Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A pointwise lifting of a relation to incorporate a new infimum.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Infimum
open import Relation.Binary
module Relation.Binary.Construct.Add.Infimum.Equality
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
open import Relation.Binary.Construct.Add.Point.Equality _≈_ public
renaming
(_≈∙_ to _≈₋_
; ∙≈∙ to ⊥₋≈⊥₋
; ≈∙-refl to ≈₋-refl
; ≈∙-sym to ≈₋-sym
; ≈∙-trans to ≈₋-trans
; ≈∙-dec to ≈₋-dec
; ≈∙-irrelevant to ≈₋-irrelevant
; ≈∙-substitutive to ≈₋-substitutive
; ≈∙-isEquivalence to ≈₋-isEquivalence
; ≈∙-isDecEquivalence to ≈₋-isDecEquivalence
)
|
{
"alphanum_fraction": 0.4916317992,
"avg_line_length": 31.8666666667,
"ext": "agda",
"hexsha": "e4227198f140f1dade45b782dbce23483f05bceb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Infimum/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Infimum/Equality.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Infimum/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 306,
"size": 956
}
|
-- Andreas, 2017-07-24, issue #2654 reported by rntz
-- When splitting projections in an extended lambda,
-- we have to print them postfix, regardless of whether
-- the user chose --postfix-projections or not.
-- {-# OPTIONS --postfix-projections #-}
-- {-# OPTIONS -v interaction.case:60 #-}
open import Common.Product
dup : ∀{A : Set} (a : A) → A × A
dup = λ { x → {!!} } -- C-c C-c RET
-- Expected result after result splitting:
-- dup = λ { x .proj₁ → {!!} ; x .proj₂ → {!!} }
|
{
"alphanum_fraction": 0.6229508197,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "486a25ce0e88c0bf581a47b94cfb9ec85d943913",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2654.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2654.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2654.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 145,
"size": 488
}
|
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contraposition)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_; foldr; map)
open import Function using (_∘_)
double-negation : ∀ {A : Set} → A → ¬ ¬ A
double-negation x ¬x = ¬x x
triple-negation : ∀ {A : Set} → ¬ ¬ ¬ A → ¬ A
triple-negation ¬¬¬x x = ¬¬¬x (double-negation x)
Stable : Set → Set
Stable A = ¬ ¬ A → A
¬-stable : ∀ {A : Set} → Stable (¬ A)
¬-stable = triple-negation
×-stable : ∀ {A B : Set} → Stable A → Stable B → Stable (A × B)
×-stable ¬¬x→x ¬¬y→y ¬¬xy =
⟨ ¬¬x→x (contraposition (contraposition proj₁) ¬¬xy)
, ¬¬y→y (contraposition (contraposition proj₂) ¬¬xy)
⟩
∀-stable : ∀ {A : Set} {B : A → Set} → (∀ (x : A) → Stable (B x)) → Stable (∀ (x : A) → B x)
∀-stable ∀x→¬¬y→y ¬¬∀x→y x =
∀x→¬¬y→y x (contraposition (contraposition λ{∀x→y → ∀x→y x}) ¬¬∀x→y)
-- Gödel-Gentzen translation
{--
data Var : ℕ → Set where
zero : ∀ (n : ℕ) → Var (suc n)
suc : ∀ (n : ℕ) → Var n → Var (suc n)
data Formula : ℕ → Set where
_`≡_ : ∀ (n : ℕ) → Var n → Var n → Formula n
_`×_ : ∀ (n : ℕ) → Formula n → Formula n → Formula n
_`⊎_ : ∀ (n : ℕ) → Formula n → Formula n → Formula n
`¬_ : ∀ (n : ℕ) → Formula n → Formula n
--}
data Formula : Set₁ where
atomic : ∀ (A : Set) → Formula
_`×_ : Formula → Formula → Formula
_`⊎_ : Formula → Formula → Formula
`¬_ : Formula → Formula
interp : Formula → Set
interp (atomic A) = A
interp (`A `× `B) = interp `A × interp `B
interp (`A `⊎ `B) = interp `A ⊎ interp `B
interp (`¬ `A) = ¬ interp `A
g : Formula → Formula
g (atomic A) = `¬ `¬ (atomic A)
g (`A `× `B) = g `A `× g `B
g (`A `⊎ `B) = `¬ ((`¬ g `A) `× (`¬ g `B))
g (`¬ `A) = `¬ g `A
stable-g : ∀ (`A : Formula) → Stable (interp (g `A))
stable-g (atomic A) = ¬-stable
stable-g (`A `× `B) = ×-stable (stable-g `A) (stable-g `B)
stable-g (`A `⊎ `B) = ¬-stable
stable-g (`¬ `A) = ¬-stable
|
{
"alphanum_fraction": 0.5663129973,
"avg_line_length": 30.16,
"ext": "agda",
"hexsha": "7687676da03c7a9e78ddd7f6fa02f4a0ab8011aa",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Stable.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Stable.agda",
"max_line_length": 92,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Stable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 907,
"size": 2262
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.FreeExtension.Base (Θ : Theory) where
open import Fragment.Equational.Model Θ
open import Fragment.Equational.Coproduct Θ
open import Level using (Level; Setω; _⊔_)
open import Data.Nat using (ℕ)
private
variable
a ℓ : Level
Extension : Setω
Extension = ∀ {a} {ℓ} → Model {a} {ℓ} → ℕ → Model {a} {a ⊔ ℓ}
IsFreeExtension : Extension → Setω
IsFreeExtension _[_] =
∀ {a ℓ} (A : Model {a} {ℓ}) (n : ℕ) → IsCoproduct A (J n) (A [ n ])
record FreeExtension : Setω where
field
_[_] : Extension
_[_]-isFrex : IsFreeExtension _[_]
|
{
"alphanum_fraction": 0.6656716418,
"avg_line_length": 23.9285714286,
"ext": "agda",
"hexsha": "ebd18334566935ab313873b1e0285520b3bab804",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/FreeExtension/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/FreeExtension/Base.agda",
"max_line_length": 69,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/FreeExtension/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 220,
"size": 670
}
|
module Prelude.Function where
id : ∀ {a} {A : Set a} → A → A
id x = x
{-# INLINE id #-}
infixl -10 id
syntax id {A = A} x = x ofType A
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x _ = x
{-# INLINE const #-}
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → (∀ x y → C x y) → ∀ y x → C x y
flip f x y = f y x
{-# INLINE flip #-}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c}
(f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) →
∀ x → C x (g x)
(f ∘ g) x = f (g x)
{-# INLINE _∘_ #-}
infixr 9 _∘′_
_∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(B → C) → (A → B) → (A → C)
f ∘′ g = f ∘ g
{-# INLINE _∘′_ #-}
infixr -20 _$_ _$′_
infixr 0 case_of_ case_return_of_
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x
f $ x = f x
_$′_ : ∀ {a b}{A : Set a} {B : Set b} → (A → B) → A → B
f $′ x = f x
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
case₂_,_of_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → B → (A → B → C) → C
case₂ x , y of f = f x y
case₃_,_,_of_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A → B → C → (A → B → C → D) → D
case₃ x , y , z of f = f x y z
case₄_,_,_,_of_ : ∀ {a b c d e} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} →
A → B → C → D → (A → B → C → D → E) → E
case₄ x , y , z , w of f = f x y z w
case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → (∀ x → B x) → B x
case x return B of f = f x
infixr 0 letSyntax
syntax letSyntax e (λ x → b) = let[ x := e ] b
letSyntax : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
letSyntax x f = f x
{-# INLINE _$_ #-}
{-# INLINE _$′_ #-}
{-# INLINE case_of_ #-}
{-# INLINE case₂_,_of_ #-}
{-# INLINE case_return_of_ #-}
infixl 8 _on_
_on_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x y → B x → B y → Set c} →
(∀ {x y} (z : B x) (w : B y) → C x y z w) → (f : ∀ x → B x) → ∀ x y →
C x y (f x) (f y)
h on f = λ x y → h (f x) (f y)
{-# INLINE _on_ #-}
it : ∀ {a} {A : Set a} {{x : A}} → A
it {{x}} = x
{-# INLINE it #-}
asInstance : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ {{x}} → B x) → B x
asInstance x f = f {{x}}
{-# INLINE asInstance #-}
record Instance {a} (A : Set a) : Set a where
constructor !
field {{x}} : A
mkInstance : ∀ {a} {A : Set a} → A → Instance A
mkInstance x = ! {{x}}
{-# INLINE mkInstance #-}
-- Can be used to force normalisation at compile time.
static : ∀ {a} {A : Set a} → A → A
static x = x
{-# STATIC static #-}
|
{
"alphanum_fraction": 0.4373540856,
"avg_line_length": 27.3404255319,
"ext": "agda",
"hexsha": "98e50307e82ff7135e0691f47da9efb46b31e7ce",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Function.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Function.agda",
"max_line_length": 109,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 1162,
"size": 2570
}
|
{-
Definition of various kinds of categories.
This library follows the UniMath terminology, that is:
Concept Ob C Hom C Univalence
Precategory Type Type No
Category Type Set No
Univalent Category Type Set Yes
This file also contains
- pathToIso : Turns a path between two objects into an isomorphism between them
- opposite categories
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Category where
open import Cubical.Categories.Category.Base public
open import Cubical.Categories.Category.Properties public
|
{
"alphanum_fraction": 0.696,
"avg_line_length": 24.0384615385,
"ext": "agda",
"hexsha": "7dbecb149b94b72b8865795b7235399fbef6d1d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Category.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 137,
"size": 625
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Morphism.Lifts.Properties {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Data.Product using (_,_; proj₁; proj₂)
open import Categories.Category.Construction.Arrow 𝒞
open import Categories.Diagram.Pullback 𝒞
open import Categories.Diagram.Pushout 𝒞
open import Categories.Morphism.Lifts 𝒞
open import Categories.Morphism.Reasoning 𝒞 renaming (glue to glue-■)
import Categories.Morphism as Mor
open Category 𝒞
open Definitions 𝒞
open HomReasoning
-- We want to talk about retracts of morphisms, so
-- we don't use the definition of 'Retract' applied to '𝒞'
open Mor 𝒞 hiding (Retract)
open Mor using (Retract)
open Morphism⇒
--------------------------------------------------------------------------------
-- Lifting and Retractions
module _ {X Y T} {f : X ⇒ Y} {i : X ⇒ T} {p : T ⇒ Y} (factors : f ≈ p ∘ i) where
-- If 'f' factors into 'p ∘ i' and 'f' has the left lifting property
-- with respect to 'p', then 'f' is a retraction of 'i' in the arrow
-- category of 𝒞.
retract-liftˡ : Lifts f p → Retract Arrow (mor f) (mor i)
retract-liftˡ lifts = record
{ section = mor⇒ (fill-commˡ ○ ⟺ identityʳ)
; retract = mor⇒ (⟺ factors ○ ⟺ identityʳ)
; is-retract = identity² , fill-commʳ
}
where
open Filler (lifts (identityˡ ○ factors))
-- We have an analogous situation for right lifts.
retract-liftʳ : Lifts i f → Retract Arrow (mor f) (mor p)
retract-liftʳ lifts = record
{ section = mor⇒ (identityˡ ○ factors)
; retract = mor⇒ (identityˡ ○ ⟺ fill-commʳ)
; is-retract = fill-commˡ , identity²
}
where
open Filler (lifts (⟺ factors ○ ⟺ identityʳ))
--------------------------------------------------------------------------------
-- Closure Properties of Injective and Projective morphisms.
module _ {j} (J : MorphismClass j) where
private
variable
X Y Z : Obj
f g h i p : X ⇒ Y
-- If 'f' is an isomorphism, then it must be J-Projective.
iso-proj : ∀ {X Y} (f : X ⇒ Y) → IsIso f → Proj J f
iso-proj f f-iso g g∈J {h} {i} comm = record
{ filler = h ∘ inv
; fill-commˡ = cancelʳ isoˡ
; fill-commʳ = extendʳ (⟺ comm) ○ elimʳ isoʳ
}
where
open IsIso f-iso
-- Dually, If 'f' is an isomorphism, then it must be J-Injective.
iso-inj : ∀ {X Y} (f : X ⇒ Y) → IsIso f → Inj J f
iso-inj f f-iso g g∈J {h} {i} comm = record
{ filler = inv ∘ i
; fill-commˡ = extendˡ comm ○ elimˡ isoˡ
; fill-commʳ = cancelˡ isoʳ
}
where
open IsIso f-iso
-- J-Projective morphisms are closed under composition.
proj-∘ : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → Proj J f → Proj J g → Proj J (f ∘ g)
proj-∘ {f = f} {g = g} f-proj g-proj h h∈J {k} {i} comm = record
{ filler = UpperFiller.filler
; fill-commˡ = begin
UpperFiller.filler ∘ f ∘ g
≈⟨ pullˡ UpperFiller.fill-commˡ ⟩
LowerFiller.filler ∘ g
≈⟨ LowerFiller.fill-commˡ ⟩
k
∎
; fill-commʳ = UpperFiller.fill-commʳ
}
where
module LowerFiller = Filler (g-proj h h∈J (assoc ○ comm))
module UpperFiller = Filler (f-proj h h∈J (⟺ LowerFiller.fill-commʳ))
-- J-Injective morphisms are closed under composition.
inj-∘ : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → Inj J f → Inj J g → Inj J (f ∘ g)
inj-∘ {f = f} {g = g} f-inj g-inj h h∈J {k} {i} comm = record
{ filler = LowerFiller.filler
; fill-commˡ = LowerFiller.fill-commˡ
; fill-commʳ = begin
(f ∘ g) ∘ LowerFiller.filler
≈⟨ pullʳ LowerFiller.fill-commʳ ⟩
f ∘ UpperFiller.filler
≈⟨ UpperFiller.fill-commʳ ⟩
i
∎
}
where
module UpperFiller = Filler (f-inj h h∈J (comm ○ assoc))
module LowerFiller = Filler (g-inj h h∈J UpperFiller.fill-commˡ)
-- J-Projective morphisms are stable under pushout.
proj-pushout : ∀ {X Y Z} {p : X ⇒ Y} {f : X ⇒ Z} → (P : Pushout p f) → Proj J p → Proj J (Pushout.i₂ P)
proj-pushout {p = p} {f = f} po p-proj h h∈J sq = record
{ filler = universal fill-commˡ
; fill-commˡ = universal∘i₂≈h₂
; fill-commʳ = unique-diagram (pullʳ universal∘i₁≈h₁ ○ fill-commʳ) (pullʳ universal∘i₂≈h₂ ○ ⟺ sq)
}
where
open Pushout po
open Filler (p-proj h h∈J (glue-■ sq commute))
-- J-Injective morphisms are stable under pullback.
inj-pullback : ∀ {X Y Z} {i : X ⇒ Z} {f : Y ⇒ Z} → (P : Pullback i f) → Inj J i → Inj J (Pullback.p₂ P)
inj-pullback {i = i} {f = f} pb i-inj h h∈J sq = record
{ filler = universal fill-commʳ
; fill-commˡ = unique-diagram (pullˡ p₁∘universal≈h₁ ○ fill-commˡ) (pullˡ p₂∘universal≈h₂ ○ sq)
; fill-commʳ = p₂∘universal≈h₂
}
where
open Pullback pb
open Filler (i-inj h h∈J (glue-■ (⟺ commute) sq))
-- J-Projective morphisms are stable under retractions.
proj-retract : Proj J p → Retract Arrow (mor f) (mor p) → Proj J f
proj-retract {p = p} {f = f} p-proj f-retracts h h∈J {g} {k} sq = record
{ filler = filler ∘ cod⇒ section
; fill-commˡ = begin
(filler ∘ cod⇒ section) ∘ f
≈⟨ extendˡ (square section) ⟩
(filler ∘ p) ∘ dom⇒ section
≈⟨ fill-commˡ ⟩∘⟨refl ⟩
(g ∘ dom⇒ retract) ∘ dom⇒ section
≈⟨ cancelʳ (proj₁ is-retract) ⟩
g
∎
; fill-commʳ = begin
h ∘ filler ∘ cod⇒ section
≈⟨ extendʳ fill-commʳ ⟩
k ∘ (cod⇒ retract ∘ cod⇒ section)
≈⟨ elimʳ (proj₂ is-retract) ⟩
k
∎
}
where
open Retract f-retracts
open Filler (p-proj h h∈J (glue-■ sq (square retract)))
-- J-Injective morphisms are stable under retractions.
inj-retract : Inj J i → Retract Arrow (mor f) (mor i) → Inj J f
inj-retract {i = i} {f = f} i-inj f-retracts h h∈J {g} {k} sq = record
{ filler = dom⇒ retract ∘ filler
; fill-commˡ = begin
(dom⇒ retract ∘ filler) ∘ h
≈⟨ extendˡ fill-commˡ ⟩
(dom⇒ retract ∘ dom⇒ section) ∘ g
≈⟨ elimˡ (proj₁ is-retract) ⟩
g
∎
; fill-commʳ = begin
f ∘ dom⇒ retract ∘ filler
≈⟨ extendʳ (⟺ (square retract)) ⟩
cod⇒ retract ∘ i ∘ filler
≈⟨ refl⟩∘⟨ fill-commʳ ⟩
cod⇒ retract ∘ cod⇒ section ∘ k
≈⟨ cancelˡ (proj₂ is-retract) ⟩
k
∎
}
where
open Retract f-retracts
open Filler (i-inj h h∈J (glue-■ (square section) sq))
|
{
"alphanum_fraction": 0.5786833856,
"avg_line_length": 33.2291666667,
"ext": "agda",
"hexsha": "4104d1a20e5608266e4c10ffe20d67d93458333c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Lifts/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Lifts/Properties.agda",
"max_line_length": 105,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Lifts/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 2400,
"size": 6380
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Rational.Base where
open import Function using (id)
open import Data.Integer.Base as ℤ using (ℤ; ∣_∣; +_; -[1+_])
import Data.Integer.GCD as ℤ
import Data.Integer.DivMod as ℤ
open import Data.Nat.GCD
open import Data.Nat.Divisibility as ℕDiv using (divides; 0∣⇒≡0)
open import Data.Nat.Coprimality as C using (Coprime; Bézout-coprime; coprime-/gcd)
open import Data.Nat.Base as ℕ using (ℕ; zero; suc) hiding (module ℕ)
import Data.Nat.DivMod as ℕ
open import Data.Rational.Unnormalised using (ℚᵘ; mkℚᵘ; _≢0)
open import Data.Product
open import Data.Sum.Base using (inj₂)
open import Level using (0ℓ)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Decidable using (False; fromWitnessFalse; toWitnessFalse)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl; subst; cong; cong₂; module ≡-Reasoning)
open ≡-Reasoning
-- Note, these are re-exported publicly to maintain backwards
-- compatability. Although we are unable (?) to put a warning on them,
-- using these from `Data.Rational` should be viewed as a deprecated
-- feature.
open import Data.Integer public using (+0; +[1+_])
------------------------------------------------------------------------
-- Rational numbers in reduced form. Note that there is exactly one
-- way to represent every rational number.
record ℚ : Set where
constructor mkℚ
field
numerator : ℤ
denominator-1 : ℕ
.isCoprime : Coprime ∣ numerator ∣ (suc denominator-1)
denominatorℕ : ℕ
denominatorℕ = suc denominator-1
denominator : ℤ
denominator = + denominatorℕ
open ℚ public using ()
renaming
( numerator to ↥_
; denominator to ↧_
; denominatorℕ to ↧ₙ_
)
mkℚ+ : ∀ n d → .{d≢0 : d ≢0} → .(Coprime n d) → ℚ
mkℚ+ n (suc d) coprime = mkℚ (+ n) d coprime
------------------------------------------------------------------------
-- Equality of rational numbers (coincides with _≡_)
infix 4 _≃_
_≃_ : Rel ℚ 0ℓ
p ≃ q = (↥ p ℤ.* ↧ q) ≡ (↥ q ℤ.* ↧ p)
------------------------------------------------------------------------
-- Ordering of rationals
infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≱_ _≮_ _≯_
data _≤_ : Rel ℚ 0ℓ where
*≤* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) → p ≤ q
data _<_ : Rel ℚ 0ℓ where
*<* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.< (↥ q ℤ.* ↧ p) → p < q
_≥_ : Rel ℚ 0ℓ
x ≥ y = y ≤ x
_>_ : Rel ℚ 0ℓ
x > y = y < x
_≰_ : Rel ℚ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℚ 0ℓ
x ≱ y = ¬ (x ≥ y)
_≮_ : Rel ℚ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℚ 0ℓ
x ≯ y = ¬ (x > y)
------------------------------------------------------------------------
-- Negation
-_ : ℚ → ℚ
- mkℚ -[1+ n ] d prf = mkℚ +[1+ n ] d prf
- mkℚ +0 d prf = mkℚ +0 d prf
- mkℚ +[1+ n ] d prf = mkℚ -[1+ n ] d prf
------------------------------------------------------------------------
-- Constructing rationals
-- A constructor for ℚ that takes two natural numbers, say 6 and 21,
-- and returns them in a normalized form, e.g. say 2 and 7
normalize : ∀ (m n : ℕ) {n≢0 : n ≢0} → ℚ
normalize m n {n≢0} = mkℚ+ (m ℕ./ gcd m n) (n ℕ./ gcd m n)
{n/g≢0} (coprime-/gcd m n {g≢0})
where
g≢0 = fromWitnessFalse (gcd[m,n]≢0 m n (inj₂ (toWitnessFalse n≢0)))
n/g≢0 = fromWitnessFalse (n/gcd[m,n]≢0 m n {n≢0} {g≢0})
-- A constructor for ℚ that (unlike mkℚ) automatically normalises it's
-- arguments. See the constants section below for how to use this operator.
infixl 7 _/_
_/_ : (n : ℤ) (d : ℕ) → {d≢0 : d ≢0} → ℚ
(+ n / d) {d≢0} = normalize n d {d≢0}
(-[1+ n ] / d) {d≢0} = - normalize (suc n) d {d≢0}
------------------------------------------------------------------------------
-- Some constants
0ℚ : ℚ
0ℚ = + 0 / 1
1ℚ : ℚ
1ℚ = + 1 / 1
½ : ℚ
½ = + 1 / 2
-½ : ℚ
-½ = - ½
------------------------------------------------------------------------------
-- Operations on rationals
infix 8 -_ 1/_
infixl 7 _*_ _÷_
infixl 6 _-_ _+_
-- addition
_+_ : ℚ → ℚ → ℚ
p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
-- multiplication
_*_ : ℚ → ℚ → ℚ
p * q = (↥ p ℤ.* ↥ q) / (↧ₙ p ℕ.* ↧ₙ q)
-- subtraction
_-_ : ℚ → ℚ → ℚ
p - q = p + (- q)
-- reciprocal: requires a proof that the numerator is not zero
1/_ : (p : ℚ) → .{n≢0 : ∣ ↥ p ∣ ≢0} → ℚ
1/ mkℚ +[1+ n ] d prf = mkℚ +[1+ d ] n (C.sym prf)
1/ mkℚ -[1+ n ] d prf = mkℚ -[1+ d ] n (C.sym prf)
-- division: requires a proof that the denominator is not zero
_÷_ : (p q : ℚ) → .{n≢0 : ∣ ↥ q ∣ ≢0} → ℚ
(p ÷ q) {n≢0} = p * (1/ q) {n≢0}
------------------------------------------------------------------------
-- Conversion to and from unnormalized rationals
toℚᵘ : ℚ → ℚᵘ
toℚᵘ (mkℚ n d-1 _) = mkℚᵘ n d-1
fromℚᵘ : ℚᵘ → ℚ
fromℚᵘ (mkℚᵘ n d-1) = n / suc d-1
|
{
"alphanum_fraction": 0.5091494068,
"avg_line_length": 26.1736842105,
"ext": "agda",
"hexsha": "1bcd733d3adefd605ef6c9dccaea9680ca66cc96",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Rational/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Rational/Base.agda",
"max_line_length": 86,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Rational/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1866,
"size": 4973
}
|
------------------------------------------------------------------------------
-- Testing the translation of logical schemata with 11-ary predicates symbols
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module P11 where
postulate
D : Set
P-refl : {P : D → D → D → D → D → D → D → D → D → D → D → Set} →
∀ {x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁} →
P x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ →
P x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁
{-# ATP prove P-refl #-}
|
{
"alphanum_fraction": 0.4,
"avg_line_length": 36.5789473684,
"ext": "agda",
"hexsha": "bbea43d24d865f109f8f8149d8745dbd2eb9d726",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/non-fol-theorems/P11.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/non-fol-theorems/P11.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/non-fol-theorems/P11.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 213,
"size": 695
}
|
------------------------------------------------------------------------
-- Safe modules that use --cubical
------------------------------------------------------------------------
{-# OPTIONS --safe --cubical #-}
module README.Safe.Cubical where
-- A proof of univalence.
import Equality.Path.Univalence
-- A proof of univalence for an arbitrary "equality with J".
import Equality.Path.Isomorphisms.Univalence
-- Very stable booleans.
import Bool.Very-stable
-- Listed finite subsets.
import Finite-subset.Listed
-- An alternative definition of listed finite subsets.
import Finite-subset.Listed.Alternative
-- Kuratowski finite subsets.
import Finite-subset.Kuratowski
-- An example related to Nat.Wrapper, defined in Cubical Agda.
import Nat.Wrapper.Cubical
-- Abstract binding trees, based on Harper's "Practical Foundations
-- for Programming Languages".
import Abstract-binding-tree
import README.Abstract-binding-tree
-- Overview of code related to a paper.
import README.HITs-without-paths
|
{
"alphanum_fraction": 0.6620825147,
"avg_line_length": 22.1304347826,
"ext": "agda",
"hexsha": "4ef897dde3bc38eea24f8e3237f61994238cb793",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Safe/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Safe/Cubical.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Safe/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 200,
"size": 1018
}
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Char.Properties where
open import Agda.Builtin.Char
open import Agda.Builtin.Equality
primitive
primCharToNatInjective : ∀ a b → primCharToNat a ≡ primCharToNat b → a ≡ b
|
{
"alphanum_fraction": 0.7098976109,
"avg_line_length": 24.4166666667,
"ext": "agda",
"hexsha": "dfd2015c6de162ca8e66ea47bc12d8dbdabe4e07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Char/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Char/Properties.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Char/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 81,
"size": 293
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.S1.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1.Base
open import Cubical.HITs.PropositionalTruncation
isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥
isConnectedS¹ base = ∣ refl ∣
isConnectedS¹ (loop i) =
squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i
isGroupoidS¹ : isGroupoid S¹
isGroupoidS¹ s t =
recPropTrunc isPropIsSet
(λ p →
subst (λ s → isSet (s ≡ t)) p
(recPropTrunc isPropIsSet
(λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹)
(isConnectedS¹ t)))
(isConnectedS¹ s)
|
{
"alphanum_fraction": 0.6973684211,
"avg_line_length": 28.8275862069,
"ext": "agda",
"hexsha": "9316dc20bfbdab346ee2220d944589dd1e68940a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/S1/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/S1/Properties.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/S1/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 289,
"size": 836
}
|
-- Andreas, 2016-02-09, issue and test case by Nisse
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Level
postulate
_≡_ : ∀ {a} {A : Set a} → A → A → Set a
refl : ∀ {a} {A : Set a} (x : A) → x ≡ x
record R a p : Set (lsuc (a ⊔ p)) where
field
elim : {A : Set a} (P : {x y : A} → x ≡ y → Set p) →
(∀ x → P (refl x)) →
∀ {x y} (x≡y : x ≡ y) → P x≡y
module _ (eq : ∀ {a p} → R a p) where
open module M {a p} = R (eq {a} {p})
postulate
elim-refl : ∀ {a p} {A : Set a} (P : {x y : A} → x ≡ y → Set p)
(r : ∀ x → P (refl x)) {x} →
elim P r (refl x) ≡ r x
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y : A} → x ≡ y → f x ≡ f y
subst : ∀ {a p} {A : Set a} (P : A → Set p) {x y : A} →
x ≡ y → P x → P y
subst-refl : ∀ {a p} {A : Set a} (P : A → Set p) {x} (p : P x) →
subst P (refl x) p ≡ p
trans : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A → B → C) {x y : A} {u v : B} →
x ≡ y → u ≡ v → f y v ≡ f x u
trans-reflʳ : ∀ {a} {A : Set a} {x y : A} (x≡y : x ≡ y) →
trans x≡y (refl y) ≡ x≡y
trans-reflˡ : ∀ {a} {A : Set a} {x y : A} (x≡y : x ≡ y) →
trans (refl x) x≡y ≡ x≡y
[subst≡]≡[trans≡trans] :
∀ {a} {A : Set a} {x y : A} {p : x ≡ y} {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r)
[subst≡]≡[trans≡trans] {p = p} {q} {r} = elim
(λ {x y} p → {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r))
(λ x {q r} →
trans (cong (λ x → x ≡ _) (subst-refl (λ z → z ≡ z) _))
(cong₂ _≡_ (trans-reflʳ _) (trans-reflˡ _)))
p
foo :
∀ {a} {A : Set a} {x : A} {q : x ≡ x} {r : x ≡ x} →
[subst≡]≡[trans≡trans] {p = refl x} {q = q} {r = r} ≡
[subst≡]≡[trans≡trans] {p = refl x} {q = q} {r = r}
foo = elim-refl ? ?
|
{
"alphanum_fraction": 0.358950328,
"avg_line_length": 34.9836065574,
"ext": "agda",
"hexsha": "f1a7fed56ceb257bb1e685165422c938850dd9c9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1826.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1826.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1826.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 988,
"size": 2134
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.S3.Base where
open import Cubical.Foundations.Prelude
data S³ : Type₀ where
base : S³
surf : PathP (λ j → PathP (λ i → base ≡ base) refl refl) refl refl
|
{
"alphanum_fraction": 0.6869565217,
"avg_line_length": 25.5555555556,
"ext": "agda",
"hexsha": "b2269c91ba93ec00d25a3c2f89b2b3c1e7935336",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/S3/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/S3/Base.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/S3/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 75,
"size": 230
}
|
{-# OPTIONS --without-K #-}
module hott.truncation.elim where
open import sum
open import equality
open import function
open import hott.equivalence
open import hott.level
open import hott.loop
open import hott.truncation.core
open import hott.truncation.equality
open import hott.univalence
open import sets.nat
open import sets.unit
is-null : ∀ {i j}{X : Set i}{Y : Set j} → Y → (X → Y) → Set _
is-null y f = ∀ x → y ≡ f x
is-null-level : ∀ {i j}{X : Set i}{Y : Set j} → h 2 Y
→ (y : Y)(f : X → Y) → h 1 (is-null y f)
is-null-level hY y f = Π-level λ x → hY y (f x)
compose-is-null : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k}
→ (y : Y)(f : X → Y)(g : Y → Z)
→ is-null y f
→ is-null (g y) (g ∘ f)
compose-is-null y f g c y' = ap g (c y')
Null : ∀ {i j} → ℕ → Set i → Set j → Set _
Null n X Y = Σ (X → Y) λ f → (x : X) → is-null (refl' n (f x)) (mapΩ n f)
-- connected components
Conn : ∀ {i}{X : Set i}(n : ℕ) → Trunc n X → Set _
Conn {X = X} n c = Σ X λ x → [ x ] ≡ c
map-conn : ∀ {i j}{X : Set i}{Y : Set j}(n : ℕ)
→ (c : Trunc n X)
→ (X → Y)
→ (Conn n c → Y)
map-conn n c f (x , p) = f x
conn-decomp : ∀ {i}{X : Set i}(n : ℕ)
→ Σ (Trunc n X) (Conn n) ≅ X
conn-decomp {X = X} n = total-iso [_]
conn-connected : ∀ {i}{X : Set i}(n : ℕ)(c : Trunc n X)
→ contr (Trunc n (Conn n c))
conn-connected {X = X} n c = φ c , lem c
where
φ' : (x : X) → Trunc n (Conn n [ x ])
φ' x = [ x , refl ]
φ : (c : Trunc n X) → Trunc n (Conn n c)
φ = Trunc-dep-elim n (λ c → Trunc n (Conn n c)) (λ _ → Trunc-level n) φ'
lem' : (c : Trunc n X)(a : Conn n c) → φ c ≡ [ a ]
lem' .([ x ]) (x , refl) = Trunc-dep-elim-β n
(λ c → Trunc n (Conn n c))
(λ _ → Trunc-level n) φ' x
lem : (c : Trunc n X)(a : Trunc n (Conn n c)) → φ c ≡ a
lem c = Trunc-dep-elim n (λ a → φ c ≡ a) (λ a → h↑ (Trunc-level n) (φ c) a) (lem' c)
-- main result
module CM {i j} n (X : Set i)(Y : Set j)
(hY : h (n + 2) Y) where
cm' : Y → Null n X Y
cm' y = (λ _ → y) , (λ x p → sym (mapΩ-const n y x p))
cm : (Trunc (suc n) X → Y) → Null n X Y
cm f = (λ x → f [ x ]) , λ x
→ subst₂ (is-null) (mapΩ-refl n f) (eq x)
(compose-is-null (refl' n [ x ]) (mapΩ n [_]) (mapΩ n f)
(λ p → h1⇒prop (Ω-level n hT) _ _))
where
f' : X → Y
f' x = f [ x ]
eq' : (x : X)(p : Ω n x) → mapΩ n f (mapΩ n [_] p) ≡ mapΩ n f' p
eq' x p = mapΩ-hom n [_] f p
eq : (x : X) → mapΩ n f ∘ mapΩ n [_] ≡ mapΩ n f'
eq x = funext (eq' x)
hT : h (n + 1) (Trunc (suc n) X)
hT = subst (λ m → h m (Trunc (suc n) X)) (+-commutativity 1 n) (Trunc-level (suc n))
Trunc-elim' : ∀ {i j} n (X : Set i)(Y : Set j) → h (n + 2) Y
→ (Trunc (suc n) X → Y) ≅ Null n X Y
null-connected : ∀ {i j} n {X : Set i}{Y : Set j}
→ contr (Trunc (suc n) X)
→ h (n + 2) Y
→ (f : X → Y)
→ ((x : X) → is-null (refl' n (f x)) (mapΩ n f {x}))
→ (x : X) → is-null (f x) f
null-connected zero hX hY f c x₀ x₁ = c x₀ x₁
null-connected (suc n) {X} hX hY f c x₀ x₁
= φ (trunc-equality (suc n) (h1⇒prop (h↑ hX) _ _))
where
ap-null : (x y : X)(p : x ≡ y) → is-null (refl' n (ap f p)) (mapΩ n (ap f) {p})
ap-null x .x refl = c x
φ : Trunc (suc n) (x₀ ≡ x₁) → f x₀ ≡ f x₁
φ = invert (Trunc-elim' n (x₀ ≡ x₁) (f x₀ ≡ f x₁) (hY _ _))
( ap f , ap-null x₀ x₁ )
Trunc-elim-connected : ∀ {i j} n (X : Set i)(Y : Set j)
→ contr (Trunc (suc n) X)
→ h (n + 2) Y
→ Y ≅ Null n X Y
Trunc-elim-connected n X Y hX hY = ≈⇒≅ (cm' , cm-equiv' (proj₁ hX))
where
open CM n X Y hY
module _ (x₀ : X) where
g : Null n X Y → Y
g (f , c) = f x₀
α : (y : Y) → g (cm' y) ≡ y
α y = refl
β : (x : Null n X Y) → cm' (g x) ≡ x
β (f , c) = unapΣ ( (funext λ x → null-connected n hX hY f c _ _)
, h1⇒prop (Π-level λ x → is-null-level (Ω-level n hY) _ _) _ _)
f-iso : Y ≅ Null n X Y
f-iso = iso cm' g α β
cm-equiv : X → weak-equiv cm'
cm-equiv x₀ = proj₂ (≅⇒≈ (f-iso x₀))
cm-equiv' : Trunc (suc n) X → weak-equiv cm'
cm-equiv' = invert (Trunc-elim-iso (suc n) X (weak-equiv cm') (h! (weak-equiv-h1 cm'))) cm-equiv
abstract
Trunc-elim'₀ : ∀ {i j} n (X : Set i)(Y : Set j) → h (n + 2) Y
→ (Trunc (suc n) X → Y) ≅ Null n X Y
Trunc-elim'₀ n X Y hY = begin
(Trunc (suc n) X → Y)
≅⟨ ( Π-ap-iso refl≅ λ c
→ Trunc-elim-connected n _ _ (conn-connected (suc n) c) hY) ⟩
((c : Trunc (suc n) X) → Null n (Conn (suc n) c) Y)
≅⟨ ΠΣ-swap-iso ⟩
( Σ ((c : Trunc (suc n) X) → Conn (suc n) c → Y) λ f
→ ((c : Trunc (suc n) X) → (x : Conn (suc n) c) → is-null _ (mapΩ n (f c))) )
≅⟨ sym≅ ( Σ-ap-iso (curry-iso (λ _ _ → Y)) λ f
→ curry-iso λ c x → is-null _ (mapΩ n (λ x' → f (c , x'))) ) ⟩
( Σ ((Σ (Trunc (suc n) X) λ c → Conn (suc n) c) → Y) λ f
→ (((x' : (Σ (Trunc (suc n) X) λ c → Conn (suc n) c))
→ is-null _ (mapΩ n (λ x → f (proj₁ x' , x))))) )
≅⟨ ( Σ-ap-iso' (→-ap-iso (conn-decomp (suc n)) refl≅) λ f
→ Π-ap-iso (conn-decomp (suc n)) λ x → refl≅ ) ⟩
( Σ (X → Y) λ f
→ (((x : X) → is-null _ (mapΩ n (λ x → f (proj₁ x)) {x , refl}))) )
≅⟨ ( Σ-ap-iso refl≅ λ f → Π-ap-iso refl≅ λ x → lem f x ) ⟩
Null n X Y
∎
where
open ≅-Reasoning
lem : (f : X → Y) (x : X)
→ is-null (refl' n (f x)) (mapΩ n (map-conn (suc n) [ x ] f) {x , refl})
≅ is-null (refl' n (f x)) (mapΩ n f {x})
lem f x = ≡⇒≅ (ap (is-null (refl' n (f x))) (funext hom)) ·≅ sym≅ is-const-equiv
where
π : Conn (suc n) [ x ] → X
π = proj₁
hom : (p : Ω n (x , refl))
→ mapΩ n (map-conn (suc n) [ x ] f) p
≡ mapΩ n f (mapΩ n proj₁ p)
hom p = sym (mapΩ-hom n proj₁ f p)
φ : Ω n {Conn (suc n) [ x ]} (x , refl) ≅ Ω n x
φ = loop-sum n λ a → Trunc-level (suc n) _ _
is-const-equiv : is-null {X = Ω n x} (refl' n (f x)) (mapΩ n f {x})
≅ is-null {X = Ω n {Conn (suc n) [ x ]} (x , refl)}
(refl' n (f x))
(mapΩ n f ∘ mapΩ n proj₁)
is-const-equiv = Π-ap-iso (sym≅ φ) λ p
→ refl≅
Trunc-elim'-β₀ : ∀ {i j n}{X : Set i}{Y : Set j} (hY : h (n + 2) Y)
→ (f : Trunc (suc n) X → Y)
→ proj₁ (apply (Trunc-elim'₀ n X Y hY) f) ≡ (λ x → f [ x ])
Trunc-elim'-β₀ hY f = refl
Trunc-elim'-β : ∀ {i j n}{X : Set i}{Y : Set j} (hY : h (n + 2) Y)
→ (f : Trunc (suc n) X → Y)
→ apply (Trunc-elim'₀ n X Y hY) f ≡ CM.cm n X Y hY f
Trunc-elim'-β {n = n} hY f = unapΣ
( Trunc-elim'-β₀ hY f
, h1⇒prop (Π-level λ x → is-null-level (Ω-level n hY) _ _) _ _ )
Trunc-elim' n X Y hY = ≈⇒≅ (cm , cm-we)
where
open CM n X Y hY
cm-eq : apply (Trunc-elim'₀ n X Y hY) ≡ cm
cm-eq = funext (Trunc-elim'-β hY)
cm-we : weak-equiv cm
cm-we = subst weak-equiv cm-eq (proj₂ (≅⇒≈ (Trunc-elim'₀ n X Y hY)))
-- example
Repr : ∀ {i} → Set i → Set _
Repr {i} A = Σ (Trunc 2 A → Set i) λ hom
→ (a : A) → hom [ a ] ≅ (a ≡ a)
Braiding : ∀ {i} → Set i → Set _
Braiding A = {a : A}(p q : a ≡ a) → p · q ≡ q · p
braiding-repr : ∀ {i}{A : Set i} → h 3 A → Braiding A → Repr A
braiding-repr {i}{A} hA γ = (λ c → proj₁ (hom c)) , λ a
→ ≡⇒≅ (ap proj₁ (hom-β a))
where
eq : A → Set _
eq a = (a ≡ a)
hom' : A → Type _ 2
hom' a = eq a , hA a a
type-eq-iso : ∀ {n}{X Y : Type i n}
→ (X ≡ Y) ≅ (proj₁ X ≈ proj₁ Y)
type-eq-iso {n}{X}{Y} = begin
(X ≡ Y)
≅⟨ sym≅ Σ-split-iso ⟩
(Σ (proj₁ X ≡ proj₁ Y) λ p → subst (h n) p (proj₂ X) ≡ proj₂ Y)
≅⟨ (Σ-ap-iso refl≅ λ p → contr-⊤-iso (hn-h1 n _ _ _)) ⟩
((proj₁ X ≡ proj₁ Y) × ⊤)
≅⟨ ×-right-unit ⟩
(proj₁ X ≡ proj₁ Y)
≅⟨ uni-iso ⟩
(proj₁ X ≈ proj₁ Y)
∎
where open ≅-Reasoning
type-eq : ∀ {n}{X : Type i n}{p : X ≡ X}
→ ((x : proj₁ X) → coerce (ap proj₁ p) x ≡ x)
→ p ≡ refl
type-eq f = invert≅ (iso≡ type-eq-iso) (unapΣ
( funext f , h1⇒prop (weak-equiv-h1 _) _ _))
ap-eq : {a b : A}(p : a ≡ b)(q : a ≡ a) → coerce (ap proj₁ (ap hom' p)) q ≡ sym p · q · p
ap-eq refl q = sym (left-unit q)
hom-null : (a : A) → is-null refl (mapΩ 1 hom' {a})
hom-null a p = sym (type-eq λ q → ap-eq p q
· ap (λ z → z · p) (γ (sym p) q)
· associativity q (sym p) p
· ap (λ z → q · z) (right-inverse p)
· left-unit q)
hom-iso : (Trunc 2 A → Type i 2) ≅ Null 1 A (Type i 2)
hom-iso = Trunc-elim' 1 A (Type i 2) type-level
hom : Trunc 2 A → Type _ 2
hom = invert hom-iso (hom' , hom-null)
hom-β : (a : A) → hom [ a ] ≡ hom' a
hom-β a = funext-inv (ap proj₁ (_≅_.iso₂ hom-iso (hom' , hom-null))) a
|
{
"alphanum_fraction": 0.4403345127,
"avg_line_length": 34.9325842697,
"ext": "agda",
"hexsha": "8ff4db8d25a3d637aee4075f59aefd0c157f8f78",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/truncation/elim.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/truncation/elim.agda",
"max_line_length": 100,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/truncation/elim.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 3959,
"size": 9327
}
|
module Records where
data Sigma (A : Set) (B : A -> Set) : Set where
_,_ : (x : A) (y : B x) -> Sigma A B
fst : {A : Set}{B : A -> Set} -> Sigma A B -> A
fst (x , y) = x
snd : {A : Set}{B : A -> Set} -> (p : Sigma A B) -> B (fst p)
snd (x , y) = y
data Sigma1 (A : Set1) (B : A -> Set1) : Set1 where
_,_ : (x : A) (y : B x) -> Sigma1 A B
fst1 : {A : Set1}{B : A -> Set1} -> Sigma1 A B -> A
fst1 (x , y) = x
snd1 : {A : Set1}{B : A -> Set1} -> (p : Sigma1 A B) -> B (fst1 p)
snd1 (x , y) = y
data Zero : Set where
data Unit : Set where
Void : Unit
data Test1 : Set where
data Test2 : Set where
data Test3 : Set where
data Nat : Set where
ze : Nat
su : Nat -> Nat
data Fin : Nat -> Set where
fze : {n : Nat} -> Fin (su n)
fsu : {n : Nat} -> Fin n -> Fin (su n)
mutual
data Sig : Set1 where
Epsilon : Sig
_<_ : (S : Sig)(A : [| S |] -> Set) -> Sig
[|_|] : Sig -> Set
[| Epsilon |] = Unit
[| S < A |] = Sigma [| S |] A
size : Sig -> Nat
size Epsilon = ze
size (S < A) = su (size S)
typeAt : (S : Sig) -> Fin (size S) -> Sigma1 Sig (\ S -> [| S |] -> Set)
typeAt Epsilon ()
typeAt (S < A) fze = ( S , A )
typeAt (S < A) (fsu y) = typeAt S y
fsts : (S : Sig)(i : Fin (size S)) -> [| S |] -> [| fst1 (typeAt S i) |]
fsts Epsilon () rec
fsts (S < A) fze rec = fst rec
fsts (S < A) (fsu y) rec = fsts S y (fst rec)
at : (S : Sig)(i : Fin (size S))(rec : [| S |]) -> snd1 (typeAt S i) (fsts S i rec)
at Epsilon () rec
at (S < A) fze rec = snd rec
at (S < A) (fsu y) rec = at S y (fst rec)
-- * Record definition combinators:
-- ** Non dependant case works:
fi : {a : Set1} -> (S : Sig) -> Set -> (Sig -> a) -> a
fi S A k = k (S < (\_ -> A))
begin : {a : Set1} -> (Sig -> a) -> a
begin k = k Epsilon
end : (Sig -> Sig)
end x = x
test : Sig
test = begin fi Test1 fi Test2 fi Test3 end
-- ** Dependant case doesn't:
fiD : {a : Sig -> Set1} -> (S : Sig) -> (A : ([| S |] -> Set)) -> ((S : Sig) -> a S) -> a (S < A)
fiD S A k = k (S < A)
beginD : {a : Sig -> Set1} -> ((S : Sig) -> a S) -> a Epsilon
beginD k = k Epsilon
endD : (Sig -> Sig)
endD x = x
test2 : Sig
test2 = beginD fiD ((\ _ -> Test1)) fiD {!!} fiD {!!} endD
|
{
"alphanum_fraction": 0.4926402944,
"avg_line_length": 22.412371134,
"ext": "agda",
"hexsha": "b8d6ede3968d74cd5b161a8c5751e5f84134c631",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/Records.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/Records.agda",
"max_line_length": 97,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/Records.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 888,
"size": 2174
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.Choice
open import cohomology.FunctionOver
module cohomology.Theory where
-- [i] for the universe level of the group
record CohomologyTheory i : Type (lsucc i) where
field
C : ℤ → Ptd i → Group i
CEl : ℤ → Ptd i → Type i
CEl n X = Group.El (C n X)
Cid : (n : ℤ) (X : Ptd i) → CEl n X
Cid n X = GroupStructure.ident (Group.group-struct (C n X))
⊙CEl : ℤ → Ptd i → Ptd i
⊙CEl n X = ⊙[ CEl n X , Cid n X ]
field
CF-hom : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → (C n Y →ᴳ C n X)
CF-ident : (n : ℤ) {X : Ptd i}
→ CF-hom n {X} {X} (⊙idf X) == idhom (C n X)
CF-comp : (n : ℤ) {X Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g
CF : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → CEl n Y → CEl n X
CF n f = GroupHom.f (CF-hom n f)
field
C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X)
C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) ≃ᴳ C n X
C-SuspF : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y))
→ fst (C-Susp n X) ∘ᴳ CF-hom (succ n) (⊙susp-fmap f)
== CF-hom n f ∘ᴳ fst (C-Susp n Y)
C-exact : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y))
→ is-exact (CF-hom n (⊙cfcod' f)) (CF-hom n f)
C-additive : (n : ℤ) {I : Type i} (Z : I → Ptd i)
→ ((W : I → Type i) → has-choice 0 I W)
→ is-equiv (GroupHom.f (Πᴳ-hom-in (CF-hom n ∘ ⊙bwin {X = Z})))
{- Alternate form of suspension axiom naturality -}
C-Susp-↓ : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y))
→ CF-hom (succ n) (⊙susp-fmap f) == CF-hom n f
[ uncurry _→ᴳ_ ↓ pair×= (group-ua (C-Susp n Y)) (group-ua (C-Susp n X)) ]
C-Susp-↓ n f =
hom-over-isos $ function-over-equivs _ _ $ ap GroupHom.f (C-SuspF n f)
record OrdinaryTheory i : Type (lsucc i) where
constructor ordinary-theory
field
cohomology-theory : CohomologyTheory i
open CohomologyTheory cohomology-theory public
field
C-dimension : (n : ℤ) → n ≠ 0 → C n (⊙Lift ⊙S⁰) == 0ᴳ
|
{
"alphanum_fraction": 0.534107402,
"avg_line_length": 31.8,
"ext": "agda",
"hexsha": "621ba6140d854531e2cec31d88ceceaf540876ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Theory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Theory.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Theory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 927,
"size": 2067
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.Types
open import LibraBFT.Abstract.Types.EpochConfig
open WithAbsVote
-- This module defines abstract records (the initial or "genesis" record, blocks, and quorum
-- certificates), along with related definitions and properties.
module LibraBFT.Abstract.Records
(UID : Set)
(_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) -- Needed to prove ≟Block and ≈?QC
(NodeId : Set)
(𝓔 : EpochConfig UID NodeId)
(𝓥 : VoteEvidence UID NodeId 𝓔)
where
open import LibraBFT.Abstract.Types UID NodeId
open EpochConfig 𝓔
-- Abstract blocks do /not/ need to carry the state hash. Since the
-- state hash of a concrete block is supposed to be hashed in the
-- UID of an abstract one; the connection between states is implicit.
-- Our proofs all work modulo injectivity of UID anyway.
record Block : Set where
constructor Block∙new
field
bRound : Round
bId : UID
bPrevQC : Maybe UID -- 'nothing' indicates it extends the genesis block.
open Block public
Block-η : {b b' : Block}
→ bRound b ≡ bRound b'
→ bId b ≡ bId b'
→ bPrevQC b ≡ bPrevQC b'
→ b ≡ b'
Block-η refl refl refl = refl
-- We define a Vote as an AbsVoteData applied
-- to the correct parameters; This helps in defining
-- and manipulating the 𝓥 vote evidence predicate.
Vote : Set
Vote = AbsVoteData UID NodeId 𝓔
vRound : Vote → Round
vRound = abs-vRound
vMember : Vote → EpochConfig.Member 𝓔
vMember = abs-vMember
vBlockUID : Vote → UID
vBlockUID = abs-vBlockUID
Vote-η : {v v' : Vote}
→ vRound v ≡ vRound v' → vMember v ≡ vMember v'
→ vBlockUID v ≡ vBlockUID v'
→ v ≡ v'
Vote-η refl refl refl = refl
-- * Quorum Certificates
--
-- A valid quorum certificate contains at least 'QuorumSize ec'
-- votes from different authors.
record QC : Set where
constructor QC∙new
field
qRound : Round
qCertBlockId : UID -- this is the id for the block it certifies.
qVotes : List Vote
-- The voters form a quorum
qVotes-C1 : IsQuorum (List-map vMember qVotes)
-- All votes are for the same blockId
qVotes-C2 : All (λ v → vBlockUID v ≡ qCertBlockId) qVotes
-- Likewise for rounds
qVotes-C3 : All (λ v → vRound v ≡ qRound) qVotes
-- And we have evidence for all votes
qVotes-C4 : All 𝓥 qVotes
open QC public
------------------------
-- QC's make a setoid --
------------------------
-- Two QC's are said to be equivalent if they have the same ID;
-- that is, they certify the same block. As we are talking about
-- /abstract/ QCs, we have proofs that both have at least QuorumSize
-- votes for /the same block/!
--
-- It might be tempting to want qRound q₀ ≡ qRound q₁ in here,
-- but the proof of ←-≈Rec in LibraBFT.Abstract.Records.Extends
-- would be impossible.
_≈QC_ : QC → QC → Set
q₀ ≈QC q₁ = qCertBlockId q₀ ≡ qCertBlockId q₁
_≈QC?_ : (q₀ q₁ : QC) → Dec (q₀ ≈QC q₁)
q₀ ≈QC? q₁ with qCertBlockId q₀ ≟UID qCertBlockId q₁
...| yes refl = yes refl
...| no neq = no λ x → neq x
≈QC-refl : Reflexive _≈QC_
≈QC-refl = refl
≈QC-sym : Symmetric _≈QC_
≈QC-sym refl = refl
≈QC-trans : Transitive _≈QC_
≈QC-trans refl x = x
QC-setoid : Setoid ℓ0 ℓ0
QC-setoid = record
{ Carrier = QC
; _≈_ = _≈QC_
; isEquivalence = record
{ refl = λ {q} → ≈QC-refl {q}
; sym = λ {q} {u} → ≈QC-sym {q} {u}
; trans = λ {q} {u} {l} → ≈QC-trans {q} {u} {l}
}
}
-- Accessing common fields in different Records types is a nuissance; yet, Blocks,
-- votes and QC's all have three important common fields: author, round and maybe the
-- ID of a previous record. Therefore we declare a type-class that provide "getters"
-- for commonly used fields.
record HasRound (A : Set) : Set where
constructor is-librabft-record
field
getRound : A → Round
open HasRound {{...}} public
instance
block-is-record : HasRound Block
block-is-record = is-librabft-record bRound
vote-is-record : HasRound Vote
vote-is-record = is-librabft-record vRound
qc-is-record : HasRound QC
qc-is-record = is-librabft-record qRound
_≟Block_ : (b₀ b₁ : Block) → Dec (b₀ ≡ b₁)
b₀ ≟Block b₁
with bRound b₀ ≟ bRound b₁
...| no neq = no λ x → neq (cong bRound x)
...| yes r≡
with (bId b₀) ≟UID (bId b₁)
...| no neq = no λ x → neq (cong bId x)
...| yes i≡
with Maybe-≡-dec {A = UID} _≟UID_ (bPrevQC b₀) (bPrevQC b₁)
...| no neq = no λ x → neq (cong bPrevQC x)
...| yes p≡ = yes (Block-η r≡ i≡ p≡)
qcVotes : QC → List Vote
qcVotes = qVotes
-- Now we can state whether an author has voted in a given QC.
_∈QC_ : Member → QC → Set
a ∈QC qc = Any (λ v → vMember v ≡ a) (qcVotes qc)
∈QC-Member : ∀{α}(q : QC)(v : α ∈QC q)
→ α ≡ vMember (List-lookup (qcVotes q) (Any-index v))
∈QC-Member {α} q v = aux v
where
aux : ∀{vs}(p : Any (λ v → vMember v ≡ α) vs)
→ α ≡ vMember (List-lookup vs (Any-index p))
aux (here px) = sym px
aux (there p) = aux p
-- Gets the vote of a ∈QC
-- TODO-1: make q explicit; a implicit
∈QC-Vote : {a : Member} (q : QC) → (a ∈QC q) → Vote
∈QC-Vote q a∈q = Any-lookup a∈q
∈QC-Vote-correct : ∀ q → {a : Member} → (p : a ∈QC q)
→ (∈QC-Vote {a} q p) ∈ qcVotes q
∈QC-Vote-correct q a∈q = Any-lookup-correct a∈q
-- Same vote in two QC's means the QCs are equivalent
∈QC-Vote-≈ : {v : Vote}{q q' : QC}
→ v ∈ qcVotes q → v ∈ qcVotes q'
→ q ≈QC q'
∈QC-Vote-≈ {v} {q} {q'} vq vq'
= trans (sym (All-lookup (qVotes-C2 q) vq))
(All-lookup (qVotes-C2 q') vq')
-- A record is either one of the types introduced above or the initial/genesis record.
data Record : Set where
I : Record
B : Block → Record
Q : QC → Record
-- Records are equivalent if and only if they are either not
-- QCs and propositionally equal or they are equivalent qcs.
data _≈Rec_ : Record → Record → Set where
eq-I : I ≈Rec I
eq-Q : ∀{q₀ q₁} → q₀ ≈QC q₁ → Q q₀ ≈Rec Q q₁
eq-B : ∀{b₀ b₁} → b₀ ≡ b₁ → B b₀ ≈Rec B b₁
≈Rec-refl : Reflexive _≈Rec_
≈Rec-refl {I} = eq-I
≈Rec-refl {B x} = eq-B refl
≈Rec-refl {Q x} = eq-Q (≈QC-refl {x})
≈Rec-sym : Symmetric _≈Rec_
≈Rec-sym {I} eq-I = eq-I
≈Rec-sym {B x} (eq-B prf) = eq-B (sym prf)
≈Rec-sym {Q x} {Q y} (eq-Q prf) = eq-Q (≈QC-sym {x} {y} prf)
≈Rec-trans : Transitive _≈Rec_
≈Rec-trans {I} eq-I eq-I = eq-I
≈Rec-trans {B x} (eq-B p₀) (eq-B p₁) = eq-B (trans p₀ p₁)
≈Rec-trans {Q x} {Q y} {Q z} (eq-Q p₀) (eq-Q p₁) = eq-Q (≈QC-trans {x} {y} {z} p₀ p₁)
Rec-setoid : Setoid ℓ0 ℓ0
Rec-setoid = record
{ Carrier = Record
; _≈_ = _≈Rec_
; isEquivalence = record
{ refl = λ {q} → ≈Rec-refl {q}
; sym = λ {q} {u} → ≈Rec-sym {q} {u}
; trans = λ {q} {u} {l} → ≈Rec-trans {q} {u} {l}
}
}
-- Record unique ids carry whether the abstract id was assigned
-- to a QC or a Block; this can be useful to avoid having to deal
-- with 'blockId ≟ initialAgreedID' in order to decide whether
-- a block is the genesis block or not.
data TypedUID : Set where
id-I : TypedUID
id-B∨Q : UID -> TypedUID
id-I≢id-B∨Q : ∀{id} → id-I ≡ id-B∨Q id → ⊥
id-I≢id-B∨Q ()
id-B∨Q-inj : ∀{u₁ u₂} → id-B∨Q u₁ ≡ id-B∨Q u₂ → u₁ ≡ u₂
id-B∨Q-inj refl = refl
uid : Record → TypedUID
uid I = id-I
uid (B b) = id-B∨Q (bId b)
uid (Q q) = id-B∨Q (qCertBlockId q)
-- Each record has a round
round : Record → Round
round I = 0
round (B b) = getRound b
round (Q q) = getRound q
|
{
"alphanum_fraction": 0.5810827177,
"avg_line_length": 32.6363636364,
"ext": "agda",
"hexsha": "e2535fa81b6d45c6284798165083af6db413fc79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Abstract/Records.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Abstract/Records.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Abstract/Records.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2922,
"size": 8257
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.HITQ.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Relation.Nullary
open import Cubical.HITs.Ints.QuoInt
open import Cubical.Data.Nat as ℕ hiding (_·_)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
-- ℚ as a higher inductive type
data ℚ : Type₀ where
con : (u : ℤ) (a : ℤ) → ¬ (a ≡ pos 0) → ℚ
path : ∀ u a v b {p q} → (u · b) ≡ (v · a) → con u a p ≡ con v b q
trunc : isSet ℚ
[_] : ℤ × ℕ₊₁ → ℚ
[ a , 1+ b ] = con a (pos (suc b)) (ℕ.snotz ∘ cong abs)
-- Natural number and negative integer literals for ℚ
open import Cubical.Data.Nat.Literals public
instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n , 1 ] }
instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n , 1 ] }
|
{
"alphanum_fraction": 0.6621761658,
"avg_line_length": 26.0810810811,
"ext": "agda",
"hexsha": "1d0dc9bffcde1f2466e2b0dcd55810408de6b61d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Rationals/HITQ/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 344,
"size": 965
}
|
module FFI where
postulate
IO : Set -> Set
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
postulate
return : {A : Set} -> A -> IO A
_>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B
{-# COMPILED return (\_ -> return :: a -> IO a) #-}
{-# COMPILED _>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
data Unit : Set where
unit : Unit
{-# COMPILED_DATA Unit () nothing #-}
main : IO Unit
main = return unit
|
{
"alphanum_fraction": 0.505800464,
"avg_line_length": 18.7391304348,
"ext": "agda",
"hexsha": "eb58db098a7295852e858642227952aabd19ee92",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/customised/FFI.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/customised/FFI.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/customised/FFI.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 149,
"size": 431
}
|
module Numeral.CoordinateVector.Proofs where
import Lvl
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs
import Data.Either as Either
import Functional as Fn
open import Function.Equals
open import Function.Names
open import Function.PointwiseStructure
open import Logic.Classical
open import Logic.Predicate
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Numeral.CoordinateVector
open import Numeral.Finite
open import Numeral.Finite.Oper.Comparisons
open import Numeral.Finite.Proofs
open import Numeral.Natural
import Relator.Equals as Eq
open import Relator.Equals.Proofs.Equivalence
open import Structure.Setoid
open import Structure.Function.Multi
import Structure.Function.Names as Names
open import Structure.Function
open import Structure.Operator.Field
open import Structure.Operator.Group
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator.Vector
open import Structure.Operator
open import Structure.Relator.Properties
open import Type
open import Syntax.Function
open import Syntax.Transitivity
-- Note: The structure stuff here is actually a specialization of Function.PointwiseStructure
module _ {ℓ ℓₑ} {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where
private variable _▫_ _▫₁_ _▫₂_ _+_ _⋅_ : T → T → T
private variable f inv : T → T
private variable id 𝟎ₛ 𝟏ₛ x init : T
private variable d n : ℕ
private variable i j k : 𝕟(n)
private variable v : Vector(n)(T)
instance
-- A component-wise operator have a left identity of repeated elements when its underlying operator have a left identity.
map₂-fill-identityₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ → Identityₗ(map₂{d = n}(_▫_))(fill{d = n}(id))
map₂-fill-identityₗ = pointwiseFunction-identityₗ
instance
-- A component-wise operator have a right identity of repeated elements when its underlying operator have a right identity.
map₂-fill-identityᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ → Identityᵣ(map₂{d = n}(_▫_))(fill{d = n}(id))
map₂-fill-identityᵣ = pointwiseFunction-identityᵣ
instance
-- A component-wise operator have an identity of repeated elements when its underlying operator have an identity.
map₂-fill-identity : ⦃ ident : Identity(_▫_)(id) ⦄ → Identity(map₂{d = n}(_▫_))(fill{d = n}(id))
map₂-fill-identity = pointwiseFunction-identity
instance
map₂-map-inverseₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionₗ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionₗ(map₂{d = n}(_▫_)) ⦃ [∃]-intro _ ⦄ (map(inv))
map₂-map-inverseₗ = pointwiseFunction-inverseFunctionₗ
instance
map₂-map-inverseᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionᵣ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionᵣ(map₂{d = n}(_▫_)) ⦃ [∃]-intro _ ⦄ (map(inv))
map₂-map-inverseᵣ = pointwiseFunction-inverseFunctionᵣ
instance
map₂-map-inverse : ⦃ ident : Identity(_▫_)(id) ⦄ ⦃ inver : InverseFunction(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunction(map₂{d = n}(_▫_)) ⦃ [∃]-intro _ ⦄ (map(inv))
map₂-map-inverse = pointwiseFunction-inverseFunction
instance
-- A component-wise operator is commutative when its underlying operator is commutative.
map₂-commutativity : ⦃ comm : Commutativity(_▫_) ⦄ → Commutativity(map₂{d = n}(_▫_))
map₂-commutativity = pointwiseFunction-commutativity
instance
-- A component-wise operator is associative when its underlying operator is associative.
map₂-associativity : ⦃ assoc : Associativity(_▫_) ⦄ → Associativity(map₂{d = n}(_▫_))
map₂-associativity = pointwiseFunction-associativity
instance
-- A component-wise operator is left distributive over another component-wise operator when their underlying operators distribute.
map₂-distributivityₗ : ⦃ distₗ : Distributivityₗ(_▫₁_)(_▫₂_) ⦄ → Distributivityₗ(map₂{d = n}(_▫₁_))(map₂{d = n}(_▫₂_))
map₂-distributivityₗ = pointwiseFunction-distributivityₗ
instance
-- A component-wise operator is right distributive over another component-wise operator when their underlying operators distribute.
map₂-distributivityᵣ : ⦃ distᵣ : Distributivityᵣ(_▫₁_)(_▫₂_) ⦄ → Distributivityᵣ(map₂{d = n}(_▫₁_))(map₂{d = n}(_▫₂_))
map₂-distributivityᵣ = pointwiseFunction-distributivityᵣ
instance
map₂-preserves : Preserving₂(fill) (_▫_) (map₂{d = n}(_▫_))
map₂-preserves = pointwiseFunction-const-preserves
instance
-- A component-wise function is a function when its underlying function is a function.
map-function : ⦃ func : Function(f) ⦄ → Function(map{d = n}(f))
map-function = pointwiseFunction-function
instance
-- A component-wise binary operator is a binary operator when its underlying binary operator is a binary operator.
map₂-binaryOperator : ⦃ oper : BinaryOperator(_▫_) ⦄ → BinaryOperator(map₂{d = n}(_▫_))
map₂-binaryOperator = pointwiseFunction-binaryOperator
instance
-- A component-wise operator is a monoid when its underlying operator is a monoid.
map₂-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(map₂{d = n}(_▫_))
map₂-monoid = pointwiseFunction-monoid
instance
-- A component-wise operator is a group when its underlying operator is a group.
map₂-group : ⦃ group : Group(_▫_) ⦄ → Group(map₂{d = n}(_▫_))
map₂-group = pointwiseFunction-group
instance
-- A component-wise operator is a commutative group when its underlying operator is a commutative group.
map₂-commutativeGroup : ⦃ commutativeGroup : CommutativeGroup(_▫_) ⦄ → CommutativeGroup(map₂{d = n}(_▫_))
map₂-commutativeGroup = pointwiseFunction-commutativeGroup
{- TODO: Is this even possible?
instance
-- Note: The reason for `d = 𝐒(n)` is so that one cannot shrink a field to the "trivial field" in this way (which is not a field).
map₂-field : ⦃ field-structure : Field(_+_)(_⋅_) ⦄ → Field(map₂{d = 𝐒(n)}(_+_))(map₂{d = 𝐒(n)}(_⋅_))
Field.[+]-commutative-group map₂-field = map₂-commutativeGroup
Field.[⋅]-monoid map₂-field = map₂-monoid
Field.⅟ (map₂-field ⦃ f ⦄) v ⦃ Field.intro nonzero ⦄ = {!!} -- map (x ↦ Field.⅟ f x ⦃ Field.intro (p ↦ nonzero (intro {!!})) ⦄) v
Field.[⋅]-inverseₗ map₂-field = {!!}
Field.[⋅]-inverseᵣ map₂-field = {!!}
Field.distinct-identities (map₂-field ⦃ f ⦄) p = Field.distinct-identities f (_⊜_.proof p {𝟎})
-}
instance
-- Component-wise operators constructs a vector space from a field when using the fields as scalars and coordinate vectors as vectors.
CoordinateVector-vectorSpace : ⦃ field-structure : Field(_+_)(_⋅_) ⦄ → VectorSpace(map₂{d = n}(_+_)) (s ↦ map{d = n}(s ⋅_)) (_+_) (_⋅_)
CoordinateVector-vectorSpace ⦃ field-structure ⦄ = pointwiseFunction-vectorSpace field-structure
indexProject-values : ∀{true false : T} → (proj(indexProject i true false) j ≡ true) ∨ (proj(indexProject i true false) j ≡ false)
indexProject-values {𝐒 n}{i = i}{j = j} with (i ≡? j)
... | 𝑇 = [∨]-introₗ (reflexivity(_≡_))
... | 𝐹 = [∨]-introᵣ (reflexivity(_≡_))
indexProject-true : ∀{true false : T} → (i Eq.≡ j) ∨ (false ≡ true) ↔ (proj(indexProject i true false) j ≡ true)
indexProject-true {n}{i = i}{j = j} {true = true}{false = false} =
[∨]-mapₗ-[↔] [≡][≡?]-equivalence ⦗ [↔]-transitivity ⦘ᵣ
[↔]-intro
(l{n}{i}{j})
([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro (r₁{n}{i}{j}) (r₂{n}{i}{j})))
where
l : ∀{n}{i j : 𝕟(n)} → IsTrue(i ≡? j) ∨ (false ≡ true) ← (proj(indexProject i true false) j ≡ true)
l {𝐒 n} {i = i} {j = j} p with (i ≡? j)
... | 𝑇 = [∨]-introₗ [⊤]-intro
... | 𝐹 = [∨]-introᵣ p
r₁ : ∀{n}{i j : 𝕟(n)} → IsTrue(i ≡? j) → (proj(indexProject i true false) j ≡ true)
r₁ {𝐒 n} {i = i}{j = j} p with 𝑇 ← (i ≡? j) = reflexivity(_≡_)
r₂ : ∀{n}{i j : 𝕟(n)} → (false ≡ true) → (proj(indexProject i true false) j ≡ true)
r₂ {𝐒 n} {i = i}{j = j} p with (i ≡? j)
... | 𝑇 = reflexivity(_≡_)
... | 𝐹 = p
indexProject-false : ∀{true false : T} → ((i Eq.≢ j) ∨ (false ≡ true)) ↔ (proj(indexProject i true false) j ≡ false)
indexProject-false {n}{i = i}{j = j} {true = true}{false = false} =
[∨]-mapₗ-[↔] ([↔]-transitivity ([¬]-unaryOperator [≡][≡?]-equivalence) ([↔]-symmetry false-true-opposites)) ⦗ [↔]-transitivity ⦘ᵣ
[↔]-intro
(l{n}{i}{j})
([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro (r₁{n}{i}{j}) (r₂{n}{i}{j})))
where
l : ∀{n}{i j : 𝕟(n)} → (IsFalse(i ≡? j) ∨ (false ≡ true)) ← (proj(indexProject i true false) j ≡ false)
l {n} {i} {j} p with (i ≡? j)
... | 𝑇 = [∨]-introᵣ (symmetry(_≡_) p)
... | 𝐹 = [∨]-introₗ [⊤]-intro
r₁ : ∀{n}{i j : 𝕟(n)} → IsFalse(i ≡? j) → (proj(indexProject i true false) j ≡ false)
r₁ {𝐒 n} {i = i}{j = j} p with (i ≡? j)
... | 𝑇 = [⊥]-elim p
... | 𝐹 = reflexivity(_≡_)
r₂ : ∀{n}{i j : 𝕟(n)} → (false ≡ true) → (proj(indexProject i true false) j ≡ false)
r₂ {𝐒 n} {i = i}{j = j} p with (i ≡? j)
... | 𝑇 = symmetry(_≡_) p
... | 𝐹 = reflexivity(_≡_)
module _
⦃ ident : Identityₗ(_⋅_)(𝟏ₛ) ⦄
⦃ absor : Absorberₗ(_⋅_)(𝟎ₛ) ⦄
where
map₂-indexProject-identityₗ : map₂(_⋅_) (indexProject i 𝟏ₛ 𝟎ₛ) v ≡ indexProject i (v(i)) 𝟎ₛ
_⊜_.proof (map₂-indexProject-identityₗ {i = i}{v = v}) {x} with (i ≡? x) | [↔]-to-[←] ([≡][≡?]-equivalence {i = i}{j = x})
... | 𝑇 | p = identityₗ(_⋅_)(𝟏ₛ) 🝖 congruence₁ ⦃ [≡]-equiv ⦄ (v) ⦃ [≡]-to-function ⦄ (symmetry(Eq._≡_) (p([⊤]-intro)))
... | 𝐹 | _ = absorberₗ(_⋅_)(𝟎ₛ)
module _
⦃ ident : Identityᵣ(_⋅_)(𝟏ₛ) ⦄
⦃ absor : Absorberᵣ(_⋅_)(𝟎ₛ) ⦄
where
map₂-indexProject-identityᵣ : map₂(_⋅_) v (indexProject i 𝟏ₛ 𝟎ₛ) ≡ indexProject i (v(i)) 𝟎ₛ
_⊜_.proof (map₂-indexProject-identityᵣ {v = v}{i = i}) {x} with (i ≡? x) | [↔]-to-[←] ([≡][≡?]-equivalence {i = i}{j = x})
... | 𝑇 | p = identityᵣ(_⋅_)(𝟏ₛ) 🝖 congruence₁ ⦃ [≡]-equiv ⦄ (v) ⦃ [≡]-to-function ⦄ (symmetry(Eq._≡_) (p([⊤]-intro)))
... | 𝐹 | _ = absorberᵣ(_⋅_)(𝟎ₛ)
tail-function : Function(tail{d = 𝐒(d)}{T = T})
Function.congruence(tail-function{d = d}) (intro xy) = intro xy
instance
foldᵣ-function : ∀{ℓᵣ ℓₑᵣ}{R : Type{ℓᵣ}} ⦃ equiv-R : Equiv{ℓₑᵣ}(R)⦄ {f : T → R → R}{init} → ⦃ oper : BinaryOperator(f) ⦄ → Function(foldᵣ{d = d} f init)
foldᵣ-function {d} {f = f}{init = init} = intro(p{d = d}) where
p : ∀{d} → Names.Congruence₁(foldᵣ{d = d} f init)
p {𝟎} _ = reflexivity(_≡_)
p {𝐒(𝟎)} xy = congruence₂ₗ(f)(_) (_⊜_.proof xy)
p {𝐒(𝐒(d))} xy = congruence₂(f) (_⊜_.proof xy) (p {𝐒(d)} (congruence₁(tail) ⦃ tail-function ⦄ xy))
-- TODO: Generalize Numeral.Natural.Oper.Summation for these kinds of proofs
{-
module _
⦃ oper : BinaryOperator(_▫_) ⦄
⦃ ident : Identityᵣ(_▫_)(id) ⦄
( neq : (id ≢ x) )
where
foldᵣ-indexProject-identityᵣ : foldᵣ(_▫_) init (indexProject i x id) ≡ x ▫ init
foldᵣ-indexProject-identityᵣ {init}{𝐒(𝟎)} {i = 𝟎} = reflexivity(_≡_)
foldᵣ-indexProject-identityᵣ {init}{𝐒(𝐒(n))} {i = 𝟎} =
foldᵣ{d = 𝐒(𝐒(n))}(_▫_) init (indexProject 𝟎 x id) 🝖[ _≡_ ]-[]
proj(indexProject{d = 𝐒(𝐒(n))} 𝟎 x id)(𝟎) ▫ foldᵣ{d = 𝐒(n)}(_▫_) init (tail(indexProject 𝟎 x id)) 🝖[ _≡_ ]-[]
x ▫ foldᵣ{d = 𝐒(n)}(_▫_) init (tail(indexProject 𝟎 x id)) 🝖[ _≡_ ]-[ {!!} ]
x ▫ init 🝖-end
{-foldᵣ(_▫_) id (indexProject 𝟎 x id) 🝖[ _≡_ ]-[ {!!} ]
proj(indexProject 𝟎 x id)(𝟎) ▫ (foldᵣ(_▫_) id (tail(indexProject 𝟎 x id))) 🝖[ _≡_ ]-[ {!!} ]
id ▫ (foldᵣ(_▫_) id (tail(indexProject 𝟎 x id))) 🝖[ _≡_ ]-[ {!!} ]
foldᵣ(_▫_) id (tail(indexProject 𝟎 x id)) 🝖[ _≡_ ]-[ {!!} ]
x 🝖-end-}
foldᵣ-indexProject-identityᵣ {init}{𝐒(𝐒(n))} {i = 𝐒 i} = {!!}
-}
|
{
"alphanum_fraction": 0.610360547,
"avg_line_length": 50.9071729958,
"ext": "agda",
"hexsha": "b3d17e01fa726bc28d82c995096cad97416238a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/CoordinateVector/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/CoordinateVector/Proofs.agda",
"max_line_length": 174,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/CoordinateVector/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4617,
"size": 12065
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Instances.Functors where
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.NaturalTransformation.Properties
open import Cubical.Categories.Morphism renaming (isIso to isIsoC)
open import Cubical.Foundations.Prelude
private
variable
ℓC ℓC' ℓD ℓD' : Level
module _ (C : Precategory ℓC ℓC') (D : Precategory ℓD ℓD') ⦃ isCatD : isCategory D ⦄ where
open Precategory
open NatTrans
open Functor
FUNCTOR : Precategory (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) (ℓ-max (ℓ-max ℓC ℓC') ℓD')
FUNCTOR .ob = Functor C D
FUNCTOR .Hom[_,_] = NatTrans
FUNCTOR .id = idTrans
FUNCTOR ._⋆_ = seqTrans
FUNCTOR .⋆IdL α = makeNatTransPath λ i x → D .⋆IdL (α .N-ob x) i
FUNCTOR .⋆IdR α = makeNatTransPath λ i x → D .⋆IdR (α .N-ob x) i
FUNCTOR .⋆Assoc α β γ = makeNatTransPath λ i x → D .⋆Assoc (α .N-ob x) (β .N-ob x) (γ .N-ob x) i
isCatFUNCTOR : isCategory FUNCTOR
isCatFUNCTOR .isSetHom = isSetNat
open isIsoC renaming (inv to invC)
-- component wise iso is an iso in Functor
FUNCTORIso : ∀ {F G : Functor C D} (α : F ⇒ G)
→ (∀ (c : C .ob) → isIsoC {C = D} (α ⟦ c ⟧))
→ isIsoC {C = FUNCTOR} α
FUNCTORIso α is .invC .N-ob c = (is c) .invC
FUNCTORIso {F} {G} α is .invC .N-hom {c} {d} f
= invMoveL areInv-αc
( α ⟦ c ⟧ ⋆⟨ D ⟩ (G ⟪ f ⟫ ⋆⟨ D ⟩ is d .invC)
≡⟨ sym (D .⋆Assoc _ _ _) ⟩
(α ⟦ c ⟧ ⋆⟨ D ⟩ G ⟪ f ⟫) ⋆⟨ D ⟩ is d .invC
≡⟨ sym (invMoveR areInv-αd (α .N-hom f)) ⟩
F ⟪ f ⟫
∎ )
where
areInv-αc : areInv (α ⟦ c ⟧) ((is c) .invC)
areInv-αc = isIso→areInv (is c)
areInv-αd : areInv (α ⟦ d ⟧) ((is d) .invC)
areInv-αd = isIso→areInv (is d)
FUNCTORIso α is .sec = makeNatTransPath (funExt (λ c → (is c) .sec))
FUNCTORIso α is .ret = makeNatTransPath (funExt (λ c → (is c) .ret))
instance
⦃isCatFUNCTOR⦄ : {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} ⦃ isCatD : isCategory D ⦄
→ isCategory (FUNCTOR C D)
⦃isCatFUNCTOR⦄ {C = C} {D} = isCatFUNCTOR C D
|
{
"alphanum_fraction": 0.6010733453,
"avg_line_length": 37.2666666667,
"ext": "agda",
"hexsha": "badb05c9871f25aaabc229bdb6cc21c54ffcc542",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/Functors.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 908,
"size": 2236
}
|
module Issue947 where
A : Set₁
A = Set
where
B : Set₁
B = Set
module _ where
C : Set₁
C = Set
module M where
-- Andreas, 2020-04-25, #4623
-- These empty `where` blocks now generate warnings.
|
{
"alphanum_fraction": 0.6600985222,
"avg_line_length": 11.2777777778,
"ext": "agda",
"hexsha": "a3b852ff64bd4efd3dcff3c404ac31e065eb6e70",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue947.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue947.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue947.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 203
}
|
module Type.Isomorphism where
open import Functional
import Lvl
open import Structure.Setoid
open import Structure.Function.Domain hiding (inverseₗ ; inverseᵣ)
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
module _
(A : Type{ℓ₁})
(B : Type{ℓ₂})
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
where
record _≅_ : Type{ℓ₁ Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓₑ₂} where
field
left : A ← B
right : A → B
⦃ inverseₗ ⦄ : Inverseₗ(right)(left)
⦃ inverseᵣ ⦄ : Inverseᵣ(right)(left)
|
{
"alphanum_fraction": 0.6388888889,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "f2367e36e3ec4096350749a7fd1703e20463dcef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Isomorphism.agda",
"max_line_length": 66,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 244,
"size": 540
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Lists.Definition
open import Lists.Length
open import Numbers.Naturals.Semiring
module Lists.Concat where
appendEmptyList : {a : _} → {A : Set a} → (l : List A) → (l ++ [] ≡ l)
appendEmptyList [] = refl
appendEmptyList (x :: l) = applyEquality (_::_ x) (appendEmptyList l)
concatAssoc : {a : _} → {A : Set a} → (x : List A) → (y : List A) → (z : List A) → ((x ++ y) ++ z) ≡ x ++ (y ++ z)
concatAssoc [] m n = refl
concatAssoc (x :: l) m n = applyEquality (_::_ x) (concatAssoc l m n)
canMovePrepend : {a : _} → {A : Set a} → (l : A) → (x : List A) (y : List A) → ((l :: x) ++ y ≡ l :: (x ++ y))
canMovePrepend l [] n = refl
canMovePrepend l (x :: m) n = refl
lengthConcat : {a : _} {A : Set a} (l1 l2 : List A) → length (l1 ++ l2) ≡ length l1 +N length l2
lengthConcat [] l2 = refl
lengthConcat (x :: l1) l2 = applyEquality succ (lengthConcat l1 l2)
|
{
"alphanum_fraction": 0.5966209081,
"avg_line_length": 37.88,
"ext": "agda",
"hexsha": "4aad91ece69147364b6845da78b574b39ebf2330",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Lists/Concat.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Lists/Concat.agda",
"max_line_length": 114,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Lists/Concat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 339,
"size": 947
}
|
-- Andreas, 2020-03-19, issue #4486
-- "did you mean?" now also for invalid imports
record Foo : Set₁ where
field Θ : Set
open Foo using () renaming (θ to unwrap)
-- EXPECTED:
-- The module Foo doesn't export the following:
-- θ (did you mean 'Θ'?)
module M where
private postulate S : Set
open M using (S)
-- EXPECTED:
-- The module M doesn't export the following:
-- S
module N where
module O where
record R : Set where
open O public using (module R)
module N' where
module O where
record R : Set where
open O public hiding (module R)
open N using (R)
open N' using (module R)
-- EXPECTED:
-- The module N doesn't export the following:
-- R
-- The module N' doesn't export the following:
-- module R
module AB where
record Ananas : Set where
open AB using (Bananas)
-- EXPECTED:
-- The module AB doesn't export the following:
-- Bananas (did you mean 'Ananas'?)
open AB using (module Bananas)
-- EXPECTED:
-- The module AB doesn't export the following:
-- module Bananas (did you mean 'Ananas'?)
|
{
"alphanum_fraction": 0.6736641221,
"avg_line_length": 19.0545454545,
"ext": "agda",
"hexsha": "ef28f61081418c52bdd2219dcafc467d3c042aa5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4486.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4486.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4486.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 297,
"size": 1048
}
|
{-# OPTIONS --without-K --exact-split #-}
module lists where
import 17-number-theory
open 17-number-theory public
unit-list :
{l1 : Level} {A : UU l1} → A → list A
unit-list a = cons a nil
{- First we introduce the functoriality of the list operation, because it will
come in handy when we try to define and prove more advanced things. -}
functor-list :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
list A → list B
functor-list f nil = nil
functor-list f (cons a x) = cons (f a) (functor-list f x)
identity-law-functor-list :
{l1 : Level} {A : UU l1} →
functor-list (id {A = A}) ~ id
identity-law-functor-list nil = refl
identity-law-functor-list (cons a x) =
ap (cons a) (identity-law-functor-list x)
composition-law-functor-list :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} →
(f : A → B) (g : B → C) →
functor-list (g ∘ f) ~ (functor-list g ∘ functor-list f)
composition-law-functor-list f g nil = refl
composition-law-functor-list f g (cons a x) =
ap (cons (g (f a))) (composition-law-functor-list f g x)
{- Concatenation of lists is an associative operation and nil is the unit for
list concatenation. -}
assoc-concat-list :
{l1 : Level} {A : UU l1} (x y z : list A) →
Id (concat-list (concat-list x y) z) (concat-list x (concat-list y z))
assoc-concat-list nil y z = refl
assoc-concat-list (cons a x) y z = ap (cons a) (assoc-concat-list x y z)
left-unit-law-concat-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (concat-list nil x) x
left-unit-law-concat-list x = refl
right-unit-law-concat-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (concat-list x nil) x
right-unit-law-concat-list nil = refl
right-unit-law-concat-list (cons a x) =
ap (cons a) (right-unit-law-concat-list x)
{- The length operation or course behaves well with respect to the other list
operations. -}
length-nil :
{l1 : Level} {A : UU l1} →
Id (length-list {A = A} nil) zero-ℕ
length-nil = refl
length-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id (length-list (concat-list x y)) (add-ℕ (length-list x) (length-list y))
length-concat-list nil y = inv (left-unit-law-add-ℕ (length-list y))
length-concat-list (cons a x) y =
( ap succ-ℕ (length-concat-list x y)) ∙
( inv (left-successor-law-add-ℕ (length-list x) (length-list y)))
{- We now prove the properties of flattening. -}
flatten-unit-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (flatten-list (unit-list x)) x
flatten-unit-list x = right-unit-law-concat-list x
length-flatten-list :
{l1 : Level} {A : UU l1} (x : list (list A)) →
Id ( length-list (flatten-list x))
( sum-list-ℕ (functor-list length-list x))
length-flatten-list nil = refl
length-flatten-list (cons a x) =
( length-concat-list a (flatten-list x)) ∙
( ap (add-ℕ (length-list a)) (length-flatten-list x))
flatten-concat-list :
{l1 : Level} {A : UU l1} (x y : list (list A)) →
Id ( flatten-list (concat-list x y))
( concat-list (flatten-list x) (flatten-list y))
flatten-concat-list nil y = refl
flatten-concat-list (cons a x) y =
( ap (concat-list a) (flatten-concat-list x y)) ∙
( inv (assoc-concat-list a (flatten-list x) (flatten-list y)))
flatten-flatten-list :
{l1 : Level} {A : UU l1} (x : list (list (list A))) →
Id ( flatten-list (flatten-list x))
( flatten-list (functor-list flatten-list x))
flatten-flatten-list nil = refl
flatten-flatten-list (cons a x) =
( flatten-concat-list a (flatten-list x)) ∙
( ap (concat-list (flatten-list a)) (flatten-flatten-list x))
{- Next, we prove the basic properties of list reversal. -}
reverse-unit-list :
{l1 : Level} {A : UU l1} (a : A) →
Id (reverse-list (unit-list a)) (unit-list a)
reverse-unit-list a = refl
length-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (length-list (reverse-list x)) (length-list x)
length-reverse-list nil = refl
length-reverse-list (cons a x) =
( length-concat-list (reverse-list x) (unit-list a)) ∙
( ap succ-ℕ (length-reverse-list x))
reverse-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( reverse-list (concat-list x y))
( concat-list (reverse-list y) (reverse-list x))
reverse-concat-list nil y =
inv (right-unit-law-concat-list (reverse-list y))
reverse-concat-list (cons a x) y =
( ap (λ t → concat-list t (unit-list a)) (reverse-concat-list x y)) ∙
( assoc-concat-list (reverse-list y) (reverse-list x) (unit-list a))
reverse-flatten-list :
{l1 : Level} {A : UU l1} (x : list (list A)) →
Id ( reverse-list (flatten-list x))
( flatten-list (reverse-list (functor-list reverse-list x)))
reverse-flatten-list nil = refl
reverse-flatten-list (cons a x) =
( reverse-concat-list a (flatten-list x)) ∙
( ( ap (λ t → concat-list t (reverse-list a)) (reverse-flatten-list x)) ∙
( ( ap
( concat-list
( flatten-list (reverse-list (functor-list reverse-list x))))
( inv (flatten-unit-list (reverse-list a)))) ∙
( inv
( flatten-concat-list
( reverse-list (functor-list reverse-list x))
( unit-list (reverse-list a))))))
reverse-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (reverse-list (reverse-list x)) x
reverse-reverse-list nil = refl
reverse-reverse-list (cons a x) =
( reverse-concat-list (reverse-list x) (unit-list a)) ∙
( ap (concat-list (unit-list a)) (reverse-reverse-list x))
--------------------------------------------------------------------------------
{- Next we define the head and tail operations, and we define the operations
of picking and removing the last element from a list. -}
head-list :
{l1 : Level} {A : UU l1} → list A → list A
head-list nil = nil
head-list (cons a x) = unit-list a
tail-list :
{l1 : Level} {A : UU l1} → list A → list A
tail-list nil = nil
tail-list (cons a x) = x
last-element-list :
{l1 : Level} {A : UU l1} → list A → list A
last-element-list nil = nil
last-element-list (cons a nil) = unit-list a
last-element-list (cons a (cons b x)) = last-element-list (cons b x)
remove-last-element-list :
{l1 : Level} {A : UU l1} → list A → list A
remove-last-element-list nil = nil
remove-last-element-list (cons a nil) = nil
remove-last-element-list (cons a (cons b x)) =
cons a (remove-last-element-list (cons b x))
cons' :
{l1 : Level} {A : UU l1} → list A → A → list A
cons' x a = concat-list x (unit-list a)
{- We prove the basic properties about heads and tails and their duals. -}
eta-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (concat-list (head-list x) (tail-list x)) x
eta-list nil = refl
eta-list (cons a x) = refl
eta-list' :
{l1 : Level} {A : UU l1} (x : list A) →
Id (concat-list (remove-last-element-list x) (last-element-list x)) x
eta-list' nil = refl
eta-list' (cons a nil) = refl
eta-list' (cons a (cons b x)) = ap (cons a) (eta-list' (cons b x))
last-element-cons' :
{l1 : Level} {A : UU l1} (x : list A) (a : A) →
Id (last-element-list (cons' x a)) (unit-list a)
last-element-cons' nil a = refl
last-element-cons' (cons b nil) a = refl
last-element-cons' (cons b (cons c x)) a =
last-element-cons' (cons c x) a
head-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( head-list (concat-list x y))
( head-list (concat-list (head-list x) (head-list y)))
head-concat-list nil nil = refl
head-concat-list nil (cons x y) = refl
head-concat-list (cons a x) y = refl
tail-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( tail-list (concat-list x y))
( concat-list (tail-list x) (tail-list (concat-list (head-list x) y)))
tail-concat-list nil y = refl
tail-concat-list (cons a x) y = refl
last-element-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( last-element-list (concat-list x y))
( last-element-list
( concat-list (last-element-list x) (last-element-list y)))
last-element-concat-list nil nil = refl
last-element-concat-list nil (cons b nil) = refl
last-element-concat-list nil (cons b (cons c y)) =
last-element-concat-list nil (cons c y)
last-element-concat-list (cons a nil) nil = refl
last-element-concat-list (cons a nil) (cons b nil) = refl
last-element-concat-list (cons a nil) (cons b (cons c y)) =
last-element-concat-list (cons a nil) (cons c y)
last-element-concat-list (cons a (cons b x)) y =
last-element-concat-list (cons b x) y
remove-last-element-concat-list :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( remove-last-element-list (concat-list x y))
( concat-list
( remove-last-element-list (concat-list x (head-list y)))
( remove-last-element-list y))
remove-last-element-concat-list nil nil = refl
remove-last-element-concat-list nil (cons a nil) = refl
remove-last-element-concat-list nil (cons a (cons b y)) = refl
remove-last-element-concat-list (cons a nil) nil = refl
remove-last-element-concat-list (cons a nil) (cons b y) = refl
remove-last-element-concat-list (cons a (cons b x)) y =
ap (cons a) (remove-last-element-concat-list (cons b x) y)
head-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (head-list (reverse-list x)) (last-element-list x)
head-reverse-list nil = refl
head-reverse-list (cons a nil) = refl
head-reverse-list (cons a (cons b x)) =
( ap head-list
( assoc-concat-list (reverse-list x) (unit-list b) (unit-list a))) ∙
( ( head-concat-list
( reverse-list x)
( concat-list (unit-list b) (unit-list a))) ∙
( ( inv (head-concat-list (reverse-list x) (unit-list b))) ∙
( head-reverse-list (cons b x))))
last-element-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (last-element-list (reverse-list x)) (head-list x)
last-element-reverse-list x =
( inv (head-reverse-list (reverse-list x))) ∙
( ap head-list (reverse-reverse-list x))
tail-concat-list' :
{l1 : Level} {A : UU l1} (x y : list A) →
Id ( tail-list (concat-list x y))
( concat-list
( tail-list x)
( tail-list (concat-list (last-element-list x) y)))
tail-concat-list' nil y = refl
tail-concat-list' (cons a nil) y = refl
tail-concat-list' (cons a (cons b x)) y =
ap (cons b) (tail-concat-list' (cons b x) y)
tail-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (tail-list (reverse-list x)) (reverse-list (remove-last-element-list x))
tail-reverse-list nil = refl
tail-reverse-list (cons a nil) = refl
tail-reverse-list (cons a (cons b x)) =
( tail-concat-list' (reverse-list (cons b x)) (unit-list a)) ∙
( ( ap
( λ t → concat-list
( tail-list (reverse-list (cons b x)))
( tail-list (concat-list t (unit-list a))))
( last-element-cons' (reverse-list x) b)) ∙
( ap (λ t → concat-list t (unit-list a)) (tail-reverse-list (cons b x))))
remove-last-element-reverse-list :
{l1 : Level} {A : UU l1} (x : list A) →
Id (remove-last-element-list (reverse-list x)) (reverse-list (tail-list x))
remove-last-element-reverse-list x =
( inv (reverse-reverse-list (remove-last-element-list (reverse-list x)))) ∙
( ( inv (ap reverse-list (tail-reverse-list (reverse-list x)))) ∙
( ap (reverse-list ∘ tail-list) (reverse-reverse-list x)))
--------------------------------------------------------------------------------
map-algebra-list :
{l1 : Level} (A : UU l1) →
coprod unit (A × list A) → list A
map-algebra-list A (inl star) = nil
map-algebra-list A (inr (pair a x)) = cons a x
inv-map-algebra-list :
{l1 : Level} (A : UU l1) →
list A → coprod unit (A × list A)
inv-map-algebra-list A nil = inl star
inv-map-algebra-list A (cons a x) = inr (pair a x)
issec-inv-map-algebra-list :
{l1 : Level} (A : UU l1) →
(map-algebra-list A ∘ inv-map-algebra-list A) ~ id
issec-inv-map-algebra-list A nil = refl
issec-inv-map-algebra-list A (cons a x) = refl
isretr-inv-map-algebra-list :
{l1 : Level} (A : UU l1) →
(inv-map-algebra-list A ∘ map-algebra-list A) ~ id
isretr-inv-map-algebra-list A (inl star) = refl
isretr-inv-map-algebra-list A (inr (pair a x)) = refl
is-equiv-map-algebra-list :
{l1 : Level} (A : UU l1) → is-equiv (map-algebra-list A)
is-equiv-map-algebra-list A =
is-equiv-has-inverse
( inv-map-algebra-list A)
( issec-inv-map-algebra-list A)
( isretr-inv-map-algebra-list A)
--------------------------------------------------------------------------------
Eq-list :
{l1 : Level} {A : UU l1} →
list A → list A → UU l1
Eq-list nil nil = raise _ unit
Eq-list nil (cons x y) = raise _ empty
Eq-list (cons a x) nil = raise _ empty
Eq-list (cons a x) (cons b y) = (Id a b) × (Eq-list x y)
data Eq-list' {l1 : Level} {A : UU l1} : list A → list A → UU l1 where
refl-nil : Eq-list' nil nil
eq-cons :
(x y : list A) (a b : A) →
Eq-list' x y → Id a b → Eq-list' (cons a x) (cons b y)
refl-Eq-list :
{l1 : Level} {A : UU l1} (x : list A) → Eq-list x x
refl-Eq-list nil = map-raise star
refl-Eq-list (cons a x) = pair refl (refl-Eq-list x)
contraction-total-Eq-list :
{l1 : Level} {A : UU l1} (x : list A) →
(y : Σ (list A) (Eq-list x)) →
Id (pair x (refl-Eq-list x)) y
contraction-total-Eq-list nil (pair nil (map-raise star)) = refl
contraction-total-Eq-list nil (pair (cons b y) (map-raise ()))
contraction-total-Eq-list (cons a x) (pair nil (map-raise ()))
contraction-total-Eq-list (cons a x) (pair (cons .a y) (pair refl e)) =
{!!}
is-contr-total-Eq-list :
{l1 : Level} {A : UU l1} (x : list A) →
is-contr (Σ (list A) (Eq-list x))
is-contr-total-Eq-list nil =
pair
( pair nil (map-raise star))
{!!}
is-contr-total-Eq-list (cons x x₁) = {!!}
|
{
"alphanum_fraction": 0.6205668497,
"avg_line_length": 34.9170984456,
"ext": "agda",
"hexsha": "6b765f05352a0daf0a1a92aeb7a93ca8dd8ce297",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tmoux/HoTT-Intro",
"max_forks_repo_path": "Agda/lists.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tmoux/HoTT-Intro",
"max_issues_repo_path": "Agda/lists.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tmoux/HoTT-Intro",
"max_stars_repo_path": "Agda/lists.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4422,
"size": 13478
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Reexport Data.List from the standard library.
--
-- Here we expose different names, for use in Contexts.
------------------------------------------------------------------------
module Base.Data.ContextList where
import Data.List as List
open List public
using ()
renaming
( [] to ∅ ; _∷_ to _•_
; map to mapContext
)
|
{
"alphanum_fraction": 0.4535147392,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "9bf03ab46b5f07a32dc56551e7bc3e33c08e0a3a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Base/Data/ContextList.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Base/Data/ContextList.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Base/Data/ContextList.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 87,
"size": 441
}
|
module PatternSynonyms where
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
pattern z = zero
pattern sz = suc z
pattern ss x = suc (suc x)
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
test : z ≡ zero
test = refl
test′ : sz ≡ suc zero
test′ = refl
test″ : ss z ≡ suc (suc zero)
test″ = refl
test‴ : ss ≡ λ x → suc (suc x)
test‴ = refl
f : ℕ → ℕ
f z = zero
f sz = suc z
f (ss 0) = 2
f (ss (suc n)) = n
test-f : f zero ≡ zero
test-f = refl
test-f′ : f (suc zero) ≡ suc zero
test-f′ = refl
test-f″ : f (suc (suc 0)) ≡ 2
test-f″ = refl
test-f‴ : ∀ {n} → f (suc (suc (suc n))) ≡ n
test-f‴ = refl
------------------------------------------------------------------------
data L (A : Set) : Set where
nil : L A
cons : A → L A → L A
pattern cc x y xs = cons x (cons y xs)
test-cc : ∀ {A} → cc ≡ λ (x : A) y xs → cons x (cons y xs)
test-cc = refl
crazyLength : ∀ {A} → L A → ℕ
crazyLength nil = 0
crazyLength (cons x nil) = 1
crazyLength (cc x y xs) = 9000
swap : ∀ {A} → L A → L A
swap nil = nil
swap (cons x nil) = cons x nil
swap (cc x y xs) = cc y x xs
test-swap : ∀ {xs} → swap (cons 1 (cons 2 xs)) ≡ cons 2 (cons 1 xs)
test-swap = refl
------------------------------------------------------------------------
-- refl and _
record ⊤ : Set where
constructor tt
data _⊎_ (A B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
infixr 4 _,_
record Σ (A : Set)(B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ
_×_ : (A B : Set) → Set
A × B = Σ A λ _ → B
infixr 5 _+_
infixr 6 _*_
data Sig (O : Set) : Set₁ where
ε ψ : Sig O
ρ : (o : O) → Sig O
ι : (o : O) → Sig O
_+_ _*_ : (Σ Σ′ : Sig O) → Sig O
σ π : (A : Set)(φ : A → Sig O) → Sig O
⟦_⟧ : ∀ {O} → Sig O → (Set → (O → Set) → (O → Set))
⟦ ε ⟧ P R o = ⊤
⟦ ψ ⟧ P R o = P
⟦ ρ o′ ⟧ P R o = R o′
⟦ ι o′ ⟧ P R o = o ≡ o′
⟦ Σ + Σ′ ⟧ P R o = ⟦ Σ ⟧ P R o ⊎ ⟦ Σ′ ⟧ P R o
⟦ Σ * Σ′ ⟧ P R o = ⟦ Σ ⟧ P R o × ⟦ Σ′ ⟧ P R o
⟦ σ A φ ⟧ P R o = Σ A λ x → ⟦ φ x ⟧ P R o
⟦ π A φ ⟧ P R o = (x : A) → ⟦ φ x ⟧ P R o
′List : Sig ⊤
′List = ε + ψ * ρ _
data μ {O}(Σ : Sig O)(P : Set)(o : O) : Set where
⟨_⟩ : ⟦ Σ ⟧ P (μ Σ P) o → μ Σ P o
List : Set → Set
List A = μ ′List A _
infixr 5 _∷_
pattern [] = ⟨ inj₁ _ ⟩
pattern _∷_ x xs = ⟨ inj₂ (x , xs) ⟩
length : ∀ {A} → List A → ℕ
length [] = zero
length (x ∷ xs) = suc (length xs)
test-list : List ℕ
test-list = 1 ∷ 2 ∷ []
test-length : length test-list ≡ 2
test-length = refl
′Vec : Sig ℕ
′Vec = ι 0
+ σ ℕ λ m → ψ * ρ m * ι (suc m)
Vec : Set → ℕ → Set
Vec A n = μ ′Vec A n
pattern []V = ⟨ inj₁ refl ⟩
pattern _∷V_ x xs = ⟨ inj₂ (_ , x , xs , refl) ⟩
nilV : ∀ {A} → Vec A zero
nilV = []V
consV : ∀ {A n} → A → Vec A n → Vec A (suc n)
consV x xs = x ∷V xs
lengthV : ∀ {A n} → Vec A n → ℕ
lengthV []V = 0
lengthV (x ∷V xs) = suc (lengthV xs)
test-lengthV : lengthV (consV 1 (consV 2 (consV 3 nilV))) ≡ 3
test-lengthV = refl
------------------------------------------------------------------------
-- .-patterns
pattern zr = (.zero , refl)
pattern underscore² = _ , _
dot : (p : Σ ℕ λ n → n ≡ zero) → ⊤ × ⊤
dot zr = underscore²
------------------------------------------------------------------------
-- Implicit arguments
{-
pattern hiddenUnit = {_} -- XXX: We get lhs error msgs, can we refine
-- that?
imp : {p : ⊤} → ⊤
imp hiddenUnit = _
-}
data Box (A : Set) : Set where
box : {x : A} → Box A
pattern [_] y = box {x = y}
b : Box ℕ
b = [ 1 ]
test-box : b ≡ box {x = 1}
test-box = refl
------------------------------------------------------------------------
-- Anonymous λs
g : ℕ → ℕ
g = λ { z → z
; sz → sz
; (ss n) → n
}
test-g : g zero ≡ zero
test-g = refl
test-g′ : g sz ≡ suc zero
test-g′ = refl
test-g″ : ∀ {n} → g (suc (suc n)) ≡ n
test-g″ = refl
------------------------------------------------------------------------
-- λs
postulate
X Y : Set
h : X → Y
p : (x : X)(y : Y) → h x ≡ y → ⊤
p x .((λ x → x) (h x)) refl = _
pattern app x = x , .((λ x → x) (h x))
p′ : (p : X × Y) → h (proj₁ p) ≡ proj₂ p → ⊤
p′ (app x) refl = _
------------------------------------------------------------------------
-- records
record Rec : Set where
constructor rr
field
r : ℕ
rrr : (x : Rec) → x ≡ record { r = 0 } → ⊤
rrr .(record { r = 0}) refl = _
rrr′ : (x : Rec) → x ≡ record { r = 0 } → ⊤
rrr′ .(rr 0) refl = _
rrrr : (a : Rec × ℕ) → proj₁ a ≡ record { r = proj₂ a } → ⊤
rrrr (.(rr 0) , 0) refl = _
rrrr (.(rr (suc n)) , suc n) refl = _
pattern pair x = (.(record { r = x }) , x)
rrrr′ : (a : Rec × ℕ) → proj₁ a ≡ record { r = proj₂ a } → ⊤
rrrr′ (pair 0) refl = _
rrrr′ (pair (suc n)) refl = _
------------------------------------------------------------------------
-- lets
pp : (x : X)(y : Y) → h x ≡ y → ⊤
pp x .(let i = (λ x → x) in i (h x)) refl = _
pattern llet x = x , .(let i = (λ x → x) in i (h x))
pp′ : (p : X × Y) → h (proj₁ p) ≡ proj₂ p → ⊤
pp′ (llet x) refl = _
------------------------------------------------------------------------
-- absurd patterns
pattern absurd = ()
data ⊥ : Set where
⊥-elim : ∀ {A : Set} → ⊥ → A
⊥-elim absurd
------------------------------------------------------------------------
-- ambiguous constructors
data ℕ2 : Set where
zero : ℕ2
suc : ℕ2 -> ℕ2
-- This needs a type signature, because it is ambiguous:
amb : ℕ2
amb = suc (suc zero)
-- This isn't ambiguous, because the overloading is resolved when the
-- pattern synonym is scope-checked:
unamb = ss z
------------------------------------------------------------------------
-- underscore
pattern trivial = ._
trivf : (a : ⊤) -> a ≡ tt -> ⊤
trivf trivial refl = trivial
------------------------------------------------------------------------
-- let open
pattern nuts = .(let open Σ in z)
foo : (n : ℕ) -> n ≡ z -> ℕ
foo nuts refl = nuts
------------------------------------------------------------------------
-- pattern synonym inside unparamterised module
module M where
pattern sss x = suc (suc (suc x))
a : ℕ
a = sss 2
mb : ℕ
mb = M.sss 0
mf : ℕ -> ℕ -> ℕ
mf (M.sss _) = M.sss
mf _ = \ _ -> 0
{-
module M (A : Set)(a : A) where
pattern peep x = x , .a
pop : (z : A × A) -> proj₂ z ≡ a -> ⊤
pop (peep x) refl = _
peep' = peep
pop' : (z : ⊤ × ⊤) -> proj₂ z ≡ tt -> ⊤
pop' (M.peep tt) refl = _
peep' = M.peep
-}
|
{
"alphanum_fraction": 0.4215805471,
"avg_line_length": 19.1836734694,
"ext": "agda",
"hexsha": "ca2d9b609d1bbd5e5cc08aa5fa9f46326c07dd03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/PatternSynonyms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/PatternSynonyms.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/PatternSynonyms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2475,
"size": 6580
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Data.Bool.Base using (Bool; if_then_else_)
open import Function.Base using (_∘_)
open import Data.Integer.Base as ℤ
using (ℤ; +_; +0; +[1+_]; -[1+_])
import Data.Integer.Properties as ℤP
open import Data.Integer.DivMod as ℤD
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Data.Nat.Properties as ℕP using (≤-step)
import Data.Nat.DivMod as ℕD
open import Level using (0ℓ)
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Nullary.Decidable
open import Relation.Unary using (Pred)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong; sym; subst; trans; ≢-sym)
open import Relation.Binary
open import Data.Rational.Unnormalised as ℚ using (ℚᵘ; mkℚᵘ; _≢0; _/_; 0ℚᵘ; 1ℚᵘ; ↥_; ↧_; ↧ₙ_)
import Data.Rational.Unnormalised.Properties as ℚP
open import Algebra.Bundles
open import Algebra.Structures
open import Data.Empty
open import Data.Sum
open import Data.Maybe.Base
open import RealsRefactored
open import Data.List
open import Function.Structures {_} {_} {_} {_} {ℕ} _≡_ {ℕ} _≡_
{-
The solvers are used and renamed often enough to warrant them being opened up here
for the sake of consistency and cleanliness.
-}
open ℝ-Solver
open import NonReflectiveZ as ℤ-Solver using ()
renaming
( solve to ℤsolve
; _⊕_ to _:+_
; _⊗_ to _:*_
; _⊖_ to _:-_
; ⊝_ to :-_
; _⊜_ to _:=_
; Κ to ℤΚ
)
open import NonReflectiveQ as ℚ-Solver using ()
renaming
( solve to ℚsolve
; _⊕_ to _+:_
; _⊗_ to _*:_
; _⊖_ to _-:_
; ⊝_ to -:_
; _⊜_ to _=:_
; Κ to ℚΚ
)
open ℚᵘ
open ℝ
-- We use "Inequality" instead of "a≤x≤b" to avoid mixing up variable names in practice.
-- Intervals of the form (b,a) where a ≤ b will be nonempty of course.
record ⦅_,_⦆ (a b : ℝ) : Set where
constructor mk⦅⦆
field
x : ℝ
inequality : a < x < b
record ⦅_,_⟧ (a b : ℝ) : Set where
constructor mk⦅⟧
field
x : ℝ
inequality : a < x ≤ b
record ⟦_,_⦆ (a b : ℝ) : Set where
constructor mk⟦⦆
field
x : ℝ
inequality : a ≤ x < b
record ⟦_,_⟧ (a b : ℝ) : Set where
constructor mk⟦⟧
field
x : ℝ
inequality : a ≤ x ≤ b
record ⦅-∞,_⦆ (a : ℝ) : Set where
constructor mk⦅-∞⦆
field
x : ℝ
inequality : x < a
record ⦅-∞,_⟧ (a : ℝ) : Set where
constructor mk⦅-∞⟧
field
x : ℝ
inequality : x ≤ a
record ⦅_,∞⦆ (a : ℝ) : Set where
constructor mk⦅∞⦆
field
x : ℝ
inequality : a < x
record ⟦_,∞⦆ (a : ℝ) : Set where
constructor mk⟦∞⦆
field
x : ℝ
inequality : a ≤ x
_isNonvoid : {A : Set} -> (P : A -> Set) -> Set
_isNonvoid {A} P = ∃ λ (x : A) -> P x
Compact⟦_,_⟧ : ℝ -> ℝ -> Set
Compact⟦ a , b ⟧ = ∃ λ (x : ℝ) -> a ≤ x ≤ b
-- Too much bloat?
data _isUpperBoundOf_ (b : ℝ) (P : ℝ -> Set) : Set where
upBound* : (∀ x -> P x -> x ≤ b) -> b isUpperBoundOf P
_isBoundedAbove : (P : ℝ -> Set) -> Set
P isBoundedAbove = ∃ λ (b : ℝ) -> b isUpperBoundOf P
_isSupremumOf_ : (s : ℝ) -> (P : ℝ -> Set) -> Set
s isSupremumOf P = s isUpperBoundOf P × (∀ ε -> ε > 0ℝ -> ∃ λ x -> P x × x > s - ε)
_hasSupremum : (ℝ -> Set) -> Set
P hasSupremum = ∃ λ s -> s isSupremumOf P
proposition-4-3-if : ∀ {P : ℝ -> Set} -> P isNonvoid -> P isBoundedAbove ->
(∀ {x y : ℝ} -> x < y -> y isUpperBoundOf P ⊎ ∃ λ a -> P a × x < a) ->
P hasSupremum
proposition-4-3-if {P} P≠Ø P≤U hyp = {!!}
proposition-4-3-onlyif : ∀ {P : ℝ -> Set} -> P isNonvoid -> P hasSupremum ->
∀ {x y : ℝ} -> x < y -> y isUpperBoundOf P ⊎ ∃ λ a -> P a × x < a
proposition-4-3-onlyif {P} P≠Ø (s , upBound* P≤s , hyp) {x} {y} x<y = [ left , right ]′ (corollary-2-17 s x y x<y)
where
open ≤-Reasoning
left : s < y -> y isUpperBoundOf P ⊎ ∃ λ a -> P a × x < a
left s<y = inj₁ (upBound* (λ z Pz -> ≤-trans (P≤s z Pz) (<⇒≤ s<y)))
right : s > x -> y isUpperBoundOf P ⊎ ∃ λ a -> P a × x < a
right s>x = let aget = hyp (s - x) (x<y⇒0<y-x x s s>x); a = proj₁ aget in
inj₂ (a , proj₁ (proj₂ aget) , (begin-strict
x ≈⟨ solve 2 (λ s x → x ⊜ s ⊖ (s ⊖ x)) ≃-refl s x ⟩
s - (s - x) <⟨ proj₂ (proj₂ aget) ⟩
a ∎))
|
{
"alphanum_fraction": 0.5681146236,
"avg_line_length": 29.7094594595,
"ext": "agda",
"hexsha": "2818555bc8a46d7f321cb1d615e7466e28910202",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "z-murray/AnalysisAgda",
"max_forks_repo_path": "Continuity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "z-murray/AnalysisAgda",
"max_issues_repo_path": "Continuity.agda",
"max_line_length": 114,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "z-murray/AnalysisAgda",
"max_stars_repo_path": "Continuity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1709,
"size": 4397
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.CommRingSolver where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order using (zero-≤)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ)
open import Cubical.Algebra.RingSolver.AlgebraExpression public
open import Cubical.Algebra.RingSolver.CommRingHornerForms
open import Cubical.Algebra.RingSolver.CommRingEvalHom
private
variable
ℓ : Level
module EqualityToNormalform (R : CommRing {ℓ}) where
νR = CommRing→RawℤAlgebra R
open CommRingStr (snd R)
open Theory (CommRing→Ring R)
open Eval ℤAsRawRing νR
open IteratedHornerOperations νR
open HomomorphismProperties R
ℤExpr : (n : ℕ) → Type _
ℤExpr = Expr ℤAsRawRing (fst R)
normalize : (n : ℕ) → ℤExpr n → IteratedHornerForms νR n
normalize n (K r) = Constant n νR r
normalize n (∣ k) = Variable n νR k
normalize n (x +' y) =
(normalize n x) +ₕ (normalize n y)
normalize n (x ·' y) =
(normalize n x) ·ₕ (normalize n y)
normalize n (-' x) = -ₕ (normalize n x)
isEqualToNormalform :
(n : ℕ)
(e : ℤExpr n) (xs : Vec (fst R) n)
→ eval n (normalize n e) xs ≡ ⟦ e ⟧ xs
isEqualToNormalform ℕ.zero (K r) [] = refl
isEqualToNormalform (ℕ.suc n) (K r) (x ∷ xs) =
eval (ℕ.suc n) (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ combineCasesEval 0ₕ (Constant n νR r) x xs ⟩
eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Constant n νR r) xs
≡⟨ cong (λ u → u · x + eval n (Constant n νR r) xs) (Eval0H _ (x ∷ xs)) ⟩
0r · x + eval n (Constant n νR r) xs
≡⟨ cong (λ u → u + eval n (Constant n νR r) xs) (0LeftAnnihilates _) ⟩
0r + eval n (Constant n νR r) xs ≡⟨ +Lid _ ⟩
eval n (Constant n νR r) xs ≡⟨ isEqualToNormalform n (K r) xs ⟩
_ ∎
isEqualToNormalform (ℕ.suc n) (∣ zero) (x ∷ xs) =
eval (ℕ.suc n) (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ refl ⟩
eval (ℕ.suc n) 1ₕ (x ∷ xs) · x + eval n 0ₕ xs ≡⟨ cong (λ u → u · x + eval n 0ₕ xs)
(Eval1ₕ _ (x ∷ xs)) ⟩
1r · x + eval n 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (Eval0H _ xs) ⟩
1r · x + 0r ≡⟨ +Rid _ ⟩
1r · x ≡⟨ ·Lid _ ⟩
x ∎
isEqualToNormalform (ℕ.suc n) (∣ (suc k)) (x ∷ xs) =
eval (ℕ.suc n) (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ combineCasesEval 0ₕ (Variable n νR k) x xs ⟩
eval (ℕ.suc n) 0ₕ (x ∷ xs) · x + eval n (Variable n νR k) xs
≡⟨ cong (λ u → u · x + eval n (Variable n νR k) xs) (Eval0H _ (x ∷ xs)) ⟩
0r · x + eval n (Variable n νR k) xs
≡⟨ cong (λ u → u + eval n (Variable n νR k) xs) (0LeftAnnihilates _) ⟩
0r + eval n (Variable n νR k) xs ≡⟨ +Lid _ ⟩
eval n (Variable n νR k) xs
≡⟨ isEqualToNormalform n (∣ k) xs ⟩
⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (-' e) [] =
eval ℕ.zero (-ₕ (normalize ℕ.zero e)) [] ≡⟨ -EvalDist ℕ.zero
(normalize ℕ.zero e)
[] ⟩
- eval ℕ.zero (normalize ℕ.zero e) [] ≡⟨ cong -_
(isEqualToNormalform
ℕ.zero e [] ) ⟩
- ⟦ e ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (-' e) (x ∷ xs) =
eval (ℕ.suc n) (-ₕ (normalize (ℕ.suc n) e)) (x ∷ xs) ≡⟨ -EvalDist (ℕ.suc n)
(normalize
(ℕ.suc n) e)
(x ∷ xs) ⟩
- eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs) ≡⟨ cong -_
(isEqualToNormalform
(ℕ.suc n) e (x ∷ xs) ) ⟩
- ⟦ e ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (e +' e₁) [] =
eval ℕ.zero (normalize ℕ.zero e +ₕ normalize ℕ.zero e₁) []
≡⟨ +Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩
eval ℕ.zero (normalize ℕ.zero e) []
+ eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → u + eval ℕ.zero (normalize ℕ.zero e₁) [])
(isEqualToNormalform ℕ.zero e []) ⟩
⟦ e ⟧ []
+ eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform ℕ.zero e₁ []) ⟩
⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (e +' e₁) (x ∷ xs) =
eval (ℕ.suc n) (normalize (ℕ.suc n) e
+ₕ normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ +Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩
eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs)
+ eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → u + eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs))
(isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs)
+ eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u)
(isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎
isEqualToNormalform ℕ.zero (e ·' e₁) [] =
eval ℕ.zero (normalize ℕ.zero e ·ₕ normalize ℕ.zero e₁) []
≡⟨ ·Homeval ℕ.zero (normalize ℕ.zero e) _ [] ⟩
eval ℕ.zero (normalize ℕ.zero e) []
· eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → u · eval ℕ.zero (normalize ℕ.zero e₁) [])
(isEqualToNormalform ℕ.zero e []) ⟩
⟦ e ⟧ []
· eval ℕ.zero (normalize ℕ.zero e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform ℕ.zero e₁ []) ⟩
⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (ℕ.suc n) (e ·' e₁) (x ∷ xs) =
eval (ℕ.suc n) (normalize (ℕ.suc n) e
·ₕ normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ ·Homeval (ℕ.suc n) (normalize (ℕ.suc n) e) _ (x ∷ xs) ⟩
eval (ℕ.suc n) (normalize (ℕ.suc n) e) (x ∷ xs)
· eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → u · eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs))
(isEqualToNormalform (ℕ.suc n) e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs)
· eval (ℕ.suc n) (normalize (ℕ.suc n) e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u)
(isEqualToNormalform (ℕ.suc n) e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎
solve :
{n : ℕ} (e₁ e₂ : ℤExpr n) (xs : Vec (fst R) n)
(p : eval n (normalize n e₁) xs ≡ eval n (normalize n e₂) xs)
→ ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs
solve e₁ e₂ xs p =
⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform _ e₁ xs) ⟩
eval _ (normalize _ e₁) xs ≡⟨ p ⟩
eval _ (normalize _ e₂) xs ≡⟨ isEqualToNormalform _ e₂ xs ⟩
⟦ e₂ ⟧ xs ∎
ℤExpr : (R : CommRing {ℓ}) (n : ℕ)
→ _
ℤExpr R n = EqualityToNormalform.ℤExpr R n
solve : (R : CommRing {ℓ})
{n : ℕ} (e₁ e₂ : ℤExpr R n) (xs : Vec (fst R) n)
(p : eval n (EqualityToNormalform.normalize R n e₁) xs ≡ eval n (EqualityToNormalform.normalize R n e₂) xs)
→ _
solve R = EqualityToNormalform.solve R
module VarNames3 (R : CommRing {ℓ}) where
X1 : ℤExpr R 3
X1 = ∣ Fin.zero
X2 : ℤExpr R 3
X2 = ∣ (suc Fin.zero)
X3 : ℤExpr R 3
X3 = ∣ (suc (suc Fin.zero))
module VarNames4 (R : CommRing {ℓ}) where
X1 : ℤExpr R 4
X1 = ∣ Fin.zero
X2 : ℤExpr R 4
X2 = ∣ (suc Fin.zero)
X3 : ℤExpr R 4
X3 = ∣ (suc (suc Fin.zero))
X4 : ℤExpr R 4
X4 = ∣ (suc (suc (suc Fin.zero)))
module VarNames5 (R : CommRing {ℓ}) where
X1 : ℤExpr R 5
X1 = ∣ Fin.zero
X2 : ℤExpr R 5
X2 = ∣ (suc Fin.zero)
X3 : ℤExpr R 5
X3 = ∣ (suc (suc Fin.zero))
X4 : ℤExpr R 5
X4 = ∣ (suc (suc (suc Fin.zero)))
X5 : ℤExpr R 5
X5 = ∣ (suc (suc (suc (suc Fin.zero))))
module VarNames6 (R : CommRing {ℓ}) where
X1 : ℤExpr R 6
X1 = ∣ Fin.zero
X2 : ℤExpr R 6
X2 = ∣ (suc Fin.zero)
X3 : ℤExpr R 6
X3 = ∣ (suc (suc Fin.zero))
X4 : ℤExpr R 6
X4 = ∣ (suc (suc (suc Fin.zero)))
X5 : ℤExpr R 6
X5 = ∣ (suc (suc (suc (suc Fin.zero))))
X6 : ℤExpr R 6
X6 = ∣ (suc (suc (suc (suc (suc Fin.zero)))))
|
{
"alphanum_fraction": 0.484548105,
"avg_line_length": 38.6261261261,
"ext": "agda",
"hexsha": "1f5b611117c6518dd1209063f83597cae46c9e1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/CommRingSolver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/CommRingSolver.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/CommRingSolver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3354,
"size": 8575
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import cohomology.PtdMapSequence
open import groups.ExactSequence
open import groups.Exactness
open import groups.HomSequence
open import cw.CW
module cw.cohomology.FirstCohomologyGroupOnDiag {i} (OT : OrdinaryTheory i)
(⊙skel : ⊙Skeleton {i} 1) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where
open OrdinaryTheory OT
open import cw.cohomology.TipCoboundary OT ⊙skel
open import cw.cohomology.TipGrid OT ⊙skel ac
open import cw.cohomology.WedgeOfCells OT
{-
Coker ≃ C(X₁) = C(X)
^
|
|
C(X₁/X₀)
WoC
WoC := Wedges of Cells
-}
open import groups.KernelImage {K = Lift-group {j = i} Unit-group} cst-hom cw-co∂-head CX₁/X₀-is-abelian
open import groups.KernelCstImage (Lift-group {j = i} Unit-group) cw-co∂-head CX₁/X₀-is-abelian
C-cw-iso-ker/im : C 1 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im
C-cw-iso-ker/im = Ker-cst-quot-Im ⁻¹ᴳ ∘eᴳ Coker-cw-co∂-head ⁻¹ᴳ where
|
{
"alphanum_fraction": 0.6785361029,
"avg_line_length": 28.0833333333,
"ext": "agda",
"hexsha": "a327b3f45a0309cae7645d7834e1b78fc30bc438",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/FirstCohomologyGroupOnDiag.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/FirstCohomologyGroupOnDiag.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/FirstCohomologyGroupOnDiag.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 365,
"size": 1011
}
|
--------------------------------------------------------------------------------
-- This file provides functions for escaping
--------------------------------------------------------------------------------
module Parse.Escape where
open import Class.Map
open import Data.SimpleMap
open import Data.String using (fromList; toList)
open import Prelude
open import Prelude.Strings
private
translationTable : SimpleMap String Char
translationTable =
("newline" , '\n') ∷ ("space" , ' ') ∷ ("ast" , '*') ∷ ("sq" , '□') ∷
("lparen" , '(') ∷ ("rparen" , ')') ∷ ("lbrace" , '{') ∷ ("rbrace" , '}') ∷
("lsquare" , '[') ∷ ("rsquare" , ']') ∷ ("langle" , '<') ∷ ("rangle" , '>') ∷
("equal" , '=') ∷ ("dot" , '.') ∷ ("comma" , ',') ∷ ("colon" , ':') ∷ ("semicolon" , ';') ∷
("question" , '?') ∷ ("exclamation" , '!') ∷ ("at" , '@') ∷ ("doublequote" , '"') ∷
("ampersand" , '&') ∷ ("backslash" , '\\') ∷ ("slash" , '/') ∷ ("pipe" , '|') ∷ ("circumflex" , '^') ∷
("underscore" , '_') ∷ ("dollar" , '$') ∷ ("minus" , '-') ∷ ("forall" , '∀') ∷ ("exists" , '∃') ∷
("alpha" , 'α') ∷ ("beta" , 'β') ∷ ("gamma" , 'γ') ∷ ("delta" , 'δ') ∷ ("epsilon" , 'ε') ∷
("zeta" , 'ζ') ∷ ("eta" , 'η') ∷ ("theta" , 'θ') ∷ ("iota" , 'ι') ∷ ("kappa" , 'κ') ∷
("lambda" , 'λ') ∷ ("mu" , 'μ') ∷ ("nu" , 'ν') ∷ ("xi" , 'ξ') ∷ ("omicron" , 'ο') ∷ ("pi" , 'π') ∷
("rho" , 'ρ') ∷ ("varsigma" , 'ς') ∷ ("sigma" , 'σ') ∷ ("tau" , 'τ') ∷ ("upsilon" , 'υ') ∷
("phi" , 'φ') ∷ ("chi" , 'χ') ∷ ("psi" , 'ψ') ∷ ("omega" , 'ω') ∷
("Alpha" , 'Α') ∷ ("Beta" , 'Β') ∷ ("Gamma" , 'Γ') ∷ ("Delta" , 'Δ') ∷ ("Epsilon" , 'Ε') ∷
("Zeta" , 'Ζ') ∷ ("Eta" , 'Η') ∷ ("Theta" , 'Θ') ∷ ("Iota" , 'Ι') ∷ ("Kappa" , 'Κ') ∷
("Lambda" , 'Λ') ∷ ("Mu" , 'Μ') ∷ ("Nu" , 'Ν') ∷ ("Xi" , 'Ξ') ∷ ("Omicron" , 'Ο') ∷
("Pi" , 'Π') ∷ ("Rho" , 'Ρ') ∷ ("Varsigma" , 'Σ') ∷ ("Sigma" , 'Σ') ∷ ("Tau" , 'Τ') ∷
("Upsilon" , 'Υ') ∷ ("Phi" , 'Φ') ∷ ("Chi" , 'Χ') ∷ ("Psi" , 'Ψ') ∷ ("Omega" , 'Ω') ∷
[]
escapeTable : SimpleMap Char String
escapeTable = map swap translationTable
isSpecialChar : Char → Bool
isSpecialChar c = c ≣ '$' ∨ c ≣ '_' ∨ c ≣ '!' ∨ c ≣ '@' ∨ c ≣ '&' ∨ c ≣ '^'
-- accepts the head and tail of a string and returns the head of the full string without escape symbols
unescape : Char → String → Char
unescape c r = if ⌊ c ≟ '\\' ⌋ then (case strHead r of λ { nothing → c ; (just x) → x }) else c
groupEscaped : List Char → List (List Char)
groupEscaped = helper false
where
helper : Bool → List Char → List (List Char)
helper b [] = []
helper false (x ∷ l) = if ⌊ x ≟ '\\' ⌋ then helper true l else [ x ] ∷ helper false l
helper true (x ∷ l) = ('\\' ∷ [ x ]) ∷ helper false l
translate : List Char → Maybe (List Char)
translate = helper ∘ splitMulti '='
where
helper : List (List Char) → Maybe (List Char)
helper [] = just []
helper (l ∷ []) = just l
helper (l ∷ l₁ ∷ l₂) = do
l' ← lookup (fromList l₁) translationTable
l'' ← helper l₂
return $ l + (if isSpecialChar l' then '\\' ∷ [ l' ] else [ l' ]) + l''
escapeChar : Char → List Char
escapeChar c = maybe (λ s → "=" ++ toList s ++ "=") [ c ] $ lookup c escapeTable
ruleToConstr : String → String
ruleToConstr = fromList ∘ concat ∘ helper ∘ groupEscaped ∘ toList
where
helper : List (List Char) → List (List Char)
helper [] = []
helper (l ∷ l₁) = (case l of λ where
(c ∷ []) → if isSpecialChar c
then [ c ]
else escapeChar c
('\\' ∷ c ∷ []) → if isSpecialChar c
then escapeChar c
else l
_ → l) ∷ (helper l₁)
|
{
"alphanum_fraction": 0.4494039368,
"avg_line_length": 44.5308641975,
"ext": "agda",
"hexsha": "639cac68e50609c1c75bd6cf805df8d66c32cb1a",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "src/Parse/Escape.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "src/Parse/Escape.agda",
"max_line_length": 106,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "src/Parse/Escape.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 1385,
"size": 3607
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Indiscrete where
-- Category where all arrows are inhabited by a single element
open import Level
open import Data.Unit
open import Categories.Category
open import Relation.Binary.PropositionalEquality as ≡
Indiscrete : ∀ {o ℓ} (A : Set o) → Category o ℓ ℓ
Indiscrete {_} {ℓ} A = record
{ Obj = A
; _⇒_ = λ _ _ → Lift ℓ ⊤
; _≈_ = _≡_
; id = _
; _∘_ = _
; assoc = refl
; sym-assoc = refl
; identityˡ = refl
; identityʳ = refl
; identity² = refl
; equiv = isEquivalence
; ∘-resp-≈ = λ where
refl refl → refl
}
|
{
"alphanum_fraction": 0.600931677,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "cdcdb98005cc4d80fabc12ce4cc6000e0eca5b91",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Indiscrete.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Indiscrete.agda",
"max_line_length": 62,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Indiscrete.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 214,
"size": 644
}
|
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v term:20 #-}
-- {-# OPTIONS --no-positivity-check #-}
-- {-# OPTIONS -v tc.def.fun:50 #-}
module CopatternNonterminating where
open import Common.Equality
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
module S = Stream
illdefined : {A : Set} -> Stream A
S.head illdefined = S.head illdefined
S.tail illdefined = S.tail illdefined
-- should not termination-check
{-
illRepeat : {A : Set}(a : A) → Stream A
( (S.head (illRepeat a))) = a
(S.head (S.tail (illRepeat a))) = a
(S.tail (S.tail (illRepeat a))) = S.tail (S.tail (illRepeat a))
-}
{-
-- deep copattern matches are not yet translated into something
-- that termination checks
illRepeat : {A : Set}(a : A) → Stream A
( (S.head (illRepeat a))) = a
(S.head (S.tail (illRepeat a))) = a
(S.tail (S.tail (illRepeat a))) = (S.tail (illRepeat a))
record _≈_ {A : Set}(s t : Stream A) : Set where
field
head : S.head s ≡ S.head t
tail : S.tail s ≈ S.tail t
module B = _≈_
repeat : {A : Set}(a : A) → Stream A
S.head (repeat a) = a
S.tail (repeat a) = repeat a
-- THIS SHOULD NOT TERMINATION CHECK WITH CURRENT TRANSLATION SEMANTICS
-- OF COPATTERNS
repeat′ : {A : Set}(a : A) → Stream A
( (S.head (repeat′ a))) = a
(S.head (S.tail (repeat′ a))) = a
(S.tail (S.tail (repeat′ a))) = S.tail (repeat′ a) -- invalid projection
repeat≈repeat′ : {A : Set}(a : A) → repeat a ≈ repeat′ a
( (B.head (repeat≈repeat′ a))) = refl
(B.head (B.tail (repeat≈repeat′ a))) = refl
(B.tail (B.tail (repeat≈repeat′ a))) = repeat≈repeat′ a
-}
|
{
"alphanum_fraction": 0.61360799,
"avg_line_length": 27.6206896552,
"ext": "agda",
"hexsha": "9ba95cbe6d6ec78ee079704c602c189bd993f128",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/CopatternNonterminating.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/CopatternNonterminating.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/CopatternNonterminating.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 528,
"size": 1602
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of functions, such as associativity and commutativity
------------------------------------------------------------------------
-- This file contains some core definitions which are reexported by
-- Algebra.FunctionProperties. They are placed here because
-- Algebra.FunctionProperties is a parameterised module, and some of
-- the parameters are irrelevant for these definitions.
{-# OPTIONS --without-K --safe #-}
module Algebra.FunctionProperties.Core where
open import Level
------------------------------------------------------------------------
-- Unary and binary operations
Op₁ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₁ A = A → A
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₂ A = A → A → A
|
{
"alphanum_fraction": 0.5251256281,
"avg_line_length": 30.6153846154,
"ext": "agda",
"hexsha": "cccfe99c4523f6afd5af4796c602660993b4c84a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Core.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 153,
"size": 796
}
|
------------------------------------------------------------------------
-- An alternative (non-standard) coinductive definition of weak
-- bisimilarity
------------------------------------------------------------------------
-- This definition is based on the function "wb" in Section 6.5.1 of
-- Pous and Sangiorgi's "Enhancements of the bisimulation proof
-- method".
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Weak.Alternative {ℓ} (lts : LTS ℓ) where
open import Prelude
import Bisimilarity
import Bisimilarity.Equational-reasoning-instances
open import Equational-reasoning
open LTS lts
-- We get weak bisimilarity by instantiating strong bisimilarity with
-- a different LTS.
private
module WB = Bisimilarity (weak lts)
open WB public
using ( ⟨_,_⟩
; [_]_≡_
; [_]_≡′_
; Extensionality
; force
; left-to-right
; right-to-left
)
renaming ( _∼_ to _≈_
; _∼′_ to _≈′_
; [_]_∼_ to [_]_≈_
; [_]_∼′_ to [_]_≈′_
; _⟶⟨_⟩ʳˡ_ to _⇒⟨_⟩ʳˡ_
; _[_]⟶⟨_⟩ʳˡ_ to _[_]⇒⟨_⟩ʳˡ_
)
infix -3 lr-result-with-action lr-result-without-action
lr-result-without-action = WB.lr-result-without-action
lr-result-with-action = WB.lr-result-with-action
syntax lr-result-without-action p′≈q′ q q⟶q′ = p′≈q′ ⇐⟨ q⟶q′ ⟩ q
syntax lr-result-with-action p′≈q′ μ q q⟶q′ = p′≈q′ [ μ ]⇐⟨ q⟶q′ ⟩ q
-- Strongly bisimilar processes are weakly bisimilar.
private
module SB = Bisimilarity lts
open SB using (_∼_; _∼′_; [_]_∼_; [_]_∼′_; force)
mutual
∼⇒≈ : ∀ {i p q} → p ∼ q → [ i ] p ≈ q
∼⇒≈ {i} = λ p∼q →
⟨ lr p∼q
, Σ-map id (Σ-map id symmetric) ∘ lr (symmetric p∼q)
⟩
where
lr : ∀ {p p′ q μ} →
p ∼ q → p [ μ ]⇒̂ p′ →
∃ λ q′ → q [ μ ]⇒̂ q′ × [ i ] p′ ≈′ q′
lr p∼q p⇒̂p′ =
Σ-map id (Σ-map id ∼⇒≈′) (SB.strong-is-weak⇒̂ p∼q p⇒̂p′)
∼⇒≈′ : ∀ {i p q} → p ∼ q → [ i ] p ≈′ q
force (∼⇒≈′ p∼q) = ∼⇒≈ p∼q
∼⇒≈″ : ∀ {p q} → p ∼′ q → p ≈′ q
force (∼⇒≈″ p∼′q) = ∼⇒≈ (force p∼′q)
-- TODO: I suspect that the size isn't necessarily preserved: A weak
-- proof of a given size might require a strong proof which is much
-- larger, because a single weak transition might correspond to a
-- large number of strong transitions. I guess this has to be proved
-- for a particular LTS, or with certain assumptions about the LTS.
|
{
"alphanum_fraction": 0.5431596091,
"avg_line_length": 28.2298850575,
"ext": "agda",
"hexsha": "daa9f492d26620265b42d22959eabb1ba2e454c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Alternative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Alternative.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Alternative.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 922,
"size": 2456
}
|
------------------------------------------------------------------------
-- A breadth-first backend which uses the derivative operator
------------------------------------------------------------------------
module TotalParserCombinators.BreadthFirst where
open import Data.List
open import Data.List.Membership.Propositional
open import Data.Product
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Relation.Binary.HeterogeneousEquality as H
using () renaming (_≅_ to _≅H_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import TotalParserCombinators.Congruence using (_≅P_; _∎)
import TotalParserCombinators.Congruence.Sound as CS
open import TotalParserCombinators.Derivative as D using (D)
import TotalParserCombinators.InitialBag as I
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics
open import TotalParserCombinators.Simplification as S using (simplify)
------------------------------------------------------------------------
-- A parametrised backend
-- The function f is applied before the derivative.
module Parse
{Tok}
(f : ∀ {R xs} → Parser Tok R xs → ∃ λ xs′ → Parser Tok R xs′)
(f-correct : ∀ {R xs} (p : Parser Tok R xs) → proj₂ (f p) ≅P p)
where
-- The parsing function.
parse : ∀ {R xs} → Parser Tok R xs → List Tok → List R
parse {xs = xs} p [] = xs
parse p (t ∷ s) = parse (D t $ proj₂ $ f p) s
-- A variant of f-correct.
f-correct′ : ∀ {R xs} (p : Parser Tok R xs) → proj₂ (f p) ≅ p
f-correct′ = CS.sound ∘ f-correct
-- The backend is sound with respect to the semantics.
sound : ∀ {R xs x} {p : Parser Tok R xs} (s : List Tok) →
x ∈ parse p s → x ∈ p · s
sound [] x∈p = I.sound _ x∈p
sound (t ∷ s) x∈p =
Inverse.to (f-correct′ _) ⟨$⟩ D.sound _ (sound s x∈p)
-- The backend is complete with respect to the semantics.
complete : ∀ {R xs x} {p : Parser Tok R xs} (s : List Tok) →
x ∈ p · s → x ∈ parse p s
complete [] x∈p = I.complete x∈p
complete (t ∷ s) x∈p =
complete s $ D.complete $ Inverse.from (f-correct′ _) ⟨$⟩ x∈p
-- The backend does not introduce any unneeded ambiguity.
--
-- The proof complete is a left inverse of sound, so the (finite) type
-- x ∈ parse p s contains at most as many proofs as x ∈ p · s. In
-- other words, the output of parse p s can only contain n copies of x
-- if there are at least n distinct parse trees in x ∈ p · s.
complete∘sound : ∀ {R xs x} s
(p : Parser Tok R xs) (x∈p : x ∈ parse p s) →
complete s (sound s x∈p) ≡ x∈p
complete∘sound [] p x∈p = I.complete∘sound p x∈p
complete∘sound (t ∷ s) p x∈p
rewrite Inverse.left-inverse-of (f-correct′ p)
(D.sound (proj₂ (f p)) (sound s x∈p))
| D.complete∘sound (proj₂ (f p)) (sound s x∈p) =
complete∘sound s (D t $ proj₂ $ f p) x∈p
-- The backend does not remove any ambiguity.
--
-- The proof complete is a right inverse of sound, which implies that
-- the (finite) type x ∈ parse p s contains at least as many proofs as
-- x ∈ p · s. In other words, if the output of parse p s contains n
-- copies of x, then there are at most n distinct parse trees in
-- x ∈ p · s.
sound∘complete : ∀ {R xs x} {p : Parser Tok R xs}
(s : List Tok) (x∈p : x ∈ p · s) →
sound s (complete s x∈p) ≡ x∈p
sound∘complete [] x∈p = I.sound∘complete x∈p
sound∘complete (t ∷ s) x∈p
rewrite sound∘complete s $
D.complete $ Inverse.from (f-correct′ _) ⟨$⟩ x∈p
| D.sound∘complete $ Inverse.from (f-correct′ _) ⟨$⟩ x∈p
= Inverse.right-inverse-of (f-correct′ _) x∈p
-- The backend is correct.
correct : ∀ {R xs x s} {p : Parser Tok R xs} →
x ∈ p · s ↔ x ∈ parse p s
correct {s = s} {p} = record
{ to = P.→-to-⟶ $ complete s
; from = P.→-to-⟶ $ sound s
; inverse-of = record
{ left-inverse-of = sound∘complete s
; right-inverse-of = complete∘sound s p
}
}
------------------------------------------------------------------------
-- Specific instantiations
-- Parsing without simplification.
parse : ∀ {Tok R xs} → Parser Tok R xs → List Tok → List R
parse = Parse.parse -,_ _∎
parse-correct : ∀ {Tok R xs x s} {p : Parser Tok R xs} →
x ∈ p · s ↔ x ∈ parse p s
parse-correct = Parse.correct -,_ _∎
-- Parsing with simplification.
parse-with-simplification :
∀ {Tok R xs} → Parser Tok R xs → List Tok → List R
parse-with-simplification = Parse.parse (λ p → -, simplify p) S.correct
parse-with-simplification-correct :
∀ {Tok R xs x s} {p : Parser Tok R xs} →
x ∈ p · s ↔ x ∈ parse-with-simplification p s
parse-with-simplification-correct = Parse.correct _ S.correct
------------------------------------------------------------------------
-- An observation
-- The worst-case complexity of parse (without simplification) is /at
-- least/ exponential in the size of the input string. There is a
-- (finite) parser p whose derivative is p ∣ p (for any token). The
-- n-th derivative thus contains (at least) 2^n outermost occurrences
-- of _∣_, and these occurrences have to be traversed to compute the
-- initial bag of the n-th derivative.
parse-inefficient :
∀ {Tok R} → ∃ λ (p : Parser Tok R []) → ∀ t → D t p ≅H p ∣ p
parse-inefficient {R = R} =
(fail {R = R} >>= (λ _ → fail) , λ t → H.refl)
|
{
"alphanum_fraction": 0.5832881172,
"avg_line_length": 37.3581081081,
"ext": "agda",
"hexsha": "8c5cd22bd7a3011aa2e88929e0b929db66417395",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/BreadthFirst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/BreadthFirst.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/BreadthFirst.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1689,
"size": 5529
}
|
-- Duplicate of #1984
postulate
Path : {A : Set} → A → Set
admit : {Z : Set} → Z
X : Set
Y : X → Set
Y' : X → Set
record Square : Set₁ where
field
A : Set
B : Set
b : B
coh : Path b
-- Spurious mutual block to trigger the problem
mut : Set
record Cocone : Set where
field
x : X
-- x : Cocone → X
-- x (mkCocone x) = x
postulate
m n : Cocone
fung : (c : Cocone) → Y' (Cocone.x c) → Path c
record CoconeDep (P : X → Set) : Set where
inductive
field
x' : P (Cocone.x m)
s : Square
s .Square.A = CoconeDep Y
s .Square.B = Cocone
s .Square.b = n
s .Square.coh = fung _ (admit {Y' (Cocone.x (s .Square.b))})
mut = X
|
{
"alphanum_fraction": 0.5654135338,
"avg_line_length": 15.4651162791,
"ext": "agda",
"hexsha": "0cded02a4ee7d74354387a6d661b40db49dd063b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Bugs/Issue4251.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Bugs/Issue4251.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Bugs/Issue4251.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 256,
"size": 665
}
|
------------------------------------------------------------------------
-- A type for values that should be erased at run-time
------------------------------------------------------------------------
-- The definitions in this module are reexported from Erased.
-- This module imports Equivalence.Erased.
{-# OPTIONS --without-K --safe #-}
open import Equality
open import Prelude hiding ([_,_])
module Erased.Level-2
{c⁺} (eq-J : ∀ {a p} → Equality-with-J a p c⁺) where
open Derived-definitions-and-properties eq-J
open import Logical-equivalence using (_⇔_)
open import Bijection eq-J as Bijection using (_↔_; Has-quasi-inverse)
open import Embedding eq-J as Emb using (Embedding; Is-embedding)
open import Equivalence eq-J as Eq using (_≃_; Is-equivalence)
open import Equivalence.Erased eq-J as EEq
using (_≃ᴱ_; Is-equivalenceᴱ)
open import Function-universe eq-J as F hiding (id; _∘_)
open import H-level eq-J as H-level
open import H-level.Closure eq-J
open import Injection eq-J using (_↣_; Injective)
open import Monad eq-J hiding (map; map-id; map-∘)
open import Preimage eq-J using (_⁻¹_)
open import Surjection eq-J using (_↠_; Split-surjective)
open import Erased.Level-1 eq-J as E₁
hiding (module []-cong; module []-cong₂-⊔)
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A B : Type a
eq k k′ p x y : A
P : A → Type p
f g : A → B
n : ℕ
------------------------------------------------------------------------
-- Results that depend on an instantiation of the []-cong axioms (for
-- two universe levels as well as their maximum)
module []-cong₂-⊔
(ax₁ : E₁.[]-cong-axiomatisation ℓ₁)
(ax₂ : E₁.[]-cong-axiomatisation ℓ₂)
(ax : E₁.[]-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
where
open E₁.Erased-cong ax ax
open E₁.[]-cong₁ ax₂
open E₁.[]-cong₂ ax₁ ax₂
open E₁.[]-cong₂-⊔ ax₁ ax₂ ax
private
module EEq′ = EEq.[]-cong₂-⊔ ax₁ ax₂ ax
----------------------------------------------------------------------
-- Erased commutes with all kinds of functions (in some cases
-- assuming extensionality)
private
-- A lemma used below.
Erased-≃ᴱ↔≃ᴱ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Erased (A ≃ᴱ B) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]ᴱ (Erased A ≃ᴱ Erased B)
Erased-≃ᴱ↔≃ᴱ {A = A} {B = B} ext =
Erased (A ≃ᴱ B) ↔⟨ Erased-cong-≃ EEq.≃ᴱ-as-Σ ⟩
Erased (∃ λ (f : A → B) → Is-equivalenceᴱ f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Is-equivalenceᴱ (erased f))) ↝⟨ (Σ-cong Erased-Π↔Π-Erased λ _ →
EEq′.Erased-Is-equivalenceᴱ↔Is-equivalenceᴱ ext) ⟩
(∃ λ (f : Erased A → Erased B) → Is-equivalenceᴱ f) ↔⟨ inverse EEq.≃ᴱ-as-Σ ⟩□
Erased A ≃ᴱ Erased B □
-- Erased commutes with all kinds of functions (in some cases
-- assuming extensionality).
Erased-↝↝↝ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Erased (A ↝[ k ] B) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] (Erased A ↝[ k ] Erased B)
Erased-↝↝↝ {k = implication} _ = from-isomorphism Erased-Π↔Π-Erased
Erased-↝↝↝ {k = logical-equivalence} _ = from-isomorphism Erased-⇔↔⇔
Erased-↝↝↝ {k = injection} {A = A} {B = B} ext =
Erased (A ↣ B) ↔⟨ Erased-cong-↔ ↣↔∃-Injective ⟩
Erased (∃ λ (f : A → B) → Injective f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Injective (erased f))) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ _ → Erased-Injective↔Injective ext) ⟩
(∃ λ (f : Erased A → Erased B) → Injective f) ↔⟨ inverse ↣↔∃-Injective ⟩□
Erased A ↣ Erased B □
Erased-↝↝↝ {k = embedding} {A = A} {B = B} ext =
Erased (Embedding A B) ↔⟨ Erased-cong-↔ Emb.Embedding-as-Σ ⟩
Erased (∃ λ (f : A → B) → Is-embedding f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Is-embedding (erased f))) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ _ → Erased-Is-embedding↔Is-embedding ext) ⟩
(∃ λ (f : Erased A → Erased B) → Is-embedding f) ↔⟨ inverse Emb.Embedding-as-Σ ⟩□
Embedding (Erased A) (Erased B) □
Erased-↝↝↝ {k = surjection} {A = A} {B = B} {k = k′} ext =
Erased (A ↠ B) ↔⟨ Erased-cong-↔ ↠↔∃-Split-surjective ⟩
Erased (∃ λ (f : A → B) → Split-surjective f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Split-surjective (erased f))) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ _ →
Erased-Split-surjective↔Split-surjective
(lower-extensionality? k′ ℓ₁ lzero ext)) ⟩
(∃ λ (f : Erased A → Erased B) → Split-surjective f) ↔⟨ inverse ↠↔∃-Split-surjective ⟩□
Erased A ↠ Erased B □
Erased-↝↝↝ {k = bijection} {A = A} {B = B} ext =
Erased (A ↔ B) ↔⟨ Erased-cong-↔ Bijection.↔-as-Σ ⟩
Erased (∃ λ (f : A → B) → Has-quasi-inverse f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Has-quasi-inverse (erased f))) ↝⟨ (Σ-cong Erased-Π↔Π-Erased λ _ →
Erased-Has-quasi-inverse↔Has-quasi-inverse ext) ⟩
(∃ λ (f : Erased A → Erased B) → Has-quasi-inverse f) ↔⟨ inverse Bijection.↔-as-Σ ⟩□
Erased A ↔ Erased B □
Erased-↝↝↝ {k = equivalence} {A = A} {B = B} ext =
Erased (A ≃ B) ↔⟨ Erased-cong-↔ Eq.≃-as-Σ ⟩
Erased (∃ λ (f : A → B) → Is-equivalence f) ↔⟨ Erased-Σ↔Σ ⟩
(∃ λ (f : Erased (A → B)) → Erased (Is-equivalence (erased f))) ↝⟨ Σ-cong Erased-Π↔Π-Erased (λ _ → Erased-Is-equivalence↔Is-equivalence ext) ⟩
(∃ λ (f : Erased A → Erased B) → Is-equivalence f) ↔⟨ inverse Eq.≃-as-Σ ⟩□
Erased A ≃ Erased B □
Erased-↝↝↝ {k = equivalenceᴱ} ext = Erased-≃ᴱ↔≃ᴱ ext
-- Erased commutes with all kinds of functions (in some cases
-- assuming extensionality).
Erased-↝↔↝ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) →
Erased (A ↝[ k ] B) ↔ (Erased A ↝[ k ] Erased B)
Erased-↝↔↝ {k = implication} = λ _ → Erased-Π↔Π-Erased
Erased-↝↔↝ {k = logical-equivalence} = λ _ → Erased-⇔↔⇔
Erased-↝↔↝ {k = injection} = Erased-↝↝↝
Erased-↝↔↝ {k = embedding} = Erased-↝↝↝
Erased-↝↔↝ {k = surjection} = Erased-↝↝↝
Erased-↝↔↝ {k = bijection} = Erased-↝↝↝
Erased-↝↔↝ {k = equivalence} = Erased-↝↝↝
Erased-↝↔↝ {k = equivalenceᴱ} = λ ([ ext ]) → Erased-≃ᴱ↔≃ᴱ ext
-- Erased-↝↔↝ and Erased-↝↝↝ produce equal functions.
to-Erased-↝↔↝≡to-Erased-↝↝↝ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂}
(ext : Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂))
(ext′ : Extensionality? k′ (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂)) →
_↔_.to (Erased-↝↔↝ {k = k} {A = A} {B = B} ext) ≡
to-implication (Erased-↝↝↝ {k = k} {A = A} {B = B} {k = k′} ext′)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = implication} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = logical-equivalence} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = injection} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = surjection} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = bijection} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = injection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = embedding} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = surjection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = bijection} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalence} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = implication} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = logical-equivalence} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = injection} _ ext = apply-ext ext λ _ → EEq′.to≡to→≡-Erased ext (refl _)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = embedding} _ ext = apply-ext ext λ _ → EEq′.to≡to→≡-Erased ext (refl _)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = surjection} _ ext = apply-ext ext λ _ → EEq′.to≡to→≡-Erased ext (refl _)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = bijection} _ ext = apply-ext ext λ _ → EEq′.to≡to→≡-Erased ext (refl _)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = equivalence} _ ext = apply-ext ext λ _ → EEq′.to≡to→≡-Erased ext (refl _)
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = equivalenceᴱ} {k′ = equivalenceᴱ} _ _ = refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = implication} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = logical-equivalence} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = injection} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = embedding} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = surjection} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = bijection} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = equivalence} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
to-Erased-↝↔↝≡to-Erased-↝↝↝ {k = embedding} {k′ = equivalenceᴱ} ext _ = apply-ext ext λ _ → _↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
-- Erased preserves all kinds of functions.
Erased-cong :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
@0 A ↝[ k ] B → Erased A ↝[ k ] Erased B
Erased-cong A↝B = Erased-↝↝↝ _ [ A↝B ]
-- Dec-Erased preserves symmetric kinds of functions (in some cases
-- assuming extensionality).
Dec-Erased-cong :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} →
@0 Extensionality? ⌊ k ⌋-sym (ℓ₁ ⊔ ℓ₂) lzero →
@0 A ↝[ ⌊ k ⌋-sym ] B →
Dec-Erased A ↝[ ⌊ k ⌋-sym ] Dec-Erased B
Dec-Erased-cong ext A↝B =
Erased-cong A↝B ⊎-cong Erased-cong (→-cong ext A↝B F.id)
------------------------------------------------------------------------
-- Results that depend on three instances of the axiomatisation of
-- []-cong, all for the same universe level
module []-cong₁₃
(ax₁ : E₁.[]-cong-axiomatisation ℓ)
(ax₂ : E₁.[]-cong-axiomatisation ℓ)
(ax : E₁.[]-cong-axiomatisation ℓ)
where
-- Note that []-cong₂-⊔, which contains Erased-cong, is instantiated
-- with all of the module parameters.
open []-cong₂-⊔ ax₁ ax₂ ax
private
module BC₁ = E₁.[]-cong₁ ax₁
module BC₂ = E₁.[]-cong₁ ax₂
----------------------------------------------------------------------
-- Erased-cong maps F.id to F.id for all kinds of functions (in some
-- cases assuming extensionality)
private
-- Lemmas used in the implementation of Erased-cong-id.
Erased-cong-≃-id :
{@0 A : Type ℓ} →
Extensionality ℓ ℓ →
Erased-cong {k = equivalence} F.id ≡ F.id {A = Erased A}
Erased-cong-≃-id ext = Eq.lift-equality ext (refl _)
Erased-cong-≃ᴱ-id :
{@0 A : Type ℓ} →
Erased (Extensionality ℓ ℓ) →
Erased-cong {k = equivalenceᴱ} F.id ≡ F.id {A = Erased A}
Erased-cong-≃ᴱ-id [ ext ] =
EEq.[]-cong₂-⊔.to≡to→≡-Erased ax₁ ax₂ ax ext (refl _)
Erased-cong-Embedding-id :
{@0 A : Type ℓ} →
Extensionality ℓ ℓ →
Erased-cong {k = embedding} F.id ≡ F.id {A = Erased A}
Erased-cong-Embedding-id ext =
_↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
Erased-cong-↠-id :
{@0 A : Type ℓ} →
Extensionality ℓ ℓ →
Erased-cong {k = surjection} F.id ≡ F.id {A = Erased A}
Erased-cong-↠-id ext = $⟨ lemma ⟩
_↔_.to ↠↔∃-Split-surjective (Erased-cong F.id) ≡
_↔_.to ↠↔∃-Split-surjective F.id ↝⟨ Eq.≃-≡ (from-isomorphism ↠↔∃-Split-surjective) ⟩□
Erased-cong F.id ≡ F.id □
where
lemma :
(map id , λ x → [ erased x ] , BC₂.[]-cong [ refl _ ]) ≡
(id , λ x → x , refl _)
lemma =
cong (_ ,_) $ apply-ext ext λ _ → cong (_ ,_) BC₂.[]-cong-[refl]
Erased-cong-↔-id :
{@0 A : Type ℓ} →
Extensionality ℓ ℓ →
Erased-cong {k = bijection} F.id ≡ F.id {A = Erased A}
Erased-cong-↔-id ext = $⟨ lemma ⟩
_↔_.to Bijection.↔-as-Σ (Erased-cong F.id) ≡
_↔_.to Bijection.↔-as-Σ F.id ↝⟨ Eq.≃-≡ (from-isomorphism Bijection.↔-as-Σ) ⟩□
Erased-cong F.id ≡ F.id □
where
lemma :
( map id
, map id
, (λ { [ x ] → BC₂.[]-cong [ refl x ] })
, (λ { [ x ] → BC₁.[]-cong [ refl x ] })
) ≡
(id , id , refl , refl)
lemma = cong (λ p → id , id , p) $ cong₂ _,_
(apply-ext ext λ _ → BC₂.[]-cong-[refl])
(apply-ext ext λ _ → BC₁.[]-cong-[refl])
Erased-cong-↣-id :
{@0 A : Type ℓ} →
Extensionality ℓ ℓ →
Erased-cong {k = injection} F.id ≡ F.id {A = Erased A}
Erased-cong-↣-id ext = $⟨ lemma ⟩
_↔_.to ↣↔∃-Injective (Erased-cong F.id) ≡
_↔_.to ↣↔∃-Injective F.id ↝⟨ Eq.≃-≡ (from-isomorphism ↣↔∃-Injective) ⟩□
Erased-cong F.id ≡ F.id □
where
lemma :
( map id
, λ {_ _} → _↣_.injective (Erased-cong F.id)
) ≡
(id , λ {_ _} → _↣_.injective F.id)
lemma =
cong (_ ,_) $
implicit-extensionality ext λ _ →
implicit-extensionality ext λ _ →
apply-ext ext λ eq →
BC₁.[]-cong (BC₂.[]-cong⁻¹ eq) ≡⟨ []-cong-unique ax₁ ax₂ ⟩
BC₂.[]-cong (BC₂.[]-cong⁻¹ eq) ≡⟨ _↔_.right-inverse-of BC₂.Erased-≡↔[]≡[] _ ⟩∎
eq ∎
-- Erased-cong maps F.id to F.id for all kinds of functions (in some
-- cases assuming extensionality).
Erased-cong-id :
{@0 A : Type ℓ} →
Extensionality? k ℓ ℓ →
Erased-cong F.id ≡ F.id {k = k} {A = Erased A}
Erased-cong-id {k = implication} = λ _ → map-id
Erased-cong-id {k = logical-equivalence} = λ _ → Erased-cong-⇔-id
Erased-cong-id {k = injection} = Erased-cong-↣-id
Erased-cong-id {k = embedding} = Erased-cong-Embedding-id
Erased-cong-id {k = surjection} = Erased-cong-↠-id
Erased-cong-id {k = bijection} = Erased-cong-↔-id
Erased-cong-id {k = equivalence} = Erased-cong-≃-id
Erased-cong-id {k = equivalenceᴱ} = Erased-cong-≃ᴱ-id
------------------------------------------------------------------------
-- Results that depend on instances of the axiomatisation of []-cong
-- for three universe levels, as well as for the maximum of each pair
-- drawn from these three levels
module []-cong₃-⊔
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
(ax₃ : []-cong-axiomatisation ℓ₃)
(ax₁₂ : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
(ax₁₃ : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₃))
(ax₂₃ : []-cong-axiomatisation (ℓ₂ ⊔ ℓ₃))
where
private
module EC₁ = []-cong₂-⊔ ax₁ ax₃ ax₁₃
module EC₂ = []-cong₂-⊔ ax₂ ax₃ ax₂₃
module EC₃ = []-cong₂-⊔ ax₁ ax₂ ax₁₂
----------------------------------------------------------------------
-- Erased-cong commutes with F._∘_ for all kinds of functions (in
-- some cases assuming extensionality)
private
-- Lemmas used in the implementation of Erased-cong-∘.
Erased-cong-≃-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃) →
(@0 f : B ≃ C) (@0 g : A ≃ B) →
EC₁.Erased-cong {k = equivalence} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-≃-∘ ext _ _ = Eq.lift-equality ext (refl _)
Erased-cong-≃ᴱ-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Erased (Extensionality (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃)) →
(@0 f : B ≃ᴱ C) (@0 g : A ≃ᴱ B) →
EC₁.Erased-cong {k = equivalenceᴱ} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-≃ᴱ-∘ [ ext ] _ _ =
EEq.[]-cong₂-⊔.to≡to→≡-Erased ax₁ ax₃ ax₁₃ ext (refl _)
Erased-cong-Embedding-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃) →
(@0 f : Embedding B C) (@0 g : Embedding A B) →
EC₁.Erased-cong {k = embedding} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-Embedding-∘ ext _ _ =
_↔_.to (Embedding-to-≡↔≡ ext) λ _ → refl _
right-inverse-of-cong-∘ :
∀ {ℓ₁ ℓ₂ ℓ₃}
(ax₁ : []-cong-axiomatisation ℓ₁)
(ax₂ : []-cong-axiomatisation ℓ₂)
(ax₃ : []-cong-axiomatisation ℓ₃)
(ax₁₂ : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂))
(ax₁₃ : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₃))
(ax₂₃ : []-cong-axiomatisation (ℓ₂ ⊔ ℓ₃)) →
let module EC₁′ = []-cong₂-⊔ ax₁ ax₃ ax₁₃
module EC₂′ = []-cong₂-⊔ ax₂ ax₃ ax₂₃
module EC₃′ = []-cong₂-⊔ ax₁ ax₂ ax₁₂
in
∀ {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} {x} →
(@0 f : B ↠ C) (@0 g : A ↠ B) →
_↠_.right-inverse-of (EC₁′.Erased-cong (f F.∘ g)) x ≡
_↠_.right-inverse-of (EC₂′.Erased-cong f F.∘ EC₃′.Erased-cong g) x
right-inverse-of-cong-∘ ax₁ ax₂ ax₃ _ _ _ {x = [ x ]} f g =
BC₃.[]-cong [ trans (cong (_↠_.to f)
(_↠_.right-inverse-of g
(_↠_.from f x)))
(_↠_.right-inverse-of f x)
] ≡⟨ E₁.[]-cong₁.[]-cong-trans ax₃ ⟩
trans (BC₃.[]-cong [ cong (_↠_.to f)
(_↠_.right-inverse-of g
(_↠_.from f x)) ])
(BC₃.[]-cong [ _↠_.right-inverse-of f x ]) ≡⟨ cong (λ p → trans p _) (E₁.[]-cong₂.[]-cong-cong ax₂ ax₃) ⟩∎
trans (cong (map (_↠_.to f))
(BC₂.[]-cong [ _↠_.right-inverse-of g
(_↠_.from f x) ]))
(BC₃.[]-cong [ _↠_.right-inverse-of f x ]) ∎
where
module BC₂ = E₁.[]-cong₁ ax₂
module BC₃ = E₁.[]-cong₁ ax₃
Erased-cong-↠-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality ℓ₃ (ℓ₁ ⊔ ℓ₃) →
(@0 f : B ↠ C) (@0 g : A ↠ B) →
EC₁.Erased-cong {k = surjection} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-↠-∘ ext f g = $⟨ lemma ⟩
_↔_.to ↠↔∃-Split-surjective (EC₁.Erased-cong (f F.∘ g)) ≡
_↔_.to ↠↔∃-Split-surjective
(EC₂.Erased-cong f F.∘ EC₃.Erased-cong g) ↝⟨ Eq.≃-≡ (from-isomorphism ↠↔∃-Split-surjective) ⟩□
EC₁.Erased-cong (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g □
where
lemma :
( map (_↠_.to f ∘ _↠_.to g)
, (λ x →
[ _↠_.from g (_↠_.from f (erased x)) ]
, _↠_.right-inverse-of (EC₁.Erased-cong (f F.∘ g)) x)
)
≡
( (λ x → [ _↠_.to f (_↠_.to g (erased x)) ])
, (λ x →
[ _↠_.from g (_↠_.from f (erased x)) ]
, _↠_.right-inverse-of
(EC₂.Erased-cong f F.∘ EC₃.Erased-cong g) x)
)
lemma =
cong (_ ,_) $ apply-ext ext λ ([ x ]) →
cong ([ _↠_.from g (_↠_.from f x) ] ,_)
(right-inverse-of-cong-∘ ax₁ ax₂ ax₃ ax₁₂ ax₁₃ ax₂₃ f g)
Erased-cong-↔-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃) →
(@0 f : B ↔ C) (@0 g : A ↔ B) →
EC₁.Erased-cong {k = bijection} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-↔-∘ ext f g = $⟨ lemma ⟩
_↔_.to Bijection.↔-as-Σ (EC₁.Erased-cong (f F.∘ g)) ≡
_↔_.to Bijection.↔-as-Σ (EC₂.Erased-cong f F.∘ EC₃.Erased-cong g) ↝⟨ Eq.≃-≡ (from-isomorphism Bijection.↔-as-Σ) ⟩□
EC₁.Erased-cong (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g □
where
lemma :
( map (_↔_.to f ∘ _↔_.to g)
, map (_↔_.from g ∘ _↔_.from f)
, _↔_.right-inverse-of (EC₁.Erased-cong (f F.∘ g))
, _↔_.left-inverse-of (EC₁.Erased-cong (f F.∘ g))
)
≡
( (λ x → [ _↔_.to f (_↔_.to g (erased x)) ])
, (λ x → [ _↔_.from g (_↔_.from f (erased x)) ])
, _↔_.right-inverse-of (EC₂.Erased-cong f F.∘ EC₃.Erased-cong g)
, _↔_.left-inverse-of (EC₂.Erased-cong f F.∘ EC₃.Erased-cong g)
)
lemma =
cong (λ p → map (_↔_.to f ∘ _↔_.to g)
, map (_↔_.from g ∘ _↔_.from f) , p) $
cong₂ _,_
(apply-ext (lower-extensionality ℓ₁ ℓ₁ ext) λ _ →
right-inverse-of-cong-∘ ax₁ ax₂ ax₃ ax₁₂ ax₁₃ ax₂₃
(_↔_.surjection f) (_↔_.surjection g))
(apply-ext (lower-extensionality ℓ₃ ℓ₃ ext) λ _ →
right-inverse-of-cong-∘ ax₃ ax₂ ax₁ ax₂₃ ax₁₃ ax₁₂
(_↔_.surjection $ inverse g)
(_↔_.surjection $ inverse f))
Erased-cong-↣-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃) →
(@0 f : B ↣ C) (@0 g : A ↣ B) →
EC₁.Erased-cong {k = injection} (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-↣-∘ ext f g = $⟨ lemma ⟩
_↔_.to ↣↔∃-Injective (EC₁.Erased-cong (f F.∘ g)) ≡
_↔_.to ↣↔∃-Injective (EC₂.Erased-cong f F.∘ EC₃.Erased-cong g) ↝⟨ Eq.≃-≡ (from-isomorphism ↣↔∃-Injective) ⟩□
EC₁.Erased-cong (f F.∘ g) ≡
EC₂.Erased-cong f F.∘ EC₃.Erased-cong g □
where
module BC₁ = E₁.[]-cong₁ ax₁
module BC₂ = E₁.[]-cong₁ ax₂
module BC₃ = E₁.[]-cong₁ ax₃
lemma :
( map (_↣_.to f ∘ _↣_.to g)
, λ {_ _} → _↣_.injective (EC₁.Erased-cong (f F.∘ g))
)
≡
( (λ x → [ _↣_.to f (_↣_.to g (erased x)) ])
, λ {_ _} →
_↣_.injective (EC₂.Erased-cong f F.∘ EC₃.Erased-cong g)
)
lemma =
cong (_ ,_) $
implicit-extensionality
(lower-extensionality ℓ₃ lzero ext) λ _ →
implicit-extensionality
(lower-extensionality ℓ₃ lzero ext) λ _ →
apply-ext (lower-extensionality ℓ₁ ℓ₃ ext) λ eq →
let eq′ = [ _↣_.injective f (erased (BC₃.[]-cong⁻¹ eq)) ]
in
BC₁.[]-cong [ _↣_.injective g (erased eq′) ] ≡⟨ cong BC₁.[]-cong $
BC₁.[]-cong [ cong (_↣_.injective g ∘ erased) $ sym $
_↔_.left-inverse-of BC₂.Erased-≡↔[]≡[] _ ] ⟩∎
BC₁.[]-cong [ _↣_.injective g
(erased (BC₂.[]-cong⁻¹ (BC₂.[]-cong eq′))) ] ∎
-- Erased-cong commutes with F._∘_ for all kinds of functions (in
-- some cases assuming extensionality).
Erased-cong-∘ :
{@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 C : Type ℓ₃} →
Extensionality? k (ℓ₁ ⊔ ℓ₃) (ℓ₁ ⊔ ℓ₃) →
(@0 f : B ↝[ k ] C) (@0 g : A ↝[ k ] B) →
EC₁.Erased-cong (f F.∘ g) ≡ EC₂.Erased-cong f F.∘ EC₃.Erased-cong g
Erased-cong-∘ {k = implication} = λ _ f → map-∘ f
Erased-cong-∘ {k = logical-equivalence} = λ _ → Erased-cong-⇔-∘
Erased-cong-∘ {k = injection} = Erased-cong-↣-∘
Erased-cong-∘ {k = embedding} = λ ext f g →
Erased-cong-Embedding-∘
ext f g
Erased-cong-∘ {k = surjection} = λ ext →
Erased-cong-↠-∘
(lower-extensionality ℓ₁ lzero ext)
Erased-cong-∘ {k = bijection} = Erased-cong-↔-∘
Erased-cong-∘ {k = equivalence} = Erased-cong-≃-∘
Erased-cong-∘ {k = equivalenceᴱ} = λ ext f g →
Erased-cong-≃ᴱ-∘ ext f g
------------------------------------------------------------------------
-- Results that depend on instances of the axiomatisation of []-cong
-- for all universe levels
module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where
private
open module BC₂ {ℓ₁ ℓ₂} = []-cong₂-⊔ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) ax
public
open module BC₁₃ {ℓ} = []-cong₁₃ (ax {ℓ = ℓ}) ax ax
public
open module BC₃ {ℓ₁ ℓ₂ ℓ₃} =
[]-cong₃-⊔ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) (ax {ℓ = ℓ₃}) ax ax ax
public
|
{
"alphanum_fraction": 0.4803475664,
"avg_line_length": 49.0216306156,
"ext": "agda",
"hexsha": "e8aa86180288e2523bc8eb051a143f487e3d4eb9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/Level-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/Level-2.agda",
"max_line_length": 147,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/Level-2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 12138,
"size": 29462
}
|
agda --compile Ackermann.agda
./Ackermann
|
{
"alphanum_fraction": 0.7857142857,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "32b6b4af203632b916ffba7c007130bca0635c53",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-11-09T22:08:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-09T22:08:40.000Z",
"max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_forks_repo_licenses": [
"Info-ZIP"
],
"max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_forks_repo_path": "Task/Ackermann-function/Agda/ackermann-function-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Info-ZIP"
],
"max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_issues_repo_path": "Task/Ackermann-function/Agda/ackermann-function-2.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_stars_repo_licenses": [
"Info-ZIP"
],
"max_stars_repo_name": "LaudateCorpus1/RosettaCodeData",
"max_stars_repo_path": "Task/Ackermann-function/Agda/ackermann-function-2.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-09T22:08:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-09T22:08:38.000Z",
"num_tokens": 13,
"size": 42
}
|
{-# OPTIONS --warning ShadowingInTelescope --allow-unsolved-metas #-}
open import Agda.Primitive
-- warning here
data _~_ {a a : Level} {A : Set a} (a : A) : A -> Set where
refl : a ~ a
module _ {a} {A : Set a} where
-- nothing: the repetition is in separate telescopes
data Eq (a : A) : (a : A) → Set where
refl : Eq a a
-- warning here
f : ∀ (a : Level) → ∀ {A : Set a} A ~ A → Set → Set
f a A ~ B = λ x → x
-- nothing here: the repetition is in separate telescopes
f' : ∀ a → Set a → Set a
f' a = g a where
g : ∀ a → Set a → Set a
g a z = z
-- nothing here: the variable {a} is not user-written
h : ∀ {a} → Set a → Set a
h = g _ where
g : ∀ a → Set a → Set a
g a z = z
i : (Set → Set → Set) → (∀ _ _ → _)
i f = f
|
{
"alphanum_fraction": 0.5531628533,
"avg_line_length": 20.6388888889,
"ext": "agda",
"hexsha": "a481223882c200a9f89861182772975434c8e471",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Succeed/Issue3989.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue3989.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue3989.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 743
}
|
open import Proc
module Interp (param : Param) where
import Hear
open import Basics
private
open module P = Process param
open module H = Hear param
open Tran
data Result {a : U}(p : Proc a) : Set where
speak : forall {w q} -> p -! w !-> q -> Result p
refuse : Silent p -> Result p
upR : {a b : U}{p : Proc b}(φ : Tran a b) -> Result p -> Result (φ /| p)
upR φ (speak s) = speak (tx-/| s)
upR φ (refuse s) = refuse (silent-/| s)
Oracle : Set
Oracle = Nat -> LR
prophecy : Oracle -> LR
prophecy ol = ol zero
nextOracle : Oracle -> Oracle
nextOracle ol = ol % suc
anyOracle : Oracle
anyOracle _ = left
ocons : LR -> Oracle -> Oracle
ocons l or zero = l
ocons l or (suc n) = or n
step : {a : U}{p : Proc a} -> Guard p -> Oracle -> Result p
step og _ = refuse silent-o
step (>g _) _ = refuse silent->
step (w !g p) _ = speak tx-!
step (w ! p +g f) _ = speak tx-+
step (defg x g) ol with step g ol
... | refuse s1 = refuse (silent-def s1)
... | speak s1 = speak (tx-def s1)
step (g1 ||g g2) ol with step g1 (nextOracle ol)
| step g2 (nextOracle ol)
| prophecy ol
... | refuse s1 | refuse s2 | _ = refuse (silent-|| s1 s2)
... | speak s1 | refuse s2 | _ = speak (tx-!| s1 (sound g2))
... | refuse s1 | speak s2 | _ = speak (tx-|! (sound g1) s2)
... | speak s1 | speak _ | left = speak (tx-!| s1 (sound g2))
... | speak _ | speak s2 | right = speak (tx-|! (sound g1) s2)
step (φ /|g g) ol = upR φ (step g ol)
|
{
"alphanum_fraction": 0.5562827225,
"avg_line_length": 27.7818181818,
"ext": "agda",
"hexsha": "65c8b6f964c584d78a262d36424f6060b4da37e0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Interp.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Interp.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Interp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 534,
"size": 1528
}
|
module Issue481PonderBase where
postulate
List : Set
as : List
|
{
"alphanum_fraction": 0.7285714286,
"avg_line_length": 11.6666666667,
"ext": "agda",
"hexsha": "d986656abcb68791676b7b12ff2557fa368d89af",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue481PonderBase.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue481PonderBase.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue481PonderBase.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 70
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Coproduct
open import lib.types.Empty
open import lib.types.Pi
module lib.Relation2 where
module _ {i} {P : Type i} where
Dec-level : ∀ {n} → has-level (S n) P → has-level (S n) (Dec P)
Dec-level pP (inl p₁) (inl p₂) =
equiv-preserves-level (inl=inl-equiv p₁ p₂ ⁻¹) (pP p₁ p₂)
Dec-level pP (inl p) (inr ¬p) = ⊥-rec $ ¬p p
Dec-level pP (inr ¬p) (inl p) = ⊥-rec $ ¬p p
Dec-level {n} pP (inr ¬p₁) (inr ¬p₂) =
equiv-preserves-level (inr=inr-equiv ¬p₁ ¬p₂ ⁻¹)
(prop-has-level-S ¬-is-prop ¬p₁ ¬p₂)
|
{
"alphanum_fraction": 0.6198347107,
"avg_line_length": 30.25,
"ext": "agda",
"hexsha": "8ee2c48ef80908a4e83437f658d3deb2e4d506ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/Relation2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/Relation2.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/Relation2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 241,
"size": 605
}
|
module Thesis.SIRelBigStep.IlcSILR where
open import Data.Unit.Base hiding (_≤_)
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Thesis.SIRelBigStep.Lang public
open import Thesis.SIRelBigStep.DLang public
open import Thesis.SIRelBigStep.ArithExtra public
rrelT3-skeleton :
∀ {τ Γ} →
((v1 : Val τ) → (dv : DVal τ) → (v2 : Val τ) → (k : ℕ) → Set) →
(t1 : Term Γ τ) (dt : DTerm Γ τ) (t2 : Term Γ τ)
(ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) →
ℕ → Set
rrelT3-skeleton {τ} ternary-rel t1 dt t2 ρ1 dρ ρ2 k =
(v1 v2 : Val τ) →
∀ j (j<k : j < k) →
(ρ1⊢t1↓[j]v1 : ρ1 ⊢ t1 ↓[ i' j ] v1) →
(ρ2⊢t2↓[n2]v2 : ρ2 ⊢ t2 ↓[ no ] v2) →
Σ[ dv ∈ DVal τ ]
ρ1 D dρ ⊢ dt ↓ dv ×
ternary-rel v1 dv v2 (k ∸ j)
mutual
rrelT3 : ∀ {τ Γ} (t1 : Term Γ τ) (dt : DTerm Γ τ) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set
rrelT3 {τ} = rrelT3-skeleton (rrelV3 τ)
rrelV3 : ∀ τ (v1 : Val τ) (dv : DVal τ) (v2 : Val τ) → (n : ℕ) → Set
-- Making this case first ensures rrelV3 splits on its second argument, hence
-- that all its equations hold definitionally.
rrelV3 τ v1 (bang v2) v2' n = v2 ≡ v2'
rrelV3 nat (natV v1) (dnatV dv) (natV v2) n = dv + v1 ≡ v2
rrelV3 (σ ⇒ τ) (closure {Γ1} t1 ρ1) (dclosure {ΔΓ} dt ρ dρ) (closure {Γ2} t2 ρ2) n =
Σ ((Γ1 ≡ Γ2) × (Γ1 ≡ ΔΓ)) λ { (refl , refl) →
ρ1 ≡ ρ ×
ρ1 ⊕ρ dρ ≡ ρ2 ×
t1 ≡ t2 ×
dt ≡ derive-dterm t1 ×
∀ (k : ℕ) (k<n : k < n) v1 dv v2 →
rrelV3 σ v1 dv v2 k →
rrelT3
t1
dt
t2
(v1 • ρ1)
(dv • dρ)
(v2 • ρ2)
k
}
rrelV3 (pair τ1 τ2) (pairV va1 vb1) (dpairV dva dvb) (pairV va2 vb2) n =
rrelV3 τ1 va1 dva va2 n × rrelV3 τ2 vb1 dvb vb2 n
rrelV3→⊕ : ∀ {τ n} v1 dv v2 → rrelV3 τ v1 dv v2 n → v1 ⊕ dv ≡ v2
rrelV3→⊕ v1 (bang v2) v2' vv = vv
rrelV3→⊕ (closure {Γ} t ρ) (dclosure .(derive-dterm t) .ρ dρ) (closure .t .(ρ ⊕ρ dρ)) ((refl , refl) , refl , refl , refl , refl , dvv) with Γ ≟Ctx Γ | ≟Ctx-refl Γ
... | .(yes refl) | refl = refl
rrelV3→⊕ (natV n) (dnatV dn) (natV .(dn + n)) refl rewrite +-comm n dn = refl
rrelV3→⊕ (pairV va1 vb1) (dpairV dva dvb) (pairV va2 vb2) (vaa , vbb) rewrite rrelV3→⊕ va1 dva va2 vaa | rrelV3→⊕ vb1 dvb vb2 vbb = refl
rrelρ3 : ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → ℕ → Set
rrelρ3 ∅ ∅ ∅ ∅ n = ⊤
rrelρ3 (τ • Γ) (v1 • ρ1) (dv • dρ) (v2 • ρ2) n = rrelV3 τ v1 dv v2 n × rrelρ3 Γ ρ1 dρ ρ2 n
rrelρ3→⊕ : ∀ {Γ n} ρ1 dρ ρ2 → rrelρ3 Γ ρ1 dρ ρ2 n → ρ1 ⊕ρ dρ ≡ ρ2
rrelρ3→⊕ ∅ ∅ ∅ tt = refl
rrelρ3→⊕ (v1 • ρ1) (dv • dρ) (v2 • ρ2) (vv , ρρ) rewrite rrelV3→⊕ v1 dv v2 vv | rrelρ3→⊕ ρ1 dρ ρ2 ρρ = refl
rrelV3-mono : ∀ m n → m ≤ n → ∀ τ v1 dv v2 → rrelV3 τ v1 dv v2 n → rrelV3 τ v1 dv v2 m
rrelV3-mono m n m≤n τ v1 (bang v2) v2′ vv = vv
rrelV3-mono m n m≤n (σ ⇒ τ) (closure t ρ) (dclosure dt ρ₁ dρ) (closure t₁ ρ₂)
-- Validity
((refl , refl) , refl , refl , refl , refl , vv) =
(refl , refl) , refl , refl , refl , refl , λ k k<m → vv k (≤-trans k<m m≤n)
rrelV3-mono m n m≤n nat (natV n₁) (dnatV n₂) (natV n₃) vv = vv
rrelV3-mono m n m≤n (pair τ1 τ2) (pairV va1 vb1) (dpairV dva dvb) (pairV va2 vb2) (vaa , vbb) =
rrelV3-mono m n m≤n τ1 va1 dva va2 vaa , rrelV3-mono m n m≤n τ2 vb1 dvb vb2 vbb
rrelρ3-mono : ∀ m n → m ≤ n → ∀ Γ ρ1 dρ ρ2 → rrelρ3 Γ ρ1 dρ ρ2 n → rrelρ3 Γ ρ1 dρ ρ2 m
rrelρ3-mono m n m≤n ∅ ∅ ∅ ∅ tt = tt
rrelρ3-mono m n m≤n (τ • Γ) (v1 • ρ1) (dv • dρ) (v2 • ρ2) (vv , ρρ) = rrelV3-mono m n m≤n _ v1 dv v2 vv , rrelρ3-mono m n m≤n Γ ρ1 dρ ρ2 ρρ
⟦_⟧RelVar3 : ∀ {Γ τ n} (x : Var Γ τ) {ρ1 dρ ρ2} →
rrelρ3 Γ ρ1 dρ ρ2 n →
rrelV3 τ (⟦ x ⟧Var ρ1) (D.⟦ x ⟧Var dρ) (⟦ x ⟧Var ρ2) n
⟦ this ⟧RelVar3 {v1 • ρ1} {dv • dρ} {v2 • ρ2} (vv , ρρ) = vv
⟦ that x ⟧RelVar3 {v1 • ρ1} {dv • dρ} {v2 • ρ2} (vv , ρρ) = ⟦ x ⟧RelVar3 ρρ
-- Direct analogue of rrelV3→⊕ for rrelT3: simply say that the resulting values
-- are related.
-- Alternatively, one could try internalizing ⊕ and giving some term equivalence, but it does not seem worthwhile.
rrelT3→⊕ : ∀ {τ Γ k}
(t1 : Term Γ τ) (dt : DTerm Γ τ) (t2 : Term Γ τ) (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) →
rrelT3 {τ} t1 dt t2 ρ1 dρ ρ2 k →
rrelT3-skeleton (λ v1 dv v2 _ → v1 ⊕ dv ≡ v2) t1 dt t2 ρ1 dρ ρ2 k
rrelT3→⊕ t1 dt t2 ρ1 dρ ρ2 ttrel v1 v2 j j<k ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 with ttrel v1 v2 j j<k ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2
... | dv , ↓dv , vv = dv , ↓dv , rrelV3→⊕ v1 dv v2 vv
|
{
"alphanum_fraction": 0.5637942552,
"avg_line_length": 44.4653465347,
"ext": "agda",
"hexsha": "ba7db6e6148612c35f42172457d927ce4d58cafa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/IlcSILR.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/IlcSILR.agda",
"max_line_length": 163,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/IlcSILR.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2379,
"size": 4491
}
|
{-# OPTIONS --without-K --rewriting #-}
module PathInduction where
open import Base public
-- The rewriting relation
{-<rewrite>-}
postulate
_↦_ : ∀ {i} {A : Type i} → A → A → Type i
{-# BUILTIN REWRITE _↦_ #-}
{-</>-}
-- We redefine concatenation of paths to use induction on both paths, in order
-- to make unification more powerful
infixr 80 _∙_
_∙_ : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : b == c) → a == c
idp ∙ idp = idp
record Coh {i} (A : Type i) : Type i where
field
& : A
open Coh public
instance
J→ : ∀ {i j k} {A : Type i} {B : A → Type j} {f : (a : A) → B a} {P : {g : (a : A) → B a} (h : (a : A) → f a == g a) → Type k}
→ Coh (P (λ a → idp)) → Coh ({g : (a : A) → B a} → (h : (a : A) → f a == g a) → P h)
& (J→ {A = A} {B} {f} {P = P} d) h = transport P (λ= (app=-β h)) (J-aux (λ= h)) where
J-aux : {g : (a : A) → B a} (h : f == g) → P (app= h)
J-aux idp = & d
J→! : ∀ {i j k} {A : Type i} {B : A → Type j} {f : (a : A) → B a} {P : {g : (a : A) → B a} (h : (a : A) → g a == f a) → Type k}
→ Coh (P (λ a → idp)) → Coh ({g : (a : A) → B a} → (h : (a : A) → g a == f a) → P h)
& (J→! {A = A} {B} {f} {P = P} d) h = transport P (λ= (app=-β h)) (J-aux (λ= h)) where
J-aux : {g : (a : A) → B a} (h : g == f) → P (app= h)
J-aux idp = & d
module _ {i j} {A : Type i} {a : A} where
instance
J- : {B : (a' : A) → a == a' → Type j}
→ Coh (B a idp) → Coh ({a' : A} (p : a == a') → B a' p)
& (J- d) idp = & d
J! : {B : (a' : A) → a' == a → Type j}
→ Coh (B a idp) → Coh ({a' : A} (p : a' == a) → B a' p)
& (J! d) idp = & d
J□ : {B : {b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} → Square p q r s → Type j}
→ Coh (B ids) → Coh ({b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq : Square p q r s) → B sq)
& (J□ {B = B} d) ids = & d
J□i : {B : {b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} → Square p q r s → Type j}
→ Coh (B ids) → Coh ({b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s} → B sq)
& (J□i {B = B} d) {sq = ids} = & d
J□1 : {B : (p : a == a) → Square p idp idp idp → Type j}
→ Coh (B idp ids) → Coh ({p : a == a} (sq : Square p idp idp idp) → B p sq)
& (J□1 {B = B} d) c = aux B (& d) c where
e : {a b c d : A} (q : a == c) (r : b == d) (s : c == d) → Square (q ∙ s ∙ ! r) q r s
e idp idp idp = ids
aux : {a b c d : A} {q : a == c} {r : b == d} {s : c == d} (B : (p : a == b) → Square p q r s → Type j)
→ B (q ∙ s ∙ ! r) (e q r s) → {p : a == b} (sq : Square p q r s) → B p sq
aux B d ids = d
J□2 : {B : (p : a == a) → Square idp p idp idp → Type j}
→ Coh (B idp ids) → Coh ({p : a == a} (sq : Square idp p idp idp) → B p sq)
& (J□2 {B = B} d) c = aux B (& d) c where
e : {a b c d : A} (p : a == b) (r : b == d) (s : c == d) → Square p (p ∙ r ∙ ! s) r s
e idp idp idp = ids
aux : {a b c d : A} {p : a == b} {r : b == d} {s : c == d} (B : (q : a == c) → Square p q r s → Type j)
→ B (p ∙ r ∙ ! s) (e p r s) → {q : a == c} (sq : Square p q r s) → B q sq
aux B d ids = d
J□3 : {B : (p : a == a) → Square idp idp p idp → Type j}
→ Coh (B idp ids) → Coh ({p : a == a} (sq : Square idp idp p idp) → B p sq)
& (J□3 {B = B} d) c = aux B (& d) c where
e : {a b c d : A} (p : a == b) (q : a == c) (s : c == d) → Square p q (! p ∙ q ∙ s) s
e idp idp idp = ids
aux : {a b c d : A} {p : a == b} {q : a == c} {s : c == d} (B : (r : b == d) → Square p q r s → Type j)
→ B (! p ∙ q ∙ s) (e p q s) → {r : b == d} (sq : Square p q r s) → B r sq
aux B d ids = d
J□4 : {B : (p : a == a) → Square idp idp idp p → Type j}
→ Coh (B idp ids) → Coh ({p : a == a} (sq : Square idp idp idp p) → B p sq)
& (J□4 {B = B} d) c = aux B (& d) c where
e : {a b c d : A} (p : a == b) (q : a == c) (r : b == d) → Square p q r (! q ∙ p ∙ r)
e idp idp idp = ids
aux : {a b c d : A} {p : a == b} {q : a == c} {r : b == d} (B : (s : c == d) → Square p q r s → Type j)
→ B (! q ∙ p ∙ r) (e p q r) → {s : c == d} (sq : Square p q r s) → B s sq
aux B d ids = d
instance
idp-Coh : ∀ {i} {A : Type i} {a : A} → Coh (a == a)
& idp-Coh = idp
ids-Coh : ∀ {i} {A : Type i} {a : A} → Coh (Square {a₀₀ = a} idp idp idp idp)
& ids-Coh = ids
idc-Coh : ∀ {i} {A : Type i} {a : A} → Coh (Cube {a₀₀₀ = a} ids ids ids ids ids ids)
& idc-Coh = idc
-- Allows us to put the initial [a] in the [Coh]
strip-a : ∀ {i j} {A : Type i} {P : A → A → Type j} → ((a : A) → Coh ({b : A} → P a b)) → Coh ({a b : A} → P a b)
& (strip-a z) = & (z _)
-- Allows us to put the initial [A] in the [Coh]
strip-A : ∀ {i j} {P : Type i → Type j} → ((A : Type i) → Coh (P A)) → Coh ({A : Type i} → P A)
& (strip-A z) = & (z _)
-- Allows us to have implicit arguments
implicit : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} → Coh ({a : A} (b : B a) → C a b) → Coh ({a : A} {b : B a} → C a b)
& (implicit d) = & d _
path-induction : ∀ {i} {A : Type i} {{a : A}} → A
path-induction {{a}} = a
-- Rules for cubes
instance
idsidc1-Coh : ∀ {i} {A : Type i} {a : A} → Coh (Σ (Square (idp {a = a}) idp idp idp) (λ left → Cube left ids ids ids ids ids))
& idsidc1-Coh = (ids , idc)
idsidc2-Coh : ∀ {i} {A : Type i} {a : A} → Coh (Σ (Square (idp {a = a}) idp idp idp) (λ right → Cube ids right ids ids ids ids))
& idsidc2-Coh = (ids , idc)
idsidc6-Coh : ∀ {i} {A : Type i} {a : A} → Coh (Σ (Square (idp {a = a}) idp idp idp) (λ front → Cube ids ids ids ids ids front))
& idsidc6-Coh = (ids , idc)
module _ {i j} {A : Type i} {a : A} where
instance
JCube1 : {B : (p : Square {a₀₀ = a} idp idp idp idp) → Cube p ids ids ids ids ids → Type j}
→ Coh (B ids idc) → Coh ({p : Square {a₀₀ = a} idp idp idp idp} (cube : Cube p ids ids ids ids ids) → B p cube)
& (JCube1 {B = B} d) c = aux B (& d) c where
comp : Coh ({a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
(right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁)
{a₀₀₀ : A} {p₀₀₋ : a₀₀₀ == a₀₀₁}
{a₀₁₀ : A} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{a₁₀₀ : A} {p₁₀₋ : a₁₀₀ == a₁₀₁}
{a₁₁₀ : A} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{p₀₋₀ : a₀₀₀ == a₀₁₀}
(back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁)
{p₋₀₀ : a₀₀₀ == a₁₀₀}
(top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁)
{p₋₁₀ : a₀₁₀ == a₁₁₀}
(bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁)
{p₁₋₀ : a₁₀₀ == a₁₁₀}
(front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁)
→ Σ (Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) (λ left → Cube left right back top bottom front))
comp = path-induction
aux : {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
-- missing left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁}
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁}
{top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁}
{bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁}
{front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁}
→ (B : (left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) → Cube left right back top bottom front → Type j)
→ uncurry B (& comp right back top bottom front)
→ ({left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} (cube : Cube left right back top bottom front) → B left cube)
aux B d idc = d
JCube2 : {B : (p : Square {a₀₀ = a} idp idp idp idp) → Cube ids p ids ids ids ids → Type j}
→ Coh (B ids idc) → Coh ({p : Square {a₀₀ = a} idp idp idp idp} (cube : Cube ids p ids ids ids ids) → B p cube)
& (JCube2 {B = B} d) c = aux B (& d) c where
comp : Coh ({a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
(left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀)
{a₀₀₁ : A} {p₀₀₋ : a₀₀₀ == a₀₀₁}
{a₀₁₁ : A} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{a₁₀₁ : A} {p₁₀₋ : a₁₀₀ == a₁₀₁}
{a₁₁₁ : A} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{p₀₋₁ : a₀₀₁ == a₀₁₁}
(back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁)
{p₋₀₁ : a₀₀₁ == a₁₀₁}
(top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁)
{p₋₁₁ : a₀₁₁ == a₁₁₁}
(bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁)
{p₁₋₁ : a₁₀₁ == a₁₁₁}
(front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁)
→ Σ (Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) (λ right → Cube left right back top bottom front))
comp = path-induction
aux : {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀}
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁}
{top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁}
{bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁}
{front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁}
→ (B : (right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) → Cube left right back top bottom front → Type j)
→ uncurry B (& comp left back top bottom front)
→ ({right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} (cube : Cube left right back top bottom front) → B right cube)
aux B d idc = d
JCube6 : {B : (p : Square {a₀₀ = a} idp idp idp idp) → Cube ids ids ids ids ids p → Type j}
→ Coh (B ids idc) → Coh ({p : Square {a₀₀ = a} idp idp idp idp} (cube : Cube ids ids ids ids ids p) → B p cube)
& (JCube6 {B = B} d) c = aux B (& d) c where
comp : Coh ({a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
(left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀)
{a₀₀₁ : A} {p₀₀₋ : a₀₀₀ == a₀₀₁}
{a₀₁₁ : A} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{a₁₀₁ : A} {p₁₀₋ : a₁₀₀ == a₁₀₁}
{a₁₁₁ : A} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{p₀₋₁ : a₀₀₁ == a₀₁₁}
(back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁)
{p₋₀₁ : a₀₀₁ == a₁₀₁}
(top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁)
{p₋₁₁ : a₀₁₁ == a₁₁₁}
(bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁)
{p₁₋₁ : a₁₀₁ == a₁₁₁}
(right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁)
→ Σ (Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) (λ front → Cube left right back top bottom front))
comp = path-induction
aux : {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{left : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀}
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{right : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁}
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{back : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁}
{top : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁}
{bottom : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁}
→ (B : (front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) → Cube left right back top bottom front → Type j)
→ uncurry B (& comp left back top bottom right)
→ ({front : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} (cube : Cube left right back top bottom front) → B front cube)
aux B d idc = d
-- Flat cubes (cubes where the four lateral faces are actually only 2-dimensional paths
data FlatCube {i} {A : Type i} {a : A} :
{b c d : A} {p p' : a == b} {q q' : a == c} {r r' : b == d} {s s' : c == d}
→ Square p q r s → Square p' q' r' s' → p == p' → q == q' → r == r' → s == s' → Type i where
idfc : FlatCube ids ids idp idp idp idp
instance
idfc-Coh : ∀ {i} {A : Type i} {a : A} → Coh (FlatCube {a = a} ids ids idp idp idp idp)
& idfc-Coh = idfc
JFlatCube1 : ∀ {i j} {A : Type i} {a : A} {B : (p : Square {a₀₀ = a} idp idp idp idp) → FlatCube p ids idp idp idp idp → Type j}
→ Coh (B ids idfc) → Coh ({p : Square {a₀₀ = a} idp idp idp idp} (cube : FlatCube p ids idp idp idp idp) → B p cube)
& (JFlatCube1 {i} {j} {B = B} d) c = aux B (& d) c where
comp : {A : Type i} {a b c d : A} {p' : a == b} {q' : a == c} {r' : b == d} {s' : c == d} (sq' : Square p' q' r' s')
{p : a == b} (p= : p == p') {q : a == c} (q= : q == q') {r : b == d} (r= : r == r') {s : c == d} (s= : s == s')
→ Square p q r s
comp ids idp idp idp idp = ids
fill : {A : Type i} {a b c d : A} {p' : a == b} {q' : a == c} {r' : b == d} {s' : c == d} (sq' : Square p' q' r' s')
{p : a == b} (p= : p == p') {q : a == c} (q= : q == q') {r : b == d} (r= : r == r') {s : c == d} (s= : s == s')
→ FlatCube (comp sq' p= q= r= s=) sq' p= q= r= s=
fill ids idp idp idp idp = idfc
aux : {A : Type i} {a b c d : A} {p' : a == b} {q' : a == c} {r' : b == d} {s' : c == d} {sq' : Square p' q' r' s'}
{p : a == b} {p= : p == p'} {q : a == c} {q= : q == q'} {r : b == d} {r= : r == r'} {s : c == d} {s= : s == s'}
(B : (sq : Square p q r s) (fil : FlatCube sq sq' p= q= r= s=) → Type j)
→ B (comp sq' p= q= r= s=) (fill sq' p= q= r= s=)
→ {sq : Square p q r s} (fil : FlatCube sq sq' p= q= r= s=) → B sq fil
aux B d idfc = d
JFlatCube2 : ∀ {i j} {A : Type i} {a : A} {B : (p : Square {a₀₀ = a} idp idp idp idp) → FlatCube ids p idp idp idp idp → Type j}
→ Coh (B ids idfc) → Coh ({p : Square {a₀₀ = a} idp idp idp idp} (cube : FlatCube ids p idp idp idp idp) → B p cube)
& (JFlatCube2 d) idfc = & d
ap-∙ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c : A} (p : a == b) (q : b == c) → ap f (p ∙ q) == ap f p ∙ ap f q
ap-∙ f idp idp = idp
ap-∙! : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b : A} (p : a == b) {c : A} (q : c == b) → ap f (p ∙ ! q) == ap f p ∙ ! (ap f q)
ap-∙! f idp idp = idp
ap-shape-∙! : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c : A} {p : a == b} {q : a == c} {r : b == c}
→ p == q ∙ ! r → ap f p == ap f q ∙ ! (ap f r)
ap-shape-∙! f {q = idp} {r = idp} idp = idp
ap-!∙ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b : A} (p : b == a) {c : A} (q : b == c) → ap f (! p ∙ q) == ! (ap f p) ∙ ap f q
ap-!∙ f idp idp = idp
∘-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B)
{x y : A} (p : x == y) → ap g (ap f p) == ap (g ∘ f) p
∘-ap f g p = ! (ap-∘ f g p)
∙idp : ∀ {i} {A : Type i} {a b : A} {p : a == b} → p ∙ idp == p
∙idp {p = idp} = idp
idp∙ : ∀ {i} {A : Type i} {a a' : A} {p : a == a'} → idp ∙ p == p
idp∙ {p = idp} = idp
!-inv-r : ∀ {i} {A : Type i} {a b : A} {p : a == b} → p ∙ ! p == idp
!-inv-r {p = idp} = idp
!-inv-l : ∀ {i} {A : Type i} {a b : A} {p : a == b} → ! p ∙ p == idp
!-inv-l {p = idp} = idp
module _ {i} {A : Type i} where
horiz-degen-square : {a a' : A} {p q : a == a'}
→ p == q → Square p idp idp q
horiz-degen-square idp = hid-square
vert-degen-square : {a a' : A} {p q : a == a'}
→ p == q → Square idp p q idp
vert-degen-square idp = vid-square
horiz-degen-path : {a a' : A} {p q : a == a'}
→ Square p idp idp q → p == q
horiz-degen-path {p = idp} ids = idp
horiz-degen-square-idp : {a a' : A} {p : a == a'}
→ horiz-degen-square (idp {a = p}) == hid-square
horiz-degen-square-idp {p = idp} = idp
horiz-degen-square-β : {a a' : A} {p q : a == a'} {sq : Square p idp idp q} → horiz-degen-square (horiz-degen-path sq) == sq
horiz-degen-square-β {p = idp} {sq = ids} = idp
horiz-degen-square-η : {a a' : A} {p q : a == a'} {r : p == q} → horiz-degen-path (horiz-degen-square r) == r
horiz-degen-square-η {p = idp} {r = idp} = idp
module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where
natural-square : (h : (a : A) → f a == g a)
{x y : A} (p : x == y)
→ {fp : f x == f y} (fp= : ap f p == fp)
→ {gp : g x == g y} (gp= : ap g p == gp)
→ Square (h x) fp gp (h y)
natural-square h idp idp idp = hid-square
↓-='-to-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ {fp : f x == f y} (fp= : ap f p == fp)
→ {gp : g x == g y} (gp= : ap g p == gp)
→ u == v [ (λ z → f z == g z) ↓ p ]
→ Square u fp gp v
↓-='-to-square {p = idp} idp idp α = horiz-degen-square α
↓-='-from-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ {fp : f x == f y} (fp= : ap f p == fp)
→ {gp : g x == g y} (gp= : ap g p == gp)
→ Square u fp gp v
→ u == v [ (λ z → f z == g z) ↓ p ]
↓-='-from-square {p = idp} idp idp sq = horiz-degen-path sq
{- Used for getting square equivalents of glue-β terms -}
natural-square-β : (h : (a : A) → f a == g a)
{x y : A} (p : x == y)
{fp : f x == f y} {fp= : ap f p == fp}
{gp : g x == g y} {gp= : ap g p == gp}
{sq : Square (h x) fp gp (h y)}
→ apd h p == ↓-='-from-square fp= gp= sq
→ natural-square h p fp= gp= == sq
natural-square-β _ idp {fp= = idp} {gp= = idp} α = ! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β
module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where
↓-ap-in2 : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)}
{fp : f x == f y} (fp= : ap f p == fp)
→ u == v [ C ∘ f ↓ p ]
→ u == v [ C ↓ fp ]
↓-ap-in2 {p = idp} idp idp = idp
module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) {f : A → B} where
↓-ap-in-coh : {X : Type i} {g : X → A} {x y : X} {p : x == y} {gp : g x == g y} {p-β : ap g p == gp} (h : (a : A) → C (f a))
→ ↓-ap-in C f (apd h gp) == ↓-ap-in2 C (f ∘ g) (ap-∘ f g p ∙ ap (ap f) p-β) (apd (h ∘ g) p)
↓-ap-in-coh {p = idp} {p-β = idp} h = idp
↓-PathOver-from-square : ∀ {i j} {A X : Type i} {P : A → Type j} {a b : X → A}
{q : (x : X) → a x == b x} {f : (x : X) → P (a x)} {g : (x : X) → P (b x)}
{x y : X} {p : x == y} {u : PathOver P (q x) (f x) (g x)} {v : PathOver P (q y) (f y) (g y)}
{a-p : a x == a y} {ap= : ap a p == a-p}
{b-p : b x == b y} {bp= : ap b p == b-p}
→ SquareOver P (natural-square q p ap= bp=) u (↓-ap-in2 P a {p = p} ap= (apd f p)) (↓-ap-in2 P b bp= (apd g p)) v
→ u == v [ (λ z → f z == g z [ P ↓ q z ]) ↓ p ]
↓-PathOver-from-square {p = idp} {ap= = idp} {bp= = idp} pq = coh pq where
coh : ∀ {i j} {A : Type i} {P : A → Type j} {a b : A} {q : a == b} {f : P a} {g : P b} {u v : f == g [ P ↓ q ]}
→ SquareOver P hid-square u idp idp v → u == v
coh {q = idp} {u = idp} ids = idp
adapt-SquareOver : ∀ {i j} {A : Type i} {P : A → Type j} {a b c d : A}
{p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s}
{a' : P a} {b' : P b} {c' : P c} {d' : P d}
{p' : a' == b' [ P ↓ p ]} {q' q'2 : a' == c' [ P ↓ q ]}
{r' r'2 : b' == d' [ P ↓ r ]} {s' : c' == d' [ P ↓ s ]}
(q'= : q' == q'2) (r'= : r' == r'2)
→ SquareOver P sq p' q' r' s'
→ SquareOver P sq p' q'2 r'2 s'
adapt-SquareOver {sq = ids} idp idp ids = ids
ap-square-natural-square : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) →
Coh ({a b : A} (p : a == b) {u v : A → B} (g : (x : A) → u x == v x)
{up : u a == u b} {up= : ap u p == up}
{vp : v a == v b} {vp= : ap v p == vp}
{fup : ap (λ z → f (u z)) p == ap f up} (fup= : ap-∘ f u p ∙ ap (ap f) up= == fup)
{fvp : ap (λ z → f (v z)) p == ap f vp} (fvp= : ap-∘ f v p ∙ ap (ap f) vp= == fvp)
→ ap-square f (natural-square g p up= vp=) == natural-square (ap f ∘ g) p fup fvp)
ap-square-natural-square {i} {j} {k} f = path-induction
ap-square-horiz-degen-square : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a a' : A} {p p' : a == a'} (p= : p == p') → ap-square f (horiz-degen-square p=) == horiz-degen-square (ap (ap f) p=)
ap-square-horiz-degen-square {p = idp} idp = idp
adapt-square : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq : Square p q r s)
{q' : a == c} (q= : q == q') {r' : b == d} (r= : r == r')
→ Square p q' r' s
adapt-square ids idp idp = ids
ap2-idf : ∀ {i} → Coh ({A : Type i} {x y : A} {p q : x == y} {r : p == q} → Square (ap (ap (λ z → z)) r) (ap-idf _) (ap-idf _) r)
ap2-idf = path-induction
ap-∘3 : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(f : C → D) (g : B → C) (h : A → B) {a b : A} (p : a == b)
→ Square (ap-∘ f (g ∘ h) p) (ap-∘ (f ∘ g) h p) (ap (ap f) (ap-∘ g h p)) (ap-∘ f g (ap h p))
ap-∘3 f g h idp = ids
_∙□_ : ∀ {i} {A : Type i} {a b c d e f : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {t : c == e} {u : d == f} {v : e == f}
(sq1 : Square p q r s) (sq2 : Square s t u v)
→ Square p (q ∙ t) (r ∙ u) v
ids ∙□ ids = ids
_|∙_ : ∀ {i} {A : Type i} {a b c d : A} {p p' : a == b} {q : a == c} {r : b == d} {s : c == d}
(p= : p == p') (sq1 : Square p' q r s)
→ Square p q r s
idp |∙ ids = ids
_∙|_ : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s s' : c == d}
(sq1 : Square p q r s) (s= : s == s')
→ Square p q r s'
ids ∙| idp = ids
infixr 80 _∙□_ _|∙_ _∙|_
_∙³x_ : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ a₀₀₂ a₀₁₂ a₁₀₂ a₁₁₂ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- middle
{p₀₋₂ : a₀₀₂ == a₀₁₂} {p₋₀₂ : a₀₀₂ == a₁₀₂}
{p₋₁₂ : a₀₁₂ == a₁₁₂} {p₁₋₂ : a₁₀₂ == a₁₁₂}
{sq₋₋₂ : Square p₀₋₂ p₋₀₂ p₋₁₂ p₁₋₂} -- right
{p₀₀l : a₀₀₀ == a₀₀₁} {p₀₁l : a₀₁₀ == a₀₁₁}
{p₁₀l : a₁₀₀ == a₁₀₁} {p₁₁l : a₁₁₀ == a₁₁₁}
{sq₀₋l : Square p₀₋₀ p₀₀l p₀₁l p₀₋₁} -- backl
{sq₋₀l : Square p₋₀₀ p₀₀l p₁₀l p₋₀₁} -- topl
{sq₋₁l : Square p₋₁₀ p₀₁l p₁₁l p₋₁₁} -- bottoml
{sq₁₋l : Square p₁₋₀ p₁₀l p₁₁l p₁₋₁} -- frontl
{p₀₀r : a₀₀₁ == a₀₀₂} {p₀₁r : a₀₁₁ == a₀₁₂}
{p₁₀r : a₁₀₁ == a₁₀₂} {p₁₁r : a₁₁₁ == a₁₁₂}
{sq₀₋r : Square p₀₋₁ p₀₀r p₀₁r p₀₋₂} -- backr
{sq₋₀r : Square p₋₀₁ p₀₀r p₁₀r p₋₀₂} -- topr
{sq₋₁r : Square p₋₁₁ p₀₁r p₁₁r p₋₁₂} -- bottomr
{sq₁₋r : Square p₁₋₁ p₁₀r p₁₁r p₁₋₂} -- frontr
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋l sq₋₀l sq₋₁l sq₁₋l
→ Cube sq₋₋₁ sq₋₋₂ sq₀₋r sq₋₀r sq₋₁r sq₁₋r
→ Cube sq₋₋₀ sq₋₋₂ (sq₀₋l ∙□ sq₀₋r) (sq₋₀l ∙□ sq₋₀r)
(sq₋₁l ∙□ sq₋₁r) (sq₁₋l ∙□ sq₁₋r)
idc ∙³x idc = idc
infixr 80 _∙³x_
x-degen-cube : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
{sq₋₋₀ sq₋₋₁ : Square p₀₋ p₋₀ p₋₁ p₁₋}
→ sq₋₋₀ == sq₋₋₁
→ Cube sq₋₋₀ sq₋₋₁ hid-square hid-square hid-square hid-square
x-degen-cube {sq₋₋₀ = ids} idp = idc
natural-cube-η∞ : ∀ {i j} {A : Type i} {B : Type j}
{u : A → B}
{r : (a : A) → u a == u a}
(p : ∀ a → r a == idp)
{x y : A} (q : x == y)
{uq : u x == u y} {uq= : ap u q == uq}
→ Cube (horiz-degen-square (p x)) (horiz-degen-square (p y))
(natural-square r q uq= uq=) vid-square vid-square vid-square
natural-cube-η∞ p idp {uq= = idp} = x-degen-cube idp
natural-square-∘ : ∀ {i} {A B C : Type i} {a b : C} (p : a == b) (k : C → A) →
Coh ({f g : A → B} (h : (a : A) → f a == g a)
{fkp : _} {fkp= : ap (f ∘ k) p == fkp}
{gkp : _} {gkp= : ap (g ∘ k) p == gkp}
{fkp2 : _} (fkp2= : ∘-ap f k p ∙ fkp= == fkp2)
{gkp2 : _} (gkp2= : ∘-ap g k p ∙ gkp= == gkp2)
→ natural-square (h ∘ k) p fkp= gkp= == natural-square h (ap k p) fkp2 gkp2)
natural-square-∘ idp = path-induction
_-∙³_ : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ sq₋₋₀' : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀ : a₀₀₀ == a₀₀₁} {p₀₁ : a₀₁₀ == a₀₁₁}
{p₁₀ : a₁₀₀ == a₁₀₁} {p₁₁ : a₁₁₀ == a₁₁₁}
{sq₀₋ : Square p₀₋₀ p₀₀ p₀₁ p₀₋₁} -- back
{sq₋₀ : Square p₋₀₀ p₀₀ p₁₀ p₋₀₁} -- top
{sq₋₁ : Square p₋₁₀ p₀₁ p₁₁ p₋₁₁} -- bottom
{sq₁₋ : Square p₁₋₀ p₁₀ p₁₁ p₁₋₁} -- front
→ (sq₋₋₀ == sq₋₋₀')
→ Cube sq₋₋₀' sq₋₋₁ sq₀₋ sq₋₀ sq₋₁ sq₁₋
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋ sq₋₀ sq₋₁ sq₁₋
idp -∙³ idc = idc
_-|∙³_ : ∀ {i} {A : Type i} → {a₀₀₀ a₀₁₀ : A}
{a b p₀₋₀ p₁₋₀ : a₀₀₀ == a₀₁₀}
{p : a == b} {q : a == p₀₋₀} {r : b == p₁₋₀}
{sq₋₋₀ : p₀₋₀ == p₁₋₀} -- left
(α : Square p q r sq₋₋₀)
{a₀₀₁ : A} {p₀₀₋ : a₀₀₀ == a₀₀₁}
{a₀₁₁ : A} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{a₁₀₁ : A} {p₁₀₋ : a₀₀₀ == a₁₀₁}
{a₁₁₁ : A} {p₁₁₋ : a₀₁₀ == a₁₁₁}
{p₀₋₁ : a₀₀₁ == a₀₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{p₋₀₁ : a₀₀₁ == a₁₀₁}
{sq₋₀₋ : Square idp p₀₀₋ p₁₀₋ p₋₀₁} -- top
{p₋₁₁ : a₀₁₁ == a₁₁₁}
{sq₋₁₋ : Square idp p₀₁₋ p₁₁₋ p₋₁₁} -- bottom
{p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
→ Cube (horiz-degen-square sq₋₋₀) sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋
→ Cube (horiz-degen-square p) sq₋₋₁ (q |∙ sq₀₋₋ ) sq₋₀₋ sq₋₁₋ (r |∙ sq₁₋₋)
ids -|∙³ idc = idc
infixr 80 _-|∙³_
adapt-cube : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top
{sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
(cube : Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ )
{p₀₀₋' : a₀₀₀ == a₀₀₁} (p₀₀₋= : p₀₀₋ == p₀₀₋') {p₀₁₋' : a₀₁₀ == a₀₁₁} (p₀₁₋= : p₀₁₋ == p₀₁₋')
{p₁₀₋' : a₁₀₀ == a₁₀₁} (p₁₀₋= : p₁₀₋ == p₁₀₋') {p₁₁₋' : a₁₁₀ == a₁₁₁} (p₁₁₋= : p₁₁₋ == p₁₁₋')
{sq₀₋₋' : Square p₀₋₀ p₀₀₋' p₀₁₋' p₀₋₁} (sq₀₋₋= : adapt-square sq₀₋₋ p₀₀₋= p₀₁₋= == sq₀₋₋') -- back
{sq₋₀₋' : Square p₋₀₀ p₀₀₋' p₁₀₋' p₋₀₁} (sq₋₀₋= : adapt-square sq₋₀₋ p₀₀₋= p₁₀₋= == sq₋₀₋') -- top
{sq₋₁₋' : Square p₋₁₀ p₀₁₋' p₁₁₋' p₋₁₁} (sq₋₁₋= : adapt-square sq₋₁₋ p₀₁₋= p₁₁₋= == sq₋₁₋') -- bottom
{sq₁₋₋' : Square p₁₋₀ p₁₀₋' p₁₁₋' p₁₋₁} (sq₁₋₋= : adapt-square sq₁₋₋ p₁₀₋= p₁₁₋= == sq₁₋₋') -- front
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋₋' sq₋₀₋' sq₋₁₋' sq₁₋₋'
adapt-cube idc idp idp idp idp idp idp idp idp = idc
adapt-cube-idp : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top
{sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
(cube : Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ )
{sq₀₋₋' : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} (sq₀₋₋= : sq₀₋₋ == sq₀₋₋') -- back
{sq₋₀₋' : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} (sq₋₀₋= : sq₋₀₋ == sq₋₀₋') -- top
{sq₋₁₋' : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} (sq₋₁₋= : sq₋₁₋ == sq₋₁₋') -- bottom
{sq₁₋₋' : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} (sq₁₋₋= : sq₁₋₋ == sq₁₋₋') -- front
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋₋' sq₋₀₋' sq₋₁₋' sq₁₋₋'
adapt-cube-idp idc idp idp idp idp = idc
{- A SquareOver between paths can be represented as a cube -}
module _ {i j} {A : Type i} {B : Type j} {f g : A → B}
where
cube-to-↓-square : {a : A} {a= : f a == g a}
{b : A} {p : a == b} {c : A} {q : a == c} {d : A} {r : b == d} {s : c == d}
{sq : Square p q r s}
{fp : _} {fp= : ap f p == fp}
{fq : _} {fq= : ap f q == fq}
{fr : _} {fr= : ap f r == fr}
{fs : _} {fs= : ap f s == fs}
{b= : f b == g b}
(p= : Square fp a= b= (ap g p))
{c= : f c == g c}
{q= : Square fq a= c= (ap g q)}
{q□ : PathOver (λ z → f z == g z) q a= c=}
(q□= : q□ == ↓-='-from-square fq= idp (square-symmetry q=))
{d= : f d == g d}
{r= : Square b= fr (ap g r) d=}
{r□ : PathOver (λ z → f z == g z) r b= d=}
(r□= : r□ == ↓-='-from-square fr= idp r=)
(s= : Square fs c= d= (ap g s))
→ Cube (ap-square f sq) (ap-square g sq) (fp= |∙ p=) (fq= |∙ q=) (fr= |∙ square-symmetry r=) (fs= |∙ s=)
→ SquareOver (λ z → f z == g z) sq (↓-='-from-square fp= idp (square-symmetry p=))
q□
r□
(↓-='-from-square fs= idp (square-symmetry s=))
cube-to-↓-square {sq = ids} {fp= = idp} {fq= = idp} {fr= = idp} {fs= = idp} p= idp idp s= cube = & coh cube (& coh2) where
coh : Coh ({A : Type j} {x y : A} {a= b= : x == y} {p= : Square idp a= b= idp} {c= : x == y} {q= : Square idp a= c= idp} {d= : x == y} {r= : Square b= idp idp d=} {s=' : Square idp c= d= idp}
→ Cube ids ids (idp |∙ p=) (idp |∙ q=) (idp |∙ square-symmetry r=) s='
→ {s= : Square idp c= d= idp} (s== : s= == s=')
→ Square (horiz-degen-path (square-symmetry p=))
(horiz-degen-path (square-symmetry q=))
(horiz-degen-path r=)
(horiz-degen-path (square-symmetry s=)))
coh = path-induction
coh2 : Coh ({A : Type j} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s} → sq == idp |∙ sq)
coh2 = path-induction
x-degen-cube-in : ∀ {i} → Coh ({A : Type i} {a b c d : A}
{p : a == b} {q : a == c}
{r : b == d} {s : c == d}
{sq sq' : Square p q r s}
→ sq == sq'
→ Cube sq sq' hid-square hid-square hid-square hid-square)
x-degen-cube-in = path-induction
x-degen-cube-out : ∀ {i} → Coh ({A : Type i} {a b c d : A}
{p : a == b} {q : a == c}
{r : b == d} {s : c == d}
{sq sq' : Square p q r s}
→ Cube sq sq' hid-square hid-square hid-square hid-square
→ sq == sq')
x-degen-cube-out = path-induction
{- A pathover between squares can be represented as a cube -}
module _ {i j} {A : Type i} {B : Type j} {b₀₀ b₀₁ b₁₀ b₁₁ : A → B}
{p₀₋ : (a : A) → b₀₀ a == b₀₁ a} {p₋₀ : (a : A) → b₀₀ a == b₁₀ a}
{p₋₁ : (a : A) → b₀₁ a == b₁₁ a} {p₁₋ : (a : A) → b₁₀ a == b₁₁ a}
where
cube-to-↓-path : {x y : A} {q : x == y}
{sqx : Square (p₀₋ x) (p₋₀ x) (p₋₁ x) (p₁₋ x)}
{sqy : Square (p₀₋ y) (p₋₀ y) (p₋₁ y) (p₁₋ y)}
{b₀₀q : b₀₀ x == b₀₀ y} (b₀₀q= : ap b₀₀ q == b₀₀q)
{b₀₁q : b₀₁ x == b₀₁ y} (b₀₁q= : ap b₀₁ q == b₀₁q)
{b₁₀q : b₁₀ x == b₁₀ y} (b₁₀q= : ap b₁₀ q == b₁₀q)
{b₁₁q : b₁₁ x == b₁₁ y} (b₁₁q= : ap b₁₁ q == b₁₁q)
→ Cube sqx sqy
(natural-square p₀₋ q b₀₀q= b₀₁q=) (natural-square p₋₀ q b₀₀q= b₁₀q=)
(natural-square p₋₁ q b₀₁q= b₁₁q=) (natural-square p₁₋ q b₁₀q= b₁₁q=)
→ sqx == sqy [ (λ z → Square (p₀₋ z) (p₋₀ z) (p₋₁ z) (p₁₋ z)) ↓ q ]
cube-to-↓-path {q = idp} idp idp idp idp cu = & x-degen-cube-out cu
_|∙³_ : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ p₀₋₀' : a₀₀₀ == a₀₁₀} {p₋₀₀ p₋₀₀' : a₀₀₀ == a₁₀₀}
{p₋₁₀ p₋₁₀' : a₀₁₀ == a₁₁₀} {p₁₋₀ p₁₋₀' : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₀= : p₀₋₀ == p₀₋₀'} {p₋₀₀= : p₋₀₀ == p₋₀₀'}
{p₋₁₀= : p₋₁₀ == p₋₁₀'} {p₁₋₀= : p₁₋₀ == p₁₋₀'}
{sq₋₋₀' : Square p₀₋₀' p₋₀₀' p₋₁₀' p₁₋₀'} -- middle
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀' p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀' p₀₀₋ p₁₀₋ p₋₀₁} -- top
{sq₋₁₋ : Square p₋₁₀' p₀₁₋ p₁₁₋ p₋₁₁} -- bottom
{sq₁₋₋ : Square p₁₋₀' p₁₀₋ p₁₁₋ p₁₋₁} -- front
→ FlatCube sq₋₋₀ sq₋₋₀' p₀₋₀= p₋₀₀= p₋₁₀= p₁₋₀=
→ Cube sq₋₋₀' sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋
→ Cube sq₋₋₀ sq₋₋₁ (p₀₋₀= |∙ sq₀₋₋) (p₋₀₀= |∙ sq₋₀₋) (p₋₁₀= |∙ sq₋₁₋) (p₁₋₀= |∙ sq₁₋₋)
idfc |∙³ idc = idc
_/∙³_ : ∀ {i} {A : Type i} {a b c d : A} {p p' : a == b} {q q' : a == c} {r r' : b == d} {s s' : c == d}
{sq sq2 : Square p q r s} (sq= : sq == sq2)
{sq' : Square p' q' r' s'} {p= : p == p'} {q= : q == q'} {r= : r == r'} {s= : s == s'}
→ FlatCube sq2 sq' p= q= r= s=
→ FlatCube sq sq' p= q= r= s=
idp /∙³ idfc = idfc
_∙³/_ : ∀ {i} {A : Type i} {a b c d : A} {p p' : a == b} {q q' : a == c} {r r' : b == d} {s s' : c == d}
{sq : Square p q r s}
{sq' : Square p' q' r' s'} {p= : p == p'} {q= : q == q'} {r= : r == r'} {s= : s == s'}
→ FlatCube sq sq' p= q= r= s=
→ {sq'2 : Square p' q' r' s'} → sq' == sq'2
→ FlatCube sq sq'2 p= q= r= s=
idfc ∙³/ idp = idfc
_∙fc_ : ∀ {i} {A : Type i} {a b c d : A} {p p' p'' : a == b} {q q' q'' : a == c} {r r' r'' : b == d} {s s' s'' : c == d}
{sq : Square p q r s} {sq' : Square p' q' r' s'} {sq'' : Square p'' q'' r'' s''}
{p= : p == p'} {q= : q == q'} {r= : r == r'} {s= : s == s'}
{p=' : p' == p''} {q=' : q' == q''} {r=' : r' == r''} {s=' : s' == s''}
→ FlatCube sq sq' p= q= r= s=
→ FlatCube sq' sq'' p=' q=' r=' s='
→ FlatCube sq sq'' (p= ∙ p=') (q= ∙ q=') (r= ∙ r=') (s= ∙ s=')
idfc ∙fc idfc = idfc
infixr 80 _|∙³_ _-∙³_ _/∙³_ _∙fc_ _∙³/_
adapt-flatcube : ∀ {i} {A : Type i} {a b c d : A} {p p' : a == b} {q q' : a == c} {r r' : b == d} {s s' : c == d}
{p= p=' : p == p'} (p== : p= == p=')
{q= q=' : q == q'} (q== : q= == q=')
{r= r=' : r == r'} (r== : r= == r=')
{s= s=' : s == s'} (s== : s= == s=')
{sq : Square p q r s} {sq' : Square p' q' r' s'}
→ FlatCube sq sq' p= q= r= s=
→ FlatCube sq sq' p=' q=' r=' s='
adapt-flatcube idp idp idp idp idfc = idfc
!² : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d}
→ Square p q r s → Square s (! q) (! r) p
!² ids = ids
!³ : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀ : a₀₀₀ == a₀₀₁} {p₀₁ : a₀₁₀ == a₀₁₁}
{p₁₀ : a₁₀₀ == a₁₀₁} {p₁₁ : a₁₁₀ == a₁₁₁}
{sq₀₋ : Square p₀₋₀ p₀₀ p₀₁ p₀₋₁} -- back
{sq₋₀ : Square p₋₀₀ p₀₀ p₁₀ p₋₀₁} -- top
{sq₋₁ : Square p₋₁₀ p₀₁ p₁₁ p₋₁₁} -- bottom
{sq₁₋ : Square p₁₋₀ p₁₀ p₁₁ p₁₋₁} -- front
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋ sq₋₀ sq₋₁ sq₁₋
→ Cube sq₋₋₁ sq₋₋₀ (!² sq₀₋) (!² sq₋₀) (!² sq₋₁) (!² sq₁₋)
!³ idc = idc
natural-square-homotopy : ∀ {i j} {A : Type i} {B : Type j} {a : A}
→ Coh ({u v : A → B} {f g : (x : A) → u x == v x} (h : (x : A) → f x == g x)
{b : A} (p : a == b)
{up : u a == u b} {up= : ap u p == up}
{vp : v a == v b} {vp= : ap v p == vp}
→ FlatCube (natural-square f p up= vp=) (natural-square g p up= vp=) (h a) idp idp (h b))
natural-square-homotopy = path-induction
natural-cube2 : ∀ {i j} {A : Type i} {B : Type j} {a : A} →
Coh ({f g : A → B} (h : (a : A) → f a == g a) {b : A} {p : a == b} {c : A} {q : a == c} {d : A} {r : b == d}
{s : c == d} (sq : Square p q r s)
{fp : f a == f b} {fp= : ap f p == fp} {gp : g a == g b} {gp= : ap g p == gp}
{fq : f a == f c} {fq= : ap f q == fq} {gq : g a == g c} {gq= : ap g q == gq}
{fr : f b == f d} {fr= : ap f r == fr} {gr : g b == g d} {gr= : ap g r == gr}
{fs : f c == f d} {fs= : ap f s == fs} {gs : g c == g d} {gs= : ap g s == gs}
{fsq : Square fp fq fr fs} (fsq= : FlatCube (ap-square f sq) fsq fp= fq= fr= fs=)
{gsq : Square gp gq gr gs} (gsq= : FlatCube (ap-square g sq) gsq gp= gq= gr= gs=)
→ Cube (natural-square h p fp= gp=) (natural-square h s fs= gs=) (natural-square h q fq= gq=) fsq gsq (natural-square h r fr= gr=))
natural-cube2 = path-induction
ap-square-idf : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d}
(sq : Square p q r s)
→ FlatCube (ap-square (λ z → z) sq) sq (ap-idf p) (ap-idf q) (ap-idf r) (ap-idf s)
ap-square-idf ids = idfc
hid-flatcube : ∀ {i} {A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq : Square p q r s)
→ FlatCube sq sq idp idp idp idp
hid-flatcube ids = idfc
module _ {i j} {A : Type i} {B : Type j} where
natural-square= : Coh ({f g : A → B} (h : (a : A) → f a == g a)
{x y : A} {p p' : x == y} (p= : p == p')
→ {fp : f x == f y} {fp= : ap f p == fp} {fp' : f x == f y} {fp=' : ap f p' == fp'}
→ {gp : g x == g y} {gp= : ap g p == gp} {gp' : g x == g y} {gp=' : ap g p' == gp'}
→ {fp=fp' : fp == fp'} (fp=fp'= : Square (ap (ap f) p=) fp= fp=' fp=fp')
→ {gp=gp' : gp == gp'} (gp=gp'= : Square (ap (ap g) p=) gp= gp=' gp=gp')
→ FlatCube (natural-square h p fp= gp=) (natural-square h p' fp=' gp=') idp fp=fp' gp=gp' idp)
natural-square= = path-induction
-- More or less a special case of the previous one
natural-square== : Coh ({f g : A → B} (h : (a : A) → f a == g a)
{x y : A} (p : x == y)
→ {fp : f x == f y} {fp= : ap f p == fp} {fp' : f x == f y} {fp=' : ap f p == fp'}
→ {gp : g x == g y} {gp= : ap g p == gp} {gp' : g x == g y} {gp=' : ap g p == gp'}
→ {fpp' : fp == fp'} (fpp'= : ! fp= ∙ fp=' == fpp')
→ {gpp' : gp == gp'} (gpp'= : ! gp= ∙ gp=' == gpp')
→ FlatCube (natural-square h p fp= gp=) (natural-square h p fp=' gp=') idp fpp' gpp' idp)
natural-square== = path-induction
∘-ap-square : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B)
{a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq : Square p q r s)
→ FlatCube (ap-square g (ap-square f sq)) (ap-square (g ∘ f) sq) (∘-ap g f p) (∘-ap g f q) (∘-ap g f r) (∘-ap g f s)
∘-ap-square g f ids = idfc
ap-square-∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B)
{a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} (sq : Square p q r s)
→ FlatCube (ap-square (g ∘ f) sq) (ap-square g (ap-square f sq)) (ap-∘ g f p) (ap-∘ g f q) (ap-∘ g f r) (ap-∘ g f s)
ap-square-∘ g f ids = idfc
-- Similar to [ap-square-natural-square]
natural-square-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) →
Coh ({a b : A} (p : a == b) {u v : A → B} (g : (x : A) → u x == v x)
{fup : _} {fup= : ap (f ∘ u) p == fup}
{fvp : _} {fvp= : ap (f ∘ v) p == fvp}
{up : _} {up= : ap u p == up}
{vp : _} {vp= : ap v p == vp}
{apfup : ap f up == fup} (apfup= : Square (∘-ap f u p) (ap (ap f) up=) fup= apfup)
{apfvp : ap f vp == fvp} (apfvp= : Square (∘-ap f v p) (ap (ap f) vp=) fvp= apfvp)
→ natural-square (ap f ∘ g) p fup= fvp= == adapt-square (ap-square f (natural-square g p up= vp=)) apfup apfvp)
natural-square-ap f = path-induction
cube-rotate : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
{sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top
{sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋
→ Cube sq₀₋₋ sq₁₋₋ sq₋₋₀ (square-symmetry sq₋₀₋) (square-symmetry sq₋₁₋) sq₋₋₁
cube-rotate idc = idc
horiz-degen-path-hid-square : ∀ {i} → Coh ({A : Type i} {x y : A} {p : x == y} → idp == horiz-degen-path (horiz-degen-square (idp {a = p})))
horiz-degen-path-hid-square = path-induction
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} {g h : B → C} (f : A → B) where
↓-ap-in-=' : {x y : A} {p : x == y} (k : (x : A) → g (f x) == h (f x))
{gfp : g (f x) == g (f y)} {gfp= : ap g (ap f p) == gfp}
→ ↓-ap-in (λ z → g z == h z) f (apd k p) == ↓-='-from-square gfp= idp (natural-square k p (ap-∘ g f p ∙ gfp=) (ap-∘ h f p))
↓-ap-in-=' {p = idp} k {gfp= = idp} = & horiz-degen-path-hid-square
module _ {i j} {A : Type i} {a : A} where
instance
JCubehorizdegensquare : {B : (p : idp {a = a} == idp) → Cube ids (horiz-degen-square p) ids ids ids ids → Type j}
→ Coh (B idp idc) → Coh ({p : idp == idp} (cube : Cube ids (horiz-degen-square p) ids ids ids ids) → B p cube)
& (JCubehorizdegensquare {B} d) cube = B= (! horiz-degen-square-η) (! horiz-degen-square-β) horiz-degen-square-◂ cube (& (JCube2 {B = B'} d) cube) where
B' : (p : Square {a₀₀ = a} idp idp idp idp) → Cube ids p ids ids ids ids → Type j
B' p c = B (horiz-degen-path p) (c ∙³x & x-degen-cube-in (! horiz-degen-square-β))
horiz-degen-square-◂ : ∀ {i} {A : Type i} {a a' : A} {p q : a == a'} {r : p == q} → ap horiz-degen-square (! (horiz-degen-square-η {r = r})) == ! horiz-degen-square-β
horiz-degen-square-◂ {p = idp} {r = idp} = idp
B= : {p' p : idp == idp} (p= : p == p') (p=' : horiz-degen-square p == horiz-degen-square p') (p== : ap horiz-degen-square p= == p=')
(c : Cube ids (horiz-degen-square p) ids ids ids ids)
→ B p' (c ∙³x & x-degen-cube-in p=') → B p c
B= idp _ idp c = transport (B _) (& eq c) where
eq : Coh ({sq : Square (idp {a = a}) idp idp idp} (c : Cube ids sq ids ids ids ids) → c ∙³x & x-degen-cube-in idp == c)
eq = path-induction
|
{
"alphanum_fraction": 0.453452381,
"avg_line_length": 45.0160771704,
"ext": "agda",
"hexsha": "2b1ecc8df06dfe547f7d7d6bf5435ea947bbda0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/JamesConstruction",
"max_forks_repo_path": "PathInduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/JamesConstruction",
"max_issues_repo_path": "PathInduction.agda",
"max_line_length": 195,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/JamesConstruction",
"max_stars_repo_path": "PathInduction.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z",
"num_tokens": 21973,
"size": 42000
}
|
module lib where
open import datatypes public
open import logic public
open import thms public
open import termination public
open import error public
open import io public
|
{
"alphanum_fraction": 0.8390804598,
"avg_line_length": 19.3333333333,
"ext": "agda",
"hexsha": "070a2361dfb5c82f5c0b4cd0f0edc43f38933ac4",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "lib.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "lib.agda",
"max_line_length": 30,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "lib.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 36,
"size": 174
}
|
{-# OPTIONS --without-K --safe #-}
-- Take a relation that is already reflexive and transitive
-- and make it symmetric.
-- (Borrowed from Categories/Support/ZigZag from copumpkin's Categories library
module Relation.Binary.Construct.Symmetrize where
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.On using () renaming (isEquivalence to on-preserves-equivalence)
data Direction : Set where
↘ ↗ : Direction
rotate : Direction → Direction
rotate ↘ = ↗
rotate ↗ = ↘
private
variable
c ℓ₁ ℓ₂ : Level
Carrier : Set c
data ZigZag′ (_∼_ : Rel Carrier ℓ₂) : (x y : Carrier) (begin end : Direction) → Set (levelOfTerm x ⊔ ℓ₂) where
zig : ∀ {x y z e} (first : x ∼ y) (rest : ZigZag′ _∼_ y z ↗ e) → ZigZag′ _∼_ x z ↘ e
zag : ∀ {x y z e} (first : y ∼ x) (rest : ZigZag′ _∼_ y z ↘ e) → ZigZag′ _∼_ x z ↗ e
slish : ∀ {x y} (last : x ∼ y) → ZigZag′ _∼_ x y ↘ ↘
slash : ∀ {x y} (last : y ∼ x) → ZigZag′ _∼_ x y ↗ ↗
data Alternating′ (_∼_ : Carrier -> Carrier -> Set ℓ₂) (x y : Carrier) : Set (levelOfTerm x ⊔ ℓ₂) where
disorient : ∀ {begin end} (zz : ZigZag′ _∼_ x y begin end) → Alternating′ _∼_ x y
module _ (Base : Preorder c ℓ₁ ℓ₂) where
ZigZag : (x y : Preorder.Carrier Base) (begin end : Direction) → Set (c ⊔ ℓ₂)
ZigZag = ZigZag′ (Preorder._∼_ Base)
private
sym′ : {x y z : Preorder.Carrier Base} {begin middle end : Direction} → ZigZag y z middle end →
ZigZag y x middle begin → ZigZag z x (rotate end) begin
sym′ (zig first rest) accum = sym′ rest (zag first accum)
sym′ (zag first rest) accum = sym′ rest (zig first accum)
sym′ (slish last) accum = zag last accum
sym′ (slash last) accum = zig last accum
sym : ∀ {x y begin end} → ZigZag x y begin end → ZigZag y x (rotate end) (rotate begin)
sym (zig first rest) = sym′ rest (slash first)
sym (zag first rest) = sym′ rest (slish first)
sym (slish last) = slash last
sym (slash last) = slish last
trans : ∀ {x y z begin end begin′ end′} → ZigZag x y begin end → ZigZag y z begin′ end′ → ZigZag x z begin end′
trans (zig first rest) yz = zig first (trans rest yz)
trans (zag first rest) yz = zag first (trans rest yz)
trans (slish last) (zig first rest) = zig (Preorder.trans Base last first) rest
trans (slish last) (zag first rest) = zig last (zag first rest)
trans (slish last) (slish only) = slish (Preorder.trans Base last only)
trans (slish last) (slash only) = zig last (slash only)
trans (slash last) (zig first rest) = zag last (zig first rest)
trans (slash last) (zag first rest) = zag (Preorder.trans Base first last) rest
trans (slash last) (slish only) = zag last (slish only)
trans (slash last) (slash only) = slash (Preorder.trans Base only last)
Alternating : (x y : Preorder.Carrier Base) → Set (c ⊔ ℓ₂)
Alternating = Alternating′ (Preorder._∼_ Base)
private
is-equivalence : IsEquivalence Alternating
is-equivalence = record
{ refl = disorient (slash (Preorder.refl Base))
; sym = λ where (disorient zz) → disorient (sym zz)
; trans = λ where (disorient ij) (disorient jk) → disorient (trans ij jk)
}
setoid : Setoid c (c ⊔ ℓ₂)
setoid = record
{ Carrier = Preorder.Carrier Base
; _≈_ = Alternating
; isEquivalence = is-equivalence
}
-- the main eliminators for Alternating -- they prove that any equivalence that
-- respects the base preorder also respects its Alternating completion.
locally-minimal : ∀ {ℓ′} {_≈_ : Rel (Preorder.Carrier Base) ℓ′} (≈-isEquivalence : IsEquivalence _≈_) →
(Preorder._∼_ Base ⇒ _≈_) → (Alternating ⇒ _≈_)
locally-minimal {_} {_≋_} isEq inj (disorient zz) = impl zz
where
open IsEquivalence isEq renaming (sym to >sym; trans to _>trans>_)
impl : {i j : Preorder.Carrier Base} {b e : Direction} → ZigZag i j b e → i ≋ j
impl (zig first rest) = inj first >trans> impl rest
impl (zag first rest) = >sym (inj first) >trans> impl rest
impl (slish last) = inj last
impl (slash last) = >sym (inj last)
minimal : ∀ {c′ ℓ′} (Dest : Setoid c′ ℓ′) (f : Preorder.Carrier Base → Setoid.Carrier Dest) →
(Preorder._∼_ Base =[ f ]⇒ Setoid._≈_ Dest) → (Alternating =[ f ]⇒ Setoid._≈_ Dest)
minimal Dest f inj = locally-minimal (on-preserves-equivalence f (Setoid.isEquivalence Dest)) inj
|
{
"alphanum_fraction": 0.6489288182,
"avg_line_length": 43.8484848485,
"ext": "agda",
"hexsha": "346183f569ea537c782232a9cbf131fb26993c46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Relation/Binary/Construct/Symmetrize.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Relation/Binary/Construct/Symmetrize.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Relation/Binary/Construct/Symmetrize.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1470,
"size": 4341
}
|
open import Prelude
module Implicits.Resolution.Ambiguous.Resolution where
open import Data.Fin.Substitution
open import Data.List
open import Data.List.Any
open Membership-≡
open import Implicits.Syntax
open import Implicits.Substitutions
data _⊢ᵣ_ {ν} (Δ : ICtx ν) : Type ν → Set where
r-tabs : ∀ {r} → ictx-weaken Δ ⊢ᵣ r → Δ ⊢ᵣ ∀' r
r-tapp : ∀ {r} a → Δ ⊢ᵣ ∀' r → Δ ⊢ᵣ (r tp[/tp a ])
r-ivar : ∀ {r} → r ∈ Δ → Δ ⊢ᵣ r
r-iabs : ∀ {a b} → (a ∷ Δ) ⊢ᵣ b → Δ ⊢ᵣ (a ⇒ b)
r-iapp : ∀ {a b} → Δ ⊢ᵣ (a ⇒ b) → Δ ⊢ᵣ a → Δ ⊢ᵣ b
|
{
"alphanum_fraction": 0.5943396226,
"avg_line_length": 27.8947368421,
"ext": "agda",
"hexsha": "9b8096884ec0e43b5d58eee73049b9bfad9e8267",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Ambiguous/Resolution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Ambiguous/Resolution.agda",
"max_line_length": 54,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Ambiguous/Resolution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 246,
"size": 530
}
|
-- Andreas, 2015-07-20, record patterns
open import Common.Prelude
postulate A : Set
record R : Set where
field f : A
T : Bool → Set
T true = R
T false = A
test : ∀{b} → T b → A
test record{f = a} = a
-- Could succeed by some magic.
|
{
"alphanum_fraction": 0.6280991736,
"avg_line_length": 13.4444444444,
"ext": "agda",
"hexsha": "5362fb908237d391fff36cac830b9c05c9dc8797",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RecordPattern5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RecordPattern5.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RecordPattern5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 242
}
|
module AnnotatedTypes where
{-
-- ATypes are stratified such that that dynamically bound
-- functions can only have dynamically bound parameters.
-- TODO: why exactly is that necessary?
-- Think about the example of the evaluation of a dynamic function with
-- static components
-- The following well-formedness relation as an alternative representation
-- for this constraint:
module AType-WF where
open import Relation.Binary.PropositionalEquality
-- Static and dynamic binding times
data BT : Set where
stat : BT
dyn : BT
-- Ordering on binding times: dynamic binding time subsumes static
-- binding time.
data _≤-bt_ : BT → BT → Set where
bt≤bt : ∀ bt → bt ≤-bt bt
stat≤bt : ∀ bt → stat ≤-bt bt
module WF (ATy : Set) (typeof : ATy → Type) (btof : ATy → BT) where
data wf : ATy → Set where
wf-int : ∀ α → typeof α ≡ Int → wf α
wf-fun : ∀ α α₁ α₂ →
typeof α ≡ Fun (typeof α₁) (typeof α₂) →
--btof α ≤-bt btof α₁ →
--btof α ≤-bt btof α₂ →
wf α₁ → wf α₂ →
wf α
-- Note that in [wf-fun],we can omit the checking of the label of
-- the arguments against that of the function and [_≤-bt_] is
-- unnecessary
wf-pair : ∀ α α₁ α₂ →
typeof α ≡ typeof α₁ • typeof α₂ →
wf α₁ → wf α₂ →
wf α
wf-sum : ∀ α α₁ α₂ →
typeof α ≡ typeof α₁ ⊎ typeof α₂ →
wf α₁ → wf α₂ →
wf α
-- It is easy to check that the stratification respects the
-- well-formedness, given the intended mapping from ATypes to
-- binding times expained above:
btof : AType → BT
btof AInt = stat
btof (AFun aty aty₁) = stat
btof (D x) = dyn
btof (aty • aty₁) = stat
btof (aty ⊎ aty₁) = stat
---------------------
-- Alternative [btof]
---------------------
btof' : AType → BT
btof' AInt = stat
btof' (AFun aty aty₁) = stat
btof' (D x) = dyn
btof' (aty • aty₁) = dyn
btof' (aty ⊎ aty₁) = dyn
open WF AType typeof btof using (wf-fun; wf-int) renaming (wf to wf-AType)
lem-wf-AType : ∀ α → wf-AType α
lem-wf-AType AInt = WF.wf-int AInt refl
lem-wf-AType (AFun α₁ α₂) = WF.wf-fun (AFun α₁ α₂) α₁ α₂ refl (lem-wf-AType α₁)
(lem-wf-AType α₂)
lem-wf-AType (D Int) = WF.wf-int (D Int) refl
lem-wf-AType (D (Fun x x₁)) = WF.wf-fun (D (Fun x x₁)) (D x) (D x₁) refl (lem-wf-AType (D x))
(lem-wf-AType (D x₁))
lem-wf-AType (D (x • x₁)) = WF.wf-pair (D (x • x₁)) (D x) (D x₁) refl (lem-wf-AType (D x))
(lem-wf-AType (D x₁))
lem-wf-AType (D (x ⊎ x₁)) = WF.wf-sum (D (x ⊎ x₁)) (D x) (D x₁) refl (lem-wf-AType (D x))
(lem-wf-AType (D x₁))
lem-wf-AType (α₁ • α₂) = WF.wf-pair (α₁ • α₂) α₁ α₂ refl (lem-wf-AType α₁) (lem-wf-AType α₂)
lem-wf-AType (α₁ ⊎ α₂) = WF.wf-sum (α₁ ⊎ α₂) α₁ α₂ refl (lem-wf-AType α₁) (lem-wf-AType α₂)
--lem-wf-AType AInt = WF.wf-int AInt refl
--lem-wf-AType (AFun α α₁) = WF.wf-fun (AFun α α₁) α α₁ refl (stat≤bt (btof α))
-- (stat≤bt (btof α₁))
-- (lem-wf-AType α)
-- (lem-wf-AType α₁)
--lem-wf-AType (D Int) = WF.wf-int (D Int) refl
--lem-wf-AType (D (Fun x x₁)) = WF.wf-fun (D (Fun x x₁))
-- (D x) (D x₁)
-- refl (bt≤bt dyn) (bt≤bt dyn)
-- (lem-wf-AType (D x))
-- (lem-wf-AType (D x₁))
-----------------------------------------
-- Note that [lem-wf-AType] is based upon
-- a modified [wf]
-----------------------------------------
-}
|
{
"alphanum_fraction": 0.5055176038,
"avg_line_length": 37.6831683168,
"ext": "agda",
"hexsha": "66841e8c3e96b732908b5da779f673faea4d5414",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z",
"max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "luminousfennell/polybta",
"max_forks_repo_path": "AnnotatedTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "luminousfennell/polybta",
"max_issues_repo_path": "AnnotatedTypes.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "luminousfennell/polybta",
"max_stars_repo_path": "AnnotatedTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z",
"num_tokens": 1324,
"size": 3806
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor hiding (id)
-- Cocone over a Functor F (from shape category J into category C)
module Categories.Diagram.Cocone
{o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where
open Category C
open Functor F
open import Level
record Coapex (N : Obj) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where
field
ψ : (X : Category.Obj J) → F₀ X ⇒ N
commute : ∀ {X Y} (f : J [ X , Y ]) → ψ Y ∘ F₁ f ≈ ψ X
record Cocone : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where
field
{N} : Obj
coapex : Coapex N
open Coapex coapex public
open Coapex
open Cocone
record Cocone⇒ (c c′ : Cocone) : Set (ℓ ⊔ e ⊔ o′) where
field
arr : N c ⇒ N c′
commute : ∀ {X} → arr ∘ ψ c X ≈ ψ c′ X
open Cocone⇒
|
{
"alphanum_fraction": 0.5802919708,
"avg_line_length": 22.8333333333,
"ext": "agda",
"hexsha": "9e4e1c4993f823d6996c0446502afe46036aed32",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Cocone.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Cocone.agda",
"max_line_length": 89,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Cocone.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 329,
"size": 822
}
|
module CompilingCoinduction where
open import Common.Coinduction
open import Common.Char
open import Common.String
data Unit : Set where
unit : Unit
{-# COMPILED_DATA Unit () () #-}
postulate
IO : Set → Set
{-# COMPILED_TYPE IO IO #-}
{-# BUILTIN IO IO #-}
{-# IMPORT Data.Text.IO #-}
postulate
putStrLn : ∞ String → IO Unit
{-# COMPILED putStrLn Data.Text.IO.putStrLn #-}
{-# COMPILED_UHC putStrLn (UHC.Agda.Builtins.primPutStrLn) #-}
{-# COMPILED_JS putStrLn function(x) { return function(cb) { process.stdout.write(x(0) + "\n"); cb(0); }; } #-}
main = putStrLn (♯ "a")
|
{
"alphanum_fraction": 0.6683673469,
"avg_line_length": 20.275862069,
"ext": "agda",
"hexsha": "431cc9c8d68cb15c1bc77bc987c1c9abffe2b3b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Compiler/simple/CompilingCoinduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 163,
"size": 588
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core lemmas for division and modulus operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.DivMod.Core where
open import Agda.Builtin.Nat using ()
renaming (div-helper to divₕ; mod-helper to modₕ)
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
open ≤-Reasoning
-------------------------------------------------------------------------
-- Helper lemmas that have no interpretation for _%_, only for modₕ
private
mod-cong₃ : ∀ {c n a₁ a₂ b} → a₁ ≡ a₂ → modₕ c n a₁ b ≡ modₕ c n a₂ b
mod-cong₃ refl = refl
modₕ-skipTo0 : ∀ acc n a b → modₕ acc n (b + a) a ≡ modₕ (a + acc) n b 0
modₕ-skipTo0 acc n zero b = cong (λ v → modₕ acc n v 0) (+-identityʳ b)
modₕ-skipTo0 acc n (suc a) b = begin-equality
modₕ acc n (b + suc a) (suc a) ≡⟨ mod-cong₃ (+-suc b a) ⟩
modₕ acc n (suc b + a) (suc a) ≡⟨⟩
modₕ (suc acc) n (b + a) a ≡⟨ modₕ-skipTo0 (suc acc) n a b ⟩
modₕ (a + suc acc) n b 0 ≡⟨ cong (λ v → modₕ v n b 0) (+-suc a acc) ⟩
modₕ (suc a + acc) n b 0 ∎
-------------------------------------------------------------------------
-- Lemmas for modₕ that also have an interpretation for _%_
a[modₕ]1≡0 : ∀ a → modₕ 0 0 a 0 ≡ 0
a[modₕ]1≡0 zero = refl
a[modₕ]1≡0 (suc a) = a[modₕ]1≡0 a
n[modₕ]n≡0 : ∀ acc v → modₕ acc (acc + v) (suc v) v ≡ 0
n[modₕ]n≡0 acc v = modₕ-skipTo0 acc (acc + v) v 1
a[modₕ]n<n : ∀ acc d n → modₕ acc (acc + n) d n ≤ acc + n
a[modₕ]n<n acc zero n = m≤m+n acc n
a[modₕ]n<n acc (suc d) zero = a[modₕ]n<n zero d (acc + 0)
a[modₕ]n<n acc (suc d) (suc n) rewrite +-suc acc n = a[modₕ]n<n (suc acc) d n
a[modₕ]n≤a : ∀ acc a n → modₕ acc (acc + n) a n ≤ acc + a
a[modₕ]n≤a acc zero n = ≤-reflexive (sym (+-identityʳ acc))
a[modₕ]n≤a acc (suc a) (suc n) = begin
modₕ acc (acc + suc n) (suc a) (suc n) ≡⟨ cong (λ v → modₕ acc v (suc a) (suc n)) (+-suc acc n) ⟩
modₕ acc (suc acc + n) (suc a) (suc n) ≤⟨ a[modₕ]n≤a (suc acc) a n ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
a[modₕ]n≤a acc (suc a) zero = begin
modₕ acc (acc + 0) (suc a) 0 ≡⟨ cong (λ v → modₕ acc v (suc a) 0) (+-identityʳ acc) ⟩
modₕ acc acc (suc a) 0 ≤⟨ a[modₕ]n≤a 0 a acc ⟩
a ≤⟨ n≤1+n a ⟩
suc a ≤⟨ m≤n+m (suc a) acc ⟩
acc + suc a ∎
a≤n⇒a[modₕ]n≡a : ∀ acc n a b → modₕ acc n a (a + b) ≡ acc + a
a≤n⇒a[modₕ]n≡a acc n zero b = sym (+-identityʳ acc)
a≤n⇒a[modₕ]n≡a acc n (suc a) b = begin-equality
modₕ (suc acc) n a (a + b) ≡⟨ a≤n⇒a[modₕ]n≡a (suc acc) n a b ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
modₕ-idem : ∀ acc a n → modₕ 0 (acc + n) (modₕ acc (acc + n) a n) (acc + n) ≡ modₕ acc (acc + n) a n
modₕ-idem acc zero n = a≤n⇒a[modₕ]n≡a 0 (acc + n) acc n
modₕ-idem acc (suc a) zero rewrite +-identityʳ acc = modₕ-idem 0 a acc
modₕ-idem acc (suc a) (suc n) rewrite +-suc acc n = modₕ-idem (suc acc) a n
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 : ∀ acc l n → modₕ acc (acc + l) (suc n) l ≡ 0 → modₕ acc (acc + l) n l ≡ acc + l
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc zero zero eq rewrite +-identityʳ acc = refl
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc zero (suc n) eq rewrite +-identityʳ acc = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 acc n eq
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc (suc l) (suc n) eq rewrite +-suc acc l = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 (suc acc) l n eq
k<1+a[modₕ]n⇒k≤a[modₕ]n : ∀ acc k n l → suc k ≤ modₕ acc (acc + l) (suc n) l → k ≤ modₕ acc (acc + l) n l
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k zero (suc l) (s≤s leq) = leq
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k (suc n) zero leq rewrite +-identityʳ acc = k<1+a[modₕ]n⇒k≤a[modₕ]n 0 k n acc leq
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k (suc n) (suc l) leq rewrite +-suc acc l = k<1+a[modₕ]n⇒k≤a[modₕ]n (suc acc) k n l leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k : ∀ acc k n l → 0 < modₕ acc (acc + l) (suc n) l →
modₕ acc (acc + l) (suc n) l ≤ suc k → modₕ acc (acc + l) n l ≤ k
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k zero (suc l) 0<mod (s≤s leq) = leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k (suc n) zero 0<mod leq rewrite +-identityʳ acc = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 k n acc 0<mod leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k (suc n) (suc l) 0<mod leq rewrite +-suc acc l = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k (suc acc) k n l 0<mod leq
a+n[modₕ]n≡a[modₕ]n : ∀ acc a n → modₕ acc (acc + n) (acc + a + suc n) n ≡ modₕ acc (acc + n) a n
a+n[modₕ]n≡a[modₕ]n acc zero n rewrite +-identityʳ acc = begin-equality
modₕ acc (acc + n) (acc + suc n) n ≡⟨ mod-cong₃ (+-suc acc n) ⟩
modₕ acc (acc + n) (suc acc + n) n ≡⟨ modₕ-skipTo0 acc (acc + n) n (suc acc) ⟩
modₕ (acc + n) (acc + n) (suc acc) 0 ≡⟨⟩
modₕ 0 (acc + n) acc (acc + n) ≡⟨ a≤n⇒a[modₕ]n≡a 0 (acc + n) acc n ⟩
acc ∎
a+n[modₕ]n≡a[modₕ]n acc (suc a) zero rewrite +-identityʳ acc = begin-equality
modₕ acc acc (acc + suc a + 1) 0 ≡⟨ mod-cong₃ (+-comm (acc + suc a) 1) ⟩
modₕ acc acc (1 + (acc + suc a)) 0 ≡⟨⟩
modₕ 0 acc (acc + suc a) acc ≡⟨ mod-cong₃ (+-comm acc (suc a)) ⟩
modₕ 0 acc (suc a + acc) acc ≡⟨ mod-cong₃ (sym (+-suc a acc)) ⟩
modₕ 0 acc (a + suc acc) acc ≡⟨ a+n[modₕ]n≡a[modₕ]n 0 a acc ⟩
modₕ 0 acc a acc ∎
a+n[modₕ]n≡a[modₕ]n acc (suc a) (suc n) rewrite +-suc acc n = begin-equality
mod₁ (acc + suc a + (2 + n)) (suc n) ≡⟨ cong (λ v → mod₁ (v + suc (suc n)) (suc n)) (+-suc acc a) ⟩
mod₁ (suc acc + a + (2 + n)) (suc n) ≡⟨⟩
mod₂ (acc + a + (2 + n)) n ≡⟨ mod-cong₃ (sym (+-assoc (acc + a) 1 (suc n))) ⟩
mod₂ (acc + a + 1 + suc n) n ≡⟨ mod-cong₃ (cong (_+ suc n) (+-comm (acc + a) 1)) ⟩
mod₂ (suc acc + a + suc n) n ≡⟨ a+n[modₕ]n≡a[modₕ]n (suc acc) a n ⟩
mod₂ a n ∎
where
mod₁ = modₕ acc (suc acc + n)
mod₂ = modₕ (suc acc) (suc acc + n)
-------------------------------------------------------------------------
-- Helper lemmas that have no interpretation for `_/_`, only for `divₕ`
private
div-cong₃ : ∀ {c n a₁ a₂ b} → a₁ ≡ a₂ → divₕ c n a₁ b ≡ divₕ c n a₂ b
div-cong₃ refl = refl
divₕ-restart : ∀ {acc} d n j → j < n → divₕ acc d n j ≡ divₕ (suc acc) d (n ∸ suc j) d
divₕ-restart d (suc n) zero j<n = refl
divₕ-restart d (suc n) (suc j) (s≤s j<n) = divₕ-restart d n j j<n
divₕ-finish : ∀ {acc} d n j → j ≥ n → divₕ acc d n j ≡ acc
divₕ-finish d zero j j≥n = refl
divₕ-finish d (suc n) (suc j) (s≤s j≥n) = divₕ-finish d n j j≥n
acc≤divₕ[acc] : ∀ {acc} d n j → acc ≤ divₕ acc d n j
acc≤divₕ[acc] {acc} d zero j = ≤-refl
acc≤divₕ[acc] {acc} d (suc n) zero = ≤-trans (n≤1+n acc) (acc≤divₕ[acc] d n d)
acc≤divₕ[acc] {acc} d (suc n) (suc j) = acc≤divₕ[acc] d n j
divₕ-extractAcc : ∀ acc d n j → divₕ acc d n j ≡ acc + divₕ 0 d n j
divₕ-extractAcc acc d zero j = sym (+-identityʳ acc)
divₕ-extractAcc acc d (suc n) (suc j) = divₕ-extractAcc acc d n j
divₕ-extractAcc acc d (suc n) zero = begin-equality
divₕ (suc acc) d n d ≡⟨ divₕ-extractAcc (suc acc) d n d ⟩
suc acc + divₕ 0 d n d ≡⟨ sym (+-suc acc _) ⟩
acc + suc (divₕ 0 d n d) ≡⟨ cong (acc +_) (sym (divₕ-extractAcc 1 d n d)) ⟩
acc + divₕ 1 d n d ∎
pattern inj₂′ x = inj₂ (inj₁ x)
pattern inj₃ x = inj₂ (inj₂ x)
-- This hideous lemma details the conditions needed for two divisions to
-- be equal when the two offsets (i.e. the 4ᵗʰ parameters) are different.
-- It may be that this triple sum has an elegant simplification to a
-- set of inequalities involving the modulus but I can't find it.
divₕ-offsetEq : ∀ {acc₁ acc₂} d n j k → j ≤ d → k ≤ d →
(acc₁ ≡ acc₂ × j ≤ k × k < modₕ 0 d n d) ⊎
(acc₁ ≡ acc₂ × modₕ 0 d n d ≤ j × j ≤ k) ⊎
(acc₁ ≡ suc acc₂ × k < modₕ 0 d n d × modₕ 0 d n d ≤ j) →
divₕ acc₁ d n j ≡ divₕ acc₂ d n k
divₕ-offsetEq d zero j k j≤d k≤d (inj₁ (refl , _)) = refl
divₕ-offsetEq d zero j k j≤d k≤d (inj₂′ (refl , _)) = refl
divₕ-offsetEq d zero j k j≤d k≤d (inj₃ (eq , () , _))
-- (0 , 0) cases
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₁ (refl , _)) =
divₕ-offsetEq d n d d ≤-refl ≤-refl (inj₂′ (refl , a[modₕ]n<n 0 n d , ≤-refl))
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₂′ (refl , _)) =
divₕ-offsetEq d n d d ≤-refl ≤-refl (inj₂′ (refl , a[modₕ]n<n 0 n d , ≤-refl))
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₃ (_ , 0<mod , mod≤0)) =
contradiction (<-transˡ 0<mod mod≤0) λ()
-- (0 , suc) cases
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₁ (refl , _ , 1+k<mod)) =
divₕ-offsetEq d n d k ≤-refl (<⇒≤ k≤d) (inj₃ (refl , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d 1+k<mod , a[modₕ]n<n 0 n d))
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₂′ (refl , mod≤0 , _)) =
divₕ-offsetEq d n d k ≤-refl (<⇒≤ k≤d) (inj₃ (refl , subst (k <_) (sym (a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 d n (n≤0⇒n≡0 mod≤0))) k≤d , a[modₕ]n<n 0 n d))
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₃ (_ , 1+k<mod , mod≤0)) =
contradiction (<-transˡ 1+k<mod mod≤0) λ()
-- (suc , 0) cases
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₁ (_ , () , _))
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₂′ (_ , _ , ()))
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₃ (eq , 0<mod , mod≤1+j)) =
divₕ-offsetEq d n j d (<⇒≤ j≤d) ≤-refl (inj₂′ (eq , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d 0<mod mod≤1+j , <⇒≤ j≤d))
-- (suc , suc) cases
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₁ (eq , s≤s j≤k , 1+k<mod)) =
divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₁ (eq , j≤k , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d 1+k<mod))
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₂′ (eq , mod≤1+j , (s≤s j≤k))) with modₕ 0 d (suc n) d ≟ 0
... | yes mod≡0 = divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₁ (eq , j≤k , subst (k <_) (sym (a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 d n mod≡0)) k≤d))
... | no mod≢0 = divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₂′ (eq , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d (n≢0⇒n>0 mod≢0) mod≤1+j , j≤k))
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₃ (eq , k<mod , mod≤1+j)) =
divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₃ (eq , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d k<mod , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d (<-transʳ z≤n k<mod) mod≤1+j))
-------------------------------------------------------------------------
-- Lemmas for divₕ that also have an interpretation for _/_
-- The quotient and remainder are related to the dividend and
-- divisor in the right way.
div-mod-lemma : ∀ accᵐ accᵈ d n →
accᵐ + accᵈ * suc (accᵐ + n) + d ≡
modₕ accᵐ (accᵐ + n) d n + divₕ accᵈ (accᵐ + n) d n * suc (accᵐ + n)
div-mod-lemma accᵐ accᵈ zero n = +-identityʳ _
div-mod-lemma accᵐ accᵈ (suc d) zero rewrite +-identityʳ accᵐ = begin-equality
accᵐ + accᵈ * suc accᵐ + suc d ≡⟨ +-suc _ d ⟩
suc accᵈ * suc accᵐ + d ≡⟨ div-mod-lemma zero (suc accᵈ) d accᵐ ⟩
modₕ 0 accᵐ d accᵐ +
divₕ (suc accᵈ) accᵐ d accᵐ * suc accᵐ ≡⟨⟩
modₕ accᵐ accᵐ (suc d) 0 +
divₕ accᵈ accᵐ (suc d) 0 * suc accᵐ ∎
div-mod-lemma accᵐ accᵈ (suc d) (suc n) rewrite +-suc accᵐ n = begin-equality
accᵐ + accᵈ * m + suc d ≡⟨ +-suc _ d ⟩
suc (accᵐ + accᵈ * m + d) ≡⟨ div-mod-lemma (suc accᵐ) accᵈ d n ⟩
modₕ _ _ d n + divₕ accᵈ _ d n * m ∎
where
m = 2 + accᵐ + n
n[divₕ]n≡1 : ∀ n m → divₕ 0 n (suc m) m ≡ 1
n[divₕ]n≡1 n zero = refl
n[divₕ]n≡1 n (suc m) = n[divₕ]n≡1 n m
a[divₕ]1≡a : ∀ acc a → divₕ acc 0 a 0 ≡ acc + a
a[divₕ]1≡a acc zero = sym (+-identityʳ acc)
a[divₕ]1≡a acc (suc a) = trans (a[divₕ]1≡a (suc acc) a) (sym (+-suc acc a))
a*n[divₕ]n≡a : ∀ acc a n → divₕ acc n (a * suc n) n ≡ acc + a
a*n[divₕ]n≡a acc zero n = sym (+-identityʳ acc)
a*n[divₕ]n≡a acc (suc a) n = begin-equality
divₕ acc n (suc a * suc n) n ≡⟨ divₕ-restart n (suc a * suc n) n (m≤m+n (suc n) _) ⟩
divₕ (suc acc) n (suc a * suc n ∸ suc n) n ≡⟨⟩
divₕ (suc acc) n (suc n + a * suc n ∸ suc n) n ≡⟨ div-cong₃ (m+n∸m≡n (suc n) (a * suc n)) ⟩
divₕ (suc acc) n (a * suc n) n ≡⟨ a*n[divₕ]n≡a (suc acc) a n ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
+-distrib-divₕ : ∀ acc k m n j → modₕ k (k + j) m j + modₕ 0 (k + j) n (k + j) < suc (k + j) →
divₕ acc (k + j) (m + n) j ≡ divₕ acc (k + j) m j + divₕ 0 (k + j) n (k + j)
+-distrib-divₕ acc k (suc m) n zero leq rewrite +-identityʳ k = +-distrib-divₕ (suc acc) 0 m n k leq
+-distrib-divₕ acc k (suc m) n (suc j) leq rewrite +-suc k j = +-distrib-divₕ acc (suc k) m n j leq
+-distrib-divₕ acc k zero n j leq = begin-equality
divₕ acc (k + j) n j ≡⟨ divₕ-extractAcc acc (k + j) n j ⟩
acc + divₕ 0 (k + j) n j ≡⟨ cong (acc +_) (divₕ-offsetEq _ n j _ (m≤n+m j k) ≤-refl case) ⟩
acc + divₕ 0 (k + j) n (k + j) ∎
where
case = inj₂′ (refl , +-cancelˡ-≤ (suc k) leq , m≤n+m j k)
divₕ-mono-≤ : ∀ {acc} k {m n o p} → m ≤ n → p ≤ o → divₕ acc (k + o) m o ≤ divₕ acc (k + p) n p
divₕ-mono-≤ {acc} k {0} {n} {_} {p} z≤n p≤o = acc≤divₕ[acc] (k + p) n p
divₕ-mono-≤ {acc} k {_} {_} {suc o} {suc p} (s≤s m≤n) (s≤s p≤o)
rewrite +-suc k o | +-suc k p = divₕ-mono-≤ (suc k) m≤n p≤o
divₕ-mono-≤ {acc} k {suc m} {suc n} {o} {0} (s≤s m≤n) z≤n with o <? suc m
... | no o≮1+m rewrite +-identityʳ k = begin
divₕ acc (k + o) (suc m) o ≡⟨ divₕ-finish (k + o) (suc m) o (≮⇒≥ o≮1+m) ⟩
acc ≤⟨ n≤1+n acc ⟩
suc acc ≤⟨ acc≤divₕ[acc] k n k ⟩
divₕ (suc acc) k n k ∎
... | yes o<1+m rewrite +-identityʳ k = begin
divₕ acc (k + o) (suc m) o ≡⟨ divₕ-restart (k + o) (suc m) o o<1+m ⟩
divₕ (suc acc) (k + o) (m ∸ o) (k + o) ≤⟨ divₕ-mono-≤ 0 (≤-trans (m∸n≤m m o) m≤n) (m≤m+n k o) ⟩
divₕ (suc acc) k n k ∎
|
{
"alphanum_fraction": 0.5132154006,
"avg_line_length": 54.8098859316,
"ext": "agda",
"hexsha": "ed049b0a09eb2bc987e9291a61adf7702b63dcfa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/DivMod/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/DivMod/Core.agda",
"max_line_length": 168,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/DivMod/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 7310,
"size": 14415
}
|
module HostRequirements where
open import Agda.Builtin.Unit
open import Data.String as String using (String)
open import Category.Applicative
open import Category.Monad
open import Category.Monad.State
data Path : Set where
MkPath : String -> Path
data Value : Set where
MkValue : String -> Value
data Identifier : Set where
MkIdentifier : String -> Identifier
separator : String
separator = "/"
data Env : Set where
MkEnv : Env
{-
get : Path -> State Env Value
get path = return (MkValue "")
set : Path -> Value -> State Env ⊤
set path value = return ⊤
delete : Path -> State Env ⊤
delete path = return ⊤
getConsensusState : State Env ConsensusState
getConsensusState = ?
getCallingModule : State Env Identifier
getCallingModule = return (MkIdentifier "")
-}
|
{
"alphanum_fraction": 0.7329910141,
"avg_line_length": 19.475,
"ext": "agda",
"hexsha": "4ea8045950e0ad1ed9246fcc07e8eccb10c18e9b",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-10T07:34:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-28T09:22:42.000Z",
"max_forks_repo_head_hexsha": "9a83c83d567f1c09eb23d51c8eae905a91fc0816",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dogemos/ics",
"max_forks_repo_path": "spec/ics-024-host-requirements/HostRequirements.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "9a83c83d567f1c09eb23d51c8eae905a91fc0816",
"max_issues_repo_issues_event_max_datetime": "2020-01-15T06:18:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-09-28T09:38:57.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dogemos/ics",
"max_issues_repo_path": "spec/ics-024-host-requirements/HostRequirements.agda",
"max_line_length": 48,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "9a83c83d567f1c09eb23d51c8eae905a91fc0816",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dogemos/ics",
"max_stars_repo_path": "spec/ics-024-host-requirements/HostRequirements.agda",
"max_stars_repo_stars_event_max_datetime": "2020-01-07T10:54:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-09-22T06:14:38.000Z",
"num_tokens": 193,
"size": 779
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.DirectProd where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.DirectProd
open import Cubical.Algebra.CommRing.Base
private
variable
ℓ ℓ' : Level
module _
(A'@(A , Ar) : CommRing ℓ)
(B'@(B , Br) : CommRing ℓ')
where
AB = DirectProd-Ring (CommRing→Ring A') (CommRing→Ring B')
open RingStr (snd AB) using ()
renaming
( 0r to 0AB
; 1r to 1AB
; _+_ to _+AB_
; -_ to -AB_
; _·_ to _·AB_
; +Assoc to +ABAssoc
; +IdL to +ABIdL
; +IdR to +ABIdR
; +InvL to +ABInvL
; +InvR to +ABInvR
; +Comm to +ABComm
; ·Assoc to ·ABAssoc
; ·IdR to ·ABIdR
; ·IdL to ·ABIdL
; ·DistR+ to ·ABDistR+
; ·DistL+ to ·ABDistL+
; is-set to isSetAB )
DirectProd-CommRing : CommRing (ℓ-max ℓ ℓ')
fst DirectProd-CommRing = A × B
CommRingStr.0r (snd DirectProd-CommRing) = 0AB
CommRingStr.1r (snd DirectProd-CommRing) = 1AB
CommRingStr._+_ (snd DirectProd-CommRing) = _+AB_
CommRingStr._·_ (snd DirectProd-CommRing) = _·AB_
CommRingStr.- snd DirectProd-CommRing = -AB_
CommRingStr.isCommRing (snd DirectProd-CommRing) =
makeIsCommRing
isSetAB
+ABAssoc
+ABIdR
+ABInvR
+ABComm
·ABAssoc
·ABIdR
·ABDistR+
λ x y i → (CommRingStr.·Comm Ar (fst x) (fst y) i) , (CommRingStr.·Comm Br (snd x) (snd y) i)
|
{
"alphanum_fraction": 0.6067708333,
"avg_line_length": 26.0338983051,
"ext": "agda",
"hexsha": "bd6b213846a0c789456f774d394b74c73960e2f6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/DirectProd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/DirectProd.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/DirectProd.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 571,
"size": 1536
}
|
-- Operators for combining and building families
module SOAS.Families.Build {T : Set} where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Sorting {T}
open import SOAS.Families.Core {T}
-- | Metavariable contexts
-- Inductive construction of context- and type-indexed sets
data MCtx : Set where
⁅⁆ : MCtx
⁅_⊩ₙ_⁆_ : (Π : Ctx {T}) → (τ : T) → MCtx → MCtx
infixr 7 ⁅_⊩ₙ_⁆_
-- Pattern synonym for parameterless elements and final elements
infixr 10 ⁅_⁆̣ ⁅_⊩ₙ_⁆̣
infixr 7 ⁅_⁆_ ⁅_⊩_⁆_ ⁅_·_⊩_⁆_ ⁅_⊩_⁆̣ ⁅_·_⊩_⁆̣ _⁅_⊩ₙ_⁆
pattern ⁅_⁆̣ α = ⁅ ∅ ⊩ₙ α ⁆ ⁅⁆
pattern ⁅_⊩ₙ_⁆̣ Π α = ⁅ Π ⊩ₙ α ⁆ ⁅⁆
pattern ⁅_⁆_ τ 𝔐 = ⁅ ∅ ⊩ₙ τ ⁆ 𝔐
pattern ⁅_⊩_⁆_ τ α 𝔐 = ⁅ ⌊ τ ⌋ ⊩ₙ α ⁆ 𝔐
pattern ⁅_·_⊩_⁆_ τ₁ τ₂ α 𝔐 = ⁅ ⌊ τ₁ ∙ τ₂ ⌋ ⊩ₙ α ⁆ 𝔐
pattern ⁅_⊩_⁆̣ τ α = ⁅ ⌊ τ ⌋ ⊩ₙ α ⁆ ⁅⁆
pattern ⁅_·_⊩_⁆̣ τ₁ τ₂ α = ⁅ ⌊ τ₁ ∙ τ₂ ⌋ ⊩ₙ α ⁆ ⁅⁆
-- Add type-context pair to the end of the metavariable context
_⁅_⊩ₙ_⁆ : MCtx → Ctx {T} → T → MCtx
⁅⁆ ⁅ Γ ⊩ₙ α ⁆ = ⁅ Γ ⊩ₙ α ⁆̣
(⁅ Π ⊩ₙ τ ⁆ 𝔐) ⁅ Γ ⊩ₙ α ⁆ = ⁅ Π ⊩ₙ τ ⁆ (𝔐 ⁅ Γ ⊩ₙ α ⁆)
private
variable
Γ Δ Θ Π : Ctx
α β γ τ : T
𝔐 : MCtx
-- Membership of metavariable contexts
data _⊩_∈_ : Ctx → T → MCtx → Set where
↓ : Π ⊩ τ ∈ (⁅ Π ⊩ₙ τ ⁆ 𝔐)
↑_ : Π ⊩ τ ∈ 𝔐 → Π ⊩ τ ∈ (⁅ Γ ⊩ₙ α ⁆ 𝔐)
infixr 220 ↑_
-- Metavariable context can be interpreted as a family via the membership
∥_∥ : MCtx → Familyₛ
∥ 𝔐 ∥ α Γ = Γ ⊩ α ∈ 𝔐
infixr 60 ∥_∥
_▷_ : MCtx → (Familyₛ → Familyₛ) → Familyₛ
𝔐 ▷ 𝒳 = 𝒳 ∥ 𝔐 ∥
infix 4 _▷_
-- Generalised sums and pattern matching
data +₂ (A B : Set) : Set where
_₁ : A → +₂ A B
_₂ : B → +₂ A B
data +₃ (A B C : Set) : Set where
_₁ : A → +₃ A B C
_₂ : B → +₃ A B C
_₃ : C → +₃ A B C
data +₄ (A B C D : Set) : Set where
_₁ : A → +₄ A B C D
_₂ : B → +₄ A B C D
_₃ : C → +₄ A B C D
_₄ : D → +₄ A B C D
infixr 60 _₁
infixr 60 _₂
infixr 60 _₃
infixr 60 _₄
₂| : {A B : Set}{X : Set} → (A → X) → (B → X) → (+₂ A B → X)
₂| f g (a ₁) = f a
₂| f g (b ₂) = g b
₃| : {A B C : Set}{X : Set} → (A → X) → (B → X) → (C → X) → (+₃ A B C → X)
₃| f g h (a ₁) = f a
₃| f g h (b ₂) = g b
₃| f g h (c ₃) = h c
₄| : {A B C D : Set}{X : Set} → (A → X) → (B → X) → (C → X) → (D → X) → (+₄ A B C D → X)
₄| f g h e (a ₁) = f a
₄| f g h e (b ₂) = g b
₄| f g h e (c ₃) = h c
₄| f g h e (d ₄) = e d
pattern _ₛ 𝔪 = 𝔪 ₁
pattern _ₘ 𝔪 = 𝔪 ₂
infixr 60 _ₛ
infixr 60 _ₘ
-- Empty and unit families
data Ø : Familyₛ where
data _⊪_ (Γ : Ctx)(α : T) : Familyₛ where
● : (Γ ⊪ α) α Γ
⊪_ : T → Familyₛ
⊪ α = ∅ ⊪ α
infix 20 _⊪_
infix 20 ⊪_
-- Sum of families
infix 10 _⊹_
infix 10 _⊹_⊹_
infix 10 _⊹_⊹_⊹_
_⊹_ : Familyₛ → Familyₛ → Familyₛ
(𝒳 ⊹ 𝒴) α Γ = +₂ (𝒳 α Γ) (𝒴 α Γ)
_⊹₁_ : {𝒳₁ 𝒳₂ 𝒴₁ 𝒴₂ : Familyₛ} → (𝒳₁ ⇾̣ 𝒳₂) → (𝒴₁ ⇾̣ 𝒴₂)
→ (𝒳₁ ⊹ 𝒴₁) ⇾̣ (𝒳₂ ⊹ 𝒴₂)
(f ⊹₁ g) (x ₁) = (f x) ₁
(f ⊹₁ g) (y ₂) = (g y) ₂
_⊹_⊹_ : Familyₛ → Familyₛ → Familyₛ → Familyₛ
(𝒳 ⊹ 𝒴 ⊹ 𝒵) α Γ = +₃ (𝒳 α Γ) (𝒴 α Γ) (𝒵 α Γ)
_⊹_⊹_⊹_ : Familyₛ → Familyₛ → Familyₛ → Familyₛ → Familyₛ
(𝒳 ⊹ 𝒴 ⊹ 𝒵 ⊹ 𝒲) α Γ = +₄ (𝒳 α Γ) (𝒴 α Γ) (𝒵 α Γ) (𝒲 α Γ)
|
{
"alphanum_fraction": 0.5087248322,
"avg_line_length": 22.5757575758,
"ext": "agda",
"hexsha": "3fe8da1abe7a99a34d1d710a6540f7dd531116d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "SOAS/Families/Build.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "SOAS/Families/Build.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "SOAS/Families/Build.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1842,
"size": 2980
}
|
module Data.Num.Properties where
open import Data.Num
open import Data.Num.Core
open import Data.Num.Next
open import Data.Num.Continuous
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties.Extra
open import Data.Fin.Properties hiding (setoid; _≟_)
open import Data.Nat.DM
open import Data.Fin as Fin
using (Fin; #_; fromℕ≤; inject≤)
renaming (zero to z; suc to s)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥)
open import Function
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Nullary.Negation
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_)
open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl)
-- start
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- □
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
-- toℕ-⊹-ℤₙ-homo : ∀ {o}
-- → (xs ys : Numeral 1 1 o)
-- → ⟦ ⊹-ℤₙ xs ys ⟧ ≡ ⟦ xs ⟧ + ⟦ ys ⟧
-- toℕ-⊹-ℤₙ-homo {o} (x ∙) ys =
-- begin
-- Digit-toℕ x o + ⟦ ys ⟧ * 1
-- ≡⟨ cong (_+_ (Digit-toℕ x o)) (*-right-identity ⟦ ys ⟧) ⟩
-- Digit-toℕ x o + ⟦ ys ⟧
-- ∎
-- toℕ-⊹-ℤₙ-homo {o} (x ∷ xs) ys =
-- begin
-- Digit-toℕ x o + ⟦ ⊹-ℤₙ xs ys ⟧ * 1
-- ≡⟨ cong (λ w → Digit-toℕ x o + w * 1) (toℕ-⊹-ℤₙ-homo xs ys) ⟩
-- Digit-toℕ x o + (⟦ xs ⟧ + ⟦ ys ⟧) * 1
-- ≡⟨ cong (_+_ (Digit-toℕ x o)) (distribʳ-*-+ 1 ⟦ xs ⟧ ⟦ ys ⟧) ⟩
-- Digit-toℕ x o + (⟦ xs ⟧ * 1 + ⟦ ys ⟧ * 1)
-- ≡⟨ cong (λ w → Digit-toℕ x o + (⟦ xs ⟧ * 1 + w)) (*-right-identity ⟦ ys ⟧) ⟩
-- Digit-toℕ x o + (⟦ xs ⟧ * 1 + ⟦ ys ⟧)
-- ≡⟨ sym (+-assoc (Digit-toℕ x o) (⟦ xs ⟧ * 1) ⟦ ys ⟧) ⟩
-- Digit-toℕ x o + ⟦ xs ⟧ * 1 + ⟦ ys ⟧
-- ∎
toℕ-⊹-Proper-homo : ∀ {b d o}
→ (¬gapped : ¬ (Gapped#0 b d o))
→ (proper : suc d + o ≥ 2)
→ (xs ys : Numeral (suc b) (suc d) o)
→ ⟦ ⊹-Proper ¬gapped proper xs ys ⟧ ≡ ⟦ xs ⟧ + ⟦ ys ⟧
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∙) ys = n+-Proper-toℕ ¬gapped proper x ys
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∙) =
begin
⟦ n+-Proper ¬gapped proper y (x ∷ xs) ⟧
≡⟨ n+-Proper-toℕ ¬gapped proper y (x ∷ xs) ⟩
Digit-toℕ y o + (Digit-toℕ x o + ⟦ xs ⟧ * suc b)
≡⟨ +-comm (Digit-toℕ y o) (Digit-toℕ x o + ⟦ xs ⟧ * suc b) ⟩
Digit-toℕ x o + ⟦ xs ⟧ * suc b + Digit-toℕ y o
∎
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∷ ys) with sumView b d o ¬gapped proper x y
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∷ ys) | NoCarry leftover property =
begin
Digit-toℕ leftover o + ⟦ ⊹-Proper ¬gapped proper xs ys ⟧ * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + w * suc b) (toℕ-⊹-Proper-homo ¬gapped proper xs ys) ⟩
Digit-toℕ leftover o + (⟦ xs ⟧ + ⟦ ys ⟧) * suc b
≡⟨ cong (λ w → w + (⟦ xs ⟧ + ⟦ ys ⟧) * suc b) property ⟩
Digit-toℕ x o + (Digit-toℕ y o) + (⟦ xs ⟧ + ⟦ ys ⟧) * suc b
≡⟨ cong (λ w → Digit-toℕ x o + (Digit-toℕ y o) + w) (distribʳ-*-+ (suc b) ⟦ xs ⟧ ⟦ ys ⟧) ⟩
(Digit-toℕ x o) + (Digit-toℕ y o) + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)
≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ y o) (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b) ⟩
Digit-toℕ x o + (Digit-toℕ y o + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b))
≡⟨ cong (λ w → Digit-toℕ x o + w) (a+[b+c]≡b+[a+c] (Digit-toℕ y o) (⟦ xs ⟧ * suc b) (⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + (⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b))
≡⟨ sym (+-assoc (Digit-toℕ x o) (⟦ xs ⟧ * suc b) (Digit-toℕ y o + ⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + ⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b)
∎
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∷ ys) | Fixed leftover carry property =
begin
Digit-toℕ leftover o + ⟦ n+-Proper ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys) ⟧ * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + w * suc b) (n+-Proper-toℕ ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys)) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o + ⟦ ⊹-Proper ¬gapped proper xs ys ⟧) * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + (Digit-toℕ carry o + w) * suc b) (toℕ-⊹-Proper-homo ¬gapped proper xs ys) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o + (⟦ xs ⟧ + ⟦ ys ⟧)) * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + w) (distribʳ-*-+ (suc b) (Digit-toℕ carry o) (⟦ xs ⟧ + ⟦ ys ⟧)) ⟩
Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + (⟦ xs ⟧ + ⟦ ys ⟧) * suc b)
≡⟨ cong (λ w → Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + w)) (distribʳ-*-+ (suc b) ⟦ xs ⟧ ⟦ ys ⟧) ⟩
Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b))
≡⟨ sym (+-assoc (Digit-toℕ leftover o) ((Digit-toℕ carry o) * suc b) (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)
≡⟨ cong (λ w → w + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)) property ⟩
(Digit-toℕ x o) + (Digit-toℕ y o) + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)
≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ y o) (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b) ⟩
Digit-toℕ x o + (Digit-toℕ y o + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b))
≡⟨ cong (λ w → Digit-toℕ x o + w) (a+[b+c]≡b+[a+c] (Digit-toℕ y o) (⟦ xs ⟧ * suc b) (⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + (⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b))
≡⟨ sym (+-assoc (Digit-toℕ x o) (⟦ xs ⟧ * suc b) (Digit-toℕ y o + ⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + ⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b)
∎
toℕ-⊹-Proper-homo {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∷ ys) | Floating leftover carry property =
begin
Digit-toℕ leftover o + ⟦ n+-Proper ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys) ⟧ * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + w * suc b) (n+-Proper-toℕ ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys)) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o + ⟦ ⊹-Proper ¬gapped proper xs ys ⟧) * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + (Digit-toℕ carry o + w) * suc b) (toℕ-⊹-Proper-homo ¬gapped proper xs ys) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o + (⟦ xs ⟧ + ⟦ ys ⟧)) * suc b
≡⟨ cong (λ w → Digit-toℕ leftover o + w) (distribʳ-*-+ (suc b) (Digit-toℕ carry o) (⟦ xs ⟧ + ⟦ ys ⟧)) ⟩
Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + (⟦ xs ⟧ + ⟦ ys ⟧) * suc b)
≡⟨ cong (λ w → Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + w)) (distribʳ-*-+ (suc b) ⟦ xs ⟧ ⟦ ys ⟧) ⟩
Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b))
≡⟨ sym (+-assoc (Digit-toℕ leftover o) ((Digit-toℕ carry o) * suc b) (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)
≡⟨ cong (λ w → w + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)) property ⟩
(Digit-toℕ x o) + (Digit-toℕ y o) + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b)
≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ y o) (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b) ⟩
Digit-toℕ x o + (Digit-toℕ y o + (⟦ xs ⟧ * suc b + ⟦ ys ⟧ * suc b))
≡⟨ cong (λ w → Digit-toℕ x o + w) (a+[b+c]≡b+[a+c] (Digit-toℕ y o) (⟦ xs ⟧ * suc b) (⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + (⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b))
≡⟨ sym (+-assoc (Digit-toℕ x o) (⟦ xs ⟧ * suc b) (Digit-toℕ y o + ⟦ ys ⟧ * suc b)) ⟩
Digit-toℕ x o + ⟦ xs ⟧ * suc b + (Digit-toℕ y o + ⟦ ys ⟧ * suc b)
∎
-- _⊹_ : ∀ {b d o}
-- → {cond : N+Closed b d o}
-- → (xs ys : Numeral b d o)
-- → Numeral b d o
-- _⊹_ {b} {d} {o} {IsContinuous cont} xs ys with numView b d o
-- _⊹_ {cond = IsContinuous ()} xs ys | NullBase d o
-- _⊹_ {cond = IsContinuous cont} xs ys | NoDigits b o = NoDigits-explode xs
-- _⊹_ {cond = IsContinuous ()} xs ys | AllZeros b
-- _⊹_ {cond = IsContinuous cont} xs ys | Proper b d o proper with Gapped#0? b d o
-- _⊹_ {cond = IsContinuous ()} xs ys | Proper b d o proper | yes ¬gapped#0
-- _⊹_ {cond = IsContinuous cont} xs ys | Proper b d o proper | no ¬gapped#0 = ⊹-Proper (≤-pred (≰⇒> ¬gapped#0)) proper xs ys
-- _⊹_ {cond = ℤₙ} xs ys = ⊹-ℤₙ xs ys
toℕ-⊹-homo : ∀ {b d o}
→ (cont : True (Continuous? b d o))
→ (xs ys : Numeral b d o)
→ ⟦ _⊹_ {cont = cont} xs ys ⟧ ≡ ⟦ xs ⟧ + ⟦ ys ⟧
toℕ-⊹-homo {b} {d} {o} cont xs ys with numView b d o
toℕ-⊹-homo () xs ys | NullBase d o
toℕ-⊹-homo cont xs ys | NoDigits b o = NoDigits-explode xs
toℕ-⊹-homo () xs ys | AllZeros b
toℕ-⊹-homo cont xs ys | Proper b d o proper with Gapped#0? b d o
toℕ-⊹-homo () xs ys | Proper b d o proper | yes gapped#0
toℕ-⊹-homo cont xs ys | Proper b d o proper | no ¬gapped#0 = toℕ-⊹-Proper-homo ¬gapped#0 proper xs ys
-- toℕ-≋-ℕ⇒Num-lemma-1 : ∀ m n → m * suc n ≡ 0 → m ≡ 0
-- toℕ-≋-ℕ⇒Num-lemma-1 zero n p = refl
-- toℕ-≋-ℕ⇒Num-lemma-1 (suc m) n ()
--
--
-- toℕ-≋-ℕ⇒Num-lemma-2 : ∀ m n → m ≢ 0 → m + n ≢ 0
-- toℕ-≋-ℕ⇒Num-lemma-2 zero n p = contradiction refl p
-- toℕ-≋-ℕ⇒Num-lemma-2 (suc m) n p ()
--
-- toℕ-≋-ℕ⇒Numeral : ∀ {b d o}
-- → (xs ys : Numeral b d o)
-- → toℕ xs ≡ toℕ ys
-- → xs ≋ ys
-- toℕ-≋-ℕ⇒Numeral ∙ ∙ ⟦xs⟧≡⟦ys⟧ = tt
-- toℕ-≋-ℕ⇒Numeral {b} {zero} ∙ (() ∷ ys) ⟦∙⟧≡⟦y∷ys⟧
-- toℕ-≋-ℕ⇒Numeral {b} {suc d} {o} ∙ (y ∷ ys) ⟦∙⟧≡⟦y∷ys⟧ with Digit-toℕ y o ≟ 0
-- toℕ-≋-ℕ⇒Numeral {zero} {suc d} ∙ (y ∷ ys) ⟦∙⟧≡⟦y∷ys⟧ | yes p = tt
-- toℕ-≋-ℕ⇒Numeral {suc b} {suc d} {o} ∙ (y ∷ ys) ⟦∙⟧≡⟦y∷ys⟧ | yes p =
-- let ⟦ys⟧≡0 : toℕ ys * suc b ≡ 0
-- ⟦ys⟧≡0 =
-- begin
-- toℕ ys * suc b
-- ≡⟨ cong (λ w → w + toℕ ys * suc b) (sym p) ⟩
-- o + Fin.toℕ y + toℕ ys * suc b
-- ≡⟨ sym ⟦∙⟧≡⟦y∷ys⟧ ⟩
-- zero
-- ∎
-- in
-- toℕ-≋-ℕ⇒Numeral ∙ ys (sym (toℕ-≋-ℕ⇒Num-lemma-1 (toℕ ys) b ⟦ys⟧≡0))
-- toℕ-≋-ℕ⇒Numeral {b} {suc d} {o} ∙ (y ∷ ys) ⟦∙⟧≡⟦y∷ys⟧ | no ¬p = toℕ-≋-ℕ⇒Num-lemma-2 (Digit-toℕ y o) (toℕ ys * b) ¬p (sym ⟦∙⟧≡⟦y∷ys⟧)
-- toℕ-≋-ℕ⇒Numeral {b} {zero} (() ∷ xs) ∙ ⟦x∷xs⟧≡⟦∙⟧
-- toℕ-≋-ℕ⇒Numeral {b} {suc d} {o} (x ∷ xs) ∙ ⟦x∷xs⟧≡⟦∙⟧ with Digit-toℕ x o ≟ 0
-- toℕ-≋-ℕ⇒Numeral {zero} {suc d} (x ∷ xs) ∙ ⟦x∷xs⟧≡⟦∙⟧ | yes p = tt
-- toℕ-≋-ℕ⇒Numeral {suc b} {suc d} (x ∷ xs) ∙ ⟦x∷xs⟧≡⟦∙⟧ | yes p = {! !}
-- toℕ-≋-ℕ⇒Numeral {b} {suc d} (x ∷ xs) ∙ ⟦x∷xs⟧≡⟦∙⟧ | no ¬p = {! !}
-- toℕ-≋-ℕ⇒Numeral (x ∷ xs) (x₁ ∷ ys) ⟦xs⟧≡⟦ys⟧ = {! !}
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
-- start
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- □
|
{
"alphanum_fraction": 0.4822362985,
"avg_line_length": 46.156779661,
"ext": "agda",
"hexsha": "4ec417b015675fbd6e6fc2f19d82040a91c6f073",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Num/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Num/Properties.agda",
"max_line_length": 135,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Num/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 5394,
"size": 10893
}
|
-- Andreas, 2022-03-25, issue #5838, inconsistency in Cubical Agda.
-- Reported by Tom Jack: variant of test/Fail/Issue5838.agda.
{-# OPTIONS --safe --cubical #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Sigma
open import Agda.Primitive.Cubical
open import Agda.Primitive.Cubical public
renaming ( primIMin to _∧_ -- I → I → I
; primIMax to _∨_ -- I → I → I
; primINeg to ~_ -- I → I
; isOneEmpty to empty
; primComp to comp
; primHComp to hcomp
; primTransp to transp
; itIsOne to 1=1 )
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Glue; open Helpers public
open import Agda.Builtin.Cubical.Sub public
renaming ( inc to inS
; primSubOut to outS
)
---------------------------------------------------------------------------
-- Foundations
Type = Set
Path : (A : Type) → A → A → Type
Path A a b = PathP (λ _ → A) a b
isProp : Type → Type
isProp A = (x y : A) → x ≡ y
toPathP : {A : I → Type} {x : A i0} {y : A i1} → transp (λ i → A i) i0 x ≡ y → PathP A x y
toPathP {A = A} {x = x} p i =
hcomp (λ j → λ { (i = i0) → x
; (i = i1) → p j })
(transp (λ j → A (i ∧ j)) (~ i) x)
isProp→PathP : ∀ {B : I → Type} → ((i : I) → isProp (B i))
→ (b0 : B i0) (b1 : B i1)
→ PathP (λ i → B i) b0 b1
isProp→PathP hB b0 b1 = toPathP (hB _ _ _)
---------------------------------------------------------------------------
-- Equivalence
-- The identity equivalence
idIsEquiv : (A : Type) → isEquiv (λ (x : A) → x)
idIsEquiv A .equiv-proof y =
(y , refl) , λ z i → z .snd (~ i) , λ j → z .snd (~ i ∨ j)
idEquiv : (A : Type) → A ≃ A
idEquiv A .fst = λ x → x
idEquiv A .snd = idIsEquiv A
isPropIsEquiv : {A B : Type} (f : A → B) → isProp (isEquiv f)
isPropIsEquiv f p q i .equiv-proof y =
let p2 = p .equiv-proof y .snd
q2 = q .equiv-proof y .snd
in p2 (q .equiv-proof y .fst) i
, λ w j → hcomp (λ k → λ { (i = i0) → p2 w j
; (i = i1) → q2 w (j ∨ ~ k)
; (j = i0) → p2 (q2 w (~ k)) i
; (j = i1) → w })
(p2 w (i ∨ j))
equivEq : {A B : Type} {e f : A ≃ B} → (h : e .fst ≡ f .fst) → e ≡ f
equivEq {e = e} {f = f} h i =
h i , isProp→PathP (λ i → isPropIsEquiv (h i)) (e .snd) (f .snd) i
---------------------------------------------------------------------------
-- Univalence
Glue : (A : Type) {φ : I}
→ (Te : Partial φ (Σ Type λ T → T ≃ A))
→ Type
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
ua : ∀ {A B : Type} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e)
; (i = i1) → (B , idEquiv B) })
---------------------------------------------------------------------------
-- Isomorphisms
record Iso (A B : Type) : Type where
no-eta-equality
constructor iso
field
fun : A → B
inv : B → A
rightInv : ∀ b → fun (inv b) ≡ b
leftInv : ∀ a → inv (fun a) ≡ a
-- Any iso is an equivalence
module _ {A B : Type} (i : Iso A B) where
open Iso i renaming ( fun to f
; inv to g
; rightInv to s
; leftInv to t)
private
module _ (y : B) (x0 x1 : A) (p0 : f x0 ≡ y) (p1 : f x1 ≡ y) where
fill0 : I → I → A
fill0 i = hfill (λ k → λ { (i = i1) → t x0 k
; (i = i0) → g y })
(inS (g (p0 (~ i))))
fill1 : I → I → A
fill1 i = hfill (λ k → λ { (i = i1) → t x1 k
; (i = i0) → g y })
(inS (g (p1 (~ i))))
fill2 : I → I → A
fill2 i = hfill (λ k → λ { (i = i1) → fill1 k i1
; (i = i0) → fill0 k i1 })
(inS (g y))
p : x0 ≡ x1
p i = fill2 i i1
sq : I → I → A
sq i j = hcomp (λ k → λ { (i = i1) → fill1 j (~ k)
; (i = i0) → fill0 j (~ k)
; (j = i1) → t (fill2 i i1) (~ k)
; (j = i0) → g y })
(fill2 i j)
sq1 : I → I → B
sq1 i j = hcomp (λ k → λ { (i = i1) → s (p1 (~ j)) k
; (i = i0) → s (p0 (~ j)) k
; (j = i1) → s (f (p i)) k
; (j = i0) → s y k })
(f (sq i j))
lemIso : (x0 , p0) ≡ (x1 , p1)
lemIso i .fst = p i
lemIso i .snd = λ j → sq1 i (~ j)
isoToIsEquiv : isEquiv f
isoToIsEquiv .equiv-proof y .fst .fst = g y
isoToIsEquiv .equiv-proof y .fst .snd = s y
isoToIsEquiv .equiv-proof y .snd z = lemIso y (g y) (fst z) (s y) (snd z)
isoToEquiv : A ≃ B
isoToEquiv .fst = _
isoToEquiv .snd = isoToIsEquiv
---------------------------------------------------------------------------
-- Booleans
notEquiv : Bool ≃ Bool
notEquiv = isoToEquiv (iso not not notnot notnot)
where
not : Bool → Bool
not true = false
not false = true
notnot : ∀ x → not (not x) ≡ x
notnot true = refl
notnot false = refl
---------------------------------------------------------------------------
-- Circle
data S¹ : Type where
base : S¹
loop : base ≡ base
-- rot, used in the Hopf fibration
-- we will denote rotation by _·_
-- it is called μ in the HoTT-book in "8.5.2 The Hopf construction"
rotLoop : (a : S¹) → a ≡ a
rotLoop base = loop
rotLoop (loop i) j =
hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k)
; (i = i1) → loop (j ∧ k)
; (j = i0) → loop (i ∨ ~ k)
; (j = i1) → loop (i ∧ k)}) base
---------------------------------------------------------------------------
-- Inconsistency distilled from #5838
-- twisted-square : Path (Path Type S¹ S¹) refl refl -- needs Path in Type₁
twisted-square : (i j : I) → Type -- SLOW
twisted-square i j = Glue S¹ λ
{ (i = i0) → S¹ , equivEq {e = idEquiv S¹} {f = idEquiv S¹} (λ k x → rotLoop x k) j
; (i = i1) → S¹ , idEquiv S¹
; (j = i0) → S¹ , idEquiv S¹
; (j = i1) → S¹ , idEquiv S¹
}
DoubleCover : S¹ → Type
DoubleCover base = Bool
DoubleCover (loop i) = ua notEquiv i
-- @tomjack writes (2022-03-24):
-- Here is an addendum to Issue5838.agda which shows (I think?)
-- that compHCompU DoTransp also needs to be fixed:
twisted-square' : (i j : I) → Type
twisted-square' i j =
hcomp (λ k → λ { (i = i0) → twisted-square k j
; (i = i1) → S¹
; (j = i0) → S¹
; (j = i1) → S¹
})
S¹
-- Exploit an invalid reduction of transp on composition for the universe.
bad' : true ≡ false
bad' k = transp (λ i → DoubleCover (transp (λ j → twisted-square' i j) (k ∧ (i ∨ ~ i)) base)) i0 false
-- Expected:
-- false != true of type Bool
-- when checking the definition of bad'
-- This is test/Fail/Issue5838:
-- Exploit an invalid reduction of transp on Glue.
bad : true ≡ false
bad k = transp (λ i → DoubleCover (transp (λ j → twisted-square i j) (k ∧ (i ∨ ~ i)) base)) i0 false
-- Expected:
-- false != true of type Bool
-- when checking the definition of bad
|
{
"alphanum_fraction": 0.441857261,
"avg_line_length": 30.885106383,
"ext": "agda",
"hexsha": "ae23051a2851fea76f09e6dc701b317fe66c947f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5838b.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5838b.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5838b.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2489,
"size": 7258
}
|
open import Agda.Builtin.Equality
-- Case splitting should not remove implicit arguments
record ⊤ : Set where constructor tt
test₁ : {A : Set} → ⊤ → ⊤
test₁ {A} x = {!x!}
-- Case splitting on an implicit argument should make it visible
test₂ : {x : ⊤} → ⊤
test₂ = {!.x!}
-- Implicit variables in dot patterns should be replaced by _
postulate
A B : Set
f : A → B
test₃ : {x : A} (y : B) → f x ≡ y → B
test₃ y e = {!e!}
-- .. but not if they are bound inside the dot pattern
test₄ : (f : A → A) → f ≡ (λ x → x) → Set
test₄ f e = {!e!}
|
{
"alphanum_fraction": 0.6073394495,
"avg_line_length": 21.8,
"ext": "agda",
"hexsha": "176aabd31b9b6bf8af46533f60919716ee5727af",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/interaction/CaseSplitAndImplicits.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/interaction/CaseSplitAndImplicits.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/interaction/CaseSplitAndImplicits.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 194,
"size": 545
}
|
{-# OPTIONS --without-K --rewriting #-}
module UpperNaturals where
open import Basics
open import lib.Basics
open import lib.NType2
open import lib.types.Pi
open import lib.types.Nat
open import lib.types.Truncation
≤-antisymmetry : {n m : ℕ} (_ : n ≤ m) (_ : m ≤ n) → n == m
≤-antisymmetry {_} {_} (inl p) _ = p
≤-antisymmetry {_} {_} _ (inl p) = ! p
≤-antisymmetry {_} {_} (inr p) q = quodlibet (<-to-≱ p q)
-- A propositional version of _≤_
_≤p_ : ℕ → ℕ → PropT₀
n ≤p m = (n ≤ m) , (≤-is-prop {n} {m})
_is-upward-closed : (N : ℕ → PropT₀) → Type _
N is-upward-closed = (n m : ℕ) → n ≤ m → (N n) holds → (N m) holds
upward-closed-is-a-prop : (N : ℕ → PropT₀) → (N is-upward-closed) is-a-prop
upward-closed-is-a-prop N = mp (λ _ → mp (λ m → mp (λ _ → mp (λ _ → (N m) holds-is-a-prop))))
where
mp = mapping-into-prop-is-a-prop
ℕ→PropT₀-is-a-set : (ℕ → PropT₀) is-a-set
ℕ→PropT₀-is-a-set = Π-level {_}{_}{ℕ}{λ _ → PropT₀}{0} (λ _ → hProp-is-set _)
ℕ↑-prop : SubtypeProp (ℕ → PropT₀) _
ℕ↑-prop = _is-upward-closed , upward-closed-is-a-prop
{- The Upper Naturals
An upper natural is an upward closed proposition concerning natural numbers.
The interpretation is that an upper natural is a natural ``defined by its upper bounds'', in the
sense that for the proposition N holding of a natural n means that n is an upper bound of N.
The important bit about upper naturals is that they satisfy the well-ordering principle,
constructively.
-}
ℕ↑ : Type₁
ℕ↑ = Subtype ℕ↑-prop
-- Σ (ℕ → PropT₀) _is-upward-closed
ℕ↑-is-a-set : ℕ↑ is-a-set
ℕ↑-is-a-set = Subtype-level ℕ↑-prop
_is-an-upper-bound-of_ : ℕ → ℕ↑ → Type _
n is-an-upper-bound-of M = ((fst M) n) holds
_≤:↑_ : ℕ↑ → ℕ → Type _
M ≤:↑ n = n is-an-upper-bound-of M
≤:↑-is-a-prop : {M : ℕ↑} {n : ℕ} → (M ≤:↑ n) is-a-prop
≤:↑-is-a-prop {M} {n} = ((fst M) n) holds-is-a-prop
≤p-is-upward-closed : {n : ℕ} → (n ≤p_) is-upward-closed
≤p-is-upward-closed = λ n m z z₁ → ≤-trans z₁ z
_^↑ : ℕ → ℕ↑
n ^↑ = (n ≤p_) , ≤p-is-upward-closed
-- 0 is bounded above by every number.
O↑ : ℕ↑
O↑ = O ^↑
-- Infinity is defined to be the number with no upper bounds.
∞↑ : ℕ↑
∞↑ = (λ _ → False) , proof
where proof : (λ _ → False) is-upward-closed
proof = λ n m _ z → z
∞↑-has-no-upper-bounds : (n : ℕ) → ¬ (∞↑ ≤:↑ n)
∞↑-has-no-upper-bounds n = λ z → z
≤:↑-refl : {n : ℕ} → n is-an-upper-bound-of (n ^↑)
≤:↑-refl = ≤-refl
-- The ordering on the upper naturals is defined by saying that
-- N is at most M if every upper bound of M is an upper bound of N.
_≤↑_ : ℕ↑ → ℕ↑ → Type _
N ≤↑ M = (n : ℕ) → M ≤:↑ n → N ≤:↑ n
≤↑-is-a-prop : {N M : ℕ↑} → (N ≤↑ M) is-a-prop
≤↑-is-a-prop {N} {M} = mp (λ n → mp (λ _ → ≤:↑-is-a-prop {N} {n}))
where mp = mapping-into-prop-is-a-prop
≤↑-refl : {N : ℕ↑} → N ≤↑ N
≤↑-refl = λ n z → z
≤↑-trans : {N M P : ℕ↑} → N ≤↑ M → M ≤↑ P → N ≤↑ P
≤↑-trans = λ z z₁ n z₂ → z n (z₁ n z₂)
^↑-is-monotone : {n m : ℕ} → n ≤ m → (n ^↑) ≤↑ (m ^↑)
^↑-is-monotone = λ x k x₁ → ≤-trans x x₁
^↑-yoneda : {n : ℕ} {M : ℕ↑} → M ≤↑ (n ^↑) → M ≤:↑ n
^↑-yoneda {n} {M} = λ x → x n ≤:↑-refl
^↑-is-full : {n m : ℕ} → (n ^↑) ≤↑ (m ^↑) → n ≤ m
^↑-is-full {n} {m} = λ z → z m (inl idp)
^↑-is-ff : {n m : ℕ} → (n ≤ m) ≃ ((n ^↑) ≤↑ (m ^↑))
^↑-is-ff {n} {m} = equiv ^↑-is-monotone ^↑-is-full
(λ b → prop-path (≤↑-is-a-prop {(n ^↑)} {(m ^↑)}) (λ _ → ≤-trans (b m (inl idp))) b)
(λ a → prop-path ≤-is-prop (≤-trans a (inl idp)) a)
=-to-≤↑ : {N M : ℕ↑} → N == M → N ≤↑ M
=-to-≤↑ idp = λ n z → z
^↑-is-injective : {n m : ℕ} → (n ^↑) == (m ^↑) → n == m
^↑-is-injective {n} {m} =
λ x → ≤-antisymmetry (^↑-is-full (=-to-≤↑ x)) (^↑-is-full ((=-to-≤↑ (! x))))
O↑≤↑ : (N : ℕ↑) → O↑ ≤↑ N
O↑≤↑ N = λ n x → ^↑-is-monotone (O≤ n) n ≤:↑-refl
_≤↑∞↑ : (N : ℕ↑) → N ≤↑ ∞↑
N ≤↑∞↑ = λ n x → quodlibet (∞↑-has-no-upper-bounds n x)
minℕ : (P : ℕ → Type₀) → ℕ↑
minℕ P =
(λ n → min-pred n) ,
(λ n m x → Trunc-rec (implication n m x))
where
min-pred : (n : ℕ) → PropT₀
min-pred n = ∃ (λ k → (P k) And (k ≤ n))
implication : (n m : ℕ) (x : n ≤ m)
→ Σ ℕ (λ k → (P k) And (k ≤ n))
→ min-pred m holds
implication n m x = λ {(k , p) → [ k , fst p , ≤-trans (snd p) x ] }
{- Probably requires propositional resizing
minℕ↑ : (P : ℕ↑ → Type₀) → ℕ↑
minℕ↑ P =
(λ n → min-pred n) ,
(λ n m x → Trunc-rec (implication n m x))
where
min-pred : (n : ℕ) → PropT₀
min-pred n = ∃ (λ K → (P K) And (K ≤:↑ n))
implication : (n m : ℕ) (x : n ≤ m)
→ Σ ℕ↑ (λ K → (P K) And (K ≤:↑ n))
→ min-pred m holds
implication n m x = λ {(k , p) → [ k , fst p , ≤-trans (snd p) x ] }
-}
|
{
"alphanum_fraction": 0.4912963342,
"avg_line_length": 31.3012820513,
"ext": "agda",
"hexsha": "5da4f9a31cd1d461aacd3943c3ea5a3475b6ca94",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/UpperNaturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/UpperNaturals.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/UpperNaturals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 2078,
"size": 4883
}
|
-- Agda program using the Iowa Agda library
open import bool
module TO-PROVE-evendoublecoin
(Choice : Set)
(choose : Choice → 𝔹)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where
open import eq
open import nat
open import list
open import maybe
---------------------------------------------------------------------------
-- Translated Curry operations:
add : ℕ → ℕ → ℕ
add zero x = x
add (suc y) z = suc (add y z)
coin : Choice → ℕ → ℕ
coin c1 x = if choose c1 then x else suc x
double : ℕ → ℕ
double x = add x x
even : ℕ → 𝔹
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x
---------------------------------------------------------------------------
evendoublecoin : (c1 : Choice) → (x : ℕ) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x = ?
---------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4765714286,
"avg_line_length": 21.3414634146,
"ext": "agda",
"hexsha": "0047a030ccf42e0edd72a3ef6b9ef1dd6159349a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-10-09T16:02:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-09T16:02:18.000Z",
"max_forks_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DouglasRMiles/pakcs_lib",
"max_forks_repo_path": "docs/src/tooldocs/verify/TO-PROVE-evendoublecoin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_issues_repo_issues_event_max_datetime": "2021-02-24T12:41:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-21T22:25:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DouglasRMiles/pakcs_lib",
"max_issues_repo_path": "docs/src/tooldocs/verify/TO-PROVE-evendoublecoin.agda",
"max_line_length": 75,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DouglasRMiles/pakcs_lib",
"max_stars_repo_path": "docs/src/tooldocs/verify/TO-PROVE-evendoublecoin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-21T22:25:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-06T18:32:48.000Z",
"num_tokens": 230,
"size": 875
}
|
-- Andreas, 2013-10-22
-- Fixed by checking with-function-types in internal syntax!
module Issue893 where
postulate
S : Set
data Dec (Px : Set) (q : Px → S) : Set where
tt : Dec Px q
-- record parameter is essential to reproduce error message
record Rec (P : S → Set) : Set where
field
prop : {x : S} → P x → S
bla : (x : S) → Dec (P x) prop
bla x with x
bla x | _ = tt
|
{
"alphanum_fraction": 0.5873786408,
"avg_line_length": 21.6842105263,
"ext": "agda",
"hexsha": "075edc82e3d7cee91b7535d972c9c3f8d77e8d9e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue893.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue893.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue893.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 134,
"size": 412
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Rational.SternBrocot where
open import Prelude
import Data.Nat as ℕ
import Data.Nat.Properties as ℕ
open import Data.Bits renaming (Bits to ℚ⁺; [] to 1ℚ; 0∷_ to lℚ; 1∷_ to rℚ)
open import Data.Bits.Equatable
-- ⟦_⇓⟧ : ℚ⁺ → (ℕ × ℕ)
-- ⟦ 1ℚ ⇓⟧ = 1 , 1
-- ⟦ lℚ x ⇓⟧ = let p , q = ⟦ x ⇓⟧ in p , p ℕ.+ q
-- ⟦ rℚ x ⇓⟧ = let p , q = ⟦ x ⇓⟧ in p ℕ.+ q , q
-- module TerminationProofs where
-- Tᴮ⇒≡ : {n m : ℕ} → n ≡ m → T (n ℕ.≡ᴮ m)
-- Tᴮ⇒≡ {n} {m} n≡m = subst (λ n′ → T (n ℕ.≡ᴮ n′)) n≡m (ℕ.complete-== n)
-- lift-suc-≡ : ∀ {n m} s → m ≡ n → T (n ℕ.≡ᴮ s) → T (m ℕ.≡ᴮ s)
-- lift-suc-≡ {n} {m} s m≡n p = Tᴮ⇒≡ (m≡n ; ℕ.sound-== (n) s p)
-- lemma₁ : ∀ a m → a ℕ.+ m ℕ.+ zero ≡ m ℕ.+ a
-- lemma₁ a m = ℕ.+-idʳ (a ℕ.+ m) ; ℕ.+-comm a m
-- lemma₂ : ∀ n a m → n ℕ.+ m ℕ.+ suc a ≡ n ℕ.+ suc m ℕ.+ a
-- lemma₂ n a m = ℕ.+-assoc n m (suc a) ; cong (n ℕ.+_) (ℕ.+-suc m a) ; sym (ℕ.+-assoc n (suc m) a)
-- lemma₃ : ∀ n a → n ℕ.+ a ℕ.+ zero ≡ n ℕ.+ zero ℕ.+ a
-- lemma₃ n a = ℕ.+-idʳ (n ℕ.+ a) ; cong (ℕ._+ a) (sym (ℕ.+-idʳ n))
-- _+1/_+1 : ℕ → ℕ → ℚ⁺
-- n +1/ m +1 = go zero n m (n ℕ.+ m)
-- where
-- go : (a n m s : ℕ) → ℚ⁺
-- go a zero (suc m) (suc s) = lℚ (go zero a m s)
-- go a (suc n) (suc m) (suc s) = go (suc a) n m s
-- go a (suc n) zero (suc s) = rℚ (go zero n a s)
-- go _ _ _ _ = 1ℚ
euclidian : ℕ → ℕ → ℕ → ℚ⁺
euclidian n m zero = 1ℚ
euclidian n m (suc s) =
if n ℕ.≡ᴮ m
then 1ℚ
else if n ℕ.<ᴮ m
then lℚ (euclidian n (m ℕ.∸ (1 ℕ.+ n)) s)
else rℚ (euclidian (n ℕ.∸ (1 ℕ.+ m)) m s)
normalise-suc : ℕ → ℕ → ℚ⁺
normalise-suc n m = euclidian n m (n ℕ.+ m)
ℚ : Type
ℚ = ℚ⁺
import Data.Rational.Unnormalised as F
open import Data.Rational.Unnormalised using (_/suc_; _/_)
import Data.Integer as ℤ
open import Data.Integer using (ℤ; ⁺; ⁻suc; ⁻)
open import Data.Bits.Fold
zer : (ℕ × ℕ) → (ℕ × ℕ)
zer (p , q) = p , suc p ℕ.+ q
one : (ℕ × ℕ) → (ℕ × ℕ)
one (p , q) = suc p ℕ.+ q , q
fraction : ℚ → (ℕ × ℕ)
fraction = foldr-bits zer one (0 , 0)
⟦_⇓⟧ : ℚ → F.ℚ
⟦ 1ℚ ⇓⟧ = ⁺ 0 F./suc 0
⟦ lℚ xs ⇓⟧ = let n , d = fraction xs in ⁻suc n /suc d
⟦ rℚ xs ⇓⟧ = let n , d = fraction xs in ⁺ (suc n) /suc d
⟦_⇑⟧ : F.ℚ → ℚ
⟦ ⁺ zero /suc den-pred ⇑⟧ = 1ℚ
⟦ ⁺ (suc x) /suc den-pred ⇑⟧ = rℚ (normalise-suc x den-pred)
⟦ ⁻suc x /suc den-pred ⇑⟧ = lℚ (normalise-suc x den-pred)
-- open import Path.Reasoning
-- n≢sn+d : ∀ n d → (n ℕ.≡ᴮ suc (n ℕ.+ d)) ≡ false
-- n≢sn+d zero d = refl
-- n≢sn+d (suc n) d = n≢sn+d n d
-- n<sn+d : ∀ n d → (n ℕ.<ᴮ suc (n ℕ.+ d)) ≡ true
-- n<sn+d zero d = refl
-- n<sn+d (suc n) d = n<sn+d n d
-- n+d-n≡d : ∀ n d → n ℕ.+ d ℕ.∸ n ≡ d
-- n+d-n≡d zero d = refl
-- n+d-n≡d (suc n) d = n+d-n≡d n d
-- euclidian-term-helper : ∀ n d s₁ s₂ → (n ℕ.+ d ℕ.≤ s₁) → (n ℕ.+ d ℕ.≤ s₂) → euclidian n d s₁ ≡ euclidian n d s₂
-- euclidian-term-helper zero zero zero zero p₁ p₂ = refl
-- euclidian-term-helper zero zero zero (suc s₂) p₁ p₂ = refl
-- euclidian-term-helper zero zero (suc s₁) zero p₁ p₂ = refl
-- euclidian-term-helper zero zero (suc s₁) (suc s₂) p₁ p₂ = refl
-- euclidian-term-helper zero (suc d) (suc s₁) (suc s₂) p₁ p₂ = cong lℚ (euclidian-term-helper zero d s₁ s₂ (ℕ.p≤p d s₁ p₁) (ℕ.p≤p d s₂ p₂))
-- euclidian-term-helper (suc n) zero (suc s₁) (suc s₂) p₁ p₂ = cong rℚ (euclidian-term-helper n zero s₁ s₂ (ℕ.p≤p (n ℕ.+ zero) s₁ p₁) (ℕ.p≤p (n ℕ.+ zero) s₂ p₂))
-- euclidian-term-helper (suc n) (suc d) (suc s₁) (suc s₂) p₁ p₂ with n ℕ.≡ᴮ d | n ℕ.<ᴮ d
-- euclidian-term-helper (suc n) (suc d) (suc s₁) (suc s₂) p₁ p₂ | false | false = cong rℚ (euclidian-term-helper (n ℕ.∸ suc d) (suc d) s₁ s₂ {!!} {!!})
-- euclidian-term-helper (suc n) (suc d) (suc s₁) (suc s₂) p₁ p₂ | false | true = cong lℚ (euclidian-term-helper (suc n) (d ℕ.∸ suc n) s₁ s₂ {!!} {!!})
-- euclidian-term-helper (suc n) (suc d) (suc s₁) (suc s₂) p₁ p₂ | true | _ = refl
-- norm-l : ∀ n d → normalise-suc n (suc n ℕ.+ d) ≡ lℚ (normalise-suc n d)
-- norm-l n d =
-- normalise-suc n (suc n ℕ.+ d) ≡⟨⟩
-- euclidian n (suc n ℕ.+ d) (n ℕ.+ (suc n ℕ.+ d)) ≡⟨ cong (euclidian n (suc n ℕ.+ d)) (ℕ.+-suc n (n ℕ.+ d)) ⟩
-- euclidian n (suc n ℕ.+ d) (suc n ℕ.+ (n ℕ.+ d)) ≡⟨⟩
-- (if n ℕ.≡ᴮ suc (n ℕ.+ d) then 1ℚ else
-- if n ℕ.<ᴮ suc (n ℕ.+ d) then lℚ (euclidian n (n ℕ.+ d ℕ.∸ n) (n ℕ.+ (n ℕ.+ d))) else rℚ (euclidian (n ℕ.∸ suc (suc (n ℕ.+ d))) (suc (n ℕ.+ d)) (n ℕ.+ (n ℕ.+ d)))) ≡⟨ cong (if_then 1ℚ else if n ℕ.<ᴮ suc (n ℕ.+ d) then lℚ (euclidian n (n ℕ.+ d ℕ.∸ n) (n ℕ.+ (n ℕ.+ d))) else rℚ (euclidian (n ℕ.∸ suc (suc (n ℕ.+ d))) (suc (n ℕ.+ d)) (n ℕ.+ (n ℕ.+ d)))) (n≢sn+d n d) ⟩
-- (if n ℕ.<ᴮ suc (n ℕ.+ d) then
-- lℚ (euclidian n (n ℕ.+ d ℕ.∸ n) (n ℕ.+ (n ℕ.+ d))) else
-- rℚ (euclidian (n ℕ.∸ suc (suc (n ℕ.+ d))) (suc (n ℕ.+ d)) (n ℕ.+ (n ℕ.+ d)))) ≡⟨ cong (if_then lℚ ((euclidian n (n ℕ.+ d ℕ.∸ n) (n ℕ.+ (n ℕ.+ d)))) else rℚ ((euclidian (n ℕ.∸ suc (suc (n ℕ.+ d))) (suc (n ℕ.+ d)) (n ℕ.+ (n ℕ.+ d))))) (n<sn+d n d) ⟩
-- lℚ (euclidian n (n ℕ.+ d ℕ.∸ n) (n ℕ.+ (n ℕ.+ d))) ≡⟨ cong (λ ndn → lℚ (euclidian n ndn (n ℕ.+ (n ℕ.+ d)))) (n+d-n≡d n d) ⟩
-- lℚ (euclidian n d (n ℕ.+ (n ℕ.+ d))) ≡⟨ {!!} ⟩
-- lℚ (euclidian n d (n ℕ.+ d)) ≡⟨⟩
-- lℚ (normalise-suc n d) ∎
-- ℚ-retract′ : ∀ x → normalise-suc (fst (fraction x)) (snd (fraction x)) ≡ x
-- ℚ-retract′ 1ℚ = refl
-- ℚ-retract′ (rℚ x) = {!!}
-- ℚ-retract′ (lℚ x) = let n , d = fraction x in
-- normalise-suc n (suc (n ℕ.+ d)) ≡⟨ {!!} ⟩
-- lℚ x ∎
-- ℚ-retract : ∀ x → ⟦ ⟦ x ⇓⟧ ⇑⟧ ≡ x
-- ℚ-retract 1ℚ = refl
-- ℚ-retract (lℚ x) = cong lℚ (ℚ-retract′ x)
-- ℚ-retract (rℚ x) = cong rℚ (ℚ-retract′ x)
|
{
"alphanum_fraction": 0.5083258729,
"avg_line_length": 41.6791044776,
"ext": "agda",
"hexsha": "b6d4d7934c6271641ff8a80f52f2c865e715a155",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Rational/SternBrocot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Rational/SternBrocot.agda",
"max_line_length": 375,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Rational/SternBrocot.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2886,
"size": 5585
}
|
module _ where
record ⊤ : Set where
instance
constructor tt
data Nat : Set where
suc : Nat → Nat
NZ : Nat → Set
NZ (suc _) = ⊤
postulate
A : ∀ n → {{_ : NZ n}} → Set
B : ∀ n (nz : NZ n) → Set
B (suc n) nz = A (suc n)
|
{
"alphanum_fraction": 0.5341880342,
"avg_line_length": 12.3157894737,
"ext": "agda",
"hexsha": "2401585123e5faad6c3a2888dbdbdd877094b976",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/InstanceEta.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/InstanceEta.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/InstanceEta.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 234
}
|
module Nat where
data Rel (A : Set) : Set1 where
rel : (A -> A -> Set) -> Rel A
_is_than_ : {A : Set} -> A -> Rel A -> A -> Set
x is rel f than y = f x y
data Acc {A : Set} (less : Rel A) (x : A) : Set where
acc : ((y : A) -> x is less than y -> Acc less y) -> Acc less x
data WO {A : Set} (less : Rel A) : Set where
wo : ((x : A) -> Acc less x) -> WO less
data False : Set where
data True : Set where
tt : True
data Nat : Set where
Z : Nat
S : Nat -> Nat
data ∏ {A : Set} (f : A -> Set) : Set where
∏I : ((z : A) -> f z) -> ∏ f
ltNat : Nat -> Nat -> Set
ltNat Z Z = False
ltNat Z (S n) = True
ltNat (S m) (S n) = ltNat m n
ltNat (S m) Z = False
ltNatRel : Rel Nat
ltNatRel = rel ltNat
postulate woltNat : WO ltNatRel
idN : Nat -> Nat
idN x = x
id : {A : Set} -> A -> A
id x = x
down1 : Nat -> Nat
down1 Z = Z
down1 (S n) = down1 n
-- measure down1 = (woNat, id)
-- For a function f : (x:A) -> B(x)
-- f(p) = ... f(x1) ... f(x2)
-- measure_set : Set
-- measure_rel : Rel measure_set
-- measure_ord : WO measure_rel
-- measure_fun : A -> measure_set
-- For j-th call of f in i-th clause of f:
-- measure_i_j_hint : xj is measure_rel than p
data Measure : Set1 where
μ : {M : Set} -> {rel : Rel M} -> (ord : WO rel) -> Measure
{-
down1_measure_set : Set
down1_measure_set = Nat
down1_measure_rel : Rel down1_measure_set
down1_measure_rel = ltNatRel
down1_measure_ord : WO measure_rel
down1_measure_ord = woltNat
-}
down1-measure : Measure
down1-measure = μ woltNat
down1-2-1-hint : (n : Nat) -> n is ltNatRel than (S n)
down1-2-1-hint Z = tt
down1-2-1-hint (S n) = down1-2-1-hint n
{-
down2 : Nat -> Nat
down2 Z = Z
down2 (S n) = down2 (idN n)
down3 : Nat -> Nat
down3 Z = Z
down3 (S n) = down3 (id n)
plus : Nat -> Nat -> Nat
plus Z n = n
plus (S m) n = S(plus m n)
-}
|
{
"alphanum_fraction": 0.5903814262,
"avg_line_length": 19.6630434783,
"ext": "agda",
"hexsha": "1aa8e00c317c6c38870969d358cf747bba66dd94",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/Termination/Nat.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/Termination/Nat.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/Termination/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 700,
"size": 1809
}
|
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Reflection
postulate
tac : {A : Set} (x : A) → Term → TC ⊤
data D : Set where
con : {@(tactic tac true) y : Bool} → D
-- WAS: Internal error in Serialize/Instances/Internal for MetaV case
-- SHOULD: succeed
|
{
"alphanum_fraction": 0.6966666667,
"avg_line_length": 21.4285714286,
"ext": "agda",
"hexsha": "bd757aad37f9f3aae0ca48790de7a9fd3f972a93",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ConstructorWithTacticArg.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ConstructorWithTacticArg.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ConstructorWithTacticArg.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 300
}
|
{-
Pointed structure: X ↦ X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Pointed where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.Univalence
open import Cubical.Relation.ZigZag.Base
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Structures.Pointed
private
variable
ℓ : Level
-- Structured relations
PointedRelStr : StrRel PointedStructure ℓ
PointedRelStr R = R
pointedSuitableRel : SuitableStrRel {ℓ = ℓ} PointedStructure PointedRelStr
pointedSuitableRel .quo _ _ _ = isContrSingl _
pointedSuitableRel .symmetric _ r = r
pointedSuitableRel .transitive _ _ r r' = ∣ _ , r , r' ∣
pointedSuitableRel .set setX = setX
pointedSuitableRel .prop propR = propR
pointedRelMatchesEquiv : StrRelMatchesEquiv {ℓ = ℓ} PointedRelStr PointedEquivStr
pointedRelMatchesEquiv _ _ _ = idEquiv _
pointedRelAction : StrRelAction {ℓ = ℓ} PointedRelStr
pointedRelAction .actStr f = f
pointedRelAction .actStrId _ = refl
pointedRelAction .actRel α = α
pointedPositiveRel : PositiveStrRel {ℓ = ℓ} pointedSuitableRel
pointedPositiveRel .act = pointedRelAction
pointedPositiveRel .reflexive x = ∣ refl ∣
pointedPositiveRel .detransitive R R' rr' = rr'
pointedPositiveRel .quo R = isoToIsEquiv isom
where
open Iso
isom : Iso _ _
isom .fun = _
isom .inv q = q
isom .rightInv = elimProp (λ _ → squash/ _ _) (λ _ → refl)
isom .leftInv = elimProp (λ _ → squash/ _ _) (λ _ → refl)
|
{
"alphanum_fraction": 0.7769230769,
"avg_line_length": 29.649122807,
"ext": "agda",
"hexsha": "eff62d4cb2fcd53b84e0317e0736bc891392be62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 541,
"size": 1690
}
|
-- Issue #4115 reported by Guillaume Brunerie
{-# OPTIONS --prop #-}
data Unit : Set where
tt : Unit
postulate
P : Prop
{-# TERMINATING #-}
p : P
p = p
works : Unit → P
works b = p
-- WAS: Agda loops during injectivity analysis of `loops`
loops : Unit → P
loops tt = p
|
{
"alphanum_fraction": 0.6344086022,
"avg_line_length": 13.2857142857,
"ext": "agda",
"hexsha": "cdf534822ee0ae5025cfd9ed661b2458650a6a85",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4115.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4115.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4115.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 279
}
|
module Data.Boolean.Stmt.Proofs where
import Lvl
open import Data.Boolean
open import Data.Boolean.Proofs hiding (bivalence ; disjointness)
import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.Boolean.Stmt
open import Functional
open import Logic.Propositional as Logic using (⊥ ; _∨_ ; _∧_ ; ¬_ ; _↔_ ; [⊤]-intro ; [↔]-intro ; [⊥]-elim)
open import Relator.Equals
open import Type
-- A boolean operation is either true or false
bivalence : ∀{a} → (IsTrue(a) ∨ IsFalse(a))
bivalence {𝑇} = Logic.[∨]-introₗ [⊤]-intro
bivalence {𝐹} = Logic.[∨]-introᵣ [⊤]-intro
-- A boolean operation is not both true and false at the same time
disjointness : ∀{a} → IsTrue(a) → IsFalse(a) → ⊥
disjointness {𝑇} [⊤]-intro ()
disjointness {𝐹} () [⊤]-intro
module IsTrue where
[𝑇]-intro : IsTrue(𝑇)
[𝑇]-intro = [⊤]-intro
[𝐹]-elim : ¬ IsTrue(𝐹)
[𝐹]-elim ()
[∧]-intro : ∀{a b} → IsTrue(a) → IsTrue(b) → IsTrue(a && b)
[∧]-intro {𝑇} {b} ta tb = tb
[∧]-intro {𝐹} {b} ta tb = ta
[∨]-introₗ : ∀{a b} → IsTrue(a) → IsTrue(a || b)
[∨]-introₗ {_}{𝑇} _ = [⊤]-intro
[∨]-introₗ {_}{𝐹} = id
[∨]-introᵣ : ∀{a b} → IsTrue(b) → IsTrue(a || b)
[∨]-introᵣ {𝑇}{_} _ = [⊤]-intro
[∨]-introᵣ {𝐹}{_} = id
[∧]-elimₗ : ∀{a b} → IsTrue(a && b) → IsTrue(a)
[∧]-elimₗ {𝑇}{𝑇} [⊤]-intro = [⊤]-intro
[∧]-elimₗ {𝑇}{𝐹} ()
[∧]-elimₗ {𝐹}{𝑇} ()
[∧]-elimₗ {𝐹}{𝐹} ()
[∧]-elimᵣ : ∀{a b} → IsTrue(a && b) → IsTrue(b)
[∧]-elimᵣ {𝑇}{𝑇} [⊤]-intro = [⊤]-intro
[∧]-elimᵣ {𝑇}{𝐹} ()
[∧]-elimᵣ {𝐹}{𝑇} ()
[∧]-elimᵣ {𝐹}{𝐹} ()
[∨]-elim : ∀{ℓ₂}{φ : Type{ℓ₂}}{a b} → (IsTrue(a) → φ) → (IsTrue(b) → φ) → IsTrue(a || b) → φ
[∨]-elim {_}{_}{𝑇}{𝑇} f _ [⊤]-intro = f [⊤]-intro
[∨]-elim {_}{_}{𝑇}{𝐹} f _ [⊤]-intro = f [⊤]-intro
[∨]-elim {_}{_}{𝐹}{𝑇} _ f [⊤]-intro = f [⊤]-intro
[∨]-elim {_}{_}{𝐹}{𝐹} _ f ()
[¬]-intro : ∀{a} → IsFalse(a) → IsTrue(! a)
[¬]-intro {𝐹} fa = [⊤]-intro
[¬]-elim : ∀{a} → IsTrue(! a) → IsFalse(a)
[¬]-elim {𝑇} ()
[¬]-elim {𝐹} [⊤]-intro = [⊤]-intro
[→?]-intro : ∀{a b} → (IsTrue a → IsTrue b) → IsTrue (a →? b)
[→?]-intro {𝑇} {𝑇} _ = [⊤]-intro
[→?]-intro {𝑇} {𝐹} tab = tab [⊤]-intro
[→?]-intro {𝐹} {𝑇} _ = [⊤]-intro
[→?]-intro {𝐹} {𝐹} _ = [⊤]-intro
[→?]-elim : ∀{a b} → IsTrue (a →? b) → (IsTrue a → IsTrue b)
[→?]-elim {𝑇} {𝑇} tab ta = [⊤]-intro
[←?]-intro : ∀{a b} → (IsTrue b → IsTrue a) → IsTrue (a ←? b)
[←?]-intro {𝑇} {𝑇} tba = [⊤]-intro
[←?]-intro {𝑇} {𝐹} tba = [⊤]-intro
[←?]-intro {𝐹} {𝑇} tba = tba [⊤]-intro
[←?]-intro {𝐹} {𝐹} tba = [⊤]-intro
[←?]-elim : ∀{a b} → IsTrue (a ←? b) → (IsTrue b → IsTrue a)
[←?]-elim {𝑇} {𝑇} tab tb = [⊤]-intro
[==]-intro : ∀{a b} → (IsTrue b → IsTrue a) → (IsTrue a → IsTrue b) → IsTrue(a == b)
[==]-intro {𝑇} {𝑇} ba ab = [⊤]-intro
[==]-intro {𝑇} {𝐹} ba ab = ab [⊤]-intro
[==]-intro {𝐹} {𝑇} ba ab = ba [⊤]-intro
[==]-intro {𝐹} {𝐹} ba ab = [⊤]-intro
[==]-elimₗ : ∀{a b} → IsTrue(a == b) → (IsTrue b → IsTrue a)
[==]-elimₗ {𝑇} {𝑇} tab tb = [⊤]-intro
[==]-elimᵣ : ∀{a b} → IsTrue(a == b) → (IsTrue a → IsTrue b)
[==]-elimᵣ {𝑇} {𝑇} tab ta = [⊤]-intro
[!]-intro : ∀{a b} → (IsTrue a → IsTrue b) → (IsTrue a → IsTrue(not b)) → IsTrue(not a)
[!]-intro {𝑇} {𝑇} tab tanb = tanb [⊤]-intro
[!]-intro {𝑇} {𝐹} tab tanb = tab [⊤]-intro
[!]-intro {𝐹} {𝑇} tab tanb = [⊤]-intro
[!]-intro {𝐹} {𝐹} tab tanb = [⊤]-intro
[!]-elim : ∀{a b} → IsTrue a → IsTrue(not a) → IsTrue b
[!]-elim {𝑇} {𝑇} ta tnb = [⊤]-intro
[!]-elim {𝑇} {𝐹} ta tnb = tnb
[!]-elim {𝐹} {𝑇} ta tnb = [⊤]-intro
[!]-elim {𝐹} {𝐹} ta tnb = ta
is-𝑇 : ∀{a} → IsTrue(a) ↔ (a ≡ 𝑇)
is-𝑇 {a} = [↔]-intro (l{a}) (r{a}) where
r : ∀ {a} → IsTrue(a) → (a ≡ 𝑇)
r {𝑇} _ = [≡]-intro
r {𝐹} ()
l : ∀ {a} → IsTrue(a) ← (a ≡ 𝑇)
l [≡]-intro = [⊤]-intro
preserves-[&&][∧] : ∀{a b} → IsTrue(a && b) ↔ IsTrue(a) ∧ IsTrue(b)
preserves-[&&][∧] = [↔]-intro
(\{(Logic.[∧]-intro l r) → [∧]-intro l r})
(proof ↦ Logic.[∧]-intro ([∧]-elimₗ proof) ([∧]-elimᵣ proof))
preserves-[||][∨] : ∀{a b} → IsTrue(a || b) ↔ IsTrue(a) ∨ IsTrue(b)
preserves-[||][∨] = [↔]-intro
(Logic.[∨]-elim [∨]-introₗ [∨]-introᵣ)
([∨]-elim Logic.[∨]-introₗ Logic.[∨]-introᵣ)
preserves-[!][¬] : ∀{a} → IsTrue(! a) ↔ (¬ IsTrue(a))
preserves-[!][¬] {a} = [↔]-intro (l{a}) (r{a}) where
l : ∀{a} → IsTrue(! a) ← (¬ IsTrue(a))
l {𝐹} _ = [⊤]-intro
l {𝑇} f = [⊥]-elim (f [⊤]-intro)
r : ∀{a} → IsTrue(! a) → (¬ IsTrue(a))
r {𝑇} () _
r {𝐹} _ ()
module IsFalse where
[∧]-introₗ : ∀{a b} → IsFalse(a) → IsFalse(a && b)
[∧]-introₗ {_}{𝑇} = id
[∧]-introₗ {_}{𝐹} _ = [⊤]-intro
[∧]-introᵣ : ∀{a b} → IsFalse(b) → IsFalse(a && b)
[∧]-introᵣ {𝑇}{_} = id
[∧]-introᵣ {𝐹}{_} _ = [⊤]-intro
[∨]-intro : ∀{a b} → IsFalse(a) → IsFalse(b) → IsFalse(a || b)
[∨]-intro {𝑇} fa fb = fa
[∨]-intro {𝐹} fa fb = fb
[¬]-intro : ∀{a} → IsTrue(a) → IsFalse(! a)
[¬]-intro = id
[¬]-elim : ∀{a} → IsFalse(! a) → IsTrue(a)
[¬]-elim = id
is-𝐹 : ∀{a} → IsFalse(a) ↔ (a ≡ 𝐹)
is-𝐹 {a} = [↔]-intro (l{a}) (r{a}) where
r : ∀{a} → IsFalse(a) → (a ≡ 𝐹)
r {𝑇} ()
r {𝐹} _ = [≡]-intro
l : ∀{a} → IsFalse(a) ← (a ≡ 𝐹)
l [≡]-intro = [⊤]-intro
true-false-opposites : ∀{a} → IsTrue(a) ↔ (¬ IsFalse(a))
true-false-opposites {𝑇} = [↔]-intro (const [⊤]-intro) (const id)
true-false-opposites {𝐹} = [↔]-intro (_$ [⊤]-intro) const
false-true-opposites : ∀{a} → IsFalse(a) ↔ (¬ IsTrue(a))
false-true-opposites {𝑇} = [↔]-intro (_$ [⊤]-intro) const
false-true-opposites {𝐹} = [↔]-intro (const [⊤]-intro) (const id)
|
{
"alphanum_fraction": 0.4745702006,
"avg_line_length": 32.091954023,
"ext": "agda",
"hexsha": "7f760ff3dda5927620e252eff32d212356536a95",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Boolean/Stmt/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Boolean/Stmt/Proofs.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Boolean/Stmt/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2965,
"size": 5584
}
|
-- Andreas, 2017-05-15, issue 2585, reported by Martin Stone Davis
-- Information about whether a function uses copatterns
-- needs to be added already while function is defines.
-- Otherwise, clauses might fail to check due to missing eta.
{-# OPTIONS --postfix-projections #-}
open import Agda.Builtin.Equality
record Super : Set₁ where
eta-equality
field
set : Set
record Sub : Set₁ where
eta-equality
field
super1 : Super
super2 : Super
super1=2 : super1 ≡ super2
postulate
X : Set
works : Sub
works .Sub.super1 = record { set = X }
works .Sub.super2 .Super.set = X
works .Sub.super1=2 = refl
test : Sub
test .Sub.super1 .Super.set = X
test .Sub.super2 .Super.set = X
test .Sub.super1=2 = refl
-- Should pass
|
{
"alphanum_fraction": 0.7001338688,
"avg_line_length": 20.75,
"ext": "agda",
"hexsha": "b08db5202560248085fb06a95295d158c4412aa0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2585.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2585.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2585.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 219,
"size": 747
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Various forms of induction for natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Induction.Nat where
open import Function
open import Data.Nat
open import Data.Nat.Properties using (≤⇒≤′)
open import Data.Fin using (_≺_)
open import Data.Fin.Properties
open import Data.Product
open import Data.Unit
open import Induction
open import Induction.WellFounded as WF
open import Level using (Lift)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
------------------------------------------------------------------------
-- Ordinary induction
Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ
Rec ℓ P zero = Lift ℓ ⊤
Rec ℓ P (suc n) = P n
recBuilder : ∀ {ℓ} → RecursorBuilder (Rec ℓ)
recBuilder P f zero = _
recBuilder P f (suc n) = f n (recBuilder P f n)
rec : ∀ {ℓ} → Recursor (Rec ℓ)
rec = build recBuilder
------------------------------------------------------------------------
-- Complete induction
CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ
CRec ℓ P zero = Lift ℓ ⊤
CRec ℓ P (suc n) = P n × CRec ℓ P n
cRecBuilder : ∀ {ℓ} → RecursorBuilder (CRec ℓ)
cRecBuilder P f zero = _
cRecBuilder P f (suc n) = f n ih , ih
where ih = cRecBuilder P f n
cRec : ∀ {ℓ} → Recursor (CRec ℓ)
cRec = build cRecBuilder
------------------------------------------------------------------------
-- Complete induction based on _<′_
<′-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<′-Rec = WfRec _<′_
mutual
<′-wellFounded : WellFounded _<′_
<′-wellFounded n = acc (<′-wellFounded′ n)
<′-wellFounded′ : ∀ n → <′-Rec (Acc _<′_) n
<′-wellFounded′ zero _ ()
<′-wellFounded′ (suc n) .n ≤′-refl = <′-wellFounded n
<′-wellFounded′ (suc n) m (≤′-step m<n) = <′-wellFounded′ n m m<n
module _ {ℓ} where
open WF.All <′-wellFounded ℓ public
renaming ( wfRecBuilder to <′-recBuilder
; wfRec to <′-rec
)
hiding (wfRec-builder)
------------------------------------------------------------------------
-- Complete induction based on _<_
<-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<-Rec = WfRec _<_
<-wellFounded : WellFounded _<_
<-wellFounded = Subrelation.wellFounded ≤⇒≤′ <′-wellFounded
module _ {ℓ} where
open WF.All <-wellFounded ℓ public
renaming ( wfRecBuilder to <-recBuilder
; wfRec to <-rec
)
hiding (wfRec-builder)
------------------------------------------------------------------------
-- Complete induction based on _≺_
≺-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
≺-Rec = WfRec _≺_
≺-wellFounded : WellFounded _≺_
≺-wellFounded = Subrelation.wellFounded ≺⇒<′ <′-wellFounded
module _ {ℓ} where
open WF.All ≺-wellFounded ℓ public
renaming ( wfRecBuilder to ≺-recBuilder
; wfRec to ≺-rec
)
hiding (wfRec-builder)
------------------------------------------------------------------------
-- Examples
private
module Examples where
-- Doubles its input.
twice : ℕ → ℕ
twice = rec _ λ
{ zero _ → zero
; (suc n) twice-n → suc (suc twice-n)
}
-- Halves its input (rounding downwards).
--
-- The step function is mentioned in a proof below, so it has been
-- given a name. (The mutual keyword is used to avoid having to give
-- a type signature for the step function.)
mutual
half₁-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) (_ , half₁n , _) → suc half₁n
}
half₁ : ℕ → ℕ
half₁ = cRec _ half₁-step
-- An alternative implementation of half₁.
mutual
half₂-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) rec → suc (rec n (≤′-step ≤′-refl))
}
half₂ : ℕ → ℕ
half₂ = <′-rec _ half₂-step
-- The application half₁ (2 + n) is definitionally equal to
-- 1 + half₁ n. Perhaps it is instructive to see why.
half₁-2+ : ∀ n → half₁ (2 + n) ≡ 1 + half₁ n
half₁-2+ n = begin
half₁ (2 + n) ≡⟨⟩
cRec _ half₁-step (2 + n) ≡⟨⟩
half₁-step (2 + n) (cRecBuilder _ half₁-step (2 + n)) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step (1 + n) in
half₁-step (1 + n) ih , ih) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step n in
half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih) ≡⟨⟩
1 + half₁-step n (cRecBuilder _ half₁-step n) ≡⟨⟩
1 + cRec _ half₁-step n ≡⟨⟩
1 + half₁ n ∎
where open ≡-Reasoning
-- The application half₂ (2 + n) is definitionally equal to
-- 1 + half₂ n. Perhaps it is instructive to see why.
half₂-2+ : ∀ n → half₂ (2 + n) ≡ 1 + half₂ n
half₂-2+ n = begin
half₂ (2 + n) ≡⟨⟩
<′-rec _ half₂-step (2 + n) ≡⟨⟩
half₂-step (2 + n) (<′-recBuilder _ half₂-step (2 + n)) ≡⟨⟩
1 + <′-recBuilder _ half₂-step (2 + n) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(<′-wellFounded (2 + n)) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(acc (<′-wellFounded′ (2 + n))) n (≤′-step ≤′-refl) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (2 + n) n (≤′-step ≤′-refl))) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (1 + n) n ≤′-refl)) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n (<′-wellFounded n)) ≡⟨⟩
1 + half₂-step n (<′-recBuilder _ half₂-step n) ≡⟨⟩
1 + <′-rec _ half₂-step n ≡⟨⟩
1 + half₂ n ∎
where open ≡-Reasoning
-- Some properties that the functions above satisfy, proved using
-- cRec.
half₁-+₁ : ∀ n → half₁ (twice n) ≡ n
half₁-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
half₂-+₁ : ∀ n → half₂ (twice n) ≡ n
half₂-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
-- Some properties that the functions above satisfy, proved using
-- <′-rec.
half₁-+₂ : ∀ n → half₁ (twice n) ≡ n
half₁-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}
half₂-+₂ : ∀ n → half₂ (twice n) ≡ n
half₂-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
rec-builder = recBuilder
{-# WARNING_ON_USAGE rec-builder
"Warning: rec-builder was deprecated in v0.15.
Please use recBuilder instead."
#-}
cRec-builder = cRecBuilder
{-# WARNING_ON_USAGE cRec-builder
"Warning: cRec-builder was deprecated in v0.15.
Please use cRecBuilder instead."
#-}
<′-rec-builder = <′-recBuilder
{-# WARNING_ON_USAGE <′-rec-builder
"Warning: <′-rec-builder was deprecated in v0.15.
Please use <′-recBuilder instead."
#-}
<-rec-builder = <-recBuilder
{-# WARNING_ON_USAGE <-rec-builder
"Warning: <-rec-builder was deprecated in v0.15.
Please use <-recBuilder instead."
#-}
≺-rec-builder = ≺-recBuilder
{-# WARNING_ON_USAGE ≺-rec-builder
"Warning: ≺-rec-builder was deprecated in v0.15.
Please use ≺-recBuilder instead."
#-}
<′-well-founded = <′-wellFounded
{-# WARNING_ON_USAGE <′-well-founded
"Warning: <′-well-founded was deprecated in v0.15.
Please use <′-wellFounded instead."
#-}
<′-well-founded′ = <′-wellFounded′
{-# WARNING_ON_USAGE <′-well-founded′
"Warning: <′-well-founded′ was deprecated in v0.15.
Please use <′-wellFounded′ instead."
#-}
<-well-founded = <-wellFounded
{-# WARNING_ON_USAGE <-well-founded
"Warning: <-well-founded was deprecated in v0.15.
Please use <-wellFounded instead."
#-}
≺-well-founded = ≺-wellFounded
{-# WARNING_ON_USAGE ≺-well-founded
"Warning: ≺-well-founded was deprecated in v0.15.
Please use ≺-wellFounded instead."
#-}
|
{
"alphanum_fraction": 0.5005024004,
"avg_line_length": 28.8006430868,
"ext": "agda",
"hexsha": "893a13a8951b2e7915ce1eb97dcaab05ec4e21b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Induction/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Induction/Nat.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Induction/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2809,
"size": 8957
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Reasoning facilities about morphism equivalences (not necessarily 'squares')
module Categories.Morphism.Reasoning {o ℓ e} (C : Category o ℓ e) where
open import Categories.Morphism.Reasoning.Core C public
open import Categories.Morphism.Reasoning.Iso C public
|
{
"alphanum_fraction": 0.7784431138,
"avg_line_length": 30.3636363636,
"ext": "agda",
"hexsha": "d77aac4d0969b2417d6a817c1c2d51fb5b81a5bf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 78,
"size": 334
}
|
{-# OPTIONS --cubical-compatible --universe-polymorphism #-}
module WithoutK where
open import Common.Level
-- Propositional equality.
data _≡_ {A : Set} : A → A → Set where
refl : ∀ x → x ≡ x
-- The J rule.
J : {A : Set} (P : {x y : A} → x ≡ y → Set) →
(∀ x → P (refl x)) →
∀ {x y} (x≡y : x ≡ y) → P x≡y
J P p (refl x) = p x
-- Christine Paulin-Mohring's version of the J rule.
J′ : {A : Set} {x : A} (P : {y : A} → x ≡ y → Set) →
P (refl x) →
∀ {y} (x≡y : x ≡ y) → P x≡y
J′ P p (refl x) = p
-- A variant of _≡_.
data _≡′_ {A : Set} (x : A) : A → Set where
refl : x ≡′ x
-- We normalise before checking index well-formedness.
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x _ = x
id : {A : Set} {x y : A} → const x y ≡′ const y x → x ≡′ y
id refl = refl
-- We can handle more complicated indices as well.
data ⊥ : Set where
data Bool : Set where
true false : Bool
true≢false : true ≡ false → ⊥
true≢false ()
data D : Set where
c₀ : D
c₂ : (i₁ i₂ : D) → D
f : ∀ {x y z} → x ≡ y → c₂ y c₀ ≡ c₂ c₀ z → x ≡ z
f x≡y (refl .(c₂ c₀ c₀)) = x≡y
-- The indices can contain literals.
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
g : 2 ≡ 3 → 3 ≡ 5
g ()
h : ∀ {n} → 2 ≡ suc n → n ≡ 1
h (refl .2) = refl _
|
{
"alphanum_fraction": 0.5116099071,
"avg_line_length": 18.7246376812,
"ext": "agda",
"hexsha": "c2e66af9ce56f66f2052f7037266fa866a5f3b6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/WithoutK.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/WithoutK.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/WithoutK.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 560,
"size": 1292
}
|
------------------------------------------------------------------------------
-- Testing Agda internal term: @Pi _ (NoAbs _ _)@
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- After the patch
--
-- Wed Sep 21 04:50:43 COT 2011 [email protected]
-- * got rid of the Fun constructor in internal syntax (using Pi _ (NoAbs _ _) instead)
--
-- Agda is using @Pi _ (NoAbs _ _)@ for the non-dependent
-- functions. We test some translations of non-dependent functions.
module Agda.InternalTerms.PiNoAbsTerm where
postulate
_↔_ : Set → Set → Set
D : Set
A : Set
postulate foo₁ : ((x : D) → A) → A
{-# ATP prove foo₁ #-}
postulate foo₂ : A → ((x : D) → A)
{-# ATP prove foo₂ #-}
postulate foo₃ : ((x : D) → A) ↔ A
{-# ATP prove foo₃ #-}
|
{
"alphanum_fraction": 0.4937106918,
"avg_line_length": 28.9090909091,
"ext": "agda",
"hexsha": "ce9043649cecc4f61b904c6b9251da0ca9438447",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/PiNoAbsTerm.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/PiNoAbsTerm.agda",
"max_line_length": 89,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/PiNoAbsTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 244,
"size": 954
}
|
module Everything where
import Generics.Prelude
import Generics.Telescope
import Generics.Telescope.Equality
import Generics.Desc
import Generics.All
import Generics.HasDesc
import Generics.Accessibility
import Generics.Helpers
import Generics.Reflection
import Generics.Mu
import Generics.Mu.All
import Generics.Mu.Elim
import Generics.Mu.Fold
import Generics.Mu.Conversion
import Generics.Constructions.Case
import Generics.Constructions.Cong
import Generics.Constructions.DecEq
import Generics.Constructions.Elim
import Generics.Constructions.Fold
import Generics.Constructions.Mu
import Generics.Constructions.Recursion
import Generics.Constructions.Show
import Generics
-- Work In Progress
---------------------------------
-- import Generics.Mu.NoConfusion
-- import Generics.Constructions.Injective
|
{
"alphanum_fraction": 0.8226600985,
"avg_line_length": 23.2,
"ext": "agda",
"hexsha": "259f1caa49151b07ac45d0a119504ee742a0d80b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 42,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 186,
"size": 812
}
|
------------------------------------------------------------------------------
-- Fair properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.ABP.Fair.PropertiesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.List.PropertiesI
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Data.Stream.Type
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the Fair
-- predicate is also a pre-fixed point of the functional FairF, i.e.
--
-- FairF Fair ≤ Fair (see FOTC.Program.ABP.Fair).
Fair-in : ∀ {os} → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' →
Fair os
Fair-in h = Fair-coind A h' h
where
A : D → Set
A os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os'
h' : ∀ {os} → A os → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ A os'
h' (ft , os' , FTft , prf , Fos') = ft , os' , FTft , prf , Fair-out Fos'
head-tail-Fair : ∀ {os} → Fair os → os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
head-tail-Fair {os} Fos with Fair-out Fos
... | .(T ∷ []) , os' , f*tnil , h , Fos' = inj₁ prf₃
where
prf₁ : os ≡ T ∷ [] ++ os'
prf₁ = os ≡⟨ h ⟩
(T ∷ []) ++ os' ≡⟨ ++-∷ T [] os' ⟩
T ∷ [] ++ os' ∎
prf₂ : tail₁ os ≡ [] ++ os'
prf₂ = tail₁ os ≡⟨ tailCong prf₁ ⟩
tail₁ (T ∷ [] ++ os') ≡⟨ tail-∷ T ([] ++ os') ⟩
[] ++ os' ∎
prf₃ : os ≡ T ∷ tail₁ os
prf₃ = os ≡⟨ prf₁ ⟩
T ∷ [] ++ os' ≡⟨ ∷-rightCong (sym prf₂) ⟩
T ∷ tail₁ os ∎
... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' =
inj₂ prf₃
where
prf₁ : os ≡ F ∷ ft ++ os'
prf₁ = os ≡⟨ h ⟩
(F ∷ ft) ++ os' ≡⟨ ++-∷ F ft os' ⟩
F ∷ ft ++ os' ∎
prf₂ : tail₁ os ≡ ft ++ os'
prf₂ = tail₁ os ≡⟨ tailCong prf₁ ⟩
tail₁ (F ∷ ft ++ os') ≡⟨ tail-∷ F (ft ++ os') ⟩
ft ++ os' ∎
prf₃ : os ≡ F ∷ tail₁ os
prf₃ = os ≡⟨ prf₁ ⟩
F ∷ ft ++ os' ≡⟨ ∷-rightCong (sym prf₂) ⟩
F ∷ tail₁ os ∎
tail-Fair : ∀ {os} → Fair os → Fair (tail₁ os)
tail-Fair {os} Fos with Fair-out Fos
... | .(T ∷ []) , os' , f*tnil , h , Fos' =
subst Fair (sym prf₂) Fos'
where
prf₁ : os ≡ T ∷ os'
prf₁ = os ≡⟨ h ⟩
(T ∷ []) ++ os' ≡⟨ ++-∷ T [] os' ⟩
T ∷ [] ++ os' ≡⟨ ∷-rightCong (++-leftIdentity os') ⟩
T ∷ os' ∎
prf₂ : tail₁ os ≡ os'
prf₂ = tail₁ os ≡⟨ tailCong prf₁ ⟩
tail₁ (T ∷ os') ≡⟨ tail-∷ T os' ⟩
os' ∎
... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' =
subst Fair (sym prf₂) (Fair-in (ft , os' , FTft , refl , Fos'))
where
prf₁ : os ≡ F ∷ ft ++ os'
prf₁ = os ≡⟨ h ⟩
(F ∷ ft) ++ os' ≡⟨ ++-∷ F ft os' ⟩
F ∷ ft ++ os' ∎
prf₂ : tail₁ os ≡ ft ++ os'
prf₂ = tail₁ os ≡⟨ tailCong prf₁ ⟩
tail₁ (F ∷ ft ++ os') ≡⟨ tail-∷ F (ft ++ os') ⟩
ft ++ os' ∎
Fair→Stream : ∀ {os} → Fair os → Stream os
Fair→Stream Fos = Stream-coind A h Fos
where
A : D → Set
A xs = Fair xs
h : ∀ {os} → A os → ∃[ o' ] ∃[ os' ] os ≡ o' ∷ os' ∧ A os'
h {os} As with head-tail-Fair As
... | inj₁ prf = T , tail₁ os , prf , tail-Fair As
... | inj₂ prf = F , tail₁ os , prf , tail-Fair As
F*T→List : ∀ {xs} → F*T xs → List xs
F*T→List f*tnil = lcons T lnil
F*T→List (f*tcons {ft} FTft) = lcons F (F*T→List FTft)
|
{
"alphanum_fraction": 0.4340744571,
"avg_line_length": 32.7796610169,
"ext": "agda",
"hexsha": "01efcdb18dcfd2a49dafc562f6e498f571b94254",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1520,
"size": 3868
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Table-related properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Table.Properties where
open import Data.Table
open import Data.Table.Relation.Binary.Equality
open import Data.Bool using (true; false; if_then_else_)
open import Data.Nat using (zero; suc)
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; suc; zero; _≟_; punchIn)
import Data.Fin.Properties as FP
open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open import Data.List as L using (List; _∷_; [])
open import Data.List.Relation.Unary.Any using (here; there; index)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂)
open import Data.Vec as V using (Vec; _∷_; [])
import Data.Vec.Properties as VP
open import Function using (_∘_; flip)
open import Function.Inverse using (Inverse)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; cong)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
------------------------------------------------------------------------
-- select
module _ {a} {A : Set a} where
-- Selecting from any table is the same as selecting from a constant table.
select-const : ∀ {n} (z : A) (i : Fin n) t →
select z i t ≗ select z i (replicate (lookup t i))
select-const z i t j with j ≟ i
... | yes _ = refl
... | no _ = refl
-- Selecting an element from a table then looking it up is the same as looking
-- up the index in the original table
select-lookup : ∀ {n x i} (t : Table A n) →
lookup (select x i t) i ≡ lookup t i
select-lookup {i = i} t with i ≟ i
... | yes _ = refl
... | no i≢i = contradiction refl i≢i
-- Selecting an element from a table then removing the same element produces a
-- constant table
select-remove : ∀ {n x} i (t : Table A (suc n)) →
remove i (select x i t) ≗ replicate {n = n} x
select-remove i t j with punchIn i j ≟ i
... | yes p = contradiction p (FP.punchInᵢ≢i _ _)
... | no ¬p = refl
------------------------------------------------------------------------
-- permute
-- Removing an index 'i' from a table permuted with 'π' is the same as
-- removing the element, then permuting with 'π' minus 'i'.
remove-permute : ∀ {m n} (π : Permutation (suc m) (suc n))
i (t : Table A (suc n)) →
remove (π ⟨$⟩ˡ i) (permute π t)
≗ permute (Perm.remove (π ⟨$⟩ˡ i) π) (remove i t)
remove-permute π i t j = P.cong (lookup t) (Perm.punchIn-permute′ π i j)
------------------------------------------------------------------------
-- fromList
module _ {a} {A : Set a} where
fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs
fromList-∈ {[]} ()
fromList-∈ {x ∷ xs} zero = here refl
fromList-∈ {x ∷ xs} (suc i) = there (fromList-∈ i)
index-fromList-∈ : ∀ {xs i} → index (fromList-∈ {xs} i) ≡ i
index-fromList-∈ {[]} {()}
index-fromList-∈ {x ∷ xs} {zero} = refl
index-fromList-∈ {x ∷ xs} {suc i} = cong suc index-fromList-∈
fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x
fromList-index (here px) = sym px
fromList-index (there x∈xs) = fromList-index x∈xs
------------------------------------------------------------------------
-- There exists an isomorphism between tables and vectors.
module _ {a n} {A : Set a} where
↔Vec : Inverse (≡-setoid A n) (P.setoid (Vec A n))
↔Vec = record
{ to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong }
; from = P.→-to-⟶ fromVec
; inverse-of = record
{ left-inverse-of = VP.lookup∘tabulate ∘ lookup
; right-inverse-of = VP.tabulate∘lookup
}
}
------------------------------------------------------------------------
-- Other
module _ {a} {A : Set a} where
lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs
lookup∈ i = _ , fromList-∈ i
|
{
"alphanum_fraction": 0.5429789249,
"avg_line_length": 35.1916666667,
"ext": "agda",
"hexsha": "1b399f27ebc5ca1b7e3f7facc8e663cd46355bc4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Properties.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1255,
"size": 4223
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.FinWedge
open import homotopy.Bouquet
open import groups.SphereEndomorphism
open import cohomology.Theory
module cohomology.RephraseSubFinCoboundary (OT : OrdinaryTheory lzero) where
open OrdinaryTheory OT
open import cohomology.SphereEndomorphism cohomology-theory
open import cohomology.Sphere OT
open import cohomology.SubFinBouquet OT
abstract
rephrase-in-degree : ∀ n {I : ℕ} {JA JB : Type₀}
(JB-ac : has-choice 0 JB lzero)
(JB-dec : has-dec-eq JB)
{J} (p : Fin J ≃ Coprod JA JB)
(f : ⊙FinBouquet I (S n) ⊙→ ⊙Susp (⊙Bouquet JB n)) g
→ GroupIso.f (C-FinBouquet-diag (S n) I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n))
(GroupIso.g (C-SubFinBouquet-diag n JB-ac (–> p)) g)))
∼ λ <I → Group.subsum-r (C2 0) (–> p)
(λ b → Group.exp (C2 0) (g b) (⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I)))
rephrase-in-degree n {I} {JA} {JB} JB-ac JB-dec {J} p f g <I =
GroupIso.f (C-FinBouquet-diag (S n) I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n))
(GroupIso.g (C-SubFinBouquet-diag n JB-ac (–> p)) g)))
<I
=⟨ ap
(λ g → GroupIso.f (C-FinBouquet-diag (S n) I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n))
g)) <I)
(inverse-C-SubFinBouquet-diag-β n JB-ac JB-dec p g) ⟩
GroupIso.f (C-FinBouquet-diag (S n) I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n))
(Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet JB n)) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj JB-dec b)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))
<I
=⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag (S n) I) g <I) $
GroupHom.pres-subsum-r
(C-fmap (ℕ-to-ℤ (S n)) f ∘ᴳ GroupIso.g-hom (C-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n)))
(–> p)
(λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj JB-dec b)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))) ⟩
GroupIso.f (C-FinBouquet-diag (S n) I)
(Group.subsum-r (C (ℕ-to-ℤ (S n)) (⊙FinBouquet I (S n))) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Bouquet JB n))
(CEl-fmap (ℕ-to-ℤ n) (⊙bwproj JB-dec b)
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))
<I
=⟨ ap
(λ f → GroupIso.f (C-FinBouquet-diag (S n) I)
(Group.subsum-r (C (ℕ-to-ℤ (S n)) (⊙FinBouquet I (S n))) (–> p) f) <I)
(λ= λ b → ap (CEl-fmap (ℕ-to-ℤ (S n)) f) $
C-Susp-fmap' (ℕ-to-ℤ n) (⊙bwproj JB-dec b) □$ᴳ
CEl-fmap (ℕ-to-ℤ n) ⊙lift (GroupIso.g (C-Sphere-diag n) (g b))) ⟩
GroupIso.f (C-FinBouquet-diag (S n) I)
(Group.subsum-r (C (ℕ-to-ℤ (S n)) (⊙FinBouquet I (S n))) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ (S n)) f
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap (⊙bwproj JB-dec b))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))
<I
=⟨ C-FinBouquet-diag-β (S n) I
(Group.subsum-r (C (ℕ-to-ℤ (S n)) (⊙FinBouquet I (S n))) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ (S n)) f
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap (⊙bwproj JB-dec b))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))
<I ⟩
GroupIso.f (C-Sphere-diag (S n))
(CEl-fmap (ℕ-to-ℤ (S n)) ⊙lower
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙fwin <I)
(Group.subsum-r (C (ℕ-to-ℤ (S n)) (⊙FinBouquet I (S n))) (–> p)
(λ b → CEl-fmap (ℕ-to-ℤ (S n)) f
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap (⊙bwproj JB-dec b))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))))
=⟨ GroupHom.pres-subsum-r
( GroupIso.f-hom (C-Sphere-diag (S n))
∘ᴳ C-fmap (ℕ-to-ℤ (S n)) ⊙lower
∘ᴳ C-fmap (ℕ-to-ℤ (S n)) (⊙fwin <I))
(–> p)
(λ b → CEl-fmap (ℕ-to-ℤ (S n)) f
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap (⊙bwproj JB-dec b))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))) ⟩
Group.subsum-r (C2 0) (–> p)
(λ b → GroupIso.f (C-Sphere-diag (S n))
(CEl-fmap (ℕ-to-ℤ (S n)) ⊙lower
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙fwin <I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap (⊙bwproj JB-dec b))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b)))))))))
=⟨ ap (Group.subsum-r (C2 0) (–> p))
(λ= λ b → ap (GroupIso.f (C-Sphere-diag (S n)) ∘ CEl-fmap (ℕ-to-ℤ (S n)) ⊙lower) $
∘-CEl-fmap (ℕ-to-ℤ (S n)) (⊙fwin <I) f _
∙ ∘-CEl-fmap (ℕ-to-ℤ (S n)) (f ⊙∘ ⊙fwin <I) (⊙Susp-fmap (⊙bwproj JB-dec b)) _
∙ CEl-fmap-⊙Sphere-endo-η (ℕ-to-ℤ (S n)) n
(⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I)
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))) ⟩
Group.subsum-r (C2 0) (–> p)
(λ b → GroupIso.f (C-Sphere-diag (S n))
(CEl-fmap (ℕ-to-ℤ (S n)) ⊙lower
(Group.exp (C (ℕ-to-ℤ (S n)) (⊙Sphere (S n)))
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))
(⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I)))))
=⟨ ap (Group.subsum-r (C2 0) (–> p))
(λ= λ b →
GroupHom.pres-exp
(GroupIso.f-hom (C-Sphere-diag (S n)) ∘ᴳ C-fmap (ℕ-to-ℤ (S n)) ⊙lower)
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))
(⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I))) ⟩
Group.subsum-r (C2 0) (–> p)
(λ b → Group.exp (C2 0)
(GroupIso.f (C-Sphere-diag n)
(–> (CEl-Susp (ℕ-to-ℤ n) (⊙Lift (⊙Sphere n)))
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙lift {j = lzero} ⊙∘ ⊙Susp-fmap {Y = ⊙Sphere n} ⊙lower)
(CEl-fmap (ℕ-to-ℤ (S n)) ⊙lower
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙Sphere n))
(CEl-fmap (ℕ-to-ℤ n) ⊙lift
(GroupIso.g (C-Sphere-diag n) (g b))))))))
(⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I)))
=⟨ ap (Group.subsum-r (C2 0) (–> p))
(λ= λ b → ap (λ g → Group.exp (C2 0) g (⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I))) $
ap (GroupIso.f (C-Sphere-diag n) ∘ –> (CEl-Susp (ℕ-to-ℤ n) (⊙Lift (⊙Sphere n))))
( CEl-fmap-∘ (ℕ-to-ℤ (S n)) ⊙lift (⊙Susp-fmap {Y = ⊙Sphere n} ⊙lower) _
∙ ap (CEl-fmap (ℕ-to-ℤ (S n)) (⊙Susp-fmap {Y = ⊙Sphere n} ⊙lower))
( ∘-CEl-fmap (ℕ-to-ℤ (S n)) ⊙lift ⊙lower _
∙ CEl-fmap-idf (ℕ-to-ℤ (S n)) _))
∙ ap (GroupIso.f (C-Sphere-diag n))
( (C-Susp-fmap (ℕ-to-ℤ n) ⊙lower □$ᴳ _)
∙ ap (CEl-fmap (ℕ-to-ℤ n) ⊙lower) (GroupIso.f-g (C-Susp (ℕ-to-ℤ n) (⊙Sphere n)) _)
∙ ∘-CEl-fmap (ℕ-to-ℤ n) ⊙lower ⊙lift _
∙ CEl-fmap-idf (ℕ-to-ℤ n) _)
∙ GroupIso.f-g (C-Sphere-diag n) (g b)) ⟩
Group.subsum-r (C2 0) (–> p)
(λ b → Group.exp (C2 0) (g b)
(⊙SphereS-endo-degree n (⊙Susp-fmap (⊙bwproj JB-dec b) ⊙∘ f ⊙∘ ⊙fwin <I)))
=∎
{- the version specialzied to [Fin J]. -}
rephrase-in-degree' : ∀ n {I J : ℕ} (f : ⊙FinBouquet I (S n) ⊙→ ⊙Susp (⊙FinBouquet J n)) g
→ GroupIso.f (C-FinBouquet-diag (S n) I)
(CEl-fmap (ℕ-to-ℤ (S n)) f
(<– (CEl-Susp (ℕ-to-ℤ n) (⊙FinBouquet J n))
(GroupIso.g (C-FinBouquet-diag n J) g)))
∼ λ <I → Group.sum (C2 0)
(λ <J → Group.exp (C2 0) (g <J) (⊙SphereS-endo-degree n (⊙Susp-fmap (⊙fwproj <J) ⊙∘ f ⊙∘ ⊙fwin <I)))
rephrase-in-degree' n {I} {J} f g =
rephrase-in-degree n {I} {JA = Empty} {JB = Fin J}
(Fin-has-choice 0 lzero) Fin-has-dec-eq (⊔₁-Empty (Fin J) ⁻¹) f g
|
{
"alphanum_fraction": 0.4640275387,
"avg_line_length": 49.2372881356,
"ext": "agda",
"hexsha": "6c71a718467e4feea32edc14d9b30184c81cc196",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/RephraseSubFinCoboundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/RephraseSubFinCoboundary.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/RephraseSubFinCoboundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3960,
"size": 8715
}
|
------------------------------------------------------------------------
-- Pointwise products of binary relations
------------------------------------------------------------------------
module Relation.Binary.Product.Pointwise where
open import Data.Function
open import Data.Product
open import Data.Sum
open import Relation.Nullary.Product
open import Relation.Binary
private
module Dummy {a₁ a₂ : Set} where
infixr 2 _×-Rel_
_×-Rel_ : Rel a₁ → Rel a₂ → Rel (a₁ × a₂)
∼₁ ×-Rel ∼₂ = (∼₁ on₁ proj₁) -×- (∼₂ on₁ proj₂)
-- Some properties which are preserved by ×-Rel (under certain
-- assumptions).
_×-reflexive_ : ∀ {≈₁ ∼₁ ≈₂ ∼₂} →
≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ → (≈₁ ×-Rel ≈₂) ⇒ (∼₁ ×-Rel ∼₂)
refl₁ ×-reflexive refl₂ = λ x≈y →
(refl₁ (proj₁ x≈y) , refl₂ (proj₂ x≈y))
_×-refl_ : ∀ {∼₁ ∼₂} →
Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ×-Rel ∼₂)
refl₁ ×-refl refl₂ = (refl₁ , refl₂)
×-irreflexive₁ :
∀ {≈₁ <₁ ≈₂ <₂} →
Irreflexive ≈₁ <₁ → Irreflexive (≈₁ ×-Rel ≈₂) (<₁ ×-Rel <₂)
×-irreflexive₁ ir = λ x≈y x<y → ir (proj₁ x≈y) (proj₁ x<y)
×-irreflexive₂ :
∀ {≈₁ <₁ ≈₂ <₂} →
Irreflexive ≈₂ <₂ → Irreflexive (≈₁ ×-Rel ≈₂) (<₁ ×-Rel <₂)
×-irreflexive₂ ir = λ x≈y x<y → ir (proj₂ x≈y) (proj₂ x<y)
_×-symmetric_ : ∀ {∼₁ ∼₂} →
Symmetric ∼₁ → Symmetric ∼₂ → Symmetric (∼₁ ×-Rel ∼₂)
sym₁ ×-symmetric sym₂ = λ x∼y → sym₁ (proj₁ x∼y) , sym₂ (proj₂ x∼y)
_×-transitive_ : ∀ {∼₁ ∼₂} →
Transitive ∼₁ → Transitive ∼₂ →
Transitive (∼₁ ×-Rel ∼₂)
trans₁ ×-transitive trans₂ = λ x∼y y∼z →
trans₁ (proj₁ x∼y) (proj₁ y∼z) ,
trans₂ (proj₂ x∼y) (proj₂ y∼z)
_×-antisymmetric_ : ∀ {≈₁ ≤₁ ≈₂ ≤₂} →
Antisymmetric ≈₁ ≤₁ → Antisymmetric ≈₂ ≤₂ →
Antisymmetric (≈₁ ×-Rel ≈₂) (≤₁ ×-Rel ≤₂)
antisym₁ ×-antisymmetric antisym₂ = λ x≤y y≤x →
( antisym₁ (proj₁ x≤y) (proj₁ y≤x)
, antisym₂ (proj₂ x≤y) (proj₂ y≤x) )
×-asymmetric₁ : ∀ {<₁ ∼₂} → Asymmetric <₁ → Asymmetric (<₁ ×-Rel ∼₂)
×-asymmetric₁ asym₁ = λ x<y y<x → asym₁ (proj₁ x<y) (proj₁ y<x)
×-asymmetric₂ : ∀ {∼₁ <₂} → Asymmetric <₂ → Asymmetric (∼₁ ×-Rel <₂)
×-asymmetric₂ asym₂ = λ x<y y<x → asym₂ (proj₂ x<y) (proj₂ y<x)
_×-≈-respects₂_ : ∀ {≈₁ ∼₁ ≈₂ ∼₂} →
∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ →
(∼₁ ×-Rel ∼₂) Respects₂ (≈₁ ×-Rel ≈₂)
_×-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁} {≈₂ = ≈₂} {∼₂ = ∼₂}
resp₁ resp₂ =
(λ {x y z} → resp¹ {x} {y} {z}) ,
(λ {x y z} → resp² {x} {y} {z})
where
∼ = ∼₁ ×-Rel ∼₂
resp¹ : ∀ {x} → (∼ x) Respects (≈₁ ×-Rel ≈₂)
resp¹ y≈y' x∼y = proj₁ resp₁ (proj₁ y≈y') (proj₁ x∼y) ,
proj₁ resp₂ (proj₂ y≈y') (proj₂ x∼y)
resp² : ∀ {y} → (flip₁ ∼ y) Respects (≈₁ ×-Rel ≈₂)
resp² x≈x' x∼y = proj₂ resp₁ (proj₁ x≈x') (proj₁ x∼y) ,
proj₂ resp₂ (proj₂ x≈x') (proj₂ x∼y)
×-total : ∀ {∼₁ ∼₂} →
Symmetric ∼₁ → Total ∼₁ → Total ∼₂ → Total (∼₁ ×-Rel ∼₂)
×-total {∼₁ = ∼₁} {∼₂ = ∼₂} sym₁ total₁ total₂ = total
where
total : Total (∼₁ ×-Rel ∼₂)
total x y with total₁ (proj₁ x) (proj₁ y)
| total₂ (proj₂ x) (proj₂ y)
... | inj₁ x₁∼y₁ | inj₁ x₂∼y₂ = inj₁ ( x₁∼y₁ , x₂∼y₂)
... | inj₁ x₁∼y₁ | inj₂ y₂∼x₂ = inj₂ (sym₁ x₁∼y₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₂ y₂∼x₂ = inj₂ ( y₁∼x₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₁ x₂∼y₂ = inj₁ (sym₁ y₁∼x₁ , x₂∼y₂)
_×-decidable_ : ∀ {∼₁ ∼₂} →
Decidable ∼₁ → Decidable ∼₂ → Decidable (∼₁ ×-Rel ∼₂)
dec₁ ×-decidable dec₂ = λ x y →
dec₁ (proj₁ x) (proj₁ y)
×-dec
dec₂ (proj₂ x) (proj₂ y)
-- Some collections of properties which are preserved by ×-Rel.
_×-isEquivalence_ : ∀ {≈₁ ≈₂} →
IsEquivalence ≈₁ → IsEquivalence ≈₂ →
IsEquivalence (≈₁ ×-Rel ≈₂)
_×-isEquivalence_ {≈₁ = ≈₁} {≈₂ = ≈₂} eq₁ eq₂ = record
{ refl = λ {x} →
_×-refl_ {∼₁ = ≈₁} {∼₂ = ≈₂}
(refl eq₁) (refl eq₂) {x}
; sym = λ {x y} →
_×-symmetric_ {∼₁ = ≈₁} {∼₂ = ≈₂}
(sym eq₁) (sym eq₂) {x} {y}
; trans = λ {x y z} →
_×-transitive_ {∼₁ = ≈₁} {∼₂ = ≈₂}
(trans eq₁) (trans eq₂) {x} {y} {z}
}
where open IsEquivalence
_×-isPreorder_ : ∀ {≈₁ ∼₁ ≈₂ ∼₂} →
IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ →
IsPreorder (≈₁ ×-Rel ≈₂) (∼₁ ×-Rel ∼₂)
_×-isPreorder_ {∼₁ = ∼₁} {∼₂ = ∼₂} pre₁ pre₂ = record
{ isEquivalence = isEquivalence pre₁ ×-isEquivalence
isEquivalence pre₂
; reflexive = λ {x y} →
_×-reflexive_ {∼₁ = ∼₁} {∼₂ = ∼₂}
(reflexive pre₁) (reflexive pre₂)
{x} {y}
; trans = λ {x y z} →
_×-transitive_ {∼₁ = ∼₁} {∼₂ = ∼₂}
(trans pre₁) (trans pre₂)
{x} {y} {z}
; ∼-resp-≈ = ∼-resp-≈ pre₁ ×-≈-respects₂ ∼-resp-≈ pre₂
}
where open IsPreorder
_×-isDecEquivalence_ : ∀ {≈₁ ≈₂} →
IsDecEquivalence ≈₁ → IsDecEquivalence ≈₂ →
IsDecEquivalence (≈₁ ×-Rel ≈₂)
eq₁ ×-isDecEquivalence eq₂ = record
{ isEquivalence = isEquivalence eq₁ ×-isEquivalence
isEquivalence eq₂
; _≟_ = _≟_ eq₁ ×-decidable _≟_ eq₂
}
where open IsDecEquivalence
_×-isPartialOrder_ : ∀ {≈₁ ≤₁ ≈₂ ≤₂} →
IsPartialOrder ≈₁ ≤₁ → IsPartialOrder ≈₂ ≤₂ →
IsPartialOrder (≈₁ ×-Rel ≈₂) (≤₁ ×-Rel ≤₂)
_×-isPartialOrder_ {≤₁ = ≤₁} {≤₂ = ≤₂} po₁ po₂ = record
{ isPreorder = isPreorder po₁ ×-isPreorder isPreorder po₂
; antisym = λ {x y} →
_×-antisymmetric_ {≤₁ = ≤₁} {≤₂ = ≤₂}
(antisym po₁) (antisym po₂)
{x} {y}
}
where open IsPartialOrder
_×-isStrictPartialOrder_ :
∀ {≈₁ <₁ ≈₂ <₂} →
IsStrictPartialOrder ≈₁ <₁ → IsStrictPartialOrder ≈₂ <₂ →
IsStrictPartialOrder (≈₁ ×-Rel ≈₂) (<₁ ×-Rel <₂)
_×-isStrictPartialOrder_ {<₁ = <₁} {≈₂ = ≈₂} {<₂ = <₂} spo₁ spo₂ =
record
{ isEquivalence = isEquivalence spo₁ ×-isEquivalence
isEquivalence spo₂
; irrefl = λ {x y} →
×-irreflexive₁ {<₁ = <₁} {≈₂ = ≈₂} {<₂ = <₂}
(irrefl spo₁) {x} {y}
; trans = λ {x y z} →
_×-transitive_ {∼₁ = <₁} {∼₂ = <₂}
(trans spo₁) (trans spo₂)
{x} {y} {z}
; <-resp-≈ = <-resp-≈ spo₁ ×-≈-respects₂ <-resp-≈ spo₂
}
where open IsStrictPartialOrder
open Dummy public
-- "Packages" (e.g. setoids) can also be combined.
_×-preorder_ : Preorder → Preorder → Preorder
p₁ ×-preorder p₂ = record
{ isPreorder = isPreorder p₁ ×-isPreorder isPreorder p₂
} where open Preorder
_×-setoid_ : Setoid → Setoid → Setoid
s₁ ×-setoid s₂ = record
{ isEquivalence = isEquivalence s₁ ×-isEquivalence isEquivalence s₂
} where open Setoid
_×-decSetoid_ : DecSetoid → DecSetoid → DecSetoid
s₁ ×-decSetoid s₂ = record
{ isDecEquivalence = isDecEquivalence s₁ ×-isDecEquivalence
isDecEquivalence s₂
} where open DecSetoid
_×-poset_ : Poset → Poset → Poset
s₁ ×-poset s₂ = record
{ isPartialOrder = isPartialOrder s₁ ×-isPartialOrder
isPartialOrder s₂
} where open Poset
_×-strictPartialOrder_ :
StrictPartialOrder → StrictPartialOrder → StrictPartialOrder
s₁ ×-strictPartialOrder s₂ = record
{ isStrictPartialOrder = isStrictPartialOrder s₁
×-isStrictPartialOrder
isStrictPartialOrder s₂
} where open StrictPartialOrder
|
{
"alphanum_fraction": 0.4846938776,
"avg_line_length": 37.5514018692,
"ext": "agda",
"hexsha": "31ab2abf761290b701fa78475d49898a686d0299",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Product/Pointwise.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Product/Pointwise.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Product/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 3175,
"size": 8036
}
|
open import Common.Prelude hiding (tt)
instance
tt : ⊤
tt = record{}
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc _) = ⊤
pred′ : (n : Nat) {{_ : NonZero n}} → Nat
pred′ zero {{}}
pred′ (suc n) = n
test : (n : Nat) {{x y : NonZero n}} → Nat
test n = pred′ n
|
{
"alphanum_fraction": 0.5567765568,
"avg_line_length": 16.0588235294,
"ext": "agda",
"hexsha": "0dd49c7af1a9fcf296cd396f15174030f5c79f78",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NonUniqueInstance1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NonUniqueInstance1.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NonUniqueInstance1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 273
}
|
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Data.Empty using (⊥-elim)
open import Data.Product
open import Data.Sum
open import Relation.Nullary
open import Relation.Unary using (_∈_)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; trans; sym; subst)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_)
open import Function.Base using (case_of_)
open import Common
module Compliance {ℙ : Set} (message : Message ℙ)
where
open import Action message
open import SessionType message
open import Transitions message
open import Session message
open import Progress message
data Compliance : Session -> Set
record ∞Compliance (S : Session) : Set where
constructor delay_
coinductive
field force : Compliance S
open ∞Compliance public
data Compliance where
win#def : ∀{T S} (w : Win T) (def : Defined S) -> Compliance (T # S)
out#inp : ∀{f g} (W : Witness f) (F : ∀{x} (!x : x ∈ dom f) -> ∞Compliance (f x .force # g x .force)) -> Compliance (out f # inp g)
inp#out : ∀{f g} (W : Witness g) (F : ∀{x} (!x : x ∈ dom g) -> ∞Compliance (f x .force # g x .force)) -> Compliance (inp f # out g)
subject-reduction : ∀{S S'} -> Compliance S -> Reduction S S' -> ∞Compliance S'
force (subject-reduction (win#def (out U) def) (sync {I _} (out !x) s)) = ⊥-elim (U _ !x)
force (subject-reduction (inp#out _ F) (sync inp (out !x))) = F !x .force
force (subject-reduction (out#inp _ F) (sync (out !x) inp)) = F !x .force
subject-reduction* : ∀{S S'} -> Compliance S -> Reductions S S' -> ∞Compliance S'
force (subject-reduction* comp ε) = comp
subject-reduction* comp (red ◅ reds) = subject-reduction* (subject-reduction comp red .force) reds
compliance->progress : ∀{S} -> Compliance S -> Progress S
compliance->progress (win#def w def) = win#def w def
compliance->progress (out#inp W F) = out#inp W
compliance->progress (inp#out W F) = inp#out W
compliance->defined : ∀{T S} -> Compliance (T # S) -> Defined T × Defined S
compliance->defined (win#def (out _) def) = out , def
compliance->defined (out#inp _ _) = out , inp
compliance->defined (inp#out _ _) = inp , out
compliance-sound : ∀{S} -> Compliance S -> ComplianceS S
compliance-sound comp reds = progress-sound (compliance->progress (subject-reduction* comp reds .force))
compliance-complete : ∀{S} -> ComplianceS S -> ∞Compliance S
force (compliance-complete {T # S} spec) with spec ε
... | inj₁ (win#def w def) = win#def w def
... | inj₂ (_ , sync inp (out !x)) =
inp#out (_ , !x) λ !x -> compliance-complete λ reds -> spec (sync inp (out !x) ◅ reds)
... | inj₂ (_ , sync (out !x) inp) =
out#inp (_ , !x) λ !x -> compliance-complete λ reds -> spec (sync (out !x) inp ◅ reds)
|
{
"alphanum_fraction": 0.6954498449,
"avg_line_length": 42.5054945055,
"ext": "agda",
"hexsha": "a8098613ab5e19ea480ba7e9d3aea718d20de747",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Compliance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Compliance.agda",
"max_line_length": 133,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Compliance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 1102,
"size": 3868
}
|
module +-mono-< where
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm)
open import Relations using (_<_; z<s; s<s)
open import <-trans using (<-trans)
+-monoʳ-< : ∀ (n p q : ℕ)
→ p < q
-------------
→ n + p < n + q
+-monoʳ-< zero p q p<q = p<q
+-monoʳ-< (suc n) p q p<q = s<s (+-monoʳ-< n p q p<q)
+-monoˡ-< : ∀ (m n p : ℕ)
→ m < n
-------------
→ m + p < n + p
+-monoˡ-< m n p m<n rewrite +-comm m p | +-comm n p = +-monoʳ-< p m n m<n
+-mono-< : ∀ (m n p q : ℕ)
→ m < n
→ p < q
-------------
→ m + p < n + q
+-mono-< m n p q m<n p<q = <-trans (+-monoˡ-< m n p m<n) (+-monoʳ-< n p q p<q)
|
{
"alphanum_fraction": 0.4512743628,
"avg_line_length": 23.8214285714,
"ext": "agda",
"hexsha": "14d2d4f27e25523272cfeb3519a38e6fa859e3dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/relations/+-mono-<.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/relations/+-mono-<.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/relations/+-mono-<.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 292,
"size": 667
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Everything where
-- Basic cubical prelude
open import Cubical.Foundations.Prelude public
-- Definition of Identity types and definitions of J, funExt,
-- univalence and propositional truncation using Id instead of Path
open import Cubical.Foundations.Id
hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ )
renaming ( _≃_ to EquivId
; EquivContr to EquivContrId
; J to JId
; ap to apId
; equivFun to equivFunId
; equivCtr to equivCtrId
; fiber to fiberId
; funExt to funExtId
; isContr to isContrId
; isProp to isPropId
; isSet to isSetId
; isEquiv to isEquivId
; equivIsEquiv to equivIsEquivId
; refl to reflId
; ∥_∥ to propTruncId
; ∣_∣ to incId
; isPropIsContr to isPropIsContrId
; isPropIsEquiv to isPropIsEquivId
)
open import Cubical.Foundations.GroupoidLaws public
open import Cubical.Foundations.CartesianKanOps public
open import Cubical.Foundations.Function public
open import Cubical.Foundations.Equiv public
open import Cubical.Foundations.Equiv.Properties public
open import Cubical.Foundations.PathSplitEquiv public
open import Cubical.Foundations.BiInvEquiv public
open import Cubical.Foundations.FunExtEquiv public
open import Cubical.Foundations.HLevels public
open import Cubical.Foundations.Path public
open import Cubical.Foundations.Transport public
open import Cubical.Foundations.Univalence public
open import Cubical.Foundations.UnivalenceId public
open import Cubical.Foundations.GroupoidLaws public
open import Cubical.Foundations.Isomorphism public
open import Cubical.Foundations.Logic
open import Cubical.Foundations.HoTT-UF
|
{
"alphanum_fraction": 0.684073107,
"avg_line_length": 39.8958333333,
"ext": "agda",
"hexsha": "8da3efa470f1d91eb44637848be754d9c0c5fa7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Everything.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 496,
"size": 1915
}
|
module Prelude.String where
open import Agda.Primitive
open import Prelude.Unit
open import Prelude.Char
open import Prelude.Bool
open import Prelude.Nat
open import Prelude.List
open import Prelude.Maybe
open import Prelude.Equality
open import Prelude.Equality.Unsafe
open import Prelude.Decidable
open import Prelude.Ord
open import Prelude.Function
open import Prelude.Monad
open import Prelude.Semiring
open import Agda.Builtin.String public
open import Agda.Builtin.FromString public
unpackString = primStringToList
packString = primStringFromList
unpackString-inj : ∀ {x y} → unpackString x ≡ unpackString y → x ≡ y
unpackString-inj {x} p with unpackString x
unpackString-inj refl | ._ = unsafeEqual
infixr 5 _&_
_&_ = primStringAppend
parseNat : String → Maybe Nat
parseNat = parseNat′ ∘ unpackString
where
pDigit : Char → Maybe Nat
pDigit c =
if isDigit c then just (charToNat c - charToNat '0')
else nothing
pNat : Nat → List Char → Maybe Nat
pNat n [] = just n
pNat n (c ∷ s) = pDigit c >>= λ d → pNat (n * 10 + d) s
parseNat′ : List Char → Maybe Nat
parseNat′ [] = nothing
parseNat′ (c ∷ s) = pDigit c >>= λ d → pNat d s
-- Eq --
instance
EqString : Eq String
_==_ {{EqString}} x y with primStringEquality x y
... | true = yes unsafeEqual
... | false = no unsafeNotEqual
-- Ord --
instance
OrdString : Ord String
OrdString = OrdBy unpackString-inj
OrdLawsString : Ord/Laws String
OrdLawsString = OrdLawsBy unpackString-inj
-- Overloaded literals --
instance
StringIsString : IsString String
IsString.Constraint StringIsString _ = ⊤
IsString.fromString StringIsString s = s
ListIsString : IsString (List Char)
IsString.Constraint ListIsString _ = ⊤
IsString.fromString ListIsString s = unpackString s
-- Monoid --
instance
open import Prelude.Monoid
MonoidString : Monoid String
mempty {{MonoidString}} = ""
_<>_ {{MonoidString}} = primStringAppend
|
{
"alphanum_fraction": 0.7151515152,
"avg_line_length": 23.8554216867,
"ext": "agda",
"hexsha": "45583f89c5ba65fa554cb244623159041327ac1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Prelude/String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Prelude/String.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Prelude/String.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 559,
"size": 1980
}
|
{-# OPTIONS --cubical-compatible #-}
module Common.IO where
open import Agda.Builtin.IO public
open import Common.Bool
open import Common.Char
open import Common.Nat
open import Common.String
open import Common.Unit
open import Common.Float
infixl 1 _>>=_
postulate
return : ∀ {a} {A : Set a} → A → IO A
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
{-# COMPILE GHC return = \_ _ -> return #-}
{-# COMPILE GHC _>>=_ = \_ _ _ _ -> (>>=) #-}
{-# COMPILE UHC return = \_ _ x -> UHC.Agda.Builtins.primReturn x #-}
{-# COMPILE UHC _>>=_ = \_ _ _ _ x y -> UHC.Agda.Builtins.primBind x y #-}
{-# COMPILE JS return =
function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
{-# COMPILE JS _>>=_ =
function(u0) { return function(u1) { return function(u2) { return function(u3) {
return function(x) { return function(y) { return function(cb) {
x(function (xx) { y(xx)(cb); });
}; }; };
}; }; }; }
#-}
{-# FOREIGN GHC import qualified Data.Text.IO #-}
postulate
putStr : String -> IO Unit
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE UHC putStr = UHC.Agda.Builtins.primPutStr #-}
{-# COMPILE JS putStr = function (x) { return function(cb) { process.stdout.write(x); cb(0); }; } #-}
printChar : Char -> IO Unit
printChar c = putStr (charToStr c)
putStrLn : String -> IO Unit
putStrLn s = putStr s >>= \_ -> putStr "\n"
printNat : Nat -> IO Unit
printNat n = putStr (natToString n)
printBool : Bool -> IO Unit
printBool true = putStr "true"
printBool false = putStr "false"
printFloat : Float -> IO Unit
printFloat f = putStr (floatToString f)
infixr 2 _<$>_
_<$>_ : {A B : Set}(f : A -> B)(m : IO A) -> IO B
f <$> x = x >>= λ y -> return (f y)
infixr 0 bind
bind : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
bind m f = m >>= f
infixr 0 then
then : ∀ {a b} {A : Set a} {B : Set b} -> IO A -> IO B -> IO B
then m f = m >>= λ _ -> f
syntax bind e (\ x -> f) = x <- e , f
syntax then e f = e ,, f
|
{
"alphanum_fraction": 0.5857843137,
"avg_line_length": 28.3333333333,
"ext": "agda",
"hexsha": "85656477fa3e0905be98f540286d00dbe802eb1a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/IO.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/IO.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/IO.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 677,
"size": 2040
}
|
module OpenModuleShortHand where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
module List (Elem : Set) where
data List : Set where
[] : List
_::_ : Elem -> List -> List
open List Nat
{- This means
open module _ = List Nat
-}
xs : List
xs = zero :: (suc zero :: [])
|
{
"alphanum_fraction": 0.5938566553,
"avg_line_length": 13.3181818182,
"ext": "agda",
"hexsha": "ac4362424728a28a7aaddefe2134e91d86a5c4db",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/OpenModuleShortHand.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/OpenModuleShortHand.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/OpenModuleShortHand.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 90,
"size": 293
}
|
module classify-tests where
open import lib
open import classify
open import syntax-util
test = check-beta-inequiv (mlam "a" (mlam "b" (mvar "a"))) (mlam "a" (mlam "b" (mvar "b")))
|
{
"alphanum_fraction": 0.6830601093,
"avg_line_length": 22.875,
"ext": "agda",
"hexsha": "2db0989fec7f2fa632a8d62ad80b00dc19f90ae7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/classify-tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/classify-tests.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/classify-tests.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 61,
"size": 183
}
|
{-# OPTIONS --without-K --safe #-}
module Cats.Displayed where
open import Data.Product using (Σ ; Σ-syntax ; _,_)
open import Level using (_⊔_ ; suc)
open import Relation.Binary using
(Setoid ; IsEquivalence ; Rel ; REL ; _Preserves₂_⟶_⟶_)
open import Cats.Category
record DisplayedCategory {lo la l≈} (C : Category lo la l≈) lo′ la′ l≈′
: Set (lo ⊔ la ⊔ l≈ ⊔ suc (lo′ ⊔ la′ ⊔ l≈′)) where
infixr 9 _∘_
infix 4 _≈[_]_
infixr -1 _⇒[_]_
Base = C
module Base = Category Base
private
module C = Category C
field
Obj : (c : C.Obj) → Set lo′
_⇒[_]_ : ∀ {a b} (a⁺ : Obj a) (f : a C.⇒ b) (b⁺ : Obj b) → Set la′
_≈[_]_ : ∀ {a b} {f g : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b}
→ a⁺ ⇒[ f ] b⁺
→ f C.≈ g
→ a⁺ ⇒[ g ] b⁺
→ Set l≈′
id : ∀ {a} {a⁺ : Obj a} → a⁺ ⇒[ C.id ] a⁺
_∘_ : ∀ {a b c} {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c}
→ {f : b C.⇒ c} {g : a C.⇒ b}
→ (f⁺ : b⁺ ⇒[ f ] c⁺) (g⁺ : a⁺ ⇒[ g ] b⁺)
→ a⁺ ⇒[ f C.∘ g ] c⁺
≈-refl : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺}
→ f⁺ ≈[ C.≈.refl ] f⁺
≈-sym : ∀ {a b} {f g : a C.⇒ b} {f≈g : f C.≈ g} {a⁺ : Obj a} {b⁺ : Obj b}
→ {f⁺ : a⁺ ⇒[ f ] b⁺} {g⁺ : a⁺ ⇒[ g ] b⁺}
→ f⁺ ≈[ f≈g ] g⁺
→ g⁺ ≈[ C.≈.sym f≈g ] f⁺
≈-trans : ∀ {a b}
→ {f g h : a C.⇒ b} {f≈g : f C.≈ g} {g≈h : g C.≈ h}
→ {a⁺ : Obj a} {b⁺ : Obj b}
→ {f⁺ : a⁺ ⇒[ f ] b⁺} {g⁺ : a⁺ ⇒[ g ] b⁺} {h⁺ : a⁺ ⇒[ h ] b⁺}
→ f⁺ ≈[ f≈g ] g⁺ → g⁺ ≈[ g≈h ] h⁺
→ f⁺ ≈[ C.≈.trans f≈g g≈h ] h⁺
∘-resp : ∀ {a b c} {f g : b C.⇒ c} {h i : a C.⇒ b}
→ {f≈g : f C.≈ g} {h≈i : h C.≈ i}
→ {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c}
→ {f⁺ : b⁺ ⇒[ f ] c⁺} {g⁺ : b⁺ ⇒[ g ] c⁺}
→ {h⁺ : a⁺ ⇒[ h ] b⁺} {i⁺ : a⁺ ⇒[ i ] b⁺}
→ f⁺ ≈[ f≈g ] g⁺
→ h⁺ ≈[ h≈i ] i⁺
→ f⁺ ∘ h⁺ ≈[ C.∘-resp f≈g h≈i ] g⁺ ∘ i⁺
id-r : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺}
→ f⁺ ∘ id ≈[ C.id-r ] f⁺
id-l : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺}
→ id ∘ f⁺ ≈[ C.id-l ] f⁺
assoc : ∀ {a b c d} {f : c C.⇒ d} {g : b C.⇒ c} {h : a C.⇒ b}
→ {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c} {d⁺ : Obj d}
→ {f⁺ : c⁺ ⇒[ f ] d⁺} {g⁺ : b⁺ ⇒[ g ] c⁺} {h⁺ : a⁺ ⇒[ h ] b⁺}
→ (f⁺ ∘ g⁺) ∘ h⁺ ≈[ C.assoc ] f⁺ ∘ (g⁺ ∘ h⁺)
module BuildTotal
{lo la l≈} {C : Category lo la l≈} {lo′ la′ l≈′}
(D : DisplayedCategory C lo′ la′ l≈′)
where
infixr 9 _∘_
infix 4 _≈_
infixr -1 _⇒_
private
module C = Category C
module D = DisplayedCategory D
Obj : Set (lo ⊔ lo′)
Obj = Σ[ c ∈ C.Obj ] D.Obj c
_⇒_ : (a b : Obj) → Set (la ⊔ la′)
(a , a⁺) ⇒ (b , b⁺) = Σ[ f ∈ a C.⇒ b ] (a⁺ D.⇒[ f ] b⁺)
_≈_ : ∀ {a b} → Rel (a ⇒ b) (l≈ ⊔ l≈′)
(f , f⁺) ≈ (g , g⁺) = Σ[ f≈g ∈ f C.≈ g ] f⁺ D.≈[ f≈g ] g⁺
id : ∀ {a} → a ⇒ a
id = C.id , D.id
_∘_ : ∀ {a b c} → b ⇒ c → a ⇒ b → a ⇒ c
(f , f⁺) ∘ (g , g⁺) = (f C.∘ g) , (f⁺ D.∘ g⁺)
equiv : ∀ {a b} → IsEquivalence (_≈_ {a} {b})
equiv = record
{ refl = C.≈.refl , D.≈-refl
; sym = λ where
(f≈g , f⁺≈g⁺) → C.≈.sym f≈g , D.≈-sym f⁺≈g⁺
; trans = λ where
(f≈g , f⁺≈g⁺) (g≈h , g⁺≈h⁺) → C.≈.trans f≈g g≈h , D.≈-trans f⁺≈g⁺ g⁺≈h⁺
}
∘-resp : ∀ {a b c} → (_∘_ {a} {b} {c} Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_)
∘-resp (f≈g , f⁺≈g⁺) (h≈i , h⁺≈i⁺) = C.∘-resp f≈g h≈i , D.∘-resp f⁺≈g⁺ h⁺≈i⁺
id-r : ∀ {a b} {f : a ⇒ b} → f ∘ id ≈ f
id-r = C.id-r , D.id-r
id-l : ∀ {a b} {f : a ⇒ b} → id ∘ f ≈ f
id-l = C.id-l , D.id-l
assoc : ∀ {a b c d} {f : c ⇒ d} {g : b ⇒ c} {h : a ⇒ b}
→ (f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
assoc = C.assoc , D.assoc
Total : Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′)
Total = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = equiv
; ∘-resp = ∘-resp
; id-r = id-r
; id-l = id-l
; assoc = assoc
}
open BuildTotal public using (Total)
|
{
"alphanum_fraction": 0.3679149798,
"avg_line_length": 27.8309859155,
"ext": "agda",
"hexsha": "378755eabb8bbadc32759a71b4edb23d46cdece2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Displayed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Displayed.agda",
"max_line_length": 80,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Displayed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 2326,
"size": 3952
}
|
module EqTest where
import Common.Level
data _≡_ {a : Set} (x : a) : a -> Set where
refl : x ≡ x
data Maybe (a : Set) : Set where
just : a -> Maybe a
nothing : Maybe a
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
_≟_ : (x y : ℕ) -> Maybe (x ≡ y)
suc m ≟ suc n with m ≟ n
suc .n ≟ suc n | just refl = just refl
suc m ≟ suc n | nothing = nothing
zero ≟ suc _ = nothing
suc m ≟ zero = nothing
zero ≟ zero = just refl
|
{
"alphanum_fraction": 0.5538116592,
"avg_line_length": 19.3913043478,
"ext": "agda",
"hexsha": "e22fe438ed9c66f9a8e98ca4fe14a2b19a8109f1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/EqTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/EqTest.agda",
"max_line_length": 43,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/EqTest.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 177,
"size": 446
}
|
module Issue477b where
record D where
field A : Set
|
{
"alphanum_fraction": 0.7321428571,
"avg_line_length": 9.3333333333,
"ext": "agda",
"hexsha": "c93a111ef18fd1b9115105851232092c99a59bca",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue477b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue477b.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue477b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 56
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- BinaryCoproducts -- a category with all binary coproducts
-- Cocartesian -- a category with all coproducts
-- since most of the work is dual to Categories.Category.Cartesian, so the idea
-- in this module is to make use of duality
module Categories.Category.Cocartesian {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
private
module 𝒞 = Category 𝒞
open Category 𝒞
open HomReasoning
variable
A B C D : Obj
f g h i : A ⇒ B
open import Categories.Object.Initial 𝒞
open import Categories.Object.Coproduct 𝒞
open import Categories.Object.Duality 𝒞
open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Symmetric
open import Categories.Category.Cartesian 𝒞.op
open import Categories.Morphism 𝒞
open import Categories.Morphism.Properties 𝒞
open import Categories.Morphism.Duality 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Functor.Bifunctor
record BinaryCoproducts : Set (levelOfTerm 𝒞) where
infixr 6 _+_
infixr 7 _+₁_
field
coproduct : ∀ {A B} → Coproduct A B
module coproduct {A} {B} = Coproduct (coproduct {A} {B})
_+_ : Obj → Obj → Obj
A + B = coproduct.A+B {A} {B}
open coproduct
using (i₁; i₂; [_,_]; inject₁; inject₂; []-cong₂)
renaming (unique to +-unique; η to +-η; g-η to +-g-η)
public
module Dual where
op-binaryProducts : BinaryProducts
op-binaryProducts = record { product = coproduct→product coproduct }
module op-binaryProducts = BinaryProducts op-binaryProducts
open Dual
+-comm : A + B ≅ B + A
+-comm = op-≅⇒≅ (op-binaryProducts.×-comm)
+-assoc : A + B + C ≅ (A + B) + C
+-assoc = op-≅⇒≅ (op-binaryProducts.×-assoc)
_+₁_ : A ⇒ B → C ⇒ D → A + C ⇒ B + D
_+₁_ = op-binaryProducts._⁂_
open op-binaryProducts
using ()
renaming ( ⟨⟩-congʳ to []-congʳ
; ⟨⟩-congˡ to []-congˡ
; assocˡ to +-assocʳ
; assocʳ to +-assocˡ
; swap to +-swap
; first to +-first
; second to +-second
; π₁∘⁂ to +₁∘i₁
; π₂∘⁂ to +₁∘i₂
; ⁂-cong₂ to +₁-cong₂
; ⁂∘⟨⟩ to []∘+₁
; ⁂∘⁂ to +₁∘+₁
; ⟨⟩∘ to ∘[]
; first↔second to +-second↔first
; swap∘⁂ to +₁∘+-swap
; swap∘swap to +-swap∘swap
)
public
-- since op-×- has type Bifunctor 𝒞.op 𝒞.op 𝒞.op,
-- need to rewrap in order to type check
-+- : Bifunctor 𝒞 𝒞 𝒞
-+- = record
{ F₀ = op-×-.F₀
; F₁ = op-×-.F₁
; identity = op-×-.identity
; homomorphism = op-×-.homomorphism
; F-resp-≈ = op-×-.F-resp-≈
}
where op-×- = op-binaryProducts.-×-
module op-×- = Functor op-×-
-+_ : Obj → Functor 𝒞 𝒞
-+_ = appʳ -+-
_+- : Obj → Functor 𝒞 𝒞
_+- = appˡ -+-
record Cocartesian : Set (levelOfTerm 𝒞) where
field
initial : Initial
coproducts : BinaryCoproducts
module initial = Initial initial
module coproducts = BinaryCoproducts coproducts
open initial
renaming (! to ¡; !-unique to ¡-unique; !-unique₂ to ¡-unique₂)
public
open coproducts hiding (module Dual) public
module Dual where
open coproducts.Dual public
op-cartesian : Cartesian
op-cartesian = record
{ terminal = ⊥⇒op⊤ initial
; products = op-binaryProducts
}
module op-cartesian = Cartesian op-cartesian
open Dual
⊥+A≅A : ⊥ + A ≅ A
⊥+A≅A = op-≅⇒≅ (op-cartesian.⊤×A≅A)
A+⊥≅A : A + ⊥ ≅ A
A+⊥≅A = op-≅⇒≅ (op-cartesian.A×⊤≅A)
open op-cartesian
using ()
-- both are natural isomorphism
renaming (⊤×--id to ⊥+--id; -×⊤-id to -+⊥-id)
public
+-monoidal : Monoidal 𝒞
+-monoidal = record
{ ⊗ = -+-
; unit = unit
; unitorˡ = ⊥+A≅A
; unitorʳ = A+⊥≅A
; associator = ≅.sym +-assoc
; unitorˡ-commute-from = ⟺ unitorˡ-commute-to
; unitorˡ-commute-to = ⟺ unitorˡ-commute-from
; unitorʳ-commute-from = ⟺ unitorʳ-commute-to
; unitorʳ-commute-to = ⟺ unitorʳ-commute-from
; assoc-commute-from = ⟺ assoc-commute-to
; assoc-commute-to = ⟺ assoc-commute-from
-- the proof idea of triangle is that the opposite triangle is obtained for free,
-- but notice that triangle and the opposite triangle form isomorphism.
; triangle = λ {X Y} →
Iso-≈ triangle
(Iso-∘ ([ X +- ]-resp-Iso (Iso-swap (iso ⊥+A≅A)))
(iso +-assoc))
([ -+ Y ]-resp-Iso (Iso-swap (iso A+⊥≅A)))
; pentagon = λ {X Y Z W} →
Iso-≈ pentagon
(Iso-∘ ([ X +- ]-resp-Iso (iso +-assoc))
(Iso-∘ (iso +-assoc)
([ -+ W ]-resp-Iso (iso +-assoc))))
(Iso-∘ (iso +-assoc) (iso +-assoc))
}
where op-monoidal = op-cartesian.monoidal
open Monoidal op-monoidal
open _≅_
module +-monoidal = Monoidal +-monoidal
+-symmetric : Symmetric +-monoidal
+-symmetric = record
{ braided = record
{ braiding = record
{ F⇒G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; F⇐G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; iso = λ _ → iso +-comm
}
; hexagon₁ = braided.hexagon₂
; hexagon₂ = braided.hexagon₁
}
; commutative = commutative
}
where op-symmetric = op-cartesian.symmetric
open Symmetric op-symmetric
open _≅_
-- we don't open this module publicly in order to prevent introducing conflicts
-- with Cartesian category
module +-symmetric = Symmetric +-symmetric
|
{
"alphanum_fraction": 0.5338286437,
"avg_line_length": 29.8396226415,
"ext": "agda",
"hexsha": "feee2f2e4a1099127a9a115fc197c910058c1c7f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Cocartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Cocartesian.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Cocartesian.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2060,
"size": 6326
}
|
{-# OPTIONS --without-K #-}
data D : Set where
@0 c : D
data P (x : D) : Set where
record R : Set where
field
f : P c
|
{
"alphanum_fraction": 0.5348837209,
"avg_line_length": 11.7272727273,
"ext": "agda",
"hexsha": "4c3c1aa24f17e34ae7994bc5979f21508cebf199",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5920a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5920a.agda",
"max_line_length": 27,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5920a.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 45,
"size": 129
}
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
open import Data.List using (List; sum) renaming ([] to []ᴸ; _∷_ to _∷ᴸ_)
open import Data.Nat using (ℕ; _+_; zero; suc)
open import Data.Vec using (Vec; _++_; take; drop) renaming ([] to []ⱽ; _∷_ to _∷ⱽ_)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
module FLA.Data.VectorList where
-- At the moment, `VectorList` is named `RList` in the Haskell code.
data VectorList (A : Set) : List ℕ → Set where
[]ⱽᴸ : VectorList A []ᴸ
_∷ⱽᴸ_ : {n : ℕ} {ns : List ℕ} → Vec A n → VectorList A ns
→ VectorList A (n ∷ᴸ ns)
infixr 5 _∷ⱽᴸ_
concat : {A : Set} {ns : List ℕ} → VectorList A ns → Vec A (sum ns)
concat []ⱽᴸ = []ⱽ
concat (v ∷ⱽᴸ vs) = v ++ concat vs
-- We will want to use split to split a VectorList
split : {ℓ : Level} {A : Set ℓ} → {m n : ℕ} → Vec A (m + n) → Vec A m × Vec A n
split {ℓ} {A} {zero} {n} v = []ⱽ , v
split {ℓ} {A} {suc m} {n} (v ∷ⱽ vs) = let v₁ , v₂ = split vs in v ∷ⱽ v₁ , v₂
-- split' : {ℓ : Level} {A : Set ℓ} → {m n : ℕ} → Vec A (m + n) → Vec A m × Vec A n
-- split' {ℓ} {A} {m} {n} v = (take v , drop v)
-- Hmm, this will be hard to translate to Haskell, since we match on ns
splitToVectorList : {A : Set} → (ns : List ℕ) → Vec A (sum ns) → VectorList A ns
splitToVectorList []ᴸ v = []ⱽᴸ
splitToVectorList (_ ∷ᴸ ns) v = let v₁ , v₂ = split v in
v₁ ∷ⱽᴸ (splitToVectorList ns v₂)
|
{
"alphanum_fraction": 0.5706409373,
"avg_line_length": 39.2162162162,
"ext": "agda",
"hexsha": "7478834529dc4af2f91b481bf0fcb737c04f045f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Data/VectorList.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Data/VectorList.agda",
"max_line_length": 84,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Data/VectorList.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 599,
"size": 1451
}
|
module Issue477 where
data D where
c : D
|
{
"alphanum_fraction": 0.7045454545,
"avg_line_length": 8.8,
"ext": "agda",
"hexsha": "f464b2df8eacb77ecf428956bb572dfc837f7745",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue477.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue477.agda",
"max_line_length": 21,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue477.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 14,
"size": 44
}
|
{-# OPTIONS --safe #-} -- --without-K #-}
import Data.String.Base as String
{-# BUILTIN FROMSTRING String.toList #-}
open import Data.Nat using (ℕ; zero; suc)
open import Data.Bool using (Bool; true; false)
open import Data.Unit using (⊤; tt)
open import Data.Fin using (Fin; zero; suc) renaming (#_ to #'_)
open import Data.Product using (_,_)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Data.String
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
import Level as L
open import PiCalculus.Syntax
open Scoped
open import PiCalculus.Semantics
open import PiCalculus.LinearTypeSystem.Algebras
open import PiCalculus.LinearTypeSystem.Algebras.Linear using (Linear)
open import PiCalculus.LinearTypeSystem.Algebras.Shared using (Shared)
open import PiCalculus.LinearTypeSystem.Algebras.Graded using (Graded)
module PiCalculus.Examples where
open Raw
variable
n : ℕ
raw : Raw
raw = ⦅ν "x"⦆ (("x" ⦅ "y" ⦆ 𝟘) ∥ ("x" ⟨ "a" ⟩ 𝟘))
scoped : Scoped 1
scoped = ν (((#' 0) ⦅⦆ 𝟘) ⦃ "y" ⦄ ∥ ((#' 0) ⟨ #' 1 ⟩ 𝟘)) ⦃ "x" ⦄
_ : Conversion.fromRaw ("a" ∷ []) raw ≡ scoped
_ = refl
channel-over-channel₀ : Raw
channel-over-channel₀ = ⦅ν "x"⦆
( ("x" ⦅ "r" ⦆ "r" ⦅ "p" ⦆ 𝟘)
∥ (⦅ν "z"⦆ ("x" ⟨ "z" ⟩ "z" ⟨ "y" ⟩ 𝟘)))
channel-over-channel₁ : Raw
channel-over-channel₁ = ⦅ν "x"⦆ ⦅ν "z"⦆
( ("x" ⦅ "r" ⦆ "r" ⦅ "p" ⦆ 𝟘)
∥ ("x" ⟨ "z" ⟩ "z" ⟨ "y" ⟩ 𝟘))
channel-over-channel₂ : Raw
channel-over-channel₂ = ⦅ν "z"⦆ ⦅ν "x"⦆
( ("x" ⦅ "r" ⦆ "r" ⦅ "p" ⦆ 𝟘)
∥ ("x" ⟨ "z" ⟩ "z" ⟨ "y" ⟩ 𝟘))
channel-over-channel₃ : Raw
channel-over-channel₃ = ⦅ν "z"⦆ ⦅ν "x"⦆
( ("z" ⦅ "p" ⦆ 𝟘)
∥ ("z" ⟨ "y" ⟩ 𝟘))
channel-over-channel₄ : Raw
channel-over-channel₄ = ⦅ν "z"⦆ ⦅ν "x"⦆
(𝟘 ∥ 𝟘)
channel-over-channel₅ : Raw
channel-over-channel₅ = ⦅ν "z"⦆ ⦅ν "x"⦆ 𝟘
channel-over-channel₆ : Raw
channel-over-channel₆ = ⦅ν "z"⦆ 𝟘
channel-over-channel₇ : Raw
channel-over-channel₇ = 𝟘
_!_≅_ : ∀ {n} → Vec Name n → Raw → Raw → Set
_!_≅_ = Conversion.map₂ _≅_
_!_⇒_ : ∀ {n} → Vec Name n → Raw → Raw → Set
_!_⇒_ = Conversion.map₂ _⇒_
_ : ("y" ∷ []) ! channel-over-channel₀ ≅ channel-over-channel₁
_ = _ , ν-cong cong-symm stop scope-ext ((λ ()) , (λ ()) , tt)
_ : ("y" ∷ []) ! channel-over-channel₁ ≅ channel-over-channel₂
_ = _ , stop scope-scope-comm
_ : ("y" ∷ []) ! channel-over-channel₂ ⇒ channel-over-channel₃
_ = _ , res res comm
_ : ("y" ∷ []) ! channel-over-channel₃ ⇒ channel-over-channel₄
_ = _ , res res comm
_ : ("y" ∷ []) ! channel-over-channel₄ ≅ channel-over-channel₅
_ = _ , ν-cong ν-cong stop comp-end
_ : ("y" ∷ []) ! channel-over-channel₅ ≅ channel-over-channel₆
_ = _ , ν-cong stop scope-end
_ : ("y" ∷ []) ! channel-over-channel₆ ≅ channel-over-channel₇
_ = _ , stop scope-end
module Shared-Graded-Linear where
data Grading : Set where
sha gra lin : Grading
pattern 0∙ = false
pattern 1∙ = true
QUANTIFIERS : Algebras
Algebras.Idx QUANTIFIERS = Grading
Algebras.∃Idx QUANTIFIERS = sha
Algebras.Usage QUANTIFIERS sha = ⊤
Algebras.Usage QUANTIFIERS gra = ℕ
Algebras.Usage QUANTIFIERS lin = Bool
Algebras.UsageAlgebra QUANTIFIERS sha = Shared
Algebras.UsageAlgebra QUANTIFIERS gra = Graded
Algebras.UsageAlgebra QUANTIFIERS lin = Linear
open Algebras QUANTIFIERS hiding (ℓᵢ;ℓₒ;ℓ∅;ℓ#;0∙;1∙)
open import PiCalculus.LinearTypeSystem QUANTIFIERS
open import PiCalculus.LinearTypeSystem.ContextLemmas QUANTIFIERS
_!_;[_]_⊢_▹_ : Vec Name n → PreCtx n → (idxs : Idxs n) → Ctx idxs → Raw → Ctx idxs → Set
ctx ! γ ;[ idxs ] Γ ⊢ P ▹ Δ = Conversion.map (λ P' → γ ;[ idxs ] Γ ⊢ P' ▹ Δ) ctx P
ω∙ : ⊤ ²
ω∙ = tt , tt
ℓ# : Bool ²
ℓ# = true , true
ℓᵢ : Bool ²
ℓᵢ = true , false
ℓₒ : Bool ²
ℓₒ = false , true
ℓ∅ : Bool ²
ℓ∅ = false , false
instance
name : Name
name = ""
_ : ([] -, "y") ! [] -, 𝟙 ;[ [] -, sha ] [] -, ω∙ ⊢ channel-over-channel₀ ▹ ε
_ = ν C[ 𝟙 ; ω∙ ] ℓᵢ {lin} 1∙
(((here ) ⦅⦆ (here ⦅⦆ 𝟘)) ∥
(ν 𝟙 ω∙ {lin} 1∙
((there here) ⟨ here ⟩ (here ⟨ there there here ⟩ 𝟘))))
_ : [] -, 𝟙 ;[ [] -, sha ] [] -, ω∙ ⊢ ν (((#' 0) ⟨ #' 1 ⟩ 𝟘) ∥ ((#' 0) ⦅⦆ 𝟘)) ▹ ε
_ = ν 𝟙 ω∙ {lin} 1∙ ((# 0 ⟨ # 1 ⟩ 𝟘) ∥ (# 0 ⦅⦆ 𝟘))
p : Scoped 1
p = ν (((#' 0) ⦅⦆ ((#' 0) ⦅⦆ 𝟘)) ∥ (ν ((#' 1) ⟨ #' 0 ⟩ (#' 0) ⟨ #' 2 ⟩ 𝟘)))
_ : [] -, 𝟙 ;[ [] -, sha ] [] -, ω∙ ⊢ p ▹ ε
_ = ν C[ 𝟙 ; ω∙ ] {lin} ℓᵢ {lin} 1∙ (
(here ⦅⦆ (here ⦅⦆ 𝟘)) ∥ (ν 𝟙 ω∙ 1∙ (there here ⟨ here ⟩ (here ⟨ there there here ⟩ 𝟘))))
P : Scoped 2
P = (ν (suc zero ⟨ zero ⟩ zero ⟨ suc (suc zero) ⟩ 𝟘)) ∥ (zero ⦅⦆ zero ⦅⦆ 𝟘)
⊢P : ∀ {n} → [] -, 𝟙 -, C[ C[ 𝟙 ; ω∙ ] ; ℓᵢ ] ;[ [] -, sha -, gra ] [] -, ω∙ -, (suc n , suc n) ⊢ P ▹ [] -, ω∙ -, (n , n)
⊢P = ν 𝟙 ω∙ {lin} 1∙ ((there here) ⟨ here ⟩ (here ⟨ there there here ⟩ 𝟘)) ∥ (here ⦅⦆ (here ⦅⦆ 𝟘))
⊢P∥P : [] -, 𝟙 ;[ [] -, sha ] [] -, ω∙ ⊢ ν (P ∥ P) ▹ ε
⊢P∥P = ν C[ 𝟙 ; ω∙ ] ℓᵢ 2 (⊢P ∥ ⊢P)
sync : ∀ {n} → Fin n → Fin n → Fin n → Scoped n
sync i0 i1 o =
i0 ⦅⦆
suc i1 ⦅⦆
suc (suc o) ⟨ suc zero ⟩
suc (suc o) ⟨ zero ⟩ 𝟘
send : ∀ {n} → Fin n → Scoped n
send c = ν (suc c ⟨ zero ⟩ 𝟘)
recv : ∀ {n} → Fin n → Scoped n
recv c = c ⦅⦆ (suc c ⦅⦆ 𝟘)
example : Scoped 0
example = ν ( (send zero)
∥ ν ( (send zero)
∥ ν ( recv zero
∥ sync (#' 2) (#' 1) (#' 0))))
⊢-send : ∀ {n} {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs} {k l}
→ γ -, C[_;_] {idx = lin} (C[_;_] {idx = sha} 𝟙 ω∙) ℓ∅ ;[ idxs -, gra ] Γ -, (k , suc l) ⊢ send zero ▹ Γ -, (k , l)
⊢-send = ν _ _ 0∙ (there here ⟨ here ⟩ 𝟘)
⊢-recv : ∀ {n} {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs} {t : Type} {k l}
→ γ -, (C[_;_] {idx = lin} t ℓ∅) ;[ idxs -, gra ] Γ -, (suc (suc l) , k) ⊢ recv zero ▹ Γ -, (l , k)
⊢-recv = here ⦅⦆ (there here ⦅⦆ 𝟘)
⊢-sync : ∀ {n} {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs} {t : Type} {lx rx ly ry lz rz}
→ γ -, C[_;_] {idx = lin} t ℓ∅ -, C[ t ; ℓ∅ ] -, C[ t ; ℓ∅ ]
;[ idxs -, gra -, gra -, gra ]
Γ -, (suc lx , rx) -, (suc ly , ry) -, (lz , suc (suc rz)) ⊢ sync (#' 2) (#' 1) (#' 0) ▹ Γ -, (lx , rx) -, (ly , ry) -, (lz , rz)
⊢-sync = (there (there here)) ⦅⦆
(there (there here)) ⦅⦆
(there (there here)) ⟨ there here ⟩
(there (there here)) ⟨ here ⟩ 𝟘
_ : [] ; [] ⊢ example ▹ []
_ = ν _ _ _ ( ⊢-send
∥ ν _ _ _ ( ⊢-send
∥ ν _ _ _ ( ⊢-recv
∥ ⊢-sync )))
module Linear where
QUANTIFIERS : Algebras
Algebras.Idx QUANTIFIERS = ⊤
Algebras.∃Idx QUANTIFIERS = tt
Algebras.Usage QUANTIFIERS _ = Bool
Algebras.UsageAlgebra QUANTIFIERS _ = Linear
open Algebras QUANTIFIERS
open import PiCalculus.LinearTypeSystem QUANTIFIERS
open import PiCalculus.LinearTypeSystem.ContextLemmas QUANTIFIERS
_ : [] -, C[ 𝟙 ; ℓᵢ ] -, 𝟙 ; [] -, ℓ# -, ℓ# ∋[ #' 1 ] C[ 𝟙 ; ℓᵢ ] ; ℓᵢ ▹ [] -, ℓₒ -, ℓ#
_ = there here
|
{
"alphanum_fraction": 0.5150959368,
"avg_line_length": 31.5022222222,
"ext": "agda",
"hexsha": "7a742ced047a05e007ce79b4459bfc7d9d1de242",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/typing-linear-pi",
"max_forks_repo_path": "src/PiCalculus/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/typing-linear-pi",
"max_issues_repo_path": "src/PiCalculus/Examples.agda",
"max_line_length": 138,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/typing-linear-pi",
"max_stars_repo_path": "src/PiCalculus/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3262,
"size": 7088
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Irrelevance {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Tools.Empty using (⊥; ⊥-elim)
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Tools.Product
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Irrelevance for propositionally equal types
irrelevance′ : ∀ {A A′ Γ r l}
→ A PE.≡ A′
→ Γ ⊩⟨ l ⟩ A ^ r
→ Γ ⊩⟨ l ⟩ A′ ^ r
irrelevance′ PE.refl [A] = [A]
irrelevance′′ : ∀ {A A′ Γ r r' ll ll' l}
→ A PE.≡ A′
→ r PE.≡ r'
→ ll PE.≡ ll'
→ Γ ⊩⟨ l ⟩ A ^ [ r , ll ]
→ Γ ⊩⟨ l ⟩ A′ ^ [ r' , ll' ]
irrelevance′′ PE.refl PE.refl PE.refl [A] = [A]
-- Irrelevance for propositionally equal types and contexts
irrelevanceΓ′ : ∀ {l A A′ r Γ Γ′}
→ Γ PE.≡ Γ′
→ A PE.≡ A′
→ Γ ⊩⟨ l ⟩ A ^ r
→ Γ′ ⊩⟨ l ⟩ A′ ^ r
irrelevanceΓ′ PE.refl PE.refl [A] = [A]
-- helper function to deal with relevance
reduction-irrelevant-Univ : ∀ {Γ A t l l' ll ll' l< l<' r r' el el' D D'}
(e : r PE.≡ r') →
Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r ll l< el D) →
Γ ⊩⟨ l' ⟩ t ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r' ll' l<' el' D')
reduction-irrelevant-Univ {Γ} {A} {t} {ι ¹} {ι ¹} {⁰} {⁰} PE.refl (Uₜ K d typeK K≡K [t]) = Uₜ K d typeK K≡K [t]
reduction-irrelevant-Univ {Γ} {A} {t} {∞} {∞} {¹} {¹} PE.refl (Uₜ K d typeK K≡K [t]) = Uₜ K d typeK K≡K [t]
reduction-irrelevant-Univ= : ∀ {Γ A t u l l' ll ll' l< l<' r r' el el' D D'}
(e : r PE.≡ r') →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r ll l< el D) →
Γ ⊩⟨ l' ⟩ t ≡ u ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r' ll' l<' el' D')
reduction-irrelevant-Univ= {l = ι ¹} {ι ¹} {⁰} {⁰} PE.refl (Uₜ₌ [t] [u] A≡B [t≡u]) = Uₜ₌ (reduction-irrelevant-Univ PE.refl [t]) (reduction-irrelevant-Univ PE.refl [u]) A≡B [t≡u]
reduction-irrelevant-Univ= {l = ∞} {∞} {¹} {¹} {l<} {l<'} PE.refl (Uₜ₌ [t] [u] A≡B [t≡u]) = Uₜ₌ (reduction-irrelevant-Univ PE.refl [t]) (reduction-irrelevant-Univ PE.refl [u]) A≡B [t≡u]
-- NB: for Pi cases it seems like it would be cleaner to do
-- irrelevanceFoo (Pi ...) rewrite whrDet* ...
-- instead of messing with PE.subst and irrelevanceEq′ etc
-- however for some reason the termination checker doesn't accept it
mutual
-- Irrelevance for type equality
irrelevanceEq : ∀ {Γ A B r l l′} (p : Γ ⊩⟨ l ⟩ A ^ r) (q : Γ ⊩⟨ l′ ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / p → Γ ⊩⟨ l′ ⟩ A ≡ B ^ r / q
irrelevanceEq p q A≡B = irrelevanceEqT (goodCasesRefl p q) A≡B
-- Irrelevance for type equality with propositionally equal first types
irrelevanceEq′ : ∀ {Γ A A′ B r r' l l′ ll ll'} (eq : A PE.≡ A′) (eqr : r PE.≡ r') (eql : ll PE.≡ ll')
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ A′ ≡ B ^ [ r' , ll' ] / q
irrelevanceEq′ PE.refl PE.refl PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Irrelevance for type equality with propositionally equal types
irrelevanceEq″ : ∀ {Γ A A′ B B′ r r' ll ll' l l′} (eqA : A PE.≡ A′) (eqB : B PE.≡ B′) (eqr : r PE.≡ r') (eql : ll PE.≡ ll')
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ A′ ≡ B′ ^ [ r' , ll' ] / q
irrelevanceEq″ PE.refl PE.refl PE.refl PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Irrelevance for type equality with propositionally equal second types
irrelevanceEqR′ : ∀ {Γ A B B′ r l} (eqB : B PE.≡ B′) (p : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / p → Γ ⊩⟨ l ⟩ A ≡ B′ ^ r / p
irrelevanceEqR′ PE.refl p A≡B = A≡B
-- Irrelevance for type equality with propositionally equal types and
-- a lifting of propositionally equal types
irrelevanceEqLift″ : ∀ {Γ A A′ B B′ C C′ rC r l l′}
(eqA : A PE.≡ A′) (eqB : B PE.≡ B′) (eqC : C PE.≡ C′)
(p : Γ ∙ C ^ rC ⊩⟨ l ⟩ A ^ r) (q : Γ ∙ C′ ^ rC ⊩⟨ l′ ⟩ A′ ^ r)
→ Γ ∙ C ^ rC ⊩⟨ l ⟩ A ≡ B ^ r / p → Γ ∙ C′ ^ rC ⊩⟨ l′ ⟩ A′ ≡ B′ ^ r / q
irrelevanceEqLift″ PE.refl PE.refl PE.refl p q A≡B = irrelevanceEq p q A≡B
-- Helper for irrelevance of type equality using shape view
irrelevanceEqT : ∀ {Γ A B r l l′} {p : Γ ⊩⟨ l ⟩ A ^ r} {q : Γ ⊩⟨ l′ ⟩ A ^ r}
→ ShapeView Γ l l′ A A r r p q
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / p → Γ ⊩⟨ l′ ⟩ A ≡ B ^ r / q
irrelevanceEqT (ℕᵥ D D′) A≡B = A≡B
irrelevanceEqT (Emptyᵥ D D′) A≡B = A≡B
irrelevanceEqT (ne (ne K D neK _) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M)
rewrite whrDet* (red D , ne neK) (red D₁ , ne neK₁) =
ne₌ M D′ neM K≡M
irrelevanceEqT {Γ} {r = r} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , lΠ≡lΠ₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
in Π₌ F′ G′ (PE.subst₃ _ rF≡rF₁ lF≡lF₁ lG≡lG₁ D′)
(PE.subst5 (λ x rx lx lx' lx'' → Γ ⊢ x ≅ Π F′ ^ rx ° lx ▹ G′ ° lx' ° lx'' ^ r) ΠFG≡ΠF₁G₁ rF≡rF₁ lF≡lF₁ lG≡lG₁ lΠ≡lΠ₁ A≡B)
(λ {ρ} [ρ] ⊢Δ → irrelevanceEq′ (PE.cong (wk ρ) F≡F₁) rF≡rF₁ (PE.cong ι lF≡lF₁) ([F] [ρ] ⊢Δ)
([F]₁ [ρ] ⊢Δ)
([F≡F′] [ρ] ⊢Δ))
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a]₁
in irrelevanceEq′ (PE.cong (λ y → wk (lift ρ) y [ _ ]) G≡G₁) PE.refl (PE.cong ι lG≡lG₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]))
irrelevanceEqT {Γ} {r = r} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let ∃FG≡∃F₁G₁ = whrDet* (red D , ∃ₙ) (red D₁ , ∃ₙ)
F≡F₁ , G≡G₁ = ∃-PE-injectivity ∃FG≡∃F₁G₁
in ∃₌ F′ G′ D′
(PE.subst (λ x → Γ ⊢ x ≅ ∃ F′ ▹ G′ ^ r) ∃FG≡∃F₁G₁ A≡B)
(λ {ρ} [ρ] ⊢Δ → irrelevanceEq′ (PE.cong (wk ρ) F≡F₁) PE.refl PE.refl ([F] [ρ] ⊢Δ)
([F]₁ [ρ] ⊢Δ)
([F≡F′] [ρ] ⊢Δ))
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.refl) (PE.refl)
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a]₁
in irrelevanceEq′ (PE.cong (λ y → wk (lift ρ) y [ _ ]) G≡G₁) PE.refl PE.refl
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]))
irrelevanceEqT (Uᵥ (Uᵣ _ _ _ PE.refl D) (Uᵣ _ _ _ e D')) A≡B = let U≡U = whrDet* (red D , Uₙ) (red D' , Uₙ) in
let r≡r , l≡l = Univ-PE-injectivity U≡U in
PE.subst _ l≡l (PE.subst _ r≡r A≡B)
irrelevanceEqT (emb⁰¹ x) A≡B = irrelevanceEqT x A≡B
irrelevanceEqT (emb¹⁰ x) A≡B = irrelevanceEqT x A≡B
irrelevanceEqT (emb¹∞ x) A≡B = irrelevanceEqT x A≡B
irrelevanceEqT (emb∞¹ x) A≡B = irrelevanceEqT x A≡B
irrelevance-level : ∀ {A Γ r l l'}
→ l <∞ l'
→ Γ ⊩⟨ l ⟩ A ^ r
→ Γ ⊩⟨ l' ⟩ A ^ r
irrelevance-level l< (ℕᵣ x) = ℕᵣ x
irrelevance-level l< (Emptyᵣ x) = Emptyᵣ x
irrelevance-level l< (ne x) = ne x
irrelevance-level l< (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A (λ x ⊢Δ → irrelevance-level l< ([F] x ⊢Δ ))
(λ [ρ] ⊢Δ x → irrelevance-level l< ([G] [ρ] ⊢Δ
(irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) x)))
λ [ρ] ⊢Δ [a] [b] x →
irrelevanceEq
([G] [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a]))
(irrelevance-level l< ([G] [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a])))
(G-ext [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a])
(irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [b])
(irrelevanceEqTerm (irrelevance-level l< ([F] [ρ] ⊢Δ )) ([F] [ρ] ⊢Δ) x))
irrelevance-level l< (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = ∃ᵣ′ F G D ⊢F ⊢G A≡A (λ x ⊢Δ → irrelevance-level l< ([F] x ⊢Δ ))
(λ [ρ] ⊢Δ x → irrelevance-level l< ([G] [ρ] ⊢Δ
(irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) x)))
λ [ρ] ⊢Δ [a] [b] x →
irrelevanceEq
([G] [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a]))
(irrelevance-level l< ([G] [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a])))
(G-ext [ρ] ⊢Δ (irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [a])
(irrelevanceTerm (irrelevance-level l< ([F] [ρ] ⊢Δ)) ([F] [ρ] ⊢Δ) [b])
(irrelevanceEqTerm (irrelevance-level l< ([F] [ρ] ⊢Δ )) ([F] [ρ] ⊢Δ) x))
irrelevance-level {r = [ .! , ll ]} ∞< (Uᵣ (Uᵣ r .⁰ emb< eq d)) = emb ∞< (Uᵣ (Uᵣ r _ emb< eq d))
irrelevance-level ∞< (emb emb< [A]) = emb ∞< (emb emb< [A])
--------------------------------------------------------------------------------
-- Irrelevance for terms
irrelevanceTerm : ∀ {Γ A t r l l′} (p : Γ ⊩⟨ l ⟩ A ^ r) (q : Γ ⊩⟨ l′ ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ t ∷ A ^ r / p → Γ ⊩⟨ l′ ⟩ t ∷ A ^ r / q
irrelevanceTerm p q t = irrelevanceTermT (goodCasesRefl p q) t
-- Irrelevance for terms with propositionally equal types
irrelevanceTerm′ : ∀ {Γ A A′ t r r' l l′ ll ll'} (eq : A PE.≡ A′) (req : r PE.≡ r') (leq : ll PE.≡ ll')
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ t ∷ A′ ^ [ r' , ll' ] / q
irrelevanceTerm′ PE.refl PE.refl PE.refl p q t = irrelevanceTerm p q t
-- Irrelevance for terms with propositionally equal types and terms
irrelevanceTerm″ : ∀ {Γ A A′ t t′ r r' ll ll' l l′}
(eqA : A PE.≡ A′) (req : r PE.≡ r') (leq : ll PE.≡ ll') (eqt : t PE.≡ t′)
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ t′ ∷ A′ ^ [ r' , ll' ] / q
irrelevanceTerm″ PE.refl PE.refl PE.refl PE.refl p q t = irrelevanceTerm p q t
-- Irrelevance for terms with propositionally equal types, terms and contexts
irrelevanceTermΓ″ : ∀ {l l′ A A′ t t′ r Γ Γ′}
→ Γ PE.≡ Γ′
→ A PE.≡ A′
→ t PE.≡ t′
→ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
([A′] : Γ′ ⊩⟨ l′ ⟩ A′ ^ r)
→ Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A]
→ Γ′ ⊩⟨ l′ ⟩ t′ ∷ A′ ^ r / [A′]
irrelevanceTermΓ″ PE.refl PE.refl PE.refl [A] [A′] [t] = irrelevanceTerm [A] [A′] [t]
-- Helper for irrelevance of terms using shape view
irrelevanceTermT : ∀ {Γ A t r l l′} {p : Γ ⊩⟨ l ⟩ A ^ r} {q : Γ ⊩⟨ l′ ⟩ A ^ r}
→ ShapeView Γ l l′ A A r r p q
→ Γ ⊩⟨ l ⟩ t ∷ A ^ r / p → Γ ⊩⟨ l′ ⟩ t ∷ A ^ r / q
irrelevanceTermT (ℕᵥ D D′) t = t
irrelevanceTermT (Emptyᵥ D D′) t = t
irrelevanceTermT { r = [ ! , ll ] } (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (neₜ k d nf)
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceTermT {r = [ ! , ll ]} (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (neₜ k d nf)
| PE.refl = neₜ k d nf
irrelevanceTermT { r = [ % , ll ] } (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (neₜ d)
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceTermT {r = [ % , ll ]} (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (neₜ d)
| PE.refl = neₜ d
irrelevanceTermT {Γ} {t = t} {r = [ ! , ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Πₜ f d funcF f≡f [f] [f]₁) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , lΠ≡lΠ₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
in Πₜ f (PE.subst (λ x → Γ ⊢ t :⇒*: f ∷ x ^ ll) ΠFG≡ΠF₁G₁ d) funcF
(PE.subst (λ x → Γ ⊢ f ≅ f ∷ x ^ [ ! , ll ]) ΠFG≡ΠF₁G₁ f≡f)
(λ {ρ} [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a]₁
[b] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[b]₁
[a≡b] = irrelevanceEqTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a≡b]₁
in irrelevanceEqTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁) PE.refl (PE.cong ι lG≡lG₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁)
([f] [ρ] ⊢Δ [a] [b] [a≡b]))
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a]₁
in irrelevanceTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁) PE.refl (PE.cong ι lG≡lG₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([f]₁ [ρ] ⊢Δ [a]))
irrelevanceTermT {Γ} {t = t} {r = [ % , ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
d = let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
in PE.subst (λ x → Γ ⊢ t ∷ x ^ [ % , ll ]) ΠFG≡ΠF₁G₁ d
irrelevanceTermT {Γ} {t = t} {r = [ % , ll ]} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
d = let ∃FG≡∃F₁G₁ = whrDet* (red D , ∃ₙ) (red D₁ , ∃ₙ)
in PE.subst (λ x → Γ ⊢ t ∷ x ^ [ % , ll ]) ∃FG≡∃F₁G₁ d
irrelevanceTermT (Uᵥ (Uᵣ r ll l< PE.refl D) (Uᵣ r' ll' l<' _ D')) t =
let U≡U = whrDet* (red D , Uₙ) (red D' , Uₙ)
r≡r , l≡l = Univ-PE-injectivity U≡U
in reduction-irrelevant-Univ r≡r t
irrelevanceTermT (emb⁰¹ x) t = irrelevanceTermT x t
irrelevanceTermT (emb¹⁰ x) t = irrelevanceTermT x t
irrelevanceTermT (emb¹∞ x) t = irrelevanceTermT x t
irrelevanceTermT (emb∞¹ x) t = irrelevanceTermT x t
--------------------------------------------------------------------------------
-- Irrelevance for term equality
irrelevanceEqTerm : ∀ {Γ A t u r l l′} (p : Γ ⊩⟨ l ⟩ A ^ r) (q : Γ ⊩⟨ l′ ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A ^ r / q
irrelevanceEqTerm p q t≡u = irrelevanceEqTermT (goodCasesRefl p q) t≡u
-- Irrelevance for term equality with propositionally equal types
irrelevanceEqTerm′ : ∀ {Γ A A′ t u r r' l l′ ll ll'} (eq : A PE.≡ A′) (req : r PE.≡ r') (leq : ll PE.≡ ll')
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A′ ^ [ r' , ll' ] / q
irrelevanceEqTerm′ PE.refl PE.refl PE.refl p q t≡u = irrelevanceEqTerm p q t≡u
-- Irrelevance for term equality with propositionally equal types and terms
irrelevanceEqTerm″ : ∀ {Γ A A′ t t′ u u′ r r' ll ll' l l′} (req : r PE.≡ r') (leq : ll PE.≡ ll')
(eqt : t PE.≡ t′) (equ : u PE.≡ u′) (eqA : A PE.≡ A′)
(p : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) (q : Γ ⊩⟨ l′ ⟩ A′ ^ [ r' , ll' ])
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / p → Γ ⊩⟨ l′ ⟩ t′ ≡ u′ ∷ A′ ^ [ r' , ll' ] / q
irrelevanceEqTerm″ PE.refl PE.refl PE.refl PE.refl PE.refl p q t≡u = irrelevanceEqTerm p q t≡u
-- Helper for irrelevance of term equality using shape view
irrelevanceEqTermT : ∀ {Γ A t u r} {l l′} {p : Γ ⊩⟨ l ⟩ A ^ r} {q : Γ ⊩⟨ l′ ⟩ A ^ r}
→ ShapeView Γ l l′ A A r r p q
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / p → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A ^ r / q
irrelevanceEqTermT (ℕᵥ D D′) t≡u = t≡u
irrelevanceEqTermT (Emptyᵥ D D′) t≡u = t≡u
irrelevanceEqTermT { r = [ ! , ll ] } (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (neₜ₌ k m d d′ nf)
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceEqTermT (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (neₜ₌ k m d d′ nf)
| PE.refl = neₜ₌ k m d d′ nf
irrelevanceEqTermT { r = [ % , ll ] } (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (neₜ₌ d d′)
with whrDet* (red D₁ , ne neK₁) (red D , ne neK)
irrelevanceEqTermT (ne (ne K D neK K≡K) (ne .K D₁ neK₁ K≡K₁)) (neₜ₌ d d′)
| PE.refl = neₜ₌ d d′
irrelevanceEqTermT {Γ} {t = t} {u = u} {r = [ ! , ll ]}
(Πᵥ (Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) =
let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ)
F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , lΠ≡lΠ₁ = Π-PE-injectivity ΠFG≡ΠF₁G₁
[A] = Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[A]₁ = Πᵣ′ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁
in Πₜ₌ f g (PE.subst (λ x → Γ ⊢ t :⇒*: f ∷ x ^ ll) ΠFG≡ΠF₁G₁ d)
(PE.subst (λ x → Γ ⊢ u :⇒*: g ∷ x ^ ll) ΠFG≡ΠF₁G₁ d′) funcF funcG
(PE.subst (λ x → Γ ⊢ f ≅ g ∷ x ^ [ ! , ll ]) ΠFG≡ΠF₁G₁ f≡g)
(irrelevanceTerm [A] [A]₁ [f]) (irrelevanceTerm [A] [A]₁ [g])
(λ {ρ} [ρ] ⊢Δ [a]₁ →
let [a] = irrelevanceTerm′ (PE.cong (wk ρ) (PE.sym F≡F₁)) (PE.sym rF≡rF₁) (PE.cong ι (PE.sym lF≡lF₁))
([F]₁ [ρ] ⊢Δ)
([F] [ρ] ⊢Δ)
[a]₁
in irrelevanceEqTerm′ (PE.cong (λ G → wk (lift ρ) G [ _ ]) G≡G₁) PE.refl (PE.cong ι lG≡lG₁)
([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) ([f≡g] [ρ] ⊢Δ [a]))
irrelevanceEqTermT {Γ} {t = t} {u = u} {r = [ % , ll ]}
(Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(d , d′) = let ΠFG≡ΠF₁G₁ = whrDet* (red D , Πₙ) (red D₁ , Πₙ) in
(PE.subst (λ x → Γ ⊢ t ∷ x ^ [ % , ll ]) ΠFG≡ΠF₁G₁ d , PE.subst (λ x → Γ ⊢ u ∷ x ^ [ % , ll ]) ΠFG≡ΠF₁G₁ d′)
irrelevanceEqTermT {Γ} {t = t} {u = u} {r = [ % , ll ]}
(∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁))
(d , d′) = let ∃FG≡∃F₁G₁ = whrDet* (red D , ∃ₙ) (red D₁ , ∃ₙ) in
(PE.subst (λ x → Γ ⊢ t ∷ x ^ [ % , ll ]) ∃FG≡∃F₁G₁ d , PE.subst (λ x → Γ ⊢ u ∷ x ^ [ % , ll ]) ∃FG≡∃F₁G₁ d′)
irrelevanceEqTermT (Uᵥ (Uᵣ r ll l< PE.refl D) (Uᵣ r' ll' l<' _ D')) t =
let U≡U = whrDet* (red D , Uₙ) (red D' , Uₙ)
r≡r , l≡l = Univ-PE-injectivity U≡U
in reduction-irrelevant-Univ= r≡r t
irrelevanceEqTermT (emb⁰¹ x) t≡u = irrelevanceEqTermT x t≡u
irrelevanceEqTermT (emb¹⁰ x) t≡u = irrelevanceEqTermT x t≡u
irrelevanceEqTermT (emb¹∞ x) t≡u = irrelevanceEqTermT x t≡u
irrelevanceEqTermT (emb∞¹ x) t≡u = irrelevanceEqTermT x t≡u
irrelevance-≤ : ∀ {A Γ r l l'}
→ l ≤ l'
→ Γ ⊩⟨ ι l ⟩ A ^ r
→ Γ ⊩⟨ ι l' ⟩ A ^ r
irrelevance-≤ (<is≤ 0<1) [A] = irrelevance-level emb< [A]
irrelevance-≤ (≡is≤ PE.refl) [A] = [A]
|
{
"alphanum_fraction": 0.4073808027,
"avg_line_length": 63.64,
"ext": "agda",
"hexsha": "d69092cc769799a794a1b0038c2e73a34d7928bb",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_line_length": 187,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Irrelevance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 9695,
"size": 22274
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Solver for equations in commutative monoids
--
-- Adapted from Algebra.Monoid-solver
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Data.Bool as Bool using (Bool; true; false; if_then_else_; _∨_)
open import Data.Fin using (Fin; zero; suc)
open import Data.Maybe as Maybe
using (Maybe; decToMaybe; From-just; from-just)
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _+_)
open import Data.Product using (_×_; uncurry)
open import Data.Vec using (Vec; []; _∷_; lookup; replicate)
open import Function using (_∘_)
import Relation.Binary.Reasoning.Setoid as EqReasoning
import Relation.Binary.Reflection as Reflection
import Relation.Nullary.Decidable as Dec
import Data.Vec.Relation.Binary.Pointwise.Inductive as Pointwise
open import Relation.Binary.PropositionalEquality as P using (_≡_; decSetoid)
open import Relation.Nullary using (Dec)
module Algebra.Solver.IdempotentCommutativeMonoid
{m₁ m₂} (M : IdempotentCommutativeMonoid m₁ m₂) where
open IdempotentCommutativeMonoid M
open EqReasoning setoid
------------------------------------------------------------------------
-- Monoid expressions
-- There is one constructor for every operation, plus one for
-- variables; there may be at most n variables.
infixr 5 _⊕_
infixr 10 _•_
data Expr (n : ℕ) : Set where
var : Fin n → Expr n
id : Expr n
_⊕_ : Expr n → Expr n → Expr n
-- An environment contains one value for every variable.
Env : ℕ → Set _
Env n = Vec Carrier n
-- The semantics of an expression is a function from an environment to
-- a value.
⟦_⟧ : ∀ {n} → Expr n → Env n → Carrier
⟦ var x ⟧ ρ = lookup ρ x
⟦ id ⟧ ρ = ε
⟦ e₁ ⊕ e₂ ⟧ ρ = ⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ
------------------------------------------------------------------------
-- Normal forms
-- A normal form is a vector of bits (a set).
Normal : ℕ → Set
Normal n = Vec Bool n
-- The semantics of a normal form.
⟦_⟧⇓ : ∀ {n} → Normal n → Env n → Carrier
⟦ [] ⟧⇓ _ = ε
⟦ b ∷ v ⟧⇓ (a ∷ ρ) = if b then a ∙ (⟦ v ⟧⇓ ρ) else (⟦ v ⟧⇓ ρ)
------------------------------------------------------------------------
-- Constructions on normal forms
-- The empty bag.
empty : ∀{n} → Normal n
empty = replicate false
-- A singleton bag.
sg : ∀{n} (i : Fin n) → Normal n
sg zero = true ∷ empty
sg (suc i) = false ∷ sg i
-- The composition of normal forms.
_•_ : ∀{n} (v w : Normal n) → Normal n
[] • [] = []
(l ∷ v) • (m ∷ w) = (l ∨ m) ∷ v • w
------------------------------------------------------------------------
-- Correctness of the constructions on normal forms
-- The empty bag stands for the unit ε.
empty-correct : ∀{n} (ρ : Env n) → ⟦ empty ⟧⇓ ρ ≈ ε
empty-correct [] = refl
empty-correct (a ∷ ρ) = empty-correct ρ
-- The singleton bag stands for a single variable.
sg-correct : ∀{n} (x : Fin n) (ρ : Env n) → ⟦ sg x ⟧⇓ ρ ≈ lookup ρ x
sg-correct zero (x ∷ ρ) = begin
x ∙ ⟦ empty ⟧⇓ ρ ≈⟨ ∙-congˡ (empty-correct ρ) ⟩
x ∙ ε ≈⟨ identityʳ _ ⟩
x ∎
sg-correct (suc x) (m ∷ ρ) = sg-correct x ρ
-- Normal form composition corresponds to the composition of the monoid.
flip12 : ∀ a b c → a ∙ (b ∙ c) ≈ b ∙ (a ∙ c)
flip12 a b c = begin
a ∙ (b ∙ c) ≈⟨ sym (assoc _ _ _) ⟩
(a ∙ b) ∙ c ≈⟨ ∙-congʳ (comm _ _) ⟩
(b ∙ a) ∙ c ≈⟨ assoc _ _ _ ⟩
b ∙ (a ∙ c) ∎
distr : ∀ a b c → a ∙ (b ∙ c) ≈ (a ∙ b) ∙ (a ∙ c)
distr a b c = begin
a ∙ (b ∙ c) ≈⟨ ∙-cong (sym (idem a)) refl ⟩
(a ∙ a) ∙ (b ∙ c) ≈⟨ assoc _ _ _ ⟩
a ∙ (a ∙ (b ∙ c)) ≈⟨ ∙-congˡ (sym (assoc _ _ _)) ⟩
a ∙ ((a ∙ b) ∙ c) ≈⟨ ∙-congˡ (∙-congʳ (comm _ _)) ⟩
a ∙ ((b ∙ a) ∙ c) ≈⟨ ∙-congˡ (assoc _ _ _) ⟩
a ∙ (b ∙ (a ∙ c)) ≈⟨ sym (assoc _ _ _) ⟩
(a ∙ b) ∙ (a ∙ c) ∎
comp-correct : ∀ {n} (v w : Normal n) (ρ : Env n) →
⟦ v • w ⟧⇓ ρ ≈ (⟦ v ⟧⇓ ρ ∙ ⟦ w ⟧⇓ ρ)
comp-correct [] [] ρ = sym (identityˡ _)
comp-correct (true ∷ v) (true ∷ w) (a ∷ ρ) =
trans (∙-congˡ (comp-correct v w ρ)) (distr _ _ _)
comp-correct (true ∷ v) (false ∷ w) (a ∷ ρ) =
trans (∙-congˡ (comp-correct v w ρ)) (sym (assoc _ _ _))
comp-correct (false ∷ v) (true ∷ w) (a ∷ ρ) =
trans (∙-congˡ (comp-correct v w ρ)) (flip12 _ _ _)
comp-correct (false ∷ v) (false ∷ w) (a ∷ ρ) =
comp-correct v w ρ
------------------------------------------------------------------------
-- Normalization
-- A normaliser.
normalise : ∀ {n} → Expr n → Normal n
normalise (var x) = sg x
normalise id = empty
normalise (e₁ ⊕ e₂) = normalise e₁ • normalise e₂
-- The normaliser preserves the semantics of the expression.
normalise-correct : ∀ {n} (e : Expr n) (ρ : Env n) →
⟦ normalise e ⟧⇓ ρ ≈ ⟦ e ⟧ ρ
normalise-correct (var x) ρ = sg-correct x ρ
normalise-correct id ρ = empty-correct ρ
normalise-correct (e₁ ⊕ e₂) ρ = begin
⟦ normalise e₁ • normalise e₂ ⟧⇓ ρ
≈⟨ comp-correct (normalise e₁) (normalise e₂) ρ ⟩
⟦ normalise e₁ ⟧⇓ ρ ∙ ⟦ normalise e₂ ⟧⇓ ρ
≈⟨ ∙-cong (normalise-correct e₁ ρ) (normalise-correct e₂ ρ) ⟩
⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ
∎
------------------------------------------------------------------------
-- "Tactics"
open module R = Reflection
setoid var ⟦_⟧ (⟦_⟧⇓ ∘ normalise) normalise-correct
public using (solve; _⊜_)
-- We can decide if two normal forms are /syntactically/ equal.
infix 5 _≟_
_≟_ : ∀ {n} (nf₁ nf₂ : Normal n) → Dec (nf₁ ≡ nf₂)
nf₁ ≟ nf₂ = Dec.map Pointwise-≡↔≡ (decidable Bool._≟_ nf₁ nf₂)
where open Pointwise
-- We can also give a sound, but not necessarily complete, procedure
-- for determining if two expressions have the same semantics.
prove′ : ∀ {n} (e₁ e₂ : Expr n) → Maybe (∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ)
prove′ e₁ e₂ =
Maybe.map lemma (decToMaybe (normalise e₁ ≟ normalise e₂))
where
lemma : normalise e₁ ≡ normalise e₂ → ∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ
lemma eq ρ =
R.prove ρ e₁ e₂ (begin
⟦ normalise e₁ ⟧⇓ ρ ≡⟨ P.cong (λ e → ⟦ e ⟧⇓ ρ) eq ⟩
⟦ normalise e₂ ⟧⇓ ρ ∎)
-- This procedure can be combined with from-just.
prove : ∀ n (e₁ e₂ : Expr n) → From-just (prove′ e₁ e₂)
prove _ e₁ e₂ = from-just (prove′ e₁ e₂)
-- prove : ∀ n (es : Expr n × Expr n) →
-- From-just (uncurry prove′ es)
-- prove _ = from-just ∘ uncurry prove′
-- -}
|
{
"alphanum_fraction": 0.5347744361,
"avg_line_length": 29.8317757009,
"ext": "agda",
"hexsha": "5aab691dff510a34b0e9cf4a8d0bb8794dc8d500",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/IdempotentCommutativeMonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/IdempotentCommutativeMonoid.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/IdempotentCommutativeMonoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2394,
"size": 6384
}
|
open import Agda.Primitive
postulate
ℓ : Level
F : Level → Set
module Two where
mutual
α : Level
α = _
G : F (α ⊔ ℓ) → F ℓ
G A = A
H : F (α ⊔ ℓ) → F α
H A = A
module Three where
mutual
α : Level
α = _
β : Level
β = _
G : F (α ⊔ β ⊔ ℓ) → F ℓ
G A = A
H : F (α ⊔ β ⊔ ℓ) → F α
H A = A
I : F (α ⊔ β ⊔ ℓ) → F β
I A = A
|
{
"alphanum_fraction": 0.4035087719,
"avg_line_length": 10.2307692308,
"ext": "agda",
"hexsha": "69344ba484172bcd259036e41e1c0e14fe335387",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2780.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2780.agda",
"max_line_length": 27,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2780.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 181,
"size": 399
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.