Positive x 0<x⇒posx {x} 0<x = pos-cong x-0≃x 0<x posx⇒0<x : ∀ {x} -> Positive x -> 0ℝ < x posx⇒0<x {x} posx = pos-cong (≃-symm x-0≃x) posx 0≤x⇒nonNegx : ∀ {x} -> 0ℝ ≤ x -> NonNegative x 0≤x⇒nonNegx {x} 0≤x = nonNeg-cong x-0≃x 0≤x nonNegx⇒0≤x : ∀ {x} -> NonNegative x -> 0ℝ ≤ x nonNegx⇒0≤x {x} nonx = nonNeg-cong (≃-symm x-0≃x) nonx x<0⇒negx : ∀ {x} -> x < 0ℝ -> Negative x x<0⇒negx {x} x<0 = pos-cong (+-identityˡ (- x)) x<0 negx⇒x<0 : ∀ {x} -> Negative x -> x < 0ℝ negx⇒x<0 {x} negx = pos-cong (≃-symm (+-identityˡ (- x))) negx 0≤∣x∣ : ∀ x -> 0ℝ ≤ ∣ x ∣ 0≤∣x∣ x = nonNegx⇒0≤x (nonNeg∣x∣ x) ∣x+y∣≤∣x∣+∣y∣ : ∀ x y -> ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ ∣x+y∣≤∣x∣+∣y∣ x y = nonNeg* (λ {(suc k₁) -> let n = suc k₁; ∣x₄ₙ∣ = ℚ.∣ seq x (2 ℕ.* (2 ℕ.* n)) ∣ ; ∣y₄ₙ∣ = ℚ.∣ seq y (2 ℕ.* (2 ℕ.* n)) ∣ ; ∣x₄ₙ+y₄ₙ∣ = ℚ.∣ seq x (2 ℕ.* (2 ℕ.* n)) ℚ.+ seq y (2 ℕ.* (2 ℕ.* n)) ∣ in begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣)) ⟩ ∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣ ℚ.- (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣) ≤⟨ ℚP.+-monoʳ-≤ (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣) (ℚP.neg-mono-≤ (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* (2 ℕ.* n))) (seq y (2 ℕ.* (2 ℕ.* n))))) ⟩ ∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣ ℚ.- ∣x₄ₙ+y₄ₙ∣ ∎}) where open ℚP.≤-Reasoning -- Should I use a constructor here too? _≄_ : Rel ℝ 0ℓ x ≄ y = x < y ⊎ y < x _≄0 : ℝ -> Set x ≄0 = x ≄ 0ℝ x≤∣x∣ : ∀ {x} -> x ≤ ∣ x ∣ x≤∣x∣ {x} = nonNeg* (λ {(suc k₁) -> let n = suc k₁ in begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≤⟨ ℚP.p≤q⇒0≤q-p (p≤∣p∣ (seq x (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ∣ ℚ.- seq x (2 ℕ.* n) ∎}) where open ℚP.≤-Reasoning ∣-x∣≃∣x∣ : ∀ {x} -> ∣ - x ∣ ≃ ∣ x ∣ ∣-x∣≃∣x∣ {x} = *≃* λ {(suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.∣ ℚ.- seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- ℚ.∣ seq x n ∣) (ℚP.∣-p∣≃∣p∣ (seq x n))) ⟩ ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ℚ.∣ seq x n ∣) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning x≄0⇒0<∣x∣ : ∀ {x} -> x ≄0 -> 0ℝ < ∣ x ∣ x≄0⇒0<∣x∣ {x} (inj₁ x<0) = begin-strict 0ℝ ≈⟨ 0≃-0 ⟩ - 0ℝ <⟨ neg-mono-< x<0 ⟩ - x ≤⟨ x≤∣x∣ ⟩ ∣ - x ∣ ≈⟨ ∣-x∣≃∣x∣ ⟩ ∣ x ∣ ∎ where open ≤-Reasoning x≄0⇒0<∣x∣ {x} (inj₂ 0<x) = <-≤-trans 0<x x≤∣x∣ x≄0⇒pos∣x∣ : ∀ {x} -> x ≄0 -> Positive ∣ x ∣ x≄0⇒pos∣x∣ {x} x≄0 = 0<x⇒posx (x≄0⇒0<∣x∣ x≄0) ℚ≠-helper : ∀ p -> p ℚ.> 0ℚᵘ ⊎ p ℚ.< 0ℚᵘ -> p ℚ.≠ 0ℚᵘ ℚ≠-helper p hyp1 = [ (λ p>0 p≃0 -> ℚP.<-irrefl (ℚP.≃-sym p≃0) p>0) , (λ p<0 p≃0 -> ℚP.<-irrefl p≃0 p<0) ]′ hyp1 Nₐ : (x : ℝ) -> (x≄0 : x ≄0) -> ℕ Nₐ x x≄0 = suc (proj₁ (fast-lemma-2-8-1-if {∣ x ∣} (x≄0⇒pos∣x∣ {x} x≄0))) abstract not0-helper : ∀ (x : ℝ) -> (x≄0 : x ≄0) -> ∀ (n : ℕ) -> ℤ.∣ ↥ (seq x ((n ℕ.+ (Nₐ x x≄0)) ℕ.* ((Nₐ x x≄0) ℕ.* (Nₐ x x≄0)))) ∣ ≢0 not0-helper x x≄0 n = ℚP.p≄0⇒∣↥p∣≢0 xₛ (ℚ≠-helper xₛ ([ left , right ]′ (ℚP.∣p∣≡p∨∣p∣≡-p xₛ))) where open ℚP.≤-Reasoning N = Nₐ x x≄0 xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) 0<∣xₛ∣ : 0ℚᵘ ℚ.< ℚ.∣ xₛ ∣ 0<∣xₛ∣ = begin-strict 0ℚᵘ <⟨ ℚP.positive⁻¹ _ ⟩ + 1 / N ≤⟨ proj₂ (fast-lemma-2-8-1-if {∣ x ∣} (x≄0⇒pos∣x∣ {x} x≄0)) ((n ℕ.+ N) ℕ.* (N ℕ.* N)) (ℕP.≤-trans (ℕP.m≤n*m N {N} ℕP.0<1+n) (ℕP.m≤n*m (N ℕ.* N) {n ℕ.+ N} (subst (0 ℕ.<_) (ℕP.+-comm N n) ℕP.0<1+n))) ⟩ ℚ.∣ xₛ ∣ ∎ left : ℚ.∣ xₛ ∣ ≡ xₛ -> xₛ ℚ.> 0ℚᵘ ⊎ xₛ ℚ.< 0ℚᵘ left hyp = inj₁ (begin-strict 0ℚᵘ <⟨ 0<∣xₛ∣ ⟩ ℚ.∣ xₛ ∣ ≡⟨ hyp ⟩ xₛ ∎) right : ℚ.∣ xₛ ∣ ≡ ℚ.- xₛ -> xₛ ℚ.> 0ℚᵘ ⊎ xₛ ℚ.< 0ℚᵘ right hyp = inj₂ (begin-strict xₛ ≈⟨ ℚP.≃-sym (ℚP.neg-involutive xₛ) ⟩ ℚ.- (ℚ.- xₛ) ≡⟨ cong ℚ.-_ (sym hyp) ⟩ ℚ.- ℚ.∣ xₛ ∣ <⟨ ℚP.neg-mono-< 0<∣xₛ∣ ⟩ 0ℚᵘ ∎) abstract inverse-helper : ∀ (x : ℝ) -> (x≄0 : x ≄0) -> ∀ (n : ℕ) -> ℚ.∣ (ℚ.1/ seq x ((n ℕ.+ (Nₐ x x≄0)) ℕ.* (Nₐ x x≄0 ℕ.* Nₐ x x≄0))) {not0-helper x x≄0 n} ∣ ℚ.≤ + (Nₐ x x≄0) / 1 inverse-helper x x≄0 n = begin ℚ.∣ xₛ⁻¹ ∣ ≈⟨ ℚP.≃-sym (ℚP.*-identityʳ ℚ.∣ xₛ⁻¹ ∣) ⟩ ℚ.∣ xₛ⁻¹ ∣ ℚ.* 1ℚᵘ ≈⟨ ℚP.*-congˡ {ℚ.∣ xₛ⁻¹ ∣} (ℚP.≃-sym (ℚP.*-inverseˡ (+ N / 1))) ⟩ ℚ.∣ xₛ⁻¹ ∣ ℚ.* (+ 1 / N ℚ.* (+ N / 1)) ≈⟨ ℚP.≃-sym (ℚP.*-assoc ℚ.∣ xₛ⁻¹ ∣ (+ 1 / N) (+ N / 1)) ⟩ ℚ.∣ xₛ⁻¹ ∣ ℚ.* (+ 1 / N) ℚ.* (+ N / 1) ≤⟨ ℚP.*-monoˡ-≤-nonNeg {+ N / 1} _ (ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ xₛ⁻¹ ∣} _ lesser-helper-2) ⟩ ℚ.∣ xₛ⁻¹ ∣ ℚ.* ℚ.∣ xₛ ∣ ℚ.* (+ N / 1) ≈⟨ ℚP.*-congʳ {+ N / 1} helper ⟩ 1ℚᵘ ℚ.* (+ N / 1) ≈⟨ ℚP.*-identityˡ (+ N / 1) ⟩ + N / 1 ∎ where open ℚP.≤-Reasoning N = Nₐ x x≄0 xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) xₛ≢0 = not0-helper x x≄0 n xₛ⁻¹ = (ℚ.1/ seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N))) {xₛ≢0} helper : ℚ.∣ xₛ⁻¹ ∣ ℚ.* ℚ.∣ xₛ ∣ ℚ.≃ ℚ.1ℚᵘ helper = begin-equality ℚ.∣ xₛ⁻¹ ∣ ℚ.* ℚ.∣ xₛ ∣ ≈⟨ ℚP.≃-sym (ℚP.∣p*q∣≃∣p∣*∣q∣ xₛ⁻¹ xₛ) ⟩ ℚ.∣ xₛ⁻¹ ℚ.* xₛ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.*-inverseˡ xₛ {xₛ≢0}) ⟩ ℚ.1ℚᵘ ∎ lesser-helper : N ℕ.≤ (n ℕ.+ N) ℕ.* (N ℕ.* N) lesser-helper = ℕP.≤-trans (ℕP.m≤n+m N n) (ℕP.m≤m*n (n ℕ.+ N) {N ℕ.* N} ℕP.0<1+n) lesser-helper-2 : + 1 / N ℚ.≤ ℚ.∣ xₛ ∣ lesser-helper-2 = proj₂ (fast-lemma-2-8-1-if {∣ x ∣} (x≄0⇒pos∣x∣ {x} x≄0)) ((n ℕ.+ N) ℕ.* (N ℕ.* N)) lesser-helper _⁻¹ : (x : ℝ) -> (x≄0 : x ≄ 0ℝ) -> ℝ seq ((x ⁻¹) x≄0) n = (ℚ.1/ xₛ) {not0-helper x x≄0 n} where open ℚP.≤-Reasoning N = Nₐ x x≄0 xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) reg ((x ⁻¹) x≄0) (suc k₁) (suc k₂) = begin ℚ.∣ yₘ ℚ.- yₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ yₘ)) (ℚP.*-congˡ {yₘ} (ℚP.≃-sym (ℚP.*-inverseˡ xₙ {xₖ≢0 n})))) (ℚP.-‿cong (ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ yₙ)) (ℚP.*-congˡ {yₙ} (ℚP.≃-sym (ℚP.*-inverseˡ xₘ {xₖ≢0 m})))))) ⟩ ℚ.∣ yₘ ℚ.* (yₙ ℚ.* xₙ) ℚ.- yₙ ℚ.* (yₘ ℚ.* xₘ) ∣ ≈⟨ ℚP.∣-∣-cong (solve 4 (λ xₘ xₙ yₘ yₙ -> (yₘ ⊗ (yₙ ⊗ xₙ) ⊖ yₙ ⊗ (yₘ ⊗ xₘ)) ⊜ (yₘ ⊗ yₙ ⊗ (xₙ ⊖ xₘ))) ℚP.≃-refl xₘ xₙ yₘ yₙ) ⟩ ℚ.∣ yₘ ℚ.* yₙ ℚ.* (xₙ ℚ.- xₘ) ∣ ≈⟨ ℚP.∣p*q∣≃∣p∣*∣q∣ (yₘ ℚ.* yₙ) (xₙ ℚ.- xₘ) ⟩ ℚ.∣ yₘ ℚ.* yₙ ∣ ℚ.* ℚ.∣ xₙ ℚ.- xₘ ∣ ≤⟨ ℚP.≤-trans (ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ yₘ ℚ.* yₙ ∣} _ (reg x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) ((m ℕ.+ N) ℕ.* (N ℕ.* N)))) (ℚP.*-monoˡ-≤-nonNeg {+ 1 / ((n ℕ.+ N) ℕ.* (N ℕ.* N)) ℚ.+ + 1 / ((m ℕ.+ N) ℕ.* (N ℕ.* N))} _ ∣yₘ*yₙ∣≤N²) ⟩ (+ N / 1) ℚ.* (+ N / 1) ℚ.* ((+ 1 / ((n ℕ.+ N) ℕ.* (N ℕ.* N))) ℚ.+ (+ 1 / ((m ℕ.+ N) ℕ.* (N ℕ.* N)))) ≈⟨ ℚ.*≡* (ℤsolve 3 (λ m n N -> ((N :* N) :* ((κ (+ 1) :* ((m :+ N) :* (N :* N))) :+ (κ (+ 1) :* ((n :+ N) :* (N :* N))))) :* ((m :+ N) :* (n :+ N)) := (κ (+ 1) :* (n :+ N) :+ κ (+ 1) :* (m :+ N)) :* (κ (+ 1) :* κ (+ 1) :* (((n :+ N) :* (N :* N)) :* ((m :+ N) :* (N :* N))))) refl (+ m) (+ n) (+ N)) ⟩ (+ 1 / (m ℕ.+ N)) ℚ.+ (+ 1 / (n ℕ.+ N)) ≤⟨ ℚP.+-mono-≤ (q≤r⇒+p/r≤+p/q 1 m (m ℕ.+ N) (ℕP.m≤m+n m N)) (q≤r⇒+p/r≤+p/q 1 n (n ℕ.+ N) (ℕP.m≤m+n n N)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) N = Nₐ x x≄0 m = suc k₁ n = suc k₂ xₘ = seq x ((m ℕ.+ N) ℕ.* (N ℕ.* N)) xₙ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) xₖ≢0 : ∀ (k : ℕ) -> ℤ.∣ ↥ seq x ((k ℕ.+ N) ℕ.* (N ℕ.* N)) ∣ ≢0 xₖ≢0 k = not0-helper x x≄0 k yₘ = (ℚ.1/ xₘ) {xₖ≢0 m} yₙ = (ℚ.1/ xₙ) {xₖ≢0 n} ∣yₘ*yₙ∣≤N² : ℚ.∣ yₘ ℚ.* yₙ ∣ ℚ.≤ (+ N / 1) ℚ.* (+ N / 1) ∣yₘ*yₙ∣≤N² = begin ℚ.∣ yₘ ℚ.* yₙ ∣ ≈⟨ ℚP.∣p*q∣≃∣p∣*∣q∣ yₘ yₙ ⟩ ℚ.∣ yₘ ∣ ℚ.* ℚ.∣ yₙ ∣ ≤⟨ ℚ-*-mono-≤ {ℚ.∣ yₘ ∣} {+ N / 1} {ℚ.∣ yₙ ∣} {+ N / 1} _ _ (inverse-helper x x≄0 m) (inverse-helper x x≄0 n) ⟩ (+ N / 1) ℚ.* (+ N / 1) ∎ +p≤+q⇒1/q≤1/p : ∀ {p q} -> (posp : ℚ.Positive p) -> (posq : ℚ.Positive q) -> p ℚ.≤ q -> (ℚ.1/ q) {ℚP.p≄0⇒∣↥p∣≢0 q (ℚ≠-helper q (inj₁ (ℚP.positive⁻¹ posq)))} ℚ.≤ (ℚ.1/ p) {ℚP.p≄0⇒∣↥p∣≢0 p (ℚ≠-helper p (inj₁ (ℚP.positive⁻¹ posp)))} +p≤+q⇒1/q≤1/p {mkℚᵘ (+ suc p-1) q-1} {mkℚᵘ (+ suc u-1) v-1} posp/q posu/v p/q≤u/v = let p = + suc p-1; q = + suc q-1; u = + suc u-1; v = + suc v-1 in ℚ.*≤* (begin v ℤ.* p ≡⟨ ℤP.*-comm v p ⟩ p ℤ.* v ≤⟨ ℚP.drop-*≤* p/q≤u/v ⟩ u ℤ.* q ≡⟨ ℤP.*-comm u q ⟩ q ℤ.* u ∎) where open ℤP.≤-Reasoning {- Proposition: If x≠0, then x * x⁻¹ = 1. Proof: Kₓ ≤ max{Kₓ, Kᵣ} = k ⇒ Kₓ/k ≤ 1 Let k = max{Kx, K(x⁻¹)}, let m = N², and let r = n + N. Then: ∣x₂ₖₙ * x⁻¹₂ₖᵣₘ - 1∣ = ∣x₂ₖᵣₘ∣⁻¹∣x₂ₖₙ - x₂ₖᵣₘ∣ ≤ ∣x₂ₖᵣₘ∣⁻¹((2kn)⁻¹ + (2k(n+N)N²)⁻¹) ≤ k((2kn)⁻¹ + (2kn)⁻¹) = n⁻¹ ≤ 2n⁻¹. Hence x * x⁻¹ = 1. □ -} *-inverseʳ : ∀ x -> (x≄0 : x ≄0) -> x * ((x ⁻¹) x≄0) ≃ 1ℝ *-inverseʳ x x≄0 = *≃* λ {(suc k₁) -> let n = suc k₁; x⁻¹ = (x ⁻¹) x≄0; k = K x ℕ.⊔ K x⁻¹ ; N = Nₐ x x≄0; x₂ₖₙ = seq x (2 ℕ.* k ℕ.* n) ; xₛ = seq x ((2 ℕ.* k ℕ.* n ℕ.+ N) ℕ.* (N ℕ.* N)) ; y₂ₖₙ = (ℚ.1/ xₛ) {not0-helper x x≄0 (2 ℕ.* k ℕ.* n)} in begin ℚ.∣ x₂ₖₙ ℚ.* y₂ₖₙ ℚ.- 1ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (x₂ₖₙ ℚ.* y₂ₖₙ) (ℚP.-‿cong (ℚP.≃-sym (ℚP.*-inverseʳ xₛ {not0-helper x x≄0 (2 ℕ.* k ℕ.* n)})))) ⟩ ℚ.∣ x₂ₖₙ ℚ.* y₂ₖₙ ℚ.- xₛ ℚ.* y₂ₖₙ ∣ ≈⟨ ℚP.≃-trans (ℚP.∣-∣-cong (solve 3 (λ x₂ₖₙ xₛ y₂ₖₙ -> (x₂ₖₙ ⊗ y₂ₖₙ ⊖ xₛ ⊗ y₂ₖₙ) ⊜ (y₂ₖₙ ⊗ (x₂ₖₙ ⊖ xₛ))) ℚP.≃-refl x₂ₖₙ xₛ y₂ₖₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ₖₙ (x₂ₖₙ ℚ.- xₛ))⟩ ℚ.∣ y₂ₖₙ ∣ ℚ.* ℚ.∣ x₂ₖₙ ℚ.- xₛ ∣ ≤⟨ ℚ-*-mono-≤ _ _ (ℚP.≤-trans (ℚP.<⇒≤ (canonical-strict-upper-bound x⁻¹ (2 ℕ.* k ℕ.* n))) (p≤q⇒p/r≤q/r (+ K x⁻¹) (+ k) 1 (ℤ.+≤+ (ℕP.m≤n⊔m (K x) (K x⁻¹))))) (reg x (2 ℕ.* k ℕ.* n) ((2 ℕ.* k ℕ.* n ℕ.+ N) ℕ.* (N ℕ.* N))) ⟩ + k / 1 ℚ.* (+ 1 / (2 ℕ.* k ℕ.* n) ℚ.+ + 1 / ((2 ℕ.* k ℕ.* n ℕ.+ N) ℕ.* (N ℕ.* N))) ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ k / 1} _ (ℚP.+-monoʳ-≤ (+ 1 / (2 ℕ.* k ℕ.* n)) (q≤r⇒+p/r≤+p/q 1 (2 ℕ.* k ℕ.* n) ((2 ℕ.* k ℕ.* n ℕ.+ N) ℕ.* (N ℕ.* N)) (ℕP.≤-trans (ℕP.m≤m+n (2 ℕ.* k ℕ.* n) N) (ℕP.m≤m*n (2 ℕ.* k ℕ.* n ℕ.+ N) {N ℕ.* N} ℕP.0<1+n)))) ⟩ + k / 1 ℚ.* (+ 1 / (2 ℕ.* k ℕ.* n) ℚ.+ + 1 / (2 ℕ.* k ℕ.* n)) ≈⟨ ℚ.*≡* (ℤsolve 2 (λ k n -> (k :* (κ (+ 1) :* (κ (+ 2) :* k :* n) :+ κ (+ 1) :* (κ (+ 2) :* k :* n))) :* n := κ (+ 1) :* (κ (+ 1) :* (κ (+ 2) :* k :* n :* (κ (+ 2) :* k :* n)))) refl (+ k) (+ n)) ⟩ + 1 / n ≤⟨ p≤q⇒p/r≤q/r (+ 1) (+ 2) n (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n)) ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊜_ to _:=_ ; Κ to κ ) *-inverseˡ : ∀ x -> (x≄0 : x ≄0) -> ((x ⁻¹) x≄0) * x ≃ 1ℝ *-inverseˡ x x≄0 = let x⁻¹ = (x ⁻¹) x≄0 in begin x⁻¹ * x ≈⟨ *-comm x⁻¹ x ⟩ x * x⁻¹ ≈⟨ *-inverseʳ x x≄0 ⟩ 1ℝ ∎ where open ≃-Reasoning abstract ⁻¹-unique : ∀ t x -> (x≄0 : x ≄0) -> t * x ≃ 1ℝ -> t ≃ (x ⁻¹) x≄0 ⁻¹-unique t x x≄0 tx=1 = let x⁻¹ = (x ⁻¹) x≄0 in begin t ≈⟨ ≃-symm (*-identityʳ t) ⟩ t * 1ℝ ≈⟨ *-congˡ (≃-symm (*-inverseʳ x x≄0)) ⟩ t * (x * x⁻¹) ≈⟨ ≃-symm (*-assoc t x x⁻¹) ⟩ (t * x) * x⁻¹ ≈⟨ *-congʳ tx=1 ⟩ 1ℝ * x⁻¹ ≈⟨ *-identityˡ x⁻¹ ⟩ x⁻¹ ∎ where open ≃-Reasoning ⁻¹-cong : ∀ {x y} -> (x≄0 : x ≄0) -> (y≄0 : y ≄0) -> x ≃ y -> (x ⁻¹) x≄0 ≃ (y ⁻¹) y≄0 ⁻¹-cong {x} {y} x≄0 y≄0 x≃y = ⁻¹-unique x⁻¹ y y≄0 lem where open ≃-Reasoning x⁻¹ = (x ⁻¹) x≄0 y⁻¹ = (y ⁻¹) y≄0 lem : x⁻¹ * y ≃ 1ℝ lem = begin x⁻¹ * y ≈⟨ *-congˡ (≃-symm x≃y) ⟩ x⁻¹ * x ≈⟨ *-inverseˡ x x≄0 ⟩ 1ℝ ∎ {- Proposition: If x is positive, then so is x⁻¹. Proof: Recall that x is positive ⇔ There is N∈ℕ such that m ≥ N implies xₘ ≥ N⁻¹ (Lemma 2.8.1). Then, since x is positive, we get, for n ≥ max{Kₓ, N}, 0 < N⁻¹ < xₛₙ = ∣xₛₙ∣ < Kₓ (1). Thus 0 < (max{Kₓ, N})⁻¹ ≤ Kₓ⁻¹ < yₙ for n ≥ max{Kₓ, N}. By Lemma 2.8.1, x⁻¹ ≡ (yₙ) is positive. □ -} posx⇒posx⁻¹ : ∀ {x} -> (x≄0 : x ≄0) -> Positive x -> Positive ((x ⁻¹) x≄0) posx⇒posx⁻¹ {x} x≄0 posx = let fromPosx = fast-lemma-2-8-1-if posx; M = suc (proj₁ fromPosx) in lemma-2-8-1-onlyif (ℕ.pred (K x ℕ.⊔ M) , λ {(suc k₁) m≥Kₓ⊔M -> let m = suc k₁; N = Nₐ x x≄0; xₛ = seq x ((m ℕ.+ N) ℕ.* (N ℕ.* N)); yₘ = (ℚ.1/ xₛ) {not0-helper x x≄0 m} in begin + 1 / (K x ℕ.⊔ M) ≤⟨ q≤r⇒+p/r≤+p/q 1 (K x) (K x ℕ.⊔ M) (ℕP.m≤m⊔n (K x) M) ⟩ + 1 / (K x) ≤⟨ +p≤+q⇒1/q≤1/p {xₛ} {+ K x / 1} (ℚ.positive (ℚP.<-≤-trans (ℚP.positive⁻¹ {+ 1 / M} _) (proj₂ fromPosx ((m ℕ.+ N) ℕ.* (N ℕ.* N)) (ℕP.≤-trans (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (K x) M) m≥Kₓ⊔M) (ℕP.m≤m+n m N)) (ℕP.m≤m*n (m ℕ.+ N) {N ℕ.* N} ℕP.0<1+n))))) _ (ℚP.≤-trans (p≤∣p∣ xₛ) (ℚP.<⇒≤ (canonical-strict-upper-bound x ((m ℕ.+ N) ℕ.* (N ℕ.* N))))) ⟩ yₘ ∎}) where open ℚP.≤-Reasoning 0<x⇒0<x⁻¹ : ∀ {x} -> (x≄0 : x ≄0) -> 0ℝ < x -> 0ℝ < (x ⁻¹) x≄0 0<x⇒0<x⁻¹ {x} x≄0 0<x = posx⇒0<x {(x ⁻¹) x≄0} (posx⇒posx⁻¹ {x} x≄0 (0<x⇒posx 0<x)) {- The x argument could be left implicit in this function, but doing so can drastically decrease performance. Maybe changing _≄_ to a constructor will help? -} x≄0⇒-x≄0 : ∀ x -> x ≄0 -> (- x) ≄0 x≄0⇒-x≄0 x (inj₁ x<0) = inj₂ (pos-cong (≃-trans (+-comm 0ℝ (- x)) (+-congʳ (- x) 0≃-0)) x<0) x≄0⇒-x≄0 x (inj₂ 0<x) = inj₁ (pos-cong (≃-trans (≃-trans (+-comm x (- 0ℝ)) (+-congˡ x (≃-symm 0≃-0))) (+-congʳ 0ℝ (≃-symm (neg-involutive x)))) 0<x) neg-distrib-⁻¹ : ∀ {x} -> (x≄0 : x ≄0) -> - ((x ⁻¹) x≄0) ≃ ((- x) ⁻¹) (x≄0⇒-x≄0 x x≄0) neg-distrib-⁻¹ {x} x≄0 = let x⁻¹ = (x ⁻¹) x≄0 in ⁻¹-unique (- x⁻¹) (- x) (x≄0⇒-x≄0 x x≄0) (begin (- x⁻¹) * (- x) ≈⟨ ≃-symm (neg-distribˡ-* x⁻¹ (- x)) ⟩ - (x⁻¹ * (- x)) ≈⟨ -‿cong (≃-symm (neg-distribʳ-* x⁻¹ x)) ⟩ - - (x⁻¹ * x) ≈⟨ neg-involutive (x⁻¹ * x) ⟩ x⁻¹ * x ≈⟨ *-inverseˡ x x≄0 ⟩ 1ℝ ∎) where open ≃-Reasoning {- Proposition: If x is negative, then so is x⁻¹. Alternatively, if -x is positive, then so is -x⁻¹. Proof: Since -x is positive, (-x)⁻¹ is positive. As -x⁻¹ = (-x)⁻¹, -x⁻¹ is positive. Thus x⁻¹ is negative. □ -} negx⇒negx⁻¹ : ∀ {x} -> (x≄0 : x ≄0) -> Negative x -> Negative ((x ⁻¹) x≄0) negx⇒negx⁻¹ {x} x≄0 negx = let x⁻¹ = (x ⁻¹) x≄0; -x⁻¹ = ((- x) ⁻¹) (x≄0⇒-x≄0 x x≄0) in pos-cong { -x⁻¹} { - x⁻¹} (≃-symm (neg-distrib-⁻¹ {x} x≄0)) (posx⇒posx⁻¹ { - x} (x≄0⇒-x≄0 x x≄0) negx) x<0⇒x⁻¹<0 : ∀ {x} -> (x≄0 : x ≄0) -> x < 0ℝ -> (x ⁻¹) x≄0 < 0ℝ x<0⇒x⁻¹<0 {x} x≄0 x<0 = let x⁻¹ = (x ⁻¹) x≄0 in negx⇒x<0 {x⁻¹} (negx⇒negx⁻¹ {x} x≄0 (x<0⇒negx {x} x<0)) m<n*m : ∀ {m n} -> 0 ℕ.< m -> 1 ℕ.< n -> m ℕ.< n ℕ.* m m<n*m {m} {n} 0<m 1<n = subst (m ℕ.<_) (ℕP.*-comm m n) (ℕP.m<m*n 0<m 1<n) {- It seems easier to write the inverse of a rational p in its (p⁻¹)⋆ form. The alternative is writing it in the form (p⋆)⁻¹. They're equivalent, but then you need to provide a proof that p⋆ ≄0 every time you call on (p⋆)⁻¹, whereas in the former case you need only show that p's denominator is not 0. Since naturals (in this case, the denominator of p) actually compute and reals don't, the (p⁻¹)⋆ form is easier to deal with. -} lemma-2-14 : ∀ x -> ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∣ x - (seq x n) ⋆ ∣ ≤ ((+ 1 / n) {n≢0}) ⋆ lemma-2-14 x (suc k₁) = nonNeg* (λ {(suc k₂) -> let n = suc k₁; m = suc k₂; x₄ₘ = seq x (2 ℕ.* (2 ℕ.* m)); xₙ = seq x n in begin ℚ.- (+ 1 / m) <⟨ ℚP.neg-mono-< (q<r⇒+p/r<+p/q 1 m (2 ℕ.* (2 ℕ.* m)) (ℕP.<-trans (m<n*m ℕP.0<1+n ℕP.≤-refl) (m<n*m ℕP.0<1+n ℕP.≤-refl))) ⟩ ℚ.- (+ 1 / (2 ℕ.* (2 ℕ.* m))) ≈⟨ solve 2 (λ 4m n -> (⊝ 4m) ⊜ (n ⊖ (4m ⊕ n))) ℚP.≃-refl (+ 1 / (2 ℕ.* (2 ℕ.* m))) (+ 1 / n) ⟩ + 1 / n ℚ.- (+ 1 / (2 ℕ.* (2 ℕ.* m)) ℚ.+ + 1 / n) ≤⟨ ℚP.+-monoʳ-≤ (+ 1 / n) (ℚP.neg-mono-≤ (reg x (2 ℕ.* (2 ℕ.* m)) n)) ⟩ + 1 / n ℚ.- ℚ.∣ x₄ₘ ℚ.- xₙ ∣ ∎}) where open ℚP.≤-Reasoning open ℚ-Solver _<_<_ : (x y z : ℝ) -> Set x < y < z = (x < y) × (y < z) _<_≤_ : (x y z : ℝ) -> Set x < y ≤ z = (x < y) × (y ≤ z) _≤_<_ : (x y z : ℝ) -> Set x ≤ y < z = (x ≤ y) × (y < z) _≤_≤_ : (x y z : ℝ) -> Set x ≤ y ≤ z = (x ≤ y) × (y ≤ z) 0<y-x⇒x<y : ∀ x y -> 0ℝ < y - x -> x < y 0<y-x⇒x<y x y 0<y-x = pos-cong (≃-trans (+-congʳ (y - x) (≃-symm 0≃-0)) (+-identityʳ (y - x))) 0<y-x x<y⇒0<y-x : ∀ x y -> x < y -> 0ℝ < y - x x<y⇒0<y-x x y x<y = pos-cong (≃-trans (≃-symm (+-identityʳ (y - x))) (+-congʳ (y - x) 0≃-0)) x<y ⋆-distrib-to-p⋆-q⋆ : ∀ p q -> (p ℚ.- q) ⋆ ≃ p ⋆ - (q ⋆) ⋆-distrib-to-p⋆-q⋆ p q = solve 0 (Κ (p ℚ.- q) ⊜ (Κ p ⊖ Κ q)) ≃-refl where open ℝ-Solver 0<p⇒0<p⋆ : ∀ p -> ℚ.Positive p -> Positive (p ⋆) 0<p⇒0<p⋆ (mkℚᵘ +[1+ p ] q-1) posp/q = let q = suc q-1 in pos* (q , ℚ.*<* (begin-strict + 1 ℤ.* + q ≡⟨ ℤP.*-identityˡ (+ q) ⟩ + q <⟨ ℤ.+<+ (ℕP.n<1+n q) ⟩ + suc q ≤⟨ ℤ.+≤+ (ℕP.m≤n*m (suc q) {suc p} ℕP.0<1+n) ⟩ +[1+ p ] ℤ.* + suc q ∎)) where open ℤP.≤-Reasoning p<q⇒p⋆<q⋆ : ∀ p q -> p ℚ.< q -> p ⋆ < q ⋆ p<q⇒p⋆<q⋆ p q p<q = pos-cong (⋆-distrib-to-p⋆-q⋆ q p) (0<p⇒0<p⋆ (q ℚ.- p) (ℚ.positive (p<q⇒0<q-p p q p<q))) ∣x-y∣≃∣y-x∣ : ∀ x y -> ∣ x - y ∣ ≃ ∣ y - x ∣ ∣x-y∣≃∣y-x∣ x y = begin ∣ x - y ∣ ≈⟨ ≃-symm ∣-x∣≃∣x∣ ⟩ ∣ - (x - y) ∣ ≈⟨ ∣-∣-cong (solve 2 (λ x y -> (⊝ (x ⊖ y)) ⊜ (y ⊖ x)) ≃-refl x y) ⟩ ∣ y - x ∣ ∎ where open ℝ-Solver open ≃-Reasoning {- density-of-ℚ is very slow. It's typically much more convenient to use fast-density-of-ℚ, which is its abstract version. -} density-of-ℚ : ∀ x y -> x < y -> ∃ λ (α : ℚᵘ) -> x < α ⋆ < y density-of-ℚ x y (pos* (n-1 , y₂ₙ-x₂ₙ>n⁻¹)) = α , 0<y-x⇒x<y x (α ⋆) (begin-strict 0ℝ <⟨ lemA ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ((+ 1 / (2 ℕ.* n)) ⋆) ≤⟨ +-monoʳ-≤ ((+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆) (neg-mono-≤ (lemma-2-14 x (2 ℕ.* n))) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ∣ x - (x₂ₙ ⋆) ∣ ≈⟨ +-congˡ (- ∣ x - x₂ₙ ⋆ ∣) (⋆-cong (lemB y₂ₙ x₂ₙ)) ⟩ (((+ 1 / 2) ℚ.* (x₂ₙ ℚ.+ y₂ₙ) ℚ.- x₂ₙ) ⋆) - ∣ x - (x₂ₙ ⋆) ∣ ≈⟨ +-congˡ (- ∣ x - x₂ₙ ⋆ ∣) (⋆-distrib-to-p⋆-q⋆ α x₂ₙ) ⟩ (α ⋆) - (x₂ₙ ⋆) - ∣ x - (x₂ₙ ⋆) ∣ ≤⟨ +-monoʳ-≤ (α ⋆ - (x₂ₙ ⋆)) (neg-mono-≤ x≤∣x∣) ⟩ (α ⋆) - (x₂ₙ ⋆) - (x - (x₂ₙ ⋆)) ≈⟨ +-assoc (α ⋆) (- (x₂ₙ ⋆)) (- (x - (x₂ₙ ⋆))) ⟩ α ⋆ + (- (x₂ₙ ⋆) - (x - x₂ₙ ⋆)) ≈⟨ +-congʳ (α ⋆) (≃-trans (≃-symm (neg-distrib-+ (x₂ₙ ⋆) (x - x₂ₙ ⋆))) (-‿cong (helper x (x₂ₙ ⋆)))) ⟩ (α ⋆) - x ∎) , 0<y-x⇒x<y (α ⋆) y (begin-strict 0ℝ <⟨ lemA ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ((+ 1 / (2 ℕ.* n)) ⋆) ≤⟨ +-monoʳ-≤ ((+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆) (neg-mono-≤ (lemma-2-14 y (2 ℕ.* n))) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ∣ y - y₂ₙ ⋆ ∣ ≤⟨ +-monoʳ-≤ ((+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆) (neg-mono-≤ (≤-respʳ-≃ (∣x-y∣≃∣y-x∣ (y₂ₙ ⋆) y) x≤∣x∣)) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - (y₂ₙ ⋆ - y) ≈⟨ +-congʳ ((+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆) (neg-distrib-+ (y₂ₙ ⋆) (- y)) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ + (- (y₂ₙ ⋆) - (- y)) ≈⟨ ≃-trans (≃-symm (+-assoc ((+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆) (- (y₂ₙ ⋆)) (- (- y)))) (+-congˡ (- (- y)) (≃-symm (⋆-distrib-to-p⋆-q⋆ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) y₂ₙ))) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ) ℚ.- y₂ₙ) ⋆ - (- y) ≈⟨ +-cong (⋆-cong (lemC y₂ₙ x₂ₙ)) (neg-involutive y) ⟩ (ℚ.- α) ⋆ + y ≈⟨ ≃-trans (+-comm ((ℚ.- α) ⋆) y) (+-congʳ y (⋆-distrib-neg α)) ⟩ y - α ⋆ ∎) where open ≤-Reasoning open ℤ-Solver n = suc n-1 x₂ₙ = seq x (2 ℕ.* n) y₂ₙ = seq y (2 ℕ.* n) α = (+ 1 / 2) ℚ.* (x₂ₙ ℚ.+ y₂ₙ) lemA : 0ℝ < (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ((+ 1 / (2 ℕ.* n)) ⋆) lemA = begin-strict 0ℝ ≈⟨ ⋆-cong (ℚP.≃-sym (ℚP.+-inverseʳ (+ 1 / (2 ℕ.* n)))) ⟩ (+ 1 / (2 ℕ.* n) ℚ.- (+ 1 / (2 ℕ.* n))) ⋆ <⟨ p<q⇒p⋆<q⋆ (+ 1 / (2 ℕ.* n) ℚ.- (+ 1 / (2 ℕ.* n))) (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ) ℚ.- (+ 1 / (2 ℕ.* n))) (ℚP.+-monoˡ-< (ℚ.- (+ 1 / (2 ℕ.* n))) (ℚP.*-monoʳ-<-pos {+ 1 / 2} _ y₂ₙ-x₂ₙ>n⁻¹)) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ) ℚ.- (+ 1 / (2 ℕ.* n))) ⋆ ≈⟨ ⋆-distrib-to-p⋆-q⋆ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) (+ 1 / (2 ℕ.* n)) ⟩ (+ 1 / 2 ℚ.* (y₂ₙ ℚ.- x₂ₙ)) ⋆ - ((+ 1 / (2 ℕ.* n)) ⋆) ∎ helper : ∀ x y -> y + (x - y) ≃ x helper x y = begin-equality y + (x - y) ≈⟨ +-congʳ y (+-comm x (- y)) ⟩ y + (- y + x) ≈⟨ ≃-symm (+-assoc y (- y) x) ⟩ (y - y) + x ≈⟨ +-congˡ x (+-inverseʳ y) ⟩ 0ℝ + x ≈⟨ +-identityˡ x ⟩ x ∎ lemB : ∀ p q -> + 1 / 2 ℚ.* (p ℚ.- q) ℚ.≃ + 1 / 2 ℚ.* (q ℚ.+ p) ℚ.- q lemB p/q u/v = let p = ↥ p/q; q = ↧ p/q; u = ↥ u/v; v = ↧ u/v in ℚ.*≡* (solve 4 (λ p q u v -> (Κ (+ 1) ⊗ (p ⊗ v ⊕ (⊝ u) ⊗ q)) ⊗ (Κ (+ 2) ⊗ (v ⊗ q) ⊗ v) ⊜ ((Κ (+ 1) ⊗ (u ⊗ q ⊕ p ⊗ v)) ⊗ v ⊕ (⊝ u) ⊗ (Κ (+ 2) ⊗ (v ⊗ q))) ⊗ (Κ (+ 2) ⊗ (q ⊗ v))) refl p q u v) lemC : ∀ p q -> + 1 / 2 ℚ.* (p ℚ.- q) ℚ.- p ℚ.≃ ℚ.- (+ 1 / 2 ℚ.* (q ℚ.+ p)) lemC p/q u/v = let p = ↥ p/q; q = ↧ p/q; u = ↥ u/v; v = ↧ u/v in ℚ.*≡* (solve 4 (λ p q u v -> ((Κ (+ 1) ⊗ (p ⊗ v ⊕ (⊝ u) ⊗ q)) ⊗ q ⊕ (⊝ p) ⊗ (Κ (+ 2) ⊗ (q ⊗ v))) ⊗ (Κ (+ 2) ⊗ (v ⊗ q)) ⊜ (⊝ (Κ (+ 1) ⊗ (u ⊗ q ⊕ p ⊗ v))) ⊗ ((Κ (+ 2) ⊗ (q ⊗ v)) ⊗ q)) refl p q u v) abstract fast-density-of-ℚ : ∀ x y -> x < y -> ∃ λ (α : ℚᵘ) -> x < α ⋆ < y fast-density-of-ℚ = density-of-ℚ ∣x∣<y⇒-y<x<y : ∀ x y -> ∣ x ∣ < y -> (- y) < x < y ∣x∣<y⇒-y<x<y x y ∣x∣<y = (begin-strict - y <⟨ neg-mono-< ∣x∣<y ⟩ - ∣ x ∣ ≈⟨ -‿cong (≃-symm ∣-x∣≃∣x∣) ⟩ - ∣ - x ∣ ≤⟨ neg-mono-≤ x≤∣x∣ ⟩ - (- x) ≈⟨ neg-involutive x ⟩ x ∎) , (begin-strict x ≤⟨ x≤∣x∣ ⟩ ∣ x ∣ <⟨ ∣x∣<y ⟩ y ∎) where open ≤-Reasoning x<z∧y<z⇒x⊔y<z : ∀ x y z -> x < z -> y < z -> x ⊔ y < z x<z∧y<z⇒x⊔y<z x y z x<z y<z = lemma-2-8-1-onlyif (ℕ.pred N , lem) where open ℚP.≤-Reasoning fromx<z = fast-lemma-2-8-1-if x<z N₁ = suc (proj₁ fromx<z) fromy<z = fast-lemma-2-8-1-if y<z N₂ = suc (proj₁ fromy<z) N = N₁ ℕ.⊔ N₂ lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (z - (x ⊔ y)) m ℚ.≥ + 1 / N lem m m≥N = [ left , right ]′ (ℚP.≤-total (seq y (2 ℕ.* m)) (seq x (2 ℕ.* m))) where left : seq x (2 ℕ.* m) ℚ.≥ seq y (2 ℕ.* m) -> seq (z - (x ⊔ y)) m ℚ.≥ + 1 / N left x₂ₘ≥y₂ₘ = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 N₁ N (ℕP.m≤m⊔n N₁ N₂) ⟩ + 1 / N₁ ≤⟨ proj₂ fromx<z m (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) m≥N) ⟩ seq z (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ≈⟨ ℚP.+-congʳ (seq z (2 ℕ.* m)) (ℚP.-‿cong (ℚP.≃-sym (ℚP.p≥q⇒p⊔q≃p x₂ₘ≥y₂ₘ))) ⟩ seq z (2 ℕ.* m) ℚ.- (seq x (2 ℕ.* m) ℚ.⊔ seq y (2 ℕ.* m)) ∎ right : seq y (2 ℕ.* m) ℚ.≥ seq x (2 ℕ.* m) -> seq (z - (x ⊔ y)) m ℚ.≥ + 1 / N right y₂ₘ≥x₂ₘ = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 N₂ N (ℕP.m≤n⊔m N₁ N₂) ⟩ + 1 / N₂ ≤⟨ proj₂ fromy<z m (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) m≥N) ⟩ seq z (2 ℕ.* m) ℚ.- seq y (2 ℕ.* m) ≈⟨ ℚP.+-congʳ (seq z (2 ℕ.* m)) (ℚP.-‿cong (ℚP.≃-sym (ℚP.p≤q⇒p⊔q≃q y₂ₘ≥x₂ₘ))) ⟩ seq z (2 ℕ.* m) ℚ.- (seq x (2 ℕ.* m) ℚ.⊔ seq y (2 ℕ.* m)) ∎ ∣p∣≃p⊔-p : ∀ p -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ (ℚ.- p) ∣p∣≃p⊔-p p = [ left , right ]′ (ℚP.≤-total 0ℚᵘ p) where open ℚP.≤-Reasoning left : 0ℚᵘ ℚ.≤ p -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ ℚ.- p left 0≤p = let ∣p∣≃p = ℚP.0≤p⇒∣p∣≃p 0≤p in begin-equality ℚ.∣ p ∣ ≈⟨ ∣p∣≃p ⟩ p ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊔q≃p (ℚP.≤-respʳ-≃ ∣p∣≃p (ℚP.≤-respʳ-≃ (ℚP.∣-p∣≃∣p∣ p) (p≤∣p∣ (ℚ.- p))))) ⟩ p ℚ.⊔ ℚ.- p ∎ right : p ℚ.≤ 0ℚᵘ -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ ℚ.- p right p≤0 = let ∣p∣≃-p = ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ p)) (ℚP.0≤p⇒∣p∣≃p (ℚP.neg-mono-≤ p≤0)) in begin-equality ℚ.∣ p ∣ ≈⟨ ∣p∣≃-p ⟩ ℚ.- p ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊔q≃q (ℚP.≤-respʳ-≃ ∣p∣≃-p (p≤∣p∣ p))) ⟩ p ℚ.⊔ ℚ.- p ∎ ∣x∣≃x⊔-x : ∀ x -> ∣ x ∣ ≃ x ⊔ (- x) ∣x∣≃x⊔-x x = *≃* λ {(suc k₁) -> let n = suc k₁ in begin ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- (seq x n ℚ.⊔ ℚ.- seq x n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ ℚ.∣ seq x n ∣ (ℚP.-‿cong (ℚP.≃-sym (∣p∣≃p⊔-p (seq x n))))) ⟩ ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ℚ.∣ seq x n ∣) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning -y<x<y⇒∣x∣<y : ∀ x y -> (- y) < x < y -> ∣ x ∣ < y -y<x<y⇒∣x∣<y x y -y<x<y = begin-strict ∣ x ∣ ≈⟨ ∣x∣≃x⊔-x x ⟩ x ⊔ (- x) <⟨ x<z∧y<z⇒x⊔y<z x (- x) y (proj₂ -y<x<y) (<-respʳ-≃ (neg-involutive y) (neg-mono-< (proj₁ -y<x<y))) ⟩ y ∎ where open ≤-Reasoning corollary-2-15 : ∀ (x r : ℝ) -> Positive r -> ∃ λ (α : ℚᵘ) -> ∣ x - α ⋆ ∣ < r corollary-2-15 x r posr = α , <-respˡ-≃ (∣x-y∣≃∣y-x∣ (α ⋆) x) (-y<x<y⇒∣x∣<y (α ⋆ - x) r (-r<α-x , α-x<r)) where open ℝ-Solver open ≤-Reasoning -r+x<r+x : - r + x < r + x -r+x<r+x = +-monoˡ-< x (begin-strict - r <⟨ neg-mono-< (posx⇒0<x posr) ⟩ - 0ℝ ≈⟨ ≃-symm 0≃-0 ⟩ 0ℝ <⟨ posx⇒0<x posr ⟩ r ∎) αp = fast-density-of-ℚ (- r + x) (r + x) -r+x<r+x α = proj₁ αp -r<α-x : - r < α ⋆ - x -r<α-x = begin-strict - r ≈⟨ solve 2 (λ r x -> (⊝ r) ⊜ (⊝ r ⊕ x ⊖ x)) ≃-refl r x ⟩ - r + x - x <⟨ +-monoˡ-< (- x) (proj₁ (proj₂ αp)) ⟩ α ⋆ - x ∎ α-x<r : α ⋆ - x < r α-x<r = begin-strict α ⋆ - x <⟨ +-monoˡ-< (- x) (proj₂ (proj₂ αp)) ⟩ r + x - x ≈⟨ solve 2 (λ r x -> (r ⊕ x ⊖ x) ⊜ r) ≃-refl r x ⟩ r ∎ abstract fast-corollary-2-15 : ∀ (x r : ℝ) -> Positive r -> ∃ λ (α : ℚᵘ) -> ∣ x - α ⋆ ∣ < r fast-corollary-2-15 = corollary-2-15 ≤⇒≡∨< : ∀ (m n : ℕ) -> m ℕ.≤ n -> m ≡ n ⊎ m ℕ.< n ≤⇒≡∨< zero zero m≤n = inj₁ _≡_.refl ≤⇒≡∨< zero (suc n) m≤n = inj₂ ℕP.0<1+n ≤⇒≡∨< (suc m) (suc n) (ℕ.s≤s m≤n) = [ (λ m≡n -> inj₁ (cong suc m≡n)) , (λ m<n -> inj₂ (ℕ.s≤s m<n)) ]′ (≤⇒≡∨< m n m≤n) -- Finite sums over a sequence ∑₀ : (ℕ -> ℝ) -> ℕ -> ℝ ∑₀ a 0 = 0ℝ ∑₀ a (suc n) = ∑₀ a n + a n ∑ : (ℕ -> ℝ) -> ℕ -> ℕ -> ℝ ∑ a 0 n = ∑₀ a n ∑ a (suc i) n = ∑₀ a n - ∑₀ a (suc i) ∑-distrib-+ : ∀ (xs ys : ℕ -> ℝ) -> ∀ i n -> ∑ (λ k -> xs k + ys k) i n ≃ ∑ xs i n + ∑ ys i n ∑-distrib-+ xs ys 0 n = lem n where open ≃-Reasoning open ℝ-Solver {- If you just case split on n in ∑-distrib-+ and don't use this lemma, Agda's termination checker gives an error for the (suc i) n case when the induction hypothesis is used. -} lem : ∀ n -> ∑₀ (λ k -> xs k + ys k) n ≃ ∑₀ xs n + ∑₀ ys n lem 0 = ≃-reflexive (λ {(suc n-1) -> ℚP.≃-refl}) lem (suc n) = begin ∑₀ (λ k -> xs k + ys k) n + (xs n + ys n) ≈⟨ +-congˡ (xs n + ys n) (lem n) ⟩ ∑₀ xs n + ∑₀ ys n + (xs n + ys n) ≈⟨ solve 4 (λ a b c d -> (a ⊕ c ⊕ (b ⊕ d)) ⊜ (a ⊕ b ⊕ (c ⊕ d))) ≃-refl (∑₀ xs n) (xs n) (∑₀ ys n) (ys n) ⟩ ∑₀ xs n + xs n + (∑₀ ys n + ys n) ∎ ∑-distrib-+ xs ys (suc i) n = begin ∑₀ (λ k -> xs k + ys k) n - (∑₀ (λ k -> xs k + ys k) i + (xs i + ys i)) ≈⟨ +-cong (∑-distrib-+ xs ys 0 n) (-‿cong (+-congˡ (xs i + ys i) (∑-distrib-+ xs ys 0 i))) ⟩ ∑₀ xs n + ∑₀ ys n - (∑₀ xs i + ∑₀ ys i + (xs i + ys i)) ≈⟨ solve 6 (λ a b c d e f -> (a ⊕ b ⊖ (c ⊕ d ⊕ (e ⊕ f))) ⊜ (a ⊖ (c ⊕ e) ⊕ (b ⊖ (d ⊕ f)))) ≃-refl (∑₀ xs n) (∑₀ ys n) (∑₀ xs i) (∑₀ ys i) (xs i) (ys i) ⟩ ∑₀ xs n - (∑₀ xs i + xs i) + (∑₀ ys n - (∑₀ ys i + ys i)) ∎ where open ≃-Reasoning open ℝ-Solver neg-distrib-∑ : ∀ xs -> ∀ i n -> - ∑ xs i n ≃ ∑ (λ j -> - xs j) i n neg-distrib-∑ xs 0 n = lem n where open ≃-Reasoning lem : ∀ n -> - ∑₀ xs n ≃ ∑₀ (λ j -> - xs j) n lem 0 = ≃-symm 0≃-0 lem (suc n) = begin - (∑₀ xs n + xs n) ≈⟨ neg-distrib-+ (∑₀ xs n) (xs n) ⟩ - ∑₀ xs n - xs n ≈⟨ +-congˡ (- xs n) (lem n) ⟩ ∑₀ (λ j -> - xs j) n - xs n ∎ neg-distrib-∑ xs (suc i) n = begin - (∑₀ xs n - (∑₀ xs i + xs i)) ≈⟨ neg-distrib-+ (∑₀ xs n) (- (∑₀ xs i + xs i)) ⟩ - ∑₀ xs n - (- (∑₀ xs i + xs i)) ≈⟨ +-cong (neg-distrib-∑ xs 0 n) (-‿cong (≃-trans (neg-distrib-+ (∑₀ xs i) (xs i)) (+-congˡ (- xs i) (neg-distrib-∑ xs 0 i)))) ⟩ ∑₀ (λ j -> - xs j) n - (∑₀ (λ j -> - xs j) i - xs i) ∎ where open ≃-Reasoning ≤∨> : ∀ p q -> p ℚ.≤ q ⊎ q ℚ.< p ≤∨> p q with p ℚP.≤? q ... | .Bool.true because ofʸ p₁ = inj₁ p₁ ... | .Bool.false because ofⁿ ¬p = inj₂ (ℚP.≰⇒> ¬p) p+q>r⇒p>2⁻¹r∨q>2⁻¹r : ∀ p q r -> p ℚ.+ q ℚ.> r -> p ℚ.> (+ 1 / 2) ℚ.* r ⊎ q ℚ.> (+ 1 / 2) ℚ.* r p+q>r⇒p>2⁻¹r∨q>2⁻¹r p q r p+q>r = [ (λ hyp -> inj₁ (lem hyp)) , (λ hyp -> inj₂ hyp) ]′ (≤∨> q ((+ 1 / 2) ℚ.* r)) where open ℚP.≤-Reasoning open ℚ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; ⊝_ to :-_ ; _⊜_ to _:=_ ; Κ to κ ) lem : q ℚ.≤ (+ 1 / 2) ℚ.* r -> p ℚ.> (+ 1 / 2) ℚ.* r lem hyp = begin-strict (+ 1 / 2) ℚ.* r ≈⟨ ℚ.*≡* (ℤsolve 2 (λ n d -> (κ (+ 1) :* n) :* (d :* (κ (+ 2) :* d)) := (n :* (κ (+ 2) :* d) :+ (:- (κ (+ 1) :* n)) :* d) :* (κ (+ 2) :* d)) refl (↥ r) (↧ r)) ⟩ r ℚ.- (+ 1 / 2) ℚ.* r <⟨ ℚP.+-monoˡ-< (ℚ.- ((+ 1 / 2) ℚ.* r)) p+q>r ⟩ (p ℚ.+ q) ℚ.- (+ 1 / 2) ℚ.* r ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- (+ 1 / 2 ℚ.* r)) (ℚP.+-monoʳ-≤ p hyp) ⟩ (p ℚ.+ (+ 1 / 2) ℚ.* r) ℚ.- (+ 1 / 2) ℚ.* r ≈⟨ solve 2 (λ p 2⁻¹r -> (p ⊕ 2⁻¹r ⊖ 2⁻¹r) ⊜ p) ℚP.≃-refl p ((+ 1 / 2) ℚ.* r) ⟩ p ∎ 0<q-p⇒p<q : ∀ p q -> 0ℚᵘ ℚ.< q ℚ.- p -> p ℚ.< q 0<q-p⇒p<q p q 0<q-p = begin-strict p ≈⟨ ℚP.≃-sym (ℚP.+-identityʳ p) ⟩ p ℚ.+ 0ℚᵘ <⟨ ℚP.+-monoʳ-< p 0<q-p ⟩ p ℚ.+ (q ℚ.- p) ≈⟨ solve 2 (λ p q -> (p ⊕ (q ⊖ p)) ⊜ q) ℚP.≃-refl p q ⟩ q ∎ where open ℚP.≤-Reasoning open ℚ-Solver p⋆<q⋆⇒p<q : ∀ p q -> p ⋆ < q ⋆ -> p ℚ.< q p⋆<q⋆⇒p<q p q (pos* (n , p⋆<q⋆)) = 0<q-p⇒p<q p q (begin-strict 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 1 / (suc n) <⟨ p⋆<q⋆ ⟩ q ℚ.- p ∎) where open ℚP.≤-Reasoning posp⇒posp⋆ : ∀ p -> ℚ.Positive p -> Positive (p ⋆) posp⇒posp⋆ p posp = 0<x⇒posx (p<q⇒p⋆<q⋆ 0ℚᵘ p (ℚP.positive⁻¹ posp)) {- Proposition: If x + y > 0, then x > 0 or y > 0. Proof: This proof is the n=2 special case of Bishop's proof of Proposition 2.16. Let α∈ℚᵘ such that 0 < α < x + y. By Corollay 2.15, there is X,Y∈ℚᵘ such that ∣x - X∣ < 4̂⁻¹α and ∣y - Y∣ < 4⁻¹α. We have X + Y = (x + y) - (x - X) - (y - Y) ≥ (x + y) - ∣x - X∣ - ∣y - Y∣ ≥ α - 4⁻¹α - 4⁻¹α = 2̂⁻¹α. Thus X + Y > 2⁻¹α, and so X > 4⁻¹α or Y > 4⁻¹α. Let Z be the value X or Y such that Z > 4⁻¹α and let z be the corresponding x or y value. Then z = Z - (Z - z) ≥ Z - ∣z - Z∣ > 4⁻¹α - 4⁻¹α = 0. Hence z > 0, so x > 0 or y > 0. □ -} x+y>0⇒x>0∨y>0 : ∀ x y -> x + y > 0ℝ -> x > 0ℝ ⊎ y > 0ℝ x+y>0⇒x>0∨y>0 x y x+y>0 = [ (λ hyp -> inj₁ (lem x X (proj₂ X-generator) (ℚP.<-respˡ-≃ 2⁻¹*2⁻¹α≃4⁻¹α hyp))) , (λ hyp -> inj₂ (lem y Y (proj₂ Y-generator) (ℚP.<-respˡ-≃ 2⁻¹*2⁻¹α≃4⁻¹α hyp))) ]′ (p+q>r⇒p>2⁻¹r∨q>2⁻¹r X Y ((+ 1 / 2) ℚ.* α) ax+ay>α/4) where open ℝ-Solver open ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; ⊝_ to :-_ ; _⊜_ to _:=_ ; Κ to κ ) α-generator = fast-density-of-ℚ 0ℝ (x + y) x+y>0 α = proj₁ α-generator pos4⁻¹α : Positive (((+ 1 / 4) ℚ.* α) ⋆) pos4⁻¹α = posp⇒posp⋆ ((+ 1 / 4) ℚ.* α) (ℚ.positive (begin-strict 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.*-zeroʳ (+ 1 / 4)) ⟩ (+ 1 / 4) ℚ.* 0ℚᵘ <⟨ ℚP.*-monoʳ-<-pos {+ 1 / 4} _ (p⋆<q⋆⇒p<q 0ℚᵘ α (proj₁ (proj₂ α-generator))) ⟩ (+ 1 / 4) ℚ.* α ∎)) where open ℚP.≤-Reasoning X-generator = fast-corollary-2-15 x (((+ 1 / 4) ℚ.* α) ⋆) pos4⁻¹α X = proj₁ X-generator Y-generator = fast-corollary-2-15 y (((+ 1 / 4) ℚ.* α) ⋆) pos4⁻¹α Y = proj₁ Y-generator 2⁻¹*2⁻¹α≃4⁻¹α : (+ 1 / 2) ℚ.* ((+ 1 / 2) ℚ.* α) ℚ.≃ (+ 1 / 4) ℚ.* α 2⁻¹*2⁻¹α≃4⁻¹α = ℚ.*≡* (ℤsolve 2 (λ p q -> κ (+ 1) :* (κ (+ 1) :* p) :* (κ (+ 4) :* q) := (κ (+ 1) :* p :* (κ (+ 2) :* (κ (+ 2) :* q)))) refl (↥ α) (↧ α)) ax+ay>α/4 : X ℚ.+ Y ℚ.> (+ 1 / 2) ℚ.* α ax+ay>α/4 = p⋆<q⋆⇒p<q ((+ 1 / 2) ℚ.* α) (X ℚ.+ Y) (begin-strict ((+ 1 / 2) ℚ.* α) ⋆ ≈⟨ ⋆-cong (ℚ.*≡* (ℤsolve 2 (λ p q -> (κ (+ 1) :* p) :* ((q :* (κ (+ 4) :* q)) :* (κ (+ 4) :* q)) := ((p :* (κ (+ 4) :* q) :+ (:- (κ (+ 1) :* p)) :* q) :* (κ (+ 4) :* q) :+ (:- (κ (+ 1) :* p)) :* (q :* (κ (+ 4) :* q))) :* (κ (+ 2) :* q)) refl (↥ α) (↧ α))) ⟩ (α ℚ.- (+ 1 / 4) ℚ.* α ℚ.- (+ 1 / 4) ℚ.* α) ⋆ ≈⟨ ≃-trans (⋆-distrib-to-p⋆-q⋆ (α ℚ.- (+ 1 / 4) ℚ.* α) ((+ 1 / 4) ℚ.* α)) (+-congˡ (- ((+ 1 / 4 ℚ.* α) ⋆)) (⋆-distrib-to-p⋆-q⋆ α ((+ 1 / 4) ℚ.* α))) ⟩ α ⋆ - ((+ 1 / 4) ℚ.* α) ⋆ - ((+ 1 / 4) ℚ.* α) ⋆ <⟨ +-mono-< (+-mono-< (proj₂ (proj₂ α-generator)) (neg-mono-< (proj₂ X-generator))) (neg-mono-< (proj₂ Y-generator)) ⟩ (x + y) - ∣ x - X ⋆ ∣ - ∣ y - Y ⋆ ∣ ≤⟨ +-mono-≤ (+-monoʳ-≤ (x + y) (neg-mono-≤ x≤∣x∣)) (neg-mono-≤ x≤∣x∣) ⟩ (x + y) - (x - X ⋆) - (y - Y ⋆) ≈⟨ +-cong (+-congʳ (x + y) (neg-distrib-+ x (- (X ⋆)))) (neg-distrib-+ y (- (Y ⋆))) ⟩ (x + y) + (- x - (- (X ⋆))) + (- y - (- (Y ⋆))) ≈⟨ solve 4 (λ x y X Y -> ((x ⊕ y) ⊕ (⊝ x ⊖ (⊝ X)) ⊕ (⊝ y ⊖ (⊝ Y))) ⊜ (X ⊕ Y)) ≃-refl x y (X ⋆) (Y ⋆) ⟩ X ⋆ + Y ⋆ ≈⟨ ≃-symm (⋆-distrib-+ X Y) ⟩ (X ℚ.+ Y) ⋆ ∎) where open ≤-Reasoning lem : ∀ (z : ℝ) -> (Z : ℚᵘ) -> ∣ z - Z ⋆ ∣ < ((+ 1 / 4) ℚ.* α) ⋆ -> Z ℚ.> (+ 1 / 4) ℚ.* α -> z > 0ℝ lem z Z ∣z-Z∣<4⁻¹α Z>4⁻¹α = begin-strict 0ℝ ≈⟨ ≃-symm (+-inverseʳ (((+ 1 / 4) ℚ.* α) ⋆)) ⟩ ((+ 1 / 4) ℚ.* α) ⋆ - ((+ 1 / 4) ℚ.* α) ⋆ <⟨ +-mono-< (p<q⇒p⋆<q⋆ ((+ 1 / 4) ℚ.* α) Z Z>4⁻¹α) (neg-mono-< ∣z-Z∣<4⁻¹α) ⟩ Z ⋆ - ∣ z - Z ⋆ ∣ ≈⟨ +-congʳ (Z ⋆) (-‿cong (∣x-y∣≃∣y-x∣ z (Z ⋆))) ⟩ Z ⋆ - ∣ Z ⋆ - z ∣ ≤⟨ +-monoʳ-≤ (Z ⋆) (neg-mono-≤ x≤∣x∣) ⟩ Z ⋆ - (Z ⋆ - z) ≈⟨ solve 2 (λ z Z -> (Z ⊖ (Z ⊖ z)) ⊜ z) ≃-refl z (Z ⋆) ⟩ z ∎ where open ≤-Reasoning proposition-2-16 : ∀ xs -> ∀ n -> {n ≢0} -> ∑₀ xs n > 0ℝ -> ∃ λ j -> j ℕ.< n × xs j > 0ℝ proposition-2-16 xs 1 ∑xs>0 = 0 , ℕP.0<1+n , <-respʳ-≃ (+-identityˡ (xs 0)) ∑xs>0 proposition-2-16 xs (suc (suc n-2)) ∑xs>0 = let n-1 = suc n-2 in [ (λ hyp -> let fromhyp = proposition-2-16 xs n-1 hyp in proj₁ fromhyp , ℕP.<-trans (proj₁ (proj₂ fromhyp)) (ℕP.n<1+n n-1) , proj₂ (proj₂ fromhyp)) , (λ hyp -> n-1 , ℕP.n<1+n n-1 , hyp) ]′ (x+y>0⇒x>0∨y>0 (∑₀ xs n-1) (xs n-1) ∑xs>0) corollary-2-17 : ∀ x y z -> y < z -> x < z ⊎ x > y corollary-2-17 x y z y<z = [ (λ z-x>0 -> inj₁ (0<y-x⇒x<y x z z-x>0)) , (λ x-y>0 -> inj₂ (0<y-x⇒x<y y x x-y>0)) ]′ (x+y>0⇒x>0∨y>0 (z - x) (x - y) (<-respʳ-≃ lem (x<y⇒0<y-x y z y<z))) where open ℝ-Solver lem : z - y ≃ (z - x) + (x - y) lem = solve 3 (λ x y z -> (z ⊖ y) ⊜ ((z ⊖ x) ⊕ (x ⊖ y))) ≃-refl x y z abstract fast-corollary-2-17 : ∀ x y z -> y < z -> x < z ⊎ x > y fast-corollary-2-17 = corollary-2-17 _≮_ : Rel ℝ 0ℓ x ≮ y = ¬ (x < y) _≰_ : Rel ℝ 0ℓ x ≰ y = ¬ (x ≤ y) _≱_ : Rel ℝ 0ℓ x ≱ y = y ≰ x {- Proposition: If x ≮ y, then y ≤ x. Proof: This is the extended version of Bishop's proof. Let n∈ℕ. Either y₂ₙ - x₂ₙ ≤ n⁻¹ or y₂ₙ - x₂ₙ > n⁻¹. If y₂ₙ - x₂ₙ > n⁻¹, then y - x is positive and x < y, a contradiction. Thus y₂ₙ - x₂ₙ ≤ n⁻¹, and so x₂ₙ - y₂ₙ ≥ -n⁻¹ for all n∈ℕ. Hence x - y ≥ 0, and y ≤ x. □ x - y = - (y - x) -} ≮⇒≥ : _≮_ ⇒ _≥_ ≮⇒≥ {x} {y} x≮y = nonNeg* (λ {(suc k₁) -> let n = suc k₁ in ℚP.≤-respʳ-≃ (solve 2 (λ x y -> (⊝ (y ⊖ x)) ⊜ (x ⊖ y)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) (ℚP.neg-mono-≤ ([ (λ hyp -> hyp) , (λ hyp -> ⊥-elim (x≮y (pos* (k₁ , hyp)))) ]′ (≤∨> (seq (y - x) n) (+ 1 / n))))}) where open ℚ-Solver m<1+n⇒m≤n : ∀ m n -> m ℕ.< suc n -> m ℕ.≤ n m<1+n⇒m≤n m n (ℕ.s≤s m≤n) = m≤n x<y∧x<z⇒x<y⊓z : ∀ x y z -> x < y -> x < z -> x < y ⊓ z x<y∧x<z⇒x<y⊓z x y z x<y x<z = lemma-2-8-1-onlyif (ℕ.pred N , lem) where open ℚP.≤-Reasoning fromx<y = fast-lemma-2-8-1-if x<y N₁ = suc (proj₁ fromx<y) fromx<z = fast-lemma-2-8-1-if x<z N₂ = suc (proj₁ fromx<z) N = N₁ ℕ.⊔ N₂ lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (y ⊓ z - x) m ℚ.≥ + 1 / N lem m m≥N = [ left , right ]′ (ℚP.≤-total (seq y (2 ℕ.* m)) (seq z (2 ℕ.* m))) where N₁≤N = ℕP.m≤m⊔n N₁ N₂ N₂≤N = ℕP.m≤n⊔m N₁ N₂ left : seq y (2 ℕ.* m) ℚ.≤ seq z (2 ℕ.* m) -> seq (y ⊓ z - x) m ℚ.≥ + 1 / N left y₂ₘ≤z₂ₘ = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 N₁ N N₁≤N ⟩ + 1 / N₁ ≤⟨ proj₂ fromx<y m (ℕP.≤-trans N₁≤N m≥N) ⟩ seq y (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ≈⟨ ℚP.+-congˡ (ℚ.- seq x (2 ℕ.* m)) (ℚP.≃-sym (ℚP.p≤q⇒p⊓q≃p y₂ₘ≤z₂ₘ)) ⟩ seq (y ⊓ z) (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ∎ where test : seq (y - x) m ℚ.≃ seq y (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) test = ℚP.≃-refl right : seq z (2 ℕ.* m) ℚ.≤ seq y (2 ℕ.* m) -> seq (y ⊓ z - x) m ℚ.≥ + 1 / N right z₂ₘ≤y₂ₘ = begin + 1 / N ≤⟨ q≤r⇒+p/r≤+p/q 1 N₂ N N₂≤N ⟩ + 1 / N₂ ≤⟨ proj₂ fromx<z m (ℕP.≤-trans N₂≤N m≥N) ⟩ seq z (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ≈⟨ ℚP.+-congˡ (ℚ.- seq x (2 ℕ.* m)) (ℚP.≃-sym (ℚP.p≥q⇒p⊓q≃q z₂ₘ≤y₂ₘ)) ⟩ seq (y ⊓ z) (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ∎ p-q≥j⁻¹⇒p≥q : ∀ {p q : ℚᵘ} -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> p ℚ.- q ℚ.≥ (+ 1 / j) {j≢0}) -> p ℚ.≥ q p-q≥j⁻¹⇒p≥q {p} {q} hyp = ℚP.≮⇒≥ (λ p<q -> let arch = fast-archimedean-ℚ₂ (q ℚ.- p) (+ 1) (ℚ.positive (p<q⇒0<q-p p q p<q)) ; j = suc (proj₁ arch) in ℚP.<-irrefl ℚP.≃-refl (begin-strict 0ℚᵘ <⟨ ℚP.positive⁻¹ _ ⟩ + 1 / j ≤⟨ hyp j ⟩ p ℚ.- q ≈⟨ solve 2 (λ p q -> (p ⊖ q) ⊜ (⊝ (q ⊖ p))) ℚP.≃-refl p q ⟩ ℚ.- (q ℚ.- p) <⟨ ℚP.neg-mono-< (proj₂ arch) ⟩ ℚ.- (+ 1 / j) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ ∎)) where open ℚP.≤-Reasoning open ℚ-Solver p⋆≤q⋆⇒p≤q : ∀ p q -> p ⋆ ≤ q ⋆ -> p ℚ.≤ q p⋆≤q⋆⇒p≤q p q (nonNeg* hyp) = p-q≤j⁻¹⇒p≤q (λ {(suc j-1) -> let j = suc j-1 in ℚP.≤-respˡ-≃ (solve 2 (λ p q -> (⊝ (q ⊖ p)) ⊜ (p ⊖ q)) ℚP.≃-refl p q) (ℚP.≤-respʳ-≃ (ℚP.neg-involutive (+ 1 / j)) (ℚP.neg-mono-≤ (hyp j)))}) where open ℚ-Solver p≤q⇒p⋆≤q⋆ : ∀ p q -> p ℚ.≤ q -> p ⋆ ≤ q ⋆ p≤q⇒p⋆≤q⋆ p q p≤q = nonNeg* (λ {(suc n-1) -> let n = suc n-1 in begin ℚ.- (+ 1 / n) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ ≤⟨ ℚP.p≤q⇒0≤q-p p≤q ⟩ q ℚ.- p ∎}) where open ℚP.≤-Reasoning 0<n⇒n≢0 : ∀ n -> 0 ℕ.< n -> n ≢0 0<n⇒n≢0 (suc n-1) 0<n = _ regular-n≤m : (x : ℕ -> ℚᵘ) -> (∀ (m n : ℕ) -> {m≢0 : m ≢0} -> {n≢0 : n ≢0} -> m ℕ.≥ n -> ℚ.∣ x m ℚ.- x n ∣ ℚ.≤ (+ 1 / m) {m≢0} ℚ.+ (+ 1 / n) {n≢0}) -> ∀ (m n : ℕ) -> {m≢0 : m ≢0} -> {n≢0 : n ≢0} -> ℚ.∣ x m ℚ.- x n ∣ ℚ.≤ (+ 1 / m) {m≢0} ℚ.+ (+ 1 / n) {n≢0} regular-n≤m x hyp (suc m-1) (suc n-1) = [ left , right ]′ (ℕP.≤-total m n) where open ℚP.≤-Reasoning m = suc m-1 n = suc n-1 left : m ℕ.≤ n -> ℚ.∣ x m ℚ.- x n ∣ ℚ.≤ (+ 1 / m) ℚ.+ (+ 1 / n) left m≤n = begin ℚ.∣ x m ℚ.- x n ∣ ≈⟨ ∣p-q∣≃∣q-p∣ (x m) (x n) ⟩ ℚ.∣ x n ℚ.- x m ∣ ≤⟨ hyp n m m≤n ⟩ + 1 / n ℚ.+ + 1 / m ≈⟨ ℚP.+-comm (+ 1 / n) (+ 1 / m) ⟩ + 1 / m ℚ.+ + 1 / n ∎ right : n ℕ.≤ m -> ℚ.∣ x m ℚ.- x n ∣ ℚ.≤ (+ 1 / m) ℚ.+ (+ 1 / n) right n≤m = hyp m n n≤m uncountability : ∀ (a : ℕ -> ℝ) -> ∀ (x₀ y₀ : ℝ) -> x₀ < y₀ -> ∃ λ (x : ℝ) -> (x₀ ≤ x ≤ y₀) × (∀ (n : ℕ) -> {n≢0 : n ≢0} -> x ≄ a n) uncountability a x₀ y₀ x₀<y₀ = x , ((≤-trans (x₀≤xₙ 1) (xₙ≤x 1)) , (≤-respˡ-≃ (≃-symm x≃y) (≤-trans (yₙ≥y 1) (yₙ≤y₀ 1)))) , x≄aₙ where generator : (n : ℕ) -> {n≢0 : n ≢0} -> (xₙ₋₁ yₙ₋₁ : ℝ) -> xₙ₋₁ < yₙ₋₁ -> x₀ ≤ xₙ₋₁ -> yₙ₋₁ ≤ y₀ -> ∃ λ (xₙ : ℚᵘ) -> ∃ λ (yₙ : ℚᵘ) -> ((x₀ ≤ xₙ₋₁ ≤ (xₙ ⋆)) × (xₙ ℚ.< yₙ) × ((yₙ ⋆) ≤ yₙ₋₁ ≤ y₀)) × ((xₙ ⋆ > a n) ⊎ yₙ ⋆ < a n) × yₙ ℚ.- xₙ ℚ.< (+ 1 / n) {n≢0} generator (suc n-1) xₙ₋₁ yₙ₋₁ xₙ₋₁<yₙ₋₁ x₀≤xₙ₋₁ yₙ₋₁≤y₀ = func (fast-corollary-2-17 (a n) xₙ₋₁ yₙ₋₁ xₙ₋₁<yₙ₋₁) where n = suc n-1 func : a n < yₙ₋₁ ⊎ a n > xₙ₋₁ -> ∃ λ (xₙ : ℚᵘ) -> ∃ λ (yₙ : ℚᵘ) -> ((x₀ ≤ xₙ₋₁ ≤ (xₙ ⋆)) × (xₙ ℚ.< yₙ) × ((yₙ ⋆) ≤ yₙ₋₁ ≤ y₀)) × ((xₙ ⋆ > a n) ⊎ yₙ ⋆ < a n) × yₙ ℚ.- xₙ ℚ.< + 1 / n func (inj₁ aₙ<yₙ₋₁) = xₙ , yₙ , prop1 , prop2 , prop3 where open ℚP.≤-Reasoning open ℚ-Solver yₙp = fast-density-of-ℚ (a n ⊔ xₙ₋₁) yₙ₋₁ (x<z∧y<z⇒x⊔y<z (a n) xₙ₋₁ yₙ₋₁ aₙ<yₙ₋₁ xₙ₋₁<yₙ₋₁) yₙ = proj₁ yₙp xₙp = fast-density-of-ℚ (a n ⊔ xₙ₋₁ ⊔ ((yₙ ℚ.- + 1 / n) ⋆)) (yₙ ⋆) (x<z∧y<z⇒x⊔y<z (a n ⊔ xₙ₋₁) ((yₙ ℚ.- + 1 / n) ⋆) (yₙ ⋆) (proj₁ (proj₂ yₙp)) (p<q⇒p⋆<q⋆ (yₙ ℚ.- + 1 / n) yₙ (begin-strict yₙ ℚ.- + 1 / n <⟨ ℚP.+-monoʳ-< yₙ {ℚ.- (+ 1 / n)} {0ℚᵘ} (ℚP.negative⁻¹ _) ⟩ yₙ ℚ.+ 0ℚᵘ ≈⟨ ℚP.+-identityʳ yₙ ⟩ yₙ ∎))) xₙ = proj₁ xₙp prop1 : (x₀ ≤ xₙ₋₁ ≤ (xₙ ⋆)) × (xₙ ℚ.< yₙ) × ((yₙ ⋆) ≤ yₙ₋₁ ≤ y₀) prop1 = (x₀≤xₙ₋₁ , helper) , p⋆<q⋆⇒p<q xₙ yₙ (proj₂ (proj₂ xₙp)) , (<⇒≤ (proj₂ (proj₂ yₙp)) , yₙ₋₁≤y₀) where helper : xₙ₋₁ ≤ (xₙ ⋆) helper = ≤-trans (≤-trans (x≤y⊔x xₙ₋₁ (a n)) (x≤x⊔y (a n ⊔ xₙ₋₁) ((yₙ ℚ.- + 1 / n) ⋆))) (<⇒≤ (proj₁ (proj₂ xₙp))) prop2 : (xₙ ⋆ > a n) ⊎ yₙ ⋆ < a n prop2 = inj₁ (≤-<-trans (≤-trans (x≤x⊔y (a n) xₙ₋₁) (x≤x⊔y (a n ⊔ xₙ₋₁) ((yₙ ℚ.- + 1 / n) ⋆))) (proj₁ (proj₂ xₙp))) prop3 : yₙ ℚ.- xₙ ℚ.< + 1 / n prop3 = begin-strict yₙ ℚ.- xₙ ≈⟨ solve 3 (λ xₙ yₙ n⁻¹ -> (yₙ ⊖ xₙ) ⊜ ((yₙ ⊖ n⁻¹) ⊕ (n⁻¹ ⊖ xₙ))) ℚP.≃-refl xₙ yₙ (+ 1 / n) ⟩ yₙ ℚ.- + 1 / n ℚ.+ (+ 1 / n ℚ.- xₙ) <⟨ ℚP.+-monoˡ-< (+ 1 / n ℚ.- xₙ) (p⋆<q⋆⇒p<q (yₙ ℚ.- + 1 / n) xₙ (≤-<-trans (x≤y⊔x ((yₙ ℚ.- + 1 / n) ⋆) (a n ⊔ xₙ₋₁)) (proj₁ (proj₂ xₙp)))) ⟩ xₙ ℚ.+ (+ 1 / n ℚ.- xₙ) ≈⟨ solve 2 (λ xₙ n⁻¹ -> (xₙ ⊕ (n⁻¹ ⊖ xₙ)) ⊜ n⁻¹) ℚP.≃-refl xₙ (+ 1 / n) ⟩ + 1 / n ∎ func (inj₂ aₙ>xₙ₋₁) = xₙ , yₙ , prop1 , prop2 , prop3 where open ℚP.≤-Reasoning open ℚ-Solver xₙp = fast-density-of-ℚ xₙ₋₁ (a n ⊓ yₙ₋₁) (x<y∧x<z⇒x<y⊓z xₙ₋₁ (a n) yₙ₋₁ aₙ>xₙ₋₁ xₙ₋₁<yₙ₋₁) xₙ = proj₁ xₙp yₙp = fast-density-of-ℚ (xₙ ⋆) (a n ⊓ yₙ₋₁ ⊓ ((xₙ ℚ.+ + 1 / n) ⋆)) (x<y∧x<z⇒x<y⊓z (xₙ ⋆) (a n ⊓ yₙ₋₁) ((xₙ ℚ.+ + 1 / n) ⋆) (proj₂ (proj₂ xₙp)) (p<q⇒p⋆<q⋆ xₙ (xₙ ℚ.+ + 1 / n) (begin-strict xₙ ≈⟨ ℚP.≃-sym (ℚP.+-identityʳ xₙ) ⟩ xₙ ℚ.+ 0ℚᵘ <⟨ ℚP.+-monoʳ-< xₙ {0ℚᵘ} {+ 1 / n} (ℚP.positive⁻¹ _) ⟩ xₙ ℚ.+ + 1 / n ∎))) yₙ = proj₁ yₙp prop1 : (x₀ ≤ xₙ₋₁ ≤ (xₙ ⋆)) × (xₙ ℚ.< yₙ) × ((yₙ ⋆) ≤ yₙ₋₁ ≤ y₀) prop1 = (x₀≤xₙ₋₁ , <⇒≤ (proj₁ (proj₂ xₙp))) , p⋆<q⋆⇒p<q xₙ yₙ (proj₁ (proj₂ yₙp)) , helper , yₙ₋₁≤y₀ where helper : yₙ ⋆ ≤ yₙ₋₁ helper = ≤-trans (<⇒≤ (proj₂ (proj₂ yₙp))) (≤-trans (x⊓y≤x (a n ⊓ yₙ₋₁) ((xₙ ℚ.+ + 1 / n) ⋆)) (x⊓y≤y (a n) yₙ₋₁)) prop2 : (xₙ ⋆ > a n) ⊎ yₙ ⋆ < a n prop2 = inj₂ (<-≤-trans (proj₂ (proj₂ yₙp)) (≤-trans (x⊓y≤x (a n ⊓ yₙ₋₁) ((xₙ ℚ.+ + 1 / n) ⋆)) (x⊓y≤x (a n) yₙ₋₁))) prop3 : yₙ ℚ.- xₙ ℚ.< + 1 / n prop3 = begin-strict yₙ ℚ.- xₙ <⟨ ℚP.+-monoˡ-< (ℚ.- xₙ) (p⋆<q⋆⇒p<q yₙ (xₙ ℚ.+ + 1 / n) (<-≤-trans (proj₂ (proj₂ yₙp)) (x⊓y≤y (a n ⊓ yₙ₋₁) ((xₙ ℚ.+ + 1 / n) ⋆)))) ⟩ xₙ ℚ.+ + 1 / n ℚ.- xₙ ≈⟨ solve 2 (λ xₙ n⁻¹ -> (xₙ ⊕ n⁻¹ ⊖ xₙ) ⊜ n⁻¹) ℚP.≃-refl xₙ (+ 1 / n) ⟩ + 1 / n ∎ xs : ℕ -> ℚᵘ ys : ℕ -> ℚᵘ xs-increasing : ∀ (n : ℕ) -> {n ≢0} -> xs n ℚ.≤ xs (suc n) ys-decreasing : ∀ (n : ℕ) -> {n ≢0} -> ys (suc n) ℚ.≤ ys n xₙ<yₙ : ∀ (n : ℕ) -> {n ≢0} -> xs n ⋆ < ys n ⋆ x₀≤xₙ : ∀ (n : ℕ) -> {n ≢0} -> x₀ ≤ xs n ⋆ yₙ≤y₀ : ∀ (n : ℕ) -> {n ≢0} -> ys n ⋆ ≤ y₀ xs 0 = 0ℚᵘ xs 1 = proj₁ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl) xs (suc (suc n-2)) = proj₁ (generator (suc (suc n-2)) (xs (suc n-2) ⋆) (ys (suc n-2) ⋆) (xₙ<yₙ (suc n-2)) (x₀≤xₙ (suc n-2)) (yₙ≤y₀ (suc n-2))) ys 0 = 0ℚᵘ ys 1 = proj₁ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl)) ys (suc (suc n-2)) = proj₁ (proj₂ ((generator (suc (suc n-2)) (xs (suc n-2) ⋆) (ys (suc n-2) ⋆) (xₙ<yₙ (suc n-2)) (x₀≤xₙ (suc n-2)) (yₙ≤y₀ (suc n-2))))) xs-increasing 1 = p⋆≤q⋆⇒p≤q (xs 1) (xs 2) (proj₂ (proj₁ (proj₁ (proj₂ (proj₂ (generator 2 (xs 1 ⋆) (ys 1 ⋆) (xₙ<yₙ 1) (x₀≤xₙ 1) (yₙ≤y₀ 1))))))) xs-increasing (suc (suc n-2)) = let n-1 = suc (suc n-2); n = suc n-1 in p⋆≤q⋆⇒p≤q (xs n-1) (xs n) (proj₂ (proj₁ (proj₁ (proj₂ (proj₂ (generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1))))))) ys-decreasing 1 = p⋆≤q⋆⇒p≤q (ys 2) (ys 1) (proj₁ (proj₂ (proj₂ (proj₁ (proj₂ (proj₂ (generator 2 (xs 1 ⋆) (ys 1 ⋆) (xₙ<yₙ 1) (x₀≤xₙ 1) (yₙ≤y₀ 1)))))))) ys-decreasing (suc (suc n-2)) = let n-1 = suc (suc n-2); n = suc n-1 in p⋆≤q⋆⇒p≤q (ys n) (ys n-1) (proj₁ (proj₂ (proj₂ (proj₁ (proj₂ (proj₂ (generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1)))))))) xₙ<yₙ 1 = p<q⇒p⋆<q⋆ (xs 1) (ys 1) (proj₁ (proj₂ (proj₁ (proj₂ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl)))))) xₙ<yₙ (suc (suc n-2)) = let n-1 = suc n-2; n = suc n-1 in p<q⇒p⋆<q⋆ (xs n) (ys n) (proj₁ (proj₂ (proj₁ (proj₂ (proj₂ (generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1))))))) x₀≤xₙ 1 = proj₂ (proj₁ (proj₁ (proj₂ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl))))) x₀≤xₙ (suc (suc n-2)) = let n-1 = suc n-2; n = suc n-1; get = generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1) in ≤-trans {x₀} {xs n-1 ⋆} {xs n ⋆} (x₀≤xₙ n-1) (proj₂ (proj₁ (proj₁ (proj₂ (proj₂ get))))) yₙ≤y₀ 1 = proj₁ (proj₂ (proj₂ (proj₁ (proj₂ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl)))))) yₙ≤y₀ (suc (suc n-2)) = let n-1 = suc n-2; n = suc n-1; get = generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1) in ≤-trans {ys n ⋆} {ys n-1 ⋆} {y₀} (proj₁ (proj₂ (proj₂ (proj₁ (proj₂ (proj₂ get)))))) (yₙ≤y₀ n-1) n≤m⇒xₙ≤xₘ : ∀ (m n : ℕ) -> {n ≢0} -> n ℕ.≤ m -> xs n ⋆ ≤ xs m ⋆ n≤m⇒xₙ≤xₘ (suc m-1) (suc n-1) n≤m = let m = suc m-1; n = suc n-1 in [ (λ {refl -> ≤-refl}) , (λ {n<m -> ≤-trans (n≤m⇒xₙ≤xₘ m-1 n (m<1+n⇒m≤n n m-1 n<m)) (p≤q⇒p⋆≤q⋆ (xs m-1) (xs m) (xs-increasing m-1 {0<n⇒n≢0 m-1 (ℕP.<-transˡ ℕP.0<1+n (m<1+n⇒m≤n n m-1 n<m))}))}) ]′ (≤⇒≡∨< n m n≤m) n≤m⇒yₘ≤yₙ : ∀ (m n : ℕ) -> {n ≢0} -> n ℕ.≤ m -> ys m ⋆ ≤ ys n ⋆ n≤m⇒yₘ≤yₙ (suc m-1) (suc n-1) n≤m = let m = suc m-1; n = suc n-1 in [ (λ {refl -> ≤-refl}) , (λ {n<m -> ≤-trans (p≤q⇒p⋆≤q⋆ (ys m) (ys m-1) (ys-decreasing m-1 {0<n⇒n≢0 m-1 (ℕP.<-transˡ ℕP.0<1+n (m<1+n⇒m≤n n m-1 n<m))})) (n≤m⇒yₘ≤yₙ m-1 n (m<1+n⇒m≤n n m-1 n<m))}) ]′ (≤⇒≡∨< n m n≤m) xₙ>aₙ∨yₙ<aₙ : ∀ (n : ℕ) -> {n ≢0} -> xs n ⋆ > a n ⊎ ys n ⋆ < a n xₙ>aₙ∨yₙ<aₙ 1 = proj₁ (proj₂ (proj₂ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl)))) xₙ>aₙ∨yₙ<aₙ (suc (suc n-2)) = let n-1 = suc n-2; n = suc n-1 in proj₁ (proj₂ (proj₂ (proj₂ (generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1))))) yₙ-xₙ<n⁻¹ : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ys n ℚ.- xs n ℚ.< (+ 1 / n) {n≢0} yₙ-xₙ<n⁻¹ 1 = proj₂ (proj₂ (proj₂ (proj₂ (generator 1 x₀ y₀ x₀<y₀ ≤-refl ≤-refl)))) yₙ-xₙ<n⁻¹ (suc (suc n-2)) = let n-1 = suc n-2; n = suc n-1 in proj₂ (proj₂ (proj₂ (proj₂ (generator n (xs n-1 ⋆) (ys n-1 ⋆) (xₙ<yₙ n-1) (x₀≤xₙ n-1) (yₙ≤y₀ n-1))))) x : ℝ seq x = xs reg x = regular-n≤m xs (λ {(suc m-1) (suc n-1) m≥n → let m = suc m-1; n = suc n-1 in begin ℚ.∣ xs m ℚ.- xs n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p⋆≤q⋆⇒p≤q (xs n) (xs m) (n≤m⇒xₙ≤xₘ m n m≥n))) ⟩ xs m ℚ.- xs n <⟨ ℚP.+-monoˡ-< (ℚ.- xs n) (p⋆<q⋆⇒p<q (xs m) (ys n) (<-≤-trans (xₙ<yₙ m) (n≤m⇒yₘ≤yₙ m n m≥n))) ⟩ ys n ℚ.- xs n <⟨ yₙ-xₙ<n⁻¹ n ⟩ + 1 / n ≈⟨ ℚP.≃-sym (ℚP.+-identityˡ (+ 1 / n)) ⟩ 0ℚᵘ ℚ.+ + 1 / n <⟨ ℚP.+-monoˡ-< (+ 1 / n) {0ℚᵘ} {+ 1 / m} (ℚP.positive⁻¹ _) ⟩ + 1 / m ℚ.+ + 1 / n ∎}) where open ℚP.≤-Reasoning y : ℝ seq y = ys reg y = regular-n≤m ys (λ {(suc m-1) (suc n-1) m≥n -> let m = suc m-1; n = suc n-1 in begin ℚ.∣ ys m ℚ.- ys n ∣ ≈⟨ ∣p-q∣≃∣q-p∣ (ys m) (ys n) ⟩ ℚ.∣ ys n ℚ.- ys m ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p⋆≤q⋆⇒p≤q (ys m) (ys n) (n≤m⇒yₘ≤yₙ m n m≥n))) ⟩ ys n ℚ.- ys m <⟨ ℚP.+-monoʳ-< (ys n) (ℚP.neg-mono-< (p⋆<q⋆⇒p<q (xs n) (ys m) (≤-<-trans (n≤m⇒xₙ≤xₘ m n m≥n) (xₙ<yₙ m)))) ⟩ ys n ℚ.- xs n <⟨ yₙ-xₙ<n⁻¹ n ⟩ + 1 / n ≈⟨ ℚP.≃-sym (ℚP.+-identityˡ (+ 1 / n)) ⟩ 0ℚᵘ ℚ.+ + 1 / n <⟨ ℚP.+-monoˡ-< (+ 1 / n) {0ℚᵘ} {+ 1 / m} (ℚP.positive⁻¹ _) ⟩ + 1 / m ℚ.+ + 1 / n ∎}) where open ℚP.≤-Reasoning x≃y : x ≃ y x≃y = *≃* (λ {(suc n-1) -> let n = suc n-1 in begin ℚ.∣ xs n ℚ.- ys n ∣ ≈⟨ ∣p-q∣≃∣q-p∣ (xs n) (ys n) ⟩ ℚ.∣ ys n ℚ.- xs n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.<⇒≤ (p<q⇒0<q-p (xs n) (ys n) (p⋆<q⋆⇒p<q (xs n) (ys n) (xₙ<yₙ n)))) ⟩ ys n ℚ.- xs n <⟨ yₙ-xₙ<n⁻¹ n ⟩ + 1 / n ≤⟨ ℚ.*≤* (ℤP.*-monoʳ-≤-nonNeg n {+ 1} {+ 2} (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n))) ⟩ + 2 / n ∎}) where open ℚP.≤-Reasoning xₙ≤x : ∀ (n : ℕ) -> {n ≢0} -> xs n ⋆ ≤ x xₙ≤x (suc n-1) = let n = suc n-1 in lemma-2-8-2-onlyif (λ {(suc k-1) -> n , _ , λ {(suc m-1) m≥n -> let k = suc k-1; m = suc m-1 in begin ℚ.- (+ 1 / k) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ ≤⟨ ℚP.p≤q⇒0≤q-p (p⋆≤q⋆⇒p≤q (xs n) (xs (2 ℕ.* m)) (n≤m⇒xₙ≤xₘ (2 ℕ.* m) n (ℕP.≤-trans m≥n (ℕP.m≤n*m m {2} ℕP.0<1+n)))) ⟩ xs (2 ℕ.* m) ℚ.- xs n ∎}}) where open ℚP.≤-Reasoning yₙ≥y : ∀ (n : ℕ) -> {n ≢0} -> ys n ⋆ ≥ y yₙ≥y (suc n-1) = let n = suc n-1 in lemma-2-8-2-onlyif (λ {(suc k-1) -> n , _ , λ {(suc m-1) m≥n -> let k = suc k-1; m = suc m-1 in begin ℚ.- (+ 1 / k) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ ≤⟨ ℚP.p≤q⇒0≤q-p (p⋆≤q⋆⇒p≤q (ys (2 ℕ.* m)) (ys n) (n≤m⇒yₘ≤yₙ (2 ℕ.* m) n (ℕP.≤-trans m≥n (ℕP.m≤n*m m {2} ℕP.0<1+n)))) ⟩ ys n ℚ.- ys (2 ℕ.* m) ∎}}) where open ℚP.≤-Reasoning x≄aₙ : ∀ (n : ℕ) -> {n ≢0} -> x ≄ (a n) x≄aₙ (suc n-1) = let n = suc n-1 in [ (λ xₙ>aₙ -> inj₂ (<-≤-trans xₙ>aₙ (xₙ≤x n))) , (λ yₙ<aₙ -> inj₁ (<-respˡ-≃ (≃-symm x≃y) (≤-<-trans (yₙ≥y n) yₙ<aₙ))) ]′ (xₙ>aₙ∨yₙ<aₙ n)
{ "alphanum_fraction": 0.3408212626, "avg_line_length": 51.7684299381, "ext": "agda", "hexsha": "96abb82e7e0c2c0f0aaa17ac040468315a95a9d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "z-murray/AnalysisAgda", "max_forks_repo_path": "RealsRefactored.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "z-murray/AnalysisAgda", "max_issues_repo_path": "RealsRefactored.agda", "max_line_length": 183, "max_stars_count": null, "max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "z-murray/AnalysisAgda", "max_stars_repo_path": "RealsRefactored.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 92994, "size": 183985 }
module Singleton where open import Level open import Data.Unit open import Data.Product open import Function open import Relation.Binary open import Function.Inverse open import Function.Equality as FE open import Relation.Binary.PropositionalEquality as P open import Pi using (⟦_⟧; _⟷_ ) embed₁ : Set → Set embed₁ b = Σ b (λ _ → ⊤) B-to-Σ⊤ : {B : Set} → B → embed₁ B B-to-Σ⊤ v = (v , tt) Σ⊤-to-B : {B : Set} → embed₁ B → B Σ⊤-to-B (v , _) = v BΣ₁ : ∀ {b} → Inverse (P.setoid b) (P.setoid (embed₁ b)) BΣ₁ = record { to = record { _⟨$⟩_ = B-to-Σ⊤; cong = P.cong B-to-Σ⊤ } ; from = record { _⟨$⟩_ = Σ⊤-to-B; cong = P.cong Σ⊤-to-B } ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ x → refl } } data Singleton {c : Level} {A : Set c} : A → Set c where singleton : (x : A) -> Singleton x -- That a Singleton type is a setoid is not needed, but here is the proof anyways. data _∼_ {c : Level} {A : Set c} {v : A} (x : Singleton v) (y : Singleton v) : Set c where uniq : x ∼ y ∼Equiv : {c : Level} {A : Set c} {v : A} → IsEquivalence {_} {_} {Singleton v} _∼_ ∼Equiv {v = v } = record { refl = uniq ; sym = λ _ → uniq ; trans = λ _ _ → uniq } SingSetoid : {c c : Level} → (A : Setoid c c) → (Setoid.Carrier A) → Setoid c c SingSetoid A v = record { Carrier = Singleton v ; _≈_ = _∼_ ; isEquivalence = ∼Equiv } -- We can map a type to its Σ of Singletons and back. embed₂ : Set → Set embed₂ b = Σ b Singleton B-to-ΣS : {B : Set} → B → embed₂ B B-to-ΣS v = (v , singleton v) ΣS-to-B : {B : Set} → embed₂ B → B ΣS-to-B x = proj₁ x right-inverse : ∀ {c} {b : Set c} → (x : Σ b (Singleton {A = b})) → (proj₁ x , singleton (proj₁ x)) ≡ x right-inverse (v , singleton .v) = refl BΣ₂ : ∀ {b} → Inverse (P.setoid b) (P.setoid (embed₂ b)) BΣ₂ = record { to = record { _⟨$⟩_ = B-to-ΣS; cong = P.cong B-to-ΣS } ; from = record { _⟨$⟩_ = ΣS-to-B; cong = P.cong ΣS-to-B } ; inverse-of = record { left-inverse-of = λ x → refl ; right-inverse-of = right-inverse } } -- A generalized idea of a permutation: a bijection between any two types Permutation : Set → Set -> Set Permutation a b = Inverse (P.setoid a) (P.setoid b) -- Now, what we really want is to interpret Pi combinators as -- permutations. We need a refined version of embed₂ which -- allows us to use a permutation to transport things. embed₃ : {l : Level} → (S T : Setoid l l) → Inverse S T → Setoid l l embed₃ S T f = record { Carrier = Σ A (λ b → Singleton (to f ⟨$⟩ b)) ; _≈_ = _≡_ ; isEquivalence = P.isEquivalence } where open Inverse {From = S} {T} A = Setoid.Carrier S
{ "alphanum_fraction": 0.5538194444, "avg_line_length": 34.2857142857, "ext": "agda", "hexsha": "4e98801b39ea5719cac4fe22a97dcc147386add2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/Singleton.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/Singleton.agda", "max_line_length": 103, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/Singleton.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1002, "size": 2880 }
{-# OPTIONS --copatterns #-} module HighlightCopattern where record WrapSet : Set₂ where field wrapped : Set₁ open WrapSet my : WrapSet wrapped my = Set -- 'wrapped' should be highlighted in projection color proj : WrapSet → Set₁ proj w = wrapped w -- 'wrapped' should be highlighted in projection color
{ "alphanum_fraction": 0.7232704403, "avg_line_length": 21.2, "ext": "agda", "hexsha": "a51832cd827892b727845d2f8688abe924855e47", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/HighlightCopattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/HighlightCopattern.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/HighlightCopattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 318 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where open Lattice L open import Algebra.Structures open import Algebra.FunctionProperties _≈_ import Algebra.Properties.Semilattice as SL open import Relation.Binary import Relation.Binary.Lattice as R open import Relation.Binary.Reasoning.Setoid setoid open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_; swap) ------------------------------------------------------------------------ -- Every lattice contains two semilattices. ∧-idempotent : Idempotent _∧_ ∧-idempotent x = begin x ∧ x ≈⟨ refl ⟨ ∧-cong ⟩ sym (∨-absorbs-∧ _ _) ⟩ x ∧ (x ∨ x ∧ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩ x ∎ ∨-idempotent : Idempotent _∨_ ∨-idempotent x = begin x ∨ x ≈⟨ refl ⟨ ∨-cong ⟩ sym (∧-idempotent _) ⟩ x ∨ x ∧ x ≈⟨ ∨-absorbs-∧ _ _ ⟩ x ∎ ∧-isSemilattice : IsSemilattice _≈_ _∧_ ∧-isSemilattice = record { isBand = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∧-cong } ; assoc = ∧-assoc } ; idem = ∧-idempotent } ; comm = ∧-comm } ∧-semilattice : Semilattice l₁ l₂ ∧-semilattice = record { isSemilattice = ∧-isSemilattice } ∨-isSemilattice : IsSemilattice _≈_ _∨_ ∨-isSemilattice = record { isBand = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∨-cong } ; assoc = ∨-assoc } ; idem = ∨-idempotent } ; comm = ∨-comm } ∨-semilattice : Semilattice l₁ l₂ ∨-semilattice = record { isSemilattice = ∨-isSemilattice } open SL ∧-semilattice public using (poset) open Poset poset using (_≤_; isPartialOrder) ------------------------------------------------------------------------ -- The dual construction is also a lattice. ∧-∨-isLattice : IsLattice _≈_ _∧_ _∨_ ∧-∨-isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ∧-comm ; ∨-assoc = ∧-assoc ; ∨-cong = ∧-cong ; ∧-comm = ∨-comm ; ∧-assoc = ∨-assoc ; ∧-cong = ∨-cong ; absorptive = swap absorptive } ∧-∨-lattice : Lattice _ _ ∧-∨-lattice = record { isLattice = ∧-∨-isLattice } ------------------------------------------------------------------------ -- Every algebraic lattice can be turned into an order-theoretic one. isOrderTheoreticLattice : R.IsLattice _≈_ _≤_ _∨_ _∧_ isOrderTheoreticLattice = record { isPartialOrder = isPartialOrder ; supremum = supremum ; infimum = infimum } where ∧-meetSemilattice = SL.orderTheoreticMeetSemilattice ∧-semilattice ∨-joinSemilattice = SL.orderTheoreticJoinSemilattice ∨-semilattice open R.MeetSemilattice ∧-meetSemilattice using (infimum) open R.JoinSemilattice ∨-joinSemilattice using () renaming (supremum to supremum′; _≤_ to _≤′_) -- An alternative but equivalent interpretation of the order _≤_. sound : ∀ {x y} → x ≤′ y → x ≤ y sound {x} {y} y≈y∨x = sym $ begin x ∧ y ≈⟨ ∧-congˡ y≈y∨x ⟩ x ∧ (y ∨ x) ≈⟨ ∧-congˡ (∨-comm y x) ⟩ x ∧ (x ∨ y) ≈⟨ ∧-absorbs-∨ x y ⟩ x ∎ complete : ∀ {x y} → x ≤ y → x ≤′ y complete {x} {y} x≈x∧y = sym $ begin y ∨ x ≈⟨ ∨-congˡ x≈x∧y ⟩ y ∨ (x ∧ y) ≈⟨ ∨-congˡ (∧-comm x y) ⟩ y ∨ (y ∧ x) ≈⟨ ∨-absorbs-∧ y x ⟩ y ∎ supremum : R.Supremum _≤_ _∨_ supremum x y = let x∨y≥x , x∨y≥y , greatest = supremum′ x y in sound x∨y≥x , sound x∨y≥y , λ z x≤z y≤z → sound (greatest z (complete x≤z) (complete y≤z)) orderTheoreticLattice : R.Lattice _ _ _ orderTheoreticLattice = record { isLattice = isOrderTheoreticLattice } ------------------------------------------------------------------------ -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier l₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → Lattice _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∧_ = _∧_ ; _∨_ = _∨_ ; isLattice = record { isEquivalence = record { refl = to ⟨$⟩ refl ; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y) ; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z) } ; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y ; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z ; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y ; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z ; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; absorptive = (λ x y → to ⟨$⟩ ∨-absorbs-∧ x y) , (λ x y → to ⟨$⟩ ∧-absorbs-∨ x y) } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
{ "alphanum_fraction": 0.5142355694, "avg_line_length": 31.4601226994, "ext": "agda", "hexsha": "71daa6585a68d7cdbdf6e372b7fd4b3a15d38c5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Lattice.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Lattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1925, "size": 5128 }
{-# OPTIONS --without-K --safe #-} module Categories.Object.Subobject.Properties where open import Level open import Data.Product open import Data.Unit open import Function using (_$_) open import Relation.Binary using (_=[_]⇒_) open import Relation.Binary.Bundles open import Relation.Binary.OrderMorphism open import Categories.Category open import Categories.Functor open import Categories.Functor.Presheaf open import Categories.Category.Slice open import Categories.Object.Subobject open import Categories.Diagram.Pullback renaming (glue to glue-pullback) open import Categories.Diagram.Pullback.Properties open import Categories.Category.Instance.Posets open import Categories.Category.Instance.Setoids open import Categories.Adjoint.Instance.PosetCore import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR open import Categories.Morphism.Notation module _ {o ℓ e} {𝒞 : Category o ℓ e} (has-pullbacks : ∀ {A B X} → (f : 𝒞 [ A , X ]) → (g : 𝒞 [ B , X ]) → Pullback 𝒞 f g) where private module 𝒞 = Category 𝒞 open 𝒞.HomReasoning open 𝒞.Equiv open Mor 𝒞 open MR 𝒞 open _↣_ -- The Subobject functor, into the category of posets Subₚ : Presheaf 𝒞 (Posets (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) (ℓ ⊔ e)) Subₚ = record { F₀ = Subobjects 𝒞 ; F₁ = λ f → record { fun = morphism f ; monotone = λ {(α , m) (β , n)} h → monotone f {(α , m)} {β , n} h } ; identity = λ {A} {(α , m)} → let pid = has-pullbacks 𝒞.id (mor m) in record { from = record { h = Pullback.p₂ pid ; △ = ⟺ (Pullback.commute pid) ○ 𝒞.identityˡ } ; to = record { h = Pullback.universal pid id-comm-sym ; △ = Pullback.p₁∘universal≈h₁ pid } ; iso = record { isoˡ = pullback-identity 𝒞 pid ; isoʳ = Pullback.p₂∘universal≈h₂ pid } } ; homomorphism = λ {X} {Y} {Z} {f} {g} {(α , m)} → let pfg = has-pullbacks (𝒞 [ f ∘ g ]) (mor m) pf = has-pullbacks f (mor m) pg = has-pullbacks g (Pullback.p₁ pf) iso = up-to-iso 𝒞 pfg (glue-pullback 𝒞 pf pg) module iso = _≅_ iso in record { from = record { h = iso.from ; △ = Pullback.p₁∘universal≈h₁ pg } ; to = record { h = iso.to ; △ = Pullback.p₁∘universal≈h₁ pfg } ; iso = record { isoˡ = iso.isoˡ ; isoʳ = iso.isoʳ } } ; F-resp-≈ = λ {A B f g} eq {(α , m)} → let pf = has-pullbacks f (mor m) pg = has-pullbacks g (mor m) iso = up-to-iso 𝒞 pf (pullback-resp-≈ 𝒞 pg (sym eq) refl) module iso = _≅_ iso in record { from = record { h = iso.from ; △ = Pullback.p₁∘universal≈h₁ pg } ; to = record { h = iso.to ; △ = Pullback.p₁∘universal≈h₁ pf } ; iso = record { isoˡ = iso.isoˡ ; isoʳ = iso.isoʳ } } } where morphism : ∀ {A B} → (f : 𝒞 [ B , A ]) → Σ[ α ∈ 𝒞.Obj ] (α ↣ A) → Σ[ β ∈ 𝒞.Obj ] (β ↣ B) morphism f (α , m) = let pb = has-pullbacks f (mor m) in Pullback.P pb , record { mor = Pullback.p₁ pb ; mono = Pullback-resp-Mono 𝒞 pb (mono m) } monotone : ∀ {A B} (f : 𝒞 [ B , A ]) → Poset._≤_ (Subobjects 𝒞 A) =[ morphism f ]⇒ Poset._≤_ (Subobjects 𝒞 B) monotone f {(α , m)} {(β , n)} h = let pm = has-pullbacks f (mor m) pn = has-pullbacks f (mor n) in record { h = Pullback.universal pn $ begin 𝒞 [ f ∘ Pullback.p₁ pm ] ≈⟨ Pullback.commute pm ⟩ 𝒞 [ mor m ∘ Pullback.p₂ pm ] ≈⟨ pushˡ (⟺ (Slice⇒.△ h)) ⟩ 𝒞 [ mor n ∘ 𝒞 [ Slice⇒.h h ∘ Pullback.p₂ pm ] ] ∎ ; △ = Pullback.p₁∘universal≈h₁ pn } -- The subobject functor as a presheaf on Setoids. -- This is just Subₚ composed with the 'Core' Sub : Presheaf 𝒞 (Setoids (o ⊔ ℓ ⊔ e) (ℓ ⊔ e)) Sub = Core ∘F Subₚ
{ "alphanum_fraction": 0.5394221352, "avg_line_length": 31.4153846154, "ext": "agda", "hexsha": "860dda5c961a512ea594954e703282e209b92370", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Object/Subobject/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Object/Subobject/Properties.agda", "max_line_length": 128, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Object/Subobject/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1408, "size": 4084 }
module Issue2217.M where
{ "alphanum_fraction": 0.84, "avg_line_length": 12.5, "ext": "agda", "hexsha": "3863534789cc47fa55b9d7331c07a5687676224d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2217/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2217/M.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2217/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 25 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Core where open import Function.Base using (_on_) open import Level using (Level; _⊔_; suc) private variable a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Definitions ------------------------------------------------------------------------ -- Heterogeneous binary relations REL : Set a → Set b → (ℓ : Level) → Set (a ⊔ b ⊔ suc ℓ) REL A B ℓ = A → B → Set ℓ -- Homogeneous binary relations Rel : Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Rel A ℓ = REL A A ℓ ------------------------------------------------------------------------ -- Relationships between relations ------------------------------------------------------------------------ infixr 4 _⇒_ _=[_]⇒_ -- Implication/containment - could also be written _⊆_. _⇒_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇒ Q = ∀ {x y} → P x y → Q x y -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : Rel A ℓ₁ → (A → B) → Rel B ℓ₂ → Set _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → Rel A ℓ₁ → Rel B ℓ₂ → Set _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → Set _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x ∙ u) (y ∙ v)
{ "alphanum_fraction": 0.4387936132, "avg_line_length": 27.2741935484, "ext": "agda", "hexsha": "57ca7f7109b1d2411138d747f8a3ac59971a7fce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Core.agda", "max_line_length": 74, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 505, "size": 1691 }
module equational where open import lib postulate A : Set a : A b : A c : A d : A f : A → A g : A → A h : A → A → A p : a ≡ b q : b ≡ c r : f a ≡ a s : h a a ≡ a t : ∀ x → f (g x) ≡ g (f x) u : ∀ {x} → f x ≡ x → g (g x) ≡ x -- {x} means x is implicit, so you do not need to write it when you call u v : ∀ x → h x d ≡ x L0 : c ≡ c L0 = refl L1 : c ≡ a L1 rewrite p | q = refl L2 : h (f a) (f (f a)) ≡ a L2 rewrite r | r = s L3 : f b ≡ b L3 rewrite sym p = r L4 : h (h d d) d ≡ d L4 rewrite s | v d = v d L5 : f (g (g a)) ≡ a L5 rewrite t ( g a) | t a | r | u r = refl L6 : f (g (f (g a))) ≡ g (g (f (f a))) L6 rewrite t a | r | u r | r | u r = refl L7 : ∀ x → f (f (f x)) ≡ x → f (f (f (f (f x)))) ≡ x → f x ≡ x L7 x y z rewrite y | z | r = y
{ "alphanum_fraction": 0.4078947368, "avg_line_length": 18.5777777778, "ext": "agda", "hexsha": "569165cd6da07d52674c4069eb79903278ae41aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_forks_repo_path": "equational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_issues_repo_path": "equational.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_stars_repo_path": "equational.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 399, "size": 836 }
module libbijection where open import Level renaming ( zero to Zero ; suc to Suc ) open import Data.Nat open import Data.Maybe open import Data.List hiding ([_] ; sum ) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Unit hiding ( _≤_ ) open import Relation.Binary.Core hiding (_⇔_) open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import Function.Inverse hiding (sym) open import Function.Bijection renaming (Bijection to Bijection1) open import Function.Equality hiding (cong) open import logic open import nat -- record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where -- field -- fun← : S → R -- fun→ : R → S -- fiso← : (x : R) → fun← ( fun→ x ) ≡ x -- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x -- -- injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) -- injection R S f = (x y : R) → f x ≡ f y → x ≡ y open Bijection b→injection1 : {n m : Level} (R : Set n) (S : Set m) → (b : Bijection R S) → injection S R (fun← b) b→injection1 R S b x y eq = trans ( sym ( fiso→ b x ) ) (trans ( cong (λ k → fun→ b k ) eq ) ( fiso→ b y )) -- -- injection as an uniquneness of bijection -- b→injection0 : {n m : Level} (R : Set n) (S : Set m) → (b : Bijection R S) → injection R S (fun→ b) b→injection0 R S b x y eq = begin x ≡⟨ sym ( fiso← b x ) ⟩ fun← b ( fun→ b x ) ≡⟨ cong (λ k → fun← b k ) eq ⟩ fun← b ( fun→ b y ) ≡⟨ fiso← b y ⟩ y ∎ where open ≡-Reasoning open import Relation.Binary using (Rel; Setoid; Symmetric; Total) open import Function.Surjection ≡-Setoid : {n : Level} (R : Set n) → Setoid n n ≡-Setoid R = record { Carrier = R ; _≈_ = _≡_ ; isEquivalence = record { sym = sym ; refl = refl ; trans = trans } } libBijection : {n m : Level} (R : Set n) (S : Set m) → Bijection R S → Bijection1 (≡-Setoid R) (≡-Setoid S) libBijection R S b = record { to = record { _⟨$⟩_ = λ x → fun→ b x ; cong = λ i=j → cong (fun→ b) i=j } ; bijective = record { injective = λ {x} {y} eq → b→injection0 R S b x y eq ; surjective = record { from = record { _⟨$⟩_ = λ x → fun← b x ; cong = λ i=j → cong (fun← b) i=j } ; right-inverse-of = λ x → fiso→ b x } } } fromBijection1 : {n m : Level} (R : Set n) (S : Set m) → Bijection1 (≡-Setoid R) (≡-Setoid S) → Bijection R S fromBijection1 R S b = record { fun← = Π._⟨$⟩_ (Surjective.from (Bijective.surjective (Bijection1.bijective b))) ; fun→ = Π._⟨$⟩_ (Bijection1.to b) ; fiso← = λ x → Bijective.injective (Bijection1.bijective b) (fb1 x) ; fiso→ = Surjective.right-inverse-of (Bijective.surjective (Bijection1.bijective b)) } where -- fun← b x ≡ fun← b y → x ≡ y -- fun← (fun→ ( fun← x )) ≡ fun← x -- fun→ ( fun← x ) ≡ x fb1 : (x : R) → Π._⟨$⟩_ (Bijection1.to b) (Surjective.from (Bijective.surjective (Bijection1.bijective b)) ⟨$⟩ (Bijection1.to b ⟨$⟩ x)) ≡ Π._⟨$⟩_ (Bijection1.to b) x fb1 x = begin Π._⟨$⟩_ (Bijection1.to b) (Surjective.from (Bijective.surjective (Bijection1.bijective b)) ⟨$⟩ (Bijection1.to b ⟨$⟩ x)) ≡⟨ Surjective.right-inverse-of (Bijective.surjective (Bijection1.bijective b)) _ ⟩ Π._⟨$⟩_ (Bijection1.to b) x ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5736658933, "avg_line_length": 39.632183908, "ext": "agda", "hexsha": "9b109bbf2ca44aeec32d694236f1953e13c06a2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/libbijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/libbijection.agda", "max_line_length": 171, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/libbijection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1284, "size": 3448 }
{- A parameterized family of structures S can be combined into a single structure: X ↦ (a : A) → S a X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Parameterized where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.SIP module _ {ℓ ℓ₁ ℓ₂} (A : Type ℓ) where ParamStructure : (S : A → Type ℓ₁ → Type ℓ₂) → Type ℓ₁ → Type (ℓ-max ℓ ℓ₂) ParamStructure S X = (a : A) → S a X ParamEquivStr : {S : A → Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} → (∀ a → StrEquiv (S a) ℓ₃) → StrEquiv (ParamStructure S) (ℓ-max ℓ ℓ₃) ParamEquivStr ι (X , l) (Y , m) e = ∀ a → ι a (X , l a) (Y , m a) e ParamUnivalentStr : {S : A → Type ℓ₁ → Type ℓ₂} {ℓ₃ : Level} (ι : ∀ a → StrEquiv (S a) ℓ₃) (θ : ∀ a → UnivalentStr (S a) (ι a)) → UnivalentStr (ParamStructure S) (ParamEquivStr ι) ParamUnivalentStr ι θ e = compEquiv (equivPi λ a → θ a e) funExtEquiv
{ "alphanum_fraction": 0.6444444444, "avg_line_length": 34.1379310345, "ext": "agda", "hexsha": "7cae20fc840a4d2c20b3b6e1c55e8f4b426807c7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Parameterized.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Parameterized.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Parameterized.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 390, "size": 990 }
{-# OPTIONS --allow-unsolved-metas --guardedness #-} import Tutorials.Monday-Complete as Mon import Tutorials.Tuesday-Complete as Tue import Tutorials.Wednesday-Complete as Wed open Mon using (⊤; tt; ℕ; zero; suc) open Mon.Simple using (_⊎_; inl; inr) open Tue.Product using (Σ; _,_; fst; snd; _×_) module Tutorials.Thursday where variable A B C S : Set -- Things that we skipped so far -------------------------------- module WithAbstraction where open Mon using (Bool; true; false; Pred; _≡_; refl; _+_; subst; +-comm) open Mon.List using (List; []; _∷_) -- With abstraction -- You can use "with abstraction" to pattern match on intermediary computations -- These can be nested, or executed simultaneously filter : (A → Bool) → List A → List A filter f [] = [] filter f (x ∷ xs) with f x filter f (x ∷ xs) | true = x ∷ filter f xs filter f (x ∷ xs) | false = filter f xs -- Alternative notation filter′ : (A → Bool) → List A → List A filter′ f [] = [] filter′ f (x ∷ xs) with f x ... | true = x ∷ filter′ f xs ... | false = filter′ f xs -- The goal type and the type of the arguments are generalised over the value of the scrutinee thm : {P : Pred ℕ} (n m : ℕ) → P (n + m) → P (m + n) -- 1) Here (p : P (n + m)) and (eq : n + m ≡ m + n) -- thm n m p with +-comm n m -- thm n m p | eq = {!!} -- 2) Here (p : P x) and (eq : x ≡ m + n) -- thm n m p with n + m | +-comm n m -- thm n m p | x | eq = {!!} -- 3) Pattern matching we get (p : P (m + n)), the dot signifies that the argument is uniquely determined thm n m p with n + m | +-comm n m thm n m p | .(m + n) | refl = p -- This is such a common formula that there is special syntax for it thm′ : {P : Pred ℕ} (n m : ℕ) → P (n + m) → P (m + n) thm′ n m p rewrite +-comm n m = p -- We could use subst to be more explicit about *where* the rewrite happens thm′′ : {P : Pred ℕ} (n m : ℕ) → P (n + m) → P (m + n) thm′′ {P} n m p = subst {P = P} (+-comm n m) p -- A little on coinductive types -------------------------------- -- Stolen from https://github.com/pigworker/CS410-17/blob/master/lectures/Lec6Done.agda ListT : Set → Set → Set ListT X B = ⊤ ⊎ (X × B) module List where data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A mkList : ListT A (List A) → List A mkList x = {!!} foldr : (ListT A B → B) → List A → B foldr alg xs = {!!} list-id : List A → List A list-id = {!!} incr : ListT A ℕ → ℕ incr x = {!!} length : List A → ℕ length = {!!} module CoList where record CoList (A : Set) : Set where coinductive field next : ListT A (CoList A) open CoList [] : CoList A [] = {!!} _∷_ : A → CoList A → CoList A (x ∷ xs) = {!!} unfoldr : (S → ListT A S) → S → CoList A unfoldr coalg s = {!!} colist-id : CoList A → CoList A colist-id = {!!} repeat : A → CoList A repeat = {!!} take : ℕ → CoList A → List.List A take n xs = {!!} module Stream where record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream forever : A → Stream A forever x = {!!} unfold : (S → A × S) → S → Stream A unfold coalg s = {!!} --------------------------------------------- -- If you are interested in more -- Documentation for Agda: https://agda.readthedocs.io/en/v2.6.0.1/index.html -- Programming Language Foundations in Agda: https://plfa.github.io/ -- Lots of other nice tutorials online -- The standard library: https://agda.github.io/agda-stdlib/
{ "alphanum_fraction": 0.5628323538, "avg_line_length": 25.7050359712, "ext": "agda", "hexsha": "f769fd0cff1011255ff9eaafd6b602660d7e2198", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z", "max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "poncev/agda-bcam", "max_forks_repo_path": "Tutorials/Thursday.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "poncev/agda-bcam", "max_issues_repo_path": "Tutorials/Thursday.agda", "max_line_length": 107, "max_stars_count": 27, "max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "poncev/agda-bcam", "max_stars_repo_path": "Tutorials/Thursday.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z", "num_tokens": 1199, "size": 3573 }
{- Copyright © 1992–2002 The University of Glasgow Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Functor where import Category.Monad as Monad import Category.Functor import Data.List import Data.Maybe open import Function using (_∘_) open Category.Functor using (RawFunctor) public open Category.Functor.RawFunctor ⦃...⦄ using (_<$>_) public instance Functor-List : ∀ {ℓ} → RawFunctor (Data.List.List {ℓ}) Functor-List = Monad.RawMonad.rawFunctor Data.List.monad Functor-Maybe : ∀ {ℓ} → RawFunctor (Data.Maybe.Maybe {ℓ}) Functor-Maybe = Monad.RawMonad.rawFunctor Data.Maybe.monad Functor-Function : ∀ {ℓ} {r : Set ℓ} → RawFunctor {ℓ} (λ s → (r → s)) Functor-Function {r} = -- I could say _<$>_ = _∘_ here, but that makes type checking much more -- challenging. record { _<$>_ = λ f g → f ∘ g } -- TODO: Do proper instance for dependent pairs
{ "alphanum_fraction": 0.7269528501, "avg_line_length": 31.5777777778, "ext": "agda", "hexsha": "805aeff41df7464e45f4b13eed62d1adc845ad6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "bbarenblat/B", "max_forks_repo_path": "Prelude/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "bbarenblat/B", "max_issues_repo_path": "Prelude/Functor.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "bbarenblat/B", "max_stars_repo_path": "Prelude/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z", "num_tokens": 395, "size": 1421 }
{-# OPTIONS --show-implicit #-} module BottomUp where open import Foundation.Primitive open import Foundation.Bottom open import Foundation.Equivalence open import Agda.Builtin.List open import Agda.Builtin.Equality open import Agda.Builtin.Unit module NegEquiv {ℓ'} (⊥ : Set ℓ') ⦃ _ : ∀ {b} → IsBottom ⊥ b ⦄ where _≉_ : ∀ {a} {A : Set a} {ℓ} ⦃ _ : Equivalence A ℓ ⦄ → A → A → Set (ℓ ⊔ ℓ') x ≉ y = x ≈ y → ⊥ module Data-⊥ where data Data⊥ : Set where instance bottom-rule : ∀ {b} → IsBottom Data⊥ b IsBottom.⊥-elim (bottom-rule {b}) () {B} module IsDecisive-Module {ℓ'} (⊥ : Set ℓ') ⦃ _ : ∀ {b} → IsBottom ⊥ b ⦄ where open NegEquiv ⊥ record IsDecisive a (Decision : (A : Set a) → Set a) (yes-c : {A : Set a} → A → Decision A) (no-c : {A : Set a} → (A → ⊥) → Decision A) ℓ ⦃ equiv-decision : {A : Set a} → Equivalence (Decision A) ℓ ⦄ : Set (ℓ ⊔ ⟰ a ⊔ ℓ') where field yes-correct : {A : Set a} → (dec : Decision A) → (x : A) → yes-c x ≈ dec no-correct : {A : Set a} → (dec : Decision A) → (x : A → ⊥) → no-c x ≈ dec yes-no-incompat : {A : Set a} (x : A) (nx : A → ⊥) → yes-c x ≉ no-c nx open IsDecisive ⦃ … ⦄ public record ⊤′ {a} : Set a where instance constructor tt module Data-Decision {ℓ} (⊥ : Set ℓ) ⦃ _ : ∀ {b} → IsBottom ⊥ b ⦄ where data Decision {a} (A : Set a) : Set (a ⊔ ℓ) where yes : A → Decision A no : (A → ⊥) → Decision A open IsDecisive-Module ⊥ instance dec-equiv : ∀ {a} {A : Set a} → Equivalence (Decision {a} A) a (dec-equiv {a} {A} Equivalence.≈ yes x₁) (yes x₂) = ⊤′ (dec-equiv {a} {A} Equivalence.≈ yes x₁) (no x₂) = ⊥-elim (x₂ x₁) (dec-equiv {a} {A} Equivalence.≈ no x₁) (yes x₂) = ⊥-elim (x₁ x₂) (dec-equiv {a} {A} Equivalence.≈ no x₁) (no x₂) = ⊤′ IsEquivalence.reflexivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) = tt IsEquivalence.reflexivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) = tt IsEquivalence.symmetry (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (yes x₂) x₃ = x₃ IsEquivalence.symmetry (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (no x₂) x₃ = x₃ IsEquivalence.symmetry (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (yes x₂) x₃ = x₃ IsEquivalence.symmetry (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (no x₂) x₃ = x₃ IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (yes x₂) (yes x₃) x₄ x₅ = tt IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (yes x₂) (no x₃) x₄ x₅ = ⊥-elim (x₃ x₂) IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (no x₂) (yes x₃) x₄ x₅ = tt IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (yes x₁) (no x₂) (no x₃) x₄ x₅ = ⊥-elim (x₂ x₁) IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (yes x₂) (yes x₃) x₄ x₅ = ⊥-elim (x₁ x₂) IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (yes x₂) (no x₃) x₄ x₅ = tt IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (no x₂) (yes x₃) x₄ x₅ = ⊥-elim (x₂ x₃) IsEquivalence.transitivity (Equivalence.isEquivalence (dec-equiv {a} {A})) (no x₁) (no x₂) (no x₃) x₄ x₅ = tt instance dec-instance : ∀ {a} → IsDecisive (a ⊔ ℓ) (Decision {a ⊔ ℓ}) yes no (a ⊔ ℓ) IsDecisive-Module.IsDecisive.yes-correct (dec-instance {a}) {A} (yes x₁) x₂ = tt IsDecisive-Module.IsDecisive.yes-correct (dec-instance {a}) {A} (no x₁) x₂ = ⊥-elim (x₁ x₂) IsDecisive-Module.IsDecisive.no-correct (dec-instance {a}) {A} (yes x₁) x₂ = ⊥-elim (x₂ x₁) IsDecisive-Module.IsDecisive.no-correct (dec-instance {a}) {A} (no x₁) x₂ = tt IsDecisive-Module.IsDecisive.yes-no-incompat (dec-instance {a}) x₁ nx x₂ = nx x₁ open Data-⊥ -- module DecisionModule (⊥ : Set) ⦃ _ : ∀ {a} {b} → IsBottom ⊥ a b ⦄ where -- record IsDecidableEquivalence {a} {A : Set a} {ℓ} (_≈_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where -- infix 4 _≈?_ -- field -- isEquivalence : IsEquivalence _≈_ -- _≈?_ : (x y : A) → Decision (x ≈ y) -- record DecidableEquivalence {a} (A : Set a) ℓ : Set (lsuc (a ⊔ ℓ)) where -- field -- ⦃ equivalence ⦄ : Equivalence A ℓ -- --open Equivalence equivalence -- infix 4 _≈?_ -- field -- _≈?_ : (x y : A) → Decision (x ≈ y) -- open DecidableEquivalence ⦃ … ⦄ public -- record DecidableEquivalence' {a} (A : Set a) : Set (lsuc a) where -- field -- ⦃ equivalence ⦄ : Equivalence A a -- infix 4 _≈?_ -- field -- _≈?_ : (x y : A) → Decision (x ≈ y) -- data ⊥-fake : Set where -- faker : ⊥-fake -- ⊥fake-rule : ∀ {a} {A : Set a} → (A → ⊥-fake) → A → ∀ {b} {B : Set b} → B -- ⊥fake-rule x x₁ with x x₁ -- ⊥fake-rule x x₁ | faker = {!!} -- open DecisionModule ⊥ -- data Tree (A : Set) : Set where -- value : A → Tree A -- leaf : Tree A -- branch : Tree A → Tree A → Tree A -- substitute₁List : ∀ {a} {A : Set a} ⦃ _ : DecidableEquivalence A a ⦄ → A → A → List A → List A -- substitute₁List x₁ y [] = [] -- substitute₁List x₁ y (x₂ ∷ xs) with x₁ ≈? x₂ -- substitute₁List x₁ y (x₂ ∷ xs) | yes x₃ = y ∷ substitute₁List x₁ y xs -- substitute₁List x₁ y (x₂ ∷ xs) | no x₃ = x₂ ∷ substitute₁List x₁ y xs -- open import Agda.Builtin.Nat -- open import Agda.Builtin.Bool -- instance EquivalenceNat : Equivalence Nat lzero -- (EquivalenceNat Equivalence.≈ x) x₁ = (x == x₁) ≡ true -- IsEquivalence.reflexivity (Equivalence.isEquivalence EquivalenceNat) = isrefl where -- isrefl : ∀ x → (x == x) ≡ true -- isrefl zero = refl -- isrefl (suc x) = isrefl x -- IsEquivalence.symmetry (Equivalence.isEquivalence EquivalenceNat) = issym where -- issym : (x y : Nat) → -- EquivalenceNat .Equivalence._≈_ x y → -- EquivalenceNat .Equivalence._≈_ y x -- issym zero zero x₁ = refl -- issym zero (suc y) x₁ = x₁ -- issym (suc x) zero x₁ = x₁ -- issym (suc x) (suc y) x₁ = issym x y x₁ -- IsEquivalence.transitivity (Equivalence.isEquivalence EquivalenceNat) = {!!} -- instance DecidableEquivalenceNat : DecidableEquivalence Nat lzero -- DecisionModule.DecidableEquivalence.equivalence DecidableEquivalenceNat = EquivalenceNat -- (DecidableEquivalenceNat DecisionModule.DecidableEquivalence.≈? zero) zero = yes refl -- (DecidableEquivalenceNat DecisionModule.DecidableEquivalence.≈? zero) (suc y) = no (λ x → {!!}) -- (DecidableEquivalenceNat DecisionModule.DecidableEquivalence.≈? suc x) zero = {!!} -- (DecidableEquivalenceNat DecisionModule.DecidableEquivalence.≈? suc x) (suc y) = {!!} -- {- -- $&[{}(=*)+]!# -- ~%7531902468` -- ;,. -- :<> -- -}
{ "alphanum_fraction": 0.6093380615, "avg_line_length": 41.5214723926, "ext": "agda", "hexsha": "925148347826ef1c14277e0d7e461605bc878f77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/BottomUp.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/BottomUp.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/BottomUp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2636, "size": 6768 }
{- Example by Guillaume Brunerie, 17-11-2015 -} {-# OPTIONS --rewriting --cubical-compatible #-} open import Agda.Primitive postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} infixr 3 _==_ data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp module _ {i j k} {A : Set i} {B : Set j} {C : Set k} (g : B → C) (f : A → B) where ∘ap : {x y : A} (p : x == y) → ap g (ap f p) ↦ ap (λ x → g (f x)) p ∘ap idp = idr {-# REWRITE ∘ap #-} ap∘ : {x y : A} (p : x == y) → ap (λ x → g (f x)) p ↦ ap g (ap f p) ap∘ p = idr
{ "alphanum_fraction": 0.4430264357, "avg_line_length": 24.9318181818, "ext": "agda", "hexsha": "9982f1dcd682707b7b199be317567fdac2e05975", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1652-3.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1652-3.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1652-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 521, "size": 1097 }
-- Andreas, 2014-09-03 -- Test explanation of local shadowed by import. module _ where module M where A = Set1 test : (A : Set) → let open M in {!A!} test A = Set -- The A exported by M is in competition with the local A. -- Ambiguous name should be reported.
{ "alphanum_fraction": 0.6779026217, "avg_line_length": 17.8, "ext": "agda", "hexsha": "4cbd051f339e6cb506d441ef09d876ac15c55b65", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1266whyInScope.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1266whyInScope.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1266whyInScope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 267 }
module Transducer where open import Data.Unit open import Data.Product open import Data.Sum open import Data.List _* = List -- | Finite and infinite sequences (constructively useful variant) record Seq (A : Set) : Set where coinductive field out : (A ⊎ ⊤) × Seq A open Seq -- | Functor that allows us to capture transducer as coalgebras. F : (A B : Set) → Set → Set F A B X = A → B * × X -- | Interpretation of transducers as maps between sequences, i.e., corecursion. ⟦_⟧ : ∀{A B X} → (δ : X → F A B X) → X → (Seq A → Seq B) out (⟦_⟧ {B = B} {X} δ x s) with out s ... | (inj₁ a , t) = let (w , y) = δ x a in cont y w where cont : X → B * → (B ⊎ ⊤) × Seq B cont y [] = (inj₂ tt , ⟦ δ ⟧ y t) proj₁ (cont y (b ∷ bs)) = inj₁ b out (proj₂ (cont y (b ∷ bs))) = cont y bs ... | (inj₂ tt , y) = (inj₂ tt , ⟦ δ ⟧ x y)
{ "alphanum_fraction": 0.5704142012, "avg_line_length": 25.6060606061, "ext": "agda", "hexsha": "5682e8e5994b33ae4de29e634c9e55b7ce876992", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Streams/Transducer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Streams/Transducer.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Streams/Transducer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 323, "size": 845 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.Module where open import Cubical.Algebra.Module.Base public
{ "alphanum_fraction": 0.7555555556, "avg_line_length": 27, "ext": "agda", "hexsha": "1662aeb738f29e0c91f345c57f34052ddca093ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/Module.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/Module.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/Module.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 32, "size": 135 }
------------------------------------------------------------------------------ -- Test the consistency of FOTC.Base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- In the module FOTC.Base we declare Agda postulates as first-order -- logic axioms. We test if it is possible to prove an unprovable -- theorem from these axioms. module FOTC.Base.Consistency.Axioms where open import FOTC.Base ------------------------------------------------------------------------------ postulate impossible : ∀ d e → d ≡ e {-# ATP prove impossible #-}
{ "alphanum_fraction": 0.4404283802, "avg_line_length": 33.9545454545, "ext": "agda", "hexsha": "3ed3a5364644ec470d22bc0ebfa80cbd16ae88ce", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Base/Consistency/Axioms.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Base/Consistency/Axioms.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Base/Consistency/Axioms.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 128, "size": 747 }
module Slice where open import Logic.Relations open import Logic.Equivalence open import Logic.Base open import Category module SliceCat (ℂ : Cat)(Γ : Category.Obj ℂ) where open module CC = Category.Category ℂ record SlObj : Set1 where field dom : Obj arr : dom ─→ Γ record _Sl→_ (f f' : SlObj) : Set where field h : (SlObj.dom f) ─→ (SlObj.dom f') π : (SlObj.arr f') ∘ h == (SlObj.arr f) SlId : {f : SlObj} -> f Sl→ f SlId = record { h = id ; π = idRight } _o_ : {f f' f'' : SlObj} -> f' Sl→ f'' -> f Sl→ f' -> f Sl→ f'' _o_ {F} {F'} {F''} F₁ F₂ = let f = SlObj.arr F in let f' = SlObj.arr F' in let f'' = SlObj.arr F'' in let h' = _Sl→_.h F₁ in let h = _Sl→_.h F₂ in record { h = (_Sl→_.h F₁) ∘ (_Sl→_.h F₂) -- Proof of f'' ∘ (h' ∘ h) == f ; π = trans (trans (sym assoc) (congL (_Sl→_.π F₁))) (_Sl→_.π F₂) } SlRel : {A B : SlObj} -> Rel (A Sl→ B) SlRel f f' = (_Sl→_.h f) == (_Sl→_.h f') SlRefl : {A B : SlObj} -> Reflexive {A Sl→ B} SlRel SlRefl = refl SlSym : {A B : SlObj} -> Symmetric {A Sl→ B} SlRel SlSym = sym SlTrans : {A B : SlObj} -> Transitive {A Sl→ B} SlRel SlTrans = trans SlEq : {A B : SlObj} -> Equivalence (A Sl→ B) SlEq {A} {B} = record { _==_ = SlRel {A} {B} ; refl = \{f : A Sl→ B} -> SlRefl {A}{B}{f} ; sym = \{f g : A Sl→ B} -> SlSym {A}{B}{f}{g} ; trans = \{f g h : A Sl→ B} -> SlTrans {A}{B}{f}{g}{h} } SlCong : {A B C : SlObj}{f f' : B Sl→ C}{g g' : A Sl→ B} -> SlRel f f' -> SlRel g g' -> SlRel (f o g) (f' o g') SlCong = cong SlIdLeft : {A B : SlObj}{f : A Sl→ B} -> SlRel (SlId o f) f SlIdLeft = idLeft SlIdRight : {A B : SlObj}{f : A Sl→ B} -> SlRel (f o SlId) f SlIdRight = idRight SlAssoc : {A B C D : SlObj}{f : C Sl→ D}{g : B Sl→ C}{h : A Sl→ B} -> SlRel ((f o g) o h) (f o (g o h)) SlAssoc = assoc Slice : Cat Slice = record { Obj = SlObj ; _─→_ = _Sl→_ ; id = SlId ; _∘_ = _o_ ; Eq = SlEq ; cong = \{A B C : SlObj}{f f' : B Sl→ C}{g g' : A Sl→ B} -> SlCong {A}{B}{C}{f}{f'}{g}{g'} ; idLeft = \{A B : SlObj}{f : A Sl→ B} -> SlIdLeft {A} {B} {f} ; idRight = \{A B : SlObj}{f : A Sl→ B} -> SlIdRight {A} {B} {f} ; assoc = \{A B C D : SlObj}{f : C Sl→ D}{g : B Sl→ C}{h : A Sl→ B} -> SlAssoc {A}{B}{C}{D}{f}{g}{h} }
{ "alphanum_fraction": 0.4622453056, "avg_line_length": 27.2065217391, "ext": "agda", "hexsha": "07e2adc2de680e53c9965774016fd3df0abc8bf1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Slice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Slice.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/Slice.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1074, "size": 2503 }
{-# OPTIONS --without-K --safe #-} module Algebra.Structures.Bundles.Field where open import Algebra open import Level using (suc; _⊔_) open import Relation.Binary using (Rel) open import Algebra.Structures.Field record Field c ℓ : Set (suc (c ⊔ ℓ)) where field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Carrier -> Carrier -> Carrier _*_ : Carrier -> Carrier -> Carrier 0# : Carrier 1# : Carrier -_ : Carrier -> Carrier _⁻¹ : MultiplicativeInverse _≈_ 0# isField : IsField _≈_ _+_ _*_ 0# 1# -_ _⁻¹ open IsField isField public
{ "alphanum_fraction": 0.6169154229, "avg_line_length": 25.125, "ext": "agda", "hexsha": "ceda0ac96b70bdd0299f6bf9007aa140ec189057", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Structures/Bundles/Field.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Structures/Bundles/Field.agda", "max_line_length": 46, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Structures/Bundles/Field.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 188, "size": 603 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Homomorphisms.Lemmas2 {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ : A → A → A} (G : Group S _+A_) where imageGroup : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B → B → B} → (f : A → B) → SetoidSurjection S T f → ({x y : A} → Setoid._∼_ T (f (x +A y)) ((f x) +B (f y))) → ({x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x +B y) (m +B n)) → Group T _+B_ Group.+WellDefined (imageGroup f surj respects+ wd) {m} {n} {x} {y} = wd Group.0G (imageGroup f surj respects+ wd) = f (Group.0G G) Group.inverse (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) b with surjective {b} Group.inverse (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) b | a , fa=b = f (Group.inverse G a) Group.+Associative (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {a} {b} {c} with surjective {a} ... | x , fx=a with surjective {b} ... | y , fy=b with surjective {c} ... | z , fz=c = transitive (wd (symmetric fx=a) (transitive (wd (symmetric fy=b) (symmetric fz=c)) (symmetric respects+))) (transitive (transitive (symmetric respects+) (transitive (wellDefined (Group.+Associative G)) respects+)) (wd (transitive respects+ (wd fx=a fy=b)) fz=c)) where open Setoid T open Equivalence eq Group.identRight (imageGroup {T = T} f record { wellDefined = wd ; surjective = surjective } respects+ bWd) {b} with surjective {b} ... | a , fa=b = transitive (bWd (symmetric fa=b) reflexive) (transitive (symmetric respects+) (transitive (wd (Group.identRight G)) fa=b)) where open Setoid T open Equivalence eq Group.identLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b} ... | a , fa=b = transitive (wd reflexive (symmetric fa=b)) (transitive (symmetric respects+) (transitive (wellDefined (Group.identLeft G)) fa=b)) where open Setoid T open Equivalence eq Group.invLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b} Group.invLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} | a , fa=b = transitive (wd reflexive (symmetric fa=b)) (transitive (symmetric respects+) (wellDefined (Group.invLeft G))) where open Setoid T open Equivalence eq Group.invRight (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b} Group.invRight (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} | a , fa=b = transitive (wd (symmetric fa=b) reflexive) (transitive (symmetric respects+) (wellDefined (Group.invRight G))) where open Setoid T open Equivalence eq homToImageGroup : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B → B → B} → (f : A → B) → (surj : SetoidSurjection S T f) → (respects+ : {x y : A} → Setoid._∼_ T (f (x +A y)) ((f x) +B (f y))) → (wd : {x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x +B y) (m +B n)) → GroupHom G (imageGroup f surj respects+ wd) f GroupHom.groupHom (homToImageGroup f surj respects+ wd) = respects+ GroupHom.wellDefined (homToImageGroup f surj respects+ wd) = SetoidSurjection.wellDefined surj
{ "alphanum_fraction": 0.6774279616, "avg_line_length": 72.0769230769, "ext": "agda", "hexsha": "6b7300fdd1e586e092403222cf06f3b549f1c0a1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Homomorphisms/Lemmas2.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Homomorphisms/Lemmas2.agda", "max_line_length": 342, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Homomorphisms/Lemmas2.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1235, "size": 3748 }
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open import Data.Empty using (⊥; ⊥-elim) open import Data.List using (List; []; _∷_; takeWhile; dropWhile) open import Data.List.All using (All; []; _∷_) open import Data.Bool using (Bool; true; false; T) open import Data.Unit using (⊤; tt) open import Relation.Nullary using (¬_) open import Function using (_∘_) module TakeDropBool (A : Set) (P : A → Bool) where Head : ∀ {A : Set} → (A → Bool) → List A → Set Head P [] = ⊥ Head P (c ∷ s) = T (P c) data Book (x : A) (b : Bool) : Set where book : P x ≡ b → Book x b boo : ∀ (x : A) → Book x (P x) boo x = book refl dropWhile-lemma : ∀ (s : List A) → ¬ Head P (dropWhile P s) dropWhile-lemma [] = λ() dropWhile-lemma (c ∷ s) with P c | boo c ... | true | _ = dropWhile-lemma s ... | false | book eq rewrite eq = λ() takeWhile-lemma : ∀ (s : List A) → All (T ∘ P) (takeWhile P s) takeWhile-lemma [] = [] takeWhile-lemma (c ∷ s) with P c | boo c ... | false | _ = [] ... | true | book eq rewrite eq = {! tt!} ∷ takeWhile-lemma s {- Hole 0 Goal: T (P c) ———————————————————————————————————————————————————————————— s : List A eq : P c ≡ true c : A P : A → Bool A : Set -}
{ "alphanum_fraction": 0.4667106131, "avg_line_length": 33.7111111111, "ext": "agda", "hexsha": "54ce883b57bc40906397f687705f5996b2d89e5d", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/TakeDropBool.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/TakeDropBool.agda", "max_line_length": 91, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/TakeDropBool.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 476, "size": 1517 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.DisjointlyPointedSet module groups.DisjointlyPointedSet where diff-and-separate : ∀ {i j} {X : Ptd i} (G : Group j) → (de⊙ X → Group.El G) → Group.El G × (MinusPoint X → Group.El G) diff-and-separate {X = X} G f = f (pt X) , λ x- → Group.diff G (f (fst x-)) (f (pt X)) shift-and-unite : ∀ {i j} {X : Ptd i} (G : Group j) → is-separable X → Group.El G × (MinusPoint X → Group.El G) → (de⊙ X → Group.El G) shift-and-unite {X = X} G X-sep p x with X-sep x ... | inl _ = fst p ... | inr pt≠x = Group.comp G (snd p (x , pt≠x)) (fst p) diff-and-separate-hom : ∀ {i j} {X : Ptd i} (G : AbGroup j) → Πᴳ (de⊙ X) (λ _ → AbGroup.grp G) →ᴳ AbGroup.grp G ×ᴳ Πᴳ (MinusPoint X) (λ _ → AbGroup.grp G) diff-and-separate-hom {X = X} G = group-hom (diff-and-separate grp) lemma where open AbGroup G abstract lemma : preserves-comp (Group.comp (Πᴳ (de⊙ X) (λ _ → AbGroup.grp G))) (Group.comp (AbGroup.grp G ×ᴳ Πᴳ (MinusPoint X) (λ _ → AbGroup.grp G))) (diff-and-separate grp) lemma f₀ f₁ = pair×= idp (λ= λ x- → diff-comp (f₀ (fst x-)) (f₁ (fst x-)) (f₀ (pt X)) (f₁ (pt X))) diff-and-separate-is-equiv : ∀ {i j} {X : Ptd i} (G : Group j) → is-separable X → is-equiv (diff-and-separate {X = X} G) diff-and-separate-is-equiv {X = X} G X-sep = is-eq to from to-from (λ= ∘ from-to) where open Group G to = diff-and-separate {X = X} G from = shift-and-unite {X = X} G X-sep abstract fst-to-from : ∀ p → fst (to (from p)) == fst p fst-to-from _ with X-sep (pt X) ... | inl _ = idp ... | inr pt≠pt = ⊥-rec (pt≠pt idp) snd-to-from : ∀ p x → snd (to (from p)) x == snd p x snd-to-from p x with X-sep (fst x) ... | inl pt=x = ⊥-rec (snd x pt=x) ... | inr pt≠x with X-sep (pt X) ... | inl _ = assoc (snd p (fst x , pt≠x)) (fst p) (inv (fst p)) ∙ ap (comp (snd p (fst x , pt≠x))) (inv-r (fst p)) ∙ unit-r (snd p (fst x , pt≠x)) ∙ ap (λ neq → snd p (fst x , neq)) (prop-has-all-paths _ _) ... | inr pt≠pt = ⊥-rec (pt≠pt idp) to-from : ∀ p → to (from p) == p to-from p = pair×= (fst-to-from p) (λ= (snd-to-from p)) from-to : ∀ f x → from (to f) x == f x from-to f x with X-sep x ... | inl idp = idp ... | inr _ = assoc (f x) (inv (f (pt X))) (f (pt X)) ∙ ap (comp (f x)) (inv-l (f (pt X))) ∙ unit-r (f x) diff-and-separate-iso : ∀ {i j} {X : Ptd i} (G : AbGroup j) → is-separable X → Πᴳ (de⊙ X) (λ _ → AbGroup.grp G) ≃ᴳ AbGroup.grp G ×ᴳ Πᴳ (MinusPoint X) (λ _ → AbGroup.grp G) diff-and-separate-iso G X-sep = diff-and-separate-hom G , diff-and-separate-is-equiv (AbGroup.grp G) X-sep
{ "alphanum_fraction": 0.500168976, "avg_line_length": 40.5342465753, "ext": "agda", "hexsha": "04e986f7f7e60cc4e19c80117221be8c97c17843", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/DisjointlyPointedSet.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/DisjointlyPointedSet.agda", "max_line_length": 87, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/DisjointlyPointedSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1129, "size": 2959 }
-- See also test/Succeed/InlineCompiled.agda module _ where id : {A : Set} → A → A id x = x {-# INLINE id #-} -- this is pointless and should generate a warning in the info buffer {-# COMPILE GHC id = \ _ x -> x #-}
{ "alphanum_fraction": 0.6301369863, "avg_line_length": 19.9090909091, "ext": "agda", "hexsha": "9672ad99ef790c5c9462fa9a944e272f0baf2a78", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/CompilationWarnings.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/CompilationWarnings.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/CompilationWarnings.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 219 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.types.TLevel open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.Pointed open import lib.types.LoopSpace open import lib.types.Truncation open import lib.types.PathSet module lib.types.Cover where {- The definition of covering spaces. -} record Cover {i} (A : Type i) j : Type (lmax i (lsucc j)) where constructor cover field Fiber : A → Type j Fiber-level : ∀ a → is-set (Fiber a) Fiber-is-set = Fiber-level TotalSpace = Σ A Fiber -- Basic lemmas module _ {i} {A : Type i} {j} where open Cover -- Equality between covers. private cover=′ : {c₁ c₂ : Cover A j} → Fiber c₁ == Fiber c₂ → c₁ == c₂ cover=′ {cover f _} {cover .f _} idp = ap (cover f) $ prop-has-all-paths (Π-is-prop λ _ → is-set-is-prop) _ _ cover= : {c₁ c₂ : Cover A j} → (∀ a → Fiber c₁ a ≃ Fiber c₂ a) → c₁ == c₂ cover= F≃ = cover=′ (λ= λ a → ua $ F≃ a) -- The definition of universality in terms of connectedness. is-universal : Cover A j → Type (lmax i j) is-universal cov = is-connected 1 $ TotalSpace cov -- In terms of connectedness UniversalCover : Type (lmax i (lsucc j)) UniversalCover = Σ (Cover A j) is-universal -- Theorem: A covering space keeps higher homotopy groups. module _ {i} (A∙ : Ptd i) {j} (c : Cover (fst A∙) j) (a↑ : Cover.Fiber c (snd A∙)) where open Cover c private F = Cover.Fiber c F-level = Cover.Fiber-level c A = fst A∙ a = snd A∙ private -- The projection map with one end free (in order to apply J). to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → idp == p⇑ → idp == fst= p⇑ to′ idp=p⇑ = ap fst= idp=p⇑ -- The projection map from Ω²(Σ A F) to Ω²(A). to : Ω^ 2 ⊙[ Σ A F , (a , a↑) ] → Ω^ 2 A∙ to p²⇑ = to′ {p⇑ = idp} p²⇑ -- Auxiliary synthesized path for injection. idp=p↑ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] idp=p↑ idp = prop-has-all-paths (F-level a _ _) _ _ -- The injection map with some ends free (in order to apply J). from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] → idp == pair= p p↑ from′ idp=p idp=p↑ = pair== idp=p idp=p↑ -- The injection map from Ω²(A) to Ω²(Σ A F). from : Ω^ 2 A∙ → Ω^ 2 ⊙[ Σ A F , (a , a↑) ] from p² = from′ {p = idp} {p↑ = idp} p² (idp=p↑ p²) -- Injection is left-inverse to projection (with some ends free). from′-to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → (idp=p⇑ : idp == p⇑) → (idp=snd=p⇑ : idp == snd= p⇑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ to′ idp=p⇑ ]) → from′ (to′ idp=p⇑) idp=snd=p⇑ == idp=p⇑ [ (λ p⇑ → idp == p⇑) ↓ ! (pair=-η p⇑) ] from′-to′ idp idp=snd=p⇑ = ap (from′ idp) $ contr-has-all-paths (F-level a _ _ _ _) _ _ -- Injection is left-inverse to projection. from-to : ∀ p²⇑ → from (to p²⇑) == p²⇑ from-to p²⇑ = from′-to′ {p⇑ = idp} p²⇑ (idp=p↑ (to′ p²⇑)) -- Injection is right-inverse to projection (with some ends free). to′-from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → (idp=p↑ : idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ]) → to′ (from′ idp=p idp=p↑) == idp=p [ (λ p → idp == p) ↓ fst=-β p p↑ ] to′-from′ idp idp = idp -- Injection is right-inverse to projection. to-from : ∀ p² → to (from p²) == p² to-from p² = to′-from′ p² (idp=p↑ p²) -- The theorem. Ω²ΣAFiber≃Ω²A : Ω^ 2 (Σ A F , (a , a↑)) ≃ Ω^ 2 A∙ Ω²ΣAFiber≃Ω²A = to , is-eq to from to-from from-to -- A natural way to construct a G-set from covering spaces. module _ {i} {A : Type i} where open Cover cover-trace : ∀ {j} (cov : Cover A j) {a₁ a₂} → Fiber cov a₁ → a₁ =₀ a₂ → Fiber cov a₂ cover-trace cov a↑ p = transport₀ (Fiber cov) (Fiber-is-set cov _) p a↑ abstract cover-trace-idp₀ : ∀ {j} (cov : Cover A j) {a₁} → (a↑ : Fiber cov a₁) → cover-trace cov a↑ idp₀ == a↑ cover-trace-idp₀ cov a↑ = idp cover-paste : ∀ {j} (cov : Cover A j) {a₁ a₂} → (a↑ : Fiber cov a₁) → (loop : a₁ =₀ a₁) → (p : a₁ =₀ a₂) → cover-trace cov (cover-trace cov a↑ loop) p == cover-trace cov a↑ (loop ∙₀ p) cover-paste cov a↑ loop p = ! $ trans₀-∙₀ (Fiber-is-set cov) loop p a↑ -- Path sets form a covering space module _ {i} (A∙ : Ptd i) where path-set-cover : Cover (fst A∙) i path-set-cover = record { Fiber = λ a → snd A∙ =₀ a ; Fiber-level = λ a → Trunc-level } -- Cover morphisms CoverHom : ∀ {i} {A : Type i} {j₁ j₂} → (cov1 : Cover A j₁) → (cov2 : Cover A j₂) → Type (lmax i (lmax j₁ j₂)) CoverHom (cover F₁ _) (cover F₂ _) = ∀ a → F₁ a → F₂ a
{ "alphanum_fraction": 0.5157232704, "avg_line_length": 31.8, "ext": "agda", "hexsha": "c6afb9bd86a907da73ba783a467bda37705697c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Cover.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Cover.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Cover.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1999, "size": 5088 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Semilattice where open import Cubical.Algebra.Semilattice.Base public
{ "alphanum_fraction": 0.7863247863, "avg_line_length": 23.4, "ext": "agda", "hexsha": "240f18094633f1938113f0368cf8f2e0a9a5cbe0", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/Semilattice.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/Semilattice.agda", "max_line_length": 51, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/Semilattice.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 29, "size": 117 }