Search is not available for this dataset
text
string
meta
dict
open import Relation.Binary.Core module TreeSort.Impl2.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import BBSTree _≤_ open import Bound.Total A open import Bound.Total.Order _≤_ open import Data.List open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import TreeSort.Impl2 _≤_ tot≤ lemma-insert-/ : {a b : Bound}{x : A}(a≤x : LeB a (val x))(x≤b : LeB (val x) b)(t : BBSTree a b) → (flatten (insert a≤x x≤b t)) / x ⟶ (flatten t) lemma-insert-/ a≤x x≤b (bslf _) = /head lemma-insert-/ {x = x} b≤x x≤t (bsnd {x = y} b≤y y≤t l r) with tot≤ x y ... | inj₁ x≤y = lemma++/r (lemma-insert-/ b≤x (lexy x≤y) l) ... | inj₂ y≤x = lemma++/l {xs = flatten l} (/tail (lemma-insert-/ (lexy y≤x) x≤t r)) theorem-treeSort∼ : (xs : List A) → xs ∼ (flatten (treeSort xs)) theorem-treeSort∼ [] = ∼[] theorem-treeSort∼ (x ∷ xs) = ∼x /head (lemma-insert-/ lebx lext (treeSort xs)) (theorem-treeSort∼ xs)
{ "alphanum_fraction": 0.6183574879, "avg_line_length": 34.5, "ext": "agda", "hexsha": "4373215c7d7e482dce204a26d5b86ec73f0552bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/TreeSort/Impl2/Correctness/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/TreeSort/Impl2/Correctness/Permutation.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/TreeSort/Impl2/Correctness/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 396, "size": 1035 }
-- Jesper, 2017-01-24: if we allow a variable to be instantiated with a value -- of a supertype, the resulting dot pattern won't be type-correct. open import Common.Size data D (i : Size) : (j : Size< ↑ i) → Set where c : ∀ (j : Size< ↑ i) (k : Size< ↑ j) → D i j → D j k → D i k split : ∀ i (j : Size< ↑ i) → D i j → Set split i j x = {!x!} -- split on x -- Expected: splitting on x succeeds with -- split i .k (c j₁ k x x₁) = {!!}
{ "alphanum_fraction": 0.5505376344, "avg_line_length": 24.4736842105, "ext": "agda", "hexsha": "768397b9ef43120a924572c9b7ea17073b23b7ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Blaisorblade/Agda", "max_forks_repo_path": "test/interaction/Issue2407.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Blaisorblade/Agda", "max_issues_repo_path": "test/interaction/Issue2407.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Blaisorblade/Agda", "max_stars_repo_path": "test/interaction/Issue2407.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 166, "size": 465 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane module cohomology.CupProduct.OnEM.InLowDegrees2 {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H open EMExplicit G⊗H.abgroup open import cohomology.CupProduct.OnEM.InLowDegrees G H public open import cohomology.CupProduct.OnEM.CommutativityInLowDegrees open CP₁₁-comm G H cp₁₁-embase-r : (x : EM₁ G.grp) → cp₁₁ x embase == [ north ]₂ cp₁₁-embase-r x = CP₁₁Comm.f x embase module ∧-cp₁₁-Rec = SmashRec {X = ⊙EM₁ G.grp} {Y = ⊙EM₁ H.grp} {C = EM 2} cp₁₁ [ north ]₂ [ north ]₂ cp₁₁-embase-r (λ y → idp) ∧-cp₁₁ : ⊙EM₁ G.grp ∧ ⊙EM₁ H.grp → EM 2 ∧-cp₁₁ = ∧-cp₁₁-Rec.f ⊙∧-cp₁₁ : ⊙EM₁ G.grp ⊙∧ ⊙EM₁ H.grp ⊙→ ⊙EM 2 ⊙∧-cp₁₁ = ∧-cp₁₁-Rec.f , idp
{ "alphanum_fraction": 0.6383467279, "avg_line_length": 26.3939393939, "ext": "agda", "hexsha": "0b61e755fb073c8d03f1e6bf92ce9b305a5dd2ae", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda", "max_line_length": 93, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 357, "size": 871 }
------------------------------------------------------------------------------ -- Axiomatic PA propositional equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityATP where open import PA.Axiomatic.Mendelson.Base ------------------------------------------------------------------------------ -- Identity properties postulate ≈-refl : ∀ {n} → n ≈ n {-# ATP prove ≈-refl #-} postulate ≈-sym : ∀ {m n} → m ≈ n → n ≈ m {-# ATP prove ≈-sym #-} postulate ≈-trans : ∀ {m n o} → m ≈ n → n ≈ o → m ≈ o {-# ATP prove ≈-trans #-}
{ "alphanum_fraction": 0.4080100125, "avg_line_length": 31.96, "ext": "agda", "hexsha": "bae651150ee34346558accb95fd2065da5988999", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/PropositionalEqualityATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 176, "size": 799 }
module Numeral.Natural.Oper.Proofs where import Lvl open import Functional open import Logic open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Induction open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Function.Domain open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties import Structure.Operator.Names as Names open import Structure.Relator.Properties open import Syntax.Transitivity -- TODO: For old code open import Numeral.Natural.Proofs public open import Numeral.Natural.Oper.Proofs.Rewrite public instance [+]-identityₗ : Identityₗ(_+_)(0) Identityₗ.proof([+]-identityₗ) = [+]-baseₗ instance [+]-identityᵣ : Identityᵣ(_+_)(0) Identityᵣ.proof([+]-identityᵣ) {x} = ℕ-elim [≡]-intro (x ↦ [≡]-with(𝐒) {x + 𝟎}{x}) x instance [+]-identity : Identity (_+_) (0) [+]-identity = intro instance [+]-associativity : Associativity(_+_) Associativity.proof([+]-associativity) {x}{y}{z} = ℕ-elim [≡]-intro (i ↦ [≡]-with(𝐒) {(x + y) + i} {x + (y + i)}) z instance [+]-commutativity : Commutativity (_+_) Commutativity.proof([+]-commutativity) {x}{y} = ℕ-elim base next y where base = identityᵣ(_+_)(𝟎) 🝖 symmetry(_≡_) (identityₗ(_+_)(𝟎)) next = \i eq → ([≡]-with(𝐒) {x + i}{i + x} eq) 🝖 symmetry(_≡_) ([+]-stepₗ {i}{x}) [+1]-and-[𝐒] : ∀{x : ℕ} → (x + 1 ≡ 𝐒(x)) [+1]-and-[𝐒] {x} = [≡]-intro [1+]-and-[𝐒] : ∀{x : ℕ} → (1 + x ≡ 𝐒(x)) [1+]-and-[𝐒] {x} = [+1]-and-[𝐒] {x} 🝖 commutativity(_+_) {x}{1} [⋅]-absorberₗ-raw : Names.Absorberₗ(_⋅_)(0) [⋅]-absorberₗ-raw {x} = ℕ-elim [≡]-intro (\i → [≡]-with(0 +_) {0 ⋅ i}{0}) x {-# REWRITE [⋅]-absorberₗ-raw #-} instance [⋅]-absorberₗ : Absorberₗ(_⋅_)(0) Absorberₗ.proof([⋅]-absorberₗ) {x} = [⋅]-absorberₗ-raw {x} instance [⋅]-absorberᵣ : Absorberᵣ(_⋅_)(0) Absorberᵣ.proof([⋅]-absorberᵣ) {x} = [≡]-intro instance [⋅]-absorber : Absorber(_⋅_)(0) [⋅]-absorber = intro [⋅]-identityₗ-raw : Names.Identityₗ(_⋅_)(1) [⋅]-identityₗ-raw {x} = ℕ-elim [≡]-intro (\i eq → (commutativity(_+_) {1} {1 ⋅ i}) 🝖 ([≡]-with(𝐒) {_}{i} eq)) x {-# REWRITE [⋅]-identityₗ-raw #-} instance [⋅]-identityₗ : Identityₗ(_⋅_)(1) Identityₗ.proof([⋅]-identityₗ) {x} = [⋅]-identityₗ-raw {x} instance [⋅]-identityᵣ : Identityᵣ(_⋅_)(1) Identityᵣ.proof([⋅]-identityᵣ) = [≡]-intro instance [⋅]-identity : Identity(_⋅_)(1) [⋅]-identity = intro instance [⋅][+]-distributivityᵣ : Distributivityᵣ(_⋅_)(_+_) Distributivityᵣ.proof([⋅][+]-distributivityᵣ) {x}{y}{z} = ℕ-elim [≡]-intro next z where next : ∀(z : ℕ) → ((x + y) ⋅ z) ≡ ((x ⋅ z) + (y ⋅ z)) → ((x + y) ⋅ 𝐒(z)) ≡ ((x ⋅ 𝐒(z)) + (y ⋅ 𝐒(z))) next z proof = ([≡]-with((x + y) +_) proof) 🝖 (One.associate-commute4 {a = x}{y}{x ⋅ z}{y ⋅ z} (commutativity(_+_){x = y})) [⋅]-with-[𝐒]ₗ : ∀{x y} → (𝐒(x) ⋅ y ≡ (x ⋅ y) + y) [⋅]-with-[𝐒]ₗ {x}{y} = (distributivityᵣ(_⋅_)(_+_) {x}{1}{y}) 🝖 ([≡]-with(expr ↦ (x ⋅ y) + expr) ([⋅]-identityₗ-raw {y})) [⋅]-with-[𝐒]ᵣ : ∀{x y} → (x ⋅ 𝐒(y) ≡ x + (x ⋅ y)) [⋅]-with-[𝐒]ᵣ = [≡]-intro instance [⋅][+]-distributivityₗ : Distributivityₗ(_⋅_)(_+_) Distributivityₗ.proof([⋅][+]-distributivityₗ) {x}{y}{z} = p{x}{y}{z} where p : Names.Distributivityₗ(_⋅_)(_+_) p {𝟎} {y} {z} = [≡]-intro p {𝐒 x} {𝟎} {z} = [≡]-intro p {𝐒 x} {𝐒 y} {𝟎} = [≡]-intro p {𝐒 x} {𝐒 y} {𝐒 z} = [≡]-with(𝐒 ∘ 𝐒) $ x + (x + (𝐒 x ⋅ (y + z))) 🝖[ _≡_ ]-[ [≡]-with((x +_) ∘ (x +_)) (p {𝐒 x} {y} {z}) ] x + (x + ((𝐒 x ⋅ y) + (𝐒 x ⋅ z))) 🝖[ _≡_ ]-[ [≡]-with(x +_) (One.commuteₗ-assocᵣ ⦃ comm = intro(\{x y} → commutativity(_+_) {x}{y}) ⦄ {a = x}{b = 𝐒 x ⋅ y}{c = 𝐒 x ⋅ z}) ] x + ((𝐒 x ⋅ y) + (x + (𝐒 x ⋅ z))) 🝖[ _≡_ ]-[ associativity(_+_) {x = x}{y = 𝐒 x ⋅ y} ]-sym (x + (𝐒 x ⋅ y)) + (x + (𝐒 x ⋅ z)) 🝖-end instance [⋅]-associativity : Associativity (_⋅_) Associativity.proof([⋅]-associativity) {x}{y}{z} = p{x}{y}{z} where p : Names.Associativity(_⋅_) p {𝟎} {𝟎} {𝟎} = [≡]-intro p {𝟎} {𝟎} {𝐒 z} = [≡]-intro p {𝟎} {𝐒 y} {𝟎} = [≡]-intro p {𝟎} {𝐒 y} {𝐒 z} = [≡]-intro p {𝐒 x} {𝟎} {𝟎} = [≡]-intro p {𝐒 x} {𝟎} {𝐒 z} = [≡]-intro p {𝐒 x} {𝐒 y} {𝟎} = [≡]-intro p {𝐒 x} {𝐒 y} {𝐒 z} = [≡]-with(𝐒) $ (x + (𝐒 x ⋅ y)) + (𝐒(x + 𝐒 x ⋅ y) ⋅ z) 🝖[ _≡_ ]-[ associativity(_+_) {x = x}{y = 𝐒 x ⋅ y} ] x + ((𝐒 x ⋅ y) + (𝐒(x + 𝐒 x ⋅ y) ⋅ z)) 🝖[ _≡_ ]-[] x + ((𝐒 x ⋅ y) + ((𝐒 x + 𝐒 x ⋅ y) ⋅ z)) 🝖[ _≡_ ]-[] x + ((𝐒 x ⋅ y) + ((𝐒 x ⋅ 𝐒 y) ⋅ z)) 🝖[ _≡_ ]-[ [≡]-with(expr ↦ x + ((𝐒 x ⋅ y) + expr)) (p{𝐒 x}{𝐒 y}{z}) ] x + ((𝐒 x ⋅ y) + (𝐒 x ⋅ (𝐒 y ⋅ z))) 🝖[ _≡_ ]-[ [≡]-with(x +_) (distributivityₗ(_⋅_)(_+_) {x = 𝐒 x}{y = y}{z = 𝐒 y ⋅ z}) ]-sym x + (𝐒 x ⋅ (y + (𝐒 y ⋅ z))) 🝖-end instance [⋅]-commutativity : Commutativity (_⋅_) Commutativity.proof([⋅]-commutativity) {x}{y} = p {x}{y} where p : Names.Commutativity(_⋅_) p {𝟎} {𝟎} = [≡]-intro p {𝟎} {𝐒 y} = [≡]-intro p {𝐒 x} {𝟎} = [≡]-intro p {𝐒 x} {𝐒 y} = [≡]-with(𝐒) $ x + (𝐒 x ⋅ y) 🝖-[ [≡]-with(x +_) ([⋅]-with-[𝐒]ₗ {x}{y}) ] x + ((x ⋅ y) + y) 🝖-[ [≡]-with(x +_) (commutativity(_+_) {x ⋅ y}{y}) ] x + (y + (x ⋅ y)) 🝖-[ One.commuteₗ-assocᵣ ⦃ comm = intro(\{x y} → commutativity(_+_) {x}{y}) ⦄ {a = x}{b = y}{c = x ⋅ y} ] y + (x + (x ⋅ y)) 🝖-[ [≡]-with(expr ↦ y + (x + expr)) (p {x} {y}) ] y + (x + (y ⋅ x)) 🝖-[ [≡]-with(y +_) (commutativity(_+_) {x}{y ⋅ x}) ] y + ((y ⋅ x) + x) 🝖-[ [≡]-with(y +_) ([⋅]-with-[𝐒]ₗ {y}{x}) ]-sym y + (𝐒 y ⋅ x) 🝖-end [𝐏][𝐒]-inverses : ∀{n} → (𝐏(𝐒(n)) ≡ n) [𝐏][𝐒]-inverses = [≡]-intro [+]-sum-is-0 : ∀{a b} → (a + b ≡ 0) → (a ≡ 0)∧(b ≡ 0) [+]-sum-is-0 {a}{b} proof = [∧]-intro (l{a}{b} proof) r where l = \{a b} → ℕ-elim{T = \b → (a + b ≡ 0) → (a ≡ 0)} id (\_ p → p ∘ [≡]-with(𝐏)) b r = l{b}{a} (commutativity(_+_) {b}{a} 🝖 proof) [⋅]-product-is-1ₗ : ∀{a b} → (a ⋅ b ≡ 1) → (a ≡ 1) [⋅]-product-is-1ₗ {𝟎} {_} p = p [⋅]-product-is-1ₗ {𝐒 a} {𝟎} () [⋅]-product-is-1ₗ {𝐒 a} {𝐒 b} p = [≡]-with(𝐒) ([∧]-elimₗ ([+]-sum-is-0 (injective(𝐒) p))) [⋅]-product-is-1ᵣ : ∀{a b} → (a ⋅ b ≡ 1) → (b ≡ 1) [⋅]-product-is-1ᵣ {a}{b} = [⋅]-product-is-1ₗ {b}{a} ∘ (commutativity(_⋅_) {b}{a} 🝖_) [⋅]-product-is-0 : ∀{a b} → (a ⋅ b ≡ 0) → ((a ≡ 0)∨(b ≡ 0)) [⋅]-product-is-0 {_} {0} _ = [∨]-introᵣ [≡]-intro [⋅]-product-is-0 {0} {𝐒(_)} _ = [∨]-introₗ [≡]-intro [⋅]-product-is-0 {𝐒(a)}{𝐒(b)} ab0 with () ← [𝐒]-not-0 {(𝐒(a) ⋅ b) + a} (commutativity(_+_) {𝐒(a) ⋅ b}{𝐒(a)} 🝖 ab0) [⋅]-product-is-positive : ∀{a b n} → (a ⋅ b ≡ 𝐒(n)) → (∃(n₁ ↦ a ≡ 𝐒(n₁)) ∧ ∃(n₂ ↦ b ≡ 𝐒(n₂))) [⋅]-product-is-positive {_} {0} p with () ← [𝐒]-not-0 (symmetry(_≡_) p) [⋅]-product-is-positive {0} {𝐒(_)} p with () ← [𝐒]-not-0 (symmetry(_≡_) p) [⋅]-product-is-positive {𝐒(a)}{𝐒(b)} p = [∧]-intro ([∃]-intro a) ([∃]-intro b) instance [+]-cancellationᵣ : Cancellationᵣ(_+_) Cancellationᵣ.proof([+]-cancellationᵣ) {a}{x}{y} = ℕ-elim{T = \a → (x + a ≡ y + a) → (x ≡ y)} id (\_ → _∘ injective(𝐒)) a instance [+]-cancellationₗ : Cancellationₗ(_+_) Cancellationₗ.proof([+]-cancellationₗ) {a}{x}{y} = cancellationᵣ(_+_) ∘ One.commuteBothTemp {a₁ = a}{x}{a}{y} [^]-of-𝟎ₗ : ∀{x} → (𝟎 ^ 𝐒(x) ≡ 𝟎) [^]-of-𝟎ₗ = [≡]-intro [^]-of-𝟏ₗ : ∀{x} → (𝟏 ^ x ≡ 𝟏) [^]-of-𝟏ₗ {𝟎} = [≡]-intro [^]-of-𝟏ₗ {𝐒 x} = [^]-of-𝟏ₗ {x} [−₀]-absorberₗ-raw : ∀{x} → ((𝟎 −₀ x) ≡ 𝟎) [−₀]-absorberₗ-raw {n} = ℕ-elim{T = \n → ((𝟎 −₀ n) ≡ 𝟎)} [≡]-intro (\_ _ → [≡]-intro) n {-# REWRITE [−₀]-absorberₗ-raw #-} instance [−₀]-absorberₗ : Absorberₗ (_−₀_) (𝟎) Absorberₗ.proof([−₀]-absorberₗ) {x} = [−₀]-absorberₗ-raw {x} instance [−₀]-identityᵣ : Identityᵣ (_−₀_) (𝟎) Identityᵣ.proof([−₀]-identityᵣ) {x} = [≡]-intro [−₀]-self : ∀{x} → ((x −₀ x) ≡ 𝟎) [−₀]-self {n} = ℕ-elim{T = \n → ((n −₀ n) ≡ 𝟎)} [≡]-intro (\_ p → p) n {-# REWRITE [−₀]-self #-} [−₀]-with-[𝐒]ᵣ : ∀{x y} → ((x −₀ 𝐒(y)) ≡ 𝐏(x −₀ y)) [−₀]-with-[𝐒]ᵣ {𝟎} {𝟎} = [≡]-intro [−₀]-with-[𝐒]ᵣ {𝟎} {𝐒 y} = [≡]-intro [−₀]-with-[𝐒]ᵣ {𝐒 x} {𝟎} = [≡]-intro [−₀]-with-[𝐒]ᵣ {𝐒 x} {𝐒 y} = [−₀]-with-[𝐒]ᵣ {x} {y} [−₀][−₀]-to-[−₀][+] : ∀{x y z} → ((x −₀ y) −₀ z ≡ x −₀ (y + z)) [−₀][−₀]-to-[−₀][+] {x}{y}{𝟎} = [≡]-intro [−₀][−₀]-to-[−₀][+] {x}{y}{𝐒 z} = (x −₀ y) −₀ 𝐒(z) 🝖[ _≡_ ]-[ [−₀]-with-[𝐒]ᵣ {x −₀ y}{z} ] 𝐏((x −₀ y) −₀ z) 🝖[ _≡_ ]-[ congruence₁(𝐏) ([−₀][−₀]-to-[−₀][+] {x}{y}{z}) ] 𝐏(x −₀ (y + z)) 🝖[ _≡_ ]-[ [−₀]-with-[𝐒]ᵣ {x}{y + z} ]-sym x −₀ 𝐒(y + z) 🝖[ _≡_ ]-[] x −₀ (y + 𝐒(z)) 🝖-end [−₀]ₗ[+]ᵣ-nullify : ∀{x y} → ((x + y) −₀ y ≡ x) [−₀]ₗ[+]ᵣ-nullify{𝟎} {𝟎} = [≡]-intro [−₀]ₗ[+]ᵣ-nullify{𝟎} {𝐒(y)} = [≡]-intro [−₀]ₗ[+]ᵣ-nullify{𝐒(x)}{𝐒(y)} = [≡]-intro 🝖 ([−₀]ₗ[+]ᵣ-nullify{𝐒(x)}{y}) [−₀]ₗ[+]ᵣ-nullify{𝐒(x)}{𝟎} = [≡]-intro instance [+][−₀]-inverseOperatorᵣ : InverseOperatorᵣ(_+_)(_−₀_) InverseOperatorᵣ.proof [+][−₀]-inverseOperatorᵣ {x} {y} = [−₀]ₗ[+]ᵣ-nullify {x}{y} [−₀]ₗ[+]ₗ-nullify : ∀{x y} → ((x + y) −₀ x ≡ y) [−₀]ₗ[+]ₗ-nullify {x}{y} = [≡]-substitutionᵣ (commutativity(_+_) {y}{x}) {expr ↦ (expr −₀ x ≡ y)} ([−₀]ₗ[+]ᵣ-nullify {y}{x}) [−₀][+]ᵣ-nullify : ∀{x₁ x₂ y} → ((x₁ + y) −₀ (x₂ + y) ≡ x₁ −₀ x₂) [−₀][+]ᵣ-nullify {_} {_} {𝟎} = [≡]-intro [−₀][+]ᵣ-nullify {x₁}{x₂}{𝐒(y)} = [−₀][+]ᵣ-nullify {x₁}{x₂}{y} [−₀][+]ₗ-nullify : ∀{x y₁ y₂} → ((x + y₁) −₀ (x + y₂) ≡ y₁ −₀ y₂) [−₀][+]ₗ-nullify {x}{y₁}{y₂} = [≡]-with-op(_−₀_) (commutativity(_+_) {x}{y₁}) (commutativity(_+_) {x}{y₂}) 🝖 [−₀][+]ᵣ-nullify{y₁}{y₂}{x} [−₀]-cases : ∀{x y} → ((x −₀ y) + y ≡ x) ∨ (x −₀ y ≡ 𝟎) [−₀]-cases {𝟎} {𝟎} = [∨]-introᵣ [≡]-intro [−₀]-cases {𝟎} {𝐒(_)} = [∨]-introᵣ [≡]-intro [−₀]-cases {𝐒(_)}{𝟎} = [∨]-introₗ [≡]-intro [−₀]-cases {𝐒(x)}{𝐒(y)} with [−₀]-cases {x}{y} ... | [∨]-introₗ proof = [∨]-introₗ ([≡]-with(𝐒) (proof)) ... | [∨]-introᵣ proof = [∨]-introᵣ proof [−₀]-cases-commuted : ∀{x y} → (y + (x −₀ y) ≡ x) ∨ (x −₀ y ≡ 𝟎) [−₀]-cases-commuted {x}{y} with [−₀]-cases{x}{y} ... | [∨]-introₗ proof = [∨]-introₗ (commutativity(_+_) {y}{x −₀ y} 🝖 proof) ... | [∨]-introᵣ proof = [∨]-introᵣ proof [𝄩]-𝐒-cases : ∀{x y} → (𝐒(x 𝄩 y) ≡ 𝐒(x) 𝄩 y) ∨ (𝐒(x 𝄩 y) ≡ x 𝄩 𝐒(y)) [𝄩]-𝐒-cases {𝟎} {𝟎} = [∨]-introₗ [≡]-intro [𝄩]-𝐒-cases {𝟎} {𝐒 y} = [∨]-introᵣ [≡]-intro [𝄩]-𝐒-cases {𝐒 x} {𝟎} = [∨]-introₗ [≡]-intro [𝄩]-𝐒-cases {𝐒 x} {𝐒 y} = [𝄩]-𝐒-cases {x}{y} [𝄩]-identityₗ-raw : Names.Identityₗ(_𝄩_)(0) [𝄩]-identityₗ-raw {𝟎} = [≡]-intro [𝄩]-identityₗ-raw {𝐒(_)} = [≡]-intro {-# REWRITE [𝄩]-identityₗ-raw #-} instance [𝄩]-identityₗ : Identityₗ(_𝄩_)(𝟎) Identityₗ.proof([𝄩]-identityₗ) {x} = [𝄩]-identityₗ-raw {x} [𝄩]-identityᵣ-raw : Names.Identityᵣ (_𝄩_) (0) [𝄩]-identityᵣ-raw {𝟎} = [≡]-intro [𝄩]-identityᵣ-raw {𝐒(_)} = [≡]-intro {-# REWRITE [𝄩]-identityᵣ-raw #-} instance [𝄩]-identityᵣ : Identityᵣ(_𝄩_)(𝟎) Identityᵣ.proof([𝄩]-identityᵣ) {x} = [𝄩]-identityᵣ-raw {x} instance [𝄩]-identity : Identity(_𝄩_)(𝟎) [𝄩]-identity = intro [𝄩]-self : ∀{x} → (x 𝄩 x ≡ 𝟎) [𝄩]-self {𝟎} = [≡]-intro [𝄩]-self {𝐒(x)} = [𝄩]-self {x} {-# REWRITE [𝄩]-self #-} instance [𝄩]-inverseFunctionₗ : InverseFunctionₗ(_𝄩_) ⦃ [∃]-intro 𝟎 ⦄ (id) [𝄩]-inverseFunctionₗ = intro \{x} → [𝄩]-self {x} instance [𝄩]-inverseFunctionᵣ : InverseFunctionᵣ(_𝄩_) ⦃ [∃]-intro 𝟎 ⦄ (id) [𝄩]-inverseFunctionᵣ = intro \{x} → [𝄩]-self {x} instance [𝄩]-commutativity : Commutativity(_𝄩_) Commutativity.proof([𝄩]-commutativity) {x}{y} = p{x}{y} where p : Names.Commutativity (_𝄩_) p{𝟎} {𝟎} = [≡]-intro p{𝟎} {𝐒(y)} = [≡]-intro p{𝐒(x)}{𝟎} = [≡]-intro p{𝐒(x)}{𝐒(y)} = p{x}{y} instance [+][𝄩]-inverseOperatorᵣ : InverseOperatorᵣ(_+_)(_𝄩_) InverseOperatorᵣ.proof [+][𝄩]-inverseOperatorᵣ {x}{y} = p{x}{y} where p : ∀{x y} → ((x + y) 𝄩 y ≡ x) p{𝟎} {𝟎} = [≡]-intro p{𝟎} {𝐒(y)} = [≡]-intro p{𝐒(x)}{𝐒(y)} = [≡]-intro 🝖 (p{𝐒(x)}{y}) p{𝐒(x)}{𝟎} = [≡]-intro instance [swap+][𝄩]-inverseOperatorᵣ : InverseOperatorᵣ(swap(_+_))(_𝄩_) InverseOperatorᵣ.proof [swap+][𝄩]-inverseOperatorᵣ {x}{y} = congruence₂ₗ(_𝄩_)(y) (commutativity(_+_) {y}{x}) 🝖 inverseOperᵣ(_+_)(_𝄩_) {x}{y} instance [swap+][𝄩]-inverseOperatorₗ : InverseOperatorₗ(swap(_+_))(_𝄩_) InverseOperatorₗ.proof [swap+][𝄩]-inverseOperatorₗ {x}{y} = commutativity(_𝄩_) {x}{y + x} 🝖 inverseOperᵣ(_+_)(_𝄩_) {y}{x} instance [+][𝄩]-inverseOperatorₗ : InverseOperatorₗ(_+_)(_𝄩_) InverseOperatorₗ.proof [+][𝄩]-inverseOperatorₗ {x}{y} = commutativity(_𝄩_) {x}{x + y} 🝖 inverseOperᵣ(swap(_+_))(_𝄩_) {y}{x} [𝄩]-with-[+]ᵣ : ∀{x y z} → ((x + z) 𝄩 (y + z) ≡ x 𝄩 y) [𝄩]-with-[+]ᵣ {𝟎} {𝟎} {𝟎} = [≡]-intro [𝄩]-with-[+]ᵣ {𝟎} {𝐒(y)}{𝟎} = [≡]-intro [𝄩]-with-[+]ᵣ {𝟎} {𝟎} {𝐒(z)} = [≡]-intro [𝄩]-with-[+]ᵣ {𝟎} {𝐒(y)}{𝐒(z)} = inverseOperₗ(swap(_+_))(_𝄩_) {z}{_} [𝄩]-with-[+]ᵣ {𝐒(x)}{𝟎} {𝟎} = [≡]-intro [𝄩]-with-[+]ᵣ {𝐒(x)}{𝐒(y)}{𝟎} = [≡]-intro [𝄩]-with-[+]ᵣ {𝐒(x)}{𝟎} {𝐒(z)} = inverseOperᵣ(_+_)(_𝄩_) {𝐒(x)}{z} [𝄩]-with-[+]ᵣ {𝐒(x)}{𝐒(y)}{𝐒(z)} = [𝄩]-with-[+]ᵣ {𝐒(x)}{𝐒(y)}{z} [𝄩]-with-[+]ₗ : ∀{x y z} → ((z + x) 𝄩 (z + y) ≡ x 𝄩 y) [𝄩]-with-[+]ₗ {𝟎} {𝟎} {𝟎} = [≡]-intro [𝄩]-with-[+]ₗ {𝟎} {𝐒(y)}{𝟎} = [≡]-intro [𝄩]-with-[+]ₗ {𝟎} {𝟎} {𝐒(z)} = [≡]-intro [𝄩]-with-[+]ₗ {𝟎} {𝐒(y)}{𝐒(z)} = inverseOperₗ(_+_)(_𝄩_) {z}{𝐒(y)} [𝄩]-with-[+]ₗ {𝐒(x)}{𝟎} {𝟎} = [≡]-intro [𝄩]-with-[+]ₗ {𝐒(x)}{𝐒(y)}{𝟎} = [≡]-intro [𝄩]-with-[+]ₗ {𝐒(x)}{𝟎} {𝐒(z)} = inverseOperᵣ(swap(_+_))(_𝄩_) {𝐒(x)}{z} [𝄩]-with-[+]ₗ {𝐒(x)}{𝐒(y)}{𝐒(z)} = [𝄩]-with-[+]ₗ {𝐒(x)}{𝐒(y)}{z} [𝄩]-equality : ∀{x y} → (x 𝄩 y ≡ 𝟎) → (x ≡ y) [𝄩]-equality {𝟎} {𝟎} [≡]-intro = [≡]-intro [𝄩]-equality {𝟎} {𝐒(y)} () [𝄩]-equality {𝐒(x)}{𝟎} () [𝄩]-equality {𝐒(x)}{𝐒(y)} proof = [≡]-with(𝐒) ([𝄩]-equality {x}{y} proof) instance [⋅][𝄩]-distributivityᵣ : Distributivityᵣ(_⋅_)(_𝄩_) Distributivityᵣ.proof [⋅][𝄩]-distributivityᵣ {x}{y}{z} = p{x}{y}{z} where p : Names.Distributivityᵣ(_⋅_)(_𝄩_) p {𝟎} {𝟎} {z} = [≡]-intro p {𝟎} {𝐒 y} {z} = [≡]-intro p {𝐒 x} {𝟎} {z} = [≡]-intro p {𝐒 x} {𝐒 y} {z} = (𝐒(x) 𝄩 𝐒(y)) ⋅ z 🝖[ _≡_ ]-[] (x 𝄩 y) ⋅ z 🝖[ _≡_ ]-[ p{x}{y}{z} ] (x ⋅ z) 𝄩 (y ⋅ z) 🝖[ _≡_ ]-[ [𝄩]-with-[+]ᵣ {x ⋅ z}{y ⋅ z}{z} ]-sym ((x ⋅ z) + z) 𝄩 ((y ⋅ z) + z) 🝖[ _≡_ ]-[ congruence₂(_𝄩_) ([⋅]-with-[𝐒]ₗ {x}{z}) ([⋅]-with-[𝐒]ₗ {y}{z}) ]-sym (𝐒(x) ⋅ z) 𝄩 (𝐒(y) ⋅ z) 🝖-end instance [⋅][𝄩]-distributivityₗ : Distributivityₗ(_⋅_)(_𝄩_) Distributivityₗ.proof [⋅][𝄩]-distributivityₗ {x}{y}{z} = x ⋅ (y 𝄩 z) 🝖[ _≡_ ]-[ commutativity(_⋅_) {x}{y 𝄩 z} ] (y 𝄩 z) ⋅ x 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_𝄩_) {y}{z}{x} ] (y ⋅ x) 𝄩 (z ⋅ x) 🝖[ _≡_ ]-[ congruence₂(_𝄩_) (commutativity(_⋅_) {y}{x}) (commutativity(_⋅_) {z}{x}) ] (x ⋅ y) 𝄩 (x ⋅ z) 🝖-end
{ "alphanum_fraction": 0.473231228, "avg_line_length": 40.4273972603, "ext": "agda", "hexsha": "118ae9240b278078f3c9d52327002aca08e96c0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Proofs.agda", "max_line_length": 176, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8712, "size": 14756 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The basic code for equational reasoning with a single relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.Base.Single {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) (refl : Reflexive _∼_) (trans : Transitive _∼_) where open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality as P using (_≡_) infix 4 _IsRelatedTo_ infix 3 _∎ infixr 2 _∼⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_ infix 1 begin_ -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : A) : Set (a ⊔ ℓ) where relTo : (x∼y : x ∼ y) → x IsRelatedTo y begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y begin relTo x∼y = x∼y _∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z _ ∼⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) _≡⟨_⟩_ : ∀ x {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ P.refl ⟩ x∼z = x∼z _≡˘⟨_⟩_ : ∀ x {y z} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z _ ≡˘⟨ P.refl ⟩ x∼z = x∼z _≡⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y _ ≡⟨⟩ x∼y = _ ≡⟨ P.refl ⟩ x∼y _∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo refl
{ "alphanum_fraction": 0.5563853622, "avg_line_length": 28.4893617021, "ext": "agda", "hexsha": "6b38b3fd865dc721595e01cd7bc8490a150efa30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Single.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Single.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Single.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1339 }
module PatternSynonymUnderapplied where data Nat : Set where zero : Nat suc : Nat -> Nat pattern suc' x = suc x f : Nat -> Nat f zero = zero f suc' = zero
{ "alphanum_fraction": 0.6604938272, "avg_line_length": 14.7272727273, "ext": "agda", "hexsha": "9f763e2d2bde5a7d58a68253374968720162d8ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/PatternSynonymUnderapplied.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/PatternSynonymUnderapplied.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/PatternSynonymUnderapplied.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 52, "size": 162 }
{-# OPTIONS --rewriting #-} -- Normalization by Evaluation for Graded Call-By-Push-Value. module GradedCBPV where -- Imports from the Agda standard library. open import Library hiding (_×̇_) pattern here! = here refl open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import ProMonoid as _ -- We postulate an effect algebra, a pre-ordered monoid postulate effAlg : ProMonoid lzero lzero lzero open ProMonoid effAlg public renaming ( Carrier to Eff ; _∙_ to infixl 6 _+_ ; ε to ∅ ; _≼_ to _≤_ ; _≈_ to _=E_ ) -- postulate -- +-unitˡ : ∅ + e ≡ e -- +-unitʳ : e + ∅ ≡ e -- +-assoc : (e₁ + e₂) + e₃ ≡ e₁ + (e₂ + e₃) -- +-supʳ : sup es + e ≡ sup λ i → es i + e -- sup-k : sup {I = I} (λ _ → e) ≡ e -- {-# REWRITE +-unitˡ +-unitʳ +-assoc +-supʳ sup-k #-} -- We postulate a set of generic value types. -- There are no operations defined on these types, thus, -- they play the type of (universal) type variables. postulate Base : Set variable o : Base -- Variants (Σ) (and records (Π), resp.) can in principle have any number of -- constructors (fields, resp.), including infinitely one. -- In general, the constructor (field, resp.) names are given by a set I. -- However, I : Set would make syntax already a big type, living in Set₁. -- To keep it in Set₀, we only consider variants (records) with finitely -- many constructors (fields), thus, I : ℕ. -- Branching over I is then realized as functions out of El I, where -- El I = { i | i < I} = Fin I. set = ℕ El = Fin -- Let I range over arities (constructor/field sets) and i over -- constructor/field names. variable I : set i : El I variable e e' e₁ e₂ e₃ : Eff es : El I → Eff -- The types of CBPV are classified into value types P : Ty⁺ which we -- refer to as positive types, and computation types N : Ty⁻ which we -- refer to as negative types. mutual -- Value types data Ty⁺ : Set where base : (o : Base) → Ty⁺ -- Base type. _×̇_ : (P₁ P₂ : Ty⁺) → Ty⁺ -- Finite product (tensor). Σ̇ : (I : set) (Ps : El I → Ty⁺) → Ty⁺ -- Variant (sum). [_] : (e : Eff) (N : Ty⁻) → Ty⁺ -- Thunk (U). -- Remembers effects. -- Computation types data Ty⁻ : Set where ◇̇ : (P : Ty⁺) → Ty⁻ -- Comp (F). Π̇ : (I : set) (Ns : El I → Ty⁻) → Ty⁻ -- Record (lazy product). _⇒̇_ : (P : Ty⁺) (N : Ty⁻) → Ty⁻ -- Function type. -- In CBPV, a variable stands for a value. -- Thus, environments only contain values, -- and typing contexts only value types. -- We use introduce syntax in an intrinsically well-typed way -- with variables being de Bruijn indices into the typing context. -- Thus, contexts are just lists of types. Cxt = List Ty⁺ variable Γ Δ Φ : Cxt J : Cxt → Set P P₁ P₂ P' P′ Q : Ty⁺ N N₁ N₂ N' N′ : Ty⁻ Ps : El I → Ty⁺ Ns : El I → Ty⁻ -- Generic values module _ (Var : Ty⁺ → Cxt → Set) (Comp : Eff → Ty⁻ → Cxt → Set) where -- Right non-invertible data Val' : (P : Ty⁺) (Γ : Cxt) → Set where var : (x : Var P Γ) → Val' P Γ pair : (v₁ : Val' P₁ Γ) (v₂ : Val' P₂ Γ) → Val' (P₁ ×̇ P₂) Γ inj : (i : _) (v : Val' (Ps i) Γ) → Val' (Σ̇ I Ps) Γ thunk : (t : Comp e N Γ) → Val' ([ e ] N) Γ -- Terms mutual Val = Val' _∈_ Comp data Comp (e : Eff) : (N : Ty⁻) (Γ : Cxt) → Set where -- introductions ret : (∅≤ : ∅ ≤ e) (v : Val P Γ) → Comp e (◇̇ P) Γ rec : (t : ∀ i → Comp e (Ns i) Γ) → Comp e (Π̇ I Ns) Γ abs : (t : Comp e N (P ∷ Γ)) → Comp e (P ⇒̇ N) Γ -- positive eliminations split : (v : Val (P₁ ×̇ P₂) Γ) (t : Comp e N (P₂ ∷ P₁ ∷ Γ)) → Comp e N Γ case : (v : Val (Σ̇ I Ps) Γ) (t : ∀ i → Comp e N (Ps i ∷ Γ)) → Comp e N Γ bind : (+≤ : e₁ + e₂ ≤ e) (u : Comp e₁ (◇̇ P) Γ) (t : Comp e₂ N (P ∷ Γ)) → Comp e N Γ -- cut letv : (v : Val P Γ) (t : Comp e N (P ∷ Γ)) → Comp e N Γ -- negative eliminations force : (v : Val ([ e ] N) Γ) → Comp e N Γ prj : (i : _) (t : Comp e (Π̇ I Ns) Γ) → Comp e (Ns i) Γ app : (t : Comp e (P ⇒̇ N) Γ) (v : Val P Γ) → Comp e N Γ -- Normal forms ------------------------------------------------------------------------ -- Normal values only reference variables of base type NVar : (P : Ty⁺) (Γ : Cxt) → Set NVar (base o) Γ = base o ∈ Γ NVar _ _ = ⊥ -- Negative neutrals module _ (Val : Ty⁺ → Cxt → Set) where -- Right non-invertible -- Propagates the effect from the head variable, a thunk. data Ne' (e : Eff) : (N : Ty⁻) (Γ : Cxt) → Set where force : (x : [ e ] N ∈ Γ) → Ne' e N Γ prj : (i : El I) (t : Ne' e (Π̇ I Ns) Γ) → Ne' e (Ns i) Γ app : (t : Ne' e (P ⇒̇ N) Γ) (v : Val P Γ) → Ne' e N Γ mutual NVal = Val' NVar Nf Ne = Ne' NVal -- Cover monad (generalized case tree). -- Collects effects from all bind nodes. data ⟨_⟩ (e : Eff) (J : Cxt → Set) (Γ : Cxt) : Set where return : (∅≤ : ∅ ≤ e) (j : J Γ) → ⟨ e ⟩ J Γ bind : (+≤ : e₁ + e₂ ≤ e) (u : Ne e₁ (◇̇ P) Γ) (t : ⟨ e₂ ⟩ J (P ∷ Γ)) → ⟨ e ⟩ J Γ case : (x : Σ̇ I Ps ∈ Γ) (t : ∀ i → ⟨ e ⟩ J (Ps i ∷ Γ)) → ⟨ e ⟩ J Γ split : (x : (P₁ ×̇ P₂) ∈ Γ) (t : ⟨ e ⟩ J (P₂ ∷ P₁ ∷ Γ)) → ⟨ e ⟩ J Γ ◇ : ∀ J e Γ → Set ◇ J e = ⟨ e ⟩ J -- syntax ◇ J e = ⟨ e ⟩ J -- Right invertible. data Nf (e : Eff) : (N : Ty⁻) (Γ : Cxt) → Set where -- ne only needed for negative base types -- ne : let N = ◇̇ (base o) in (n : ⟨ e ⟩ (Ne e N) Γ) → Nf e N Γ -- ne : let N = ◇̇ (base o) in -- (+≤ : e₁ + e₂ ≤ e) (n : ⟨ e₂ ⟩ (Ne e₁ N) Γ) → Nf e N Γ ret : (v : ⟨ e ⟩ (NVal P) Γ) → Nf e (◇̇ P) Γ -- Invoke RFoc rec : (ts : ∀ i → Nf e (Ns i) Γ) → Nf e (Π̇ I Ns) Γ abs : (t : Nf e N (P ∷ Γ)) → Nf e (P ⇒̇ N) Γ -- Context-indexed sets ------------------------------------------------------------------------ PSet = (Γ : Cxt) → Set NSet = (e : Eff) (Γ : Cxt) → Set variable C A A' A₁ A₂ : PSet B B' B₁ B₂ : NSet F G As : (i : El I) → PSet Bs Bs' Bs₁ Bs₂ : (i : El I) → NSet -- Constructions on PSet 1̂ : PSet 1̂ Γ = ⊤ _×̂_ : (A₁ A₂ : PSet) → PSet (A₁ ×̂ A₂) Γ = A₁ Γ × A₂ Γ Σ̂ : (I : set) (As : El I → PSet) → PSet (Σ̂ I F) Γ = ∃ λ i → F i Γ _⇒̂_ : (A₁ A₂ : PSet) → PSet (A₁ ⇒̂ A₂) Γ = A₁ Γ → A₂ Γ Π̂ : (I : set) (As : El I → PSet) → PSet (Π̂ I As) Γ = ∀ i → As i Γ ⟪_⟫ : (P : Ty⁺) (A : PSet) → PSet ⟪ P ⟫ A Γ = A (P ∷ Γ) -- Constructions on NSet _⇒ⁿ_ : (A : PSet) (B : NSet) → NSet (A ⇒ⁿ B) e Γ = A Γ → B e Γ Πⁿ : (I : set) (Bs : El I → NSet) → NSet (Πⁿ I Bs) e Γ = ∀ i → Bs i e Γ -- Morphisms between ISets _→̇_ : (A₁ A₂ : PSet) → Set A₁ →̇ A₂ = ∀{Γ} → A₁ Γ → A₂ Γ _→̈_ : (B₁ B₂ : NSet) → Set B₁ →̈ B₂ = ∀{e Γ} → B₁ e Γ → B₂ e Γ ⟨_⊙_⟩→̇_ : (P Q R : PSet) → Set ⟨ P ⊙ Q ⟩→̇ R = ∀{Γ} → P Γ → Q Γ → R Γ ⟨_⊙_⊙_⟩→̇_ : (P Q R S : PSet) → Set ⟨ P ⊙ Q ⊙ R ⟩→̇ S = ∀{Γ} → P Γ → Q Γ → R Γ → S Γ Map : (F : (PSet) → PSet) → Set₁ Map F = ∀{A B : PSet} (f : A →̇ B) → F A →̇ F B Π-map : (∀ i {e} → Bs i e →̇ Bs' i e) → ∀{e} → Πⁿ I Bs e →̇ Πⁿ I Bs' e Π-map f r i = f i (r i) -- -- Introductions and eliminations for ×̂ -- p̂air : ⟨ A ⊙ B ⟩→̇ (A ×̂ B) -- p̂air a b = λ -- Monotonicity ------------------------------------------------------------------------ -- Monotonization □ is a monoidal comonad □ : (A : PSet) → PSet □ A Γ = ∀{Δ} (τ : Γ ⊆ Δ) → A Δ extract : □ A →̇ A extract a = a ⊆-refl duplicate : □ A →̇ □ (□ A) duplicate a τ τ′ = a (⊆-trans τ τ′) □-map : Map □ □-map f a τ = f (a τ) extend : (□ A →̇ C) → □ A →̇ □ C extend f = □-map f ∘ duplicate □-weak : □ A →̇ ⟪ P ⟫ (□ A) □-weak a τ = a (⊆-trans (_ ∷ʳ ⊆-refl) τ) □-weak' : □ A →̇ □ (⟪ P ⟫ A) □-weak' a τ = a (_ ∷ʳ τ) □-sum : Σ̂ I (□ ∘ F) →̇ □ (Σ̂ I F) □-sum (i , a) τ = i , a τ -- Monoidality: □-unit : 1̂ →̇ □ 1̂ □-unit = _ □-pair : ⟨ □ A₁ ⊙ □ A₂ ⟩→̇ □ (A₁ ×̂ A₂) □-pair a b τ = (a τ , b τ) -- -- Strong functoriality Map! : (F : PSet → PSet) → Set₁ Map! F = ∀{A C} → ⟨ □ (λ Γ → A Γ → C Γ) ⊙ F A ⟩→̇ F C -- Monotonicity Mon : (A : PSet) → Set Mon A = A →̇ □ A monVar : Mon (P ∈_) monVar x τ = ⊆-lookup τ x -- Positive ISets are monotone □-mon : Mon (□ A) □-mon = duplicate 1-mon : Mon 1̂ 1-mon = □-unit ×-mon : Mon A₁ → Mon A₂ → Mon (A₁ ×̂ A₂) ×-mon mA mB (a , b) = □-pair (mA a) (mB b) Σ-mon : ((i : El I) → Mon (F i)) → Mon (Σ̂ I F) Σ-mon m (i , a) = □-sum (i , m i a) □-intro : Mon A → (A →̇ C) → (A →̇ □ C) □-intro mA f = □-map f ∘ mA -- Cover monad: a strong graded monad ------------------------------------------------------------------------ join : ⟨ e₁ ⟩ (⟨ e₂ ⟩ A) →̇ ⟨ e₁ + e₂ ⟩ A join (return ∅≤e c) = {!c !} join (bind ≤e u c) = {!bind u (join c) !} join (case x t) = case x (join ∘ t) join (split x c) = split x (join c) {- ◇-map : Map ⟨ e ⟩ ◇-map f (return j) = return (f j) ◇-map f (bind u a) = bind u (◇-map f a) ◇-map f (case x t) = case x (λ i → ◇-map f (t i)) ◇-map f (split x a) = split x (◇-map f a) ◇-map! : Map! ⟨ e ⟩ ◇-map! f (return j) = return (extract f j) ◇-map! f (bind u a) = bind u (◇-map! (□-weak f) a) ◇-map! f (case x t) = case x (λ i → ◇-map! (□-weak f) (t i)) ◇-map! f (split x a) = split x (◇-map! (□-weak (□-weak f)) a) ◇-bind : A →̇ ⟨ e₂ ⟩ C → ⟨ e₁ ⟩ A →̇ ⟨ e₁ + e₂ ⟩ C ◇-bind f = join ∘ ◇-map f ◇-record : (⟨ e ⟩ ∘ Πⁿ I Bs) →̈ Πⁿ I (λ i → ⟨ e ⟩ ∘ Bs i) ◇-record c i = ◇-map (_$ i) c ◇-fun : Mon A → (⟨ e ⟩ ∘ A ⇒ⁿ B) →̈ (A ⇒ⁿ (⟨ e ⟩ ∘ B)) ◇-fun mA c a = ◇-map! (λ τ f → f (mA a τ)) c -- Monoidal functoriality ◇-pair : ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ ⟨ e₂ ⟩ (□ A₂) ⟩→̇ ⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂) ◇-pair ca = join ∘ ◇-map! λ τ b → ◇-map! (λ τ′ a → a , b τ′) (ca τ) _⋉_ = ◇-pair □◇-pair' : ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ □ (⟨ e₂ ⟩ (□ A₂)) ⟩→̇ □ (⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂)) □◇-pair' ca cb τ = ◇-pair (□-mon ca τ) (cb τ) □◇-pair : Mon A₂ → ⟨ □ (⟨ e₁ ⟩ A₁) ⊙ □ (⟨ e₂ ⟩ A₂) ⟩→̇ □ (⟨ e₂ + e₁ ⟩ (A₁ ×̂ A₂)) □◇-pair mB ca cb τ = join $ ◇-map! (λ τ₁ b → ◇-map! (λ τ₂ a → a , mB b τ₂) (ca (⊆-trans τ τ₁))) (cb τ) ◇□-pair' : ⟨ ⟨ e₁ ⟩ (□ A₁) ⊙ □ (⟨ e₂ ⟩ (□ A₂)) ⟩→̇ ⟨ e₁ + e₂ ⟩ (□ (A₁ ×̂ A₂)) ◇□-pair' ca cb = join (◇-map! (λ τ a → ◇-map! (λ τ₁ b {_} τ₂ → a (⊆-trans τ₁ τ₂) , b τ₂) (cb τ)) ca) -- Without the abstraction over {_}, there is an incomprehensible error. ◇□-pair : ⟨ □ (⟨ e₁ ⟩ (□ A₁)) ⊙ ⟨ e₂ ⟩ (□ A₂) ⟩→̇ ⟨ e₂ + e₁ ⟩ (□ (A₁ ×̂ A₂)) ◇□-pair ca cb = join (◇-map! (λ τ b → ◇-map! (λ τ₁ a {_} τ₂ → a τ₂ , b (⊆-trans τ₁ τ₂)) (ca τ)) cb) -- Without the abstraction over {_}, there is an incomprehensible error. -- Runnability Run : (B : NSet) → Set Run B = ∀{e₁ e₂} → ⟨ e₁ ⟩ (B e₂) →̇ B (e₁ + e₂) -- Negative ISets are runnable ◇-run : Run (◇ A) ◇-run = join Π-run : (∀ i → Run (Bs i)) → Run (Πⁿ I Bs) Π-run f c i = f i (◇-map (_$ i) c) -- Π-run f x i = Π-map {!λ j → f j!} {!!} {!!} -- Π-run f = {!Π-map f!} ∘ ◇-record ⇒-run : Mon A → Run B → Run (A ⇒ⁿ B) ⇒-run {B = B} mA rB f = rB ∘ ◇-fun {B = B} mA f -- Bind for the ◇ monad ◇-elim : Run B → (A →̇ B e₂) → ⟨ e₁ ⟩ A →̇ B (e₁ + e₂) ◇-elim rB f = rB ∘ ◇-map f ◇-elim! : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ ⟨ e₁ ⟩ A ⟩→̇ B (e₁ + e₂) ◇-elim! rB f = rB ∘ ◇-map! f ◇-elim-□ : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ □ (⟨ e₁ ⟩ A) ⟩→̇ □ (B (e₁ + e₂)) ◇-elim-□ {B = B} rB f c = □-map (uncurry (◇-elim! {B = B} rB)) (□-pair (□-mon f) c) ◇-elim-□-alt : Run B → ⟨ □ (A ⇒̂ B e₂) ⊙ □ (⟨ e₁ ⟩ A) ⟩→̇ □ (B (e₁ + e₂)) ◇-elim-□-alt {B = B} rB f c τ = ◇-elim! {B = B} rB (□-mon f τ) (c τ) bind! : Mon C → Run B → (C →̇ ⟨ e₁ ⟩ A) → (C →̇ (A ⇒̂ B e₂)) → C →̇ B (e₁ + e₂) bind! {B = B} mC rB f k γ = ◇-elim! {B = B} rB (λ τ a → k (mC γ τ) a) (f γ) -- Type interpretation ------------------------------------------------------------------------ mutual ⟦_⟧⁺ : Ty⁺ → PSet ⟦ base o ⟧⁺ = base o ∈_ ⟦ P₁ ×̇ P₂ ⟧⁺ = ⟦ P₁ ⟧⁺ ×̂ ⟦ P₂ ⟧⁺ ⟦ Σ̇ I P ⟧⁺ = Σ̂ I λ i → ⟦ P i ⟧⁺ ⟦ [ e ] N ⟧⁺ = □ (⟦ N ⟧⁻ e) ⟦_⟧⁻ : Ty⁻ → NSet ⟦ ◇̇ P ⟧⁻ = ◇ ⟦ P ⟧⁺ ⟦ Π̇ I N ⟧⁻ = Πⁿ I λ i → ⟦ N i ⟧⁻ ⟦ P ⇒̇ N ⟧⁻ = ⟦ P ⟧⁺ ⇒ⁿ ⟦ N ⟧⁻ ⟦_⟧ᶜ : Cxt → PSet ⟦_⟧ᶜ Γ Δ = All (λ P → ⟦ P ⟧⁺ Δ) Γ -- ⟦ [] ⟧ᶜ = 1̂ -- ⟦ P ∷ Γ ⟧ᶜ = ⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺ -- Positive types are monotone. mon⁺ : (P : Ty⁺) → Mon ⟦ P ⟧⁺ mon⁺ (base o) = monVar mon⁺ (P₁ ×̇ P₂) = ×-mon (mon⁺ P₁) (mon⁺ P₂) mon⁺ (Σ̇ I P) = Σ-mon (mon⁺ ∘ P) mon⁺ ([ e ] N) = □-mon monᶜ : (Γ : Cxt) → Mon ⟦ Γ ⟧ᶜ monᶜ Γ γ τ = All.map (λ {P} v → mon⁺ P v τ) γ -- Negative types are runnable. run⁻ : (N : Ty⁻) → Run ⟦ N ⟧⁻ run⁻ (◇̇ P) = ◇-run run⁻ (Π̇ I N) = Π-run (run⁻ ∘ N) run⁻ (P ⇒̇ N) = ⇒-run {B = ⟦ N ⟧⁻} (mon⁺ P) (run⁻ N) -- monᶜ [] = 1-mon -- monᶜ (P ∷ Γ) = ×-mon (monᶜ Γ) (mon⁺ P) -- Interpretation ------------------------------------------------------------------------ mutual ⦅_⦆⁺ : Val P Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⟧⁺ ⦅ var x ⦆⁺ = λ γ → All.lookup γ x ⦅ pair v₁ v₂ ⦆⁺ = < ⦅ v₁ ⦆⁺ , ⦅ v₂ ⦆⁺ > ⦅ inj i v ⦆⁺ = (i ,_) ∘ ⦅ v ⦆⁺ ⦅ thunk t ⦆⁺ = □-intro (monᶜ _) ⦅ t ⦆⁻ λ⦅_⦆⁻ : Comp e N (P ∷ Γ) → ⟦ Γ ⟧ᶜ →̇ ⟦ P ⇒̇ N ⟧⁻ e λ⦅ t ⦆⁻ γ a = ⦅ t ⦆⁻ (a ∷ γ) ⦅_⦆⁻ : Comp e N Γ → ⟦ Γ ⟧ᶜ →̇ ⟦ N ⟧⁻ e ⦅ ret v ⦆⁻ = return ∘ ⦅ v ⦆⁺ ⦅ rec t ⦆⁻ = flip λ i → {! ⦅ t i ⦆⁻ !} -- need effect subsumption es i ≤ sup es ⦅ abs t ⦆⁻ = λ⦅ t ⦆⁻ ⦅ split v t ⦆⁻ γ = let (a₁ , a₂) = ⦅ v ⦆⁺ γ in ⦅ t ⦆⁻ (a₂ ∷ (a₁ ∷ γ)) ⦅ case v t ⦆⁻ γ = let (i , a) = ⦅ v ⦆⁺ γ in {! ⦅ t i ⦆⁻ (a ∷ γ) !} -- eff sub ⦅ bind {Γ = Γ} {N = N} t t₁ ⦆⁻ = bind! {B = ⟦ N ⟧⁻} (monᶜ Γ) (run⁻ N) ⦅ t ⦆⁻ λ⦅ t₁ ⦆⁻ ⦅ force v ⦆⁻ = extract ∘ ⦅ v ⦆⁺ ⦅ prj i t ⦆⁻ = (_$ i) ∘ ⦅ t ⦆⁻ ⦅ app t v ⦆⁻ = ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ ⦅ letv v t ⦆⁻ = λ⦅ t ⦆⁻ ˢ ⦅ v ⦆⁺ -- Reflection and reification mutual fresh□◇□ : ∀ P {Γ} → ⟪ P ⟫ (□ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺))) Γ fresh□◇□ P = reflect⁺□ P ∘ monVar here! fresh□ : ∀ P {Γ} → ⟪ P ⟫ (□ (⟨ ∅ ⟩ ⟦ P ⟧⁺)) Γ fresh□ P = ◇-map extract ∘ reflect⁺□ P ∘ monVar here! fresh□ P = reflect⁺ P ∘ monVar here! fresh : ∀ {P Γ} → ⟪ P ⟫ (⟨ ∅ ⟩ ⟦ P ⟧⁺) Γ fresh {P} = ◇-map extract (reflect⁺□ P here!) fresh {P} = reflect⁺ P here! fresh◇ : ∀ {P Γ} → ⟪ P ⟫ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺)) Γ fresh◇ {P} = reflect⁺□ P here! fresh◇ {P} = ◇-map (mon⁺ P) fresh -- saves us use of Mon P in freshᶜ reflect⁺□ : (P : Ty⁺) → (P ∈_) →̇ (⟨ ∅ ⟩ (□ ⟦ P ⟧⁺)) reflect⁺□ (base o) x = return (monVar x) reflect⁺□ (P₁ ×̇ P₂) x = split x (◇□-pair (reflect⁺□ P₁ ∘ monVar (there here!)) fresh◇) reflect⁺□ (Σ̇ I Ps) x = case x λ i → ◇-map (□-map (i ,_)) fresh◇ reflect⁺□ ([ e ] N) x = return (□-mon (reflect⁻ N ∘ force ∘ monVar x)) reflect⁺ : (P : Ty⁺) → (P ∈_) →̇ (⟨ ∅ ⟩ ⟦ P ⟧⁺) reflect⁺ (base o) x = return x reflect⁺ (P₁ ×̇ P₂) x = split x (□-weak (fresh□ P₁) ⋉ fresh◇) reflect⁺ (Σ̇ I Ps) x = case x λ i → ◇-map (i ,_) fresh reflect⁺ ([ e ] N) x = return λ τ → reflect⁻ N (force (monVar x τ)) reflect⁻ : (N : Ty⁻) → Ne e N →̇ ⟦ N ⟧⁻ e reflect⁻ (◇̇ P) u = bind u fresh reflect⁻ (Π̇ I Ns) u = λ i → reflect⁻ (Ns i) (prj i u) reflect⁻ (P ⇒̇ N) u = λ a → reflect⁻ N (app u (reify⁺ P a)) reify⁺ : (P : Ty⁺) → ⟦ P ⟧⁺ →̇ NVal P reify⁺ (base o) = var reify⁺ (P₁ ×̇ P₂) (a₁ , a₂) = pair (reify⁺ P₁ a₁) (reify⁺ P₂ a₂) reify⁺ (Σ̇ I Ps) (i , a ) = inj i (reify⁺ (Ps i) a) reify⁺ ([ e ] N) a = thunk (reify⁻ N a) reify⁻ : (N : Ty⁻) → □ (⟦ N ⟧⁻ e) →̇ Nf e N reify⁻ (◇̇ P) f = ret (◇-map (reify⁺ P) (extract f)) reify⁻ {e = e} (Π̇ I Ns) f = rec {es = λ i → e} λ i → reify⁻ (Ns i) (□-map (_$ i) f) reify⁻ (P ⇒̇ N) f = abs $ reify⁻ N $ ◇-elim-□ {B = ⟦ N ⟧⁻} (run⁻ N) (□-weak f) $ fresh□ P ext : (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟦ P ∷ Γ ⟧ᶜ ext (γ , a) = a ∷ γ ◇-ext : ⟨ e ⟩ (⟦ Γ ⟧ᶜ ×̂ ⟦ P ⟧⁺) →̇ ⟨ e ⟩ ⟦ P ∷ Γ ⟧ᶜ ◇-ext = ◇-map ext -- Without the use of ◇-mon! freshᶜ : (Γ : Cxt) → □ (⟨ ∅ ⟩ ⟦ Γ ⟧ᶜ) Γ freshᶜ [] = λ τ → return [] freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (fresh□◇□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair (mon⁺ P) (□-weak (freshᶜ Γ)) (fresh□ P) freshᶜ (P ∷ Γ) = ◇-ext ∘ □◇-pair' (□-weak (freshᶜ Γ)) (◇-map (mon⁺ P) ∘ (fresh□ P)) freshᶜ (P ∷ Γ) = ◇-ext ∘ λ τ → (□-weak (□-mon (freshᶜ Γ)) τ) ⋉ ◇-map (mon⁺ P) (fresh□ P τ) norm : Comp e N →̇ Nf e N norm {N = N} {Γ = Γ} t = reify⁻ N $ □-map (run⁻ N ∘ ◇-map ⦅ t ⦆⁻) $ freshᶜ Γ norm {N = N} {Γ = Γ} t = reify⁻ N $ run⁻ N ∘ ◇-map ⦅ t ⦆⁻ ∘ freshᶜ Γ -- -} -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4329323581, "avg_line_length": 29.3315602837, "ext": "agda", "hexsha": "8dbcc4e8b2ac8d3bdc0d163e8ca77ce803256d69", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src-cbpv/GradedCBPV.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src-cbpv/GradedCBPV.agda", "max_line_length": 100, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src-cbpv/GradedCBPV.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 8390, "size": 16543 }
{-# OPTIONS --without-K #-} module Lecture8 where import Lecture7 open Lecture7 public -- Section 8.1 Propositions is-prop : {i : Level} (A : UU i) → UU i is-prop A = (x y : A) → is-contr (Id x y) is-prop-empty : is-prop empty is-prop-empty () is-prop-unit : is-prop unit is-prop-unit = is-prop-is-contr is-contr-unit is-prop' : {i : Level} (A : UU i) → UU i is-prop' A = (x y : A) → Id x y is-prop-is-prop' : {i : Level} {A : UU i} → is-prop' A → is-prop A is-prop-is-prop' {i} {A} H x y = dpair (concat _ (inv (H x x)) (H x y)) (ind-Id (λ z p → Id (concat _ (inv (H x x)) (H x z)) p) (left-inv (H x x)) y) is-prop'-is-prop : {i : Level} {A : UU i} → is-prop A → is-prop' A is-prop'-is-prop H x y = pr1 (H x y) is-contr-is-prop-inh : {i : Level} {A : UU i} → is-prop A → A → is-contr A is-contr-is-prop-inh H a = dpair a (is-prop'-is-prop H a) is-subtype : {i j : Level} {A : UU i} (B : A → UU j) → UU (i ⊔ j) is-subtype B = (x : _) → is-prop (B x) -- Section 8.2 Sets is-set : {i : Level} → UU i → UU i is-set A = (x y : A) → is-prop (Id x y) axiom-K : {i : Level} → UU i → UU i axiom-K A = (x : A) (p : Id x x) → Id refl p is-set-axiom-K : {i : Level} (A : UU i) → axiom-K A → is-set A is-set-axiom-K A H x y = is-prop-is-prop' (ind-Id (λ z p → (q : Id x z) → Id p q) (H x) y) axiom-K-is-set : {i : Level} (A : UU i) → is-set A → axiom-K A axiom-K-is-set A H x p = concat (center (is-contr-is-prop-inh (H x x) refl)) (inv (contraction (is-contr-is-prop-inh (H x x) refl) refl)) (contraction (is-contr-is-prop-inh (H x x) refl) p) is-equiv-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → (x y : A) → is-equiv (i x y) is-equiv-prop-in-id R p ρ i x = id-fundamental-retr x (i x) (λ y → dpair (ind-Id (λ z p → R x z) (ρ x) y) ((λ r → is-prop'-is-prop (p x y) _ r))) is-prop-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) (E : is-equiv f) → is-prop B → is-prop A is-prop-is-equiv B f E H x y = is-contr-is-equiv (ap f {x} {y}) (is-emb-is-equiv f E x y) (H (f x) (f y)) is-prop-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) (E : is-equiv f) → is-prop A → is-prop B is-prop-is-equiv' A f E H = is-prop-is-equiv _ (inv-is-equiv E) (is-equiv-inv-is-equiv E) H is-set-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → is-set A is-set-prop-in-id R p ρ i x y = is-prop-is-equiv' (R x y) (i x y) (is-equiv-prop-in-id R p ρ i x y) (p x y) is-prop-EqN : (n m : ℕ) → is-prop (EqN n m) is-prop-EqN Nzero Nzero = is-prop-unit is-prop-EqN Nzero (Nsucc m) = is-prop-empty is-prop-EqN (Nsucc n) Nzero = is-prop-empty is-prop-EqN (Nsucc n) (Nsucc m) = is-prop-EqN n m is-set-nat : is-set ℕ is-set-nat = is-set-prop-in-id EqN is-prop-EqN reflexive-EqN (least-reflexive-EqN (λ n → refl))
{ "alphanum_fraction": 0.5342828751, "avg_line_length": 29.8910891089, "ext": "agda", "hexsha": "bff45f66b9f888d6dd70f5a037ec022b4b10bde6", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z", "max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "glangmead/hott_cmu80818", "max_forks_repo_path": "Lecture8.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "glangmead/hott_cmu80818", "max_issues_repo_path": "Lecture8.agda", "max_line_length": 107, "max_stars_count": 4, "max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "glangmead/hott_cmu80818", "max_stars_repo_path": "Lecture8.agda", "max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z", "num_tokens": 1277, "size": 3019 }
module MLib.Fin.Parts.Nat where open import MLib.Prelude open import MLib.Fin.Parts.Core open Nat using (_*_; _+_; _<_) open Fin using (fromℕ≤) open Table module Impl where tryLookup : ∀ {n} {a} {A : Set a} → A → Table A n → ℕ → A tryLookup {n = zero} z t _ = z tryLookup {n = suc n} z t zero = lookup t zero tryLookup {n = suc n} z t (suc i) = tryLookup z (tail t) i tryLookup-prop : ∀ {n} {a} {A : Set a} {z : A} (t : Table A n) {i : Fin n} → lookup t i ≡ tryLookup z t (Fin.toℕ i) tryLookup-prop _ {i = zero} = ≡.refl tryLookup-prop t {i = suc i} = tryLookup-prop (tail t) data Ordering′ : ℕ → ℕ → Set where less : ∀ m k → Ordering′ m (suc (m + k)) gte : ∀ m k → Ordering′ (m + k) m compare′ : ∀ m n → Ordering′ m n compare′ zero zero = gte zero zero compare′ zero (suc n) = less zero n compare′ (suc m) zero = gte zero (suc m) compare′ (suc m) (suc n) with compare′ m n compare′ (suc m) (suc .(suc (m + k))) | less .m k = less (suc m) k compare′ (suc .(n + k)) (suc n) | gte .n k = gte (suc n) k -- Core lemmas lz-lem : ∀ a b c → a + b < a + c → b < c lz-lem zero b c p = p lz-lem (suc a) b c p = lz-lem a b c (Nat.+-cancelˡ-≤ 1 p) lz-lem₂ : ∀ a b → a < a + b → 0 < b lz-lem₂ zero b p = p lz-lem₂ (suc a) b p = lz-lem₂ a b (Nat.+-cancelˡ-≤ 1 p) fromℕ≤-cong′ : ∀ {a b m n} {p : a < m} {q : b < n} → m ≡ n → a ≡ b → fromℕ≤ {a} p ≅ fromℕ≤ {b} q fromℕ≤-cong′ {p = Nat.s≤s Nat.z≤n} {Nat.s≤s Nat.z≤n} ≡.refl ≡.refl = ≅.refl fromℕ≤-cong′ {p = Nat.s≤s (Nat.s≤s p)} {Nat.s≤s (Nat.s≤s q)} ≡.refl ≡.refl = ≅.cong suc (fromℕ≤-cong′ {p = Nat.s≤s p} {q = Nat.s≤s q} ≡.refl ≡.refl) fromℕ≤-cong : ∀ {a b n} {p : a < n} {q : b < n} → a ≡ b → fromℕ≤ {a} p ≡ fromℕ≤ {b} q fromℕ≤-cong = ≅.≅-to-≡ ∘ fromℕ≤-cong′ ≡.refl -- Core functions fromParts : {numParts : ℕ} (parts : Table ℕ numParts) → ℕ × ℕ → ℕ fromParts parts (zero , j) = j fromParts {zero} parts (suc i , j) = 0 fromParts {suc numParts} parts (suc i , j) = lookup parts zero + fromParts (tail parts) (i , j) toParts : {numParts : ℕ} (parts : Table ℕ numParts) (k : ℕ) → ℕ × ℕ toParts {zero} parts k = 0 , 0 toParts {suc n} parts k with lookup parts zero | compare′ k (lookup parts zero) toParts {suc n} parts k | .(suc (k + k₁)) | less .k k₁ = 0 , k toParts {suc n} parts .(lz + k) | lz | gte .lz k = let i , j = toParts (tail parts) k in (suc i , j) -- Property lemmas +-<-lem : ∀ {a b c} → b < c → a + b < a + c +-<-lem {zero} p = p +-<-lem {suc a} p = Nat.s≤s (+-<-lem p) fromℕ-suc-lem : ∀ {m n} (p : m < n) → suc (fromℕ≤ p) ≡ fromℕ≤ (Nat.s≤s p) fromℕ-suc-lem (Nat.s≤s p) = ≡.refl -- Properties fromParts-prop : ∀ {numParts} (parts : Table ℕ numParts) {i j} → i < numParts → j < tryLookup 0 parts i → fromParts parts (i , j) < sum parts fromParts-prop {suc numParts} _ {zero} (Nat.s≤s p) q = Nat.≤-trans q (Nat.m≤m+n _ _) fromParts-prop {suc numParts} parts {suc i} (Nat.s≤s p) q = +-<-lem (fromParts-prop (tail parts) p q) toParts-prop : ∀ {numParts : ℕ} (parts : Table ℕ numParts) {k} → k < sum parts → let i , j = toParts parts k in Σ (i < numParts) (λ q → j < lookup parts (fromℕ≤ {i} q)) toParts-prop {zero} parts {k} () toParts-prop {suc numParts} parts {k} p with lookup parts zero | compare′ k (lookup parts zero) | ≡.inspect (lookup parts) zero toParts-prop {suc numParts} parts {k} p | .(suc (k + k₁)) | less .k k₁ | ≡.[ eq ] = Nat.s≤s Nat.z≤n , Nat.≤-trans (Nat.s≤s (Nat.m≤m+n _ _)) (Nat.≤-reflexive (≡.sym eq)) toParts-prop {suc numParts} parts {.(lz + k)} p | lz | gte .lz k | insp = let q , r = toParts-prop (tail parts) {k} (lz-lem _ _ _ p) in Nat.s≤s q , Nat.≤-trans r (Nat.≤-reflexive (≡.cong (lookup parts) (fromℕ-suc-lem _))) toParts-fromParts : {numParts : ℕ} (parts : Table ℕ numParts) (i j : ℕ) (p : j < tryLookup 0 parts i) → toParts parts (fromParts parts (i , j)) ≡ (i , j) toParts-fromParts {zero} _ i j () toParts-fromParts {suc numParts} parts i j p with lookup parts zero | fromParts parts (i , j) | compare′ (fromParts parts (i , j)) (lookup parts zero) | ≡.inspect (lookup parts) zero | ≡.inspect (fromParts parts) (i , j) toParts-fromParts {suc numParts} parts zero .ipi p | .(suc (ipi + k)) | ipi | less .ipi k | insp₁ | ≡.[ ≡.refl ] = ≡.refl toParts-fromParts {suc numParts} parts zero .(lookup parts zero + k) p | .(lookup parts zero) | .(lookup parts zero + k) | gte .(lookup parts zero) k | ≡.[ ≡.refl ] | ≡.[ ≡.refl ] = ⊥-elim (Nat.n≮n _ (Nat.≤-trans p (Nat.m≤m+n _ k))) toParts-fromParts {suc numParts} parts (suc i) j p | .(suc (ipi + k)) | ipi | less .ipi k | ≡.[ eq ] | ≡.[ eq₁ ] = let y = lookup parts zero z = fromParts _ (i , j) in ⊥-elim (Nat.m≢1+m+n y {z + k} ( begin y ≡⟨ eq ⟩ suc (ipi + k) ≡⟨ ≡.cong (λ h → suc (h + k)) (≡.sym eq₁) ⟩ suc ((y + z) + k) ≡⟨ ≡.cong suc (Nat.+-assoc y z k) ⟩ suc (y + (z + k)) ∎)) where open ≡.Reasoning toParts-fromParts {suc numParts} parts (suc i) j p | .(lookup parts zero) | .(lookup parts zero + k) | gte .(lookup parts zero) k | ≡.[ ≡.refl ] | ≡.[ eq₁ ] with Nat.+-cancelˡ-≡ (lookup parts zero) eq₁ toParts-fromParts {suc numParts} parts (suc i) j p | .(lookup parts zero) | .(lookup parts zero + k) | gte .(lookup parts zero) k | ≡.[ ≡.refl ] | ≡.[ eq₁ ] | eq₂ rewrite ≡.sym eq₂ = let q , r = Σ.≡⇒Pointwise-≡ (toParts-fromParts (tail parts) i j p) in Σ.Pointwise-≡⇒≡ (≡.cong suc q , r) fromParts-toParts : {numParts : ℕ} (parts : Table ℕ numParts) (k : ℕ) (p : k < sum parts) → fromParts parts (toParts parts k) ≡ k fromParts-toParts {zero} parts k () fromParts-toParts {suc numParts} parts k p with lookup parts zero | compare′ k (lookup parts zero) | ≡.inspect (lookup parts) zero fromParts-toParts {suc numParts} parts k p | .(suc (k + k₁)) | less .k k₁ | insp = ≡.refl fromParts-toParts {suc numParts} parts .(lookup parts zero + k) p | .(lookup parts zero) | gte .(lookup parts zero) k | ≡.[ ≡.refl ] = ≡.cong₂ Nat._+_ ≡.refl (fromParts-toParts (tail parts) k (Nat.+-cancelˡ-≤ (lookup parts zero) (Nat.≤-trans (Nat.≤-reflexive (Nat.+-suc _ k)) p))) module Partsℕ {a} {A : Set a} {size : A → ℕ} (P : Parts A size) where open Parts P public fromParts : ℕ × ℕ → ℕ fromParts = Impl.fromParts partsizes toParts : ℕ → ℕ × ℕ toParts = Impl.toParts partsizes private tryLookup-lem : ∀ {i j} (p : i < numParts) → j < sizeAt (Fin.fromℕ≤ p) → j < Impl.tryLookup 0 partsizes i tryLookup-lem p q = Nat.≤-trans q (Nat.≤-reflexive (≡.trans (Impl.tryLookup-prop {z = 0} partsizes) (≡.cong (Impl.tryLookup 0 partsizes) (Fin.toℕ-fromℕ≤ _)))) fromParts-prop : ∀ {i j} (p : i < numParts) → j < sizeAt (Fin.fromℕ≤ p) → fromParts (i , j) < totalSize fromParts-prop p = Impl.fromParts-prop _ p ∘ tryLookup-lem p toParts-prop : ∀ {k} → k < totalSize → let i , j = toParts k in Σ (i < numParts) (λ q → j < lookup partsizes (fromℕ≤ q)) toParts-prop = Impl.toParts-prop _ abstract toParts-fromParts : ∀ {i j} (p : i < numParts) (q : j < sizeAt (Fin.fromℕ≤ p)) → toParts (fromParts (i , j)) ≡ (i , j) toParts-fromParts p = Impl.toParts-fromParts partsizes _ _ ∘ tryLookup-lem p fromParts-toParts : ∀ k (p : k < totalSize) → fromParts (toParts k) ≡ k fromParts-toParts = Impl.fromParts-toParts partsizes
{ "alphanum_fraction": 0.5663244901, "avg_line_length": 44.6488095238, "ext": "agda", "hexsha": "632792cbb1c867dbd4f1be932c682d75b703d6bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Fin/Parts/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Fin/Parts/Nat.agda", "max_line_length": 162, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Fin/Parts/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3116, "size": 7501 }
Type-of : {A : Set} → A → Set Type-of {A = A} _ = A module _ (A : Set) where Foo : A → Set Foo a with Type-of a ... | B = B
{ "alphanum_fraction": 0.4812030075, "avg_line_length": 13.3, "ext": "agda", "hexsha": "164638f2e62b78bf2772904de26e172c8f8fb442", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2324.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2324.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2324.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 56, "size": 133 }
module RecordPatternMatching where record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B data Unit : Set where unit : Unit foo : Unit × Unit → Unit foo (x , y) = {!!} record Box (A : Set) : Set where constructor [_] field proj : A bar : Box Unit → Unit bar [ x ] = {!!}
{ "alphanum_fraction": 0.5875, "avg_line_length": 14.5454545455, "ext": "agda", "hexsha": "44cea86bfe1afcd0df2d6fabd79a62d9d1894008", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/RecordPatternMatching.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/RecordPatternMatching.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/RecordPatternMatching.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 320 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Unary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Unary where open import Data.Empty open import Data.Unit.Base using (⊤) open import Data.Product open import Data.Sum.Base using (_⊎_; [_,_]) open import Function.Base open import Level open import Relation.Nullary hiding (Irrelevant) open import Relation.Nullary.Decidable.Core using (True) open import Relation.Binary.PropositionalEquality.Core using (_≡_) private variable a b c ℓ ℓ₁ ℓ₂ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Definition -- Unary relations are known as predicates and `Pred A ℓ` can be viewed -- as some property that elements of type A might satisfy. -- Consequently `P : Pred A ℓ` can also be seen as a subset of A -- containing all the elements of A that satisfy property P. This view -- informs much of the notation used below. Pred : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Pred A ℓ = A → Set ℓ ------------------------------------------------------------------------ -- Special sets -- The empty set. ∅ : Pred A 0ℓ ∅ = λ _ → ⊥ -- The singleton set. {_} : A → Pred A _ { x } = x ≡_ -- The universal set. U : Pred A 0ℓ U = λ _ → ⊤ ------------------------------------------------------------------------ -- Membership infix 4 _∈_ _∉_ _∈_ : A → Pred A ℓ → Set _ x ∈ P = P x _∉_ : A → Pred A ℓ → Set _ x ∉ P = ¬ x ∈ P ------------------------------------------------------------------------ -- Subset relations infix 4 _⊆_ _⊇_ _⊈_ _⊉_ _⊂_ _⊃_ _⊄_ _⊅_ _⊆_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _⊇_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊇ Q = Q ⊆ P _⊈_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊈ Q = ¬ (P ⊆ Q) _⊉_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊉ Q = ¬ (P ⊇ Q) _⊂_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊂ Q = P ⊆ Q × Q ⊈ P _⊃_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊃ Q = Q ⊂ P _⊄_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊄ Q = ¬ (P ⊂ Q) _⊅_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊅ Q = ¬ (P ⊃ Q) -- The following primed variants of _⊆_ can be used when 'x' can't -- be inferred from 'x ∈ P'. infix 4 _⊆′_ _⊇′_ _⊈′_ _⊉′_ _⊂′_ _⊃′_ _⊄′_ _⊅′_ _⊆′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊆′ Q = ∀ x → x ∈ P → x ∈ Q _⊇′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ Q ⊇′ P = P ⊆′ Q _⊈′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊈′ Q = ¬ (P ⊆′ Q) _⊉′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊉′ Q = ¬ (P ⊇′ Q) _⊂′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊂′ Q = P ⊆′ Q × Q ⊈′ P _⊃′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊃′ Q = Q ⊂′ P _⊄′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊄′ Q = ¬ (P ⊂′ Q) _⊅′_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊅′ Q = ¬ (P ⊃′ Q) ------------------------------------------------------------------------ -- Properties of sets infix 10 Satisfiable Universal IUniversal -- Emptiness - no element satisfies P. Empty : Pred A ℓ → Set _ Empty P = ∀ x → x ∉ P -- Satisfiable - at least one element satisfies P. Satisfiable : Pred A ℓ → Set _ Satisfiable P = ∃ λ x → x ∈ P syntax Satisfiable P = ∃⟨ P ⟩ -- Universality - all elements satisfy P. Universal : Pred A ℓ → Set _ Universal P = ∀ x → x ∈ P syntax Universal P = Π[ P ] -- Implicit universality - all elements satisfy P. IUniversal : Pred A ℓ → Set _ IUniversal P = ∀ {x} → x ∈ P syntax IUniversal P = ∀[ P ] -- Decidability - it is possible to determine if an arbitrary element -- satisfies P. Decidable : Pred A ℓ → Set _ Decidable P = ∀ x → Dec (P x) -- Erasure: A decidable predicate gives rise to another one, more -- amenable to η-expansion ⌊_⌋ : {P : Pred A ℓ} → Decidable P → Pred A ℓ ⌊ P? ⌋ a = Lift _ (True (P? a)) -- Irrelevance - any two proofs that an element satifies P are -- indistinguishable. Irrelevant : Pred A ℓ → Set _ Irrelevant P = ∀ {x} (a : P x) (b : P x) → a ≡ b -- Recomputability - we can rebuild a relevant proof given an -- irrelevant one. Recomputable : Pred A ℓ → Set _ Recomputable P = ∀ {x} → .(P x) → P x ------------------------------------------------------------------------ -- Operations on sets infix 10 ⋃ ⋂ infixr 9 _⊢_ infixr 8 _⇒_ infixr 7 _∩_ infixr 6 _∪_ infix 4 _≬_ -- Complement. ∁ : Pred A ℓ → Pred A ℓ ∁ P = λ x → x ∉ P -- Implication. _⇒_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ⇒ Q = λ x → x ∈ P → x ∈ Q -- Union. _∪_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q -- Intersection. _∩_ : Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∩ Q = λ x → x ∈ P × x ∈ Q -- Infinitary union. ⋃ : ∀ {i} (I : Set i) → (I → Pred A ℓ) → Pred A _ ⋃ I P = λ x → Σ[ i ∈ I ] P i x syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P -- Infinitary intersection. ⋂ : ∀ {i} (I : Set i) → (I → Pred A ℓ) → Pred A _ ⋂ I P = λ x → (i : I) → P i x syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P -- Positive version of non-disjointness, dual to inclusion. _≬_ : Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ≬ Q = ∃ λ x → x ∈ P × x ∈ Q -- Update. _⊢_ : (A → B) → Pred B ℓ → Pred A ℓ f ⊢ P = λ x → P (f x) ------------------------------------------------------------------------ -- Predicate combinators -- These differ from the set operations above, as the carrier set of the -- resulting predicates are not the same as the carrier set of the -- component predicates. infixr 2 _⟨×⟩_ infixr 2 _⟨⊙⟩_ infixr 1 _⟨⊎⟩_ infixr 0 _⟨→⟩_ infixl 9 _⟨·⟩_ infix 10 _~ infixr 9 _⟨∘⟩_ infixr 2 _//_ _\\_ -- Product. _⟨×⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q -- Sum over one element. _⟨⊎⟩_ : Pred A ℓ → Pred B ℓ → Pred (A ⊎ B) _ P ⟨⊎⟩ Q = [ P , Q ] -- Sum over two elements. _⟨⊙⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q -- Implication. _⟨→⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _ (P ⟨→⟩ Q) f = P ⊆ Q ∘ f -- Product. _⟨·⟩_ : (P : Pred A ℓ₁) (Q : Pred B ℓ₂) → (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_) (P ⟨·⟩ Q) (p , f) = f p -- Converse. _~ : Pred (A × B) ℓ → Pred (B × A) ℓ P ~ = P ∘ swap -- Composition. _⟨∘⟩_ : Pred (A × B) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × C) _ (P ⟨∘⟩ Q) (x , z) = ∃ λ y → (x , y) ∈ P × (y , z) ∈ Q -- Post-division. _//_ : Pred (A × C) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × B) _ (P // Q) (x , y) = Q ∘ (y ,_) ⊆ P ∘ (x ,_) -- Pre-division. _\\_ : Pred (A × C) ℓ₁ → Pred (A × B) ℓ₂ → Pred (B × C) _ P \\ Q = (P ~ // Q ~) ~
{ "alphanum_fraction": 0.4933458588, "avg_line_length": 21.432885906, "ext": "agda", "hexsha": "ffee3d05c8f60b6cd5d574a4a1d25a78833f83c6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Unary.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Unary.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2554, "size": 6387 }
-- Andreas, 2016-06-20, issue #1891 -- Computation of which variables are splittable was wrong -- in the presence of a where-module. -- {-# OPTIONS -v interaction.case:20 #-} data D : Set where c : D test : (x : D) → D test x = {!x!} -- C-c C-c where y = c -- WAS: -- Splitting on x reports: -- Not a (splittable) variable: x -- when checking that the expression ? has type D -- Should work now. -- Further tests: record R (A : Set) : Set where testR : (x : D) → D testR x = {!x!} where B = A module M (A : Set) where testM : (x : D) → D testM x = {!x!} where open R {A = A}
{ "alphanum_fraction": 0.5822368421, "avg_line_length": 17.8823529412, "ext": "agda", "hexsha": "79f3b708c3c58065bd8f4e5b35d2aed292c6de13", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1891.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1891.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1891.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 211, "size": 608 }
open import Data.Nat using (ℕ; _+_) renaming (_≤?_ to _≤?ₙ_) open import Data.Bool using (Bool; true; false; not; _∧_) open import Data.String using (String; _≟_) open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂) open import Data.Product using (_×_; _,_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Product using (_×_; _,_; -,_; _-,-_; ∃; ∃-syntax) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Level using (Level; suc; _⊔_) open import IMP open import Hoare data True {l} : Set l where ⊤ : True data acom {l} : Set (suc l) where SKIP : acom _::=_ : String → aexp → acom _::_ : acom {l} → acom {l} → acom IF_THEN_ELSE_ : bexp → acom {l} → acom {l} → acom WHILE[_]_DO_ : assn {l} → bexp → acom {l} → acom strip : ∀{l} → acom {l} → com strip SKIP = SKIP strip (x ::= a) = x ::= a strip (c₁ :: c₂) = strip c₁ :: strip c₂ strip (IF b THEN c₁ ELSE c₂) = IF b THEN strip c₁ ELSE strip c₂ strip (WHILE[ I ] b DO c) = WHILE b DO strip c pre : ∀{l} → acom {l} → assn → assn pre SKIP Q = Q pre (x ::= a) Q s = Q (s [ x ::= aval a s ]) pre (c₁ :: c₂) Q = pre c₁ (pre c₂ Q) pre (IF b THEN c₁ ELSE c₂) Q s with bval b s ... | true = pre c₁ Q s ... | false = pre c₂ Q s pre (WHILE[ I ] b DO c) Q = I vc : ∀{l} → acom {l} → assn → Set l vc SKIP Q = True vc (x ::= x₁) Q = True vc (c₁ :: c₂) Q = vc c₁ (pre c₂ Q) × vc c₂ Q vc (IF b THEN c₁ ELSE c₂) Q = vc c₁ Q × vc c₂ Q vc (WHILE[ I ] b DO c) Q = (∀ s → I s × bval b s ≡ true → pre c I s) × (∀ s → I s × bval b s ≡ false → Q s) × vc c I extract-if-pre₁ : ∀{l} {Q : assn {l}} {c₁ c₂ s} b → pre (IF b THEN c₁ ELSE c₂) Q s × bval b s ≡ true → pre c₁ Q s extract-if-pre₁ b (x , y) rewrite y = x extract-if-pre₂ : ∀{l} {Q : assn {l}} {c₁ c₂ s} b → pre (IF b THEN c₁ ELSE c₂) Q s × bval b s ≡ false → pre c₂ Q s extract-if-pre₂ b (x , y) rewrite y = x vc-correctness : ∀{l} {P Q : assn} c → vc {l} c Q → (∀ s → P s → pre c Q s) → ⊢[ P ] strip c [ Q ] vc-correctness SKIP v i = Conseq i Skip (λ s z → z) vc-correctness (x ::= a) v i = Conseq i Loc (λ r k → k) vc-correctness (c₁ :: c₂) v i = Comp (vc-correctness c₁ (Data.Product.proj₁ v) i) (vc-correctness c₂ (Data.Product.proj₂ v) (λ s z → z)) vc-correctness {l}{P}{Q} (IF b THEN c₁ ELSE c₂) (fst , snd) i = Conseq i (If (vc-correctness c₁ fst (λ s p → extract-if-pre₁ b p)) (vc-correctness c₂ snd (λ s p → extract-if-pre₂ b p))) (λ s z → z) vc-correctness (WHILE[ I ] b DO c) (fst , fst₁ , snd) i = Conseq i (While (vc-correctness c snd fst)) fst₁ pre-mono : ∀{l} {P P′ : assn {l}} {s′} c → (∀ s → P s → P′ s) → pre c P s′ → pre c P′ s′ pre-mono {s′ = s′} SKIP x x₁ = x s′ x₁ pre-mono (x₂ ::= x₃) x x₁ = x _ x₁ pre-mono (c :: c₁) x x₁ = pre-mono c (λ s → pre-mono c₁ x) x₁ pre-mono {s′ = s′} (IF x₂ THEN c₁ ELSE c₂) x x₁ with bval x₂ s′ ... | true = pre-mono c₁ x x₁ ... | false = pre-mono c₂ x x₁ pre-mono (WHILE[ x₂ ] x₃ DO c) x x₁ = x₁ vc-mono : ∀{l} {P P′ : assn {l}} c → (∀ s → P s → P′ s) → vc c P → vc c P′ vc-mono SKIP _ _ = ⊤ vc-mono (x ::= a) _ _ = ⊤ vc-mono (c₁ :: c₂) pp′ (vcpre , vc2) = vc-mono c₁ (λ _ → pre-mono c₂ pp′) vcpre , vc-mono c₂ pp′ vc2 vc-mono (IF b THEN c₁ ELSE c₂) pp′ (vc₁ , vc₂) = vc-mono c₁ pp′ vc₁ , vc-mono c₂ pp′ vc₂ vc-mono (WHILE[ I ] b DO c) pp′ (I₁ , I₂ , vcc) = I₁ , (λ s z → pp′ s (I₂ s z)) , vcc either : ∀ c → c ≡ true ⊎ c ≡ false either true = inj₁ refl either false = inj₂ refl construct-if-pre : ∀{l} {P Q : assn {l}} {ac₁ ac₂} b s → (bval b s ≡ true → pre ac₁ Q s) → (bval b s ≡ false → pre ac₂ Q s) → pre (IF b THEN ac₁ ELSE ac₂) Q s construct-if-pre b s f g with bval b s ... | true = f refl ... | false = g refl vc-completeness : ∀{l} {P Q : assn {l}} c → ⊢[ P ] c [ Q ] → ∃[ c̃ ] ( c ≡ strip c̃ × vc c̃ Q × (∀ s → P s → pre c̃ Q s)) vc-completeness c Skip = SKIP , refl , ⊤ , (λ x c → c) vc-completeness c Loc = _ , refl , ⊤ , (λ x c → c) vc-completeness (c₁ :: c₂) (Comp x y) with vc-completeness c₁ x ... | ac₁ , b , c , d with vc-completeness c₂ y ... | ac₂ , f , g , h rewrite b | f = (ac₁ :: ac₂) , refl , (vc-mono ac₁ h c , g) , (λ s ps → pre-mono ac₁ h (d s ps)) vc-completeness {P = P} (IF b THEN c₁ ELSE c₂) (If d₁ d₂) with vc-completeness c₁ d₁ ... | ac₁ , f , g , h with vc-completeness c₂ d₂ ... | ac₂ , j , k , m rewrite f | j = (IF b THEN ac₁ ELSE ac₂) , refl , (g , k) , (λ s ps → construct-if-pre {P = P} b s (λ t → h s (ps , t)) (λ f → m s (ps , f))) vc-completeness (WHILE b DO c) (While r) with vc-completeness c r ... | ac , f , g , h rewrite f = (WHILE[ _ ] b DO ac) , refl , (h , (λ s z → z) , g) , λ s z → z vc-completeness c (Conseq x₁ r x₂) with vc-completeness c r ... | ac , f , g , h rewrite f = ac , refl , vc-mono ac x₂ g , (λ s ps → pre-mono ac x₂ (h s (x₁ s ps)))
{ "alphanum_fraction": 0.5121442125, "avg_line_length": 38.1884057971, "ext": "agda", "hexsha": "6e46e639fa05be63634457572b04bcb8e868ef73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/imp-semantics", "max_forks_repo_path": "VerificationConditions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/imp-semantics", "max_issues_repo_path": "VerificationConditions.agda", "max_line_length": 105, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/imp-semantics", "max_stars_repo_path": "VerificationConditions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z", "num_tokens": 2129, "size": 5270 }
module Category.Monoidal where open import Category.NatIsomorphism
{ "alphanum_fraction": 0.8550724638, "avg_line_length": 13.8, "ext": "agda", "hexsha": "5829e96324aa243003201bd3daf8060ad4633971", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/Monoidal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/Monoidal.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/Monoidal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 15, "size": 69 }
-- {-# OPTIONS --show-implicit --show-irrelevant #-} module Data.QuadTree.FoldableProofs.FoldableProof where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Logic open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.QuadrantLenses open import Data.QuadTree.Implementation.SafeFunctions open import Data.QuadTree.Implementation.PropDepthRelation open import Data.QuadTree.Implementation.Foldable -- All proofs for Foldables -- foldr f z t = appEndo (foldMap (Endo . f) t ) z -- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z -- fold = foldMap id -- length = getSum . foldMap (Sum . const 1) -- I didn't change the default implementations of foldl/foldr/fold/length, so these laws should all hold -- However, I will proof that the length of the quadtree is equal to width * height. -- lengthₑ quadtreeFoldable vqt ≡ size vqt size : {t : Set} {{eqT : Eq t}} {dep : Nat} -> (vqt : VQuadTree t {dep}) -> Nat size (CVQuadTree (Wrapper (w , h) x₁)) = w * h lengthₙ : {t : Set → Set} ⦃ r : Foldable t ⦄ {a : Set} → t a → Nat lengthₙ {{r}} = foldMap {{r}} {{ MonoidSum }} (const 1) length-replicateₙ : {t : Set} (n : Nat) (v : t) -> lengthₙ (replicateₙ n v) ≡ n length-replicateₙ {t} Z v = refl length-replicateₙ {t} (S n) v = begin lengthₙ (replicateₙ (S n) v) =⟨⟩ S (lengthₙ (replicateₙ n v)) =⟨ cong S (length-replicateₙ n v ) ⟩ S n end length-concat-sub : {t : Set} -> (list : List t) (lists : List (List t)) -> lengthₙ (list ++ concat lists) ≡ lengthₙ list + lengthₙ (concat lists) length-concat-sub {t} [] lists = refl length-concat-sub {t} (x ∷ xs) lists = begin lengthₙ ((x ∷ xs) ++ concat lists) =⟨⟩ S (lengthₙ (xs ++ concat lists)) =⟨ cong S (length-concat-sub xs lists) ⟩ lengthₙ (x ∷ xs) + lengthₙ (concat lists) end length-concat : {t : Set} -> (lists : List (List t)) -> lengthₙ (concat lists) ≡ sum (map lengthₙ lists) length-concat {t} [] = refl length-concat {t} (list ∷ lists) = begin lengthₙ (concat (list ∷ lists)) =⟨⟩ lengthₙ (list ++ concat lists) =⟨ length-concat-sub list lists ⟩ lengthₙ list + lengthₙ (concat lists) =⟨ cong (λ q -> lengthₙ list + q) (length-concat lists) ⟩ lengthₙ list + sum (map lengthₙ lists) =⟨⟩ sum (map lengthₙ (list ∷ lists)) end concat-nothing : {t : Set} -> (list : List t) -> list ++ [] ≡ list concat-nothing [] = refl concat-nothing (x ∷ list) = cong (λ z → x ∷ z) (concat-nothing list) diff-n-zero : (n : Nat) -> diff n Z ≡ n diff-n-zero Z = refl diff-n-zero (S n) = refl map-concat : {s t : Set} -> (a b : List s) -> (f : s -> t) -> map f (a ++ b) ≡ map f a ++ map f b map-concat [] b f = refl map-concat (a ∷ as) b f = cong (λ z → f a ∷ z) (map-concat as b f) map-concat4 : {s t : Set} -> (a b c d : List s) -> (f : s -> t) -> map f (a ++ b ++ c ++ d) ≡ map f a ++ map f b ++ map f c ++ map f d map-concat4 a b c d f = begin map f (a ++ b ++ c ++ d) =⟨ map-concat a (b ++ c ++ d) f ⟩ map f a ++ map f (b ++ c ++ d) =⟨ cong (λ q -> map f a ++ q) (map-concat b (c ++ d) f) ⟩ map f a ++ map f b ++ map f (c ++ d) =⟨ cong (λ q -> map f a ++ map f b ++ q) (map-concat c d f) ⟩ map f a ++ map f b ++ map f c ++ map f d end sum-concat : (a b : List Nat) -> sum (a ++ b) ≡ sum a + sum b sum-concat [] b = refl sum-concat (a ∷ as) b = begin a + sum (as ++ b) =⟨ cong (λ q -> a + q) (sum-concat as b) ⟩ a + (sum as + sum b) =⟨ sym $ add-assoc a (sum as) (sum b) ⟩ sum (a ∷ as) + sum b end sum-concat4 : (a b c d : List Nat) -> sum (a ++ b ++ c ++ d) ≡ sum a + sum b + sum c + sum d sum-concat4 a b c d = begin sum (a ++ b ++ c ++ d) =⟨ sum-concat a (b ++ c ++ d) ⟩ sum a + sum (b ++ c ++ d) =⟨ cong (λ q -> sum a + q) (sum-concat b (c ++ d)) ⟩ sum a + (sum b + sum (c ++ d)) =⟨ cong (λ q -> sum a + (sum b + q)) (sum-concat c d) ⟩ sum a + (sum b + (sum c + sum d)) =⟨ sym $ add-assoc (sum a) (sum b) (sum c + sum d) ⟩ (sum a + sum b) + (sum c + sum d) =⟨ sym $ add-assoc (sum a + sum b) (sum c) (sum d) ⟩ sum a + sum b + sum c + sum d end nat-distributive : (a b c : Nat) -> (a * c) + (b * c) ≡ (a + b) * c nat-distributive Z b c = refl nat-distributive (S a) b c = begin (S a * c) + (b * c) =⟨ add-assoc c (a * c) (b * c) ⟩ c + ((a * c) + b * c) =⟨ cong (_+_ c) (nat-distributive a b c) ⟩ c + ((a + b) * c) =⟨⟩ (S a + b) * c end add-diff : (a b : Nat) -> IsTrue (a <= b) -> a + diff b a ≡ b add-diff Z Z ab = refl add-diff Z (S b) ab = refl add-diff (S a) (S b) ab = cong S (add-diff a b ab) line-split-left : (x1 xm x2 y : Nat) -> IsTrue (x1 <= xm) -> IsTrue (xm <= x2) -> IsTrue (x1 <= x2) -> diff xm x1 * y + diff x2 xm * y ≡ diff x2 x1 * y line-split-left Z Z Z y x1m xm2 x12 = refl line-split-left Z Z (S x2) y x1m xm2 x12 = refl line-split-left Z (S xm) (S x2) y x1m xm2 x12 = begin (S xm) * y + diff (S x2) (S xm) * y =⟨ nat-distributive (S xm) (diff (S x2) (S xm)) y ⟩ ((S xm) + diff (S x2) (S xm)) * y =⟨ cong (λ z → y + (z * y)) (add-diff xm x2 xm2) ⟩ (S x2) * y end line-split-left (S x1) (S xm) (S x2) y x1m xm2 x12 = line-split-left x1 xm x2 y x1m xm2 x12 line-split-right : (x1 xm x2 y : Nat) -> IsTrue (x1 <= xm) -> IsTrue (xm <= x2) -> IsTrue (x1 <= x2) -> y * diff xm x1 + y * diff x2 xm ≡ y * diff x2 x1 line-split-right x1 xm x2 y x1m xm2 x12 = begin y * diff xm x1 + y * diff x2 xm =⟨ cong2 _+_ (mul-comm y (diff xm x1)) (mul-comm y (diff x2 xm)) ⟩ diff xm x1 * y + diff x2 xm * y =⟨ line-split-left x1 xm x2 y x1m xm2 x12 ⟩ diff x2 x1 * y =⟨ mul-comm (diff x2 x1) y ⟩ y * diff x2 x1 end square-split : (x1 y1 xm ym x2 y2 : Nat) -> IsTrue (x1 <= xm) -> IsTrue (xm <= x2) -> IsTrue (y1 <= ym) -> IsTrue (ym <= y2) -> diff xm x1 * diff ym y1 + diff x2 xm * diff ym y1 + diff xm x1 * diff y2 ym + diff x2 xm * diff y2 ym ≡ diff x2 x1 * diff y2 y1 square-split x1 y1 xm ym x2 y2 x1m xm2 y1m ym2 = begin diff xm x1 * diff ym y1 + diff x2 xm * diff ym y1 + diff xm x1 * diff y2 ym + diff x2 xm * diff y2 ym =⟨ add-assoc ((diff xm x1 * diff ym y1) + (diff x2 xm * diff ym y1)) (diff xm x1 * diff y2 ym) (diff x2 xm * diff y2 ym) ⟩ (diff xm x1 * diff ym y1 + diff x2 xm * diff ym y1) + (diff xm x1 * diff y2 ym + diff x2 xm * diff y2 ym) =⟨ cong2 _+_ (line-split-left x1 xm x2 (diff ym y1) x1m xm2 (lteTransitive x1 xm x2 x1m xm2)) (line-split-left x1 xm x2 (diff y2 ym) x1m xm2 (lteTransitive x1 xm x2 x1m xm2)) ⟩ (diff x2 x1 * diff ym y1) + (diff x2 x1 * diff y2 ym) =⟨ line-split-right y1 ym y2 (diff x2 x1) y1m ym2 (lteTransitive y1 ym y2 y1m ym2) ⟩ diff x2 x1 * diff y2 y1 end min-comb : (a b c : Nat) -> IsTrue (a <= b) -> IsTrue (a <= c) -> IsTrue (a <= min b c) min-comb a b c ab ac = useEq (sym $ begin a <= min b c =⟨ sym $ propFnIf {c = c < b} (_<=_ a) ⟩ (if _ then a <= c else a <= b) =⟨ cong2 (if_then_else_ _) (isTrueToEquiv ac) (isTrueToEquiv ab) ⟩ (if _ then true else true) =⟨ propIfBranchesSame true ⟩ true end) IsTrue.itsTrue min-rel-1 : (x1 mid x2 : Nat) -> IsTrue (x1 <= x2) -> IsTrue (x1 <= min x2 (mid + x1)) min-rel-1 x1 mid x2 x12 = min-comb x1 x2 (mid + x1) x12 (lteSumOne x1 x1 mid (lteSelf x1)) min-rel-2 : (a b : Nat) -> IsTrue (min a b <= a) min-rel-2 a b = useEq (sym $ begin min a b <= a =⟨ sym (propFnIf (λ z → (z <= a))) ⟩ (if b < a then b <= a else a <= a) =⟨ ifTrueMap {c = b < a} (λ c -> isTrueToEquiv (orFst c)) ⟩ (if b < a then true else a <= a) =⟨ cong (if_then_else_ (b < a) true) (isTrueToEquiv (lteSelf a)) ⟩ (if b < a then true else true) =⟨ propIfBranchesSame true ⟩ true end) IsTrue.itsTrue length-tilesQd : {t : Set} {{eqT : Eq t}} {dep : Nat} -> (vqd : VQuadrant t {dep}) -> (x1 y1 x2 y2 : Nat) -> IsTrue (x1 <= x2) -> IsTrue (y1 <= y2) -> sum (map lengthₙ (map expand (tilesQd dep vqd (RegionC (x1 , y1) (x2 , y2))))) ≡ diff x2 x1 * diff y2 y1 length-tilesQd {t} {dep = dep} (CVQuadrant (Leaf v) {p}) x1 y1 x2 y2 _ _ = begin sum (map lengthₙ (map expand (tilesQd dep (CVQuadrant (Leaf v) {p}) (RegionC (x1 , y1) (x2 , y2))))) =⟨⟩ lengthₙ (replicateₙ (diff x2 x1 * diff y2 y1) v) + 0 =⟨ add-comm _ 0 ⟩ lengthₙ (replicateₙ (diff x2 x1 * diff y2 y1) v) =⟨ length-replicateₙ (diff x2 x1 * diff y2 y1) v ⟩ diff x2 x1 * diff y2 y1 end length-tilesQd {dep = S dep} (CVQuadrant (Node a b c d) {p}) x1 y1 x2 y2 xp yp = begin sum (map lengthₙ (map expand (tilesQd (S dep) (CVQuadrant (Node a b c d) {p}) (RegionC (x1 , y1) (x2 , y2))))) =⟨⟩ sum (map lengthₙ (map expand (ca ++ cb ++ cc ++ cd))) =⟨ cong (λ q -> sum (map lengthₙ q)) (map-concat4 ca cb cc cd expand) ⟩ sum (map lengthₙ (map expand ca ++ map expand cb ++ map expand cc ++ map expand cd)) =⟨ cong sum (map-concat4 (map expand ca) (map expand cb) (map expand cc) (map expand cd) lengthₙ) ⟩ sum (map lengthₙ (map expand ca) ++ map lengthₙ (map expand cb) ++ map lengthₙ (map expand cc) ++ map lengthₙ (map expand cd)) =⟨ sum-concat4 (map lengthₙ (map expand ca)) (map lengthₙ (map expand cb)) (map lengthₙ (map expand cc)) (map lengthₙ (map expand cd)) ⟩ sum (map lengthₙ (map expand ca)) + sum (map lengthₙ (map expand cb)) + sum (map lengthₙ (map expand cc)) + sum (map lengthₙ (map expand cd)) =⟨ cong4 (λ a b c d -> a + b + c + d) (length-tilesQd (CVQuadrant a) x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) (min-rel-1 x1 mid x2 xp) (min-rel-1 y1 mid y2 yp)) (length-tilesQd (CVQuadrant b) (min x2 (mid + x1)) y1 x2 (min y2 (mid + y1)) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp)) (length-tilesQd (CVQuadrant c) x1 (min y2 (mid + y1)) (min x2 (mid + x1)) y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 y2 (mid + y1))) (length-tilesQd (CVQuadrant d) (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-2 x2 (mid + x1)) (min-rel-2 y2 (mid + y1))) ⟩ diff (min x2 (mid + x1)) x1 * diff (min y2 (mid + y1)) y1 + diff x2 (min x2 (mid + x1)) * diff (min y2 (mid + y1)) y1 + diff (min x2 (mid + x1)) x1 * diff y2 (min y2 (mid + y1)) + diff x2 (min x2 (mid + x1)) * diff y2 (min y2 (mid + y1)) =⟨ square-split x1 y1 (min x2 (mid + x1)) (min y2 (mid + y1)) x2 y2 (min-rel-1 x1 mid x2 xp) (min-rel-2 x2 (mid + x1)) (min-rel-1 y1 mid y2 yp) (min-rel-2 y2 (mid + y1)) ⟩ diff x2 x1 * diff y2 y1 end where mid = pow 2 dep ca = tilesQd dep (CVQuadrant a) (RegionC (x1 , y1) (min x2 (mid + x1) , min y2 (mid + y1)) ) cb = tilesQd dep (CVQuadrant b) (RegionC (min x2 (mid + x1) , y1) (x2 , min y2 (mid + y1)) ) cc = tilesQd dep (CVQuadrant c) (RegionC (x1 , min y2 (mid + y1)) (min x2 (mid + x1) , y2) ) cd = tilesQd dep (CVQuadrant d) (RegionC (min x2 (mid + x1) , min y2 (mid + y1)) (x2 , y2) ) proof-length : {t : Set} {{eqT : Eq t}} {dep : Nat} -> (vqt : VQuadTree t {dep}) -> lengthₑ (quadtreeFoldable dep) vqt ≡ size vqt proof-length {t} ⦃ eqT ⦄ {dep} vqt@(CVQuadTree (Wrapper (w , h) qd) {p1} {p2}) = begin lengthₑ (quadtreeFoldable dep) vqt =⟨⟩ lengthₙ (concat (map expand (tilesQd dep (CVQuadrant qd {p1}) (RegionC (0 , 0) (w , h))))) =⟨ length-concat (map expand (tilesQd dep (CVQuadrant qd {p1}) (RegionC (0 , 0) (w , h)))) ⟩ sum (map lengthₙ (map expand (tilesQd dep (CVQuadrant qd {p1}) (RegionC (0 , 0) (w , h))))) =⟨ length-tilesQd {dep = dep} (CVQuadrant qd {p1}) 0 0 w h (zeroLteAny w) (zeroLteAny h) ⟩ w * h end
{ "alphanum_fraction": 0.5472388556, "avg_line_length": 45.7186311787, "ext": "agda", "hexsha": "7ebae150040dc43fd393d85d2fd894e159f27497", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableProof.agda", "max_line_length": 175, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/FoldableProofs/FoldableProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 4883, "size": 12024 }
open import Nat open import Prelude open import List open import contexts open import core -- This file is a glorious testament to all of agda's greatest strengths - -- a beautiful work that will shine brightly throughout the ages and instill -- hope for the future in many generations to come. May I never use any other -- proof assistant. module decidability where mutual -- We define context decidability in contexts.agda, -- because it's an important metatheorem. However, it accepts a -- decidability theorem for its value type, and for environments that -- value type is result, so the termination checker complains. To fix -- this, we redefine type-specific versions of this theorem here. -- Note that we really should not be destructing contexts via `_::_` - -- here we only do that because we copied this code from the contexts file. ctx<result>-==-dec : (Γ1 Γ2 : result ctx) → Γ1 == Γ2 ∨ Γ1 ≠ Γ2 ctx<result>-==-dec [] [] = Inl refl ctx<result>-==-dec [] (_ :: _) = Inr (λ ()) ctx<result>-==-dec (_ :: _) [] = Inr (λ ()) ctx<result>-==-dec ((hx1 , hr1) :: t1) ((hx2 , hr2) :: t2) with natEQ hx1 hx2 | result-==-dec hr1 hr2 | ctx<result>-==-dec t1 t2 ... | Inl refl | Inl refl | Inl refl = Inl refl ... | Inl refl | Inl refl | Inr ne = Inr λ where refl → ne refl ... | Inl refl | Inr ne | _ = Inr λ where refl → ne refl ... | Inr ne | _ | _ = Inr λ where refl → ne refl ctx<rule>-==-dec : (rules1 rules2 : rule ctx) → rules1 == rules2 ∨ rules1 ≠ rules2 ctx<rule>-==-dec [] [] = Inl refl ctx<rule>-==-dec [] (_ :: _) = Inr (λ ()) ctx<rule>-==-dec (_ :: _) [] = Inr (λ ()) ctx<rule>-==-dec ((hx1 , hrule1) :: t1) ((hx2 , hrule2) :: t2) with natEQ hx1 hx2 | rule-==-dec hrule1 hrule2 | ctx<rule>-==-dec t1 t2 ... | Inl refl | Inl refl | Inl refl = Inl refl ... | Inl refl | Inl refl | Inr ne = Inr λ where refl → ne refl ... | Inl refl | Inr ne | _ = Inr λ where refl → ne refl ... | Inr ne | _ | _ = Inr λ where refl → ne refl rule-==-dec : (rule1 rule2 : rule) → rule1 == rule2 ∨ rule1 ≠ rule2 rule-==-dec (|C parm1 => branch1) (|C parm2 => branch2) with natEQ parm1 parm2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with exp-==-dec branch1 branch2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl ex-==-dec : (ex1 ex2 : ex) → ex1 == ex2 ∨ ex1 ≠ ex2 ex-==-dec ⟨⟩ ⟨⟩ = Inl refl ex-==-dec ⟨⟩ ⟨ ex2 , ex3 ⟩ = Inr (λ ()) ex-==-dec ⟨⟩ (C[ x ] ex2) = Inr (λ ()) ex-==-dec ⟨⟩ ¿¿ = Inr (λ ()) ex-==-dec ⟨⟩ (x ↦ ex2) = Inr (λ ()) ex-==-dec ⟨ ex1a , ex1b ⟩ ⟨ ex2a , ex2b ⟩ with ex-==-dec ex1a ex2a ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with ex-==-dec ex1b ex2b ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl ex-==-dec ⟨ ex1 , ex2 ⟩ ⟨⟩ = Inr (λ ()) ex-==-dec ⟨ _ , _ ⟩ (C[ _ ] _) = Inr (λ ()) ex-==-dec ⟨ ex1 , ex2 ⟩ ¿¿ = Inr (λ ()) ex-==-dec ⟨ ex1 , ex2 ⟩ (x ↦ ex3) = Inr (λ ()) ex-==-dec (C[ c1 ] ex1) (C[ c2 ] ex2) with natEQ c1 c2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with ex-==-dec ex1 ex2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl ex-==-dec (C[ x ] ex1) ⟨⟩ = Inr (λ ()) ex-==-dec (C[ _ ] _) ⟨ _ , _ ⟩ = Inr (λ ()) ex-==-dec (C[ x ] ex1) ¿¿ = Inr (λ ()) ex-==-dec (C[ x ] ex1) (x₁ ↦ ex2) = Inr (λ ()) ex-==-dec ¿¿ ¿¿ = Inl refl ex-==-dec ¿¿ ⟨⟩ = Inr (λ ()) ex-==-dec ¿¿ ⟨ ex2 , ex3 ⟩ = Inr (λ ()) ex-==-dec ¿¿ (C[ x ] ex2) = Inr (λ ()) ex-==-dec ¿¿ (x ↦ ex2) = Inr (λ ()) ex-==-dec (v1 ↦ ex1) (v2 ↦ ex2) with result-==-dec v1 v2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with ex-==-dec ex1 ex2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl ex-==-dec (x ↦ ex1) ⟨⟩ = Inr (λ ()) ex-==-dec (x ↦ ex1) ⟨ ex2 , ex3 ⟩ = Inr (λ ()) ex-==-dec (x ↦ ex1) (C[ x₁ ] ex2) = Inr (λ ()) ex-==-dec (x ↦ ex1) ¿¿ = Inr (λ ()) exp-==-dec : (e1 e2 : exp) → e1 == e2 ∨ e1 ≠ e2 exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ fix f2 ⦇·λ x2 => e2 ·⦈ with natEQ f1 f2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with natEQ x1 x2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with exp-==-dec e1 e2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ X[ x ] = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ (e2 ∘ e3) = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ ⟨⟩ = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ (fst _) = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ (snd _) = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ (C[ x ] e2) = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ ??[ x ] = Inr (λ ()) exp-==-dec fix f1 ⦇·λ x1 => e1 ·⦈ (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec X[ x1 ] X[ x2 ] with natEQ x1 x2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec X[ x1 ] fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec X[ x1 ] (e2 ∘ e3) = Inr (λ ()) exp-==-dec X[ x1 ] ⟨⟩ = Inr (λ ()) exp-==-dec X[ x1 ] ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec X[ x1 ] (fst _) = Inr (λ ()) exp-==-dec X[ x1 ] (snd _) = Inr (λ ()) exp-==-dec X[ x1 ] (C[ x ] e2) = Inr (λ ()) exp-==-dec X[ x1 ] case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec X[ x1 ] ??[ x ] = Inr (λ ()) exp-==-dec X[ x1 ] (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) (ef2 ∘ earg2) with exp-==-dec ef1 ef2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with exp-==-dec earg1 earg2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec (ef1 ∘ earg1) fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) X[ x ] = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) ⟨⟩ = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) (fst _) = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) (snd _) = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) (C[ x ] e2) = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) ??[ x ] = Inr (λ ()) exp-==-dec (ef1 ∘ earg1) (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec ⟨⟩ ⟨⟩ = Inl refl exp-==-dec ⟨⟩ fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec ⟨⟩ X[ x ] = Inr (λ ()) exp-==-dec ⟨⟩ (e2 ∘ e3) = Inr (λ ()) exp-==-dec ⟨⟩ ⟨ e2 , e3 ⟩ = Inr (λ ()) exp-==-dec ⟨⟩ (fst e2) = Inr (λ ()) exp-==-dec ⟨⟩ (snd e2) = Inr (λ ()) exp-==-dec ⟨⟩ (C[ x ] e2) = Inr (λ ()) exp-==-dec ⟨⟩ case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec ⟨⟩ ??[ x ] = Inr (λ ()) exp-==-dec ⟨⟩ (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec ⟨ es1a , es1b ⟩ ⟨ es2a , es2b ⟩ with exp-==-dec es1a es2a ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with exp-==-dec es1b es2b ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec ⟨ _ , _ ⟩ fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ X[ x ] = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ (e2 ∘ e3) = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ ⟨⟩ = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ (fst _) = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ (snd _) = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ (C[ x ] e2) = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ ??[ x ] = Inr (λ ()) exp-==-dec ⟨ _ , _ ⟩ (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec (fst e1) (fst e2) with exp-==-dec e1 e2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec (fst e1) fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec (fst e1) X[ x ] = Inr (λ ()) exp-==-dec (fst e1) (e2 ∘ e3) = Inr (λ ()) exp-==-dec (fst e1) ⟨⟩ = Inr (λ ()) exp-==-dec (fst e1) ⟨ e2 , e3 ⟩ = Inr (λ ()) exp-==-dec (fst e1) (snd e2) = Inr (λ ()) exp-==-dec (fst e1) (C[ x ] e2) = Inr (λ ()) exp-==-dec (fst e1) case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec (fst e1) ??[ x ] = Inr (λ ()) exp-==-dec (fst e1) (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec (snd e1) (snd e2) with exp-==-dec e1 e2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec (snd e1) fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec (snd e1) X[ x ] = Inr (λ ()) exp-==-dec (snd e1) (e2 ∘ e3) = Inr (λ ()) exp-==-dec (snd e1) ⟨⟩ = Inr (λ ()) exp-==-dec (snd e1) ⟨ e2 , e3 ⟩ = Inr (λ ()) exp-==-dec (snd e1) (fst e2) = Inr (λ ()) exp-==-dec (snd e1) (C[ x ] e2) = Inr (λ ()) exp-==-dec (snd e1) case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec (snd e1) ??[ x ] = Inr (λ ()) exp-==-dec (snd e1) (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec (C[ c1 ] e1) (C[ c2 ] e2) with natEQ c1 c2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with exp-==-dec e1 e2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec (C[ c1 ] e1) fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec (C[ c1 ] e1) X[ x ] = Inr (λ ()) exp-==-dec (C[ c1 ] e1) (e2 ∘ e3) = Inr (λ ()) exp-==-dec (C[ c1 ] e1) ⟨⟩ = Inr (λ ()) exp-==-dec (C[ c1 ] e1) ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec (C[ c1 ] e1) (fst _) = Inr (λ ()) exp-==-dec (C[ c1 ] e1) (snd _) = Inr (λ ()) exp-==-dec (C[ c1 ] e1) case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec (C[ c1 ] e1) ??[ x ] = Inr (λ ()) exp-==-dec (C[ c1 ] e1) (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ case e2 of⦃· rules2 ·⦄ with exp-==-dec e1 e2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with ctx<rule>-==-dec rules1 rules2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec case e1 of⦃· rules1 ·⦄ fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ X[ x ] = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ (e2 ∘ e3) = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ ⟨⟩ = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ (fst _) = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ (snd _) = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ (C[ x ] e2) = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ ??[ x ] = Inr (λ ()) exp-==-dec case e1 of⦃· rules1 ·⦄ (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec ??[ u1 ] ??[ u2 ] with natEQ u1 u2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec ??[ u1 ] fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec ??[ u1 ] X[ x ] = Inr (λ ()) exp-==-dec ??[ u1 ] (e2 ∘ e3) = Inr (λ ()) exp-==-dec ??[ u1 ] ⟨⟩ = Inr (λ ()) exp-==-dec ??[ u1 ] ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec ??[ u1 ] (fst _) = Inr (λ ()) exp-==-dec ??[ u1 ] (snd _) = Inr (λ ()) exp-==-dec ??[ u1 ] (C[ x ] e2) = Inr (λ ()) exp-==-dec ??[ u1 ] case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec ??[ u1 ] (PBE:assert e2 e3) = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) (PBE:assert e2a e2b) with exp-==-dec e1a e2a ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with exp-==-dec e1b e2b ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl exp-==-dec (PBE:assert e1a e1b) fix x ⦇·λ x₁ => e2 ·⦈ = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) X[ x ] = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) (e2 ∘ e3) = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) ⟨⟩ = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) ⟨ _ , _ ⟩ = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) (fst _) = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) (snd _) = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) (C[ x ] e2) = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) case e2 of⦃· x ·⦄ = Inr (λ ()) exp-==-dec (PBE:assert e1a e1b) ??[ x ] = Inr (λ ()) result-==-dec : (r1 r2 : result) → r1 == r2 ∨ r1 ≠ r2 result-==-dec [ E1 ]fix f1 ⦇·λ x1 => e1 ·⦈ [ E2 ]fix f2 ⦇·λ x2 => e2 ·⦈ with ctx<result>-==-dec E1 E2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with natEQ f1 f2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with natEQ x1 x2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with exp-==-dec e1 e2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ ⟨⟩ = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ ⟨ _ , _ ⟩ = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ (C[ _ ] _) = Inr (λ ()) result-==-dec [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ (C⁻[ x₄ ] r2) = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ [ _ ]??[ _ ] = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ (_ ∘ _) = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ (fst _) = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ (snd _) = Inr (λ ()) result-==-dec [ E ]fix f ⦇·λ x => e ·⦈ [ _ ]case _ of⦃· _ ·⦄ = Inr (λ ()) result-==-dec ⟨⟩ ⟨⟩ = Inl refl result-==-dec ⟨⟩ [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ = Inr (λ ()) result-==-dec ⟨⟩ ⟨ r2 , r3 ⟩ = Inr (λ ()) result-==-dec ⟨⟩ (C[ x ] r2) = Inr (λ ()) result-==-dec ⟨⟩ (C⁻[ x ] r2) = Inr (λ ()) result-==-dec ⟨⟩ [ x ]??[ x₁ ] = Inr (λ ()) result-==-dec ⟨⟩ (r2 ∘ r3) = Inr (λ ()) result-==-dec ⟨⟩ (fst r2) = Inr (λ ()) result-==-dec ⟨⟩ (snd r2) = Inr (λ ()) result-==-dec ⟨⟩ [ x ]case r2 of⦃· x₁ ·⦄ = Inr (λ ()) result-==-dec ⟨ rs1a , rs1b ⟩ ⟨ rs2a , rs2b ⟩ with result-==-dec rs1a rs2a ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with result-==-dec rs1b rs2b ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec ⟨ _ , _ ⟩ [ _ ]fix _ ⦇·λ _ => _ ·⦈ = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ ⟨⟩ = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ (C[ _ ] _) = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ (C⁻[ x ] r3) = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ [ _ ]??[ _ ] = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ (_ ∘ _) = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ (snd _) = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ (fst _) = Inr (λ ()) result-==-dec ⟨ _ , _ ⟩ [ _ ]case _ of⦃· _ ·⦄ = Inr (λ ()) result-==-dec (C[ c1 ] r1) (C[ c2 ] r2) with natEQ c1 c2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with result-==-dec r1 r2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec (C[ c ] r) [ _ ]fix _ ⦇·λ _ => _ ·⦈ = Inr (λ ()) result-==-dec (C[ c ] r) ⟨⟩ = Inr (λ ()) result-==-dec (C[ c ] r) ⟨ _ , _ ⟩ = Inr (λ ()) result-==-dec (C[ x ] r1) (C⁻[ x₁ ] r2) = Inr (λ ()) result-==-dec (C[ c ] r) [ _ ]??[ _ ] = Inr (λ ()) result-==-dec (C[ c ] r) (_ ∘ _) = Inr (λ ()) result-==-dec (C[ c ] r) (fst _) = Inr (λ ()) result-==-dec (C[ c ] r) (snd _) = Inr (λ ()) result-==-dec (C[ c ] r) [ _ ]case _ of⦃· _ ·⦄ = Inr (λ ()) result-==-dec (C⁻[ c1 ] r1) (C⁻[ c2 ] r2) with natEQ c1 c2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with result-==-dec r1 r2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec (C⁻[ x ] r1) [ x₁ ]fix x₂ ⦇·λ x₃ => x₄ ·⦈ = Inr (λ ()) result-==-dec (C⁻[ x ] r1) ⟨⟩ = Inr (λ ()) result-==-dec (C⁻[ x ] r1) ⟨ r2 , r3 ⟩ = Inr (λ ()) result-==-dec (C⁻[ x ] r1) (C[ x₁ ] r2) = Inr (λ ()) result-==-dec (C⁻[ x ] r1) [ x₁ ]??[ x₂ ] = Inr (λ ()) result-==-dec (C⁻[ x ] r1) (r2 ∘ r3) = Inr (λ ()) result-==-dec (C⁻[ x ] r1) (fst r2) = Inr (λ ()) result-==-dec (C⁻[ x ] r1) (snd r2) = Inr (λ ()) result-==-dec (C⁻[ x ] r1) [ x₁ ]case r2 of⦃· x₂ ·⦄ = Inr (λ ()) result-==-dec [ E1 ]??[ u1 ] [ E2 ]??[ u2 ] with ctx<result>-==-dec E1 E2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with natEQ u1 u2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec [ E ]??[ u1 ] [ _ ]fix _ ⦇·λ _ => _ ·⦈ = Inr (λ ()) result-==-dec [ E ]??[ u1 ] ⟨⟩ = Inr (λ ()) result-==-dec [ E ]??[ u1 ] ⟨ _ , _ ⟩ = Inr (λ ()) result-==-dec [ E ]??[ u1 ] (C[ _ ] _) = Inr (λ ()) result-==-dec [ x ]??[ x₁ ] (C⁻[ x₂ ] r2) = Inr (λ ()) result-==-dec [ E ]??[ u1 ] (_ ∘ _) = Inr (λ ()) result-==-dec [ E ]??[ u1 ] (fst _) = Inr (λ ()) result-==-dec [ E ]??[ u1 ] (snd _) = Inr (λ ()) result-==-dec [ E ]??[ u1 ] [ _ ]case _ of⦃· _ ·⦄ = Inr (λ ()) result-==-dec (rf1 ∘ rarg1) (rf2 ∘ rarg2) with result-==-dec rf1 rf2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with result-==-dec rarg1 rarg2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec (rf ∘ rarg) [ _ ]fix _ ⦇·λ _ => _ ·⦈ = Inr (λ ()) result-==-dec (rf ∘ rarg) ⟨⟩ = Inr (λ ()) result-==-dec (rf ∘ rarg) ⟨ _ , _ ⟩ = Inr (λ ()) result-==-dec (rf ∘ rarg) (C[ _ ] _) = Inr (λ ()) result-==-dec (r1 ∘ r2) (C⁻[ x ] r3) = Inr (λ ()) result-==-dec (rf ∘ rarg) [ _ ]??[ _ ] = Inr (λ ()) result-==-dec (rf ∘ rarg) (fst _) = Inr (λ ()) result-==-dec (rf ∘ rarg) (snd _) = Inr (λ ()) result-==-dec (rf ∘ rarg) [ _ ]case _ of⦃· _ ·⦄ = Inr (λ ()) result-==-dec (fst r1) (fst r2) with result-==-dec r1 r2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl result-==-dec (fst r1) [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ = Inr (λ ()) result-==-dec (fst r1) ⟨⟩ = Inr (λ ()) result-==-dec (fst r1) ⟨ r2 , r3 ⟩ = Inr (λ ()) result-==-dec (fst r1) (C[ x ] r2) = Inr (λ ()) result-==-dec (fst r1) (C⁻[ x ] r2) = Inr (λ ()) result-==-dec (fst r1) [ x ]??[ x₁ ] = Inr (λ ()) result-==-dec (fst r1) (r2 ∘ r3) = Inr (λ ()) result-==-dec (fst r1) (snd r2) = Inr (λ ()) result-==-dec (fst r1) [ x ]case r2 of⦃· x₁ ·⦄ = Inr (λ ()) result-==-dec (snd r1) (snd r2) with result-==-dec r1 r2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl result-==-dec (snd r1) [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ = Inr (λ ()) result-==-dec (snd r1) ⟨⟩ = Inr (λ ()) result-==-dec (snd r1) ⟨ r2 , r3 ⟩ = Inr (λ ()) result-==-dec (snd r1) (C[ x ] r2) = Inr (λ ()) result-==-dec (snd r1) (C⁻[ x ] r2) = Inr (λ ()) result-==-dec (snd r1) [ x ]??[ x₁ ] = Inr (λ ()) result-==-dec (snd r1) (r2 ∘ r3) = Inr (λ ()) result-==-dec (snd r1) (fst r2) = Inr (λ ()) result-==-dec (snd r1) [ x ]case r2 of⦃· x₁ ·⦄ = Inr (λ ()) result-==-dec [ E1 ]case r1 of⦃· rules1 ·⦄ [ E2 ]case r2 of⦃· rules2 ·⦄ with ctx<result>-==-dec E1 E2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with result-==-dec r1 r2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with ctx<rule>-==-dec rules1 rules2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl result-==-dec [ E ]case r of⦃· rules ·⦄ [ _ ]fix _ ⦇·λ _ => _ ·⦈ = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ ⟨⟩ = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ ⟨ _ , _ ⟩ = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ (C[ _ ] _) = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ [ _ ]??[ _ ] = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ (_ ∘ _) = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ (fst _) = Inr (λ ()) result-==-dec [ E ]case r of⦃· rules ·⦄ (snd _) = Inr (λ ()) result-==-dec [ x ]case r1 of⦃· x₁ ·⦄ (C⁻[ x₂ ] r2) = Inr (λ ()) typ-==-dec : (τ1 τ2 : typ) → τ1 == τ2 ∨ τ1 ≠ τ2 typ-==-dec (τ1i ==> τ1o) (τ2i ==> τ2o) with typ-==-dec τ1i τ2i ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with typ-==-dec τ1o τ2o ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl typ-==-dec (τ1i ==> τ1o) ⟨⟩ = Inr (λ ()) typ-==-dec (τ1i ==> τ1o) ⟨ _ × _ ⟩ = Inr (λ ()) typ-==-dec (τ1i ==> τ1o) D[ _ ] = Inr (λ ()) typ-==-dec ⟨⟩ ⟨⟩ = Inl refl typ-==-dec ⟨⟩ ⟨ τ2 × τ3 ⟩ = Inr (λ ()) typ-==-dec ⟨⟩ (_ ==> _) = Inr (λ ()) typ-==-dec ⟨⟩ D[ _ ] = Inr (λ ()) typ-==-dec ⟨ τ1a × τ1b ⟩ ⟨ τ2a × τ2b ⟩ with typ-==-dec τ1a τ2a ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl with typ-==-dec τ1b τ2b ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl typ-==-dec ⟨ τ1 × τ2 ⟩ ⟨⟩ = Inr (λ ()) typ-==-dec ⟨ _ × _ ⟩ (_ ==> _) = Inr (λ ()) typ-==-dec ⟨ _ × _ ⟩ D[ _ ] = Inr (λ ()) typ-==-dec D[ d1 ] D[ d2 ] with natEQ d1 d2 ... | Inr ne = Inr λ where refl → ne refl ... | Inl refl = Inl refl typ-==-dec D[ _ ] (_ ==> _) = Inr (λ ()) typ-==-dec D[ _ ] ⟨⟩ = Inr (λ ()) typ-==-dec D[ _ ] ⟨ _ × _ ⟩ = Inr (λ ()) final-dec : ∀{r} → r final ∨ (r final → ⊥) env-final-dec : ∀{E} → E env-final ∨ (E env-final → ⊥) final-dec {[ E ]fix x₁ ⦇·λ x₂ => e ·⦈} with env-final-dec {E} ... | Inr nf = Inr (λ {(FFix f) → nf f}) ... | Inl E-f = Inl (FFix E-f) final-dec {⟨⟩} = Inl FUnit final-dec {⟨ r1 , r2 ⟩} with final-dec {r1} ... | Inr nf = Inr λ {(FPair h1 h2) → nf h1} ... | Inl r1-f with final-dec {r2} ... | Inr nf = Inr λ {(FPair h1 h2) → nf h2} ... | Inl r2-f = Inl (FPair r1-f r2-f) final-dec {C[ x ] r} with final-dec {r} ... | Inr nf = Inr λ {(FCon h1) → nf h1} ... | Inl r-f = Inl (FCon r-f) final-dec {C⁻[ x ] r} = Inr (λ ()) final-dec {[ E ]??[ x₁ ]} with env-final-dec {E} ... | Inr nf = Inr λ {(FHole h1) → nf h1} ... | Inl E-f = Inl (FHole E-f) final-dec {r1 ∘ r2} with final-dec {r1} ... | Inr nf = Inr λ {(FAp h _ _) → nf h} ... | Inl r1-f with final-dec {r2} ... | Inr nf = Inr λ {(FAp _ h _) → nf h} final-dec {[ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ ∘ r2} | Inl r1-f | Inl r2-f = Inr λ {(FAp _ _ h) → abort (h refl)} final-dec {⟨⟩ ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {⟨ r1 , r3 ⟩ ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {(C[ x ] r1) ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {[ x ]??[ x₁ ] ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {(r1 ∘ r3) ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {fst r1 ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {snd r1 ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {[ x ]case r1 of⦃· x₁ ·⦄ ∘ r2} | Inl r1-f | Inl r2-f = Inl (FAp r1-f r2-f (λ {E} {f} {x} {e} ())) final-dec {fst r} with final-dec {r} ... | Inr nf = Inr λ {(FFst h _) → nf h} final-dec {fst ⟨ r , r₁ ⟩} | Inl r-f = Inr λ {(FFst _ h) → abort (h refl)} final-dec {fst [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst ⟨⟩} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst (C[ x ] r)} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst [ x ]??[ x₁ ]} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst (r ∘ r₁)} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst (fst r)} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst (snd r)} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {fst [ x ]case r of⦃· x₁ ·⦄} | Inl r-f = Inl (FFst r-f (λ {r1} {r2} ())) final-dec {snd r} with final-dec {r} ... | Inr nf = Inr λ {(FSnd h _) → nf h} final-dec {snd ⟨ r , r₁ ⟩} | Inl r-f = Inr λ {(FSnd _ h) → abort (h refl)} final-dec {snd [ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd ⟨⟩} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd (C[ x ] r)} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd [ x ]??[ x₁ ]} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd (r ∘ r₁)} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd (fst r)} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd (snd r)} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {snd [ x ]case r of⦃· x₁ ·⦄} | Inl r-f = Inl (FSnd r-f (λ {r1} {r2} ())) final-dec {[ E ]case r of⦃· x₁ ·⦄} with final-dec {r} ... | Inr nf = Inr λ {(FCase h _ _) → nf h} ... | Inl r-f with env-final-dec {E} ... | Inr nf = Inr λ {(FCase _ _ h) → nf h} final-dec {[ E ]case C[ x ] r of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inr λ {(FCase _ h _) → abort (h refl)} final-dec {[ E ]case [ x ]fix x₂ ⦇·λ x₃ => x₄ ·⦈ of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case ⟨⟩ of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case ⟨ r , r₁ ⟩ of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case [ x ]??[ x₂ ] of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case r ∘ r₁ of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case fst r of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case snd r of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) final-dec {[ E ]case [ x ]case r of⦃· x₂ ·⦄ of⦃· x₁ ·⦄} | Inl r-f | Inl E-f = Inl (FCase r-f (λ {c} {r'} ()) E-f) env-final-dec {[]} = Inl (EF (λ ())) env-final-dec {(_ , r) :: E} with final-dec {r} ... | Inr nf = Inr (λ {(EF h) → nf (h InH)}) ... | Inl r-f with env-final-dec {E} ... | Inr nf = Inr (λ {(EF h) → nf (EF (λ z → h (InT z)))}) ... | Inl (EF E-f) = Inl (EF λ {InH → r-f ; (InT h) → E-f h}) Coerce-dec : ∀{r} → Σ[ ex ∈ ex ] (Coerce r := ex) ∨ (Σ[ ex ∈ ex ] (Coerce r := ex) → ⊥) Coerce-dec {[ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈} = Inr (λ where (_ , ())) Coerce-dec {⟨⟩} = Inl (⟨⟩ , CoerceUnit) Coerce-dec {⟨ r1 , r2 ⟩} with Coerce-dec {r1} ... | Inr nc = Inr λ {(_ , CoercePair c-r1 _) → nc (_ , c-r1)} ... | Inl (_ , c-r1) with Coerce-dec {r2} ... | Inr nc = Inr λ {(_ , CoercePair _ c-r2) → nc (_ , c-r2)} ... | Inl (_ , c-r2) = Inl (_ , CoercePair c-r1 c-r2) Coerce-dec {C[ c ] r} with Coerce-dec {r} ... | Inr nc = Inr λ {(_ , CoerceCtor c-r) → nc (_ , c-r)} ... | Inl (_ , c-r) = Inl (_ , CoerceCtor c-r) Coerce-dec {C⁻[ x ] r} = Inr (λ where (_ , ())) Coerce-dec {[ x ]??[ x₁ ]} = Inr (λ where (_ , ())) Coerce-dec {r ∘ r₁} = Inr (λ where (_ , ())) Coerce-dec {fst r} = Inr (λ where (_ , ())) Coerce-dec {snd r} = Inr (λ where (_ , ())) Coerce-dec {[ x ]case r of⦃· x₁ ·⦄} = Inr (λ where (_ , ())) value-dec : ∀{r} → r value ∨ (r value → ⊥) value-dec {[ E ]fix x₁ ⦇·λ x₂ => x₃ ·⦈} with env-final-dec {E} ... | Inr nf = Inr (λ {(VFix E-f) → nf E-f}) ... | Inl E-f = Inl (VFix E-f) value-dec {⟨⟩} = Inl VUnit value-dec {⟨ r1 , r2 ⟩} with value-dec {r1} ... | Inr nv = Inr λ {(VPair h _) → nv h} ... | Inl r1v with value-dec {r2} ... | Inr nv = Inr λ {(VPair _ h) → nv h} ... | Inl r2v = Inl (VPair r1v r2v) value-dec {C[ x ] r} with value-dec {r} ... | Inl rv = Inl (VCon rv) ... | Inr nv = Inr (λ {(VCon rv) → nv rv}) value-dec {C⁻[ x ] r} = Inr (λ ()) value-dec {[ x ]??[ x₁ ]} = Inr (λ ()) value-dec {r ∘ r₁} = Inr (λ ()) value-dec {fst r} = Inr (λ ()) value-dec {snd r} = Inr (λ ()) value-dec {[ x ]case r of⦃· x₁ ·⦄} = Inr (λ ()) ex-¿¿-dec : ∀{ex} → ex == ¿¿ ∨ ex ≠ ¿¿ ex-¿¿-dec {⟨⟩} = Inr (λ ()) ex-¿¿-dec {⟨ ex₁ , ex₂ ⟩} = Inr (λ ()) ex-¿¿-dec {C[ x ] ex₁} = Inr (λ ()) ex-¿¿-dec {¿¿} = Inl refl ex-¿¿-dec {x ↦ ex₁} = Inr (λ ())
{ "alphanum_fraction": 0.4434611954, "avg_line_length": 45.7924836601, "ext": "agda", "hexsha": "fe187abc7030f3df789b52be2381e18e29531a7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "decidability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "decidability.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "decidability.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 12862, "size": 28025 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Wedge where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.HITs.Wedge open import Cubical.Data.Int hiding (_+_) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∣_∣ to ∣_∣₁) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; elim2 to trElim2) open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.HITs.Pushout open import Cubical.Data.Sigma open import Cubical.Foundations.Isomorphism open import Cubical.Homotopy.Connected open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.Equiv open GroupIso renaming (map to map') open GroupHom {- This module proves that Hⁿ(A ⋁ B) ≅ Hⁿ(A) × Hⁿ(B) for n ≥ 1 directly (rather than by means of Mayer-Vietoris). It also proves that Ĥⁿ(A ⋁ B) ≅ Ĥ⁰(A) × Ĥ⁰(B) (reduced groups) Proof sketch for n ≥ 1: Any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) is uniquely characterised by a pair of functions f₁ : A → Kₙ f₂ : B → Kₙ together with a path p : f₁ (pt A) ≡ f₂ (pt B) The map F : Hⁿ(A ⋁ B) → Hⁿ(A) × Hⁿ(B) simply forgets about p, i.e.: F(∣ f ∣₂) := (∣ f₁ ∣₂ , ∣ f₂ ∣₂) The construction of its inverse is defined by F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂) := ∣ f₁∨f₂ ∣₂ where f₁∨f₂ : A ⋁ B → Kₙ is defined inductively by f₁∨f₂ (inl x) := f₁ x + f₂ (pt B) f₁∨f₂ (inr x) := f₁ (pt B) + f₂ x cong f₁∨f₂ (push tt) := refl (this is the map wedgeFun⁻ below) The fact that F and F⁻ cancel out is a proposition and we may thus assume for any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) and its corresponding f₁ that f₁ (pt A) = f₂ (pt B) = 0 (*) and f (inl (pt A)) = 0 (**) The fact that F(F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂)) = ∣ f₁ ∣₂ , ∣ f₂ ∣₂) follows immediately from (*) The other way is slightly trickier. We need to construct paths Pₗ(x) : f (inl (x)) + f (inr (pt B)) ---> f (inl (x)) Pᵣ(x) : f (inl (pt A)) + f (inr (x)) ---> f (inr (x)) Together with a filler of the following square cong f (push tt) -----------------> ^ ^ | | | | Pₗ(pr A) | | Pᵣ(pt B) | | | | | | -----------------> refl The square is filled by first constructing Pₗ by f (inl (x)) + f (inr (pt B)) ---[cong f (push tt)⁻¹]---> f (inl (x)) + f (inl (pt A)) ---[(**)]---> f (inl (x)) + 0 ---[right-unit]---> f (inl (x)) and then Pᵣ by f (inl (pt A)) + f (inr (x)) ---[(**)⁻¹]---> 0 + f (inr (x)) ---[left-unit]---> f (inr (x)) and finally by using the fact that the group laws for Kₙ are refl at its base point. -} module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where private wedgeFun⁻ : ∀ n → (f : typ A → coHomK (suc n)) (g : typ B → coHomK (suc n)) → ((A ⋁ B) → coHomK (suc n)) wedgeFun⁻ n f g (inl x) = f x +ₖ g (pt B) wedgeFun⁻ n f g (inr x) = f (pt A) +ₖ g x wedgeFun⁻ n f g (push a i) = f (pt A) +ₖ g (pt B) Hⁿ-⋁ : (n : ℕ) → GroupIso (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B)) fun (map' (Hⁿ-⋁ zero)) = sElim (λ _ → isSet× setTruncIsSet setTruncIsSet) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ isHom (map' (Hⁿ-⋁ zero)) = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl inv (Hⁿ-⋁ zero) = uncurry (sElim2 (λ _ _ → setTruncIsSet) λ f g → ∣ wedgeFun⁻ 0 f g ∣₂) rightInv (Hⁿ-⋁ zero) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ 1 (f x)))) , cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ 1 (g x))))) leftInv (Hⁿ-⋁ zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → pRec (setTruncIsSet _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK 1) (x : coHomK 1) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ 0 (λ x → f (inl x)) (λ x → f (inr x)) ∥ helper f = trElim (λ _ → isProp→isOfHLevelSuc 2 (isPropΠ λ _ → propTruncIsProp)) (sphereElim 0 (λ _ → isPropΠ λ _ → propTruncIsProp) λ inlId → ∣ funExt (λ { (inl x) → sym (rUnitₖ 1 (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (lUnitₖ 1 (f (inr x))) ∙ cong (_+ₖ (f (inr x))) (sym inlId) ; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i} ) ∣₁) where helper2 : (x : coHomK 1) (r : ∣ base ∣ ≡ x) (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j) p refl helper2 x = J (λ x r → (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ cong (_+ₖ y) r) j) p refl) λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ 1 ∣ base ∣) ∙∙ refl ∙∙ cong (∣ base ∣ +ₖ_) p)) j ≡ (sym (lUnitₖ 1 y) ∙ refl) j) p refl) λ i _ → (refl ∙ (λ _ → 0ₖ 1)) i fun (map' (Hⁿ-⋁ (suc n))) = sElim (λ _ → isSet× setTruncIsSet setTruncIsSet) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ isHom (map' (Hⁿ-⋁ (suc n))) = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl inv (Hⁿ-⋁ (suc n)) = uncurry (sElim2 (λ _ _ → setTruncIsSet) λ f g → ∣ wedgeFun⁻ (suc n) f g ∣₂) rightInv (Hⁿ-⋁ (suc n)) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ g gId → ΣPathP ((cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ (2 + n) (f x)))) , cong ∣_∣₂ (funExt (λ x → cong (_+ₖ g x) fId ∙ lUnitₖ (2 + n) (g x))))) leftInv (Hⁿ-⋁ (suc n)) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → pRec (setTruncIsSet _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK (2 + n)) (x : coHomK (2 + n)) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ (suc n) (λ x → f (inl x)) (λ x → f (inr x)) ∥ helper f = trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropΠ λ _ → propTruncIsProp)) (sphereToPropElim (suc n) (λ _ → isPropΠ λ _ → propTruncIsProp) λ inlId → (∣ funExt (λ { (inl x) → sym (rUnitₖ (2 + n) (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (lUnitₖ (2 + n) (f (inr x))) ∙ cong (_+ₖ (f (inr x))) (sym inlId) ; (push tt i) j → helper2 (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i}) ∣₁)) where helper2 : (x : coHomK (2 + n)) (r : ∣ north ∣ ≡ x) (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j) p refl helper2 x = J (λ x r → (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ cong (_+ₖ y) r) j) p refl) λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ (2 + n) ∣ north ∣) ∙∙ refl ∙∙ cong (∣ north ∣ +ₖ_) p)) j ≡ (sym (lUnitₖ (2 + n) y) ∙ refl) j) p refl) λ i j → ((λ _ → ∣ north ∣) ∙ refl) i H⁰Red-⋁ : GroupIso (coHomRedGrDir 0 (A ⋁ B , inl (pt A))) (dirProd (coHomRedGrDir 0 A) (coHomRedGrDir 0 B)) fun (GroupIso.map H⁰Red-⋁) = sRec (isSet× setTruncIsSet setTruncIsSet) λ {(f , p) → ∣ (f ∘ inl) , p ∣₂ , ∣ (f ∘ inr) , cong f (sym (push tt)) ∙ p ∣₂} isHom (GroupIso.map H⁰Red-⋁) = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ {(f , p) (g , q) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl) , cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl))} inv H⁰Red-⋁ = uncurry (sRec2 setTruncIsSet λ {(f , p) (g , q) → ∣ (λ {(inl a) → f a ; (inr b) → g b ; (push tt i) → (p ∙ sym q) i}) , p ∣₂}) rightInv H⁰Red-⋁ = uncurry (sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ {(_ , _) (_ , _) → ΣPathP (cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl) , cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) refl))}) leftInv H⁰Red-⋁ = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(f , p) → cong ∣_∣₂ (Σ≡Prop (λ _ → isSetInt _ _) (funExt λ {(inl a) → refl ; (inr b) → refl ; (push tt i) j → (cong (p ∙_) (symDistr (cong f (sym (push tt))) p) ∙∙ assoc∙ p (sym p) (cong f (push tt)) ∙∙ cong (_∙ (cong f (push tt))) (rCancel p) ∙ sym (lUnit (cong f (push tt)))) j i}))} -- Alt. use isOfHLevel→isOfHLevelDep wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥) → ((x : typ B) → ∥ pt B ≡ x ∥) → (x : A ⋁ B) → ∥ inl (pt A) ≡ x ∥ wedgeConnected conA conB = PushoutToProp (λ _ → propTruncIsProp) (λ a → pRec propTruncIsProp (λ p → ∣ cong inl p ∣₁) (conA a)) λ b → pRec propTruncIsProp (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b)
{ "alphanum_fraction": 0.4581565099, "avg_line_length": 48.887966805, "ext": "agda", "hexsha": "faf2762465ab794b8a89e1da074568a7ebdc8f9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4458, "size": 11782 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between group-like structures ------------------------------------------------------------------------ -- See Data.Nat.Binary.Properties for examples of how this and similar -- modules can be used to easily translate properties between types. {-# OPTIONS --without-K --safe #-} open import Algebra.Bundles open import Algebra.Morphism.Structures open import Relation.Binary.Core module Algebra.Morphism.GroupMonomorphism {a b ℓ₁ ℓ₂} {G₁ : RawGroup a ℓ₁} {G₂ : RawGroup b ℓ₂} {⟦_⟧} (isGroupMonomorphism : IsGroupMonomorphism G₁ G₂ ⟦_⟧) where open IsGroupMonomorphism isGroupMonomorphism open RawGroup G₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; _⁻¹ to _⁻¹₁; ε to ε₁) open RawGroup G₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; _⁻¹ to _⁻¹₂; ε to ε₂) open import Algebra.Definitions open import Algebra.Structures open import Data.Product import Relation.Binary.Reasoning.Setoid as SetoidReasoning ------------------------------------------------------------------------ -- Re-export all properties of monoid monomorphisms open import Algebra.Morphism.MonoidMonomorphism isMonoidMonomorphism public ------------------------------------------------------------------------ -- Properties module _ (◦-isMagma : IsMagma _≈₂_ _◦_) where open IsMagma ◦-isMagma renaming (∙-cong to ◦-cong) open SetoidReasoning setoid inverseˡ : LeftInverse _≈₂_ ε₂ _⁻¹₂ _◦_ → LeftInverse _≈₁_ ε₁ _⁻¹₁ _∙_ inverseˡ invˡ x = injective (begin ⟦ x ⁻¹₁ ∙ x ⟧ ≈⟨ ∙-homo (x ⁻¹₁ ) x ⟩ ⟦ x ⁻¹₁ ⟧ ◦ ⟦ x ⟧ ≈⟨ ◦-cong (⁻¹-homo x) refl ⟩ ⟦ x ⟧ ⁻¹₂ ◦ ⟦ x ⟧ ≈⟨ invˡ ⟦ x ⟧ ⟩ ε₂ ≈˘⟨ ε-homo ⟩ ⟦ ε₁ ⟧ ∎) inverseʳ : RightInverse _≈₂_ ε₂ _⁻¹₂ _◦_ → RightInverse _≈₁_ ε₁ _⁻¹₁ _∙_ inverseʳ invʳ x = injective (begin ⟦ x ∙ x ⁻¹₁ ⟧ ≈⟨ ∙-homo x (x ⁻¹₁) ⟩ ⟦ x ⟧ ◦ ⟦ x ⁻¹₁ ⟧ ≈⟨ ◦-cong refl (⁻¹-homo x) ⟩ ⟦ x ⟧ ◦ ⟦ x ⟧ ⁻¹₂ ≈⟨ invʳ ⟦ x ⟧ ⟩ ε₂ ≈˘⟨ ε-homo ⟩ ⟦ ε₁ ⟧ ∎) inverse : Inverse _≈₂_ ε₂ _⁻¹₂ _◦_ → Inverse _≈₁_ ε₁ _⁻¹₁ _∙_ inverse (invˡ , invʳ) = inverseˡ invˡ , inverseʳ invʳ ⁻¹-cong : Congruent₁ _≈₂_ _⁻¹₂ → Congruent₁ _≈₁_ _⁻¹₁ ⁻¹-cong ⁻¹-cong {x} {y} x≈y = injective (begin ⟦ x ⁻¹₁ ⟧ ≈⟨ ⁻¹-homo x ⟩ ⟦ x ⟧ ⁻¹₂ ≈⟨ ⁻¹-cong (⟦⟧-cong x≈y) ⟩ ⟦ y ⟧ ⁻¹₂ ≈˘⟨ ⁻¹-homo y ⟩ ⟦ y ⁻¹₁ ⟧ ∎) isGroup : IsGroup _≈₂_ _◦_ ε₂ _⁻¹₂ → IsGroup _≈₁_ _∙_ ε₁ _⁻¹₁ isGroup isGroup = record { isMonoid = isMonoid G.isMonoid ; inverse = inverse G.isMagma G.inverse ; ⁻¹-cong = ⁻¹-cong G.isMagma G.⁻¹-cong } where module G = IsGroup isGroup isAbelianGroup : IsAbelianGroup _≈₂_ _◦_ ε₂ _⁻¹₂ → IsAbelianGroup _≈₁_ _∙_ ε₁ _⁻¹₁ isAbelianGroup isAbelianGroup = record { isGroup = isGroup G.isGroup ; comm = comm G.isMagma G.comm } where module G = IsAbelianGroup isAbelianGroup
{ "alphanum_fraction": 0.5780445969, "avg_line_length": 34.7023809524, "ext": "agda", "hexsha": "2a29f03dda28b9e09091f8824cbcbf130ecbc679", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/GroupMonomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/GroupMonomorphism.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/GroupMonomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1205, "size": 2915 }
{-# OPTIONS --without-K --safe #-} module Loop.Bundles where open import Algebra.Core open import Relation.Binary open import Level open import Loop.Structures open import Algebra.Bundles open import Algebra.Structures record LeftBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier _\\_ : Op₂ Carrier _//_ : Op₂ Carrier ε : Carrier isLeftBolLoop : IsLeftBolLoop _≈_ _∙_ _\\_ _//_ ε open IsLeftBolLoop isLeftBolLoop public loop : Loop _ _ loop = record { isLoop = isLoop } open Loop loop public using (quasigroup) record RightBolLoop c ℓ : Set (suc (c ⊔ ℓ)) where field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier _\\_ : Op₂ Carrier _//_ : Op₂ Carrier ε : Carrier isRightBolLoop : IsRightBolLoop _≈_ _∙_ _\\_ _//_ ε open IsRightBolLoop isRightBolLoop public loop : Loop _ _ loop = record { isLoop = isLoop } open Loop loop public using (quasigroup) record MoufangLoop c ℓ : Set (suc (c ⊔ ℓ)) where field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier _\\_ : Op₂ Carrier _//_ : Op₂ Carrier ε : Carrier isMoufangLoop : IsMoufangLoop _≈_ _∙_ _\\_ _//_ ε open IsMoufangLoop isMoufangLoop public loop : Loop _ _ loop = record { isLoop = isLoop } open Loop loop public using (quasigroup)
{ "alphanum_fraction": 0.6243093923, "avg_line_length": 21.9393939394, "ext": "agda", "hexsha": "d16e8a77750c9c89f39b03ea7940dbb574d1cb43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Loop/Bundles.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Loop/Bundles.agda", "max_line_length": 56, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Loop/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 505, "size": 1448 }
------------------------------------------------------------------------ -- Support for reflection ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module TC-monad {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where import Agda.Builtin.Bool as B open import Agda.Builtin.Char open import Agda.Builtin.Float import Agda.Builtin.Reflection open import Agda.Builtin.Strict open import Agda.Builtin.String open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (Type) import Maybe eq as _ open import Monad eq open import Nat eq -- Reflection primitives. open Agda.Builtin.Reflection public hiding (isMacro; withNormalisation) -- The TC monad is a "raw monad". instance raw-monad : ∀ {d} → Raw-monad {d = d} TC Raw-monad.return raw-monad = returnTC Raw-monad._>>=_ raw-monad = bindTC -- Converts B.Bool to and from Bool. Bool⇔Bool : B.Bool ⇔ Bool Bool⇔Bool = record { to = to; from = from } where to : B.Bool → Bool to B.false = false to B.true = true from : Bool → B.Bool from false = B.false from true = B.true -- Variants of some definitions from Agda.Builtin.Reflection. isMacro : Name → TC Bool isMacro x = _⇔_.to Bool⇔Bool ⟨$⟩ Agda.Builtin.Reflection.isMacro x withNormalisation : ∀ {a} {A : P.Type a} → Bool → TC A → TC A withNormalisation = Agda.Builtin.Reflection.withNormalisation ∘ _⇔_.from Bool⇔Bool -- Constructs a visible, relevant argument that is not erased pattern varg x = arg (arg-info visible (modality relevant quantity-ω)) x -- Constructs a hidden, relevant argument that is not erased. pattern harg x = arg (arg-info hidden (modality relevant quantity-ω)) x -- An n-ary variant of pi. pis : List (Abs (Arg Type)) → Type → Type pis [] B = B pis (abs x A ∷ As) B = pi A (abs x (pis As B)) mutual -- Checks if the terms are syntactically equal. -- -- Pattern-matching lambdas and "unknown" are currently never seen -- as equal to anything. -- -- Note that this function does not perform any kind of parameter -- reconstruction. eq-Term : Term → Term → Bool eq-Term (var x₁ ts₁) (var x₂ ts₂) = eq-ℕ x₁ x₂ ∧ eq-Args ts₁ ts₂ eq-Term (con c₁ ts₁) (con c₂ ts₂) = eq-Name c₁ c₂ ∧ eq-Args ts₁ ts₂ eq-Term (def f₁ ts₁) (def f₂ ts₂) = eq-Name f₁ f₂ ∧ eq-Args ts₁ ts₂ eq-Term (lam v₁ t₁) (lam v₂ t₂) = eq-Visibility v₁ v₂ ∧ eq-Abs t₁ t₂ eq-Term (pi a₁ b₁) (pi a₂ b₂) = eq-Arg a₁ a₁ ∧ eq-Abs b₁ b₂ eq-Term (agda-sort s₁) (agda-sort s₂) = eq-Sort s₁ s₂ eq-Term (lit l₁) (lit l₂) = eq-Literal l₁ l₂ eq-Term (meta x₁ ts₁) (meta x₂ ts₂) = eq-Meta x₁ x₂ ∧ eq-Args ts₁ ts₂ eq-Term _ _ = false eq-Name : Name → Name → Bool eq-Name x₁ x₂ = _⇔_.to Bool⇔Bool (primQNameEquality x₁ x₂) eq-ℕ : ℕ → ℕ → Bool eq-ℕ = _==_ eq-Meta : Meta → Meta → Bool eq-Meta x₁ x₂ = _⇔_.to Bool⇔Bool (primMetaEquality x₁ x₂) eq-String : String → String → Bool eq-String x₁ x₂ = _⇔_.to Bool⇔Bool (primStringEquality x₁ x₂) eq-Sort : Sort → Sort → Bool eq-Sort (set t₁) (set t₂) = eq-Term t₁ t₂ eq-Sort (lit n₁) (lit n₂) = eq-ℕ n₁ n₂ eq-Sort _ _ = false eq-Literal : Literal → Literal → Bool eq-Literal (nat n₁) (nat n₂) = eq-ℕ n₁ n₂ eq-Literal (float x₁) (float x₂) = _⇔_.to Bool⇔Bool (primFloatEquality x₁ x₂) eq-Literal (char c₁) (char c₂) = _⇔_.to Bool⇔Bool (primCharEquality c₁ c₂) eq-Literal (string s₁) (string s₂) = eq-String s₁ s₂ eq-Literal (name x₁) (name x₂) = eq-Name x₁ x₂ eq-Literal (meta x₁) (meta x₂) = eq-Meta x₁ x₂ eq-Literal _ _ = false eq-Args : List (Arg Term) → List (Arg Term) → Bool eq-Args [] [] = true eq-Args (t₁ ∷ ts₁) (t₂ ∷ ts₂) = eq-Arg t₁ t₂ ∧ eq-Args ts₁ ts₂ eq-Args _ _ = false eq-Abs : Abs Term → Abs Term → Bool eq-Abs (abs s₁ t₁) (abs s₂ t₂) = eq-String s₁ s₂ ∧ eq-Term t₁ t₂ eq-ArgInfo : ArgInfo → ArgInfo → Bool eq-ArgInfo (arg-info v₁ m₁) (arg-info v₂ m₂) = eq-Visibility v₁ v₂ ∧ eq-Modality m₁ m₂ eq-Arg : Arg Term → Arg Term → Bool eq-Arg (arg i₁ t₁) (arg i₂ t₂) = eq-ArgInfo i₁ i₂ ∧ eq-Term t₁ t₂ eq-Visibility : Visibility → Visibility → Bool eq-Visibility visible visible = true eq-Visibility hidden hidden = true eq-Visibility instance′ instance′ = true eq-Visibility _ _ = false eq-Modality : Modality → Modality → Bool eq-Modality (modality r₁ q₁) (modality r₂ q₂) = eq-Relevance r₁ r₂ ∧ eq-Quantity q₁ q₂ eq-Relevance : Relevance → Relevance → Bool eq-Relevance relevant relevant = true eq-Relevance irrelevant irrelevant = true eq-Relevance _ _ = false eq-Quantity : Quantity → Quantity → Bool eq-Quantity quantity-0 quantity-0 = true eq-Quantity quantity-ω quantity-ω = true eq-Quantity _ _ = false -- Returns a fresh meta-variable of type Level. fresh-level : TC Level fresh-level = checkType unknown (def (quote Level) []) >>= λ ℓ → unquoteTC ℓ -- Tries to apply the given term (of the given type) to the list of -- arguments. The type of the resulting term is also returned. apply : Type → Term → List (Arg Term) → TC (Type × Term) apply A t [] = returnTC (A , t) apply A t (a ∷ as) = reduce A >>= λ A → apply₁ A t a >>= λ { (A , t) → apply A t as } where apply₁ : Type → Term → Arg Term → TC (Type × Term) apply₁ (pi (arg i₁@(arg-info k _) A) B) t₁ (arg i₂ t₂) = if not (eq-ArgInfo i₁ i₂) then typeError (strErr "apply: argument info mismatch" ∷ []) else bindTC fresh-level λ a → bindTC fresh-level λ b → bindTC (unquoteTC A) λ (A : P.Type a) → bindTC (unquoteTC (lam visible B)) λ (B : A → P.Type b) → bindTC (unquoteTC t₂) λ (t₂ : A) → bindTC (quoteTC (B t₂)) λ Bt₂ → case k of λ where visible → bindTC (unquoteTC t₁) λ (t₁ : (x : A) → B x) → bindTC (quoteTC (t₁ t₂)) λ t₁t₂ → return (Bt₂ , t₁t₂) hidden → bindTC (unquoteTC t₁) λ (t₁ : {x : A} → B x) → bindTC (quoteTC (t₁ {x = t₂})) λ t₁t₂ → return (Bt₂ , t₁t₂) instance′ → bindTC (unquoteTC t₁) λ (t₁ : ⦃ x : A ⦄ → B x) → bindTC (quoteTC (t₁ ⦃ x = t₂ ⦄)) λ t₁t₂ → return (Bt₂ , t₁t₂) apply₁ (meta x _) _ _ = blockOnMeta x apply₁ A _ _ = typeError (strErr "apply: not a pi" ∷ termErr A ∷ []) mutual -- The number of variables bound in the pattern(s). bound-in-pattern : Pattern → ℕ bound-in-pattern (con _ ps) = bound-in-patterns ps bound-in-pattern (dot _) = 0 bound-in-pattern (var _) = 1 bound-in-pattern (lit _) = 0 bound-in-pattern (proj _) = 0 bound-in-pattern (absurd _) = 1 bound-in-patterns : List (Arg Pattern) → ℕ bound-in-patterns [] = 0 bound-in-patterns (arg _ p ∷ ps) = bound-in-pattern p + bound-in-patterns ps mutual -- Renames the first variable to the second. -- -- Pattern-matching lambdas are replaced by "unknown". rename-term : ℕ → ℕ → Term → Term rename-term old new = λ where (var x args) → var (rename-var old new x) (rename-args old new args) (con c args) → con c (rename-args old new args) (def f args) → def f (rename-args old new args) (lam v t) → lam v (rename-abs old new t) (pat-lam cs args) → unknown (pi a b) → pi (rename-arg old new a) (rename-abs old new b) (agda-sort s) → agda-sort (rename-sort old new s) (lit l) → lit l (meta x args) → meta x (rename-args old new args) unknown → unknown rename-var : ℕ → ℕ → ℕ → ℕ rename-var old new x = if eq-ℕ x old then new else old rename-abs : ℕ → ℕ → Abs Term → Abs Term rename-abs old new (abs s t) = abs s (rename-term (suc old) (suc new) t) rename-arg : ℕ → ℕ → Arg Term → Arg Term rename-arg old new (arg i t) = arg i (rename-term old new t) rename-args : ℕ → ℕ → List (Arg Term) → List (Arg Term) rename-args old new = λ where [] → [] (a ∷ as) → rename-arg old new a ∷ rename-args old new as rename-sort : ℕ → ℕ → Sort → Sort rename-sort old new = λ where (set t) → set (rename-term old new t) (prop t) → prop (rename-term old new t) (lit n) → lit n (propLit n) → propLit n (inf n) → inf n unknown → unknown mutual -- Weakening: weaken-term from by increases variables "from" and -- higher by "by". -- -- Pattern-matching lambdas are replaced by "unknown". weaken-term : ℕ → ℕ → Term → Term weaken-term from by = λ where (var x args) → var (weaken-var from by x) (weaken-args from by args) (con c args) → con c (weaken-args from by args) (def f args) → def f (weaken-args from by args) (lam v t) → lam v (weaken-abs from by t) (pat-lam cs args) → unknown (pi a b) → pi (weaken-arg from by a) (weaken-abs from by b) (agda-sort s) → agda-sort (weaken-sort from by s) (lit l) → lit l (meta x args) → meta x (weaken-args from by args) unknown → unknown weaken-var : ℕ → ℕ → ℕ → ℕ weaken-var from by x = if from <= x then x + by else x weaken-abs : ℕ → ℕ → Abs Term → Abs Term weaken-abs from by (abs s t) = abs s (weaken-term (suc from) by t) weaken-arg : ℕ → ℕ → Arg Term → Arg Term weaken-arg from by (arg i t) = arg i (weaken-term from by t) weaken-args : ℕ → ℕ → List (Arg Term) → List (Arg Term) weaken-args from by = λ where [] → [] (a ∷ as) → weaken-arg from by a ∷ weaken-args from by as weaken-sort : ℕ → ℕ → Sort → Sort weaken-sort from by = λ where (set t) → set (weaken-term from by t) (prop t) → prop (weaken-term from by t) (lit n) → lit n (propLit n) → propLit n (inf n) → inf n unknown → unknown mutual -- Strengthening: strengthen-term from by subtracts "by" from -- variables "from" and higher. Applications of variable x, where -- from ≤ x and x < from + by, are replaced by "unknown". -- -- Pattern-matching lambdas are replaced by "unknown". strengthen-term : ℕ → ℕ → Term → Term strengthen-term from by = λ where (var x args) → let args′ = strengthen-args from by args in if from + by <= x then var (x ∸ by) args′ else if from <= x then unknown else var x args′ (con c args) → con c (strengthen-args from by args) (def f args) → def f (strengthen-args from by args) (lam v t) → lam v (strengthen-abs from by t) (pat-lam cs args) → unknown (pi a b) → pi (strengthen-arg from by a) (strengthen-abs from by b) (agda-sort s) → agda-sort (strengthen-sort from by s) (lit l) → lit l (meta x args) → meta x (strengthen-args from by args) unknown → unknown strengthen-abs : ℕ → ℕ → Abs Term → Abs Term strengthen-abs from by (abs s t) = abs s (strengthen-term (suc from) by t) strengthen-arg : ℕ → ℕ → Arg Term → Arg Term strengthen-arg from by (arg i t) = arg i (strengthen-term from by t) strengthen-args : ℕ → ℕ → List (Arg Term) → List (Arg Term) strengthen-args from by = λ where [] → [] (a ∷ as) → strengthen-arg from by a ∷ strengthen-args from by as strengthen-sort : ℕ → ℕ → Sort → Sort strengthen-sort from by = λ where (set t) → set (strengthen-term from by t) (prop t) → prop (strengthen-term from by t) (lit n) → lit n (propLit n) → propLit n (inf n) → inf n unknown → unknown mutual -- The result of any-term and similar functions. -- -- Note that "definitely true" can be returned even if the term -- contains meta-variables, the term unknown, the sort unknown, or -- pattern-matching lambdas. Any-result : P.Type Any-result = Any-result′ Bool -- A generalisation of Any-result. (Without the type parameter the -- raw monad instance below would not work.) data Any-result′ (A : P.Type) : P.Type where definitely : A → Any-result′ A -- The result is definitely true or false. meta : Meta → Any-result′ A -- There is no positive evidence that the result is true. At least -- one meta-variable (the given one) was encountered, and if this -- meta-variable is instantiated in a certain way, then the -- predicate might hold (depending on what the predicate is, -- any-term does not analyse the predicate). unknown : Any-result′ A -- There is no positive evidence that the result is true. The term -- contains the term unknown, the sort unknown, or a -- pattern-matching lambda (and pattern-matching lambdas are not -- analysed). instance -- Any-result′ is a raw monad. Any-result-raw-monad : Raw-monad Any-result′ Raw-monad.return Any-result-raw-monad = definitely Raw-monad._>>=_ Any-result-raw-monad = λ where (definitely x) f → f x (meta m) f → meta m unknown f → unknown mutual -- Tries to figure out if the given predicate holds for some free -- variable in the given term. The predicate is adjusted when -- any-term goes under a binder. any-term : (ℕ → Bool) → Term → Any-result any-term p = λ where (var x args) → (any-var p x ∨_) ⟨$⟩ any-args p args (con _ args) → any-args p args (def _ args) → any-args p args (lam _ t) → any-abs p t (pat-lam cs args) → unknown (pi a b) → _∨_ ⟨$⟩ any-arg p a ⊛ any-abs p b (agda-sort s) → any-sort p s (lit l) → definitely false (meta m args) → case any-args p args of λ where (definitely false) → meta m r → r unknown → unknown any-var : (ℕ → Bool) → ℕ → Bool any-var p x = p x any-abs : (ℕ → Bool) → Abs Term → Any-result any-abs p (abs _ t) = any-term (λ where zero → false (suc n) → p n) t any-arg : (ℕ → Bool) → Arg Term → Any-result any-arg p (arg i t) = any-term p t any-args : (ℕ → Bool) → List (Arg Term) → Any-result any-args p = λ where [] → definitely false (a ∷ as) → _∨_ ⟨$⟩ any-arg p a ⊛ any-args p as any-sort : (ℕ → Bool) → Sort → Any-result any-sort p = λ where (set t) → any-term p t (prop t) → any-term p t (lit n) → definitely false (propLit n) → definitely false (inf n) → definitely false unknown → unknown -- Figures out if the given variable is bound in the given term. bound? : ℕ → Term → Any-result bound? x = any-term (eq-ℕ x) -- Figures out if variables less than the given variable are bound -- in the given term. <bound? : ℕ → Term → Any-result <bound? x = any-term (λ y → suc y <= x)
{ "alphanum_fraction": 0.5761472681, "avg_line_length": 33.5207877462, "ext": "agda", "hexsha": "d497ab1f10b91136e2358951df012398a14a0cd6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/TC-monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/TC-monad.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/TC-monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 4891, "size": 15319 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The irrelevance axiom ------------------------------------------------------------------------ module Irrelevance where import Level ------------------------------------------------------------------------ -- The irrelevance axiom -- There is no guarantee that this axiom is sound. Use it at your own -- risk. postulate .irrelevance-axiom : ∀ {a} {A : Set a} → .A → A {-# BUILTIN IRRAXIOM irrelevance-axiom #-}
{ "alphanum_fraction": 0.4041745731, "avg_line_length": 25.0952380952, "ext": "agda", "hexsha": "2a39b8438068bb189cdc5939e69af36ce76f5c00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Irrelevance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Irrelevance.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Irrelevance.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 97, "size": 527 }
open import Agda.Builtin.Nat open import Agda.Builtin.Bool test1 : Nat → Nat test1 zero = 0 test1 (suc zero) = 1 test1 (suc n) = {!n!} test2 : Nat → Nat → Nat test2 zero zero = zero test2 zero (suc y) = y test2 x y = {!x!} test3 : Bool → Bool → Bool → Bool test3 true true true = true test3 x true false = x test3 false y true = y test3 true false z = z test3 x y z = {!x y z!}
{ "alphanum_fraction": 0.5717592593, "avg_line_length": 21.6, "ext": "agda", "hexsha": "959ff6fc9507731bfb99c792e85138bde227a65f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1958.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1958.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1958.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 162, "size": 432 }
-- 2013-12-28 Andreas, issue reported by Christian Sattler {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS -v tc.cc:15 #-} -- Keep! Debug printing triggered the problem. record Σ (A : Set) (B : A → Set) : Set where field fst : A snd : B fst test : {A : Set} → Σ A (λ {_ → A}) test = _ -- This used to trigger an internal error -- (funnily only at -v tc.cc:15 verbosity) -- because adding the clause to an -- extended lambda failed. Reason: -- Extended lambda was registered as Axiom -- during first checking, not Defn as -- checkFunDef' now expects.
{ "alphanum_fraction": 0.6602112676, "avg_line_length": 27.0476190476, "ext": "agda", "hexsha": "7c406e489f98fd747a292c1c3eb9fed081c5c056", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1009.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1009.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1009.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 168, "size": 568 }
{-# OPTIONS --universe-polymorphism #-} module Desc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Universe polymorphism --**************** data Level : Set where zero : Level suc : Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} max : Level -> Level -> Level max zero m = m max (suc n) zero = suc n max (suc n) (suc m) = suc (max n m) {-# BUILTIN LEVELMAX max #-} data Lifted {l : Level} (A : Set l) : Set (suc l) where lifter : A → Lifted A lift : {i : Level} -> Set i -> Set (suc i) lift x = Lifted x unlift : {l : Level}{A : Set l} -> Lifted A -> A unlift (lifter a) = a --**************** -- Sigma and friends --**************** data Sigma {i j : Level}(A : Set i) (B : A -> Set j) : Set (max i j) where _,_ : (x : A) (y : B x) -> Sigma A B pair : {i j : Level}{A : Set i}{B : A -> Set j} -> (x : A) (y : B x) -> Sigma {i = i}{j = j} A B pair x y = x , y _*_ : {i j : Level}(A : Set i)(B : Set j) -> Set (max i j) A * B = Sigma A \_ -> B fst : {i j : Level}{A : Set i}{B : A -> Set j} -> Sigma A B -> A fst (a , _) = a snd : {i j : Level}{A : Set i}{B : A -> Set j} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero {i : Level} : Set i where data Unit {i : Level} : Set i where Void : Unit --**************** -- Sum and friends --**************** data _+_ {i j : Level}(A : Set i)(B : Set j) : Set (max i j) where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {l : Level}{A : Set l}(x : A) : A -> Set l where refl : x == x cong : {l m : Level}{A : Set l}{B : Set m} (f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {l m n : Level}{A : Set l}{B : Set m}{C : Set n} (f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl trans : {l : Level}{A : Set l}{x y z : A} -> x == y -> y == z -> x == z trans refl refl = refl proof-lift-unlift-eq : {l : Level}{A : Set l}(x : Lifted A) -> lifter (unlift x) == x proof-lift-unlift-eq (lifter a) = refl postulate reflFun : {l m : Level}{A : Set l}{B : A -> Set m}(f : (a : A) -> B a)(g : (a : A) -> B a)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** -- In the paper, we have presented Desc as the grammar of inductive -- types. Hence, the codes in the paper closely follow this -- grammar: data DescPaper : Set1 where oneP : DescPaper sigmaP : (S : Set) -> (S -> DescPaper) -> DescPaper indx : DescPaper -> DescPaper hindx : Set -> DescPaper -> DescPaper -- We take advantage of this model to give you an alternative -- presentation. This alternative model is the one implemented in -- Epigram. It is also the one which inspired the code for indexed -- descriptions. -- With sigma, we are actually "quoting" a standard type-former, -- namely: -- |Sigma : (S : Set) -> (S -> Set) -> Set| -- With: -- |sigma : (S : Set) -> (S -> Desc) -> Desc| -- In the alternative presentation, we go further and present all our -- codes as quotations of standard type-formers: data Desc {l : Level} : Set (suc l) where id : Desc const : Set l -> Desc prod : Desc -> Desc -> Desc sigma : (S : Set l) -> (S -> Desc) -> Desc pi : (S : Set l) -> (S -> Desc) -> Desc -- Note that we replace |oneP| by a more general |const| code. Whereas -- |oneP| was interpreted as the unit set, |const K| is -- interpreted as |K|, for any |K : Set|. Extensionally, -- |const K| and |sigma K (\_ -> Unit)| are equivalent. However, -- |const| is *first-order*, unlike its equivalent encoding. From a -- definitional perspective, we are giving more opportunities to the -- type-system, hence reducing the burden on the programmer. For the same -- reason, we introduce |prod| that overlaps with |pi|. -- This reorganisation is strictly equivalent to the |DescPaper|. For -- instance, we can encode |indx| and |hindx| using the following -- code: indx2 : {l : Level} -> Desc {l = l} -> Desc {l = l} indx2 D = prod id D hindx2 : Set -> Desc -> Desc hindx2 H D = prod (pi H (\_ -> id)) D --******************************************** -- Desc interpretation --******************************************** [|_|]_ : {l : Level} -> Desc -> Set l -> Set l [| id |] Z = Z [| const X |] Z = X [| prod D D' |] Z = [| D |] Z * [| D' |] Z [| sigma S T |] Z = Sigma S (\s -> [| T s |] Z) [| pi S T |] Z = (s : S) -> [| T s |] Z --******************************************** -- Fixpoint construction --******************************************** data Mu {l : Level}(D : Desc {l = l}) : Set l where con : [| D |] (Mu D) -> Mu D --******************************************** -- Predicate: All --******************************************** All : {l : Level}(D : Desc)(X : Set)(P : X -> Set l) -> [| D |] X -> Set l All id X P x = P x All (const Z) X P x = Unit All (prod D D') X P (d , d') = (All D X P d) * (All D' X P d') All (sigma S T) X P (a , b) = All (T a) X P b All (pi S T) X P f = (s : S) -> All (T s) X P (f s) all : {l : Level}(D : Desc)(X : Set)(P : X -> Set l)(R : (x : X) -> P x)(x : [| D |] X) -> All D X P x all id X P R x = R x all (const Z) X P R z = Void all (prod D D') X P R (d , d') = all D X P R d , all D' X P R d' all (sigma S T) X P R (a , b) = all (T a) X P R b all (pi S T) X P R f = \ s -> all (T s) X P R (f s) --******************************************** -- Map --******************************************** -- This one is bonus: one could rightfully expect our so-called -- functors to have a morphism part! Here it is. map : {l : Level}(D : Desc)(X Y : Set l)(f : X -> Y)(v : [| D |] X) -> [| D |] Y map id X Y sig x = sig x map (const Z) X Y sig z = z map (prod D D') X Y sig (d , d') = map D X Y sig d , map D' X Y sig d' map (sigma S T) X Y sig (a , b) = (a , map (T a) X Y sig b) map (pi S T) X Y sig f = \x -> map (T x) X Y sig (f x) -- Together with the proof that they respect the functor laws: -- map id = id proof-map-id : {l : Level}(D : Desc)(X : Set l)(v : [| D |] X) -> map D X X (\x -> x) v == v proof-map-id id X v = refl proof-map-id (const Z) X v = refl proof-map-id (prod D D') X (v , v') = cong2 (\x y -> (x , y)) (proof-map-id D X v) (proof-map-id D' X v') proof-map-id (sigma S T) X (a , b) = cong (\x -> (a , x)) (proof-map-id (T a) X b) proof-map-id (pi S T) X f = reflFun (\a -> map (T a) X X (\x -> x) (f a)) f (\a -> proof-map-id (T a) X (f a)) -- map (f . g) = map f . map g proof-map-compos : {l : Level}(D : Desc)(X Y Z : Set l) (f : X -> Y)(g : Y -> Z) (v : [| D |] X) -> map D X Z (\x -> g (f x)) v == map D Y Z g (map D X Y f v) proof-map-compos id X Y Z f g v = refl proof-map-compos (const K) X Y Z f g v = refl proof-map-compos (prod D D') X Y Z f g (v , v') = cong2 (\x y -> (x , y)) (proof-map-compos D X Y Z f g v) (proof-map-compos D' X Y Z f g v') proof-map-compos (sigma S T) X Y Z f g (a , b) = cong (\x -> (a , x)) (proof-map-compos (T a) X Y Z f g b) proof-map-compos (pi S T) X Y Z f g fc = reflFun (\a -> map (T a) X Z (\x -> g (f x)) (fc a)) (\a -> map (T a) Y Z g (map (T a) X Y f (fc a))) (\a -> proof-map-compos (T a) X Y Z f g (fc a)) --******************************************** -- Elimination principle: induction --******************************************** -- One would like to write the following: {- ind : {l : Level} (D : Desc) (P : Mu D -> Set l) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v ind D P ms (con xs) = ms xs (all D (Mu D) P (\x -> ind D P ms x) xs) -} -- But the termination checker is unhappy. -- So we write the following: module Elim {l : Level} (D : Desc) (P : Mu D -> Set l) (ms : (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) where mutual ind : (x : Mu D) -> P x ind (con xs) = ms xs (hyps D xs) hyps : (D' : Desc) (xs : [| D' |] (Mu D)) -> All D' (Mu D) P xs hyps id x = ind x hyps (const Z) z = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (sigma S T) (a , b) = hyps (T a) b hyps (pi S T) f = \s -> hyps (T s) (f s) ind : {l : Level} (D : Desc) (P : Mu D -> Set l) -> ( (x : [| D |] (Mu D)) -> All D (Mu D) P x -> P (con x)) -> (v : Mu D) -> P v ind D P ms x = Elim.ind D P ms x --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Su : NatConst natCases : NatConst -> Desc natCases Ze = const Unit natCases Suc = id NatD : Desc NatD = sigma NatConst natCases Nat : Set Nat = Mu NatD ze : Nat ze = con (Ze , Void) su : Nat -> Nat su n = con (Su , n) -- Now we can get addition for example: plusCase : (xs : [| NatD |] Nat) -> All NatD Nat (\_ -> Nat -> Nat) xs -> Nat -> Nat plusCase ( Ze , Void ) hs y = y plusCase ( Su , n ) hs y = su (hs y) plus : Nat -> Nat -> Nat plus x = ind NatD (\ _ -> (Nat -> Nat)) plusCase x -- Do this thing in Epigram, you will see that this is *not* -- hieroglyphic with a bit of elaboration. --**************** -- List --**************** data ListConst : Set where Nil : ListConst Cons : ListConst listCases : Set -> ListConst -> Desc listCases X Nil = const Unit listCases X Cons = sigma X (\_ -> id) ListD : Set -> Desc ListD X = sigma ListConst (listCases X) List : Set -> Set List X = Mu (ListD X) nil : {X : Set} -> List X nil = con ( Nil , Void ) cons : {X : Set} -> X -> List X -> List X cons x t = con ( Cons , ( x , t )) --**************** -- Tree --**************** data TreeConst : Set where Leaf : TreeConst Node : TreeConst treeCases : Set -> TreeConst -> Desc treeCases X Leaf = const Unit treeCases X Node = sigma X (\_ -> prod id id) TreeD : Set -> Desc TreeD X = sigma TreeConst (treeCases X) Tree : Set -> Set Tree X = Mu (TreeD X) leaf : {X : Set} -> Tree X leaf = con (Leaf , Void) node : {X : Set} -> X -> Tree X -> Tree X -> Tree X node x le ri = con (Node , (x , (le , ri))) --******************************************** -- Finite sets --******************************************** -- If we weren't such big fans of levitating things, we would -- implement finite sets with: {- data En : Set where nE : En cE : En -> En spi : (e : En)(P : EnumT e -> Set) -> Set spi nE P = Unit spi (cE e) P = P EZe * spi e (\e -> P (ESu e)) switch : (e : En)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nE P b () switch (cE e) P b EZe = fst b switch (cE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n -} -- But no, we make it fly in Desc: --**************** -- En --**************** -- As we have no tags here, we use Nat instead of List. EnD : Desc EnD = NatD En : Set En = Nat nE : En nE = ze cE : En -> En cE e = su e --**************** -- EnumT --**************** -- Because I don't want to fall back on wacky unicode symbols, I will -- write EnumT for #, EZe for 0, and ESu for 1+. Sorry about that data EnumT : (e : En) -> Set where EZe : {e : En} -> EnumT (cE e) ESu : {e : En} -> EnumT e -> EnumT (cE e) --**************** -- Small Pi --**************** -- This corresponds to the small pi |\pi|. casesSpi : {l : Level}(xs : [| EnD |] En) -> All EnD En (\e -> (EnumT e -> Set l) -> Set l) xs -> (EnumT (con xs) -> Set l) -> Set l casesSpi (Ze , Void) hs P' = Unit casesSpi (Su , n) hs P' = P' EZe * hs (\e -> P' (ESu e)) spi : {l : Level}(e : En)(P : EnumT e -> Set l) -> Set l spi {x} e P = ind EnD (\E -> (EnumT E -> Set x) -> Set x) casesSpi e P --**************** -- Switch --**************** casesSwitch : {l : Level} (xs : [| EnD |] En) -> All EnD En (\e -> (P' : EnumT e -> Set l) (b' : spi e P') (x' : EnumT e) -> P' x') xs -> (P' : EnumT (con xs) -> Set l) (b' : spi (con xs) P') (x' : EnumT (con xs)) -> P' x' casesSwitch (Ze , Void) hs P' b' () casesSwitch (Su , n) hs P' b' EZe = fst b' casesSwitch (Su , n) hs P' b' (ESu e') = hs (\e -> P' (ESu e)) (snd b') e' switch : {l : Level} (e : En) (P : EnumT e -> Set l) (b : spi e P) (x : EnumT e) -> P x switch {x} e P b xs = ind EnD (\e -> (P : EnumT e -> Set x) (b : spi e P) (xs : EnumT e) -> P xs) casesSwitch e P b xs --**************** -- Desc --**************** -- In the following, we implement Desc in itself. As usual, we have a -- finite set of constructors -- the name of the codes. Note that we -- could really define these as a finite set built above. However, in -- Agda, it's horribly verbose. For the sake of clarity, we won't do -- that here. data DescDef : Set1 where DescId : DescDef DescConst : DescDef DescProd : DescDef DescSigma : DescDef DescPi : DescDef -- We slightly diverge here from the presentation of the paper: note -- the presence of terminating "const Unit". Recall our Lisp-ish -- notation for nested tuples: -- |[a b c]| -- Corresponds to -- |[a , [ b , [c , []]]]| -- So, if we want to write constructors using our Lisp-ish notation, the interpretation -- [| DescD |] (Mu DescD) have to evaluates to [ constructor , [ arg1 , [ arg2 , []]]] -- Hence, we define Desc's code as follow: descCases : DescDef -> Desc descCases DescId = const Unit descCases DescConst = sigma Set (\_ -> const Unit) descCases DescProd = prod id (prod id (const Unit)) descCases DescSigma = sigma Set (\S -> prod (pi (lift S) (\_ -> id)) (const Unit)) descCases DescPi = sigma Set (\S -> prod (pi (lift S) (\_ -> id)) (const Unit)) DescD : Desc DescD = sigma DescDef descCases DescIn : Set1 DescIn = Mu DescD -- So that the constructors are: -- (Note the annoying |pair|s to set the implicit levels. I could not -- get rid of the yellow otherwise) idIn : DescIn idIn = con (pair {i = suc zero} {j = suc zero} DescId Void) constIn : Set -> DescIn constIn K = con (pair {i = suc zero} {j = suc zero} DescConst (K , Void)) prodIn : (D D' : DescIn) -> DescIn prodIn D D' = con (pair {i = suc zero} {j = suc zero} DescProd (D , ( D' , Void ))) sigmaIn : (S : Set)(D : S -> DescIn) -> DescIn sigmaIn S D = con (pair {i = suc zero} {j = suc zero} DescSigma (S , ((\s -> D (unlift s)) , Void ))) piIn : (S : Set)(D : S -> DescIn) -> DescIn piIn S D = con (pair {i = suc zero} {j = suc zero} DescPi (S , ((\s -> D (unlift s)) , Void ))) -- At this stage, we could prove the isomorphism between |DescIn| and -- |Desc|. While not technically difficult, it is long and -- laborious. We have carried this proof on the more complex and -- interesting |IDesc| universe, in IDesc.agda. --******************************************** -- Tagged description --******************************************** TagDesc : {l : Level} -> Set (suc l) TagDesc = Sigma En (\e -> spi e (\_ -> Desc)) de : TagDesc -> Desc de (B , F) = sigma (EnumT B) (\E -> switch B (\_ -> Desc) F E) --******************************************** -- Catamorphism --******************************************** cata : (D : Desc) (T : Set) -> ([| D |] T -> T) -> (Mu D) -> T cata D T phi x = ind D (\_ -> T) (\x ms -> phi (replace D T x ms)) x where replace : (D' : Desc)(T : Set)(xs : [| D' |] (Mu D))(ms : All D' (Mu D) (\_ -> T) xs) -> [| D' |] T replace id T x y = y replace (const Z) T z z' = z replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Free monad construction --******************************************** _**_ : TagDesc -> (X : Set) -> TagDesc (e , D) ** X = cE e , (const X , D) --******************************************** -- Substitution --******************************************** apply : (D : TagDesc)(X Y : Set) -> (X -> Mu (de (D ** Y))) -> [| de (D ** X) |] (Mu (de (D ** Y))) -> Mu (de (D ** Y)) apply (E , B) X Y sig (EZe , x) = sig x apply (E , B) X Y sig (ESu n , t) = con (ESu n , t) subst : (D : TagDesc)(X Y : Set) -> Mu (de (D ** X)) -> (X -> Mu (de (D ** Y))) -> Mu (de (D ** Y)) subst D X Y x sig = cata (de (D ** X)) (Mu (de (D ** Y))) (apply D X Y sig) x
{ "alphanum_fraction": 0.4650167688, "avg_line_length": 30.0243055556, "ext": "agda", "hexsha": "5fad120cd4d4473dd5a259268f5b0f4732b37924", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/Desc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/Desc.agda", "max_line_length": 129, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/Desc.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 5595, "size": 17294 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate +-comm : ∀ m n → m + n ≡ n + m -- Note that the following does not work because -- p+q is not abstracted over in `+-comm p q` which means -- Agda gets stuck trying to unify `p + q` and `q + p` -- Cf. test/Succeed/UsingEq.agda rew : ∀ m n p q → m + (p + q) + n ≡ m + (q + p) + n rew m n p q with p+q ← p + q with refl ← +-comm p q = refl
{ "alphanum_fraction": 0.61352657, "avg_line_length": 29.5714285714, "ext": "agda", "hexsha": "7b4b8aeaacb5eed03f0f23e0cacefc89f46998cd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UsingEq.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UsingEq.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UsingEq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 148, "size": 414 }
{-# OPTIONS --rewriting #-} postulate _↦_ : ∀ {a} {A : Set a} → A → A → Set {-# BUILTIN REWRITE _↦_ #-} open import Agda.Primitive postulate mekker : Level → Level → Set moomoo : Level → Set → Set rew : (a b : Level) → moomoo (a ⊔ b) (mekker a b) ↦ (Level → Level) {-# REWRITE rew #-} works : {a b : Level} → moomoo (a ⊔ b) (mekker a b) → Level works f = f lzero fails : {a : Level} → moomoo a (mekker a a) → Level fails f = f lzero
{ "alphanum_fraction": 0.5752808989, "avg_line_length": 22.25, "ext": "agda", "hexsha": "84596e371f3ccf3a4042c291274497e05cdd16b3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2299.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2299.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2299.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 170, "size": 445 }
{-# OPTIONS --without-K #-} -- Finite types and paths between them module FT where open import Data.Empty open import Data.Unit open import Data.Nat open import Data.Sum open import Data.Product infixl 10 _◎_ ------------------------------------------------------------------------------ -- Finite types data FT : Set where ZERO : FT ONE : FT PLUS : FT → FT → FT TIMES : FT → FT → FT ⟦_⟧ : FT → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS B₁ B₂ ⟧ = ⟦ B₁ ⟧ ⊎ ⟦ B₂ ⟧ ⟦ TIMES B₁ B₂ ⟧ = ⟦ B₁ ⟧ × ⟦ B₂ ⟧ ------------------------------------------------------------------------------ -- Generalized paths are pi-combinators data _⇛_ : FT → FT → Set where -- additive structure unite₊⇛ : { b : FT } → PLUS ZERO b ⇛ b uniti₊⇛ : { b : FT } → b ⇛ PLUS ZERO b swap₊⇛ : { b₁ b₂ : FT } → PLUS b₁ b₂ ⇛ PLUS b₂ b₁ assocl₊⇛ : { b₁ b₂ b₃ : FT } → PLUS b₁ (PLUS b₂ b₃) ⇛ PLUS (PLUS b₁ b₂) b₃ assocr₊⇛ : { b₁ b₂ b₃ : FT } → PLUS (PLUS b₁ b₂) b₃ ⇛ PLUS b₁ (PLUS b₂ b₃) -- multiplicative structure unite⋆⇛ : { b : FT } → TIMES ONE b ⇛ b uniti⋆⇛ : { b : FT } → b ⇛ TIMES ONE b swap⋆⇛ : { b₁ b₂ : FT } → TIMES b₁ b₂ ⇛ TIMES b₂ b₁ assocl⋆⇛ : { b₁ b₂ b₃ : FT } → TIMES b₁ (TIMES b₂ b₃) ⇛ TIMES (TIMES b₁ b₂) b₃ assocr⋆⇛ : { b₁ b₂ b₃ : FT } → TIMES (TIMES b₁ b₂) b₃ ⇛ TIMES b₁ (TIMES b₂ b₃) -- distributivity distz⇛ : { b : FT } → TIMES ZERO b ⇛ ZERO factorz⇛ : { b : FT } → ZERO ⇛ TIMES ZERO b dist⇛ : { b₁ b₂ b₃ : FT } → TIMES (PLUS b₁ b₂) b₃ ⇛ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor⇛ : { b₁ b₂ b₃ : FT } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⇛ TIMES (PLUS b₁ b₂) b₃ -- congruence id⇛ : { b : FT } → b ⇛ b sym⇛ : { b₁ b₂ : FT } → (b₁ ⇛ b₂) → (b₂ ⇛ b₁) _◎_ : { b₁ b₂ b₃ : FT } → (b₁ ⇛ b₂) → (b₂ ⇛ b₃) → (b₁ ⇛ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : FT } → (b₁ ⇛ b₃) → (b₂ ⇛ b₄) → (PLUS b₁ b₂ ⇛ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : FT } → (b₁ ⇛ b₃) → (b₂ ⇛ b₄) → (TIMES b₁ b₂ ⇛ TIMES b₃ b₄) ------------------------------------------------------------------------------ -- An alternative interpretation, as a Functor. ⟦_⟧′ : FT → (Set → Set) ⟦ ZERO ⟧′ A = ⊥ ⟦ ONE ⟧′ A = A ⟦ PLUS B₁ B₂ ⟧′ A = ⟦ B₁ ⟧′ A ⊎ ⟦ B₂ ⟧′ A ⟦ TIMES B₁ B₂ ⟧′ A = ⟦ B₁ ⟧′ A × ⟦ B₂ ⟧′ A {-- Not used BOOL-FT : Set BOOL-FT = ⟦ PLUS ONE ONE ⟧ true-FT : BOOL-FT true-FT = inj₁ tt false-FT : BOOL-FT false-FT = inj₂ tt witness : (B : FT) → Maybe ⟦ B ⟧ witness ZERO = nothing witness ONE = just tt witness (PLUS B₁ B₂) with witness B₁ | witness B₂ ... | nothing | nothing = nothing ... | nothing | just b = just (inj₂ b) ... | just b | _ = just (inj₁ b) witness (TIMES B₁ B₂) with witness B₁ | witness B₂ ... | nothing | _ = nothing ... | just b | nothing = nothing ... | just b₁ | just b₂ = just (b₁ , b₂) elems : (B : FT) → List ⟦ B ⟧ elems ZERO = [] elems ONE = [ tt ] elems (PLUS B₁ B₂) = map inj₁ (elems B₁) ++ map inj₂ (elems B₂) elems (TIMES B₁ B₂) = concatMap (λ e₁ → map (λ e₂ → (e₁ , e₂)) (elems B₂)) (elems B₁) expandF : {B₁ B₂ : FT} → (⟦ B₁ ⟧ → ⟦ B₂ ⟧) → List (⟦ B₁ ⟧ × ⟦ B₂ ⟧) expandF {B₁} {B₂} f = map (λ e → (e , f e)) (elems B₁) test0 : List ((⊤ × BOOL-FT) × BOOL-FT) test0 = expandF (unite⋆ {BOOL-FT}) --}
{ "alphanum_fraction": 0.4720290293, "avg_line_length": 29.2654867257, "ext": "agda", "hexsha": "e2fdc2500572f1a38eef0504f4819e0d79986ded", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/FT.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/FT.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/FT.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1450, "size": 3307 }
module sum where open import level open import bool open import eq open import maybe open import product ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data _⊎_ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : Set (ℓ ⊔ ℓ') where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B _∨_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') _∨_ = _⊎_ ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infixr 0 _⊎_ _∨_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- _≫=⊎_ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{C : Set (ℓ ⊔ ℓ')} → A ⊎ B → (B → A ⊎ C) → A ⊎ C inj₁ x ≫=⊎ f = inj₁ x inj₂ x ≫=⊎ f = f x return⊎ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → B → A ⊎ B return⊎ b = inj₂ b infix 5 error⊎_ error⊎_ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → A → A ⊎ B error⊎_ a = inj₁ a extract-inj₁≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'}{a a' : A} → inj₁{B = B} a ≡ inj₁ a' → a ≡ a' extract-inj₁≡ refl = refl extract-inj₂≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'}{b b' : B} → inj₂{A = A} b ≡ inj₂ b' → b ≡ b' extract-inj₂≡ refl = refl =⊎ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (A → A → 𝔹) → (B → B → 𝔹) → A ⊎ B → A ⊎ B → 𝔹 =⊎ eqa eqb (inj₁ a) (inj₁ a') = eqa a a' =⊎ eqa eqb (inj₂ b) (inj₂ b') = eqb b b' =⊎ _ _ _ _ = ff =⊎-to-≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (_eqa_ : A → A → 𝔹) → (_eqb_ : B → B → 𝔹) → ((a a' : A) → (a eqa a' ≡ tt) → a ≡ a') → ((b b' : B) → (b eqb b' ≡ tt) → b ≡ b') → (x y : A ⊎ B) → =⊎ _eqa_ _eqb_ x y ≡ tt → x ≡ y =⊎-to-≡ eqa eqb risea riseb (inj₁ a) (inj₁ a') p rewrite risea a a' p = refl =⊎-to-≡ eqa eqb risea riseb (inj₂ b) (inj₂ b') p rewrite riseb b b' p = refl =⊎-to-≡ eqa eqb risea riseb (inj₁ a) (inj₂ b) () =⊎-to-≡ eqa eqb risea riseb (inj₂ b) (inj₁ a) () ≡⊎-to-= : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (_eqa_ : A → A → 𝔹) → (_eqb_ : B → B → 𝔹) → ((a a' : A) → a ≡ a' → a eqa a' ≡ tt) → ((b b' : B) → b ≡ b' → b eqb b' ≡ tt) → (x y : A ⊎ B) → x ≡ y → =⊎ _eqa_ _eqb_ x y ≡ tt ≡⊎-to-= eqa eqb dropa dropb (inj₁ a) (inj₁ a') p = dropa a a' (extract-inj₁≡ p) ≡⊎-to-= eqa eqb dropa dropb (inj₂ b) (inj₂ b') p = dropb b b' (extract-inj₂≡ p) ≡⊎-to-= eqa eqb dropa dropb (inj₁ a) (inj₂ b) () ≡⊎-to-= eqa eqb dropa dropb (inj₂ b) (inj₁ a) ()
{ "alphanum_fraction": 0.3904333606, "avg_line_length": 35.9705882353, "ext": "agda", "hexsha": "e54d26e2b39a7aca2af5e4094e5074e49937168d", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "sum.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "sum.agda", "max_line_length": 222, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 1191, "size": 2446 }
open import Nat open import Prelude open import List open import contexts open import core open import lemmas-env module preservation where preservation : ∀{⛽ Δ Σ' Γ E e r k τ} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ k → Δ , Σ' ⊢ r ·: τ preservation ctxcons ta EFix = TAFix ctxcons ta preservation ctxcons (TAVar tah) (EVar h) with env-all-Γ ctxcons tah ... | π3 , π4 , π5 rewrite ctxunicity h π4 = π5 preservation ctxcons (TAHole h) EHole = TAHole h ctxcons preservation ctxcons TAUnit EUnit = TAUnit preservation ctxcons (TAPair _ ta1 ta2) (EPair eval1 eval2) = TAPair (preservation ctxcons ta1 eval1 ) (preservation ctxcons ta2 eval2) preservation ctxcons (TACtor h1 h2 ta) (ECtor eval) = TACtor h1 h2 (preservation ctxcons ta eval) preservation ctxcons (TAApp _ ta-f ta-arg) (EAppFix _ h eval1 eval2 eval-ef) rewrite h with preservation ctxcons ta-f eval1 ... | TAFix ctxcons-Ef (TAFix ta-ef) = preservation (EnvInd (EnvInd ctxcons-Ef (preservation ctxcons ta-f eval1)) (preservation ctxcons ta-arg eval2)) ta-ef eval-ef preservation ctxcons (TAApp _ ta1 ta2) (EAppUnfinished eval1 _ eval2) = TAApp (preservation ctxcons ta1 eval1) (preservation ctxcons ta2 eval2) preservation ctxcons (TAFst ta) (EFst eval) with preservation ctxcons ta eval ... | TAPair ta1 ta2 = ta1 preservation ctxcons (TAFst ta) (EFstUnfinished eval x) = TAFst (preservation ctxcons ta eval) preservation ctxcons (TASnd ta) (ESnd eval) with preservation ctxcons ta eval ... | TAPair ta1 ta2 = ta2 preservation ctxcons (TASnd ta) (ESndUnfinished eval x) = TASnd (preservation ctxcons ta eval) preservation {Σ' = Σ'} ctxcons (TACase d∈Σ' ta h1 h2) (EMatch _ form eval-e eval-ec) with h2 form ... | _ , _ , _ , c∈cctx2 , ta-ec with preservation ctxcons ta eval-e ... | TACtor {cctx = cctx} d∈Σ'2 c∈cctx ta' with ctxunicity {Γ = π1 Σ'} d∈Σ' d∈Σ'2 ... | refl with ctxunicity {Γ = cctx} c∈cctx c∈cctx2 ... | refl = preservation (EnvInd ctxcons ta') ta-ec eval-ec preservation ctxcons (TACase d∈Σ' ta h1 h2) (EMatchUnfinished eval h) = TACase d∈Σ' ctxcons (preservation ctxcons ta eval) h1 λ form' → let _ , _ , _ , p2 , p3 = h2 form' in _ , p2 , p3 preservation ctxcons (TAAsrt _ ta1 ta2) (EAsrt eval1 eval2 _) = TAUnit
{ "alphanum_fraction": 0.6649916248, "avg_line_length": 46.8235294118, "ext": "agda", "hexsha": "0bafaf7510289f635524659f3a1769538e04448c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "preservation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "preservation.agda", "max_line_length": 129, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "preservation.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 858, "size": 2388 }
open import Common.IO open import Common.Unit open import Common.String open import Common.Nat record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream public repeat : Stream String head repeat = "hello" tail repeat = repeat lookup : ∀ {A} → Stream A → Nat → A lookup xs zero = xs .head lookup xs (suc n) = lookup (xs .tail) n main : IO Unit main = putStr (lookup repeat 1000000)
{ "alphanum_fraction": 0.6960556845, "avg_line_length": 17.9583333333, "ext": "agda", "hexsha": "ec9c5303688ecb393e1a76cd6e754828e4fa7599", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "test/Compiler/simple/Coinduction2.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "test/Compiler/simple/Coinduction2.agda", "max_line_length": 39, "max_stars_count": 7, "max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "xekoukou/agda-ocaml", "max_stars_repo_path": "test/Compiler/simple/Coinduction2.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 126, "size": 431 }
-- | An implementation of the Marketoritative PCM module Relation.Ternary.Separation.Construct.Market where open import Level hiding (Lift) open import Data.Product open import Relation.Unary open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality as P open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Morphisms module _ {ℓ} (A : Set ℓ) where data Market : Set ℓ where offer : (l : A) → Market demand : (r : A) → Market module _ {ℓ} {A : Set ℓ} {{ sep : RawSep A }} {{ _ : IsSep sep }} where data Split : Market A → Market A → Market A → Set ℓ where offerₗ : {r l₁ l₂ : A} (σ : l₂ ⊎ r ≣ l₁) → Split (offer l₁) (demand r) (offer l₂) offerᵣ : {r l₁ l₂ : A} (σ : r ⊎ l₂ ≣ l₁) → Split (demand r) (offer l₁) (offer l₂) demand : {r₁ r₂ r : A} (σ : r₁ ⊎ r₂ ≣ r) → Split (demand r₁) (demand r₂) (demand r) comm : ∀ {Φ₁ Φ₂ Φ} → Split Φ₁ Φ₂ Φ → Split Φ₂ Φ₁ Φ comm (demand p) = demand (⊎-comm p) comm (offerₗ σ) = offerᵣ (⊎-comm σ) comm (offerᵣ σ) = offerₗ (⊎-comm σ) assoc : ∀ {a b ab c abc} → Split a b ab → Split ab c abc → ∃ λ bc → (Split a bc abc) × (Split b c bc) assoc (offerₗ σ₁) (offerₗ σ₂) = let _ , σ₃ , σ₄ = ⊎-assoc σ₂ σ₁ in -, offerₗ σ₃ , demand (⊎-comm σ₄) assoc (offerᵣ σ₁) (offerₗ σ₂) = let _ , σ₃ , σ₄ = ⊎-unassoc σ₁ σ₂ in -, offerᵣ σ₃ , offerₗ σ₄ assoc (demand σ₁) (offerᵣ σ₂) = let _ , σ₃ , σ₄ = ⊎-assoc (⊎-comm σ₁) σ₂ in -, offerᵣ σ₄ , offerᵣ σ₃ assoc (demand σ₁) (demand σ₂) = let _ , σ₃ , σ₄ = ⊎-assoc σ₁ σ₂ in -, demand σ₃ , demand σ₄ instance market-raw-sep : RawSep (Market A) RawSep._⊎_≣_ market-raw-sep = Split instance market-has-sep : IsSep market-raw-sep market-has-sep = record { ⊎-comm = comm ; ⊎-assoc = assoc } instance market-sep : Separation _ market-sep = record { isSep = market-has-sep } module _ {a} {A : Set a} {{r : RawSep A}} {u} {{ s : IsUnitalSep r u }} where module U = IsUnitalSep instance market-is-unital : IsUnitalSep market-raw-sep (demand ε) U.isSep market-is-unital = market-has-sep U.⊎-idˡ market-is-unital {offer l} = offerᵣ ⊎-idˡ U.⊎-idˡ market-is-unital {demand r} = demand ⊎-idˡ U.⊎-id⁻ˡ market-is-unital (offerᵣ σ) = cong offer (sym (⊎-id⁻ˡ σ)) U.⊎-id⁻ˡ market-is-unital (demand σ) = cong demand (⊎-id⁻ˡ σ) module _ {a} {{ s : MonoidalSep a }} where open MonoidalSep s using () renaming (Carrier to A) matching : ∀ {a b : A} {c d} → (demand a) ⊎ (offer b) ≣ c → (demand (d ∙ a)) ⊎ (offer (d ∙ b)) ≣ c matching (offerᵣ σ) = offerᵣ (⊎-∙ₗ σ) module _ {ℓ} {A : Set ℓ} {{_ : RawSep A}} where private variable ℓv : Level P Q : Pred (A × A) ℓv [_]Completes : A → (A × A) → Set ℓ [_]Completes x (y , z) = x ⊎ z ≣ y data ● {p} (P : Pred (A × A) p) : Pred (Market A) (ℓ ⊔ p) where lift : ∀ {xs l₂} → P xs → [ l₂ ]Completes xs → ● P (offer l₂) ●-map : ∀[ P ⇒ Q ] → ∀[ ● P ⇒ ● Q ] ●-map f (lift px le) = lift (f px) le module _ {a} {A : Set a} {{r : RawSep A}} {u} {{s₁ : IsUnitalSep r u}} where open Morphism instance market : Morphism A (Market A) j market = demand j-⊎ market s = demand s j-⊎⁻ market (demand σ) = -, refl , σ module _ {a} {A : Set a} {{r : RawSep A}} {u} {{s₁ : IsUnitalSep r u}} where open import Relation.Ternary.Separation.Construct.Product open Morphism (market {A = A}) data ○ {p} (P : Pred (A × A) p) : Pred (Market A) (p) where lift : ∀ {xs} → P (ε , xs) → ○ P (demand xs) module _ {p q} {P : Pred A p} {Q : Pred (A × A) q} where ○≺●ₗ : ∀[ P ⇒ⱼ ● Q ─✴ ● (Π₂ P ✴ Q) ] app (○≺●ₗ px) (lift qx σ₂) (offerᵣ σ₁) with ⊎-assoc (⊎-comm σ₁) σ₂ ... | _ , σ₃ , σ₄ = lift (snd px ×⟨ ⊎-idˡ , σ₄ ⟩ qx ) σ₃ ○≺●ᵣ : ∀[ ● (Π₂ P ✴ Q) ⇒ J P ✴ ● Q ] ○≺●ᵣ (lift (snd px ×⟨ σₗ , σᵣ ⟩ qx) σ₂) with ⊎-id⁻ˡ σₗ ... | refl with ⊎-unassoc σ₂ σᵣ ... | _ , σ₃ , σ₄ = inj px ×⟨ offerᵣ (⊎-comm σ₃) ⟩ lift qx σ₄ {- Complete with respect to a certain element -} module _ {a} {A : Set a} {{r : RawSep A}} {u} {{ s : IsUnitalSep r u }} where open import Relation.Ternary.Separation.Construct.Product open Morphism (market {A = A}) record _◑_ {p q} (P : Pred A p) (Q : Pred (A × A) q) (Φ : A × A) : Set (a ⊔ p ⊔ q) where constructor _◑⟨_⟩_ field {Φp Φq} : _ px : P Φp inc : proj₁ Φ ⊎ Φp ≣ Φq qx : Q (Φq , proj₂ Φ) -- the following cannot be proven unfortunately -- _ : ∀[ (P ◑ Q₁) ✴ Q₂ ⇒ P ◑ (Q₁ ✴ Q₂) ] absorb : ∀ {p q} {P : Pred A p} {Q : Pred (A × A) q} → ∀[ P ⇒ⱼ ● Q ─✴ ● (P ◑ Q) ] app (absorb px) (lift qx k) (offerᵣ σ) with ⊎-assoc (⊎-comm σ) k ... | _ , σ₂ , σ₃ with ⊎-unassoc σ₂ (⊎-comm σ₃) ... | _ , σ₄ , σ₅ = lift (px ◑⟨ σ₅ ⟩ qx) σ₄ expell : ∀ {p q} {P : Pred A p} {Q : Pred (A × A) q} → ∀[ ● (P ◑ Q) ⇒ J P ✴ ● Q ] expell (lift (px ◑⟨ τ₁ ⟩ qx) k) with ⊎-unassoc (⊎-comm τ₁) k ... | _ , τ₃ , τ₄ = (inj px) ×⟨ offerᵣ τ₃ ⟩ (lift qx τ₄) {- Completion preserving updates -} module _ {a} {A : Set a} {{r : RawSep A}} {u} {{ s : IsUnitalSep r u }} where open import Relation.Ternary.Separation.Construct.Product record ⟰_ {p} (P : Pred (A × A) p) (Φᵢ : A × A) : Set (a ⊔ p) where constructor complete field updater : ∀ {Φⱼ Φₖ} → Φᵢ ⊎ Φⱼ ≣ (Φₖ , Φₖ) → ∃₂ λ Φₗ Φ → Φₗ ⊎ Φⱼ ≣ (Φ , Φ) × P Φₗ open ⟰_ public ●-update : ∀ {p q} {P : Pred (A × A) p} {Q : Pred (A × A) q} → ∀[ ○ (P ─✴ ⟰ Q) ⇒ ● P ─✴ ● Q ] app (●-update (lift f)) (lift px σ₁) (offerᵣ σ₂) with ⊎-assoc (⊎-comm σ₂) σ₁ ... | _ , σ₃ , σ₄ with updater (app f px (⊎-idˡ , σ₄)) (⊎-idʳ , ⊎-comm σ₃) ... | _ , _ , (σ₅ , σ₆) , qx with ⊎-id⁻ʳ σ₅ ... | refl = lift qx (⊎-comm σ₆)
{ "alphanum_fraction": 0.5391713092, "avg_line_length": 35.2392638037, "ext": "agda", "hexsha": "caa5d4766e28b6e38ed359557b9a9513a3fe705a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Construct/Market.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Construct/Market.agda", "max_line_length": 103, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Construct/Market.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 2610, "size": 5744 }
open import FRP.JS.List using ( List ; [] ; _∷_ ; build ) renaming ( length to llength ) open import FRP.JS.Char using ( Char ) renaming ( _<_ to _<C_ ; _≟_ to _≟C_ ) open import FRP.JS.Nat using ( ℕ ) open import FRP.JS.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ ) module FRP.JS.String where infixr 5 _++_ infix 4 _≟_ open import FRP.JS.Primitive public using ( String ) private primitive primStringAppend : String → String → String primStringEquality : String → String → Bool primStringToList : String → List Char _++_ : String → String → String _++_ = primStringAppend {-# COMPILED_JS _++_ function(x) { return function(y) { return x + y; }; } #-} _≟_ : String → String → Bool _≟_ = primStringEquality {-# COMPILED_JS _≟_ function(x) { return function(y) { return x === y; }; } #-} buildChars : (ℕ → Char) → ℕ → List Char buildChars = build toList : String → List Char toList = primStringToList {-# COMPILED_JS toList function(s) { return exports.buildChars(function(n) { return s.charAt(n); },s.length); } #-} length : String → ℕ length s = llength (toList s) {-# COMPILED_JS length function(s) { return s.length; } #-} _<*_ : List Char → List Char → Bool as <* [] = false [] <* (b ∷ bs) = true (a ∷ as) <* (b ∷ bs) = (a <C b) ∨ ((a ≟C b) ∧ (as <* bs)) _<_ : String → String → Bool s < t = toList s <* toList t {-# COMPILED_JS _<_ function(x) { return function(y) { return x < y; }; } #-} _≤_ : String → String → Bool s ≤ t = (s ≟ t) ∨ (s < t) {-# COMPILED_JS _≤_ function(x) { return function(y) { return x <= y; }; } #-}
{ "alphanum_fraction": 0.6125554851, "avg_line_length": 27.1896551724, "ext": "agda", "hexsha": "e5323450deaf9954e3c2033e0b807b5b0150c2e6", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/String.agda", "max_line_length": 88, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 519, "size": 1577 }
open import Level using () renaming (zero to ℓ₀) open import Relation.Binary using (DecSetoid) module BFFPlug (A : DecSetoid ℓ₀ ℓ₀) where open import Data.Nat using (ℕ ; _≟_ ; _+_ ; zero ; suc ; ⌈_/2⌉) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Vec using (Vec) open import Data.Product using (∃ ; _,_) open import Relation.Binary using (module DecSetoid) open import Relation.Binary.PropositionalEquality using (refl ; cong ; subst ; sym ; module ≡-Reasoning) renaming (setoid to PropEq) open import Relation.Nullary using (yes ; no) open import Function using (flip ; id ; _∘_) open import Function.LeftInverse using (_RightInverseOf_) import Category.Monad open Category.Monad.RawMonad {ℓ₀} Data.Maybe.monad using (_>>=_) open import Generic using (sequenceV ; ≡-to-Π) import BFF import GetTypes import Examples open DecSetoid A using (Carrier) open GetTypes.PartialVecVec public using (Get) open BFF.PartialVecBFF A public using (sbff ; bff) bffsameshape : (G : Get) → {i : Get.I G} → Vec Carrier (Get.gl₁ G i) → Vec Carrier (Get.gl₂ G i) → Maybe (Vec Carrier (Get.gl₁ G i)) bffsameshape G {i} = sbff G i bffplug : (G : Get) → (Get.I G → ℕ → Maybe (Get.I G)) → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (∃ λ j → Vec (Maybe Carrier) (Get.gl₁ G j)) bffplug G sput {i} {m} s v with sput i m ... | nothing = nothing ... | just j with Get.gl₂ G j ≟ m ... | no gl₂j≢m = nothing bffplug G sput {i} s v | just j | yes refl with bff G j s v ... | nothing = nothing ... | just s′ = just (j , s′) _SimpleRightInvOf_ : {A B : Set} → (A → B) → (B → A) → Set f SimpleRightInvOf g = ≡-to-Π f RightInverseOf ≡-to-Π g bffinv : (G : Get) → (nelteg : ℕ → Get.I G) → nelteg SimpleRightInvOf Get.gl₂ G → {i : Get.I G} → {m : ℕ} → Vec Carrier (Get.gl₁ G i) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (Get.gl₁ G (nelteg m))) bffinv G nelteg inv {m = m} s v = bff G (nelteg m) s (subst (Vec Carrier) (sym (inv m)) v) module InvExamples where open Examples using (reverse' ; drop' ; sieve' ; tail' ; take') reverse-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec Carrier m) reverse-put s v = bffinv reverse' id (λ _ → refl) s v >>= sequenceV drop-put : (k : ℕ) → {n m : ℕ} → Vec Carrier (k + n) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (k + m)) drop-put k = bffinv (drop' k) id (λ _ → refl) double : ℕ → ℕ double zero = zero double (suc n) = suc (suc (double n)) sieve-inv-len : double SimpleRightInvOf ⌈_/2⌉ sieve-inv-len zero = refl sieve-inv-len (suc zero) = refl sieve-inv-len (suc (suc x)) = cong (suc ∘ suc) (sieve-inv-len x) sieve-put : {n m : ℕ} → Vec Carrier n → Vec Carrier m → Maybe (Vec (Maybe Carrier) (double m)) sieve-put = bffinv sieve' double sieve-inv-len tail-put : {n m : ℕ} → Vec Carrier (suc n) → Vec Carrier m → Maybe (Vec (Maybe Carrier) (suc m)) tail-put = bffinv tail' id (λ _ → refl) take-put : (k : ℕ) → {n : ℕ} → Vec Carrier (k + n) → Vec Carrier k → Maybe (Vec Carrier (k + n)) take-put k = bffsameshape (take' k)
{ "alphanum_fraction": 0.6095003085, "avg_line_length": 45.661971831, "ext": "agda", "hexsha": "0d697237a50883761d0f55a990562f27694c173d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "BFFPlug.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "BFFPlug.agda", "max_line_length": 202, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "BFFPlug.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1072, "size": 3242 }
------------------------------------------------------------------------------ -- Subtraction using the rec combinator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.LTC-PCF.Data.Nat.SubtractionRecCombinator where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Nat.Properties hiding ( ∸-x0 ) open import LTC-PCF.Data.Nat.Rec open import LTC-PCF.Data.Nat.Rec.ConversionRules open import LTC-PCF.Data.Nat.Type open import LTC-PCF.Data.Nat.UnaryNumbers -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/Nat.agda). infixl 9 _∸_ ------------------------------------------------------------------------------ -- Subtraction _∸_ : D → D → D m ∸ n = rec n m (lam (λ _ → lam pred₁)) ------------------------------------------------------------------------------ -- Conversion rules from the Agda standard library 0.8.1 (see -- Data/Nat.agda). ∸-x0 : ∀ n → n ∸ zero ≡ n ∸-x0 n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ ∸-0S : ∀ {n} → N n → zero ∸ succ₁ n ≡ zero ∸-0S nzero = rec [1] zero (lam (λ _ → lam pred₁)) ≡⟨ rec-S zero zero (lam (λ _ → lam pred₁)) ⟩ lam (λ _ → lam pred₁) · zero · (zero ∸ zero) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) zero) ⟩ lam pred₁ · (zero ∸ zero) ≡⟨ beta pred₁ (zero ∸ zero) ⟩ pred₁ (zero ∸ zero) ≡⟨ predCong (∸-x0 zero) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ∎ ∸-0S (nsucc {n} Nn) = rec (succ₁ (succ₁ n)) zero (lam (λ _ → lam pred₁)) ≡⟨ rec-S (succ₁ n) zero (lam (λ _ → lam pred₁)) ⟩ lam (λ _ → lam pred₁) · (succ₁ n) · (zero ∸ (succ₁ n)) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) (succ₁ n)) ⟩ lam pred₁ · (zero ∸ (succ₁ n)) ≡⟨ beta pred₁ (zero ∸ (succ₁ n)) ⟩ pred₁ (zero ∸ (succ₁ n)) ≡⟨ predCong (∸-0S Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ∎ ∸-0x : ∀ {n} → N n → zero ∸ n ≡ zero ∸-0x nzero = ∸-x0 zero ∸-0x (nsucc Nn) = ∸-0S Nn ∸-SS : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n ∸-SS {m} _ nzero = rec [1] (succ₁ m) (lam (λ _ → lam pred₁)) ≡⟨ rec-S zero (succ₁ m) (lam (λ _ → lam pred₁)) ⟩ lam (λ _ → lam pred₁) · zero · (succ₁ m ∸ zero) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) zero) ⟩ lam pred₁ · (succ₁ m ∸ zero) ≡⟨ beta pred₁ (succ₁ m ∸ zero) ⟩ pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩ pred₁ (succ₁ m) ≡⟨ pred-S m ⟩ m ≡⟨ sym (∸-x0 m) ⟩ m ∸ zero ∎ ∸-SS nzero (nsucc {n} Nn) = rec (succ₁ (succ₁ n)) [1] (lam (λ _ → lam pred₁)) ≡⟨ rec-S (succ₁ n) [1] (lam (λ _ → lam pred₁)) ⟩ lam (λ _ → lam pred₁) · (succ₁ n) · ([1] ∸ succ₁ n) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) (succ₁ n)) ⟩ lam pred₁ · ([1] ∸ succ₁ n) ≡⟨ beta pred₁ ([1] ∸ succ₁ n) ⟩ pred₁ ([1] ∸ succ₁ n) ≡⟨ predCong (∸-SS nzero Nn) ⟩ pred₁ (zero ∸ n) ≡⟨ predCong (∸-0x Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ≡⟨ sym (∸-0S Nn) ⟩ zero ∸ succ₁ n ∎ ∸-SS (nsucc {m} Nm) (nsucc {n} Nn) = rec (succ₁ (succ₁ n)) (succ₁ (succ₁ m)) (lam (λ _ → lam pred₁)) ≡⟨ rec-S (succ₁ n) (succ₁ (succ₁ m)) (lam (λ _ → lam pred₁)) ⟩ lam (λ _ → lam pred₁) · (succ₁ n) · (succ₁ (succ₁ m) ∸ succ₁ n) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) (succ₁ n)) ⟩ lam pred₁ · (succ₁ (succ₁ m) ∸ succ₁ n) ≡⟨ beta pred₁ (succ₁ (succ₁ m) ∸ succ₁ n) ⟩ pred₁ (succ₁ (succ₁ m) ∸ succ₁ n) ≡⟨ predCong (∸-SS (nsucc Nm) Nn) ⟩ pred₁ (succ₁ m ∸ n) ≡⟨ sym (beta pred₁ (succ₁ m ∸ n)) ⟩ lam pred₁ · (succ₁ m ∸ n) ≡⟨ ·-leftCong (sym (beta (λ _ → lam pred₁) n)) ⟩ (lam (λ _ → lam pred₁)) · n · (succ₁ m ∸ n) ≡⟨ sym (rec-S n (succ₁ m) (lam (λ _ → lam pred₁))) ⟩ rec (succ₁ n) (succ₁ m) (lam (λ _ → lam pred₁)) ≡⟨ refl ⟩ succ₁ m ∸ succ₁ n ∎ ------------------------------------------------------------------------------ -- Conversion rules from the Agda standard library 0.8.1 (see -- Data/Nat.agda) without totality hypotheses. -- We could not prove this property. -- ∸-0S₁ : ∀ n → zero ∸ succ₁ n ≡ zero -- ∸-0S₁ n = -- rec (succ₁ n) zero (lam (λ _ → lam pred₁)) -- ≡⟨ rec-S n zero (lam (λ _ → lam pred₁)) ⟩ -- lam (λ _ → lam pred₁) · n · (zero ∸ n) -- ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ -- lam pred₁ · (zero ∸ n) -- ≡⟨ beta pred₁ (zero ∸ n) ⟩ -- pred₁ (zero ∸ n) -- ≡⟨ {!!} ⟩ -- {!!} -- ≡⟨ {!!} ⟩ -- zero ∎ -- We could not prove this property. -- ∸-SS₁ : ∀ m n → succ₁ m ∸ succ₁ n ≡ m ∸ n -- ∸-SS₁ m n = -- rec (succ₁ n) (succ₁ m) (lam (λ _ → lam pred₁)) -- ≡⟨ rec-S n (succ₁ m) (lam (λ _ → lam pred₁)) ⟩ -- lam (λ x → lam pred₁) · n · (succ₁ m ∸ n) -- ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ -- lam pred₁ · (succ₁ m ∸ n) -- ≡⟨ beta pred₁ (succ₁ m ∸ n) ⟩ -- pred₁ (succ₁ m ∸ n) -- ≡⟨ {!!} ⟩ -- {!!} -- ≡⟨ {!!} ⟩ -- m ∸ n ∎ ------------------------------------------------------------------------------ -- Coq 8.4pl4 conversion rules (.../theories/Init/Peano.v): -- Fixpoint minus (n m:nat) : nat := -- match n, m with -- | O, _ => n -- | S k, O => S k -- | S k, S l => k - l -- end ∸-x0-coq : ∀ n → n ∸ zero ≡ n ∸-x0-coq n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ ∸-S0-coq : ∀ n → succ₁ n ∸ zero ≡ succ₁ n ∸-S0-coq n = rec zero (succ₁ n) (lam (λ _ → lam pred₁)) ≡⟨ rec-0 (succ₁ n) ⟩ succ₁ n ∎ -- We could not prove this property. -- ∸-SS-coq : ∀ m n → succ₁ m ∸ succ₁ n ≡ m ∸ n -- ∸-SS-coq m n = -- rec (succ₁ n) (succ₁ m) (lam (λ _ → lam pred₁)) -- ≡⟨ rec-S n (succ₁ m) (lam (λ _ → lam pred₁)) ⟩ -- lam (λ x → lam pred₁) · n · (succ₁ m ∸ n) -- ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ -- lam pred₁ · (succ₁ m ∸ n) -- ≡⟨ beta pred₁ (succ₁ m ∸ n) ⟩ -- pred₁ (succ₁ m ∸ n) -- ≡⟨ {!!} ⟩ -- {!!} -- ≡⟨ {!!} ⟩ -- m ∸ n ∎ ------------------------------------------------------------------------------ -- Isabelle2014 conversion rules (from src/HOL/Nat.thy) -- primrec minus_nat where -- diff_0 [code]: "m - 0 = (m\<Colon>nat)" -- | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" ∸-x0-isabelle : ∀ n → n ∸ zero ≡ n ∸-x0-isabelle n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ -- We could not prove this property. -- ∸-xS-isabelle : ∀ m n → m ∸ succ₁ n ≡ -- if (iszero₁ (m ∸ n)) then zero else pred₁ (m ∸ n) -- ∸-xS-isabelle m n = -- rec (succ₁ n) m (lam (λ _ → lam pred₁)) -- ≡⟨ rec-S n m (lam (λ _ → lam pred₁)) ⟩ -- lam (λ x → lam pred₁) · n · (m ∸ n) -- ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ -- lam pred₁ · (m ∸ n) -- ≡⟨ beta pred₁ (m ∸ n) ⟩ -- pred₁ (m ∸ n) -- ≡⟨ {!!} ⟩ -- if (iszero₁ (m ∸ n)) then zero else pred₁ (m ∸ n) ∎ ------------------------------------------------------------------------------ -- Peter conversion rules -- The analogous situation for subtraction is that given -- rec-0 : ∀ a {f} → rec zero a f ≡ a -- rec-S : ∀ n a f → rec (succ₁ n) a f ≡ f · n · (rec n a f) -- and -- _∸_ : D → D → D -- m ∸ n = rec n m (lam (λ _ → lam pred₁)) -- you get the equations obtained by the special case (instantiate a -- and f according to the def of subtraction)! This has nothing to do -- a priori with the Agda standard library. ∸-x0-peter : ∀ n → n ∸ zero ≡ n ∸-x0-peter n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ ∸-xS-peter : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n) ∸-xS-peter m n = rec (succ₁ n) m (lam (λ _ → lam pred₁)) ≡⟨ rec-S n m (lam (λ _ → lam pred₁)) ⟩ lam (λ x → lam pred₁) · n · (m ∸ n) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ lam pred₁ · (m ∸ n) ≡⟨ beta pred₁ (m ∸ n) ⟩ pred₁ (m ∸ n) ∎
{ "alphanum_fraction": 0.4671909243, "avg_line_length": 31.5325203252, "ext": "agda", "hexsha": "b3d6458acf2ec866b292587eb5cec8560f949afa", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionRecCombinator.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionRecCombinator.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/LTC-PCF/Data/Nat/SubtractionRecCombinator.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 3231, "size": 7757 }
module Types4 where open import Basics public {-----------------------------------------------------------------------} -- balanced search trees (based on my ICFP '14 paper -- How to Keep Your Neighbours in Order -- but the point here is to watch what the types buy us {-----------------------------------------------------------------------} -- compare natural numbers {- might we visit Basics.agda? -} _<=_ : Nat -> Nat -> Set ze <= y = One su x <= ze = Zero su x <= su y = x <= y {-(-} cmp : (x y : Nat) -> (x <= y) + (y <= x) cmp ze y = inl <> cmp (su x) ze = inr <> cmp (su x) (su x₁) = cmp x x₁ {-)-} {-----------------------------------------------------------------------} -- loose bounds (one good idea, not always obvious) data Bnd : Set where bot : Bnd # : Nat -> Bnd top : Bnd _<B=_ : Bnd -> Bnd -> Set bot <B= _ = One # x <B= # y = x <= y _ <B= top = One _ <B= _ = Zero -- an interval lets you choose a number that fits in some bounds data Intv (l u : Bnd) : Set where intv : (x : Nat)(lx : l <B= # x)(xu : # x <B= u) -> Intv l u {-----------------------------------------------------------------------} -- 2-3-trees, indexed by bounds and height data T23 (l u : Bnd) : (h : Nat) -> Set where leaf : (lu : l <B= u) -> T23 l u ze node2 : forall {h} x (tlx : T23 l (# x) h)(txu : T23 (# x) u h) -> T23 l u (su h) node3 : forall {h} x y (tlx : T23 l (# x) h)(txy : T23 (# x) (# y) h)(tyu : T23 (# y) u h) -> T23 l u (su h) {-----------------------------------------------------------------------} -- insertion TooBig : Bnd -> Bnd -> Nat -> Set TooBig l u h = Sg Nat \ x -> T23 l (# x) h * T23 (# x) u h {-(-} insert : forall {h l u} -> Intv l u -> T23 l u h -> TooBig l u h + T23 l u h insert (intv x lx xu) (leaf lu) = {!!} insert (intv x lx xu) (node2 x₁ t t₁) = {!!} insert (intv x lx xu) (node3 y z tly tyz tzu) with cmp x y insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy with insert (intv x lx xy) tly insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy | inl (v , tlv , tvy) = inl (y , node2 v tlv tvy , node2 z tyz tzu) insert (intv x lx xu) (node3 y z tly tyz tzu) | inl xy | inr x₁ = {!!} insert (intv x lx xu) (node3 y z tly tyz tzu) | inr x₁ = {!!} {-)-} {-----------------------------------------------------------------------} -- confession -- it took me about fifteen years to come up with that type for insert {-----------------------------------------------------------------------} -- question (0) -- how can we make better use of the way types act as "problem statement?" {-----------------------------------------------------------------------} -- question (1) -- how can we make better use of the way types act as "problem statement?" -- programmers should profit from the downpayment and focus on -- the actual choices {-----------------------------------------------------------------------} -- question (2) -- how can we make better use of the way types act as "problem statement?" -- programmers should profit from the downpayment and focus on -- the actual choices -- "code" should be a readable record of a problem solving interaction {-----------------------------------------------------------------------} -- question (3) -- how can we make better use of the way types act as "problem statement?" -- programmers should profit from the downpayment and focus on -- the actual choices -- "code" should be a readable record of a problem solving interaction -- we need tools to support redesign {-----------------------------------------------------------------------} -- an incomplete program is a formal document
{ "alphanum_fraction": 0.4493357645, "avg_line_length": 13.5176056338, "ext": "agda", "hexsha": "6b3ded3f6c8da65d66476a74b9b4cab0474d5347", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-06-09T05:39:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-09T05:39:02.000Z", "max_forks_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "pigworker/WhatRTypes4", "max_forks_repo_path": "Types4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "pigworker/WhatRTypes4", "max_issues_repo_path": "Types4.agda", "max_line_length": 85, "max_stars_count": 11, "max_stars_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "pigworker/WhatRTypes4", "max_stars_repo_path": "Types4.agda", "max_stars_repo_stars_event_max_datetime": "2019-06-09T05:38:44.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-11T09:12:25.000Z", "num_tokens": 1031, "size": 3839 }
{-# OPTIONS --cubical --allow-unsolved-metas #-} module TranspPiOnMeta where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path -- Transporting along a function type with unknown sort of -- domain/codomain shouldn't result into an impossible being thrown. -- We equate to Set to trigger reduction. test1 : (primTransp (\ i → (x : {!!}) → {!!}) i0 {!!} {!!}) ≡ Set test1 i = Set test2 : (primTransp (\ i → (x : Set) → {!!}) i0 {!!} {!!}) ≡ Set test2 i = Set Foo : Set₂ Foo = {!!} test3 : (primTransp (\ i → (x : {!!}) → Foo) i0 {!!} {!!}) ≡ Set test3 i = Set
{ "alphanum_fraction": 0.6118644068, "avg_line_length": 22.6923076923, "ext": "agda", "hexsha": "ec5dc9252c96bd226e6981796bad4169226b5400", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/TranspPiOnMeta.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/TranspPiOnMeta.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/TranspPiOnMeta.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 190, "size": 590 }
{-# OPTIONS --safe #-} module tmp where open import Relation.Nullary open import Data.List public data Suf {X : Set} : List X → List X → Set where sinit : ∀ l → Suf l l scons : ∀ x l l' → Suf l l' → Suf (x ∷ l) l' lemma : ∀ {X} (x : X) l l' → Suf l (x ∷ l') → Suf l l' lemma x .(x ∷ l') l' (sinit .(x ∷ l')) = scons x l' l' (sinit l') lemma x .(x₁ ∷ l) l' (scons x₁ l .(x ∷ l') H) = scons x₁ l l' (lemma x l l' H) less-is-not-more : ∀ {X} x (l : List X) → ¬ Suf l (x ∷ l) less-is-not-more x [] = λ () less-is-not-more x (x₁ ∷ l) (scons .x₁ .l .(x ∷ x₁ ∷ l) H) = less-is-not-more x₁ l (lemma x l (x₁ ∷ l) H)
{ "alphanum_fraction": 0.5218800648, "avg_line_length": 30.85, "ext": "agda", "hexsha": "92d81b65d8a67b1fc250661a6aa6281ba6becee3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/tmp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/tmp.agda", "max_line_length": 105, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/tmp.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 274, "size": 617 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Group open import lib.types.Unit open import lib.groups.Homomorphisms open import lib.groups.Lift module lib.groups.Unit where Unit-group-structure : GroupStructure Unit Unit-group-structure = record { ident = unit ; inv = λ _ → unit ; comp = λ _ _ → unit ; unitl = λ _ → idp ; unitr = λ _ → idp ; assoc = λ _ _ _ → idp ; invr = λ _ → idp ; invl = λ _ → idp } Unit-group : Group lzero Unit-group = group _ Unit-is-set Unit-group-structure Lift-Unit-group : ∀ {i} → Group i Lift-Unit-group = Lift-group Unit-group 0ᴳ = Lift-Unit-group contr-is-0ᴳ : ∀ {i} (G : Group i) → is-contr (Group.El G) → G == 0ᴳ contr-is-0ᴳ G pA = group-ua (group-hom (λ _ → lift unit) (λ _ _ → idp) , snd (contr-equiv-LiftUnit pA)) 0ᴳ-hom-out-level : ∀ {i j} {G : Group i} → is-contr (0ᴳ {j} →ᴳ G) 0ᴳ-hom-out-level {G = G} = (cst-hom , λ φ → hom= _ _ (λ= (λ {(lift unit) → ! (GroupHom.pres-ident φ)}))) 0ᴳ-hom-in-level : ∀ {i j} {G : Group i} → is-contr (G →ᴳ 0ᴳ {j}) 0ᴳ-hom-in-level {G = G} = (cst-hom , λ φ → hom= _ _ (λ= (λ _ → idp)))
{ "alphanum_fraction": 0.6053333333, "avg_line_length": 25, "ext": "agda", "hexsha": "02c3e26fd698a37d19bbc8bfc55ff81457f58b89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/Unit.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 448, "size": 1125 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Data.Product where open import Light.Level using (Level ; Setω) open import Light.Variable.Sets open import Light.Variable.Levels import Light.Library.Data.Both as Both open import Light.Library.Relation.Binary using (SelfTransitive ; SelfSymmetric ; Reflexive) open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality) record Dependencies : Setω where record Library (dependencies : Dependencies) : Setω where field ℓf : Level → Level → Level Σ : ∀ (𝕒 : Set aℓ) → (𝕒 → Set bℓ) → Set (ℓf aℓ bℓ) both : ∀ {𝕓 : 𝕒 → Set bℓ} a (b : 𝕓 a) → Σ 𝕒 𝕓 first : ∀ {𝕓 : 𝕒 → Set bℓ} → Σ 𝕒 𝕓 → 𝕒 second : ∀ {𝕓 : 𝕒 → Set bℓ} (product : Σ 𝕒 𝕓) → 𝕓 (first product) ⦃ equals ⦄ : ∀ ⦃ a‐c‐equals : DecidableEquality 𝕒 𝕔 ⦄ ⦃ b‐d‐equals : DecidableEquality 𝕓 𝕕 ⦄ → DecidableEquality (Σ 𝕒 (λ _ → 𝕓)) (Σ 𝕔 (λ _ → 𝕕)) ∃ : ∀ {𝕒 : Set aℓ} → (𝕒 → Set bℓ) → Set (ℓf aℓ bℓ) ∃ = Σ _ instance both‐library : Both.Library record {} both‐library = record { Both = λ 𝕒 𝕓 → Σ 𝕒 (λ _ → 𝕓) ; ℓf = ℓf ; both = both ; first = first ; second = second ; equals = equals } open Library ⦃ ... ⦄ public
{ "alphanum_fraction": 0.5334233626, "avg_line_length": 36.1219512195, "ext": "agda", "hexsha": "59375b404ae368d8093c50e35ff5e6b6dc7113a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Data/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Data/Product.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 498, "size": 1481 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An irrelevant version of ⊥-elim ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Empty.Irrelevant where open import Data.Empty hiding (⊥-elim) ⊥-elim : ∀ {w} {Whatever : Set w} → .⊥ → Whatever ⊥-elim ()
{ "alphanum_fraction": 0.3989637306, "avg_line_length": 25.7333333333, "ext": "agda", "hexsha": "3cc0d65669156dee5eede5eab1aa0114b08b569a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty/Irrelevant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty/Irrelevant.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Empty/Irrelevant.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 80, "size": 386 }
module _^_ where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Naturals using (ℕ; zero; suc; _*_) _^_ : ℕ → ℕ → ℕ _ ^ zero = 1 m ^ (suc n) = m * (m ^ n) _ : 3 ^ 4 ≡ 81 _ = begin 3 ^ 4 ≡⟨⟩ 3 * (3 ^ 3) ≡⟨⟩ 3 * (3 * (3 ^ 2)) ≡⟨⟩ 3 * (3 * (3 * (3 ^ 1))) ≡⟨⟩ 3 * (3 * (3 * (3 * (3 ^ 0)))) ≡⟨⟩ 3 * (3 * (3 * (3 * 1))) ≡⟨⟩ 81 ∎
{ "alphanum_fraction": 0.4175824176, "avg_line_length": 15.1666666667, "ext": "agda", "hexsha": "8a3749acc9e4e37289716e07a136b72a7bb365af", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/naturals/_^_.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/naturals/_^_.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/naturals/_^_.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 242, "size": 455 }
-- Andreas, 2011-10-03 -- Defining a universe for dependent types -- where the El function only depends on the type code but not on its -- proof of well-formedness {-# OPTIONS --experimental-irrelevance --show-implicit --show-irrelevant #-} module TerminationOnIrrelevantArgument where data ⊥ : Set where data D : Set where empty : D pi : D -> D -> D other : D postulate app : D -> D -> D mutual data Ty : D -> Set where Empty : Ty empty Pi : (a f : D) -> (A : Ty a) -> (F : (d : D) -> .(El a A d) -> Ty (app f d)) -> Ty (pi a f) El : (a : D) -> .(A : Ty a) -> D -> Set El empty Empty g = ⊥ El (pi a f) (Pi .a .f A F) g = (d : D) -> .(Ad : El a A d) -> El (app f d) (F d Ad) (app g d) El other () g -- Termination checking needs to look inside irrelevant arguments. -- This only works because the termination checker is syntactic -- and does not respect equality of irrelevant things! -- clearly, the derivation of Ty a does not matter when computing El cast : (a : D)(A A' : Ty a)(d : D) -> El a A d -> El a A' d cast a A A' d x = x
{ "alphanum_fraction": 0.5524296675, "avg_line_length": 27.2790697674, "ext": "agda", "hexsha": "075a40d8a3c472322e6437ac720e9198194fde61", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/TerminationOnIrrelevantArgument.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/TerminationOnIrrelevantArgument.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/TerminationOnIrrelevantArgument.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 365, "size": 1173 }
{-# OPTIONS --rewriting --prop #-} open import Agda.Builtin.Nat data ⊥ : Prop where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {-# BUILTIN REWRITE _≡_ #-} infix 4 _≡_ ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () ok : (n : Nat) (p : ⊥) → (n + n) ≡ 0 ok n p = ⊥-elim p {-# REWRITE ok #-} notok : (n : Nat) → n + n ≡ 0 notok n = refl absurd : 2 ≡ 0 absurd = notok 1
{ "alphanum_fraction": 0.5039577836, "avg_line_length": 14.5769230769, "ext": "agda", "hexsha": "b44ab8a41e9dc68bd7ffd737888df325d6412408", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4371.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4371.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4371.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 174, "size": 379 }
module SystemF.Syntax.Term where open import Prelude open import SystemF.Syntax.Type infixl 9 _[_] _·_ data Term (ν n : ℕ) : Set where var : (x : Fin n) → Term ν n Λ : Term (suc ν) n → Term ν n λ' : Type ν → Term ν (suc n) → Term ν n _[_] : Term ν n → Type ν → Term ν n _·_ : Term ν n → Term ν n → Term ν n
{ "alphanum_fraction": 0.5889570552, "avg_line_length": 25.0769230769, "ext": "agda", "hexsha": "f603a812522c539c4d6a059b1659c15be388d651", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/Syntax/Term.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/Syntax/Term.agda", "max_line_length": 43, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/Syntax/Term.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 127, "size": 326 }
module Mockingbird.Forest.Base where open import Algebra using (Op₂; Congruent₂; LeftCongruent; RightCongruent) open import Level using (_⊔_) renaming (suc to lsuc) open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Relation.Nullary using (¬_) record IsForest {b ℓ} (Bird : Set b) (_≈_ : Rel Bird ℓ) (_∙_ : Op₂ Bird) : Set (b ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ cong : Congruent₂ _≈_ _∙_ open IsEquivalence isEquivalence public setoid : Setoid b ℓ setoid = record { isEquivalence = isEquivalence } congˡ : LeftCongruent _≈_ _∙_ congˡ A≈B = cong refl A≈B congʳ : RightCongruent _≈_ _∙_ congʳ A≈B = cong A≈B refl record Forest {b ℓ} : Set (lsuc (b ⊔ ℓ)) where infix 4 _≈_ infixl 6 _∙_ field Bird : Set b _≈_ : Rel Bird ℓ _∙_ : Op₂ Bird isForest : IsForest Bird _≈_ _∙_ _≉_ : Rel Bird ℓ x ≉ y = ¬ (x ≈ y) open IsForest isForest public import Relation.Binary.Reasoning.Base.Single _≈_ refl trans as Base open Base using (begin_; _∎) public infixr 2 _≈⟨⟩_ step-≈ step-≈˘ _≈⟨⟩_ : ∀ x {y} → x Base.IsRelatedTo y → x Base.IsRelatedTo y _ ≈⟨⟩ x≈y = x≈y step-≈ = Base.step-∼ syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z step-≈˘ : ∀ x {y z} → y Base.IsRelatedTo z → y ≈ x → x Base.IsRelatedTo z step-≈˘ x y∼z y≈x = x ≈⟨ sym y≈x ⟩ y∼z syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
{ "alphanum_fraction": 0.6342692585, "avg_line_length": 26.2075471698, "ext": "agda", "hexsha": "1db0bdc8478cdb2e2fe60699328d63ca48c729be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest/Base.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 612, "size": 1389 }
module Data.BitVector where open import Algebra.FunctionProperties.Core using (Op₁; Op₂) open import Data.Bool public hiding (_≟_) renaming (Bool to Bit; false to 0#; true to 1#) open import Data.Nat using (ℕ) renaming (_+_ to _N+_; _*_ to _N*_; zero to Nzero; suc to Nsuc) open import Data.Product using (_,_; _×_) open import Data.Vec using (Vec; _∷_; []; map; tail; zipWith) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) infixl 6 _+_ infixl 7 _*_ infix 8 -_ BitVector = Vec Bit bitwise-and : ∀ {n} → Op₂ (BitVector n) bitwise-and = zipWith _∧_ bitwise-or : ∀ {n} → Op₂ (BitVector n) bitwise-or = zipWith _∨_ half-adder : Bit → Bit → Bit × Bit half-adder x y = x xor y , x ∧ y full-adder : Bit → Bit → Bit → Bit × Bit full-adder a b c0 with half-adder a b ... | s0 , c1 with half-adder s0 c0 ... | s1 , c2 = s1 , c1 ∨ c2 add′ : ∀ {n} → Bit → BitVector n → BitVector n → BitVector n add′ c [] [] = [] add′ c (x ∷ xs) (y ∷ ys) with full-adder x y c ... | s , cout = s ∷ add′ cout xs ys _+_ : ∀ {n} → Op₂ (BitVector n) x + y = add′ 0# x y zero : ∀ n → BitVector n zero Nzero = [] zero (Nsuc n) = 0# ∷ (zero n) one : ∀ n → BitVector n one Nzero = [] one (Nsuc n) = 1# ∷ zero n bitwise-negation : ∀ {n} → Op₁ (BitVector n) bitwise-negation = map not ones : ∀ n → BitVector n ones n = bitwise-negation (zero n) droplast : ∀ {n} → BitVector (Nsuc n) → BitVector n droplast {Nzero} _ = [] droplast {Nsuc n} (x ∷ xs) = x ∷ droplast xs last : ∀ {n} → BitVector (Nsuc n) → Bit last (x ∷ []) = x last {Nsuc n} (x ∷ xs) = last xs shift : ∀ {n} → Op₁ (BitVector n) shift {Nzero} xs = xs shift {Nsuc n} xs = 0# ∷ droplast xs snoc : ∀ {n} → BitVector n → Bit → BitVector (Nsuc n) snoc [] b = b ∷ [] snoc (x ∷ xs) b = x ∷ snoc xs b unshift : ∀ {n} → Op₁ (BitVector n) unshift [] = [] unshift (x ∷ xs) = snoc xs 0# rotate : ∀ {n} → Op₁ (BitVector n) rotate [] = [] rotate {Nsuc n} xs = last xs ∷ droplast xs unrotate : ∀ {n} → Op₁ (BitVector n) unrotate [] = [] unrotate (x ∷ xs) = snoc xs x _*_ : ∀ {n} → Op₂ (BitVector n) [] * [] = [] (0# ∷ xs) * yys = 0# ∷ xs * droplast yys (1# ∷ xs) * yys = yys + (0# ∷ xs * droplast yys) -_ : ∀ {n} → Op₁ (BitVector n) - x = one _ + bitwise-negation x open import Relation.Nullary open import Relation.Binary infix 4 _≟_ _≟_ : ∀ {n} → Decidable {A = BitVector n} _≡_ [] ≟ [] = yes refl x ∷ xs ≟ y ∷ ys with xs ≟ ys 0# ∷ xs ≟ 0# ∷ .xs | yes refl = yes refl 1# ∷ xs ≟ 1# ∷ .xs | yes refl = yes refl 1# ∷ xs ≟ 0# ∷ ys | yes _ = no λ() 0# ∷ xs ≟ 1# ∷ ys | yes _ = no λ() ... | no pf = no (λ q → pf (cong tail q)) val1 = 1# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ [] val2 = 0# ∷ 1# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ [] val8 = 0# ∷ 0# ∷ 0# ∷ 1# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ [] val10 = 0# ∷ 1# ∷ 0# ∷ 1# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ [] val11 = 1# ∷ 1# ∷ 0# ∷ 1# ∷ 0# ∷ 0# ∷ 0# ∷ 0# ∷ []
{ "alphanum_fraction": 0.5458953931, "avg_line_length": 25.1043478261, "ext": "agda", "hexsha": "9c8b547032521ce4cfe162aace8106c66a4e8980", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z", "max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/bitvector", "max_forks_repo_path": "Data/BitVector.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/bitvector", "max_issues_repo_path": "Data/BitVector.agda", "max_line_length": 89, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/bitvector", "max_stars_repo_path": "Data/BitVector.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z", "num_tokens": 1281, "size": 2887 }
module Subst (Gnd : Set)(U : Set)(El : U -> Set) where open import Basics open import Pr open import Nom import Kind open Kind Gnd U El import Cxt open Cxt Kind import Loc open Loc Kind import Term open Term Gnd U El import Shift open Shift Gnd U El import Inst open Inst Gnd U El data _-[_]_ : Cxt -> Kind -> Cxt -> Set where ES : {D : Cxt}{C : Kind} -> EC -[ C ] D _[_-_:=_] : {G D : Cxt}{C : Kind} -> (G -[ C ] D) -> (x : Nom){Gx : [| G Hasn't x |]}(S : Kind) -> D [! C !]- S -> (G [ x - S ]){Gx} -[ C ] D fetch : {G D : Cxt}{C S : Kind} -> (G -[ C ] D) -> Nom :- GooN G S -> D [! C !]- S fetch ES [ x / () ] fetch (g [ x - S := s ]) [ y / p ] with nomEq x y fetch (g [ x - S := s ]) [ .x / refl ] | yes refl = s fetch (g [ x - S := s ]) [ y / p ] | no n = fetch g [ y / p ] closed : {G : Cxt}{L : Loc}{T : Kind} -> G [ EL / Head ]- T -> G [ L / Head ]- T closed (` x -! xg) = ` x -! xg closed (# () -! _) mutual wsubst : {C : Kind}{G D : Cxt} -> (G -[ C ] D) -> {L : Loc}{T : Kind}(t : L [ Term C ]- T) -> [| Good G t |] -> D [ L / Term C ]- T wsubst g [ s ] sg = G[ wsubsts g s sg ] wsubst g (fn A f) fg = Gfn A \ a -> wsubst g (f a) (fg a) wsubst g (\\ b) bg = G\\ (wsubst g b bg) wsubst g (# v $ s) pg = (# v -! _) G$ wsubsts g s (snd pg) wsubst g (` x $ s) pg = go (shift closed (fetch g [ x / fst pg ])) (wsubsts g s (snd pg)) wsubsts : {C : Kind}{G D : Cxt} -> (G -[ C ] D) -> {L : Loc}{Z : Gnd}{S : Kind} (s : L [ Args C Z ]- S) -> [| Good G s |] -> D [ L / Args C Z ]- S wsubsts g (a ^ s) sg = a G^ wsubsts g s sg wsubsts g (r & s) pg = wsubst g r (fst pg) G& wsubsts g s (snd pg) wsubsts g nil _ = Gnil subst : {C : Kind}{G D : Cxt} -> (G -[ C ] D) -> {L : Loc}{T : Kind} -> G [ L / Term C ]- T -> D [ L / Term C ]- T subst g (t -! tg) = wsubst g t tg
{ "alphanum_fraction": 0.4433573635, "avg_line_length": 31.3225806452, "ext": "agda", "hexsha": "291b8479737b90d87b15dca9ace739f00831198b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "benchmark/Syntacticosmos/Subst.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "benchmark/Syntacticosmos/Subst.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "benchmark/Syntacticosmos/Subst.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 792, "size": 1942 }
{-# OPTIONS --without-K #-} module Ch2-4 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 open import Ch2-3 -- Definition 2.4.1 (homotopy) infixl 8 _~_ _~_ : ∀ {a b} {A : Set a} {P : A → Set b} → (f g : (z : A) → P z) → Set (a ⊔ b) _~_ {a} {b} {A} {P} f g = ∀ (x : A) → f x ≡ g x -- Lemma 2.4.2 open import Relation.Binary ~-isEquivalence : ∀ {a b} {A : Set a} {P : A → Set b} → IsEquivalence (_~_ {A = A} {P}) ~-isEquivalence = record { refl = ~-refl ; sym = ~-sym ; trans = ~-trans } where ~-refl : Reflexive _~_ ~-refl f = refl ~-sym : Symmetric _~_ ~-sym i~j x = ¬ (i~j x) ~-trans : Transitive _~_ ~-trans i~j j~k x = i~j x ∙ j~k x ~-setoid : ∀ {a b} → (A : Set a) → (P : A → Set b) → Setoid _ _ ~-setoid {a} {b} A P = record { Carrier = _ ; _≈_ = _~_ {a} {b} {A} {P} ; isEquivalence = ~-isEquivalence {a} {b} {A} {P} } open import Function using (id; _∘_) ∘-cong-right : ∀ {a} {b} {c} {A : Set a} {B : Set b} {C : Set c} {g h : A → B} → (f : B → C) → g ~ h → f ∘ g ~ f ∘ h ∘-cong-right f g~h x = ap f (g~h x) ∘-cong-left : ∀ {a} {b} {c} {A : Set a} {B : Set b} {C : Set c} {g h : B → C} → (f : A → B) → g ~ h → g ∘ f ~ h ∘ f ∘-cong-left f g~h x = g~h (f x) -- Lemma 2.4.3 Lemma-2-4-3 : ∀ {a b} {A : Set a} {B : Set b} {x y : A} → (f g : A → B) → (H : f ~ g) → (p : x ≡ y) → H x ∙ ap g p ≡ ap f p ∙ H y Lemma-2-4-3 {a} {b} {A} {B} {x} {y} f g H p = J A D d x y p f g H where D : (x y : A) (p : x ≡ y) → Set _ D x y p = (f g : A → B) (H : f ~ g) → H x ∙ ap g p ≡ ap f p ∙ H y -- f(p) -- f(x) ========== f(y) -- || || -- H(x) || || H(y) -- || || -- g(x) ========== g(y) -- g(p) -- d : (x : A) → D x x refl d x f g H = begin H x ∙ ap g refl ≈⟨ ap (λ w → H x ∙ w) (ap-refl g) ⟩ H x ∙ refl ≈⟨ ¬ ∙-identityʳ (H x) ⟩ H x ≈⟨ refl ⟩ H x ≈⟨ ∙-identityˡ (H x) ⟩ refl ∙ H x ≈⟨ ap (λ w → w ∙ H x) (¬ ap-refl f) ⟩ ap f refl ∙ H x ∎ where open import Relation.Binary.Reasoning.Setoid (setoid (f x ≡ g x)) -- f(H(x)) -- f(x) ========== f(y) -- || || -- H(x) || || H(y) -- || || -- g(x) ========== g(y) -- g(p) -- -- Corollary 2.4.4 Corollary-2-4-4 : ∀ {a} {A : Set a} → (f : A → A) → (H : f ~ id) → (x : A) → H (f x) ≡ ap f (H x) Corollary-2-4-4 {a} {A} f H x = begin H (f x) ≈⟨ ∙-identityʳ (H (f x)) ⟩ H (f x) ∙ refl ≈⟨ ap [ H (f x) ]∙ (¬ ¬-identityˡ (H x)) ⟩ H (f x) ∙ (H x ∙ ¬ H x) ≈⟨ ∙-assoc (H (f x)) (H x) (¬ H x) ⟩ (H (f x) ∙ H x) ∙ ¬ H x ≈⟨ ap (λ w → (H (f x) ∙ w) ∙ ¬ H x) (¬ ap-id (H x)) ⟩ (H (f x) ∙ ap id (H x)) ∙ ¬ H x ≈⟨ ap ∙[ ¬ H x ] (Lemma-2-4-3 f id H (H x)) ⟩ (ap f (H x) ∙ H x) ∙ ¬ H x ≈⟨ ¬ ∙-assoc (ap f (H x)) (H x) (¬ H x) ⟩ ap f (H x) ∙ (H x ∙ ¬ H x) ≈⟨ ap [ ap f (H x) ]∙ (¬-identityˡ (H x)) ⟩ ap f (H x) ∙ refl ≈⟨ ¬ ∙-identityʳ (ap f (H x)) ⟩ ap f (H x) ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) open import Data.Product -- Definition 2.4.6 qinv : ∀ {a b} {A : Set a} {B : Set b} → (f : A → B) → Set (a ⊔ b) qinv {a} {b} {A} {B} f = Σ[ g ∈ (B → A) ] (f ∘ g ~ id × g ∘ f ~ id) -- Example 2.4.7 example-2-4-7 : ∀ {a} {A : Set a} → qinv (id {a} {A}) example-2-4-7 = id , ((λ x → refl) , λ x → refl) -- Example 2.4.8 example-2-4-8-i : ∀ {a} {A : Set a} {x y z : A} → (p : x ≡ y) → qinv (λ (q : y ≡ z) → p ∙ q) example-2-4-8-i {a} {A} {x} {y} {z} p = (λ q → ¬ p ∙ q) , (α , β) where α : (q : x ≡ z) → p ∙ (¬ p ∙ q) ≡ q α q = begin p ∙ (¬ p ∙ q) ≈⟨ ∙-assoc p (¬ p) q ⟩ p ∙ ¬ p ∙ q ≈⟨ ap (λ w → w ∙ q) (¬-identityˡ p) ⟩ refl ∙ q ≈⟨ ¬ ∙-identityˡ q ⟩ q ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) β : (q : y ≡ z) → ¬ p ∙ (p ∙ q) ≡ q β q = begin ¬ p ∙ (p ∙ q) ≈⟨ ∙-assoc (¬ p) p q ⟩ ¬ p ∙ p ∙ q ≈⟨ ap (λ w → w ∙ q) (¬-identityʳ p) ⟩ refl ∙ q ≈⟨ ¬ ∙-identityˡ q ⟩ q ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) example-2-4-8-ii : ∀ {a} {A : Set a} {x y z : A} → (p : x ≡ y) → qinv (λ (q : z ≡ x) → q ∙ p) example-2-4-8-ii {a} {A} {x} {y} {z} p = (λ q → q ∙ ¬ p) , α , β where α : (q : z ≡ y) → q ∙ ¬ p ∙ p ≡ q α q = begin q ∙ ¬ p ∙ p ≈⟨ ¬ ∙-assoc q (¬ p) p ⟩ q ∙ (¬ p ∙ p) ≈⟨ ap (λ w → q ∙ w) (¬-identityʳ p) ⟩ q ∙ refl ≈⟨ ¬ (∙-identityʳ q) ⟩ q ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) β : (q : z ≡ x) → q ∙ p ∙ ¬ p ≡ q β q = begin q ∙ p ∙ ¬ p ≈⟨ ¬ ∙-assoc q p (¬ p) ⟩ q ∙ (p ∙ ¬ p) ≈⟨ ap (λ w → q ∙ w) (¬-identityˡ p) ⟩ q ∙ refl ≈⟨ ¬ (∙-identityʳ q) ⟩ q ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) example-2-4-9 : ∀ {a b} {A : Set a} {x y : A} → (P : A → Set b) → (p : x ≡ y) → qinv (transport P p) example-2-4-9 {a} {b} {A} {x} {y} P p = (transport P (¬ p)) , α , β where α : (w : P y) → transport P p (transport P (¬ p) w) ≡ w α w = begin transport P p (transport P (¬ p) w) ≈⟨ lemma-2-3-9 P (¬ p) p w ⟩ transport P (¬ p ∙ p) w ≈⟨ ap (λ q → transport P q w) (¬-identityʳ p) ⟩ transport P refl w ≈⟨ refl ⟩ w ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) β : (w : P x) → transport P (¬ p) (transport P p w) ≡ w β w = begin transport P (¬ p) (transport P p w) ≈⟨ lemma-2-3-9 P p (¬ p) w ⟩ transport P (p ∙ ¬ p) w ≈⟨ ap (λ q → transport P q w) (¬-identityˡ p) ⟩ transport P refl w ≈⟨ refl ⟩ w ∎ where open import Relation.Binary.Reasoning.Setoid (setoid _) -- Definition 2.4.10 isequiv : ∀ {a b} {A : Set a} {B : Set b} → (f : A → B) → Set (a ⊔ b) isequiv {a} {b} {A} {B} f = (Σ[ g ∈ (B → A) ] f ∘ g ~ id) × (Σ[ h ∈ (B → A) ] h ∘ f ~ id) -- Property 2.4.10-i Property-2-4-10-i : ∀ {a b} {A : Set a} {B : Set b} → (f : A → B) → qinv f → isequiv f Property-2-4-10-i f (g , α , β) = (g , α) , (g , β) -- Property 2.4.10-ii Property-2-4-10-ii : ∀ {a b} {A : Set a} {B : Set b} → (f : A → B) → isequiv f → qinv f Property-2-4-10-ii {a} {b} {A} {B} f ((g , α) , (h , β)) = g , (α , β') where -- -- β α -- g ~ h ∘ f ∘ g ~ h -- γ : g ~ h γ x = ¬ (β (g x)) ∙ ap h (α x) β' : g ∘ f ~ id β' x = γ (f x) ∙ β x -- Property 2.4.10-iii -- Property-2-4-10-iii : ∀ {a b} {A : Set a} {B : Set b} -- → (f : A → B) -- → (e₁ e₂ : isequiv f) -- → e₁ ≡ e₂ -- Property-2-4-10-iii {a} {b} {A} {B} f e₁ e₂ = {! !} -- Definition 2.4.11 _≅_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A ≅ B = Σ[ f ∈ (A → B) ] isequiv f ≅→ : ∀ {a b} {A : Set a} {B : Set b} → A ≅ B → A → B ≅→ (f , _) = f -- Lemma 2.4.12-i Lemma-2-4-12-i : ∀ {a} (A : Set a) → A ≅ A Lemma-2-4-12-i A = id , Property-2-4-10-i id example-2-4-7 -- Lemma 2.4.12-ii Lemma-2-4-12-ii : ∀ {a} {b} {A : Set a} {B : Set b} → A ≅ B → B ≅ A Lemma-2-4-12-ii {a} {b} {A} {B} (f , f-isequiv) = f⁻¹ , f⁻¹-isequiv where f-qinv : qinv f f-qinv = Property-2-4-10-ii f f-isequiv f⁻¹ : B → A f⁻¹ = proj₁ f-qinv f⁻¹-qinv : qinv f⁻¹ f⁻¹-qinv = f , (swap (proj₂ f-qinv)) f⁻¹-isequiv : isequiv f⁻¹ f⁻¹-isequiv = Property-2-4-10-i f⁻¹ f⁻¹-qinv ←≅ : ∀ {a b} {A : Set a} {B : Set b} → A ≅ B → B → A ←≅ = ≅→ ∘ Lemma-2-4-12-ii -- Lemma 2.4.12-iii Lemma-2-4-12-iii : ∀ {a} {b} {c} {A : Set a} {B : Set b} {C : Set c} → A ≅ B → B ≅ C → A ≅ C Lemma-2-4-12-iii {a} {b} {c} {A} {B} {C} (g , g-isequiv) (f , f-isequiv) = (f ∘ g) , f∘g-isequiv where f-qinv : qinv f f-qinv = Property-2-4-10-ii f f-isequiv g-qinv : qinv g g-qinv = Property-2-4-10-ii g g-isequiv f⁻¹ : C → B f⁻¹ = proj₁ f-qinv f∘f⁻¹~id : f ∘ f⁻¹ ~ id f∘f⁻¹~id = proj₁ (proj₂ f-qinv) f⁻¹∘f~id : f⁻¹ ∘ f ~ id f⁻¹∘f~id = proj₂ (proj₂ f-qinv) g⁻¹ : B → A g⁻¹ = proj₁ g-qinv g∘g⁻¹~id : g ∘ g⁻¹ ~ id g∘g⁻¹~id = proj₁ (proj₂ g-qinv) g⁻¹∘g~id : g⁻¹ ∘ g ~ id g⁻¹∘g~id = proj₂ (proj₂ g-qinv) α : (f ∘ g) ∘ (g⁻¹ ∘ f⁻¹) ~ id α = begin (f ∘ g) ∘ (g⁻¹ ∘ f⁻¹) ≈⟨ (λ x → refl) ⟩ f ∘ (g ∘ g⁻¹) ∘ f⁻¹ ≈⟨ ∘-cong-right f (∘-cong-left f⁻¹ g∘g⁻¹~id) ⟩ f ∘ id ∘ f⁻¹ ≈⟨ (λ x → refl) ⟩ f ∘ f⁻¹ ≈⟨ f∘f⁻¹~id ⟩ id ∎ where open import Relation.Binary.Reasoning.Setoid (~-setoid _ _) β : (g⁻¹ ∘ f⁻¹) ∘ (f ∘ g) ~ id β = begin (g⁻¹ ∘ f⁻¹) ∘ (f ∘ g) ≈⟨ (λ x → refl) ⟩ g⁻¹ ∘ (f⁻¹ ∘ f) ∘ g ≈⟨ ∘-cong-right g⁻¹ (∘-cong-left g f⁻¹∘f~id) ⟩ g⁻¹ ∘ id ∘ g ≈⟨ (λ x → refl) ⟩ g⁻¹ ∘ g ≈⟨ g⁻¹∘g~id ⟩ id ∎ where open import Relation.Binary.Reasoning.Setoid (~-setoid _ _) f∘g-qinv : qinv (f ∘ g) f∘g-qinv = (g⁻¹ ∘ f⁻¹) , α , β f∘g-isequiv : isequiv (f ∘ g) f∘g-isequiv = Property-2-4-10-i (f ∘ g) f∘g-qinv
{ "alphanum_fraction": 0.3993847459, "avg_line_length": 24.8078947368, "ext": "agda", "hexsha": "97e511bb74b5afdb5ec780cfe553819086f98a6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-4.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4688, "size": 9427 }
-- Andreas, 2016-07-08 testing the access to definitions in where blocks -- Anonymous where modules do export pub0 = priv0 module _ where priv0 = Set works = priv0 -- Should succeed -- Unnamed where modules don't export pub = priv where priv = Set fail = priv -- Should fail
{ "alphanum_fraction": 0.6962457338, "avg_line_length": 16.2777777778, "ext": "agda", "hexsha": "7542cbea5119e2af9c489045c3c5350d6145f0b6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2081a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2081a.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2081a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 293 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import homotopy.DisjointlyPointedSet open import cohomology.Theory open import cohomology.ChainComplex module cw.cohomology.ReconstructedCochainsIsoCellularCochains {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.CellularChainComplex as CCC open import cw.cohomology.ReconstructedCochainComplex OT as RCC open import cw.cohomology.TipAndAugment OT open import cw.cohomology.WedgeOfCells OT private rcc-iso-ccc-nth : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≤n : m ≤ n) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (inl m≤n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inl m≤n))) (C2-abgroup 0) rcc-iso-ccc-nth ⊙skel {m = O} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ Πᴳ-emap-l (λ _ → C2 0) (separable-unite-equiv (⊙Skeleton.pt-dec ⊙skel)) ∘eᴳ Πᴳ₁-⊔-iso-×ᴳ {A = Unit} {B = MinusPoint (⊙cw-head ⊙skel)} (λ _ → C2 0) ⁻¹ᴳ ∘eᴳ ×ᴳ-emap (Πᴳ₁-Unit ⁻¹ᴳ) (CX₀-β ⊙skel 0 ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ CXₙ/Xₙ₋₁-β-diag ⊙skel ac rcc-iso-ccc-nth ⊙skel {m = O} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = O} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-above : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≰n : ¬ (m ≤ n)) → AbGroup.grp (RCC.cochain-template ⊙skel (inr m≰n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inr m≰n))) (C2-abgroup 0) rcc-iso-ccc-above ⊙skel _ = pre∘ᴳ-iso (C2-abgroup 0) lower-iso ∘eᴳ trivial-iso-Unit (hom₁-Unit-is-trivial (C2-abgroup 0)) ⁻¹ᴳ ∘eᴳ lower-iso rcc-iso-ccc : ∀ {n} (⊙skel : ⊙Skeleton n) (m : ℕ) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (≤-dec m n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (≤-dec m n))) (C2-abgroup 0) rcc-iso-ccc {n} ⊙skel m ac with ≤-dec m n rcc-iso-ccc ⊙skel m ac | inl m≤n = rcc-iso-ccc-nth ⊙skel m≤n ac rcc-iso-ccc ⊙skel m ac | inr m≰n = rcc-iso-ccc-above ⊙skel m≰n rhead-iso-chead : C2 0 ≃ᴳ hom-group ℤ-group (C2-abgroup 0) rhead-iso-chead = pre∘ᴳ-iso (C2-abgroup 0) ℤ-iso-FreeAbGroup-Unit ∘eᴳ FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ Πᴳ₁-Unit ⁻¹ᴳ
{ "alphanum_fraction": 0.633847232, "avg_line_length": 46.7868852459, "ext": "agda", "hexsha": "5e010c641fd706c74a3a17992f815cb5aaf6c889", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1335, "size": 2854 }
{-# OPTIONS --without-K #-} module Examples.BooleanCircuits where open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; subst) open import Singleton open import PiFrac open import Reasoning ------------------------------------------------------------------------------ 𝔹 𝔹² 𝔹³ 𝔹⁴ : 𝕌 𝔹 = 𝟙 +ᵤ 𝟙 𝔹² = 𝔹 ×ᵤ 𝔹 𝔹³ = 𝔹 ×ᵤ 𝔹² 𝔹⁴ = 𝔹 ×ᵤ 𝔹³ CONTROLLED : {A : 𝕌} → (A ⟷ A) → 𝔹 ×ᵤ A ⟷ 𝔹 ×ᵤ A CONTROLLED c = dist ⊚ (id⟷ ⊕ (id⟷ ⊗ c)) ⊚ factor NOT : 𝔹 ⟷ 𝔹 NOT = swap₊ CNOT : 𝔹² ⟷ 𝔹² CNOT = CONTROLLED NOT TOFFOLI : 𝔹³ ⟷ 𝔹³ TOFFOLI = CONTROLLED (CONTROLLED NOT) CTOFFOLI : 𝔹⁴ ⟷ 𝔹⁴ CTOFFOLI = CONTROLLED (CONTROLLED (CONTROLLED NOT)) -- Ancilla examples from literature -- Fig. 2 in Ricercar fig2a : 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ⟷ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 fig2a = CONTROLLED (CONTROLLED (CONTROLLED NOT)) -- first write the circuit with the additional ancilla fig2b' : ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) ⟷ ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) fig2b' = (swap⋆ ⊗ id⟷) ⊚ assocr⋆ ⊚ (swap⋆ ⊗ id⟷) ⊚ assocr⋆ ⊚ (id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- first ccnot ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id⟷) ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id⟷) -- move it back ⊚ (assocl⋆ ⊗ id⟷) ⊚ assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ (id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- second ccnot ⊚ (id⟷ ⊗ swap⋆) ⊚ assocl⋆ ⊚ (assocr⋆ ⊗ id⟷) -- move it back ⊚ (swap⋆ ⊗ id⟷) ⊚ assocr⋆ ⊚ (swap⋆ ⊗ id⟷) ⊚ assocr⋆ ⊚ (id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- third ccnot ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id⟷) ⊚ assocl⋆ ⊚ (swap⋆ ⊗ id⟷) -- move it back ------------------------------------------------------------------------------ -- Examples PERES : (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹 ⟷ (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹 PERES = (id⟷ ⊗ NOT) ⊚ assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ TOFFOLI ⊚ (id⟷ ⊗ (NOT ⊗ id⟷)) ⊚ TOFFOLI ⊚ (id⟷ ⊗ swap⋆) ⊚ (id⟷ ⊗ (NOT ⊗ id⟷)) ⊚ TOFFOLI ⊚ (id⟷ ⊗ (NOT ⊗ id⟷)) ⊚ assocl⋆ SWAP12 SWAP23 SWAP13 ROTL ROTR : 𝟙 +ᵤ 𝟙 +ᵤ 𝟙 ⟷ 𝟙 +ᵤ 𝟙 +ᵤ 𝟙 SWAP12 = assocl₊ ⊚ (swap₊ ⊕ id⟷) ⊚ assocr₊ SWAP23 = id⟷ ⊕ swap₊ SWAP13 = SWAP23 ⊚ SWAP12 ⊚ SWAP23 ROTR = SWAP12 ⊚ SWAP23 ROTL = SWAP13 ⊚ SWAP23 pattern ?𝔽 = inj₁ tt pattern ?𝕋 = inj₂ tt -- this version might look more contrived that the fully expanded -- one via pattern matching, but it generalizes better. -- controlled f (b , a) = (b , [ (λ _ → a) , (λ _ → f a) ]′ b) 𝔽 𝕋 : ⟦ 𝔹 ⟧ 𝔽 = inj₁ tt 𝕋 = inj₂ tt not : ⟦ 𝔹 ⟧ → ⟦ 𝔹 ⟧ not ?𝔽 = 𝕋 not ?𝕋 = 𝔽 controlled : ∀ {A} → (⟦ A ⟧ → ⟦ A ⟧) → ⟦ 𝔹 ⟧ × ⟦ A ⟧ → ⟦ 𝔹 ⟧ × ⟦ A ⟧ controlled f (?𝔽 , a) = (𝔽 , a ) controlled f (?𝕋 , a) = (𝕋 , f a) t3 : ∀ {b₁ b₂} → ● (𝔹 ×ᵤ 𝔹²) [ 𝔽 , (b₁ , b₂) ] ⟷ ● (𝔹 ×ᵤ 𝔹²) [ 𝔽 , (b₁ , b₂) ] t3 = lift TOFFOLI {-- The following do not typecheck. Good t4 : ● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝔽 , 𝔽) ] ⟷ ● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝔽 , 𝕋) ] t4 = lift TOFFOLI t5 : ∀ {b₁ b₂} → ● (𝔹 ×ᵤ 𝔹²) [ b₁ , (𝔽 , b₂) ] ⟷ ● (𝔹 ×ᵤ 𝔹²) [ b₁ , (𝔽 , b₂) ] t5 = lift TOFFOLI --} t6 : ∀ {b} → ● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝕋 , b) ] ⟷ ● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝕋 , eval NOT b) ] t6 = lift TOFFOLI NEG1 NEG2 NEG3 NEG4 NEG5 : 𝔹 ⟷ 𝔹 NEG1 = swap₊ NEG2 = id⟷ ⊚ NOT NEG3 = NOT ⊚ NOT ⊚ NOT NEG4 = NOT ⊚ id⟷ NEG5 = uniti⋆l ⊚ swap⋆ ⊚ (NOT ⊗ id⟷) ⊚ swap⋆ ⊚ unite⋆l NEG6 = uniti⋆r ⊚ (NOT ⊗ id⟷) ⊚ unite⋆r -- same as above, but shorter zigzag : ∀ b → ● 𝔹 [ b ] ⟷ ● 𝔹 [ b ] zigzag b = uniti⋆l ⊚ -- ONE * POINTED TWO (η b ⊗ id⟷) ⊚ -- (POINTED TWO * RECIP TWO) * POINTED TWO assocr⋆ ⊚ -- POINTED TWO * (RECIP TWO * POINTED TWO) (id⟷ ⊗ swap⋆) ⊚ -- POINTED TWO * (POINTED TWO * RECIP TWO) (id⟷ ⊗ ε b) ⊚ -- POINTED TWO * ONE unite⋆r test1 = eval (zigzag 𝔽) (𝔽 , refl) -- (⇑ #f refl) -- test2 = eval (zigzag 𝔽) (𝕋 , refl) -- typechecks if given proof #f=#t -- test3 = eval (zigzag 𝕋) (𝔽 , refl) -- typechecks if given proof #f=#t test4 = eval (zigzag 𝕋) (𝕋 , refl) -- (⇑ #t refl) zigzagU : ⟦ 𝔹 ⟧ → ⟦ 𝔹 ⟧ zigzagU b = unfocus (eval (zigzag b) (focus b)) -- then prove a theorem that specifies its semantics fig2b'≡ : (a b c d : ⟦ 𝔹 ⟧) → proj₂ (eval fig2b' ((a , b , c , d) , 𝔽)) ≡ 𝔽 fig2b'≡ a (inj₁ tt) c d = refl fig2b'≡ (inj₁ tt) (inj₂ tt) c d = refl fig2b'≡ (inj₂ tt) (inj₂ tt) c d = refl -- generalize above? Method: -- for 'dist' to evaluate, need to split on b first -- in first case, split on e (same reason) -- in second case, split on a (same reason) -- split on e -- split on e foo : (a b c d e : ⟦ 𝔹 ⟧) → proj₂ (eval fig2b' ((a , b , c , d) , e)) ≡ e foo a (inj₁ x) c d (inj₁ x₁) = refl foo a (inj₁ x) c d (inj₂ y) = refl foo (inj₁ x) (inj₂ y) c d (inj₁ x₁) = refl foo (inj₁ x) (inj₂ y) c d (inj₂ y₁) = refl foo (inj₂ y₁) (inj₂ y) c d (inj₁ x) = refl foo (inj₂ y₁) (inj₂ y) c d (inj₂ y₂) = refl postulate -- boring... tensor4 : ∀ {a b c d e} → (● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ]) ×ᵤ ● 𝔹 [ e ] ⟷ ● ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) [ (a , b , c , d) , e ] itensor4 : ∀ {a b c d e} → ● ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) [ (a , b , c , d) , e ] ⟷ (● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ]) ×ᵤ ● 𝔹 [ e ] -- now lift it fig2b : ∀ {a b c d e} → let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e) in ● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ] ⟷ ● 𝔹 [ x ] ×ᵤ ● 𝔹 [ y ] ×ᵤ ● 𝔹 [ z ] ×ᵤ ● 𝔹 [ w ] fig2b {a} {b} {c} {d} {e} = let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e) in uniti⋆r ⊚ -- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e] (id⟷ ⊗ η e) ⊚ -- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e]) assocl⋆ ⊚ -- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e] (tensor4 ⊗ id⟷) ⊚ -- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e] (lift fig2b' ⊗ id⟷) ⊚ -- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e] (((== id⟷ (cong (λ H → ((x , y , z , w)) , H) (foo a b c d e))) ⊗ id⟷)) ⊚ -- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e] (itensor4 ⊗ id⟷) ⊚ -- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e] assocr⋆ ⊚ (id⟷ ⊗ ε e) ⊚ unite⋆r -- This is mostly to show that == is really 'subst' in hiding. fig2b₂ : ∀ {a b c d e} → let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e) in ● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ] ⟷ ● 𝔹 [ x ] ×ᵤ ● 𝔹 [ y ] ×ᵤ ● 𝔹 [ z ] ×ᵤ ● 𝔹 [ w ] fig2b₂ {a} {b} {c} {d} {e} = let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e) in uniti⋆r ⊚ -- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e] (id⟷ ⊗ η e) ⊚ -- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e]) assocl⋆ ⊚ -- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e] (tensor4 ⊗ id⟷) ⊚ -- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e] (lift fig2b' ⊗ id⟷) ⊚ -- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e] (itensor4 ⊗ id⟷) ⊚ -- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e] assocr⋆ ⊚ (id⟷ ⊗ (subst (λ ee → ● 𝔹 [ ee ] ×ᵤ 𝟙/● 𝔹 [ e ] ⟷ 𝟙) (sym (foo a b c d e)) (ε e))) ⊚ unite⋆r ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4236176195, "avg_line_length": 29.5217391304, "ext": "agda", "hexsha": "168420abe81f49971b175d027fdb9fb15d7a0688", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/Examples/BooleanCircuits.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/Examples/BooleanCircuits.agda", "max_line_length": 92, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/Examples/BooleanCircuits.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4110, "size": 7469 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Typed-Syntax import Globular-TT.Syntax {- Type theory for globular sets -} module Globular-TT.Eqdec-syntax {l} (index : Set l) (eqdec-index : eqdec index) where open import Globular-TT.Syntax index eqdec-Ty : eqdec Pre-Ty eqdec-Tm : eqdec Pre-Tm eqdec-Sub : eqdec Pre-Sub eqdec-Ty ∗ ∗ = inl idp eqdec-Ty ∗ (⇒ _ _ _) = inr λ{()} eqdec-Ty (⇒ _ _ _ ) ∗ = inr λ{()} eqdec-Ty (⇒ A t u) (⇒ B t' u') with eqdec-Ty A B | eqdec-Tm t t' | eqdec-Tm u u' ... | inl idp | inl idp | inl idp = inl idp ... | inr A≠B | _ | _ = inr λ{idp → A≠B idp} ... | inl idp | inr t≠t' | _ = inr λ eq → t≠t' (snd (fst (=⇒ eq))) ... | inl idp | inl idp | inr u≠u' = inr λ eq → u≠u' (snd (=⇒ eq)) eqdec-Tm (Var x) (Var y) with eqdecℕ x y ... | inl idp = inl idp ... | inr x≠y = inr λ {idp → x≠y idp} eqdec-Tm (Var _) (Tm-constructor _ _) = inr λ{()} eqdec-Tm (Tm-constructor _ _) (Var _) = inr λ{()} eqdec-Tm (Tm-constructor i γ) (Tm-constructor i' γ') with eqdec-index i i' | eqdec-Sub γ γ' ... | inl idp | inl idp = inl idp ... | inr i≠i' | _ = inr λ{idp → i≠i' idp} ... | inl idp | inr γ≠γ' = inr λ eq → γ≠γ' (snd (=Tm-constructor eq)) eqdec-Sub <> <> = inl idp eqdec-Sub < _ , _ ↦ _ > <> = inr λ{()} eqdec-Sub <> < _ , _ ↦ _ > = inr λ{()} eqdec-Sub < γ , x ↦ t > < γ' , y ↦ t' > with eqdec-Sub γ γ' | eqdecℕ x y | eqdec-Tm t t' ... | inl idp | inl idp | inl idp = inl idp ... | inr γ≠γ' | _ | _ = inr λ{idp → γ≠γ' idp} ... | inl idp | inr x≠y | _ = inr λ eq → x≠y (snd (fst (=<,> eq))) ... | inl idp | inl idp | inr t≠t' = inr λ eq → t≠t' (snd (=<,> eq))
{ "alphanum_fraction": 0.4228438228, "avg_line_length": 45.6382978723, "ext": "agda", "hexsha": "0c3ac1080b8ca7b244023c9d6819e505d330a22f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "Globular-TT/Eqdec-syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "Globular-TT/Eqdec-syntax.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/Eqdec-syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 804, "size": 2145 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT -- an attempt to speed up [QuotGroup (quot-of-sub (ker-prop ...) (im-nprop ...))] -- which removes most intermediate constructions module groups.KernelImage {i j k} {G : Group i} {H : Group j} {K : Group k} (ψ : H →ᴳ K) (φ : G →ᴳ H) (H-ab : is-abelian H) where -- G ---φ--→ᴳ H ---ψ--→ᴳ K private module G = Group G module H = AbGroup (H , H-ab) module K = Group K module ψ = GroupHom ψ module φ = GroupHom φ ker-El : Type (lmax j k) ker-El = Σ H.El (λ h → ψ.f h == K.ident) ker-subtype : SubtypeProp H.El k ker-subtype = (λ h → ψ.f h == K.ident) , level where abstract level : ∀ h → is-prop (ψ.f h == K.ident) level h = K.El-is-set _ _ ker-El=-out = Subtype=-out ker-subtype ker/im-rel' : Rel H.El (lmax i j) ker/im-rel' h₁ h₂ = Trunc -1 (hfiber φ.f (H.diff h₁ h₂)) ker/im-rel : Rel ker-El (lmax i j) ker/im-rel (h₁ , _) (h₂ , _) = Trunc -1 (hfiber φ.f (H.diff h₁ h₂)) private ker/im-El : Type (lmax (lmax i j) k) ker/im-El = SetQuot ker/im-rel ker/im-struct : GroupStructure ker/im-El ker/im-struct = record {M} where module M where ident : ker/im-El ident = q[ H.ident , lemma ] where abstract lemma = ψ.pres-ident inv : ker/im-El → ker/im-El inv = SetQuot-rec SetQuot-level inv' inv-rel where inv' : ker-El → ker/im-El inv' (h , ψh=0) = q[ H.inv h , lemma ] where abstract lemma = ψ.pres-inv h ∙ ap K.inv ψh=0 ∙ K.inv-ident abstract inv-rel : ∀ {ker₁ ker₂} → ker/im-rel ker₁ ker₂ → inv' ker₁ == inv' ker₂ inv-rel {h₁ , _} {h₂ , _} = Trunc-rec (SetQuot-level _ _) λ{(g , φg=h₁h₂⁻¹) → quot-rel [ G.inv g , φ.pres-inv g ∙ ap H.inv φg=h₁h₂⁻¹ ∙ H.inv-diff h₁ h₂ ∙ H.comm h₂ (H.inv h₁) ∙ ap (H.comp (H.inv h₁)) (! (H.inv-inv h₂)) ]} comp : ker/im-El → ker/im-El → ker/im-El comp = SetQuot-rec level comp' comp-rel where abstract level : is-set (ker/im-El → ker/im-El) level = →-is-set SetQuot-level comp' : ker-El → ker/im-El → ker/im-El comp' (h₁ , ψh₁=0) = SetQuot-rec SetQuot-level comp'' comp'-rel where comp'' : ker-El → ker/im-El comp'' (h₂ , ψh₂=0) = q[ H.comp h₁ h₂ , lemma ] where abstract lemma = ψ.pres-comp h₁ h₂ ∙ ap2 K.comp ψh₁=0 ψh₂=0 ∙ K.unit-l K.ident abstract comp'-rel : ∀ {ker₂ ker₂'} → ker/im-rel ker₂ ker₂' → comp'' ker₂ == comp'' ker₂' comp'-rel {h₂ , _} {h₂' , _} = Trunc-rec (SetQuot-level _ _) λ{(g , φg=h₂h₂'⁻¹) → quot-rel [ g , ! ( ap (H.comp (H.comp h₁ h₂)) (H.inv-comp h₁ h₂') ∙ H.assoc h₁ h₂ (H.comp (H.inv h₂') (H.inv h₁)) ∙ ap (H.comp h₁) (! $ H.assoc h₂ (H.inv h₂') (H.inv h₁)) ∙ H.comm h₁ (H.comp (H.comp h₂ (H.inv h₂')) (H.inv h₁)) ∙ H.assoc (H.comp h₂ (H.inv h₂')) (H.inv h₁) h₁ ∙ ap2 H.comp (! φg=h₂h₂'⁻¹) (H.inv-l h₁) ∙ H.unit-r (φ.f g) )]} abstract comp-rel : ∀ {ker₁ ker₁'} → ker/im-rel ker₁ ker₁' → comp' ker₁ == comp' ker₁' comp-rel {h₁ , _} {h₁' , _} = Trunc-rec (level _ _) λ{(g , φg=h₁h₁'⁻¹) → λ= $ SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ{(h₂ , _) → quot-rel [ g , ! ( ap (H.comp (H.comp h₁ h₂)) (H.inv-comp h₁' h₂) ∙ H.assoc h₁ h₂ (H.comp (H.inv h₂) (H.inv h₁')) ∙ ap (H.comp h₁) ( ! (H.assoc h₂ (H.inv h₂) (H.inv h₁')) ∙ ap (λ h → H.comp h (H.inv h₁')) (H.inv-r h₂) ∙ H.unit-l (H.inv h₁')) ∙ ! φg=h₁h₁'⁻¹ )]}) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))} abstract unit-l : ∀ k/i → comp ident k/i == k/i unit-l = SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ{(h , _) → ap q[_] $ ker-El=-out (H.unit-l h)}) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) assoc : ∀ k/i₁ k/i₂ k/i₃ → comp (comp k/i₁ k/i₂) k/i₃ == comp k/i₁ (comp k/i₂ k/i₃) assoc = SetQuot-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level) (λ{(h₁ , _) → SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level) (λ{(h₂ , _) → SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ{(h₃ , _) → ap q[_] $ ker-El=-out (H.assoc h₁ h₂ h₃)}) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))}) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuot-level _ _))}) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → Π-is-prop λ _ → SetQuot-level _ _)) inv-l : ∀ k/i → comp (inv k/i) k/i == ident inv-l = SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ{(h , _) → ap q[_] $ ker-El=-out (H.inv-l h)}) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) Ker/Im : Group (lmax i (lmax j k)) Ker/Im = group _ SetQuot-level ker/im-struct module Ker/Im = Group Ker/Im {- correctness -} Ker/Im-β : Ker/Im ≃ᴳ QuotGroup (quot-of-sub (ker-propᴳ ψ) (im-npropᴳ φ H-ab)) Ker/Im-β = ≃-to-≃ᴳ (ide _) to-pres-comp where abstract to-pres-comp : preserves-comp Ker/Im.comp (QuotGroup.comp (quot-of-sub (ker-propᴳ ψ) (im-npropᴳ φ H-ab))) (idf _) to-pres-comp = SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level) (λ _ → SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ _ → ap q[_] $ ker-El=-out idp) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuot-level _ _))
{ "alphanum_fraction": 0.4874647186, "avg_line_length": 41.2534246575, "ext": "agda", "hexsha": "3e1a6a4397cf0f4c8aca358aeab6cfdd056ac3f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/groups/KernelImage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/groups/KernelImage.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/groups/KernelImage.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2154, "size": 6023 }
open import Data.Graph module Data.Graph.Path.Search {ℓᵥ ℓₑ} (g : FiniteGraph ℓᵥ ℓₑ) where open import Data.Graph.Path.Cut g open import Data.Graph.Path.Finite g open import Data.Product as Σ open import Data.Sum as ⊎ open import Data.Vec as Vec open import Finite open import Function open import Level open import Relation.Binary open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.PropositionalEquality open import Relation.Nullary hiding (module Dec) open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation as ¬ open FiniteGraph g open IsFinite pathSearchFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × ∃ (Path a b)) pathSearchFrom P? a = case ∃? (Path≤-finite (size vertexFinite) a) (P? ∘ proj₁) of λ where (yes ((_ , _ , _ , p) , pb)) → yes (-, pb , (-, p)) (no ¬p) → no λ where (_ , pb , _ , p) → ¬p ((-, shortEnoughPath p) , pb) pathSearchAcyclicFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × ∃₂ λ n (p : Path a b n) → Acyclic p) pathSearchAcyclicFrom P? a = case ∃? (Path≤-finite (size vertexFinite) a) (P? ∘ proj₁) of λ where (yes ((_ , _ , _ , p) , pb)) → let (x , x≤n , p′) , ¬r′ = acyclicPath p in yes (-, pb , (-, (p′ , ¬r′))) (no ¬p) → no λ where (_ , pb , _ , p , r) → ¬p ((-, shortEnoughPath p) , pb) pathSearchBetween : ∀ a b → Dec (∃ (Path a b)) pathSearchBetween a b = case pathSearchFrom (decEqVertex b) a of λ where (yes (_ , refl , p)) → yes p (no ¬p) → no λ where (n , p) → ¬p (-, refl , -, p) searchFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × Star Edge a b) searchFrom P? a = Dec.map′ (Σ.map₂ (Σ.map₂ (toStar ∘ proj₂))) (Σ.map₂ (Σ.map₂ (-,_ ∘ fromStar))) (pathSearchFrom P? a) searchBetween : ∀ a b → Dec (Star Edge a b) searchBetween a b = Dec.map′ (toStar ∘ proj₂) (-,_ ∘ fromStar) (pathSearchBetween a b) module _ {ℓ ℓ≈ ℓ<} {P : Vertex → Set ℓ} (P? : ∀ a → Dec (P a)) {_≈_ : ∀ {a} → Rel (∃ (Star Edge a)) ℓ≈} {_<_ : ∀ {a} → Rel (∃ (Star Edge a)) ℓ<} (<-po : ∀ {a} → IsDecStrictPartialOrder (_≈_ {a}) _<_) where record MaximalPath a : Set (ℓ ⊔ ℓᵥ ⊔ ℓₑ ⊔ ℓ<) where field destination : Vertex predicate : P destination path : Star Edge a destination acyclic : Acyclic (fromStar path) isMax : ∀ {b} (p : Star Edge a b) (pb : P b) → Acyclic (fromStar p) → ¬ ((-, path) < (-, p)) searchMaximalFrom : ∀ a → Dec (MaximalPath a) searchMaximalFrom a = case max of λ where (inj₁ ¬p) → no λ mp → let open MaximalPath mp in ¬p ((-, path , fromWitness acyclic) , fromWitness predicate) (inj₂ (((b , p , acp) , pb) , isMax)) → yes record { destination = b ; predicate = toWitness pb ; path = p ; acyclic = toWitness acp ; isMax = λ q pb acq → isMax ((-, q , fromWitness acq) , fromWitness pb) } where module DPO = IsDecStrictPartialOrder <-po _≈′_ = _≈_ on λ where ((b , p , acp) , pb) → b , p _<′_ = _<_ on λ where ((b , p , acp) , pb) → b , p <′-IsDecStrictPartialOrder : IsDecStrictPartialOrder _≈′_ _<′_ <′-IsDecStrictPartialOrder = record { isStrictPartialOrder = record { isEquivalence = record { refl = IsEquivalence.refl DPO.isEquivalence ; sym = IsEquivalence.sym DPO.isEquivalence ; trans = IsEquivalence.trans DPO.isEquivalence } ; irrefl = DPO.irrefl ; trans = DPO.trans ; <-resp-≈ = proj₁ DPO.<-resp-≈ , proj₂ DPO.<-resp-≈ } ; _≟_ = λ _ _ → _ DPO.≟ _ ; _<?_ = λ _ _ → _ DPO.<? _ } acyclicPaths = filter (AcyclicStar-finite a) (P? ∘ proj₁) open Ordered acyclicPaths <′-IsDecStrictPartialOrder
{ "alphanum_fraction": 0.5620233859, "avg_line_length": 33.6239316239, "ext": "agda", "hexsha": "c74cfbe9477a23d35887b5d00786da5c0353a369", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/graph", "max_forks_repo_path": "src/Data/Graph/Path/Search.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/graph", "max_issues_repo_path": "src/Data/Graph/Path/Search.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "0196cf8a136a4933cd6358e4c9692aaf919ca603", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/graph", "max_stars_repo_path": "src/Data/Graph/Path/Search.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1393, "size": 3934 }
open import Agda.Builtin.Bool impor Agda.Builtin.Nat import Agda.Builtin.Sigma module issue4888 where
{ "alphanum_fraction": 0.819047619, "avg_line_length": 13.125, "ext": "agda", "hexsha": "c15f2ab5a02a9e58975c2a16f2047c3fe97a81df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jappeace/agda", "max_forks_repo_path": "test/Fail/Issue4888.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jappeace/agda", "max_issues_repo_path": "test/Fail/Issue4888.agda", "max_line_length": 29, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa5e3a127bf17a8c80d947f3c286758a36dadc36", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jappeace/agda", "max_stars_repo_path": "test/Fail/Issue4888.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 31, "size": 105 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Tests.Addition where import Data.Binary.Operations.Addition as 𝔹 open import Data.Binary.Tests.Helpers open import Relation.Binary.PropositionalEquality import Data.Nat as ℕ _ : 𝔹._+_ ≡⌈ 60 ⌉₂≡ ℕ._+_ _ = refl
{ "alphanum_fraction": 0.7443609023, "avg_line_length": 22.1666666667, "ext": "agda", "hexsha": "e8b9f6641fcc5bb673aabfe9e4e7d52d0cd728f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Tests/Addition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Tests/Addition.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Tests/Addition.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 79, "size": 266 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An example of how the Record module can be used ------------------------------------------------------------------------ -- Taken from Randy Pollack's paper "Dependently Typed Records in Type -- Theory". module README.Record where open import Data.Product open import Data.String open import Function using (flip) open import Level import Record open import Relation.Binary -- Let us use strings as labels. open Record String _≟_ -- Partial equivalence relations. PER : Signature _ PER = ∅ , "S" ∶ (λ _ → Set) , "R" ∶ (λ r → r · "S" → r · "S" → Set) , "sym" ∶ (λ r → Lift (Symmetric (r · "R"))) , "trans" ∶ (λ r → Lift (Transitive (r · "R"))) -- Given a PER the converse relation is also a PER. converse : (P : Record PER) → Record (PER With "S" ≔ (λ _ → P · "S") With "R" ≔ (λ _ → flip (P · "R"))) converse P = Rec′⇒Rec (PER With "S" ≔ (λ _ → P · "S") With "R" ≔ (λ _ → flip (P · "R"))) ((((_ ,) ,) , lift λ {_} → lower (P · "sym")) , (lift λ {_} yRx zRy → lower (P · "trans") zRy yRx))
{ "alphanum_fraction": 0.4837092732, "avg_line_length": 28.5, "ext": "agda", "hexsha": "ff680f1744a99c41d31bb68971396b95156a6619", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/README/Record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/README/Record.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/README/Record.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 343, "size": 1197 }
module Golden.FstSnd where open import Agda.Builtin.Nat data Tuple a b : Set where Tup : a -> b -> Tuple a b fst : {a b : Set} -> Tuple a b -> a fst (Tup x x₁) = x snd : {a b : Set} -> Tuple a b -> b snd (Tup x b) = b tup1 : Tuple Nat Nat tup1 = Tup 0 1 a = fst tup1 b = snd tup1
{ "alphanum_fraction": 0.5868055556, "avg_line_length": 15.1578947368, "ext": "agda", "hexsha": "811c24006477b8ee11d0f095a0a38346ffeb108d", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z", "max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-ocaml", "max_forks_repo_path": "test/agda-ocaml/Golden/FstSnd.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-ocaml", "max_issues_repo_path": "test/agda-ocaml/Golden/FstSnd.agda", "max_line_length": 35, "max_stars_count": 48, "max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-ocaml", "max_stars_repo_path": "test/agda-ocaml/Golden/FstSnd.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z", "num_tokens": 117, "size": 288 }
{-# OPTIONS --cubical #-} module _ where open import Agda.Builtin.Equality -- Option --cubical implies --without-K uip : {A : Set} {x : A} (p : x ≡ x) → p ≡ refl uip refl = refl
{ "alphanum_fraction": 0.6166666667, "avg_line_length": 20, "ext": "agda", "hexsha": "1e4c83e6a38506f76c76d969a3ba260e2c7146b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2446b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2446b.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2446b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 180 }
-- Check that checking of left-hand sides are postponed properly -- when the type of an argument that is matched on is a meta. data Nat : Set where zero : Nat suc : Nat → Nat data X : Set where zero : X easy : _ → Nat easy (suc n) = n easy zero = zero -- TODO: uncomment below once LHS postponing is actually implemented -- hard : _ → Nat -- hard zero = zero -- hard (suc n) = hard n -- _$_ : {A B : Set} → (A → B) → A → B -- f $ x = f x -- plam : Nat -- plam = (λ { zero → zero; (suc n) → n }) $ suc zero
{ "alphanum_fraction": 0.5901328273, "avg_line_length": 19.5185185185, "ext": "agda", "hexsha": "c6a6c5f7e76f11eaf32feffc88430b1af9a5f7fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/PostponeLHS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/PostponeLHS.agda", "max_line_length": 68, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/PostponeLHS.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 176, "size": 527 }
{-# OPTIONS --allow-unsolved-metas #-} open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) module FLComm (n : ℕ) where open import Level renaming ( suc to Suc ; zero to Zero ) hiding (lift) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality hiding ( [_] ) renaming ( sym to ≡-sym ) open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product hiding (_,_ ) open import Relation.Nullary open import Data.Unit hiding (_≤_) open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions hiding (Symmetric ) open import logic open import nat open import FLutil open import Putil import Solvable open import Symmetric -- infixr 100 _::_ open import Relation.Nary using (⌊_⌋) open import Data.List.Fresh hiding ([_]) open import Data.List.Fresh.Relation.Unary.Any open import Algebra open Group (Symmetric n) hiding (refl) open Solvable (Symmetric n) open _∧_ -- open import Relation.Nary using (⌊_⌋) open import Relation.Nullary.Decidable hiding (⌊_⌋) open import fin -- all cobmbination in P and Q (could be more general) record AnyComm {n m l : ℕ} (P : FList n) (Q : FList m) (fpq : (p : FL n) (q : FL m) → FL l) : Set where field commList : FList l commAny : (p : FL n) (q : FL m) → Any ( p ≡_ ) P → Any ( q ≡_ ) Q → Any (fpq p q ≡_) commList ------------- -- (p,q) (p,qn) .... (p,q0) -- pn,q -- : AnyComm FL0 FL0 P Q -- p0,q open AnyComm anyComm : {n m l : ℕ } → (P : FList n) (Q : FList m) → (fpq : (p : FL n) (q : FL m) → FL l) → AnyComm P Q fpq anyComm [] [] _ = record { commList = [] ; commAny = λ _ _ () } anyComm [] (cons q Q qr) _ = record { commList = [] ; commAny = λ _ _ () } anyComm (cons p P pr) [] _ = record { commList = [] ; commAny = λ _ _ _ () } anyComm {n} {m} {l} (cons p P pr) (cons q Q qr) fpq = record { commList = FLinsert (fpq p q) (commListQ Q) ; commAny = anyc0n } where commListP : (P1 : FList n) → FList l commListP [] = commList (anyComm P Q fpq) commListP (cons p₁ P1 x) = FLinsert (fpq p₁ q) (commListP P1) commListQ : (Q1 : FList m) → FList l commListQ [] = commListP P commListQ (cons q₁ Q1 qr₁) = FLinsert (fpq p q₁) (commListQ Q1) anyc0n : (p₁ : FL n) (q₁ : FL m) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → Any (_≡_ (fpq p₁ q₁)) (FLinsert (fpq p q) (commListQ Q)) anyc0n p₁ q₁ (here refl) (here refl) = x∈FLins _ (commListQ Q ) anyc0n p₁ q₁ (here refl) (there anyq) = insAny (commListQ Q) (anyc01 Q anyq) where anyc01 : (Q1 : FList m) → Any (_≡_ q₁) Q1 → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) anyc01 (cons q Q1 qr₂) (here refl) = x∈FLins _ _ anyc01 (cons q₂ Q1 qr₂) (there any) = insAny _ (anyc01 Q1 any) anyc0n p₁ q₁ (there anyp) (here refl) = insAny _ (anyc02 Q) where anyc03 : (P1 : FList n) → Any (_≡_ p₁) P1 → Any (_≡_ (fpq p₁ q₁)) (commListP P1) anyc03 (cons a P1 x) (here refl) = x∈FLins _ _ anyc03 (cons a P1 x) (there any) = insAny _ ( anyc03 P1 any) anyc02 : (Q1 : FList m) → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) anyc02 [] = anyc03 P anyp anyc02 (cons a Q1 x) = insAny _ (anyc02 Q1) anyc0n p₁ q₁ (there anyp) (there anyq) = insAny (commListQ Q) (anyc04 Q) where anyc05 : (P1 : FList n) → Any (_≡_ (fpq p₁ q₁)) (commListP P1) anyc05 [] = commAny (anyComm P Q fpq) p₁ q₁ anyp anyq anyc05 (cons a P1 x) = insAny _ (anyc05 P1) anyc04 : (Q1 : FList m) → Any (_≡_ (fpq p₁ q₁)) (commListQ Q1) anyc04 [] = anyc05 P anyc04 (cons a Q1 x) = insAny _ (anyc04 Q1) ------------- -- # 0 :: # 0 :: # 0 : # 0 :: f0 -- # 0 :: # 0 :: # 1 : # 0 :: f0 -- # 0 :: # 1 :: # 0 : # 0 :: f0 -- # 0 :: # 1 :: # 1 : # 0 :: f0 -- # 0 :: # 2 :: # 0 : # 0 :: f0 -- ... -- # 3 :: # 2 :: # 0 : # 0 :: f0 -- # 3 :: # 2 :: # 1 : # 0 :: f0 -- all FL record AnyFL (n : ℕ) : Set where field allFL : FList n anyP : (x : FL n) → Any (x ≡_ ) allFL open AnyFL -- all FL as all combination -- anyComm ( #0 :: FL0 ... # n :: FL0 ) (all n) (λ p q → FLpos p :: q ) = all (suc n) anyFL01 : (n : ℕ) → AnyFL (suc n) anyFL01 zero = record { allFL = (zero :: f0) ∷# [] ; anyP = λ x → anyFL2 x ((zero :: f0) ∷# []) refl } where anyFL2 : (x : FL 1) → (y : FList 1) → y ≡ ((zero :: f0) ∷# []) → Any (_≡_ x) y anyFL2 (zero :: f0) .(cons (zero :: f0) [] (Level.lift tt)) refl = here refl anyFL01 (suc n) = record { allFL = commList anyC ; anyP = anyFL02 } where anyFL05 : {n i : ℕ} → (i < suc n) → FList (suc n) anyFL05 {_} {0} (s≤s z≤n) = zero :: FL0 ∷# [] anyFL05 {n} {suc i} (s≤s i<n) = FLinsert (fromℕ< (s≤s i<n) :: FL0) (anyFL05 {n} {i} (<-trans i<n a<sa)) anyFL08 : {n i : ℕ} {x : Fin (suc n)} {i<n : suc i < suc n} → toℕ x ≡ suc i → x ≡ suc (fromℕ< (≤-pred i<n)) anyFL08 {n} {i} {x} {i<n} eq = toℕ-injective ( begin toℕ x ≡⟨ eq ⟩ suc i ≡⟨ cong suc (≡-sym (toℕ-fromℕ< _ )) ⟩ suc (toℕ (fromℕ< (≤-pred i<n)) ) ∎ ) where open ≡-Reasoning anyFL06 : {n i : ℕ} → (i<n : i < suc n) → (x : Fin (suc n)) → toℕ x < suc i → Any (_≡_ (x :: FL0)) (anyFL05 i<n) anyFL06 (s≤s z≤n) zero (s≤s lt) = here refl anyFL06 {n} {suc i} (s≤s (s≤s i<n)) x (s≤s lt) with <-cmp (toℕ x) (suc i) ... | tri< a ¬b ¬c = insAny _ (anyFL06 (<-trans (s≤s i<n) a<sa) x a) ... | tri≈ ¬a b ¬c = subst (λ k → Any (_≡_ (x :: FL0)) (FLinsert (k :: FL0) (anyFL05 {n} {i} (<-trans (s≤s i<n) a<sa)))) (anyFL08 {n} {i} {x} {s≤s (s≤s i<n)} b) (x∈FLins (x :: FL0) (anyFL05 {n} {i} (<-trans (s≤s i<n) a<sa))) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c (s≤s lt) ) anyC = anyComm (anyFL05 a<sa) (allFL (anyFL01 n)) (λ p q → FLpos p :: q ) anyFL02 : (x : FL (suc (suc n))) → Any (_≡_ x) (commList anyC) anyFL02 (x :: y) = commAny anyC (x :: FL0) y (subst (λ k → Any (_≡_ (k :: FL0) ) _) (fromℕ<-toℕ _ _) (anyFL06 a<sa (fromℕ< x≤n) fin<n) ) (anyP (anyFL01 n) y) where x≤n : suc (toℕ x) ≤ suc (suc n) x≤n = toℕ<n x anyFL : (n : ℕ) → AnyFL n anyFL zero = record { allFL = f0 ∷# [] ; anyP = anyFL4 } where anyFL4 : (x : FL zero) → Any (_≡_ x) ( f0 ∷# [] ) anyFL4 f0 = here refl anyFL (suc n) = anyFL01 n at1 = proj₁ (toList (allFL (anyFL 1))) at2 = proj₁ (toList (allFL (anyFL 2))) at3 = proj₁ (toList (allFL (anyFL 3))) at4 = proj₁ (toList (allFL (anyFL 4))) CommFListN : ℕ → FList n CommFListN zero = allFL (anyFL n) CommFListN (suc i ) = commList (anyComm ( CommFListN i ) ( CommFListN i ) (λ p q → perm→FL [ FL→perm p , FL→perm q ] )) CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) (CommFListN i) CommStage→ zero x (Level.lift tt) = anyP (anyFL n) (perm→FL x) CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 where G = perm→FL g H = perm→FL h comm3 : perm→FL [ FL→perm G , FL→perm H ] ≡ perm→FL [ g , h ] comm3 = begin perm→FL [ FL→perm G , FL→perm H ] ≡⟨ pcong-pF (comm-resp (FL←iso _) (FL←iso _)) ⟩ perm→FL [ g , h ] ∎ where open ≡-Reasoning comm2 : Any (_≡_ (perm→FL [ g , h ])) (CommFListN (suc i)) comm2 = subst (λ k → Any (_≡_ k) (CommFListN (suc i)) ) comm3 ( commAny ( anyComm (CommFListN i) (CommFListN i) (λ p q → perm→FL [ FL→perm p , FL→perm q ] )) G H (CommStage→ i g p) (CommStage→ i h q) ) CommStage→ (suc i) x (ccong {f} {x} eq p) = subst (λ k → Any (k ≡_) (commList (anyComm ( CommFListN i ) ( CommFListN i ) (λ p q → perm→FL [ FL→perm p , FL→perm q ] )))) (comm4 eq) (CommStage→ (suc i) f p ) where comm4 : f =p= x → perm→FL f ≡ perm→FL x comm4 = pcong-pF CommSolved : (x : Permutation n n) → (y : FList n) → y ≡ FL0 ∷# [] → (FL→perm (FL0 {n}) =p= pid ) → Any (perm→FL x ≡_) y → x =p= pid CommSolved x .(cons FL0 [] (Level.lift tt)) refl eq0 (here eq) = FLpid _ eq eq0
{ "alphanum_fraction": 0.5386566804, "avg_line_length": 47.3028571429, "ext": "agda", "hexsha": "4984f676edbf0b638d5cfec0b9e07ae4b9ea4295", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/FLComm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/FLComm.agda", "max_line_length": 145, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/FLComm.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 3480, "size": 8278 }
module _ where open import Common.Prelude renaming (_∸_ to _-_) -- work-around for #1855 data Acc {a} {A : Set a} (_<_ : A → A → Set) (x : A) : Set a where acc : (∀ y → y < x → Acc _<_ y) → Acc _<_ x data _<_ : Nat → Nat → Set where zero : ∀ {n} → zero < suc n suc : ∀ {n m} → n < m → suc n < suc m _≤_ : Nat → Nat → Set n ≤ m = n < suc m data LeqView (n : Nat) : Nat → Set where less : ∀ {m} → n < m → LeqView n m equal : LeqView n n leqView : ∀ {n m} → n ≤ m → LeqView n m leqView {m = zero} zero = equal leqView {m = suc m} zero = less zero leqView {m = zero} (suc ()) leqView {m = suc m} (suc leq) with leqView leq leqView {._} {suc m} (suc leq) | less lt = less (suc lt) leqView {.(suc m)} {suc m} (suc lt) | equal = equal case_of_ : ∀ {A B : Set} → A → (A → B) → B case x of f = f x wfAux : ∀ {n y} → (∀ z → z < n → Acc _<_ z) → y ≤ n → Acc _<_ y wfAux f leq with leqView leq wfAux f leq | less lt = f _ lt wfAux f leq | equal = acc f wfNat : ∀ n → Acc _<_ n wfNat zero = acc λ _ () wfNat (suc n) with wfNat n ... | acc f = acc (λ y lt → wfAux f lt) ≤-refl : ∀ n → n ≤ n ≤-refl zero = zero ≤-refl (suc n) = suc (≤-refl n) wk< : ∀ {n m} → n < m → n < suc m wk< zero = zero wk< (suc lt) = suc (wk< lt) less-minus : ∀ n m → (suc n - suc m) ≤ n less-minus n zero = ≤-refl n less-minus zero (suc m) = zero less-minus (suc n) (suc m) = wk< (less-minus n m) NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc _) = ⊤ divsuc : ∀ n → Nat → Acc _<_ n → Nat divsuc 0 _ _ = 0 divsuc (suc n) m (acc f) = suc (divsuc (n - m) m (f _ (less-minus n m))) div : Nat → (m : Nat) → {_ : NonZero m} → Nat div n zero {} div n (suc m) = divsuc n m (wfNat n) main : IO Unit main = printNat (div 1000000 1000)
{ "alphanum_fraction": 0.5456130157, "avg_line_length": 24.9420289855, "ext": "agda", "hexsha": "236953fc00934b841d3f9565f5685b76230e1ff8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/WfRec.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/WfRec.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/WfRec.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 749, "size": 1721 }
module Data.Star.Indexed where open import Relation.Binary open import Function open import Level infixr 10 _◅_ data Star {i a t}(I : Set i){A : I → Set a} (T : ∀ n m → REL (A n) (A m) t) : ∀ {n m : I} → REL (A n) (A m) (i ⊔ a ⊔ t) where ε : ∀ {i}{x : A i} → Star I T x x _◅_ : ∀ {n m k : I}{x : A n}{y : A m}{z : A k} → T n m x y → Star I T y z → Star I T x z
{ "alphanum_fraction": 0.5160427807, "avg_line_length": 31.1666666667, "ext": "agda", "hexsha": "a6348f727b7c34400c8c305739f778a228a36af9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Star/Indexed.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Star/Indexed.agda", "max_line_length": 90, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Star/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 165, "size": 374 }
open import Nat open import Prelude open import core open import lemmas-gcomplete module lemmas-complete where -- no term is both complete and indeterminate lem-ind-comp : ∀{d} → d dcomplete → d indet → ⊥ lem-ind-comp DCVar () lem-ind-comp DCConst () lem-ind-comp (DCLam comp x₁) () lem-ind-comp (DCAp comp comp₁) (IAp x ind x₁) = lem-ind-comp comp ind lem-ind-comp (DCCast comp x x₁) (ICastArr x₂ ind) = lem-ind-comp comp ind lem-ind-comp (DCCast comp x x₁) (ICastGroundHole x₂ ind) = lem-ind-comp comp ind lem-ind-comp (DCCast comp x x₁) (ICastHoleGround x₂ ind x₃) = lem-ind-comp comp ind -- complete types that are consistent are equal complete-consistency : ∀{τ1 τ2} → τ1 ~ τ2 → τ1 tcomplete → τ2 tcomplete → τ1 == τ2 complete-consistency TCRefl TCBase comp2 = refl complete-consistency TCRefl (TCArr comp1 comp2) comp3 = refl complete-consistency TCHole1 comp1 () complete-consistency TCHole2 () comp2 complete-consistency (TCArr consis consis₁) (TCArr comp1 comp2) (TCArr comp3 comp4) with complete-consistency consis comp1 comp3 | complete-consistency consis₁ comp2 comp4 ... | refl | refl = refl -- a well typed complete term is assigned a complete type complete-ta : ∀{Γ Δ d τ} → (Γ gcomplete) → (Δ , Γ ⊢ d :: τ) → d dcomplete → τ tcomplete complete-ta gc TAConst comp = TCBase complete-ta gc (TAVar x₁) DCVar = gc _ _ x₁ complete-ta gc (TALam a wt) (DCLam comp x₁) = TCArr x₁ (complete-ta (gcomp-extend gc x₁ a ) wt comp) complete-ta gc (TAAp wt wt₁) (DCAp comp comp₁) with complete-ta gc wt comp complete-ta gc (TAAp wt wt₁) (DCAp comp comp₁) | TCArr qq qq₁ = qq₁ complete-ta gc (TAEHole x x₁) () complete-ta gc (TANEHole x wt x₁) () complete-ta gc (TACast wt x) (DCCast comp x₁ x₂) = x₂ complete-ta gc (TAFailedCast wt x x₁ x₂) () -- a well typed term synthesizes a complete type comp-synth : ∀{Γ e τ} → Γ gcomplete → e ecomplete → Γ ⊢ e => τ → τ tcomplete comp-synth gc ec SConst = TCBase comp-synth gc (ECAsc x ec) (SAsc x₁) = x comp-synth gc ec (SVar x) = gc _ _ x comp-synth gc (ECAp ec ec₁) (SAp _ wt MAHole x₁) with comp-synth gc ec wt ... | () comp-synth gc (ECAp ec ec₁) (SAp _ wt MAArr x₁) with comp-synth gc ec wt comp-synth gc (ECAp ec ec₁) (SAp _ wt MAArr x₁) | TCArr qq qq₁ = qq₁ comp-synth gc () SEHole comp-synth gc () (SNEHole _ wt) comp-synth gc (ECLam2 ec x₁) (SLam x₂ wt) = TCArr x₁ (comp-synth (gcomp-extend gc x₁ x₂) ec wt)
{ "alphanum_fraction": 0.6446914527, "avg_line_length": 44.2203389831, "ext": "agda", "hexsha": "a655a13d177ec7c4d1fbae0b8b8e3873152ef501", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "lemmas-complete.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "lemmas-complete.agda", "max_line_length": 102, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "lemmas-complete.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 913, "size": 2609 }
-- Andreas, 2020-03-27, issue #4534 -- Better error message for quote. open import Agda.Builtin.Reflection quote₀ : Set → Name quote₀ X = quote X -- Cannot quote a variable X -- when checking that the expression quote X has type Name
{ "alphanum_fraction": 0.7341772152, "avg_line_length": 21.5454545455, "ext": "agda", "hexsha": "82b48dafe45f92dd433981916dd83a6b8b2b0d16", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4534.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4534.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4534.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 237 }
{-# OPTIONS --without-K #-} module well-typed-syntax-context-helpers where open import common open import well-typed-syntax open import well-typed-syntax-helpers □_ : Typ ε → Set □_ T = Term {Γ = ε} T
{ "alphanum_fraction": 0.7178217822, "avg_line_length": 22.4444444444, "ext": "agda", "hexsha": "3a7a99671944928f6ff46e7fe85f7768b56a2c3a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/well-typed-syntax-context-helpers.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/well-typed-syntax-context-helpers.agda", "max_line_length": 46, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/well-typed-syntax-context-helpers.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 59, "size": 202 }
open import Everything module Test.Surjidentity where module _ {𝔬₁ 𝔯₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔒₂ : Ø 𝔬₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼₂'_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_∼̇₂'_ : ∀ {x y} → x ∼₂' y → x ∼₂' y → Ø ℓ₂) (ε₁ : Reflexivity.type _∼₁_) (ε₂ : Reflexivity.type _∼₂_) (_↦₁_ : Transitivity.type _∼₁_) (_↦₂_ : Transitivity.type _∼₂_) {ℓ₁} (_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁) {ℓ₁'} (_∼̇₁'_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁') (μ₁₂ : Surjection.type _ _) (μ₂₂ : Surjection.type _ _) {smap₁₂ : Smap.type _∼₁_ _∼₂_ μ₁₂ μ₁₂} {smap₂₂ : Smap.type _∼₂_ _∼₂_ μ₂₂ μ₂₂} ⦃ I1 : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ smap₁₂ ⦄ -- FIXME using top-level instances does not work b/c then there is not instance found for reflexivity. ⦃ I2 : IsFunctor _∼₂_ _∼̇₂_ ε₂ _↦₂_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ smap₂₂ ⦄ ⦃ I3 : IsFunctor _∼₁_ _∼̇₁'_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ smap₁₂ ⦄ where {- FIXME would like to try this instead of instance arguments postulate instance I1 : IsFunctor _∼₁_ _∼̇₁_ _↦₁_ _∼₂_ _∼̇₂_ _↦₂_ smap₁₂ I2 : IsFunctor _∼₂_ _∼̇₂_ _↦₂_ _∼₂_ _∼̇₂_ _↦₂_ smap₂₂ I3 : IsFunctor _∼₁_ _∼̇₁'_ _↦₁_ _∼₂_ _∼̇₂_ _↦₂_ smap₁₂ -} test-surjidentity-from-IsFunctor : Surjidentity.type _∼₁_ _∼₂_ _∼̇₂_ smap₁₂ ε₁ ε₂ test-surjidentity-from-IsFunctor = surjidentity -- FIXME this works only b/c of overlap (the Surjidentity instance found is I1, not I3) module _ {𝔬₁ 𝔯₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔒₂ : Ø 𝔬₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼₂'_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_∼̇₂'_ : ∀ {x y} → x ∼₂' y → x ∼₂' y → Ø ℓ₂) ⦃ `𝓢urjection : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ `𝓢urjectivity : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ `𝓢urjectextensivity : Smap!.class _∼₁_ _∼₂'_ ⦄ ⦃ `𝓡eflexivity₁ : Reflexivity.class _∼₁_ ⦄ ⦃ `𝓡eflexivity₂ : Reflexivity.class _∼₂_ ⦄ ⦃ `𝓡eflexivity₂' : Reflexivity.class _∼₂'_ ⦄ where instance `𝒮urjidentity : Surjidentity!.class _∼₁_ _∼₂_ _∼̇₂_ `𝒮urjidentity .⋆ = magic test-surjidentity : Surjidentity!.type _∼₁_ _∼₂_ _∼̇₂_ test-surjidentity = surjidentity
{ "alphanum_fraction": 0.5928143713, "avg_line_length": 33.921875, "ext": "agda", "hexsha": "a2a0ef004386e1bd9b62a508405e06f5601d56e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Surjidentity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Surjidentity.agda", "max_line_length": 168, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Surjidentity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1275, "size": 2171 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for reasoning with a partial setoid ------------------------------------------------------------------------ {-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Reasoning.PartialEquivalence {c ℓ} {A : Type c} (E : PartialEquivalence A ℓ) where open PartialEquivalence E import Cubical.Relation.Binary.Reasoning.Base.Partial _≈_ transitive as Base ------------------------------------------------------------------------ -- Re-export the contents of the base module open Base public renaming (_∼⟨_⟩_ to _≈⟨_⟩_) ------------------------------------------------------------------------ -- Additional reasoning combinators infixr 1 _≈˘⟨_⟩_ _≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z x ≈˘⟨ y≈x ⟩ y∼z = x ≈⟨ symmetric y≈x ⟩ y∼z
{ "alphanum_fraction": 0.5030364372, "avg_line_length": 31.8709677419, "ext": "agda", "hexsha": "c4243b62356c7c093d29cc891535ac8c640fc15b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/PartialEquivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/PartialEquivalence.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/PartialEquivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 249, "size": 988 }
open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Float NaN : Float NaN = primFloatDiv 0.0 0.0 defNaN : NaN ≡ NaN defNaN = refl primEqNaN : primFloatEquality NaN NaN ≡ true primEqNaN = refl
{ "alphanum_fraction": 0.7639484979, "avg_line_length": 16.6428571429, "ext": "agda", "hexsha": "cb0d762e677bfa0cfe498ef56662e6731ed1a133", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2155.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue2155.agda", "max_line_length": 44, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue2155.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 76, "size": 233 }
module Lemmachine where open import Lemmachine.Request public open import Lemmachine.Response public open import Lemmachine.Resource public open import Lemmachine.Resource.Configure public open import Lemmachine.Resolve open import Lemmachine.Utils public open import Lemmachine.Runner public open import Data.Bool public hiding (_≟_) open import Data.List public toApp : Hooks → Application toApp hs = resolve (toResource hs)
{ "alphanum_fraction": 0.8344988345, "avg_line_length": 28.6, "ext": "agda", "hexsha": "a6144c0538f7051262eeeca5959c8e8aa599a8d7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine.agda", "max_line_length": 48, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 88, "size": 429 }
open import Prelude module Implicits.Semantics.Preservation where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Semantics.Type open import Implicits.Semantics.Context open import Implicits.Semantics.Lemmas open import Implicits.Semantics.RewriteContext open import Implicits.Semantics.Term open import SystemF.Everything as F using () module Preservation (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) (⟦_,_⟧r : ∀ {ν n} {K : Ktx ν n} {a} → (proj₂ K) ⊢ᵣ a → K# K → ∃ λ t → ⟦ proj₁ K ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→) where open TypingRules _⊢ᵣ_ open TermSemantics _⊢ᵣ_ ⟦_,_⟧r -- interpretation of well-typed terms in System F preserves type ⟦⟧-preserves-tp : ∀ {ν n} {K : Ktx ν n} {t a} → (wt-t : K ⊢ t ∈ a) → (m : K# K) → ⟦ proj₁ K ⟧ctx→ F.⊢ ⟦ wt-t , m ⟧ ∈ ⟦ a ⟧tp→ ⟦⟧-preserves-tp {K = K} (var x) m = subst-wt-var (sym $ lookup-⟦⟧ctx→ (proj₁ K) x) (F.var x) where subst-wt-var = subst (λ a → ⟦ proj₁ K ⟧ctx→ F.⊢ (F.var x) ∈ a) ⟦⟧-preserves-tp {K = K} {a = ∀' a} (Λ wt-e) m with ⟦⟧-preserves-tp wt-e (#tvar m) ... | ih = F.Λ (subst-wt-ctx (⟦weaken⟧ctx→ (proj₁ K)) ih) where subst-wt-ctx = subst (λ c → c F.⊢ ⟦ wt-e , #tvar m ⟧ ∈ ⟦ a ⟧tp→) ⟦⟧-preserves-tp (λ' a wt-e) m with ⟦⟧-preserves-tp wt-e (#var a m) ⟦⟧-preserves-tp (λ' a wt-e) m | ih = F.λ' ⟦ a ⟧tp→ ih ⟦⟧-preserves-tp {K = K} (_[_] {a = a} wt-tc b) m with ⟦⟧-preserves-tp wt-tc m ... | ih = subst-tp (sym $ ⟦a/sub⟧tp→ a b) (ih F.[ ⟦ b ⟧tp→ ]) where subst-tp = subst (λ c → ⟦ proj₁ K ⟧ctx→ F.⊢ ⟦ wt-tc [ b ] , m ⟧ ∈ c) ⟦⟧-preserves-tp (wt-f · wt-e) m with ⟦⟧-preserves-tp wt-f m | ⟦⟧-preserves-tp wt-e m ⟦⟧-preserves-tp (wt-f · wt-e) m | ih | y = ih F.· y ⟦⟧-preserves-tp (ρ {a = a} unamb-a wt-e) m with ⟦⟧-preserves-tp wt-e (#ivar a m) ⟦⟧-preserves-tp (ρ {a = a} unamb-a wt-e) m | ih = F.λ' ⟦ a ⟧tp→ ih ⟦⟧-preserves-tp (wt-r ⟨ e ⟩) m with ⟦⟧-preserves-tp wt-r m ⟦⟧-preserves-tp (wt-r ⟨ e ⟩) m | f-wt-r = f-wt-r F.· (proj₂ ⟦ e , m ⟧r) ⟦⟧-preserves-tp (wt-r with' wt-e ) m with ⟦⟧-preserves-tp wt-r m | ⟦⟧-preserves-tp wt-e m ⟦⟧-preserves-tp (wt-r with' wt-e ) m | f-wt-r | f-wt-e = f-wt-r F.· f-wt-e
{ "alphanum_fraction": 0.5619004111, "avg_line_length": 46.5744680851, "ext": "agda", "hexsha": "1b70a3a797e8affb007b27e2e3c37106740ed8f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Semantics/Preservation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Semantics/Preservation.agda", "max_line_length": 94, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Semantics/Preservation.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1042, "size": 2189 }
-- Andreas, 2012-03-09, example by Ulf {-# OPTIONS -v tc.conv.irr:50 -v tc.decl.ax:10 -v tc.decl.mutual:20 #-} module Issue351-5 where open import Common.Prelude open import Common.Equality open import Common.Irrelevance postulate foo : (x : Squash Nat) → ((r : Squash Nat) → r ≡ squash (suc (unsquash x))) → Set bar : foo (squash _) (λ r → refl)
{ "alphanum_fraction": 0.6770538244, "avg_line_length": 29.4166666667, "ext": "agda", "hexsha": "0f51630a8cbaa933a46477b392c6d73c06e87d2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/Issue351-5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/Issue351-5.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue351-5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 124, "size": 353 }
module Path where open import Basics hiding (_==_) open import Proc import Graph private open module G = Graph Nat data Node : Set where node : Nat -> Node stop : Node _==_ : Node -> Node -> Bool stop == stop = true node zero == node zero = true node (suc n) == node (suc m) = node n == node m _ == _ = false data U : Set where int : U ext : U data Name : Set where fwd-edge : Nat -> Nat -> Name bwd-edge : Nat -> Node -> Name start : Nat -> Name finish : Nat -> Name N : U -> Set N int = Name N ext = False data Msg : Set where forward : Node -> Node -> Msg backward : Node -> Msg T : U -> Set T int = Msg T ext = Node private module Impl where private module P = ProcDef U T N open P hiding (_!_) P = Proc int infixr 40 _!_ _!_ : Msg -> P -> P m ! p = P._!_ (lift m) p fwd : Nat -> Nat -> Msg fwd from to = forward (node from) (node to) fwd-runner : Nat -> Nat -> P fwd-runner from to = > react where react : Msg -> P react (forward from' to') = if to' == node from then fwd from to ! def (bwd-edge from from') else def (fwd-edge from to) react (backward _) = o bwd-runner : Nat -> Node -> P bwd-runner from w = > react where react : Msg -> P react (backward n) = if n == w then o else if n == node from then backward w ! o else def (bwd-edge from w) react (forward _ _) = def (bwd-edge from w) pitcher : Nat -> P pitcher n = forward stop (node n) ! o batter : Nat -> P batter n = > react where react : Msg -> P react (forward from to) = if to == node n then backward from ! o else def (start n) react _ = def (start n) env : Env env int (fwd-edge from to) = fwd-runner from to env int (bwd-edge from w) = bwd-runner from w env int (start n) = batter n env int (finish n) = pitcher n env ext () edges : Graph -> P edges [] = o edges (edge x y :: G) = def (fwd-edge x y) || edges G φ : Tran ext int φ = record { upV = up; downV = down } where down : Node -> Lift Msg down x = lift (backward x) up : Msg -> Lift Node up (forward _ _) = bot up (backward x) = lift x main : Graph -> Nat -> Nat -> Proc ext main G x y = φ /| def (finish y) || def (start x) || edges G open Impl public param : Param param = record { U = U ; T = T ; Name = N ; env = env }
{ "alphanum_fraction": 0.527734375, "avg_line_length": 20.8130081301, "ext": "agda", "hexsha": "b918435fcd9cb16659867dd96bca5599be9ed79e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Path.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Path.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 802, "size": 2560 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Groups.Definition open import Sets.EquivalenceRelations module Groups.Lemmas {a b : _} {A : Set a} {_·_ : A → A → A} {S : Setoid {a} {b} A} (G : Group S _·_) where open Setoid S open Group G open Equivalence eq groupsHaveLeftCancellation : (x y z : A) → (x · y) ∼ (x · z) → y ∼ z groupsHaveLeftCancellation x y z pr = o where _^-1 = inverse j : ((x ^-1) · x) · y ∼ (x ^-1) · (x · z) j = transitive (symmetric (+Associative {x ^-1} {x} {y})) (+WellDefined ~refl pr) k : ((x ^-1) · x) · y ∼ ((x ^-1) · x) · z k = transitive j +Associative l : 0G · y ∼ ((x ^-1) · x) · z l = transitive (+WellDefined (symmetric invLeft) ~refl) k m : 0G · y ∼ 0G · z m = transitive l (+WellDefined invLeft ~refl) n : y ∼ 0G · z n = transitive (symmetric identLeft) m o : y ∼ z o = transitive n identLeft groupsHaveRightCancellation : (x y z : A) → (y · x) ∼ (z · x) → y ∼ z groupsHaveRightCancellation x y z pr = transitive m identRight where _^-1 = inverse i : (y · x) · (x ^-1) ∼ (z · x) · (x ^-1) i = +WellDefined pr ~refl j : y · (x · (x ^-1)) ∼ (z · x) · (x ^-1) j = transitive +Associative i j' : y · 0G ∼ (z · x) · (x ^-1) j' = transitive (+WellDefined ~refl (symmetric invRight)) j k : y ∼ (z · x) · (x ^-1) k = transitive (symmetric identRight) j' l : y ∼ z · (x · (x ^-1)) l = transitive k (symmetric +Associative) m : y ∼ z · 0G m = transitive l (+WellDefined ~refl invRight) rightInversesAreUnique : {x : A} → {y : A} → (y · x) ∼ 0G → y ∼ (inverse x) rightInversesAreUnique {x} {y} f = transitive i (transitive j (transitive k (transitive l m))) where _^-1 = inverse i : y ∼ y · 0G j : y · 0G ∼ y · (x · (x ^-1)) k : y · (x · (x ^-1)) ∼ (y · x) · (x ^-1) l : (y · x) · (x ^-1) ∼ 0G · (x ^-1) m : 0G · (x ^-1) ∼ x ^-1 i = symmetric identRight j = +WellDefined ~refl (symmetric invRight) k = +Associative l = +WellDefined f ~refl m = identLeft leftInversesAreUnique : {x : A} → {y : A} → (x · y) ∼ 0G → y ∼ (inverse x) leftInversesAreUnique {x} {y} f = rightInversesAreUnique {x} {y} l where _^-1 = inverse i : y · (x · y) ∼ y · 0G i' : y · (x · y) ∼ y j : (y · x) · y ∼ y k : (y · x) · y ∼ 0G · y l : y · x ∼ 0G i = +WellDefined ~refl f i' = transitive i identRight j = transitive (symmetric +Associative) i' k = transitive j (symmetric identLeft) l = groupsHaveRightCancellation y (y · x) 0G k invTwice : (x : A) → (inverse (inverse x)) ∼ x invTwice x = symmetric (rightInversesAreUnique {x ^-1} {x} invRight) where _^-1 = inverse replaceGroupOp : {a b c d w x y z : A} → (Setoid._∼_ S a c) → (Setoid._∼_ S b d) → (Setoid._∼_ S w y) → (Setoid._∼_ S x z) → Setoid._∼_ S (a · b) (w · x) → Setoid._∼_ S (c · d) (y · z) replaceGroupOp a~c b~d w~y x~z pr = transitive (symmetric (+WellDefined a~c b~d)) (transitive pr (+WellDefined w~y x~z)) replaceGroupOpRight : {a b c x : A} → (Setoid._∼_ S a (b · c)) → (Setoid._∼_ S c x) → (Setoid._∼_ S a (b · x)) replaceGroupOpRight a~bc c~x = transitive a~bc (+WellDefined reflexive c~x) inverseWellDefined : {x y : A} → (x ∼ y) → (inverse x) ∼ (inverse y) inverseWellDefined {x} {y} x~y = groupsHaveRightCancellation x (inverse x) (inverse y) q where p : inverse x · x ∼ inverse y · y p = transitive invLeft (symmetric invLeft) q : inverse x · x ∼ inverse y · x q = replaceGroupOpRight {_·_ (inverse x) x} {inverse y} {y} {x} p (symmetric x~y) transferToRight : {a b : A} → (a · (inverse b)) ∼ 0G → a ∼ b transferToRight {a} {b} ab-1 = transitive (symmetric (invTwice a)) (transitive u (invTwice b)) where t : inverse a ∼ inverse b t = symmetric (leftInversesAreUnique ab-1) u : inverse (inverse a) ∼ inverse (inverse b) u = inverseWellDefined t transferToRight' : {a b : A} → (a · b) ∼ 0G → a ∼ (inverse b) transferToRight' {a} {b} ab-1 = transferToRight lemma where lemma : a · (inverse (inverse b)) ∼ 0G lemma = transitive (+WellDefined reflexive (invTwice b)) ab-1 transferToRight'' : {a b : A} → Setoid._∼_ S a b → (a · (inverse b)) ∼ 0G transferToRight'' {a} {b} a~b = transitive (+WellDefined a~b reflexive) invRight invInv : {x : A} → (inverse (inverse x)) ∼ x invInv {x} = symmetric (transferToRight' invRight) invIdent : (inverse 0G) ∼ 0G invIdent = symmetric (transferToRight' identLeft) swapInv : {x y : A} → (inverse x) ∼ y → x ∼ (inverse y) swapInv {x} {y} -x=y = transitive (symmetric invInv) (inverseWellDefined -x=y) identityIsUnique : (e : A) → ((b : A) → ((b · e) ∼ b)) → (e ∼ 0G) identityIsUnique thing fb = transitive (symmetric identLeft) (fb 0G) invContravariant : {x y : A} → (Setoid._∼_ S (Group.inverse G (x · y)) ((Group.inverse G y) · (Group.inverse G x))) invContravariant {x} {y} = ans where _^-1 = inverse otherInv = (y ^-1) · (x ^-1) many+Associatives : x · ((y · (y ^-1)) · (x ^-1)) ∼ (x · y) · ((y ^-1) · (x ^-1)) oneMult : (x · y) · otherInv ∼ x · (x ^-1) many+Associatives = transitive +Associative (transitive (+WellDefined +Associative reflexive) (symmetric +Associative)) oneMult = symmetric (transitive (+WellDefined reflexive (transitive (symmetric identLeft) (+WellDefined (symmetric invRight) reflexive))) many+Associatives) otherInvIsInverse : (x · y) · otherInv ∼ 0G otherInvIsInverse = transitive oneMult invRight ans : (x · y) ^-1 ∼ (y ^-1) · (x ^-1) ans = symmetric (leftInversesAreUnique otherInvIsInverse) equalsDoubleImpliesZero : {x : A} → (x · x) ∼ x → x ∼ 0G equalsDoubleImpliesZero 2x=x = transitive (symmetric identLeft) (transitive (+WellDefined (symmetric invLeft) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive 2x=x) invLeft))) invZeroImpliesZero : {x : A} → (inverse x) ∼ 0G → x ∼ 0G invZeroImpliesZero {x} pr = transitive (symmetric (invTwice x)) (transitive (inverseWellDefined pr) invIdent)
{ "alphanum_fraction": 0.6028571429, "avg_line_length": 41.0344827586, "ext": "agda", "hexsha": "da792fc342ba48adf12dfd3142b619dc0abaf9b8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Lemmas.agda", "max_line_length": 210, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2366, "size": 5950 }
open import MLib.Algebra.PropertyCode module MLib.Algebra.PropertyCode.Dependent {k c ℓ} {code : Code k} (struct : Struct code c ℓ) where open import MLib.Prelude open import MLib.Algebra.PropertyCode.Core open import Function.Equivalence using (Equivalence) open Struct struct private module FuncBased {c′ ℓ′} (depRawStruct : RawStruct K c′ ℓ′) (props : ∀ π → Maybe (∃ λ deps → ⦃ _ : Hasₚ deps ⦄ → ⟦ π ⟧P depRawStruct)) where Π′ : Properties code Π′ = properties λ π → case props π of λ { (just (deps , _)) → implies deps Π ; nothing → false } Π′-prop : ∀ {π} → π ∈ₚ Π′ → ∃ λ x → props π ≡ just x Π′-prop {π} π∈Π′ with props π | ≡.inspect props π Π′-prop {π} π∈Π′ | just x | _ = x , ≡.refl Π′-prop {π} (fromTruth truth) | nothing | ≡.[ eq ] rewrite eq = ⊥-elim truth reify′ : ∀ {π} → π ∈ₚ Π′ → ⟦ π ⟧P depRawStruct reify′ {π} π∈Π′ with Π′-prop π∈Π′ | hasProperty Π′ π | ≡.inspect (hasProperty Π′) π reify′ {_} (fromTruth truth) | (deps , f) , eq | false | ≡.[ eq₁ ] rewrite eq | eq₁ = ⊥-elim truth reify′ {_} (fromTruth truth) | (deps , f) , eq | true | ≡.[ eq₁ ] rewrite eq = f ⦃ fromTruth truth ⦄ dependentStruct : Struct code c′ ℓ′ dependentStruct = record { rawStruct = depRawStruct ; Π = Π′ ; reify = reify′ } module ListBased {c′ ℓ′} (depRawStruct : RawStruct K c′ ℓ′) (props : List (∃₂ λ π deps → ⦃ _ : Hasₚ deps ⦄ → ⟦ π ⟧P depRawStruct)) where Func = ∀ π → Maybe (∃ (λ deps → ⦃ _ : Hasₚ deps ⦄ → ⟦ π ⟧P depRawStruct)) singleFunc : (∃₂ λ π deps → ⦃ _ : Hasₚ deps ⦄ → ⟦ π ⟧P depRawStruct) → Func singleFunc (π , deps , f) π′ with π Property.≟ π′ singleFunc (π , deps , f) π′ | yes p rewrite Property.≈⇒≡ p = just (deps , f) singleFunc (π , deps , f) π′ | no _ = nothing combineFuncs : Func → Func → Func combineFuncs f g π = case f π of λ { (just r) → just r ; nothing → case g π of λ { (just r) → just r ; nothing → nothing } } propsF : ∀ π → Maybe (∃ (λ deps → ⦃ _ : Hasₚ deps ⦄ → ⟦ π ⟧P depRawStruct)) propsF = List.foldr combineFuncs (λ _ → nothing) (List.map singleFunc props) dependentStruct : Struct code c′ ℓ′ dependentStruct = FuncBased.dependentStruct depRawStruct propsF open ListBased using (dependentStruct) public
{ "alphanum_fraction": 0.5837239029, "avg_line_length": 36.671875, "ext": "agda", "hexsha": "2e125944cff3420ece1e06f8986063b563e03e83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Algebra/PropertyCode/Dependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Algebra/PropertyCode/Dependent.agda", "max_line_length": 142, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Algebra/PropertyCode/Dependent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 878, "size": 2347 }
module Nat where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + b = b succ a + b = succ (a + b) _×_ : ℕ → ℕ → ℕ zero × b = zero succ a × b = (a × b) + b open import Relation.Binary.PropositionalEquality 0-is-right-identity-of-+ : ∀ (n : ℕ) → n + zero ≡ n 0-is-right-identity-of-+ zero = refl 0-is-right-identity-of-+ (succ n) = cong succ (0-is-right-identity-of-+ n) +-is-associative : ∀ (a b c : ℕ) → a + (b + c) ≡ (a + b) + c +-is-associative zero b c = refl +-is-associative (succ a) b c = cong succ (+-is-associative a b c) lemma : ∀ (a b : ℕ) → a + succ b ≡ succ (a + b) lemma zero b = refl lemma (succ a) b = cong succ (lemma a b) import Relation.Binary.EqReasoning as EqR open module EqNat = EqR (setoid ℕ) +-is-commutative : ∀ (a b : ℕ) → a + b ≡ b + a +-is-commutative a zero = 0-is-right-identity-of-+ a +-is-commutative a (succ b) = begin a + succ b ≈⟨ lemma a b ⟩ succ (a + b) ≈⟨ cong succ (+-is-commutative a b) ⟩ succ (b + a) ≈⟨ refl ⟩ succ b + a ∎
{ "alphanum_fraction": 0.5513413506, "avg_line_length": 22.0612244898, "ext": "agda", "hexsha": "ab6f04098af1d31543d938d560e00e478f519fe8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "piyush-kurur/sample-code", "max_forks_repo_path": "agda/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "piyush-kurur/sample-code", "max_issues_repo_path": "agda/Nat.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "piyush-kurur/sample-code", "max_stars_repo_path": "agda/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z", "num_tokens": 417, "size": 1081 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) -- category of cones "over a Functor F" module Categories.Category.Construction.Cones {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where open import Data.Product import Categories.Diagram.Cone as Co import Categories.Morphism as Mor import Categories.Morphism.IsoEquiv as IsoEquiv import Categories.Morphism.Reasoning as Reas open Category C open HomReasoning open Mor C using (_≅_) open IsoEquiv C using (_≃_; ⌞_⌟) open Reas C open Co F public open Apex open Cone open Cone⇒ Cones : Category _ _ _ Cones = record { Obj = Cone ; _⇒_ = Cone⇒ ; _≈_ = λ f g → arr f ≈ arr g ; id = record { arr = id ; commute = identityʳ } ; _∘_ = λ {A B C} f g → record { arr = arr f ∘ arr g ; commute = λ {X} → begin ψ C X ∘ arr f ∘ arr g ≈⟨ pullˡ (commute f) ⟩ ψ B X ∘ arr g ≈⟨ commute g ⟩ ψ A X ∎ } ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } module Cones = Category Cones private variable K K′ : Cone X : Obj module CM = Mor Cones module CI = IsoEquiv Cones open CM using () renaming (_≅_ to _⇔_) open CI using () renaming (_≃_ to _↮_) cone-resp-iso : ∀ (κ : Cone) → Cone.N κ ≅ X → Σ[ κ′ ∈ Cone ] κ ⇔ κ′ cone-resp-iso {X = X} κ κ≅X = record { apex = record { ψ = λ Y → Cone.ψ κ Y ∘ to ; commute = λ f → pullˡ (Cone.commute κ f) } } , record { from = record { arr = from ; commute = cancelʳ isoˡ } ; to = record { arr = to ; commute = refl } ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open _≅_ κ≅X open Cone open Apex iso-cone⇒iso-apex : K ⇔ K′ → N K ≅ N K′ iso-cone⇒iso-apex K⇔K′ = record { from = arr from ; to = arr to ; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ } } where open _⇔_ K⇔K′ ↮⇒-≃ : ∀ {i₁ i₂ : K ⇔ K′} → i₁ ↮ i₂ → iso-cone⇒iso-apex i₁ ≃ iso-cone⇒iso-apex i₂ ↮⇒-≃ i₁↮i₂ = ⌞ from-≈ ⌟ where open _↮_ i₁↮i₂ -- -- .up-to-iso-cone-unique : ∀ L L′ → (i : proj-cone L ⇿ proj-cone L′) → up-to-iso-cone L L′ ≜ⁱ i -- -- up-to-iso-cone-unique L L′ i = T.up-to-iso-unique (Cones F) (terminal L) (terminal L′) i -- -- -- XXX probably not true -- what is? only the above? -- -- -- .up-to-iso-unique : ∀ L L′ → (i : vertex L ≅ vertex L′) → up-to-iso L L′ ≡ⁱ i -- -- -- up-to-iso-unique L L′ i = ≜ⁱ⇒≡ⁱ {!up-to-iso-unique-cone L L′ !} -- -- .up-to-iso-cone-invˡ : ∀ {L κ} {i : proj-cone L ⇿ κ} → up-to-iso-cone L (transport-by-iso-cone L i) ≜ⁱ i -- -- up-to-iso-cone-invˡ {L} {i = i} = up-to-iso-cone-unique L (transport-by-iso-cone L i) i -- -- .up-to-iso-invˡ : ∀ {L X} {i : vertex L ≅ X} → up-to-iso L (transport-by-iso L i) ≡ⁱ i -- -- up-to-iso-invˡ {L₁} {i = i} = ≜ⁱ⇒≡ⁱ (up-to-iso-cone-invˡ {L₁} {i = proj₂ (cone-resp-iso (proj-cone L₁) i)}) -- -- up-to-iso-cone-invʳ : ∀ {L L′} → proj-cone (transport-by-iso-cone L (up-to-iso-cone L L′)) ≜ proj-cone L′ -- -- up-to-iso-cone-invʳ {L} {L′} = ≜-refl -- -- up-to-iso-invʳ : ∀ {L L′} → vertex (transport-by-iso L (up-to-iso L L′)) ≣ vertex L′ -- -- up-to-iso-invʳ {t} {t′} = ≣-refl
{ "alphanum_fraction": 0.5468795356, "avg_line_length": 27.3412698413, "ext": "agda", "hexsha": "1610b81697c951bee055dc1d83de3be548d10583", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Cones.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Cones.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Cones.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1456, "size": 3445 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pointed module lib.types.Lift where ⊙Lift : ∀ {i j} → Ptd i → Ptd (lmax i j) ⊙Lift {j = j} (A , a) = ⊙[ Lift {j = j} A , lift a ] ⊙lift : ∀ {i j} {X : Ptd i} → fst (X ⊙→ ⊙Lift {j = j} X) ⊙lift = (lift , idp) ⊙lower : ∀ {i j} {X : Ptd i} → fst (⊙Lift {j = j} X ⊙→ X) ⊙lower = (lower , idp) lift-equiv : ∀ {i j} {A : Type i} → A ≃ Lift {j = j} A lift-equiv = equiv lift lower (λ _ → idp) (λ _ → idp) -- [lower-equiv] is in Equivalences.agda Lift-level : ∀ {i j} {A : Type i} {n : ℕ₋₂} → has-level n A → has-level n (Lift {j = j} A) Lift-level = equiv-preserves-level lift-equiv ⊙lift-equiv : ∀ {i j} {X : Ptd i} → X ⊙≃ ⊙Lift {j = j} X ⊙lift-equiv = (⊙lift , snd lift-equiv) ⊙lower-equiv : ∀ {i j} {X : Ptd i} → ⊙Lift {j = j} X ⊙≃ X ⊙lower-equiv = (⊙lower , snd lower-equiv)
{ "alphanum_fraction": 0.5396270396, "avg_line_length": 27.6774193548, "ext": "agda", "hexsha": "c7ef9b17e3ca0473017a0052aa5a61edf415c1ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Lift.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Lift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 390, "size": 858 }
module Data.Num.Binary where -- open import Data.Product using (_×_; Σ; _,_) open import Data.List open import Data.Unit open import Data.Empty -- open import Data.Nat renaming (_+_ to _⊹_) -- -- data Bin : Set where -- [] : Bin -- 0- : Bin → Bin -- 1- : Bin → Bin -- -- carry : Bin → Bin -- carry [] = 1- [] -- carry (0- xs) = 1- xs -- carry (1- xs) = 0- (carry xs) -- -- _+_ : Bin → Bin → Bin -- [] + ys = ys -- xs + [] = xs -- 0- xs + 0- ys = 0- (xs + ys) -- 0- xs + 1- ys = 1- (xs + ys) -- 1- xs + 0- ys = 1- (xs + ys) -- 1- xs + 1- ys = 0- (carry (xs + ys)) -- -- data Desc : Set₁ where -- arg : (A : Set) -- a bag of tags to choose constructors with -- → (A → Desc) -- given a tag, return the description of the constructor it corresponds to -- → Desc -- rec : Desc → Desc -- recursive subnode -- ret : Desc -- stop -- -- -- the "decoder", "interpreter" -- -- ⟦_⟧ : Desc → Set → Set -- -- ⟦ arg A D ⟧ R = Σ A (λ a → ⟦ D a ⟧ R) -- -- ⟦ rec D ⟧ R = R × ⟦ D ⟧ R -- -- ⟦ ret ⟧ R = ⊤ -- data BinF : Set where -- arg : (ℕ → BinF) → BinF -- rec : BinF → BinF -- ret : BinF -- -- ⟦_⟧ : BinF → Set → Set -- ⟦_⟧ (arg F) X = Σ ℕ (λ n → ⟦ F n ⟧ X) -- ⟦_⟧ (rec F) X = X × ⟦ F ⟧ X -- ⟦_⟧ ret X = ⊤ -- -- data μ (F : BinF) : Set where -- ⟨_⟩ : ⟦ F ⟧ (μ F) → μ F -- -- Bin : Set -- Bin = μ (arg {! λ !}) -- -- data Digit : Set where -- [0] : Digit -- [1] : Digit -- -- Binary : Set -- Binary = List Digit -- -- _⊕_ : Digit → Digit → Digit -- [0] ⊕ [0] = [0] -- [0] ⊕ [1] = [1] -- [1] ⊕ [0] = [1] -- [1] ⊕ [1] = [0] -- -- _⊚_ : Digit → Digit → Digit -- [1] ⊚ [1] = [1] -- _ ⊚ _ = [0] -- -- carry : Digit → Binary → Binary -- carry [0] ys = ys -- carry [1] [] = [1] ∷ [] -- carry [1] ([0] ∷ ys) = [1] ∷ ys -- carry [1] ([1] ∷ ys) = [0] ∷ carry [1] ys -- -- _+_ : Binary → Binary → Binary -- [] + ys = ys -- xs + [] = xs -- (x ∷ xs) + (y ∷ ys) = x ⊕ y ∷ carry (x ⊚ y) (xs + ys) -- -- _≈_ : Binary → Binary → Set -- [] ≈ [] = ⊤ -- [] ≈ (y ∷ ys) = ⊥ -- (x ∷ xs) ≈ [] = ⊥ -- ([0] ∷ xs) ≈ ([0] ∷ ys) = xs ≈ ys -- ([0] ∷ xs) ≈ ([1] ∷ ys) = ⊥ -- ([1] ∷ xs) ≈ ([0] ∷ ys) = ⊥ -- ([1] ∷ xs) ≈ ([1] ∷ ys) = xs ≈ ys data Bin : Set where ∙ : Bin [0]_ : Bin → Bin [1]_ : Bin → Bin two : Bin two = [1] [0] ∙ 1+ : Bin → Bin 1+ ∙ = [1] ∙ 1+ ([0] x) = [1] x 1+ ([1] x) = [0] 1+ x _+_ : Bin → Bin → Bin ∙ + ys = ys xs + ∙ = xs ([0] xs) + ([0] ys) = [0] (xs + ys) ([0] xs) + ([1] ys) = [1] (xs + ys) ([1] xs) + ([0] ys) = [1] (xs + ys) ([1] xs) + ([1] ys) = [0] (1+ (xs + ys))
{ "alphanum_fraction": 0.3989197531, "avg_line_length": 22.3448275862, "ext": "agda", "hexsha": "825103b23d51003f8512f47d6ee4a8faefa33221", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Sandbox/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Sandbox/Binary.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Sandbox/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 1171, "size": 2592 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.CSemigroup.Arith.Reasoning where open import Fragment.Examples.CSemigroup.Arith.Base +-direct : ∀ {m n} → (m + 2) + (3 + n) ≡ m + (n + 5) +-direct {m} {n} = begin (m + 2) + (3 + n) ≡⟨ fragment CSemigroupFrex +-csemigroup ⟩ m + (n + 5) ∎ open import Data.Nat.Properties using (*-distribˡ-+) +-inner : ∀ {m n k} → k * (m + 2) + k * (3 + n) ≡ (m + n + 5) * k +-inner {m} {n} {k} = begin k * (m + 2) + k * (3 + n) ≡⟨ sym (*-distribˡ-+ k (m + 2) (3 + n)) ⟩ k * ((m + 2) + (3 + n)) ≡⟨ cong (k *_) (fragment CSemigroupFrex +-csemigroup) ⟩ k * (m + n + 5) ≡⟨ fragment CSemigroupFrex *-csemigroup ⟩ (m + n + 5) * k ∎
{ "alphanum_fraction": 0.5049365303, "avg_line_length": 27.2692307692, "ext": "agda", "hexsha": "0fb776acdd4c099560afd695488473a167dc11a7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Reasoning.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Reasoning.agda", "max_line_length": 65, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 321, "size": 709 }
import Lvl module Structure.Semicategory {ℓₒ ℓₘ ℓₑ : Lvl.Level} where open import Functional using (swap) open import Logic import Structure.Categorical.Names as Names open import Structure.Categorical.Properties open import Structure.Operator import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Structure.Setoid open import Type -- Obj is the collection of objects. -- _⟶_ is the collection of morphisms. module _ {Obj : Type{ℓₒ}} (_⟶_ : Obj → Obj → Type{ℓₘ}) ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(x ⟶ y) ⦄ where -- A semicategory is a structure on a relation called a morphism. -- -- It is similar to a category (a generalisation of it), but without the identity morphism/reflexivity. -- See `Structure.Category`. -- -- It can also be seen as a generalized algebraic structure, or more specifically a generalization of semigroups (structure with an associative binary operator). -- The similarity between a semicategory and a category is like the similarity between a semigroup and a monoid. -- -- An alternative interpretation of the definition: -- A type (Obj) and a binary relation (Morphism) on this type is a semicategory when: -- • The relator is transitive. -- • Chains of the transitivity proofs can be applied in any order and the resulting proof will be the same. record Semicategory : Stmt{ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where field _∘_ : Names.SwappedTransitivity(_⟶_) field ⦃ binaryOperator ⦄ : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦃ associativity ⦄ : Morphism.Associativity(\{x} → _∘_ {x}) -- This can be interpreted as proof of transitivity when `Morphism` is interpreted as a binary relation. morphism-transitivity : Transitivity(_⟶_) morphism-transitivity = intro(swap(_∘_)) module ArrowNotation = Names.ArrowNotation(_⟶_) record SemicategoryObject : Stmt{Lvl.𝐒(ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ)} where constructor intro field {Object} : Type{ℓₒ} {Morphism} : Object → Object → Type{ℓₘ} ⦃ morphism-equiv ⦄ : ∀{x y} → Equiv{ℓₑ}(Morphism x y) semicategory : Semicategory(Morphism) open Semicategory(semicategory) public instance semicategory-instance = semicategory
{ "alphanum_fraction": 0.7069499779, "avg_line_length": 37.65, "ext": "agda", "hexsha": "5b5a3cd6625a801503b73b2233e8b15b7b940d53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Semicategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Semicategory.agda", "max_line_length": 163, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Semicategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 678, "size": 2259 }
module New.LangOps where open import New.Lang open import New.Changes open import New.LangChanges oplusτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ ⇒ τ) ominusτo : ∀ {Γ} τ → Term Γ (τ ⇒ τ ⇒ Δt τ) onilτo : ∀ {Γ} τ → Term Γ (τ ⇒ Δt τ) onilτo τ = abs (app₂ (ominusτo τ) (var this) (var this)) -- Do NOT try to read this, such terms are write-only. But the behavior is -- specified to be oplusτ-equiv and ominusτ-equiv. oplusτo (σ ⇒ τ) = abs (abs (abs (app₂ (oplusτo τ) (app (var (that (that this))) (var this)) (app₂ (var (that this)) (var this) (app (onilτo σ) (var this)))))) oplusτo int = const plus oplusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (oplusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (oplusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) oplusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const linj) (app₂ (oplusτo σ) (var (that (that this))) (var this)))) (abs (app (const linj) (var (that (that this))))))) (abs (var this)))) (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var this) (abs (app (const rinj) (var (that (that this))))) (abs (app (const rinj) (app₂ (oplusτo τ) (var (that (that this))) (var this)))))) (abs (var this)))))) ominusτo (σ ⇒ τ) = abs (abs (abs (abs (app₂ (ominusτo τ) (app (var (that (that (that this)))) (app₂ (oplusτo σ) (var (that this)) (var this))) (app (var (that (that this))) (var (that this))))))) ominusτo int = const minus ominusτo (pair σ τ) = abs (abs (app₂ (const cons) (app₂ (ominusτo σ) (app (const fst) (var (that this))) (app (const fst) (var this))) (app₂ (ominusτo τ) (app (const snd) (var (that this))) (app (const snd) (var this))))) ominusτo (sum σ τ) = abs (abs (app₃ (const match) (var (that this)) (abs (app₃ (const match) (var (that this)) (abs (app (const linj) (app (const linj) (app₂ (ominusτo σ) (var (that this)) (var this))))) (abs (app (const rinj) (var (that (that (that this)))))))) (abs (app₃ (const match) (var (that this)) (abs (app (const rinj) (var (that (that (that this)))))) (abs (app (const linj) (app (const rinj) (app₂ (ominusτo τ) (var (that this)) (var this))))))))) oplusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ a da → ⟦ oplusτo τ ⟧Term ρ a da ≡ a ⊕ da ominusτ-equiv : ∀ Γ (ρ : ⟦ Γ ⟧Context) τ b a → ⟦ ominusτo τ ⟧Term ρ b a ≡ b ⊝ a oplusτ-equiv-ext : ∀ τ Γ → ⟦ oplusτo {Γ} τ ⟧Term ≡ λ ρ → _⊕_ oplusτ-equiv-ext τ _ = ext³ (λ ρ a da → oplusτ-equiv _ ρ τ a da) ominusτ-equiv-ext : ∀ τ Γ → ⟦ ominusτo {Γ} τ ⟧Term ≡ λ ρ → _⊝_ ominusτ-equiv-ext τ _ = ext³ (λ ρ a da → ominusτ-equiv _ ρ τ a da) oplusτ-equiv Γ ρ (σ ⇒ τ) f df = ext (λ a → lemma a) where module _ (a : ⟦ σ ⟧Type) where ρ′ = a • df • f • ρ ρ′′ = a • ρ′ lemma : ⟦ oplusτo τ ⟧Term ρ′ (f a) (df a (⟦ ominusτo σ ⟧Term ρ′′ a a)) ≡ f a ⊕ df a (nil a) lemma rewrite ominusτ-equiv _ ρ′′ σ a a | oplusτ-equiv _ ρ′ τ (f a) (df a (nil a)) = refl oplusτ-equiv Γ ρ int a da = refl oplusτ-equiv Γ ρ (pair σ τ) (a , b) (da , db) rewrite oplusτ-equiv _ ((da , db) • (a , b) • ρ) σ a da | oplusτ-equiv _ ((da , db) • (a , b) • ρ) τ b db = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₁ dx)) rewrite oplusτ-equiv-ext σ (Δt σ • sum (Δt σ) (Δt τ) • σ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ (inj₂ dy)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₁ dx)) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ (inj₂ dy)) rewrite oplusτ-equiv-ext τ (Δt τ • sum (Δt σ) (Δt τ) • τ • Δt (sum σ τ) • sum σ τ • Γ) = refl oplusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) = refl ominusτ-equiv Γ ρ (σ ⇒ τ) g f = ext (λ a → ext (lemma a)) where module _ (a : ⟦ σ ⟧Type) (da : Chτ σ) where ρ′ = da • a • f • g • ρ lemma : ⟦ ominusτo τ ⟧Term (da • a • f • g • ρ) (g (⟦ oplusτo σ ⟧Term (da • a • f • g • ρ) a da)) (f a) ≡ g (a ⊕ da) ⊝ f a lemma rewrite oplusτ-equiv _ ρ′ σ a da | ominusτ-equiv _ ρ′ τ (g (a ⊕ da)) (f a) = refl ominusτ-equiv Γ ρ int b a = refl ominusτ-equiv Γ ρ (pair σ τ) (a2 , b2) (a1 , b1) rewrite ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) σ a2 a1 | ominusτ-equiv _ ((a1 , b1) • (a2 , b2) • ρ) τ b2 b1 = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₁ x₁) rewrite ominusτ-equiv-ext σ (σ • σ • sum σ τ • sum σ τ • Γ) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₁ x) (inj₂ y) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₁ x) = refl ominusτ-equiv Γ ρ (sum σ τ) (inj₂ y) (inj₂ y₁) rewrite ominusτ-equiv-ext τ (τ • τ • sum σ τ • sum σ τ • Γ) = refl
{ "alphanum_fraction": 0.5665209244, "avg_line_length": 44.0642201835, "ext": "agda", "hexsha": "498270d06fdf52d578b3c0ed5813b37b9cece4bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/LangOps.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/LangOps.agda", "max_line_length": 100, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/LangOps.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 2056, "size": 4803 }
{-# OPTIONS --without-K #-} module FunExt where open import HIT.Interval open import PathOperations open import PathStructure.Id.Tr open import Types funext : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g funext {A = A} {B = B} {f = f} {g = g} p = ap h seg where h : I → (x : A) → B x h i x = I-rec (f x) (g x) (p x) i
{ "alphanum_fraction": 0.528150134, "avg_line_length": 24.8666666667, "ext": "agda", "hexsha": "239dc5bbf3baa5b63ce97d2fd93605f3d0e67e4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/FunExt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/FunExt.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/FunExt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 153, "size": 373 }
{-# OPTIONS --without-K --exact-split #-} module 09-fundamental-theorem where import 08-contractible-types open 08-contractible-types public -- Section 8.1 Families of equivalences {- Any family of maps induces a map on the total spaces. -} tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → ( Σ A B → Σ A C) tot f t = pair (pr1 t) (f (pr1 t) (pr2 t)) {- We show that for any family of maps, the fiber of the induced map on total spaces are equivalent to the fibers of the maps in the family. -} fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (tot f) t → fib (f (pr1 t)) (pr2 t) fib-ftr-fib-tot f .(pair x (f x y)) (pair (pair x y) refl) = pair y refl fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (f (pr1 t)) (pr2 t) → fib (tot f) t fib-tot-fib-ftr F (pair a .(F a y)) (pair y refl) = pair (pair a y) refl issec-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-ftr-fib-tot f t) ∘ (fib-tot-fib-ftr f t)) ~ id issec-fib-tot-fib-ftr f (pair x .(f x y)) (pair y refl) = refl isretr-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-tot-fib-ftr f t) ∘ (fib-ftr-fib-tot f t)) ~ id isretr-fib-tot-fib-ftr f .(pair x (f x y)) (pair (pair x y) refl) = refl abstract is-equiv-fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-ftr-fib-tot f t) is-equiv-fib-ftr-fib-tot f t = is-equiv-has-inverse ( fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) ( isretr-fib-tot-fib-ftr f t) abstract is-equiv-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-tot-fib-ftr f t) is-equiv-fib-tot-fib-ftr f t = is-equiv-has-inverse ( fib-ftr-fib-tot f t) ( isretr-fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) {- Now that we have shown that the fibers of the induced map on total spaces are equivalent to the fibers of the maps in the family, it follows that the induced map on total spaces is an equivalence if and only if each map in the family is an equivalence. -} is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → UU (i ⊔ (j ⊔ k)) is-fiberwise-equiv f = (x : _) → is-equiv (f x) abstract is-equiv-tot-is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → {f : (x : A) → B x → C x} → is-fiberwise-equiv f → is-equiv (tot f ) is-equiv-tot-is-fiberwise-equiv {f = f} H = is-equiv-is-contr-map ( λ t → is-contr-is-equiv _ ( fib-ftr-fib-tot f t) ( is-equiv-fib-ftr-fib-tot f t) ( is-contr-map-is-equiv (H _) (pr2 t))) abstract is-fiberwise-equiv-is-equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → is-equiv (tot f) → is-fiberwise-equiv f is-fiberwise-equiv-is-equiv-tot {A = A} {B} {C} f is-equiv-tot-f x = is-equiv-is-contr-map ( λ z → is-contr-is-equiv' ( fib (tot f) (pair x z)) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-contr-map-is-equiv is-equiv-tot-f (pair x z))) equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x ≃ C x) → (Σ A B) ≃ (Σ A C) equiv-tot e = pair ( tot (λ x → map-equiv (e x))) ( is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-map-equiv (e x))) {- In the second part of this section we show that any equivalence f on base types also induces an equivalence on total spaces. -} Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → Σ A (λ x → C (f x)) → Σ B C Σ-map-base-map f C s = pair (f (pr1 s)) (pr2 s) {- The proof is similar to the previous part: we show that the fibers of f and Σ-kap-base-map f C are equivalent. -} fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib f (pr1 t) → fib (Σ-map-base-map f C) t fib-Σ-map-base-map-fib f C (pair .(f x) z) (pair x refl) = pair (pair x z) refl fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib (Σ-map-base-map f C) t → fib f (pr1 t) fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = pair x refl issec-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-Σ-map-base-map-fib f C t) ∘ (fib-fib-Σ-map-base-map f C t)) ~ id issec-fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = refl isretr-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-fib-Σ-map-base-map f C t) ∘ (fib-Σ-map-base-map-fib f C t)) ~ id isretr-fib-fib-Σ-map-base-map f C (pair .(f x) z) (pair x refl) = refl abstract is-equiv-fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → is-equiv (fib-Σ-map-base-map-fib f C t) is-equiv-fib-Σ-map-base-map-fib f C t = is-equiv-has-inverse ( fib-fib-Σ-map-base-map f C t) ( issec-fib-fib-Σ-map-base-map f C t) ( isretr-fib-fib-Σ-map-base-map f C t) abstract is-contr-map-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-contr-map f → is-contr-map (Σ-map-base-map f C) is-contr-map-Σ-map-base-map C f is-contr-f (pair y z) = is-contr-is-equiv' ( fib f y) ( fib-Σ-map-base-map-fib f C (pair y z)) ( is-equiv-fib-Σ-map-base-map-fib f C (pair y z)) ( is-contr-f y) abstract is-equiv-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-equiv f → is-equiv (Σ-map-base-map f C) is-equiv-Σ-map-base-map C f is-equiv-f = is-equiv-is-contr-map ( is-contr-map-Σ-map-base-map C f (is-contr-map-is-equiv is-equiv-f)) {- Now we combine the two parts of this section. -} toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D toto D f g t = pair (f (pr1 t)) (g (pr1 t) (pr2 t)) {- A special case of toto is the functoriality of the cartesian product. -} {- We construct the functoriality of cartesian products. -} functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (A × B) → (C × D) functor-prod f g (pair a b) = pair (f a) (g b) functor-prod-pr1 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr1 ∘ (functor-prod f g)) ~ (f ∘ pr1) functor-prod-pr1 f g (pair a b) = refl functor-prod-pr2 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr2 ∘ (functor-prod f g)) ~ (g ∘ pr2) functor-prod-pr2 f g (pair a b) = refl {- For our convenience we show that the functorial action of cartesian products preserves identity maps, compositions, homotopies, and equivalences. -} functor-prod-id : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (functor-prod (id {A = A}) (id {A = B})) ~ id functor-prod-id (pair a b) = refl functor-prod-comp : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → C) (g : B → D) (h : C → E) (k : D → F) → functor-prod (h ∘ f) (k ∘ g) ~ ((functor-prod h k) ∘ (functor-prod f g)) functor-prod-comp f g h k (pair a b) = refl functor-prod-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f f' : A → C} (H : f ~ f') {g g' : B → D} (K : g ~ g') → functor-prod f g ~ functor-prod f' g' functor-prod-htpy {f = f} {f'} H {g} {g'} K (pair a b) = eq-pair-triv (pair (H a) (K b)) abstract is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → is-equiv f → is-equiv g → is-equiv (functor-prod f g) is-equiv-functor-prod f g ( pair (pair sf issec-sf) (pair rf isretr-rf)) ( pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-prod sf sg) ( ( htpy-inv (functor-prod-comp sf sg f g)) ∙h ( (functor-prod-htpy issec-sf issec-sg) ∙h functor-prod-id))) ( pair ( functor-prod rf rg) ( ( htpy-inv (functor-prod-comp f g rf rg)) ∙h ( (functor-prod-htpy isretr-rf isretr-rg) ∙h functor-prod-id))) {- triangle -} triangle-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → (toto D f g) ~ ((Σ-map-base-map f D) ∘ (tot g)) triangle-toto D f g t = refl abstract is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → (is-fiberwise-equiv g) → is-equiv (toto D f g) is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D f g is-equiv-f is-fiberwise-equiv-g = is-equiv-comp ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-g) ( is-equiv-Σ-map-base-map D f is-equiv-f) equiv-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (e : A ≃ B) (g : (x : A) → C x ≃ D (map-equiv e x)) → Σ A C ≃ Σ B D equiv-toto D e g = pair ( toto D (map-equiv e) (λ x → map-equiv (g x))) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D ( map-equiv e) ( λ x → map-equiv (g x)) ( is-equiv-map-equiv e) ( λ x → is-equiv-map-equiv (g x))) abstract is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → is-equiv (toto D f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map D f g is-equiv-f is-equiv-toto-fg = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-Σ-map-base-map D f is-equiv-f) ( is-equiv-toto-fg)) -- Section 8.2 The fundamental theorem -- The general form of the fundamental theorem of identity types abstract fundamental-theorem-id : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f fundamental-theorem-id {A = A} a b is-contr-AB f = is-fiberwise-equiv-is-equiv-tot f ( is-equiv-is-contr (tot f) (is-contr-total-path a) is-contr-AB) abstract fundamental-theorem-id' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f → is-contr (Σ A B) fundamental-theorem-id' {A = A} {B = B} a b f is-fiberwise-equiv-f = is-contr-is-equiv' ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) ( is-contr-total-path a) -- The canonical form of the fundamental theorem of identity types abstract fundamental-theorem-id-J : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → is-fiberwise-equiv (ind-Id a (λ x p → B x) b) fundamental-theorem-id-J {i} {j} {A} {B} a b is-contr-AB = fundamental-theorem-id a b is-contr-AB (ind-Id a (λ x p → B x) b) -- The converse of the fundamental theorem of identity types abstract fundamental-theorem-id-J' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-fiberwise-equiv (ind-Id a (λ x p → B x) b)) → is-contr (Σ A B) fundamental-theorem-id-J' {i} {j} {A} {B} a b H = is-contr-is-equiv' ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) ( is-contr-total-path a) -- As an application we show that equivalences are embeddings. is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-emb f = (x y : _) → is-equiv (ap f {x} {y}) _↪_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A ↪ B = Σ (A → B) is-emb map-emb : {i j : Level} {A : UU i} {B : UU j} → A ↪ B → A → B map-emb f = pr1 f is-emb-map-emb : { i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb f = pr2 f abstract is-emb-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-emb f is-emb-is-equiv {i} {j} {A} {B} f is-equiv-f x = fundamental-theorem-id x refl ( is-contr-equiv ( fib f (f x)) ( equiv-tot (λ y → equiv-inv (f x) (f y))) ( is-contr-map-is-equiv is-equiv-f (f x))) ( λ y p → ap f p) equiv-ap : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x y : A) → (Id x y) ≃ (Id (map-equiv e x) (map-equiv e y)) equiv-ap e x y = pair ( ap (map-equiv e) {x} {y}) ( is-emb-is-equiv (map-equiv e) (is-equiv-map-equiv e) x y) -- Section 7.3 Identity systems IND-identity-system : {i j : Level} (k : Level) {A : UU i} (B : A → UU j) (a : A) (b : B a) → UU _ IND-identity-system k {A} B a b = ( P : (x : A) (y : B x) → UU k) → sec (λ (h : (x : A) (y : B x) → P x y) → h a b) fam-Σ : {i j k : Level} {A : UU i} {B : A → UU j} (C : (x : A) → B x → UU k) → Σ A B → UU k fam-Σ C (pair x y) = C x y abstract ind-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) (P : (x : A) → B x → UU k) → P a b → (x : A) (y : B x) → P x y ind-identity-system a b is-contr-AB P p x y = tr ( fam-Σ P) ( is-prop-is-contr' is-contr-AB (pair a b) (pair x y)) ( p) comp-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → (P : (x : A) → B x → UU k) (p : P a b) → Id (ind-identity-system a b is-contr-AB P p a b) p comp-identity-system a b is-contr-AB P p = ap ( λ t → tr (fam-Σ P) t p) ( is-prop-is-contr' ( is-prop-is-contr is-contr-AB (pair a b) (pair a b)) ( is-prop-is-contr' is-contr-AB (pair a b) (pair a b)) ( refl)) Ind-identity-system : {i j : Level} (k : Level) {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → IND-identity-system k B a b Ind-identity-system k a b is-contr-AB P = pair ( ind-identity-system a b is-contr-AB P) ( comp-identity-system a b is-contr-AB P) contraction-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (t : Σ A B) → Id (pair a b) t contraction-total-space-IND-identity-system a b ind (pair x y) = pr1 (ind (λ x' y' → Id (pair a b) (pair x' y'))) refl x y abstract is-contr-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → is-contr (Σ A B) is-contr-total-space-IND-identity-system a b ind = pair ( pair a b) ( contraction-total-space-IND-identity-system a b ind) abstract fundamental-theorem-id-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (f : (x : A) → Id a x → B x) → (x : A) → is-equiv (f x) fundamental-theorem-id-IND-identity-system a b ind f = fundamental-theorem-id a b (is-contr-total-space-IND-identity-system a b ind) f -- Section 7.4 Disjointness of coproducts -- Raising universe levels postulate Raise : {l1 : Level} (l2 : Level) → (A : UU l1) → Σ (UU (l1 ⊔ l2)) (λ X → A ≃ X) abstract raise : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ l2) raise l2 A = pr1 (Raise l2 A) equiv-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A ≃ raise l2 A equiv-raise l2 A = pr2 (Raise l2 A) map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A → raise l2 A map-raise l2 A = map-equiv (equiv-raise l2 A) is-equiv-map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → is-equiv (map-raise l2 A) is-equiv-map-raise l2 A = is-equiv-map-equiv (equiv-raise l2 A) -- Lemmas about coproducts left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) left-distributive-coprod-Σ-map A B C (pair (inl x) z) = inl (pair x z) left-distributive-coprod-Σ-map A B C (pair (inr y) z) = inr (pair y z) inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) → Σ (coprod A B) C inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = pair (inl x) z inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = pair (inr y) z issec-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (left-distributive-coprod-Σ-map A B C) ∘ (inv-left-distributive-coprod-Σ-map A B C)) ~ id issec-inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = refl issec-inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = refl isretr-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (inv-left-distributive-coprod-Σ-map A B C) ∘ (left-distributive-coprod-Σ-map A B C)) ~ id isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inl x) z) = refl isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inr y) z) = refl abstract is-equiv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → is-equiv (left-distributive-coprod-Σ-map A B C) is-equiv-left-distributive-coprod-Σ-map A B C = is-equiv-has-inverse ( inv-left-distributive-coprod-Σ-map A B C) ( issec-inv-left-distributive-coprod-Σ-map A B C) ( isretr-inv-left-distributive-coprod-Σ-map A B C) equiv-left-distributive-coprod-Σ : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C ≃ coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) equiv-left-distributive-coprod-Σ A B C = pair ( left-distributive-coprod-Σ-map A B C) ( is-equiv-left-distributive-coprod-Σ-map A B C) abstract is-equiv-map-to-empty : {l : Level} {A : UU l} (f : A → empty) → is-equiv f is-equiv-map-to-empty f = is-equiv-has-inverse ind-empty ind-empty ( λ x → ind-empty {P = λ t → Id (ind-empty (f x)) x} (f x)) map-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) → empty map-Σ-empty-fam A (pair x ()) abstract is-equiv-map-Σ-empty-fam : {l : Level} (A : UU l) → is-equiv (map-Σ-empty-fam A) is-equiv-map-Σ-empty-fam A = is-equiv-map-to-empty (map-Σ-empty-fam A) equiv-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) ≃ empty equiv-Σ-empty-fam A = pair (map-Σ-empty-fam A) (is-equiv-map-Σ-empty-fam A) -- The identity types of coproducts Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → coprod A B → coprod A B → UU (l1 ⊔ l2) Eq-coprod {l1} {l2} A B (inl x) (inl y) = raise (l1 ⊔ l2) (Id x y) Eq-coprod {l1} {l2} A B (inl x) (inr y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inl y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inr y) = raise (l1 ⊔ l2) (Id x y) reflexive-Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (t : coprod A B) → Eq-coprod A B t t reflexive-Eq-coprod {l1} {l2} A B (inl x) = map-raise (l1 ⊔ l2) (Id x x) refl reflexive-Eq-coprod {l1} {l2} A B (inr x) = map-raise (l1 ⊔ l2) (Id x x) refl Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (s t : coprod A B) → Id s t → Eq-coprod A B s t Eq-coprod-eq A B s .s refl = reflexive-Eq-coprod A B s abstract is-contr-total-Eq-coprod-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-contr (Σ (coprod A B) (Eq-coprod A B (inl x))) is-contr-total-Eq-coprod-inl A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inl x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inl x))) ( is-contr-equiv' ( coprod ( Σ A (Id x)) ( Σ B (λ y → empty))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( equiv-tot (λ y → equiv-raise _ empty))) ( is-contr-equiv ( coprod (Σ A (Id x)) empty) ( equiv-functor-coprod ( equiv-id (Σ A (Id x))) ( equiv-Σ-empty-fam B)) ( is-contr-equiv' ( Σ A (Id x)) ( right-unit-law-coprod (Σ A (Id x))) ( is-contr-total-path x)))) abstract is-contr-total-Eq-coprod-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-contr (Σ (coprod A B) (Eq-coprod A B (inr x))) is-contr-total-Eq-coprod-inr A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inr x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inr x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inr x))) ( is-contr-equiv' ( coprod (Σ A (λ y → empty)) (Σ B (Id x))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ empty)) ( equiv-tot (λ y → equiv-raise _ (Id x y)))) ( is-contr-equiv ( coprod empty (Σ B (Id x))) ( equiv-functor-coprod ( equiv-Σ-empty-fam A) ( equiv-id (Σ B (Id x)))) ( is-contr-equiv' ( Σ B (Id x)) ( left-unit-law-coprod (Σ B (Id x))) ( is-contr-total-path x)))) abstract is-equiv-Eq-coprod-eq-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-fiberwise-equiv (Eq-coprod-eq A B (inl x)) is-equiv-Eq-coprod-eq-inl A B x = fundamental-theorem-id ( inl x) ( reflexive-Eq-coprod A B (inl x)) ( is-contr-total-Eq-coprod-inl A B x) ( Eq-coprod-eq A B (inl x)) abstract is-equiv-Eq-coprod-eq-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-fiberwise-equiv (Eq-coprod-eq A B (inr x)) is-equiv-Eq-coprod-eq-inr A B x = fundamental-theorem-id ( inr x) ( reflexive-Eq-coprod A B (inr x)) ( is-contr-total-Eq-coprod-inr A B x) ( Eq-coprod-eq A B (inr x)) abstract is-equiv-Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) (s : coprod A B) → is-fiberwise-equiv (Eq-coprod-eq A B s) is-equiv-Eq-coprod-eq A B (inl x) = is-equiv-Eq-coprod-eq-inl A B x is-equiv-Eq-coprod-eq A B (inr x) = is-equiv-Eq-coprod-eq-inr A B x map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → Id (inl {B = B} x) (inl {B = B} x') → Id x x' map-compute-eq-coprod-inl-inl x x' = ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ∘ ( Eq-coprod-eq _ _ (inl x) (inl x')) abstract is-equiv-map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → is-equiv (map-compute-eq-coprod-inl-inl {B = B} x x') is-equiv-map-compute-eq-coprod-inl-inl x x' = is-equiv-comp ( map-compute-eq-coprod-inl-inl x x') ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ( Eq-coprod-eq _ _ (inl x) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id x x'))) compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → (Id (inl {B = B} x) (inl x')) ≃ (Id x x') compute-eq-coprod-inl-inl x x' = pair ( map-compute-eq-coprod-inl-inl x x') ( is-equiv-map-compute-eq-coprod-inl-inl x x') map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → Id (inl x) (inr y') → empty map-compute-eq-coprod-inl-inr x y' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inl x) (inr y')) abstract is-equiv-map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → is-equiv (map-compute-eq-coprod-inl-inr x y') is-equiv-map-compute-eq-coprod-inl-inr x y' = is-equiv-comp ( map-compute-eq-coprod-inl-inr x y') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inl x) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → (Id (inl x) (inr y')) ≃ empty compute-eq-coprod-inl-inr x y' = pair ( map-compute-eq-coprod-inl-inr x y') ( is-equiv-map-compute-eq-coprod-inl-inr x y') map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr {A = A} y) (inl x')) → empty map-compute-eq-coprod-inr-inl y x' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inr y) (inl x')) abstract is-equiv-map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → is-equiv (map-compute-eq-coprod-inr-inl y x') is-equiv-map-compute-eq-coprod-inr-inl y x' = is-equiv-comp ( map-compute-eq-coprod-inr-inl y x') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inr y) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr y) (inl x')) ≃ empty compute-eq-coprod-inr-inl y x' = pair ( map-compute-eq-coprod-inr-inl y x') ( is-equiv-map-compute-eq-coprod-inr-inl y x') map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) → Id y y' map-compute-eq-coprod-inr-inr y y' = ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ∘ ( Eq-coprod-eq _ _ (inr y) (inr y')) abstract is-equiv-map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → is-equiv (map-compute-eq-coprod-inr-inr {A = A} y y') is-equiv-map-compute-eq-coprod-inr-inr y y' = is-equiv-comp ( map-compute-eq-coprod-inr-inr y y') ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ( Eq-coprod-eq _ _ (inr y) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id y y'))) compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) ≃ (Id y y') compute-eq-coprod-inr-inr y y' = pair ( map-compute-eq-coprod-inr-inr y y') ( is-equiv-map-compute-eq-coprod-inr-inr y y') -- Exercises -- Exercise 7.1 abstract is-emb-empty : {i : Level} (A : UU i) → is-emb (ind-empty {P = λ x → A}) is-emb-empty A = ind-empty -- Exercise 7.2 path-adjointness-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x : A) (y : B) → (Id (map-equiv e x) y) ≃ (Id x (inv-map-equiv e y)) path-adjointness-equiv e x y = ( inv-equiv (equiv-ap e x (inv-map-equiv e y))) ∘e ( equiv-concat' ( map-equiv e x) ( inv (issec-inv-is-equiv (is-equiv-map-equiv e) y))) -- Exercise 7.3 abstract is-equiv-top-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → is-equiv i → is-equiv f → is-equiv g → is-equiv h is-equiv-top-is-equiv-left-square f g h i H Ei Ef Eg = is-equiv-right-factor (i ∘ f) g h H Eg ( is-equiv-comp (i ∘ f) i f refl-htpy Ef Ei) abstract is-emb-htpy : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb g → is-emb f is-emb-htpy f g H is-emb-g x y = is-equiv-top-is-equiv-left-square ( ap g) ( concat' (f x) (H y)) ( ap f) ( concat (H x) (g y)) ( htpy-nat H) ( is-equiv-concat (H x) (g y)) ( is-emb-g x y) ( is-equiv-concat' (f x) (H y)) abstract is-emb-htpy' : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb f → is-emb g is-emb-htpy' f g H is-emb-f = is-emb-htpy g f (htpy-inv H) is-emb-f -- Exercise 7.4 abstract is-emb-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb h → is-emb f is-emb-comp f g h H is-emb-g is-emb-h = is-emb-htpy f (g ∘ h) H ( λ x y → is-equiv-comp (ap (g ∘ h)) (ap g) (ap h) (ap-comp g h) ( is-emb-h x y) ( is-emb-g (h x) (h y))) abstract is-emb-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb f → is-emb h is-emb-right-factor f g h H is-emb-g is-emb-f x y = is-equiv-right-factor ( ap (g ∘ h)) ( ap g) ( ap h) ( ap-comp g h) ( is-emb-g (h x) (h y)) ( is-emb-htpy (g ∘ h) f (htpy-inv H) is-emb-f x y) abstract is-emb-triangle-is-equiv : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb g → is-emb f is-emb-triangle-is-equiv f g e H is-equiv-e is-emb-g = is-emb-comp f g e H is-emb-g (is-emb-is-equiv e is-equiv-e) abstract is-emb-triangle-is-equiv' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb f → is-emb g is-emb-triangle-is-equiv' f g e H is-equiv-e is-emb-f = is-emb-triangle-is-equiv g f ( inv-is-equiv is-equiv-e) ( triangle-section f g e H ( pair ( inv-is-equiv is-equiv-e) ( issec-inv-is-equiv is-equiv-e))) ( is-equiv-inv-is-equiv is-equiv-e) ( is-emb-f) -- Exercise 7.5 abstract is-emb-inl : {i j : Level} (A : UU i) (B : UU j) → is-emb (inl {A = A} {B = B}) is-emb-inl A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( tot (λ y → Eq-coprod-eq A B (inl x) (inl y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inl x) (inl y))) ( is-contr-equiv' ( Σ A (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inl) abstract is-emb-inr : {i j : Level} (A : UU i) (B : UU j) → is-emb (inr {A = A} {B = B}) is-emb-inr A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ B (λ y → Eq-coprod A B (inr x) (inr y))) ( tot (λ y → Eq-coprod-eq A B (inr x) (inr y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inr x) (inr y))) ( is-contr-equiv' ( Σ B (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inr) -- Exercise 7.6 -- Exercise 7.7 tot-htpy : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} {f g : (x : A) → B x → C x} → (H : (x : A) → f x ~ g x) → tot f ~ tot g tot-htpy H (pair x y) = eq-pair refl (H x y) tot-id : {i j : Level} {A : UU i} (B : A → UU j) → (tot (λ x (y : B x) → y)) ~ id tot-id B (pair x y) = refl tot-comp : {i j j' j'' : Level} {A : UU i} {B : A → UU j} {B' : A → UU j'} {B'' : A → UU j''} (f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) → tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f)) tot-comp f g (pair x y) = refl -- Exercise 7.8 abstract fundamental-theorem-id-retr : {i j : Level} {A : UU i} {B : A → UU j} (a : A) → (i : (x : A) → B x → Id a x) → (R : (x : A) → retr (i x)) → is-fiberwise-equiv i fundamental-theorem-id-retr {_} {_} {A} {B} a i R = is-fiberwise-equiv-is-equiv-tot i ( is-equiv-is-contr (tot i) ( is-contr-retract-of (Σ _ (λ y → Id a y)) ( pair (tot i) ( pair (tot λ x → pr1 (R x)) ( ( htpy-inv (tot-comp i (λ x → pr1 (R x)))) ∙h ( ( tot-htpy λ x → pr2 (R x)) ∙h (tot-id B))))) ( is-contr-total-path a)) ( is-contr-total-path a)) abstract is-equiv-sec-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (sec-f : sec f) → is-equiv (pr1 sec-f) → is-equiv f is-equiv-sec-is-equiv {A = A} {B = B} f (pair g issec-g) is-equiv-sec-f = let h : A → B h = inv-is-equiv is-equiv-sec-f in is-equiv-htpy h ( ( htpy-left-whisk f (htpy-inv (issec-inv-is-equiv is-equiv-sec-f))) ∙h ( htpy-right-whisk issec-g h)) ( is-equiv-inv-is-equiv is-equiv-sec-f) abstract fundamental-theorem-id-sec : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (f : (x : A) → Id a x → B x) → ((x : A) → sec (f x)) → is-fiberwise-equiv f fundamental-theorem-id-sec {A = A} {B = B} a f sec-f x = let i : (x : A) → B x → Id a x i = λ x → pr1 (sec-f x) retr-i : (x : A) → retr (i x) retr-i = λ x → pair (f x) (pr2 (sec-f x)) is-fiberwise-equiv-i : is-fiberwise-equiv i is-fiberwise-equiv-i = fundamental-theorem-id-retr a i retr-i in is-equiv-sec-is-equiv (f x) (sec-f x) (is-fiberwise-equiv-i x) -- Exercise 7.9 abstract is-emb-sec-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → sec (ap f {x = x} {y = y})) → is-emb f is-emb-sec-ap f sec-ap-f x = fundamental-theorem-id-sec x (λ y → ap f {y = y}) (sec-ap-f x) -- Exercise 7.10 coherence-is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (g : B → A) (G : (f ∘ g) ~ id) (H : (g ∘ f) ~ id) → UU (l1 ⊔ l2) coherence-is-half-adjoint-equivalence f g G H = ( htpy-right-whisk G f) ~ (htpy-left-whisk f H) is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-half-adjoint-equivalence {A = A} {B = B} f = Σ (B → A) ( λ g → Σ ((f ∘ g) ~ id) ( λ G → Σ ((g ∘ f) ~ id) (coherence-is-half-adjoint-equivalence f g G))) is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-path-split {A = A} {B = B} f = sec f × ((x y : A) → sec (ap f {x = x} {y = y})) abstract is-path-split-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-path-split f is-path-split-is-equiv f is-equiv-f = pair (pr1 is-equiv-f) (λ x y → pr1 (is-emb-is-equiv f is-equiv-f x y)) abstract is-half-adjoint-equivalence-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-path-split {A = A} {B = B} f ( pair (pair g issec-g) sec-ap-f) = let φ : ((x : A) → fib (ap f) (issec-g (f x))) → Σ ((g ∘ f) ~ id) ( λ H → (htpy-right-whisk issec-g f) ~ (htpy-left-whisk f H)) φ = ( tot (λ H' → htpy-inv)) ∘ ( λ s → pair (λ x → pr1 (s x)) (λ x → pr2 (s x))) in pair g ( pair issec-g ( φ (λ x → pair ( pr1 (sec-ap-f (g (f x)) x) (issec-g (f x))) ( pr2 (sec-ap-f (g (f x)) x) (issec-g (f x)))))) abstract is-equiv-is-half-adjoint-equivalence : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-half-adjoint-equivalence f → is-equiv f is-equiv-is-half-adjoint-equivalence f (pair g (pair G (pair H K))) = is-equiv-has-inverse g G H abstract is-equiv-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-equiv f is-equiv-is-path-split f = ( is-equiv-is-half-adjoint-equivalence f) ∘ ( is-half-adjoint-equivalence-is-path-split f) abstract is-half-adjoint-equivalence-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-equiv f = ( is-half-adjoint-equivalence-is-path-split f) ∘ (is-path-split-is-equiv f) -- Exercise 7.11 abstract is-equiv-top-is-equiv-bottom-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv i) → (is-equiv h) is-equiv-top-is-equiv-bottom-square f g h i H is-equiv-f is-equiv-g is-equiv-i = is-equiv-right-factor (i ∘ f) g h H is-equiv-g ( is-equiv-comp' i f is-equiv-f is-equiv-i) abstract is-equiv-bottom-is-equiv-top-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv h) → (is-equiv i) is-equiv-bottom-is-equiv-top-square f g h i H is-equiv-f is-equiv-g is-equiv-h = is-equiv-left-factor' i f ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) is-equiv-f abstract is-equiv-left-is-equiv-right-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv g) → (is-equiv f) is-equiv-left-is-equiv-right-square f g h i H is-equiv-h is-equiv-i is-equiv-g = is-equiv-right-factor' i f is-equiv-i ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) abstract is-equiv-right-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv f) → (is-equiv g) is-equiv-right-is-equiv-left-square f g h i H is-equiv-h is-equiv-i is-equiv-f = is-equiv-left-factor (i ∘ f) g h H ( is-equiv-comp' i f is-equiv-f is-equiv-i) ( is-equiv-h) fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (x : X) → (fib f x) → (fib g x) fib-triangle f g h H .(f a) (pair a refl) = pair (h a) (inv (H a)) square-tot-fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (h ∘ (Σ-fib-to-domain f)) ~ ((Σ-fib-to-domain g) ∘ (tot (fib-triangle f g h H))) square-tot-fib-triangle f g h H (pair .(f a) (pair a refl)) = refl abstract is-fiberwise-equiv-is-equiv-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-equiv h) → is-fiberwise-equiv (fib-triangle f g h H) is-fiberwise-equiv-is-equiv-triangle f g h H E = is-fiberwise-equiv-is-equiv-tot ( fib-triangle f g h H) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( E)) abstract is-equiv-triangle-is-fiberwise-equiv : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-fiberwise-equiv (fib-triangle f g h H)) → is-equiv h is-equiv-triangle-is-fiberwise-equiv f g h H E = is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( is-equiv-tot-is-fiberwise-equiv E) -- Extra material {- In order to show that the total space of htpy-cone is contractible, we give a general construction that helps us characterize the identity type of a structure. This construction is called is-contr-total-Eq-structure. We first give some definitions that help us with the construction of is-contr-total-Eq-structure. -} swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) → Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = pair (pair a c) (pair b d) htpy-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → ( ( swap-total-Eq-structure B C D) ∘ ( swap-total-Eq-structure C B (λ x z y → D x y z))) ~ id htpy-swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = refl abstract is-equiv-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → is-equiv (swap-total-Eq-structure B C D) is-equiv-swap-total-Eq-structure B C D = is-equiv-has-inverse ( swap-total-Eq-structure C B (λ x z y → D x y z)) ( htpy-swap-total-Eq-structure B C D) ( htpy-swap-total-Eq-structure C B (λ x z y → D x y z)) abstract is-contr-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → ((x : A) → is-contr (B x)) → is-contr (Σ A B) is-contr-Σ {A = A} {B = B} is-contr-A is-contr-B = is-contr-equiv' ( B (center is-contr-A)) ( left-unit-law-Σ B is-contr-A) ( is-contr-B (center is-contr-A)) abstract is-contr-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → (a : A) → is-contr (B a) → is-contr (Σ A B) is-contr-Σ' {A = A} {B} is-contr-A a is-contr-B = is-contr-is-equiv' ( B a) ( left-unit-law-Σ-map-gen B is-contr-A a) ( is-equiv-left-unit-law-Σ-map-gen B is-contr-A a) ( is-contr-B) abstract is-contr-total-Eq-structure : { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) → ( is-contr-AC : is-contr (Σ A C)) → ( t : Σ A C) → is-contr (Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → is-contr (Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))) is-contr-total-Eq-structure {A = A} {B = B} {C = C} D is-contr-AC t is-contr-BD = is-contr-is-equiv ( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t)))) ( swap-total-Eq-structure B C D) ( is-equiv-swap-total-Eq-structure B C D) ( is-contr-Σ' is-contr-AC t is-contr-BD) -- Characterizing the identity type of a fiber as the fiber of the action on -- paths fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) (p : Id (pr1 s) (pr1 t)) → (Id (tr (λ (a : A) → Id (f a) b) p (pr2 s)) (pr2 t)) → (Id (ap f p) ((pr2 s) ∙ (inv (pr2 t)))) fib-ap-eq-fib-fiberwise f (pair .x' p) (pair x' refl) refl = inv ∘ (concat right-unit refl) abstract is-fiberwise-equiv-fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-fiberwise-equiv (fib-ap-eq-fib-fiberwise f s t) is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f (pair x y) (pair .x refl) refl = is-equiv-comp ( fib-ap-eq-fib-fiberwise f (pair x y) (pair x refl) refl) ( inv) ( concat right-unit refl) ( refl-htpy) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → Id s t → fib (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) fib-ap-eq-fib f s .s refl = pair refl (inv (right-inv (pr2 s))) triangle-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → (fib-ap-eq-fib f s t) ~ ((tot (fib-ap-eq-fib-fiberwise f s t)) ∘ (pair-eq {s = s} {t})) triangle-fib-ap-eq-fib f (pair x refl) .(pair x refl) refl = refl abstract is-equiv-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-equiv (fib-ap-eq-fib f s t) is-equiv-fib-ap-eq-fib f s t = is-equiv-comp ( fib-ap-eq-fib f s t) ( tot (fib-ap-eq-fib-fiberwise f s t)) ( pair-eq {s = s} {t}) ( triangle-fib-ap-eq-fib f s t) ( is-equiv-pair-eq s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f s t)) eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → Id (pair x q) (pair y (refl {x = f y})) → fib (ap f {x = x} {y = y}) q eq-fib-fib-ap f x y q = (tr (fib (ap f)) right-unit) ∘ (fib-ap-eq-fib f (pair x q) (pair y refl)) abstract is-equiv-eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → is-equiv (eq-fib-fib-ap f x y q) is-equiv-eq-fib-fib-ap f x y q = is-equiv-comp ( eq-fib-fib-ap f x y q) ( tr (fib (ap f)) right-unit) ( fib-ap-eq-fib f (pair x q) (pair y refl)) ( refl-htpy) ( is-equiv-fib-ap-eq-fib f (pair x q) (pair y refl)) ( is-equiv-tr (fib (ap f)) right-unit) -- Comparing fib and fib' fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → fib f y → fib' f y fib'-fib f y t = tot (λ x → inv) t abstract is-equiv-fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-fiberwise-equiv (fib'-fib f) is-equiv-fib'-fib f y = is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-inv (f x) y)
{ "alphanum_fraction": 0.5304646182, "avg_line_length": 35.776387803, "ext": "agda", "hexsha": "50789ad7f76d64807ffb3d81916a8f86997a82bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/09-fundamental-theorem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/09-fundamental-theorem.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/09-fundamental-theorem.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19223, "size": 45758 }
module Test where open import Pitch open import Interval open import Counterpoint open import Data.Vec using (Vec; []; _∷_; zip) open import Data.Fin using (zero; suc) open import Relation.Binary.PropositionalEquality using (refl) -- Last five notes of Yamanote melody cantusFirmus : Vec Pitch 5 cantusFirmus = c 5 ∷ e 5 ∷ g 5 ∷ d 6 ∷ c 6 ∷ [] counterpoint : Vec Interval 5 counterpoint = maj10 ∷ min10 ∷ per8 ∷ maj6 ∷ per8 ∷ [] firstSpecies : Counterpoint 3 firstSpecies = zip cantusFirmus counterpoint testCorrect : FirstSpecies firstSpecies testCorrect = fs firstSpecies (λ { zero → refl ; (suc zero) → refl ; (suc (suc zero)) → refl ; (suc (suc (suc zero))) → refl ; (suc (suc (suc (suc zero)))) → refl }) (λ { zero → refl ; (suc zero) → refl ; (suc (suc zero)) → refl ; (suc (suc (suc zero))) → refl}) refl
{ "alphanum_fraction": 0.5498046875, "avg_line_length": 30.1176470588, "ext": "agda", "hexsha": "a8e5fcd5d25e97204ecd860834321dc4aec49b9e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Test.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Test.agda", "max_line_length": 62, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Test.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 286, "size": 1024 }
{-# OPTIONS --type-in-type #-} open import Data.Unit open import Data.Product hiding ( curry ; uncurry ) open import Data.List hiding ( concat ) open import Data.String open import Relation.Binary.PropositionalEquality open import Function module Spire.Examples.PropLev where ---------------------------------------------------------------------- Label : Set Label = String Enum : Set Enum = List Label data Tag : Enum → Set where here : ∀{l E} → Tag (l ∷ E) there : ∀{l E} → Tag E → Tag (l ∷ E) Branches : (E : Enum) (P : Tag E → Set) → Set Branches [] P = ⊤ Branches (l ∷ E) P = P here × Branches E (λ t → P (there t)) case : {E : Enum} (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t case P (c , cs) here = c case P (c , cs) (there t) = case (λ t → P (there t)) cs t UncurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set UncurriedBranches E P X = Branches E P → X CurriedBranches : (E : Enum) (P : Tag E → Set) (X : Set) → Set CurriedBranches [] P X = X CurriedBranches (l ∷ E) P X = P here → CurriedBranches E (λ t → P (there t)) X curryBranches : {E : Enum} {P : Tag E → Set} {X : Set} → UncurriedBranches E P X → CurriedBranches E P X curryBranches {[]} f = f tt curryBranches {l ∷ E} f = λ c → curryBranches (λ cs → f (c , cs)) uncurryBranches : {E : Enum} {P : Tag E → Set} {X : Set} → CurriedBranches E P X → UncurriedBranches E P X uncurryBranches {[]} x tt = x uncurryBranches {l ∷ E} f (c , cs) = uncurryBranches (f c) cs ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I elimDesc : {I : Set} (P : Desc I → Set) (pend : (i : I) → P (End i)) (prec : (i : I) (D : Desc I) (pd : P D) → P (Rec i D)) (parg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (Arg A B)) (D : Desc I) → P D elimDesc P pend prec parg (End i) = pend i elimDesc P pend prec parg (Rec i D) = prec i D (elimDesc P pend prec parg D) elimDesc P pend prec parg (Arg A B) = parg A B (λ a → elimDesc P pend prec parg (B a)) ---------------------------------------------------------------------- ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) → ISet I → ISet I El (End j) X i = j ≡ i El (Rec j D) X i = X j × El D X i El (Arg A B) X i = Σ A (λ a → El (B a) X i) Hyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (i : I) (xs : El D X i) → Set Hyps (End j) X P i q = ⊤ Hyps (Rec j D) X P i (x , xs) = P j x × Hyps D X P i xs Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b ---------------------------------------------------------------------- UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set UncurriedEl D X = ∀{i} → El D X i → X i CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set CurriedEl (End i) X = X i CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X curryEl : {I : Set} (D : Desc I) (X : ISet I) → UncurriedEl D X → CurriedEl D X curryEl (End i) X cn = cn refl curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs)) curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs)) uncurryEl : {I : Set} (D : Desc I) (X : ISet I) → CurriedEl D X → UncurriedEl D X uncurryEl (End i) X cn refl = cn uncurryEl (Rec i D) X cn (x , xs) = uncurryEl D X (cn x) xs uncurryEl (Arg A B) X cn (a , xs) = uncurryEl (B a) X (cn a) xs ---------------------------------------------------------------------- UncurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → Set UncurriedHyps D X P cn = ∀ i (xs : El D X i) (ihs : Hyps D X P i xs) → P i (cn xs) CurriedHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → Set CurriedHyps (End i) X P cn = P i (cn refl) CurriedHyps (Rec i D) X P cn = (x : X i) → P i x → CurriedHyps D X P (λ xs → cn (x , xs)) CurriedHyps (Arg A B) X P cn = (a : A) → CurriedHyps (B a) X P (λ xs → cn (a , xs)) curryHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → UncurriedHyps D X P cn → CurriedHyps D X P cn curryHyps (End i) X P cn pf = pf i refl tt curryHyps (Rec i D) X P cn pf = λ x ih → curryHyps D X P (λ xs → cn (x , xs)) (λ i xs ihs → pf i (x , xs) (ih , ihs)) curryHyps (Arg A B) X P cn pf = λ a → curryHyps (B a) X P (λ xs → cn (a , xs)) (λ i xs ihs → pf i (a , xs) ihs) uncurryHyps : {I : Set} (D : Desc I) (X : ISet I) (P : (i : I) → X i → Set) (cn : UncurriedEl D X) → CurriedHyps D X P cn → UncurriedHyps D X P cn uncurryHyps (End .i) X P cn pf i refl tt = pf uncurryHyps (Rec j D) X P cn pf i (x , xs) (ih , ihs) = uncurryHyps D X P (λ ys → cn (x , ys)) (pf x ih) i xs ihs uncurryHyps (Arg A B) X P cn pf i (a , xs) ihs = uncurryHyps (B a) X P (λ ys → cn (a , ys)) (pf a) i xs ihs ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) : ISet I where init : UncurriedEl D (μ D) ---------------------------------------------------------------------- Data : Set Data = Σ Set λ I → Σ Enum λ E → Branches E (λ _ → Desc I) DataI : Data → Set DataI (I , E , B) = I DataE : Data → Enum DataE (I , E , B) = E DataT : Data → Set DataT R = Tag (DataE R) DataB : (R : Data) → Branches (DataE R) (λ _ → Desc (DataI R)) DataB (I , E , B) = B DataD : (R : Data) → Desc (DataI R) DataD R = Arg (DataT R) (case (λ _ → Desc (DataI R)) (DataB R)) caseR : (R : Data) → DataT R → Desc (DataI R) caseR R = case (λ _ → Desc (DataI R)) (DataB R) ---------------------------------------------------------------------- inj : (R : Data) → let D = DataD R in CurriedEl D (μ D) inj R = let D = DataD R in curryEl D (μ D) init ---------------------------------------------------------------------- ind : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (α : UncurriedHyps D (μ D) P init) (i : I) (x : μ D i) → P i x prove : {I : Set} (D E : Desc I) (P : (i : I) → μ E i → Set) (α : UncurriedHyps E (μ E) P init) (i : I) (xs : El D (μ E) i) → Hyps D (μ E) P i xs ind D P α i (init xs) = α i xs (prove D D P α i xs) prove (End j) E P α i q = tt prove (Rec j D) E P α i (x , xs) = ind E P α j x , prove D E P α i xs prove (Arg A B) E P α i (a , xs) = prove (B a) E P α i xs ---------------------------------------------------------------------- indCurried : {I : Set} (D : Desc I) (P : (i : I) → μ D i → Set) (f : CurriedHyps D (μ D) P init) (i : I) (x : μ D i) → P i x indCurried D P f i x = ind D P (uncurryHyps D (μ D) P init f) i x SumCurriedHyps : (R : Data) → let D = DataD R in (P : ∀ i → μ D i → Set) → DataT R → Set SumCurriedHyps R P t = CurriedHyps (caseR R t) (μ (DataD R)) P (λ xs → init (t , xs)) elimUncurried : (R : Data) → let D = DataD R in (P : ∀ i → μ D i → Set) → UncurriedBranches (DataE R) (SumCurriedHyps R P) (∀ i (x : μ D i) → P i x) elimUncurried R P cs i x = indCurried (DataD R) P (case (SumCurriedHyps R P) cs) i x elim : (R : Data) → let D = DataD R in (P : ∀ i → μ D i → Set) → CurriedBranches (DataE R) (SumCurriedHyps R P) (∀ i (x : μ D i) → P i x) elim R P = curryBranches (elimUncurried R P) ---------------------------------------------------------------------- ℕE : Enum ℕE = "zero" ∷ "suc" ∷ [] VecE : Enum VecE = "nil" ∷ "cons" ∷ [] ℕT : Set ℕT = Tag ℕE VecT : Set VecT = Tag VecE zeroT : ℕT zeroT = here sucT : ℕT sucT = there here nilT : VecT nilT = here consT : VecT consT = there here ℕR : Data ℕR = ⊤ , ℕE , End tt , Rec tt (End tt) , tt ℕD : Desc ⊤ ℕD = DataD ℕR ℕ : ⊤ → Set ℕ = μ ℕD zero : ℕ tt zero = init (zeroT , refl) suc : ℕ tt → ℕ tt suc n = init (sucT , n , refl) VecR : (A : Set) → Data VecR A = (ℕ tt) , VecE , End zero , Arg (ℕ tt) (λ n → Arg A λ _ → Rec n (End (suc n))) , tt nilD : (A : Set) → Desc (ℕ tt) nilD A = End zero consD : (A : Set) → Desc (ℕ tt) consD A = Arg (ℕ tt) (λ n → Arg A (λ _ → Rec n (End (suc n)))) VecD : (A : Set) → Desc (ℕ tt) VecD A = DataD (VecR A) Vec : (A : Set) → ℕ tt → Set Vec A = μ (VecD A) NilEl : (A : Set) (n : ℕ tt) → Set NilEl A n = El (nilD A) (Vec A) n ConsEl : (A : Set) → ℕ tt → Set ConsEl A n = El (consD A) (Vec A) n VecEl : (A : Set) → ℕ tt → Set VecEl A n = El (VecD A) (Vec A) n NilHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : NilEl A n) → Set NilHyps A P n xs = Hyps (nilD A) (Vec A) P n xs ConsHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : ConsEl A n) → Set ConsHyps A P n xs = Hyps (consD A) (Vec A) P n xs VecHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (n : ℕ tt) (xs : VecEl A n) → Set VecHyps A P n xs = Hyps (VecD A) (Vec A) P n xs ConsUncurriedHyps : (A : Set) (P : (n : ℕ tt) → Vec A n → Set) (cn : UncurriedEl (consD A) (Vec A)) → Set ConsUncurriedHyps A P cn = UncurriedHyps (consD A) (Vec A) P cn nil : (A : Set) → Vec A zero nil A = init (nilT , refl) cons : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons A n x xs = init (consT , n , x , xs , refl) nil2 : (A : Set) → Vec A zero nil2 A = inj (VecR A) nilT cons2 : (A : Set) (n : ℕ tt) (x : A) (xs : Vec A n) → Vec A (suc n) cons2 A = inj (VecR A) consT ---------------------------------------------------------------------- add : ℕ tt → ℕ tt → ℕ tt add = elim ℕR (λ u n → ℕ tt → ℕ tt) (λ n → n) (λ m ih n → suc (ih n)) tt mult : ℕ tt → ℕ tt → ℕ tt mult = elim ℕR (λ u n → ℕ tt → ℕ tt) (λ n → zero) (λ m ih n → add n (ih n)) tt append : (A : Set) (m : ℕ tt) (xs : Vec A m) (n : ℕ tt) (ys : Vec A n) → Vec A (add m n) append A = elim (VecR A) (λ m xs → (n : ℕ tt) (ys : Vec A n) → Vec A (add m n)) (λ n ys → ys) (λ m x xs ih n ys → cons A (add m n) x (ih n ys)) concat : (A : Set) (m n : ℕ tt) (xss : Vec (Vec A m) n) → Vec A (mult n m) concat A m = elim (VecR (Vec A m)) (λ n xss → Vec A (mult n m)) (nil A) (λ n xs xss ih → append A m xs (mult n m) ih) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4877179081, "avg_line_length": 27.8126721763, "ext": "agda", "hexsha": "5410b96f54d352d393f764de19cc2ec8c587e721", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/Examples/PropLev.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/Examples/PropLev.agda", "max_line_length": 98, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/Examples/PropLev.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 4079, "size": 10096 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Cocomplete.Finitely {o ℓ e} (C : Category o ℓ e) where open import Level open import Categories.Category.Cocartesian C open import Categories.Diagram.Coequalizer C open import Categories.Diagram.Pushout C open import Categories.Diagram.Pushout.Properties C open Category C record FinitelyCocomplete : Set (levelOfTerm C) where field cocartesian : Cocartesian coequalizer : ∀ {A B} (f g : A ⇒ B) → Coequalizer f g module cocartesian = Cocartesian cocartesian module coequalizer {A B} (f g : A ⇒ B) = Coequalizer (coequalizer f g) open cocartesian public pushout : ∀ {X Y Z} (f : X ⇒ Y) (g : X ⇒ Z) → Pushout f g pushout f g = Coproduct×Coequalizer⇒Pushout coproduct (coequalizer _ _) module pushout {X Y Z} (f : X ⇒ Y) (g : X ⇒ Z) = Pushout (pushout f g)
{ "alphanum_fraction": 0.7110352673, "avg_line_length": 30.3103448276, "ext": "agda", "hexsha": "78bf7b40f99a53fe435ac5df79d9f74ab6a42288", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cocomplete/Finitely.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cocomplete/Finitely.agda", "max_line_length": 81, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cocomplete/Finitely.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 276, "size": 879 }
module nodcap.NF.Cut where open import Algebra open import Data.Environment open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ open import Data.List as L using (List; []; _∷_; _++_) open import Data.List.Any as LA using (Any; here; there) open import Data.List.Any.BagAndSetEquality as B open import Data.Product as PR using (∃; _×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; flip) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as I using () open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import nodcap.Base open import nodcap.NF.Typing open import nodcap.NF.Contract open import nodcap.NF.Expand open I.Inverse using (to; from) private module ++ {a} {A : Set a} = Monoid (L.monoid A) {-# TERMINATING #-} -- Theorem: -- Cut elimination. mutual cut : {Γ Δ : Environment} {A : Type} → ⊢ⁿᶠ A ∷ Γ → ⊢ⁿᶠ A ^ ∷ Δ → --------------------- ⊢ⁿᶠ Γ ++ Δ cut {_} {Δ} {A = 𝟏} halt (wait y) = y cut {Γ} {_} {A = ⊥} (wait x) halt = P.subst ⊢ⁿᶠ_ (P.sym (proj₂ ++.identity Γ)) x cut {_} {Θ} {A = A ⊗ B} (send {Γ} {Δ} x y) (recv z) = P.subst ⊢ⁿᶠ_ (P.sym (++.assoc Γ Δ Θ)) $ exch (swp [] Γ Δ) $ cut y $ exch (fwd [] Γ) $ cut x z cut {Θ} {_} {A = A ⅋ B} (recv x) (send {Γ} {Δ} y z) = P.subst ⊢ⁿᶠ_ (++.assoc Θ Γ Δ) $ cut (cut x y) z cut {Γ} {Δ} {A = A ⊕ B} (sel₁ x) (case y z) = cut x y cut {Γ} {Δ} {A = A ⊕ B} (sel₂ x) (case y z) = cut x z cut {Γ} {Δ} {A = A & B} (case x y) (sel₁ z) = cut x z cut {Γ} {Δ} {A = A & B} (case x y) (sel₂ z) = cut y z cut {Γ} {Δ} {A = ![ n ] A} x y = interleaveIn (here P.refl) x (expand y) cut {Γ} {Δ} {A = ?[ n ] A} x y = exch (swp₂ Γ) $ interleaveIn {_ ∷ Δ} {Γ} (here P.refl) y $ P.subst (λ A → ⊢ⁿᶠ replicate⁺ n A ++ Γ) (P.sym $ ^-inv A) $ expand x cut {Γ} {Δ} {A} (exch b x) y = exch (B.++-cong {ys₁ = Δ} (del-from b (here P.refl)) I.id) $ cutIn (from b ⟨$⟩ here P.refl) (here P.refl) x y cut {Γ} {Δ} {A} x (exch b y) = exch (B.++-cong {xs₁ = Γ} I.id (del-from b (here P.refl))) $ cutIn (here P.refl) (from b ⟨$⟩ here P.refl) x y cutIn : {Γ Δ : Environment} {A : Type} (i : A ∈ Γ) (j : A ^ ∈ Δ) → ⊢ⁿᶠ Γ → ⊢ⁿᶠ Δ → ---------------- ⊢ⁿᶠ Γ - i ++ Δ - j cutIn (here P.refl) (here P.refl) x y = cut x y cutIn {_} {Θ} (there i) j (send {Γ} {Δ} x y) z with split Γ i ... | inj₁ (k , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ - k) Δ (Θ - j))) $ exch (swp₃ (_ ∷ Γ - k) Δ) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - k) (Θ - j) Δ) $ flip send y $ cutIn (there k) j x z ... | inj₂ (k , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ) (Δ - k) (Θ - j))) $ send x $ cutIn (there k) j y z cutIn (there i) j (recv x) y = recv $ cutIn (there (there i)) j x y cutIn (there i) j (sel₁ x) y = sel₁ $ cutIn (there i) j x y cutIn (there i) j (sel₂ x) y = sel₂ $ cutIn (there i) j x y cutIn (there i) j (case x y) z = case ( cutIn (there i) j x z ) ( cutIn (there i) j y z ) cutIn (there ()) j halt y cutIn (there i) j (wait x) y = wait $ cutIn i j x y cutIn (there i) j loop y = loop cutIn {Γ} {Δ} (there i) j (mk?₁ x) y = mk?₁ $ cutIn (there i) j x y cutIn {Γ} {Δ} (there i) j (mk!₁ x) y = mk!₁ $ cutIn (there i) j x y cutIn {Γ} {Δ} (there i) j (cont x) y = cont $ cutIn (there (there i)) j x y cutIn {_} {Θ} (there i) j (pool {Γ} {Δ} x y) z with split Γ i ... | inj₁ (k , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ - k) Δ (Θ - j))) $ exch (swp₃ (_ ∷ Γ - k) Δ) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - k) (Θ - j) Δ) $ flip pool y $ cutIn (there k) j x z ... | inj₂ (k , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (_ ∷ Γ) (Δ - k) (Θ - j))) $ pool x $ cutIn (there k) j y z cutIn {Θ} {_} i (there j) x (send {Γ} {Δ} y z) with split Γ j ... | inj₁ (k , p) rewrite p = exch (bwd [] (Θ - i)) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Θ - i) (Γ - k) Δ) $ flip send z $ exch (fwd [] (Θ - i)) $ cutIn i (there k) x y ... | inj₂ (k , p) rewrite p = exch (swp [] (Θ - i) (_ ∷ Γ)) $ send y $ exch (fwd [] (Θ - i)) $ cutIn i (there k) x z cutIn {Γ} i (there j) x (recv {Δ} y) = exch (bwd [] (Γ - i)) $ recv $ exch (swp [] (_ ∷ _ ∷ []) (Γ - i)) $ cutIn i (there (there j)) x y cutIn {Γ} {Δ} i (there j) x (sel₁ y) = exch (bwd [] (Γ - i)) $ sel₁ $ exch (fwd [] (Γ - i)) $ cutIn i (there j) x y cutIn {Γ} {Δ} i (there j) x (sel₂ y) = exch (bwd [] (Γ - i)) $ sel₂ $ exch (fwd [] (Γ - i)) $ cutIn i (there j) x y cutIn {Γ} {Δ} i (there j) x (case y z) = exch (bwd [] (Γ - i)) $ case ( exch (fwd [] (Γ - i)) $ cutIn i (there j) x y ) ( exch (fwd [] (Γ - i)) $ cutIn i (there j) x z ) cutIn {Γ} i (there ()) x halt cutIn {Γ} {Δ} i (there j) x (wait y) = exch (bwd [] (Γ - i)) $ wait $ cutIn i j x y cutIn {Γ} {Δ} i (there j) x loop = exch (bwd [] (Γ - i)) loop cutIn {Γ} {Δ} i (there j) x (mk?₁ y) = exch (bwd [] (Γ - i)) $ mk?₁ $ exch (fwd [] (Γ - i)) $ cutIn i (there j) x y cutIn {Γ} {Δ} i (there j) x (mk!₁ y) = exch (bwd [] (Γ - i)) $ mk!₁ $ exch (fwd [] (Γ - i)) $ cutIn i (there j) x y cutIn {Γ} {Δ} i (there j) x (cont y) = exch (bwd [] (Γ - i)) $ cont $ exch (swp [] (_ ∷ _ ∷ []) (Γ - i)) $ cutIn i (there (there j)) x y cutIn {Θ} {_} i (there j) x (pool {Γ} {Δ} y z) with split Γ j ... | inj₁ (k , p) rewrite p = exch (bwd [] (Θ - i)) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Θ - i) (Γ - k) Δ) $ flip pool z $ exch (fwd [] (Θ - i)) $ cutIn i (there k) x y ... | inj₂ (k , p) rewrite p = exch (swp [] (Θ - i) (_ ∷ Γ)) $ pool y $ exch (fwd [] (Θ - i)) $ cutIn i (there k) x z cutIn {Γ} {Δ} i j (exch b x) y = exch (B.++-cong {ys₁ = Δ - j} (del-from b i ) I.id) $ cutIn (from b ⟨$⟩ i) j x y cutIn {Γ} {Δ} i j x (exch b y) = exch (B.++-cong {xs₁ = Γ - i} I.id (del-from b j)) $ cutIn i (from b ⟨$⟩ j) x y interleaveIn : {Γ Δ : Environment} {A : Type} {n : ℕ⁺} (i : ![ n ] A ∈ Γ) → ⊢ⁿᶠ Γ → ⊢ⁿᶠ replicate⁺ n (A ^) ++ Δ → ----------------------------------------------- ⊢ⁿᶠ Γ - i ++ Δ interleaveIn (here P.refl) (mk!₁ {Γ} x) z = cut x z interleaveIn {._} {Θ} (here P.refl) (pool {Γ} {Δ} {A} {m} {n} x y) z = P.subst ⊢ⁿᶠ_ (P.sym $ ++.assoc Γ Δ Θ) $ interleaveIn (here P.refl) x $ exch (swp [] (replicate⁺ m _) Δ) $ interleaveIn (here P.refl) y $ exch (swp [] (replicate⁺ n _) (replicate⁺ m _)) $ P.subst ⊢ⁿᶠ_ (++.assoc (replicate⁺ m _) (replicate⁺ n _) Θ) $ P.subst (λ Γ → ⊢ⁿᶠ Γ ++ Θ) (P.sym $ replicate⁺-++-commute m n) z interleaveIn {._} {Θ} (there i) (send {Γ} {Δ} {A} {B} x y) z with split Γ i ... | inj₁ (j , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym $ ++.assoc (_ ∷ Γ - j) Δ Θ) $ exch (swp₃ (_ ∷ Γ - j) Δ {Θ}) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - j) Θ Δ) $ flip send y $ interleaveIn (there j) x z ... | inj₂ (j , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym $ ++.assoc (_ ∷ Γ) (Δ - j) Θ) $ send x $ interleaveIn (there j) y z interleaveIn (there i) (recv x) z = recv $ interleaveIn (there (there i)) x z interleaveIn (there i) (sel₁ x) z = sel₁ $ interleaveIn (there i) x z interleaveIn (there i) (sel₂ x) z = sel₂ $ interleaveIn (there i) x z interleaveIn (there i) (case x y) z = case (interleaveIn (there i) x z) (interleaveIn (there i) y z) interleaveIn (there ()) halt z interleaveIn (there i) (wait x) z = wait $ interleaveIn i x z interleaveIn (there i) loop z = loop interleaveIn (there i) (mk?₁ x) z = mk?₁ $ interleaveIn (there i) x z interleaveIn (there i) (mk!₁ x) z = mk!₁ $ interleaveIn (there i) x z interleaveIn (there i) (cont x) z = cont $ interleaveIn (there (there i)) x z interleaveIn {._} {Θ} (there i) (pool {Γ} {Δ} x y) z with split Γ i ... | inj₁ (j , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym $ ++.assoc (_ ∷ Γ - j) Δ Θ) $ exch (swp₃ (_ ∷ Γ - j) Δ {Θ}) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ Γ - j) Θ Δ) $ flip pool y $ interleaveIn (there j) x z ... | inj₂ (j , p) rewrite p = P.subst ⊢ⁿᶠ_ (P.sym $ ++.assoc (_ ∷ Γ) (Δ - j) Θ) $ pool x $ interleaveIn (there j) y z interleaveIn {Γ} {Δ} i (exch b x) z = exch (B.++-cong {ys₁ = Δ} (del-from b i) I.id) $ interleaveIn (from b ⟨$⟩ i) x z -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4814814815, "avg_line_length": 30.816254417, "ext": "agda", "hexsha": "f5aff0dc6d6208c9885533d9936ce6460692a73a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/NF/Cut.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/NF/Cut.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/NF/Cut.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 4010, "size": 8721 }
{-# OPTIONS --without-K --safe #-} open import Algebra open import Data.Bool.Base using (Bool; if_then_else_) open import Function.Base using (_∘_) open import Data.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_]) import Data.Integer.Properties as ℤP open import Data.Integer.DivMod as ℤD open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties as ℕP using (≤-step) import Data.Nat.DivMod as ℕD open import Level using (0ℓ) open import Data.Product open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Nullary.Decidable open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong; sym; subst; trans; ≢-sym) open import Relation.Binary open import Data.Rational.Unnormalised as ℚ using (ℚᵘ; mkℚᵘ; _≢0; _/_; 0ℚᵘ; 1ℚᵘ; ↥_; ↧_; ↧ₙ_) import Data.Rational.Unnormalised.Properties as ℚP open import Algebra.Bundles open import Algebra.Structures open import Data.Empty open import Data.Sum open import Data.Maybe.Base open import RealsRefactored open import Data.List open import Function.Structures {_} {_} {_} {_} {ℕ} _≡_ {ℕ} _≡_ {- The solvers are used and renamed often enough to warrant them being opened up here for the sake of consistency and cleanliness. -} open ℝ-Solver open import NonReflectiveZ as ℤ-Solver using () renaming ( solve to ℤsolve ; _⊕_ to _:+_ ; _⊗_ to _:*_ ; _⊖_ to _:-_ ; ⊝_ to :-_ ; _⊜_ to _:=_ ; Κ to ℤΚ ) open import NonReflectiveQ as ℚ-Solver using () renaming ( solve to ℚsolve ; _⊕_ to _+:_ ; _⊗_ to _*:_ ; _⊖_ to _-:_ ; ⊝_ to -:_ ; _⊜_ to _=:_ ; Κ to ℚΚ ) open ℚᵘ open ℝ --∀k∈ℕ ∃Nₖ∈ℕ ∀n≥Nₖ ∣ fₙ - x₀ ∣ ≤ k⁻¹ data _ConvergesTo_ : REL (ℕ -> ℝ) ℝ 0ℓ where con* : {f : ℕ -> ℝ} -> {x₀ : ℝ} -> (∀ k -> {k≢0 : k ≢0} -> ∃ λ Nₖ-1 -> (∀ n -> n ℕ.≥ suc (Nₖ-1) -> ∣ f n - x₀ ∣ ≤ ((+ 1 / k) {k≢0}) ⋆)) -> f ConvergesTo x₀ _isConvergent : (ℕ -> ℝ) -> Set f isConvergent = ∃ λ x₀ -> f ConvergesTo x₀ ∣p∣⋆≃∣p⋆∣ : ∀ p -> ℚ.∣ p ∣ ⋆ ≃ ∣ p ⋆ ∣ ∣p∣⋆≃∣p⋆∣ p = ≃-reflexive (λ {n -> ℚP.≃-refl}) p≤q+j⁻¹⇒p≤q : ∀ {p q} -> (∀ j -> {j≢0 : j ≢0} -> p ℚ.≤ q ℚ.+ (+ 1 / j) {j≢0}) -> p ℚ.≤ q p≤q+j⁻¹⇒p≤q {p} {q} hyp = p-q≤j⁻¹⇒p≤q (λ {(suc j-1) -> let j = suc j-1 in begin p ℚ.- q ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- q) (hyp j) ⟩ q ℚ.+ + 1 / j ℚ.- q ≈⟨ ℚsolve 2 (λ q j⁻¹ -> (q +: j⁻¹ -: q) =: j⁻¹) ℚP.≃-refl q (+ 1 / j) ⟩ + 1 / j ∎}) where open ℚP.≤-Reasoning {- Useful for escaping the "metal" of the reals. -} ∣x-y∣≤k⁻¹⇒x≃y : ∀ x y -> (∀ (k : ℕ) -> {k≢0 : k ≢0} -> ∣ x - y ∣ ≤ ((+ 1 / k) {k≢0}) ⋆) -> x ≃ y ∣x-y∣≤k⁻¹⇒x≃y x y hyp = *≃* λ {(suc n-1) -> p≤q+j⁻¹⇒p≤q (λ {(suc j-1) -> let n = suc n-1; j = suc j-1; xₙ = seq x n; yₙ = seq y n in p⋆≤q⋆⇒p≤q ℚ.∣ xₙ ℚ.- yₙ ∣ (+ 2 / n ℚ.+ + 1 / j) (begin ℚ.∣ xₙ ℚ.- yₙ ∣ ⋆ ≈⟨ ≃-trans (∣p∣⋆≃∣p⋆∣ (xₙ ℚ.- yₙ)) (∣-∣-cong (⋆-distrib-to-p⋆-q⋆ xₙ yₙ)) ⟩ ∣ xₙ ⋆ - yₙ ⋆ ∣ ≈⟨ ∣-∣-cong (solve 4 (λ x y xₙ yₙ -> (xₙ ⊖ yₙ) ⊜ ((xₙ ⊖ x) ⊕ (y ⊖ yₙ) ⊕ (x ⊖ y))) ≃-refl x y (xₙ ⋆) (yₙ ⋆)) ⟩ ∣ (xₙ ⋆ - x) + (y - yₙ ⋆) + (x - y) ∣ ≤⟨ ≤-trans (∣x+y∣≤∣x∣+∣y∣ ((xₙ ⋆ - x) + (y - yₙ ⋆)) (x - y)) (+-monoˡ-≤ ∣ x - y ∣ (∣x+y∣≤∣x∣+∣y∣ (xₙ ⋆ - x) (y - yₙ ⋆))) ⟩ ∣ xₙ ⋆ - x ∣ + ∣ y - yₙ ⋆ ∣ + ∣ x - y ∣ ≤⟨ +-mono-≤ (+-mono-≤ (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ x (xₙ ⋆)) (lemma-2-14 x n)) (lemma-2-14 y n)) (hyp j) ⟩ (+ 1 / n) ⋆ + (+ 1 / n) ⋆ + (+ 1 / j) ⋆ ≈⟨ solve 0 ((Κ (+ 1 / n) ⊕ Κ (+ 1 / n) ⊕ Κ (+ 1 / j)) ⊜ Κ (+ 1 / n ℚ.+ + 1 / n ℚ.+ + 1 / j)) ≃-refl ⟩ (+ 1 / n ℚ.+ + 1 / n ℚ.+ + 1 / j) ⋆ ≈⟨ ⋆-cong (ℚP.+-congˡ (+ 1 / j) {+ 1 / n ℚ.+ + 1 / n} {+ 2 / n} (ℚ.*≡* (ℤsolve 1 (λ n -> (ℤΚ (+ 1) :* n :+ ℤΚ (+ 1) :* n) :* n := ℤΚ (+ 2) :* (n :* n)) refl (+ n)))) ⟩ (+ 2 / n ℚ.+ + 1 / j) ⋆ ∎)})} where open ≤-Reasoning xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ : ∀ {xs ys : ℕ -> ℝ} -> (∀ n -> {n ≢0} -> xs n ≃ ys n) -> (x→x₀ : xs isConvergent) -> ys ConvergesTo proj₁ x→x₀ xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ {xs} {ys} xₙ≃yₙ (x₀ , con* x→x₀) = con* (λ {(suc k-1) -> let k = suc k-1 in proj₁ (x→x₀ k) , λ {(suc n-1) n≥N -> let n = suc n-1 in begin ∣ ys n - x₀ ∣ ≈⟨ ∣-∣-cong (+-congˡ (- x₀) (≃-symm (xₙ≃yₙ n))) ⟩ ∣ xs n - x₀ ∣ ≤⟨ proj₂ (x→x₀ k) n n≥N ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning xₙ→x∧x≃y⇒xₙ→y : ∀ {xs : ℕ -> ℝ} -> ∀ {x y : ℝ} -> xs ConvergesTo x -> x ≃ y -> xs ConvergesTo y xₙ→x∧x≃y⇒xₙ→y {xs} {x} {y} (con* xₙ→x) x≃y = con* (λ {(suc k-1) -> let k = suc k-1; Nₖ = suc (proj₁ (xₙ→x k)) in ℕ.pred Nₖ , λ n n≥Nₖ -> begin ∣ xs n - y ∣ ≈⟨ ∣-∣-cong (+-congʳ (xs n) (-‿cong (≃-symm x≃y))) ⟩ ∣ xs n - x ∣ ≤⟨ proj₂ (xₙ→x k) n n≥Nₖ ⟩ (+ 1 / k) ⋆ ∎}) where open ≤-Reasoning uniqueness-of-limits : ∀ {f : ℕ -> ℝ} -> ∀ {x y : ℝ} -> f ConvergesTo x -> f ConvergesTo y -> x ≃ y uniqueness-of-limits {f} {x} {y} (con* f→x) (con* f→y) = ∣x-y∣≤k⁻¹⇒x≃y x y (λ {(suc k-1) -> let k = suc k-1; N₁ = suc (proj₁ (f→x (2 ℕ.* k))); N₂ = suc (proj₁ ((f→y (2 ℕ.* k)))) ; N = N₁ ℕ.⊔ N₂ in begin ∣ x - y ∣ ≈⟨ ∣-∣-cong (solve 3 (λ x y fN -> (x ⊖ y) ⊜ ((x ⊖ fN) ⊕ (fN ⊖ y))) ≃-refl x y (f N)) ⟩ ∣ (x - f N) + (f N - y) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (x - f N) (f N - y) ⟩ ∣ x - f N ∣ + ∣ f N - y ∣ ≤⟨ +-mono-≤ (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (f N) x) (proj₂ (f→x (2 ℕ.* k)) N (ℕP.m≤m⊔n N₁ N₂))) (proj₂ (f→y (2 ℕ.* k)) N (ℕP.m≤n⊔m N₁ N₂)) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k)))) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k)) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k)))) ⟩ (+ 1 / k) ⋆ ∎}) where open ≤-Reasoning data _hasBound_ : REL (ℕ -> ℝ) ℝ 0ℓ where bound* : {f : ℕ -> ℝ} -> {r : ℝ} -> (∀ n -> {n ≢0} -> ∣ f n ∣ ≤ r) -> f hasBound r _isBounded : (ℕ -> ℝ) -> Set f isBounded = ∃ λ r -> f hasBound r {- Taking the max over a sequence instead of over a list for convenience. It seems to make it easier to take the max over a list of a variable length n, since I don't think we can write x₁ :: x₂ :: ... :: xₙ :: nil in Agda. For an example of this, see the convergent⇒bounded proof, particularly the part where M is defined. -} max : (ℕ -> ℝ) -> (n : ℕ) -> {n ≢0} -> ℝ max f 1 = f 1 max f (suc (suc n-2)) = max f (suc n-2) ⊔ f (suc (suc n-2)) m≤n⇒maxfm≤maxfn : ∀ (f : ℕ -> ℝ) -> ∀ m n -> {m≢0 : m ≢0} -> {n≢0 : n ≢0} -> m ℕ.≤ n -> max f m {m≢0} ≤ max f n {n≢0} m≤n⇒maxfm≤maxfn f (suc m-1) (suc n-1) m≤n with ≤⇒≡∨< (suc m-1) (suc n-1) m≤n ... | inj₁ refl = ≤-refl ... | inj₂ (ℕ.s≤s m-1<n-1) = ≤-trans (m≤n⇒maxfm≤maxfn f (suc m-1) n-1 {_} {n-1≢0} m-1<n-1) (lem n-1 {n-1≢0}) where n-1≢0 : n-1 ≢0 n-1≢0 = 0<n⇒n≢0 n-1 (ℕP.<-transˡ (ℕP.0<1+n {m-1}) m-1<n-1) lem : ∀ k -> {k≢0 : k ≢0} -> max f k {k≢0} ≤ max f (suc k) lem 1 = x≤x⊔y (f 1) (f 2) lem (suc (suc k-2)) = let k-1 = suc k-2; k = suc k-1; k+1 = suc k in x≤x⊔y (max f k-1 ⊔ f k) (f k+1) max-property : ∀ (f : ℕ -> ℝ) -> ∀ m n -> {m ≢0} -> {n≢0 : n ≢0} -> m ℕ.≤ n -> f m ≤ max f n {n≢0} max-property f (suc m-1) (suc n-1) m≤n = ≤-trans (lem (suc m-1)) (m≤n⇒maxfm≤maxfn f (suc m-1) (suc n-1) m≤n) where lem : ∀ k -> {k≢0 : k ≢0} -> f k ≤ max f k {k≢0} lem 1 = ≤-refl lem (suc (suc k-2)) = x≤y⊔x (f (suc (suc k-2))) (max f (suc k-2)) convergent⇒bounded : ∀ {f : ℕ -> ℝ} -> f isConvergent -> f isBounded convergent⇒bounded {f} (x₀ , con* f→x₀) = M , bound* (λ {(suc n-1) -> let n = suc n-1 in [ (λ N≤n -> ≤-trans (lem n N≤n) (x≤y⊔x (1ℝ + ∣ x₀ ∣) (max ∣f∣ N))) , (λ n≤N -> ≤-trans (max-property ∣f∣ n N n≤N) (x≤x⊔y (max ∣f∣ N) (1ℝ + ∣ x₀ ∣))) ]′ (ℕP.≤-total N n)}) where open ≤-Reasoning ∣f∣ = λ n -> ∣ f n ∣ N = suc (proj₁ (f→x₀ 1)) M = max ∣f∣ N ⊔ (1ℝ + ∣ x₀ ∣) lem : ∀ n -> N ℕ.≤ n -> ∣ f n ∣ ≤ 1ℝ + ∣ x₀ ∣ lem (suc n-1) N≤n = let n = suc n-1 in begin ∣ f n ∣ ≈⟨ ∣-∣-cong (solve 2 (λ fn x₀ -> fn ⊜ (fn ⊖ x₀ ⊕ x₀)) ≃-refl (f n) x₀) ⟩ ∣ f n - x₀ + x₀ ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (f n - x₀) x₀ ⟩ ∣ f n - x₀ ∣ + ∣ x₀ ∣ ≤⟨ +-monoˡ-≤ ∣ x₀ ∣ (proj₂ (f→x₀ 1) n N≤n) ⟩ 1ℝ + ∣ x₀ ∣ ∎ data _isCauchy : (ℕ -> ℝ) -> Set where cauchy* : {f : ℕ -> ℝ} -> (∀ k -> {k≢0 : k ≢0} -> ∃ λ Mₖ-1 -> ∀ m n -> m ℕ.≥ suc Mₖ-1 -> n ℕ.≥ suc Mₖ-1 -> ∣ f m - f n ∣ ≤ (+ 1 / k) {k≢0} ⋆) -> f isCauchy convergent⇒cauchy : ∀ {f : ℕ -> ℝ} -> f isConvergent -> f isCauchy convergent⇒cauchy {f} (x₀ , con* f→x₀) = cauchy* (λ {(suc k-1) -> let k = suc k-1; N₂ₖ = suc (proj₁ (f→x₀ (2 ℕ.* k))); Mₖ = suc N₂ₖ in ℕ.pred Mₖ , λ {(suc m-1) (suc n-1) m≥Mₖ n≥Mₖ -> let m = suc m-1 ; n = suc n-1 in begin ∣ f m - f n ∣ ≈⟨ ∣-∣-cong (solve 3 (λ fm fn x₀ -> (fm ⊖ fn) ⊜ (fm ⊖ x₀ ⊕ (x₀ ⊖ fn))) ≃-refl (f m) (f n) x₀) ⟩ ∣ f m - x₀ + (x₀ - f n) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (f m - x₀) (x₀ - f n) ⟩ ∣ f m - x₀ ∣ + ∣ x₀ - f n ∣ ≤⟨ +-mono-≤ (proj₂ (f→x₀ (2 ℕ.* k)) m (ℕP.≤-trans (ℕP.n≤1+n N₂ₖ) m≥Mₖ)) (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (f n) x₀) (proj₂ (f→x₀ (2 ℕ.* k)) n (ℕP.≤-trans (ℕP.n≤1+n N₂ₖ) n≥Mₖ))) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k)))) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k)) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k)))) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning cauchy⇒convergent : ∀ {f : ℕ -> ℝ} -> f isCauchy -> f isConvergent cauchy⇒convergent {f} (cauchy* fCauchy) = y , f→y where open ≤-Reasoning N : ℕ -> ℕ N k-1 = let k = suc k-1; M₂ₖ = suc (proj₁ (fCauchy (2 ℕ.* k))) in suc ((3 ℕ.* k) ℕ.⊔ M₂ₖ) Nₖ-prop : ∀ k-1 -> ∀ m n -> m ℕ.≥ N k-1 -> n ℕ.≥ N k-1 -> ∣ f m - f n ∣ ≤ (+ 1 / (2 ℕ.* (suc k-1))) ⋆ Nₖ-prop k-1 = λ {(suc m-1) (suc n-1) m≥N n≥N -> let k = suc k-1; m = suc m-1; n = suc n-1; M₂ₖ = suc (proj₁ (fCauchy (2 ℕ.* k))) in proj₂ (fCauchy (2 ℕ.* k)) m n (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (3 ℕ.* k) M₂ₖ) (ℕP.n≤1+n ((3 ℕ.* k) ℕ.⊔ M₂ₖ))) m≥N) (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (3 ℕ.* k) M₂ₖ) (ℕP.n≤1+n ((3 ℕ.* k) ℕ.⊔ M₂ₖ))) n≥N)} ys : (k : ℕ) -> {k ≢0} -> ℚᵘ ys (suc k-1) = let k = suc k-1 in seq (f (N k-1)) (2 ℕ.* k) helper : ∀ k-1 -> (+ 1 / (2 ℕ.* (suc k-1))) ⋆ + (+ 1 / (2 ℕ.* (suc k-1))) ⋆ ≃ (+ 1 / (suc k-1)) ⋆ helper k-1 = let k = suc k-1 in begin-equality (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k))) ⟩ (+ 1 / (2 ℕ.* k) ℚ.+ + 1 / (2 ℕ.* k)) ⋆ ≈⟨ ⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k))) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k))) ⟩ (+ 1 / k) ⋆ ∎ helper2 : ∀ m-1 n-1 -> ∣ f (N m-1) - f (N n-1) ∣ ≤ (+ 1 / (2 ℕ.* (suc m-1)) ℚ.+ + 1 / (2 ℕ.* (suc n-1))) ⋆ helper2 m-1 n-1 = [ left , right ]′ (ℕP.≤-total (N m-1) (N n-1)) where m = suc m-1 n = suc n-1 left : N m-1 ℕ.≤ N n-1 -> ∣ f (N m-1) - f (N n-1) ∣ ≤ (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) ⋆ left Nₘ≤Nₙ = begin ∣ f (N m-1) - f (N n-1) ∣ ≤⟨ Nₖ-prop m-1 (N m-1) (N n-1) ℕP.≤-refl Nₘ≤Nₙ ⟩ (+ 1 / (2 ℕ.* m)) ⋆ ≤⟨ p≤q⇒p⋆≤q⋆ (+ 1 / (2 ℕ.* m)) (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) (ℚP.≤-respˡ-≃ (ℚP.+-identityʳ (+ 1 / (2 ℕ.* m))) (ℚP.+-monoʳ-≤ (+ 1 / (2 ℕ.* m)) {0ℚᵘ} {+ 1 / (2 ℕ.* n)} (ℚP.nonNegative⁻¹ _))) ⟩ (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) ⋆ ∎ right : N n-1 ℕ.≤ N m-1 -> ∣ f (N m-1) - f (N n-1) ∣ ≤ (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) ⋆ right Nₙ≤Nₘ = begin ∣ f (N m-1) - f (N n-1) ∣ ≈⟨ ∣x-y∣≃∣y-x∣ (f (N m-1)) (f (N n-1)) ⟩ ∣ f (N n-1) - f (N m-1) ∣ ≤⟨ Nₖ-prop n-1 (N n-1) (N m-1) ℕP.≤-refl Nₙ≤Nₘ ⟩ (+ 1 / (2 ℕ.* n)) ⋆ ≤⟨ p≤q⇒p⋆≤q⋆ (+ 1 / (2 ℕ.* n)) (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) (ℚP.≤-respˡ-≃ (ℚP.+-identityˡ (+ 1 / (2 ℕ.* n))) (ℚP.+-monoˡ-≤ (+ 1 / (2 ℕ.* n)) {0ℚᵘ} {+ 1 / (2 ℕ.* m)} (ℚP.nonNegative⁻¹ _))) ⟩ (+ 1 / (2 ℕ.* m) ℚ.+ + 1 / (2 ℕ.* n)) ⋆ ∎ y : ℝ seq y 0 = 0ℚᵘ seq y (suc k-1) = ys (suc k-1) reg y = regular-n≤m (seq y) (λ {(suc m-1) (suc n-1) n≤m -> let m = suc m-1; n = suc n-1 in p⋆≤q⋆⇒p≤q ℚ.∣ ys m ℚ.- ys n ∣ (+ 1 / m ℚ.+ + 1 / n) (begin ℚ.∣ ys m ℚ.- ys n ∣ ⋆ ≈⟨ ≃-trans (∣p∣⋆≃∣p⋆∣ (ys m ℚ.- ys n)) (∣-∣-cong (⋆-distrib-to-p⋆-q⋆ (ys m) (ys n))) ⟩ ∣ ys m ⋆ - ys n ⋆ ∣ ≈⟨ ∣-∣-cong (solve 4 (λ yₘ yₙ fm-1 fn-1 -> yₘ ⊖ yₙ ⊜ yₘ ⊖ fm-1 ⊕ (fm-1 ⊖ fn-1) ⊕ (fn-1 ⊖ yₙ)) ≃-refl (ys m ⋆) (ys n ⋆) (f (N m-1)) (f (N n-1))) ⟩ ∣ (ys m ⋆ - f (N m-1)) + (f (N m-1) - f (N n-1)) + (f (N n-1) - ys n ⋆) ∣ ≤⟨ ≤-trans (∣x+y∣≤∣x∣+∣y∣ ((ys m ⋆ - f (N m-1)) + (f (N m-1) - f (N n-1))) (f (N n-1) - ys n ⋆)) (+-monoˡ-≤ ∣ f (N n-1) - ys n ⋆ ∣ (∣x+y∣≤∣x∣+∣y∣ (ys m ⋆ - f (N m-1)) (f (N m-1) - f (N n-1)))) ⟩ ∣ ys m ⋆ - f (N m-1) ∣ + ∣ f (N m-1) - f (N n-1) ∣ + ∣ f (N n-1) - ys n ⋆ ∣ ≤⟨ +-mono-≤ (+-mono-≤ (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (f (N m-1)) (ys m ⋆)) (lemma-2-14 (f (N m-1)) (2 ℕ.* m))) (≤-respʳ-≃ (⋆-distrib-+ (+ 1 / (2 ℕ.* m)) (+ 1 / (2 ℕ.* n))) (helper2 m-1 n-1))) (lemma-2-14 (f (N n-1)) (2 ℕ.* n)) ⟩ (+ 1 / (2 ℕ.* m)) ⋆ + ((+ 1 / (2 ℕ.* m)) ⋆ + (+ 1 / (2 ℕ.* n)) ⋆) + (+ 1 / (2 ℕ.* n)) ⋆ ≈⟨ solve 2 (λ m n -> (m ⊕ (m ⊕ n) ⊕ n) ⊜ ((m ⊕ m) ⊕ (n ⊕ n))) ≃-refl ((+ 1 / (2 ℕ.* m)) ⋆) ((+ 1 / (2 ℕ.* n)) ⋆) ⟩ (+ 1 / (2 ℕ.* m)) ⋆ + (+ 1 / (2 ℕ.* m)) ⋆ + ((+ 1 / (2 ℕ.* n)) ⋆ + (+ 1 / (2 ℕ.* n)) ⋆) ≈⟨ +-cong (helper m-1) (helper n-1) ⟩ (+ 1 / m) ⋆ + (+ 1 / n) ⋆ ≈⟨ ≃-symm (⋆-distrib-+ (+ 1 / m) (+ 1 / n)) ⟩ (+ 1 / m ℚ.+ + 1 / n) ⋆ ∎)}) f→y : f ConvergesTo y f→y = con* (λ {(suc k-1) -> ℕ.pred (N k-1) , λ {(suc n-1) n≥Nₖ -> let k = suc k-1; n = suc n-1 ; n≥3k = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n (3 ℕ.* k) (suc (proj₁ (fCauchy (2 ℕ.* k))))) (ℕP.n≤1+n (ℕ.pred (N k-1)))) n≥Nₖ in begin ∣ f n - y ∣ ≈⟨ ∣-∣-cong (solve 4 (λ fn y yₙ fn-1 -> fn ⊖ y ⊜ yₙ ⊖ y ⊕ (fn-1 ⊖ yₙ) ⊕ (fn ⊖ fn-1)) ≃-refl (f n) y (ys n ⋆) (f (N n-1))) ⟩ ∣ (ys n ⋆ - y) + (f (N n-1) - ys n ⋆) + (f n - f (N n-1)) ∣ ≤⟨ ≤-trans (∣x+y∣≤∣x∣+∣y∣ ((ys n ⋆ - y) + (f (N n-1) - ys n ⋆)) (f n - f (N n-1))) (+-monoˡ-≤ ∣ f n - f (N n-1) ∣ (∣x+y∣≤∣x∣+∣y∣ (ys n ⋆ - y) (f (N n-1) - ys n ⋆))) ⟩ ∣ ys n ⋆ - y ∣ + ∣ f (N n-1) - ys n ⋆ ∣ + ∣ f n - f (N n-1) ∣ ≤⟨ +-mono-≤ (+-mono-≤ (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ y (ys n ⋆)) (lemma-2-14 y n)) (lemma-2-14 (f (N n-1)) (2 ℕ.* n))) (Nₖ-prop k-1 n (N n-1) n≥Nₖ (ℕP.≤-trans (ℕP.≤-trans n≥Nₖ (ℕP.m≤n*m n {3} ℕP.0<1+n)) (ℕP.≤-trans (ℕP.m≤m⊔n (3 ℕ.* n) (suc (proj₁ (fCauchy (2 ℕ.* n))))) (ℕP.n≤1+n (ℕ.pred (N n-1)))))) ⟩ (+ 1 / n) ⋆ + (+ 1 / (2 ℕ.* n)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ solve 0 (Κ (+ 1 / n) ⊕ Κ (+ 1 / (2 ℕ.* n)) ⊕ Κ (+ 1 / (2 ℕ.* k)) ⊜ Κ (+ 1 / n ℚ.+ + 1 / (2 ℕ.* n) ℚ.+ + 1 / (2 ℕ.* k))) ≃-refl ⟩ (+ 1 / n ℚ.+ + 1 / (2 ℕ.* n) ℚ.+ + 1 / (2 ℕ.* k)) ⋆ ≤⟨ p≤q⇒p⋆≤q⋆ _ _ (ℚP.+-monoˡ-≤ (+ 1 / (2 ℕ.* k)) (ℚP.+-mono-≤ (q≤r⇒+p/r≤+p/q 1 (3 ℕ.* k) n n≥3k) (q≤r⇒+p/r≤+p/q 1 (2 ℕ.* (3 ℕ.* k)) (2 ℕ.* n) (ℕP.*-monoʳ-≤ 2 n≥3k)))) ⟩ (+ 1 / (3 ℕ.* k) ℚ.+ + 1 / (2 ℕ.* (3 ℕ.* k)) ℚ.+ + 1 / (2 ℕ.* k)) ⋆ ≈⟨ ⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> ((ℤΚ (+ 1) :* (ℤΚ (+ 2) :* (ℤΚ (+ 3) :* k)) :+ ℤΚ (+ 1) :* (ℤΚ (+ 3) :* k)) :* (ℤΚ (+ 2) :* k) :+ (ℤΚ (+ 1) :* (ℤΚ (+ 3) :* k :* (ℤΚ (+ 2) :* (ℤΚ (+ 3) :* k))))) :* k := ℤΚ (+ 1) :* ((ℤΚ (+ 3) :* k :* (ℤΚ (+ 2) :* (ℤΚ (+ 3) :* k))) :* (ℤΚ (+ 2) :* k))) refl (+ k))) ⟩ (+ 1 / k) ⋆ ∎}}) abstract fast-convergent⇒cauchy : ∀ {f : ℕ -> ℝ} -> f isConvergent -> f isCauchy fast-convergent⇒cauchy = convergent⇒cauchy fast-cauchy⇒convergent : ∀ {f : ℕ -> ℝ} -> f isCauchy -> f isConvergent fast-cauchy⇒convergent = cauchy⇒convergent xₙ+yₙ→x₀+y₀ : ∀ {xs ys : ℕ -> ℝ} -> (xₙ→x₀ : xs isConvergent) -> (yₙ→y₀ : ys isConvergent) -> (λ n -> xs n + ys n) ConvergesTo (proj₁ xₙ→x₀ + proj₁ yₙ→y₀) xₙ+yₙ→x₀+y₀ {xs} {ys} (x₀ , con* xₙ→x₀) (y₀ , con* yₙ→y₀) = con* (λ {(suc k-1) -> let k = suc k-1; N₁ = suc (proj₁ (xₙ→x₀ (2 ℕ.* k))); N₂ = suc (proj₁ (yₙ→y₀ (2 ℕ.* k))); N = N₁ ℕ.⊔ N₂ in ℕ.pred N , λ {(suc n-1) N≤n -> let n = suc n-1; xₙ = xs n; yₙ = ys n in begin ∣ xₙ + yₙ - (x₀ + y₀) ∣ ≈⟨ ∣-∣-cong (solve 4 (λ xₙ yₙ x₀ y₀ -> xₙ ⊕ yₙ ⊖ (x₀ ⊕ y₀) ⊜ xₙ ⊖ x₀ ⊕ (yₙ ⊖ y₀)) ≃-refl xₙ yₙ x₀ y₀) ⟩ ∣ xₙ - x₀ + (yₙ - y₀) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (xₙ - x₀) (yₙ - y₀) ⟩ ∣ xₙ - x₀ ∣ + ∣ yₙ - y₀ ∣ ≤⟨ +-mono-≤ (proj₂ (xₙ→x₀ (2 ℕ.* k)) n (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) N≤n)) (proj₂ (yₙ→y₀ (2 ℕ.* k)) n (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) N≤n)) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k)))) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k)) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k)))) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning x≤Kx : ∀ x -> x ≤ (+ K x / 1) ⋆ x≤Kx x = nonNeg* (λ {(suc n-1) -> let n = suc n-1 in begin ℚ.- (+ 1 / n) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ <⟨ p<q⇒0<q-p ℚ.∣ seq x (2 ℕ.* n) ∣ (+ K x / 1) (canonical-strict-upper-bound x (2 ℕ.* n)) ⟩ + K x / 1 ℚ.- ℚ.∣ seq x (2 ℕ.* n) ∣ ≤⟨ ℚP.+-monoʳ-≤ (+ K x / 1) ( ℚP.neg-mono-≤ (p≤∣p∣ (seq x (2 ℕ.* n)))) ⟩ + K x / 1 ℚ.- seq x (2 ℕ.* n) ∎}) where open ℚP.≤-Reasoning -- The Archimedean property archimedean-ℝ : ∀ x -> ∃ λ (n-1 : ℕ) -> (+ (suc n-1) / 1) ⋆ > x archimedean-ℝ x = K x , (begin-strict x <⟨ <-respˡ-≃ (+-identityˡ x) (+-monoˡ-< x (p<q⇒p⋆<q⋆ 0ℚᵘ 1ℚᵘ (ℚ.*<* (ℤ.+<+ ℕP.0<1+n)))) ⟩ 1ℝ + x ≤⟨ +-monoʳ-≤ 1ℝ (x≤Kx x) ⟩ 1ℝ + (+ K x / 1) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ 1ℚᵘ (+ K x / 1))) (⋆-cong (ℚP.≃-reflexive (ℚP./-cong (cong (λ r -> + 1 ℤ.+ r) (ℤP.*-identityʳ (+ K x))) refl _ _))) ⟩ (+ (suc (K x)) / 1) ⋆ ∎) where open ≤-Reasoning abstract fast-archimedean-ℝ : ∀ x -> ∃ λ (n-1 : ℕ) -> (+ (suc n-1) / 1) ⋆ > x fast-archimedean-ℝ = archimedean-ℝ bound⇒boundℕ : ∀ {f : ℕ -> ℝ} -> f isBounded -> ∃ λ (M-1 : ℕ) -> ∀ (n : ℕ) -> {n ≢0} -> ∣ f n ∣ < (+ suc (M-1) / 1) ⋆ bound⇒boundℕ {f} (r , (bound* ∣f∣≤r)) = let M = suc (proj₁ (archimedean-ℝ r)) in ℕ.pred M , λ {(suc n-1) -> let n = suc n-1 in begin-strict ∣ f n ∣ ≤⟨ ∣f∣≤r n ⟩ r <⟨ proj₂ (archimedean-ℝ r) ⟩ (+ M / 1) ⋆ ∎} where open ≤-Reasoning *-mono-≤ : ∀ {x y z w} -> NonNegative x -> NonNegative z -> x ≤ y -> z ≤ w -> x * z ≤ y * w *-mono-≤ {x} {y} {z} {w} nonx nonz x≤y z≤w = begin x * z ≤⟨ *-monoˡ-≤-nonNeg z≤w nonx ⟩ x * w ≤⟨ *-monoʳ-≤-nonNeg x≤y (0≤x⇒nonNegx (≤-trans (nonNegx⇒0≤x nonz) z≤w)) ⟩ y * w ∎ where open ≤-Reasoning -xₙ→-x₀ : ∀ {xs : ℕ -> ℝ} -> (x→x₀ : xs isConvergent) -> (λ n -> - xs n) ConvergesTo (- (proj₁ x→x₀)) -xₙ→-x₀ {xs} (x₀ , con* x→x₀) = con* (λ {(suc k-1) -> let k = suc k-1 in proj₁ (x→x₀ k) , λ {(suc n-1) n≥N -> let n = suc n-1 in begin ∣ - xs n - (- x₀) ∣ ≈⟨ ∣-∣-cong (solve 2 (λ xₙ x₀ -> ⊝ xₙ ⊖ (⊝ x₀) ⊜ ⊝ (xₙ ⊖ x₀)) ≃-refl (xs n) x₀) ⟩ ∣ - (xs n - x₀) ∣ ≈⟨ ∣-x∣≃∣x∣ ⟩ ∣ xs n - x₀ ∣ ≤⟨ proj₂ (x→x₀ k) n n≥N ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning xₙyₙ→x₀y₀ : ∀ {xs ys : ℕ -> ℝ} -> (xₙ→x₀ : xs isConvergent) -> (yₙ→y₀ : ys isConvergent) -> (λ n -> (xs n * ys n)) ConvergesTo (proj₁ xₙ→x₀ * proj₁ yₙ→y₀) xₙyₙ→x₀y₀ {xs} {ys} (x₀ , con* xₙ→x₀) (y₀ , con* yₙ→y₀) = con* (λ {(suc k-1) -> let k = suc k-1; archy₀ = archimedean-ℝ ∣ y₀ ∣; N₁ = suc (proj₁ archy₀); boundxₙ = bound⇒boundℕ (convergent⇒bounded (x₀ , con* xₙ→x₀)) ; N₂ = suc (proj₁ boundxₙ); m = N₁ ℕ.⊔ N₂; M₁ = suc (proj₁ (xₙ→x₀ (2 ℕ.* m ℕ.* k))); M₂ = suc (proj₁ (yₙ→y₀ (2 ℕ.* m ℕ.* k))) ; Mₖ = M₁ ℕ.⊔ M₂ in ℕ.pred Mₖ , λ {(suc n-1) n≥Mₖ -> let n = suc n-1; xₙ = xs (suc n-1); yₙ = ys (suc n-1) in begin ∣ xₙ * yₙ - x₀ * y₀ ∣ ≈⟨ ∣-∣-cong (solve 4 (λ xₙ yₙ x₀ y₀ -> xₙ ⊗ yₙ ⊖ x₀ ⊗ y₀ ⊜ xₙ ⊗ yₙ ⊕ xₙ ⊗ (⊝ y₀) ⊕ (xₙ ⊗ y₀ ⊖ x₀ ⊗ y₀)) ≃-refl xₙ yₙ x₀ y₀) ⟩ ∣ xₙ * yₙ + xₙ * (- y₀) + (xₙ * y₀ - x₀ * y₀) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (xₙ * yₙ + xₙ * (- y₀)) (xₙ * y₀ - x₀ * y₀) ⟩ ∣ xₙ * yₙ + xₙ * (- y₀) ∣ + ∣ xₙ * y₀ - x₀ * y₀ ∣ ≈⟨ ≃-symm (+-cong (∣-∣-cong (*-distribˡ-+ xₙ yₙ (- y₀))) (∣-∣-cong (solve 3 (λ xₙ x₀ y₀ -> (xₙ ⊖ x₀) ⊗ y₀ ⊜ xₙ ⊗ y₀ ⊖ x₀ ⊗ y₀) ≃-refl xₙ x₀ y₀))) ⟩ ∣ xₙ * (yₙ - y₀) ∣ + ∣ (xₙ - x₀) * y₀ ∣ ≈⟨ +-cong (∣x*y∣≃∣x∣*∣y∣ xₙ (yₙ - y₀)) (≃-trans (∣x*y∣≃∣x∣*∣y∣ (xₙ - x₀) y₀) (*-comm ∣ xₙ - x₀ ∣ ∣ y₀ ∣)) ⟩ ∣ xₙ ∣ * ∣ yₙ - y₀ ∣ + ∣ y₀ ∣ * ∣ xₙ - x₀ ∣ ≤⟨ +-mono-≤ {∣ xₙ ∣ * ∣ yₙ - y₀ ∣} {(+ m / 1) ⋆ * (+ 1 / (2 ℕ.* m ℕ.* k)) ⋆} {∣ y₀ ∣ * ∣ xₙ - x₀ ∣} {(+ m / 1) ⋆ * (+ 1 / (2 ℕ.* m ℕ.* k)) ⋆} (*-mono-≤ {∣ xₙ ∣} {(+ m / 1) ⋆} {∣ yₙ - y₀ ∣} {(+ 1 / (2 ℕ.* m ℕ.* k)) ⋆} (nonNeg∣x∣ xₙ) (nonNeg∣x∣ (yₙ - y₀)) (<⇒≤ (<-≤-trans (proj₂ boundxₙ n) (p≤q⇒p⋆≤q⋆ (+ N₂ / 1) (+ m / 1) (p≤q⇒p/r≤q/r (+ N₂) (+ m) 1 (ℤ.+≤+ (ℕP.m≤n⊔m N₁ N₂)))))) (proj₂ (yₙ→y₀ (2 ℕ.* m ℕ.* k)) n (ℕP.≤-trans (ℕP.m≤n⊔m M₁ M₂) n≥Mₖ))) (*-mono-≤ {∣ y₀ ∣} {(+ m / 1) ⋆} {∣ xₙ - x₀ ∣} {(+ 1 / (2 ℕ.* m ℕ.* k)) ⋆} (nonNeg∣x∣ y₀) (nonNeg∣x∣ (xₙ - x₀)) (<⇒≤ (<-≤-trans (proj₂ archy₀) (p≤q⇒p⋆≤q⋆ (+ N₁ / 1) (+ m / 1) (p≤q⇒p/r≤q/r (+ N₁) (+ m) 1 (ℤ.+≤+ (ℕP.m≤m⊔n N₁ N₂)))))) (proj₂ (xₙ→x₀ (2 ℕ.* m ℕ.* k)) n (ℕP.≤-trans (ℕP.m≤m⊔n M₁ M₂) n≥Mₖ))) ⟩ (+ m / 1) ⋆ * (+ 1 / (2 ℕ.* m ℕ.* k)) ⋆ + (+ m / 1) ⋆ * (+ 1 / (2 ℕ.* m ℕ.* k)) ⋆ ≈⟨ solve 2 (λ a b -> a ⊗ b ⊕ a ⊗ b ⊜ a ⊗ (b ⊕ b)) ≃-refl ((+ m / 1) ⋆) ((+ 1 / (2 ℕ.* m ℕ.* k)) ⋆) ⟩ (+ m / 1) ⋆ * ((+ 1 / (2 ℕ.* m ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* m ℕ.* k)) ⋆) ≈⟨ solve 0 (Κ (+ m / 1) ⊗ (Κ (+ 1 / (2 ℕ.* m ℕ.* k)) ⊕ Κ (+ 1 / (2 ℕ.* m ℕ.* k))) ⊜ Κ (+ m / 1 ℚ.* (+ 1 / (2 ℕ.* m ℕ.* k) ℚ.+ + 1 / (2 ℕ.* m ℕ.* k)))) ≃-refl ⟩ (+ m / 1 ℚ.* (+ 1 / (2 ℕ.* m ℕ.* k) ℚ.+ + 1 / (2 ℕ.* m ℕ.* k))) ⋆ ≈⟨ ⋆-cong (ℚ.*≡* (ℤsolve 2 (λ m k -> (m :* (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* m :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* m :* k))) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* m :* k :* (ℤΚ (+ 2) :* m :* k)))) refl (+ m) (+ k))) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning xₙ≃c⇒xₙ→c : ∀ {xs : ℕ -> ℝ} -> ∀ {c : ℝ} -> (∀ n -> {n ≢0} -> xs n ≃ c) -> xs ConvergesTo c xₙ≃c⇒xₙ→c {xs} {c} hyp = con* (λ {(suc k-1) -> let k = suc k-1 in 0 , λ {(suc n-1) n≥1 -> let n = suc n-1 in begin ∣ xs n - c ∣ ≈⟨ ∣-∣-cong (+-congˡ (- c) (hyp n)) ⟩ ∣ c - c ∣ ≈⟨ ≃-trans (∣-∣-cong (+-inverseʳ c)) (≃-reflexive (λ n -> ℚP.≃-refl)) ⟩ 0ℝ ≤⟨ p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ 1 / k) (ℚP.nonNegative⁻¹ _) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning x<y∧posx,y⇒y⁻¹<x⁻¹ : ∀ {x y} -> x < y -> (x≄0 : x ≄0) -> (y≄0 : y ≄0) -> Positive x -> Positive y -> (y ⁻¹) y≄0 < (x ⁻¹) x≄0 x<y∧posx,y⇒y⁻¹<x⁻¹ {x} {y} x<y x≄0 y≄0 posx posy = let x⁻¹ = (x ⁻¹) x≄0; y⁻¹ = (y ⁻¹) y≄0 in begin-strict y⁻¹ ≈⟨ ≃-symm (≃-trans (*-congʳ (*-inverseʳ x x≄0)) (*-identityˡ y⁻¹)) ⟩ x * x⁻¹ * y⁻¹ <⟨ *-monoˡ-<-pos {y⁻¹} (posx⇒posx⁻¹ {y} y≄0 posy) (*-monoˡ-<-pos {x⁻¹} (posx⇒posx⁻¹ {x} x≄0 posx) x<y) ⟩ y * x⁻¹ * y⁻¹ ≈⟨ ≃-trans (*-congʳ (*-comm y x⁻¹)) (*-assoc x⁻¹ y y⁻¹) ⟩ x⁻¹ * (y * y⁻¹) ≈⟨ ≃-trans (*-congˡ (*-inverseʳ y y≄0)) (*-identityʳ x⁻¹) ⟩ x⁻¹ ∎ where open ≤-Reasoning <⇒≱ : _<_ ⇒ _≱_ <⇒≱ {x} {y} (pos* (n-1 , x<y)) (nonNeg* x≥y) = let n = suc n-1 in ℚP.<-irrefl-≡ refl (begin-strict + 1 / n <⟨ x<y ⟩ seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≈⟨ ℚsolve 2 (λ x₂ₙ y₂ₙ -> y₂ₙ -: x₂ₙ =: -: (x₂ₙ -: y₂ₙ)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)) ⟩ ℚ.- (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)) ≤⟨ ℚP.neg-mono-≤ (x≥y n) ⟩ ℚ.- (ℚ.- (+ 1 / n)) ≈⟨ ℚP.neg-involutive (+ 1 / n) ⟩ + 1 / n ∎) where open ℚP.≤-Reasoning <-irrefl : Irreflexive _≃_ _<_ <-irrefl {x} {y} (*≃* x≃y) (pos* (n-1 , x<y)) = let n = suc n-1 in ℚP.<-irrefl ℚP.≃-refl (begin-strict + 1 / n <⟨ x<y ⟩ seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ p≤∣p∣ (seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n)) ⟩ ℚ.∣ seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ∣ ≈⟨ ∣p-q∣≃∣q-p∣ (seq y (2 ℕ.* n)) (seq x (2 ℕ.* n)) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≤⟨ x≃y (2 ℕ.* n) ⟩ + 2 / (2 ℕ.* n) ≈⟨ ℚ.*≡* (sym (ℤP.*-identityˡ (+ 2 ℤ.* + n))) ⟩ + 1 / n ∎) where open ℚP.≤-Reasoning p⋆≄0⇒∣↥p∣≢0 : ∀ p -> (p ⋆) ≄0 -> ℤ.∣ ↥ p ∣ ≢0 p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ (+_ zero) d-1) (inj₁ p⋆<0) = let d = suc d-1 in <-irrefl (≃-reflexive (λ {(suc n-1) -> ℚ.*≡* (sym (ℤP.*-zeroˡ (+ d)))})) p⋆<0 p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ +[1+ n ] denominator-2) (inj₁ p⋆<0) = _ p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ (-[1+_] n) denominator-2) (inj₁ p⋆<0) = _ p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ (+_ zero) d-1) (inj₂ 0<p⋆) = let d = suc d-1 in <-irrefl (≃-reflexive (λ {(suc n-1) -> ℚ.*≡* (ℤP.*-zeroˡ (+ d))})) 0<p⋆ p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ +[1+ n ] denominator-2) (inj₂ 0<p⋆) = _ p⋆≄0⇒∣↥p∣≢0 (mkℚᵘ (-[1+_] n) denominator-2) (inj₂ 0<p⋆) = _ ∣↥p∣≢0⇒p⋆≄0 : ∀ p -> ℤ.∣ ↥ p ∣ ≢0 -> (p ⋆) ≄0 ∣↥p∣≢0⇒p⋆≄0 (mkℚᵘ +[1+ n ] d-1) ∣↥p∣≢0 = inj₂ (p<q⇒p⋆<q⋆ 0ℚᵘ (+[1+ n ] / (suc d-1)) (ℚP.positive⁻¹ _)) ∣↥p∣≢0⇒p⋆≄0 (mkℚᵘ (-[1+_] n) d-1) ∣↥p∣≢0 = inj₁ (p<q⇒p⋆<q⋆ (-[1+_] n / (suc d-1)) 0ℚᵘ (ℚP.negative⁻¹ _)) ⁻¹-involutive : ∀ {x} -> (x≄0 : x ≄0) -> (x⁻¹≄0 : (x ⁻¹) x≄0 ≄0) -> (((x ⁻¹) x≄0) ⁻¹) x⁻¹≄0 ≃ x ⁻¹-involutive {x} x≄0 x⁻¹≄0 = let x⁻¹ = (x ⁻¹) x≄0 in ≃-symm (⁻¹-unique x x⁻¹ x⁻¹≄0 (*-inverseʳ x x≄0)) ⁻¹-involutive-default : ∀ {x} -> (x≄0 : x ≄0) -> (((x ⁻¹) x≄0) ⁻¹) ([ (λ x<0 -> inj₁ (x<0⇒x⁻¹<0 {x} x≄0 x<0)) , (λ 0<x -> inj₂ (0<x⇒0<x⁻¹ {x} x≄0 0<x))]′ x≄0) ≃ x ⁻¹-involutive-default {x} x≄0 = ⁻¹-involutive {x} x≄0 ([ (λ x<0 -> inj₁ (x<0⇒x⁻¹<0 {x} x≄0 x<0)) , (λ 0<x -> inj₂ (0<x⇒0<x⁻¹ {x} x≄0 0<x))]′ x≄0) ⋆-distrib-⁻¹ : ∀ p -> (p⋆≄0 : (p ⋆) ≄0) -> ((p ⋆) ⁻¹) p⋆≄0 ≃ ((ℚ.1/ p) {p⋆≄0⇒∣↥p∣≢0 p p⋆≄0}) ⋆ ⋆-distrib-⁻¹ p p⋆≄0 = let p⁻¹ = (ℚ.1/ p) {p⋆≄0⇒∣↥p∣≢0 p p⋆≄0}; p⋆⁻¹ = ((p ⋆) ⁻¹) p⋆≄0 in ≃-symm (⁻¹-unique (p⁻¹ ⋆) (p ⋆) p⋆≄0 (begin p⁻¹ ⋆ * p ⋆ ≈⟨ ≃-symm (⋆-distrib-* p⁻¹ p) ⟩ (p⁻¹ ℚ.* p) ⋆ ≈⟨ ⋆-cong (ℚP.*-inverseˡ p {p⋆≄0⇒∣↥p∣≢0 p p⋆≄0}) ⟩ 1ℝ ∎)) where open ≃-Reasoning 0≤y-x⇒x≤y : ∀ {x y} -> 0ℝ ≤ y - x -> x ≤ y 0≤y-x⇒x≤y {x} {y} 0≤y-x = nonNeg-cong (≃-trans (+-congʳ (y - x) (≃-symm 0≃-0)) (+-identityʳ (y - x))) 0≤y-x x≤z∧y≤z⇒x⊔y≤z : ∀ {x y z} -> x ≤ z -> y ≤ z -> x ⊔ y ≤ z x≤z∧y≤z⇒x⊔y≤z {x} {y} {z} x≤z y≤z = lemma-2-8-2-onlyif lem where open ℚP.≤-Reasoning lem : ∀ n -> {n≢0 : n ≢0} -> ∃ λ Nₙ -> Nₙ ≢0 × (∀ m -> m ℕ.≥ Nₙ -> seq (z - (x ⊔ y)) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) lem (suc n-1) = N , _ , λ {(suc m-1) m≥N -> let m = suc m-1 in [ left m m≥N , right m m≥N ]′ (ℚP.≤-total (seq y (2 ℕ.* m)) (seq x (2 ℕ.* m)))} where n = suc n-1 fromx≤z = fast-lemma-2-8-2-if x≤z n fromy≤z = fast-lemma-2-8-2-if y≤z n N₁ = proj₁ fromx≤z N₂ = proj₁ fromy≤z N = suc (N₁ ℕ.⊔ N₂) left : ∀ m -> m ℕ.≥ N -> seq y (2 ℕ.* m) ℚ.≤ seq x (2 ℕ.* m) -> seq (z - (x ⊔ y)) m ℚ.≥ ℚ.- (+ 1 / n) left (suc m-1) m≥N y₂ₘ≤x₂ₘ = let m = suc m-1 in begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ fromx≤z) m (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.n≤1+n (N₁ ℕ.⊔ N₂))) m≥N) ⟩ seq z (2 ℕ.* m) ℚ.- seq x (2 ℕ.* m) ≈⟨ ℚP.+-congʳ (seq z (2 ℕ.* m)) (ℚP.-‿cong (ℚP.≃-sym (ℚP.p≥q⇒p⊔q≃p y₂ₘ≤x₂ₘ))) ⟩ seq z (2 ℕ.* m) ℚ.- seq (x ⊔ y) (2 ℕ.* m) ∎ right : ∀ m -> m ℕ.≥ N -> seq x (2 ℕ.* m) ℚ.≤ seq y (2 ℕ.* m) -> seq (z - (x ⊔ y)) m ℚ.≥ ℚ.- (+ 1 / n) right (suc m-1) m≥N x₂ₘ≤y₂ₘ = let m = suc m-1 in begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ fromy≤z) m (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.n≤1+n (N₁ ℕ.⊔ N₂))) m≥N) ⟩ seq z (2 ℕ.* m) ℚ.- seq y (2 ℕ.* m) ≈⟨ ℚP.+-congʳ (seq z (2 ℕ.* m)) (ℚP.-‿cong (ℚP.≃-sym (ℚP.p≤q⇒p⊔q≃q x₂ₘ≤y₂ₘ))) ⟩ seq z (2 ℕ.* m) ℚ.- seq (x ⊔ y) (2 ℕ.* m) ∎ ∣∣x∣-∣y∣∣≤∣x-y∣ : ∀ x y -> ∣ ∣ x ∣ - ∣ y ∣ ∣ ≤ ∣ x - y ∣ ∣∣x∣-∣y∣∣≤∣x-y∣ x y = ≤-respˡ-≃ (≃-symm (∣x∣≃x⊔-x (∣ x ∣ - ∣ y ∣))) (x≤z∧y≤z⇒x⊔y≤z (left x y) right) where open ≤-Reasoning left : ∀ x y -> ∣ x ∣ - ∣ y ∣ ≤ ∣ x - y ∣ left x y = begin ∣ x ∣ - ∣ y ∣ ≈⟨ +-congˡ (- ∣ y ∣) (∣-∣-cong (≃-symm (≃-trans (+-congʳ x (+-inverseˡ y)) (+-identityʳ x)))) ⟩ ∣ x + (- y + y) ∣ - ∣ y ∣ ≤⟨ +-monoˡ-≤ (- ∣ y ∣) (≤-respˡ-≃ (∣-∣-cong (+-assoc x (- y) y)) (∣x+y∣≤∣x∣+∣y∣ (x - y) y)) ⟩ ∣ x - y ∣ + ∣ y ∣ - ∣ y ∣ ≈⟨ ≃-trans (≃-trans (+-assoc ∣ x - y ∣ ∣ y ∣ (- ∣ y ∣)) (+-congʳ ∣ x - y ∣ (+-inverseʳ ∣ y ∣))) (+-identityʳ ∣ x - y ∣) ⟩ ∣ x - y ∣ ∎ right : - (∣ x ∣ - ∣ y ∣) ≤ ∣ x - y ∣ right = begin - (∣ x ∣ - ∣ y ∣) ≈⟨ solve 2 (λ ∣x∣ ∣y∣ -> ⊝ (∣x∣ ⊖ ∣y∣) ⊜ ∣y∣ ⊖ ∣x∣) ≃-refl ∣ x ∣ ∣ y ∣ ⟩ ∣ y ∣ - ∣ x ∣ ≤⟨ left y x ⟩ ∣ y - x ∣ ≈⟨ ∣x-y∣≃∣y-x∣ y x ⟩ ∣ x - y ∣ ∎ archimedean-ℝ₂ : ∀ {x} -> Positive x -> ∃ λ n-1 -> (+ 1 / (suc n-1)) ⋆ < x archimedean-ℝ₂ {x} posx = let x≄0 = inj₂ (posx⇒0<x posx); x⁻¹ = (x ⁻¹) x≄0; arch = archimedean-ℝ x⁻¹ ; x⁻¹≄0 = [ (λ x<0 -> inj₁ (x<0⇒x⁻¹<0 {x} x≄0 x<0)) , (λ 0<x -> inj₂ (0<x⇒0<x⁻¹ {x} x≄0 0<x))]′ x≄0 ; n = suc (proj₁ arch) in ℕ.pred n , <-respˡ-≃ (⋆-distrib-⁻¹ (+ n / 1) (∣↥p∣≢0⇒p⋆≄0 (+ n / 1) _)) (<-respʳ-≃ {_} {(x⁻¹ ⁻¹) x⁻¹≄0} {x} (⁻¹-involutive-default {x} x≄0) (x<y∧posx,y⇒y⁻¹<x⁻¹ {x⁻¹} {(+ n / 1) ⋆} (proj₂ arch) x⁻¹≄0 (∣↥p∣≢0⇒p⋆≄0 (+ n / 1) _) (posx⇒posx⁻¹ {x} x≄0 posx) (0<x⇒posx (p<q⇒p⋆<q⋆ 0ℚᵘ (+ n / 1) (ℚP.positive⁻¹ _))))) where open ≤-Reasoning abstract fast-archimedean-ℝ₂ : ∀ {x} -> Positive x -> ∃ λ n-1 -> (+ 1 / (suc n-1)) ⋆ < x fast-archimedean-ℝ₂ = archimedean-ℝ₂ negx,y⇒posx*y : ∀ {x y} -> Negative x -> Negative y -> Positive (x * y) negx,y⇒posx*y {x} {y} negx negy = pos-cong (solve 2 (λ x y -> ⊝ x ⊗ ⊝ y ⊜ x ⊗ y) ≃-refl x y) (posx,y⇒posx*y negx negy) where open ≃-Reasoning negx∧posy⇒negx*y : ∀ {x y} -> Negative x -> Positive y -> Negative (x * y) negx∧posy⇒negx*y {x} {y} negx posy = pos-cong (≃-symm (neg-distribˡ-* x y)) (posx,y⇒posx*y negx posy) x≄0∧y≄0⇒x*y≄0 : ∀ {x y} -> x ≄0 -> y ≄0 -> (x * y) ≄0 x≄0∧y≄0⇒x*y≄0 {x} {y} x≄0 y≄0 = [ [ y<0∧x<0 , 0<y∧x<0 ]′ y≄0 , [ y<0∧0<x , 0<y∧0<x ]′ y≄0 ]′ x≄0 where y<0∧x<0 : y < 0ℝ -> x < 0ℝ -> (x * y) ≄0 y<0∧x<0 y<0 x<0 = inj₂ (posx⇒0<x (negx,y⇒posx*y (x<0⇒negx x<0) (x<0⇒negx y<0))) 0<y∧x<0 : 0ℝ < y -> x < 0ℝ -> (x * y) ≄0 0<y∧x<0 0<y x<0 = inj₁ (negx⇒x<0 (negx∧posy⇒negx*y (x<0⇒negx x<0) (0<x⇒posx 0<y))) y<0∧0<x : y < 0ℝ -> 0ℝ < x -> (x * y) ≄0 y<0∧0<x y<0 0<x = inj₁ (<-respˡ-≃ (*-comm y x) (negx⇒x<0 (negx∧posy⇒negx*y (x<0⇒negx y<0) (0<x⇒posx 0<x)))) 0<y∧0<x : 0ℝ < y -> 0ℝ < x -> (x * y) ≄0 0<y∧0<x 0<y 0<x = inj₂ (posx⇒0<x (posx,y⇒posx*y (0<x⇒posx 0<x) (0<x⇒posx 0<y))) nonNegp⇒nonNegp⋆ : ∀ p -> ℚ.NonNegative p -> NonNegative (p ⋆) nonNegp⇒nonNegp⋆ p nonp = nonNeg* (λ {(suc n-1) -> ℚP.≤-trans (ℚP.nonPositive⁻¹ _) (ℚP.nonNegative⁻¹ nonp)}) {- Note: We could obviously get ∣x∣ ≄0 from x≄0 (or vice versa). However, taking in the ∣x∣⁻¹≄0 allows the user to use any proof that ∣x∣⁻¹ ≄0 instead of just the proof given by x≄0. If we have two distinct proofs of x ≄0, say A and B, then (x ⁻¹) A ≡ (x ⁻¹) B does not hold by reflexivity, and probably doesn't hold in most cases anyway. So if the user has a different ∣x∣ ≄0 proof they'd have to apply uniqueness of inverses, which is more labour than supplying the ∣x∣ ≄0 proof since you have to supply a proof that ((∣ x ∣ ⁻¹) C) * ∣ x ∣ ≃ 1ℝ along with all of the *-cong's used to swap out ∣ x ∣ ⁻¹ A for ∣ x ∣ ⁻¹ C. -} ∣x∣⁻¹≃∣x⁻¹∣ : ∀ {x} -> (∣x∣≄0 : ∣ x ∣ ≄0) -> (x≄0 : x ≄0) -> (∣ x ∣ ⁻¹) ∣x∣≄0 ≃ ∣ (x ⁻¹) x≄0 ∣ ∣x∣⁻¹≃∣x⁻¹∣ {x} ∣x∣≄0 x≄0 = let ∣x∣⁻¹ = (∣ x ∣ ⁻¹) ∣x∣≄0; x⁻¹ = (x ⁻¹) x≄0 in begin ∣x∣⁻¹ ≈⟨ ≃-symm (*-identityʳ ∣x∣⁻¹) ⟩ ∣x∣⁻¹ * 1ℝ ≈⟨ *-congˡ {∣x∣⁻¹} (≃-symm (≃-trans (∣-∣-cong (*-inverseʳ x x≄0)) (nonNegx⇒∣x∣≃x (nonNegp⇒nonNegp⋆ 1ℚᵘ _)))) ⟩ ∣x∣⁻¹ * ∣ x * x⁻¹ ∣ ≈⟨ *-congˡ {∣x∣⁻¹} (∣x*y∣≃∣x∣*∣y∣ x x⁻¹) ⟩ ∣x∣⁻¹ * (∣ x ∣ * ∣ x⁻¹ ∣) ≈⟨ ≃-symm (*-assoc ∣x∣⁻¹ ∣ x ∣ ∣ x⁻¹ ∣) ⟩ ∣x∣⁻¹ * ∣ x ∣ * ∣ x⁻¹ ∣ ≈⟨ *-congʳ {∣ x⁻¹ ∣} (*-inverseˡ ∣ x ∣ ∣x∣≄0) ⟩ 1ℝ * ∣ x⁻¹ ∣ ≈⟨ *-identityˡ ∣ x⁻¹ ∣ ⟩ ∣ x⁻¹ ∣ ∎ where open ≃-Reasoning x≄0⇒∣x∣≄0 : ∀ {x} -> x ≄0 -> ∣ x ∣ ≄0 x≄0⇒∣x∣≄0 {x} x≄0 = inj₂ (pos-cong (≃-symm (≃-trans (+-congʳ ∣ x ∣ (≃-symm 0≃-0)) (+-identityʳ ∣ x ∣))) (x≄0⇒pos∣x∣ x≄0)) ⁻¹-distrib-* : ∀ {x y} -> (x≄0 : x ≄0) -> (y≄0 : y ≄0) -> (xy≄0 : (x * y) ≄0) -> ((x * y) ⁻¹) xy≄0 ≃ ((x ⁻¹) x≄0) * ((y ⁻¹) y≄0) ⁻¹-distrib-* {x} {y} x≄0 y≄0 xy≄0 = let x⁻¹ = (x ⁻¹) x≄0; y⁻¹ = (y ⁻¹) y≄0 in ≃-symm (⁻¹-unique (x⁻¹ * y⁻¹) (x * y) xy≄0 (begin x⁻¹ * y⁻¹ * (x * y) ≈⟨ solve 4 (λ x y x⁻¹ y⁻¹ -> x⁻¹ ⊗ y⁻¹ ⊗ (x ⊗ y) ⊜ x⁻¹ ⊗ (y⁻¹ ⊗ y ⊗ x)) ≃-refl x y x⁻¹ y⁻¹ ⟩ x⁻¹ * (y⁻¹ * y * x) ≈⟨ *-congˡ {x⁻¹} (*-congʳ {x} (*-inverseˡ y y≄0)) ⟩ x⁻¹ * (1ℝ * x) ≈⟨ *-congˡ {x⁻¹} (*-identityˡ x) ⟩ x⁻¹ * x ≈⟨ *-inverseˡ x x≄0 ⟩ 1ℝ ∎)) where open ≃-Reasoning abstract fast-⁻¹-distrib-* : ∀ {x y} -> (x≄0 : x ≄0) -> (y≄0 : y ≄0) -> (xy≄0 : (x * y) ≄0) -> ((x * y) ⁻¹) xy≄0 ≃ ((x ⁻¹) x≄0) * ((y ⁻¹) y≄0) fast-⁻¹-distrib-* {x} {y} x≄0 y≄0 xy≄0 = ⁻¹-distrib-* {x} {y} x≄0 y≄0 xy≄0 ε-from-convergence : ∀ {xs : ℕ -> ℝ} -> (xₙ→ℓ : xs isConvergent) -> ∀ ε -> Positive ε -> ∃ λ (N-1 : ℕ) -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ xs n - proj₁ xₙ→ℓ ∣ < ε ε-from-convergence {xs} (ℓ , con* xₙ→ℓ) ε posε = let arch = fast-archimedean-ℝ₂ posε; k = suc (proj₁ arch); N = suc (proj₁ (xₙ→ℓ k)) in ℕ.pred N , λ {(suc n-1) n≥N -> let n = suc n-1 in begin-strict ∣ xs n - ℓ ∣ ≤⟨ proj₂ (xₙ→ℓ k) n n≥N ⟩ (+ 1 / k) ⋆ <⟨ proj₂ arch ⟩ ε ∎} where open ≤-Reasoning abstract fast-ε-from-convergence : ∀ {xs : ℕ -> ℝ} -> (xₙ→ℓ : xs isConvergent) -> ∀ ε -> Positive ε -> ∃ λ (N-1 : ℕ) -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ xs n - proj₁ xₙ→ℓ ∣ < ε fast-ε-from-convergence = ε-from-convergence ¬negx⇒nonNegx : ∀ {x} -> ¬ (Negative x) -> NonNegative x ¬negx⇒nonNegx {x} hyp = 0≤x⇒nonNegx (≮⇒≥ (λ hyp2 -> hyp (pos-cong (+-identityˡ (- x)) hyp2))) nonNegx⇒¬negx : ∀ {x} -> NonNegative x -> ¬ (Negative x) nonNegx⇒¬negx {x} (nonNeg* nonx) (pos* (n-1 , negx)) = let n = suc n-1 in ℚP.<-irrefl (ℚP.≃-refl {ℚ.- (+ 1 / n)}) (begin-strict ℚ.- (+ 1 / n) ≤⟨ nonx n ⟩ seq x n ≈⟨ ℚP.≃-sym (ℚP.neg-involutive (seq x n)) ⟩ ℚ.- (ℚ.- seq x n) <⟨ ℚP.neg-mono-< negx ⟩ ℚ.- (+ 1 / n) ∎) where open ℚP.≤-Reasoning nonNegx∧x≄0⇒posx : ∀ {x} -> NonNegative x -> x ≄0 -> Positive x nonNegx∧x≄0⇒posx {x} nonx x≄0 = 0<x⇒posx (begin-strict 0ℝ <⟨ x≄0⇒0<∣x∣ x≄0 ⟩ ∣ x ∣ ≈⟨ nonNegx⇒∣x∣≃x nonx ⟩ x ∎) where open ≤-Reasoning nonNegx⇒nonNegx⁻¹ : ∀ {x} -> NonNegative x -> (x≄0 : x ≄0) -> NonNegative ((x ⁻¹) x≄0) nonNegx⇒nonNegx⁻¹ {x} nonx x≄0 = pos⇒nonNeg (posx⇒posx⁻¹ {x} x≄0 (nonNegx∧x≄0⇒posx {x} nonx x≄0)) {- Proposition: If xₙ ≠ 0 for all n∈ℕ, x₀ ≠ 0, and (xₙ)→x₀, then (xₙ⁻¹)→x₀⁻¹. Proof: We must show that, for all k∈ℕ, there is Nₖ∈ℕ such that ∣xₙ⁻¹ - x₀⁻¹∣ ≤ k⁻¹. By the Archimedean Property, there is r∈ℕ such that r⁻¹ < 2⁻¹∣x₀∣ since ∣x₀∣ > 0. Then for some n₀∈ℕ we have ∣xₙ - x₀∣ ≤ r⁻¹ < 2⁻¹∣x₀∣ < ∣x₀∣ (n ≥ n₀), which implies, for n ≥ n₀, ∣xₙ∣ = ∣x₀ - (x₀ - xₙ)∣ ≥ ∣∣x₀∣ - ∣x₀ - xₙ∣∣ = ∣x₀∣ - ∣x₀ - xₙ∣ since ∣xₙ - x₀∣ < ∣x₀∣ > ∣x₀∣ - 2⁻¹∣x₀∣ since n ≥ n₀ = 2⁻¹∣x₀∣. Let k∈ℕ. Then there is m₀∈ℕ such that ∣xₙ - x₀∣ < (2k)⁻¹∣x₀∣² (n ≥ m₀) since ∣x₀∣ > 0. Let N = max{m₀, n₀} and let n ≥ N. We have ∣xₙ⁻¹ - x₀⁻¹∣ = ∣xₙ∣⁻¹ * ∣x₀∣⁻¹ * ∣xₙ - x₀∣ < 2∣x₀∣⁻¹ * ∣x₀∣⁻¹ * ∣xₙ - x₀∣ since n ≥ n₀ < 2∣x₀∣⁻² * (2k)⁻¹∣x₀∣² since n ≥ m₀ = k⁻¹. Hence ∣xₙ⁻¹ - x₀⁻¹∣ ≤ k⁻¹ for all n ≥ N. □ *-mono-≤ {∣ x₀ - xₙ ∣} {(+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣)} {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)} (nonNeg∣x∣ (x₀ - xₙ)) (nonNegx,y⇒nonNegx*y {∣xₙ∣⁻¹} {∣x₀∣⁻¹} (nonNegx⇒nonNegx⁻¹ {∣ xₙ ∣} (nonNeg∣x∣ xₙ) ∣xₙ∣≄0) (nonNegx⇒nonNegx⁻¹ {∣ x₀ ∣} (nonNeg∣x∣ x₀) ∣x₀∣≄0)) (<⇒≤ {∣ x₀ - xₙ ∣} {(+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣)} part4) (≤-respʳ-≃ {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * ∣x₀∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)} (*-assoc (2ℚᵘ ⋆) ∣x₀∣⁻¹ ∣x₀∣⁻¹) (<⇒≤ {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * ∣x₀∣⁻¹ * ∣x₀∣⁻¹} (*-monoˡ-<-pos {∣x₀∣⁻¹} (posx⇒posx⁻¹ {∣ x₀ ∣} ∣x₀∣≄0 (x≄0⇒pos∣x∣ {x₀} x₀≄0)) part3))) -} abstract xₙ≄0∧x₀≄0⇒xₙ⁻¹→x₀⁻¹ : ∀ {xs : ℕ -> ℝ} -> ∀ {x₀ : ℝ} -> xs ConvergesTo x₀ -> (xₙ≄0 : ∀ n -> xs n ≄0) -> (x₀≄0 : x₀ ≄0) -> (λ n -> (xs n ⁻¹) (xₙ≄0 n)) ConvergesTo (x₀ ⁻¹) x₀≄0 xₙ≄0∧x₀≄0⇒xₙ⁻¹→x₀⁻¹ {xs} {x₀} (con* xₙ→x₀) xₙ≄0 x₀≄0 = con* main where open ≤-Reasoning main : ∀ k -> {k≢0 : k ≢0} -> ∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ (xs n ⁻¹) (xₙ≄0 n) - (x₀ ⁻¹) x₀≄0 ∣ ≤ ((+ 1 / k) {k≢0}) ⋆ main (suc k-1) = ℕ.pred N , sub where arch = fast-archimedean-ℝ₂ {(+ 1 / 2) ⋆ * ∣ x₀ ∣} (posx,y⇒posx*y (posp⇒posp⋆ (+ 1 / 2) _) (x≄0⇒pos∣x∣ x₀≄0)) r = suc (proj₁ arch) k = suc k-1 m₀-getter = fast-ε-from-convergence (x₀ , con* xₙ→x₀) ((+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣)) (posx,y⇒posx*y (posp⇒posp⋆ (+ 1 / (2 ℕ.* k)) _) (posx,y⇒posx*y (x≄0⇒pos∣x∣ x₀≄0) (x≄0⇒pos∣x∣ x₀≄0))) m₀ = suc (proj₁ m₀-getter) n₀ = suc (proj₁ (xₙ→x₀ r)) N = m₀ ℕ.⊔ n₀ {- [1] Incredible optimization note! ------------------------------- If you case split on n here to get n = suc m for some m∈ℕ, the typechecking (seemingly) never completes! If you leave it as is, the typechecking completes in reasonable time. Agda must be getting stuck on computing lots of extra things when n = suc m. Amazing! Despite this issue being solved, the addition of all of the implicit arguments below is a notable optimization, and will thus be kept. -} sub : ∀ n -> n ℕ.≥ N -> ∣ (xs n ⁻¹) (xₙ≄0 n) - (x₀ ⁻¹) x₀≄0 ∣ ≤ (+ 1 / k) ⋆ sub n n≥N = begin ∣ xₙ⁻¹ - x₀⁻¹ ∣ ≈⟨ ≃-trans {∣ xₙ⁻¹ - x₀⁻¹ ∣} {∣xₙ∣⁻¹ * ∣x₀∣⁻¹ * ∣ x₀ - xₙ ∣} {∣ x₀ - xₙ ∣ * (∣xₙ∣⁻¹ * ∣x₀∣⁻¹)} part2 (*-comm (∣xₙ∣⁻¹ * ∣x₀∣⁻¹) ∣ x₀ - xₙ ∣) ⟩ ∣ x₀ - xₙ ∣ * (∣xₙ∣⁻¹ * ∣x₀∣⁻¹) ≤⟨ *-mono-≤ {∣ x₀ - xₙ ∣} {(+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣)} {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)} (nonNeg∣x∣ (x₀ - xₙ)) (nonNegx,y⇒nonNegx*y {∣xₙ∣⁻¹} {∣x₀∣⁻¹} (nonNegx⇒nonNegx⁻¹ {∣ xₙ ∣} (nonNeg∣x∣ xₙ) ∣xₙ∣≄0) (nonNegx⇒nonNegx⁻¹ {∣ x₀ ∣} (nonNeg∣x∣ x₀) ∣x₀∣≄0)) (<⇒≤ {∣ x₀ - xₙ ∣} {(+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣)} part4) (≤-respʳ-≃ {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * ∣x₀∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)} (*-assoc (2ℚᵘ ⋆) ∣x₀∣⁻¹ ∣x₀∣⁻¹) (<⇒≤ {∣xₙ∣⁻¹ * ∣x₀∣⁻¹} {2ℚᵘ ⋆ * ∣x₀∣⁻¹ * ∣x₀∣⁻¹} (*-monoˡ-<-pos {∣x₀∣⁻¹} (posx⇒posx⁻¹ {∣ x₀ ∣} ∣x₀∣≄0 (x≄0⇒pos∣x∣ {x₀} x₀≄0)) {∣xₙ∣⁻¹} {2ℚᵘ ⋆ * ∣x₀∣⁻¹} part3))) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣) * (2ℚᵘ ⋆ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)) ≈⟨ solve 4 (λ 1/2k ∣x₀∣ 2ℚ ∣x₀∣⁻¹ -> 1/2k ⊗ (∣x₀∣ ⊗ ∣x₀∣) ⊗ (2ℚ ⊗ (∣x₀∣⁻¹ ⊗ ∣x₀∣⁻¹)) ⊜ 1/2k ⊗ (∣x₀∣ ⊗ ∣x₀∣ ⊗ (∣x₀∣⁻¹ ⊗ ∣x₀∣⁻¹) ⊗ 2ℚ)) ≃-refl ((+ 1 / (2 ℕ.* k)) ⋆) ∣ x₀ ∣ (2ℚᵘ ⋆) ∣x₀∣⁻¹ ⟩ (+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹) * 2ℚᵘ ⋆) ≈⟨ *-congˡ {(+ 1 / (2 ℕ.* k)) ⋆} {∣ x₀ ∣ * ∣ x₀ ∣ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹) * 2ℚᵘ ⋆} {1ℝ * 2ℚᵘ ⋆} (*-congʳ {2ℚᵘ ⋆} {∣ x₀ ∣ * ∣ x₀ ∣ * (∣x₀∣⁻¹ * ∣x₀∣⁻¹)} {1ℝ} part5) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ * (1ℝ * 2ℚᵘ ⋆) ≈⟨ ≃-trans {(+ 1 / (2 ℕ.* k)) ⋆ * (1ℝ * 2ℚᵘ ⋆)} {(+ 1 / (2 ℕ.* k)) ⋆ * (2ℚᵘ ⋆)} {(+ 1 / (2 ℕ.* k) ℚ.* 2ℚᵘ) ⋆} (*-congˡ {(+ 1 / (2 ℕ.* k)) ⋆} {1ℝ * 2ℚᵘ ⋆} {2ℚᵘ ⋆} (*-identityˡ (2ℚᵘ ⋆))) (≃-symm {(+ 1 / (2 ℕ.* k) ℚ.* 2ℚᵘ) ⋆} {(+ 1 / (2 ℕ.* k)) ⋆ * 2ℚᵘ ⋆} (⋆-distrib-* (+ 1 / (2 ℕ.* k)) 2ℚᵘ)) ⟩ (+ 1 / (2 ℕ.* k) ℚ.* 2ℚᵘ) ⋆ ≈⟨ ⋆-cong {+ 1 / (2 ℕ.* k) ℚ.* 2ℚᵘ} {+ 1 / k} (ℚ.*≡* (ℤsolve 1 (λ k -> ℤΚ (+ 1) :* ℤΚ (+ 2) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* ℤΚ (+ 1))) refl (+ k))) ⟩ (+ 1 / k) ⋆ ∎ where xₙ = xs n xₙ⁻¹ = (xₙ ⁻¹) (xₙ≄0 n) x₀⁻¹ = (x₀ ⁻¹) x₀≄0 ∣xₙ∣≄0 = x≄0⇒∣x∣≄0 (xₙ≄0 n) ∣x₀∣≄0 = x≄0⇒∣x∣≄0 x₀≄0 ∣xₙ∣⁻¹ = (∣ xₙ ∣ ⁻¹) ∣xₙ∣≄0 ∣x₀∣⁻¹ = (∣ x₀ ∣ ⁻¹) ∣x₀∣≄0 2⁻¹∣x₀∣<∣xₙ∣ : (+ 1 / 2) ⋆ * ∣ x₀ ∣ < ∣ xₙ ∣ 2⁻¹∣x₀∣<∣xₙ∣ = begin-strict (+ 1 / 2) ⋆ * ∣ x₀ ∣ ≈⟨ solve 1 (λ ∣x₀∣ -> Κ (1ℚᵘ ℚ.- (+ 1 / 2)) ⊗ ∣x₀∣ ⊜ ∣x₀∣ ⊖ Κ (+ 1 / 2) ⊗ ∣x₀∣) ≃-refl ∣ x₀ ∣ ⟩ ∣ x₀ ∣ - (+ 1 / 2) ⋆ * ∣ x₀ ∣ <⟨ +-monoʳ-< ∣ x₀ ∣ (neg-mono-< (<-respˡ-≃ (∣x-y∣≃∣y-x∣ xₙ x₀) (≤-<-trans (proj₂ (xₙ→x₀ r) n (ℕP.≤-trans (ℕP.m≤n⊔m m₀ n₀) n≥N)) (proj₂ arch)))) ⟩ ∣ x₀ ∣ - ∣ x₀ - xₙ ∣ ≤⟨ x≤∣x∣ ⟩ ∣ ∣ x₀ ∣ - ∣ x₀ - xₙ ∣ ∣ ≤⟨ ∣∣x∣-∣y∣∣≤∣x-y∣ x₀ (x₀ - xₙ) ⟩ ∣ x₀ - (x₀ - xₙ) ∣ ≈⟨ ∣-∣-cong (solve 2 (λ xₙ x₀ -> x₀ ⊖ (x₀ ⊖ xₙ) ⊜ xₙ) ≃-refl xₙ x₀) ⟩ ∣ xₙ ∣ ∎ part1 : xₙ⁻¹ - x₀⁻¹ ≃ xₙ⁻¹ * x₀⁻¹ * (x₀ - xₙ) part1 = ≃-symm (begin-equality xₙ⁻¹ * x₀⁻¹ * (x₀ - xₙ) ≈⟨ *-distribˡ-+ (xₙ⁻¹ * x₀⁻¹) x₀ (- xₙ) ⟩ xₙ⁻¹ * x₀⁻¹ * x₀ + xₙ⁻¹ * x₀⁻¹ * (- xₙ) ≈⟨ +-cong (≃-trans (≃-trans (*-assoc xₙ⁻¹ x₀⁻¹ x₀) (*-congˡ {xₙ⁻¹} (*-inverseˡ x₀ x₀≄0))) (*-identityʳ xₙ⁻¹)) (≃-symm (neg-distribʳ-* (xₙ⁻¹ * x₀⁻¹) xₙ)) ⟩ xₙ⁻¹ - xₙ⁻¹ * x₀⁻¹ * xₙ ≈⟨ ≃-trans (≃-trans (solve 3 (λ xₙ xₙ⁻¹ x₀⁻¹ -> xₙ⁻¹ ⊖ xₙ⁻¹ ⊗ x₀⁻¹ ⊗ xₙ ⊜ xₙ⁻¹ ⊕ (⊝ x₀⁻¹) ⊗ (xₙ⁻¹ ⊗ xₙ)) ≃-refl xₙ xₙ⁻¹ x₀⁻¹) (+-congʳ xₙ⁻¹ (*-congˡ { - x₀⁻¹} (*-inverseˡ xₙ (xₙ≄0 n))))) (+-congʳ xₙ⁻¹ (*-identityʳ (- x₀⁻¹))) ⟩ xₙ⁻¹ - x₀⁻¹ ∎) part2 : ∣ xₙ⁻¹ - x₀⁻¹ ∣ ≃ ∣xₙ∣⁻¹ * ∣x₀∣⁻¹ * ∣ x₀ - xₙ ∣ part2 = begin-equality ∣ xₙ⁻¹ - x₀⁻¹ ∣ ≈⟨ ∣-∣-cong part1 ⟩ ∣ xₙ⁻¹ * x₀⁻¹ * (x₀ - xₙ) ∣ ≈⟨ ∣x*y∣≃∣x∣*∣y∣ (xₙ⁻¹ * x₀⁻¹) (x₀ - xₙ) ⟩ ∣ xₙ⁻¹ * x₀⁻¹ ∣ * ∣ x₀ - xₙ ∣ ≈⟨ *-congʳ {∣ x₀ - xₙ ∣} (∣x*y∣≃∣x∣*∣y∣ xₙ⁻¹ x₀⁻¹) ⟩ ∣ xₙ⁻¹ ∣ * ∣ x₀⁻¹ ∣ * ∣ x₀ - xₙ ∣ ≈⟨ *-congʳ {∣ x₀ - xₙ ∣} (≃-symm (*-cong (∣x∣⁻¹≃∣x⁻¹∣ {xₙ} ∣xₙ∣≄0 (xₙ≄0 n)) (∣x∣⁻¹≃∣x⁻¹∣ {x₀} ∣x₀∣≄0 x₀≄0))) ⟩ ∣xₙ∣⁻¹ * ∣x₀∣⁻¹ * ∣ x₀ - xₙ ∣ ∎ part3 : ∣xₙ∣⁻¹ < 2ℚᵘ ⋆ * ∣x₀∣⁻¹ part3 = let 2⁻¹≄0 = ∣↥p∣≢0⇒p⋆≄0 (+ 1 / 2) _ ; 2⁻¹∣x₀∣≄0 = x≄0∧y≄0⇒x*y≄0 {(+ 1 / 2) ⋆} {∣ x₀ ∣} 2⁻¹≄0 ∣x₀∣≄0 in begin-strict ∣xₙ∣⁻¹ <⟨ x<y∧posx,y⇒y⁻¹<x⁻¹ {(+ 1 / 2) ⋆ * ∣ x₀ ∣} {∣ xₙ ∣} 2⁻¹∣x₀∣<∣xₙ∣ 2⁻¹∣x₀∣≄0 ∣xₙ∣≄0 (posx,y⇒posx*y {(+ 1 / 2) ⋆} {∣ x₀ ∣} (posp⇒posp⋆ (+ 1 / 2) _) (x≄0⇒pos∣x∣ {x₀} x₀≄0)) (x≄0⇒pos∣x∣ {xₙ} (xₙ≄0 n)) ⟩ (((+ 1 / 2) ⋆ * ∣ x₀ ∣) ⁻¹) 2⁻¹∣x₀∣≄0 ≈⟨ ⁻¹-distrib-* {(+ 1 / 2) ⋆} {∣ x₀ ∣} 2⁻¹≄0 ∣x₀∣≄0 2⁻¹∣x₀∣≄0 ⟩ (((+ 1 / 2) ⋆) ⁻¹) 2⁻¹≄0 * ∣x₀∣⁻¹ ≈⟨ *-congʳ {∣x₀∣⁻¹} (⋆-distrib-⁻¹ (+ 1 / 2) 2⁻¹≄0) ⟩ 2ℚᵘ ⋆ * ∣x₀∣⁻¹ ∎ part4 : ∣ x₀ - xₙ ∣ < (+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣) part4 = begin-strict ∣ x₀ - xₙ ∣ ≈⟨ ∣x-y∣≃∣y-x∣ x₀ xₙ ⟩ ∣ xₙ - x₀ ∣ <⟨ proj₂ m₀-getter n (ℕP.≤-trans (ℕP.m≤m⊔n m₀ n₀) n≥N) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ * (∣ x₀ ∣ * ∣ x₀ ∣) ∎ part5 : (∣ x₀ ∣ * ∣ x₀ ∣) * (∣x₀∣⁻¹ * ∣x₀∣⁻¹) ≃ 1ℝ part5 = begin-equality (∣ x₀ ∣ * ∣ x₀ ∣) * (∣x₀∣⁻¹ * ∣x₀∣⁻¹) ≈⟨ solve 2 (λ ∣x₀∣ ∣x₀∣⁻¹ -> (∣x₀∣ ⊗ ∣x₀∣) ⊗ (∣x₀∣⁻¹ ⊗ ∣x₀∣⁻¹) ⊜ (∣x₀∣ ⊗ ∣x₀∣⁻¹) ⊗ (∣x₀∣ ⊗ ∣x₀∣⁻¹)) ≃-refl ∣ x₀ ∣ ∣x₀∣⁻¹ ⟩ (∣ x₀ ∣ * ∣x₀∣⁻¹) * (∣ x₀ ∣ * ∣x₀∣⁻¹) ≈⟨ *-cong {∣ x₀ ∣ * ∣x₀∣⁻¹} {1ℝ} {∣ x₀ ∣ * ∣x₀∣⁻¹} {1ℝ} (*-inverseʳ ∣ x₀ ∣ ∣x₀∣≄0) (*-inverseʳ ∣ x₀ ∣ ∣x₀∣≄0) ⟩ 1ℝ * 1ℝ ≈⟨ *-identityʳ 1ℝ ⟩ 1ℝ ∎ ∣xₙ∣→∣x₀∣ : ∀ {xs : ℕ -> ℝ} -> (x→x₀ : xs isConvergent) -> (λ n -> ∣ xs n ∣) ConvergesTo ∣ proj₁ x→x₀ ∣ ∣xₙ∣→∣x₀∣ {xs} (x₀ , con* x→x₀) = con* λ {(suc k-1) -> let k = suc k-1 in proj₁ (x→x₀ k) , λ {(suc n-1) n≥N -> let n = suc n-1 in begin ∣ ∣ xs n ∣ - ∣ x₀ ∣ ∣ ≤⟨ ∣∣x∣-∣y∣∣≤∣x-y∣ (xs n) x₀ ⟩ ∣ xs n - x₀ ∣ ≤⟨ proj₂ (x→x₀ k) n n≥N ⟩ (+ 1 / k) ⋆ ∎}} where open ≤-Reasoning 0≤x⇒∣x∣≃x : ∀ {x} -> 0ℝ ≤ x -> ∣ x ∣ ≃ x 0≤x⇒∣x∣≃x {x} 0≤x = nonNegx⇒∣x∣≃x (nonNeg-cong (≃-trans (+-congʳ x (≃-symm 0≃-0)) (+-identityʳ x)) 0≤x) x≤y⇒0≤y-x : ∀ {x y} -> x ≤ y -> 0ℝ ≤ y - x x≤y⇒0≤y-x {x} {y} x≤y = nonNeg-cong (≃-symm (≃-trans (+-congʳ (y - x) (≃-symm 0≃-0)) (+-identityʳ (y - x)))) x≤y xₙ≤yₙ⇒x₀≤y₀ : ∀ {xs ys : ℕ -> ℝ} -> ∀ {x₀ y₀ : ℝ} -> xs ConvergesTo x₀ -> ys ConvergesTo y₀ -> (∀ n -> {n ≢0} -> xs n ≤ ys n) -> x₀ ≤ y₀ xₙ≤yₙ⇒x₀≤y₀ {xs} {ys} {x₀} {y₀} (con* xₙ→x₀) (con* yₙ→y₀) xₙ≤yₙ = 0≤y-x⇒x≤y (begin 0ℝ ≤⟨ 0≤∣x∣ (y₀ - x₀) ⟩ ∣ y₀ - x₀ ∣ ≈⟨ uniqueness-of-limits (∣xₙ∣→∣x₀∣ (y₀ - x₀ , yₙ-xₙ→y₀-x₀)) (xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ (λ {(suc n-1) -> let n = suc n-1 in ≃-symm (0≤x⇒∣x∣≃x (x≤y⇒0≤y-x (xₙ≤yₙ n)))}) (y₀ - x₀ , yₙ-xₙ→y₀-x₀)) ⟩ y₀ - x₀ ∎) where open ≤-Reasoning yₙ-xₙ→y₀-x₀ = xₙ+yₙ→x₀+y₀ (y₀ , con* yₙ→y₀) (- x₀ , -xₙ→-x₀ (x₀ , con* xₙ→x₀)) private x-y≤z⇒x≤z+y : ∀ {x y z} -> x - y ≤ z -> x ≤ z + y x-y≤z⇒x≤z+y {x} {y} {z} x-y≤z = begin x ≈⟨ solve 2 (λ x y -> x ⊜ x ⊖ y ⊕ y) ≃-refl x y ⟩ x - y + y ≤⟨ +-monoˡ-≤ y x-y≤z ⟩ z + y ∎ where open ≤-Reasoning ∣x⊔y-z⊔w∣≤∣x-z∣⊔∣y-w∣ : ∀ x y z w -> ∣ x ⊔ y - (z ⊔ w) ∣ ≤ ∣ x - z ∣ ⊔ ∣ y - w ∣ ∣x⊔y-z⊔w∣≤∣x-z∣⊔∣y-w∣ x y z w = ≤-respˡ-≃ (≃-symm (∣x∣≃x⊔-x (x ⊔ y - (z ⊔ w)))) (x≤z∧y≤z⇒x⊔y≤z (lem x y (z ⊔ w) (∣ x - z ∣ ⊔ ∣ y - w ∣) part1 part2) (≤-respˡ-≃ (solve 2 (λ x⊔y z⊔w -> z⊔w ⊖ x⊔y ⊜ (⊝ (x⊔y ⊖ z⊔w))) ≃-refl (x ⊔ y) (z ⊔ w)) (lem z w (x ⊔ y) (∣ x - z ∣ ⊔ ∣ y - w ∣) part3 part4))) where open ≤-Reasoning lem : ∀ x y z w -> x - z ≤ w -> y - z ≤ w -> x ⊔ y - z ≤ w lem x y z w x-z≤w y-z≤w = begin x ⊔ y - z ≤⟨ +-monoˡ-≤ (- z) (x≤z∧y≤z⇒x⊔y≤z (x-y≤z⇒x≤z+y x-z≤w) (x-y≤z⇒x≤z+y y-z≤w)) ⟩ w + z - z ≈⟨ solve 2 (λ w z -> w ⊕ z ⊖ z ⊜ w) ≃-refl w z ⟩ w ∎ part1 : x - (z ⊔ w) ≤ ∣ x - z ∣ ⊔ ∣ y - w ∣ part1 = begin x - (z ⊔ w) ≤⟨ +-monoʳ-≤ x (neg-mono-≤ (x≤x⊔y z w)) ⟩ x - z ≤⟨ x≤∣x∣ ⟩ ∣ x - z ∣ ≤⟨ x≤x⊔y ∣ x - z ∣ ∣ y - w ∣ ⟩ ∣ x - z ∣ ⊔ ∣ y - w ∣ ∎ part2 : y - (z ⊔ w) ≤ ∣ x - z ∣ ⊔ ∣ y - w ∣ part2 = begin y - (z ⊔ w) ≤⟨ +-monoʳ-≤ y (neg-mono-≤ (x≤y⊔x w z)) ⟩ y - w ≤⟨ x≤∣x∣ ⟩ ∣ y - w ∣ ≤⟨ x≤y⊔x ∣ y - w ∣ ∣ x - z ∣ ⟩ ∣ x - z ∣ ⊔ ∣ y - w ∣ ∎ part3 : z - (x ⊔ y) ≤ ∣ x - z ∣ ⊔ ∣ y - w ∣ part3 = begin z - (x ⊔ y) ≤⟨ +-monoʳ-≤ z (neg-mono-≤ (x≤x⊔y x y)) ⟩ z - x ≤⟨ x≤∣x∣ ⟩ ∣ z - x ∣ ≈⟨ ∣x-y∣≃∣y-x∣ z x ⟩ ∣ x - z ∣ ≤⟨ x≤x⊔y ∣ x - z ∣ ∣ y - w ∣ ⟩ ∣ x - z ∣ ⊔ ∣ y - w ∣ ∎ part4 : w - (x ⊔ y) ≤ ∣ x - z ∣ ⊔ ∣ y - w ∣ part4 = begin w - (x ⊔ y) ≤⟨ +-monoʳ-≤ w (neg-mono-≤ (x≤y⊔x y x)) ⟩ w - y ≤⟨ x≤∣x∣ ⟩ ∣ w - y ∣ ≈⟨ ∣x-y∣≃∣y-x∣ w y ⟩ ∣ y - w ∣ ≤⟨ x≤y⊔x ∣ y - w ∣ ∣ x - z ∣ ⟩ ∣ x - z ∣ ⊔ ∣ y - w ∣ ∎ xₙ⊔yₙ→x₀⊔y₀ : ∀ {xs ys : ℕ -> ℝ} -> (xₙ→x₀ : xs isConvergent) -> (yₙ→y₀ : ys isConvergent) -> (λ n -> xs n ⊔ ys n) ConvergesTo (proj₁ xₙ→x₀ ⊔ proj₁ yₙ→y₀) xₙ⊔yₙ→x₀⊔y₀ {xs} {ys} (x₀ , con* xₙ→x₀) (y₀ , con* yₙ→y₀) = con* (λ {(suc k-1) -> let k = suc k-1; N₁ = suc (proj₁ (xₙ→x₀ k)); N₂ = suc (proj₁ (yₙ→y₀ k)) in ℕ.pred (N₁ ℕ.⊔ N₂) , λ {(suc n-1) n≥N -> let n = suc n-1 in begin ∣ xs n ⊔ ys n - (x₀ ⊔ y₀) ∣ ≤⟨ ∣x⊔y-z⊔w∣≤∣x-z∣⊔∣y-w∣ (xs n) (ys n) x₀ y₀ ⟩ ∣ xs n - x₀ ∣ ⊔ ∣ ys n - y₀ ∣ ≤⟨ x≤z∧y≤z⇒x⊔y≤z (proj₂ (xₙ→x₀ k) n (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) n≥N)) (proj₂ (yₙ→y₀ k) n (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) n≥N)) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning SeriesOf_From_ : (ℕ -> ℝ) -> ℕ -> (ℕ -> ℝ) (SeriesOf xs From i) n = ∑ xs i n SeriesOf : (ℕ -> ℝ) -> (ℕ -> ℝ) SeriesOf xs = SeriesOf xs From 0 limitShifting : ∀ xs -> ∀ k m n -> ∑ xs m k ≃ ∑ xs n k + ∑ xs m n limitShifting xs k zero zero = ≃-symm (+-identityʳ (∑₀ xs k)) limitShifting xs k zero (suc n) = solve 2 (λ a b -> a ⊜ a ⊖ b ⊕ b) ≃-refl (∑₀ xs k) (∑₀ xs (suc n)) limitShifting xs k (suc m) zero = solve 2 (λ a b -> a ⊖ b ⊜ a ⊕ (Κ 0ℚᵘ ⊖ b)) ≃-refl (∑₀ xs k) (∑₀ xs (suc m)) limitShifting xs k (suc m) (suc n) = solve 3 (λ a b c -> a ⊖ b ⊜ a ⊖ c ⊕ (c ⊖ b)) ≃-refl (∑₀ xs k) (∑₀ xs (suc m)) (∑₀ xs (suc n)) lowerLimitShiftPreservesConvergence : ∀ xs -> (∃ λ n -> (SeriesOf xs From n) isConvergent) -> ∀ m -> (SeriesOf xs From m) isConvergent lowerLimitShiftPreservesConvergence xs (n , (ℓ , con* hyp)) m = ℓ + ∑ xs m n , xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ (λ {(suc k-1) -> let k = suc k-1 in ≃-symm (limitShifting xs k m n)}) (ℓ + ∑ xs m n , xₙ+yₙ→x₀+y₀ {SeriesOf xs From n} {λ r -> ∑ xs m n} (ℓ , con* hyp) (∑ xs m n , xₙ≃c⇒xₙ→c (λ {(suc r-1) -> ≃-refl}))) cauchyConvergenceTest-if : ∀ xs -> SeriesOf xs isConvergent -> ∀ k -> {k≢0 : k ≢0} -> ∃ λ Nₖ-1 -> ∀ m n -> m ℕ.≥ suc Nₖ-1 -> n ℕ.≥ suc Nₖ-1 -> ∣ ∑ xs m n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆ cauchyConvergenceTest-if xs (ℓ , con* hyp) (suc k-1) = let k = suc k-1; N₂ₖ = suc (proj₁ (hyp (2 ℕ.* k))) in ℕ.pred N₂ₖ , λ {(suc m-1) (suc n-1) m≥N₂ₖ n≥N₂ₖ -> let m = suc m-1; n = suc n-1 in begin ∣ ∑₀ xs n - ∑₀ xs m ∣ ≈⟨ ∣-∣-cong (solve 3 (λ a b c -> a ⊖ b ⊜ a ⊖ c ⊕ (c ⊖ b)) ≃-refl (∑₀ xs n) (∑₀ xs m) ℓ) ⟩ ∣ ∑₀ xs n - ℓ + (ℓ - ∑₀ xs m) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (∑₀ xs n - ℓ) (ℓ - ∑₀ xs m) ⟩ ∣ ∑₀ xs n - ℓ ∣ + ∣ ℓ - ∑₀ xs m ∣ ≤⟨ +-mono-≤ (proj₂ (hyp (2 ℕ.* k)) n n≥N₂ₖ) (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (∑₀ xs m) ℓ) (proj₂ (hyp (2 ℕ.* k)) m m≥N₂ₖ)) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k)))) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k)) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k)))) ⟩ (+ 1 / k) ⋆ ∎} where open ≤-Reasoning cauchyConvergenceTest-onlyif : ∀ xs -> (∀ k -> {k≢0 : k ≢0} -> ∃ λ Nₖ-1 -> ∀ m n -> m ℕ.≥ suc Nₖ-1 -> n ℕ.≥ suc Nₖ-1 -> ∣ ∑ xs m n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆) -> SeriesOf xs isConvergent cauchyConvergenceTest-onlyif xs hyp = fast-cauchy⇒convergent (cauchy* (λ {(suc k-1) -> let k = suc k-1; Mₖ = suc (proj₁ (hyp k)) in ℕ.pred Mₖ , λ {(suc m-1) (suc n-1) m≥Mₖ n≥Mₖ -> let m = suc m-1; n = suc n-1 in begin ∣ ∑ xs 0 m - ∑ xs 0 n ∣ ≈⟨ ≃-refl ⟩ ∣ ∑ xs n m ∣ ≤⟨ proj₂ (hyp k) n m n≥Mₖ m≥Mₖ ⟩ (+ 1 / k) ⋆ ∎}})) where open ≤-Reasoning ∑xₙisConvergent⇒xₙ→0 : ∀ xs -> SeriesOf xs isConvergent -> xs ConvergesTo 0ℝ ∑xₙisConvergent⇒xₙ→0 xs (ℓ , con* ∑xₙ→ℓ) = con* (λ {(suc k-1) -> let k = suc k-1; N₂ₖ = suc (proj₁ (∑xₙ→ℓ (2 ℕ.* k))) in ℕ.pred N₂ₖ , λ {(suc n-1) n≥N₂ₖ -> let n = suc n-1; n+1 = suc n in begin ∣ xs n - 0ℝ ∣ ≈⟨ ∣-∣-cong (solve 3 (λ ∑₀ⁿxᵢ xₙ ℓ -> xₙ ⊖ Κ 0ℚᵘ ⊜ (∑₀ⁿxᵢ ⊕ xₙ) ⊖ ℓ ⊕ (ℓ ⊖ ∑₀ⁿxᵢ)) ≃-refl (∑₀ xs n) (xs n) ℓ) ⟩ ∣ ∑₀ xs n+1 - ℓ + (ℓ - ∑₀ xs n) ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (∑₀ xs n+1 - ℓ) (ℓ - ∑₀ xs n) ⟩ ∣ ∑₀ xs n+1 - ℓ ∣ + ∣ ℓ - ∑₀ xs n ∣ ≤⟨ +-mono-≤ (proj₂ (∑xₙ→ℓ (2 ℕ.* k)) n+1 (ℕP.≤-trans n≥N₂ₖ (ℕP.n≤1+n n))) (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (∑₀ xs n) ℓ) (proj₂ (∑xₙ→ℓ (2 ℕ.* k)) n n≥N₂ₖ)) ⟩ (+ 1 / (2 ℕ.* k)) ⋆ + (+ 1 / (2 ℕ.* k)) ⋆ ≈⟨ ≃-trans (≃-symm (⋆-distrib-+ (+ 1 / (2 ℕ.* k)) (+ 1 / (2 ℕ.* k)))) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ k -> (ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k) :+ ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k)) :* k := ℤΚ (+ 1) :* (ℤΚ (+ 2) :* k :* (ℤΚ (+ 2) :* k))) refl (+ k)))) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning SeriesOf_ConvergesAbsolutely : (ℕ -> ℝ) -> Set SeriesOf xs ConvergesAbsolutely = SeriesOf (λ k -> ∣ xs k ∣) isConvergent {- Changing termination depth doesn't help fix this weird lem recursion problem (tried different depths up to 10). -} ∑-cong : ∀ {xs ys : ℕ -> ℝ} -> (∀ n -> xs n ≃ ys n) -> ∀ m n -> ∑ xs m n ≃ ∑ ys m n {-∑-cong {xs} {ys} xₙ≃yₙ zero zero = ≃-refl ∑-cong {xs} {ys} xₙ≃yₙ zero (suc n) = +-cong (∑-cong xₙ≃yₙ 0 n) (xₙ≃yₙ n)-} ∑-cong {xs} {ys} xₙ≃yₙ 0 n = lem n where lem : ∀ n -> ∑ xs 0 n ≃ ∑ ys 0 n lem 0 = ≃-refl lem (suc n) = +-cong (lem n) (xₙ≃yₙ n) ∑-cong {xs} {ys} xₙ≃yₙ (suc m) n = +-cong (∑-cong xₙ≃yₙ 0 n) (-‿cong (∑-cong xₙ≃yₙ 0 (suc m))) {- ∣∑xᵢ∣ ≤ ∑∣xᵢ∣ Sometimes it's easier to use ∑ᵀ instead of ∑ that gives ∑ᵢ₌ₖⁿ xᵢ = xₖ + ⋯ + xₙ instead of ∑ᵢ₌ₖⁿ xᵢ = ∑ᵢ₌₀ⁿ xᵢ - ∑ᵢ₌₀ᵏ xᵢ when k ≤ n. As an example, consider the triangle inequality proof for ∑ below. Note that ∑ᵀ requires i≤n, which isn't what we want in general. Moreover, ∑ᵀ uses a somewhat complex with clause, so it's annoying to prove things about. Hence the alternative definition. -} ∑ᵀ : (ℕ -> ℝ) -> (i n : ℕ) -> i ℕ.≤ n -> ℝ ∑ᵀ xs i n i≤n with ≤⇒≡∨< i n i≤n ... | inj₁ refl = 0ℝ ∑ᵀ xs i (suc n-1) i≤n | inj₂ (ℕ.s≤s i<n) = ∑ᵀ xs i n-1 i<n + xs n-1 ∑-to-∑ᵀ : ∀ (xs : ℕ -> ℝ) -> ∀ m n -> (m≤n : m ℕ.≤ n) -> ∑ xs m n ≃ ∑ᵀ xs m n m≤n ∑-to-∑ᵀ xs zero n ℕ.z≤n = lem n where lem : ∀ n -> ∑₀ xs n ≃ ∑ᵀ xs 0 n ℕ.z≤n lem 0 = ≃-refl lem (suc n) with ≤⇒≡∨< 0 (suc n) ℕ.z≤n ... | inj₂ 0<n = +-congˡ (xs n) (lem n) ∑-to-∑ᵀ xs (suc m-1) n m≤n with ≤⇒≡∨< (suc m-1) n m≤n ... | inj₁ refl = +-inverseʳ (∑₀ xs (suc m-1)) ∑-to-∑ᵀ xs (suc m-1) (suc n-1) m≤n | inj₂ (ℕ.s≤s m<n) = begin ∑₀ xs n-1 + xs n-1 - (∑₀ xs m-1 + xs m-1) ≈⟨ solve 3 (λ ∑₀ⁿ⁻¹xᵢ xₙ₋₁ ∑₀ᵐxᵢ -> ∑₀ⁿ⁻¹xᵢ ⊕ xₙ₋₁ ⊖ ∑₀ᵐxᵢ ⊜ ∑₀ⁿ⁻¹xᵢ ⊖ ∑₀ᵐxᵢ ⊕ xₙ₋₁) ≃-refl (∑₀ xs n-1) (xs n-1) (∑₀ xs (suc m-1)) ⟩ ∑₀ xs n-1 - (∑₀ xs m-1 + xs m-1) + xs n-1 ≈⟨ +-congˡ (xs n-1) (∑-to-∑ᵀ xs (suc m-1) n-1 m<n) ⟩ ∑ᵀ xs (suc m-1) n-1 m<n + xs n-1 ∎ where open ≃-Reasoning ∑ᵀ-triangle-inequality : ∀ (xs : ℕ -> ℝ) -> ∀ m n -> (m≤n : m ℕ.≤ n) -> ∣ ∑ᵀ xs m n m≤n ∣ ≤ ∑ᵀ (λ k -> ∣ xs k ∣) m n m≤n ∑ᵀ-triangle-inequality xs m n m≤n with ≤⇒≡∨< m n m≤n ... | inj₁ refl = ≤-reflexive (≃-reflexive (λ {(suc k-1) -> ℚP.≃-refl})) ∑ᵀ-triangle-inequality xs m (suc n-1) m≤n | inj₂ (ℕ.s≤s m<n) = let n = suc n-1 in begin ∣ ∑ᵀ xs m n-1 m<n + xs n-1 ∣ ≤⟨ ∣x+y∣≤∣x∣+∣y∣ (∑ᵀ xs m n-1 m<n) (xs n-1) ⟩ ∣ ∑ᵀ xs m n-1 m<n ∣ + ∣ xs n-1 ∣ ≤⟨ +-monoˡ-≤ ∣ xs n-1 ∣ (∑ᵀ-triangle-inequality xs m n-1 m<n) ⟩ ∑ᵀ (λ k -> ∣ xs k ∣) m n-1 m<n + ∣ xs n-1 ∣ ∎ where open ≤-Reasoning {- Note that m ≤ n is required since, if m > n, then ∑ essentially flips m and n and may return a negative number. -} ∑-triangle-inequality : ∀ (xs : ℕ -> ℝ) -> ∀ m n -> m ℕ.≤ n -> ∣ ∑ xs m n ∣ ≤ ∑ (λ k -> ∣ xs k ∣) m n ∑-triangle-inequality xs m n m≤n = begin ∣ ∑ xs m n ∣ ≈⟨ ∣-∣-cong (∑-to-∑ᵀ xs m n m≤n) ⟩ ∣ ∑ᵀ xs m n m≤n ∣ ≤⟨ ∑ᵀ-triangle-inequality xs m n m≤n ⟩ ∑ᵀ (λ k -> ∣ xs k ∣) m n m≤n ≈⟨ ≃-symm (∑-to-∑ᵀ (λ k -> ∣ xs k ∣) m n m≤n) ⟩ ∑ (λ k -> ∣ xs k ∣) m n ∎ where open ≤-Reasoning ∑₀-mono-≤ : ∀ {xs ys} -> (∀ n -> xs n ≤ ys n) -> ∀ n -> ∑₀ xs n ≤ ∑₀ ys n ∑₀-mono-≤ {xs} {ys} xₙ≤yₙ 0 = ≤-refl ∑₀-mono-≤ {xs} {ys} xₙ≤yₙ (suc n) = +-mono-≤ (∑₀-mono-≤ xₙ≤yₙ n) (xₙ≤yₙ n) ∑ᵀ-mono-≤ : ∀ {xs ys} -> (∀ n -> xs n ≤ ys n) -> ∀ m n -> (m≤n : m ℕ.≤ n) -> ∑ᵀ xs m n m≤n ≤ ∑ᵀ ys m n m≤n ∑ᵀ-mono-≤ {xs} {ys} xₙ≤yₙ m n m≤n with ≤⇒≡∨< m n m≤n ... | inj₁ refl = ≤-refl ∑ᵀ-mono-≤ {xs} {ys} xₙ≤yₙ m (suc n-1) m≤n | inj₂ (ℕ.s≤s m<n) = +-mono-≤ (∑ᵀ-mono-≤ xₙ≤yₙ m n-1 m<n) (xₙ≤yₙ n-1) ∑-mono-≤ : ∀ {xs ys} -> (∀ n -> xs n ≤ ys n) -> ∀ m n -> m ℕ.≤ n -> ∑ xs m n ≤ ∑ ys m n ∑-mono-≤ {xs} {ys} xₙ≤yₙ m n m≤n = begin ∑ xs m n ≈⟨ ∑-to-∑ᵀ xs m n m≤n ⟩ ∑ᵀ xs m n m≤n ≤⟨ ∑ᵀ-mono-≤ xₙ≤yₙ m n m≤n ⟩ ∑ᵀ ys m n m≤n ≈⟨ ≃-symm (∑-to-∑ᵀ ys m n m≤n) ⟩ ∑ ys m n ∎ where open ≤-Reasoning neg-flips-∑ : ∀ (xs : ℕ -> ℝ) -> ∀ m n -> - ∑ xs m n ≃ ∑ xs n m neg-flips-∑ xs 0 0 = ≃-symm 0≃-0 neg-flips-∑ xs 0 (suc n) = ≃-symm (+-identityˡ _) neg-flips-∑ xs (suc m) zero = solve 1 (λ a -> ⊝ (Κ 0ℚᵘ ⊖ a) ⊜ a) ≃-refl (∑₀ xs (suc m)) neg-flips-∑ xs (suc m) (suc n) = solve 2 (λ a b -> ⊝ (a ⊖ b) ⊜ b ⊖ a) ≃-refl (∑₀ xs (suc n)) (∑₀ xs (suc m)) ∑ᵀ-mono-≤-weak : ∀ {xs ys : ℕ -> ℝ} -> ∀ {m n} -> (m≤n : m ℕ.≤ n) -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> xs k ≤ ys k) -> ∑ᵀ xs m n m≤n ≤ ∑ᵀ ys m n m≤n ∑ᵀ-mono-≤-weak {xs} {ys} {m} {n} m≤n hyp with ≤⇒≡∨< m n m≤n ... | inj₁ refl = ≤-refl ∑ᵀ-mono-≤-weak {xs} {ys} {m} {suc n-1} m≤n hyp | inj₂ (ℕ.s≤s m<n) = +-mono-≤ (∑ᵀ-mono-≤-weak m<n (λ k m≤k≤n-1 -> hyp k (proj₁ m≤k≤n-1 , ℕP.≤-trans (proj₂ m≤k≤n-1) (ℕP.n≤1+n n-1)))) (hyp n-1 (m<n , ℕP.n≤1+n n-1)) ∑-mono-≤-weak : ∀ {xs ys : ℕ -> ℝ} -> ∀ {m n} -> m ℕ.≤ n -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> xs k ≤ ys k) -> ∑ xs m n ≤ ∑ ys m n ∑-mono-≤-weak {xs} {ys} {m} {n} m≤n hyp = begin ∑ xs m n ≈⟨ ∑-to-∑ᵀ xs m n m≤n ⟩ ∑ᵀ xs m n m≤n ≤⟨ ∑ᵀ-mono-≤-weak m≤n hyp ⟩ ∑ᵀ ys m n m≤n ≈⟨ ≃-symm (∑-to-∑ᵀ ys m n m≤n) ⟩ ∑ ys m n ∎ where open ≤-Reasoning ∑0≃0 : ∀ m n -> ∑ (λ k -> 0ℝ) m n ≃ 0ℝ ∑0≃0 zero n = lem n where lem : ∀ n -> ∑₀ (λ k -> 0ℝ) n ≃ 0ℝ lem zero = ≃-refl lem (suc n) = ≃-trans (+-identityʳ (∑₀ (λ k -> 0ℝ) n)) (lem n) ∑0≃0 (suc m) n = begin ∑₀ (λ k -> 0ℝ) n - (∑₀ (λ k -> 0ℝ) m + 0ℝ) ≈⟨ +-cong (∑0≃0 0 n) (-‿cong (∑0≃0 0 (suc m))) ⟩ 0ℝ - 0ℝ ≈⟨ +-inverseʳ 0ℝ ⟩ 0ℝ ∎ where open ≃-Reasoning 0≤xₙ⇒0≤∑xₙ : ∀ {xs : ℕ -> ℝ} -> ∀ {m n} -> m ℕ.≤ n -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> 0ℝ ≤ xs k) -> 0ℝ ≤ ∑ xs m n 0≤xₙ⇒0≤∑xₙ {xs} {m} {n} m≤n hyp = begin 0ℝ ≈⟨ ≃-symm (∑0≃0 m n) ⟩ ∑ (λ k -> 0ℝ) m n ≤⟨ ∑-mono-≤-weak m≤n hyp ⟩ ∑ xs m n ∎ where open ≤-Reasoning nonNegxₙ⇒nonNeg∑xₙ : ∀ {xs : ℕ -> ℝ} -> ∀ {m n} -> m ℕ.≤ n -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> NonNegative (xs k)) -> NonNegative (∑ xs m n) nonNegxₙ⇒nonNeg∑xₙ {xs} {m} {n} m≤n hyp = nonNeg-cong (lem (∑ xs m n)) (0≤xₙ⇒0≤∑xₙ m≤n (λ k m≤k≤n -> nonNeg-cong (≃-symm (lem (xs k))) (hyp k m≤k≤n))) where lem : ∀ x -> x - 0ℝ ≃ x lem = solve 1 (λ x -> x ⊖ Κ 0ℚᵘ ⊜ x) ≃-refl cauchy-convergence : ∀ {xs : ℕ -> ℝ} -> (∀ k -> {k≢0 : k ≢0} -> ∃ λ Nₖ-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc Nₖ-1 -> ∣ xs m - xs n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆) -> xs isConvergent cauchy-convergence {xs} hyp = fast-cauchy⇒convergent (cauchy* main) where main : ∀ k -> {k≢0 : k ≢0} -> ∃ λ Mₖ-1 -> ∀ m n -> m ℕ.≥ suc Mₖ-1 -> n ℕ.≥ suc Mₖ-1 -> ∣ xs m - xs n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆ main (suc k-1) = ℕ.pred Mₖ , sub where open ≤-Reasoning k = suc k-1 Mₖ = suc (proj₁ (hyp k)) sub : ∀ m n -> m ℕ.≥ Mₖ -> n ℕ.≥ Mₖ -> ∣ xs m - xs n ∣ ≤ (+ 1 / k) ⋆ sub m n m≥Mₖ n≥Mₖ with ℕP.<-cmp m n ... | tri< m<n ¬b ¬c = begin ∣ xs m - xs n ∣ ≈⟨ ∣x-y∣≃∣y-x∣ (xs m) (xs n) ⟩ ∣ xs n - xs m ∣ ≤⟨ proj₂ (hyp k) n m m<n m≥Mₖ ⟩ (+ 1 / k) ⋆ ∎ ... | tri≈ ¬a refl ¬c = begin ∣ xs m - xs m ∣ ≈⟨ ≃-trans (∣-∣-cong (+-inverseʳ (xs m))) (0≤x⇒∣x∣≃x ≤-refl) ⟩ 0ℝ ≤⟨ p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ 1 / k) (ℚP.nonNegative⁻¹ _) ⟩ (+ 1 / k) ⋆ ∎ ... | tri> ¬a ¬b m>n = proj₂ (hyp k) m n m>n n≥Mₖ {- This is a generalized version of Bishop's Proposition 3.5. Proposition: If ∑yₙ converges and if there is N∈ℕ such that ∣xₙ∣ ≤ yₙ (n ≥ N), then ∑xₙ converges. Proof: Let k∈ℕ. Then there is N₂∈ℕ such that ∣∑ᵢ₌ₙ₊₁ᵐ yᵢ∣ ≤ k⁻¹ (m > n ≥ N₂). Let N₂∈ℕ such that ∣xₙ∣ ≤ yₙ for n ≥ N₁. Define N = max{N₁, N₂} and let m > n ≥ N. Then ∣∑ᵢ₌ₙ₊₁ᵐ xᵢ∣ ≤ ∑ᵢ₌ₙ₊₁ᵐ ∣xᵢ∣ ≤ ∑ᵢ₌ₙ₊₁ᵐ yᵢ since m > n ≥ N₁ ≤ ∣∑ᵢ₌ₙ₊₁ᵐ yᵢ∣ ≤ k⁻¹. Hence ∑xᵢ is convergent. □ [2] -} proposition-3-5 : ∀ {xs ys} -> SeriesOf ys isConvergent -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ xs n ∣ ≤ ys n) -> SeriesOf xs isConvergent proposition-3-5 {xs} {ys} ∑ysCon (N₁-1 , n≥N₁⇒∣xₙ∣≤yₙ) = cauchy-convergence (λ {(suc k-1) -> let k = suc k-1; ∑ysCauchy = cauchyConvergenceTest-if ys ∑ysCon k ; N₁ = suc N₁-1; N₂ = suc (proj₁ ∑ysCauchy); N = N₁ ℕ.⊔ N₂ in ℕ.pred N , λ {(suc m-1) (suc n-1) m>n n≥N -> let m = suc m-1; n = suc n-1; N₂≤N = ℕP.m≤n⊔m N₁ N₂ ; m≥N = ℕP.<⇒≤ (ℕP.<-transʳ n≥N m>n) in begin ∣ ∑ xs n m ∣ ≤⟨ ∑-triangle-inequality xs n m (ℕP.<⇒≤ m>n) ⟩ ∑ (λ i -> ∣ xs i ∣) n m ≤⟨ ∑-mono-≤-weak (ℕP.<⇒≤ m>n) (λ k n≤k≤m -> n≥N₁⇒∣xₙ∣≤yₙ k (ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) n≥N) (proj₁ n≤k≤m))) ⟩ ∑ ys n m ≤⟨ x≤∣x∣ ⟩ ∣ ∑ ys n m ∣ ≤⟨ proj₂ ∑ysCauchy n m (ℕP.≤-trans N₂≤N n≥N) (ℕP.≤-trans N₂≤N m≥N) ⟩ (+ 1 / k) ⋆ ∎}}) where open ≤-Reasoning absolute⇒isConvergent : ∀ {xs : ℕ -> ℝ} -> SeriesOf xs ConvergesAbsolutely -> SeriesOf xs isConvergent absolute⇒isConvergent {xs} hyp = proposition-3-5 hyp (0 , (λ n n≥1 -> ≤-refl)) lim : {xs : ℕ -> ℝ} -> xs isConvergent -> ℝ lim {xs} (ℓ , hyp) = ℓ reordering : ∀ {xs : ℕ -> ℝ} -> (hyp : SeriesOf xs ConvergesAbsolutely) -> ∀ {f : ℕ -> ℕ} -> IsBijection f -> SeriesOf (λ n -> xs (f n)) ConvergesTo lim (absolute⇒isConvergent hyp) reordering {xs} hyp {f} fBi = {!!} {- (xₙ) diverges If ∃ε>0 ∀k∈ℕ ∃m,n≥k ( ∣xₘ - xₙ∣ ≥ ε ) -} data _DivergesBy_ : REL (ℕ -> ℝ) ℝ 0ℓ where div* : {f : ℕ -> ℝ} -> {ε : ℝ} -> Positive ε -> (∀ k -> {k≢0 : k ≢0} -> (∃ λ m -> ∃ λ n -> m ℕ.≥ k × n ℕ.≥ k × ∣ f m - f n ∣ ≥ ε)) -> f DivergesBy ε _isDivergent : (ℕ -> ℝ) -> Set f isDivergent = ∃ λ ε -> f DivergesBy ε cauchy-getter : ∀ {xs} -> xs isCauchy -> ∀ k -> {k≢0 : k ≢0} -> ∃ λ Mₖ-1 -> ∀ m n -> m ℕ.≥ suc Mₖ-1 -> n ℕ.≥ suc Mₖ-1 -> ∣ xs m - xs n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆ cauchy-getter {xs} (cauchy* hyp) = hyp abstract fast-cauchy-getter : ∀ {xs} -> xs isCauchy -> ∀ k -> {k≢0 : k ≢0} -> ∃ λ Mₖ-1 -> ∀ m n -> m ℕ.≥ suc Mₖ-1 -> n ℕ.≥ suc Mₖ-1 -> ∣ xs m - xs n ∣ ≤ ((+ 1 / k) {k≢0}) ⋆ fast-cauchy-getter = cauchy-getter ¬[isConvergent∧isDivergent] : ∀ xs -> ¬ (xs isConvergent × xs isDivergent) ¬[isConvergent∧isDivergent] xs (hyp1 , ε , div* posε hyp2) = let fromdiv = archimedean-ℝ₂ posε; k = suc (proj₁ fromdiv) ; fromhyp1 = cauchy-getter (fast-convergent⇒cauchy hyp1) k ; Nₖ = suc (proj₁ fromhyp1) ; m = proj₁ (hyp2 Nₖ) ; n = proj₁ (proj₂ (hyp2 Nₖ)) in <-irrefl ≃-refl (begin-strict (+ 1 / k) ⋆ <⟨ proj₂ fromdiv ⟩ ε ≤⟨ proj₂ (proj₂ (proj₂ (proj₂ (hyp2 Nₖ)))) ⟩ ∣ xs m - xs n ∣ ≤⟨ proj₂ fromhyp1 m n (proj₁ (proj₂ (proj₂ (hyp2 Nₖ)))) (proj₁ (proj₂ (proj₂ (proj₂ (hyp2 Nₖ))))) ⟩ (+ 1 / k) ⋆ ∎) where open ≤-Reasoning {- (xₙ) is a subsequence of (yₙ) if there is h : ℕ -> ℕ such that xₙ = yₕ₍ₙ₎ (n∈ℕ) and h(n) < h(n+1) (n∈ℕ). [3] -} data _SubsequenceOf_ : Rel (ℕ -> ℝ) 0ℓ where subseq* : {xs ys : ℕ -> ℝ} -> (∃ λ (f : ℕ -> ℕ) -> (∀ n -> xs n ≃ ys (f n)) × (∀ n -> f n ℕ.< f (suc n))) -> xs SubsequenceOf ys {- Not sure what a more meaningful name for this is yet. -} subsequence-helper : ∀ {f : ℕ -> ℕ} -> ∀ (k : ℕ) -> (∀ n -> f n ℕ.< f (suc n)) -> ∃ λ (N : ℕ) -> ∀ n -> n ℕ.> N -> f n ℕ.> k subsequence-helper {f} zero hyp = 0 , λ {(suc n-1) n>0 → ℕP.<-transʳ ℕ.z≤n (hyp n-1)} subsequence-helper {f} (suc k) hyp = let ih = subsequence-helper k hyp; N = suc (proj₁ ih) in N , λ {(suc n-1) (ℕ.s≤s n>N) → ℕP.<-transʳ (proj₂ ih n-1 n>N) (hyp n-1)} f[n]<f[n+1]⇒n≤f[n] : ∀ {f : ℕ -> ℕ} -> (∀ n -> f n ℕ.< f (suc n)) -> (∀ n -> n ℕ.≤ f n) f[n]<f[n+1]⇒n≤f[n] {f} f[n]<f[n+1] 0 = ℕ.z≤n f[n]<f[n+1]⇒n≤f[n] {f} f[n]<f[n+1] (suc n) = ℕP.<-transʳ (f[n]<f[n+1]⇒n≤f[n] f[n]<f[n+1] n) (f[n]<f[n+1] n) {- As per Bishop, the series ∑xᵢ is divergent if there is positive r∈ℝ such that ∣xₙ∣ ≥ r for infinitely many n. Alternatively, ∑xᵢ is divergent if there is positive r∈ℝ and a subsequence (yₙ) of (xₙ) such that ∣yₙ∣ ≥ r for all n∈ℕ. Proposition: If there is positive r∈ℝ such that r ≤ ∣xₙ∣ for infinitely many n, then ∑xᵢ diverges. Proof: Let (xₕ₍ₙ₎) be a subsequence of (xₙ) such that r ≤ ∣xₕ₍ₙ₎∣ for all n∈ℕ. Note that h(n) < h(n+1) for all n∈ℕ, so n ≤ h(n) for all n∈ℕ. Let k∈ℕ. Then k ≤ f(k), and we have: ∣ ∑ xs 0 h(k)+1 - ∑ xs 0 h(k) ∣ = ∣ xₕ₍ₖ₎ ∣ ≥ r. Thus the sum diverges. □ -} subsequence-divergence-test : ∀ {xs : ℕ -> ℝ} -> (∃ λ (r : ℝ) -> ∃ λ (ys : ℕ -> ℝ) -> Positive r × ys SubsequenceOf xs × (∀ n -> ∣ ys n ∣ ≥ r)) -> SeriesOf xs isDivergent subsequence-divergence-test {xs} (r , ys , posr , subseq* (f , yₙ⊂xₙ) , ∣yₙ∣≥r) = r , div* posr (λ k -> let k≤f[k] = f[n]<f[n+1]⇒n≤f[n] (proj₂ yₙ⊂xₙ) k in suc (f k) , f k , ℕP.≤-trans k≤f[k] (ℕP.n≤1+n (f k)) , k≤f[k] , (begin r ≤⟨ ∣yₙ∣≥r k ⟩ ∣ ys k ∣ ≈⟨ ∣-∣-cong (proj₁ yₙ⊂xₙ k) ⟩ ∣ xs (f k) ∣ ≈⟨ ∣-∣-cong (solve 2 (λ a b -> a ⊜ b ⊕ a ⊖ b) ≃-refl (xs (f k)) (∑₀ xs (f k))) ⟩ ∣ ∑₀ xs (suc (f k)) - ∑₀ xs (f k) ∣ ∎)) where open ≤-Reasoning {- [4] Proposition: Let (yₙ) be a sequence with a nonnegative tail (i.e. ∃N₁∈ℕ ∀n≥N₁[yₙ ≥ 0]). Suppose that ∃N₂∈ℕ ∀n≥N₂[xₙ ≥ yₙ], and that ∑yᵢ is divergent. Then ∑xᵢ is divergent. Proof: Let ε>0 such that ∑yᵢ diverges by ε. Define N = max{N₁, N₂}. Then there is m,n ≥ N such that ∑ᵢ₌ₙᵐ yᵢ = ∣∑ᵢ₌ₙᵐ yᵢ∣ ≥ ε. Suppose, WLOG, that m ≥ n. Then: ∣∑ᵢ₌ₙᵐ xᵢ∣ = ∑ᵢ₌ₙᵐ xᵢ ≥ ∑ᵢ₌ₙᵐ yᵢ ≥ ε. Thus ∑xᵢ diverges by ε. □ Bishop assumes that (i) (xₙ) is a sequence of nonnegative terms, and (ii) (yₙ) is a nonnegative sequence. The first could obviously be removed since xₙ ≥ yₙ eventually, and the second could be modified so that yₙ ≥ 0 eventually. The distinction doesn't matter informally of course, but we adopt it since we don't have the benefit of saying "it's a trivial extension of this result" without proof. -} comparison-test-divergence : ∀ {xs ys : ℕ -> ℝ} -> (∃ λ N₁ -> ∀ n -> n ℕ.≥ N₁ -> NonNegative (ys n)) -> SeriesOf ys isDivergent -> (∃ λ N₂ -> ∀ n -> n ℕ.≥ N₂ -> xs n ≥ ys n) -> SeriesOf xs isDivergent comparison-test-divergence {xs} {ys} (N₁ , n≥N₁⇒yₙ≥0) (ε , div* posε div∑yₙ) (N₂ , n≥N₂⇒xₙ≥yₙ) = ε , div* posε main where main : ∀ k -> {k ≢0} -> ∃ λ m -> ∃ λ n -> m ℕ.≥ k × n ℕ.≥ k × ∣ ∑₀ xs m - ∑₀ xs n ∣ ≥ ε main (suc N₃-1) = let m = proj₁ (div∑yₙ N); n = proj₁ (proj₂ (div∑yₙ N)) ; N≤m = proj₁ (proj₂ (proj₂ (div∑yₙ N))); N≤n = proj₁ (proj₂ (proj₂ (proj₂ (div∑yₙ N)))) ; ∑yₙhyp = proj₂ (proj₂ (proj₂ (proj₂ (div∑yₙ N)))) in m , n , ℕP.≤-trans N₃≤N N≤m , ℕP.≤-trans N₃≤N N≤n , [ (λ m≥n -> sub m n N≤m N≤n m≥n ∑yₙhyp) , (λ m≤n -> ≤-respʳ-≃ (∣x-y∣≃∣y-x∣ (∑₀ xs n) (∑₀ xs m)) (sub n m N≤n N≤m m≤n (≤-respʳ-≃ (∣x-y∣≃∣y-x∣ (∑₀ ys m) (∑₀ ys n)) ∑yₙhyp))) ]′ (ℕP.≤-total n m) where open ≤-Reasoning N₃ = suc N₃-1 N = suc (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₁≤N = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.n≤1+n (ℕ.pred N)) N₂≤N = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.n≤1+n (ℕ.pred N)) N₃≤N = ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) (ℕP.n≤1+n (ℕ.pred N)) sub : ∀ m n -> m ℕ.≥ N -> n ℕ.≥ N -> m ℕ.≥ n -> ∣ ∑₀ ys m - ∑₀ ys n ∣ ≥ ε -> ∣ ∑₀ xs m - ∑₀ xs n ∣ ≥ ε sub (suc m-1) (suc n-1) m≥N n≥N m≥n hyp = let m = suc m-1; n = suc n-1 in begin ε ≤⟨ hyp ⟩ ∣ ∑ ys n m ∣ ≈⟨ nonNegx⇒∣x∣≃x (nonNegxₙ⇒nonNeg∑xₙ m≥n (λ k n≤k≤m -> n≥N₁⇒yₙ≥0 k (ℕP.≤-trans (ℕP.≤-trans N₁≤N n≥N) (proj₁ n≤k≤m)))) ⟩ ∑ ys n m ≤⟨ ∑-mono-≤-weak m≥n (λ k n≤k≤m -> n≥N₂⇒xₙ≥yₙ k (ℕP.≤-trans (ℕP.≤-trans N₂≤N n≥N) (proj₁ n≤k≤m))) ⟩ ∑ xs n m ≤⟨ x≤∣x∣ ⟩ ∣ ∑ xs n m ∣ ∎ pow : ℝ -> ℕ -> ℝ pow x 0 = 1ℝ pow x (suc n) = pow x n * x pow-cong : ∀ {x y} -> ∀ n -> x ≃ y -> pow x n ≃ pow y n pow-cong {x} {y} zero x≃y = ≃-refl pow-cong {x} {y} (suc n) x≃y = *-cong (pow-cong n x≃y) x≃y xⁿxᵐ≃xⁿ⁺ᵐ : ∀ x -> ∀ n m -> (pow x n) * (pow x m) ≃ pow x (n ℕ.+ m) xⁿxᵐ≃xⁿ⁺ᵐ x zero m = *-identityˡ (pow x m) xⁿxᵐ≃xⁿ⁺ᵐ x (suc n) m = begin pow x n * x * pow x m ≈⟨ solve 3 (λ xⁿ x xᵐ -> xⁿ ⊗ x ⊗ xᵐ ⊜ xⁿ ⊗ xᵐ ⊗ x) ≃-refl (pow x n) x (pow x m) ⟩ pow x n * pow x m * x ≈⟨ *-congʳ (xⁿxᵐ≃xⁿ⁺ᵐ x n m) ⟩ pow x (n ℕ.+ m) * x ≈⟨ ≃-refl ⟩ pow x (1 ℕ.+ (n ℕ.+ m)) ≡⟨ cong (λ k -> pow x k) (sym (ℕP.+-assoc 1 n m)) ⟩ pow x ((1 ℕ.+ n) ℕ.+ m) ∎ where open ≃-Reasoning archimedean-ℝ₃ : ∀ {x} y -> Positive x -> ∃ λ n-1 -> (+ (suc n-1) / 1) ⋆ * x > y archimedean-ℝ₃ {x} y posx = let x≄0 = inj₂ (posx⇒0<x posx); x⁻¹ = (x ⁻¹) x≄0 ; arch = fast-archimedean-ℝ (y * x⁻¹); n = suc (proj₁ arch) in ℕ.pred n , (begin-strict y ≈⟨ ≃-symm (≃-trans (≃-trans (*-assoc y x⁻¹ x) (*-congˡ {y} {x⁻¹ * x} {1ℝ} (*-inverseˡ x x≄0))) (*-identityʳ y)) ⟩ y * x⁻¹ * x <⟨ *-monoˡ-<-pos {x} posx {y * x⁻¹} {(+ n / 1) ⋆} (proj₂ arch) ⟩ (+ n / 1) ⋆ * x ∎) where open ≤-Reasoning abstract fast-archimedean-ℝ₃ : ∀ {x} y -> Positive x -> ∃ λ n-1 -> (+ (suc n-1) / 1) ⋆ * x > y fast-archimedean-ℝ₃ = archimedean-ℝ₃ x≤y∧posx⇒y⁻¹≤x⁻¹ : ∀ {x y} -> x ≤ y -> Positive x -> (x≄0 : x ≄0) -> (y≄0 : y ≄0) -> (y ⁻¹) y≄0 ≤ (x ⁻¹) x≄0 x≤y∧posx⇒y⁻¹≤x⁻¹ {x} {y} x≤y posx x≄0 y≄0 = let x⁻¹ = (x ⁻¹) x≄0; y⁻¹ = (y ⁻¹) y≄0 in begin y⁻¹ ≈⟨ ≃-symm (≃-trans (*-congˡ {y⁻¹} {x * x⁻¹} {1ℝ} (*-inverseʳ x x≄0)) (*-identityʳ y⁻¹)) ⟩ y⁻¹ * (x * x⁻¹) ≤⟨ *-monoˡ-≤-nonNeg {x * x⁻¹} {y⁻¹} {y * x⁻¹} (*-monoʳ-≤-nonNeg {x} {x⁻¹} {y} x≤y (nonNegx⇒nonNegx⁻¹ {x} (pos⇒nonNeg posx) x≄0)) (nonNegx⇒nonNegx⁻¹ {y} (pos⇒nonNeg (0<x⇒posx (<-≤-trans (posx⇒0<x posx) x≤y))) y≄0) ⟩ y⁻¹ * (y * x⁻¹) ≈⟨ ≃-trans (≃-trans (≃-symm (*-assoc y⁻¹ y x⁻¹)) (*-congʳ {x⁻¹} {y⁻¹ * y} {1ℝ} (*-inverseˡ y y≄0))) (*-identityˡ x⁻¹) ⟩ x⁻¹ ∎ where open ≤-Reasoning x<y⇒∃ε>0[x<x+ε<y] : ∀ {x y} -> x < y -> ∃ λ ε -> Positive ε × x < (x + ε) < y x<y⇒∃ε>0[x<x+ε<y] {x} {y} x<y = let r-get = fast-density-of-ℚ x y x<y; r = proj₁ r-get ; r≃x+r-x = solve 2 (λ r x -> r ⊜ x ⊕ (r ⊖ x)) ≃-refl (r ⋆) x in r ⋆ - x , 0<x⇒posx (x<y⇒0<y-x x (r ⋆) (proj₁ (proj₂ r-get))) , <-respʳ-≃ r≃x+r-x (proj₁ (proj₂ r-get)) , <-respˡ-≃ r≃x+r-x (proj₂ (proj₂ r-get)) 0≤x,y⇒0≤x*y : ∀ {x y} -> 0ℝ ≤ x -> 0ℝ ≤ y -> 0ℝ ≤ x * y 0≤x,y⇒0≤x*y {x} {y} 0≤x 0≤y = nonNegx⇒0≤x (nonNegx,y⇒nonNegx*y (0≤x⇒nonNegx 0≤x) (0≤x⇒nonNegx 0≤y)) private p²≥0 : ∀ p -> p ℚ.* p ℚ.≥ 0ℚᵘ p²≥0 (mkℚᵘ (+_ zero) d) = ℚP.nonNegative⁻¹ _ p²≥0 (mkℚᵘ +[1+ n ] d) = ℚP.nonNegative⁻¹ _ p²≥0 (mkℚᵘ (-[1+_] n) d) = ℚP.nonNegative⁻¹ _ x²ⁿ≥0 : ∀ x -> ∀ n -> pow x (2 ℕ.* n) ≥ 0ℝ x²ⁿ≥0 x n = begin 0ℝ ≤⟨ nonNegx⇒0≤x (nonNeg* (λ {(suc k-1) -> ℚP.≤-trans (ℚP.nonPositive⁻¹ _) (p²≥0 (seq (pow x n) _))})) ⟩ pow x n * pow x n ≈⟨ xⁿxᵐ≃xⁿ⁺ᵐ x n n ⟩ pow x (n ℕ.+ n) ≡⟨ cong (λ k -> pow x k) (ℤP.+-injective (ℤsolve 1 (λ n -> n :+ n := (n :+ (n :+ ℤΚ (+ 0)))) refl (+ n))) ⟩ pow x (2 ℕ.* n) ∎ where open ≤-Reasoning 0≤x⇒y≤y+x : ∀ {x} y -> 0ℝ ≤ x -> y ≤ y + x 0≤x⇒y≤y+x {x} y 0≤x = begin y ≈⟨ ≃-symm (+-identityʳ y) ⟩ y + 0ℝ ≤⟨ +-monoʳ-≤ y 0≤x ⟩ y + x ∎ where open ≤-Reasoning bernoullis-inequality : ∀ {x} -> x ≥ - 1ℝ -> ∀ (n : ℕ) -> pow (1ℝ + x) n ≥ 1ℝ + (+ n / 1) ⋆ * x bernoullis-inequality {x} x≥-1 0 = ≤-reflexive (solve 1 (λ x -> Κ 1ℚᵘ ⊕ Κ 0ℚᵘ ⊗ x ⊜ Κ 1ℚᵘ) ≃-refl x) bernoullis-inequality {x} x≥-1 (suc n-1) = let n = suc n-1 in begin 1ℝ + (+ n / 1) ⋆ * x ≈⟨ ≃-symm (+-congʳ 1ℝ (*-congʳ {x} (≃-trans (solve 0 (Κ 1ℚᵘ ⊕ Κ (+ n-1 / 1) ⊜ Κ (1ℚᵘ ℚ.+ + n-1 / 1)) ≃-refl) (⋆-cong (ℚ.*≡* (ℤsolve 1 (λ n-1 -> (ℤΚ (+ 1) :+ n-1 :* ℤΚ (+ 1)) :* ℤΚ (+ 1) := (ℤΚ (+ 1) :+ n-1) :* ℤΚ (+ 1)) refl (+ n-1))))))) ⟩ 1ℝ + (1ℝ + (+ n-1 / 1) ⋆) * x ≤⟨ 0≤x⇒y≤y+x {(+ n-1 / 1) ⋆ * (x * x)} (1ℝ + (1ℝ + (+ n-1 / 1) ⋆) * x) (0≤x,y⇒0≤x*y (p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ n-1 / 1) (ℚP.nonNegative⁻¹ _)) (≤-respʳ-≃ (solve 1 (λ x -> Κ 1ℚᵘ ⊗ x ⊗ x ⊜ x ⊗ x) ≃-refl x) (x²ⁿ≥0 x 1))) ⟩ 1ℝ + (1ℝ + (+ n-1 / 1) ⋆) * x + (+ n-1 / 1) ⋆ * (x * x) ≈⟨ solve 3 (λ 1ℝ n-1 x -> Κ 1ℚᵘ ⊕ (1ℝ ⊕ n-1) ⊗ x ⊕ n-1 ⊗ (x ⊗ x) ⊜ Κ 1ℚᵘ ⊕ 1ℝ ⊗ x ⊕ n-1 ⊗ x ⊕ n-1 ⊗ x ⊗ x) ≃-refl 1ℝ ((+ n-1 / 1) ⋆) x ⟩ 1ℝ + 1ℝ * x + (+ n-1 / 1) ⋆ * x + (+ n-1 / 1) ⋆ * x * x ≈⟨ solve 2 (λ n-1 x -> Κ 1ℚᵘ ⊕ Κ 1ℚᵘ ⊗ x ⊕ n-1 ⊗ x ⊕ n-1 ⊗ x ⊗ x ⊜ (Κ 1ℚᵘ ⊕ n-1 ⊗ x) ⊗ (Κ 1ℚᵘ ⊕ x)) ≃-refl ((+ n-1 / 1) ⋆) x ⟩ (1ℝ + (+ n-1 / 1) ⋆ * x) * (1ℝ + x) ≤⟨ *-monoʳ-≤-nonNeg {1ℝ + (+ n-1 / 1) ⋆ * x} {1ℝ + x} {pow (1ℝ + x) n-1} (bernoullis-inequality {x} x≥-1 n-1) (nonNeg-cong {x - - 1ℝ} {1ℝ + x} (solve 1 (λ x -> x ⊖ (⊝ Κ 1ℚᵘ) ⊜ Κ 1ℚᵘ ⊕ x) ≃-refl x) x≥-1) ⟩ pow (1ℝ + x) n-1 * (1ℝ + x) ∎ where open ≤-Reasoning x≄0⇒xⁿ≄0 : ∀ {x} -> ∀ n -> x ≄0 -> pow x n ≄0 x≄0⇒xⁿ≄0 {x} zero x≄0 = inj₂ (p<q⇒p⋆<q⋆ 0ℚᵘ 1ℚᵘ (ℚP.positive⁻¹ _)) x≄0⇒xⁿ≄0 {x} (suc n) x≄0 = x≄0∧y≄0⇒x*y≄0 (x≄0⇒xⁿ≄0 n x≄0) x≄0 [xⁿ]⁻¹≃[x⁻¹]ⁿ : ∀ {x} -> (x≄0 : x ≄0) -> ∀ n -> (xⁿ≄0 : pow x n ≄0) -> ((pow x n) ⁻¹) xⁿ≄0 ≃ pow ((x ⁻¹) x≄0) n [xⁿ]⁻¹≃[x⁻¹]ⁿ {x} x≄0 zero xⁿ≄0 = ⋆-distrib-⁻¹ 1ℚᵘ xⁿ≄0 [xⁿ]⁻¹≃[x⁻¹]ⁿ {x} x≄0 (suc n) xⁿ⁺¹≄0 = let xⁿ≄0 = x≄0⇒xⁿ≄0 {x} n x≄0 in begin ((pow x n * x) ⁻¹) xⁿ⁺¹≄0 ≈⟨ fast-⁻¹-distrib-* {pow x n} {x} xⁿ≄0 x≄0 xⁿ⁺¹≄0 ⟩ ((pow x n) ⁻¹) xⁿ≄0 * (x ⁻¹) x≄0 ≈⟨ *-congʳ {(x ⁻¹) x≄0} {(pow x n ⁻¹) xⁿ≄0} {pow ((x ⁻¹) x≄0) n} ([xⁿ]⁻¹≃[x⁻¹]ⁿ {x} x≄0 n xⁿ≄0) ⟩ pow ((x ⁻¹) x≄0) n * (x ⁻¹) x≄0 ∎ where open ≃-Reasoning 1≤x∧m≤n⇒xᵐ≤xⁿ : ∀ {x} -> ∀ {m n} -> 1ℝ ≤ x -> m ℕ.≤ n -> pow x m ≤ pow x n 1≤x∧m≤n⇒xᵐ≤xⁿ {x} {zero} {zero} 1≤x m≤n = ≤-refl 1≤x∧m≤n⇒xᵐ≤xⁿ {x} {zero} {suc n} 1≤x m≤n = lem (suc n) where open ≤-Reasoning lem : ∀ n -> 1ℝ ≤ pow x n lem zero = ≤-refl lem (suc n) = begin 1ℝ ≤⟨ 1≤x ⟩ x ≈⟨ ≃-symm (*-identityˡ x) ⟩ 1ℝ * x ≤⟨ *-monoʳ-≤-nonNeg (lem n) (0≤x⇒nonNegx (≤-trans (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _)) 1≤x)) ⟩ pow x n * x ∎ 1≤x∧m≤n⇒xᵐ≤xⁿ {x} {suc m} {suc n} 1≤x (ℕ.s≤s m≤n) = *-monoʳ-≤-nonNeg (1≤x∧m≤n⇒xᵐ≤xⁿ 1≤x m≤n) (0≤x⇒nonNegx (≤-trans (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _)) 1≤x)) nonNegx⇒nonNegxⁿ : ∀ {x} -> ∀ n -> NonNegative x -> NonNegative (pow x n) nonNegx⇒nonNegxⁿ {x} zero nonx = nonNegp⇒nonNegp⋆ 1ℚᵘ _ nonNegx⇒nonNegxⁿ {x} (suc n) nonx = nonNegx,y⇒nonNegx*y (nonNegx⇒nonNegxⁿ n nonx) nonx 0<r<1⇒rⁿ→0 : ∀ {r} -> 0ℝ < r < 1ℝ -> ∀ j -> {j≢0 : j ≢0} -> ∃ λ Nₖ-1 -> ∀ n -> n ℕ.≥ suc Nₖ-1 -> pow r n ≤ ((+ 1 / j) {j≢0}) ⋆ 0<r<1⇒rⁿ→0 {r} (0<r , r<1) (suc j-1) = let j = suc j-1; j⋆≄0 = ∣↥p∣≢0⇒p⋆≄0 (+ j / 1) _; N = suc (proj₁ (lem j)) in ℕ.pred N , λ n n≥N -> begin pow r n ≈⟨ pow-cong n (≃-symm (⁻¹-involutive {r} r≄0 t≄0)) ⟩ pow ((t ⁻¹) t≄0) n ≈⟨ ≃-symm ([xⁿ]⁻¹≃[x⁻¹]ⁿ {t} t≄0 n (tⁿ≄0 n)) ⟩ ((pow t n) ⁻¹) (tⁿ≄0 n) ≤⟨ x≤y∧posx⇒y⁻¹≤x⁻¹ {(+ j / 1) ⋆} {pow t n} (proj₂ (lem j) n n≥N) (posp⇒posp⋆ (+ j / 1) _) j⋆≄0 (tⁿ≄0 n) ⟩ (((+ j / 1) ⋆) ⁻¹) j⋆≄0 ≈⟨ ⋆-distrib-⁻¹ (+ j / 1) j⋆≄0 ⟩ (+ 1 / j) ⋆ ∎ where open ≤-Reasoning r≄0 = inj₂ 0<r t = (r ⁻¹) r≄0 1<t : 1ℝ < t 1<t = let 0<1 = p<q⇒p⋆<q⋆ 0ℚᵘ 1ℚᵘ (ℚP.positive⁻¹ _); 1≄0 = inj₂ 0<1 in begin-strict 1ℝ ≈⟨ ≃-symm (⋆-distrib-⁻¹ 1ℚᵘ 1≄0) ⟩ (((+ 1 / 1) ⋆) ⁻¹) 1≄0 <⟨ x<y∧posx,y⇒y⁻¹<x⁻¹ {r} {1ℝ} r<1 r≄0 1≄0 (0<x⇒posx 0<r) (0<x⇒posx 0<1) ⟩ t ∎ t≄0 = inj₂ (0<x⇒0<x⁻¹ {r} r≄0 0<r) tⁿ≄0 : ∀ n -> pow t n ≄0 tⁿ≄0 0 = inj₂ (p<q⇒p⋆<q⋆ 0ℚᵘ 1ℚᵘ (ℚP.positive⁻¹ _)) tⁿ≄0 (suc n) = x≄0∧y≄0⇒x*y≄0 (tⁿ≄0 n) t≄0 arch = fast-archimedean-ℝ₃ {t - 1ℝ} 1ℝ 1<t k = suc (proj₁ arch) -1≤t-1 : - 1ℝ ≤ t - 1ℝ -1≤t-1 = begin - 1ℝ ≈⟨ ≃-symm (⋆-distrib-neg 1ℚᵘ) ⟩ (ℚ.- 1ℚᵘ) ⋆ ≤⟨ p≤q⇒p⋆≤q⋆ (ℚ.- 1ℚᵘ) 0ℚᵘ (ℚP.nonPositive⁻¹ _) ⟩ 0ℝ ≤⟨ x≤y⇒0≤y-x (<⇒≤ 1<t) ⟩ t - 1ℝ ∎ tᵏⁿ≥n : ∀ n -> {n ≢0} -> pow t (k ℕ.* n) ≥ (+ n / 1) ⋆ tᵏⁿ≥n (suc n-1) = let n = suc n-1 in begin (+ n / 1) ⋆ ≈⟨ ≃-symm (*-identityˡ ((+ n / 1) ⋆)) ⟩ 1ℝ * (+ n / 1) ⋆ ≤⟨ *-monoʳ-≤-nonNeg {1ℝ} {(+ n / 1) ⋆} {(+ k / 1) ⋆ * (t - 1ℝ)} (<⇒≤ (proj₂ arch)) (nonNegp⇒nonNegp⋆ (+ n / 1) _) ⟩ (+ k / 1) ⋆ * (t - 1ℝ) * (+ n / 1) ⋆ ≈⟨ solve 3 (λ a b c -> a ⊗ b ⊗ c ⊜ a ⊗ c ⊗ b) ≃-refl ((+ k / 1) ⋆) (t - 1ℝ) ((+ n / 1) ⋆) ⟩ (+ k / 1) ⋆ * (+ n / 1) ⋆ * (t - 1ℝ) ≈⟨ solve 1 (λ t-1 -> Κ (+ k / 1) ⊗ Κ (+ n / 1) ⊗ t-1 ⊜ Κ ((+ k / 1) ℚ.* (+ n / 1)) ⊗ t-1) ≃-refl (t - 1ℝ) ⟩ (+ (k ℕ.* n) / 1) ⋆ * (t - 1ℝ) ≤⟨ ≤-respˡ-≃ (+-identityˡ ((+ (k ℕ.* n) / 1) ⋆ * (t - 1ℝ))) (+-monoˡ-≤ ((+ (k ℕ.* n) / 1) ⋆ * (t - 1ℝ)) (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _))) ⟩ 1ℝ + (+ (k ℕ.* n) / 1) ⋆ * (t - 1ℝ) ≤⟨ bernoullis-inequality {t - 1ℝ} -1≤t-1 (k ℕ.* n) ⟩ pow (1ℝ + (t - 1ℝ)) (k ℕ.* n) ≈⟨ pow-cong (k ℕ.* n) (solve 1 (λ t -> Κ 1ℚᵘ ⊕ (t ⊖ Κ 1ℚᵘ) ⊜ t) ≃-refl t) ⟩ pow t (k ℕ.* n) ∎ lem : ∀ j -> {j ≢0} -> ∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> pow t n ≥ (+ j / 1) ⋆ lem (suc j-1) = let j = suc j-1 in ℕ.pred (k ℕ.* j) , λ n n≥kj -> begin (+ j / 1) ⋆ ≤⟨ tᵏⁿ≥n j ⟩ pow t (k ℕ.* j) ≤⟨ 1≤x∧m≤n⇒xᵐ≤xⁿ {t} {k ℕ.* j} {n} (<⇒≤ 1<t) n≥kj ⟩ pow t n ∎ abstract fast-0<r<1⇒rⁿ→0 : ∀ {r} -> 0ℝ < r < 1ℝ -> ∀ j -> {j≢0 : j ≢0} -> ∃ λ Nₖ-1 -> ∀ n -> n ℕ.≥ suc Nₖ-1 -> pow r n ≤ ((+ 1 / j) {j≢0}) ⋆ fast-0<r<1⇒rⁿ→0 = 0<r<1⇒rⁿ→0 x≤y∧nonNegx⇒xⁿ≤yⁿ : ∀ {x y} -> ∀ n -> x ≤ y -> NonNegative x -> pow x n ≤ pow y n x≤y∧nonNegx⇒xⁿ≤yⁿ {x} {y} zero x≤y nonx = ≤-refl x≤y∧nonNegx⇒xⁿ≤yⁿ {x} {y} (suc n) x≤y nonx = *-mono-≤ (nonNegx⇒nonNegxⁿ n nonx) nonx (x≤y∧nonNegx⇒xⁿ≤yⁿ n x≤y nonx) x≤y posx⇒posxⁿ : ∀ {x} -> ∀ n -> Positive x -> Positive (pow x n) posx⇒posxⁿ {x} zero posx = posp⇒posp⋆ 1ℚᵘ _ posx⇒posxⁿ {x} (suc n) posx = posx,y⇒posx*y (posx⇒posxⁿ n posx) posx x<y∧nonNegx⇒xⁿ<yⁿ : ∀ {x y} -> ∀ n -> {n ≢0} -> x < y -> NonNegative x -> pow x n < pow y n x<y∧nonNegx⇒xⁿ<yⁿ {x} {y} 1 x<y nonx = *-monoʳ-<-pos (posp⇒posp⋆ 1ℚᵘ _) x<y x<y∧nonNegx⇒xⁿ<yⁿ {x} {y} (suc (suc n)) x<y nonx = begin-strict pow x (suc n) * x ≤⟨ *-monoˡ-≤-nonNeg (<⇒≤ x<y) (nonNegx⇒nonNegxⁿ (suc n) nonx) ⟩ pow x (suc n) * y <⟨ *-monoˡ-<-pos (0<x⇒posx (≤-<-trans (nonNegx⇒0≤x nonx) x<y)) (x<y∧nonNegx⇒xⁿ<yⁿ (suc n) x<y nonx) ⟩ pow y (suc n) * y ∎ where open ≤-Reasoning ∣xⁿ∣≃∣x∣ⁿ : ∀ x -> ∀ n -> ∣ pow x n ∣ ≃ pow ∣ x ∣ n ∣xⁿ∣≃∣x∣ⁿ x zero = nonNegx⇒∣x∣≃x (0≤x⇒nonNegx (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _))) ∣xⁿ∣≃∣x∣ⁿ x (suc n) = begin ∣ pow x n * x ∣ ≈⟨ ∣x*y∣≃∣x∣*∣y∣ (pow x n) x ⟩ ∣ pow x n ∣ * ∣ x ∣ ≈⟨ *-congʳ (∣xⁿ∣≃∣x∣ⁿ x n) ⟩ pow ∣ x ∣ n * ∣ x ∣ ∎ where open ≃-Reasoning {- [5] This proof is an altered and further constructivized version of the proof at https://math.stackexchange.com/questions/1253129/as-the-limit-of-n-goes-to-infinity-prove-that-xn-0-if-operatornameabs Proposition: If ∣r∣ < 1, then (rⁿ)→0. Proof: Let ε∈ℝ⁺ such that ∣r∣ < ∣r∣ + ε and 0 < ∣r∣ + ε < 1. If ([∣r∣ + ε]ⁿ)→0, then (∣r∣ⁿ)→0, and so (rⁿ)→0. Let t = (∣r∣ + ε)⁻¹. Then t = 1 + (t - 1), where t - 1 > 0. By the Archimedean Property, there is k∈ℕ such that k(t - 1) > 1. We have, for n∈ℕ: tᵏⁿ = (1 + (t-1))ᵏⁿ ≥ 1 + k(t-1)n by Bernoulli's inequality > 1 + n since k(t-1) > 1 > n, so tᵏⁿ > n for all n∈ℕ (⋆). Let j∈ℕ and let N = k * j. Let n ≥ N. Then (∣r∣ + ε)ⁿ ≤ j⁻¹ ⇔ j ≤ tⁿ. We have: j < tᵏʲ by ⋆ ≤ tⁿ since n ≥ kj and (tⁿ) is an increasing sequence. Thus ([∣r∣ + ε]ⁿ)→0, and so (rⁿ)→0. □ -} ∣r∣<1⇒rⁿ→0 : ∀ {r} -> ∣ r ∣ < 1ℝ -> (λ n -> pow r n) ConvergesTo 0ℝ ∣r∣<1⇒rⁿ→0 {r} ∣r∣<1 = con* (λ {(suc k-1) -> let k = suc k-1; Nₖ-getter = fast-0<r<1⇒rⁿ→0 {∣ r ∣ + ε} (0<∣r∣+ε , (proj₂ (proj₂ (ε-prop)))) ; Nₖ = suc (proj₁ (Nₖ-getter k)) in ℕ.pred Nₖ , λ n n≥Nₖ -> begin ∣ pow r n - 0ℝ ∣ ≈⟨ ∣-∣-cong (solve 1 (λ x -> x ⊖ Κ 0ℚᵘ ⊜ x) ≃-refl (pow r n)) ⟩ ∣ pow r n ∣ ≈⟨ ∣xⁿ∣≃∣x∣ⁿ r n ⟩ pow ∣ r ∣ n ≤⟨ x≤y∧nonNegx⇒xⁿ≤yⁿ {∣ r ∣} {∣ r ∣ + ε} n ∣r∣≤∣r∣+ε (nonNeg∣x∣ r) ⟩ pow (∣ r ∣ + ε) n ≤⟨ proj₂ (Nₖ-getter k) n n≥Nₖ ⟩ (+ 1 / k) ⋆ ∎}) where open ≤-Reasoning ε-prop = proj₂ (x<y⇒∃ε>0[x<x+ε<y] {∣ r ∣} {1ℝ} ∣r∣<1) ε = proj₁ (x<y⇒∃ε>0[x<x+ε<y] {∣ r ∣} {1ℝ} ∣r∣<1) 0<∣r∣+ε : 0ℝ < ∣ r ∣ + ε 0<∣r∣+ε = begin-strict 0ℝ <⟨ posx⇒0<x (proj₁ ε-prop) ⟩ ε ≤⟨ ≤-respˡ-≃ (+-identityˡ ε) (+-monoˡ-≤ ε (0≤∣x∣ r)) ⟩ ∣ r ∣ + ε ∎ ∣r∣≤∣r∣+ε : ∣ r ∣ ≤ ∣ r ∣ + ε ∣r∣≤∣r∣+ε = begin ∣ r ∣ ≈⟨ ≃-symm (+-identityʳ ∣ r ∣) ⟩ ∣ r ∣ + 0ℝ ≤⟨ +-monoʳ-≤ ∣ r ∣ {0ℝ} {ε} (nonNegx⇒0≤x (pos⇒nonNeg (proj₁ ε-prop))) ⟩ ∣ r ∣ + ε ∎ private 1-r≄0 : ∀ r -> ∣ r ∣ < 1ℝ -> (1ℝ - r) ≄0 1-r≄0 r ∣r∣<1 = inj₂ (x<y⇒0<y-x r 1ℝ (proj₂ (∣x∣<y⇒-y<x<y r 1ℝ ∣r∣<1))) {- Using the new solver, we can delete pretty much half the proof! If the solver gets updated to a field solver, we can delete almost the entire thing. -} geometric-sum : ∀ {r} -> ∀ n -> (∣r∣<1 : ∣ r ∣ < 1ℝ) -> ∑ (λ i -> pow r i) 0 n ≃ (1ℝ - pow r n) * ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) geometric-sum {r} zero ∣r∣<1 = let [1-r]⁻¹ = ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) in solve 1 (λ x -> Κ 0ℚᵘ ⊜ (Κ 1ℚᵘ ⊖ Κ 1ℚᵘ) ⊗ x) ≃-refl [1-r]⁻¹ geometric-sum {r} (suc n) ∣r∣<1 = let [1-r]⁻¹ = ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) in begin ∑₀ (pow r) n + pow r n ≈⟨ +-cong {∑₀ (pow r) n} {(1ℝ - pow r n) * [1-r]⁻¹} {pow r n} {pow r n * (1ℝ - r) * [1-r]⁻¹} (geometric-sum {r} n ∣r∣<1) (≃-symm (≃-trans (≃-trans (*-assoc (pow r n) (1ℝ - r) [1-r]⁻¹) (*-congˡ {pow r n} {(1ℝ - r) * [1-r]⁻¹} {1ℝ} (*-inverseʳ (1ℝ - r) (1-r≄0 r ∣r∣<1)))) (*-identityʳ (pow r n)))) ⟩ (1ℝ - pow r n) * [1-r]⁻¹ + pow r n * (1ℝ - r) * [1-r]⁻¹ ≈⟨ solve 3 (λ r rⁿ [1-r]⁻¹ -> (Κ 1ℚᵘ ⊖ rⁿ) ⊗ [1-r]⁻¹ ⊕ rⁿ ⊗ (Κ 1ℚᵘ ⊖ r) ⊗ [1-r]⁻¹ ⊜ (Κ 1ℚᵘ ⊖ (rⁿ ⊗ r)) ⊗ [1-r]⁻¹) ≃-refl r (pow r n) [1-r]⁻¹ ⟩ (1ℝ - pow r (suc n)) * [1-r]⁻¹ ∎ where open ≃-Reasoning geometric-series-converges : ∀ {r} -> (∣r∣<1 : ∣ r ∣ < 1ℝ) -> SeriesOf (λ i -> pow r i) ConvergesTo ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) geometric-series-converges {r} ∣r∣<1 = xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ {λ n -> (1ℝ - pow r n) * [1-r]⁻¹} {SeriesOf rⁱ} (λ {(suc n-1) -> let n = suc n-1 in ≃-symm (geometric-sum {r} n ∣r∣<1)}) ([1-r]⁻¹ , xₙ→x∧x≃y⇒xₙ→y {λ n → (1ℝ - pow r n) * [1-r]⁻¹} {1ℝ * [1-r]⁻¹} {[1-r]⁻¹} (xₙyₙ→x₀y₀ {1-rⁱ} {λ i → [1-r]⁻¹} 1-rⁱ→1 [1-r]⁻¹→[1-r]⁻¹) (*-identityˡ [1-r]⁻¹)) where open ≃-Reasoning -1<r<1 = ∣x∣<y⇒-y<x<y r 1ℝ ∣r∣<1 1-rⁱ = λ i -> 1ℝ - pow r i [1-r]⁻¹ = ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) rⁱ = λ i -> pow r i rⁱ→0 = 0ℝ , ∣r∣<1⇒rⁿ→0 ∣r∣<1 1→1 = 1ℝ , xₙ≃c⇒xₙ→c {λ i -> 1ℝ} {1ℝ} λ {(suc n-1) -> ≃-refl} [1-r]⁻¹→[1-r]⁻¹ = [1-r]⁻¹ , xₙ≃c⇒xₙ→c {λ i -> [1-r]⁻¹} {[1-r]⁻¹} λ {(suc n-1) -> ≃-refl} 1-rⁱ→1 = 1ℝ , xₙ→x∧x≃y⇒xₙ→y (xₙ+yₙ→x₀+y₀ 1→1 (- 0ℝ , -xₙ→-x₀ rⁱ→0)) (≃-trans (+-congʳ 1ℝ (≃-symm 0≃-0)) (+-identityʳ 1ℝ)) abstract fast-geometric-series-converges : ∀ {r} -> (∣r∣<1 : ∣ r ∣ < 1ℝ) -> SeriesOf (λ i -> pow r i) ConvergesTo ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) fast-geometric-series-converges {r} = geometric-series-converges {r} geometric-series-isConvergent : ∀ {r} -> ∣ r ∣ < 1ℝ -> SeriesOf (λ i -> pow r i) isConvergent geometric-series-isConvergent {r} ∣r∣<1 = ((1ℝ - r) ⁻¹) (1-r≄0 r ∣r∣<1) , geometric-series-converges {r} ∣r∣<1 abstract fast-geometric-series-isConvergent : ∀ {r} -> ∣ r ∣ < 1ℝ -> SeriesOf (λ i -> pow r i) isConvergent fast-geometric-series-isConvergent {r} = geometric-series-isConvergent {r} ∑cxₙ≃c∑xₙ : ∀ (xs : ℕ -> ℝ) -> ∀ (c : ℝ) -> ∀ (m n : ℕ) -> ∑ (λ i -> c * xs i) m n ≃ c * ∑ xs m n ∑cxₙ≃c∑xₙ xs c zero n = lem n where open ≃-Reasoning lem : ∀ n -> ∑₀ (λ i -> c * xs i) n ≃ c * ∑₀ xs n lem 0 = ≃-symm (*-zeroʳ c) lem (suc n) = begin ∑₀ (λ i -> c * xs i) n + c * xs n ≈⟨ +-congˡ (c * xs n) (lem n) ⟩ c * ∑₀ xs n + c * xs n ≈⟨ ≃-symm (*-distribˡ-+ c (∑₀ xs n) (xs n)) ⟩ c * (∑₀ xs n + xs n) ∎ ∑cxₙ≃c∑xₙ xs c (suc m) n = begin ∑₀ (λ i -> c * xs i) n - (∑₀ (λ i -> c * xs i) m + c * xs m) ≈⟨ +-cong (∑cxₙ≃c∑xₙ xs c 0 n) (-‿cong (≃-trans (+-congˡ (c * xs m) (∑cxₙ≃c∑xₙ xs c 0 m)) (≃-symm (*-distribˡ-+ c (∑₀ xs m) (xs m))))) ⟩ c * ∑₀ xs n - (c * (∑₀ xs m + xs m)) ≈⟨ solve 3 (λ c ∑₀ⁿxᵢ ∑₀ᵐ⁺¹xᵢ -> c ⊗ ∑₀ⁿxᵢ ⊖ c ⊗ ∑₀ᵐ⁺¹xᵢ ⊜ c ⊗ (∑₀ⁿxᵢ ⊖ ∑₀ᵐ⁺¹xᵢ) ) ≃-refl c (∑₀ xs n) (∑₀ xs (suc m)) ⟩ c * (∑₀ xs n - (∑₀ xs m + xs m)) ∎ where open ≃-Reasoning {- [7] -} proposition-3-6-1 : ∀ {xs : ℕ -> ℝ} -> ∀ {c} -> 0ℝ < c < 1ℝ -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ xs (suc n) ∣ ≤ c * ∣ xs n ∣) -> SeriesOf xs isConvergent proposition-3-6-1 {xs} {c} (0<c , c<1) (N-1 , hyp) = proposition-3-5 {xs} {λ n -> ∣ xs N ∣ * c⁻ᴺ * pow c n} part1 (ℕ.pred N , λ n n≥N -> part2 n (≤⇒≡∨< N n n≥N)) where open ≤-Reasoning N = suc N-1 posc = 0<x⇒posx {c} 0<c cᴺ≄0 = inj₂ (posx⇒0<x {pow c N} (posx⇒posxⁿ {c} N posc)) c⁻ᴺ = ((pow c N) ⁻¹) cᴺ≄0 ∣c∣<1 = -y<x<y⇒∣x∣<y c 1ℝ (<-trans (<-respˡ-≃ (⋆-distrib-neg 1ℚᵘ) (p<q⇒p⋆<q⋆ (ℚ.- 1ℚᵘ) 0ℚᵘ (ℚP.negative⁻¹ _))) 0<c , c<1) con∑cⁿ = fast-geometric-series-isConvergent {c} ∣c∣<1 part0 : (λ i -> ∣ xs N ∣ * c⁻ᴺ * (SeriesOf (λ n -> pow c n) i)) isConvergent part0 = ∣ xs N ∣ * c⁻ᴺ * (proj₁ con∑cⁿ) , xₙyₙ→x₀y₀ {λ i → ∣ xs N ∣ * c⁻ᴺ} {SeriesOf (λ n → pow c n)} (∣ xs N ∣ * c⁻ᴺ , xₙ≃c⇒xₙ→c {λ i -> ∣ xs N ∣ * c⁻ᴺ} {∣ xs N ∣ * c⁻ᴺ} (λ {(suc n-1) -> ≃-refl})) con∑cⁿ part1 : SeriesOf (λ n -> ∣ xs N ∣ * c⁻ᴺ * pow c n) isConvergent part1 = ∣ xs N ∣ * c⁻ᴺ * (proj₁ con∑cⁿ) , xₙ≃yₙ∧xₙ→x₀⇒yₙ→x₀ {λ i → ∣ xs N ∣ * c⁻ᴺ * SeriesOf (λ n → pow c n) i} {SeriesOf (λ n → ∣ xs N ∣ * c⁻ᴺ * pow c n)} (λ {n -> ≃-symm (∑cxₙ≃c∑xₙ (λ i -> pow c i) (∣ xs N ∣ * c⁻ᴺ) 0 n)}) part0 part2 : ∀ n -> N ≡ n ⊎ N ℕ.< n -> ∣ xs n ∣ ≤ ∣ xs N ∣ * c⁻ᴺ * pow c n part2 .(suc N-1) (inj₁ refl) = ≤-reflexive (≃-symm (begin-equality ∣ xs N ∣ * c⁻ᴺ * pow c N ≈⟨ *-assoc ∣ xs N ∣ c⁻ᴺ (pow c N) ⟩ ∣ xs N ∣ * (c⁻ᴺ * pow c N) ≈⟨ *-congˡ {∣ xs N ∣} {c⁻ᴺ * pow c N} {1ℝ} (*-inverseˡ (pow c N) cᴺ≄0) ⟩ ∣ xs N ∣ * 1ℝ ≈⟨ *-identityʳ ∣ xs N ∣ ⟩ ∣ xs N ∣ ∎)) part2 (suc n) (inj₂ (ℕ.s≤s N<n)) = begin ∣ xs (suc n) ∣ ≤⟨ hyp n N<n ⟩ c * ∣ xs n ∣ ≤⟨ *-monoˡ-≤-nonNeg {∣ xs n ∣} {c} {∣ xs N ∣ * c⁻ᴺ * pow c n} (part2 n (≤⇒≡∨< N n N<n)) (pos⇒nonNeg posc) ⟩ c * (∣ xs N ∣ * c⁻ᴺ * pow c n) ≈⟨ solve 4 (λ a b c d -> a ⊗ (b ⊗ c ⊗ d) ⊜ b ⊗ c ⊗ (d ⊗ a)) ≃-refl c ∣ xs N ∣ c⁻ᴺ (pow c n) ⟩ ∣ xs N ∣ * c⁻ᴺ * pow c (suc n) ∎ ∣c∣>0⇒∑c-isDivergent : ∀ {c} -> ∣ c ∣ > 0ℝ -> SeriesOf (λ i -> c) isDivergent ∣c∣>0⇒∑c-isDivergent {c} ∣c∣>0 = ∣ c ∣ , div* (0<x⇒posx ∣c∣>0) (λ {k -> suc k , k , ℕP.n≤1+n k , ℕP.≤-refl , ≤-reflexive (∣-∣-cong (≃-symm (begin ∑₀ (λ i -> c) k + c - ∑₀ (λ i -> c) k ≈⟨ solve 2 (λ a b -> a ⊕ b ⊖ a ⊜ b) ≃-refl (∑₀ (λ i -> c) k) c ⟩ c ∎)))}) where open ≃-Reasoning {- [8] -} proposition-3-6-2 : ∀ {xs : ℕ -> ℝ} -> ∀ {c} -> 1ℝ < c -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> ∣ xs (suc n) ∣ > c * ∣ xs n ∣) -> SeriesOf xs isDivergent proposition-3-6-2 {xs} {c} 1<c (N-1 , hyp) = subsequence-divergence-test {xs} (∣ xs (suc N) ∣ , (λ n -> xs (n ℕ.+ suc N)) , 0<x⇒posx {∣ xs (suc N) ∣} part1 , subseq* ((λ n -> n ℕ.+ suc N) , (λ n -> ≃-refl) , (λ n -> ℕP.n<1+n (n ℕ.+ suc N))) , λ n -> ≤-trans {∣ xs (suc N) ∣} {pow c (n ℕ.+ suc N) * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣} {∣ xs (n ℕ.+ suc N) ∣} (part2-1 (n ℕ.+ suc N) (ℕP.m≤n+m (suc N) n)) (part2-2 (n ℕ.+ suc N) (≤⇒≡∨< (suc N) (n ℕ.+ suc N) (ℕP.m≤n+m (suc N) n)))) where open ≤-Reasoning N = suc N-1 n-N-1 = λ n -> ℤ.∣ + n ℤ.- + (suc N) ∣ cᴺ⁺¹≄0 = inj₂ (posx⇒0<x {pow c (suc N)} (posx⇒posxⁿ {c} (suc N) (0<x⇒posx {c} (<-trans (p<q⇒p⋆<q⋆ 0ℚᵘ 1ℚᵘ (ℚP.positive⁻¹ _)) 1<c)))) c⁻ᴺ⁻¹ = ((pow c (suc N)) ⁻¹) cᴺ⁺¹≄0 posc = 0<x⇒posx (≤-<-trans (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _)) 1<c) part1 : ∣ xs (suc N) ∣ > 0ℝ part1 = begin-strict 0ℝ ≤⟨ nonNegx⇒0≤x (nonNegx,y⇒nonNegx*y (pos⇒nonNeg posc) (nonNeg∣x∣ (xs N))) ⟩ c * ∣ xs N ∣ <⟨ hyp N ℕP.≤-refl ⟩ ∣ xs (suc N) ∣ ∎ part2-1 : ∀ n -> suc N ℕ.≤ n -> pow c n * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ ≥ ∣ xs (suc N) ∣ part2-1 n N+1≤n = begin ∣ xs (suc N) ∣ ≈⟨ ≃-symm (*-identityˡ ∣ xs (suc N) ∣) ⟩ 1ℝ * ∣ xs (suc N) ∣ ≈⟨ ≃-symm (*-congʳ {∣ xs (suc N) ∣} {pow c (suc N) * c⁻ᴺ⁻¹} {1ℝ} (*-inverseʳ (pow c (suc N)) cᴺ⁺¹≄0)) ⟩ pow c (suc N) * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ ≤⟨ *-monoʳ-≤-nonNeg {pow c (suc N) * c⁻ᴺ⁻¹} {∣ xs (suc N) ∣} {pow c n * c⁻ᴺ⁻¹} (*-monoʳ-≤-nonNeg {pow c (suc N)} {c⁻ᴺ⁻¹} {pow c n} (1≤x∧m≤n⇒xᵐ≤xⁿ {c} (<⇒≤ 1<c) N+1≤n) (nonNegx⇒nonNegx⁻¹ {pow c (suc N)} (nonNegx⇒nonNegxⁿ {c} (suc N) (pos⇒nonNeg {c} posc)) cᴺ⁺¹≄0)) (nonNeg∣x∣ (xs (suc N))) ⟩ pow c n * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ ∎ part2-2 : ∀ n -> suc N ≡ n ⊎ suc N ℕ.< n -> ∣ xs n ∣ ≥ pow c n * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ part2-2 .(suc (suc N-1)) (inj₁ refl) = begin pow c (suc N) * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ ≈⟨ *-congʳ {∣ xs (suc N) ∣} {pow c (suc N) * c⁻ᴺ⁻¹} {1ℝ} (*-inverseʳ (pow c (suc N)) cᴺ⁺¹≄0) ⟩ 1ℝ * ∣ xs (suc N) ∣ ≈⟨ *-identityˡ ∣ xs (suc N) ∣ ⟩ ∣ xs (suc N) ∣ ∎ part2-2 (suc n) (inj₂ (ℕ.s≤s N<n)) = begin pow c n * c * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣ ≈⟨ solve 4 (λ x y z w -> x ⊗ y ⊗ z ⊗ w ⊜ y ⊗ (x ⊗ z ⊗ w)) ≃-refl (pow c n) c c⁻ᴺ⁻¹ ∣ xs (suc N) ∣ ⟩ c * (pow c n * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣) ≤⟨ *-monoˡ-≤-nonNeg {pow c n * c⁻ᴺ⁻¹ * ∣ xs (suc N) ∣} {c} {∣ xs n ∣} (part2-2 n (≤⇒≡∨< (suc N) n N<n)) (pos⇒nonNeg {c} posc) ⟩ c * ∣ xs n ∣ <⟨ hyp n (ℕP.≤-trans (ℕP.n≤1+n N) N<n) ⟩ ∣ xs (suc n) ∣ ∎ ε-cauchy-convergence : ∀ {xs : ℕ -> ℝ} -> (∀ {ε} -> ε > 0ℝ -> ∃ λ N-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N-1 -> ∣ xs m - xs n ∣ ≤ ε) -> xs isConvergent ε-cauchy-convergence {xs} hyp = cauchy-convergence (λ {(suc k-1) -> let k = suc k-1 in hyp (p<q⇒p⋆<q⋆ 0ℚᵘ (+ 1 / k) (ℚP.positive⁻¹ _))}) abstract fast-ε-cauchy-convergence : ∀ {xs : ℕ -> ℝ} -> (∀ {ε} -> ε > 0ℝ -> ∃ λ N-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N-1 -> ∣ xs m - xs n ∣ ≤ ε) -> xs isConvergent fast-ε-cauchy-convergence = ε-cauchy-convergence ε-cauchy : ∀ {xs : ℕ -> ℝ} -> (∀ {ε} -> ε > 0ℝ -> ∃ λ N-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N-1 -> ∣ xs m - xs n ∣ ≤ ε) -> xs isCauchy ε-cauchy {xs} hyp = fast-convergent⇒cauchy (ε-cauchy-convergence hyp) abstract fast-0<x⇒posx : ∀ {x} -> 0ℝ < x -> Positive x fast-0<x⇒posx = 0<x⇒posx ε-from-convergence-cauchy : ∀ {xs : ℕ -> ℝ} -> (xₙ→ℓ : xs isConvergent) -> ∀ {ε : ℝ} -> ε > 0ℝ -> ∃ λ N-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N-1 -> ∣ xs m - xs n ∣ ≤ ε ε-from-convergence-cauchy {xs} xₙ→ℓ {ε} ε>0 = let xₙ-cauchy = fast-cauchy-getter (fast-convergent⇒cauchy xₙ→ℓ) ; arch = fast-archimedean-ℝ₂ (fast-0<x⇒posx ε>0); k = suc (proj₁ arch) in proj₁ (xₙ-cauchy k) , λ m n m>n n≥N -> begin ∣ xs m - xs n ∣ ≤⟨ proj₂ (xₙ-cauchy k) m n (ℕP.<⇒≤ (ℕP.<-transʳ n≥N m>n)) n≥N ⟩ (+ 1 / k) ⋆ <⟨ proj₂ arch ⟩ ε ∎ where open ≤-Reasoning abstract fast-ε-from-convergence-cauchy : ∀ {xs : ℕ -> ℝ} -> (xₙ→ℓ : xs isConvergent) -> ∀ {ε : ℝ} -> ε > 0ℝ -> ∃ λ N-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N-1 -> ∣ xs m - xs n ∣ ≤ ε fast-ε-from-convergence-cauchy = ε-from-convergence-cauchy ∑ᵀ-mono-<-weak : ∀ {xs ys : ℕ -> ℝ} -> ∀ {m n} -> (m<n : m ℕ.< n) -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> xs k < ys k) -> ∑ᵀ xs m n (ℕP.<⇒≤ m<n) < ∑ᵀ ys m n (ℕP.<⇒≤ m<n) ∑ᵀ-mono-<-weak {xs} {ys} {m} {suc n} m<n hyp with ≤⇒≡∨< m (suc n) (ℕP.<⇒≤ m<n) ... | inj₁ refl = ⊥-elim (ℕP.<-irrefl refl m<n) ... | inj₂ (ℕ.s≤s y) = begin-strict ∑ᵀ xs m n y + xs n ≤⟨ +-monoˡ-≤ (xs n) (∑ᵀ-mono-≤-weak y (λ k m≤k≤n -> <⇒≤ (hyp k (proj₁ m≤k≤n , ℕP.≤-trans (proj₂ m≤k≤n) (ℕP.n≤1+n n))))) ⟩ ∑ᵀ ys m n y + xs n <⟨ +-monoʳ-< (∑ᵀ ys m n y) (hyp n (y , ℕP.n≤1+n n)) ⟩ ∑ᵀ ys m n y + ys n ∎ where open ≤-Reasoning ∑-mono-<-weak : ∀ {xs ys : ℕ -> ℝ} -> ∀ (m n : ℕ) -> (m<n : m ℕ.< n) -> (∀ k -> m ℕ.≤ k × k ℕ.≤ n -> xs k < ys k) -> ∑ xs m n < ∑ ys m n ∑-mono-<-weak {xs} {ys} m n m<n hyp = let m≤n = ℕP.<⇒≤ m<n in begin-strict ∑ xs m n ≈⟨ ∑-to-∑ᵀ xs m n m≤n ⟩ ∑ᵀ xs m n m≤n <⟨ ∑ᵀ-mono-<-weak m<n hyp ⟩ ∑ᵀ ys m n m≤n ≈⟨ ≃-symm (∑-to-∑ᵀ ys m n m≤n) ⟩ ∑ ys m n ∎ where open ≤-Reasoning ∑-mono-< : ∀ {xs ys : ℕ -> ℝ} -> ∀ (m n : ℕ) -> (m<n : m ℕ.< n) -> (∀ k -> xs k < ys k) -> ∑ xs m n < ∑ ys m n ∑-mono-< {xs} {ys} m n m<n hyp = ∑-mono-<-weak m n m<n (λ k m≤k≤n -> hyp k) 0<x,y⇒0<x*y : ∀ {x y} -> 0ℝ < x -> 0ℝ < y -> 0ℝ < x * y 0<x,y⇒0<x*y 0<x 0<y = posx⇒0<x (posx,y⇒posx*y (0<x⇒posx 0<x) (0<x⇒posx 0<y)) abstract fast-0<x,y⇒0<x*y : ∀ {x y} -> 0ℝ < x -> 0ℝ < y -> 0ℝ < x * y fast-0<x,y⇒0<x*y = 0<x,y⇒0<x*y {- Lemma: Let (aₙ) and (xₙ) be positive sequences of real numbers and let c>0. If (aₙxₙ)→0 and there is N₁∈ℕ such that (1) aₙxₙxₙ₊₁⁻¹ - aₙ₊₁ ≥ c (n ≥ N₁) then ∑xₙ converges. Proof: Let ε>0. Since (aₙxₙ)→0, there is N₂∈ℕ such that (2) ∣aₘxₘ - aₙxₙ∣ < cε (m ≥ n ≥ N₂). Moreover, by (1) we have (3) aₙxₙ - aₙ₊₁xₙ₊₁ ≥ cxₙ₊₁ (n ≥ N₁). Let N = max{N₁, N₂} and let m ≥ n ≥ N. Then ∣∑ᵢ₌₀ᵐ xᵢ - ∑ᵢ₌₀ⁿ xᵢ∣ = ∑ᵢ₌ₙᵐ xᵢ = c⁻¹∑ᵢ₌ₙᵐ cxᵢ < c⁻¹∑ᵢ₌ₙᵐ (aᵢ₋₁xᵢ₋₁ - aᵢxᵢ) by (3) = c⁻¹(aₘ₋₁xₘ₋₁ - aₙxₙ) ≤ c⁻¹cε by (2) = ε. Thus ∑xₙ is a Cauchy sequence. □ -} lemma-3-7-1 : ∀ {as xs : ℕ -> ℝ} -> ∀ {c : ℝ} -> 0ℝ < c -> (0<aₙ,xₙ : ∀ n -> (0ℝ < as n) × (0ℝ < xs n)) -> (λ n -> as n * xs n) ConvergesTo 0ℝ -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> as n * xs n * (xs (suc n) ⁻¹) (inj₂ (proj₂ (0<aₙ,xₙ (suc n)))) - as (suc n) ≥ c) -> SeriesOf xs isConvergent lemma-3-7-1 {as} {xs} {c} 0<c 0<aₙ,xₙ aₙxₙ→0 (N₁-1 , hyp) = fast-ε-cauchy-convergence (λ {ε} ε>0 -> let N₁ = suc N₁-1; N₂ = suc (proj₁ (res ε ε>0)); N = suc (N₁ ℕ.⊔ N₂) in ℕ.pred N , λ {(suc m-1) (suc n-1) (ℕ.s≤s m-1>n-1) (ℕ.s≤s n-1≥N-1) → let m = suc m-1; n = suc n-1; m>n = ℕ.s≤s m-1>n-1; n≥N = ℕ.s≤s n-1≥N-1 ; c≄0 = inj₂ 0<c; c⁻¹ = (c ⁻¹) c≄0 ; nonNegc⁻¹ = nonNegx⇒nonNegx⁻¹ {c} (0≤x⇒nonNegx (<⇒≤ 0<c)) c≄0 in begin ∣ ∑ xs n m ∣ ≈⟨ 0≤x⇒∣x∣≃x (0≤xₙ⇒0≤∑xₙ (ℕP.<⇒≤ m>n) (λ k n≤k≤m -> <⇒≤ (proj₂ (0<aₙ,xₙ k)))) ⟩ ∑ xs n m ≈⟨ ≃-symm (≃-trans (*-congʳ {∑ xs n m} (*-inverseˡ c c≄0)) (*-identityˡ (∑ xs n m))) ⟩ c⁻¹ * c * ∑ xs n m ≈⟨ ≃-trans (*-assoc c⁻¹ c (∑ xs n m)) (*-congˡ {c⁻¹} {c * ∑ xs n m} {∑ (λ i → c * xs i) n m} (≃-symm (∑cxₙ≃c∑xₙ xs c n m))) ⟩ c⁻¹ * ∑ (λ i -> c * xs i) n m ≤⟨ *-monoˡ-≤-nonNeg {∑ (λ i → c * xs i) n m} {c⁻¹} {∑ (λ i → as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m} (∑-mono-≤-weak {λ i → c * xs i} {λ i → as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i} {n} {m} (ℕP.<⇒≤ m>n) λ { (suc k-1) (n≤k , k≤m) → part3 (suc k-1) (ℕP.<-transʳ (ℕP.m≤m⊔n N₁ N₂) (ℕP.<-transˡ (ℕP.n<1+n (ℕ.pred N)) (ℕP.≤-trans n≥N n≤k)))}) nonNegc⁻¹ ⟩ c⁻¹ * ∑ (λ i -> as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m ≈⟨ *-congˡ {c⁻¹} {∑ (λ i → as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m} {as n-1 * xs n-1 - as m-1 * xs m-1} (≃-trans (∑-to-∑ᵀ (λ i -> as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m (ℕP.<⇒≤ m>n)) (part2 m n (ℕP.<⇒≤ m>n))) ⟩ c⁻¹ * (as n-1 * xs n-1 - as m-1 * xs m-1) ≤⟨ *-monoˡ-≤-nonNeg {as n-1 * xs n-1 - as m-1 * xs m-1} {c⁻¹} {c * ε} (≤-trans x≤∣x∣ (≤-respˡ-≃ (∣x-y∣≃∣y-x∣ (as m-1 * xs m-1) (as n-1 * xs n-1)) (proj₂ (res ε ε>0) m-1 n-1 m-1>n-1 (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) n-1≥N-1)))) nonNegc⁻¹ ⟩ c⁻¹ * (c * ε) ≈⟨ ≃-trans (≃-trans (≃-symm (*-assoc c⁻¹ c ε)) (*-congʳ {ε} {c⁻¹ * c} {1ℝ} (*-inverseˡ c c≄0))) (*-identityˡ ε) ⟩ ε ∎}) where open ≤-Reasoning -- If we don't use abstract for res, it will take forever to compute ℕP.m≤m⊔n N₁ N₂. abstract res : ∀ ε -> ε > 0ℝ -> ∃ λ N₂-1 -> ∀ m n -> m ℕ.> n -> n ℕ.≥ suc N₂-1 -> ∣ as m * xs m - as n * xs n ∣ ≤ c * ε res ε ε>0 = fast-ε-from-convergence-cauchy {λ n → as n * xs n} (0ℝ , aₙxₙ→0) (fast-0<x,y⇒0<x*y 0<c ε>0) part1 : ∀ n -> n ℕ.≥ suc N₁-1 -> as n * xs n - as (suc n) * xs (suc n) ≥ c * xs (suc n) part1 n n≥N₁ = let n+1 = suc n; xₙ₊₁≄0 = inj₂ (proj₂ (0<aₙ,xₙ n+1)) in begin c * xs n+1 ≤⟨ *-monoʳ-≤-nonNeg {c} {xs n+1} {as n * xs n * (xs n+1 ⁻¹) xₙ₊₁≄0 - as n+1} (hyp n n≥N₁) (pos⇒nonNeg (fast-0<x⇒posx (proj₂ (0<aₙ,xₙ n+1)))) ⟩ (as n * xs n * ((xs n+1) ⁻¹) xₙ₊₁≄0 - as n+1) * xs n+1 ≈⟨ *-distribʳ-+ (xs n+1) (as n * xs n * ((xs n+1) ⁻¹) xₙ₊₁≄0) (- (as n+1)) ⟩ as n * xs n * ((xs n+1) ⁻¹) xₙ₊₁≄0 * xs n+1 + (- (as n+1)) * xs n+1 ≈⟨ +-cong (≃-trans (≃-trans (*-assoc (as n * xs n) (((xs n+1) ⁻¹) xₙ₊₁≄0) (xs n+1)) (*-congˡ (*-inverseˡ (xs n+1) xₙ₊₁≄0))) (*-identityʳ (as n * xs n))) (≃-symm (neg-distribˡ-* (as n+1) (xs n+1))) ⟩ as n * xs n - as n+1 * xs n+1 ∎ part2 : ∀ m n -> {n ≢0} -> (m≥n : m ℕ.≥ n) -> ∑ᵀ (λ i -> as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m m≥n ≃ as (ℕ.pred n) * xs (ℕ.pred n) - as (ℕ.pred m) * xs (ℕ.pred m) part2 m n {n≢0} m≥n with ≤⇒≡∨< n m m≥n ... | inj₁ refl = ≃-symm (+-inverseʳ (as (ℕ.pred m) * xs (ℕ.pred m))) part2 (suc m-1) n {n≢0} m≥n | inj₂ (ℕ.s≤s y) = begin-equality ∑ᵀ (λ i -> as (ℕ.pred i) * xs (ℕ.pred i) - as i * xs i) n m-1 y + (as (ℕ.pred m-1) * xs (ℕ.pred m-1) - as m-1 * xs m-1) ≈⟨ +-congˡ (as (ℕ.pred m-1) * xs (ℕ.pred m-1) - as m-1 * xs m-1) (part2 m-1 n {n≢0} y) ⟩ as (ℕ.pred n) * xs (ℕ.pred n) - as (ℕ.pred m-1) * xs (ℕ.pred m-1) + (as (ℕ.pred m-1) * xs (ℕ.pred m-1) - as m-1 * xs m-1) ≈⟨ solve 3 (λ x y z -> x ⊖ y ⊕ (y ⊖ z) ⊜ x ⊖ z) ≃-refl (as (ℕ.pred n) * xs (ℕ.pred n)) (as (ℕ.pred m-1) * xs (ℕ.pred m-1)) (as m-1 * xs m-1) ⟩ as (ℕ.pred n) * xs (ℕ.pred n) - as m-1 * xs m-1 ∎ part3 : ∀ n -> {n ≢0} -> n ℕ.> suc N₁-1 -> c * xs n ≤ as (ℕ.pred n) * xs (ℕ.pred n) - as n * xs n part3 (suc n-1) (ℕ.s≤s n-1>N₁-1) = let n = suc n-1; xₙ≄0 = inj₂ (proj₂ (0<aₙ,xₙ n)) in begin c * xs n ≤⟨ *-monoʳ-≤-nonNeg {c} {xs n} {as n-1 * xs n-1 * (xs n ⁻¹) xₙ≄0 - as n} (hyp n-1 n-1>N₁-1) (pos⇒nonNeg (0<x⇒posx (proj₂ (0<aₙ,xₙ n)))) ⟩ (as n-1 * xs n-1 * (xs n ⁻¹) xₙ≄0 - as n) * xs n ≈⟨ solve 4 (λ aₙ₋₁xₙ₋₁ xₙ⁻¹ aₙ xₙ -> (aₙ₋₁xₙ₋₁ ⊗ xₙ⁻¹ ⊖ aₙ) ⊗ xₙ ⊜ aₙ₋₁xₙ₋₁ ⊗ (xₙ⁻¹ ⊗ xₙ) ⊖ aₙ ⊗ xₙ) ≃-refl (as n-1 * xs n-1) ((xs n ⁻¹) xₙ≄0) (as n) (xs n) ⟩ as n-1 * xs n-1 * ((xs n ⁻¹) xₙ≄0 * xs n) - as n * xs n ≈⟨ +-congˡ (- (as n * xs n)) {as n-1 * xs n-1 * ((xs n ⁻¹) xₙ≄0 * xs n)} {as n-1 * xs n-1} (≃-trans (*-congˡ {as n-1 * xs n-1} (*-inverseˡ (xs n) xₙ≄0)) (*-identityʳ (as n-1 * xs n-1))) ⟩ as n-1 * xs n-1 - as n * xs n ∎ [xₙ]isDivergent∧c≄0⇒[cxₙ]isDivergent : ∀ {xs} -> ∀ {c} -> xs isDivergent -> c ≄0 -> (λ n -> c * xs n) isDivergent [xₙ]isDivergent∧c≄0⇒[cxₙ]isDivergent {xs} {c} (ε , div* posε hyp) c≄0 = ∣ c ∣ * ε , div* (posx,y⇒posx*y (x≄0⇒pos∣x∣ c≄0) posε) (λ {(suc k-1) -> let k = suc k-1; m = proj₁ (hyp k); n = proj₁ (proj₂ (hyp k)) in m , n , proj₁ (proj₂ (proj₂ (hyp k))) , proj₁ (proj₂ (proj₂ (proj₂ (hyp k)))) , (begin ∣ c ∣ * ε ≤⟨ *-monoˡ-≤-nonNeg (proj₂ (proj₂ (proj₂ (proj₂ (hyp k))))) (nonNeg∣x∣ c) ⟩ ∣ c ∣ * ∣ xs m - xs n ∣ ≈⟨ ≃-symm (∣x*y∣≃∣x∣*∣y∣ c (xs m - xs n)) ⟩ ∣ c * (xs m - xs n) ∣ ≈⟨ ∣-∣-cong (solve 3 (λ c xₘ xₙ → c ⊗ (xₘ ⊖ xₙ) ⊜ c ⊗ xₘ ⊖ c ⊗ xₙ) ≃-refl c (xs m) (xs n)) ⟩ ∣ c * xs m - c * xs n ∣ ∎)}) where open ≤-Reasoning DivergesBy-cong : ∀ {xs ys} -> ∀ {ε} -> xs DivergesBy ε -> (∀ n -> xs n ≃ ys n) -> ys DivergesBy ε DivergesBy-cong {xs} {ys} {ε} (div* posε hyp) xₙ≃yₙ = div* posε (λ {(suc k-1) -> let k = suc k-1; m = proj₁ (hyp k); n = proj₁ (proj₂ (hyp k)) in m , n , proj₁ (proj₂ (proj₂ (hyp k))) , proj₁ (proj₂ (proj₂ (proj₂ (hyp k)))) , (begin ε ≤⟨ proj₂ (proj₂ (proj₂ (proj₂ (hyp k)))) ⟩ ∣ xs m - xs n ∣ ≈⟨ ∣-∣-cong (+-cong (xₙ≃yₙ m) (-‿cong (xₙ≃yₙ n))) ⟩ ∣ ys m - ys n ∣ ∎)}) where open ≤-Reasoning isDivergent-cong : ∀ {xs ys} -> xs isDivergent -> (∀ n -> xs n ≃ ys n) -> ys isDivergent isDivergent-cong {xs} {ys} (ε , hyp) xₙ≃yₙ = ε , DivergesBy-cong hyp xₙ≃yₙ ∑xₙisDivergent∧c≄0⇒∑cxₙisDivergent : ∀ {xs} -> ∀ {c} -> SeriesOf xs isDivergent -> c ≄0 -> SeriesOf (λ n -> c * xs n) isDivergent ∑xₙisDivergent∧c≄0⇒∑cxₙisDivergent {xs} {c} hyp c≄0 = isDivergent-cong ([xₙ]isDivergent∧c≄0⇒[cxₙ]isDivergent hyp c≄0) λ n -> ≃-symm (∑cxₙ≃c∑xₙ xs c 0 n) x≤y⇒x-y≤0 : ∀ {x y} -> x ≤ y -> x - y ≤ 0ℝ x≤y⇒x-y≤0 {x} {y} x≤y = begin x - y ≤⟨ +-monoˡ-≤ (- y) x≤y ⟩ y - y ≈⟨ +-inverseʳ y ⟩ 0ℝ ∎ where open ≤-Reasoning x-y≤0⇒x≤y : ∀ {x y} -> x - y ≤ 0ℝ -> x ≤ y x-y≤0⇒x≤y {x} {y} x-y≤0 = begin x ≈⟨ solve 2 (λ x y -> x ⊜ x ⊖ y ⊕ y) ≃-refl x y ⟩ x - y + y ≤⟨ +-monoˡ-≤ y x-y≤0 ⟩ 0ℝ + y ≈⟨ +-identityˡ y ⟩ y ∎ where open ≤-Reasoning {- x * x⁻¹ = 1 solve 1 λ x x≄0 -> ???? -} lemma-3-7-2 : ∀ {as xs : ℕ -> ℝ} -> (0<aₙ,xₙ : ∀ n -> (0ℝ < as n) × (0ℝ < xs n)) -> SeriesOf (λ n -> (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n)))) isDivergent -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> as n * xs n * (xs (suc n) ⁻¹) (inj₂ (proj₂ (0<aₙ,xₙ (suc n)))) - as (suc n) ≤ 0ℝ) -> SeriesOf xs isDivergent lemma-3-7-2 {as} {xs} 0<aₙ,xₙ div∑aₙ⁻¹ (N-1 , hyp) = comparison-test-divergence {xs} {λ n → as N * xs N * (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n)))} (0 , (λ n n≥0 -> part1 n)) (∑xₙisDivergent∧c≄0⇒∑cxₙisDivergent {λ n → (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n)))} div∑aₙ⁻¹ (inj₂ (0<x,y⇒0<x*y (proj₁ (0<aₙ,xₙ N)) (proj₂ (0<aₙ,xₙ N))))) (N , part4) where open ≤-Reasoning N = suc N-1 abstract part1 : ∀ n -> NonNegative (as N * xs N * (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n)))) part1 n = let aₙ⁻¹ = (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n))) in pos⇒nonNeg {as N * xs N * aₙ⁻¹} (posx,y⇒posx*y {as N * xs N} {aₙ⁻¹} (posx,y⇒posx*y (0<x⇒posx (proj₁ (0<aₙ,xₙ N))) (0<x⇒posx (proj₂ (0<aₙ,xₙ N)))) (posx⇒posx⁻¹ {as n} (inj₂ (proj₁ (0<aₙ,xₙ n))) (0<x⇒posx (proj₁ (0<aₙ,xₙ n))))) part2 : ∀ n -> n ℕ.≥ N -> as n * xs n ≤ as (suc n) * xs (suc n) part2 n n≥N = let aₙ = as n; xₙ = xs n; aₙ₊₁ = as (suc n); xₙ₊₁ = xs (suc n) ; xₙ₊₁>0 = proj₂ (0<aₙ,xₙ (suc n)); xₙ₊₁⁻¹ = (xₙ₊₁ ⁻¹) (inj₂ xₙ₊₁>0) in begin aₙ * xₙ ≈⟨ ≃-symm (≃-trans (*-congˡ {aₙ * xₙ} {xₙ₊₁ * xₙ₊₁⁻¹} {1ℝ} (*-inverseʳ xₙ₊₁ (inj₂ xₙ₊₁>0))) (*-identityʳ (aₙ * xₙ))) ⟩ aₙ * xₙ * (xₙ₊₁ * xₙ₊₁⁻¹) ≤⟨ ≤-respˡ-≃ (solve 4 (λ aₙ xₙ xₙ₊₁ xₙ₊₁⁻¹ -> aₙ ⊗ xₙ ⊗ xₙ₊₁⁻¹ ⊗ xₙ₊₁ ⊜ aₙ ⊗ xₙ ⊗ (xₙ₊₁ ⊗ xₙ₊₁⁻¹)) ≃-refl aₙ xₙ xₙ₊₁ xₙ₊₁⁻¹) (*-monoʳ-≤-nonNeg {aₙ * xₙ * xₙ₊₁⁻¹} {xₙ₊₁} {aₙ₊₁} (x-y≤0⇒x≤y {aₙ * xₙ * xₙ₊₁⁻¹} {aₙ₊₁} (hyp n n≥N)) (pos⇒nonNeg (0<x⇒posx xₙ₊₁>0))) ⟩ aₙ₊₁ * xₙ₊₁ ∎ part3 : ∀ n -> N ≡ n ⊎ N ℕ.< n -> as N * xs N ≤ as n * xs n part3 n (inj₁ refl) = ≤-refl part3 (suc n) (inj₂ (ℕ.s≤s N≤n)) = ≤-trans (part3 n (≤⇒≡∨< N n N≤n)) (part2 n N≤n) part4 : ∀ n -> n ℕ.≥ N -> as N * xs N * (as n ⁻¹) (inj₂ (proj₁ (0<aₙ,xₙ n))) ≤ xs n part4 n n≥N = let aₙ>0 = proj₁ (0<aₙ,xₙ n); aₙ≄0 = inj₂ aₙ>0; aₙ⁻¹ = (as n ⁻¹) aₙ≄0 in begin as N * xs N * aₙ⁻¹ ≤⟨ *-monoʳ-≤-nonNeg {as N * xs N} {aₙ⁻¹} {as n * xs n} (part3 n (≤⇒≡∨< N n n≥N)) (nonNegx⇒nonNegx⁻¹ {as n} (pos⇒nonNeg (0<x⇒posx aₙ>0)) aₙ≄0) ⟩ as n * xs n * aₙ⁻¹ ≈⟨ solve 3 (λ aₙ xₙ aₙ⁻¹ -> aₙ ⊗ xₙ ⊗ aₙ⁻¹ ⊜ aₙ ⊗ aₙ⁻¹ ⊗ xₙ) ≃-refl (as n) (xs n) aₙ⁻¹ ⟩ as n * aₙ⁻¹ * xs n ≈⟨ *-congʳ {xs n} {as n * aₙ⁻¹} {1ℝ} (*-inverseʳ (as n) aₙ≄0) ⟩ 1ℝ * xs n ≈⟨ *-identityˡ (xs n) ⟩ xs n ∎ -- Π₀ needed for proof of Lemma 3.8. Should extend to Π in a clean manner like how ∑ was extended. -- Πᵢ₌₀ⁿxᵢ -- Π₀ : (ℕ -> ℝ) -> ℕ -> ℝ Π₀ a 0 = 1ℝ Π₀ a (suc n) = Π₀ a n * a n Π : (ℕ -> ℝ) -> (i n : ℕ) -> (i≤n : i ℕ.≤ n) -> ℝ Π a i n i≤n with ≤⇒≡∨< i n i≤n ... | inj₁ i≡n = 1ℝ ... | inj₂ i<n = {!!} 0≤x,y⇒0≤x+y : ∀ {x y} -> 0ℝ ≤ x -> 0ℝ ≤ y -> 0ℝ ≤ x + y 0≤x,y⇒0≤x+y {x} {y} 0≤x 0≤y = nonNegx⇒0≤x (nonNegx,y⇒nonNegx+y (0≤x⇒nonNegx 0≤x) (0≤x⇒nonNegx 0≤y)) {- {- Let (xₙ) be a sequence of positive numbers and let c > 0. If there is N∈ℕ such that n(xₙxₙ₊₁⁻¹ - 1) ≥ c (n ≥ N) then (xₙ) converges to 0. -} lemma-3-8 : ∀ {xs} -> ∀ {c} -> (xₙ>0 : ∀ n -> xs n > 0ℝ) -> c > 0ℝ -> (∃ λ N-1 -> ∀ n -> n ℕ.≥ suc N-1 -> (+ n / 1) ⋆ * (xs n * (xs (suc n) ⁻¹) (inj₂ (xₙ>0 (suc n))) - 1ℝ) ≥ c) -> xs ConvergesTo 0ℝ lemma-3-8 {xs} {c} xₙ>0 c>0 (N-1 , hyp) = {!!} where open ≤-Reasoning N = suc N-1 part1 : ∀ n -> Π₀ (λ i -> 1ℝ + c * (+ (N ℕ.+ i) / 1) ⋆) n ≥ 1ℝ + c * ∑₀ (λ i -> (+ 1 / (N ℕ.+ i)) ⋆) n part1 zero = ≤-reflexive (solve 1 (λ c -> Κ 1ℚᵘ ⊕ c ⊗ Κ 0ℚᵘ ⊜ Κ 1ℚᵘ) ≃-refl c) part1 (suc n) = let S = 1ℝ + c * (∑₀ [N+i]⁻¹ n + (+ (N ℕ.+ n) / 1) ⋆) in begin 1ℝ + c * (∑₀ [N+i]⁻¹ n + (+ 1 / (N ℕ.+ n)) ⋆) ≤⟨ +-monoʳ-≤ 1ℝ (*-monoˡ-≤-nonNeg (+-monoʳ-≤ (∑₀ [N+i]⁻¹ n) part1-1) (pos⇒nonNeg (0<x⇒posx c>0))) ⟩ 1ℝ + c * (∑₀ [N+i]⁻¹ n + (+ (N ℕ.+ n) / 1) ⋆) ≤⟨ ≤-respˡ-≃ (+-identityʳ S) (+-monoʳ-≤ S part1-2) ⟩ 1ℝ + c * (∑₀ [N+i]⁻¹ n + (+ (N ℕ.+ n) / 1) ⋆) + c * c * (+ (N ℕ.+ n) / 1) ⋆ * ∑₀ [N+i]⁻¹ n ≈⟨ solve 3 (λ c ∑₀[N+i]⁻¹ N+n → Κ 1ℚᵘ ⊕ c ⊗ (∑₀[N+i]⁻¹ ⊕ N+n) ⊕ c ⊗ c ⊗ N+n ⊗ ∑₀[N+i]⁻¹ ⊜ Κ 1ℚᵘ ⊗ Κ 1ℚᵘ ⊕ Κ 1ℚᵘ ⊗ (c ⊗ N+n) ⊕ (c ⊗ ∑₀[N+i]⁻¹) ⊗ Κ 1ℚᵘ ⊕ (c ⊗ ∑₀[N+i]⁻¹) ⊗ (c ⊗ N+n)) ≃-refl c (∑₀ [N+i]⁻¹ n) ((+ (N ℕ.+ n) / 1) ⋆) ⟩ 1ℝ * 1ℝ + 1ℝ * (c * (+ (N ℕ.+ n) / 1) ⋆) + c * ∑₀ [N+i]⁻¹ n * 1ℝ + c * ∑₀ [N+i]⁻¹ n * (c * (+ (N ℕ.+ n) / 1) ⋆) ≈⟨ solve 4 (λ a b c d → a ⊗ c ⊕ a ⊗ d ⊕ b ⊗ c ⊕ b ⊗ d ⊜ (a ⊕ b) ⊗ (c ⊕ d)) ≃-refl 1ℝ (c * ∑₀ [N+i]⁻¹ n) 1ℝ (c * (+ (N ℕ.+ n) / 1) ⋆) ⟩ (1ℝ + c * ∑₀ [N+i]⁻¹ n) * (1ℝ + c * (+ (N ℕ.+ n) / 1) ⋆) ≤⟨ *-monoʳ-≤-nonNeg {1ℝ + c * ∑₀ [N+i]⁻¹ n} {1ℝ + c * (+ (N ℕ.+ n) / 1) ⋆} {Π₀ (λ i → 1ℝ + c * (+ (N ℕ.+ i) / 1) ⋆) n} (part1 n) part1-3 ⟩ Π₀ (λ i -> 1ℝ + c * (+ (N ℕ.+ i) / 1) ⋆) n * (1ℝ + c * (+ (N ℕ.+ n) / 1) ⋆) ∎ where [N+i]⁻¹ = λ i -> (+ 1 / (N ℕ.+ i)) ⋆ part1-1 : (+ 1 / (N ℕ.+ n)) ⋆ ≤ (+ (N ℕ.+ n) / 1) ⋆ part1-1 = p≤q⇒p⋆≤q⋆ (+ 1 / (N ℕ.+ n)) (+ (N ℕ.+ n) / 1) (ℚ.*≤* (ℤ.+≤+ (ℕ.s≤s ℕ.z≤n))) part1-2 : 0ℝ ≤ c * c * (+ (N ℕ.+ n) / 1) ⋆ * ∑₀ [N+i]⁻¹ n part1-2 = 0≤x,y⇒0≤x*y {c * c * (+ (N ℕ.+ n) / 1) ⋆} {∑₀ [N+i]⁻¹ n} (0≤x,y⇒0≤x*y {c * c} {(+ (N ℕ.+ n) / 1) ⋆} (<⇒≤ (0<x,y⇒0<x*y c>0 c>0)) (p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ (N ℕ.+ n) / 1) (ℚP.nonNegative⁻¹ _))) (≤-respˡ-≃ (∑0≃0 0 n) (∑-mono-≤ (λ n -> p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ 1 / (N ℕ.+ n)) (ℚP.nonNegative⁻¹ _)) 0 n ℕ.z≤n)) part1-3 : NonNegative (1ℝ + c * (+ (N ℕ.+ n) / 1) ⋆) part1-3 = 0≤x⇒nonNegx (0≤x,y⇒0≤x+y (p≤q⇒p⋆≤q⋆ 0ℚᵘ 1ℚᵘ (ℚP.nonNegative⁻¹ _)) (0≤x,y⇒0≤x*y (<⇒≤ c>0) (p≤q⇒p⋆≤q⋆ 0ℚᵘ (+ (N ℕ.+ n) / 1) (ℚP.nonNegative⁻¹ _)))) proposition-3-9-1 : ∀ {xs} -> (xₙ>0 : ∀ n -> xs n > 0ℝ) -> (hyp : (λ n -> (+ n / 1) ⋆ * (xs n * (xs (suc n) ⁻¹) (inj₂ (xₙ>0 (suc n))) - 1ℝ)) isConvergent) -> proj₁ hyp > 1ℝ -> SeriesOf xs isConvergent proposition-3-9-1 {xs} xₙ>0 (L , con* hyp) L>1 = {!!} -}
{ "alphanum_fraction": 0.3413344913, "avg_line_length": 60.7109090909, "ext": "agda", "hexsha": "b64ac889b05dedb612019b40a8472520d3c9eb72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "z-murray/AnalysisAgda", "max_forks_repo_path": "Sequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "z-murray/AnalysisAgda", "max_issues_repo_path": "Sequences.agda", "max_line_length": 166, "max_stars_count": null, "max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "z-murray/AnalysisAgda", "max_stars_repo_path": "Sequences.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 67071, "size": 133564 }
{-# OPTIONS --without-K #-} {- The main definitions of this module are: * explore⊎ * explore⊎-ind * ⟦explore⊎⟧ * Σᵉ⊎-ok * Πᵉ⊎-ok -} open import Type hiding (★) open import Function.NP open import Function.Extensionality open import Data.Nat using (_+_) open import Level.NP open import Type.Identities open import Data.Product.NP open import Data.Sum using (_⊎_) renaming (inj₁ to inl; inj₂ to inr; [_,_] to [inl:_,inr:_]) open import Data.Sum.Logical open import HoTT open import Data.Fin using (Fin) open import Relation.Binary.Logical open import Relation.Binary.Sum import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_ ; module ≡-Reasoning; cong; !_; _∙_; refl; ap) open import Explore.Core open import Explore.Properties open import Explore.Explorable module Explore.Sum where module _ {a b u} {A : ★ a} {B : ★ b} {U : ★ u} (_∙_ : U → U → U) (e₁ : (A → U) → U) (e₂ : (B → U) → U) (f : (A ⊎ B) → U) where -- find a better place/name for it ⊎ᶜ : U ⊎ᶜ = e₁ (f ∘ inl) ∙ e₂ (f ∘ inr) module _ {ℓ a b} {A : ★ a} {B : ★ b} where explore⊎ : Explore ℓ A → Explore ℓ B → Explore ℓ (A ⊎ B) explore⊎ exploreᴬ exploreᴮ ε _∙_ = ⊎ᶜ _∙_ (exploreᴬ ε _∙_) (exploreᴮ ε _∙_) module _ {p} {eᴬ : Explore ℓ A} {eᴮ : Explore ℓ B} where explore⊎-ind : ExploreInd p eᴬ → ExploreInd p eᴮ → ExploreInd p (explore⊎ eᴬ eᴮ) explore⊎-ind Psᴬ Psᴮ P Pε P∙ Pf -- TODO clean this up: = P∙ (Psᴬ (λ s → P (λ _ _ f → s _ _ (f ∘ inl))) Pε P∙ (Pf ∘ inl)) (Psᴮ (λ s → P (λ _ _ f → s _ _ (f ∘ inr))) Pε P∙ (Pf ∘ inr)) module _ {ℓ₀ ℓ₁ ℓᵣ} {A₀ A₁} {Aᵣ : ⟦★₀⟧ A₀ A₁} {B₀ B₁} {Bᵣ : ⟦★₀⟧ B₀ B₁} {eᴬ₀ : Explore ℓ₀ A₀} {eᴬ₁ : Explore ℓ₁ A₁}(eᴬᵣ : ⟦Explore⟧ ℓᵣ Aᵣ eᴬ₀ eᴬ₁) {eᴮ₀ : Explore ℓ₀ B₀} {eᴮ₁ : Explore ℓ₁ B₁}(eᴮᵣ : ⟦Explore⟧ ℓᵣ Bᵣ eᴮ₀ eᴮ₁) where ⟦explore⊎⟧ : ⟦Explore⟧ ℓᵣ (Aᵣ ⟦⊎⟧ Bᵣ) (explore⊎ eᴬ₀ eᴮ₀) (explore⊎ eᴬ₁ eᴮ₁) ⟦explore⊎⟧ P Pε P∙ Pf = P∙ (eᴬᵣ P Pε P∙ (Pf ∘ ⟦inl⟧)) (eᴮᵣ P Pε P∙ (Pf ∘ ⟦inr⟧)) module _ {ℓ₀ ℓ₁ ℓᵣ} {A B : ★₀} {eᴬ₀ : Explore ℓ₀ A}{eᴬ₁ : Explore ℓ₁ A}(eᴬᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴬ₀ eᴬ₁) {eᴮ₀ : Explore ℓ₀ B}{eᴮ₁ : Explore ℓ₁ B}(eᴮᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴮ₀ eᴮ₁) where ⟦explore⊎⟧≡ : ⟦Explore⟧ ℓᵣ _≡_ (explore⊎ eᴬ₀ eᴮ₀) (explore⊎ eᴬ₁ eᴮ₁) ⟦explore⊎⟧≡ P Pε P∙ Pf = P∙ (eᴬᵣ P Pε P∙ (Pf ∘ ap inl)) (eᴮᵣ P Pε P∙ (Pf ∘ ap inr)) infixr 4 _⊎ᵉ_ _⊎ⁱ_ _⊎ᵉ_ = explore⊎ _⊎ⁱ_ = explore⊎-ind module _ {a b} {A : ★ a} {B : ★ b} where infixr 4 _⊎ˢ_ _⊎ˢ_ : Sum A → Sum B → Sum (A ⊎ B) _⊎ˢ_ = ⊎ᶜ _+_ module _ {A : ★₀} {B : ★₀} {sumᴬ : Sum A} {sumᴮ : Sum B}{{_ : UA}} where open Adequacy _≡_ adequate-sum⊎ : Adequate-sum sumᴬ → Adequate-sum sumᴮ → Adequate-sum (sumᴬ ⊎ˢ sumᴮ) adequate-sum⊎ asumᴬ asumᴮ f = (Fin (sumᴬ (f ∘ inl) + sumᴮ (f ∘ inr))) ≡⟨ ! Fin-⊎-+ ⟩ (Fin (sumᴬ (f ∘ inl)) ⊎ Fin (sumᴮ (f ∘ inr))) ≡⟨ ⊎= (asumᴬ (f ∘ inl)) (asumᴮ (f ∘ inr)) ⟩ (Σ A (Fin ∘ f ∘ inl) ⊎ Σ B (Fin ∘ f ∘ inr)) ≡⟨ ! dist-⊎-Σ ⟩ Σ (A ⊎ B) (Fin ∘ f) ∎ where open ≡-Reasoning _⊎ᵃ_ = adequate-sum⊎ module _ {ℓ} {a b} {A : ★ a} {B : ★ b} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : Explore (ₛ ℓ) B} where private eᴬ⁺ᴮ = eᴬ ⊎ᵉ eᴮ focus⊎ : Focus eᴬ → Focus eᴮ → Focus eᴬ⁺ᴮ focus⊎ fᴬ fᴮ (inl x , y) = inl (fᴬ (x , y)) focus⊎ fᴬ fᴮ (inr x , y) = inr (fᴮ (x , y)) unfocus⊎ : Unfocus eᴬ → Unfocus eᴮ → Unfocus eᴬ⁺ᴮ unfocus⊎ fᴬ fᴮ (inl x) = first inl (fᴬ x) unfocus⊎ fᴬ fᴮ (inr y) = first inr (fᴮ y) module _ {ℓ} {A : ★₀} {B : ★₀} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : Explore (ₛ ℓ) B} where private eᴬ⁺ᴮ = eᴬ ⊎ᵉ eᴮ Σᵉ⊎-ok : {{_ : UA}} → Adequate-Σ (Σᵉ eᴬ) → Adequate-Σ (Σᵉ eᴮ) → Adequate-Σ (Σᵉ eᴬ⁺ᴮ) Σᵉ⊎-ok fᴬ fᴮ _ = ⊎= (fᴬ _) (fᴮ _) ∙ ! dist-⊎-Σ lookup⊎ : Lookup eᴬ → Lookup eᴮ → Lookup (eᴬ ⊎ᵉ eᴮ) lookup⊎ lookupᴬ lookupᴮ (x , y) = [inl: lookupᴬ x ,inr: lookupᴮ y ] reify⊎ : Reify eᴬ → Reify eᴮ → Reify (eᴬ ⊎ᵉ eᴮ) reify⊎ reifyᴬ reifyᴮ f = (reifyᴬ (f ∘ inl)) , (reifyᴮ (f ∘ inr)) Πᵉ⊎-ok : {{_ : UA}}{{_ : FunExt}} → Adequate-Π (Πᵉ eᴬ) → Adequate-Π (Πᵉ eᴮ) → Adequate-Π (Πᵉ eᴬ⁺ᴮ) Πᵉ⊎-ok fᴬ fᴮ _ = ×= (fᴬ _) (fᴮ _) ∙ ! dist-×-Π -- -} -- -} -- -}
{ "alphanum_fraction": 0.5085688849, "avg_line_length": 34.0378787879, "ext": "agda", "hexsha": "16e8685f8c609cbd987ec2e549ccd12df48ea163", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Sum.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Sum.agda", "max_line_length": 100, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 2464, "size": 4493 }
open import Data.Nat using (ℕ; _+_) renaming (_≤?_ to _≤?ₙ_) open import Data.Bool using (Bool; true; false; not; _∧_) open import Data.String using (String) open import Data.Sum using (_⊎_; [_,_]; inj₁; inj₂) open import Relation.Binary using (Decidable) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Nullary.Negation using (contradiction) open import Data.List using (List; []; _∷_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Empty using (⊥-elim) open import Data.Product using (_×_; -,_; _-,-_; ∃; ∃-syntax) renaming (_,_ to _,,_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Level using (Level; suc; _⊔_) open import Agda.Builtin.Sigma hiding (_,_) -- renaming (_,_ to _,,_) open import Data.Maybe using (Maybe; just; nothing; Is-just) import Relation.Binary.PropositionalEquality as Eq open import IMP hiding (com; state) ---using (aexp; aval; bexp; bval) postulate _≟_ : Decidable {A = ℕ} _≡_ addr = ℕ heap = addr → Maybe val store = vname → val state = store × heap assn : ∀{l} → Set (suc l) assn {a} = store → heap → Set a emp : assn emp _ h = ∀ a → h a ≡ nothing _⊢>_ : IMP.aexp → IMP.aexp → assn _⊢>_ a a′ s h = h (aval a s) ≡ just (aval a′ s) × ∀ (a″) → ¬(a″ ≡ aval a s) → h a″ ≡ nothing _⊆_ : heap → heap → Set h₀ ⊆ h = ∀ a → (h a ≡ nothing → h₀ a ≡ nothing) × (∀{o} → h₀ a ≡ just o → h₀ a ≡ h a) heap-union : heap → heap → heap → addr → Set heap-union h h₁ h₂ a with h a ... | just o = (h₁ a ≡ just o × h₂ a ≡ nothing) ⊎ (h₁ a ≡ nothing × h₂ a ≡ just o) ... | nothing = h₁ a ≡ nothing × h₂ a ≡ nothing _∼_⊥_ : heap → heap → heap → Set h ∼ h₁ ⊥ h₂ = ∀ a → heap-union h h₁ h₂ a union-subset : ∀ h {h₁ h₂} → h ∼ h₁ ⊥ h₂ → h₁ ⊆ h union-subset h x a with h a | x a union-subset h x a | just x₁ | inj₁ (fst₁ ,, snd₁) = (λ ()) ,, (λ {x} x₁ → fst₁) union-subset h x a | just x₁ | inj₂ (fst₁ ,, snd₁) rewrite fst₁ = (λ _ → refl) ,, (λ {x} ()) union-subset h x a | nothing | fst₁ ,, snd₁ = (λ x → fst₁) ,, (λ {x} x₁ → fst₁) _*_ : ∀{l} → assn {l} → assn {l} → assn {l} _*_ P Q s h = ∃[ h₁ ] ∃[ h₂ ] ((h ∼ h₁ ⊥ h₂) × P s h₁ × Q s h₂) _dom_ : addr → heap → Set a dom h = ∃[ v ] (h a ≡ just v) _¬dom_ : addr → heap → Set a ¬dom h = h a ≡ nothing _[_::=ₕ_] : heap → addr → val → heap (h [ X ::=ₕ n ]) Y with Y ≟ X ... | yes _ = just n ... | no _ = h Y _/[_] : heap → addr → heap (h /[ X ]) Y with Y ≟ X ... | yes _ = nothing ... | no _ = h Y data com : Set where SKIP : com _::=_ : String → aexp → com _::_ : com → com → com IF_THEN_ELSE_ : bexp → com → com → com WHILE_DO_ : bexp → com → com _::=cons_ : String → addr → com _::=[_] : String → aexp → com [_]::=_ : aexp → aexp → com dispose_ : aexp → com data ⊢[_]_[_] {l} : assn {l} → com → assn {l} → Set (suc l) where Skip : ∀{P} → ⊢[ P ] SKIP [ P ] Loc : ∀{Q a x} → ⊢[ (λ s → Q (s [ x ::= aval a s ])) ] (x ::= a) [ Q ] Comp : ∀{P Q R c₁ c₂} → ⊢[ P ] c₁ [ Q ] → ⊢[ Q ] c₂ [ R ] → ⊢[ P ] c₁ :: c₂ [ R ] If : ∀{P b c₁ Q c₂} → ⊢[ (λ s h → P s h × bval b s ≡ true) ] c₁ [ Q ] → ⊢[ (λ s h → P s h × bval b s ≡ false) ] c₂ [ Q ] → ⊢[ P ] (IF b THEN c₁ ELSE c₂) [ Q ] While : ∀{P b c} → ⊢[ (λ s h → P s h × bval b s ≡ true) ] c [ P ] → ⊢[ P ] (WHILE b DO c) [ (λ s h → P s h × bval b s ≡ false) ] Conseq : ∀{P Q P′ Q′ : assn} {c} → (∀ s h → P′ s h → P s h) → ⊢[ P ] c [ Q ] → (∀ s h → Q s h → Q′ s h) → ⊢[ P′ ] c [ Q′ ] Frame : ∀{A B R c} → ⊢[ A ] c [ B ] → ⊢[ A * R ] c [ B * R ] data config : Set where ⦅_,_,_⦆ : com → store → heap → config abort : config data _⇒_ : config → config → Set where Loc : ∀{x a s h} → ⦅ x ::= a , s , h ⦆ ⇒ ⦅ SKIP , (s [ x ::= aval a s ]) , h ⦆ Comp₁ : ∀{c s h} → ⦅ SKIP :: c , s , h ⦆ ⇒ ⦅ c , s , h ⦆ Comp₂ : ∀{c₁ c₁′ c₂ s s′ h h′} → ⦅ c₁ , s , h ⦆ ⇒ ⦅ c₁′ , s′ , h′ ⦆ → ⦅ c₁ :: c₂ , s , h ⦆ ⇒ ⦅ c₁′ :: c₂ , s′ , h′ ⦆ CompFail : ∀{c₁ c₂ s h} → ⦅ c₁ , s , h ⦆ ⇒ abort → ⦅ c₁ :: c₂ , s , h ⦆ ⇒ abort IfTrue : ∀{b s c₁ c₂ h} → bval b s ≡ true → ⦅ IF b THEN c₁ ELSE c₂ , s , h ⦆ ⇒ ⦅ c₁ , s , h ⦆ IfFalse : ∀{b s c₁ c₂ h} → bval b s ≡ false → ⦅ IF b THEN c₁ ELSE c₂ , s , h ⦆ ⇒ ⦅ c₂ , s , h ⦆ While : ∀{b s c h} → ⦅ WHILE b DO c , s , h ⦆ ⇒ ⦅ IF b THEN (c :: (WHILE b DO c)) ELSE SKIP , s , h ⦆ Cons : ∀{l h s x h′ s′} → l ¬dom h → h′ ≡ h [ l ::=ₕ 0 ] → s′ ≡ s [ x ::= l ] → ⦅ x ::=cons l , s , h ⦆ ⇒ ⦅ SKIP , s′ , h′ ⦆ Lookup : ∀{a s x h v s′} → (aval a s) dom h → s′ ≡ s [ x ::= v ] → ⦅ x ::=[ a ] , s , h ⦆ ⇒ ⦅ SKIP , s′ , h ⦆ LookupFail : ∀{a s x h} → (aval a s) ¬dom h → ⦅ x ::=[ a ] , s , h ⦆ ⇒ abort Write : ∀{a s a′ h} → (aval a s) dom h → ⦅ [ a ]::= a′ , s , h ⦆ ⇒ ⦅ SKIP , s , h [ aval a s ::=ₕ aval a′ s ] ⦆ WriteFail : ∀{a s a′ x h} → (aval a s) ¬dom h → ⦅ [ x ]::= a′ , s , h ⦆ ⇒ abort Dispose : ∀{a s h} → (aval a s) dom h → ⦅ dispose a , s , h ⦆ ⇒ ⦅ SKIP , s , h /[ aval a s ] ⦆ DisposeFail : ∀{a s h} → (aval a s) ¬dom h → ⦅ dispose a , s , h ⦆ ⇒ abort data _⇒*_ : config → config → Set where _∎ : ∀ c → c ⇒* c _→⟨_⟩_ : ∀ c {c′ c″} → c ⇒ c′ → c′ ⇒* c″ → c ⇒* c″ Safe : config → Set Safe c = ¬ (c ⇒* abort) lemma1 : ∀{c s h₀ h} → h₀ ⊆ h → ⦅ c , s , h ⦆ ⇒ abort → ⦅ c , s , h₀ ⦆ ⇒ abort lemma1 sub (CompFail r) = CompFail (lemma1 sub r) lemma1 sub (LookupFail {a}{s} r) = LookupFail (fst (sub (aval a s)) r) lemma1 sub (WriteFail {a}{s} r) = WriteFail {a} (fst (sub (aval a s)) r) lemma1 sub (DisposeFail {a}{s} r) = DisposeFail (fst (sub (aval a s)) r) subset-update : ∀ l {h h₀ v} → h₀ ⊆ h → (h₀ [ l ::=ₕ v ]) ⊆ (h [ l ::=ₕ v ]) subset-update l b Y with Y ≟ l ... | yes p = (λ x → x) ,, λ {o} _ → refl ... | no ¬p = b Y subset-delete : ∀ v {h h₀} → h₀ ⊆ h → (h₀ /[ v ]) ⊆ (h /[ v ]) subset-delete l b Y with Y ≟ l ... | yes p = (λ x → refl) ,, (λ {x} x₁ → refl) ... | no ¬p = b Y lemma2 : ∀ h₀ {h c c′ s s′ h′} → h₀ ⊆ h → ⦅ c , s , h ⦆ ⇒ ⦅ c′ , s′ , h′ ⦆ → ⦅ c , s , h₀ ⦆ ⇒ abort ⊎ (∃[ h′₀ ] (h′₀ ⊆ h′ × ⦅ c , s , h₀ ⦆ ⇒ ⦅ c′ , s′ , h′₀ ⦆)) lemma2 h₀ x Loc = inj₂ (h₀ ,, x ,, Loc) lemma2 h₀ x Comp₁ = inj₂ (h₀ ,, x ,, Comp₁) lemma2 h₀ x (Comp₂ x₁) with lemma2 h₀ x x₁ lemma2 h₀ x (Comp₂ x₁) | inj₁ x₂ = inj₁ (CompFail x₂) lemma2 h₀ x (Comp₂ x₁) | inj₂ (h′₀ ,, sub ,, red) = inj₂ (h′₀ ,, sub ,, Comp₂ red) lemma2 h₀ x (IfTrue x₁) = inj₂ (h₀ ,, x ,, IfTrue x₁) lemma2 h₀ x (IfFalse x₁) = inj₂ (h₀ ,, x ,, IfFalse x₁) lemma2 h₀ x While = inj₂ (h₀ ,, x ,, While) lemma2 h₀ x (Cons {l} x₁ A B) rewrite A | B = inj₂ ( (h₀ [ l ::=ₕ 0 ]) ,, subset-update l x ,, Cons (fst (x l) x₁) refl refl) lemma2 h₀ x (Lookup {a}{s} (_ ,, p) A) rewrite A with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (LookupFail eq) ... | just o | Eq.[ eq ] = inj₂ ( h₀ ,, x ,, Lookup (-, Eq.trans (snd (x (aval a s)) eq) p) refl) lemma2 h₀ x (Write {a}{s}{a′} (_ ,, x₁)) with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (WriteFail {a} eq) ... | just o | Eq.[ eq ] = inj₂ ( (h₀ [ aval a s ::=ₕ aval a′ s ]) ,, subset-update (aval a s) x ,, Write (-, (Eq.trans (snd (x (aval a s)) eq) x₁))) lemma2 h₀ x (Dispose {a}{s} (_ ,, x₁)) with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (DisposeFail eq) ... | just o | Eq.[ eq ] = inj₂ ( (h₀ /[ aval a s ]) ,, subset-delete (aval a s) x ,, Dispose (-, (Eq.trans (snd (x (aval a s)) eq) x₁))) frame1sub : ∀{c s h H} → h ⊆ H → Safe ⦅ c , s , h ⦆ → Safe ⦅ c , s , H ⦆ frame1sub {c}{s}{h}{H} x x₁ (_→⟨_⟩_ .(⦅ c , s , H ⦆) {⦅ x₄ , x₅ , x₆ ⦆} x₂ x₃) with lemma2 h x x₂ ... | inj₁ x₇ = x₁ (⦅ c , s , h ⦆ →⟨ x₇ ⟩ (abort ∎)) ... | inj₂ (_ ,, fst₂ ,, snd₁) = frame1sub fst₂ (λ z → x₁ (_ →⟨ snd₁ ⟩ z)) x₃ frame1sub {c}{s}{h}{H} x x₁ (_→⟨_⟩_ .(⦅ c , s , H ⦆) {abort} x₂ x₃) = x₁ (_ →⟨ lemma1 x x₂ ⟩ (abort ∎)) frame1 : ∀{c s h H z} → H ∼ h ⊥ z → Safe ⦅ c , s , h ⦆ → Safe ⦅ c , s , H ⦆ frame1 {H = H} x x₁ x₂ = frame1sub (union-subset H x) x₁ x₂ heap-union-update : ∀{l h h₀ h₁ v} → l ¬dom h₁ → h ∼ h₀ ⊥ h₁ → (h [ l ::=ₕ v ]) ∼ (h₀ [ l ::=ₕ v ]) ⊥ h₁ heap-union-update {l}{h}{v = v} d x a with (h [ l ::=ₕ v ]) a | Eq.inspect (h [ l ::=ₕ v ]) a heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] with a ≟ l | h a | Eq.inspect h a | x a heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ = inj₁ (eq ,, snd x₃) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite p = inj₁ (eq ,, d) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | nothing | Eq.[ eq2 ] | C = inj₁ (eq ,, snd C) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ rewrite (Eq.trans (sym eq) eq2) = inj₁ x₃ heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite (Eq.trans (sym eq) eq2) = inj₂ y heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | C rewrite (Eq.trans (sym eq) eq2) = inj₁ C heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] with a ≟ l | h a | Eq.inspect h a | x a heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = Eq.trans (Eq.trans (fst x₂) (sym eq2)) eq ,, snd x₂ heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₂ y = fst y ,, Eq.trans (snd y) (Eq.trans (sym eq2) eq) heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | E = E heap-union-delete : ∀{h h₀ h₁ v} → v ¬dom h₁ → h ∼ h₀ ⊥ h₁ → (h /[ v ]) ∼ (h₀ /[ v ]) ⊥ h₁ heap-union-delete {h}{h₀}{h₁}{v} d x a with (h /[ v ]) a | Eq.inspect (h /[ v ]) a heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] with a ≟ v | h a | Eq.inspect h a | x a heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ () ] | yes p | just x₂ | Eq.[ eq2 ] | R heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ rewrite (Eq.trans (sym eq) eq2) = inj₁ x₃ heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite (Eq.trans (sym eq) eq2) = inj₂ y heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | fst₁ ,, snd₁ = inj₂ (fst₁ ,, Eq.trans snd₁ (Eq.trans (sym eq2) eq)) heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] with a ≟ v | h a | Eq.inspect h a | x a heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = refl ,, snd x₂ heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | just x₁ | Eq.[ eq2 ] | inj₂ y rewrite p = refl ,, d heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | nothing | Eq.[ eq2 ] | E = refl ,, snd E heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = Eq.trans (fst x₂) (Eq.trans (sym eq2) eq) ,, snd x₂ heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₂ y = fst y ,, Eq.trans (snd y) (Eq.trans (sym eq2) eq) heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | E = E union-exclusionᵣ : ∀{l h h₀ h₁} → h ∼ h₀ ⊥ h₁ → l ¬dom h → l ¬dom h₁ union-exclusionᵣ {l}{h} A B with h l | A l ... | nothing | fst₁ ,, snd₁ = snd₁ union-presenceᵣ : ∀{l h h₀ h₁} → h ∼ h₀ ⊥ h₁ → l dom h → l dom h₀ → l ¬dom h₁ union-presenceᵣ {l}{h} A B C with h l | A l union-presenceᵣ {l} {h} A B C | just x | inj₁ (fst₁ ,, snd₁) = snd₁ union-presenceᵣ {l} {h} A B (fst₁ ,, snd₁) | just x | inj₂ (fst₂ ,, snd₂) with Eq.trans (sym fst₂) snd₁ ... | () union-reduction : ∀{a b c s h′ h h₀ h′₀ h₁} → ⦅ c , s , h₀ ⦆ ⇒ ⦅ a , b , h′₀ ⦆ → ⦅ c , s , h ⦆ ⇒ ⦅ a , b , h′ ⦆ → h ∼ h₀ ⊥ h₁ → h′ ∼ h′₀ ⊥ h₁ union-reduction Loc Loc C = C union-reduction Comp₁ Comp₁ C = C union-reduction (Comp₂ A) (Comp₂ B) C = union-reduction A B C union-reduction (IfTrue x) (IfTrue x₁) C = C union-reduction (IfTrue x) (IfFalse x₁) C = C union-reduction (IfFalse x) (IfTrue x₁) C = C union-reduction (IfFalse x) (IfFalse x₁) C = C union-reduction While While C = C union-reduction (Cons d A B) (Cons d2 A′ B′) C a rewrite A | B | A′ | B′ = heap-union-update (union-exclusionᵣ C d2) C a union-reduction (Lookup e A) (Lookup e2 A′) C rewrite A | A′ = C union-reduction (Write x) (Write x₁) C a = heap-union-update (union-presenceᵣ C x₁ x) C a union-reduction (Dispose x) (Dispose x₁) C a = heap-union-delete (union-presenceᵣ C x₁ x) C a frame2 : ∀{c s h h₀ h₁ h′ s′} → Safe ⦅ c , s , h₀ ⦆ → h ∼ h₀ ⊥ h₁ → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → ∃[ h′₀ ] ( ⦅ c , s , h₀ ⦆ ⇒* ⦅ SKIP , s′ , h′₀ ⦆ × h′ ∼ h′₀ ⊥ h₁ ) frame2 s t (.(⦅ SKIP , _ , _ ⦆) ∎) = _ ,, (_ ∎) ,, t frame2 {h₀ = h₀} s t (_→⟨_⟩_ .(⦅ _ , _ , _ ⦆) {⦅ _ , _ , _ ⦆} x r) with lemma2 h₀ (union-subset _ t) x ... | inj₁ x₄ = ⊥-elim (s (_ →⟨ x₄ ⟩ (abort ∎))) ... | inj₂ (fst₁ ,, fst₂ ,, snd₁) with frame2 (λ z → s (_ →⟨ snd₁ ⟩ z)) (union-reduction snd₁ x t) r ... | fst₃ ,, fst₄ ,, snd₂ = fst₃ ,, (_ →⟨ snd₁ ⟩ fst₄) ,, snd₂ frame2 s t (_→⟨_⟩_ .(⦅ _ , _ , _ ⦆) {abort} x (.abort →⟨ () ⟩ r)) ⊨[_]_[_] : assn → com → assn → Set ⊨[ A ] c [ B ] = ∀{s h} → A s h → Safe ⦅ c , s , h ⦆ × (∀{s′ h′} → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → B s′ h′) NotInfluenced : assn → com → Set NotInfluenced R c = ∀{s s′ z h₀ h′₀ hᵣ} → z ∼ h′₀ ⊥ hᵣ → ⦅ c , s , h₀ ⦆ ⇒* ⦅ SKIP , s′ , h′₀ ⦆ → R s hᵣ → R s′ hᵣ frame-soundness : ∀{A B R : assn} {c} → NotInfluenced R c → ⊨[ A ] c [ B ] → ⊨[ A * R ] c [ B * R ] frame-soundness {A}{B}{R}{c} Inf H {s}{h} (h₀ ,, h₁ ,, ⊥ ,, A₀ ,, R₁) with H A₀ ... | safe ,, conv = frame1 ⊥ safe ,, frame2-ex where frame2-ex : ∀{s′ h′} → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → ∃[ h₁ ] ∃[ h₂ ] ( (h′ ∼ h₁ ⊥ h₂) × B s′ h₁ × R s′ h₂) frame2-ex rs with frame2 safe ⊥ rs ... | h′₀ ,, r ,, ⊥′ = h′₀ ,, h₁ ,, ⊥′ ,, conv r ,, Inf ⊥′ r R₁
{ "alphanum_fraction": 0.4699630003, "avg_line_length": 41.4066852368, "ext": "agda", "hexsha": "38e807ef5ee7efe5c50d5ac22f64db55cb997813", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/imp-semantics", "max_forks_repo_path": "SeparationLogic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/imp-semantics", "max_issues_repo_path": "SeparationLogic.agda", "max_line_length": 164, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/imp-semantics", "max_stars_repo_path": "SeparationLogic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z", "num_tokens": 6589, "size": 14865 }
module Issue784.Context where open import Data.List using (List; []; _∷_; _++_; [_]; filter) renaming (map to mapL) import Level open import Issue784.Values record Context ℓ : Set (Level.suc ℓ) where constructor context field get : Values ℓ signature : ∀ {ℓ} → Context ℓ → Types ℓ signature = types ∘ Context.get ctxnames : ∀ {ℓ} → Context ℓ → Names ctxnames = names ∘ Context.get NonRepetitiveContext : ∀ {ℓ} → Context ℓ → _ NonRepetitiveContext = NonRepetitiveNames ∘ Context.get getBySignature : ∀ {ℓ} {n : String} {A : Set ℓ} {x : Context ℓ} → (n , A) ∈ signature x → A getBySignature {x = x} = getBySignature′ {x = Context.get x} where getBySignature′ : ∀ {ℓ} {n : String} {A : Set ℓ} {x : Values ℓ} → (n , A) ∈ types x → A getBySignature′ {x = []} () getBySignature′ {x = (_ , _ , à) ∷ _} (here {x = ._} {xs = ._} p) = ≡-elim′ proj₂ (≡-sym p) à getBySignature′ {x = _ ∷ _} (there {x = ._} {xs = ._} p) = getBySignature′ p
{ "alphanum_fraction": 0.6238145416, "avg_line_length": 35.1481481481, "ext": "agda", "hexsha": "4426a9324a57a93e9dbe6074cd9ac2190cef1c2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/LibSucceed/Issue784/Context.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/LibSucceed/Issue784/Context.agda", "max_line_length": 97, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/LibSucceed/Issue784/Context.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 344, "size": 949 }
module Data.Boolean.Functions where open import Data.Boolean open import Type
{ "alphanum_fraction": 0.835443038, "avg_line_length": 15.8, "ext": "agda", "hexsha": "b837b5979d09fcc20edd845de65b2b274dc01033", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Boolean/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Boolean/Functions.agda", "max_line_length": 35, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Boolean/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 16, "size": 79 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A definition for the permutation relation using setoid equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Permutation.Setoid {a ℓ} (S : Setoid a ℓ) where open import Data.List.Base using (List; _∷_) import Data.List.Relation.Binary.Permutation.Homogeneous as Homogeneous import Data.List.Relation.Binary.Pointwise as Pointwise open import Data.List.Relation.Binary.Equality.Setoid S open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) import Relation.Binary.Reasoning.Setoid as SetoidReasoning private module Eq = Setoid S open Eq using (_≈_) renaming (Carrier to A) ------------------------------------------------------------------------ -- Definition open Homogeneous public using (refl; prep; swap; trans) infix 3 _↭_ _↭_ : Rel (List A) (a ⊔ ℓ) _↭_ = Homogeneous.Permutation _≈_ ------------------------------------------------------------------------ -- Constructor aliases -- These provide aliases for `swap` and `prep` when the elements being -- swapped or prepended are propositionally equal ↭-prep : ∀ x {xs ys} → xs ↭ ys → x ∷ xs ↭ x ∷ ys ↭-prep x xs↭ys = prep Eq.refl xs↭ys ↭-swap : ∀ x y {xs ys} → xs ↭ ys → x ∷ y ∷ xs ↭ y ∷ x ∷ ys ↭-swap x y xs↭ys = swap Eq.refl Eq.refl xs↭ys ------------------------------------------------------------------------ -- Functions over permutations steps : ∀ {xs ys} → xs ↭ ys → ℕ steps (refl _) = 1 steps (prep _ xs↭ys) = suc (steps xs↭ys) steps (swap _ _ xs↭ys) = suc (steps xs↭ys) steps (trans xs↭ys ys↭zs) = steps xs↭ys + steps ys↭zs ------------------------------------------------------------------------ -- _↭_ is an equivalence ↭-reflexive : _≡_ ⇒ _↭_ ↭-reflexive refl = refl (Pointwise.refl Eq.refl) ↭-refl : Reflexive _↭_ ↭-refl = ↭-reflexive refl ↭-sym : Symmetric _↭_ ↭-sym = Homogeneous.sym Eq.sym ↭-trans : Transitive _↭_ ↭-trans = trans ↭-isEquivalence : IsEquivalence _↭_ ↭-isEquivalence = Homogeneous.isEquivalence Eq.refl Eq.sym ↭-setoid : Setoid _ _ ↭-setoid = Homogeneous.setoid {R = _≈_} Eq.refl Eq.sym ------------------------------------------------------------------------ -- A reasoning API to chain permutation proofs module PermutationReasoning where private module Base = SetoidReasoning ↭-setoid open SetoidReasoning ↭-setoid public hiding (step-≈; step-≈˘) infixr 2 step-↭ step-↭˘ step-≋ step-≋˘ step-swap step-prep step-↭ = Base.step-≈ step-↭˘ = Base.step-≈˘ -- Step with pointwise list equality step-≋ : ∀ x {y z} → y IsRelatedTo z → x ≋ y → x IsRelatedTo z step-≋ x (relTo y↔z) x≋y = relTo (trans (refl x≋y) y↔z) -- Step with flipped pointwise list equality step-≋˘ : ∀ x {y z} → y IsRelatedTo z → y ≋ x → x IsRelatedTo z step-≋˘ x y↭z y≋x = x ≋⟨ ≋-sym y≋x ⟩ y↭z -- Skip reasoning on the first element step-prep : ∀ x xs {ys zs : List A} → (x ∷ ys) IsRelatedTo zs → xs ↭ ys → (x ∷ xs) IsRelatedTo zs step-prep x xs rel xs↭ys = relTo (trans (prep Eq.refl xs↭ys) (begin rel)) -- Skip reasoning about the first two elements step-swap : ∀ x y xs {ys zs : List A} → (y ∷ x ∷ ys) IsRelatedTo zs → xs ↭ ys → (x ∷ y ∷ xs) IsRelatedTo zs step-swap x y xs rel xs↭ys = relTo (trans (swap Eq.refl Eq.refl xs↭ys) (begin rel)) syntax step-↭ x y↭z x↭y = x ↭⟨ x↭y ⟩ y↭z syntax step-↭˘ x y↭z y↭x = x ↭˘⟨ y↭x ⟩ y↭z syntax step-≋ x y↭z x≋y = x ≋⟨ x≋y ⟩ y↭z syntax step-≋˘ x y↭z y≋x = x ≋˘⟨ y≋x ⟩ y↭z syntax step-prep x xs y↭z x↭y = x ∷ xs <⟨ x↭y ⟩ y↭z syntax step-swap x y xs y↭z x↭y = x ∷ y ∷ xs <<⟨ x↭y ⟩ y↭z
{ "alphanum_fraction": 0.5577772007, "avg_line_length": 32.0916666667, "ext": "agda", "hexsha": "fedc89ee42356f63ad9a64c77e3851dd47118bcb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid.agda", "max_line_length": 85, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1344, "size": 3851 }
module Issue919 where open import Common.Prelude Zero : Nat → Set Zero 0 = ⊤ Zero (suc _) = ⊥ test : (n : Nat) {p : Zero n} → Set → Set test 0 A = A test (suc _) {()} -- Horrible error for first clause: -- Cannot eliminate type Set with pattern {(implicit)} (did you supply -- too many arguments?) -- when checking that the pattern zero has type Nat -- Caused by trailing implicit insertion (see Rules/Def.hs). -- With trailing implicit insertion switched off, this should work now.
{ "alphanum_fraction": 0.678, "avg_line_length": 23.8095238095, "ext": "agda", "hexsha": "73e8cca26f2e38b0d01975323c339f5ec09d9987", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue919.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue919.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue919.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 133, "size": 500 }
{-# OPTIONS --no-termination-check #-} module Issue137 where record Foo : Set1 where field foo : {x : Set} → Set record Bar : Set1 where field bar : Foo record Baz (P : Bar) : Set1 where field baz : Set postulate P : Bar Q : Baz P f : Baz.baz Q → Set f r with f r f r | A = A -- The bug was: -- Issue137.agda:22,1-12 -- Set should be a function type, but it isn't -- when checking that the expression λ x → Foo.foo (Bar.bar P) {x} has -- type Set -- If the field foo is replaced by -- foo : (x : Set) → Set -- then the code type checks.
{ "alphanum_fraction": 0.6151142355, "avg_line_length": 16.7352941176, "ext": "agda", "hexsha": "d0d3ec84d8dd932fa3415ab7cd65dc85b61712e0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue137.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue137.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue137.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 188, "size": 569 }
-- Andreas, AIM XXIII 2016-04-21 Overloaded projections -- Milestone 1: Check overloaded projections on rhs (without postponing). {-# OPTIONS --allow-unsolved-metas #-} module _ (A : Set) (a : A) where record R B : Set where field f : B open R record S B : Set where field f : B open S r : R A R.f r = a s : S A S.f s = f r t : R A → S A S.f (t r) = f r u : _ u = f s -- interactive hole0 : A hole0 = {! f s !} -- normalize me hole1 = {!λ r → f (t r)!} -- normalize me record T B : Set where field f : B → B open T -- Postpone /further/ argument of overloaded projection. hole2 : ∀{A} → T A → A → A hole2 t x = f t {!x!} -- Milestone 2: Postpone overloading. hole3 = f {! r !}
{ "alphanum_fraction": 0.5962910128, "avg_line_length": 14.6041666667, "ext": "agda", "hexsha": "0911e26a74801b469d9adb76868f3b38bb8d7f9f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1944-1-i.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1944-1-i.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1944-1-i.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 251, "size": 701 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by strict partial orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.StrictPartialOrder {s₁ s₂ s₃} (SPO : StrictPartialOrder s₁ s₂ s₃) where open Relation.Binary.StrictPartialOrder SPO renaming (trans to <-trans) open import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ ------------------------------------------------------------------------ -- Strict partial orders can be converted to posets poset : Poset _ _ _ poset = record { isPartialOrder = isPartialOrder isStrictPartialOrder } open Poset poset public
{ "alphanum_fraction": 0.5510718789, "avg_line_length": 29.3703703704, "ext": "agda", "hexsha": "c782aedd1260222a064a36944bc62baa24f938a8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 151, "size": 793 }