Search is not available for this dataset
text
string
meta
dict
module x10-747Lists-hc where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Bool using (Bool; true; false; T; _∧_; _∨_; not) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n) open import Data.Nat.Properties using (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_∘_) open import Level using (Level) open import Data.Empty using (⊥) ------------------------------------------------------------------------------ -- Copied from 747Isomorphism. infix 0 _≃_ record _≃_ (A B : Set) : Set where constructor mk-≃ -- This has been added, not in PLFA field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ ------------------------------------------------------------------------------ -- Polymorphic lists (parameterized version). data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ -- example _ : List ℕ _ = 0 ∷ 1 ∷ 2 ∷ [] -- equivalent indexed version data List' : Set → Set where []' : ∀ {A : Set} → List' A _∷'_ : ∀ {A : Set} → A → List' A → List' A -- using implicit arguments in above example (why?) _ : List ℕ _ = _∷_ {ℕ} 0 (_∷_ {ℕ} 1 (_∷_ {ℕ} 2 ([] {ℕ}))) -- tell Agda to use Haskell lists internally {-# BUILTIN LIST List #-} -- useful syntax pattern [_] z = z ∷ [] pattern [_,_] y z = y ∷ z ∷ [] pattern [_,_,_] x y z = x ∷ y ∷ z ∷ [] pattern [_,_,_,_] w x y z = w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_] v w x y z = v ∷ w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_,_] u v w x y z = u ∷ v ∷ w ∷ x ∷ y ∷ z ∷ [] -- append for lists infixr 5 _++_ _++_ : ∀ {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) _ : [ 0 , 2 , 4 ] ++ [ 3 , 5 ] ≡ [ 0 , 2 , 4 , 3 , 5 ] _ = refl -- associativity of append ++-assoc : ∀ {A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs rewrite ++-assoc xs ys zs = refl -- left/right identities for append ++-identityˡ : ∀ {A : Set} → (xs : List A) → [] ++ xs ≡ xs ++-identityˡ xs = refl ++-identityʳ : ∀ {A : Set} → (xs : List A) → xs ++ [] ≡ xs ++-identityʳ [] = refl ++-identityʳ (x ∷ xs) rewrite ++-identityʳ xs = refl -- length of a list length : ∀ {A : Set} → List A → ℕ length [] = zero length (x ∷ xs) = suc (length xs) _ : length [ 0 , 1 , 2 ] ≡ 3 _ = refl -- reasoning about length. length-++ : ∀ {A : Set} → (xs ys : List A) → length (xs ++ ys) ≡ length xs + length ys length-++ [] ys = refl length-++ (x ∷ xs) ys rewrite length-++ xs ys = refl -- quadratic time reverse using structural recursion reverse : ∀ {A : Set} → List A → List A reverse [] = [] reverse (x ∷ xs) = reverse xs ++ [ x ] _ : reverse [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- 747/PLFA exercise: RevCommApp (1 point) -- reverse commutes with ++ -- https://gist.github.com/pedrominicz/012e842362f6c65361722ed1aaf10178 -- The key to this one is NOT splitting ys. reverse-++-commute : ∀ {A : Set} → (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++-commute [] ys rewrite ++-identityʳ (reverse ys) = refl reverse-++-commute (x ∷ xs) ys -- reverse ((x ∷ xs) ++ ys) ≡ reverse ys ++ reverse (x ∷ xs) -- reverse (xs ++ ys) ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] rewrite reverse-++-commute xs ys -- (reverse ys ++ reverse xs) ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] | ++-assoc (reverse ys) (reverse xs) [ x ] -- reverse ys ++ reverse xs ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] = refl -- NOT USED snoc : {A : Set} → List A → A → List A snoc [] x = x ∷ [] snoc (y ∷ l) x = y ∷ (snoc l x) -- NOT USED snoc≡app : {A : Set} → (l : List A) → (a : A) → snoc l a ≡ l ++ [ a ] snoc≡app [] a = refl snoc≡app (x ∷ l) a rewrite (snoc≡app l a) = refl -- NOT USED reverse-snoc : ∀ {A : Set} → (xs : List A) → List A reverse-snoc [] = [] reverse-snoc (x ∷ xs) = snoc (reverse-snoc xs) x _ : reverse-snoc [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- NOT USED reverse≡reverse-snoc : ∀ {A : Set} → (xs : List A) → reverse xs ≡ reverse-snoc xs reverse≡reverse-snoc [] = refl reverse≡reverse-snoc (x ∷ xs) -- reverse (x ∷ xs) ≡ reverse-snoc (x ∷ xs) -- reverse xs ++ [ x ] ≡ snoc (reverse-snoc xs) x rewrite reverse≡reverse-snoc xs -- reverse-snoc xs ++ [ x ] ≡ snoc (reverse-snoc xs) x | snoc≡app (reverse-snoc xs) x -- reverse-snoc xs ++ [ x ] ≡ reverse-snoc xs ++ [ x ] = refl -- 747/PLFA exercise: RevInvol (1 point) -- Reverse is its own inverse. reverse-involutive : ∀ {A : Set} → (xs : List A) → reverse (reverse xs) ≡ xs reverse-involutive [] = refl reverse-involutive (x ∷ xs) -- reverse (reverse (x ∷ xs)) ≡ x ∷ xs -- reverse (reverse xs ++ [ x ]) ≡ x ∷ xs rewrite (reverse-++-commute (reverse xs) [ x ]) -- x ∷ reverse (reverse xs) ≡ x ∷ xs | reverse-involutive xs -- x ∷ xs ≡ x ∷ xs = refl -- towards more efficient linear time reverse -- generalization of reverse shunt : ∀ {A : Set} → List A → List A → List A shunt [] ys = ys shunt (x ∷ xs) ys = shunt xs (x ∷ ys) -- explanation of what shunt is doing shunt-reverse : ∀ {A : Set} → (xs ys : List A) → shunt xs ys ≡ reverse xs ++ ys shunt-reverse [] ys = refl shunt-reverse (x ∷ xs) [] -- shunt (x ∷ xs) [] ≡ reverse (x ∷ xs) ++ [] -- shunt xs [ x ] ≡ (reverse xs ++ [ x ]) ++ [] rewrite ++-identityʳ (reverse xs ++ [ x ]) -- shunt xs [ x ] ≡ reverse xs ++ [ x ] | shunt-reverse xs [ x ] -- reverse xs ++ [ x ] ≡ reverse xs ++ [ x ] = refl shunt-reverse (x ∷ xs) (y ∷ ys) -- shunt (x ∷ xs) (y ∷ ys) ≡ reverse (x ∷ xs) ++ y ∷ ys -- shunt xs (x ∷ y ∷ ys) ≡ (reverse xs ++ [ x ]) ++ y ∷ ys rewrite shunt-reverse xs (x ∷ y ∷ ys) -- reverse xs ++ x ∷ y ∷ ys ≡ (reverse xs ++ [ x ]) ++ y ∷ ys | ++-assoc (reverse xs) [ x ] (y ∷ ys) -- reverse xs ++ x ∷ y ∷ ys ≡ reverse xs ++ x ∷ y ∷ ys = refl -- linear reverse is a special case of shunt reverse' : ∀ {A : Set} → List A → List A reverse' xs = shunt xs [] _ : reverse' [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- prove quadratic and linear reverse are equivalent reverses : ∀ {A : Set} → (xs : List A) → reverse' xs ≡ reverse xs reverses [] = refl reverses (x ∷ xs) -- reverse' (x ∷ xs) ≡ reverse (x ∷ xs) -- reverse' (x ∷ xs) ≡ reverse xs ++ [ x ] rewrite shunt-reverse xs [ x ] -- reverse xs ++ [ x ] ≡ reverse xs ++ [ x ] = refl -- common higher-order list functions map : ∀ {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs _ : map suc [ 0 , 1 , 2 ] ≡ [ 1 , 2 , 3 ] _ = refl -- 747/PLFA exercise: MapCompose (1 point) -- The map of a composition is the composition of maps. -- Changed from PLFA: some arguments made explicit, uses pointwise equality. map-compose : ∀ {A B C : Set} (f : A → B) (g : B → C) (xs : List A) → map (g ∘ f) xs ≡ (map g ∘ map f) xs map-compose f g [] = refl map-compose f g (x ∷ xs) -- map (g ∘ f) (x ∷ xs) ≡ (map g ∘ map f) (x ∷ xs) -- (g ∘ f) x ∷ map (g ∘ f) xs ≡ (map g ∘ map f) (x ∷ xs) rewrite map-compose f g xs -- g (f x) ∷ map g (map f xs) ≡ g (f x) ∷ map g (map f xs) = refl -- 747/PLFA exercise: MapAppendComm (1 point) -- The map of an append is the append of maps. -- Changed from PLFA: some arguments made explicit. map-++-commute : ∀ {A B : Set} (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-commute f [] ys = refl map-++-commute f (x ∷ xs) ys -- map f ((x ∷ xs) ++ ys) ≡ map f (x ∷ xs) ++ map f ys -- f x ∷ map f (xs ++ ys) ≡ f x ∷ map f xs ++ map f ys rewrite map-++-commute f xs ys -- f x ∷ map f xs ++ map f ys ≡ f x ∷ map f xs ++ map f ys = refl ------------------------------------------------------------------------------ -- PLFA exercise: map over trees -- trees with leaves of type A and internal nodes of type B data Tree (A B : Set) : Set where leaf : A → Tree A B node : Tree A B → B → Tree A B → Tree A B map-Tree : ∀ {A B C D : Set} → (A → C) → (B → D) → Tree A B → Tree C D map-Tree f g (leaf a) = leaf (f a) map-Tree f g (node tl b tr) = node (map-Tree f g tl) (g b) (map-Tree f g tr) ------------------------------------------------------------------------------ -- Fold-right: put operator ⊗ between each list element (and supplied final element). -- ⊗ is considered right-associative. -- Fold-right is universal for structural recursion on one argument. foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B foldr _⊗_ e [] = e foldr _⊗_ e (x ∷ xs) = x ⊗ foldr _⊗_ e xs _ : foldr _+_ 0 [ 1 , 2 , 3 , 4 ] ≡ 10 _ = refl -- Summing a list using foldr. sum : List ℕ → ℕ sum = foldr _+_ 0 _ : sum [ 1 , 2 , 3 , 4 ] ≡ 10 _ = refl -- PLFA exercise: use foldr to define product on lists of naturals product : List ℕ → ℕ product = foldr _*_ 1 _ : product [ 1 , 2 , 3 , 4 ] ≡ 24 _ = refl -- 747/PLFA exercise: FoldrOverAppend (1 point) -- prove foldr over an append can be expressed as foldrs over each list. foldr-++ : ∀ {A B : Set} (_⊗_ : A → B → B) (b : B) (xs ys : List A) → foldr _⊗_ b (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ b ys) xs foldr-++ _⊗_ b [] ys = refl foldr-++ _⊗_ b (x ∷ xs) ys -- foldr _⊗_ b ((x ∷ xs) ++ ys) ≡ foldr _⊗_ (foldr _⊗_ b ys) (x ∷ xs) -- (x ⊗ foldr _⊗_ b (xs ++ ys)) ≡ (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) rewrite foldr-++ _⊗_ b xs ys -- (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) ≡ (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) = refl -- 747/PLFA exercise: MapIsFoldr (1 point) -- Show that map can be expressed as a fold. -- Changed from PLFA: some arguments made explicit, uses pointwise equality. map-is-foldr : ∀ {A B : Set} (f : A → B) (xs : List A) → map f xs ≡ foldr (λ x rs → f x ∷ rs) [] xs map-is-foldr f [] = refl map-is-foldr f (x ∷ xs) rewrite map-is-foldr f xs = refl -- PLFA exercise: write a fold for trees fold-Tree : ∀ {A B C : Set} → (A → C) → (C → B → C → C) → Tree A B → C fold-Tree f g (leaf a) = f a fold-Tree f g (node tl b tr) = g (fold-Tree f g tl) b (fold-Tree f g tr) -- PLFA exercise: the downFrom function computes a countdown list -- Prove an equality about its sum downFrom : ℕ → List ℕ downFrom zero = [] downFrom (suc n) = n ∷ downFrom n _ : downFrom 4 ≡ [ 3 , 2 , 1 , 0 ] _ = refl _ : sum (downFrom 4) ≡ 6 _ = refl {- TODO sum-downFrom : ∀ (n : ℕ) → sum (downFrom n) * 2 ≡ n * (n ∸ 1) sum-downFrom n = {!!} -} ------------------------------------------------------------------------------ -- 'Monoid' : set with -- - an associative operator -- - an element which is the left and right identity record IsMonoid (A : Set) : Set where field id : A _⊗_ : A → A → A assoc : ∀ (x y z : A) → (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z) identityˡ : ∀ (x : A) → id ⊗ x ≡ x identityʳ : ∀ (x : A) → x ⊗ id ≡ x -- The following open command is different from PLFA; it uses instance arguments, -- which work like typeclasses in Haskell (allow overloading, which is cleaner). open IsMonoid {{ ...}} public -- These pragmas make displays of goal and context look nicer. {-# DISPLAY IsMonoid.id _ = id #-} {-# DISPLAY IsMonoid._⊗_ _ = _⊗_ #-} -- instances of Monoid instance +-monoid : IsMonoid ℕ IsMonoid.id +-monoid = 0 IsMonoid._⊗_ +-monoid = _+_ IsMonoid.assoc +-monoid = +-assoc IsMonoid.identityˡ +-monoid = +-identityˡ IsMonoid.identityʳ +-monoid = +-identityʳ *-monoid : IsMonoid ℕ IsMonoid.id *-monoid = 1 IsMonoid._⊗_ *-monoid = _*_ IsMonoid.assoc *-monoid = *-assoc IsMonoid.identityˡ *-monoid = *-identityˡ IsMonoid.identityʳ *-monoid = *-identityʳ ++-monoid : ∀ {A : Set} → IsMonoid (List A) IsMonoid.id ++-monoid = [] IsMonoid._⊗_ ++-monoid = _++_ IsMonoid.assoc ++-monoid = ++-assoc IsMonoid.identityˡ ++-monoid = ++-identityˡ IsMonoid.identityʳ ++-monoid = ++-identityʳ -- property of foldr over a monoid foldr-monoid : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs : List A) (y : A) → foldr _⊗_ y xs ≡ (foldr _⊗_ id xs) ⊗ y foldr-monoid {A} ⦃ m ⦄ [] y rewrite identityˡ y = refl foldr-monoid {A} ⦃ m ⦄ (x ∷ xs) y with foldr-monoid xs y ... | xxx rewrite xxx | sym (assoc x (foldr _⊗_ id xs) y) = refl foldr-monoid-++ : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs ys : List A) → foldr _⊗_ id (xs ++ ys) ≡ foldr _⊗_ id xs ⊗ foldr _⊗_ id ys foldr-monoid-++ {A} ⦃ m ⦄ [] ys rewrite sym (foldr-monoid {A} {{m}} [] (foldr _⊗_ id ys)) = refl foldr-monoid-++ {A} ⦃ m ⦄ (x ∷ xs) ys rewrite foldr-monoid-++ {A} {{m}} xs ys | assoc x (foldr _⊗_ id xs) (foldr _⊗_ id ys) = refl -- 747/PLFA exercise: Foldl (1 point) -- Define foldl, which associates left instead of right, e.g. -- foldr _⊗_ e [ x , y , z ] = x ⊗ (y ⊗ (z ⊗ e)) -- foldl _⊗_ e [ x , y , z ] = ((e ⊗ x) ⊗ y) ⊗ z foldl : ∀ {A B : Set} → (B → A → B) → B → List A → B foldl _⊗_ e [] = e foldl _⊗_ e (x ∷ xs) = foldl _⊗_ (e ⊗ x) xs sum-foldl : foldl _+_ 0 [ 4 , 3 , 2 , 1 ] ≡ 10 sum-foldl = refl monus-foldl : foldl _∸_ 20 [ 4 , 3 , 2 ] ≡ 11 monus-foldl = refl monus-foldr : foldr _∸_ 20 [ 4 , 3 , 2 ] ≡ 1 monus-foldr = refl -- 747/PLFA exercise: FoldrMonFoldl (2 points) -- Show that foldr and foldl compute the same value on a monoid -- when the base case is the identity. -- Hint: generalize to when the base case is an arbitrary value. foldl-r-mon-helper : ∀ {A : Set} {{m : IsMonoid A}} → ∀ (xs : List A) (y : A) → foldl _⊗_ y xs ≡ y ⊗ foldl _⊗_ id xs foldl-r-mon-helper [] y rewrite identityʳ y = refl foldl-r-mon-helper (x ∷ xs) y -- foldl _⊗_ y (x ∷ xs) ≡ (y ⊗ foldl _⊗_ id (x ∷ xs)) -- foldl _⊗_ (y ⊗ x) xs ≡ (y ⊗ foldl _⊗_ (id ⊗ x) xs) rewrite identityˡ x -- foldl _⊗_ (y ⊗ x) xs ≡ (y ⊗ foldl _⊗_ x xs) | foldl-r-mon-helper xs (y ⊗ x) -- ((y ⊗ x) ⊗ foldl _⊗_ id xs) ≡ (y ⊗ foldl _⊗_ x xs) | assoc y x (foldl _⊗_ id xs) -- (y ⊗ (x ⊗ foldl _⊗_ id xs)) ≡ (y ⊗ foldl _⊗_ x xs) | foldl-r-mon-helper xs x -- (y ⊗ (x ⊗ foldl _⊗_ id xs)) ≡ (y ⊗ (x ⊗ foldl _⊗_ id xs)) = refl foldl-r-mon : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs : List A) → foldl _⊗_ id xs ≡ foldr _⊗_ id xs foldl-r-mon [] = refl foldl-r-mon (x ∷ xs) -- foldl _⊗_ id (x ∷ xs) ≡ foldr _⊗_ id (x ∷ xs) -- foldl _⊗_ (id ⊗ x) xs ≡ (x ⊗ foldr _⊗_ id xs) rewrite identityˡ x -- foldl _⊗_ x xs ≡ (x ⊗ foldr _⊗_ id xs) | foldl-r-mon-helper xs x -- (x ⊗ foldl _⊗_ id xs) ≡ (x ⊗ foldr _⊗_ id xs) | foldl-r-mon xs -- (x ⊗ foldr _⊗_ id xs) ≡ (x ⊗ foldr _⊗_ id xs) = refl ------------------------------------------------------------------------------ -- Inductively-defined predicates over lists -- All P xs means P x holds for every element of xs data All {A : Set} (P : A → Set) : List A → Set where [] : All P [] _∷_ : ∀ {x : A} {xs : List A} → P x → All P xs → All P (x ∷ xs) _ : All (_≤ 2) [ 0 , 1 , 2 ] _ = z≤n ∷ s≤s z≤n ∷ s≤s (s≤s z≤n) ∷ [] -- Any P xs means P x holds for some element of xs data Any {A : Set} (P : A → Set) : List A → Set where here : ∀ {x : A} {xs : List A} → P x → Any P (x ∷ xs) there : ∀ {x : A} {xs : List A} → Any P xs → Any P (x ∷ xs) -- membership in list as application of Any infix 4 _∈_ _∉_ _∈_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∈ xs = Any (x ≡_) xs _∉_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∉ xs = ¬ (x ∈ xs) _ : 0 ∈ [ 0 , 1 , 0 , 2 ] _ = here refl _ : 0 ∈ [ 1 , 2 , 0 ] _ = there (there (here refl)) not-in : 3 ∉ [ 0 , 1 , 0 , 2 ] not-in (here ()) not-in (there (here ())) not-in (there (there (here ()))) not-in (there (there (there (here ())))) -- The development in PLFA, repeated with our notation. All-++-⇔ : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → All P (xs ++ ys) ⇔ (All P xs × All P ys) to (All-++-⇔ xs ys) = to' xs ys where to' : ∀ {A : Set} {P : A → Set} (xs ys : List A) → All P (xs ++ ys) → (All P xs × All P ys) to' [] ys = λ All-P-ys → ⟨ [] , All-P-ys ⟩ to' (x ∷ xs) ys (Px ∷ All-P-xs++ys) with to' xs ys All-P-xs++ys ... | ⟨ All-P-xs , All-PP-ys ⟩ = ⟨ Px ∷ All-P-xs , All-PP-ys ⟩ from (All-++-⇔ xs ys) = from' xs ys where from' : ∀ { A : Set} {P : A → Set} (xs ys : List A) → All P xs × All P ys → All P (xs ++ ys) from' [] ys = λ { ⟨ All-P-[] , All-P-ys ⟩ → All-P-ys } from' (x ∷ xs) ys = λ { ⟨ Px ∷ All-P-xs , All-P-ys ⟩ → Px ∷ from' xs ys ⟨ All-P-xs , All-P-ys ⟩ } -- PLFA exercise: state and prove Any-++-⇔ Any-++-⇔ : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → Any P (xs ++ ys) ⇔ (Any P xs ⊎ Any P ys) to (Any-++-⇔ xs ys) = to' xs ys where to' : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → Any P (xs ++ ys) → (Any P xs ⊎ Any P ys) to' [] ys = λ Any-P-ys → inj₂ Any-P-ys to' (x ∷ xs) ys (here Px ) = inj₁ (here Px) to' (x ∷ xs) ys (there Any-P-xs++ys) with to' xs ys Any-P-xs++ys ... | inj₁ Any-P-xs = inj₁ (there Any-P-xs) ... | inj₂ Any-P-ys = inj₂ Any-P-ys from (Any-++-⇔ xs ys) = from' xs ys where from' : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → (Any P xs ⊎ Any P ys) → Any P (xs ++ ys) from' [] ys (inj₂ Any-P-ys) = Any-P-ys from' (x ∷ xs) ys (inj₂ Any-P-ys) = there (from' xs ys (inj₂ Any-P-ys)) from' (x ∷ xs) ys (inj₁ (here Px)) = here Px from' (x ∷ xs) ys (inj₁ (there Any-P-xs)) = there (from' xs ys (inj₁ Any-P-xs)) -- use Any-++-⇔ to demonstrate an equivalence relating ∈ and _++_ TODO -- PLFA exercise: Show that the equivalence All-++-⇔ can be extended to an isomorphism. -- PLFA exercise: Here is a universe-polymorphic version of composition, -- and a version of DeMorgan's law for Any and All expressed using it. _∘'_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (B → C) → (A → B) → A → C (g ∘' f) x = g (f x) ¬Any≃All¬ : ∀ {A : Set} (P : A → Set) (xs : List A) → (¬_ ∘' Any P) xs ≃ All (¬_ ∘' P) xs to (¬Any≃All¬ _ []) ¬_∘'AnyPxs = [] to (¬Any≃All¬ P (_ ∷ xs)) ¬_∘'AnyPxs with to (¬Any≃All¬ P xs) ... | AnyPxs→⊥→Allλx₁→Px₁→⊥xs = (λ Px → ¬ here Px ∘'AnyPxs) ∷ AnyPxs→⊥→Allλx₁→Px₁→⊥xs (λ AnyPxs → ¬ there AnyPxs ∘'AnyPxs) from (¬Any≃All¬ _ []) All¬_∘'Pxs () from (¬Any≃All¬ P (x ∷ xs)) All¬_∘'Pxs (here Px) with from (¬Any≃All¬ P xs) ... | All-λx₁→Px₁→⊥-xs→AnyPxs→⊥ = All-λx₁→Px₁→⊥-xs→AnyPxs→⊥ {!!} {!!} from (¬Any≃All¬ _ (x ∷ xs)) All¬_∘'Pxs (there AnyPxs) = {!!} from∘to (¬Any≃All¬ P xs) = {!!} to∘from (¬Any≃All¬ P xs) = {!!} {- -- Can we prove the following? If not, explain why. -- ¬All≃Any¬ : ∀ {A : Set} (P : A → Set) (xs : List A) -- → (¬_ ∘' All P) xs ≃ Any (¬_ ∘' P) xs -- End of PLFA exercise -- Decidability of All -- A Boolean analogue of All all : ∀ {A : Set} → (A → Bool) → List A → Bool all p = foldr _∧_ true ∘ map p -- A Dec analogue of All -- A definition of a predicate being decidable Decidable : ∀ {A : Set} → (A → Set) → Set Decidable {A} P = ∀ (x : A) → Dec (P x) All? : ∀ {A : Set} {P : A → Set} → Decidable P → Decidable (All P) All? P? [] = yes [] All? P? (x ∷ xs) with P? x | All? P? xs All? P? (x ∷ xs) | yes p | yes p₁ = yes (p ∷ p₁) All? P? (x ∷ xs) | yes p | no ¬p = no (λ { (x ∷ x₁) → ¬p x₁}) All? P? (x ∷ xs) | no ¬p | _ = no (λ { (x ∷ x₁) → ¬p x}) -- PLFA exercise: repeat above for Any -- PLFA exercises: All-∀ and Any-∃ -- You will need the stronger version of extensionality -- (for dependent function types) given in PLFA Isomorphism. -- PLFA exercise: a version of 'filter' for decidable predicates -- filter? : ∀ {A : Set} {P : A → Set} -- → (P? : Decidable P) → List A → ∃[ ys ]( All P ys ) -- filter? P? xs = {!!} -}
{ "alphanum_fraction": 0.4997401125, "avg_line_length": 34.9224422442, "ext": "agda", "hexsha": "50def15eb7b9ce4a8a4f5ba5182839ccf5895ea2", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda", "max_line_length": 108, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 8272, "size": 21163 }
postulate A : Set P : A → Set Q : ∀{a} → P a → Set variable -- WORKS if replaced by postulate a : A module _ (p : P a) (let q = p) where postulate r : Q q -- Panic: unbound variable q (id: 18@787003719158301342) -- when checking that the expression q has type P _a_12
{ "alphanum_fraction": 0.6302816901, "avg_line_length": 17.75, "ext": "agda", "hexsha": "ac3b923661510a1f66767023a533c13350b53175", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3470.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3470.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3470.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 284 }
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Relation.Unary using (Pred) open import Data.Product hiding (swap; curry) open import Data.List open import Data.List.Relation.Unary.All as All open import Data.List.Relation.Unary.Any open import Data.List.Membership.Propositional open import Data.List.Prefix open import Function as Fun using (case_of_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning import Experiments.Category as Cat module Experiments.StrongMonad (Type : Set) (Val : Type → Cat.MP₀ (⊑-preorder {A = Type})) (funext : ∀ {a b} → Extensionality a b) where open import Relation.Binary.PropositionalEquality.Extensionality funext open Cat (⊑-preorder {A = Type}) open Product World = List Type Store : World → Set Store Σ = All (λ a → Val a · Σ) Σ import Relation.Binary.HeterogeneousEquality as H module HR = H.≅-Reasoning mcong : ∀ {Σₛ Σ Σ' ℓ}{P : MP ℓ} {μ : Store Σ}{μ' : Store Σ'}{p : Σ ⊒ Σₛ}{p' : Σ' ⊒ Σₛ}{q : P · Σ}{q' : P · Σ'} → Σ ≡ Σ' → p H.≅ p' → μ H.≅ μ' → q H.≅ q' → (Σ , p , μ , q) ≡ (Σ' , p' , μ' , q') mcong refl H.refl H.refl H.refl = refl -- The monad takes monotone predicates over worlds -- to monotone functions over stores in these worlds. M : ∀ {ℓ} → MP ℓ → MP ℓ M P = mp (λ Σ → ∀ Σ₁ → (ext : Σ ⊑ Σ₁) → (μ : Store Σ₁) → ∃ λ Σ₂ → Σ₂ ⊒ Σ₁ × Store Σ₂ × P · Σ₂) record { monotone = λ w₀ f Σ w₁ μ → f Σ (⊑-trans w₀ w₁) μ ; monotone-refl = λ f → funext³ (λ Σ₁ _ μ → cong (λ u → f Σ₁ u μ) ⊑-trans-refl) ; monotone-trans = λ f w₀ w₁ → funext³ (λ Σ₁ w₂ μ → cong (λ u → f Σ₁ u μ) (sym ⊑-trans-assoc)) } -- η is the natural transformation between the identity functor and the functor M η : ∀ {p}(P : MP p) → P ⇒ M P η P = mk⇒ (λ p Σ ext μ → Σ , ⊑-refl , μ , MP.monotone P ext p) (λ c~c' {p} → begin (λ z ext μ → z , ⊑-refl , μ , MP.monotone P ext (MP.monotone P c~c' p)) ≡⟨ funext³ (λ z ext μ → cong (λ u → z , ⊑-refl , μ , u) (sym (MP.monotone-trans P p c~c' ext))) ⟩ (λ z ext μ → z , ⊑-refl , μ , MP.monotone P (⊑-trans c~c' ext) p) ≡⟨ refl ⟩ MP.monotone (M P) c~c' (λ z ext μ → z , ⊑-refl , μ , MP.monotone P ext p) ∎) μ : ∀ {p}(P : MP p) → M (M P) ⇒ M P μ P = mk⇒ (λ pc Σ₁ ext μ → case pc Σ₁ ext μ of λ{ (Σ₂ , ext₁ , μ₁ , f) → case f Σ₂ ⊑-refl μ₁ of λ{ (Σ₃ , ext₂ , μ₂ , v) → Σ₃ , ⊑-trans ext₁ ext₂ , μ₂ , v } }) (λ c~c' → refl) fmap : ∀ {p q}{P : MP p}{Q : MP q} → (P ⇒ Q) → M P ⇒ M Q fmap F = mk⇒ (λ x Σ₁ ext μ → case x Σ₁ ext μ of λ{ (Σ₂ , ext₁ , μ₁ , v) → Σ₂ , ext₁ , μ₁ , apply F v }) (λ c~c' → refl) bind : ∀ {p q}{P : MP p}(Q : MP q) → (P ⇒ M Q) → M P ⇒ M Q bind Q F = μ Q ∘ fmap F open Exponential (sym ⊑-trans-assoc) ⊑-trans-refl ⊑-trans-refl' module Coherence where -- We prove that η is the component of a natural transformation between the functors -- 𝕀 and M where 𝕀 is the identity functor. η-natural : ∀ {p q}(P : MP p)(Q : MP q)(F : P ⇒ Q) → η Q ∘ F ⇒≡ (fmap F) ∘ η P η-natural P Q F p = begin apply (η Q ∘ F) p ≡⟨ refl ⟩ apply (η Q) (apply F p) ≡⟨ refl ⟩ (λ Σ ext μ → Σ , ⊑-refl , μ , MP.monotone Q ext (apply F p)) ≡⟨ funext³ (λ Σ ext μ → cong (λ u → Σ , ⊑-refl , μ , u) (sym (monotone-comm F ext))) ⟩ (λ Σ ext μ → Σ , ⊑-refl , μ , apply F (MP.monotone P ext p)) ≡⟨ refl ⟩ apply (fmap F) (λ Σ ext μ → Σ , ⊑-refl , μ , MP.monotone P ext p) ≡⟨ refl ⟩ apply (fmap F) (apply (η P) p) ≡⟨ refl ⟩ apply (fmap F ∘ η P) p ∎ -- We prove that μ is the component of a natural transformation between -- the functors M² and M. μ-natural : ∀ {p q}(P : MP p)(Q : MP q)(F : P ⇒ Q) → μ Q ∘ (fmap (fmap F)) ⇒≡ (fmap F) ∘ μ P μ-natural P Q F = λ p → refl -- from these facts we can prove the monad laws left-id : ∀ {p}{P : MP p} → μ P ∘ fmap (η P) ⇒≡ id (M P) left-id {P = P} p = funext³ λ Σ₁ ext μ₁ → mcong {P = P} refl (lem refl) H.refl (H.≡-to-≅ (MP.monotone-refl P _)) where lem : ∀ {Σ Σ' Σ'' : World}{xs : Σ'' ⊒ Σ'}{ys : Σ'' ⊒ Σ} → Σ ≡ Σ' → ⊑-trans xs ⊑-refl H.≅ ys lem {xs = xs}{ys} refl with ⊑-unique xs ys ... | refl = H.≡-to-≅ ⊑-trans-refl' right-id : ∀ {p}{P : MP p} → μ P ∘ (η (M P)) ⇒≡ id (M P) right-id {P = P} p = funext³ λ Σ₁ ext μ₁ → let f = (λ{(Σ₃ , ext₂ , μ₂ , v) → Σ₃ , ⊑-trans ⊑-refl ext₂ , μ₂ , v}) in trans (cong f (cong (λ u → p Σ₁ u μ₁) ⊑-trans-refl')) (mcong {P = P} refl (H.≡-to-≅ ⊑-trans-refl) H.refl H.refl ) -- if we have a (M³ P) then it doesn't matter if we join -- the outer or inner ones first. assoc : ∀ {p}{P : MP p} → μ P ∘ (fmap (μ P)) ⇒≡ μ P ∘ μ (M P) assoc {P = P} p = funext³ λ Σ₁ ext μ → mcong {P = P} refl (H.≡-to-≅ ⊑-trans-assoc) H.refl H.refl -- fmap makes M a functor fmap-id : ∀ {ℓ}{P : MP ℓ} → fmap (id P) ⇒≡ id (M P) fmap-id = λ p → refl fmap-∘ : ∀ {ℓ₁ ℓ₂ ℓ₃}{P : MP ℓ₁}{Q : MP ℓ₂}{R : MP ℓ₃}(F : P ⇒ Q)(G : Q ⇒ R) → fmap (G ∘ F) ⇒≡ fmap G ∘ fmap F fmap-∘ F G = λ p → refl module Strong where -- tensorial strength ts : ∀ {p q}(P : MP p)(Q : MP q) → P ⊗ M Q ⇒ M (P ⊗ Q) ts P Q = mk⇒ (λ x Σ₁ ext μ → case (proj₂ x) Σ₁ ext μ of λ{ (_ , ext₁ , μ₁ , v ) → _ , ext₁ , μ₁ , (MP.monotone P (⊑-trans ext ext₁) (proj₁ x)) , v } ) (λ c~c' → funext³ λ Σ₁ ext μ₁ → mcong {P = (P ⊗ Q)} refl H.refl H.refl ( H.cong₂ {A = P · _}{B = λ _ → Q · _} (λ u v → u , v) (H.≡-to-≅ (begin MP.monotone P (⊑-trans ext _) _ ≡⟨ (MP.monotone-trans P _ _ _) ⟩ MP.monotone P _ (MP.monotone P ext (MP.monotone P c~c' _)) ≡⟨ cong (λ x → MP.monotone P _ x) (sym ((MP.monotone-trans P _ _ _))) ⟩ MP.monotone P _ (MP.monotone P (⊑-trans c~c' ext) _) ≡⟨ sym ((MP.monotone-trans P _ _ _)) ⟩ MP.monotone P (⊑-trans (⊑-trans c~c' ext) _) _ ∎)) H.refl )) ts' : ∀ {p q}(P : MP p)(Q : MP q) → M P ⊗ Q ⇒ M (P ⊗ Q) ts' P Q = fmap (swap Q P) ∘ ts Q P ∘ swap _ _ diagram₁ : ∀ {ℓ}{P : MP ℓ} → fmap {P = ⊤ ⊗ P} (π₂ {P = ⊤}) ∘ ts ⊤ P ⇒≡ π₂ {P = ⊤} diagram₁ = λ p → refl diagram₂ : ∀ {ℓ₁ ℓ₂ ℓ₃}{A : MP ℓ₁}{B : MP ℓ₂}{C : MP ℓ₃} → fmap (comm A B C) ∘ ts (A ⊗ B) C ⇒≡ ts A (B ⊗ C) ∘ xmap (id A) (ts B C) ∘ comm A B (M C) diagram₂ = λ p → refl diagram₃ : ∀ {ℓ₁ ℓ₂}(A : MP ℓ₁)(B : MP ℓ₂) → η (A ⊗ B) ⇒≡ ts A B ∘ xmap (id A) (η B) diagram₃ A B (a , b) = funext³ λ Σ ext r → mcong {P = A ⊗ B} refl H.refl H.refl (H.≡-to-≅ (cong₂ _,_ (cong₂ (λ ext a → MP.monotone A ext a) (trans (sym ⊑-trans-refl') (cong (λ r → ⊑-trans ext r) refl)) refl ) (cong (λ x → x) refl))) diagram₄ : ∀ {ℓ₁ ℓ₂}{A : MP ℓ₁}{B : MP ℓ₂} → ts A B ∘ xmap (id A) (μ B) ⇒≡ μ (A ⊗ B) ∘ fmap (ts A B) ∘ ts A (M B) diagram₄ {A = A}{B} p@(l , r) = funext³ λ Σ₁ ext μ' → mcong {P = A ⊗ B} refl H.refl H.refl ( H.cong (Fun.flip _,_ _) (H.≡-to-≅ ( trans (cong (λ u → MP.monotone A u l) ⊑-trans-assoc) (trans (MP.monotone-trans A l (⊑-trans ext _) _) (cong (λ u → MP.monotone A u (MP.monotone A (⊑-trans _ _) l)) (sym ⊑-trans-refl)))))) -- internal fmap fmap' : ∀ {p q}{P : MP p}{Q : MP q} → (Q ^ P) ⇒ (M Q) ^ (M P) fmap' {P = P}{Q} = curry (fmap ε ∘ ts (Q ^ P) P) -- internal bind bind' : ∀ {p q}{P : MP p}(Q : MP q) → (M P ⊗ (M Q ^ P)) ⇒ M Q bind' {P = P} Q = μ Q ∘ fmap (ε ∘ swap P (M Q ^ P)) ∘ ts' P (M Q ^ P)
{ "alphanum_fraction": 0.4945914245, "avg_line_length": 36.0234741784, "ext": "agda", "hexsha": "908c05d36e9cc7775baf00f01c60fdda01268e6c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Experiments/StrongMonad.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Experiments/StrongMonad.agda", "max_line_length": 105, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Experiments/StrongMonad.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 3397, "size": 7673 }
{-# OPTIONS --allow-unsolved-metas #-} module Issue242 where postulate Y : Set module Inner (X : Set) where module M (A : Set) where postulate R : Set module R (r : R) where postulate C : Set open module MX = M Y module M' (r : R) where open module Rr = R r c : C c = {!!}
{ "alphanum_fraction": 0.5705128205, "avg_line_length": 14.8571428571, "ext": "agda", "hexsha": "3a9eb6fa82fb6426940de265b7e7aa903cb02445", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue242.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue242.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue242.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 312 }
{-# OPTIONS --sized-types #-} module SizedTypesLoopDueInadmissibility where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A shift_case : {i : Size} -> Maybe (Nat {i ^}) -> Maybe (Nat {i}) shift_case nothing = nothing shift_case (just zero) = nothing shift_case (just (suc x)) = just x shift : {i : Size} -> (Nat -> Maybe (Nat {i ^})) -> (Nat -> Maybe (Nat {i})) shift f n = shift_case (f (suc n)) inc : Nat -> Maybe Nat inc n = just (suc n) -- the type of the following recursive function should be rejected!! -- it is inadmissible (see Abel, RAIRO 2004 or CSL 2006) loop : {i : Size} -> Nat {i} -> (Nat -> Maybe (Nat {i})) -> Set loop (suc n) f = loop n (shift f) loop zero f with (f zero) ... | nothing = Nat ... | (just zero) = Nat ... | (just (suc y)) = loop y (shift f) {- mutual loop : {i : Size} -> Nat {i} -> (Nat -> Maybe (Nat {i})) -> Set loop .{i ^} (suc {i} n) f = loop {i} n (shift {i} f) loop .{i ^} (zero {i}) f = loop_case {i ^} (f zero) f loop_case : {i : Size} -> Maybe (Nat {i}) -> (Nat -> Maybe (Nat {i})) -> Set loop_case nothing f = Nat loop_case (just zero) f = Nat loop_case (just (suc y)) f = loop y (shift f) -} diverge = loop zero inc
{ "alphanum_fraction": 0.5589403974, "avg_line_length": 26.4912280702, "ext": "agda", "hexsha": "4680235655e12c1a261d2299d3a0da813e07b6fc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/SizedTypesLoopDueInadmissibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/SizedTypesLoopDueInadmissibility.agda", "max_line_length": 78, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/SizedTypesLoopDueInadmissibility.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 521, "size": 1510 }
------------------------------------------------------------------------ -- Some definitions related to and properties of booleans ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Bool {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Logical-equivalence using (_⇔_) open import Prelude hiding (id; _∘_; swap) open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq open import Equality.Decision-procedures eq open import Equivalence eq using (_≃_; ↔⇒≃; lift-equality) open import Function-universe eq open import H-level eq open import H-level.Closure eq -- The not function is involutive. not-involutive : (b : Bool) → not (not b) ≡ b not-involutive true = refl _ not-involutive false = refl _ -- Bool is isomorphic to Fin 2. Bool↔Fin2 : Bool ↔ Fin 2 Bool↔Fin2 = ⊤ ⊎ ⊤ ↝⟨ inverse $ id ⊎-cong ⊎-right-identity ⟩□ ⊤ ⊎ ⊤ ⊎ ⊥ □ -- A non-trivial automorphism on Bool. swap : Bool ↔ Bool swap = record { surjection = record { logical-equivalence = record { to = not ; from = not } ; right-inverse-of = not-involutive } ; left-inverse-of = not-involutive } private non-trivial : _↔_.to swap ≢ id non-trivial not≡id = Bool.true≢false (cong (_$ false) not≡id) -- Equality rearrangement lemmas. not≡⇒≢ : (b₁ b₂ : Bool) → not b₁ ≡ b₂ → b₁ ≢ b₂ not≡⇒≢ true true f≡t _ = Bool.true≢false (sym f≡t) not≡⇒≢ true false _ t≡f = Bool.true≢false t≡f not≡⇒≢ false true _ f≡t = Bool.true≢false (sym f≡t) not≡⇒≢ false false t≡f _ = Bool.true≢false t≡f ≢⇒not≡ : (b₁ b₂ : Bool) → b₁ ≢ b₂ → not b₁ ≡ b₂ ≢⇒not≡ true true t≢t = ⊥-elim (t≢t (refl _)) ≢⇒not≡ true false _ = refl _ ≢⇒not≡ false true _ = refl _ ≢⇒not≡ false false f≢f = ⊥-elim (f≢f (refl _)) not≡↔≡not : {b₁ b₂ : Bool} → not b₁ ≡ b₂ ↔ b₁ ≡ not b₂ not≡↔≡not {true} {true} = false ≡ true ↝⟨ inverse $ Bijection.⊥↔uninhabited (Bool.true≢false ∘ sym) ⟩ ⊥₀ ↝⟨ Bijection.⊥↔uninhabited Bool.true≢false ⟩□ true ≡ false □ not≡↔≡not {true} {false} = false ≡ false ↝⟨ inverse Bijection.≡↔inj₂≡inj₂ ⟩ tt ≡ tt ↝⟨ Bijection.≡↔inj₁≡inj₁ ⟩□ true ≡ true □ not≡↔≡not {false} {true} = true ≡ true ↝⟨ inverse Bijection.≡↔inj₁≡inj₁ ⟩ tt ≡ tt ↝⟨ Bijection.≡↔inj₂≡inj₂ ⟩□ false ≡ false □ not≡↔≡not {false} {false} = true ≡ false ↝⟨ inverse $ Bijection.⊥↔uninhabited Bool.true≢false ⟩ ⊥₀ ↝⟨ Bijection.⊥↔uninhabited (Bool.true≢false ∘ sym) ⟩□ false ≡ true □ -- Some lemmas related to T. T↔≡true : {b : Bool} → T b ↔ b ≡ true T↔≡true {false} = $⟨ Bool.true≢false ⟩ true ≢ false ↝⟨ (_∘ sym) ⟩ false ≢ true ↝⟨ Bijection.⊥↔uninhabited ⟩□ ⊥ ↔ false ≡ true □ T↔≡true {true} = $⟨ refl true ⟩ true ≡ true ↝⟨ propositional⇒inhabited⇒contractible Bool-set ⟩ Contractible (true ≡ true) ↝⟨ _⇔_.to contractible⇔↔⊤ ⟩ true ≡ true ↔ ⊤ ↝⟨ inverse ⟩□ ⊤ ↔ true ≡ true □ T-not↔≡false : ∀ {b} → T (not b) ↔ b ≡ false T-not↔≡false {b} = T (not b) ↝⟨ T↔≡true ⟩ not b ≡ true ↝⟨ not≡↔≡not ⟩□ b ≡ false □ T-not⇔¬T : (b : Bool) → T (not b) ⇔ ¬ T b T-not⇔¬T true = ⊥ ↔⟨ Bijection.⊥↔uninhabited (_$ _) ⟩ (⊤ → ⊥) □ T-not⇔¬T false = ⊤ ↝⟨ record { to = λ _ → id } ⟩□ ¬ ⊥ □ T-not↔¬T : (b : Bool) → T (not b) ↝[ lzero ∣ lzero ] ¬ T b T-not↔¬T true _ = ⊥ ↔⟨ Bijection.⊥↔uninhabited (_$ _) ⟩ (⊤ → ⊥) □ T-not↔¬T false ext = ⊤ ↝⟨ inverse-ext? ¬⊥↔⊤ ext ⟩□ ¬ ⊥ □ ¬T⇔≡false : ∀ {b} → ¬ T b ⇔ b ≡ false ¬T⇔≡false {b} = ¬ T b ↝⟨ inverse $ T-not⇔¬T b ⟩ T (not b) ↔⟨ T-not↔≡false ⟩□ b ≡ false □ ¬T↔≡false : ∀ {b} → ¬ T b ↝[ lzero ∣ lzero ] b ≡ false ¬T↔≡false {b = b} ext = ¬ T b ↝⟨ inverse-ext? (T-not↔¬T b) ext ⟩ T (not b) ↔⟨ T-not↔≡false ⟩□ b ≡ false □ T-∧↔T×T : ∀ b₁ {b₂} → T (b₁ ∧ b₂) ↔ T b₁ × T b₂ T-∧↔T×T true {b₂} = T b₂ ↝⟨ inverse ×-left-identity ⟩□ ⊤ × T b₂ □ T-∧↔T×T false {b₂} = ⊥ ↝⟨ inverse ×-left-zero ⟩□ ⊥ × T b₂ □ T-∨⇔T⊎T : ∀ b₁ {b₂} → T (b₁ ∨ b₂) ⇔ T b₁ ⊎ T b₂ T-∨⇔T⊎T true = record { to = inj₁ } T-∨⇔T⊎T false {b₂} = T b₂ ↔⟨ inverse ⊎-left-identity ⟩□ ⊥ ⊎ T b₂ □ -- Bool ≃ Bool is isomorphic to Bool (assuming extensionality). [Bool≃Bool]↔Bool₁ : Extensionality lzero lzero → (Bool ≃ Bool) ↔ Bool [Bool≃Bool]↔Bool₁ ext = record { surjection = record { logical-equivalence = record { to = λ eq → _≃_.to eq true ; from = if_then id else ↔⇒≃ swap } ; right-inverse-of = λ { true → refl _; false → refl _ } } ; left-inverse-of = λ eq → lift-equality ext (apply-ext ext (lemma₂ eq)) } where lemma₁ : ∀ b → _≃_.to (if b then id else ↔⇒≃ swap) false ≡ not b lemma₁ true = refl _ lemma₁ false = refl _ lemma₂ : ∀ eq b → _≃_.to (if _≃_.to eq true then id else ↔⇒≃ swap) b ≡ _≃_.to eq b lemma₂ eq true with _≃_.to eq true ... | true = refl _ ... | false = refl _ lemma₂ eq false = _≃_.to (if _≃_.to eq true then id else ↔⇒≃ swap) false ≡⟨ lemma₁ (_≃_.to eq true) ⟩ not (_≃_.to eq true) ≡⟨ ≢⇒not≡ _ _ (Bool.true≢false ∘ _≃_.injective eq) ⟩∎ _≃_.to eq false ∎ -- Another proof showing that Bool ≃ Bool is isomorphic to Bool -- (assuming extensionality). [Bool≃Bool]↔Bool₂ : Extensionality lzero lzero → (Bool ≃ Bool) ↔ Bool [Bool≃Bool]↔Bool₂ ext = record { surjection = record { logical-equivalence = record { to = λ eq → _≃_.to eq false ; from = if_then ↔⇒≃ swap else id } ; right-inverse-of = λ { true → refl _; false → refl _ } } ; left-inverse-of = λ eq → lift-equality ext (apply-ext ext (lemma₂ eq)) } where lemma₁ : ∀ b → _≃_.to (if b then ↔⇒≃ swap else id) true ≡ not b lemma₁ true = refl _ lemma₁ false = refl _ lemma₂ : ∀ eq b → _≃_.to (if _≃_.to eq false then ↔⇒≃ swap else id) b ≡ _≃_.to eq b lemma₂ eq false with _≃_.to eq false ... | true = refl _ ... | false = refl _ lemma₂ eq true = _≃_.to (if _≃_.to eq false then ↔⇒≃ swap else id) true ≡⟨ lemma₁ (_≃_.to eq false) ⟩ not (_≃_.to eq false) ≡⟨ ≢⇒not≡ _ _ (Bool.true≢false ∘ sym ∘ _≃_.injective eq) ⟩∎ _≃_.to eq true ∎ private -- The two proofs are not equal. distinct : {ext : Extensionality lzero lzero} → [Bool≃Bool]↔Bool₁ ext ≢ [Bool≃Bool]↔Bool₂ ext distinct = Bool.true≢false ∘ cong (λ iso → _≃_.to (_↔_.from iso true) true)
{ "alphanum_fraction": 0.5249076127, "avg_line_length": 30.75, "ext": "agda", "hexsha": "90b41573a25bb4787ad985d03986f8dbfa3b89f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Bool.agda", "max_line_length": 119, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2903, "size": 6765 }
postulate A : Set open import Agda.Builtin.Equality foo : (f : A → A → A) (@0 g : @0 A → @0 A → A) → @0 _≡_ {A = @0 A → @0 A → A} g (\ x y → f y x) → @0 A → @0 A → A foo f g refl = g -- In the goal, `C-c C-n g` gives -- λ (@0 x) (@0 y) → f y x -- which is only well-typed in an erased context. bad : (f : A → A → A) → @0 A → @0 A → A bad f = foo f (\ x y → f y x) refl
{ "alphanum_fraction": 0.4601542416, "avg_line_length": 22.8823529412, "ext": "agda", "hexsha": "1f13280b1d61cd6b1fe95c9d9ff63eb2df957e19", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4986a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4986a.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4986a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 172, "size": 389 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Sum.Base where open import Cubical.Core.Everything private variable ℓ ℓ' : Level A B C D : Type ℓ data _⊎_ (A : Type ℓ)(B : Type ℓ') : Type (ℓ-max ℓ ℓ') where inl : A → A ⊎ B inr : B → A ⊎ B elim-⊎ : {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A ⊎ B) → C x elim-⊎ f _ (inl x) = f x elim-⊎ _ g (inr y) = g y map-⊎ : (A → C) → (B → D) → A ⊎ B → C ⊎ D map-⊎ f _ (inl x) = inl (f x) map-⊎ _ g (inr y) = inr (g y)
{ "alphanum_fraction": 0.4760076775, "avg_line_length": 22.652173913, "ext": "agda", "hexsha": "1d1f25799c68247df75d6352405790149776c4df", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Sum/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Sum/Base.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Sum/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 261, "size": 521 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Sn.Properties where open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Bool open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 open import Cubical.HITs.S3 open import Cubical.Data.Nat open import Cubical.Data.Prod open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp open import Cubical.Data.Unit open import Cubical.HITs.Join open import Cubical.HITs.Pushout open import Cubical.HITs.SmashProduct open import Cubical.HITs.PropositionalTruncation open Iso private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' --- Some silly lemmas on S1 --- isGroupoidS1 : isGroupoid (S₊ 1) isGroupoidS1 = isGroupoidS¹ isConnectedS1 : (x : S₊ 1) → ∥ base ≡ x ∥ isConnectedS1 = isConnectedS¹
{ "alphanum_fraction": 0.7949167397, "avg_line_length": 27.1666666667, "ext": "agda", "hexsha": "98964ffa71616d54ef6fd319950fb209a5dfefd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "69d358f6be7842f77105634712821eda22d9c044", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "aljungstrom/cubical", "max_forks_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/cubical", "max_issues_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/cubical", "max_stars_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 341, "size": 1141 }
{-# OPTIONS --cubical --safe #-} module _ where open import Agda.Primitive open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Glue open import Agda.Builtin.Bool -- If primGlue does not reduce away we should report an error for -- patterns of other types. -- -- In the future we might want to allow the constructor glue itself as -- a pattern. test : ∀ φ → primGlue {ℓ' = lzero} Bool {φ = φ} ? ? → Bool test _ true = ? test _ false = ?
{ "alphanum_fraction": 0.7076923077, "avg_line_length": 25.2777777778, "ext": "agda", "hexsha": "748be73f810a52f322df5990a6546663ddfe543e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3620.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3620.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3620.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 455 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for caching evaluation of MTerm ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.MType as MType import Parametric.Denotation.Value as Value import Parametric.Denotation.MValue as MValue module Parametric.Denotation.CachingMValue (Base : Type.Structure) (⟦_⟧Base : Value.Structure Base) where open import Base.Data.DependentList open import Base.Denotation.Notation open Type.Structure Base open MType.Structure Base open Value.Structure Base ⟦_⟧Base open MValue.Structure Base ⟦_⟧Base open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Unit open import Level open import Function hiding (const) Structure : Set Structure = Base → Type module Structure (ΔBase : Structure) where {-# TERMINATING #-} ⟦_⟧ValTypeHidCache : (τ : ValType) → Set ⟦_⟧CompTypeHidCache : (τ : CompType) → Set ⟦ U c ⟧ValTypeHidCache = ⟦ c ⟧CompTypeHidCache ⟦ B ι ⟧ValTypeHidCache = ⟦ base ι ⟧ ⟦ vUnit ⟧ValTypeHidCache = ⊤ ⟦ τ₁ v× τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache × ⟦ τ₂ ⟧ValTypeHidCache ⟦ τ₁ v+ τ₂ ⟧ValTypeHidCache = ⟦ τ₁ ⟧ValTypeHidCache ⊎ ⟦ τ₂ ⟧ValTypeHidCache -- -- XXX The termination checker isn't happy with it, and it may be right ─ if -- you keep substituting τ₁ = U (F τ), you can make the cache arbitrarily big. -- I think we don't do that unless we are caching a non-terminating -- computation to begin with, but I'm not entirely sure. -- -- However, the termination checker can't prove that the function is -- terminating because it's not structurally recursive, but one call of the -- function will produce another call of the function stuck on a neutral term: -- So the computation will have terminated, just in an unusual way! -- -- Anyway, I need not mechanize this part of the proof for my goals. -- -- XXX: This line is the only change, up to now, for the caching semantics, -- the rest is copied. Inheritance would handle this precisely; without -- inheritance, we might want to use one of the standard encodings of related -- features (delegation?). ⟦ F τ ⟧CompTypeHidCache = (Σ[ τ₁ ∈ ValType ] ⟦ τ ⟧ValTypeHidCache × ⟦ τ₁ ⟧ValTypeHidCache ) ⟦ σ ⇛ τ ⟧CompTypeHidCache = ⟦ σ ⟧ValTypeHidCache → ⟦ τ ⟧CompTypeHidCache ⟦_⟧ValCtxHidCache : (Γ : ValContext) → Set ⟦_⟧ValCtxHidCache = DependentList ⟦_⟧ValTypeHidCache {-# TERMINATING #-} ⟦_⟧ΔValType : ValType → Set ⟦_⟧ΔCompType : CompType → Set ⟦_⟧ΔCompType (F τ) = Σ[ τ₁ ∈ ValType ] (⟦ τ₁ ⟧ValTypeHidCache → ⟦ τ ⟧ΔValType × ⟦ τ₁ ⟧ValTypeHidCache) ⟦_⟧ΔCompType (σ ⇛ τ) = ⟦ σ ⟧ΔValType → ⟦ τ ⟧ΔCompType ⟦_⟧ΔValType (U c) = ⟦ c ⟧ΔCompType ⟦_⟧ΔValType (B ι) = ⟦ ΔBase ι ⟧ ⟦_⟧ΔValType vUnit = ⊤ ⟦_⟧ΔValType (τ₁ v× τ₂) = ⟦_⟧ΔValType τ₁ × ⟦_⟧ΔValType τ₂ ⟦_⟧ΔValType (τ₁ v+ τ₂) = (⟦_⟧ΔValType τ₁ ⊎ ⟦_⟧ΔValType τ₂) ⊎ (⟦ τ₁ ⟧ ⊎ ⟦ τ₂ ⟧) open import Data.Product open import Level -- -- Needed to allow storing functions in cache: -- record _↝_↝_ {a b} (S : Set a) c (T : Set b) : Set (a ⊔ b ⊔ suc c) where -- field -- cache : Set c -- fun : S → (T × cache) -- record _↝′_↝′_ {a b} (dS : Set a) c (dT : Set b) : Set (a ⊔ b ⊔ suc c) where -- field -- cache : Set c -- fun : dS → cache → (dT × cache) -- -- -- For simplicity, but won't work: -- -- -- -- record _↝_ {a b} (S : Set a) (T : Set b) : Set (a ⊔ b ⊔ suc zero) where -- -- field -- -- cache : Set -- -- fun : S → (T × cache) -- -- record _↝′_ (da : Set₁) (db : Set₁) : Set₁ where -- -- field -- -- cache : Set -- -- dfun : da → cache → (db × cache) -- fooo : (a b : Set₁) → Set₁ -- fooo a b = a ↝ zero ↝ (b ↝ zero ↝ b) -- dfooo : (da db : Set₁) → Set₁ -- dfooo da db = da ↝′ zero ↝′ (db ↝′ zero ↝′ db) -- Since caches can contain caches, including function caches, we can't use the -- above. The existentials must store object-language codes of some sort. For -- extra fun, the resulting code is not typeable with simple types, so we can't -- use codes for simple types but must store, say, function bodies.
{ "alphanum_fraction": 0.6353643967, "avg_line_length": 36.3913043478, "ext": "agda", "hexsha": "0818c82cbc200b8f3a257790edc63740a955339e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Denotation/CachingMValue.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Denotation/CachingMValue.agda", "max_line_length": 104, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Denotation/CachingMValue.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1489, "size": 4185 }
open import Relation.Binary.Core module PLRTree.Insert.Properties {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum open import PLRTree {A} open import PLRTree.Compound {A} open import PLRTree.Insert _≤_ tot≤ lemma-insert-compound : (x : A)(t : PLRTree) → Compound (insert x t) lemma-insert-compound x leaf = compound lemma-insert-compound x (node perfect y l r) with tot≤ x y | l | r ... | inj₁ x≤y | leaf | leaf = compound ... | inj₁ x≤y | leaf | node _ _ _ _ = compound ... | inj₁ x≤y | node _ _ _ _ | leaf = compound ... | inj₁ x≤y | node _ _ _ _ | node _ _ _ _ = compound ... | inj₂ y≤x | leaf | leaf = compound ... | inj₂ y≤x | leaf | node _ _ _ _ = compound ... | inj₂ y≤x | node _ _ _ _ | leaf = compound ... | inj₂ y≤x | node _ _ _ _ | node _ _ _ _ = compound lemma-insert-compound x (node left y l _) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-compound y l ... | node perfect _ _ _ | compound = compound ... | node left _ _ _ | compound = compound ... | node right _ _ _ | compound = compound lemma-insert-compound x (node left y l _) | inj₂ y≤x with insert x l | lemma-insert-compound x l ... | node perfect _ _ _ | compound = compound ... | node left _ _ _ | compound = compound ... | node right _ _ _ | compound = compound lemma-insert-compound x (node right y _ r) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-compound y r ... | node perfect _ _ _ | compound = compound ... | node left _ _ _ | compound = compound ... | node right _ _ _ | compound = compound lemma-insert-compound x (node right y _ r) | inj₂ y≤x with insert x r | lemma-insert-compound x r ... | node perfect _ _ _ | compound = compound ... | node left _ _ _ | compound = compound ... | node right _ _ _ | compound = compound
{ "alphanum_fraction": 0.6153017241, "avg_line_length": 37.8775510204, "ext": "agda", "hexsha": "7899a02677972d28bfb6846d1d1c137edfe8f275", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Insert/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Insert/Properties.agda", "max_line_length": 68, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Insert/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 585, "size": 1856 }
-- Placeholder
{ "alphanum_fraction": 0.7333333333, "avg_line_length": 7.5, "ext": "agda", "hexsha": "285876d3dc8b889feb680848d7132454d82d7543", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/FileThatDoesNotExist.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/FileThatDoesNotExist.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/FileThatDoesNotExist.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 3, "size": 15 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.WedgeConnectivity where open import Cubical.Foundations.Everything open import Cubical.Data.HomotopyGroup open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.Truncation as Trunc open import Cubical.Homotopy.Connected module WedgeConnectivity {ℓ ℓ' ℓ''} (n m : ℕ) (A : Pointed ℓ) (connA : isConnected (suc n) (typ A)) (B : Pointed ℓ') (connB : isConnected (suc m) (typ B)) (P : typ A → typ B → TypeOfHLevel ℓ'' (n + m)) (f : (a : typ A) → P a (pt B) .fst) (g : (b : typ B) → P (pt A) b .fst) (p : f (pt A) ≡ g (pt B)) where private Q : typ A → TypeOfHLevel _ n Q a = ( (Σ[ k ∈ ((b : typ B) → P a b .fst) ] k (pt B) ≡ f a) , isOfHLevelRetract n (λ {(h , q) → h , funExt λ _ → q}) (λ {(h , q) → h , funExt⁻ q _}) (λ _ → refl) (isOfHLevelPrecomposeConnected n m (P a) (λ _ → pt B) (isConnectedPoint m connB (pt B)) (λ _ → f a)) ) main : isContr (fiber (λ s _ → s (pt A)) (λ _ → g , p ⁻¹)) main = elim.isEquivPrecompose (λ _ → pt A) n Q (isConnectedPoint n connA (pt A)) .equiv-proof (λ _ → g , p ⁻¹) extension : ∀ a b → P a b .fst extension a b = main .fst .fst a .fst b left : ∀ a → extension a (pt B) ≡ f a left a = main .fst .fst a .snd right : ∀ b → extension (pt A) b ≡ g b right = funExt⁻ (cong fst (funExt⁻ (main .fst .snd) _)) -- TODO: left (pt A) ⁻¹ ∙ right (pt B) ≡ p
{ "alphanum_fraction": 0.56875, "avg_line_length": 31.3725490196, "ext": "agda", "hexsha": "a39faec633900c6f4ea475f0c81df6db48dd2d0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Homotopy/WedgeConnectivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Homotopy/WedgeConnectivity.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Homotopy/WedgeConnectivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 605, "size": 1600 }
{-# OPTIONS --without-K #-} -- most of this is subsumed by crypto-agda Search code open import Type hiding (★) open import Data.Nat.NP hiding (_==_) renaming (_<=_ to _ℕ<=_) open import Data.Bits open import Data.Bit hiding (_==_) open import Data.Bool.Properties using (not-involutive) import Data.Vec.NP as V open V hiding (rewire; rewireTbl; sum) renaming (map to vmap; swap to vswap) import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ open import Function.NP hiding (_→⟨_⟩_) open import Algebra.FunctionProperties.NP module Data.Bits.Search where module Search {i} {I : ★ i} (`1 : I) (`2*_ : I → I) {a} {A : I → ★ a} (_∙_ : ∀ {m} → A m → A m → A (`2* m)) where `2^_ : ℕ → I `2^_ = fold `1 `2*_ search : ∀ {n} → (Bits n → A `1) → A (`2^ n) search {zero} f = f [] search {suc n} f = search (f ∘ 0∷_) ∙ search (f ∘ 1∷_) searchBit : (Bit → A `1) → A (`2* `1) searchBit f = f 0b ∙ f 1b -- search-ext search-≗ : ∀ {n} (f g : Bits n → A `1) → f ≗ g → search f ≡ search g search-≗ {zero} f g f≗g = f≗g [] search-≗ {suc n} f g f≗g rewrite search-≗ (f ∘ 0∷_) (g ∘ 0∷_) (f≗g ∘ 0∷_) | search-≗ (f ∘ 1∷_) (g ∘ 1∷_) (f≗g ∘ 1∷_) = refl module Comm (∙-comm : ∀ {m} (x y : A m) → x ∙ y ≡ y ∙ x) where {- This pad bit vector allows to specify which bit do we negate in the vector. -} search-comm : ∀ {n} (pad : Bits n) (f : Bits n → A `1) → search f ≡ search (f ∘ _⊕_ pad) search-comm {zero} pad f = refl search-comm {suc n} (b ∷ pad) f rewrite search-comm pad (f ∘ 0∷_) | search-comm pad (f ∘ 1∷_) with b ... | true = ∙-comm (search (f ∘ 0∷_ ∘ _⊕_ pad)) _ ... | false = refl open Comm public module SimpleSearch {a} {A : ★ a} (_∙_ : A → A → A) where open Search 1 2*_ {A = const A} _∙_ public module SearchUnit ε (ε∙ε : ε ∙ ε ≡ ε) where search-constε≡ε : ∀ n → search {n = n} (const ε) ≡ ε search-constε≡ε zero = refl search-constε≡ε (suc n) rewrite search-constε≡ε n = ε∙ε searchBit-search : ∀ n (f : Bits (suc n) → A) → searchBit (λ b → search (f ∘ _∷_ b)) ≡ search f searchBit-search n f = refl search-≗₂ : ∀ {m n} (f g : Bits m → Bits n → A) → f ≗₂ g → search (search ∘ f) ≡ search (search ∘ g) search-≗₂ f g f≗g = search-≗ (search ∘ f) (search ∘ g) (λ xs → search-≗ (f xs) (g xs) (λ ys → f≗g xs ys)) search-+ : ∀ {m n} (f : Bits (m + n) → A) → search {m + n} f ≡ search {m} (λ xs → search {n} (λ ys → f (xs ++ ys))) search-+ {zero} f = refl search-+ {suc m} f rewrite search-+ {m} (f ∘ 0∷_) | search-+ {m} (f ∘ 1∷_) = refl module SearchInterchange (∙-interchange : Interchange _≡_ _∙_ _∙_) where search-dist : ∀ {n} (f₀ f₁ : Bits n → A) → search (λ x → f₀ x ∙ f₁ x) ≡ search f₀ ∙ search f₁ search-dist {zero} _ _ = refl search-dist {suc n} f₀ f₁ rewrite search-dist (f₀ ∘ 0∷_) (f₁ ∘ 0∷_) | search-dist (f₀ ∘ 1∷_) (f₁ ∘ 1∷_) = ∙-interchange _ _ _ _ search-searchBit : ∀ {n} (f : Bits (suc n) → A) → search (λ xs → searchBit (λ b → f (b ∷ xs))) ≡ search f search-searchBit f = search-dist (f ∘ 0∷_) (f ∘ 1∷_) search-search : ∀ {m n} (f : Bits (m + n) → A) → search {m} (λ xs → search {n} (λ ys → f (xs ++ ys))) ≡ search {n} (λ ys → search {m} (λ xs → f (xs ++ ys))) search-search {zero} f = refl search-search {suc m} {n} f rewrite search-search {m} {n} (f ∘ 0∷_) | search-search {m} {n} (f ∘ 1∷_) | search-searchBit {n} (λ { (b ∷ ys) → search {m} (λ xs → f (b ∷ xs ++ ys)) }) = refl {- -- It might also be done by using search-dist twice and commutativity of addition. -- However, this also affect 'f' and makes this proof actually longer. search-search {m} {n} f = search {m} (λ xs → search {n} (λ ys → f (xs ++ ys))) ≡⟨ {!!} ⟩ search {m + n} f ≡⟨ {!!} ⟩ search {n + m} (f ∘ vswap n) ≡⟨ {!!} ⟩ search {n} (λ ys → search {m} (λ xs → f (vswap n (ys ++ xs)))) ≡⟨ {!!} ⟩ search {n} (λ ys → search {m} (λ xs → f (xs ++ ys))) ∎ where open ≡-Reasoning -} search-swap : ∀ {m n} (f : Bits (m + n) → A) → search {n + m} (f ∘ vswap n) ≡ search {m + n} f search-swap {m} {n} f = search {n + m} (f ∘ vswap n) ≡⟨ search-+ {n} {m} (f ∘ vswap n) ⟩ search {n} (λ ys → search {m} (λ xs → f (vswap n (ys ++ xs)))) ≡⟨ search-≗₂ {n} {m} (λ ys → f ∘ vswap n ∘ _++_ ys) (λ ys → f ∘ flip _++_ ys) (λ ys xs → cong f (swap-++ n ys xs)) ⟩ search {n} (λ ys → search {m} (λ xs → f (xs ++ ys))) ≡⟨ sym (search-search {m} {n} f) ⟩ search {m} (λ xs → search {n} (λ ys → f (xs ++ ys))) ≡⟨ sym (search-+ {m} {n} f) ⟩ search {m + n} f ∎ where open ≡-Reasoning search-0↔1 : ∀ {n} (f : Bits n → A) → search {n} (f ∘ 0↔1) ≡ search {n} f search-0↔1 {zero} _ = refl search-0↔1 {suc zero} _ = refl search-0↔1 {suc (suc n)} _ = ∙-interchange _ _ _ _ module Bij (∙-comm : Commutative _≡_ _∙_) (∙-interchange : Interchange _≡_ _∙_ _∙_) where open SearchInterchange ∙-interchange using (search-0↔1) open import Data.Bits.OperationSyntax hiding (_∙_) search-bij : ∀ {n} f (g : Bits n → A) → search (g ∘ eval f) ≡ search g search-bij `id _ = refl search-bij `0↔1 f = search-0↔1 f search-bij (f `⁏ g) h rewrite search-bij f (h ∘ eval g) | search-bij g h = refl search-bij {suc n} (`id `∷ f) g rewrite search-bij (f 0b) (g ∘ 0∷_) | search-bij (f 1b) (g ∘ 1∷_) = refl search-bij {suc n} (`notᴮ `∷ f) g rewrite search-bij (f 1b) (g ∘ 0∷_) | search-bij (f 0b) (g ∘ 1∷_) = ∙-comm _ _ |de-morgan| : ∀ {n} (f g : Bits n → Bit) → f |∨| g ≗ not ∘ ((not ∘ f) |∧| (not ∘ g)) |de-morgan| f g x with f x ... | true = refl ... | false = sym (not-involutive _) open SimpleSearch search-de-morgan : ∀ {n} op (f g : Bits n → Bit) → search op (f |∨| g) ≡ search op (not ∘ ((not ∘ f) |∧| (not ∘ g))) search-de-morgan op f g = search-≗ op _ _ (|de-morgan| f g) search-hom : ∀ {n a b} {A : ★ a} {B : ★ b} (_+_ : A → A → A) (_*_ : B → B → B) (f : A → B) (p : Bits n → A) (hom : ∀ x y → f (x + y) ≡ f x * f y) → f (search _+_ p) ≡ search _*_ (f ∘ p) search-hom {zero} _ _ _ _ _ = refl search-hom {suc n} _+_ _*_ f p hom = trans (hom _ _) (cong₂ _*_ (search-hom _+_ _*_ f (p ∘ 0∷_) hom) (search-hom _+_ _*_ f (p ∘ 1∷_) hom))
{ "alphanum_fraction": 0.4413347686, "avg_line_length": 41.5195530726, "ext": "agda", "hexsha": "58f3c2e23f8be82de847c8c2fb750f777f33f1d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Experimental/DataBitsSearch.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Experimental/DataBitsSearch.agda", "max_line_length": 102, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Experimental/DataBitsSearch.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 2756, "size": 7432 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Category.Functor open import Data.Maybe open import Function open import Level open import Relation.Binary.PropositionalEquality module Optics.Functorial where Lens' : (F : Set → Set) → RawFunctor F → Set → Set → Set Lens' F _ S A = (A → F A) → S → F S data Lens (S A : Set) : Set₁ where lens : ((F : Set → Set)(rf : RawFunctor F) → Lens' F rf S A) → Lens S A private cf : {A : Set} → RawFunctor {Level.zero} (const A) cf = record { _<$>_ = λ x x₁ → x₁ } if : RawFunctor {Level.zero} id if = record { _<$>_ = λ x x₁ → x x₁ } -- We can make lenses relatively painlessly without requiring reflection -- by providing getter and setter functions mkLens' : ∀ {A B : Set} → (B → A) → (B → A → B) → Lens B A mkLens' {A} {B} get set = lens (λ F rf f b → Category.Functor.RawFunctor._<$>_ {F = F} rf {A = A} {B = B} (set b) (f (get b))) -- Getter: -- this is typed as ^\. _^∙_ : ∀{S A} → S → Lens S A → A _^∙_ {_} {A} s (lens p) = p (const A) cf id s -- Setter: set : ∀{S A} → Lens S A → A → S → S set (lens p) a s = p id if (const a) s infixr 4 _∙~_ _∙~_ = set -- _|>_ is renamed to _&_ by Util.Prelude set? : ∀{S A} → Lens S (Maybe A) → A → S → S set? l a s = s |> l ∙~ just a infixr 4 _?~_ _?~_ = set? -- Modifier: over : ∀{S A} → Lens S A → (A → A) → S → S over (lens p) f s = p id if f s infixr 4 _%~_ _%~_ = over -- Composition infixr 30 _∙_ _∙_ : ∀{S A B} → Lens S A → Lens A B → Lens S B (lens p) ∙ (lens q) = lens (λ F rf x x₁ → p F rf (q F rf x) x₁) -- Relation between the same field of two states This most general form allows us to specify a -- Lens S A, a function A → B, and a relation between two B's, and holds iff the relation holds -- between the values yielded by applying the Lens to two S's and then applying the function to -- the results; more specific variants are provided below _[_]L_f=_at_ : ∀ {ℓ} {S A B : Set} → S → (B → B → Set ℓ) → S → (A → B) → Lens S A → Set ℓ s₁ [ _~_ ]L s₂ f= f at l = f (s₁ ^∙ l) ~ f (s₂ ^∙ l) _[_]L_at_ : ∀ {ℓ} {S A} → S → (A → A → Set ℓ) → S → Lens S A → Set ℓ s₁ [ _~_ ]L s₂ at l = _[_]L_f=_at_ s₁ _~_ s₂ id l infix 4 _≡L_f=_at_ _≡L_f=_at_ : ∀ {S A B : Set} → (s₁ s₂ : S) → (A → B) → Lens S A → Set s₁ ≡L s₂ f= f at l = _[_]L_f=_at_ s₁ _≡_ s₂ f l infix 4 _≡L_at_ _≡L_at_ : ∀ {S A} → (s₁ s₂ : S) → Lens S A → Set s₁ ≡L s₂ at l = _[_]L_f=_at_ s₁ _≡_ s₂ id l
{ "alphanum_fraction": 0.5400770039, "avg_line_length": 30.7204301075, "ext": "agda", "hexsha": "1948d78d3d75ef95a7e58544b7f29f14f73ea431", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Optics/Functorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Optics/Functorial.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Optics/Functorial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1096, "size": 2857 }
-- Andreas, 2015-05-28 open import Common.Size fix : ∀ {C : Size → Set} → (∀ i → (∀ (j : Size< i) → C j) → C i) → ∀ i → C i fix t i = t i λ (j : Size< i) → fix t j -- Expected error: -- Possibly empty type of sizes (Size< i) -- when checking that the expression λ (j : Size< i) → fix t j has -- type (j : Size< i) → .C j
{ "alphanum_fraction": 0.5462962963, "avg_line_length": 29.4545454545, "ext": "agda", "hexsha": "08402b9ab9d8e94c8780237d5c18057a0bdff4c3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1523c.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1523c.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1523c.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 124, "size": 324 }
module Main where open import Category.Functor open import Category.Monad open import Data.Unit open import Data.Container.Indexed open import Data.Maybe open import Data.Product open import IO.Primitive hiding (_>>=_) open import Signature open import Sodium open import Model open import View ------------------------------------------------------------------------ postulate eEvent : Event VtyEvent bMode : Behaviour Mode eCommand : Event (∃ (Command Hårss)) eCommand = filterJust (snapshot (λ v m → forget (vtyToCmd v m)) eEvent bMode) where forget : ∀ {m} → Maybe (Command Hårss m) → Maybe (∃ (Command Hårss)) forget nothing = nothing forget (just c) = just (_ , c) eResponse : Event (∃₂ λ m (c : Command Hårss m) → Response Hårss c) eResponse = executeAsyncIO (snapshot (λ c m → fmap (forget c) (cmdToResp (proj₂ c) m)) eCommand bModel) where forget : (c : ∃ (Command Hårss)) → Response Hårss (proj₂ c) → ∃₂ λ m (c : Command Hårss m) → Response Hårss c forget (m , c) r = m , (c , r) postulate fmap : ∀ {A B} → (A → B) → IO A → IO B bModel : Behaviour Model bModel : Reactive (Behaviour Model) bModel = accum initialModel (update <$> eResponse) where open RawFunctor eventFunctor update : (∃₂ λ m (c : Command Hårss m) → (Response Hårss c)) → Model → Model update (._ , moveP d , _) m = moveModel d m update (._ , promptP p , _) m = setMode (input p) m update (._ , putCharP c , _) m = addCharToBuffer c m update (._ , doneP , (s , search)) m = searchModel s m update (._ , doneP , (s , addFeed)) m = addFeedToModel s m update (._ , fetchP , f) m = setCurrentFeed m f update (._ , searchNextP , s) m = searchNextModel s m setup : Reactive (IO ⊤) setup = bModel >>= λ m → listen (updates m) view where open RawMonad reactiveMonad
{ "alphanum_fraction": 0.6067297581, "avg_line_length": 30.1904761905, "ext": "agda", "hexsha": "ab176f2c009040f14b175e22511e89669b1e2211", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "stevana/haarss", "max_forks_repo_path": "prototype/command-response/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "stevana/haarss", "max_issues_repo_path": "prototype/command-response/Main.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "stevana/haarss", "max_stars_repo_path": "prototype/command-response/Main.agda", "max_stars_repo_stars_event_max_datetime": "2015-07-30T11:43:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T11:43:26.000Z", "num_tokens": 578, "size": 1902 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Operations.Multiplication where open import Data.Binary.Definitions open import Data.Binary.Operations.Addition mul : 𝔹⁺ → 𝔹⁺ → 𝔹⁺ mul 1ᵇ ys = ys mul (O ∷ xs) ys = O ∷ (mul xs ys) mul (I ∷ xs) ys = add O (O ∷ mul ys xs) ys _*_ : 𝔹 → 𝔹 → 𝔹 0ᵇ * ys = 0ᵇ (0< _) * 0ᵇ = 0ᵇ (0< xs) * (0< ys) = 0< mul xs ys {-# INLINE _*_ #-}
{ "alphanum_fraction": 0.5921052632, "avg_line_length": 21.1111111111, "ext": "agda", "hexsha": "f554b8e2d2d517c35e2b6276853292bac2b162c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Operations/Multiplication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Operations/Multiplication.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Operations/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 173, "size": 380 }
{-# OPTIONS --without-K #-} open import Base module Homotopy.Cover.Def {i} (A : Set i) where record covering : Set (suc i) where constructor cov[_,_] field fiber : A → Set i fiber-is-set : ∀ a → is-set (fiber a) open import Homotopy.Truncation open import Homotopy.Connected open import Homotopy.PathTruncation -- In terms of connectedness is-universal : covering → Set i is-universal cov[ fiber , _ ] = is-connected ⟨1⟩ $ Σ A fiber -- In terms of connectedness universal-covering : Set (suc i) universal-covering = Σ covering is-universal tracing : ∀ cov → let open covering cov in ∀ {a₁ a₂} → fiber a₁ → a₁ ≡₀ a₂ → fiber a₂ tracing cov[ fiber , fiber-is-set ] y = π₀-extend-nondep ⦃ fiber-is-set _ ⦄ (λ p → transport fiber p y) compose-tracing : ∀ cov → let open covering cov in ∀ {a₁ a₂ a₃} y (p₁ : a₁ ≡₀ a₂) (p₂ : a₂ ≡₀ a₃) → tracing cov (tracing cov y p₁) p₂ ≡ tracing cov y (p₁ ∘₀ p₂) compose-tracing cov y = let open covering cov in π₀-extend ⦃ λ _ → Π-is-set λ _ → ≡-is-set $ fiber-is-set _ ⦄ (λ p₁ → π₀-extend ⦃ λ _ → ≡-is-set $ fiber-is-set _ ⦄ (λ p₂ → compose-trans fiber p₂ p₁ y)) covering-eq : ∀ {co₁ co₂ : covering} → covering.fiber co₁ ≡ covering.fiber co₂ → co₁ ≡ co₂ covering-eq {cov[ _ , set₁ ]} {cov[ ._ , set₂ ]} refl = ap (λ set → cov[ _ , set ]) (prop-has-all-paths (Π-is-prop λ _ → is-set-is-prop) _ _)
{ "alphanum_fraction": 0.6336917563, "avg_line_length": 29.0625, "ext": "agda", "hexsha": "77d582ee4ee9fb0e0b43cf096c2e8f3b38ffca48", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/Cover/Def.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/Cover/Def.agda", "max_line_length": 64, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/Cover/Def.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 508, "size": 1395 }
{-# OPTIONS --prop --without-K --rewriting #-} open import Calf.CostMonoid module Calf.Types.Eq where open import Calf.Prelude open import Calf.Metalanguage open import Calf.PhaseDistinction open import Relation.Binary.PropositionalEquality postulate eq : (A : tp pos) → val A → val A → tp pos eq/intro : ∀ {A v1 v2} → v1 ≡ v2 → val (eq A v1 v2) eq/ref : ∀ {A v1 v2} → cmp (F (eq A v1 v2)) → v1 ≡ v2 eq/uni : ∀ {A v1 v2} → (p q : cmp (F (eq A v1 v2))) → (u : ext) → p ≡ q
{ "alphanum_fraction": 0.6257668712, "avg_line_length": 25.7368421053, "ext": "agda", "hexsha": "00f151124c520308389a14234e4177bd79ebecc2", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Types/Eq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Types/Eq.agda", "max_line_length": 55, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Types/Eq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 188, "size": 489 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Primality ------------------------------------------------------------------------ module Data.Nat.Primality where open import Data.Empty open import Data.Fin as Fin hiding (_+_) open import Data.Fin.Dec open import Data.Nat open import Data.Nat.Divisibility open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation open import Relation.Unary -- Definition of primality. Prime : ℕ → Set Prime 0 = ⊥ Prime 1 = ⊥ Prime (suc (suc n)) = (i : Fin n) → ¬ (2 + Fin.toℕ i ∣ 2 + n) -- Decision procedure for primality. prime? : Decidable Prime prime? 0 = no λ() prime? 1 = no λ() prime? (suc (suc n)) = all? λ _ → ¬? (_ ∣? _) private -- Example: 2 is prime. 2-is-prime : Prime 2 2-is-prime = from-yes (prime? 2)
{ "alphanum_fraction": 0.5406283857, "avg_line_length": 23.6666666667, "ext": "agda", "hexsha": "b632f9e8e76422b5349c5fa28b2b25bb79bf1b3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Nat/Primality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Nat/Primality.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Nat/Primality.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 247, "size": 923 }
module Rev {A : Set} where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open Eq.≡-Reasoning open import Data.Empty using (⊥; ⊥-elim) open import Data.List using (List; []; _∷_; _++_; map; foldr; replicate; length; _∷ʳ_) -- renaming (reverse to rev) open import Data.List.Properties using (++-assoc; ++-identityʳ) -- renaming (unfold-reverse to revʳ; -- reverse-++-commute to rev-++; -- reverse-involutive to rev-inv) open import Data.List.All using (All; []; _∷_) open import Data.List.All.Properties renaming (++⁺ to _++All_) pattern [_] x = x ∷ [] pattern [_,_] x y = x ∷ y ∷ [] pattern [_,_,_] x y z = x ∷ y ∷ z ∷ [] pattern [_,_,_,_] x y z w = x ∷ y ∷ z ∷ w ∷ [] rev : List A → List A rev [] = [] rev (x ∷ xs) = rev xs ++ [ x ] rev-++ : ∀ xs ys → rev (xs ++ ys) ≡ rev ys ++ rev xs rev-++ [] ys = begin rev ([] ++ ys) ≡⟨ sym (++-identityʳ (rev ys)) ⟩ rev ys ++ rev [] ∎ rev-++ (x ∷ xs) ys = begin rev (x ∷ xs ++ ys) ≡⟨⟩ rev (xs ++ ys) ++ [ x ] ≡⟨ cong (_++ [ x ]) (rev-++ xs ys) ⟩ (rev ys ++ rev xs) ++ [ x ] ≡⟨ ++-assoc (rev ys) (rev xs) [ x ] ⟩ rev ys ++ (rev xs ++ [ x ]) ≡⟨⟩ rev ys ++ (rev (x ∷ xs)) ∎ rev-inv : ∀ xs → rev (rev xs) ≡ xs rev-inv [] = begin rev (rev []) ≡⟨⟩ [] ∎ rev-inv (x ∷ xs) = begin rev (rev (x ∷ xs)) ≡⟨⟩ rev (rev xs ++ [ x ]) ≡⟨ rev-++ (rev xs) [ x ] ⟩ rev [ x ] ++ rev (rev xs) ≡⟨ cong (rev [ x ] ++_) (rev-inv xs) ⟩ rev [ x ] ++ xs ≡⟨⟩ x ∷ xs ∎ revAll : ∀ (P : A → Set) → ∀ {xs} → All P xs → All P (rev xs) revAll P [] = [] revAll P (Px ∷ Pxs) = revAll P Pxs ++All [ Px ]
{ "alphanum_fraction": 0.4795152914, "avg_line_length": 24.0694444444, "ext": "agda", "hexsha": "88889804fd26968edf5fceff5868ce9007391d8f", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Rev.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Rev.agda", "max_line_length": 66, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Rev.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 701, "size": 1733 }
-- Andreas, 2021-04-10, issue #5288 -- De Bruijn index problem in treeless compiler -- {-# OPTIONS -v tc.cc:20 #-} -- {-# OPTIONS -v treeless:40 #-} -- {-# OPTIONS -v treeless.convert.lambdas:40 #-} open import Agda.Builtin.Equality open import Agda.Builtin.IO open import Agda.Builtin.Nat open import Agda.Builtin.Unit f : Nat → Nat → Nat f _ zero = 0 f m = λ _ → m -- this catch-all was wrongly compiled postulate printNat : Nat → IO ⊤ {-# COMPILE GHC printNat = print #-} {-# COMPILE JS printNat = function (x) { return function(cb) { process.stdout.write(x + "\n"); cb(0); }; } #-} test : Nat test = f 123 1 prf : test ≡ 123 prf = refl main = printNat test -- Should print 123
{ "alphanum_fraction": 0.6457142857, "avg_line_length": 21.875, "ext": "agda", "hexsha": "644d697b11bc261a542d85fe8317b438a1d1298a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue5288.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue5288.agda", "max_line_length": 111, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue5288.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 224, "size": 700 }
-- Andreas, 2012-09-17 {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.with.type:15 -v syntax.reify.con:30 #-} module ReifyConstructorParametersForWith where import Common.Level module M {i} {I : Set i} where data D : Set i where c : {i : I} → D -- danger of confusion for c {i = ...} data P : D → Set i where p : {x : I} → P (c {x}) Pc : (x : I) → Set i Pc x = P (c {x}) works : ∀ (x : I) → Pc x → Pc x works x y with Set ... | _ = y module N (x : I) where bla : Pc x → Pc x bla y with Set ... | _ = y open M test : ∀ {i}{I : Set i}(x : I) → Pc x → Pc x test x y with Set ... | _ = y -- If reification does not reify constructor parameters -- for generating the with type, it confuses constructor -- parameter {i} with constructor argument {i}.
{ "alphanum_fraction": 0.5669586984, "avg_line_length": 21.0263157895, "ext": "agda", "hexsha": "0a6d315a0a4301fdf6b6f14549930c546b9d1799", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ReifyConstructorParametersForWith.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ReifyConstructorParametersForWith.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ReifyConstructorParametersForWith.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 275, "size": 799 }
module slots.defs where open import slots.imports record config : Set where field n : ℕ -- reel count m : ℕ -- fruit count Win/Bet = ℕ -- win per 1 bet Fruit = Fin m ReelNo = Fin n Reel = List Fruit Reels = Vec Reel n WinLine = Vec Win/Bet n WinTable = Vec WinLine m Line = Vec Fruit n record game (cfg : config) : Set where open config cfg field reels : Reels winTable : WinTable
{ "alphanum_fraction": 0.6355140187, "avg_line_length": 15.2857142857, "ext": "agda", "hexsha": "842463ca071065199bfe2aed7b6ec6bce3ab9169", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/slots-agda", "max_forks_repo_path": "src/slots/defs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/slots-agda", "max_issues_repo_path": "src/slots/defs.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/slots-agda", "max_stars_repo_path": "src/slots/defs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 140, "size": 428 }
{-# OPTIONS --without-K #-} open import HoTT module cohomology.WithCoefficients where →Ω-group-structure : ∀ {i j} (X : Ptd i) (Y : Ptd j) → GroupStructure (fst (X ⊙→ ⊙Ω Y)) →Ω-group-structure X Y = record { ident = ((λ _ → idp) , idp); inv = λ F → ((! ∘ fst F) , ap ! (snd F)); comp = λ F G → ((λ x → fst F x ∙ fst G x), ap2 _∙_ (snd F) (snd G)); unitl = λ G → pair= idp (ap2-idp-l _∙_ {x = idp} (snd G) ∙ ap-idf (snd G)); unitr = λ F → ⊙λ= (∙-unit-r ∘ fst F) (ap2-idp-r _∙_ (snd F) ∙ unitr-lemma (snd F)); assoc = λ F G H → ⊙λ= (λ x → ∙-assoc (fst F x) (fst G x) (fst H x)) (! (∙-unit-r _) ∙ assoc-lemma (snd F) (snd G) (snd H)); invl = λ F → ⊙λ= (!-inv-l ∘ fst F) (invl-lemma (snd F) ∙ ! (∙-unit-r _)); invr = λ F → ⊙λ= (!-inv-r ∘ fst F) (invr-lemma (snd F) ∙ ! (∙-unit-r _))} where unitr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α unitr-lemma idp = idp assoc-lemma : ∀ {i} {A : Type i} {w x y z : A} {p₁ p₂ : w == x} {q₁ q₂ : x == y} {r₁ r₂ : y == z} (α : p₁ == p₂) (β : q₁ == q₂) (γ : r₁ == r₂) → ap2 _∙_ (ap2 _∙_ α β) γ ∙ ∙-assoc p₂ q₂ r₂ == ∙-assoc p₁ q₁ r₁ ∙ ap2 _∙_ α (ap2 _∙_ β γ) assoc-lemma idp idp idp = ! (∙-unit-r _) invl-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap2 _∙_ (ap ! α) α == !-inv-l p invl-lemma idp = idp invr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap2 _∙_ α (ap ! α) == !-inv-r p invr-lemma idp = idp →Ω-Group : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Group (lmax i j) →Ω-Group X Y = Trunc-Group (→Ω-group-structure X Y) {- Pointed maps out of bool -} Bool⊙→-out : ∀ {i} {X : Ptd i} → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) → fst X Bool⊙→-out (h , _) = h (lift false) Bool⊙→-equiv : ∀ {i} (X : Ptd i) → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) ≃ fst X Bool⊙→-equiv {i} X = equiv Bool⊙→-out g f-g g-f where g : fst X → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) g x = ((λ {(lift b) → if b then snd X else x}) , idp) f-g : ∀ x → Bool⊙→-out (g x) == x f-g x = idp g-f : ∀ H → g (Bool⊙→-out H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma (lift true)) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) (lift true) ∙ hpt ∎) where lemma : ∀ b → fst (g (h (lift false))) b == h b lemma (lift true) = ! hpt lemma (lift false) = idp abstract Bool⊙→-path : ∀ {i} (X : Ptd i) → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) == fst X Bool⊙→-path X = ua (Bool⊙→-equiv X) abstract Bool⊙→Ω-is-π₁ : ∀ {i} (X : Ptd i) → →Ω-Group (⊙Lift {j = i} ⊙Bool) X == π 1 (ℕ-S≠O _) X Bool⊙→Ω-is-π₁ {i} X = group-ua (record { f = Trunc-fmap Bool⊙→-out; pres-comp = Trunc-elim {i = i} (λ _ → Π-level {j = i} (λ _ → =-preserves-level _ Trunc-level)) (λ g₁ → Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ g₂ → idp))} , is-equiv-Trunc ⟨0⟩ _ (snd (Bool⊙→-equiv (⊙Ω X))))
{ "alphanum_fraction": 0.4582253886, "avg_line_length": 31.5102040816, "ext": "agda", "hexsha": "759324856fd8fdb1b2d54d3efa86192012e615ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/WithCoefficients.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/WithCoefficients.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/WithCoefficients.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1471, "size": 3088 }
postulate P : Set -> Set test : (B : Set) -> P B -> P B test = λ p p -> {!!} postulate A : Set test₂ : Set → A test₂ A = {!!}
{ "alphanum_fraction": 0.488372093, "avg_line_length": 12.9, "ext": "agda", "hexsha": "1f82707069322162fa205ec8ce1d12ddd06ef114", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue572.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue572.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue572.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 129 }
module Haskell.RangedSetsProp.BoundariesProperties where open import Haskell.RangedSetsProp.library open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Enum open import Haskell.Prim.Eq open import Haskell.Prim.List open import Haskell.Prim.Integer open import Haskell.Prim.Double open import Haskell.RangedSets.Boundaries prop_no_boundary_smaller : {{ o : Ord a }} -> {{ dio : DiscreteOrdered a}} -> (r1 : Boundary a) -> (r1 < BoundaryBelowAll) ≡ false prop_no_boundary_smaller BoundaryBelowAll = refl prop_no_boundary_smaller BoundaryAboveAll = refl prop_no_boundary_smaller (BoundaryAbove x) = refl prop_no_boundary_smaller (BoundaryBelow x) = refl prop_no_boundary_greater : {{ o : Ord a }} -> {{ dio : DiscreteOrdered a}} -> (r1 : Boundary a) -> (r1 > BoundaryAboveAll) ≡ false prop_no_boundary_greater BoundaryBelowAll = refl prop_no_boundary_greater BoundaryAboveAll = refl prop_no_boundary_greater (BoundaryAbove x) = refl prop_no_boundary_greater (BoundaryBelow x) = refl BoundaryBelowAllSmaller : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (BoundaryBelowAll <= b) ≡ true BoundaryBelowAllSmaller BoundaryBelowAll = refl BoundaryBelowAllSmaller BoundaryAboveAll = refl BoundaryBelowAllSmaller (BoundaryBelow _) = refl BoundaryBelowAllSmaller (BoundaryAbove _) = refl postulate prop_max_sym : {{ o : Ord a }} -> {{ dio : DiscreteOrdered a}} -> (r1 : Boundary a) -> (r2 : Boundary a) -> max r1 r2 ≡ max r2 r1 prop_min_sym : {{ o : Ord a }} -> {{ dio : DiscreteOrdered a}} -> (r1 : Boundary a) -> (r2 : Boundary a) -> min r1 r2 ≡ min r2 r1 -- prop_max_sym : {{ o : Ord a }} -> {{ dio : DiscreteOrdered a}} -> (r1 : Boundary a) -> (r2 : Boundary a) -> max r1 r2 ≡ max r2 r1 -- prop_max_sym {{o}} {{dio}} r1 r2 = -- begin -- max r1 r2 -- =⟨⟩ -- if (compare x y == GT) then x else y -- =⟨⟩ -- if (compare y x == GT) then y else x -- =⟨⟩ -- max r2 r1 -- end
{ "alphanum_fraction": 0.6888160973, "avg_line_length": 40.320754717, "ext": "agda", "hexsha": "6a478321edff0c17049862a3e85cc412b73e6419", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/RangedSetsProp/BoundariesProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/RangedSetsProp/BoundariesProperties.agda", "max_line_length": 133, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/RangedSetsProp/BoundariesProperties.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 628, "size": 2137 }
{- Type class for natural transformations. -} module CategoryTheory.NatTrans where open import CategoryTheory.Categories open import CategoryTheory.Functor open import Relation.Binary using (IsEquivalence) infixr 25 _⟹_ -- Natural transformation between two functors record _⟹_ {n} {ℂ 𝔻 : Category n} (F : Functor ℂ 𝔻) (G : Functor ℂ 𝔻) : Set (lsuc n) where private module ℂ = Category ℂ private module 𝔻 = Category 𝔻 private module F = Functor F private module G = Functor G field -- || Definitions -- One component of the natural transformations. at : ∀(A : ℂ.obj) -> (F.omap A) 𝔻.~> (G.omap A) -- || Laws -- Naturality condition nat-cond : ∀{A B : ℂ.obj} {f : A ℂ.~> B} -> (G.fmap f 𝔻.∘ at A) 𝔻.≈ (at B 𝔻.∘ F.fmap f) -- Identity natural transformation ιd : ∀ {n} {ℂ 𝔻 : Category n} -> (F : Functor ℂ 𝔻) -> F ⟹ F ιd {n} {ℂ} {𝔻} F = record { at = λ A -> F.fmap ℂ.id ; nat-cond =  λ {A} {B} {f} -> begin F.fmap f ∘ F.fmap ℂ.id ≈⟨ ≈-cong-right (F.fmap-id) ⟩ F.fmap f ∘ id ≈⟨ id-comm ⟩ id ∘ F.fmap f ≈⟨ ≈-cong-left (F.fmap-id [sym]) ⟩ F.fmap ℂ.id ∘ F.fmap f ∎ } where private module F = Functor F private module ℂ = Category ℂ open Category 𝔻 -- Vertical composition of natural transformations _⊚_ : ∀ {n} {ℂ 𝔻 : Category n} -> {F G H : Functor ℂ 𝔻} -> (G ⟹ H) -> (F ⟹ G) -> (F ⟹ H) _⊚_ {n} {ℂ} {𝔻} {F} {G} {H} φ ψ = record { at = λ A -> (φ.at A) ∘ (ψ.at A) ; nat-cond =  λ {A} {B} {f} -> begin H.fmap f ∘ (φ.at A ∘ ψ.at A) ≈⟨ ∘-assoc [sym] ⟩ (H.fmap f ∘ φ.at A) ∘ ψ.at A ≈⟨ ≈-cong-left (φ.nat-cond) ≈> ∘-assoc ⟩ φ.at B ∘ (G.fmap f ∘ ψ.at A) ≈⟨ ≈-cong-right (ψ.nat-cond) ≈> (∘-assoc [sym])⟩ (φ.at B ∘ ψ.at B) ∘ F.fmap f ∎ } where open Category 𝔻 private module F = Functor F private module G = Functor G private module H = Functor H private module φ = _⟹_ φ private module ψ = _⟹_ ψ open import Relation.Binary using (IsEquivalence) -- Horizontal composition of natural tranformations _✦_ : ∀ {n} {ℂ 𝔻 𝔼 : Category n} {F F′ : Functor ℂ 𝔻} {G G′ : Functor 𝔻 𝔼} -> (G ⟹ G′) -> (F ⟹ F′) -> (G ◯ F ⟹ G′ ◯ F′) _✦_ {n} {ℂ} {𝔻} {𝔼} {F} {F′} {G} {G′} ψ φ = record { at = λ A → G′.fmap (φ.at A) ∘ ψ.at (F.omap A) ; nat-cond = λ {A} {B} {f} → begin Functor.fmap (G′ ◯ F′) f ∘ (G′.fmap (φ.at A) ∘ ψ.at (F.omap A)) ≈⟨ ∘-assoc [sym] ≈> ≈-cong-left (G′.fmap-∘ [sym]) ⟩ G′.fmap (F′.fmap f 𝔻.∘ φ.at A) ∘ ψ.at (F.omap A) ≈⟨ ≈-cong-left (G′.fmap-cong (φ.nat-cond)) ⟩ G′.fmap (φ.at B 𝔻.∘ F.fmap f) ∘ ψ.at (F.omap A) ≈⟨ ≈-cong-left (G′.fmap-∘) ≈> ∘-assoc ⟩ G′.fmap (φ.at B) ∘ (Functor.fmap (G′ ◯ F) f ∘ ψ.at (F.omap A)) ≈⟨ ≈-cong-right (ψ.nat-cond) ≈> ∘-assoc [sym] ⟩ (G′.fmap (φ.at B) ∘ ψ.at (F.omap B)) ∘ Functor.fmap (G ◯ F) f ∎ } where private module 𝔻 = Category 𝔻 open Category 𝔼 private module F = Functor F private module G = Functor G private module F′ = Functor F′ private module G′ = Functor G′ private module φ = _⟹_ φ private module ψ = _⟹_ ψ -- Natural isomorphism between two functors record _⟺_ {n} {ℂ 𝔻 : Category n} (F : Functor ℂ 𝔻) (G : Functor ℂ 𝔻) : Set (lsuc n) where private module ℂ = Category ℂ private module 𝔻 = Category 𝔻 private module F = Functor F private module G = Functor G field -- || Definitions -- NT from F to G to : F ⟹ G -- NT from G to F from : G ⟹ F private module to = _⟹_ to private module from = _⟹_ from field -- || Isomorphism laws iso1 : ∀{A : ℂ.obj} -> (from.at A) 𝔻.∘ (to.at A) 𝔻.≈ 𝔻.id iso2 : ∀{A : ℂ.obj} -> (to.at A) 𝔻.∘ (from.at A) 𝔻.≈ 𝔻.id -- Natural isomorphism is an equivalence ⟺-equiv : ∀ {n} {ℂ 𝔻 : Category n} -> IsEquivalence (_⟺_ {n} {ℂ} {𝔻}) ⟺-equiv {n} {ℂ} {𝔻} = record { refl = λ {F} -> record { to = ιd F ; from = ιd F ; iso1 = λ {A} -> refl-iso-proof {A} {F} ; iso2 = λ {A} -> refl-iso-proof {A} {F} } ; sym = λ {F} {G} F⟺G -> record { to = _⟺_.from F⟺G ; from = _⟺_.to F⟺G ; iso1 = _⟺_.iso2 F⟺G ; iso2 = _⟺_.iso1 F⟺G } ; trans = λ {F} {G} {H} F⟺G G⟺H -> record { to = (_⟺_.to G⟺H) ⊚ (_⟺_.to F⟺G) ; from = (_⟺_.from F⟺G) ⊚ (_⟺_.from G⟺H) ; iso1 = λ {A} → begin at (from F⟺G ⊚ from G⟺H) A ∘ at (to G⟺H ⊚ to F⟺G) A ≈⟨ ∘-assoc [sym] ≈> ≈-cong-left (∘-assoc) ⟩ (at (from F⟺G) A ∘ (at (from G⟺H) A ∘ at (to G⟺H) A)) ∘ at (to F⟺G) A ≈⟨ ≈-cong-left (≈-cong-right (iso1 G⟺H)) ⟩ (at (from F⟺G) A ∘ id) ∘ at (to F⟺G) A ≈⟨ ≈-cong-left (id-right) ⟩ at (from F⟺G) A ∘ at (to F⟺G) A ≈⟨ iso1 F⟺G ⟩ id ∎ ; iso2 = λ {A} → begin at (to G⟺H ⊚ to F⟺G) A ∘ at (from F⟺G ⊚ from G⟺H) A ≈⟨ (∘-assoc [sym]) ≈> ≈-cong-left (∘-assoc) ⟩ (at (to G⟺H) A ∘ (at (to F⟺G) A ∘ at (from F⟺G) A)) ∘ at (from G⟺H) A ≈⟨ ≈-cong-left (≈-cong-right (iso2 F⟺G)) ⟩ (at (to G⟺H) A ∘ id) ∘ at (from G⟺H) A ≈⟨ ≈-cong-left (id-right) ⟩ at (to G⟺H) A ∘ at (from G⟺H) A ≈⟨ iso2 G⟺H ⟩ id ∎ } } where private module ℂ = Category ℂ open Category 𝔻 open _⟹_ open _⟺_ refl-iso-proof : {A : ℂ.obj} {F : Functor ℂ 𝔻} -> _⟹_.at (ιd F) A ∘ _⟹_.at (ιd F) A ≈ id refl-iso-proof {A} {F} = begin _⟹_.at (ιd F) A ∘ _⟹_.at (ιd F) A ≈⟨ ≈-cong-left (Functor.fmap-id F) ⟩ id ∘ _⟹_.at (ιd F) A ≈⟨ ≈-cong-right (Functor.fmap-id F) ⟩ id ∘ id ≈⟨ id-left ⟩ id ∎
{ "alphanum_fraction": 0.444778006, "avg_line_length": 34.7747252747, "ext": "agda", "hexsha": "b5ff5a4f1a6b1b3b55a0c729a2285043dc959943", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/NatTrans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/NatTrans.agda", "max_line_length": 91, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/NatTrans.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 2662, "size": 6329 }
-- Andreas, AIM XXIII, Issue 1944 -- {-# OPTIONS -v tc.proj.amb:30 #-} -- Non-overloaded record Wrap (A : Set) : Set where field wrapped : A open Wrap -- Overloaded record Sg (A : Set) : Set where field head : A open Sg record Sg' (A : Set) : Set where field head : A open Sg' -- ov/ov works : ∀ {A : Set} (w : Sg (Sg' A)) → Sg A head (works w) = head (head w) -- ov/nov test : ∀ {A : Set} (w : Wrap (Sg' A)) → Sg A head (test w) = head (wrapped w) -- WAS: failed because of a missing `reduce`
{ "alphanum_fraction": 0.5851272016, "avg_line_length": 15.96875, "ext": "agda", "hexsha": "2664cce648b8f4f5aefbeb4dc986a1971110c75a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1944-nested.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1944-nested.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1944-nested.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 189, "size": 511 }
module SizedIO.coIOIO where open import Size mutual data coIO² (i : Size) (j : Size) (Cin : Set ) (Rin : Cin → Set) (Cext : Set) (Rext : Cext → Set) (A : Set) : Set where return : A → coIO² i j Cin Rin Cext Rext A dof : (i' : Size< i) → (c : Cin) → (Rin c → coIO² i' j Cin Rin Cext Rext A) → coIO² i j Cin Rin Cext Rext A do∞ : (c : Cext) → (Rext c → coIO²∞ j Cin Rin Cext Rext A) → coIO² i j Cin Rin Cext Rext A record coIO²∞ (j : Size) (Cin : Set ) (Rin : Cin → Set) (Cext : Set) (Rext : Cext → Set) (A : Set) : Set where coinductive field force : (j' : Size< j) → coIO² ∞ j' Cin Rin Cext Rext A open coIO²∞ public
{ "alphanum_fraction": 0.4525810324, "avg_line_length": 29.75, "ext": "agda", "hexsha": "f81eab9a9962f88ebbc1a5235c65f1620bbe4d6d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedIO/coIOIO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedIO/coIOIO.agda", "max_line_length": 66, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedIO/coIOIO.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 291, "size": 833 }
-- Andreas, 2012-02-24 example by Ramana Kumar {-# OPTIONS --sized-types #-} -- {-# OPTIONS --show-implicit -v tc.size.solve:20 -v tc.conv.size:15 #-} module SizeInconsistentMeta4 where open import Data.Nat using (ℕ;zero;suc) renaming (_<_ to _N<_) open import Data.Product using (_,_;_×_) open import Data.Product.Relation.Binary.Lex.Strict using (×-Lex; ×-transitive) open import Data.List using (List) open import Data.List.Relation.Binary.Lex.Strict using (Lex-<) renaming (<-transitive to Lex<-trans) open import Relation.Binary using (Rel;_Respects₂_;Transitive;IsEquivalence) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) open import Level using (0ℓ) open import Size using (Size;↑_) -- keeping the definition of Vec for the positivity check infixr 5 _∷_ data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) {- produces different error data Lex-< {A : _} (_≈_ _<_ : Rel A Level.zero) : Rel (List A) Level.zero where postulate Lex<-trans : ∀ {P _≈_ _<_} → IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ → Transitive (Lex-< _≈_ _<_) -} postulate N<-trans : Transitive _N<_ -- Vec : ∀ {a} (A : Set a) → ℕ → Set a Vec→List : ∀ {a n} {A : Set a} → Vec A n → List A data Type : Size → Set where TyApp : {z : Size} (n : ℕ) → (as : Vec (Type z) n) → Type (↑ z) <-transf : ∀ {z} → Rel (Type z) 0ℓ → Rel (ℕ × List (Type z)) 0ℓ <-transf _<_ = ×-Lex _≡_ _N<_ (Lex-< _≡_ _<_) infix 4 _<_ data _<_ : {z : Size} → Rel (Type z) 0ℓ where TyApp<TyApp : ∀ {z} {n₁} {as₁} {n₂} {as₂} → <-transf (_<_ {z}) (n₁ , Vec→List as₁) (n₂ , Vec→List as₂) → _<_ {↑ z} (TyApp n₁ as₁) (TyApp n₂ as₂) <-trans : ∀ {z} → Transitive (_<_ {z}) <-trans (TyApp<TyApp p) (TyApp<TyApp q) = TyApp<TyApp (×-transitive {_<₂_ = Lex-< _≡_ _<_} PropEq.isEquivalence (PropEq.resp₂ _N<_) N<-trans (Lex<-trans PropEq.isEquivalence (PropEq.resp₂ _<_) <-trans) p q)
{ "alphanum_fraction": 0.595581172, "avg_line_length": 36.5263157895, "ext": "agda", "hexsha": "3906499be099b7aaa45304f9fc694b1597b71bc5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda", "max_line_length": 100, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/LibSucceed/SizeInconsistentMeta4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 747, "size": 2082 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Globe where import Level open import Relation.Binary using (IsEquivalence; module IsEquivalence) open import Relation.Binary.PropositionalEquality using (isEquivalence) open import Data.Nat using (ℕ; zero; suc; _<_; _≤_; z≤n; s≤s) open import Data.Nat.Properties using (<-trans) open import Categories.Support.PropositionalEquality open import Categories.Category -- the stdlib doesn't have this private ≤-unique : ∀ {m n} {x y : m ≤ n} → x ≣ y ≤-unique {x = z≤n} {z≤n} = ≣-refl ≤-unique {x = s≤s m≤n} {s≤s m≤n'} = ≣-cong s≤s ≤-unique data GlobeHom : (m n : ℕ) → Set where I : {place : ℕ} → GlobeHom place place σ : {m n : ℕ} (n<m : n < m) → GlobeHom n m τ : {m n : ℕ} (n<m : n < m) → GlobeHom n m infixl 7 _⊚_ _⊚_ : ∀ {l m n} → GlobeHom m n → GlobeHom l m → GlobeHom l n I ⊚ y = y x ⊚ I = x σ n<m ⊚ σ m<l = σ (<-trans m<l n<m) σ n<m ⊚ τ m<l = τ (<-trans m<l n<m) τ n<m ⊚ σ m<l = σ (<-trans m<l n<m) τ n<m ⊚ τ m<l = τ (<-trans m<l n<m) Globe : Category Level.zero Level.zero Level.zero Globe = record { Obj = ℕ ; _⇒_ = GlobeHom ; _≡_ = _≣_ ; id = I ; _∘_ = _⊚_ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc {f = f} {g} {h} ; identityˡ = λ {A} {B} {f} → ≣-refl ; identityʳ = identityʳ ; equiv = isEquivalence ; ∘-resp-≡ = ∘-resp-≡ } where assoc : ∀ {A B C D} {f : GlobeHom A B} {g : GlobeHom B C} {h : GlobeHom C D} → (h ⊚ g) ⊚ f ≣ h ⊚ (g ⊚ f) assoc {f = I} {I} {I} = ≣-refl assoc {f = I} {I} {σ _} = ≣-refl assoc {f = I} {I} {τ _} = ≣-refl assoc {f = I} {σ _} {I} = ≣-refl assoc {f = I} {σ _} {σ _} = ≣-refl assoc {f = I} {σ _} {τ _} = ≣-refl assoc {f = I} {τ _} {I} = ≣-refl assoc {f = I} {τ _} {σ _} = ≣-refl assoc {f = I} {τ _} {τ _} = ≣-refl assoc {f = σ _} {I} {I} = ≣-refl assoc {f = σ _} {I} {σ _} = ≣-refl assoc {f = σ _} {I} {τ _} = ≣-refl assoc {f = σ _} {σ _} {I} = ≣-refl assoc {f = σ _} {σ _} {σ _} = ≣-cong σ ≤-unique assoc {f = σ _} {σ _} {τ _} = ≣-cong σ ≤-unique assoc {f = σ _} {τ _} {I} = ≣-refl assoc {f = σ _} {τ _} {σ _} = ≣-cong σ ≤-unique assoc {f = σ _} {τ _} {τ _} = ≣-cong σ ≤-unique assoc {f = τ n<m} {I} {I} = ≣-refl assoc {f = τ n<m} {I} {σ _} = ≣-refl assoc {f = τ n<m} {I} {τ _} = ≣-refl assoc {f = τ n<m} {σ _} {I} = ≣-refl assoc {f = τ n<m} {σ _} {σ _} = ≣-cong τ ≤-unique assoc {f = τ n<m} {σ _} {τ _} = ≣-cong τ ≤-unique assoc {f = τ n<m} {τ _} {I} = ≣-refl assoc {f = τ n<m} {τ _} {σ _} = ≣-cong τ ≤-unique assoc {f = τ n<m} {τ _} {τ _} = ≣-cong τ ≤-unique -- this is necessary because Agda lies... identityʳ : ∀ {A B} {f : GlobeHom A B} → f ⊚ I ≣ f identityʳ {f = I} = ≣-refl identityʳ {f = σ _} = ≣-refl identityʳ {f = τ _} = ≣-refl ∘-resp-≡ : ∀ {A B C} {f h : GlobeHom B C} {g i : GlobeHom A B} → f ≣ h → g ≣ i → f ⊚ g ≣ h ⊚ i ∘-resp-≡ ≣-refl ≣-refl = ≣-refl infixl 30 _σ′ infixl 30 _τ′ data GlobeHom′ : (m n : ℕ) → Set where I : ∀ {place : ℕ} → GlobeHom′ place place _σ′ : ∀ {n m : ℕ} → GlobeHom′ (suc n) m → GlobeHom′ n m _τ′ : ∀ {n m : ℕ} → GlobeHom′ (suc n) m → GlobeHom′ n m data GlobeEq′ : {m n : ℕ} → GlobeHom′ m n → GlobeHom′ m n → Set where both-I : ∀ {m} → GlobeEq′ {m} {m} I I both-σ : ∀ {m n x y} → GlobeEq′ {m} {n} (x σ′) (y σ′) both-τ : ∀ {m n x y} → GlobeEq′ {m} {n} (x τ′) (y τ′) GlobeEquiv : ∀ {m n} → IsEquivalence (GlobeEq′ {m} {n}) GlobeEquiv = record { refl = refl; sym = sym; trans = trans } where refl : ∀ {m n} {x : GlobeHom′ m n} → GlobeEq′ x x refl {x = I} = both-I refl {x = y σ′} = both-σ refl {x = y τ′} = both-τ sym : ∀ {m n} {x y : GlobeHom′ m n} → GlobeEq′ x y → GlobeEq′ y x sym both-I = both-I sym both-σ = both-σ sym both-τ = both-τ trans : ∀ {m n} {x y z : GlobeHom′ m n} → GlobeEq′ x y → GlobeEq′ y z → GlobeEq′ x z trans both-I y∼z = y∼z trans both-σ both-σ = both-σ trans both-τ both-τ = both-τ infixl 7 _⊚′_ _⊚′_ : ∀ {l m n} → GlobeHom′ m n → GlobeHom′ l m → GlobeHom′ l n x ⊚′ I = x x ⊚′ y σ′ = (x ⊚′ y) σ′ x ⊚′ y τ′ = (x ⊚′ y) τ′ Globe′ : Category Level.zero Level.zero Level.zero Globe′ = record { Obj = ℕ ; _⇒_ = GlobeHom′ ; _≡_ = GlobeEq′ ; id = I ; _∘_ = _⊚′_ ; assoc = λ {_ _ _ _ f g h} → assoc {f = f} {g} {h} ; identityˡ = identityˡ ; identityʳ = identityʳ ; equiv = GlobeEquiv ; ∘-resp-≡ = ∘-resp-≡ } where assoc : ∀ {A B C D} {f : GlobeHom′ A B} {g : GlobeHom′ B C} {h : GlobeHom′ C D} → GlobeEq′ ((h ⊚′ g) ⊚′ f) (h ⊚′ (g ⊚′ f)) assoc {f = I} = refl where open IsEquivalence GlobeEquiv assoc {f = y σ′} = both-σ assoc {f = y τ′} = both-τ identityˡ : ∀ {A B} {f : GlobeHom′ A B} → GlobeEq′ (I ⊚′ f) f identityˡ {f = I} = both-I identityˡ {f = y σ′} = both-σ identityˡ {f = y τ′} = both-τ identityʳ : ∀ {A B} {f : GlobeHom′ A B} → GlobeEq′ (f ⊚′ I) f identityʳ = IsEquivalence.refl GlobeEquiv ∘-resp-≡ : ∀ {A B C} {f h : GlobeHom′ B C} {g i : GlobeHom′ A B} → GlobeEq′ f h → GlobeEq′ g i → GlobeEq′ (f ⊚′ g) (h ⊚′ i) ∘-resp-≡ f∼h both-I = f∼h ∘-resp-≡ f∼h both-σ = both-σ ∘-resp-≡ f∼h both-τ = both-τ -- Fix this {- data ReflexiveGlobeHom : (m n : ℕ) → Set where plain : ∀ {m n} → GlobeHom m n → ReflexiveGlobeHom m n ι : ∀ {m n} → ReflexiveGlobeHom m n → ReflexiveGlobeHom m (suc n) stripped : ∀ {m n} → (cons : n < m → GlobeHom n m) → n < suc m → GlobeHom n m stripped cons n<Sm with <-unsucʳ n<Sm stripped cons n<Sm | inl ≣-refl = I stripped cons n<Sm | inr n<m = cons n<m _⊚ʳ_ : ∀ {l m n} → ReflexiveGlobeHom m n → ReflexiveGlobeHom l m → ReflexiveGlobeHom l n ι x ⊚ʳ y = ι (x ⊚ʳ y) plain x ⊚ʳ plain y = plain (x ⊚ y) plain I ⊚ʳ ι y = ι y plain (σ _) ⊚ʳ ι y = (plain (stripped σ n<m)) ⊚ʳ y plain (τ n<m) ⊚ʳ ι y = (plain (stripped τ n<m)) ⊚ʳ y -}
{ "alphanum_fraction": 0.5247991617, "avg_line_length": 33.485380117, "ext": "agda", "hexsha": "c86a76cf9e51a402c154cd8e420d0637271d434d", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Globe.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Globe.agda", "max_line_length": 125, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Globe.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2776, "size": 5726 }
primitive abstract postulate private mutual macro variable instance record F : Set where field
{ "alphanum_fraction": 0.7619047619, "avg_line_length": 5.5263157895, "ext": "agda", "hexsha": "b87c3f67400f17ddfdf9fc82e78f887c70f9570a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/empty.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/empty.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/empty.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 105 }
open import Common.Level -- Note that this is level-polymorphic record ⊤ {a} : Set a where constructor tt data ⊥ {a} : Set a where data ℕ : Set where zero : ℕ suc : ℕ → ℕ lzero' : ℕ → Level lzero' zero = lzero lzero' (suc n) = lzero ⊔ (lzero' n) IsZero : (x : ℕ) → Set (lsuc (lzero' x)) IsZero zero = ⊤ IsZero (suc _) = ⊥ test : IsZero (suc _) test = tt
{ "alphanum_fraction": 0.6010781671, "avg_line_length": 15.4583333333, "ext": "agda", "hexsha": "6877cdb4b24faae77872232177ae5085183a1fa2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1213.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1213.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1213.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 146, "size": 371 }
open import Level using (_⊔_) open import Data.Maybe using (Maybe; nothing; just) open import Data.List.Any as A hiding (map) open import Relation.Binary.PropositionalEquality.Core as PropEq open import Relation.Binary open import Prelude hiding (map) open Eq {{...}} module RW.Data.PMap (A : Set){{eqA : Eq A}} where private _≟_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂) a₁ ≟ a₂ = Eq.cmp eqA a₁ a₂ -- Naive Partial Map representation to_ : ∀{b} → Set b → Set b to B = List (A × B) to_default : ∀{b} → Set b → Set b to B default = B × List (A × B) onDef : ∀{b c}{B : Set b}{C : Set c} → (m : to B → C) → to B default → C onDef f (_ , m) = f m onDef' : ∀{b}{B : Set b} → (m : to B → to B) → to B default → to B default onDef' f (def , m) = def , f m empty : ∀{b}{B : Set b} → to B empty = [] -- Membership _∈_ : ∀{b}{B : Set b} → A → (to B) → Set _ a ∈ m = A.Any ((_≡_ a) ∘ p1) m _∉_ : ∀{b}{B : Set b} → A → (to B) → Set _ a ∉ m = (a ∈ m) → ⊥ -- Decidable membership dec∈ : ∀{b}{B : Set b} → (a : A) → (m : to B) → Dec (a ∈ m) dec∈ a [] = no (λ ()) dec∈ a (x ∷ m) with a ≟ (p1 x) ...| yes a≡x = yes (here a≡x) ...| no a≢x with dec∈ a m ...| yes a∈m = yes (there a∈m) ...| no a∉m = no (a∉m ∘ tail a≢x) -- Look up lkup : ∀{b}{B : Set b} → A → (to B) → Maybe B lkup k [] = nothing lkup k ((h , r) ∷ ts) with k ≟ h ...| yes _ = just r ...| no _ = lkup k ts -- Look up in a map with a default value lkupDef : ∀{b}{B : Set b} → A → to B default → B lkupDef a (b , m) = maybe id b (lkup a m) -- Total version lkup' : ∀{b}{B : Set b} → (a : A) → (m : to B) → a ∈ m → B lkup' a (m ∷ _) (here px) = p2 m lkup' a (_ ∷ ms) (there prf) = lkup' a ms prf -- Insertion / Removal alter : ∀{b}{B : Set b} → (Maybe B → Maybe B) → A → (to B) → (to B) alter f a [] with f nothing ...| just b = (a , b) ∷ [] ...| nothing = [] alter f a (x ∷ m) with a ≟ p1 x ...| no _ = x ∷ alter f a m ...| yes _ with f $ just (p2 x) ...| nothing = m ...| just b = (a , b) ∷ m alterPrf : ∀{b}{B : Set b} → B → (a : A) → (m : to B) → Σ (to B) (_∈_ a) alterPrf b a m with dec∈ a m ...| yes a∈m = m , a∈m ...| no a∉m = (a , b) ∷ m , here refl insert : ∀{b}{B : Set b} → A → B → (to B) → (to B) insert a b m = alter (const $ just b) a m delete : ∀{b}{B : Set b} → A → (to B) → (to B) delete a m = alter (const nothing) a m -- Map map : ∀{b}{B B′ : Set b} → (B → B′) → (to B) → (to B′) map f [] = [] map f ((a , b) ∷ m) = (a , f b) ∷ map f m
{ "alphanum_fraction": 0.4609848485, "avg_line_length": 25.6310679612, "ext": "agda", "hexsha": "d475d868eed8c5862e0cdfb538e412dd0315345c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Data/PMap.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Data/PMap.agda", "max_line_length": 64, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Data/PMap.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 1146, "size": 2640 }
{-# OPTIONS --universe-polymorphism #-} open import Level module Categories.Categories.Products (o ℓ e : Level) where open import Categories.Category open import Categories.Categories import Categories.Object.Products open Categories.Object.Products (Categories o ℓ e) open import Categories.Product import Categories.Product.Projections import Categories.Product.Properties open import Categories.Terminal private import Categories.Object.Product open Categories.Object.Product (Categories o ℓ e) renaming (Product to ProductObject) product : {A B : Category o ℓ e} → ProductObject A B product {A}{B} = record { A×B = Product A B ; π₁ = ∏₁ ; π₂ = ∏₂ ; ⟨_,_⟩ = _※_ ; commute₁ = λ {C}{f}{g} → ※-commute₁ {A = C}{f}{g} ; commute₂ = λ {C}{f}{g} → ※-commute₂ {A = C}{f}{g} ; universal = λ {C}{f}{g}{i} → ※-universal {A = C}{f}{g}{i} } where open Categories.Product.Projections A B open Categories.Product.Properties A B products : Products products = record { terminal = One {o}{ℓ}{e} ; binary = record { product = λ {A}{B} → product {A}{B} } }
{ "alphanum_fraction": 0.5915267786, "avg_line_length": 26.6170212766, "ext": "agda", "hexsha": "84206342b5c6be808149c0ce0851a01170ddcb68", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Categories/Products.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Categories/Products.agda", "max_line_length": 67, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Categories/Products.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 339, "size": 1251 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Functor.Bifunctor using (Bifunctor) module Categories.Diagram.Cowedge {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private module C = Category C module D = Category D open D open HomReasoning open Equiv variable A : Obj open import Level open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation.Dinatural open Functor F record Cowedge : Set (levelOfTerm F) where field E : Obj dinatural : DinaturalTransformation F (const E) module dinatural = DinaturalTransformation dinatural Cowedge-∘ : (W : Cowedge) → Cowedge.E W ⇒ A → Cowedge Cowedge-∘ {A = A} W f = record { E = A ; dinatural = extranaturalˡ (λ X → f ∘ dinatural.α X) (assoc ○ ∘-resp-≈ʳ (extranatural-commˡ dinatural) ○ sym-assoc) } where open Cowedge W record Cowedge-Morphism (W₁ W₂ : Cowedge) : Set (levelOfTerm F) where private module W₁ = Cowedge W₁ module W₂ = Cowedge W₂ open DinaturalTransformation field u : W₁.E ⇒ W₂.E commute : ∀ {C} → u ∘ W₁.dinatural.α C ≈ W₂.dinatural.α C Cowedge-id : ∀ {W} → Cowedge-Morphism W W Cowedge-id {W} = record { u = D.id ; commute = D.identityˡ } Cowedge-Morphism-∘ : {A B C : Cowedge} → Cowedge-Morphism B C → Cowedge-Morphism A B → Cowedge-Morphism A C Cowedge-Morphism-∘ M N = record { u = u M ∘ u N ; commute = assoc ○ (∘-resp-≈ʳ (commute N) ○ commute M) } where open Cowedge-Morphism open HomReasoning
{ "alphanum_fraction": 0.6670644391, "avg_line_length": 28.8965517241, "ext": "agda", "hexsha": "786a7840ff8e03175d0561148c8a1aa725904ccd", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Cowedge.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Cowedge.agda", "max_line_length": 107, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Cowedge.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 554, "size": 1676 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.KVMap as Map hiding (empty) open import Util.Prelude module LibraBFT.Impl.Types.OnChainConfig.ValidatorSet where new : List ValidatorInfo → ValidatorSet new = ValidatorSet∙new ConsensusScheme∙new empty : ValidatorSet empty = new [] obmFromVV : ValidatorVerifier → ValidatorSet obmFromVV vv0 = record -- ValidatorSet { _vsScheme = ConsensusScheme∙new -- TODO ; _vsPayload = fmap go (Map.toList (vv0 ^∙ vvAddressToValidatorInfo)) } where go : (Author × ValidatorConsensusInfo) → ValidatorInfo go (address , ValidatorConsensusInfo∙new pk vp) = record -- ValidatorInfo { _viAccountAddress = address ; _viConsensusVotingPower = vp ; _viConfig = record -- ValidatorConfig { _vcConsensusPublicKey = pk ; _vcValidatorNetworkAddress = address ^∙ aAuthorName } } obmGetValidatorInfo : AuthorName → ValidatorSet → Either ErrLog ValidatorInfo obmGetValidatorInfo name vs = case List-filter (λ vi → vi ^∙ viAccountAddress ∙ aAuthorName ≟ name) (vs ^∙ vsPayload) of λ where (vi ∷ []) → pure vi _ → Left fakeErr -- ["ValidatorSet", "obmGetValidatorInfo", "TODO better err msg"]
{ "alphanum_fraction": 0.7123015873, "avg_line_length": 37.8, "ext": "agda", "hexsha": "39b16c47487944411df07d9a9eb5cd8975c8cd84", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Types/OnChainConfig/ValidatorSet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 409, "size": 1512 }
{-# OPTIONS --without-K #-} module function.isomorphism.univalence where open import equality.core open import function.core open import function.isomorphism.core open import hott.equivalence.alternative open import hott.univalence ≅⇒≡ : ∀ {i}{X Y : Set i} → X ≅ Y → X ≡ Y ≅⇒≡ = ≈⇒≡ ∘ ≅⇒≈
{ "alphanum_fraction": 0.6858108108, "avg_line_length": 22.7692307692, "ext": "agda", "hexsha": "48b4e432c5d7ab64e6c1e1567e642f4fb56347ef", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/function/isomorphism/univalence.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/function/isomorphism/univalence.agda", "max_line_length": 44, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/isomorphism/univalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 103, "size": 296 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Category where open import Cubical.Foundations.Prelude open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.Categories.Category renaming (isUnivalent to isUnivalentCat) private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓ≅A ℓB ℓ≅B ℓ≅ᴰ : Level -- every univalent 1-precategory gives a URGStr Cat→𝒮 : (𝒞 : Precategory ℓ ℓ') → (uni : isUnivalentCat 𝒞) → URGStr (𝒞 .ob) ℓ' Cat→𝒮 𝒞 uni = urgstr (CatIso {𝒞 = 𝒞}) idCatIso λ x y → isUnivalentCat.univ uni x y
{ "alphanum_fraction": 0.73, "avg_line_length": 30, "ext": "agda", "hexsha": "ec928962d6dab9fb806643079b0858ff8da7d4cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Category.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 227, "size": 600 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Sequences open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Semirings.Definition open import Functions.Definition open import Fields.Orders.Total.Definition module Fields.Orders.Limits.Definition {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {F : Field R} {pRing : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F pRing) where open Ring R open TotallyOrderedField oF open TotallyOrderedRing oRing open PartiallyOrderedRing pRing open import Rings.Orders.Total.Lemmas oRing open import Rings.Orders.Total.AbsoluteValue oRing open import Rings.Orders.Partial.Lemmas pRing open SetoidTotalOrder total open SetoidPartialOrder pOrder open Group additiveGroup open import Groups.Lemmas additiveGroup open Setoid S open Equivalence eq open Field F open import Fields.CauchyCompletion.Definition (TotallyOrderedField.oRing oF) F _~>_ : Sequence A → A → Set (a ⊔ c) x ~> c = (ε : A) → (0R < ε) → Sg ℕ (λ N → (n : ℕ) → (N <N n) → abs ((index x n) + inverse c) < ε) 1/2 : A 1/2 with allInvertible (1R + 1R) (orderedImpliesCharNot2 nontrivial) ... | a , _ = a abstract 1/2is1/2 : (1/2 * (1R + 1R)) ∼ 1R 1/2is1/2 with allInvertible (1R + 1R) (orderedImpliesCharNot2 nontrivial) ... | a , pr = pr 0<1/2 : 0R < 1/2 0<1/2 = halvePositive 1/2 (<WellDefined reflexive (symmetric (transitive (transitive (+WellDefined (symmetric (transitive *Commutative identIsIdent)) (symmetric (transitive *Commutative identIsIdent))) (symmetric *DistributesOver+)) 1/2is1/2)) (0<1 nontrivial)) halfHalves : {a : A} → (1/2 * (a + a)) ∼ a halfHalves {a} = transitive (*WellDefined reflexive (+WellDefined (symmetric identIsIdent) (symmetric identIsIdent))) (transitive (*WellDefined reflexive (symmetric *DistributesOver+')) (transitive *Associative (transitive (*WellDefined 1/2is1/2 reflexive) identIsIdent))) abstract bothNearImpliesNear : {t r s : A} (e : A) .(0<e : 0R < e) → (abs (r + inverse t) < e) → (abs (s + inverse t) < e) → abs (r + inverse s) < (e + e) bothNearImpliesNear {t} {r} {s} e 0<e rNearT sNearT = u where pr : ((abs (r + inverse t)) + (abs (s + inverse t))) < (e + e) pr = ringAddInequalities rNearT sNearT t' : (abs (r + inverse t) + abs (t + inverse s)) < (e + e) t' = <WellDefined (+WellDefined reflexive (transitive (absNegation _) (absWellDefined _ _ (transitive invContravariant (+WellDefined (invTwice _) reflexive))))) reflexive pr u : abs (r + inverse s) < (e + e) u with triangleInequality (r + inverse t) (t + inverse s) ... | inl t'' = <Transitive (<WellDefined (absWellDefined _ _ (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive))) reflexive t'') t' ... | inr eq = <WellDefined (transitive (symmetric eq) (absWellDefined _ _ (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive)))) reflexive t' private limitsUniqueLemma : (x : Sequence A) {r s : A} (xr : x ~> r) (xs : x ~> s) (r<s : r < s) → False limitsUniqueLemma x {r} {s} xr xs r<s = irreflexive (<WellDefined reflexive (symmetric prE) u') where e : A e = 1/2 * (s + inverse r) prE : (s + inverse r) ∼ (e + e) prE = transitive (symmetric halfHalves) *DistributesOver+ 0<e : 0R < e 0<e = orderRespectsMultiplication 0<1/2 (moveInequality r<s) abstract N1 : ℕ N1 with xs e 0<e ... | x , _ = x N1prop : (n : ℕ) → (N1 <N n) → abs (index x n + inverse s) < e N1prop with xs e 0<e ... | x , pr = pr N2 : ℕ N2 with xr e 0<e ... | x , _ = x N2prop : (n : ℕ) → (N2 <N n) → abs (index x n + inverse r) < e N2prop with xr e 0<e ... | x , pr = pr good : ℕ good = succ (N1 +N N2) N1Good : abs (index x good + inverse s) < e N1Good = N1prop good (le N2 (applyEquality succ (Semiring.commutative ℕSemiring N2 N1))) N2Good : abs (index x good + inverse r) < e N2Good = N2prop good (le N1 refl) t : ((abs (index x good + inverse s)) + (abs (index x good + inverse r))) < (e + e) t = ringAddInequalities N1Good N2Good t' : ((abs (index x good + inverse s)) + (abs (r + inverse (index x good)))) < (e + e) t' = <WellDefined (+WellDefined reflexive (transitive (absNegation _) (absWellDefined _ _ (transitive invContravariant (+WellDefined (invTwice _) reflexive))))) reflexive t u : abs (inverse s + r) < (e + e) u with triangleInequality (index x good + inverse s) (r + inverse (index x good)) ... | inl t'' = <Transitive (<WellDefined (absWellDefined _ _ (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined (symmetric +Associative) reflexive) (transitive (+WellDefined (transitive (+WellDefined reflexive invLeft) identRight) reflexive) groupIsAbelian))))) reflexive t'') t' ... | inr eq = <WellDefined (transitive (symmetric eq) (absWellDefined _ _ (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined (symmetric +Associative) reflexive) (transitive (+WellDefined (transitive (+WellDefined reflexive invLeft) identRight) reflexive) groupIsAbelian)))))) reflexive t' u' : (s + inverse r) < (e + e) u' = <WellDefined (transitive (absNegation _) (transitive (absWellDefined _ _ (transitive invContravariant (transitive groupIsAbelian (+WellDefined (invTwice _) reflexive)))) (symmetric (greaterZeroImpliesEqualAbs (moveInequality r<s))))) reflexive u limitsAreUnique : (x : Sequence A) → {r s : A} → (x ~> r) → (x ~> s) → r ∼ s limitsAreUnique x {r} {s} xr xs with totality r s limitsAreUnique x {r} {s} xr xs | inl (inl r<s) = exFalso (limitsUniqueLemma x xr xs r<s) limitsAreUnique x {r} {s} xr xs | inl (inr s<r) = exFalso (limitsUniqueLemma x xs xr s<r) limitsAreUnique x {r} {s} xr xs | inr r=s = r=s constantSequenceConverges : (a : A) → constSequence a ~> a constantSequenceConverges a e 0<e = 0 , λ n _ → <WellDefined (symmetric (transitive (absWellDefined _ _ (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst a n)) reflexive) invRight)) absZeroIsZero)) reflexive 0<e
{ "alphanum_fraction": 0.6749818709, "avg_line_length": 57.4583333333, "ext": "agda", "hexsha": "c6de8b30e68591f6fe8e407204a8a207e779debf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/Limits/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/Limits/Definition.agda", "max_line_length": 322, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/Limits/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2260, "size": 6895 }
module FStream.Clocked where open import Library open import FStream.Core mutual record ClSF {i : Size} {ℓ₁ ℓ₂} {Cl : Set ℓ₂} (C : Container ℓ₁) (cl : FStream C Cl) (A B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where inductive field inFCl : A → ⟦ C ⟧ (ClSF' {i} C cl A B) record ClSF' {i : Size} {ℓ₁ ℓ₂} {Cl : Set ℓ₂} (C : Container ℓ₁) (cl : FStream C Cl) (A B : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where coinductive field head : B tail : {j : Size< i} → ClSF {j} C cl A B open FStream public open FStream' public _>>>_ : ∀ {i : Size} {ℓ₁ ℓ₂} {a b c Cl : Set ℓ₂} {C : Container ℓ₁} {cl : FStream C Cl} → ClSF {i} C cl a b → ClSF {i} C cl b c → ClSF {i} C cl a c _>>>_ = {!!} -- runClock : ∀ {i : Size} {ℓ₁ ℓ₂} {Cl B : Set ℓ₂} {C : Container ℓ₁} → (cl : FStream C Cl) → ClSF {i} C cl A B → FStream {i} C A -> FStream {i} C B runClock : ∀ {i : Size} {ℓ₁ ℓ₂} {A B Cl : Set ℓ₂} {C : Container ℓ₁} → (cl : FStream C Cl) → ClSF {i} C cl A B → FStream {i} C A -> FStream {i} C B runClock = {!!}
{ "alphanum_fraction": 0.5525793651, "avg_line_length": 40.32, "ext": "agda", "hexsha": "5f21abbea22dd6db9bdcd9d81f6b520f120cf4f8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "FStream/Clocked.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "FStream/Clocked.agda", "max_line_length": 149, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "FStream/Clocked.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 456, "size": 1008 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Set a b c : A f g : A → A rew₁ : f a ≡ b rew₂ : ∀ {x} → f (g x) ≡ c rew₃ : g a ≡ a {-# REWRITE rew₁ #-} {-# REWRITE rew₂ #-} {-# REWRITE rew₃ #-} works : (x : A) → f (g x) ≡ c works x = refl works' : f (g a) ≡ c works' = works a fails : f (g a) ≡ c fails = refl
{ "alphanum_fraction": 0.5550239234, "avg_line_length": 15.4814814815, "ext": "agda", "hexsha": "8629cb6abe20dff1036089f8f07915e8aa849a44", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ConfluenceNestedOverlap.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ConfluenceNestedOverlap.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ConfluenceNestedOverlap.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 418 }
module Mendler (F : Set → Set) where open import Data.Product using (_×_) Alg : Set → Set₁ Alg X = ∀ (R : Set) → (R → X) → F R → X test : Set → Set test A = A × A test′ : ∀ (R : Set) → Set test′ A = A × A
{ "alphanum_fraction": 0.5336538462, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "47fceaed16ebdf1eb5264d5f9dcaf21bbb2ef0dd", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Mendler.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Mendler.agda", "max_line_length": 39, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Mendler.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 82, "size": 208 }
--{-# OPTIONS -vtc:50 #-} {-# OPTIONS --double-check #-} open import Agda.Primitive postulate Id : (l : Level) (A : Set l) → A → A → Set l postulate w/e : (l : Level) (A : Set l) → A data Box l (A : Set l) : Set l where box : A → Box l A unbox : (l : Level) (A : Set l) → Box l A → A unbox l A (box x) = x record R l (A : Set l) : Set l where --no-eta-equality -- ^ works if eta is disabled field boxed : Box l A refl : Id l A (w/e l A) (w/e l A) postulate El : (l : Level) (A : Set l) → A → A trans : (l : Level) (A : Set l) (x : A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A) → Id l A (w/e l A) (w/e l A) cong : (l : Level) (A : Set l) (f : A → A) (x y : A) → Id l A x y → Id l A (f x) (f y) module _ (l : Level) (BADNESS : Set) (A : Set l) (r : R l A) where open R r x = w/e l A p = trans l A (unbox l A boxed) refl refl lemma = El l (Id l (Id l A x x) p p) (cong l _ (λ p → trans l A (unbox l A boxed) p _) refl refl (w/e l (Id l (Id l A x x) refl refl))) -- ^ works if definition of lemma is removed test = λ _ → unbox _ _ boxed
{ "alphanum_fraction": 0.5080071174, "avg_line_length": 26.7619047619, "ext": "agda", "hexsha": "39474b0e0b7eb93a72acf328c6303c8420bcee65", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4283.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4283.agda", "max_line_length": 128, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4283.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 456, "size": 1124 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base -- Rel open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` open import Function.Base using (_$_) open import Cubical.Data.Nat hiding (min) open import Cubical.Data.Nat.Order -- open import Cubical.Data.Nat.Properties -- using (+-suc; injSuc; snotz; +-comm; +-assoc; +-zero; inj-m+) open import MoreNatProperties module Enumeration {ℓ} {A : Type ℓ} (f : A → ℕ) (f⁻¹ : ℕ → A) (isRetraction : ∀ x → f⁻¹ (f x) ≡ x) where _≤'_ : Rel A A ℓ-zero a ≤' b = (f a) ≤ (f b) min' : A → A → A min' a b = f⁻¹ (min (f a) (f b)) max' : A → A → A max' a b = f⁻¹ (max (f a) (f b)) max'-sym : ∀ a b → max' a b ≡ max' b a max'-sym a b with f a ≟ f b | f b ≟ f a ... | lt x | lt y = ⊥-elim {A = λ _ → f⁻¹ (f b) ≡ f⁻¹ (f a)} $ <-asymʷ _ _ x y ... | lt x | eq y = refl ... | lt x | gt y = refl ... | eq x | lt y = refl ... | eq x | eq y = cong f⁻¹ x ... | eq x | gt y = cong f⁻¹ x ... | gt x | lt y = refl ... | gt x | eq y = sym (cong f⁻¹ y) ... | gt x | gt y = ⊥-elim {A = λ _ → f⁻¹ (f a) ≡ f⁻¹ (f b)} $ <-asymʷ _ _ x y max'-implies-≤'₁ : ∀ a b → a ≤' max' a b max'-implies-≤'₁ a b with (f a) ≟ (f b) ... | lt (x , p) = suc x , sym (+-suc _ _) ∙ p ∙ cong f (sym (isRetraction b)) ... | eq x = 0 , sym (cong f (isRetraction a) ∙ refl {x = f a}) ... | gt x = 0 , sym (cong f (isRetraction a) ∙ refl {x = f a}) max-implies-≤' : ∀ a b → (a ≤' max' a b) × (b ≤' max' a b) max-implies-≤' a b = max'-implies-≤'₁ a b , transport (λ i → b ≤' max'-sym b a i) (max'-implies-≤'₁ b a) min'-sym : ∀ a b → min' a b ≡ min' b a min'-sym a b with f a ≟ f b | f b ≟ f a ... | lt x | lt y = ⊥-elim {A = λ _ → f⁻¹ (f a) ≡ f⁻¹ (f b)} $ <-asymʷ _ _ x y ... | lt x | eq y = sym (cong f⁻¹ y) ... | lt x | gt y = refl ... | eq x | lt y = cong f⁻¹ x ... | eq x | eq y = cong f⁻¹ x ... | eq x | gt y = refl ... | gt x | lt y = refl ... | gt x | eq y = refl ... | gt x | gt y = ⊥-elim {A = λ _ → f⁻¹ (f b) ≡ f⁻¹ (f a)} $ <-asymʷ _ _ x y min'-implies-≤'₁ : ∀ a b → min' a b ≤' a min'-implies-≤'₁ a b with (f a) ≟ (f b) ... | lt x = 0 , cong f (isRetraction a) ∙ refl {x = f a} ... | eq x = 0 , cong f (isRetraction a) ∙ refl {x = f a} ... | gt (x , p) = suc x , (λ i → suc (x + cong f (sym (isRetraction b)) (~ i))) ∙ sym (+-suc _ _) ∙ p min-implies-≤' : ∀ a b → (min' a b ≤' a) × (min' a b ≤' b) min-implies-≤' a b = min'-implies-≤'₁ a b , transport (λ i → min'-sym b a i ≤' b) (min'-implies-≤'₁ b a)
{ "alphanum_fraction": 0.5145380935, "avg_line_length": 36.2266666667, "ext": "agda", "hexsha": "5c8bc8e4dd027352670d4bd30c8669491af3392b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Enumeration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Enumeration.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Enumeration.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 1220, "size": 2717 }
module InterpretationEqualityExceptAtVariableName where open import OscarPrelude open import VariableName open import FunctionName open import PredicateName open import Elements open import Interpretation record _≞_/_ (𝓘 : Interpretation) (I : Interpretation) (𝑥 : VariableName) : Set where field μEquality : {𝑥′ : VariableName} → 𝑥′ ≢ 𝑥 → μ⟦ 𝓘 ⟧ 𝑥 ≡ μ⟦ I ⟧ 𝑥′ 𝑓Equality : (𝑓 : FunctionName) (μs : Elements) → 𝑓⟦ 𝓘 ⟧ 𝑓 μs ≡ 𝑓⟦ I ⟧ 𝑓 μs 𝑃Equality : (𝑃 : PredicateName) → (μs : Elements) → 𝑃⟦ 𝓘 ⟧ 𝑃 μs ≡ 𝑃⟦ I ⟧ 𝑃 μs
{ "alphanum_fraction": 0.6842105263, "avg_line_length": 31.2941176471, "ext": "agda", "hexsha": "ae12cf759acb70bb9156d78311dff1adca1e5c4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/InterpretationEqualityExceptAtVariableName.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/InterpretationEqualityExceptAtVariableName.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/InterpretationEqualityExceptAtVariableName.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 226, "size": 532 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.InftyMagma where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.FunExtEquiv open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) private variable ℓ ℓ' ℓ'' : Level -- ∞-Magmas with SNS ∞-magma-structure : Type ℓ → Type ℓ ∞-magma-structure X = X → X → X ∞-Magma : Type (ℓ-suc ℓ) ∞-Magma {ℓ} = TypeWithStr ℓ ∞-magma-structure ∞-magma-iso : StrIso ∞-magma-structure ℓ ∞-magma-iso (X , _·_) (Y , _∗_) f = (x x' : X) → equivFun f (x · x') ≡ equivFun f x ∗ equivFun f x' ∞-magma-is-SNS : SNS {ℓ} ∞-magma-structure ∞-magma-iso ∞-magma-is-SNS f = SNS-≡→SNS-PathP ∞-magma-iso (λ _ _ → funExt₂Equiv) f
{ "alphanum_fraction": 0.6743243243, "avg_line_length": 26.4285714286, "ext": "agda", "hexsha": "c442dadeb514feee83a2a5b3bcb8f1f79b0b6197", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Structures/InftyMagma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Structures/InftyMagma.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Structures/InftyMagma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 312, "size": 740 }
module 060-commutative-group where -- We need groups. open import 050-group record CommutativeGroup {M : Set} (_==_ : M -> M -> Set) (_*_ : M -> M -> M) (id : M) (invert : M -> M) : Set1 where field group : Group _==_ _*_ id invert comm : ∀ {r s} -> (r * s) == (s * r) open Group group public -- Nothing proven here yet.
{ "alphanum_fraction": 0.552407932, "avg_line_length": 16.0454545455, "ext": "agda", "hexsha": "aa4195bca8fd133ef6a9d7b1feb72e9595391758", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mcmtroffaes/agda-proofs", "max_forks_repo_path": "060-commutative-group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mcmtroffaes/agda-proofs", "max_issues_repo_path": "060-commutative-group.agda", "max_line_length": 40, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mcmtroffaes/agda-proofs", "max_stars_repo_path": "060-commutative-group.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z", "num_tokens": 121, "size": 353 }
{-# OPTIONS --without-K #-} module Explore.BinTree where open import Level.NP open import Type hiding (★) open import Data.Tree.Binary open import Data.Zero open import Data.One open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality.NP open import HoTT open Equivalences open import Type.Identities open import Function open import Function.Extensionality open import Explore.Core open import Explore.Properties open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism fromBinTree : ∀ {m} {a} {A : ★ a} → BinTree A → Explore m A fromBinTree empty = empty-explore fromBinTree (leaf x) = point-explore x fromBinTree (fork ℓ r) = merge-explore (fromBinTree ℓ) (fromBinTree r) fromBinTree-ind : ∀ {m p a} {A : ★ a} (t : BinTree A) → ExploreInd p (fromBinTree {m} t) fromBinTree-ind empty = empty-explore-ind fromBinTree-ind (leaf x) = point-explore-ind x fromBinTree-ind (fork ℓ r) = merge-explore-ind (fromBinTree-ind ℓ) (fromBinTree-ind r) AnyP≡ΣfromBinTree : ∀ {a p}{A : ★ a}{P : A → ★ p}(xs : BinTree A) → Any P xs ≡ Σᵉ (fromBinTree xs) P AnyP≡ΣfromBinTree empty = idp AnyP≡ΣfromBinTree (leaf x) = idp AnyP≡ΣfromBinTree (fork xs xs₁) = ⊎= (AnyP≡ΣfromBinTree xs) (AnyP≡ΣfromBinTree xs₁) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀} where exploreΣ∈ : ∀ {m} xs → Explore m (Σ A λ x → Any (_≡_ x) xs) exploreΣ∈ empty = explore-iso (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) Lift𝟘ᵉ exploreΣ∈ (leaf x) = point-explore (x , idp) exploreΣ∈ (fork xs xs₁) = explore-iso (coe-equiv (! Σ⊎-split)) (exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁) Σᵉ-adq-exploreΣ∈ : ∀ {m} xs → Adequate-Σ {m} (Σᵉ (exploreΣ∈ xs)) Σᵉ-adq-exploreΣ∈ empty = Σ-iso-ok (coe-equiv (Lift≡id ∙ ! ×𝟘-snd ∙ ×= idp (! Lift≡id))) {Aᵉ = Lift𝟘ᵉ} ΣᵉLift𝟘-ok Σᵉ-adq-exploreΣ∈ (leaf x₁) F = ! Σ𝟙-snd ∙ Σ-fst≃ (≃-sym (Σx≡≃𝟙 x₁)) F Σᵉ-adq-exploreΣ∈ (fork xs xs₁) = Σ-iso-ok (coe-equiv (! Σ⊎-split)) {Aᵉ = exploreΣ∈ xs ⊎ᵉ exploreΣ∈ xs₁} (Σᵉ⊎-ok {eᴬ = exploreΣ∈ xs}{eᴮ = exploreΣ∈ xs₁} (Σᵉ-adq-exploreΣ∈ xs) (Σᵉ-adq-exploreΣ∈ xs₁)) module _ {{_ : UA}}{{_ : FunExt}}{A : ★ ₀}{P : A → ★ _}(explore-P : ∀ {m} x → Explore m (P x)) where open import Explore.Zero open import Explore.Sum open import Explore.Isomorphism exploreAny : ∀ {m} xs → Explore m (Any P xs) exploreAny empty = Lift𝟘ᵉ exploreAny (leaf x) = explore-P x exploreAny (fork xs xs₁) = exploreAny xs ⊎ᵉ exploreAny xs₁ module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σ {m} (Σᵉ (explore-P x))) where Σᵉ-adq-exploreAny : ∀ {m} xs → Adequate-Σ {m} (Σᵉ (exploreAny xs)) Σᵉ-adq-exploreAny empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreAny (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreAny (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreAny xs _) (Σᵉ-adq-exploreAny xs₁ _) ∙ ! dist-⊎-Σ exploreΣᵉ : ∀ {m} xs → Explore m (Σᵉ (fromBinTree xs) P) exploreΣᵉ {m} xs = fromBinTree-ind xs (λ e → Explore m (Σᵉ e P)) Lift𝟘ᵉ _⊎ᵉ_ explore-P module _ (Σᵉ-adq-explore-P : ∀ {m} x → Adequate-Σ {m} (Σᵉ (explore-P x))) where Σᵉ-adq-exploreΣᵉ : ∀ {m} xs → Adequate-Σ {m} (Σᵉ (exploreΣᵉ xs)) Σᵉ-adq-exploreΣᵉ empty F = ! Σ𝟘-lift∘fst ∙ Σ-fst= (! Lift≡id) _ Σᵉ-adq-exploreΣᵉ (leaf x₁) F = Σᵉ-adq-explore-P x₁ F Σᵉ-adq-exploreΣᵉ (fork xs xs₁) F = ⊎= (Σᵉ-adq-exploreΣᵉ xs _) (Σᵉ-adq-exploreΣᵉ xs₁ _) ∙ ! dist-⊎-Σ data Path {a}{A : ★_ a} : BinTree A → ★_ a where leaf : (x : A) → Path (leaf x) left : {t u : BinTree A} (p : Path t) → Path (fork t u) right : {t u : BinTree A} (p : Path u) → Path (fork t u) path : ∀ {a}{A : ★ a} → BinTree A → ★₀ path empty = 𝟘 path (leaf x) = 𝟙 path (fork t u) = path t ⊎ path u path' : ∀{a}{A : ★ a} → BinTree A → ★₀ path' t = fromBinTree t 𝟘 _⊎_ (const 𝟙) -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.618116315, "avg_line_length": 39.2525252525, "ext": "agda", "hexsha": "a1aaa18cc396400b37fa1cdcf5163bb142ab6b79", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/BinTree.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/BinTree.agda", "max_line_length": 108, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/BinTree.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1765, "size": 3886 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Groups.Abelian.Definition open import Setoids.Setoids open import Rings.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Modules.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+R_ _*_) {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} (G : AbelianGroup G') (_·_ : A → M → M) where record Module : Set (a ⊔ b ⊔ m ⊔ n) where field dotWellDefined : {r s : A} {t u : M} → Setoid._∼_ S r s → Setoid._∼_ T t u → Setoid._∼_ T (r · t) (s · u) dotDistributesLeft : {r : A} {x y : M} → Setoid._∼_ T (r · (x + y)) ((r · x) + (r · y)) dotDistributesRight : {r s : A} {x : M} → Setoid._∼_ T ((r +R s) · x) ((r · x) + (s · x)) dotAssociative : {r s : A} {x : M} → Setoid._∼_ T ((r * s) · x) (r · (s · x)) dotIdentity : {x : M} → Setoid._∼_ T ((Ring.1R R) · x) x
{ "alphanum_fraction": 0.5385395538, "avg_line_length": 51.8947368421, "ext": "agda", "hexsha": "2323a297c88f440dac644e59c4e2e730789995be", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Modules/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Modules/Definition.agda", "max_line_length": 257, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Modules/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 423, "size": 986 }
{-# OPTIONS --safe --without-K #-} open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans; subst₂) open import Function using (_∘_) open import Relation.Nullary.Negation using (contradiction) module PiCalculus.Utils where module ListInv {a} {A : Set a} where open import Data.List as List using (List; []; _∷_; [_]; _++_) import Data.List.Properties as Listₚ import Data.List.Membership.Propositional.Properties as ∈ₚ import Data.List.Relation.Unary.Any.Properties as Anyₚ open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Membership.Propositional using (_∈_; _∉_) open import Data.List.Relation.Binary.Equality.Propositional {A = A} using (_≋_; []; _∷_; ≋⇒≡; ≡⇒≋; ≋-refl) inv-++ˡ' : ∀ lx ly {rx ry} s → s ∉ lx → s ∉ ly → lx ++ [ s ] ++ rx ≋ ly ++ [ s ] ++ ry → lx ≋ ly inv-++ˡ' [] [] s ∉lx ∉ly eq = [] inv-++ˡ' [] (x ∷ ly) .x ∉lx ∉ly (refl ∷ eq) = contradiction (here refl) ∉ly inv-++ˡ' (x ∷ lx) [] .x ∉lx ∉ly (refl ∷ eq) = contradiction (here refl) ∉lx inv-++ˡ' (x ∷ lx) (.x ∷ ly) s ∉lx ∉ly (refl ∷ eq) rewrite ≋⇒≡ (inv-++ˡ' lx ly s (∉lx ∘ there) (∉ly ∘ there) eq) = ≋-refl inv-++ˡ : ∀ lx ly {rx ry} s → s ∉ lx → s ∉ ly → lx ++ [ s ] ++ rx ≡ ly ++ [ s ] ++ ry → lx ≡ ly inv-++ˡ lx ly s ∉lx ∉ly = ≋⇒≡ ∘ inv-++ˡ' lx ly s ∉lx ∉ly ∘ ≡⇒≋ inv-++ʳ : ∀ lx ly {rx ry} s → s ∉ rx → s ∉ ry → lx ++ [ s ] ++ rx ≡ ly ++ [ s ] ++ ry → rx ≡ ry inv-++ʳ lx ly {rx} {ry} s ∉rx ∉ry = Listₚ.reverse-injective ∘ inv-++ˡ (List.reverse rx) (List.reverse ry) s (∉rx ∘ Anyₚ.reverse⁻) (∉ry ∘ Anyₚ.reverse⁻) ∘ subst₂ _≡_ (do-reverse lx _) (do-reverse ly _) ∘ cong List.reverse where do-reverse : ∀ (lx rx : List A) {s} → List.reverse (lx ++ [ s ] ++ rx) ≡ List.reverse rx ++ [ s ] ++ List.reverse lx do-reverse lx rx {s} = trans (Listₚ.reverse-++-commute lx _) (trans (cong (_++ List.reverse lx) (Listₚ.unfold-reverse s rx)) (Listₚ.++-assoc (List.reverse rx) _ _))
{ "alphanum_fraction": 0.5520833333, "avg_line_length": 51.512195122, "ext": "agda", "hexsha": "0b80e4c416d56691f7c308b956144d4c1c27152d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/Utils.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/Utils.agda", "max_line_length": 109, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 808, "size": 2112 }
record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ data ⊤ : Set where tt : ⊤ id : ⊤ → ⊤ id tt = tt data Foo : ⊤ → Set where foo : {x : ⊤} → Foo (id x) test : {x : Σ ⊤ Foo} → Set test {x₁ , x₂} = {!x₂!}
{ "alphanum_fraction": 0.4866920152, "avg_line_length": 14.6111111111, "ext": "agda", "hexsha": "eb2a29714609ef94911083b0387fb2721512163e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1006.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1006.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1006.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 263 }
module Issue639 where postulate A : Set
{ "alphanum_fraction": 0.7804878049, "avg_line_length": 10.25, "ext": "agda", "hexsha": "bb7f75214095842b30fca5b775558349ec034be9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue639.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue639.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue639.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 11, "size": 41 }
{-# OPTIONS --enable-prop #-} data _≡P_ {A : Set} (x : A) : A → Prop where refl : x ≡P x J-P : {A : Set} (x : A) (P : (y : A) → x ≡P y → Set) → P x refl → (y : A) (e : x ≡P y) → P y e J-P x P p .x refl = p
{ "alphanum_fraction": 0.4205607477, "avg_line_length": 23.7777777778, "ext": "agda", "hexsha": "ae1ed31848b14ee0dc2a26f9d3fc683a1419ef5b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/Fail/Prop-EqNoEliminator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/Fail/Prop-EqNoEliminator.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/Fail/Prop-EqNoEliminator.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 103, "size": 214 }
module DuplicateConstructors where data D : Set where c : D c : D f : D -> D f c = c
{ "alphanum_fraction": 0.597826087, "avg_line_length": 9.2, "ext": "agda", "hexsha": "460680c0fd14bd4cf7e719ec1bd463d5829cf37f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/DuplicateConstructors.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/DuplicateConstructors.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/DuplicateConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 92 }
-- Home to all functions creating, modifying or removing ScopeEnv or ScopeState module ScopeState where open import Data.List using (List) renaming ([] to emptyList ; map to listMap ; _∷_ to _cons_) open import Data.String renaming (_++_ to _then_) open import Data.Bool open import Data.Nat open import Data.Fin renaming (zero to fzero ; suc to fsuc) hiding (_+_) open import Relation.Binary.PropositionalEquality open import Data.Maybe renaming (map to maybemap) hiding (monad) open import ParseTree open import Data.List.Properties open import Data.Vec hiding (_>>=_) renaming (lookup to veclookup) open import Category.Monad.State open import Data.Product hiding (map) open import Data.Sum hiding (map) open import Data.Empty open import Relation.Nullary open import Category.Monad open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.TrustMe open import Data.Unit open import AgdaHelperFunctions open import Data.Nat.Show import IO.Primitive as Prim open import ParseTreeOperations data ScopeType : Set where funcDef : ScopeType moduleDef : (name : Identifier) -> ScopeType addFuncToModule : ScopeType addVariableToType : ScopeType topLevel : ScopeType data Scope (maxVars : ℕ) (maxScopes : ℕ): Set where mkScope : (scopeType : ScopeType) -> (enclosing : Maybe (Fin maxScopes)) -> -- Nothing if this is the top scope (declaredVars : List (Fin maxVars)) -> -- the list of variables declared in this scope Scope maxVars maxScopes getType : {m n : ℕ} -> Scope m n -> ScopeType getType (mkScope scopeType enclosing declaredVars) = scopeType --appendToDeclared : {m n : ℕ} -> Fin m -> Scope m n -> Scope m n --appendToDeclared what (mkScope scopeType enclosing declaredVars) = -- mkScope scopeType enclosing (what cons declaredVars) getDeclared : {m n : ℕ} -> Scope m n -> List (Fin m) getDeclared (mkScope scopeType enclosing declaredVars) = declaredVars data ScopeEnv : Set where env : {numVars : ℕ} -> (vars : Vec String numVars) -> (maxScopes : ℕ) -> (scopes : Vec (Scope numVars maxScopes) maxScopes ) -> (current : Fin maxScopes) -> ScopeEnv ScopeState : Set -> Set ScopeState = StateT (ScopeEnv) (λ x -> Prim.IO (String ⊎ x)) --open RawMonadState (StateTMonadState ScopeEnv {M = IOStringError} EitherOverIO) public liftIO : {a : Set} -> Prim.IO a -> ScopeState a liftIO action e = do a <- action return (inj₂ (a , e)) where open RawMonad IOMonad runScopeState : {a : Set} -> ScopeState a -> ScopeEnv -> Prim.IO (String ⊎ a) runScopeState s e = do inj₂ ( result , e) <- s e where inj₁ e -> return $ inj₁ e return $ inj₂ result where open RawMonad IOMonad -- brings return and bind for the Prim.IO monad into scope fail : {a : Set} -> String -> ScopeState a fail message = λ x -> Prim.return $ inj₁ message -- Try an action and return an error message on failure rather than -- propagating the failure. All state changes are rolled back. try : {a : Set} -> ScopeState a -> ScopeState (String ⊎ a) try st environment = do inj₂ (x , newEnv) <- st environment where inj₁ error -> return $ inj₂ $ inj₁ error , environment return $ inj₂ $ inj₂ x , newEnv where open RawMonad IOMonad open RawMonadState (StateTMonadState ScopeEnv (SumMonadT IOMonad String)) public newEnv : ScopeEnv newEnv = env [] 1 ((mkScope topLevel nothing emptyList) ∷ []) fzero -- Variable adding newRaise : {n : ℕ} -> Fin n -> Fin (1 + n) newRaise fzero = fzero newRaise (fsuc f) = fsuc (newRaise f) raiseScopeType : {n m : ℕ} -> Scope n m -> Scope (1 + n) m raiseScopeType (mkScope t s declared) = mkScope t s (listMap newRaise declared) raiseType : {n m : ℕ} -> (x : Scope n m) -> getType x ≡ getType (raiseScopeType x) raiseType (mkScope scopeType enclosing declaredVars) = refl mapRaiseType : {n m o : ℕ} -> (x : Vec (Scope n m) o) -> (curr : Fin o) -> getType (veclookup curr x) ≡ getType (veclookup curr (map raiseScopeType x)) mapRaiseType (x ∷ xs) fzero with veclookup fzero (x ∷ xs) ... | c = raiseType c mapRaiseType (x ∷ xs) (fsuc curr) = mapRaiseType xs curr addVarToScope : {n m : ℕ} -> (Scope n m) -> (what : Fin (1 + n)) -> (Scope (1 + n) m) addVarToScope (mkScope scopeType enclosing declaredVars) what = mkScope scopeType enclosing (what cons (listMap newRaise declaredVars)) addVar : {n m numScopes : ℕ}(xs : Vec (Scope n m) numScopes) -> (atPos : Fin numScopes) -> (what : Fin (1 + n)) -> Vec (Scope (1 + n) m) numScopes addVar (x ∷ xs) fzero what = addVarToScope x what ∷ map raiseScopeType xs addVar (x ∷ xs) (fsuc atPos) what = raiseScopeType x ∷ addVar xs atPos what addExistingVarToScope : {n m : ℕ} -> (Scope n m) -> (what : Fin n) -> (Scope n m) addExistingVarToScope (mkScope scopeType enclosing declaredVars) what = mkScope scopeType enclosing (what cons declaredVars) addExistingVar : {n m numScopes : ℕ}(xs : Vec (Scope n m) numScopes) -> (atPos : Fin numScopes) -> (what : Fin n) -> Vec (Scope n m) numScopes addExistingVar [] () what addExistingVar (x ∷ xs) fzero what = (addExistingVarToScope x what) ∷ xs addExistingVar (x ∷ xs) (fsuc atPos) what = x ∷ addExistingVar xs atPos what -- returns input identifier with id and scope id filled in addIdentifier : Identifier -> ScopeState Identifier addIdentifier (identifier name isInRange scope declaration {b}{c} {c2}) = do env {numVars} vars maxScopes scopes current <- get let newScopes = (addVar scopes current (fromℕ numVars)) put (env (vars ∷ʳ name) maxScopes newScopes current) return (identifier name isInRange (toℕ current) numVars {b}{c} {c2}) raiseEnclosingScope : {maxVars maxScopes : ℕ} -> Scope maxVars maxScopes -> Scope maxVars (1 + maxScopes) raiseEnclosingScope (mkScope scopeType enclosing declaredVars) = mkScope scopeType (maybemap newRaise enclosing) declaredVars addScope : (b : ScopeType) -> ScopeState ℕ addScope scopeType = do env vars maxScopes scopes current <- get let newScopes = map raiseEnclosingScope scopes ∷ʳ mkScope scopeType (just (newRaise current)) emptyList put (env vars (1 + maxScopes) newScopes (fromℕ maxScopes) ) return maxScopes castCurrent : {n m : ℕ} -> {A : Set} -> Vec A n -> Fin m -> ScopeState (Fin n) castCurrent [] x = fail "Something went wrong with scope saving" castCurrent (x ∷ vec) fzero = return fzero castCurrent (x ∷ vec) (fsuc f) = do r <- castCurrent vec f return (fsuc r) saveAndReturnToScope : {A : Set} -> ScopeState A -> ScopeState A saveAndReturnToScope ss = do env vars maxScopes scopes current <- get c <- ss env vars₁ maxScopes₁ scopes₁ current₁ <- get newCurr <- castCurrent scopes₁ current let newEnv = env vars₁ maxScopes₁ scopes₁ newCurr put newEnv return c setScope : (n : ℕ) -> ScopeState ℕ setScope n (env vars maxScopes scopes current) with suc n Data.Nat.≤? maxScopes setScope n (env vars maxScopes scopes current) | yes p = return n (env vars maxScopes scopes (fromℕ≤ p)) --inj₂ (n , (env vars maxScopes scopes (fromℕ≤ p))) setScope n e | no ¬p = Prim.return $ inj₁ "Tried to set scope to invalid value" --inj₁ "Tried to set scope to invalid value" filter : {A : Set} -> (A -> Bool) -> List A -> List A filter f emptyList = emptyList filter f (x cons l) = if (f x) then (x cons (filter f l)) else filter f l -- this is the lookup function from Schäfer's algorithm -- TODO: Simple dummy function, does not sufficiently reflect real -- scoping rules -- TODO: Agda does not understand that this terminates because -- the fact that the enclosing scope must be farther to the front of -- the scopes list is not encoded in the type yet -- returns the declaration id the input string {-# TERMINATING #-} lookup : String -> ScopeState ℕ lookup s = saveAndReturnToScope (do env vars maxScopes scopes current <- get mkScope scopeType enclosing decl <- return (veclookup current scopes) emptyList <- return ( filter (λ x -> veclookup x vars == s) decl) where x cons xs -> return (toℕ x) just n <- return enclosing where _ -> fail $ "There is no enclosing scope while looking up: " then s setScope (toℕ n) lookup s) -- fill in the declaration and scope information in an identifier -- given that the name has already been declared fillInIdentifier : Identifier -> ScopeState Identifier fillInIdentifier (identifier name isInRange scope declaration {b}{c} {c2}) = do x <- saveAndReturnToScope (lookup name) suc n <- return x where zero -> fail ("Identifier not found in file: " then name) env vars maxScopes scopes current <- get return (identifier name isInRange (toℕ current) (suc n) {b}{c} {c2}) -- at the place where something is declared, you can only use simple names. -- TODO: Actually, this should be adequately bounded by the current scope. But how to implement? access : Identifier -> ScopeState Identifier access (identifier name isInRange scope declaration {b}{c} {c2}) = do env {numVars} vars maxScopes scopes current <- get yes p <- return (suc declaration Data.Nat.≤? numVars) where _ -> fail "Parse tree scoping has produced a nonsense declaration" let newName = veclookup (fromℕ≤ p) vars anything <- setScope scope identifier n r s d <- fillInIdentifier (identifier newName isInRange scope declaration {b}{c} {c2}) yes x <- return (d Data.Nat.≟ declaration) where no y -> fail "Could not perform name change because this would change the meaning of the code" return (identifier n r s d {b}{c} {c2}) mapState : {A B : Set} -> (A -> ScopeState B) -> List A -> ScopeState (List B) mapState f emptyList = return emptyList mapState f (x cons list) = do x1 <- f x xs <- mapState f list return (x1 cons xs) addContentReferenceToModuleTop : TypeSignature -> ScopeState ℕ addContentReferenceToModuleTop (typeSignature (identifier name isInRange scope 0) funcType) = fail "Trying to add signature which has not been scoped" addContentReferenceToModuleTop (typeSignature (identifier name isInRange scope declaration) funcType) = do env {numVars } vars maxScopes scopes current <- get yes p <- return (suc declaration Data.Nat.≤? numVars) where _ -> fail "Found messed-up scoping" let newScopes = addExistingVar scopes current (fromℕ≤ p) return declaration _after_ : {A B C : Set} -> (B -> ScopeState C) -> (A -> ScopeState B) -> A -> ScopeState C _after_ f g x = do prelim <- g x f prelim getNameForId : ℕ -> ScopeState String getNameForId n = do env {numVars } vars maxScopes scopes current <- get yes p <- return (suc n Data.Nat.≤? numVars) where _ -> fail "Can't get name for this invalid identifier" let r = veclookup (fromℕ≤ p) vars return r replaceName : {A : Set} -> {n : ℕ} -> Fin n -> A -> Vec A n -> Vec A n replaceName fzero a (x ∷ list) = a ∷ list replaceName (fsuc n) a (x ∷ list) = x ∷ replaceName n a list replaceID : ℕ -> String -> ScopeState String replaceID which newName = do env {numVars} vars maxScopes scopes current <- get yes p <- return (suc which Data.Nat.≤? numVars) where _ -> fail "Can't rename this invalid identifier" let newList = replaceName (fromℕ≤ p) newName vars put (env {numVars } newList maxScopes scopes current) return newName currentScopeTypeIsFuncDef : ScopeState Bool currentScopeTypeIsFuncDef = do env {numVars } vars maxScopes scopes current <- get mkScope funcDef enclosing declaredVars <- return (veclookup current scopes) where _ -> fail "This is not the scope type you expected" return true isNameInUse : String -> ScopeState Bool isNameInUse s = do env vars maxScopes scopes current <- get return $ Data.List.any (λ x -> x == s) (Data.Vec.toList vars) -- terminates because vars is not infinite. {-# TERMINATING #-} makeUniqueName : ℕ -> ScopeState String makeUniqueName n = do let proposedName = Data.String.concat $ "renameMe" Data.List.∷ (Data.Nat.Show.show n) Data.List.∷ emptyList b <- isNameInUse proposedName if b then makeUniqueName $ suc n else return proposedName getUniqueIdentifierWithInScope : Bool -> ScopeState Identifier getUniqueIdentifierWithInScope b = do name <- makeUniqueName 0 id <- addIdentifier $ identifier name (λ _ -> before) 0 0 {b}{emptyList} {emptyList} return id getUniqueIdentifier : ScopeState Identifier getUniqueIdentifier = getUniqueIdentifierWithInScope true
{ "alphanum_fraction": 0.7032683948, "avg_line_length": 40.2006472492, "ext": "agda", "hexsha": "d9465136f710684bf72da91d4b918141f58da01a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/ScopeState.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/ScopeState.agda", "max_line_length": 156, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/ScopeState.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 3544, "size": 12422 }
{- Copyright 2019 Lisandra Silva Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} open import Prelude open import Relation.Binary.HeterogeneousEquality using (_≅_) renaming (cong to ≅-cong; refl to ≅-refl) open import StateMachineModel module Examples.SMCounter where data MyEvent : Set where inc : MyEvent inc2 : MyEvent data MyEnabled : MyEvent → ℕ → Set where tt : ∀ {e} {n} → MyEnabled e n MyEventSet : EventSet {Event = MyEvent} MyEventSet inc = ⊤ MyEventSet inc2 = ⊤ MyAction : {preSt : ℕ} {ev : MyEvent} → MyEnabled ev preSt → ℕ MyAction {preSt} {inc} enEv = suc preSt MyAction {preSt} {inc2} enEv = suc (suc preSt) data MyWeakFairness : EventSet → Set where w0 : MyWeakFairness MyEventSet -- Another way of modelling the WeakFairness MyWeakFairness2 : EventSet {Event = MyEvent} → Set MyWeakFairness2 MyEventSet = ⊤ MyStateMachine : StateMachine ℕ MyEvent MyStateMachine = record { initial = 2 ≡_ ; enabled = MyEnabled ; action = MyAction } mySystem : System ℕ MyEvent mySystem = record { stateMachine = MyStateMachine ; weakFairness = MyWeakFairness } myInvariant : Invariant MyStateMachine (2 ≤_) myInvariant (init x) = ≤-reflexive x myInvariant (step {ps} {inc} rs enEv) = ≤-stepsˡ 1 (myInvariant rs) myInvariant (step {ps} {inc2} rs enEv) = ≤-stepsˡ 2 (myInvariant rs) open LeadsTo ℕ MyEvent mySystem -- A state equals to n leads to a state equals to (1 + n) or equals to (2 + n) progressDumb : ∀ {n : ℕ} → (n ≡_) l-t ((1 + n ≡_) ∪ (2 + n ≡_)) progressDumb = viaEvSet MyEventSet w0 ( λ { inc ⊤ → hoare λ { refl enEv → inj₁ refl} ; inc2 ⊤ → hoare λ { refl enEv → inj₂ refl} }) ( λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt)} ) λ rs n≡s → inc , tt , tt n<m+n : ∀ {n m} → 0 < m → n < m + n n<m+n {zero} {suc m} x = s≤s z≤n n<m+n {suc n} {suc m} x = s≤s (m≤n+m (suc n) m) progress-< : ∀ n → (n ≡_) l-t (n <_) progress-< n = viaTrans progressDumb (viaInv (λ { rs (inj₁ refl) → s≤s ≤-refl ; rs (inj₂ refl) → s≤s (m≤n+m n 1)})) {- A predicate on states, parameterized by m (target). The d parameter is the "distance" from the target m from state s. QUESTION : We are generalizing Z to be of a given type, however in myWFR we are using it knowing that is ℕ because we apply _≡_ and _+_ -} F : ∀ {m} → ℕ → Z → Set F {m} d s = m ≡ d + s wfr-1 : ∀ {m} → (s : Z) → (m ≤ s) ⊎ ∃[ x ] F {m} x s wfr-1 {m} s with m ≤? s ... | yes yy = inj₁ yy ... | no s<m = inj₂ (m ∸ s , sym (m∸n+n≡m (≰⇒≥ s<m)) ) progress-1st : ∀ {n m} → (n ≡_) l-t ( (m ≤_) ∪ [∃ x ∶ F {m} x ] ) progress-1st {n} {m} = viaInv (λ {s} rs n≡s → wfr-1 s) -- A state which distance to m is 0 (if we are in the state m) -- leads to a state greater than m progress-d0 : ∀ {m} → F {m} 0 l-t ( (m ≤_) ∪ [∃ x ⇒ _< 0 ∶ F {m} x ] ) progress-d0 {m} = viaInv (λ { {s} rs refl → inj₁ ≤-refl }) progress-d1 : ∀ {m} → F {m} 1 l-t ((m ≤_) ∪ [∃ x ⇒ _< 1 ∶ F {m} x ] ) progress-d1 {m} = viaEvSet MyEventSet w0 (λ { inc ⊤ → hoare (λ { refl _ → inj₁ ≤-refl }) ; inc2 ⊤ → hoare (λ { refl _ → inj₁ (≤-step ≤-refl) }) }) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ _ _ → inc , tt , tt progress-d2 : ∀ {m w} → F {m} (2 + w) l-t ( (m ≤_) ∪ [∃ x ⇒ _< (2 + w) ∶ F {m} x ] ) progress-d2 {m} {w} = viaEvSet MyEventSet w0 (λ { inc ⊤ → hoare λ { {ps} refl _ → inj₂ (suc w , ≤-refl , cong suc (sym (+-suc w ps)) )} ; inc2 ⊤ → hoare λ { {ps} refl _ → inj₂ (w , ≤-step ≤-refl , sym (trans (+-suc w (suc ps)) (cong suc (+-suc w ps)))) } }) (λ { inc ⊥ → ⊥-elim (⊥ tt) ; inc2 ⊥ → ⊥-elim (⊥ tt) }) λ _ _ → inc , tt , tt progress-2nd : ∀ {m w} → F {m} w l-t ((m ≤_) ∪ [∃ x ⇒ _< w ∶ F {m} x ] ) progress-2nd {m} {zero} = progress-d0 progress-2nd {m} {suc zero} = progress-d1 progress-2nd {m} {suc (suc w)} = progress-d2 -- A state equals to n leads to a state greater or equal to m, ∀ m. -- In other words, from n we can go to every possible state m steps -- away from n progress : ∀ {n m : ℕ} → (n ≡_) l-t (m ≤_) progress {n} {m} = viaWFR (F {m}) progress-1st λ w → progress-2nd
{ "alphanum_fraction": 0.5171889839, "avg_line_length": 31.5269461078, "ext": "agda", "hexsha": "776aa489bbe5402c79dbc7305155179365108f45", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lisandrasilva/agda-liveness", "max_forks_repo_path": "src/Examples/SMCounter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "lisandrasilva/agda-liveness", "max_issues_repo_path": "src/Examples/SMCounter.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "lisandrasilva/agda-liveness", "max_stars_repo_path": "src/Examples/SMCounter.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1856, "size": 5265 }
module Prelude.Strict where open import Prelude.Equality open import Agda.Builtin.Strict force : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x force x f = primForce x f force′ : ∀ {a b} {A : Set a} {B : A → Set b} → (x : A) → (∀ y → x ≡ y → B y) → B x force′ x k = (force x λ y → k y) refl forceLemma = primForceLemma {-# INLINE force #-} {-# DISPLAY primForce = force #-} {-# DISPLAY primForceLemma = forceLemma #-} seq : ∀ {a b} {A : Set a} {B : Set b} → A → B → B seq x y = force x (λ _ → y) {-# INLINE seq #-} infixr 0 _$!_ _$!_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x f $! x = force x f {-# INLINE _$!_ #-}
{ "alphanum_fraction": 0.5104477612, "avg_line_length": 22.3333333333, "ext": "agda", "hexsha": "f69efe7cc71a2940946fd324a0961460e6f927ec", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/Strict.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/Strict.agda", "max_line_length": 82, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 259, "size": 670 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Graph where open import Cubical.Data.Graph.Base public open import Cubical.Data.Graph.Examples public
{ "alphanum_fraction": 0.7701149425, "avg_line_length": 29, "ext": "agda", "hexsha": "f6abd9cb0788fd46c055eb1a38e956a17de66212", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Graph.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Graph.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Graph.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 174 }
------------------------------------------------------------------------ -- The partiality monad's monad instance ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Partiality-monad.Inductive.Monad where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) import Monad open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc hiding (_>>=′_) open import Nat equality-with-J as Nat open import Univalence-axiom equality-with-J open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Alternative-order open import Partiality-monad.Inductive.Eliminators open import Partiality-monad.Inductive.Monotone open import Partiality-monad.Inductive.Omega-continuous open [_⊥→_⊥] ------------------------------------------------------------------------ -- The monad instance -- Functions of type A → B ⊥ can be lifted to /ω-continuous/ functions -- from A ⊥ to B ⊥. private =<<-args : ∀ {a b} {A : Type a} {B : Type b} (f : A → B ⊥) → Arguments-nd b b A =<<-args {B = B} f = record { P = B ⊥ ; Q = _⊑_ ; pe = never ; po = f ; pl = λ _ → ⨆ ; pa = λ _ _ → antisymmetry ; ps = ⊥-is-set ; qr = λ _ → ⊑-refl ; qt = λ _ _ _ _ _ → ⊑-trans ; qe = λ _ → never⊑ ; qu = λ _ → upper-bound ; ql = λ _ _ _ → least-upper-bound ; qp = λ _ _ → ⊑-propositional } infix 50 _∗ _∗-inc_ _∗ : ∀ {a b} {A : Type a} {B : Type b} → (A → B ⊥) → [ A ⊥→ B ⊥] f ∗ = record { monotone-function = record { function = ⊥-rec-nd (=<<-args f) ; monotone = ⊑-rec-nd (=<<-args f) } ; ω-continuous = λ s → ⊥-rec-nd (=<<-args f) (⨆ s) ≡⟨ ⊥-rec-nd-⨆ (=<<-args f) s ⟩∎ ⨆ (inc-rec-nd (=<<-args f) s) ∎ } _∗-inc_ : ∀ {a b} {A : Type a} {B : Type b} → (A → B ⊥) → Increasing-sequence A → Increasing-sequence B _∗-inc_ f = inc-rec-nd (=<<-args f) -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : ∀ {a b} {A : Type a} {B : Type b} → A ⊥ → (A → B ⊥) → B ⊥ x >>=′ f = function (f ∗) x -- Join. join : ∀ {a} {A : Type a} → A ⊥ ⊥ → A ⊥ join x = x >>=′ id -- "Computation" rules for bind. never->>= : ∀ {a b} {A : Type a} {B : Type b} {f : A → B ⊥} → never >>=′ f ≡ never never->>= = ⊥-rec-nd-never (=<<-args _) now->>= : ∀ {a b} {A : Type a} {B : Type b} {f : A → B ⊥} {x} → now x >>=′ f ≡ f x now->>= = ⊥-rec-nd-now (=<<-args _) _ ⨆->>= : ∀ {a b} {A : Type a} {B : Type b} {f : A → B ⊥} {s} → ⨆ s >>=′ f ≡ ⨆ (f ∗-inc s) ⨆->>= = ⊥-rec-nd-⨆ (=<<-args _) _ -- Bind is monotone. infixl 5 _>>=-mono_ _>>=-mono_ : ∀ {a b} {A : Type a} {B : Type b} {x y : A ⊥} {f g : A → B ⊥} → x ⊑ y → (∀ z → f z ⊑ g z) → x >>=′ f ⊑ y >>=′ g _>>=-mono_ {x = x} {y} {f} {g} x⊑y f⊑g = x >>=′ f ⊑⟨ monotone (f ∗) x⊑y ⟩ y >>=′ f ⊑⟨ ⊥-rec-⊥ (record { P = λ y → y >>=′ f ⊑ y >>=′ g ; pe = never >>=′ f ≡⟨ never->>= ⟩⊑ never ⊑⟨ never⊑ _ ⟩■ never >>=′ g ■ ; po = λ x → now x >>=′ f ≡⟨ now->>= ⟩⊑ f x ⊑⟨ f⊑g x ⟩ g x ≡⟨ sym now->>= ⟩⊑ now x >>=′ g ■ ; pl = λ s ih → ⨆ s >>=′ f ≡⟨ ⨆->>= ⟩⊑ ⨆ (f ∗-inc s) ⊑⟨ ⨆-mono ih ⟩ ⨆ (g ∗-inc s) ≡⟨ sym ⨆->>= ⟩⊑ ⨆ s >>=′ g ■ ; pp = λ _ → ⊑-propositional }) y ⟩ y >>=′ g ■ -- Instances of the monad laws with extra universe polymorphism. module Monad-laws where left-identity : ∀ {a b} {A : Type a} {B : Type b} x (f : A → B ⊥) → now x >>=′ f ≡ f x left-identity _ _ = now->>= right-identity : ∀ {a} {A : Type a} (x : A ⊥) → x >>=′ now ≡ x right-identity = ⊥-rec-⊥ (record { pe = never >>=′ now ≡⟨ never->>= ⟩∎ never ∎ ; po = λ x → now x >>=′ now ≡⟨ now->>= ⟩∎ now x ∎ ; pl = λ s hyp → ⨆ s >>=′ now ≡⟨ ⨆->>= ⟩ ⨆ (now ∗-inc s) ≡⟨ cong ⨆ (_↔_.to equality-characterisation-increasing λ n → s [ n ] >>=′ now ≡⟨ hyp n ⟩∎ s [ n ] ∎) ⟩∎ ⨆ s ∎ ; pp = λ _ → ⊥-is-set }) associativity : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → (x : A ⊥) (f : A → B ⊥) (g : B → C ⊥) → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g associativity x f g = ⊥-rec-⊥ (record { pe = (never >>=′ λ x → f x >>=′ g) ≡⟨ never->>= ⟩ never ≡⟨ sym never->>= ⟩ never >>=′ g ≡⟨ cong (_>>=′ g) $ sym never->>= ⟩∎ never >>=′ f >>=′ g ∎ ; po = λ x → (now x >>=′ λ x → f x >>=′ g) ≡⟨ now->>= ⟩ f x >>=′ g ≡⟨ cong (_>>=′ g) $ sym now->>= ⟩∎ now x >>=′ f >>=′ g ∎ ; pl = λ s hyp → (⨆ s >>=′ λ x → f x >>=′ g) ≡⟨ ⨆->>= ⟩ ⨆ ((λ x → f x >>=′ g) ∗-inc s) ≡⟨ cong ⨆ (_↔_.to equality-characterisation-increasing λ n → s [ n ] >>=′ (λ x → f x >>=′ g) ≡⟨ hyp n ⟩∎ s [ n ] >>=′ f >>=′ g ∎) ⟩ ⨆ (g ∗-inc (f ∗-inc s)) ≡⟨ sym ⨆->>= ⟩ ⨆ (f ∗-inc s) >>=′ g ≡⟨ cong (_>>=′ g) (sym ⨆->>=) ⟩∎ ⨆ s >>=′ f >>=′ g ∎ ; pp = λ _ → ⊥-is-set }) x open Monad equality-with-J hiding (map; map-id; map-∘) instance -- The partiality monad's monad instance. partiality-raw-monad : ∀ {ℓ} → Raw-monad (_⊥ {a = ℓ}) Raw-monad.return partiality-raw-monad = now Raw-monad._>>=_ partiality-raw-monad = _>>=′_ partiality-monad : ∀ {ℓ} → Monad (_⊥ {a = ℓ}) Monad.raw-monad partiality-monad = partiality-raw-monad Monad.left-identity partiality-monad = Monad-laws.left-identity Monad.right-identity partiality-monad = Monad-laws.right-identity Monad.associativity partiality-monad = Monad-laws.associativity ------------------------------------------------------------------------ -- _⊥ is a functor map : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → [ A ⊥→ B ⊥] map f = (return ∘ f) ∗ map-id : ∀ {a} {A : Type a} → map (id {A = A}) ≡ idω map-id = return ∗ ≡⟨ _↔_.to equality-characterisation-continuous (λ x → x >>= return ≡⟨ right-identity x ⟩∎ x ∎) ⟩∎ idω ∎ map-∘ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} (f : B → C) (g : A → B) → map (f ∘ g) ≡ map f ∘ω map g map-∘ f g = (now ∘ f ∘ g) ∗ ≡⟨ _↔_.to equality-characterisation-continuous (λ x → x >>=′ (now ∘ f ∘ g) ≡⟨ cong (x >>=′_) (⟨ext⟩ λ _ → sym now->>=) ⟩ x >>=′ (λ x → now (g x) >>=′ (now ∘ f)) ≡⟨ Monad-laws.associativity x (now ∘ g) (now ∘ f) ⟩∎ x >>=′ (now ∘ g) >>=′ (now ∘ f) ∎) ⟩∎ (now ∘ f) ∗ ∘ω (now ∘ g) ∗ ∎ ------------------------------------------------------------------------ -- Some properties -- A kind of inversion lemma for _⇓_. >>=-⇓ : ∀ {a b} {A : Type a} {B : Type b} {x : A ⊥} {f : A → B ⊥} {y} → (x >>=′ f ⇓ y) ≃ ∥ ∃ (λ z → x ⇓ z × f z ⇓ y) ∥ >>=-⇓ {x = x} {f} {y} = ⊥-rec-⊥ (record { P = λ x → (x >>=′ f ⇓ y) ≃ ∥ ∃ (λ z → x ⇓ z × f z ⇓ y) ∥ ; pe = never >>=′ f ⇓ y ↝⟨ ≡⇒↝ _ (cong (_⇓ y) never->>=) ⟩ never ⇓ y ↝⟨ never⇓≃⊥ ⟩ Prelude.⊥ ↔⟨ inverse (not-inhabited⇒∥∥↔⊥ id) ⟩ ∥ Prelude.⊥ ∥ ↔⟨ ∥∥-cong (inverse ×-right-zero) ⟩ ∥ ∃ (λ z → ⊥₀) ∥ ↔⟨ ∥∥-cong (∃-cong (λ _ → inverse ×-left-zero)) ⟩ ∥ ∃ (λ z → Prelude.⊥ × f z ⇓ y) ∥ ↝⟨ ∥∥-cong (∃-cong (λ _ → inverse never⇓≃⊥ ×-cong F.id)) ⟩□ ∥ ∃ (λ z → never ⇓ z × f z ⇓ y) ∥ □ ; po = λ x → now x >>=′ f ⇓ y ↝⟨ ≡⇒↝ _ (cong (_⇓ y) now->>=) ⟩ f x ⇓ y ↔⟨ inverse (∥∥↔ ⊥-is-set) ⟩ ∥ f x ⇓ y ∥ ↔⟨ ∥∥-cong (inverse $ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ (other-singleton-contractible _)) ⟩ ∥ ∃ (λ (p : ∃ (λ z → x ≡ z)) → f (proj₁ p) ⇓ y) ∥ ↔⟨ ∥∥-cong (inverse Σ-assoc) ⟩ ∥ ∃ (λ z → x ≡ z × f z ⇓ y) ∥ ↔⟨ inverse $ Trunc.flatten′ (λ F → ∃ (λ _ → F (_ ≡ _) × _)) (λ f → Σ-map id (Σ-map f id)) (λ { (x , y , z) → ∥∥-map ((x ,_) ∘ (_, z)) y }) ⟩ ∥ ∃ (λ z → ∥ x ≡ z ∥ × f z ⇓ y) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → inverse now≡now≃∥≡∥ ×-cong F.id) ⟩□ ∥ ∃ (λ z → now x ⇓ z × f z ⇓ y) ∥ □ ; pl = λ s ih → ⨆ s >>=′ f ⇓ y ↝⟨ ≡⇒↝ _ (cong (_⇓ y) ⨆->>=) ⟩ ⨆ (f ∗-inc s) ⇓ y ↝⟨ ⨆⇓≃∥∃⇓∥ ⟩ ∥ (∃ λ n → s [ n ] >>=′ f ⇓ y) ∥ ↝⟨ ∥∥-cong (∃-cong ih) ⟩ ∥ (∃ λ n → ∥ ∃ (λ z → s [ n ] ⇓ z × f z ⇓ y) ∥) ∥ ↔⟨ Trunc.flatten′ (λ F → ∃ λ _ → F (∃ λ _ → _ × _)) (λ f → Σ-map id f) (uncurry λ x → ∥∥-map (x ,_)) ⟩ ∥ (∃ λ n → ∃ λ z → s [ n ] ⇓ z × f z ⇓ y) ∥ ↔⟨ ∥∥-cong ∃-comm ⟩ ∥ (∃ λ z → ∃ λ n → s [ n ] ⇓ z × f z ⇓ y) ∥ ↔⟨ ∥∥-cong (∃-cong λ _ → Σ-assoc) ⟩ ∥ (∃ λ z → (∃ λ n → s [ n ] ⇓ z) × f z ⇓ y) ∥ ↔⟨ inverse $ Trunc.flatten′ (λ F → (∃ λ _ → F (∃ λ _ → _ ⇓ _) × _)) (λ f → Σ-map id (Σ-map f id)) (λ { (x , y , z) → ∥∥-map ((x ,_) ∘ (_, z)) y }) ⟩ ∥ (∃ λ z → ∥ (∃ λ n → s [ n ] ⇓ z) ∥ × f z ⇓ y) ∥ ↝⟨ ∥∥-cong (∃-cong λ _ → inverse ⨆⇓≃∥∃⇓∥ ×-cong F.id) ⟩□ ∥ ∃ (λ z → ⨆ s ⇓ z × f z ⇓ y) ∥ □ ; pp = λ _ → Eq.right-closure ext 0 truncation-is-proposition }) x -- □ is closed, in a certain sense, under bind. □->>= : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → Type p} {Q : B → Type q} {x : A ⊥} {f : A → B ⊥} → (∀ x → Is-proposition (Q x)) → □ P x → (∀ {x} → P x → □ Q (f x)) → □ Q (x >>=′ f) □->>= {Q = Q} {x} {f} Q-prop □-x □-f y = x >>=′ f ⇓ y ↔⟨ >>=-⇓ ⟩ ∥ (∃ λ z → x ⇓ z × f z ⇓ y) ∥ ↝⟨ Trunc.rec (Q-prop y) (λ { (z , x⇓z , fz⇓y) → □-f (□-x z x⇓z) y fz⇓y }) ⟩□ Q y □ -- ◇ is closed, in a certain sense, under bind. ◇->>= : ∀ {a b p q} {A : Type a} {B : Type b} {P : A → Type p} {Q : B → Type q} {x : A ⊥} {f : A → B ⊥} → ◇ P x → (∀ {x} → P x → ◇ Q (f x)) → ◇ Q (x >>=′ f) ◇->>= {x = x} {f} ◇-x ◇-f = Trunc.rec truncation-is-proposition (λ { (y , x⇓y , Py) → ∥∥-map (λ { (z , fy⇓z , Qz) → z , (x >>=′ f ≡⟨ cong (_>>=′ f) x⇓y ⟩ now y >>=′ f ≡⟨ now->>= ⟩ f y ≡⟨ fy⇓z ⟩∎ now z ∎) , Qz }) (◇-f Py) }) ◇-x -- Certain nested occurrences of ⨆ can be replaced by a single one. ⨆>>=⨆≡⨆>>= : ∀ {a b} {A : Type a} {B : Type b} → ∀ (s : Increasing-sequence A) (f : A → Increasing-sequence B) {inc₁ inc₂} → ⨆ ((λ n → s [ n ] >>=′ ⨆ ∘ f) , inc₁) ≡ ⨆ ((λ n → s [ n ] >>=′ λ y → f y [ n ]) , inc₂) ⨆>>=⨆≡⨆>>= s f = antisymmetry (least-upper-bound _ _ λ n → _≃_.to ≼≃⊑ $ λ z → s [ n ] >>=′ ⨆ ∘ f ⇓ z ↔⟨ >>=-⇓ ⟩ ∥ (∃ λ y → s [ n ] ⇓ y × ⨆ (f y) ⇓ z) ∥ ↔⟨ ∥∥-cong (∃-cong λ _ → F.id ×-cong ⨆⇓≃∥∃⇓∥) ⟩ ∥ (∃ λ y → s [ n ] ⇓ y × ∥ (∃ λ m → f y [ m ] ⇓ z) ∥) ∥ ↔⟨ Trunc.flatten′ (λ F → ∃ λ _ → _ × F (∃ λ _ → _ ⇓ _)) (λ f → Σ-map id (Σ-map id f)) (λ { (y , p , q) → ∥∥-map ((y ,_) ∘ (p ,_)) q }) ⟩ ∥ (∃ λ y → s [ n ] ⇓ y × ∃ λ m → f y [ m ] ⇓ z) ∥ ↔⟨ ∥∥-cong (∃-cong λ _ → ∃-comm) ⟩ ∥ (∃ λ y → ∃ λ m → s [ n ] ⇓ y × f y [ m ] ⇓ z) ∥ ↝⟨ ∥∥-map (Σ-map id lemma) ⟩ ∥ (∃ λ y → ∃ λ m → s [ m ] ⇓ y × f y [ m ] ⇓ z) ∥ ↔⟨ ∥∥-cong ∃-comm ⟩ ∥ (∃ λ m → ∃ λ y → s [ m ] ⇓ y × f y [ m ] ⇓ z) ∥ ↔⟨ inverse $ Trunc.flatten′ (λ F → ∃ λ _ → F (∃ λ _ → _ × _)) (λ f → Σ-map id f) (λ { (m , p) → ∥∥-map (m ,_) p }) ⟩ ∥ (∃ λ m → ∥ (∃ λ y → s [ m ] ⇓ y × f y [ m ] ⇓ z) ∥) ∥ ↔⟨ ∥∥-cong (∃-cong λ _ → inverse $ >>=-⇓) ⟩ ∥ (∃ λ m → (s [ m ] >>=′ λ y → f y [ m ]) ⇓ z) ∥ ↔⟨ inverse ⨆⇓≃∥∃⇓∥ ⟩□ ⨆ ((λ m → s [ m ] >>=′ λ y → f y [ m ]) , _) ⇓ z □) (⨆-mono λ n → (s [ n ] >>=′ λ y → f y [ n ]) ⊑⟨ ⊑-refl (s [ n ]) >>=-mono (λ y → upper-bound (f y) n) ⟩■ (s [ n ] >>=′ ⨆ ∘ f) ■) where lemma : ∀ {n y z} → (∃ λ m → s [ n ] ⇓ y × f y [ m ] ⇓ z) → (∃ λ m → s [ m ] ⇓ y × f y [ m ] ⇓ z) lemma {n} (m , p , q) with Nat.total m n ... | inj₁ m≤n = n , p , _≃_.from ≼≃⊑ (later-larger (f _) m≤n) _ q ... | inj₂ n≤m = m , _≃_.from ≼≃⊑ (later-larger s n≤m) _ p , q
{ "alphanum_fraction": 0.3227300593, "avg_line_length": 40.4435261708, "ext": "agda", "hexsha": "5ae4eac126e0badb0c52743ada20cc9e88cf8e42", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive/Monad.agda", "max_line_length": 128, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 5877, "size": 14681 }
postulate F : Set₂ → Set₃ G : Set₁ → Set₂ H : Set₀ → Set₁ infix 1 F infix 2 G infix 3 H syntax F x = ! x syntax G x = # x syntax H x = ! x ok₁ : Set₀ → Set₂ ok₁ X = # ! X ok₂ : Set₁ → Set₃ ok₂ X = ! # X
{ "alphanum_fraction": 0.4813278008, "avg_line_length": 12.6842105263, "ext": "agda", "hexsha": "f9028e70808995fe8a797d923532793c561e51ca", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1436-6.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1436-6.agda", "max_line_length": 19, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1436-6.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 113, "size": 241 }
{-# OPTIONS --cubical #-} module n2o.N2O where open import proto.Base open import proto.Core open import proto.IO open import n2o.Network.WebSocket open import n2o.Network.Socket open import n2o.Network.Core open import n2o.Network.Internal -- open import Infinity.Proto postulate terminationCheck : IO ⊤ {-# FOREIGN GHC import Control.Concurrent (threadDelay) terminationCheck :: IO () terminationCheck = do putStrLn "sapere aude" threadDelay 1000000 terminationCheck #-} {-# COMPILE GHC terminationCheck = terminationCheck #-} data Example : Set where Greet : Example -- index Init = do -- updateText "system" "What is your name?" -- wire record { id_ = "send" , postback = Just Greet, source = "name" ∷ [] } -- index (Message Greet) = do -- Just name ← get "name" -- updateText "system" ("Hello, " <> jsEscape name) index : Event Example → IO ⊤ index ev = putStrLn "Unknown event" -- TODO : monoids about : Event Example → IO ⊤ about ev = putStrLn "Unknown event" -- route : Context N2OProto Example → Context N2OProto Example -- route c with (unpack (Request.reqPath (Context.cxRequest c))) -- ... | "/ws/samples/static/index.html" = about -- ... | "/ws/samples/static/about.html" = about -- ... | _ = about -- router : Context N2OProto Example → Context N2OProto Example -- router c = record c { handler = mkHandler route } -- protocols : -- cx : Cx Example -- cx = mkCx h r m p a d -- where h = ? -- r = ? -- m = route ∷ [] -- p = [] -- a = ? -- d = ? main : IO ⊤ main = do -- sock ← socket AF_INET Stream (+ 0) hPutStrLn stdout "asd" -- protoRun 0 protos terminationCheck putStrLn "[*] Done" -- main : IO ⊤ -- main = getLine >>= λ s → putStrLn s
{ "alphanum_fraction": 0.6252091467, "avg_line_length": 23.5921052632, "ext": "agda", "hexsha": "8ae374bc7c2e04ed9fad0b025c71452faacc6eae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "o4/n2o", "max_forks_repo_path": "n2o/N2O.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "o4/n2o", "max_issues_repo_path": "n2o/N2O.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "o4/n2o", "max_stars_repo_path": "n2o/N2O.agda", "max_stars_repo_stars_event_max_datetime": "2019-01-02T06:37:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-30T11:37:10.000Z", "num_tokens": 493, "size": 1793 }
module Syntax where data S (A₁ : Set) (A₂ : A₁ → Set) : Set where _,_ : (x₁ : A₁) → A₂ x₁ → S A₁ A₂ syntax S A₁ (λ x → A₂) = x ∈ A₁ × A₂ module M where data S' (A₁ : Set) (A₂ : A₁ → Set) : Set where _,'_ : (x₁ : A₁) → A₂ x₁ → S' A₁ A₂ syntax S' A₁ (λ x → A₂) = x ∈' A₁ ×' A₂ open M using (S') postulate p1 : {A₁ : Set} → {A₂ : A₁ → Set} → x₁ ∈ A₁ × A₂ x₁ → A₁ p1' : {A₁ : Set} → {A₂ : A₁ → Set} → x₁ ∈' A₁ ×' A₂ x₁ → A₁
{ "alphanum_fraction": 0.3901098901, "avg_line_length": 10.92, "ext": "agda", "hexsha": "443f086397812ede983d00ee9f9bcce4d0ff755b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Syntax.agda", "max_line_length": 25, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 260, "size": 546 }
-- Andreas, Issue 1944, Bengtfest Marsstrand 2016-04-28 -- A reason why issue 1098 (automatic opening of record modules) -- cannot easily be fixed data Bool : Set where true false : Bool if_then_else_ : ∀{A : Set} → Bool → A → A → A if true then t else e = t if false then t else e = e record Testable (A : Set) : Set where field test : A -> Bool open Testable {{...}} open Testable -- overloading projection `test` mytest : ∀{A} → Testable A → A → Bool mytest dict = test dict -- Should work. t : ∀{A}{{_ : Testable A}} → A → A t = λ x → if test x then x else x -- This may fail when test is overloaded.
{ "alphanum_fraction": 0.6479099678, "avg_line_length": 24.88, "ext": "agda", "hexsha": "a0917c5fab9fd354caf7eeb0a40febc8c1f96e9d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1944-instance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1944-instance.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1944-instance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 199, "size": 622 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Functors on indexed sets (predicates) ------------------------------------------------------------------------ -- Note that currently the functor laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Functor.Predicate where open import Function open import Level open import Relation.Unary open import Relation.Unary.PredicateTransformer using (PT) record RawPFunctor {i j ℓ₁ ℓ₂} {I : Set i} {J : Set j} (F : PT I J ℓ₁ ℓ₂) : Set (i ⊔ j ⊔ suc ℓ₁ ⊔ suc ℓ₂) where infixl 4 _<$>_ _<$_ field _<$>_ : ∀ {P Q} → P ⊆ Q → F P ⊆ F Q _<$_ : ∀ {P Q} → (∀ {i} → P i) → F Q ⊆ F P x <$ y = const x <$> y
{ "alphanum_fraction": 0.4749679076, "avg_line_length": 27.8214285714, "ext": "agda", "hexsha": "ffcc337da9785fedeb7ad1e7ae85c1e08abdccaa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Functor/Predicate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Functor/Predicate.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Functor/Predicate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 215, "size": 779 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Monad.Duality {o ℓ e} (C : Category o ℓ e) where open import Categories.Functor open import Categories.NaturalTransformation open import Categories.Monad open import Categories.Comonad private module C = Category C open C open HomReasoning coMonad⇒Comonad : Monad C.op → Comonad C coMonad⇒Comonad M = record { F = Functor.op F ; ε = NaturalTransformation.op η ; δ = NaturalTransformation.op μ ; assoc = M.sym-assoc ; sym-assoc = M.assoc ; identityˡ = M.identityˡ ; identityʳ = M.identityʳ } where module M = Monad M open M using (F; η; μ) Comonad⇒coMonad : Comonad C → Monad C.op Comonad⇒coMonad M = record { F = Functor.op F ; η = NaturalTransformation.op ε ; μ = NaturalTransformation.op δ ; assoc = M.sym-assoc ; sym-assoc = M.assoc ; identityˡ = M.identityˡ ; identityʳ = M.identityʳ } where module M = Comonad M open M using (F; ε; δ)
{ "alphanum_fraction": 0.6304549675, "avg_line_length": 25.6428571429, "ext": "agda", "hexsha": "0e7c889f8b27b7979f9afa08c9ccea83aab3b6b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Monad/Duality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Monad/Duality.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Monad/Duality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 329, "size": 1077 }
open import Reflection open import Reflection.Term open import Reflection.Universe open import Reflection.Annotated open import Agda.Builtin.Reflection using (withReconstructed; dontReduceDefs; onlyReduceDefs) open import Relation.Nullary open import Data.String as S open import Data.Maybe hiding (_>>=_) open import Data.Unit open import Function open import Data.List as L open import Data.Vec as V using (Vec; []; _∷_) open import Data.Nat open import Data.Product open import Data.Bool -- Get a reference to the local term such as where-function or -- with- or rewrite- by its name. get-defn : String → AnnotationFun (λ _ → Maybe Name) get-defn n ⟨term⟩ (def f x) with showName f S.≟ n ... | yes _ = just f ... | no _ = nothing get-defn n u t = defaultAnn nothing _<∣>_ u t do-get-defn : String → ∀ {u} → (t : ⟦ u ⟧) → Annotated (λ _ → Maybe Name) t do-get-defn n = annotate (get-defn n) to-pat-lam : Definition → TC (Maybe Term) to-pat-lam (function cs) = return $ just (pat-lam cs []) to-pat-lam _ = return $ nothing tel-norm : Names → Telescope → Telescope → TC Telescope tel-norm base-funs [] ctx = return [] tel-norm base-funs ((v , arg i x) ∷ tel) ctx = do x ← dontReduceDefs base-funs $ inContext (reverse $ L.map proj₂ ctx) $ withReconstructed $ normalise x --$ reduce x let p = (v , arg i x) tel ← tel-norm base-funs tel (ctx L.++ [ p ]) return $! p ∷ tel pat-lam-norm : Term → Names → TC Term pat-lam-norm (pat-lam cs args) base-funs = do cs ← hlpr cs return $ pat-lam cs args where hlpr : List Clause → TC $ List Clause hlpr [] = return [] hlpr (clause tel ps t ∷ l) = do --gctx ← getContext -- Try normalising telescope tel ← tel-norm base-funs tel [] let ctx = reverse $ L.map proj₂ tel t ← dontReduceDefs base-funs $ inContext ctx --(gctx L.++ ctx) $ withReconstructed $ normalise t --$ reduce t l ← hlpr l return $! clause tel ps t ∷ l hlpr (absurd-clause tel ps ∷ l) = do l ← hlpr l return $! absurd-clause tel ps ∷ l pat-lam-norm t _ = return t get-term : (f : Name) (base-funs : List Name) → TC Term get-term t bf = do td ← withReconstructed $ dontReduceDefs bf $ getDefinition t just te ← to-pat-lam td where _ → typeError [ strErr $ "get-term: " S.++ showName t S.++ " is not a function" ] te ← pat-lam-norm te bf return te get-ty : (f : Name) (base-funs : List Name) → TC Term get-ty t bf = do ty ← getType t withReconstructed $ dontReduceDefs bf $ normalise ty -- A helper function to get a term or a type (first parameter true/false) using -- the chain of names so that we could traverse into helper functions. For example -- assume that `f` has `with-x` in its body which in turn has `rewrite-y` which we -- want to obtain. Then we should call frefln as follows: -- -- frefln true ("with-x" ∷ "rewrite-y" ∷ []) (base-funs) (quote f) frefln-h : Bool → (name-chain : List String) (base-funs : Names) → Name → TC Term frefln-h true [] bf t = get-term t bf frefln-h false [] bf t = get-ty t bf frefln-h te/ty (x ∷ ns) bf t = do xt ← get-term t bf case (ann $ do-get-defn x {⟨term⟩} xt) of λ where (nothing) → typeError [ strErr $ "frefln: cannot find name `" S.++ x S.++ "` in term " S.++ showName t ] (just f') → frefln-h te/ty ns bf f' macro frefl : Name → List Name → Term → TC ⊤ frefl n bf a = frefln-h true [] bf n >>= quoteTC >>= unify a fty : Name → List Name → Term → TC ⊤ fty n bf a = frefln-h false [] bf n >>= quoteTC >>= unify a frefln : Name → List Name → List String → Term → TC ⊤ frefln n bf ns a = frefln-h true ns bf n >>= quoteTC >>= unify a ftyn : Name → List Name → List String → Term → TC ⊤ ftyn n bf ns a = frefln-h false ns bf n >>= quoteTC >>= unify a {- -- For debugging purposes. frefl : Name → List Name → Term → TC ⊤ frefl f base-funs a = do ty ← getType f ty ← withReconstructed $ dontReduceDefs base-funs $ normalise ty te ← withReconstructed $ getDefinition f >>= λ where (function cs) → return $ pat-lam cs [] _ → return unknown te ← pat-lam-norm te base-funs q ← quoteTC te unify a q fty : Name → List Name → Term → TC ⊤ fty f base-funs a = do ty ← getType f ty ← withReconstructed $ dontReduceDefs base-funs $ normalise ty q ← quoteTC ty unify a q -- XXX We can generalise this to List of names, then the local function can be -- at arbitrary depth. frefl2 : Name → String → Term → TC ⊤ frefl2 f na a = do td ← withReconstructed $ getDefinition f just te ← to-pat-lam td where _ → typeError [ strErr "ERROR₁" ] te ← pat-lam-norm te [] --te ← normalise te case (ann $ do-get-defn na {⟨term⟩} te) of λ where (nothing) → typeError [ strErr "ERROR₁" ] (just f') → do td' ← withReconstructed $ getDefinition f just te ← to-pat-lam td' where _ → typeError [ strErr "ERROR₃" ] quoteTC te >>= unify a fty2 : Name → String → Term → TC ⊤ fty2 f na a = do td ← withReconstructed $ getDefinition f just te ← to-pat-lam td where _ → typeError [ strErr "ERROR₁" ] te ← pat-lam-norm te [] --te ← normalise te case (ann $ do-get-defn na {⟨term⟩} te) of λ where (nothing) → typeError [ strErr "ERROR₁" ] (just f') → do ty ← getType f' ty ← withReconstructed $ normalise ty quoteTC ty >>= unify a -}
{ "alphanum_fraction": 0.610951526, "avg_line_length": 34.3827160494, "ext": "agda", "hexsha": "cd36cf9dd2db4d2a0d4aa896407bc1a579214c6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "ReflHelper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "ReflHelper.agda", "max_line_length": 116, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "ReflHelper.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 1753, "size": 5570 }
------------------------------------------------------------------------------ -- The relation of divisibility on partial natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Divisibility.By0 where open import LTC-PCF.Base open import LTC-PCF.Data.Nat infix 4 _∣_ ------------------------------------------------------------------------------ -- The relation of divisibility (the symbol is '\mid' not '|') -- -- (See documentation in FOTC.Data.Nat.Divisibility.By0) -- -- In our definition 0∣0, which is used to prove properties of the gcd -- as it is in GHC ≥ 7.2.1, where gcd 0 0 = 0 (see -- http://hackage.haskell.org/trac/ghc/ticket/3304). -- Note that @k@ should be a total natural number. _∣_ : D → D → Set m ∣ n = ∃[ k ] N k ∧ n ≡ k * m
{ "alphanum_fraction": 0.479757085, "avg_line_length": 34.0689655172, "ext": "agda", "hexsha": "9c7d68e463ef41cc3de5bce8c1f9fb87e126778d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 234, "size": 988 }
module FFI.IO where import Lvl open import Data open import String open import Type postulate IO : ∀{a} → Type{a} → Type{a} {-# BUILTIN IO IO #-} {-# FOREIGN GHC type AgdaIO a b = IO b #-} {-# COMPILE GHC IO = type AgdaIO #-} {-# FOREIGN GHC import qualified Data.Text.IO #-} postulate printStr : String → IO(Unit{Lvl.𝟎}) {-# COMPILE GHC printStr = Data.Text.IO.putStr #-} postulate printStrLn : String → IO(Unit{Lvl.𝟎}) {-# COMPILE GHC printStrLn = Data.Text.IO.putStrLn #-}
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 24.3, "ext": "agda", "hexsha": "9e6294b4ea3fdabbc9b8e7b399455d96c073f59d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "FFI/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "FFI/IO.agda", "max_line_length": 54, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "FFI/IO.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 140, "size": 486 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 -- [Subtype] is defined in lib.NType. module lib.types.Subtype where infix 40 _⊆_ _⊆_ : ∀ {i j₁ j₂} {A : Type i} → SubtypeProp A j₁ → SubtypeProp A j₂ → Type (lmax i (lmax j₁ j₂)) P₁ ⊆ P₂ = ∀ a → SubtypeProp.prop P₁ a → SubtypeProp.prop P₂ a infix 80 _∘sub_ _∘sub_ : ∀ {i j k} {A : Type i} {B : Type j} → SubtypeProp B k → (A → B) → SubtypeProp A k P ∘sub f = SubtypeProp.prop P ∘ f , level where abstract level = SubtypeProp.level P ∘ f {- Dependent paths in a Σ-type -} module _ {i j k} {A : Type i} {B : A → Type j} (subB : (a : A) → SubtypeProp (B a) k) where ↓-Subtype-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'} {s : SubtypeProp.prop (subB x) r} {s' : SubtypeProp.prop (subB x') r'} (q : r == r' [ B ↓ p ]) → (r , s) == (r' , s') [ (λ x → Subtype (subB x)) ↓ p ] ↓-Subtype-in {p = idp} q = Subtype=-out (subB _) q
{ "alphanum_fraction": 0.5650793651, "avg_line_length": 31.5, "ext": "agda", "hexsha": "04307bf6ed48f8b4b4dceb4c1c1acf06dcdea730", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Subtype.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Subtype.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Subtype.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 394, "size": 945 }
module _ where module A where postulate Nat : Set suc : Nat → Nat open A syntax suc x = ⟦ x ⟧ -- Error WAS: -- Names out of scope in fixity declarations: suc -- Error SHOULD BE something like: -- Name 'suc' not declared in same scope as its syntax declaration.
{ "alphanum_fraction": 0.6775362319, "avg_line_length": 16.2352941176, "ext": "agda", "hexsha": "a52fc561217864fc1dfd39a4fac89a8f57afbee5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue1204.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue1204.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue1204.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 76, "size": 276 }
{-# OPTIONS --sized-types --show-implicit #-} -- {-# OPTIONS -v tc.size.solve:60 #-} module Issue300 where open import Common.Size data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {↑ size} suc : {size : Size} -> Nat {size} -> Nat {↑ size} -- Size meta used in a different context than the one created in A : Set1 A = (Id : {i : Size} -> Nat {_} -> Set) (k : Size)(m : Nat {↑ k}) -> Id {k} m -> (j : Size)(n : Nat {j}) -> Id {j} n -- should solve _ with ↑ i
{ "alphanum_fraction": 0.5463709677, "avg_line_length": 26.1052631579, "ext": "agda", "hexsha": "3c840876691f343cc5249cd0e4b321c2d85c7082", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue300.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue300.agda", "max_line_length": 64, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue300.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 165, "size": 496 }
module sn-calculus-compatconf.base where open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction using (Can ; Canₛ ; Canₛₕ ; Canₖ ; module CodeSet) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (unplug ; unplugc ; plug ; plugc ; ⟦⟧e-to-⟦⟧c) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_ ; map) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open EvaluationContext1 open _≐_⟦_⟧e open Context1 open _≐_⟦_⟧c open ListSet Data.Nat._≟_ data two-roads-diverged : EvaluationContext → Context → Set where divout-disjoint : ∀ {C₁ C} → two-roads-diverged [] (C₁ ∷ C) divpar-split₁ : ∀ {E C p q} → two-roads-diverged (epar₁ q ∷ E) (ceval (epar₂ p) ∷ C) divpar-split₂ : ∀ {E C p q} → two-roads-diverged (epar₂ p ∷ E) (ceval (epar₁ q) ∷ C) divseq-split : ∀ {E C p q} → two-roads-diverged (eseq q ∷ E) (cseq₂ p ∷ C) divloop-splitˢ : ∀ {E C p q} → two-roads-diverged (eloopˢ q ∷ E) (cloopˢ₂ p ∷ C) divin : ∀ {E₁ E C} → two-roads-diverged E C → two-roads-diverged (E₁ ∷ E) (ceval E₁ ∷ C) data context-prefix : EvaluationContext → Context → Set where ecsame : ∀ {E} → context-prefix E (map ceval E) ecin-lift : ∀ {E E₁ E'} → context-prefix (E ++ (E₁ ∷ E')) (map ceval E) ecsplit : ∀ {E C} → (div : two-roads-diverged E C) → context-prefix E C get-context-prefix : ∀ {E C p q r} → p ≐ E ⟦ q ⟧e → p ≐ C ⟦ r ⟧c → context-prefix E C get-context-prefix {[]} {[]} dehole p≐C⟦r⟧ = ecsame get-context-prefix {[]} {C₁ ∷ C} dehole p≐C⟦r⟧ = ecsplit divout-disjoint get-context-prefix {E₁ ∷ E} p≐E⟦q⟧ dchole = ecin-lift get-context-prefix (depar₁ p≐E⟦q⟧) (dcpar₂ p≐C⟦r⟧) = ecsplit divpar-split₁ get-context-prefix (depar₂ p≐E⟦q⟧) (dcpar₁ p≐C⟦r⟧) = ecsplit divpar-split₂ get-context-prefix (deseq p≐E⟦q⟧) (dcseq₂ p≐C⟦r⟧) = ecsplit divseq-split get-context-prefix (deloopˢ p≐E⟦q⟧) (dcloopˢ₂ p≐C⟦r⟧) = ecsplit divloop-splitˢ get-context-prefix (depar₁ p≐E⟦q⟧) (dcpar₁ p≐C⟦r⟧) with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div) get-context-prefix (depar₂ p≐E⟦q⟧) (dcpar₂ p≐C⟦r⟧) with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div) get-context-prefix (deloopˢ p≐E⟦q⟧) (dcloopˢ₁ p≐C⟦r⟧) with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div) get-context-prefix (deseq p≐E⟦q⟧) (dcseq₁ p≐C⟦r⟧) with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div) get-context-prefix (desuspend p≐E⟦q⟧) (dcsuspend p≐C⟦r⟧) with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div) -- didn't directly pattern match on p≐C⟦r⟧ in order to get complete pattern matching coverage get-context-prefix (detrap p≐E⟦q⟧) p≐trap[C⟦r⟧] with p≐trap[C⟦r⟧] ... | dchole = ecin-lift ... | dctrap p≐C⟦r⟧ with get-context-prefix p≐E⟦q⟧ p≐C⟦r⟧ ... | ecsame = ecsame ... | ecin-lift = ecin-lift ... | ecsplit div = ecsplit (divin div)
{ "alphanum_fraction": 0.6450295979, "avg_line_length": 40.4876033058, "ext": "agda", "hexsha": "8c213fe201b66ff5ad6edb61c2b59b5644133033", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf/base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf/base.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf/base.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 1908, "size": 4899 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.OBM.Genesis as Genesis open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.OBM.Util import LibraBFT.Impl.Types.OnChainConfig.ValidatorSet as ValidatorSet import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.OBM.Util import LibraBFT.Impl.Types.OnChainConfig.ValidatorSet as ValidatorSet import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Util.PKCS open import Util.Prelude module LibraBFT.Impl.IO.OBM.GenKeyFile where ------------------------------------------------------------------------------ EndpointAddress = Author AddressToSkAndPkAssocList = List (EndpointAddress × (SK × PK)) ------------------------------------------------------------------------------ genKeys : {-Crypto.SystemDRG →-} ℕ → List (SK × PK) mkAuthors : {-Crypto.SystemDRG →-} U64 → List EndpointAddress → Either ErrLog AddressToSkAndPkAssocList mkValidatorSignersAndVerifierAndProposerElection : U64 → AddressToSkAndPkAssocList → Either ErrLog (List ValidatorSigner × ValidatorVerifier × ProposerElection) ------------------------------------------------------------------------------ NfLiwsVssVvPe = (U64 × LedgerInfoWithSignatures × List ValidatorSigner × ValidatorVerifier × ProposerElection) NfLiwsVsVvPe = (U64 × LedgerInfoWithSignatures × ValidatorSigner × ValidatorVerifier × ProposerElection) create' : U64 → List EndpointAddress {-→ SystemDRG-} → Either ErrLog ( U64 × AddressToSkAndPkAssocList × List ValidatorSigner × ValidatorVerifier × ProposerElection × LedgerInfoWithSignatures ) create' numFailures addresses {-drg-} = do authors ← mkAuthors {-drg-} numFailures addresses (s , vv , pe) ← mkValidatorSignersAndVerifierAndProposerElection numFailures authors case Genesis.obmMkGenesisLedgerInfoWithSignatures s (ValidatorSet.obmFromVV vv) of λ where (Left err) → Left err (Right liws) → pure (numFailures , authors , s , vv , pe , liws) abstract create = create' create≡ : create ≡ create' create≡ = refl mkAuthors {-drg-} numFailures0 addresses0 = do addrs <- checkAddresses checkBftAndRun numFailures0 addrs f where f : ℕ → List EndpointAddress → AddressToSkAndPkAssocList f _numFailures addresses = zip addresses (genKeys {-drg-} (length addresses)) checkAddresses : Either ErrLog (List EndpointAddress) checkAddresses = pure addresses0 postulate -- Valid assumption: secret and public keys for each NodeId mkSK : NodeId → SK mkPK : NodeId → PK genKeys zero = [] genKeys x@(suc n) = (mkSK x , mkPK x) ∷ genKeys n mkValidatorSignersAndVerifierAndProposerElection numFaults ks = do -- IMPL-DIFF: Agda Author type does NOT contain a PK let allAuthors = fmap fst ks validatorVerifier ← ValidatorVerifier.initValidatorVerifier numFaults ks let authorKeyPairs = fmap (λ (a , (sk , _)) → (a , sk)) ks validatorSigners = foldl' go [] authorKeyPairs pure (validatorSigners , validatorVerifier , ProposerElection∙new allAuthors) where go : List ValidatorSigner → (Author × SK) → List ValidatorSigner go acc (author , sk) = ValidatorSigner∙new author sk ∷ acc
{ "alphanum_fraction": 0.6963795941, "avg_line_length": 42.3953488372, "ext": "agda", "hexsha": "85b3032266acc547c1379015b04cbda54359c438", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/GenKeyFile.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/GenKeyFile.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/GenKeyFile.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 970, "size": 3646 }
-- A simple word counter open import Coinduction using ( ♯_ ) open import Data.Char.Classifier using ( isSpace ) open import Data.Bool using ( Bool ; true ; false ) open import Data.Natural using ( Natural ; show ) open import System.IO using ( Command ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; _⟨&⟩_ ) open import System.IO.Transducers.List using ( length ) open import System.IO.Transducers.Bytes using ( bytes ) open import System.IO.Transducers.IO using ( run ) open import System.IO.Transducers.UTF8 using ( split ; encode ) open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; Bytes ; Strings ) module System.IO.Examples.WC where words : Bytes ⇒ ⟨ Natural ⟩ words = split isSpace ⟫ inp (♯ length { Bytes }) -- TODO: this isn't exactly lovely user syntax. report : ⟨ Natural ⟩ & ⟨ Natural ⟩ ⇒ Strings report = (inp (♯ λ #bytes → (out true (out (show #bytes) (out true (out " " (inp (♯ λ #words → (out true (out (show #words) (out true (out "\n" (out false done))))))))))))) wc : Bytes ⇒ Bytes wc = bytes ⟨&⟩ words ⟫ report ⟫ inp (♯ encode) main : Command main = run wc
{ "alphanum_fraction": 0.664644714, "avg_line_length": 28.1463414634, "ext": "agda", "hexsha": "3c1030f528c60e6d326196df9b837b939a6c4e0b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Examples/WC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Examples/WC.agda", "max_line_length": 85, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Examples/WC.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 333, "size": 1154 }
module _ where data D (@erased A : Set) : Set -- The modality should not be repeated here data D (@erased A) where mkD : D A
{ "alphanum_fraction": 0.6615384615, "avg_line_length": 14.4444444444, "ext": "agda", "hexsha": "acdd562c716e20ba9896ff63c10ae130a8e639ec", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1886-modality.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1886-modality.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1886-modality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 130 }
{-# OPTIONS --guardedness #-} module Class.Monad.IO where open import Class.Monad open import IO open import Level record MonadIO {a} (M : Set a → Set a) {{_ : Monad M}} : Set (suc a) where field liftIO : ∀ {A} → IO A → M A open MonadIO {{...}} public
{ "alphanum_fraction": 0.6259541985, "avg_line_length": 18.7142857143, "ext": "agda", "hexsha": "abd607fc7196af3b940595da746c0e7552965870", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/Monad/IO.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/Monad/IO.agda", "max_line_length": 74, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/Monad/IO.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 81, "size": 262 }
open import FRP.JS.Float using ( ℝ ) renaming ( _/?_ to _/?r_ ) open import FRP.JS.Int using ( ℤ ; _-_ ) renaming ( float to floatz ; show to showz ) open import FRP.JS.Primitive using ( String ) open import FRP.JS.Bool using ( Bool ; _∨_ ; not ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ) module FRP.JS.Nat where infixr 4 _≤_ _<_ _≟_ _≠_ infixl 6 _+_ _∸_ infixl 7 _*_ _/_ _/?_ open import FRP.JS.Primitive public using ( ℕ ; zero ; suc ) _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) {-# BUILTIN NATPLUS _+_ #-} {-# COMPILED_JS _+_ function (x) { return function (y) { return x+y; }; } #-} _∸_ : ℕ → ℕ → ℕ zero ∸ n = zero suc m ∸ zero = suc m suc m ∸ suc n = m ∸ n {-# BUILTIN NATMINUS _∸_ #-} {-# COMPILED_JS _∸_ function (x) { return function (y) { return Math.max(0,x-y); }; } #-} _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + m * n {-# BUILTIN NATTIMES _*_ #-} {-# COMPILED_JS _*_ function (x) { return function (y) { return x*y; }; } #-} private primitive primNatEquality : ℕ → ℕ → Bool primNatLess : ℕ → ℕ → Bool primNatToInteger : ℕ → ℤ primFloatDiv : ℝ → ℝ → ℝ _≟_ = primNatEquality _<_ = primNatLess +_ = primNatToInteger {-# COMPILED_JS _≟_ function (x) { return function (y) { return x === y; }; } #-} {-# COMPILED_JS _<_ function (x) { return function (y) { return x < y; }; } #-} {-# COMPILED_JS +_ function (x) { return x; } #-} float : ℕ → ℝ float x = floatz (+ x) show : ℕ → String show x = showz (+ x) -_ : ℕ → ℤ -_ x = (+ 0) - (+ x) _≤_ : ℕ → ℕ → Bool x ≤ y = not (y < x) _≠_ : ℕ → ℕ → Bool x ≠ y = not (x ≟ y) _/_ : (x y : ℕ) → {y≠0 : True (y ≠ 0)} → ℝ x / y = primFloatDiv (float x) (float y) _/?_ : ℕ → ℕ → Maybe ℝ x /? y = (float x) /?r (float y) {-# COMPILED_JS float function (x) { return x; } #-} {-# COMPILED_JS show function (x) { return x.toString(); } #-} {-# COMPILED_JS -_ function (x) { return -x; } #-} {-# COMPILED_JS _≤_ function (x) { return function (y) { return x <= y; }; } #-} {-# COMPILED_JS _≠_ function (x) { return function (y) { return x !== y; }; } #-} {-# COMPILED_JS _/_ function(x) { return function(y) { return function() { return x / y; }; }; } #-} {-# COMPILED_JS _/?_ function(x) { return function(y) { if (y === 0) { return null; } else { return x / y; } }; } #-}
{ "alphanum_fraction": 0.56640625, "avg_line_length": 28.4444444444, "ext": "agda", "hexsha": "753acae46fc3300353821258957b4f1e64695b9e", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Nat.agda", "max_line_length": 118, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 855, "size": 2304 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core open import Categories.Object.Zero -- Normal Mono and Epimorphisms -- https://ncatlab.org/nlab/show/normal+monomorphism module Categories.Morphism.Normal {o ℓ e} (𝒞 : Category o ℓ e) (𝒞-Zero : Zero 𝒞) where open import Level open import Categories.Object.Kernel 𝒞-Zero open import Categories.Object.Kernel.Properties 𝒞-Zero open import Categories.Morphism 𝒞 open Category 𝒞 record IsNormalMonomorphism {A K : Obj} (k : K ⇒ A) : Set (o ⊔ ℓ ⊔ e) where field {B} : Obj arr : A ⇒ B isKernel : IsKernel k arr open IsKernel isKernel public mono : Mono k mono = Kernel-Mono (IsKernel⇒Kernel isKernel) record NormalMonomorphism (K A : Obj) : Set (o ⊔ ℓ ⊔ e) where field mor : K ⇒ A isNormalMonomorphism : IsNormalMonomorphism mor open IsNormalMonomorphism isNormalMonomorphism public
{ "alphanum_fraction": 0.7202247191, "avg_line_length": 25.4285714286, "ext": "agda", "hexsha": "37c5fcfc18d398e85bd315be37b6a9c5f13aea56", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/Normal.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/Normal.agda", "max_line_length": 86, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/Normal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 278, "size": 890 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.PKCS import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures open import LibraBFT.ImplShared.Consensus.Types module LibraBFT.Impl.Types.CryptoProxies where addToLi : AccountAddress → Signature → LedgerInfoWithSignatures → LedgerInfoWithSignatures addToLi = LedgerInfoWithSignatures.addSignature
{ "alphanum_fraction": 0.8187919463, "avg_line_length": 37.25, "ext": "agda", "hexsha": "0964b02dc31146941f5a160e8c8b04854a9b478b", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "oracle/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Types/CryptoProxies.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "oracle/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Types/CryptoProxies.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "oracle/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Types/CryptoProxies.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 154, "size": 596 }
module TerminationNoArgs where loop : Set loop = loop
{ "alphanum_fraction": 0.7818181818, "avg_line_length": 11, "ext": "agda", "hexsha": "a44fc117968c28d79565d95132b7d570fc869d91", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TerminationNoArgs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/TerminationNoArgs.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/TerminationNoArgs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 55 }
module lib.libraryDec where -- old version of Dec -- open import Data.Empty open import Level open import Relation.Nullary using ( ¬_ ) data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P
{ "alphanum_fraction": 0.6137339056, "avg_line_length": 17.9230769231, "ext": "agda", "hexsha": "32db726b76e219bc6eee6f54c25da6ce276a5eec", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/lib/libraryDec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/lib/libraryDec.agda", "max_line_length": 41, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/lib/libraryDec.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 77, "size": 233 }
module UselessPrivateImportAs where private import Common.Prelude as P
{ "alphanum_fraction": 0.8378378378, "avg_line_length": 14.8, "ext": "agda", "hexsha": "f20048ec783a8016980c126c5e9949ba9afa5d88", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/UselessPrivateImportAs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/UselessPrivateImportAs.agda", "max_line_length": 35, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/UselessPrivateImportAs.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 18, "size": 74 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Automatic solver for equations over product and sum types -- -- See examples at the bottom of the file for how to use this solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Related.TypeIsomorphisms.Solver where open import Algebra using (CommutativeSemiring) import Algebra.Solver.Ring.NaturalCoefficients.Default open import Data.Empty using (⊥) open import Data.Product using (_×_) open import Data.Sum using (_⊎_) open import Data.Unit using (⊤) open import Level using (Level; Lift) open import Function.Inverse as Inv using (_↔_) open import Function.Related as Related open import Function.Related.TypeIsomorphisms ------------------------------------------------------------------------ -- The solver module ×-⊎-Solver (k : Symmetric-kind) {ℓ} = Algebra.Solver.Ring.NaturalCoefficients.Default (×-⊎-commutativeSemiring k ℓ) ------------------------------------------------------------------------ -- Tests private -- A test of the solver above. test : {ℓ : Level} (A B C : Set ℓ) → (Lift ℓ ⊤ × A × (B ⊎ C)) ↔ (A × B ⊎ C × (Lift ℓ ⊥ ⊎ A)) test = solve 3 (λ A B C → con 1 :* (A :* (B :+ C)) := A :* B :+ C :* (con 0 :+ A)) Inv.id where open ×-⊎-Solver bijection
{ "alphanum_fraction": 0.5191637631, "avg_line_length": 32.6136363636, "ext": "agda", "hexsha": "709dbe1697a21e3df20ea99935950ca6ca50873c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms/Solver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms/Solver.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms/Solver.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 353, "size": 1435 }
module Sized.ConsoleExample where open import SizedIO.Base open import SizedIO.Console hiding (main) open import NativeIO myProgram : ∀{i} → IOConsole i Unit force myProgram = do' getLine λ line → do (putStrLn line) λ _ → do (putStrLn line) λ _ → myProgram main : NativeIO Unit main = translateIOConsole myProgram
{ "alphanum_fraction": 0.6075, "avg_line_length": 23.5294117647, "ext": "agda", "hexsha": "65f8eb5ef543438de5bbd91ef7bda56c0291a8a1", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/Sized/ConsoleExample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/Sized/ConsoleExample.agda", "max_line_length": 49, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/Sized/ConsoleExample.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 105, "size": 400 }
module Calculator where open import Human.Humanity hiding (_==_) open import Human.Nat public hiding (_==_) open import Human.Char public open import Human.Equality public --------- Data --------- -- Generic proof to proof "Or" operation. Proof that one of the arguments must be true data Either (A B : Set) : Set where fst : A -> Either A B snd : B -> Either A B -- Declaring a set of operations data Operation : Set where add sub mul : Operation -- It's used to identify which number will be updated, the one on the right or left data Side : Set where right left : Side -- Can be a number, an operation symbol or execution command data Event : Set where clr : Event -- base case num : Side -> Nat -> Event -- a digit ope : Operation -> Event -- operator data State : Set where state : Operation → Nat → Nat → State --------- Auxiliar properties --------- -- Proof of commutativity of addition. Proof by beala x+0 : (a : Nat) → (a + 0) == a x+0 zero = refl x+0 (suc a) rewrite x+0 a = refl -- Agda knows that 0 * a == 0, now we are telling that "a * 0 == 0 * a" a*0 : (a : Nat) -> (a * 0) == 0 a*0 zero = refl a*0 (suc a) rewrite (a*0 a) = refl -- does that 0 * a == 0 -- Proof that 1 is identity element of multiply over nats. Proof by beala a*1 : (a : Nat) -> (a * 1) == a a*1 zero = refl a*1 (suc a) rewrite a*1 a | a*0 a | x+0 a = refl -- Tells Agda that 1 * a == a 1*a : (a : Nat) -> (1 * a) == a 1*a zero = refl 1*a (suc a) rewrite 1*a a = refl --------- Calculator --------- -- Initial state init : State init = (state add 0 0) -- Calculates the operation related to a state result : State -> Nat result (state add a b) = (a + b) result (state sub a b) = (a - b) result (state mul a b) = (a * b) -- Get the current State, an Event and update to a new State updateState : State -> Event -> State -- clear updateState s clr = init -- "num operation": update the numbers values updateState (state op m n) (num right x) = (state op m x) updateState (state op m n) (num left x) = (state op x n) -- execute an operation updateState (state op m n) (ope e) = (state e m n) --------- Testing Calculator --------- testUpState0 : State -- add a number on the left testUpState0 = (updateState init (num left 1)) testUpState1 : State -- add a number on the right testUpState1 = (updateState testUpState0 (num right 1)) testUpState2 : State -- executes an operation on both numbers testUpState2 = (updateState testUpState1 (ope add)) -- A type of test as is usually done in other programming languages. Given some input what do I expect as result? testUpStateResult : (result (updateState testUpState1 (ope add))) == 2 testUpStateResult = refl testUpState0a : State -- add a number on the left testUpState0a = (updateState init (num left 3)) testUpState1a : State -- add a number on the right testUpState1a = (updateState testUpState0a (num right 5)) testUpState2a : State -- executes an operation on both numbers testUpState2a = (updateState testUpState1a (ope mul)) testUpState0b : State testUpState0b = (updateState testUpState2a (clr)) --------- Theorems --------- -- Proofs that the result showing up an operation will always do that operation -- theorem-0 : (s : State) -> (a b : Nat) -> (result (state add a b)) == (a + b) theorem-0 s a b = refl theorem-1 : (s : State) -> (a b : Nat) -> (result (state sub a b)) == (a - b) theorem-1 s a b = refl theorem-2 : (s : State) -> (a b : Nat) -> (result (state mul a b)) == (a * b) theorem-2 s a b = refl -- Given a and b and a proof that one of them is 0, then the result of multiplicating a and b must be 0 theorem-3 : ∀ (a b : Nat) -> Either (a == 0) (b == 0) -> (a * b) == 0 theorem-3 .0 b (fst refl) = refl -- Agda knows that 0 * n == 0 (refl) theorem-3 a .0 (snd refl) = (a*0 a) -- then we proof that n * 0 is also 0 -- if a == 1: (mul a b) == b -- if b == 1: (mul a b) == a -- if a == 1 OR b == 1: Either ((mul a b) == b) ((mul a b) == a) -- Given a and b and a proof that one of them is 1, -- then the result of multiplicating a and b must be the number that is not 1 theorem-4 : ∀ (a b : Nat) -> Either (a == 1) (b == 1) -> Either ((a * b) == b) ((a * b) == a) theorem-4 .1 b (fst refl) = fst (1*a b) -- A proof that 1 * b == b theorem-4 a .1 (snd refl) = snd (a*1 a) -- A proof that b * 1 == b -- Proof that update state works as expected update-theorem : ∀ (x y : Nat) → (s : State) → (result (updateState (updateState (updateState s (num left x)) (ope add)) (num right y))) == (x + y) update-theorem x y (state op m n) = refl -- TODO -- -- -- Evaluates several expressions. E.g. (2 + 3) * 5 -- data Expression : Set where -- num : Nat -> Expression -- add : Expression -> Expression -> Expression -- sub : Expression -> Expression -> Expression ----- VIEW? ----- -- main : Program -- main _ = do -- -- print "-- Calculator --" -- -- Receives a number, an operation symbol and a execution command -- -- let result = exe-operation 2 3 add -- print (show result) -- let result2 = (primNatToChar (exe-operation 2 3 add)) -- print (primShowChar result2) -- for i from 0 to 10 do: -- print ("i: " ++ show i) -- -- if (2 == 2) -- (then: print "foo") -- (else: print "bar") -- -- let num = -- init 0.0 -- for i from 0 to 1000000 do: -- λ result → result f+ 1.0 -- print (primShowFloat num)
{ "alphanum_fraction": 0.6165246388, "avg_line_length": 31.9408284024, "ext": "agda", "hexsha": "315e93c25ba479dc507ff5583212a82fb3c360a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/AgdaCalculator", "max_forks_repo_path": "src/Calculator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/AgdaCalculator", "max_issues_repo_path": "src/Calculator.agda", "max_line_length": 147, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/AgdaCalculator", "max_stars_repo_path": "src/Calculator.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-29T02:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T02:30:10.000Z", "num_tokens": 1732, "size": 5398 }
open import level open import bool open import bool-thms open import eq open import eq-reasoning open import sum open import nat data Lgc : Set where ttrue : Lgc ffalse : Lgc aand : Lgc → Lgc → Lgc oor : Lgc → Lgc → Lgc nnot : Lgc → Lgc check_ : Lgc → 𝔹 check ttrue = tt check ffalse = ff check (aand c1 c2) = (check c1) && (check c2) check (oor c1 c2) = (check c1) || (check c2) check (nnot c) = ~(check c) data _isTrue : Lgc → Set data _isFalse : Lgc → Set data _isTrue where c-tt : ----------- ttrue isTrue c-and : ∀ {c1 c2 : Lgc} → c1 isTrue → c2 isTrue ----------------- → (aand c1 c2) isTrue c-or₁ : ∀ {c1 c2 : Lgc} → c1 isTrue --------------- → (oor c1 c2) isTrue c-or₂ : ∀ {c1 c2 : Lgc} → c2 isTrue ---------------- → (oor c1 c2) isTrue c-not : ∀ {c : Lgc} → c isFalse ------------- → (nnot c) isTrue data _isFalse where ~c-ff : -------------- ffalse isFalse ~c-or : ∀ {c1 c2 : Lgc} → c1 isFalse → c2 isFalse --------------------- → (oor c1 c2) isFalse ~c-and₁ : ∀ {c1 c2 : Lgc} → c1 isFalse ---------------------- → (aand c1 c2) isFalse ~c-and₂ : ∀ {c1 c2 : Lgc} → c2 isFalse ----------------- → (aand c1 c2) isFalse ~c-not : ∀ {c : Lgc} → c isTrue ------------- → (nnot c) isFalse c-thm : ∀ {c : Lgc} → c isTrue → (check c ≡ tt) ~c-thm : ∀ {c : Lgc} → c isFalse → (check c ≡ ff) c-thm (c-tt) = begin check ttrue ≡⟨ refl ⟩ tt ∎ c-thm (c-and{c1}{c2} dat1 dat2) = begin check (aand c1 c2) ≡⟨ refl ⟩ (check c1) && (check c2) ≡⟨ congf2{f = _&&_}{f' = _&&_} refl (c-thm dat1) (c-thm dat2) ⟩ tt && tt ≡⟨ refl ⟩ tt ∎ c-thm (c-or₁{c1}{c2} dat1) = begin check (oor c1 c2) ≡⟨ refl ⟩ (check c1) || (check c2) ≡⟨ congf2{f = _||_}{f' = _||_} refl (c-thm dat1) refl ⟩ tt || (check c2) ≡⟨ refl ⟩ tt ∎ c-thm (c-or₂{c1}{c2} dat2) = begin check (oor c1 c2) ≡⟨ refl ⟩ (check c1) || (check c2) ≡⟨ congf2{f = _||_}{f' = _||_} refl refl (c-thm dat2) ⟩ (check c1) || tt ≡⟨ ||-tt (check c1)⟩ tt ∎ c-thm (c-not{c} dat) = begin check (nnot c) ≡⟨ refl ⟩ ~ (check c) ≡⟨ congf{f = ~_}{f' = ~_} refl (~c-thm dat) ⟩ ~ ff ≡⟨ refl ⟩ tt ∎ ~c-thm (~c-ff) = begin check ffalse ≡⟨ refl ⟩ ff ∎ ~c-thm (~c-or{c1}{c2} dat1 dat2) = begin check (oor c1 c2) ≡⟨ refl ⟩ (check c1) || (check c2) ≡⟨ congf2{f = _||_}{f' = _||_} refl (~c-thm dat1) (~c-thm dat2) ⟩ ff || ff ≡⟨ refl ⟩ ff ∎ ~c-thm (~c-and₁{c1}{c2} dat1) = begin check (aand c1 c2) ≡⟨ refl ⟩ (check c1) && (check c2) ≡⟨ congf2{f = _&&_}{f' = _&&_} refl (~c-thm dat1) refl ⟩ ff && (check c2) ≡⟨ refl ⟩ ff ∎ ~c-thm (~c-and₂{c1}{c2} dat2) = begin check (aand c1 c2) ≡⟨ refl ⟩ (check c1) && (check c2) ≡⟨ congf2{f = _&&_}{f' = _&&_} refl refl (~c-thm dat2) ⟩ (check c1) && ff ≡⟨ &&-ff (check c1)⟩ ff ∎ ~c-thm (~c-not{c} dat) = begin check (nnot c) ≡⟨ refl ⟩ ~ (check c) ≡⟨ congf{f = ~_}{f' = ~_} refl (c-thm dat) ⟩ ~ tt ≡⟨ refl ⟩ ff ∎
{ "alphanum_fraction": 0.4454573078, "avg_line_length": 18.2833333333, "ext": "agda", "hexsha": "95083d5300eed67eea7743f188551be873adfead", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JimFixGroupResearch/imper-ial", "max_forks_repo_path": "cond-chck-holds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JimFixGroupResearch/imper-ial", "max_issues_repo_path": "cond-chck-holds.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JimFixGroupResearch/imper-ial", "max_stars_repo_path": "cond-chck-holds.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1508, "size": 3291 }
{-# OPTIONS --without-K --safe #-} -- Verbatim dual of Categories.Category.Construction.Kleisli module Categories.Category.Construction.CoKleisli where open import Level open import Categories.Category open import Categories.Functor using (Functor; module Functor) open import Categories.NaturalTransformation hiding (id) open import Categories.Comonad import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level CoKleisli : {𝒞 : Category o ℓ e} → Comonad 𝒞 → Category o ℓ e CoKleisli {𝒞 = 𝒞} M = record { Obj = Obj ; _⇒_ = λ A B → (F₀ A ⇒ B) ; _≈_ = _≈_ ; _∘_ = λ f g → f ∘ F₁ g ∘ δ.η _ ; id = ε.η _ ; assoc = assoc′ ; sym-assoc = sym assoc′ ; identityˡ = identityˡ′ ; identityʳ = identityʳ′ ; identity² = identity²′ ; equiv = equiv ; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h (∘-resp-≈ (F≈ g≈i) refl) } where module M = Comonad M open M using (ε; δ; F) open Functor F open Category 𝒞 open HomReasoning open Equiv open MR 𝒞 -- useful lemma trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f trihom {X} {Y} {Z} {W} {f} {g} {h} = begin F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩ F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩ F₁ h ∘ F₁ g ∘ F₁ f ∎ -- shorthands to make the proofs nicer F≈ = F-resp-≈ assoc′ : {A B C D : Obj} {f : F₀ A ⇒ B} {g : F₀ B ⇒ C} {h : F₀ C ⇒ D} → (h ∘ F₁ g ∘ δ.η B) ∘ F₁ f ∘ δ.η A ≈ h ∘ F₁ (g ∘ F₁ f ∘ δ.η A) ∘ δ.η A assoc′ {A} {B} {C} {D} {f} {g} {h} = begin (h ∘ F₁ g ∘ δ.η B) ∘ (F₁ f ∘ δ.η A) ≈⟨ assoc²' ⟩ h ∘ (F₁ g ∘ (δ.η B ∘ (F₁ f ∘ δ.η A))) ≈⟨ ((refl⟩∘⟨ (refl⟩∘⟨ sym assoc))) ⟩ h ∘ (F₁ g ∘ ((δ.η B ∘ F₁ f) ∘ δ.η A)) ≈⟨ ((refl⟩∘⟨ (refl⟩∘⟨ pushˡ (δ.commute f)))) ⟩ h ∘ (F₁ g ∘ (F₁ (F₁ f) ∘ (δ.η (F₀ A) ∘ δ.η A))) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ pushʳ (Comonad.assoc M)) ⟩ h ∘ (F₁ g ∘ ((F₁ (F₁ f) ∘ F₁ (δ.η A)) ∘ δ.η A)) ≈⟨ pull-center (sym trihom) ⟩ h ∘ (F₁ (g ∘ (F₁ f ∘ δ.η A)) ∘ δ.η A) ∎ identityˡ′ : ∀ {A B : Obj} {f : F₀ A ⇒ B} → ε.η B ∘ F₁ f ∘ δ.η A ≈ f identityˡ′ {A} {B} {f} = begin ε.η B ∘ F₁ f ∘ δ.η A ≈⟨ pullˡ (ε.commute f) ⟩ (f ∘ ε.η (F₀ A)) ∘ δ.η A ≈⟨ trans (pullʳ (Comonad.identityʳ M)) identityʳ ⟩ f ∎ identityʳ′ : ∀ {A B : Obj} {f : F₀ A ⇒ B} → f ∘ F₁ (ε.η A) ∘ δ.η A ≈ f identityʳ′ {A} {B} {f} = elimʳ (Comonad.identityˡ M) identity²′ : {A : Obj} → ε.η A ∘ F₁ (ε.η A) ∘ δ.η A ≈ ε.η A identity²′ = elimʳ (Comonad.identityˡ M)
{ "alphanum_fraction": 0.4996102884, "avg_line_length": 34.2133333333, "ext": "agda", "hexsha": "ba29c71bf5f25789f97ed16422fa1b8372226a96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/CoKleisli.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/CoKleisli.agda", "max_line_length": 143, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/CoKleisli.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 1263, "size": 2566 }
import Data.Integer as Integer open Integer using (ℤ) module NumberTheory.ModularArithmetic (m : ℤ) where open import Algebra.Structures open Integer hiding (+_; _-_) -- using (_+_; _*_; -_; +0) open import Data.Integer.GCD open import Data.Integer.Properties hiding (*-1-isMonoid; *-1-isCommutativeMonoid; +-*-isCommutativeRing) open import Data.Integer.Tactic.RingSolver open import Data.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) _≈_ : Rel ℤ _ x ≈ y = ∃ λ k → k * m + x ≡ y refl : Reflexive _≈_ refl {x} = +0 , (begin +0 * m + x ≡⟨ ≡.cong (_+ x) (*-zeroˡ m) ⟩ +0 + x ≡⟨ +-identityˡ x ⟩ x ∎) where open ≡.≡-Reasoning sym : Symmetric _≈_ sym {x} {y} (k , p) = (- k) , (begin - k * m + y ≡˘⟨ ≡.cong₂ _+_ (neg-distribˡ-* k m) (neg-involutive y) ⟩ - (k * m) + - - y ≡˘⟨ neg-distrib-+ (k * m) (- y) ⟩ - (k * m + - y) ≡⟨ ≡.cong -_ (begin k * m + - y ≡˘⟨ +-identityʳ _ ⟩ k * m + - y + +0 ≡˘⟨ ≡.cong (k * m + - y +_) (+-inverseʳ x) ⟩ k * m + - y + (x + - x) ≡˘⟨ +-assoc (k * m + - y) x (- x) ⟩ k * m + - y + x + - x ≡⟨ ≡.cong (_+ - x) (begin k * m + - y + x ≡⟨ +-assoc (k * m) (- y) x ⟩ k * m + (- y + x) ≡⟨ ≡.cong (k * m +_) (+-comm (- y) x) ⟩ k * m + (x + - y) ≡˘⟨ +-assoc (k * m) x (- y) ⟩ k * m + x + - y ≡⟨ ≡.cong (_+ - y) p ⟩ y + - y ≡⟨ +-inverseʳ y ⟩ +0 ∎) ⟩ +0 + - x ≡⟨ +-identityˡ (- x) ⟩ - x ∎) ⟩ - - x ≡⟨ neg-involutive x ⟩ x ∎) where open ≡.≡-Reasoning trans : Transitive _≈_ trans {x} {y} {z} (j , p) (k , q) = k + j , (begin (k + j) * m + x ≡⟨ ≡.cong (_+ x) (*-distribʳ-+ (m) k j) ⟩ k * m + j * m + x ≡⟨ +-assoc (k * m) (j * m) x ⟩ k * m + (j * m + x) ≡⟨ ≡.cong (_+_ (k * m)) p ⟩ k * m + y ≡⟨ q ⟩ z ∎) where open ≡.≡-Reasoning ≈-isEquivalence : IsEquivalence _≈_ ≈-isEquivalence = record { refl = refl ; sym = sym ; trans = trans } open IsEquivalence ≈-isEquivalence public using (reflexive) setoid : Setoid _ _ setoid = record { isEquivalence = ≈-isEquivalence } open import Algebra.Definitions _≈_ +-cong : Congruent₂ _+_ +-cong {x} {y} {u} {v} (j , p) (k , q) = j + k , (begin (j + k) * m + (x + u) ≡⟨ ≡.cong (_+ (x + u)) (*-distribʳ-+ m j k) ⟩ j * m + k * m + (x + u) ≡˘⟨ +-assoc (j * m + k * m) x u ⟩ j * m + k * m + x + u ≡⟨ ≡.cong (_+ u) (begin j * m + k * m + x ≡⟨ +-assoc (j * m) (k * m) x ⟩ j * m + (k * m + x) ≡⟨ ≡.cong (j * m +_) (+-comm (k * m) x) ⟩ j * m + (x + k * m) ≡˘⟨ +-assoc (j * m) x (k * m) ⟩ j * m + x + k * m ∎) ⟩ j * m + x + k * m + u ≡⟨ +-assoc (j * m + x) (k * m) u ⟩ j * m + x + (k * m + u) ≡⟨ ≡.cong₂ _+_ p q ⟩ y + v ∎) where open ≡.≡-Reasoning *-cong : Congruent₂ _*_ *-cong {x} {y} {u} {v} (j , p) (k , q) = j * m * k + j * u + x * k , (begin (j * m * k + j * u + x * k) * m + x * u ≡⟨ ≡.cong (_+ x * u) (begin (j * m * k + j * u + x * k) * m ≡⟨ *-distribʳ-+ m (j * m * k + j * u) (x * k) ⟩ (j * m * k + j * u) * m + (x * k) * m ≡⟨ ≡.cong₂ _+_ (*-distribʳ-+ m (j * m * k) (j * u)) (*-assoc x k m) ⟩ j * m * k * m + j * u * m + x * (k * m) ≡⟨ ≡.cong (_+ x * (k * m)) (begin j * m * k * m + (j * u) * m ≡⟨ ≡.cong (_+ j * u * m) (*-assoc (j * m) k m) ⟩ j * m * (k * m) + j * u * m ≡⟨ ≡.cong (j * m * (k * m) +_) (begin j * u * m ≡⟨ *-assoc j u m ⟩ j * (u * m) ≡⟨ ≡.cong (j *_) (*-comm u m) ⟩ j * (m * u) ≡˘⟨ *-assoc j m u ⟩ j * m * u ∎) ⟩ (j * m) * (k * m) + (j * m) * u ∎) ⟩ j * m * (k * m) + j * m * u + x * (k * m) ∎) ⟩ (j * m) * (k * m) + (j * m) * u + x * (k * m) + x * u ≡⟨ +-assoc ((j * m) * (k * m) + (j * m) * u) (x * (k * m)) (x * u) ⟩ (j * m) * (k * m) + (j * m) * u + (x * (k * m) + x * u) ≡˘⟨ ≡.cong₂ _+_ (*-distribˡ-+ (j * m) (k * m) u) (*-distribˡ-+ x (k * m) u) ⟩ (j * m) * (k * m + u) + x * (k * m + u) ≡˘⟨ *-distribʳ-+ (k * m + u) (j * m) x ⟩ (j * m + x) * (k * m + u) ≡⟨ ≡.cong₂ _*_ p q ⟩ y * v ∎) where open ≡.≡-Reasoning neg-cong : Congruent₁ -_ neg-cong {x} {y} (k , p) = - k , (begin - k * m + - x ≡˘⟨ ≡.cong (_+ - x) (neg-distribˡ-* k m) ⟩ - (k * m) + - x ≡˘⟨ neg-distrib-+ (k * m) x ⟩ - (k * m + x) ≡⟨ ≡.cong -_ p ⟩ - y ∎) where open ≡.≡-Reasoning +-0-isAbelianGroup : IsAbelianGroup _≈_ _+_ +0 -_ +-0-isAbelianGroup = record { isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = ≈-isEquivalence ; ∙-cong = +-cong } ; assoc = λ x y z → reflexive (+-assoc x y z) } ; identity = (λ x → reflexive (+-identityˡ x)) , λ x → reflexive (+-identityʳ x) } ; inverse = (λ x → reflexive (+-inverseˡ x)) , λ x → reflexive(+-inverseʳ x) ; ⁻¹-cong = neg-cong } ; comm = λ x y → reflexive (+-comm x y) } *-1-isCommutativeMonoid : IsCommutativeMonoid _≈_ _*_ (Integer.+ 1) *-1-isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = ≈-isEquivalence ; ∙-cong = *-cong } ; assoc = λ x y z → reflexive (*-assoc x y z) } ; identity = (λ x → reflexive (*-identityˡ x)) , λ x → reflexive (*-identityʳ x ) } ; comm = λ x y → reflexive (*-comm x y) } open IsCommutativeMonoid *-1-isCommutativeMonoid using () renaming (isMonoid to *-1-isMonoid) +-*-isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ +0 (Integer.+ 1) +-*-isCommutativeRing = record { isRing = record { +-isAbelianGroup = +-0-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = (λ x y z → reflexive (*-distribˡ-+ x y z)) , λ x y z → reflexive (*-distribʳ-+ x y z) ; zero = (λ x → reflexive (*-zeroˡ x)) , λ x → reflexive (*-zeroʳ x) } ; *-comm = λ x y → reflexive (*-comm x y) }
{ "alphanum_fraction": 0.4233635774, "avg_line_length": 27.8018018018, "ext": "agda", "hexsha": "0b5318cab5dae8e5c4faf160a80379bec15b3971", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8c3a4235a16f66a94267aada287bd8ee7d054ead", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/antlion", "max_forks_repo_path": "src/NumberTheory/ModularArithmetic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c3a4235a16f66a94267aada287bd8ee7d054ead", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/antlion", "max_issues_repo_path": "src/NumberTheory/ModularArithmetic.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "8c3a4235a16f66a94267aada287bd8ee7d054ead", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/antlion", "max_stars_repo_path": "src/NumberTheory/ModularArithmetic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2884, "size": 6172 }
{-# OPTIONS -v tc.lhs.unify:80 #-} data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate A : Set a : A record Foo : Set where constructor foo field anA : A test : (f : A → A) (x : Foo) → foo (f a) ≡ x → A test f .(foo (f a)) refl = a
{ "alphanum_fraction": 0.5212355212, "avg_line_length": 17.2666666667, "ext": "agda", "hexsha": "3648c91a12c5bd3a05c81f291699f3f039a182c9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1809.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1809.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1809.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 259 }
module Highlighting where Set-one : Set₂ Set-one = Set₁ record R (A : Set) : Set-one where constructor con field X : Set F : Set → Set → Set F A B = B field P : F A X → Set -- highlighting of non-terminating definition Q : F A X → Set Q = Q postulate P : _ open import Highlighting.M data D (A : Set) : Set-one where d : let X = D in X A postulate _+_ _×_ : Set → Set → Set infixl 4 _×_ _+_ -- Issue #2140: the operators should be highlighted also in the -- fixity declaration.
{ "alphanum_fraction": 0.6340508806, "avg_line_length": 15.96875, "ext": "agda", "hexsha": "c54372827314c06ff97ce104d13cb1090188eb74", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/interaction/Highlighting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/interaction/Highlighting.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/interaction/Highlighting.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 170, "size": 511 }
------------------------------------------------------------------------ -- Integers, defined using a quotient type ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Integer.Quotient {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude as P hiding (suc; _*_; _^_) renaming (_+_ to _⊕_) open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq open import Equality.Path.Isomorphisms.Univalence eq open import Equivalence equality-with-J as Eq using (_≃_) open import Equivalence-relation equality-with-J open import Erased.Cubical eq open import Function-universe equality-with-J hiding (id; _∘_) open import Group equality-with-J as G using (Group; Abelian; _≃ᴳ_) open import Group.Cyclic eq as C using (Generated-by; Cyclic) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq using (∣_∣) import Integer equality-with-J as Data import Nat equality-with-J as Nat open import Quotient eq as Q hiding (elim; rec) open import Univalence-axiom equality-with-J private variable m m₁ m₂ n n₁ n₂ : ℕ a : Level A : Type a i j p q : A ------------------------------------------------------------------------ -- The relation used to define the integers. -- Two pairs of natural numbers are related if they have the same -- difference. Same-difference : ℕ × ℕ → ℕ × ℕ → Type Same-difference (m₁ , n₁) (m₂ , n₂) = m₁ ⊕ n₂ ≡ n₁ ⊕ m₂ -- The relation is pointwise propositional. Same-difference-propositional : Is-proposition (Same-difference p q) Same-difference-propositional = ℕ-set -- The relation is an equivalence relation. Same-difference-is-equivalence-relation : Is-equivalence-relation Same-difference Same-difference-is-equivalence-relation = record { reflexive = λ { {m , n} → m ⊕ n ≡⟨ Nat.+-comm m ⟩∎ n ⊕ m ∎ } ; symmetric = λ { {m₁ , n₁} {m₂ , n₂} hyp → m₂ ⊕ n₁ ≡⟨ Nat.+-comm m₂ ⟩ n₁ ⊕ m₂ ≡⟨ sym hyp ⟩ m₁ ⊕ n₂ ≡⟨ Nat.+-comm m₁ ⟩∎ n₂ ⊕ m₁ ∎ } ; transitive = λ { {m₁ , n₁} {m₂ , n₂} {m₃ , n₃} hyp₁ hyp₂ → Nat.+-cancellativeʳ ( m₁ ⊕ n₃ ⊕ m₂ ≡⟨ sym $ Nat.+-assoc m₁ ⟩ m₁ ⊕ (n₃ ⊕ m₂) ≡⟨ cong (m₁ ⊕_) $ Nat.+-comm n₃ ⟩ m₁ ⊕ (m₂ ⊕ n₃) ≡⟨ cong (m₁ ⊕_) hyp₂ ⟩ m₁ ⊕ (n₂ ⊕ m₃) ≡⟨ Nat.+-assoc m₁ ⟩ m₁ ⊕ n₂ ⊕ m₃ ≡⟨ cong (_⊕ m₃) hyp₁ ⟩ n₁ ⊕ m₂ ⊕ m₃ ≡⟨ sym $ Nat.+-assoc n₁ ⟩ n₁ ⊕ (m₂ ⊕ m₃) ≡⟨ cong (n₁ ⊕_) $ Nat.+-comm m₂ ⟩ n₁ ⊕ (m₃ ⊕ m₂) ≡⟨ Nat.+-assoc n₁ ⟩∎ n₁ ⊕ m₃ ⊕ m₂ ∎) } } -- It is decidable whether the relation holds. Same-difference-decidable : ∀ p → Dec (Same-difference p q) Same-difference-decidable _ = _ Nat.≟ _ ------------------------------------------------------------------------ -- Integers -- Integers. ℤ : Type ℤ = (ℕ × ℕ) / Same-difference -- The integers form a set. ℤ-set : Is-set ℤ ℤ-set = /-is-set -- Turns natural numbers into the corresponding integers. infix 8 +_ +_ : ℕ → ℤ + n = [ (n , 0) ] -- Turns natural numbers into the corresponding negative integers. -[_] : ℕ → ℤ -[ n ] = [ (0 , n) ] ------------------------------------------------------------------------ -- A lemma -- Increasing both sides of a pair by one does not affect the value of -- the corresponding integer. []≡[suc,suc] : _≡_ {A = ℤ} [ (m , n) ] [ (P.suc m , P.suc n) ] []≡[suc,suc] {m = m} {n = n} = []-respects-relation (m ⊕ P.suc n ≡⟨ sym $ Nat.suc+≡+suc m ⟩ P.suc m ⊕ n ≡⟨ Nat.+-comm (P.suc m) ⟩∎ n ⊕ P.suc m ∎) ------------------------------------------------------------------------ -- A one-to-one correspondence between two definitions of integers -- There is a bijection between this variant of integers and the one -- in Integer. ℤ↔ℤ : ℤ ↔ Data.ℤ ℤ↔ℤ = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to-lemma₁ : m₁ ⊕ P.suc n₂ ≡ m₂ → (Data.+ m₁) ≡ Data.+ m₂ +-[1+ n₂ ] to-lemma₁ {m₁ = m₁} {n₂ = n₂} {m₂ = zero} hyp = ⊥-elim $ Nat.0≢+ (zero ≡⟨ sym hyp ⟩ m₁ ⊕ P.suc n₂ ≡⟨ sym $ Nat.suc+≡+suc m₁ ⟩∎ P.suc (m₁ ⊕ n₂) ∎) to-lemma₁ {m₁ = m₁} {n₂ = zero} {m₂ = P.suc m₂} hyp = cong (Data.+_) $ Nat.cancel-suc (P.suc m₁ ≡⟨ Nat.+-comm 1 ⟩ m₁ ⊕ 1 ≡⟨ hyp ⟩∎ P.suc m₂ ∎) to-lemma₁ {m₁ = m₁} {n₂ = P.suc n₂} {m₂ = P.suc m₂} hyp = to-lemma₁ $ Nat.cancel-suc (P.suc (m₁ ⊕ P.suc n₂) ≡⟨ Nat.suc+≡+suc m₁ ⟩ m₁ ⊕ P.suc (P.suc n₂) ≡⟨ hyp ⟩∎ P.suc m₂ ∎) to-lemma₂ : m₁ ⊕ zero ≡ P.suc n₁ ⊕ m₂ → Data.+ m₁ +-[1+ n₁ ] ≡ Data.+ m₂ to-lemma₂ {m₁ = zero} hyp = ⊥-elim $ Nat.0≢+ hyp to-lemma₂ {m₁ = P.suc m₁} {n₁ = zero} {m₂ = m₂} hyp = cong (Data.+_) $ Nat.cancel-suc (P.suc m₁ ≡⟨ sym Nat.+-right-identity ⟩ P.suc m₁ ⊕ 0 ≡⟨ hyp ⟩∎ P.suc m₂ ∎) to-lemma₂ {m₁ = P.suc m₁} {n₁ = P.suc n₁} hyp = to-lemma₂ (Nat.cancel-suc hyp) to-lemma₃ : ∀ m₁ n₁ m₂ n₂ → m₁ ⊕ P.suc n₂ ≡ P.suc n₁ ⊕ m₂ → Data.+ m₁ +-[1+ n₁ ] ≡ Data.+ m₂ +-[1+ n₂ ] to-lemma₃ (P.suc m₁) (P.suc n₁) m₂ n₂ hyp = to-lemma₃ m₁ n₁ m₂ n₂ (Nat.cancel-suc hyp) to-lemma₃ m₁ n₁ (P.suc m₂) (P.suc n₂) hyp = to-lemma₃ m₁ n₁ m₂ n₂ $ Nat.cancel-suc (P.suc (m₁ ⊕ P.suc n₂) ≡⟨ Nat.suc+≡+suc m₁ ⟩ m₁ ⊕ P.suc (P.suc n₂) ≡⟨ hyp ⟩ P.suc n₁ ⊕ P.suc m₂ ≡⟨ cong P.suc $ sym $ Nat.suc+≡+suc n₁ ⟩∎ P.suc (P.suc n₁ ⊕ m₂) ∎) to-lemma₃ zero n₁ zero n₂ hyp = cong Data.-[1+_] $ Nat.cancel-suc (P.suc n₁ ≡⟨ sym Nat.+-right-identity ⟩ P.suc n₁ ⊕ 0 ≡⟨ sym hyp ⟩∎ P.suc n₂ ∎) to-lemma₃ (P.suc m₁) zero (P.suc m₂) zero hyp = cong (Data.+_) $ Nat.cancel-suc $ (P.suc m₁ ≡⟨ Nat.+-comm 1 ⟩ m₁ ⊕ 1 ≡⟨ Nat.cancel-suc hyp ⟩∎ P.suc m₂ ∎) to-lemma₃ (P.suc m₁) zero zero n₂ hyp = ⊥-elim $ Nat.0≢+ (0 ≡⟨ sym $ Nat.cancel-suc hyp ⟩ m₁ ⊕ P.suc n₂ ≡⟨ sym $ Nat.suc+≡+suc m₁ ⟩∎ P.suc (m₁ ⊕ n₂) ∎) to-lemma₃ zero n₁ (P.suc m₂) zero hyp = ⊥-elim $ Nat.0≢+ (0 ≡⟨ Nat.cancel-suc hyp ⟩ n₁ ⊕ P.suc m₂ ≡⟨ sym $ Nat.suc+≡+suc n₁ ⟩∎ P.suc (n₁ ⊕ m₂) ∎) to-lemma : ∀ m₁ n₁ m₂ n₂ → Same-difference (m₁ , n₁) (m₂ , n₂) → Data.+ m₁ Data.- Data.+ n₁ ≡ Data.+ m₂ Data.- Data.+ n₂ to-lemma m₁ zero m₂ zero hyp = Data.+ (m₁ ⊕ 0) ≡⟨ cong Data.+_ hyp ⟩ Data.+ m₂ ≡⟨ cong Data.+_ (sym Nat.+-right-identity) ⟩∎ Data.+ (m₂ ⊕ 0) ∎ to-lemma m₁ zero m₂ (P.suc n₂) hyp = Data.+ (m₁ ⊕ 0) ≡⟨ cong Data.+_ Nat.+-right-identity ⟩ Data.+ m₁ ≡⟨ to-lemma₁ hyp ⟩∎ Data.+ m₂ +-[1+ n₂ ] ∎ to-lemma m₁ (P.suc n₁) m₂ zero hyp = Data.+ m₁ +-[1+ n₁ ] ≡⟨ to-lemma₂ hyp ⟩ Data.+ m₂ ≡⟨ cong Data.+_ (sym Nat.+-right-identity) ⟩∎ Data.+ (m₂ ⊕ 0) ∎ to-lemma m₁ (P.suc n₁) m₂ (P.suc n₂) hyp = Data.+ m₁ +-[1+ n₁ ] ≡⟨ to-lemma₃ _ _ _ _ hyp ⟩∎ Data.+ m₂ +-[1+ n₂ ] ∎ to : ℤ → Data.ℤ to = Q.rec λ where .[]ʳ (m , n) → Data.+ m Data.- Data.+ n .[]-respects-relationʳ {x = m₁ , n₁} {y = m₂ , n₂} → to-lemma m₁ n₁ m₂ n₂ .is-setʳ → Data.ℤ-set from : Data.ℤ → ℤ from (Data.+ n) = + n from Data.-[1+ n ] = [ (0 , P.suc n) ] to∘from : ∀ i → to (from i) ≡ i to∘from (Data.+ n) = to (from (Data.+ n)) ≡⟨⟩ Data.+ (n ⊕ 0) ≡⟨ cong Data.+_ Nat.+-right-identity ⟩∎ Data.+ n ∎ to∘from Data.-[1+ n ] = to (from Data.-[1+ n ]) ≡⟨⟩ Data.-[1+ n ] ∎ from-+_+-[1+_] : ∀ m n → from (Data.+ m +-[1+ n ]) ≡ [ (m , P.suc n) ] from-+ zero +-[1+ n ] = refl _ from-+ P.suc m +-[1+ zero ] = []≡[suc,suc] from-+ P.suc m +-[1+ P.suc n ] = from (Data.+ P.suc m +-[1+ P.suc n ]) ≡⟨⟩ from (Data.+ m +-[1+ n ]) ≡⟨ from-+ m +-[1+ n ] ⟩ [ (m , P.suc n) ] ≡⟨ []≡[suc,suc] ⟩∎ [ (P.suc m , P.suc (P.suc n)) ] ∎ from∘to : ∀ i → from (to i) ≡ i from∘to = Q.elim-prop λ where .[]ʳ (m , zero) → from (to (+ m)) ≡⟨⟩ + (m ⊕ 0) ≡⟨ cong +_ Nat.+-right-identity ⟩∎ + m ∎ .[]ʳ (m , P.suc n) → from (to [ (m , P.suc n) ]) ≡⟨⟩ from (Data.+ m +-[1+ n ]) ≡⟨ from-+ m +-[1+ n ] ⟩∎ [ (m , P.suc n) ] ∎ .is-propositionʳ _ → ℤ-set -- The bijection is homomorphic with respect to +_/Data.+_. ℤ↔ℤ-+ : _↔_.to ℤ↔ℤ (+ n) ≡ Data.+ n ℤ↔ℤ-+ {n = n} = Data.+ (n ⊕ 0) ≡⟨ cong Data.+_ Nat.+-right-identity ⟩∎ Data.+ n ∎ -- The bijection is homomorphic with respect to -[_]/Data.-[_]. ℤ↔ℤ--[] : _↔_.to ℤ↔ℤ -[ n ] ≡ Data.-[ n ] ℤ↔ℤ--[] {n = zero} = Data.+ 0 ∎ ℤ↔ℤ--[] {n = P.suc n} = Data.-[1+ n ] ∎ ------------------------------------------------------------------------ -- An eliminator and a recursor with poor computational behaviour module _ where private -- An eliminator for integers. This eliminator is not exported, -- because it is basically just the eliminator for quotients. elim : (P : ℤ → Type p) → (∀ i → Is-set (P i)) → (f : ∀ m n → P [ (m , n) ]) → (∀ {p q} (s : Same-difference p q) → subst P ([]-respects-relation s) (uncurry f p) ≡ uncurry f q) → ∀ i → P i elim _ P-set f resp = Q.elim λ where .[]ʳ → uncurry f .[]-respects-relationʳ → resp .is-setʳ → P-set -- The following computation rule holds by definition. elim-[] : (P : ℤ → Type p) → (P-set : ∀ i → Is-set (P i)) → (f : ∀ m n → P [ (m , n) ]) → (resp : ∀ {p q} (s : Same-difference p q) → subst P ([]-respects-relation s) (uncurry f p) ≡ uncurry f q) → elim P P-set f resp [ (m , n) ] ≡ f m n elim-[] _ _ _ _ = refl _ private -- A helper function used in the implementation of elim. elim′ : (P : ℤ → Type p) → (∀ n → P (_↔_.from ℤ↔ℤ (Data.+ n))) → (∀ n → P (_↔_.from ℤ↔ℤ Data.-[1+ n ])) → ∀ i → P (_↔_.from ℤ↔ℤ i) elim′ _ p n (Data.+ m) = p m elim′ _ p n Data.-[1+ m ] = n m -- An eliminator for integers. -- -- Note that the motive does not have to be a family of sets, and -- that the function does not need to respect the relation -- Same-difference. elim : (P : ℤ → Type p) → (∀ m n → P [ (m , n) ]) → ∀ i → P i elim P f i = $⟨ elim′ P (λ n → f n 0) (λ n → f 0 (P.suc n)) (_↔_.to ℤ↔ℤ i) ⟩ P (_↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ i)) ↝⟨ subst P (_↔_.left-inverse-of ℤ↔ℤ i) ⟩□ P i □ mutual -- A "computation" rule for elim. -- -- Here the function is required to respect Same-difference. Note that -- this "computation" rule does not (at the time of writing) in -- general hold by definition. elim-[] : {P : ℤ → Type p} (f : ∀ m n → P [ (m , n) ]) → (∀ {p q} (s : Same-difference p q) → subst P ([]-respects-relation s) (uncurry f p) ≡ uncurry f q) → elim P f [ (m , n) ] ≡ f m n elim-[] f hyp = elim-[]′ f (λ _ _ → hyp _) -- A variant of the computation rule in which the requirement to -- respect Same-difference has been replaced by a more specific -- condition. elim-[]′ : {P : ℤ → Type p} (f : ∀ m n → P [ (m , n) ]) → (∀ m n → subst P []≡[suc,suc] (f m n) ≡ f (P.suc m) (P.suc n)) → elim P f [ (m , n) ] ≡ f m n elim-[]′ {m = m} {n = zero} {P = P} f hyp = elim P f [ (m , 0) ] ≡⟨⟩ subst P (cong +_ Nat.+-right-identity) (f (m ⊕ 0) 0) ≡⟨ sym $ subst-∘ _ _ _ ⟩ subst (P ∘ +_) Nat.+-right-identity (f (m ⊕ 0) 0) ≡⟨ elim¹ (λ eq → subst (P ∘ +_) eq (f _ _) ≡ f _ _) (subst-refl _ _) _ ⟩∎ f m 0 ∎ elim-[]′ {m = m} {n = P.suc n} {P = P} f hyp = elim P f [ (m , P.suc n) ] ≡⟨⟩ subst P (_↔_.left-inverse-of ℤ↔ℤ [ (m , P.suc n) ]) $ elim′ P (λ n → f n 0) (λ n → f 0 (P.suc n)) (Data.+ m +-[1+ n ]) ≡⟨ lemma m n ⟩∎ f m (P.suc n) ∎ where lemma : ∀ m n → subst P (_↔_.left-inverse-of ℤ↔ℤ [ (m , P.suc n) ]) (elim′ P (λ n → f n 0) (λ n → f 0 (P.suc n)) (Data.+ m +-[1+ n ])) ≡ f m (P.suc n) lemma zero n = subst P (refl _) (f 0 (P.suc n)) ≡⟨ subst-refl _ _ ⟩∎ f 0 (P.suc n) ∎ lemma (P.suc m) zero = subst P []≡[suc,suc] (f m 0) ≡⟨ hyp _ _ ⟩∎ f (P.suc m) 1 ∎ lemma (P.suc m) (P.suc n) = subst P (trans (_↔_.left-inverse-of ℤ↔ℤ [ (m , P.suc n) ]) []≡[suc,suc]) (elim′ P (λ n → f n 0) (λ n → f 0 (P.suc n)) (Data.+ m +-[1+ n ])) ≡⟨ sym $ subst-subst _ _ _ _ ⟩ subst P []≡[suc,suc] (subst P (_↔_.left-inverse-of ℤ↔ℤ [ (m , P.suc n) ]) (elim′ P (λ n → f n 0) (λ n → f 0 (P.suc n)) (Data.+ m +-[1+ n ]))) ≡⟨ cong (subst P ([]-respects-relation _)) $ lemma m n ⟩ subst P []≡[suc,suc] (f m (P.suc n)) ≡⟨ hyp _ _ ⟩∎ f (P.suc m) (P.suc (P.suc n)) ∎ private -- A helper function used in the implementation of rec. rec′ : (ℕ → A) → (ℕ → A) → Data.ℤ → A rec′ p n (Data.+ m) = p m rec′ p n Data.-[1+ m ] = n m -- A recursor for integers. rec : (ℕ → ℕ → A) → ℤ → A rec {A = A} f = ℤ ↔⟨ ℤ↔ℤ ⟩ Data.ℤ ↝⟨ rec′ (λ n → f n 0) (λ n → f 0 (P.suc n)) ⟩□ A □ -- The recursor could have been defined in terms of the eliminator. -- -- The recursor is not defined in terms of the eliminator in this way -- because (in at least some cases) this would lead to different -- computational behaviour. rec≡elim : (f : ℕ → ℕ → A) → rec f i ≡ elim (const _) f i rec≡elim {i = i} f = rec f i ≡⟨⟩ rec′ (λ n → f n 0) (λ n → f 0 (P.suc n)) (_↔_.to ℤ↔ℤ i) ≡⟨ lemma (_↔_.to ℤ↔ℤ i) ⟩ elim′ (const _) (λ n → f n 0) (λ n → f 0 (P.suc n)) (_↔_.to ℤ↔ℤ i) ≡⟨ sym $ subst-const _ ⟩ subst (const _) (_↔_.left-inverse-of ℤ↔ℤ i) $ elim′ (const _) (λ n → f n 0) (λ n → f 0 (P.suc n)) (_↔_.to ℤ↔ℤ i) ≡⟨⟩ elim (const _) f i ∎ where lemma : ∀ i → rec′ (λ n → f n 0) (λ n → f 0 (P.suc n)) i ≡ elim′ (const _) (λ n → f n 0) (λ n → f 0 (P.suc n)) i lemma (Data.+ _) = refl _ lemma Data.-[1+ _ ] = refl _ -- A "computation" rule for rec. -- -- Note that this "computation" rule does not (at the time of writing) -- in general hold by definition. rec-[] : (f : ℕ → ℕ → A) → (∀ {p q} → Same-difference p q → uncurry f p ≡ uncurry f q) → rec f [ (m , n) ] ≡ f m n rec-[] {m = m} {n = n} f hyp = rec f [ (m , n) ] ≡⟨ rec≡elim f ⟩ elim (const _) f [ (m , n) ] ≡⟨ elim-[] f (λ {p q} s → subst (const _) ([]-respects-relation s) (uncurry f p) ≡⟨ subst-const _ ⟩ uncurry f p ≡⟨ hyp s ⟩∎ uncurry f q ∎) ⟩∎ f m n ∎ ------------------------------------------------------------------------ -- Negation, addition and subtraction -- A helper function that can be used to define unary operators on -- integers. unary-operator : (f : ℕ × ℕ → ℕ × ℕ) → (∀ {i j} → Same-difference i j → Same-difference (f i) (f j)) → ℤ → ℤ unary-operator f resp = Q.rec λ where .[]ʳ i → [ f i ] .[]-respects-relationʳ s → []-respects-relation (resp s) .is-setʳ → ℤ-set private -- A computation rule for unary-operator. -- -- The function is not defined using the recursor above, but rather -- the quotient eliminator, to ensure that this computation rule -- holds by definition. unary-operator-[] : (f : ℕ × ℕ → ℕ × ℕ) → (resp : ∀ {i j} → Same-difference i j → Same-difference (f i) (f j)) → ∀ i → unary-operator f resp [ i ] ≡ [ f i ] unary-operator-[] _ _ _ = refl _ -- A helper function that can be used to define binary operators on -- integers. binary-operator : (f : ℕ × ℕ → ℕ × ℕ → ℕ × ℕ) → (∀ {i₁ i₂ j₁ j₂} → Same-difference i₁ i₂ → Same-difference j₁ j₂ → Same-difference (f i₁ j₁) (f i₂ j₂)) → ℤ → ℤ → ℤ binary-operator f resp = Q.rec λ where .[]ʳ i → Q.rec λ where .[]ʳ j → [ f i j ] .[]-respects-relationʳ s → []-respects-relation (resp (Nat.+-comm (proj₁ i)) s) .is-setʳ → ℤ-set .[]-respects-relationʳ s → ⟨ext⟩ $ Q.elim-prop λ where .[]ʳ i → []-respects-relation (resp s (Nat.+-comm (proj₁ i))) .is-propositionʳ _ → +⇒≡ {n = 1} ℤ-set .is-setʳ → Π-closure ext 2 λ _ → ℤ-set private -- A computation rule for binary-operator. -- -- The function is not defined using the recursor above, but rather -- the quotient eliminator, to ensure that this computation rule -- holds by definition. binary-operator-[] : (f : ℕ × ℕ → ℕ × ℕ → ℕ × ℕ) → (resp : ∀ {i₁ i₂ j₁ j₂} → Same-difference i₁ i₂ → Same-difference j₁ j₂ → Same-difference (f i₁ j₁) (f i₂ j₂)) → ∀ i j → binary-operator f resp [ i ] [ j ] ≡ [ f i j ] binary-operator-[] _ _ _ _ = refl _ -- Negation. infix 8 -_ -_ : ℤ → ℤ -_ = unary-operator swap sym -- Addition. infixl 6 _+_ _+_ : ℤ → ℤ → ℤ _+_ = binary-operator (Σ-zip _⊕_ _⊕_) (λ { {k₁ , k₂} {ℓ₁ , ℓ₂} {m₁ , m₂} {n₁ , n₂} hyp₁ hyp₂ → (k₁ ⊕ m₁) ⊕ (ℓ₂ ⊕ n₂) ≡⟨ lemma k₁ ⟩ (k₁ ⊕ ℓ₂) ⊕ (m₁ ⊕ n₂) ≡⟨ cong₂ _⊕_ hyp₁ hyp₂ ⟩ (k₂ ⊕ ℓ₁) ⊕ (m₂ ⊕ n₁) ≡⟨ lemma k₂ ⟩∎ (k₂ ⊕ m₂) ⊕ (ℓ₁ ⊕ n₁) ∎ }) where lemma : ∀ _ {_ _ _} → _ lemma a {b} {c} {d} = (a ⊕ b) ⊕ (c ⊕ d) ≡⟨ sym $ Nat.+-assoc a ⟩ a ⊕ (b ⊕ (c ⊕ d)) ≡⟨ cong (a ⊕_) $ Nat.+-assoc b ⟩ a ⊕ ((b ⊕ c) ⊕ d) ≡⟨ cong ((a ⊕_) ∘ (_⊕ d)) $ Nat.+-comm b ⟩ a ⊕ ((c ⊕ b) ⊕ d) ≡⟨ cong (a ⊕_) $ sym $ Nat.+-assoc c ⟩ a ⊕ (c ⊕ (b ⊕ d)) ≡⟨ Nat.+-assoc a ⟩∎ (a ⊕ c) ⊕ (b ⊕ d) ∎ -- Subtraction. infixl 6 _-_ _-_ : ℤ → ℤ → ℤ i - j = i + - j -- The implementation of negation given here matches the one in -- Integer. -₁≡-₁ : ∀ i → - (_↔_.from ℤ↔ℤ i) ≡ _↔_.from ℤ↔ℤ (Data.- i) -₁≡-₁ (Data.+ zero) = -[ 0 ] ∎ -₁≡-₁ (Data.+ (P.suc n)) = -[ P.suc n ] ∎ -₁≡-₁ Data.-[1+ n ] = + P.suc n ∎ -- A lemma used in the implementation of +≡+. ++-[1+]≡++-[1+] : + m + -[ P.suc n ] ≡ _↔_.from ℤ↔ℤ (Data.+ m +-[1+ n ]) ++-[1+]≡++-[1+] {m = zero} {n = n} = refl _ ++-[1+]≡++-[1+] {m = P.suc m} {n = zero} = [ (P.suc (m ⊕ 0) , 1) ] ≡⟨ cong (Q.[_] ∘ (_, 1) ∘ P.suc) Nat.+-right-identity ⟩ [ (P.suc m , 1) ] ≡⟨ sym []≡[suc,suc] ⟩∎ [ (m , 0) ] ∎ ++-[1+]≡++-[1+] {m = P.suc m} {n = P.suc n} = + P.suc m + -[ P.suc (P.suc n) ] ≡⟨ sym []≡[suc,suc] ⟩ + m + -[ P.suc n ] ≡⟨ ++-[1+]≡++-[1+] ⟩ _↔_.from ℤ↔ℤ (Data.+ m +-[1+ n ]) ≡⟨⟩ _↔_.from ℤ↔ℤ (Data.+ P.suc m +-[1+ P.suc n ]) ∎ -- The implementation of addition given here matches the one in -- Integer. +≡+ : ∀ i → (_↔_.from ℤ↔ℤ i) + (_↔_.from ℤ↔ℤ j) ≡ _↔_.from ℤ↔ℤ (i Data.+ j) +≡+ {j = Data.+ n} (Data.+ m) = + (m ⊕ n) ∎ +≡+ {j = Data.-[1+ n ]} (Data.+ m) = ++-[1+]≡++-[1+] +≡+ {j = Data.+ n} Data.-[1+ m ] = -[ P.suc m ] + + n ≡⟨ []-respects-relation ( n ⊕ P.suc m ≡⟨ Nat.+-comm n ⟩ P.suc m ⊕ n ≡⟨ sym $ cong₂ _⊕_ (Nat.+-right-identity {n = P.suc m}) Nat.+-right-identity ⟩∎ P.suc m ⊕ 0 ⊕ (n ⊕ 0) ∎) ⟩ + n + -[ P.suc m ] ≡⟨ ++-[1+]≡++-[1+] ⟩∎ _↔_.from ℤ↔ℤ (Data.+ n +-[1+ m ]) ∎ +≡+ {j = Data.-[1+ n ]} Data.-[1+ m ] = -[ P.suc m ⊕ P.suc n ] ≡⟨ cong (-[_] ∘ P.suc) $ sym $ Nat.suc+≡+suc _ ⟩∎ -[ P.suc (P.suc (m ⊕ n)) ] ∎ -- The implementation of subtraction given here matches the one in -- Integer. -≡- : ∀ i j → (_↔_.from ℤ↔ℤ i) - (_↔_.from ℤ↔ℤ j) ≡ _↔_.from ℤ↔ℤ (i Data.- j) -≡- i j = (_↔_.from ℤ↔ℤ i) - (_↔_.from ℤ↔ℤ j) ≡⟨⟩ (_↔_.from ℤ↔ℤ i) + - (_↔_.from ℤ↔ℤ j) ≡⟨ cong (λ j → _↔_.from ℤ↔ℤ i + j) $ -₁≡-₁ j ⟩ _↔_.from ℤ↔ℤ i + _↔_.from ℤ↔ℤ (Data.- j) ≡⟨ +≡+ i ⟩ _↔_.from ℤ↔ℤ (i Data.+ Data.- j) ≡⟨⟩ _↔_.from ℤ↔ℤ (i Data.- j) ∎ ------------------------------------------------------------------------ -- Some lemmas related to equality -- The Same-difference relation is pointwise equivalent to equality -- under [_] (assuming propositional extensionality). Same-difference≃[]≡[] : Propositional-extensionality lzero → Same-difference i j ≃ ([ i ] ≡ [ j ]) Same-difference≃[]≡[] prop-ext = related≃[equal] prop-ext Same-difference-is-equivalence-relation (λ {p} → Same-difference-propositional {p = p}) -- Non-negative integers are not equal to negative integers. +≢-[1+] : + m ≢ -[ P.suc n ] +≢-[1+] {m = m} {n = n} = Stable-¬ [ + m ≡ -[ P.suc n ] ↔⟨⟩ [ (m , 0) ] ≡ [ (0 , P.suc n) ] ↔⟨ inverse $ Same-difference≃[]≡[] prop-ext ⟩ Same-difference (m , 0) (0 , P.suc n) ↔⟨⟩ m ⊕ P.suc n ≡ 0 ↝⟨ trans (Nat.suc+≡+suc m) ⟩ P.suc (m ⊕ n) ≡ 0 ↝⟨ Nat.0≢+ ∘ sym ⟩□ ⊥ □ ] -- Non-positive integers are not equal to positive integers. +[1+]≢- : + P.suc m ≢ -[ n ] +[1+]≢- {m = m} {n = n} = Stable-¬ [ + P.suc m ≡ -[ n ] ↔⟨⟩ [ (P.suc m , 0) ] ≡ [ (0 , n) ] ↔⟨ inverse $ Same-difference≃[]≡[] prop-ext ⟩ Same-difference (P.suc m , 0) (0 , n) ↔⟨⟩ P.suc m ⊕ n ≡ 0 ↝⟨ Nat.0≢+ ∘ sym ⟩□ ⊥ □ ] -- The +_ "constructor" is cancellative (assuming propositional -- extensionality). +-cancellative : Propositional-extensionality lzero → + m ≡ + n → m ≡ n +-cancellative {m = m} {n = n} prop-ext = + m ≡ + n ↔⟨⟩ [ (m , 0) ] ≡ [ (n , 0) ] ↔⟨ inverse $ Same-difference≃[]≡[] prop-ext ⟩ m ⊕ 0 ≡ 0 ⊕ n ↝⟨ trans (sym Nat.+-right-identity) ⟩□ m ≡ n □ -- The -[_] "constructor" is cancellative (assuming propositional -- extensionality). -[]-cancellative : Propositional-extensionality lzero → -[ m ] ≡ -[ n ] → m ≡ n -[]-cancellative {m = m} {n = n} prop-ext = -[ m ] ≡ -[ n ] ↝⟨ cong (-_) ⟩ + m ≡ + n ↝⟨ +-cancellative prop-ext ⟩□ m ≡ n □ -- Equality of integers is decidable (assuming propositional -- extensionality). infix 4 [_]_≟_ [_]_≟_ : Propositional-extensionality lzero → Decidable-equality ℤ [_]_≟_ prop-ext = Q.elim-prop λ where .[]ʳ i → Q.elim-prop λ where .[]ʳ _ → ⊎-map (_≃_.to $ Same-difference≃[]≡[] prop-ext) (_∘ _≃_.from (Same-difference≃[]≡[] prop-ext)) (Same-difference-decidable i) .is-propositionʳ _ → Dec-closure-propositional ext ℤ-set .is-propositionʳ _ → Π-closure ext 1 λ _ → Dec-closure-propositional ext ℤ-set -- Erased equality of integers is decidable. infix 4 _≟_ _≟_ : Decidable-erased-equality ℤ _≟_ = Q.elim-prop λ where .[]ʳ i → Q.elim-prop λ where .[]ʳ _ → Dec-Erased-map (from-equivalence $ Same-difference≃[]≡[] prop-ext) $ Dec→Dec-Erased $ Same-difference-decidable i .is-propositionʳ _ → Is-proposition-Dec-Erased ext ℤ-set .is-propositionʳ _ → Π-closure ext 1 λ _ → Is-proposition-Dec-Erased ext ℤ-set ------------------------------------------------------------------------ -- The successor and predecessor functions -- The successor function. suc : ℤ → ℤ suc = Q.rec λ where .[]ʳ (m , n) → [ (P.suc m , n) ] .[]-respects-relationʳ {x = m₁ , m₂} {y = n₁ , n₂} hyp → []-respects-relation (P.suc (m₁ ⊕ n₂) ≡⟨ cong P.suc hyp ⟩ P.suc (m₂ ⊕ n₁) ≡⟨ Nat.suc+≡+suc _ ⟩∎ m₂ ⊕ P.suc n₁ ∎ ) .is-setʳ → ℤ-set -- The function suc adds one to its input. suc≡1+ : ∀ i → suc i ≡ + 1 + i suc≡1+ = elim _ λ _ _ → refl _ -- The predecessor function. pred : ℤ → ℤ pred = Q.rec λ where .[]ʳ (m , n) → [ (m , P.suc n) ] .[]-respects-relationʳ {x = m₁ , m₂} {y = n₁ , n₂} hyp → []-respects-relation (m₁ ⊕ P.suc n₂ ≡⟨ sym $ Nat.suc+≡+suc _ ⟩ P.suc (m₁ ⊕ n₂) ≡⟨ cong P.suc hyp ⟩∎ P.suc (m₂ ⊕ n₁) ∎) .is-setʳ → ℤ-set -- The function pred subtracts one from its input. pred≡-1+ : ∀ i → pred i ≡ -[ 1 ] + i pred≡-1+ = elim _ λ _ _ → refl _ -- An equivalence between ℤ and ℤ corresponding to the successor -- function. successor : ℤ ≃ ℤ successor = Eq.↔→≃ suc pred (elim _ λ m _ → []-respects-relation (cong P.suc (Nat.+-comm m))) (elim _ λ m _ → []-respects-relation (cong P.suc (Nat.+-comm m))) ------------------------------------------------------------------------ -- Positive, negative -- The property of being positive. Positive : ℤ → Type Positive = Data.Positive ∘ _↔_.to ℤ↔ℤ -- Positive is propositional. Positive-propositional : ∀ i → Is-proposition (Positive i) Positive-propositional _ = Data.Positive-propositional -- The property of being negative. Negative : ℤ → Type Negative = Data.Negative ∘ _↔_.to ℤ↔ℤ -- Negative is propositional. Negative-propositional : ∀ i → Is-proposition (Negative i) Negative-propositional _ = Data.Negative-propositional -- No integer is both positive and negative. ¬+- : ∀ i → Positive i → Negative i → ⊥₀ ¬+- _ = Data.¬+- -- No integer is both positive and equal to zero. ¬+0 : Positive i → i ≡ + 0 → ⊥₀ ¬+0 pos ≡0 = Data.¬+0 pos (_↔_.from-to ℤ↔ℤ (sym ≡0)) -- No integer is both negative and equal to zero. ¬-0 : Negative i → i ≡ + 0 → ⊥₀ ¬-0 neg ≡0 = Data.¬-0 neg (_↔_.from-to ℤ↔ℤ (sym ≡0)) -- One can decide if an integer is negative, zero or positive. -⊎0⊎+ : ∀ i → Negative i ⊎ i ≡ + 0 ⊎ Positive i -⊎0⊎+ i = ⊎-map id (⊎-map (sym ∘ _↔_.to-from ℤ↔ℤ) id) (Data.-⊎0⊎+ $ _↔_.to ℤ↔ℤ i) -- If i and j are positive, then i + j is positive. >0→>0→+>0 : ∀ i j → Positive i → Positive j → Positive (i + j) >0→>0→+>0 i j i+ j+ = $⟨ Data.>0→>0→+>0 (_↔_.to ℤ↔ℤ i) (_↔_.to ℤ↔ℤ j) i+ j+ ⟩ Data.Positive (_↔_.to ℤ↔ℤ i Data.+ _↔_.to ℤ↔ℤ j) ↝⟨ subst Data.Positive $ sym $ _↔_.from-to ℤ↔ℤ $ sym $ +≡+ (_↔_.to ℤ↔ℤ i) ⟩ Data.Positive (_↔_.to ℤ↔ℤ (_↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ i) + _↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ j))) ↔⟨⟩ Positive (_↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ i) + _↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ j)) ↝⟨ subst Positive $ cong₂ _+_ (_↔_.left-inverse-of ℤ↔ℤ i) (_↔_.left-inverse-of ℤ↔ℤ j) ⟩□ Positive (i + j) □ -- If i and j are negative, then i + j is negative. <0→<0→+<0 : ∀ i j → Negative i → Negative j → Negative (i + j) <0→<0→+<0 i j i- j- = $⟨ Data.<0→<0→+<0 (_↔_.to ℤ↔ℤ i) (_↔_.to ℤ↔ℤ j) i- j- ⟩ Data.Negative (_↔_.to ℤ↔ℤ i Data.+ _↔_.to ℤ↔ℤ j) ↝⟨ subst Data.Negative $ sym $ _↔_.from-to ℤ↔ℤ $ sym $ +≡+ (_↔_.to ℤ↔ℤ i) ⟩ Data.Negative (_↔_.to ℤ↔ℤ (_↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ i) + _↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ j))) ↔⟨⟩ Negative (_↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ i) + _↔_.from ℤ↔ℤ (_↔_.to ℤ↔ℤ j)) ↝⟨ subst Negative $ cong₂ _+_ (_↔_.left-inverse-of ℤ↔ℤ i) (_↔_.left-inverse-of ℤ↔ℤ j) ⟩□ Negative (i + j) □ ------------------------------------------------------------------------ -- The group of integers -- The group of integers. ℤ-group : Group lzero ℤ-group .Group.Carrier = ℤ ℤ-group .Group.Carrier-is-set = ℤ-set ℤ-group .Group._∘_ = _+_ ℤ-group .Group.id = + 0 ℤ-group .Group._⁻¹ = -_ ℤ-group .Group.assoc = elim _ λ m₁ n₁ → elim _ λ _ _ → elim _ λ _ _ → cong [_] $ cong₂ _,_ (Nat.+-assoc m₁) (Nat.+-assoc n₁) ℤ-group .Group.left-identity = elim _ λ _ _ → refl _ ℤ-group .Group.right-identity = elim _ λ _ _ → cong [_] $ cong₂ _,_ Nat.+-right-identity Nat.+-right-identity ℤ-group .Group.left-inverse = elim _ λ _ n → []-respects-relation (cong (_⊕ 0) $ Nat.+-comm n) ℤ-group .Group.right-inverse = elim _ λ m _ → []-respects-relation (cong (_⊕ 0) $ Nat.+-comm m) -- ℤ-group is isomorphic to Data.ℤ-group. ℤ≃ᴳℤ : ℤ-group ≃ᴳ Data.ℤ-group ℤ≃ᴳℤ = G.≃ᴳ-sym λ where .G.Homomorphic.related → Eq.↔⇒≃ (inverse ℤ↔ℤ) .G.Homomorphic.homomorphic i _ → sym (+≡+ i) -- ℤ-group is equal to Data.ℤ-group (assuming univalence). ℤ≡ℤ : Univalence lzero → ℤ-group ≡ Data.ℤ-group ℤ≡ℤ univ = _≃_.to (G.≃ᴳ≃≡ ext univ) ℤ≃ᴳℤ -- The group of integers is generated by + 1. ℤ-generated-by-1 : Generated-by ℤ-group (+ 1) ℤ-generated-by-1 = C.≃ᴳ→Generated-by→Generated-by (G.≃ᴳ-sym ℤ≃ᴳℤ) C.ℤ-generated-by-1 -- The group of integers is cyclic. ℤ-cyclic : Cyclic ℤ-group ℤ-cyclic = ∣ _ , ℤ-generated-by-1 ∣ -- The group of integers is abelian. ℤ-abelian : Abelian ℤ-group ℤ-abelian = C.Cyclic→Abelian ℤ-group ℤ-cyclic -- The direct product of the group of integers and the group of -- integers is not cyclic. ℤ×ℤ-not-cyclic : ¬ Cyclic (ℤ-group G.× ℤ-group) ℤ×ℤ-not-cyclic = Cyclic (ℤ-group G.× ℤ-group) ↝⟨ C.≃ᴳ→Cyclic→Cyclic (G.↝-× ℤ≃ᴳℤ ℤ≃ᴳℤ) ⟩ Cyclic (Data.ℤ-group G.× Data.ℤ-group) ↝⟨ C.ℤ×ℤ-not-cyclic ⟩□ ⊥ □ -- The group of integers is not isomorphic to the direct product of -- the group of integers and the group of integers. ℤ≄ᴳℤ×ℤ : ¬ ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ℤ≄ᴳℤ×ℤ = ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ↝⟨ G.↝ᴳ-trans (G.≃ᴳ-sym ℤ≃ᴳℤ) ∘ flip G.↝ᴳ-trans (G.↝-× ℤ≃ᴳℤ ℤ≃ᴳℤ) ⟩ Data.ℤ-group ≃ᴳ (Data.ℤ-group G.× Data.ℤ-group) ↝⟨ C.ℤ≄ᴳℤ×ℤ ⟩□ ⊥ □ -- The group of integers is not equal to the direct product of the -- group of integers and the group of integers. ℤ≢ℤ×ℤ : ℤ-group ≢ (ℤ-group G.× ℤ-group) ℤ≢ℤ×ℤ = ℤ-group ≡ (ℤ-group G.× ℤ-group) ↝⟨ flip (subst (ℤ-group ≃ᴳ_)) G.↝ᴳ-refl ⟩ ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ↝⟨ ℤ≄ᴳℤ×ℤ ⟩□ ⊥ □
{ "alphanum_fraction": 0.4627105811, "avg_line_length": 32.7797311272, "ext": "agda", "hexsha": "0df4e05c45fb4b1cc9cb926b2f3cdf7f09fbc890", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Integer/Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Integer/Quotient.agda", "max_line_length": 131, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Integer/Quotient.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 12712, "size": 31698 }
-- Reported by guillaume.brunerie, Sep 18, 2013 -- Andreas, 2013-10-27 issue submitted by Guilliaume Brunerie {-# OPTIONS --copatterns #-} module Issue907 where -- Globular types as a coinductive record record Glob : Set1 where coinductive field Ob : Set Hom : (a b : Ob) → Glob open Glob public Glob-corec : {A : Set1} (Ob* : A → Set) (Hom* : (x : A) (a b : Ob* x) → A) → (A → Glob) Ob (Glob-corec Ob* Hom* x) = Ob* x Hom (Glob-corec Ob* Hom* x) a b = Glob-corec Ob* Hom* (Hom* x a b) -- For the second equation to type-check, -- we need to reduce with the first equation!
{ "alphanum_fraction": 0.6333333333, "avg_line_length": 25, "ext": "agda", "hexsha": "4500edff360802492227edd74fc16e72c293e838", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue907.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue907.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue907.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 209, "size": 600 }
module Oscar.Category.CategoryAction where open import Oscar.Category.Action open import Oscar.Category.Category open import Oscar.Category.SemigroupoidAction open import Oscar.Category.Setoid open import Oscar.Level module _ {𝔊𝔬 𝔊𝔪 𝔊𝔮} (category : Category 𝔊𝔬 𝔊𝔪 𝔊𝔮) where open Category category module _ {𝔄𝔬 𝔄𝔮} (action : Action ⋆ 𝔄𝔬 𝔄𝔮) where open Action action record IsCategoryAction (_◂_ : ∀ {x y} → x ↦ y → ↥ x → ↥ y) : Set (𝔊𝔬 ⊔ 𝔊𝔪 ⊔ 𝔊𝔮 ⊔ 𝔄𝔬 ⊔ 𝔄𝔮) where field ⦃ isSemigroupoidAction ⦄ : IsSemigroupoidAction semigroupoid action _◂_ field identity : ∀ {x} → (s : ↥ x) → ε ◂ s ≋ s open IsCategoryAction ⦃ … ⦄ public record CategoryAction 𝔊𝔬 𝔊𝔪 𝔊𝔮 𝔄𝔬 𝔄𝔮 : Set (lsuc (𝔊𝔬 ⊔ 𝔊𝔪 ⊔ 𝔊𝔮 ⊔ 𝔄𝔬 ⊔ 𝔄𝔮)) where constructor [_/_] field category : Category 𝔊𝔬 𝔊𝔪 𝔊𝔮 open Category category public field action : Action ⋆ 𝔄𝔬 𝔄𝔮 open Action action public field _◂_ : ∀ {x y} → x ↦ y → ↥ x → ↥ y field ⦃ isCategoryAction ⦄ : IsCategoryAction category action _◂_ semgroupoidAction : SemigroupoidAction _ _ _ _ _ SemigroupoidAction.semigroupoid semgroupoidAction = semigroupoid SemigroupoidAction.action semgroupoidAction = action SemigroupoidAction._◂_ semgroupoidAction = _◂_
{ "alphanum_fraction": 0.7040650407, "avg_line_length": 31.5384615385, "ext": "agda", "hexsha": "fcc96a7ad7f9366d0b9be158e0a6baad39862552", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/CategoryAction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/CategoryAction.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/CategoryAction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 519, "size": 1230 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Morphisms between algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Morphism where open import Relation.Binary open import Algebra open import Algebra.FunctionProperties import Algebra.Properties.Group as GroupP open import Function open import Level import Relation.Binary.Reasoning.Setoid as EqR ------------------------------------------------------------------------ -- Basic definitions module Definitions {f t ℓ} (From : Set f) (To : Set t) (_≈_ : Rel To ℓ) where Morphism : Set _ Morphism = From → To Homomorphic₀ : Morphism → From → To → Set _ Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘ Homomorphic₁ : Morphism → Fun₁ From → Op₁ To → Set _ Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ (∘ ⟦ x ⟧) Homomorphic₂ : Morphism → Fun₂ From → Op₂ To → Set _ Homomorphic₂ ⟦_⟧ _∙_ _∘_ = ∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧) ------------------------------------------------------------------------ -- Structure homomorphisms module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Semigroup c₁ ℓ₁) (To : Semigroup c₂ ℓ₂) where private module F = Semigroup From module T = Semigroup To open Definitions F.Carrier T.Carrier T._≈_ record IsSemigroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field ⟦⟧-cong : ⟦_⟧ Preserves F._≈_ ⟶ T._≈_ ∙-homo : Homomorphic₂ ⟦_⟧ F._∙_ T._∙_ syntax IsSemigroupMorphism From To F = F Is From -Semigroup⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Monoid c₁ ℓ₁) (To : Monoid c₂ ℓ₂) where private module F = Monoid From module T = Monoid To open Definitions F.Carrier T.Carrier T._≈_ record IsMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field sm-homo : IsSemigroupMorphism F.semigroup T.semigroup ⟦_⟧ ε-homo : Homomorphic₀ ⟦_⟧ F.ε T.ε open IsSemigroupMorphism sm-homo public syntax IsMonoidMorphism From To F = F Is From -Monoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : CommutativeMonoid c₁ ℓ₁) (To : CommutativeMonoid c₂ ℓ₂) where private module F = CommutativeMonoid From module T = CommutativeMonoid To open Definitions F.Carrier T.Carrier T._≈_ record IsCommutativeMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public syntax IsCommutativeMonoidMorphism From To F = F Is From -CommutativeMonoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : IdempotentCommutativeMonoid c₁ ℓ₁) (To : IdempotentCommutativeMonoid c₂ ℓ₂) where private module F = IdempotentCommutativeMonoid From module T = IdempotentCommutativeMonoid To open Definitions F.Carrier T.Carrier T._≈_ record IsIdempotentCommutativeMonoidMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public isCommutativeMonoidMorphism : IsCommutativeMonoidMorphism F.commutativeMonoid T.commutativeMonoid ⟦_⟧ isCommutativeMonoidMorphism = record { mn-homo = mn-homo } syntax IsIdempotentCommutativeMonoidMorphism From To F = F Is From -IdempotentCommutativeMonoid⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Group c₁ ℓ₁) (To : Group c₂ ℓ₂) where private module F = Group From module T = Group To open Definitions F.Carrier T.Carrier T._≈_ record IsGroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field mn-homo : IsMonoidMorphism F.monoid T.monoid ⟦_⟧ open IsMonoidMorphism mn-homo public ⁻¹-homo : Homomorphic₁ ⟦_⟧ F._⁻¹ T._⁻¹ ⁻¹-homo x = let open EqR T.setoid in T.uniqueˡ-⁻¹ ⟦ x F.⁻¹ ⟧ ⟦ x ⟧ $ begin ⟦ x F.⁻¹ ⟧ T.∙ ⟦ x ⟧ ≈⟨ T.sym (∙-homo (x F.⁻¹) x) ⟩ ⟦ x F.⁻¹ F.∙ x ⟧ ≈⟨ ⟦⟧-cong (F.inverseˡ x) ⟩ ⟦ F.ε ⟧ ≈⟨ ε-homo ⟩ T.ε ∎ syntax IsGroupMorphism From To F = F Is From -Group⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : AbelianGroup c₁ ℓ₁) (To : AbelianGroup c₂ ℓ₂) where private module F = AbelianGroup From module T = AbelianGroup To open Definitions F.Carrier T.Carrier T._≈_ record IsAbelianGroupMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field gp-homo : IsGroupMorphism F.group T.group ⟦_⟧ open IsGroupMorphism gp-homo public syntax IsAbelianGroupMorphism From To F = F Is From -AbelianGroup⟶ To module _ {c₁ ℓ₁ c₂ ℓ₂} (From : Ring c₁ ℓ₁) (To : Ring c₂ ℓ₂) where private module F = Ring From module T = Ring To open Definitions F.Carrier T.Carrier T._≈_ record IsRingMorphism (⟦_⟧ : Morphism) : Set (c₁ ⊔ ℓ₁ ⊔ c₂ ⊔ ℓ₂) where field +-abgp-homo : ⟦_⟧ Is F.+-abelianGroup -AbelianGroup⟶ T.+-abelianGroup *-mn-homo : ⟦_⟧ Is F.*-monoid -Monoid⟶ T.*-monoid syntax IsRingMorphism From To F = F Is From -Ring⟶ To
{ "alphanum_fraction": 0.598285603, "avg_line_length": 29.3314285714, "ext": "agda", "hexsha": "c866460d403082201ea137b08d6e3a7cc28e5b11", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Morphism.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1856, "size": 5133 }
module Function.Equals.Proofs where import Lvl open import Data import Functional import Function.Equals open import Logic.Predicate open import Logic.Propositional open import Structure.Setoid open import Structure.Function import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Syntax.Transitivity open import Syntax.Type open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓₑ ℓᵤ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level module Dependent where open Functional using (id) open import Functional.Dependent open Function.Equals.Dependent module _ {A : Type{ℓ₁}} {B : A → Type{ℓ₂}} ⦃ equiv-B : ∀{a} → Equiv{ℓₑ₂}(B(a)) ⦄ where [⊜]-identityₗ : Identityₗ {T₂ = (a : A) → B(a)} (_∘_)(id) _⊜_.proof (Identityₗ.proof [⊜]-identityₗ) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity equiv-B ⦄ module _ {A : Type{ℓ₁}} {B : Type{ℓ₂}} {C : B → Type{ℓ₂}} ⦃ equiv-C : ∀{b} → Equiv{ℓₑ₃}(C(b)) ⦄ where [⊜][∘]ₗ-function-raw : ∀{f₁ f₂ : (b : B) → C(b)}{g : A → B} → (f₁ ⊜ f₂) → ((f₁ ∘ g) ⊜ (f₂ ∘ g)) [⊜][∘]ₗ-function-raw {g = g} (intro feq) = intro(\{x} → feq{g(x)}) module _ {A : Type{ℓ₁}} {B : A → Type{ℓ₂}} {C : (a : A) → B(a) → Type{ℓ₃}} ⦃ equiv-C : ∀{a}{b} → Equiv{ℓₑ₃}(C(a)(b)) ⦄ where [⊜][∘ₛ]ₗ-function-raw : ∀{f₁ f₂ : (a : A) → (b : B(a)) → C(a)(b)}{g : (a : A) → B(a)} → (f₁ ⊜ f₂) → ((f₁ ∘ₛ g) ⊜ (f₂ ∘ₛ g)) [⊜][∘ₛ]ₗ-function-raw {g = g} (intro feq) = intro(\{x} → _⊜_.proof (feq{x}) {g(x)}) -- module _ {A : Type{ℓ₁}} {B : Type{ℓ₂}} {C : B → Type{ℓ₃}} ⦃ _ : Equiv(B) ⦄ ⦃ equiv-C : ∀{b} → Equiv(C(b)) ⦄ {f₁ f₂ : (b : B) → C(b)} ⦃ _ : Function(f₂) ⦄ where (TODO: Requires Function to be able to take a dependent function) -- [⊜][∘]-binaryOperator-raw : (f₁ ⊜ f₂) → ∀{g₁ g₂ : A → B} → (g₁ ⊜ g₂) → (f₁ ∘ g₁ ⊜ f₂ ∘ g₂) -- [⊜][∘]-binaryOperator-raw feq (intro geq) = [⊜][∘]ₗ-function-raw feq 🝖 (intro(congruence₁(f₂) (geq))) open Functional open Function.Equals private variable A B C D A₁ A₂ B₁ B₂ : Type{ℓ} -- TODO: Rename all these so that they mention (_∘_) module _ ⦃ _ : let _ = A in Equiv{ℓₑ₂}(B) ⦄ where [⊜]-identityₗ : Identityₗ {T₂ = A → B} (_∘_)(id) _⊜_.proof(Identityₗ.proof([⊜]-identityₗ)) = reflexivity(_≡_) [⊜]-identityᵣ : Identityᵣ {T₁ = A → B} (_∘_)(id) _⊜_.proof(Identityᵣ.proof([⊜]-identityᵣ)) = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ}(A) ⦄ where [⊜]-identity : Identity {T = A → A} (_∘_)(id) [⊜]-identity = intro ⦃ left = [⊜]-identityₗ ⦄ ⦃ right = [⊜]-identityᵣ ⦄ module _ ⦃ _ : let _ = A ; _ = B ; _ = C ; _ = D in Equiv{ℓₑ₄}(D) ⦄ where [⊜]-associativity : Names.AssociativityPattern {T₁ = C → D} {T₂ = B → C} {T₃ = A → B} (_∘_)(_∘_)(_∘_)(_∘_) _⊜_.proof ([⊜]-associativity {f} {g} {h}) {x} = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ₁}(Empty{ℓₑ}) ⦄ where [⊜]-emptyₗ : ∀{f g : A → Empty{ℓₑ}} → (f ⊜ g) [⊜]-emptyₗ {f = f} = intro(\{x} → empty(f(x))) module _ ⦃ _ : Equiv{ℓₑ}(A) ⦄ where [⊜]-emptyᵣ : ∀{f g : Empty{ℓₑ} → A} → (f ⊜ g) [⊜]-emptyᵣ = intro(\{}) module _ ⦃ _ : Equiv{ℓₑ}(Unit{ℓᵤ}) ⦄ where [⊜]-unitₗ : ∀{f g : A → Unit{ℓᵤ}} → (f ⊜ g) [⊜]-unitₗ = intro(reflexivity(_≡_)) module _ ⦃ _ : let _ = A ; _ = B ; _ = C in Equiv{ℓₑ₃}(C) ⦄ where [⊜][∘]ₗ-function-raw : ∀{f₁ f₂ : B → C}{g : A → B} → (f₁ ⊜ f₂) → ((f₁ ∘ g) ⊜ (f₂ ∘ g)) [⊜][∘]ₗ-function-raw {g = g} (intro feq) = intro(\{x} → feq{g(x)}) module _ ⦃ _ : let _ = A in Equiv{ℓₑ₂}(B) ⦄ ⦃ _ : Equiv{ℓₑ₃}(C) ⦄ {f₁ f₂ : B → C} ⦃ func₂ : Function(f₂) ⦄ {g₁ g₂ : A → B} where [⊜][∘]-binaryOperator-raw : (f₁ ⊜ f₂) → (g₁ ⊜ g₂) → (f₁ ∘ g₁ ⊜ f₂ ∘ g₂) [⊜][∘]-binaryOperator-raw feq (intro geq) = [⊜][∘]ₗ-function-raw feq 🝖 (intro(congruence₁(f₂) (geq))) module _ ⦃ _ : let _ = A in Equiv{ℓₑ₂}(B) ⦄ ⦃ _ : Equiv{ℓₑ₃}(C) ⦄ ⦃ function : ∀{f : B → C} → Function(f) ⦄ where instance [⊜][∘]-binaryOperator : BinaryOperator(_∘_ {X = A}{Y = B}{Z = C}) BinaryOperator.congruence [⊜][∘]-binaryOperator = [⊜][∘]-binaryOperator-raw module _ ⦃ _ : let _ = A in Equiv{ℓₑ₂}(B) ⦄ where [⊜]-abstract : ∀{a b : B} → (a ≡ b) → ((x ↦ a) ⊜ ((x ↦ b) :of: (A → B))) [⊜]-abstract {a} {b} x = intro x [⊜]-apply : ∀{f g : A → B} → (f ⊜ g) → (∀{x} → (f(x) ≡ g(x))) [⊜]-apply (intro proof) = proof -- TODO: Is this correct? -- [⊜]-not-all : ∀{ℓ₁ ℓ₂}{T₁ : Type{ℓ₁}}{T₂ : Type{ℓ₂}} → (∀{f g : T₁ → T₂} → (f ⊜ g)) → IsEmpty(T₁) -- [⊜]-not-all{_}{_} {_} {_}{_} = intro(\{}) {- TODO: What assumptions? Unprovable? module _ {ℓ} -- {ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄} {A : Type{ℓ}} ⦃ _ : Equiv(A) ⦄ {B : Type{ℓ}} ⦃ _ : Equiv(B) ⦄ {C : Type{ℓ}} ⦃ eq-c : Equiv(C) ⦄ {D : Type{ℓ}} ⦃ eq-d : Equiv(D) ⦄ {f : (A → B) → (C → D)} ⦃ fn : ∀{ab} → Function {T₁ = C} ⦃ eq-c ⦄ {T₂ = D} ⦃ eq-d ⦄ (f(ab)) ⦄ where instance [⊜]-function : Function {T₁ = A → B} ⦃ [⊜]-equiv ⦄ {T₂ = C → D} ⦃ [⊜]-equiv ⦄ (f) _⊜_.proof (Function.congruence ([⊜]-function) {g} {h} (intro eq)) {x} = {!!} -}
{ "alphanum_fraction": 0.5386468581, "avg_line_length": 43.3130434783, "ext": "agda", "hexsha": "be5e46febca696923d3b57af86fa9a80608df749", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Equals/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Equals/Proofs.agda", "max_line_length": 230, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Equals/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2514, "size": 4981 }
{-# OPTIONS --safe #-} module Definition.Conversion.Conversion where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.RedSteps open import Definition.Typed.Properties open import Definition.Conversion open import Definition.Conversion.Stability open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.Reduction open import Tools.Product import Tools.PropositionalEquality as PE mutual -- Conversion of algorithmic equality. convConv↑Term : ∀ {t u A B Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t [conv↑] u ∷ A ^ l → Δ ⊢ t [conv↑] u ∷ B ^ l convConv↑Term Γ≡Δ A≡B ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = let _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D′ = whNorm ⊢B B₁≡B′ = trans (sym (subset* D)) (trans A≡B (subset* (red D′))) in [↑]ₜ B′ t′ u′ (stabilityRed* Γ≡Δ (red D′)) (stabilityRed*Term Γ≡Δ (conv* d B₁≡B′)) (stabilityRed*Term Γ≡Δ (conv* d′ B₁≡B′)) whnfB′ whnft′ whnfu′ (convConv↓Term Γ≡Δ B₁≡B′ whnfB′ t<>u) -- Conversion of algorithmic equality with terms and types in WHNF. convConv↓Term : ∀ {t u A B Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B ^ [ ! , l ] → Whnf B → Γ ⊢ t [conv↓] u ∷ A ^ l → Δ ⊢ t [conv↓] u ∷ B ^ l convConv↓Term Γ≡Δ A≡B whnfB (ℕ-ins x) rewrite ℕ≡A A≡B whnfB = ℕ-ins (stability~↓! Γ≡Δ x) convConv↓Term Γ≡Δ A≡B whnfB (ne x) rewrite U≡A-whnf A≡B whnfB = ne (stability~↓! Γ≡Δ x) convConv↓Term Γ≡Δ A≡B whnfB (ne-ins t u x x₁) with ne≡A x A≡B whnfB convConv↓Term Γ≡Δ A≡B whnfB (ne-ins t u x x₁) | B , neB , PE.refl = ne-ins (stabilityTerm Γ≡Δ (conv t A≡B)) (stabilityTerm Γ≡Δ (conv u A≡B)) neB (stability~↓! Γ≡Δ x₁) convConv↓Term Γ≡Δ A≡B whnfB (zero-refl x) rewrite ℕ≡A A≡B whnfB = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in zero-refl ⊢Δ convConv↓Term Γ≡Δ A≡B whnfB (suc-cong x) rewrite ℕ≡A A≡B whnfB = suc-cong (stabilityConv↑Term Γ≡Δ x) convConv↓Term Γ≡Δ A≡B whnfB (η-eq l< l<' x x₁ x₂ y y₁ x₃) with Π≡A A≡B whnfB convConv↓Term Γ≡Δ A≡B whnfB (η-eq l< l<' x x₁ x₂ y y₁ x₃) | F′ , G′ , PE.refl = let F≡F′ , rF≡rF′ , _ , _ , G≡G′ = injectivity A≡B ⊢F , ⊢F′ = syntacticEq F≡F′ in η-eq l< l<' (stability Γ≡Δ ⊢F′) (stabilityTerm Γ≡Δ (conv x₁ A≡B)) (stabilityTerm Γ≡Δ (conv x₂ A≡B)) y y₁ (convConv↑Term (Γ≡Δ ∙ F≡F′) G≡G′ x₃) convConv↓Term Γ≡Δ A≡B whnfB (U-refl x x₁) rewrite U≡A-whnf A≡B whnfB = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in U-refl x ⊢Δ convConv↓Term Γ≡Δ A≡B whnfB (ℕ-refl x) rewrite U≡A-whnf A≡B whnfB = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in ℕ-refl ⊢Δ convConv↓Term Γ≡Δ A≡B whnfB (Empty-refl x _) rewrite U≡A-whnf A≡B whnfB = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Empty-refl x ⊢Δ convConv↓Term Γ≡Δ A≡B whnfB (Π-cong lΠ rF lF lG l< l<' x x₁ x₂) rewrite U≡A-whnf A≡B whnfB = Π-cong lΠ rF lF lG l< l<' (stability Γ≡Δ x) (stabilityConv↑Term Γ≡Δ x₁) (stabilityConv↑Term (Γ≡Δ ∙ refl x) x₂) convConv↓Term Γ≡Δ A≡B whnfB (∃-cong lΠ x x₁ x₂) rewrite U≡A-whnf A≡B whnfB = ∃-cong lΠ (stability Γ≡Δ x) (stabilityConv↑Term Γ≡Δ x₁) (stabilityConv↑Term (Γ≡Δ ∙ refl x) x₂) -- Conversion of algorithmic equality with the same context. convConvTerm : ∀ {t u A B Γ l} → Γ ⊢ t [conv↑] u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t [conv↑] u ∷ B ^ l convConvTerm t<>u A≡B = convConv↑Term (reflConEq (wfEq A≡B)) A≡B t<>u conv~↑% : ∀ {t u A B Γ l} -- → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↑% A ^ l → Γ ⊢ A ≡ B ^ [ % , l ] → Γ ⊢ t ~ u ↑% B ^ l conv~↑% (%~↑ ⊢k ⊢l) e = %~↑ (conv ⊢k e) (conv ⊢l e) --(stabilityTerm ⊢Γ≡Δ (conv ⊢k e)) (stabilityTerm ⊢Γ≡Δ (conv ⊢l e)) convConvTerm%! : ∀ {t u A B Γ r l} → Γ ⊢ t [genconv↑] u ∷ A ^ [ r , l ] → Γ ⊢ A ≡ B ^ [ r , l ] → Γ ⊢ t [genconv↑] u ∷ B ^ [ r , l ] convConvTerm%! {r = !} = convConvTerm convConvTerm%! {r = %} = conv~↑%
{ "alphanum_fraction": 0.5542708825, "avg_line_length": 43.2448979592, "ext": "agda", "hexsha": "b2ea2d0597a1adfa3326693506c078edf5b8ea4d", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/Conversion.agda", "max_line_length": 114, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 1882, "size": 4238 }