Search is not available for this dataset
text
string
meta
dict
module ShouldBeAppliedToTheDatatypeParameters where data Nat : Set where zero : Nat suc : Nat -> Nat mutual F : Nat -> Set F zero = Nat F (suc n) = Foo (F n) data Foo (A : Set) : Set where fooI1 : F (suc zero)
{ "alphanum_fraction": 0.6059322034, "avg_line_length": 13.8823529412, "ext": "agda", "hexsha": "1b54f51a54bb32fd24859e83e93c93f68e5fbd61", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 84, "size": 236 }
record ⊤ : Set where constructor tt data ⊥ : Set where open import Agda.Builtin.Size record Delay (F : Size → Set) (i : Size) : Set where coinductive field force : {j : Size< i} → F j open Delay public data Stream (A : Set) (i : Size) : Set where _∷_ : A → Delay (Stream A) i → Stream A i concat : Stream ⊤ ∞ → Delay (Stream ⊥) ∞ concat (xs ∷ xss) = concat (force xss) head : Stream ⊥ ∞ → ⊥ head (x ∷ xs) = x units : ∀ {i} → Stream ⊤ i units = tt ∷ λ where .force → units false : ⊥ false = head (force (concat units))
{ "alphanum_fraction": 0.6082862524, "avg_line_length": 20.4230769231, "ext": "agda", "hexsha": "62417ef84e7c1a335fefcd587c2cfcb0b959953b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2941.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2941.agda", "max_line_length": 52, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2941.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 192, "size": 531 }
-- Andreas, 2015-07-01 polarity needs to be computed for abstract defs. -- See also issue 1599 for the same problem with positivity. -- {-# OPTIONS -v tc.pos:10 -v tc.polarity:20 #-} open import Common.Size open import Common.Prelude data D (i : Size) : Set where c : ∀ (j : Size< i) → D i abstract E : Bool → Size → Set E true i = D i E false i = D i cast : ∀{i b} → E b i → E b (↑ i) cast x = x -- should succeed
{ "alphanum_fraction": 0.6175115207, "avg_line_length": 20.6666666667, "ext": "agda", "hexsha": "e39cbad35b9d71a48feaee9f4b1380b9b226a762", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PolarityAbstract.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PolarityAbstract.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PolarityAbstract.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 145, "size": 434 }
module List.Permutation.Pair.Properties (A : Set) where open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import List.Permutation.Base.Preorder A open import List.Permutation.Pair A open import Data.List open import Data.Product open import Relation.Binary.PreorderReasoning ∼-preorder open import Algebra open import Algebra.Structures lemma≈∼ : {xs ys zs : List A} → xs ≈ (ys , zs) → xs ∼ (ys ++ zs) lemma≈∼ (≈[]l zs) = refl∼ lemma≈∼ (≈[]r ys) rewrite ((proj₂ (IsMonoid.identity (Monoid.isMonoid (monoid A)))) ys) = refl∼ lemma≈∼ (≈xr {ys = ys} xs∼ys,zs') = ∼x /head (lemma++/l {xs = ys} /head) (lemma≈∼ xs∼ys,zs') lemma≈∼ (≈xl xs∼ys',zs) = ∼x /head /head (lemma≈∼ xs∼ys',zs) lemma≈ : {xs ys zs ws ys' zs' : List A} → xs ≈ (ys , zs) → ys ∼ ys' → zs ∼ zs' → ws ≈ (ys' , zs') → xs ∼ ws lemma≈ {xs} {ys} {zs} {ws} {ys'} {zs'} xs∼ys,zs ys∼ys' zs∼zs' ws∼ys',zs' = begin xs ∼⟨ lemma≈∼ xs∼ys,zs ⟩ ys ++ zs ∼⟨ lemma++∼ ys∼ys' zs∼zs' ⟩ ys' ++ zs' ∼⟨ sym∼ (lemma≈∼ ws∼ys',zs') ⟩ ws ∎
{ "alphanum_fraction": 0.5966608084, "avg_line_length": 36.7096774194, "ext": "agda", "hexsha": "c40129b35cfef720c353ca69f92f5deb8c02a0ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Permutation/Pair/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Permutation/Pair/Properties.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Permutation/Pair/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 474, "size": 1138 }
{-# OPTIONS --allow-unsolved-metas #-} module _ where open import Agda.Builtin.Bool postulate P : Set → Set record R : Set1 where constructor con field A : Set B : Set data D : Set1 where con : Set → Set → D snd : D → Set snd (con A B) = B -- Eliminating from an under-applied constructor shouldn't result in a -- crash. F : Bool → Set₁ F = {!!} bar : let x : F true; x = R.con Bool in P (x .R.B) bar = {!!} -- P (con Bool .R.B) bar2 : let x : F true; x = D.con Bool in P (snd x) bar2 = {!!} -- P (snd (con Bool)) -- These still show meta numbers because they refer to blocked -- typechecking problems. -- Reify could try harder to look at meta instantiations. bar3 : let x : F true; x = D.con Bool in P (snd (x x)) bar3 = {!!} -- P (snd _23) bar4 : let x : F true; x = (x : Bool) → Bool in P (x true) bar4 = {!!} -- P _32
{ "alphanum_fraction": 0.6023529412, "avg_line_length": 20.7317073171, "ext": "agda", "hexsha": "90791ac64b18525785db46b695dea0f33806c46e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/UnderappliedConstructor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/UnderappliedConstructor.agda", "max_line_length": 70, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/UnderappliedConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 281, "size": 850 }
{-# OPTIONS --without-K --erased-cubical --no-import-sorts #-} module Soundness where open import Prelude open import Instruments open import MakeTracks using (makeTrackList) open import Motif using (motif; levels) open import SUtil ---------------- macro getDef : Name → Term → TC ⊤ getDef n h = do d ← getDefinition n t ← quoteTC d unify h t record Line : Type where constructor line field lhs : List Name rhs : List Name open Line Proof : Type Proof = List Line -- Get only visible constructor names getNamesP : List (Arg Pattern) → List Name getNamesP [] = [] getNamesP (arg (arg-info v m) (Pattern.dot t) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.var x₁) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.lit l) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.proj f) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.absurd x₁) ∷ ps) = getNamesP ps getNamesP (arg (arg-info hidden m) (Pattern.con n _) ∷ ps) = getNamesP ps getNamesP (arg (arg-info instance′ m) (Pattern.con n _) ∷ ps) = getNamesP ps getNamesP (arg (arg-info visible m) (Pattern.con n _) ∷ ps) = n ∷ getNamesP ps {-# TERMINATING #-} getNamesT : Term → List Name getNamesAT : Arg Term → List Name getNamesT (con n args) = n ∷ concatMap getNamesAT args getNamesT (def n args) = n ∷ concatMap getNamesAT args getNamesT (var x₁ args) = concatMap getNamesAT args getNamesT (pat-lam cs args) = concatMap getNamesAT args getNamesT (lam v t) = [] getNamesT (pi a b) = [] getNamesT (agda-sort s) = [] getNamesT (lit l) = [] getNamesT (meta x₁ x₂) = [] getNamesT unknown = [] getNamesAT (arg i t) = getNamesT t getNamesC : Clause → Line getNamesC (Clause.clause tel ps t) = line (getNamesP ps) (getNamesT t) getNamesC (Clause.absurd-clause tel ps) = line (getNamesP ps) [] getNamesD : Definition → List Line getNamesD (function cs) = map getNamesC cs getNamesD (data-type pars cs) = [] getNamesD (record-type c fs) = [] getNamesD (data-cons d) = [] getNamesD axiom = [] getNamesD prim-fun = [] ---------------- data TopLevel : Type where s↑ : TopLevel s↓ : TopLevel sc↑ : TopLevel sc↓ : TopLevel sct↑ : TopLevel sct↓ : TopLevel topLevelName : TopLevel → Name topLevelName s↑ = quote soundness~↑ topLevelName s↓ = quote soundness~↓ topLevelName sc↑ = quote soundnessConv↑ topLevelName sc↓ = quote soundnessConv↓ topLevelName sct↑ = quote soundnessConv↑Term topLevelName sct↓ = quote soundnessConv↓Term isTopLevel : Name → Maybe TopLevel isTopLevel n = if n == quote soundness~↑ then just s↑ else if n == quote soundness~↓ then just s↓ else if n == quote soundnessConv↑ then just sc↑ else if n == quote soundnessConv↓ then just sc↓ else if n == quote soundnessConv↑Term then just sct↑ else if n == quote soundnessConv↓Term then just sct↓ else nothing topLevelDef : TopLevel → Definition topLevelDef s↑ = getDef soundness~↑ topLevelDef s↓ = getDef soundness~↓ topLevelDef sc↑ = getDef soundnessConv↑ topLevelDef sc↓ = getDef soundnessConv↓ topLevelDef sct↑ = getDef soundnessConv↑Term topLevelDef sct↓ = getDef soundnessConv↓Term topLevelProof : TopLevel → Proof topLevelProof = getNamesD ∘ topLevelDef --------------- -- Number of tracks to create tracks : ℕ tracks = 4 {-# TERMINATING #-} -- First argument n is current level (0 is bottom level; no recursive calls allowed) -- Second argument m is exponent for doubling speed (2^m) proof→notes : ℕ → ℕ → TopLevel → List (List Note) line→notes : ℕ → ℕ → Line → List (List Note) names→notes : ℕ → ℕ → List Name → List (List Note) -- starts with proof name proof→notes n m t = zipFull (2ⁿSpeed m (motif (topLevelName t)) ∷ []) (concatMap (line→notes n m) (topLevelProof t)) -- just use rhs for now line→notes n m (line lhs rhs) = names→notes n m rhs names→notes _ m [] = [] ∷ [] names→notes zero m ns@(_ ∷ _) = 2ⁿSpeed m (concatMap motif ns) ∷ [] names→notes (suc k) m (n ∷ ns) with isTopLevel n ... | just t = proof→notes k (suc m) t ++ names→notes (suc k) m ns ... | nothing = (2ⁿSpeed m (motif n) ∷ []) ++ names→notes (suc k) m ns proof→notesTop : ℕ → TopLevel → List (List Note) proof→notesTop level = proof→notes level 0 --------------- instruments : Vec InstrumentNumber-1 maxChannels instruments = drawbarOrgan ∷ -- 1 piano ∷ -- 2 electricPiano1 ∷ -- 3 churchOrgan ∷ -- 4 piano ∷ -- 5 piano ∷ -- 6 piano ∷ -- 7 piano ∷ -- 8 piano ∷ -- 9 drums ∷ -- 10 (percussion) piano ∷ -- 11 piano ∷ -- 12 piano ∷ -- 13 piano ∷ -- 14 piano ∷ -- 15 piano ∷ -- 16 [] music : Vec (List Note) tracks music = foldIntoVector (proof→notesTop levels s↑) tempo : ℕ tempo = 160 soundTracks : List MidiTrack soundTracks = makeTrackList instruments tempo music
{ "alphanum_fraction": 0.6486815416, "avg_line_length": 28.8304093567, "ext": "agda", "hexsha": "2f201525dcde7a91c5b74009ca20c89911322162", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_forks_event_min_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/Music", "max_forks_repo_path": "Soundness/agda/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/Music", "max_issues_repo_path": "Soundness/agda/Soundness.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/Music", "max_stars_repo_path": "Soundness/agda/Soundness.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-10T04:05:28.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-10T04:05:28.000Z", "num_tokens": 1603, "size": 4930 }
{-# OPTIONS --no-termination-check #-} ------------------------------------------------------------------------ -- A terminating parser data type and the accompanying interpreter ------------------------------------------------------------------------ -- This code is based on "Parallel Parsing Processes" by Koen -- Claessen. module Parallel where open import Parallel.Index open import Data.Product renaming (_,_ to pair) open import Data.Bool open import Data.Nat open import Data.Product.Record using (_,_) import Data.List as List open List using (List; []; _∷_; _++_) import Data.Vec as Vec open Vec using (Vec; []; _∷_) renaming (_++_ to _<+>_) open import Category.Monad.State open import Data.Function open import Data.Maybe import Relation.Binary.PropositionalEquality as PropEq open PropEq using (_≡_; refl) ------------------------------------------------------------------------ -- Parser monad P : Set -> (Set -> Set) P tok = StateT (List tok) List ------------------------------------------------------------------------ -- Basic parsers (no CPS) private module Base where -- returnPlus below takes a _vector_ of immediate results, since -- otherwise the returnPlus/returnPlus case of _∣_ would not type -- check. (Its type would have to be changed.) -- -- (The vector could just as well have been a list, if it were not -- for the unused module IncorrectBind below. However, documenting -- that this list is never empty is not a bad thing, and does not -- cost much.) codata Parser (tok r : Set) : Index -> Set where symbolBind : forall {i : tok -> Index} -> ((c : tok) -> Parser tok r (i c)) -> Parser tok r 0I fail : Parser tok r 0I returnPlus : forall {e d n} -> Vec r (suc n) -> Parser tok r (e , d) -> Parser tok r (true , suc d) -- Note that the type of this return function is not suitable if you -- want to state the monad laws (since (true , 1) is not a zero in -- the monoid which is used here). The return function defined below -- has a more suitable type, though. return : forall {tok r} -> r -> Parser tok r (true , 1) return x = returnPlus (Vec.[_] x) fail cast : forall {tok i₁ i₂ r} -> i₁ ≡ i₂ -> Parser tok r i₁ -> Parser tok r i₂ cast refl p = p infixl 0 _∣_ _∣_ : forall {tok r i₁ i₂} -> Parser tok r i₁ -> Parser tok r i₂ -> Parser tok r (i₁ ∣I i₂) fail ∣ p₂ ~ p₂ returnPlus xs p₁ ∣ fail ~ returnPlus xs p₁ symbolBind f₁ ∣ fail ~ symbolBind f₁ symbolBind f₁ ∣ symbolBind f₂ ~ symbolBind (\c -> f₁ c ∣ f₂ c) symbolBind f₁ ∣ returnPlus xs p₂ ~ returnPlus xs (symbolBind f₁ ∣ p₂) returnPlus xs p₁ ∣ symbolBind f₂ ~ returnPlus xs (symbolBind f₂ ∣ p₁) returnPlus xs₁ p₁ ∣ returnPlus xs₂ p₂ ~ returnPlus (xs₁ <+> xs₂) (p₁ ∣ p₂) -- parse is structurally recursive over the following lexicographic -- measure: -- -- ⑴ The input string. -- ⑵ The Distance index. parse : forall {tok r e d} -> Parser tok r (e , d) -> P tok r parse (symbolBind f) (c ∷ s) = parse (f c) s parse (symbolBind f) [] = [] parse fail _ = [] parse (returnPlus xs p) s = List.map (\x -> pair x s) (Vec.toList xs) ++ parse p s -- It may be interesting to note that it is hard to define bind -- directly. Note that the module Incorrect is not used for -- anything; bind is defined further down using CPS. private module IncorrectBind where -- choice ≈ foldr₁ _∣_. choice : forall {tok r i n} -> Vec (Parser tok r i) (suc n) -> Parser tok r i choice {i = i} = Vec.foldr₁ (\p₁ p₂ -> cast (∣-idempotent i) (p₁ ∣ p₂)) where open IndexSemiring -- This function is used to state the type of bind. bind-index : forall {tok r i} -> Parser tok r i -> Index -> Index bind-index (symbolBind f) _ = 0I bind-index fail _ = 0I bind-index (returnPlus xs p) i = i open IndexSemiring bind-index-lemma : forall {tok r i₁} (p : Parser tok r i₁) i₂ -> i₂ ∣I bind-index p i₂ ≡ i₂ bind-index-lemma (symbolBind f) i = proj₂ +-identity i bind-index-lemma fail i = proj₂ +-identity i bind-index-lemma (returnPlus xs p) i = ∣-idempotent i -- Note that bind has a non-trivial type. This is not a -- fundamental problem, though. The big problem is that bind is -- not productive (in general). The recursive call p >>= g in the -- last line is not guarded if, for instance, g = const fail, in -- which case we have (ignoring some casts) -- -- returnPlus xs p >>= g = p >>= g. -- -- If furthermore p = returnPlus xs p, then we have a real -- problem. _>>=_ : forall {tok r₁ r₂ i₁ i₂} -> (p₁ : Parser tok r₁ i₁) -> (r₁ -> Parser tok r₂ i₂) -> Parser tok r₂ (bind-index p₁ i₂) symbolBind f >>= g ~ symbolBind (\c -> f c >>= g) fail >>= g ~ fail returnPlus xs p >>= g ~ cast (bind-index-lemma p _) (choice (Vec.map g xs) ∣ p >>= g) ------------------------------------------------------------------------ -- CPS transformation -- The code below manually applies the continuation-passing monad -- transformer to the Base parser above to improve the efficiency of -- left-nested uses of bind. (And, in light of Base.Incorrect._>>=_, -- to enable a well-founded definition of bind.) data Parser (tok : Set) (i : Index) (r : Set) : Set1 where parser : (forall {i' r'} -> (r -> Base.Parser tok r' i') -> Base.Parser tok r' (i ·I i')) -> Parser tok i r private unP : forall {tok r i r' i'} -> Parser tok i r -> (r -> Base.Parser tok r' i') -> Base.Parser tok r' (i ·I i') unP (parser p) = p symbol : forall {tok} -> Parser tok 0I tok symbol = parser Base.symbolBind fail : forall {tok r} -> Parser tok 0I r fail = parser \k -> Base.fail -- A problematic variant of fail. See Parallel.Lib. problematic : forall {tok r} -> r -> Parser tok 0I r problematic x = parser (\k -> helper (k x)) where helper : forall {tok r' i'} -> Base.Parser tok r' i' -> Base.Parser tok r' 0I helper (Base.symbolBind _) = Base.fail helper Base.fail = Base.fail helper (Base.returnPlus _ _) = Base.fail return : forall {tok r} -> r -> Parser tok 1I r return x = parser \k -> k x -- Note that _>>=_ cannot easily be given a dependent type (where the -- second argument has type (x : r₁) -> Parser tok r₂ (i₂ x)). What -- would the type of the result of _>>=_ be? The type would depend on -- the input string, which is not an argument to _>>=_. -- -- Note also that the variant _!>>=_ from Parser/RecursiveDescent.Coinductive -- cannot (?) be implemented, since the continuation given to p cannot -- be dependently typed. infixl 1 _>>=_ _>>=_ : forall {tok r₁ r₂ i₁ i₂} -> Parser tok i₁ r₁ -> (r₁ -> Parser tok i₂ r₂) -> Parser tok (i₁ ·I i₂) r₂ _>>=_ {i₁ = i₁} {i₂} (parser p) f = parser \{i₃} k -> Base.cast (sym $ *-assoc i₁ i₂ i₃) (p \x -> unP (f x) k) where open IndexSemiring infixl 0 _∣_ _∣_ : forall {tok r i₁ i₂} -> Parser tok i₁ r -> Parser tok i₂ r -> Parser tok (i₁ ∣I i₂) r _∣_ {i₁ = i₁} {i₂ = i₂} (parser p₁) (parser p₂) = parser \{i₃} k -> Base.cast (sym $ proj₂ distrib i₃ i₁ i₂) (Base._∣_ (p₁ k) (p₂ k)) where open IndexSemiring -- Since _>>=_ has a non-dependent type it is hard to define sat -- without using the underlying parsers in Base, and hence sat is -- provided here. sat : forall {tok r} -> (tok -> Maybe r) -> Parser tok 0I r sat {tok} {r} p = parser \k -> Base.symbolBind (\c -> ok k (p c)) where okIndex : Index -> Maybe r -> Index okIndex i' nothing = 0I okIndex i' (just _) = i' ok : forall {r' i'} -> (r -> Base.Parser tok r' i') -> (x : Maybe r) -> Base.Parser tok r' (okIndex i' x) ok k nothing = Base.fail ok k (just x) = k x parse : forall {tok r i} -> Parser tok i r -> P tok r parse (parser p) = Base.parse (p Base.return) -- A variant which only returns parses which leave no remaining input. parse-complete : forall {tok r i} -> Parser tok i r -> List tok -> List r parse-complete p s = List.map proj₁ (List.filter (List.null ∘ proj₂) (parse p s))
{ "alphanum_fraction": 0.5725863284, "avg_line_length": 34.4696356275, "ext": "agda", "hexsha": "2e8f34ecbd0d2043ef448c760a59ee801cbd2723", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/Parallel.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/Parallel.agda", "max_line_length": 77, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/Parallel.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 2467, "size": 8514 }
{-# OPTIONS --no-qualified-instances #-} module NoQualifiedInstances-AnonymousInstance where postulate A : Set f : {{A}} → A postulate instance _ : A test : A test = f
{ "alphanum_fraction": 0.6818181818, "avg_line_length": 13.5384615385, "ext": "agda", "hexsha": "45697ef35235df0d51db1bfe46e4b0ffae5ee1a4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/NoQualifiedInstances-AnonymousInstance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/NoQualifiedInstances-AnonymousInstance.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/NoQualifiedInstances-AnonymousInstance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 176 }
open import Structure.Setoid open import Structure.Category open import Type module Structure.Category.Monoid {ℓₒ ℓₘ ℓₑ} {Obj : Type{ℓₒ}} {Morphism : Obj → Obj → Type{ℓₘ}} ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ (cat : Category(Morphism)) where open import Logic.Predicate open import Structure.Categorical.Properties open import Structure.Operator.Monoid open import Structure.Operator.Properties open Category(cat) -- A monoid constructed from a category for a specific object. monoid : ∀{x} → Monoid(_∘_ {x = x}) Monoid.binary-operator monoid = binaryOperator Associativity.proof (Monoid.associativity monoid) = Morphism.associativity(_∘_) ∃.witness (Monoid.identity-existence monoid) = id Identityₗ.proof (Identity.left (∃.proof (Monoid.identity-existence monoid))) = Morphism.identityₗ(_∘_)(id) Identityᵣ.proof (Identity.right (∃.proof (Monoid.identity-existence monoid))) = Morphism.identityᵣ(_∘_)(id)
{ "alphanum_fraction": 0.7539936102, "avg_line_length": 34.7777777778, "ext": "agda", "hexsha": "c2ea8cdfa4288304bd7cabcab3204e42e6990ee8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Monoid.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 287, "size": 939 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.types.Bool open import lib.types.Lift open import lib.types.Nat open import lib.types.Pointed open import lib.types.TLevel open import lib.types.Suspension module lib.types.IteratedSuspension where ⊙Susp^ : ∀ {i} (n : ℕ) → Ptd i → Ptd i ⊙Susp^ O X = X ⊙Susp^ (S n) X = ⊙Susp (⊙Susp^ n X) ⊙Susp^-conn : ∀ {i} (n : ℕ) {X : Ptd i} {m : ℕ₋₂} → is-connected m (fst X) → is-connected (⟨ n ⟩₋₂ +2+ m) (fst (⊙Susp^ n X)) ⊙Susp^-conn O cX = cX ⊙Susp^-conn (S n) cX = Susp-conn (⊙Susp^-conn n cX) ⊙Susp^-+ : ∀ {i} (m n : ℕ) {X : Ptd i} → ⊙Susp^ m (⊙Susp^ n X) == ⊙Susp^ (m + n) X ⊙Susp^-+ O n = idp ⊙Susp^-+ (S m) n = ap ⊙Susp (⊙Susp^-+ m n) ⊙susp^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y) → fst (⊙Susp^ n X ⊙→ ⊙Susp^ n Y) ⊙susp^-fmap O f = f ⊙susp^-fmap (S n) f = ⊙susp-fmap (⊙susp^-fmap n f) ⊙susp^-fmap-idf : ∀ {i} (n : ℕ) (X : Ptd i) → ⊙susp^-fmap n (⊙idf X) == ⊙idf (⊙Susp^ n X) ⊙susp^-fmap-idf O X = idp ⊙susp^-fmap-idf (S n) X = ap ⊙susp-fmap (⊙susp^-fmap-idf n X) ∙ ⊙susp-fmap-idf (⊙Susp^ n X) ⊙susp^-fmap-cst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ⊙susp^-fmap n (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙susp^-fmap-cst O = idp ⊙susp^-fmap-cst (S n) = ap ⊙susp-fmap (⊙susp^-fmap-cst n) ∙ (⊙susp-fmap-cst {X = ⊙Susp^ n _}) ⊙susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → ⊙susp^-fmap n (g ⊙∘ f) == ⊙susp^-fmap n g ⊙∘ ⊙susp^-fmap n f ⊙susp^-fmap-∘ O g f = idp ⊙susp^-fmap-∘ (S n) g f = ap ⊙susp-fmap (⊙susp^-fmap-∘ n g f) ∙ ⊙susp-fmap-∘ (⊙susp^-fmap n g) (⊙susp^-fmap n f) ⊙Sphere : (n : ℕ) → Ptd₀ ⊙Sphere n = ⊙Susp^ n ⊙Bool Sphere : (n : ℕ) → Type₀ Sphere n = fst (⊙Sphere n) -- favonia: [S¹] has its own elim rules in Circle.agda. ⊙S⁰ = ⊙Sphere 0 ⊙S¹ = ⊙Sphere 1 ⊙S² = ⊙Sphere 2 ⊙S³ = ⊙Sphere 3 S⁰ = Sphere 0 S¹ = Sphere 1 S² = Sphere 2 S³ = Sphere 3
{ "alphanum_fraction": 0.5338383838, "avg_line_length": 28.6956521739, "ext": "agda", "hexsha": "36f02a3632783ba57173520e1fb2044e2472462c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/IteratedSuspension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/IteratedSuspension.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/IteratedSuspension.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1055, "size": 1980 }
{-# OPTIONS --without-K #-} module HoTT.Exercises.Chapter2 where open import HoTT.Base module Exercise1 {i} {A : 𝒰 i} where module _ {x y z : A} (p : x == y) (q : y == z) where -- Induction over p _∙₁_ : x == z _∙₁_ = =-ind D d p z q where D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → x == z d : (x : A) → D x x refl d x z q = q -- Induction over q _∙₂_ : x == z _∙₂_ = =-ind D d q x p where D : (y z : A) → y == z → 𝒰 i D y z q = (x : A) → (p : x == y) → x == z d : (y : A) → D y y refl d y x p = p -- Induction over p then q _∙₃_ : x == z _∙₃_ = =-ind D d p z q where E : (x z : A) → (q : x == z) → 𝒰 i E x z q = x == z e : (x : A) → E x x refl e x = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → x == z d : (x : A) → D x x refl d x z q = =-ind E e q module _ {x y z : A} (p : x == y) (q : y == z) where prop₁₌₂ : p ∙₁ q == p ∙₂ q prop₁₌₂ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₂ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₂ q d : (x : A) → D x x refl d x z q = =-ind E e q prop₂₌₃ : p ∙₂ q == p ∙₃ q prop₂₌₃ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₂ q == refl ∙₃ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₂ q == p ∙₃ q d : (x : A) → D x x refl d x z q = =-ind E e q prop₁₌₃ : p ∙₁ q == p ∙₃ q prop₁₌₃ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₃ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₃ q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise2 {i} {A : 𝒰 i} {x y z : A} {p : x == y} {q : y == z} where open Exercise1 _ : prop₁₌₂ p q ∙ prop₂₌₃ p q == prop₁₌₃ p q _ = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = prop₁₌₂ refl q ∙ prop₂₌₃ refl q == prop₁₌₃ refl q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → prop₁₌₂ p q ∙ prop₂₌₃ p q == prop₁₌₃ p q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise3 {i} {A : 𝒰 i} where open Exercise1 using (_∙₁_) -- Induction over q then p _∙₄_ : {x y z : A} → x == y → y == z → x == z _∙₄_ {x} {y} {z} p q = =-ind D d q x p where E : (x y : A) → (p : x == y) → 𝒰 i E x y _ = x == y e : (x : A) → E x x refl e x = refl D : (y z : A) → y == z → 𝒰 i D y z q = (x : A) → (p : x == y) → x == z d : (y : A) → D y y refl d y x p = =-ind E e p prop₁₌₄ : {x y z : A} (p : x == y) (q : y == z) → p ∙₁ q == p ∙₄ q prop₁₌₄ {x} {y} {z} p q = =-ind D d p z q where E : (y z : A) → y == z → 𝒰 i E y z q = refl ∙₁ q == refl ∙₄ q e : (y : A) → E y y refl e y = refl D : (x y : A) → x == y → 𝒰 i D x y p = (z : A) → (q : y == z) → p ∙₁ q == p ∙₄ q d : (x : A) → D x x refl d x z q = =-ind E e q module Exercise4 {i} (A : 𝒰 i) where n-path : ℕ → 𝒰 i n-path = ℕ-rec A (λ n P → Σ[ x ∶ P ] (Σ[ y ∶ P ] (x == y))) module Exercise5 {i} {A B : 𝒰 i} {x y : A} {p : x == y} {f : A → B} where open import HoTT.Identity open import HoTT.Equivalence _ : f x == f y ≃ transport _ p (f x) == f y _ = g , qinv→isequiv (h , η , ε) where -- 2.3.6 g : f x == f y → transport _ p (f x) == f y g = transportconst p (f x) ∙_ -- 2.3.7 h : transport _ p (f x) == f y → f x == f y h = transportconst p (f x) ⁻¹ ∙_ η : (h ∘ g) ~ id η q = assoc ∙ (invₗ ∙ᵣ q ∙ unitₗ ⁻¹) ε : (g ∘ h) ~ id ε q = assoc ∙ (invᵣ ∙ᵣ q ∙ unitₗ ⁻¹) module Exercise6 {i} {A : 𝒰 i} {x y z : A} {p : x == y} where open import HoTT.Equivalence open import HoTT.Identity _ : y == z ≃ x == z _ = f , qinv→isequiv (g , η , ε) where f = p ∙_ g = p ⁻¹ ∙_ η : g ∘ f ~ id η q = assoc ∙ (invₗ ∙ᵣ q ∙ unitₗ ⁻¹) ε : f ∘ g ~ id ε q = assoc ∙ (invᵣ ∙ᵣ q ∙ unitₗ ⁻¹) module Exercise7 {i j k l} {A : 𝒰 i} {A' : 𝒰 j} {B : A → 𝒰 k} {B' : A' → 𝒰 l} {g : A → A'} {h : {x : A} → B x → B' (g x)} where open import HoTT.Identity open import HoTT.Identity.Sigma prop : {x y : Σ A B} (p : pr₁ x == pr₁ y) (q : transport B p (pr₂ x) == (pr₂ y)) → ap (λ x → g (pr₁ x) , h (pr₂ x)) (pair⁼ {x = x} {y} (p , q)) == pair⁼ (ap g p , transport-ap B' g p (h (pr₂ x)) ∙ transport-∘ h p (pr₂ x) ∙ ap h q) prop {x = _ , _} {_ , _} refl refl = refl module Exercise8 {i j k l} {A : 𝒰 i} {B : 𝒰 j} {A' : 𝒰 k} {B' : 𝒰 l} {g : A → A'} {h : B → B'} where open import HoTT.Identity.Coproduct private variable x y : A + B f : A + B → A' + B' f = +-rec (inl ∘ g) (inr ∘ h) ap-gh : (p : x =+ y) → f x =+ f y ap-gh {inl _} {inl _} (lift p) = lift (ap g p) ap-gh {inl _} {inr _} () ap-gh {inr _} {inl _} () ap-gh {inr _} {inr _} (lift p) = lift (ap h p) prop : (p : x =+ y) → ap f (=+-intro p) == =+-intro (ap-gh p) prop {inl _} {inl _} (lift refl) = refl prop {inl _} {inr _} () prop {inr _} {inl _} () prop {inr _} {inr _} (lift refl) = refl module Exercise9 {i j k} {A : 𝒰 i} {B : 𝒰 j} where open import HoTT.Equivalence open import HoTT.Identity.Pi prop₁ : {X : 𝒰 k} → (A + B → X) ≃ (A → X) × (B → X) prop₁ {X} = f , qinv→isequiv (g , β , α) where f : (A + B → X) → (A → X) × (B → X) f h = h ∘ inl , h ∘ inr g : (A → X) × (B → X) → (A + B → X) g (h , _) (inl a) = h a g (_ , h) (inr b) = h b α : f ∘ g ~ id α (_ , _) = refl β : g ∘ f ~ id β _ = funext λ{(inl _) → refl ; (inr _) → refl} prop₂ : {P : A + B → 𝒰 k} → ((x : A + B) → P x) ≃ ((a : A) → P (inl a)) × ((b : B) → P (inr b)) prop₂ {P} = f , qinv→isequiv (g , β , α) where f : ((x : A + B) → P x) → ((a : A) → P (inl a)) × ((b : B) → P (inr b)) f h = (h ∘ inl) , h ∘ inr g : ((a : A) → P (inl a)) × ((b : B) → P (inr b)) → ((x : A + B) → P x) g (h , _) (inl a) = h a g (_ , h) (inr b) = h b α : f ∘ g ~ id α (_ , _) = refl β : g ∘ f ~ id β _ = funext λ{(inl _) → refl ; (inr _) → refl} module Exercise10 {i j k} {A : 𝒰 i} {B : A → 𝒰 j} {C : Σ A B → 𝒰 k} where open import HoTT.Equivalence _ : Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) ≃ Σ[ p ∶ Σ A B ] C p _ = f , qinv→isequiv (g , η , ε) where f : Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) → Σ[ p ∶ Σ A B ] C p f (x , y , z) = (x , y) , z g : Σ[ p ∶ Σ A B ] C p → Σ[ x ∶ A ] Σ[ y ∶ B x ] C (x , y) g ((x , y) , z) = x , y , z η : g ∘ f ~ id η (_ , _ , _) = refl ε : f ∘ g ~ id ε ((_ , _) , _) = refl import HoTT.Exercises.Chapter2.Exercise11 import HoTT.Exercises.Chapter2.Exercise12 module Exercise13 where open import HoTT.Equivalence open import HoTT.Equivalence.Proposition open import HoTT.Identity.Pi open import HoTT.Identity.Sigma not : 𝟐 → 𝟐 not = 𝟐-rec 1₂ 0₂ -- There are two possibilities for 𝟐 ≃ 𝟐, id and not. In our -- equivalence (𝟐 ≃ 𝟐) ≃ 𝟐, we associate `id` with 0₂, and `not` -- with 1₂. For some f : 𝟐 ≃ 𝟐, we have f 0₂ = 0₂ when f is id, -- and f 0₂ = 1₂ when f is not, so we can use f 0₂ in the forward -- direction. _ : (𝟐 ≃ 𝟐) ≃ 𝟐 _ = to , qinv→isequiv (from , β , α) where to : 𝟐 ≃ 𝟐 → 𝟐 to (f , _) = f 0₂ from : 𝟐 → 𝟐 ≃ 𝟐 from 0₂ = id , qinv→isequiv (id , (λ _ → refl) , λ _ → refl) from 1₂ = not , qinv→isequiv (not , 𝟐-ind _ refl refl , 𝟐-ind _ refl refl) -- The first homotopy is easy, we just do 𝟐-induction on the -- input to determine whether we have `id` or `not`. Once we -- know that, it is just a matter of showing 0₂ = 0₂ or 1₂ = 1₂, -- both of which are true by reflection. α : to ∘ from ~ id α = 𝟐-ind _ refl refl -- The second homotopy is much trickier since we have to show -- that these two complex structures are the same. The approach -- we use is to induct on the four possibilities for f 0₂ and -- f 1₂ (0₂ 0₂, 0₂ 1₂, 1₂ 0₂, or 1₂ 1₂). In the induction goals, -- we require proofs that the boolean we induct on is equal -- to f 0₂ or f 1₂ respectively. These proofs can be used -- directly for the case where f = id or f = not. The other two -- cases are impossible unless 0₂ = 1₂, and we can use the -- proofs together with the equivalence inverse function and -- homotopy to show the desired behavior of f. β : from ∘ to ~ id β (f , e) = pair⁼ (𝟐-ind (λ x → x == f 0₂ → pr₁ (from x) == f) (λ p → 𝟐-ind (λ x → x == f 1₂ → id == f) (λ q → funext (𝟐-ind _ p (η 1₂ ⁻¹ ∙ ap g (q ⁻¹ ∙ p) ∙ η 0₂ ∙ q))) (λ q → funext (𝟐-ind _ p q)) (f 1₂) refl) (λ p → 𝟐-ind (λ x → x == f 1₂ → not == f) (λ q → funext (𝟐-ind _ p q)) (λ q → funext (𝟐-ind _ p (η 0₂ ⁻¹ ∙ ap g (p ⁻¹ ∙ q) ∙ η 1₂ ∙ q))) (f 1₂) refl) (f 0₂) refl , isequiv-prop _ _) where open qinv (isequiv→qinv e) module Exercise14 {i} {A : 𝒰 i} {x : A} where -- In chapter 1 exercise 14, we showed that we couldn't use path -- induction to prove (x : A) → (p : x = x) → p = reflₓ since, -- given q : x = y, q = reflₓ is not well-typed (reflₓ : x = x, -- while q : x = y). However, using the equality reflection rule -- we have x ≡ y, so we can say reflₓ : x = y. Therefore, we can -- define -- -- C : (x s : A) → x = y → 𝒰 -- C x y q :≡ q = reflₓ -- -- c : (x : A) → C x x reflₓ -- c x :≡ refl {reflₓ} -- -- Using path induction we have ind₌ C c x x p : p = reflₓ. By -- applying the equality reflection rule again, we arrive at the -- desired definitional equality, p ≡ reflₓ. module Exercise15 {i j} {A : 𝒰 i} {B : A → 𝒰 j} {x y : A} {p : x == y} {u : B x} where _ : transport _ p == transport id (ap B p) _ = =-ind (λ _ _ p → transport _ p == transport id (ap B p)) (λ _ → refl) p module Exercise16 {i} {j} {A : 𝒰 i} {B : A → 𝒰 j} (f g : Π A B) where open import HoTT.Identity open import HoTT.Identity.Sigma open import HoTT.Identity.Pi using (funext) open import HoTT.Equivalence =Π-equiv : f == g ≃ f ~ g =Π-equiv = happly , qinv→isequiv (funext' , η , ε) where -- Define funext' in such a way that funext (happly refl) ≡ -- funext (λ x. refl) can cancel. funext' : {g : Π A B} → f ~ g → f == g funext' α = funext α ∙ funext (λ _ → refl) ⁻¹ η : funext' ∘ happly ~ id η refl = invᵣ ε : happly ∘ funext' ~ id ε α = transport P p (ap happly invᵣ) where P : Π[ x ∶ A ] Σ[ y ∶ B x ] f x == y → 𝒰 _ P h = let α = pr₂ ∘ h in happly (funext' α) == α -- The trick here is to use funext to simultaneously show -- that λ x. (f x , refl) = λ x. (g x , α x). Then, we can -- transport a path made by canceling the funext with its -- inverse to get the desired equality. p : (λ x → f x , refl) == (λ x → g x , α x) p = funext λ x → pair⁼ (α x , =-ind (λ _ _ p → transport _ p refl == p) (λ _ → refl) (α x)) module Exercise17 {i} where open import HoTT.Equivalence open import HoTT.Equivalence.Proposition open import HoTT.Identity.Product open import HoTT.Identity.Sigma open import HoTT.Identity.Universe open import HoTT.Identity.Pi variable A A' B B' : 𝒰 i P : A → 𝒰 i P' : A' → 𝒰 i prop : (_◆_ : 𝒰 i → 𝒰 i → 𝒰 i) → A == A' → B == B' → (A ◆ B) ≃ (A' ◆ B') prop {A} {A'} {B} {B'} (_◆_) p q = transport (λ{ (A' , B') → A ◆ B ≃ A' ◆ B' }) (×-pair⁼ {x = A , B} {y = A' , B'} (p , q)) reflₑ module _ (e₁ : A ≃ A') (e₂ : B ≃ B') where open Iso (eqv→iso e₁) renaming (f to f₁ ; g to g₁ ; η to η₁ ; ε to ε₁) open Iso (eqv→iso e₂) renaming (f to f₂ ; g to g₂ ; η to η₂ ; ε to ε₂) -- (i) Proof without using univalence prop-×' : A × B ≃ A' × B' prop-×' = let open Iso in iso→eqv λ where .f (a , b) → f₁ a , f₂ b .g (a' , b') → g₁ a' , g₂ b' .η (a , b) → ×-pair⁼ (η₁ a , η₂ b) .ε (a' , b') → ×-pair⁼ (ε₁ a' , ε₂ b') -- (ii) Proof using univalence (for general operator) prop-× = prop _×_ (ua e₁) (ua e₂) -- (iii) Proof for non-dependent type formers (→, +) prop-→ = prop (λ A B → A → B) (ua e₁) (ua e₂) prop-+ = prop _+_ (ua e₁) (ua e₂) -- Proof that (i) and (ii) are equal propᵢ₌ᵢᵢ : (e₁ : A ≃ A') (e₂ : B ≃ B') → prop-×' e₁ e₂ == prop-× e₁ e₂ propᵢ₌ᵢᵢ e₁ e₂ = ap² prop-×' (=𝒰-β e₁ ⁻¹) (=𝒰-β e₂ ⁻¹) ∙ lemma where lemma : prop-×' (idtoeqv (ua e₁)) (idtoeqv (ua e₂)) == prop-× e₁ e₂ lemma rewrite ua e₁ rewrite ua e₂ = pair⁼ (funext (λ{ (a , b) → refl }) , isequiv-prop _ _) module _ (e₁ : A ≃ A') (e₂ : (x : A') → transport (λ A' → A' → 𝒰 i) (ua e₁) P x ≃ P' x) where prop-dep : (_◆_ : (A : 𝒰 i) → (A → 𝒰 i) → 𝒰 i) → (A ◆ P) ≃ (A' ◆ P') prop-dep _◆_ = transport (λ{ (A' , P') → A ◆ P ≃ A' ◆ P' }) (pair⁼ {x = A , P} {y = A' , P'} (ua e₁ , funext (ua ∘ e₂))) reflₑ -- (iii) Proof for dependent type formers (Σ, Π) prop-Σ = prop-dep Σ prop-Π = prop-dep Π module Exercise18 {i} {A : 𝒰 i} {B : A → 𝒰 i} {f g : Π A B} {H : f ~ g} {x y : A} {p : x == y} where -- We first induct on p, changing our goal to -- -- ap (transport refl) (H x) ∙ apd g refl = apd f refl ∙ H y -- -- This reduces to -- -- ap id (H x) ∙ refl = refl ∙ H x -- -- Now, we just need one final induction on H x, after which our goal -- reduces to refl : refl = refl. _ : ap (transport _ p) (H x) ∙ apd g p == apd f p ∙ H y _ = =-ind' (λ y p → ap (transport _ p) (H x) ∙ apd g p == apd f p ∙ H y) (=-ind' (λ _ Hₓ → ap id Hₓ ∙ refl == refl ∙ Hₓ) refl (H x)) p
{ "alphanum_fraction": 0.4676609781, "avg_line_length": 34.4345679012, "ext": "agda", "hexsha": "3453d6f46cdcce3cd50269890b104d1c85237e09", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Exercises/Chapter2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Exercises/Chapter2.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Exercises/Chapter2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6391, "size": 13946 }
------------------------------------------------------------------------------ -- Well-founded relation on trees ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.TreeR where open import FOTC.Base open import FOTC.Data.List.WF-Relation.LT-Cons open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- Well-founded relation on trees. -- A well-founded relation for rose trees is the lexicographical order -- -- (t : ts) < (t' : ts') = t < t' or t ≡ t' and ts < ts'. -- -- It seems we would not to use the first conjunct in the mirror -- example. TreeR : D → D → Set TreeR t₁ t₂ = ∃[ d ] ∃[ ts₁ ] ∃[ ts₂ ] t₁ ≡ node d ts₁ ∧ t₂ ≡ node d ts₂ ∧ LTC ts₁ ts₂
{ "alphanum_fraction": 0.4411177645, "avg_line_length": 33.4, "ext": "agda", "hexsha": "10003989d3299ee258b6aeed204e1c17e0cc9ac6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 225, "size": 1002 }
-- This file contains several ways to define localisation -- and proves them all to be equivalent {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.LocalisationDefs where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ record isMultClosedSubset (R' : CommRing {ℓ}) (S' : ℙ (R' .fst)) : Type ℓ where constructor multclosedsubset field containsOne : (R' .snd .CommRingStr.1r) ∈ S' multClosed : ∀ {s t} → s ∈ S' → t ∈ S' → (R' .snd .CommRingStr._·_ s t) ∈ S' module _ (R' : CommRing {ℓ}) (S' : ℙ (R' .fst)) (SMultClosedSubset : isMultClosedSubset R' S') where open isMultClosedSubset private R = R' .fst open CommRingStr (R' .snd) open Theory (CommRing→Ring R') S = Σ[ s ∈ R ] (s ∈ S') -- HIT definition data S⁻¹R : Type ℓ where _/ₗ_ : R → S → S⁻¹R zd : (r₁ r₂ : R) (s s₁ s₂ : S) → fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁ → r₁ /ₗ s₁ ≡ r₂ /ₗ s₂ trunc : isSet S⁻¹R infixr 5 _/ₗ_ module Elim {ℓ'} {B : S⁻¹R → Type ℓ'} (_/*_ : (r : R) (s : S) → B (r /ₗ s)) (zd* : (r₁ r₂ : R) (s s₁ s₂ : S) → (p : fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) → PathP (λ i → B (zd r₁ r₂ s s₁ s₂ p i)) (r₁ /* s₁) (r₂ /* s₂)) (trunc* : (q : S⁻¹R) → isSet (B q)) where f : (q : S⁻¹R) → B q f (r /ₗ s) = r /* s f (zd r₁ r₂ s s₁ s₂ p i) = zd* r₁ r₂ s s₁ s₂ p i f (trunc q₁ q₂ x y i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f q₁) (f q₂) (cong f x) (cong f y) (trunc q₁ q₂ x y) i j module ElimProp {ℓ'} {B : S⁻¹R → Type ℓ'} (Bprop : {q : S⁻¹R} → isProp (B q)) (_/*_ : (r : R) → (s : S) → B (r /ₗ s)) where f : (q : S⁻¹R) → B q f = Elim.f _/*_ (λ r₁ r₂ s s₁ s₂ p → toPathP (Bprop (transp (λ i → B (zd r₁ r₂ s s₁ s₂ p i)) i0 (r₁ /* s₁)) (r₂ /* s₂))) λ q → isProp→isSet Bprop module Rec {ℓ'} {B : Type ℓ'} (BType : isSet B) (_/*_ : R → S → B) (zd* : (r₁ r₂ : R) (s s₁ s₂ : S) → (p : fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) → r₁ /* s₁ ≡ r₂ /* s₂) where f : S⁻¹R → B f = Elim.f _/*_ zd* (λ _ → BType) -- approach using set quotients _≈_ : R × S → R × S → Type ℓ (r₁ , s₁) ≈ (r₂ , s₂) = ∃[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) S⁻¹R/ = (R × S) / _≈_ -- proving equivalence of the two types φ : S⁻¹R/ → S⁻¹R φ = SQ.rec trunc (λ (r , s) → r /ₗ s) β where α : ((r₁ , s₁) (r₂ , s₂) : R × S) → Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) → r₁ /ₗ s₁ ≡ r₂ /ₗ s₂ α _ _ (s , p) = zd _ _ s _ _ p β : ((r₁ , s₁) (r₂ , s₂) : R × S) → ∃[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) → r₁ /ₗ s₁ ≡ r₂ /ₗ s₂ β _ _ = PT.rec (trunc _ _) (α _ _) ψ : S⁻¹R → S⁻¹R/ ψ (r /ₗ s) = [ r , s ] ψ (zd r₁ r₂ s s₁ s₂ p i) = eq/ (r₁ , s₁) (r₂ , s₂) ∣ s , p ∣ i ψ (trunc x y p q i j) = squash/ (ψ x) (ψ y) (cong ψ p) (cong ψ q) i j η : section φ ψ η = ElimProp.f (trunc _ _) λ _ _ → refl ε : retract φ ψ ε = elimProp (λ _ → squash/ _ _) λ _ → refl S⁻¹R/≃S⁻¹R : S⁻¹R/ ≃ S⁻¹R S⁻¹R/≃S⁻¹R = isoToEquiv (iso φ ψ η ε) -- Set quotients but with Σ, this is the type used in Algebra.Localisation.Base -- as this is easiest to use _≈'_ : R × S → R × S → Type ℓ (r₁ , s₁) ≈' (r₂ , s₂) = Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) S⁻¹R/' = (R × S) / _≈'_ S⁻¹R/'≃S⁻¹R/ : S⁻¹R/' ≃ S⁻¹R/ S⁻¹R/'≃S⁻¹R/ = SQ.truncRelEquiv
{ "alphanum_fraction": 0.5659075224, "avg_line_length": 29.5714285714, "ext": "agda", "hexsha": "7545dc3be0e4111573dd72968381f25f61390ede", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/LocalisationDefs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/LocalisationDefs.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/LocalisationDefs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1865, "size": 4347 }
-- Andreas, 2018-06-09, issue #2513, parsing attributes postulate fail : ∀ @0 A → A → A -- Should fail.
{ "alphanum_fraction": 0.6296296296, "avg_line_length": 15.4285714286, "ext": "agda", "hexsha": "e62247dd9ebaa4005f98f8378c8d39ebaedd12a9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/AttributeUnparenthesized.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AttributeUnparenthesized.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AttributeUnparenthesized.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 38, "size": 108 }
-- Andreas, 2018-10-27, issue #3327 -- -- Test that {-# NO_UNIVERSE_CHECK #-} pragma only applies to the following definition. module _ where -- The following pragma should only apply to the following definition, -- but due to a bug is actually applying to the rest of the module. {-# NO_UNIVERSE_CHECK #-} data ⊥ : Set where ⊥-elim : ∀{a}{A : Set a} → ⊥ → A ⊥-elim () -- This passes only with {-# NO_UNIVERSE_CHECK #-}: record Type : Set where constructor inn field out : Set open Type -- The rest is Hurken's paradox. ⊥′ : Type ⊥′ = inn ((A : Type) → out A) _⇒_ : (A B : Type) → Type inn A ⇒ inn B = inn (A → B) Π : (A : Type) (B : out A → Type) → Type Π A B = inn ((x : out A) → out (B x)) ¬_ : Type → Type ¬ A = A ⇒ ⊥′ P : Type → Type P A = inn (out A → Type) U : Type U = inn ((X : Type) → out ((P (P X) ⇒ X) ⇒ P (P X))) τ : out (P (P U) ⇒ U) τ t = λ X f p → t λ x → p (f (x X f)) σ : out (U ⇒ P (P U)) σ s pu = s U (λ t → τ t) pu Δ : out (P U) Δ = λ y → ¬ (Π (P U) λ p → σ y p ⇒ p (τ (σ y))) Ω : out U Ω X t px = τ (λ p → Π U λ x → σ x p ⇒ p x) X t px D : Type D = Π (P U) λ p → σ Ω p ⇒ p (τ (σ Ω)) lem₁ : out (Π (P U) λ p → (Π U λ x → σ x p ⇒ p x) ⇒ p Ω) lem₁ p H1 = H1 Ω λ x → H1 (τ (σ x)) lem₂ : out (¬ D) lem₂ d A = lem₁ Δ (λ x H2 H3 → H3 Δ H2 λ p → H3 λ y → p (τ (σ y))) d A lem₃ : out D lem₃ p = lem₁ λ y → p (τ (σ y)) loop : out ⊥′ loop = λ A → lem₂ lem₃ A absurd : ⊥ absurd = loop (inn ⊥)
{ "alphanum_fraction": 0.5230769231, "avg_line_length": 19.8611111111, "ext": "agda", "hexsha": "b4e844ead0f3b193b26e11d1fd726084abcd6e48", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3327.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3327.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3327.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 615, "size": 1430 }
-- Properties of Fibonacci nunmbers {-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Fibonacci.Nat.Properties where -- agda-stdlib open import Data.Unit using (tt) open import Data.Sum open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open import Function.Base -- agda-misc open import Math.NumberTheory.Fibonacci.Nat open import Math.NumberTheory.Summation.Nat open ≤-Reasoning 1≤fib[1+n] : ∀ n → 1 ≤ fib (suc n) 1≤fib[1+n] zero = ≤-refl 1≤fib[1+n] (suc n) = begin 1 ≤⟨ 1≤fib[1+n] n ⟩ fib (suc n) ≤⟨ m≤m+n (fib (suc n)) (fib n) ⟩ fib (suc n) + fib n ≡⟨ fib[1+n]+fib[n]≡fib[2+n] n ⟩ fib (suc (suc n)) ∎ fib[n]<fib[1+n] : ∀ n {_ : True (2 ≤? n)} → fib n < fib (suc n) fib[n]<fib[1+n] (suc (suc zero)) {wit} = s≤s (s≤s z≤n) fib[n]<fib[1+n] (suc (suc (suc n))) {wit} = begin-strict fib (3 + n) <⟨ ≤-refl ⟩ 1 + fib (3 + n) ≡⟨ +-comm 1 (fib (3 + n)) ⟩ fib (3 + n) + 1 ≤⟨ +-monoʳ-≤ (fib (3 + n)) (1≤fib[1+n] (suc n)) ⟩ fib (3 + n) + fib (2 + n) ≡⟨ fib[1+n]+fib[n]≡fib[2+n] (2 + n) ⟩ fib (4 + n) ∎ private fib-mono-<-lemma : ∀ m n {_ : True (2 ≤? n)} → fib n < fib (suc m + n) fib-mono-<-lemma zero n {wit} = fib[n]<fib[1+n] n {wit} fib-mono-<-lemma (suc m) n@(suc (suc _)) {wit} = begin-strict fib n <⟨ fib-mono-<-lemma m n {tt} ⟩ fib (1 + (m + n)) ≤⟨ m≤m+n (fib (1 + (m + n))) (fib (m + n)) ⟩ fib (1 + (m + n)) + fib (m + n) ≡⟨ fib[1+n]+fib[n]≡fib[2+n] (m + n) ⟩ fib (2 + (m + n)) ∎ fib-mono-< : ∀ m n {_ : True (2 ≤? m)} → m < n → fib m < fib n fib-mono-< m n {wit} m<n = begin-strict fib m <⟨ fib-mono-<-lemma o m {wit} ⟩ fib (1 + o + m) ≡⟨ cong fib (sym $ n≡1+o+m) ⟩ fib n ∎ where o = n ∸ suc m n≡1+o+m : n ≡ 1 + o + m n≡1+o+m = trans (sym $ m+[n∸m]≡n m<n) (cong suc (+-comm m o)) private ≤⇒≡∨< : ∀ {m n} → m ≤ n → (m ≡ n) ⊎ (m < n) ≤⇒≡∨< {m} {n} m≤n with m ≟ n ... | yes m≡n = inj₁ m≡n ... | no m≢n = inj₂ (≤∧≢⇒< m≤n m≢n) fib-mono-≤ : ∀ m n → m ≤ n → fib m ≤ fib n fib-mono-≤ zero n m≤n = z≤n fib-mono-≤ (suc zero) (suc n) m≤n = 1≤fib[1+n] n fib-mono-≤ m@(suc (suc _)) n m≤n with ≤⇒≡∨< m≤n ... | inj₁ m≡n = ≤-reflexive (cong fib m≡n) ... | inj₂ m<n = <⇒≤ $ fib-mono-< m n {tt} m<n sum-of-fib : ∀ n → Σ[ k ≤ n ] fib k ≡ fib (2 + n) ∸ 1 sum-of-fib zero = refl sum-of-fib (suc n) = begin-equality Σ[ k ≤ n ] fib k + fib (suc n) ≡⟨ cong (_+ fib (suc n)) $ sum-of-fib n ⟩ (fib (2 + n) ∸ 1) + fib (1 + n) ≡⟨ +-comm (fib (2 + n) ∸ 1) (fib (1 + n)) ⟩ fib (1 + n) + (fib (2 + n) ∸ 1) ≡⟨ sym $ +-∸-assoc (fib (1 + n)) (1≤fib[1+n] (suc n)) ⟩ (fib (1 + n) + fib (2 + n)) ∸ 1 ≡⟨ cong (_∸ 1) $ fib[n]+fib[1+n]≡fib[2+n] (suc n) ⟩ fib (3 + n) ∸ 1 ∎
{ "alphanum_fraction": 0.4715775311, "avg_line_length": 34.9764705882, "ext": "agda", "hexsha": "8f606686d43628ae3189b534a6f4e6f4dafe2e4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Math/NumberTheory/Fibonacci/Nat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Math/NumberTheory/Fibonacci/Nat/Properties.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Math/NumberTheory/Fibonacci/Nat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1426, "size": 2973 }
open import Nat open import Prelude open import core open import contexts open import lemmas-consistency open import lemmas-disjointness open import weakening module typed-elaboration where mutual typed-elaboration-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Δ , Γ ⊢ d :: τ typed-elaboration-synth ESConst = TAConst typed-elaboration-synth (ESVar x₁) = TAVar x₁ typed-elaboration-synth (ESLam x₁ ex) = TALam x₁ (typed-elaboration-synth ex) typed-elaboration-synth (ESAp {Δ1 = Δ1} _ d x₁ x₂ x₃ x₄) with typed-elaboration-ana x₃ | typed-elaboration-ana x₄ ... | con1 , ih1 | con2 , ih2 = TAAp (TACast (weaken-ta-Δ1 d ih1) con1) (TACast (weaken-ta-Δ2 {Δ1 = Δ1} d ih2) con2) typed-elaboration-synth (ESEHole {Γ = Γ} {u = u}) = TAEHole (ctx-top ∅ u (Γ , ⦇-⦈) refl)(STAId (λ x τ z → z)) typed-elaboration-synth (ESNEHole {Γ = Γ} {τ = τ} {u = u} {Δ = Δ} (d1 , d2) ex) with typed-elaboration-synth ex ... | ih1 = TANEHole {Δ = Δ ,, (u , Γ , ⦇-⦈)} (ctx-top Δ u (Γ , ⦇-⦈) (d2 u (lem-domsingle _ _))) (weaken-ta-Δ1 (d1 , d2) ih1)(STAId (λ x τ₁ z → z)) typed-elaboration-synth (ESAsc x) with typed-elaboration-ana x ... | con , ih = TACast ih con typed-elaboration-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → (τ' ~ τ) × (Δ , Γ ⊢ d :: τ') typed-elaboration-ana (EALam x₁ MAHole ex) with typed-elaboration-ana ex ... | con , D = TCHole1 , TALam x₁ D typed-elaboration-ana (EALam x₁ MAArr ex) with typed-elaboration-ana ex ... | con , D = TCArr TCRefl con , TALam x₁ D typed-elaboration-ana (EASubsume x x₁ x₂ x₃) = ~sym x₃ , typed-elaboration-synth x₂ typed-elaboration-ana (EAEHole {Γ = Γ} {u = u}) = TCRefl , TAEHole (ctx-top ∅ u (Γ , _) refl) (STAId (λ x τ z → z)) typed-elaboration-ana (EANEHole {Γ = Γ} {u = u} {τ = τ} {Δ = Δ} (d1 , d2) x) with typed-elaboration-synth x ... | ih1 = TCRefl , TANEHole {Δ = Δ ,, (u , Γ , τ)} (ctx-top Δ u (Γ , τ) (d2 u (lem-domsingle _ _)) ) (weaken-ta-Δ1 (d1 , d2) ih1) (STAId (λ x₁ τ₁ z → z))
{ "alphanum_fraction": 0.5667112896, "avg_line_length": 53.3571428571, "ext": "agda", "hexsha": "13a8c13c72868a81b07f982ea13ff9aa39483c45", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "typed-elaboration.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "typed-elaboration.agda", "max_line_length": 159, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "typed-elaboration.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 935, "size": 2241 }
module Ag07 where open import IO data W (A : Set) (B : A → Set) : Set where sup : (a : A) → (b : B a → W A B) → W A B module WBinTree where data Tree : Set where Leaf : Tree Node : Tree data Direction : Set where Left : Direction Right : Direction data Bottom : Set where void : ∀ {A : Set} → Bottom → A void () binTree : Tree → Set binTree Leaf = Bottom binTree Node = Direction BinTree : Set BinTree = W Tree binTree leaf : BinTree leaf = sup Leaf void node : BinTree → BinTree → BinTree node x y = sup Node λ { Left → x ; Right → y }
{ "alphanum_fraction": 0.5867768595, "avg_line_length": 16.8055555556, "ext": "agda", "hexsha": "696cc066a0c3e5149d635073d552e4d40c8d11ed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Ag07.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Ag07.agda", "max_line_length": 43, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Ag07.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 198, "size": 605 }
module Implicits.Resolution.Ambiguous.SystemFEquiv where open import Prelude open import Function.Equivalence using (_⇔_; equivalence) open import Data.List.Properties open import Relation.Binary.HeterogeneousEquality as H using () open import Data.Vec.Properties as VP using () open import Data.Vec hiding ([_]) open import Extensions.Vec open import Data.List as List using () open import Data.Product hiding (map) open import Implicits.Syntax open import Implicits.Resolution.Ambiguous.Resolution open import Implicits.Resolution.Embedding open import Implicits.Resolution.Embedding.Lemmas open import SystemF.Everything as F using () ⟦_⟧term→ : ∀ {ν} {Δ : ICtx ν} {r} → Δ ⊢ᵣ r → F.Term ν (List.length (List.map ⟦_⟧tp→ Δ)) ⟦_⟧term→ {ν} {Δ} (r-tabs x) = F.Λ (subst (F.Term (suc ν)) (length-weaken-Δ Δ) ⟦ x ⟧term→) ⟦ r-tapp a x ⟧term→ = ⟦ x ⟧term→ F.[ ⟦ a ⟧tp→ ] ⟦_⟧term→ {Δ = Δ} (r-ivar x) = F.var (subst Fin (sym $ length-map _ Δ) (proj₁ $ ∈⟶index (VP.List-∈⇒∈ x))) ⟦ r-iabs {a = a} x ⟧term→ = F.λ' ⟦ a ⟧tp→ ⟦ x ⟧term→ ⟦ r-iapp f e ⟧term→ = ⟦ f ⟧term→ F.· ⟦ e ⟧term→ from-⊢ : ∀ {ν n t a} {Γ : F.Ctx ν n} → Γ F.⊢ t ∈ a → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ a ⟧tp← from-⊢ (F.var x) = r-ivar (lookup-∈ x _) from-⊢ {Γ = Γ} (F.Λ x) = r-tabs (subst (λ u → u ⊢ᵣ _) (⟦weaken⟧ctx← Γ) (from-⊢ x)) from-⊢ (F.λ' {b = b} a x) = r-iabs (from-⊢ x) from-⊢ {Γ = Γ} (F._[_] {a = a} x b) = subst (λ u → ⟦ Γ ⟧ctx← ⊢ᵣ u) (sym (⟦a/sub⟧tp← a b)) (r-tapp ⟦ b ⟧tp← (from-⊢ x)) from-⊢ (a F.· b) = r-iapp (from-⊢ a) (from-⊢ b) to-⊢ : ∀ {ν} {Δ : ICtx ν} {r} → (p : Δ ⊢ᵣ r) → ⟦ Δ ⟧ctx→ F.⊢ ⟦ p ⟧term→ ∈ ⟦ r ⟧tp→ to-⊢ {Δ = Δ} (r-tabs {r = r} p) with to-⊢ p to-⊢ {Δ = Δ} (r-tabs {r = r} p) | x = F.Λ (⊢subst-n (length-weaken-Δ Δ) (H.sym (⟦weaken⟧ctx→ Δ)) x) to-⊢ (r-tapp a p) with to-⊢ p to-⊢ {Δ = Δ} (r-tapp {r = a} b p) | x = subst (λ u → ⟦ Δ ⟧ctx→ F.⊢ ⟦ p ⟧term→ F.[ ⟦ b ⟧tp→ ] ∈ u) (sym $ ⟦a/sub⟧tp→ a b) (x F.[ ⟦ b ⟧tp→ ]) to-⊢ {Δ = Δ} {r = r} (r-ivar x) = let i , eq = ∈⟶index (VP.List-∈⇒∈ x) in let i' = (subst Fin (sym $ length-map _ Δ) i) in subst (λ u → ⟦ Δ ⟧ctx→ F.⊢ (F.var i') ∈ u) (lookup⟦⟧ Δ i eq) (F.var i') to-⊢ (r-iabs {a = a} p) = F.λ' ⟦ a ⟧tp→ (to-⊢ p) to-⊢ (r-iapp p p₁) = (to-⊢ p) F.· (to-⊢ p₁) equivalent : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r ⇔ (∃ λ t → ⟦ Δ ⟧ctx→ F.⊢ t ∈ ⟦ r ⟧tp→) equivalent Δ r = equivalence (λ x → , (to-⊢ x)) (λ x → subst₂ (λ Δ' r' → Δ' ⊢ᵣ r') (ctx→← _) (tp→← r) (from-⊢ (proj₂ x))) ⊢subst : ∀ {ν n n'} {a a' : F.Type ν} {Γ : F.Ctx ν n} {Γ' : F.Ctx ν n'} → n ≡ n' → a ≡ a' → Γ H.≅ Γ' → (∃ λ t → Γ F.⊢ t ∈ a) → ∃ λ t → Γ' F.⊢ t ∈ a' ⊢subst refl refl H.refl p = p equivalent' : ∀ {ν n} (Γ : F.Ctx ν n) r → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ r ⟧tp← ⇔ (∃ λ t → Γ F.⊢ t ∈ r) equivalent' Γ r = equivalence (λ x → ⊢subst (length-map-toList (map ⟦_⟧tp← Γ)) (tp←→ r) (ctx←→ Γ) (, to-⊢ x)) (λ x → (from-⊢ (proj₂ x)))
{ "alphanum_fraction": 0.5156685237, "avg_line_length": 39.3424657534, "ext": "agda", "hexsha": "b0ab24b0eb67e95629fc8ea5c585c5b58946538d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Ambiguous/SystemFEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Ambiguous/SystemFEquiv.agda", "max_line_length": 89, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Ambiguous/SystemFEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1473, "size": 2872 }
------------------------------------------------------------------------ -- Pointed and non-pointed ω-cpos ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Omega-cpo where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (T) open import Equivalence equality-with-J as Eq using (_≃_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Partiality-algebra as PA hiding (_∘_) import Partiality-monad.Inductive.Monad.Adjunction as PA -- Possibly non-pointed ω-cpos (with propositional ordering -- relations). record ω-cpo p q : Type (lsuc (p ⊔ q)) where infix 4 _⊑_ -- Partial order axioms. field Carrier : Type p _⊑_ : Carrier → Carrier → Type q reflexivity : ∀ {x} → x ⊑ x antisymmetry : ∀ {x y} → x ⊑ y → y ⊑ x → x ≡ y transitivity : ∀ {x y z} → x ⊑ y → y ⊑ z → x ⊑ z ⊑-propositional : ∀ {x y} → Is-proposition (x ⊑ y) -- Increasing sequences. Increasing-sequence : Type (p ⊔ q) Increasing-sequence = ∃ λ (f : ℕ → Carrier) → ∀ n → f n ⊑ f (suc n) -- Projection functions for Increasing-sequence. infix 30 _[_] _[_] : Increasing-sequence → ℕ → Carrier _[_] = proj₁ increasing : (s : Increasing-sequence) → ∀ n → (s [ n ]) ⊑ (s [ suc n ]) increasing = proj₂ -- Upper bounds. Is-upper-bound : Increasing-sequence → Carrier → Type q Is-upper-bound s x = ∀ n → (s [ n ]) ⊑ x -- Upper bound axioms. field ⨆ : Increasing-sequence → Carrier upper-bound : ∀ s → Is-upper-bound s (⨆ s) least-upper-bound : ∀ {s ub} → Is-upper-bound s ub → ⨆ s ⊑ ub -- The carrier type is a set. (This lemma is analogous to -- Theorem 11.3.9 in "Homotopy Type Theory: Univalent Foundations of -- Mathematics" (first edition).) Carrier-is-set : Is-set Carrier Carrier-is-set = proj₁ $ Eq.propositional-identity≃≡ (λ x y → x ⊑ y × y ⊑ x) (λ _ _ → ×-closure 1 ⊑-propositional ⊑-propositional) (λ _ → reflexivity , reflexivity) (λ x y → uncurry {B = λ _ → y ⊑ x} antisymmetry) -- Every set can be turned into an ω-cpo. Set→ω-cpo : ∀ {ℓ} → Set ℓ → ω-cpo ℓ ℓ Set→ω-cpo (A , A-set) = record { Carrier = A ; _⊑_ = _≡_ ; reflexivity = refl ; antisymmetry = const ; transitivity = trans ; ⊑-propositional = A-set ; ⨆ = (_$ 0) ∘ proj₁ ; upper-bound = uncurry upper-bound ; least-upper-bound = _$ 0 } where upper-bound : (f : ℕ → A) → (∀ n → f n ≡ f (suc n)) → ∀ n → f n ≡ f 0 upper-bound f inc zero = refl upper-bound f inc (suc n) = f (suc n) ≡⟨ sym (inc n) ⟩ f n ≡⟨ upper-bound f inc n ⟩∎ f 0 ∎ -- Pointed ω-cpos. record ω-cppo p q : Type (lsuc (p ⊔ q)) where field cpo : ω-cpo p q open ω-cpo cpo public field least : Carrier least⊑ : ∀ {x} → least ⊑ x -- A pointed ω-CPO is equivalent to a partiality algebra over the -- empty type. ω-cppo≃ω-cppo : ∀ {p q} → ω-cppo p q ≃ PA.ω-cppo p q ω-cppo≃ω-cppo = Eq.↔⇒≃ record { surjection = record { logical-equivalence = record { to = λ X → let open ω-cppo X in record { T = Carrier ; partiality-algebra-with = record { _⊑_ = _⊑_ ; never = least ; now = λ () ; ⨆ = ⨆ ; antisymmetry = antisymmetry ; T-is-set-unused = Carrier-is-set ; ⊑-refl = λ _ → reflexivity ; ⊑-trans = transitivity ; never⊑ = λ _ → least⊑ ; upper-bound = upper-bound ; least-upper-bound = λ _ _ → least-upper-bound ; ⊑-propositional = ⊑-propositional } } ; from = λ P → let open Partiality-algebra P in record { cpo = record { Carrier = T ; _⊑_ = _⊑_ ; reflexivity = ⊑-refl _ ; antisymmetry = antisymmetry ; transitivity = ⊑-trans ; ⊑-propositional = ⊑-propositional ; ⨆ = ⨆ ; upper-bound = upper-bound ; least-upper-bound = least-upper-bound _ _ } ; least = never ; least⊑ = never⊑ _ } } ; right-inverse-of = λ P → let open Partiality-algebra P in cong₂ (λ now (T-is-set : Is-set T) → record { T = T ; partiality-algebra-with = record { _⊑_ = _⊑_ ; never = never ; now = now ; ⨆ = ⨆ ; antisymmetry = antisymmetry ; T-is-set-unused = T-is-set ; ⊑-refl = ⊑-refl ; ⊑-trans = ⊑-trans ; never⊑ = never⊑ ; upper-bound = upper-bound ; least-upper-bound = least-upper-bound ; ⊑-propositional = ⊑-propositional } }) (⟨ext⟩ λ ()) (H-level-propositional ext 2 _ _) } ; left-inverse-of = λ _ → refl }
{ "alphanum_fraction": 0.4507140369, "avg_line_length": 32.8114285714, "ext": "agda", "hexsha": "bb9b28cf5604005fc801bc6c6a3386d00911ae34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Omega-cpo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Omega-cpo.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Omega-cpo.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 1651, "size": 5742 }
open import Nat open import Prelude open import dynamics-core open import contexts open import lemmas-consistency open import type-assignment-unicity open import lemmas-progress-checks -- taken together, the theorems in this file argue that for any expression -- d, at most one summand of the labeled sum that results from progress may -- be true at any time: that boxed values, indeterminates, and expressions -- that step are pairwise disjoint. -- -- note that as a consequence of currying and comutativity of products, -- this means that there are three theorems to prove. in addition to those, -- we also prove several convenince forms that combine theorems about -- indeterminate and boxed value forms into the same statement about final -- forms, which mirrors the mutual definition of indeterminate and final -- and saves some redundant argumentation. module progress-checks where -- boxed values are not indeterminates boxedval-not-indet : ∀{d} → d boxedval → d indet → ⊥ boxedval-not-indet (BVVal VNum) () boxedval-not-indet (BVVal VLam) () boxedval-not-indet (BVArrCast x bv) (ICastArr x₁ ind) = boxedval-not-indet bv ind boxedval-not-indet (BVHoleCast x bv) (ICastGroundHole x₁ ind) = boxedval-not-indet bv ind boxedval-not-indet (BVHoleCast x bv) (ICastHoleGround x₁ ind x₂) = boxedval-not-indet bv ind boxedval-not-indet (BVVal (VInl x)) (IInl ind) = boxedval-not-indet (BVVal x) ind boxedval-not-indet (BVVal (VInr x)) (IInr ind) = boxedval-not-indet (BVVal x) ind boxedval-not-indet (BVInl bv) (IInl ind) = boxedval-not-indet bv ind boxedval-not-indet (BVInr bv) (IInr ind) = boxedval-not-indet bv ind boxedval-not-indet (BVSumCast x bv) (ICastSum x₁ ind) = boxedval-not-indet bv ind boxedval-not-indet (BVVal (VPair x x₂)) (IPair1 ind x₁) = boxedval-not-indet (BVVal x) ind boxedval-not-indet (BVVal (VPair x x₂)) (IPair2 x₁ ind) = boxedval-not-indet (BVVal x₂) ind boxedval-not-indet (BVPair bv bv₁) (IPair1 ind x) = boxedval-not-indet bv ind boxedval-not-indet (BVPair bv bv₁) (IPair2 x ind) = boxedval-not-indet bv₁ ind boxedval-not-indet (BVProdCast x bv) (ICastProd x₁ ind) = boxedval-not-indet bv ind -- boxed values don't step boxedval-not-step : ∀{d} → d boxedval → (Σ[ d' ∈ ihexp ] (d ↦ d')) → ⊥ boxedval-not-step (BVVal VNum) (d' , Step FHOuter () x₃) boxedval-not-step (BVVal VLam) (d' , Step FHOuter () x₃) boxedval-not-step (BVArrCast x bv) (d0' , Step FHOuter (ITCastID) FHOuter) = x refl boxedval-not-step (BVArrCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃) boxedval-not-step (BVHoleCast () bv) (d' , Step FHOuter (ITCastID) FHOuter) boxedval-not-step (BVHoleCast x bv) (d' , Step FHOuter (ITCastSucceed ()) FHOuter) boxedval-not-step (BVHoleCast GArrHole bv) (_ , Step FHOuter (ITGround (MGArr x)) FHOuter) = x refl boxedval-not-step (BVHoleCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃) boxedval-not-step (BVHoleCast x x₁) (_ , Step FHOuter (ITExpand ()) FHOuter) boxedval-not-step (BVHoleCast x x₁) (_ , Step FHOuter (ITCastFail x₂ () x₄) FHOuter) boxedval-not-step (BVVal (VInl x)) (_ , Step FHOuter () x₃) boxedval-not-step (BVVal (VInr x)) (_ , Step FHOuter () x₃) boxedval-not-step (BVInl bv) (_ , Step FHOuter () x₂) boxedval-not-step (BVInr bv) (_ , Step FHOuter () x₂) boxedval-not-step (BVSumCast x bv) (_ , Step FHOuter ITCastID FHOuter) = x refl boxedval-not-step (BVSumCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃) boxedval-not-step (BVHoleCast GNum bv) (_ , Step FHOuter (ITGround ()) FHOuter) boxedval-not-step (BVHoleCast GSumHole bv) (_ , Step FHOuter (ITGround (MGSum x)) FHOuter) = x refl boxedval-not-step (BVVal (VInl x)) (_ , Step (FHInl x₁) x₂ (FHInl x₃)) = boxedval-not-step (BVVal x) (_ , Step x₁ x₂ x₃) boxedval-not-step (BVVal (VInr x)) (_ , Step (FHInr x₁) x₂ (FHInr x₃)) = boxedval-not-step (BVVal x) (_ , Step x₁ x₂ x₃) boxedval-not-step (BVInl bv) (_ , Step (FHInl x) x₁ (FHInl x₂)) = boxedval-not-step bv (_ , Step x x₁ x₂) boxedval-not-step (BVInr bv) (_ , Step (FHInr x) x₁ (FHInr x₂)) = boxedval-not-step bv (_ , Step x x₁ x₂) boxedval-not-step (BVVal (VPair x x₁)) (_ , Step (FHPair1 x₂) x₃ (FHPair1 x₄)) = boxedval-not-step (BVVal x) (_ , Step x₂ x₃ x₄) boxedval-not-step (BVVal (VPair x x₁)) (_ , Step (FHPair2 x₂) x₃ (FHPair2 x₄)) = boxedval-not-step (BVVal x₁) (_ , (Step x₂ x₃ x₄)) boxedval-not-step (BVPair bv bv₁) (_ , Step (FHPair1 x) x₁ (FHPair1 x₂)) = boxedval-not-step bv (_ , Step x x₁ x₂) boxedval-not-step (BVPair bv bv₁) (_ , Step (FHPair2 x) x₁ (FHPair2 x₂)) = boxedval-not-step bv₁ (_ , Step x x₁ x₂) boxedval-not-step (BVProdCast x bv) (_ , Step FHOuter ITCastID FHOuter) = x refl boxedval-not-step (BVProdCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃) boxedval-not-step (BVHoleCast GProdHole bv) (_ , Step FHOuter (ITGround (MGProd x)) FHOut\er) = x refl mutual -- indeterminates don't step indet-not-step : ∀{d} → d indet → (Σ[ d' ∈ ihexp ] (d ↦ d')) → ⊥ indet-not-step IEHole (d' , Step FHOuter () FHOuter) indet-not-step (INEHole x) (d' , Step FHOuter () FHOuter) indet-not-step (INEHole x) (_ , Step (FHNEHole x₁) x₂ (FHNEHole x₃)) = final-sub-not-trans x x₁ x₂ indet-not-step (IAp x₁ () x₂) (_ , Step FHOuter (ITLam) FHOuter) indet-not-step (IAp x (ICastArr x₁ ind) x₂) (_ , Step FHOuter (ITApCast) FHOuter) = x _ _ _ _ _ refl indet-not-step (IAp x ind _) (_ , Step (FHAp1 x₂) x₃ (FHAp1 x₄)) = indet-not-step ind (_ , Step x₂ x₃ x₄) indet-not-step (IAp x ind f) (_ , Step (FHAp2 x₃) x₄ (FHAp2 x₆)) = final-not-step f (_ , Step x₃ x₄ x₆) indet-not-step (ICastArr x ind) (d0' , Step FHOuter (ITCastID) FHOuter) = x refl indet-not-step (ICastArr x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (ICastGroundHole () ind) (d' , Step FHOuter (ITCastID) FHOuter) indet-not-step (ICastGroundHole x ind) (d' , Step FHOuter (ITCastSucceed ()) FHOuter) indet-not-step (ICastGroundHole GArrHole ind) (_ , Step FHOuter (ITGround (MGArr x₁)) FHOuter) = x₁ refl indet-not-step (ICastGroundHole x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (ICastHoleGround x ind ()) (d' , Step FHOuter (ITCastID ) FHOuter) indet-not-step (ICastHoleGround x ind g) (d' , Step FHOuter (ITCastSucceed x₂) FHOuter) = x _ _ refl indet-not-step (ICastHoleGround x ind GArrHole) (_ , Step FHOuter (ITExpand (MGArr x₂)) FHOuter) = x₂ refl indet-not-step (ICastHoleGround x ind g) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (ICastGroundHole x x₁) (_ , Step FHOuter (ITExpand ()) FHOuter) indet-not-step (ICastHoleGround x x₁ x₂) (_ , Step FHOuter (ITGround ()) FHOuter) indet-not-step (ICastGroundHole x x₁) (_ , Step FHOuter (ITCastFail x₂ () x₄) FHOuter) indet-not-step (ICastHoleGround x x₁ x₂) (_ , Step FHOuter (ITCastFail x₃ x₄ x₅) FHOuter) = x _ _ refl indet-not-step (IFailedCast x x₁ x₂ x₃) (d' , Step FHOuter () FHOuter) indet-not-step (IFailedCast x x₁ x₂ x₃) (_ , Step (FHFailedCast x₄) x₅ (FHFailedCast x₆)) = final-not-step x (_ , Step x₄ x₅ x₆) indet-not-step (IPlus1 () x₄) (_ , Step FHOuter (ITPlus x₁) FHOuter) indet-not-step (IPlus1 x x₄) (_ , Step (FHPlus1 x₁) x₂ (FHPlus1 x₃)) = indet-not-step x (_ , Step x₁ x₂ x₃) indet-not-step (IPlus1 x x₄) (.(_ ·+ _) , Step (FHPlus2 x₁) x₂ (FHPlus2 x₃)) = final-not-step x₄ (_ , Step x₁ x₂ x₃) indet-not-step (IPlus2 x ()) (_ , Step FHOuter (ITPlus x₁) FHOuter) indet-not-step (IPlus2 x x₄) (_ , Step (FHPlus1 x₁) x₂ (FHPlus1 x₃)) = final-not-step x (_ , Step x₁ x₂ x₃) indet-not-step (IPlus2 x x₄) (_ , Step (FHPlus2 x₁) x₂ (FHPlus2 x₃)) = indet-not-step x₄ (_ , Step x₁ x₂ x₃) indet-not-step (IInl ind) (_ , Step FHOuter () x₂) indet-not-step (IInl ind) (_ , Step (FHInl x) x₁ (FHInl x₂)) = indet-not-step ind (_ , Step x x₁ x₂) indet-not-step (IInr ind) (_ , Step FHOuter () x₂) indet-not-step (IInr ind) (_ , Step (FHInr x) x₁ (FHInr x₂)) = indet-not-step ind (_ , Step x x₁ x₂) indet-not-step (ICase x x₁ x₂ ind) (_ , Step FHOuter ITCaseInl x₅) = x _ _ refl indet-not-step (ICase x x₁ x₂ ind) (_ , Step FHOuter ITCaseInr x₅) = x₁ _ _ refl indet-not-step (ICase x x₁ x₂ ind) (_ , Step FHOuter ITCaseCast x₅) = x₂ _ _ _ _ _ refl indet-not-step (ICase x x₁ x₂ ind) (_ , Step (FHCase x₃) x₄ (FHCase x₅)) = indet-not-step ind (_ , Step x₃ x₄ x₅) indet-not-step (ICastSum x ind) (_ , Step FHOuter ITCastID FHOuter) = x refl indet-not-step (ICastSum x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (ICastGroundHole GNum ind) (_ , Step FHOuter (ITGround ()) FHOuter) indet-not-step (ICastGroundHole GSumHole ind) (_ , Step FHOuter (ITGround (MGSum x)) FHOuter) = x refl indet-not-step (ICastHoleGround x ind GNum) (_ , Step FHOuter (ITExpand ()) FHOuter) indet-not-step (ICastHoleGround x ind GSumHole) (_ , Step FHOuter (ITExpand (MGSum x₁)) FHOuter) = x₁ refl indet-not-step (IPair1 ind x) (_ , Step (FHPair1 x₁) x₂ (FHPair1 x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (IPair1 ind x) (_ , Step (FHPair2 x₁) x₂ (FHPair2 x₃)) = final-not-step x (_ , Step x₁ x₂ x₃) indet-not-step (IPair2 x ind) (_ , Step (FHPair1 x₁) x₂ (FHPair1 x₃)) = final-not-step x (_ , Step x₁ x₂ x₃) indet-not-step (IPair2 x ind) (_ , Step (FHPair2 x₁) x₂ (FHPair2 x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) indet-not-step (IFst x x₁ ind) (_ , Step FHOuter ITFstPair FHOuter) = x _ _ refl indet-not-step (IFst x x₁ ind) (_ , Step (FHFst x₂) x₃ (FHFst x₄)) = indet-not-step ind (_ , Step x₂ x₃ x₄) indet-not-step (ISnd x x₁ ind) (_ , Step FHOuter ITSndPair FHOuter) = x _ _ refl indet-not-step (ISnd x x₁ ind) (_ , Step (FHSnd x₂) x₃ (FHSnd x₄)) = indet-not-step ind (_ , Step x₂ x₃ x₄) indet-not-step (ICastGroundHole GProdHole ind) (_ , Step FHOuter (ITGround (MGProd x)) FHOuter) = x refl indet-not-step (ICastHoleGround x ind GProdHole) (_ , Step FHOuter (ITExpand (MGProd x₁)) FHOuter) = x₁ refl indet-not-step (IPair1 ind x) (_ , Step FHOuter () FHOuter) indet-not-step (IPair2 x ind) (_ , Step FHOuter () FHOuter) indet-not-step (IFst x x₁ ind) (_ , Step FHOuter ITFstCast FHOuter) = x₁ _ _ _ _ _ refl indet-not-step (ISnd x x₁ ind) (_ , Step FHOuter ITSndCast FHOuter) = x₁ _ _ _ _ _ refl indet-not-step (ICastProd x ind) (_ , Step FHOuter ITCastID FHOuter) = x refl indet-not-step (ICastProd x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃) -- final expressions don't step final-not-step : ∀{d} → d final → Σ[ d' ∈ ihexp ] (d ↦ d') → ⊥ final-not-step (FBoxedVal x) stp = boxedval-not-step x stp final-not-step (FIndet x) stp = indet-not-step x stp
{ "alphanum_fraction": 0.6728735424, "avg_line_length": 79.5899280576, "ext": "agda", "hexsha": "a79f50575b706fb913d8b7688d8f7afc771caaf1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "progress-checks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "progress-checks.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "progress-checks.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4170, "size": 11063 }
module Metalogic.Constructive.Provability where open import Sets.BoolSet open import Functional import Lvl open import Type -- Structural rules record Structural {ℓ ℓₘ} {Formula : Type{ℓ}} (_⊢_ : BoolSet(Formula) → Formula → Type{ℓₘ}) : Type{ℓₘ Lvl.⊔ ℓ} where field assumption : ∀{Γ}{φ} → (φ ∈ Γ) → (Γ ⊢ φ) module Propositional {ℓ ℓₘ} {Formula : Type{ℓ}} (_⊢_ : BoolSet(Formula) → Formula → Type{ℓₘ}) where -- Rules of bottom record Bottom : Type{ℓₘ Lvl.⊔ ℓ} where field ⊥ : Formula field intro : ∀{Γ}{φ} → (Γ ⊢ φ) → ((Γ ∪ singleton(φ)) ⊢ ⊥) → (Γ ⊢ ⊥) elim : ∀{Γ}{φ} → (⊥ ∈ Γ) → (Γ ⊢ φ) -- Rules of top record Top : Type{ℓₘ Lvl.⊔ ℓ} where field ⊤ : Formula field intro : ∀{Γ} → (Γ ⊢ ⊤) -- Rules of conjunction record Conjunction : Type{ℓₘ Lvl.⊔ ℓ} where infixl 1005 _∧_ field _∧_ : Formula → Formula → Formula field intro : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → (Γ ⊢ φ₂) → (Γ ⊢ (φ₁ ∧ φ₂)) elimₗ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₁ ∧ φ₂)) → (Γ ⊢ φ₁) elimᵣ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₁ ∧ φ₂)) → (Γ ⊢ φ₂) -- Rules of implication record Implication : Type{ℓₘ Lvl.⊔ ℓ} where infixl 1000 _⟶_ field _⟶_ : Formula → Formula → Formula field intro : ∀{Γ}{φ₁ φ₂} → ((Γ ∪ singleton(φ₁)) ⊢ φ₂) → (Γ ⊢ (φ₁ ⟶ φ₂)) elim : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₁ ⟶ φ₂)) → (Γ ⊢ φ₁) → (Γ ⊢ φ₂) -- Rules of reversed implication record Consequence : Type{ℓₘ Lvl.⊔ ℓ} where infixl 1000 _⟵_ field _⟵_ : Formula → Formula → Formula field intro : ∀{Γ}{φ₁ φ₂} → ((Γ ∪ singleton(φ₁)) ⊢ φ₂) → (Γ ⊢ (φ₂ ⟵ φ₁)) elim : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₂ ⟵ φ₁)) → (Γ ⊢ φ₁) → (Γ ⊢ φ₂) -- Rules of equivalence record Equivalence : Type{ℓₘ Lvl.⊔ ℓ} where infixl 1000 _⟷_ field _⟷_ : Formula → Formula → Formula field intro : ∀{Γ}{φ₁ φ₂} → ((Γ ∪ singleton(φ₂)) ⊢ φ₁) → ((Γ ∪ singleton(φ₁)) ⊢ φ₂) → (Γ ⊢ (φ₁ ⟷ φ₂)) elimₗ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₁ ⟷ φ₂)) → (Γ ⊢ φ₂) → (Γ ⊢ φ₁) elimᵣ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ (φ₁ ⟷ φ₂)) → (Γ ⊢ φ₁) → (Γ ⊢ φ₂) -- Rules of disjunction record Disjunction : Type{ℓₘ Lvl.⊔ ℓ} where infixl 1004 _∨_ field _∨_ : Formula → Formula → Formula field introₗ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → (Γ ⊢ (φ₁ ∨ φ₂)) introᵣ : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₂) → (Γ ⊢ (φ₁ ∨ φ₂)) elim : ∀{Γ}{φ₁ φ₂ φ₃} → (Γ ⊢ (φ₁ ∨ φ₂)) → ((Γ ∪ singleton(φ₁)) ⊢ φ₃) → ((Γ ∪ singleton(φ₂)) ⊢ φ₃) → (Γ ⊢ φ₃) -- Rules of negation record Negation ⦃ _ : Bottom ⦄ : Type{ℓₘ Lvl.⊔ ℓ} where open Bottom ⦃ ... ⦄ infixl 1010 ¬_ field ¬_ : Formula → Formula field intro : ∀{Γ}{φ} → ((Γ ∪ singleton(φ)) ⊢ ⊥) → (Γ ⊢ (¬ φ)) elim : ∀{Γ}{φ} → (Γ ⊢ (¬ φ)) → (Γ ⊢ φ) → (Γ ⊢ ⊥) -- A theory of constructive propositional logic expressed using natural deduction rules record Theory : Type{ℓₘ Lvl.⊔ ℓ} where open Structural ⦃ ... ⦄ public open Conjunction ⦃ ... ⦄ renaming (intro to [∧]-intro ; elimₗ to [∧]-elimₗ ; elimᵣ to [∧]-elimᵣ) public open Disjunction ⦃ ... ⦄ renaming (introₗ to [∨]-introₗ ; introᵣ to [∨]-introᵣ ; elim to [∨]-elim) public open Implication ⦃ ... ⦄ renaming (intro to [→]-intro ; elim to [→]-elim) public open Consequence ⦃ ... ⦄ renaming (intro to [←]-intro ; elim to [←]-elim) public open Equivalence ⦃ ... ⦄ renaming (intro to [↔]-intro ; elimₗ to [↔]-elimₗ ; elimᵣ to [↔]-elimᵣ) public open Negation ⦃ ... ⦄ renaming (intro to [¬]-intro ; elim to [¬]-elim) public open Bottom ⦃ ... ⦄ renaming (intro to [⊥]-intro ; elim to [⊥]-elim) public open Top ⦃ ... ⦄ renaming (intro to [⊤]-intro) public field ⦃ bottom ⦄ : Bottom ⦃ top ⦄ : Top ⦃ conjunction ⦄ : Conjunction ⦃ disjunction ⦄ : Disjunction ⦃ implication ⦄ : Implication ⦃ consequence ⦄ : Consequence ⦃ equivalence ⦄ : Equivalence ⦃ negation ⦄ : Negation module Predicate {ℓₘₗₛ ℓₘₒₛ ℓₘₗ ℓₘₒ} {Formula : Type{ℓₘₗₛ Lvl.⊔ ℓₘₒₛ}} {Domain : Type{ℓₘₒₛ}} (Proof : Formula → Type{ℓₘₗ Lvl.⊔ ℓₘₒ}) (Construct : Domain → Type{ℓₘₒ}) where open Propositional(Proof) renaming (Theory to PropositionalTheory) record UniversalQuantification : Type{(ℓₘₗ Lvl.⊔ ℓₘₒ) Lvl.⊔ (ℓₘₗₛ Lvl.⊔ ℓₘₒₛ)} where field ∀ₗ : (Domain → Formula) → Formula field intro : ∀{P : Domain → Formula} → (∀{x : Domain} → Proof(P(x))) → Proof(∀ₗ P) elim : ∀{P : Domain → Formula} → Proof(∀ₗ P) → (∀{x : Domain} → Proof(P(x))) record ExistentialQuantification : Type{(ℓₘₗ Lvl.⊔ ℓₘₒ) Lvl.⊔ (ℓₘₗₛ Lvl.⊔ ℓₘₒₛ)} where field ∃ₗ : (Domain → Formula) → Formula field intro : ∀{P : Domain → Formula}{a} → Proof(P(a)) → Proof(∃ₗ P) elim : ∀{P : Domain → Formula}{Z : Formula} → (∀{x : Domain} → Proof(P(x)) → Proof(Z)) → Proof(∃ₗ P) → Proof(Z) -- A theory of constructive predicate/(first-order) logic expressed using natural deduction rules record Theory : Type{(ℓₘₗ Lvl.⊔ ℓₘₒ) Lvl.⊔ (ℓₘₗₛ Lvl.⊔ ℓₘₒₛ)} where open Propositional.Theory ⦃ ... ⦄ public open UniversalQuantification ⦃ ... ⦄ renaming (intro to [∀]-intro ; elim to [∀]-elim) public open ExistentialQuantification ⦃ ... ⦄ renaming (intro to [∃]-intro ; elim to [∃]-elim) public field ⦃ propositional ⦄ : PropositionalTheory ⦃ universalQuantification ⦄ : UniversalQuantification ⦃ existentialQuantification ⦄ : ExistentialQuantification
{ "alphanum_fraction": 0.5504939627, "avg_line_length": 35.7254901961, "ext": "agda", "hexsha": "6393979abb0610889784308eca6fa7b9a8f38dc0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Constructive/Provability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Constructive/Provability.agda", "max_line_length": 171, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Constructive/Provability.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2444, "size": 5466 }
module Function.Iteration.Order where open import Data open import Data.Boolean.Stmt open import Functional renaming (id to id-fn) open import Function.Iteration hiding (_^_) open import Function.Iteration.Proofs open import Logic open import Logic.IntroInstances open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate import Lvl open import Numeral.Natural open import Numeral.Natural.Oper hiding (_^_) open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.DivMod.Proofs open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Numeral.Natural.Relation.Order open import Relator.Equals using () renaming (_≡_ to _≡ₑ_ ; _≢_ to _≢ₑ_ ; [≡]-intro to [≡ₑ]-intro) open import Structure.Setoid open import Structure.Function.Domain open import Structure.Function open import Structure.Operator.Properties open import Structure.Operator.Proofs open import Structure.Operator open import Structure.Relator.Properties open import Structure.Relator.Ordering open import Structure.Relator.Ordering.Lattice open import Syntax.Transitivity open import Type open import Type.Properties.Decidable.Proofs open import Type.Properties.Empty open import Type.Size.Finite private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} module _ ⦃ equiv-T : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ op : BinaryOperator(_▫_) ⦄ {id} ⦃ ident : Identity(_▫_)(id) ⦄ ⦃ assoc : Associativity(_▫_) ⦄ where -- Operator alias for iterated application of an operator with an element. _^_ : T → ℕ → T x ^ n = Function.Iteration.repeatₗ(n)(_▫_)(id)(x) -- `FiniteOrder(x)(n)` means that the element `x` is of order `n`. -- It is finite in the sense that it is a number and not infinite. -- An element's order is the smallest positive integer power of x such that the result is the identity element. data FiniteOrder (x : T) : ℕ → Stmt{ℓₑ} where intro : ∀{n} → LE.Minimum(_≤_)(n ↦ x ^ 𝐒(n) ≡ id)(n) → FiniteOrder(x)(𝐒(n)) -- `Ord(x)` means that the element `x` has a finite order. Ord : T → Stmt Ord(x) = ∃(FiniteOrder(x)) -- `ord(x)` is the order of x (when it is finite). ord : (x : T) → ⦃ _ : Ord(x) ⦄ → ℕ ord(_) ⦃ [∃]-intro n ⦄ = n module _ {x : T} where -- An order is never 0 by definition. finite-order-0 : ¬ FiniteOrder(x)(𝟎) finite-order-0 () -- An element power its order is the identity element. [^]-by-ord : ⦃ p : Ord(x) ⦄ → (x ^ ord(x) ⦃ p ⦄ ≡ id) [^]-by-ord ⦃ [∃]-intro (𝐒(_)) ⦃ intro p ⦄ ⦄ = LE.Minimum.membership{_≤_ = _≤_}(p) -- When an element power something is the identity element, then the power is either zero or greater/equal its order. ord-is-minimum : ⦃ p : Ord(x) ⦄ → ∀{n} → (x ^ n ≡ id) → (n ≡ₑ 𝟎) ∨ (ord(x) ⦃ p ⦄ ≤ n) ord-is-minimum ⦃ [∃]-intro (_) ⦃ intro p ⦄ ⦄ {𝟎} x0id = [∨]-introₗ [≡ₑ]-intro ord-is-minimum ⦃ [∃]-intro .(𝐒 po) ⦃ intro {po} p ⦄ ⦄ {𝐒 n} xsnid = [∨]-introᵣ ([≤]-with-[𝐒] ⦃ LE.Minimum.proof{_≤_ = _≤_}(p) ⦃ xsnid ⦄ ⦄) -- When an element power something less than its order and it is the identity element, then the power is 0. ord-is-minimum-but-0 : ⦃ p : Ord(x) ⦄ → ∀{n} → (x ^ n ≡ id) → (n < ord(x) ⦃ p ⦄) → (n ≡ₑ 𝟎) ord-is-minimum-but-0 ⦃ p ⦄ {𝟎} _ _ = [≡ₑ]-intro ord-is-minimum-but-0 ⦃ p ⦄ {𝐒(n)} xnid nord with ord-is-minimum ⦃ p ⦄ {𝐒(n)} xnid ... | [∨]-introᵣ ordsn = [⊥]-elim([<]-to-[≱] nord (ordsn)) -- An order is never 0. ord-non-zero : ⦃ p : Ord(x) ⦄ → (ord(x) ⦃ p ⦄ ≢ₑ 𝟎) ord-non-zero ⦃ [∃]-intro 𝟎 ⦃ ⦄ ⦄ [≡ₑ]-intro -- Iteration (_^_) distributes to the right. -- Can also be seen as iteration preserving from addition to the operation. [^]-by-add : ∀{a b} → ((x ^ a) ▫ (x ^ b) ≡ x ^ (a + b)) [^]-by-add {a}{b} = repeatₗ-by-sum {X = T}{_▫_}{x}{id}{a}{b} -- Nested iterations can join to be a product. [^]-by-product : ∀{a b} → ((((x ^ a)) ^ b) ≡ x ^ (a ⋅ b)) [^]-by-product {a}{b} = repeatₗ-by-product {X = T}{_▫_}{x}{id}{a}{b} -- When powering a difference yields the identity element, the powered elements are the same. [^]-by-distanceₗ : ∀{a b} → (x ^ a ≡ x ^ b) ← (x ^ (a 𝄩 b) ≡ id) [^]-by-distanceₗ {a}{b} = repeatₗ-by-distanceₗ {X = T}{_▫_}{x}{id}{a}{b} -- Theorems where `n` is a power which yields an identity element. module _ {n} (n-id : (x ^ n ≡ id)) where -- Adding something to `n` is only leaving the something behind. [^]-by-id-add : ∀{a} → (x ^ (n + a) ≡ x ^ a) [^]-by-id-add {a} = x ^ (n + a) 🝖-[ symmetry(_≡_) ([^]-by-add {n}{a}) ] (x ^ n) ▫ (x ^ a) 🝖-[ congruence₂ₗ(_▫_)(_) n-id ] id ▫ (x ^ a) 🝖-[ identityₗ(_▫_)(id) ] x ^ a 🝖-end -- Multiplying something by `n` is still the identity element. [^]-by-id-multiple : ∀{a} → (x ^ (n ⋅ a) ≡ id) [^]-by-id-multiple {𝟎} = repeatₗ-by-0 {X = T}{_▫_}{x}{id} [^]-by-id-multiple {𝐒(a)} = x ^ (n + (n ⋅ a)) 🝖-[ symmetry(_≡_) ([^]-by-add {n}{n ⋅ a}) ] (x ^ n) ▫ (x ^ (n ⋅ a)) 🝖-[ congruence₂(_▫_) n-id ([^]-by-id-multiple {a}) ] id ▫ id 🝖-[ identityₗ(_▫_)(id) ] id 🝖-end -- A power yields an identity element only when it is a multiple of the order of the element. [^]-id-when-div : ⦃ p : Ord(x) ⦄ → ∀{n} → (x ^ n ≡ id) ↔ (ord(x) ⦃ p ⦄ ∣ n) [^]-id-when-div ⦃ p ⦄ {n} = [↔]-intro (l{n}) (r{n}) where l : ∀{n} → (x ^ n ≡ id) ← (ord(x) ⦃ p ⦄ ∣ n) l {.0} Div𝟎 = repeatₗ-by-0 {X = T}{_▫_}{x}{id} l {.(ord(x) ⦃ p ⦄ + n)} (Div𝐒 {_}{n} div) = x ^ (ord x ⦃ p ⦄ + n) 🝖-[ symmetry(_≡_) ([^]-by-add {ord(x) ⦃ p ⦄}{n}) ] (x ^ ord x ⦃ p ⦄) ▫ (x ^ n) 🝖-[ congruence₂(_▫_) ([^]-by-ord ⦃ p ⦄) (l{n} div) ] id ▫ id 🝖-[ identityₗ(_▫_)(id) ] id 🝖-end r : ∀{n} → (x ^ n ≡ id) → (ord(x) ⦃ p ⦄ ∣ n) r {𝟎} _ = Div𝟎 r {𝐒(n)} xnid = [↔]-to-[→] mod-divisibility mod-is-0 where open import Relator.Equals.Proofs.Equiv using ([≡]-to-equivalence) instance ord-non-zero-comp : IsTrue(ord(x) ⦃ p ⦄ ≢? 𝟎) ord-non-zero-comp = [↔]-to-[→] decider-true (ord-non-zero ⦃ p ⦄) instance ord-positive : IsTrue(positive?(ord(x) ⦃ p ⦄)) ord-positive with ord(x) ⦃ p ⦄ | [∃]-proof p ... | 𝟎 | pp = finite-order-0 pp ... | 𝐒 _ | _ = <> instance ord-n-ineq : ord(x) ⦃ p ⦄ ≤ 𝐒(n) ord-n-ineq with ord-is-minimum ⦃ p ⦄ {𝐒(n)} xnid ord-n-ineq | [∨]-introₗ () ord-n-ineq | [∨]-introᵣ proof = proof mod-is-id : x ^ (𝐒(n) mod ord(x) ⦃ p ⦄) ≡ id mod-is-id = x ^ (𝐒(n) mod ord(x) ⦃ p ⦄) 🝖-[ symmetry(_≡_) (identityₗ(_▫_)(id)) ] id ▫ (x ^ (𝐒(n) mod ord(x) ⦃ p ⦄)) 🝖-[ congruence₂ₗ(_▫_)(_) (symmetry(_≡_) ([^]-by-id-multiple {ord(x) ⦃ p ⦄} ([^]-by-ord ⦃ p ⦄) {𝐒(n) ⌊/⌋ ord(x) ⦃ p ⦄})) ] (x ^ ((ord(x) ⦃ p ⦄) ⋅ (𝐒(n) ⌊/⌋ ord(x) ⦃ p ⦄))) ▫ (x ^ (𝐒(n) mod ord(x) ⦃ p ⦄)) 🝖-[ [^]-by-add {(ord(x) ⦃ p ⦄) ⋅ (𝐒(n) ⌊/⌋ ord(x) ⦃ p ⦄)} {𝐒(n) mod ord(x) ⦃ p ⦄} ] x ^ (((ord(x) ⦃ p ⦄) ⋅ (𝐒(n) ⌊/⌋ ord(x) ⦃ p ⦄)) + (𝐒(n) mod ord(x) ⦃ p ⦄)) 🝖-[ congruence₁(x ^_) ⦃ Relator.Equals.Proofs.Equiv.[≡]-to-function ⦄ ([≡]-to-equivalence([⌊/⌋][mod]-is-division-with-remainder-pred-commuted{𝐒(n)}{ord(x) ⦃ p ⦄})) ] x ^ 𝐒(n) 🝖-[ xnid ] id 🝖-end mod-is-0 : 𝐒(n) mod ord(x) ⦃ p ⦄ ≡ 𝟎 mod-is-0 = ord-is-minimum-but-0 ⦃ p ⦄ mod-is-id mod-maxᵣ module _ {inv} ⦃ _ : InverseFunctionᵣ(_▫_)(inv) ⦄ where [^]-by-distanceᵣ : ∀{a b} → (x ^ a ≡ x ^ b) → (x ^ (a 𝄩 b) ≡ id) [^]-by-distanceᵣ {a}{b} = repeatₗ-by-distanceᵣ{X = T}{_▫_}{x}{id} ⦃ cancᵣ = One.cancellationᵣ-by-associativity-inverse ⦄ {a}{b} [^]-equal-[𝄩] : ⦃ p : Ord(x) ⦄ → ∀{a b} → (x ^ a ≡ x ^ b) ↔ (ord(x) ⦃ p ⦄ ∣ (a 𝄩 b)) [^]-equal-[𝄩] ⦃ p ⦄ {a}{b} = [↔]-transitivity ([↔]-intro ([^]-by-distanceₗ{a}{b}) ([^]-by-distanceᵣ{a}{b})) ([^]-id-when-div ⦃ p ⦄) postulate [^]-cancellationₗ : ⦃ p : Ord(x) ⦄ → ∀{a b} → ⦃ a < ord(x) ⦃ p ⦄ ⦄ → ⦃ b < ord(x) ⦃ p ⦄ ⦄ → (x ^ a ≡ x ^ b) → (a ≡ₑ b) -- ord(x ^ n) ≡ ord(x) / gcd(n)(ord(x)) -- (x ▫ y ≡ y ▫ x) → ord(x ▫ y) ∣ lcm(ord(x))(ord(y)) -- (∀{x} → (ord(x) ≡ 2)) → Commutativity(_▫_) -- One element in the group can "generate" any element element in the group by repeated application of the operator. Generator : T → Stmt Generator(x) = Surjective(x ^_) -- A group is cyclic when there is an element that can generate it. Cyclic : Stmt Cyclic = ∃(Generator) {- TODO: Because the thing exists, there is finitely many. Search for the first one finite-order-from-dec-existence : ⦃ Decidable(_≡_) ⦄ → ∀{a} → ∃(n ↦ (a ^ 𝐒(n) ≡ id)) → Ord(a) finite-order-from-dec-existence {n} asnid = {!!} -- intro (Weak.Properties.intro ⦃ asnid ⦄ {!!}) -- TODO: Assume decidable equality and use finite-order-from-dec-existence above. Existence should follow from finiteness finite-have-order : ⦃ Finite(T) ⦄ → ∀{a} → Ord(a) ∃.witness (finite-have-order ⦃ [∃]-intro size ⦃ fin-bij ⦄ ⦄) = size ∃.proof (finite-have-order ⦃ [∃]-intro 𝟎 ⦃ [∃]-intro fin-bij ⦄ ⦄ {a = a}) with fin-bij a ... | () ∃.proof (finite-have-order ⦃ [∃]-intro (𝐒(size)) ⦃ fin-bij ⦄ ⦄) = intro {!!} -} postulate cyclic-commutative : ⦃ Cyclic ⦄ → Commutativity(_▫_) -- generator-order-size : ⦃ Finite(T) ⦄ → ∀{a} → ⦃ p : Ord(a) ⦄ → Generator(a) ↔ ((# T) ≡ₑ ord(a) ⦃ p ⦄) -- cyclic-order-size : ⦃ Finite(T) ⦄ → ⦃ Cyclic ⦄ ↔ ∃(a ↦ (# T) ≡ₑ ord(a)) -- generator-of-power : Generator(a ^ k) ↔ Generator(a ^ gcd(ord(a))(k)) -- order-of-power : ord(a ^ k) ∣ ord(a) / gcd(ord(a),k) {- module _ {id} ⦃ ident : Identity(_▫_)(id) ⦄ where open import Data.Boolean open import Data.Boolean.Stmt import Function.Iteration open import Logic.Computability open import Logic.Computability.Binary renaming (ComputablyDecidable to ComputablyDecidable2) open import Logic open import Numeral.Natural.Relation.Computability -} {- boundedMinOr : ℕ → (ℕ → Bool) → ℕ → ℕ boundedMinOr 𝟎 p default = default boundedMinOr (𝐒(bound)) p default = if p(bound) then bound else (boundedMinOr bound p default) boundedMinOr-proof : ∀{p : ℕ → Bool}{bound default : ℕ} → IsTrue(p(default)) → IsTrue(p(boundedMinOr bound p default)) min-by-bruteforce : ∀{ℓ}{P : ℕ → Stmt{ℓ}} → ⦃ comp : ComputablyDecidable(P) ⦄ → ⦃ e : ∃(P) ⦄ → ∃(Weak.Properties.MinimumOf(_≤_)(P)) ∃.witness (min-by-bruteforce {P = P} ⦃ comp ⦄ ⦃ e ⦄) = boundedMinOr([∃]-witness(e)) (ComputablyDecidable.decide(comp)) ([∃]-witness(e)) Weak.Properties.MinimumOf.proof (∃.proof min-by-bruteforce) {x} ⦃ x₁ ⦄ = {!!} ord : (x : T) → ⦃ e : FiniteOrder(x) ⦄ → ⦃ comp : ComputablyDecidable2{X = T}(_≡_) ⦄ → ℕ ord(x) ⦃ e ⦄ ⦃ comp ⦄ = Weak.minOf(_≤_)(n ↦ x ^ 𝐒(n) ≡ id) ⦃ min-by-bruteforce ⦃ {!!} ⦄ ⦃ e ⦄ ⦄ -}
{ "alphanum_fraction": 0.5416594492, "avg_line_length": 49.3418803419, "ext": "agda", "hexsha": "a84552bbdcac9ae526ee367d6e371e9d3725dc56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Iteration/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Iteration/Order.agda", "max_line_length": 256, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Iteration/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4659, "size": 11546 }
module Issue2487-4 where open import Agda.Primitive -- this should not be consistency-checked open import Agda.Builtin.Bool f : Bool → Bool f true = true f _ = false
{ "alphanum_fraction": 0.738372093, "avg_line_length": 17.2, "ext": "agda", "hexsha": "97177800a5cf3cd7160292fd6c06e80e758a1473", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2487-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2487-4.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2487-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 172 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Relation.Nullary.Decidable.Logic where open import Prelude open import Data.Sum infixl 7 _&&_ _&&_ : Dec A → Dec B → Dec (A × B) (x && y) .does = x .does and y .does (yes x && yes y) .why = ofʸ (x , y) (yes x && no y) .why = ofⁿ (y ∘ snd) (no x && y) .why = ofⁿ (x ∘ fst) infixl 6 _||_ _||_ : Dec A → Dec B → Dec (A ⊎ B) (x || y) .does = x .does or y .does (yes x || y) .why = ofʸ (inl x) (no x || yes y) .why = ofʸ (inr y) (no x || no y) .why = ofⁿ (either x y) ! : Dec A → Dec (¬ A) ! x .does = not (x .does) ! (yes x) .why = ofⁿ (λ z → z x) ! (no x) .why = ofʸ x
{ "alphanum_fraction": 0.5280373832, "avg_line_length": 24.6923076923, "ext": "agda", "hexsha": "59564f6359f177955b4b237ae33d1c9476262f8b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Relation/Nullary/Decidable/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Relation/Nullary/Decidable/Logic.agda", "max_line_length": 54, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Relation/Nullary/Decidable/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 277, "size": 642 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Data.Bool.Properties where open import HLevels open import Path open import Data.Bool.Base open import Data.Bool.Truth open import Data.Unit.Properties open import Data.Unit open import Data.Empty open import Data.Empty.Properties using (isProp⊥) open import Relation.Nullary.Discrete open import Relation.Nullary.Decidable using (Dec; does; why) isPropT : ∀ x → isProp (T x) isPropT false = isProp⊥ isPropT true = isProp⊤ false≢true : false ≢ true false≢true p = subst (bool ⊤ ⊥) p tt true≢false : true ≢ false true≢false p = subst (bool ⊥ ⊤) p tt discreteBool : Discrete Bool discreteBool false y .does = not y discreteBool true y .does = y discreteBool false false .why = refl discreteBool false true .why = false≢true discreteBool true false .why = true≢false discreteBool true true .why = refl
{ "alphanum_fraction": 0.7523041475, "avg_line_length": 26.303030303, "ext": "agda", "hexsha": "5b5d80526618d6448054f370599e66446cab7e0f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Bool/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Bool/Properties.agda", "max_line_length": 61, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 259, "size": 868 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose open import homotopy.3x3.Common module homotopy.3x3.From {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) module I∙₀ = PushoutRec {D = Pushout^2 d} (left ∘ left) (right ∘ left) (glue ∘ left) i∙₀ : A∙₀ → Pushout^2 d i∙₀ = I∙₀.f module I∙₄ = PushoutRec {D = Pushout^2 d} (left ∘ right) (right ∘ right) (glue ∘ right) i∙₄ : A∙₄ → Pushout^2 d i∙₄ = I∙₄.f module E∙₂Red (c : A₂₂) where lhs-o : _ lhs-o = ap (i∙₄ ∘ f∙₃) (glue c) =⟨ ap-∘ i∙₄ f∙₃ (glue c) ⟩ ap i∙₄ (ap f∙₃ (glue c)) =⟨ F∙₃.glue-β c |in-ctx (ap i∙₄) ⟩ ap i∙₄ (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) =⟨ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c) ⟩ ap (left ∘ right) (H₁₃ c) ∙ ap i∙₄ (glue (f₂₃ c)) ∙ ! (ap (right ∘ right) (H₃₃ c)) =⟨ I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) ⟩ ap (left ∘ right) (H₁₃ c) ∙ glue (right (f₂₃ c)) ∙ ! (ap (right ∘ right) (H₃₃ c)) ∎ rhs-o : _ rhs-o = ! (ap (left ∘ left) (H₁₁ c)) ∙ glue (left (f₂₁ c)) ∙ ap (right ∘ left) (H₃₁ c) =⟨ ! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ⟩ ! (ap (left ∘ left) (H₁₁ c)) ∙ ap i∙₀ (glue (f₂₁ c)) ∙ ap (right ∘ left) (H₃₁ c) =⟨ ! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ⟩ ap i∙₀ (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) =⟨ ! (F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u) ⟩ ap i∙₀ (ap f∙₁ (glue c)) =⟨ ∘-ap i∙₀ f∙₁ (glue c) ⟩ ap (i∙₀ ∘ f∙₁) (glue c) ∎ T-lhs : Type _ T-lhs = right (left (f₃₀ (f₂₁ c))) == right (right (f₃₄ (f₂₃ c))) :> Pushout^2 d lhs-i : _ == _ :> T-lhs lhs-i = ap (right ∘ left) (H₃₁ c) ∙ ap right (glue (f₃₂ c)) ∙ ap (right ∘ right) (H₃₃ c) =⟨ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ⟩ ap right (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) =⟨ ! (ap (ap right) (F₃∙.glue-β c)) ⟩ ap right (ap f₃∙ (glue c)) =⟨ ∘-ap right f₃∙ (glue c) ⟩ ap (right ∘ f₃∙) (glue c) ∎ T-rhs : Type _ T-rhs = left (left (f₁₀ (f₂₁ c))) == left (right (f₁₄ (f₂₃ c))) :> Pushout^2 d rhs-i : _ == _ :> T-rhs rhs-i = ap (left ∘ f₁∙) (glue c) =⟨ ap-∘ left f₁∙ (glue c) ⟩ ap left (ap f₁∙ (glue c)) =⟨ F₁∙.glue-β c |in-ctx (ap left) ⟩ ap left (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) =⟨ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ⟩ (ap (left ∘ left) (H₁₁ c) ∙ ap left (glue (f₁₂ c)) ∙ ap (left ∘ right) (H₁₃ c)) ∎ coh! : (p : (_ , _ =□ _ , _)) → _ coh! = pp-coh! {A = Pushout^2 d} {u = glue (left (f₂₁ c))} {ap (right ∘ left) (H₃₁ c)} {ap right (glue (f₃₂ c))} {ap (right ∘ right) (H₃₃ c)} {ap (left ∘ left) (H₁₁ c)} {ap left (glue (f₁₂ c))} {ap (left ∘ right) (H₁₃ c)} {glue (right (f₂₃ c))} coh : (p : (_ , _ =□ _ , _)) → _ coh = pp-coh {A = Pushout^2 d} {p = ap left (glue (f₁₂ c))} {ap (left ∘ right) (H₁₃ c)} {glue (right (f₂₃ c))} {ap (right ∘ right) (H₃₃ c)} {ap (left ∘ left) (H₁₁ c)} {glue (left (f₂₁ c))} {ap (right ∘ left) (H₃₁ c)} {ap right (glue (f₃₂ c))} module _ (to : Pushout^2 d → Pushout^2 (transpose d)) where ap-ap-coh! : (p : _ , _ =□ _ , _) → _ ap-ap-coh! = pp-coh! {u = ap to (glue (left (f₂₁ c)))} {ap (to ∘ right ∘ left) (H₃₁ c)} {ap to (ap right (glue (f₃₂ c)))} {ap (to ∘ right ∘ right) (H₃₃ c)} {ap (to ∘ left ∘ left) (H₁₁ c)} {ap to (ap left (glue (f₁₂ c)))} {ap (to ∘ left ∘ right) (H₁₃ c)} {ap to (glue (right (f₂₃ c)))} ap-ap-coh : (p : _ , _ =□ _ , _) → _ ap-ap-coh = pp-coh {p = ap to (ap left (glue (f₁₂ c)))} {ap (to ∘ left ∘ right) (H₁₃ c)} {ap to (glue (right (f₂₃ c)))} {ap (to ∘ right ∘ right) (H₃₃ c)} {ap (to ∘ left ∘ left) (H₁₁ c)} {ap to (glue (left (f₂₁ c)))} {ap (to ∘ right ∘ left) (H₃₁ c)} {ap to (ap right (glue (f₃₂ c)))} ap-ap-coh!-lhs-i : _ ap-ap-coh!-lhs-i = ! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ap-ap-coh!-rhs-i : _ ap-ap-coh!-rhs-i = ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c) ap-ap-coh!-lhs-o : _ ap-ap-coh!-lhs-o = ap-∙∙!'`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c) ap-ap-coh!-rhs-o : _ ap-ap-coh!-rhs-o = ! (ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) ap-ap-coh!-β : (α : _) → ap□ to (coh! α) == ap-ap-coh! (ap□ to α ∙□-i/ ap-ap-coh!-lhs-i / ap-ap-coh!-rhs-i /) ∙□-i/ ap-ap-coh!-lhs-o / ap-ap-coh!-rhs-o / ap-ap-coh!-β α = ap□-coh! {g₁ = left ∘ right} {right ∘ right} {left ∘ left} {right ∘ left} to {u = glue (left (f₂₁ c))} {H₃₁ c} {ap right (glue (f₃₂ c))} {H₃₃ c} {H₁₁ c} {ap left (glue (f₁₂ c))} {H₁₃ c} {glue (right (f₂₃ c))} α open E∙₂Red module E∙₂ = PushoutElim {d = span _ _ _ f₁₂ f₃₂} {P = λ c → i∙₀ (f∙₁ c) == i∙₄ (f∙₃ c)} (ap left ∘ glue) (ap right ∘ glue) (λ c → ↓-='-in (coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ lhs-i c / rhs-i c /) ∙□-i/ lhs-o c / rhs-o c /)) e∙₂ : (c : A∙₂) → i∙₀ (f∙₁ c) == i∙₄ (f∙₃ c) e∙₂ = E∙₂.f module From = PushoutRec {d = h-v-span} {D = Pushout^2 d} i∙₀ i∙₄ e∙₂ from : Pushout^2 (transpose d) → Pushout^2 d from = From.f from-glue-glue-β : (c : A₂₂) → ap↓ (ap from) (apd glue (glue c)) == (↓-='-in (coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ lhs-i c / rhs-i c /) ∙□-i/ lhs-o c / rhs-o c /)) ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / from-glue-glue-β c = ∘'-apd (ap from) glue (glue c) ∙ coh1 {p = apd (ap from ∘ glue) (glue c)} {From.glue-β (right (f₃₂ c))} {From.glue-β (left (f₁₂ c))} {apd e∙₂ (glue c)} (↓-=-out (apd From.glue-β (glue c))) ∙ (E∙₂.glue-β c |in-ctx (λ u → u ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c)))/))
{ "alphanum_fraction": 0.4133386581, "avg_line_length": 42.6818181818, "ext": "agda", "hexsha": "ab19c4e0774ba215f309e2e5dd4591921988a6e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/From.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/From.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/From.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3360, "size": 7512 }
module general-util where open import instances public get-file-contents : (filename : string) → IO (maybe string) get-file-contents e = doesFileExist e >>= λ b → if b then (readFiniteFile e >>= λ s → return (just s)) else return nothing maybe-else : ∀{ℓ}{A B : Set ℓ} → B → (A → B) → maybe A → B maybe-else y f (just x) = f x maybe-else y f nothing = y maybe-else' : ∀{ℓ}{A B : Set ℓ} → maybe A → B → (A → B) → B maybe-else' m y f = maybe-else y f m maybe-join : ∀ {a} {A : Set a} → maybe (maybe A) → maybe A maybe-join = maybe-else nothing id maybe-equal? : ∀ {a} {A : Set a} → (A → A → 𝔹) → (m₁ m₂ : maybe A) → 𝔹 maybe-equal? f (just x) (just x₁) = f x x₁ maybe-equal? f (just x) nothing = ff maybe-equal? f nothing (just x) = ff maybe-equal? f nothing nothing = tt _maybe-or_ : ∀ {ℓ} {A : Set ℓ} → maybe A → maybe A → maybe A (nothing maybe-or ma) = ma (just a maybe-or ma) = just a maybe-not : ∀ {ℓ} {A : Set ℓ} → maybe A → maybe ⊤ maybe-not (just a) = nothing maybe-not nothing = just triv maybe-if : 𝔹 → maybe ⊤ maybe-if tt = just triv maybe-if ff = nothing when : ∀ {A : Set} → 𝔹 → A → maybe A when b a = maybe-if b >> just a unless : ∀ {A : Set} → 𝔹 → A → maybe A unless b a = maybe-if (~ b) >> just a trie-lookupd : ∀ {A : Set} → trie A → string → A → A trie-lookupd t s d with trie-lookup t s trie-lookupd t s d | nothing = d trie-lookupd t s d | just x = x trie-lookup-else : ∀{A : Set} → A → trie A → string → A trie-lookup-else d t s = trie-lookupd t s d trie-single : ∀{A : Set} → string → A → trie A trie-single s x = trie-insert empty-trie s x trie-any : ∀{A : Set} → (A → 𝔹) → trie A → 𝔹 trie-cal-any : ∀{A : Set} → (A → 𝔹) → cal (trie A) → 𝔹 trie-any f (Node odata ts) = maybe-else (trie-cal-any f ts) f odata trie-cal-any f [] = ff trie-cal-any f ((c , t) :: cs) = trie-any f t || trie-cal-any f cs trie-all : ∀{A : Set} → (A → 𝔹) → trie A → 𝔹 trie-all f = ~_ ∘ trie-any (~_ ∘ f) trie-lookup𝕃 : ∀ {A : Set} → trie (𝕃 A) → string → 𝕃 A trie-lookup𝕃 t s = trie-lookupd t s [] trie-lookup𝕃2 : ∀ {A : Set} → trie (string × 𝕃 A) → string → string × 𝕃 A trie-lookup𝕃2 t s = trie-lookupd t s ("[nomod]" , []) trie-lookup-string : trie string → string → string trie-lookup-string t s = trie-lookupd t s "[not-found]" trie-insert-append : ∀ {A : Set} → trie (𝕃 A) → string → A → trie (𝕃 A) trie-insert-append t s a = trie-insert t s (a :: (trie-lookup𝕃 t s)) trie-insert-append2 : ∀ {A : Set} → trie (string × 𝕃 A) → string → string → A → trie (string × 𝕃 A) trie-insert-append2 t s mn a = trie-insert t s (mn , (a :: snd (trie-lookup𝕃2 t s))) trie-fill : ∀{A : Set} → trie A → 𝕃 (string × A) → trie A trie-fill t ((s , a) :: vs) = trie-fill (trie-insert t s a) vs trie-fill t [] = t trie-empty? : ∀ {A} → trie A → 𝔹 trie-empty? t = ~ trie-nonempty t trie-filter : ∀ {A} → (A → 𝔹) → trie A → trie A cal-filter : ∀ {A} → (A → 𝔹) → cal (trie A) → cal (trie A) trie-filter f (Node odata ts'@(c :: ts)) = Node odata (cal-filter f ts') trie-filter f t@(Node (just x) []) = if f x then t else empty-trie trie-filter f (Node nothing []) = empty-trie cal-filter f [] = [] cal-filter f ((a , t) :: c) with trie-filter f t | cal-filter f c ... | t' | c' = if trie-empty? t then c' else (a , t') :: c' trie-fold : ∀ {F : Set → Set} {A B : Set} → trie A → F B → (string → A → F B → F B) → F B trie-fold t n c = foldr (λ {(k , v) → c k v}) n (trie-mappings t) trie-catMaybe : ∀ {A} → trie (maybe A) → trie A cal-catMaybe : ∀ {A} → cal (trie (maybe A)) → cal (trie A) trie-catMaybe (Node odata ts'@(t :: ts)) = Node (maybe-join odata) (cal-catMaybe ts') trie-catMaybe (Node odata []) = maybe-else empty-trie (λ a → Node (just a) []) (maybe-join odata) cal-catMaybe [] = [] cal-catMaybe ((c , tr) :: trs) with trie-catMaybe tr | cal-catMaybe trs ... | tr' | trs' = if trie-empty? tr' then trs' else (c , tr') :: trs' trie-equal? : ∀ {A : Set} → (A → A → 𝔹) → (t₁ t₂ : trie A) → 𝔹 trie-equal? {A} f t₁ t₂ = length t₁𝕃 =ℕ length t₂𝕃 && list-all check-elems t₁𝕃 where t₁𝕃 = trie-mappings t₁ t₂𝕃 = trie-mappings t₂ check-elems : string × A → 𝔹 check-elems (name , dat₁) with trie-lookup t₂ name ... | nothing = ff ... | just dat₂ = f dat₁ dat₂ string-split-h : 𝕃 char → char → 𝕃 char → 𝕃 string → 𝕃 string string-split-h [] delim str-build out = reverse ((𝕃char-to-string (reverse str-build)) :: out) string-split-h (c :: cs) delim str-build out with (c =char delim) ... | tt = string-split-h cs delim [] ((𝕃char-to-string (reverse str-build)) :: out) ... | ff = string-split-h cs delim (c :: str-build) out string-split : string → char → 𝕃 string string-split str delim = string-split-h (string-to-𝕃char str) delim [] [] undo-escape-string-h : 𝕃 char → 𝕃 char → 𝕃 char undo-escape-string-h ('\\' :: 'n' :: rest) so-far = undo-escape-string-h rest ('\n' :: so-far) undo-escape-string-h ('\\' :: '\"' :: rest) so-far = undo-escape-string-h rest ('\"' :: so-far) undo-escape-string-h (c :: rest) so-far = undo-escape-string-h rest (c :: so-far) undo-escape-string-h [] so-far = reverse so-far undo-escape-string : string → string undo-escape-string str = 𝕃char-to-string (undo-escape-string-h (string-to-𝕃char str) []) is-pfx : (pfx str : string) → maybe string is-pfx pfx str = h (string-to-𝕃char pfx) (string-to-𝕃char str) where h : 𝕃 char → 𝕃 char → maybe string h [] cs = just (𝕃char-to-string cs) h (cₚ :: csₚ) [] = nothing h (cₚ :: csₚ) (cₛ :: csₛ) with cₚ =char cₛ ...| ff = nothing ...| tt = h csₚ csₛ -- functions.agda curry : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → (A × B → C) → A → B → C curry f a b = f (a , b) uncurry : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → (f : A → B → C) → (p : A × B) → C uncurry f (a , b) = f a b uncurry₂ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (f : A → B → C → D) → (p : A × B × C) → D uncurry₂ f (a , b , c) = f a b c elim-pair : ∀{ℓ₀ ℓ₁ ℓ₂}{A : Set ℓ₀}{B : Set ℓ₁}{C : Set ℓ₂} → A × B → (A → B → C) → C elim-pair (a , b) f = f a b elim-Σi : ∀ {ℓ₀ ℓ₁ ℓ₂} {A : Set ℓ₀} {B : A → Set ℓ₁} {X : Set ℓ₂} → Σi A B → ({a : A} → B a → X) → X elim-Σi (, b) f = f b elim_for : ∀ {ℓ₀ ℓ₁ ℓ₂} {A : Set ℓ₀} {B : Set ℓ₁} {X : Set ℓ₂} → A × B → (A → B → X) → X elim (a , b) for f = f a b infixr 0 case_ret_of_ case_of_ case_ret_of_ : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} (x : A) (B : A → Set ℓ₂) → ((x : A) → B x) → B x case x ret B of f = f x case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = case_ret_of_ x _ f case₂_,_of_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → B → (A → B → C) → C case₂ x , y of f = f x y flip : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → (B → A → C) flip f = λ b a → f a b const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const a b = a infixr 0 _$_ _$_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → A → B f $ x = f x -- _∘_ just needs a fixity and association declaration in the IAL infixr 9 _∘'_ _∘'_ : ∀ {a b c} {A : Set a}{B : Set b}{C : Set c} → (B → C) → (A → B) → A → C g ∘' f = λ a → g (f a) -- list.agda take : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A take 0 l = [] take (suc n) (x :: l) = x :: (take n l) take (suc n) [] = [] drop : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A drop zero xs = xs drop (suc _) [] = [] drop (suc n) (x :: xs) = drop n xs drop-last : ∀{ℓ}{A : Set ℓ} → ℕ → 𝕃 A → 𝕃 A drop-last n xs = take (length xs ∸ n) xs zip-with : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃} → (A → B → C) → 𝕃 A → 𝕃 B → 𝕃 C zip-with f xs ys = map (uncurry f) (zip xs ys) for_yield_ : ∀ {a b} {A : Set a} {B : Set b} → 𝕃 A → (A → B) → 𝕃 B for xs yield f = map f xs for_accum_use_ : ∀ {a b} {A : Set a} {B : Set b} → 𝕃 A → B → (A → B → B) → B for xs accum n use f = foldr f n xs foldl : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (A → B → B) → B → 𝕃 A → B foldl f b [] = b foldl f b (a :: as) = foldl f (f a b) as foldr' : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → B → (A → B → B) → 𝕃 A → B foldr' = flip foldr -- error.agda err-guard : 𝔹 → string → error-t ⊤ err-guard tt msg = yes-error msg err-guard ff _ = no-error triv -- sum.agda either-else' : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A ∨ B → (A → C) → (B → C) → C either-else' (inj₁ x) f g = f x either-else' (inj₂ y) f g = g y either-else : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → C) → (B → C) → A ∨ B → C either-else f g (inj₁ x) = f x either-else f g (inj₂ y) = g y err⊎-guard : ∀ {e} {E : Set e} → 𝔹 → E → E ∨ ⊤ err⊎-guard tt err = inj₁ err err⊎-guard ff _ = inj₂ triv --infixl 1 _≫⊎_ --_≫⊎_ : ∀ {E B : Set} → E ∨ ⊤ → E ∨ B → E ∨ B --m₁ ≫⊎ m₂ = m₁ ≫=⊎ λ _ → m₂ -- Some file writing functions data IOMode : Set where ReadMode : IOMode WriteMode : IOMode AppendMode : IOMode ReadWriteMode : IOMode filepath = string postulate Handle : Set -- IOMode : Set openFile : filepath → IOMode -> IO Handle closeFile : Handle -> IO ⊤ hPutStr : Handle → string → IO ⊤ hSetToLineBuffering : Handle → IO ⊤ hFlush : Handle → IO ⊤ stdout : Handle doesDirectoryExist : filepath → IO 𝔹 {-# FOREIGN GHC import qualified System.IO #-} {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# FOREIGN GHC import qualified System.Directory #-} {-# COMPILE GHC Handle = type System.IO.Handle #-} {-# COMPILE GHC IOMode = data System.IO.IOMode (System.IO.ReadMode | System.IO.WriteMode | System.IO.AppendMode | System.IO.ReadWriteMode) #-} {-# COMPILE GHC hSetToLineBuffering = \ hdl -> System.IO.hSetBuffering hdl System.IO.LineBuffering #-} {-# COMPILE GHC hFlush = System.IO.hFlush #-} {-# COMPILE GHC stdout = System.IO.stdout #-} {-# COMPILE GHC openFile = \ fp mode -> do outh <- System.IO.openFile (Data.Text.unpack fp) mode; System.IO.hSetNewlineMode outh System.IO.noNewlineTranslation; System.IO.hSetEncoding outh System.IO.utf8; return outh #-} {-# COMPILE GHC closeFile = System.IO.hClose #-} {-# COMPILE GHC hPutStr = Data.Text.IO.hPutStr #-} {-# COMPILE GHC doesDirectoryExist = System.Directory.doesDirectoryExist . Data.Text.unpack #-} clearFile : filepath → IO ⊤ clearFile fp = openFile fp WriteMode >>= λ hdl → hPutStr hdl "" >> closeFile hdl flush : IO ⊤ flush = hFlush stdout setToLineBuffering : IO ⊤ setToLineBuffering = hSetToLineBuffering stdout withFile : {A : Set} → filepath → IOMode → (Handle → IO A) → IO A withFile fp mode f = openFile fp mode >>= λ hdl → f hdl >≯ closeFile hdl -- Coordinated Universal Time infix 15 _utc-after_ _utc-before_ postulate UTC : Set getCurrentTime : IO UTC _utc-after_ : UTC → UTC → 𝔹 _utc-before_ : UTC → UTC → 𝔹 utcToString : UTC → string getModificationTime : filepath → IO UTC getCurrentDirectory : IO filepath pathSeparator : char {-# FOREIGN GHC import qualified Data.Time.Clock #-} {-# FOREIGN GHC import qualified Data.Time.Calendar #-} {-# FOREIGN GHC import qualified System.FilePath #-} {-# COMPILE GHC UTC = type Data.Time.Clock.UTCTime #-} {-# COMPILE GHC getCurrentTime = Data.Time.Clock.getCurrentTime #-} {-# COMPILE GHC _utc-after_ = (>) #-} {-# COMPILE GHC _utc-before_ = (<) #-} {-# COMPILE GHC utcToString = Data.Text.pack . show #-} {-# COMPILE GHC getModificationTime = System.Directory.getModificationTime . Data.Text.unpack #-} {-# COMPILE GHC getCurrentDirectory = System.Directory.getCurrentDirectory >>= return . Data.Text.pack #-} {-# COMPILE GHC pathSeparator = System.FilePath.pathSeparator #-} pathSeparatorString = 𝕃char-to-string [ pathSeparator ] splitPath : filepath → 𝕃 string splitPath = h [] [] ∘ string-to-𝕃char where cons-if-nonempty : 𝕃 char → 𝕃 string → 𝕃 string cons-if-nonempty [] acc = acc cons-if-nonempty cur acc = 𝕃char-to-string (reverse cur) :: acc h : 𝕃 string → 𝕃 char → 𝕃 char → 𝕃 string h acc cur [] = reverse (cons-if-nonempty cur acc) h acc cur (c :: cs) with c =char pathSeparator ...| tt = h (cons-if-nonempty cur acc) [] cs ...| ff = h acc (c :: cur) cs joinPath : 𝕃 string → filepath joinPath [] = "" joinPath (x :: []) = x joinPath (x :: xs) = x ^ pathSeparatorString ^ joinPath xs pathIsAbsolute : filepath → 𝔹 pathIsAbsolute = maybe-else ff (λ c → (c =char '~') || (c =char pathSeparator)) ∘ (head2 ∘ string-to-𝕃char) filepath-replace-tilde : filepath → IO (maybe filepath) filepath-replace-tilde fp with string-to-𝕃char fp ...| '~' :: '/' :: fp-cs = getHomeDirectory >>=r λ home → just (combineFileNames home (𝕃char-to-string fp-cs)) ...| fp-cs = return nothing -- string binary tree, for more efficient I/O printing than concatenation data rope : Set where _⊹⊹_ : rope → rope → rope [[_]] : string → rope infixl 9 _⊹⊹_ infix 9 [[_]] [[]] : rope [[]] = [[ "" ]] rope-to-string : rope → string rope-to-string = flip h "" where h : rope → string → string h (s₁ ⊹⊹ s₂) = h s₁ ∘ h s₂ h [[ s ]] acc = s ^ acc rope-length : rope → ℕ rope-length [[ s ]] = string-length s rope-length (r₁ ⊹⊹ r₂) = rope-length r₁ + rope-length r₂ 𝕃-to-rope : ∀{A : Set} → (A → rope) → string → 𝕃 A → rope 𝕃-to-rope to-rope sep [] = [[]] 𝕃-to-rope to-rope sep (x :: []) = to-rope x 𝕃-to-rope to-rope sep (x :: xs) = to-rope x ⊹⊹ [[ sep ]] ⊹⊹ 𝕃-to-rope to-rope sep xs putStrLn : string → IO ⊤ putStrLn str = putStr str >> putStr "\n" -- >> flush putRope : rope → IO ⊤ -- putRope = putStr ∘ rope-to-string putRope s = h s (return triv) where h : rope → IO ⊤ → IO ⊤ h (s₁ ⊹⊹ s₂) io = h s₁ (h s₂ io) h [[ s ]] io = putStr s >> io putRopeLn : rope → IO ⊤ putRopeLn s = putRope s >> putStr "\n" -- >> flush hPutRope : Handle → rope → IO ⊤ hPutRope outh s = h s (return triv) outh where h : rope → IO ⊤ → Handle → IO ⊤ h (s₁ ⊹⊹ s₂) io outh = h s₁ (h s₂ io outh) outh h [[ s ]] io outh = hPutStr outh s >> io writeRopeToFile : filepath → rope → IO ⊤ writeRopeToFile fp s = clearFile fp >> openFile fp AppendMode >>= λ hdl → hPutRope hdl s >> closeFile hdl stringset-singleton : string → stringset stringset-singleton x = stringset-insert empty-stringset x set-nth : ∀ {ℓ} {X : Set ℓ} → ℕ → X → 𝕃 X → 𝕃 X set-nth n x [] = [] set-nth zero x (x' :: xs) = x :: xs set-nth (suc n) x (x' :: xs) = x' :: set-nth n x xs map-fst : ∀ {ℓ₀ ℓ₁ ℓ₂} {X₀ : Set ℓ₀} {X₁ : Set ℓ₁} {X₂ : Set ℓ₂} → (X₀ → X₂) → (X₀ × X₁) → (X₂ × X₁) map-fst f (x₀ , x₁) = (f x₀ , x₁) map-snd : ∀ {ℓ₀ ℓ₁ ℓ₂} {X₀ : Set ℓ₀} {X₁ : Set ℓ₁} {X₂ : Set ℓ₂} → (X₁ → X₂) → (X₀ × X₁) → (X₀ × X₂) map-snd f (x₀ , x₁) = (x₀ , f x₁) --cons = _::_ --nil = [] --data 𝕃ᵢ (A : ℕ → Set) : ℕ → Set where -- cons : ∀ {n} → A 0 → 𝕃ᵢ A n → 𝕃ᵢ A (suc n) -- nil : 𝕃ᵢ A 0 --pattern _,_ = _::_ --{-# TERMINATING #-} --𝕃ᵢ-nests : Set → ℕ → Set --𝕃ᵢ-nests A 0 = A --𝕃ᵢ-nests A (suc n) = 𝕃ᵢ (𝕃ᵢ-nests A) 1 --cons' : ∀ {A n} → A → 𝕃ᵢ (𝕃ᵢ-nests A) n → 𝕃ᵢ (𝕃ᵢ-nests A) (suc n) --cons' h t = cons h t {- -- Syntactic sugar for Haskell-esque list construction infixr 4 _,,_ infixr 5 [:_ _:] [:_ = id _:] = [_] _,,_ : ∀ {ℓ} {A : Set ℓ} → A → 𝕃 A → 𝕃 A _,,_ = _::_ -} infixr 4 _⌟_ _⌟_ : ∀ {ℓ}{A : Set ℓ}{b : 𝔹} → A → if b then A else 𝕃 A → 𝕃 A _⌟_ {b = tt} a a' = a :: a' :: [] _⌟_ {b = ff} a as = a :: as [:_:] = id 𝕃-sugar-example = [: 0 ⌟ 1 ⌟ 2 ⌟ 3 ⌟ 4 :] {- postulate ord : char → ℕ chr : ℕ → char {-# FOREIGN GHC import qualified Data.Char #-} {-# COMPILE GHC ord = toInteger . Data.Char.ord #-} {-# COMPILE GHC chr = Data.Char.chr . fromIntegral #-} toLower : char → char toLower c = let n = ord c up? = n ≥ 65 {- A -} && n ≤ 90 {- Z -} in chr (if up? then n ∸ 32 else n) toUpper : char → char toUpper c = let n = ord c low? = n ≥ 97 {- A -} && n ≤ 122 {- Z -} in chr (if low? then n + 32 else n) capitalize : string → string capitalize x with string-to-𝕃char x ...| [] = "" ...| c :: cs = 𝕃char-to-string (toUpper c :: cs) uncapitalize : string → string uncapitalize x with string-to-𝕃char x ...| [] = "" ...| c :: cs = 𝕃char-to-string (toLower c :: cs) -}
{ "alphanum_fraction": 0.57475104, "avg_line_length": 31.7955911824, "ext": "agda", "hexsha": "c7469f81e3f86aa4e6cda5d3da2cc68b49bbcd9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zmthy/cedille", "max_forks_repo_path": "src/general-util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zmthy/cedille", "max_issues_repo_path": "src/general-util.agda", "max_line_length": 220, "max_stars_count": null, "max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zmthy/cedille", "max_stars_repo_path": "src/general-util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6338, "size": 15866 }
------------------------------------------------------------------------ -- M-types for indexed containers, defined coinductively (in Cubical -- Agda) ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe --guardedness #-} import Equality.Path as P module Container.Indexed.Variant.M.Codata {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude open import Bijection equality-with-J using (_↔_) open import Container.Indexed equality-with-J using (_⇾_; _∘⇾_) open import Container.Indexed.Variant equality-with-J hiding (Final′≃Final′) import Container.Indexed.Variant P.equality-with-J as PC open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J open import H-level equality-with-J private variable a iℓ s : Level A I : Type a i p q x : A C : Container I s p n : ℕ -- An M-type for a given container. -- -- This definition is similar to one in "Indexed containers" by -- Altenkirch, Ghani, Hancock, McBride and Morris. record M {I : Type iℓ} (C : Container I s p) (i : I) : Type (iℓ ⊔ s ⊔ p) where coinductive constructor in-M field out-M : ⟦ C ⟧ (M C) i open M public -- An η-law. η : in-M (out-M x) ≡ x η = _↔_.from ≡↔≡ η′ where η′ : in-M (out-M x) P.≡ x η′ {x = x} _ .out-M = x .out-M -- M C is, in a certain sense, a fixpoint of ⟦ C ⟧. M-fixpoint : ⟦ C ⟧ (M C) i ≃ M C i M-fixpoint = Eq.↔→≃ in-M out-M (λ _ → η) refl -- A coalgebra defined using M and out-M. M-coalgebra : (C : Container I s p) → Coalgebra C M-coalgebra C = M C , λ _ → out-M private -- M-coalgebra C is a final coalgebra. -- -- This code is based on code written by Andrea Vezzosi for the -- cubical library. M-final′′ : PC.Final′ (M-coalgebra C) M-final′′ {C = C@(S ◁ P)} Y@(Q , f) = unfold , unique where g : Q ⇾ M C g i q .out-M .proj₁ = f i q .proj₁ g i q .out-M .proj₂ j p = g j (f i q .proj₂ j p) g-ok : (λ _ → out-M) ∘⇾ g P.≡ map C g ∘⇾ f g-ok i j q .proj₁ = f j q .proj₁ g-ok i j q .proj₂ k p .out-M = g-ok i k (f j q .proj₂ k p) unfold : Y PC.⇨ M-coalgebra C unfold = g , g-ok module _ (u : Y PC.⇨ M-coalgebra C) where lemma₁ : x P.≡ u .proj₁ i q → x .out-M .proj₁ P.≡ (map C (u .proj₁) ∘⇾ f) i q .proj₁ lemma₁ {i = i} {x = x} {q = q} eq = x .out-M .proj₁ P.≡⟨ P.cong (λ x → x .out-M .proj₁) eq ⟩ u .proj₁ i q .out-M .proj₁ P.≡⟨ P.cong (λ f → f i q .proj₁) (u .proj₂) ⟩∎ (map C (u .proj₁) ∘⇾ f) i q .proj₁ ∎ lemma₂ : (eq : x P.≡ u .proj₁ i q) → P.[ (λ l → P (lemma₁ eq l) ⇾ M C) ] x .out-M .proj₂ ≡ (map C (u .proj₁) ∘⇾ f) i q .proj₂ lemma₂ {i = i} {x = x} {q = q} eq = x .out-M .proj₂ P.≡⟨ P.hcong (λ x → x .out-M .proj₂) eq ⟩[ (λ p → P p ⇾ M C) ] u .proj₁ i q .out-M .proj₂ P.≡⟨ P.hcong (λ f → f i q .proj₂) (u .proj₂) ⟩∎h (map C (u .proj₁) ∘⇾ f) i q .proj₂ ∎ unique′ : ∀ i q x → x P.≡ u .proj₁ i q → x P.≡ g i q unique′ _ _ _ eq j .out-M .proj₁ = lemma₁ eq j unique′ i q x eq j .out-M .proj₂ k p = unique′ k (f i q .proj₂ k p₁) (x .out-M .proj₂ k p₀) lemma₂′ j where lem₁ = lemma₁ eq p₀ : P (lem₁ P.0̲) k p₁ : P (lem₁ P.1̲) k p₀ = P.transport (λ l → P (lem₁ (P.min j (P.- l))) k) (P.- j) p p₁ = P.transport (λ l → P (lem₁ (P.max j l )) k) j p p₀≡p₁ : P.[ (λ l → P (lem₁ l) k) ] p₀ ≡ p₁ p₀≡p₁ = P.elim¹ (λ eq → ∀ p → P.[ (λ l → eq l) ] P.transport (λ l → eq (P.min j (P.- l))) (P.- j) p ≡ P.transport (λ l → eq (P.max j l )) j p) (λ p → P.transport (λ _ → P (x .out-M .proj₁) k) (P.- j) p P.≡⟨ P.cong (_$ p) $ P.transport-refl (P.- j) ⟩ p P.≡⟨ P.cong (_$ p) $ P.sym $ P.transport-refl j ⟩∎ P.transport (λ _ → P (x .out-M .proj₁) k) j p ∎) (P.cong (λ s → P s k) lem₁) p lemma₂′ : x .out-M .proj₂ k p₀ P.≡ (map C (u .proj₁) ∘⇾ f) i q .proj₂ k p₁ lemma₂′ l = lemma₂ eq l k (p₀≡p₁ l) unique : unfold .proj₁ P.≡ u .proj₁ unique = P.⟨ext⟩ λ _ → P.⟨ext⟩ λ _ → P.sym $ unique′ _ _ _ P.refl -- Finality expressed using equality is equivalent to finality -- expressed using paths. Final′≃Final′ : (X : Coalgebra C) → Final′ X ≃ PC.Final′ X Final′≃Final′ X = (∀ Y → ∃ λ (m : Y ⇨ X) → (m′ : Y ⇨ X) → proj₁ m ≡ proj₁ m′) ↔⟨ (∀-cong ext λ _ → Σ-cong (lemma _) λ _ → Π-cong ext (lemma _) λ _ → ≡↔≡) ⟩□ (∀ Y → ∃ λ (m : Y PC.⇨ X) → (m′ : Y PC.⇨ X) → proj₁ m P.≡ proj₁ m′) □ where lemma : ∀ Y → (Y ⇨ X) ↔ (Y PC.⇨ X) lemma Y = ∃-cong λ _ → ≡↔≡ -- M-coalgebra C is a final coalgebra. -- -- The lemma M-final′′ is based on code written by Andrea Vezzosi for -- the cubical library. M-final′ : (C : Container I s p) → Final′ (M-coalgebra C) M-final′ C = _≃_.from (Final′≃Final′ (M-coalgebra C)) M-final′′
{ "alphanum_fraction": 0.469358585, "avg_line_length": 32.9235294118, "ext": "agda", "hexsha": "5e539b1179b9b3e1dc5433256496372c21f0f475", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Container/Indexed/Variant/M/Codata.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Container/Indexed/Variant/M/Codata.agda", "max_line_length": 116, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Container/Indexed/Variant/M/Codata.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2109, "size": 5597 }
{-# OPTIONS --without-K --exact-split #-} module rings where import abelian-groups open abelian-groups public has-mul-Ab : { l1 : Level} (A : Ab l1) → UU l1 has-mul-Ab A = Σ ( has-associative-bin-op (set-Ab A)) ( λ μ → ( is-unital (pair (set-Ab A) μ)) × ( ( (a b c : type-Ab A) → Id (pr1 μ a (add-Ab A b c)) (add-Ab A (pr1 μ a b) (pr1 μ a c))) × ( (a b c : type-Ab A) → Id (pr1 μ (add-Ab A a b) c) (add-Ab A (pr1 μ a c) (pr1 μ b c))))) Ring : (l1 : Level) → UU (lsuc l1) Ring l1 = Σ (Ab l1) has-mul-Ab {- Basic infrastructure of rings -} ab-Ring : {l1 : Level} → Ring l1 → Ab l1 ab-Ring R = pr1 R group-Ring : {l : Level} (R : Ring l) → Group l group-Ring R = group-Ab (ab-Ring R) set-Ring : {l : Level} (R : Ring l) → UU-Set l set-Ring R = set-Ab (ab-Ring R) type-Ring : {l : Level} (R : Ring l) → UU l type-Ring R = type-Ab (ab-Ring R) is-set-type-Ring : {l : Level} (R : Ring l) → is-set (type-Ring R) is-set-type-Ring R = is-set-type-Ab (ab-Ring R) associative-add-Ring : {l : Level} (R : Ring l) → has-associative-bin-op (set-Ring R) associative-add-Ring R = associative-add-Ab (ab-Ring R) add-Ring : {l : Level} (R : Ring l) → type-Ring R → type-Ring R → type-Ring R add-Ring R = add-Ab (ab-Ring R) is-associative-add-Ring : {l : Level} (R : Ring l) (x y z : type-Ring R) → Id (add-Ring R (add-Ring R x y) z) (add-Ring R x (add-Ring R y z)) is-associative-add-Ring R = is-associative-add-Ab (ab-Ring R) additive-semi-group-Ring : {l : Level} (R : Ring l) → Semi-Group l additive-semi-group-Ring R = semi-group-Ab (ab-Ring R) is-group-additive-semi-group-Ring : {l : Level} (R : Ring l) → is-group (additive-semi-group-Ring R) is-group-additive-semi-group-Ring R = is-group-Ab (ab-Ring R) has-zero-Ring : {l : Level} (R : Ring l) → is-unital (additive-semi-group-Ring R) has-zero-Ring R = has-zero-Ab (ab-Ring R) zero-Ring : {l : Level} (R : Ring l) → type-Ring R zero-Ring R = zero-Ab (ab-Ring R) left-zero-law-add-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (add-Ring R (zero-Ring R) x) x left-zero-law-add-Ring R = left-zero-law-Ab (ab-Ring R) right-zero-law-add-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (add-Ring R x (zero-Ring R)) x right-zero-law-add-Ring R = right-zero-law-Ab (ab-Ring R) has-negatives-Ring : {l : Level} (R : Ring l) → is-group' (additive-semi-group-Ring R) (has-zero-Ring R) has-negatives-Ring R = has-negatives-Ab (ab-Ring R) neg-Ring : {l : Level} (R : Ring l) → type-Ring R → type-Ring R neg-Ring R = neg-Ab (ab-Ring R) left-negative-law-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (add-Ring R (neg-Ring R x) x) (zero-Ring R) left-negative-law-Ring R = left-negative-law-Ab (ab-Ring R) right-negative-law-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (add-Ring R x (neg-Ring R x)) (zero-Ring R) right-negative-law-Ring R = right-negative-law-Ab (ab-Ring R) is-commutative-add-Ring : {l : Level} (R : Ring l) (x y : type-Ring R) → Id (add-Ring R x y) (add-Ring R y x) is-commutative-add-Ring R = is-commutative-add-Ab (ab-Ring R) has-associative-mul-Ring : {l : Level} (R : Ring l) → has-associative-bin-op (set-Ring R) has-associative-mul-Ring R = pr1 (pr2 R) mul-Ring : {l : Level} (R : Ring l) → type-Ring R → type-Ring R → type-Ring R mul-Ring R = pr1 (has-associative-mul-Ring R) is-associative-mul-Ring : {l : Level} (R : Ring l) (x y z : type-Ring R) → Id (mul-Ring R (mul-Ring R x y) z) (mul-Ring R x (mul-Ring R y z)) is-associative-mul-Ring R = pr2 (has-associative-mul-Ring R) multiplicative-semi-group-Ring : {l : Level} (R : Ring l) → Semi-Group l multiplicative-semi-group-Ring R = pair (set-Ring R) (has-associative-mul-Ring R) is-unital-Ring : {l : Level} (R : Ring l) → is-unital (multiplicative-semi-group-Ring R) is-unital-Ring R = pr1 (pr2 (pr2 R)) multiplicative-monoid-Ring : {l : Level} (R : Ring l) → Monoid l multiplicative-monoid-Ring R = pair (multiplicative-semi-group-Ring R) (is-unital-Ring R) unit-Ring : {l : Level} (R : Ring l) → type-Ring R unit-Ring R = unit-Monoid (multiplicative-monoid-Ring R) left-unit-law-mul-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (mul-Ring R (unit-Ring R) x) x left-unit-law-mul-Ring R = left-unit-law-Monoid (multiplicative-monoid-Ring R) right-unit-law-mul-Ring : {l : Level} (R : Ring l) (x : type-Ring R) → Id (mul-Ring R x (unit-Ring R)) x right-unit-law-mul-Ring R = right-unit-law-Monoid (multiplicative-monoid-Ring R) left-distributive-law-mul-add-Ring : {l : Level} (R : Ring l) (x y z : type-Ring R) → Id ( mul-Ring R x (add-Ring R y z)) ( add-Ring R (mul-Ring R x y) (mul-Ring R x z)) left-distributive-law-mul-add-Ring R = pr1 (pr2 (pr2 (pr2 R))) right-distributive-law-mul-add-Ring : {l : Level} (R : Ring l) (x y z : type-Ring R) → Id ( mul-Ring R (add-Ring R x y) z) ( add-Ring R (mul-Ring R x z) (mul-Ring R y z)) right-distributive-law-mul-add-Ring R = pr2 (pr2 (pr2 (pr2 R))) {- Ring homomorphisms -} preserves-mul-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ab (ab-Ring R1) (ab-Ring R2) → UU (l1 ⊔ l2) preserves-mul-hom-Ab R1 R2 f = (x y : type-Ring R1) → Id ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (mul-Ring R1 x y)) ( mul-Ring R2 ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f x) ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f y)) is-prop-preserves-mul-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → is-prop (preserves-mul-hom-Ab R1 R2 f) is-prop-preserves-mul-hom-Ab R1 R2 f = is-prop-Π ( λ x → is-prop-Π ( λ y → is-set-type-Ring R2 ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (mul-Ring R1 x y)) ( mul-Ring R2 ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f x) ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f y)))) preserves-unit-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ab (ab-Ring R1) (ab-Ring R2) → UU l2 preserves-unit-hom-Ab R1 R2 f = Id (map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (unit-Ring R1)) (unit-Ring R2) is-prop-preserves-unit-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → is-prop (preserves-unit-hom-Ab R1 R2 f) is-prop-preserves-unit-hom-Ab R1 R2 f = is-set-type-Ring R2 ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f (unit-Ring R1)) ( unit-Ring R2) is-ring-homomorphism-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → UU (l1 ⊔ l2) is-ring-homomorphism-hom-Ab R1 R2 f = preserves-mul-hom-Ab R1 R2 f × preserves-unit-hom-Ab R1 R2 f is-prop-is-ring-homomorphism-hom-Ab : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → is-prop (is-ring-homomorphism-hom-Ab R1 R2 f) is-prop-is-ring-homomorphism-hom-Ab R1 R2 f = is-prop-prod ( is-prop-preserves-mul-hom-Ab R1 R2 f) ( is-prop-preserves-unit-hom-Ab R1 R2 f) hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R : Ring l2) → UU (l1 ⊔ l2) hom-Ring R1 R2 = Σ (hom-Ab (ab-Ring R1) (ab-Ring R2)) (is-ring-homomorphism-hom-Ab R1 R2) {- Basic infrastructure for ring homomorphisms. -} hom-Ab-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ring R1 R2 → hom-Ab (ab-Ring R1) (ab-Ring R2) hom-Ab-hom-Ring R1 R2 = pr1 map-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ring R1 R2 → type-Ring R1 → type-Ring R2 map-hom-Ring R1 R2 f = map-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f) preserves-add-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f : hom-Ring R1 R2) → preserves-add (ab-Ring R1) (ab-Ring R2) (map-hom-Ring R1 R2 f) preserves-add-hom-Ring R1 R2 f = preserves-add-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f) preserves-mul-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f : hom-Ring R1 R2) → preserves-mul-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f) preserves-mul-hom-Ring R1 R2 f = pr1 (pr2 f) preserves-unit-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f : hom-Ring R1 R2) → preserves-unit-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f) preserves-unit-hom-Ring R1 R2 f = pr2 (pr2 f) is-ring-homomorphism-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f : hom-Ring R1 R2) → prod ( preserves-mul-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f)) ( preserves-unit-hom-Ab R1 R2 (hom-Ab-hom-Ring R1 R2 f)) is-ring-homomorphism-hom-Ring R1 R2 f = pair ( preserves-mul-hom-Ring R1 R2 f) ( preserves-unit-hom-Ring R1 R2 f) {- We characterize the identity type of ring homomorphisms -} htpy-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ring R1 R2 → hom-Ring R1 R2 → UU (l1 ⊔ l2) htpy-hom-Ring R1 R2 f g = map-hom-Ring R1 R2 f ~ map-hom-Ring R1 R2 g reflexive-htpy-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f : hom-Ring R1 R2) → htpy-hom-Ring R1 R2 f f reflexive-htpy-hom-Ring R1 R2 f = refl-htpy htpy-hom-Ring-eq : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → (f g : hom-Ring R1 R2) → Id f g → htpy-hom-Ring R1 R2 f g htpy-hom-Ring-eq R1 R2 f .f refl = reflexive-htpy-hom-Ring R1 R2 f is-contr-total-htpy-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-contr (Σ (hom-Ring R1 R2) (htpy-hom-Ring R1 R2 f)) is-contr-total-htpy-hom-Ring R1 R2 f = is-contr-total-Eq-substructure ( is-contr-total-htpy-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f)) ( is-prop-is-ring-homomorphism-hom-Ab R1 R2) ( hom-Ab-hom-Ring R1 R2 f) ( reflexive-htpy-hom-Ring R1 R2 f) ( is-ring-homomorphism-hom-Ring R1 R2 f) is-equiv-htpy-hom-Ring-eq : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) → is-equiv (htpy-hom-Ring-eq R1 R2 f g) is-equiv-htpy-hom-Ring-eq R1 R2 f = fundamental-theorem-id f ( reflexive-htpy-hom-Ring R1 R2 f) ( is-contr-total-htpy-hom-Ring R1 R2 f) ( htpy-hom-Ring-eq R1 R2 f) equiv-htpy-hom-Ring-eq : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) → Id f g ≃ htpy-hom-Ring R1 R2 f g equiv-htpy-hom-Ring-eq R1 R2 f g = pair ( htpy-hom-Ring-eq R1 R2 f g) ( is-equiv-htpy-hom-Ring-eq R1 R2 f g) eq-htpy-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f g : hom-Ring R1 R2) → htpy-hom-Ring R1 R2 f g → Id f g eq-htpy-hom-Ring R1 R2 f g = inv-is-equiv (is-equiv-htpy-hom-Ring-eq R1 R2 f g) is-set-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → is-set (hom-Ring R1 R2) is-set-hom-Ring R1 R2 = is-trunc-succ-subtype ( neg-one-𝕋) ( is-prop-is-ring-homomorphism-hom-Ab R1 R2) ( is-set-hom-Ab (ab-Ring R1) (ab-Ring R2)) {- We define the categorical structure of rings -} preserves-mul-id-hom-Ring : {l : Level} (R : Ring l) → preserves-mul-hom-Ab R R (id-hom-Ab (ab-Ring R)) preserves-mul-id-hom-Ring R x y = refl preserves-unit-id-hom-Ring : {l : Level} (R : Ring l) → preserves-unit-hom-Ab R R (id-hom-Ab (ab-Ring R)) preserves-unit-id-hom-Ring R = refl is-ring-homomorphism-id-hom-Ring : {l : Level} (R : Ring l) → is-ring-homomorphism-hom-Ab R R (id-hom-Ab (ab-Ring R)) is-ring-homomorphism-id-hom-Ring R = pair (preserves-mul-id-hom-Ring R) (preserves-unit-id-hom-Ring R) id-hom-Ring : {l : Level} (R : Ring l) → hom-Ring R R id-hom-Ring R = pair (id-hom-Ab (ab-Ring R)) (is-ring-homomorphism-id-hom-Ring R) hom-Ab-comp-hom-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → ( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → hom-Ab (ab-Ring R1) (ab-Ring R3) hom-Ab-comp-hom-Ring R1 R2 R3 g f = comp-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( ab-Ring R3) ( hom-Ab-hom-Ring R2 R3 g) ( hom-Ab-hom-Ring R1 R2 f) preserves-mul-comp-hom-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → ( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → preserves-mul-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f) preserves-mul-comp-hom-Ring R1 R2 R3 g f x y = ( ap (map-hom-Ring R2 R3 g) (preserves-mul-hom-Ring R1 R2 f x y)) ∙ ( preserves-mul-hom-Ring R2 R3 g ( map-hom-Ring R1 R2 f x) ( map-hom-Ring R1 R2 f y)) preserves-unit-comp-hom-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → ( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → preserves-unit-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f) preserves-unit-comp-hom-Ring R1 R2 R3 g f = ( ap (map-hom-Ring R2 R3 g) (preserves-unit-hom-Ring R1 R2 f)) ∙ ( preserves-unit-hom-Ring R2 R3 g) is-ring-homomorphism-comp-hom-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → ( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → is-ring-homomorphism-hom-Ab R1 R3 (hom-Ab-comp-hom-Ring R1 R2 R3 g f) is-ring-homomorphism-comp-hom-Ring R1 R2 R3 g f = pair ( preserves-mul-comp-hom-Ring R1 R2 R3 g f) ( preserves-unit-comp-hom-Ring R1 R2 R3 g f) comp-hom-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → hom-Ring R2 R3 → hom-Ring R1 R2 → hom-Ring R1 R3 comp-hom-Ring R1 R2 R3 g f = pair ( hom-Ab-comp-hom-Ring R1 R2 R3 g f) ( is-ring-homomorphism-comp-hom-Ring R1 R2 R3 g f) {- We prove the laws of a category for Rings -} is-associative-comp-hom-Ring : { l1 l2 l3 l4 : Level} ( R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) (R4 : Ring l4) → ( h : hom-Ring R3 R4) (g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → Id (comp-hom-Ring R1 R2 R4 (comp-hom-Ring R2 R3 R4 h g) f) (comp-hom-Ring R1 R3 R4 h (comp-hom-Ring R1 R2 R3 g f)) is-associative-comp-hom-Ring R1 R2 R3 R4 h g f = eq-htpy-hom-Ring R1 R4 ( comp-hom-Ring R1 R2 R4 (comp-hom-Ring R2 R3 R4 h g) f) ( comp-hom-Ring R1 R3 R4 h (comp-hom-Ring R1 R2 R3 g f)) ( refl-htpy) left-unit-law-comp-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → Id (comp-hom-Ring R1 R2 R2 (id-hom-Ring R2) f) f left-unit-law-comp-hom-Ring R1 R2 f = eq-htpy-hom-Ring R1 R2 ( comp-hom-Ring R1 R2 R2 (id-hom-Ring R2) f) ( f) ( refl-htpy) right-unit-law-comp-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → Id (comp-hom-Ring R1 R1 R2 f (id-hom-Ring R1)) f right-unit-law-comp-hom-Ring R1 R2 f = eq-htpy-hom-Ring R1 R2 ( comp-hom-Ring R1 R1 R2 f (id-hom-Ring R1)) ( f) ( refl-htpy) {- We show that the forgetful map ab-Ring is a functor -} id-law-ab-Ring : { l1 : Level} (R1 : Ring l1) → Id (hom-Ab-hom-Ring R1 R1 (id-hom-Ring R1)) (id-hom-Ab (ab-Ring R1)) id-law-ab-Ring R1 = eq-htpy-hom-Ab ( ab-Ring R1) ( ab-Ring R1) ( refl-htpy) comp-law-ab-Ring : { l1 l2 l3 : Level} (R1 : Ring l1) (R2 : Ring l2) (R3 : Ring l3) → ( g : hom-Ring R2 R3) (f : hom-Ring R1 R2) → Id ( hom-Ab-hom-Ring R1 R3 (comp-hom-Ring R1 R2 R3 g f)) ( comp-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( ab-Ring R3) ( hom-Ab-hom-Ring R2 R3 g) ( hom-Ab-hom-Ring R1 R2 f)) comp-law-ab-Ring R1 R2 R3 g f = eq-htpy-hom-Ab ( ab-Ring R1) ( ab-Ring R3) ( refl-htpy) {- We introduce ring isomorphisms -} is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ring R1 R2 → UU (l1 ⊔ l2) is-iso-hom-Ring R1 R2 f = Σ ( hom-Ring R2 R1) ( λ g → ( Id (comp-hom-Ring R2 R1 R2 f g) (id-hom-Ring R2)) × ( Id (comp-hom-Ring R1 R2 R1 g f) (id-hom-Ring R1))) {- Infrastructure for invertible ring homomorphisms -} inv-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-iso-hom-Ring R1 R2 f → hom-Ring R2 R1 inv-is-iso-hom-Ring R1 R2 f = pr1 is-sec-inv-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → ( is-iso-f : is-iso-hom-Ring R1 R2 f) → Id (comp-hom-Ring R2 R1 R2 f (inv-is-iso-hom-Ring R1 R2 f is-iso-f)) (id-hom-Ring R2) is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f = pr1 (pr2 is-iso-f) is-retr-inv-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → ( is-iso-f : is-iso-hom-Ring R1 R2 f) → Id (comp-hom-Ring R1 R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f) f) (id-hom-Ring R1) is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f = pr2 (pr2 is-iso-f) inv-map-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-iso-hom-Ring R1 R2 f → type-Ring R2 → type-Ring R1 inv-map-is-iso-hom-Ring R1 R2 f is-iso-f = map-hom-Ring R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f) is-sec-inv-map-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → ( is-iso-f : is-iso-hom-Ring R1 R2 f) → ( (map-hom-Ring R1 R2 f) ∘ (inv-map-is-iso-hom-Ring R1 R2 f is-iso-f)) ~ id is-sec-inv-map-is-iso-hom-Ring R1 R2 f is-iso-f = htpy-hom-Ring-eq R2 R2 ( comp-hom-Ring R2 R1 R2 f (inv-is-iso-hom-Ring R1 R2 f is-iso-f)) ( id-hom-Ring R2) ( is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f) is-retr-inv-map-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → ( is-iso-f : is-iso-hom-Ring R1 R2 f) → ( (inv-map-is-iso-hom-Ring R1 R2 f is-iso-f) ∘ (map-hom-Ring R1 R2 f)) ~ id is-retr-inv-map-is-iso-hom-Ring R1 R2 f is-iso-f = htpy-hom-Ring-eq R1 R1 ( comp-hom-Ring R1 R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f) f) ( id-hom-Ring R1) ( is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f) {- Being invertible is a property -} is-prop-is-iso-hom-Ring' : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-prop' (is-iso-hom-Ring R1 R2 f) is-prop-is-iso-hom-Ring' R1 R2 f inv-f inv-f' = eq-subtype ( λ g → is-prop-prod ( is-set-hom-Ring R2 R2 (comp-hom-Ring R2 R1 R2 f g) (id-hom-Ring R2)) ( is-set-hom-Ring R1 R1 (comp-hom-Ring R1 R2 R1 g f) (id-hom-Ring R1))) ( eq-htpy-hom-Ring R2 R1 ( inv-is-iso-hom-Ring R1 R2 f inv-f) ( inv-is-iso-hom-Ring R1 R2 f inv-f') ( λ x → ( inv ( ap ( map-hom-Ring R2 R1 (pr1 inv-f)) ( is-sec-inv-map-is-iso-hom-Ring R1 R2 f inv-f' x))) ∙ ( is-retr-inv-map-is-iso-hom-Ring R1 R2 f inv-f ( map-hom-Ring R2 R1 (pr1 inv-f') x)))) is-prop-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-prop (is-iso-hom-Ring R1 R2 f) is-prop-is-iso-hom-Ring R1 R2 f = is-prop-is-prop' (is-prop-is-iso-hom-Ring' R1 R2 f) iso-Ring : { l1 l2 : Level} → Ring l1 → Ring l2 → UU (l1 ⊔ l2) iso-Ring R1 R2 = Σ (hom-Ring R1 R2) (is-iso-hom-Ring R1 R2) hom-iso-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → iso-Ring R1 R2 → hom-Ring R1 R2 hom-iso-Ring R1 R2 = pr1 is-iso-hom-iso-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : iso-Ring R1 R2) → is-iso-hom-Ring R1 R2 (hom-iso-Ring R1 R2 f) is-iso-hom-iso-Ring R1 R2 = pr2 inv-hom-iso-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → iso-Ring R1 R2 → hom-Ring R2 R1 inv-hom-iso-Ring R1 R2 f = inv-is-iso-hom-Ring R1 R2 ( hom-iso-Ring R1 R2 f) ( is-iso-hom-iso-Ring R1 R2 f) is-iso-id-hom-Ring : { l1 : Level} (R1 : Ring l1) → is-iso-hom-Ring R1 R1 (id-hom-Ring R1) is-iso-id-hom-Ring R1 = pair ( id-hom-Ring R1) ( pair ( left-unit-law-comp-hom-Ring R1 R1 (id-hom-Ring R1)) ( left-unit-law-comp-hom-Ring R1 R1 (id-hom-Ring R1))) id-iso-Ring : { l1 : Level} (R1 : Ring l1) → iso-Ring R1 R1 id-iso-Ring R1 = pair (id-hom-Ring R1) (is-iso-id-hom-Ring R1) iso-eq-Ring : { l : Level} (R1 R2 : Ring l) → Id R1 R2 → iso-Ring R1 R2 iso-eq-Ring R1 .R1 refl = id-iso-Ring R1 {- We first show that a ring homomorphism is an isomorphism if and only if the underlying homomorphism of abelian groups is an isomorphism. -} is-iso-hom-Ab-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → hom-Ring R1 R2 → UU (l1 ⊔ l2) is-iso-hom-Ab-hom-Ring R1 R2 f = is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f) is-iso-hom-Ab-is-iso-hom-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → is-iso-hom-Ring R1 R2 f → is-iso-hom-Ab-hom-Ring R1 R2 f is-iso-hom-Ab-is-iso-hom-Ring R1 R2 f is-iso-f = pair ( hom-Ab-hom-Ring R2 R1 (inv-is-iso-hom-Ring R1 R2 f is-iso-f)) ( pair ( ap ( hom-Ab-hom-Ring R2 R2) ( is-sec-inv-is-iso-hom-Ring R1 R2 f is-iso-f)) ( ap ( hom-Ab-hom-Ring R1 R1) ( is-retr-inv-is-iso-hom-Ring R1 R2 f is-iso-f))) abstract preserves-mul-inv-is-iso-hom-Ab : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → ( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f) → ( pres-mul-f : preserves-mul-hom-Ab R1 R2 f) → preserves-mul-hom-Ab R2 R1 ( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f) preserves-mul-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-mul-f x y = ( inv ( ap ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f) ( ( pres-mul-f ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f x) ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f y)) ∙ ( ( ap ( mul-Ring R2 ( map-hom-Ab (ab-Ring R1) (ab-Ring R2) f ( map-inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) f is-iso-f x))) ( is-sec-map-inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( f) ( is-iso-f) ( y))) ∙ ( ap ( λ z → mul-Ring R2 z y) ( is-sec-map-inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( f) ( is-iso-f) ( x))))))) ∙ ( is-retr-map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f ( mul-Ring R1 ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f x) ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f y))) preserves-unit-inv-is-iso-hom-Ab : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → ( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f) ( pres-unit-f : preserves-unit-hom-Ab R1 R2 f) → preserves-unit-hom-Ab R2 R1 ( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f) preserves-unit-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-unit-f = ( inv ( ap ( map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f) ( pres-unit-f))) ∙ ( is-retr-map-inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f ( unit-Ring R1)) is-ring-homomorphism-inv-is-iso-hom-Ab : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) ( f : hom-Ab (ab-Ring R1) (ab-Ring R2)) → ( is-iso-f : is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f) → ( is-ring-hom-f : is-ring-homomorphism-hom-Ab R1 R2 f) → is-ring-homomorphism-hom-Ab R2 R1 ( inv-is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f is-iso-f) is-ring-homomorphism-inv-is-iso-hom-Ab R1 R2 f is-iso-f (pair pres-mul-f pres-unit-f) = pair ( preserves-mul-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-mul-f) ( preserves-unit-inv-is-iso-hom-Ab R1 R2 f is-iso-f pres-unit-f) inv-hom-Ring-is-iso-hom-Ab : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (f : hom-Ring R1 R2) → ( is-iso-f : is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f)) → hom-Ring R2 R1 inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f = pair ( inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f) ( is-iso-f)) ( is-ring-homomorphism-inv-is-iso-hom-Ab R1 R2 ( hom-Ab-hom-Ring R1 R2 f) ( is-iso-f) ( is-ring-homomorphism-hom-Ring R1 R2 f)) abstract is-iso-hom-Ring-is-iso-hom-Ab : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) ( f : hom-Ring R1 R2) → is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (hom-Ab-hom-Ring R1 R2 f) → is-iso-hom-Ring R1 R2 f is-iso-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f = pair ( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f) ( pair ( eq-htpy-hom-Ring R2 R2 ( comp-hom-Ring R2 R1 R2 f ( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f)) ( id-hom-Ring R2) ( htpy-hom-Ab-eq (ab-Ring R2) (ab-Ring R2) ( hom-Ab-hom-Ring R2 R2 ( comp-hom-Ring R2 R1 R2 f ( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f))) ( id-hom-Ab (ab-Ring R2)) ( is-sec-inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f) ( is-iso-f)))) ( eq-htpy-hom-Ring R1 R1 ( comp-hom-Ring R1 R2 R1 ( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f) ( f)) ( id-hom-Ring R1) ( htpy-hom-Ab-eq (ab-Ring R1) (ab-Ring R1) ( hom-Ab-hom-Ring R1 R1 ( comp-hom-Ring R1 R2 R1 ( inv-hom-Ring-is-iso-hom-Ab R1 R2 f is-iso-f) ( f))) ( id-hom-Ab (ab-Ring R1)) ( is-retr-inv-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f) ( is-iso-f))))) iso-Ab-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → UU (l1 ⊔ l2) iso-Ab-Ring R1 R2 = Σ ( iso-Ab (ab-Ring R1) (ab-Ring R2)) ( λ f → is-ring-homomorphism-hom-Ab R1 R2 ( hom-iso-Ab (ab-Ring R1) (ab-Ring R2) f)) iso-Ab-iso-Ab-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → iso-Ab-Ring R1 R2 → iso-Ab (ab-Ring R1) (ab-Ring R2) iso-Ab-iso-Ab-Ring R1 R2 = pr1 iso-Ab-iso-Ring : { l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) → iso-Ring R1 R2 → iso-Ab (ab-Ring R1) (ab-Ring R2) iso-Ab-iso-Ring R1 R2 f = pair ( hom-Ab-hom-Ring R1 R2 (hom-iso-Ring R1 R2 f)) ( is-iso-hom-Ab-is-iso-hom-Ring R1 R2 ( hom-iso-Ring R1 R2 f) ( is-iso-hom-iso-Ring R1 R2 f)) equiv-iso-Ab-iso-Ring : { l1 : Level} (R1 : Ring l1) (R2 : Ring l1) → (iso-Ring R1 R2) ≃ (iso-Ab-Ring R1 R2) equiv-iso-Ab-iso-Ring R1 R2 = ( ( ( inv-equiv ( equiv-Σ-assoc ( hom-Ab (ab-Ring R1) (ab-Ring R2)) ( is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2)) ( λ f → is-ring-homomorphism-hom-Ab R1 R2 (pr1 f)))) ∘e ( equiv-tot ( λ f → equiv-swap-prod ( is-ring-homomorphism-hom-Ab R1 R2 f) ( is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) f)))) ∘e ( equiv-Σ-assoc ( hom-Ab (ab-Ring R1) (ab-Ring R2)) ( is-ring-homomorphism-hom-Ab R1 R2) ( λ f → is-iso-hom-Ab (ab-Ring R1) (ab-Ring R2) (pr1 f)))) ∘e ( equiv-total-subtype ( is-prop-is-iso-hom-Ring R1 R2) ( λ f → is-prop-is-iso-hom-Ab ( ab-Ring R1) ( ab-Ring R2) ( hom-Ab-hom-Ring R1 R2 f)) ( is-iso-hom-Ab-is-iso-hom-Ring R1 R2) ( is-iso-hom-Ring-is-iso-hom-Ab R1 R2)) abstract is-contr-total-iso-Ring : { l : Level} (R : Ring l) → is-contr (Σ (Ring l) (iso-Ring R)) is-contr-total-iso-Ring {l} R = is-contr-equiv ( Σ (Ring l) (iso-Ab-Ring R)) ( equiv-tot (equiv-iso-Ab-iso-Ring R)) ( is-contr-total-Eq-structure ( λ A μ f → is-ring-homomorphism-hom-Ab R (pair A μ) (hom-iso-Ab (ab-Ring R) A f)) ( is-contr-total-iso-Ab (ab-Ring R)) ( pair (ab-Ring R) (id-iso-Ab (ab-Ring R))) ( is-contr-total-Eq-structure ( λ μ H pres-mul → Id (unit-Ring R) (pr1 (pr1 H))) ( is-contr-total-Eq-substructure ( is-contr-total-Eq-Π ( λ x m → (y : type-Ring R) → Id (mul-Ring R x y) (m y)) ( λ x → is-contr-total-htpy (mul-Ring R x)) ( mul-Ring R)) ( λ μ → is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z → is-set-type-Ring R (μ (μ x y) z) (μ x (μ y z)))))) ( mul-Ring R) ( λ x y → refl) ( is-associative-mul-Ring R)) ( pair (pair (mul-Ring R) (is-associative-mul-Ring R)) (λ x y → refl)) ( is-contr-total-Eq-substructure ( is-contr-total-Eq-substructure ( is-contr-total-path (unit-Ring R)) ( λ x → is-prop-prod ( is-prop-Π (λ y → is-set-type-Ring R (mul-Ring R x y) y)) ( is-prop-Π (λ y → is-set-type-Ring R (mul-Ring R y x) y))) ( unit-Ring R) ( refl) ( pair (left-unit-law-mul-Ring R) (right-unit-law-mul-Ring R))) ( λ u → is-prop-prod ( is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z → is-set-type-Ring R ( mul-Ring R x (add-Ring R y z)) ( add-Ring R (mul-Ring R x y) (mul-Ring R x z)))))) ( is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z → is-set-type-Ring R ( mul-Ring R (add-Ring R x y) z) ( add-Ring R (mul-Ring R x z) (mul-Ring R y z))))))) ( is-unital-Ring R) ( refl) ( pair ( left-distributive-law-mul-add-Ring R) ( right-distributive-law-mul-add-Ring R))))) is-equiv-iso-eq-Ring : { l : Level} (R S : Ring l) → is-equiv (iso-eq-Ring R S) is-equiv-iso-eq-Ring R = fundamental-theorem-id R ( id-iso-Ring R) ( is-contr-total-iso-Ring R) ( iso-eq-Ring R) eq-iso-Ring : { l : Level} (R S : Ring l) → iso-Ring R S → Id R S eq-iso-Ring R S = inv-is-equiv (is-equiv-iso-eq-Ring R S)
{ "alphanum_fraction": 0.5688128976, "avg_line_length": 35.7963855422, "ext": "agda", "hexsha": "1292ca68b3d38cf9795bced0d4a570bdc7aeee2e", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/rings.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/rings.agda", "max_line_length": 84, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/rings.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 12617, "size": 29711 }
module Everything where import Tuple import Inductive import Inductive.Examples.Empty import Inductive.Examples.Unit import Inductive.Examples.Sum import Inductive.Examples.Product import Inductive.Examples.Nat import Inductive.Examples.Ord import Inductive.Examples.List import Inductive.Examples.BinTree
{ "alphanum_fraction": 0.8668831169, "avg_line_length": 22, "ext": "agda", "hexsha": "c4d909bd21d8a927dccd1cd3b404b98c91f0ba1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/general-induction", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/general-induction", "max_issues_repo_path": "Everything.agda", "max_line_length": 33, "max_stars_count": null, "max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/general-induction", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 71, "size": 308 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.ExactSequence open import groups.HomSequence module cw.cohomology.GridLongExactSequence {i} (CT : CohomologyTheory i) {X Y Z : Ptd i} (n : ℤ) (f : X ⊙→ Y) (g : Y ⊙→ Z) where open CohomologyTheory CT open import cohomology.PtdMapSequence CT open import cw.cohomology.CofiberGrid (fst f) (fst g) open import cw.cohomology.GridPtdMap f g {- X --> Y ----> Z | | v v Y/X --> Z/X | this | v one v 1 ---> Z/Y -} private ⊙D-span : ⊙Span ⊙D-span = ⊙span Y/X Z Y (⊙cfcod' f) g ⊙D : Ptd i ⊙D = ⊙Pushout ⊙D-span Y/X-to-D : Y/X ⊙→ ⊙D Y/X-to-D = B/A-to-D , idp open import cohomology.LongExactSequence CT n Y/X-to-D ⊙E : Ptd i ⊙E = ⊙Cofiber (⊙left ⊙D-span) Z/Y-to-E : Z/Y ⊙→ ⊙E Z/Y-to-E = C/B-to-E , idp Z/X-to-D : Z/X ⊙→ ⊙D Z/X-to-D = C/A-to-D , idp grid-co∂ : C n Y/X →ᴳ C (succ n) Z/Y grid-co∂ = record {f = CEl-fmap (succ n) Z/Y-to-E ∘ GroupHom.f co∂ ; pres-comp = lemma} where abstract lemma = ∘-pres-comp (C-fmap (succ n) Z/Y-to-E) co∂ C-grid-cofiber-seq : HomSequence (C n Z/X) (C (succ n) Y/X) C-grid-cofiber-seq = C n Z/X →⟨ C-fmap n Y/X-to-Z/X ⟩ᴳ C n Y/X →⟨ grid-co∂ ⟩ᴳ C (succ n) Z/Y →⟨ C-fmap (succ n) Z/X-to-Z/Y ⟩ᴳ C (succ n) Z/X →⟨ C-fmap (succ n) Y/X-to-Z/X ⟩ᴳ C (succ n) Y/X ⊣|ᴳ private C-cofiber-seq-to-C-grid-cofiber-seq : HomSeqMap C-cofiber-seq C-grid-cofiber-seq (C-fmap n Z/X-to-D) (idhom _) C-cofiber-seq-to-C-grid-cofiber-seq = C-fmap n Z/X-to-D ↓⟨ comm-sqrᴳ (λ d → ! (C-fmap-idf n _) ∙ (C-comm-square n B/A-to-C/A-comm-square □$ᴳ d)) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ C-fmap (succ n) Z/Y-to-E ↓⟨ C-comm-square (succ n) C/A-to-C/B-comm-square ⟩ᴳ C-fmap (succ n) Z/X-to-D ↓⟨ comm-sqrᴳ (λ d → ! (C-fmap-idf (succ n) _) ∙ (C-comm-square (succ n) B/A-to-C/A-comm-square □$ᴳ d)) ⟩ᴳ idhom _ ↓|ᴳ C-cofiber-seq-equiv-C-grid-cofiber-seq : HomSeqEquiv C-cofiber-seq C-grid-cofiber-seq (C-fmap n Z/X-to-D) (idhom _) C-cofiber-seq-equiv-C-grid-cofiber-seq = C-cofiber-seq-to-C-grid-cofiber-seq , CEl-isemap n Z/X-to-D C/A-to-D-is-equiv , idf-is-equiv _ , CEl-isemap (succ n) Z/Y-to-E C/B-to-E-is-equiv , CEl-isemap (succ n) Z/X-to-D C/A-to-D-is-equiv , idf-is-equiv _ abstract C-grid-cofiber-seq-is-exact : is-exact-seq C-grid-cofiber-seq C-grid-cofiber-seq-is-exact = seq-equiv-preserves-exact C-cofiber-seq-equiv-C-grid-cofiber-seq C-cofiber-seq-is-exact C-grid-cofiber-exact-seq : ExactSequence (C n Z/X) (C (succ n) Y/X) C-grid-cofiber-exact-seq = C-grid-cofiber-seq , C-grid-cofiber-seq-is-exact
{ "alphanum_fraction": 0.5586515308, "avg_line_length": 32.3, "ext": "agda", "hexsha": "662036d75eb4b5708929715f8609c355de54a5b9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/GridLongExactSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/GridLongExactSequence.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/GridLongExactSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1150, "size": 2907 }
------------------------------------------------------------------------ -- A compiler ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Compiler {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where open import Equality.Propositional open import Tactic.By.Propositional open import List equality-with-J using (_++_) open import Vec.Data equality-with-J open import Lambda.Virtual-machine.Instructions Name private module C = Closure Code module T = Closure Tm -- The compiler takes an argument of type In-tail-context. The value -- "true" means that the term is in a tail context. (I have based the -- definition of tail context on the one in Section 4.5 of "Revised⁵ -- Report on the Algorithmic Language Scheme" by Abelson et al.) The -- value "false" means that no such information is present. -- -- The compiler compiles calls claimed to be in a tail context in a -- special way. In-tail-context : Type In-tail-context = Bool -- The compiler (which takes a code continuation). mutual comp : ∀ {n} → In-tail-context → Tm n → Code n → Code n comp _ (var x) c = var x ∷ c comp _ (lam t) c = clo (comp-body t) ∷ c comp _ (t₁ · t₂) c = comp false t₁ (comp false t₂ (app ∷ c)) comp true (call f t) c = comp false t (tcl f ∷ c) comp false (call f t) c = comp false t (cal f ∷ c) comp _ (con b) c = con b ∷ c comp tc (if t₁ t₂ t₃) c = comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c) comp-body : ∀ {n} → Tm (suc n) → Code (suc n) comp-body t = comp true t (ret ∷ []) -- Compiler for named definitions. comp-name : Name → Code 1 comp-name f = comp-body (def f) -- Top-level compiler. -- -- Note that the top-level expression is not assumed to be in a tail -- context. Tail calls do not push a return frame on the stack. The -- idea is to reuse an existing return frame, and the virtual machine -- starts with an empty stack (which does not contain any return -- frames). comp₀ : Tm 0 → Code 0 comp₀ t = comp false t [] -- Environments and values can also be compiled. mutual comp-env : ∀ {n} → T.Env n → C.Env n comp-env [] = [] comp-env (v ∷ ρ) = comp-val v ∷ comp-env ρ comp-val : T.Value → C.Value comp-val (T.lam t ρ) = C.lam (comp-body t) (comp-env ρ) comp-val (T.con b) = C.con b -- Indexing commutes with compilation. comp-index : ∀ {n} (ρ : T.Env n) (x : Fin n) → index (comp-env ρ) x ≡ comp-val (index ρ x) comp-index (v ∷ ρ) fzero = refl comp-index (v ∷ ρ) (fsuc i) = comp-index ρ i -- The function comp tc t commutes with _++ c₂. comp-++ : ∀ {n} tc (t : Tm n) {c₁ c₂ : Code n} → comp tc t c₁ ++ c₂ ≡ comp tc t (c₁ ++ c₂) comp-++ _ (var x) = refl comp-++ _ (lam t) = refl comp-++ true (call f t) = comp-++ _ t comp-++ false (call f t) = comp-++ _ t comp-++ _ (con b) = refl comp-++ _ (if t₁ t₂ t₃) = comp-++ _ t₁ comp-++ _ (t₁ · t₂) {c₁} {c₂} = comp false t₁ (comp false t₂ (app ∷ c₁)) ++ c₂ ≡⟨ comp-++ _ t₁ ⟩ comp false t₁ (comp false t₂ (app ∷ c₁) ++ c₂) ≡⟨ by (comp-++ _ t₂) ⟩∎ comp false t₁ (comp false t₂ (app ∷ c₁ ++ c₂)) ∎
{ "alphanum_fraction": 0.576582085, "avg_line_length": 30.858490566, "ext": "agda", "hexsha": "dbacb84d6db284c2a86db4327af90125c9ba1f8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Compiler.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Compiler.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Compiler.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1061, "size": 3271 }
module Bin-laws where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; sym; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Induction′ using (+-suc; +-identityʳ; +-comm; +-assoc) -- 2進数の表現 data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin -- 2進数のインクリメント inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = inc b O -- 自然数から2進数への変換 to : ℕ → Bin to zero = ⟨⟩ O to (suc n) = inc (to n) -- 2進数から自然数への変換 from : Bin → ℕ from ⟨⟩ = zero from (b O) = 2 * (from b) from (b I) = 2 * (from b) + 1 2*n≡n+n : ∀ (n : ℕ) → 2 * n ≡ n + n 2*n≡n+n n = begin 2 * n ≡⟨⟩ n + (1 * n) ≡⟨⟩ n + (n + (0 * n)) ≡⟨⟩ n + (n + 0) ≡⟨ cong (n +_) (+-identityʳ n) ⟩ n + n ∎ +-suc-suc : ∀ (m n : ℕ) → (suc m) + (suc n) ≡ suc (suc (m + n)) +-suc-suc m n = begin (suc m) + (suc n) ≡⟨ +-suc (suc m) n ⟩ suc ((suc m) + n) ≡⟨ cong suc (sym (+-assoc 1 m n)) ⟩ suc (suc (m + n)) ∎ -- 変換の前後どちらでインクリメントしても結果は等しい from∘inc≡suc∘from : ∀ (b : Bin) → from (inc b) ≡ suc (from b) from∘inc≡suc∘from ⟨⟩ = begin from (inc ⟨⟩) ≡⟨⟩ from (⟨⟩ I) ≡⟨⟩ suc zero ≡⟨⟩ suc (from ⟨⟩) ∎ from∘inc≡suc∘from (b O) = begin from (inc (b O)) ≡⟨⟩ from (b I) ≡⟨⟩ 2 * (from b) + 1 ≡⟨⟩ from (b O) + 1 ≡⟨ +-suc (from (b O)) zero ⟩ suc (from (b O) + zero) ≡⟨ cong suc (+-identityʳ (from (b O))) ⟩ suc (from (b O)) ∎ from∘inc≡suc∘from (b I) = begin from (inc (b I)) ≡⟨⟩ from ((inc b) O) ≡⟨⟩ 2 * (from (inc b)) ≡⟨ cong (2 *_) (from∘inc≡suc∘from b) ⟩ 2 * (suc (from b)) ≡⟨ 2*n≡n+n (suc (from b)) ⟩ (suc (from b)) + (suc (from b)) ≡⟨ +-suc-suc (from b) (from b) ⟩ suc (suc ((from b) + (from b))) ≡⟨ cong (λ 2*fromb → suc (suc 2*fromb)) (sym (2*n≡n+n (from b))) ⟩ suc (suc (2 * (from b))) ≡⟨ cong suc (+-comm 1 (2 * (from b))) ⟩ suc (2 * (from b) + 1) ≡⟨⟩ suc (from (b I)) ∎ -- to∘from : ∀ (b : Bin) → to (from b) ≡ b -- to∘from ⟨⟩ = {!!} -- (to zero) が (⟨⟩ O) にエンコードされるため成り立たない -- to∘from (b O) = {!!} -- to∘from (b I) = {!!} from∘to : ∀ (n : ℕ) → from (to n) ≡ n from∘to zero = begin from (to zero) ≡⟨⟩ from (⟨⟩ O) ≡⟨⟩ 2 * (from ⟨⟩) ≡⟨⟩ 2 * zero ≡⟨⟩ zero ∎ from∘to (suc n) = begin from (to (suc n)) ≡⟨⟩ from (inc (to n)) ≡⟨ from∘inc≡suc∘from (to n) ⟩ suc (from (to n)) ≡⟨ cong suc (from∘to n) ⟩ suc n ∎
{ "alphanum_fraction": 0.4582664526, "avg_line_length": 18.8787878788, "ext": "agda", "hexsha": "8dff0bd2bbde90268be9abcd037d73fe04a1dd20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/induction/Bin-laws.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/induction/Bin-laws.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/induction/Bin-laws.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 1337, "size": 2492 }
-- Previously Agda accepted invalid module names when no module header -- was given.
{ "alphanum_fraction": 0.7764705882, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "6ebaad00e822a6f9ffb824fcca7e67ca6cea16bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/_.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/_.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/_.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 85 }
module RandomAccessList.General.Redundant where open import RandomAccessList.General.Core open import Data.Nat Redundant : Set → ℕ → Set Redundant A = General A 0 2 cons : ∀ {n A} → A → Redundant A n → Redundant A n cons a [] = ? cons a (∺ x x₁ x₂ xs) = ?
{ "alphanum_fraction": 0.6884615385, "avg_line_length": 20, "ext": "agda", "hexsha": "5a9aa70a42d618af4eb142a0249729f9fcff9733", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/General/Redundant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/General/Redundant.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/General/Redundant.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 86, "size": 260 }
module RMonads.RMonadMorphs where open import Library open import Functors open import Categories open import RMonads open Fun open RMonad record RMonadMorph {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} (M M' : RMonad J) : Set (a ⊔ b ⊔ c ⊔ d) where constructor rmonadmorph open Cat D field morph : ∀ {X} → Hom (T M X) (T M' X) lawη : ∀ {X} → comp morph (η M {X}) ≅ η M' {X} lawbind : ∀ {X Y}{k : Hom (OMap J X) (T M Y)} → comp (morph {Y}) (bind M k) ≅ comp (bind M' (comp (morph {Y}) k)) (morph {X}) RMonadMorphEq : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} {M M' : RMonad J}(α α' : RMonadMorph M M') -> (λ {X} -> RMonadMorph.morph α {X}) ≅ (λ {X} -> RMonadMorph.morph α' {X}) → α ≅ α' RMonadMorphEq (rmonadmorph m lη lbind) (rmonadmorph .m lη' lbind') refl = cong₂ (rmonadmorph m) (iext λ _ → hir refl) (iext λ _ → iext λ _ → iext λ _ → hir refl) IdRMonadMorph : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} (M : RMonad J) → RMonadMorph M M IdRMonadMorph {D = D} M = rmonadmorph iden idl (trans idl (trans (cong (bind M) (sym idl)) (sym idr))) where open Cat D CompRMonadMorph : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} {M M' M'' : RMonad J} → RMonadMorph M' M'' → RMonadMorph M M' → RMonadMorph M M'' CompRMonadMorph {D = D}{M'' = M''} (rmonadmorph f lawηf lawbindf) (rmonadmorph g lawηg lawbindg) = rmonadmorph (comp f g) (trans ass (trans (cong (comp f) lawηg) lawηf)) \ {_ _ k} -> trans ass (trans (cong (comp f) lawbindg) (trans (trans (sym ass) (cong (λ f → comp f g) (trans (lawbindf {k = comp g k}) (cong (λ g → comp (bind M'' g) f) (sym ass))))) ass)) where open Cat D idr : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D}{M M' : RMonad J} (f : RMonadMorph M M') → CompRMonadMorph f (IdRMonadMorph _) ≅ f idr {D = D} f = RMonadMorphEq _ _ (iext λ _ → Cat.idr D) idl : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D}{M M' : RMonad J} (f : RMonadMorph M M') → CompRMonadMorph (IdRMonadMorph _) f ≅ f idl {D = D} f = RMonadMorphEq _ _ (iext λ _ → Cat.idl D) ass : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D}{M M' M'' M''' : RMonad J} (f : RMonadMorph M'' M''')(g : RMonadMorph M' M'')(h : RMonadMorph M M') → CompRMonadMorph (CompRMonadMorph f g) h ≅ CompRMonadMorph f (CompRMonadMorph g h) ass {D = D} f g h = RMonadMorphEq _ _ (iext λ _ → Cat.ass D)
{ "alphanum_fraction": 0.5112091143, "avg_line_length": 35.8026315789, "ext": "agda", "hexsha": "e0a25a0d555a4ac27025270e905f8fb415eb27d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/RMonadMorphs.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/RMonadMorphs.agda", "max_line_length": 78, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/RMonadMorphs.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1094, "size": 2721 }
--------------------------------------------------------------------------- -- The gcd is greatest that any common divisor --------------------------------------------------------------------------- {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Divisibility.NotBy0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Type module LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor (x∣Sy→x≤Sy : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n) (0∤x : ∀ {n} → ¬ (zero ∣ n)) where open import LTC-PCF.Program.GCD.Partial.Definitions --------------------------------------------------------------------------- -- Knowing that gcd is a common divisor of m and n and that any other -- common divisor of m and n divides it, we can prove that gcd is the -- largest common divisor. -- It requires the totality of gcd, ie. N gcd. gcdGACD : ∀ {m n gcd} → N gcd → CD m n gcd → Divisible m n gcd → GACD m n gcd gcdGACD nzero (0∣m , _) = ⊥-elim (0∤x 0∣m) gcdGACD (nsucc {gcd} Ngcd) _ = λ Divisible-mnSgcd c Nc CDmnc → x∣Sy→x≤Sy Nc Ngcd (Divisible-mnSgcd c Nc CDmnc)
{ "alphanum_fraction": 0.5151975684, "avg_line_length": 39.8787878788, "ext": "agda", "hexsha": "0e1f9dfb331e8140010a7fa11b30235421adef7b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda", "max_line_length": 77, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 367, "size": 1316 }
{-# OPTIONS --without-K --safe #-} module Algebra.Linear where open import Algebra.Linear.Core public open import Algebra.Linear.Construct public open import Algebra.Linear.Morphism public open import Algebra.Linear.Structures public
{ "alphanum_fraction": 0.7755102041, "avg_line_length": 27.2222222222, "ext": "agda", "hexsha": "18271ec96129fb954a4206fe709dd02717173474", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear.agda", "max_line_length": 44, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 47, "size": 245 }
{-# OPTIONS --without-K #-} module SymmetricMonoidalCategory where open import Level open import Categories.Category using (Category) open import Categories.Monoidal using (Monoidal) open import Categories.Monoidal.Braided using (Braided; module Braided) open import Categories.NaturalIsomorphism using (module NaturalIsomorphism) open import Categories.NaturalTransformation using (id; _∘₁_; _≡_) ------------------------------------------------------------------------------ -- Definition record SymmetricMonoidalCategory {o ℓ e} {ℂ : Category o ℓ e} {Mℂ : Monoidal ℂ} (BMℂ : Braided Mℂ) : Set (suc (o ⊔ ℓ ⊔ e)) where open Braided BMℂ using (braid) open NaturalIsomorphism braid using () renaming (F⇒G to x⊗y⇒y⊗x; F⇐G to y⊗x⇒x⊗y) field symmetry : y⊗x⇒x⊗y ∘₁ x⊗y⇒y⊗x ≡ id ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.6013745704, "avg_line_length": 36.375, "ext": "agda", "hexsha": "84fd0caf644e21a78550077ce889ffebe38bac64", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/SymmetricMonoidalCategory.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/SymmetricMonoidalCategory.agda", "max_line_length": 82, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/SymmetricMonoidalCategory.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 264, "size": 873 }
module Generic.Lib.Data.Sum where open import Data.Sum hiding (swap) renaming (map to smap) hiding (map₁; map₂) public
{ "alphanum_fraction": 0.7666666667, "avg_line_length": 30, "ext": "agda", "hexsha": "82221be2f16df73bdcfda933d699418eb14cd105", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 32, "size": 120 }
-- Display whether or not the timeout was hit when using auto -l. module Issue945 where data ⊥ : Set where ¬_ : Set → Set ¬ A = A → ⊥ record ∃ {A : Set} (P : A → Set) : Set where constructor _,_ field witness : A proof : P witness -- Exhaustive lem₁ : ∀ {A : Set} (P : A → Set) (x : A) → (∀ x → ¬ P x) → (∀ x → P x) → ⊥ lem₁ A = {!-l -t 1!} -- Timeout lem₂ : ∀ {A} (P : A → Set) (x : A) → (∀ x → ¬ P x) → (∀ x → P x) → ∃ P → ⊥ lem₂ P a e = {!-l -t 1!}
{ "alphanum_fraction": 0.4798301486, "avg_line_length": 22.4285714286, "ext": "agda", "hexsha": "7c96f3531b2354ae6a5c8fcc914ae3a89f4d9cf2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue945.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue945.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue945.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 199, "size": 471 }
open import Everything module Test.Class where record ℭlass {ℓ} {𝔢} {CONSTRAINTS : Ø 𝔢} (constraints : CONSTRAINTS) : Ø ↑̂ ℓ where constructor ∁ field type : Ø ℓ private record SET-CLASS ⦃ _ : Constraint constraints ⦄ : Ø ℓ where constructor ∁ field ⋆ : type open SET-CLASS public class : Ø _ class = SET-CLASS method : ⦃ _ : class ⦄ → type method ⦃ ⌶ ⦄ = SET-CLASS.⋆ ⌶ mkClass : ∀ {ℓ} {𝔢} {CONSTRAINTS : Ø 𝔢} (constraints : CONSTRAINTS) → Ø ℓ → ℭlass constraints mkClass constraints set-method = ∁ set-method module Unit-Unit/Unit/Unit {𝔬} (𝔒 : Ø 𝔬) = ℭlass (mkClass 𝔒 𝔒) module PropSingle-Unit/Unit/Unit {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) (x : 𝔒) = Unit-Unit/Unit/Unit (𝔓 x) module Prop-Unit/Unit/Unit {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where private module M = PropSingle-Unit/Unit/Unit 𝔓 class = ∀ {x} → M.class x type = ∀ x → M.type x method = λ ⦃ _ : class ⦄ x → M.method x module RelSingle-Unit/Unit/Unit {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) (x : 𝔒) = Unit-Unit/Unit/Unit (ℜ x x) module Rel-Unit/Unit/Unit {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) where private module M = RelSingle-Unit/Unit/Unit ℜ class = ∀ {x} → M.class x type = ∀ x → M.type x method = λ ⦃ _ : class ⦄ x → M.method x module Prop-Rel-Unit/Unit/Unit {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) = Rel-Unit/Unit/Unit (Extension 𝔓) module UnitLevel-Unit/Unit/Unit {𝔬} (𝔒 : Ø 𝔬) (𝔯 : Ł) where private module M = Rel-Unit/Unit/Unit {𝔒 = 𝔒} {𝔯 = 𝔯} class = ∀ {ℜ} → M.class ℜ type = ∀ {ℜ} → M.type ℜ method : ⦃ _ : class ⦄ → type method ⦃ ⌶ ⦄ {ℜ = ℜ} = M.method ℜ ⦃ ⌶ {ℜ} ⦄ -- FIXME module RelSingle-RelSingle/Rel/RelSingle {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) (x : 𝔒) = ℭlass (mkClass ℜ (ℜ x x)) module Rel-RelSingle/Rel/RelSingle {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) where private module M = RelSingle-RelSingle/Rel/RelSingle ℜ class = ∀ {x} → M.class x type = ∀ {x} → M.type x method = λ ⦃ _ : class ⦄ {x} → M.method x module Prop-Rel-RelSingle/Rel/RelSingle {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) = Rel-RelSingle/Rel/RelSingle (Extension 𝔓) module All-Prop-Rel-RelSingle/Rel/RelSingle (𝔬 𝔭 : Ł) where private module M = Prop-Rel-RelSingle/Rel/RelSingle class = ∀ {𝔒 : Ø 𝔬} {𝔓 : 𝔒 → Ø 𝔭} → M.class 𝔓 type = ∀ {𝔒 : Ø 𝔬} {𝔓 : 𝔒 → Ø 𝔭} → M.type 𝔓 method : ⦃ _ : class ⦄ → type method {𝔓 = 𝔓} = M.method 𝔓 module UnitLevel-RelSingle/Rel/RelSingle {𝔬} (𝔒 : Ø 𝔬) (𝔯 : Ł) where private module M = Rel-RelSingle/Rel/RelSingle {𝔒 = 𝔒} {𝔯 = 𝔯} class = ∀ {ℜ} → M.class ℜ type = ∀ {ℜ} → M.type ℜ method : ⦃ _ : class ⦄ → type method {ℜ = ℜ} = M.method ℜ module PropSingle-PropSingle/Prop/PropSingle {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) (x : 𝔒) where open ℭlass (mkClass 𝔓 (𝔓 x)) public module Prop-PropSingle/Prop/PropSingle {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where private module M = PropSingle-PropSingle/Prop/PropSingle 𝔓 class = ∀ {x} → M.class x type = ∀ x → M.type x method = λ ⦃ _ : class ⦄ x → M.method x module Asymmetric ℓ (𝔓' : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) (x : 𝔒) → 𝔓 x → Ø ℓ) where module U = Unit-Unit/Unit/Unit test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y : 𝔓 x} → U.class (𝔓' 𝔓 x y) ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y : 𝔓 x} → U.class (𝔓' 𝔓 x y) test-class' = ! module Symmetric ℓ (𝔓' : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) (x : 𝔒) → 𝔓 x → 𝔓 x → Ø ℓ) where module U = Unit-Unit/Unit/Unit test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → U.class (𝔓' 𝔓 x y z → 𝔓' 𝔓 x y z) ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → U.class (𝔓' 𝔓 x y z → 𝔓' 𝔓 x y z) test-class' ⦃ ⌶ ⦄ = ! module V {𝔬} (𝔒 : Ø 𝔬) = ℭlass (mkClass 𝔒 (𝔒 → 𝔒)) test-classV : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → V.class (𝔓' 𝔓 x y z) ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → V.class (𝔓' 𝔓 x y z) test-classV ⦃ ⌶ ⦄ = ! test-methodV : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → V.class (𝔓' 𝔓 x y z) ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} → V.type (𝔓' 𝔓 x y z) test-methodV ⦃ ⌶ ⦄ = V.method _ module W {𝔬} {𝔒 : Ø 𝔬} (p : 𝔒) = ℭlass (mkClass p 𝔒) test-classW : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} {p : 𝔓' 𝔓 x y z} → W.class p ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} {p : 𝔓' 𝔓 x y z} → W.class p test-classW ⦃ ⌶ ⦄ = magic test-methodW : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} {p : 𝔓' 𝔓 x y z} → W.class p ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} {x : 𝔒} {y z : 𝔓 x} {p : 𝔓' 𝔓 x y z} → W.type p test-methodW {p = p} = W.method p module Prop- {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where module -Unit/Unit/Unit where module V = Prop-Unit/Unit/Unit 𝔓 module H = Prop-Unit/Unit/Unit module X = Unit-Unit/Unit/Unit test-class' : ⦃ _ : {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 ⦄ → {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 test-class' ⦃ ⌶ ⦄ {𝔓 = 𝔓} = magic -- ⌶ {𝔓 = 𝔓} -- FIXME test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X _ = X.method _ -- FIXME module -PropSingle/Prop/PropSingle where module V = Prop-PropSingle/Prop/PropSingle 𝔓 module H = Prop-PropSingle/Prop/PropSingle module X = PropSingle-PropSingle/Prop/PropSingle test-class' : ⦃ _ : {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 ⦄ → {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 test-class' ⦃ ⌶ ⦄ = magic test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X _ = X.method _ _ -- FIXME module Rel- {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) where module -Unit/Unit/Unit where module V = Rel-Unit/Unit/Unit ℜ module H = Rel-Unit/Unit/Unit module X = Unit-Unit/Unit/Unit test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method ℜ -- FIXME test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X _ = X.method _ -- FIXME module -RelSingle/Rel/RelSingle where module V = Rel-RelSingle/Rel/RelSingle ℜ module H = Rel-RelSingle/Rel/RelSingle module X = RelSingle-RelSingle/Rel/RelSingle test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X = X.method _ _ module Prop-Rel- {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where module -Unit/Unit/Unit where module V = Prop-Rel-Unit/Unit/Unit 𝔓 module H = Prop-Rel-Unit/Unit/Unit module X = RelSingle-Unit/Unit/Unit test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 test-class' ⦃ ⌶ ⦄ {ℜ} = magic -- ! -- FIXME test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V ⦃ ⌶ ⦄ = magic test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H ⦃ ⌶ ⦄ = magic -- H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X ⦃ ⌶ ⦄ = magic -- X.method _ _ module -RelSingle/Rel/RelSingle where module V = Prop-Rel-RelSingle/Rel/RelSingle 𝔓 module H = Prop-Rel-RelSingle/Rel/RelSingle module X = RelSingle-RelSingle/Rel/RelSingle test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} → H.class 𝔓 ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → H.class 𝔓 test-class' ⦃ ⌶ ⦄ = ! test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V ⦃ ⌶ ⦄ = magic -- V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H ⦃ ⌶ ⦄ = magic -- H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X ⦃ ⌶ ⦄ = magic -- FIXME module UnitLevel- {𝔬} (𝔒 : Ø 𝔬) ℓ where module -Unit/Unit/Unit where module V = UnitLevel-Unit/Unit/Unit 𝔒 ℓ module H = UnitLevel-Unit/Unit/Unit module X = RelSingle-Unit/Unit/Unit test-class : ⦃ _ : V.class ⦄ → V.class test-class ⦃ ⌶ ⦄ {ℜ} = ⌶ {ℜ} -- FIXME test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V ⦃ ⌶ ⦄ {ℜ} = magic test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H ⦃ ⌶ ⦄ {ℜ} = magic -- H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X ⦃ ⌶ ⦄ {ℜ} x = magic -- X.method _ _ module -RelSingle/Rel/RelSingle where module V = UnitLevel-RelSingle/Rel/RelSingle 𝔒 ℓ module H = UnitLevel-RelSingle/Rel/RelSingle module X = RelSingle-RelSingle/Rel/RelSingle test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V ⦃ ⌶ ⦄ {ℜ} = magic -- V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H ⦃ ⌶ ⦄ {ℜ} = magic -- H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X ⦃ ⌶ ⦄ {ℜ} = X.method ℜ _ -- FIXME module Rel-Extension {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) (let ℜ = Extension 𝔓) where module -Unit/Unit/Unit where module V = Rel-Unit/Unit/Unit ℜ module H = Rel-Unit/Unit/Unit module X = Unit-Unit/Unit/Unit test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = Extension 𝔓) → H.class ℜ ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = Extension 𝔓) → H.class ℜ test-class' ⦃ ⌶ ⦄ {𝔓 = 𝔓} = magic -- ⌶ {𝔓 = 𝔓} -- FIXME test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method ℜ -- FIXME test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X _ = X.method _ -- FIXME module -RelSingle/Rel/RelSingle where module V = Rel-RelSingle/Rel/RelSingle ℜ module H = Rel-RelSingle/Rel/RelSingle module X = RelSingle-RelSingle/Rel/RelSingle test-class' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = Extension 𝔓) → H.class ℜ ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = Extension 𝔓) → H.class ℜ test-class' ⦃ ⌶ ⦄ = ! -- ! test-class'' : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = λ x _ → 𝔓 x) → H.class ℜ ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} (let ℜ = λ x _ → 𝔓 x) → H.class ℜ test-class'' ⦃ ⌶ ⦄ = ! -- ! test-class : ⦃ _ : V.class ⦄ → V.class test-class = ! test-method-V : ⦃ _ : V.class ⦄ → V.type test-method-V = V.method test-method-H : ⦃ _ : V.class ⦄ → V.type test-method-H = H.method _ test-method-X : ⦃ _ : V.class ⦄ → V.type test-method-X = X.method _ _ module AllUnitTest where test : ⦃ I : ∀ {𝔬} {𝔒 : Ø 𝔬} → Unit-Unit/Unit/Unit.class 𝔒 ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} → Unit-Unit/Unit/Unit.class 𝔒 test = ! module AllTest {𝔬} {𝔒 : Ø 𝔬} {𝔭} where testProp : ⦃ I : {𝔓 : 𝔒 → Ø 𝔭} → Prop-PropSingle/Prop/PropSingle.class 𝔓 ⦄ → {𝔓 : 𝔒 → Ø 𝔭} → Prop-PropSingle/Prop/PropSingle.class 𝔓 testProp = ! testUnitProp : ⦃ I : {𝔓 : 𝔒 → Ø 𝔭} → Prop-Unit/Unit/Unit.class 𝔓 ⦄ → {𝔓 : 𝔒 → Ø 𝔭} → Prop-Unit/Unit/Unit.class 𝔓 testUnitProp ⦃ I ⦄ {𝔓} = I {𝔓} module SinglePropTest {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) where testProp : ⦃ _ : Prop-PropSingle/Prop/PropSingle.class 𝔓 ⦄ → Prop-PropSingle/Prop/PropSingle.class 𝔓 testProp = ! testUnitProp : ⦃ _ : Prop-Unit/Unit/Unit.class 𝔓 ⦄ → Prop-Unit/Unit/Unit.class 𝔓 testUnitProp = ! module SingleRelTest {𝔬} {𝔒 : Ø 𝔬} {𝔯} (ℜ : 𝔒 → 𝔒 → Ø 𝔯) where testProp : ⦃ _ : Rel-RelSingle/Rel/RelSingle.class ℜ ⦄ → Rel-RelSingle/Rel/RelSingle.class ℜ testProp = ! testUnit : ⦃ _ : Rel-Unit/Unit/Unit.class ℜ ⦄ → Rel-Unit/Unit/Unit.class ℜ testUnit = !
{ "alphanum_fraction": 0.53565808, "avg_line_length": 33.4432132964, "ext": "agda", "hexsha": "a591b331f8d91d0293147db1df4af12d6295471d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/Class.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/Class.agda", "max_line_length": 205, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/Class.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6154, "size": 12073 }
{-# OPTIONS --without-K --safe #-} -- The category of Sets is Monoidal module Categories.Category.Monoidal.Instance.Sets where open import Level open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂; uncurry; map; <_,_>) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Unit using (⊤) open import Relation.Binary.PropositionalEquality open import Function.Inverse using (module Inverse; _↔_) open import Function.Related.TypeIsomorphisms open import Function.Equality using () renaming (_⟨$⟩_ to fun) open import Function using (_$_) open import Categories.Category.Instance.Sets open import Categories.Category.Monoidal open import Categories.Functor.Bifunctor open import Categories.Category.Instance.SingletonSet open import Categories.Category.Instance.EmptySet import Categories.Morphism as Morphism import Categories.Category.Cartesian as Cartesian import Categories.Category.Cocartesian as Cocartesian open import Data.Sum.Properties -- Sets is a Monoidal Category with × as Bifunctor module Product {o : Level} where private S = Sets o open Cartesian S Sets-has-all : BinaryProducts Sets-has-all = record { product = λ {A} {B} → record { A×B = A × B ; π₁ = proj₁ ; π₂ = proj₂ ; ⟨_,_⟩ = <_,_> ; project₁ = refl ; project₂ = refl ; unique = λ p₁ p₂ {x} → sym (cong₂ _,_ (p₁ {x}) (p₂ {x})) } } Sets-is : Cartesian Sets-is = record { terminal = SingletonSet-⊤ ; products = Sets-has-all } private module Cart = Cartesian.Cartesian Sets-is Sets-Monoidal : Monoidal S Sets-Monoidal = Cart.monoidal module Coproduct {o : Level} where private S = Sets o open Cocartesian S Sets-has-all : BinaryCoproducts Sets-has-all = record { coproduct = λ {A} {B} → record { A+B = A ⊎ B ; i₁ = inj₁ ; i₂ = inj₂ ; [_,_] = [_,_]′ ; inject₁ = refl ; inject₂ = refl ; unique = λ { i₁ i₂ {inj₁ x} → sym (i₁ {x}) ; i₁ i₂ {inj₂ y} → sym (i₂ {y})} -- stdlib? } } Sets-is : Cocartesian Sets-is = record { initial = EmptySet-⊥ ; coproducts = Sets-has-all } private module Cocart = Cocartesian.Cocartesian Sets-is Sets-Monoidal : Monoidal S Sets-Monoidal = Cocart.+-monoidal
{ "alphanum_fraction": 0.6815920398, "avg_line_length": 28.3461538462, "ext": "agda", "hexsha": "0dcc7d05a46eccb4d28928a509b02248bfa9ebc3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/Sets.agda", "max_line_length": 92, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 673, "size": 2211 }
-- Andreas, 2016-12-15, issue #2341 -- `with` needs to abstract also in sort of target type. -- {-# OPTIONS -v tc.with:100 #-} open import Agda.Primitive test : ∀ a → Set (lsuc a) test a with a ... | w = Set w
{ "alphanum_fraction": 0.6244131455, "avg_line_length": 19.3636363636, "ext": "agda", "hexsha": "c989c0535aee9a84dc825eaba17f677301f2129b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2341with.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2341with.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2341with.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 213 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional equality ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary.PropositionalEquality. module Relation.Binary.PropositionalEquality.Core where open import Level open import Relation.Binary.Core open import Relation.Binary.Consequences.Core ------------------------------------------------------------------------ -- Some properties sym : ∀ {a} {A : Set a} → Symmetric (_≡_ {A = A}) sym refl = refl trans : ∀ {a} {A : Set a} → Transitive (_≡_ {A = A}) trans refl eq = eq subst : ∀ {a p} {A : Set a} → Substitutive (_≡_ {A = A}) p subst P refl p = p resp₂ : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) → ∼ Respects₂ _≡_ resp₂ _∼_ = subst⟶resp₂ _∼_ subst isEquivalence : ∀ {a} {A : Set a} → IsEquivalence (_≡_ {A = A}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
{ "alphanum_fraction": 0.512745098, "avg_line_length": 27.5675675676, "ext": "agda", "hexsha": "cd2e308f4372b0d5147ab32f2b4ee57a740cc502", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PropositionalEquality/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 273, "size": 1020 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Bool open import lib.types.Lift open import lib.types.Paths open import lib.types.Pointed open import lib.types.Wedge open import lib.cubical.Square module lib.types.BigWedge where module _ {i j} {A : Type i} where private data #BigWedge-aux (X : A → Ptd j) : Type (lmax i j) where #bwbase : #BigWedge-aux X #bwin : (a : A) → fst (X a) → #BigWedge-aux X data #BigWedge (X : A → Ptd j) : Type (lmax i j) where #bigwedge : #BigWedge-aux X → (Unit → Unit) → #BigWedge X BigWedge : (A → Ptd j) → Type (lmax i j) BigWedge X = #BigWedge X bwbase : {X : A → Ptd j} → BigWedge X bwbase = #bigwedge #bwbase _ bwin : {X : A → Ptd j} → (a : A) → fst (X a) → BigWedge X bwin a x = #bigwedge (#bwin a x) _ ⊙BigWedge : (A → Ptd j) → Ptd (lmax i j) ⊙BigWedge X = ⊙[ BigWedge X , bwbase ] postulate -- HIT bwglue : {X : A → Ptd j} → (a : A) → bwbase {X} == bwin a (snd (X a)) ⊙bwin : {X : A → Ptd j} → (a : A) → fst (X a ⊙→ ⊙BigWedge X) ⊙bwin a = (bwin a , ! (bwglue a)) module BigWedgeElim {X : A → Ptd j} {k} {P : BigWedge X → Type k} (base* : P bwbase) (in* : (a : A) (x : fst (X a)) → P (bwin a x)) (glue* : (a : A) → base* == in* a (snd (X a)) [ P ↓ bwglue a ]) where f : Π (BigWedge X) P f = f-aux phantom where f-aux : Phantom glue* → Π (BigWedge X) P f-aux phantom (#bigwedge #bwbase _) = base* f-aux phantom (#bigwedge (#bwin a x) _) = in* a x postulate -- HIT glue-β : (a : A) → apd f (bwglue a) == glue* a open BigWedgeElim public using () renaming (f to BigWedge-elim) module BigWedgeRec {X : A → Ptd j} {k} {C : Type k} (base* : C) (in* : (a : A) → fst (X a) → C) (glue* : (a : A) → base* == in* a (snd (X a))) where private module M = BigWedgeElim base* in* (λ c → ↓-cst-in (glue* c)) f : BigWedge X → C f = M.f glue-β : (a : A) → ap f (bwglue a) == glue* a glue-β a = apd=cst-in {f = f} (M.glue-β a) {- A BigWedge indexed by Bool is just a binary Wedge -} module _ {i} (Pick : Lift {j = i} Bool → Ptd i) where BigWedge-Bool-equiv : BigWedge Pick ≃ Wedge (Pick (lift true)) (Pick (lift false)) BigWedge-Bool-equiv = equiv f g f-g g-f where module F = BigWedgeRec {X = Pick} {C = Wedge (Pick (lift true)) (Pick (lift false))} (winl (snd (Pick (lift true)))) (λ {(lift true) → winl; (lift false) → winr}) (λ {(lift true) → idp; (lift false) → wglue}) module G = WedgeRec {X = Pick (lift true)} {Y = Pick (lift false)} {C = BigWedge Pick} (bwin (lift true)) (bwin (lift false)) (! (bwglue (lift true)) ∙ bwglue (lift false)) f = F.f g = G.f f-g : ∀ w → f (g w) == w f-g = Wedge-elim (λ _ → idp) (λ _ → idp) (↓-∘=idf-in f g $ ap f (ap g wglue) =⟨ ap (ap f) G.glue-β ⟩ ap f (! (bwglue (lift true)) ∙ bwglue (lift false)) =⟨ ap-∙ f (! (bwglue (lift true))) (bwglue (lift false)) ⟩ ap f (! (bwglue (lift true))) ∙ ap f (bwglue (lift false)) =⟨ ap-! f (bwglue (lift true)) |in-ctx (λ w → w ∙ ap f (bwglue (lift false))) ⟩ ! (ap f (bwglue (lift true))) ∙ ap f (bwglue (lift false)) =⟨ F.glue-β (lift true) |in-ctx (λ w → ! w ∙ ap f (bwglue (lift false))) ⟩ ap f (bwglue (lift false)) =⟨ F.glue-β (lift false) ⟩ wglue ∎) g-f : ∀ bw → g (f bw) == bw g-f = BigWedge-elim (! (bwglue (lift true))) (λ {(lift true) → λ _ → idp; (lift false) → λ _ → idp}) (λ {(lift true) → ↓-∘=idf-from-square g f $ ap (ap g) (F.glue-β (lift true)) ∙v⊡ bl-square (bwglue (lift true)); (lift false) → ↓-∘=idf-from-square g f $ (ap (ap g) (F.glue-β (lift false)) ∙ G.glue-β) ∙v⊡ lt-square (! (bwglue (lift true))) ⊡h vid-square}) BigWedge-Bool-⊙path : ⊙BigWedge Pick == ⊙Wedge (Pick (lift true)) (Pick (lift false)) BigWedge-Bool-⊙path = ⊙ua (⊙≃-in BigWedge-Bool-equiv idp)
{ "alphanum_fraction": 0.5204678363, "avg_line_length": 32.3149606299, "ext": "agda", "hexsha": "6b900d0a9e5f6b69f53d14e5d1ea21f3689546be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/BigWedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/BigWedge.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/BigWedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1631, "size": 4104 }
{-# OPTIONS --allow-incomplete-matches #-} module Issue3295.Incomplete where open import Agda.Builtin.Nat f : Nat → Nat f zero = zero
{ "alphanum_fraction": 0.7226277372, "avg_line_length": 15.2222222222, "ext": "agda", "hexsha": "8c47f022513259b5622cfb5b9ddbd9d95ddb8328", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3295/Incomplete.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3295/Incomplete.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3295/Incomplete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 37, "size": 137 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.EvaluationHomomorphism where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Algebra.RingSolver.RawRing open import Cubical.Algebra.RingSolver.AlmostRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.HornerForms private variable ℓ : Level module HomomorphismProperties (R : AlmostRing {ℓ}) where private νR = AlmostRing→RawRing R open AlmostRing R open Theory R open IteratedHornerOperations νR evalHom+0 : (n : ℕ) (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (0ₕ +ₕ P) xs ≡ eval n P xs evalHom+0 ℕ.zero (const x) [] = +Lid _ evalHom+0 (ℕ.suc n) P xs = refl eval0H : (n : ℕ) (xs : Vec ⟨ νR ⟩ n) → eval {R = νR} n 0ₕ xs ≡ 0r eval0H .ℕ.zero [] = refl eval0H .(ℕ.suc _) (x ∷ xs) = refl eval1ₕ : (n : ℕ) (xs : Vec ⟨ νR ⟩ n) → eval {R = νR} n 1ₕ xs ≡ 1r eval1ₕ .ℕ.zero [] = refl eval1ₕ (ℕ.suc n) (x ∷ xs) = eval (ℕ.suc n) 1ₕ (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) (0H ·X+ 1ₕ) (x ∷ xs) ≡⟨ refl ⟩ eval {R = νR} (ℕ.suc n) 0H (x ∷ xs) · x + eval n 1ₕ xs ≡⟨ cong (λ u → u · x + eval n 1ₕ xs) (eval0H _ (x ∷ xs)) ⟩ 0r · x + eval n 1ₕ xs ≡⟨ cong (λ u → 0r · x + u) (eval1ₕ _ xs) ⟩ 0r · x + 1r ≡⟨ cong (λ u → u + 1r) (0LeftAnnihilates _) ⟩ 0r + 1r ≡⟨ +Lid _ ⟩ 1r ∎ -evalDist : (n : ℕ) (P : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (-ₕ P) xs ≡ - eval n P xs -evalDist .ℕ.zero (const x) [] = refl -evalDist n 0H xs = eval n (-ₕ 0H) xs ≡⟨ eval0H n xs ⟩ 0r ≡⟨ sym 0IsSelfinverse ⟩ - 0r ≡⟨ cong -_ (sym (eval0H n xs)) ⟩ - eval n 0H xs ∎ -evalDist .(ℕ.suc _) (P ·X+ Q) (x ∷ xs) = eval (ℕ.suc _) (-ₕ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc _) ((-ₕ P) ·X+ (-ₕ Q)) (x ∷ xs) ≡⟨ refl ⟩ (eval (ℕ.suc _) (-ₕ P) (x ∷ xs)) · x + eval _ (-ₕ Q) xs ≡⟨ cong (λ u → u · x + eval _ (-ₕ Q) xs) (-evalDist _ P _) ⟩ (- eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ (-ₕ Q) xs ≡⟨ cong (λ u → (- eval (ℕ.suc _) P (x ∷ xs)) · x + u) (-evalDist _ Q _) ⟩ (- eval (ℕ.suc _) P (x ∷ xs)) · x + - eval _ Q xs ≡⟨ cong (λ u → u + - eval _ Q xs) (sym (-Comm· _ _)) ⟩ - (eval (ℕ.suc _) P (x ∷ xs)) · x + - eval _ Q xs ≡⟨ sym (-Dist+ _ _) ⟩ - ((eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ Q xs) ≡⟨ refl ⟩ - eval (ℕ.suc _) (P ·X+ Q) (x ∷ xs) ∎ +Homeval : (n : ℕ) (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (P +ₕ Q) xs ≡ (eval n P xs) + (eval n Q xs) +Homeval .ℕ.zero (const x) (const y) [] = refl +Homeval n 0H Q xs = eval n (0H +ₕ Q) xs ≡⟨ refl ⟩ eval n Q xs ≡⟨ sym (+Lid _) ⟩ 0r + eval n Q xs ≡⟨ cong (λ u → u + eval n Q xs) (sym (eval0H n xs)) ⟩ eval n 0H xs + eval n Q xs ∎ +Homeval .(ℕ.suc _) (P ·X+ Q) 0H xs = eval (ℕ.suc _) ((P ·X+ Q) +ₕ 0H) xs ≡⟨ refl ⟩ eval (ℕ.suc _) (P ·X+ Q) xs ≡⟨ sym (+Rid _) ⟩ eval (ℕ.suc _) (P ·X+ Q) xs + 0r ≡⟨ cong (λ u → eval (ℕ.suc _) (P ·X+ Q) xs + u) (sym (eval0H _ xs)) ⟩ eval (ℕ.suc _) (P ·X+ Q) xs + eval (ℕ.suc _) 0H xs ∎ +Homeval .(ℕ.suc _) (P ·X+ Q) (S ·X+ T) (x ∷ xs) = eval (ℕ.suc _) ((P ·X+ Q) +ₕ (S ·X+ T)) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc _) ((P +ₕ S) ·X+ (Q +ₕ T)) (x ∷ xs) ≡⟨ refl ⟩ (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + eval _ (Q +ₕ T) xs ≡⟨ cong (λ u → (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + u) (+Homeval _ Q T xs) ⟩ (eval (ℕ.suc _) (P +ₕ S) (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ cong (λ u → u · x + (eval _ Q xs + eval _ T xs)) (+Homeval (ℕ.suc _) P S (x ∷ xs)) ⟩ (eval (ℕ.suc _) P (x ∷ xs) + eval (ℕ.suc _) S (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ cong (λ u → u + (eval _ Q xs + eval _ T xs)) (·DistL+ _ _ _) ⟩ (eval (ℕ.suc _) P (x ∷ xs)) · x + (eval (ℕ.suc _) S (x ∷ xs)) · x + (eval _ Q xs + eval _ T xs) ≡⟨ +ShufflePairs _ _ _ _ ⟩ ((eval (ℕ.suc _) P (x ∷ xs)) · x + eval _ Q xs) + ((eval (ℕ.suc _) S (x ∷ xs)) · x + eval _ T xs) ≡⟨ refl ⟩ eval (ℕ.suc _) (P ·X+ Q) (x ∷ xs) + eval (ℕ.suc _) (S ·X+ T) (x ∷ xs) ∎ ⋆Homeval : (n : ℕ) (r : IteratedHornerForms νR n) (P : IteratedHornerForms νR (ℕ.suc n)) (x : ⟨ νR ⟩) (xs : Vec ⟨ νR ⟩ n) → eval (ℕ.suc n) (r ⋆ P) (x ∷ xs) ≡ eval n r xs · eval (ℕ.suc n) P (x ∷ xs) ⋆0LeftAnnihilates : (n : ℕ) (P : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (ℕ.suc n) (0ₕ ⋆ P) xs ≡ 0r ·Homeval : (n : ℕ) (P Q : IteratedHornerForms νR n) (xs : Vec ⟨ νR ⟩ n) → eval n (P ·ₕ Q) xs ≡ (eval n P xs) · (eval n Q xs) ⋆0LeftAnnihilates n 0H xs = eval0H (ℕ.suc n) xs ⋆0LeftAnnihilates n (P ·X+ Q) (x ∷ xs) = eval (ℕ.suc n) (0ₕ ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) ((0ₕ ⋆ P) ·X+ (0ₕ ·ₕ Q)) (x ∷ xs) ≡⟨ refl ⟩ (eval (ℕ.suc n) (0ₕ ⋆ P) (x ∷ xs)) · x + eval n (0ₕ ·ₕ Q) xs ≡⟨ cong (λ u → (u · x) + eval _ (0ₕ ·ₕ Q) _) (⋆0LeftAnnihilates n P (x ∷ xs)) ⟩ 0r · x + eval n (0ₕ ·ₕ Q) xs ≡⟨ cong (λ u → u + eval _ (0ₕ ·ₕ Q) _) (0LeftAnnihilates _) ⟩ 0r + eval n (0ₕ ·ₕ Q) xs ≡⟨ +Lid _ ⟩ eval n (0ₕ ·ₕ Q) xs ≡⟨ ·Homeval n 0ₕ Q _ ⟩ eval n 0ₕ xs · eval n Q xs ≡⟨ cong (λ u → u · eval n Q xs) (eval0H _ xs) ⟩ 0r · eval n Q xs ≡⟨ 0LeftAnnihilates _ ⟩ 0r ∎ ⋆Homeval n r 0H x xs = eval (ℕ.suc n) (r ⋆ 0H) (x ∷ xs) ≡⟨ refl ⟩ 0r ≡⟨ sym (0RightAnnihilates _) ⟩ eval n r xs · 0r ≡⟨ refl ⟩ eval n r xs · eval {R = νR} (ℕ.suc n) 0H (x ∷ xs) ∎ ⋆Homeval n r (P ·X+ Q) x xs = eval (ℕ.suc n) (r ⋆ (P ·X+ Q)) (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) ((r ⋆ P) ·X+ (r ·ₕ Q)) (x ∷ xs) ≡⟨ refl ⟩ (eval (ℕ.suc n) (r ⋆ P) (x ∷ xs)) · x + eval n (r ·ₕ Q) xs ≡⟨ cong (λ u → u · x + eval n (r ·ₕ Q) xs) (⋆Homeval n r P x xs) ⟩ (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + eval n (r ·ₕ Q) xs ≡⟨ cong (λ u → (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + u) (·Homeval n r Q xs) ⟩ (eval n r xs · eval (ℕ.suc n) P (x ∷ xs)) · x + eval n r xs · eval n Q xs ≡⟨ cong (λ u → u + eval n r xs · eval n Q xs) (sym (·Assoc _ _ _)) ⟩ eval n r xs · (eval (ℕ.suc n) P (x ∷ xs) · x) + eval n r xs · eval n Q xs ≡⟨ sym (·DistR+ _ _ _) ⟩ eval n r xs · ((eval (ℕ.suc n) P (x ∷ xs) · x) + eval n Q xs) ≡⟨ refl ⟩ eval n r xs · eval (ℕ.suc n) (P ·X+ Q) (x ∷ xs) ∎ combineCases : (n : ℕ) (Q : IteratedHornerForms νR n) (P S : IteratedHornerForms νR (ℕ.suc n)) (xs : Vec ⟨ νR ⟩ (ℕ.suc n)) → eval (ℕ.suc n) ((P ·X+ Q) ·ₕ S) xs ≡ eval (ℕ.suc n) (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) xs combineCases n Q P S (x ∷ xs) with (P ·ₕ S) ... | 0H = eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+Lid _) ⟩ 0r + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval _ (Q ⋆ S) (x ∷ xs)) lemma ⟩ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ sym (+Homeval (ℕ.suc n) (0H ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs)) ⟩ eval (ℕ.suc n) ((0H ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ∎ where lemma : 0r ≡ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) lemma = 0r ≡⟨ sym (+Rid _) ⟩ 0r + 0r ≡⟨ cong (λ u → u + 0r) (sym (0LeftAnnihilates _)) ⟩ 0r · x + 0r ≡⟨ cong (λ u → 0r · x + u) (sym (eval0H _ xs)) ⟩ 0r · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs) (sym (eval0H _ (x ∷ xs))) ⟩ eval {R = νR} (ℕ.suc n) 0H (x ∷ xs) · x + eval n 0ₕ xs ≡⟨ refl ⟩ eval (ℕ.suc n) (0H ·X+ 0ₕ) (x ∷ xs) ∎ ... | (_ ·X+ _) = refl ·Homeval .ℕ.zero (const x) (const y) [] = refl ·Homeval (ℕ.suc n) 0H Q xs = eval (ℕ.suc n) (0H ·ₕ Q) xs ≡⟨ eval0H _ xs ⟩ 0r ≡⟨ sym (0LeftAnnihilates _) ⟩ 0r · eval (ℕ.suc n) Q xs ≡⟨ cong (λ u → u · eval _ Q xs) (sym (eval0H _ xs)) ⟩ eval (ℕ.suc n) 0H xs · eval (ℕ.suc n) Q xs ∎ ·Homeval (ℕ.suc n) (P ·X+ Q) S (x ∷ xs) = eval (ℕ.suc n) ((P ·X+ Q) ·ₕ S) (x ∷ xs) ≡⟨ combineCases n Q P S (x ∷ xs) ⟩ eval (ℕ.suc n) (((P ·ₕ S) ·X+ 0ₕ) +ₕ (Q ⋆ S)) (x ∷ xs) ≡⟨ +Homeval (ℕ.suc n) ((P ·ₕ S) ·X+ 0ₕ) (Q ⋆ S) (x ∷ xs) ⟩ eval (ℕ.suc n) ((P ·ₕ S) ·X+ 0ₕ) (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ refl ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + eval n 0ₕ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → u + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs)) ((eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + eval n 0ₕ xs) ≡⟨ cong (λ u → eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + u) (eval0H _ xs) ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x + 0r) ≡⟨ +Rid _ ⟩ (eval (ℕ.suc n) (P ·ₕ S) (x ∷ xs) · x) ≡⟨ cong (λ u → u · x) (·Homeval (ℕ.suc n) P S (x ∷ xs)) ⟩ ((eval (ℕ.suc n) P (x ∷ xs) · eval (ℕ.suc n) S (x ∷ xs)) · x) ≡⟨ sym (·Assoc _ _ _) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · (eval (ℕ.suc n) S (x ∷ xs) · x)) ≡⟨ cong (λ u → eval (ℕ.suc n) P (x ∷ xs) · u) (·Comm _ _) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · (x · eval (ℕ.suc n) S (x ∷ xs))) ≡⟨ ·Assoc _ _ _ ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) ∎) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + eval (ℕ.suc n) (Q ⋆ S) (x ∷ xs) ≡⟨ cong (λ u → (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + u) (⋆Homeval n Q S x xs) ⟩ (eval (ℕ.suc n) P (x ∷ xs) · x) · eval (ℕ.suc n) S (x ∷ xs) + eval n Q xs · eval (ℕ.suc n) S (x ∷ xs) ≡⟨ sym (·DistL+ _ _ _) ⟩ ((eval (ℕ.suc n) P (x ∷ xs) · x) + eval n Q xs) · eval (ℕ.suc n) S (x ∷ xs) ≡⟨ refl ⟩ eval (ℕ.suc n) (P ·X+ Q) (x ∷ xs) · eval (ℕ.suc n) S (x ∷ xs) ∎
{ "alphanum_fraction": 0.4155148096, "avg_line_length": 46.4410480349, "ext": "agda", "hexsha": "2ea1a5f038cc03043aae2d312093de28a5fd66b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/EvaluationHomomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/EvaluationHomomorphism.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/EvaluationHomomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5109, "size": 10635 }
module z where -- http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf {- Dependently Typed Programming in Agda Ulf Norell1 : Chalmers University, Gothenburg : [email protected] James Chapman : Institute of Cybernetics, Tallinn : [email protected] ------------------------------------------------------------------------------ 1 Introduction In Hindley-Milner languages (Haskell, ML) : separation between types and values. Dependently typed : types can contain (depend on) arbitrary values and appear as arguments and results of ordinary functions Dependent types enables types to talk about values, so can encode properties of values as types whose elements are proofs that the property is true. So dependently typed programming language can be used as a logic. To be consistent programs must be total. ------------------------------------------------------------------------------ 2 BASICS based on intuitionistic type theory[4] -------------------------------------------------- 2.1 DATATYPES AND PATTERN MATCHING -} data Bool : Set where true : Bool false : Bool {- type of Bool is - Set, the type of small types - There is hierarchy of increasingly large types - type of Set is Set1, whose type is Set2, ... -} not : Bool → Bool not true = false not false = true data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) infixl 40 _+_ _*_ : Nat → Nat → Nat zero * m = zero suc n * m = m + n * m infixl 60 _*_ {- functions must not crash and must terminate recursive calls have to be made on structurally smaller arguments mixfix via _ : args where the underscores are -} _or_ : Bool → Bool → Bool false or x = x true or _ = true -- uses wildcard pattern on "don't care" args infixr 20 _or_ -- polymorphic function over type A if_then_else_ : {A : Set} → Bool → A → A → A if true then x else y = x if false then x else y = y infix 5 if_then_else_ -- types parameterize by other types data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 40 _::_ -- liberal naming policy enables naming above data _⋆ (α : Set) : Set where ε : α ⋆ _C_ : α → α ⋆ → α ⋆ {- whitespace important -------------------------------------------------- 2.2 DEPENDENT FUNCTIONS result type depends on VALUE of an arg (x : A) → B for the type of functions - given : arg x of type A - returns : result of type B - where x may appear in B special case is when x itself is a type, e.g., -} identity : (A : Set) → A → A identity A x = x zero’ : Nat zero’ = identity Nat zero {- identity is a dependent function - given - a type argument A and - an element of A - returns - the element This is how polymorphic functions are encoded in Agda. example : function which takes a dependent function and applies it to an argument: -} apply : (A : Set) (B : A → Set) → ((x : A) → B x) → (a : A) → B a apply A B f a = f a {- shorthand for dependent function types: (x : A) (y : B) → C for (x : A) → (y : B) → C (x y : A) → B for (x : A) (y : A) → B elements of dependent function types are lambda terms which may carry explicit type info alternative ways to identity identity function above are: -} identity2 : (A : Set) → A → A identity2 = \A x → x identity3 : (A : Set) → A → A identity3 = \(A : Set) (x : A) → x identity4 : (A : Set) → A → A identity4 = \(A : Set) x → x {- -------------------------------------------------- 2.3 IMPLICIT ARGUMENTS Previous section showed how dependent functions taking types as arguments used to model polymorphic types. But it is not necessary to say at which point it is applied - that can be inferred. The identity functions above explicitly provide the type argument. Avoid explicit type arg via implicit arguments using {} -} id : {A : Set} → A → A id x = x true’ : Bool true’ = id true {- No restrictions on what arguments can be made implicit. Not guarantees that an implicit argument can be inferred. E.g., make 2nd arg of identity function implicit as well: -} silly : {A : Set} {x : A} → A -- but type checker cannot figure out 2nd arg silly {_} {x} = x false’ : Bool false’ = silly {x = false} -- must provide via named implicit application syntax f {v} -- must use name if not in order -- type checker fills in term -- will not search, only looks at typing constraints and performs unification one : Nat one = identity _ (suc zero) -- example of inferring the typing constraints _◦_ : {A : Set}{B : A → Set}{C : (x : A) → B x → Set} (f : {x : A}(y : B x) → C x y)(g : (x : A) → B x) (x : A) → C x (g x) (f ◦ g) x = f (g x) plus-two = suc ◦ suc -- other functions map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) {- -------------------------------------------------- -- 2.4 DATATYPE FAMILIES So far, only used dependent types is to represent polymorphism -} data Vec (A : Set) : Nat → Set where [] : Vec A zero _::_ : {n : Nat} → A → Vec A n → Vec A (suc n) {- type of Vec A is Nat → Set - means that Vec A is a family of types indexed by natural numbers - for each Nat n, Vec A n is a type - [] constructs an element in Vec A zero - _::_ constructs an element in Vec A (suc n) for some n distinction between parameters and indices of a datatype - parameterised by type A - indexed over Nat type of _::_ is a dependent function type - 1st arg is an implicit Nat n - returns type that depends on n 'suc n' same constructor names for Vec as for List - constructor names are not required to be distinct between different datatypes -} -- safe head head : {A : Set} {n : Nat} → Vec A (suc n) → A head (x :: xs) = x tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n tail (x :: xs) = xs {- rule for when to include a particular case is: if it is type correct you have to include it -} -------------------------------------------------- -- DOT PATTERNS : indicate value of an arg deduced by type checking, not pattern matching vmap : {A B : Set} {n : Nat} → (A → B) → Vec A n → Vec B n vmap f [] = [] vmap f (x :: xs) = f x :: vmap f xs {- map on Vec is exactly the same map on List only change is the type behind the scenes, what happens with the length argument when pattern matching to see, define new versions of Vec and vmap with fewer implicit arguments: -} data Vec2 (A : Set) : Nat → Set where nil : Vec2 A zero cons : (n : Nat) → A → Vec2 A n → Vec2 A (suc n) vmap2 : {A B : Set} (n : Nat) → (A → B) → Vec2 A n → Vec2 B n vmap2 .zero f nil = nil vmap2 .(suc n) f (cons n x xs) = cons n (f x) (vmap2 n f xs) {- pattern matching on list argument reveals its length - if nil then zero - if cons then suc n to indicate value of an arg deduced by type checking, rather than observed by pattern matching, it is prefixed by a dot (.) could choose to define vmap by first pattern matching on the length rather than on the list -} vmap3 : {A B : Set} (n : Nat) → (A → B) → Vec2 A n → Vec2 B n vmap3 zero f nil = nil vmap3 (suc n) f (cons .n x xs) = cons n (f x) (vmap3 n f xs) {- rule for when arg should be dotted: - if there is a unique type correct value for the argument it should be dotted above, the terms under the dots were valid patterns - in general they can be arbitrary terms e.g., -} data Image_el_ {A B : Set}(f : A → B) : B → Set where im : (x : A) → Image f el f x {- only way to construct an element in the image of f is to pick an argument x and apply f to x knowing that a particular y is in the image of f enables computing the inverse of f on y: -} inv : {A B : Set} (f : A → B) (y : B) → Image f el y → A inv f .(f x) (im x) = x {- -------------------------------------------------- ABSURD PATTERNS -} -- family of numbers smaller than a given natural number data Fin : Nat → Set where fzero : {n : Nat} → Fin (suc n) -- smaller than suc n for any n fsuc : {n : Nat} → Fin n → Fin (suc n) -- if i smaller than n then fsuc i is smaller than suc n -- Now way to construct a Fin smaller than zero. -- When no possible constructor patterns for a given argument -- then pattern match with absurd pattern () magic : {A : Set} → Fin zero → A magic () {- Using absurd pattern means no need to give a right hand side, since no way anyting could given as an arg that would match. Seems the clause not needed, that checker could tell. But a case can only be omitted if no type correct way of writing it. 'magic a' has a type correct left hand side absurd pattern can only be used if there are no valid constructor patterns for the arg. It is not enough that there are no closed inhabitants of the type. E.g., -} data Empty : Set where empty : Fin zero → Empty {- Args of type Empty cannot be matched with absurd pattern, since there is a valid constructor pattern: 'empty x' So must write: -} magic’ : {A : Set} → Empty → A magic’ (empty ()) -- magic’ () -- not accepted -- Extract ith element of the list (starting from 0): -- Turns a list into a function from indices to elements. _!_ : {n : Nat} {A : Set} → Vec A n → Fin n → A [] ! () (x :: xs) ! fzero = x (x :: xs) ! (fsuc i) = xs ! i {- types ensure no danger of indexing outside the list reflected in use of absurd in empty case : no possible values for the index -} -- constructing a list given a function from indices to elements tabulate : {n : Nat} {A : Set} → (Fin n → A) → Vec A n tabulate {zero} f = [] tabulate {suc n} f = f fzero :: tabulate (f ◦ fsuc) -- recursive call implicitly gets 'n' {- tabulate is defined by recursion over the length of the result list, even though it is an implicit argument. In general, no correspondance between implicit data and computationally irrelevant data. ------------------------------------------------------------------------------ -- 2.5 PROGRAMS AS PROOFS Type system can represent propositions as types whose elements are proofs of the proposition. -} data False : Set where -- datatype with no constructors record True : Set where -- record type with no fields -- has a single element : the empty record {- Could have defined True as datatype with a single element. But using record def lets checker know there is a unique element of True and will fill in any implicit arguments of type True with this element. exploited in trivial: -} trivial : True trivial = _ trivial' : True trivial' = record {} {- where right hand is underscore, instead of explicitly writing 'record {}' The 'False' and 'True' propositions enable working with decidable propositions. Can model decidable propositions as booleans and define -} -- takes a VALUE of type Bool -- returns a Set (i.e., a TYPE) isTrue : Bool → Set isTrue true = True isTrue false = False isFalse : Bool → Set isFalse x = isTrue (not x) {- isTrue b is the type of proofs that b equals true. This technique enables defining safe list lookup function in a different way, working on simply typed lists and numbers. -} -- takes Nat VALUES -- returns Bool VALUES _<_ : Nat → Nat → Bool _ < zero = false zero < suc n = true suc m < suc n = m < n length : {A : Set} → List A → Nat length [] = zero length (x :: xs) = suc (length xs) -- | -- v lookup : {A : Set} (xs : List A) (n : Nat) → isTrue (n < length xs) → A lookup [] n () lookup (x :: xs) zero p = x lookup (x :: xs) (suc n) p = lookup xs n p {- Rather than there being no index into the empty list, there is no proof that a number n is smaller than zero. In this example, using indexed types to capture the precondition, as done in '_!_' above, is a little bit nicer, since do not have to pass an explicit proof object as done in 'lookup' above. When properties cannot be easily captured by indexed types, this is a useful alternative. -------------------------------------------------- DEFINE PROPOSITIONS USING DATATYPE FAMILIES -} -- family of proofs of “being equal to x” -- specify the type by giving it two args -- type can only be constructed when the two args reduce to the same thing data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- only inhabited at index x where the single proof is refl -- another exampla -- compare to def of '_<_' above data _≤_ : Nat → Nat → Set where leq-zero : {n : Nat} → zero ≤ n leq-suc : {m n : Nat} → m ≤ n → suc m ≤ suc n {- advantage of this approach - PATTERN MATCH ON PROOF OBJECT - makes proving properties of _≤_ easier - e.g., -} leq-trans : {l m n : Nat} → l ≤ m → m ≤ n → l ≤ n leq-trans leq-zero _ = leq-zero leq-trans (leq-suc p) (leq-suc q) = leq-suc (leq-trans p q) {- ------------------------------------------------------------------------------ -- 2.6 WITH : PATTERN MATCH ON RESULT OF INTERMEDIATE COMPUTATION Haskell : done on right hand side using case when matching expression in dependently typed language, learn - shape of expression - things about other expressions - e.g., matching 'Vec A n' reveals info about n - not captured by usual case expression to pattern match on an expression e in the def of fun f - abstract f over value of e - effectively adding another argument to f - can then be matched on in usual way -} min : Nat → Nat → Nat min x y with x < y min x y | true = x min x y | false = y {- Can abstract over multiple expressions at same time, separated by vertical bars. Can nest with abstractions. When matching on arg using WITH, no need to match on args again: - use ... -} filter : {A : Set} → (A → Bool) → List A → List A filter p [] = [] filter p (x :: xs) with p x ... | true = x :: filter p xs ... | false = filter p xs {- Example of revealing info via matching. Compare numbers for equality. Instead of returning boolean, return proof of equality or explanation of why they are not equal. -} data _≠_ : Nat → Nat → Set where z≠s : {n : Nat} → zero ≠ suc n -- different if one is zero and other suc s≠z : {n : Nat} → suc n ≠ zero -- vice versa s≠s : {m n : Nat} → m ≠ n → suc m ≠ suc n -- both suc but their predecessors are different data Equal? (n m : Nat) : Set where eq : n ≡ m → Equal? n m neq : n ≠ m → Equal? n m -- now function that returns the explanation equal? : (n m : Nat) → Equal? n m -- Equal? zero zero -- zero ≡ zero equal? zero zero = eq refl equal? zero (suc _) = neq z≠s equal? (suc _) zero = neq s≠z equal? (suc n) (suc m) with equal? n m -- matching on proof reveals if predecessors are equal equal? (suc _) (suc _) | eq refl = eq refl -- Equal? (suc n) (suc m) -- suc n ≠ suc m -- n ≠ m equal? (suc _) (suc _) | neq p = neq (s≠s p) {- using WITH : expression is abstracted from entire context means that if expression occurs in type of arg to function or in result type, occurrence is replaced by the with-argument on the left hand side. e.g., prove 'filter' only removes some elements -} -- to make a sublist, each element can either be dropped or kept infix 20 _⊆_ data _⊆_ {A : Set} : List A → List A → Set where stop : [] ⊆ [] drop : forall {xs y ys} → xs ⊆ ys → xs ⊆ y :: ys keep : forall {x xs ys} → xs ⊆ ys → x :: xs ⊆ x :: ys {- When checker can infer type of an arg in fun type, then can use forall: – forall {x y} a b → A shorthand for {x : _} {y : _} (a : _) (b : _) → A -} -- proof that filter computes a sublist of its argument: lem-filter : {A : Set} (p : A → Bool) (xs : List A) → filter p xs ⊆ xs lem-filter p [] = stop lem-filter p (x :: xs) with p x ... | true = keep (lem-filter p xs) ... | false = drop (lem-filter p xs) {- to prove lem-filter p (x :: xs) need to prove : (filter p (x :: xs) | p x) ⊆ x :: xs when abstracting over p x it will be abstracted from goal type, giving lem-filter p (x :: xs) with p x ... | px = ? where p x has been replaced by px in the goal type (filter p (x :: xs) | px) ⊆ x :: xs match px reduce call to filter lem-filter p (x :: xs) with p x ... | true = ? {- x :: filter p xs ⊆ x :: xs -} ... | false = ? {- filter p xs ⊆ x :: xs -} Sometimes WITH useful to abstract over expr that will not be matched, e.g., expect expr to be instantiated by matching on something else -} lem-plus-zero : (n : Nat) → n + zero ≡ n lem-plus-zero zero = refl lem-plus-zero (suc n) with n + zero | lem-plus-zero n ... | _ | refl = refl -- suc n ≡ suc n {- In suc ("step" case) : match on induction hypothesis : n + zero ≡ n to prove suc n + zero ≡ suc n but n + zero does not unify with n so abstract over n + zero, calling it _, left with the induction hypothesis m ≡ n and goal suc m ≡ suc n Now match on induction hypothesis, instantiating _ to n -------------------------------------------------- -- 2.7 Modules TODO -------------------------------------------------- -- 2.8 Records -} record Point : Set where field x : Nat y : Nat mkPoint : Nat → Nat → Point mkPoint a b = record { x = a; y = b } {- field projections via module of the same name. - parameterised by element of record type - contains projection functions for the fields - i.e., module Point (p : Point) where x : Nat y : Nat - can be used as is or instantiated to a particular record -} getX : Point → Nat getX = Point.x abs2 : Point → Nat abs2 p = let open Point p in x * x + y * y -- TODO pattern match on records -- can add functions to the module of a record record Monad (M : Set → Set) : Set1 where field return : {A : Set} → A → M A _>>=_ : {A B : Set} → M A → (A → M B) → M B mapM : {A B : Set} → (A → M B) → List A → M (List B) mapM f [] = return [] mapM f (x :: xs) = f x >>= \y → mapM f xs >>= \ys → return (y :: ys) mapM’ : {M : Set → Set} → Monad M → {A B : Set} → (A → M B) → List A → M (List B) mapM’ Mon f xs = Monad.mapM Mon f xs -------------------------------------------------- -- 2.9 Exercises ------------------------- -- Exercise 2.1. Matrix transposition -- inner vectors are rows Matrix : Set → Nat → Nat → Set Matrix A n m = Vec (Vec A n) m -- (a) function to compute vector containing n copies of element x vec : {n : Nat} {A : Set} → A → Vec A n vec {zero} x = [] vec {suc n} x = x :: vec {n} x vecTest : Vec Nat 3 vecTest = vec zero -- (b) point-wise application of vector of functions to vector of arguments infixl 90 _$_ _$_ : {n : Nat} {A B : Set} → Vec (A → B) n → Vec A n → Vec B n _$_ [] [] = [] _$_ (f :: fs) (x :: xs) = f x :: fs $ xs $TestInputFs : Vec (Nat → Nat) 2 $TestInputFs = (_+ 1) :: (_* 2) :: [] $TestInputXs : Vec Nat 2 $TestInputXs = 0 :: 2 :: [] $TestOutput : Vec Nat 2 $TestOutput = 1 :: 4 :: [] $Test : $TestInputFs $ $TestInputXs ≡ $TestOutput $Test = refl -- (c) matrix transposition in terms of 'vec' and _$_ transpose : forall {A n m} → Matrix A n m → Matrix A m n transpose [] = vec [] transpose (xs :: xss) = (vmap _::_ xs) $ (transpose xss) transposeTestInput : Matrix Nat 2 3 transposeTestInput = r1 :: r2 :: r3 :: [] where r1 = 1 :: 2 :: [] r2 = 3 :: 4 :: [] r3 = 5 :: 6 :: [] transposeTestOuput : Matrix Nat 3 2 transposeTestOuput = r1 :: r2 :: [] where r1 = 1 :: 3 :: 5 :: [] r2 = 2 :: 4 :: 6 :: [] transposeTest : transpose transposeTestInput ≡ transposeTestOuput transposeTest = refl ------------------------- -- Exercise 2.2. Vector lookup -- function composition _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) x = g (f x) -- prove 'tabulate' and '!' are each other’s inverses -- (a) relatively easy lem-!-tab : ∀ {A n} → (f : Fin n → A) → (i : Fin n) → ((tabulate f) ! i) ≡ f i lem-!-tab f fzero = refl -- (tabulate f ! fzero) ≡ f fzero lem-!-tab f (fsuc i) = lem-!-tab (f ∘ fsuc) i -- (tabulate f ! fsuc i) ≡ f (fsuc i) -- (b) trickier lem-tab-! : forall {A n} → (xs : Vec A n) → tabulate (xs !_) ≡ xs lem-tab-! [] = refl lem-tab-! (x :: xs) -- tabulate (_!_ (x :: xs)) ≡ (x :: xs) with tabulate (xs !_) | lem-tab-! xs ... | _y | refl = refl -- (x :: _y) ≡ (x :: xs) -- ^ ^ -- Vec A n _y ≡ xs ------------------------- -- Exercise 2.3. Sublists (see def above) -- (a) prove reflexivity and transitivity of ⊆ -- need to name implicits since the interesting one does not come first ⊆-refl : {A : Set} {xs : List A} → xs ⊆ xs ⊆-refl {xs = []} = stop ⊆-refl {xs = x :: xss} = keep (⊆-refl { xs = xss }) {- [] [] [] [] [] [z] [] [z] [z] [z] [z] [z] [z] [z] [z,z] [z] [z,z] [z,z] [z,z] [z,z] [z,z] -} ⊆-trans : {A : Set} {xs ys zs : List A} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs -- [] [] [] ⊆-trans stop stop = stop -- [] [] [z] -- [z] [z] [z,z] ⊆-trans xy (drop yz) = drop (⊆-trans xy yz) -- [] [z] [z] -- [z] [z,z] [z,z] ⊆-trans (drop xy) (keep yz) = drop (⊆-trans xy yz) -- [z] [z] [z] ⊆-trans (keep xy) (keep yz) = keep (⊆-trans xy yz) ⊆-trans' : {A : Set} {xs ys zs : List A} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs ⊆-trans' stop stop = stop ⊆-trans' stop (drop yz) = drop (⊆-trans' stop yz) ⊆-trans' (drop xy) (drop yz) = drop (⊆-trans' (drop xy) yz) ⊆-trans' (drop xy) (keep yz) = drop (⊆-trans' xy yz) ⊆-trans' (keep xy) (drop yz) = drop (⊆-trans' (keep xy) yz) ⊆-trans' (keep xy) (keep yz) = keep (⊆-trans' xy yz) -- sublist TYPE of a specific list (compare to existing sublist RELATION above) infixr 30 _:::_ data SubList {A : Set} : List A → Set where [] : SubList [] _:::_ : forall x {xs} → SubList xs → SubList (x :: xs) skip : forall {x xs} → SubList xs → SubList (x :: xs) -- (b) extract list corresponding to a sublist forget : {A : Set} {xs : List A} → SubList xs → List A forget [] = [] forget (x ::: s) = x :: forget s forget (skip s) = forget s -- (c) prove SubList is a sublist in the sense of ⊆ lem-forget : {A : Set} {xs : List A} → (zs : SubList xs) → forget zs ⊆ xs lem-forget [] = stop lem-forget (x ::: zs) = keep (lem-forget zs) lem-forget (skip zs) = drop (lem-forget zs) -- (d) alternative def of filter : satisfies sublist property by construction filter' : {A : Set} → (A → Bool) → (xs : List A) → SubList xs filter' p [] = [] filter' p (x :: xs) with p x ... | true = x ::: filter' p xs ... | false = skip (filter' p xs) -- (e) complement of a sublist complement : {A : Set} {xs : List A} → SubList xs → SubList xs complement [] = [] complement (x ::: xs) = skip (complement xs) complement (skip {x} xs) = x ::: complement xs module ComplementTest where ll : List Nat ll = 1 :: 2 :: 3 :: 4 :: [] p1 : Nat → Bool p1 2 = true p1 3 = true p1 4 = true p1 _ = false p2 : Nat → Bool p2 2 = true p2 4 = true p2 _ = false sl1 : SubList ll sl1 = filter' p1 ll sl2 : SubList ll sl2 = filter' p2 ll sl1Test : sl1 ≡ skip (2 ::: 3 ::: 4 ::: []) sl1Test = refl sl2Test : sl2 ≡ skip (2 ::: skip (4 ::: [])) sl2Test = refl c1 : SubList ll c1 = complement sl1 c2 : SubList ll c2 = complement sl2 cTest1 : c1 ≡ 1 ::: skip (skip (skip [])) cTest1 = refl cTest2 : c2 ≡ 1 ::: skip (3 ::: skip []) cTest2 = refl -- https://medium.com/@angerman/powersets-in-haskell-1df9684db52a -- (f) compute all sublists of a given list sublists : {A : Set} → (xs : List A) → List (SubList xs) sublists [] = [] :: [] sublists (x :: xs) = map (x :::_) (sublists xs) ++ (map skip (sublists xs)) -- 2^3 elements - expected output MUST be in same element ORDER as function result sublistsTest : sublists (1 :: 2 :: 3 :: []) ≡ (1 ::: 2 ::: 3 ::: []) :: (1 ::: 2 ::: skip []) :: (1 ::: skip (3 ::: [])) :: (1 ::: skip (skip [])) :: skip (2 ::: 3 ::: []) :: skip (2 ::: skip []) :: skip (skip (3 ::: [])) :: skip (skip (skip [])) :: [] sublistsTest = refl {- ------------------------------------------------------------------------------ 3 Programming Techniques : VIEWS and UNIVERSE constructions -------------------------------------------------- 3.1 VIEWS matching can reveal info about term being matched AND terms INSIDE the type matched term VIEW[5]: datatypes whose purpose is to reveal info about its indices to use a view, define a view function - computes an element of the view for arbitrary indices -} -- view datatype expressing -- any Nat can be expressed as 2k or 2k + 1 for some k -- element of Parity n says if n is even or odd and what k is data Parity : Nat → Set where even : (k : Nat) → Parity (k * 2) odd : (k : Nat) → Parity (1 + k * 2) parity : (n : Nat) → Parity n parity zero = even zero parity (suc n) with parity n ... | even k = odd k ... | odd k = even (suc k) {- parity (suc .(k * 2)) | even k = odd k parity (suc .(1 + k * 2)) | odd k = even (suc k) -} half : Nat → Nat half n with parity n ... | even k = k ... | odd k = k {- -- Note that k is bound in the pattern for the view, -- not in the dotted pattern for the natural number. half .(k * 2) | even k = k half .(1 + k * 2) | odd k = k -} ------------------------- -- FINDING AN ELEMENT IN A LIST -- given predicate and list -- returns if P holds for all elements -- A proof of All P xs is a list of proofs of P x for each element x of xs. -- P does not have to be a decidable predicate. infixr 30 _:all:_ data All {A : Set} (P : A → Set) : List A → Set where all[] : All P [] _:all:_ : forall {x xs} → P x → All P xs → All P (x :: xs) -- to turn a decidable predicate into a general predicate, define: satisfies : {A : Set} → (A → Bool) → A → Set satisfies p x = isTrue (p x) ------------------------- -- exercise : use All to prove 2nd part of correctness of filter -- - all elements of result satisfies the predicate -- All (satisfies p) (filter p xs) -- https://www.javaer101.com/en/article/18631037.html {- open import Relation.Binary.PropositionalEquality filter-lem-b : {A : Set} → (p : A → Bool) → (xs : List A) → All (satisfies p) (filter p xs) filter-lem-b p [] = vacuo filter-lem-b p (x :: xs) with p x | inspect p x ... | true | [ eq ] = holds _ _ (subst isTrue (sym eq) _) (filter-lem-b p xs) ... | false | [ eq ] = filter-lem-b p xs -} -- https://stackoverflow.com/questions/38572464/agda-type-isnt-simplified-in-with-block lem-all-filter : {A : Set} → (p : A → Bool) → (xs : List A) → All (satisfies p) (filter p xs) lem-all-filter p [] = all[] -- isTrue (p x) lem-all-filter p (x :: xs) with p x | λ (y : satisfies p x) → y :all: lem-all-filter p xs -- onTrue : (y : True) → All (λ x₁ → isTrue (p x₁)) (x :: filter p xs) ... | true | onTrue = onTrue _ ... | false | _ = lem-all-filter p xs ------------------------- -- VIEWS ON LISTS -- given : decidable predicate on elements of list -- find element in list that satisfies predicate, -- or else all elements satifies negation of the predicate data Find {A : Set} (p : A → Bool) : List A → Set where -- does NOT specify which element to use as a witness in the found case. -- (If the view was always to return first (or last) matching element, -- force elements of xs (or ys) to satisfy the negation of p.) found : (xs : List A) → (y : A) → satisfies p y → (ys : List A) → Find p (xs ++ y :: ys) not-found : forall {xs} → All (satisfies (not ◦ p)) xs → Find p xs -- view function computing an element of Find p xs for any p and xs -- 1st attempt {- find1 : {A : Set} (p : A → Bool) (xs : List A) → Find p xs find1 p [] = not-found all[] find1 p (x :: xs) with p x -- Need to return found on first match. -- ({ }) is isTrue (p x), even though already matched on p x and found out that it was true. -- Problem : when abstracting over p x did not know that needed to use the found constructor, -- so there were no p x to abstract over. -- WITH does not remember connection between the with-term and the pattern. ... | true = found [] x {! !} xs ... | false = {! !} -} {- A solution : make this connection explicit with a proof object. Do NOT abstract over the term itself - instead rather over arbitrary term of same type AND a proof that it is equal to the original term -} -- type of elements of type A AND proofs they are equal to some given x in A data Inspect {A : Set} (x : A) : Set where it : (y : A) → x ≡ y → Inspect x -- construct an element of Inspect x by picking x as thing which is equal to x. inspect : {A : Set} → (x : A) → Inspect x inspect x = it x refl -- lemmas trueIsTrue : {x : Bool} → x ≡ true → isTrue x falseIsFalse : {x : Bool} → x ≡ false → isFalse x trueIsTrue refl = _ falseIsFalse refl = _ {- now define find by abstracting over inspect (p x) rather than p x provide either a proof of p x == true or a proof of p x == false - can be use in args to 'found' and 'not-found -} find : {A : Set} → (p : A → Bool) → (xs : List A) → Find p xs find p [] = not-found all[] find p (x :: xs) with inspect (p x) -- When p x is true, inspect (p x) matches 'it true prf' where prf : p x == true. -- Use lemma to turn into proof of isTrue (p x) needed by 3rd arg of 'found' ... | it true prf = found [] x (trueIsTrue prf) xs ... | it false prf with find p xs find p (x :: ._) | it false _ | found xs y py ys = found (x :: xs) y py ys -- p x is false : use lemma find p (x :: xs) | it false prf | not-found npxs = not-found (falseIsFalse prf :all: npxs) ------------------------- -- INDEXING INTO A LIST {- Previously showed two ways of safely indexing into a list. Both cases used type system to guarantee the index didn’t point outside the list. In situations where there is no control over value of index (i.e., it might be outside) a solution is to wrap result of lookup in MAYBE, but MAYBE provides no info. -} -- type of proofs that an element x is in a list xs. data _∈_ {A : Set} (x : A) : List A → Set where hd : forall {xs} → x ∈ x :: xs -- 1st el is a member tl : forall {y xs} → x ∈ xs → x ∈ y :: xs -- any el in tail is member -- Given proof of x ∈ xs, compute index where x occurs. -- Count number of tls in proof. index : forall {A} {x : A} {xs} → x ∈ xs → Nat index hd = zero index (tl p) = suc (index p) -- view on Nat with respect to list data Lookup {A : Set} (xs : List A) : Nat → Set where inside : (x : A) → (p : x ∈ xs) → Lookup xs (index p) outside : (m : Nat) → Lookup xs (length xs + m) {- When n is valid, get element at that position and guarantee that element is returned. No way for 'lookup' to cheat. When n is outside, get out-of-bounds proof showing by how much. -} -- now, guaranteed 'lookup' function _!'_ : {A : Set} → (xs : List A) → (n : Nat) → Lookup xs n [] !' n = outside n (x :: xs) !' zero = inside x hd (x :: xs) !' suc n with xs !' n ... | inside y p = inside y (tl p) (x :: xs) !' suc .(length xs + n) | outside n = outside n {- (x :: xs) !' suc .(index p) | inside y p = inside y (tl p) (x :: xs) !' suc .(length xs + n) | outside n = outside n -} -------------------------------------------------- -- TYPE CHECKER FOR λ-CALCULUS
{ "alphanum_fraction": 0.5756652574, "avg_line_length": 28.568383659, "ext": "agda", "hexsha": "222e4655c4d6a46f92aa762b4649477c2cdc122b", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda", "max_line_length": 98, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 9827, "size": 32168 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Localization.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.PathSplitEquiv open isPathSplitEquiv module _ {ℓα ℓs ℓt} {A : Type ℓα} {S : A → Type ℓs} {T : A → Type ℓt} where isLocal : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → Type _ isLocal F X = ∀ α → isPathSplitEquiv (λ (g : T α → X) → g ∘ F α) data Localize (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) : Type (ℓ-max ℓ (ℓ-max ℓα (ℓ-max ℓs ℓt))) where ∣_∣ : X → Localize F X -- (_∘ F α) : (T α → Localize F X) → (S α → Localize F X) is a path-split equivalence ∀ α ext : ∀ α → (S α → Localize F X) → (T α → Localize F X) isExt : ∀ α (f : S α → Localize F X) (s : S α) → ext α f (F α s) ≡ f s ≡ext : ∀ α (g h : T α → Localize F X) → ((s : S α) → g (F α s) ≡ h (F α s)) → ((t : T α) → g t ≡ h t) ≡isExt : ∀ α g h (p : (s : S α) → g (F α s) ≡ h (F α s)) (s : S α) → ≡ext α g h p (F α s) ≡ p s isLocal-Localize : ∀ (F : ∀ α → S α → T α) {ℓ} (X : Type ℓ) → isLocal F (Localize F X) fst (sec (isLocal-Localize F X α)) f t = ext α f t snd (sec (isLocal-Localize F X α)) f i s = isExt α f s i fst (secCong (isLocal-Localize F X α) g h) p i t = ≡ext α g h (funExt⁻ p) t i snd (secCong (isLocal-Localize F X α) g h) p i j t = ≡isExt α g h (funExt⁻ p) t i j
{ "alphanum_fraction": 0.5430847212, "avg_line_length": 51.1481481481, "ext": "agda", "hexsha": "dbf08134fc9d95501c48fa4e8dd6a72d0faea350", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/HITs/Localization/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/HITs/Localization/Base.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/HITs/Localization/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 616, "size": 1381 }
module Oscar.Category.SemigroupoidAction where open import Oscar.Category.Action open import Oscar.Category.Setoid open import Oscar.Category.Semigroupoid open import Oscar.Function open import Oscar.Level module _ {𝔊𝔬 𝔊𝔪 𝔊𝔮} (semigroupoid : Semigroupoid 𝔊𝔬 𝔊𝔪 𝔊𝔮) where open Semigroupoid semigroupoid module _ {𝔄𝔬 𝔄𝔮} (action : Action ⋆ 𝔄𝔬 𝔄𝔮) where open Action action record IsSemigroupoidAction (_◂_ : ∀ {x y} → x ↦ y → ↥ x → ↥ y) : Set (𝔊𝔬 ⊔ 𝔊𝔪 ⊔ 𝔊𝔮 ⊔ 𝔄𝔬 ⊔ 𝔄𝔮) where field extensionality : ∀ {x} {s₁ s₂ : ↥ x} → s₁ ≋ s₂ → ∀ {y} {f₁ f₂ : x ↦ y} → (let instance _ = IsSetoid↦) → f₁ ≋ f₂ → f₁ ◂ s₁ ≋ f₂ ◂ s₂ associativity : ∀ {x} (s : ↥ x) {y} (f : x ↦ y) {z} (g : y ↦ z) → (g ∙ f) ◂ s ≋ g ◂ (f ◂ s) open IsSemigroupoidAction ⦃ … ⦄ public record SemigroupoidAction 𝔊𝔬 𝔊𝔪 𝔊𝔮 𝔄𝔬 𝔄𝔮 : Set (lsuc (𝔊𝔬 ⊔ 𝔊𝔪 ⊔ 𝔊𝔮 ⊔ 𝔄𝔬 ⊔ 𝔄𝔮)) where constructor [_/_] field semigroupoid : Semigroupoid 𝔊𝔬 𝔊𝔪 𝔊𝔮 open Semigroupoid semigroupoid public field action : Action ⋆ 𝔄𝔬 𝔄𝔮 open Action action public field _◂_ : ∀ {x y} → x ↦ y → ↥ x → ↥ y ⦃ isSemigroupoidAction ⦄ : IsSemigroupoidAction semigroupoid action _◂_
{ "alphanum_fraction": 0.5657186779, "avg_line_length": 25.5098039216, "ext": "agda", "hexsha": "70e6fa6348d1be77a996d67069e6cd67749f5e3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/SemigroupoidAction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/SemigroupoidAction.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/SemigroupoidAction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 593, "size": 1301 }
{-# NON_TERMINATING #-} mutual record R : Set where inductive field x : T T : Set T = T → R
{ "alphanum_fraction": 0.5130434783, "avg_line_length": 9.5833333333, "ext": "agda", "hexsha": "b7fbdd822623127c27e3bfd3bda62f467aa08f26", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/BadInductionRecursion4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/BadInductionRecursion4.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/BadInductionRecursion4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 115 }
open import Everything module Test.SurjidentityI where module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼₂2_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {𝔯₂'} (_∼₂'_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂') {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (_∼̇₂'_ : ∀ {x y} → x ∼₂' y → x ∼₂' y → Ø ℓ₂) (_∼̇₂2_ : ∀ {x y} → x ∼₂2 y → x ∼₂2 y → Ø ℓ₂) where postulate instance `𝓢urjection : Surjection.class 𝔒₁ 𝔒₂ instance `𝓢urjectivity : Smap!.class _∼₁_ _∼₂_ instance `𝓢urjectextensivity : Smap!.class _∼₁_ _∼₂'_ instance `𝓢urjectivity2 : Smap!.class _∼₁_ _∼₂2_ instance `𝓡eflexivity₁ : Reflexivity.class _∼₁_ instance `𝓡eflexivity₂ : Reflexivity.class _∼₂_ instance `𝓡eflexivity₂' : Reflexivity.class _∼₂'_ instance `𝓡eflexivity₂2 : Reflexivity.class _∼₂2_ instance `𝒮urjidentity : Surjidentity!.class _∼₁_ _∼₂_ _∼̇₂_ instance `𝒮urjidentity' : Surjidentity!.class _∼₁_ _∼₂'_ _∼̇₂'_ instance `𝒮urjidentity2 : Surjidentity!.class _∼₁_ _∼₂2_ _∼̇₂2_ test-surj : Surjidentity!.type _∼₁_ _∼₂_ _∼̇₂_ test-surj = surjidentity
{ "alphanum_fraction": 0.6014171833, "avg_line_length": 35.28125, "ext": "agda", "hexsha": "c7f95b8d6369cf7773decba0c5528f399ffbe2c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Test/SurjidentityI.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Test/SurjidentityI.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Test/SurjidentityI.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 593, "size": 1129 }
data Nat : Set where zero : Nat suc : Nat → Nat data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim = λ where () ⊥-elim₂ : {A : Set} → ⊥ → A → A ⊥-elim₂ = λ where () _ ⊥-elim₃ : {A : Set} → A → ⊥ → A ⊥-elim₃ = λ where _ () data D : Set where c₁ : ⊥ → D c₂ : D Parses : D → Set₁ Parses = λ where c₂ → Set (c₁ ()) Does-not-parse : D → Set₁ Does-not-parse = λ where (c₁ ()) c₂ → Set
{ "alphanum_fraction": 0.4795180723, "avg_line_length": 13.8333333333, "ext": "agda", "hexsha": "49c6dd59e051b7995e3be948b971f8be6f474d41", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2586.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2586.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2586.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 194, "size": 415 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural number types and operations requiring the axiom K. ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Nat.WithK where open import Data.Nat.Base open import Relation.Binary.PropositionalEquality.WithK ≤″-erase : ∀ {m n} → m ≤″ n → m ≤″ n ≤″-erase (less-than-or-equal eq) = less-than-or-equal (≡-erase eq) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.18 erase = ≤″-erase {-# WARNING_ON_USAGE erase "Warning: erase was deprecated in v0.18. Please use ≤″-erase instead." #-}
{ "alphanum_fraction": 0.4660633484, "avg_line_length": 29.4666666667, "ext": "agda", "hexsha": "3c3c75068adacbf08452251160a23edffa96daf8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/WithK.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 176, "size": 884 }
{-# OPTIONS --safe --warning=error #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Logic.PropositionalLogic open import Functions.Definition open import Numbers.Naturals.Naturals open import Vectors open import Boolean.Definition module Logic.PropositionalAxiomsTautology where axiomKTaut : {a : _} {A : Set a} (P Q : Propositions A) → Tautology (implies P (implies Q P)) axiomKTaut P Q v with inspect (Valuation.v v P) axiomKTaut P Q v | BoolTrue with≡ pT with inspect (Valuation.v v Q) axiomKTaut P Q v | BoolTrue with≡ pT | BoolTrue with≡ qT = Valuation.vImplicationT v (Valuation.vImplicationT v pT) axiomKTaut P Q v | BoolTrue with≡ pT | BoolFalse with≡ qF = Valuation.vImplicationT v (Valuation.vImplicationVacuous v qF) axiomKTaut P Q v | BoolFalse with≡ pF = Valuation.vImplicationVacuous v pF axiomSTaut : {a : _} {A : Set a} (P Q R : Propositions A) → Tautology (implies (implies P (implies Q R)) (implies (implies P Q) (implies P R))) axiomSTaut P Q R v with inspect (Valuation.v v P) axiomSTaut P Q R v | BoolTrue with≡ pT with inspect (Valuation.v v Q) axiomSTaut P Q R v | BoolTrue with≡ pT | BoolTrue with≡ qT with inspect (Valuation.v v R) axiomSTaut P Q R v | BoolTrue with≡ pT | BoolTrue with≡ qT | BoolTrue with≡ rT = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationT v rT)) axiomSTaut P Q R v | BoolTrue with≡ pT | BoolTrue with≡ qT | BoolFalse with≡ rF = Valuation.vImplicationVacuous v (Valuation.vImplicationF v pT (Valuation.vImplicationF v qT rF)) axiomSTaut P Q R v | BoolTrue with≡ pT | BoolFalse with≡ qF = Valuation.vImplicationT v (Valuation.vImplicationVacuous v (Valuation.vImplicationF v pT qF)) axiomSTaut P Q R v | BoolFalse with≡ pF = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationVacuous v pF)) excludedMiddleTaut : {a : _} {A : Set a} (P : Propositions A) → Tautology (implies (prNot (prNot P)) P) excludedMiddleTaut P v with inspect (Valuation.v v P) excludedMiddleTaut P v | BoolTrue with≡ pT = Valuation.vImplicationT v pT excludedMiddleTaut P v | BoolFalse with≡ pF = Valuation.vImplicationVacuous v (Valuation.vImplicationF v (Valuation.vImplicationVacuous v pF) (Valuation.vFalse v)) propositionalAxiomsTautology : {a : _} {A : Set a} (x : Sg ThreeElements (indexAxiom A)) → Tautology (IsSubset.ofElt propositionalAxioms x) propositionalAxiomsTautology (One , (fst ,, snd)) = axiomKTaut fst snd propositionalAxiomsTautology (Two , record { one = one ; two = two ; three = three }) = axiomSTaut one two three propositionalAxiomsTautology (Three , b) = excludedMiddleTaut b
{ "alphanum_fraction": 0.7563567362, "avg_line_length": 69.3421052632, "ext": "agda", "hexsha": "90c30892206eef26e678d1e7838542b569f76414", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Logic/PropositionalAxiomsTautology.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Logic/PropositionalAxiomsTautology.agda", "max_line_length": 178, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Logic/PropositionalAxiomsTautology.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 892, "size": 2635 }
-- Andreas, 2016-11-18, issue #2174 -- report and test case by Nisse postulate F : Set → Set → Set G : Set G = {!!} -- WAS: giving first F ? and then F ? ? lead to one of the metas not goalified. -- Should succeed now, see script Issue2174a.sh
{ "alphanum_fraction": 0.652, "avg_line_length": 19.2307692308, "ext": "agda", "hexsha": "15711945a7081c66158211e882f3810229060c15", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2174a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2174a.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2174a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 81, "size": 250 }
{-# OPTIONS --without-K #-} module algebra.group.classifying where open import level open import algebra.group.core open import algebra.group.morphism open import equality.core open import function.isomorphism open import pointed.core open import sets.unit open import sum open import hott.level.core open import hott.loop.core open import hott.truncation.core open import hott.equivalence module _ {i}(G : Set i) ⦃ gG : IsGroup G ⦄ where open import algebra.group.gset G open IsGroup ⦃ ... ⦄ -- G as a G-Set G' : GSet i G' = (G , GisGSet) -- G as a pointed set G* : PSet i G* = (G , e) 𝑩 : Set (lsuc i) 𝑩 = Σ (GSet i) λ X → Trunc 1 (X ≡ G') base : 𝑩 base = (G' , [ refl ]) 𝑩* : PSet (lsuc i) 𝑩* = (𝑩 , base) 𝑩-Ω : (base ≡ base) ≅ G 𝑩-Ω = begin (base ≡ base) ≅⟨ sym≅ Σ-split-iso ⟩ ( Σ (G' ≡ G') λ p → subst (λ X → Trunc 1 (X ≡ G')) p [ refl ] ≡ [ refl ] ) ≅⟨ (Σ-ap-iso refl≅ λ p → contr-⊤-iso (Trunc-level 1 _ _)) ·≅ ×-right-unit ⟩ (G' ≡ G') ≅⟨ GSet-univalence G ⦃ xG = GisGSet ⦄ G ⦃ yG = GisGSet ⦄ ⟩ ( Σ (GSetMorphism G ⦃ xG = GisGSet ⦄ G ⦃ yG = GisGSet ⦄) λ { (f , _) → weak-equiv f } ) ≅⟨ (Σ-ap-iso' (GSet-repr-iso is-set ⦃ xG = GisGSet ⦄) λ _ → refl≅) ⟩ ( Σ G λ { g → weak-equiv (λ x → x * g) } ) ≅⟨ ( Σ-ap-iso refl≅ λ g → contr-⊤-iso ( lem g , h1⇒prop (we-h1 _) _ ) ) ·≅ ×-right-unit ⟩ G ∎ where open ≅-Reasoning lem : (g : G) → weak-equiv (λ x → x * g) lem g = proj₂ (≅'⇒≈ (≅⇒≅' (right-translation-iso g)))
{ "alphanum_fraction": 0.5423620026, "avg_line_length": 26.406779661, "ext": "agda", "hexsha": "8080addbbc42186e13d759d761bca281fa5aab5d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/group/classifying.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/group/classifying.agda", "max_line_length": 79, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/group/classifying.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 684, "size": 1558 }
{-# OPTIONS -v treeless.opt:20 #-} module _ where open import Agda.Builtin.Nat using (_<_) open import Common.Prelude open import Common.Integer -- Should compile to -- λ a b → case a of -- "neg" → 0 - b -- _ → b match-on-lit : String → Integer → Integer match-on-lit "neg" x with x ... | pos (suc n) = negsuc n ... | pos 0 = pos 0 ... | negsuc n = pos (suc n) match-on-lit _ x = x -- This doesn't compile as nicely, since the match on "neg" -- ends up between the match on the int and the nat (not sure why). match-on-lit₂ : String → Integer → Integer match-on-lit₂ "neg" (pos (suc n)) = negsuc n match-on-lit₂ "neg" (negsuc n) = pos (suc n) match-on-lit₂ _ x = x -- Should compile to a flat case nested-match : Integer → String nested-match (pos 0) = "zero" nested-match (pos 1) = "one" nested-match (pos (suc (suc n))) = "lots" nested-match (negsuc 0) = "minus one" nested-match (negsuc 1) = "minus two" nested-match (negsuc (suc (suc n))) = "minus lots" data Diff : Set where less : Nat → Diff equal : Diff greater : Nat → Diff compareNat : Nat → Nat → Diff compareNat a b with a < b ... | true = less (b ∸ suc a) ... | false with b < a ... | true = greater (a ∸ suc b) ... | false = equal {-# INLINE compareNat #-} -- Should compile to 0 - a neg : Nat → Integer neg zero = pos zero neg (suc a) = negsuc a {-# INLINE neg #-} -- Should compile to a - b _-N_ : Nat → Nat → Integer a -N b with compareNat a b ... | less k = negsuc k ... | equal = pos (a ∸ b) ... | greater k = pos (suc k) {-# INLINE _-N_ #-} -- Should compile to a + b _+Z_ : Integer → Integer → Integer pos a +Z pos b = pos (a + b) pos a +Z negsuc b = a -N suc b negsuc a +Z pos b = b -N suc a negsuc a +Z negsuc b = negsuc (suc a + b) {-# INLINE _+Z_ #-} -- Should compile to a * b _*Z_ : Integer → Integer → Integer pos a *Z pos b = pos (a * b) pos a *Z negsuc b = neg (a * suc b) negsuc a *Z pos b = neg (suc a * b) negsuc a *Z negsuc b = pos (suc a * suc b) {-# INLINE _*Z_ #-} printInt : Integer → IO Unit printInt x = putStrLn (intToString x) main : IO Unit main = printInt (match-on-lit "neg" (pos 42)) ,, printInt (match-on-lit₂ "neg" (pos 42)) ,, putStrLn (nested-match (negsuc 5))
{ "alphanum_fraction": 0.5725840783, "avg_line_length": 27.6352941176, "ext": "agda", "hexsha": "31eced17eb01e560599933b828a6c1f5c8aa9a24", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/CompileNumbers.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/CompileNumbers.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/CompileNumbers.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 799, "size": 2349 }
{-# OPTIONS --cubical --no-import-sorts #-} module Spaces where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Structures.CommRing open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` -- open import Cubical.Structures.Poset open import Cubical.Foundations.Function open import Cubical.Structures.Ring open import Cubical.Structures.AbGroup open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_) open import Function.Base using (_∋_) -- open import Function.Reasoning using (∋-syntax) open import Function.Base using (it) -- instance search {- | name | carrier | module | metric | norm | inner | basis | cauchy | |-----------------------------------------|---------|--------|--------|------|-------|-------|--------| | VectorSpace | any | K | | | | | | | FiniteDimVectorSpace | any | K | | | | ✓ | | | NormedVectorSpace | any | K | (✓) | ✓ | | | | | FiniteDimNormedVectorSpace | any | K | (✓) | ✓ | | ✓ | | | CompleteNormedVectorSpace | any | K | (✓) | ✓ | | | ✓ | | FiniteDimCompleteNormedVectorSpace | any | K | (✓) | ✓ | | ✓ | ✓ | | InnerProductSpace | any | K | (✓) | (✓) | ✓ | | | | FiniteDimInnerProductSpace | any | K | (✓) | (✓) | ✓ | ✓ | | | CompleteInnerProductSpace | any | K | (✓) | (✓) | ✓ | | ✓ | | FiniteDimCompleteInnerProductSpace | any | K | (✓) | (✓) | ✓ | ✓ | ✓ | | FiniteDimCompleteInnerProductSpaceOverℝ | ℝ | ℝ | (✓) | (✓) | ✓ | ✓ | ✓ | -}
{ "alphanum_fraction": 0.4712692967, "avg_line_length": 53, "ext": "agda", "hexsha": "64059a98a27a50e28175aa8cc02eaea8186d2864", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Spaces.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Spaces.agda", "max_line_length": 103, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Spaces.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 716, "size": 2332 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Bundles module Properties.AlmostOrderedField {ℓ ℓ'} (AOF : AlmostOrderedField {ℓ} {ℓ'}) where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` open import Function.Base using (_∋_) open import Function.Base using (it) -- instance search import MoreLogic open MoreLogic.Reasoning import MoreAlgebra -- Lemma 4.1.11. -- In the presence of the first five axioms of Definition 4.1.10, conditions (†) and (∗) are together equivalent to the condition that for all x, y, z : F, -- 1. x ≤ y ⇔ ¬(y < x), -- 2. x # y ⇔ (x < y) ∨ (y < x) -- 3. x ≤ y ⇔ x + z ≤ y + z, -- 4. x < y ⇔ x + z < y + z, -- 5. 0 < x + y ⇒ 0 < x ∨ 0 < y, -- 6. x < y ≤ z ⇒ x < z, -- 7. x ≤ y < z ⇒ x < z, -- 8. x ≤ y ∧ 0 ≤ z ⇒ x z ≤ y z, -- 9. 0 < z ⇒ (x < y ⇔ x z < y z), -- 10. 0 < 1. open AlmostOrderedField AOF renaming (Carrier to F) import Cubical.Structures.Ring open Cubical.Structures.Ring.Theory (record {AlmostOrderedField AOF}) open MoreAlgebra.Properties.Group (record {AlmostOrderedField AOF renaming (+-isGroup to isGroup )}) -- NOTE: ported from Cubical.Structures.Group.GroupLemmas -- NOTE: these versions differ from the Group-versions because they are defined w.r.t. an appartness relation _#_ that is not present for the Group simplR : {a b : F} (c : F) {{_ : c # 0f}} → a · c ≡ b · c → a ≡ b simplR {a} {b} c {{_}} a·c≡b·c = a ≡⟨ sym (fst (·-identity a)) ∙ cong (a ·_) (sym (·-rinv c it)) ∙ ·-assoc _ _ _ ⟩ (a · c) · (c ⁻¹ᶠ) ≡⟨ cong (_· c ⁻¹ᶠ) a·c≡b·c ⟩ (b · c) · (c ⁻¹ᶠ) ≡⟨ sym (·-assoc _ _ _) ∙ cong (b ·_) (·-rinv c it) ∙ fst (·-identity b) ⟩ b ∎ ·-preserves-≡ʳ : {a b : F} (c : F) {{_ : c # 0f}} → a · c ≡ b · c → a ≡ b ·-preserves-≡ʳ = simplR -- ·-linv-unique : (x y : F) (x·y≡1 : (x ·₁ y) ≡ 1f) → x ≡ (y ⁻¹ᶠ₁) module _ (x y : F) (x·y≡1 : x · y ≡ 1f) where y#0 = snd (·-inv-back _ _ x·y≡1) -- duplicated inhabitant (see notes) instance _ = y # 0f ∋ y#0 import Cubical.Structures.Group -- NOTE: ported from Cubical.Structures.Group.GroupLemmas abstract ·-linv-unique' : Σ[ p ∈ y # 0f ] (x ≡ _⁻¹ᶠ y {{p}}) ·-linv-unique' = it , ( x · y ≡ 1f ⇒⟨ transport (λ i → x · y ≡ ·-linv y it (~ i)) ⟩ x · y ≡ y ⁻¹ᶠ · y ⇒⟨ simplR _ ⟩ x ≡ y ⁻¹ᶠ ◼) x·y≡1 ·-linv-unique : (x y : F) → ((x · y) ≡ 1f) → Σ[ p ∈ y # 0f ] x ≡ (_⁻¹ᶠ y {{p}}) ·-linv-unique = ·-linv-unique' -- ⁻¹ᶠ-involutive : (x : F) (z#0 : x #' 0f) → ((x ⁻¹ᶠ₁) ⁻¹ᶠ₁) ≡ x module _ (z : F) (z#0 : z # 0f) where private instance _ = z#0 z⁻¹ = z ⁻¹ᶠ -- NOTE: interestingly, the instance argument is not applied and y remains normalized in terms of z -- so we get `y : {{ _ : z #' 0f }} → F` here z⁻¹#0 = snd (·-inv-back z z⁻¹ (·-rinv z it)) -- NOTE: for some reason I get "There are instances whose type is still unsolved when checking that the expression it has type z #' 0f" -- typing `y : F` did not help much. therefore this goes in two lines instance _ = z⁻¹#0 z⁻¹⁻¹ = z⁻¹ ⁻¹ᶠ -- NOTE: this should be similar to `right-helper` + `-involutive` ⁻¹ᶠ-involutive : (z ⁻¹ᶠ) ⁻¹ᶠ ≡ z ⁻¹ᶠ-involutive = ( z⁻¹⁻¹ ≡⟨ sym (fst (·-identity _)) ⟩ z⁻¹⁻¹ · 1f ≡⟨ (λ i → z⁻¹⁻¹ · ·-linv _ it (~ i)) ⟩ z⁻¹⁻¹ · (z⁻¹ · z) ≡⟨ ·-assoc _ _ _ ⟩ (z⁻¹⁻¹ · z⁻¹) · z ≡⟨ (λ i → ·-linv z⁻¹ it i · z) ⟩ 1f · z ≡⟨ snd (·-identity _) ⟩ z ∎) module forward -- 6. ⇒ 1. 2. 3. 4. 5. -- 6. (†) (+-<-extensional : ∀ w x y z → (x + y) < (z + w) → (x < z) ⊎ (y < w)) -- 6. (∗) (·-preserves-< : ∀ x y z → 0f < z → x < y → (x · z) < (y · z)) where -- abstract -- 1. x ≤ y ⇔ ¬(y < x), item-1 : ∀ x y → x ≤ y → ¬(y < x) item-1 = λ _ _ x≤y → x≤y -- holds definitionally item-1-back : ∀ x y → ¬(y < x) → x ≤ y item-1-back = λ _ _ ¬[y<x] → ¬[y<x] -- 2. x # y ⇔ (x < y) ∨ (y < x) item-2 : ∀ x y → x # y → (x < y) ⊎ (y < x) item-2 = λ _ _ x#y → x#y -- holds definitionally item-2-back : ∀ x y → (x < y) ⊎ (y < x) → x # y item-2-back = λ _ _ [x<y]⊎[y<x] → [x<y]⊎[y<x] -- holds definitionally -- NOTE: just a plain copy of the previous proof +-preserves-< : ∀ a b x → a < b → a + x < b + x +-preserves-< a b x a<b = ( a < b ⇒⟨ transport (λ i → sym (fst (+-identity a)) i < sym (fst (+-identity b)) i) ⟩ a + 0f < b + 0f ⇒⟨ transport (λ i → a + sym (+-rinv x) i < b + sym (+-rinv x) i) ⟩ a + (x - x) < b + (x - x) ⇒⟨ transport (λ i → +-assoc a x (- x) i < +-assoc b x (- x) i) ⟩ (a + x) - x < (b + x) - x ⇒⟨ +-<-extensional (- x) (a + x) (- x) (b + x) ⟩ (a + x < b + x) ⊎ (- x < - x) ⇒⟨ (λ{ (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line ; (inr -x<-x ) → ⊥-elim {A = λ _ → (a + x < b + x)} (<-irrefl (- x) -x<-x) }) ⟩ a + x < b + x ◼) a<b +-preserves-<-back : ∀ x y z → x + z < y + z → x < y +-preserves-<-back x y z = ( x + z < y + z ⇒⟨ +-preserves-< _ _ (- z) ⟩ (x + z) - z < (y + z) - z ⇒⟨ transport (λ i → +-assoc x z (- z) (~ i) < +-assoc y z (- z) (~ i)) ⟩ x + (z - z) < y + (z - z) ⇒⟨ transport (λ i → x + +-rinv z i < y + +-rinv z i) ⟩ x + 0f < y + 0f ⇒⟨ transport (λ i → fst (+-identity x) i < fst (+-identity y) i) ⟩ x < y ◼) -- 3. x ≤ y ⇔ x + z ≤ y + z, item-3 : ∀ x y z → x ≤ y → x + z ≤ y + z item-3 x y z = ( x ≤ y ⇒⟨ (λ z → z) ⟩ -- unfold the definition (y < x → ⊥) ⇒⟨ (λ f → f ∘ (+-preserves-<-back y x z) ) ⟩ (y + z < x + z → ⊥) ⇒⟨ (λ z → z) ⟩ -- refold the definition x + z ≤ y + z ◼) item-3-back : ∀ x y z → x + z ≤ y + z → x ≤ y item-3-back x y z = ( x + z ≤ y + z ⇒⟨ (λ z → z) ⟩ -- unfold the definition (y + z < x + z → ⊥) ⇒⟨ (λ f p → f (+-preserves-< y x z p)) ⟩ -- just a variant of the above (y < x → ⊥) ⇒⟨ (λ z → z) ⟩ -- refold the definition x ≤ y ◼) -- 4. x < y ⇔ x + z < y + z, item-4 : ∀ x y z → x < y → x + z < y + z item-4 = +-preserves-< item-4-back : ∀ x y z → x + z < y + z → x < y item-4-back = +-preserves-<-back -- 5. 0 < x + y ⇒ 0 < x ∨ 0 < y, item-5 : ∀ x y → 0f < x + y → (0f < x) ⊎ (0f < y) item-5 x y = ( (0f < x + y) ⇒⟨ transport (λ i → fst (+-identity 0f) (~ i) < x + y) ⟩ (0f + 0f < x + y) ⇒⟨ +-<-extensional y 0f 0f x ⟩ (0f < x) ⊎ (0f < y) ◼) -- 6. x < y ≤ z ⇒ x < z, item-6 : ∀ x y z → x < y → y ≤ z → x < z item-6 x y z x<y y≤z = ( x < y ⇒⟨ +-preserves-< _ _ _ ⟩ x + z < y + z ⇒⟨ transport (λ i → x + z < +-comm y z i) ⟩ x + z < z + y ⇒⟨ +-<-extensional y x z z ⟩ (x < z) ⊎ (z < y) ⇒⟨ (λ{ (inl x<z) → x<z ; (inr z<y) → ⊥-elim (y≤z z<y) }) ⟩ x < z ◼) x<y -- 7. x ≤ y < z ⇒ x < z, item-7 : ∀ x y z → x ≤ y → y < z → x < z item-7 x y z x≤y = ( -- very similar to the previous one y < z ⇒⟨ +-preserves-< y z x ⟩ y + x < z + x ⇒⟨ transport (λ i → +-comm y x i < z + x) ⟩ x + y < z + x ⇒⟨ +-<-extensional x x y z ⟩ (x < z) ⊎ (y < x) ⇒⟨ (λ{ (inl x<z) → x<z ; (inr y<x) → ⊥-elim (x≤y y<x)}) ⟩ x < z ◼) item-10 : 0f < 1f module _ (z : F) (0<z : 0f < z) where private instance _ = z # 0f ∋ inr 0<z z⁻¹ = z ⁻¹ᶠ z⁻¹#0 = snd (·-inv-back z z⁻¹ (·-rinv z it)) abstract ⁻¹ᶠ-preserves-sign : 0f < z ⁻¹ᶠ ⁻¹ᶠ-preserves-sign with z⁻¹#0 ... | inl z⁻¹<0 = ( z⁻¹ < 0f ⇒⟨ ·-preserves-< _ _ z 0<z ⟩ z⁻¹ · z < 0f · z ⇒⟨ transport (λ i → ·-linv z it i < 0-leftNullifies z i) ⟩ 1f < 0f ⇒⟨ <-trans _ _ _ item-10 ⟩ 0f < 0f ⇒⟨ <-irrefl _ ⟩ ⊥ ⇒⟨ ⊥-elim ⟩ _ ◼) z⁻¹<0 ... | inr 0<z⁻¹ = 0<z⁻¹ -- 8. x ≤ y ∧ 0 ≤ z ⇒ x z ≤ y z, item-8 : ∀ x y z → x ≤ y → 0f ≤ z → x · z ≤ y · z -- For item 8, suppose x ≤ y and 0 ≤ z and yz < xz. item-8 x y z x≤y 0≤z y·z<x·z = let -- Then 0 < z (x − y) by (†), i = ( y · z < x · z ⇒⟨ transport (λ i → ·-comm y z i < ·-comm x z i) ⟩ z · y < z · x ⇒⟨ +-preserves-< _ _ _ ⟩ (z · y) - (z · y) < (z · x) - (z · y ) ⇒⟨ transport (cong₂ _<_ (+-rinv (z · y)) ( λ i → (z · x) + sym (-commutesWithRight-· z y) i )) ⟩ 0f < (z · x) + (z · (- y)) ⇒⟨ transport (cong₂ _<_ refl (sym (fst (dist z x (- y))))) ⟩ -- [XX] 0f < z · (x - y) ◼) y·z<x·z instance _ = z · (x - y) # 0f ∋ inr i -- and so, being apart from 0, z (x − y) has a multiplicative inverse w. w = (z · (x - y)) ⁻¹ᶠ ii : 1f ≡ (z · (x - y)) · w ii = sym (·-rinv _ _) -- Hence z itself has a multiplicative inverse w (x − y), iii : 1f ≡ z · ((x - y) · w) iii = transport (λ i → 1f ≡ ·-assoc z (x - y) w (~ i)) ii instance z#0f = z # 0f ∋ fst (·-inv-back _ _ (sym iii)) -- and so 0 < z ∨ z < 0, where the latter case contradicts the assumption 0 ≤ z, so that we have 0 < z. instance _ = 0f < z ∋ case z#0f of λ where (inl z<0) → ⊥-elim (0≤z z<0) (inr 0<z) → 0<z -- Now w (x − y) has multiplicative inverse z, so it is apart from 0, iv : (x - y) · w # 0f iv = snd (·-inv-back _ _ (sym iii)) -- that is (0 < w (x − y)) ∨ (w (x − y) < 0). in case iv of λ where -- By (∗), from 0 < w (x − y) and yz < xz we get yzw (x − y) < xzw (x − y), so y < x, contradicting our assumption that x ≤ y. (inr 0<[x-y]·w) → ( y · z < x · z ⇒⟨ ·-preserves-< _ _ _ 0<[x-y]·w ⟩ (y · z) · ((x - y) · w) < (x · z) · ((x - y) · w) ⇒⟨ transport (λ i → (·-assoc y z ((x - y) · w)) (~ i) < (·-assoc x z ((x - y) · w)) (~ i)) ⟩ y · (z · ((x - y) · w)) < x · (z · ((x - y) · w)) ⇒⟨ transport (λ i → y · (iii (~ i)) < x · (iii (~ i))) ⟩ y · 1f < x · 1f ⇒⟨ transport (cong₂ _<_ (fst (·-identity y)) (fst (·-identity x))) ⟩ y < x ⇒⟨ x≤y ⟩ ⊥ ◼) y·z<x·z -- In the latter case, from (∗) we get zw (x − y) < 0, i.e. -- 1 < 0 which contradicts item 10, so that we have 0 < w (x − y). (inl p) → ( (x - y) · w < 0f ⇒⟨ ·-preserves-< _ _ _ it ⟩ ((x - y) · w) · z < 0f · z ⇒⟨ transport (cong₂ _<_ (·-comm _ _) (0-leftNullifies z)) ⟩ z · ((x - y) · w) < 0f ⇒⟨ ( transport λ i → iii (~ i) < 0f) ⟩ 1f < 0f ⇒⟨ <-trans _ _ _ item-10 ⟩ 0f < 0f ⇒⟨ <-irrefl _ ⟩ ⊥ ◼) p -- 9. 0 < z ⇒ (x < y ⇔ x z < y z), item-9 : ∀ x y z → 0f < z → (x < y → x · z < y · z) item-9 = ·-preserves-< item-9-back : ∀ x y z → 0f < z → (x · z < y · z → x < y) -- For the other direction of item 9, assume 0 < z and xz < yz, item-9-back x y z 0<z x·z<y·z = let instance _ = ( x · z < y · z ⇒⟨ +-preserves-< _ _ _ ⟩ (x · z) - (x · z) < (y · z) - (x · z) ⇒⟨ transport (cong₂ _<_ (+-rinv (x · z)) refl) ⟩ 0f < (y · z) - (x · z) ◼) x·z<y·z _ = (y · z) - (x · z) # 0f ∋ inr it -- so that yz − xz has a multiplicative inverse w, w = ((y · z) - (x · z)) ⁻¹ᶠ o = ( (y · z) - ( x · z) ≡⟨ ( λ i → (y · z) + (-commutesWithLeft-· x z) (~ i)) ⟩ (y · z) + ((- x) · z) ≡⟨ sym (snd (dist y (- x) z)) ⟩ (y - x) · z ∎) instance _ = (y - x) · z # 0f ∋ transport (λ i → o i # 0f) it -- and so z itself has multiplicative inverse w (y − x). 1≡z·[w·[y-x]] = γ iii = 1≡z·[w·[y-x]] 1≡[w·[y-x]]·z : 1f ≡ (w · (y - x)) · z 1≡[w·[y-x]]·z = transport (λ i → 1f ≡ ·-comm z (w · (y - x)) i) 1≡z·[w·[y-x]] -- Then since 0 < z and xz < yz, by (∗), we get xzw (y − x) < yzw (y − x), and hence x < y. instance _ = z # 0f ∋ inr 0<z z⁻¹ = w · (y - x) z⁻¹≡w·[y-x] : z ⁻¹ᶠ ≡ (w · (y - x)) z⁻¹≡w·[y-x] = let tmp = sym (snd (·-linv-unique (w · (y - x)) z (sym 1≡[w·[y-x]]·z))) in transport (cong (λ z#0 → _⁻¹ᶠ z {{z#0}} ≡ (w · (y - x))) (#-isProp z 0f _ _)) tmp 0<z⁻¹ : 0f < z ⁻¹ᶠ 0<z⁻¹ = ⁻¹ᶠ-preserves-sign z 0<z instance _ = 0f < w · (y - x) ∋ transport (λ i → 0f < z⁻¹≡w·[y-x] i) 0<z⁻¹ -- instance _ = 0f < z⁻¹ ∋ ? in ( x · z < y · z ⇒⟨ ·-preserves-< _ _ z⁻¹ it ⟩ (x · z) · z⁻¹ < (y · z) · z⁻¹ ⇒⟨ transport (λ i → ·-assoc x z z⁻¹ (~ i) < ·-assoc y z z⁻¹ (~ i)) ⟩ x · (z · z⁻¹) < y · (z · z⁻¹) ⇒⟨ transport (λ i → x · iii (~ i) < y · iii (~ i)) ⟩ x · 1f < y · 1f ⇒⟨ transport (cong₂ _<_ (fst (·-identity x)) (fst (·-identity y))) ⟩ x < y ◼) x·z<y·z where abstract -- NOTE: `abstract` is only allowed in `where` blocks and `where` blocks are not allowed in `let` blocks γ = let -- NOTE: for some reason the instance resolution does only work in let-blocks -- I get a "Terms marked as eligible for instance search should end with a name, so `instance' is ignored here. when checking the definition of my-instance" instance my-instance = ( x · z < y · z ⇒⟨ +-preserves-< _ _ _ ⟩ (x · z) - (x · z) < (y · z) - (x · z) ⇒⟨ transport (cong₂ _<_ (+-rinv (x · z)) refl) ⟩ 0f < (y · z) - (x · z) ◼) x·z<y·z _ = (y · z) - (x · z) # 0f ∋ inr it -- so that yz − xz has a multiplicative inverse w, w = ((y · z) - (x · z)) ⁻¹ᶠ o = ( (y · z) - ( x · z) ≡⟨ ( λ i → (y · z) + (-commutesWithLeft-· x z) (~ i)) ⟩ (y · z) + ((- x) · z) ≡⟨ sym (snd (dist y (- x) z)) ⟩ (y - x) · z ∎) instance _ = (y - x) · z # 0f ∋ transport (λ i → o i # 0f) it in ( 1f ≡⟨ (λ i → ·-linv ((y · z) - (x · z)) it (~ i)) ⟩ w · ((y · z) - (x · z)) ≡⟨ (λ i → w · o i) ⟩ w · ((y - x) · z) ≡⟨ (λ i → w · ·-comm (y - x) z i ) ⟩ w · (z · (y - x)) ≡⟨ (λ i → ·-assoc w z (y - x) i) ⟩ (w · z) · (y - x) ≡⟨ (λ i → ·-comm w z i · (y - x)) ⟩ (z · w) · (y - x) ≡⟨ (λ i → ·-assoc z w (y - x) (~ i)) ⟩ z · (w · (y - x)) ∎) -- 10. 0 < 1. item-10 with snd (·-inv-back _ _ (fst (·-identity 1f))) -- For item 10, since 1 has multiplicative inverse 1, it is apart from 0, hence 0 < 1 ∨ 1 < 0. ... | inl 1<0 = -- If 1 < 0 then by item 4 we have 0 < −1 and so by (∗) we get 0 < (−1) · (−1), that is, 0 < 1, so by transitivity 1 < 1, contradicting irreflexivity of <. (1f < 0f ⇒⟨ +-preserves-< 1f 0f (- 1f) ⟩ 1f - 1f < 0f - 1f ⇒⟨ transport (λ i → +-rinv 1f i < snd (+-identity (- 1f)) i) ⟩ 0f < - 1f ⇒⟨ ( λ 0<-1 → ·-preserves-< 0f (- 1f) (- 1f) 0<-1 0<-1) ⟩ 0f · (- 1f) < (- 1f) · (- 1f) ⇒⟨ transport (cong₂ _<_ (0-leftNullifies (- 1f)) refl) ⟩ 0f < (- 1f) · (- 1f) ⇒⟨ transport (λ i → 0f < -commutesWithRight-· (- 1f) (1f) i ) ⟩ 0f < -((- 1f) · 1f )⇒⟨ transport (λ i → 0f < -commutesWithLeft-· (- 1f) 1f (~ i)) ⟩ 0f < (-(- 1f))· 1f ⇒⟨ transport (λ i → 0f < -involutive 1f i · 1f) ⟩ 0f < 1f · 1f ⇒⟨ transport (λ i → 0f < fst (·-identity 1f) i) ⟩ 0f < 1f ⇒⟨ <-trans _ _ _ 1<0 ⟩ 1f < 1f ⇒⟨ <-irrefl 1f ⟩ ⊥ ⇒⟨ ⊥-elim ⟩ _ ◼) 1<0 ... | inr 0<1 = 0<1 -- Conversely, assume the 10 listed items—in particular, items 4, 5 and 9. module back -- 1. 2. 3. 4. 5. ⇒ 6. -- (item-1 : ∀ x y → x ≤ y → ¬(y < x)) -- (item-1-back : ∀ x y → ¬(y < x) → x ≤ y) -- (item-2 : ∀ x y → x # y → (x < y) ⊎ (y < x)) -- (item-2-back : ∀ x y → (x < y) ⊎ (y < x) → x # y) -- (item-3 : ∀ x y z → x ≤ y → x + z ≤ y + z) -- (item-3-back : ∀ x y z → x + z ≤ y + z → x ≤ y) (item-4 : ∀ x y z → x < y → x + z < y + z) -- (item-4-back : ∀ x y z → x + z < y + z → x < y) (item-5 : ∀ x y → 0f < x + y → (0f < x) ⊎ (0f < y)) -- (item-6 : ∀ x y z → x < y → y ≤ z → x < z) -- (item-7 : ∀ x y z → x ≤ y → y < z → x < z) -- (item-8 : ∀ x y z → x ≤ y → 0f ≤ z → x · z ≤ y · z) (item-9 : ∀ x y z → 0f < z → (x < y → x · z < y · z)) -- (item-9-back : ∀ x y z → 0f < z → (x · z < y · z → x < y)) -- (item-10 : 0f < 1f) where item-4' : ∀ x y → 0f < x - y → y < x item-4' x y = ( 0f < x - y ⇒⟨ item-4 0f (x + (- y)) y ⟩ 0f + y < (x - y) + y ⇒⟨ transport (λ i → snd (+-identity y) i < sym (+-assoc x (- y) y) i) ⟩ y < x + (- y + y) ⇒⟨ transport (λ i → y < x + snd (+-inv y) i) ⟩ y < x + 0f ⇒⟨ transport (λ i → y < fst (+-identity x) i) ⟩ y < x ◼) lemma : ∀ x y z w → (z + w) + ((- x) + (- y)) ≡ (z - x) + (w - y) lemma x y z w = ( -- NOTE: there has to be a shorter way to to this kind of calculations ... -- also I got not much introspection while creating the paths (z + w) + ((- x) + (- y)) ≡⟨ ( λ i → +-assoc z w ((- x) + (- y)) (~ i)) ⟩ (z + ( w + ((- x) + (- y)))) ≡⟨ ( λ i → z + (+-assoc w (- x) (- y) i)) ⟩ (z + ((w + (- x)) + (- y))) ≡⟨ ( λ i → z + ((+-comm w (- x) i) + (- y)) ) ⟩ (z + (((- x) + w) + (- y))) ≡⟨ ( λ i → z + (+-assoc (- x) w (- y) (~ i))) ⟩ (z + (( - x) + (w - y))) ≡⟨ ( λ i → +-assoc z (- x) (w - y) i ) ⟩ (z - x) + (w - y) ∎) -- 6. (†) -- In order to show (†), suppose x + y < z + w. -- So, by item 4, we get (x + y) − (x + y) < (z + w) − (x + y), that is, 0 < (z − x) + (w − y). -- By item 5, (0 < z − x) ∨ (0 < w − y), and so by item 4 in either case, we get x < z ∨ y < w. +-<-extensional : ∀ w x y z → (x + y) < (z + w) → (x < z) ⊎ (y < w) +-<-extensional w x y z = ( (x + y) < (z + w) ⇒⟨ item-4 (x + y) (z + w) (- (x + y)) ⟩ (x + y) - (x + y) < (z + w) - (x + y) ⇒⟨ transport (λ i → +-rinv (x + y) i < (z + w) + (-isDistributive x y) (~ i)) ⟩ 0f < (z + w) + ((- x) + (- y)) ⇒⟨ transport (λ i → 0f < lemma x y z w i) ⟩ 0f < (z - x) + (w - y) ⇒⟨ item-5 (z - x) (w - y) ⟩ (0f < z - x) ⊎ (0f < w - y) ⇒⟨ (λ{ (inl p) → inl (item-4' z x p) ; (inr p) → inr (item-4' w y p)}) ⟩ ( x < z ) ⊎ ( y < w ) ◼) -- 6. (∗) ·-preserves-< : ∀ x y z → 0f < z → x < y → (x · z) < (y · z) ·-preserves-< = item-9
{ "alphanum_fraction": 0.386171754, "avg_line_length": 51.1943734015, "ext": "agda", "hexsha": "0f8bf55c0755294412a3675cba54bdc186b7a9d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Properties/AlmostOrderedField.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Properties/AlmostOrderedField.agda", "max_line_length": 168, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Properties/AlmostOrderedField.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 8763, "size": 20017 }
module Oscar.Property.Transitivity where open import Oscar.Level record Transitivity {𝔬} {⋆ : Set 𝔬} {𝔮} (_↦_ : ⋆ → ⋆ → Set 𝔮) : Set (𝔬 ⊔ 𝔮) where field transitivity : ∀ {x y} → x ↦ y → ∀ {z} → y ↦ z → x ↦ z open Transitivity ⦃ … ⦄ public
{ "alphanum_fraction": 0.578313253, "avg_line_length": 22.6363636364, "ext": "agda", "hexsha": "48363258b6938b7702c260ff19078c59c27fbf9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Property/Transitivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Property/Transitivity.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Property/Transitivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 113, "size": 249 }
------------------------------------------------------------------------ -- Sums (disjoint unions) ------------------------------------------------------------------------ module Data.Sum where open import Data.Function open import Data.Maybe.Core ------------------------------------------------------------------------ -- Definition infixr 1 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B ------------------------------------------------------------------------ -- Functions [_,_] : ∀ {A B} {C : A ⊎ B → Set} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y [_,_]′ : ∀ {A B C : Set} → (A → C) → (B → C) → (A ⊎ B → C) [_,_]′ = [_,_] map : ∀ {a b c d} → (a → c) → (b → d) → (a ⊎ b → c ⊎ d) map f g = [ inj₁ ∘ f , inj₂ ∘ g ] infixr 1 _-⊎-_ _-⊎-_ : ∀ {a b} → (a → b → Set) → (a → b → Set) → (a → b → Set) f -⊎- g = f -[ _⊎_ ]₁- g isInj₁ : ∀ {A B} → A ⊎ B → Maybe A isInj₁ (inj₁ x) = just x isInj₁ (inj₂ y) = nothing isInj₂ : ∀ {A B} → A ⊎ B → Maybe B isInj₂ (inj₁ x) = nothing isInj₂ (inj₂ y) = just y
{ "alphanum_fraction": 0.3301225919, "avg_line_length": 24.8260869565, "ext": "agda", "hexsha": "368865f009e2ee55e5520c85cf3f57397f8eddfa", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Sum.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Sum.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 441, "size": 1142 }
-- Andreas, 2019-04-10, issue #3683 reported by akaposi. -- Regression in the termination checker introduced together -- with collecting function calls also in the type signatures -- (fix of #1556). data A : Set data B : A → Set data A where a : A f : B a → A data B where module _ (A' : Set)(B' : A' → Set) (a' : A')(f' : B' a' → A') where mutual elimA : (x : A) → A' elimA a = a' elimA (f y) = f' (elimB a y) -- Call elimA (f y) --> elimB a y -- Call elimB x y --> elimA x in the type signature elimB : (x : A) (y : B x) → B' (elimA x) elimB x () -- With counting calls in the type signature as well, we get -- -- elimA (f _) --> elimB a _ --> elimA a -- -- which does not pass the naive termination checker, since -- `a` and `f _` are unrelated in size. -- -- However a more sophisticated type checker (Hyvernat) -- will see that the composed call -- -- elimA (f _) --> elimA a -- -- is not idempotent; it cannot be composed with itself. -- -- Thus, it is to be discounted during termination checking. -- -- Verdict: this test case should pass.
{ "alphanum_fraction": 0.6086956522, "avg_line_length": 23, "ext": "agda", "hexsha": "6199201ef0befc0f8236c2352923196d1a4eb1e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3683.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3683.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3683.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 349, "size": 1104 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on the Colist type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Colist.Properties where open import Size open import Codata.Thunk using (Thunk; force) open import Codata.Conat open import Codata.Colist open import Codata.Colist.Bisimilarity open import Function open import Relation.Binary.PropositionalEquality as Eq -- Functor laws module _ {a} {A : Set a} where map-identity : ∀ (as : Colist A ∞) {i} → i ⊢ map id as ≈ as map-identity [] = [] map-identity (a ∷ as) = Eq.refl ∷ λ where .force → map-identity (as .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where map-map-fusion : ∀ (f : A → B) (g : B → C) as {i} → i ⊢ map g (map f as) ≈ map (g ∘ f) as map-map-fusion f g [] = [] map-map-fusion f g (a ∷ as) = Eq.refl ∷ λ where .force → map-map-fusion f g (as .force)
{ "alphanum_fraction": 0.5525554484, "avg_line_length": 31.4242424242, "ext": "agda", "hexsha": "109b3e6161052a90f8309a05d19fb391684bfe76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 295, "size": 1037 }
module BadCon where data D : Set where d : D data E : Set where d : E postulate F : D -> Set test : (x : D) -> F x test = d -- Bad error (unbound de Bruijn index): -- the constructor d does not construct an element of F @0 -- when checking that the expression d has type (x : D) → F x
{ "alphanum_fraction": 0.6317567568, "avg_line_length": 16.4444444444, "ext": "agda", "hexsha": "502bd5777ce4691db5f0bc463f8e08cf9f5c2850", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/BadCon.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/BadCon.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/BadCon.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 96, "size": 296 }
{-# OPTIONS --copatterns --sized-types #-} module Streams where open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Data.List using (List; module List; []; _∷_; _++_; length) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_,_; _×_; proj₁; proj₂) -- | Streams (with size annotations to ease definitions). record Stream {i : Size} (A : Set) : Set where coinductive constructor _∷_ field hd : A tl : ∀ {j : Size< i} → Stream {j} A open Stream public -- | Stream equality is bisimilarity record _~_ {A : Set} (s t : Stream A) : Set where coinductive field hd~ : hd s ≡ hd t tl~ : (tl s) ~ (tl t) open _~_ public -- | Functoriality map : ∀ {i A B} (f : A → B) (s : Stream {i} A) → Stream {i} B hd (map f s) = f (hd s) tl (map {i} f s) {j} = map {j} f (tl s {j}) -- | Coalgebra structure str-out : ∀{A} → Stream A → A × Stream A str-out s = (hd s , tl s) -- | (Weak) Finality corec : ∀ {A X : Set} → (X → A × X) → (∀ {i} → X → Stream {i} A) hd (corec f x) = proj₁ (f x) tl (corec f x) = corec f (proj₂ (f x)) -- | Direct access to elements _<_> : ∀{A} → Stream A → ℕ → A s < 0 > = hd s s < suc n > = (tl s) < n > -- | Correctness of bisimlarity ~→pw-equal : ∀{A} {s t : Stream A} → s ~ t → ∀ n → s < n > ≡ t < n > ~→pw-equal p zero = hd~ p ~→pw-equal p (suc n) = ~→pw-equal (tl~ p) n -- | The usual definition of a bisimulation on streams. Is-Bisim : ∀{A} → Rel (Stream A) _ → Set Is-Bisim _R_ = ∀ x y → x R y → hd x ≡ hd y × (tl x) R (tl y) -- | If R is a bisimulation then all elements related by R are bisimilar. ex-bisimulation→bisim : ∀{A R} → Is-Bisim {A} R → ∀ {x y} → R x y → x ~ y hd~ (ex-bisimulation→bisim p {x} {y} xRy) = proj₁ (p x y xRy) tl~ (ex-bisimulation→bisim p {x} {y} xRy) = ex-bisimulation→bisim p (proj₂ (p x y xRy)) -- | Generalised bisimulations between arbitrary stream coalgebras. Is-Bisim' : ∀{A X Y : Set} → (c : X → A × X) (d : Y → A × Y) → REL X Y _ → Set Is-Bisim' c d _R_ = ∀ x y → x R y → proj₁ (c x) ≡ proj₁ (d y) × (proj₂ (c x)) R (proj₂ (d y)) ex-bisimulation→bisim' : ∀{A X Y R c d} → Is-Bisim' {A} {X} {Y} c d R → ∀ {x y} → R x y → corec c x ~ corec d y hd~ (ex-bisimulation→bisim' p {x} {y} xRy) = proj₁ (p x y xRy) tl~ (ex-bisimulation→bisim' p {x} {y} xRy) = ex-bisimulation→bisim' p (proj₂ (p x y xRy)) ~trans : ∀{A} {r s t : Stream A} → r ~ s → s ~ t → r ~ t hd~ (~trans p q) = trans (hd~ p) (hd~ q) tl~ (~trans p q) = ~trans (tl~ p) (tl~ q) ~sym : ∀{A} {s t : Stream A} → s ~ t → t ~ s hd~ (~sym p) = sym (hd~ p) tl~ (~sym p) = ~sym (tl~ p)
{ "alphanum_fraction": 0.5514223195, "avg_line_length": 31.8837209302, "ext": "agda", "hexsha": "38bcf1cdd210992af05d43eb9ad3aaea4a0fed01", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Streams/Streams-old.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Streams/Streams-old.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Streams/Streams-old.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1099, "size": 2742 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Greatest common divisor ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GCD where open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.GCD.Lemmas open import Data.Nat.Properties using (+-suc) open import Data.Product open import Function open import Induction open import Induction.Nat using (<′-Rec; <′-recBuilder) open import Induction.Lexicographic open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; subst) open import Relation.Nullary using (Dec; yes; no) ------------------------------------------------------------------------ -- Greatest common divisor module GCD where -- Specification of the greatest common divisor (gcd) of two natural -- numbers. record GCD (m n gcd : ℕ) : Set where constructor is field -- The gcd is a common divisor. commonDivisor : gcd ∣ m × gcd ∣ n -- All common divisors divide the gcd, i.e. the gcd is the -- greatest common divisor according to the partial order _∣_. greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ gcd open GCD public -- The gcd is unique. unique : ∀ {d₁ d₂ m n} → GCD m n d₁ → GCD m n d₂ → d₁ ≡ d₂ unique d₁ d₂ = ∣-antisym (GCD.greatest d₂ (GCD.commonDivisor d₁)) (GCD.greatest d₁ (GCD.commonDivisor d₂)) -- The gcd relation is "symmetric". sym : ∀ {d m n} → GCD m n d → GCD n m d sym g = is (swap $ GCD.commonDivisor g) (GCD.greatest g ∘ swap) -- The gcd relation is "reflexive". refl : ∀ {n} → GCD n n n refl = is (∣-refl , ∣-refl) proj₁ -- The GCD of 0 and n is n. base : ∀ {n} → GCD 0 n n base {n} = is (n ∣0 , ∣-refl) proj₂ -- If d is the gcd of n and k, then it is also the gcd of n and -- n + k. step : ∀ {n k d} → GCD n k d → GCD n (n + k) d step g with GCD.commonDivisor g step {n} {k} {d} g | (d₁ , d₂) = is (d₁ , ∣m∣n⇒∣m+n d₁ d₂) greatest′ where greatest′ : ∀ {d′} → d′ ∣ n × d′ ∣ n + k → d′ ∣ d greatest′ (d₁ , d₂) = GCD.greatest g (d₁ , ∣m+n∣m⇒∣n d₂ d₁) open GCD public using (GCD) hiding (module GCD) ------------------------------------------------------------------------ -- Calculating the gcd -- The calculation also proves Bézout's lemma. module Bézout where module Identity where -- If m and n have greatest common divisor d, then one of the -- following two equations is satisfied, for some numbers x and y. -- The proof is "lemma" below (Bézout's lemma). -- -- (If this identity was stated using integers instead of natural -- numbers, then it would not be necessary to have two equations.) data Identity (d m n : ℕ) : Set where +- : (x y : ℕ) (eq : d + y * n ≡ x * m) → Identity d m n -+ : (x y : ℕ) (eq : d + x * m ≡ y * n) → Identity d m n -- Various properties about Identity. sym : ∀ {d} → Symmetric (Identity d) sym (+- x y eq) = -+ y x eq sym (-+ x y eq) = +- y x eq refl : ∀ {d} → Identity d d d refl = -+ 0 1 P.refl base : ∀ {d} → Identity d 0 d base = -+ 0 1 P.refl private infixl 7 _⊕_ _⊕_ : ℕ → ℕ → ℕ m ⊕ n = 1 + m + n step : ∀ {d n k} → Identity d n k → Identity d n (n + k) step {d} (+- x y eq) with compare x y step {d} (+- .x .x eq) | equal x = +- (2 * x) x (lem₂ d x eq) step {d} (+- .x .(x ⊕ i) eq) | less x i = +- (2 * x ⊕ i) (x ⊕ i) (lem₃ d x eq) step {d} {n} (+- .(y ⊕ i) .y eq) | greater y i = +- (2 * y ⊕ i) y (lem₄ d y n eq) step {d} (-+ x y eq) with compare x y step {d} (-+ .x .x eq) | equal x = -+ (2 * x) x (lem₅ d x eq) step {d} (-+ .x .(x ⊕ i) eq) | less x i = -+ (2 * x ⊕ i) (x ⊕ i) (lem₆ d x eq) step {d} {n} (-+ .(y ⊕ i) .y eq) | greater y i = -+ (2 * y ⊕ i) y (lem₇ d y n eq) open Identity public using (Identity; +-; -+) hiding (module Identity) module Lemma where -- This type packs up the gcd, the proof that it is a gcd, and the -- proof that it satisfies Bézout's identity. data Lemma (m n : ℕ) : Set where result : (d : ℕ) (g : GCD m n d) (b : Identity d m n) → Lemma m n -- Various properties about Lemma. sym : Symmetric Lemma sym (result d g b) = result d (GCD.sym g) (Identity.sym b) base : ∀ d → Lemma 0 d base d = result d GCD.base Identity.base refl : ∀ d → Lemma d d refl d = result d GCD.refl Identity.refl stepˡ : ∀ {n k} → Lemma n (suc k) → Lemma n (suc (n + k)) stepˡ {n} {k} (result d g b) = subst (Lemma n) (+-suc n k) $ result d (GCD.step g) (Identity.step b) stepʳ : ∀ {n k} → Lemma (suc k) n → Lemma (suc (n + k)) n stepʳ = sym ∘ stepˡ ∘ sym open Lemma public using (Lemma; result) hiding (module Lemma) -- Bézout's lemma proved using some variant of the extended -- Euclidean algorithm. lemma : (m n : ℕ) → Lemma m n lemma m n = build [ <′-recBuilder ⊗ <′-recBuilder ] P gcd (m , n) where P : ℕ × ℕ → Set P (m , n) = Lemma m n gcd : ∀ p → (<′-Rec ⊗ <′-Rec) P p → P p gcd (zero , n ) rec = Lemma.base n gcd (suc m , zero ) rec = Lemma.sym (Lemma.base (suc m)) gcd (suc m , suc n ) rec with compare m n gcd (suc m , suc .m ) rec | equal .m = Lemma.refl (suc m) gcd (suc m , suc .(suc (m + k))) rec | less .m k = -- "gcd (suc m) (suc k)" Lemma.stepˡ $ proj₁ rec (suc k) (lem₁ k m) gcd (suc .(suc (n + k)) , suc n) rec | greater .n k = -- "gcd (suc k) (suc n)" Lemma.stepʳ $ proj₂ rec (suc k) (lem₁ k n) (suc n) -- Bézout's identity can be recovered from the GCD. identity : ∀ {m n d} → GCD m n d → Identity d m n identity {m} {n} g with lemma m n ... | result d g′ b with GCD.unique g g′ ... | P.refl = b -- Calculates the gcd of the arguments. gcd : (m n : ℕ) → ∃ λ d → GCD m n d gcd m n with Bézout.lemma m n ... | Bézout.result d g _ = (d , g) -- gcd as a proposition is decidable gcd? : (m n d : ℕ) → Dec (GCD m n d) gcd? m n d with gcd m n ... | d′ , p with d′ ≟ d ... | no ¬g = no (¬g ∘ GCD.unique p) ... | yes g = yes (subst (GCD m n) g p)
{ "alphanum_fraction": 0.5179102143, "avg_line_length": 32.4517766497, "ext": "agda", "hexsha": "418b444311ad02b6946c0f08fdcfbdea94a6ad88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2231, "size": 6393 }
------------------------------------------------------------------------------ -- Properties of the Collatz function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Collatz.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.PropertiesI open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityI open import FOTC.Program.Collatz.Collatz open import FOTC.Program.Collatz.Data.Nat open import FOTC.Program.Collatz.Data.Nat.PropertiesI ------------------------------------------------------------------------------ collatzCong : ∀ {m n} → m ≡ n → collatz m ≡ collatz n collatzCong refl = refl helper : ∀ {n} → N n → collatz (2' ^ succ₁ n) ≡ collatz (2' ^ n) helper nzero = collatz (2' ^ 1') ≡⟨ collatzCong (x^1≡x 2-N) ⟩ collatz 2' ≡⟨ collatz-even 2-Even ⟩ collatz (div 2' 2') ≡⟨ collatzCong (div-x-x≡1 2-N S≢0) ⟩ collatz (1') ≡⟨ collatzCong (sym (^-0 2')) ⟩ collatz (2' ^ 0') ∎ helper (nsucc {n} Nn) = collatz (2' ^ succ₁ (succ₁ n)) ≡⟨ collatzCong prf ⟩ collatz (succ₁ (succ₁ (2' ^ succ₁ (succ₁ n) ∸ 2'))) ≡⟨ collatz-even (x-Even→SSx-Even (∸-N (^-N 2-N (nsucc (nsucc Nn))) 2-N) (∸-Even (^-N 2-N (nsucc (nsucc Nn))) 2-N (2^[x+1]-Even (nsucc Nn)) 2-Even)) ⟩ collatz (div (succ₁ (succ₁ ((2' ^ succ₁ (succ₁ n)) ∸ 2'))) 2') ≡⟨ collatzCong (divLeftCong (sym prf)) ⟩ collatz (div (2' ^ succ₁ (succ₁ n)) 2') ≡⟨ collatzCong (div-2^[x+1]-2≡2^x (nsucc Nn)) ⟩ collatz (2' ^ succ₁ n) ∎ where prf : 2' ^ succ₁ (succ₁ n) ≡ succ₁ (succ₁ (2' ^ succ₁ (succ₁ n) ∸ 2')) prf = (+∸2 (^-N 2-N (nsucc (nsucc Nn))) (2^x≢0 (nsucc (nsucc Nn))) (2^[x+1]≢1 (nsucc Nn))) collatz-2^x : ∀ {n} → N n → collatz (2' ^ n) ≡ 1' collatz-2^x nzero = collatz (2' ^ 0') ≡⟨ collatzCong (^-0 2') ⟩ collatz 1' ≡⟨ collatz-1 ⟩ 1' ∎ collatz-2^x (nsucc {n} Nn) = collatz (2' ^ succ₁ n) ≡⟨ helper Nn ⟩ collatz (2' ^ n) ≡⟨ collatz-2^x Nn ⟩ 1' ∎
{ "alphanum_fraction": 0.4991680532, "avg_line_length": 36.4242424242, "ext": "agda", "hexsha": "12d28ebf93e1652d4e8cc01df6c3534bacf69fda", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Collatz/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 892, "size": 2404 }
{-# OPTIONS --without-K #-} module sets.unit where record ⊤ : Set where constructor tt ⊤-elim : (P : ⊤ → Set) → P tt → (x : ⊤) → P x ⊤-elim P ptt tt = ptt
{ "alphanum_fraction": 0.5465838509, "avg_line_length": 16.1, "ext": "agda", "hexsha": "b4af1d1832676bb7d346943f53bb256a6e48ae19", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "sets/unit.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "sets/unit.agda", "max_line_length": 45, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "sets/unit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 64, "size": 161 }
-- Andreas, 2015-09-12 open import Common.Product open import Common.Equality module _ (A : Set) where mutual X : A × A → A X = _ test : (x y : A × A) → X (proj₁ x , proj₁ y) ≡ proj₁ x test _ _ = refl -- This worked even before the fix of #1316, -- since _ record variables are expanded (see #473).
{ "alphanum_fraction": 0.6314102564, "avg_line_length": 18.3529411765, "ext": "agda", "hexsha": "3c46d1935bb1439dc08ea8db72b873ec1cdfcec4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1645.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1645.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1645.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 312 }
------------------------------------------------------------------------ -- Some substitution lemmas ------------------------------------------------------------------------ open import Atom module Substitution (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open import Bag-equivalence equality-with-J using (_∈_) open import Chi atoms open χ-atoms atoms private variable c : Const e e′ e″ : Exp x y : Var xs : List Var -- Some simplification lemmas for the substitution functions. var-step-≡ : x ≡ y → var y [ x ← e ] ≡ e var-step-≡ {x = x} {y = y} x≡y with x V.≟ y … | yes _ = refl … | no x≢y = ⊥-elim (x≢y x≡y) var-step-≢ : x ≢ y → var y [ x ← e ] ≡ var y var-step-≢ {x = x} {y = y} x≢y with x V.≟ y … | no _ = refl … | yes x≡y = ⊥-elim (x≢y x≡y) lambda-step-≡ : x ≡ y → lambda y e [ x ← e′ ] ≡ lambda y e lambda-step-≡ {x = x} {y = y} x≡y with x V.≟ y … | yes _ = refl … | no x≢y = ⊥-elim (x≢y x≡y) lambda-step-≢ : x ≢ y → lambda y e [ x ← e′ ] ≡ lambda y (e [ x ← e′ ]) lambda-step-≢ {x = x} {y = y} x≢y with x V.≟ y … | no _ = refl … | yes x≡y = ⊥-elim (x≢y x≡y) rec-step-≡ : x ≡ y → rec y e [ x ← e′ ] ≡ rec y e rec-step-≡ {x = x} {y = y} x≡y with x V.≟ y … | yes _ = refl … | no x≢y = ⊥-elim (x≢y x≡y) rec-step-≢ : x ≢ y → rec y e [ x ← e′ ] ≡ rec y (e [ x ← e′ ]) rec-step-≢ {x = x} {y = y} x≢y with x V.≟ y … | no _ = refl … | yes x≡y = ⊥-elim (x≢y x≡y) branch-step-∈ : x ∈ xs → branch c xs e [ x ← e′ ]B ≡ branch c xs e branch-step-∈ {x = x} {xs = xs} x∈xs with V.member x xs … | yes _ = refl … | no x∉xs = ⊥-elim (x∉xs x∈xs) branch-step-∉ : ¬ x ∈ xs → branch c xs e [ x ← e′ ]B ≡ branch c xs (e [ x ← e′ ]) branch-step-∉ {x = x} {xs = xs} x∉xs with V.member x xs … | no _ = refl … | yes x∈xs = ⊥-elim (x∉xs x∈xs) -- A "fusion" lemma. mutual fusion : ∀ e → e [ x ← e′ ] [ x ← e″ ] ≡ e [ x ← e′ [ x ← e″ ] ] fusion (apply e₁ e₂) = cong₂ apply (fusion e₁) (fusion e₂) fusion {x = x} {e′ = e′} {e″ = e″} (lambda y e) with x V.≟ y … | yes _ = refl … | no _ = lambda y (e [ x ← e′ ] [ x ← e″ ]) ≡⟨ cong (lambda _) $ fusion e ⟩∎ lambda y (e [ x ← e′ [ x ← e″ ] ]) ∎ fusion (case e bs) = cong₂ case (fusion e) (fusion-B⋆ bs) fusion {x = x} {e′ = e′} {e″ = e″} (rec y e) with x V.≟ y … | yes _ = refl … | no _ = rec y (e [ x ← e′ ] [ x ← e″ ]) ≡⟨ cong (rec _) $ fusion e ⟩∎ rec y (e [ x ← e′ [ x ← e″ ] ]) ∎ fusion {x = x} {e″ = e″} (var y) with x V.≟ y … | yes _ = refl … | no x≢y = var y [ x ← e″ ] ≡⟨ var-step-≢ x≢y ⟩∎ var y ∎ fusion (const c es) = cong (const c) (fusion-⋆ es) fusion-B : ∀ b → b [ x ← e′ ]B [ x ← e″ ]B ≡ b [ x ← e′ [ x ← e″ ] ]B fusion-B {x = x} {e′ = e′} {e″ = e″} (branch c xs e) with V.member x xs … | yes x∈xs = branch c xs e [ x ← e″ ]B ≡⟨ branch-step-∈ x∈xs ⟩∎ branch c xs e ∎ … | no x∉xs = branch c xs (e [ x ← e′ ]) [ x ← e″ ]B ≡⟨ branch-step-∉ x∉xs ⟩ branch c xs (e [ x ← e′ ] [ x ← e″ ]) ≡⟨ cong (branch _ _) $ fusion e ⟩∎ branch c xs (e [ x ← e′ [ x ← e″ ] ]) ∎ fusion-⋆ : ∀ es → es [ x ← e′ ]⋆ [ x ← e″ ]⋆ ≡ es [ x ← e′ [ x ← e″ ] ]⋆ fusion-⋆ [] = refl fusion-⋆ (e ∷ es) = cong₂ _∷_ (fusion e) (fusion-⋆ es) fusion-B⋆ : ∀ bs → bs [ x ← e′ ]B⋆ [ x ← e″ ]B⋆ ≡ bs [ x ← e′ [ x ← e″ ] ]B⋆ fusion-B⋆ [] = refl fusion-B⋆ (b ∷ bs) = cong₂ _∷_ (fusion-B b) (fusion-B⋆ bs)
{ "alphanum_fraction": 0.4354148845, "avg_line_length": 27.8333333333, "ext": "agda", "hexsha": "aac822ce4934eb4869ef1372d1a85a44b1987f2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Substitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Substitution.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 1610, "size": 3507 }
module Base where postulate String : Set Char : Set {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () #-} data Bool : Set where true : Bool false : Bool data False : Set where record True : Set where IsTrue : Bool -> Set IsTrue true = True IsTrue false = False {-# COMPILED_DATA Bool True False #-} infixr 40 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] (:) #-} data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B {-# COMPILED_DATA _×_ (,) #-}
{ "alphanum_fraction": 0.5823817292, "avg_line_length": 16.5675675676, "ext": "agda", "hexsha": "033ab393102d71e087c33df99983c8b493e5606d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/fileIO/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/fileIO/Base.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/fileIO/Base.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 193, "size": 613 }
module Base.Partial where open import Data.String using (String) open import Base.Free using (Free) record Partial (S : Set) (P : S → Set) : Set₁ where field undefined : {A : Set} → Free S P A error : {A : Set} → String → Free S P A open Partial ⦃ ... ⦄ public
{ "alphanum_fraction": 0.625, "avg_line_length": 23.3333333333, "ext": "agda", "hexsha": "3aafa1f5f52d4da2e59ea308ee41dadd824225d5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Partial.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Partial.agda", "max_line_length": 51, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Partial.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 87, "size": 280 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A bunch of properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool.Properties where open import Algebra.Bundles open import Data.Bool.Base open import Data.Empty open import Data.Product open import Data.Sum.Base open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Level using (Level; 0ℓ) open import Relation.Binary open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary using (ofʸ; ofⁿ; does; proof; yes; no) open import Relation.Nullary.Decidable using (True) import Relation.Unary as U open import Algebra.Definitions {A = Bool} _≡_ open import Algebra.Structures {A = Bool} _≡_ open ≡-Reasoning private variable a b : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Properties of _≡_ infix 4 _≟_ _≟_ : Decidable {A = Bool} _≡_ true ≟ true = yes refl false ≟ false = yes refl true ≟ false = no λ() false ≟ true = no λ() ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid Bool ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- Properties of _≤_ -- Relational properties ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive refl = b≤b ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-trans : Transitive _≤_ ≤-trans b≤b p = p ≤-trans f≤t b≤b = f≤t ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym b≤b _ = refl ≤-minimum : Minimum _≤_ false ≤-minimum false = b≤b ≤-minimum true = f≤t ≤-maximum : Maximum _≤_ true ≤-maximum false = f≤t ≤-maximum true = b≤b ≤-total : Total _≤_ ≤-total false b = inj₁ (≤-minimum b) ≤-total true b = inj₂ (≤-maximum b) infix 4 _≤?_ _≤?_ : Decidable _≤_ false ≤? b = yes (≤-minimum b) true ≤? false = no λ () true ≤? true = yes b≤b ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant {_} f≤t f≤t = refl ≤-irrelevant {false} b≤b b≤b = refl ≤-irrelevant {true} b≤b b≤b = refl -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } -- Bundles ≤-poset : Poset 0ℓ 0ℓ 0ℓ ≤-poset = record { isPartialOrder = ≤-isPartialOrder } ≤-preorder : Preorder 0ℓ 0ℓ 0ℓ ≤-preorder = record { isPreorder = ≤-isPreorder } ≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ ≤-totalOrder = record { isTotalOrder = ≤-isTotalOrder } ≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ ≤-decTotalOrder = record { isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Properties of _<_ -- Relational properties <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl () <-asym : Asymmetric _<_ <-asym f<t () <-trans : Transitive _<_ <-trans f<t () <-transʳ : Trans _≤_ _<_ _<_ <-transʳ b≤b f<t = f<t <-transˡ : Trans _<_ _≤_ _<_ <-transˡ f<t b≤b = f<t <-cmp : Trichotomous _≡_ _<_ <-cmp false false = tri≈ (λ()) refl (λ()) <-cmp false true = tri< f<t (λ()) (λ()) <-cmp true false = tri> (λ()) (λ()) f<t <-cmp true true = tri≈ (λ()) refl (λ()) infix 4 _<?_ _<?_ : Decidable _<_ false <? false = no (λ()) false <? true = yes f<t true <? _ = no (λ()) <-resp₂-≡ : _<_ Respects₂ _≡_ <-resp₂-≡ = subst (_ <_) , subst (_< _) <-irrelevant : Irrelevant _<_ <-irrelevant f<t f<t = refl -- Structures <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp₂-≡ } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = <-cmp } -- Bundles <-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } ------------------------------------------------------------------------ -- Properties of _∨_ ∨-assoc : Associative _∨_ ∨-assoc true y z = refl ∨-assoc false y z = refl ∨-comm : Commutative _∨_ ∨-comm true true = refl ∨-comm true false = refl ∨-comm false true = refl ∨-comm false false = refl ∨-identityˡ : LeftIdentity false _∨_ ∨-identityˡ _ = refl ∨-identityʳ : RightIdentity false _∨_ ∨-identityʳ false = refl ∨-identityʳ true = refl ∨-identity : Identity false _∨_ ∨-identity = ∨-identityˡ , ∨-identityʳ ∨-zeroˡ : LeftZero true _∨_ ∨-zeroˡ _ = refl ∨-zeroʳ : RightZero true _∨_ ∨-zeroʳ false = refl ∨-zeroʳ true = refl ∨-zero : Zero true _∨_ ∨-zero = ∨-zeroˡ , ∨-zeroʳ ∨-inverseˡ : LeftInverse true not _∨_ ∨-inverseˡ false = refl ∨-inverseˡ true = refl ∨-inverseʳ : RightInverse true not _∨_ ∨-inverseʳ x = ∨-comm x (not x) ⟨ trans ⟩ ∨-inverseˡ x ∨-inverse : Inverse true not _∨_ ∨-inverse = ∨-inverseˡ , ∨-inverseʳ ∨-idem : Idempotent _∨_ ∨-idem false = refl ∨-idem true = refl ∨-sel : Selective _∨_ ∨-sel false y = inj₂ refl ∨-sel true y = inj₁ refl ∨-isMagma : IsMagma _∨_ ∨-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∨_ } ∨-magma : Magma 0ℓ 0ℓ ∨-magma = record { isMagma = ∨-isMagma } ∨-isSemigroup : IsSemigroup _∨_ ∨-isSemigroup = record { isMagma = ∨-isMagma ; assoc = ∨-assoc } ∨-semigroup : Semigroup 0ℓ 0ℓ ∨-semigroup = record { isSemigroup = ∨-isSemigroup } ∨-isBand : IsBand _∨_ ∨-isBand = record { isSemigroup = ∨-isSemigroup ; idem = ∨-idem } ∨-band : Band 0ℓ 0ℓ ∨-band = record { isBand = ∨-isBand } ∨-isSemilattice : IsSemilattice _∨_ ∨-isSemilattice = record { isBand = ∨-isBand ; comm = ∨-comm } ∨-semilattice : Semilattice 0ℓ 0ℓ ∨-semilattice = record { isSemilattice = ∨-isSemilattice } ∨-isMonoid : IsMonoid _∨_ false ∨-isMonoid = record { isSemigroup = ∨-isSemigroup ; identity = ∨-identity } ∨-isCommutativeMonoid : IsCommutativeMonoid _∨_ false ∨-isCommutativeMonoid = record { isMonoid = ∨-isMonoid ; comm = ∨-comm } ∨-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ ∨-commutativeMonoid = record { isCommutativeMonoid = ∨-isCommutativeMonoid } ∨-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∨_ false ∨-isIdempotentCommutativeMonoid = record { isCommutativeMonoid = ∨-isCommutativeMonoid ; idem = ∨-idem } ∨-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ ∨-idempotentCommutativeMonoid = record { isIdempotentCommutativeMonoid = ∨-isIdempotentCommutativeMonoid } ------------------------------------------------------------------------ -- Properties of _∧_ ∧-assoc : Associative _∧_ ∧-assoc true y z = refl ∧-assoc false y z = refl ∧-comm : Commutative _∧_ ∧-comm true true = refl ∧-comm true false = refl ∧-comm false true = refl ∧-comm false false = refl ∧-identityˡ : LeftIdentity true _∧_ ∧-identityˡ _ = refl ∧-identityʳ : RightIdentity true _∧_ ∧-identityʳ false = refl ∧-identityʳ true = refl ∧-identity : Identity true _∧_ ∧-identity = ∧-identityˡ , ∧-identityʳ ∧-zeroˡ : LeftZero false _∧_ ∧-zeroˡ _ = refl ∧-zeroʳ : RightZero false _∧_ ∧-zeroʳ false = refl ∧-zeroʳ true = refl ∧-zero : Zero false _∧_ ∧-zero = ∧-zeroˡ , ∧-zeroʳ ∧-inverseˡ : LeftInverse false not _∧_ ∧-inverseˡ false = refl ∧-inverseˡ true = refl ∧-inverseʳ : RightInverse false not _∧_ ∧-inverseʳ x = ∧-comm x (not x) ⟨ trans ⟩ ∧-inverseˡ x ∧-inverse : Inverse false not _∧_ ∧-inverse = ∧-inverseˡ , ∧-inverseʳ ∧-idem : Idempotent _∧_ ∧-idem false = refl ∧-idem true = refl ∧-sel : Selective _∧_ ∧-sel false y = inj₁ refl ∧-sel true y = inj₂ refl ∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_ ∧-distribˡ-∨ true y z = refl ∧-distribˡ-∨ false y z = refl ∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_ ∧-distribʳ-∨ x y z = begin (y ∨ z) ∧ x ≡⟨ ∧-comm (y ∨ z) x ⟩ x ∧ (y ∨ z) ≡⟨ ∧-distribˡ-∨ x y z ⟩ x ∧ y ∨ x ∧ z ≡⟨ cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩ y ∧ x ∨ z ∧ x ∎ ∧-distrib-∨ : _∧_ DistributesOver _∨_ ∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨ ∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_ ∨-distribˡ-∧ true y z = refl ∨-distribˡ-∧ false y z = refl ∨-distribʳ-∧ : _∨_ DistributesOverʳ _∧_ ∨-distribʳ-∧ x y z = begin (y ∧ z) ∨ x ≡⟨ ∨-comm (y ∧ z) x ⟩ x ∨ (y ∧ z) ≡⟨ ∨-distribˡ-∧ x y z ⟩ (x ∨ y) ∧ (x ∨ z) ≡⟨ cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩ (y ∨ x) ∧ (z ∨ x) ∎ ∨-distrib-∧ : _∨_ DistributesOver _∧_ ∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧ ∧-abs-∨ : _∧_ Absorbs _∨_ ∧-abs-∨ true y = refl ∧-abs-∨ false y = refl ∨-abs-∧ : _∨_ Absorbs _∧_ ∨-abs-∧ true y = refl ∨-abs-∧ false y = refl ∨-∧-absorptive : Absorptive _∨_ _∧_ ∨-∧-absorptive = ∨-abs-∧ , ∧-abs-∨ ∧-isMagma : IsMagma _∧_ ∧-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∧_ } ∧-magma : Magma 0ℓ 0ℓ ∧-magma = record { isMagma = ∧-isMagma } ∧-isSemigroup : IsSemigroup _∧_ ∧-isSemigroup = record { isMagma = ∧-isMagma ; assoc = ∧-assoc } ∧-semigroup : Semigroup 0ℓ 0ℓ ∧-semigroup = record { isSemigroup = ∧-isSemigroup } ∧-isBand : IsBand _∧_ ∧-isBand = record { isSemigroup = ∧-isSemigroup ; idem = ∧-idem } ∧-band : Band 0ℓ 0ℓ ∧-band = record { isBand = ∧-isBand } ∧-isSemilattice : IsSemilattice _∧_ ∧-isSemilattice = record { isBand = ∧-isBand ; comm = ∧-comm } ∧-semilattice : Semilattice 0ℓ 0ℓ ∧-semilattice = record { isSemilattice = ∧-isSemilattice } ∧-isMonoid : IsMonoid _∧_ true ∧-isMonoid = record { isSemigroup = ∧-isSemigroup ; identity = ∧-identity } ∧-isCommutativeMonoid : IsCommutativeMonoid _∧_ true ∧-isCommutativeMonoid = record { isMonoid = ∧-isMonoid ; comm = ∧-comm } ∧-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ ∧-commutativeMonoid = record { isCommutativeMonoid = ∧-isCommutativeMonoid } ∧-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∧_ true ∧-isIdempotentCommutativeMonoid = record { isCommutativeMonoid = ∧-isCommutativeMonoid ; idem = ∧-idem } ∧-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ ∧-idempotentCommutativeMonoid = record { isIdempotentCommutativeMonoid = ∧-isIdempotentCommutativeMonoid } ∨-∧-isSemiring : IsSemiring _∨_ _∧_ false true ∨-∧-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = ∨-isCommutativeMonoid ; *-isMonoid = ∧-isMonoid ; distrib = ∧-distrib-∨ } ; zero = ∧-zero } ∨-∧-isCommutativeSemiring : IsCommutativeSemiring _∨_ _∧_ false true ∨-∧-isCommutativeSemiring = record { isSemiring = ∨-∧-isSemiring ; *-comm = ∧-comm } ∨-∧-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ ∨-∧-commutativeSemiring = record { _+_ = _∨_ ; _*_ = _∧_ ; 0# = false ; 1# = true ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring } ∧-∨-isSemiring : IsSemiring _∧_ _∨_ true false ∧-∨-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = ∧-isCommutativeMonoid ; *-isMonoid = ∨-isMonoid ; distrib = ∨-distrib-∧ } ; zero = ∨-zero } ∧-∨-isCommutativeSemiring : IsCommutativeSemiring _∧_ _∨_ true false ∧-∨-isCommutativeSemiring = record { isSemiring = ∧-∨-isSemiring ; *-comm = ∨-comm } ∧-∨-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ ∧-∨-commutativeSemiring = record { _+_ = _∧_ ; _*_ = _∨_ ; 0# = true ; 1# = false ; isCommutativeSemiring = ∧-∨-isCommutativeSemiring } ∨-∧-isLattice : IsLattice _∨_ _∧_ ∨-∧-isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ∨-comm ; ∨-assoc = ∨-assoc ; ∨-cong = cong₂ _∨_ ; ∧-comm = ∧-comm ; ∧-assoc = ∧-assoc ; ∧-cong = cong₂ _∧_ ; absorptive = ∨-∧-absorptive } ∨-∧-lattice : Lattice 0ℓ 0ℓ ∨-∧-lattice = record { isLattice = ∨-∧-isLattice } ∨-∧-isDistributiveLattice : IsDistributiveLattice _∨_ _∧_ ∨-∧-isDistributiveLattice = record { isLattice = ∨-∧-isLattice ; ∨-distribʳ-∧ = ∨-distribʳ-∧ } ∨-∧-distributiveLattice : DistributiveLattice 0ℓ 0ℓ ∨-∧-distributiveLattice = record { isDistributiveLattice = ∨-∧-isDistributiveLattice } ∨-∧-isBooleanAlgebra : IsBooleanAlgebra _∨_ _∧_ not true false ∨-∧-isBooleanAlgebra = record { isDistributiveLattice = ∨-∧-isDistributiveLattice ; ∨-complementʳ = ∨-inverseʳ ; ∧-complementʳ = ∧-inverseʳ ; ¬-cong = cong not } ∨-∧-booleanAlgebra : BooleanAlgebra 0ℓ 0ℓ ∨-∧-booleanAlgebra = record { isBooleanAlgebra = ∨-∧-isBooleanAlgebra } ------------------------------------------------------------------------ -- Properties of _xor_ xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y) xor-is-ok true y = refl xor-is-ok false y = sym (∧-identityʳ _) xor-∧-commutativeRing : CommutativeRing 0ℓ 0ℓ xor-∧-commutativeRing = commutativeRing where import Algebra.Properties.BooleanAlgebra as BA open BA ∨-∧-booleanAlgebra open XorRing _xor_ xor-is-ok ------------------------------------------------------------------------ -- Miscellaneous other properties not-involutive : Involutive not not-involutive true = refl not-involutive false = refl not-injective : ∀ {x y} → not x ≡ not y → x ≡ y not-injective {false} {false} nx≢ny = refl not-injective {true} {true} nx≢ny = refl not-¬ : ∀ {x y} → x ≡ y → x ≢ not y not-¬ {true} refl () not-¬ {false} refl () ¬-not : ∀ {x y} → x ≢ y → x ≡ not y ¬-not {true} {true} x≢y = ⊥-elim (x≢y refl) ¬-not {true} {false} _ = refl ¬-not {false} {true} _ = refl ¬-not {false} {false} x≢y = ⊥-elim (x≢y refl) ⇔→≡ : {x y z : Bool} → x ≡ z ⇔ y ≡ z → x ≡ y ⇔→≡ {true } {true } hyp = refl ⇔→≡ {true } {false} {true } hyp = sym (Equivalence.to hyp ⟨$⟩ refl) ⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp ⟨$⟩ refl ⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp ⟨$⟩ refl ⇔→≡ {false} {true } {false} hyp = sym (Equivalence.to hyp ⟨$⟩ refl) ⇔→≡ {false} {false} hyp = refl T-≡ : ∀ {x} → T x ⇔ x ≡ true T-≡ {false} = equivalence (λ ()) (λ ()) T-≡ {true} = equivalence (const refl) (const _) T-not-≡ : ∀ {x} → T (not x) ⇔ x ≡ false T-not-≡ {false} = equivalence (const refl) (const _) T-not-≡ {true} = equivalence (λ ()) (λ ()) T-∧ : ∀ {x y} → T (x ∧ y) ⇔ (T x × T y) T-∧ {true} {true} = equivalence (const (_ , _)) (const _) T-∧ {true} {false} = equivalence (λ ()) proj₂ T-∧ {false} {_} = equivalence (λ ()) proj₁ T-∨ : ∀ {x y} → T (x ∨ y) ⇔ (T x ⊎ T y) T-∨ {true} {_} = equivalence inj₁ (const _) T-∨ {false} {true} = equivalence inj₂ (const _) T-∨ {false} {false} = equivalence inj₁ [ id , id ] T-irrelevant : U.Irrelevant T T-irrelevant {true} _ _ = refl T? : U.Decidable T does (T? b) = b proof (T? true ) = ofʸ _ proof (T? false) = ofⁿ λ() T?-diag : ∀ b → T b → True (T? b) T?-diag true _ = _ push-function-into-if : ∀ (f : A → B) x {y z} → f (if x then y else z) ≡ (if x then f y else f z) push-function-into-if _ true = refl push-function-into-if _ false = refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 ∧-∨-distˡ = ∧-distribˡ-∨ {-# WARNING_ON_USAGE ∧-∨-distˡ "Warning: ∧-∨-distˡ was deprecated in v0.15. Please use ∧-distribˡ-∨ instead." #-} ∧-∨-distʳ = ∧-distribʳ-∨ {-# WARNING_ON_USAGE ∧-∨-distʳ "Warning: ∧-∨-distʳ was deprecated in v0.15. Please use ∧-distribʳ-∨ instead." #-} distrib-∧-∨ = ∧-distrib-∨ {-# WARNING_ON_USAGE distrib-∧-∨ "Warning: distrib-∧-∨ was deprecated in v0.15. Please use ∧-distrib-∨ instead." #-} ∨-∧-distˡ = ∨-distribˡ-∧ {-# WARNING_ON_USAGE ∨-∧-distˡ "Warning: ∨-∧-distˡ was deprecated in v0.15. Please use ∨-distribˡ-∧ instead." #-} ∨-∧-distʳ = ∨-distribʳ-∧ {-# WARNING_ON_USAGE ∨-∧-distʳ "Warning: ∨-∧-distʳ was deprecated in v0.15. Please use ∨-distribʳ-∧ instead." #-} ∨-∧-distrib = ∨-distrib-∧ {-# WARNING_ON_USAGE ∨-∧-distrib "Warning: ∨-∧-distrib was deprecated in v0.15. Please use ∨-distrib-∧ instead." #-} ∨-∧-abs = ∨-abs-∧ {-# WARNING_ON_USAGE ∨-∧-abs "Warning: ∨-∧-abs was deprecated in v0.15. Please use ∨-abs-∧ instead." #-} ∧-∨-abs = ∧-abs-∨ {-# WARNING_ON_USAGE ∧-∨-abs "Warning: ∧-∨-abs was deprecated in v0.15. Please use ∧-abs-∨ instead." #-} not-∧-inverseˡ = ∧-inverseˡ {-# WARNING_ON_USAGE not-∧-inverseˡ "Warning: not-∧-inverseˡ was deprecated in v0.15. Please use ∧-inverseˡ instead." #-} not-∧-inverseʳ = ∧-inverseʳ {-# WARNING_ON_USAGE not-∧-inverseʳ "Warning: not-∧-inverseʳ was deprecated in v0.15. Please use ∧-inverseʳ instead." #-} not-∧-inverse = ∧-inverse {-# WARNING_ON_USAGE not-∧-inverse "Warning: not-∧-inverse was deprecated in v0.15. Please use ∧-inverse instead." #-} not-∨-inverseˡ = ∨-inverseˡ {-# WARNING_ON_USAGE not-∨-inverseˡ "Warning: not-∨-inverseˡ was deprecated in v0.15. Please use ∨-inverseˡ instead." #-} not-∨-inverseʳ = ∨-inverseʳ {-# WARNING_ON_USAGE not-∨-inverseʳ "Warning: not-∨-inverseʳ was deprecated in v0.15. Please use ∨-inverseʳ instead." #-} not-∨-inverse = ∨-inverse {-# WARNING_ON_USAGE not-∨-inverse "Warning: not-∨-inverse was deprecated in v0.15. Please use ∨-inverse instead." #-} isCommutativeSemiring-∨-∧ = ∨-∧-isCommutativeSemiring {-# WARNING_ON_USAGE isCommutativeSemiring-∨-∧ "Warning: isCommutativeSemiring-∨-∧ was deprecated in v0.15. Please use ∨-∧-isCommutativeSemiring instead." #-} commutativeSemiring-∨-∧ = ∨-∧-commutativeSemiring {-# WARNING_ON_USAGE commutativeSemiring-∨-∧ "Warning: commutativeSemiring-∨-∧ was deprecated in v0.15. Please use ∨-∧-commutativeSemiring instead." #-} isCommutativeSemiring-∧-∨ = ∧-∨-isCommutativeSemiring {-# WARNING_ON_USAGE isCommutativeSemiring-∧-∨ "Warning: isCommutativeSemiring-∧-∨ was deprecated in v0.15. Please use ∧-∨-isCommutativeSemiring instead." #-} commutativeSemiring-∧-∨ = ∧-∨-commutativeSemiring {-# WARNING_ON_USAGE commutativeSemiring-∧-∨ "Warning: commutativeSemiring-∧-∨ was deprecated in v0.15. Please use ∧-∨-commutativeSemiring instead." #-} isBooleanAlgebra = ∨-∧-isBooleanAlgebra {-# WARNING_ON_USAGE isBooleanAlgebra "Warning: isBooleanAlgebra was deprecated in v0.15. Please use ∨-∧-isBooleanAlgebra instead." #-} booleanAlgebra = ∨-∧-booleanAlgebra {-# WARNING_ON_USAGE booleanAlgebra "Warning: booleanAlgebra was deprecated in v0.15. Please use ∨-∧-booleanAlgebra instead." #-} commutativeRing-xor-∧ = xor-∧-commutativeRing {-# WARNING_ON_USAGE commutativeRing-xor-∧ "Warning: commutativeRing-xor-∧ was deprecated in v0.15. Please use xor-∧-commutativeRing instead." #-} proof-irrelevance = T-irrelevant {-# WARNING_ON_USAGE proof-irrelevance "Warning: proof-irrelevance was deprecated in v0.15. Please use T-irrelevant instead." #-} -- Version 1.0 T-irrelevance = T-irrelevant {-# WARNING_ON_USAGE T-irrelevance "Warning: T-irrelevance was deprecated in v1.0. Please use T-irrelevant instead." #-}
{ "alphanum_fraction": 0.6129162666, "avg_line_length": 24.8293601004, "ext": "agda", "hexsha": "09c588ebd806d47f73ca911639132dac46864bfb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Bool/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Bool/Properties.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 8079, "size": 19789 }
------------------------------------------------------------------------ -- A definitional interpreter ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Simplified.Delay-monad.Interpreter where open import Equality.Propositional open import Prelude open import Monad equality-with-J open import Vec.Function equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Monad open import Lambda.Simplified.Syntax open Closure Tm ------------------------------------------------------------------------ -- The interpreter infix 10 _∙_ mutual ⟦_⟧ : ∀ {i n} → Tm n → Env n → Delay Value i ⟦ var x ⟧ ρ = return (ρ x) ⟦ ƛ t ⟧ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ _∙_ : ∀ {i} → Value → Value → Delay Value i ƛ t₁ ρ ∙ v₂ = later λ { .force → ⟦ t₁ ⟧ (cons v₂ ρ) } ------------------------------------------------------------------------ -- An example -- The semantics of Ω is the non-terminating computation never. Ω-loops : ∀ {i} → [ i ] ⟦ Ω ⟧ nil ∼ never Ω-loops = later λ { .force → Ω-loops }
{ "alphanum_fraction": 0.4681555004, "avg_line_length": 25.7234042553, "ext": "agda", "hexsha": "902d4d8ba8de5f0312bebee12c256a9e6b7045dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Simplified/Delay-monad/Interpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Simplified/Delay-monad/Interpreter.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Simplified/Delay-monad/Interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 330, "size": 1209 }
module Serializer.VecBool where open import Data.Fin hiding (_+_) open import Data.Nat open import Data.Vec open import Data.Bool open import Function using (_∘_ ; _$_ ; _∋_ ; id ; const) open import Function.Bijection open import Function.Injection open import Function.Surjection open import Function.Equality using (_⟶_ ; _⟨$⟩_ ; Π ) open import Function.LeftInverse hiding (_∘_) open import Relation.Binary open import Relation.Binary.EqReasoning open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; setoid ) import Relation.Binary.Indexed as I open import Serializer open import Helper.Fin open import Serializer.Bool open Serializer.Serializer {{...}} 2^ : ℕ -> ℕ 2^ zero = 1 2^ (suc b) = 2 * 2^ b --fromVec : ∀ {a n} {A : Set a} -> Vec A n -> Fin n fromVec : ∀ {n} -> Vec Bool n -> Fin (2^ n) fromVec {zero} [] = zero fromVec {suc n} (x ∷ x₁) = × 2 (2^ n) (from x) (fromVec x₁) toVec` : ∀ {n} -> Fin (2^ n) -> Vec Bool n toVec` {zero} x = [] toVec` {suc n} x with ⨂ 2 (2^ n) x toVec` {suc n} .(× 2 (2^ n) i j) | is× i j = (to i) ∷ (toVec` j) vec-from-cong : ∀ {n} -> Setoid._≈_ (setoid (Vec Bool n)) I.=[ fromVec ]⇒ Setoid._≈_ (setoid (Fin (2^ n))) vec-from-cong refl = refl vec-from-preserves-eq : ∀ {n} -> setoid (Vec Bool n) ⟶ setoid (Fin (2^ n)) vec-from-preserves-eq = record { _⟨$⟩_ = fromVec ; cong = vec-from-cong } vec-from-injective : ∀ {n} -> Injective (vec-from-preserves-eq {n}) vec-from-injective {zero} {[]} {[]} p with fromVec [] ... | p2 = refl vec-from-injective {suc n} {x ∷ x₁} {y ∷ y₁} p with (⨂ 2 (2^ n) (fromVec (x ∷ x₁))) | (⨂ 2 (2^ n) (fromVec (y ∷ y₁))) ... | a1 | b2 with vec-from-injective {n} {x₁} {y₁} ... | c with c (×-equal₁ {x₁ = (fromBool x)} {x₂ = (fromBool y)} p) | (×-equal₂ {x₁ = (fromBool x)} {x₂ = (fromBool y)} p) ... | p1 | p2 with from-bool-injective p2 vec-from-injective {suc n} {x ∷ x₁} {.x ∷ .x₁} p | a1 | b2 | c | refl | p2 | refl = refl vec-from-surjective : ∀ {n} -> Surjective (vec-from-preserves-eq {n}) vec-from-surjective {n} = record { from = preserves-eq-inv ; right-inverse-of = (inv {n}) } where cong-inverse : ∀ {n} -> Setoid._≈_ (setoid (Fin (2^ n))) I.=[ toVec` ]⇒ Setoid._≈_ (setoid (Vec Bool n)) cong-inverse refl = refl preserves-eq-inv : ∀ {n} -> setoid (Fin (2^ n)) ⟶ setoid (Vec Bool n) preserves-eq-inv = record { _⟨$⟩_ = toVec` ; cong = cong-inverse } inv : ∀ {n} -> (preserves-eq-inv {n}) RightInverseOf (vec-from-preserves-eq {n}) inv {zero} zero = refl inv {zero} (suc ()) inv {suc n₁} x with ⨂ 2 (2^ n₁) x inv {suc n₁} .(× 2 (2^ n₁) i j) | is× i j rewrite (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Bool})))) i | (inv {n₁} j) = refl
{ "alphanum_fraction": 0.6098360656, "avg_line_length": 40.3676470588, "ext": "agda", "hexsha": "d4143e3f431b72a7273a1dc08b2f73d4c45cf623", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "Serializer/VecBool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "Serializer/VecBool.agda", "max_line_length": 131, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "Serializer/VecBool.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 1039, "size": 2745 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.PushoutComm where -- How do I prevent [to] from being exported? private module _ {i j k} (s : Span {i} {j} {k}) where open Span s flip : Span flip = span B A C g f to : Pushout s → Pushout flip to = To.f module M where module To = PushoutRec right left (λ (c : C) → ! (glue c)) open M public private module _ {i j k} (s : Span {i} {j} {k}) where to-to-flip : (x : Pushout (flip s)) → to s (to (flip s) x) == x to-to-flip = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-∘=idf-in (to s) (to (flip s)) (ap (to s) (ap (to (flip s)) (glue c)) =⟨ To.glue-β (flip s) c |in-ctx ap (to s) ⟩ ap (to s) (! (glue c)) =⟨ ap-! (to s) (glue c) ⟩ ! (ap (to s) (glue c)) =⟨ To.glue-β s c |in-ctx ! ⟩ ! (! (glue c)) =⟨ !-! (glue c) ⟩ glue c ∎)) module _ {i j k} (s : Span {i} {j} {k}) where Pushout-comm : Pushout s ≃ Pushout (flip s) Pushout-comm = equiv (to s) (to (flip s)) (to-to-flip s) (to-to-flip (flip s))
{ "alphanum_fraction": 0.4990875912, "avg_line_length": 27.4, "ext": "agda", "hexsha": "c65e70a7ad08ab058b11e68fc905b48ef6107c49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PushoutComm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PushoutComm.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PushoutComm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 432, "size": 1096 }
module Extensions.ListFirstFunctional where open import Prelude hiding (_⊔_) open import Level private lemma : ∀ {a b} {A : Set a} {P : A → Set b} (decP : ∀ a → (Dec $ P a)) v {x y} → any decP (x List.∷ v) ≡ yes (there {x = x} y) → ¬ P x lemma decP v {x} {y} eq p with decP x lemma decP v () p | yes _ lemma decP v eq p | no ¬p = ¬p p -- first is functionally defined as the element matched by 'any' First : ∀ {a b} {A : Set a} {P : A → Set b} (decP : ∀ a → (Dec $ P a)) → List A → Set (a ⊔ b) First f v = ∃ λ m → any f v ≡ yes m private There : ∀ {a b} {A : Set a} {P : A → Set b} {f v} → (f : First {P = P} f v) → Set There (here px , _) = ⊥ There (there _ , _) = ⊤ head-first : ∀ {a b} {A : Set a} {P : A → Set b} {f v} → First {P = P} f v → A head-first (here {x} _ , _) = x head-first (there {x} _ , _) = x -- we can recover the negative evidence even though Any does not "save it" for there-instances there⟶¬x' : ∀ {a b} {A : Set a} {P : A → Set b} {decP v} → (f : First {P = P} decP v) → {x : There f} → ¬ P (head-first f) there⟶¬x' (here px , proj₂) {x = ()} there⟶¬x' {P = P} {decP = decP} (there {x = x'} {xs = xs} tail , proj₂) px with lemma decP xs there⟶¬x' {P = P} {decP = decP} (there {x = x'} {xs = xs} tail , proj₂) px | ¬px = ¬px proj₂ px
{ "alphanum_fraction": 0.5130305287, "avg_line_length": 41.96875, "ext": "agda", "hexsha": "2e3ac8301d278f34f08820d90270c386b77aa02d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Extensions/ListFirstFunctional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Extensions/ListFirstFunctional.agda", "max_line_length": 95, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Extensions/ListFirstFunctional.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 537, "size": 1343 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition07b where open import Common.FOL postulate P : D → Set -- We test the translation of a definition where we need to erase -- proof terms. foo : ∀ {a} → P a → P a → a ≡ a foo {a} Pa₁ Pa₂ = bar where c : D c = a {-# ATP definition c #-} postulate bar : c ≡ a {-# ATP prove bar #-}
{ "alphanum_fraction": 0.4410480349, "avg_line_length": 24.5357142857, "ext": "agda", "hexsha": "27222d6e101d801ee0f2f78e6862830b2d8fc3e9", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "issues/Issue81/Definition07b.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "issues/Issue81/Definition07b.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "issues/Issue81/Definition07b.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 149, "size": 687 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.FinWedge module homotopy.Bouquet where Rose : ∀ {i} (I : Type i) → Type i Rose I = BigWedge {A = I} (λ _ → ⊙S¹) Bouquet-family : ∀ {i} (I : Type i) (m : ℕ) → (I → Ptd₀) Bouquet-family I m _ = ⊙Sphere m Bouquet : ∀ {i} (I : Type i) (m : ℕ) → Type i Bouquet I m = BigWedge (Bouquet-family I m) ⊙Bouquet : ∀ {i} (I : Type i) (m : ℕ) → Ptd i ⊙Bouquet I m = ⊙BigWedge (Bouquet-family I m) BouquetLift-family : ∀ {i} (I : Type i) (m : ℕ) → (I → Ptd i) BouquetLift-family {i} I m _ = ⊙Lift {j = i} (⊙Sphere m) BouquetLift : ∀ {i} (I : Type i) (m : ℕ) → Type i BouquetLift {i} I m = BigWedge (BouquetLift-family I m) ⊙BouquetLift : ∀ {i} (I : Type i) (m : ℕ) → Ptd i ⊙BouquetLift {i} I m = ⊙BigWedge (BouquetLift-family I m) FinBouquetLift-family : ∀ {i} (I m : ℕ) → (Fin I → Ptd i) FinBouquetLift-family {i} I m _ = ⊙Lift {j = i} (⊙Sphere m) ⊙FinBouquetLift : ∀ {i} (I m : ℕ) → Ptd i ⊙FinBouquetLift I m = ⊙FinWedge (FinBouquetLift-family I m) FinBouquet-family : (I m : ℕ) → (Fin I → Ptd₀) FinBouquet-family I m _ = ⊙Sphere m FinBouquet : (I m : ℕ) → Type₀ FinBouquet I m = FinWedge (FinBouquet-family I m) ⊙FinBouquet : (I m : ℕ) → Ptd₀ ⊙FinBouquet I m = ⊙FinWedge (FinBouquet-family I m)
{ "alphanum_fraction": 0.6089341693, "avg_line_length": 29.6744186047, "ext": "agda", "hexsha": "21eaba1fcbd948f687b22b7c8e98dcd7fc6069b4", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/Bouquet.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/Bouquet.agda", "max_line_length": 61, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/Bouquet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 587, "size": 1276 }
module Data.Nat.Extra where open import Data.Nat open import Data.Bool isZero : ℕ → Bool isZero 0 = true isZero (suc _) = false
{ "alphanum_fraction": 0.7307692308, "avg_line_length": 14.4444444444, "ext": "agda", "hexsha": "40af58dd8e2eabc63adbc5f03de4707eeb1f7fd0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Nat/Extra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Nat/Extra.agda", "max_line_length": 27, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Nat/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 42, "size": 130 }
module Tactic.Nat.Exp where open import Prelude Var = Nat Env : Set → Set Env Atom = Atom → Nat infixl 6 _⟨+⟩_ infixl 7 _⟨*⟩_ data Exp (Atom : Set) : Set where var : (x : Atom) → Exp Atom lit : (n : Nat) → Exp Atom _⟨+⟩_ _⟨*⟩_ : (e e₁ : Exp Atom) → Exp Atom ⟦_⟧e : ∀ {Atom} → Exp Atom → Env Atom → Nat ⟦ var x ⟧e ρ = ρ x ⟦ lit n ⟧e ρ = n ⟦ e₁ ⟨+⟩ e₂ ⟧e ρ = ⟦ e₁ ⟧e ρ + ⟦ e₂ ⟧e ρ ⟦ e₁ ⟨*⟩ e₂ ⟧e ρ = ⟦ e₁ ⟧e ρ * ⟦ e₂ ⟧e ρ
{ "alphanum_fraction": 0.5148741419, "avg_line_length": 18.2083333333, "ext": "agda", "hexsha": "4a327fa6a00ed5ae98e0a2f9cb9766ca3d7d9bd4", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Exp.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Exp.agda", "max_line_length": 44, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Exp.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 231, "size": 437 }
module DTGP.State where open import Data.Product infixl 1 _>>=_ _=<<_ data State (S A : Set) : Set where state : (S → A × S) → State S A runState : ∀ {S A} → State S A → S → A × S runState (state f) = f return : ∀ {S A} → A → State S A return a = state (λ s → a , s) _>>=_ : {S A B : Set} → State S A → (A → State S B) → State S B state h >>= f = state λ s → let a,newState = h s stateg = f (proj₁ a,newState) in runState stateg (proj₂ a,newState) _=<<_ : {S A B : Set} → (A → State S B) → State S A → State S B f =<< stateh = stateh >>= f
{ "alphanum_fraction": 0.550802139, "avg_line_length": 22.44, "ext": "agda", "hexsha": "4cee58c2cdc13cac4749c2630e3907bbb84e7a66", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:14.000Z", "max_forks_repo_forks_event_min_datetime": "2018-04-17T02:02:58.000Z", "max_forks_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/dtgp", "max_forks_repo_path": "src/DTGP/State.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/dtgp", "max_issues_repo_path": "src/DTGP/State.agda", "max_line_length": 63, "max_stars_count": 9, "max_stars_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/dtgp", "max_stars_repo_path": "src/DTGP/State.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:39:58.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-20T16:46:00.000Z", "num_tokens": 217, "size": 561 }
open import Nat open import Prelude open import List open import Hazelnut-core module Hazelnut-checks where ----------------------------------------------------------------------------- -- these theorems aren't listed in the draft, but have been discussed -- since submission. broadly speaking, they act as sanity checks on the -- rules. if these properties can't be proven for any extensions to the -- language, then the rules are not good. ----------------------------------------------------------------------------- -- movement doesn't change the term other than moving the focus around. moveerase : {e e' : ê} {δ : direction} {t : τ̇} → (e + move δ +>e e') → (e ◆e) == (e' ◆e) moveerase EMAscFirstChild = refl moveerase EMAscParent1 = refl moveerase EMAscParent2 = refl moveerase EMAscNextSib = refl moveerase EMAscPrevSib = refl moveerase EMLamFirstChild = refl moveerase EMLamParent = refl moveerase EMPlusFirstChild = refl moveerase EMPlusParent1 = refl moveerase EMPlusParent2 = refl moveerase EMPlusNextSib = refl moveerase EMPlusPrevSib = refl moveerase EMApFirstChild = refl moveerase EMApParent1 = refl moveerase EMApParent2 = refl moveerase EMApNextSib = refl moveerase EMApPrevSib = refl moveerase EMFHoleFirstChild = refl moveerase EMFHoleParent = refl -- describes lists of action whose semantics are composable data iterok : Set where -- iterates a list of actions that can be composed data iterate : iterok → ê → ê → Set where --constructability mutual constructable1 : {Γ : ·ctx} {e : ê} {t : τ̇} → (wt : Γ ⊢ (e ◆e) => t) → Σ[ αs ∈ iterok ] (Σ[ e' ∈ ê ] ((iterate αs (▹ <||> ◃) e') × ((e ◆e) == (e' ◆e)))) constructable1 = {!!} constructable2 : {Γ : ·ctx} {e : ê} {t : τ̇} → (wt : Γ ⊢ (e ◆e) <= t) → Σ[ αs ∈ iterok ] (Σ[ e' ∈ ê ] ((iterate αs (▹ <||> ◃) e') × ((e ◆e) == (e' ◆e)))) constructable2 = {!!} --reachability mutual reachable1 : {Γ : ·ctx} {e e' : ê} {t : τ̇} (wt : Γ ⊢ (e ◆e) <= t) → (wt' : Γ ⊢ (e' ◆e) <= t) → (p : (e ◆e) == (e' ◆e)) → Σ[ αs ∈ iterok ] (iterate αs e e') reachable1 = {!!} reachable2 : {Γ : ·ctx} {e e' : ê} {t : τ̇} (wt : Γ ⊢ (e ◆e) => t) → (wt' : Γ ⊢ (e' ◆e) => t) → (p : (e ◆e) == (e' ◆e)) → Σ[ αs ∈ iterok ] (iterate αs e e') reachable2 = {!!}
{ "alphanum_fraction": 0.4871794872, "avg_line_length": 34.9480519481, "ext": "agda", "hexsha": "3033241692107d6a9b0fe7c7479f72fcf1f5631c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Hazelnut-checks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Hazelnut-checks.agda", "max_line_length": 79, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ivoysey/agda-tfp16", "max_stars_repo_path": "Hazelnut-checks.agda", "max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z", "num_tokens": 861, "size": 2691 }
-- Typing contexts and environments module Syntax.Context where open import Syntax.Types open import Relation.Binary using (IsPreorder) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Data.Sum -- | Data types -- A type judgement with temporal qualifiers: -- a type is either inhabited now, or always data Judgement : Set where _now : Type -> Judgement _always : Type -> Judgement infixl 60 _now infixl 60 _always -- Typing context as a list of types data Context : Set where ∙ : Context _,_ : Context -> Judgement -> Context infixl 50 _,_ -- | Context operations and predicates -- Singleton context [_] : Judgement -> Context [ A ] = ∙ , A -- Concatenation of contexts _⌊⌋_ : Context -> Context -> Context Γ ⌊⌋ ∙ = Γ Γ ⌊⌋ (Γ′ , A) = (Γ ⌊⌋ Γ′) , A infixl 45 _⌊⌋_ -- Type in the middle of a context _⌊_⌋_ : Context -> Judgement -> Context -> Context Γ ⌊ A ⌋ Γ′ = Γ , A ⌊⌋ Γ′ infixl 45 _⌊_⌋_ -- Stabilise the context by filtering out the stable types _ˢ : Context -> Context ∙ ˢ = ∙ (Γ , A now) ˢ = Γ ˢ (Γ , A always) ˢ = Γ ˢ , A always infixl 60 _ˢ -- Predicate for context membership data _∈_ : Judgement -> Context -> Set where top : ∀{Γ A} -> A ∈ Γ , A pop : ∀{Γ A B} -> A ∈ Γ -> A ∈ Γ , B infix 35 _∈_ -- Predicate for context subset relation data _⊆_ : Context -> Context -> Set where refl : ∀{Γ} -> Γ ⊆ Γ keep : ∀{Γ Γ′ A} -> Γ ⊆ Γ′ -> Γ , A ⊆ Γ′ , A drop : ∀{Γ Γ′ A} -> Γ ⊆ Γ′ -> Γ ⊆ Γ′ , A infix 30 _⊆_ -- || Context lemmas -- | Element and subcontext relations -- Element of a subset is an element of a set. ∈-⊆-monotone : ∀{Γ Γ′ A} -> Γ ⊆ Γ′ -> A ∈ Γ -> A ∈ Γ′ ∈-⊆-monotone refl e = e ∈-⊆-monotone (keep p) top = top ∈-⊆-monotone (keep p) (pop e) = pop (∈-⊆-monotone p e) ∈-⊆-monotone (drop p) e = pop (∈-⊆-monotone p e) -- Subset relation is reflexive ⊆-refl-eq : ∀{Γ Γ′} -> Γ ≡ Γ′ -> Γ ⊆ Γ′ ⊆-refl-eq refl = refl -- Subset relation is transitive ⊆-trans : ∀{Γ Δ Ξ} -> Γ ⊆ Δ -> Δ ⊆ Ξ -> Γ ⊆ Ξ ⊆-trans refl c2 = c2 ⊆-trans c1 refl = c1 ⊆-trans c1 (drop c2) = drop (⊆-trans c1 c2) ⊆-trans (keep c1) (keep c2) = keep (⊆-trans c1 c2) ⊆-trans (drop c1) (keep c2) = drop (⊆-trans c1 c2) -- Subset relation is a preorder ⊆-po : IsPreorder _≡_ _⊆_ ⊆-po = record { isEquivalence = isEquivalence ; reflexive = ⊆-refl-eq ; trans = ⊆-trans } -- | Concatenation -- Concatenation of two contexts is a superset of one of the contexts Γ⊆Γ⌊⌋Δ : ∀(Γ Δ : Context) -> Γ ⊆ Γ ⌊⌋ Δ Γ⊆Γ⌊⌋Δ Γ ∙ = refl Γ⊆Γ⌊⌋Δ Γ (Δ , x) = drop (Γ⊆Γ⌊⌋Δ Γ Δ) -- Concatenation of two contexts is associative ⌊⌋-assoc : ∀(Γ Δ Ξ : Context) -> (Γ ⌊⌋ Δ) ⌊⌋ Ξ ≡ Γ ⌊⌋ (Δ ⌊⌋ Ξ) ⌊⌋-assoc Γ Δ ∙ = refl ⌊⌋-assoc Γ Δ (Ξ , C) = cong (_, C) (⌊⌋-assoc Γ Δ Ξ) -- Concatenation of two spliced contexts is associative ⌊A⌋-assoc : ∀(Γ Δ Ξ : Context) A B -> (Γ ⌊ A ⌋ Δ) ⌊ B ⌋ Ξ ≡ Γ ⌊ A ⌋ (Δ ⌊ B ⌋ Ξ) ⌊A⌋-assoc Γ Δ ∙ A B = refl ⌊A⌋-assoc Γ Δ (Ξ , C) A B = cong (_, C) (⌊A⌋-assoc Γ Δ Ξ A B) -- | Stabilisation -- Stabilised context is a subset of the full context Γˢ⊆Γ : ∀ Γ -> Γ ˢ ⊆ Γ Γˢ⊆Γ ∙ = refl Γˢ⊆Γ (Γ , A now) = drop (Γˢ⊆Γ Γ) Γˢ⊆Γ (Γ , A always) = keep (Γˢ⊆Γ Γ) -- Stabilised spliced context is subset of full spliced context Γˢ⊆Γ-mid : ∀ (Γ Γ′ : Context) {A} -> Γ ˢ ⌊ A ⌋ Γ′ ˢ ⊆ Γ ⌊ A ⌋ Γ′ Γˢ⊆Γ-mid Γ ∙ = keep (Γˢ⊆Γ Γ) Γˢ⊆Γ-mid Γ (Γ′ , B now) = drop (Γˢ⊆Γ-mid Γ Γ′) Γˢ⊆Γ-mid Γ (Γ′ , B always) = keep (Γˢ⊆Γ-mid Γ Γ′) -- Stabilisation is idempotent ˢ-idemp : ∀ Γ -> Γ ˢ ˢ ≡ Γ ˢ ˢ-idemp ∙ = refl ˢ-idemp (Γ , A now) = ˢ-idemp Γ ˢ-idemp (Γ , A always) rewrite ˢ-idemp Γ = refl -- Stabilisation preserves concatenation ˢ-pres-⌊⌋ : ∀ (Γ Γ′ : Context) -> (Γ ⌊⌋ Γ′) ˢ ≡ Γ ˢ ⌊⌋ Γ′ ˢ ˢ-pres-⌊⌋ Γ ∙ = refl ˢ-pres-⌊⌋ Γ (Γ′ , A now) = ˢ-pres-⌊⌋ Γ Γ′ ˢ-pres-⌊⌋ Γ (Γ′ , A always) rewrite ˢ-pres-⌊⌋ Γ Γ′ = refl -- Stabilisation preserves subcontext relation ˢ-⊆-monotone : ∀{Γ Γ′} -> Γ ⊆ Γ′ -> Γ ˢ ⊆ Γ′ ˢ ˢ-⊆-monotone refl = refl ˢ-⊆-monotone (keep {Γ} {Γ′} {A now} s) = ˢ-⊆-monotone s ˢ-⊆-monotone (keep {Γ} {Γ′} {A always} s) = keep (ˢ-⊆-monotone s) ˢ-⊆-monotone (drop {Γ} {Γ′} {A now} s) = ˢ-⊆-monotone s ˢ-⊆-monotone (drop {Γ} {Γ′} {A always} s) = drop (ˢ-⊆-monotone s) -- The context of stable variables can be stabilised ˢ-∈-always : ∀{Γ A} -> A always ∈ Γ -> A always ∈ Γ ˢ ˢ-∈-always {.(_ , _ always)} top = top ˢ-∈-always {Γ , B now} (pop e) = ˢ-∈-always e ˢ-∈-always {Γ , B always} (pop e) = pop (ˢ-∈-always e) -- | Other lemmas -- If B ∈ Γ ⌊ A ⌋ Γ′ then either B is equal to A, or B is in Γ ⌊⌋ Γ′ var-disjoint : ∀(Γ Γ′ : Context) {A B} -> B ∈ Γ ⌊ A ⌋ Γ′ -> (B ≡ A) ⊎ (B ∈ Γ ⌊⌋ Γ′) var-disjoint Γ ∙ top = inj₁ refl var-disjoint Γ ∙ (pop e) = inj₂ e var-disjoint Γ (Γ′ , C) top = inj₂ top var-disjoint Γ (Γ′ , C) (pop e) with var-disjoint Γ Γ′ e var-disjoint Γ (Γ′ , C) (pop e) | inj₁ B≡A = inj₁ B≡A var-disjoint Γ (Γ′ , C) (pop e) | inj₂ y = inj₂ (pop y)
{ "alphanum_fraction": 0.5718692165, "avg_line_length": 29.2951807229, "ext": "agda", "hexsha": "6cee085a0d0a6968791a2b8bfb4b4a90554a6fd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Syntax/Context.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Syntax/Context.agda", "max_line_length": 84, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Syntax/Context.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 2445, "size": 4863 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB -- This module defines a model of a distributed system, parameterized by -- SystemParameters, which establishes various application-dependent types, -- handlers, etc. The model supports a set of peers executing handlers in -- response to messages received; these handlers can update the peer's -- local state and/or send additional messages. The model also enables -- "cheat" steps, which can send arbitrary messages, except that they are -- constrained to prevent a cheat step from introducing a new signature for -- an "honest" public key. The module also contains some structures for -- proving properties of executions of the modeled system. module LibraBFT.Yasm.System (ℓ-EC : Level) (EpochConfig : Set ℓ-EC) (epochId : EpochConfig → EpochId) (authorsN : EpochConfig → ℕ) (parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN) where data InitStatus : Set where uninitd : InitStatus initd : InitStatus open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN open SystemParameters parms open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN using (AvailableEpochs) renaming (lookup'' to EC-lookup) import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN as AE open import Util.FunctionOverride PeerId _≟PeerId_ open import LibraBFT.Base.PKCS SenderMsgPair : Set SenderMsgPair = PeerId × Msg SentMessages : Set SentMessages = List SenderMsgPair -- The model supports sending messages that contain some fields that are -- /not/ covered by the message's signature. Therefore, given a message -- with a verifiable signature, it is possible for a propositionally -- different message that verifies against the same signature to have been -- sent before, which is captured by the following definition. record MsgWithSig∈ (pk : PK)(sig : Signature)(pool : SentMessages) : Set where constructor mkMsgWithSig∈ field msgWhole : Msg msgPart : Part msg⊆ : msgPart ⊂Msg msgWhole msgSender : PeerId msg∈pool : (msgSender , msgWhole) ∈ pool msgSigned : WithVerSig pk msgPart msgSameSig : ver-signature msgSigned ≡ sig open MsgWithSig∈ public postulate -- TODO-1: prove it MsgWithSig∈? : ∀ {pk} {sig} {pool} → Dec (MsgWithSig∈ pk sig pool) MsgWithSig∈-++ʳ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig pool → MsgWithSig∈ pk sig (ms ++ pool) MsgWithSig∈-++ʳ {ms = pre} msig = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = Any-++ʳ pre (msg∈pool msig) ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } MsgWithSig∈-++ˡ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig ms → MsgWithSig∈ pk sig (ms ++ pool) MsgWithSig∈-++ˡ {ms = pre} msig = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = Any-++ˡ (msg∈pool msig) ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } MsgWithSig∈-transp : ∀{pk sig pool pool'} → (mws : MsgWithSig∈ pk sig pool) → (msgSender mws , msgWhole mws) ∈ pool' → MsgWithSig∈ pk sig pool' MsgWithSig∈-transp msig ∈pool' = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = ∈pool' ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } -- * Forbidding the Forging of Signatures -- -- Whenever our reasoning must involve digital signatures, it is standard -- to talk about EUF-CMA resistant signature schemes. Informally, this captures -- signatures schemes that cannot be compromised by certain adversaries. -- Formally, it means that for any probabilistic-polynomial-time adversary 𝓐, -- and some security parameter k: -- -- Pr[ EUF-CMA(k) ] ≤ ε(k) for ε a negigible function. -- -- EUF-CMA is defined as: -- -- EUF-CMA(k): | O(m): -- L ← ∅ | σ ← Sign(sk , m) -- (pk, sk) ← Gen(k) | L ← L ∪ { m } -- (m , σ) ← 𝓐ᴼ(pk) | return σ -- return (Verify(pk, m, σ) ∧ m ∉ L) | -- -- This says that 𝓐 cannot create a message that has /not yet been signed/ and -- forge a signature for it. The list 'L' keeps track of the messages that 𝓐 -- asked to be signed by the oracle. -- -- Because the probability of the adversary to win the EUF-CMA(k) game -- approaches 0 as k increases; it is reasonable to assume that winning -- the game is /impossible/ for realistic security parameters. -- -- EUF-CMA security is incorporated into our model by constraining messages -- sent by a cheat step to ensure that for every verifiably signed part of -- such a message, if there is a signature on the part, then it is either for -- a dishonest public key (in which cases it's secret key may have been leaked), -- or a message has been sent with the same signature before (in which case the -- signature is simply being "replayed" from a previous message). -- -- Dishonest (or "cheat") messages are those that are not the result of -- a /handle/ or /init/ call, but rather are the result of a /cheat/ step. -- -- A part of a cheat message can contain a verifiable signature only if it -- is for a dishonest public key, or a message with the same signature has -- been sent before (a cheater can "reuse" an honest signature sent -- before; it just can't produce a new one). Note that this constraint -- precludes a peer sending a message that contains a new verifiable -- signature for an honest PK, even if the PK is the peer's own PK for -- some epoch (implying that the peer possesses the associated secret -- key). In other words, a peer that is honest for a given epoch (by -- virtue of being a member of that epoch and being assigned an honest PK -- for the epoch), cannot send a message for that epoch using a cheat -- step. CheatPartConstraint : SentMessages → Part → Set CheatPartConstraint pool m = ∀{pk} → (ver : WithVerSig pk m) → Meta-Dishonest-PK pk ⊎ MsgWithSig∈ pk (ver-signature ver) pool -- The only constraints on messages sent by cheat steps are that: -- * the sender is not an honest member in the epoch of any part of the message -- * the signature on any part of the message satisfies CheatCanSign, meaning -- that it is not a new signature for an honest public key CheatMsgConstraint : SentMessages → Msg → Set CheatMsgConstraint pool m = ∀{part} → part ⊂Msg m → CheatPartConstraint pool part -- * The System State -- -- A system consists in a partial map from PeerId to PeerState, a pool -- of sent messages and a number of available epochs. record SystemState (e : ℕ) : Set ℓ-EC where field peerStates : PeerId → PeerState initialised : PeerId → InitStatus msgPool : SentMessages -- All messages ever sent availEpochs : AvailableEpochs e open SystemState public initialState : SystemState 0 initialState = record { peerStates = const initPS ; initialised = const uninitd ; msgPool = [] ; availEpochs = [] } -- Convenience function for appending an epoch to the system state pushEpoch : ∀{e} → EpochConfigFor e → SystemState e → SystemState (suc e) pushEpoch 𝓔 st = record { peerStates = peerStates st ; initialised = initialised st ; msgPool = msgPool st ; availEpochs = AE.append 𝓔 (availEpochs st) } -- * Small Step Semantics -- -- The small step semantics are divided into three datatypes: -- -- i) StepPeerState executes a step through init or handle -- ii) StepPeer executes a step through StepPeerState or cheat -- iii) Step transitions the system state by a StepPeer or by -- bringing a new epoch into existence -- The pre and post states of Honest peers are related iff data StepPeerState {e}(pid : PeerId)(𝓔s : AvailableEpochs e)(pool : SentMessages) (peerInits : PeerId → InitStatus) (ps : PeerState) : (PeerId → InitStatus) → (PeerState × List Msg) → Set where -- The peer receives an "initialization package"; for now, this consists -- of the actual EpochConfig for the epoch being initialized. Later, we -- may move to a more general scheme, enabled by assuming a function -- 'render : InitPackage -> EpochConfig'. step-init : ∀ (ix : Fin e) → StepPeerState pid 𝓔s pool peerInits ps ⟦ peerInits , pid ← initd ⟧ (init pid (AE.lookup' 𝓔s ix) ps) -- The peer processes a message in the pool step-msg : ∀{m} → m ∈ pool → peerInits pid ≡ initd → StepPeerState pid 𝓔s pool peerInits ps peerInits (handle pid (proj₂ m) ps) -- The pre-state of the suplied PeerId is related to the post-state and list of output messages iff: data StepPeer {e}(pre : SystemState e) : PeerId → PeerState → List Msg → Set where -- it can be obtained by a handle or init call. step-honest : ∀{pid st outs init'} → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) (peerStates pre pid) init' (st , outs) → StepPeer pre pid st outs -- or the peer decides to cheat. CheatMsgConstraint ensures it cannot -- forge signatures by honest peers. Cheat steps do not modify peer -- state: these are maintained exclusively by the implementation -- handlers. step-cheat : ∀{pid} → (fm : SentMessages → PeerState → Msg) → let m = fm (msgPool pre) (peerStates pre pid) in CheatMsgConstraint (msgPool pre) m → StepPeer pre pid (peerStates pre pid) (m ∷ []) isCheat : ∀ {e pre pid ms outs} → StepPeer {e} pre pid ms outs → Set isCheat (step-honest _) = ⊥ isCheat (step-cheat _ _) = Unit -- Computes the post-sysstate for a given step-peer. StepPeer-post : ∀{e pid st' outs}{pre : SystemState e} → StepPeer pre pid st' outs → SystemState e StepPeer-post {e} {pid} {st'} {outs} {pre} _ = record pre { peerStates = ⟦ peerStates pre , pid ← st' ⟧ ; msgPool = List-map (pid ,_) outs ++ msgPool pre } StepPeer-post-lemma : ∀{e pid st' outs}{pre : SystemState e} → (pstep : StepPeer pre pid st' outs) → st' ≡ peerStates (StepPeer-post pstep) pid StepPeer-post-lemma pstep = sym override-target-≡ cheatStepDNMPeerStates : ∀{e pid st' outs}{pre : SystemState e} → (theStep : StepPeer pre pid st' outs) → isCheat theStep → peerStates (StepPeer-post theStep) ≡ peerStates pre cheatStepDNMPeerStates {pid = pid} {pre = pre} (step-cheat _ _) _ = overrideSameVal-correct-ext {f = peerStates pre} {pid} cheatStepDNMPeerStates₁ : ∀{e pid pid' st' outs}{pre : SystemState e} → (theStep : StepPeer pre pid st' outs) → isCheat theStep → peerStates (StepPeer-post theStep) pid' ≡ peerStates pre pid' cheatStepDNMPeerStates₁ {_} {pid} {pid'} (step-cheat fm x₁) x = overrideSameVal-correct pid pid' data Step : ∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC where step-epoch : ∀{e}{pre : SystemState e} → (𝓔 : EpochConfigFor e) -- TODO-3: Eventually, we'll condition this step to only be -- valid when peers on the previous epoch have agreed that 𝓔 -- is the new one. → ∃EnoughValidCommitMsgsFor pre 𝓔 → Step pre (pushEpoch 𝓔 pre) step-peer : ∀{e pid st' outs}{pre : SystemState e} → (pstep : StepPeer pre pid st' outs) → Step pre (StepPeer-post pstep) msgs-stable : ∀ {e e'} {pre : SystemState e} {post : SystemState e'} {m} → (theStep : Step pre post) → m ∈ msgPool pre → m ∈ msgPool post msgs-stable (step-epoch _) m∈ = m∈ msgs-stable (step-peer {pid = pid} {outs = outs} _) m∈ = Any-++ʳ (List-map (pid ,_) outs) m∈ peersRemainInitialized : ∀ {pid} {e e'} {pre : SystemState e} {post : SystemState e'} → (theStep : Step pre post) → initialised pre pid ≡ initd → initialised post pid ≡ initd peersRemainInitialized (step-epoch _) isInitd = isInitd peersRemainInitialized {pid} (step-peer step) isInitd with step ... | step-cheat _ _ = isInitd ... | step-honest {pidS} {st} {outs} stp with pid ≟PeerId pidS ...| yes refl = isInitd ...| no imp = isInitd -- not used yet, but some proofs could probably be cleaned up using this, -- e.g., prevVoteRnd≤-pred-step in Impl.VotesOnce sendMessages-target : ∀ {m : SenderMsgPair} {sm : SentMessages} {ml : List SenderMsgPair} → ¬ (m ∈ sm) → m ∈ (ml ++ sm) → m ∈ ml sendMessages-target {ml = ml} ¬m∈sm m∈++ with Any-++⁻ ml m∈++ ...| inj₁ m∈ml = m∈ml ...| inj₂ m∈sm = ⊥-elim (¬m∈sm m∈sm) step-epoch-does-not-send : ∀ {e} (pre : SystemState e) (𝓔 : EpochConfigFor e) → msgPool (pushEpoch 𝓔 pre) ≡ msgPool pre step-epoch-does-not-send _ _ = refl -- * Reflexive-Transitive Closure data Step* : ∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC where step-0 : ∀{e}{pre : SystemState e} → Step* pre pre step-s : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → Step* fst pre → Step pre post → Step* fst post ReachableSystemState : ∀{e} → SystemState e → Set ℓ-EC ReachableSystemState = Step* initialState eventProcessorPostSt : ∀ {pid s' s outs init'} {e} {st : SystemState e} → (r : ReachableSystemState st) → (stP : StepPeerState pid (availEpochs st) (msgPool st) (initialised st) (peerStates st pid) init' (s' , outs)) → peerStates (StepPeer-post {pre = st} (step-honest stP)) pid ≡ s → s ≡ s' eventProcessorPostSt _ _ ps≡s = trans (sym ps≡s) override-target-≡ Step*-mono : ∀{e e'}{st : SystemState e}{st' : SystemState e'} → Step* st st' → e ≤ e' Step*-mono step-0 = ≤-refl Step*-mono (step-s tr (step-peer _)) = Step*-mono tr Step*-mono (step-s tr (step-epoch _)) = ≤-step (Step*-mono tr) MsgWithSig∈-Step* : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → Step* st st' → MsgWithSig∈ pk sig (msgPool st) → MsgWithSig∈ pk sig (msgPool st') MsgWithSig∈-Step* step-0 msig = msig MsgWithSig∈-Step* (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step* tr msig MsgWithSig∈-Step* (step-s tr (step-peer ps)) msig = MsgWithSig∈-++ʳ (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-part : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → (tr : Step* st st') → (msig : MsgWithSig∈ pk sig (msgPool st)) → msgPart msig ≡ msgPart (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-part step-0 msig = refl MsgWithSig∈-Step*-part (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step*-part tr msig MsgWithSig∈-Step*-part (step-s tr (step-peer ps)) msig = MsgWithSig∈-Step*-part tr msig MsgWithSig∈-Step*-sender : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → (tr : Step* st st') → (msig : MsgWithSig∈ pk sig (msgPool st)) → msgSender msig ≡ msgSender (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-sender step-0 msig = refl MsgWithSig∈-Step*-sender (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step*-sender tr msig MsgWithSig∈-Step*-sender (step-s tr (step-peer ps)) msig = MsgWithSig∈-Step*-sender tr msig ------------------------------------------ -- Type synonym to express a relation over system states; SystemStateRel : (∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC) → Set (ℓ+1 ℓ-EC) SystemStateRel P = ∀{e e'}{st : SystemState e}{st' : SystemState e'} → P st st' → Set ℓ-EC -- Just like Data.List.Any maps a predicate over elements to a predicate over lists, -- Any-step maps a relation over steps to a relation over steps in a trace. data Any-Step (P : SystemStateRel Step) : SystemStateRel Step* where step-here : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → (cont : Step* fst pre) → {this : Step pre post}(prf : P this) → Any-Step P (step-s cont this) step-there : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → {cont : Step* fst pre} → {this : Step pre post} → (prf : Any-Step P cont) → Any-Step P (step-s cont this) Any-Step-⇒ : ∀ {P Q : SystemStateRel Step} → (∀ {e e'}{pre : SystemState e}{post : SystemState e'} → (x : Step pre post) → P {e} {e'} x → Q {e} {e'} x) → ∀ {e e' fst lst} {tr : Step* {e} {e'} fst lst} → Any-Step P tr → Any-Step Q tr Any-Step-⇒ p⇒q (step-here cont {this} prf) = step-here cont (p⇒q this prf) Any-Step-⇒ p⇒q (step-there anyStep) = step-there (Any-Step-⇒ p⇒q anyStep) Any-Step-elim : ∀{e₀ e₁}{st₀ : SystemState e₀}{st₁ : SystemState e₁}{P : SystemStateRel Step}{Q : Set ℓ-EC} → {r : Step* st₀ st₁} → (P⇒Q : ∀{d d'}{s : SystemState d}{s' : SystemState d'}{st : Step s s'} → P st → Step* s' st₁ → Q) → Any-Step P r → Q Any-Step-elim P⇒Q (step-here cont prf) = P⇒Q prf step-0 Any-Step-elim P⇒Q (step-there {this = this} f) = Any-Step-elim (λ p s → P⇒Q p (step-s s this)) f ------------------------------------------ module _ (P : ∀{e} → SystemState e → Set) where Step*-Step-fold : (∀{e}{st : SystemState e} → ReachableSystemState st → (𝓔 : EpochConfigFor e) → P st → P (pushEpoch 𝓔 st)) → (∀{e pid st' outs}{st : SystemState e} → ReachableSystemState st → (pstep : StepPeer st pid st' outs) → P st → P (StepPeer-post pstep)) → P initialState → ∀{e}{st : SystemState e} → (tr : ReachableSystemState st) → P st Step*-Step-fold fe fs p₀ step-0 = p₀ Step*-Step-fold fe fs p₀ (step-s tr (step-epoch 𝓔)) = fe tr 𝓔 (Step*-Step-fold fe fs p₀ tr) Step*-Step-fold fe fs p₀ (step-s tr (step-peer p)) = fs tr p (Step*-Step-fold fe fs p₀ tr)
{ "alphanum_fraction": 0.6109979633, "avg_line_length": 44.6363636364, "ext": "agda", "hexsha": "4aed98737d2fd903b59c1c48c0f76673612034b3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Yasm/System.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Yasm/System.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Yasm/System.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5583, "size": 19149 }
open import Data.Bool hiding (if_then_else_) open import Data.Empty open import Data.List open import Data.List.Properties open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import Relation.Binary.PropositionalEquality hiding (Extensionality ; [_]) open import Relation.Nullary open import Relation.Nullary.Negation module EffectAnnotations where open import Axiom.Extensionality.Propositional open import Axiom.UniquenessOfIdentityProofs -- ASSUMING FUNCTION EXTENSIONALITY postulate fun-ext : ∀ {a b} → Extensionality a b ifun-ext : ∀ {a b} → ExtensionalityImplicit a b -- SIGNAL AND INTERRUPT NAMES postulate Σₛ : Set -- SIGNAL AND INTERRUPT NAMES HAVE DECIDABLE EQUALITY postulate decₛ : (op op' : Σₛ) → Dec (op ≡ op') if_≡_then_else_ : {A : Set} → Σₛ → Σₛ → A → A → A if op ≡ op' then x else y with decₛ op op' ... | yes p = x ... | no ¬p = y ite-≡ : {A : Set} {op : Σₛ} {x y : A} → ----------------------------- if op ≡ op then x else y ≡ x ite-≡ {A} {op} with decₛ op op ite-≡ {A} {op} | yes p = refl ite-≡ {A} {op} | no ¬p = ⊥-elim (¬p refl) ite-≢ : {A : Set} {op op' : Σₛ} {x y : A} → op ≢ op' → ------------------------------ if op ≡ op' then x else y ≡ y ite-≢ {A} {op} {op'} p with decₛ op op' ite-≢ {A} {op} {op'} p | yes q = ⊥-elim (p q) ite-≢ {A} {op} {op'} p | no ¬q = refl -- EFFECT ANNOTATIONS FOR OUTGOING SIGNALS (O) AND INTERRUPT HANDLERS (I) mutual data O : Set where omap : (Σₛ → Maybe ⊤) → O data I : Set where imap : (Σₛ → Maybe (O × I)) → I -- EMPTY EFFECT ANNOTATIONS ∅ₒ : O ∅ₒ = omap (λ _ → nothing) ∅ᵢ : I ∅ᵢ = imap (λ _ → nothing) -- UNION OF EFFECT ANNOTATIONS ∪ₒ-aux' : (o o' : Maybe ⊤) → Maybe ⊤ ∪ₒ-aux' nothing o' = o' ∪ₒ-aux' (just tt) o' = just tt ∪ₒ-aux : (o o' : Σₛ → Maybe ⊤) → Σₛ → Maybe ⊤ ∪ₒ-aux o o' op = ∪ₒ-aux' (o op) (o' op) _∪ₒ_ : O → O → O (omap o) ∪ₒ (omap o') = omap (∪ₒ-aux o o') mutual ∪ᵢ-aux : (i i' : Σₛ → Maybe (O × I)) → Σₛ → Maybe (O × I) ∪ᵢ-aux i i' op = ∪ᵢ-aux' (i op) (i' op) ∪ᵢ-aux' : (oi oi' : Maybe (O × I)) → Maybe (O × I) ∪ᵢ-aux' nothing oi' = oi' ∪ᵢ-aux' (just oi'') nothing = just oi'' ∪ᵢ-aux' (just (o'' , (imap i''))) (just (o''' , (imap i'''))) = just (o'' ∪ₒ o''' , imap (∪ᵢ-aux i'' i''')) _∪ᵢ_ : I → I → I (imap i) ∪ᵢ (imap i') = imap (∪ᵢ-aux i i') -- SETTING THE VALUE OF EFFECT ANNOTATION AT A SPECIFIC INTERRUPT NAME _[_↦_]ᵢ : I → Σₛ → Maybe (O × I) → I (imap i) [ op ↦ v ]ᵢ = imap (λ op' → if op ≡ op' then v else i op') -- ACTION OF INTERRUPTS ON EFFECT ANNOTATIONS infix 40 _↓ₑ_ ↓ₑ-auxₒ : Σₛ → Maybe (O × I) → O → O ↓ₑ-auxₒ op nothing o = o ↓ₑ-auxₒ op (just (o' , i')) o = o ∪ₒ o' ↓ₑ-auxᵢ : Σₛ → Maybe (O × I) → I → I ↓ₑ-auxᵢ op nothing i = i ↓ₑ-auxᵢ op (just (o' , i')) i = (i [ op ↦ nothing ]ᵢ) ∪ᵢ i' _↓ₑ_ : Σₛ → O × I → O × I op ↓ₑ (omap o , imap i) = (↓ₑ-auxₒ op (i op) (omap o) , ↓ₑ-auxᵢ op (i op) (imap i)) -- GENERALISED ACTION OF INTERRUPTS ON EFFECT ANNOTATIONS _↓↓ₑ_ : List Σₛ → O × I → O × I [] ↓↓ₑ (o , i) = (o , i) (op ∷ ops) ↓↓ₑ (o , i) = op ↓ₑ (ops ↓↓ₑ (o , i)) ↓↓ₑ-act : {o : O} {i : I} → (ops ops' : List Σₛ) → ------------------------------------------------------ (ops ++ ops') ↓↓ₑ (o , i) ≡ ops ↓↓ₑ (ops' ↓↓ₑ (o , i)) ↓↓ₑ-act [] ops' = refl ↓↓ₑ-act (op ∷ ops) ops' = cong (λ oi → op ↓ₑ oi) (↓↓ₑ-act ops ops') -- CHECKING THE CONTENTS OF EFFECT ANNOTATIONS _∈ₒ_ : Σₛ → O → Set op ∈ₒ (omap o) = o op ≡ just tt lkpᵢ : Σₛ → I → Maybe (O × I) lkpᵢ op (imap i) = i op -- SUBTYPING RELATIONS FOR EFFECT ANNOTATIONS _⊑ₒ_ : O → O → Set o ⊑ₒ o' = (op : Σₛ) → op ∈ₒ o → op ∈ₒ o' data _⊑ᵢ_ (i i' : I) : Set where rel : ((op : Σₛ) → {o : O} → {i'' : I} → lkpᵢ op i ≡ just (o , i'') → Σ[ o' ∈ O ] Σ[ i''' ∈ I ] (lkpᵢ op i' ≡ just (o' , i''') × o ⊑ₒ o' × i'' ⊑ᵢ i''')) → i ⊑ᵢ i' -- SUBTYPING RELATIONS ARE PREORDERS ⊑ₒ-refl : {o : O} → --------- o ⊑ₒ o ⊑ₒ-refl = λ op p → p ⊑ₒ-trans : {o o' o'' : O} → o ⊑ₒ o' → o' ⊑ₒ o'' → ---------------- o ⊑ₒ o'' ⊑ₒ-trans p q = λ op r → q op (p op r) ⊑ᵢ-refl : {i : I} → --------- i ⊑ᵢ i ⊑ᵢ-refl {imap i} = rel (λ op {o'} → λ { {imap i'} → λ p → ⊑ᵢ-refl-aux (i op) p }) where ⊑ᵢ-refl-aux : (oi : Maybe (O × I)) → ---------------------------------------------------------------------------------- {o' : O} {i' : Σₛ → Maybe (O × I)} → oi ≡ just (o' , imap i') → Σ[ o'' ∈ O ] Σ[ i'' ∈ I ] (oi ≡ just (o'' , i'') × (o' ⊑ₒ o'') × (imap i' ⊑ᵢ i'')) ⊑ᵢ-refl-aux (just .(o' , imap i')) {o'} {i'} refl = o' , (imap i' , (refl , (⊑ₒ-refl , ⊑ᵢ-refl {imap i'}))) ⊑ᵢ-trans : {i i' i'' : I} → i ⊑ᵢ i' → i' ⊑ᵢ i'' → ----------------- i ⊑ᵢ i'' ⊑ᵢ-trans {i} {i'} {i''} (rel p) (rel q) = rel (λ op {o} {j} r → ⊑ᵢ-trans-aux o j op (p op r)) where ⊑ᵢ-trans-aux' : (o : O) → (j : I) → (op : Σₛ) → (o' : O) → (j' : I) → lkpᵢ op i' ≡ just (o' , j') → (o ⊑ₒ o') → (j ⊑ᵢ j') → Σ[ o'' ∈ O ] Σ[ j'' ∈ I ] (lkpᵢ op i'' ≡ just (o'' , j'') × (o' ⊑ₒ o'') × (j' ⊑ᵢ j'')) → Σ[ o'' ∈ O ] Σ[ j'' ∈ I ] (lkpᵢ op i'' ≡ just (o'' , j'') × (o ⊑ₒ o'') × (j ⊑ᵢ j'')) ⊑ᵢ-trans-aux' o j op o' j' r' s t (o'' , j'' , r'' , s' , t') = o'' , j'' , r'' , ⊑ₒ-trans s s' , ⊑ᵢ-trans t t' ⊑ᵢ-trans-aux : (o : O) → (j : I) → (op : Σₛ) → Σ[ o' ∈ O ] Σ[ j' ∈ I ] (lkpᵢ op i' ≡ just (o' , j') × (o ⊑ₒ o') × (j ⊑ᵢ j')) → Σ[ o'' ∈ O ] Σ[ j'' ∈ I ] (lkpᵢ op i'' ≡ just (o'' , j'') × (o ⊑ₒ o'') × (j ⊑ᵢ j'')) ⊑ᵢ-trans-aux o j op (o' , j' , r' , s , t) = ⊑ᵢ-trans-aux' o j op o' j' r' s t (q op r') -- SUBTYPING RELATIONS ARE PROOF-IRRELEVANT ≡-uip : {X : Set} {x x' : X} → (p q : x ≡ x') → ---------------- p ≡ q ≡-uip refl refl = refl ⊑ₒ-irrelevant : {o o' : O} (p q : o ⊑ₒ o') → ----------------- p ≡ q ⊑ₒ-irrelevant {omap o} {omap o'} p q = fun-ext (λ op → fun-ext (λ r → ⊑ₒ-irrelevant-aux r)) where ⊑ₒ-irrelevant-aux : {op : Σₛ} → (r : op ∈ₒ (omap o)) → ---------------------- p op r ≡ q op r ⊑ₒ-irrelevant-aux {op} r with p op r | q op r ... | s | t = ≡-uip s t ⊑ᵢ-irrelevant : {i i' : I} (p q : i ⊑ᵢ i') → ----------------- p ≡ q ⊑ᵢ-irrelevant {imap i} {imap i'} (rel p) (rel q) = cong (λ r → rel r) (fun-ext (λ op → ifun-ext (λ {o''} → ifun-ext (λ {i''} → fun-ext (λ r → ⊑ᵢ-irrelevant-aux r))))) where ⊑ᵢ-irrelevant-aux : {op : Σₛ} {o'' : O} {i'' : I} → (r : i op ≡ just (o'' , i'')) → ------------------------------- p op r ≡ q op r ⊑ᵢ-irrelevant-aux {op} r with p op r | q op r ... | o''' , i''' , s , s' , s'' | o'''' , i'''' , t , t' , t'' with trans (sym s) t ... | refl with ⊑ₒ-irrelevant s' t' ... | refl with ⊑ᵢ-irrelevant s'' t'' ... | refl with ≡-uip s t ... | refl = refl -- LEFT UNIT FOR UNIONS OF EFFECT ANNOTATIONS ∪ₒ-lunit : (o : O) → ----------- ∅ₒ ∪ₒ o ≡ o ∪ₒ-lunit (omap o) = cong omap (fun-ext ∪ₒ-lunit-aux) where ∪ₒ-lunit-aux : (op : Σₛ) → ---------------------------------- ∪ₒ-aux (λ _ → nothing) o op ≡ o op ∪ₒ-lunit-aux op with o op ... | nothing = refl ... | just _ = refl ∪ᵢ-lunit : (i : I) → ----------- ∅ᵢ ∪ᵢ i ≡ i ∪ᵢ-lunit (imap i) = cong imap (fun-ext ∪ᵢ-lunit-aux) where ∪ᵢ-lunit-aux : (op : Σₛ) → ---------------------------------- ∪ᵢ-aux (λ _ → nothing) i op ≡ i op ∪ᵢ-lunit-aux op with i op ... | nothing = refl ... | just _ = refl -- LEFT AND RIGHT INCLUSIONS INTO UNIONS OF EFFECT ANNOTATIONS ∪ₒ-inl : {o o' : O} → ------------- o ⊑ₒ (o ∪ₒ o') ∪ₒ-inl {omap o} {omap o'} op with o op | o' op ... | nothing | nothing = λ p → p ... | nothing | just tt = λ _ → refl ... | just tt | nothing = λ p → p ... | just tt | just tt = λ p → p ∪ₒ-inr : {o o' : O} → ------------- o' ⊑ₒ (o ∪ₒ o') ∪ₒ-inr {omap o} {omap o'} op with o op | o' op ... | nothing | nothing = λ p → p ... | nothing | just tt = λ p → p ... | just tt | nothing = λ _ → refl ... | just tt | just tt = λ p → p ∪ᵢ-inl : {i i' : I} → ------------- i ⊑ᵢ (i ∪ᵢ i') ∪ᵢ-inl {imap i} {imap i'} = rel (λ op → ∪ᵢ-inl-aux (i op) (i' op)) where ∪ᵢ-inl-aux : (oi oi' : Maybe (O × I)) → {o : O} {i'' : I} → oi ≡ just (o , i'') → Σ[ o' ∈ O ] Σ[ i''' ∈ I ] (∪ᵢ-aux' oi oi' ≡ just (o' , i''') × (o ⊑ₒ o') × (i'' ⊑ᵢ i''')) ∪ᵢ-inl-aux (just .(o , i'')) nothing {o} {i''} refl = o , i'' , refl , ⊑ₒ-refl , ⊑ᵢ-refl ∪ᵢ-inl-aux (just .(o , imap i'')) (just (o' , imap i''')) {o} {imap i''} refl = o ∪ₒ o' , imap (∪ᵢ-aux i'' i''') , refl , ∪ₒ-inl , ∪ᵢ-inl ∪ᵢ-inr : {i i' : I} → ------------- i' ⊑ᵢ (i ∪ᵢ i') ∪ᵢ-inr {imap i} {imap i'} = rel (λ op → ∪ᵢ-inr-aux (i op) (i' op)) where ∪ᵢ-inr-aux : (oi oi' : Maybe (O × I)) → {o : O} {i'' : I} → oi' ≡ just (o , i'') → Σ[ o' ∈ O ] Σ[ i''' ∈ I ] (∪ᵢ-aux' oi oi' ≡ just (o' , i''') × (o ⊑ₒ o') × (i'' ⊑ᵢ i''')) ∪ᵢ-inr-aux nothing (just .(o , i'')) {o} {i''} refl = o , i'' , refl , ⊑ₒ-refl , ⊑ᵢ-refl ∪ᵢ-inr-aux (just (o' , imap i''')) (just .(o , imap i'')) {o} {imap i''} refl = o' ∪ₒ o , imap (∪ᵢ-aux i''' i'') , refl , ∪ₒ-inr , ∪ᵢ-inr -- COPAIRING FOR UNIONS OF EFFECT ANNOTATIONS ∪ₒ-copair : {o o' o'' : O} → o ⊑ₒ o'' → o' ⊑ₒ o'' → ---------------- (o ∪ₒ o') ⊑ₒ o'' ∪ₒ-copair {omap o} {omap o'} {omap o''} p q op = ∪ₒ-copair-aux (p op) (q op) where ∪ₒ-copair-aux : (p : op ∈ₒ (omap o) → op ∈ₒ (omap o'')) → (q : op ∈ₒ (omap o') → op ∈ₒ (omap o'')) → --------------------------------------------- op ∈ₒ (omap (∪ₒ-aux o o')) → op ∈ₒ (omap o'') ∪ₒ-copair-aux p q with o op | o' op ... | nothing | nothing = q ... | nothing | just tt = q ... | just tt | nothing = p ... | just tt | just tt = p inj-just : {X : Set} {x x' : X} → just x ≡ just x' → x ≡ x' inj-just refl = refl inj-pair₁ : {X Y : Set} {x x' : X} {y y' : Y} → (x , y) ≡ (x' , y') → x ≡ x' inj-pair₁ refl = refl inj-pair₂ : {X Y : Set} {x x' : X} {y y' : Y} → (x , y) ≡ (x' , y') → y ≡ y' inj-pair₂ refl = refl ∪ᵢ-copair : {i i' i'' : I} → i ⊑ᵢ i'' → i' ⊑ᵢ i'' → ---------------- (i ∪ᵢ i') ⊑ᵢ i'' ∪ᵢ-copair {imap i} {imap i'} {imap i''} (rel p) (rel q) = rel (λ op {o'''} {i'''} r → ∪ᵢ-copair-aux op o''' i''' (i op) (i' op) (i'' op) refl refl refl r) where ∪ᵢ-copair-aux : (op : Σₛ) → (o''' : O) → (i''' : I) (oi oi' oi'' : Maybe (O × I)) → (oi ≡ i op) → (oi' ≡ i' op) → (oi'' ≡ i'' op) → (r : ∪ᵢ-aux' oi oi' ≡ just (o''' , i''')) → Σ[ o' ∈ O ] Σ[ i'''' ∈ I ] (oi'' ≡ just (o' , i'''') × (o''' ⊑ₒ o') × (i''' ⊑ᵢ i'''')) ∪ᵢ-copair-aux op o''' i''' nothing (just oi') nothing r s t u with trans t (proj₁ (proj₂ (proj₂ (q op (trans (sym s) u))))) ... | () ∪ᵢ-copair-aux op o''' i''' nothing (just oi') (just oi'') r s t u = proj₁ (q op (trans (sym s) u)) , proj₁ (proj₂ (q op (trans (sym s) u))) , trans t (proj₁ (proj₂ (proj₂ (q op (trans (sym s) u))))) , proj₁ (proj₂ (proj₂ (proj₂ (q op (trans (sym s) u))))) , proj₂ (proj₂ (proj₂ (proj₂ (q op (trans (sym s) u))))) ∪ᵢ-copair-aux op o''' i''' (just oi) nothing oi'' r s t u = proj₁ (p op (trans (sym r) u)) , proj₁ (proj₂ (p op (trans (sym r) u))) , trans t (proj₁ (proj₂ (proj₂ (p op (trans (sym r) u))))) , proj₁ (proj₂ (proj₂ (proj₂ (p op (trans (sym r) u))))) , proj₂ (proj₂ (proj₂ (proj₂ (p op (trans (sym r) u))))) ∪ᵢ-copair-aux op o''' i''' (just (omap o'''' , imap i'''')) (just (omap o''''' , imap i''''')) nothing r s t u with trans t (proj₁ (proj₂ (proj₂ (p op (sym r))))) ... | () ∪ᵢ-copair-aux op o''' i''' (just (omap o'''' , imap i'''')) (just (omap o''''' , imap i''''')) (just (omap o'''''' , imap i'''''')) r s t u = omap o'''''' , imap i'''''' , refl , subst (λ o → o ⊑ₒ omap o'''''') (inj-pair₁ (inj-just u)) (∪ₒ-copair (subst (λ o → omap o'''' ⊑ₒ o) (inj-pair₁ (inj-just (sym (trans t (proj₁ (proj₂ (proj₂ (p op (sym r))))))))) (proj₁ (proj₂ (proj₂ (proj₂ (p op (sym r))))))) (subst (λ o → omap o''''' ⊑ₒ o) (inj-pair₁ (inj-just (sym (trans t (proj₁ (proj₂ (proj₂ (q op (sym s))))))))) (proj₁ (proj₂ (proj₂ (proj₂ (q op (sym s)))))))) , subst (λ i → i ⊑ᵢ imap i'''''') (inj-pair₂ (inj-just u)) (∪ᵢ-copair (subst (λ i → imap i'''' ⊑ᵢ i) (inj-pair₂ (inj-just (sym (trans t (proj₁ (proj₂ (proj₂ (p op (sym r))))))))) (proj₂ (proj₂ (proj₂ (proj₂ (p op (sym r))))))) (subst (λ i → imap i''''' ⊑ᵢ i) (inj-pair₂ (inj-just (sym (trans t (proj₁ (proj₂ (proj₂ (q op (sym s))))))))) (proj₂ (proj₂ (proj₂ (proj₂ (q op (sym s)))))))) -- FUNCTORIALITY OF UNIONS OF EFFECT ANNOTATIONS ∪ₒ-fun : {o o' o'' o''' : O} → o ⊑ₒ o'' → o' ⊑ₒ o''' → -------------------------- (o ∪ₒ o') ⊑ₒ (o'' ∪ₒ o''') ∪ₒ-fun p q = ∪ₒ-copair (⊑ₒ-trans p ∪ₒ-inl) (⊑ₒ-trans q ∪ₒ-inr) ∪ᵢ-fun : {i i' i'' i''' : I} → i ⊑ᵢ i'' → i' ⊑ᵢ i''' → -------------------------- (i ∪ᵢ i') ⊑ᵢ (i'' ∪ᵢ i''') ∪ᵢ-fun p q = ∪ᵢ-copair (⊑ᵢ-trans p ∪ᵢ-inl) (⊑ᵢ-trans q ∪ᵢ-inr) -- UNIONS OF INTERRUPT ANNOTATIONS ARE GIVEN BY POINTWISE UNIONS ∪ᵢ-∪ₒ : {op : Σₛ} {o'' o''' o'''' : O} {i i' i'' i''' i'''' : I} → lkpᵢ op (i ∪ᵢ i') ≡ just (o'' , i'') → lkpᵢ op i ≡ just (o''' , i''') → lkpᵢ op i' ≡ just (o'''' , i'''') → --------------------------------------- o'' ≡ o''' ∪ₒ o'''' ∪ᵢ-∪ₒ {op} {o''} {o'''} {o''''} {imap i} {imap i'} p q r with i op | i' op ∪ᵢ-∪ₒ {op} {.(o''' ∪ₒ o'''')} {o'''} {o''''} {imap i} {imap i'} {_} {imap i'''} {imap i''''} refl refl refl | just .(o''' , imap i''') | just .(o'''' , imap i'''') = refl ∪ᵢ-∪ᵢ : {op : Σₛ} {o'' o''' o'''' : O} {i i' i'' i''' i'''' : I} → lkpᵢ op (i ∪ᵢ i') ≡ just (o'' , i'') → lkpᵢ op i ≡ just (o''' , i''') → lkpᵢ op i' ≡ just (o'''' , i'''') → --------------------------------------- i'' ≡ i''' ∪ᵢ i'''' ∪ᵢ-∪ᵢ {op} {o''} {o'''} {o''''} {imap i} {imap i'} p q r with i op | i' op ∪ᵢ-∪ᵢ {op} {.(o''' ∪ₒ o'''')} {o'''} {o''''} {imap i} {imap i'} {_} {imap i'''} {imap i''''} refl refl refl | just .(o''' , imap i''') | just .(o'''' , imap i'''') = refl -- INCLUSION INTO ACTED UPON EFFECT ANNOTATION {- LEMMA 3.1 (1) -} ↓ₑ-⊑ₒ : {o : O} {i : I} {op : Σₛ} → -------------------------- o ⊑ₒ proj₁ (op ↓ₑ (o , i)) ↓ₑ-⊑ₒ {omap o} {imap i} {op} op' p with i (op) ... | nothing = p ... | just (o' , i') = ∪ₒ-inl op' p {- LEMMA 3.1 (2) - the O part -} ↓ₑ-⊑ₒ-o' : {o o' : O} {i i' : I} {op : Σₛ} → lkpᵢ op i ≡ just (o' , i') → --------------------------- o' ⊑ₒ proj₁ (op ↓ₑ (o , i)) ↓ₑ-⊑ₒ-o' {omap o} {omap o'} {imap i} {imap i'} {op} p with i (op) ↓ₑ-⊑ₒ-o' {omap o} {omap o'} {imap i} {imap i'} {op} refl | just .(omap o' , imap i') = ↓ₑ-⊑ₒ-o'-aux where ↓ₑ-⊑ₒ-o'-aux : (op' : Σₛ) → o' op' ≡ just tt → ∪ₒ-aux o o' op' ≡ just tt ↓ₑ-⊑ₒ-o'-aux op' p with o op' ↓ₑ-⊑ₒ-o'-aux op' p | nothing = p ↓ₑ-⊑ₒ-o'-aux op' p | just tt = refl {- LEMMA 3.1 (2) - the I part -} ↓ₑ-⊑ₒ-i' : {o o' : O} {i i' : I} {op : Σₛ} → lkpᵢ op i ≡ just (o' , i') → --------------------------- i' ⊑ᵢ proj₂ (op ↓ₑ (o , i)) ↓ₑ-⊑ₒ-i' {omap o} {omap o'} {imap i} {imap i'} {op} p with i (op) ↓ₑ-⊑ₒ-i' {omap o} {omap o'} {imap i} {imap i'} {op} refl | just .(omap o' , imap i') = rel ↓ₑ-⊑ₒ-i'-aux where ↓ₑ-⊑ₒ-i'-aux : (op' : Σₛ) {o'' : O} {i'' : I} → i' op' ≡ just (o'' , i'') → Σ[ o''' ∈ O ] Σ[ i''' ∈ I ] (∪ᵢ-aux (λ op' → if op ≡ op' then nothing else i op') i' op' ≡ just (o''' , i''') × (o'' ⊑ₒ o''') × (i'' ⊑ᵢ i''')) ↓ₑ-⊑ₒ-i'-aux op' {o''} {i''} p with decₛ op op' ↓ₑ-⊑ₒ-i'-aux op' {o''} {i''} p | yes refl with i' (op) ↓ₑ-⊑ₒ-i'-aux op' {o''} {i''} refl | yes refl | just .(o'' , i'') = o'' , (i'' , refl , (⊑ₒ-refl , ⊑ᵢ-refl)) ↓ₑ-⊑ₒ-i'-aux op' {o''} {i''} p | no ¬q with i (op') | i' (op') ↓ₑ-⊑ₒ-i'-aux op' {o''} {i''} refl | no ¬q | nothing | just .(o'' , i'') = o'' , (i'' , refl , (⊑ₒ-refl , ⊑ᵢ-refl)) ↓ₑ-⊑ₒ-i'-aux op' {o''} {imap i''} refl | no ¬q | just (o''' , (imap i''')) | just .(o'' , (imap i'')) = (o''' ∪ₒ o'') , (imap (∪ᵢ-aux i''' i'') , (refl , (∪ₒ-inr , ∪ᵢ-inr))) -- EFFECT ANNOTATION OF AN INTERRUPT THAT WAS NOT ACTED WITH {- LEMMA 3.1 (3) -} lkpᵢ-↓ₑ-neq : {o o' : O} {i i' : I} {op op' : Σₛ} → ¬ op ≡ op' → lkpᵢ op' i ≡ just (o' , i') → ------------------------------------------------------------------------------------------------------- Σ[ o'' ∈ O ] Σ[ i'' ∈ I ] (lkpᵢ op' (proj₂ (op ↓ₑ (o , i))) ≡ just (o'' , i'') × o' ⊑ₒ o'' × i' ⊑ᵢ i'') lkpᵢ-↓ₑ-neq {omap o} {o'} {imap i} {imap i'} {op} {op'} p q with i (op) ... | nothing = o' , imap i' , q , ⊑ₒ-refl , ⊑ᵢ-refl lkpᵢ-↓ₑ-neq {omap o} {o'} {imap i} {imap i'} {op} {op'} p q | just (o'' , imap i'') with decₛ op op' ... | yes r with p r ... | () lkpᵢ-↓ₑ-neq {omap o} {o'} {imap i} {imap i'} {op} {op'} p q | just (o'' , imap i'') | no ¬r with i (op') | i'' (op') lkpᵢ-↓ₑ-neq {omap o} {.o'''} {imap i} {imap i'} {op} {op'} p refl | just (o'' , imap i'') | no ¬r | just (o''' , .(imap i')) | nothing = o''' , imap i' , refl , ⊑ₒ-refl , ⊑ᵢ-refl ... | just (o''' , imap i''') | just (o'''' , imap i'''') with q lkpᵢ-↓ₑ-neq {omap o} {.o'''} {imap i} {imap .i'''} {op} {op'} p q | just (o'' , imap i'') | no ¬r | just (o''' , imap i''') | just (o'''' , imap i'''') | refl = (o''' ∪ₒ o'''') , (imap i''') ∪ᵢ (imap i'''') , refl , ∪ₒ-inl , ∪ᵢ-inl -- NEXT DEFINED EFFECT ANNOTATION UNDER SUBTYPING EFFECT ANNOTATIONS lkpᵢ-nextₒ : {o'' : O} {i i' i'' : I} {op : Σₛ} → i ⊑ᵢ i' → lkpᵢ op i ≡ just (o'' , i'') → O lkpᵢ-nextₒ {o''} {i} {i'} {i''} {op} (rel p) q = proj₁ (p op q) lkpᵢ-nextᵢ : {o'' : O} {i i' i'' : I} {op : Σₛ} → i ⊑ᵢ i' → lkpᵢ op i ≡ just (o'' , i'') → I lkpᵢ-nextᵢ {o''} {i} {i'} {i''} {op} (rel p) q = proj₁ (proj₂ (p op q)) lkpᵢ-next-eq : {o'' : O} {i i' i'' : I} {op : Σₛ} → (p : i ⊑ᵢ i') → (q : lkpᵢ op i ≡ just (o'' , i'')) → ------------------------------------------------ lkpᵢ op i' ≡ just (lkpᵢ-nextₒ p q , lkpᵢ-nextᵢ p q) lkpᵢ-next-eq {o''} {i} {i'} {i''} {op} (rel p) q = proj₁ (proj₂ (proj₂ (p op q))) lkpᵢ-next-⊑ₒ : {o'' : O} {i i' i'' : I} {op : Σₛ} → (p : i ⊑ᵢ i') → (q : lkpᵢ op i ≡ just (o'' , i'')) → ----------------------------------- o'' ⊑ₒ lkpᵢ-nextₒ p q lkpᵢ-next-⊑ₒ {o''} {i} {i'} {i''} {op} (rel p) q = proj₁ (proj₂ (proj₂ (proj₂ (p op q)))) lkpᵢ-next-⊑ᵢ : {o'' : O} {i i' i'' : I} {op : Σₛ} → (p : i ⊑ᵢ i') → (q : lkpᵢ op i ≡ just (o'' , i'')) → ----------------------------------- i'' ⊑ᵢ lkpᵢ-nextᵢ p q lkpᵢ-next-⊑ᵢ {o''} {i} {i'} {i''} {op} (rel p) q = proj₂ (proj₂ (proj₂ (proj₂ (p op q)))) -- ACTION OF INTERRUPTS ON EFFECT ANNOTATIONS IS MONOTONIC mutual ↓ₑ-monotonicₒ : {o o' : O} {i i' : I} {op : Σₛ} → o ⊑ₒ o' → i ⊑ᵢ i' → ------------------------------------------------ proj₁ (op ↓ₑ (o , i)) ⊑ₒ proj₁ (op ↓ₑ (o' , i')) ↓ₑ-monotonicₒ {omap o} {omap o'} {imap i} {imap i'} {op} p (rel q) = ↓ₑ-monotonicₒ-aux (i op) (i' op) refl refl where ↓ₑ-monotonicₒ-aux : (oi oi' : Maybe (O × I)) → i op ≡ oi → i' op ≡ oi' → ---------------------------- ↓ₑ-auxₒ op oi (omap o) ⊑ₒ ↓ₑ-auxₒ op oi' (omap o') ↓ₑ-monotonicₒ-aux nothing nothing r s = p ↓ₑ-monotonicₒ-aux nothing (just (omap o''' , imap i''')) r s = ⊑ₒ-trans p ∪ₒ-inl ↓ₑ-monotonicₒ-aux (just (omap o'' , imap i'')) nothing r s with trans (sym s) (proj₁ (proj₂ (proj₂ (q op r)))) ... | () ↓ₑ-monotonicₒ-aux (just (omap o'' , imap i'')) (just (omap o''' , imap i''')) r s with trans (sym s) (proj₁ (proj₂ (proj₂ (q op r)))) ... | t = ∪ₒ-fun p (⊑ₒ-trans (proj₁ (proj₂ (proj₂ (proj₂ (q op r))))) (subst (λ o → o ⊑ₒ omap o''') (inj-pair₁ (inj-just t)) ⊑ₒ-refl)) ↓ₑ-monotonicᵢ : {o o' : O} {i i' : I} {op : Σₛ} → o ⊑ₒ o' → i ⊑ᵢ i' → ------------------------------------------------ proj₂ (op ↓ₑ (o , i)) ⊑ᵢ proj₂ (op ↓ₑ (o' , i')) ↓ₑ-monotonicᵢ {omap o} {omap o'} {imap i} {imap i'} {op} p (rel q) = ↓ₑ-monotonicᵢ-aux (i op) (i' op) refl refl where ↓ₑ-monotonicᵢ-aux : (oi oi' : Maybe (O × I)) → oi ≡ i op → oi' ≡ i' op → ----------------------------------------- ↓ₑ-auxᵢ op oi (imap i) ⊑ᵢ ↓ₑ-auxᵢ op oi' (imap i') ↓ₑ-monotonicᵢ-aux nothing nothing r s = rel q ↓ₑ-monotonicᵢ-aux nothing (just (omap o''' , imap i''')) r s = ⊑ᵢ-trans (rel (λ op' {o''''} {i''''} t → ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t)) (∪ᵢ-inl {(imap i') [ op ↦ nothing ]ᵢ} {imap i'''}) where ↓ₑ-monotonicᵢ-aux' : (op' : Σₛ) → (o'''' : O) → (i'''' : I) → i op' ≡ just (o'''' , i'''') → -------------------------------------------------------------------- Σ[ o''''' ∈ O ] Σ[ i''''' ∈ I ] ((if op ≡ op' then nothing else i' op') ≡ just (o''''' , i''''') × (o'''' ⊑ₒ o''''') × (i'''' ⊑ᵢ i''''')) ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t with decₛ op op' ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t | yes refl with trans r t ... | () ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t | no ¬u = lkpᵢ-nextₒ (rel q) t , lkpᵢ-nextᵢ (rel q) t , lkpᵢ-next-eq (rel q) t , lkpᵢ-next-⊑ₒ (rel q) t , lkpᵢ-next-⊑ᵢ (rel q) t ↓ₑ-monotonicᵢ-aux (just (omap o'' , imap i'')) nothing r s with trans s (proj₁ (proj₂ (proj₂ (q op (sym r))))) ... | () ↓ₑ-monotonicᵢ-aux (just (omap o'' , imap i'')) (just (omap o''' , imap i''')) r s = ∪ᵢ-fun {_} {imap i''} {_} {imap i'''} (rel λ op' {o''''} {i''''} t → ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t) (subst (λ i → imap i'' ⊑ᵢ i) (sym (inj-pair₂ (inj-just (trans s (proj₁ (proj₂ (proj₂ (q op (sym r))))))))) (proj₂ (proj₂ (proj₂ (proj₂ (q op (sym r))))))) where ↓ₑ-monotonicᵢ-aux' : (op' : Σₛ) → (o'''' : O) → (i'''' : I) → lkpᵢ op' (imap i [ op ↦ nothing ]ᵢ) ≡ just (o'''' , i'''') → -------------------------- Σ[ o''''' ∈ O ] Σ[ i''''' ∈ I ] (lkpᵢ op' (imap i' [ op ↦ nothing ]ᵢ) ≡ just (o''''' , i''''') × (o'''' ⊑ₒ o''''') × (i'''' ⊑ᵢ i''''')) ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t with decₛ op op' ↓ₑ-monotonicᵢ-aux' op' o'''' i'''' t | no ¬u = lkpᵢ-nextₒ (rel q) t , lkpᵢ-nextᵢ (rel q) t , lkpᵢ-next-eq (rel q) t , lkpᵢ-next-⊑ₒ (rel q) t , lkpᵢ-next-⊑ᵢ (rel q) t -- GENERALISED ACTION OF INTERRUPTS ON EFFECT ANNOTATIONS IS MONOTONIC mutual ↓↓ₑ-monotonicₒ : {o o' : O} {i i' : I} → (ops : List Σₛ) → o ⊑ₒ o' → i ⊑ᵢ i' → ---------------------------------------------------- proj₁ (ops ↓↓ₑ (o , i)) ⊑ₒ proj₁ (ops ↓↓ₑ (o' , i')) ↓↓ₑ-monotonicₒ {omap o} {omap o'} {imap i} {imap i'} [] p q = p ↓↓ₑ-monotonicₒ (op ∷ ops) p q = ↓ₑ-monotonicₒ (↓↓ₑ-monotonicₒ ops p q) (↓↓ₑ-monotonicᵢ ops p q) ↓↓ₑ-monotonicᵢ : {o o' : O} {i i' : I} → (ops : List Σₛ) → o ⊑ₒ o' → i ⊑ᵢ i' → ---------------------------------------------------- proj₂ (ops ↓↓ₑ (o , i)) ⊑ᵢ proj₂ (ops ↓↓ₑ (o' , i')) ↓↓ₑ-monotonicᵢ [] p q = q ↓↓ₑ-monotonicᵢ (op ∷ ops) p q = ↓ₑ-monotonicᵢ (↓↓ₑ-monotonicₒ ops p q) (↓↓ₑ-monotonicᵢ ops p q) -- INCLUSION INTO GENERALLY ACTED UPON EFFECT ANNOTATION ↓↓ₑ-⊑ₒ : {o : O} {i : I} → (ops : List Σₛ) → -------------------------- o ⊑ₒ proj₁ (ops ↓↓ₑ (o , i)) ↓↓ₑ-⊑ₒ [] = ⊑ₒ-refl ↓↓ₑ-⊑ₒ (op ∷ ops) = ⊑ₒ-trans (↓↓ₑ-⊑ₒ ops) (↓ₑ-⊑ₒ {op = op}) -- A PATH OF INTERRUPT NAMES THAT REVEALS THE GIVEN SIGNAL IN AN EFFECT ANNOTATION data _`at_`in_,_ (op : Σₛ) : List Σₛ → O → I → Set where stop : {o : O} {i : I} → op ∈ₒ o → ------------------- op `at [] `in o , i next : {o o' : O} {i i' : I} {op' : Σₛ} {ops : List Σₛ} → lkpᵢ op' i ≡ just (o' , i') → op `at ops `in o' , i' → ----------------------------- op `at (op' ∷ ops) `in o , i -- ACTING ON AN ANNOTATION WITH EMPTY SIGNALS PART JUST REVEALS THE INNER LAYER IF THE INTERRUPTS MATCH ↓ₑ-∅-↦-≡ : {op : Σₛ} {o : O} {i : I} → ----------------------------- op ↓ₑ (∅ₒ , imap (λ op' → if op' ≡ op then just (o , i) else nothing)) ≡ (o , i) ↓ₑ-∅-↦-≡ {op} {o} {i} with decₛ op op ↓ₑ-∅-↦-≡ {op} {omap o} {i} | yes refl = cong₂ (λ x y → x , y) (∪ₒ-lunit (omap o)) (trans (cong (λ i' → i' ∪ᵢ i) ↓ₑ-∅-↦-≡-aux) (∪ᵢ-lunit i)) where ↓ₑ-∅-↦-≡-aux : imap (λ op' → if op ≡ op' then nothing else (if op' ≡ op then just (omap o , i) else nothing)) ≡ ∅ᵢ ↓ₑ-∅-↦-≡-aux = cong imap (fun-ext ↓ₑ-∅-↦-≡-aux-aux) where ↓ₑ-∅-↦-≡-aux-aux : (op' : Σₛ) → --------------------------------------------------------------------------------- (if op ≡ op' then nothing else (if op' ≡ op then just (omap o , i) else nothing)) ≡ nothing ↓ₑ-∅-↦-≡-aux-aux op' with decₛ op op' ... | yes refl = refl ... | no ¬p = ite-≢ (λ q → ¬p (sym q)) ↓ₑ-∅-↦-≡ {op} {o} {i} | no ¬p = ⊥-elim (¬p refl) -- ACTING ON AN ANNOTATION WITH EMPTY SIGNALS IS IDEMPOTENT IF THE INTERRUPTS DO NOT MATCH ↓ₑ-∅-↦-≢ : {op op' : Σₛ} {o : O} {i : I} → op ≢ op' → ----------------------------- op' ↓ₑ (∅ₒ , imap (λ op'' → if op'' ≡ op then just (o , i) else nothing)) ≡ (∅ₒ , imap (λ op'' → if op'' ≡ op then just (o , i) else nothing)) ↓ₑ-∅-↦-≢ {op} {op'} p with decₛ op' op ↓ₑ-∅-↦-≢ {op} {.op} p | yes refl = ⊥-elim (p refl) ↓ₑ-∅-↦-≢ {op} {op'} p | no ¬q = refl -- A MINIMAL EFFECT ANNOTATION SUCH THAT A GIVEN PATH OF INTERRUPTS REVEALS THE GIVEN SIGNAL NAME mutual ⦃⦃_↦_⦄⦄ₒ : List Σₛ → Σₛ → O ⦃⦃ [] ↦ op ⦄⦄ₒ = omap (λ op' → if op ≡ op' then just tt else nothing) ⦃⦃ op' ∷ ops ↦ op ⦄⦄ₒ = ∅ₒ ⦃⦃_↦_⦄⦄ᵢ : List Σₛ → Σₛ → I ⦃⦃ [] ↦ op ⦄⦄ᵢ = ∅ᵢ ⦃⦃ op' ∷ ops ↦ op ⦄⦄ᵢ = imap (λ op'' → if op'' ≡ op' then just (⦃⦃ ops ↦ op ⦄⦄ₒ , ⦃⦃ ops ↦ op ⦄⦄ᵢ) else nothing) -- IF THERE IS A PATH TO A SIGNAL IN AN EFFECT ANNOTATION, THE MINIMAL EFFECT ANNOTATION IS INCLUDED IN IT mutual `at-minₒ : {op : Σₛ} {ops : List Σₛ} {o : O} {i : I} → op `at ops `in o , i → ---------------------- ⦃⦃ ops ↦ op ⦄⦄ₒ ⊑ₒ o `at-minₒ {op} {_} {omap o} (stop p) op' with decₛ op op' `at-minₒ {.op'} {.[]} {omap o} (stop p) op' | yes refl = λ _ → p `at-minₒ {op} {.[]} {omap o} (stop p) op'' | no ¬q = λ () `at-minₒ (next p q) op'' = λ () `at-minᵢ : {op : Σₛ} {ops : List Σₛ} {o : O} {i : I} → op `at ops `in o , i → ---------------------- ⦃⦃ ops ↦ op ⦄⦄ᵢ ⊑ᵢ i `at-minᵢ (stop p) = rel (λ op'' → λ ()) `at-minᵢ {op} (next {o} {o'} {i} {i'} {op'} {ops} p q) = rel (λ op'' {o''} {i''} r → `at-minᵢ-aux r) where `at-minᵢ-aux : {op'' : Σₛ} {o'' : O} {i'' : I} → lkpᵢ op'' ⦃⦃ op' ∷ ops ↦ op ⦄⦄ᵢ ≡ just (o'' , i'') → --------------------------------------------------- Σ[ o''' ∈ O ] Σ[ i''' ∈ I ] (lkpᵢ op'' i ≡ just (o''' , i''') × (o'' ⊑ₒ o''') × (i'' ⊑ᵢ i''')) `at-minᵢ-aux {op''} p with decₛ op'' op' `at-minᵢ-aux {op'} refl | yes refl = o' , i' , p , `at-minₒ q , `at-minᵢ q -- SUBPATHS OF (INTERRUPT) NAMES data _⊆_ : List Σₛ → List Σₛ → Set where [] : {ops' : List Σₛ} → ---------------- [] ⊆ ops' ∷-≡ : {op : Σₛ} {ops ops' : List Σₛ} → ops ⊆ ops' → ------------------------ (op ∷ ops) ⊆ (op ∷ ops') ∷-≢ : {op op' : Σₛ} {ops ops' : List Σₛ} → op ≢ op' → (op ∷ ops) ⊆ ops' → ------------------------- (op ∷ ops) ⊆ (op' ∷ ops') mutual ∷-≢-swap : {op op' : Σₛ} {ops ops' : List Σₛ} → op ≢ op' → (op ∷ ops) ⊆ (op' ∷ op ∷ ops') → -------------------------------- (op ∷ ops) ⊆ (op ∷ op' ∷ ops') ∷-≢-swap {op} {.op} {ops} {ops'} p (∷-≡ q) = ∷-≡ q ∷-≢-swap {op} {op'} {ops} {ops'} p (∷-≢ q (∷-≡ r)) = ∷-≡ (∷-∷ r) ∷-≢-swap {op} {op'} {ops} {ops'} p (∷-≢ q (∷-≢ r s)) = ⊥-elim (r refl) ∷-∷ : {op' : Σₛ} {ops : List Σₛ} → {ops' : List Σₛ} → ops ⊆ ops' → ------------------- ops ⊆ (op' ∷ ops') ∷-∷ [] = [] ∷-∷ {op'} (∷-≡ {op} p) with decₛ op op' ∷-∷ {.op} (∷-≡ {op} p) | yes refl = ∷-≡ (∷-∷ p) ∷-∷ {op'} (∷-≡ {op} p) | no ¬q = ∷-≢ ¬q (∷-≡ p) ∷-∷ {op'} (∷-≢ {op} {op''} p q) with decₛ op op' ∷-∷ {.op} (∷-≢ {op} {op''} p q) | yes refl = ∷-≢-swap p (∷-≢ p (∷-∷ q)) ∷-∷ {op'} (∷-≢ {op} {op''} p q) | no ¬r = ∷-≢ ¬r (∷-≢ p q) -- IF A SUBPATH OF INTERRUPTS REVEALS A SIGNAL, THEN ACTING WITH THE WHOLE PATH ALSO REVEALS IT ⊆-↓↓ : {op : Σₛ} {ops ops' : List Σₛ} → ops ⊆ ops' → --------------------------------------------------------------- op ∈ₒ proj₁ (reverse ops' ↓↓ₑ (⦃⦃ ops ↦ op ⦄⦄ₒ , ⦃⦃ ops ↦ op ⦄⦄ᵢ)) ⊆-↓↓ {op} {ops} {ops'} [] = (↓↓ₑ-⊑ₒ (reverse ops')) op ⊆-↓↓-aux where ⊆-↓↓-aux : (if op ≡ op then just tt else nothing) ≡ just tt ⊆-↓↓-aux with decₛ op op ⊆-↓↓-aux | yes refl = refl ⊆-↓↓-aux | no ¬p = ⊥-elim (¬p refl) ⊆-↓↓ {op} (∷-≡ {op'} {ops} {ops'} p) = subst (λ ops'' → op ∈ₒ proj₁ (ops'' ↓↓ₑ (⦃⦃ (op' ∷ ops) ↦ op ⦄⦄ₒ , ⦃⦃ (op' ∷ ops) ↦ op ⦄⦄ᵢ))) (sym (unfold-reverse op' ops')) (subst (λ oi → op ∈ₒ proj₁ oi) (sym (↓↓ₑ-act (reverse ops') [ op' ])) (subst (λ oi → op ∈ₒ proj₁ (reverse ops' ↓↓ₑ oi)) (sym ↓ₑ-∅-↦-≡) (⊆-↓↓ p))) ⊆-↓↓ {op} (∷-≢ {op'} {op''} {ops} {ops'} p q) = subst (λ ops'' → op ∈ₒ proj₁ (ops'' ↓↓ₑ (⦃⦃ (op' ∷ ops) ↦ op ⦄⦄ₒ , ⦃⦃ (op' ∷ ops) ↦ op ⦄⦄ᵢ))) (sym (unfold-reverse op'' ops')) (subst (λ oi → op ∈ₒ proj₁ oi) (sym (↓↓ₑ-act (reverse ops') [ op'' ])) (subst (λ oi → op ∈ₒ proj₁ (reverse ops' ↓↓ₑ oi)) (sym (↓ₑ-∅-↦-≢ p)) (⊆-↓↓ q))) -- IF A PATH REVEALS A SIGNAL IN A UNION OF EFFECT ANNOTATIONS, THE PATH REVEALS THE SIGNAL IN ONE OF THE SUMMANDS `at-⊎ : {op : Σₛ} {ops : List Σₛ} {o o' : O} {i i' : I} → op `at ops `in (o ∪ₒ o') , (i ∪ᵢ i') → ------------------------------------------------- (op `at ops `in o , i) ⊎ (op `at ops `in o' , i') `at-⊎ {op} {ops} {omap o} {omap o'} {i} {i'} (stop p) = `at-⊎-aux p (o op) (o' op) refl refl where `at-⊎-aux : (∪ₒ-aux o o' op ≡ just tt) → (t t' : Maybe ⊤) → o op ≡ t → o' op ≡ t' → ----------------------------------------------------------- (op `at ops `in omap o , i) ⊎ (op `at ops `in omap o' , i') `at-⊎-aux p nothing nothing q r with o op | o' op `at-⊎-aux () nothing nothing q r | nothing | nothing `at-⊎-aux p nothing nothing q () | nothing | just tt `at-⊎-aux p nothing (just tt) q r = inj₂ (stop r) `at-⊎-aux p (just tt) t' q r = inj₁ (stop q) `at-⊎ {op} {_} {o} {o'} {imap i} {imap i'} (next {o''} {o'''} {i''} {i'''} {op'} {ops} p q) = `at-⊎-aux p q (i op') (i' op') refl refl where `at-⊎-aux : ∪ᵢ-aux i i' op' ≡ just (o''' , i''') → op `at ops `in o''' , i''' → (oi oi' : Maybe (O × I)) → i op' ≡ oi → i' op' ≡ oi' → --------------------------------------------------------------------------- (op `at (op' ∷ ops) `in o , imap i) ⊎ (op `at (op' ∷ ops) `in o' , imap i') `at-⊎-aux p q nothing nothing r s with i op' | i' op' `at-⊎-aux () q nothing nothing r s | nothing | nothing `at-⊎-aux p q nothing nothing r () | nothing | just _ `at-⊎-aux p q nothing (just (o'''' , i'''')) r s = inj₂ (next (trans (sym (`at-⊎-aux-aux r s)) p) q) where `at-⊎-aux-aux : i op' ≡ nothing → i' op' ≡ just (o'''' , i'''') → ------------------------------- ∪ᵢ-aux i i' op' ≡ i' op' `at-⊎-aux-aux r s with i op' | i' op' `at-⊎-aux-aux r s | nothing | just _ = refl `at-⊎-aux p q (just (o'''' , i'''')) nothing r s = inj₁ (next (trans (sym (`at-⊎-aux-aux r s)) p) q) where `at-⊎-aux-aux : i op' ≡ just (o'''' , i'''') → i' op' ≡ nothing → ------------------------------- ∪ᵢ-aux i i' op' ≡ i op' `at-⊎-aux-aux r s with i op' | i' op' `at-⊎-aux-aux r s | just _ | nothing = refl `at-⊎-aux p q (just (o'''' , i'''')) (just (o''''' , i''''')) r s with ∪ᵢ-∪ₒ {i = imap i} {i' = imap i'} p r s | ∪ᵢ-∪ᵢ {i = imap i} {i' = imap i'} p r s ... | refl | refl with `at-⊎ q ... | inj₁ t = inj₁ (next r t) ... | inj₂ t = inj₂ (next s t) -- IF ACTING WITH A PATH REVEALS A SIGNAL, THEN THERE IS A SUBPATH TO THAT SIGNAL ↓↓-⊆-rw : (o : O) (i : I) (op : Σₛ) (ops : List Σₛ) → ---------------------------------------------------------------- reverse (op ∷ ops) ↓↓ₑ (o , i) ≡ reverse ops ↓↓ₑ (op ↓ₑ (o , i)) ↓↓-⊆-rw o i op ops = trans (cong (λ ops' → ops' ↓↓ₑ (o , i)) (unfold-reverse op ops)) (↓↓ₑ-act (reverse ops) [ op ]) ↓↓-⊆ : {op : Σₛ} → (ops : List Σₛ) → {o : O} {i : I} → op ∈ₒ proj₁ (reverse ops ↓↓ₑ (o , i)) → ---------------------------------------------------------- Σ[ ops' ∈ List Σₛ ] (ops' ⊆ ops × (op `at ops' `in o , i)) ↓↓-⊆ [] p = [] , [] , stop p ↓↓-⊆ {op} (op' ∷ ops) {omap o} {imap i} p rewrite ↓↓-⊆-rw (omap o) (imap i) op' ops = ↓↓-⊆-aux (i op') refl where ↓↓-⊆-aux : (oi : Maybe (O × I)) → i op' ≡ oi → ---------------------------------------------------------------------------- Σ[ ops' ∈ List Σₛ ] (ops' ⊆ (op' ∷ ops) × (op `at ops' `in omap o , imap i)) ↓↓-⊆-aux nothing q with ↓↓-⊆ ops p ... | ops' , r , s rewrite q = ops' , ∷-∷ r , s ↓↓-⊆-aux (just (omap o' , imap i')) q with ↓↓-⊆ ops p ... | ops' , r , s rewrite q with `at-⊎ {o = omap o} {o' = omap o'} {i' = imap i'} s ... | inj₁ t = ↓↓-⊆-aux-aux ops' r t where ↓↓-⊆-aux-aux : (ops' : List Σₛ) → ops' ⊆ ops → (op `at ops' `in omap o , ((imap i) [ op' ↦ nothing ]ᵢ)) → ------------------------------------------------------------------------------- Σ[ ops'' ∈ List Σₛ ] (ops'' ⊆ (op' ∷ ops) × (op `at ops'' `in omap o , imap i)) ↓↓-⊆-aux-aux [] r (stop t) = [] , [] , stop t ↓↓-⊆-aux-aux (op'' ∷ ops'') r (next t u) with decₛ op' op'' ... | no ¬v = op'' ∷ ops'' , ∷-≢ (λ w → ¬v (sym w)) r , next t u ... | inj₂ t = op' ∷ ops' , ∷-≡ r , next q t -- ENVELOPING THE EFFECT ANNOTATION REDUCTION WITH MLTIPLE INTERRUPT ACTIONS {- LEMMA 4.5 -} ↓↓ₑ-⊑ₒ-act : {o : O} {i : I} → (ops : List Σₛ) → (op : Σₛ) → ---------------------------------------------------------- proj₁ (ops ↓↓ₑ (o , i)) ⊑ₒ proj₁ (ops ↓↓ₑ (op ↓ₑ (o , i))) ↓↓ₑ-⊑ₒ-act {o} {i} ops op op' p rewrite sym (reverse-involutive ops) with ↓↓-⊆ (reverse ops) p ... | ops' , q , r with ⊆-↓↓ {op'} (∷-∷ {op} q) ... | s with ↓↓ₑ-monotonicₒ (reverse (op ∷ reverse ops)) (`at-minₒ r) (`at-minᵢ r) op' s ... | t rewrite ↓↓-⊆-rw o i op (reverse ops) | reverse-involutive ops = t
{ "alphanum_fraction": 0.3599627607, "avg_line_length": 31.7689848122, "ext": "agda", "hexsha": "16a5e22cd0bacdfb5aa31b8df2de85cd4d5ec2db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "EffectAnnotations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "EffectAnnotations.agda", "max_line_length": 139, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "EffectAnnotations.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 16691, "size": 39743 }
{-# OPTIONS --postfix-projections #-} {-# OPTIONS --rewriting #-} -- A Beth model for normalization by evaluation open import Library module NbeModel (Base : Set) (B⦅_⦆ : Base → Set) where import Formulas ; open module Form = Formulas Base hiding (Mon) import Derivations ; open module Der = Derivations Base import Interpretation; open module Intp = Interpretation Base B⦅_⦆ -- Form of Kripke predicates into a set S KPred' : (S : Set) → Set₁ KPred' S = ∀ Γ → (C⦅ Γ ⦆ → S) → Set -- Form of Kripke predicate on functions into type A -- KPred A = ∀ Γ → Fun Γ A → Set KPred : (A : Form) → Set₁ KPred A = KPred' T⦅ A ⦆ -- Pointwise inclusion of Kripke predicates Sub : ∀ A (P Q : KPred A) → Set Sub A P Q = ∀{Γ f} → P Γ f → Q Γ f ⟨_⟩_↪_ : ∀ A (P Q : KPred A) → Set ⟨ A ⟩ P ↪ Q = ∀{Γ f} → P Γ f → Q Γ f _↪_ : ∀{A} (P Q : KPred A) → Set P ↪ Q = ∀{Γ f} → P Γ f → Q Γ f -- Conv generalizes _↪_ to move to a new proposition. Conv : ∀{S T : Set} (f : S → T) (P : KPred' S) (Q : KPred' T) → Set Conv {S} f P Q = ∀ {Γ} {g : C⦅ Γ ⦆ → S} (p : P Γ g) → Q Γ (f ∘ g) ⟪_⟫_↪_ = Conv ⟪_⟫₂_↪_↪_ : ∀{R S T : Set} (f : R → S → T) (𝓡 : KPred' R) (𝓢 : KPred' S) (𝓣 : KPred' T) → Set ⟪ f ⟫₂ 𝓡 ↪ 𝓢 ↪ 𝓣 = ∀{Γ g h} → 𝓡 Γ g → 𝓢 Γ h → 𝓣 Γ (λ γ → f (g γ) (h γ)) -- Statement of monotonicity for Kripke predicates Mon : ∀{S} (𝓐 : KPred' S) → Set Mon {S} 𝓐 = ∀ {Γ Δ} (τ : Δ ≤ Γ) {f : Fun' Γ S} → 𝓐 Γ f → 𝓐 Δ (f ∘ R⦅ τ ⦆) -- Image under evaluation of a neutral term NeImg : ∀ A → KPred A NeImg A Γ f = ∃ λ (t : Ne Γ A) → Ne⦅ t ⦆ ≡ f -- Image under evaluation of a normal term NfImg : ∀ A → KPred A NfImg A Γ f = ∃ λ (t : Nf Γ A) → Nf⦅ t ⦆ ≡ f -- Being an image is Kripke (monotone in weakening) -- ∀ (f : Fun Γ A) (τ : Δ ≤ Γ) → Img Γ A f → Img Δ A (f ∘ R⦅ τ ⦆) monNeImg : ∀{A} → Mon (NeImg A) monNeImg τ (t , refl) = monNe τ t , natD τ (ne[ t ]) monNfImg : ∀{A} → Mon (NfImg A) monNfImg τ (t , refl) = monNf τ t , natD τ nf[ t ] -- Extending the constructions of neutral and normal forms to images of such. -- Neutrals of base type are normal iNe : ∀{P} → NeImg (Atom P) ↪ NfImg (Atom P) iNe (t , eq) = ne t , eq -- Variables are neutral iHyp : ∀{Γ A} (x : Hyp A Γ) → NeImg A Γ H⦅ x ⦆ iHyp x = (hyp x , refl) -- Abstraction operates on normal forms iImpI : ∀{Γ A B f} → NfImg B (Γ ∙ A) f → NfImg (A ⇒ B) Γ (curry f) iImpI (t , eq) = impI t , cong curry eq -- Application of a neutral is neutral -- iImpE : NeImg (A ⇒ B) Γ f → NfImg A Γ g → NeImg B Γ (apply f g) iImpE : ∀{A B} → ⟪ _$_ ⟫₂ NeImg (A ⇒ B) ↪ NfImg A ↪ NeImg B iImpE (t , eq) (u , eq') = (impE t u , cong₂ apply eq eq') -- Empty tuple is normal iTrueI : ∀{Γ f} → NfImg True Γ f iTrueI = trueI , refl -- Pairing operates on normal forms iAndI : ∀{A B} → ⟪ _,_ ⟫₂ NfImg A ↪ NfImg B ↪ NfImg (A ∧ B) iAndI (t , eq) (u , eq') = andI t u , cong₂ <_,_> eq eq' -- Projection of a neutral is neutral iAndE₁ : ∀{A B} → ⟪ proj₁ ⟫ NeImg (A ∧ B) ↪ NeImg A iAndE₁ (t , eq) = andE₁ t , cong (proj₁ ∘_) eq iAndE₂ : ∀{A B} → ⟪ proj₂ ⟫ NeImg (A ∧ B) ↪ NeImg B iAndE₂ (t , eq) = andE₂ t , cong (proj₂ ∘_) eq -- Injections operate on normal forms iOrI₁ : ∀{A B} → ⟪ inj₁ ⟫ NfImg A ↪ NfImg (A ∨ B) iOrI₁ (t , eq) = orI₁ t , cong (inj₁ ∘_) eq iOrI₂ : ∀{A B} → ⟪ inj₂ ⟫ NfImg B ↪ NfImg (A ∨ B) iOrI₂ (t , eq) = orI₂ t , cong (inj₂ ∘_) eq -- Case splitting forms: iOrE : ∀{Γ A B C f g h} → NeImg (A ∨ B) Γ f → NfImg C (Γ ∙ A) g → NfImg C (Γ ∙ B) h → NfImg C Γ (caseof f g h) iOrE (t , eqt) (u , equ) (v , eqv) = orE t u v , cong₃ caseof eqt equ eqv iFalseE : ∀{C} → ⟪ ⊥-elim ⟫ NeImg False ↪ NfImg C iFalseE (t , eq) = falseE t , cong (⊥-elim ∘_) eq -- For falseE, we can get the stronger: iFalseE' : ∀{Γ C f} → Ne Γ False → NfImg C Γ (⊥-elim ∘ f) iFalseE' t = falseE t , ⊥-elim-ext -- Cover A (P : KPred A) : KPred A is an extension of Kripke predicate P -- (on functions into A) by case trees (whose leaves satisfy P). data Cover (A : Form) (P : KPred A) (Δ : Cxt) : (f : Fun Δ A) → Set where return : ∀{f} (p : P Δ f) → Cover A P Δ f falseC : (t : Ne Δ False) → Cover A P Δ (⊥-elim ∘ Ne⦅ t ⦆) orC : ∀{C D} (t : Ne Δ (C ∨ D)) {g} (cg : Cover A P (Δ ∙ C) g) {h} (ch : Cover A P (Δ ∙ D) h) → Cover A P Δ (caseof Ne⦅ t ⦆ g h) -- Cover is monotone in P mapC : ∀{A} {P Q : KPred A} (P⊂Q : ⟨ A ⟩ P ↪ Q) → ⟨ A ⟩ Cover A P ↪ Cover A Q mapC P⊂Q (return p) = return (P⊂Q p) mapC P⊂Q (falseC t) = falseC t mapC P⊂Q (orC t cg ch) = orC t (mapC P⊂Q cg) (mapC P⊂Q ch) -- Case trees can be composed, which makes Cover A a monad -- in the category of kripke predicates KPred A and their embeddings -- ⟨ A ⟩. joinC : ∀{A} {P : KPred A} → ⟨ A ⟩ Cover A (Cover A P) ↪ Cover A P joinC (return c) = c joinC (falseC t) = falseC t joinC (orC t cg ch) = orC t (joinC cg) (joinC ch) -- Weakening covers (Cover preserves Kripke) -- (τ : Δ ≤ Γ) → Cover A Γ P f → Cover A Δ P (f ∘ R⦅ τ ⦆) monC : ∀{A} {P : KPred A} (monP : Mon P) → Mon (Cover A P) monC monP τ (return p) = return (monP τ p) monC monP τ (falseC t) = subst (Cover _ _ _) ⊥-elim-ext (falseC (monNe τ t)) monC monP τ (orC t cg ch) = orC (monNe τ t) (monC monP (lift τ) cg) (monC monP (lift τ) ch) -- REWRITE monD-ne natD -- Converting covers to a new target proposition -- A (simple) converter for covers (pointwise in the context) convC : ∀{A B} (g : T⦅ A ⦆ → T⦅ B ⦆) {P Q} (P⊂Q : ⟪ g ⟫ P ↪ Q) → ⟪ g ⟫ Cover A P ↪ Cover B Q convC g P⊂Q (return p) = return (P⊂Q p) convC g P⊂Q (falseC t) = subst (Cover _ _ _) ⊥-elim-ext (falseC t) convC g P⊂Q (orC t cg ch) = subst (Cover _ _ _) (caseof-perm g {Ne⦅ t ⦆}) (orC t (convC g P⊂Q cg) (convC g P⊂Q ch)) -- A general converter going to a new target proposition and an extended context at the same time. -- (subsumes mapC, monC, convC). record Converter A B (P : KPred A) (Q : KPred B) {Γ₀ Δ₀} (τ₀ : Δ₀ ≤ Γ₀) : Set where field -- Conversion functional φ : ∀ {Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) → Fun Γ A → Fun Δ B -- φ distributes over case φ-case : ∀ {Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) → ∀ C D (f : Fun Γ (C ∨ D)) (g : Fun (Γ ∙ C) A) (h : Fun (Γ ∙ D) A) → caseof (f ∘ R⦅ τ ⦆) (φ (weak δ) (lift {C} τ) g) (φ (weak δ) (lift {D} τ) h) ≡ φ δ τ (caseof f g h) -- φ transports from P to Q P⊂Q : ∀{Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) {f} → P Γ f → Q Δ (φ δ τ f) -- The conversion is implemented by recursion over the case tree module _ A B (P : KPred A) (Q : KPred B) {Γ₀ Δ₀} (τ₀ : Δ₀ ≤ Γ₀) (conv : Converter A B P Q τ₀) (open Converter conv) where convCov : ∀{Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) {f} → Cover A P Γ f → Cover B Q Δ (φ δ τ f) convCov {Γ} {Δ} δ τ (return p) = return (P⊂Q δ τ p) convCov {Γ} {Δ} δ τ (falseC t) = subst (Cover _ _ _) ⊥-elim-ext (falseC (monNe τ t)) convCov {Γ} {Δ} δ τ (orC {C} {D} t {g} cg {h} ch) = subst (Cover _ _ _) (φ-case δ τ C D Ne⦅ t ⦆ g h) (orC (monNe τ t) (convCov (weak δ) (lift {C} τ) cg) (convCov (weak δ) (lift {D} τ) ch)) -- Just for documentation: where τC = lift {C} τ cg' : Cover B Q (Δ ∙ C) (φ (weak δ) τC g) cg' = convCov (weak δ) τC cg τD = lift {D} τ ch' : Cover B Q (Δ ∙ D) (φ (weak δ) τD h) ch' = convCov (weak δ) τD ch c' : Cover B Q Δ (caseof (Ne⦅ t ⦆ ∘ R⦅ τ ⦆) (φ (weak δ) τC g) (φ (weak δ) τD h)) c' = orC (monNe τ t) cg' ch' -- Implementations in terms of convCov (all need monotonicity of P) -- Cover is monotone in P mapCᶜ : ∀{A} {P Q : KPred A} (monP : Mon P) (P⊂Q : ⟨ A ⟩ P ↪ Q) → ⟨ A ⟩ Cover A P ↪ Cover A Q mapCᶜ {A} {P} {Q} monP P⊂Q {Γ} {f} c = convCov A A P Q id≤ conv id≤ id≤ c where conv : Converter A A P Q ( id≤ {Γ}) conv = record { φ = λ δ τ f → f ∘ R⦅ τ ⦆ ; φ-case = λ δ τ C D f g h → refl ; P⊂Q = λ δ τ ⟦f⟧ → P⊂Q (monP τ ⟦f⟧) } -- Weakening Covers monCᶜ : ∀{A} {P : KPred A} (monP : Mon P) → Mon (Cover A P) monCᶜ {A} {P} monP {Γ} {Δ} τ {f} c = convCov A A P P id≤ conv id≤ τ c where conv : Converter A A P P id≤ conv = record { φ = λ δ τ f → f ∘ R⦅ τ ⦆ ; φ-case = λ δ τ C D f g h → refl ; P⊂Q = λ δ τ ⟦f⟧ → monP τ ⟦f⟧ } -- A converter for covers (pointwise in the context) convCᶜ : ∀{A B} (g : T⦅ A ⦆ → T⦅ B ⦆) {P Q} (monP : Mon P) (P⊂Q : ⟪ g ⟫ P ↪ Q) → ⟪ g ⟫ Cover A P ↪ Cover B Q convCᶜ {A} {B} g₀ {P} {Q} monP P⊂Q {Γ} {f} p = convCov A B P Q id≤ conv id≤ id≤ p where conv : Converter A B P Q id≤ conv = record { φ = λ δ τ f → g₀ ∘ f ∘ R⦅ τ ⦆ ; φ-case = λ δ τ C D f g h → caseof-perm g₀ {f ∘ R⦅ τ ⦆} ; P⊂Q = λ δ τ ⟦f⟧ → P⊂Q (monP τ ⟦f⟧) } -- Syntactic paste: -- a case tree over normal forms is a normal form. pasteNf : ∀{A} → ⟨ A ⟩ Cover A (NfImg A) ↪ NfImg A pasteNf (return t) = t pasteNf (falseC t) = iFalseE (t , refl) pasteNf (orC t cg ch) = iOrE (t , refl) (pasteNf cg) (pasteNf ch) -- Bicartesian closure of KPred -- Semantic absurdity type (initial object) Absurd : KPred False Absurd _ _ = ⊥ -- Semantic disjunction type (coproduct) data Disj A B (⟦A⟧ : KPred A) (⟦B⟧ : KPred B) Γ : Fun Γ (A ∨ B) → Set where left : {g : Fun Γ A} (⟦g⟧ : ⟦A⟧ Γ g) → Disj _ _ _ _ _ (inj₁ ∘ g) right : {h : Fun Γ B} (⟦h⟧ : ⟦B⟧ Γ h) → Disj _ _ _ _ _ (inj₂ ∘ h) monDisj : ∀{A B ⟦A⟧ ⟦B⟧} (monA : Mon ⟦A⟧) (monB : Mon ⟦B⟧) → Mon (Disj A B ⟦A⟧ ⟦B⟧) monDisj monA monB τ (left ⟦g⟧) = left (monA τ ⟦g⟧) monDisj monA monB τ (right ⟦h⟧) = right (monB τ ⟦h⟧) -- Semantic truth type (terminal object) Truth : KPred True Truth _ _ = ⊤ -- Semantic conjunction type (product) Conj : ∀ A B (⟦A⟧ : KPred A) (⟦B⟧ : KPred B) → KPred (A ∧ B) Conj A B ⟦A⟧ ⟦B⟧ Γ f = ⟦A⟧ Γ (proj₁ ∘ f) × ⟦B⟧ Γ (proj₂ ∘ f) -- Semantic implication type (exponential) Imp : ∀ A B (⟦A⟧ : KPred A) (⟦B⟧ : KPred B) → KPred (A ⇒ B) Imp A B ⟦A⟧ ⟦B⟧ Γ f = ∀{Δ} (τ : Δ ≤ Γ) {a : Fun Δ A} (⟦a⟧ : ⟦A⟧ Δ a) → ⟦B⟧ Δ (kapp A B f τ a) -- The Beth model T⟦_⟧ : (A : Form) → KPred A T⟦ Atom P ⟧ = NfImg (Atom P) T⟦ True ⟧ = Truth T⟦ False ⟧ = Cover False Absurd T⟦ A ∨ B ⟧ = Cover (A ∨ B) (Disj A B (T⟦ A ⟧) (T⟦ B ⟧)) T⟦ A ∧ B ⟧ = Conj A B T⟦ A ⟧ T⟦ B ⟧ T⟦ A ⇒ B ⟧ = Imp A B T⟦ A ⟧ T⟦ B ⟧ -- Monotonicity of semantics -- (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ f → T⟦ A ⟧ Δ (f ∘ R⦅ τ ⦆) monT : ∀ A → Mon T⟦ A ⟧ monT (Atom P) = monNfImg monT True = _ monT False = monC λ _ () monT (A ∨ B) = monC (monDisj (monT A) (monT B)) monT (A ∧ B) τ = monT A τ ×̇ monT B τ monT (A ⇒ B) τ f σ = f (σ • τ) -- Reflection / reification mutual reflect : ∀ A → ⟨ A ⟩ NeImg A ↪ T⟦ A ⟧ reflect (Atom P) = iNe reflect True = _ reflect False (t , _) = subst (Cover _ _ _) ⊥-elim-ext (falseC t) -- x : A ∨ B is reflected as case(x, y. inl y, z. inr z) -- Need a proof of caseof x inj₁ inj₂ = x reflect (A ∨ B) (t , refl) = subst (Cover _ _ _) (caseof-eta Ne⦅ t ⦆) (orC t (return (left (reflect A (iHyp top)))) (return (right (reflect B (iHyp top))))) reflect (A ∧ B) i = reflect A (iAndE₁ i) , reflect B (iAndE₂ i) reflect (A ⇒ B) i τ a = reflect B (iImpE (monNeImg τ i) (reify A a)) reify : ∀ A → ⟨ A ⟩ T⟦ A ⟧ ↪ NfImg A reify (Atom P) = id reify True _ = iTrueI reify False = pasteNf ∘ mapC λ() reify (A ∨ B) = pasteNf ∘ mapC reifyDisj reify (A ∧ B) (a , b) = iAndI (reify A a) (reify B b) reify (A ⇒ B) ⟦f⟧ = iImpI (reify B (⟦f⟧ (weak id≤) (reflect A (iHyp top)))) reifyDisj : ∀{A B} → ⟨ A ∨ B ⟩ Disj A B T⟦ A ⟧ T⟦ B ⟧ ↪ NfImg (A ∨ B) reifyDisj {A} {B} (left ⟦g⟧) = iOrI₁ (reify A ⟦g⟧) reifyDisj {A} {B} (right ⟦h⟧) = iOrI₂ (reify B ⟦h⟧) -- Semantic paste paste : ∀ A → ⟨ A ⟩ Cover A (T⟦ A ⟧) ↪ T⟦ A ⟧ paste (Atom P) = pasteNf paste True = _ paste False = joinC paste (A ∨ B) = joinC paste (A ∧ B) = < paste A ∘ convC proj₁ proj₁ , paste B ∘ convC proj₂ proj₂ > paste (A ⇒ B) {Γ₀} {f} c {Δ₀} τ₀ {a} ⟦a⟧ = paste B (convCov (A ⇒ B) B P Q τ₀ record{Conv} id≤ τ₀ c) where P = Imp A B T⟦ A ⟧ T⟦ B ⟧ Q = T⟦ B ⟧ module Conv where φ : ∀ {Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) → Fun Γ (A ⇒ B) → Fun Δ B φ δ τ f = kapp A B f τ (a ∘ R⦅ δ ⦆) P⊂Q : ∀ {Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) {f} → P Γ f → Q Δ (φ δ τ f) P⊂Q δ τ ⟦f⟧ = ⟦f⟧ τ (monT A δ ⟦a⟧) φ-case : ∀ {Γ Δ} (δ : Δ ≤ Δ₀) (τ : Δ ≤ Γ) → ∀ C D (f : Fun Γ (C ∨ D)) (g : Fun (Γ ∙ C) (A ⇒ B)) (h : Fun (Γ ∙ D) (A ⇒ B)) → caseof (f ∘ R⦅ τ ⦆) (φ (weak δ) (lift {C} τ) g) (φ (weak δ) (lift {D} τ) h) ≡ φ δ τ (caseof f g h) φ-case δ τ C D f g h = caseof-kapply f g h R⦅ τ ⦆ (a ∘ R⦅ δ ⦆) -- Fundamental theorem -- Extension of T⟦_⟧ to contexts G⟦_⟧ : ∀ Γ → KPred' C⦅ Γ ⦆ G⟦ ε ⟧ Δ ρ = ⊤ G⟦ Γ ∙ A ⟧ Δ ρ = G⟦ Γ ⟧ Δ (proj₁ ∘ ρ) × T⟦ A ⟧ Δ (proj₂ ∘ ρ) -- monG : ∀{Γ Δ Φ ρ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ ρ → G⟦ Γ ⟧ Φ (ρ ∘ R⦅ τ ⦆) monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a -- Variable case -- fundH : (x : Hyp A Γ) (γ : G⟦ Γ ⟧ Δ ρ) → T⟦ A ⟧ Δ (H⦅ x ⦆ ∘ ρ) fundH : ∀{Γ A} (x : Hyp A Γ) → ⟪ H⦅ x ⦆ ⟫ G⟦ Γ ⟧ ↪ T⟦ A ⟧ fundH top = proj₂ fundH (pop x) = fundH x ∘ proj₁ -- orE case orElim : ∀ E {Γ A B} {f} (⟦f⟧ : T⟦ A ∨ B ⟧ Γ f) {g} (⟦g⟧ : T⟦ A ⇒ E ⟧ Γ g) {h} (⟦h⟧ : T⟦ B ⇒ E ⟧ Γ h) → T⟦ E ⟧ Γ (caseof f (uncurry g) (uncurry h)) orElim E {Γ₀} {A} {B} ⟦f⟧ {g} ⟦g⟧ {h} ⟦h⟧ = paste E (convCov (A ∨ B) E P Q {Γ₀} id≤ record{Conv} id≤ id≤ ⟦f⟧) where P = Disj A B T⟦ A ⟧ T⟦ B ⟧ Q = T⟦ E ⟧ module Conv where φ : ∀ {Γ Δ} (δ : Δ ≤ Γ₀) (τ : Δ ≤ Γ) → Fun Γ (A ∨ B) → Fun Δ E φ δ τ f = caseof (f ∘ R⦅ τ ⦆) (uncurry (g ∘ R⦅ δ ⦆)) (uncurry (h ∘ R⦅ δ ⦆ )) P⊂Q : ∀{Γ Δ} (δ : Δ ≤ Γ₀) (τ : Δ ≤ Γ) {f} → P Γ f → Q Δ (φ δ τ f) P⊂Q δ τ (left ⟦a⟧) = ⟦g⟧ δ (monT A τ ⟦a⟧) P⊂Q δ τ (right ⟦b⟧) = ⟦h⟧ δ (monT B τ ⟦b⟧) φ-case : ∀ {Γ Δ} (δ : Δ ≤ Γ₀) (τ : Δ ≤ Γ) → ∀ C D (k : Fun Γ (C ∨ D)) (i : Fun (Γ ∙ C) (A ∨ B)) (j : Fun (Γ ∙ D) (A ∨ B)) → caseof (k ∘ R⦅ τ ⦆) (φ (weak δ) (lift {C} τ) i) (φ (weak δ) (lift {D} τ) j) ≡ φ δ τ (caseof k i j) φ-case δ τ C D k i j = caseof-swap (k ∘ R⦅ τ ⦆) (uncurry (curry i ∘ R⦅ τ ⦆)) (uncurry (curry j ∘ R⦅ τ ⦆)) (g ∘ R⦅ δ ⦆) (h ∘ R⦅ δ ⦆) -- A lemma for the falseE case falseElim : ∀ A → ⟪ ⊥-elim ⟫ T⟦ False ⟧ ↪ T⟦ A ⟧ falseElim A = paste A ∘ convC ⊥-elim ⊥-elim -- The fundamental theorem -- fund : ∀{A Γ} (t : Γ ⊢ A) {Δ ρ} (γ : G⟦ Γ ⟧ Δ ρ) → T⟦ A ⟧ Δ (D⦅ t ⦆ ∘ ρ) fund : ∀{A Γ} (t : Γ ⊢ A) → ⟪ D⦅ t ⦆ ⟫ G⟦ Γ ⟧ ↪ T⟦ A ⟧ fund (hyp x) = fundH x fund (impI t) γ τ a = fund t (monG τ γ , a) fund (impE t u) γ = fund t γ id≤ (fund u γ) fund (andI t u) = < fund t , fund u > fund (andE₁ t) = proj₁ ∘ fund t fund (andE₂ t) = proj₂ ∘ fund t fund (orI₁ t) γ = return (left (fund t γ)) fund (orI₂ t) γ = return (right (fund t γ)) fund {A} (orE t u v) γ = orElim A (fund t γ) (λ τ a → fund u (monG τ γ , a)) (λ τ b → fund v (monG τ γ , b)) fund {A} (falseE t) γ = falseElim A (fund t γ) fund trueI γ = _ -- Identity environment ide : ∀ Γ → G⟦ Γ ⟧ Γ id ide ε = _ ide (Γ ∙ A) = monG (weak id≤) (ide Γ) , reflect A (iHyp top) -- Normalization by evaluation norm : ∀{Γ A} (t : Γ ⊢ A) → NfImg A Γ D⦅ t ⦆ norm t = reify _ (fund t (ide _)) -- -} -- -}
{ "alphanum_fraction": 0.5033867396, "avg_line_length": 32.0542797495, "ext": "agda", "hexsha": "e6278107ff71b14259b276b720e4151c0ddec866", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/NbeModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/NbeModel.agda", "max_line_length": 108, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/NbeModel.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 7394, "size": 15354 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} open import Relation.Nullary open import Relation.Nullary.Decidable open import Data.Nat open import Data.Vec open import Data.Fin open import Data.Product open import Data.Sum open import Data.Bool open import Data.Unit open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Size open import Codata.Thunk open import Axiom.ExcludedMiddle open import Level renaming (zero to ∅ ; suc to ++) open import is-lib.SInfSys as IS open import Examples.Lambda.Lambda open import Examples.Lambda.BigStep renaming (U to BigStepU) open import Examples.Lambda.SmallStep module Examples.Lambda.Proofs where Spec : BigStepU → Set Spec (e , res x) = e ⇒* term x Spec (e , div) = ∀{i} → ⇒∞ e i {- Soundness -} Spec-val : BigStepU → Set Spec-val (e , v) = ∀{v'} → v ≡ res v' → Spec (e , v) Spec-closed : ISClosed (BigStepIS ∪ BigStepCOIS) Spec-val Spec-closed (inj₁ VAL) _ _ refl = ε Spec-closed (inj₁ APP) _ prem refl = let s-e1 = prem zero refl in let s-e2 = prem (suc zero) refl in let s-subst = prem (suc (suc zero)) refl in let subst = IS.fold (β , _ , refl , λ ()) in inj-l-app _ (prem zero refl) ◅◅ inj-r-app _ (prem (suc zero) refl) ◅◅ subst ◅ prem (suc (suc zero)) refl Spec-closed (inj₂ COA) s_ _ () ⇓ᵢ-to-⇒* : ∀{e v} → e ⇓ᵢ v → Spec-val (e , v) ⇓ᵢ-to-⇒* = ind[ BigStepIS ∪ BigStepCOIS ] Spec-val Spec-closed bs-sound-v : ∀{e v} → (∀{i} → (e ⇓ (res v)) i) → e ⇒* (term v) bs-sound-v r = ⇓ᵢ-to-⇒* (sfcoind-to-ind r) refl subject-red-⇓ : ∀{e e' v} → (∀{i} → (e ⇓ v) i) → e ⇒ e' → (∀{i} → (e' ⇓ v) i) subject-red-⇓ bs (fold (β , (e , v) , eq , _)) with bs subject-red-⇓ bs (fold (β , (e , v) , () , _)) | sfold (VAL , (lambda x , _) , refl , prem) subject-red-⇓ bs (fold (β , (e , lambda x) , refl , _)) | sfold (APP , ((.(lambda e) , _ , .(lambda x) , v , _) , _) , refl , prem) with val-⇓-≡ (prem zero .force) | val-⇓-≡ (prem (suc zero) .force) subject-red-⇓ bs (fold (β , (e , lambda x) , refl , _)) | sfold (APP , ((.(lambda e) , .e , .(lambda x) , .(lambda x) , _) , _) , refl , prem) | refl | refl = prem (suc (suc zero)) .force subject-red-⇓ bs (fold (β , (e , v) , refl , _)) | sfold (L-DIV , _ , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem zero .force)) subject-red-⇓ bs (fold (β , (e , v) , refl , _)) | sfold (R-DIV , _ , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem (suc zero) .force)) subject-red-⇓ bs (fold (L-APP , c , eq , _)) with bs subject-red-⇓ bs (fold (L-APP , _ , () , _)) | sfold (VAL , (lambda _ , _) , refl , _) subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (APP , ((.e1 , e1'' , .e2 , lambda _ , _) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in let prems = λ{zero → rec ; (suc zero) → prem (suc zero) .force ; (suc (suc zero)) → prem (suc (suc zero)) .force} in apply-sfcoind APP _ prems subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (L-DIV , ((.e1 , .e2) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in apply-sfcoind L-DIV _ λ{zero → rec} subject-red-⇓ bs (fold (L-APP , (e1 , e1' , e2) , refl , pr)) | sfold (R-DIV , ((.e1 , .e2 , lambda v) , ind) , refl , prem) = let rec = subject-red-⇓ (prem zero .force) (pr zero) in let prems = λ{zero → rec ; (suc zero) → prem (suc zero) .force} in apply-sfcoind R-DIV _ prems subject-red-⇓ bs (fold (R-APP , (lambda _ , e2 , e2') , eq , pr)) with bs subject-red-⇓ bs (fold (R-APP , (lambda _ , _ , _) , refl , _)) | sfold (VAL , (lambda _ , _) , () , _) subject-red-⇓ bs (fold (R-APP , (lambda e1 , e2 , e2') , refl , pr)) | sfold (APP , ((.(lambda _) , e1' , .e2 , lambda _ , _) , ind) , refl , prem) with val-⇓-≡ (prem zero .force) subject-red-⇓ bs (fold (R-APP , (lambda e1 , e2 , e2') , refl , pr)) | sfold (APP , ((.(lambda e1) , .e1 , .e2 , lambda _ , _) , ind) , refl , prem) | refl = let rec = subject-red-⇓ (prem (suc zero) .force) (pr zero) in let prems = λ{zero → prem zero .force ; (suc zero) → rec ; (suc (suc zero)) → prem (suc (suc zero)) .force} in apply-sfcoind APP _ prems subject-red-⇓ bs (fold (R-APP , (lambda _ , e2 , e2') , refl , _)) | sfold (L-DIV , ((.(lambda _) , .e2) , _) , refl , prem) = ⊥-elim (val-not-reduce⇓ (prem zero .force)) subject-red-⇓ bs (fold (R-APP , (lambda e , e2 , e2') , refl , pr)) | sfold (R-DIV , ((.(lambda e) , .e2 , v) , ind) , refl , prem) with val-⇓-≡ (prem zero .force) subject-red-⇓ bs (fold (R-APP , (lambda e , e2 , e2') , refl , pr)) | sfold (R-DIV , ((.(lambda e) , .e2 , .(lambda e)) , ind) , refl , prem) | refl = let rec = subject-red-⇓ (prem (suc zero) .force) (pr zero) in let prems = λ{zero → prem zero .force ; (suc zero) → rec} in apply-sfcoind R-DIV _ prems progress : ∀{e} →(∀{i} → (e ⇓ div) i) → Σ[ e' ∈ Term 0 ] (e ⇒ e') progress {e} bs with bs progress bs | sfold (APP , _ , refl , prem) with bs-sound-v (prem zero .force) progress bs | sfold (APP , ((_ , e1' , _ , _ , .div) , _) , refl , prem) | ε with bs-sound-v (prem (suc zero) .force) progress bs | sfold (APP , ((.(lambda e1') , e1' , _ , v , .div) , _) , refl , prem) | ε | ε = _ , apply-ind β _ λ () progress bs | sfold (APP , ((.(lambda e1') , e1' , e2 , _ , .div) , _) , refl , prem) | ε | x ◅ _ = app (lambda e1') _ , apply-ind R-APP _ λ{zero → x} progress bs | sfold (APP , ((e1 , _ , e2 , _ , .div) , _) , refl , prem) | x ◅ _ = app _ e2 , apply-ind L-APP _ λ{zero → x} progress bs | sfold (L-DIV , ((e1 , e2) , _) , refl , prem) = let e1' , e1⇒e1' = progress (prem zero .force) in app e1' e2 , apply-ind L-APP _ λ{zero → e1⇒e1'} progress bs | sfold (R-DIV , ((e1 , e2 , v) , _) , refl , prem) with bs-sound-v (prem zero .force) progress bs | sfold (R-DIV , ((.(term _) , e2 , (lambda e)) , _) , refl , prem) | ε = let e2' , e2⇒e2' = progress (prem (suc zero) .force) in app (lambda e) e2' , apply-ind R-APP _ λ{zero → e2⇒e2'} progress bs | sfold (R-DIV , ((e1 , e2 , (lambda e)) , _) , refl , prem) | x ◅ _ = app _ e2 , apply-ind L-APP _ λ{zero → x} bs-sound-∞ : ∀{e} → (∀{i} → (e ⇓ div) i) → (∀{i} → ⇒∞ e i) bs-sound-∞ bs with progress bs ... | e' , ss = step ss λ where .force → bs-sound-∞ (subject-red-⇓ bs ss) bs-sound : ∀{e v} → (∀{i} → (e ⇓ v) i) → Spec (e , v) bs-sound {_} {res _} = bs-sound-v bs-sound {_} {div} = bs-sound-∞ {- Completeness -} inv-app : ∀{e1 e2 v} → (app e1 e2) ⇓ᵢ (res v) → Σ[ e1' ∈ Term 1 ] Σ[ e2' ∈ Value ] (e1 ⇓ᵢ res (lambda e1')) × (e2 ⇓ᵢ (res e2')) × (subst-0 e1' (term e2') ⇓ᵢ res v) -- Using consistency of inductive interpretation inv-app bs with ind-postfix bs inv-app bs | inj₁ VAL , lambda _ , () , _ inv-app bs | inj₁ APP , _ , refl , pr = _ , _ , pr zero , pr (suc zero) , pr (suc (suc zero)) inv-app bs | inj₂ COA , _ , () , _ subject-exp : ∀{e e' v} → e ⇒ e' → e' ⇓ᵢ v → e ⇓ᵢ v subject-exp {.(app (lambda e1) (term v))} {_} {v'} (fold (β , (e1 , v) , refl , _)) bs = let prem-e1 = IS.fold (inj₁ VAL , lambda e1 , refl , λ ()) in let prem-e2 = IS.fold (inj₁ VAL , v , refl , λ ()) in let prems = λ{zero → prem-e1 ; (suc zero) → prem-e2 ; (suc (suc zero)) → bs} in apply-ind (inj₁ APP) _ prems subject-exp {.(app e1 e2)} {.(app e1' e2)} {res x} (fold (L-APP , (e1 , e1' , e2) , refl , pr)) bs = let e1'' , e2' , bs-e1' , bs-e2 , bs-subst = inv-app bs in let prems = λ{zero → subject-exp (pr zero) bs-e1' ; (suc zero) → bs-e2 ; (suc (suc zero)) → bs-subst} in apply-ind (inj₁ APP) _ prems subject-exp {.(app e1 e2)} {.(app e1' e2)} {div} (fold (L-APP , (e1 , e1' , e2) , refl , pr)) bs = apply-ind (inj₂ COA) _ λ () subject-exp {.(app (term v) e2)} {.(app (term v) e2')} {res x} (fold (R-APP , (v , e2 , e2') , refl , pr)) bs = let e1' , e2'' , bs-e1 , bs-e2' , bs-subst = inv-app bs in let prems = λ{zero → bs-e1 ; (suc zero) → subject-exp (pr zero) bs-e2' ; (suc (suc zero)) → bs-subst} in apply-ind (inj₁ APP) _ prems subject-exp {.(app (term v) e2)} {.(app (term v) e2')} {div} (fold (R-APP , (v , e2 , e2') , refl , _)) bs = apply-ind (inj₂ COA) _ λ () bounded-v : ∀{e v} → e ⇒* term v → e ⇓ᵢ res v bounded-v ε = apply-ind (inj₁ VAL) _ λ () bounded-v (x ◅ ss) = subject-exp x (bounded-v ss) bounded-∞ : ∀{e} → (∀{i} → ⇒∞ e i) → e ⇓ᵢ div bounded-∞ {e} ss = apply-ind (inj₂ COA) _ λ () bounded : ∀{e v} → Spec (e , v) → e ⇓ᵢ v bounded {_} {res _} = bounded-v bounded {_} {div} = bounded-∞ get-prem-cons : ∀{e1 e2 v} → app e1 e2 ⇒* (term v) → Σ[ e1' ∈ Term 1 ] Σ[ e2' ∈ Value ] (e1 ⇒* lambda e1') × (e2 ⇒* term e2') × (subst-0 e1' (term e2') ⇒* (term v)) get-prem-cons {.(lambda e1)} {.(term v)} {lambda _} (fold (β , (e1 , v) , refl , _) ◅ ss) = e1 , v , ε , ε , ss get-prem-cons {.e1} {.e2} {lambda _} (fold (L-APP , (e1 , e1' , e2) , refl , pr) ◅ ss) = let e1'' , e2' , rec-e1' , rec-e2 , rec-subst = get-prem-cons ss in e1'' , e2' , pr zero ◅ rec-e1' , rec-e2 , rec-subst get-prem-cons {.(term v)} {.e2} {lambda _} (fold (R-APP , (v , e2 , e2') , refl , pr) ◅ ss) = let e1' , e2'' , rec-e1 , rec-e2' , rec-subst = get-prem-cons ss in e1' , e2'' , rec-e1 , pr zero ◅ rec-e2' , rec-subst consistent-v : ∀{e v} → e ⇒* term v → IS.ISF[ BigStepIS ] Spec (e , res v) consistent-v {.(lambda _)} {lambda _} ε = VAL , _ , refl , λ () consistent-v {lambda _} {lambda _} (x ◅ ss) = ⊥-elim (val-not-reduce⇒ x) consistent-v {app e1 e2} {lambda _} (x ◅ ss) = let e1' , e2' , e1⇒* , e2⇒* , subst⇒* = get-prem-cons (x ◅ ss) in let prems = λ{zero → e1⇒* ; (suc zero) → e2⇒* ; (suc (suc zero)) → subst⇒*} in APP , (e1 , e1' , e2 , e2' , _) , refl , prems postulate excluded-middle : ExcludedMiddle ∅ lemma-divergence : ∀{e1 e2} → (∀{i} → ⇒∞ (app e1 e2) i) → (∀{i} → ⇒∞ e1 i) ⊎ e1 ConvergesSS × (∀{i} → ⇒∞ e2 i) ⊎ Σ[ t1 ∈ Term 1 ] Σ[ v ∈ Value ] (e1 ⇒* lambda t1) × (e2 ⇒* term v) × (∀{i} → ⇒∞ (subst-0 t1 (term v)) i) lemma-divergence {e1} {e2} ss with excluded-middle {e1 ConvergesSS} lemma-divergence {e1} {e2} ss | no ¬e1-conv = inj₁ (div-app-l-not-conv ss ¬e1-conv) lemma-divergence {e1} {e2} ss | yes e1-conv with excluded-middle {e2 ConvergesSS} lemma-divergence {e1} {e2} ss | yes e1-conv | no ¬e2-conv = inj₂ (inj₁ (e1-conv , div-app-r-not-conv ss (proj₂ e1-conv) ¬e2-conv)) lemma-divergence {e1} {e2} ss | yes (lambda _ , red-e1) | yes (_ , red-e2) = inj₂ (inj₂ (_ , _ , ( red-e1 , red-e2 , app-subst-⇒∞₁ red-e1 red-e2 ss))) consistent-∞ : ∀{e} → (∀{i} → ⇒∞ e i) → IS.ISF[ BigStepIS ] Spec (e , div) consistent-∞ {e} ss with ss consistent-∞ {lambda e} ss | step x _ = ⊥-elim (val-not-reduce⇒ x) consistent-∞ {app e₁ e₂} ss | step x x₁ with lemma-divergence (step x x₁) consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₁ e1-div = L-DIV , _ , refl , λ{zero → e1-div} consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₂ (inj₁ (e1-conv , e2-div)) = R-DIV , _ , refl , λ{zero → proj₂ e1-conv ; (suc zero) → e2-div} consistent-∞ {app e₁ e₂} ss | step x x₁ | inj₂ (inj₂ (_ , _ , red-e1 , red-e2 , subst-div)) = APP , _ , refl , λ{zero → red-e1 ; (suc zero) → red-e2 ; (suc (suc zero)) → subst-div} consistent : ∀{e v} → Spec (e , v) → IS.ISF[ BigStepIS ] Spec (e , v) consistent {_} {res _} = consistent-v consistent {_} {div} = consistent-∞ complete : ∀{e v} → Spec (e , v) → (∀{i} → (e ⇓ v) i) complete = bounded-scoind[ BigStepIS , BigStepCOIS ] Spec bounded consistent
{ "alphanum_fraction": 0.543167913, "avg_line_length": 54.9906542056, "ext": "agda", "hexsha": "ccd82eab8df23d5e296cc6df41b362b5f618d3b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "LcicC/inference-systems-agda", "max_forks_repo_path": "Examples/Lambda/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "LcicC/inference-systems-agda", "max_issues_repo_path": "Examples/Lambda/Proofs.agda", "max_line_length": 189, "max_stars_count": 3, "max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "LcicC/inference-systems-agda", "max_stars_repo_path": "Examples/Lambda/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z", "num_tokens": 4947, "size": 11768 }
{-# OPTIONS --cubical --safe #-} module Container.Polynomial where open import Prelude hiding (id; const; _×_; Π; _⊎_; Σ; _∘_; ⊤; ⊥) open import Data.Unit.UniversePolymorphic open import Data.Empty.UniversePolymorphic import Prelude as P open import Container module _ {s p : Level} where id : Container s p id .fst = ⊤ id .snd _ = ⊤ const : Type s → Container s p const X .fst = X const X .snd _ = ⊥ infixr 9 _∘_ _∘_ : ∀ {s₁ s₂ p₁ p₂} → Container s₁ p₁ → Container s₂ p₂ → Container (s₁ ℓ⊔ s₂ ℓ⊔ p₁) (p₁ ℓ⊔ p₂) (C₁ ∘ C₂) .fst = ⟦ C₁ ⟧ (fst C₂) (C₁ ∘ C₂) .snd cx = ∃ x × (snd C₂ P.∘ snd cx) x infixr 2 _×_ _×_ : ∀ {s₁ s₂ p₁ p₂} → Container s₁ p₁ → Container s₂ p₂ → Container (s₁ ℓ⊔ s₂) (p₁ ℓ⊔ p₂) (C₁ × C₂) .fst = fst C₁ P.× fst C₂ (C₁ × C₂) .snd = P.uncurry λ s₁ s₂ → (snd C₁ s₁) P.⊎ (snd C₂ s₂) Π : ∀ {i s p} (I : Type i) → (I → Container s p) → Container (i ℓ⊔ s) (i ℓ⊔ p) Π I C .fst = ∀ i → fst (C i) Π I C .snd = λ s → ∃ i × snd (C i) (s i) infix 0 const[_]⟶_ const[_]⟶_ : ∀ {i s p} → Type i → Container s p → Container (i ℓ⊔ s) (i ℓ⊔ p) const[ X ]⟶ C = Π X (P.const C) infixr 1 _⊎_ _⊎_ : ∀ {s₁ s₂ p} → Container s₁ p → Container s₂ p → Container (s₁ ℓ⊔ s₂) p (C₁ ⊎ C₂) .fst = (fst C₁ P.⊎ fst C₂) (C₁ ⊎ C₂) .snd = either (snd C₁) (snd C₂) Σ : ∀ {i s p} (I : Type i) → (I → Container s p) → Container (i ℓ⊔ s) p Σ I C .fst = ∃ i × fst (C i) Σ I C .snd s = snd (C (fst s)) (snd s)
{ "alphanum_fraction": 0.5589060309, "avg_line_length": 25.9272727273, "ext": "agda", "hexsha": "d524d203cc582dc5b18725af7f9f00b23bd4a0cd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Container/Polynomial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Container/Polynomial.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Container/Polynomial.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 687, "size": 1426 }
module Data.Collection.Core.Properties where -- open import Data.List public using (List; []; _∷_) -- open import Data.String public using (String; _≟_) -- open import Level using (zero) -- -- open import Function using (flip) -- open import Relation.Nullary -- open import Relation.Nullary.Negation -- open import Relation.Nullary.Decidable renaming (map to mapDec; map′ to mapDec′) -- open import Relation.Unary -- open import Relation.Binary -- open import Relation.Binary.PropositionalEquality
{ "alphanum_fraction": 0.7575150301, "avg_line_length": 35.6428571429, "ext": "agda", "hexsha": "2f4128c059f745d163a9439810b4ba6c9fa46e3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/lambda-calculus", "max_forks_repo_path": "Data/Collection/Core/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/lambda-calculus", "max_issues_repo_path": "Data/Collection/Core/Properties.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/lambda-calculus", "max_stars_repo_path": "Data/Collection/Core/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 115, "size": 499 }
{- Mathematical Foundations of Programming (G54FOP) Nicolai Kraus Lecture 3, 7 Feb 2018 ==================== INTRODUCTION TO AGDA ==================== Your G54FPP project could involve Agda. If you want. Btw, text in {- -} is a comment. So is text after --. links to help you install and learn Agda: http://wiki.portal.chalmers.se/agda/pmwiki.php http://agda.readthedocs.io/en/latest/getting-started/index.html https://github.com/agda/agda Agda standard library: https://github.com/agda/agda-stdlib Some key combinations, where C is ctrl, i.e. C-c C-l means: press control and keep it pressed, press and release c, press and release l, release control. C-c C-l load file, replace ? by hole C-c C-, show goal C-c C-. show goal and input type C-c C-n normalise expression C-c C-space give current hole input to Agda see links above for more I recommend using a monospace font. -} module lec3FOP where data ℕ : Set where -- type: \bN zero : ℕ suc : ℕ → ℕ -- type: \to or \-> -- (or just use ->) infix 6 _+_ _+_ : ℕ → ℕ → ℕ -- the arguments go where _ is zero + n = n (suc m) + n = suc (m + n) {- type of equalities on natural numbers *which we need to prove*. Some equalities can be hard to prove, so we cannot assume that Agda would find them automatically! -} infix 3 _==_ data _==_ : (m n : ℕ) → Set where refl : {m : ℕ} → m == m suc-lem : {m n : ℕ} → m == n → suc m == suc n suc-lem refl = refl +-is-associative : (k m n : ℕ) → k + (m + n) == (k + m) + n +-is-associative zero m n = refl +-is-associative (suc k) m n = suc-lem (+-is-associative k m n) {- Next: implement the language of expressions from the lecture This language was given by a BNF: E:= t | f | z | s E | p E | iz E | if E then E else E -} data Expr : Set where t : Expr f : Expr z : Expr s : Expr → Expr p : Expr → Expr iz : Expr → Expr if_then_else_ : Expr → Expr → Expr → Expr -- denotational semantics from last week: -- ⟦_⟧ : Expr → S type: \[[_\]] -- S was {True, False, 0, 1, 2, ..., ⊥} data Bool : Set where True : Bool False : Bool data S : Set where bool : Bool → S number : ℕ → S ⊥ : S -- Here we go: ⟦_⟧ : Expr → S ⟦ t ⟧ = bool True ⟦ f ⟧ = bool False ⟦ z ⟧ = number zero ⟦ s e ⟧ with ⟦ e ⟧ ⟦ s e ⟧ | number n = number (suc n) ⟦ s e ⟧ | _ = ⊥ ⟦ _ ⟧ = ⊥ -- not what we want, but -- at least Agda accepts it. -- Exercise: complete this definition.
{ "alphanum_fraction": 0.5553477936, "avg_line_length": 22.8547008547, "ext": "agda", "hexsha": "d45f472054c1a807febf77b7ffd2a473b9e08ead", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/FOP2018", "max_forks_repo_path": "agda/lec3FOP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/FOP2018", "max_issues_repo_path": "agda/lec3FOP.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "b65516ce0fdc5fc98604cbcff3ef8ae704d59049", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/FOP2018", "max_stars_repo_path": "agda/lec3FOP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 886, "size": 2674 }
------------------------------------------------------------------------------ -- Common definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Common.DefinitionsI where open import Common.FOL.FOL using ( ¬_ ; D ) open import Common.FOL.Relation.Binary.PropositionalEquality using ( _≡_ ) -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Relation/Binary/Core.agda). infix 7 _≢_ ------------------------------------------------------------------------------ -- Inequality. _≢_ : D → D → Set x ≢ y = ¬ x ≡ y
{ "alphanum_fraction": 0.422459893, "avg_line_length": 32.5217391304, "ext": "agda", "hexsha": "d620a198c144b8dc6d90cecf8950279f2f01fb34", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Common/DefinitionsI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Common/DefinitionsI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Common/DefinitionsI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 149, "size": 748 }
{-# OPTIONS --without-K #-} module Model.Stream where open import Model.Size as MS using ( Size ; Sizes ; _≤_ ; _<_ ; ≤-IsProp ; ≤-trans ; nat ) open import Model.Type.Core open import Util.HoTT.FunctionalExtensionality open import Util.HoTT.HLevel open import Util.Prelude import Data.Nat.Properties as ℕ open Size Colist : Size → Set Colist n = ∀ m → nat m ≤ n → ℕ abstract Colist-≡⁺ : ∀ {n} {xs ys : Colist n} → (∀ m m≤n → xs m m≤n ≡ ys m m≤n) → xs ≡ ys Colist-≡⁺ eq = funext λ m → funext λ m≤n → eq m m≤n Colist-≡⁻ : ∀ {n} {xs ys : Colist n} → xs ≡ ys → ∀ m m≤n₀ m≤n₁ → xs m m≤n₀ ≡ ys m m≤n₁ Colist-≡⁻ {xs = xs} refl m m≤n₀ m≤n₁ = cong (xs m) (≤-IsProp _ _) Colist-IsSet : ∀ {n} → IsSet (Colist n) Colist-IsSet = ∀-IsSet λ m → ∀-IsSet λ m≤n → ℕ.≡-irrelevant castColist : ∀ {n m} → n ≤ m → Colist m → Colist n castColist n≤m xs k k≤n = xs k go where abstract go = ≤-trans k≤n n≤m Stream : ⟦Type⟧ Sizes Stream = record { ObjHSet = λ n → HLevel⁺ (Colist n) Colist-IsSet ; eqHProp = λ {n} {n′} _ xs ys → ∀-HProp ℕ λ m → ∀-HProp (nat m ≤ n) λ m≤n → ∀-HProp (nat m ≤ n′) λ m≤n′ → HLevel⁺ (xs m m≤n ≡ ys m m≤n′) ℕ.≡-irrelevant ; eq-refl = λ x m m≤n m≤n′ → cong (x m) (≤-IsProp _ _) } cons : ∀ {n} → ℕ → (∀ m → m < n → Colist m) → Colist n cons x xs zero _ = x cons x xs (suc k) Sk≤n = xs (nat k) go k MS.≤-refl where abstract go = MS.Sn≤m→n<m Sk≤n head : ∀ {n} → Colist n → ℕ head xs = xs 0 MS.0≤n tail : ∀ {n} → Colist n → ∀ m → m < n → Colist m tail xs m m<n k k≤m = xs (suc k) go where abstract go = MS.n<m→Sn≤m (MS.≤→<→< k≤m m<n) abstract cons-≡⁺ : ∀ {n n′ i i′ is is′} → i ≡ i′ → (∀ m (m<n : m < n) (m<n′ : m < n′) k k≤m → is m m<n k k≤m ≡ is′ m m<n′ k k≤m) → ∀ m m<n m<n′ → cons i is m m<n ≡ cons i′ is′ m m<n′ cons-≡⁺ i≡i′ is≡is′ zero m<n₀ m<n₁ = i≡i′ cons-≡⁺ {is′ = is′} i≡i′ is≡is′ (suc m) m<n m<n′ = trans (is≡is′ (nat m) (MS.Sn≤m→n<m m<n) (MS.Sn≤m→n<m m<n′) m MS.≤-refl) (cong (λ p → is′ _ p _ _) (MS.<-IsProp _ _)) head-≡⁺ : ∀ {n n′ is is′} → (∀ m (m≤n : nat m ≤ n) (m≤n′ : nat m ≤ n′) → is m m≤n ≡ is′ m m≤n′) → head is ≡ head is′ head-≡⁺ is≡is′ = is≡is′ 0 MS.0≤n MS.0≤n tail-≡⁺ : ∀ {n n′ is is′} → (∀ m (m≤n : nat m ≤ n) (m≤n′ : nat m ≤ n′) → is m m≤n ≡ is′ m m≤n′) → ∀ m m′ m<n m′<n′ k k≤m k≤m′ → tail is m m<n k k≤m ≡ tail is′ m′ m′<n′ k k≤m′ tail-≡⁺ {is′ = is′} is≡is′ m m′ m<n m′<n′ k k≤m k≤m′ = trans (is≡is′ (suc k) _ (MS.n<m→Sn≤m (MS.≤→<→< k≤m′ m′<n′))) (cong (is′ (suc k)) (≤-IsProp _ _))
{ "alphanum_fraction": 0.4967067028, "avg_line_length": 27.4574468085, "ext": "agda", "hexsha": "19c29a94e773c659e0e3550e921ddea456233e05", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Model/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Model/Stream.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Model/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 1324, "size": 2581 }
------------------------------------------------------------------------ -- Some cancellation lemmas ------------------------------------------------------------------------ open import Atom module Cancellation (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open import Chi atoms open import Values atoms cancel-const : ∀ {c₁ c₂ es₁ es₂} → Exp.const c₁ es₁ ≡ const c₂ es₂ → c₁ ≡ c₂ × es₁ ≡ es₂ cancel-const refl = refl , refl cancel-lambda : ∀ {x₁ x₂ e₁ e₂} → Exp.lambda x₁ e₁ ≡ lambda x₂ e₂ → x₁ ≡ x₂ × e₁ ≡ e₂ cancel-lambda refl = refl , refl cancel-rec : ∀ {x₁ x₂ e₁ e₂} → Exp.rec x₁ e₁ ≡ rec x₂ e₂ → x₁ ≡ x₂ × e₁ ≡ e₂ cancel-rec refl = refl , refl cancel-apply : ∀ {e₁₁ e₁₂ e₂₁ e₂₂} → Exp.apply e₁₁ e₂₁ ≡ apply e₁₂ e₂₂ → e₁₁ ≡ e₁₂ × e₂₁ ≡ e₂₂ cancel-apply refl = refl , refl cancel-case : ∀ {e₁ e₂ bs₁ bs₂} → Exp.case e₁ bs₁ ≡ case e₂ bs₂ → e₁ ≡ e₂ × bs₁ ≡ bs₂ cancel-case refl = refl , refl cancel-var : ∀ {x₁ x₂} → Exp.var x₁ ≡ var x₂ → x₁ ≡ x₂ cancel-var refl = refl cancel-branch : ∀ {c₁ c₂ xs₁ xs₂ e₁ e₂} → Br.branch c₁ xs₁ e₁ ≡ branch c₂ xs₂ e₂ → c₁ ≡ c₂ × xs₁ ≡ xs₂ × e₁ ≡ e₂ cancel-branch refl = refl , refl , refl
{ "alphanum_fraction": 0.5553745928, "avg_line_length": 22.3272727273, "ext": "agda", "hexsha": "ef75d091b763bb2030a88f90f271e0431491ce00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Cancellation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Cancellation.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Cancellation.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 462, "size": 1228 }
{-# OPTIONS --safe #-} {- This file models "ZF - powerset" in cubical agda, via a cumulative hierarchy, in the sense given in the HoTT book §10.5 "The cumulative hierarchy". A great amount of inspiration is taken from the Coq implementations found in Jérémy Ledent, Modeling set theory in homotopy type theory, code of which can be found online at https://github.com/jledent/vset -} module Cubical.HITs.CumulativeHierarchy.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv using (fiber) open import Cubical.Functions.Logic open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as P hiding (elim; elim2) import Cubical.HITs.PropositionalTruncation.Monad as PropMonad private variable ℓ ℓ' : Level infix 5 _∈_ -- set up the basic hierarchy definition and _∈_ as recursive, higher inductive types data V (ℓ : Level) : Type (ℓ-suc ℓ) _∈_ : (S T : V ℓ) → hProp (ℓ-suc ℓ) eqImage : {X Y : Type ℓ} (ix : X → V ℓ) (iy : Y → V ℓ) → Type (ℓ-suc ℓ) eqImage {X = X} {Y = Y} ix iy = (∀ (a : X) → ∥ fiber iy (ix a) ∥₁) ⊓′ (∀ (b : Y) → ∥ fiber ix (iy b) ∥₁) data V ℓ where sett : (X : Type ℓ) → (X → V ℓ) → V ℓ seteq : (X Y : Type ℓ) (ix : X → V ℓ) (iy : Y → V ℓ) (eq : eqImage ix iy) → sett X ix ≡ sett Y iy setIsSet : isSet (V ℓ) A ∈ sett X ix = ∥ Σ[ i ∈ X ] (ix i ≡ A) ∥ₚ A ∈ seteq X Y ix iy (f , g) i = ⇔toPath {P = A ∈ sett X ix} {Q = A ∈ sett Y iy} (λ ax → do (x , xa) ← ax ; (y , ya) ← f x ; ∣ y , ya ∙ xa ∣₁) (λ ay → do (y , ya) ← ay ; (x , xa) ← g y ; ∣ x , xa ∙ ya ∣₁) i where open PropMonad A ∈ setIsSet a b p q i j = isSetHProp (A ∈ a) (A ∈ b) (λ j → A ∈ p j) (λ j → A ∈ q j) i j -- setup a general eliminator into h-sets record ElimSet {Z : (s : V ℓ) → Type ℓ'} (isSetZ : ∀ s → isSet (Z s)) : Type (ℓ-max ℓ' (ℓ-suc ℓ)) where field ElimSett : ∀ (X : Type ℓ) (ix : X → V ℓ) -- ^ the structural parts of the set → (rec : ∀ x → Z (ix x)) -- ^ a recursor into the elements → Z (sett X ix) ElimEq : ∀ (X₁ X₂ : Type ℓ) (ix₁ : X₁ → V ℓ) (ix₂ : X₂ → V ℓ) (eq : eqImage ix₁ ix₂) -- ^ the structural parts of the seteq path → (rc₁ : ∀ x₁ → Z (ix₁ x₁)) (rc₂ : ∀ x₂ → Z (ix₂ x₂)) -- ^ recursors into the elements → ((x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → Z (p i)) (rc₂ x₂) (rc₁ x₁)) → ((x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → Z (p i)) (rc₁ x₁) (rc₂ x₂)) -- ^ proofs that the recursors have equal images → PathP (λ i → Z (seteq X₁ X₂ ix₁ ix₂ eq i)) (ElimSett X₁ ix₁ rc₁) (ElimSett X₂ ix₂ rc₂) module _ {Z : (s : V ℓ) → Type ℓ'} {isSetZ : ∀ s → isSet (Z s)} (E : ElimSet isSetZ) where open ElimSet E elim : (s : V ℓ) → Z s elim (sett X ix) = ElimSett X ix (elim ∘ ix) elim (seteq X₁ X₂ ix₁ ix₂ eq i) = ElimEq X₁ X₂ ix₁ ix₂ eq (elim ∘ ix₁) (elim ∘ ix₂) rec₁→₂ rec₂→₁ i where rec₁→₂ : ∀ (x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → Z (p i)) (elim (ix₂ x₂)) (elim (ix₁ x₁)) rec₂→₁ : ∀ (x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → Z (p i)) (elim (ix₁ x₁)) (elim (ix₂ x₂)) -- using a local definition of Prop.rec satisfies the termination checker rec₁→₂ x₁ = localRec₁ (eq .fst x₁) where localRec₁ : ∥ fiber ix₂ (ix₁ x₁) ∥₁ → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → Z (p i)) (elim (ix₂ x₂)) (elim (ix₁ x₁)) localRec₁ ∣ x₂ , xx ∣₁ = ∣ (x₂ , xx) , (λ i → elim (xx i)) ∣₁ localRec₁ (squash₁ x y i) = squash₁ (localRec₁ x) (localRec₁ y) i rec₂→₁ x₂ = localRec₂ (eq .snd x₂) where localRec₂ : ∥ fiber ix₁ (ix₂ x₂) ∥₁ → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → Z (p i)) (elim (ix₁ x₁)) (elim (ix₂ x₂)) localRec₂ ∣ x₁ , xx ∣₁ = ∣ (x₁ , xx) , (λ i → elim (xx i)) ∣₁ localRec₂ (squash₁ x y i) = squash₁ (localRec₂ x) (localRec₂ y) i elim (setIsSet S T x y i j) = isProp→PathP propPathP (cong elim x) (cong elim y) i j where propPathP : (i : I) → isProp (PathP (λ j → Z (setIsSet S T x y i j)) (elim S) (elim T)) propPathP _ = subst isProp (sym (PathP≡Path _ _ _)) (isSetZ _ _ _) -- eliminator into propositions elimProp : {Z : (s : V ℓ) → Type ℓ'} (isPropZ : ∀ s → isProp (Z s)) → ((X : Type ℓ) → (ix : X → V ℓ) → (∀ x → Z (ix x)) → Z (sett X ix)) → (s : V ℓ) → Z s elimProp isPropZ algz (sett X ix) = algz X ix (λ x → elimProp isPropZ algz (ix x)) elimProp isPropZ algz (seteq X Y ix iy eq i) = isProp→PathP (λ i → isPropZ (seteq X Y ix iy eq i)) (algz X ix (elimProp isPropZ algz ∘ ix)) (algz Y iy (elimProp isPropZ algz ∘ iy)) i elimProp isPropZ algz (setIsSet S T x y i j) = isProp→SquareP (λ i j → isPropZ (setIsSet S T x y i j)) (λ _ → elimProp isPropZ algz S) (λ _ → elimProp isPropZ algz T) (cong (elimProp isPropZ algz) x) (cong (elimProp isPropZ algz) y) i j -- eliminator for two sets at once record Elim2Set {Z : (s t : V ℓ) → Type ℓ'} (isSetZ : ∀ s t → isSet (Z s t)) : Type (ℓ-max ℓ' (ℓ-suc ℓ)) where field ElimSett2 : ∀ (X : Type ℓ) (ix : X → V ℓ) (Y : Type ℓ) (iy : Y → V ℓ) -- ^ the structural parts of the set → (rec : ∀ x y → Z (ix x) (iy y)) -- ^ a recursor into the elements → Z (sett X ix) (sett Y iy) -- path when the the first argument deforms along seteq and the second argument is held constant ElimEqFst : ∀ (X₁ X₂ : Type ℓ) (ix₁ : X₁ → V ℓ) (ix₂ : X₂ → V ℓ) (eq : eqImage ix₁ ix₂) -- ^ the structural parts of the seteq path → (Y : Type ℓ) (iy : Y → V ℓ) -- ^ the second argument held constant → (rec₁ : ∀ x₁ y → Z (ix₁ x₁) (iy y)) (rec₂ : ∀ x₂ y → Z (ix₂ x₂) (iy y)) -- ^ recursors into the elements → (rec₁→₂ : (x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → ∀ y → Z (p i) (iy y)) (λ y → rec₂ x₂ y) (λ y → rec₁ x₁ y)) → (rec₂→₁ : (x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → ∀ y → Z (p i) (iy y)) (λ y → rec₁ x₁ y) (λ y → rec₂ x₂ y)) -- ^ proofs that the recursors have equal images → PathP (λ i → Z (seteq X₁ X₂ ix₁ ix₂ eq i) (sett Y iy)) (ElimSett2 X₁ ix₁ Y iy rec₁) (ElimSett2 X₂ ix₂ Y iy rec₂) -- path when the the second argument deforms along seteq and the first argument is held constant ElimEqSnd : ∀ (X : Type ℓ) (ix : X → V ℓ) -- ^ the first argument held constant → (Y₁ Y₂ : Type ℓ) (iy₁ : Y₁ → V ℓ) (iy₂ : Y₂ → V ℓ) → (eq : eqImage iy₁ iy₂) -- ^ the structural parts of the seteq path → (rec₁ : ∀ x y₁ → Z (ix x) (iy₁ y₁)) (rec₂ : ∀ x y₂ → Z (ix x) (iy₂ y₂)) -- ^ recursors into the elements → (rec₁→₂ : (y₁ : Y₁) → ∃[ (y₂ , p) ∈ fiber iy₂ (iy₁ y₁) ] PathP (λ i → ∀ x → Z (ix x) (p i)) (λ x → rec₂ x y₂) (λ x → rec₁ x y₁)) → (rec₂→₁ : (y₂ : Y₂) → ∃[ (y₁ , p) ∈ fiber iy₁ (iy₂ y₂) ] PathP (λ i → ∀ x → Z (ix x) (p i)) (λ x → rec₁ x y₁) (λ x → rec₂ x y₂)) -- ^ proofs that the recursors have equal images → PathP (λ i → Z (sett X ix) (seteq Y₁ Y₂ iy₁ iy₂ eq i)) (ElimSett2 X ix Y₁ iy₁ rec₁) (ElimSett2 X ix Y₂ iy₂ rec₂) module _ {Z : (s t : V ℓ) → Type ℓ'} {isSetZ : ∀ s t → isSet (Z s t)} (E : Elim2Set isSetZ) where open Elim2Set E open ElimSet elim2 : (s t : V ℓ) → Z s t elim2 = elim pElim where open PropMonad isSetPElim : ∀ s → isSet (∀ t → Z s t) isSetPElim s = isSetΠ (isSetZ s) eliminatorImplX : (X : Type ℓ) (ix : X → V ℓ) → (rec : ∀ x y → Z (ix x) y) → ElimSet (λ t → isSetZ (sett X ix) t) ElimSett (eliminatorImplX X ix rec) Y iy _ = ElimSett2 X ix Y iy (λ x → rec x ∘ iy) ElimEq (eliminatorImplX X ix rec) Y₁ Y₂ iy₁ iy₂ eq _ _ _ _ = ElimEqSnd X ix Y₁ Y₂ iy₁ iy₂ eq (λ x → rec x ∘ iy₁) (λ x → rec x ∘ iy₂) rec₁→₂ rec₂→₁ where rec₁→₂ : ∀ (y₁ : Y₁) → ∃[ (y₂ , p) ∈ fiber iy₂ (iy₁ y₁) ] PathP (λ i → ∀ x → Z (ix x) (p i)) (λ x → rec x (iy₂ y₂)) (λ x → rec x (iy₁ y₁)) rec₂→₁ : ∀ (y₂ : Y₂) → ∃[ (y₁ , p) ∈ fiber iy₁ (iy₂ y₂) ] PathP (λ i → ∀ x → Z (ix x) (p i)) (λ x → rec x (iy₁ y₁)) (λ x → rec x (iy₂ y₂)) rec₁→₂ y₁ = do (y₂ , yy) ← fst eq y₁ ; ∣ (y₂ , yy) , (λ i x → rec x (yy i)) ∣₁ rec₂→₁ y₂ = do (y₁ , yy) ← snd eq y₂ ; ∣ (y₁ , yy) , (λ i x → rec x (yy i)) ∣₁ elimImplS : ∀ (X : Type ℓ) (ix : X → V ℓ) → (∀ x t₂ → Z (ix x) t₂) → (t : V ℓ) → Z (sett X ix) t elimImplS X ix rec = elim (eliminatorImplX X ix rec) elimImplSExt : ∀ (X₁ X₂ : Type ℓ) (ix₁ : X₁ → V ℓ) (ix₂ : X₂ → V ℓ) → (eq : eqImage ix₁ ix₂) → (rec₁ : ∀ x₁ t₂ → Z (ix₁ x₁) t₂) (rec₂ : ∀ x₂ t₂ → Z (ix₂ x₂) t₂) → ((x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → ∀ t → Z (p i) t) (rec₂ x₂) (rec₁ x₁)) → ((x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → ∀ t → Z (p i) t) (rec₁ x₁) (rec₂ x₂)) → (t : V ℓ) → PathP (λ i → Z (seteq X₁ X₂ ix₁ ix₂ eq i) t) (elimImplS X₁ ix₁ rec₁ t) (elimImplS X₂ ix₂ rec₂ t) elimImplSExt X₁ X₂ ix₁ ix₂ eq rec₁ rec₂ rec₁→₂ rec₂→₁ = elimProp propPathP (λ Y iy _ → elimImplSExtT Y iy) where propPathP : (t : V ℓ) → isProp (PathP (λ i → Z (seteq X₁ X₂ ix₁ ix₂ eq i) t) (elimImplS X₁ ix₁ rec₁ t) (elimImplS X₂ ix₂ rec₂ t)) propPathP _ = subst isProp (sym (PathP≡Path _ _ _)) (isSetZ _ _ _ _) elimImplSExtT : (Y : Type ℓ) (iy : Y → V ℓ) → _ {- the appropriate path type -} elimImplSExtT Y iy = ElimEqFst X₁ X₂ ix₁ ix₂ eq Y iy (λ x₁ y → rec₁ x₁ (iy y)) (λ x₂ y → rec₂ x₂ (iy y)) rec₁→₂Impl rec₂→₁Impl where rec₁→₂Impl : ∀ (x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] PathP (λ i → ∀ y → Z (p i) (iy y)) (λ y → rec₂ x₂ (iy y)) (λ y → rec₁ x₁ (iy y)) rec₂→₁Impl : ∀ (x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] PathP (λ i → ∀ y → Z (p i) (iy y)) (λ y → rec₁ x₁ (iy y)) (λ y → rec₂ x₂ (iy y)) rec₁→₂Impl x₁ = do ((x₂ , xx) , rx) ← rec₁→₂ x₁ ; ∣ (x₂ , xx) , (λ i y → rx i (iy y)) ∣₁ rec₂→₁Impl x₂ = do ((x₁ , xx) , rx) ← rec₂→₁ x₂ ; ∣ (x₁ , xx) , (λ i y → rx i (iy y)) ∣₁ pElim : ElimSet isSetPElim ElimSett pElim = elimImplS ElimEq pElim X₁ X₂ ix₁ ix₂ eq rec₁ rec₂ rec₁→₂ rec₂→₁ i t = elimImplSExt X₁ X₂ ix₁ ix₂ eq rec₁ rec₂ rec₁→₂ rec₂→₁ t i
{ "alphanum_fraction": 0.5106730857, "avg_line_length": 45.8708333333, "ext": "agda", "hexsha": "f16be78c745784b6db5bfd23db6cefe259041637", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/CumulativeHierarchy/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/CumulativeHierarchy/Base.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/CumulativeHierarchy/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 4475, "size": 11009 }
{-# OPTIONS --safe #-} {- This is inspired by/copied from: https://github.com/agda/agda-stdlib/blob/master/src/Tactic/MonoidSolver.agda Boilerplate code for calling the ring solver is constructed automatically with agda's reflection features. -} module Cubical.Algebra.RingSolver.ReflectionSolving where open import Cubical.Foundations.Prelude hiding (Type) open import Cubical.Functions.Logic open import Agda.Builtin.Reflection hiding (Type) open import Agda.Builtin.String open import Cubical.Reflection.Base open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Data.Nat.Literals open import Cubical.Data.Int.Base hiding (abs) open import Cubical.Data.Int using (fromNegℤ; fromNatℤ) open import Cubical.Data.Nat using (ℕ) renaming (_+_ to _+ℕ_) open import Cubical.Data.FinData using () renaming (zero to fzero; suc to fsuc) open import Cubical.Data.Bool open import Cubical.Data.Bool.SwitchStatement open import Cubical.Data.Vec using (Vec) renaming ([] to emptyVec; _∷_ to _∷vec_) public open import Cubical.Algebra.RingSolver.AlgebraExpression open import Cubical.Algebra.CommRing open import Cubical.Algebra.RingSolver.RawAlgebra open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.RingSolver.CommRingSolver renaming (solve to ringSolve) private variable ℓ : Level _==_ = primQNameEquality {-# INLINE _==_ #-} record VarInfo : Type ℓ-zero where field varName : String varType : Arg Term index : ℕ {- `getLastTwoArgsOf` maps a term 'def n (z₁ ∷ … ∷ zₙ ∷ x ∷ y ∷ [])' to the pair '(x,y)' non-visible arguments are ignored. -} getLastTwoArgsOf : Name → Term → Maybe (Term × Term) getLastTwoArgsOf n' (def n xs) = if n == n' then go xs else nothing where go : List (Arg Term) → Maybe (Term × Term) go (varg x ∷ varg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getLastTwoArgsOf n' _ = nothing {- `getArgs` maps a term 'x ≡ y' to the pair '(x,y)' -} getArgs : Term → Maybe (Term × Term) getArgs = getLastTwoArgsOf (quote PathP) firstVisibleArg : List (Arg Term) → Maybe Term firstVisibleArg [] = nothing firstVisibleArg (varg x ∷ l) = just x firstVisibleArg (x ∷ l) = firstVisibleArg l {- If the solver needs to be applied during equational reasoning, the right hand side of the equation to solve cannot be given to the solver directly. The folllowing function extracts this term y from a more complex expression as in: x ≡⟨ solve ... ⟩ (y ≡⟨ ... ⟩ z ∎) -} getRhs : Term → Maybe Term getRhs reasoningToTheRight@(def n xs) = if n == (quote _∎) then firstVisibleArg xs else (if n == (quote _≡⟨_⟩_) then firstVisibleArg xs else nothing) getRhs _ = nothing private solverCallAsTerm : Term → Arg Term → Term → Term → Term solverCallAsTerm R varList lhs rhs = def (quote ringSolve) (varg R ∷ varg lhs ∷ varg rhs ∷ varList ∷ varg (def (quote refl) []) ∷ []) solverCallWithLambdas : ℕ → List VarInfo → Term → Term → Term → Term solverCallWithLambdas n varInfos R lhs rhs = encloseWithIteratedLambda (map VarInfo.varName varInfos) (solverCallAsTerm R (variableList (rev varInfos)) lhs rhs) where encloseWithIteratedLambda : List String → Term → Term encloseWithIteratedLambda (varName ∷ xs) t = lam visible (abs varName (encloseWithIteratedLambda xs t)) encloseWithIteratedLambda [] t = t variableList : List VarInfo → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varInfo ∷ varInfos) = varg (con (quote _∷vec_) (varg (var (VarInfo.index varInfo) []) ∷ (variableList varInfos) ∷ [])) solverCallByVarIndices : ℕ → List ℕ → Term → Term → Term → Term solverCallByVarIndices n varIndices R lhs rhs = solverCallAsTerm R (variableList (rev varIndices)) lhs rhs where variableList : List ℕ → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varIndex ∷ varIndices) = varg (con (quote _∷vec_) (varg (var (varIndex) []) ∷ (variableList varIndices) ∷ [])) module pr (R : CommRing ℓ) {n : ℕ} where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) 0' : Expr ℤAsRawRing (fst R) n 0' = K 0 1' : Expr ℤAsRawRing (fst R) n 1' = K 1 module _ (cring : Term) where private νR = def (quote CommRing→RawℤAlgebra) (varg cring ∷ []) open pr `0` : List (Arg Term) → Term `0` [] = def (quote 0') (varg cring ∷ []) `0` (varg fstcring ∷ xs) = `0` xs `0` (harg _ ∷ xs) = `0` xs `0` _ = unknown `1` : List (Arg Term) → Term `1` [] = def (quote 1') (varg cring ∷ []) `1` (varg fstcring ∷ xs) = `1` xs `1` (harg _ ∷ xs) = `1` xs `1` _ = unknown mutual `_·_` : List (Arg Term) → Term `_·_` (harg _ ∷ xs) = `_·_` xs `_·_` (varg _ ∷ varg x ∷ varg y ∷ []) = con (quote _·'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) `_·_` _ = unknown `_+_` : List (Arg Term) → Term `_+_` (harg _ ∷ xs) = `_+_` xs `_+_` (varg _ ∷ varg x ∷ varg y ∷ []) = con (quote _+'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) `_+_` _ = unknown `-_` : List (Arg Term) → Term `-_` (harg _ ∷ xs) = `-_` xs `-_` (varg _ ∷ varg x ∷ []) = con (quote -'_) (varg (buildExpression x) ∷ []) `-_` _ = unknown K' : List (Arg Term) → Term K' xs = con (quote K) xs finiteNumberAsTerm : ℕ → Term finiteNumberAsTerm ℕ.zero = con (quote fzero) [] finiteNumberAsTerm (ℕ.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm n) ∷ []) buildExpression : Term → Term buildExpression (var index _) = con (quote ∣) (varg (finiteNumberAsTerm index) ∷ []) buildExpression t@(def n xs) = switch (n ==_) cases case (quote CommRingStr.0r) ⇒ `0` xs break case (quote CommRingStr.1r) ⇒ `1` xs break case (quote CommRingStr._·_) ⇒ `_·_` xs break case (quote CommRingStr._+_) ⇒ `_+_` xs break case (quote (CommRingStr.-_)) ⇒ `-_` xs break default⇒ (K' xs) buildExpression t@(con n xs) = switch (n ==_) cases case (quote CommRingStr.0r) ⇒ `0` xs break case (quote CommRingStr.1r) ⇒ `1` xs break case (quote CommRingStr._·_) ⇒ `_·_` xs break case (quote CommRingStr._+_) ⇒ `_+_` xs break case (quote (CommRingStr.-_)) ⇒ `-_` xs break default⇒ (K' xs) buildExpression t = unknown toAlgebraExpression : Maybe (Term × Term) → Maybe (Term × Term) toAlgebraExpression nothing = nothing toAlgebraExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs) private adjustDeBruijnIndex : (n : ℕ) → Term → Term adjustDeBruijnIndex n (var k args) = var (k +ℕ n) args adjustDeBruijnIndex n _ = unknown extractVarIndices : Maybe (List Term) → Maybe (List ℕ) extractVarIndices (just ((var index _) ∷ l)) with extractVarIndices (just l) ... | just indices = just (index ∷ indices) ... | nothing = nothing extractVarIndices (just []) = just [] extractVarIndices _ = nothing getVarsAndEquation : Term → Maybe (List VarInfo × Term) getVarsAndEquation t = let (rawVars , equationTerm) = extractVars t maybeVars = addIndices (length rawVars) rawVars in map-Maybe (_, equationTerm) maybeVars where extractVars : Term → List (String × Arg Term) × Term extractVars (pi argType (abs varName t)) with extractVars t ... | xs , equation = (varName , argType) ∷ xs , equation extractVars equation = [] , equation addIndices : ℕ → List (String × Arg Term) → Maybe (List VarInfo) addIndices ℕ.zero [] = just [] addIndices (ℕ.suc countVar) ((varName , argType) ∷ list) = map-Maybe (λ varList → record { varName = varName ; varType = argType ; index = countVar } ∷ varList) (addIndices countVar list) addIndices _ _ = nothing toListOfTerms : Term → Maybe (List Term) toListOfTerms (con c []) = if (c == (quote [])) then just [] else nothing toListOfTerms (con c (varg t ∷ varg s ∷ args)) with toListOfTerms s ... | just terms = if (c == (quote _∷_)) then just (t ∷ terms) else nothing ... | nothing = nothing toListOfTerms (con c (harg t ∷ args)) = toListOfTerms (con c args) toListOfTerms _ = nothing solve-macro : Term → Term → TC Unit solve-macro cring hole = do hole′ ← inferType hole >>= normalise just (varInfos , equation) ← returnTC (getVarsAndEquation hole′) where nothing → typeError (strErr "Something went wrong when getting the variable names in " ∷ termErr hole′ ∷ []) {- The call to the ring solver will be inside a lamba-expression. That means, that we have to adjust the deBruijn-indices of the variables in 'cring' -} adjustedCring ← returnTC (adjustDeBruijnIndex (length varInfos) cring) just (lhs , rhs) ← returnTC (toAlgebraExpression adjustedCring (getArgs equation)) where nothing → typeError( strErr "Error while trying to build ASTs for the equation " ∷ termErr equation ∷ []) let solution = solverCallWithLambdas (length varInfos) varInfos adjustedCring lhs rhs unify hole solution solveInPlace-macro : Term → Term → Term → TC Unit solveInPlace-macro cring varsToSolve hole = do equation ← inferType hole >>= normalise just varIndices ← returnTC (extractVarIndices (toListOfTerms varsToSolve)) where nothing → typeError( strErr "Error reading variables to solve " ∷ termErr varsToSolve ∷ []) just (lhs , rhs) ← returnTC (toAlgebraExpression cring (getArgs equation)) where nothing → typeError( strErr "Error while trying to build ASTs for the equation " ∷ termErr equation ∷ []) let solution = solverCallByVarIndices (length varIndices) varIndices cring lhs rhs unify hole solution solveEqReasoning-macro : Term → Term → Term → Term → Term → TC Unit solveEqReasoning-macro lhs cring varsToSolve reasoningToTheRight hole = do just varIndices ← returnTC (extractVarIndices (toListOfTerms varsToSolve)) where nothing → typeError( strErr "Error reading variables to solve " ∷ termErr varsToSolve ∷ []) just rhs ← returnTC (getRhs reasoningToTheRight) where nothing → typeError( strErr "Failed to extract right hand side of equation to solve from " ∷ termErr reasoningToTheRight ∷ []) just (lhsAST , rhsAST) ← returnTC (toAlgebraExpression cring (just (lhs , rhs))) where nothing → typeError( strErr "Error while trying to build ASTs from " ∷ termErr lhs ∷ strErr " and " ∷ termErr rhs ∷ []) let solverCall = solverCallByVarIndices (length varIndices) varIndices cring lhsAST rhsAST unify hole (def (quote _≡⟨_⟩_) (varg lhs ∷ varg solverCall ∷ varg reasoningToTheRight ∷ [])) macro solve : Term → Term → TC _ solve = solve-macro solveInPlace : Term → Term → Term → TC _ solveInPlace = solveInPlace-macro infixr 2 _≡⟨solveIn_withVars_⟩_ _≡⟨solveIn_withVars_⟩_ : Term → Term → Term → Term → Term → TC Unit _≡⟨solveIn_withVars_⟩_ = solveEqReasoning-macro fromℤ : (R : CommRing ℓ) → ℤ → fst R fromℤ = scalar
{ "alphanum_fraction": 0.6165275459, "avg_line_length": 35.7611940299, "ext": "agda", "hexsha": "b7c2c4b910057c6b6e7a33cce049772825cfb754", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ecavallo/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ecavallo/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_line_length": 109, "max_stars_count": 1, "max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ecavallo/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/ReflectionSolving.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-20T11:56:18.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-20T11:56:18.000Z", "num_tokens": 3569, "size": 11980 }
open import Nat open import Prelude open import List open import judgemental-erase open import moveerase open import statics-checks open import statics-core module aasubsume-min where -- this predicate on derivations of actions bans the cases that induce -- non-determinism. mutual aasubmin-synth : ∀{Γ e t α e' t'} → (Γ ⊢ e => t ~ α ~> e' => t') → Set aasubmin-synth (SAZipAsc1 x) = aasubmin-ana x aasubmin-synth (SAZipLam2 x x₁ x₂ d) = aasubmin-synth d aasubmin-synth (SAZipApArr x x₁ x₂ d x₃) = aasubmin-synth d aasubmin-synth (SAZipApAna x x₁ x₂) = aasubmin-ana x₂ aasubmin-synth (SAZipPlus1 x) = aasubmin-ana x aasubmin-synth (SAZipPlus2 x) = aasubmin-ana x aasubmin-synth (SAZipNEHole x x₁ d) = aasubmin-synth d aasubmin-synth (SAZipPair1 x x₁ d x₂) = aasubmin-synth d aasubmin-synth (SAZipPair2 x x₁ x₂ d) = aasubmin-synth d aasubmin-synth (SAZipFst x x₁ x₂ x₃ d) = aasubmin-synth d aasubmin-synth (SAZipSnd x x₁ x₂ x₃ d) = aasubmin-synth d aasubmin-synth _ = ⊤ aasubmin-ana : ∀{Γ e α e' t} → (Γ ⊢ e ~ α ~> e' ⇐ t) → Set aasubmin-ana (AASubsume x x₁ SAConAsc x₃) = ⊥ aasubmin-ana (AASubsume x x₁ SAConInl x₃) = ⊥ aasubmin-ana (AASubsume x x₁ SAConInr x₃) = ⊥ aasubmin-ana (AASubsume x x₁ (SAConLam x₃) x₄) = ⊥ aasubmin-ana (AASubsume EETop SEHole (SAConCase1 a b c) x₄) = ⊥ aasubmin-ana (AASubsume x x₁ s x₃) = aasubmin-synth s aasubmin-ana (AAZipLam x₁ x₂ d) = aasubmin-ana d aasubmin-ana (AAZipInl x y) = aasubmin-ana y aasubmin-ana (AAZipInr x y) = aasubmin-ana y aasubmin-ana (AAZipCase1 a b c d e f g h) = aasubmin-synth e aasubmin-ana (AAZipCase2 a b c d e) = aasubmin-ana e aasubmin-ana (AAZipCase3 a b c d f) = aasubmin-ana f aasubmin-ana _ = ⊤ -- the minimization predicate propagates through subsumption rules min-ana-lem : ∀{e e' e◆ Γ t t' t'' α} {a : erase-e e e◆} {b : Γ ⊢ e◆ => t'} {c : t ~ t''} → (d : Γ ⊢ e => t' ~ α ~> e' => t'') → aasubmin-ana (AASubsume a b d c) → aasubmin-synth d min-ana-lem (SAMove x) min = <> min-ana-lem (SADel) min = <> min-ana-lem (SAConAsc) min = <> min-ana-lem (SAConVar p) min = <> min-ana-lem (SAConLam x₁) min = <> min-ana-lem (SAConApArr x) min = <> min-ana-lem (SAConApOtw x) min = <> min-ana-lem (SAConNumlit) min = <> min-ana-lem (SAConPlus1 x) min = <> min-ana-lem (SAConPlus2 x) min = <> min-ana-lem (SAConNEHole) min = <> min-ana-lem (SAFinish x) min = <> min-ana-lem (SAZipAsc1 x) min = min min-ana-lem (SAZipAsc2 x x₁ x₂ x₃) min = <> min-ana-lem (SAZipApArr x x₁ x₂ c x₃) min = min min-ana-lem (SAZipApAna x x₁ x₂) min = min min-ana-lem (SAZipPlus1 x) min = min min-ana-lem (SAZipPlus2 x) min = min min-ana-lem (SAZipNEHole x x₁ c) min = min min-ana-lem SAConInl _ = <> min-ana-lem SAConInr _ = <> min-ana-lem (SAConCase1 x₁ x₂ x₃) _ = <> min-ana-lem (SAConCase2 x₁ x₂ x₃) _ = <> min-ana-lem SAConPair _ = <> min-ana-lem (SAConFst1 pr) _ = <> min-ana-lem (SAConFst2 inc) _ = <> min-ana-lem (SAConSnd1 pr) _ = <> min-ana-lem (SAConSnd2 inc) _ = <> min-ana-lem (SAZipPair1 x x₁ x₂ x₃) min = min min-ana-lem (SAZipPair2 x x₁ x₂ x₃) min = min min-ana-lem (SAZipFst x x₁ x₂ x₃ x₄) min = min min-ana-lem (SAZipSnd x x₁ x₂ x₃ x₄) min = min min-ana-lem (SAZipLam1 x x₁ x₂ x₃ x₄ x₅) min = min min-ana-lem (SAZipLam2 x x₁ x₂ x₃) min = min -- any derivation of an action can be minimized to avoid this cases that -- induce non-determinism. mutual min-synth : ∀{Γ e t α e' t'} → (d : Γ ⊢ e => t ~ α ~> e' => t') → Σ[ e'' ∈ zexp ] Σ[ d' ∈ Γ ⊢ e => t ~ α ~> e'' => t' ] aasubmin-synth d' min-synth (SAMove x) = _ , SAMove x , <> min-synth SADel = _ , SADel , <> min-synth SAConAsc = _ , SAConAsc , <> min-synth (SAConVar p) = _ , SAConVar p , <> min-synth (SAConLam x₁) = _ , SAConLam x₁ , <> min-synth (SAConApArr x) = _ , SAConApArr x , <> min-synth (SAConApOtw x) = _ , SAConApOtw x , <> min-synth SAConNumlit = _ , SAConNumlit , <> min-synth (SAConPlus1 x) = _ , SAConPlus1 x , <> min-synth (SAConPlus2 x) = _ , SAConPlus2 x , <> min-synth SAConNEHole = _ , SAConNEHole , <> min-synth (SAFinish x) = _ , SAFinish x , <> min-synth (SAZipAsc2 x x₁ x₂ x₃) = _ , SAZipAsc2 x x₁ x₂ x₃ , <> min-synth (SAZipAsc1 x) with min-ana x ... | _ , a , b = _ , SAZipAsc1 a , b min-synth (SAZipApArr x x₁ x₂ d x₃) with min-synth d ... | _ , a , b = _ , (SAZipApArr x x₁ x₂ a x₃) , b min-synth (SAZipApAna x x₁ x₂) with min-ana x₂ ... | _ , a , b = _ , SAZipApAna x x₁ a , b min-synth (SAZipPlus1 x) with min-ana x ... | _ , a , b = _ , SAZipPlus1 a , b min-synth (SAZipPlus2 x) with min-ana x ... | _ , a , b = _ , SAZipPlus2 a , b min-synth (SAZipNEHole x x₁ d) with min-synth d ... | _ , a , b = _ , SAZipNEHole x x₁ a , b min-synth SAConInl = _ , SAConInl , <> min-synth SAConInr = _ , SAConInr , <> min-synth (SAConCase1 a b c) = _ , SAConCase1 a b c , <> min-synth (SAConCase2 a b c) = _ , SAConCase2 a b c , <> min-synth SAConPair = _ , SAConPair , <> min-synth (SAConFst1 pr) = _ , SAConFst1 pr , <> min-synth (SAConFst2 inc) = _ , SAConFst2 inc , <> min-synth (SAConSnd1 pr) = _ , SAConSnd1 pr , <> min-synth (SAConSnd2 inc) = _ , SAConSnd2 inc , <> min-synth (SAZipPair1 x x₁ d x₃) with min-synth d ... | _ , a , b = _ , (SAZipPair1 x x₁ a x₃) , b min-synth (SAZipPair2 x x₁ x₂ d) with min-synth d ... | _ , a , b = _ , (SAZipPair2 x x₁ x₂ a) , b min-synth (SAZipFst x x₁ x₂ x₃ d) with min-synth d ... | _ , a , b = _ , (SAZipFst x x₁ x₂ x₃ a) , b min-synth (SAZipSnd x x₁ x₂ x₃ d) with min-synth d ... | _ , a , b = _ , (SAZipSnd x x₁ x₂ x₃ a) , b min-synth (SAZipLam1 x x₁ x₂ x₃ x₄ x₅) = _ , SAZipLam1 x x₁ x₂ x₃ x₄ x₅ , <> min-synth (SAZipLam2 x x₁ x₂ d) with min-synth d ... | _ , a , b = _ , SAZipLam2 x x₁ x₂ a , b min-ana : ∀{Γ e α e' t} → (d : Γ ⊢ e ~ α ~> e' ⇐ t) → Σ[ e'' ∈ zexp ] Σ[ d' ∈ Γ ⊢ e ~ α ~> e'' ⇐ t ] aasubmin-ana d' min-ana (AASubsume {Γ = Γ} x x₁ (SAMove x₂) x₃) = _ , AAMove x₂ , <> min-ana (AASubsume x x₁ (SADel) x₃) = _ , AADel , <> min-ana (AASubsume {Γ = Γ} {t = t} {t' = t'} x x₁ SAConAsc x₃) = _ , AAConAsc {Γ = Γ} {t = t} , <> min-ana (AASubsume x x₁ (SAConVar p) x₃) = _ , AASubsume x x₁ (SAConVar p) x₃ , <> min-ana (AASubsume EETop SEHole (SAConLam x₃) TCRefl) = _ , AAConLam1 x₃ MAArr , <> min-ana (AASubsume EETop SEHole (SAConLam x₃) TCHole2) = _ , AAConLam1 x₃ MAHole , <> min-ana (AASubsume EETop SEHole (SAConLam x₃) (TCArr x₄ x₅)) = _ , AAConLam1 x₃ MAArr , <> min-ana (AASubsume x x₁ (SAConApArr x₂) x₃) = _ , AASubsume x x₁ (SAConApArr x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConApOtw x₂) x₃) = _ , AASubsume x x₁ (SAConApOtw x₂) x₃ , <> min-ana (AASubsume x x₁ SAConNumlit x₃) = _ , AASubsume x x₁ SAConNumlit x₃ , <> min-ana (AASubsume x x₁ (SAConPlus1 x₂) x₃) = _ , AASubsume x x₁ (SAConPlus1 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConPlus2 x₂) x₃) = _ , AASubsume x x₁ (SAConPlus2 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConNEHole) x₃) = _ , AASubsume x x₁ (SAConNEHole) x₃ , <> min-ana (AASubsume x x₁ (SAFinish x₂) x₃) = _ , AASubsume x x₁ (SAFinish x₂) x₃ , <> min-ana (AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆) = _ , AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆ , <> min-ana (AASubsume x x₁ (SAZipAsc1 x₂) x₃) with min-ana x₂ ... | a , b , c = _ , AASubsume x x₁ (SAZipAsc1 b) x₃ , c min-ana (AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ x₅ x₆) x₇) with min-synth x₅ ... | a , b , c = _ , AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ b x₆) x₇ , c min-ana (AASubsume x x₁ (SAZipApAna x₂ x₃ x₄) x₅) with min-ana x₄ ... | a , b , c = _ , AASubsume x x₁ (SAZipApAna x₂ x₃ b) x₅ , c min-ana (AASubsume x x₁ (SAZipPlus1 x₂) x₃) with min-ana x₂ ... | a , b , c = _ , AASubsume x x₁ (SAZipPlus1 b) x₃ , c min-ana (AASubsume x x₁ (SAZipPlus2 x₂) x₃) with min-ana x₂ ... | a , b , c = _ , AASubsume x x₁ (SAZipPlus2 b) x₃ , c min-ana (AASubsume x x₁ (SAZipNEHole x₂ x₃ x₄) x₅) with min-synth x₄ ... | a , b , c = _ , AASubsume x x₁ (SAZipNEHole x₂ x₃ b) x₅ , c min-ana (AASubsume EETop SEHole (SAConCase1 a b c) z) = _ , AAConCase a b , <> min-ana (AASubsume EETop (SAsc x₁) (SAConCase1 a b c) z) = _ , AASubsume EETop (SAsc x₁) (SAConCase1 a b c) z , <> min-ana (AASubsume EETop (SVar x₁) (SAConCase1 a b c) z) = _ , AASubsume EETop (SVar x₁) (SAConCase1 a b c) z , <> min-ana (AASubsume EETop (SLam x x₁) (SAConCase1 x₂ x₄ x₅) x₃) = _ , AASubsume EETop (SLam x x₁) (SAConCase1 x₂ x₄ x₅) x₃ , <> min-ana (AASubsume EETop (SAp y₁ x₁ x₂) (SAConCase1 a b c) z) = _ , AASubsume EETop (SAp y₁ x₁ x₂) (SAConCase1 a b c) z , <> min-ana (AASubsume EETop SNum (SAConCase1 a b c) z) = _ , AASubsume EETop SNum (SAConCase1 a b c) z , <> min-ana (AASubsume EETop (SPlus x₁ x₂) (SAConCase1 a b c) z) = _ , AASubsume EETop (SPlus x₁ x₂) (SAConCase1 a b c) z , <> min-ana (AASubsume EETop (SNEHole y₁) (SAConCase1 a b c) z) = _ , AASubsume EETop (SNEHole y₁) (SAConCase1 a b c) z , <> min-ana (AASubsume EETop (SPair x₁ x₆) (SAConCase1 x₂ x₄ x₅) x₃) = _ , (AASubsume EETop (SPair x₁ x₆) (SAConCase1 x₂ x₄ x₅) x₃) , <> min-ana (AASubsume EETop (SFst x x₁) (SAConCase1 x₂ x₃ x₄) x₅) = _ , AASubsume EETop (SFst x x₁) (SAConCase1 x₂ x₃ x₄) x₅ , <> min-ana (AASubsume EETop (SSnd x x₁) (SAConCase1 x₂ x₃ x₄) x₅) = _ , AASubsume EETop (SSnd x x₁) (SAConCase1 x₂ x₃ x₄) x₅ , <> min-ana (AASubsume x y (SAConCase2 a b c) z) = _ , AASubsume x y (SAConCase2 a b c) z , <> min-ana (AAMove x) = _ , AAMove x , <> min-ana AADel = _ , AADel , <> min-ana AAConAsc = _ , AAConAsc , <> min-ana (AAConVar x₁ p) = _ , AAConVar x₁ p , <> min-ana (AAConLam1 x₁ x₂) = _ , AAConLam1 x₁ x₂ , <> min-ana (AAConLam2 x₁ x₂) = _ , AAConLam2 x₁ x₂ , <> min-ana (AAConNumlit x) = _ , AAConNumlit x , <> min-ana (AAFinish x) = _ , AAFinish x , <> min-ana (AAZipLam x₁ x₂ d) with min-ana d ... | a , b , c = _ , AAZipLam x₁ x₂ b , c min-ana (AASubsume x x₁ SAConInl TCRefl) = _ , AAConInl1 MSSum , <> min-ana (AASubsume x x₁ SAConInl TCHole2) = _ , AAConInl1 MSHole , <> min-ana (AASubsume x x₁ SAConInl (TCSum x₃ x₄)) = _ , AAConInl1 MSSum , <> min-ana (AASubsume x x₁ SAConInr TCRefl) = _ , AAConInr1 MSSum , <> min-ana (AASubsume x x₁ SAConInr TCHole2) = _ , AAConInr1 MSHole , <> min-ana (AASubsume x x₁ SAConInr (TCSum x₃ x₄)) = _ , AAConInr1 MSSum , <> min-ana (AAConInl1 x) = _ , AAConInl1 x , <> min-ana (AAConInl2 x) = _ , AAConInl2 x , <> min-ana (AAConInr1 x) = _ , AAConInr1 x , <> min-ana (AAConInr2 x) = _ , AAConInr2 x , <> min-ana (AAConCase x₁ x₂) = _ , AAConCase x₁ x₂ , <> min-ana (AAZipInl x x₁) with min-ana x₁ ... | a , b , c = _ , AAZipInl x b , c min-ana (AAZipInr x x₁) with min-ana x₁ ... | a , b , c = _ , AAZipInr x b , c min-ana (AAZipCase1 x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) with min-synth x₅ ... | a , b , c = _ , AAZipCase1 x₁ x₂ x₃ x₄ b x₆ x₇ x₈ , c min-ana (AAZipCase2 x₁ x₂ x₃ x₄ x₅) with min-ana x₅ ... | a , b , c = _ , AAZipCase2 x₁ x₂ x₃ x₄ b , c min-ana (AAZipCase3 x₁ x₂ x₃ x₄ x₆) with min-ana x₆ ... | a , b , c = _ , AAZipCase3 x₁ x₂ x₃ x₄ b , c min-ana (AASubsume x x₁ (SAZipLam1 x₂ x₄ x₅ x₆ x₇ x₈) x₃) = _ , AASubsume x x₁ (SAZipLam1 x₂ x₄ x₅ x₆ x₇ x₈) x₃ , <> min-ana (AASubsume x x₁ (SAZipLam2 x₂ x₄ x₅ x₆) x₃) with min-synth x₆ ... | a , b , c = _ , AASubsume x x₁ (SAZipLam2 x₂ x₄ x₅ b) x₃ , c min-ana (AASubsume x x₁ SAConPair x₃) = _ , AASubsume x x₁ SAConPair x₃ , <> min-ana (AASubsume x x₁ (SAConFst1 x₂) x₃) = _ , AASubsume x x₁ (SAConFst1 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConFst2 x₂) x₃) = _ , AASubsume x x₁ (SAConFst2 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConSnd1 x₂) x₃) = _ , AASubsume x x₁ (SAConSnd1 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAConSnd2 x₂) x₃) = _ , AASubsume x x₁ (SAConSnd2 x₂) x₃ , <> min-ana (AASubsume x x₁ (SAZipPair1 x₂ x₃ x₄ x₅) x₆) with min-synth x₄ ... | a , b , c = _ , (AASubsume x x₁ (SAZipPair1 x₂ x₃ b x₅) x₆) , c min-ana (AASubsume x x₁ (SAZipPair2 x₂ x₃ x₄ x₅) x₆) with min-synth x₅ ... | a , b , c = _ , AASubsume x x₁ (SAZipPair2 x₂ x₃ x₄ b) x₆ , c min-ana (AASubsume x x₁ (SAZipFst x₂ x₃ x₄ x₅ x₆) x₇) with min-synth x₆ ... | a , b , c = _ , AASubsume x x₁ (SAZipFst x₂ x₃ x₄ x₅ b) x₇ , c min-ana (AASubsume x x₁ (SAZipSnd x₂ x₃ x₄ x₅ x₆) x₇) with min-synth x₆ ... | a , b , c = _ , AASubsume x x₁ (SAZipSnd x₂ x₃ x₄ x₅ b) x₇ , c -- these theorems argue that if a derivation is already subsumption -- minimal than the minimzer does not change the resultant -- expression--that it's conservative in this sense. they do not argue -- that the derivation that's computed is itself the same as the input -- derivation. mutual min-fixed-synth : ∀{Γ e t α e' t'} → (d : Γ ⊢ e => t ~ α ~> e' => t') → aasubmin-synth d → e' == π1 (min-synth d) min-fixed-synth (SAMove x) min = refl min-fixed-synth SADel min = refl min-fixed-synth SAConAsc min = refl min-fixed-synth (SAConVar p) min = refl min-fixed-synth (SAConLam x₁) min = refl min-fixed-synth (SAConApArr x) min = refl min-fixed-synth (SAConApOtw x) min = refl min-fixed-synth SAConNumlit min = refl min-fixed-synth (SAConPlus1 x) min = refl min-fixed-synth (SAConPlus2 x) min = refl min-fixed-synth SAConNEHole min = refl min-fixed-synth (SAFinish x) min = refl min-fixed-synth (SAZipAsc1 x) min with min-fixed-ana x min ... | qq with min-ana x ... | (e'' , d' , min') = ap1 (λ q → q ·:₁ _) qq min-fixed-synth (SAZipAsc2 x x₁ x₂ x₃) min = refl min-fixed-synth (SAZipApArr x x₁ x₂ d x₃) min with min-fixed-synth d min ... | qq with min-synth d ... | (e'' , d' , min') = ap1 (λ q → q ∘₁ _) qq min-fixed-synth (SAZipApAna x x₁ x₂) min with min-fixed-ana x₂ min ... | qq with min-ana x₂ ... | (e'' , _ , _) = ap1 (λ q → _ ∘₂ q) qq min-fixed-synth (SAZipPlus1 x) min with min-fixed-ana x min ... | qq with min-ana x ... | (e'' , _ , _) = ap1 (λ q → q ·+₁ _) qq min-fixed-synth (SAZipPlus2 x) min with min-fixed-ana x min ... | qq with min-ana x ... | (e'' , _ , _) = ap1 (λ q → _ ·+₂ q) qq min-fixed-synth (SAZipNEHole x x₁ d) min with min-fixed-synth d min ... | qq with min-synth d ... | (e'' , _ , _) = ap1 ⦇⌜_⌟⦈[ _ ] qq min-fixed-synth SAConInl min = refl min-fixed-synth SAConInr min = refl min-fixed-synth (SAConCase1 x₁ x₂ x₃) min = refl min-fixed-synth (SAConCase2 x₁ x₂ x₃) min = refl min-fixed-synth SAConPair min = refl min-fixed-synth (SAConFst1 x₁) min = refl min-fixed-synth (SAConFst2 x₁) min = refl min-fixed-synth (SAConSnd1 x₁) min = refl min-fixed-synth (SAConSnd2 x₁) min = refl min-fixed-synth (SAZipPair1 x x₁ d x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → ⟨ q , _ ⟩₁) qq min-fixed-synth (SAZipPair2 x x₁ x₂ d) min with min-fixed-synth d min ... | qq = ap1 (λ q → ⟨ _ , q ⟩₂) qq min-fixed-synth (SAZipFst x x₁ x₂ x₃ d) min with min-fixed-synth d min ... | qq = ap1 (λ q → fst q) qq min-fixed-synth (SAZipSnd x x₁ x₂ x₃ d) min with min-fixed-synth d min ... | qq = ap1 (λ q → snd q) qq min-fixed-synth (SAZipLam1 x x₁ x₂ x₃ x₄ x₅) min = refl min-fixed-synth (SAZipLam2 x x₁ x₂ d) min with min-fixed-synth d min ... | qq = ap1 (λ q → ·λ _ ·[ _ ]₂ q) qq min-fixed-ana : ∀{Γ e t α e' } → (d : Γ ⊢ e ~ α ~> e' ⇐ t) → aasubmin-ana d → e' == π1 (min-ana d) min-fixed-ana (AASubsume x x₁ (SAMove x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ SADel x₃) min = refl min-fixed-ana (AASubsume x x₁ SAConAsc x₃) min = abort min min-fixed-ana (AASubsume x₁ x₂ (SAConVar p) x₃) min = refl min-fixed-ana (AASubsume x₁ x₂ (SAConLam x₃) x₄) min = abort min min-fixed-ana (AASubsume x x₁ (SAConApArr x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConApOtw x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ SAConNumlit x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConPlus1 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConPlus2 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ SAConNEHole x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAFinish x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAZipAsc1 x₂) x₃) min with min-fixed-ana x₂ min ... | qq with min-ana x₂ ... | (e'' , _ , _) = ap1 (λ q → q ·:₁ _) qq min-fixed-ana (AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ x₅ x₆) x₇) min with min-fixed-synth x₅ min ... | qq with min-synth x₅ ... | (e'' , d' , min') = ap1 (λ q → q ∘₁ _) qq min-fixed-ana (AASubsume x x₁ (SAZipApAna x₂ x₃ x₄) x₅) min with min-fixed-ana x₄ min ... | qq with min-ana x₄ ... | (e'' , _ , _) = ap1 (λ q → _ ∘₂ q) qq min-fixed-ana (AASubsume x x₁ (SAZipPlus1 x₂) x₃) min with min-fixed-ana x₂ min ... | qq with min-ana x₂ ... | (e'' , _ , _) = ap1 (λ q → q ·+₁ _) qq min-fixed-ana (AASubsume x x₁ (SAZipPlus2 x₂) x₃) min with min-fixed-ana x₂ min ... | qq with min-ana x₂ ... | (e'' , _ , _) = ap1 (λ q → _ ·+₂ q) qq min-fixed-ana (AASubsume x x₁ (SAZipNEHole x₂ x₃ x₄) x₅) min with min-fixed-synth x₄ min ... | qq with min-synth x₄ ... | (e'' , _ , _) = ap1 ⦇⌜_⌟⦈[ _ ] qq min-fixed-ana (AAMove x) min = refl min-fixed-ana AADel min = refl min-fixed-ana AAConAsc min = refl min-fixed-ana (AAConVar x₁ p) min = refl min-fixed-ana (AAConLam1 x₁ x₂) min = refl min-fixed-ana (AAConLam2 x₁ x₂) min = refl min-fixed-ana (AAConNumlit x) min = refl min-fixed-ana (AAFinish x) min = refl min-fixed-ana (AAZipLam x₁ x₂ d) min with min-fixed-ana d min ... | qq with min-ana d ... | (e'' , _ , _) = ap1 (λ q → ·λ _ q) qq min-fixed-ana (AASubsume x x₁ SAConInl x₃) min = abort min min-fixed-ana (AASubsume x x₁ SAConInr x₃) min = abort min min-fixed-ana (AASubsume EETop (SAsc x₁) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop (SVar x₁) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop (SLam x x₁) (SAConCase1 x₂ x₄ x₅) x₃) min = refl min-fixed-ana (AASubsume EETop (SPair x₁ x₆) (SAConCase1 x₂ x₄ x₅) x₃) min = refl min-fixed-ana (AASubsume EETop (SAp x₂ x₁ x₃) (SAConCase1 x₄ x₅ x₆) x₇) min = refl min-fixed-ana (AASubsume EETop SNum (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop (SPlus x₁ x₂) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop SEHole (SAConCase1 x₃ x₄ x₅) x₆) min = abort min min-fixed-ana (AASubsume EETop (SNEHole x₂) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop (SFst x x₁) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume EETop (SSnd x x₁) (SAConCase1 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AASubsume x₁ x₂ (SAConCase2 x₃ x₄ x₅) x₆) min = refl min-fixed-ana (AAConInl1 x) min = refl min-fixed-ana (AAConInl2 x) min = refl min-fixed-ana (AAConInr1 x) min = refl min-fixed-ana (AAConInr2 x) min = refl min-fixed-ana (AAConCase x₁ x₂) min = refl min-fixed-ana (AAZipInl x d) min with min-fixed-ana d min ... | qq with min-ana d ... | (e'' , _ , _) = ap1 inl qq min-fixed-ana (AAZipInr x d) min with min-fixed-ana d min ... | qq with min-ana d ... | (e'' , _ , _) = ap1 inr qq min-fixed-ana (AAZipCase1 x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) min with min-fixed-synth x₅ min ... | qq with min-synth x₅ ... | (e'' , _ , _) = ap1 (λ q → case₁ q _ _ _ _) qq min-fixed-ana (AAZipCase2 x₁ x₂ x₃ x₄ d) min with min-fixed-ana d min ... | qq with min-ana d ... | (e'' , _ , _) = ap1 (λ q → case₂ _ _ q _ _) qq min-fixed-ana (AAZipCase3 x₁ x₂ x₃ x₄ d) min with min-fixed-ana d min ... | qq with min-ana d ... | (e'' , _ , _) = ap1 (λ q → case₃ _ _ _ _ q) qq min-fixed-ana (AASubsume x x₁ SAConPair x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConFst1 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConFst2 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConSnd1 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAConSnd2 x₂) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAZipPair1 x₂ x₄ d x₆) x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → ⟨ q , _ ⟩₁) qq min-fixed-ana (AASubsume x x₁ (SAZipPair2 x₂ x₄ x₅ d) x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → ⟨ _ , q ⟩₂) qq min-fixed-ana (AASubsume x x₁ (SAZipFst x₂ x₄ x₅ x₆ d) x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → fst q) qq min-fixed-ana (AASubsume x x₁ (SAZipSnd x₂ x₄ x₅ x₆ d) x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → snd q) qq min-fixed-ana (AASubsume x x₁ (SAZipLam1 x₂ x₄ x₅ x₆ x₇ x₈) x₃) min = refl min-fixed-ana (AASubsume x x₁ (SAZipLam2 x₂ x₄ x₅ d) x₃) min with min-fixed-synth d min ... | qq = ap1 (λ q → ·λ _ ·[ _ ]₂ q) qq
{ "alphanum_fraction": 0.5954478027, "avg_line_length": 52.7432762836, "ext": "agda", "hexsha": "da1eacd537e410a13198e61e56e6de22b9f9d454", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "aasubsume-min.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "aasubsume-min.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "aasubsume-min.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9807, "size": 21572 }