Search is not available for this dataset
text
string | meta
dict |
---|---|
module Sets.PredicateSet.Listable where
import Lvl
open import Data.List as List using (List)
open import Data.List.Functions renaming (_++_ to _∪ₗ_) using (singleton)
open import Data.List.Relation.Membership renaming (_∈_ to _∈ₗ_ ; _∈!_ to _∈!ₗ_) using (use ; skip)
open import Data.List.Relation.Permutation
open import Data.List.Relation.Quantification using (∀ₗᵢₛₜ ; module AllElements ; ExistsElement ; ExistsElementEquivalence ; module ExistsElementEquivalence)
open import Functional
open import Lang.Instance
open import Logic.Propositional
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; ∅ ; _∪_ ; •_)
open Sets.PredicateSet.BoundedQuantifiers
open import Type.Properties.Singleton
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T : Type{ℓ}
private variable S S₁ S₂ : PredSet{ℓ}(T)
private variable x : T
module _ (S : PredSet{ℓ}(T)) where
record Listable : Type{Lvl.of(T) Lvl.⊔ ℓ} where
field
list : List(T)
unique : ∀ₛ(S) (_∈!ₗ list)
restrict : ∀ₗᵢₛₜ(list) (_∈ S)
proof : ∀ₛ(S) (_∈ₗ list)
proof = IsUnit.unit ∘ unique
list = inst-fn Listable.list
private variable l l₁ l₂ l₁₂ : Listable(S)
∅-listable : Listable{ℓ = ℓ}{T = T}(∅)
Listable.list ∅-listable = List.∅
Listable.unique ∅-listable ()
Listable.restrict ∅-listable = AllElements.∅
singleton-listable : Listable(•_ ⦃ [≡]-equiv ⦄ x)
Listable.list singleton-listable = singleton _
Listable.unique singleton-listable [≡]-intro = intro (use [≡]-intro) (\{ {ExistsElement.• x} → ExistsElementEquivalence.use})
Listable.restrict singleton-listable = [≡]-intro AllElements.⊰ AllElements.∅
{- TODO: Will not satisfy Listable because (_++_) may yield multiples which Listable does not allow, and therefore list-[∪] below is also incorrect.
∪-listable : ⦃ Listable(S₁) ⦄ → ⦃ Listable(S₂) ⦄ → Listable(S₁ ∪ S₂)
Listable.list (∪-listable {S₁ = S₁} {S₂ = S₂}) = list(S₁) ∪ₗ list(S₂)
Listable.unique ∪-listable = {!!}
Listable.restrict ∪-listable = {!!}-}
-- list-[∪] : ∀{Γ₁ : PredSet{ℓ₁}(Formula(P))}{Γ₂ : PredSet{ℓ₂}(Formula(P))}{l₁₂ : Listable(Γ₁ PredSet.∪ Γ₂)} → Logic.∃{Obj = Listable(Γ₁) ⨯ Listable(Γ₂)}(\(l₁ , l₂) → (list(Γ₁ PredSet.∪ Γ₂) ⦃ l₁₂ ⦄ ≡ (list Γ₁ ⦃ l₁ ⦄) ∪ (list Γ₂ ⦃ l₂ ⦄)))
postulate list-[∪] : (list(S₁ ∪ S₂) ⦃ l₁₂ ⦄ permutes (list S₁ ⦃ l₁ ⦄) ∪ₗ (list S₂ ⦃ l₂ ⦄))
postulate list-[∪·] : (list(S ∪ (•_ ⦃ [≡]-equiv ⦄ x)) ⦃ l₁₂ ⦄ permutes (list S ⦃ l ⦄) ∪ₗ singleton(x))
| {
"alphanum_fraction": 0.6748417722,
"avg_line_length": 45.1428571429,
"ext": "agda",
"hexsha": "2a51bff46fae8dfca53f77a9504d640d77b5526b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/PredicateSet/Listable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/PredicateSet/Listable.agda",
"max_line_length": 237,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/PredicateSet/Listable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 944,
"size": 2528
} |
module SAcc where
data Size : Set where
s : Size -> Size
data Acc ( A : Set ) ( Lt : A -> A -> Set) : Size -> A -> Set where
acc : (i : Size) -> ( b : A )
-> ( ( a : A ) -> Lt a b -> Acc A Lt i a )
-> ( Acc A Lt (s i) b )
data Nat : Set where
zero : Nat
succ : Nat -> Nat
data Lt : Nat -> Nat -> Set where
ltzero : ( x : Nat ) -> Lt zero (succ x)
ltsucc : ( x : Nat ) -> (y : Nat) -> Lt x y -> Lt (succ x) (succ y)
notLt0 : ( x : Nat ) -> Lt x zero -> (C : Set) -> C
notLt0 x ()
accLt : (i : Size ) -> ( x : Nat ) -> Acc Nat Lt i x
accLt (s i) zero = acc i zero (\a -> \p -> notLt0 a p (Acc Nat Lt i a) )
accLt (s i) (succ x) = acc i (succ x) (\a -> \p -> (accLt i a))
| {
"alphanum_fraction": 0.4607843137,
"avg_line_length": 24.6206896552,
"ext": "agda",
"hexsha": "ee0afab1bcc46ed6570bc2ad44b87ca34bf113ef",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2021-08-16T07:47:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-30T00:17:04.000Z",
"max_forks_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/miniagda",
"max_forks_repo_path": "examples/SAcc.agda",
"max_issues_count": 7,
"max_issues_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_issues_repo_issues_event_max_datetime": "2020-03-17T08:09:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-12-16T15:48:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/miniagda",
"max_issues_repo_path": "examples/SAcc.agda",
"max_line_length": 72,
"max_stars_count": 85,
"max_stars_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/miniagda",
"max_stars_repo_path": "examples/SAcc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-12T16:54:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-16T15:53:24.000Z",
"num_tokens": 274,
"size": 714
} |
module _ where
open import Agda.Primitive
postulate
Equiv : ∀ {a b} → (A : Set a) (B : Set b) → Set (a ⊔ b)
{-# BUILTIN EQUIV Equiv #-}
| {
"alphanum_fraction": 0.5886524823,
"avg_line_length": 15.6666666667,
"ext": "agda",
"hexsha": "7bd8e327c321e79483a83f11bc6330cf2705347d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2788.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2788.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2788.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 52,
"size": 141
} |
module Oscar.Relation where
open import Oscar.Level
_⟨_⟩→_ : ∀ {a} {A : Set a} {b} → A → (A → Set b) → A → Set b
m ⟨ B ⟩→ n = B m → B n
Transitive : ∀ {a} {A : Set a} {b} (B : A → A → Set b) → Set (a ⊔ b)
Transitive B = ∀ {y z} → B y z → ∀ {x} → B x y → B x z
module _ {𝔬} {⋆ : Set 𝔬} {𝔪} {_↦_ : ⋆ → ⋆ → Set 𝔪} (_∙_ : Transitive _↦_) {𝔮} (_≞_ : ∀ {x} {y} → x ↦ y → x ↦ y → Set 𝔮) where
Extensional : Set (𝔬 ⊔ 𝔪 ⊔ 𝔮)
Extensional =
∀ {x y} {f₁ f₂ : x ↦ y}
→ f₁ ≞ f₂ → ∀ {z} {g₁ g₂ : y ↦ z}
→ g₁ ≞ g₂
→ (g₁ ∙ f₁) ≞ (g₂ ∙ f₂)
Associative : Set (𝔬 ⊔ 𝔪 ⊔ 𝔮)
Associative =
∀ {w x}
(f : w ↦ x)
{y}
(g : x ↦ y)
{z}
(h : y ↦ z)
→ ((h ∙ g) ∙ f) ≞ (h ∙ (g ∙ f))
| {
"alphanum_fraction": 0.393006993,
"avg_line_length": 23.8333333333,
"ext": "agda",
"hexsha": "b73f69edb93e6a65486d8667629aa089fc3e2a95",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Relation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Relation.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Relation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 392,
"size": 715
} |
{-# OPTIONS --cubical --safe #-}
module Data.Bits.Equatable where
open import Data.Bits
open import Prelude
_≡ᴮ_ : Bits → Bits → Bool
[] ≡ᴮ [] = true
(0∷ xs) ≡ᴮ (0∷ ys) = xs ≡ᴮ ys
(1∷ xs) ≡ᴮ (1∷ ys) = xs ≡ᴮ ys
_ ≡ᴮ _ = false
open import Relation.Nullary.Discrete.FromBoolean
sound-== : ∀ n m → T (n ≡ᴮ m) → n ≡ m
sound-== [] [] p i = []
sound-== (0∷ n) (0∷ m) p i = 0∷ sound-== n m p i
sound-== (1∷ n) (1∷ m) p i = 1∷ sound-== n m p i
complete-== : ∀ n → T (n ≡ᴮ n)
complete-== [] = tt
complete-== (0∷ n) = complete-== n
complete-== (1∷ n) = complete-== n
_≟_ : Discrete Bits
_≟_ = from-bool-eq _≡ᴮ_ sound-== complete-==
| {
"alphanum_fraction": 0.5253456221,
"avg_line_length": 23.25,
"ext": "agda",
"hexsha": "326171ff9fa95af61165a273b700ae40aa79af44",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bits/Equatable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bits/Equatable.agda",
"max_line_length": 49,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bits/Equatable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 308,
"size": 651
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.Empty
open import lib.types.Lift
open import lib.types.Pointed
module lib.types.Coproduct where
module _ {i j} {A : Type i} {B : Type j} where
⊔-code : Coprod A B → Coprod A B → Type (lmax i j)
⊔-code (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂
⊔-code (inl a₁) (inr b₂) = Lift Empty
⊔-code (inr b₁) (inl a₂) = Lift Empty
⊔-code (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂
⊔-encode : {x y : Coprod A B} → (x == y) → ⊔-code x y
⊔-encode {inl a₁} {y} p = transport (⊔-code $ inl a₁) p (lift $ idp {a = a₁})
⊔-encode {inr b₁} {y} p = transport (⊔-code $ inr b₁) p (lift $ idp {a = b₁})
⊔-decode : {x y : Coprod A B} → ⊔-code x y → (x == y)
⊔-decode {inl _} {inl _} c = ap inl $ lower c
⊔-decode {inl _} {inr _} c = Empty-rec $ lower c
⊔-decode {inr _} {inl _} c = Empty-rec $ lower c
⊔-decode {inr _} {inr _} c = ap inr (lower c)
⊔-code-equiv : (x y : Coprod A B) → (x == y) ≃ ⊔-code x y
⊔-code-equiv x y = equiv ⊔-encode ⊔-decode (f-g x y) (g-f x y)
where f-g : ∀ x' y' → ∀ c → ⊔-encode (⊔-decode {x'} {y'} c) == c
f-g (inl a₁) (inl .a₁) (lift idp) = idp
f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b
f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b
f-g (inr b₁) (inr .b₁) (lift idp) = idp
g-f : ∀ x' y' → ∀ p → ⊔-decode (⊔-encode {x'} {y'} p) == p
g-f (inl _) .(inl _) idp = idp
g-f (inr _) .(inr _) idp = idp
inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂)
inl=inl-equiv a₁ a₂ = lower-equiv ∘e ⊔-code-equiv (inl a₁) (inl a₂)
inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂)
inr=inr-equiv b₁ b₂ = lower-equiv ∘e ⊔-code-equiv (inr b₁) (inr b₂)
inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂)
inl≠inr a₁ b₂ p = lower $ ⊔-encode p
inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂)
inr≠inl a₁ b₂ p = lower $ ⊔-encode p
⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B
→ has-level (S (S n)) (Coprod A B)
⊔-level pA _ (inl a₁) (inl a₂) =
equiv-preserves-level ((inl=inl-equiv a₁ a₂)⁻¹) (pA a₁ a₂)
⊔-level _ _ (inl a₁) (inr b₂) = λ p → Empty-rec (inl≠inr a₁ b₂ p)
⊔-level _ _ (inr b₁) (inl a₂) = λ p → Empty-rec (inr≠inl b₁ a₂ p)
⊔-level _ pB (inr b₁) (inr b₂) =
equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹) (pB b₁ b₂)
infix 80 _⊙⊔_
_⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊙⊔ Y = ⊙[ Coprod (fst X) (fst Y) , inl (snd X) ]
_⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
X ⊔⊙ Y = ⊙[ Coprod (fst X) (fst Y) , inr (snd Y) ]
codiag : ∀ {i} {A : Type i} → A ⊔ A → A
codiag (inl a) = a
codiag (inr a) = a
⊙codiag : ∀ {i} {X : Ptd i} → fst (X ⊙⊔ X ⊙→ X)
⊙codiag = (codiag , idp)
-- A binary sigma is a coproduct
ΣBool-equiv-⊔ : ∀ {i} (Pick : Bool → Type i)
→ Σ _ Pick ≃ (Pick true ⊔ Pick false)
ΣBool-equiv-⊔ Pick = equiv into out into-out out-into
where
into : Σ _ Pick → Pick true ⊔ Pick false
into (true , a) = inl a
into (false , b) = inr b
out : (Pick true ⊔ Pick false) → Σ _ Pick
out (inl a) = (true , a)
out (inr b) = (false , b)
into-out : ∀ c → into (out c) == c
into-out (inl a) = idp
into-out (inr b) = idp
out-into : ∀ s → out (into s) == s
out-into (true , a) = idp
out-into (false , b) = idp
| {
"alphanum_fraction": 0.5244192972,
"avg_line_length": 34.9791666667,
"ext": "agda",
"hexsha": "e5d30196c58e8f9fde48a576c29b67399bb6f852",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Coproduct.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1617,
"size": 3358
} |
{-# OPTIONS --without-K --rewriting #-}
module Agda.Builtin.Equality.Rewrite where
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
| {
"alphanum_fraction": 0.7162162162,
"avg_line_length": 18.5,
"ext": "agda",
"hexsha": "4689c3a6305002e540ec47edd008f4cea8c72edb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "bennn/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Rewrite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "bennn/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Rewrite.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "bennn/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Rewrite.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 40,
"size": 148
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The lifting of a non-strict order to incorporate a new supremum
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Supremum
open import Relation.Binary
module Relation.Binary.Construct.Add.Supremum.NonStrict
{a ℓ} {A : Set a} (_≤_ : Rel A ℓ) where
open import Level using (_⊔_)
open import Data.Sum as Sum
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
import Relation.Binary.PropositionalEquality as P
open import Relation.Nullary.Construct.Add.Supremum
import Relation.Binary.Construct.Add.Supremum.Equality as Equality
------------------------------------------------------------------------
-- Definition
data _≤⁺_ : Rel (A ⁺) (a ⊔ ℓ) where
[_] : {k l : A} → k ≤ l → [ k ] ≤⁺ [ l ]
_≤⊤⁺ : (k : A ⁺) → k ≤⁺ ⊤⁺
------------------------------------------------------------------------
-- Properties
[≤]-injective : ∀ {k l} → [ k ] ≤⁺ [ l ] → k ≤ l
[≤]-injective [ p ] = p
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
≤⁺-reflexive : (_≈_ ⇒ _≤_) → (_≈⁺_ ⇒ _≤⁺_)
≤⁺-reflexive ≤-reflexive [ p ] = [ ≤-reflexive p ]
≤⁺-reflexive ≤-reflexive ⊤⁺≈⊤⁺ = ⊤⁺ ≤⊤⁺
≤⁺-antisym : Antisymmetric _≈_ _≤_ → Antisymmetric _≈⁺_ _≤⁺_
≤⁺-antisym ≤-antisym [ p ] [ q ] = [ ≤-antisym p q ]
≤⁺-antisym ≤-antisym (⊤⁺ ≤⊤⁺) (⊤⁺ ≤⊤⁺) = ⊤⁺≈⊤⁺
≤⁺-trans : Transitive _≤_ → Transitive _≤⁺_
≤⁺-trans ≤-trans [ p ] [ q ] = [ ≤-trans p q ]
≤⁺-trans ≤-trans p (l ≤⊤⁺) = _ ≤⊤⁺
≤⁺-maximum : Maximum _≤⁺_ ⊤⁺
≤⁺-maximum = _≤⊤⁺
≤⁺-dec : Decidable _≤_ → Decidable _≤⁺_
≤⁺-dec _≤?_ k ⊤⁺ = yes (k ≤⊤⁺)
≤⁺-dec _≤?_ ⊤⁺ [ l ] = no (λ ())
≤⁺-dec _≤?_ [ k ] [ l ] = Dec.map′ [_] [≤]-injective (k ≤? l)
≤⁺-total : Total _≤_ → Total _≤⁺_
≤⁺-total ≤-total k ⊤⁺ = inj₁ (k ≤⊤⁺)
≤⁺-total ≤-total ⊤⁺ l = inj₂ (l ≤⊤⁺)
≤⁺-total ≤-total [ k ] [ l ] = Sum.map [_] [_] (≤-total k l)
≤⁺-irrelevant : Irrelevant _≤_ → Irrelevant _≤⁺_
≤⁺-irrelevant ≤-irr [ p ] [ q ] = P.cong _ (≤-irr p q)
≤⁺-irrelevant ≤-irr (k ≤⊤⁺) (k ≤⊤⁺) = P.refl
------------------------------------------------------------------------
-- Structures
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
≤⁺-isPreorder : IsPreorder _≈_ _≤_ → IsPreorder _≈⁺_ _≤⁺_
≤⁺-isPreorder ≤-isPreorder = record
{ isEquivalence = ≈⁺-isEquivalence isEquivalence
; reflexive = ≤⁺-reflexive reflexive
; trans = ≤⁺-trans trans
} where open IsPreorder ≤-isPreorder
≤⁺-isPartialOrder : IsPartialOrder _≈_ _≤_ → IsPartialOrder _≈⁺_ _≤⁺_
≤⁺-isPartialOrder ≤-isPartialOrder = record
{ isPreorder = ≤⁺-isPreorder isPreorder
; antisym = ≤⁺-antisym antisym
} where open IsPartialOrder ≤-isPartialOrder
≤⁺-isDecPartialOrder : IsDecPartialOrder _≈_ _≤_ → IsDecPartialOrder _≈⁺_ _≤⁺_
≤⁺-isDecPartialOrder ≤-isDecPartialOrder = record
{ isPartialOrder = ≤⁺-isPartialOrder isPartialOrder
; _≟_ = ≈⁺-dec _≟_
; _≤?_ = ≤⁺-dec _≤?_
} where open IsDecPartialOrder ≤-isDecPartialOrder
≤⁺-isTotalOrder : IsTotalOrder _≈_ _≤_ → IsTotalOrder _≈⁺_ _≤⁺_
≤⁺-isTotalOrder ≤-isTotalOrder = record
{ isPartialOrder = ≤⁺-isPartialOrder isPartialOrder
; total = ≤⁺-total total
} where open IsTotalOrder ≤-isTotalOrder
≤⁺-isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ → IsDecTotalOrder _≈⁺_ _≤⁺_
≤⁺-isDecTotalOrder ≤-isDecTotalOrder = record
{ isTotalOrder = ≤⁺-isTotalOrder isTotalOrder
; _≟_ = ≈⁺-dec _≟_
; _≤?_ = ≤⁺-dec _≤?_
} where open IsDecTotalOrder ≤-isDecTotalOrder
| {
"alphanum_fraction": 0.5318072931,
"avg_line_length": 34.1545454545,
"ext": "agda",
"hexsha": "f74133fb54744965ce677c33a374ab6722ec9e24",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/NonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/NonStrict.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/NonStrict.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1518,
"size": 3757
} |
-- (Γ ⇒ Δ ∪ · A) → (Γ ⇒ Δ ∪ · (A ∨ B))
-- The conclusion (A ∨ B) is the principal/major formula of the rule.
-- The premiss A is the active/minor formula of the rule
-- Γ, Δ is the side formulas of the rule.
-- Γ ⇒ Δ
-- LHS Γ is the antecedent of the sequent.
-- RHS Γ is the consequent of the sequent.
| {
"alphanum_fraction": 0.6295081967,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "9e907041c8b81d70ecc46e6c4588a83a2b259d07",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Minimal/SequentCalculus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Minimal/SequentCalculus.agda",
"max_line_length": 69,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Minimal/SequentCalculus.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 104,
"size": 305
} |
{-# OPTIONS --sized-types --show-implicit #-}
module SizedNatAnnotated where
open import Size
data Nat : {i : Size} -> Set where
zero : {i : Size} -> Nat {↑ i}
suc : {i : Size} -> Nat {i} -> Nat {↑ i}
-- subtraction is non size increasing
sub : {i : Size} -> Nat {i} -> Nat {∞} -> Nat {i}
sub .{↑ i} (zero {i}) n = zero {i}
sub .{↑ i} (suc {i} m) zero = suc {i} m
sub .{↑ i} (suc {i} m) (suc n) = sub {i} m n
-- div' m n computes ceiling(m/(n+1))
div' : {i : Size} -> Nat {i} -> Nat -> Nat {i}
div' .{↑ i} (zero {i}) n = zero {i}
div' .{↑ i} (suc {i} m) n = suc {i} (div' {i} (sub {i} m n) n)
| {
"alphanum_fraction": 0.4894991922,
"avg_line_length": 28.1363636364,
"ext": "agda",
"hexsha": "76bde41a1bb83d9ad183c620adf14db6a88e9d36",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/Termination/Sized/SizedNatAnnotated.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/Termination/Sized/SizedNatAnnotated.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/Termination/Sized/SizedNatAnnotated.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 260,
"size": 619
} |
{-# OPTIONS --no-positivity-check #-}
module univ where
open import Base
open import Nat
import Logic.ChainReasoning
module Chain
{A : Set}( _==_ : A -> A -> Set)
(refl : {x : A} -> x == x)
(trans : {x y z : A} -> x == y -> y == z -> x == z) =
Logic.ChainReasoning.Mono.Homogenous _==_ (\x -> refl) (\x y z -> trans)
-- mutual inductive recursive definition of S and the functions _=S_, El, eq,
-- and all the proofs on these functions
mutual
infix 40 _==_ _=S_ _=Fam_
infixr 80 _<<_
infixl 80 _>>_
infixl 150 _!_
data S : Set where
nat : S
pi : (A : S)(F : Fam A) -> S
sigma : (A : S)(F : Fam A) -> S
data Fam (A : S) : Set where
fam : (F : El A -> S) -> Map _==_ _=S_ F -> Fam A
_=S'_ : rel S
nat =S' pi _ _ = False
nat =S' sigma _ _ = False
pi _ _ =S' nat = False
pi _ _ =S' sigma _ _ = False
sigma _ _ =S' nat = False
sigma _ _ =S' pi _ _ = False
nat =S' nat = True
pi A F =S' pi B G =
(B =S A) * \ B=A -> F =Fam G >> B=A
sigma A F =S' sigma B G =
(A =S B) * \A=B -> F >> A=B =Fam G
data _=S_ (A B : S) : Set where
eqS : A =S' B -> A =S B
El' : S -> Set
El' nat = Nat
El' (pi A F) =
((x : El A) -> El (F ! x)) * \f ->
{x y : El A}(x=y : x == y) -> f x == pFam F x=y << f y
El' (sigma A F) =
El A * \x -> El (F ! x)
data El (A : S) : Set where
el : El' A -> El A
_=='_ : {A : S} -> rel (El A)
_=='_ {nat} (el x) (el y) = x =N y
_=='_ {pi A F} (el < f , pf >) (el < g , pg >) =
(x : El A) -> f x == g x
_=='_ {sigma A F} (el < x , Fx >) (el < y , Fy >) =
x == y * \x=y -> Fx == pFam F x=y << Fy
data _==_ {A : S}(x y : El A) : Set where
eq : x ==' y -> x == y
_=Fam_ : {A : S} -> rel (Fam A)
F =Fam G = (x : El _) -> F ! x =S G ! x
_!_ : {A : S} -> Fam A -> El A -> S
fam F _ ! x = F x
pFam : {A : S}(F : Fam A) -> Map _==_ _=S_ (_!_ F)
pFam (fam F pF) = pF
-- Families are contravariant so they cast in the other direction.
_>>_ : {A B : S} -> Fam A -> A =S B -> Fam B
_>>_ {A}{B} F A=B = fam G pG
where
G : El B -> S
G x = F ! (A=B << x)
pG : Map _==_ _=S_ G
pG x=y = pFam F (p<< A=B x=y)
pfiFam : {A B : S}(p q : A =S B)(F : Fam A) -> F >> p =Fam F >> q
pfiFam p q F x = pFam F (pfi p q x)
_<<_ : {A B : S} -> A =S B -> El B -> El A
_<<_ {nat }{pi _ _ } (eqS ()) _
_<<_ {nat }{sigma _ _ } (eqS ()) _
_<<_ {pi _ _ }{nat } (eqS ()) _
_<<_ {pi _ _ }{sigma _ _ } (eqS ()) _
_<<_ {sigma _ _ }{nat } (eqS ()) _
_<<_ {sigma _ _ }{pi _ _ } (eqS ()) _
_<<_ {nat }{nat } p x = x
_<<_ {pi A F }{pi B G } (eqS < B=A , F=G >) (el < g , pg >) =
el < f , (\{x}{y} -> pf x y) >
where
f : (x : El A) -> El (F ! x)
f x = F=G x << g (B=A << x)
pf : (x y : El A)(x=y : x == y) -> f x == pFam F x=y << f y
pf x y x=y =
chain> F=G x << g (B=A << x)
=== F=G x << _ << g (B=A << y) by p<< _ (pg (p<< B=A x=y))
=== pFam F x=y << F=G y << g (B=A << y) by pfi2 _ _ _ _ _
where
open module C = Chain _==_ (ref {_}) (trans {_})
_<<_ {sigma A F}{sigma B G} (eqS < A=B , F=G >) (el < y , Gy >) =
el < A=B << y , F=G y << Gy >
p<< : {A B : S}(A=B : A =S B) -> Map _==_ _==_ (_<<_ A=B)
p<< {nat}{nat} _ x=y = x=y
p<< {pi A F} {pi B G} (eqS < B=A , F=G >)
{el < f , pf >} {el < g , pg >} (eq f=g) = eq cf=cg
where
cf=cg : (x : El A) -> F=G x << f (B=A << x) == F=G x << g (B=A << x)
cf=cg x = p<< (F=G x) (f=g (B=A << x))
p<< {sigma A F}{sigma B G}(eqS < A=B , F=G >)
{el < x , Gx >}{el < y , Gy >} (eq < x=y , Gx=Gy >) =
eq < cx=cy , cGx=cGy >
where
cx=cy : A=B << x == A=B << y
cx=cy = p<< A=B x=y
cGx=cGy : F=G x << Gx == pFam F cx=cy << F=G y << Gy
cGx=cGy =
chain> F=G x << Gx
=== F=G x << pFam G x=y << Gy by p<< (F=G x) Gx=Gy
=== pFam F cx=cy << F=G y << Gy by pfi2 _ _ _ _ Gy
where
open module C = Chain _==_ (ref {_}) (trans {_})
p<< {nat }{pi _ _ } (eqS ()) _
p<< {nat }{sigma _ _} (eqS ()) _
p<< {pi _ _ }{nat } (eqS ()) _
p<< {pi _ _ }{sigma _ _} (eqS ()) _
p<< {sigma _ _}{nat } (eqS ()) _
p<< {sigma _ _}{pi _ _ } (eqS ()) _
refS : Refl _=S_
refS {nat} = eqS T
refS {pi A F} = eqS < refS , (\x -> symS (pFam F (ref<< x))) >
refS {sigma A F} = eqS < refS , (\x -> pFam F (ref<< x)) >
transS : Trans _=S_
transS {nat }{nat }{pi _ _ } _ (eqS ())
transS {nat }{nat }{sigma _ _ } _ (eqS ())
transS {nat }{pi _ _ } (eqS ()) _
transS {nat }{sigma _ _ } (eqS ()) _
transS {pi _ _ }{nat } (eqS ()) _
transS {pi _ _ }{pi _ _ }{nat } _ (eqS ())
transS {pi _ _ }{pi _ _ }{sigma _ _ } _ (eqS ())
transS {pi _ _ }{sigma _ _ } (eqS ()) _
transS {sigma _ _ }{nat } (eqS ()) _
transS {sigma _ _ }{pi _ _ } (eqS ()) _
transS {sigma _ _ }{sigma _ _ }{nat } _ (eqS ())
transS {sigma _ _ }{sigma _ _ }{pi _ _ } _ (eqS ())
transS {nat}{nat}{nat} p q = p
transS {pi A F}{pi B G}{pi C H}
(eqS < B=A , F=G >) (eqS < C=B , G=H >) = eqS < C=A , F=H >
where
open module C = Chain _=S_ refS transS
C=A = transS C=B B=A
F=H : F =Fam H >> C=A
F=H x =
chain> F ! x
=== G ! (B=A << x) by F=G x
=== H ! (C=B << B=A << x) by G=H (B=A << x)
=== H ! (C=A << x) by pFam H (sym (trans<< C=B B=A x))
transS {sigma A F}{sigma B G}{sigma C H}
(eqS < A=B , F=G >)(eqS < B=C , G=H >) = eqS < A=C , F=H >
where
open module C = Chain _=S_ refS transS
A=C = transS A=B B=C
F=H : F >> A=C =Fam H
F=H x =
chain> F ! (A=C << x)
=== F ! (A=B << B=C << x) by pFam F (trans<< A=B B=C x)
=== G ! (B=C << x) by F=G (B=C << x)
=== H ! x by G=H x
symS : Sym _=S_
symS {nat }{pi _ _ } (eqS ())
symS {nat }{sigma _ _ } (eqS ())
symS {pi _ _ }{nat } (eqS ())
symS {pi _ _ }{sigma _ _ } (eqS ())
symS {sigma _ _ }{nat } (eqS ())
symS {sigma _ _ }{pi _ _ } (eqS ())
symS {nat}{nat} p = p
symS {pi A F}{pi B G} (eqS < B=A , F=G >) = eqS < A=B , G=F >
where
open module C = Chain _=S_ refS transS
A=B = symS B=A
G=F : G =Fam F >> A=B
G=F x = symS (
chain> F ! (A=B << x)
=== G ! (B=A << A=B << x) by F=G (A=B << x)
=== G ! (refS << x) by pFam G (casttrans B=A A=B refS x)
=== G ! x by pFam G (ref<< x)
)
symS {sigma A F}{sigma B G}(eqS < A=B , F=G >) = eqS < B=A , G=F >
where
open module C = Chain _=S_ refS transS
B=A = symS A=B
G=F : G >> B=A =Fam F
G=F x =
chain> G ! (B=A << x)
=== F ! (A=B << B=A << x) by symS (F=G _)
=== F ! (refS << x) by pFam F (casttrans _ _ _ x)
=== F ! x by pFam F (castref _ x)
pfi : {A B : S}(p q : A =S B)(x : El B) -> p << x == q << x
pfi {nat }{pi _ _ } (eqS ()) _ _
pfi {nat }{sigma _ _ } (eqS ()) _ _
pfi {pi _ _ }{nat } (eqS ()) _ _
pfi {pi _ _ }{sigma _ _ } (eqS ()) _ _
pfi {sigma _ _ }{nat } (eqS ()) _ _
pfi {sigma _ _ }{pi _ _ } (eqS ()) _ _
pfi {nat}{nat} _ _ x = ref
pfi {pi A F}{pi B G} (eqS < B=A1 , F=G1 >) (eqS < B=A2 , F=G2 >)
(el < g , pg >) = eq g1=g2
where
g1=g2 : (x : El A) -> F=G1 x << g (B=A1 << x)
== F=G2 x << g (B=A2 << x)
g1=g2 x =
chain> F=G1 x << g (B=A1 << x)
=== F=G1 x << _ << g (B=A2 << x) by p<< _ (pg (pfi B=A1 B=A2 x))
=== F=G2 x << g (B=A2 << x) by casttrans _ _ _ _
where
open module C = Chain _==_ (ref {_}) (trans {_})
pfi {sigma A F}{sigma B G} (eqS < A=B1 , F=G1 >) (eqS < A=B2 , F=G2 >)
(el < y , Gy >) = eq < x1=x2 , Fx1=Fx2 >
where
x1=x2 : A=B1 << y == A=B2 << y
x1=x2 = pfi A=B1 A=B2 y
Fx1=Fx2 : F=G1 y << Gy == pFam F x1=x2 << F=G2 y << Gy
Fx1=Fx2 = sym (casttrans _ _ _ _)
ref<< : {A : S}(x : El A) -> refS << x == x
ref<< {nat} x = ref
ref<< {sigma A F} (el < x , Fx >) = eq < ref<< x , pfi _ _ Fx >
ref<< {pi A F } (el < f , pf >) = eq rf=f
where
rf=f : (x : El A) -> _ << f (refS << x) == f x
rf=f x =
chain> _ << f (refS << x)
=== _ << pFam F (ref<< x) << f x by p<< _ (pf (ref<< x))
=== _ << f x by sym (trans<< _ _ (f x))
=== f x by castref _ _
where open module C = Chain _==_ (ref {_}) (trans {_})
trans<< : {A B C : S}(A=B : A =S B)(B=C : B =S C)(x : El C) ->
transS A=B B=C << x == A=B << B=C << x
trans<< {nat }{nat }{pi _ _ } _ (eqS ()) _
trans<< {nat }{nat }{sigma _ _ } _ (eqS ()) _
trans<< {nat }{pi _ _ } (eqS ()) _ _
trans<< {nat }{sigma _ _ } (eqS ()) _ _
trans<< {pi _ _ }{nat } (eqS ()) _ _
trans<< {pi _ _ }{pi _ _ }{nat } _ (eqS ()) _
trans<< {pi _ _ }{pi _ _ }{sigma _ _ } _ (eqS ()) _
trans<< {pi _ _ }{sigma _ _ } (eqS ()) _ _
trans<< {sigma _ _ }{nat } (eqS ()) _ _
trans<< {sigma _ _ }{pi _ _ } (eqS ()) _ _
trans<< {sigma _ _ }{sigma _ _ }{nat } _ (eqS ()) _
trans<< {sigma _ _ }{sigma _ _ }{pi _ _ } _ (eqS ()) _
trans<< {nat}{nat}{nat} _ _ _ = ref
trans<< {pi A F}{pi B G}{pi C H}
(eqS < B=A , F=G >)(eqS < C=B , G=H >)
(el < h , ph >) = eq prf
where
C=A = transS C=B B=A
prf : (x : El A) -> _
prf x =
chain> _ << h (C=A << x)
=== _ << _ << h (C=B << B=A << x) by p<< _ (ph (trans<< _ _ x))
=== F=G x << G=H _ << h (_ << _ << x) by pfi2 _ _ _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
trans<< {sigma A F}{sigma B G}{sigma C H}
(eqS < A=B , F=G >)(eqS < B=C , G=H >)
(el < z , Hz >) = eq < trans<< A=B B=C z , prf >
where
prf =
chain> _ << Hz
=== _ << Hz by pfi _ _ _
=== _ << _ << Hz by trans<< _ _ _
=== _ << F=G _ << G=H z << Hz by trans<< _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
-- we never need this one, but it feels like it should be here...
sym<< : {A B : S}(A=B : A =S B)(x : El B) ->
symS A=B << A=B << x == x
sym<< A=B x =
chain> symS A=B << A=B << x
=== refS << x by casttrans _ _ _ x
=== x by ref<< x
where open module C' = Chain _==_ (ref {_}) (trans {_})
castref : {A : S}(p : A =S A)(x : El A) -> p << x == x
castref A=A x =
chain> A=A << x
=== refS << x by pfi A=A refS x
=== x by ref<< x
where open module C = Chain _==_ (ref {_}) (trans {_})
casttrans : {A B C : S}(A=B : A =S B)(B=C : B =S C)(A=C : A =S C)(x : El C) ->
A=B << B=C << x == A=C << x
casttrans A=B B=C A=C x =
chain> A=B << B=C << x
=== _ << x by sym (trans<< _ _ _)
=== A=C << x by pfi _ _ _
where open module C' = Chain _==_ (ref {_}) (trans {_})
pfi2 : {A B1 B2 C : S}
(A=B1 : A =S B1)(A=B2 : A =S B2)(B1=C : B1 =S C)(B2=C : B2 =S C)
(x : El C) -> A=B1 << B1=C << x == A=B2 << B2=C << x
pfi2 A=B1 A=B2 B1=C B2=C x =
chain> A=B1 << B1=C << x
=== _ << x by casttrans _ _ _ x
=== A=B2 << B2=C << x by trans<< _ _ x
where
open module C = Chain _==_ (ref {_}) (trans {_})
ref : {A : S} -> Refl {El A} _==_
ref {nat} {el n} = eq (refN {n})
ref {pi A F} {el < f , pf >} = eq \x -> ref
ref {sigma A F} {el < x , Fx >} = eq < ref , sym (castref _ _) >
trans : {A : S} -> Trans {El A} _==_
trans {nat}{el x}{el y}{el z} (eq p) (eq q) = eq (transN {x}{y}{z} p q)
trans {pi A F}{el < f , pf >}{el < g , pg >}{el < h , ph >}
(eq f=g)(eq g=h) = eq \x -> trans (f=g x) (g=h x)
trans {sigma A F}{el < x , Fx >}{el < y , Fy >}{el < z , Fz >}
(eq < x=y , Fx=Fy >)(eq < y=z , Fy=Fz >) =
eq < x=z , Fx=Fz >
where
x=z = trans x=y y=z
Fx=Fz =
chain> Fx
=== pFam F x=y << Fy by Fx=Fy
=== pFam F x=y << pFam F y=z << Fz by p<< _ Fy=Fz
=== pFam F x=z << Fz by casttrans _ _ _ _
where open module C = Chain _==_ (ref {_}) (trans {_})
sym : {A : S} -> Sym {El A} _==_
sym {nat}{el x}{el y} (eq p) = eq (symN {x}{y} p)
sym {pi A F}{el < f , pf >}{el < g , pg >}
(eq f=g) = eq \x -> sym (f=g x)
sym {sigma A F}{el < x , Fx >}{el < y , Fy >}
(eq < x=y , Fx=Fy >) = eq < y=x , Fy=Fx >
where
y=x = sym x=y
Fy=Fx = sym (
chain> pFam F y=x << Fx
=== pFam F y=x << pFam F x=y << Fy by p<< (pFam F y=x) Fx=Fy
=== refS << Fy by casttrans _ _ _ _
=== Fy by castref _ _
)
where open module C = Chain _==_ (ref {_}) (trans {_})
refFam : {A : S} -> Refl (_=Fam_ {A})
refFam x = refS
transFam : {A : S} -> Trans (_=Fam_ {A})
transFam F=G G=H x = transS (F=G x) (G=H x)
symFam : {A : S} -> Sym (_=Fam_ {A})
symFam F=G x = symS (F=G x)
castref2 : {A B : S}(A=B : A =S B)(B=A : B =S A)(x : El A) ->
A=B << B=A << x == x
castref2 A=B B=A x = trans (casttrans A=B B=A refS x) (ref<< x)
| {
"alphanum_fraction": 0.3877112575,
"avg_line_length": 36.7473684211,
"ext": "agda",
"hexsha": "0837007dbe45e51ec37224fd7e2a8d630fdc89c1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/univ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/univ.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/univ.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 5687,
"size": 13964
} |
{-# OPTIONS --rewriting #-}
module Examples where
import Examples.Syntax
import Examples.OpSem
import Examples.Run
import Examples.Type
| {
"alphanum_fraction": 0.795620438,
"avg_line_length": 17.125,
"ext": "agda",
"hexsha": "212067b74910ba670b440a4993266af759ae9a39",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Examples.agda",
"max_line_length": 27,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 27,
"size": 137
} |
------------------------------------------------------------------------
-- Untyped hereditary substitution in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --exact-split --without-K #-}
module FOmegaInt.Syntax.HereditarySubstitution where
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Nat using (zero; suc)
open import Data.List using ([]; _∷_; _++_)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε)
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open import FOmegaInt.Reduction.Full
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.SingleVariableSubstitution
open Syntax
----------------------------------------------------------------------
-- Untyped hereditary substitution.
infixl 9 _?∙∙⟨_⟩_ _∙∙⟨_⟩_ _⌜·⌝⟨_⟩_ _↓⌜·⌝_
infixl 8 _/⟨_⟩_ _//⟨_⟩_ _Kind/⟨_⟩_ _Asc/⟨_⟩_
-- TODO: explain why there are degenerate cases.
mutual
-- Apply a herediary substition to an elimination, kind or spine.
_/⟨_⟩_ : ∀ {m n} → Elim m → SKind → SVSub m n → Elim n
var x ∙ as /⟨ k ⟩ σ = lookupSV σ x ?∙∙⟨ k ⟩ (as //⟨ k ⟩ σ)
⊥ ∙ as /⟨ k ⟩ σ = ⊥ ∙ (as //⟨ k ⟩ σ)
⊤ ∙ as /⟨ k ⟩ σ = ⊤ ∙ (as //⟨ k ⟩ σ)
Π j a ∙ as /⟨ k ⟩ σ = Π (j Kind/⟨ k ⟩ σ) (a /⟨ k ⟩ σ ↑) ∙ (as //⟨ k ⟩ σ)
(a ⇒ b) ∙ as /⟨ k ⟩ σ = ((a /⟨ k ⟩ σ) ⇒ (b /⟨ k ⟩ σ)) ∙ (as //⟨ k ⟩ σ)
Λ j a ∙ as /⟨ k ⟩ σ = Λ (j Kind/⟨ k ⟩ σ) (a /⟨ k ⟩ σ ↑) ∙ (as //⟨ k ⟩ σ)
ƛ a b ∙ as /⟨ k ⟩ σ = ƛ (a /⟨ k ⟩ σ) (b /⟨ k ⟩ σ ↑) ∙ (as //⟨ k ⟩ σ)
a ⊡ b ∙ as /⟨ k ⟩ σ = (a /⟨ k ⟩ σ) ⊡ (b /⟨ k ⟩ σ) ∙ (as //⟨ k ⟩ σ)
_Kind/⟨_⟩_ : ∀ {m n} → Kind Elim m → SKind → SVSub m n → Kind Elim n
(a ⋯ b) Kind/⟨ k ⟩ σ = (a /⟨ k ⟩ σ) ⋯ (b /⟨ k ⟩ σ)
Π j₁ j₂ Kind/⟨ k ⟩ σ = Π (j₁ Kind/⟨ k ⟩ σ) (j₂ Kind/⟨ k ⟩ σ ↑)
_//⟨_⟩_ : ∀ {m n} → Spine m → SKind → SVSub m n → Spine n
[] //⟨ k ⟩ σ = []
(a ∷ as) //⟨ k ⟩ σ = a /⟨ k ⟩ σ ∷ as //⟨ k ⟩ σ
-- Apply a lookup-result to a spine, performing β-reduction if possible.
_?∙∙⟨_⟩_ : ∀ {n} → SVRes n → SKind → Spine n → Elim n
hit a ?∙∙⟨ k ⟩ as = a ∙∙⟨ k ⟩ as
miss y ?∙∙⟨ k ⟩ as = var y ∙ as
-- Apply an elimination to a spine, performing β-reduction if possible.
--
-- NOTE. Degenerate cases are marked "!".
_∙∙⟨_⟩_ : ∀ {n} → Elim n → SKind → Spine n → Elim n
a ∙∙⟨ k ⟩ [] = a
a ∙∙⟨ ★ ⟩ (b ∷ bs) = a ∙∙ (b ∷ bs) -- ! a ill-kinded
a ∙∙⟨ j ⇒ k ⟩ (b ∷ bs) = a ⌜·⌝⟨ j ⇒ k ⟩ b ∙∙⟨ k ⟩ bs
-- Apply one elimination to another, performing β-reduction if possible.
--
-- NOTE. Degenerate cases are marked "!".
_⌜·⌝⟨_⟩_ : ∀ {n} → Elim n → SKind → Elim n → Elim n
a ⌜·⌝⟨ ★ ⟩ b = a ⌜·⌝ b -- ! a ill-kinded
(a ∙ (c ∷ cs)) ⌜·⌝⟨ j ⇒ k ⟩ b = a ∙ (c ∷ cs) ⌜·⌝ b -- ! unless a = var x
(Λ l a ∙ []) ⌜·⌝⟨ j ⇒ k ⟩ b = a /⟨ j ⟩ (sub b)
{-# CATCHALL #-}
(a ∙ []) ⌜·⌝⟨ j ⇒ k ⟩ b = a ∙ (b ∷ []) -- ! unless a = var x
-- Apply a herediary substition to a kind or type ascription.
_Asc/⟨_⟩_ : ∀ {m n} → ElimAsc m → SKind → SVSub m n → ElimAsc n
kd j Asc/⟨ k ⟩ σ = kd (j Kind/⟨ k ⟩ σ)
tp a Asc/⟨ k ⟩ σ = tp (a /⟨ k ⟩ σ)
-- Some shorthands.
_[_∈_] : ∀ {n} → Elim (suc n) → Elim n → SKind → Elim n
a [ b ∈ k ] = a /⟨ k ⟩ sub b
_Kind[_∈_] : ∀ {n} → Kind Elim (suc n) → Elim n → SKind → Kind Elim n
j Kind[ a ∈ k ] = j Kind/⟨ k ⟩ sub a
-- A variant of application that is reducing (only) if the first
-- argument is a type abstraction.
_↓⌜·⌝_ : ∀ {n} → Elim n → Elim n → Elim n
(a ∙ (b ∷ bs)) ↓⌜·⌝ c = (a ∙ (b ∷ bs)) ⌜·⌝ c
(Λ k a ∙ []) ↓⌜·⌝ b = a [ b ∈ ⌊ k ⌋ ]
{-# CATCHALL #-}
(a ∙ []) ↓⌜·⌝ b = a ∙ (b ∷ [])
----------------------------------------------------------------------
-- Properties of (untyped) hereditary substitution.
-- Some exact lemmas about hereditary substitutions (up to
-- α-equality).
module _ where
open SimpleCtx using (⌊_⌋Asc; kd; tp)
-- Simplified kinds are stable under application of hereditary
-- substitutions.
⌊⌋-Kind/⟨⟩ : ∀ {m n} (j : Kind Elim m) {k} {σ : SVSub m n} →
⌊ j Kind/⟨ k ⟩ σ ⌋ ≡ ⌊ j ⌋
⌊⌋-Kind/⟨⟩ (a ⋯ b) = refl
⌊⌋-Kind/⟨⟩ (Π j k) = cong₂ _⇒_ (⌊⌋-Kind/⟨⟩ j) (⌊⌋-Kind/⟨⟩ k)
⌊⌋-Asc/⟨⟩ : ∀ {m n} (a : ElimAsc m) {k} {σ : SVSub m n} →
⌊ a Asc/⟨ k ⟩ σ ⌋Asc ≡ ⌊ a ⌋Asc
⌊⌋-Asc/⟨⟩ (kd k) = cong kd (⌊⌋-Kind/⟨⟩ k)
⌊⌋-Asc/⟨⟩ (tp a) = refl
-- Hereditary substitutions in spines commute with concatenation.
++-//⟨⟩ : ∀ {k m n} (as bs : Spine m) {σ : SVSub m n} →
(as ++ bs) //⟨ k ⟩ σ ≡ as //⟨ k ⟩ σ ++ bs //⟨ k ⟩ σ
++-//⟨⟩ [] bs = refl
++-//⟨⟩ (a ∷ as) bs {σ} = cong (a /⟨ _ ⟩ σ ∷_) (++-//⟨⟩ as bs)
open Substitution using (_Elim/_; _Kind′/_; _//_)
-- Hereditary substitutions and reducing applications at ★
-- degenerate to ordinary substitutions and applications.
mutual
/⟨★⟩-/ : ∀ {m n} (a : Elim m) {σ : SVSub m n} →
a /⟨ ★ ⟩ σ ≡ a Elim/ toSub σ
/⟨★⟩-/ (var x ∙ as) {σ} = begin
lookupSV σ x ?∙∙⟨ ★ ⟩ (as //⟨ ★ ⟩ σ)
≡⟨ ?∙∙⟨★⟩-∙∙ (lookupSV σ x) ⟩
toElim (lookupSV σ x) ∙∙ (as //⟨ ★ ⟩ σ)
≡⟨ cong₂ _∙∙_ (sym (⌜⌝∘⌞⌟-id _)) (//⟨★⟩-// as) ⟩
⌜ ⌞ toElim (lookupSV σ x) ⌟ ⌝ ∙∙ (as // toSub σ)
≡˘⟨ cong (_∙∙ _) (cong ⌜_⌝ (lookup-toSub σ x)) ⟩
var x ∙ as Elim/ toSub σ
∎
where open ≡-Reasoning
/⟨★⟩-/ (⊥ ∙ as) = cong (⊥ ∙_) (//⟨★⟩-// as)
/⟨★⟩-/ (⊤ ∙ as) = cong (⊤ ∙_) (//⟨★⟩-// as)
/⟨★⟩-/ (Π k b ∙ as) =
cong₂ _∙_ (cong₂ Π (Kind/⟨★⟩-/ k) (/⟨★⟩-/ b)) (//⟨★⟩-// as)
/⟨★⟩-/ ((b ⇒ c) ∙ as) =
cong₂ _∙_ (cong₂ _⇒_ (/⟨★⟩-/ b) (/⟨★⟩-/ c)) (//⟨★⟩-// as)
/⟨★⟩-/ (Λ k b ∙ as) =
cong₂ _∙_ (cong₂ Λ (Kind/⟨★⟩-/ k) (/⟨★⟩-/ b)) (//⟨★⟩-// as)
/⟨★⟩-/ (ƛ b c ∙ as) =
cong₂ _∙_ (cong₂ ƛ (/⟨★⟩-/ b) (/⟨★⟩-/ c)) (//⟨★⟩-// as)
/⟨★⟩-/ (b ⊡ c ∙ as) =
cong₂ _∙_ (cong₂ _⊡_ (/⟨★⟩-/ b) (/⟨★⟩-/ c)) (//⟨★⟩-// as)
//⟨★⟩-// : ∀ {m n} (as : Spine m) {σ : SVSub m n} →
as //⟨ ★ ⟩ σ ≡ as // toSub σ
//⟨★⟩-// [] = refl
//⟨★⟩-// (a ∷ as) = cong₂ _∷_ (/⟨★⟩-/ a) (//⟨★⟩-// as)
Kind/⟨★⟩-/ : ∀ {m n} (k : Kind Elim m) {σ : SVSub m n} →
k Kind/⟨ ★ ⟩ σ ≡ k Kind′/ toSub σ
Kind/⟨★⟩-/ (a ⋯ b) = cong₂ _⋯_ (/⟨★⟩-/ a) (/⟨★⟩-/ b)
Kind/⟨★⟩-/ (Π j k) = cong₂ Π (Kind/⟨★⟩-/ j) (Kind/⟨★⟩-/ k)
?∙∙⟨★⟩-∙∙ : ∀ {n} (r : SVRes n) {as} → r ?∙∙⟨ ★ ⟩ as ≡ toElim r ∙∙ as
?∙∙⟨★⟩-∙∙ (hit a) = ∙∙⟨★⟩-∙∙ a
?∙∙⟨★⟩-∙∙ (miss y) = refl
∙∙⟨★⟩-∙∙ : ∀ {n} (a : Elim n) {bs} → a ∙∙⟨ ★ ⟩ bs ≡ a ∙∙ bs
∙∙⟨★⟩-∙∙ a {[]} = sym (∙∙-[] a)
∙∙⟨★⟩-∙∙ a {b ∷ bs} = refl
module RenamingCommutes where
open Substitution
hiding (_↑; _↑⋆_; sub; _/Var_) renaming (_Elim/Var_ to _/Var_)
open P.≡-Reasoning
private
module S = Substitution
module V = VarSubst
mutual
-- Hereditary substitution commutes with renaming.
--
-- NOTE: this is a variant of the `sub-commutes' lemma from
-- Data.Fin.Substitution.Lemmas adapted to hereditary
-- substitutions and renaming.
/⟨⟩-/Var-↑⋆ : ∀ i {m n} a k b {ρ : Sub Fin m n} →
b /⟨ k ⟩ sub a ↑⋆ i /Var ρ V.↑⋆ i ≡
b /Var (ρ V.↑) V.↑⋆ i /⟨ k ⟩ sub (a /Var ρ) ↑⋆ i
/⟨⟩-/Var-↑⋆ i a k (var x ∙ bs) {ρ} = begin
var x ∙ bs /⟨ k ⟩ sub a ↑⋆ i /Var ρ V.↑⋆ i
≡⟨⟩
lookupSV (sub a ↑⋆ i) x ?∙∙⟨ k ⟩ (bs //⟨ k ⟩ sub a ↑⋆ i) /Var ρ V.↑⋆ i
≡⟨ ?∙∙⟨⟩-/Var (lookupSV (sub a ↑⋆ i) x) k (bs //⟨ k ⟩ sub a ↑⋆ i) ⟩
(lookupSV (sub a ↑⋆ i) x ?/Var ρ V.↑⋆ i) ?∙∙⟨ k ⟩
(bs //⟨ k ⟩ sub a ↑⋆ i //Var ρ V.↑⋆ i)
≡⟨ cong₂ _?∙∙⟨ k ⟩_ (lookup-sub-/Var-↑⋆ a i x) (//⟨⟩-/Var-↑⋆ i a k bs) ⟩
lookupSV (sub (a /Var ρ) ↑⋆ i) (x V./ (ρ V.↑) V.↑⋆ i) ?∙∙⟨ k ⟩
(bs //Var (ρ V.↑) V.↑⋆ i //⟨ k ⟩ sub (a /Var ρ) ↑⋆ i)
≡⟨⟩
var x ∙ bs /Var (ρ V.↑) V.↑⋆ i /⟨ k ⟩ sub (a /Var ρ) ↑⋆ i
∎
/⟨⟩-/Var-↑⋆ i a k (⊥ ∙ bs) = cong (⊥ ∙_) (//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k (⊤ ∙ bs) = cong (⊤ ∙_) (//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k (Π j b ∙ bs) =
cong₂ _∙_ (cong₂ Π (Kind/⟨⟩-/Var-↑⋆ i a k j) (/⟨⟩-/Var-↑⋆ (suc i) a k b))
(//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k ((b ⇒ c) ∙ bs) =
cong₂ _∙_ (cong₂ _⇒_ (/⟨⟩-/Var-↑⋆ i a k b) (/⟨⟩-/Var-↑⋆ i a k c))
(//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k (Λ j b ∙ bs) =
cong₂ _∙_ (cong₂ Λ (Kind/⟨⟩-/Var-↑⋆ i a k j) (/⟨⟩-/Var-↑⋆ (suc i) a k b))
(//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k (ƛ b c ∙ bs) =
cong₂ _∙_ (cong₂ ƛ (/⟨⟩-/Var-↑⋆ i a k b) (/⟨⟩-/Var-↑⋆ (suc i) a k c))
(//⟨⟩-/Var-↑⋆ i a k bs)
/⟨⟩-/Var-↑⋆ i a k (b ⊡ c ∙ bs) =
cong₂ _∙_ (cong₂ _⊡_ (/⟨⟩-/Var-↑⋆ i a k b) (/⟨⟩-/Var-↑⋆ i a k c))
(//⟨⟩-/Var-↑⋆ i a k bs)
Kind/⟨⟩-/Var-↑⋆ : ∀ i {m n} a k j {ρ : Sub Fin m n} →
j Kind/⟨ k ⟩ sub a ↑⋆ i Kind′/Var ρ V.↑⋆ i ≡
j Kind′/Var (ρ V.↑) V.↑⋆ i Kind/⟨ k ⟩ sub (a /Var ρ) ↑⋆ i
Kind/⟨⟩-/Var-↑⋆ i a k (b ⋯ c) =
cong₂ _⋯_ (/⟨⟩-/Var-↑⋆ i a k b) (/⟨⟩-/Var-↑⋆ i a k c)
Kind/⟨⟩-/Var-↑⋆ i a k (Π j l) =
cong₂ Π (Kind/⟨⟩-/Var-↑⋆ i a k j) (Kind/⟨⟩-/Var-↑⋆ (suc i) a k l)
//⟨⟩-/Var-↑⋆ : ∀ i {n m} a k bs {ρ : Sub Fin m n} →
bs //⟨ k ⟩ sub a ↑⋆ i //Var ρ V.↑⋆ i ≡
(bs //Var (ρ V.↑) V.↑⋆ i) //⟨ k ⟩ sub (a /Var ρ) ↑⋆ i
//⟨⟩-/Var-↑⋆ i a k [] = refl
//⟨⟩-/Var-↑⋆ i a k (b ∷ bs) =
cong₂ _∷_ (/⟨⟩-/Var-↑⋆ i a k b) (//⟨⟩-/Var-↑⋆ i a k bs)
-- Reducing applications commute with renaming.
?∙∙⟨⟩-/Var : ∀ {m n} r k bs {ρ : Sub Fin m n} →
r ?∙∙⟨ k ⟩ bs /Var ρ ≡ (r ?/Var ρ) ?∙∙⟨ k ⟩ (bs //Var ρ)
?∙∙⟨⟩-/Var (hit a) k as = ∙∙⟨⟩-/Var a k as
?∙∙⟨⟩-/Var (miss y) k as = refl
∙∙⟨⟩-/Var : ∀ {m n} a k bs {ρ : Sub Fin m n} →
a ∙∙⟨ k ⟩ bs /Var ρ ≡ (a /Var ρ) ∙∙⟨ k ⟩ (bs //Var ρ)
∙∙⟨⟩-/Var a k [] = refl
∙∙⟨⟩-/Var a ★ (b ∷ bs) = S.∙∙-/Var a (b ∷ bs)
∙∙⟨⟩-/Var a (j ⇒ k) (b ∷ bs) {ρ} = begin
a ⌜·⌝⟨ j ⇒ k ⟩ b ∙∙⟨ k ⟩ bs /Var ρ
≡⟨ ∙∙⟨⟩-/Var (a ⌜·⌝⟨ j ⇒ k ⟩ b) k bs ⟩
(a ⌜·⌝⟨ j ⇒ k ⟩ b /Var ρ) ∙∙⟨ k ⟩ (bs //Var ρ)
≡⟨ cong (_∙∙⟨ k ⟩ (bs //Var ρ)) (⌜·⌝⟨⟩-/Var a (j ⇒ k) b) ⟩
(a /Var ρ) ⌜·⌝⟨ j ⇒ k ⟩ (b /Var ρ) ∙∙⟨ k ⟩ (bs //Var ρ)
∎
⌜·⌝⟨⟩-/Var : ∀ {m n} a k b {ρ : Sub Fin m n} →
a ⌜·⌝⟨ k ⟩ b /Var ρ ≡ (a /Var ρ) ⌜·⌝⟨ k ⟩ (b /Var ρ)
⌜·⌝⟨⟩-/Var a ★ b = S.⌜·⌝-/Var a b
⌜·⌝⟨⟩-/Var (a ∙ (c ∷ cs)) (j ⇒ k) b {ρ} = begin
a ∙ (c ∷ cs) ⌜·⌝ b /Var ρ
≡⟨ S.⌜·⌝-/Var (a ∙ (c ∷ cs)) b ⟩
(a ∙ (c ∷ cs) /Var ρ) ⌜·⌝ (b /Var ρ)
≡˘⟨ cong (λ a → a ∙∙ _ ⌜·⌝ (b /Var ρ)) (S.Head/Var-∙ a) ⟩
(a Head/Var ρ) ∙ ((c ∷ cs) //Var ρ) ⌜·⌝⟨ j ⇒ k ⟩ (b /Var ρ)
≡⟨ cong (λ a → a ∙∙ _ ⌜·⌝⟨ j ⇒ k ⟩ (b /Var ρ)) (S.Head/Var-∙ a) ⟩
(a ∙ (c ∷ cs) /Var ρ) ⌜·⌝⟨ j ⇒ k ⟩ (b /Var ρ)
∎
⌜·⌝⟨⟩-/Var (var x ∙ []) (j ⇒ k) b = refl
⌜·⌝⟨⟩-/Var (⊥ ∙ []) (j ⇒ k) b = refl
⌜·⌝⟨⟩-/Var (⊤ ∙ []) (j ⇒ k) b = refl
⌜·⌝⟨⟩-/Var (Π l a ∙ []) (j ⇒ k) b = refl
⌜·⌝⟨⟩-/Var ((a ⇒ b) ∙ []) (j ⇒ k) c = refl
⌜·⌝⟨⟩-/Var (Λ l a ∙ []) (j ⇒ k) b = /⟨⟩-/Var-↑⋆ 0 b j a
⌜·⌝⟨⟩-/Var (ƛ a b ∙ []) (j ⇒ k) c = refl
⌜·⌝⟨⟩-/Var (a ⊡ b ∙ []) (j ⇒ k) c = refl
-- Some corollaries of the above.
Asc/⟨⟩-/Var-↑⋆ : ∀ i {m n} a k b {ρ : Sub Fin m n} →
b Asc/⟨ k ⟩ sub a ↑⋆ i ElimAsc/Var ρ V.↑⋆ i ≡
b ElimAsc/Var (ρ V.↑) V.↑⋆ i Asc/⟨ k ⟩ sub (a /Var ρ) ↑⋆ i
Asc/⟨⟩-/Var-↑⋆ i a k (kd j) = cong kd (Kind/⟨⟩-/Var-↑⋆ i a k j)
Asc/⟨⟩-/Var-↑⋆ i a k (tp b) = cong tp (/⟨⟩-/Var-↑⋆ i a k b)
[∈⌊⌋]-/Var : ∀ {m n} a b k {ρ : Sub Fin m n} →
a [ b ∈ ⌊ k ⌋ ] /Var ρ ≡
(a /Var ρ V.↑) [ b /Var ρ ∈ ⌊ k Kind′/Var ρ ⌋ ]
[∈⌊⌋]-/Var a b k {ρ} = begin
(a [ b ∈ ⌊ k ⌋ ] /Var ρ)
≡⟨ /⟨⟩-/Var-↑⋆ 0 b ⌊ k ⌋ a ⟩
((a /Var ρ V.↑) [ b /Var ρ ∈ ⌊ k ⌋ ])
≡˘⟨ cong (a /Var ρ V.↑ /⟨_⟩ sub (b /Var ρ)) (S.⌊⌋-Kind′/Var k) ⟩
((a /Var ρ V.↑) [ b /Var ρ ∈ ⌊ k Kind′/Var ρ ⌋ ])
∎
Kind[∈⌊⌋]-/Var : ∀ {m n} j a k {ρ : Sub Fin m n} →
j Kind[ a ∈ ⌊ k ⌋ ] Kind′/Var ρ ≡
(j Kind′/Var ρ V.↑) Kind[ a /Var ρ ∈ ⌊ k Kind′/Var ρ ⌋ ]
Kind[∈⌊⌋]-/Var j a k {ρ} = begin
j Kind[ a ∈ ⌊ k ⌋ ] Kind′/Var ρ
≡⟨ Kind/⟨⟩-/Var-↑⋆ 0 a ⌊ k ⌋ j ⟩
(j Kind′/Var ρ V.↑) Kind[ a /Var ρ ∈ ⌊ k ⌋ ]
≡˘⟨ cong (j Kind′/Var ρ V.↑ Kind/⟨_⟩ sub (a /Var ρ)) (S.⌊⌋-Kind′/Var k) ⟩
(j Kind′/Var ρ V.↑) Kind[ a /Var ρ ∈ ⌊ k Kind′/Var ρ ⌋ ]
∎
-- Potentially reducing applications commute with renaming.
↓⌜·⌝-/Var : ∀ {m n} a b {ρ : Sub Fin m n} →
a ↓⌜·⌝ b /Var ρ ≡ (a /Var ρ) ↓⌜·⌝ (b /Var ρ)
↓⌜·⌝-/Var (a ∙ (c ∷ cs)) b {ρ} = begin
a ∙ (c ∷ cs) ⌜·⌝ b /Var ρ
≡⟨ S.⌜·⌝-/Var (a ∙ (c ∷ cs)) b ⟩
(a ∙ (c ∷ cs) /Var ρ) ⌜·⌝ (b /Var ρ)
≡˘⟨ cong (λ a → a ∙∙ _ ⌜·⌝ (b /Var ρ)) (S.Head/Var-∙ a) ⟩
(a Head/Var ρ) ∙ ((c ∷ cs) //Var ρ) ↓⌜·⌝ (b /Var ρ)
≡⟨ cong (λ a → a ∙∙ _ ↓⌜·⌝ (b /Var ρ)) (S.Head/Var-∙ a) ⟩
(a ∙ (c ∷ cs) /Var ρ) ↓⌜·⌝ (b /Var ρ)
∎
↓⌜·⌝-/Var (var x ∙ []) b = refl
↓⌜·⌝-/Var (⊥ ∙ []) b = refl
↓⌜·⌝-/Var (⊤ ∙ []) b = refl
↓⌜·⌝-/Var (Π l a ∙ []) b = refl
↓⌜·⌝-/Var ((a ⇒ b) ∙ []) c = refl
↓⌜·⌝-/Var (Λ l a ∙ []) b = [∈⌊⌋]-/Var a b l
↓⌜·⌝-/Var (ƛ a b ∙ []) c = refl
↓⌜·⌝-/Var (a ⊡ b ∙ []) c = refl
mutual
-- Weakening commutes with application of lifted hereditary
-- substitutions.
--
-- NOTE: this is a variant of the `wk-commutes' lemma from
-- Data.Fin.Substitution.Lemmas adapted to hereditary
-- substitutions.
wk-/⟨⟩-↑⋆ : ∀ i {k m n} a {σ : SVSub m n} →
a /Var V.wk V.↑⋆ i /⟨ k ⟩ (σ ↑) ↑⋆ i ≡
a /⟨ k ⟩ σ ↑⋆ i /Var V.wk V.↑⋆ i
wk-/⟨⟩-↑⋆ i {k} (var x ∙ as) {σ} = begin
var x ∙ as /Var V.wk V.↑⋆ i /⟨ k ⟩ (σ ↑) ↑⋆ i
≡⟨⟩
lookupSV ((σ ↑) ↑⋆ i) (x V./ V.wk V.↑⋆ i) ?∙∙⟨ k ⟩
(as //Var V.wk V.↑⋆ i //⟨ k ⟩ ((σ ↑) ↑⋆ i))
≡⟨ (cong₂ (_?∙∙⟨ k ⟩_)) (sym (lookup-/Var-wk-↑⋆ i x)) (wk-//⟨⟩-↑⋆ i as) ⟩
(lookupSV (σ ↑⋆ i) x ?/Var V.wk V.↑⋆ i) ?∙∙⟨ k ⟩
(as //⟨ k ⟩ (σ ↑⋆ i) //Var V.wk V.↑⋆ i)
≡˘⟨ ?∙∙⟨⟩-/Var (lookupSV (σ ↑⋆ i) x) k (as //⟨ k ⟩ (σ ↑⋆ i)) ⟩
lookupSV (σ ↑⋆ i) x ?∙∙⟨ k ⟩ (as //⟨ k ⟩ (σ ↑⋆ i)) /Var V.wk V.↑⋆ i
≡⟨⟩
var x ∙ as /⟨ k ⟩ σ ↑⋆ i /Var V.wk V.↑⋆ i
∎
wk-/⟨⟩-↑⋆ i (⊥ ∙ as) = cong (⊥ ∙_) (wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i (⊤ ∙ as) = cong (⊤ ∙_) (wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i (Π k a ∙ as) =
cong₂ _∙_ (cong₂ Π (wk-Kind/⟨⟩-↑⋆ i k) (wk-/⟨⟩-↑⋆ (suc i) a))
(wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i ((a ⇒ b) ∙ as) =
cong₂ _∙_ (cong₂ _⇒_ (wk-/⟨⟩-↑⋆ i a) (wk-/⟨⟩-↑⋆ i b)) (wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i (Λ k a ∙ as) =
cong₂ _∙_ (cong₂ Λ (wk-Kind/⟨⟩-↑⋆ i k) (wk-/⟨⟩-↑⋆ (suc i) a))
(wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i (ƛ a b ∙ as) =
cong₂ _∙_ (cong₂ ƛ (wk-/⟨⟩-↑⋆ i a) (wk-/⟨⟩-↑⋆ (suc i) b)) (wk-//⟨⟩-↑⋆ i as)
wk-/⟨⟩-↑⋆ i (a ⊡ b ∙ as) =
cong₂ _∙_ (cong₂ _⊡_ (wk-/⟨⟩-↑⋆ i a) (wk-/⟨⟩-↑⋆ i b)) (wk-//⟨⟩-↑⋆ i as)
wk-Kind/⟨⟩-↑⋆ : ∀ i {k m n} j {σ : SVSub m n} →
j Kind′/Var V.wk V.↑⋆ i Kind/⟨ k ⟩ (σ ↑) ↑⋆ i ≡
j Kind/⟨ k ⟩ σ ↑⋆ i Kind′/Var V.wk V.↑⋆ i
wk-Kind/⟨⟩-↑⋆ i (a ⋯ b) = cong₂ _⋯_ (wk-/⟨⟩-↑⋆ i a) (wk-/⟨⟩-↑⋆ i b)
wk-Kind/⟨⟩-↑⋆ i (Π j k) =
cong₂ Π (wk-Kind/⟨⟩-↑⋆ i j) (wk-Kind/⟨⟩-↑⋆ (suc i) k)
wk-//⟨⟩-↑⋆ : ∀ i {k m n} as {σ : SVSub m n} →
as //Var V.wk V.↑⋆ i //⟨ k ⟩ (σ ↑) ↑⋆ i ≡
as //⟨ k ⟩ σ ↑⋆ i //Var V.wk V.↑⋆ i
wk-//⟨⟩-↑⋆ i [] = refl
wk-//⟨⟩-↑⋆ i (a ∷ as) = cong₂ _∷_ (wk-/⟨⟩-↑⋆ i a) (wk-//⟨⟩-↑⋆ i as)
-- A corollary of the above.
wk-Asc/⟨⟩-↑⋆ : ∀ i {k m n} a {σ : SVSub m n} →
a ElimAsc/Var V.wk V.↑⋆ i Asc/⟨ k ⟩ (σ ↑) ↑⋆ i ≡
a Asc/⟨ k ⟩ σ ↑⋆ i ElimAsc/Var V.wk V.↑⋆ i
wk-Asc/⟨⟩-↑⋆ i (kd a) = cong kd (wk-Kind/⟨⟩-↑⋆ i a)
wk-Asc/⟨⟩-↑⋆ i (tp a) = cong tp (wk-/⟨⟩-↑⋆ i a)
mutual
-- Weakening of a term followed by hereditary substitution of the
-- newly introduced extra variable leaves the term unchanged.
--
-- NOTE: this is a variant of the `wk-sub-vanishes' lemma from
-- Data.Fin.Substitution.Lemmas adapted to hereditary
-- substitutions.
/Var-wk-↑⋆-hsub-vanishes : ∀ i {k m} a {b : Elim m} →
a /Var V.wk V.↑⋆ i /⟨ k ⟩ sub b ↑⋆ i ≡ a
/Var-wk-↑⋆-hsub-vanishes i {k} (var x ∙ as) {b} = begin
var x ∙ as /Var V.wk V.↑⋆ i /⟨ k ⟩ sub b ↑⋆ i
≡⟨ cong₂ _?∙∙⟨ k ⟩_ (lookup-sub-wk-↑⋆ i x)
(//Var-wk-↑⋆-hsub-vanishes i as) ⟩
var x ∙ as
∎
/Var-wk-↑⋆-hsub-vanishes i (⊥ ∙ as) =
cong (⊥ ∙_) (//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i (⊤ ∙ as) =
cong (⊤ ∙_) (//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i (Π k a ∙ as) =
cong₂ _∙_ (cong₂ Π (Kind/Var-wk-↑⋆-hsub-vanishes i k)
(/Var-wk-↑⋆-hsub-vanishes (suc i) a))
(//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i ((a ⇒ b) ∙ as) =
cong₂ _∙_ (cong₂ _⇒_ (/Var-wk-↑⋆-hsub-vanishes i a)
(/Var-wk-↑⋆-hsub-vanishes i b))
(//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i (Λ k a ∙ as) =
cong₂ _∙_ (cong₂ Λ (Kind/Var-wk-↑⋆-hsub-vanishes i k)
(/Var-wk-↑⋆-hsub-vanishes (suc i) a))
(//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i (ƛ a b ∙ as) =
cong₂ _∙_ (cong₂ ƛ (/Var-wk-↑⋆-hsub-vanishes i a)
(/Var-wk-↑⋆-hsub-vanishes (suc i) b))
(//Var-wk-↑⋆-hsub-vanishes i as)
/Var-wk-↑⋆-hsub-vanishes i (a ⊡ b ∙ as) =
cong₂ _∙_ (cong₂ _⊡_ (/Var-wk-↑⋆-hsub-vanishes i a)
(/Var-wk-↑⋆-hsub-vanishes i b))
(//Var-wk-↑⋆-hsub-vanishes i as)
Kind/Var-wk-↑⋆-hsub-vanishes
: ∀ i {k m} j {b : Elim m} →
j Kind′/Var V.wk V.↑⋆ i Kind/⟨ k ⟩ sub b ↑⋆ i ≡ j
Kind/Var-wk-↑⋆-hsub-vanishes i (a ⋯ b) =
cong₂ _⋯_ (/Var-wk-↑⋆-hsub-vanishes i a) (/Var-wk-↑⋆-hsub-vanishes i b)
Kind/Var-wk-↑⋆-hsub-vanishes i (Π j k) =
cong₂ Π (Kind/Var-wk-↑⋆-hsub-vanishes i j)
(Kind/Var-wk-↑⋆-hsub-vanishes (suc i) k)
//Var-wk-↑⋆-hsub-vanishes : ∀ i {k m} as {b : Elim m} →
as //Var V.wk V.↑⋆ i //⟨ k ⟩ sub b ↑⋆ i ≡ as
//Var-wk-↑⋆-hsub-vanishes i [] = refl
//Var-wk-↑⋆-hsub-vanishes i (a ∷ as) =
cong₂ _∷_ (/Var-wk-↑⋆-hsub-vanishes i a) (//Var-wk-↑⋆-hsub-vanishes i as)
-- A corollary of the above.
Asc/Var-wk-↑⋆-hsub-vanishes
: ∀ i {k m} a {b : Elim m} →
a S.ElimAsc/Var V.wk V.↑⋆ i Asc/⟨ k ⟩ sub b ↑⋆ i ≡ a
Asc/Var-wk-↑⋆-hsub-vanishes i (kd a) =
cong kd (Kind/Var-wk-↑⋆-hsub-vanishes i a)
Asc/Var-wk-↑⋆-hsub-vanishes i (tp a) =
cong tp (/Var-wk-↑⋆-hsub-vanishes i a)
open RenamingCommutes
module _ where
private
module EL = TermLikeLemmas Substitution.termLikeLemmasElim
module KL = TermLikeLemmas Substitution.termLikeLemmasKind′
open Substitution hiding (_↑; _↑⋆_; sub)
open ≡-Reasoning
-- Repeated weakening commutes with application of lifted hereditary
-- substitutions.
wk⋆-/⟨⟩-↑⋆ : ∀ i {k m n} a {σ : SVSub m n} →
a Elim/ wk⋆ i /⟨ k ⟩ σ ↑⋆ i ≡ a /⟨ k ⟩ σ Elim/ wk⋆ i
wk⋆-/⟨⟩-↑⋆ zero {k} a {σ} = begin
a Elim/ id /⟨ k ⟩ σ ≡⟨ cong (_/⟨ k ⟩ σ) (EL.id-vanishes a) ⟩
a /⟨ k ⟩ σ ≡˘⟨ EL.id-vanishes (a /⟨ k ⟩ σ) ⟩
a /⟨ k ⟩ σ Elim/ id ∎
wk⋆-/⟨⟩-↑⋆ (suc i) {k} a {σ} = begin
a Elim/ wk⋆ (suc i) /⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ cong (_/⟨ k ⟩ (σ ↑⋆ i) ↑) (EL./-weaken a) ⟩
a Elim/ wk⋆ i Elim/ wk /⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ cong (_/⟨ k ⟩ (σ ↑⋆ i) ↑) (EL./-wk {t = a Elim/ wk⋆ i}) ⟩
weakenElim (a Elim/ wk⋆ i) /⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ wk-/⟨⟩-↑⋆ zero (a Elim/ wk⋆ i) ⟩
weakenElim (a Elim/ wk⋆ i /⟨ k ⟩ σ ↑⋆ i)
≡⟨ cong weakenElim (wk⋆-/⟨⟩-↑⋆ i a) ⟩
weakenElim (a /⟨ k ⟩ σ Elim/ wk⋆ i)
≡˘⟨ (EL./-wk {t = a /⟨ k ⟩ σ Elim/ wk⋆ i}) ⟩
a /⟨ k ⟩ σ Elim/ wk⋆ i Elim/ wk
≡˘⟨ EL./-weaken (a /⟨ k ⟩ σ) ⟩
a /⟨ k ⟩ σ Elim/ wk⋆ (suc i)
∎
wk⋆-Kind/⟨⟩-↑⋆ : ∀ i {k m n} j {σ : SVSub m n} →
j Kind′/ wk⋆ i Kind/⟨ k ⟩ σ ↑⋆ i ≡
j Kind/⟨ k ⟩ σ Kind′/ wk⋆ i
wk⋆-Kind/⟨⟩-↑⋆ zero {k} j {σ} = begin
j Kind′/ id Kind/⟨ k ⟩ σ ≡⟨ cong (_Kind/⟨ k ⟩ σ) (KL.id-vanishes j) ⟩
j Kind/⟨ k ⟩ σ ≡˘⟨ KL.id-vanishes (j Kind/⟨ k ⟩ σ) ⟩
j Kind/⟨ k ⟩ σ Kind′/ id ∎
wk⋆-Kind/⟨⟩-↑⋆ (suc i) {k} j {σ} = begin
j Kind′/ wk⋆ (suc i) Kind/⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ cong (_Kind/⟨ k ⟩ (σ ↑⋆ i) ↑) (KL./-weaken j) ⟩
j Kind′/ wk⋆ i Kind′/ wk Kind/⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ cong (_Kind/⟨ k ⟩ (σ ↑⋆ i) ↑) (KL./-wk {t = j Kind′/ wk⋆ i}) ⟩
weakenKind′ (j Kind′/ wk⋆ i) Kind/⟨ k ⟩ (σ ↑⋆ i) ↑
≡⟨ wk-Kind/⟨⟩-↑⋆ zero (j Kind′/ wk⋆ i) ⟩
weakenKind′ (j Kind′/ wk⋆ i Kind/⟨ k ⟩ σ ↑⋆ i)
≡⟨ cong weakenKind′ (wk⋆-Kind/⟨⟩-↑⋆ i j) ⟩
weakenKind′ (j Kind/⟨ k ⟩ σ Kind′/ wk⋆ i)
≡˘⟨ (KL./-wk {t = j Kind/⟨ k ⟩ σ Kind′/ wk⋆ i}) ⟩
j Kind/⟨ k ⟩ σ Kind′/ wk⋆ i Kind′/ wk
≡˘⟨ KL./-weaken (j Kind/⟨ k ⟩ σ) ⟩
j Kind/⟨ k ⟩ σ Kind′/ wk⋆ (suc i)
∎
-- A corollary of the above.
weaken⋆-/⟨⟩-↑⋆ : ∀ i {k m n} a {σ : SVSub m n} →
weakenElim⋆ i (a /⟨ k ⟩ σ) ≡ weakenElim⋆ i a /⟨ k ⟩ σ ↑⋆ i
weaken⋆-/⟨⟩-↑⋆ i {k} a {σ} = begin
weakenElim⋆ i (a /⟨ k ⟩ σ) ≡˘⟨ EL./-wk⋆ i ⟩
a /⟨ k ⟩ σ Elim/ wk⋆ i ≡˘⟨ wk⋆-/⟨⟩-↑⋆ i a ⟩
a Elim/ wk⋆ i /⟨ k ⟩ σ ↑⋆ i ≡⟨ cong (_/⟨ k ⟩ σ ↑⋆ i) (EL./-wk⋆ i) ⟩
weakenElim⋆ i a /⟨ k ⟩ σ ↑⋆ i ∎
-- NOTE. Unfortunately, we cannot prove that arbitrary untyped
-- hereditary substitutions commute, because *untyped* hereditary
-- substitutions need not commute with reducting applications in
-- general. We will prove a weaker result, namely that well-kinded
-- hereditary substitutions in well-kinded types commute, later.
-- See e.g. `Nf∈-[]-/⟨⟩-↑⋆` etc. in module Kinding.Simple.
-- Some commutation lemmas up to βη-equality.
module _ where
open →β*-Reasoning
open Substitution hiding (_↑; _↑⋆_; sub)
private module Kd = Kd→β*-Reasoning
mutual
-- Hereditary substitution commutes with ⌞_⌟ up to β-reduction.
⌞⌟-/⟨⟩-β : ∀ {m n} a {k} {σ : SVSub m n} →
⌞ a ⌟ / toSub σ →β* ⌞ a /⟨ k ⟩ σ ⌟
⌞⌟-/⟨⟩-β (var x ∙ bs) {k} {σ} = begin
⌞ var x ∙ bs ⌟ / toSub σ
⟶⋆⟨ ⌞∙⌟-/⟨⟩-β (var x / toSub σ) (var x) bs ε ⟩
(var x / toSub σ) ⌞∙⌟ ⌞ bs //⟨ k ⟩ σ ⌟Sp
≡⟨ cong (_⌞∙⌟ ⌞ bs //⟨ k ⟩ σ ⌟Sp) (lookup-toSub σ x) ⟩
⌞ toElim (lookupSV σ x) ⌟ ⌞∙⌟ ⌞ bs //⟨ k ⟩ σ ⌟Sp
⟶⋆⟨ ⌞⌟-?∙∙-β (lookupSV σ x) k (bs //⟨ k ⟩ σ) ⟩
⌞ lookupSV σ x ?∙∙⟨ k ⟩ (bs //⟨ k ⟩ σ) ⌟
∎
⌞⌟-/⟨⟩-β (⊥ ∙ bs) = ⌞∙⌟-/⟨⟩-β ⊥ ⊥ bs ε
⌞⌟-/⟨⟩-β (⊤ ∙ bs) = ⌞∙⌟-/⟨⟩-β ⊤ ⊤ bs ε
⌞⌟-/⟨⟩-β (Π j b ∙ bs) {k} {σ} = ⌞∙⌟-/⟨⟩-β _ _ bs (begin
⌞ Π j b ⌟Hd / toSub σ
⟶⋆⟨ →β*-Π (⌞⌟Kd-/⟨⟩-β j) (⌞⌟-/⟨⟩-β b) ⟩
Π ⌞ j Kind/⟨ k ⟩ σ ⌟Kd ⌞ b /⟨ k ⟩ σ ↑ ⌟
∎)
⌞⌟-/⟨⟩-β ((a ⇒ b) ∙ bs) {k} {σ} = ⌞∙⌟-/⟨⟩-β _ _ bs (begin
⌞ a ⇒ b ⌟Hd / toSub σ
⟶⋆⟨ →β*-⇒ (⌞⌟-/⟨⟩-β a) (⌞⌟-/⟨⟩-β b) ⟩
⌞ a /⟨ k ⟩ σ ⌟ ⇒ ⌞ b /⟨ k ⟩ σ ⌟
∎)
⌞⌟-/⟨⟩-β (Λ j b ∙ bs) {k} {σ} = ⌞∙⌟-/⟨⟩-β _ _ bs (begin
⌞ Λ j b ⌟Hd / toSub σ
⟶⋆⟨ →β*-Λ (⌞⌟Kd-/⟨⟩-β j) (⌞⌟-/⟨⟩-β b) ⟩
Λ ⌞ j Kind/⟨ k ⟩ σ ⌟Kd ⌞ b /⟨ k ⟩ σ ↑ ⌟
∎)
⌞⌟-/⟨⟩-β (ƛ a b ∙ bs) {k} {σ} = ⌞∙⌟-/⟨⟩-β _ _ bs (begin
⌞ ƛ a b ⌟Hd / toSub σ
⟶⋆⟨ →β*-ƛ (⌞⌟-/⟨⟩-β a) (⌞⌟-/⟨⟩-β b) ⟩
ƛ ⌞ a /⟨ k ⟩ σ ⌟ ⌞ b /⟨ k ⟩ σ ↑ ⌟
∎)
⌞⌟-/⟨⟩-β (a ⊡ b ∙ bs) {k} {σ} = ⌞∙⌟-/⟨⟩-β _ _ bs (begin
⌞ a ⊡ b ⌟Hd / toSub σ
⟶⋆⟨ →β*-⊡ (⌞⌟-/⟨⟩-β a) (⌞⌟-/⟨⟩-β b) ⟩
⌞ a /⟨ k ⟩ σ ⌟ ⊡ ⌞ b /⟨ k ⟩ σ ⌟
∎)
⌞⌟Kd-/⟨⟩-β : ∀ {m n} j {k} {σ : SVSub m n} →
⌞ j ⌟Kd Kind/ toSub σ Kd→β* ⌞ j Kind/⟨ k ⟩ σ ⌟Kd
⌞⌟Kd-/⟨⟩-β (a ⋯ b) {k} {σ} = Kd.begin
(⌞ a ⋯ b ⌟Kd Kind/ toSub σ)
Kd.⟶⋆⟨ Kd→β*-⋯ (⌞⌟-/⟨⟩-β a) (⌞⌟-/⟨⟩-β b) ⟩
⌞ a /⟨ k ⟩ σ ⌟ ⋯ ⌞ b /⟨ k ⟩ σ ⌟
Kd.∎
⌞⌟Kd-/⟨⟩-β (Π j l) {k} {σ} = Kd.begin
(⌞ Π j l ⌟Kd Kind/ toSub σ)
Kd.⟶⋆⟨ Kd→β*-Π (⌞⌟Kd-/⟨⟩-β j) (⌞⌟Kd-/⟨⟩-β l) ⟩
Π ⌞ j Kind/⟨ k ⟩ σ ⌟Kd ⌞ l Kind/⟨ k ⟩ σ ↑ ⌟Kd
Kd.∎
⌞∙⌟-/⟨⟩-β : ∀ {m n} a b bs {k} {σ : SVSub m n} →
b / toSub σ →β* a →
(b ⌞∙⌟ ⌞ bs ⌟Sp) / toSub σ →β* a ⌞∙⌟ ⌞ bs //⟨ k ⟩ σ ⌟Sp
⌞∙⌟-/⟨⟩-β a b [] hyp = hyp
⌞∙⌟-/⟨⟩-β a b (c ∷ cs) {k} {σ} hyp =
⌞∙⌟-/⟨⟩-β (a · ⌞ c /⟨ k ⟩ σ ⌟) (b · ⌞ c ⌟) cs
(→β*-· hyp (⌞⌟-/⟨⟩-β c))
-- Reducing applications commute with ⌞_⌟ up to β-reduction.
⌞⌟-?∙∙-β : ∀ {n} (r : SVRes n) k bs →
⌞ toElim r ⌟ ⌞∙⌟ ⌞ bs ⌟Sp →β* ⌞ r ?∙∙⟨ k ⟩ bs ⌟
⌞⌟-?∙∙-β (hit a) k bs = ⌞⌟-∙∙-β a k bs
⌞⌟-?∙∙-β (miss y) k bs = ε
⌞⌟-∙∙-β : ∀ {n} (a : Elim n) k bs → ⌞ a ⌟ ⌞∙⌟ ⌞ bs ⌟Sp →β* ⌞ a ∙∙⟨ k ⟩ bs ⌟
⌞⌟-∙∙-β a k [] = ε
⌞⌟-∙∙-β a ★ (b ∷ bs) = begin
⌞ a ⌟ ⌞∙⌟ (⌞ b ⌟ ∷ ⌞ bs ⌟Sp) ≡˘⟨ ⌞⌟-∙∙ a (b ∷ bs) ⟩
⌞ a ∙∙ (b ∷ bs) ⌟ ∎
⌞⌟-∙∙-β a (j ⇒ k) (b ∷ bs) = begin
⌞ a ⌟ ⌞∙⌟ (⌞ b ⌟ ∷ ⌞ bs ⌟Sp)
⟶⋆⟨ →β*-⌞∙⌟₁ (⌞⌟-⌜·⌝-β a (j ⇒ k) b) ⌞ bs ⌟Sp ⟩
⌞ a ⌜·⌝⟨ j ⇒ k ⟩ b ⌟ ⌞∙⌟ ⌞ bs ⌟Sp
⟶⋆⟨ ⌞⌟-∙∙-β (a ⌜·⌝⟨ j ⇒ k ⟩ b) k bs ⟩
⌞ a ⌜·⌝⟨ j ⇒ k ⟩ b ∙∙⟨ k ⟩ bs ⌟
∎
⌞⌟-⌜·⌝-β : ∀ {n} (a : Elim n) k b → ⌞ a ⌟ · ⌞ b ⌟ →β* ⌞ a ⌜·⌝⟨ k ⟩ b ⌟
⌞⌟-⌜·⌝-β a ★ b = begin
⌞ a ⌟ · ⌞ b ⌟ ≡˘⟨ ⌞⌟-· a b ⟩
⌞ a ⌜·⌝ b ⌟ ∎
⌞⌟-⌜·⌝-β (a ∙ (c ∷ cs)) (j ⇒ k) b = begin
⌞ a ∙ (c ∷ cs) ⌟ · ⌞ b ⌟ ≡˘⟨ ⌞⌟-· (a ∙ (c ∷ cs)) b ⟩
⌞ a ∙ (c ∷ cs) ⌜·⌝ b ⌟ ∎
⌞⌟-⌜·⌝-β (var x ∙ []) (j ⇒ k) b = ε
⌞⌟-⌜·⌝-β (⊥ ∙ []) (j ⇒ k) b = ε
⌞⌟-⌜·⌝-β (⊤ ∙ []) (j ⇒ k) b = ε
⌞⌟-⌜·⌝-β (Π l a ∙ []) (j ⇒ k) b = ε
⌞⌟-⌜·⌝-β ((a ⇒ b) ∙ []) (j ⇒ k) c = ε
⌞⌟-⌜·⌝-β (Λ l a ∙ []) (j ⇒ k) b = begin
Λ ⌞ l ⌟Kd ⌞ a ⌟ · ⌞ b ⌟ ⟶⟨ ⌈ cont-Tp· ⌞ l ⌟Kd ⌞ a ⌟ ⌞ b ⌟ ⌉ ⟩
⌞ a ⌟ [ ⌞ b ⌟ ] ⟶⋆⟨ ⌞⌟-/⟨⟩-β a {j} {sub b} ⟩
⌞ a [ b ∈ j ] ⌟ ∎
⌞⌟-⌜·⌝-β (ƛ a b ∙ []) (j ⇒ k) c = ε
⌞⌟-⌜·⌝-β (a ⊡ b ∙ []) (j ⇒ k) c = ε
-- Potentially reducing applications commute with ⌞_⌟ up to β-reduction.
⌞⌟-↓⌜·⌝-β : ∀ {n} (a : Elim n) b → ⌞ a ⌟ · ⌞ b ⌟ →β* ⌞ a ↓⌜·⌝ b ⌟
⌞⌟-↓⌜·⌝-β (a ∙ (c ∷ cs)) b = begin
⌞ a ∙ (c ∷ cs) ⌟ · ⌞ b ⌟ ≡˘⟨ ⌞⌟-· (a ∙ (c ∷ cs)) b ⟩
⌞ a ∙ (c ∷ cs) ⌜·⌝ b ⌟ ∎
⌞⌟-↓⌜·⌝-β (var x ∙ []) b = ε
⌞⌟-↓⌜·⌝-β (⊥ ∙ []) b = ε
⌞⌟-↓⌜·⌝-β (⊤ ∙ []) b = ε
⌞⌟-↓⌜·⌝-β (Π l a ∙ []) b = ε
⌞⌟-↓⌜·⌝-β ((a ⇒ b) ∙ []) c = ε
⌞⌟-↓⌜·⌝-β (Λ l a ∙ []) b = begin
Λ ⌞ l ⌟Kd ⌞ a ⌟ · ⌞ b ⌟ ⟶⟨ ⌈ cont-Tp· ⌞ l ⌟Kd ⌞ a ⌟ ⌞ b ⌟ ⌉ ⟩
⌞ a ⌟ [ ⌞ b ⌟ ] ⟶⋆⟨ ⌞⌟-/⟨⟩-β a {⌊ l ⌋} {sub b} ⟩
⌞ a [ b ∈ ⌊ l ⌋ ] ⌟ ∎
⌞⌟-↓⌜·⌝-β (ƛ a b ∙ []) c = ε
⌞⌟-↓⌜·⌝-β (a ⊡ b ∙ []) c = ε
| {
"alphanum_fraction": 0.3792146119,
"avg_line_length": 41.1036036036,
"ext": "agda",
"hexsha": "953428d4c843901aee482d019e49181fdf3132da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Syntax/HereditarySubstitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Syntax/HereditarySubstitution.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Syntax/HereditarySubstitution.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 15840,
"size": 27375
} |
postulate A : Set
postulate B : A → Set
variable a : A
foo : B a → Set
foo x = {!a!} -- WAS: C-c C-c here reports "Not a variable: a"
-- SHOULD instead introduce the hidden argument {a}
{- C-c C-e reports
a : A (not in scope)
x : B a
-}
| {
"alphanum_fraction": 0.6099585062,
"avg_line_length": 17.2142857143,
"ext": "agda",
"hexsha": "51db31b736d33c78331c13c7e0d24d611d8be937",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3460.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3460.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3460.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 82,
"size": 241
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
module Numbers.Integers.Definition where
data ℤ : Set where
nonneg : ℕ → ℤ
negSucc : ℕ → ℤ
{-# BUILTIN INTEGER ℤ #-}
{-# BUILTIN INTEGERPOS nonneg #-}
{-# BUILTIN INTEGERNEGSUC negSucc #-}
nonnegInjective : {a b : ℕ} → nonneg a ≡ nonneg b → a ≡ b
nonnegInjective refl = refl
negSuccInjective : {a b : ℕ} → negSucc a ≡ negSucc b → a ≡ b
negSuccInjective refl = refl
ℤDecideEquality : (a b : ℤ) → ((a ≡ b) || ((a ≡ b) → False))
ℤDecideEquality (nonneg x) (nonneg y) with ℕDecideEquality x y
ℤDecideEquality (nonneg x) (nonneg y) | inl eq = inl (applyEquality nonneg eq)
ℤDecideEquality (nonneg x) (nonneg y) | inr non = inr λ i → non (nonnegInjective i)
ℤDecideEquality (nonneg x) (negSucc y) = inr λ ()
ℤDecideEquality (negSucc x) (nonneg x₁) = inr λ ()
ℤDecideEquality (negSucc x) (negSucc y) with ℕDecideEquality x y
ℤDecideEquality (negSucc x) (negSucc y) | inl eq = inl (applyEquality negSucc eq)
ℤDecideEquality (negSucc x) (negSucc y) | inr non = inr λ i → non (negSuccInjective i)
| {
"alphanum_fraction": 0.6872791519,
"avg_line_length": 37.7333333333,
"ext": "agda",
"hexsha": "5db7fe32675fac185ac2ea21663b28a11da49637",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Integers/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Integers/Definition.agda",
"max_line_length": 86,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Integers/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 414,
"size": 1132
} |
-- This error never occurs.
module ShouldBeASort where
err = ShouldBeASort-Never-Occurs
| {
"alphanum_fraction": 0.7802197802,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "6980a3658a2a43567e7dcba3be0c0a40c8d7ea2f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ShouldBeASort.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ShouldBeASort.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ShouldBeASort.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 91
} |
------------------------------------------------------------------------
-- Some theory of Erased, developed using the K rule and propositional
-- equality
------------------------------------------------------------------------
-- This module instantiates and reexports code from Erased.
{-# OPTIONS --with-K --safe #-}
module Erased.With-K where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Embedding equality-with-J as Emb using (Is-embedding)
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
import Erased.Basics as EB
import Erased.Level-1 equality-with-J as E
open import H-level equality-with-J
open import Injection equality-with-J using (Injective)
private
variable
a b p : Level
A : Type a
------------------------------------------------------------------------
-- Code related to the module Erased
-- Given an erased proof of equality of x and y one can show that
-- [ x ] is equal to [ y ].
[]-cong : {@0 A : Type a} {@0 x y : A} →
EB.Erased (x ≡ y) → EB.[ x ] ≡ EB.[ y ]
[]-cong EB.[ refl ] = refl
-- []-cong is an equivalence.
[]-cong-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = []-cong
; from = λ eq → EB.[ cong EB.erased eq ]
}
; right-inverse-of = λ { refl → refl }
}
; left-inverse-of = λ { EB.[ refl ] → refl }
}))
-- []-cong maps [ refl ] to refl (by definition).
[]-cong-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong EB.[ refl {x = x} ] ≡ refl {x = EB.[ x ]}
[]-cong-[refl] = refl
-- The []-cong axioms can be instantiated.
instance-of-[]-cong-axiomatisation : E.[]-cong-axiomatisation a
instance-of-[]-cong-axiomatisation = λ where
.E.[]-cong-axiomatisation.[]-cong → []-cong
.E.[]-cong-axiomatisation.[]-cong-equivalence → []-cong-equivalence
.E.[]-cong-axiomatisation.[]-cong-[refl] → []-cong-[refl]
-- Some reexported definitions.
open import Erased equality-with-J instance-of-[]-cong-axiomatisation
public
hiding ([]-cong; []-cong-equivalence; []-cong-[refl]; Injective-[];
Π-Erased≃Π0[]; Π-Erased≃Π0)
------------------------------------------------------------------------
-- Other code
-- [_]→ is injective.
Injective-[] : {@0 A : Type a} → Injective [ A ∣_]→
Injective-[] refl = refl
-- [_]→ is an embedding.
Is-embedding-[] : {@0 A : Type a} → Is-embedding [ A ∣_]→
Is-embedding-[] _ _ =
(λ { refl → refl })
, (λ { refl → refl })
, (λ { refl → refl })
, (λ { refl → refl })
-- If Erased A is a proposition, then A is a proposition.
Is-proposition-Erased→Is-proposition :
{@0 A : Type a} →
Is-proposition (Erased A) → Is-proposition A
Is-proposition-Erased→Is-proposition prop x y =
Injective-[] (prop [ x ] [ y ])
-- A variant of the previous result.
H-level′-1-Erased→H-level′-1 :
{@0 A : Type a} →
H-level′ 1 (Erased A) → H-level′ 1 A
H-level′-1-Erased→H-level′-1 prop x y
with proj₁ (prop [ x ] [ y ])
... | refl = refl , λ { refl → refl }
-- Equality is always very stable.
Very-stable-≡-trivial : Very-stable-≡ A
Very-stable-≡-trivial =
_⇔_.from (Very-stable-≡↔Is-embedding-[] _)
Is-embedding-[]
-- The following four results are inspired by a result in
-- Mishra-Linger's PhD thesis (see Section 5.4.1).
-- There is a bijection between (x : Erased A) → P x and
-- (@0 x : A) → P [ x ].
Π-Erased↔Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) ↔ ((@0 x : A) → P [ x ])
Π-Erased↔Π0[] = record
{ surjection = record
{ logical-equivalence = Π-Erased⇔Π0
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
}
-- There is an equivalence between (x : Erased A) → P x and
-- (@0 x : A) → P [ x ].
--
-- This is not proved by converting Π-Erased↔Π0[] to an equivalence,
-- because the type arguments of the conversion function in
-- Equivalence are not erased, and P can only be used in erased
-- contexts.
--
-- This is a strengthening of E.Π-Erased≃Π0[].
Π-Erased≃Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) ≃ ((@0 x : A) → P [ x ])
Π-Erased≃Π0[] = record
{ to = λ f x → f [ x ]
; is-equivalence =
(λ f ([ x ]) → f x)
, (λ _ → refl)
, (λ _ → refl)
, (λ _ → refl)
}
-- There is a bijection between (x : Erased A) → P (erased x) and
-- (@0 x : A) → P x.
Π-Erased↔Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) ↔ ((@0 x : A) → P x)
Π-Erased↔Π0 = Π-Erased↔Π0[]
-- There is an equivalence between (x : Erased A) → P (erased x) and
-- (@0 x : A) → P x.
--
-- This is a strengthening of E.Π-Erased≃Π0.
Π-Erased≃Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) ≃ ((@0 x : A) → P x)
Π-Erased≃Π0 = Π-Erased≃Π0[]
private
-- As an aside it is possible to prove the four previous results
-- without relying on eta-equality for Erased. However, the code
-- makes use of extensionality, and it also makes use of
-- eta-equality for Π. (The use of η-equality for Π could perhaps be
-- avoided, but Agda does not, at the time of writing, provide a
-- simple way to turn off this kind of η-equality.)
data Erased-no-η (@0 A : Type a) : Type a where
[_] : @0 A → Erased-no-η A
@0 erased-no-η : Erased-no-η A → A
erased-no-η [ x ] = x
-- Some lemmas.
Π-Erased-no-η→Π0[] :
{@0 A : Type a} {@0 P : Erased-no-η A → Type p} →
((x : Erased-no-η A) → P x) → (@0 x : A) → P [ x ]
Π-Erased-no-η→Π0[] f x = f [ x ]
Π0[]→Π-Erased-no-η :
{@0 A : Type a} (@0 P : Erased-no-η A → Type p) →
((@0 x : A) → P [ x ]) → (x : Erased-no-η A) → P x
Π0[]→Π-Erased-no-η _ f [ x ] = f x
Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] :
{@0 A : Type a} {@0 P : Erased-no-η A → Type p}
(f : (x : Erased-no-η A) → P x) (x : Erased-no-η A) →
Π0[]→Π-Erased-no-η P (Π-Erased-no-η→Π0[] f) x ≡ f x
Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f [ x ] = refl
-- There is a bijection between (x : Erased-no-η A) → P x and
-- (@0 x : A) → P [ x ] (assuming extensionality).
Π-Erased-no-η↔Π0[] :
{@0 A : Type a} {@0 P : Erased-no-η A → Type p} →
Extensionality′ (Erased-no-η A) P →
((x : Erased-no-η A) → P x) ↔ ((@0 x : A) → P [ x ])
Π-Erased-no-η↔Π0[] {P = P} ext = record
{ surjection = record
{ logical-equivalence = record
{ to = Π-Erased-no-η→Π0[]
; from = Π0[]→Π-Erased-no-η _
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ f →
ext (Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f)
}
-- There is an equivalence between (x : Erased-no-η A) → P x and
-- (@0 x : A) → P [ x ] (assuming extensionality).
--
-- This is not proved by converting Π-Erased-no-η↔Π0[] to an
-- equivalence, because the type arguments of the conversion
-- function in Equivalence are not erased, and A and P can only be
-- used in erased contexts.
Π-Erased-no-η≃Π0[] :
{@0 A : Type a} {@0 P : Erased-no-η A → Type p} →
Extensionality′ (Erased-no-η A) P →
((x : Erased-no-η A) → P x) ≃ ((@0 x : A) → P [ x ])
Π-Erased-no-η≃Π0[] {A = A} {P = P} ext = record
{ to = λ f x → f [ x ]
; is-equivalence =
Π0[]→Π-Erased-no-η _
, (λ _ → refl)
, (λ f → ext (Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f))
, (λ _ → uip _ _)
}
where
uip : {@0 B : Type b} {@0 x y : B} (@0 p q : x ≡ y) → p ≡ q
uip refl refl = refl
-- There is a bijection between
-- (x : Erased-no-η A) → P (erased-no-η x) and (@0 x : A) → P x
-- (assuming extensionality).
Π-Erased-no-η↔Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
Extensionality′ (Erased-no-η A) (P ∘ erased-no-η) →
((x : Erased-no-η A) → P (erased-no-η x)) ↔ ((@0 x : A) → P x)
Π-Erased-no-η↔Π0 = Π-Erased-no-η↔Π0[]
-- There is an equivalence between
-- (x : Erased-no-η A) → P (erased-no-η x) and (@0 x : A) → P x
-- (assuming extensionality).
Π-Erased-no-η≃Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
Extensionality′ (Erased-no-η A) (P ∘ erased-no-η) →
((x : Erased-no-η A) → P (erased-no-η x)) ≃ ((@0 x : A) → P x)
Π-Erased-no-η≃Π0 = Π-Erased-no-η≃Π0[]
| {
"alphanum_fraction": 0.5407169991,
"avg_line_length": 31.0848708487,
"ext": "agda",
"hexsha": "50b0cc650606f6aee96363f53c15686e056303cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/With-K.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/With-K.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/With-K.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3306,
"size": 8424
} |
-- Andreas, 2015-02-07
-- {-# OPTIONS -v tc.with:40 #-}
open import Common.Prelude hiding (not)
not : Bool → Bool
not true = false
not false = true
T : Bool → Set → Set
T true A = A → A
T false A = Bool
test : (b : Bool) → (A : Set) → T (not b) A
test b with not b
test b | true = λ A a → a
test b | false = λ A → false
-- should be able to abstract (not b) under Binder (A : Set)
-- and succeed
| {
"alphanum_fraction": 0.5935960591,
"avg_line_length": 18.4545454545,
"ext": "agda",
"hexsha": "5e6fd3c1fb48600cd9b220fbb0c47573874653d8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/WithAbstractUnderBinder.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/WithAbstractUnderBinder.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/WithAbstractUnderBinder.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 406
} |
import Lvl
open import Type
module Data.List.Relation.Sublist {ℓ} {T : Type{ℓ}} where
open import Data.List using (List ; ∅ ; _⊰_)
open import Logic
-- Whether a list's elements are contained in another list in order.
-- Examples:
-- [1,2,3] ⊑ [1,2,3]
-- [1,2,3] ⊑ [1,2,3,4]
-- [1,2,3] ⊑ [0,1,2,3]
-- [1,2,3] ⊑ [0,1,10,2,20,3,30]
-- [0,10,20,30] ⊑ [0,1,10,2,20,3,30]
data _⊑_ : List(T) → List(T) → Stmt{ℓ} where
empty : (∅ ⊑ ∅)
use : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → ((x ⊰ l₁) ⊑ (x ⊰ l₂))
skip : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → (l₁ ⊑ (x ⊰ l₂))
-- Whether a list's elements are contained in another list in order while not containing the same sublist.
-- Examples:
-- [1,2,3] ⊏ [1,2,3,4]
-- [1,2,3] ⊏ [0,1,2,3]
-- [1,2,3] ⊏ [0,1,10,2,20,3,30]
data _⊏_ : List(T) → List(T) → Stmt{ℓ} where
use : ∀{x}{l₁ l₂} → (l₁ ⊏ l₂) → ((x ⊰ l₁) ⊏ (x ⊰ l₂))
skip : ∀{x}{l₁ l₂} → (l₁ ⊑ l₂) → (l₁ ⊏ (x ⊰ l₂))
| {
"alphanum_fraction": 0.5032258065,
"avg_line_length": 32.0689655172,
"ext": "agda",
"hexsha": "218d967f216cae2667e55d15e48ceadbdc8fde10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Sublist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Sublist.agda",
"max_line_length": 106,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Sublist.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 472,
"size": 930
} |
-- Andreas, 2018-06-30, issue #3147 reported by bafain
-- Pattern linearity ignored for as-patterns
-- {-# OPTIONS -v tc.lhs.top:30 #-}
-- {-# OPTIONS -v tc.lhs.linear:100 #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
f : Nat → Nat
f zero = zero
f x@(suc x) = x -- rhs context:
-- x : Nat
-- x : Nat
-- Should fail during lhs-checking
f-id-1 : f 1 ≡ 1
f-id-1 = refl
f-pre-1 : f 1 ≡ 0
f-pre-1 = refl
| {
"alphanum_fraction": 0.5699152542,
"avg_line_length": 20.5217391304,
"ext": "agda",
"hexsha": "99a78440f69b387de1855ab0b4a60006f5cf1a3b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3147.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3147.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3147.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 161,
"size": 472
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Literals used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Literal where
import Data.Char as Char
import Data.Float as Float
import Data.Nat as ℕ
open import Data.String as String using (String)
import Data.Word as Word
import Reflection.Meta as Meta
import Reflection.Name as Name
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-exporting the builtin type and constructors
open import Agda.Builtin.Reflection public
using ( Literal )
open Literal public
------------------------------------------------------------------------
-- Decidable equality
meta-injective : ∀ {x y} → meta x ≡ meta y → x ≡ y
meta-injective refl = refl
nat-injective : ∀ {x y} → nat x ≡ nat y → x ≡ y
nat-injective refl = refl
word64-injective : ∀ {x y} → word64 x ≡ word64 y → x ≡ y
word64-injective refl = refl
float-injective : ∀ {x y} → float x ≡ float y → x ≡ y
float-injective refl = refl
char-injective : ∀ {x y} → char x ≡ char y → x ≡ y
char-injective refl = refl
string-injective : ∀ {x y} → string x ≡ string y → x ≡ y
string-injective refl = refl
name-injective : ∀ {x y} → name x ≡ name y → x ≡ y
name-injective refl = refl
infix 4 _≟_
_≟_ : DecidableEquality Literal
nat x ≟ nat x₁ = Dec.map′ (cong nat) nat-injective (x ℕ.≟ x₁)
nat x ≟ word64 x₁ = no (λ ())
nat x ≟ float x₁ = no (λ ())
nat x ≟ char x₁ = no (λ ())
nat x ≟ string x₁ = no (λ ())
nat x ≟ name x₁ = no (λ ())
nat x ≟ meta x₁ = no (λ ())
word64 x ≟ word64 x₁ = Dec.map′ (cong word64) word64-injective (x Word.≟ x₁)
word64 x ≟ nat x₁ = no (λ ())
word64 x ≟ float x₁ = no (λ ())
word64 x ≟ char x₁ = no (λ ())
word64 x ≟ string x₁ = no (λ ())
word64 x ≟ name x₁ = no (λ ())
word64 x ≟ meta x₁ = no (λ ())
float x ≟ nat x₁ = no (λ ())
float x ≟ word64 x₁ = no (λ ())
float x ≟ float x₁ = Dec.map′ (cong float) float-injective (x Float.≟ x₁)
float x ≟ char x₁ = no (λ ())
float x ≟ string x₁ = no (λ ())
float x ≟ name x₁ = no (λ ())
float x ≟ meta x₁ = no (λ ())
char x ≟ nat x₁ = no (λ ())
char x ≟ word64 x₁ = no (λ ())
char x ≟ float x₁ = no (λ ())
char x ≟ char x₁ = Dec.map′ (cong char) char-injective (x Char.≟ x₁)
char x ≟ string x₁ = no (λ ())
char x ≟ name x₁ = no (λ ())
char x ≟ meta x₁ = no (λ ())
string x ≟ nat x₁ = no (λ ())
string x ≟ word64 x₁ = no (λ ())
string x ≟ float x₁ = no (λ ())
string x ≟ char x₁ = no (λ ())
string x ≟ string x₁ = Dec.map′ (cong string) string-injective (x String.≟ x₁)
string x ≟ name x₁ = no (λ ())
string x ≟ meta x₁ = no (λ ())
name x ≟ nat x₁ = no (λ ())
name x ≟ word64 x₁ = no (λ ())
name x ≟ float x₁ = no (λ ())
name x ≟ char x₁ = no (λ ())
name x ≟ string x₁ = no (λ ())
name x ≟ name x₁ = Dec.map′ (cong name) name-injective (x Name.≟ x₁)
name x ≟ meta x₁ = no (λ ())
meta x ≟ nat x₁ = no (λ ())
meta x ≟ word64 x₁ = no (λ ())
meta x ≟ float x₁ = no (λ ())
meta x ≟ char x₁ = no (λ ())
meta x ≟ string x₁ = no (λ ())
meta x ≟ name x₁ = no (λ ())
meta x ≟ meta x₁ = Dec.map′ (cong meta) meta-injective (x Meta.≟ x₁)
| {
"alphanum_fraction": 0.5637563756,
"avg_line_length": 31.7428571429,
"ext": "agda",
"hexsha": "6d7cc492e2d2b138d6ccced331d97064d6d9c3da",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Literal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Literal.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Literal.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1089,
"size": 3333
} |
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Cat.Facts.Initial where
open import Cats.Category
open import Cats.Category.Cat using (Cat)
open import Cats.Category.Zero using (Zero)
open import Cats.Functor
Absurd : ∀ {lo la l≈ lo′ la′ l≈′} (C : Category lo′ la′ l≈′)
→ Functor (Zero lo la l≈) C
Absurd C = record
{ fobj = λ()
; fmap = λ{}
; fmap-resp = λ{}
; fmap-id = λ{}
; fmap-∘ = λ{}
}
instance
hasInitial : ∀ {lo la l≈} → HasInitial (Cat lo la l≈)
hasInitial {lo} {la} {l≈} = record
{ ⊥ = Zero lo la l≈
; isInitial = λ X → record
{ arr = Absurd X
; unique = λ x → record
{ iso = λ{}
; forth-natural = λ{}
}
}
}
| {
"alphanum_fraction": 0.5511363636,
"avg_line_length": 21.3333333333,
"ext": "agda",
"hexsha": "68ee6cef0f646649f66c39ba74220c49b511b89b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Cat/Facts/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Cat/Facts/Initial.agda",
"max_line_length": 60,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Cat/Facts/Initial.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 240,
"size": 704
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Bool
open import lib.types.Coproduct
open import lib.types.Truncation
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Fin
open import lib.types.Nat
open import lib.types.Empty
open import lib.NConnected
open import lib.NType2
open import lib.Equivalence2
{- Some miscellaneous lemmas about coproducts. -}
module Util.Coproducts where
⊔-fmap-is-equiv : {i j i' j' : ULevel} {A : Type i} {B : Type j} {A' : Type i'} {B' : Type j'}
(f : A → A') (g : B → B') (f-eq : is-equiv f) (g-eq : is-equiv g) → is-equiv (⊔-fmap f g)
⊔-fmap-is-equiv f g f-eq g-eq =
record { g = ⊔-fmap Feq.g Geq.g
; f-g = Coprod-elim (λ a → ap inl (Feq.f-g a)) λ b → ap inr (Geq.f-g b)
; g-f = Coprod-elim (λ a → ap inl (Feq.g-f a)) (λ b → ap inr (Geq.g-f b))
; adj = Coprod-elim (λ a → ∘-ap (⊔-fmap f g) inl _ ∙ ap-∘ _ _ _ ∙ ap (ap inl) (Feq.adj a))
λ b → ∘-ap (⊔-fmap f g) _ _ ∙ ap-∘ _ _ _ ∙ ap (ap inr) (Geq.adj b) }
where
module Feq = is-equiv f-eq
module Geq = is-equiv g-eq
⊔-emap : {i i' j j' : ULevel} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'}
(e : A ≃ A') (e' : B ≃ B') → (A ⊔ B ≃ A' ⊔ B')
⊔-emap {A = A} {A' = A'} {B = B} {B' = B'} e e' = (f , record { g = g ; f-g = f-g ; g-f = g-f ; adj = adj })
where
f : A ⊔ B → A' ⊔ B'
f = ⊔-fmap (–> e) (–> e')
g : A' ⊔ B' → A ⊔ B
g = ⊔-fmap (<– e) (<– e')
f-g : (z : A' ⊔ B') → (f (g z) == z)
f-g (inl x) = ap inl (<–-inv-r e x)
f-g (inr x) = ap inr (<–-inv-r e' x)
g-f : (z : A ⊔ B) → (g (f z) == z)
g-f (inl x) = ap inl (<–-inv-l e x)
g-f (inr x) = ap inr (<–-inv-l e' x)
adj : (a : A ⊔ B) → ap f (g-f a) == f-g (f a)
adj (inl a) =
ap f (g-f (inl a))
=⟨ idp ⟩
ap f (ap inl (<–-inv-l e a))
=⟨ ∘-ap f inl _ ⟩
ap (f ∘ inl) (<–-inv-l e a)
=⟨ idp ⟩
ap (inl ∘ –> e) ((<–-inv-l e a))
=⟨ ap-∘ inl (–> e) _ ⟩
ap inl (ap (–> e) (<–-inv-l e a))
=⟨ ap (ap inl) (<–-inv-adj e a) ⟩
ap inl (<–-inv-r e (–> e a))
=⟨ idp ⟩
f-g (f (inl a))
=∎
adj (inr b) =
ap f (g-f (inr b))
=⟨ idp ⟩
ap f (ap inr (<–-inv-l e' b))
=⟨ ∘-ap f inr _ ⟩
ap (f ∘ inr) (<–-inv-l e' b)
=⟨ idp ⟩
ap (inr ∘ –> e') ((<–-inv-l e' b))
=⟨ ap-∘ inr (–> e') _ ⟩
ap inr (ap (–> e') (<–-inv-l e' b))
=⟨ ap (ap inr) (<–-inv-adj e' b) ⟩
ap inr (<–-inv-r e' (–> e' b))
=⟨ idp ⟩
f-g (f (inr b))
=∎
⊔-cancel-l : {i j : ULevel} {A : Type i} {B : Type j} → (A ⊔ B) → (¬ A) → B
⊔-cancel-l (inl a) na = ⊥-elim (na a)
⊔-cancel-l (inr b) _ = b
⊔-cancel-r : {i j : ULevel} {A : Type i} {B : Type j} → (A ⊔ B) → (¬ B) → A
⊔-cancel-r (inl a) _ = a
⊔-cancel-r (inr b) nb = ⊥-elim (nb b)
⊔-assoc : {i j k : ULevel} {A : Type i} {B : Type j} {C : Type k} → (A ⊔ B) ⊔ C ≃ A ⊔ B ⊔ C
⊔-assoc {A = A} {B = B} {C = C} = f , record { g = g ; f-g = f-g ; g-f = g-f ; adj = adj }
where
f : (A ⊔ B) ⊔ C → A ⊔ B ⊔ C
f (inl (inl x)) = inl x
f (inl (inr x)) = inr (inl x)
f (inr x) = inr (inr x)
g : A ⊔ B ⊔ C → (A ⊔ B) ⊔ C
g (inl x) = inl (inl x)
g (inr (inl x)) = inl (inr x)
g (inr (inr x)) = inr x
f-g : (z : A ⊔ B ⊔ C) → (f (g z) == z)
f-g (inl x) = idp
f-g (inr (inl x)) = idp
f-g (inr (inr x)) = idp
g-f : (z : (A ⊔ B) ⊔ C) → (g (f z) == z)
g-f (inl (inl x)) = idp
g-f (inl (inr x)) = idp
g-f (inr x) = idp
adj : (a : (A ⊔ B) ⊔ C) → ap f (g-f a) == f-g (f a)
adj (inl (inl x)) = idp
adj (inl (inr x)) = idp
adj (inr x) = idp
⊔-sym : {i j : ULevel} {A : Type i} {B : Type j} → (A ⊔ B) ≃ (B ⊔ A)
⊔-sym = (λ {(inl a) → inr a ; (inr b) → inl b} ) ,
record { g = λ { (inl b) → inr b ; (inr a) → inl a}
; f-g = λ { (inl x) → idp ; (inr x) → idp}
; g-f = λ { (inl x) → idp ; (inr x) → idp}
; adj = λ { (inl x) → idp ; (inr x) → idp} }
| {
"alphanum_fraction": 0.4190994557,
"avg_line_length": 32.336,
"ext": "agda",
"hexsha": "c6bfcd33a174cee7014748e799d641714a9aa5bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/Util/Coproducts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/Util/Coproducts.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/Util/Coproducts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1967,
"size": 4042
} |
module left-kan-extensions where
open import functor
-- The left-kan extension of G along J.
record left-kan (G : Set → Set) (J : Set → Set) (pG : Functor G) (pJ : Functor J) : Set₁ where
field
lan : Set → Set
pLan : Functor lan
| {
"alphanum_fraction": 0.6356275304,
"avg_line_length": 20.5833333333,
"ext": "agda",
"hexsha": "b392384d2770461ab63c346fbac1d0ecf0a0984d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "left-kan-extensions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "left-kan-extensions.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "left-kan-extensions.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 78,
"size": 247
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing.Base
private
variable
ℓ : Level
module Units (R' : CommRing ℓ) where
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
private R = fst R'
inverseUniqueness : (r : R) → isProp (Σ[ r' ∈ R ] r · r' ≡ 1r)
inverseUniqueness r (r' , rr'≡1) (r'' , rr''≡1) = Σ≡Prop (λ _ → is-set _ _) path
where
path : r' ≡ r''
path = r' ≡⟨ sym (·Rid _) ⟩
r' · 1r ≡⟨ cong (r' ·_) (sym rr''≡1) ⟩
r' · (r · r'') ≡⟨ ·Assoc _ _ _ ⟩
(r' · r) · r'' ≡⟨ cong (_· r'') (·Comm _ _) ⟩
(r · r') · r'' ≡⟨ cong (_· r'') rr'≡1 ⟩
1r · r'' ≡⟨ ·Lid _ ⟩
r'' ∎
Rˣ : ℙ R
Rˣ r = (Σ[ r' ∈ R ] r · r' ≡ 1r) , inverseUniqueness r
-- some notation using instance arguments
_⁻¹ : (r : R) → ⦃ r ∈ Rˣ ⦄ → R
_⁻¹ r ⦃ r∈Rˣ ⦄ = r∈Rˣ .fst
infix 9 _⁻¹
-- some results about inverses
·-rinv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r · r ⁻¹ ≡ 1r
·-rinv r ⦃ r∈Rˣ ⦄ = r∈Rˣ .snd
·-linv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r ⁻¹ · r ≡ 1r
·-linv r ⦃ r∈Rˣ ⦄ = ·Comm _ _ ∙ r∈Rˣ .snd
RˣMultClosed : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄
→ (r · r') ∈ Rˣ
RˣMultClosed r r' = (r ⁻¹ · r' ⁻¹) , path
where
path : r · r' · (r ⁻¹ · r' ⁻¹) ≡ 1r
path = r · r' · (r ⁻¹ · r' ⁻¹) ≡⟨ cong (_· (r ⁻¹ · r' ⁻¹)) (·Comm _ _) ⟩
r' · r · (r ⁻¹ · r' ⁻¹) ≡⟨ ·Assoc _ _ _ ⟩
r' · r · r ⁻¹ · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (sym (·Assoc _ _ _)) ⟩
r' · (r · r ⁻¹) · r' ⁻¹ ≡⟨ cong (λ x → r' · x · r' ⁻¹) (·-rinv _) ⟩
r' · 1r · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (·Rid _) ⟩
r' · r' ⁻¹ ≡⟨ ·-rinv _ ⟩
1r ∎
RˣContainsOne : 1r ∈ Rˣ
RˣContainsOne = 1r , ·Lid _
RˣInvClosed : (r : R) ⦃ _ : r ∈ Rˣ ⦄ → r ⁻¹ ∈ Rˣ
RˣInvClosed r = r , ·-linv _
UnitsAreNotZeroDivisors : (r : R) ⦃ _ : r ∈ Rˣ ⦄
→ ∀ r' → r' · r ≡ 0r → r' ≡ 0r
UnitsAreNotZeroDivisors r r' p = r' ≡⟨ sym (·Rid _) ⟩
r' · 1r ≡⟨ cong (r' ·_) (sym (·-rinv _)) ⟩
r' · (r · r ⁻¹) ≡⟨ ·Assoc _ _ _ ⟩
r' · r · r ⁻¹ ≡⟨ cong (_· r ⁻¹) p ⟩
0r · r ⁻¹ ≡⟨ 0LeftAnnihilates _ ⟩
0r ∎
-- laws keeping the instance arguments
1⁻¹≡1 : ⦃ 1∈Rˣ' : 1r ∈ Rˣ ⦄ → 1r ⁻¹ ≡ 1r
1⁻¹≡1 ⦃ 1∈Rˣ' ⦄ = (sym (·Lid _)) ∙ 1∈Rˣ' .snd
⁻¹-dist-· : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ ⦃ rr'∈Rˣ : (r · r') ∈ Rˣ ⦄
→ (r · r') ⁻¹ ≡ r ⁻¹ · r' ⁻¹
⁻¹-dist-· r r' ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ ⦃ rr'∈Rˣ ⦄ =
sym path ∙∙ cong (r ⁻¹ · r' ⁻¹ ·_) (rr'∈Rˣ .snd) ∙∙ (·Rid _)
where
path : r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹) ≡ (r · r') ⁻¹
path = r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹)
≡⟨ ·Assoc _ _ _ ⟩
r ⁻¹ · r' ⁻¹ · (r · r') · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · r' ⁻¹ · x · (r · r') ⁻¹) (·Comm _ _) ⟩
r ⁻¹ · r' ⁻¹ · (r' · r) · (r · r') ⁻¹
≡⟨ cong (_· (r · r') ⁻¹) (sym (·Assoc _ _ _)) ⟩
r ⁻¹ · (r' ⁻¹ · (r' · r)) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·Assoc _ _ _) ⟩
r ⁻¹ · (r' ⁻¹ · r' · r) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · (x · r) · (r · r') ⁻¹) (·-linv _) ⟩
r ⁻¹ · (1r · r) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·Lid _) ⟩
r ⁻¹ · r · (r · r') ⁻¹
≡⟨ cong (_· (r · r') ⁻¹) (·-linv _) ⟩
1r · (r · r') ⁻¹
≡⟨ ·Lid _ ⟩
(r · r') ⁻¹ ∎
unitCong : {r r' : R} → r ≡ r' → ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ → r ⁻¹ ≡ r' ⁻¹
unitCong {r = r} {r' = r'} p ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ =
PathPΣ (inverseUniqueness r' (r ⁻¹ , subst (λ x → x · r ⁻¹ ≡ 1r) p (r∈Rˣ .snd)) r'∈Rˣ) .fst
⁻¹-eq-elim : {r r' r'' : R} ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r' ≡ r'' · r → r' · r ⁻¹ ≡ r''
⁻¹-eq-elim {r = r} {r'' = r''} p = cong (_· r ⁻¹) p
∙ sym (·Assoc _ _ _)
∙ cong (r'' ·_) (·-rinv _)
∙ ·Rid _
-- some convenient notation
_ˣ : (R' : CommRing ℓ) → ℙ (R' .fst)
R' ˣ = Units.Rˣ R'
module CommRingHoms where
open RingHoms
idCommRingHom : (R : CommRing ℓ) → CommRingHom R R
idCommRingHom R = idRingHom (CommRing→Ring R)
compCommRingHom : (R S T : CommRing ℓ)
→ CommRingHom R S → CommRingHom S T → CommRingHom R T
compCommRingHom R S T = compRingHom {R = CommRing→Ring R} {CommRing→Ring S} {CommRing→Ring T}
compIdCommRingHom : {R S : CommRing ℓ} (f : CommRingHom R S) → compCommRingHom R R S (idCommRingHom R) f ≡ f
compIdCommRingHom = compIdRingHom
idCompCommRingHom : {R S : CommRing ℓ} (f : CommRingHom R S) → compCommRingHom R S S f (idCommRingHom S) ≡ f
idCompCommRingHom = idCompRingHom
compAssocCommRingHom : {R S T U : CommRing ℓ} (f : CommRingHom R S) (g : CommRingHom S T) (h : CommRingHom T U) →
compCommRingHom R T U (compCommRingHom R S T f g) h ≡
compCommRingHom R S U f (compCommRingHom S T U g h)
compAssocCommRingHom = compAssocRingHom
module CommRingHomTheory {A' B' : CommRing ℓ} (φ : CommRingHom A' B') where
open Units A' renaming (Rˣ to Aˣ ; _⁻¹ to _⁻¹ᵃ ; ·-rinv to ·A-rinv ; ·-linv to ·A-linv)
private A = fst A'
open CommRingStr (snd A') renaming (_·_ to _·A_ ; 1r to 1a)
open Units B' renaming (Rˣ to Bˣ ; _⁻¹ to _⁻¹ᵇ ; ·-rinv to ·B-rinv)
open CommRingStr (snd B') renaming ( _·_ to _·B_ ; 1r to 1b
; ·Lid to ·B-lid ; ·Rid to ·B-rid
; ·Assoc to ·B-assoc)
private
f = fst φ
open IsRingHom (φ .snd)
RingHomRespInv : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ → f r ∈ Bˣ
RingHomRespInv r = f (r ⁻¹ᵃ) , (sym (pres· r (r ⁻¹ᵃ)) ∙∙ cong (f) (·A-rinv r) ∙∙ pres1)
φ[x⁻¹]≡φ[x]⁻¹ : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ ⦃ φr∈Bˣ : f r ∈ Bˣ ⦄
→ f (r ⁻¹ᵃ) ≡ (f r) ⁻¹ᵇ
φ[x⁻¹]≡φ[x]⁻¹ r ⦃ r∈Aˣ ⦄ ⦃ φr∈Bˣ ⦄ =
f (r ⁻¹ᵃ) ≡⟨ sym (·B-rid _) ⟩
f (r ⁻¹ᵃ) ·B 1b ≡⟨ cong (f (r ⁻¹ᵃ) ·B_) (sym (·B-rinv _)) ⟩
f (r ⁻¹ᵃ) ·B ((f r) ·B (f r) ⁻¹ᵇ) ≡⟨ ·B-assoc _ _ _ ⟩
f (r ⁻¹ᵃ) ·B (f r) ·B (f r) ⁻¹ᵇ ≡⟨ cong (_·B (f r) ⁻¹ᵇ) (sym (pres· _ _)) ⟩
f (r ⁻¹ᵃ ·A r) ·B (f r) ⁻¹ᵇ ≡⟨ cong (λ x → f x ·B (f r) ⁻¹ᵇ) (·A-linv _) ⟩
f 1a ·B (f r) ⁻¹ᵇ ≡⟨ cong (_·B (f r) ⁻¹ᵇ) (pres1) ⟩
1b ·B (f r) ⁻¹ᵇ ≡⟨ ·B-lid _ ⟩
(f r) ⁻¹ᵇ ∎
module Exponentiation (R' : CommRing ℓ) where
open CommRingStr (snd R')
private R = fst R'
-- introduce exponentiation
_^_ : R → ℕ → R
f ^ zero = 1r
f ^ suc n = f · (f ^ n)
infix 9 _^_
-- and prove some laws
1ⁿ≡1 : (n : ℕ) → 1r ^ n ≡ 1r
1ⁿ≡1 zero = refl
1ⁿ≡1 (suc n) = ·Lid _ ∙ 1ⁿ≡1 n
·-of-^-is-^-of-+ : (f : R) (m n : ℕ) → (f ^ m) · (f ^ n) ≡ f ^ (m +ℕ n)
·-of-^-is-^-of-+ f zero n = ·Lid _
·-of-^-is-^-of-+ f (suc m) n = sym (·Assoc _ _ _) ∙ cong (f ·_) (·-of-^-is-^-of-+ f m n)
^-ldist-· : (f g : R) (n : ℕ) → (f · g) ^ n ≡ (f ^ n) · (g ^ n)
^-ldist-· f g zero = sym (·Lid 1r)
^-ldist-· f g (suc n) = path
where
path : f · g · ((f · g) ^ n) ≡ f · (f ^ n) · (g · (g ^ n))
path = f · g · ((f · g) ^ n) ≡⟨ cong (f · g ·_) (^-ldist-· f g n) ⟩
f · g · ((f ^ n) · (g ^ n)) ≡⟨ ·Assoc _ _ _ ⟩
f · g · (f ^ n) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (sym (·Assoc _ _ _)) ⟩
f · (g · (f ^ n)) · (g ^ n) ≡⟨ cong (λ r → (f · r) · (g ^ n)) (·Comm _ _) ⟩
f · ((f ^ n) · g) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (·Assoc _ _ _) ⟩
f · (f ^ n) · g · (g ^ n) ≡⟨ sym (·Assoc _ _ _) ⟩
f · (f ^ n) · (g · (g ^ n)) ∎
^-rdist-·ℕ : (f : R) (n m : ℕ) → f ^ (n ·ℕ m) ≡ (f ^ n) ^ m
^-rdist-·ℕ f zero m = sym (1ⁿ≡1 m)
^-rdist-·ℕ f (suc n) m = sym (·-of-^-is-^-of-+ f m (n ·ℕ m))
∙∙ cong (f ^ m ·_) (^-rdist-·ℕ f n m)
∙∙ sym (^-ldist-· f (f ^ n) m)
-- like in Ring.Properties we provide helpful lemmas here
module CommRingTheory (R' : CommRing ℓ) where
open CommRingStr (snd R')
private R = fst R'
·CommAssocl : (x y z : R) → x · (y · z) ≡ y · (x · z)
·CommAssocl x y z = ·Assoc x y z ∙∙ cong (_· z) (·Comm x y) ∙∙ sym (·Assoc y x z)
·CommAssocr : (x y z : R) → x · y · z ≡ x · z · y
·CommAssocr x y z = sym (·Assoc x y z) ∙∙ cong (x ·_) (·Comm y z) ∙∙ ·Assoc x z y
·CommAssocr2 : (x y z : R) → x · y · z ≡ z · y · x
·CommAssocr2 x y z = ·CommAssocr _ _ _ ∙∙ cong (_· y) (·Comm _ _) ∙∙ ·CommAssocr _ _ _
·CommAssocSwap : (x y z w : R) → (x · y) · (z · w) ≡ (x · z) · (y · w)
·CommAssocSwap x y z w =
·Assoc (x · y) z w ∙∙ cong (_· w) (·CommAssocr x y z) ∙∙ sym (·Assoc (x · z) y w)
| {
"alphanum_fraction": 0.4493664258,
"avg_line_length": 38.6599190283,
"ext": "agda",
"hexsha": "db4cc2df9f95ef00f758d574a044d3903ecf8194",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Properties.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4665,
"size": 9549
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- An implementation of the ring solver that requires you to manually
-- pass the equation you wish to solve.
------------------------------------------------------------------------
-- You'll probably want to use `Tactic.RingSolver` instead which uses
-- reflection to automatically extract the equation.
{-# OPTIONS --without-K --safe #-}
open import Tactic.RingSolver.Core.AlmostCommutativeRing
module Tactic.RingSolver.NonReflective
{ℓ₁ ℓ₂} (ring : AlmostCommutativeRing ℓ₁ ℓ₂)
(let open AlmostCommutativeRing ring)
where
open import Algebra.Morphism
open import Function
open import Data.Bool.Base using (Bool; true; false; T; if_then_else_)
open import Data.Maybe.Base
open import Data.Empty using (⊥-elim)
open import Data.Nat.Base using (ℕ)
open import Data.Product
open import Data.Vec hiding (_⊛_)
open import Data.Vec.N-ary
open import Tactic.RingSolver.Core.Polynomial.Parameters
open import Tactic.RingSolver.Core.Expression public
module Ops where
zero-homo : ∀ x → T (is-just (0≟ x)) → 0# ≈ x
zero-homo x _ with 0≟ x
zero-homo x _ | just p = p
zero-homo x () | nothing
homo : Homomorphism ℓ₁ ℓ₂ ℓ₁ ℓ₂
homo = record
{ from = record
{ rawRing = AlmostCommutativeRing.rawRing ring
; isZero = λ x → is-just (0≟ x)
}
; to = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = -‿cong
; -‿*-distribˡ = -‿*-distribˡ
; -‿+-comm = -‿+-comm
}
}
; morphism = -raw-almostCommutative⟶ ring
; Zero-C⟶Zero-R = zero-homo
}
open Eval rawRing id public
open import Tactic.RingSolver.Core.Polynomial.Base (Homomorphism.from homo)
norm : ∀ {n} → Expr Carrier n → Poly n
norm (Κ x) = κ x
norm (Ι x) = ι x
norm (x ⊕ y) = norm x ⊞ norm y
norm (x ⊗ y) = norm x ⊠ norm y
norm (⊝ x) = ⊟ norm x
norm (x ⊛ i) = norm x ⊡ i
⟦_⇓⟧ : ∀ {n} → Expr Carrier n → Vec Carrier n → Carrier
⟦ expr ⇓⟧ = ⟦ norm expr ⟧ₚ where
open import Tactic.RingSolver.Core.Polynomial.Semantics homo
renaming (⟦_⟧ to ⟦_⟧ₚ)
correct : ∀ {n} (expr : Expr Carrier n) ρ → ⟦ expr ⇓⟧ ρ ≈ ⟦ expr ⟧ ρ
correct {n = n} = go
where
open import Tactic.RingSolver.Core.Polynomial.Homomorphism homo
go : ∀ (expr : Expr Carrier n) ρ → ⟦ expr ⇓⟧ ρ ≈ ⟦ expr ⟧ ρ
go (Κ x) ρ = κ-hom x ρ
go (Ι x) ρ = ι-hom x ρ
go (x ⊕ y) ρ = ⊞-hom (norm x) (norm y) ρ ⟨ trans ⟩ (go x ρ ⟨ +-cong ⟩ go y ρ)
go (x ⊗ y) ρ = ⊠-hom (norm x) (norm y) ρ ⟨ trans ⟩ (go x ρ ⟨ *-cong ⟩ go y ρ)
go (⊝ x) ρ = ⊟-hom (norm x) ρ ⟨ trans ⟩ -‿cong (go x ρ)
go (x ⊛ i) ρ = ⊡-hom (norm x) i ρ ⟨ trans ⟩ pow-cong i (go x ρ)
open import Relation.Binary.Reflection setoid Ι ⟦_⟧ ⟦_⇓⟧ correct public
solve : ∀ (n : ℕ) →
(f : N-ary n (Expr Carrier n) (Expr Carrier n × Expr Carrier n)) →
Eqʰ n _≈_ (curryⁿ (Ops.⟦_⇓⟧ (proj₁ (Ops.close n f)))) (curryⁿ (Ops.⟦_⇓⟧ (proj₂ (Ops.close n f)))) →
Eq n _≈_ (curryⁿ (Ops.⟦_⟧ (proj₁ (Ops.close n f)))) (curryⁿ (Ops.⟦_⟧ (proj₂ (Ops.close n f))))
solve = Ops.solve
{-# INLINE solve #-}
_⊜_ : ∀ (n : ℕ) →
Expr Carrier n →
Expr Carrier n →
Expr Carrier n × Expr Carrier n
_⊜_ _ = _,_
{-# INLINE _⊜_ #-}
| {
"alphanum_fraction": 0.5777448071,
"avg_line_length": 33.0392156863,
"ext": "agda",
"hexsha": "7ffe5d3dbe4093e3dfa4b1ff49300d26fa1d39bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/NonReflective.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/NonReflective.agda",
"max_line_length": 107,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/NonReflective.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1229,
"size": 3370
} |
{-# OPTIONS --allow-unsolved-metas #-}
module LiteralProblem where
open import OscarPrelude
open import Problem
open import IsLiteralProblem
record LiteralProblem : Set
where
constructor ⟨_⟩
field
{problem} : Problem
isLiteralProblem : IsLiteralProblem problem
open LiteralProblem public
instance EqLiteralProblem : Eq LiteralProblem
EqLiteralProblem = {!!}
open import 𝓐ssertion
instance 𝓐ssertionLiteralProblem : 𝓐ssertion LiteralProblem
𝓐ssertionLiteralProblem = record {}
open import HasSatisfaction
instance HasSatisfactionLiteralProblem : HasSatisfaction LiteralProblem
HasSatisfaction._⊨_ HasSatisfactionLiteralProblem I 𝔓 = I ⊨ problem 𝔓
open import HasDecidableValidation
instance HasDecidableValidationLiteralProblem : HasDecidableValidation LiteralProblem
HasDecidableValidationLiteralProblem = {!!}
| {
"alphanum_fraction": 0.8285371703,
"avg_line_length": 24.5294117647,
"ext": "agda",
"hexsha": "5b6941126834eb1f811d6118e188fc0ed94950e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/LiteralProblem.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/LiteralProblem.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/LiteralProblem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 200,
"size": 834
} |
module LC.Subst.Var where
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Nullary
--------------------------------------------------------------------------------
-- variable binding
data Binding : ℕ → ℕ → Set where
Free : ∀ {n x} → (n≤x : n ≤ x) → Binding n x
Bound : ∀ {n x} → (n>x : n > x) → Binding n x
inspectBinding : ∀ n x → Binding n x
inspectBinding n x with n ≤? x
... | yes p = Free p
... | no ¬p = Bound (≰⇒> ¬p)
--------------------------------------------------------------------------------
-- lifiting variables
lift-var : (n i x : ℕ) → ℕ
lift-var n i x with inspectBinding n x
... | Free _ = i + x -- free
... | Bound _ = x -- bound
--------------------------------------------------------------------------------
-- properties of lift-var
open import Relation.Binary.PropositionalEquality hiding ([_])
module EQ where
open ≡-Reasoning
twist : ∀ l m n → l + (m + n) ≡ m + (l + n)
twist l m n =
begin
l + (m + n)
≡⟨ sym (+-assoc l m n) ⟩
l + m + n
≡⟨ cong (_+ n) (+-comm l m) ⟩
m + l + n
≡⟨ +-assoc m l n ⟩
m + (l + n)
∎
l+m+n≡m+x : ∀ l m n x → l + n ≡ x → l + m + n ≡ m + x
l+m+n≡m+x l m n x l+n≡x =
begin
l + m + n
≡⟨ +-assoc l m n ⟩
l + (m + n)
≡⟨ twist l m n ⟩
m + (l + n)
≡⟨ cong (m +_) l+n≡x ⟩
m + x
∎
module INEQ where
open ≤-Reasoning
m+n≰x+m : ∀ {m n x} → n ≰ x → m + n > x + m
m+n≰x+m {m} {n} {x} n≰x = begin
suc x + m
≡⟨ +-comm (suc x) m ⟩
m + suc x
≤⟨ +-monoʳ-≤ m (≰⇒> n≰x) ⟩
m + n
∎
m+n≤x+m : ∀ {m n x} → n ≤ x → m + n ≤ x + m
m+n≤x+m {m} {n} {x} n≤x = begin
m + n
≤⟨ +-monoʳ-≤ m n≤x ⟩
m + x
≡⟨ +-comm m x ⟩
x + m
∎
l+n≤n+i+x : ∀ l n i x → l ≤ x → l + n ≤ n + i + x
l+n≤n+i+x l n i x l≤x =
begin
l + n
≤⟨ +-monoˡ-≤ n l≤x ⟩
x + n
≤⟨ m≤n+m (x + n) i ⟩
i + (x + n)
≡⟨ cong (i +_) (+-comm x n) ⟩
i + (n + x)
≡⟨ sym (+-assoc i n x) ⟩
i + n + x
≡⟨ cong (_+ x) (+-comm i n) ⟩
n + i + x
∎
l+m+n≤m+x : ∀ l m n x → l + n ≤ x → l + m + n ≤ m + x
l+m+n≤m+x l m n x l+n≤x =
begin
l + m + n
≡⟨ +-assoc l m n ⟩
l + (m + n)
≡⟨ EQ.twist l m n ⟩
m + (l + n)
≤⟨ +-monoʳ-≤ m l+n≤x ⟩
m + x
∎
l+m+n>m+x : ∀ l m n x → l + n > x → l + m + n > m + x
l+m+n>m+x l m n x l+n>x =
begin
suc m + x
≡⟨ sym (+-suc m x) ⟩
m + suc x
≤⟨ +-monoʳ-≤ m l+n>x ⟩
m + (l + n)
≡⟨ EQ.twist m l n ⟩
l + (m + n)
≡⟨ sym (+-assoc l m n) ⟩
l + m + n
∎
l+m+n>x : ∀ l m n x → l > x → l + m + n > x
l+m+n>x l m n x l>x =
begin
suc x
≤⟨ l>x ⟩
l
≤⟨ m≤m+n l m ⟩
l + m
≤⟨ m≤m+n (l + m) n ⟩
l + m + n
∎
open import Relation.Nullary.Negation using (contradiction)
open ≡-Reasoning
lift-var-≤ : ∀ {n i x} → n ≤ x → lift-var n i x ≡ i + x
lift-var-≤ {n} {i} {x} n≤x with inspectBinding n x
... | Free ≤x = refl
... | Bound >x = contradiction n≤x (<⇒≱ >x)
lift-var-> : ∀ {n i x} → n > x → lift-var n i x ≡ x
lift-var-> {n} {i} {x} n>x with inspectBinding n x
... | Free ≤x = contradiction n>x (≤⇒≯ ≤x)
... | Bound >x = refl
-- lift-var-+ : ∀ n i x m → lift-var (m + n) i (x + m) ≡ lift-var n i x + m
-- lift-var-+ n i x m with inspectBinding n x
-- ... | Bound >x =
-- lift-var (m + n) i (x + m)
-- ≡⟨ lift-var-> (INEQ.m+n≰x+m (<⇒≱ >x)) ⟩
-- x + m
-- ∎
-- ... | Free ≤x =
-- lift-var (m + n) i (x + m)
-- ≡⟨ lift-var-≤ {m + n} {i} {x + m} (INEQ.m+n≤x+m ≤x) ⟩
-- i + (x + m)
-- ≡⟨ sym (+-assoc i x m) ⟩
-- i + x + m
-- ∎
-- lift-var (l + n) i
-- ∙ --------------------------> ∙
-- | |
-- | |
-- lift-var l m lift-var l m
-- | |
-- ∨ ∨
-- ∙ --------------------------> ∙
-- lift-var (l + m + n) i
lift-var-lift-var : ∀ l m n i x → lift-var l m (lift-var (l + n) i x) ≡ lift-var (l + m + n) i (lift-var l m x)
lift-var-lift-var l m n i x with inspectBinding l x | inspectBinding (l + n) x
... | Free l≤x | Free l+n≤x =
lift-var l m (i + x)
≡⟨ lift-var-≤ (≤-trans l≤x (m≤n+m x i)) ⟩
m + (i + x)
≡⟨ EQ.twist m i x ⟩
i + (m + x)
≡⟨ sym (lift-var-≤ (INEQ.l+m+n≤m+x l m n x l+n≤x)) ⟩
lift-var (l + m + n) i (m + x)
∎
... | Free l≤x | Bound l+n>x =
lift-var l m x
≡⟨ lift-var-≤ l≤x ⟩
m + x
≡⟨ sym (lift-var-> (INEQ.l+m+n>m+x l m n x l+n>x)) ⟩
lift-var (l + m + n) i (m + x)
∎
... | Bound l>x | Free l+n≤x = contradiction (≤-trans (m≤m+n l n) l+n≤x) (<⇒≱ l>x)
... | Bound l>x | Bound l+n>x =
lift-var l m x
≡⟨ lift-var-> l>x ⟩
x
≡⟨ sym (lift-var-> (INEQ.l+m+n>x l m n x l>x)) ⟩
lift-var (l + m + n) i x
∎
-- lift-var l (n + i)
-- ∙ --------------------------> ∙
-- | |
-- | |
-- lift-var l (n + m + i) lift-var (l + n) m
-- | |
-- ∨ ∨
-- ∙ --------------------------> ∙
--
lift-var-lemma : ∀ l m n i x → lift-var l (n + m + i) x ≡ lift-var (l + n) m (lift-var l (n + i) x)
lift-var-lemma l m n i x with inspectBinding l x
... | Free n≤x =
begin
n + m + i + x
≡⟨ cong (λ w → w + i + x) (+-comm n m) ⟩
m + n + i + x
≡⟨ +-assoc (m + n) i x ⟩
m + n + (i + x)
≡⟨ +-assoc m n (i + x) ⟩
m + (n + (i + x))
≡⟨ cong (m +_) (sym (+-assoc n i x)) ⟩
m + (n + i + x)
≡⟨ sym (lift-var-≤ {l + n} {m} {n + i + x} (INEQ.l+n≤n+i+x l n i x n≤x)) ⟩
lift-var (l + n) m (n + i + x)
∎
... | Bound n>x =
begin
x
≡⟨ sym (lift-var-> {l + n} {m} {x} (≤-trans n>x (m≤m+n l n))) ⟩
lift-var (l + n) m x
∎
| {
"alphanum_fraction": 0.3246972252,
"avg_line_length": 27.5232067511,
"ext": "agda",
"hexsha": "e3d5709e4c8518c988ea309bf470085347abc9ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Subst/Var.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Subst/Var.agda",
"max_line_length": 111,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Subst/Var.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 2581,
"size": 6523
} |
{-# OPTIONS --without-K #-}
module WithoutK4 where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
foo : (f : {A : Set} → A → A) {A : Set} (x y : A) →
x ≡ f y → f y ≡ x
foo f .(f y) y refl = refl
| {
"alphanum_fraction": 0.4651162791,
"avg_line_length": 19.5454545455,
"ext": "agda",
"hexsha": "c87e556126af524a02e4514a3f67882637b61277",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/WithoutK4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/WithoutK4.agda",
"max_line_length": 51,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/WithoutK4.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 94,
"size": 215
} |
-- {-# OPTIONS --safe #-}
module Time where
open import Map
open import Relation.Binary.PropositionalEquality
open import Data.String using (String)
open import Data.Nat
open import Data.Nat.Base using (_≤_)
open import Data.Bool using (true ; false)
open import Data.Bool.Base using (if_then_else_)
open import Data.Maybe using (Maybe; just; nothing)
open import Agda.Builtin.Unit
open import Data.Empty
open import Relation.Nullary using (¬_)
open import Data.Product using (_×_)
open import Data.List
open import Data.Nat.Properties
open import Language
open import Function.Base using (_$_)
max : ∀ (m n : ℕ) → ℕ
max m n with (m ≤? n)
... | false Relation.Nullary.because _ = m
... | true Relation.Nullary.because _ = n
taeval : (Γ : (String → ℕ)) → (Aexp {ℕ}) → ℕ
taeval Γ (a +` a₁) = taeval Γ a + taeval Γ a₁ + (Γ "+")
taeval Γ (a -` a₁) = taeval Γ a + taeval Γ a₁ + (Γ "-")
taeval Γ (a *` a₁) = taeval Γ a + taeval Γ a₁ + (Γ "*")
taeval Γ (Avar x) = 1 -- Just look up in memory assuming 1
-- clock cycle
taeval Γ (Anum x) = 1 -- Just look up in mem is 1 clock cycle
tbeval : (Γ : (String → ℕ)) → (Bexp {ℕ}) → ℕ
tbeval Γ TRUE = Γ "TRUE"
tbeval Γ FALSE = Γ "FALSE"
tbeval Γ (x1 <` x2) = aeval Γ x1 + aeval Γ x2 + (Γ "<")
tbeval Γ (x1 >` x2) = aeval Γ x1 + aeval Γ x2 + (Γ ">")
tbeval Γ (x1 ≤` x2) = aeval Γ x1 + aeval Γ x2 + (Γ "≤")
tbeval Γ (x1 ≥` x2) = aeval Γ x1 + aeval Γ x2 + (Γ "≥")
tbeval Γ (x1 ≡` x2) = aeval Γ x1 + aeval Γ x2 + (Γ "≡")
tbeval Γ (¬` b) = tbeval Γ b + (Γ "NOT")
tbeval Γ (b &&` b₁) = tbeval Γ b + tbeval Γ b₁ + (Γ "AND")
tbeval Γ (b ||` b₁) = tbeval Γ b + tbeval Γ b₁ + (Γ "OR")
-- Making the tuple type needed to hold the program
data TProgTuple {A : Set} : Set where
_,_,_,_ : (a : ATuple) → (r : RTuple) → (c : Cmd {A}) → (cmt : ℕ) → TProgTuple
-- Getting stuff from the TProgTuple
getProgCmdT : {A : Set} → (p : Maybe (TProgTuple {A})) → Cmd {A}
getProgCmdT (just (_ , _ , c , _)) = c
getProgCmdT nothing = SKIP -- Dangerous
getProgArgsT : {A : Set} → (p : Maybe (TProgTuple {A})) → ATuple
getProgArgsT (just (a , _ , _ , _)) = a
getProgArgsT nothing = Arg "VOID"
getProgRetsT : {A : Set} → (p : Maybe (TProgTuple {A})) → RTuple
getProgRetsT (just (_ , r , _ , _)) = r
getProgRetsT nothing = Ret "VOID"
getProgTimeT : {A : Set} → (p : Maybe (TProgTuple {A})) → ℕ
getProgTimeT (just (_ , _ , _ , t)) = t
getProgTimeT nothing = 0
data _,_=[_]=>ᴬ_ (Γ : (String → ℕ)) : ℕ → (ATuple) → ℕ → Set where
hd : ∀ (W : ℕ) → ∀ (v : String) →
Γ , W =[ Arg v ]=>ᴬ (W + (Γ "arg-copy"))
tl : (l r : ATuple) → (W W' W'' : ℕ) →
(Γ , W =[ l ]=>ᴬ (W + W')) → (Γ , W + W' =[ r ]=>ᴬ (W + W' + W'')) →
-----------------------------------------------------------
Γ , W =[ (l ,` r) ]=>ᴬ (W + W' + W'')
numargs : ∀ (args : ATuple) → ℕ
numargs (Arg v) = 1
numargs (args ,` args₁) = numargs args + numargs args₁
-- soundness theorem for arg copy
args-sound : ∀ (Γ : (String → ℕ)) → ∀ (args : ATuple) → (W W' : ℕ)
→ (Γ , W =[ args ]=>ᴬ W')
→ (W + numargs args * (Γ "arg-copy")) ≡ W'
args-sound Γ .(Arg v) W .(W + Γ "arg-copy") (hd .W v)
rewrite +-comm (Γ "arg-copy") 0 = refl
args-sound Γ .(l ,` r) W .(W + W' + W'') (tl l r .W W' W'' cmd cmd₁)
with (Γ "arg-copy") in eq
... | u rewrite *-distribʳ-+ u (numargs l) (numargs r)
| +-comm W (((numargs l) * u) + ((numargs r) * u))
| +-comm ((numargs l) * u) ((numargs r) * u)
| +-assoc ((numargs r) * u) ((numargs l) * u) W
| +-comm ((numargs l) * u) W
| +-comm ((numargs r) * u) (W + ((numargs l) * u))
with args-sound Γ l W (W + W') cmd
... | j with args-sound Γ r (W + W') (W + W' + W'') cmd₁
... | k with +-cancelˡ-≡ W j | +-cancelˡ-≡ (W + W') k | eq
... | refl | refl | refl = refl
data _,_=[_]=>ᴿ_ (Γ : (String → ℕ)) : ℕ → RTuple → ℕ → Set where
hd : ∀ (W : ℕ) → ∀ (v : String) →
Γ , W =[ Ret v ]=>ᴿ (W + (Γ "ret-copy"))
tl : (l r : RTuple) → (W W' W'' : ℕ) →
(Γ , W =[ l ]=>ᴿ (W + W')) → (Γ , W + W' =[ r ]=>ᴿ (W + W' + W'')) →
-----------------------------------------------------------
Γ , W =[ (l ,` r) ]=>ᴿ (W + W' + W'')
numrets : ∀ (rets : RTuple) → ℕ
numrets (Ret v) = 1
numrets (rets ,` rets₁) = numrets rets + numrets rets₁
-- soundness theorem for ret copy
rets-sound : ∀ (Γ : (String → ℕ)) → ∀ (rets : RTuple) → (W W' : ℕ)
→ Γ , W =[ rets ]=>ᴿ W'
→ (W + numrets rets * (Γ "ret-copy")) ≡ W'
rets-sound Γ .(Ret v) W .(W + Γ "ret-copy") (hd .W v)
rewrite +-comm (Γ "ret-copy") 0 = refl
rets-sound Γ .(l ,` r) W .(W + W' + W'') (tl l r .W W' W'' cmd cmd₁)
with (Γ "ret-copy") in eq
... | u rewrite *-distribʳ-+ u (numrets l) (numrets r)
| +-comm W (((numrets l) * u) + ((numrets r) * u))
| +-comm ((numrets l) * u) ((numrets r) * u)
| +-assoc ((numrets r) * u) ((numrets l) * u) W
| +-comm ((numrets l) * u) W
| +-comm ((numrets r) * u) (W + ((numrets l) * u))
with rets-sound Γ l W (W + W') cmd
... | j with rets-sound Γ r (W + W') (W + W' + W'') cmd₁
... | k with +-cancelˡ-≡ W j | +-cancelˡ-≡ (W + W') k | eq
... | refl | refl | refl = refl
mutual
-- Semantics of time from here
data _,_,_=[_]=>_ (Γ : (String → Maybe (TProgTuple {ℕ}))) (st : String → ℕ) :
ℕ → Cmd {ℕ} → ℕ → Set where
TSKIP : ∀ (W : ℕ) → Γ , st , W =[ SKIP ]=> (W + 0)
TASSIGN : ∀ (X : String) → ∀ (n : ℕ) → ∀ (e : Aexp {ℕ})
→ ∀ (W : ℕ) →
---------------------------------
Γ , st , W =[ (Var X := e) ]=> (W + (taeval st e) + (st "store"))
TSEQ : ∀ (c1 c2 : Cmd {ℕ})
→ ∀ (W W' W'' : ℕ)
→ Γ , st , W =[ c1 ]=> (W + W')
→ Γ , st , (W + W') =[ c2 ]=> (W + (W' + W'')) →
--------------------------------------------
Γ , st , W =[ c1 ; c2 ]=> (W + (W' + W''))
-- XXX: Hack, st contains both exec time and state!
TIFT : (n1 : ℕ) → (b : Bexp {ℕ}) →
(t e : Cmd {ℕ}) → ∀ (W W' W'' : ℕ)
→ (beval st b ≡ true)
→ Γ , st , W =[ t ]=> (W + W')
→ Γ , st , W =[ e ]=> (W + W'')
→ Γ , st , W =[ (IF b THEN t ELSE e END) ]=>
(W + W' + (tbeval st b))
TIFE : (n1 : ℕ) → (b : Bexp {ℕ}) →
(t e : Cmd {ℕ}) → ∀ (W W' W'' : ℕ)
→ (beval st b ≡ false)
→ Γ , st , W =[ t ]=> (W + W')
→ Γ , st , W =[ e ]=> (W + W'')
→ Γ , st , W =[ (IF b THEN t ELSE e END) ]=>
(W + W'' + (tbeval st b))
TLF : (b : Bexp {ℕ}) → (c : Cmd {ℕ}) →
beval st b ≡ false →
∀ (W : ℕ) →
-----------------------------------------------------------
Γ , st , W =[ (WHILE b DO c END) ]=>
(W + 0 + (tbeval st b))
TLT : (b : Bexp {ℕ}) → (c : Cmd {ℕ}) →
beval st b ≡ true → ∀ (W W' : ℕ) →
-----------------------------------------------------------
Γ , st , W =[ c ]=> (W + W') →
Γ , st , W =[ (WHILE b DO c END) ]=>
(W + ((st "loop-count") * (W' + (tbeval st b))) + (tbeval st b))
-- CEX : ∀ (f : FuncCall {ℕ}) → ∀ (st st' : (String → ℕ))
-- → Γ , st =[ f ]=>ᶠ st'
-- -----------------------------------------------------------
-- → Γ , st =[ EXEC f ]=> st'
data _,_,_=[_]=>ᶠ_ (Γ : String → (Maybe (TProgTuple {ℕ})))
(st : String → ℕ) :
ℕ → FuncCall {ℕ} → ℕ → Set where
Base : ∀ (fname : String) → -- name of the function
∀ (W W' W'' W''' : ℕ)
-- time to put args on function stack
→ st , W =[ getProgArgsT (Γ fname) ]=>ᴬ (W + W')
-- Proof that WCET is what we have in the tuple
→ (wcet-is : (getProgTimeT (Γ fname)) ≡ W'')
-- time to run the function
→ Γ , st , (W + W') =[ getProgCmdT (Γ fname) ]=> (W + W' + W'')
-- copying ret values back on caller' stack
→ st , (W + W' + W'')
=[ getProgRetsT (Γ fname) ]=>ᴿ (W + W' + W'' + W''')
-----------------------------------------------------------
→ Γ , st , W =[ < getProgRetsT (Γ fname) >:=
fname < getProgArgsT (Γ fname) > ]=>ᶠ (W + W' + W'' + W''')
PAR : ∀ (l r : FuncCall {ℕ}) → ∀ (W X1 X2 : ℕ)
→ Γ , st , W =[ l ]=>ᶠ (W + X1)
→ Γ , st , W =[ r ]=>ᶠ (W + X2)
-----------------------------------------------------------
→ Γ , st , W =[ l ||` r ]=>ᶠ (W + (max X1 X2) + ((2 * (st "fork"))
+ (2 * (st "join"))))
-- Soundness theorem for SKIP WCET rule
skip-sound : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ) -- map of labels to execution times
→ ∀ (W W' X : ℕ) → (cmd : Γ , Γᵗ , W =[ SKIP ]=> W')
→ (W ≡ X) → (W' ≡ X)
skip-sound Γ Γᵗ W .(W + 0) .W (TSKIP .W) refl rewrite +-comm W 0 = refl
-- Soundness theorem for Assign WCET rule
assign-sound : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : (String → ℕ))
→ (S : String) → (e : Aexp {ℕ})
→ (W W' : ℕ) → (cmd : Γ , Γᵗ , W =[ Var S := e ]=> W')
→ (W' ≡ W + (taeval Γᵗ e) + (Γᵗ "store"))
assign-sound Γ Γᵗ S e W .(W + taeval Γᵗ e + Γᵗ "store") (TASSIGN .S n .e .W)
= refl
-- Deterministic exec
Δ-exec : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W W' W'' : ℕ) → (c1 : Cmd {ℕ})
→ (Γ , Γᵗ , W =[ c1 ]=> W')
→ (Γ , Γᵗ , W =[ c1 ]=> W'')
→ W' ≡ W''
Δ-exec Γ Γᵗ W .(W + taeval Γᵗ e + Γᵗ "store")
.(W + taeval Γᵗ e + Γᵗ "store") (Var X := e) (TASSIGN .X n₁ .e .W)
(TASSIGN .X n .e .W) = refl
Δ-exec Γ Γᵗ W .(W + 0) .(W + 0) .SKIP (TSKIP .W) (TSKIP .W) = refl
Δ-exec Γ Γᵗ W .(W + (W' + W''')) .(W + (W'' + W''''))
.(c1 ; c2) (TSEQ c1 c2 .W W' W''' p1 p3) (TSEQ .c1 .c2 .W W'' W'''' p2 p4)
with Δ-exec Γ Γᵗ W (W + W') (W + W'') c1 p1 p2
... | r with +-cancelˡ-≡ W r
... | refl
with Δ-exec Γ Γᵗ (W + W') (W + (W' + W''')) (W + (W' + W'''')) c2 p3 p4
... | rr with +-cancelˡ-≡ W rr
... | rm with +-cancelˡ-≡ W' rm
... | refl = refl
Δ-exec Γ Γᵗ W .(W + 0 + tbeval Γᵗ b)
.(W + 0 + tbeval Γᵗ b) WHILE b DO c END (TLF .b .c x .W)
(TLF .b .c x₁ .W) = refl
Δ-exec Γ Γᵗ W .(W + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + _)
.(W + 0 + tbeval Γᵗ b) WHILE b DO c END (TLT .b .c x .W W' x₂)
(TLF .b .c x₁ .W) = ⊥-elim (contradiction-lemma b Γᵗ x x₁)
Δ-exec Γ Γᵗ W .(W + 0 + tbeval Γᵗ b)
.(W + Γᵗ "loop-count" * (W'' + tbeval Γᵗ b) + _) WHILE b DO c END
(TLF .b .c x .W) (TLT .b .c x₁ .W W'' x₂)
= ⊥-elim (contradiction-lemma b Γᵗ x₁ x)
Δ-exec Γ Γᵗ W .(W + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + _)
.(W + Γᵗ "loop-count" * (W'' + tbeval Γᵗ b) + _) WHILE b DO c END
(TLT .b .c x .W W' x₃) (TLT .b .c x₁ .W W'' x₂)
with Δ-exec Γ Γᵗ W (W + W') (W + W'') c x₃ x₂
... | l with +-cancelˡ-≡ W l
... | refl = refl
Δ-exec Γ Γᵗ W .(W + W' + tbeval Γᵗ b)
.(W + W'' + tbeval Γᵗ b) IF b THEN t ELSE e END
(TIFT n2 .b .t .e .W W' W'''' x x₄ x₅)
(TIFT n1 .b .t .e .W W'' W''' x₁ x₂ x₃)
with Δ-exec Γ Γᵗ W (W + W') (W + W'') t x₄ x₂
... | y with +-cancelˡ-≡ W y
... | refl = refl
Δ-exec Γ Γᵗ W .(W + W'''' + tbeval Γᵗ b)
.(W + W'' + tbeval Γᵗ b) IF b THEN t ELSE e END
(TIFE n2 .b .t .e .W W' W'''' x x₄ x₅)
(TIFT n1 .b .t .e .W W'' W''' x₁ x₂ x₃)
= ⊥-elim (contradiction-lemma b Γᵗ x₁ x)
Δ-exec Γ Γᵗ W .(W + W' + tbeval Γᵗ b)
.(W + W''' + tbeval Γᵗ b) IF b THEN t ELSE e END
(TIFT n2 .b .t .e .W W' W'''' x x₄ x₅)
(TIFE n1 .b .t .e .W W'' W''' x₁ x₂ x₃)
= ⊥-elim (contradiction-lemma b Γᵗ x x₁)
Δ-exec Γ Γᵗ W .(W + W'''' + tbeval Γᵗ b)
.(W + W''' + tbeval Γᵗ b) IF b THEN t ELSE e END
(TIFE n2 .b .t .e .W W' W'''' x x₄ x₅)
(TIFE n1 .b .t .e .W W'' W''' x₁ x₂ x₃)
with Δ-exec Γ Γᵗ W (W + W''') (W + W'''') e x₃ x₅
... | y with +-cancelˡ-≡ W y
... | refl = refl
-- Deterministic execution of a function
Δ-exec-func : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ) → (l : FuncCall {ℕ})
→ (W W' W'' : ℕ)
→ Γ , Γᵗ , W =[ l ]=>ᶠ W'
→ Γ , Γᵗ , W =[ l ]=>ᶠ W''
→ W' ≡ W''
Δ-exec-func Γ Γᵗ
.(< getProgRetsT (Γ fname) >:= fname < getProgArgsT (Γ fname) >) W
.(W + W' + getProgTimeT (Γ fname) + W'''')
.(W + W'' + getProgTimeT (Γ fname) + W'''''')
(Base fname .W W' .(getProgTimeT (Γ fname)) W'''' x refl x₁ x₂)
(Base .fname .W W'' .(getProgTimeT (Γ fname)) W'''''' x₃ refl x₄ x₅)
with args-sound Γᵗ (getProgArgsT (Γ fname)) W (W + W') x
| args-sound Γᵗ (getProgArgsT (Γ fname)) W (W + W'') x₃
| rets-sound Γᵗ (getProgRetsT (Γ fname)) (W + W' + getProgTimeT (Γ fname))
(W + W' + getProgTimeT (Γ fname) + W'''') x₂
| rets-sound Γᵗ (getProgRetsT (Γ fname)) (W + W'' + getProgTimeT (Γ fname))
(W + W'' + getProgTimeT (Γ fname) + W'''''') x₅
... | l | l1 | r1 | r2
with +-cancelˡ-≡ W l | +-cancelˡ-≡ W l1
... | refl | refl with +-cancelˡ-≡
(W + numargs (getProgArgsT (Γ fname)) * Γᵗ "arg-copy"
+ getProgTimeT (Γ fname)) r2
... | refl with +-cancelˡ-≡
(W + numargs (getProgArgsT (Γ fname)) * Γᵗ "arg-copy"
+ getProgTimeT (Γ fname)) r1
... | refl = refl
Δ-exec-func Γ Γᵗ .(l ||` r) W
.(W + max X1 X2 + (2 * Γᵗ "fork" + 2 * Γᵗ "join"))
.(W + max X3 X4 + (2 * Γᵗ "fork" + 2 * Γᵗ "join"))
(PAR l r .W X1 X2 e1 e3) (PAR .l .r .W X3 X4 e2 e4)
with Δ-exec-func Γ Γᵗ l W (W + X1) (W + X3) e1 e2
| Δ-exec-func Γ Γᵗ r W (W + X2) (W + X4) e3 e4
... | m | y with +-cancelˡ-≡ W m | +-cancelˡ-≡ W y
... | refl | refl = refl
skip-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (Γ , Γᵗ , W1 =[ SKIP ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ SKIP ]=> (W2 + X2))
→ X1 ≡ X2
skip-cancel Γ Γᵗ W1 W2 X1 X2 p1 p2 with (W1 + X1) in eq1
skip-cancel Γ Γᵗ W1 W2 X1 X2 (TSKIP .W1) p2 | .(W1 + 0)
with +-cancelˡ-≡ W1 eq1
skip-cancel Γ Γᵗ W1 W2 X1 X2 (TSKIP .W1) p2 | .(W1 + 0) | refl
with (W2 + X2) in eq2
skip-cancel Γ Γᵗ W1 W2 _ X2 (TSKIP .W1) (TSKIP .W2)
| .(W1 + _) | refl | .(W2 + 0) with +-cancelˡ-≡ W2 eq2
... | refl = refl
assign-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (S : String) → (e : Aexp {ℕ})
→ (Γ , Γᵗ , W1 =[ Var S := e ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ Var S := e ]=> (W2 + X2))
→ X1 ≡ X2
assign-cancel Γ Γᵗ W1 W2 X1 X2 S e cmd1 cmd2 with (W1 + X1) in eq1
| (W2 + X2) in eq2
assign-cancel Γ Γᵗ W1 W2 X1 X2 S e (TASSIGN .S n .e .W1)
(TASSIGN .S n₁ .e .W2) | .(W1 + taeval Γᵗ e + Γᵗ "store")
| .(W2 + taeval Γᵗ e + Γᵗ "store")
rewrite +-assoc W1 (taeval Γᵗ e) (Γᵗ "store")
| +-assoc W2 (taeval Γᵗ e) (Γᵗ "store")
with +-cancelˡ-≡ W1 eq1 | +-cancelˡ-≡ W2 eq2
... | refl | refl = refl
loop-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (b : Bexp {ℕ})
→ (c : Cmd {ℕ})
→ (Γ , Γᵗ , W1 =[ (WHILE b DO c END) ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ (WHILE b DO c END) ]=> (W2 + X2))
→ X1 ≡ X2
ife-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (b : Bexp {ℕ})
→ (t e : Cmd {ℕ})
→ (Γ , Γᵗ , W1 =[ ( IF b THEN t ELSE e END ) ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ ( IF b THEN t ELSE e END ) ]=> (W2 + X2))
→ X1 ≡ X2
seq-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (c1 c2 : Cmd {ℕ})
→ (Γ , Γᵗ , W1 =[ ( c1 ; c2) ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ ( c1 ; c2) ]=> (W2 + X2))
→ X1 ≡ X2
-- The general case of cancellation.
eq-cancel : ∀ (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ ∀ (c : Cmd {ℕ})
→ ∀ (W1 W2 X1 X2 : ℕ)
→ (Γ , Γᵗ , W1 =[ c ]=> (W1 + X1))
→ (Γ , Γᵗ , W2 =[ c ]=> (W2 + X2))
→ X1 ≡ X2
loop-cancel Γ Γᵗ W1 W2 X1 X2 b c cmd1 cmd2
with (W1 + X1) in eq1 | (W2 + X2) in eq2
loop-cancel Γ Γᵗ W1 W2 X1 X2 b c (TLF .b .c x .W1)
(TLF .b .c x₁ .W2) | .(W1 + 0 + tbeval Γᵗ b) | .(W2 + 0 + tbeval Γᵗ b)
rewrite +-assoc W1 0 (tbeval Γᵗ b) | +-assoc W2 0 (tbeval Γᵗ b)
with +-cancelˡ-≡ W1 eq1 | +-cancelˡ-≡ W2 eq2
... | refl | refl = refl
loop-cancel Γ Γᵗ W1 W2 X1 X2 b c (TLF .b .c x .W1)
(TLT .b .c x₁ .W2 W' cmd2) | .(W1 + 0 + tbeval Γᵗ b)
| .(W2 + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + tbeval Γᵗ b)
= ⊥-elim (contradiction-lemma b Γᵗ x₁ x)
loop-cancel Γ Γᵗ W1 W2 X1 X2 b c (TLT .b .c x .W1 W' cmd1)
(TLF .b .c x₁ .W2)
| .(W1 + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + tbeval Γᵗ b)
| .(W2 + 0 + tbeval Γᵗ b) = ⊥-elim (contradiction-lemma b Γᵗ x x₁)
loop-cancel Γ Γᵗ W1 W2 X1 X2 b c (TLT .b .c x .W1 W' cmd1)
(TLT .b .c x₁ .W2 W'' cmd2)
| .(W1 + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + tbeval Γᵗ b)
| .(W2 + Γᵗ "loop-count" * (W'' + tbeval Γᵗ b) + tbeval Γᵗ b)
with eq-cancel Γ Γᵗ c W1 W2 W' W'' cmd1 cmd2
... | refl with (Γᵗ "loop-count") | (tbeval Γᵗ b)
... | LC | BC rewrite +-assoc W2 (LC * (W' + BC)) BC
| +-assoc W1 (LC * (W' + BC)) BC
with +-cancelˡ-≡ W2 eq2 | +-cancelˡ-≡ W1 eq1
... | refl | refl = refl
ife-cancel Γ Γᵗ W1 W2 X1 X2 b t e p1 p2 with (W1 + X1) in eq1
| (W2 + X2) in eq2
ife-cancel Γ Γᵗ W1 W2 X1 X2 b t e (TIFT n1 .b .t .e .W1 W' W'' x p1 p3)
(TIFT n2 .b .t .e .W2 W''' W'''' x₁ p2 p4) | .(W1 + W' + tbeval Γᵗ b)
| .(W2 + W''' + tbeval Γᵗ b) with eq-cancel Γ Γᵗ t W1 W2 W' W''' p1 p2
... | refl rewrite +-assoc W2 W' (tbeval Γᵗ b) | +-assoc W1 W' (tbeval Γᵗ b)
with +-cancelˡ-≡ W2 eq2 | +-cancelˡ-≡ W1 eq1
... | refl | refl = refl
ife-cancel Γ Γᵗ W1 W2 X1 X2 b t e (TIFT n1 .b .t .e .W1 W' W'' x p1 p3)
(TIFE n2 .b .t .e .W2 W''' W'''' x₁ p2 p4) | .(W1 + W' + tbeval Γᵗ b)
| .(W2 + W'''' + tbeval Γᵗ b) = ⊥-elim (contradiction-lemma b Γᵗ x x₁)
ife-cancel Γ Γᵗ W1 W2 X1 X2 b t e (TIFE n1 .b .t .e .W1 W' W'' x p1 p3)
(TIFT n2 .b .t .e .W2 W''' W'''' x₁ p2 p4) | .(W1 + W'' + tbeval Γᵗ b)
| .(W2 + W''' + tbeval Γᵗ b) = ⊥-elim (contradiction-lemma b Γᵗ x₁ x)
ife-cancel Γ Γᵗ W1 W2 X1 X2 b t e (TIFE n1 .b .t .e .W1 W' W'' x p1 p3)
(TIFE n2 .b .t .e .W2 W''' W'''' x₁ p2 p4) | .(W1 + W'' + tbeval Γᵗ b)
| .(W2 + W'''' + tbeval Γᵗ b) rewrite +-assoc W1 W'' (tbeval Γᵗ b)
| +-assoc W2 W'''' (tbeval Γᵗ b) with +-cancelˡ-≡ W2 eq2
| +-cancelˡ-≡ W1 eq1 | eq-cancel Γ Γᵗ e W1 W2 W'' W'''' p3 p4
... | refl | refl | refl = refl
seq-cancel Γ Γᵗ W1 W2 X1 X2 c1 c2 p1 p2 with (W1 + X1) in eq1
| (W2 + X2) in eq2
seq-cancel Γ Γᵗ W1 W2 X1 X2 c1 c2 (TSEQ .c1 .c2 .W1 W' W'' p1 p3)
(TSEQ .c1 .c2 .W2 W''' W'''' p2 p4)
| .(W1 + (W' + W'')) | .(W2 + (W''' + W''''))
rewrite +-cancelˡ-≡ W1 eq1 | +-cancelˡ-≡ W2 eq2
with eq-cancel Γ Γᵗ c1 W1 W2 W' W''' p1 p2
... | refl
rewrite
+-comm W''' W''
| +-comm W1 (W'' + W''') | +-assoc W'' W''' W1 | +-comm W''' W1
| +-comm W'' (W1 + W''') | +-comm W''' W'''' | +-comm W2 (W'''' + W''')
| +-assoc W'''' W''' W2 | +-comm W''' W2 | +-comm W'''' (W2 + W''')
with (W1 + W''') | (W2 + W''')
... | l | m
with eq-cancel Γ Γᵗ c2 l m W'' W'''' p3 p4
... | refl = refl
eq-cancel Γ Γᵗ SKIP W1 W2 X1 X2 p1 p2 = skip-cancel Γ Γᵗ W1 W2 X1 X2 p1 p2
eq-cancel Γ Γᵗ (Var x := r) W1 W2 X1 X2 p1 p2
= assign-cancel Γ Γᵗ W1 W2 X1 X2 x r p1 p2
eq-cancel Γ Γᵗ (c ; c₁) W1 W2 X1 X2 p1 p2
= seq-cancel Γ Γᵗ W1 W2 X1 X2 c c₁ p1 p2
eq-cancel Γ Γᵗ IF b THEN c ELSE c₁ END W1 W2 X1 X2 p1 p2
= ife-cancel Γ Γᵗ W1 W2 X1 X2 b c c₁ p1 p2
eq-cancel Γ Γᵗ WHILE b DO c END W1 W2 X1 X2 p1 p2
= loop-cancel Γ Γᵗ W1 W2 X1 X2 b c p1 p2
-- TODO: The function call case and concurrency cases will go here
-- Soundness theorem for Seq WCET rule
seq-sound : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ (c1 c2 : Cmd {ℕ})
→ (W X1 X2 W' : ℕ)
→ (cmd : Γ , Γᵗ , W =[ c1 ; c2 ]=> W')
→ (p1 : Γ , Γᵗ , W =[ c1 ]=> (W + X1))
→ (p2 : Γ , Γᵗ , W =[ c2 ]=> (W + X2))
→ (W' ≡ W + (X1 + X2))
seq-sound Γ Γᵗ c1 c2 W X1 X2 .(W + (W' + W''))
(TSEQ .c1 .c2 .W W' W'' cmd cmd₁) p1 p2
with Δ-exec Γ Γᵗ W (W + W') (W + X1) c1 cmd p1
... | q with +-cancelˡ-≡ W q
... | refl rewrite +-comm W (X1 + W'') | +-comm X1 W'' | +-assoc W'' X1 W
| +-comm X1 W | +-comm W'' (W + X1) | +-comm X1 X2 | +-comm W (X2 + X1)
| +-assoc X2 X1 W | +-comm X2 (X1 + W) | +-comm X1 W with (W + X1)
... | rl with eq-cancel Γ Γᵗ c2 rl W W'' X2 cmd₁ p2
... | refl = refl
-- Helping lemma for ife
plus-≤ : ∀ (m n p : ℕ) → (m ≤ n) → (m + p) ≤ (n + p)
plus-≤ .zero n p z≤n = m≤n+m p n
plus-≤ .(suc _) .(suc _) p (s≤s {m} {n} q) with plus-≤ m n p q
... | H0 = s≤s H0
≤-rela1 : ∀ (m n : ℕ) → ¬ (m ≤ n) → (n < m)
≤-rela1 zero n p = ⊥-elim (p z≤n)
≤-rela1 (suc m) zero p = s≤s z≤n
≤-rela1 (suc m) (suc n) p = s≤s (≤-rela1 m n (λ z → p (s≤s z)))
≤-rela2 : ∀ (m n : ℕ) → (suc n ≤ m) → (n ≤ m)
≤-rela2 m n p with n≤1+n n
... | q = ≤-trans q p
-- if-helper
if-helper : ∀ (X1 X2 : ℕ) → (X1 ≤ max X1 X2)
if-helper X1 X2 with (X1 ≤? X2)
... | false Relation.Nullary.because proof = ≤′⇒≤ ≤′-refl
... | true Relation.Nullary.because Relation.Nullary.ofʸ p = p
if-helper2 : ∀ (X1 X2 : ℕ) → (X2 ≤ max X1 X2)
if-helper2 X1 X2 with (X1 ≤? X2)
if-helper2 X1 X2 | false Relation.Nullary.because Relation.Nullary.ofⁿ ¬p
with ≤-rela1 X1 X2 (¬p)
... | q = ≤-rela2 X1 X2 q
if-helper2 X1 X2 | true Relation.Nullary.because _ = ≤′⇒≤ ≤′-refl
-- Soundness theorem for If-else WCET rule
ife-sound : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ (t e : Cmd {ℕ})
→ (b : Bexp {ℕ})
→ (W X1 X2 W' : ℕ)
→ (tcmd : Γ , Γᵗ , W =[ t ]=> (W + X1))
→ (ecmd : Γ , Γᵗ , W =[ e ]=> (W + X2))
→ (cmd : Γ , Γᵗ , W =[ (IF b THEN t ELSE e END) ]=> W')
→ (W' ≤ W + (max X1 X2) + (tbeval Γᵗ b))
ife-sound Γ Γᵗ t e b W X1 X2 .(W + W' + tbeval Γᵗ b) tcmd ecmd
(TIFT n1 .b .t .e .W W' W'' x cmd cmd₁)
with Δ-exec Γ Γᵗ W (W + W') (W + X1) t cmd tcmd
... | l with +-cancelˡ-≡ W l
... | refl rewrite +-assoc W X1 (tbeval Γᵗ b) | +-comm W (X1 + (tbeval Γᵗ b))
| +-assoc X1 (tbeval Γᵗ b) W with (tbeval Γᵗ b)
... | Y with max X1 X2 in eq
... | M rewrite +-assoc W M Y | +-comm W (M + Y) | +-assoc M Y W
with (Y + W)
... | L with if-helper X1 X2 | eq
... | T | refl = plus-≤ X1 M L T
ife-sound Γ Γᵗ t e b W X1 X2 .(W + W'' + tbeval Γᵗ b) tcmd ecmd
(TIFE n1 .b .t .e .W W' W'' x cmd cmd₁)
with (tbeval Γᵗ b) | Δ-exec Γ Γᵗ W (W + W'') (W + X2) e cmd₁ ecmd
... | Y | l with +-cancelˡ-≡ W l
... | refl with max X1 X2 in eq
... | M rewrite +-assoc W X2 Y | +-assoc W M Y | +-comm W (X2 + Y)
| +-comm W (M + Y) | +-assoc X2 Y W | +-assoc M Y W with (Y + W)
... | L with if-helper2 X1 X2 | eq
... | T | refl = plus-≤ X2 M L T
-- Helper for loop
loop-helper : ∀ (l g : ℕ) → (l ≤′ (g + l))
loop-helper l zero = ≤′-refl
loop-helper l (suc g) = ≤′-step (loop-helper l g)
-- XXX: Using well founded recursion here
loop-sound-≤′ : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ (c : Cmd {ℕ})
→ (b : Bexp {ℕ})
→ (W W' X1 : ℕ)
→ (Γ , Γᵗ , W =[ c ]=> (W + X1))
→ (cmd : Γ , Γᵗ , W =[ (WHILE b DO c END) ]=> W')
→ W' ≤′
W + ((Γᵗ "loop-count") * (X1 + (tbeval Γᵗ b))) + (tbeval Γᵗ b)
loop-sound-≤′ Γ Γᵗ c b W .(W + 0 + tbeval Γᵗ b) X1 cmd (TLF .b .c x .W)
with (Γᵗ "loop-count")
... | zero = ≤′-refl
... | suc m rewrite +-comm W 0
with (tbeval Γᵗ b)
... | q
with (X1 + q + m * (X1 + q))
... | t rewrite +-comm W t | +-assoc t W q with (W + q)
... | l = loop-helper l t
loop-sound-≤′ Γ Γᵗ c b W
.(W + Γᵗ "loop-count" * (W' + tbeval Γᵗ b) + tbeval Γᵗ b) X1 cmd
(TLT .b .c x .W W' cmd1)
with Δ-exec Γ Γᵗ W (W + W') (W + X1) c cmd1 cmd
... | r with +-cancelˡ-≡ W r
... | refl = ≤′-refl
-- The general case
loop-sound : (Γ : String → Maybe (TProgTuple {ℕ}))
→ (Γᵗ : String → ℕ)
→ (c : Cmd {ℕ})
→ (b : Bexp {ℕ})
→ (W W' X1 : ℕ)
→ (Γ , Γᵗ , W =[ c ]=> (W + X1))
→ (cmd : Γ , Γᵗ , W =[ (WHILE b DO c END) ]=> W')
→ W' ≤
W + ((Γᵗ "loop-count") * (X1 + (tbeval Γᵗ b))) + (tbeval Γᵗ b)
loop-sound Γ Γᵗ c b W W' X1 c2 cmd =
≤′⇒≤ (loop-sound-≤′ Γ Γᵗ c b W W' X1 c2 cmd)
-- The soundness theorem for a single function call
func-sound : (Γ : String → Maybe (TProgTuple {ℕ})) → ∀ (Γᵗ : String → ℕ)
→ ∀ (fname : String) → ∀ (W W' : ℕ)
→ Γ , Γᵗ , W =[ < getProgRetsT (Γ fname) >:=
fname < getProgArgsT (Γ fname) > ]=>ᶠ W'
→ W' ≡ (W +
((numargs $ getProgArgsT $ (Γ fname)) * (Γᵗ "arg-copy"))
+ (getProgTimeT (Γ fname))
+ ((numrets $ getProgRetsT $ (Γ fname)) * (Γᵗ "ret-copy")))
func-sound Γ Γᵗ fname W .(W + W' + getProgTimeT (Γ fname) + W''')
(Base .fname .W W' .(getProgTimeT (Γ fname)) W''' x refl x₁ x₂)
with args-sound Γᵗ (getProgArgsT (Γ fname)) W (W + W') x
| rets-sound Γᵗ (getProgRetsT (Γ fname))
(W + W' + getProgTimeT (Γ fname))
(W + W' + getProgTimeT (Γ fname) + W''') x₂
... | l | m with +-cancelˡ-≡ W l
... | refl
with +-cancelˡ-≡ (W + numargs (getProgArgsT (Γ fname)) * Γᵗ "arg-copy"
+ getProgTimeT (Γ fname)) m
... | refl = refl
-- The soundness theorem for PAR (||`) execution of threads
par-sound : (Γ : String → Maybe (TProgTuple {ℕ})) → ∀ (Γᵗ : String → ℕ)
→ (l r : FuncCall {ℕ}) → (W W' X1 X2 : ℕ)
→ Γ , Γᵗ , W =[ l ||` r ]=>ᶠ W'
→ Γ , Γᵗ , W =[ l ]=>ᶠ (W + X1)
→ Γ , Γᵗ , W =[ r ]=>ᶠ (W + X2)
→ W' ≡ W + (max X1 X2) + 2 * ((Γᵗ "fork") + (Γᵗ "join"))
par-sound Γ Γᵗ l r W .(W + max X3 X4 + (2 * Γᵗ "fork" + 2 * Γᵗ "join"))
X1 X2 (PAR .l .r .W X3 X4 pare pare₁) parl parr
with (Γᵗ "fork") | (Γᵗ "join")
... | tf | tj rewrite *-distribˡ-+ 2 tf tj
| +-assoc tf tj 0 | +-comm tj 0 | +-comm tf 0
| +-assoc tf tj (tf + tj) | +-comm tj (tf + tj)
| +-assoc tf tj tj | +-comm tf (tf + (tj + tj))
| +-comm tf (tj + tj) with (tf + tf + (tj + tj))
... | m with Δ-exec-func Γ Γᵗ l W (W + X1) (W + X3) parl pare
... | q with Δ-exec-func Γ Γᵗ r W (W + X2) (W + X4) parr pare₁
... | q2 with +-cancelˡ-≡ W q | +-cancelˡ-≡ W q2
... | refl | refl = refl
| {
"alphanum_fraction": 0.4580715549,
"avg_line_length": 41.3390357698,
"ext": "agda",
"hexsha": "89a79dd1c2738638cacabd05d09f0313bbae507e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/compositional-real-time-contracts",
"max_forks_repo_path": "Time.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/compositional-real-time-contracts",
"max_issues_repo_path": "Time.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/compositional-real-time-contracts",
"max_stars_repo_path": "Time.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12032,
"size": 26581
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Lattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsLattice {L : Type ℓ}
(0l 1l : L) (_∨l_ _∧l_ : L → L → L) : Type ℓ where
constructor islattice
field
joinSemilattice : IsSemilattice 0l _∨l_
meetSemilattice : IsSemilattice 1l _∧l_
absorb : (x y : L) → (x ∨l (x ∧l y) ≡ x)
× (x ∧l (x ∨l y) ≡ x)
open IsSemilattice joinSemilattice public
renaming
( assoc to ∨lAssoc
; identity to ∨lIdentity
; lid to ∨lLid
; rid to ∨lRid
; comm to ∨lComm
; idem to ∨lIdem
; isCommMonoid to ∨lIsCommMonoid
; isMonoid to ∨lIsMonoid
; isSemigroup to ∨lIsSemigroup )
open IsSemilattice meetSemilattice public
renaming
( assoc to ∧lAssoc
; identity to ∧lIdentity
; lid to ∧lLid
; rid to ∧lRid
; comm to ∧lComm
; idem to ∧lIdem
; isCommMonoid to ∧lIsCommMonoid
; isMonoid to ∧lIsMonoid
; isSemigroup to ∧lIsSemigroup )
hiding
( is-set )
∨lAbsorb∧l : (x y : L) → x ∨l (x ∧l y) ≡ x
∨lAbsorb∧l x y = absorb x y .fst
∧lAbsorb∨l : (x y : L) → x ∧l (x ∨l y) ≡ x
∧lAbsorb∨l x y = absorb x y .snd
record LatticeStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor latticestr
field
0l : A
1l : A
_∨l_ : A → A → A
_∧l_ : A → A → A
isLattice : IsLattice 0l 1l _∨l_ _∧l_
infix 7 _∨l_
infix 6 _∧l_
open IsLattice isLattice public
Lattice : ∀ ℓ → Type (ℓ-suc ℓ)
Lattice ℓ = TypeWithStr ℓ LatticeStr
isSetLattice : (L : Lattice ℓ) → isSet ⟨ L ⟩
isSetLattice L = L .snd .LatticeStr.is-set
makeIsLattice : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ IsLattice 0l 1l _∨l_ _∧l_
makeIsLattice {0l = 0l} {1l = 1l} {_∨l_ = _∨l_} {_∧l_ = _∧l_}
is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l =
islattice (makeIsSemilattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem)
(makeIsSemilattice is-setL ∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem)
λ x y → ∨l-absorb-∧l x y , ∧l-absorb-∨l x y
where
∨l-idem : ∀ x → x ∨l x ≡ x
∨l-idem x = cong (x ∨l_) (sym (∧l-rid _)) ∙ ∨l-absorb-∧l _ _
∧l-idem : ∀ x → x ∧l x ≡ x
∧l-idem x = cong (x ∧l_) (sym (∨l-rid _)) ∙ ∧l-absorb-∨l _ _
makeLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-lid : (x : L) → 0l ∨l x ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∨l-idem : (x : L) → x ∨l x ≡ x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-lid : (x : L) → 1l ∧l x ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-idem : (x : L) → x ∧l x ≡ x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
→ Lattice ℓ
makeLattice 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm ∨l-idem
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∧l-idem ∨l-absorb-∧l ∧l-absorb-∨l =
_ , latticestr 0l 1l _∨l_ _∧l_
(makeIsLattice is-setL ∨l-assoc ∨l-rid ∨l-lid ∨l-comm
∧l-assoc ∧l-rid ∧l-lid ∧l-comm ∨l-absorb-∧l ∧l-absorb-∨l)
record IsLatticeHom {A : Type ℓ} {B : Type ℓ'} (L : LatticeStr A) (f : A → B) (M : LatticeStr B)
: Type (ℓ-max ℓ ℓ')
where
-- Shorter qualified names
private
module L = LatticeStr L
module M = LatticeStr M
field
pres0 : f L.0l ≡ M.0l
pres1 : f L.1l ≡ M.1l
pres∨l : (x y : A) → f (x L.∨l y) ≡ f x M.∨l f y
pres∧l : (x y : A) → f (x L.∧l y) ≡ f x M.∧l f y
unquoteDecl IsLatticeHomIsoΣ = declareRecordIsoΣ IsLatticeHomIsoΣ (quote IsLatticeHom)
LatticeHom : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeHom L M = Σ[ f ∈ (⟨ L ⟩ → ⟨ M ⟩) ] IsLatticeHom (L .snd) f (M .snd)
IsLatticeEquiv : {A : Type ℓ} {B : Type ℓ'} (M : LatticeStr A) (e : A ≃ B) (N : LatticeStr B)
→ Type (ℓ-max ℓ ℓ')
IsLatticeEquiv M e N = IsLatticeHom M (e .fst) N
LatticeEquiv : (L : Lattice ℓ) (M : Lattice ℓ') → Type (ℓ-max ℓ ℓ')
LatticeEquiv L M = Σ[ e ∈ (⟨ L ⟩ ≃ ⟨ M ⟩) ] IsLatticeEquiv (L .snd) e (M .snd)
isPropIsLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
→ isProp (IsLattice 0l 1l _∨l_ _∧l_)
isPropIsLattice 0l 1l _∨l_ _∧l_ (islattice LJ LM LA) (islattice MJ MM MA) =
λ i → islattice (isPropIsSemilattice _ _ LJ MJ i)
(isPropIsSemilattice _ _ LM MM i)
(isPropAbsorb LA MA i)
where
isSetL : isSet _
isSetL = LJ .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid
.IsMonoid.isSemigroup .IsSemigroup.is-set
isPropAbsorb : isProp ((x y : _) → (x ∨l (x ∧l y) ≡ x) × (x ∧l (x ∨l y) ≡ x))
isPropAbsorb = isPropΠ2 λ _ _ → isProp× (isSetL _ _) (isSetL _ _)
isPropIsLatticeHom : {A : Type ℓ} {B : Type ℓ'} (R : LatticeStr A) (f : A → B) (S : LatticeStr B)
→ isProp (IsLatticeHom R f S)
isPropIsLatticeHom R f S = isOfHLevelRetractFromIso 1 IsLatticeHomIsoΣ
(isProp×3 (isSetLattice (_ , S) _ _)
(isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _)
(isPropΠ2 λ _ _ → isSetLattice (_ , S) _ _))
𝒮ᴰ-Lattice : DUARel (𝒮-Univ ℓ) LatticeStr ℓ
𝒮ᴰ-Lattice =
𝒮ᴰ-Record (𝒮-Univ _) IsLatticeEquiv
(fields:
data[ 0l ∣ null ∣ pres0 ]
data[ 1l ∣ null ∣ pres1 ]
data[ _∨l_ ∣ bin ∣ pres∨l ]
data[ _∧l_ ∣ bin ∣ pres∧l ]
prop[ isLattice ∣ (λ _ _ → isPropIsLattice _ _ _ _) ])
where
open LatticeStr
open IsLatticeHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
LatticePath : (L M : Lattice ℓ) → LatticeEquiv L M ≃ (L ≡ M)
LatticePath = ∫ 𝒮ᴰ-Lattice .UARel.ua
Lattice→JoinSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→JoinSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.joinSemilattice )
Lattice→MeetSemilattice : Lattice ℓ → Semilattice ℓ
Lattice→MeetSemilattice (A , latticestr _ _ _ _ L) = semilattice _ _ _ (L .IsLattice.meetSemilattice )
| {
"alphanum_fraction": 0.549476135,
"avg_line_length": 34.36,
"ext": "agda",
"hexsha": "2904e8515aaacb415227f6aea515cb86db24066c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/Lattice/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/Lattice/Base.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/Lattice/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3316,
"size": 7731
} |
Extensionality of a function of two arguments
\begin{code}
extensionality2 : ∀ {A B C : Set} → {f g : A → B → C} → (∀ (x : A) (y : B) → f x y ≡ g x y) → f ≡ g
extensionality2 fxy≡gxy = extensionality (λ x → extensionality (λ y → fxy≡gxy x y))
\end{code}
Isomorphism of all and exists.
\begin{code}
¬∃∀ : ∀ {A : Set} {B : A → Set} → (¬ ∃ (λ (x : A) → B x)) ≃ ∀ (x : A) → ¬ B x
¬∃∀ =
record
{ to = λ { ¬∃bx x bx → ¬∃bx (x , bx) }
; fro = λ { ∀¬bx (x , bx) → ∀¬bx x bx }
; invˡ = λ { ¬∃bx → extensionality (λ { (x , bx) → refl }) }
; invʳ = λ { ∀¬bx → refl }
}
\end{code}
| {
"alphanum_fraction": 0.4750830565,
"avg_line_length": 31.6842105263,
"ext": "agda",
"hexsha": "c19bfe4ee0d44fbd5f928515486eddccedd81070",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Isomorphisms.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Isomorphisms.agda",
"max_line_length": 99,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Isomorphisms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 272,
"size": 602
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
_ : 10_000 * 100_000 ≡ 1_000_000_000
_ = refl
| {
"alphanum_fraction": 0.7727272727,
"avg_line_length": 18.3333333333,
"ext": "agda",
"hexsha": "874925a94d46631d1309026798d7c6f3a077f363",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/largenumber.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "strake/agda",
"max_issues_repo_path": "test/Succeed/largenumber.agda",
"max_line_length": 36,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "strake/agda",
"max_stars_repo_path": "test/Succeed/largenumber.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 44,
"size": 110
} |
{-# OPTIONS --cubical-compatible #-}
module Common.Unit where
open import Agda.Builtin.Unit public renaming (⊤ to Unit; tt to unit)
| {
"alphanum_fraction": 0.7313432836,
"avg_line_length": 22.3333333333,
"ext": "agda",
"hexsha": "784ddb1dcc623a68a1612678765762506d32e1b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/Unit.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/Unit.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 33,
"size": 134
} |
------------------------------------------------------------------------
-- Spheres
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- This module follows the HoTT book rather closely.
import Equality.Path as P
module Sphere
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Logical-equivalence using (_⇔_)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Equality.Tactic equality-with-J
import Equivalence equality-with-J as Equiv
open import Function-universe equality-with-J as F hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Nat equality-with-J as Nat
open import Pointed-type equality-with-J
open import Suspension eq as Suspension
private
variable
a b : Level
A B : Type a
C : Pointed-type a
x : A
n : ℕ
-- Spheres.
𝕊[_-1] : ℕ → Type
𝕊[ zero -1] = ⊥
𝕊[ suc n -1] = Susp 𝕊[ n -1]
-- Spheres with non-negative dimensions.
𝕊 : ℕ → Type
𝕊 n = 𝕊[ 1 + n -1]
-- The booleans are isomorphic to the 0-dimensional sphere.
Bool↔𝕊⁰ : Bool ↔ 𝕊 0
Bool↔𝕊⁰ = Bool↔Susp-⊥
-- Based maps from spheres with non-negative dimensions (using north
-- as the point) are isomorphic to iterated loop spaces.
𝕊→ᴮ↔ : ∀ n → (𝕊 n , north) →ᴮ C ↔ proj₁ (Ω[ n ] C)
𝕊→ᴮ↔ {C = C} = lemma zero
where
lemma : ∀ m n → (𝕊 n , north) →ᴮ Ω[ m ] C ↔ proj₁ (Ω[ m + n ] C)
lemma m zero =
(𝕊 0 , north) →ᴮ Ω[ m ] C ↝⟨ Σ-cong (→-cong ext (inverse Bool↔𝕊⁰) F.id) (λ _ → F.id) ⟩
(Bool , true) →ᴮ Ω[ m ] C ↝⟨ Bool→ᴮ↔ ext ⟩
proj₁ (Ω[ m ] C) ↝⟨ ≡⇒↝ _ $ cong (λ n → proj₁ (Ω[ n ] C)) $ sym $ Nat.+-right-identity {n = m} ⟩□
proj₁ (Ω[ m + 0 ] C) □
lemma m (suc n) =
(𝕊 (suc n) , north) →ᴮ Ω[ m ] C ↝⟨ Susp→ᴮ↔ ⟩
(𝕊 n , north) →ᴮ Ω[ suc m ] C ↝⟨ lemma (suc m) n ⟩
proj₁ (Ω[ suc m + n ] C) ↝⟨ ≡⇒↝ _ $ cong (λ n → proj₁ (Ω[ n ] C)) $ Nat.suc+≡+suc m ⟩□
proj₁ (Ω[ m + suc n ] C) □
-- A corollary.
+↔∀contractible𝕊→ᴮ :
H-level (1 + n) A ↔
(∀ x → Contractible ((𝕊 n , north) →ᴮ (A , x)))
+↔∀contractible𝕊→ᴮ {n = n} {A = A} =
H-level (1 + n) A ↔⟨ _↔_.to (Equiv.⇔↔≃ ext (H-level-propositional ext _)
(Π-closure ext 1 λ _ →
H-level-propositional ext _))
(+⇔∀contractible-Ω[] _) ⟩
(∀ x → Contractible (proj₁ $ Ω[ n ] (A , x))) ↝⟨ (∀-cong ext λ _ → H-level-cong ext 0 (inverse $ 𝕊→ᴮ↔ _)) ⟩□
(∀ x → Contractible ((𝕊 n , north) →ᴮ (A , x))) □
| {
"alphanum_fraction": 0.5042164441,
"avg_line_length": 33.4823529412,
"ext": "agda",
"hexsha": "22d96b16ee01b0ecde767f97499e680e7b06fa92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Sphere.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Sphere.agda",
"max_line_length": 113,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Sphere.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1067,
"size": 2846
} |
{-# OPTIONS --universe-polymorphism #-}
-- Level suc is not a constructor, and doesn't behave as one
-- for unification.
module LevelUnification where
open import Imports.Level
data _≡_ {a}{A : Set a}(x : A) : ∀ {b}{B : Set b} → B → Set where
refl : x ≡ x
sym : ∀ a b (A : Set (suc a))(B : Set (suc b))(x : A)(y : B) → x ≡ y → y ≡ x
sym a .a A .A x .x refl = refl
| {
"alphanum_fraction": 0.5822102426,
"avg_line_length": 24.7333333333,
"ext": "agda",
"hexsha": "a8152dbde65a76a1a38b83cef1a51f6bbdc1fc8e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/LevelUnification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/LevelUnification.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/LevelUnification.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 136,
"size": 371
} |
{-
Mathematical Foundations of Programming (G54FOP)
Nicolai Kraus
Lecture 6, 15 Feb 2018
-}
module lec6FOP where
{- We import everything we have done last week.
"open" means we can use all definitions directly -}
open import lec3FOP
{- Hint: middle mouse click or alt-.
[press alt/meta, then .]
jumps to the definition that the cursor is on -}
-- Reduce in one step
-- (these are the simplification rules)
data _→1_ : Expr → Expr → Set where
izz : iz z →1 t
izs : {e : Expr} → iz (s e) →1 f
ift : {e₂ e₃ : Expr} → (if t then e₂ else e₃) →1 e₂
iff : {e₂ e₃ : Expr} → (if f then e₂ else e₃) →1 e₃
ps : {e : Expr} → p (s e) →1 e
pz : p z →1 z
-- include structural rules
data _↝_ : Expr → Expr → Set where -- type: \leadsto
from→1 : {e₁ e₂ : Expr} → (e₁ →1 e₂) → (e₁ ↝ e₂)
inside-s : {e₁ e₂ : Expr} → (e₁ ↝ e₂) → (s e₁ ↝ s e₂)
inside-p : {e₁ e₂ : Expr} → (e₁ ↝ e₂) → (p e₁ ↝ p e₂)
inside-iz : ∀ {e₁} {e₂} → (e₁ ↝ e₂) → (iz e₁ ↝ iz e₂)
inside-ite1 : ∀ {e₁ e₁' e₂ e₃} → (e₁ ↝ e₁')
→ (if e₁ then e₂ else e₃) ↝ (if e₁' then e₂ else e₃)
inside-ite2 : ∀ {e₁ e₂ e₂' e₃} → (e₂ ↝ e₂')
→ (if e₁ then e₂ else e₃) ↝ (if e₁ then e₂' else e₃)
inside-ite3 : ∀ {e₁ e₂ e₃ e₃'} → (e₃ ↝ e₃')
→ (if e₁ then e₂ else e₃) ↝ (if e₁ then e₂ else e₃')
data _↝*_ : Expr → Expr → Set where
start : ∀ {e} → e ↝* e
step : ∀ {e₁ e₂ e₃} → (e₁ ↝ e₂) → (e₂ ↝* e₃)
→ (e₁ ↝* e₃)
-- compose two reduction sequences
compose : {e₁ e₂ e₃ : Expr} → (e₁ ↝* e₂)
→ (e₂ ↝* e₃)
→ (e₁ ↝* e₃)
compose start s₂ = s₂
compose (step x s₁) s₂ = step x (compose s₁ s₂)
open import Data.Empty renaming (⊥ to ∅) -- \emptyset
-- define what it means to be a normal form
is-normal : Expr → Set
is-normal e = (e₁ : Expr) → (e →1 e₁) → ∅
{- Exercises:
1. (easy) Show that the expression "t" is
in normal form. This means: fill the whole
(replace the question mark) in
t-nf : is-normal t
t-nf = ?
2. (medium) Show that, if "e" is a normal form,
then so is "s e".
3. (hard) Show that "is-normal" is a
decidable predicate on Expr.
This means writing a function
which takes an expression and tells us
whether the expression is a normal form
or not. The naive version would be
Expr → Bool
but we can do much better: we can take an
expression "e" and either return a *proof*
that "e" is a normal form, or return an
example of how it can be reduced.
Such an example would consist of an expression
"reduct" and a proof of "e ↝ reduct"; we
will learn later how this can be expressed,
but a good way of implementing it is as follows:
-}
record can-red (e : Expr) : Set where
field
reduct : Expr
redstep : e ↝ reduct
{- Ex 3, continued: We can import Data.Sum to get the
definition of ⊎ (type: \u+), a disjoint sum (it's
Either in Haskell). Check out how ⊎ is defined in
the library, it's really simple! -}
open import Data.Sum
{- Ex3, continued: Now, fill in the ? in the following
function; probably, you will want more auxiliary
lemma. Caveat: I have not done this myself.
decide-nf : (e : Expr) → (is-normal e) ⊎ can-red e
decide-nf e = {!!}
-}
| {
"alphanum_fraction": 0.593721145,
"avg_line_length": 30.9428571429,
"ext": "agda",
"hexsha": "6c9dcb836f8c73e6da9840a987c52dffc2fd560d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/FOP2018",
"max_forks_repo_path": "agda/lec6FOP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/FOP2018",
"max_issues_repo_path": "agda/lec6FOP.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/FOP2018",
"max_stars_repo_path": "agda/lec6FOP.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1205,
"size": 3249
} |
module Structure.Function.Ordering where
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Type
module _ {ℓₒ₁ ℓₒ₂ ℓₗ₁ ℓₗ₂} {T₁ : Type{ℓₒ₁}} {T₂ : Type{ℓₒ₂}} (_≤₁_ : T₁ → T₁ → Type{ℓₗ₁}) (_≤₂_ : T₂ → T₂ → Type{ℓₗ₂}) where
record Increasing (f : T₁ → T₂) : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field proof : ∀{a b : T₁} → (a ≤₁ b) → (f(a) ≤₂ f(b))
record Decreasing (f : T₁ → T₂) : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field proof : ∀{a b : T₁} → (a ≤₁ b) → (f(b) ≤₂ f(a))
Monotone : (T₁ → T₂) → Stmt
Monotone(f) = (Increasing(f) ∨ Decreasing(f))
record UpperBoundPointOf (f : T₁ → T₂) (p : T₁) : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field proof : ∀{x} → (f(x) ≤₂ f(p))
UpperBounded : (T₁ → T₂) → Stmt
UpperBounded(f) = ∃(UpperBoundPointOf(f))
record LowerBoundPointOf (f : T₁ → T₂) (p : T₁) : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂} where
constructor intro
field proof : ∀{x} → (f(p) ≤₂ f(x))
LowerBounded : (T₁ → T₂) → Stmt
LowerBounded(f) = ∃(LowerBoundPointOf(f))
| {
"alphanum_fraction": 0.6101541251,
"avg_line_length": 32.4411764706,
"ext": "agda",
"hexsha": "82121d80e2dfa1db993e10d46958715b5c22a8ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Function/Ordering.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Function/Ordering.agda",
"max_line_length": 124,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Function/Ordering.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 503,
"size": 1103
} |
-- Issue498: Underapplied projection-like functions did not evaluate correctly.
module Issue498 where
data ⊤ : Set where
tt : ⊤
data C : ⊤ → Set where
c : C tt
data C₂ : ⊤ → ⊤ → Set where
c : C₂ tt tt
module NoParams where
f₁ : ∀ a → C a → ⊤
f₁ a x = tt
f₁′ : ∀ a → C a → ⊤
f₁′ = f₁
check₁ : ∀ a x → C (f₁′ a x)
check₁ s x = c
f₂ : ∀ a b → C₂ a b → ⊤
f₂ a b x = tt
f₂′ : ∀ a b → C₂ a b → ⊤
f₂′ a = f₂ a
check₂ : ∀ a b x → C (f₂′ a b x)
check₂ a b x = c
f₃ : ∀ a {b} → C₂ a b → ⊤
f₃ a x = tt
f₃′ : ∀ a {b} → C₂ a b → ⊤
f₃′ = f₃
data Is-f₃ : (∀ a {b} → C₂ a b → ⊤) → Set where
is-f₃ : Is-f₃ (λ a {b} x → tt)
check₃ : Is-f₃ f₃′
check₃ = is-f₃
module SomeParams (X Y : Set) where
f₁ : ∀ a → C a → ⊤
f₁ a x = tt
f₁′ : ∀ a → C a → ⊤
f₁′ = f₁
check₁ : ∀ a x → C (f₁′ a x)
check₁ s x = c
f₂ : ∀ a b → C₂ a b → ⊤
f₂ a b x = tt
f₂′ : ∀ a b → C₂ a b → ⊤
f₂′ a = f₂ a
check₂ : ∀ a b x → C (f₂′ a b x)
check₂ a b x = c
check₃ : ∀ {X Y} a x → C (SomeParams.f₁′ X Y a x)
check₃ a x = c
check₄ : ∀ {X Y} a b x → C (SomeParams.f₂′ X Y a b x)
check₄ a b x = c
| {
"alphanum_fraction": 0.4687774846,
"avg_line_length": 16.2428571429,
"ext": "agda",
"hexsha": "f6a5b9d94e0c831adc14e7898cd37b19e3dbd177",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue498.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue498.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue498.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 572,
"size": 1137
} |
module huffman-tree where
open import lib
data huffman-tree : Set where
ht-leaf : string → ℕ → huffman-tree
ht-node : ℕ → huffman-tree → huffman-tree → huffman-tree
-- get the frequency out of a Huffman tree
ht-frequency : huffman-tree → ℕ
ht-frequency (ht-leaf _ f) = f
ht-frequency (ht-node f _ _) = f
-- lower frequency nodes are considered smaller
ht-compare : huffman-tree → huffman-tree → 𝔹
ht-compare h1 h2 = (ht-frequency h1) < (ht-frequency h2)
{- return (just s) if Huffman tree is an ht-leaf with string s;
otherwise, return nothing (this is a constructor for the maybe type -- see maybe.agda in the IAL) -}
ht-string : huffman-tree → maybe string
ht-string (ht-leaf s f) = just s
ht-string _ = nothing
-- several helper functions for ht-to-string (defined at the bottom)
private
-- helper function for ht-to-stringh
ht-declare-node : huffman-tree → ℕ → string × string
ht-declare-node h n =
let cur = "n" ^ (ℕ-to-string n) in
cur , (cur ^ " [label = \"" ^ (help (ht-string h)) ^ (ℕ-to-string (ht-frequency h)) ^ "\"];\n")
where help : maybe string → string
help (just s) = s ^ " , "
help nothing = ""
-- helper function for ht-to-stringh
ht-attach : maybe string → string → string
ht-attach nothing _ = ""
ht-attach (just c) c' = c ^ " -> " ^ c' ^ ";\n"
ht-to-stringh : huffman-tree → ℕ → maybe string → ℕ × string
ht-to-stringh h n prev with ht-declare-node h n
ht-to-stringh (ht-leaf _ _) n prev | c , s = suc n , (ht-attach prev c) ^ s
ht-to-stringh (ht-node _ h1 h2) n prev | c , s with ht-to-stringh h1 (suc n) (just c)
ht-to-stringh (ht-node _ h1 h2) _ prev | c , s | n , s1 with ht-to-stringh h2 n (just c)
ht-to-stringh (ht-node _ h1 h2) _ prev | c , s | _ , s1 | n , s2 = n , (ht-attach prev c) ^ s ^ s1 ^ s2
{- turn a Huffman tree into a string in Graphviz format
(you can render the output .gv file at http://sandbox.kidstrythisathome.com/erdos/) -}
ht-to-string : huffman-tree → string
ht-to-string h with ht-to-stringh h 0 nothing
ht-to-string h | _ , s = "digraph h {\nnode [shape = plaintext];\n" ^ s ^ "}"
| {
"alphanum_fraction": 0.639321075,
"avg_line_length": 40.7884615385,
"ext": "agda",
"hexsha": "65bee8682a59d199dbb7ecbd39927ec71a5769d6",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "huffman/huffman-tree.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "huffman/huffman-tree.agda",
"max_line_length": 105,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "huffman/huffman-tree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 676,
"size": 2121
} |
-- Andreas, 2014-12-02, issue reported by Jesper Cockx
open import Common.Equality
mutual
Type : Set
type : Type
data Term : Type → Set where
set : Term type
Type = Term type
type = set
mutual
weakenType : Type → Type → Type
weaken : (ty ty' : Type) → Term ty → Term (weakenType ty' ty)
weakenType ty ty' = subst Term {!!} (weaken type {!!} ty)
weaken ty ty' t = {!!}
data Test : Type → Set where
test : Test (weakenType type type)
-- Checking the constructor declaration was looping.
-- Termination checker should complain.
| {
"alphanum_fraction": 0.6636690647,
"avg_line_length": 21.3846153846,
"ext": "agda",
"hexsha": "33e6d78b079f9072d07aaaf7a24cff94dcef97ee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1375-4.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1375-4.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1375-4.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 162,
"size": 556
} |
-- Intuitionistic propositional logic, vector-based de Bruijn approach, initial encoding
module Vi.Ip where
open import Lib using (Nat; suc; _+_; Fin; fin; Vec; _,_; proj; VMem; mem)
-- Types
infixl 2 _&&_
infixl 1 _||_
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
_&&_ : Ty -> Ty -> Ty
_||_ : Ty -> Ty -> Ty
FALSE : Ty
infixr 0 _<=>_
_<=>_ : Ty -> Ty -> Ty
a <=> b = (a => b) && (b => a)
NOT : Ty -> Ty
NOT a = a => FALSE
TRUE : Ty
TRUE = FALSE => FALSE
-- Context and truth judgement
Cx : Nat -> Set
Cx n = Vec Ty n
isTrue : forall {tn} -> Ty -> Fin tn -> Cx tn -> Set
isTrue a i tc = VMem a i tc
-- Terms
module Ip where
infixl 1 _$_
infixr 0 lam=>_
data Tm {tn} (tc : Cx tn) : Ty -> Set where
var : forall {a i} -> isTrue a i tc -> Tm tc a
lam=>_ : forall {a b} -> Tm (tc , a) b -> Tm tc (a => b)
_$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b
pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b)
fst : forall {a b} -> Tm tc (a && b) -> Tm tc a
snd : forall {a b} -> Tm tc (a && b) -> Tm tc b
left : forall {a b} -> Tm tc a -> Tm tc (a || b)
right : forall {a b} -> Tm tc b -> Tm tc (a || b)
case' : forall {a b c} -> Tm tc (a || b) -> Tm (tc , a) c -> Tm (tc , b) c -> Tm tc c
abort : forall {a} -> Tm tc FALSE -> Tm tc a
syntax pair' x y = [ x , y ]
syntax case' xy x y = case xy => x => y
v : forall {tn} (k : Nat) {tc : Cx (suc (k + tn))} -> Tm tc (proj tc (fin k))
v i = var (mem i)
Thm : Ty -> Set
Thm a = forall {tn} {tc : Cx tn} -> Tm tc a
open Ip public
-- Example theorems
t1 : forall {a b} -> Thm (a => NOT a => b)
t1 =
lam=>
lam=> abort (v 0 $ v 1)
t2 : forall {a b} -> Thm (NOT a => a => b)
t2 =
lam=>
lam=> abort (v 1 $ v 0)
t3 : forall {a} -> Thm (a => NOT (NOT a))
t3 =
lam=>
lam=> v 0 $ v 1
t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a)))
t4 =
[ lam=>
lam=> v 0 $ v 1
, lam=>
lam=> v 1 $ (lam=> v 0 $ v 1)
]
| {
"alphanum_fraction": 0.451954023,
"avg_line_length": 23.6413043478,
"ext": "agda",
"hexsha": "cd4e21f59c08e4232b0f90386c7c216d82902737",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Vi/Ip.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Vi/Ip.agda",
"max_line_length": 90,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Vi/Ip.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 859,
"size": 2175
} |
module Selective.Libraries.ReceiveSublist where
open import Selective.ActorMonad public
open import Prelude
accept-sublist-unwrapped : (xs ys zs : InboxShape) → ∀{MT} → MT ∈ (xs ++ ys ++ zs) → Bool
accept-sublist-unwrapped [] [] zs p = false
accept-sublist-unwrapped [] (y ∷ ys) zs Z = true
accept-sublist-unwrapped [] (y ∷ ys) zs (S p) = accept-sublist-unwrapped [] ys zs p
accept-sublist-unwrapped (x ∷ xs) ys zs Z = false
accept-sublist-unwrapped (x ∷ xs) ys zs (S p) = accept-sublist-unwrapped xs ys zs p
accept-sublist : (xs ys zs : InboxShape) → MessageFilter (xs ++ ys ++ zs)
accept-sublist xs ys zs (Msg received-message-type received-fields) = accept-sublist-unwrapped xs ys zs received-message-type
record AcceptSublistDependent (IS : InboxShape) (accepted-type : MessageType) : Set₁ where
field
accepted-which : accepted-type ∈ IS
fields : All receive-field-content accepted-type
receive-sublist : {i : Size} →
{Γ : TypingContext} →
(xs ys zs : InboxShape) →
∞ActorM i (xs ++ ys ++ zs)
(Message ys)
Γ
(add-references Γ)
receive-sublist xs ys zs = do
record { msg = Msg {MT} p f ; msg-ok = msg-ok } ← selective-receive (accept-sublist xs ys zs)
let record {accepted-which = aw ; fields = fields } = rewrap-message xs ys zs p f msg-ok
return₁ (Msg {MT = MT} aw fields)
where
rewrap-message : ∀{MT} →
(xs ys zs : InboxShape) →
(p : MT ∈ (xs ++ ys ++ zs)) →
All receive-field-content MT →
(accept-sublist-unwrapped xs ys zs p) ≡ true →
AcceptSublistDependent ys MT
rewrap-message [] [] zs p f ()
rewrap-message [] (x ∷ ys) zs Z f q = record { accepted-which = Z ; fields = f }
rewrap-message [] (x ∷ ys) zs (S p) f q =
let
rec = rewrap-message [] ys zs p f q
open AcceptSublistDependent
in record { accepted-which = S (rec .accepted-which) ; fields = rec .fields }
rewrap-message (x ∷ xs) ys zs Z f ()
rewrap-message (x ∷ xs) ys zs (S p) f q = rewrap-message xs ys zs p f q
| {
"alphanum_fraction": 0.5870353581,
"avg_line_length": 45.0204081633,
"ext": "agda",
"hexsha": "4fb9e61bf941a8d30cfe6f09aed1154446259419",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Selective/Libraries/ReceiveSublist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Selective/Libraries/ReceiveSublist.agda",
"max_line_length": 125,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Selective/Libraries/ReceiveSublist.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 612,
"size": 2206
} |
module x where
open import Level
private
variable
a b c d e f ℓ p q r : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
F : Set f
------------------------------------------------------------------------------
infixr 4 _,_
infixr 2 _^_
record _^_ (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B
open _^_
swap : A ^ B → B ^ A
swap (a , b) = b , a
------------------------------------------------------------------------------
infixr 1 _v_
data _v_ (A : Set a) (B : Set b) : Set (a ⊔ b) where
inl : (x : A) → A v B
inr : (y : B) → A v B
cases : ∀ {A : Set a} {B : Set b} {C : Set c}
→ (A v B) → (A → C) → (B → C)
→ C
cases (inl q) f g = f q
cases (inr r) f g = g r
------------------------------------------------------------------------------
data ⊥ : Set where
⊥-elim : ∀ {A : Set a} → ⊥ → A
⊥-elim = λ ()
------------------------------------------------------------------------------
¬_ : Set → Set
¬ A = A → ⊥
------------------------------------------------------------------------------
-- 4.1
assoc-^ : (A ^ B) ^ C → A ^ (B ^ C)
assoc-^ ((a , b) , c) = a , (b , c)
-- 4.2
e4-2 : (¬ A v B) → (A → B)
e4-2 (inl ¬a) = λ a → ⊥-elim (¬a a)
e4-2 (inr b) = λ _ → b
{- not provable
e4-2' : (A → B) → (¬ A v B)
e4-2' a→b = {!!}
-}
-- 4.3
e4-3 : (A v ¬ A) → (¬ ¬ A → A)
e4-3 (inl a) = λ _ → a
e4-3 (inr ¬a) = λ ¬¬a → ⊥-elim (¬¬a ¬a)
e4-3' : (A → ¬ ¬ A)
e4-3' = λ a ¬¬a → ¬¬a a
-- 4.4 -- this is similar to v elimination by cases
e4-4 : ((A ^ B) → C) → A → (B → C)
e4-4 a^b→c a = λ b → a^b→c (a , b)
-- 4.5
e4-5 : (A → (B → C)) → ((A ^ B) → C)
e4-5 a→b→c = λ (a , b) → a→b→c a b
e4-5' : ((A ^ B) → C) → (A → (B → C))
e4-5' a^b→c = λ a → λ b → a^b→c (a , b)
-- 4.6
e4-6 : A → (B v C) → ((A ^ B) v (A ^ C))
e4-6 a (inl b) = inl (a , b)
e4-6 a (inr c) = inr (a , c)
-- 4.7
e4-7 : (A → C) → (B → D) → ((A ^ B) → (C ^ D))
e4-7 a→c b→d = λ (a , b) → (a→c a , b→d b)
-- section 4.5.2
-- function composition
_∘_ : (B → C) → (A → B) → (A → C)
_∘_ b→c a→b = λ a -> b→c (a→b a)
srl : (A → B) → (¬ B → ¬ A)
srl a→b = λ ¬b a → ¬b (a→b a)
-- section 4.5.3
idA^A : (A ^ A) → (A ^ A)
idA^A (a , a') = (a' , a)
-- section 4.5.5 Conjunction and disjunction
s455 : ((A v B) → C) → ((A → C) ^ (B → C))
s455 = λ avb→c → (avb→c ∘ inl , avb→c ∘ inr)
s455' : ((A → C) ^ (B → C)) → ((A v B) → C)
s455' (a→c , b→c) = λ { (inl a) → a→c a
; (inr b) → b→c b }
dm : ¬ (A v B) → (¬ A ^ ¬ B)
dm notAvB = (notAvB ∘ inl , notAvB ∘ inr)
dm' : (¬ A v ¬ B) → ¬ (A ^ B)
dm' (inl ¬a) = λ (a , _) → ¬a a
dm' (inr ¬b) = λ (_ , b) → ¬b b
-- 4.8
e4-8a : A → ¬ ¬ A
e4-8a a = λ ¬a → ¬a a
e4-8b : (B v C) → ¬ (¬ B ^ ¬ C)
e4-8b (inl b) = λ (¬b , _) → ¬b b
e4-8b (inr c) = λ ( _ , ¬c) → ¬c c
e4-8c : (A → B) → ((A → C) → (A → (B ^ C)))
e4-8c a→b = λ a→c → λ a → (a→b a , a→c a)
| {
"alphanum_fraction": 0.3366747321,
"avg_line_length": 20.5177304965,
"ext": "agda",
"hexsha": "9eec16e38a222d7045b941396a99282ab9253940",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "math-and-functional-programming/1999-Type_Theory_and_Functional_Programming-Simon_Thompson/x.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "math-and-functional-programming/1999-Type_Theory_and_Functional_Programming-Simon_Thompson/x.agda",
"max_line_length": 78,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "math-and-functional-programming/1999-Type_Theory_and_Functional_Programming-Simon_Thompson/x.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 1379,
"size": 2893
} |
-- Andreas, 2021-04-22, issue #5339
-- Allow constructors of the same name in `constructor` block.
module _ where
module Works where
interleaved mutual
data Nat : Set
data Fin : Nat → Set
data _ where
zero : Nat
data _ where
suc : Nat → Nat
zero : ∀ {n} → Fin (suc n)
data _ where
suc : ∀ {n} (i : Fin n) → Fin (suc n)
interleaved mutual
data Nat : Set
data Fin : Nat → Set
data _ where
zero : Nat
suc : Nat → Nat
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} (i : Fin n) → Fin (suc n)
-- `data _ where` block should be accepted despite duplicate constructor names.
wkFin : ∀{n} → Fin n → Fin (suc n)
wkFin zero = zero
wkFin (suc i) = suc (wkFin i)
| {
"alphanum_fraction": 0.58033241,
"avg_line_length": 21.8787878788,
"ext": "agda",
"hexsha": "46795e9955d85b7ecaeedcee7642df164439f21f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5339.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5339.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5339.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 243,
"size": 722
} |
------------------------------------------------------------------------
-- IO
------------------------------------------------------------------------
{-# OPTIONS --no-termination-check #-}
module IO where
open import Coinduction
open import Data.Unit
open import Data.String
open import Data.Colist
import Foreign.Haskell as Haskell
import IO.Primitive as Prim
------------------------------------------------------------------------
-- The IO monad
-- One cannot write "infinitely large" computations with the
-- postulated IO monad in IO.Primitive without turning off the
-- termination checker (or going via the FFI, or perhaps abusing
-- something else). The following coinductive deep embedding is
-- introduced to avoid this problem. Possible non-termination is
-- isolated to the run function below.
infixl 1 _>>=_ _>>_
data IO : Set → Set₁ where
lift : ∀ {A} (m : Prim.IO A) → IO A
return : ∀ {A} (x : A) → IO A
_>>=_ : ∀ {A B} (m : ∞₁ (IO A)) (f : (x : A) → ∞₁ (IO B)) → IO B
_>>_ : ∀ {A B} (m₁ : ∞₁ (IO A)) (m₂ : ∞₁ (IO B)) → IO B
-- The use of abstract ensures that the run function will not be
-- unfolded infinitely by the type checker.
abstract
run : ∀ {A} → IO A → Prim.IO A
run (lift m) = m
run (return x) = Prim.return x
run (m >>= f) = Prim._>>=_ (run (♭₁ m )) λ x → run (♭₁ (f x))
run (m₁ >> m₂) = Prim._>>=_ (run (♭₁ m₁)) λ _ → run (♭₁ m₂)
------------------------------------------------------------------------
-- Utilities
-- Because IO A lives in Set₁ I hesitate to define sequence, which
-- would require defining a Set₁ variant of Colist.
mapM : ∀ {A B} → (A → IO B) → Colist A → IO (Colist B)
mapM f [] = return []
mapM f (x ∷ xs) = ♯₁ f x >>= λ y →
♯₁ (♯₁ mapM f (♭ xs) >>= λ ys →
♯₁ return (y ∷ ♯ ys))
-- The reason for not defining mapM′ in terms of mapM is efficiency
-- (the unused results could cause unnecessary memory use).
mapM′ : ∀ {A B} → (A → IO B) → Colist A → IO ⊤
mapM′ f [] = return _
mapM′ f (x ∷ xs) = ♯₁ f x >> ♯₁ mapM′ f (♭ xs)
------------------------------------------------------------------------
-- Simple lazy IO (UTF8-based)
getContents : IO Costring
getContents =
♯₁ lift Prim.getContents >>= λ s →
♯₁ return (Haskell.toColist s)
readFile : String → IO Costring
readFile f =
♯₁ lift (Prim.readFile f) >>= λ s →
♯₁ return (Haskell.toColist s)
writeFile∞ : String → Costring → IO ⊤
writeFile∞ f s =
♯₁ lift (Prim.writeFile f (Haskell.fromColist s)) >>
♯₁ return _
writeFile : String → String → IO ⊤
writeFile f s = writeFile∞ f (toCostring s)
putStr∞ : Costring → IO ⊤
putStr∞ s =
♯₁ lift (Prim.putStr (Haskell.fromColist s)) >>
♯₁ return _
putStr : String → IO ⊤
putStr s = putStr∞ (toCostring s)
putStrLn∞ : Costring → IO ⊤
putStrLn∞ s =
♯₁ lift (Prim.putStrLn (Haskell.fromColist s)) >>
♯₁ return _
putStrLn : String → IO ⊤
putStrLn s = putStrLn∞ (toCostring s)
| {
"alphanum_fraction": 0.5380968507,
"avg_line_length": 29.53,
"ext": "agda",
"hexsha": "35ced987fe4f5b35503cb729de6251678718b39b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/IO.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/IO.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/IO.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 906,
"size": 2953
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Integers.RingStructure.Ring
open import Rings.IntegralDomains.Definition
module Numbers.Integers.RingStructure.IntegralDomain where
intDom : (a b : ℤ) → a *Z b ≡ nonneg 0 → (a ≡ nonneg 0 → False) → (b ≡ nonneg 0)
intDom (nonneg zero) (nonneg b) x a!=0 = exFalso (a!=0 x)
intDom (nonneg (succ a)) (nonneg zero) a!=0 _ = refl
intDom (nonneg zero) (negSucc b) pr a!=0 = exFalso (a!=0 pr)
intDom (negSucc a) (nonneg zero) _ _ = refl
ℤIntDom : IntegralDomain ℤRing
IntegralDomain.intDom ℤIntDom {a} {b} = intDom a b
IntegralDomain.nontrivial ℤIntDom ()
| {
"alphanum_fraction": 0.7213352685,
"avg_line_length": 36.2631578947,
"ext": "agda",
"hexsha": "d0a78cd19bbae1904734021270341ea54971243a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Integers/RingStructure/IntegralDomain.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Integers/RingStructure/IntegralDomain.agda",
"max_line_length": 80,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Integers/RingStructure/IntegralDomain.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 236,
"size": 689
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Rust.Duration
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Base.Types
open import Optics.All
open import Util.ByteString
open import Util.Encode
open import Util.Hash
open import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
-- Defines the types that /DO NOT/ depend on an epoch config.
-- TODO-3: update types to reflect more recent version of LibraBFT. This is
-- a substantial undertaking that should probably be led by someone who can
-- access our internal implementation.
module LibraBFT.ImplShared.Consensus.Types.EpochIndep where
-- Below here is incremental progress towards something
-- that will eventually mirror the types in LBFT.Consensus.Types
-- that /DO NOT/ depend on the set of active authors
-- or safety rules, which we call the /EpochConfig/.
Author : Set
Author = NodeId
AccountAddress : Set
AccountAddress = Author
AuthorName : Set
AuthorName = Author
aAuthorName : Lens Author AuthorName
aAuthorName = mkLens' (λ x → x) (λ x → const x)
HashValue : Set
HashValue = Hash
TX : Set
TX = ByteString
Instant : Set
Instant = ℕ -- TODO-2: should eventually be a time stamp
postulate -- TODO-1: implement/prove PK equality
_≟-PK_ : (pk1 pk2 : PK) → Dec (pk1 ≡ pk2)
instance
Eq-PK : Eq PK
Eq._≟_ Eq-PK = _≟-PK_
-- LBFT-OBM-DIFF: We do not have world state. We just count the Epoch/Round as the version.
record Version : Set where
constructor Version∙new
field
_vVE : Epoch
_vVR : Round
open Version public
postulate instance enc-Version : Encoder Version
postulate -- TODO-1: implement/prove Version equality
_≟-Version_ : (v1 v2 : Version) → Dec (v1 ≡ v2)
instance
Eq-Version : Eq Version
Eq._≟_ Eq-Version = _≟-Version_
_≤-Version_ : Version → Version → Set
v1 ≤-Version v2 = _vVE v1 < _vVE v2
⊎ _vVE v1 ≡ _vVE v2 × _vVR v1 ≤ _vVR v2
_≤?-Version_ : (v1 v2 : Version) → Dec (v1 ≤-Version v2)
v1 ≤?-Version v2
with _vVE v1 <? _vVE v2
...| yes prf = yes (inj₁ prf)
...| no ege
with _vVE v1 ≟ _vVE v2
...| no rneq = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (x , _)) → rneq x })
...| yes refl
with _vVR v1 ≤? _vVR v2
...| yes rleq = yes (inj₂ (refl , rleq))
...| no rgt = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (_ , x)) → rgt x })
_<-Version_ : Version → Version → Set
v1 <-Version v2 = _vVE v1 < _vVE v2
⊎ _vVE v1 ≡ _vVE v2 × _vVR v1 < _vVR v2
_<?-Version_ : (v1 v2 : Version) → Dec (v1 <-Version v2)
v1 <?-Version v2
with _vVE v1 <? _vVE v2
...| yes prf = yes (inj₁ prf)
...| no ege
with _vVE v1 ≟ _vVE v2
...| no rneq = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (x , _)) → rneq x })
...| yes refl
with _vVR v1 <? _vVR v2
...| yes rleq = yes (inj₂ (refl , rleq))
...| no rgt = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (_ , x)) → rgt x })
-- ------------------------------------------------------------------------------
record ValidatorSigner : Set where
constructor ValidatorSigner∙new
field
_vsAuthor : AccountAddress
_vsPrivateKey : SK -- Note that the SystemModel doesn't
-- allow one node to examine another's
-- state, so we don't model someone being
-- able to impersonate someone else unless
-- PK is "dishonest", which models the
-- possibility that the corresponding secret
-- key may have been leaked.
open ValidatorSigner public
unquoteDecl vsAuthor vsPrivateKey = mkLens (quote ValidatorSigner)
(vsAuthor ∷ vsPrivateKey ∷ [])
RawEncNetworkAddress = Author
record ValidatorConfig : Set where
constructor ValidatorConfig∙new
field
_vcConsensusPublicKey : PK
_vcValidatorNetworkAddress : RawEncNetworkAddress
open ValidatorConfig public
unquoteDecl vcConsensusPublicKey vcValidatorNetworkAddress = mkLens (quote ValidatorConfig)
(vcConsensusPublicKey ∷ vcValidatorNetworkAddress ∷ [])
record ValidatorInfo : Set where
constructor ValidatorInfo∙new
field
_viAccountAddress : AccountAddress
_viConsensusVotingPower : U64
_viConfig : ValidatorConfig
open ValidatorInfo public
unquoteDecl viAccountAddress viConsensusVotingPower viConfig = mkLens (quote ValidatorInfo)
(viAccountAddress ∷ viConsensusVotingPower ∷ viConfig ∷ [])
-- getter only in Haskell
-- key for validating signed messages from this validator
viConsensusPublicKey : Lens ValidatorInfo PK
viConsensusPublicKey = viConfig ∙ vcConsensusPublicKey
record ValidatorConsensusInfo : Set where
constructor ValidatorConsensusInfo∙new
field
_vciPublicKey : PK
_vciVotingPower : U64
open ValidatorConsensusInfo public
unquoteDecl vciPublicKey vciVotingPower = mkLens (quote ValidatorConsensusInfo)
(vciPublicKey ∷ vciVotingPower ∷ [])
record ValidatorVerifier : Set where
constructor mkValidatorVerifier
field
_vvAddressToValidatorInfo : KVMap AccountAddress ValidatorConsensusInfo
_vvQuorumVotingPower : ℕ -- TODO-2: see above; for now, this is QuorumSize
_vvTotalVotingPower : ℕ -- TODO-2: see above; for now, this is number of peers in EpochConfig
open ValidatorVerifier public
unquoteDecl vvAddressToValidatorInfo vvQuorumVotingPower vvTotalVotingPower = mkLens (quote ValidatorVerifier)
(vvAddressToValidatorInfo ∷ vvQuorumVotingPower ∷ vvTotalVotingPower ∷ [])
-- getter only in Haskell
vvObmAuthors : Lens ValidatorVerifier (List AccountAddress)
vvObmAuthors = mkLens' g s
where
g : ValidatorVerifier → List AccountAddress
g vv = Map.kvm-keys (vv ^∙ vvAddressToValidatorInfo)
s : ValidatorVerifier → List AccountAddress → ValidatorVerifier
s vv _ = vv -- TODO-1 : cannot be done: need a way to defined only getters
data ConsensusScheme : Set where ConsensusScheme∙new : ConsensusScheme
-- instance S.Serialize ConsensusScheme
record ValidatorSet : Set where
constructor ValidatorSet∙new
field
_vsScheme : ConsensusScheme
_vsPayload : List ValidatorInfo
-- instance S.Serialize ValidatorSet
open ValidatorSet public
unquoteDecl vsScheme vsPayload = mkLens (quote ValidatorSet)
(vsScheme ∷ vsPayload ∷ [])
record EpochState : Set where
constructor EpochState∙new
field
_esEpoch : Epoch
_esVerifier : ValidatorVerifier
open EpochState public
unquoteDecl esEpoch esVerifier = mkLens (quote EpochState)
(esEpoch ∷ esVerifier ∷ [])
postulate -- one valid assumption, one that can be proved using it
instance
Enc-EpochState : Encoder EpochState
Enc-EpochStateMB : Encoder (Maybe EpochState) -- TODO-1: make combinator to build this
-- ------------------------------------------------------------------------------
record BlockInfo : Set where
constructor BlockInfo∙new
field
_biEpoch : Epoch
_biRound : Round
_biId : HashValue
_biExecutedStateId : HashValue -- aka liTransactionAccumulatorHash
_biVersion : Version
--, _biTimestamp :: Instant
_biNextEpochState : Maybe EpochState
open BlockInfo public
unquoteDecl biEpoch biRound biId biExecutedStateId biVersion biNextEpochState = mkLens (quote BlockInfo)
(biEpoch ∷ biRound ∷ biId ∷ biExecutedStateId ∷ biVersion ∷ biNextEpochState ∷ [])
postulate instance enc-BlockInfo : Encoder BlockInfo
postulate
_≟-BlockInfo_ : (bi1 bi2 : BlockInfo) → Dec (bi1 ≡ bi2)
instance
Eq-BlockInfo : Eq BlockInfo
Eq._≟_ Eq-BlockInfo = _≟-BlockInfo_
BlockInfo-η : ∀{e1 e2 r1 r2 i1 i2 x1 x2 v1 v2 n1 n2}
→ e1 ≡ e2 → r1 ≡ r2 → i1 ≡ i2 → x1 ≡ x2 → v1 ≡ v2 → n1 ≡ n2
→ BlockInfo∙new e1 r1 i1 x1 v1 n1 ≡ BlockInfo∙new e2 r2 i2 x2 v2 n2
BlockInfo-η refl refl refl refl refl refl = refl
instance
Eq-ByteString : Eq ByteString
Eq._≟_ Eq-ByteString = _≟ByteString_
{-
_≟BlockInfo_ : (b₁ b₂ : BlockInfo) → Dec (b₁ ≡ b₂)
l ≟BlockInfo r with ((l ^∙ biEpoch) ≟ (r ^∙ biEpoch))
...| no no-e = no λ where refl → no-e refl
...| yes refl with ((l ^∙ biRound) ≟ (r ^∙ biRound))
...| no no-r = no λ where refl → no-r refl
...| yes refl with ((l ^∙ biId) ≟ (r ^∙ biId))
...| no no-i = no λ where refl → no-i refl
...| yes refl = yes refl
instance
Eq-BlockInfo : Eq BlockInfo
Eq._≟_ Eq-BlockInfo = _≟BlockInfo_
BlockInfo-η : ∀{e1 e2 r1 r2 i1 i2} → e1 ≡ e2 → r1 ≡ r2 → i1 ≡ i2
→ BlockInfo∙new e1 r1 i1 ≡ BlockInfo∙new e2 r2 i2
BlockInfo-η refl refl refl = refl
-}
biNextBlockEpoch : Lens BlockInfo Epoch
biNextBlockEpoch = mkLens' g s
where
g : BlockInfo → Epoch
g bi = maybeS (bi ^∙ biNextEpochState)
(bi ^∙ biEpoch)
( _^∙ esEpoch)
s : BlockInfo → Epoch → BlockInfo
s bi _ = bi -- TODO-1 : cannot be done: need a way to defined only getters
-- ------------------------------------------------------------------------------
record LedgerInfo : Set where
constructor LedgerInfo∙new
field
_liCommitInfo : BlockInfo
_liConsensusDataHash : HashValue
open LedgerInfo public
unquoteDecl liCommitInfo liConsensusDataHash = mkLens (quote LedgerInfo)
(liCommitInfo ∷ liConsensusDataHash ∷ [])
postulate instance enc-LedgerInfo : Encoder LedgerInfo
postulate instance ws-LedgerInfo : WithSig LedgerInfo
-- GETTER only in Haskell
liEpoch : Lens LedgerInfo Epoch
liEpoch = liCommitInfo ∙ biEpoch
-- GETTER only in Haskell
liNextBlockEpoch : Lens LedgerInfo Epoch
liNextBlockEpoch = liCommitInfo ∙ biNextBlockEpoch
-- GETTER only in Haskell
liConsensusBlockId : Lens LedgerInfo HashValue
liConsensusBlockId = liCommitInfo ∙ biId
-- GETTER only in Haskell
liTransactionAccumulatorHash : Lens LedgerInfo HashValue
liTransactionAccumulatorHash = liCommitInfo ∙ biExecutedStateId
-- GETTER only in Haskell
liVersion : Lens LedgerInfo Version
liVersion = liCommitInfo ∙ biVersion
-- GETTER only in Haskell
liNextEpochState : Lens LedgerInfo (Maybe EpochState)
liNextEpochState = mkLens' g s
where
g : LedgerInfo → Maybe EpochState
g = (_^∙ liCommitInfo ∙ biNextEpochState)
s : LedgerInfo → Maybe EpochState → LedgerInfo
s l _ = l -- TODO-1 : cannot be done: need a way to defined only getters
-- GETTER only in Haskell
liEndsEpoch : Lens LedgerInfo Bool
liEndsEpoch = mkLens' g s
where
g : LedgerInfo → Bool
g = is-just ∘ (_^∙ liNextEpochState)
s : LedgerInfo → Bool → LedgerInfo
s l _ = l -- TODO-1 : cannot be done: need a way to defined only getters
LedgerInfo-η : ∀ {ci1 ci2 : BlockInfo} {cdh1 cdh2 : Hash}
→ ci1 ≡ ci2
→ cdh1 ≡ cdh2
→ (LedgerInfo∙new ci1 cdh1) ≡ (LedgerInfo∙new ci2 cdh2)
LedgerInfo-η refl refl = refl
record LedgerInfoWithSignatures : Set where
constructor LedgerInfoWithSignatures∙new
field
_liwsLedgerInfo : LedgerInfo
_liwsSignatures : KVMap Author Signature
open LedgerInfoWithSignatures public
unquoteDecl liwsLedgerInfo liwsSignatures = mkLens (quote LedgerInfoWithSignatures)
(liwsLedgerInfo ∷ liwsSignatures ∷ [])
postulate instance enc-LedgerInfoWithSignatures : Encoder LedgerInfoWithSignatures
-- GETTER only in Haskell
liwsEpoch : Lens LedgerInfoWithSignatures Epoch
liwsEpoch = liwsLedgerInfo ∙ liEpoch
-- GETTER only in Haskell
liwsVersion : Lens LedgerInfoWithSignatures Version
liwsVersion = liwsLedgerInfo ∙ liVersion
-- GETTER only in Haskell
liwsNextEpochState : Lens LedgerInfoWithSignatures (Maybe EpochState)
liwsNextEpochState = liwsLedgerInfo ∙ liNextEpochState
-- ------------------------------------------------------------------------------
record Timeout : Set where
constructor Timeout∙new
field
_toEpoch : Epoch
_toRound : Round
open Timeout public
unquoteDecl toEpoch toRound = mkLens (quote Timeout)
(toEpoch ∷ toRound ∷ [])
postulate instance enc-Timeout : Encoder Timeout
-- ------------------------------------------------------------------------------
record VoteData : Set where
constructor VoteData∙new
field
_vdProposed : BlockInfo
_vdParent : BlockInfo
open VoteData public
unquoteDecl vdProposed vdParent = mkLens (quote VoteData)
(vdProposed ∷ vdParent ∷ [])
postulate instance enc-VoteData : Encoder VoteData
VoteData-η : ∀ {pr1 par1 pr2 par2 : BlockInfo} → pr1 ≡ pr2 → par1 ≡ par2
→ (VoteData∙new pr1 par1) ≡ (VoteData∙new pr2 par2)
VoteData-η refl refl = refl
-- DESIGN NOTE: The _vAuthor field is included only to facilitate lookup of the public key against
-- which to verify the signature. An alternative would be to use an index into the members of the
-- epoch config, which would save message space and therefore bandwidth.
record Vote : Set where
constructor Vote∙new
field
_vVoteData : VoteData
_vAuthor : Author
_vLedgerInfo : LedgerInfo
_vSignature : Signature
_vTimeoutSignature : Maybe Signature
open Vote public
unquoteDecl vVoteData vAuthor vLedgerInfo vSignature vTimeoutSignature = mkLens (quote Vote)
(vVoteData ∷ vAuthor ∷ vLedgerInfo ∷ vSignature ∷ vTimeoutSignature ∷ [])
postulate instance enc-Vote : Encoder Vote
-- not defined in Haskell
vParent : Lens Vote BlockInfo
vParent = vVoteData ∙ vdParent
-- not defined in Haskell
vProposed : Lens Vote BlockInfo
vProposed = vVoteData ∙ vdProposed
-- not defined in Haskell
vParentId : Lens Vote Hash
vParentId = vVoteData ∙ vdParent ∙ biId
-- not defined in Haskell
vParentRound : Lens Vote Round
vParentRound = vVoteData ∙ vdParent ∙ biRound
-- not defined in Haskell
vProposedId : Lens Vote Hash
vProposedId = vVoteData ∙ vdProposed ∙ biId
-- getter only in Haskell
vEpoch : Lens Vote Epoch
vEpoch = vVoteData ∙ vdProposed ∙ biEpoch
-- getter only in Haskell
vRound : Lens Vote Round
vRound = vVoteData ∙ vdProposed ∙ biRound
-- ------------------------------------------------------------------------------
record QuorumCert : Set where
constructor QuorumCert∙new
field
_qcVoteData : VoteData
_qcSignedLedgerInfo : LedgerInfoWithSignatures
open QuorumCert public
unquoteDecl qcVoteData qcSignedLedgerInfo = mkLens (quote QuorumCert)
(qcVoteData ∷ qcSignedLedgerInfo ∷ [])
postulate instance enc-QuorumCert : Encoder QuorumCert
-- Because QuorumCert has an injective encoding (postulated, for now),
-- we can use it to determine equality of QuorumCerts.
_≟QC_ : (q1 q2 : QuorumCert) → Dec (q1 ≡ q2)
_≟QC_ = ≡-Encoder enc-QuorumCert
_QCBoolEq_ : QuorumCert → QuorumCert → Bool
_QCBoolEq_ q1 q2 = does (q1 ≟QC q2)
-- getter only in Haskell
qcCertifiedBlock : Lens QuorumCert BlockInfo
qcCertifiedBlock = qcVoteData ∙ vdProposed
-- getter only in Haskell
qcParentBlock : Lens QuorumCert BlockInfo
qcParentBlock = qcVoteData ∙ vdParent
-- getter only in Haskell
qcLedgerInfo : Lens QuorumCert LedgerInfoWithSignatures
qcLedgerInfo = qcSignedLedgerInfo
-- getter only in Haskell
qcCommitInfo : Lens QuorumCert BlockInfo
qcCommitInfo = qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo
-- getter only in Haskell
qcEndsEpoch : Lens QuorumCert Bool
qcEndsEpoch = mkLens' g s
where
g : QuorumCert → Bool
g q = is-just (q ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liNextEpochState)
s : QuorumCert → Bool → QuorumCert
s q _ = q -- TODO-1 : cannot be done: need a way to defined only getters
-- Constructs a 'vote' that was gathered in a QC.
rebuildVote : QuorumCert → Author × Signature → Vote
rebuildVote qc (α , sig)
= record { _vVoteData = _qcVoteData qc
; _vAuthor = α
; _vLedgerInfo = qc ^∙ (qcSignedLedgerInfo ∙ liwsLedgerInfo)
; _vSignature = sig
; _vTimeoutSignature = nothing -- Is this correct? The original vote may have had a
-- timeout signature, but we don't know. Does it
-- matter?
}
-- Two votes are equivalent if they are identical except they may differ on timeout signature
_≈Vote_ : (v1 v2 : Vote) → Set
v1 ≈Vote v2 = v2 ≡ record v1 { _vTimeoutSignature = _vTimeoutSignature v2 }
qcVotesKV : QuorumCert → KVMap Author Signature
qcVotesKV = _liwsSignatures ∘ _qcSignedLedgerInfo
qcVotes : QuorumCert → List (Author × Signature)
qcVotes qc = kvm-toList (qcVotesKV qc)
-- not defined in Haskell
qcCertifies : Lens QuorumCert Hash
qcCertifies = qcVoteData ∙ vdProposed ∙ biId
-- not defined in Haskell
qcRound : Lens QuorumCert Round
qcRound = qcVoteData ∙ vdProposed ∙ biRound
_qcCertifies : QuorumCert → Hash
_qcCertifies q = q ^∙ qcCertifies
_qcRound : QuorumCert → Round
_qcRound q = q ^∙ qcRound
-- ------------------------------------------------------------------------------
record TimeoutCertificate : Set where
constructor mkTimeoutCertificate
field
_tcTimeout : Timeout
_tcSignatures : KVMap Author Signature
open TimeoutCertificate public
unquoteDecl tcTimeout tcSignatures = mkLens (quote TimeoutCertificate)
(tcTimeout ∷ tcSignatures ∷ [])
TimeoutCertificate∙new : Timeout → TimeoutCertificate
TimeoutCertificate∙new to = mkTimeoutCertificate to Map.empty
-- getter only in haskell
tcEpoch : Lens TimeoutCertificate Epoch
tcEpoch = tcTimeout ∙ toEpoch
-- getter only in haskell
tcRound : Lens TimeoutCertificate Round
tcRound = tcTimeout ∙ toRound
-- ------------------------------------------------------------------------------
data BlockType : Set where
Proposal : TX → Author → BlockType
NilBlock : BlockType
Genesis : BlockType
postulate instance enc-BlockType : Encoder BlockType
postulate -- Valid assumption, payloadIsEmpty
-- TODO-1 : Need to decide what empty means.
-- Only important on epoch change.
payloadIsEmpty : TX → Bool
_≟BlockType_ : (b₁ b₂ : BlockType) → Dec (b₁ ≡ b₂)
Genesis ≟BlockType Genesis = true because ofʸ refl
NilBlock ≟BlockType NilBlock = true because ofʸ refl
(Proposal t₁ a₁) ≟BlockType (Proposal t₂ a₂) with t₁ ≟ t₂
...| no no-t = no λ where refl → no-t refl
...| yes refl with a₁ ≟ a₂
...| no no-a = no λ where refl → no-a refl
...| yes refl = yes refl
Genesis ≟BlockType NilBlock = no (λ ())
Genesis ≟BlockType (Proposal _ _) = no (λ ())
NilBlock ≟BlockType Genesis = no (λ ())
NilBlock ≟BlockType (Proposal _ _) = no (λ ())
(Proposal _ _) ≟BlockType Genesis = no (λ ())
(Proposal _ _) ≟BlockType NilBlock = no (λ ())
instance
Eq-BlockType : Eq BlockType
Eq._≟_ Eq-BlockType = _≟BlockType_
record BlockData : Set where
constructor BlockData∙new
field
_bdEpoch : Epoch
_bdRound : Round
-- QUESTION: How do we represent a block that extends the
-- genesis block, which doesn't come with a QC. Maybe the
-- genesis block has an associated QC established for the epoch?
_bdQuorumCert : QuorumCert
_bdBlockType : BlockType
open BlockData public
unquoteDecl bdEpoch bdRound bdQuorumCert bdBlockType = mkLens (quote BlockData)
(bdEpoch ∷ bdRound ∷ bdQuorumCert ∷ bdBlockType ∷ [])
postulate instance enc-BlockData : Encoder BlockData
-- not defined in Haskell
bdParentId : Lens BlockData Hash
bdParentId = bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId
-- not defined in Haskell
-- This is the id of a block
bdBlockId : Lens BlockData Hash
bdBlockId = bdQuorumCert ∙ qcVoteData ∙ vdProposed ∙ biId
-- getter only in Haskell
bdAuthor : Lens BlockData (Maybe Author)
bdAuthor = mkLens' g s
where
g : BlockData → Maybe Author
g bd = case (bd ^∙ bdBlockType) of λ where
(Proposal _ author) → just author
_ → nothing
s : BlockData → Maybe Author → BlockData
s bd nothing = bd
s bd (just auth) =
bd & bdBlockType %~ λ where
(Proposal tx _) → Proposal tx auth
bdt → bdt
-- getter only in Haskell
bdPayload : Lens BlockData (Maybe TX)
bdPayload = mkLens' g s
where
g : BlockData → Maybe TX
g bd = case bd ^∙ bdBlockType of λ where
(Proposal a _) → just a
_ → nothing
s : BlockData → Maybe TX → BlockData
s bd _ = bd -- TODO-1 : cannot be done: need a way to define only getters
-- ------------------------------------------------------------------------------
-- The signature is a Maybe to allow us to use 'nothing' as the
-- 'bSignature' when constructing a block to sign later. Also,
-- "nil" blocks are not signed because they are produced
-- independently by different validators. This is to enable
-- committing after an epoch-changing command is processed: we
-- cannot add more commands, but we need to add some quorum
-- certificates in order to commit the epoch-changing command.
record Block : Set where
constructor Block∙new
field
_bId : HashValue
_bBlockData : BlockData
_bSignature : Maybe Signature
open Block public
unquoteDecl bId bBlockData bSignature = mkLens (quote Block)
(bId ∷ bBlockData ∷ bSignature ∷ [])
postulate instance enc : Encoder Block
-- getter only in Haskell
bAuthor : Lens Block (Maybe Author)
bAuthor = bBlockData ∙ bdAuthor
-- getter only in Haskell
bEpoch : Lens Block Epoch
bEpoch = bBlockData ∙ bdEpoch
-- getter only in Haskell
bRound : Lens Block Round
bRound = bBlockData ∙ bdRound
-- getter only in Haskell
bQuorumCert : Lens Block QuorumCert
bQuorumCert = bBlockData ∙ bdQuorumCert
-- getter only in Haskell
bParentId : Lens Block HashValue
bParentId = bQuorumCert ∙ qcCertifiedBlock ∙ biId
-- getter only in Haskell
bPayload : Lens Block (Maybe TX)
bPayload = bBlockData ∙ bdPayload
bdQcSigs : Lens Block (KVMap Author Signature)
bdQcSigs = bBlockData ∙ bdQuorumCert ∙ qcLedgerInfo ∙ liwsSignatures
-- Equivalence of Blocks modulo signatures (both on the Block and in the QuorumCert it contains)
infix 4 _≈Block_
_≈Block_ : (b₁ b₂ : Block) → Set
b₁ ≈Block b₂ = b₁ ≡ (b₂ & bSignature ∙~ (b₁ ^∙ bSignature)
& bdQcSigs ∙~ (b₁ ^∙ bdQcSigs))
sym≈Block : Symmetric _≈Block_
sym≈Block refl = refl
-- ------------------------------------------------------------------------------
record AccumulatorExtensionProof : Set where
constructor AccumulatorExtensionProof∙new
field
_aepObmNumLeaves : Version
open AccumulatorExtensionProof public
unquoteDecl aepObmNumLeaves = mkLens (quote AccumulatorExtensionProof)
(aepObmNumLeaves ∷ [])
record VoteProposal : Set where
constructor VoteProposal∙new
field
_vpAccumulatorExtensionProof : AccumulatorExtensionProof
_vpBlock : Block
_vpNextEpochState : Maybe EpochState
open VoteProposal public
unquoteDecl vpAccumulatorExtensionProof vpBlock vpNextEpochState = mkLens (quote VoteProposal)
(vpAccumulatorExtensionProof ∷ vpBlock ∷ vpNextEpochState ∷ [])
record MaybeSignedVoteProposal : Set where
constructor MaybeSignedVoteProposal∙new
field
_msvpVoteProposal : VoteProposal
open MaybeSignedVoteProposal public
unquoteDecl msvpVoteProposal = mkLens (quote MaybeSignedVoteProposal)
(msvpVoteProposal ∷ [])
-- ------------------------------------------------------------------------------
record LastVoteInfo : Set where
constructor LastVoteInfo∙new
field
_lviLiDigest : HashValue
_lviRound : Round
_lviIsTimeout : Bool
open LastVoteInfo public
record PendingVotes : Set where
constructor mkPendingVotes
field
_pvLiDigestToVotes : KVMap HashValue LedgerInfoWithSignatures
_pvMaybePartialTC : Maybe TimeoutCertificate
_pvAuthorToVote : KVMap Author Vote
open PendingVotes public
unquoteDecl pvLiDigestToVotes pvMaybePartialTC pvAuthorToVote = mkLens (quote PendingVotes)
(pvLiDigestToVotes ∷ pvMaybePartialTC ∷ pvAuthorToVote ∷ [])
PendingVotes∙new : PendingVotes
PendingVotes∙new = mkPendingVotes Map.empty nothing Map.empty
-- ------------------------------------------------------------------------------
record StateComputeResult : Set where
constructor StateComputeResult∙new
field
_scrObmNumLeaves : Version
_scrEpochState : Maybe EpochState
open StateComputeResult public
unquoteDecl scrObmNumLeaves scrEpochState = mkLens (quote StateComputeResult)
(scrObmNumLeaves ∷ scrEpochState ∷ [])
postulate -- TODO: eliminate after fully implementing executeBlockE
stateComputeResult : StateComputeResult
record ExecutedBlock : Set where
constructor ExecutedBlock∙new
field
_ebBlock : Block
_ebStateComputeResult : StateComputeResult
open ExecutedBlock public
unquoteDecl ebBlock ebStateComputeResult = mkLens (quote ExecutedBlock)
(ebBlock ∷ ebStateComputeResult ∷ [])
-- getter only in Haskell
ebId : Lens ExecutedBlock HashValue
ebId = ebBlock ∙ bId
-- getter only in Haskell
ebQuorumCert : Lens ExecutedBlock QuorumCert
ebQuorumCert = ebBlock ∙ bQuorumCert
-- getter only in Haskell
ebParentId : Lens ExecutedBlock HashValue
ebParentId = ebQuorumCert ∙ qcCertifiedBlock ∙ biId
-- getter only in Haskell
ebRound : Lens ExecutedBlock Round
ebRound = ebBlock ∙ bRound
-- ------------------------------------------------------------------------------
record LinkableBlock : Set where
constructor LinkableBlock∙new
field
_lbExecutedBlock : ExecutedBlock
-- _lbChildren : Set HashValue
open LinkableBlock public
unquoteDecl lbExecutedBlock = mkLens (quote LinkableBlock)
(lbExecutedBlock ∷ [])
-- getter only in Haskell
lbId : Lens LinkableBlock HashValue
lbId = lbExecutedBlock ∙ ebId
-- ------------------------------------------------------------------------------
-- A block tree depends on a epoch config but works regardlesss of which
-- EpochConfig we have.
record BlockTree : Set where
constructor mkBlockTree
field
_btIdToBlock : KVMap HashValue LinkableBlock
_btRootId : HashValue
_btHighestCertifiedBlockId : HashValue
_btHighestQuorumCert : QuorumCert
_btHighestTimeoutCert : Maybe TimeoutCertificate
_btHighestCommitCert : QuorumCert
_btIdToQuorumCert : KVMap HashValue QuorumCert
_btPrunedBlockIds : VecDeque
_btMaxPrunedBlocksInMem : ℕ
open BlockTree public
unquoteDecl btIdToBlock btRootId btHighestCertifiedBlockId btHighestQuorumCert
btHighestTimeoutCert btHighestCommitCert
btIdToQuorumCert btPrunedBlockIds
btMaxPrunedBlocksInMem = mkLens (quote BlockTree)
(btIdToBlock ∷ btRootId ∷ btHighestCertifiedBlockId ∷ btHighestQuorumCert ∷
btHighestTimeoutCert ∷ btHighestCommitCert ∷
btIdToQuorumCert ∷ btPrunedBlockIds ∷
btMaxPrunedBlocksInMem ∷ [])
btGetLinkableBlock : HashValue → BlockTree → Maybe LinkableBlock
btGetLinkableBlock hv bt = Map.lookup hv (bt ^∙ btIdToBlock)
btGetBlock : HashValue → BlockTree → Maybe ExecutedBlock
btGetBlock hv bt = (_^∙ lbExecutedBlock) <$> btGetLinkableBlock hv bt
-- getter only in Haskell
btRoot : Lens BlockTree (Maybe ExecutedBlock)
btRoot = mkLens' g s
where
g : BlockTree → Maybe ExecutedBlock
g bt = btGetBlock (bt ^∙ btRootId) bt
-- TODO-1 : the setter is not needed/defined in Haskell
-- Defining it just to make progress, but it can't be defined
-- correctly in terms of type correctness (let alone setting a new root!)
s : BlockTree → Maybe ExecutedBlock → BlockTree
s bt _ = bt -- TODO-1 : cannot be done: need a way to defined only getters
-- getter only in haskell
btHighestCertifiedBlock : Lens BlockTree (Maybe ExecutedBlock)
btHighestCertifiedBlock = mkLens' g s
where
g : BlockTree → (Maybe ExecutedBlock)
g bt = btGetBlock (bt ^∙ btHighestCertifiedBlockId) bt
s : BlockTree → (Maybe ExecutedBlock) → BlockTree
s bt _ = bt -- TODO-1 : cannot be done: need a way to defined only getters
-- ------------------------------------------------------------------------------
record LedgerStore : Set where
constructor mkLedgerStore
field
_lsObmVersionToEpoch : Map.KVMap Version Epoch
_lsObmEpochToLIWS : Map.KVMap Epoch LedgerInfoWithSignatures
_lsLatestLedgerInfo : Maybe LedgerInfoWithSignatures
open LedgerStore public
unquoteDecl lsObmVersionToEpoch lsObmEpochToLIWS lsLatestLedgerInfo = mkLens (quote LedgerStore)
(lsObmVersionToEpoch ∷ lsObmEpochToLIWS ∷ lsLatestLedgerInfo ∷ [])
record DiemDB : Set where
constructor DiemDB∙new
field
_ddbLedgerStore : LedgerStore
open DiemDB public
unquoteDecl ddbLedgerStore = mkLens (quote DiemDB)
(ddbLedgerStore ∷ [])
record LedgerRecoveryData : Set where
constructor LedgerRecoveryData∙new
field
_lrdStorageLedger : LedgerInfo
record MockSharedStorage : Set where
constructor mkMockSharedStorage
field
-- Safety state
_mssBlock : Map.KVMap HashValue Block
_mssQc : Map.KVMap HashValue QuorumCert
_mssLis : Map.KVMap Version LedgerInfoWithSignatures
_mssLastVote : Maybe Vote
-- Liveness state
_mssHighestTimeoutCertificate : Maybe TimeoutCertificate
_mssValidatorSet : ValidatorSet
open MockSharedStorage public
unquoteDecl mssBlock mssQc mssLis mssLastVote
mssHighestTimeoutCertificate mssValidatorSet = mkLens (quote MockSharedStorage)
(mssBlock ∷ mssQc ∷ mssLis ∷ mssLastVote ∷
mssHighestTimeoutCertificate ∷ mssValidatorSet ∷ [])
record MockStorage : Set where
constructor MockStorage∙new
field
_msSharedStorage : MockSharedStorage
_msStorageLedger : LedgerInfo
_msObmDiemDB : DiemDB
open MockStorage public
unquoteDecl msSharedStorage msStorageLedger msObmDiemDB = mkLens (quote MockStorage)
(msSharedStorage ∷ msStorageLedger ∷ msObmDiemDB ∷ [])
PersistentLivenessStorage = MockStorage
-- IMPL-DIFF : This is defined without record fields in Haskell.
-- The record fields below are never used. But RootInfo must be a record for pattern matching.
record RootInfo : Set where
constructor RootInfo∙new
field
_riBlock : Block
_riQC1 : QuorumCert
_riQC2 : QuorumCert
-- ------------------------------------------------------------------------------
record SafetyData : Set where
constructor SafetyData∙new
field
_sdEpoch : Epoch
_sdLastVotedRound : Round
_sdPreferredRound : Round
_sdLastVote : Maybe Vote
open SafetyData public
unquoteDecl sdEpoch sdLastVotedRound sdPreferredRound sdLastVote =
mkLens (quote SafetyData)
(sdEpoch ∷ sdLastVotedRound ∷ sdPreferredRound ∷ sdLastVote ∷ [])
record Waypoint : Set where
constructor Waypoint∙new
field
_wVersion : Version
_wValue : HashValue
open Waypoint public
unquoteDecl wVersion wValue = mkLens (quote Waypoint)
(wVersion ∷ wValue ∷ [])
postulate instance enc-Waypoint : Encoder Waypoint
record PersistentSafetyStorage : Set where
constructor mkPersistentSafetyStorage
field
_pssSafetyData : SafetyData
_pssAuthor : Author
_pssWaypoint : Waypoint
_pssObmSK : Maybe SK
open PersistentSafetyStorage public
unquoteDecl pssSafetyData pssAuthor pssWaypoint pssObmSK = mkLens (quote PersistentSafetyStorage)
(pssSafetyData ∷ pssAuthor ∷ pssWaypoint ∷ pssObmSK ∷ [])
record OnChainConfigPayload : Set where
constructor OnChainConfigPayload∙new
field
_occpEpoch : Epoch
_occpObmValidatorSet : ValidatorSet
open OnChainConfigPayload public
unquoteDecl occpEpoch occpObmValidatorSet = mkLens (quote OnChainConfigPayload)
(occpEpoch ∷ occpObmValidatorSet ∷ [])
-- instance S.Serialize OnChainConfigPayload
record ReconfigEventEpochChange : Set where
constructor ReconfigEventEpochChange∙new
field
_reecOnChainConfigPayload : OnChainConfigPayload
-- instance S.Serialize ReconfigEventEpochChange
-- ------------------------------------------------------------------------------
-- IMPL-DIFF : Haskell StateComputer has pluggable functions.
-- The Agda version just calls them directly
record StateComputer : Set where
constructor StateComputer∙new
field
_scObmVersion : Version
open StateComputer public
unquoteDecl scObmVersion = mkLens (quote StateComputer)
(scObmVersion ∷ [])
StateComputerComputeType
= StateComputer → Block → HashValue
→ Either (List String) StateComputeResult
StateComputerCommitType
= StateComputer → DiemDB → ExecutedBlock → LedgerInfoWithSignatures
→ Either (List String) (StateComputer × DiemDB × Maybe ReconfigEventEpochChange)
StateComputerSyncToType
= LedgerInfoWithSignatures
→ Either (List String) ReconfigEventEpochChange
-- ------------------------------------------------------------------------------
record BlockStore : Set where
constructor BlockStore∙new
field
_bsInner : BlockTree
_bsStateComputer : StateComputer
_bsStorage : PersistentLivenessStorage
open BlockStore public
unquoteDecl bsInner bsStateComputer bsStorage = mkLens (quote BlockStore)
(bsInner ∷ bsStateComputer ∷ bsStorage ∷ [])
postulate -- TODO: stateComputer
stateComputer : StateComputer
-- getter only in Haskell
bsRoot : Lens BlockStore (Maybe ExecutedBlock)
bsRoot = bsInner ∙ btRoot
-- getter only in Haskell
bsHighestQuorumCert : Lens BlockStore QuorumCert
bsHighestQuorumCert = bsInner ∙ btHighestQuorumCert
-- getter only in Haskell
bsHighestCommitCert : Lens BlockStore QuorumCert
bsHighestCommitCert = bsInner ∙ btHighestCommitCert
-- getter only in Haskell
bsHighestTimeoutCert : Lens BlockStore (Maybe TimeoutCertificate)
bsHighestTimeoutCert = bsInner ∙ btHighestTimeoutCert
-- ------------------------------------------------------------------------------
data NewRoundReason : Set where
QCReady : NewRoundReason
TOReady : NewRoundReason
record NewRoundEvent : Set where
constructor NewRoundEvent∙new
field
_nreRound : Round
_nreReason : NewRoundReason
_nreTimeout : Duration
unquoteDecl nreRound nreReason nreTimeout = mkLens (quote NewRoundEvent)
(nreRound ∷ nreReason ∷ nreTimeout ∷ [])
-- LibraBFT.ImplShared.Consensus.Types contains
-- ExponentialTimeInterval, RoundState
-- ------------------------------------------------------------------------------
record ProposalGenerator : Set where
constructor ProposalGenerator∙new
field
_pgLastRoundGenerated : Round
open ProposalGenerator
unquoteDecl pgLastRoundGenerated = mkLens (quote ProposalGenerator)
(pgLastRoundGenerated ∷ [])
-- ------------------------------------------------------------------------------
data ObmNotValidProposerReason : Set where
ProposalDoesNotHaveAnAuthor ProposerForBlockIsNotValidForThisRound NotValidProposer : ObmNotValidProposerReason
record ProposerElection : Set where
constructor ProposerElection∙new
field
_peProposers : List Author -- TODO-1 : this should be 'Set Author'
-- _peObmLeaderOfRound : LeaderOfRoundFn
-- _peObmNodesInOrder : NodesInOrder
open ProposerElection
-- ------------------------------------------------------------------------------
record SafetyRules : Set where
constructor mkSafetyRules
field
_srPersistentStorage : PersistentSafetyStorage
_srExportConsensusKey : Bool
_srValidatorSigner : Maybe ValidatorSigner
_srEpochState : Maybe EpochState
open SafetyRules public
unquoteDecl srPersistentStorage srExportConsensusKey srValidatorSigner srEpochState = mkLens (quote SafetyRules)
(srPersistentStorage ∷ srExportConsensusKey ∷ srValidatorSigner ∷ srEpochState ∷ [])
-- ------------------------------------------------------------------------------
record BlockRetrievalRequest : Set where
constructor BlockRetrievalRequest∙new
field
_brqObmFrom : Author
_brqBlockId : HashValue
_brqNumBlocks : U64
open BlockRetrievalRequest public
unquoteDecl brqObmFrom brqBlockId brqNumBlocks = mkLens (quote BlockRetrievalRequest)
(brqObmFrom ∷ brqBlockId ∷ brqNumBlocks ∷ [])
postulate instance enc-BlockRetrievalRequest : Encoder BlockRetrievalRequest
data BlockRetrievalStatus : Set where
BRSSucceeded BRSIdNotFound BRSNotEnoughBlocks : BlockRetrievalStatus
open BlockRetrievalStatus public
postulate instance enc-BlockRetrievalState : Encoder BlockRetrievalStatus
brs-eq : (brs₁ brs₂ : BlockRetrievalStatus) → Dec (brs₁ ≡ brs₂)
brs-eq BRSSucceeded BRSSucceeded = yes refl
brs-eq BRSSucceeded BRSIdNotFound = no λ ()
brs-eq BRSSucceeded BRSNotEnoughBlocks = no λ ()
brs-eq BRSIdNotFound BRSSucceeded = no λ ()
brs-eq BRSIdNotFound BRSIdNotFound = yes refl
brs-eq BRSIdNotFound BRSNotEnoughBlocks = no λ ()
brs-eq BRSNotEnoughBlocks BRSSucceeded = no λ ()
brs-eq BRSNotEnoughBlocks BRSIdNotFound = no λ ()
brs-eq BRSNotEnoughBlocks BRSNotEnoughBlocks = yes refl
instance
Eq-BlockRetrievalStatus : Eq BlockRetrievalStatus
Eq._≟_ Eq-BlockRetrievalStatus = brs-eq
record BlockRetrievalResponse : Set where
constructor BlockRetrievalResponse∙new
field
_brpObmFrom : (Author × Epoch × Round) -- for logging
_brpStatus : BlockRetrievalStatus
_brpBlocks : List Block
unquoteDecl brpObmFrom brpStatus brpBlocks = mkLens (quote BlockRetrievalResponse)
(brpObmFrom ∷ brpStatus ∷ brpBlocks ∷ [])
postulate instance enc-BlockRetrievalResponse : Encoder BlockRetrievalResponse
-- ------------------------------------------------------------------------------
-- LibraBFT.ImplShared.Consensus.Types contains
-- ObmNeedFetch, RoundManager
-- ------------------------------------------------------------------------------
record BlockRetriever : Set where
constructor BlockRetriever∙new
field
_brDeadline : Instant
_brPreferredPeer : Author
open BlockRetriever public
unquoteDecl brDeadline brPreferredPeer = mkLens (quote BlockRetriever)
(brDeadline ∷ brPreferredPeer ∷ [])
-- ------------------------------------------------------------------------------
record SyncInfo : Set where
constructor mkSyncInfo -- Bare constructor to enable pattern matching against SyncInfo; "smart"
-- constructor SyncInfo∙new is below
field
_siHighestQuorumCert : QuorumCert
_sixxxHighestCommitCert : Maybe QuorumCert
_siHighestTimeoutCert : Maybe TimeoutCertificate
open SyncInfo public
-- Note that we do not automatically derive a lens for siHighestCommitCert;
-- it is defined manually below.
unquoteDecl siHighestQuorumCert sixxxHighestCommitCert siHighestTimeoutCert = mkLens (quote SyncInfo)
(siHighestQuorumCert ∷ sixxxHighestCommitCert ∷ siHighestTimeoutCert ∷ [])
postulate instance enc-SyncInfo : Encoder SyncInfo
SyncInfo∙new : QuorumCert → QuorumCert → Maybe TimeoutCertificate → SyncInfo
SyncInfo∙new highestQuorumCert highestCommitCert highestTimeoutCert =
record { _siHighestQuorumCert = highestQuorumCert
; _sixxxHighestCommitCert = if highestQuorumCert QCBoolEq highestCommitCert
then nothing else (just highestCommitCert)
; _siHighestTimeoutCert = highestTimeoutCert }
-- getter only in Haskell
siHighestCommitCert : Lens SyncInfo QuorumCert
siHighestCommitCert =
mkLens' (λ x → fromMaybe (x ^∙ siHighestQuorumCert) (x ^∙ sixxxHighestCommitCert))
(λ x qc → record x { _sixxxHighestCommitCert = just qc })
-- getter only in Haskell
siHighestCertifiedRound : Lens SyncInfo Round
siHighestCertifiedRound = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound
-- getter only in Haskell
siHighestTimeoutRound : Lens SyncInfo Round
siHighestTimeoutRound =
mkLens' (maybe 0 (_^∙ tcRound) ∘ (_^∙ siHighestTimeoutCert))
(λ x _r → x) -- TODO-1
-- getter only in Haskell
siHighestCommitRound : Lens SyncInfo Round
siHighestCommitRound = siHighestCommitCert ∙ qcCommitInfo ∙ biRound
-- getter only in Haskell
siHighestRound : Lens SyncInfo Round
siHighestRound =
mkLens' (λ x → (x ^∙ siHighestCertifiedRound) ⊔ (x ^∙ siHighestTimeoutRound))
(λ x _r → x) -- TODO-1
-- getter only in Haskell
siEpoch : Lens SyncInfo Epoch
siEpoch = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biEpoch
-- getter only in Haskell
siObmRound : Lens SyncInfo Round
siObmRound = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound
-- ------------------------------------------------------------------------------
record ProposalMsg : Set where
constructor ProposalMsg∙new
field
_pmProposal : Block
_pmSyncInfo : SyncInfo
open ProposalMsg public
unquoteDecl pmProposal pmSyncInfo = mkLens (quote ProposalMsg)
(pmProposal ∷ pmSyncInfo ∷ [])
postulate instance enc-ProposalMsg : Encoder ProposalMsg
-- getter only in Haskell
pmEpoch : Lens ProposalMsg Epoch
pmEpoch = pmProposal ∙ bEpoch
-- getter only in Haskell
pmRound : Lens ProposalMsg Round
pmRound = pmProposal ∙ bRound
-- getter only in Haskell
pmProposer : Lens ProposalMsg (Maybe Author)
pmProposer = pmProposal ∙ bAuthor
-- ------------------------------------------------------------------------------
record VoteMsg : Set where
constructor VoteMsg∙new
field
_vmVote : Vote
_vmSyncInfo : SyncInfo
open VoteMsg public
unquoteDecl vmVote vmSyncInfo = mkLens (quote VoteMsg)
(vmVote ∷ vmSyncInfo ∷ [])
postulate instance enc-VoteMsg : Encoder VoteMsg
-- not defined in Haskell
vmProposed : Lens VoteMsg BlockInfo
vmProposed = vmVote ∙ vVoteData ∙ vdProposed
-- not defined in Haskell
vmParent : Lens VoteMsg BlockInfo
vmParent = vmVote ∙ vVoteData ∙ vdParent
-- getter-only in Haskell
vmEpoch : Lens VoteMsg Epoch
vmEpoch = vmVote ∙ vEpoch
-- getter-only in Haskell
vmRound : Lens VoteMsg Round
vmRound = vmVote ∙ vRound
-- ------------------------------------------------------------------------------
-- This is a notification of a commit. It may not be explicitly included in an implementation,
-- but we need something to be able to express correctness conditions. It will
-- probably have something different in it, but will serve the purpose for now.
record CommitMsg : Set where
constructor CommitMsg∙new
field
_cmEpoch : Epoch
_cmAuthor : NodeId
_cmRound : Round
_cmCert : QuorumCert -- We assume for now that a CommitMsg contains the QuorumCert of the head of the 3-chain
_cmSigMB : Maybe Signature
open CommitMsg public
unquoteDecl cmEpoch cmAuthor cmRound cmCert cmSigMB = mkLens (quote CommitMsg)
(cmEpoch ∷ cmAuthor ∷ cmRound ∷ cmCert ∷ cmSigMB ∷ [])
postulate instance enc-CommitMsg : Encoder CommitMsg
-- ------------------------------------------------------------------------------
data RootMetadata : Set where RootMetadata∙new : RootMetadata
-- ------------------------------------------------------------------------------
record RecoveryData : Set where
constructor mkRecoveryData
field
_rdLastVote : Maybe Vote
_rdRoot : RootInfo
_rdRootMetadata : RootMetadata
_rdBlocks : List Block
_rdQuorumCerts : List QuorumCert
_rdBlocksToPrune : Maybe (List HashValue)
_rdHighestTimeoutCertificate : Maybe TimeoutCertificate
open RecoveryData public
unquoteDecl rdLastVote rdRoot rdRootMetadata rdBlocks
rdQuorumCerts rdBlocksToPrune rdHighestTimeoutCertificate = mkLens (quote RecoveryData)
(rdLastVote ∷ rdRoot ∷ rdRootMetadata ∷ rdBlocks ∷
rdQuorumCerts ∷ rdBlocksToPrune ∷ rdHighestTimeoutCertificate ∷ [])
------------------------------------------------------------------------------
record EpochChangeProof : Set where
constructor EpochChangeProof∙new
field
_ecpLedgerInfoWithSigs : List LedgerInfoWithSignatures
_ecpMore : Bool
open EpochChangeProof public
unquoteDecl ecpLedgerInfoWithSigs ecpMore = mkLens (quote EpochChangeProof)
(ecpLedgerInfoWithSigs ∷ ecpMore ∷ [])
-- instance S.Serialize EpochChangeProof
record Ledger2WaypointConverter : Set where
constructor mkLedger2WaypointConverter
field
_l2wcEpoch : Epoch
_l2wcRootHash : HashValue
_l2wcVersion : Version
--_l2wcTimestamp : Instant
_l2wcNextEpochState : Maybe EpochState
open Ledger2WaypointConverter public
unquoteDecl l2wcEpoch 2wcRootHash 2wcVersion
{-l2wcTimestamp-} l2wcNextEpochState = mkLens (quote Ledger2WaypointConverter)
(l2wcEpoch ∷ 2wcRootHash ∷ 2wcVersion ∷
{-l2wcTimestamp-} l2wcNextEpochState ∷ [])
record EpochRetrievalRequest : Set where
constructor EpochRetrievalRequest∙new
field
_eprrqStartEpoch : Epoch
_eprrqEndEpoch : Epoch
unquoteDecl eprrqStartEpoch eprrqEndEpoch = mkLens (quote EpochRetrievalRequest)
(eprrqStartEpoch ∷ eprrqEndEpoch ∷ [])
-- instance S.Serialize EpochRetrievalRequest
------------------------------------------------------------------------------
record ConsensusState : Set where
constructor ConsensusState∙new
field
_csSafetyData : SafetyData
_csWaypoint : Waypoint
--_csInValidatorSet : Bool -- LBFT-OBM-DIFF: only used in tests in Rust
open ConsensusState public
unquoteDecl csSafetyData csWaypoint {-csInValidatorSet-} = mkLens (quote ConsensusState)
(csSafetyData ∷ csWaypoint {-∷ csInValidatorSet-} ∷ [])
------------------------------------------------------------------------------
data SafetyRulesWrapper : Set where
SRWLocal : SafetyRules → SafetyRulesWrapper
record SafetyRulesManager : Set where
constructor mkSafetyRulesManager
field
_srmInternalSafetyRules : SafetyRulesWrapper
open SafetyRulesWrapper public
unquoteDecl srmInternalSafetyRules = mkLens (quote SafetyRulesManager)
(srmInternalSafetyRules ∷ [])
data SafetyRulesService : Set where
SRSLocal : SafetyRulesService
record SafetyRulesConfig : Set where
constructor SafetyRulesConfig∙new
field
_srcService : SafetyRulesService
_srcExportConsensusKey : Bool
_srcObmGenesisWaypoint : Waypoint
open SafetyRulesConfig public
unquoteDecl srcService srcExportConsensusKey srcObmGenesisWaypoint = mkLens (quote SafetyRulesConfig)
(srcService ∷ srcExportConsensusKey ∷ srcObmGenesisWaypoint ∷ [])
record ConsensusConfig : Set where
constructor ConsensusConfig∙new
field
_ccMaxPrunedBlocksInMem : Usize
_ccRoundInitialTimeoutMS : U64
_ccSafetyRules : SafetyRulesConfig
_ccSyncOnly : Bool
open ConsensusConfig public
unquoteDecl ccMaxPrunedBlocksInMem ccRoundInitialTimeoutMS ccSafetyRules ccSyncOnly = mkLens (quote ConsensusConfig)
(ccMaxPrunedBlocksInMem ∷ ccRoundInitialTimeoutMS ∷ ccSafetyRules ∷ ccSyncOnly ∷ [])
record NodeConfig : Set where
constructor NodeConfig∙new
field
_ncObmMe : AuthorName
_ncConsensus : ConsensusConfig
open NodeConfig public
unquoteDecl ncObmMe ncConsensus = mkLens (quote NodeConfig)
(ncObmMe ∷ ncConsensus ∷ [])
record RecoveryManager : Set where
constructor RecoveryManager∙new
field
_rcmEpochState : EpochState
_rcmStorage : PersistentLivenessStorage
--_rcmStateComputer : StateComputer
_rcmLastCommittedRound : Round
open RecoveryManager public
unquoteDecl rcmEpochState rcmStorage {- rcmStateComputer-} rcmLastCommittedRound = mkLens (quote RecoveryManager)
(rcmEpochState ∷ rcmStorage {-∷ rcmStateComputer-} ∷ rcmLastCommittedRound ∷ [])
-- RoundProcessor in EpochManagerTypes (because it depends on RoundManager)
-- EpochManager in EpochManagerTypes (because it depends on RoundProcessor)
-- ------------------------------------------------------------------------------
data VoteReceptionResult : Set where
QCVoteAdded : U64 → VoteReceptionResult
TCVoteAdded : U64 → VoteReceptionResult
DuplicateVote : VoteReceptionResult
EquivocateVote : VoteReceptionResult
NewQuorumCertificate : QuorumCert → VoteReceptionResult
NewTimeoutCertificate : TimeoutCertificate → VoteReceptionResult
UnexpectedRound : Round → Round → VoteReceptionResult
VRR_TODO : VoteReceptionResult
-- ------------------------------------------------------------------------------
-- LibraBFT.ImplShared.Interface.Output contains
-- Output
-- ------------------------------------------------------------------------------
data VerifyError : Set where
UnknownAuthor : AuthorName → VerifyError
TooLittleVotingPower : U64 → U64 → VerifyError
TooManySignatures : Usize → Usize → VerifyError
InvalidSignature : VerifyError
| {
"alphanum_fraction": 0.6474355254,
"avg_line_length": 37.1848920863,
"ext": "agda",
"hexsha": "22af0cbd64cb6d3008b5502ec90f7456040d3afd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 13850,
"size": 51687
} |
-- Actually, we're cheating (for expediency); this is
-- Symmetric Rig, not just Rig.
module Categories.RigCategory where
open import Level
open import Data.Fin renaming (zero to 0F; suc to sucF)
open import Data.Product using (_,_)
open import Categories.Category
open import Categories.Functor
open import Categories.Monoidal
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Braided.Helpers
open import Categories.Monoidal.Symmetric
open import Categories.Monoidal.Helpers
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘₀_; _∘₁_; _∘ˡ_; _∘ʳ_; NaturalTransformation) renaming (_≡_ to _≡ⁿ_; id to idⁿ)
-- first round of setting up, just for defining the NaturalIsomorphisms
-- of Rig. Next one will be for the equalities.
module BimonoidalHelperFunctors {o ℓ e} {C : Category o ℓ e}
{M⊎ M× : Monoidal C} (B⊎ : Braided M⊎) (B× : Braided M×) where
private
module C = Category C
module M⊎ = Monoidal M⊎
module M× = Monoidal M×
module B⊎ = Braided B⊎
module B× = Braided B×
module h⊎ = MonoidalHelperFunctors C M⊎.⊗ M⊎.id
module h× = MonoidalHelperFunctors C M×.⊗ M×.id
module b⊎ = BraidedHelperFunctors C M⊎.⊗ M⊎.id
module b× = BraidedHelperFunctors C M×.⊗ M×.id
module br⊎ = b⊎.Braiding M⊎.identityˡ M⊎.identityʳ M⊎.assoc B⊎.braid
module br× = b×.Braiding M×.identityˡ M×.identityʳ M×.assoc B×.braid
import Categories.Power.NaturalTransformation
private module PowNat = Categories.Power.NaturalTransformation C
open PowNat hiding (module C)
-- for convenience of multiple of the larger equations, define
-- shorthands for 3 and 4 variables
x⊗z : Powerendo 3
x⊗z = select 0 h×.⊗₂ select 2
z⊗x : Powerendo 3
z⊗x = (select 2) h×.⊗₂ (select 0)
z⊗y : Powerendo 3
z⊗y = select 2 h×.⊗₂ select 1
y⊗z : Powerendo 3
y⊗z = select 1 h×.⊗₂ select 2
x : Powerendo 4
x = select 0
y : Powerendo 4
y = select 1
z : Powerendo 4
z = select 2
w : Powerendo 4
w = select 3
-- combinations of 3 variables
x⊗[y⊕z] : Powerendo 3
x⊗[y⊕z] = h×.x h×.⊗ (h⊎.x⊗y)
x⊗[z⊕y] : Powerendo 3
x⊗[z⊕y] = h×.x h×.⊗ h⊎.y⊗x
[x⊕y]⊗z : Powerendo 3
[x⊕y]⊗z = (h⊎.x⊗y) h×.⊗ h×.x
z⊗[x⊕y] : Powerendo 3
z⊗[x⊕y] = (select 2) h×.⊗₂ ((select 0) h⊎.⊗₂ (select 1))
[x⊗y]⊕[x⊗z] : Powerendo 3
[x⊗y]⊕[x⊗z] = (select 0 h×.⊗₂ select 1) h⊎.⊗₂ (select 0 h×.⊗₂ select 2)
[x⊗z]⊕[y⊗z] : Powerendo 3
[x⊗z]⊕[y⊗z] = (select 0 h×.⊗₂ select 2) h⊎.⊗₂ (select 1 h×.⊗₂ select 2)
[z⊗x]⊕[z⊗y] : Powerendo 3
[z⊗x]⊕[z⊗y] = z⊗x h⊎.⊗₂ z⊗y
[x⊗z]⊕[x⊗y] : Powerendo 3
[x⊗z]⊕[x⊗y] = x⊗z h⊎.⊗₂ (select 0 h×.⊗₂ select 1)
x⊗0 : Powerendo 1
x⊗0 = h⊎.x h×.⊗ h⊎.id↑
0⊗x : Powerendo 1
0⊗x = h⊎.id↑ h×.⊗ h⊎.x
0↑ : Powerendo 1
0↑ = widenˡ 1 h⊎.id↑
xy : Powerendo 4
xy = widenʳ 2 h×.x⊗y
yz : Powerendo 4
yz = select 1 h×.⊗₂ select 2
xw : Powerendo 4
xw = select 0 h×.⊗₂ select 3
yw : Powerendo 4
yw = select 1 h×.⊗₂ select 3
zw : Powerendo 4
zw = select 2 h×.⊗₂ select 3
xz : Powerendo 4
xz = select 0 h×.⊗₂ select 2
z⊕w : Powerendo 4
z⊕w = widenˡ 2 h⊎.x⊗y
-- for 2 variables
x₂ : Powerendo 2
x₂ = widenʳ 1 h×.x
y₂ : Powerendo 2
y₂ = widenˡ 1 h×.x
-- 0 variables!
0₀ : Powerendo 0
0₀ = h⊎.id↑
0⊗0 : Powerendo 0
0⊗0 = 0₀ h×.⊗ 0₀
0⊕0 : Powerendo 0
0⊕0 = 0₀ h⊎.⊗ 0₀
1₀ : Powerendo 0
1₀ = h×.id↑
-- 1 variable + 0
A0 : Powerendo 1
A0 = h×.x h×.⊗ 0₀
0A : Powerendo 1
0A = 0₀ h×.⊗ h×.x
-- 2 variables + 0
0₂ : Powerendo 2
0₂ = widenʳ 2 0₀
0[A⊕B] : Powerendo 2
0[A⊕B] = 0₂ h×.⊗₂ h⊎.x⊗y
0[AB] : Powerendo 2
0[AB] = 0₀ h×.⊗ (h×.x⊗y)
[0A]B : Powerendo 2
[0A]B = 0A h×.⊗ h×.x
0A₂ : Powerendo 2
0A₂ = 0₂ h×.⊗₂ select 0
0B : Powerendo 2
0B = 0₂ h×.⊗₂ (select 1)
A0₂ : Powerendo 2
A0₂ = select 0 h×.⊗₂ 0₂
AB : Powerendo 2
AB = h×.x⊗y
0A⊕0B : Powerendo 2
0A⊕0B = 0A₂ h⊎.⊗₂ 0B
A[0B] : Powerendo 2
A[0B] = (widenʳ 1 h×.x) h×.⊗₂ 0B
[A0]B : Powerendo 2
[A0]B = A0 h×.⊗ h×.x
A[0⊕B] : Powerendo 2
A[0⊕B] = h×.x h×.⊗ h⊎.id⊗x
A0⊕AB : Powerendo 2
A0⊕AB = A0₂ h⊎.⊗₂ AB
0⊕AB : Powerendo 2
0⊕AB = 0₂ h⊎.⊗₂ AB
-- 2 variables + 1
1₂ : Powerendo 2
1₂ = widenʳ 2 1₀
A⊕B : Powerendo 2
A⊕B = h⊎.x⊗y
1[A⊕B] : Powerendo 2
1[A⊕B] = 1₀ h×.⊗ A⊕B
1A⊕1B : Powerendo 2
1A⊕1B = h×.id⊗x h⊎.⊗ h×.id⊗x
-- like Laplaza, use concatenation for ⊗ to make things easier to read
-- also ⊗ binds more tightly, so skip those parens
-- combinations of 4 variables
[x⊕[y⊕z]]w : Powerendo 4
[x⊕[y⊕z]]w = h⊎.x⊗[y⊗z] h×.⊗ h⊎.x
xw⊕[y⊕z]w : Powerendo 4
xw⊕[y⊕z]w = (x h×.⊗₂ w) h⊎.⊗₂ ((y h⊎.⊗₂ z) h×.⊗₂ w)
xw⊕[yw⊕zw] : Powerendo 4
xw⊕[yw⊕zw] = (x h×.⊗₂ w) h⊎.⊗₂ ((y h×.⊗₂ w) h⊎.⊗₂ (z h×.⊗₂ w))
[xw⊕yw]⊕zw : Powerendo 4
[xw⊕yw]⊕zw = ((x h×.⊗₂ w) h⊎.⊗₂ (y h×.⊗₂ w)) h⊎.⊗₂ (z h×.⊗₂ w)
[[x⊕y]⊕z]w : Powerendo 4
[[x⊕y]⊕z]w = h⊎.[x⊗y]⊗z h×.⊗ h⊎.x
[x⊕y]w⊕zw : Powerendo 4
[x⊕y]w⊕zw = ((x h⊎.⊗₂ y) h×.⊗₂ w) h⊎.⊗₂ (z h×.⊗₂ w)
x[y[z⊕w]] : Powerendo 4
x[y[z⊕w]] = x h×.⊗₂ (y h×.⊗₂ (z h⊎.⊗₂ w))
x[yz⊕yw] : Powerendo 4
x[yz⊕yw] = x h×.⊗₂ ((y h×.⊗₂ z) h⊎.⊗₂ (y h×.⊗₂ w))
x[yz]⊕x[yw] : Powerendo 4
x[yz]⊕x[yw] = (x h×.⊗₂ (y h×.⊗₂ z)) h⊎.⊗₂ (x h×.⊗₂ (y h×.⊗₂ w))
[xy][z⊕w] : Powerendo 4
[xy][z⊕w] = (x h×.⊗₂ y) h×.⊗₂ (z h⊎.⊗₂ w)
[xy]z⊕[xy]w : Powerendo 4
[xy]z⊕[xy]w = let xy = (x h×.⊗₂ y) in (xy h×.⊗₂ z) h⊎.⊗₂ (xy h×.⊗₂ w)
x⊕y : Powerendo 4
x⊕y = widenʳ 2 h⊎.x⊗y
x[z⊕w] : Powerendo 4
x[z⊕w] = x h×.⊗₂ z⊕w
y[z⊕w] : Powerendo 4
y[z⊕w] = y h×.⊗₂ z⊕w
xz⊕xw : Powerendo 4
xz⊕xw = xz h⊎.⊗₂ xw
yz⊕yw : Powerendo 4
yz⊕yw = yz h⊎.⊗₂ yw
xz⊕yz : Powerendo 4
xz⊕yz = xz h⊎.⊗₂ yz
xw⊕yw : Powerendo 4
xw⊕yw = xw h⊎.⊗₂ yw
[x⊕y]z : Powerendo 4
[x⊕y]z = x⊕y h×.⊗₂ z
[x⊕y]w : Powerendo 4
[x⊕y]w = x⊕y h×.⊗₂ w
[x⊕y][z⊕w] : Powerendo 4
[x⊕y][z⊕w] = x⊕y h×.⊗₂ z⊕w
[x⊕y]z⊕[x⊕y]w : Powerendo 4
[x⊕y]z⊕[x⊕y]w = [x⊕y]z h⊎.⊗₂ [x⊕y]w
[xz⊕yz]⊕[xw⊕yw] : Powerendo 4
[xz⊕yz]⊕[xw⊕yw] = xz⊕yz h⊎.⊗₂ xw⊕yw
[[xz⊕yz]⊕xw]⊕yw : Powerendo 4
[[xz⊕yz]⊕xw]⊕yw = (xz⊕yz h⊎.⊗₂ xw) h⊎.⊗₂ yw
x[z⊕w]⊕y[z⊕w] : Powerendo 4
x[z⊕w]⊕y[z⊕w] = x[z⊕w] h⊎.⊗₂ y[z⊕w]
[xz⊕xw]⊕[yz⊕yw] : Powerendo 4
[xz⊕xw]⊕[yz⊕yw] = xz⊕xw h⊎.⊗₂ yz⊕yw
[[xz⊕xw]⊕yz]⊕yw : Powerendo 4
[[xz⊕xw]⊕yz]⊕yw = (xz⊕xw h⊎.⊗₂ yz) h⊎.⊗₂ yw
[xz⊕[xw⊕yz]]⊕yw : Powerendo 4
[xz⊕[xw⊕yz]]⊕yw = (xz h⊎.⊗₂ (xw h⊎.⊗₂ yz)) h⊎.⊗₂ yw
[xz⊕[yz⊕xw]]⊕yw : Powerendo 4
[xz⊕[yz⊕xw]]⊕yw = (xz h⊎.⊗₂ (yz h⊎.⊗₂ xw)) h⊎.⊗₂ yw
module SRig (S⊎ : Symmetric B⊎) (S× : Symmetric B×)
(distribₗ : NaturalIsomorphism x⊗[y⊕z] [x⊗y]⊕[x⊗z])
(distribᵣ : NaturalIsomorphism [x⊕y]⊗z [x⊗z]⊕[y⊗z])
(annₗ : NaturalIsomorphism 0⊗x 0↑)
(annᵣ : NaturalIsomorphism x⊗0 0↑) where
open NaturalIsomorphism distribₗ using () renaming (F⇒G to dₗ)
open NaturalIsomorphism distribᵣ using () renaming (F⇒G to dᵣ)
open NaturalIsomorphism annₗ using () renaming (F⇒G to aₗ)
open NaturalIsomorphism annᵣ using () renaming (F⇒G to aᵣ)
dₗ-over : ∀ {n} (F₁ F₂ F₃ : Powerendo n) → NaturalTransformation (F₁ h×.⊗₂ (F₂ h⊎.⊗₂ F₃)) ((F₁ h×.⊗₂ F₂) h⊎.⊗₂ (F₁ h×.⊗₂ F₃))
dₗ-over F₁ F₂ F₃ = dₗ ∘ʳ plex {3} F₁ F₂ F₃
dᵣ-over : ∀ {n} (F₁ F₂ F₃ : Powerendo n) → NaturalTransformation ((F₁ h⊎.⊗₂ F₂) h×.⊗₂ F₃) ((F₁ h×.⊗₂ F₃) h⊎.⊗₂ (F₂ h×.⊗₂ F₃))
dᵣ-over F₁ F₂ F₃ = dᵣ ∘ʳ plex {3} F₁ F₂ F₃
aₗ-over : ∀ {n} (F₁ : Powerendo n) → NaturalTransformation ((widenʳ n 0₀) h×.⊗₂ F₁) (widenʳ n 0₀)
aₗ-over F₁ = aₗ ∘ʳ plex {1} F₁
aᵣ-over : ∀ {n} (F₁ : Powerendo n) → NaturalTransformation (F₁ h×.⊗₂ (widenʳ n 0₀)) (widenʳ n 0₀)
aᵣ-over F₁ = aᵣ ∘ʳ plex {1} F₁
uₗ⊕-over : ∀ {n} (F₁ : Powerendo n) → NaturalTransformation ((widenʳ n 0₀) h⊎.⊗₂ F₁) F₁
uₗ⊕-over F₁ = (NaturalIsomorphism.F⇒G M⊎.identityˡ) ∘ʳ plex {1} F₁
uₗ⊗-over : ∀ {n} (F₁ : Powerendo n) → NaturalTransformation ((widenʳ n 1₀) h×.⊗₂ F₁) F₁
uₗ⊗-over F₁ = (NaturalIsomorphism.F⇒G M×.identityˡ) ∘ʳ plex {1} F₁
uᵣ⊗-over : ∀ {n} (F₁ : Powerendo n) → NaturalTransformation (F₁ h×.⊗₂ (widenʳ n 1₀)) F₁
uᵣ⊗-over F₁ = (NaturalIsomorphism.F⇒G M×.identityʳ) ∘ʳ plex {1} F₁
s⊕-over : ∀ {n} (F₁ F₂ : Powerendo n) → NaturalTransformation (F₁ h⊎.⊗₂ F₂) (F₂ h⊎.⊗₂ F₁)
s⊕-over F₁ F₂ = (NaturalIsomorphism.F⇒G B⊎.braid) ∘ʳ plex {2} F₁ F₂
s⊗-over : ∀ {n} (F₁ F₂ : Powerendo n) → NaturalTransformation (F₁ h×.⊗₂ F₂) (F₂ h×.⊗₂ F₁)
s⊗-over F₁ F₂ = (NaturalIsomorphism.F⇒G B×.braid) ∘ʳ plex {2} F₁ F₂
-- for 2 variables
idx₂ : NaturalTransformation x₂ x₂
idx₂ = idⁿ
idy₂ : NaturalTransformation y₂ y₂
idy₂ = idⁿ
idxy : NaturalTransformation AB AB
idxy = idⁿ
-- these are all for 3 variables
Bxz : NaturalTransformation x⊗z z⊗x
Bxz = br×.B-over (select 0) (select 2)
Byz : NaturalTransformation y⊗z z⊗y
Byz = br×.B-over (select 1) (select 2)
Bxz⊕Byz : NaturalTransformation [x⊗z]⊕[y⊗z] [z⊗x]⊕[z⊗y]
Bxz⊕Byz = Bxz h⊎.⊗ⁿ′ Byz
B[x⊕y]z : NaturalTransformation [x⊕y]⊗z z⊗[x⊕y]
B[x⊕y]z = br×.B-over (widenʳ 1 h⊎.x⊗y) (select 2)
dᵣABC : NaturalTransformation [x⊕y]⊗z [x⊗z]⊕[y⊗z]
dᵣABC = dᵣ-over (select 0) (select 1) (select 2)
dₗABC : NaturalTransformation x⊗[y⊕z] [x⊗y]⊕[x⊗z]
dₗABC = dₗ-over (select 0) (select 1) (select 2)
dₗACB : NaturalTransformation x⊗[z⊕y] [x⊗z]⊕[x⊗y]
dₗACB = dₗ-over (select 0) (select 2) (select 1)
dₗCAB : NaturalTransformation z⊗[x⊕y] [z⊗x]⊕[z⊗y]
dₗCAB = dₗ-over (select 2) (select 0) (select 1)
1⊗Byz : NaturalTransformation x⊗[y⊕z] x⊗[z⊕y]
1⊗Byz = reduceN M×.⊗ h×.id₂ (br⊎.B-over (select 0) (select 1))
B[x⊗y][x⊗z] : NaturalTransformation [x⊗y]⊕[x⊗z] [x⊗z]⊕[x⊗y]
B[x⊗y][x⊗z] = br⊎.B-over (widenʳ 1 h×.x⊗y) x⊗z
-- these are all for 4 variables
dᵣA[B⊕C]D : NaturalTransformation [x⊕[y⊕z]]w xw⊕[y⊕z]w
dᵣA[B⊕C]D = dᵣ-over (select 0) (widenʳ 1 (widenˡ 1 h⊎.x⊗y)) (select 3)
dᵣBCD : NaturalTransformation (widenˡ 1 [x⊕y]⊗z) (widenˡ 1 [x⊗z]⊕[y⊗z])
dᵣBCD = dᵣ-over (select 1) (select 2) (select 3)
id03 : NaturalTransformation xw xw
id03 = idⁿ
id23 : NaturalTransformation zw zw
id23 = idⁿ
idx : NaturalTransformation x x
idx = idⁿ
idw : NaturalTransformation w w
idw = idⁿ
idyw : NaturalTransformation yw yw
idyw = idⁿ
idxz : NaturalTransformation xz xz
idxz = idⁿ
1⊗dᵣBCD : NaturalTransformation xw⊕[y⊕z]w xw⊕[yw⊕zw]
1⊗dᵣBCD = overlapN M⊎.⊗ id03 dᵣBCD
assocˡAD-BD-CD : NaturalTransformation xw⊕[yw⊕zw] [xw⊕yw]⊕zw
assocˡAD-BD-CD = br⊎.α₂-over xw yw zw
αˡABC⊗1 : NaturalTransformation [x⊕[y⊕z]]w [[x⊕y]⊕z]w
αˡABC⊗1 = overlapN M×.⊗ (br⊎.α₂-over (select 0) (select 1) (select 2)) idw
dᵣ[A⊕B]CD : NaturalTransformation [[x⊕y]⊕z]w [x⊕y]w⊕zw
dᵣ[A⊕B]CD = dᵣ-over (widenʳ 2 h⊎.x⊗y) (select 2) (select 3)
dᵣABD⊗1 : NaturalTransformation [x⊕y]w⊕zw [xw⊕yw]⊕zw
dᵣABD⊗1 = overlapN M⊎.⊗ (dᵣ-over (select 0) (select 1) (select 3)) id23
1A⊗dₗBCD : NaturalTransformation x[y[z⊕w]] x[yz⊕yw]
1A⊗dₗBCD = overlapN M×.⊗ idx (dₗ-over y z w)
dₗA[BC][BD] : NaturalTransformation x[yz⊕yw] x[yz]⊕x[yw]
dₗA[BC][BD] = dₗ-over x yz yw
αABC⊕αABD : NaturalTransformation x[yz]⊕x[yw] [xy]z⊕[xy]w
αABC⊕αABD = overlapN M⊎.⊗ (br×.α₂-over x y z) (br×.α₂-over x y w)
αAB[C⊕D] : NaturalTransformation x[y[z⊕w]] [xy][z⊕w]
αAB[C⊕D] = br×.α₂-over x y z⊕w
dₗ[AB]CD : NaturalTransformation [xy][z⊕w] [xy]z⊕[xy]w
dₗ[AB]CD = dₗ-over xy z w
dₗ0AB : NaturalTransformation 0[A⊕B] 0A⊕0B
dₗ0AB = dₗ-over (widenʳ 2 0₀) (select 0) (select 1)
aₗA⊕aₗB : NaturalTransformation 0A⊕0B (widenʳ 2 0⊕0)
aₗA⊕aₗB = overlapN M⊎.⊗ (aₗ-over (select 0)) (aₗ-over (select 1))
-- a bit weird, but the widening is needed
uˡ0 : NaturalTransformation (widenʳ 2 0⊕0) (widenʳ 2 0₀)
uˡ0 = uₗ⊕-over (widenʳ 2 0₀)
aᵣA : NaturalTransformation A0 0↑
aᵣA = aᵣ-over (select 0)
aₗA : NaturalTransformation 0A (widenʳ 1 0₀)
aₗA = aₗ-over (select 0)
s⊗A0 : NaturalTransformation A0 0A
s⊗A0 = s⊗-over (select 0) 0↑
α0AB : NaturalTransformation 0[AB] [0A]B
α0AB = br×.α₂-over 0₂ (select 0) (select 1)
aₗA⊗1B : NaturalTransformation [0A]B 0B
aₗA⊗1B = overlapN M×.⊗ (aₗ-over (select 0)) idy₂
aₗAB : NaturalTransformation 0[AB] 0₂
aₗAB = aₗ-over h×.x⊗y
aₗB : NaturalTransformation 0B 0₂
aₗB = aₗ-over y₂
αA0B : NaturalTransformation A[0B] [A0]B
αA0B = br×.α₂-over (select 0) 0₂ (select 1)
aᵣA⊗1B : NaturalTransformation [A0]B 0B
aᵣA⊗1B = overlapN M×.⊗ (aᵣ-over (select 0)) idy₂
1A⊗aₗB : NaturalTransformation A[0B] (widenʳ 1 A0)
1A⊗aₗB = overlapN M×.⊗ idx₂ aₗB
aᵣA₂ : NaturalTransformation (widenʳ 1 A0) 0₂
aᵣA₂ = aᵣ-over (select 0)
1A⊗uₗB : NaturalTransformation A[0⊕B] AB
1A⊗uₗB = overlapN M×.⊗ idx₂ (uₗ⊕-over y₂)
dₗA0B : NaturalTransformation A[0⊕B] A0⊕AB
dₗA0B = dₗ-over x₂ 0₂ y₂
aᵣA⊕1AB : NaturalTransformation A0⊕AB 0⊕AB
aᵣA⊕1AB = overlapN M⊎.⊗ (aᵣ-over x₂) idxy
uₗAB : NaturalTransformation 0⊕AB AB
uₗAB = uₗ⊕-over AB
dₗ1AB : NaturalTransformation 1[A⊕B] 1A⊕1B
dₗ1AB = dₗ-over 1₂ x₂ y₂
uₗA⊕B : NaturalTransformation 1[A⊕B] A⊕B
uₗA⊕B = uₗ⊗-over h⊎.x⊗y
uₗA⊕uₗB : NaturalTransformation 1A⊕1B A⊕B
uₗA⊕uₗB = overlapN M⊎.⊗ (uₗ⊗-over x₂) (uₗ⊗-over y₂)
-- the monster, aka diagram IX
dₗ[A⊕B]CD : NaturalTransformation [x⊕y][z⊕w] [x⊕y]z⊕[x⊕y]w
dₗ[A⊕B]CD = dₗ-over x⊕y z w
dᵣABC⊕dᵣABD : NaturalTransformation [x⊕y]z⊕[x⊕y]w [xz⊕yz]⊕[xw⊕yw]
dᵣABC⊕dᵣABD = overlapN M⊎.⊗ ( dᵣ-over x y z ) (dᵣ-over x y w)
α[AC⊕BC][AD][BD] : NaturalTransformation [xz⊕yz]⊕[xw⊕yw] [[xz⊕yz]⊕xw]⊕yw
α[AC⊕BC][AD][BD] = br⊎.α₂-over xz⊕yz xw yw
dᵣAB[C⊕D] : NaturalTransformation [x⊕y][z⊕w] x[z⊕w]⊕y[z⊕w]
dᵣAB[C⊕D] = dᵣ-over x y z⊕w
dₗACD⊕dₗBCD : NaturalTransformation x[z⊕w]⊕y[z⊕w] [xz⊕xw]⊕[yz⊕yw]
dₗACD⊕dₗBCD = overlapN M⊎.⊗ (dₗ-over x z w) (dₗ-over y z w)
α[AC⊕AD][BC][BD] : NaturalTransformation [xz⊕xw]⊕[yz⊕yw] [[xz⊕xw]⊕yz]⊕yw
α[AC⊕AD][BC][BD] = br⊎.α₂-over xz⊕xw yz yw
α′[AC][AD][BC]⊕1BD : NaturalTransformation [[xz⊕xw]⊕yz]⊕yw [xz⊕[xw⊕yz]]⊕yw
α′[AC][AD][BC]⊕1BD = overlapN M⊎.⊗ (br⊎.α-over xz xw yz) idyw
[1AC⊕s[AD][BC]]⊕1BD : NaturalTransformation [xz⊕[xw⊕yz]]⊕yw [xz⊕[yz⊕xw]]⊕yw
[1AC⊕s[AD][BC]]⊕1BD = overlapN M⊎.⊗ (overlapN M⊎.⊗ idxz (s⊕-over xw yz)) idyw
α[AC][BC][AD]⊕1BD : NaturalTransformation [xz⊕[yz⊕xw]]⊕yw [[xz⊕yz]⊕xw]⊕yw
α[AC][BC][AD]⊕1BD = overlapN M⊎.⊗ (br⊎.α₂-over xz yz xw) idyw
record RigCategory {o ℓ e} {C : Category o ℓ e}
{M⊎ M× : Monoidal C} {B⊎ : Braided M⊎} (S⊎ : Symmetric B⊎)
{B× : Braided M×} (S× : Symmetric B×) : Set (o ⊔ ℓ ⊔ e) where
open BimonoidalHelperFunctors B⊎ B×
field
distribₗ : NaturalIsomorphism x⊗[y⊕z] [x⊗y]⊕[x⊗z]
distribᵣ : NaturalIsomorphism [x⊕y]⊗z [x⊗z]⊕[y⊗z]
annₗ : NaturalIsomorphism 0⊗x 0↑
annᵣ : NaturalIsomorphism x⊗0 0↑
open SRig S⊎ S× distribₗ distribᵣ annₗ annᵣ
-- need II, IX, X, XV
-- choose I, IV, VI, XI, XIII, XIX, XXIII and (XVI, XVII)
field
.laplazaI : dₗACB ∘₁ 1⊗Byz ≡ⁿ B[x⊗y][x⊗z] ∘₁ dₗABC
.laplazaII : Bxz⊕Byz ∘₁ dᵣABC ≡ⁿ dₗCAB ∘₁ B[x⊕y]z
.laplazaIV : dᵣABD⊗1 ∘₁ (dᵣ[A⊕B]CD ∘₁ αˡABC⊗1) ≡ⁿ assocˡAD-BD-CD ∘₁ (1⊗dᵣBCD ∘₁ dᵣA[B⊕C]D)
.laplazaVI : dₗ[AB]CD ∘₁ αAB[C⊕D] ≡ⁿ αABC⊕αABD ∘₁ (dₗA[BC][BD] ∘₁ 1A⊗dₗBCD)
.laplazaIX : α[AC⊕BC][AD][BD] ∘₁ (dᵣABC⊕dᵣABD ∘₁ dₗ[A⊕B]CD) ≡ⁿ
α[AC][BC][AD]⊕1BD ∘₁ ([1AC⊕s[AD][BC]]⊕1BD ∘₁ (α′[AC][AD][BC]⊕1BD ∘₁
(α[AC⊕AD][BC][BD] ∘₁ (dₗACD⊕dₗBCD ∘₁ dᵣAB[C⊕D]))))
.laplazaX : aₗ-over 0₀ ≡ⁿ aᵣ-over 0₀
.laplazaXI : aₗ-over (h⊎.x⊗y) ≡ⁿ uˡ0 ∘₁ (aₗA⊕aₗB ∘₁ dₗ0AB)
.laplazaXIII : uᵣ⊗-over 0₀ ≡ⁿ aₗ-over 1₀
.laplazaXV : aᵣA ≡ⁿ aₗA ∘₁ s⊗A0
.laplazaXVI : aₗAB ≡ⁿ aₗB ∘₁ (aₗA⊗1B ∘₁ α0AB)
.laplazaXVII : aᵣA₂ ∘₁ 1A⊗aₗB ≡ⁿ aₗB ∘₁ (aᵣA⊗1B ∘₁ αA0B)
.laplazaXIX : 1A⊗uₗB ≡ⁿ uₗAB ∘₁ (aᵣA⊕1AB ∘₁ dₗA0B)
.laplazaXXIII : uₗA⊕B ≡ⁿ uₗA⊕uₗB ∘₁ dₗ1AB
| {
"alphanum_fraction": 0.5623188406,
"avg_line_length": 29.7307001795,
"ext": "agda",
"hexsha": "84064414620b2419414548c40b04e0b1eab742db",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/categories",
"max_forks_repo_path": "Categories/RigCategory.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/categories",
"max_issues_repo_path": "Categories/RigCategory.agda",
"max_line_length": 133,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/RigCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 9941,
"size": 16560
} |
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; lookup; alloc; ok; function_⟨_⟩_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; function⟨_⟩_end; block_is_end; _$_; local_←_; function_⟨_⟩_end; return; done; _∙_)
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app ; beta; function; block; return; done; local; subst)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; NilIsNotAFunction; UnboundVariable; SEGV; app; block; local; return)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val)
open import Properties.Remember using (remember; _,_)
data StepResultᴮ (H : Heap) (B : Block) : Set
data StepResultᴱ (H : Heap) (M : Expr) : Set
data StepResultᴮ H B where
step : ∀ H′ B′ → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → StepResultᴮ H B
return : ∀ V {B′} → (B ≡ (return (val V) ∙ B′)) → StepResultᴮ H B
done : (B ≡ done) → StepResultᴮ H B
error : (RuntimeErrorᴮ H B) → StepResultᴮ H B
data StepResultᴱ H M where
step : ∀ H′ M′ → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → StepResultᴱ H M
value : ∀ V → (M ≡ val V) → StepResultᴱ H M
error : (RuntimeErrorᴱ H M) → StepResultᴱ H M
stepᴱ : ∀ H M → StepResultᴱ H M
stepᴮ : ∀ H B → StepResultᴮ H B
stepᴱ H nil = value nil refl
stepᴱ H (var x) = error (UnboundVariable x)
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H′ M′ D = step H′ (M′ $ N) (app D)
stepᴱ H (nil $ N) | value nil refl = error NilIsNotAFunction
stepᴱ H (addr a $ N) | value (addr a) refl with remember (lookup H a)
stepᴱ H (addr a $ N) | value (addr a) refl | (nothing , p) = error (app (SEGV a p))
stepᴱ H (addr a $ N) | value (addr a) refl | (just(function f ⟨ x ⟩ B end) , p) = step H (block f is local x ← N ∙ B end) (beta p)
stepᴱ H (M $ N) | error E = error (app E)
stepᴱ H (function⟨ x ⟩ B end) with alloc H (function "anon" ⟨ x ⟩ B end)
stepᴱ H (function⟨ x ⟩ B end) | ok a H′ p = step H′ (addr a) (function p)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H′ B′ D = step H′ (block b is B′ end) (block D)
stepᴱ H (block b is (return _ ∙ B′) end) | return V refl = step H (val V) return
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is B end) | error E = error (block b E)
stepᴮ H (function f ⟨ x ⟩ C end ∙ B) with alloc H (function f ⟨ x ⟩ C end)
stepᴮ H (function f ⟨ x ⟩ C end ∙ B) | ok a H′ p = step H′ (B [ addr a / f ]ᴮ) (function p)
stepᴮ H (local x ← M ∙ B) with stepᴱ H M
stepᴮ H (local x ← M ∙ B) | step H′ M′ D = step H′ (local x ← M′ ∙ B) (local D)
stepᴮ H (local x ← _ ∙ B) | value V refl = step H (B [ V / x ]ᴮ) subst
stepᴮ H (local x ← M ∙ B) | error E = error (local x E)
stepᴮ H (return M ∙ B) with stepᴱ H M
stepᴮ H (return M ∙ B) | step H′ M′ D = step H′ (return M′ ∙ B) (return D)
stepᴮ H (return _ ∙ B) | value V refl = return V refl
stepᴮ H (return M ∙ B) | error E = error (return E)
stepᴮ H done = done refl
| {
"alphanum_fraction": 0.6352824579,
"avg_line_length": 51.3050847458,
"ext": "agda",
"hexsha": "0eddd9fe0565b854e53c1f0ab82a46a20a5936ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Properties/Step.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Properties/Step.agda",
"max_line_length": 142,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/Properties/Step.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 1262,
"size": 3027
} |
-- The --no-coverage-check option has been removed.
{-# OPTIONS --no-coverage-check #-}
module Issue1918 where
| {
"alphanum_fraction": 0.7079646018,
"avg_line_length": 18.8333333333,
"ext": "agda",
"hexsha": "b66f6cc05e210e5371b82189967377a0af495c6a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1918.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1918.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1918.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 113
} |
module AllTests where
import Issue14
import Issue65
import Issue73
import Fixities
import LanguageConstructs
import Numbers
import Pragmas
import Sections
import Test
import Tuples
import Where
import TypeSynonyms
import Datatypes
import Records
import DefaultMethods
import Vector
{-# FOREIGN AGDA2HS
import Issue14
import Issue65
import Issue73
import Fixities
import LanguageConstructs
import Numbers
import Pragmas
import Sections
import Test
import Tuples
import Where
import TypeSynonyms
import Datatypes
import Records
import DefaultMethods
import Vector
#-}
| {
"alphanum_fraction": 0.8594024605,
"avg_line_length": 14.5897435897,
"ext": "agda",
"hexsha": "16d4d6daea2d2552664160f1921982e4aed676d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jespercockx/agda2hs",
"max_forks_repo_path": "test/AllTests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jespercockx/agda2hs",
"max_issues_repo_path": "test/AllTests.agda",
"max_line_length": 25,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/agda2hs",
"max_stars_repo_path": "test/AllTests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 138,
"size": 569
} |
module _ where
postulate
T U V : Set
F G : Set → Set
Sea : {A : Set} → (A → A → Set) → Set
Seas : {I : Set} (As : I → Set) → ({i j : I} → As i → As j → Set) → Set
_eq_ _to_ : T → T → Set
record K : Set₁ where
field
A : Set
B : A → A → Set
C : Sea B
record IK (I : Set) : Set₁ where
field
As : I → Set
Bs : {i j : I} → As i → As j → Set
Cs : Seas As Bs
open K
open IK
record L (f t : K) : Set where
field
D : A f → A t
E : ∀ {x y} → (B f x y) → B t (D x) (D y)
record IL (f : K) (t : IK (A f)): Set where
field
Ds : (x : A f) → As t x
Es : ∀ {x y} → (B f x y) → Bs t (Ds x) (Ds y)
-- make Cs or E irrelevant and the last line turns yellow
postulate blah : ∀ {a b c : K} → L a b → L b c → L a c
foop : ∀ {a b c d : K} → L a b → L b c → L c d → L a d
foop f g h = blah f (blah g h)
postulate Equiv : Sea _eq_
Cat : K
Cat = record
{ A = T
; B = _eq_
; C = Equiv
}
record T2 : Set where
constructor _,_
field fst snd : T
open T2
record _eq2_ (a b : T2) : Set where
constructor _∧_
field
feq : (fst a) eq (fst b)
seq : (snd a) eq (snd b)
postulate Equiv2 : Sea _eq2_
Cat2 : K
Cat2 = record { A = T2; B = _eq2_; C = Equiv2 }
postulate
Hm : T2 → Set
_heq_ : {t t' : T2} → Hm t → Hm t' → Set
HEquiv : Seas Hm _heq_
Hom : IK T2
Hom = record
{ As = Hm
; Bs = _heq_
; Cs = HEquiv
}
_×_ : ∀ {U} → L U Cat → L U Cat → L U Cat2
X × Y = record { D = λ x → L.D X x , L.D Y x
; E = λ x' → L.E X x' ∧ L.E Y x' }
postulate
_∘_ : ∀ {a b c} → Hm (b , c) → Hm (a , b) → Hm (a , c)
∘cong : ∀ {a b c} {f f' : Hm (b , c)} {g g' : Hm (a , b)} → f heq f' → g heq g' → (f ∘ g) heq (f' ∘ g')
_∘H_ : ∀ {a b c} → Hm (b , c) → Hm (a , b) → Hm (a , c)
module Fool (Base : K) where
Dust = L Base Cat
promote : L Base Cat2 → IK (A Base)
promote f = record
{ As = λ x → Hm (L.D f x)
; Bs = λ x y → x heq y
; Cs = my-Cs
}
where
postulate my-Cs : Seas (λ x → Hm (L.D f x)) (λ {i} {j} x y → x heq y)
Dance : Dust → Dust → Set
Dance f t = IL Base (promote (f × t))
_⊚_ : ∀ {as bs cs} → Dance bs cs → Dance as bs → Dance as cs
_⊚_ {as} {bs} {cs} fs gs = record
{ Ds = λ x → IL.Ds fs x ∘ IL.Ds gs x
; Es = my-Es
}
where
postulate my-Es : ∀ {x y} → B Base x y → _
comp3 : ∀ {as bs cs ds} → Dance cs ds → Dance bs cs → Dance as bs → Dance as ds
comp3 f g h = f ⊚ (g ⊚ h)
| {
"alphanum_fraction": 0.4804446274,
"avg_line_length": 21.4955752212,
"ext": "agda",
"hexsha": "849e4fedc99c87bcb0a599fc5ff32ebda6d71163",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue351b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue351b.agda",
"max_line_length": 105,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue351b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1076,
"size": 2429
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.End.Properties where
open import Level
open import Data.Product using (Σ; _,_)
open import Function using (_$_)
open import Categories.Category
open import Categories.Category.Product
open import Categories.Category.Construction.Functors
open import Categories.Functor
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Dinatural
open import Categories.Diagram.End as ∫
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ {C : Category o ℓ e}
(F : Functor E (Functors (Product (Category.op C) C) D)) where
private
module C = Category C
module D = Category D
module E = Category E
module NT = NaturalTransformation
open D
open HomReasoning
open MR D
open Functor F
open End hiding (E)
open NT using (η)
EndF : (∀ X → End (F₀ X)) → Functor E D
EndF end = record
{ F₀ = λ X → End.E (end X)
; F₁ = F₁′
; identity = λ {A} → unique (end A) (id-comm ○ ∘-resp-≈ˡ (⟺ identity))
; homomorphism = λ {A B C} {f g} → unique (end C) $ λ {Z} → begin
dinatural.α (end C) Z ∘ F₁′ g ∘ F₁′ f ≈⟨ pullˡ (universal (end C)) ⟩
(η (F₁ g) (Z , Z) ∘ dinatural.α (end B) Z) ∘ F₁′ f ≈⟨ pullʳ (universal (end B)) ⟩
η (F₁ g) (Z , Z) ∘ η (F₁ f) (Z , Z) ∘ dinatural.α (end A) Z ≈˘⟨ pushˡ homomorphism ⟩
η (F₁ (g E.∘ f)) (Z , Z) ∘ dinatural.α (end A) Z ∎
; F-resp-≈ = λ {A B f g} eq → unique (end B) $ λ {Z} → begin
dinatural.α (end B) Z ∘ F₁′ g ≈⟨ universal (end B) ⟩
η (F₁ g) (Z , Z) ∘ dinatural.α (end A) Z ≈˘⟨ F-resp-≈ eq ⟩∘⟨refl ⟩
η (F₁ f) (Z , Z) ∘ dinatural.α (end A) Z ∎
}
where F₁′ : ∀ {X Y} → X E.⇒ Y → End.E (end X) ⇒ End.E (end Y)
F₁′ {X} {Y} f = factor (end Y) $ record
{ E = End.E (end X)
; dinatural = F₁ f <∘ dinatural (end X)
}
| {
"alphanum_fraction": 0.5530516432,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "8cd46bfa289247bc044f2e90064d6f75210215af",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/End/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/End/Properties.agda",
"max_line_length": 96,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/End/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 748,
"size": 2130
} |
{-# OPTIONS --without-K --safe #-}
module Strict where
open import Agda.Builtin.Strict
open import Level
infixr 0 _$!_
_$!_ : {A : Type a} {B : A → Type b} → (∀ x → B x) → ∀ x → B x
f $! x = primForce x f
{-# INLINE _$!_ #-}
| {
"alphanum_fraction": 0.5657894737,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "571b1bffc0c367bf29f18b8fc829bdd191ae5b63",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Strict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Strict.agda",
"max_line_length": 62,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Strict.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 81,
"size": 228
} |
------------------------------------------------------------------------
-- Identity and composition for traditional non-dependent lenses
------------------------------------------------------------------------
{-# OPTIONS --cubical #-}
import Equality.Path as P
module Lens.Non-dependent.Traditional.Combinators
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (module _⇔_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
import Bi-invertibility
open import Bijection equality-with-J as Bijection using (_↔_)
open import Category equality-with-J as C using (Category; Precategory)
open import Circle eq as Circle using (𝕊¹)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Erased.Cubical eq as E using (Erased; [_])
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as T using (∥_∥)
import Integer equality-with-J as Int
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J as Surjection using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent.Traditional eq
private
variable
a b h o : Level
A B C D : Type a
l₁ l₂ : Lens A B
------------------------------------------------------------------------
-- Lens combinators
-- If two types are isomorphic, then there is a lens between them.
↔→lens :
{A : Type a} {B : Type b} →
A ↔ B → Lens A B
↔→lens A↔B = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = left-inverse-of
; set-set = λ _ _ _ → refl _
}
where
open _↔_ A↔B
-- If two types are equivalent, then there is a lens between them.
≃→lens :
{A : Type a} {B : Type b} →
A ≃ B → Lens A B
≃→lens = ↔→lens ⊚ _≃_.bijection
-- Identity lens.
id : Lens A A
id = ↔→lens F.id
-- Composition of lenses.
infixr 9 _∘_
_∘_ : Lens B C → Lens A B → Lens A C
l₁ ∘ l₂ = record
{ get = λ a → get l₁ (get l₂ a)
; set = λ a c → set l₂ a (set l₁ (get l₂ a) c)
; get-set = λ a c →
get l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c))) ≡⟨ cong (get l₁) $ get-set l₂ _ _ ⟩
get l₁ (set l₁ (get l₂ a) c) ≡⟨ get-set l₁ _ _ ⟩∎
c ∎
; set-get = λ a →
set l₂ a (set l₁ (get l₂ a) (get l₁ (get l₂ a))) ≡⟨ cong (set l₂ _) $ set-get l₁ _ ⟩
set l₂ a (get l₂ a) ≡⟨ set-get l₂ _ ⟩∎
a ∎
; set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ set-set l₂ _ _ _ ⟩
set l₂ a (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong (λ b → set l₂ _ (set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ a (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
-- Note that composition can be defined in several different ways.
-- Here are two alternative implementations.
infixr 9 _∘′_ _∘″_
_∘′_ : Lens B C → Lens A B → Lens A C
l₁ ∘′ l₂ = record (l₁ ∘ l₂)
{ set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong
(λ b → set l₂ (set l₂ _ (set l₁ _ _))
(set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ set-set l₂ _ _ _ ⟩
set l₂ a (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
_∘″_ : Lens B C → Lens A B → Lens A C
l₁ ∘″ l₂ = record (l₁ ∘ l₂)
{ set-set = λ a c₁ c₂ →
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂) ≡⟨ cong
(λ b → set l₂ (set l₂ _ (set l₁ _ _))
(set l₁ b _)) $
get-set l₂ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (set l₁ (get l₂ a) c₁) c₂) ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩
set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ a) c₂) ≡⟨ set-set l₂ _ _ _ ⟩∎
set l₂ a (set l₁ (get l₂ a) c₂) ∎
}
where
open Lens
-- These two implementations are pointwise equal to the other one.
-- However, I don't know if there is some other definition that is
-- distinct from these two (if we require that the definitions are
-- polymorphic, that get and set are implemented in the same way as
-- for _∘_, and that the three composition laws below hold).
∘≡∘′ : l₁ ∘ l₂ ≡ l₁ ∘′ l₂
∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ b₁ c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (set-set l₂ a b₁ b′)
(cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ cong (flip trans _) $
elim₁
(λ eq →
trans (set-set l₂ _ b₁ _)
(cong (λ b → set l₂ _ (set l₁ b _)) eq) ≡
trans (cong (λ b → set l₂ _ (set l₁ b _)) eq)
(set-set l₂ _ _ _))
(
trans (set-set l₂ a b₁ b₂)
(cong (λ b → set l₂ a (set l₁ b c₂)) (refl _)) ≡⟨ trans (cong (trans _) $ cong-refl _) $
trans-reflʳ _ ⟩
set-set l₂ a b₁ b₂ ≡⟨ sym $
trans (cong (flip trans _) $ cong-refl _) $
trans-reflˡ _ ⟩∎
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (refl _))
(set-set l₂ a b₁ b₂) ∎)
(get-set l₂ a b₁) ⟩
trans (trans (cong (λ b → set l₂ a′ (set l₁ b c₂))
(get-set l₂ a b₁))
(set-set l₂ a b₁ b₂))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (set-set l₂ a b₁ b₂)
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨⟩
set-set (l₁ ∘′ l₂) a c₁ c₂ ∎)
where
open Lens
∘≡∘″ : l₁ ∘ l₂ ≡ l₁ ∘″ l₂
∘≡∘″ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ (get l₂ a) c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
eq : b′ ≡ b₂
eq = trans (cong (λ b → set l₁ b c₂) (get-set l₂ a b₁))
(set-set l₁ (get l₂ a) c₁ c₂)
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ cong (trans (set-set l₂ a b₁ b′)) $
trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _ ⟩
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡⟨ elim¹
(λ {b₂} eq → trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂))
(
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩
trans (set-set l₂ a b₁ b′) (refl _) ≡⟨ trans-reflʳ _ ⟩
set-set l₂ a b₁ b′ ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (set-set l₂ a b₁ b′) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′) ∎)
eq ⟩
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂) ≡⟨ trans (cong (flip trans _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $ cong-∘ _ _ _) $
trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (cong (set l₂ a′) (set-set l₁ (get l₂ a) c₁ c₂))
(set-set l₂ a b₁ b₂)) ≡⟨⟩
set-set (l₁ ∘″ l₂) a c₁ c₂ ∎)
where
open Lens
-- id is a left identity of _∘_.
left-identity : (l : Lens A B) → id ∘ l ≡ l
left-identity l = equal-laws→≡
(λ a b →
trans (cong P.id (get-set a b)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (get-set a b) ≡⟨ sym $ cong-id _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong (set a) (refl _)) (set-get a) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (set-get a) ≡⟨ trans-reflˡ _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (set-set a b₁ b₂)
(trans (cong (λ _ → set a b₂) (get-set a b₁))
(cong (set a) (refl _))) ≡⟨ cong₂ (λ p q → trans _ (trans p q))
(cong-const _)
(cong-refl _) ⟩
trans (set-set a b₁ b₂) (trans (refl _) (refl _)) ≡⟨ trans (cong (trans _) trans-refl-refl) $
trans-reflʳ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- id is a right identity of _∘_.
right-identity : (l : Lens A B) → l ∘ id ≡ l
right-identity l = equal-laws→≡
(λ a b →
trans (cong get (refl _)) (get-set a b) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (get-set a b) ≡⟨ trans-reflˡ _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong P.id (set-get a)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (set-get a) ≡⟨ sym $ cong-id _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (refl _)
(trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂))) ≡⟨ trans-reflˡ _ ⟩
trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂)) ≡⟨ cong₂ trans (cong-refl _) (sym $ cong-id _) ⟩
trans (refl _) (set-set a b₁ b₂) ≡⟨ trans-reflˡ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- _∘_ is associative.
associativity :
(l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) →
l₁ ∘ (l₂ ∘ l₃) ≡ (l₁ ∘ l₂) ∘ l₃
associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃
where
open Lens
lemma₁ = λ a d →
let
f = get l₁
g = get l₂
b = get l₃ a
c = g b
c′ = set l₁ c d
x = get-set l₃ a (set l₂ b c′)
y = get-set l₂ b c′
z = get-set l₁ c d
in
trans (cong f $ trans (cong g x) y) z ≡⟨ cong (λ x → trans x z) (cong-trans f _ y) ⟩
trans (trans (cong f $ cong g x) (cong f y)) z ≡⟨ trans-assoc _ _ z ⟩
trans (cong f $ cong g x) (trans (cong f y) z) ≡⟨ cong (λ x → trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎
trans (cong (f ⊚ g) x) (trans (cong f y) z) ∎
lemma₂ = λ a →
let
b = get l₃ a
f = set l₃ a
g = set l₂ b
x = set-get l₁ (get l₂ b)
y = set-get l₂ b
z = set-get l₃ a
in
trans (cong (f ⊚ g) x) (trans (cong f y) z) ≡⟨ sym $ trans-assoc _ _ z ⟩
trans (trans (cong (f ⊚ g) x) (cong f y)) z ≡⟨ cong (λ x → trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) ⟩
trans (trans (cong f (cong g x)) (cong f y)) z ≡⟨ cong (λ x → trans x z) (sym $ cong-trans f _ y) ⟩∎
trans (cong f $ trans (cong g x) y) z ∎
lemma₃ = λ a d₁ d₂ →
let
f = set l₃ a
g = set l₂ (get l₃ a)
h = λ x → set l₁ x d₂
i = get l₂
c₁ = set l₁ (get (l₂ ∘ l₃) a) d₁
c₂ = h (i (get l₃ a))
c₂′ = h (i (get l₃ (set (l₂ ∘ l₃) a c₁)))
c₂″ = h (i (set l₂ (get l₃ a) c₁))
b₁ = g c₁
b₁′ = get l₃ (f b₁)
x = set-set l₃ a b₁ (set l₂ b₁′ c₂′)
y = get-set l₃ a b₁
z = set-set l₂ (get l₃ a) c₁
u = get-set l₂ (get l₃ a) c₁
v = set-set l₁ (get (l₂ ∘ l₃) a) d₁ d₂
c₂′≡c₂″ =
c₂′ ≡⟨ cong (h ⊚ i) y ⟩∎
c₂″ ∎
lemma₁₀ =
trans (sym (cong (h ⊚ i) y)) (cong h (cong i y)) ≡⟨ cong (trans _) (cong-∘ h i y) ⟩
trans (sym (cong (h ⊚ i) y)) (cong (h ⊚ i) y) ≡⟨ trans-symˡ (cong (h ⊚ i) y) ⟩∎
refl _ ∎
lemma₉ =
trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″) ≡⟨ cong (trans (cong (λ x → set l₂ x c₂′) y))
(cong-∘ (set l₂ b₁) (h ⊚ i) y) ⟩
trans (cong (λ x → set l₂ x (h (i b₁′))) y)
(cong (λ x → set l₂ b₁ (h (i x ))) y) ≡⟨ trans-cong-cong (λ x y → set l₂ x (h (i y))) y ⟩∎
cong (λ x → set l₂ x (h (i x))) y ∎
lemma₈ =
sym (cong (set l₂ b₁) (sym c₂′≡c₂″)) ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) ⟩
cong (set l₂ b₁) (sym (sym c₂′≡c₂″)) ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎
cong (set l₂ b₁) c₂′≡c₂″ ∎
lemma₇ =
trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y))) ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) ⟩
cong g (trans (sym c₂′≡c₂″) (cong h (cong i y))) ≡⟨ cong (cong g) lemma₁₀ ⟩
cong g (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
lemma₆ =
trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))) ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(cong (set l₂ b₁) c₂′≡c₂″))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ ⟩
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (sym c₂′≡c₂″)) ∎
lemma₅ =
z c₂′ ≡⟨ sym $ dcong z (sym c₂′≡c₂″) ⟩
subst (λ x → set l₂ b₁ x ≡ g x) (sym c₂′≡c₂″) (z c₂″) ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} ⟩
trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″)))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎
trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ∎
lemma₄ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans (trans (cong (λ x → set l₂ x c₂′) y) e)
(cong g (cong h (cong i y))))
lemma₅ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans e (cong g (cong h (cong i y)))) lemma₆ ⟩
trans (trans (trans (cong (λ x → set l₂ x (h (i x))) y)
(z c₂″))
(cong g (sym c₂′≡c₂″)))
(cong g (cong h (cong i y))) ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(trans (cong g (sym c₂′≡c₂″))
(cong g (cong h (cong i y)))) ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(refl _) ≡⟨ trans-reflʳ _ ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″) ∎
lemma₃ =
cong g (trans (cong h (trans (cong i y) u)) v) ≡⟨ cong (λ e → cong g (trans e v)) (cong-trans h _ u) ⟩
cong g (trans (trans (cong h (cong i y)) (cong h u)) v) ≡⟨ cong (cong g) (trans-assoc _ _ v) ⟩
cong g (trans (cong h (cong i y)) (trans (cong h u) v)) ≡⟨ cong-trans g _ (trans _ v) ⟩∎
trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v)) ∎
lemma₂ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v))) ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) ⟩
trans (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))))
(cong g (trans (cong h u) v)) ≡⟨ cong (λ e → trans e (cong g (trans (cong h u) v))) lemma₄ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (trans (cong h u) v)) ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v))) ∎
lemma₁ =
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (λ e → trans
(cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) e)
(sym $ cong-∘ f g (trans _ v)) ⟩
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong f (cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) ⟩
cong f (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ cong (cong f) lemma₂ ⟩
cong f (trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong f (cong (λ x → set l₂ x (h (i x))) y))
(cong f (trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong₂ (λ p q → trans p (cong f (trans (z c₂″) q)))
(cong-∘ _ _ _)
(trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _) ⟩∎
trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u) (cong g v)))) ∎
in
trans (trans x (trans (cong (λ x → f (set l₂ x c₂′)) y)
(cong f (z c₂′))))
(trans (cong (f ⊚ g ⊚ h) (trans (cong i y) u))
(cong (f ⊚ g) v)) ≡⟨ cong₂ (λ p q → trans (trans x p) q)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _) ⟩
trans (trans x (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′))))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ trans-assoc _ _ _ ⟩
trans x (trans (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′)))
(cong (f ⊚ g)
(trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (trans x) lemma₁ ⟩∎
trans x (trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u)
(cong g v))))) ∎
-- Every lens of type Lens A A that satisfies a certain right
-- identity law is equal to the identity lens.
id-unique :
(id′ : Lens A A) →
((l : Lens A A) → l ∘ id′ ≡ l) →
id′ ≡ id
id-unique id′ right-identity =
id′ ≡⟨ sym $ left-identity _ ⟩
id ∘ id′ ≡⟨ right-identity _ ⟩∎
id ∎
-- An equality characterisation lemma that can be used when one of
-- the lenses is the identity.
equality-characterisation-id :
{l : Lens A A} → let open Lens l in
l ≡ id
↔
∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
equality-characterisation-id {l = l} =
l ≡ id ↝⟨ equality-characterisation₄ ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (cong P.id (g a))))
(set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(refl _))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → ∃-cong λ _ →
(∀-cong ext λ _ →
≡⇒↝ _ $ cong (λ eq → trans (sym (trans _ eq)) (set-get _) ≡ _) $ sym $
cong-id (g _))
×-cong
∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (g a))) (set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) ↝⟨ (∃-cong λ g → ∃-cong λ s →
(∀-cong ext λ _ → ∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
(∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
F.id) ⟩□
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
(∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) □
where
open Lens l
-- A lemma that can be used to show that a lens with a constant
-- setter (such as the ones produced by getter-equivalence→lens
-- below) is equal to the identity lens.
constant-setter→≡id :
{l′ : ∃ λ (get : A → A) →
∃ λ (set : A → A) →
(A → ∀ a → get (set a) ≡ a) ×
(∀ a → set (get a) ≡ a) ×
(A → A → ∀ a → set a ≡ set a)} →
let l = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l hiding (set)
in
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _)) →
l ≡ id
constant-setter→≡id {A = A} {l′ = l′} =
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _)) ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s} → Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡⟨ cong (λ eq → trans eq (s a₂)) $ hyp _ _ _ ⟩
trans (refl _) (s a₂) ≡⟨ trans-reflˡ (s _) ⟩∎
s a₂ ∎) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ s a₂)) ↔⟨ (∃-cong λ _ → ∃-cong λ s → ∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ a₁ → ∀-cong ext λ a₂ →
≡⇒↝ equivalence $ cong (trans _ (s _) ≡_) (
s a₂ ≡⟨ sym $ cong-ext s ⟩
cong (λ set → set a₂) (⟨ext⟩ s) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) ⟩
cong (λ set → set (set a a₁) a₂) (cong const (⟨ext⟩ s)) ≡⟨ cong (cong (λ set → set (set a a₁) a₂)) $ sym $
ext-const (⟨ext⟩ s) ⟩∎
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s) ∎)) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s))) ↝⟨ Σ-map P.id (Σ-map const P.id) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : A → ∀ a → set a ≡ a) →
(∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₁ a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))) ↔⟨ inverse equality-characterisation-id ⟩□
l″ ≡ id □
where
l″ = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l″ hiding (set)
-- An identity function for lenses for which the forward direction
-- is an equivalence.
--
-- Note that the setter of the resulting lens is definitionally
-- equal to a constant function returning the right-to-left
-- direction of the equivalence.
--
-- Note also that two proofs, set-get and set-set, have been
-- "obfuscated". They could have been shorter, but then it might not
-- have been possible to prove getter-equivalence→lens≡.
getter-equivalence→lens :
(l : Lens A B) →
Is-equivalence (Lens.get l) →
Lens A B
getter-equivalence→lens l is-equiv = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = λ a →
from (to a) ≡⟨ cong from (sym (get-set a (to a))) ⟩
from (get (set a (to a))) ≡⟨⟩
from (to (set a (get a))) ≡⟨ cong (from ⊚ to) (set-get a) ⟩
from (to a) ≡⟨ left-inverse-of _ ⟩∎
a ∎
; set-set = λ a b₁ b₂ →
let s = from≡set l is-equiv in
from b₂ ≡⟨ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)) ⟩
set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩
set a b₂ ≡⟨ sym (s a b₂) ⟩∎
from b₂ ∎
}
where
A≃B = Eq.⟨ _ , is-equiv ⟩
open _≃_ A≃B
open Lens l
-- The function getter-equivalence→lens returns its input.
getter-equivalence→lens≡ :
∀ (l : Lens A B) is-equiv →
getter-equivalence→lens l is-equiv ≡ l
getter-equivalence→lens≡ l is-equiv =
_↔_.from equality-characterisation₄
( g
, s
, lemma₁
, lemma₂
, lemma₃
)
where
open Lens
A≃B = Eq.⟨ get l , is-equiv ⟩
open _≃_ A≃B
l′ = getter-equivalence→lens l is-equiv
g = λ _ → refl _
s = from≡set l is-equiv
lemma₁ = λ a b →
let lem =
cong (get l) (s a b) ≡⟨⟩
cong (get l)
(trans (cong from (sym (get-set l a b)))
(left-inverse-of _)) ≡⟨ cong-trans _ _ (left-inverse-of _) ⟩
trans (cong (get l)
(cong from (sym (get-set l a b))))
(cong (get l) (left-inverse-of _)) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym (get-set l a b)))
(left-right-lemma _) ⟩∎
trans (cong (get l ⊚ from) (sym (get-set l a b)))
(right-inverse-of _) ∎
in
trans (sym (trans (cong (get l) (s a b))
(g (set l a b))))
(get-set l′ a b) ≡⟨⟩
trans (sym (trans (cong (get l) (s a b)) (refl _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) $
trans-reflʳ _ ⟩
trans (sym (cong (get l) (s a b)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) lem ⟩
trans (sym (trans (cong (get l ⊚ from)
(sym (get-set l a b)))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ elim¹
(λ eq → trans (sym (trans (cong (get l ⊚ from) (sym eq))
(right-inverse-of _)))
(right-inverse-of _) ≡ eq) (
trans (sym (trans (cong (get l ⊚ from) (sym (refl _)))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym (trans (cong (get l ⊚ from) eq) _)) _)
sym-refl ⟩
trans (sym (trans (cong (get l ⊚ from) (refl _))
(right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym (trans eq _)) _) $
cong-refl _ ⟩
trans (sym (trans (refl _) (right-inverse-of _)))
(right-inverse-of _) ≡⟨ cong (λ eq → trans (sym eq) (right-inverse-of _)) $
trans-reflˡ (right-inverse-of _) ⟩
trans (sym (right-inverse-of _))
(right-inverse-of _) ≡⟨ trans-symˡ (right-inverse-of _) ⟩∎
refl _ ∎)
_ ⟩∎
get-set l a b ∎
lemma₂ = λ a →
trans (sym (trans (s a (get l a)) (cong (set l a) (g a))))
(set-get l′ a) ≡⟨⟩
trans (sym (trans (s a (get l a)) (cong (set l a) (refl _))))
(set-get l′ a) ≡⟨ cong (λ eq → trans (sym (trans (s a (get l a)) eq)) (set-get l′ a)) $
cong-refl _ ⟩
trans (sym (trans (s a (get l a)) (refl _))) (set-get l′ a) ≡⟨ cong (λ eq → trans (sym eq) (set-get l′ a)) $
trans-reflʳ _ ⟩
trans (sym (s a (get l a))) (set-get l′ a) ≡⟨⟩
trans (sym (trans (cong from (sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a))))
(trans (cong (from ⊚ get l) (set-get l a))
(left-inverse-of _))) ≡⟨ cong (λ eq → trans (sym (trans
(cong from (sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a)))) eq)) $
elim¹
(λ eq → trans (cong (from ⊚ get l) eq) (left-inverse-of _) ≡
trans (left-inverse-of _) eq)
(
trans (cong (from ⊚ get l) (refl _))
(left-inverse-of (set l a (get l a))) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (left-inverse-of (set l a (get l a))) ≡⟨ trans-reflˡ _ ⟩
left-inverse-of (set l a (get l a)) ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (left-inverse-of (set l a (get l a))) (refl _) ∎)
(set-get l a) ⟩
trans (sym (trans (cong from
(sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (cong from (sym (get-set l a (get l a))))
(trans (left-inverse-of _) (set-get l a))) ≡⟨ cong (trans _) $ sym $
trans-assoc _ _ (set-get l a) ⟩
trans (sym (trans (cong from
(sym (get-set l a (get l a))))
(left-inverse-of _)))
(trans (trans (cong from (sym (get-set l a (get l a))))
(left-inverse-of _))
(set-get l a)) ≡⟨ trans-sym-[trans] _ _ ⟩∎
set-get l a ∎
lemma₃ = λ a b₁ b₂ →
trans (set-set l′ a b₁ b₂) (s a b₂) ≡⟨⟩
trans (trans (cong (λ set → set (set a b₁) b₂)
(⟨ext⟩ (⟨ext⟩ ⊚ s)))
(trans (set-set l a b₁ b₂)
(sym (s a b₂))))
(s a b₂) ≡⟨ cong (λ eq → trans eq (s a b₂)) $ sym $
trans-assoc _ _ (sym (s a b₂)) ⟩
trans (trans (trans (cong (λ set → set (set a b₁) b₂)
(⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l a b₁ b₂))
(sym (s a b₂)))
(s a b₂) ≡⟨ trans-[trans-sym]- _ (s a b₂) ⟩∎
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l a b₁ b₂) ∎
------------------------------------------------------------------------
-- Some existence results
-- The lenses bad a and id {A = ↑ a 𝕊¹} have equal setters, and their
-- getters are equivalences, but they are not equal (assuming
-- univalence).
equal-setters-and-equivalences-as-getters-but-not-equal :
Univalence lzero →
let l₁ = bad a
l₂ = id {A = ↑ a 𝕊¹}
in
Is-equivalence (Lens.get l₁) ×
Is-equivalence (Lens.get l₂) ×
Lens.set l₁ ≡ Lens.set l₂ ×
l₁ ≢ l₂
equal-setters-and-equivalences-as-getters-but-not-equal {a = ℓa} univ =
let is-equiv , not-coherent , _ =
getter-equivalence-but-not-coherent univ
in
is-equiv
, _≃_.is-equivalence F.id
, refl _
, (bad ℓa ≡ id ↝⟨ (λ eq → subst (λ l → ∀ a → cong (get l) (set-get l a) ≡
get-set l a (get l a))
(sym eq)
(λ _ → cong-refl _)) ⟩
(∀ a → cong (get (bad ℓa)) (set-get (bad ℓa) a) ≡
get-set (bad ℓa) a (get (bad ℓa) a)) ↝⟨ not-coherent ⟩□
⊥ □)
where
open Lens
-- There is in general no split surjection from equivalences to lenses
-- with getters that are equivalences, if the right-to-left direction
-- of the split surjection is required to return the lens's getter
-- plus some proof (assuming univalence).
¬-≃-↠-Σ-Lens-Is-equivalence-get :
Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)
¬-≃-↠-Σ-Lens-Is-equivalence-get {a = a} univ =
let is-equiv₁ , is-equiv₂ , _ , bad≢id =
equal-setters-and-equivalences-as-getters-but-not-equal univ
in
λ (f , hyp) → $⟨ refl _ ⟩
Lens.get (bad a) ≡ Lens.get id ↝⟨ (λ eq → trans (hyp _) (trans eq (sym (hyp _)))) ⟩
_≃_.to (_↠_.from f (bad a , is-equiv₁)) ≡
_≃_.to (_↠_.from f (id , is-equiv₂)) ↝⟨ Eq.lift-equality ext ⟩
_↠_.from f (bad a , is-equiv₁) ≡
_↠_.from f (id , is-equiv₂) ↝⟨ _↠_.to (Surjection.↠-≡ f) ⟩
(bad a , is-equiv₁) ≡ (id , is-equiv₂) ↝⟨ cong proj₁ ⟩
bad a ≡ id ↝⟨ bad≢id ⟩□
⊥ □
-- There is in general no equivalence from equivalences to lenses with
-- getters that are equivalences, if the right-to-left direction of
-- the equivalence is required to return the lens's getter plus some
-- proof (assuming univalence).
¬-≃-≃-Σ-Lens-Is-equivalence-get :
Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) → Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_≃_.from f p) ≡ Lens.get (proj₁ p)
¬-≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ =
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_≃_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map _≃_.surjection P.id ⟩
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□
⊥ □
-- The lemma ≃Σ∥set⁻¹∥× does not hold in general if the requirement
-- that A is a set is dropped (assuming univalence).
--
-- I proved this together with Paolo Capriotti.
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.𝕊¹≄𝕊¹×𝕊¹.)
≄Σ∥set⁻¹∥× :
Univalence lzero →
¬ ({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B))
≄Σ∥set⁻¹∥× {a = a} _ =
({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B)) ↝⟨ (λ hyp → hyp) ⟩
((l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
↑ a 𝕊¹ ≃ ((∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ Lens.set l ⁻¹ f ∥) × ↑ a 𝕊¹)) ↝⟨ _$ id ⟩
↑ a 𝕊¹ ≃ ((∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ const P.id ⁻¹ f ∥) × ↑ a 𝕊¹) ↝⟨ lemma ⟩
𝕊¹ ≃ (𝕊¹ × 𝕊¹) ↝⟨ 𝕊¹≄𝕊¹×𝕊¹ ⟩□
⊥ □
where
open Circle
open Int
lemma = λ hyp →
𝕊¹ ↔⟨ inverse Bijection.↑↔ ⟩
↑ a 𝕊¹ ↝⟨ hyp ⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ const P.id ⁻¹ f ∥) × ↑ a 𝕊¹ ↔⟨⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ ↑ a 𝕊¹ × P.id ≡ f ∥) × ↑ a 𝕊¹ ↝⟨ (×-cong₁ λ _ → ∃-cong λ _ → T.∥∥-cong-⇔ $
record { to = proj₂; from = λ eq → lift base , eq }) ⟩
(∃ λ (f : ↑ a 𝕊¹ → ↑ a 𝕊¹) → ∥ P.id ≡ f ∥) × ↑ a 𝕊¹ ↝⟨ (Σ-cong (→-cong ext Bijection.↑↔ Bijection.↑↔) λ _ → T.∥∥-cong $
inverse $ Eq.≃-≡ (Eq.↔⇒≃ $ →-cong ext Bijection.↑↔ Bijection.↑↔))
×-cong
Eq.↔⇒≃ Bijection.↑↔ ⟩
(∃ λ (f : 𝕊¹ → 𝕊¹) → ∥ P.id ≡ f ∥) × 𝕊¹ ↝⟨ (×-cong₁ λ _ →
Σ-cong 𝕊¹→𝕊¹≃𝕊¹×ℤ λ f →
T.∥∥-cong (
P.id ≡ f ↝⟨ inverse $ Eq.≃-≡ 𝕊¹→𝕊¹≃𝕊¹×ℤ ⟩
_≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ P.id ≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ↝⟨ ≡⇒≃ $ cong (_≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f) 𝕊¹→𝕊¹≃𝕊¹×ℤ-id ⟩
(base , + 1) ≡ _≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ↔⟨ ≡-comm ⟩□
_≃_.to 𝕊¹→𝕊¹≃𝕊¹×ℤ f ≡ (base , + 1) □)) ⟩
(∃ λ (p : 𝕊¹ × ℤ) → ∥ p ≡ (base , + 1) ∥) × 𝕊¹ ↔⟨ (×-cong₁ λ _ → ∃-cong λ _ → inverse $
T.∥∥-cong ≡×≡↔≡ F.∘ T.∥∥×∥∥↔∥×∥) ⟩
(∃ λ ((x , i) : 𝕊¹ × ℤ) → ∥ x ≡ base ∥ × ∥ i ≡ + 1 ∥) × 𝕊¹ ↔⟨ (×-cong₁ λ _ →
Σ-assoc F.∘
(∃-cong λ _ → ∃-comm) F.∘
inverse Σ-assoc) ⟩
((∃ λ x → ∥ x ≡ base ∥) × (∃ λ i → ∥ i ≡ + 1 ∥)) × 𝕊¹ ↔⟨ (×-cong₁ λ _ →
(drop-⊤-right λ _ →
T.inhabited⇒∥∥↔⊤ $ all-points-on-the-circle-are-merely-equal _)
×-cong
∃-cong λ _ → T.∥∥↔ ℤ-set) ⟩
(𝕊¹ × (∃ λ i → i ≡ + 1)) × 𝕊¹ ↔⟨ (×-cong₁ λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $
singleton-contractible _) ⟩□
𝕊¹ × 𝕊¹ □
------------------------------------------------------------------------
-- Isomorphisms expressed using lens quasi-inverses
private
module B {a} =
Bi-invertibility
equality-with-J (Type a) Lens id _∘_
module BM {a} =
B.More {a = a} left-identity right-identity associativity
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≅_ to _≅_; Has-quasi-inverse to Has-quasi-inverse)
-- An equality characterisation lemma for A ≅ B that applies when A is
-- a set.
equality-characterisation-for-sets-≅ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≅ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≅
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ BM.equality-characterisation-≅-domain (lens-preserves-h-level-of-domain 1 A-set) _ _ ⟩
l₁₁ ≡ l₁₂ ↝⟨ equality-characterisation-for-sets A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a split surjection from A ≅ B to A ≃ B.
≅↠≃ : (A ≅ B) ↠ (A ≃ B)
≅↠≃ {A = A} {B = B} = record
{ logical-equivalence = record
{ to = λ (l₁ , l₂ , eq₁ , eq₂) → Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = get l₁
; from = get l₂
}
; right-inverse-of = ext⁻¹ $
getters-equal-if-setters-equal (l₁ ∘ l₂) id
(cong set eq₁)
}
; left-inverse-of = ext⁻¹ $
getters-equal-if-setters-equal (l₂ ∘ l₁) id
(cong set eq₂)
})
; from = λ A≃B → ≃→lens A≃B
, ≃→lens (inverse A≃B)
, lemma A≃B
, (≃→lens (inverse A≃B) ∘ ≃→lens A≃B ≡⟨ cong (λ A≃B′ → ≃→lens (inverse A≃B) ∘ ≃→lens A≃B′) $
sym $ Eq.inverse-involutive ext A≃B ⟩
≃→lens (inverse A≃B) ∘
≃→lens (inverse $ inverse A≃B) ≡⟨ lemma (inverse A≃B) ⟩∎
id ∎)
}
; right-inverse-of = λ _ → Eq.lift-equality ext (refl _)
}
where
open Lens
lemma :
(C≃D : C ≃ D) → ≃→lens C≃D ∘ ≃→lens (inverse C≃D) ≡ id
lemma C≃D = _↔_.from equality-characterisation₂
( ⟨ext⟩ (_≃_.right-inverse-of C≃D)
, (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
, lemma₁
, lemma₂
, lemma₃
)
where
lemma₁ = λ d₁ d₂ →
let lemma =
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₂)))
(⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (_≃_.to C≃D ⊚ _≃_.from C≃D)
(cong (λ set → set d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D)) ≡⟨ cong (cong (_≃_.to C≃D ⊚ _≃_.from C≃D)) $ cong-ext _ ⟩
cong (_≃_.to C≃D ⊚ _≃_.from C≃D)
(_≃_.right-inverse-of C≃D _) ≡⟨ sym $ cong-∘ _ _ (_≃_.right-inverse-of C≃D _) ⟩
cong (_≃_.to C≃D)
(cong (_≃_.from C≃D) (_≃_.right-inverse-of C≃D _)) ≡⟨ cong (cong (_≃_.to C≃D)) $ _≃_.right-left-lemma C≃D _ ⟩∎
cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _) ∎
in
trans (sym
(trans (cong (λ set → _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
(cong (λ get → get d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)) ≡⟨ cong₂ (λ p q → trans (sym (trans p q))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)))
lemma
(cong-ext _) ⟩
trans (sym
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)))
(trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
lemma₂ = λ d →
let lemma =
cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
cong (λ set → set (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ $ _≃_.right-inverse-of C≃D) ≡⟨ cong-ext _ ⟩∎
_≃_.right-inverse-of C≃D _ ∎
in
trans (sym
(trans (cong (λ set → set d (_≃_.to C≃D (_≃_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
(cong (λ get → get d)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
(trans
(cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
(_≃_.left-inverse-of (inverse C≃D) _)) ≡⟨ cong₂ (λ p q → trans (sym p) q)
(cong₂ trans lemma (cong-ext _))
(cong₂ trans
(_≃_.left-right-lemma C≃D _)
(Eq.left-inverse-of∘inverse C≃D)) ⟩
trans (sym (trans (_≃_.right-inverse-of C≃D _)
(_≃_.right-inverse-of C≃D _)))
(trans (_≃_.right-inverse-of C≃D _)
(_≃_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
lemma₃ = λ d d₁ d₂ →
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(trans (refl _)
(trans
(cong (λ _ → _≃_.to C≃D (_≃_.from C≃D d₂))
(_≃_.right-inverse-of (inverse C≃D)
(_≃_.from C≃D d₁)))
(cong (_≃_.to C≃D) (refl _)))) ≡⟨ cong (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)) $
trans (trans-reflˡ _) $
trans (cong (flip trans _) $ cong-const _) $
trans (trans-reflˡ _) $
cong-refl _ ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ cong (flip (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)) _) $
ext-const (⟨ext⟩ $ _≃_.right-inverse-of C≃D) ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ sym $ subst-∘ _ _ _ ⟩
subst (λ set → set d₂ ≡ set d₂)
(⟨ext⟩ $ _≃_.right-inverse-of C≃D)
(refl _) ≡⟨ subst-ext _ _ ⟩
subst (λ set → set ≡ set)
(_≃_.right-inverse-of C≃D d₂)
(refl _) ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (
trans (refl _) (_≃_.right-inverse-of C≃D d₂) ≡⟨ trans-reflˡ _ ⟩
_≃_.right-inverse-of C≃D d₂ ≡⟨ sym $ trans-reflʳ _ ⟩
trans (_≃_.right-inverse-of C≃D d₂) (refl _) ∎) ⟩
refl _ ∎
-- The right-to-left direction of ≅↠≃ maps identity to an isomorphism
-- for which the first projection is the identity.
≅↠≃-id≡id : proj₁ (_↠_.from ≅↠≃ F.id) ≡ id {A = A}
≅↠≃-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃_.left-inverse-of F.id a ≡⟨ sym $ _≃_.right-left-lemma F.id _ ⟩
cong P.id (_≃_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
-- If A is a set, then there is an equivalence between A ≃ B and A ≅ B.
≃≃≅ :
Is-set A →
(A ≃ B) ≃ (A ≅ B)
≃≃≅ {A = A} {B = B} A-set = Eq.↔⇒≃ $ inverse (record
{ surjection = ≅↠≃
; left-inverse-of = λ (l₁ , l₂ , eq₁ , eq₂) →
_↔_.from (equality-characterisation-for-sets-≅ A-set) $
⟨ext⟩ λ a → ⟨ext⟩ λ b →
get l₂ b ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ ⟩
set l₁ (set l₁ a b)
(set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ set-set l₁ _ _ _ ⟩
set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ cong (λ b′ → set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ ⟩
set l₁ a (set l₂ b (get l₂ b)) ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎
set l₁ a b ∎
})
where
open Lens
-- The equivalence maps identity to an isomorphism for which the first
-- projection is the identity.
≃≃≅-id≡id :
(A-set : Is-set A) →
proj₁ (_≃_.to (≃≃≅ A-set) F.id) ≡ id
≃≃≅-id≡id _ = ≅↠≃-id≡id
-- The type Has-quasi-inverse id is not necessarily a proposition
-- (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.¬-type-of-refl-propositional.)
Has-quasi-inverse-id-not-proposition :
Univalence lzero →
∃ λ (A : Type a) →
¬ Is-proposition (Has-quasi-inverse (id {A = A}))
Has-quasi-inverse-id-not-proposition _ =
X
, (Is-proposition (Has-quasi-inverse id) ↝⟨ flip propositional⇒inhabited⇒contractible q ⟩
Contractible (Has-quasi-inverse id) ↝⟨ H-level-cong _ 0 lemma₁ ⟩
Contractible (∃ λ (g : (x : X) → x ≡ x) → _) ↝⟨ flip proj₁-closure 0
(λ g → (λ _ x → sym (g x)) , lemma₂ g , lemma₃ g , lemma₄ g) ⟩
Contractible ((x : X) → x ≡ x) ↝⟨ mono₁ 0 ⟩
Is-proposition ((x : X) → x ≡ x) ↝⟨ ¬-prop ⟩□
⊥ □)
where
X = Erased (proj₁ Circle.¬-type-of-refl-propositional)
¬-prop =
E.Stable-¬
[ Is-proposition ((x : X) → x ≡ x) ↝⟨ H-level-cong _ 1 (Π-cong ext (E.erased E.Erased↔) λ _ → inverse E.≡≃[]≡[]) ⟩
Is-proposition ((x : ↑ _ 𝕊¹) → x ≡ x) ↝⟨ proj₂ Circle.¬-type-of-refl-propositional ⟩□
⊥ □
]
q = id , left-identity _ , right-identity _
lemma₁ =
Has-quasi-inverse id ↝⟨ BM.Has-quasi-inverse≃id≡id-domain q ⟩
id ≡ id ↔⟨ equality-characterisation₄ ⟩□
(∃ λ (g : ∀ x → x ≡ x) →
∃ λ (s : X → ∀ x → x ≡ x) →
(∀ x y →
trans (sym (trans (cong P.id (s x y)) (g y))) (refl _) ≡
refl _) ×
(∀ x →
trans (sym (trans (s x x) (cong P.id (g x)))) (refl _) ≡
refl _) ×
(∀ x y z →
trans (refl _) (s x z) ≡
trans (cong (λ set → set (set x y) z) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(refl _))) □
lemma₂ : (g : ∀ x → x ≡ x) (x y : X) → _
lemma₂ g x y =
trans (sym (trans (cong P.id (sym (g y))) (g y))) (refl _) ≡⟨ trans-reflʳ _ ⟩
sym (trans (cong P.id (sym (g y))) (g y)) ≡⟨ cong (λ eq → sym (trans eq (g y))) $ sym $ cong-id _ ⟩
sym (trans (sym (g y)) (g y)) ≡⟨ cong sym $ trans-symˡ (g y) ⟩
sym (refl _) ≡⟨ sym-refl ⟩∎
refl _ ∎
lemma₃ : (g : ∀ x → x ≡ x) (x : X) → _
lemma₃ g x =
trans (sym (trans (sym (g x)) (cong P.id (g x)))) (refl _) ≡⟨ trans-reflʳ _ ⟩
sym (trans (sym (g x)) (cong P.id (g x))) ≡⟨ cong (λ eq → sym (trans (sym (g x)) eq)) $ sym $ cong-id (g x) ⟩
sym (trans (sym (g x)) (g x)) ≡⟨ cong sym $ trans-symˡ (g x) ⟩
sym (refl _) ≡⟨ sym-refl ⟩∎
refl _ ∎
lemma₄ : (g : ∀ x → x ≡ x) (x y z : X) → _
lemma₄ g x y z =
trans (refl _) (sym (g z)) ≡⟨ trans-reflˡ (sym (g z)) ⟩
sym (g z) ≡⟨ sym $ cong-ext (sym ⊚ g) ⟩
cong (_$ z) (⟨ext⟩ (sym ⊚ g)) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ (sym ⊚ g)) ⟩
cong (λ set → set (set x y) z) (cong const (⟨ext⟩ (sym ⊚ g))) ≡⟨ cong (cong (λ set → set (set x y) z)) $ sym $ ext-const (⟨ext⟩ (sym ⊚ g)) ⟩
cong (λ set → set (set x y) z) (⟨ext⟩ λ _ → ⟨ext⟩ (sym ⊚ g)) ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (cong (λ set → set (set x y) z) (⟨ext⟩ λ _ → ⟨ext⟩ (sym ⊚ g)))
(refl _) ∎
-- There is not necessarily a split surjection from
-- Is-equivalence (Lens.get l) to Has-quasi-inverse l, if l is a lens
-- between types in the same universe (assuming univalence).
¬Is-equivalence↠Has-quasi-inverse :
Univalence lzero →
¬ ({A B : Type a}
(l : Lens A B) →
Is-equivalence (Lens.get l) ↠ Has-quasi-inverse l)
¬Is-equivalence↠Has-quasi-inverse univ surj =
$⟨ mono₁ 0 ⊤-contractible ⟩
Is-proposition ⊤ ↝⟨ H-level.respects-surjection lemma 1 ⟩
Is-proposition (Has-quasi-inverse id) ↝⟨ proj₂ $ Has-quasi-inverse-id-not-proposition univ ⟩□
⊥ □
where
lemma =
⊤ ↔⟨ inverse $ _⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(Eq.propositional ext _)
(_≃_.is-equivalence Eq.id) ⟩
Is-equivalence P.id ↝⟨ surj id ⟩□
Has-quasi-inverse id □
------------------------------------------------------------------------
-- Isomorphisms expressed using bi-invertibility for lenses
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≊_ to _≊_;
Has-left-inverse to Has-left-inverse;
Has-right-inverse to Has-right-inverse;
Is-bi-invertible to Is-bi-invertible)
open BM public
using ()
renaming (Is-bi-invertible-propositional to
Is-bi-invertible-propositional)
-- An equality characterisation lemma for A ≊ B that applies when A is
-- a set.
equality-characterisation-for-sets-≊ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≊ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≊
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ BM.equality-characterisation-≊ _ _ ⟩
l₁₁ ≡ l₁₂ ↝⟨ equality-characterisation-for-sets A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a split surjection from A ≊ B to A ≃ B.
≊↠≃ : (A ≊ B) ↠ (A ≃ B)
≊↠≃ = record
{ logical-equivalence = record
{ to = _↠_.to ≅↠≃ ⊚ _↠_.from BM.≅↠≊
; from = _↠_.to BM.≅↠≊ ⊚ _↠_.from ≅↠≃
}
; right-inverse-of = λ _ → Eq.lift-equality ext (refl _)
}
-- The right-to-left direction maps identity to an isomorphism for
-- which the first projection is the identity.
≊↠≃-id≡id :
proj₁ (_↠_.from ≊↠≃ F.id) ≡ id {A = A}
≊↠≃-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃_.left-inverse-of F.id a ≡⟨ sym $ _≃_.right-left-lemma F.id _ ⟩
cong P.id (_≃_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
-- If A is a set, then there is an equivalence between A ≊ B and
-- A ≃ B.
≃≃≊ : Is-set A → (A ≃ B) ≃ (A ≊ B)
≃≃≊ {A = A} {B = B} A-set =
A ≃ B ↝⟨ ≃≃≅ A-set ⟩
A ≅ B ↝⟨ inverse $ BM.≊≃≅-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□
A ≊ B □
-- The equivalence ≃≃≊ maps identity to an isomorphism for which the
-- first projection is the identity.
≃≃≊-id≡id :
(A-set : Is-set A) →
proj₁ (_≃_.to (≃≃≊ A-set) F.id) ≡ id
≃≃≊-id≡id _ = ≊↠≃-id≡id
-- The right-to-left direction of ≃≃≊ maps bi-invertible lenses to
-- their getter functions.
to-from-≃≃≊≡get :
(A-set : Is-set A) (A≊B@(l , _) : A ≊ B) →
_≃_.to (_≃_.from (≃≃≊ A-set) A≊B) ≡ Lens.get l
to-from-≃≃≊≡get _ _ = refl _
-- The getter function of a bi-invertible lens is an equivalence.
Is-bi-invertible→Is-equivalence-get :
(l : Lens A B) →
Is-bi-invertible l → Is-equivalence (Lens.get l)
Is-bi-invertible→Is-equivalence-get l is-bi-inv =
_≃_.is-equivalence (_↠_.to ≊↠≃ (l , is-bi-inv))
-- If the getter function is an equivalence, then the lens is
-- bi-invertible.
Is-equivalence-get→Is-bi-invertible :
(l : Lens A B) →
Is-equivalence (Lens.get l) → Is-bi-invertible l
Is-equivalence-get→Is-bi-invertible {A = A} {B = B} l′ is-equiv =
block λ b →
$⟨ l⁻¹′ b , l∘l⁻¹≡id b , l⁻¹∘l≡id b ⟩
Has-quasi-inverse l ↝⟨ B.Has-quasi-inverse→Is-bi-invertible l ⟩
Is-bi-invertible l ↝⟨ subst Is-bi-invertible (getter-equivalence→lens≡ l′ is-equiv) ⟩□
Is-bi-invertible l′ □
where
open Lens
-- A lens that is equal to l′.
l : Lens A B
l = getter-equivalence→lens l′ is-equiv
A≃B = Eq.⟨ get l , is-equiv ⟩
open _≃_ A≃B
-- An inverse of l.
--
-- Note that the set-get and set-set proofs have been "obfuscated".
-- They could have been shorter, but then it might not have been
-- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id.
l⁻¹ : Lens B A
l⁻¹ = record
{ get = from
; set = λ _ → get l
; get-set = λ _ a →
from (get l a) ≡⟨ left-inverse-of a ⟩∎
a ∎
; set-get = λ b →
get l (from b) ≡⟨ sym $ cong (get l) $ set-get l (from b) ⟩
get l (from (get l (from b))) ≡⟨ right-inverse-of (get l (from b)) ⟩
get l (from b) ≡⟨ right-inverse-of b ⟩∎
b ∎
; set-set = λ b a₁ a₂ →
get l a₂ ≡⟨ sym $ right-inverse-of _ ⟩
get l (from (get l a₂)) ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) ⟩
get l (from (get l a₂)) ≡⟨ right-inverse-of _ ⟩∎
get l a₂ ∎
}
-- A blocked variant of l⁻¹.
l⁻¹′ : Block "l⁻¹" → Lens B A
l⁻¹′ ⊠ = l⁻¹
-- The lens l⁻¹ is a right inverse of l.
l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹′ b ≡ id
l∘l⁻¹≡id ⊠ = constant-setter→≡id
( right-inverse-of
, right-inverse-of
, (λ b₁ b₂ →
get-set (l ∘ l⁻¹) b₁ b₂ ≡⟨⟩
trans (cong (get l) (get-set l⁻¹ b₁ (from b₂)))
(get-set l (from b₁) b₂) ≡⟨⟩
trans (cong (get l) (left-inverse-of (from b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $
right-left-lemma _ ⟩
trans (cong (get l) (cong from (right-inverse-of b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans eq (right-inverse-of b₂)) $
cong-∘ _ _ (right-inverse-of b₂) ⟩
trans (cong (get l ⊚ from) (right-inverse-of b₂))
(right-inverse-of b₂) ≡⟨⟩
trans (cong (get (l ∘ l⁻¹)) (right-inverse-of b₂))
(right-inverse-of b₂) ∎)
, (λ b →
set-get (l ∘ l⁻¹) b ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(set-get l⁻¹ b) ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(trans (sym (cong (get l) (set-get l (from b))))
(trans (right-inverse-of (get l (from b)))
(right-inverse-of b))) ≡⟨ trans--[trans-sym] _ _ ⟩
trans (right-inverse-of (get l (from b)))
(right-inverse-of b) ≡⟨⟩
trans (right-inverse-of (get (l ∘ l⁻¹) b))
(right-inverse-of b) ∎)
, (λ b b₁ b₂ →
set-set (l ∘ l⁻¹) b b₁ b₂ ≡⟨⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(trans (cong (λ _ → get l (from b₂))
(get-set l⁻¹ b (from b₁)))
(cong (get l) (set-set l (from b) b₁ b₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) (get l (from b₁))
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ b′ → trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b′
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $
right-inverse-of _ ⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ f → trans (trans (sym (f _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(f _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
right-inverse-of ⟩
trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(ext⁻¹ (⟨ext⟩ right-inverse-of) _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ b → f b ≡ f b) →
trans (trans (sym (ext⁻¹ p (f b₂)))
(trans (sym (q (f b₂))) (ext⁻¹ p (f b₂))))
(q b₂) ≡
refl _)
(λ q →
trans (trans (sym (ext⁻¹ (refl P.id) _))
(trans (sym (q _)) (ext⁻¹ (refl P.id) _)))
(q _) ≡⟨ cong (λ eq → trans (trans (sym eq) (trans (sym (q _)) eq))
(q _)) $
ext⁻¹-refl _ ⟩
trans (trans (sym (refl _))
(trans (sym (q _)) (refl _)))
(q _) ≡⟨ cong₂ (λ p r → trans (trans p r) (q _))
sym-refl
(trans-reflʳ _) ⟩
trans (trans (refl _) (sym (q _))) (q _) ≡⟨ cong (λ eq → trans eq (q _)) $ trans-reflˡ (sym (q _)) ⟩
trans (sym (q _)) (q _) ≡⟨ trans-symˡ (q _) ⟩∎
refl _ ∎)
(⟨ext⟩ right-inverse-of)
(cong (get l) ⊚ set-set l (from b) b₁) ⟩
refl _ ∎)
)
-- The lens l⁻¹ is a left inverse of l.
l⁻¹∘l≡id : ∀ b → l⁻¹′ b ∘ l ≡ id
l⁻¹∘l≡id ⊠ = constant-setter→≡id
( left-inverse-of
, left-inverse-of
, (λ a₁ a₂ →
get-set (l⁻¹ ∘ l) a₁ a₂ ≡⟨⟩
trans (cong from (get-set l a₁ (to a₂)))
(get-set l⁻¹ (get l a₁) a₂) ≡⟨⟩
trans (cong from (right-inverse-of (to a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans (cong from eq) (left-inverse-of _)) $ sym $
left-right-lemma _ ⟩
trans (cong from (cong (get l) (left-inverse-of a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans eq (left-inverse-of _)) $
cong-∘ _ _ (left-inverse-of _) ⟩
trans (cong (from ⊚ get l) (left-inverse-of a₂))
(left-inverse-of a₂) ≡⟨⟩
trans (cong (get (l⁻¹ ∘ l)) (left-inverse-of a₂))
(left-inverse-of a₂) ∎)
, (λ a →
let lemma₁ =
cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) ⟩
trans (cong from (sym (cong (get l)
(set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong (λ eq → trans (cong from eq)
(cong from (trans (right-inverse-of _)
(right-inverse-of _)))) $ sym $
cong-sym _ (set-get l (from (get l a))) ⟩
trans (cong from (cong (get l)
(sym (set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym (set-get l (from (get l a)))))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (cong from (right-inverse-of _))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p q → trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans p q))
(right-left-lemma _)
(right-left-lemma _) ⟩∎
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (left-inverse-of _)
(left-inverse-of _)) ∎
f = from ⊚ get l
lemma₂ : ∀ _ → _
lemma₂ = λ a →
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨ cong (λ g → trans (g (f a)) (g a)) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ∎
lemma₃ =
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) ⟩
trans (refl _) (refl _) ≡⟨ trans-refl-refl ⟩∎
refl _ ∎
in
trans (cong from (set-get l⁻¹ (get l a)))
(set-get l a) ≡⟨⟩
trans (cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))))
(set-get l a) ≡⟨ cong (λ eq → trans eq (set-get l a)) lemma₁ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (left-inverse-of (f (f a)))
(left-inverse-of (f a))))
(set-get l a) ≡⟨ cong (λ eq → trans (trans (cong f (sym (set-get l (f a)))) eq)
(set-get l a)) $
lemma₂ _ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a)))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))))
(set-get l a) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ a → f a ≡ a) →
trans (trans (cong f (sym (q (f a))))
(trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a))))
(q a) ≡
trans (ext⁻¹ p (f a)) (ext⁻¹ p a))
(λ q →
trans (trans (cong P.id (sym (q a)))
(trans (ext⁻¹ (refl P.id) a)
(ext⁻¹ (refl P.id) a)))
(q a) ≡⟨ cong₂ (λ p r → trans (trans p r) (q a))
(sym $ cong-id _)
lemma₃ ⟩
trans (trans (sym (q a)) (refl _)) (q a) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩
trans (sym (q a)) (q a) ≡⟨ trans-symˡ (q a) ⟩
refl _ ≡⟨ sym lemma₃ ⟩∎
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ∎)
(⟨ext⟩ left-inverse-of)
(set-get l) ⟩
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ≡⟨ sym $ lemma₂ _ ⟩
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨⟩
trans (left-inverse-of (get (l⁻¹ ∘ l) a))
(left-inverse-of a) ∎)
, (λ a a₁ a₂ →
let q = set-set l a (get l a₁) (get l a₂)
lemma =
cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) ⟩
trans (cong from (sym (right-inverse-of _)))
(cong from (trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-sym _ (right-inverse-of _))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (sym (cong from (right-inverse-of _)))
(trans (cong from (sym (cong (get l) q)))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p r → trans (sym p) (trans (cong from (sym (cong (get l) q))) r))
(right-left-lemma _)
(right-left-lemma _) ⟩
trans (sym (left-inverse-of _))
(trans (cong from (sym (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans eq (left-inverse-of _))) $
cong-sym _ (cong (get l) q) ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong from (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans (sym eq) (left-inverse-of _))) $
cong-∘ _ _ q ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong (from ⊚ get l) q))
(left-inverse-of _)) ≡⟨ cong (λ g → trans (sym (g _))
(trans (sym (cong (from ⊚ get l) q)) (g _))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _))
(trans (sym (cong (from ⊚ get l) q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) _)) ∎
f = from ⊚ get l
in
set-set (l⁻¹ ∘ l) a a₁ a₂ ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(trans (cong (λ _ → from (get l a₂))
(right-inverse-of (get l a₁)))
(cong from (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from (set-set l⁻¹ (get l a) a₁ a₂)) ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from (get l a))
(get l a₁) (get l a₂))))
(right-inverse-of _)))) ≡⟨ cong (λ a′ → trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l a′ (get l a₁) (get l a₂))))
(right-inverse-of _))))) $
left-inverse-of _ ⟩
trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _)))) ≡⟨ cong (trans q) lemma ⟩
trans q
(trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : f a₂ ≡ f a₂) →
trans q
(trans (sym (ext⁻¹ p (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ p (f a₂)))) ≡
refl _)
(λ q →
trans q
(trans (sym (ext⁻¹ (refl P.id) a₂))
(trans (sym (cong P.id q))
(ext⁻¹ (refl P.id) a₂))) ≡⟨ cong (λ eq → trans q (trans (sym eq)
(trans (sym (cong P.id q)) eq))) $
ext⁻¹-refl _ ⟩
trans q (trans (sym (refl _))
(trans (sym (cong P.id q)) (refl _))) ≡⟨ cong₂ (λ p r → trans q (trans p r))
sym-refl
(trans-reflʳ _) ⟩
trans q (trans (refl _) (sym (cong P.id q))) ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) ⟩
trans q (sym (cong P.id q)) ≡⟨ cong (λ eq → trans q (sym eq)) $ sym $ cong-id q ⟩
trans q (sym q) ≡⟨ trans-symʳ q ⟩∎
refl _ ∎)
(⟨ext⟩ left-inverse-of)
q ⟩
refl _ ∎)
)
-- There is an equivalence between "l is bi-invertible" and "the
-- getter of l is an equivalence".
Is-bi-invertible≃Is-equivalence-get :
(l : Lens A B) →
Is-bi-invertible l ≃ Is-equivalence (Lens.get l)
Is-bi-invertible≃Is-equivalence-get l = Eq.⇔→≃
(BM.Is-bi-invertible-propositional l)
(Eq.propositional ext _)
(Is-bi-invertible→Is-equivalence-get l)
(Is-equivalence-get→Is-bi-invertible l)
-- There is in general no split surjection from equivalences to
-- bi-invertible lenses, if the right-to-left direction of the split
-- surjection is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).
¬≃↠≊ :
Univalence lzero →
¬ ∃ λ (≃↠≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_↠_.from ≃↠≊ x) ≡ Lens.get l
¬≃↠≊ {a = a} univ =
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map
((∃-cong λ l → _≃_.surjection $ Is-bi-invertible≃Is-equivalence-get l) F.∘_)
(λ hyp _ → hyp _) ⟩
(∃ λ (f : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠
(∃ λ (l : Lens (↑ a 𝕊¹) (↑ a 𝕊¹)) →
Is-equivalence (Lens.get l))) →
∀ p → _≃_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□
⊥ □
-- There is in general no equivalence between equivalences and
-- bi-invertible lenses, if the right-to-left direction of the
-- equivalence is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).
¬≃≃≊ :
Univalence lzero →
¬ ∃ λ (≃≃≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from ≃≃≊ x) ≡ Lens.get l
¬≃≃≊ {a = a} univ =
(∃ λ (≃≃≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ≃ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from ≃≃≊ x) ≡ Lens.get l) ↝⟨ Σ-map _≃_.surjection P.id ⟩
(∃ λ (≃↠≊ : (↑ a 𝕊¹ ≃ ↑ a 𝕊¹) ↠ (↑ a 𝕊¹ ≊ ↑ a 𝕊¹)) →
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_↠_.from ≃↠≊ x) ≡ Lens.get l) ↝⟨ ¬≃↠≊ univ ⟩□
⊥ □
------------------------------------------------------------------------
-- A category
-- Lenses between sets with the same universe level form a
-- precategory.
precategory : Precategory (lsuc a) a
precategory {a = a} = record
{ precategory =
Set a
, (λ (A , A-set) (B , _) →
Lens A B
, lens-preserves-h-level-of-domain 1 A-set)
, id
, _∘_
, left-identity _
, right-identity _
, (λ {_ _ _ _ l₁ l₂ l₃} → associativity l₃ l₂ l₁)
}
-- Lenses between sets with the same universe level form a
-- category (assuming univalence).
category :
Univalence a →
Category (lsuc a) a
category {a = a} univ =
C.precategory-with-Set-to-category
ext
(λ _ _ → univ)
(proj₂ Pre.precategory)
(λ (_ , A-set) _ → ≃≃≅ A-set)
(λ (_ , A-set) → ≃≃≅-id≡id A-set)
where
module Pre = C.Precategory precategory
-- The following four results (up to and including ¬-univalent) are
-- based on a suggestion by Paolo Capriotti, in response to a question
-- from an anonymous reviewer.
-- A "naive" notion of category.
--
-- Note that the hom-sets are not required to be sets.
Naive-category : (o h : Level) → Type (lsuc (o ⊔ h))
Naive-category o h =
∃ λ (Obj : Type o) →
∃ λ (Hom : Obj → Obj → Type h) →
∃ λ (id : {A : Obj} → Hom A A) →
∃ λ (_∘_ : {A B C : Obj} → Hom B C → Hom A B → Hom A C) →
({A B : Obj} (h : Hom A B) → id ∘ h ≡ h) ×
({A B : Obj} (h : Hom A B) → h ∘ id ≡ h) ×
({A B C D : Obj} (h₁ : Hom C D) (h₂ : Hom B C) (h₃ : Hom A B) →
(h₁ ∘ (h₂ ∘ h₃)) ≡ ((h₁ ∘ h₂) ∘ h₃))
-- A notion of univalence for naive categories.
Univalent : Naive-category o h → Type (o ⊔ h)
Univalent (Obj , Hom , id , _∘_ , id-∘ , ∘-id , assoc) =
Bi-invertibility.More.Univalence-≊
equality-with-J Obj Hom id _∘_ id-∘ ∘-id assoc
-- Types in a fixed universe and traditional lenses between them form
-- a naive category.
naive-category : ∀ a → Naive-category (lsuc a) a
naive-category a =
Type a
, Lens
, id
, _∘_
, left-identity
, right-identity
, associativity
-- However, this category is not univalent (assuming univalence).
¬-univalent :
Univalence lzero →
Univalence a →
¬ Univalent (naive-category a)
¬-univalent {a = a} univ₀ univ u = ¬≃≃≊ univ₀ (equiv , lemma₂)
where
equiv : {A B : Type a} → (A ≃ B) ≃ (A ≊ B)
equiv {A = A} {B = B} =
(A ≃ B) ↝⟨ inverse $ ≡≃≃ univ ⟩
(A ≡ B) ↝⟨ Eq.⟨ _ , u ⟩ ⟩□
(A ≊ B) □
lemma₁ :
(eq : ↑ a 𝕊¹ ≃ ↑ a 𝕊¹) →
_≃_.to eq ≡ Lens.get (proj₁ (_≃_.to equiv eq))
lemma₁ =
≃-elim₁
univ
(λ eq → _≃_.to eq ≡ Lens.get (proj₁ (_≃_.to equiv eq)))
(P.id ≡⟨ cong (Lens.get ⊚ proj₁) $ sym $ elim-refl _ _ ⟩
Lens.get (proj₁ (BM.≡→≊ (refl _))) ≡⟨ cong (Lens.get ⊚ proj₁ ⊚ BM.≡→≊) $ sym $ ≃⇒≡-id univ ⟩
Lens.get (proj₁ (BM.≡→≊ (≃⇒≡ univ Eq.id))) ≡⟨⟩
Lens.get (proj₁ (_≃_.to equiv Eq.id)) ∎)
lemma₂ :
(x@(l , _) : ↑ a 𝕊¹ ≊ ↑ a 𝕊¹) →
_≃_.to (_≃_.from equiv x) ≡ Lens.get l
lemma₂ x@(l , _) =
_≃_.to (_≃_.from equiv x) ≡⟨ lemma₁ (_≃_.from equiv x) ⟩
Lens.get (proj₁ (_≃_.to equiv (_≃_.from equiv x))) ≡⟨ cong (Lens.get ⊚ proj₁) $ _≃_.right-inverse-of equiv _ ⟩
Lens.get (proj₁ x) ≡⟨⟩
Lens.get l ∎
-- There is in general no pointwise equivalence between equivalences
-- and bi-invertible lenses (assuming univalence).
¬Π≃≃≊ :
Univalence lzero →
Univalence a →
¬ ({A B : Type a} → (A ≃ B) ≃ (A ≊ B))
¬Π≃≃≊ {a = a} univ₀ univ =
({A B : Type a} → (A ≃ B) ≃ (A ≊ B)) ↝⟨ F._∘ ≡≃≃ univ ⟩
({A B : Type a} → (A ≡ B) ≃ (A ≊ B)) ↝⟨ BM.≡≃≊→Univalence-≊ ⟩
Univalent (naive-category a) ↝⟨ ¬-univalent univ₀ univ ⟩□
⊥ □
-- There is in general no pointwise equivalence between equivalences
-- (between types in the same universe) and lenses with getters that
-- are equivalences (assuming univalence).
¬Π≃-≃-Σ-Lens-Is-equivalence-get :
Univalence lzero →
Univalence a →
¬ ({A B : Type a} →
(A ≃ B) ≃ ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l))
¬Π≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ₀ univ =
({A B : Type a} →
(A ≃ B) ≃ ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l)) ↝⟨ inverse (∃-cong Is-bi-invertible≃Is-equivalence-get) F.∘_ ⟩
({A B : Type a} → (A ≃ B) ≃ (A ≊ B)) ↝⟨ ¬Π≃≃≊ univ₀ univ ⟩□
⊥ □
| {
"alphanum_fraction": 0.3639894377,
"avg_line_length": 48.8344204717,
"ext": "agda",
"hexsha": "5923bb70ee56aeaf446ba484c16f40e3026e35d9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Traditional/Combinators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Traditional/Combinators.agda",
"max_line_length": 152,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Traditional/Combinators.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 30286,
"size": 97327
} |
{-
Joseph Eremondi
Utrecht University Capita Selecta
UU# 4229924
July 22, 2015
-}
module RETypes where
open import Data.Char
open import Data.List
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Product
--Tag for whether an RE can match the empty string or not
data Null? : Set where
NonNull : Null?
MaybeNull : Null?
--Equivalent of AND for Nullable
data NullTop : Null? -> Null? -> Null? -> Set where
BothNullT : NullTop MaybeNull MaybeNull MaybeNull
LeftNullT : NullTop MaybeNull NonNull NonNull
RightNullT : NullTop NonNull MaybeNull NonNull
BothNonNullT : NullTop NonNull NonNull NonNull
--Equivalent of OR for null
data NullBottom : Null? -> Null? -> Null? -> Set where
BothNullB : NullBottom NonNull NonNull NonNull
LeftNullB : NullBottom MaybeNull NonNull MaybeNull
RightNullB : NullBottom NonNull MaybeNull MaybeNull
BothNonNullB : NullBottom MaybeNull MaybeNull MaybeNull
--Standard definition of regular expressions
--plus nullable tags. Star can only accept non-nullable REs.
data RE : Null? -> Set where
ε : RE MaybeNull
∅ : RE NonNull
Lit : Char -> RE NonNull
--Union is nullable if either input is nullable
_+_ : {n1 n2 n3 : Null? }
-> {nb : NullBottom n1 n2 n3}
-> RE n1
-> RE n2
-> RE n3
--Concatenation is nullable only if both inputs are nullable
_·_ : {n1 n2 n3 : Null? }
-> {nt : NullTop n1 n2 n3}
-> RE n1
-> RE n2
-> RE n3
--Star always matches the empty string
_* : RE NonNull -> RE MaybeNull
--Witness type, defining what it means for a word to match a regular expression
data REMatch : {n : Null?} -> List Char -> RE n -> Set where
EmptyMatch : REMatch [] ε
LitMatch : (c : Char) -> REMatch (c ∷ []) (Lit c)
LeftPlusMatch :
{n1 n2 n3 : Null? }
-> {nb : NullBottom n1 n2 n3}
-> {s : List Char} {r1 : RE n1}
-> (r2 : RE n2)
-> REMatch s r1
-> REMatch {n3} s (_+_ {n1} {n2} {n3} {nb} r1 r2)
RightPlusMatch :
{n1 n2 n3 : Null? }
-> {nb : NullBottom n1 n2 n3}
-> {s : List Char} -> (r1 : RE n1) -> {r2 : RE n2}
-> REMatch s r2
-> REMatch {n3} s (_+_ {n1} {n2} {n3} {nb} r1 r2)
ConcatMatch :
{n1 n2 n3 : Null? }
-> {nt : NullTop n1 n2 n3}
-> {s1 s2 s3 : List Char} {spf : s1 ++ s2 ≡ s3} {r1 : RE n1} {r2 : RE n2}
-> REMatch s1 r1
-> REMatch s2 r2
-> REMatch {n3} s3 (_·_ {n1} {n2} {n3} {nt} r1 r2)
EmptyStarMatch : {r : RE NonNull} -> REMatch [] (r *)
StarMatch :
{s1 s2 s3 : List Char} {spf : (s1 ++ s2) ≡ s3} {r : RE NonNull}
-> REMatch s1 r
-> REMatch s2 (r *)
-> REMatch s3 (r *)
extendRightNonNull : (s : List Char) -> (sRest : List Char) -> (∃ λ c -> ∃ λ t -> (s ≡ c ∷ t)) -> (∃ λ c1 -> ∃ λ t1 -> (s ++ sRest ≡ c1 ∷ t1))
extendRightNonNull .(c ∷ t) sRest (c , t , refl) = c , t ++ sRest , refl
extendLeftNonNull : (s : List Char) -> (sRest : List Char) -> (∃ λ c -> ∃ λ t -> (s ≡ c ∷ t)) -> (∃ λ c1 -> ∃ λ t1 -> (sRest ++ s ≡ c1 ∷ t1))
extendLeftNonNull .(t ∷ c) [] (t , c , refl) = t , c , refl
extendLeftNonNull .(t ∷ c) (x ∷ sRest) (t , c , refl) = x , sRest ++ t ∷ c , refl
nullCorrect : (r : RE NonNull ) -> (s : List Char) -> REMatch s r -> ∃ λ c -> ∃ λ t -> (s ≡ c ∷ t)
nullCorrect .(Lit c) .(c ∷ []) (LitMatch c) = c , [] , refl
nullCorrect ._ s (LeftPlusMatch {nb = BothNullB} {r1 = r1} r2 match) = nullCorrect r1 s match
nullCorrect ._ s (RightPlusMatch {nb = BothNullB} r1 {r2 = r2} match) = nullCorrect r2 s match
nullCorrect (r1 · r2) s (ConcatMatch {nt = LeftNullT} {s2 = s2} match match₁) with nullCorrect r2 s2 match₁
nullCorrect (r1 · r2) .(s1 ++ c ∷ t) (ConcatMatch {.MaybeNull} {.NonNull} {.NonNull} {LeftNullT} {s1} {.(c ∷ t)} {.(s1 ++ c ∷ t)} {refl} match match₁) | c , t , refl = extendLeftNonNull (c ∷ t) s1 (c , t , refl)
nullCorrect (r1 · r2) ._ (ConcatMatch {nt = RightNullT} {s1 = s1} {spf = refl} match match₁) with nullCorrect r1 s1 match
nullCorrect (r1 · r2) .((c ∷ t) ++ s2) (ConcatMatch {.NonNull} {.MaybeNull} {.NonNull} {RightNullT} {.(c ∷ t)} {s2} {.((c ∷ t) ++ s2)} {refl} match match₁) | c , t , refl = extendRightNonNull (c ∷ t) s2 (c , t , refl)
nullCorrect (r1 · r2) s (ConcatMatch {nt = BothNonNullT} {s1 = s1} {s2 = s2} match match₁) with nullCorrect r1 s1 match
nullCorrect (r1 · r2) .(c ∷ t ++ s2) (ConcatMatch {.NonNull} {.NonNull} {.NonNull} {BothNonNullT} {.(c ∷ t)} {s2} {.(c ∷ t ++ s2)} {refl} match match₁) | c , t , refl = extendRightNonNull (c ∷ t) s2 (c , t , refl)
| {
"alphanum_fraction": 0.6031076582,
"avg_line_length": 40.5855855856,
"ext": "agda",
"hexsha": "ef4e331a5693e52a7f8251c359902efde5bd4e17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/agda-parikh",
"max_forks_repo_path": "RETypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/agda-parikh",
"max_issues_repo_path": "RETypes.agda",
"max_line_length": 217,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/agda-parikh",
"max_stars_repo_path": "RETypes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1704,
"size": 4505
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Surjection
open import Oscar.Data.Proposequality
module Oscar.Class.Smap where
open import Oscar.Class.Hmap public
module Smap
{𝔵₁ 𝔵₁'} {𝔛₁ : Ø 𝔵₁} {𝔛₁' : Ø 𝔵₁'}
{𝔵₂ 𝔵₂'} {𝔛₂ : Ø 𝔵₂} {𝔛₂' : Ø 𝔵₂'}
{𝔯₁₂} {𝔯₁₂'}
(ℜ₁₂ : 𝔛₁ → 𝔛₂ → Ø 𝔯₁₂)
(ℜ₁₂' : 𝔛₁' → 𝔛₂' → Ø 𝔯₁₂')
(p₁ : 𝔛₁ → 𝔛₁')
(p₂ : 𝔛₂ → 𝔛₂')
where
class = Hmap.class ℜ₁₂ (λ x y → ℜ₁₂' (p₁ x) (p₂ y))
type = ∀ {x y} → ℜ₁₂ x y → ℜ₁₂' (p₁ x) (p₂ y)
method : ⦃ _ : class ⦄ → type
method = Hmap.method ℜ₁₂ (λ x y → ℜ₁₂' (p₁ x) (p₂ y)) _ _
module _
{𝔵₁ 𝔯₁ 𝔵₂ 𝔯₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
{_∼₁_ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁}
(_∼₂_ : 𝔛₂ → 𝔛₂ → Ø 𝔯₂)
(μ₁ μ₂ : Surjection.type 𝔛₁ 𝔛₂)
where
open Smap _∼₁_ _∼₂_ μ₁ μ₂
smap⟦_/_/_⟧ : ⦃ _ : class ⦄ → type
smap⟦_/_/_⟧ = smap
module ≡-Smap
{𝔵₁ 𝔯₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(∼₁ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁)
(μ₁ μ₂ : Surjection.type 𝔛₁ 𝔛₂)
= Smap ∼₁ _≡_ μ₁ μ₂
module _
{𝔵₁ 𝔯₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
{_∼₁_ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁}
(μ₁ μ₂ : Surjection.type 𝔛₁ 𝔛₂)
where
open Smap _∼₁_ _≡_ μ₁ μ₂
≡-smap⟦_⟧ : ⦃ _ : class ⦄ → type
≡-smap⟦_⟧ = smap
module Smap!
{𝔵₁ 𝔯₁ 𝔵₂ 𝔯₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(∼₁ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁)
(∼₂ : 𝔛₂ → 𝔛₂ → Ø 𝔯₂)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
= Smap ∼₁ ∼₂ surjection surjection
module Smaparrow
{𝔵₁ 𝔵₂ 𝔯 𝔭₁ 𝔭₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
(𝔓₁ : 𝔛₂ → Ø 𝔭₁)
(𝔓₂ : 𝔛₂ → Ø 𝔭₂)
(surjection₁ surjection₂ : Surjection.type 𝔛₁ 𝔛₂)
= Smap ℜ (Arrow 𝔓₁ 𝔓₂) surjection₁ surjection₂
module _
{𝔵₁ 𝔯 𝔭₁ 𝔭₂} {𝔛₁ : Ø 𝔵₁}
{ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯}
{𝔓₁ : 𝔛₁ → Ø 𝔭₁}
{𝔓₂ : 𝔛₁ → Ø 𝔭₂}
where
smaparrow = Smaparrow.method ℜ 𝔓₁ 𝔓₂ ¡ ¡
infixr 10 _◃_
_◃_ = smaparrow
smaparrow[]syntax = _◃_
syntax smaparrow[]syntax 𝔛₂ x∼y fx = x∼y ◃[ 𝔛₂ ] fx
module Smaparrow!
{𝔵₁ 𝔵₂ 𝔯 𝔭₁ 𝔭₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
(𝔓₁ : 𝔛₂ → Ø 𝔭₁)
(𝔓₂ : 𝔛₂ → Ø 𝔭₂)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
= Smaparrow ℜ 𝔓₁ 𝔓₂ surjection surjection
module Smaphomarrow
{𝔵₁ 𝔯₁ 𝔵₂ 𝔯₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁)
(𝔓 : 𝔛₂ → Ø 𝔯₂)
(surjection : Surjection.type 𝔛₁ 𝔛₂)
= Smaparrow ℜ 𝔓 𝔓 surjection surjection
module Smaphomarrow!
{𝔵₁ 𝔯₁ 𝔵₂ 𝔯₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯₁)
(𝔓 : 𝔛₂ → Ø 𝔯₂)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
= Smaphomarrow ℜ 𝔓 surjection
| {
"alphanum_fraction": 0.5557446809,
"avg_line_length": 23.9795918367,
"ext": "agda",
"hexsha": "ed0e70a86b63d01c8de4f8ce3b65817f3e33d24e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Smap.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Smap.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Smap.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1583,
"size": 2350
} |
{-# OPTIONS --without-K #-}
module PathOperations where
open import Types
infixr 4 _·_
infix 9 _⁻¹
_⁻¹ : ∀ {a} {A : Set a} {x y : A} →
x ≡ y → y ≡ x
_⁻¹ = J (λ x y _ → y ≡ x) (λ _ → refl) _ _
_·_ : ∀ {a} {A : Set a} {x y z : A} →
x ≡ y → y ≡ z → x ≡ z
_·_ {z = z} = J (λ x y _ → y ≡ z → x ≡ z) (λ _ p′ → p′) _ _
tr : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A} (p : x ≡ y) →
P x → P y
tr P = J (λ x y _ → P x → P y) (λ _ x → x) _ _
ap : ∀ {a b} {A : Set a} {B : Set b} {x y : A} (f : A → B) →
x ≡ y → f x ≡ f y
ap f = J (λ x y _ → f x ≡ f y) (λ _ → refl) _ _
ap₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
{x x′ y y′} (f : A → B → C) (p : x ≡ x′) (q : y ≡ y′) →
f x y ≡ f x′ y′
ap₂ f p q = ap (λ _ → f _ _) p · ap (f _) q
apd : ∀ {a b} {A : Set a} {B : A → Set b} {x y : A}
(f : ∀ a → B a) (p : x ≡ y) →
tr B p (f x) ≡ f y
apd {B = B} f = J
(λ x y p → tr B p (f x) ≡ f y)
(λ _ → refl) _ _
happly : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≡ g → ∀ x → f x ≡ g x
happly p x = ap (λ f → f x) p
| {
"alphanum_fraction": 0.3779677113,
"avg_line_length": 26.325,
"ext": "agda",
"hexsha": "52ad02ddc85e80600e4f619e391d499ce986f5b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/PathOperations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/PathOperations.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/PathOperations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 578,
"size": 1053
} |
a = b module M where private
| {
"alphanum_fraction": 0.724137931,
"avg_line_length": 14.5,
"ext": "agda",
"hexsha": "f0e6f2aa4ece3ea404160f3cf9061f056fa06119",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4288.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4288.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4288.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 29
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Rational where
open import Cubical.HITs.Rational.Base public
-- open import Cubical.HITs.Rational.Properties public
| {
"alphanum_fraction": 0.7719298246,
"avg_line_length": 24.4285714286,
"ext": "agda",
"hexsha": "4a5e17dcc95c39c065f9d631dc705d5b3b412cfc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Rational.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Rational.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Rational.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 44,
"size": 171
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation where
module Data where
module Empty where open import Light.Implementation.Data.Empty public
module Either where open import Light.Implementation.Data.Either public
module Natural where open import Light.Implementation.Data.Natural public
module Unit where open import Light.Implementation.Data.Unit public
module Integer where open import Light.Implementation.Data.Integer public
module Boolean where open import Light.Implementation.Data.Boolean public
module Product where open import Light.Implementation.Data.Product public
module These where open import Light.Implementation.Data.These public
module Relation where
module Sets where open import Light.Implementation.Relation.Sets public
module Boolean where open import Light.Implementation.Relation.Boolean public
module Binary where
module Equality where
module Propositional where
open import Light.Implementation.Relation.Binary.Equality.Propositional public
module Decidable where open import Light.Implementation.Relation.Binary.Equality.Propositional.Decidable public
module Decidable where open import Light.Implementation.Relation.Decidable public
module Action where open import Light.Implementation.Action public
| {
"alphanum_fraction": 0.7664587665,
"avg_line_length": 55.5,
"ext": "agda",
"hexsha": "f54a6312cf371c0b7305edb872e0c9cf57ee164b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation.agda",
"max_line_length": 135,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 249,
"size": 1443
} |
-------------------------------------------------
-- Formalisation of the Z axioms of set theory.
-------------------------------------------------
module sv20.assign2.SetTheory.ZAxioms where
open import sv20.assign2.SetTheory.Logic
infix 1 ∃
infix 5 _⊆_ _⊂_
infix 5 _∈_ _∉_
infix 4 _≡_
-- The universe of discourse (pure sets) and the membership
-- relationship. (The letter 𝓢 is type by "\MCS")
postulate
𝓢 : Set
_∈_ : 𝓢 → 𝓢 → Set
-- Existential quantifier
data ∃ (A : 𝓢 → Set) : Set where
_,_ : (t : 𝓢) → A t → ∃ A
-- Sugar syntax for the existential quantifier.
syntax ∃ (λ x → e) = ∃[ x ] e
-- Existential projections.
proj₁ : {A : 𝓢 → Set} → ∃ A → 𝓢
proj₁ (t , _) = t
proj₂ : (A : 𝓢 → Set) → (foo : ∃ A) → A (proj₁ foo)
proj₂ A (_ , Ax) = Ax
-- Equivalence and non equivalence with some useful properties
data _≡_ (x : 𝓢) : 𝓢 → Set where
refl : x ≡ x
_≢_ : 𝓢 → 𝓢 → Set
x ≢ y = ¬ x ≡ y
sym : (x y : 𝓢) → x ≡ y → y ≡ x
sym x .x refl = refl
cong : (f : 𝓢 → 𝓢) {x y : 𝓢} → x ≡ y → f x ≡ f y
cong f refl = refl
subs : (P : 𝓢 → Set) {x y : 𝓢} (p : x ≡ y) (h : P x) → P y
subs P {x} {.x} refl h = h
trans : {x y z : 𝓢} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
-- Property concerning bi-implication, needed in a proof.
⇔-p₂ : (z : 𝓢) → {A B C : Set} → A ⇔ (B ∧ C) → (C → B) → A ⇔ C
⇔-p₂ z (h₁ , h₂) h₃ = (λ a → ∧-proj₂ (h₁ a)) , (λ c → h₂ ((h₃ c) , c))
-- Definitions of subset and not-membership.
_⊆_ : 𝓢 → 𝓢 → Set
x ⊆ y = (t : 𝓢) → t ∈ x → t ∈ y
_∉_ : 𝓢 → 𝓢 → Set
x ∉ y = ¬ (x ∈ y)
-- {-# ATP definition _∉_ #-}
_⊂_ : 𝓢 → 𝓢 → Set
x ⊂ y = x ⊆ y ∧ x ≢ y
_⊂'_ : 𝓢 → 𝓢 → Set
x ⊂' y = x ⊆ y ∧ ∃ (λ z → z ∈ y ∧ z ∉ x)
-------------------------------------------
-- ZFC's axioms
-- From (Suppes 1960, p. 56)
-- ext (Extensionality) : If two sets have exactly the same members,
-- they are equal.
-- empt (Empty Set Axiom) : There is a set having no
-- members. Allows us to define the empty set.
-- pair (Pairing Axiom) : For any sets y and z, there is a set having
-- as members just y and z. Allows to define a set which is just
-- the pair of any two sets.
-- pow (Power Set Axiom): For any x there is a set whose members are
-- exactly the subsets of x. Allows us to define the power set
-- operation.
-- sub (Subset Axiom, or Specification Axiom): This axiom asserts the
-- existence of a set B whose members are exactly those sets x in y
-- such that they satisfy certain property. Allows us to define
-- many operations like cartesian products and difference of sets.
-- uni (Union Axiom) : For any set x, there exists a set A whose
-- elements are exactly the members of x. Allows us to define the
-- union of two sets.
-- pem (Principle of the excluded middle) : To prove some things
-- not valid in intuitionistic logic and valid in classical logic. Taken
-- from the Standford Encyclopedia entry on Intuitionistic Logic.
-- (https://plato.stanford.edu/entries/logic-intuitionistic/).
-- The sum axioms allow us to define the union operation
-- over a family of sets.
postulate
empt : ∃ (λ B → ∀ x → x ∉ B)
ext : (x y : 𝓢) → ∀ {z} → z ∈ x ⇔ z ∈ y → x ≡ y
union : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ z ∈ x ∨ z ∈ y)
pair : (x y : 𝓢) → ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ (z ≡ x ∨ z ≡ y))
pow : (x : 𝓢) → ∃ (λ B → ∀ {y} → y ∈ B ⇔ y ⊆ x)
sub : (A : 𝓢 → Set) → (y : 𝓢) → ∃ (λ B → {z : 𝓢} → (z ∈ B ⇔ (z ∈ y ∧ A z)))
pem : (A : Set) → A ∨ ¬ A
sum : (A : 𝓢) → ∃ (λ C → (x : 𝓢) → x ∈ C ⇔ ∃ (λ B → x ∈ B ∧ B ∈ A))
-- {-# ATP axioms empt ext union pair pow #-}
-- sub not given to apia since it is an axiom schema and ATPs don't deal
-- with that.
-- pem isn't given either since ATP's use classical logic so it uses
-- this principle by default.
∅ : 𝓢
∅ = proj₁ empt
-- {-# ATP definition ∅ #-}
-- Axiom of regularity: Axiom that have two very intuitive consequences:
-- ∀ A (A ∉ A) and ¬ ∀ A,B (A∈B ∧ B∈A). From Suppes, p. 56 (1960).
postulate
reg : (A : 𝓢) → A ≢ ∅ → ∃ (λ x → x ∈ A ∧ ∀ y → y ∈ x → y ∉ A)
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
| {
"alphanum_fraction": 0.5610451306,
"avg_line_length": 28.8356164384,
"ext": "agda",
"hexsha": "d8aa9eab10717168a24d8904973b37899e8b27be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/ZAxioms.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/ZAxioms.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/ZAxioms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1612,
"size": 4210
} |
module Generic.Lib.Data.List where
open import Data.List.Base hiding ([]) renaming (fromMaybe to maybeToList) public
open List public
open import Generic.Lib.Intro
open import Generic.Lib.Equality.Propositional
open import Generic.Lib.Decidable
open import Generic.Lib.Category
open import Generic.Lib.Data.Nat
open import Generic.Lib.Data.Maybe
open import Generic.Lib.Data.Sum
open import Generic.Lib.Data.Product
import Data.List.Categorical as List
infix 4 _∈_
foldr₁ : ∀ {α} {A : Set α} -> (A -> A -> A) -> A -> List A -> A
foldr₁ f z [] = z
foldr₁ f z (x ∷ []) = x
foldr₁ f z (x ∷ y ∷ xs) = f x (foldr₁ f z (y ∷ xs))
mapInd : ∀ {α β} {A : Set α} {B : Set β} -> (ℕ -> A -> B) -> List A -> List B
mapInd f [] = []
mapInd f (x ∷ xs) = f 0 x ∷ mapInd (f ∘ suc) xs
mapM : ∀ {α β} {A : Set α} {B : Set β} {M : Set β -> Set β} {{mMonad : RawMonad M}}
-> (A -> M B) -> List A -> M (List B)
mapM {{mMonad}} = List.TraversableM.mapM mMonad
downFromTo : ℕ -> ℕ -> List ℕ
downFromTo n m = map (m +_) (downFrom (n ∸ m))
Any : ∀ {α β} {A : Set α} -> (A -> Set β) -> List A -> Set β
Any B [] = ⊥
Any B (x ∷ []) = B x
Any B (x ∷ xs) = B x ⊎ Any B xs
_∈_ : ∀ {α} {A : Set α} -> A -> List A -> Set
x ∈ xs = Any (x ≡_) xs
here : ∀ {α β} {A : Set α} {B : A -> Set β} {x} xs -> B x -> Any B (x ∷ xs)
here [] y = y
here (x ∷ xs) y = inj₁ y
phere : ∀ {α} {A : Set α} {x : A} xs -> x ∈ x ∷ xs
phere xs = here xs refl
there : ∀ {α β} {A : Set α} {B : A -> Set β} {x} xs -> Any B xs -> Any B (x ∷ xs)
there [] ()
there (x ∷ xs) a = inj₂ a
mapAny : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : A -> Set γ}
-> ∀ xs -> (∀ {x} -> B x -> C x) -> Any B xs -> Any C xs
mapAny [] g ()
mapAny (x ∷ []) g y = g y
mapAny (x ∷ x′ ∷ xs) g (inj₁ y) = inj₁ (g y)
mapAny (x ∷ x′ ∷ xs) g (inj₂ r) = inj₂ (mapAny (x′ ∷ xs) g r)
All : ∀ {α β} {A : Set α} -> (A -> Set β) -> List A -> Set β
All B [] = ⊤
All B (x ∷ xs) = B x × All B xs
allToList : ∀ {α β} {A : Set α} {B : Set β} {xs : List A} -> All (const B) xs -> List B
allToList {xs = []} tt = []
allToList {xs = x ∷ xs} (y , ys) = y ∷ allToList ys
allIn : ∀ {α β} {A : Set α} {B : A -> Set β} -> ∀ xs -> (∀ {x} -> x ∈ xs -> B x) -> All B xs
allIn [] g = tt
allIn (x ∷ xs) g = g (phere xs) , allIn xs (g ∘ there xs)
mapAll : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : A -> Set γ} {xs : List A}
-> (∀ {x} -> B x -> C x) -> All B xs -> All C xs
mapAll {xs = []} g tt = tt
mapAll {xs = x ∷ xs} g (y , ys) = g y , mapAll g ys
unmap : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : Set γ} {xs : List A}
-> (∀ {x} -> B x -> C) -> All B xs -> List C
unmap g = allToList ∘ mapAll g
mapAllInd : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : A -> Set γ} {xs}
-> (∀ {x} -> ℕ -> B x -> C x) -> All B xs -> All C xs
mapAllInd {xs = []} g tt = tt
mapAllInd {xs = x ∷ xs} g (y , ys) = g 0 y , mapAllInd (g ∘ suc) ys
traverseAll : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : A -> Set γ} {xs : List A}
{F : Set γ -> Set γ} {{fFunctor : RawFunctor F}} {{fApplicative : RawApplicative F}}
-> (∀ {x} -> B x -> F (C x)) -> All B xs -> F (All C xs)
traverseAll {xs = []} g tt = pure tt
traverseAll {xs = x ∷ xs} g (y , ys) = _,_ <$> g y <*> traverseAll g ys
splitList : ∀ {α β} {A : Set α} {B : A -> Set β} -> List (Σ A B) -> Σ (List A) (All B)
splitList [] = [] , tt
splitList ((x , y) ∷ ps) = pmap (_∷_ x) (_,_ y) (splitList ps)
lookupAllConst : ∀ {α β} {A : Set α} {B : Set β} {{bEq : Eq B}} {xs : List A}
-> B -> All (const B) xs -> Maybe (∃ (_∈ xs))
lookupAllConst {xs = []} y tt = nothing
lookupAllConst {xs = x ∷ xs} y (z , ys) = if y == z
then just (_ , phere xs)
else second (there xs) <$> lookupAllConst y ys
| {
"alphanum_fraction": 0.4814237464,
"avg_line_length": 37.3689320388,
"ext": "agda",
"hexsha": "ef6fe14c749923da92b8f5476e37948324a6da3c",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Lib/Data/List.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Lib/Data/List.agda",
"max_line_length": 100,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Lib/Data/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 1565,
"size": 3849
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
-- This module defines syntax and functionality modeling an RWST monad,
-- which we use to define an implementation.
-- TODO-2: this module is independent of any particular implementation
-- and arguably belongs somewhere more general, such as next to Optics.
module LibraBFT.Impl.Util.RWST (ℓ-State : Level) where
----------------
-- RWST Monad --
----------------
-- 'Fake' RWST monad; fake in the sense
-- we use the free monoid on the writer (aka. lists)
-- instad of requiring it to be a monoid in a separate
-- argument.
RWST-Raw : Set → Set → Set ℓ-State → {ℓ-Result : Level} → Set ℓ-Result → Set (ℓ-State ℓ⊔ ℓ-Result)
RWST-Raw Ev Wr St R = Ev → St → (R × St × List Wr)
-- Wrap it in a type; prevents spurious evaluation and
-- obliges us to 'run' the monad.
data RWST (Ev Wr : Set) (St : Set ℓ-State) {ℓ-Result : Level} : Set ℓ-Result → Set (ℓ-State ℓ⊔ ℓ-Result) where
rwst : ∀ {R : Set ℓ-Result} → RWST-Raw Ev Wr St {ℓ-Result} R → RWST Ev Wr St R
private
variable
Ev Wr : Set
ℓ-A ℓ-B : Level
A : Set ℓ-A
B : Set ℓ-B
St : Set ℓ-State
RWST-run : RWST Ev Wr St A → Ev → St → (A × St × List Wr)
RWST-run (rwst f) = f
RWST-bind : RWST Ev Wr St A → (A → RWST Ev Wr St B) → RWST Ev Wr St B
RWST-bind x f = rwst (λ ev st →
let (a , st' , wr₀) = RWST-run x ev st
(b , st'' , wr₁) = RWST-run (f a) ev st'
in b , st'' , wr₀ ++ wr₁)
RWST-return : A → RWST Ev Wr St A
RWST-return x = rwst (λ _ st → x , st , [])
-- Functorial Functionality
RWST-map : (A → B) → RWST Ev Wr St A → RWST Ev Wr St B
RWST-map f x = rwst (λ ev st →
let (a , st' , wr) = RWST-run x ev st
in f a , st' , wr)
-- Provided Functionality
get : RWST Ev Wr St {ℓ-State} St
get = rwst (λ _ st → st , st , [])
gets : (St → A) → RWST Ev Wr St A
gets f = RWST-bind get (RWST-return ∘ f)
{- TODO-2: extend Lens to work with different levels and reinstate this
Note that a preliminary exploration by @cwjnkins revealed this to
be more painful than it's worth, at least until we have a
compelling use case for St to be at a higher level. In the
meantime, we have defined use and modify' specifically for our
state type, which is in Set; see LibraBFT.Impl.Util.Util.
use : Lens St A → RWST Ev Wr St A
use f = RWST-bind get (RWST-return ∘ (_^∙ f))
-}
modify : (St → St) → RWST Ev Wr St Unit
modify f = rwst (λ _ st → unit , f st , [])
{- TODO-2: extend Lens to work with different levels and reinstate this
See comment above for use
modify' : ∀ {A} → Lens St A → A → RWST Ev Wr St Unit
modify' l val = modify λ x → x [ l := val ]
syntax modify' l val = l ∙= val
-}
put : St → RWST Ev Wr St Unit
put s = modify (λ _ → s)
tell : List Wr → RWST Ev Wr St Unit
tell wrs = rwst (λ _ st → unit , st , wrs)
tell1 : Wr → RWST Ev Wr St Unit
tell1 wr = tell (wr ∷ [])
ask : RWST Ev Wr St Ev
ask = rwst (λ ev st → (ev , st , []))
-- Easy to use do notation; i.e.;
module RWST-do where
infixl 1 _>>=_ _>>_
_>>=_ : RWST Ev Wr St A → (A → RWST Ev Wr St B) → RWST Ev Wr St B
_>>=_ = RWST-bind
_>>_ : RWST Ev Wr St A → RWST Ev Wr St B → RWST Ev Wr St B
x >> y = x >>= λ _ → y
return : A → RWST Ev Wr St A
return = RWST-return
pure : A → RWST Ev Wr St A
pure = return
infixr 4 _<$>_
_<$>_ : (A → B) → RWST Ev Wr St A → RWST Ev Wr St B
_<$>_ = RWST-map
private
ex₀ : RWST ℕ Wr (Lift ℓ-State ℕ) ℕ
ex₀ = do
x₁ ← get
x₂ ← ask
return (lower x₁ + x₂)
where open RWST-do
-- Derived Functionality
maybeMP : RWST Ev Wr St (Maybe A) → B → (A → RWST Ev Wr St B)
→ RWST Ev Wr St B
maybeMP ma b f = do
x ← ma
case x of
λ { (just r) → f r
; nothing → return b
}
where open RWST-do
| {
"alphanum_fraction": 0.5916002896,
"avg_line_length": 29.5928571429,
"ext": "agda",
"hexsha": "593702ff4b28b413f5850fa33ebfb3d45309f04f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Util/RWST.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Util/RWST.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Util/RWST.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1437,
"size": 4143
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Irrelevance {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
import Definition.LogicalRelation.Irrelevance as LR
open import Definition.LogicalRelation.Substitution
open import Tools.Product
open import Tools.Unit
import Tools.PropositionalEquality as PE
-- Irrelevance of valid substitutions with different derivations of contexts
irrelevanceSubst : ∀ {σ Γ Δ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
(⊢Δ ⊢Δ′ : ⊢ Δ)
→ Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ
→ Δ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′
irrelevanceSubst ε′ ε′ ⊢Δ ⊢Δ′ [σ] = tt
irrelevanceSubst ([Γ] ∙′ [A]) ([Γ]′ ∙′ [A]′) ⊢Δ ⊢Δ′ ([tailσ] , [headσ]) =
let [tailσ]′ = irrelevanceSubst [Γ] [Γ]′ ⊢Δ ⊢Δ′ [tailσ]
in [tailσ]′
, LR.irrelevanceTerm (proj₁ ([A] ⊢Δ [tailσ]))
(proj₁ ([A]′ ⊢Δ′ [tailσ]′))
[headσ]
-- Irrelevance of valid substitutions with different contexts
-- that are propositionally equal
irrelevanceSubst′ : ∀ {σ Γ Δ Δ′}
(eq : Δ PE.≡ Δ′)
([Γ] [Γ]′ : ⊩ᵛ Γ)
(⊢Δ : ⊢ Δ)
(⊢Δ′ : ⊢ Δ′)
→ Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ
→ Δ′ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′
irrelevanceSubst′ PE.refl [Γ] [Γ]′ ⊢Δ ⊢Δ′ [σ] = irrelevanceSubst [Γ] [Γ]′ ⊢Δ ⊢Δ′ [σ]
-- Irrelevance of valid substitution equality
-- with different derivations of contexts
irrelevanceSubstEq : ∀ {σ σ′ Γ Δ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
(⊢Δ ⊢Δ′ : ⊢ Δ)
([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
([σ]′ : Δ ⊩ˢ σ ∷ Γ / [Γ]′ / ⊢Δ′)
→ Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ]′ / ⊢Δ′ / [σ]′
irrelevanceSubstEq ε′ ε′ ⊢Δ ⊢Δ′ [σ] [σ]′ [σ≡σ′] = tt
irrelevanceSubstEq ([Γ] ∙′ [A]) ([Γ]′ ∙′ [A]′) ⊢Δ ⊢Δ′ [σ] [σ]′ [σ≡σ′] =
irrelevanceSubstEq [Γ] [Γ]′ ⊢Δ ⊢Δ′ (proj₁ [σ]) (proj₁ [σ]′) (proj₁ [σ≡σ′])
, LR.irrelevanceEqTerm (proj₁ ([A] ⊢Δ (proj₁ [σ])))
(proj₁ ([A]′ ⊢Δ′ (proj₁ [σ]′)))
(proj₂ [σ≡σ′])
-- Irrelevance of valid types with different derivations of contexts
irrelevance : ∀ {l A Γ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]′
irrelevance [Γ] [Γ]′ [A] ⊢Δ [σ] =
let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
in proj₁ ([A] ⊢Δ [σ]′)
, λ [σ′] [σ≡σ′] → proj₂ ([A] ⊢Δ [σ]′)
(irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′])
(irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [σ]′ [σ≡σ′])
open import Definition.LogicalRelation.Properties
-- Irrelevance of valid types with different derivations of contexts
-- with lifting of eqaul types
irrelevanceLift : ∀ {l A F H Γ}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ])
([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F])
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ A / (VPack _ _ (V∙ [Γ] [F]))
→ Γ ∙ H ⊩ᵛ⟨ l ⟩ A / (VPack _ _ (V∙ [Γ] [H]))
irrelevanceLift [Γ] [F] [H] [F≡H] [A] ⊢Δ ([tailσ] , [headσ]) =
let [σ]′ = [tailσ] , convTerm₂ (proj₁ ([F] ⊢Δ [tailσ]))
(proj₁ ([H] ⊢Δ [tailσ]))
([F≡H] ⊢Δ [tailσ]) [headσ]
in proj₁ ([A] ⊢Δ [σ]′)
, (λ [σ′] x →
let [σ′]′ = proj₁ [σ′] , convTerm₂ (proj₁ ([F] ⊢Δ (proj₁ [σ′])))
(proj₁ ([H] ⊢Δ (proj₁ [σ′])))
([F≡H] ⊢Δ (proj₁ [σ′]))
(proj₂ [σ′])
[tailσ′] = proj₁ [σ′]
in proj₂ ([A] ⊢Δ [σ]′) [σ′]′
(proj₁ x , convEqTerm₂ (proj₁ ([F] ⊢Δ [tailσ]))
(proj₁ ([H] ⊢Δ [tailσ]))
([F≡H] ⊢Δ [tailσ])
(proj₂ x)))
-- Irrelevance of valid type equality with different derivations of
-- contexts and types
irrelevanceEq : ∀ {l l′ A B Γ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′)
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A]
→ Γ ⊩ᵛ⟨ l′ ⟩ A ≡ B / [Γ]′ / [A]′
irrelevanceEq [Γ] [Γ]′ [A] [A]′ [A≡B] ⊢Δ [σ] =
let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
in LR.irrelevanceEq (proj₁ ([A] ⊢Δ [σ]′))
(proj₁ ([A]′ ⊢Δ [σ]))
([A≡B] ⊢Δ [σ]′)
-- Irrelevance of valid terms with different derivations of contexts and types
irrelevanceTerm : ∀ {l l′ A t Γ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′)
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
→ Γ ⊩ᵛ⟨ l′ ⟩ t ∷ A / [Γ]′ / [A]′
irrelevanceTerm [Γ] [Γ]′ [A] [A]′ [t] ⊢Δ [σ]′ =
let [σ] = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]′
[σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = proj₁ ([A]′ ⊢Δ [σ]′)
in LR.irrelevanceTerm [σA] [σA]′ (proj₁ ([t] ⊢Δ [σ]))
, (λ [σ′] x → LR.irrelevanceEqTerm [σA] [σA]′ ((proj₂ ([t] ⊢Δ [σ]))
(irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ′])
(irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]′ [σ] x)))
-- Irrelevance of valid terms with different derivations of
-- contexts and types which are propositionally equal
irrelevanceTerm′ : ∀ {l l′ A A′ t Γ}
(eq : A PE.≡ A′)
([Γ] [Γ]′ : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A′] : Γ ⊩ᵛ⟨ l′ ⟩ A′ / [Γ]′)
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
→ Γ ⊩ᵛ⟨ l′ ⟩ t ∷ A′ / [Γ]′ / [A′]
irrelevanceTerm′ {A = A} {t = t} PE.refl [Γ] [Γ]′ [A] [A]′ [t] =
irrelevanceTerm {A = A} {t = t} [Γ] [Γ]′ [A] [A]′ [t]
-- Irrelevance of valid terms with different derivations of
-- contexts and types with a lifting of equal types
irrelevanceTermLift : ∀ {l A F H t Γ}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([H] : Γ ⊩ᵛ⟨ l ⟩ H / [Γ])
([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H / [Γ] / [F])
([A] : Γ ∙ F ⊩ᵛ⟨ l ⟩ A / (VPack _ _ (V∙ [Γ] [F])))
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ A / (VPack _ _ (V∙ [Γ] [F])) / [A]
→ Γ ∙ H ⊩ᵛ⟨ l ⟩ t ∷ A / (VPack _ _ (V∙ [Γ] [H]))
/ irrelevanceLift {A = A} {F = F} {H = H}
[Γ] [F] [H] [F≡H] [A]
irrelevanceTermLift [Γ] [F] [H] [F≡H] [A] [t] ⊢Δ ([tailσ] , [headσ]) =
let [σ]′ = [tailσ] , convTerm₂ (proj₁ ([F] ⊢Δ [tailσ]))
(proj₁ ([H] ⊢Δ [tailσ]))
([F≡H] ⊢Δ [tailσ]) [headσ]
in proj₁ ([t] ⊢Δ [σ]′)
, (λ [σ′] x →
let [σ′]′ = proj₁ [σ′] , convTerm₂ (proj₁ ([F] ⊢Δ (proj₁ [σ′])))
(proj₁ ([H] ⊢Δ (proj₁ [σ′])))
([F≡H] ⊢Δ (proj₁ [σ′]))
(proj₂ [σ′])
[tailσ′] = proj₁ [σ′]
in proj₂ ([t] ⊢Δ [σ]′) [σ′]′
(proj₁ x , convEqTerm₂ (proj₁ ([F] ⊢Δ [tailσ]))
(proj₁ ([H] ⊢Δ [tailσ]))
([F≡H] ⊢Δ [tailσ])
(proj₂ x)))
-- Irrelevance of valid term equality with different derivations of
-- contexts and types
irrelevanceEqTerm : ∀ {l l′ A t u Γ}
([Γ] [Γ]′ : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A]′ : Γ ⊩ᵛ⟨ l′ ⟩ A / [Γ]′)
→ Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
→ Γ ⊩ᵛ⟨ l′ ⟩ t ≡ u ∷ A / [Γ]′ / [A]′
irrelevanceEqTerm {A = A} {t = t} {u = u} [Γ] [Γ]′ [A] [A]′ [t≡u] ⊢Δ [σ] =
let [σ]′ = irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ]
in LR.irrelevanceEqTerm (proj₁ ([A] ⊢Δ [σ]′))
(proj₁ ([A]′ ⊢Δ [σ]))
([t≡u] ⊢Δ [σ]′)
| {
"alphanum_fraction": 0.3831649002,
"avg_line_length": 44.097826087,
"ext": "agda",
"hexsha": "a33526d2072c1d66d2a746b46985c057f735e986",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Irrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Irrelevance.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Irrelevance.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3519,
"size": 8114
} |
module Array.Base where
open import Data.Nat
open import Data.Nat.DivMod --using (_div_ ; _mod_; _/_; m/n*n≤m)
open import Data.Nat.Divisibility
open import Data.Nat.Properties
open import Data.Vec
open import Data.Vec.Properties using (lookup∘tabulate)
open import Data.Fin.Base hiding (_<_; _+_)
open import Data.Fin.Properties hiding (_≟_; <-cmp; ≤-trans; <-trans)
open import Function using (_$_; _∘_; case_of_)
open import Data.Product using (Σ; _,_)
open import Relation.Binary.PropositionalEquality --using (_≡_; _≢_; refl; subst; sym; cong; cong₂)
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Nullary --using (Dec; yes; no)
open import Relation.Nullary.Decidable --using (fromWitnessFalse; False)
open import Relation.Nullary.Negation --using (contradiction)
open import Data.Sum using (inj₁; inj₂)
open import Data.Empty
infixr 5 _∷_
data Ix : (d : ℕ) → (s : Vec ℕ d) → Set where
[] : Ix 0 []
_∷_ : ∀ {d s x} → Fin x → (ix : Ix d s) → Ix (suc d) (x ∷ s)
ix-lookup : ∀ {d s} → Ix d s → (i : Fin d) → Fin (lookup s i)
ix-lookup [] ()
ix-lookup (x ∷ ix) zero = x
ix-lookup (x ∷ ix) (suc i) = ix-lookup ix i
ix-tabulate : ∀ {d s} → ((i : Fin d) → Fin (lookup s i)) → Ix d s
ix-tabulate {s = []} f = []
ix-tabulate {s = x ∷ s} f = f zero ∷ ix-tabulate (f ∘ suc)
ix→v : ∀ {d s} → Ix d s → Vec ℕ d
ix→v [] = []
ix→v (x ∷ xs) = toℕ x ∷ ix→v xs
--data Ar {a} (X : Set a) (d : ℕ) (s : Vec ℕ d) : Set a where
-- imap : (Ix d s → X) → Ar X d s
--
-- We used this type before `withReconstructed` was introduced, so that
-- we could obtain the shape of arrays at each imap. Now we have switched
-- to the record that gives us η-equality.
--
--data Ar {a} (X : Set a) (d : ℕ) : (Vec ℕ d) → Set a where
-- imap : ∀ {s} → (Ix d s → X) → Ar X d s
record Ar {a} (X : Set a) (d : ℕ) (s : Vec ℕ d) : Set a where
constructor imap
field sel : Ix d s → X
open Ar public
unimap : ∀ {a}{X : Set a}{d s} → Ar X d s → Ix d s → X
unimap (imap x) = x
cst : ∀ {a}{X : Set a}{d s} → X → Ar X d s
cst x = imap λ _ → x
-- Promoting shapes into 1-dimensional array of integers
-- and back.
s→a : ∀ {n} → Vec ℕ n → Ar ℕ 1 (n ∷ [])
s→a s = imap (λ iv → lookup s $ ix-lookup iv zero )
a→s : ∀ {s} → Ar ℕ 1 (s ∷ []) → Vec ℕ s
a→s (imap x) = tabulate λ i → x (i ∷ [])
-- Here we define < on shape-like objects and demonstrate that
-- this relation is decideable.
_<s_ : ∀ {n} → Vec ℕ n → Vec ℕ n → Set
a <s b = ∀ i → lookup a i < lookup b i
-- XXX This might be just equality
_=s_ : ∀ {n} → Vec ℕ n → Vec ℕ n → Set
a =s b = ∀ i → lookup a i ≡ lookup b i
_<a_ : ∀ {d s} → Ar ℕ d s → Ar ℕ d s → Set
imap f <a imap g = ∀ iv → f iv < g iv
_≥a_ : ∀ {d s} → Ar ℕ d s → Ar ℕ d s → Set
imap f ≥a imap g = ∀ iv → f iv ≥ g iv
_=a_ : ∀ {a}{X : Set a}{d s} → Ar X d s → Ar X d s → Set a
imap f =a imap g = ∀ iv → f iv ≡ g iv
_=ix_ : ∀ {d s} → Ix d s → Ix d s → Set
iv =ix jv = ∀ i → ix-lookup iv i ≡ ix-lookup jv i
subst-ix : ∀ {n}{s s₁ : Vec ℕ n} → s =s s₁ → Ix n s → Ix n s₁
subst-ix {zero} {[]} {[]} pf [] = []
subst-ix {suc n} {x ∷ xs} {y ∷ ys} pf (i ∷ iv) rewrite (pf zero) = i ∷ subst-ix (pf ∘ suc) iv
subst-ar : ∀ {a}{X : Set a}{n}{s s₁ : Vec ℕ n} → s =s s₁ → Ar X n s → Ar X n s₁
subst-ar pf (imap f) = imap λ iv → f $ subst-ix (sym ∘ pf) iv
subst-ar-d : ∀ {a}{X : Set a}{n m}{s : Vec ℕ n}{s₁ : Vec ℕ m}
→ (n=m : n ≡ m)
→ s =s (subst (Vec ℕ) (sym n=m) s₁)
→ Ar X n s → Ar X m s₁
subst-ar-d refl pf a = subst-ar pf a
-- If we have an index, produce a pair containing an array representation
-- and the proof that the index is smaller than the shape.
ix→a : ∀ {d}{s : Vec ℕ d}
→ (ix : Ix d s)
→ Σ (Ar ℕ 1 (d ∷ [])) λ ax → ax <a (s→a s)
ix→a ix = imap (λ iv → toℕ $ ix-lookup ix (ix-lookup iv zero)) ,
λ iv → toℕ<n (ix-lookup ix (ix-lookup iv zero))
-- XXX we can do this via imap/lookup if we want to, so that it
-- extracts to more efficient code.
infixl 10 _ix++_
_ix++_ : ∀ {n m s s₁}
→ (iv : Ix n s)
→ (jv : Ix m s₁)
→ Ix (n + m) (s ++ s₁)
_ix++_ {s = []} {s₁} iv jv = jv
_ix++_ {s = s ∷ ss} {s₁} (i ∷ iv) jv = i ∷ iv ix++ jv
nest : ∀ {a}{X : Set a}{n m s s₁}
→ Ar X (n + m) (s ++ s₁)
→ Ar (Ar X m s₁) n s
nest (imap f) = imap (λ iv → imap (λ jv → f (iv ix++ jv)))
-- Take and drop for indices
take-ix-l : ∀ {n m} → (s : Vec ℕ n) (s₁ : Vec ℕ m)
→ Ix (n + m) (s ++ s₁)
→ Ix n s
take-ix-l [] s₁ ix = []
take-ix-l (s ∷ ss) s₁ (x ∷ ix) = x ∷ take-ix-l ss s₁ ix
take-ix-r : ∀ {n m} → (s : Vec ℕ n) (s₁ : Vec ℕ m)
→ Ix (n + m) (s ++ s₁)
→ Ix m s₁
take-ix-r [] s₁ ix = ix
take-ix-r (x ∷ s) s₁ (x₁ ∷ ix) = take-ix-r s s₁ ix
-- Flatten the first nesting of the Ar
flatten : ∀ {a}{X : Set a}{n m}{s : Vec ℕ n}{s₁ : Vec ℕ m}
→ Ar (Ar X m s₁) n s
→ Ar X (n + m) (s ++ s₁)
flatten (imap f) = imap λ iv → case f (take-ix-l _ _ iv) of λ where
(imap g) → g (take-ix-r _ _ iv)
prod : ∀ {n} → (Vec ℕ n) → ℕ
prod s = foldr _ _*_ 1 s
magic-fin : ∀ {a}{X : Set a} → Fin 0 → X
magic-fin ()
a*b≢0⇒a≢0 : ∀ {a b} → a * b ≢ 0 → a ≢ 0
a*b≢0⇒a≢0 {zero} {b} 0≢0 0≡0 = 0≢0 0≡0
a*b≢0⇒a≢0 {(suc a)} {b} _ = λ ()
a*b≢0⇒b≢0 : ∀ {a b} → a * b ≢ 0 → b ≢ 0
a*b≢0⇒b≢0 {a} {b} rewrite (*-comm a b) = a*b≢0⇒a≢0
-- A basic fact about division that is not yet in the stdlib.
/-mono-x : ∀ {a b c} → a < b * c → (c≢0 : False (c ≟ 0))
→ (a / c) {≢0 = c≢0} < b
/-mono-x {a}{b}{c} a<b*c c≢0 with <-cmp ((a / c) {≢0 = c≢0}) b
/-mono-x {a} {b} {c} a<b*c c≢0 | tri< l< _ _ = l<
/-mono-x {a} {b} {c} a<b*c c≢0 | tri≈ _ l≡ _ = let
a<a/c*c = subst (a <_) (cong₂ _*_ (sym l≡) refl) a<b*c
a/c*c≤a = m/n*n≤m a c {≢0 = c≢0}
a<a = ≤-trans a<a/c*c a/c*c≤a
in contradiction a<a (n≮n a)
/-mono-x {a} {b} {suc c} a<b*c c≢0 | tri> _ _ l> = let
b*c<a/c*c = *-monoˡ-< c l>
a/c*c≤a = m/n*n≤m a (suc c) {≢0 = c≢0}
b*c≤a = ≤-trans b*c<a/c*c a/c*c≤a
a<a = <-trans a<b*c b*c≤a
in contradiction a<a (n≮n a)
/-mono-f : ∀ {a b c} → a < b * c → (b≢0 : False (b ≟ 0))
→ (a / b) {≢0 = b≢0} < c
/-mono-f {b = b}{c} a<b*c ≢0 rewrite *-comm b c = /-mono-x a<b*c ≢0
divmod-thm : ∀ {a b m n}
→ (n≢0 : n ≢ 0)
→ a ≡ (m % n) {≢0 = fromWitnessFalse n≢0}
→ b ≡ (m / n) {≢0 = fromWitnessFalse n≢0} * n
→ m ≡ a + b
divmod-thm {n = zero} n≢0 _ _ = contradiction refl n≢0
divmod-thm {m = m}{n = suc n} n≢0 refl refl = m≡m%n+[m/n]*n m n
-- XXX currently this is not efficient way to convert between indices and
-- offsets, as we are doing it form left to right. Computing in reverse
-- makes more sense. Something for later.
off→idx : ∀ {n} → (sh : Vec ℕ n)
→ Ix 1 (prod sh ∷ [])
→ Ix n sh
off→idx [] iv = []
off→idx (s ∷ sh) iv with prod (s ∷ sh) ≟ 0
off→idx (s ∷ sh) iv | yes p rewrite p = magic-fin $ ix-lookup iv zero
off→idx (s ∷ sh) (off ∷ []) | no ¬p = let
o = toℕ off
tl = prod sh
tl≢0 = fromWitnessFalse (a*b≢0⇒b≢0 {a = s} ¬p)
in {- off / tl -} (fromℕ< (/-mono-x (toℕ<n off) tl≢0))
{- rec call -} ∷ (off→idx sh ((o mod tl) {tl≢0} ∷ []))
module test-oi where
open import Data.Fin using (#_)
test-oi₁ : off→idx (10 ∷ 5 ∷ []) (# 40 ∷ []) ≡ (# 8) ∷ (# 0) ∷ []
test-oi₁ = refl
-- [x , y] < [a , b] ⇒ rowmaj [x , y] < a*b ⇒ x*b+y < a*b
rm-thm : ∀ {a b} → (x : Fin a) → (b ≢ 0) → (y : Fin b) → ((toℕ y) + (toℕ x) * b < (a * b))
rm-thm {a} {ℕ.zero} x pf y = contradiction (refl {x = 0}) pf
rm-thm {ℕ.zero} {ℕ.suc b₁} () pf y
rm-thm {ℕ.suc a₁} {ℕ.suc b₁} x pf y = +-mono-≤ (toℕ<n y) $ *-monoˡ-≤ (ℕ.suc b₁) (≤-pred $ toℕ<n x)
v-rm-thm : ∀ {a b x y b≢0} → (toℕ $ fromℕ< (rm-thm {a = a} {b = b} x b≢0 y)) ≡ (toℕ y) + (toℕ x) * b
v-rm-thm {suc a} {suc b} {x} {y} {≢0} = toℕ-fromℕ< (rm-thm x ≢0 y)
Πs≡0⇒Fin0 : ∀ {n} → (s : Vec ℕ n)
→ (Ix n s) → (prod s ≡ 0)
→ Fin 0
Πs≡0⇒Fin0 (x ∷ s) (i ∷ iv) Πxs≡0 with m*n≡0⇒m≡0∨n≡0 x Πxs≡0
Πs≡0⇒Fin0 (x ∷ s) (i ∷ iv) Πxs≡0 | inj₁ x≡0 rewrite x≡0 = i
Πs≡0⇒Fin0 (x ∷ s) (i ∷ iv) Πxs≡0 | inj₂ Πs≡0 = Πs≡0⇒Fin0 s iv Πs≡0
idx→off : ∀ {n} → (s : Vec ℕ n)
→ (iv : Ix n s)
→ Ix 1 (prod s ∷ [])
idx→off [] iv = zero ∷ iv
idx→off (s ∷ sh) (i ∷ iv) with prod (s ∷ sh) ≟ 0
idx→off (s ∷ sh) (i ∷ iv) | yes p rewrite p = magic-fin $ Πs≡0⇒Fin0 (s ∷ sh) (i ∷ iv) p
idx→off (s ∷ sh) (i ∷ iv) | no ¬p = fromℕ< (rm-thm i (a*b≢0⇒b≢0 {a = s} ¬p) (ix-lookup (idx→off sh iv) zero)) ∷ []
module test-io where
open import Data.Fin using (#_)
test-io₁ : idx→off (10 ∷ 5 ∷ []) (# 8 ∷ # 0 ∷ []) ≡ # 40 ∷ []
test-io₁ = refl
mkempty : ∀ {a}{X : Set a}{n} → (s : Vec ℕ n) → (prod s ≡ 0) → Ar X n s
mkempty {X = X} {n = n} s Πs≡0 = imap empty
where
empty : _
empty iv = magic-fin $ Πs≡0⇒Fin0 s iv Πs≡0
-- Fin fact:
Fin1≡0 : (x : Fin 1) → x ≡ zero
Fin1≡0 zero = refl
-- XXX This should be moved to Properties
io-oi : ∀ {n}{x : Vec _ n}{i : Fin (prod x)}
→ idx→off x (off→idx x (i ∷ [])) ≡ i ∷ []
io-oi {zero} {[]}{i} = cong (_∷ []) (sym (Fin1≡0 i))
io-oi {suc n} {x ∷ x₁}{i} with prod (x ∷ x₁) ≟ 0
... | yes p = ⊥-elim $ ¬Fin0 (subst Fin p i)
... | no ¬p with prod (x ∷ x₁) ≟ 0
io-oi {suc n} {x ∷ x₁} {i} | no ¬p | yes q = contradiction q ¬p
io-oi {suc n} {x ∷ x₁} {i} | no ¬p | no ¬q
= cong (_∷ []) (toℕ-injective (trans (v-rm-thm {a = x} {b = prod x₁})
(sym (divmod-thm
{a = toℕ (ix-lookup (idx→off x₁ (off→idx x₁ _)) zero)}
(a*b≢0⇒b≢0 {a = x} ¬p)
(trans (cong (λ x → toℕ (ix-lookup x zero))
(io-oi {x = x₁}))
mod⇒%)
(mono⇒/* {b = x} {c = prod x₁})))))
where
mono⇒/* : ∀ {b c}{i : Fin (b * c)}{≢0 : False (c ≟ 0)}
→ toℕ {n = b} (fromℕ< (/-mono-x (toℕ<n i) (≢0))) * c ≡ (toℕ i / c) {≢0} * c
mono⇒/* {b} {c} {i} {≢0} = cong (_* c) (toℕ-fromℕ< (/-mono-x (toℕ<n i) ≢0))
mod⇒% : ∀ {n}{i : Fin n}{a}{≢0 : False (a ≟ 0)} → toℕ ((toℕ i mod a){≢0}) ≡ (toℕ i % a) {≢0}
mod⇒% {n} {i} {suc a} = trans (toℕ-fromℕ< (m%n<n (toℕ i) a)) refl
m≡m+x⇒0≡x : ∀ {m x} → m ≡ m + x → 0 ≡ x
m≡m+x⇒0≡x {m}{x} m≡m+x = +-cancelˡ-≡ m (trans (+-identityʳ m) m≡m+x)
a*b≡0⇒b≢0⇒a≡0 : ∀ {a b} → a * b ≡ 0 → b ≢ 0 → a ≡ 0
a*b≡0⇒b≢0⇒a≡0 {a}{b} a*b≡0 b≢0 with (m*n≡0⇒m≡0∨n≡0 a a*b≡0)
a*b≡0⇒b≢0⇒a≡0 {a} {b} a*b≡0 b≢0 | inj₁ x = x
a*b≡0⇒b≢0⇒a≡0 {a} {b} a*b≡0 b≢0 | inj₂ y = contradiction y b≢0
-- m≤n⇒m%n≡m
m<n⇒m/n≡0 : ∀ {m n} → (m<n : m < n) → ∀ {≢0} → (m / n) {≢0} ≡ 0
m<n⇒m/n≡0 {m} {n@(suc n-1)} m<n = let
m%n≡m = m≤n⇒m%n≡m (≤-pred m<n)
m≡m%n+m/n*n = (m≡m%n+[m/n]*n m n-1)
m≡m+m/n*n = trans m≡m%n+m/n*n (cong₂ _+_ m%n≡m refl)
m/n*n≡0 = sym (m≡m+x⇒0≡x m≡m+m/n*n)
m/n≡0 = a*b≡0⇒b≢0⇒a≡0 {a = m / n} {b = n} m/n*n≡0 (m<n⇒n≢0 m<n)
in m/n≡0
b≡0+c≡a⇒b+c≡a : ∀ {a b c} → b ≡ 0 → c ≡ a → b + c ≡ a
b≡0+c≡a⇒b+c≡a refl refl = refl
a<c⇒c|b⇒[a+b]%c≡a : ∀ {a b c} → a < c → (c ∣ b) → ∀ {≢0} → ((a + b) % c) {≢0} ≡ a
a<c⇒c|b⇒[a+b]%c≡a {a} {b} {c@(suc c-1)} a<c c|b = trans (%-remove-+ʳ a c|b) (m≤n⇒m%n≡m (≤-pred a<c))
a<c⇒c|b⇒[a+b]mod[c]≡a : ∀ {b c} → (a : Fin c) → (c ∣ b) → ∀ {≢0} → ((toℕ a + b) mod c) {≢0} ≡ a
a<c⇒c|b⇒[a+b]mod[c]≡a {b} {suc c-1} a c|b {≢0} = toℕ-injective (trans (toℕ-fromℕ< _) (a<c⇒c|b⇒[a+b]%c≡a (toℕ<n a) c|b))
ixl-cong : ∀ {s}{i : Ix 1 (s ∷ [])} → (ix-lookup i zero) ∷ [] ≡ i
ixl-cong {i = i ∷ []} = refl
--rm-thm : ∀ {a b} → (x : Fin a) → (b ≢ 0) → (y : Fin b) → ((toℕ y) + (toℕ x) * b < (a * b))
--v-rm-thm : ∀ {a b x y b≢0} → (toℕ $ fromℕ< (rm-thm {a = a} {b = b} x b≢0 y)) ≡ (toℕ y) + (toℕ x) * b
oi-io : ∀ {n}{x : Vec _ n}{iv : Ix n x}
→ off→idx x (idx→off x iv) ≡ iv
oi-io {x = []} {[]} = refl
oi-io {x = x ∷ xs} {i ∷ iv} with prod (x ∷ xs) ≟ 0
... | yes p = ⊥-elim $ ¬Fin0 $ Πs≡0⇒Fin0 (x ∷ xs) (i ∷ iv) p
... | no ¬p = cong₂ _∷_
-- Πiv + i * Πxs
(toℕ-injective (trans (toℕ-fromℕ< _)
(trans (cong (_/ prod xs) (toℕ-fromℕ< _))
(hlpr {n = prod xs}
{a = toℕ (ix-lookup (idx→off xs iv) zero)}
refl (toℕ<n _)))))
(trans (cong (off→idx xs)
(trans (cong (λ x → x mod (prod xs) ∷ []) (toℕ-fromℕ< _))
(trans (cong (_∷ []) (a<c⇒c|b⇒[a+b]mod[c]≡a _ (n∣m*n (toℕ i) {n = (prod xs)})))
ixl-cong)))
oi-io)
where
hlpr : ∀ {m n a x}{≢0} → a + m * n ≡ x → a < n → (x / n) {≢0} ≡ m
hlpr {m} {n} {a} {x} {≢0} refl a<n = trans (+-distrib-/-∣ʳ {m = a} (m * n) {d = n} {≢0} (n∣m*n m))
(b≡0+c≡a⇒b+c≡a (m<n⇒m/n≡0 a<n) (m*n/n≡m m n))
-- rewrite (v-rm-thm {a = x} {b = prod xs} {x = i} {y = (ix-lookup (idx→off xs iv) zero)} {b≢0 = (a*b≢0⇒b≢0 {a = x} ¬p)})
| {
"alphanum_fraction": 0.4453349018,
"avg_line_length": 37.8857938719,
"ext": "agda",
"hexsha": "05e429399deb78938ce20b10c29c15cf8edc8de2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "Array/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "Array/Base.agda",
"max_line_length": 121,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "Array/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 6243,
"size": 13601
} |
module Everything where
import BoolMatcher
import Eq
import Prelude
import RegExps
import Setoids
import SimpleMatcher
| {
"alphanum_fraction": 0.8666666667,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "df20ced28adf78f2f5e4d9e4cf1bc6599b729ed5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/Everything.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/Everything.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 120
} |
{-# OPTIONS --cubical --safe #-}
module Data.Functor where
open import Prelude
record Functor ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where
field
F : Type ℓ₁ → Type ℓ₂
map : (A → B) → F A → F B
identity : map {A = A} id ≡ id
compose : (f : B → C) (g : A → B) → map (f ∘ g) ≡ map f ∘ map g
| {
"alphanum_fraction": 0.5364238411,
"avg_line_length": 21.5714285714,
"ext": "agda",
"hexsha": "8fc1e00eb789ea6a96f5d7ef28c34ab1e0d359fd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Functor.agda",
"max_line_length": 67,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 129,
"size": 302
} |
module GUIgeneric.GUI where
open import GUIgeneric.Prelude
open import GUIgeneric.GUIDefinitions
Frame : Set
Frame = ComponentEls frame
logOn : Bool
logOn = true
log : {A : Set} → String → (f : Unit → IO GuiLev1Interface ∞ A) →
IO GuiLev1Interface ∞ A
log s f = if logOn then (do (putStrLn s) λ x → f x) else f unit
module _ where
FFIcomponents : {c : Component}(e : ComponentEls c) → Set
FFIcomponents {c} (add i e e' _) = FFIcomponents e × FFIcomponents e'
FFIcomponents {frame} (createC tt) = FFIFrame
FFIcomponents {atomicComp} (createC (button x)) = FFIButton
FFIcomponents {atomicComp} (createC (txtbox y)) = FFITextCtrl
ffiComponentsToFrame : (e : ComponentEls frame)(ffi : FFIcomponents e) → FFIFrame
ffiComponentsToFrame (createC x) ffi = ffi
ffiComponentsToFrame (add c'c e e₁ _) (ffie , ffie₁) = ffiComponentsToFrame e₁ ffie₁
FFIcomponentsReduce : {c c' : Component}(e : ComponentEls c)(e' : ComponentEls c')
(ee' : e <c e')
(ff1 : FFIcomponents e')
→ FFIcomponents e
FFIcomponentsReduce e (add i .e e'' _) (addsub i' .e .e'' _) ffi1 = proj₁ ffi1
FFIcomponentsReduce e (add i e' .e _) (addlift i' .e' .e _) ffi1 = proj₂ ffi1
FFIcomponentsReduce+ : {c c' : Component}(e : ComponentEls c)(e' : ComponentEls c')
(ee' : e <=c+ e')
(ffi : FFIcomponents e')
→ FFIcomponents e
FFIcomponentsReduce+ e .e (in0= .e) ffi1 = ffi1
FFIcomponentsReduce+ e e' (in2= .e e'₁ .e' x ee') ffi1 =
FFIcomponentsReduce e e'₁ x (FFIcomponentsReduce+ e'₁ e' ee' ffi1)
data SemiDec (A : Frame → Set) : Set where
isEmpty : ((f : Frame) → A f → ⊥) → SemiDec A
posNonEmpty : SemiDec A
data MethodsStruct : Set where
fficom : MethodsStruct
⊥^ : MethodsStruct
_⊎^_ : (m m' : MethodsStruct) → MethodsStruct
_⊎^unoptimized_ : (m m' : MethodsStruct) → MethodsStruct
mutual
methodsStruct2Method : (g : Frame)(m : MethodsStruct) → Set
methodsStruct2Method g fficom = FFIcomponents g
methodsStruct2Method g ⊥^ = ⊥
methodsStruct2Method g (m ⊎^ m₁) = methodsStruct2Methodaux g m m₁
(methodsUnivIsEmpty m)
(methodsUnivIsEmpty m₁)
methodsStruct2Method g (m ⊎^unoptimized m₁) = methodsStruct2Method g m ⊎ methodsStruct2Method g m₁
methodsStruct2Methodaux : (g : Frame) (m m' : MethodsStruct)
(s : SemiDec (λ g → methodsStruct2Method g m))
(s' : SemiDec (λ g → methodsStruct2Method g m'))
→ Set
methodsStruct2Methodaux g m m' s (isEmpty s') = methodsStruct2Method g m
methodsStruct2Methodaux g m m' (isEmpty x) posNonEmpty = methodsStruct2Method g m'
methodsStruct2Methodaux g m m' posNonEmpty posNonEmpty = methodsStruct2Method g m ⊎ methodsStruct2Method g m'
methodsUnivIsEmpty : (m : MethodsStruct) → SemiDec (λ g → methodsStruct2Method g m)
methodsUnivIsEmpty fficom = posNonEmpty
methodsUnivIsEmpty ⊥^ = isEmpty (λ g → λ ())
methodsUnivIsEmpty (m ⊎^ m₁) =
methodsUnivIsEmptyaux m m₁
(methodsUnivIsEmpty m)
(methodsUnivIsEmpty m₁)
methodsUnivIsEmpty (m ⊎^unoptimized m₁) = posNonEmpty
methodsUnivIsEmptyaux : (m m' : MethodsStruct)
(s : SemiDec (λ g → methodsStruct2Method g m ))
(s' : SemiDec (λ g → methodsStruct2Method g m' ))
→ SemiDec (λ g → methodsStruct2Methodaux g m m' s s')
methodsUnivIsEmptyaux m m' s (isEmpty s') = s
methodsUnivIsEmptyaux m m' (isEmpty x) posNonEmpty = posNonEmpty
methodsUnivIsEmptyaux m m' posNonEmpty posNonEmpty = posNonEmpty
inj₁MUaux : (g : Frame) (m m' : MethodsStruct)
(s : SemiDec (λ g → methodsStruct2Method g m ))
(s' : SemiDec (λ g → methodsStruct2Method g m' ))
(u : methodsStruct2Method g m)
→ methodsStruct2Methodaux g m m' s s'
inj₁MUaux g m m' s (isEmpty x) u = u
inj₁MUaux g m m' (isEmpty x) posNonEmpty u = ⊥-elim (x g u)
inj₁MUaux g m m' posNonEmpty posNonEmpty u = inj₁ u
inj₁MUoptimized : (g : Frame) (m m' : MethodsStruct)(u : methodsStruct2Method g m )-- (isOpt : Bool)
→ methodsStruct2Method g (m ⊎^ m') --isOpt
inj₁MUoptimized g m m' u = inj₁MUaux g m m'
(methodsUnivIsEmpty m)
(methodsUnivIsEmpty m') u
inj₁MUUnoptimized : (g : Frame) (m m' : MethodsStruct)(u : methodsStruct2Method g m )-- (isOpt : Bool)
→ methodsStruct2Method g (m ⊎^unoptimized m') --isOpt
inj₁MUUnoptimized g m m' u = inj₁ u
inj₂MUaux : (g : Frame) (m m' : MethodsStruct)
(s : SemiDec (λ g → methodsStruct2Method g m))
(s' : SemiDec (λ g → methodsStruct2Method g m' ))
(u : methodsStruct2Method g m')
→ methodsStruct2Methodaux g m m' s s'
inj₂MUaux g m m' s (isEmpty x) u = ⊥-elim (x g u)
inj₂MUaux g m m' (isEmpty x) posNonEmpty u = u
inj₂MUaux g m m' posNonEmpty posNonEmpty u = inj₂ u
inj₂MUoptimized : (g : Frame) (m m' : MethodsStruct)(u : methodsStruct2Method g m' )
→ methodsStruct2Method g (m ⊎^ m') --isOpt
inj₂MUoptimized g m m' u = inj₂MUaux g m m'
(methodsUnivIsEmpty m)
(methodsUnivIsEmpty m') u
inj₂MUUnoptimized : (g : Frame) (m m' : MethodsStruct)(u : methodsStruct2Method g m' )
→ methodsStruct2Method g (m ⊎^unoptimized m') --isOpt
inj₂MUUnoptimized g m m' u = inj₂ u
methodStruct : {c : Component}(e : ComponentEls c) → MethodsStruct
methodStruct (add c'c x x₁ optimized) = methodStruct x ⊎^ methodStruct x₁
methodStruct (add c'c x x₁ notOptimized) = methodStruct x ⊎^unoptimized methodStruct x₁
methodStruct {atomicComp} (createC (button s)) = fficom
methodStruct {atomicComp} (createC (txtbox s)) = ⊥^
methodStruct _ = ⊥^
methods : {c : Component}(e : ComponentEls c)(g : Frame) → Set
methods e g = methodsStruct2Method g (methodStruct e)
methodsG : (g : Frame) → Set
methodsG g = methods g g
methodLift : {c c'' : Component}(e : ComponentEls c)(e'₁ : ComponentEls c'')
(g : Frame) (x : e <c e'₁) (m : methods e g )
→ methods e'₁ g
methodLift e .(add i e e₁ optimized) g (addsub i .e e₁ optimized) m =
inj₁MUoptimized g
(methodStruct e)
(methodStruct e₁)
m
methodLift e .(add i e e₁ notOptimzed) g (addsub i .e e₁ notOptimzed) m =
inj₁MUUnoptimized g
(methodStruct e)
(methodStruct e₁)
m
methodLift e .(add i e'₂ e optimized) g (addlift i e'₂ .e optimized) m =
inj₂MUoptimized g
(methodStruct e'₂)
(methodStruct e)
m
methodLift e .(add i e'₂ e notOptimzed) g (addlift i e'₂ .e notOptimzed) m =
inj₂MUUnoptimized g
(methodStruct e'₂)
(methodStruct e)
m
methodLift+ : {c c' : Component}(e : ComponentEls c)(e' : ComponentEls c')
(g : Frame)(ee' : e <=c+ e')
(m : methods e g)
→ methods e' g
methodLift+ e .e g (in0= .e) m = m
methodLift+ e e' g (in2= .e e'₁ .e' x ee'') m =
methodLift+ e'₁ e' g ee'' (methodLift e e'₁ g x m)
data returnType (f : Frame) : Set where
noChange : returnType f
changedAttributes : properties f → returnType f
changedGUI
: (fNew : Frame) → (properties fNew) → returnType f
nextStateFrame : (f : Frame)(r : returnType f) → Frame
nextStateFrame f noChange = f
nextStateFrame f (changedAttributes x) = f
nextStateFrame f (changedGUI fNew x) = fNew
handlerInterface : Interfaceˢ
handlerInterface .Stateˢ = Frame
handlerInterface .Methodˢ f = methodsG f
handlerInterface .Resultˢ f m = returnType f
handlerInterface .nextˢ f m r = nextStateFrame f r
HandlerObject : ∀ i → Frame → Set
HandlerObject i g =
IOObjectˢ GuiLev1Interface handlerInterface i g
StateAndGuiObj : Set
StateAndGuiObj = Σ[ g ∈ Frame ] (properties g) × (HandlerObject ∞ g)
StateAndFFIComp : Set
StateAndFFIComp = Σ[ g ∈ Frame ] FFIcomponents g
--
-- Step 3 : create object of type HandlerObject
--
SingleMVar : {A : Set} → (mvar : MVar A) → VarList
SingleMVar {A} mvar = addVar mvar []
initHandlerMVar : (l : VarList) (g : Frame)
(a : properties g)
(f : HandlerObject ∞ g)
→ IOˢ GuiLev2Interface ∞
(λ s → Σ[ mvar ∈ MVar StateAndGuiObj ]
s ≡ addVar mvar l ) l
initHandlerMVar l g a f = doˢ (createVar {_}{StateAndGuiObj} (g , a , f)) λ mvar →
returnˢ (mvar , refl)
initFFIMVar : (g : Frame)
→ (comp : (FFIcomponents g))
→ IOˢ GuiLev2Interface ∞
(λ s → Σ[ mvar ∈ MVar StateAndFFIComp ]
s ≡ SingleMVar mvar ) []
initFFIMVar g comp = doˢ (createVar {_}{StateAndFFIComp} (g , comp)) λ mvar →
returnˢ (mvar , refl)
module _ where
frameToEnclosing : (e : ComponentEls frame)(ffi : FFIcomponents e) → FFIFrame
frameToEnclosing (createC x) ffi = ffi
frameToEnclosing (add i e e₁ _) (proj₃ , proj₄) = frameToEnclosing e₁ proj₄
componentToEnclosingIndex : (c : Component) → Set
componentToEnclosingIndex frame = ⊥
componentToEnclosingIndex atomicComp = ⊤
componentToEnclosings : (c : Component)(i : componentToEnclosingIndex c) → Set
componentToEnclosings frame ()
componentToEnclosings atomicComp tt = FFIFrame
createComp : {c : Component}{s : GuiLev2State}(e : ComponentEls c)
(enclosings : (i : componentToEnclosingIndex c) → componentToEnclosings c i)
→ (existingFrame : Maybe FFIFrame) → IOₚˢ GuiLev2Interface ∞ (FFIcomponents e) s s
createComp {frame} (createC fr) enc (just ffiFrame) = returnˢ (refl , ffiFrame)
createComp {frame} (createC fr) enc nothing =
doˢ (level1C createWxFrame) λ frFFI → returnˢ (refl , frFFI)
createComp {frame} (add buttonFrame e frameEl _) enc maybeFr =
createComp frameEl enc maybeFr >>=ₚˢ λ frameComp →
createComp e (λ x → frameToEnclosing frameEl frameComp) maybeFr >>=ₚˢ λ buttonComp →
returnˢ (refl , buttonComp , frameComp)
createComp {atomicComp} (createC (button x)) enc maybeFr =
doˢ (level1C (createButton (enc tt) x)) λ bt →
returnˢ (refl , bt)
createComp {atomicComp} (createC (txtbox x)) enc maybeFr =
doˢ (level1C (createTextCtrl (enc tt) x)) λ txt →
returnˢ (refl , txt)
createComp {atomicComp} (add () e e₁ _) x y
createFrame : (g : Frame) → IOₚˢ GuiLev2Interface ∞ (FFIcomponents g) [] []
createFrame g = createComp {frame} g (λ x → ⊥-elim x) nothing
reCreateFrame : {s : GuiLev2State}(g : Frame)(f : FFIFrame) → IOₚˢ GuiLev2Interface ∞ (FFIcomponents g) s s
reCreateFrame g fr = createComp {frame} g (λ x → ⊥-elim x) (just fr)
module _ where
ButtonComp : Set
ButtonComp = ComponentEls atomicComp
button2Frame : (bt : ButtonComp)(g : Frame)(ffi : FFIcomponents g)
(rel : bt <=c+ g) → FFIFrame
button2Frame bt g ffi (in2= {c' = frame} .bt .(add c'c bt e _) .g (addsub c'c .bt e _) rel) = ffiComponentsToFrame e (FFIcomponentsReduce+ e g aux ffi)
where
aux : e <=c+ g
aux = in2= e (add c'c bt e _) g (addlift c'c bt e _) rel
button2Frame bt g ffi (in2= {c' = atomicComp} .bt .(add _ bt e _) .g (addsub () .bt e _) rel)
button2Frame bt g ffi (in2= .bt .(add _ e'₁ bt _) .g (addlift {frame} () e'₁ .bt _) (in2= .(add _ e'₁ bt _) e' .g x rel))
button2Frame bt g ffi (in2= .bt .(add _ e'₁ bt _) .g (addlift {atomicComp} () e'₁ .bt _) (in2= .(add _ e'₁ bt _) e' .g x rel))
buttonHandleraux2 : ∀{i} → (bt : ButtonComp)
(g : Frame)
(ffi : FFIcomponents g)
(rel : bt <=c+ g)
(m : methods bt g)
(a : properties g)
(obj : HandlerObject ∞ g)
(r : returnType g)
(obj' : IOObjectˢ GuiLev1Interface handlerInterface ∞
(nextStateFrame g r))
→ IO GuiLev1Interface i StateAndGuiObj
buttonHandleraux2 bt g ffi rel m a obj noChange obj' = return (g , a , obj')
buttonHandleraux2 bt g ffi rel m a obj (changedAttributes a') obj' =
log "Changing Attributes Directly" λ _ →
return (g , a' , obj')
buttonHandleraux2 (createC x) g ffi rel m a obj (changedGUI gNew a') obj' =
log "Firing GUI change ----> SEND FIRE" λ _ →
do (fireCustomEvent (button2Frame (createC x) g ffi rel)) λ _ →
return (gNew , a' , obj')
buttonHandleraux2 (add () bt bt₁ _) g ffi rel m a obj (changedGUI gNew a') obj'
buttonHandleraux : ∀{i} → (bt : ButtonComp)
(g : Frame)
(ffi : FFIcomponents g)
(rel : bt <=c+ g)
(m : methods bt g)
(gNew : Frame)
(a : properties gNew)
(obj : HandlerObject ∞ gNew)
(dec : Dec (g ≡ gNew))
→ IO GuiLev1Interface i StateAndGuiObj
buttonHandleraux bt g ffi rel m .g a obj (Dec.yes refl)
= method obj (methodLift+ bt g g rel m) >>= λ { (r , obj') →
buttonHandleraux2 bt g ffi rel m a obj r obj'}
buttonHandleraux bt g ffi rel m gNew a obj (Dec.no ¬p)
= log "ERROR: button handler is called for wrong GUI !!" λ _ →
return (gNew , a , obj)
buttonHandler : ∀{i} → (bt : ButtonComp)
(g : Frame)
(ffi : FFIcomponents g)
(rel : bt <=c+ g)
(m : methods bt g)
(obj : StateAndGuiObj)
→ IO GuiLev1Interface i StateAndGuiObj
buttonHandler {i} bt g ffi rel m (gNew , a , obj) = buttonHandleraux {i} bt g ffi rel m gNew a obj (g ≟Comp gNew)
setHandler : ∀{i} → (c : Component)
(cels : ComponentEls c)
(g : Frame)
(ffiComp : FFIcomponents g)
(rel : cels <=c+ g)
(mvar : MVar StateAndGuiObj)
(restList : VarList)
→ IOˢ GuiLev2Interface i (λ s' → s' ≡ addVar mvar restList × Unit)
(addVar mvar restList)
setHandler .frame (add buttonFrame cels cels₁ _) g ffi rel mvar restList =
setHandler frame cels₁ g ffi
(in2= cels₁ (add buttonFrame cels cels₁ _) g (addlift buttonFrame cels cels₁ _) rel)
mvar restList >>=ₚˢ λ r →
setHandler atomicComp cels g ffi (in2= cels (add buttonFrame cels cels₁ _) g (addsub buttonFrame cels cels₁ _) rel) mvar restList >>=ₚˢ λ r →
returnˢ (refl , _)
setHandler frame (createC tt) g ffi rel mvar restList = returnˢ (refl , _)
setHandler atomicComp (createC (button x)) g ffi (in2= .(createC (button x)) e' .g x₁ rel) mvar restList =
doˢ (setButtonHandler (FFIcomponentsReduce (createC (button x)) e' x₁
(FFIcomponentsReduce+ e' g rel ffi) )
[ (λ obj → buttonHandler (createC (button x)) g ffi
(in2= (createC (button x)) e' g x₁ rel) ffi (varListProj₁ restList obj)
>>= (λ { (g' , obj') → return (varListUpdateProj₁ restList ( g' , obj') obj)}))]) λ _ →
returnˢ (refl , _)
setHandler atomicComp (createC (txtbox x)) g ffi (in2= .(createC (txtbox x)) e' .g x₁ rel) mvar restList = returnˢ (refl , _)
setHandlerG : ∀{i} → (g : Frame)
(ffiComp : FFIcomponents g)
(mvar : MVar StateAndGuiObj)
(restList : VarList)
→ IOˢ GuiLev2Interface i (λ s → s ≡ addVar mvar restList × Unit) (addVar mvar restList)
setHandlerG g ffi mvar restList = setHandler frame g g ffi (in0= g) mvar restList
deleteComp : {c : Component}{s : GuiLev2State}(e : ComponentEls c)(ffi : FFIcomponents e)
→ IOₚˢ GuiLev2Interface ∞ Unit s s
deleteComp {frame} (createC fr) _ = returnˢ (refl , _)
deleteComp {frame} (add x be frameEl _) (ffi , ffis) =
deleteComp be ffi >>=ₚˢ λ _ →
deleteComp frameEl ffis >>=ₚˢ λ r →
returnˢ (refl , _)
deleteComp {atomicComp} (createC (button x)) ffiButton =
doˢ (level1C (deleteButton ffiButton)) λ _ →
returnˢ (refl , _)
deleteComp {atomicComp} (createC (txtbox y)) ffiTextCtrl =
doˢ (level1C (deleteTextCtrl ffiTextCtrl)) λ _ →
returnˢ (refl , _)
deleteComp {atomicComp} (add () a b _) y
setAttributes : {c : Component}(i : Size)(e : ComponentEls c)(a : properties e)
(ffi : FFIcomponents e)
→ IO GuiLev1Interface i ⊤
setAttributes {frame} i (createC fr) (a , b , c , d) x =
log " setting properties for Frame " λ _ →
do (setChildredLayout x a b c d) λ _ →
return tt
setAttributes {frame} i (add x be frameEl _) (a , as) (ffi , ffis) =
setAttributes i be a ffi >>= λ _ →
setAttributes i frameEl as ffis >>= λ r →
return tt
setAttributes {atomicComp} i (createC (button x)) propColor ffiButton =
do (setAttribButton ffiButton propColor) λ _ →
return tt
setAttributes {atomicComp} i (createC (txtbox y)) propColor ffiTextCtrl =
do (setAttribTextCtrl ffiTextCtrl propColor) λ _ →
return tt
setAttributes {atomicComp} i (add () a b _) y z
getFrameGen : (g : Frame)(cp : FFIcomponents g) → FFIFrame
getFrameGen (createC x) cp = cp
getFrameGen (add buttonFrame g g₁ _) (compg , compg₁) = getFrameGen g₁ compg₁
| {
"alphanum_fraction": 0.572032979,
"avg_line_length": 38.3284823285,
"ext": "agda",
"hexsha": "2134515e985218329e90de5fc7acff0c5da980ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUI.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUI.agda",
"max_line_length": 153,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUI.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 5663,
"size": 18436
} |
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.Model.Properties (Θ : Theory) where
open import Fragment.Equational.Model.Base Θ
open import Fragment.Equational.Model.Synthetic Θ
open import Fragment.Algebra.Homomorphism (Σ Θ)
open import Fragment.Algebra.Free (Σ Θ)
open import Fragment.Setoid.Morphism using (_↝_)
open import Level using (Level)
open import Function using (_∘_)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin using (Fin; zero; suc; fromℕ)
open import Data.Vec using (Vec; []; _∷_; map)
open import Data.Product using (proj₁; proj₂)
open import Data.Vec.Relation.Binary.Pointwise.Inductive
using (Pointwise; []; _∷_)
open import Relation.Binary using (Setoid)
import Relation.Binary.Reasoning.Setoid as Reasoning
private
variable
a ℓ : Level
module _ {n} (A : Model {a} {ℓ}) (θ : Env ∥ A ∥ₐ n) where
private
module S = Setoid ∥ A ∥/≈
open Reasoning ∥ A ∥/≈
mutual
map-∣interp∣-cong : ∀ {m} {xs ys : Vec ∥ J n ∥ m}
→ Pointwise ≈[ J n ] xs ys
→ Pointwise ≈[ A ] (map ∣ inst ∥ A ∥ₐ θ ∣ xs)
(map ∣ inst ∥ A ∥ₐ θ ∣ ys)
map-∣interp∣-cong [] = []
map-∣interp∣-cong (p ∷ ps) = ∣interp∣-cong p ∷ map-∣interp∣-cong ps
∣interp∣-cong : Congruent ≈[ J n ] ≈[ A ] ∣ inst ∥ A ∥ₐ θ ∣
∣interp∣-cong refl = S.refl
∣interp∣-cong (sym p) = S.sym (∣interp∣-cong p)
∣interp∣-cong (trans p q) = S.trans (∣interp∣-cong p) (∣interp∣-cong q)
∣interp∣-cong (inherit p) = ∣ inst ∥ A ∥ₐ θ ∣-cong p
∣interp∣-cong (cong f {xs = xs} {ys = ys} ps) = begin
∣ inst ∥ A ∥ₐ θ ∣ (term f xs)
≈⟨ S.sym (∣ inst ∥ A ∥ₐ θ ∣-hom f xs) ⟩
A ⟦ f ⟧ (map ∣ inst ∥ A ∥ₐ θ ∣ xs)
≈⟨ (A ⟦ f ⟧-cong) (map-∣interp∣-cong ps) ⟩
A ⟦ f ⟧ (map ∣ inst ∥ A ∥ₐ θ ∣ ys)
≈⟨ ∣ inst ∥ A ∥ₐ θ ∣-hom f ys ⟩
∣ inst ∥ A ∥ₐ θ ∣ (term f ys)
∎
∣interp∣-cong (axiom eq θ') = begin
∣ inst ∥ A ∥ₐ θ ∣ (∣ inst (F n) θ' ∣ lhs)
≈⟨ inst-assoc (F n) θ' (inst ∥ A ∥ₐ θ) {x = lhs} ⟩
∣ inst ∥ A ∥ₐ (∣ inst ∥ A ∥ₐ θ ∣ ∘ θ') ∣ lhs
≈⟨ ∥ A ∥ₐ-models eq _ ⟩
∣ inst ∥ A ∥ₐ (∣ inst ∥ A ∥ₐ θ ∣ ∘ θ') ∣ rhs
≈⟨ S.sym (inst-assoc (F n) θ' (inst ∥ A ∥ₐ θ) {x = rhs}) ⟩
∣ inst ∥ A ∥ₐ θ ∣ (∣ inst (F n) θ' ∣ rhs)
∎
where lhs = proj₁ (Θ ⟦ eq ⟧ₑ)
rhs = proj₂ (Θ ⟦ eq ⟧ₑ)
∣interp∣⃗ : ∥ J n ∥/≈ ↝ ∥ A ∥/≈
∣interp∣⃗ = record { ∣_∣ = ∣ inst ∥ A ∥ₐ θ ∣
; ∣_∣-cong = ∣interp∣-cong
}
interp : ∥ J n ∥ₐ ⟿ ∥ A ∥ₐ
interp = record { ∣_∣⃗ = ∣interp∣⃗
; ∣_∣-hom = ∣ inst ∥ A ∥ₐ θ ∣-hom
}
atomise : (n : ℕ) → ∥ J (suc n) ∥
atomise n = atom (dyn (fromℕ n))
up : ∀ {n} → Fin n → Fin (suc n)
up zero = zero
up (suc n) = suc (up n)
raise : ∀ {n} → ∥ J n ∥ₐ ⟿ ∥ J (suc n) ∥ₐ
raise {n} = interp (J (suc n)) (λ k → atom (dyn (up k)))
step : ∀ {n} → ∥ J n ∥ₐ ⟿ ∥ J (suc n) ∥ₐ
step {n} = interp (J (suc n)) (λ k → atom (dyn (suc k)))
mutual
map-step-raise : ∀ {n m} → (xs : Vec ∥ J n ∥ m)
→ Pointwise ≈[ J (suc (suc n)) ]
(map ∣ step {suc n} ⊙ raise {n} ∣ xs)
(map ∣ raise {suc n} ⊙ step {n} ∣ xs)
map-step-raise [] = []
map-step-raise (x ∷ xs) = step-raise {x = x} ∷ map-step-raise xs
step-raise : ∀ {n} → step {suc n} ⊙ raise {n} ≗ raise {suc n} ⊙ step {n}
step-raise {n} {atom (dyn k)} = refl
step-raise {n} {term f xs} = begin
∣ step ⊙ raise ∣ (term f xs)
≈⟨ sym (∣ step ⊙ raise ∣-hom f xs) ⟩
term f (map ∣ step ⊙ raise ∣ xs)
≈⟨ cong f (map-step-raise xs) ⟩
term f (map ∣ raise ⊙ step ∣ xs)
≈⟨ ∣ raise ⊙ step ∣-hom f xs ⟩
∣ raise ⊙ step ∣ (term f xs)
∎
where open Reasoning ∥ J (suc (suc n)) ∥/≈
| {
"alphanum_fraction": 0.4809654143,
"avg_line_length": 34.947826087,
"ext": "agda",
"hexsha": "eee8ace0a25a52cb2d3738acb48c02a11f701d39",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/Model/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/Model/Properties.agda",
"max_line_length": 79,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/Model/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 1749,
"size": 4019
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.KernelCstImageCst {i j k}
(G : Group i) (H : Group j) (K : Group k)
(H-ab : is-abelian H) where
private
module H = Group H
open import groups.KernelImage {G = G} {H = H} {K = K} cst-hom cst-hom H-ab
Ker-cst-quot-Im-cst : Ker/Im ≃ᴳ H
Ker-cst-quot-Im-cst = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to : Ker/Im.El → H.El
to = SetQuot-rec H.El-level to' to-rel where
to' : Ker.El (cst-hom {G = H} {H = K}) → H.El
to' ker = fst ker
abstract
to-rel : ∀ {h₁ h₂} → ker/im-rel' h₁ h₂ → h₁ == h₂
to-rel {h₁} {h₂} = Trunc-rec (H.El-level _ _)
λ{(_ , 0=h₁h₂⁻¹) → H.zero-diff-same h₁ h₂ (! 0=h₁h₂⁻¹)}
from : H.El → Ker/Im.El
from h = q[ h , idp ]
abstract
to-from : ∀ h → to (from h) == h
to-from h = idp
from-to : ∀ k/i → from (to k/i) == k/i
from-to = SetQuot-elim (λ _ → =-preserves-set SetQuot-level)
(λ _ → ap q[_] $ ker-El=-out idp)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
to-pres-comp : preserves-comp Ker/Im.comp H.comp to
to-pres-comp = SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set H.El-level)
(λ _ → SetQuot-elim
(λ _ → =-preserves-set H.El-level)
(λ _ → idp)
(λ _ → prop-has-all-paths-↓ (H.El-level _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → H.El-level _ _))
| {
"alphanum_fraction": 0.5320600273,
"avg_line_length": 31.8695652174,
"ext": "agda",
"hexsha": "fd843779b3a31507c9ec0f429c2e052aa48ca580",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/KernelCstImageCst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/KernelCstImageCst.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/KernelCstImageCst.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 558,
"size": 1466
} |
{-# OPTIONS --cubical --safe #-}
module HITs.PropositionalTruncation.Equivalence where
open import Prelude
open import Relation.Binary
open import HITs.PropositionalTruncation
open import HITs.PropositionalTruncation.Sugar
trunc-equivalence : ∀ {a} {A : Type a} → Equivalence A a → Equivalence A a
trunc-equivalence e .Equivalence._≋_ x y = ∥ Equivalence._≋_ e x y ∥
trunc-equivalence e .Equivalence.sym = _∥$∥_ (Equivalence.sym e)
trunc-equivalence e .Equivalence.refl = ∣ Equivalence.refl e ∣
trunc-equivalence e .Equivalence.trans xy yz = ⦇ (Equivalence.trans e) xy yz ⦈
| {
"alphanum_fraction": 0.7590987868,
"avg_line_length": 38.4666666667,
"ext": "agda",
"hexsha": "8c7d60839d0853d7fd62b6d9e854f91b4ebc8f56",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "HITs/PropositionalTruncation/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "HITs/PropositionalTruncation/Equivalence.agda",
"max_line_length": 78,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "HITs/PropositionalTruncation/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 184,
"size": 577
} |
{-
Computable stuff constructed from the Combinatorics of Finite Sets
-}
{-# OPTIONS --safe #-}
module Cubical.Experiments.Combinatorics where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Bool
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Vec
open import Cubical.Data.SumFin renaming (Fin to Fin')
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.Constructors
open import Cubical.Data.FinSet.Cardinality
open import Cubical.Data.FinSet.DecidablePredicate
open import Cubical.Data.FinSet.Quotients
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidablePropositions
hiding (DecProp) renaming (DecProp' to DecProp)
open import Cubical.Relation.Binary
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
private
variable
ℓ ℓ' ℓ'' : Level
-- convenient renaming
Fin : ℕ → FinSet ℓ-zero
Fin n = _ , isFinSetFin {n = n}
-- explicit numbers
s2 : card (_ , isFinSet≃ (Fin 2) (Fin 2)) ≡ 2
s2 = refl
s3 : card (_ , isFinSet≃ (Fin 3) (Fin 3)) ≡ 6
s3 = refl
a3,2 : card (_ , isFinSet↪ (Fin 2) (Fin 3)) ≡ 6
a3,2 = refl
2^4 : card (_ , isFinSet→ (Fin 4) (Fin 2)) ≡ 16
2^4 = refl
-- construct numerical functions from list
getFun : {n : ℕ} → Vec ℕ n → Fin n .fst → ℕ
getFun {n = n} ns = fun n ns
where
fun : (n : ℕ) → Vec ℕ n → Fin' n → ℕ
fun 0 _ _ = 0
fun (suc m) (n ∷ ns) (inl tt) = n
fun (suc m) (n ∷ ns) (inr x) = fun m ns x
-- an example function
f = getFun (3 ∷ 1 ∷ 4 ∷ 1 ∷ 5 ∷ 9 ∷ 2 ∷ 6 ∷ [])
-- the total sum
s : sum (Fin _) f ≡ 31
s = refl
-- the total product
p : prod (Fin _) f ≡ 6480
p = refl
-- the maximal value
m : maxValue (Fin _) f ∣ fzero ∣ ≡ 9
m = refl
-- the number of numeral 1
n1 : card (_ , isFinSetFiberDisc (Fin _) ℕ discreteℕ f 1) ≡ 2
n1 = refl
-- a somewhat trivial equivalence relation making everything equivalent
R : {n : ℕ} → Fin n .fst → Fin n .fst → Type
R _ _ = Unit
isDecR : {n : ℕ} → (x y : Fin n .fst) → isDecProp (R {n = n} x y)
isDecR _ _ = true , idEquiv _
open BinaryRelation
open isEquivRel
isEquivRelR : {n : ℕ} → isEquivRel (R {n = n})
isEquivRelR {n = n} .reflexive _ = tt
isEquivRelR {n = n} .symmetric _ _ tt = tt
isEquivRelR {n = n} .transitive _ _ _ tt tt = tt
collapsed : (n : ℕ) → FinSet ℓ-zero
collapsed n = _ , isFinSetQuot (Fin n) R isEquivRelR isDecR
-- this number should be 1
≡1 : card (collapsed 2) ≡ 1
≡1 = refl
| {
"alphanum_fraction": 0.6834532374,
"avg_line_length": 24.0090909091,
"ext": "agda",
"hexsha": "ecf9ab7646bd4997dcc81ec2fd6b01f49dc86622",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Experiments/Combinatorics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Experiments/Combinatorics.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Experiments/Combinatorics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 946,
"size": 2641
} |
{-# OPTIONS --type-in-type #-}
module NoUniverseCheck where
data M : Set -> Set where
return : forall {a} -> a -> M a
_>>=_ : forall {a b} -> M a -> (a -> M b) -> M b
record Cat : Set where
field
Obj : Set
Mor : Obj -> Obj -> Set
data _≡_ {a : Set} (x : a) : a -> Set where
refl : x ≡ x
CatOfCat : Cat
CatOfCat = record
{ Obj = Cat
; Mor = _≡_
}
| {
"alphanum_fraction": 0.5186170213,
"avg_line_length": 17.0909090909,
"ext": "agda",
"hexsha": "473f3156808b62bb24e03fd054cd6247d3c20af1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/NoUniverseCheck.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/NoUniverseCheck.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/NoUniverseCheck.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 376
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via `Relation.Binary`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Definitions where
open import Agda.Builtin.Equality using (_≡_)
open import Data.Maybe.Base using (Maybe)
open import Data.Product using (_×_)
open import Data.Sum.Base using (_⊎_)
open import Function.Base using (_on_; flip)
open import Level
open import Relation.Binary.Core
open import Relation.Nullary using (Dec; ¬_)
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Definitions
------------------------------------------------------------------------
-- Reflexivity - defined without an underlying equality. It could
-- alternatively be defined as `_≈_ ⇒ _∼_` for some equality `_≈_`.
-- Confusingly the convention in the library is to use the name "refl"
-- for proofs of Reflexive and `reflexive` for proofs of type `_≈_ ⇒ _∼_`,
-- e.g. in the definition of `IsEquivalence` later in this file. This
-- convention is a legacy from the early days of the library.
Reflexive : Rel A ℓ → Set _
Reflexive _∼_ = ∀ {x} → x ∼ x
-- Generalised symmetry.
Sym : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Sym P Q = P ⇒ flip Q
-- Symmetry.
Symmetric : Rel A ℓ → Set _
Symmetric _∼_ = Sym _∼_ _∼_
-- Generalised transitivity.
Trans : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k
-- A flipped variant of generalised transitivity.
TransFlip : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _
TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k
-- Transitivity.
Transitive : Rel A ℓ → Set _
Transitive _∼_ = Trans _∼_ _∼_ _∼_
-- Generalised antisymmetry
Antisym : REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _
Antisym R S E = ∀ {i j} → R i j → S j i → E i j
-- Antisymmetry.
Antisymmetric : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Antisymmetric _≈_ _≤_ = Antisym _≤_ _≤_ _≈_
-- Irreflexivity - this is defined terms of the underlying equality.
Irreflexive : REL A B ℓ₁ → REL A B ℓ₂ → Set _
Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y)
-- Asymmetry.
Asymmetric : Rel A ℓ → Set _
Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x)
-- Generalised connex - exactly one of the two relations holds.
Connex : REL A B ℓ₁ → REL B A ℓ₂ → Set _
Connex P Q = ∀ x y → P x y ⊎ Q y x
-- Totality.
Total : Rel A ℓ → Set _
Total _∼_ = Connex _∼_ _∼_
-- Generalised trichotomy - exactly one of three types has a witness.
data Tri (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where
tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C
tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C
tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C
-- Trichotomy.
Trichotomous : Rel A ℓ₁ → Rel A ℓ₂ → Set _
Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y)
where _>_ = flip _<_
-- Generalised maximum element.
Max : REL A B ℓ → B → Set _
Max _≤_ T = ∀ x → x ≤ T
-- Maximum element.
Maximum : Rel A ℓ → A → Set _
Maximum = Max
-- Generalised minimum element.
Min : REL A B ℓ → A → Set _
Min R = Max (flip R)
-- Minimum element.
Minimum : Rel A ℓ → A → Set _
Minimum = Min
-- Unary relations respecting a binary relation.
_⟶_Respects_ : (A → Set ℓ₁) → (B → Set ℓ₂) → REL A B ℓ₃ → Set _
P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y
-- Unary relation respects a binary relation.
_Respects_ : (A → Set ℓ₁) → Rel A ℓ₂ → Set _
P Respects _∼_ = P ⟶ P Respects _∼_
-- Right respecting - relatedness is preserved on the right by equality.
_Respectsʳ_ : REL A B ℓ₁ → Rel B ℓ₂ → Set _
_∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_
-- Left respecting - relatedness is preserved on the left by equality.
_Respectsˡ_ : REL A B ℓ₁ → Rel A ℓ₂ → Set _
P Respectsˡ _∼_ = ∀ {y} → (flip P y) Respects _∼_
-- Respecting - relatedness is preserved on both sides by equality
_Respects₂_ : Rel A ℓ₁ → Rel A ℓ₂ → Set _
P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_)
-- Substitutivity - any two related elements satisfy exactly the same
-- set of unary relations. Note that only the various derivatives
-- of propositional equality can satisfy this property.
Substitutive : Rel A ℓ₁ → (ℓ₂ : Level) → Set _
Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_
-- Decidability - it is possible to determine whether a given pair of
-- elements are related.
Decidable : REL A B ℓ → Set _
Decidable _∼_ = ∀ x y → Dec (x ∼ y)
-- Weak decidability - it is sometimes possible to determine if a given
-- pair of elements are related.
WeaklyDecidable : REL A B ℓ → Set _
WeaklyDecidable _∼_ = ∀ x y → Maybe (x ∼ y)
-- Propositional equality is decidable for the type.
DecidableEquality : (A : Set a) → Set _
DecidableEquality A = Decidable {A = A} _≡_
-- Irrelevancy - all proofs that a given pair of elements are related
-- are indistinguishable.
Irrelevant : REL A B ℓ → Set _
Irrelevant _∼_ = ∀ {x y} (a b : x ∼ y) → a ≡ b
-- Recomputability - we can rebuild a relevant proof given an
-- irrelevant one.
Recomputable : REL A B ℓ → Set _
Recomputable _∼_ = ∀ {x y} → .(x ∼ y) → x ∼ y
-- Universal - all pairs of elements are related
Universal : REL A B ℓ → Set _
Universal _∼_ = ∀ x y → x ∼ y
-- Non-emptiness - at least one pair of elements are related.
record NonEmpty {A : Set a} {B : Set b}
(T : REL A B ℓ) : Set (a ⊔ b ⊔ ℓ) where
constructor nonEmpty
field
{x} : A
{y} : B
proof : T x y
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.1
Conn = Connex
{-# WARNING_ON_USAGE Conn
"Warning: Conn was deprecated in v1.1.
Please use Connex instead."
#-}
| {
"alphanum_fraction": 0.592482199,
"avg_line_length": 26.9598214286,
"ext": "agda",
"hexsha": "9c29757cba64b74015116dceb3e2e2067578fcd2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Definitions.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1968,
"size": 6039
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
open import lemmas-general
open import lemmas-env
open import lemmas-progress
open import results-checks
open import decidability
open import completeness
open import preservation
open import progress
open import finality
open import eval-checks
| {
"alphanum_fraction": 0.8441176471,
"avg_line_length": 17.8947368421,
"ext": "agda",
"hexsha": "bbb41a618244eab4d14d3d7134a41a933c4a5499",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "all.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "all.agda",
"max_line_length": 27,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "all.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 72,
"size": 340
} |
-- Andreas, 2011-04-14
-- {-# OPTIONS -v tc.cover:20 -v tc.lhs.unify:20 #-}
module Issue291b where
open import Common.Coinduction
open import Common.Equality
data RUnit : Set where
runit : ∞ RUnit -> RUnit
j : (u : RUnit) -> u ≡ runit (♯ u) -> Set
j u ()
-- needs to fail because of a non strongly rigid occurrence
-- ♯ does not count as a constructor, and that is good!
| {
"alphanum_fraction": 0.6710875332,
"avg_line_length": 23.5625,
"ext": "agda",
"hexsha": "11b8178e3cce95467171e0fa9cac42655f18c857",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue291b.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue291b.agda",
"max_line_length": 59,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue291b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 121,
"size": 377
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers
------------------------------------------------------------------------
module Data.Nat where
open import Function
open import Function.Equality as F using (_⟨$⟩_)
open import Function.Injection using (_↣_)
open import Data.Sum
open import Data.Empty
import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
------------------------------------------------------------------------
-- The types
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≮_ _≱_ _≯_
data _≤_ : Rel ℕ Level.zero where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n
_<_ : Rel ℕ Level.zero
m < n = suc m ≤ n
_≥_ : Rel ℕ Level.zero
m ≥ n = n ≤ m
_>_ : Rel ℕ Level.zero
m > n = n < m
_≰_ : Rel ℕ Level.zero
a ≰ b = ¬ a ≤ b
_≮_ : Rel ℕ Level.zero
a ≮ b = ¬ a < b
_≱_ : Rel ℕ Level.zero
a ≱ b = ¬ a ≥ b
_≯_ : Rel ℕ Level.zero
a ≯ b = ¬ a > b
-- The following, alternative definition of _≤_ is more suitable for
-- well-founded induction (see Induction.Nat).
infix 4 _≤′_ _<′_ _≥′_ _>′_
data _≤′_ (m : ℕ) : ℕ → Set where
≤′-refl : m ≤′ m
≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n
_<′_ : Rel ℕ Level.zero
m <′ n = suc m ≤′ n
_≥′_ : Rel ℕ Level.zero
m ≥′ n = n ≤′ m
_>′_ : Rel ℕ Level.zero
m >′ n = n <′ m
------------------------------------------------------------------------
-- A generalisation of the arithmetic operations
fold : {a : Set} → a → (a → a) → ℕ → a
fold z s zero = z
fold z s (suc n) = s (fold z s n)
module GeneralisedArithmetic {a : Set} (0# : a) (1+ : a → a) where
add : ℕ → a → a
add n z = fold z 1+ n
mul : (+ : a → a → a) → (ℕ → a → a)
mul _+_ n x = fold 0# (λ s → x + s) n
------------------------------------------------------------------------
-- Arithmetic
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
infixl 7 _*_ _⊓_
infixl 6 _+_ _+⋎_ _∸_ _⊔_
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
{-# BUILTIN NATPLUS _+_ #-}
-- Argument-swapping addition. Used by Data.Vec._⋎_.
_+⋎_ : ℕ → ℕ → ℕ
zero +⋎ n = n
suc m +⋎ n = suc (n +⋎ m)
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
{-# BUILTIN NATMINUS _∸_ #-}
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + m * n
{-# BUILTIN NATTIMES _*_ #-}
-- Max.
_⊔_ : ℕ → ℕ → ℕ
zero ⊔ n = n
suc m ⊔ zero = suc m
suc m ⊔ suc n = suc (m ⊔ n)
-- Min.
_⊓_ : ℕ → ℕ → ℕ
zero ⊓ n = zero
suc m ⊓ zero = zero
suc m ⊓ suc n = suc (m ⊓ n)
-- Division by 2, rounded downwards.
⌊_/2⌋ : ℕ → ℕ
⌊ 0 /2⌋ = 0
⌊ 1 /2⌋ = 0
⌊ suc (suc n) /2⌋ = suc ⌊ n /2⌋
-- Division by 2, rounded upwards.
⌈_/2⌉ : ℕ → ℕ
⌈ n /2⌉ = ⌊ suc n /2⌋
------------------------------------------------------------------------
-- Queries
infix 4 _≟_
_≟_ : Decidable {A = ℕ} _≡_
zero ≟ zero = yes refl
suc m ≟ suc n with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n | no prf = no (prf ∘ PropEq.cong pred)
zero ≟ suc n = no λ()
suc m ≟ zero = no λ()
≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n
≤-pred (s≤s m≤n) = m≤n
_≤?_ : Decidable _≤_
zero ≤? _ = yes z≤n
suc m ≤? zero = no λ()
suc m ≤? suc n with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no m≰n = no (m≰n ∘ ≤-pred)
-- A comparison view. Taken from "View from the left"
-- (McBride/McKinna); details may differ.
data Ordering : Rel ℕ Level.zero where
less : ∀ m k → Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k → Ordering (suc (m + k)) m
compare : ∀ m n → Ordering m n
compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
compare (suc .m) (suc .(suc m + k)) | less m k = less (suc m) k
compare (suc .m) (suc .m) | equal m = equal (suc m)
compare (suc .(suc m + k)) (suc .m) | greater m k = greater (suc m) k
-- If there is an injection from a type to ℕ, then the type has
-- decidable equality.
eq? : ∀ {a} {A : Set a} → A ↣ ℕ → Decidable {A = A} _≡_
eq? inj = Dec.via-injection inj _≟_
------------------------------------------------------------------------
-- Some properties
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ Carrier = ℕ
; _≈_ = _≡_
; _≤_ = _≤_
; isDecTotalOrder = record
{ isTotalOrder = record
{ isPartialOrder = record
{ isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = refl′
; trans = trans
}
; antisym = antisym
}
; total = total
}
; _≟_ = _≟_
; _≤?_ = _≤?_
}
}
where
refl′ : _≡_ ⇒ _≤_
refl′ {zero} refl = z≤n
refl′ {suc m} refl = s≤s (refl′ refl)
antisym : Antisymmetric _≡_ _≤_
antisym z≤n z≤n = refl
antisym (s≤s m≤n) (s≤s n≤m) with antisym m≤n n≤m
... | refl = refl
trans : Transitive _≤_
trans z≤n _ = z≤n
trans (s≤s m≤n) (s≤s n≤o) = s≤s (trans m≤n n≤o)
total : Total _≤_
total zero _ = inj₁ z≤n
total _ zero = inj₂ z≤n
total (suc m) (suc n) with total m n
... | inj₁ m≤n = inj₁ (s≤s m≤n)
... | inj₂ n≤m = inj₂ (s≤s n≤m)
import Relation.Binary.PartialOrderReasoning as POR
module ≤-Reasoning where
open POR (DecTotalOrder.poset decTotalOrder) public
renaming (_≈⟨_⟩_ to _≡⟨_⟩_)
infixr 2 _<⟨_⟩_
_<⟨_⟩_ : ∀ x {y z} → x < y → y IsRelatedTo z → suc x IsRelatedTo z
x <⟨ x<y ⟩ y≤z = suc x ≤⟨ x<y ⟩ y≤z
| {
"alphanum_fraction": 0.4705882353,
"avg_line_length": 23.7051792829,
"ext": "agda",
"hexsha": "485f95b65f7b0c56711ff06c5264639535f69ef6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Nat.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2265,
"size": 5950
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.PathOver
open import lib.cubical.Square
module lib.cubical.SquareOver where
SquareOver : ∀ {i j} {A : Type i} (B : A → Type j) {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
{b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁}
(q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ])
(q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ])
→ Type j
SquareOver B ids = Square
apd-square : ∀ {i j} {A : Type i} {B : A → Type j} (f : Π A B)
{a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
(sq : Square p₀₋ p₋₀ p₋₁ p₁₋)
→ SquareOver B sq (apd f p₀₋) (apd f p₋₀) (apd f p₋₁) (apd f p₁₋)
apd-square f ids = ids
↓-=-to-squareover : ∀ {i j} {A : Type i} {B : A → Type j}
{f g : Π A B} {x y : A} {p : x == y}
{u : f x == g x} {v : f y == g y}
→ u == v [ (λ z → f z == g z) ↓ p ]
→ SquareOver B vid-square u (apd f p) (apd g p) v
↓-=-to-squareover {p = idp} idp = hid-square
↓-=-from-squareover : ∀ {i j} {A : Type i} {B : A → Type j}
{f g : Π A B} {x y : A} {p : x == y}
{u : f x == g x} {v : f y == g y}
→ SquareOver B vid-square u (apd f p) (apd g p) v
→ u == v [ (λ z → f z == g z) ↓ p ]
↓-=-from-squareover {p = idp} sq = horiz-degen-path sq
squareover-cst-in : ∀ {i j} {A : Type i} {B : Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq : Square p₀₋ p₋₀ p₋₁ p₁₋}
{b₀₀ b₀₁ b₁₀ b₁₁ : B}
{q₀₋ : b₀₀ == b₀₁} {q₋₀ : b₀₀ == b₁₀} {q₋₁ : b₀₁ == b₁₁} {q₁₋ : b₁₀ == b₁₁}
(sq' : Square q₀₋ q₋₀ q₋₁ q₁₋)
→ SquareOver (λ _ → B) sq
(↓-cst-in q₀₋) (↓-cst-in q₋₀) (↓-cst-in q₋₁) (↓-cst-in q₁₋)
squareover-cst-in {sq = ids} sq' = sq'
↓↓-from-squareover : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k}
{x y : C → A} {u : (c : C) → B (x c)} {v : (c : C) → B (y c)}
{p : (c : C) → x c == y c} {c₁ c₂ : C} {q : c₁ == c₂}
{α : u c₁ == v c₁ [ B ↓ p c₁ ]} {β : u c₂ == v c₂ [ B ↓ p c₂ ]}
→ SquareOver B (natural-square p q)
α (↓-ap-in _ _ (apd u q)) (↓-ap-in _ _ (apd v q)) β
→ α == β [ (λ c → u c == v c [ B ↓ p c ]) ↓ q ]
↓↓-from-squareover {q = idp} sq = lemma sq
where
lemma : ∀ {i j} {A : Type i} {B : A → Type j}
{x y : A} {u : B x} {v : B y} {p : x == y}
{α β : u == v [ B ↓ p ]}
→ SquareOver B hid-square α idp idp β
→ α == β
lemma {p = idp} sq = horiz-degen-path sq
↓↓-to-squareover : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k}
{x y : C → A} {u : (c : C) → B (x c)} {v : (c : C) → B (y c)}
{p : (c : C) → x c == y c} {c₁ c₂ : C} {q : c₁ == c₂}
{α : u c₁ == v c₁ [ B ↓ p c₁ ]} {β : u c₂ == v c₂ [ B ↓ p c₂ ]}
→ α == β [ (λ c → u c == v c [ B ↓ p c ]) ↓ q ]
→ SquareOver B (natural-square p q)
α (↓-ap-in _ _ (apd u q)) (↓-ap-in _ _ (apd v q)) β
↓↓-to-squareover {q = idp} r = lemma r
where
lemma : ∀ {i j} {A : Type i} {B : A → Type j}
{x y : A} {u : B x} {v : B y} {p : x == y}
{α β : u == v [ B ↓ p ]}
→ α == β
→ SquareOver B hid-square α idp idp β
lemma {p = idp} r = horiz-degen-square r
infixr 80 _∙v↓⊡_ _∙h↓⊡_ _↓⊡v∙_ _↓⊡h∙_
_∙h↓⊡_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq : Square p₀₋ p₋₀ p₋₁ p₁₋}
{b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁}
{q₀₋ q₀₋' : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]}
{q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]}
→ q₀₋ == q₀₋'
→ SquareOver B sq q₀₋' q₋₀ q₋₁ q₁₋
→ SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋
_∙h↓⊡_ {sq = ids} = _∙h⊡_
_∙v↓⊡_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq : Square p₀₋ p₋₀ p₋₁ p₁₋}
{b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁}
{q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ q₋₀' : b₀₀ == b₁₀ [ B ↓ p₋₀ ]}
{q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]}
→ q₋₀ == q₋₀'
→ SquareOver B sq q₀₋ q₋₀' q₋₁ q₁₋
→ SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋
_∙v↓⊡_ {sq = ids} = _∙v⊡_
_↓⊡v∙_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq : Square p₀₋ p₋₀ p₋₁ p₁₋}
{b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁}
{q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]}
{q₋₁ q₋₁' : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]}
→ SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋
→ q₋₁ == q₋₁'
→ SquareOver B sq q₀₋ q₋₀ q₋₁' q₁₋
_↓⊡v∙_ {sq = ids} = _⊡v∙_
_↓⊡h∙_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq : Square p₀₋ p₋₀ p₋₁ p₁₋}
{b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁}
{q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]}
{q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ q₁₋' : b₁₀ == b₁₁ [ B ↓ p₁₋ ]}
→ SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋
→ q₁₋ == q₁₋'
→ SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋'
_↓⊡h∙_ {sq = ids} = _⊡h∙_
| {
"alphanum_fraction": 0.447519084,
"avg_line_length": 41.2598425197,
"ext": "agda",
"hexsha": "439d235139ea839162478e6c8b49e6e37412370a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/cubical/SquareOver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/cubical/SquareOver.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/cubical/SquareOver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3067,
"size": 5240
} |
module Star where
data Star {A : Set}(R : A -> A -> Set) : A -> A -> Set where
rf : {x : A} -> Star R x x
_<>_ : forall {x y z} -> R x y -> Star R y z -> Star R x z
| {
"alphanum_fraction": 0.4739884393,
"avg_line_length": 24.7142857143,
"ext": "agda",
"hexsha": "da80e15d57293e4ab0d40fd0b240c591aa674e8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Star.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Star.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Star.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 69,
"size": 173
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.Function
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.path-seq.Concat
module lib.path-seq.Split {i} {A : Type i} where
point-from-start : (n : ℕ) {a a' : A} (s : a =-= a') → A
point-from-start O {a} s = a
point-from-start (S n) {a = a} [] = a
point-from-start (S n) (p ◃∙ s) = point-from-start n s
drop : (n : ℕ) {a a' : A} (s : a =-= a') → point-from-start n s =-= a'
drop 0 s = s
drop (S n) [] = []
drop (S n) (p ◃∙ s) = drop n s
tail : {a a' : A} (s : a =-= a') → point-from-start 1 s =-= a'
tail = drop 1
private
last1 : {a a' : A} (s : a =-= a') → A
last1 {a = a} [] = a
last1 {a = a} (p ◃∙ []) = a
last1 (p ◃∙ s@(_ ◃∙ _)) = last1 s
strip : {a a' : A} (s : a =-= a') → a =-= last1 s
strip [] = []
strip (p ◃∙ []) = []
strip (p ◃∙ s@(_ ◃∙ _)) = p ◃∙ strip s
point-from-end : (n : ℕ) {a a' : A} (s : a =-= a') → A
point-from-end O {a} {a'} s = a'
point-from-end (S n) s = point-from-end n (strip s)
!- : (n : ℕ) {a a' : A} (s : a =-= a') → a =-= point-from-end n s
!- O s = s
!- (S n) s = !- n (strip s)
take : (n : ℕ) {a a' : A} (s : a =-= a') → a =-= point-from-start n s
take O s = []
take (S n) [] = []
take (S n) (p ◃∙ s) = p ◃∙ take n s
private
take-drop-split' : {a a' : A} (n : ℕ) (s : a =-= a')
→ s == take n s ∙∙ drop n s
take-drop-split' O s = idp
take-drop-split' (S n) [] = idp
take-drop-split' (S n) (p ◃∙ s) = ap (λ v → p ◃∙ v) (take-drop-split' n s)
abstract
take-drop-split : {a a' : A} (n : ℕ) (s : a =-= a')
→ ↯ s ◃∎ =ₛ ↯ (take n s) ◃∙ ↯ (drop n s) ◃∎
take-drop-split n s = =ₛ-in $
↯ s
=⟨ ap ↯ (take-drop-split' n s) ⟩
↯ (take n s ∙∙ drop n s)
=⟨ ↯-∙∙ (take n s) (drop n s) ⟩
↯ (take n s) ∙ ↯ (drop n s) =∎
private
split : {a a' : A} (s : a =-= a')
→ Σ A (λ a'' → Σ (a =-= a'') (λ _ → a'' == a'))
split {a = a} [] = (a , ([] , idp))
split {a = a} (p ◃∙ []) = (a , ([] , p))
split (p ◃∙ s@(_ ◃∙ _)) =
let (a'' , (t , q)) = split s
in (a'' , (p ◃∙ t) , q)
point-from-end' : (n : ℕ) {a a' : A} (s : a =-= a') → A
point-from-end' n {a = a} [] = a
point-from-end' O (p ◃∙ s) = point-from-end' O s
point-from-end' (S n) (p ◃∙ s) = point-from-end' n (fst (snd (split (p ◃∙ s))))
#- : (n : ℕ) {a a' : A} (s : a =-= a') → point-from-end' n s =-= a'
#- n [] = []
#- O (p ◃∙ s) = #- O s
#- (S n) (p ◃∙ s) = let (a' , (t , q)) = split (p ◃∙ s) in #- n t ∙▹ q
infix 120 _!0 _!1 _!2 _!3 _!4 _!5
_!0 = !- 0
_!1 = !- 1
_!2 = !- 2
_!3 = !- 3
_!4 = !- 4
_!5 = !- 5
0! = drop 0
1! = drop 1
2! = drop 2
3! = drop 3
4! = drop 4
5! = drop 5
infix 120 _#0 _#1 _#2 _#3 _#4 _#5
_#0 = #- 0
_#1 = #- 1
_#2 = #- 2
_#3 = #- 3
_#4 = #- 4
_#5 = #- 5
0# = take 0
1# = take 1
2# = take 2
3# = take 3
4# = take 4
5# = take 5
| {
"alphanum_fraction": 0.4343220339,
"avg_line_length": 24.8421052632,
"ext": "agda",
"hexsha": "d1f056b83640613577e3bf019b661484ac5835e3",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/path-seq/Split.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/path-seq/Split.agda",
"max_line_length": 81,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/path-seq/Split.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1398,
"size": 2832
} |
{-# OPTIONS --without-K #-}
module Note where
open import Data.Integer using (ℤ)
open import Data.Nat using (ℕ; _*_)
open import Pitch using (Pitch; transposePitch)
data Duration : Set where
duration : ℕ → Duration
unduration : Duration → ℕ
unduration (duration d) = d
data Note : Set where
tone : Duration → Pitch → Note
rest : Duration → Note
-- Note: If we inline duration here Agda can't figure out
-- that noteDuration (tone d _) = unduration d
noteDuration : Note → ℕ
noteDuration (tone d _) = unduration d
noteDuration (rest d) = unduration d
transposeNote : ℤ → Note → Note
transposeNote k (tone d p) = tone d (transposePitch k p)
transposeNote k (rest d) = rest d
-- duration in 16th notes
-- assume duration of a 16th note is 1
16th 8th qtr half whole : Duration
16th = duration 1
8th = duration 2
dqtr = duration 3
qtr = duration 4
half = duration 8
dhalf = duration 12
whole = duration 16
dwhole = duration 24
| {
"alphanum_fraction": 0.6878850103,
"avg_line_length": 23.756097561,
"ext": "agda",
"hexsha": "f6bf98053321b639d552acc22f20ab598b0e4576",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "doc/icfp20/code/Note.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "doc/icfp20/code/Note.agda",
"max_line_length": 57,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "doc/icfp20/code/Note.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 287,
"size": 974
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Construct.Unit where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Group
open import Cubical.Data.Prod using (_,_)
open import Cubical.Data.Unit
import Cubical.Algebra.Monoid.Construct.Unit as ⊤Monoid
open ⊤Monoid public hiding (⊤-isMonoid; ⊤-Monoid)
inv : Op₁ ⊤
inv _ = tt
⊤-inverseˡ : LeftInverse tt inv _◯_
⊤-inverseˡ _ = refl
⊤-inverseʳ : RightInverse tt inv _◯_
⊤-inverseʳ _ = refl
⊤-inverse : Inverse tt inv _◯_
⊤-inverse = ⊤-inverseˡ , ⊤-inverseʳ
⊤-isGroup : IsGroup ⊤ _◯_ tt inv
⊤-isGroup = record
{ isMonoid = ⊤Monoid.⊤-isMonoid
; inverse = ⊤-inverse
}
⊤-Group : Group ℓ-zero
⊤-Group = record { isGroup = ⊤-isGroup }
| {
"alphanum_fraction": 0.709346991,
"avg_line_length": 22.3142857143,
"ext": "agda",
"hexsha": "ee2cddc479c34b250eafdc9b1cd2607ebc6c2b8c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Group/Construct/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Group/Construct/Unit.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Group/Construct/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 294,
"size": 781
} |
{-# OPTIONS --without-K #-}
module algebra.semigroup.core where
open import level
open import equality.core
open import sum
open import hott.level
record IsSemigroup {i} (X : Set i) : Set i where
field
_*_ : X → X → X
assoc : (x y z : X) → (x * y) * z ≡ x * (y * z)
is-set : h 2 X
Semigroup : ∀ i → Set (lsuc i)
Semigroup i = Σ (Set i) IsSemigroup
| {
"alphanum_fraction": 0.6103542234,
"avg_line_length": 20.3888888889,
"ext": "agda",
"hexsha": "62cbef91c4eb8f626f90acc51b8012c63bc571ba",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/algebra/semigroup/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/algebra/semigroup/core.agda",
"max_line_length": 51,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/algebra/semigroup/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 125,
"size": 367
} |
------------------------------------------------------------------------
-- A wrapper that turns a representation of natural numbers (with a
-- unique representative for every number) into a representation that
-- computes roughly like the unary natural numbers (at least for some
-- operations)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
import Bijection
open import Equality
import Erased.Without-box-cong
open import Prelude hiding (zero; suc; _+_; _*_; _^_)
module Nat.Wrapper
{c⁺}
(eq : ∀ {a p} → Equality-with-J a p c⁺)
-- The underlying representation of natural numbers.
(Nat′ : Type)
-- A bijection between this representation and the unary natural
-- numbers.
(open Bijection eq using (_↔_))
(Nat′↔ℕ : Nat′ ↔ ℕ)
where
open Derived-definitions-and-properties eq
open import Dec
import Erased.Level-1 eq as E₁
import Erased.Stability eq as ES
open import Logical-equivalence using (_⇔_)
open import Erased.Without-box-cong eq
open import Function-universe eq as F hiding (_∘_)
open import H-level eq
open import H-level.Closure eq
open import List eq
open import List.All.Recursive eq
open import Vec eq as Vec
private
module N where
open import Nat eq public
open Prelude public using (zero; suc; _+_; _*_; _^_)
variable
A : Type
f f′ m n n′ hyp : A
------------------------------------------------------------------------
-- The wrapper
private
-- Converts from the underlying representation to unary natural
-- numbers.
to-ℕ : Nat′ → ℕ
to-ℕ = _↔_.to Nat′↔ℕ
-- Natural numbers built on top of Nat′, indexed by corresponding
-- unary natural numbers.
Nat-[_] : @0 ℕ → Type
Nat-[ m ] = ∃ λ (n : Nat′) → Erased (to-ℕ n ≡ m)
-- A non-indexed variant of Nat-[_].
Nat : Type
Nat = ∃ λ (n : Erased ℕ) → Nat-[ erased n ]
-- Returns the (erased) index.
@0 ⌊_⌋ : Nat → ℕ
⌊ [ n ] , _ ⌋ = n
------------------------------------------------------------------------
-- Some conversion functions
-- Nat-[ n ] is isomorphic to the type of natural numbers equal
-- (with erased equality proofs) to n.
Nat-[]↔Σℕ : {@0 n : ℕ} → Nat-[ n ] ↔ ∃ λ m → Erased (m ≡ n)
Nat-[]↔Σℕ {n = n} =
(∃ λ (m : Nat′) → Erased (to-ℕ m ≡ n)) ↝⟨ (Σ-cong Nat′↔ℕ λ _ → F.id) ⟩□
(∃ λ m → Erased (m ≡ n)) □
-- Nat is logically equivalent to the type of unary natural numbers.
Nat⇔ℕ : Nat ⇔ ℕ
Nat⇔ℕ =
Nat ↔⟨⟩
(∃ λ (n : Erased ℕ) → Nat-[ erased n ]) ↔⟨ (∃-cong λ _ → Nat-[]↔Σℕ) ⟩
(∃ λ (n : Erased ℕ) → ∃ λ m → Erased (m ≡ erased n)) ↝⟨ Σ-Erased-Erased-singleton⇔ ⟩□
ℕ □
-- Converts from Nat to ℕ.
Nat→ℕ : Nat → ℕ
Nat→ℕ (_ , n′ , _) = to-ℕ n′
-- Nat→ℕ is definitionally equal to the forward direction of Nat⇔ℕ.
_ : Nat→ℕ ≡ _⇔_.to Nat⇔ℕ
_ = refl _
-- Converts from ℕ to Nat.
⌈_⌉ : ℕ → Nat
⌈_⌉ = _⇔_.from Nat⇔ℕ
-- The index matches the result of Nat→ℕ.
@0 ≡⌊⌋ : ∀ n → Nat→ℕ n ≡ ⌊ n ⌋
≡⌊⌋ ([ m ] , n , eq) =
Nat→ℕ ([ m ] , n , eq) ≡⟨⟩
to-ℕ n ≡⟨ erased eq ⟩∎
m ∎
------------------------------------------------------------------------
-- Some operations for Nat-[_]
-- A helper function that can be used to define constants.
nullary-[] :
{@0 n : ℕ}
(n′ : Nat′) →
@0 to-ℕ n′ ≡ n →
Nat-[ n ]
nullary-[] n′ hyp = n′ , [ hyp ]
-- A helper function that can be used to define unary operators.
unary-[] :
{@0 n : ℕ} {@0 f : ℕ → ℕ}
(f′ : Nat′ → Nat′) →
@0 (∀ n → to-ℕ (f′ n) ≡ f (to-ℕ n)) →
Nat-[ n ] → Nat-[ f n ]
unary-[] {n = n} {f = f} f′ hyp (n′ , p) =
f′ n′
, [ to-ℕ (f′ n′) ≡⟨ hyp _ ⟩
f (to-ℕ n′) ≡⟨ cong f (erased p) ⟩∎
f n ∎
]
-- A helper function that can be used to define n-ary operators.
n-ary-[] :
(n : ℕ)
{@0 ms : Vec (Erased ℕ) n}
(@0 f : Vec ℕ n → ℕ)
(f′ : Vec Nat′ n → Nat′) →
@0 (∀ ms → to-ℕ (f′ ms) ≡ f (Vec.map to-ℕ ms)) →
All (λ m → Nat-[ erased m ]) (Vec.to-list ms) →
Nat-[ f (Vec.map erased ms) ]
n-ary-[] N.zero _ f′ hyp _ =
nullary-[] (f′ _) (hyp _)
n-ary-[] (N.suc n) {ms = ms} f f′ hyp ((m′ , p) , ms′) =
n-ary-[]
n
(f ∘ (erased (Vec.head ms) ,_))
(λ ms′ → f′ (m′ , ms′))
(λ ms′ →
to-ℕ (f′ (m′ , ms′)) ≡⟨ hyp (m′ , ms′) ⟩
f (to-ℕ m′ , Vec.map to-ℕ ms′) ≡⟨ cong (λ x → f (x , _)) (erased p) ⟩∎
f (erased (Vec.head ms) , Vec.map to-ℕ ms′) ∎)
ms′
-- The function n-ary-[] should be normalised by the compiler.
{-# STATIC n-ary-[] #-}
-- A helper function that can be used to define binary
-- operators.
binary-[] :
{@0 m n : ℕ} {@0 f : ℕ → ℕ → ℕ}
(f′ : Nat′ → Nat′ → Nat′) →
@0 (∀ m n → to-ℕ (f′ m n) ≡ f (to-ℕ m) (to-ℕ n)) →
Nat-[ m ] → Nat-[ n ] → Nat-[ f m n ]
binary-[] f′ hyp m n =
n-ary-[]
2
_
(λ (m , n , _) → f′ m n)
(λ (m , n , _) → hyp m n)
(m , n , _)
-- The code below is parametrised by implementations of (and
-- correctness properties for) certain operations for Nat′.
record Operations : Type where
infixl 8 _*2^_
infixr 8 _^_
infixl 7 _*_
infixl 6 _+_
infix 4 _≟_
field
zero : Nat′
to-ℕ-zero : to-ℕ zero ≡ N.zero
suc : Nat′ → Nat′
to-ℕ-suc : ∀ n → to-ℕ (suc n) ≡ N.suc (to-ℕ n)
_+_ : Nat′ → Nat′ → Nat′
to-ℕ-+ : ∀ m n → to-ℕ (m + n) ≡ to-ℕ m N.+ to-ℕ n
_*_ : Nat′ → Nat′ → Nat′
to-ℕ-* : ∀ m n → to-ℕ (m * n) ≡ to-ℕ m N.* to-ℕ n
_^_ : Nat′ → Nat′ → Nat′
to-ℕ-^ : ∀ m n → to-ℕ (m ^ n) ≡ to-ℕ m N.^ to-ℕ n
⌊_/2⌋ : Nat′ → Nat′
to-ℕ-⌊/2⌋ : ∀ n → to-ℕ ⌊ n /2⌋ ≡ N.⌊ to-ℕ n /2⌋
⌈_/2⌉ : Nat′ → Nat′
to-ℕ-⌈/2⌉ : ∀ n → to-ℕ ⌈ n /2⌉ ≡ N.⌈ to-ℕ n /2⌉
_*2^_ : Nat′ → ℕ → Nat′
to-ℕ-*2^ : ∀ m n → to-ℕ (m *2^ n) ≡ to-ℕ m N.* 2 N.^ n
_≟_ : ∀ m n → Dec (Erased (to-ℕ m ≡ to-ℕ n))
from-bits : List Bool → Nat′
to-ℕ-from-bits :
∀ bs →
to-ℕ (from-bits bs) ≡
foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0 bs
to-bits : Nat′ → List Bool
to-ℕ-from-bits-to-bits :
∀ n → to-ℕ (from-bits (to-bits n)) ≡ to-ℕ n
-- If certain operations are defined for Nat′, then they can be
-- defined for Nat-[_] as well.
module Operations-for-Nat-[] (o : Operations) where
private
module O = Operations o
-- Zero.
zero : Nat-[ N.zero ]
zero = nullary-[] O.zero O.to-ℕ-zero
-- The number's successor.
suc : {@0 n : ℕ} → Nat-[ n ] → Nat-[ N.suc n ]
suc = unary-[] O.suc O.to-ℕ-suc
-- Addition.
infixl 6 _+_
_+_ : {@0 m n : ℕ} → Nat-[ m ] → Nat-[ n ] → Nat-[ m N.+ n ]
_+_ = binary-[] O._+_ O.to-ℕ-+
-- Multiplication.
infixl 7 _*_
_*_ : {@0 m n : ℕ} → Nat-[ m ] → Nat-[ n ] → Nat-[ m N.* n ]
_*_ = binary-[] O._*_ O.to-ℕ-*
-- Exponentiation.
infixr 8 _^_
_^_ : {@0 m n : ℕ} → Nat-[ m ] → Nat-[ n ] → Nat-[ m N.^ n ]
_^_ = binary-[] O._^_ O.to-ℕ-^
-- Division by two, rounded downwards.
⌊_/2⌋ : {@0 n : ℕ} → Nat-[ n ] → Nat-[ N.⌊ n /2⌋ ]
⌊_/2⌋ = unary-[] O.⌊_/2⌋ O.to-ℕ-⌊/2⌋
-- Division by two, rounded upwards.
⌈_/2⌉ : {@0 n : ℕ} → Nat-[ n ] → Nat-[ N.⌈ n /2⌉ ]
⌈_/2⌉ = unary-[] O.⌈_/2⌉ O.to-ℕ-⌈/2⌉
-- Left shift.
infixl 8 _*2^_
_*2^_ : {@0 m : ℕ} → Nat-[ m ] → ∀ n → Nat-[ m N.* 2 N.^ n ]
m *2^ n = unary-[] (O._*2^ n) (flip O.to-ℕ-*2^ n) m
-- Equality is decidable (in a certain sense).
infix 4 _≟_
_≟_ :
{@0 m n : ℕ} →
Nat-[ m ] → Nat-[ n ] →
Dec (Erased (m ≡ n))
_≟_ {m = m} {n = n} (m′ , [ m≡m′ ]) (n′ , [ n≡n′ ]) =
Dec-map
(Erased-cong-⇔ (
to-ℕ m′ ≡ to-ℕ n′ ↝⟨ ≡⇒↝ _ (cong₂ _≡_ m≡m′ n≡n′) ⟩□
m ≡ n □))
(m′ O.≟ n′)
-- Conversion from bits. (The most significant bit comes first.)
from-bits :
(bs : List Bool) →
Nat-[ foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0 bs ]
from-bits bs = nullary-[] (O.from-bits bs) (O.to-ℕ-from-bits bs)
-- Conversion to bits. (The most significant bit comes first.)
to-bits :
{@0 n : ℕ} →
Nat-[ n ] →
∃ λ (bs : List Bool) →
Erased (foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0 bs ≡ n)
to-bits {n = n} (n′ , [ n′≡n ]) =
O.to-bits n′
, [ foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0
(O.to-bits n′) ≡⟨ sym $ O.to-ℕ-from-bits _ ⟩
to-ℕ (O.from-bits (O.to-bits n′)) ≡⟨ O.to-ℕ-from-bits-to-bits _ ⟩
to-ℕ n′ ≡⟨ n′≡n ⟩∎
n ∎
]
------------------------------------------------------------------------
-- Operations for Nat
private
-- Equality is stable for the natural numbers.
Stable-≡-ℕ : Stable-≡ ℕ
Stable-≡-ℕ m n = Dec→Stable (m N.≟ n)
-- A helper function that can be used to define constants.
nullary :
(@0 n : ℕ) (n′ : Nat′) →
@0 to-ℕ n′ ≡ n →
Nat
nullary n n′ hyp = [ n ] , nullary-[] n′ hyp
-- A first correctness result for nullary.
--
-- Note that this result holds by definition.
private
@0 nullary-correct′ : ⌊ nullary n n′ hyp ⌋ ≡ n
nullary-correct′ = refl _
-- A second correctness result for nullary.
nullary-correct :
(@0 hyp : to-ℕ n′ ≡ n) →
Nat→ℕ (nullary n n′ hyp) ≡ n
nullary-correct {n′ = n′} {n = n} hyp =
Stable-≡-ℕ _ _
[ Nat→ℕ (nullary n n′ hyp) ≡⟨ ≡⌊⌋ (nullary n n′ hyp) ⟩
⌊ nullary n n′ hyp ⌋ ≡⟨⟩
n ∎
]
-- A helper function that can be used to define unary operators.
unary :
(@0 f : ℕ → ℕ) (f′ : Nat′ → Nat′) →
@0 (∀ n → to-ℕ (f′ n) ≡ f (to-ℕ n)) →
Nat → Nat
unary f f′ hyp ([ n ] , n′) = ([ f n ] , unary-[] f′ hyp n′)
-- A first correctness result for unary.
--
-- Note that this result holds by definition.
private
@0 unary-correct′ : ⌊ unary f f′ hyp n ⌋ ≡ f ⌊ n ⌋
unary-correct′ = refl _
-- A second correctness result for unary.
unary-correct :
(f : ℕ → ℕ) (@0 hyp : ∀ n → to-ℕ (f′ n) ≡ f (to-ℕ n)) →
∀ n → Nat→ℕ (unary f f′ hyp n) ≡ f (Nat→ℕ n)
unary-correct {f′ = f′} f hyp n =
Stable-≡-ℕ _ _
[ Nat→ℕ (unary f f′ hyp n) ≡⟨ ≡⌊⌋ (unary f f′ hyp n) ⟩
⌊ unary f f′ hyp n ⌋ ≡⟨⟩
f ⌊ n ⌋ ≡⟨ sym $ cong f $ ≡⌊⌋ n ⟩∎
f (Nat→ℕ n) ∎
]
-- A helper function that can be used to define n-ary operators.
n-ary :
(n : ℕ)
(@0 f : Vec ℕ n → ℕ)
(f′ : Vec Nat′ n → Nat′) →
@0 (∀ ms → to-ℕ (f′ ms) ≡ f (Vec.map to-ℕ ms)) →
Vec Nat n → Nat
n-ary n f f′ hyp ms =
[ f (Vec.map erased (proj₁ (_↔_.to Vec-Σ ms))) ]
, n-ary-[] n f f′ hyp (proj₂ (_↔_.to Vec-Σ ms))
-- The function n-ary should be normalised by the compiler.
{-# STATIC n-ary #-}
-- The function n-ary is correct.
n-ary-correct :
∀ (n : ℕ) f {f′}
(@0 hyp : ∀ ms → to-ℕ (f′ ms) ≡ f (Vec.map to-ℕ ms)) →
∀ ms →
Nat→ℕ (n-ary n f f′ hyp ms) ≡ f (Vec.map (Nat→ℕ) ms)
n-ary-correct n f {f′ = f′} hyp ms =
Stable-≡-ℕ _ _
[ Nat→ℕ (n-ary n f f′ hyp ms) ≡⟨ ≡⌊⌋ (n-ary n f f′ hyp ms) ⟩
⌊ n-ary n f f′ hyp ms ⌋ ≡⟨⟩
f (Vec.map erased (proj₁ (_↔_.to Vec-Σ ms))) ≡⟨ cong (f ∘ Vec.map _) proj₁-Vec-Σ ⟩
f (Vec.map erased (Vec.map proj₁ ms)) ≡⟨ cong f $ sym Vec.map-∘ ⟩
f (Vec.map ⌊_⌋ ms) ≡⟨ cong f $ sym $ Vec.map-cong ≡⌊⌋ ⟩∎
f (Vec.map (Nat→ℕ) ms) ∎
]
-- A helper function that can be used to define binary operators
binary :
(@0 f : ℕ → ℕ → ℕ) (f′ : Nat′ → Nat′ → Nat′) →
@0 (∀ m n → to-ℕ (f′ m n) ≡ f (to-ℕ m) (to-ℕ n)) →
Nat → Nat → Nat
binary f g hyp m n =
n-ary
2
(λ (m , n , _) → f m n)
(λ (m , n , _) → g m n)
(λ (m , n , _) → hyp m n)
(m , n , _)
-- A first correctness result for binary.
--
-- Note that this result holds by definition.
private
@0 binary-correct′ : ⌊ binary f f′ hyp m n ⌋ ≡ f ⌊ m ⌋ ⌊ n ⌋
binary-correct′ = refl _
-- A second correctness result for binary.
binary-correct :
(f : ℕ → ℕ → ℕ)
(@0 hyp : ∀ m n → to-ℕ (f′ m n) ≡ f (to-ℕ m) (to-ℕ n)) →
∀ m n →
Nat→ℕ (binary f f′ hyp m n) ≡ f (Nat→ℕ m) (Nat→ℕ n)
binary-correct f hyp m n =
n-ary-correct
2
(λ (m , n , _) → f m n)
(λ (m , n , _) → hyp m n)
(m , n , _)
-- If certain operations are defined for Nat′, then they can be
-- defined for Nat-[_] as well.
module Operations-for-Nat (o : Operations) where
private
module O = Operations o
module O-[] = Operations-for-Nat-[] o
-- Zero.
zero : Nat
zero = nullary N.zero O.zero O.to-ℕ-zero
to-ℕ-zero : Nat→ℕ zero ≡ N.zero
to-ℕ-zero = nullary-correct O.to-ℕ-zero
-- The number's successor.
suc : Nat → Nat
suc = unary N.suc O.suc O.to-ℕ-suc
to-ℕ-suc : ∀ n → Nat→ℕ (suc n) ≡ N.suc (Nat→ℕ n)
to-ℕ-suc = unary-correct N.suc O.to-ℕ-suc
-- Addition.
infixl 6 _+_
_+_ : Nat → Nat → Nat
_+_ = binary N._+_ O._+_ O.to-ℕ-+
to-ℕ-+ : ∀ m n → Nat→ℕ (m + n) ≡ Nat→ℕ m N.+ Nat→ℕ n
to-ℕ-+ = binary-correct N._+_ O.to-ℕ-+
-- Multiplication.
infixl 7 _*_
_*_ : Nat → Nat → Nat
_*_ = binary N._*_ O._*_ O.to-ℕ-*
to-ℕ-* : ∀ m n → Nat→ℕ (m * n) ≡ Nat→ℕ m N.* Nat→ℕ n
to-ℕ-* = binary-correct N._*_ O.to-ℕ-*
-- Multiplication.
infixr 8 _^_
_^_ : Nat → Nat → Nat
_^_ = binary N._^_ O._^_ O.to-ℕ-^
to-ℕ-^ : ∀ m n → Nat→ℕ (m ^ n) ≡ Nat→ℕ m N.^ Nat→ℕ n
to-ℕ-^ = binary-correct N._^_ O.to-ℕ-^
-- Division by two, rounded downwards.
⌊_/2⌋ : Nat → Nat
⌊_/2⌋ = unary N.⌊_/2⌋ O.⌊_/2⌋ O.to-ℕ-⌊/2⌋
to-ℕ-⌊/2⌋ : ∀ n → Nat→ℕ ⌊ n /2⌋ ≡ N.⌊ Nat→ℕ n /2⌋
to-ℕ-⌊/2⌋ = unary-correct N.⌊_/2⌋ O.to-ℕ-⌊/2⌋
-- Division by two, rounded upwards.
⌈_/2⌉ : Nat → Nat
⌈_/2⌉ = unary N.⌈_/2⌉ O.⌈_/2⌉ O.to-ℕ-⌈/2⌉
to-ℕ-⌈/2⌉ : ∀ n → Nat→ℕ ⌈ n /2⌉ ≡ N.⌈ Nat→ℕ n /2⌉
to-ℕ-⌈/2⌉ = unary-correct N.⌈_/2⌉ O.to-ℕ-⌈/2⌉
-- Left shift.
infixl 8 _*2^_
_*2^_ : Nat → ℕ → Nat
m *2^ n =
unary (λ m → m N.* 2 N.^ n) (O._*2^ n) (flip O.to-ℕ-*2^ n) m
to-ℕ-*2^ : ∀ m n → Nat→ℕ (m *2^ n) ≡ Nat→ℕ m N.* 2 N.^ n
to-ℕ-*2^ m n =
unary-correct (λ m → m N.* 2 N.^ n) (flip O.to-ℕ-*2^ n) m
-- Equality is decidable (in a certain sense).
infix 4 _≟_
_≟_ : (m n : Nat) → Dec (Erased (⌊ m ⌋ ≡ ⌊ n ⌋))
(_ , m′) ≟ (_ , n′) = m′ O-[].≟ n′
-- Conversion from bits. (The most significant bit comes first.)
from-bits : List Bool → Nat
from-bits bs =
nullary
(foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0 bs)
(O.from-bits bs)
(O.to-ℕ-from-bits bs)
to-ℕ-from-bits :
∀ bs →
Nat→ℕ (from-bits bs) ≡
foldl (λ n b → (if b then 1 else 0) N.+ 2 N.* n) 0 bs
to-ℕ-from-bits bs = nullary-correct (O.to-ℕ-from-bits bs)
-- Conversion to bits. (The most significant bit comes first.)
to-bits : Nat → List Bool
to-bits (_ , n′) = proj₁ (O-[].to-bits n′)
------------------------------------------------------------------------
-- Results that make use of an instantiation of the []-cong axioms
module []-cong (ax : []-cong-axiomatisation lzero) where
open E₁.[]-cong₁ ax
open E₁.Erased-cong ax ax
open ES.[]-cong₁ ax
open ES.[]-cong₂ ax ax
----------------------------------------------------------------------
-- Some lemmas
private
-- Equality is very stable for the natural numbers.
Very-stable-≡-ℕ : Very-stable-≡ ℕ
Very-stable-≡-ℕ = Decidable-equality→Very-stable-≡ N._≟_
-- Nat-[ n ] is a proposition.
Nat-[]-propositional : {@0 n : ℕ} → Is-proposition Nat-[ n ]
Nat-[]-propositional {n = n} = $⟨ Very-stable-≡-ℕ ⟩
Very-stable-≡ ℕ ↝⟨ Very-stable-congⁿ _ 1 (inverse Nat′↔ℕ) ⟩
Very-stable-≡ Nat′ ↝⟨ Very-stable→Very-stableᴱ 1 ⟩
Very-stableᴱ-≡ Nat′ ↝⟨ erased-singleton-with-erased-center-propositional ⟩
Is-proposition (∃ λ (m : Nat′) → Erased (m ≡ _↔_.from Nat′↔ℕ n)) ↝⟨ (H-level-cong _ 1 $ ∃-cong λ _ → Erased-cong-↔ (inverse $
from≡↔≡to (from-isomorphism $ inverse Nat′↔ℕ))) ⟩□
Is-proposition (∃ λ (m : Nat′) → Erased (to-ℕ m ≡ n)) □
-- There is a bijection between equality of two values of type Nat
-- and erased equality of the corresponding unary natural number
-- indices.
≡-for-indices↔≡ :
{m n : Nat} →
Erased (⌊ m ⌋ ≡ ⌊ n ⌋) ↔ m ≡ n
≡-for-indices↔≡ {m = m} {n = n} =
Erased (⌊ m ⌋ ≡ ⌊ n ⌋) ↝⟨ Erased-≡↔[]≡[] ⟩
proj₁ m ≡ proj₁ n ↝⟨ ignore-propositional-component Nat-[]-propositional ⟩□
m ≡ n □
----------------------------------------------------------------------
-- Another conversion function
-- Nat is isomorphic to the type of unary natural numbers.
Nat↔ℕ : Nat ↔ ℕ
Nat↔ℕ =
Nat ↔⟨⟩
(∃ λ (n : Erased ℕ) → Nat-[ erased n ]) ↝⟨ (∃-cong λ _ → Nat-[]↔Σℕ) ⟩
(∃ λ (n : Erased ℕ) → ∃ λ m → Erased (m ≡ erased n)) ↝⟨ Σ-Erased-Erased-singleton↔ ⟩□
ℕ □
-- The logical equivalence underlying Nat↔ℕ is definitionally equal
-- to Nat⇔ℕ.
_ : _↔_.logical-equivalence Nat↔ℕ ≡ Nat⇔ℕ
_ = refl _
----------------------------------------------------------------------
-- A correctness result related to the module Operations-for-Nat
module Operations-for-Nat-correct (o : Operations) where
private
module O-[] = Operations-for-Nat-[] o
open Operations-for-Nat o
to-ℕ-from-bits-to-bits :
∀ n → Nat→ℕ (from-bits (to-bits n)) ≡ Nat→ℕ n
to-ℕ-from-bits-to-bits n@(_ , n′) =
cong Nat→ℕ $
_↔_.to (≡-for-indices↔≡ {m = from-bits (to-bits n)} {n = n})
[ ⌊ from-bits (to-bits n) ⌋ ≡⟨ erased (proj₂ (O-[].to-bits n′)) ⟩∎
⌊ n ⌋ ∎
]
----------------------------------------------------------------------
-- Some examples
private
module Nat-[]-examples (o : Operations) where
open Operations-for-Nat-[] o
-- Converts unary natural numbers to binary natural numbers.
from-ℕ : ∀ n → Nat-[ n ]
from-ℕ = proj₂ ∘ _↔_.from Nat↔ℕ
-- Nat n is a proposition, so it is easy to prove that two
-- values of this type are equal.
example₁ : from-ℕ 4 + ⌊ from-ℕ 12 /2⌋ ≡ from-ℕ 10
example₁ = Nat-[]-propositional _ _
-- However, stating that two values of type Nat m and Nat n are
-- equal, for equal natural numbers m and n, can be awkward.
@0 example₂ :
{@0 m n : ℕ} →
(b : Nat-[ m ]) (c : Nat-[ n ]) →
subst (λ n → Nat-[ n ]) (N.+-comm m) (b + c) ≡ c + b
example₂ _ _ = Nat-[]-propositional _ _
module Nat-examples (o : Operations) where
open Operations-for-Nat o
-- If Nat is used instead of Nat-[_], then it can be easier to
-- state that two values are equal.
example₁ : ⌈ 4 ⌉ + ⌊ ⌈ 12 ⌉ /2⌋ ≡ ⌈ 10 ⌉
example₁ = _↔_.to ≡-for-indices↔≡ [ refl _ ]
example₂ : ∀ m n → m + n ≡ n + m
example₂ m n = _↔_.to ≡-for-indices↔≡
[ ⌊ m ⌋ N.+ ⌊ n ⌋ ≡⟨ N.+-comm ⌊ m ⌋ ⟩∎
⌊ n ⌋ N.+ ⌊ m ⌋ ∎
]
-- One can construct a proof showing that ⌈ 5 ⌉ is either equal
-- or not equal to ⌈ 2 ⌉ + ⌈ 3 ⌉, but the proof does not compute
-- to "inj₁ something" at compile-time.
example₃ : Dec (⌈ 5 ⌉ ≡ ⌈ 2 ⌉ + ⌈ 3 ⌉)
example₃ =
Dec-map (_↔_.logical-equivalence ≡-for-indices↔≡)
(⌈ 5 ⌉ ≟ ⌈ 2 ⌉ + ⌈ 3 ⌉)
| {
"alphanum_fraction": 0.474745935,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "6870171f2a18c11af452a610453dbb0f208b28b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Nat/Wrapper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Nat/Wrapper.agda",
"max_line_length": 130,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Nat/Wrapper.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 7985,
"size": 19680
} |
module Import where
import Agda.Builtin.Bool
as _
open import Agda.Builtin.Nat
as _
import Agda.Builtin.Unit
using (⊤; tt)
A
: Set
A
= Agda.Builtin.Unit.⊤
| {
"alphanum_fraction": 0.6904761905,
"avg_line_length": 11.2,
"ext": "agda",
"hexsha": "1cdcf9ee56470703548729fe19980a847ad4c6c8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/Import.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/Import.agda",
"max_line_length": 28,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 62,
"size": 168
} |
{-# OPTIONS --safe -W ignore #-}
module Map where
open import Data.String
open import Data.String.Properties using (_==_)
open import Data.Bool
open import Relation.Binary.PropositionalEquality
open import Agda.Builtin.Unit
open import Data.Empty
open import Relation.Nullary using (¬_)
import Relation.Nullary.Decidable.Core
import Data.List.Relation.Binary.Pointwise
import Data.List.Relation.Binary.Pointwise.Properties
import Agda.Builtin.Char.Properties
import Agda.Builtin.Char
import Data.Nat.Properties
-- The empty map
K : {A : Set} → (v : A) → (String → A)
K v = (λ _ → v)
-- Storing in map "m" with value "v" into key "k"
Store : {A : Set} → (m : (String → A)) → (k : String)
→ (v : A) → (String → A)
Store m k v = λ k' → if (k' == k) then v else m k'
-- Unit tests
open import Data.Nat
-- Example of initialising the variable stack
S : (String → ℕ)
S = K 0
-- Example of adding values to a stack
S1 : (String → ℕ)
S1 = Store S "a" 10
-- Adding the second variable
S2 : (String → ℕ)
S2 = Store S1 "b" 11
-- Getting the value of a from stack S2
A : ℕ
A = S2 "a"
-- Getting the value of b from stack S2
B : ℕ
B = S2 "b"
-- Try to get a string that is not in stack, gives the default value
C : ℕ
C = S2 "c"
-- Important properties
-- Lemma needed to prove the side condition between stacks after
-- function call
lemma-stack-eq : {A : Set} → ∀ (stm stf : (String → A)) → (X Y : String)
→ (Store stm Y (stf X)) Y ≡ (stf X)
lemma-stack-eq stm stf X Y with (Y Data.String.≟ Y)
... | .true Relation.Nullary.because Relation.Nullary.ofʸ p = refl
... | .false Relation.Nullary.because Relation.Nullary.ofⁿ ¬p = ⊥-elim (¬p refl)
-- Now a very important property for proving the constancy rule
t-update-neq : {A : Set} → ∀ (st : (String → A)) → (x1 x2 : String)
→ (v : A) → ((x2 ≡ x1) → ⊥) → (Store st x1 v) x2 ≡ (st x2)
t-update-neq st x1 x2 v p with (Relation.Nullary.Decidable.Core.map′
(λ x →
Data.String.Properties.toList-injective x2 x1
(Data.List.Relation.Binary.Pointwise.Pointwise-≡⇒≡ x))
(λ x →
Data.List.Relation.Binary.Pointwise.≡⇒Pointwise-≡ (cong toList x))
(Data.List.Relation.Binary.Pointwise.Properties.decidable
(λ x y →
Relation.Nullary.Decidable.Core.map′
(Agda.Builtin.Char.Properties.primCharToNatInjective x y)
(cong Agda.Builtin.Char.primCharToNat)
(Relation.Nullary.Decidable.Core.map′
(Data.Nat.Properties.≡ᵇ⇒≡ (Agda.Builtin.Char.primCharToNat x)
(Agda.Builtin.Char.primCharToNat y))
(Data.Nat.Properties.≡⇒≡ᵇ (Agda.Builtin.Char.primCharToNat x)
(Agda.Builtin.Char.primCharToNat y))
(T?
(Agda.Builtin.Char.primCharToNat x ≡ᵇ
Agda.Builtin.Char.primCharToNat y))))
(toList x2) (toList x1)))
... | false Relation.Nullary.because Relation.Nullary.ofⁿ ¬p = refl
... | true Relation.Nullary.because Relation.Nullary.ofʸ refl = ⊥-elim (p refl)
-- Testing lookup with nested stores
test : {A : Set} → ∀ (x1 x2 y : String) → (st st' : (String → A))
→ (v1 v2 : A) → (y ≡ x1 → ⊥) → (y ≡ x2 → ⊥)
→ (st' ≡ (Store (Store st x1 v1) x2 v2))
→ st' y ≡ st y
test x1 x2 y st st' v1 v2 p1 p2 q rewrite q
| t-update-neq (Store st x1 v1) x2 y v2 p2
| t-update-neq st x1 y v1 p1 = refl
-- Partial map
open import Data.Maybe
KP : {A : Set} → (String → Maybe A)
KP = (λ _ → nothing)
StoreP : {A : Set} → (st : (String → Maybe A))
→ (x : String) → (v : A)
→ (String → Maybe A)
StoreP st x v = λ x' → if x == x' then just v else st x'
| {
"alphanum_fraction": 0.6152584085,
"avg_line_length": 32.9459459459,
"ext": "agda",
"hexsha": "424da367552ff5b5e28a996d1db1305b308778c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/compositional-real-time-contracts",
"max_forks_repo_path": "Map.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/compositional-real-time-contracts",
"max_issues_repo_path": "Map.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bff8c271b54f55ceac550c603e468f68838a07ee",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/compositional-real-time-contracts",
"max_stars_repo_path": "Map.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1187,
"size": 3657
} |
{-# OPTIONS --without-K #-}
module 2DTypes where
-- open import Level renaming (zero to lzero)
open import Relation.Binary.PropositionalEquality
open import Data.Unit
open import Data.Sum
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product
open import Function using (_∘_)
open import Relation.Binary using (Setoid)
open import Data.Nat using (ℕ) renaming (suc to ℕsuc; _+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec using (Vec; lookup; _∷_; []; zipWith)
open import Data.Integer hiding (suc)
open import VectorLemmas using (_!!_)
open import PiU
open import PiLevel0 hiding (!!)
open import PiEquiv
open import PiLevel1
open import Equiv
open import EquivEquiv using (_≋_; module _≋_)
open import Categories.Category
open import Categories.Groupoid
open import Categories.Equivalence.Strong
-- This exists somewhere, but I can't find it
⊎-inj : ∀ {ℓ} {A B : Set ℓ} {a : A} {b : B} → inj₁ a ≡ inj₂ b → ⊥
⊎-inj ()
-- should probably make this level-polymorphic
record Typ : Set where
constructor typ
field
carr : U
len : ℕ -- number of non-trivial automorphisms
auto : Vec (carr ⟷ carr) (ℕsuc len) -- the real magic goes here
-- normally the stuff below is "global", but here
-- we attach it to a type.
id : id⟷ ⇔ (auto !! zero)
_⊙_ : Fin (ℕsuc len) → Fin (ℕsuc len) → Fin (ℕsuc len)
coh : ∀ (i j : Fin (ℕsuc len)) → -- note the flip !!!
((auto !! i) ◎ (auto !! j) ⇔ (auto !! (j ⊙ i)))
-- to get groupoid, we need inverse knowledge, do later
open Typ
-- The above 'induces' a groupoid structure, which
-- we need to show in detail.
-- First, a useful container for the info we need:
record Hm (t : Typ) (a b : ⟦ carr t ⟧) : Set where
constructor hm
field
eq : carr t ⟷ carr t
good : Σ (Fin (ℕsuc (len t))) (λ n → eq ⇔ (auto t !! n))
fwd : proj₁ (c2equiv eq) a ≡ b
bwd : isqinv.g (proj₂ (c2equiv eq)) b ≡ a
-- note how (auto t) is not actually used!
-- also: not sure e₁ and e₂ always used coherently, as types are not enough
-- to decide which one to use...
induceCat : Typ → Category _ _ _
induceCat t = record
{ Obj = ⟦ carr t ⟧
; _⇒_ = Hm t
; _≡_ = λ { (hm e₁ g₁ _ _) → λ { (hm e₂ g₂ _ _) → e₁ ⇔ e₂} }
; id = hm id⟷ (zero , id t) refl refl
; _∘_ = λ { {A} {B} {C} (hm e₁ (n₁ , p₁) fwd₁ bwd₁) (hm e₂ (n₂ , p₂) fwd₂ bwd₂) →
let pf₁ = (begin (
proj₁ (c2equiv e₁ ● c2equiv e₂) A
≡⟨ β₁ A ⟩
(proj₁ (c2equiv e₁) ∘ (proj₁ (c2equiv e₂))) A
≡⟨ cong (proj₁ (c2equiv e₁)) fwd₂ ⟩
proj₁ (c2equiv e₁) B
≡⟨ fwd₁ ⟩
C ∎ ))
-- same as above (in opposite direction), just compressed
pf₂ = trans (β₂ C)
(trans (cong (isqinv.g (proj₂ (c2equiv e₂))) bwd₁)
bwd₂)
n₃ = _⊙_ t n₁ n₂
compos = n₃ , trans⇔ (p₂ ⊡ p₁) (coh t n₂ n₁)
in
hm (e₂ ◎ e₁) compos pf₁ pf₂ }
; assoc = assoc◎l
; identityˡ = idr◎l
; identityʳ = idl◎l
; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ }
; ∘-resp-≡ = λ f g → g ⊡ f
}
where open Typ
open ≡-Reasoning
{-
-- to get the Groupoid structure, there is stuff in the type that is
-- missing; see the hole.
induceG : (t : Typ) → Groupoid (induceCat t)
induceG t = record
{ _⁻¹ = λ { {A} {B} (hm e g fw bw) →
hm (! e) {!!} (trans (f≡ (!≡sym≃ e) B) bw) (trans (g≡ (!≡sym≃ e) A) fw) }
; iso = record { isoˡ = linv◎l ; isoʳ = rinv◎l }
}
where open _≋_
-}
-- some useful functions for defining the type 1T
private
mult : Fin 1 → Fin 1 → Fin 1
mult zero zero = zero
mult _ (suc ())
mult (suc ()) _
triv : Vec (ONE ⟷ ONE) 1
triv = id⟷ ∷ []
mult-coh : ∀ (i j : Fin 1) →
((triv !! i) ◎ (triv !! j) ⇔ (triv !! (mult j i)))
mult-coh zero zero = idl◎l -- note how this is non-trivial!
mult-coh _ (suc ())
mult-coh (suc ()) _
1T : Typ
1T = record
{ carr = ONE
; len = 0
; auto = triv
; id = id⇔
; _⊙_ = mult
; coh = mult-coh
}
BOOL : U
BOOL = PLUS ONE ONE
-- some useful functions for defining the type 1T′
private
mult′ : Fin 2 → Fin 2 → Fin 2
mult′ zero zero = zero
mult′ zero (suc zero) = suc zero
mult′ _ (suc (suc ()))
mult′ (suc zero) zero = suc zero
mult′ (suc zero) (suc zero) = zero
mult′ (suc (suc ())) _
sw : Vec (BOOL ⟷ BOOL) 2
sw = id⟷ ∷ swap₊ ∷ []
sw-coh : ∀ (i j : Fin 2) →
((sw !! i) ◎ (sw !! j) ⇔ (sw !! (mult′ j i)))
sw-coh zero zero = idl◎l
sw-coh zero (suc zero) = idl◎l
sw-coh _ (suc (suc ()))
sw-coh (suc zero) zero = idr◎l
sw-coh (suc zero) (suc zero) = linv◎l
sw-coh (suc (suc ())) _
1T′ : Typ
1T′ = record
{ carr = BOOL
; len = 1
; auto = sw
; id = id⇔
; _⊙_ = mult′
; coh = sw-coh
}
-- useful utilities
private
collapse : ⊤ ⊎ ⊤ → ⊤
collapse (inj₁ a) = a
collapse (inj₂ b) = b
collapse-coh : ∀ {A B : ⊤ ⊎ ⊤} → collapse A ≡ collapse B
collapse-coh {inj₁ tt} {inj₁ tt} = refl
collapse-coh {inj₁ tt} {inj₂ tt} = refl
collapse-coh {inj₂ tt} {inj₁ tt} = refl
collapse-coh {inj₂ tt} {inj₂ tt} = refl
-- let's do it on categories only.
-- The important thing here is that we only have
-- access to id⟷ and (auto 1T′) as things of type
-- (carr 1T′ ⟷ carr 1T′).
1T≃1T′ : StrongEquivalence (induceCat 1T) (induceCat 1T′)
1T≃1T′ =
record
-- from 1T to 1T′, we really do want to map down to id⟷ onto inj₁
{ F = record
{ F₀ = inj₁
; F₁ = λ { {tt} {tt} (hm e g fwd bwd) → hm id⟷ (zero , id⇔) refl refl}
; identity = id⇔
; homomorphism = idl◎r
; F-resp-≡ = λ _ → id⇔
}
-- and here, everything should be collapsed
; G = record
{ F₀ = collapse
; F₁ = λ { {A} {B} (hm e g fwd bwd) →
hm id⟷ (zero , id⇔) (collapse-coh {A} {B}) (collapse-coh {B} {A})}
; identity = id⇔
; homomorphism = idl◎r
; F-resp-≡ = λ _ → id⇔
}
-- and here is where (auto 1T′) is needed, else this is false!!
; weak-inverse = record
{ F∘G≅id = record
{ F⇒G = record
{ η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl;
(inj₂ b) → hm swap₊ (suc zero , id⇔) refl refl }
; commute =
λ { {inj₁ tt} {inj₁ tt} (hm c (zero , x) _ _) → trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ;
{inj₁ tt} {inj₁ tt} (hm c (suc zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym a) (
trans (sym (lemma0 c (inj₁ tt)))
(≋⇒≡ x (inj₁ tt))))) ;
{inj₁ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _);
{inj₁ tt} {inj₂ tt} (hm c (zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym (≋⇒≡ x (inj₁ tt))) (
trans (lemma0 c (inj₁ tt))
a ) ) );
{inj₁ tt} {inj₂ tt} (hm c (suc zero , x) _ _) →
trans⇔ idl◎l (trans⇔ (2! x) idl◎r) ;
{inj₁ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _);
{inj₂ tt} {inj₁ tt} (hm c (zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym a) (
trans (sym (lemma0 c (inj₂ tt)))
(≋⇒≡ x (inj₂ tt)) ) ) );
{inj₂ tt} {inj₁ tt} (hm c (suc (suc ()), _) _ _);
{inj₂ tt} {inj₂ tt} (hm c (zero , x) _ _) →
trans⇔ idl◎l (trans⇔ idr◎r (id⇔ ⊡ (2! x)));
{inj₂ tt} {inj₁ tt} (hm c (suc zero , x) _ _) →
trans⇔ idl◎l (trans⇔ linv◎r (id⇔ ⊡ (2! x)));
{inj₂ tt} {inj₂ tt} (hm c (suc zero , x) a b) →
⊥-elim (⊎-inj (
trans (sym (≋⇒≡ x (inj₂ tt))) (
trans (lemma0 c (inj₂ tt)) a) ) ) ;
{inj₂ tt} {inj₂ tt} (hm c (suc (suc ()), _) _ _)
}
}
; F⇐G = record
{ η = λ { (inj₁ a) → hm id⟷ (zero , id⇔) refl refl;
(inj₂ b) → hm swap₊ ((suc zero , id⇔)) refl refl }
; commute = λ
{ {inj₁ tt} {inj₁ tt} (hm a (zero , e) c d) → e ⊡ id⇔
; {inj₁ tt} {inj₂ tt} (hm a (zero , e) c d) → {!!}
; {inj₂ tt} {inj₁ tt} (hm a (zero , e) c d) → {!!}
; {inj₂ tt} {inj₂ tt} (hm a (zero , e) c d) → trans⇔ (e ⊡ id⇔) (trans⇔ idl◎l idr◎r)
; {inj₁ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₁ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₂ tt} {inj₁ tt} (hm a (suc zero , e) c d) → {!!}
; {inj₂ tt} {inj₂ tt} (hm a (suc zero , e) c d) → {!!}
; (hm a (suc (suc ()) , _) _ _) }
}
; iso = λ { (inj₁ tt) → record { isoˡ = idl◎l ; isoʳ = idl◎l };
(inj₂ tt) → record { isoˡ = linv◎l ; isoʳ = linv◎l } }
}
; G∘F≅id = record
{ F⇒G = record
{ η = λ {tt → hm id⟷ (zero , id⇔) refl refl}
; commute =
λ { {tt} {tt} (hm eq (zero , e) _ _) → id⇔ ⊡ (2! e)
; {tt} {tt} (hm eq (suc () , _) _ _) }
}
; F⇐G = record
{ η = λ {tt → hm id⟷ (zero , id⇔) refl refl}
; commute =
λ { {tt} {tt} (hm c (zero , e) _ _) → e ⊡ id⇔
; {tt} {tt} (hm c (suc () , _) _ _) }
}
; iso = λ {tt → record { isoˡ = linv◎l ; isoʳ = linv◎l } }
}
}
}
-- And so 1T′ is equivalent to 1T. This can be interpreted to mean
-- that swap₊ (perhaps more precisely, id⟷ ∷ swap₊ ∷ [] ) is the
-- representation of a 'negative type'.
---------------
-- Cardinality function
card : Typ → ℤ
card (typ carr len _ _ _ _) = (+ size carr) - (+ len)
-- check
card-1T : card 1T ≡ + 1
card-1T = refl
card-1T′ : card 1T′ ≡ + 1
card-1T′ = refl
--------------
-- Conjecture...
-- to make this work, we're going to postulate another loop
-- and that it is idempotent:
postulate
loop : ZERO ⟷ ZERO
idemp : loop ◎ loop ⇔ loop
private
cc : Fin 2 → Fin 2 → Fin 2
cc zero zero = zero
cc zero (suc zero) = suc zero
cc (suc zero) zero = suc zero
cc (suc zero) (suc zero) = suc zero
cc (suc (suc ())) _
cc _ (suc (suc ()))
two-loops : Vec (ZERO ⟷ ZERO) 2
two-loops = id⟷ ∷ loop ∷ []
tl-coh : ∀ (i j : Fin 2) →
((two-loops !! i) ◎ (two-loops !! j) ⇔ (two-loops !! (cc j i)))
tl-coh zero zero = idl◎l
tl-coh zero (suc zero) = idl◎l
tl-coh (suc zero) zero = idr◎l
tl-coh (suc zero) (suc zero) = {!idemp!}
tl-coh (suc (suc ())) _
tl-coh _ (suc (suc ()))
-1T : Typ
-1T = typ ZERO 1 two-loops id⇔ cc tl-coh
card--1T : card -1T ≡ -[1+ 0 ] -- indeed -1 ...
card--1T = refl
{--
Here is my current thinking:
* A type is a package of:
- a carrier (that comes with the trivial automorphism)
- a collection of non-trivial automorphisms that have a groupoid structure
Let’s denote this package by ‘R A (Auto A)'
* The collection of non-trivial automorphisms could very well be
missing (i.e., empty) and we then recover plain sets like Bool etc.
* Now here is the interesting bit: the carrier itself could be
missing, i.e., a parameter. In that case we get something like:
A -> R A (Auto A)
That thing could be treated as outside the universe of types but we
are proposing to enlarge the universe of type to also include it as a
fractional type. Of course we need a way to combine such a fractional
type with a carrier to get a regular type so we need another
operation _[_] to do the instantiation.
* So to revise, a type is:
T ::= R A (Auto A) | /\ A . T | T[A]
To make sure this behaves like fractional types, we want /\ A. T and
T[A] to behave like a product. It is a product of course but a
dependent one.
--}
-- Parameterized type
-- Frac supposed to 1/t
-- instantiate Frac with u to get u/t
-- make sure t/t is 1
-- define eta and epsilon and check axioms
{-- Syntax of types --}
Auto : (u : U) → Set
Auto u = Σ[ n ∈ ℕ ] (Vec (u ⟷ u) n)
trivA : (u : U) → Auto u
trivA u = (1 , id⟷ ∷ [])
data T : (u₁ : U) → {u₂ : U} → Auto u₂ → Set where
UT : (u : U) → T u (trivA u) -- regular sets
FT : (u₁ u₂ : U) → (auto₂ : Auto u₂) → T u₁ auto₂
-- Regular sets
ZT : T ZERO (trivA ZERO)
ZT = UT ZERO
OT : T ONE (trivA ONE)
OT = UT ONE
-- one third
2U : U
2U = PLUS ONE ONE
3U : U
3U = PLUS ONE (PLUS ONE ONE)
3T : T 3U (trivA 3U)
3T = UT 3U
-- could add the remaining two but these are sufficient I think
all3A : Auto 3U
all3A = (4 , id⟷ ∷
(id⟷ ⊕ swap₊) ∷
(assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ∷
((id⟷ ⊕ swap₊) ◎ (assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊)) ∷
[])
1/3T : T ONE all3A
1/3T = FT ONE 3U all3A
-- notice that a/b + c/b = (a+c) / b
-- So 1/3T + 1/3T is
2/3T : T 2U all3A
2/3T = FT 2U 3U all3A
-- one more
3/3T : T 3U all3A
3/3T = FT 3U 3U all3A
-- Now eta applied to 3/3T should match the carrier with the autos and produce the plain OT
| {
"alphanum_fraction": 0.5250707325,
"avg_line_length": 29.7985948478,
"ext": "agda",
"hexsha": "dff214e975cae5f935d7c19b2ac44f99536b2965",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/2DTypes.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/2DTypes.agda",
"max_line_length": 95,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/2DTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 5054,
"size": 12724
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Defines the following properties of a Category:
-- 1. BinaryProducts -- for when a Category has all Binary Products
-- 2. Cartesian -- a Cartesian category is a category with all products
module Categories.Category.Cartesian {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Data.Product using (Σ; _,_; uncurry)
open Category 𝒞
open HomReasoning
open import Categories.Object.Terminal 𝒞
open import Categories.Object.Product 𝒞
open import Categories.Morphism 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Category.Monoidal
import Categories.Category.Monoidal.Symmetric as Sym
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl; sym; trans)
private
variable
A B C D X Y Z : Obj
f f′ g g′ h i : A ⇒ B
record BinaryProducts : Set (levelOfTerm 𝒞) where
infixr 7 _×_
infixr 8 _⁂_
infix 11 ⟨_,_⟩
field
product : ∀ {A B} → Product A B
module product {A} {B} = Product (product {A} {B})
_×_ : Obj → Obj → Obj
A × B = Product.A×B (product {A} {B})
×-comm : A × B ≅ B × A
×-comm = Commutative product product
×-assoc : X × Y × Z ≅ (X × Y) × Z
×-assoc = Associative product product product product
open product hiding (⟨_,_⟩; ∘-distribʳ-⟨⟩) public
-- define it like this instead of reexporting to redefine fixity
⟨_,_⟩ : X ⇒ A → X ⇒ B → X ⇒ A × B
⟨_,_⟩ = Product.⟨_,_⟩ product
_⁂_ : A ⇒ B → C ⇒ D → A × C ⇒ B × D
f ⁂ g = [ product ⇒ product ] f × g
assocˡ : (A × B) × C ⇒ A × B × C
assocˡ = _≅_.to ×-assoc
assocʳ : A × B × C ⇒ (A × B) × C
assocʳ = _≅_.from ×-assoc
assocʳ∘assocˡ : assocʳ {A}{B}{C} ∘ assocˡ {A}{B}{C} ≈ id
assocʳ∘assocˡ = Iso.isoʳ (_≅_.iso ×-assoc)
assocˡ∘assocʳ : assocˡ {A}{B}{C} ∘ assocʳ {A}{B}{C} ≈ id
assocˡ∘assocʳ = Iso.isoˡ (_≅_.iso ×-assoc)
⟨⟩-congʳ : f ≈ f′ → ⟨ f , g ⟩ ≈ ⟨ f′ , g ⟩
⟨⟩-congʳ pf = ⟨⟩-cong₂ pf refl
⟨⟩-congˡ : g ≈ g′ → ⟨ f , g ⟩ ≈ ⟨ f , g′ ⟩
⟨⟩-congˡ pf = ⟨⟩-cong₂ refl pf
swap : A × B ⇒ B × A
swap = ⟨ π₂ , π₁ ⟩
-- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version
-- that doesn't have an explicit id in it, too?
first : A ⇒ B → A × C ⇒ B × C
first f = f ⁂ id
second : C ⇒ D → A × C ⇒ A × D
second g = id ⁂ g
-- Just to make this more obvious
π₁∘⁂ : π₁ ∘ (f ⁂ g) ≈ f ∘ π₁
π₁∘⁂ {f = f} {g} = project₁
π₂∘⁂ : π₂ ∘ (f ⁂ g) ≈ g ∘ π₂
π₂∘⁂ {f = f} {g} = project₂
⁂-cong₂ : f ≈ g → h ≈ i → f ⁂ h ≈ g ⁂ i
⁂-cong₂ = [ product ⇒ product ]×-cong₂
⁂∘⟨⟩ : (f ⁂ g) ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f ∘ f′ , g ∘ g′ ⟩
⁂∘⟨⟩ = [ product ⇒ product ]×∘⟨⟩
first∘⟨⟩ : first f ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f ∘ f′ , g′ ⟩
first∘⟨⟩ = [ product ⇒ product ]×id∘⟨⟩
second∘⟨⟩ : second g ∘ ⟨ f′ , g′ ⟩ ≈ ⟨ f′ , g ∘ g′ ⟩
second∘⟨⟩ = [ product ⇒ product ]id×∘⟨⟩
⁂∘⁂ : (f ⁂ g) ∘ (f′ ⁂ g′) ≈ (f ∘ f′) ⁂ (g ∘ g′)
⁂∘⁂ = [ product ⇒ product ⇒ product ]×∘×
⟨⟩∘ : ⟨ f , g ⟩ ∘ h ≈ ⟨ f ∘ h , g ∘ h ⟩
⟨⟩∘ = [ product ]⟨⟩∘
first∘first : ∀ {C} → first {C = C} f ∘ first g ≈ first (f ∘ g)
first∘first = [ product ⇒ product ⇒ product ]×id∘×id
second∘second : ∀ {A} → second {A = A} f ∘ second g ≈ second (f ∘ g)
second∘second = [ product ⇒ product ⇒ product ]id×∘id×
first↔second : first f ∘ second g ≈ second g ∘ first f
first↔second = [ product ⇒ product , product ⇒ product ]first↔second
firstid : ∀ {f : A ⇒ A} (g : A ⇒ C) → first {C = C} f ≈ id → f ≈ id
firstid {f = f} g eq = begin
f ≈˘⟨ elimʳ project₁ ⟩
f ∘ π₁ ∘ ⟨ id , g ⟩ ≈⟨ pullˡ fπ₁≈π₁ ⟩
π₁ ∘ ⟨ id , g ⟩ ≈⟨ project₁ ⟩
id ∎
where fπ₁≈π₁ = begin
f ∘ π₁ ≈˘⟨ project₁ ⟩
π₁ ∘ first f ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ id ≈⟨ identityʳ ⟩
π₁ ∎
swap∘⟨⟩ : swap ∘ ⟨ f , g ⟩ ≈ ⟨ g , f ⟩
swap∘⟨⟩ {f = f} {g = g} = begin
⟨ π₂ , π₁ ⟩ ∘ ⟨ f , g ⟩ ≈⟨ ⟨⟩∘ ⟩
⟨ π₂ ∘ ⟨ f , g ⟩ , π₁ ∘ ⟨ f , g ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ project₂ project₁ ⟩
⟨ g , f ⟩ ∎
swap∘⁂ : swap ∘ (f ⁂ g) ≈ (g ⁂ f) ∘ swap
swap∘⁂ {f = f} {g = g} = begin
swap ∘ (f ⁂ g) ≈⟨ swap∘⟨⟩ ⟩
⟨ g ∘ π₂ , f ∘ π₁ ⟩ ≈⟨ sym ⁂∘⟨⟩ ⟩
(g ⁂ f) ∘ swap ∎
swap∘swap : (swap {A}{B}) ∘ (swap {B}{A}) ≈ id
swap∘swap = trans swap∘⟨⟩ η
assocʳ∘⟨⟩ : assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈ ⟨ ⟨ f , g ⟩ , h ⟩
assocʳ∘⟨⟩ {f = f} {g = g} {h = h} = begin
assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈⟨ ⟨⟩∘ ⟩
⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₂ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩ ≈⟨ ⟨⟩-cong₂ ⟨⟩∘ (pullʳ project₂) ⟩
⟨ ⟨ π₁ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₁ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩
, π₂ ∘ ⟨ g , h ⟩
⟩ ≈⟨ ⟨⟩-cong₂ (⟨⟩-cong₂ project₁
(trans (pullʳ project₂) project₁))
project₂ ⟩
⟨ ⟨ f , g ⟩ , h ⟩ ∎
assocˡ∘⟨⟩ : assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩ ≈ ⟨ f , ⟨ g , h ⟩ ⟩
assocˡ∘⟨⟩ {f = f} {g = g} {h = h} = begin
assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩ ≈⟨ sym (refl ⟩∘⟨ assocʳ∘⟨⟩) ⟩
assocˡ ∘ assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≈⟨ cancelˡ assocˡ∘assocʳ ⟩
⟨ f , ⟨ g , h ⟩ ⟩ ∎
assocʳ∘⁂ : assocʳ ∘ (f ⁂ (g ⁂ h)) ≈ ((f ⁂ g) ⁂ h) ∘ assocʳ
assocʳ∘⁂ {f = f} {g = g} {h = h} =
begin
assocʳ ∘ (f ⁂ (g ⁂ h))
≈⟨ refl⟩∘⟨ ⟨⟩-congˡ ⟨⟩∘ ⟩
assocʳ ∘ ⟨ f ∘ π₁ , ⟨ (g ∘ π₁) ∘ π₂ , (h ∘ π₂) ∘ π₂ ⟩ ⟩
≈⟨ assocʳ∘⟨⟩ ⟩
⟨ ⟨ f ∘ π₁ , (g ∘ π₁) ∘ π₂ ⟩ , (h ∘ π₂) ∘ π₂ ⟩
≈⟨ ⟨⟩-cong₂ (⟨⟩-congˡ assoc) assoc ⟩
⟨ ⟨ f ∘ π₁ , g ∘ π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
≈˘⟨ ⟨⟩-congʳ ⁂∘⟨⟩ ⟩
⟨ (f ⁂ g) ∘ ⟨ π₁ , π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
≈˘⟨ ⁂∘⟨⟩ ⟩
((f ⁂ g) ⁂ h) ∘ assocʳ
∎
assocˡ∘⁂ : assocˡ ∘ ((f ⁂ g) ⁂ h) ≈ (f ⁂ (g ⁂ h)) ∘ assocˡ
assocˡ∘⁂ {f = f} {g = g} {h = h} =
begin
assocˡ ∘ ((f ⁂ g) ⁂ h)
≈⟨ refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩
assocˡ ∘ ⟨ ⟨ (f ∘ π₁) ∘ π₁ , (g ∘ π₂) ∘ π₁ ⟩ , h ∘ π₂ ⟩
≈⟨ assocˡ∘⟨⟩ ⟩
⟨ (f ∘ π₁) ∘ π₁ , ⟨ (g ∘ π₂) ∘ π₁ , h ∘ π₂ ⟩ ⟩
≈⟨ ⟨⟩-cong₂ assoc (⟨⟩-congʳ assoc) ⟩
⟨ f ∘ π₁ ∘ π₁ , ⟨ g ∘ π₂ ∘ π₁ , h ∘ π₂ ⟩ ⟩
≈˘⟨ ⟨⟩-congˡ ⁂∘⟨⟩ ⟩
⟨ f ∘ π₁ ∘ π₁ , (g ⁂ h) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
≈˘⟨ ⁂∘⟨⟩ ⟩
(f ⁂ (g ⁂ h)) ∘ assocˡ
∎
-×- : Bifunctor 𝒞 𝒞 𝒞
-×- = record
{ F₀ = uncurry _×_
; F₁ = uncurry _⁂_
; identity = id×id product
; homomorphism = sym ⁂∘⁂
; F-resp-≈ = uncurry [ product ⇒ product ]×-cong₂
}
-×_ : Obj → Functor 𝒞 𝒞
-×_ = appʳ -×-
_×- : Obj → Functor 𝒞 𝒞
_×- = appˡ -×-
-- Cartesian monoidal category
record Cartesian : Set (levelOfTerm 𝒞) where
field
terminal : Terminal
products : BinaryProducts
module terminal = Terminal terminal
module products = BinaryProducts products
open terminal public
open products public
⊤×A≅A : ⊤ × A ≅ A
⊤×A≅A = record
{ from = π₂
; to = ⟨ ! , id ⟩
; iso = record
{ isoˡ = begin
⟨ ! , id ⟩ ∘ π₂ ≈˘⟨ unique !-unique₂ (cancelˡ project₂) ⟩
⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩
id ∎
; isoʳ = project₂
}
}
A×⊤≅A : A × ⊤ ≅ A
A×⊤≅A = record
{ from = π₁
; to = ⟨ id , ! ⟩
; iso = record
{ isoˡ = begin
⟨ id , ! ⟩ ∘ π₁ ≈˘⟨ unique (cancelˡ project₁) !-unique₂ ⟩
⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩
id ∎
; isoʳ = project₁
}
}
⊤×--id : NaturalIsomorphism (⊤ ×-) idF
⊤×--id = record
{ F⇒G = ntHelper record
{ η = λ _ → π₂
; commute = λ _ → project₂
}
; F⇐G = ntHelper record
{ η = λ _ → ⟨ ! , id ⟩
; commute = λ f → begin
⟨ ! , id ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩
⟨ ! ∘ f , id ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ (sym (!-unique _)) identityˡ ⟩
⟨ ! , f ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ identityʳ ⟩
⟨ id ∘ ! , f ∘ id ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩
⟨ (id ∘ π₁) ∘ ⟨ ! , id ⟩ , (f ∘ π₂) ∘ ⟨ ! , id ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ id ∘ π₁ , f ∘ π₂ ⟩ ∘ ⟨ ! , id ⟩ ∎
}
; iso = λ _ → _≅_.iso ⊤×A≅A
}
-×⊤-id : NaturalIsomorphism (-× ⊤) idF
-×⊤-id = record
{ F⇒G = ntHelper record
{ η = λ _ → π₁
; commute = λ _ → project₁
}
; F⇐G = ntHelper record
{ η = λ _ → ⟨ id , ! ⟩
; commute = λ f → begin
⟨ id , ! ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ f , ! ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ (sym (!-unique _)) ⟩
⟨ f , ! ⟩ ≈˘⟨ ⟨⟩-cong₂ identityʳ identityˡ ⟩
⟨ f ∘ id , id ∘ ! ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩
⟨ (f ∘ π₁) ∘ ⟨ id , ! ⟩ , (id ∘ π₂) ∘ ⟨ id , ! ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ f ∘ π₁ , id ∘ π₂ ⟩ ∘ ⟨ id , ! ⟩ ∎
}
; iso = λ _ → _≅_.iso A×⊤≅A
}
monoidal : Monoidal 𝒞
monoidal = record
{ ⊗ = -×-
; unit = ⊤
; unitorˡ = ⊤×A≅A
; unitorʳ = A×⊤≅A
; associator = ≅.sym ×-assoc
; unitorˡ-commute-from = project₂
; unitorˡ-commute-to = let open NaturalIsomorphism ⊤×--id in ⇐.commute _
; unitorʳ-commute-from = project₁
; unitorʳ-commute-to = let open NaturalIsomorphism -×⊤-id in ⇐.commute _
; assoc-commute-from = assocˡ∘⁂
; assoc-commute-to = assocʳ∘⁂
; triangle = begin
(id ⁂ π₂) ∘ assocˡ ≈⟨ ⁂∘⟨⟩ ⟩
⟨ id ∘ π₁ ∘ π₁ , π₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ identityˡ) (project₂ ○ (⟺ identityˡ)) ⟩
π₁ ⁂ id ∎
; pentagon = begin
(id ⁂ assocˡ) ∘ assocˡ ∘ (assocˡ ⁂ id)
≈⟨ pullˡ [ product ⇒ product ]id×∘⟨⟩ ⟩
⟨ π₁ ∘ π₁ , assocˡ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ (assocˡ ⁂ id)
≈⟨ ⟨⟩∘ ⟩
⟨ (π₁ ∘ π₁) ∘ (assocˡ ⁂ id) , (assocˡ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (assocˡ ⁂ id) ⟩
≈⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ ⟨⟩∘) ⟩
⟨ π₁ ∘ assocˡ ∘ π₁ , assocˡ ∘ ⟨ (π₂ ∘ π₁) ∘ (assocˡ ⁂ id) , π₂ ∘ (assocˡ ⁂ id) ⟩ ⟩
≈⟨ ⟨⟩-cong₂ (pullˡ project₁) (∘-resp-≈ʳ (⟨⟩-cong₂ (pullʳ project₁) project₂)) ⟩
⟨ (π₁ ∘ π₁) ∘ π₁ , assocˡ ∘ ⟨ π₂ ∘ assocˡ ∘ π₁ , id ∘ π₂ ⟩ ⟩
≈⟨ ⟨⟩-cong₂ assoc (∘-resp-≈ʳ (⟨⟩-cong₂ (pullˡ project₂) identityˡ)) ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , assocˡ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩
≈⟨ ⟨⟩-congˡ ⟨⟩∘ ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , ⟨ (π₁ ∘ π₁) ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩ ⟩
≈⟨ ⟨⟩-congˡ (⟨⟩-cong₂ (pullʳ project₁) ⟨⟩∘) ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , ⟨ π₁ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , ⟨ (π₂ ∘ π₁) ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ , π₂ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩ ⟩ ⟩
≈⟨ ⟨⟩-congˡ (⟨⟩-cong₂ (pullˡ project₁) (⟨⟩-cong₂ (pullʳ project₁) project₂)) ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , ⟨ (π₂ ∘ π₁) ∘ π₁ , ⟨ π₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩ ⟩
≈⟨ ⟨⟩-congˡ (⟨⟩-cong₂ assoc (⟨⟩-congʳ (pullˡ project₂))) ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ⟩
≈˘⟨ ⟨⟩-congˡ (⟨⟩-cong₂ (pullʳ project₁) project₂) ⟩
⟨ π₁ ∘ π₁ ∘ π₁ , ⟨ (π₂ ∘ π₁) ∘ assocˡ , π₂ ∘ assocˡ ⟩ ⟩
≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) ⟨⟩∘ ⟩
⟨ (π₁ ∘ π₁) ∘ assocˡ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ assocˡ ⟩
≈˘⟨ ⟨⟩∘ ⟩
assocˡ ∘ assocˡ
∎
}
module monoidal = Monoidal monoidal
open monoidal using (_⊗₁_)
open Sym monoidal
symmetric : Symmetric
symmetric = symmetricHelper record
{ braiding = record
{ F⇒G = ntHelper record
{ η = λ _ → swap
; commute = λ _ → swap∘⁂
}
; F⇐G = ntHelper record
{ η = λ _ → swap
; commute = λ _ → swap∘⁂
}
; iso = λ _ → record
{ isoˡ = swap∘swap
; isoʳ = swap∘swap
}
}
; commutative = swap∘swap
; hexagon = begin
id ⊗₁ swap ∘ assocˡ ∘ swap ⊗₁ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩
id ⊗₁ swap ∘ assocˡ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₁ ∘ π₁ ⟩ , id ∘ π₂ ⟩ ≈⟨ refl⟩∘⟨ assocˡ∘⟨⟩ ⟩
id ⊗₁ swap ∘ ⟨ π₂ ∘ π₁ , ⟨ π₁ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩
⟨ id ∘ π₂ ∘ π₁ , swap ∘ ⟨ π₁ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ swap∘⟨⟩ ⟩
⟨ π₂ ∘ π₁ , ⟨ id ∘ π₂ , π₁ ∘ π₁ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ (⟨⟩-congʳ identityˡ) ⟩
⟨ π₂ ∘ π₁ , ⟨ π₂ , π₁ ∘ π₁ ⟩ ⟩ ≈˘⟨ assocˡ∘⟨⟩ ⟩
assocˡ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ , π₁ ∘ π₁ ⟩ ≈˘⟨ refl ⟩∘⟨ swap∘⟨⟩ ⟩
assocˡ ∘ swap ∘ assocˡ ∎
}
module symmetric = Symmetric symmetric
open symmetric public
| {
"alphanum_fraction": 0.4189680514,
"avg_line_length": 34.2891246684,
"ext": "agda",
"hexsha": "0ec51501b863b3df2c4d4af0c2b76de06e6aab65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Cartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Cartesian.agda",
"max_line_length": 142,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6196,
"size": 12927
} |
open import Agda.Builtin.List
open import Agda.Builtin.Char
foo : Char → List Char
foo c = c ∷ []
case-split-test : List Char → List Char
case-split-test ('-' ∷ ls) with (foo '+')
... | foo-ls = {!foo-ls!}
case-split-test ls = ls
-- WAS: case splitting on foo-ls produces:
-- case-split-test (.'-' ∷ ls) | [] = ?
-- case-split-test (.'-' ∷ ls) | x ∷ foo-ls = ?
-- SHOULD: not put dots in front of literal patterns:
-- case-split-test ('-' ∷ ls) | [] = {!!}
-- case-split-test ('-' ∷ ls) | x ∷ foo-ls = {!!}
| {
"alphanum_fraction": 0.5617760618,
"avg_line_length": 28.7777777778,
"ext": "agda",
"hexsha": "f73e05e9993d9e41128174e7d3f7231e4e8574e5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/interaction/Issue2872.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/interaction/Issue2872.agda",
"max_line_length": 53,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/interaction/Issue2872.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 170,
"size": 518
} |
-- Jesper, Andreas, 2018-10-29, issue #3332
--
-- WAS: With-inlining failed in termination checker
-- due to a DontCare protecting the clause bodies
-- (introduced by Prop).
{-# OPTIONS --prop #-}
data _≡_ {A : Set} (a : A) : A → Prop where
refl : a ≡ a
{-# BUILTIN EQUALITY _≡_ #-}
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
_++_ : {A : Set} → List A → List A → List A
[] ++ l = l
(x ∷ xs) ++ l = x ∷ (xs ++ l)
test : {A : Set} (l : List A) → (l ++ []) ≡ l
test [] = refl
test (x ∷ xs) rewrite test xs = refl
| {
"alphanum_fraction": 0.545620438,
"avg_line_length": 22.8333333333,
"ext": "agda",
"hexsha": "bb950444708b50f01475237efebf245e590c3a2f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3332-rewrite.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3332-rewrite.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3332-rewrite.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 205,
"size": 548
} |
module UniDB.Morph.Sum where
open import UniDB.Spec
--------------------------------------------------------------------------------
data Sum (Ξ Ζ : MOR) (γ₁ γ₂ : Dom) : Set where
inl : Ξ γ₁ γ₂ → Sum Ξ Ζ γ₁ γ₂
inr : Ζ γ₁ γ₂ → Sum Ξ Ζ γ₁ γ₂
instance
iUpSum : {Ξ Ζ : MOR} {{upΞ : Up Ξ}} {{upΖ : Up Ζ}} → Up (Sum Ξ Ζ)
_↑₁ {{iUpSum}} (inl ξ) = inl (ξ ↑₁)
_↑₁ {{iUpSum}} (inr ζ) = inr (ζ ↑₁)
_↑_ {{iUpSum}} ξ 0 = ξ
_↑_ {{iUpSum}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpSum}} ξ = refl
↑-suc {{iUpSum}} ξ δ⁺ = refl
iLkSum :
{T : STX}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} →
Lk T (Sum Ξ Ζ)
lk {{iLkSum {T} {Ξ} {Ζ}}} (inl ξ) i = lk {T} {Ξ} ξ i
lk {{iLkSum {T} {Ξ} {Ζ}}} (inr ζ) i = lk {T} {Ζ} ζ i
iLkUpSum :
{T : STX} {{vrT : Vr T}} {{wkT : Wk T}}
{Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}}
{Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} →
LkUp T (Sum Ξ Ζ)
lk-↑₁-zero {{iLkUpSum {T} {Ξ} {Ζ}}} (inl ξ) = lk-↑₁-zero {T} {Ξ} ξ
lk-↑₁-zero {{iLkUpSum {T} {Ξ} {Ζ}}} (inr ζ) = lk-↑₁-zero {T} {Ζ} ζ
lk-↑₁-suc {{iLkUpSum {T} {Ξ} {Ζ}}} (inl ξ) = lk-↑₁-suc {T} {Ξ} ξ
lk-↑₁-suc {{iLkUpSum {T} {Ξ} {Ζ}}} (inr ζ) = lk-↑₁-suc {T} {Ζ} ζ
module _
(Ξ Ζ : MOR) {{upΞ : Up Ξ}} {{upΖ : Up Ζ}}
where
inl-↑ : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (δ : Dom) →
inl {Ξ} {Ζ} ξ ↑ δ ≡ inl (ξ ↑ δ)
inl-↑ ξ zero rewrite ↑-zero ξ = refl
inl-↑ ξ (suc δ) rewrite inl-↑ ξ δ | ↑-suc ξ δ = refl
inr-↑ : {γ₁ γ₂ : Dom} (ζ : Ζ γ₁ γ₂) (δ : Dom) →
inr {Ξ} {Ζ} ζ ↑ δ ≡ inr (ζ ↑ δ)
inr-↑ ζ zero rewrite ↑-zero ζ = refl
inr-↑ ζ (suc δ) rewrite inr-↑ ζ δ | ↑-suc ζ δ = refl
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4141812043,
"avg_line_length": 32.9074074074,
"ext": "agda",
"hexsha": "470c62983105841313f027e7908e7d73b6f499a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/Sum.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/Sum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 948,
"size": 1777
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- An example of how Algebra.CommutativeMonoidSolver can be used
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Algebra.Solver.CommutativeMonoid.Example where
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Bool.Base using (_∨_)
open import Data.Bool.Properties using (∨-commutativeMonoid)
open import Data.Fin using (zero; suc)
open import Data.Vec using ([]; _∷_)
open import Algebra.Solver.CommutativeMonoid ∨-commutativeMonoid
test : ∀ x y z → (x ∨ y) ∨ (x ∨ z) ≡ (z ∨ y) ∨ (x ∨ x)
test a b c = let _∨_ = _⊕_ in
prove 3 ((x ∨ y) ∨ (x ∨ z)) ((z ∨ y) ∨ (x ∨ x)) (a ∷ b ∷ c ∷ [])
where
x = var zero
y = var (suc zero)
z = var (suc (suc zero))
| {
"alphanum_fraction": 0.5421965318,
"avg_line_length": 30.8928571429,
"ext": "agda",
"hexsha": "99ea0fb4021f4d63dc04d90d8cbc5ef6362091d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid/Example.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid/Example.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 259,
"size": 865
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.Nat.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat.Base
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
private
variable
l m n : ℕ
min : ℕ → ℕ → ℕ
min zero m = zero
min (suc n) zero = zero
min (suc n) (suc m) = suc (min n m)
minComm : (n m : ℕ) → min n m ≡ min m n
minComm zero zero = refl
minComm zero (suc m) = refl
minComm (suc n) zero = refl
minComm (suc n) (suc m) = cong suc (minComm n m)
max : ℕ → ℕ → ℕ
max zero m = m
max (suc n) zero = suc n
max (suc n) (suc m) = suc (max n m)
maxComm : (n m : ℕ) → max n m ≡ max m n
maxComm zero zero = refl
maxComm zero (suc m) = refl
maxComm (suc n) zero = refl
maxComm (suc n) (suc m) = cong suc (maxComm n m)
znots : ¬ (0 ≡ suc n)
znots eq = subst (caseNat ℕ ⊥) eq 0
snotz : ¬ (suc n ≡ 0)
snotz eq = subst (caseNat ⊥ ℕ) eq 0
injSuc : suc m ≡ suc n → m ≡ n
injSuc p = cong predℕ p
discreteℕ : Discrete ℕ
discreteℕ zero zero = yes refl
discreteℕ zero (suc n) = no znots
discreteℕ (suc m) zero = no snotz
discreteℕ (suc m) (suc n) with discreteℕ m n
... | yes p = yes (cong suc p)
... | no p = no (λ x → p (injSuc x))
isSetℕ : isSet ℕ
isSetℕ = Discrete→isSet discreteℕ
-- Arithmetic facts about predℕ
suc-predℕ : ∀ n → ¬ n ≡ 0 → n ≡ suc (predℕ n)
suc-predℕ zero p = ⊥.rec (p refl)
suc-predℕ (suc n) p = refl
-- Arithmetic facts about +
+-zero : ∀ m → m + 0 ≡ m
+-zero zero = refl
+-zero (suc m) = cong suc (+-zero m)
+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
+-comm : ∀ m n → m + n ≡ n + m
+-comm m zero = +-zero m
+-comm m (suc n) = (+-suc m n) ∙ (cong suc (+-comm m n))
-- Addition is associative
+-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o
+-assoc zero _ _ = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)
inj-m+ : m + l ≡ m + n → l ≡ n
inj-m+ {zero} p = p
inj-m+ {suc m} p = inj-m+ (injSuc p)
inj-+m : l + m ≡ n + m → l ≡ n
inj-+m {l} {m} {n} p = inj-m+ ((+-comm m l) ∙ (p ∙ (+-comm n m)))
m+n≡n→m≡0 : m + n ≡ n → m ≡ 0
m+n≡n→m≡0 {n = zero} = λ p → (sym (+-zero _)) ∙ p
m+n≡n→m≡0 {n = suc n} p = m+n≡n→m≡0 (injSuc ((sym (+-suc _ n)) ∙ p))
m+n≡0→m≡0×n≡0 : m + n ≡ 0 → (m ≡ 0) × (n ≡ 0)
m+n≡0→m≡0×n≡0 {zero} = refl ,_
m+n≡0→m≡0×n≡0 {suc m} p = ⊥.rec (snotz p)
-- Arithmetic facts about ·
0≡m·0 : ∀ m → 0 ≡ m · 0
0≡m·0 zero = refl
0≡m·0 (suc m) = 0≡m·0 m
·-suc : ∀ m n → m · suc n ≡ m + m · n
·-suc zero n = refl
·-suc (suc m) n
= cong suc
( n + m · suc n ≡⟨ cong (n +_) (·-suc m n) ⟩
n + (m + m · n) ≡⟨ +-assoc n m (m · n) ⟩
(n + m) + m · n ≡⟨ cong (_+ m · n) (+-comm n m) ⟩
(m + n) + m · n ≡⟨ sym (+-assoc m n (m · n)) ⟩
m + (n + m · n) ∎
)
·-comm : ∀ m n → m · n ≡ n · m
·-comm zero n = 0≡m·0 n
·-comm (suc m) n = cong (n +_) (·-comm m n) ∙ sym (·-suc n m)
·-distribʳ : ∀ m n o → (m · o) + (n · o) ≡ (m + n) · o
·-distribʳ zero _ _ = refl
·-distribʳ (suc m) n o = sym (+-assoc o (m · o) (n · o)) ∙ cong (o +_) (·-distribʳ m n o)
·-distribˡ : ∀ o m n → (o · m) + (o · n) ≡ o · (m + n)
·-distribˡ o m n = (λ i → ·-comm o m i + ·-comm o n i) ∙ ·-distribʳ m n o ∙ ·-comm (m + n) o
·-assoc : ∀ m n o → m · (n · o) ≡ (m · n) · o
·-assoc zero _ _ = refl
·-assoc (suc m) n o = cong (n · o +_) (·-assoc m n o) ∙ ·-distribʳ n (m · n) o
·-identityˡ : ∀ m → 1 · m ≡ m
·-identityˡ m = +-zero m
·-identityʳ : ∀ m → m · 1 ≡ m
·-identityʳ zero = refl
·-identityʳ (suc m) = cong suc (·-identityʳ m)
0≡n·sm→0≡n : 0 ≡ n · suc m → 0 ≡ n
0≡n·sm→0≡n {n = zero} p = refl
0≡n·sm→0≡n {n = suc n} p = ⊥.rec (znots p)
inj-·sm : l · suc m ≡ n · suc m → l ≡ n
inj-·sm {zero} {m} {n} p = 0≡n·sm→0≡n p
inj-·sm {l} {m} {zero} p = sym (0≡n·sm→0≡n (sym p))
inj-·sm {suc l} {m} {suc n} p = cong suc (inj-·sm (inj-m+ {m = suc m} p))
inj-sm· : suc m · l ≡ suc m · n → l ≡ n
inj-sm· {m} {l} {n} p = inj-·sm (·-comm l (suc m) ∙ p ∙ ·-comm (suc m) n)
-- Arithmetic facts about ∸
zero∸ : ∀ n → zero ∸ n ≡ zero
zero∸ zero = refl
zero∸ (suc _) = refl
∸-cancelˡ : ∀ k m n → (k + m) ∸ (k + n) ≡ m ∸ n
∸-cancelˡ zero = λ _ _ → refl
∸-cancelˡ (suc k) = ∸-cancelˡ k
∸-cancelʳ : ∀ m n k → (m + k) ∸ (n + k) ≡ m ∸ n
∸-cancelʳ m n k = (λ i → +-comm m k i ∸ +-comm n k i) ∙ ∸-cancelˡ k m n
∸-distribʳ : ∀ m n k → (m ∸ n) · k ≡ m · k ∸ n · k
∸-distribʳ m zero k = refl
∸-distribʳ zero (suc n) k = sym (zero∸ (k + n · k))
∸-distribʳ (suc m) (suc n) k = ∸-distribʳ m n k ∙ sym (∸-cancelˡ k (m · k) (n · k))
| {
"alphanum_fraction": 0.5207612457,
"avg_line_length": 27.3609467456,
"ext": "agda",
"hexsha": "240871506b31493dc001d1cdca65527f46420e52",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Properties.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2293,
"size": 4624
} |
-- TODO: Move some of the proofs from Function.Iteration.Proofs to here so that (_^_) on functions, natural numbers and integers can be generalised.
-- TODO: Maybe something like this
record Iteration(f)(id)(repeat : I → Y) where
field
𝟎 : I
repeat-𝟎 : repeat 𝟎 ≡ id
record Successor(𝐒 : I → I) where
field proof : repeat(𝐒(i)) ≡ f(repeat(i))
record Predecessor(𝐏 : I → I) where
field proof : f(repeat(𝐏(i))) ≡ repeat(i)
| {
"alphanum_fraction": 0.66367713,
"avg_line_length": 31.8571428571,
"ext": "agda",
"hexsha": "0a6e2463856b0613bd51295118393018b6e32be2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Iteration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Iteration.agda",
"max_line_length": 148,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Iteration.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 150,
"size": 446
} |
module #7 where
{-
Exercise 1.7. Give an alternative derivation of ind′=A from ind=A which avoids the use of universes.
(This is easiest using concepts from later chapters.)
-}
open import Relation.Binary.PropositionalEquality
ind'₌A : ∀{a}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set) → ((x : A) → C x x refl) → (x y : A) → (p : x ≡ y) → C x y p
ind'₌A = {!!}
| {
"alphanum_fraction": 0.6054794521,
"avg_line_length": 30.4166666667,
"ext": "agda",
"hexsha": "83329f6ae2679ac8773e5867d5c8872f6cc1f946",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/#7.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/#7.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/#7.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 131,
"size": 365
} |
module SemiLattice where
open import Prelude
open import PartialOrder as PO
import Chain
private
module IsSemiLat
{A : Set}(po : PartialOrder A)(_⊓_ : A -> A -> A) where
private open module PO = PartialOrder po
record IsSemiLattice : Set where
field
⊓-lbL : forall {x y} -> (x ⊓ y) ≤ x
⊓-lbR : forall {x y} -> (x ⊓ y) ≤ y
⊓-glb : forall {x y z} -> z ≤ x -> z ≤ y -> z ≤ (x ⊓ y)
open IsSemiLat public
record SemiLattice (A : Set) : Set1 where
field
po : PartialOrder A
_⊓_ : A -> A -> A
prf : IsSemiLattice po _⊓_
module SemiLat {A : Set}(L : SemiLattice A) where
private module SL = SemiLattice L
private module SLPO = POrder SL.po
private module IsSL = IsSemiLattice SL.po SL._⊓_ SL.prf
open SLPO public
open SL public hiding (prf)
open IsSL public
private open module C≤ = Chain _≤_ (\x -> ≤-refl) (\x y z -> ≤-trans)
renaming (_===_ to _-≤-_; chain>_ to trans>_)
⊓-commute : forall {x y} -> (x ⊓ y) == (y ⊓ x)
⊓-commute = ≤-antisym lem lem
where
lem : forall {x y} -> (x ⊓ y) ≤ (y ⊓ x)
lem = ⊓-glb ⊓-lbR ⊓-lbL
⊓-assoc : forall {x y z} -> (x ⊓ (y ⊓ z)) == ((x ⊓ y) ⊓ z)
⊓-assoc = ≤-antisym lem₁ lem₂
where
lem₁ : forall {x y z} -> (x ⊓ (y ⊓ z)) ≤ ((x ⊓ y) ⊓ z)
lem₁ = ⊓-glb (⊓-glb ⊓-lbL (≤-trans ⊓-lbR ⊓-lbL))
(≤-trans ⊓-lbR ⊓-lbR)
lem₂ : forall {x y z} -> ((x ⊓ y) ⊓ z) ≤ (x ⊓ (y ⊓ z))
lem₂ = ⊓-glb (≤-trans ⊓-lbL ⊓-lbL)
(⊓-glb (≤-trans ⊓-lbL ⊓-lbR) ⊓-lbR)
⊓-idem : forall {x} -> (x ⊓ x) == x
⊓-idem = ≤-antisym ⊓-lbL (⊓-glb ≤-refl ≤-refl)
≤⊓-L : forall {x y} -> (x ≤ y) ⇐⇒ ((x ⊓ y) == x)
≤⊓-L = (fwd , bwd)
where
fwd = \x≤y -> ≤-antisym ⊓-lbL (⊓-glb ≤-refl x≤y)
bwd = \x⊓y=x -> ≤-trans (==≤-R x⊓y=x) ⊓-lbR
≤⊓-R : forall {x y} -> (y ≤ x) ⇐⇒ ((x ⊓ y) == y)
≤⊓-R {x}{y} = (fwd , bwd)
where
lem : (y ≤ x) ⇐⇒ ((y ⊓ x) == y)
lem = ≤⊓-L
fwd = \y≤x -> ==-trans ⊓-commute (fst lem y≤x)
bwd = \x⊓y=y -> snd lem (==-trans ⊓-commute x⊓y=y)
⊓-monotone-R : forall {a} -> Monotone (\x -> a ⊓ x)
⊓-monotone-R x≤y = ⊓-glb ⊓-lbL (≤-trans ⊓-lbR x≤y)
⊓-monotone-L : forall {a} -> Monotone (\x -> x ⊓ a)
⊓-monotone-L {a}{x}{y} x≤y =
trans> x ⊓ a
-≤- a ⊓ x by ==≤-L ⊓-commute
-≤- a ⊓ y by ⊓-monotone-R x≤y
-≤- y ⊓ a by ==≤-L ⊓-commute
≤⊓-compat : forall {w x y z} -> w ≤ y -> x ≤ z -> (w ⊓ x) ≤ (y ⊓ z)
≤⊓-compat {w}{x}{y}{z} w≤y x≤z =
trans> w ⊓ x
-≤- w ⊓ z by ⊓-monotone-R x≤z
-≤- y ⊓ z by ⊓-monotone-L w≤y
⊓-cong : forall {w x y z} -> w == y -> x == z -> (w ⊓ x) == (y ⊓ z)
⊓-cong wy xz = ≤-antisym (≤⊓-compat (==≤-L wy) (==≤-L xz))
(≤⊓-compat (==≤-R wy) (==≤-R xz))
⊓-cong-L : forall {x y z} -> x == y -> (x ⊓ z) == (y ⊓ z)
⊓-cong-L xy = ⊓-cong xy ==-refl
⊓-cong-R : forall {x y z} -> x == y -> (z ⊓ x) == (z ⊓ y)
⊓-cong-R xy = ⊓-cong ==-refl xy
| {
"alphanum_fraction": 0.452540107,
"avg_line_length": 29.92,
"ext": "agda",
"hexsha": "1b05377a3f6d6dbe285aa9616964f13937efaea6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/lattice/SemiLattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/lattice/SemiLattice.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/lattice/SemiLattice.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1475,
"size": 2992
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Kernel where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing.Base
open import Cubical.Algebra.CommRing.Ideal using (IdealsIn; Ideal→CommIdeal)
open import Cubical.Algebra.Ring.Kernel using () renaming (kernelIdeal to ringKernelIdeal)
private
variable
ℓ : Level
-- If R and S were implicit, their ·Comm component could (almost?) never be inferred.
kernelIdeal : (R S : CommRing ℓ) (f : CommRingHom R S) → IdealsIn R
kernelIdeal _ _ f = Ideal→CommIdeal (ringKernelIdeal f)
| {
"alphanum_fraction": 0.7650176678,
"avg_line_length": 31.4444444444,
"ext": "agda",
"hexsha": "c77ff6015c789e77c6ad09c27875a33f313d3e64",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Kernel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Kernel.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Kernel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 152,
"size": 566
} |
{-# OPTIONS --rewriting #-}
module DualContractive where
open import Data.Fin
open import Data.Maybe
open import Data.Nat hiding (_≤_ ; compare) renaming (_+_ to _+ℕ_)
open import Data.Nat.Properties
open import Data.Sum hiding (map)
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Function
open import Direction
open import Extensionality
open import Max hiding (n)
----------------------------------------------------------------------
-- see also https://github.com/zmthy/recursive-types/tree/ftfjp16
-- for encoding of recursive types
variable
m n : ℕ
i i' j : Fin n
----------------------------------------------------------------------
-- lemmas for rewriting
n+1=suc-n : n +ℕ 1 ≡ suc n
n+1=suc-n {zero} = refl
n+1=suc-n {suc n} = cong suc (n+1=suc-n {n})
n+0=n : n +ℕ 0 ≡ n
n+0=n {zero} = refl
n+0=n {suc n} = cong suc (n+0=n {n})
n+sucm=sucn+m : ∀ n m → n +ℕ suc m ≡ suc (n +ℕ m)
n+sucm=sucn+m 0F m = refl
n+sucm=sucn+m (suc n) m = cong suc (n+sucm=sucn+m n m)
{-# REWRITE n+sucm=sucn+m #-}
open import Agda.Builtin.Equality.Rewrite
----------------------------------------------------------------------
-- auxiliaries for automatic rewriting
{- REWRITE n+1=suc-n #-}
{-# REWRITE n+0=n #-}
-- inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x
-- inject+0-x=x {x = zero} = refl
-- inject+0-x=x {x = suc x} = cong suc inject+0-x=x
{- REWRITE inject+0-x=x #-}
----------------------------------------------------------------------
-- types and session types
data TType (n : ℕ) : Set
data SType (n : ℕ) : Set
data TType n where
TInt : TType n
TChn : (S : SType n) → TType n
data SType n where
xmt : (d : Dir) (T : TType n) (S : SType n) → SType n
end : SType n
rec : (S : SType (suc n)) → SType n
var : (x : Fin n) → SType n
variable
t T : TType n
s s₀ S S₀ : SType n
----------------------------------------------------------------------
module Examples-Types where
sint : SType n → SType n
sint = xmt SND TInt
-- μ X. !Int. X
s1 : SType 0
s1 = rec (sint (var 0F))
-- μ X. μ Y. !Int. Y
s2 : SType 0
s2 = rec (rec (sint (var 0F)))
-- μ X. μ Y. !Int. X
s2a : SType 0
s2a = rec (rec (sint (var 1F)))
-- μ X. !Int. μ Y. X
s3 : SType 0
s3 = rec (sint (rec (var 1F)))
----------------------------------------------------------------------
-- weakening
increase : ∀ m → (x : Fin n) → Fin (n +ℕ m)
increase 0F x = x
increase (suc m) x = suc (increase m x)
increaseS : ∀ m → SType n → SType (n +ℕ m)
increaseT : ∀ m → TType n → TType (n +ℕ m)
increaseS m (xmt d t s) = xmt d (increaseT m t) (increaseS m s)
increaseS m (rec s) = rec (increaseS m s)
increaseS m (var x) = var (inject+ m x)
increaseS m end = end
increaseT m TInt = TInt
increaseT m (TChn s) = TChn (increaseS m s)
weakenS : ∀ m → SType n → SType (n +ℕ m)
weakenT : ∀ m → TType n → TType (n +ℕ m)
weakenS m (xmt d t s) = xmt d (weakenT m t) (weakenS m s)
weakenS m (rec s) = rec (weakenS m s)
weakenS m (var x) = var (increase m x)
weakenS m end = end
weakenT m TInt = TInt
weakenT m (TChn s) = TChn (weakenS m s)
weaken1S : SType n → SType (suc n)
weaken1S s = weakenS 1 s
----------------------------------------------------------------------
-- substitution
ssubst : SType (suc n) → Fin (suc n) → SType 0 → SType n
tsubst : TType (suc n) → Fin (suc n) → SType 0 → TType n
ssubst (xmt d t s) i s0 = xmt d (tsubst t i s0) (ssubst s i s0)
ssubst (rec s) i s0 = rec (ssubst s (suc i) s0)
ssubst {n} (var 0F) 0F s0 = increaseS n s0
ssubst {suc n} (var 0F) (suc i) s0 = var 0F
ssubst (var (suc x)) 0F s0 = var x
ssubst {suc n} (var (suc x)) (suc i) s0 = increaseS 1 (ssubst (var x) i s0)
ssubst end i s0 = end
tsubst TInt i s₀ = TInt
tsubst (TChn s) i s₀ = TChn (ssubst s i s₀)
----------------------------------------------------------------------
-- contractivity
mutual
data ContractiveT : TType n → Set where
con-int : ContractiveT{n} TInt
con-chn : Contractive 0F S → ContractiveT (TChn S)
data Contractive (i : Fin (suc n)) : SType n → Set where
con-xmt : ContractiveT t → Contractive 0F s → Contractive i (xmt d t s)
con-end : Contractive i end
con-rec : Contractive (suc i) S → Contractive i (rec S)
con-var : i ≤ inject₁ j → Contractive i (var j)
----------------------------------------------------------------------
module Examples-Contractivity where
open Examples-Types
cn1 : ¬ Contractive {2} 1F (var 0F)
cn1 (con-var ())
cp1 : Contractive {2} 0F (var 1F)
cp1 = con-var z≤n
cp0 : Contractive {2} 0F (var 0F)
cp0 = con-var z≤n
cs1 : Contractive 0F s1
cs1 = con-rec (con-xmt con-int (con-var z≤n))
cs2 : Contractive 0F s2
cs2 = con-rec (con-rec (con-xmt con-int (con-var z≤n)))
cs2a : Contractive 0F s2a
cs2a = con-rec (con-rec (con-xmt con-int (con-var z≤n)))
sp2 : SType 0
sp2 = s3
cp2 : Contractive 0F sp2
cp2 = con-rec (con-xmt con-int (con-rec (con-var (s≤s z≤n))))
sn2 : SType 0
sn2 = (rec (xmt SND TInt (rec (var 0F))))
cn2 : ¬ Contractive 0F sn2
cn2 (con-rec (con-xmt con-int (con-rec (con-var ()))))
----------------------------------------------------------------------
-- unfolding to first non-rec constructor
unfold : (s : SType n) (c : Contractive i s) (σ : SType n → SType 0) → SType 0
unfold (xmt d t s) (con-xmt ct c) σ = σ (xmt d t s)
unfold end con-end σ = end
unfold (rec s) (con-rec c) σ = unfold s c (σ ∘ λ sn' → ssubst sn' 0F (σ (rec s)))
unfold {i = 0F} (var x) (con-var z≤n) σ = σ (var x)
unfold {i = suc i} (var 0F) (con-var ()) σ
unfold {i = suc i} (var (suc x)) (con-var (s≤s x₁)) σ = unfold (var x) (con-var x₁) (σ ∘ increaseS 1)
unfold₀ : (S : SType 0) (c : Contractive 0F S) → SType 0
unfold₀ S c = unfold S c id
----------------------------------------------------------------------
module Examples-Unfold where
open Examples-Types
c1 : Contractive 0F s1
c1 = con-rec (con-xmt con-int (con-var z≤n))
s11 : SType 0
s11 = xmt SND TInt s1
u-s1=s11 : unfold s1 c1 id ≡ s11
u-s1=s11 = refl
c2 : Contractive 0F s2
c2 = con-rec (con-rec (con-xmt con-int (con-var z≤n)))
u-s2=s11 : unfold s2 c2 id ≡ s11
u-s2=s11 = cong (xmt SND TInt) (cong rec (cong (xmt SND TInt) refl))
----------------------------------------------------------------------
-- contractivity is decidable
infer-contractiveT : (t : TType n) → Dec (ContractiveT t)
infer-contractive : (s : SType n) (i : Fin (suc n)) → Dec (Contractive i s)
infer-contractiveT TInt = yes con-int
infer-contractiveT (TChn s)
with infer-contractive s 0F
infer-contractiveT (TChn s) | yes p = yes (con-chn p)
infer-contractiveT (TChn s) | no ¬p = no (λ { (con-chn cs) → ¬p cs })
infer-contractive (xmt d t s) i
with infer-contractiveT t | infer-contractive s 0F
infer-contractive (xmt d t s) i | yes p | yes p₁ = yes (con-xmt p p₁)
infer-contractive (xmt d t s) i | yes p | no ¬p = no (λ { (con-xmt ct cs) → ¬p cs })
infer-contractive (xmt d t s) i | no ¬p | yes p = no (λ { (con-xmt ct cs) → ¬p ct })
infer-contractive (xmt d t s) i | no ¬p | no ¬p₁ = no (λ { (con-xmt ct cs) → ¬p₁ cs})
infer-contractive end i = yes con-end
infer-contractive (rec s) i
with infer-contractive s (suc i)
infer-contractive (rec s) i | yes p = yes (con-rec p)
infer-contractive (rec s) i | no ¬p = no (λ { (con-rec c) → ¬p c })
infer-contractive (var x) 0F = yes (con-var z≤n)
infer-contractive (var 0F) (suc i) = no (λ { (con-var ()) })
infer-contractive (var (suc x)) (suc i)
with infer-contractive (var x) i
infer-contractive (var (suc x)) (suc i) | yes (con-var x₁) = yes (con-var (s≤s x₁))
infer-contractive (var (suc x)) (suc i) | no ¬p = no (λ { (con-var (s≤s y)) → ¬p (con-var y) })
----------------------------------------------------------------------
module Examples-Inference where
open Examples-Contractivity
infer-p2 : infer-contractive sp2 0F ≡ yes cp2
infer-p2 = refl
infer-n2 : infer-contractive sn2 0F ≡ no cn2
infer-n2 = cong no (ext (λ { (con-rec (con-xmt con-int (con-rec (con-var ())))) }))
----------------------------------------------------------------------
-- RT: if a type is contractive at level i, then it is also contractive at any smaller level
c-weakenS : {S : SType n} (i' : Fin′ i) → Contractive i S → Contractive (inject i') S
c-weakenS i' (con-rec cis) = con-rec (c-weakenS (suc i') cis)
c-weakenS i' (con-xmt x cis) = con-xmt x cis
c-weakenS i' con-end = con-end
c-weakenS {i = suc i} i' (con-var {0F} ())
c-weakenS {i = suc i} 0F (con-var {suc n} (s≤s x)) = con-var z≤n
c-weakenS {i = suc i} (suc i') (con-var {suc n} (s≤s x)) = con-var (s≤s (trans-< x))
c-weakenS₁ : {S : SType n} → Contractive (suc i) S → Contractive (inject₁ i) S
c-weakenS₁ (con-rec cis) = con-rec (c-weakenS₁ cis)
c-weakenS₁ (con-xmt x cis) = con-xmt x cis
c-weakenS₁ con-end = con-end
c-weakenS₁ {0F} {()} (con-var x)
c-weakenS₁ {suc n} {0F} (con-var x) = con-var z≤n
c-weakenS₁ {suc n} {suc i} (con-var x) = con-var (pred-≤ x)
c-weakenS! : {S : SType n} → Contractive i S → Contractive 0F S
c-weakenS! {i = 0F} (con-rec cis) = con-rec cis
c-weakenS! {i = suc i} (con-rec cis) = con-rec (c-weakenS 1F cis)
c-weakenS! {n} {i} (con-xmt x cis) = con-xmt x cis
c-weakenS! {n} {i} con-end = con-end
c-weakenS! {n} {i} (con-var x) = con-var z≤n
----------------------------------------------------------------------
-- single substitution of j ↦ Sj
subst1T : (T : TType (suc n)) (j : Fin (suc n)) (Sj : SType n) → TType n
subst1S : (S : SType (suc n)) (j : Fin (suc n)) (Sj : SType n) → SType n
subst1T TInt j Sj = TInt
subst1T (TChn S) j Sj = TChn (subst1S S j Sj)
subst1S (xmt d T S) j Sj = xmt d (subst1T T j Sj) (subst1S S j Sj)
subst1S end j Sj = end
subst1S (rec S) j Sj = rec (subst1S S (suc j) (weaken1S Sj))
subst1S (var x) j Sj
with compare x j
subst1S (var .(inject least)) j Sj | less .j least = var (inject! least)
subst1S (var x) .x Sj | equal .x = Sj
subst1S (var (suc x)) .(inject least) Sj | greater .(suc x) least = var x
{- the termination checker doesnt like this:
subst1S (var 0F) 0F Sj = Sj
subst1S {suc n} (var 0F) (suc j) Sj = var 0F
subst1S (var (suc x)) 0F Sj = var x
subst1S (var (suc x)) (suc j) Sj = subst1S (var (inject₁ x)) (inject₁ j) Sj
-}
unfold1S : (S : SType 0) → SType 0
unfold1S (xmt d T S) = xmt d T S
unfold1S end = end
unfold1S (rec S) = subst1S S 0F (rec S)
unfoldSS : (S : SType n) → SType n
unfoldSS (xmt d T S) = xmt d T S
unfoldSS end = end
unfoldSS (rec S)
with unfoldSS S
... | ih = subst1S ih 0F (rec ih)
unfoldSS (var x) = var x
----------------------------------------------------------------------
-- max index substitution
subst-maxT : (Sm : SType n) (T : TType (suc n)) → TType n
subst-maxS : (Sm : SType n) (S : SType (suc n)) → SType n
subst-maxT Sm TInt = TInt
subst-maxT Sm (TChn S) = TChn (subst-maxS Sm S)
subst-maxS Sm (xmt d T S) = xmt d (subst-maxT Sm T) (subst-maxS Sm S)
subst-maxS Sm end = end
subst-maxS Sm (rec S) = rec (subst-maxS (weaken1S Sm) S)
subst-maxS Sm (var x)
with max? x
subst-maxS Sm (var x) | yes p = Sm
subst-maxS Sm (var x) | no ¬p = var (reduce ¬p)
unfoldmS : (S : SType 0) → SType 0
unfoldmS (xmt d T S) = xmt d T S
unfoldmS end = end
unfoldmS (rec S) = subst-maxS (rec S) S
----------------------------------------------------------------------
-- max substitution preserves contractivity
contr-weakenT : ContractiveT T → ContractiveT (weakenT 1 T)
contr-weakenS : Contractive i S → Contractive (suc i) (weaken1S S)
contr-weakenT con-int = con-int
contr-weakenT (con-chn x) = con-chn (c-weakenS! (contr-weakenS x))
contr-weakenS (con-xmt x cs) = con-xmt (contr-weakenT x) (c-weakenS! (contr-weakenS cs))
contr-weakenS con-end = con-end
contr-weakenS (con-rec cs) = con-rec (contr-weakenS cs)
contr-weakenS {n}{i} {S = var j} (con-var x) = con-var (s≤s x)
subst-contr-mT :
{T : TType (suc n)} (c : ContractiveT T)
{S' : SType n} (c' : Contractive i S')
→ ContractiveT (subst-maxT S' T)
subst-contr-mS :
-- {i : Fin (suc (suc n))}
{S : SType (suc n)} (c : Contractive (inject₁ i) S)
{S' : SType n} (c' : Contractive i S')
→ Contractive i (subst-maxS S' S)
subst-contr-mT con-int csm = con-int
subst-contr-mT (con-chn x) csm = con-chn (c-weakenS! (subst-contr-mS x (c-weakenS! csm)))
subst-contr-mS (con-xmt x cs) csm = con-xmt (subst-contr-mT x csm) (subst-contr-mS cs (c-weakenS! csm))
subst-contr-mS con-end csm = con-end
subst-contr-mS (con-rec cs) csm = con-rec (subst-contr-mS cs (contr-weakenS csm))
subst-contr-mS {S = var j} (con-var x) csm
with max? j
subst-contr-mS {i = _} {var j} (con-var x) csm | yes p = csm
subst-contr-mS {i = _} {var j} (con-var x) csm | no ¬p = con-var (lemma-reduce x ¬p)
-- one step unfolding preserves contractivity
unfold-contr : Contractive i S → Contractive i (unfoldmS S)
unfold-contr (con-xmt x c) = con-xmt x c
unfold-contr con-end = con-end
unfold-contr (con-rec c) = subst-contr-mS (c-weakenS₁ c) (con-rec c)
-- multiple unfolding
unfold! : (S : SType n) (σ : SType n → SType 0) → SType 0
unfold! (xmt d T S) σ = σ (xmt d T S)
unfold! end σ = end
unfold! (rec S) σ = unfold! S (σ ∘ subst-maxS (rec S))
unfold! (var x) σ = σ (var x)
unfold!-contr : Contractive i S → Contractive i (unfold! S id)
unfold!-contr (con-xmt x cs) = con-xmt x cs
unfold!-contr con-end = con-end
unfold!-contr (con-rec cs) = {!!}
-- multiple unfolding preserves contractivity
SCType : (n : ℕ) → Fin (suc n) → Set
SCType n i = Σ (SType n) (Contractive i)
unfold!! : (SC : SCType n i) → (SCType n i → SCType 0 0F) → SCType 0 0F
unfold!! SC@(xmt d T S , con-xmt x cs) σ = σ SC
unfold!! (end , con-end) σ = end , con-end
unfold!! (rec S , con-rec cs) σ =
unfold!! (S , cs) (σ ∘ λ{ (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) })
unfold!! SC@(var x , con-var x₁) σ = σ SC
----------------------------------------------------------------------
-- equivalence requires multiple unfolding
variable
t₁ t₂ t₁' t₂' : TType n
s₁ s₂ : SType n
-- type equivalence
data EquivT (R : SType n → SType n → Set) : TType n → TType n → Set where
eq-int : EquivT R TInt TInt
eq-chan : R s₁ s₂ → EquivT R (TChn s₁) (TChn s₂)
-- session type equivalence
data EquivS (R : SType n → SType n → Set) : SType n → SType n → Set where
eq-xmt : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivS R (xmt d t₁ s₁) (xmt d t₂ s₂)
eq-end : EquivS R end end
-- record Equiv (s₁ s₂ : SType 0) : Set where
-- coinductive
-- field force : EquivS Equiv (unfold s₁) (unfold s₂)
-- open Equiv
| {
"alphanum_fraction": 0.5713990636,
"avg_line_length": 32.4196428571,
"ext": "agda",
"hexsha": "ddb7f819f65ac69660b9d551e9bb016924239120",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "kcaliban/dual-session",
"max_forks_repo_path": "src/DualContractive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "kcaliban/dual-session",
"max_issues_repo_path": "src/DualContractive.agda",
"max_line_length": 114,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd41919582013e75463308c32750e2712cf2de86",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "kcaliban/dual-session",
"max_stars_repo_path": "src/DualContractive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5402,
"size": 14524
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.