Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The lenses fst and snd
------------------------------------------------------------------------
-- This module uses univalence without tracking such uses in the types
-- of functions, and it is not parametrised by a notion of equality,
-- it uses path equality.
{-# OPTIONS --guardedness #-}
module README.Fst-snd where
open import Equality.Path
open import Equality.Path.Univalence
open import Prelude
open import Equivalence.Erased.Cubical equality-with-paths as EEq
using (_≃ᴱ_)
import Lens.Non-dependent.Higher.Coinductive.Small.Erased
equality-with-paths as S
import Lens.Non-dependent.Higher.Erased equality-with-paths as E
private
variable
a : Level
A B : Type a
-- A static variant of one consequence of S.Lens≃ᴱLensᴱ. Applications
-- of static functions are normalised by (at least) the GHC backend.
Lens→Lens : E.Lens A B → S.Lens univ A B
Lens→Lens = _≃ᴱ_.from (S.Lens≃ᴱLensᴱ ⊠ univ)
{-# STATIC Lens→Lens #-}
-- A lens for the first projection.
fst : S.Lens univ (A × B) A
fst = Lens→Lens E.fst
-- A lens for the second projection.
--
-- With the implementation that this lens had at the time of writing
-- (dependencies may later have changed) it turned out that when the
-- lens was compiled using the non-strict GHC backend of a certain
-- development version of Agda and GHC 9.0.1, then GHC's flag
-- -ddump-simpl suggested that you ended up with code that could lead
-- to a space leak: the code for the setter was something like
--
-- \p y -> Pair (case p of { Pair x _ -> x }) y
--
-- (where names have been changed, and code related to coercions and
-- casts has been removed).
--
-- Note that, unlike the lens snd^C discussed in "Compiling Programs
-- with Erased Univalence", this one (as well as the one below) takes
-- two universe level arguments.
snd-with-space-leak : S.Lens univ (A × B) B
snd-with-space-leak = Lens→Lens E.snd
-- A lens for the second projection.
--
-- This variant did not seem to have the problem exhibited by
-- snd-with-space-leak: the code for the setter was something like
--
-- \p y -> case p of { Pair x _ -> Pair x y }.
snd : S.Lens univ (A × B) B
snd =
S.with-other-setter
(Lens→Lens E.snd)
(λ { (x , _) y → (x , y) })
((λ (x , _) y → (x , y)) ≡⟨⟩
E.Lens.set E.snd ≡⟨ sym $ proj₂ $ proj₂ (S.Lens≃ᴱLensᴱ-preserves-getters-and-setters ⊠ univ univ) E.snd ⟩∎
S.Lens.set (Lens→Lens E.snd) ∎)
|
{
"alphanum_fraction": 0.6467761314,
"avg_line_length": 32.0128205128,
"ext": "agda",
"hexsha": "4293482d4706902c8b5bde28d788631bce502bc5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "README/Fst-snd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "README/Fst-snd.agda",
"max_line_length": 124,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "README/Fst-snd.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 708,
"size": 2497
}
|
module Bughunting where
data Nat : Set where zero : Nat
suc : Nat -> Nat
plus : Nat -> Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
plus m n = {! !}
data List2 (A : Set) : Nat -> Set where
empty2 : List2 A 0
cons2 : {n : Nat} -> A -> List2 A n -> List2 A (plus 1 n)
|
{
"alphanum_fraction": 0.5049180328,
"avg_line_length": 19.0625,
"ext": "agda",
"hexsha": "66493bff887ec6ea0aff26a4db8c1554cd3d2ca9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting.agda",
"max_line_length": 63,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 100,
"size": 305
}
|
{-# OPTIONS --without-K #-}
open import Library
open import Basic
--------------------------------------------------------------------------------
-- Universes for a Functor
--------------------------------------------------------------------------------
record FntrLevel : Set where
field
C : CatLevel
D : CatLevel
module C = CatLevel C
module D = CatLevel D
Fntr : Level
Fntr = ℓ-max C.Cat D.Cat
--------------------------------------------------------------------------------
-- Definition of a Functor
--------------------------------------------------------------------------------
module _ {ℓ : FntrLevel} (let module ℓ = FntrLevel ℓ)
(C : Category ℓ.C) (let module C = Category C)
(open C using () renaming (_⇒_ to _⇒ᶜ_ ; _∘_ to _∘ᶜ_))
(D : Category ℓ.D) (let module D = Category D)
(open D using () renaming (_⇒_ to _⇒ᵈ_ ; _∘_ to _∘ᵈ_)) where
record Functor : Set ℓ.Fntr where
field
map : C.Obj → D.Obj
fmap : ∀{X Y} → X ⇒ᶜ Y → (map X) ⇒ᵈ (map Y)
field
id : ∀{X} → fmap (C.id X) ≡ D.id (map X)
comp : ∀{X Y Z}{f : X ⇒ᶜ Y}{g : Y ⇒ᶜ Z}
→ fmap (g ∘ᶜ f) ≡ (fmap g) ∘ᵈ (fmap f)
--------------------------------------------------------------------------------
-- Definition of a Natural Transformation and a Natural Isomorphism
--------------------------------------------------------------------------------
module _ {ℓ : FntrLevel} (let module ℓ = FntrLevel ℓ)
{C : Category ℓ.C} (let module C = Category C)
(open C using () renaming (_⇒_ to _⇒ᶜ_ ; _∘_ to _∘ᶜ_))
{D : Category ℓ.D} (let module D = Category D)
(open D using () renaming (_⇒_ to _⇒ᵈ_ ; _∘_ to _∘ᵈ_))
(F G : Functor C D) (let module F = Functor F)
(let module G = Functor G) where
record NaturalTrans : Set ℓ.Fntr where
field
map : (X : C.Obj) → (F.map X) ⇒ᵈ (G.map X)
nat-sq : {X Y : C.Obj}{f : X ⇒ᶜ Y} →
(G.fmap f) ∘ᵈ (map X) ≡ (map Y) ∘ᵈ (F.fmap f)
is-natrual-isomorphism : Set (ℓ-max ℓ.C.Obj ℓ.D.Hom)
is-natrual-isomorphism = ∀(X : C.Obj) → D.is-isomorphism (map X)
NaturalIso : Set ℓ.Fntr
NaturalIso = Σ NaturalTrans NaturalTrans.is-natrual-isomorphism
--------------------------------------------------------------------------------
-- Category of Functors
--------------------------------------------------------------------------------
module _ {ℓ : FntrLevel} (let module ℓ = FntrLevel ℓ)
(C : Category ℓ.C) (let module C = Category C)
(open C using () renaming (_⇒_ to _⇒ᶜ_ ; _∘_ to _∘ᶜ_))
(D : Category ℓ.D) (let module D = Category D)
(open D using () renaming (_⇒_ to _⇒ᵈ_ ; _∘_ to _∘ᵈ_)) where
FntrCat : Category (record { Obj = ℓ.Fntr ; Hom = ℓ.Fntr })
FntrCat = record { Obj = Functor C D
; _⇒_ = NaturalTrans
; id = natural-trans-id
; _∘_ = vertical-comp
; idl = {!!}
; idr = {!!}
; assoc = {!!} }
where
natural-trans-id : (F : Functor C D) → NaturalTrans F F
natural-trans-id F = record
{ map = λ (X : C.Obj) → D.id (F.map X)
; nat-sq = λ {X Y : C.Obj} {f : X ⇒ᶜ Y} → ≡-proof
(F.fmap f) ∘ᵈ D.id (F.map X) ≡⟨ D.idr ⟩
F.fmap f ≡⟨ ≡-sym D.idl ⟩
D.id (F.map Y) ∘ᵈ (F.fmap f) ≡-qed
} where module F = Functor F
vertical-comp : {F G H : Functor C D}
→ NaturalTrans G H → NaturalTrans F G → NaturalTrans F H
vertical-comp {F} {G} {H} β α = record
{ map = λ (X : C.Obj) → (β.map X) ∘ᵈ (α.map X)
; nat-sq = λ {X Y : C.Obj} {f : X ⇒ᶜ Y} → ≡-proof
H.fmap f ∘ᵈ (β.map X ∘ᵈ α.map X) ≡⟨ ≡-sym D.assoc ⟩
(H.fmap f ∘ᵈ β.map X) ∘ᵈ α.map X ≡⟨ {!!} ⟩
(β.map Y ∘ᵈ G.fmap f) ∘ᵈ α.map X ≡⟨ D.assoc ⟩
β.map Y ∘ᵈ (G.fmap f ∘ᵈ α.map X) ≡⟨ {!!} ⟩
β.map Y ∘ᵈ (α.map Y ∘ᵈ F.fmap f) ≡⟨ ≡-sym D.assoc ⟩
(β.map Y ∘ᵈ α.map Y) ∘ᵈ F.fmap f ≡-qed
} where module F = Functor F
module G = Functor G
module H = Functor H
module α = NaturalTrans α
module β = NaturalTrans β
--------------------------------------------------------------------------------
-- Definition of Presheaf
--------------------------------------------------------------------------------
-- module _ {C : CatLevel} (open CatLevel C)
-- (C : Category C) (let module C = Category C) where
-- Presheaf : Category (record { Obj = ℓ-suc Obj ; Hom = ℓ-suc Hom })
-- Presheaf C = record { Obj = Functor C.op (Type Hom)
-- ; _⇒_ = NaturalTrans
-- ; id = NaturalTrans-id
-- ; __}
|
{
"alphanum_fraction": 0.3956607495,
"avg_line_length": 42.25,
"ext": "agda",
"hexsha": "775b2202ee27b8f4cffafcabcc61bdd39c6cc472",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "gunpinyo/agda-cat",
"max_forks_repo_path": "src/Naturality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "gunpinyo/agda-cat",
"max_issues_repo_path": "src/Naturality.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "gunpinyo/agda-cat",
"max_stars_repo_path": "src/Naturality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1571,
"size": 5070
}
|
{-# OPTIONS --safe --cubical-compatible #-}
module Erased-cubical.Without-K where
data D : Set where
c : D
|
{
"alphanum_fraction": 0.6756756757,
"avg_line_length": 15.8571428571,
"ext": "agda",
"hexsha": "d4eb298790e4a4151b1e55d2843173b374840367",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical/Without-K.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 32,
"size": 111
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NConnected
open import lib.types.Nat
open import lib.types.TLevel
open import lib.types.Empty
open import lib.types.Group
open import lib.types.Pi
open import lib.types.Pointed
open import lib.types.Paths
open import lib.types.Sigma
open import lib.types.Truncation
open import lib.cubical.Square
module lib.types.LoopSpace where
module _ {i} where
⊙Ω : Ptd i → Ptd i
⊙Ω (A , a) = ⊙[ (a == a) , idp ]
Ω : Ptd i → Type i
Ω = fst ∘ ⊙Ω
⊙Ω^ : (n : ℕ) → Ptd i → Ptd i
⊙Ω^ O X = X
⊙Ω^ (S n) X = ⊙Ω (⊙Ω^ n X)
Ω^ : (n : ℕ) → Ptd i → Type i
Ω^ n X = fst (⊙Ω^ n X)
idp^ : ∀ {i} (n : ℕ) {X : Ptd i} → Ω^ n X
idp^ n {X} = snd (⊙Ω^ n X)
{- for n ≥ 1, we have a group structure on the loop space -}
module _ {i} (n : ℕ) {X : Ptd i} where
!^S : Ω^ (S n) X → Ω^ (S n) X
!^S = !
conc^S : Ω^ (S n) X → Ω^ (S n) X → Ω^ (S n) X
conc^S = _∙_
{- pointed versions of functions on paths -}
private
pt-lemma : ∀ {i} {A : Type i} {x y : A} (p : x == y)
→ ! p ∙ (idp ∙' p) == idp
pt-lemma idp = idp
⊙conc : ∀ {i} {X : Ptd i} → fst (⊙Ω X ⊙× ⊙Ω X ⊙→ ⊙Ω X)
⊙conc = (uncurry _∙_ , idp)
⊙ap : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ fst (X ⊙→ Y) → fst (⊙Ω X ⊙→ ⊙Ω Y)
⊙ap (f , fpt) = ((λ p → ! fpt ∙ ap f p ∙' fpt) , pt-lemma fpt)
⊙ap2 : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ fst (X ⊙× Y ⊙→ Z) → fst (⊙Ω X ⊙× ⊙Ω Y ⊙→ ⊙Ω Z)
⊙ap2 (f , fpt) = ((λ {(p , q) → ! fpt ∙ ap2 (curry f) p q ∙' fpt}) ,
pt-lemma fpt)
⊙ap-∘ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ ⊙ap (g ⊙∘ f) == ⊙ap g ⊙∘ ⊙ap f
⊙ap-∘ (g , idp) (f , idp) = ⊙λ= (λ p → ap-∘ g f p) idp
⊙ap-idf : ∀ {i} {X : Ptd i} → ⊙ap (⊙idf X) == ⊙idf _
⊙ap-idf = ⊙λ= ap-idf idp
⊙ap2-fst : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ ⊙ap2 {X = X} {Y = Y} ⊙fst == ⊙fst
⊙ap2-fst = ⊙λ= (uncurry ap2-fst) idp
⊙ap2-snd : ∀ {i j} {X : Ptd i} {Y : Ptd j}
→ ⊙ap2 {X = X} {Y = Y} ⊙snd == ⊙snd
⊙ap2-snd = ⊙λ= (uncurry ap2-snd) idp
⊙ap-ap2 : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(G : fst (Z ⊙→ W)) (F : fst (X ⊙× Y ⊙→ Z))
→ ⊙ap G ⊙∘ ⊙ap2 F == ⊙ap2 (G ⊙∘ F)
⊙ap-ap2 (g , idp) (f , idp) =
⊙λ= (uncurry (ap-ap2 g (curry f))) idp
⊙ap2-ap : ∀ {i j k l m}
{X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m}
(G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V))
→ ⊙ap2 G ⊙∘ pair⊙→ (⊙ap F₁) (⊙ap F₂) == ⊙ap2 (G ⊙∘ pair⊙→ F₁ F₂)
⊙ap2-ap (g , idp) (f₁ , idp) (f₂ , idp) =
⊙λ= (λ {(p , q) → ap2-ap-l (curry g) f₁ p (ap f₂ q)
∙ ap2-ap-r (λ x v → g (f₁ x , v)) f₂ p q})
idp
⊙ap2-diag : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y))
→ ⊙ap2 F ⊙∘ ⊙diag == ⊙ap (F ⊙∘ ⊙diag)
⊙ap2-diag (f , idp) = ⊙λ= (ap2-diag (curry f)) idp
{- ap and ap2 for higher loop spaces -}
ap^ : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ fst (X ⊙→ Y) → fst (⊙Ω^ n X ⊙→ ⊙Ω^ n Y)
ap^ O F = F
ap^ (S n) F = ⊙ap (ap^ n F)
ap2^ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ fst ((X ⊙× Y) ⊙→ Z)
→ fst ((⊙Ω^ n X ⊙× ⊙Ω^ n Y) ⊙→ ⊙Ω^ n Z)
ap2^ O F = F
ap2^ (S n) F = ⊙ap2 (ap2^ n F)
ap^-idf : ∀ {i} (n : ℕ) {X : Ptd i} → ap^ n (⊙idf X) == ⊙idf _
ap^-idf O = idp
ap^-idf (S n) = ap ⊙ap (ap^-idf n) ∙ ⊙ap-idf
ap^-ap2^ : ∀ {i j k l} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(G : fst (Z ⊙→ W)) (F : fst ((X ⊙× Y) ⊙→ Z))
→ ap^ n G ⊙∘ ap2^ n F == ap2^ n (G ⊙∘ F)
ap^-ap2^ O G F = idp
ap^-ap2^ (S n) G F = ⊙ap-ap2 (ap^ n G) (ap2^ n F) ∙ ap ⊙ap2 (ap^-ap2^ n G F)
ap2^-fst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ ap2^ n {X} {Y} ⊙fst == ⊙fst
ap2^-fst O = idp
ap2^-fst (S n) = ap ⊙ap2 (ap2^-fst n) ∙ ⊙ap2-fst
ap2^-snd : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ ap2^ n {X} {Y} ⊙snd == ⊙snd
ap2^-snd O = idp
ap2^-snd (S n) = ap ⊙ap2 (ap2^-snd n) ∙ ⊙ap2-snd
ap2^-ap^ : ∀ {i j k l m} (n : ℕ)
{X : Ptd i} {Y : Ptd j} {U : Ptd k} {V : Ptd l} {Z : Ptd m}
(G : fst ((U ⊙× V) ⊙→ Z)) (F₁ : fst (X ⊙→ U)) (F₂ : fst (Y ⊙→ V))
→ ap2^ n G ⊙∘ pair⊙→ (ap^ n F₁) (ap^ n F₂) == ap2^ n (G ⊙∘ pair⊙→ F₁ F₂)
ap2^-ap^ O G F₁ F₂ = idp
ap2^-ap^ (S n) G F₁ F₂ =
⊙ap2-ap (ap2^ n G) (ap^ n F₁) (ap^ n F₂) ∙ ap ⊙ap2 (ap2^-ap^ n G F₁ F₂)
ap2^-diag : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (F : fst (X ⊙× X ⊙→ Y))
→ ap2^ n F ⊙∘ ⊙diag == ap^ n (F ⊙∘ ⊙diag)
ap2^-diag O F = idp
ap2^-diag (S n) F = ⊙ap2-diag (ap2^ n F) ∙ ap ⊙ap (ap2^-diag n F)
module _ {i} {X : Ptd i} (n : ℕ) where
{- Prove these as lemmas now
- so we don't have to deal with the n = O case later -}
conc^S-unit-l : (q : Ω^ (S n) X)
→ (conc^S n (idp^ (S n)) q) == q
conc^S-unit-l _ = idp
conc^S-unit-r : (q : Ω^ (S n) X)
→ (conc^S n q (idp^ (S n))) == q
conc^S-unit-r = ∙-unit-r
conc^S-assoc : (p q r : Ω^ (S n) X)
→ conc^S n (conc^S n p q) r == conc^S n p (conc^S n q r)
conc^S-assoc = ∙-assoc
!^S-inv-l : (p : Ω^ (S n) X)
→ conc^S n (!^S n p) p == idp^ (S n)
!^S-inv-l = !-inv-l
!^S-inv-r : (p : Ω^ (S n) X)
→ conc^S n p (!^S n p) == idp^ (S n)
!^S-inv-r = !-inv-r
abstract
ap^S-conc^S : ∀ {i j} (n : ℕ)
{X : Ptd i} {Y : Ptd j} (F : fst (X ⊙→ Y)) (p q : Ω^ (S n) X)
→ fst (ap^ (S n) F) (conc^S n p q)
== conc^S n (fst (ap^ (S n) F) p) (fst (ap^ (S n) F) q)
ap^S-conc^S n {X = X} {Y = Y} F p q =
! gpt ∙ ap g (p ∙ q) ∙' gpt
=⟨ ap-∙ g p q |in-ctx (λ w → ! gpt ∙ w ∙' gpt) ⟩
! gpt ∙ (ap g p ∙ ap g q) ∙' gpt
=⟨ lemma (ap g p) (ap g q) gpt ⟩
(! gpt ∙ ap g p ∙' gpt) ∙ (! gpt ∙ ap g q ∙' gpt) ∎
where
g : Ω^ n X → Ω^ n Y
g = fst (ap^ n F)
gpt : g (idp^ n) == idp^ n
gpt = snd (ap^ n F)
lemma : ∀ {i} {A : Type i} {x y : A}
→ (p q : x == x) (r : x == y)
→ ! r ∙ (p ∙ q) ∙' r == (! r ∙ p ∙' r) ∙ (! r ∙ q ∙' r)
lemma p q idp = idp
{- ap^ preserves (pointed) equivalences -}
module _ {i j} {X : Ptd i} {Y : Ptd j} where
is-equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F))
→ is-equiv (fst (ap^ n F))
is-equiv-ap^ O F e = e
is-equiv-ap^ (S n) F e =
pre∙-is-equiv (! (snd (ap^ n F)))
∘ise post∙'-is-equiv (snd (ap^ n F))
∘ise snd (equiv-ap (_ , is-equiv-ap^ n F e) _ _)
equiv-ap^ : (n : ℕ) (F : fst (X ⊙→ Y)) (e : is-equiv (fst F))
→ Ω^ n X ≃ Ω^ n Y
equiv-ap^ n F e = (fst (ap^ n F) , is-equiv-ap^ n F e)
Ω^-level-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i)
→ (has-level (⟨ n ⟩₋₂ +2+ m) (fst X) → has-level m (Ω^ n X))
Ω^-level-in m O X pX = pX
Ω^-level-in m (S n) X pX =
Ω^-level-in (S m) n X
(transport (λ k → has-level k (fst X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX)
(idp^ n) (idp^ n)
Ω^-conn-in : ∀ {i} (m : ℕ₋₂) (n : ℕ) (X : Ptd i)
→ (is-connected (⟨ n ⟩₋₂ +2+ m) (fst X)) → is-connected m (Ω^ n X)
Ω^-conn-in m O X pX = pX
Ω^-conn-in m (S n) X pX =
path-conn $ Ω^-conn-in (S m) n X $
transport (λ k → is-connected k (fst X)) (! (+2+-βr ⟨ n ⟩₋₂ m)) pX
{- Eckmann-Hilton argument -}
module _ {i} {X : Ptd i} where
ap2-conc-is-conc^S : (α β : Ω^ 2 X) → ap2 _∙_ α β == conc^S 1 α β
ap2-conc-is-conc^S α β = ap2-out _∙_ α β ∙ ap2 _∙_ (lemma α) (ap-idf β)
where
lemma : ∀ {i} {A : Type i} {x y : A} {p q : x == y} (α : p == q)
→ ap (λ r → r ∙ idp) α == ∙-unit-r p ∙ α ∙' ! (∙-unit-r q)
lemma {p = idp} idp = idp
⊙ap2-conc-is-conc : ⊙ap2 (⊙conc {X = X}) == ⊙conc
⊙ap2-conc-is-conc = ⊙λ= (uncurry ap2-conc-is-conc^S) idp
conc^2-comm : (α β : Ω^ 2 X) → conc^S 1 α β == conc^S 1 β α
conc^2-comm α β = ! (⋆2=conc^ α β) ∙ ⋆2=⋆'2 α β ∙ ⋆'2=conc^ α β
where
⋆2=conc^ : (α β : Ω^ 2 X) → α ⋆2 β == conc^S 1 α β
⋆2=conc^ α β = ap (λ π → π ∙ β) (∙-unit-r α)
⋆'2=conc^ : (α β : Ω^ 2 X) → α ⋆'2 β == conc^S 1 β α
⋆'2=conc^ α β = ap (λ π → β ∙ π) (∙-unit-r α)
{- Pushing truncation through loop space -}
module _ {i} where
Trunc-Ω^ : (m : ℕ₋₂) (n : ℕ) (X : Ptd i)
→ ⊙Trunc m (⊙Ω^ n X) == ⊙Ω^ n (⊙Trunc (⟨ n ⟩₋₂ +2+ m) X)
Trunc-Ω^ m O X = idp
Trunc-Ω^ m (S n) X =
⊙Trunc m (⊙Ω^ (S n) X)
=⟨ ! (pair= (Trunc=-path [ _ ] [ _ ]) (↓-idf-ua-in _ idp)) ⟩
⊙Ω (⊙Trunc (S m) (⊙Ω^ n X))
=⟨ ap ⊙Ω (Trunc-Ω^ (S m) n X) ⟩
⊙Ω^ (S n) (⊙Trunc (⟨ n ⟩₋₂ +2+ S m) X)
=⟨ +2+-βr ⟨ n ⟩₋₂ m |in-ctx (λ k → ⊙Ω^ (S n) (⊙Trunc k X)) ⟩
⊙Ω^ (S n) (⊙Trunc (S ⟨ n ⟩₋₂ +2+ m) X) ∎
Ω-Trunc-equiv : (m : ℕ₋₂) (X : Ptd i)
→ Ω (⊙Trunc (S m) X) ≃ Trunc m (Ω X)
Ω-Trunc-equiv m X = Trunc=-equiv [ snd X ] [ snd X ]
{- A loop space is a pregroup, and a group if it has the right level -}
module _ {i} (n : ℕ) (X : Ptd i) where
Ω^S-group-structure : GroupStructure (Ω^ (S n) X)
Ω^S-group-structure = record {
ident = idp^ (S n);
inv = !^S n;
comp = conc^S n;
unitl = conc^S-unit-l n;
unitr = conc^S-unit-r n;
assoc = conc^S-assoc n;
invr = !^S-inv-r n;
invl = !^S-inv-l n
}
Ω^S-group : has-level ⟨ S n ⟩ (fst X) → Group i
Ω^S-group pX = group
(Ω^ (S n) X)
(Ω^-level-in 0 (S n) X $
transport (λ t → has-level t (fst X)) (+2+-comm 0 ⟨ S n ⟩₋₂) pX)
Ω^S-group-structure
{- Our definition of Ω^ builds up loops on the outside,
- but this is equivalent to building up on the inside -}
module _ {i} where
⊙Ω^-inner-path : (n : ℕ) (X : Ptd i)
→ ⊙Ω^ (S n) X == ⊙Ω^ n (⊙Ω X)
⊙Ω^-inner-path O X = idp
⊙Ω^-inner-path (S n) X = ap ⊙Ω (⊙Ω^-inner-path n X)
⊙Ω^-inner-out : (n : ℕ) (X : Ptd i)
→ fst (⊙Ω^ (S n) X ⊙→ ⊙Ω^ n (⊙Ω X))
⊙Ω^-inner-out O _ = (idf _ , idp)
⊙Ω^-inner-out (S n) X = ap^ 1 (⊙Ω^-inner-out n X)
Ω^-inner-out : (n : ℕ) (X : Ptd i)
→ (Ω^ (S n) X → Ω^ n (⊙Ω X))
Ω^-inner-out n X = fst (⊙Ω^-inner-out n X)
Ω^S-inner-out-conc^S : (n : ℕ)
(X : Ptd i) (p q : Ω^ (S (S n)) X)
→ Ω^-inner-out (S n) X (conc^S (S n) p q)
== conc^S n (Ω^-inner-out (S n) X p) (Ω^-inner-out (S n) X q)
Ω^S-inner-out-conc^S n X p q =
ap^S-conc^S 0 (⊙Ω^-inner-out n X) p q
Ω^-inner-is-equiv : (n : ℕ) (X : Ptd i)
→ is-equiv (fst (⊙Ω^-inner-out n X))
Ω^-inner-is-equiv O X = is-eq (idf _) (idf _) (λ _ → idp) (λ _ → idp)
Ω^-inner-is-equiv (S n) X =
is-equiv-ap^ 1 (⊙Ω^-inner-out n X) (Ω^-inner-is-equiv n X)
Ω^-inner-equiv : (n : ℕ) (X : Ptd i) → Ω^ (S n) X ≃ Ω^ n (⊙Ω X)
Ω^-inner-equiv n X = _ , Ω^-inner-is-equiv n X
|
{
"alphanum_fraction": 0.4527543619,
"avg_line_length": 32.0817610063,
"ext": "agda",
"hexsha": "e469608d4ebc776e9081dd868702e5b4b1d26b78",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/LoopSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/LoopSpace.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/LoopSpace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5455,
"size": 10202
}
|
{-# OPTIONS --safe #-}
module Cubical.Data.Fin.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat using (ℕ ; zero ; suc ; _+_ ; znots)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Nat.Order.Recursive using () renaming (_≤_ to _≤′_)
open import Cubical.Data.Sigma
open import Cubical.Data.Sum using (_⊎_; _⊎?_; inl; inr)
open import Cubical.Relation.Nullary
-- Finite types.
--
-- Currently it is most convenient to define these as a subtype of the
-- natural numbers, because indexed inductive definitions don't behave
-- well with cubical Agda. This definition also has some more general
-- attractive properties, of course, such as easy conversion back to
-- ℕ.
Fin : ℕ → Type₀
Fin n = Σ[ k ∈ ℕ ] k < n
private
variable
ℓ : Level
k : ℕ
fzero : Fin (suc k)
fzero = (0 , suc-≤-suc zero-≤)
fone : Fin (suc (suc k))
fone = (1 , suc-≤-suc (suc-≤-suc zero-≤))
fzero≠fone : ¬ fzero {k = suc k} ≡ fone
fzero≠fone p = znots (cong fst p)
-- It is easy, using this representation, to take the successor of a
-- number as a number in the next largest finite type.
fsuc : Fin k → Fin (suc k)
fsuc (k , l) = (suc k , suc-≤-suc l)
-- Conversion back to ℕ is trivial...
toℕ : Fin k → ℕ
toℕ = fst
-- ... and injective.
toℕ-injective : ∀{fj fk : Fin k} → toℕ fj ≡ toℕ fk → fj ≡ fk
toℕ-injective {fj = fj} {fk} = Σ≡Prop (λ _ → m≤n-isProp)
-- Conversion from ℕ with a recursive definition of ≤
fromℕ≤ : (m n : ℕ) → m ≤′ n → Fin (suc n)
fromℕ≤ zero _ _ = fzero
fromℕ≤ (suc m) (suc n) m≤n = fsuc (fromℕ≤ m n m≤n)
-- A case analysis helper for induction.
fsplit
: ∀(fj : Fin (suc k))
→ (fzero ≡ fj) ⊎ (Σ[ fk ∈ Fin k ] fsuc fk ≡ fj)
fsplit (0 , k<sn) = inl (toℕ-injective refl)
fsplit (suc k , k<sn) = inr ((k , pred-≤-pred k<sn) , toℕ-injective refl)
inject< : ∀ {m n} (m<n : m < n) → Fin m → Fin n
inject< m<n (k , k<m) = k , <-trans k<m m<n
flast : Fin (suc k)
flast {k = k} = k , suc-≤-suc ≤-refl
-- Fin 0 is empty
¬Fin0 : ¬ Fin 0
¬Fin0 (k , k<0) = ¬-<-zero k<0
-- The full inductive family eliminator for finite types.
elim
: ∀(P : ∀{k} → Fin k → Type ℓ)
→ (∀{k} → P {suc k} fzero)
→ (∀{k} {fn : Fin k} → P fn → P (fsuc fn))
→ {k : ℕ} → (fn : Fin k) → P fn
elim P fz fs {zero} = ⊥.rec ∘ ¬Fin0
elim P fz fs {suc k} fj
= case fsplit fj return (λ _ → P fj) of λ
{ (inl p) → subst P p fz
; (inr (fk , p)) → subst P p (fs (elim P fz fs fk))
}
any? : ∀ {n} {P : Fin n → Type ℓ} → (∀ i → Dec (P i)) → Dec (Σ (Fin n) P)
any? {n = zero} {P = _} P? = no (λ (x , _) → ¬Fin0 x)
any? {n = suc n} {P = P} P? =
mapDec
(λ
{ (inl P0) → fzero , P0
; (inr (x , Px)) → fsuc x , Px
}
)
(λ n h → n (helper h))
(P? fzero ⊎? any? (P? ∘ fsuc))
where
helper : Σ (Fin (suc n)) P → P fzero ⊎ Σ (Fin n) λ z → P (fsuc z)
helper (x , Px) with fsplit x
... | inl x≡0 = inl (subst P (sym x≡0) Px)
... | inr (k , x≡sk) = inr (k , subst P (sym x≡sk) Px)
FinPathℕ : {n : ℕ} (x : Fin n) (y : ℕ) → fst x ≡ y → Σ[ p ∈ _ ] (x ≡ (y , p))
FinPathℕ {n = n} x y p =
((fst (snd x)) , (cong (λ y → fst (snd x) + y) (cong suc (sym p)) ∙ snd (snd x)))
, (Σ≡Prop (λ _ → m≤n-isProp) p)
|
{
"alphanum_fraction": 0.5729008791,
"avg_line_length": 29.4553571429,
"ext": "agda",
"hexsha": "491f4e0537d62197c97a5b35f5c4bc2d1590e50c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/Fin/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/Fin/Base.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/Fin/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1355,
"size": 3299
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Monoid.Instances.Nat where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Algebra.Monoid
NatMonoid : Monoid ℓ-zero
fst NatMonoid = ℕ
MonoidStr.ε (snd NatMonoid) = 0
MonoidStr._·_ (snd NatMonoid) = _+_
MonoidStr.isMonoid (snd NatMonoid) = makeIsMonoid isSetℕ +-assoc +-zero (λ _ → refl)
|
{
"alphanum_fraction": 0.7546174142,
"avg_line_length": 23.6875,
"ext": "agda",
"hexsha": "2d0eb95aab9907544e11b940ad1e9d8e65636061",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Instances/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Instances/Nat.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Instances/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 124,
"size": 379
}
|
-- Andreas, 2016-12-03, issue 2307
-- preserve record (vs. constructor) in internal syntax
open import Common.Equality
postulate
A : Set
a : A
record R : Set where
constructor c
field f : A
open R
postulate
r : R
g h : R → R
fail1 : g (c a) ≡ h (record{ f = a })
fail1 = refl
-- ERROR: g (c a) != h (c a)
-- Expected: g (c a) != h (record{ f = a })
|
{
"alphanum_fraction": 0.5833333333,
"avg_line_length": 15.5,
"ext": "agda",
"hexsha": "4403b33ce52e87f396ea660ce41df76e694d93db",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2307.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2307.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2307.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 138,
"size": 372
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Numbers.Naturals.Definition
open import Sets.FinSet.Definition
open import Setoids.Setoids
module Setoids.Cardinality.Finite.Definition where
record FiniteSetoid {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where
field
size : ℕ
mapping : FinSet size → A
bij : SetoidBijection (reflSetoid (FinSet size)) S mapping
|
{
"alphanum_fraction": 0.716,
"avg_line_length": 29.4117647059,
"ext": "agda",
"hexsha": "c8c871b89c94680cf1f683702da969fb024e5ad5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Cardinality/Finite/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Cardinality/Finite/Definition.agda",
"max_line_length": 84,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Cardinality/Finite/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 152,
"size": 500
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Representable where
-- A Presheaf (into Setoids) is representation if it is naturally isomorphic to a Hom functor
-- over a particular object A of the base category.
open import Level
open import Categories.Category using (Category)
open import Categories.Category.Instance.Setoids
open import Categories.Functor using (Functor)
open import Categories.Functor.Hom
open import Categories.Functor.Presheaf
open import Categories.NaturalTransformation.NaturalIsomorphism
record Representable {o ℓ e} {C : Category o ℓ e} (F : Presheaf C (Setoids ℓ e)) : Set (o ⊔ suc ℓ ⊔ suc e ) where
open Category C
open Hom C
field
A : Obj
Iso : NaturalIsomorphism F Hom[-, A ]
|
{
"alphanum_fraction": 0.7581081081,
"avg_line_length": 35.2380952381,
"ext": "agda",
"hexsha": "56f3630c38ec838d02f31100b9ead771c8ecacd4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Representable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Representable.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Representable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 195,
"size": 740
}
|
module _ where
open import Agda.Primitive.Cubical hiding (PathP)
postulate
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATHP PathP #-}
|
{
"alphanum_fraction": 0.5906432749,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "e8f883bfb628aef14524f8404ed6d3f937c16905",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue2788c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue2788c.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue2788c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 171
}
|
module Numeral.Integer.Relation.Divisibility.Proofs where
open import Functional
open import Logic.Propositional
import Numeral.Natural.Relation.Divisibility as ℕ
import Numeral.Natural.Relation.Divisibility.Proofs as ℕ
open import Numeral.Natural using (ℕ)
import Numeral.Natural.Oper as ℕ
open import Numeral.Integer.Oper
open import Numeral.Integer.Proofs
open import Numeral.Integer.Relation.Divisibility
open import Numeral.Integer
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Function.Multi
open import Structure.Operator.Properties
open import Structure.Relator
open import Structure.Relator.Properties
open import Type
instance
[∣][−𝐒ₙ]-sub : ((_∣_) on₂ (−𝐒ₙ_)) ⊆₂ ((ℕ._∣_) on₂ ℕ.𝐒)
[∣][−𝐒ₙ]-sub = intro id
instance
[∣][+ₙ]-sub : ((_∣_) on₂ (+ₙ_)) ⊆₂ (ℕ._∣_)
[∣][+ₙ]-sub = intro id
instance
[∣][−ₙ]-sub : ((_∣_) on₂ (−ₙ_)) ⊆₂ (ℕ._∣_)
_⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝟎} {ℕ.𝟎} p = p
_⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝟎} {ℕ.𝐒 y} p = p
_⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝐒 x} {ℕ.𝟎} p = p
_⊆₂_.proof [∣][−ₙ]-sub {ℕ.𝐒 x} {ℕ.𝐒 y} p = p
instance
[∣][−𝐒ₙ]-super : ((_∣_) on₂ (−𝐒ₙ_)) ⊇₂ ((ℕ._∣_) on₂ ℕ.𝐒)
[∣][−𝐒ₙ]-super = intro id
instance
[∣][+ₙ]-super : ((_∣_) on₂ (+ₙ_)) ⊇₂ (ℕ._∣_)
[∣][+ₙ]-super = intro id
instance
[∣][−ₙ]-super : ((_∣_) on₂ (−ₙ_)) ⊇₂ (ℕ._∣_)
_⊆₂_.proof [∣][−ₙ]-super {ℕ.𝟎} {ℕ.𝟎} p = p
_⊆₂_.proof [∣][−ₙ]-super {ℕ.𝟎} {ℕ.𝐒 y} p = p
_⊆₂_.proof [∣][−ₙ]-super {ℕ.𝐒 x} {ℕ.𝟎} p = p
_⊆₂_.proof [∣][−ₙ]-super {ℕ.𝐒 x} {ℕ.𝐒 y} p = p
divides-with-[−ₙ] : ∀{a b c} → ((absₙ a) ℕ.∣ b) → ((absₙ a) ℕ.∣ c) → (a ∣ (b −ₙ c))
divides-with-[−ₙ] {a} ℕ.Div𝟎 ℕ.Div𝟎 = ℕ.Div𝟎
divides-with-[−ₙ] {a} (ℕ.Div𝐒 ab) ℕ.Div𝟎 = ℕ.Div𝐒 ab
divides-with-[−ₙ] {a} ℕ.Div𝟎 (ℕ.Div𝐒 {x = x} ac)
with p ← ℕ.divides-with-[+] (reflexivity(ℕ._∣_)) ((super₂((_∣_) on₂ (−ₙ_))(ℕ._∣_) ac))
rewrite absₙ-of-[−ₙ] {x}
rewrite absₙ-of-[−ₙ] {absₙ a}
rewrite [−ₙ]-antiidentityₗ {absₙ a ℕ.+ x}
rewrite absₙ-of-[−ₙ] {absₙ(a) ℕ.+ x}
= p
divides-with-[−ₙ] {a} (ℕ.Div𝐒 {x = x} ab) (ℕ.Div𝐒 {x = y} ac)
rewrite [−ₙ]-on-[+]ₗ-redundancy{absₙ a}{x}{y}
= divides-with-[−ₙ] {a} ab ac
divides-with-[+] : ∀{a b c} → (a ∣ b) → (a ∣ c) → (a ∣ (b + c))
divides-with-[+] {+ₙ a} {+ₙ b} {+ₙ c} ab ac = ℕ.divides-with-[+] ab ac
divides-with-[+] {+ₙ a} {+ₙ b} {−𝐒ₙ c} ab ac = divides-with-[−ₙ] {+ₙ a} ab ac
divides-with-[+] {+ₙ a} {−𝐒ₙ b} {+ₙ c} ab ac = divides-with-[−ₙ] {+ₙ a} ac ab
divides-with-[+] {+ₙ a} {−𝐒ₙ b} {−𝐒ₙ c} ab ac = ℕ.divides-with-[+] ab ac
divides-with-[+] {−𝐒ₙ a} {+ₙ b} {+ₙ c} ab ac = ℕ.divides-with-[+] ab ac
divides-with-[+] {−𝐒ₙ a} {+ₙ b} {−𝐒ₙ c} ab ac = divides-with-[−ₙ] {−𝐒ₙ a} ab ac
divides-with-[+] {−𝐒ₙ a} {−𝐒ₙ b} {+ₙ c} ab ac = divides-with-[−ₙ] {−𝐒ₙ a} ac ab
divides-with-[+] {−𝐒ₙ a} {−𝐒ₙ b} {−𝐒ₙ c} ab ac = ℕ.divides-with-[+] ab ac
divides-with-[⋅] : ∀{a b c} → ((a ∣ b) ∨ (a ∣ c)) → (a ∣ (b ⋅ c))
divides-with-[⋅] {a} {b} {c} p = substitute₂ᵣ(ℕ._∣_) {absₙ a} (symmetry(_≡_) (preserving₂(absₙ)(_⋅_)(ℕ._⋅_) {b}{c})) (ℕ.divides-with-[⋅] {absₙ a}{absₙ b}{absₙ c} p)
|
{
"alphanum_fraction": 0.5639686684,
"avg_line_length": 39.2820512821,
"ext": "agda",
"hexsha": "edc9f943c6972d4a3da8b60f600f3166a8eb900c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Integer/Relation/Divisibility/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Integer/Relation/Divisibility/Proofs.agda",
"max_line_length": 164,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Integer/Relation/Divisibility/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1647,
"size": 3064
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Nat
open import lib.types.Subtype
module lib.types.Fin where
Fin : ℕ → Type₀
Fin n = Σ ℕ (_< n)
instance
Fin-reader : ∀ {n} → FromNat (Fin n)
FromNat.in-range (Fin-reader {n}) m = m < n
FromNat.read (Fin-reader {n}) m ⦃ m<n ⦄ = m , m<n
Fin-S : ∀ {n} → Fin n → Fin (S n)
Fin-S (n , lt) = n , ltSR lt
Fin-S^ : ∀ {n} → (m : ℕ) → Fin n → Fin (m + n)
Fin-S^ O <n = <n
Fin-S^ (S m) <n = Fin-S (Fin-S^ m <n)
Fin-S^' : ∀ {n} → (m : ℕ) → Fin n → Fin (ℕ-S^' m n)
Fin-S^' O <n = <n
Fin-S^' (S m) <n = Fin-S^' m (Fin-S <n)
Fin-to-≠ : ∀ {n} (<n : Fin n) → fst <n ≠ n
Fin-to-≠ <n = <-to-≠ (snd <n)
Fin-prop : ℕ → SubtypeProp ℕ lzero
Fin-prop n = ((_< n) , λ _ → <-is-prop)
abstract
Fin-is-set : {n : ℕ} → is-set (Fin n)
Fin-is-set {n} = Subtype-level (Fin-prop n)
Fin-has-dec-eq : {n : ℕ} → has-dec-eq (Fin n)
Fin-has-dec-eq {n} = Subtype-has-dec-eq (Fin-prop n) ℕ-has-dec-eq
private
Fin-pred=-type : {n : ℕ} → Fin n → Fin n → Type₀
Fin-pred=-type (_ , ltSR _) (_ , ltS) = ⊤
Fin-pred=-type (_ , ltS) (_ , ltSR _) = ⊤
Fin-pred=-type (m , ltS) (n , ltS) = m == n :> ℕ
Fin-pred=-type {S n} (m , ltSR m<n) (o , ltSR o<n) = (m , m<n) == (o , o<n) :> Fin n
Fin-pred= : {n : ℕ} {x y : Fin n} → x == y → Fin-pred=-type x y
Fin-pred= {x = (_ , ltS)} idp = idp
Fin-pred= {x = (_ , ltSR _)} idp = idp
abstract
ltSR≠ltS : ∀ {m} (<m : Fin m) → Fin-S <m ≠ (m , ltS)
ltSR≠ltS <m = Fin-to-≠ <m ∘ ap fst
ltS≠ltSR : ∀ {m} (<m : Fin m) → (m , ltS) ≠ Fin-S <m
ltS≠ltSR <m = Fin-to-≠ <m ∘ ! ∘ ap fst
abstract
Fin-S-is-inj : ∀ {n} → is-inj (Fin-S {n = n})
Fin-S-is-inj _ _ = Fin-pred=
Fin-S-≠ : ∀ {n} {<n₀ <n₁ : Fin n} (p : <n₀ ≠ <n₁) → Fin-S <n₀ ≠ Fin-S <n₁
Fin-S-≠ {<n₀ = <n₀} {<n₁} p = p ∘ Fin-S-is-inj <n₀ <n₁
Fin-S^-≠ : ∀ {n} m {<n₀ <n₁ : Fin n} (p : <n₀ ≠ <n₁) → Fin-S^ m <n₀ ≠ Fin-S^ m <n₁
Fin-S^-≠ O p = p
Fin-S^-≠ (S n) p = Fin-S-≠ (Fin-S^-≠ n p)
Fin-S^'-≠ : ∀ {n} m {<n₀ <n₁ : Fin n} (p : <n₀ ≠ <n₁) → Fin-S^' m <n₀ ≠ Fin-S^' m <n₁
Fin-S^'-≠ O p = p
Fin-S^'-≠ (S n) p = Fin-S^'-≠ n (Fin-S-≠ p)
Fin-equiv-Empty : Fin 0 ≃ Empty
Fin-equiv-Empty = equiv to from to-from from-to where
to : Fin 0 → Empty
to (_ , ())
from : Empty → Fin 0
from ()
abstract
to-from : ∀ x → to (from x) == x
to-from ()
from-to : ∀ x → from (to x) == x
from-to (_ , ())
Fin-equiv-Coprod : {n : ℕ} → Fin (S n) ≃ Fin n ⊔ Unit
Fin-equiv-Coprod {n} = equiv to from to-from from-to where
to : Fin (S n) → Fin n ⊔ Unit
to (m , ltS) = inr unit
to (m , ltSR lt) = inl (m , lt)
from : Fin n ⊔ Unit → Fin (S n)
from (inr _) = n , ltS
from (inl fin) = Fin-S fin
abstract
to-from : ∀ x → to (from x) == x
to-from (inr _) = idp
to-from (inl _) = idp
from-to : ∀ x → from (to x) == x
from-to (_ , ltS) = idp
from-to (_ , ltSR _) = idp
|
{
"alphanum_fraction": 0.492991453,
"avg_line_length": 27.0833333333,
"ext": "agda",
"hexsha": "9d2beb38d8cfc72620fb092eee1d97d59afe8e83",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Fin.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Fin.agda",
"max_line_length": 87,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1342,
"size": 2925
}
|
module Logic.Names where
open import Functional
import Lvl
open import Logic
open import Logic.Predicate
open import Logic.Propositional
module _ {ℓ} where
ExcludedMiddleOn : Stmt{ℓ} → Stmt
ExcludedMiddleOn(X) = (X ∨ (¬ X))
ExcludedMiddle = ∀ₗ(ExcludedMiddleOn)
WeakExcludedMiddleOn = ExcludedMiddleOn ∘ (¬_)
WeakExcludedMiddle = ∀ₗ(WeakExcludedMiddleOn)
NonContradictionOn : Stmt{ℓ} → Stmt
NonContradictionOn(X) = ¬(X ∧ (¬ X))
NonContradiction = ∀ₗ(NonContradictionOn)
DoubleNegationOn : Stmt{ℓ} → Stmt
DoubleNegationOn(X) = (¬(¬ X)) → X
DoubleNegation = ∀ₗ(DoubleNegationOn)
module _ where
private variable ℓ₁ ℓ₂ : Lvl.Level
TopOrBottom : (Stmt{ℓ₁} → Stmt{Lvl.𝟎} → Stmt{ℓ₂}) → Stmt{ℓ₁} → Stmt
TopOrBottom(_≡_)(P) = (P ≡ ⊤) ∨ (P ≡ ⊥)
module _ {ℓ₁ ℓ₂} where
CallCCOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
CallCCOn(X)(Y) = (((X → Y) → X) → X)
CallCC = ∀²(CallCCOn)
ContrapositiveOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
ContrapositiveOn(X)(Y) = (X → Y) → ((¬ Y) → (¬ X))
Contrapositive = ∀²(ContrapositiveOn)
DisjunctiveSyllogismₗOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
DisjunctiveSyllogismₗOn(X)(Y) = ((X ∨ Y) ∧ (¬ Y)) → X
DisjunctiveSyllogismₗ = ∀²(DisjunctiveSyllogismₗOn)
DisjunctiveSyllogismᵣOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
DisjunctiveSyllogismᵣOn(X)(Y) = ((X ∨ Y) ∧ (¬ X)) → Y
DisjunctiveSyllogismᵣ = ∀²(DisjunctiveSyllogismᵣOn)
MaterialImplicationOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
MaterialImplicationOn(X)(Y) = (X → Y) ↔ ((¬ X) ∨ Y)
MaterialImplication = ∀²(MaterialImplicationOn)
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where
ConstructiveDilemmaOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt{ℓ₃} → Stmt{ℓ₄} → Stmt
ConstructiveDilemmaOn(X₁)(X₂)(Y₁)(Y₂) = ((X₁ → X₂) ∧ (Y₁ → Y₂) ∧ (X₁ ∨ Y₁)) → (X₂ ∨ Y₂)
ConstructiveDilemma = ∀⁴(ConstructiveDilemmaOn)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- Classical names
module _ {ℓ₁ ℓ₂} where
ModusTollensOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
ModusTollensOn(X)(Y) = ((X → Y) ∧ (¬ Y)) → (¬ X)
ModusTollens = ∀²(ModusTollensOn)
ModusPonensOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
ModusPonensOn(X)(Y) = ((X → Y) ∧ X) → Y
ModusPonens = ∀²(ModusPonensOn)
ReductioAdAbsurdumOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
ReductioAdAbsurdumOn(X)(Y) = ((X → Y) ∧ (X → (¬ Y))) → (¬ X)
ReductioAdAbsurdum = ∀²(ReductioAdAbsurdumOn)
ReductioAdAbsurdumNegatedOn : Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
ReductioAdAbsurdumNegatedOn(X)(Y) = (((¬ X) → Y) ∧ ((¬ X) → (¬ Y))) → (¬ X)
ReductioAdAbsurdumNegated = ∀²(ReductioAdAbsurdumNegatedOn)
|
{
"alphanum_fraction": 0.6381182147,
"avg_line_length": 32.7236842105,
"ext": "agda",
"hexsha": "966c2d0caefb1251411bc57137d450b88a9cd591",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Logic/Names.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Logic/Names.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Logic/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1110,
"size": 2487
}
|
module Web.URI.Everything where
import Web.URI
import Web.URI.Examples.HelloWorld
import Web.URI.Primitive
import Web.URI.Port
import Web.URI.Port.Primitive
import Web.URI.Scheme
import Web.URI.Scheme.Primitive
|
{
"alphanum_fraction": 0.8262910798,
"avg_line_length": 19.3636363636,
"ext": "agda",
"hexsha": "c5683e68c56b1b8e31015934255ac870f48f10db",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-uri",
"max_forks_repo_path": "src/Web/URI/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-uri",
"max_issues_repo_path": "src/Web/URI/Everything.agda",
"max_line_length": 34,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-uri",
"max_stars_repo_path": "src/Web/URI/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z",
"num_tokens": 51,
"size": 213
}
|
------------------------------------------------------------------------------
-- Example of a partial function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From (Bove, A. and Capretta, V. (2001)).
module FOT.FOTC.Program.Min.Min where
open import Data.Nat renaming ( suc to succ )
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
-- Note: Although the function is partial the problem is that it is
-- rejected by Agda's termination checker.
{-# NON_TERMINATING #-}
min : (ℕ → ℕ) → ℕ
min f with f 0
... | 0 = 0
... | succ x = succ (min (λ n → f (succ n)))
------------------------------------------------------------------------------
-- References
--
-- Bove, A. and Capretta, V. (2001). Nested General Recursion and
-- Partiality in Type Theory. In: Theorem Proving in Higher Order
-- Logics (TPHOLs 2001). Ed. by Boulton, R. J. and Jackson,
-- P. B. Vol. 2152. LNCS. Springer, pp. 121–135.
|
{
"alphanum_fraction": 0.4631490787,
"avg_line_length": 35.1176470588,
"ext": "agda",
"hexsha": "1dbdd8a4d6360858ff393c9639482c0f12657c9e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Min/Min.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Min/Min.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Min/Min.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 264,
"size": 1194
}
|
module Integer10 where
open import Relation.Binary.PropositionalEquality
as PropEq using (_≡_; refl)
-- 整数の素朴な定義
--(succ (succ (pred zero))などが有効、という弱点がある)
data ℤ : Set where
zero : ℤ
succ : ℤ → ℤ
pred : ℤ → ℤ
-- 加法
_+_ : ℤ → ℤ → ℤ
zero + y = y
succ x + zero = succ x
succ x + succ y = succ (succ x + y)
succ x + pred y = x + y
pred x + zero = pred x
pred x + succ y = x + y
pred x + pred y = pred (pred x + y)
-- 反数
opposite : ℤ → ℤ
opposite zero = zero
opposite (succ x) = pred (opposite x)
opposite (pred x) = succ (opposite x)
-- 乗法
_*_ : ℤ → ℤ → ℤ
x * zero = zero
x * succ y = (x * y) + x
x * pred y = (x * y) + (opposite x)
infixl 40 _+_
infixl 60 _*_
-- (-1) * (-1) = (+1)
theorem : pred zero * pred zero ≡ succ zero
theorem = refl
|
{
"alphanum_fraction": 0.5586380832,
"avg_line_length": 19.3414634146,
"ext": "agda",
"hexsha": "f2eae749895f76e107941230082fc97703135e5c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "righ1113/Agda",
"max_forks_repo_path": "Integer10.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "righ1113/Agda",
"max_issues_repo_path": "Integer10.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "righ1113/Agda",
"max_stars_repo_path": "Integer10.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 321,
"size": 793
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples showing how the Function.Reasoning module
-- can be used to perform "functional reasoning" similar to what is being
-- described in: https://stackoverflow.com/q/22676703/3168666
------------------------------------------------------------------------
{-# OPTIONS --with-K #-}
module README.Function.Reasoning where
-- Function.Reasoning exports a flipped application (_|>_) combinator
-- as well as a type annotation (_∶_) combinator.
open import Function.Reasoning
------------------------------------------------------------------------
-- A simple example
module _ {A B C : Set} {A→B : A → B} {B→C : B → C} where
-- Using the combinators we can, starting from a value, chain various
-- functions whilst tracking the types of the intermediate results.
A→C : A → C
A→C a =
a ∶ A
|> A→B ∶ B
|> B→C ∶ C
------------------------------------------------------------------------
-- A more concrete example
open import Data.Nat
open import Data.List.Base
open import Data.Char.Base
open import Data.String using (String; toList; fromList; _==_)
open import Function
open import Data.Bool hiding (_≤?_)
open import Data.Product as P using (_×_; <_,_>; uncurry; proj₁)
open import Agda.Builtin.Equality
-- This can give us for instance this decomposition of a function
-- collecting all of the substrings of the input which happen to be
-- palindromes:
subpalindromes : String → List String
subpalindromes str = let Chars = List Char in
str ∶ String
-- first generate the substrings
|> toList ∶ Chars
|> inits ∶ List Chars
|> concatMap tails ∶ List Chars
-- then only keeps the ones which are not singletons
|> filter (λ cs → 2 ≤? length cs) ∶ List Chars
-- only keep the ones that are palindromes
|> map < fromList , fromList ∘ reverse > ∶ List (String × String)
|> boolFilter (uncurry _==_) ∶ List (String × String)
|> map proj₁ ∶ List String
-- Test cases
_ : subpalindromes "doctoresreverse" ≡ "eve" ∷ "rever" ∷ "srevers" ∷ "esreverse" ∷ []
_ = refl
_ : subpalindromes "elle-meme" ≡ "ll" ∷ "elle" ∷ "mem" ∷ "eme" ∷ []
_ = refl
|
{
"alphanum_fraction": 0.5538720539,
"avg_line_length": 34.4347826087,
"ext": "agda",
"hexsha": "15472fa6299397741d635d94de14df9eacc45a12",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Function/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Function/Reasoning.agda",
"max_line_length": 85,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Function/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 594,
"size": 2376
}
|
------------------------------------------------------------------------
-- Safe modules that use --without-K
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module README.Safe.Without-K where
-- Definitions of some basic types and some related functions.
import Prelude
-- Logical equivalences.
import Logical-equivalence
-- Some definitions related to Dec.
import Dec
-- Two logically equivalent axiomatisations of equality. Many of the
-- modules below are parametrised by a definition of equality that
-- satisfies these axioms.
--
-- The reason for this parametrisation was that I thought that I might
-- later want to use a definition of equality where the application
-- elim P r (refl x) did not compute to r x, unlike the equality in
-- Equality.Propositional. Now, with the advent of cubical type theory
-- and paths, there is such an equality (see Equality.Path).
--
-- (Note that Equality.Tactic contains a definition of equality which,
-- roughly speaking, computes like the one in Equality.Propositional.)
import Equality
-- One model of the axioms: propositional equality.
import Equality.Propositional
-- A simple tactic for proving equality of equality proofs.
import Equality.Tactic
-- Injections.
import Injection
-- Split surjections.
import Surjection
-- Some definitions related to and properties of natural numbers.
import Nat
-- H-levels, along with some general properties.
import H-level
-- Types with decidable equality have unique identity proofs, and
-- related results.
import Equality.Decidable-UIP
-- Some decision procedures for equality.
import Equality.Decision-procedures
-- Bijections.
import Bijection
-- Integers.
import Integer.Basics
-- Groupoids.
import Groupoid
-- Closure properties for h-levels.
import H-level.Closure
-- Excluded middle.
import Excluded-middle
-- Equivalence relations
import Equivalence-relation
-- Preimages.
import Preimage
-- Is-equivalence, defined in terms of contractible fibres.
import Equivalence.Contractible-preimages
-- Half adjoint equivalences.
import Equivalence.Half-adjoint
-- Equivalences.
import Equivalence
-- A type for values that should be erased at run-time.
import Erased.Basics
-- Equivalences with erased "proofs".
import Equivalence.Erased.Basics
-- Embeddings.
import Embedding
-- A universe which includes several kinds of functions (ordinary
-- functions, logical equivalences, injections, embeddings,
-- surjections, bijections and equivalences).
import Function-universe
-- Some alternative definitions of the concept of being an
-- equivalence.
import Equivalence.Path-split
-- Results relating different instances of certain axioms related to
-- equality.
import Equality.Instances-related
-- A parametrised specification of "natrec", along with a proof that
-- the specification is propositional (assuming extensionality).
import Nat.Eliminator
-- A solver for certain natural number equalities.
import Nat.Solver
-- Some definitions related to the binary sum type former.
import Sum
-- Some definitions related to and properties of booleans.
import Bool
-- Raw monads.
import Monad.Raw
-- Monads.
import Monad
-- The reader monad transformer.
import Monad.Reader
-- The state monad transformer.
import Monad.State
-- The double-negation monad.
import Double-negation
-- Lists.
import List
-- Pullbacks.
import Pullback
-- The univalence axiom.
import Univalence-axiom
-- Pointed types and loop spaces.
import Pointed-type
-- Equalities can be turned into groupoids which are sometimes
-- commutative.
import Equality.Groupoid
-- Groups.
import Group
-- Integers.
import Integer
-- Some definitions related to and properties of finite sets.
import Fin
-- Some definitions related to and properties of the Maybe type.
import Maybe
-- Vectors, defined using a recursive function.
import Vec
-- Vectors, defined using an inductive family.
import Vec.Data
-- Vectors, defined as functions from finite sets.
import Vec.Function
-- Some properties related to the const function.
import Const
-- Support for reflection.
import TC-monad
-- Tactics for proving instances of Σ-cong (and Surjection.Σ-cong)
-- with "better" computational behaviour.
import Tactic.Sigma-cong
-- Code used to construct tactics aimed at making equational reasoning
-- proofs more readable.
import Tactic.By
-- A tactic aimed at making equational reasoning proofs more readable
-- in modules that are parametrised by an implementation of equality.
import Tactic.By.Parametrised
import Tactic.By.Parametrised.Tests
-- Some tactics aimed at making equational reasoning proofs more
-- readable for propositional equality.
import Tactic.By.Propositional
-- A type for values that should be erased at run-time.
import Erased.Level-1
-- Equivalences with erased "proofs", defined in terms of partly
-- erased contractible fibres.
import Equivalence.Erased.Contractible-preimages
-- Equivalences with erased "proofs".
import Equivalence.Erased
-- Embeddings with erased "proofs".
import Embedding.Erased
-- A type for values that should be erased at run-time.
import Erased.Level-2
-- Some results related to the For-iterated-equality predicate
-- transformer.
import For-iterated-equality
-- Properties related to stability for Erased.
import Erased.Stability
-- Some properties that hold for Erased do not hold for every
-- topological modality.
import Erased.Counterexamples
-- Truncation, defined using a kind of Church encoding.
import H-level.Truncation.Church
-- Some omniscience principles.
import Omniscience
-- Bag equivalence for lists.
import Bag-equivalence
-- The All predicate, defined using _∈_.
import List.All
-- The All predicate, defined recursively.
import List.All.Recursive
-- Quotients, defined as families of equivalence classes.
import Quotient.Families-of-equivalence-classes
-- A type for values that should be erased at run-time.
import Erased
import Erased.Without-box-cong
-- A wrapper that turns a representation of natural numbers (with a
-- unique representative for every number) into a representation that
-- computes roughly like the unary natural numbers (at least for some
-- operations).
import Nat.Wrapper
-- A binary representation of natural numbers.
import Nat.Binary
-- Specifications of output-restricted deques (single-ended queues
-- with cons).
import Queue
-- Simple queues, implemented in the usual way using two lists
-- (following Hood and Melville).
import Queue.Simple
-- Queue instances for the queues in Queue.Simple.
import Queue.Simple.Instances
-- Banker's queues (following Okasaki).
import Queue.Bankers
-- Queue instances for the queues in Queue.Bankers.
import Queue.Bankers.Instances
-- Isomorphism of monoids on sets coincides with equality (assuming
-- univalence).
import Univalence-axiom.Isomorphism-is-equality.Monoid
-- In fact, several large classes of algebraic structures satisfy the
-- property that isomorphism coincides with equality (assuming
-- univalence).
import Univalence-axiom.Isomorphism-is-equality.Simple
import Univalence-axiom.Isomorphism-is-equality.Simple.Variant
import Univalence-axiom.Isomorphism-is-equality.More
import Univalence-axiom.Isomorphism-is-equality.More.Examples
-- A class of structures that satisfies the property that isomorphic
-- instances of a structure are equal (assuming univalence). This code
-- is superseded by the code above, but preserved because it is
-- mentioned in a blog post.
import Univalence-axiom.Isomorphism-implies-equality
-- 1-categories.
import Category
import Functor
import Adjunction
-- Aczel's structure identity principle (for 1-categories).
import Structure-identity-principle
-- The structure identity principle can be used to establish that
-- isomorphism coincides with equality (assuming univalence).
import
Univalence-axiom.Isomorphism-is-equality.Structure-identity-principle
-- Bi-invertibility.
import Bi-invertibility
import Bi-invertibility.Erased
-- Binary trees.
import Tree
-- Implementations of tree sort. One only establishes that the
-- algorithm permutes its input, the other one also establishes
-- sortedness.
import Tree-sort.Partial
import Tree-sort.Full
import Tree-sort.Examples
-- Containers, including a definition of bag equivalence.
import Container
-- An implementation of tree sort which uses containers to represent
-- trees and lists.
--
-- In the module Tree-sort.Full indexed types are used to enforce
-- sortedness, but Containers contains a definition of non-indexed
-- containers, so sortedness is not enforced in this development.
--
-- The implementation using containers has the advantage of uniform
-- definitions of Any/membership/bag equivalence, but the other
-- implementations use more direct definitions and are perhaps a bit
-- "leaner".
import Container.List
import Container.Tree
import Container.Tree-sort
import Container.Tree-sort.Example
-- The stream container.
import Container.Stream
-- Indexed containers.
import Container.Indexed
-- Another definition of indexed containers.
import Container.Indexed.Variant
-- M-types for indexed containers, defined using functions.
import Container.Indexed.M.Function
-- Record types with manifest fields and "with".
import Records-with-with
-- Overview of code related to some papers.
import README.Bag-equivalence
import README.Isomorphism-is-equality
import README.Weak-J
|
{
"alphanum_fraction": 0.768220962,
"avg_line_length": 21.2071269488,
"ext": "agda",
"hexsha": "6d1d48194ca076b357a960deed870efad1a5cb1e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Safe/Without-K.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Safe/Without-K.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Safe/Without-K.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2037,
"size": 9522
}
|
-- An implementation of terminating parsers due to Conor McBride and
-- James McKinna, as presented in the talk Seeing and Doing at the
-- Workshop on Termination and Type Theory, Hindås, Sweden, 2002.
{-# OPTIONS --type-in-type #-}
module SeeingAndDoing where
open import Data.Unit
open import Data.Bool
open import Data.List
open import Data.Maybe as Maybe
open import Data.String renaming (_==_ to _=S=_)
open import Category.Monad
open RawMonadPlus Maybe.monadPlus
open import Data.Function using (_∘_; const)
open import Relation.Binary.PropositionalEquality
data Token : Set where
V : (s : String) → Token
IF : Token
THEN : Token
ELSE : Token
TRUE : Token
FALSE : Token
_==_ : Token → Token → Bool
V s₁ == V s₂ = s₁ =S= s₂
IF == IF = true
THEN == THEN = true
ELSE == ELSE = true
TRUE == TRUE = true
FALSE == FALSE = true
_ == _ = false
data Pos : Set where
L : Pos
R : Pos
Memo : (Pos → Set) → Pos → Set
Memo P L = ⊤
Memo P R = P L
PosOrder : ∀ j P → (∀ i → Memo P i → P i) → P j
PosOrder L P p = p L _
PosOrder R P p = p R (p L _)
module Combinators (Rec : Set) where
infixl 25 _∙_ _!_
infixl 15 _+_
data _⟨_⟩_ : Pos → Set → Pos → Set where
rec : R ⟨ Rec ⟩ R
η : ∀ {i X} (x : Maybe X) → i ⟨ X ⟩ i
tok : ∀ {i} (u : Token) → i ⟨ ⊤ ⟩ R
vart : ∀ {i} → i ⟨ String ⟩ R
_+_ : ∀ {i j X} (x y : i ⟨ X ⟩ j) → i ⟨ X ⟩ j
_∙_ : ∀ {j i k S T}
(f : i ⟨ (S → T) ⟩ j) (s : j ⟨ S ⟩ k) → i ⟨ T ⟩ k
for : ∀ {i X} → X → i ⟨ X ⟩ i
for = η ∘ just
fail : ∀ {i X} → i ⟨ X ⟩ i
fail = η nothing
_!_ : ∀ {i j k S T} → i ⟨ S ⟩ j → j ⟨ T ⟩ k → i ⟨ S ⟩ k
s ! t = for const ∙ s ∙ t
Grammar : Set → Set
Grammar Rec = L ⟨ Rec ⟩ R
where open Combinators Rec
module Parser {Rec : Set} (grammar : Grammar Rec) where
open Combinators Rec
⇓ : ∀ {i j X} → i ⟨ X ⟩ j → Maybe X
⇓ (η x) = x
⇓ (x + y) = ⇓ x ∣ ⇓ y
⇓ (f ∙ s) = ⇓ f ⊛ ⇓ s
⇓ _ = nothing
eat : ∀ {i X} → i ⟨ X ⟩ R → Token → R ⟨ X ⟩ R
eat {i} x t = PosOrder i P eat′ x t
where
P = λ i → ∀ {X} → i ⟨ X ⟩ R → Token → R ⟨ X ⟩ R
eat′ : ∀ i → Memo P i → P i
eat′ _ _ (tok u) t with u == t
eat′ _ _ (tok u) t | true = for _
eat′ _ _ (tok u) t | false = fail
eat′ _ _ vart (V x) = for x
eat′ _ eat (x + y) t = eat′ _ eat x t
+ eat′ _ eat y t
eat′ L _ (_∙_ {L} f s) t = η (⇓ f) ∙ eat′ L _ s t
eat′ L _ (_∙_ {R} f s) t = eat′ L _ f t ∙ s
eat′ R eatL (_∙_ {R} f s) t = η (⇓ f) ∙ eat′ R eatL s t
+ eat′ R eatL f t ∙ s
eat′ R eatL rec t = eatL grammar t
eat′ _ _ _ _ = fail
parse : List Token → Maybe Rec
parse is = ⇓ (foldr (λ t x → eat x t) rec (reverse is))
data CE : Set where
var : (s : String) → CE
val : (b : Bool) → CE
if : (i t e : CE) → CE
grammar : Grammar CE
grammar = for var ∙ vart
+ for (val true) ! tok TRUE
+ for (val false) ! tok FALSE
+ for (λ i → if i (val true) (val true)) ! tok IF ∙ rec
+ for if ! tok IF ∙ rec ! tok THEN ∙ rec
! tok ELSE ∙ rec
where open Combinators CE
test₁ : let open Parser grammar in
parse (IF ∷ V "x" ∷ THEN ∷ TRUE ∷ ELSE ∷ FALSE ∷ []) ≡
just (if (var "x") (val true) (val false))
test₁ = refl
-- Takes ages to type check:
-- test₂ : let open Parser grammar in
-- parse (IF ∷ V "x" ∷
-- THEN ∷ IF ∷ V "y" ∷ THEN ∷ V "z" ∷ ELSE ∷ V "x" ∷
-- ELSE ∷ FALSE ∷ []) ≡
-- just (if (var "x") (if (var "y") (var "z") (var "x"))
-- (val false))
-- test₂ = refl
|
{
"alphanum_fraction": 0.4800422945,
"avg_line_length": 28.0222222222,
"ext": "agda",
"hexsha": "c81043de68ece30e9cdad657ad961c80154a9b83",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/SeeingAndDoing.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/SeeingAndDoing.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/SeeingAndDoing.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1435,
"size": 3783
}
|
module IrrelevantLambda where
postulate
A : Set
P : A -> Set
f : _ -> Set
f = λ .x -> P x
-- fails because irrelevant lambda may not introduce relevant function type
|
{
"alphanum_fraction": 0.6900584795,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "4508097cc8e952e68541a70c58808dbf3448780b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/IrrelevantLambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/IrrelevantLambda.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/IrrelevantLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 47,
"size": 171
}
|
module NonLinearConstraint where
import Common.Level
open import Common.Equality
test : let X : Set -> Set -> Set
X = _
in (A : Set) -> X A A ≡ A
test A = refl
-- should not be solved, solution not uniquely determined
|
{
"alphanum_fraction": 0.6512605042,
"avg_line_length": 21.6363636364,
"ext": "agda",
"hexsha": "712b640666a588e45e898e027fb2c89d23e4c25b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NonLinearConstraint.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NonLinearConstraint.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NonLinearConstraint.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 238
}
|
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Object.BinaryProducts {o ℓ e} (C : Category o ℓ e) where
open Category C
open Equiv
open import Level
import Categories.Object.Product as Product
import Categories.Object.Product.Morphisms as ProductMorphisms
open import Categories.Morphisms C
open Product C
open ProductMorphisms C
record BinaryProducts : Set (o ⊔ ℓ ⊔ e) where
infixr 2 _×_
infix 10 _⁂_
field
product : ∀ {A B} → Product A B
_×_ : Obj → Obj → Obj
A × B = Product.A×B (product {A} {B})
×-comm : ∀ {A B} → _≅_ (A × B) (B × A)
×-comm = Commutative product product
×-assoc : ∀ {X Y Z} → _≅_ (X × (Y × Z)) ((X × Y) × Z)
×-assoc = Associative product product product product
-- Convenience!
π₁ : {A B : Obj} → ((A × B) ⇒ A)
π₁ = Product.π₁ product
π₂ : {A B : Obj} → ((A × B) ⇒ B)
π₂ = Product.π₂ product
⟨_,_⟩ : ∀ {A B Q} → (Q ⇒ A) → (Q ⇒ B) → (Q ⇒ (A × B))
⟨_,_⟩ = Product.⟨_,_⟩ product
.commute₁ : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} → π₁ ∘ ⟨ f , g ⟩ ≡ f
commute₁ = Product.commute₁ product
.commute₂ : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} → π₂ ∘ ⟨ f , g ⟩ ≡ g
commute₂ = Product.commute₂ product
.universal : ∀ {A B C} {f : C ⇒ A} {g : C ⇒ B} {i : C ⇒ (A × B)}
→ π₁ ∘ i ≡ f → π₂ ∘ i ≡ g → ⟨ f , g ⟩ ≡ i
universal = Product.universal product
assocˡ : ∀ {A B C} → (((A × B) × C) ⇒ (A × (B × C)))
assocˡ = _≅_.g ×-assoc
assocʳ : ∀ {A B C} → ((A × (B × C)) ⇒ ((A × B) × C))
assocʳ = _≅_.f ×-assoc
.assocʳ∘assocˡ : ∀ {A B C} → assocʳ {A}{B}{C} ∘ assocˡ {A}{B}{C} ≡ id
assocʳ∘assocˡ = Iso.isoʳ (_≅_.iso ×-assoc)
.assocˡ∘assocʳ : ∀ {A B C} → assocˡ {A}{B}{C} ∘ assocʳ {A}{B}{C} ≡ id
assocˡ∘assocʳ = Iso.isoˡ (_≅_.iso ×-assoc)
.g-η : ∀ {A B C} {f : C ⇒ (A × B)} → ⟨ π₁ ∘ f , π₂ ∘ f ⟩ ≡ f
g-η = Product.g-η product
.η : ∀ {A B} → ⟨ π₁ , π₂ ⟩ ≡ id {A × B}
η = Product.η product
.⟨⟩-cong₂ : ∀ {A B C} → {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≡ f′ → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g′ ⟩
⟨⟩-cong₂ = Product.⟨⟩-cong₂ product
.⟨⟩-congˡ : ∀ {A B C} → {f f′ : C ⇒ A} {g : C ⇒ B} → f ≡ f′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g ⟩
⟨⟩-congˡ pf = ⟨⟩-cong₂ pf refl
.⟨⟩-congʳ : ∀ {A B C} → {f : C ⇒ A} {g g′ : C ⇒ B} → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f , g′ ⟩
⟨⟩-congʳ pf = ⟨⟩-cong₂ refl pf
_⁂_ : ∀ {A B C D} → (A ⇒ B) → (C ⇒ D) → ((A × C) ⇒ (B × D))
f ⁂ g = [ product ⇒ product ] f ⁂ g
swap : ∀ {A B} → ((A × B) ⇒ (B × A))
swap = ⟨ π₂ , π₁ ⟩
-- TODO: this is probably harder to use than necessary because of this definition. Maybe make a version
-- that doesn't have an explicit id in it, too?
first : ∀ {A B C} → (A ⇒ B) → ((A × C) ⇒ (B × C))
first f = f ⁂ id
second : ∀ {A C D} → (C ⇒ D) → ((A × C) ⇒ (A × D))
second g = id ⁂ g
-- Just to make this more obvious
.π₁∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → π₁ ∘ (f ⁂ g) ≡ f ∘ π₁
π₁∘⁂ {f = f} {g} = commute₁
.π₂∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D} → π₂ ∘ (f ⁂ g) ≡ g ∘ π₂
π₂∘⁂ {f = f} {g} = commute₂
.⁂-cong₂ : ∀ {A B C D}{f g : A ⇒ B}{h i : C ⇒ D}
→ f ≡ g → h ≡ i → f ⁂ h ≡ g ⁂ i
⁂-cong₂ = [ product ⇒ product ]⁂-cong₂
.⁂∘⟨⟩ : ∀ {A B C D E} → {f : B ⇒ C} {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D} → (f ⁂ g) ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f ∘ f′ , g ∘ g′ ⟩
⁂∘⟨⟩ = [ product ⇒ product ]⁂∘⟨⟩
.first∘⟨⟩ : ∀ {A B C D} → {f : B ⇒ C} {f′ : A ⇒ B} {g′ : A ⇒ D} → first f ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f ∘ f′ , g′ ⟩
first∘⟨⟩ = [ product ⇒ product ]first∘⟨⟩
.second∘⟨⟩ : ∀ {A B D E} → {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D} → second g ∘ ⟨ f′ , g′ ⟩ ≡ ⟨ f′ , g ∘ g′ ⟩
second∘⟨⟩ = [ product ⇒ product ]second∘⟨⟩
.⁂∘⁂ : ∀ {A B C D E F} → {f : B ⇒ C} → {f′ : A ⇒ B} {g : E ⇒ F} {g′ : D ⇒ E} → (f ⁂ g) ∘ (f′ ⁂ g′) ≡ (f ∘ f′) ⁂ (g ∘ g′)
⁂∘⁂ = [ product ⇒ product ⇒ product ]⁂∘⁂
.⟨⟩∘ : ∀ {A B C D} {f : A ⇒ B} {g : A ⇒ C} {q : D ⇒ A} → ⟨ f , g ⟩ ∘ q ≡ ⟨ f ∘ q , g ∘ q ⟩
⟨⟩∘ = sym (universal (trans (sym assoc) (∘-resp-≡ˡ commute₁)) (trans (sym assoc) (∘-resp-≡ˡ commute₂)))
.first∘first : ∀ {A B C D}{f : B ⇒ C} {g : A ⇒ B}
→ first f ∘ first g ≡ first {C = D} (f ∘ g)
first∘first = [ product ⇒ product ⇒ product ]first∘first
.second∘second : ∀ {A B C D}{f : B ⇒ C} {g : A ⇒ B}
→ second f ∘ second g ≡ second {A = D} (f ∘ g)
second∘second = [ product ⇒ product ⇒ product ]second∘second
.first↔second : ∀ {A B C D}{f : A ⇒ B}{g : C ⇒ D}
→ first f ∘ second g ≡ second g ∘ first f
first↔second = [ product ⇒ product , product ⇒ product ]first↔second
.swap∘⟨⟩ : ∀ {A B C} {f : A ⇒ B} {g : A ⇒ C}
→ swap ∘ ⟨ f , g ⟩ ≡ ⟨ g , f ⟩
swap∘⟨⟩ {A}{B}{C}{f}{g} =
begin
⟨ π₂ , π₁ ⟩ ∘ ⟨ f , g ⟩
↓⟨ ⟨⟩∘ ⟩
⟨ π₂ ∘ ⟨ f , g ⟩ , π₁ ∘ ⟨ f , g ⟩ ⟩
↓⟨ ⟨⟩-cong₂ commute₂ commute₁ ⟩
⟨ g , f ⟩
∎ where open HomReasoning
.swap∘⁂ : ∀ {A B C D} {f : A ⇒ B} {g : C ⇒ D}
→ swap ∘ (f ⁂ g) ≡ (g ⁂ f) ∘ swap
swap∘⁂ {f = f}{g} =
begin
swap ∘ (f ⁂ g)
↓⟨ swap∘⟨⟩ ⟩
⟨ g ∘ π₂ , f ∘ π₁ ⟩
↑⟨ ⁂∘⟨⟩ ⟩
(g ⁂ f) ∘ swap
∎ where open HomReasoning
.swap∘swap : ∀ {A B} → (swap {A}{B}) ∘ (swap {B}{A}) ≡ id
swap∘swap = trans swap∘⟨⟩ η
.assocʳ∘⟨⟩ : ∀ {A B C D} {f : A ⇒ B} {g : A ⇒ C} {h : A ⇒ D}
→ assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≡ ⟨ ⟨ f , g ⟩ , h ⟩
assocʳ∘⟨⟩ {f = f}{g}{h} =
begin
assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
↓⟨ ⟨⟩∘ ⟩
⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₂ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩
↓⟨ ⟨⟩-cong₂ ⟨⟩∘ assoc ⟩
⟨ ⟨ π₁ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
, (π₁ ∘ π₂) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩
, π₂ ∘ π₂ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
⟩
↓⟨ ⟨⟩-cong₂ (⟨⟩-cong₂ commute₁ assoc ) (∘-resp-≡ʳ commute₂) ⟩
⟨ ⟨ f , π₁ ∘ π₂ ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ⟩
, π₂ ∘ ⟨ g , h ⟩
⟩
↓⟨ ⟨⟩-cong₂ (⟨⟩-congʳ (∘-resp-≡ʳ commute₂)) commute₂ ⟩
⟨ ⟨ f , π₁ ∘ ⟨ g , h ⟩ ⟩ , h ⟩
↓⟨ ⟨⟩-congˡ (⟨⟩-congʳ commute₁) ⟩
⟨ ⟨ f , g ⟩ , h ⟩
∎ where open HomReasoning
.assocˡ∘⟨⟩ : ∀ {A B C D} {f : A ⇒ B} {g : A ⇒ C} {h : A ⇒ D}
→ assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩ ≡ ⟨ f , ⟨ g , h ⟩ ⟩
assocˡ∘⟨⟩ {f = f}{g}{h} =
begin
assocˡ ∘ ⟨ ⟨ f , g ⟩ , h ⟩
↑⟨ refl ⟩∘⟨ assocʳ∘⟨⟩ ⟩
assocˡ ∘ assocʳ ∘ ⟨ f , ⟨ g , h ⟩ ⟩
↑⟨ assoc ⟩
(assocˡ ∘ assocʳ) ∘ ⟨ f , ⟨ g , h ⟩ ⟩
↓⟨ assocˡ∘assocʳ ⟩∘⟨ refl ⟩
id ∘ ⟨ f , ⟨ g , h ⟩ ⟩
↓⟨ identityˡ ⟩
⟨ f , ⟨ g , h ⟩ ⟩
∎ where open HomReasoning
.assocʳ∘⁂ : ∀ {A₁ A₂ B₁ B₂ C₁ C₂} {f : A₁ ⇒ A₂} {g : B₁ ⇒ B₂} {h : C₁ ⇒ C₂}
→ assocʳ ∘ (f ⁂ (g ⁂ h)) ≡ ((f ⁂ g) ⁂ h) ∘ assocʳ
assocʳ∘⁂ {f = f}{g}{h} =
begin
assocʳ ∘ (f ⁂ (g ⁂ h))
↓⟨ refl ⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩
assocʳ ∘ ⟨ f ∘ π₁ , ⟨ (g ∘ π₁) ∘ π₂ , (h ∘ π₂) ∘ π₂ ⟩ ⟩
↓⟨ assocʳ∘⟨⟩ ⟩
⟨ ⟨ f ∘ π₁ , (g ∘ π₁) ∘ π₂ ⟩ , (h ∘ π₂) ∘ π₂ ⟩
↓⟨ ⟨⟩-cong₂ (⟨⟩-congʳ assoc) assoc ⟩
⟨ ⟨ f ∘ π₁ , g ∘ π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
↑⟨ ⟨⟩-congˡ ⁂∘⟨⟩ ⟩
⟨ (f ⁂ g) ∘ ⟨ π₁ , π₁ ∘ π₂ ⟩ , h ∘ π₂ ∘ π₂ ⟩
↑⟨ ⁂∘⟨⟩ ⟩
((f ⁂ g) ⁂ h) ∘ assocʳ
∎ where open HomReasoning
.assocˡ∘⁂ : ∀ {A₁ A₂ B₁ B₂ C₁ C₂} {f : A₁ ⇒ A₂} {g : B₁ ⇒ B₂} {h : C₁ ⇒ C₂}
→ assocˡ ∘ ((f ⁂ g) ⁂ h) ≡ (f ⁂ (g ⁂ h)) ∘ assocˡ
assocˡ∘⁂ {f = f}{g}{h} =
begin
assocˡ ∘ ((f ⁂ g) ⁂ h)
↓⟨ refl ⟩∘⟨ ⟨⟩-congˡ ⟨⟩∘ ⟩
assocˡ ∘ ⟨ ⟨ (f ∘ π₁) ∘ π₁ , (g ∘ π₂) ∘ π₁ ⟩ , h ∘ π₂ ⟩
↓⟨ assocˡ∘⟨⟩ ⟩
⟨ (f ∘ π₁) ∘ π₁ , ⟨ (g ∘ π₂) ∘ π₁ , h ∘ π₂ ⟩ ⟩
↓⟨ ⟨⟩-cong₂ assoc (⟨⟩-congˡ assoc) ⟩
⟨ f ∘ π₁ ∘ π₁ , ⟨ g ∘ π₂ ∘ π₁ , h ∘ π₂ ⟩ ⟩
↑⟨ ⟨⟩-congʳ ⁂∘⟨⟩ ⟩
⟨ f ∘ π₁ ∘ π₁ , (g ⁂ h) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
↑⟨ ⁂∘⟨⟩ ⟩
(f ⁂ (g ⁂ h)) ∘ assocˡ
∎ where open HomReasoning
|
{
"alphanum_fraction": 0.4021610225,
"avg_line_length": 32.5708154506,
"ext": "agda",
"hexsha": "53ac0a72f14e298016e884206ec70fad5b82a0f0",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/BinaryProducts.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/BinaryProducts.agda",
"max_line_length": 122,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/BinaryProducts.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 4047,
"size": 7589
}
|
open import Relation.Binary.Core
module InsertSort.Impl1.Correctness.Permutation.Base {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Data.List
open import Data.Sum
open import InsertSort.Impl1 _≤_ tot≤
open import List.Permutation.Base A
lemma-insert∼/ : (x : A)(xs : List A) → (insert x xs) / x ⟶ xs
lemma-insert∼/ x [] = /head
lemma-insert∼/ x (y ∷ ys)
with tot≤ x y
... | inj₁ _ = /head
... | inj₂ _ = /tail (lemma-insert∼/ x ys)
lemma-insert∼ : {xs ys : List A}(x : A) → xs ∼ ys → (x ∷ xs) ∼ insert x ys
lemma-insert∼ {xs} {ys} x xs∼ys = ∼x /head (lemma-insert∼/ x ys) xs∼ys
theorem-insertSort∼ : (xs : List A) → xs ∼ insertSort xs
theorem-insertSort∼ [] = ∼[]
theorem-insertSort∼ (x ∷ xs) = lemma-insert∼ x (theorem-insertSort∼ xs)
|
{
"alphanum_fraction": 0.605721393,
"avg_line_length": 32.16,
"ext": "agda",
"hexsha": "166d4cacf7a690b0eca36c84d8de1cf11e974478",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Base.agda",
"max_line_length": 74,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 294,
"size": 804
}
|
-- Lifting of substitutions, and instance of strength for δ
module SOAS.Coalgebraic.Lift {T : Set} where
open import SOAS.Common
open import SOAS.Context {T}
open import SOAS.Variable
open import SOAS.Families.Core {T}
import SOAS.Families.Delta {T} as δ; open δ.Sorted
open import SOAS.Abstract.Hom {T}
import SOAS.Abstract.Box {T} as □ ; open □.Sorted
import SOAS.Abstract.Coalgebra {T} as →□ ; open →□.Sorted
open import SOAS.Coalgebraic.Map
open import SOAS.Coalgebraic.Strength
private
variable
Γ Δ Θ : Ctx
α : T
module _ {𝒫 : Familyₛ} (𝒫ᴮ : Coalgₚ 𝒫) where
open Coalgₚ 𝒫ᴮ
-- General lifting over an arbitrary context
lift : (Ξ : Ctx) → Γ ~[ 𝒫 ]↝ Δ → (Ξ ∔ Γ) ~[ 𝒫 ]↝ (Ξ ∔ Δ)
lift ∅ σ v = σ v
lift (τ ∙ Ξ) σ new = η new
lift (τ ∙ Ξ) σ (old v) = r (lift Ξ σ v) old
-- Single-variable lifting
lift₁ : {τ : T} → Γ ~[ 𝒫 ]↝ Δ → (τ ∙ Γ) ~[ 𝒫 ]↝ (τ ∙ Δ)
lift₁ {τ = τ} = lift ⌈ τ ⌋
-- General lifting of renaming
rlift : (Ξ : Ctx) → Γ ↝ Δ → (Ξ ∔ Γ) ↝ (Ξ ∔ Δ)
rlift Ξ = lift ℐᴮ Ξ
-- Strength for context extension
δ:Strength : (Ξ : Ctx) → Strength (δF Ξ)
δ:Strength Ξ = record
{ str = λ 𝒫ᴮ 𝒳 h σ → h (lift 𝒫ᴮ Ξ σ)
; str-nat₁ = λ fᴮ⇒ h σ → cong h (dext (str-nat₁ Ξ fᴮ⇒ σ))
; str-nat₂ = λ f h σ → refl
; str-unit = λ 𝒳 h → cong h (dext (str-unit Ξ 𝒳))
; str-assoc = λ 𝒳 fᶜ h σ ς → cong h (dext (str-assoc Ξ 𝒳 fᶜ σ ς))
}
where
open ≡-Reasoning
open Coalgₚ
open Coalgₚ⇒
str-nat₁ : (Ξ : Ctx){𝒫 𝒬 : Familyₛ} {𝒫ᴮ : Coalgₚ 𝒫}
{𝒬ᴮ : Coalgₚ 𝒬} {f : 𝒬 ⇾̣ 𝒫}
→ Coalgₚ⇒ 𝒬ᴮ 𝒫ᴮ f
→ (σ : Γ ~[ 𝒬 ]↝ Δ)(v : ℐ α (Ξ ∔ Γ))
→ lift 𝒫ᴮ Ξ (f ∘ σ) v
≡ f (lift 𝒬ᴮ Ξ σ v)
str-nat₁ ∅ fᴮ⇒ σ v = refl
str-nat₁ (α ∙ Ξ) {𝒫ᴮ = 𝒫ᴮ} fᴮ⇒ σ new = sym (Coalgₚ⇒.⟨η⟩ fᴮ⇒)
str-nat₁ (α ∙ Ξ) {𝒫ᴮ = 𝒫ᴮ} {𝒬ᴮ}{f}fᴮ⇒ σ (old v) = begin
lift 𝒫ᴮ (α ∙ Ξ) (f ∘ σ) (old v)
≡⟨ congr (str-nat₁ Ξ fᴮ⇒ σ v) (λ - → r 𝒫ᴮ - old) ⟩
r 𝒫ᴮ (f (lift 𝒬ᴮ Ξ σ v)) old
≡˘⟨ ⟨r⟩ fᴮ⇒ ⟩
f (lift 𝒬ᴮ (α ∙ Ξ) σ (old v))
∎
str-unit : (Ξ : Ctx) (𝒳 : Familyₛ) (v : ℐ α (Ξ ∔ Γ))
→ lift ℐᴮ Ξ id v ≡ v
str-unit ∅ 𝒳 v = refl
str-unit (α ∙ Ξ) 𝒳 new = refl
str-unit (α ∙ Ξ) 𝒳 (old v) = cong old (str-unit Ξ 𝒳 v)
str-assoc : (Ξ : Ctx) (𝒳 : Familyₛ) {𝒫 𝒬 ℛ : Familyₛ}
{𝒫ᴮ : Coalgₚ 𝒫} {𝒬ᴮ : Coalgₚ 𝒬} {ℛᴮ : Coalgₚ ℛ}
{f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗}
(fᶜ : Coalgebraic 𝒫ᴮ 𝒬ᴮ ℛᴮ f) (open Coalgebraic fᶜ)
(σ : Γ ~[ 𝒫 ]↝ Δ) (ς : Δ ~[ 𝒬 ]↝ Θ)(v : ℐ α (Ξ ∔ Γ))
→ lift ℛᴮ Ξ (λ u → f (σ u) ς) v
≡ lift 〖𝒫,𝒴〗ᴮ Ξ (f ∘ σ) v (lift 𝒬ᴮ Ξ ς)
str-assoc ∅ 𝒳 fᶜ σ ς v = refl
str-assoc (β ∙ Ξ) 𝒳 {𝒫ᴮ = 𝒫ᴮ}{𝒬ᴮ}{ℛᴮ} {f} fᶜ σ ς new = begin
η ℛᴮ new ≡˘⟨ f∘η ⟩
f (η 𝒫ᴮ new) (η 𝒬ᴮ) ≡⟨ eq-at-new refl ⟩
f (η 𝒫ᴮ new) (lift 𝒬ᴮ (β ∙ Ξ) ς) ∎
where open Coalgebraic fᶜ
str-assoc {Γ = Γ} (β ∙ Ξ) 𝒳 {𝒫 = 𝒫}{𝒬}{𝒫ᴮ = 𝒫ᴮ}{𝒬ᴮ}{ℛᴮ}{f} fᶜ σ ς (old v) =
begin
r ℛᴮ (lift ℛᴮ Ξ (λ u → f (σ u) ς) v) old
≡⟨ congr (str-assoc Ξ 𝒳 fᶜ σ ς v) (λ - → r ℛᴮ - old) ⟩
r ℛᴮ ( lift 〖𝒫,𝒴〗ᴮ Ξ (f ∘ σ) v (lift 𝒬ᴮ Ξ ς)) old
≡⟨ congr (str-nat₁ Ξ fᴮ⇒ (σ) v) (λ - → r ℛᴮ (- (lift 𝒬ᴮ Ξ ς)) old) ⟩
r ℛᴮ (f (lift 𝒫ᴮ Ξ σ v) (lift 𝒬ᴮ Ξ ς)) old
≡⟨ r∘f ⟩
f (lift 𝒫ᴮ Ξ σ v) (λ u → r 𝒬ᴮ (lift 𝒬ᴮ Ξ ς u) old)
≡˘⟨ congr (str-nat₁ Ξ fᴮ⇒ σ v) (λ - → - (λ u → r 𝒬ᴮ (lift 𝒬ᴮ Ξ ς u) old)) ⟩
lift 〖𝒫,𝒴〗ᴮ Ξ (f ∘ σ) v (λ u → r 𝒬ᴮ (lift 𝒬ᴮ Ξ ς u) old)
∎
where open Coalgebraic fᶜ renaming (ᴮ⇒ to fᴮ⇒)
module δ:Str Θ = Strength (δ:Strength Θ)
-- Derived lifting properties
rlift-id : (𝒳 : Familyₛ)(Ξ : Ctx)(b : δ Ξ (□ 𝒳) α Γ)
→ b (rlift Ξ id) ≡ b id
rlift-id 𝒳 Ξ = Strength.str-unit (δ:Strength Ξ) 𝒳
lift-comp : {𝒫 𝒬 : Familyₛ}{𝒫ᴮ : Coalgₚ 𝒫}{𝒬ᴮ : Coalgₚ 𝒬}
(𝒳 : Familyₛ)(Ξ : Ctx){f : 𝒬 ⇾̣ 𝒫}
(fᴮ⇒ : Coalgₚ⇒ 𝒬ᴮ 𝒫ᴮ f)
(h : δ Ξ 〖 𝒫 , 𝒳 〗 α Γ) (σ : Γ ~[ 𝒬 ]↝ Δ)
→ h (lift 𝒫ᴮ Ξ (f ∘ σ))
≡ h (f ∘ lift 𝒬ᴮ Ξ σ)
lift-comp 𝒳 Ξ fᴮ⇒ h σ = Strength.str-nat₁ (δ:Strength Ξ) {𝒳 = 𝒳} fᴮ⇒ h σ
lift-assoc : {𝒫 𝒬 ℛ : Familyₛ}
{𝒫ᴮ : Coalgₚ 𝒫} {𝒬ᴮ : Coalgₚ 𝒬} {ℛᴮ : Coalgₚ ℛ}
(𝒳 : Familyₛ)(Ξ : Ctx) {f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗}
(fᶜ : Coalgebraic 𝒫ᴮ 𝒬ᴮ ℛᴮ f)
(open Coalgebraic fᶜ)
(h : δ Ξ 〖 ℛ , 𝒳 〗 α Γ)
(σ : Γ ~[ 𝒫 ]↝ Δ) (ς : Δ ~[ 𝒬 ]↝ Θ)
→ h (lift ℛᴮ Ξ (λ v → f (σ v) ς))
≡ h (λ v → lift 〖𝒫,𝒴〗ᴮ Ξ (f ∘ σ) v (lift 𝒬ᴮ Ξ ς))
lift-assoc 𝒳 Ξ fᶜ h σ ς = Strength.str-assoc (δ:Strength Ξ) 𝒳 fᶜ h σ ς
lift-dist : {𝒫 𝒬 ℛ : Familyₛ}{𝒫ᴮ : Coalgₚ 𝒫}{𝒬ᴮ : Coalgₚ 𝒬}{ℛᴮ : Coalgₚ ℛ}
(𝒳 : Familyₛ){Ξ : Ctx}{f : 𝒫 ⇾̣ 〖 𝒬 , ℛ 〗}
(fᶜ : Coalgebraic 𝒫ᴮ 𝒬ᴮ ℛᴮ f)
(h : δ Ξ 〖 ℛ , 𝒳 〗 α Γ)
(σ : Γ ~[ 𝒫 ]↝ Δ) (ς : Δ ~[ 𝒬 ]↝ Θ)
→ h (lift ℛᴮ Ξ (λ v → f (σ v) ς))
≡ h (λ v → f (lift 𝒫ᴮ Ξ σ v) (lift 𝒬ᴮ Ξ ς))
lift-dist 𝒳 {Ξ} = Strength.str-dist (δ:Strength Ξ) 𝒳
|
{
"alphanum_fraction": 0.483391074,
"avg_line_length": 35.3021582734,
"ext": "agda",
"hexsha": "558eedd836bcce9a1fc23ee93afed502f9e3580e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Coalgebraic/Lift.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Coalgebraic/Lift.agda",
"max_line_length": 80,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Coalgebraic/Lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2986,
"size": 4907
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; Substitutive; Symmetric; Total)
module Algebra.FunctionProperties.Consequences
{a ℓ} (S : Setoid a ℓ) where
{-# WARNING_ON_IMPORT
"Algebra.FunctionProperties.Consequences was deprecated in v1.3.
Use Algebra.Consequences.Setoid instead."
#-}
open import Algebra.Consequences.Setoid S public
|
{
"alphanum_fraction": 0.5697278912,
"avg_line_length": 29.4,
"ext": "agda",
"hexsha": "9337494c39f2344e86a35047d06f93a6d4344433",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/FunctionProperties/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 112,
"size": 588
}
|
module Issue453 where
postulate
A : Set
fails : {x : _} → A
|
{
"alphanum_fraction": 0.5714285714,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "ae57318d382bd8270c14fd4cd80eae0ca3a22d3b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue453.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue453.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue453.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 70
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Unit where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.HITs.Sn
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₋₁ ; ∣_∣ to ∣_∣₋₁)
open import Cubical.HITs.Nullification
open import Cubical.Data.Int hiding (_+_ ; +-comm)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation
open import Cubical.Homotopy.Connected
open import Cubical.Data.Unit
open import Cubical.Algebra.Group
-- H⁰(Unit)
open GroupHom
open GroupIso
H⁰-Unit≅ℤ : GroupIso (coHomGr 0 Unit) intGroup
fun (GroupIso.map H⁰-Unit≅ℤ) = sRec isSetInt (λ f → f tt)
isHom (GroupIso.map H⁰-Unit≅ℤ) = sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _) λ a b → addLemma (a tt) (b tt)
inv H⁰-Unit≅ℤ a = ∣ (λ _ → a) ∣₂
rightInv H⁰-Unit≅ℤ _ = refl
leftInv H⁰-Unit≅ℤ = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → refl
{- Hⁿ(Unit) for n ≥ 1 -}
isContrHⁿ-Unit : (n : ℕ) → isContr (coHom (suc n) Unit)
isContrHⁿ-Unit n = subst isContr (λ i → ∥ UnitToTypePath (coHomK (suc n)) (~ i) ∥₂) (helper' n)
where
helper' : (n : ℕ) → isContr (∥ coHomK (suc n) ∥₂)
helper' n =
subst isContr
((isoToPath (truncOfTruncIso {A = S₊ (1 + n)} 2 (1 + n)))
∙∙ sym propTrunc≡Trunc2
∙∙ λ i → ∥ hLevelTrunc (suc (+-comm n 2 i)) (S₊ (1 + n)) ∥₂)
(isConnectedSubtr 2 (helper2 n .fst)
(subst (λ x → isConnected x (S₊ (suc n))) (sym (helper2 n .snd)) (sphereConnected (suc n))) )
where
helper2 : (n : ℕ) → Σ[ m ∈ ℕ ] m + 2 ≡ 2 + n
helper2 zero = 0 , refl
helper2 (suc n) = (suc n) , λ i → suc (+-comm n 2 i)
Hⁿ-Unit≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) Unit) trivialGroup
GroupHom.fun (GroupIso.map (Hⁿ-Unit≅0 n)) _ = _
GroupHom.isHom (GroupIso.map (Hⁿ-Unit≅0 n)) _ _ = refl
GroupIso.inv (Hⁿ-Unit≅0 n) _ = 0ₕ (suc n)
GroupIso.rightInv (Hⁿ-Unit≅0 n) _ = refl
GroupIso.leftInv (Hⁿ-Unit≅0 n) _ = isOfHLevelSuc 0 (isContrHⁿ-Unit n) _ _
{- Hⁿ for arbitrary contractible types -}
private
Hⁿ-contrTypeIso : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A
→ Iso (coHom (suc n) A) (coHom (suc n) Unit)
Hⁿ-contrTypeIso n contr = compIso (setTruncIso (isContr→Iso2 contr))
(setTruncIso (invIso (isContr→Iso2 isContrUnit)))
Hⁿ-contrType≅0 : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A
→ GroupIso (coHomGr (suc n) A) trivialGroup
fun (GroupIso.map (Hⁿ-contrType≅0 _ _)) _ = _
isHom (GroupIso.map (Hⁿ-contrType≅0 _ _)) _ _ = refl
inv (Hⁿ-contrType≅0 n _) _ = 0ₕ (suc n)
rightInv (Hⁿ-contrType≅0 _ _) _ = refl
leftInv (Hⁿ-contrType≅0 {A = A} n contr) _ = isOfHLevelSuc 0 helper _ _
where
helper : isContr (coHom (suc n) A)
helper = (Iso.inv (Hⁿ-contrTypeIso n contr) (0ₕ (suc n)))
, λ y → cong (Iso.inv (Hⁿ-contrTypeIso n contr))
(isOfHLevelSuc 0 (isContrHⁿ-Unit n) (0ₕ (suc n)) (Iso.fun (Hⁿ-contrTypeIso n contr) y))
∙ Iso.leftInv (Hⁿ-contrTypeIso n contr) y
|
{
"alphanum_fraction": 0.6470940683,
"avg_line_length": 43.3506493506,
"ext": "agda",
"hexsha": "62530cf7d7fa9d9ca6d9f14ff0a241a25730cdae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Unit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Unit.agda",
"max_line_length": 135,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1340,
"size": 3338
}
|
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module Number.Operations.Details where
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Data.Unit.Base -- Unit
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Function.Base using (_$_)
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Order renaming (zero-≤ to z≤n; suc-≤-suc to s≤s)
open import MoreNatProperties renaming (0≤x to 0≤xⁿ)
open import Number.Postulates
open import Number.Structures
open import Number.Bundles
open import Number.Inclusions
open import Number.Base
open import Number.Coercions
open ℕⁿ
open ℤᶻ
open ℚᶠ
open ℝʳ
open ℂᶜ
infix 9 _⁻¹
infix 8 -_
open import Number.Operations.Specification
open PatternsProp
_⁻¹ : ∀{l p} → (x : Number (l , p)) → ⁻¹-Types x
_⁻¹ {isNat } {⁇x⁇} (x ,, q) {{h}} = let r = Isℕ↪ℚ.preserves-#0 ℕ↪ℚinc _ h in _⁻¹ᶠ (ℕ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-#0 _ r
_⁻¹ {isNat } {x#0} (x ,, q) {{h}} = let r = Isℕ↪ℚ.preserves-#0 ℕ↪ℚinc _ q in _⁻¹ᶠ (ℕ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-#0 _ r
_⁻¹ {isNat } {0≤x} (x ,, q) {{h}} = let p = Isℕ↪ℚ.preserves-0< ℕ↪ℚinc _ (ℕ.≤-#-implies-< _ _ q (ℕ.#-sym _ _ h))
r = Isℕ↪ℚ.preserves-#0 ℕ↪ℚinc _ h
in _⁻¹ᶠ (ℕ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-0< _ p r
_⁻¹ {isNat } {0<x} (x ,, q) {{h}} = let p = Isℕ↪ℚ.preserves-0< ℕ↪ℚinc _ q
r = Isℕ↪ℚ.preserves-#0 ℕ↪ℚinc _ (ℕ.#-sym _ _ (ℕ.<-implies-# _ _ q))
in _⁻¹ᶠ (ℕ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-0< _ p r
_⁻¹ {isNat } {x≤0} (x ,, q) {{h}} = let p = Isℕ↪ℚ.preserves-<0 ℕ↪ℚinc _ (ℕ.≤-#-implies-< _ _ q h)
r = Isℕ↪ℚ.preserves-#0 ℕ↪ℚinc _ h
in _⁻¹ᶠ (ℕ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-<0 _ p r
_⁻¹ {isInt } {⁇x⁇} (x ,, q) {{h}} = let r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ h in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-#0 _ r
_⁻¹ {isInt } {x#0} (x ,, q) {{h}} = let r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ q in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-#0 _ r
_⁻¹ {isInt } {0≤x} (x ,, q) {{h}} = let p = Isℤ↪ℚ.preserves-0< ℤ↪ℚinc _ (ℤ.≤-#-implies-< _ _ q (ℤ.#-sym _ _ h))
r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ h
in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-0< _ p r
_⁻¹ {isInt } {0<x} (x ,, q) {{h}} = let p = Isℤ↪ℚ.preserves-0< ℤ↪ℚinc _ q
r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ (ℤ.#-sym _ _ (ℤ.<-implies-# _ _ q))
in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-0< _ p r
_⁻¹ {isInt } {x<0} (x ,, q) {{h}} = let p = Isℤ↪ℚ.preserves-<0 ℤ↪ℚinc _ q
r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ (ℤ.<-implies-# _ _ q)
in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-<0 _ p r
_⁻¹ {isInt } {x≤0} (x ,, q) {{h}} = let p = Isℤ↪ℚ.preserves-<0 ℤ↪ℚinc _ (ℤ.≤-#-implies-< _ _ q h)
r = Isℤ↪ℚ.preserves-#0 ℤ↪ℚinc _ h
in _⁻¹ᶠ (ℤ↪ℚ x) {{r}} ,, ℚ.⁻¹-preserves-<0 _ p r
_⁻¹ {isRat } {⁇x⁇} (x ,, q) {{h}} = _⁻¹ᶠ x {{h}} ,, ℚ.⁻¹-preserves-#0 x h
_⁻¹ {isRat } {x#0} (x ,, q) {{h}} = _⁻¹ᶠ x {{q}} ,, ℚ.⁻¹-preserves-#0 x q
_⁻¹ {isRat } {0≤x} (x ,, q) {{h}} = _⁻¹ᶠ x {{h}} ,, ℚ.⁻¹-preserves-0< x (ℚ.≤-#-implies-< _ _ q (ℚ.#-sym _ _ h)) h
_⁻¹ {isRat } {0<x} (x ,, q) {{h}} = let r = ℚ.#-sym _ _ (ℚ.<-implies-# _ _ q) in _⁻¹ᶠ x {{r}} ,, ℚ.⁻¹-preserves-0< _ q r
_⁻¹ {isRat } {x<0} (x ,, q) {{h}} = let r = ℚ.<-implies-# _ _ q in _⁻¹ᶠ x {{r}} ,, ℚ.⁻¹-preserves-<0 _ q r
_⁻¹ {isRat } {x≤0} (x ,, q) {{h}} = _⁻¹ᶠ x {{h}} ,, ℚ.⁻¹-preserves-<0 x (ℚ.≤-#-implies-< _ _ q h) h
_⁻¹ {isReal } {⁇x⁇} (x ,, q) {{h}} = _⁻¹ʳ x {{h}} ,, ℝ.⁻¹-preserves-#0 x h
_⁻¹ {isReal } {x#0} (x ,, q) {{h}} = _⁻¹ʳ x {{q}} ,, ℝ.⁻¹-preserves-#0 x q
_⁻¹ {isReal } {0≤x} (x ,, q) {{h}} = _⁻¹ʳ x {{h}} ,, ℝ.⁻¹-preserves-0< x (ℝ.≤-#-implies-< _ _ q (ℝ.#-sym _ _ h)) h
_⁻¹ {isReal } {0<x} (x ,, q) {{h}} = let r = ℝ.#-sym _ _ (ℝ.<-implies-# _ _ q) in _⁻¹ʳ x {{r}} ,, ℝ.⁻¹-preserves-0< _ q r
_⁻¹ {isReal } {x<0} (x ,, q) {{h}} = let r = ℝ.<-implies-# _ _ q in _⁻¹ʳ x {{r}} ,, ℝ.⁻¹-preserves-<0 _ q r
_⁻¹ {isReal } {x≤0} (x ,, q) {{h}} = _⁻¹ʳ x {{h}} ,, ℝ.⁻¹-preserves-<0 x (ℝ.≤-#-implies-< _ _ q h) h
_⁻¹ {isComplex} {⁇x⁇} (x ,, q) {{h}} = _⁻¹ᶜ x {{h}} ,, ℂ.⁻¹-preserves-#0 x h
_⁻¹ {isComplex} {x#0} (x ,, q) {{h}} = _⁻¹ᶜ x {{q}} ,, ℂ.⁻¹-preserves-#0 x q
-_ : ∀{l p} → (x : Number (l , p)) → -Types x
-_ {isNat } {⁇x⁇} (x ,, p) = (-ᶻ (ℕ↪ℤ x)) ,, (ℤ.-flips-0≤ _ $ Isℕ↪ℤ.preserves-0≤ ℕ↪ℤinc _ (0≤xⁿ x))
-_ {isNat } {x#0} (x ,, p) = (-ᶻ (ℕ↪ℤ x)) ,, (ℤ.-preserves-#0 _ $ Isℕ↪ℤ.preserves-#0 ℕ↪ℤinc _ p)
-_ {isNat } {0≤x} (x ,, p) = (-ᶻ (ℕ↪ℤ x)) ,, (ℤ.-flips-0≤ _ $ Isℕ↪ℤ.preserves-0≤ ℕ↪ℤinc _ p)
-_ {isNat } {0<x} (x ,, p) = (-ᶻ (ℕ↪ℤ x)) ,, (ℤ.-flips-0< _ $ Isℕ↪ℤ.preserves-0< ℕ↪ℤinc _ p)
-_ {isNat } {x≤0} (x ,, p) = (-ᶻ (ℕ↪ℤ x)) ,, (ℤ.-flips-≤0 _ $ Isℕ↪ℤ.preserves-≤0 ℕ↪ℤinc _ p)
-_ {isInt } {⁇x⁇} (x ,, p) = (-ᶻ x ) ,, lift tt
-_ {isInt } {x#0} (x ,, p) = (-ᶻ x ) ,, ℤ.-preserves-#0 _ p
-_ {isInt } {0≤x} (x ,, p) = (-ᶻ x ) ,, ℤ.-flips-0≤ _ p
-_ {isInt } {0<x} (x ,, p) = (-ᶻ x ) ,, ℤ.-flips-0< _ p
-_ {isInt } {x<0} (x ,, p) = (-ᶻ x ) ,, ℤ.-flips-<0 _ p
-_ {isInt } {x≤0} (x ,, p) = (-ᶻ x ) ,, ℤ.-flips-≤0 _ p
-_ {isRat } {⁇x⁇} (x ,, p) = (-ᶠ x ) ,, lift tt
-_ {isRat } {x#0} (x ,, p) = (-ᶠ x ) ,, ℚ.-preserves-#0 _ p
-_ {isRat } {0≤x} (x ,, p) = (-ᶠ x ) ,, ℚ.-flips-0≤ _ p
-_ {isRat } {0<x} (x ,, p) = (-ᶠ x ) ,, ℚ.-flips-0< _ p
-_ {isRat } {x<0} (x ,, p) = (-ᶠ x ) ,, ℚ.-flips-<0 _ p
-_ {isRat } {x≤0} (x ,, p) = (-ᶠ x ) ,, ℚ.-flips-≤0 _ p
-_ {isReal } {⁇x⁇} (x ,, p) = (-ʳ x ) ,, lift tt
-_ {isReal } {x#0} (x ,, p) = (-ʳ x ) ,, ℝ.-preserves-#0 _ p
-_ {isReal } {0≤x} (x ,, p) = (-ʳ x ) ,, ℝ.-flips-0≤ _ p
-_ {isReal } {0<x} (x ,, p) = (-ʳ x ) ,, ℝ.-flips-0< _ p
-_ {isReal } {x<0} (x ,, p) = (-ʳ x ) ,, ℝ.-flips-<0 _ p
-_ {isReal } {x≤0} (x ,, p) = (-ʳ x ) ,, ℝ.-flips-≤0 _ p
-_ {isComplex} {⁇x⁇} (x ,, p) = (-ᶜ x ) ,, lift tt
-_ {isComplex} {x#0} (x ,, p) = (-ᶜ x ) ,, ℂ.-preserves-#0 _ p
_+ʰⁿ_ : ∀{p q} → (x : Number (isNat , p)) → (y : Number (isNat , q)) → PositivityKindInterpretation isNat (+-Positivityʰ isNat p q) (num x +ⁿ num y)
_+ʰⁿ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℕ.+-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ a + b
_+ʰⁿ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℕ.+-0≤-0<-implies-0< a b pa pb -- 0 ≤ a → 0 < b → 0 < a + b
_+ʰⁿ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℕ.+-0<-0≤-implies-0< a b pa pb -- 0 < a → 0 ≤ b → 0 < a + b
_+ʰⁿ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℕ.+-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < a + b
_+ʰⁿ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = tt
_+ʰⁿ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℕ.+-≤0-≤0-implies-≤0 a b pa pb -- a ≤ 0 → b ≤ 0 → (a + b) ≤ 0
_+ʰᶻ_ : ∀{p q} → (x : Number (isInt , p)) → (y : Number (isInt , q)) → PositivityKindInterpretation isInt (+-Positivityʰ isInt p q) (num x +ᶻ num y)
_+ʰᶻ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℤ.+-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ a + b
_+ʰᶻ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℤ.+-0≤-0<-implies-0< a b pa pb -- 0 ≤ a → 0 < b → 0 < a + b
_+ʰᶻ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℤ.+-0<-0≤-implies-0< a b pa pb -- 0 < a → 0 ≤ b → 0 < a + b
_+ʰᶻ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℤ.+-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < a + b
_+ʰᶻ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℤ.+-<0-<0-implies-<0 a b pa pb -- a < 0 → b < 0 → (a + b) < 0
_+ʰᶻ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℤ.+-<0-≤0-implies-<0 a b pa pb -- a < 0 → b ≤ 0 → (a + b) < 0
_+ʰᶻ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶻ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℤ.+-≤0-<0-implies-<0 a b pa pb -- a ≤ 0 → b < 0 → (a + b) < 0
_+ʰᶻ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℤ.+-≤0-≤0-implies-≤0 a b pa pb -- a ≤ 0 → b ≤ 0 → (a + b) ≤ 0
_+ʰᶠ_ : ∀{p q} → (x : Number (isRat , p)) → (y : Number (isRat , q)) → PositivityKindInterpretation isRat (+-Positivityʰ isRat p q) (num x +ᶠ num y)
_+ʰᶠ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℚ.+-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ a + b
_+ʰᶠ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℚ.+-0≤-0<-implies-0< a b pa pb -- 0 ≤ a → 0 < b → 0 < a + b
_+ʰᶠ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℚ.+-0<-0≤-implies-0< a b pa pb -- 0 < a → 0 ≤ b → 0 < a + b
_+ʰᶠ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℚ.+-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < a + b
_+ʰᶠ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℚ.+-<0-<0-implies-<0 a b pa pb -- a < 0 → b < 0 → (a + b) < 0
_+ʰᶠ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℚ.+-<0-≤0-implies-<0 a b pa pb -- a < 0 → b ≤ 0 → (a + b) < 0
_+ʰᶠ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰᶠ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℚ.+-≤0-<0-implies-<0 a b pa pb -- a ≤ 0 → b < 0 → (a + b) < 0
_+ʰᶠ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℚ.+-≤0-≤0-implies-≤0 a b pa pb -- a ≤ 0 → b ≤ 0 → (a + b) ≤ 0
_+ʰʳ_ : ∀{p q} → (x : Number (isReal , p)) → (y : Number (isReal , q)) → PositivityKindInterpretation isReal (+-Positivityʰ isReal p q) (num x +ʳ num y)
_+ʰʳ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℝ.+-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ a + b
_+ʰʳ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℝ.+-0≤-0<-implies-0< a b pa pb -- 0 ≤ a → 0 < b → 0 < a + b
_+ʰʳ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℝ.+-0<-0≤-implies-0< a b pa pb -- 0 < a → 0 ≤ b → 0 < a + b
_+ʰʳ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℝ.+-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < a + b
_+ʰʳ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℝ.+-<0-<0-implies-<0 a b pa pb -- a < 0 → b < 0 → (a + b) < 0
_+ʰʳ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℝ.+-<0-≤0-implies-<0 a b pa pb -- a < 0 → b ≤ 0 → (a + b) < 0
_+ʰʳ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = lift tt
_+ʰʳ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℝ.+-≤0-<0-implies-<0 a b pa pb -- a ≤ 0 → b < 0 → (a + b) < 0
_+ʰʳ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℝ.+-≤0-≤0-implies-≤0 a b pa pb -- a ≤ 0 → b ≤ 0 → (a + b) ≤ 0
_+ʰᶜ_ : ∀{p q} → (x : Number (isComplex , p)) → (y : Number (isComplex , q)) → PositivityKindInterpretation isComplex (+-Positivityʰ isComplex p q) (num x +ᶜ num y)
_+ʰᶜ_ x y = lift tt
_·ʰⁿ_ : ∀{p q} → (x : Number (isNat , p)) → (y : Number (isNat , q)) → PositivityKindInterpretation isNat (·-Positivityʰ isNat p q) (num x ·ⁿ num y)
_·ʰⁿ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = ℕ.·-#0-#0-implies-#0 a b pa pb -- a # 0 → b # 0 → (a · b) # 0
_·ʰⁿ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = ℕ.·-#0-0<-implies-#0 a b pa pb -- a # 0 → 0 < b → (a · b) # 0
_·ʰⁿ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℕ.·-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ (a · b)
_·ʰⁿ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℕ.·-0≤-0<-implies-0≤ a b pa pb -- 0 ≤ a → 0 < b → 0 ≤ (a · b)
_·ʰⁿ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = ℕ.·-0≤-≤0-implies-≤0 a b pa pb -- 0 ≤ a → b ≤ 0 → (a · b) ≤ 0
_·ʰⁿ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = ℕ.·-0<-#0-implies-#0 a b pa pb -- 0 < a → b # 0 → (a · b) # 0
_·ʰⁿ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℕ.·-0<-0≤-implies-0≤ a b pa pb -- 0 < a → 0 ≤ b → 0 ≤ (a · b)
_·ʰⁿ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℕ.·-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < (a · b)
_·ʰⁿ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = ℕ.·-0<-≤0-implies-≤0 a b pa pb -- 0 < a → b ≤ 0 → (a · b) ≤ 0
_·ʰⁿ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = tt
_·ʰⁿ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = ℕ.·-≤0-0≤-implies-≤0 a b pa pb -- a ≤ 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰⁿ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = ℕ.·-≤0-0<-implies-≤0 a b pa pb -- a ≤ 0 → 0 < b → (a · b) ≤ 0
_·ʰⁿ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℕ.·-≤0-≤0-implies-0≤ a b pa pb -- a ≤ 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰᶻ_ : ∀{p q} → (x : Number (isInt , p)) → (y : Number (isInt , q)) → PositivityKindInterpretation isInt (·-Positivityʰ isInt p q) (num x ·ᶻ num y)
_·ʰᶻ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = ℤ.·-#0-#0-implies-#0 a b pa pb -- a # 0 → b # 0 → (a · b) # 0
_·ʰᶻ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = ℤ.·-#0-0<-implies-#0 a b pa pb -- a # 0 → 0 < b → (a · b) # 0
_·ʰᶻ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = ℤ.·-#0-<0-implies-#0 a b pa pb -- a # 0 → b < 0 → (a · b) # 0
_·ʰᶻ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℤ.·-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ (a · b)
_·ʰᶻ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℤ.·-0≤-0<-implies-0≤ a b pa pb -- 0 ≤ a → 0 < b → 0 ≤ (a · b)
_·ʰᶻ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = ℤ.·-0≤-<0-implies-≤0 a b pa pb -- 0 ≤ a → b < 0 → (a · b) ≤ 0
_·ʰᶻ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = ℤ.·-0≤-≤0-implies-≤0 a b pa pb -- 0 ≤ a → b ≤ 0 → (a · b) ≤ 0
_·ʰᶻ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = ℤ.·-0<-#0-implies-#0 a b pa pb -- 0 < a → b # 0 → (a · b) # 0
_·ʰᶻ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℤ.·-0<-0≤-implies-0≤ a b pa pb -- 0 < a → 0 ≤ b → 0 ≤ (a · b)
_·ʰᶻ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℤ.·-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < (a · b)
_·ʰᶻ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = ℤ.·-0<-<0-implies-<0 a b pa pb -- 0 < a → b < 0 → (a · b) < 0
_·ʰᶻ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = ℤ.·-0<-≤0-implies-≤0 a b pa pb -- 0 < a → b ≤ 0 → (a · b) ≤ 0
_·ʰᶻ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = ℤ.·-<0-#0-implies-#0 a b pa pb -- a < 0 → b # 0 → (a · b) # 0
_·ʰᶻ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = ℤ.·-<0-0≤-implies-≤0 a b pa pb -- a < 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰᶻ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = ℤ.·-<0-0<-implies-<0 a b pa pb -- a < 0 → 0 < b → (a · b) < 0
_·ʰᶻ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℤ.·-<0-<0-implies-0< a b pa pb -- a < 0 → b < 0 → 0 < (a · b)
_·ʰᶻ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℤ.·-<0-≤0-implies-0≤ a b pa pb -- a < 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰᶻ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶻ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = ℤ.·-≤0-0≤-implies-≤0 a b pa pb -- a ≤ 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰᶻ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = ℤ.·-≤0-0<-implies-≤0 a b pa pb -- a ≤ 0 → 0 < b → (a · b) ≤ 0
_·ʰᶻ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℤ.·-≤0-<0-implies-0≤ a b pa pb -- a ≤ 0 → b < 0 → 0 ≤ (a · b)
_·ʰᶻ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℤ.·-≤0-≤0-implies-0≤ a b pa pb -- a ≤ 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰᶠ_ : ∀{p q} → (x : Number (isRat , p)) → (y : Number (isRat , q)) → PositivityKindInterpretation isRat (·-Positivityʰ isRat p q) (num x ·ᶠ num y)
_·ʰᶠ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = ℚ.·-#0-#0-implies-#0 a b pa pb -- a # 0 → b # 0 → (a · b) # 0
_·ʰᶠ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = ℚ.·-#0-0<-implies-#0 a b pa pb -- a # 0 → 0 < b → (a · b) # 0
_·ʰᶠ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = ℚ.·-#0-<0-implies-#0 a b pa pb -- a # 0 → b < 0 → (a · b) # 0
_·ʰᶠ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℚ.·-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ (a · b)
_·ʰᶠ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℚ.·-0≤-0<-implies-0≤ a b pa pb -- 0 ≤ a → 0 < b → 0 ≤ (a · b)
_·ʰᶠ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = ℚ.·-0≤-<0-implies-≤0 a b pa pb -- 0 ≤ a → b < 0 → (a · b) ≤ 0
_·ʰᶠ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = ℚ.·-0≤-≤0-implies-≤0 a b pa pb -- 0 ≤ a → b ≤ 0 → (a · b) ≤ 0
_·ʰᶠ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = ℚ.·-0<-#0-implies-#0 a b pa pb -- 0 < a → b # 0 → (a · b) # 0
_·ʰᶠ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℚ.·-0<-0≤-implies-0≤ a b pa pb -- 0 < a → 0 ≤ b → 0 ≤ (a · b)
_·ʰᶠ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℚ.·-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < (a · b)
_·ʰᶠ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = ℚ.·-0<-<0-implies-<0 a b pa pb -- 0 < a → b < 0 → (a · b) < 0
_·ʰᶠ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = ℚ.·-0<-≤0-implies-≤0 a b pa pb -- 0 < a → b ≤ 0 → (a · b) ≤ 0
_·ʰᶠ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = ℚ.·-<0-#0-implies-#0 a b pa pb -- a < 0 → b # 0 → (a · b) # 0
_·ʰᶠ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = ℚ.·-<0-0≤-implies-≤0 a b pa pb -- a < 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰᶠ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = ℚ.·-<0-0<-implies-<0 a b pa pb -- a < 0 → 0 < b → (a · b) < 0
_·ʰᶠ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℚ.·-<0-<0-implies-0< a b pa pb -- a < 0 → b < 0 → 0 < (a · b)
_·ʰᶠ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℚ.·-<0-≤0-implies-0≤ a b pa pb -- a < 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰᶠ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶠ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = ℚ.·-≤0-0≤-implies-≤0 a b pa pb -- a ≤ 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰᶠ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = ℚ.·-≤0-0<-implies-≤0 a b pa pb -- a ≤ 0 → 0 < b → (a · b) ≤ 0
_·ʰᶠ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℚ.·-≤0-<0-implies-0≤ a b pa pb -- a ≤ 0 → b < 0 → 0 ≤ (a · b)
_·ʰᶠ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℚ.·-≤0-≤0-implies-0≤ a b pa pb -- a ≤ 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰʳ_ : ∀{p q} → (x : Number (isReal , p)) → (y : Number (isReal , q)) → PositivityKindInterpretation isReal (·-Positivityʰ isReal p q) (num x ·ʳ num y)
_·ʰʳ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {⁇x⁇} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {⁇x⁇} {0<x} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {⁇x⁇} {x<0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {⁇x⁇} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = ℝ.·-#0-#0-implies-#0 a b pa pb -- a # 0 → b # 0 → (a · b) # 0
_·ʰʳ_ {x#0} {0≤x} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x#0} {0<x} (a ,, pa) (b ,, pb) = ℝ.·-#0-0<-implies-#0 a b pa pb -- a # 0 → 0 < b → (a · b) # 0
_·ʰʳ_ {x#0} {x<0} (a ,, pa) (b ,, pb) = ℝ.·-#0-<0-implies-#0 a b pa pb -- a # 0 → b < 0 → (a · b) # 0
_·ʰʳ_ {x#0} {x≤0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {0≤x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {0≤x} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {0≤x} {0≤x} (a ,, pa) (b ,, pb) = ℝ.·-0≤-0≤-implies-0≤ a b pa pb -- 0 ≤ a → 0 ≤ b → 0 ≤ (a · b)
_·ʰʳ_ {0≤x} {0<x} (a ,, pa) (b ,, pb) = ℝ.·-0≤-0<-implies-0≤ a b pa pb -- 0 ≤ a → 0 < b → 0 ≤ (a · b)
_·ʰʳ_ {0≤x} {x<0} (a ,, pa) (b ,, pb) = ℝ.·-0≤-<0-implies-≤0 a b pa pb -- 0 ≤ a → b < 0 → (a · b) ≤ 0
_·ʰʳ_ {0≤x} {x≤0} (a ,, pa) (b ,, pb) = ℝ.·-0≤-≤0-implies-≤0 a b pa pb -- 0 ≤ a → b ≤ 0 → (a · b) ≤ 0
_·ʰʳ_ {0<x} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {0<x} {x#0} (a ,, pa) (b ,, pb) = ℝ.·-0<-#0-implies-#0 a b pa pb -- 0 < a → b # 0 → (a · b) # 0
_·ʰʳ_ {0<x} {0≤x} (a ,, pa) (b ,, pb) = ℝ.·-0<-0≤-implies-0≤ a b pa pb -- 0 < a → 0 ≤ b → 0 ≤ (a · b)
_·ʰʳ_ {0<x} {0<x} (a ,, pa) (b ,, pb) = ℝ.·-0<-0<-implies-0< a b pa pb -- 0 < a → 0 < b → 0 < (a · b)
_·ʰʳ_ {0<x} {x<0} (a ,, pa) (b ,, pb) = ℝ.·-0<-<0-implies-<0 a b pa pb -- 0 < a → b < 0 → (a · b) < 0
_·ʰʳ_ {0<x} {x≤0} (a ,, pa) (b ,, pb) = ℝ.·-0<-≤0-implies-≤0 a b pa pb -- 0 < a → b ≤ 0 → (a · b) ≤ 0
_·ʰʳ_ {x<0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x<0} {x#0} (a ,, pa) (b ,, pb) = ℝ.·-<0-#0-implies-#0 a b pa pb -- a < 0 → b # 0 → (a · b) # 0
_·ʰʳ_ {x<0} {0≤x} (a ,, pa) (b ,, pb) = ℝ.·-<0-0≤-implies-≤0 a b pa pb -- a < 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰʳ_ {x<0} {0<x} (a ,, pa) (b ,, pb) = ℝ.·-<0-0<-implies-<0 a b pa pb -- a < 0 → 0 < b → (a · b) < 0
_·ʰʳ_ {x<0} {x<0} (a ,, pa) (b ,, pb) = ℝ.·-<0-<0-implies-0< a b pa pb -- a < 0 → b < 0 → 0 < (a · b)
_·ʰʳ_ {x<0} {x≤0} (a ,, pa) (b ,, pb) = ℝ.·-<0-≤0-implies-0≤ a b pa pb -- a < 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰʳ_ {x≤0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x≤0} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰʳ_ {x≤0} {0≤x} (a ,, pa) (b ,, pb) = ℝ.·-≤0-0≤-implies-≤0 a b pa pb -- a ≤ 0 → 0 ≤ b → (a · b) ≤ 0
_·ʰʳ_ {x≤0} {0<x} (a ,, pa) (b ,, pb) = ℝ.·-≤0-0<-implies-≤0 a b pa pb -- a ≤ 0 → 0 < b → (a · b) ≤ 0
_·ʰʳ_ {x≤0} {x<0} (a ,, pa) (b ,, pb) = ℝ.·-≤0-<0-implies-0≤ a b pa pb -- a ≤ 0 → b < 0 → 0 ≤ (a · b)
_·ʰʳ_ {x≤0} {x≤0} (a ,, pa) (b ,, pb) = ℝ.·-≤0-≤0-implies-0≤ a b pa pb -- a ≤ 0 → b ≤ 0 → 0 ≤ (a · b)
_·ʰᶜ_ : ∀{p q} → (x : Number (isComplex , p)) → (y : Number (isComplex , q)) → PositivityKindInterpretation isComplex (·-Positivityʰ isComplex p q) (num x ·ᶜ num y)
_·ʰᶜ_ {⁇x⁇} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶜ_ {⁇x⁇} {x#0} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶜ_ {x#0} {⁇x⁇} (a ,, pa) (b ,, pb) = lift tt
_·ʰᶜ_ {x#0} {x#0} (a ,, pa) (b ,, pb) = ℂ.·-#0-#0-implies-#0 a b pa pb -- a # 0 → b # 0 → (a · b) # 0
open PatternsType
-- abs x = max x (- x)
abs : ∀{l p} → (x : Number (l , p)) → abs-Types x
abs {isNat } {X } (x ,, p) = (absⁿ x ,, 0≤xⁿ x)
abs {isNat } {X⁺⁻} (x ,, p) = (absⁿ x ,, ℕ.0≤-#0-implies-0< x (0≤xⁿ x) p)
abs {isNat } {X₀⁺} (x ,, p) = (absⁿ x ,, p)
abs {isNat } {X⁺ } (x ,, p) = (absⁿ x ,, p)
abs {isNat } {X₀⁻} (x ,, p) = (absⁿ x ,, (0ⁿ , (sym $ ≤0→≡0 p)))
abs {isInt } {X } (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isInt } {X⁺⁻} (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → x # 0 → 0 < abs x
abs {isInt } {X₀⁺} (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isInt } {X⁺ } (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → 0 < x → 0 < abs x
abs {isInt } {X⁻ } (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → x < 0 → 0 < abs x
abs {isInt } {X₀⁻} (x ,, p) = (absᶻ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isRat } {X } (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isRat } {X⁺⁻} (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → x # 0 → 0 < abs x
abs {isRat } {X₀⁺} (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isRat } {X⁺ } (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → 0 < x → 0 < abs x
abs {isRat } {X⁻ } (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → x < 0 → 0 < abs x
abs {isRat } {X₀⁻} (x ,, p) = (absᶠ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isReal } {X } (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isReal } {X⁺⁻} (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → x # 0 → 0 < abs x
abs {isReal } {X₀⁺} (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isReal } {X⁺ } (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → 0 < x → 0 < abs x
abs {isReal } {X⁻ } (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → x < 0 → 0 < abs x
abs {isReal } {X₀⁻} (x ,, p) = (absʳ x ,, {!!}) -- ∀ x → 0 ≤ abs x
abs {isComplex} {X } (x ,, p) = (absᶜ x ,, 0≤abs x)
abs {isComplex} {X⁺⁻} (x ,, p) = (absᶜ x ,, γ) where
pʳ = ℂ.0≤abs x
γ : 0ʳ <ʳ absᶜ x
γ = ℝ.0≤-#0-implies-0< (absᶜ x) pʳ (ℂ.abs-preserves-#0 x p)
-- a < b → ¬(b ≤ a) = ¬¬(a < b)
-- 0≤abs : ∀ x → 0ʳ ≤ʳ abs x
-- abs-preserves-0 : ∀ x → x ≡ 0f → abs x ≡ 0ʳ
-- abs-reflects-0 : ∀ x → abs x ≡ 0ʳ → x ≡ 0f
-- abs-preserves-· : ∀ x y → abs (x · y) ≡ (abs x) ·ʳ (abs y)
-- #-tight : ∀ x y → ¬(x # y) → x ≡ y
-- a ≤ b = ¬(b < a)
|
{
"alphanum_fraction": 0.4077801298,
"avg_line_length": 64.7573033708,
"ext": "agda",
"hexsha": "7173b518c780c16d4b3367c94e0d904e8afc6c07",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Operations/Details.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Operations/Details.agda",
"max_line_length": 164,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Operations/Details.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 17964,
"size": 28817
}
|
{-# OPTIONS --rewriting #-}
{-# OPTIONS --show-implicit #-}
module NaturalDeduction-PatternLambdaBug
where
record ⊤ : Set where
data ⊥ : Set where
foo : ⦃ _ : ⊤ ⦄ → ⊥ → Set
foo = λ {x → {!x!}}
{-
C-c C-c above generates invalid syntax:
foo = λ { }
Found an implicit lambda where an explicit lambda was expected
when checking that the expression λ {} has type ⊥ → Set
Better would have been
foo = λ {()}
-}
-- module DelayMishMash where
-- open import Level --public
-- using (Level) renaming (zero to lzero; suc to lsuc)
-- open import Size public
-- open import Prelude.Monad renaming (Monad to RawMonad)
-- --open import Category.Monad public
-- -- using (RawMonad; module RawMonad)
-- open import Data.Empty --public
-- using (⊥; ⊥-elim)
-- open import Data.List --public
-- using (List; []; _∷_; map)
-- open import Data.Maybe --public
-- using (Maybe; just; nothing) renaming (map to fmap)
-- open import Data.Product public
-- using (∃; _×_; _,_) renaming (proj₁ to fst; proj₂ to snd)
-- --infixr 1 _,_
-- open import Data.Sum --public
-- using (_⊎_; [_,_]′) renaming (inj₁ to inl; inj₂ to inr)
-- open import Data.Unit --public
-- using (⊤)
-- open import Function --public
-- using (_∘_; case_of_)
-- open import Relation.Nullary --public
-- using (Dec; yes; no)
-- open import Relation.Binary --public
-- using (Setoid; module Setoid)
-- import Relation.Binary.PreorderReasoning
-- module Pre = Relation.Binary.PreorderReasoning
-- open import Relation.Binary.PropositionalEquality --public
-- using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning)
-- --open ≡-Reasoning renaming (begin_ to proof_) public
-- open import Relation.Binary.HeterogeneousEquality --public
-- using (_≅_; refl; ≡-to-≅; module ≅-Reasoning)
-- renaming (sym to hsym; trans to htrans; cong to hcong;
-- cong₂ to hcong₂; subst to hsubst)
-- hcong₃ : {A : Set}{B : A → Set}{C : ∀ a → B a → Set}{D : ∀ a b → C a b → Set}
-- (f : ∀ a b c → D a b c)
-- {a a′ : A} → a ≅ a′ →
-- {b : B a}{b′ : B a′} → b ≅ b′ →
-- {c : C a b}{c′ : C a′ b′} → c ≅ c′ →
-- f a b c ≅ f a′ b′ c′
-- hcong₃ f refl refl refl = refl
-- ≅-to-≡ : ∀ {a} {A : Set a} {x y : A} → x ≅ y → x ≡ y
-- ≅-to-≡ refl = refl
-- mutual
-- data Delay (i : Size) (A : Set) : Set where
-- now : A → Delay i A
-- later : ∞Delay i A → Delay i A
-- record ∞Delay (i : Size) (A : Set) : Set where
-- coinductive
-- field
-- force : {j : Size< i} → Delay j A
-- open ∞Delay public
-- never : ∀{i A} → ∞Delay i A
-- force (never {i}) {j} = later (never {j})
-- module Bind where
-- mutual
-- bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B
-- bindDelay (now a) f = f a
-- bindDelay (later a∞) f = later (bind∞Delay a∞ f)
-- bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B
-- force (bind∞Delay a∞ f) = bindDelay (force a∞) f
-- _d>>=_ : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B
-- _d>>=_ {i} = Bind.bindDelay {i}
-- {-
-- open import Prelude.Applicative using (Applicative)
-- instance delayApplicative : ∀ {i} → Applicative (Delay i)
-- Applicative.pure (delayApplicative {i}) x = now x
-- Applicative._<*>_ (delayApplicative {i}) (now f) x = x d>>= (now ∘ f)
-- Applicative._<*>_ (delayApplicative {i}) (later f) x = {!force f {i}!}
-- {-
-- Applicative._<*>_ (delayApplicative {i}) f (now x) = {!x!} -- Bind.bindDelay x (λ x₁ → {!!})
-- Applicative._<*>_ (delayApplicative {i}) (now f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!})
-- Applicative._<*>_ (delayApplicative {i}) (later f) (later x) = {!!} -- Bind.bindDelay x (λ x₁ → {!!})
-- -}
-- Applicative.super (delayApplicative {i}) = {!!}
-- -}
-- {-
-- instance delayMonad : ∀ {i} → RawMonad (Delay i)
-- delayMonad {i} = record
-- { {-return = now
-- ; -}_>>=_ = bindDelay {i}
-- } where open Bind
-- -}
-- {-
-- module _ {i : Size} where
-- open module DelayMonad = RawMonad (delayMonad {i = i})
-- public -- renaming (_⊛_ to _<*>_)
-- -}
-- open Bind public using () renaming (bind∞Delay to _∞>>=_)
-- -- Map for Delay
-- dreturn : {i : Size} → {A : Set} → A → Delay i A
-- dreturn {i} = Delay.now {i}
-- _d<$>_ : ∀ {i A B} (f : A → B) (a : Delay i A) → Delay i B
-- f d<$> a = a d>>= λ a → dreturn (f a)
-- -- Map for ∞Delay
-- _∞<$>_ : ∀ {i A B} (f : A → B) (∞a : ∞Delay i A) → ∞Delay i B
-- f ∞<$> ∞a = ∞a ∞>>= λ a → dreturn (f a)
-- -- force (f ∞<$> ∞a) = f <$> force ∞a
-- -- Double bind
-- _=<<2_,_ : ∀ {i A B C} → (A → B → Delay i C) → Delay i A → Delay i B → Delay i C
-- f =<<2 x , y = x d>>= λ a → y d>>= λ b → f a b
-- mutual
-- data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where
-- ∼now : ∀ a → now a ∼ now a
-- ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞
-- _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b?
-- record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where
-- coinductive
-- field
-- ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞
-- _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞
-- open _∞∼⟨_⟩∼_ public
-- ∼never : ∀{i A} → (never {A = A}) ∞∼⟨ i ⟩∼ never
-- ∼force ∼never = ∼later ∼never
-- ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a?
-- ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞
-- ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a?
-- ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞
-- ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} →
-- a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c?
-- ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} →
-- a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞
-- ∼refl (now a) = ∼now a
-- ∼refl (later a∞) = ∼later (∞∼refl a∞)
-- ∼force (∞∼refl a∞) = ∼refl (force a∞)
-- ∼sym (∼now a) = ∼now a
-- ∼sym (∼later eq) = ∼later (∞∼sym eq)
-- ∼force (∞∼sym eq) = ∼sym (∼force eq)
-- ∼trans (∼now a) (∼now .a) = ∼now a
-- ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′)
-- ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′)
-- -- Equality reasoning
-- ∼setoid : (i : Size) (A : Set) → Setoid lzero lzero
-- ∼setoid i A = record
-- { Carrier = Delay ∞ A
-- ; _≈_ = _∼_ {i}
-- ; isEquivalence = record
-- { refl = λ {a?} → ∼refl a?
-- ; sym = ∼sym
-- ; trans = ∼trans
-- }
-- }
-- ∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero
-- ∞∼setoid i A = record
-- { Carrier = ∞Delay ∞ A
-- ; _≈_ = _∞∼_ {i}
-- ; isEquivalence = record
-- { refl = λ {a?} → ∞∼refl a?
-- ; sym = ∞∼sym
-- ; trans = ∞∼trans
-- }
-- }
-- module ∼-Reasoning {i : Size} {A : Set} where
-- open Pre (Setoid.preorder (∼setoid i A)) public
-- -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_)
-- renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∼⟨_⟩_; begin_ to proof_)
-- module ∞∼-Reasoning {i : Size} {A : Set} where
-- open Pre (Setoid.preorder (∞∼setoid i A)) public
-- -- using (begin_; _∎) (_≈⟨⟩_ to _∼⟨⟩_; _≈⟨_⟩_ to _∼⟨_⟩_)
-- renaming (_≈⟨⟩_ to _≡⟨⟩_; _≈⟨_⟩_ to _≡⟨_⟩_; _∼⟨_⟩_ to _∞∼⟨_⟩_; begin_ to proof_)
-- mutual
-- bind-assoc : ∀{i A B C} (m : Delay ∞ A)
-- {k : A → Delay ∞ B} {l : B → Delay ∞ C} →
-- ((m d>>= k) d>>= l) ∼⟨ i ⟩∼ (m d>>= λ a → (k a d>>= l))
-- bind-assoc (now a) = ∼refl _
-- bind-assoc (later a∞) = ∼later (∞bind-assoc a∞)
-- ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A)
-- {k : A → Delay ∞ B} {l : B → Delay ∞ C} →
-- ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a d>>= l))
-- ∼force (∞bind-assoc a∞) = bind-assoc (force a∞)
-- bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? →
-- (k : A → Delay ∞ B) → (a? d>>= k) ∼⟨ i ⟩∼ (b? d>>= k)
-- ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ →
-- (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k)
-- bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} →
-- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? d>>= k) ∼⟨ i ⟩∼ (a? d>>= l)
-- ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} →
-- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l)
-- bind-cong-l (∼now a) k = ∼refl _
-- bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k)
-- ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k
-- bind-cong-r (now a) h = h a
-- bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h)
-- ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h
-- open import Prelude.Functor using (Functor; _<$>_)
-- {-
-- instance FunctorDelay : {i : Size} → Functor (Delay i)
-- Functor.fmap (FunctorDelay {i}) {A} {B} f (now x) = {!!}
-- Functor.fmap (FunctorDelay {i}) {A} {B} f (later x) = {!!}
-- -}
-- open import Prelude.Function using (_∘′_)
-- map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} →
-- (g d<$> (f d<$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) d<$> a?)
-- map-compose a? = bind-assoc a?
-- map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) →
-- a? ∼⟨ i ⟩∼ b? → (f d<$> a?) ∼⟨ i ⟩∼ (f d<$> b?)
-- map-cong f eq = bind-cong-l eq (now ∘ f)
-- data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where
-- now⇓ : ∀{a} → now a ⇓ a
-- later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a
-- _⇓ : {A : Set} (x : Delay ∞ A) → Set
-- x ⇓ = ∃ λ a → x ⇓ a
-- map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f d<$> a?) ⇓ f a
-- subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a
-- bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} →
-- ?a ⇓ a → f a ⇓ b → (?a d>>= f) ⇓ b
-- map⇓ f now⇓ = now⇓
-- map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓)
-- subst∼⇓ now⇓ (∼now a) = now⇓
-- subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq))
-- bind⇓ f now⇓ q = q
-- bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q)
-- --infixr 6 _⇒_
-- --infixl 1 _,_
-- module CustomPrelude where
-- open import Prelude public
-- renaming (_==_ to _≟_) -- TODO ask Agda to rename Eq._==_ to Eq._≟_
-- hiding (force) -- needed by ∞Delay
-- {-# BUILTIN REWRITE _≡_ #-}
-- --{-# DISPLAY Eq._==_ _ = _≟_ #-}
-- open import Container.List renaming (_∈_ to _∈C_; lookup∈ to lookup∈C) public
-- _∈C?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈C xs)
-- a ∈C? [] = no λ ()
-- a ∈C? (x ∷ xs) with a ≟ x
-- … | yes a≡x rewrite a≡x = yes (zero refl)
-- … | no a≢x with a ∈C? xs
-- … | yes a∈xs = yes (suc a∈xs)
-- … | no a∉xs = no (λ {(zero a≡x) → a≢x a≡x ; (suc a∈xs) → a∉xs a∈xs})
-- data _∈_ {ℓ} {A : Set ℓ} (a : A) : List A → Set ℓ
-- where
-- here : (as : List A) → a ∈ (a ∷ as)
-- there : (x : A) {as : List A} → a ∈ as → a ∈ (x ∷ as)
-- _∉_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Set ℓ
-- a ∉ xs = ¬ (a ∈ xs)
-- _∈?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈ xs)
-- a ∈? [] = no λ ()
-- a ∈? (x ∷ xs) with a ≟ x
-- … | yes a≡x rewrite a≡x = yes (here xs)
-- … | no a≢x with a ∈? xs
-- … | yes a∈xs = yes (there x a∈xs)
-- … | no a∉xs = no (λ {(here _) → a≢x refl ; (there _ a∈xs) → a∉xs a∈xs})
-- _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ
-- R ⊆ S = ∀ {x} → x ∈ R → x ∈ S
-- _≢_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
-- x ≢ y = ¬ (x ≡ y)
-- infix 0 _↔_
-- _↔_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²)
-- P ↔ Q = (P → Q) × (Q → P)
-- ∃ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ)
-- ∃ = Σ _
-- ∄ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ)
-- ∄ = ¬_ ∘ ∃
-- infixl 4 _⊎_
-- _⊎_ = Either
-- --open import Agda.Builtin.Size public
-- open import Size public
-- open import Control.Monad.State public
-- open import Control.Monad.Identity public
-- open import Container.Traversable public
-- sequence : ∀ {a b} {A : Set a} {F : Set a → Set b} ⦃ _ : Applicative F ⦄ → List (F A) → F ⊤′
-- sequence [] = pure tt
-- sequence (x ∷ xs) = x *> sequence xs
-- open import Tactic.Nat public
-- open import Tactic.Deriving.Eq public
-- mutual
-- data Delay (i : Size) (A : Set) : Set where
-- now : A → Delay i A
-- later : ∞Delay i A → Delay i A
-- record ∞Delay (i : Size) (A : Set) : Set where
-- coinductive
-- field
-- force : {j : Size< i} → Delay j A
-- open ∞Delay public
-- module BindDelay
-- where
-- mutual
-- bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B
-- bindDelay (now a) f = f a
-- bindDelay (later ∞a) f = later (bind∞Delay ∞a f)
-- bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B
-- force (bind∞Delay ∞a f) = bindDelay (force ∞a) f
-- module _
-- where
-- open BindDelay
-- open BindDelay public using () renaming (bind∞Delay to _∞>>=_)
-- instance FunctorDelay : {i : Size} → Functor (Delay i)
-- Functor.fmap FunctorDelay f x = bindDelay x $ now ∘ f
-- instance ApplicativeDelay : {i : Size} → Applicative (Delay i)
-- Applicative.pure ApplicativeDelay x = now x
-- Applicative._<*>_ ApplicativeDelay (now f) x = f <$> x
-- Applicative._<*>_ ApplicativeDelay (later ∞f) x = later ∘ bind∞Delay ∞f $ flip fmap x
-- Applicative.super ApplicativeDelay = FunctorDelay
-- instance MonadDelay : {i : Size} → Monad (Delay i)
-- Monad._>>=_ MonadDelay = bindDelay
-- Monad.super MonadDelay = ApplicativeDelay
-- mutual
-- data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where
-- ∼now : ∀ a → now a ∼ now a
-- ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞
-- _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b?
-- record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where
-- coinductive
-- field
-- ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞
-- open _∞∼⟨_⟩∼_ public
-- _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞
-- mutual
-- ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a?
-- ∼refl (now a) = ∼now a
-- ∼refl (later a∞) = ∼later (∞∼refl a∞)
-- ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞
-- ∼force (∞∼refl a∞) = ∼refl (force a∞)
-- mutual
-- ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a?
-- ∼sym (∼now a) = ∼now a
-- ∼sym (∼later eq) = ∼later (∞∼sym eq)
-- ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞
-- ∼force (∞∼sym eq) = ∼sym (∼force eq)
-- mutual
-- ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} →
-- a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c?
-- ∼trans (∼now a) (∼now .a) = ∼now a
-- ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′)
-- ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} →
-- a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞
-- ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′)
-- --∼setoid : (i : Size) (A : Set) → Setoid lzero lzero
-- --∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero
-- mutual
-- bind-assoc : ∀{i A B C} (m : Delay ∞ A)
-- {k : A → Delay ∞ B} {l : B → Delay ∞ C} →
-- ((m >>= k) >>= l) ∼⟨ i ⟩∼ (m >>= λ a → (k a >>= l))
-- bind-assoc (now a) = ∼refl _
-- bind-assoc (later a∞) = ∼later (∞bind-assoc a∞)
-- ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A)
-- {k : A → Delay ∞ B} {l : B → Delay ∞ C} →
-- ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a >>= l))
-- ∼force (∞bind-assoc a∞) = bind-assoc (force a∞)
-- mutual
-- bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? →
-- (k : A → Delay ∞ B) → (a? >>= k) ∼⟨ i ⟩∼ (b? >>= k)
-- bind-cong-l (∼now a) k = ∼refl _
-- bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k)
-- ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ →
-- (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k)
-- ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k
-- mutual
-- bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} →
-- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? >>= k) ∼⟨ i ⟩∼ (a? >>= l)
-- bind-cong-r (now a) h = h a
-- bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h)
-- ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} →
-- (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l)
-- ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h
-- map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} →
-- (g <$> (f <$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) <$> a?)
-- map-compose a? = bind-assoc a?
-- map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) →
-- a? ∼⟨ i ⟩∼ b? → (f <$> a?) ∼⟨ i ⟩∼ (f <$> b?)
-- map-cong f eq = bind-cong-l eq (now ∘ f)
-- data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where
-- now⇓ : ∀{a} → now a ⇓ a
-- later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a
-- _⇓ : {A : Set} (x : Delay ∞ A) → Set
-- x ⇓ = ∃ λ a → x ⇓ a
-- map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f <$> a?) ⇓ f a
-- map⇓ f now⇓ = now⇓
-- map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓)
-- bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} →
-- ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b
-- bind⇓ f now⇓ q = q
-- bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q)
-- infixl 4 _>>=⇓_
-- _>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{a : A}{b : B} →
-- ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b
-- _>>=⇓_ = bind⇓ _
-- infixl 4 _⇓>>=⇓_
-- _⇓>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{b : B} →
-- (?a⇓ : ?a ⇓) → f (fst ?a⇓) ⇓ b → (?a >>= f) ⇓ b
-- _⇓>>=⇓_ (_ , a⇓) = bind⇓ _ a⇓
-- _⇓Dec>>=⇓_else⇓_ : ∀{A B}{f-yes : A → Delay ∞ B}{f-no : ¬ A → Delay ∞ B}{?a : Delay ∞ (Dec A)}{b : B} →
-- (?a⇓ : ?a ⇓) →
-- ((a : A) → f-yes a ⇓ b) →
-- ((¬a : ¬ A) → f-no ¬a ⇓ b) →
-- ((?a >>= (λ { (yes y) → f-yes y ; (no n) → f-no n }))) ⇓ b
-- (yes y , y⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ y
-- (no n , n⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n
-- _⇓DecEq>>=⇓_else⇓_ : ∀{A : Set} {A₁ A₂ : A} {B}{f-yes : A₁ ≡ A₂ → Delay ∞ B}{f-no : A₁ ≢ A₂ → Delay ∞ B}{?a : Delay ∞ (Dec (A₁ ≡ A₂))}{b : B} →
-- (?a⇓ : ?a ⇓) →
-- ((eq : A₁ ≡ A₂) → f-yes eq ⇓ b) →
-- ((¬eq : A₁ ≢ A₂) → f-no ¬eq ⇓ b) →
-- ((?a >>= (λ { (yes refl) → f-yes refl ; (no n) → f-no n }))) ⇓ b
-- (yes refl , y⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ refl
-- (no n , n⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n
-- app⇓ : ∀{A}{B}{f? : Delay ∞ (A → B)}{f : A → B}{x? : Delay ∞ A}{x : A} → f? ⇓ f → x? ⇓ x → (f? <*> x?) ⇓ f x
-- app⇓ now⇓ now⇓ = now⇓
-- app⇓ now⇓ (later⇓ x?) = later⇓ $ map⇓ _ x?
-- app⇓ (later⇓ f?) now⇓ = later⇓ $ bind⇓ _ f? now⇓
-- app⇓ (later⇓ ⇓f) (later⇓ ⇓x) = later⇓ $ bind⇓ _ ⇓f $ later⇓ $ bind⇓ _ ⇓x now⇓
-- subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a
-- subst∼⇓ now⇓ (∼now a) = now⇓
-- subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq))
-- {-
-- traverse⇓' : ∀{A}{B}{f? : A → Delay ∞ B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f? x ⇓
-- traverse⇓' x₁ x₂ = {!!} , {!!}
-- -}
-- {-
-- traverse⇓ : ∀{A}{B}{f : A → B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f x ⇓
-- traverse⇓ x₁ x₂ = {!!} , {!!}
-- -}
-- traverse-list⇓ : ∀{A}{B} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : List A) → traverse f? xs ⇓
-- traverse-list⇓ f? f?⇓ [] = [] , now⇓
-- traverse-list⇓ f? f?⇓ (x ∷ xs)
-- with f?⇓ x | traverse-list⇓ f? f?⇓ xs
-- … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓
-- {-
-- traverse-vec⇓' : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vector A 𝑎) → traverse f? xs ⇓
-- traverse-vec⇓' f? f?⇓ [] = [] , now⇓
-- traverse-vec⇓' f? f?⇓ (x ∷ xs)
-- with f?⇓ x | traverse-vec⇓' f? f?⇓ xs
-- … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓
-- traverse-vec⇓ : ∀{A}{B}{𝑎} (f : A → B) → (xs : Vector (Delay ∞ A) 𝑎) → traverse {!f!} xs ⇓
-- traverse-vec⇓ = {!!}
-- -}
-- open CustomPrelude
-- -- infix 15 _╱_
-- -- record Sequent (A : Set) ⦃ _ : BeFormula A ⦄ : Set
-- -- where
-- -- constructor _╱_
-- -- field
-- -- statement : A
-- -- suppositions : List A
-- -- open Sequent
-- -- foooo : {A : Set} ⦃ bf : BeFormula A ⦄ {-⦃ hs : HasNegation A ⦄-} {-(x : Sequent A)-} →
-- -- (∃ λ (x : A) → x ∈ List.[]) → ⊥
-- -- {-
-- -- Dec
-- -- (-- Either
-- -- (Σ A
-- -- (λ x₁ →
-- -- --Σ
-- -- ({-BeFormula.formula bf -}x₁ ∈
-- -- {-map (BeFormula.formula bf)-} [] {-(suppositions x)-})
-- -- {-
-- -- (λ _ →
-- -- ⊤
-- -- --BeFormula.formula bf (HasNegation.~ hs x₁) ∈
-- -- --map (BeFormula.formula bf) (suppositions x)
-- -- )-}
-- -- ))
-- -- {-(BeFormula.formula bf (statement x) ∈
-- -- map (BeFormula.formula bf) (suppositions x))-})
-- -- -}
-- -- foooo = λ {x → {!x!}}
-- -- {-
-- -- foooo (statement₁ ╱ []) = λ {x → {!x!}} -- no (λ {x → {!x!}})
-- -- foooo (statement₁ ╱ (x ∷ suppositions₁)) = {!!}
-- -- -}
-- -- -- TruthValue = Bool
-- -- -- -- reification of elements of the domain
-- -- -- Element = Nat
-- -- -- record VariableName : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- name : Nat
-- -- -- open VariableName
-- -- -- instance EqVariableName : Eq VariableName
-- -- -- Eq._==_ EqVariableName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
-- -- -- record FunctionName : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- name : Nat
-- -- -- open FunctionName
-- -- -- instance EqFunctionName : Eq FunctionName
-- -- -- Eq._==_ EqFunctionName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
-- -- -- record PredicateName : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- name : Nat
-- -- -- open PredicateName
-- -- -- instance EqPredicateName : Eq PredicateName
-- -- -- Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
-- -- -- record Arity : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- arity : Nat
-- -- -- open Arity
-- -- -- instance EqArity : Eq Arity
-- -- -- Eq._==_ EqArity _ = decEq₁ (cong arity) ∘ (_≟_ on arity $ _)
-- -- -- Vector : Set → Arity → Set
-- -- -- Vector A = Vec A ∘ arity
-- -- -- record Elements : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- {arity} : Arity
-- -- -- elements : Vector Element arity
-- -- -- open Elements
-- -- -- instance EqElements : Eq Elements
-- -- -- Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂)
-- -- -- with 𝑎₁ ≟ 𝑎₂
-- -- -- … | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl}
-- -- -- … | yes refl
-- -- -- with εs₁ ≟ εs₂
-- -- -- … | yes refl = yes refl
-- -- -- … | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl}
-- -- -- record Interpretation : Set
-- -- -- where
-- -- -- field
-- -- -- μ⟦_⟧ : VariableName → Element
-- -- -- 𝑓⟦_⟧ : FunctionName → Elements → Element
-- -- -- 𝑃⟦_⟧ : PredicateName → Elements → TruthValue
-- -- -- open Interpretation
-- -- -- mutual
-- -- -- data Term : Set
-- -- -- where
-- -- -- variable : VariableName → Term
-- -- -- function : FunctionName → Terms → Term
-- -- -- record Terms : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- inductive
-- -- -- field
-- -- -- {arity} : Arity
-- -- -- terms : Vector Term arity
-- -- -- open Terms
-- -- -- termVariable-inj : ∀ {𝑥₁ 𝑥₂} → Term.variable 𝑥₁ ≡ variable 𝑥₂ → 𝑥₁ ≡ 𝑥₂
-- -- -- termVariable-inj refl = refl
-- -- -- termFunction-inj₁ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → 𝑓₁ ≡ 𝑓₂
-- -- -- termFunction-inj₁ refl = refl
-- -- -- termFunction-inj₂ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → τ₁s ≡ τ₂s
-- -- -- termFunction-inj₂ refl = refl
-- -- -- foo : ∀ a → (ts1 ts2 : Vec Term (arity a)) → (τ₁≡τ₂ : Terms.⟨ ts1 ⟩ ≡ (⟨_⟩ {a} ts2)) → _≡_ {lzero} {Vec Term (arity a)} ts1 ts2
-- -- -- foo a ts1 .ts1 refl = refl
-- -- -- mutual
-- -- -- EqTerm⇑ : ∀ {i} → (x y : Term) → Delay i ∘ Dec $ x ≡ y
-- -- -- EqTerm⇑ (variable _) (variable _) = now (decEq₁ termVariable-inj $ _≟_ _ _)
-- -- -- EqTerm⇑ (function 𝑓₁ τ₁s) (function 𝑓₂ τ₂s) = EqTerms⇑ τ₁s τ₂s >>= λ τ₁s≟τ₂s → now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s
-- -- -- EqTerm⇑ (variable _) (function _ _) = now $ no λ ()
-- -- -- EqTerm⇑ (function _ _) (variable _) = now $ no λ ()
-- -- -- EqTerms⇑ : ∀ {i} → (x y : Terms) → Delay i ∘ Dec $ x ≡ y
-- -- -- EqTerms⇑ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s)
-- -- -- with 𝑎₁ ≟ 𝑎₂
-- -- -- … | no 𝑎₁≢𝑎₂ = now $ no λ {τ₁≡τ₂ → 𝑎₁≢𝑎₂ (cong arity τ₁≡τ₂)}
-- -- -- … | yes refl = EqVecTerm⇑ τ₁s τ₂s >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no (λ ⟨τ₁s⟩≡⟨τ₂s⟩ → τ₁s≢τ₂s (foo ⟨ arity 𝑎₁ ⟩ τ₁s τ₂s ⟨τ₁s⟩≡⟨τ₂s⟩)) }
-- -- -- EqVecTerm⇑ : ∀ {i} {n} → (x y : Vec Term n) → Delay i ∘ Dec $ x ≡ y
-- -- -- EqVecTerm⇑ [] [] = now (yes refl)
-- -- -- EqVecTerm⇑ (τ₁ ∷ τ₁s) (τ₂ ∷ τ₂s) =
-- -- -- EqTerm⇑ τ₁ τ₂ >>= λ
-- -- -- { (yes refl) → EqVecTerm⇑ τ₁s τ₂s >>= λ
-- -- -- { (yes refl) → now $ yes refl
-- -- -- ; (no τ₁s≢τ₂s) → now $ no λ τ₁₁s≡τ₁₂s → τ₁s≢τ₂s $ vcons-inj-tail τ₁₁s≡τ₁₂s }
-- -- -- ; (no τ₁≢τ₂) → now $ no λ τ₁₁s≡τ₂₂s → τ₁≢τ₂ $ vcons-inj-head τ₁₁s≡τ₂₂s }
-- -- -- EqVecTerm⇓ : ∀ {n} → (x y : Vec Term n) → EqVecTerm⇑ x y ⇓
-- -- -- EqVecTerm⇓ [] [] = _ , now⇓
-- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable 𝑥₂ ∷ τ₂s)
-- -- -- with 𝑥₁ ≟ 𝑥₂
-- -- -- … | yes refl with EqVecTerm⇓ τ₁s τ₂s
-- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable .𝑥₁ ∷ .τ₁s) | yes refl | (yes refl , snd₁) = _ , snd₁ >>=⇓ now⇓
-- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable .𝑥₁ ∷ τ₂s) | yes refl | (no x , snd₁) = _ , snd₁ >>=⇓ now⇓
-- -- -- EqVecTerm⇓ (variable 𝑥₁ ∷ τ₁s) (variable 𝑥₂ ∷ τ₂s) | no 𝑥₁≢𝑥₂ = _ , now⇓
-- -- -- EqVecTerm⇓ (variable x ∷ τ₁s) (function x₁ x₂ ∷ τ₂s) = _ , now⇓
-- -- -- EqVecTerm⇓ (function x x₁ ∷ τ₁s) (variable x₂ ∷ τ₂s) = _ , now⇓
-- -- -- EqVecTerm⇓ (function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s) (function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s)
-- -- -- with 𝑎₁ ≟ 𝑎₂ | 𝑓₁ ≟ 𝑓₂
-- -- -- … | no 𝑎₁≢𝑎₂ | no 𝑓₁≢𝑓₂ = _ , now⇓
-- -- -- … | no 𝑎₁≢𝑎₂ | yes refl = _ , now⇓
-- -- -- … | yes refl | no 𝑓₁≢𝑓₂
-- -- -- with EqVecTerm⇓ τ₁s τ₂s
-- -- -- … | (no τ₁s≢τ₂s , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
-- -- -- … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
-- -- -- EqVecTerm⇓ (function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s) (function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s) | yes refl | yes refl
-- -- -- with EqVecTerm⇓ τ₁s τ₂s | EqVecTerm⇓ τ₁₂s τ₂₂s
-- -- -- … | (no τ₁s≢τ₂s , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
-- -- -- … | (yes refl , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓)
-- -- -- … | (no τ₁s≢τ₂s , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
-- -- -- … | (yes refl , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓)
-- -- -- EqTerms⇓ : (x y : Terms) → EqTerms⇑ x y ⇓
-- -- -- EqTerms⇓ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s)
-- -- -- with 𝑎₁ ≟ 𝑎₂
-- -- -- … | no 𝑎₁≢𝑎₂ = _ , now⇓
-- -- -- … | yes refl
-- -- -- with EqVecTerm⇓ τ₁s τ₂s
-- -- -- … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓
-- -- -- … | (no _ , τ⇓) = _ , τ⇓ >>=⇓ now⇓
-- -- -- EqTerm⇓ : (x y : Term) → EqTerm⇑ x y ⇓
-- -- -- EqTerm⇓ (variable x) (variable x₁) = _ , now⇓
-- -- -- EqTerm⇓ (function _ τ₁s) (function _ τ₂s)
-- -- -- with EqTerms⇓ τ₁s τ₂s
-- -- -- … | (_ , τ⇓) = _ , τ⇓ >>=⇓ now⇓
-- -- -- EqTerm⇓ (variable x) (function x₁ x₂) = _ , now⇓
-- -- -- EqTerm⇓ (function x x₁) (variable x₂) = _ , now⇓
-- -- -- instance EqTerm : Eq Term
-- -- -- EqTerm = record { _==_ = λ x y → fst (EqTerm⇓ x y) }
-- -- -- instance EqTerms : Eq Terms
-- -- -- Eq._==_ EqTerms x y = fst (EqTerms⇓ x y)
-- -- -- mutual
-- -- -- τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element
-- -- -- τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥
-- -- -- τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs
-- -- -- τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs))
-- -- -- τs⇑⟦ I ⟧ ⟨ [] ⟩ = now []
-- -- -- τs⇑⟦ I ⟧ ⟨ τ ∷ τs ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ τs ⟩ >>= λ ts → now (t ∷ ts))
-- -- -- τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓
-- -- -- τs⇓⟦ I ⟧ ⟨ [] ⟩ = _ , now⇓
-- -- -- τs⇓⟦ I ⟧ ⟨ variable 𝑥 ∷ τs ⟩ = _ , τs⇓⟦ I ⟧ ⟨ τs ⟩ ⇓>>=⇓ now⇓
-- -- -- τs⇓⟦ I ⟧ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ =
-- -- -- _ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ τs₂ ⟩ ⇓>>=⇓ now⇓)
-- -- -- τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓
-- -- -- τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓
-- -- -- τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓
-- -- -- τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element
-- -- -- τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ)
-- -- -- data Formula : Set
-- -- -- where
-- -- -- atomic : PredicateName → Terms → Formula
-- -- -- logical : Formula →
-- -- -- Formula →
-- -- -- Formula
-- -- -- quantified : VariableName → Formula → Formula
-- -- -- formulaAtomic-inj₁ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → 𝑃₁ ≡ 𝑃₂
-- -- -- formulaAtomic-inj₁ refl = refl
-- -- -- formulaAtomic-inj₂ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → τs₁ ≡ τs₂
-- -- -- formulaAtomic-inj₂ refl = refl
-- -- -- formulaLogical-inj₁ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₁ ≡ φ₂₁
-- -- -- formulaLogical-inj₁ refl = refl
-- -- -- formulaLogical-inj₂ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₂ ≡ φ₂₂
-- -- -- formulaLogical-inj₂ refl = refl
-- -- -- formulaQuantified-inj₁ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → 𝑥₁ ≡ 𝑥₂
-- -- -- formulaQuantified-inj₁ refl = refl
-- -- -- formulaQuantified-inj₂ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → φ₁ ≡ φ₂
-- -- -- formulaQuantified-inj₂ refl = refl
-- -- -- instance EqFormula : Eq Formula
-- -- -- Eq._==_ EqFormula (atomic 𝑃₁ τs₁) (atomic 𝑃₂ τs₂) = decEq₂ formulaAtomic-inj₁ formulaAtomic-inj₂ (𝑃₁ ≟ 𝑃₂) (τs₁ ≟ τs₂)
-- -- -- Eq._==_ EqFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) = decEq₂ formulaLogical-inj₁ formulaLogical-inj₂ (φ₁₁ ≟ φ₂₁) (φ₁₂ ≟ φ₂₂)
-- -- -- Eq._==_ EqFormula (quantified 𝑥₁ φ₁) (quantified 𝑥₂ φ₂) = decEq₂ formulaQuantified-inj₁ formulaQuantified-inj₂ (𝑥₁ ≟ 𝑥₂) (φ₁ ≟ φ₂)
-- -- -- Eq._==_ EqFormula (atomic _ _) (logical _ _) = no λ ()
-- -- -- Eq._==_ EqFormula (atomic _ _) (quantified _ _) = no λ ()
-- -- -- Eq._==_ EqFormula (logical _ _) (atomic _ _) = no λ ()
-- -- -- Eq._==_ EqFormula (logical _ _) (quantified _ _) = no λ ()
-- -- -- Eq._==_ EqFormula (quantified _ _) (atomic _ _) = no λ ()
-- -- -- Eq._==_ EqFormula (quantified _ _) (logical _ _) = no λ ()
-- -- -- record HasNegation (A : Set) : Set
-- -- -- where
-- -- -- field
-- -- -- ~ : A → A
-- -- -- open HasNegation ⦃ … ⦄
-- -- -- record BeFormula (A : Set) : Set
-- -- -- where
-- -- -- constructor ⟨_⟩
-- -- -- field
-- -- -- formula : A → Formula
-- -- -- open BeFormula ⦃ … ⦄
-- -- -- record HasSatisfaction (A : Set) : Set₁
-- -- -- where
-- -- -- field
-- -- -- _⊨_ : Interpretation → A → Set
-- -- -- _⊭_ : Interpretation → A → Set
-- -- -- _⊭_ I = ¬_ ∘ I ⊨_
-- -- -- open HasSatisfaction ⦃ … ⦄
-- -- -- record HasDecidableSatisfaction (A : Set) ⦃ _ : HasSatisfaction A ⦄ : Set₁
-- -- -- where
-- -- -- field
-- -- -- _⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x)
-- -- -- open HasDecidableSatisfaction ⦃ … ⦄
-- -- -- infix 15 _╱_
-- -- -- record Sequent (A : Set) ⦃ _ : BeFormula A ⦄ : Set
-- -- -- where
-- -- -- constructor _╱_
-- -- -- field
-- -- -- statement : A
-- -- -- suppositions : List A
-- -- -- open Sequent
-- -- -- foooo : {A : Set} ⦃ bf : BeFormula A ⦄ {-⦃ hs : HasNegation A ⦄-} (x : Sequent A) →
-- -- -- Dec
-- -- -- (-- Either
-- -- -- (Σ A
-- -- -- (λ x₁ →
-- -- -- --Σ
-- -- -- ({-BeFormula.formula bf -}x₁ ∈
-- -- -- {-map (BeFormula.formula bf)-} (suppositions x))
-- -- -- {-
-- -- -- (λ _ →
-- -- -- ⊤
-- -- -- --BeFormula.formula bf (HasNegation.~ hs x₁) ∈
-- -- -- --map (BeFormula.formula bf) (suppositions x)
-- -- -- )-}
-- -- -- ))
-- -- -- {-(BeFormula.formula bf (statement x) ∈
-- -- -- map (BeFormula.formula bf) (suppositions x))-})
-- -- -- foooo (statement₁ ╱ []) = no (λ {x → {!x!}})
-- -- -- foooo (statement₁ ╱ (x ∷ suppositions₁)) = {!!}
-- -- -- -- record HasValidation (A : Set) : Set₁
-- -- -- -- where
-- -- -- -- field
-- -- -- -- ⊨_ : A → Set
-- -- -- -- ⊭_ : A → Set
-- -- -- -- ⊭_ = ¬_ ∘ ⊨_
-- -- -- -- open HasValidation ⦃ … ⦄
-- -- -- -- 𝑃[_♭_] : PredicateName → Terms → Formula
-- -- -- -- 𝑃[_♭_] = atomic
-- -- -- -- _⊗_ : Formula → Formula → Formula
-- -- -- -- _⊗_ = logical
-- -- -- -- instance
-- -- -- -- HasNegationFormula : HasNegation Formula
-- -- -- -- HasNegation.~ HasNegationFormula φ = φ ⊗ φ
-- -- -- -- data IsLiteral : Formula → Set
-- -- -- -- where
-- -- -- -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsLiteral $ 𝑃[ 𝑃 ♭ τs ]
-- -- -- -- logical : (𝑃 : PredicateName) → (τs : Terms) → IsLiteral ∘ ~ $ 𝑃[ 𝑃 ♭ τs ]
-- -- -- -- eqIsLiteral : ∀ {φ} → (lf₁ lf₂ : IsLiteral φ) → lf₁ ≡ lf₂
-- -- -- -- eqIsLiteral (atomic 𝑃 τs) (atomic .𝑃 .τs) = refl
-- -- -- -- eqIsLiteral (logical 𝑃 τs) (logical .𝑃 .τs) = refl
-- -- -- -- instance EqIsLiteral : ∀ {φ} → Eq (IsLiteral φ)
-- -- -- -- Eq._==_ EqIsLiteral lf₁ lf₂ = yes (eqIsLiteral lf₁ lf₂)
-- -- -- -- record LiteralFormula : Set
-- -- -- -- where
-- -- -- -- constructor ⟨_⟩
-- -- -- -- field
-- -- -- -- {formula} : Formula
-- -- -- -- isLiteral : IsLiteral formula
-- -- -- -- open LiteralFormula
-- -- -- -- instance EqLiteralFormula : Eq LiteralFormula
-- -- -- -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂)
-- -- -- -- with φ₁ ≟ φ₂
-- -- -- -- … | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl})
-- -- -- -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteral lf₁ lf₂) of λ {refl → yes refl}
-- -- -- -- infix 13 _¶_
-- -- -- -- record Problem (A : Set) ⦃ _ : BeFormula A ⦄ : Set
-- -- -- -- where
-- -- -- -- constructor _¶_
-- -- -- -- field
-- -- -- -- inferences : List (Sequent A)
-- -- -- -- interest : Sequent A
-- -- -- -- open Problem
-- -- -- -- record HasSubstantiveDischarge (+ : Set) (- : Set) : Set₁
-- -- -- -- where
-- -- -- -- field
-- -- -- -- _≽_ : + → - → Set
-- -- -- -- open HasSubstantiveDischarge ⦃ … ⦄
-- -- -- -- record HasVacuousDischarge (+ : Set) : Set₁
-- -- -- -- where
-- -- -- -- field
-- -- -- -- ◁_ : + → Set
-- -- -- -- open HasVacuousDischarge ⦃ … ⦄
-- -- -- -- record HasSalvation (A : Set) : Set₁
-- -- -- -- where
-- -- -- -- field
-- -- -- -- {isVacuouslyDischargable} : Set
-- -- -- -- ⦃ hasVacuousDischarge ⦄ : HasVacuousDischarge isVacuouslyDischargable
-- -- -- -- ▷_ : A → Set
-- -- -- -- open HasSalvation ⦃ … ⦄
-- -- -- -- record HasDecidableSalvation (A : Set) : Set₁
-- -- -- -- where
-- -- -- -- field
-- -- -- -- ⦃ hasSalvation ⦄ : HasSalvation A
-- -- -- -- ▷?_ : (x : A) → Dec $ ▷_ x
-- -- -- -- open HasDecidableSalvation ⦃ … ⦄
-- -- -- -- ∀[_♭_] : VariableName → Formula → Formula
-- -- -- -- ∀[_♭_] = quantified
-- -- -- -- _∧_ : Formula → Formula → Formula
-- -- -- -- φ₁ ∧ φ₂ = ~ φ₁ ⊗ ~ φ₂
-- -- -- -- _∨_ : Formula → Formula → Formula
-- -- -- -- φ₁ ∨ φ₂ = ~ (φ₁ ⊗ φ₂)
-- -- -- -- _⊃_ : Formula → Formula → Formula
-- -- -- -- φ₁ ⊃ φ₂ = ~ φ₁ ∨ φ₂
-- -- -- -- _⟷_ : Formula → Formula → Formula
-- -- -- -- φ₁ ⟷ φ₂ = (φ₁ ⊗ (φ₂ ⊗ φ₂)) ⊗ ((φ₁ ⊗ φ₁) ⊗ φ₂) -- TODO check that this is logically equivalent to the more verbose, (φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁)
-- -- -- -- record _≞_/_ (𝓘 : Interpretation) (I : Interpretation) (𝑥 : VariableName) : Set
-- -- -- -- where
-- -- -- -- field
-- -- -- -- μEquality : {𝑥′ : VariableName} → 𝑥′ ≢ 𝑥 → μ⟦ 𝓘 ⟧ 𝑥 ≡ μ⟦ I ⟧ 𝑥′
-- -- -- -- 𝑓Equality : (𝑓 : FunctionName) (μs : Elements) → 𝑓⟦ 𝓘 ⟧ 𝑓 μs ≡ 𝑓⟦ I ⟧ 𝑓 μs
-- -- -- -- 𝑃Equality : (𝑃 : PredicateName) → (μs : Elements) → 𝑃⟦ 𝓘 ⟧ 𝑃 μs ≡ 𝑃⟦ I ⟧ 𝑃 μs
-- -- -- -- instance
-- -- -- -- BeFormulaFormula : BeFormula Formula
-- -- -- -- BeFormula.formula BeFormulaFormula = id
-- -- -- -- BeFormulaLiteralFormula : BeFormula LiteralFormula
-- -- -- -- BeFormula.formula BeFormulaLiteralFormula = formula
-- -- -- -- instance
-- -- -- -- HasNegationLiteralFormula : HasNegation LiteralFormula
-- -- -- -- HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩
-- -- -- -- HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩
-- -- -- -- HasNegationSequent : {A : Set} ⦃ _ : HasNegation A ⦄ ⦃ _ : BeFormula A ⦄ → HasNegation $ Sequent A
-- -- -- -- HasNegation.~ HasNegationSequent ( φᵗ ╱ φˢs ) = ~ φᵗ ╱ φˢs
-- -- -- -- instance
-- -- -- -- HasSatisfactionList : {A : Set} ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A
-- -- -- -- HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤
-- -- -- -- HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs
-- -- -- -- HasSatisfactionBeFormula : {A : Set} → ⦃ _ : BeFormula A ⦄ → HasSatisfaction A
-- -- -- -- HasSatisfaction._⊨_ (HasSatisfactionBeFormula ⦃ beFormula ⦄) = λ I φ → I ⊨φ formula beFormula φ
-- -- -- -- where
-- -- -- -- _⊨φ_ : Interpretation → Formula → Set
-- -- -- -- I ⊨φ (atomic 𝑃 τs) = 𝑃⟦ I ⟧ 𝑃 ⟨ τ⟦ I ⟧ <$> terms τs ⟩ ≡ true
-- -- -- -- I ⊨φ (logical φ₁ φ₂) = ¬ I ⊨φ φ₁ × ¬ I ⊨φ φ₂
-- -- -- -- I ⊨φ (quantified 𝑥 φ) = (𝓘 : Interpretation) → 𝓘 ≞ I / 𝑥 → 𝓘 ⊨φ φ
-- -- -- -- HasSatisfactionSequent : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSatisfaction $ Sequent A
-- -- -- -- HasSatisfaction._⊨_ HasSatisfactionSequent I (φᵗ ╱ φˢs) = I ⊨ φˢs → I ⊨ φᵗ
-- -- -- -- instance
-- -- -- -- postulate
-- -- -- -- HasDecidableSatisfactionFormula : HasDecidableSatisfaction Formula
-- -- -- -- instance
-- -- -- -- HasValidationBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation A
-- -- -- -- HasValidation.⊨_ HasValidationBeFormula φ = (I : Interpretation) → I ⊨ φ
-- -- -- -- HasValidationSequent : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation $ Sequent A
-- -- -- -- HasValidation.⊨_ HasValidationSequent Φ = (I : Interpretation) → I ⊨ Φ
-- -- -- -- HasValidationProblem : {A : Set} ⦃ _ : BeFormula A ⦄ → HasValidation $ Problem A
-- -- -- -- HasValidation.⊨_ HasValidationProblem (χs ¶ ι) = (I : Interpretation) → I ⊨ χs → I ⊨ ι
-- -- -- -- instance
-- -- -- -- HasSubstantiveDischargeBeFormulaBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge A A
-- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeBeFormulaBeFormula ⦃ ⟨ beFormula ⟩ ⦄) = _≡_ on beFormula -- _≡_ on (formula beFormula) -- _≡_
-- -- -- -- HasSubstantiveDischargeListBeFormulaBeFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List A) A
-- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeListBeFormulaBeFormula ⦃ ⟨ beFormula ⟩ ⦄) +s - = beFormula - ∈ (beFormula <$> +s) -- flip _∈_
-- -- -- -- HasSubstantiveDischargeListFormulaListFormula : {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List A) (List A)
-- -- -- -- HasSubstantiveDischarge._≽_ (HasSubstantiveDischargeListFormulaListFormula ⦃ ⟨ beFormula ⟩ ⦄) = flip $ _⊆_ on fmap beFormula -- flip _⊆_
-- -- -- -- HasSubstantiveDischargeSequentSequent : ∀ {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (Sequent A) (Sequent A)
-- -- -- -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeSequentSequent (+ᵗ ╱ +ᵖs) (-ᵗ ╱ -ᵖs) = +ᵗ ≽ -ᵗ × +ᵖs ≽ -ᵖs
-- -- -- -- HasSubstantiveDischargeListSequentSequent : ∀ {A : Set} ⦃ _ : BeFormula A ⦄ → HasSubstantiveDischarge (List $ Sequent A) (Sequent A)
-- -- -- -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeListSequentSequent χs ι = ∃ λ c → (c ∈ χs) × c ≽ ι
-- -- -- -- instance
-- -- -- -- HasVacuousDischargeList : {A : Set} ⦃ _ : HasSubstantiveDischarge (List A) A ⦄ ⦃ _ : HasNegation A ⦄ → HasVacuousDischarge (List A)
-- -- -- -- HasVacuousDischarge.◁_ (HasVacuousDischargeList {A}) xs = ∃ λ (x : A) → xs ≽ x × xs ≽ ~ x
-- -- -- -- HasVacuousDischargeSequent : {A : Set} ⦃ _ : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ → HasVacuousDischarge (Sequent A)
-- -- -- -- HasVacuousDischarge.◁_ HasVacuousDischargeSequent (_ ╱ φˢs) = ∃ λ s → (s ∈ φˢs) × (φˢs ≽ s) × (φˢs ≽ ~ s)
-- -- -- -- instance
-- -- -- -- HasSalvationSequent : {A : Set} ⦃ _ : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ {-⦃ _ : HasVacuousDischarge $ List A ⦄-} → HasSalvation $ Sequent A
-- -- -- -- HasSalvation.isVacuouslyDischargable (HasSalvationSequent {A}) = List A
-- -- -- -- HasSalvation.hasVacuousDischarge HasSalvationSequent = HasVacuousDischargeList
-- -- -- -- HasSalvation.▷_ HasSalvationSequent (φᵗ ╱ φᵖs) = (◁ φᵖs) ⊎ (φᵖs ≽ φᵗ)
-- -- -- -- HasDecidableSalvationSequent : {A : Set} ⦃ bf : BeFormula A ⦄ ⦃ hs : HasNegation A ⦄
-- -- -- -- → HasDecidableSalvation $ Sequent A
-- -- -- -- HasDecidableSalvation.hasSalvation HasDecidableSalvationSequent = HasSalvationSequent
-- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ []) = no (foo2 statement₁)
-- -- -- -- HasDecidableSalvation.▷? HasDecidableSalvationSequent = {!!}
-- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ []) = no (λ {x → {!!}})
-- -- -- -- --(HasDecidableSalvation.▷? HasDecidableSalvationSequent) (statement₁ ╱ (x₂ ∷ suppositions₁)) = {!!}
-- -- -- -- -- foo1 : ∀ {A} → ⦃ b : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ (statement₁ : A) → Σ A
-- -- -- -- -- (λ x →
-- -- -- -- -- Σ (BeFormula.formula b x ∈ [])
-- -- -- -- -- (λ _ → BeFormula.formula b (~ x) ∈ []))
-- -- -- -- -- ⊎ (BeFormula.formula b statement₁ ∈ []) →
-- -- -- -- -- ⊥
-- -- -- -- -- foo1 statement₁ (left (fst₁ , () , snd₁))
-- -- -- -- -- foo1 statement₁ (right ())
-- -- -- -- -- foo2 : ∀ {A} → ⦃ b : BeFormula A ⦄ ⦃ _ : HasNegation A ⦄ (statement₁ : A) → ▷ (statement₁ ╱ []) →
-- -- -- -- -- ⊥
-- -- -- -- -- foo2 statement₁ (left (fst₁ , () , snd₁))
-- -- -- -- -- foo2 statement₁ (right ())
|
{
"alphanum_fraction": 0.455495128,
"avg_line_length": 38.4407665505,
"ext": "agda",
"hexsha": "4ae1b7190e6dc5aa22271fdc6c97c3f4f9911d56",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/NaturalDeduction-PatternLambdaBug.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/NaturalDeduction-PatternLambdaBug.agda",
"max_line_length": 173,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/NaturalDeduction-PatternLambdaBug.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 19750,
"size": 44130
}
|
------------------------------------------------------------------------
-- Split surjections
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Surjection
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Logical-equivalence
using (_⇔_; module _⇔_) renaming (_∘_ to _⊙_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
------------------------------------------------------------------------
-- Split surjections
-- The property of being a split surjection.
Split-surjective :
∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Split-surjective f = ∀ y → ∃ λ x → f x ≡ y
infix 0 _↠_
-- Split surjections. Note that in this development split surjections
-- are often called simply "surjections".
record _↠_ {f t} (From : Type f) (To : Type t) : Type (f ⊔ t) where
field
logical-equivalence : From ⇔ To
open _⇔_ logical-equivalence
field
right-inverse-of : ∀ x → to (from x) ≡ x
-- A lemma.
from-to : ∀ {x y} → from x ≡ y → to y ≡ x
from-to {x} {y} from-x≡y =
to y ≡⟨ cong to $ sym from-x≡y ⟩
to (from x) ≡⟨ right-inverse-of x ⟩∎
x ∎
-- The to function is split surjective.
split-surjective : Split-surjective to
split-surjective = λ y → from y , right-inverse-of y
-- Every left inverse of to is pointwise equal to from.
left-inverse-unique :
(f : To → From) →
(∀ x → f (to x) ≡ x) →
(∀ x → f x ≡ from x)
left-inverse-unique f left x =
f x ≡⟨ cong f $ sym $ right-inverse-of _ ⟩
f (to (from x)) ≡⟨ left _ ⟩∎
from x ∎
-- Every right inverse of from is pointwise equal to to.
right-inverse-of-from-unique :
(f : From → To) →
(∀ x → from (f x) ≡ x) →
(∀ x → f x ≡ to x)
right-inverse-of-from-unique _ right x = sym $ from-to (right x)
open _⇔_ logical-equivalence public
------------------------------------------------------------------------
-- Preorder
-- _↠_ is a preorder.
id : ∀ {a} {A : Type a} → A ↠ A
id = record
{ logical-equivalence = Logical-equivalence.id
; right-inverse-of = refl
}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} →
B ↠ C → A ↠ B → A ↠ C
f ∘ g = record
{ logical-equivalence = logical-equivalence f ⊙ logical-equivalence g
; right-inverse-of = to∘from
}
where
open _↠_
to∘from : ∀ x → to f (to g (from g (from f x))) ≡ x
to∘from = λ x →
to f (to g (from g (from f x))) ≡⟨ cong (to f) (right-inverse-of g (from f x)) ⟩
to f (from f x) ≡⟨ right-inverse-of f x ⟩∎
x ∎
-- "Equational" reasoning combinators.
infix -1 finally-↠
infixr -2 step-↠
-- For an explanation of why step-↠ is defined in this way, see
-- Equality.step-≡.
step-↠ : ∀ {a b c} (A : Type a) {B : Type b} {C : Type c} →
B ↠ C → A ↠ B → A ↠ C
step-↠ _ = _∘_
syntax step-↠ A B↠C A↠B = A ↠⟨ A↠B ⟩ B↠C
finally-↠ : ∀ {a b} (A : Type a) (B : Type b) → A ↠ B → A ↠ B
finally-↠ _ _ A↠B = A↠B
syntax finally-↠ A B A↠B = A ↠⟨ A↠B ⟩□ B □
------------------------------------------------------------------------
-- Some preservation/respectfulness lemmas
-- ∃ preserves surjections.
∃-cong :
∀ {a b₁ b₂} {A : Type a} {B₁ : A → Type b₁} {B₂ : A → Type b₂} →
(∀ x → B₁ x ↠ B₂ x) → ∃ B₁ ↠ ∃ B₂
∃-cong {B₁ = B₁} {B₂} B₁↠B₂ = record
{ logical-equivalence = record
{ to = to′
; from = from′
}
; right-inverse-of = right-inverse-of′
}
where
open _↠_
to′ : ∃ B₁ → ∃ B₂
to′ = Σ-map P.id (to (B₁↠B₂ _))
from′ : ∃ B₂ → ∃ B₁
from′ = Σ-map P.id (from (B₁↠B₂ _))
right-inverse-of′ : ∀ p → to′ (from′ p) ≡ p
right-inverse-of′ = λ p →
cong (_,_ (proj₁ p)) (right-inverse-of (B₁↠B₂ (proj₁ p)) _)
-- A preservation lemma involving Σ, _↠_ and _⇔_.
Σ-cong-⇔ :
∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂}
{B₁ : A₁ → Type b₁} {B₂ : A₂ → Type b₂}
(A₁↠A₂ : A₁ ↠ A₂) → (∀ x → B₁ x ⇔ B₂ (_↠_.to A₁↠A₂ x)) →
Σ A₁ B₁ ⇔ Σ A₂ B₂
Σ-cong-⇔ {B₂ = B₂} A₁↠A₂ B₁⇔B₂ = record
{ to = Σ-map (_↠_.to A₁↠A₂) (_⇔_.to (B₁⇔B₂ _))
; from =
Σ-map
(_↠_.from A₁↠A₂)
(λ {x} y → _⇔_.from
(B₁⇔B₂ (_↠_.from A₁↠A₂ x))
(subst B₂ (sym (_↠_.right-inverse-of A₁↠A₂ x)) y))
}
-- A generalisation of ∃-cong.
Σ-cong :
∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂}
{B₁ : A₁ → Type b₁} {B₂ : A₂ → Type b₂}
(A₁↠A₂ : A₁ ↠ A₂) → (∀ x → B₁ x ↠ B₂ (_↠_.to A₁↠A₂ x)) →
Σ A₁ B₁ ↠ Σ A₂ B₂
Σ-cong {A₁ = A₁} {A₂} {B₁} {B₂} A₁↠A₂ B₁↠B₂ = record
{ logical-equivalence = logical-equivalence′
; right-inverse-of = right-inverse-of′
}
where
open _↠_
logical-equivalence′ : Σ A₁ B₁ ⇔ Σ A₂ B₂
logical-equivalence′ = Σ-cong-⇔ A₁↠A₂ (logical-equivalence ⊚ B₁↠B₂)
abstract
right-inverse-of′ :
∀ p →
_⇔_.to logical-equivalence′ (_⇔_.from logical-equivalence′ p) ≡ p
right-inverse-of′ = λ p → Σ-≡,≡→≡
(_↠_.right-inverse-of A₁↠A₂ (proj₁ p))
(subst B₂ (_↠_.right-inverse-of A₁↠A₂ (proj₁ p))
(to (B₁↠B₂ _) (from (B₁↠B₂ _)
(subst B₂ (sym (_↠_.right-inverse-of A₁↠A₂ (proj₁ p)))
(proj₂ p)))) ≡⟨ cong (subst B₂ _) $ right-inverse-of (B₁↠B₂ _) _ ⟩
subst B₂ (_↠_.right-inverse-of A₁↠A₂ (proj₁ p))
(subst B₂ (sym (_↠_.right-inverse-of A₁↠A₂ (proj₁ p)))
(proj₂ p)) ≡⟨ subst-subst-sym B₂ _ _ ⟩∎
proj₂ p ∎)
-- Π A preserves surjections (assuming extensionality).
∀-cong :
∀ {a b₁ b₂} →
Extensionality a (b₁ ⊔ b₂) →
{A : Type a} {B₁ : A → Type b₁} {B₂ : A → Type b₂} →
(∀ x → B₁ x ↠ B₂ x) →
((x : A) → B₁ x) ↠ ((x : A) → B₂ x)
∀-cong {b₁ = b₁} ext B₁↠B₂ = record
{ logical-equivalence = equiv
; right-inverse-of = right-inverse-of
}
where
equiv = record
{ to = (_↠_.to ⊚ B₁↠B₂) _ ⊚_
; from = (_↠_.from ⊚ B₁↠B₂) _ ⊚_
}
abstract
right-inverse-of : ∀ f → _⇔_.to equiv (_⇔_.from equiv f) ≡ f
right-inverse-of = λ f →
apply-ext (lower-extensionality lzero b₁ ext) λ x →
_↠_.to (B₁↠B₂ x) (_↠_.from (B₁↠B₂ x) (f x)) ≡⟨ _↠_.right-inverse-of (B₁↠B₂ x) (f x) ⟩∎
f x ∎
-- A lemma relating surjections and equality.
↠-≡ : ∀ {a b} {A : Type a} {B : Type b} (A↠B : A ↠ B) {x y : B} →
(_↠_.from A↠B x ≡ _↠_.from A↠B y) ↠ (x ≡ y)
↠-≡ A↠B {x} {y} = record
{ logical-equivalence = record
{ from = cong from
; to = to′
}
; right-inverse-of = right-inverse-of′
}
where
open _↠_ A↠B
to′ : from x ≡ from y → x ≡ y
to′ = λ from-x≡from-y →
x ≡⟨ sym $ right-inverse-of _ ⟩
to (from x) ≡⟨ cong to from-x≡from-y ⟩
to (from y) ≡⟨ right-inverse-of _ ⟩∎
y ∎
abstract
right-inverse-of′ : ∀ p → to′ (cong from p) ≡ p
right-inverse-of′ = elim
(λ {x y} x≡y → trans (sym (right-inverse-of x)) (
trans (cong to (cong from x≡y)) (
right-inverse-of y)) ≡
x≡y)
(λ x → trans (sym (right-inverse-of x)) (
trans (cong to (cong from (refl x))) (
right-inverse-of x)) ≡⟨ cong (λ p → trans (sym (right-inverse-of x))
(trans (cong to p) (right-inverse-of x)))
(cong-refl from) ⟩
trans (sym (right-inverse-of x)) (
trans (cong to (refl (from x))) (
right-inverse-of x)) ≡⟨ cong (λ p → trans (sym (right-inverse-of x))
(trans p (right-inverse-of x)))
(cong-refl to) ⟩
trans (sym (right-inverse-of x)) (
trans (refl (to (from x))) (
right-inverse-of x)) ≡⟨ cong (trans (sym _)) (trans-reflˡ _) ⟩
trans (sym (right-inverse-of x)) (right-inverse-of x) ≡⟨ trans-symˡ _ ⟩∎
refl x ∎)
-- A "computation rule" for ↠-≡.
to-↠-≡-refl :
∀ {a b} {A : Type a} {B : Type b} (A↠B : A ↠ B) {x : B} →
_↠_.to (↠-≡ A↠B) (refl (_↠_.from A↠B x)) ≡ refl x
to-↠-≡-refl A↠B {x = x} =
trans (sym $ _↠_.right-inverse-of A↠B x)
(trans (cong (_↠_.to A↠B) (refl (_↠_.from A↠B x)))
(_↠_.right-inverse-of A↠B x)) ≡⟨ cong (λ p → trans _ (trans p _)) $ cong-refl _ ⟩
trans (sym $ _↠_.right-inverse-of A↠B x)
(trans (refl (_↠_.to A↠B (_↠_.from A↠B x)))
(_↠_.right-inverse-of A↠B x)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (sym $ _↠_.right-inverse-of A↠B x)
(_↠_.right-inverse-of A↠B x) ≡⟨ trans-symˡ _ ⟩∎
refl x ∎
-- Decidable-equality respects surjections.
Decidable-equality-respects :
∀ {a b} {A : Type a} {B : Type b} →
A ↠ B → Decidable-equality A → Decidable-equality B
Decidable-equality-respects A↠B _≟A_ x y =
⊎-map (to (↠-≡ A↠B))
(λ from-x≢from-y → from-x≢from-y ⊚ from (↠-≡ A↠B))
(from A↠B x ≟A from A↠B y)
where open _↠_
|
{
"alphanum_fraction": 0.4689532201,
"avg_line_length": 32.2094594595,
"ext": "agda",
"hexsha": "5ddbec5f07e10a909bb5876d9133fb8cc147de0f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Surjection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Surjection.agda",
"max_line_length": 130,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Surjection.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3584,
"size": 9534
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Whitehead where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.HITs.Susp renaming (toSusp to σ)
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.Join
open import Cubical.HITs.Wedge
open import Cubical.HITs.SetTruncation
open import Cubical.Homotopy.Group.Base
open Iso
open 3x3-span
joinTo⋁ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'}
→ join (typ A) (typ B)
→ (Susp (typ A) , north) ⋁ (Susp (typ B) , north)
joinTo⋁ (inl x) = inr north
joinTo⋁ (inr x) = inl north
joinTo⋁ {A = A} {B = B} (push a b i) =
((λ i → inr (σ B b i))
∙∙ sym (push tt)
∙∙ λ i → inl (σ A a i)) i
-- Whitehead product (main definition)
[_∣_] : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ (S₊∙ (suc n) →∙ X)
→ (S₊∙ (suc m) →∙ X)
→ S₊∙ (suc (n + m)) →∙ X
fst ([_∣_] {X = X} {n = n} {m = m} f g) x =
_∨→_ (f ∘∙ (inv (IsoSucSphereSusp n) , IsoSucSphereSusp∙ n))
(g ∘∙ (inv (IsoSucSphereSusp m) , IsoSucSphereSusp∙ m))
(joinTo⋁ {A = S₊∙ n} {B = S₊∙ m}
(inv (IsoSphereJoin n m) x))
snd ([_∣_] {n = n} {m = m} f g) =
cong (_∨→_ (f ∘∙ (inv (IsoSucSphereSusp n) , IsoSucSphereSusp∙ n))
(g ∘∙ (inv (IsoSucSphereSusp m) , IsoSucSphereSusp∙ m)))
(cong (joinTo⋁ {A = S₊∙ n} {B = S₊∙ m}) (IsoSphereJoin⁻Pres∙ n m))
∙ cong (fst g) (IsoSucSphereSusp∙ m)
∙ snd g
-- For Sⁿ, Sᵐ with n, m ≥ 2, we can avoid some bureaucracy. We make
-- a separate definition and prove it equivalent.
[_∣_]-pre : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ (S₊∙ (suc (suc n)) →∙ X)
→ (S₊∙ (suc (suc m)) →∙ X)
→ join (typ (S₊∙ (suc n))) (typ (S₊∙ (suc m))) → fst X
[_∣_]-pre {n = n} {m = m} f g x =
_∨→_ f g
(joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)}
x)
[_∣_]₂ : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ (S₊∙ (suc (suc n)) →∙ X)
→ (S₊∙ (suc (suc m)) →∙ X)
→ S₊∙ (suc ((suc n) + (suc m))) →∙ X
fst ([_∣_]₂ {n = n} {m = m} f g) x =
[ f ∣ g ]-pre (inv (IsoSphereJoin (suc n) (suc m)) x)
snd ([_∣_]₂ {n = n} {m = m} f g) =
cong ([ f ∣ g ]-pre) (IsoSphereJoin⁻Pres∙ (suc n) (suc m))
∙ snd g
[]≡[]₂ : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ (f : (S₊∙ (suc (suc n)) →∙ X))
→ (g : (S₊∙ (suc (suc m)) →∙ X))
→ [ f ∣ g ] ≡ [ f ∣ g ]₂
[]≡[]₂ {n = n} {m = m} f g =
ΣPathP (
(λ i x → _∨→_ (∘∙-idˡ f i)
(∘∙-idˡ g i)
(joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)}
(inv (IsoSphereJoin (suc n) (suc m)) x)))
, (cong (cong (_∨→_ (f ∘∙ idfun∙ _)
(g ∘∙ idfun∙ _))
(cong (joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)})
(IsoSphereJoin⁻Pres∙ (suc n) (suc m))) ∙_)
(sym (lUnit (snd g)))
◁ λ j → (λ i → _∨→_ (∘∙-idˡ f j)
(∘∙-idˡ g j)
( joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)}
((IsoSphereJoin⁻Pres∙ (suc n) (suc m)) i))) ∙ snd g))
-- Homotopy group version
[_∣_]π' : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ}
→ π' (suc n) X → π' (suc m) X
→ π' (suc (n + m)) X
[_∣_]π' = elim2 (λ _ _ → squash₂) λ f g → ∣ [ f ∣ g ] ∣₂
-- We prove that the function joinTo⋁ used in the definition of the whitehead
-- product gives an equivalence between (Susp A × Susp B) and the
-- appropriate cofibre of joinTo⋁ (last two theorems in the following
-- module).
module _ (A B : Type) (a₀ : A) (b₀ : B) where
private
W = joinTo⋁ {A = (A , a₀)} {B = (B , b₀)}
A∨B = (Susp A , north) ⋁ (Susp B , north)
σB = σ (B , b₀)
σA = σ (A , a₀)
cofibW = Pushout W λ _ → tt
whitehead3x3 : 3x3-span
A00 whitehead3x3 = Susp A
A02 whitehead3x3 = B
A04 whitehead3x3 = Unit
A20 whitehead3x3 = B
A22 whitehead3x3 = A × B
A24 whitehead3x3 = A
A40 whitehead3x3 = B
A42 whitehead3x3 = B
A44 whitehead3x3 = Unit
f10 whitehead3x3 _ = south
f12 whitehead3x3 = snd
f14 whitehead3x3 _ = tt
f30 whitehead3x3 = idfun B
f32 whitehead3x3 = snd
f34 whitehead3x3 _ = tt
f01 whitehead3x3 _ = north
f21 whitehead3x3 = snd
f41 whitehead3x3 = idfun B
f03 whitehead3x3 _ = tt
f23 whitehead3x3 = fst
f43 whitehead3x3 _ = tt
H11 whitehead3x3 x = merid (fst x)
H13 whitehead3x3 _ = refl
H31 whitehead3x3 _ = refl
H33 whitehead3x3 _ = refl
A0□→A∨B : A0□ whitehead3x3 → A∨B
A0□→A∨B (inl x) = inl x
A0□→A∨B (inr x) = inr north
A0□→A∨B (push a i) = (push tt ∙ λ i → inr (σB a (~ i))) i
A∨B→A0□ : A∨B → A0□ whitehead3x3
A∨B→A0□ (inl x) = inl x
A∨B→A0□ (inr north) = inl north
A∨B→A0□ (inr south) = inl north
A∨B→A0□ (inr (merid b i)) = (push b₀ ∙ sym (push b)) i
A∨B→A0□ (push a i) = inl north
Iso-A0□-⋁ : Iso (A0□ whitehead3x3) A∨B
fun Iso-A0□-⋁ = A0□→A∨B
inv Iso-A0□-⋁ = A∨B→A0□
rightInv Iso-A0□-⋁ (inl x) = refl
rightInv Iso-A0□-⋁ (inr north) = push tt
rightInv Iso-A0□-⋁ (inr south) = push tt ∙ λ i → inr (merid b₀ i)
rightInv Iso-A0□-⋁ (inr (merid a i)) j = lem j i
where
lem : PathP (λ i → push tt i ≡ (push tt ∙ (λ i → inr (merid b₀ i))) i)
(cong A0□→A∨B (cong A∨B→A0□ λ i → inr (merid a i)))
(λ i → inr (merid a i))
lem = (cong-∙ A0□→A∨B (push b₀) (sym (push a))
∙ cong₂ _∙_ (cong (push tt ∙_)
(λ j i → inr (rCancel (merid b₀) j (~ i)))
∙ sym (rUnit (push tt)))
(symDistr (push tt) (λ i → inr (σB a (~ i)))))
◁ λ i j → hcomp (λ k →
λ { (i = i0) → compPath-filler' (push tt)
(compPath-filler (λ i → inr (σB a i))
(sym (push tt)) k) k j
; (i = i1) → inr (merid a j)
; (j = i0) → push tt (i ∨ ~ k)
; (j = i1) → compPath-filler' (push tt)
(λ i → inr (merid b₀ i)) k i})
(inr (compPath-filler (merid a)
(sym (merid b₀)) (~ i) j))
rightInv Iso-A0□-⋁ (push a i) j = push tt (i ∧ j)
leftInv Iso-A0□-⋁ (inl x) = refl
leftInv Iso-A0□-⋁ (inr tt) = push b₀
leftInv Iso-A0□-⋁ (push b i) j = help j i
where
help : PathP (λ i → inl north ≡ push b₀ i)
(cong A∨B→A0□ (cong A0□→A∨B (push b)))
(push b)
help = (cong-∙ A∨B→A0□ (push tt) (λ i → inr (σB b (~ i)))
∙ (λ i → lUnit (sym (cong-∙ (A∨B→A0□ ∘ inr)
(merid b) (sym (merid b₀)) i)) (~ i))
∙ cong sym (cong ((push b₀ ∙ sym (push b)) ∙_)
(cong sym (rCancel (push b₀))))
∙ cong sym (sym (rUnit (push b₀ ∙ sym (push b)))))
◁ λ i j → compPath-filler' (push b₀) (sym (push b)) (~ i) (~ j)
Iso-A2□-join : Iso (A2□ whitehead3x3) (join A B)
fun Iso-A2□-join (inl x) = inr x
fun Iso-A2□-join (inr x) = inl x
fun Iso-A2□-join (push (a , b) i) = push a b (~ i)
inv Iso-A2□-join (inl x) = inr x
inv Iso-A2□-join (inr x) = inl x
inv Iso-A2□-join (push a b i) = push (a , b) (~ i)
rightInv Iso-A2□-join (inl x) = refl
rightInv Iso-A2□-join (inr x) = refl
rightInv Iso-A2□-join (push a b i) = refl
leftInv Iso-A2□-join (inl x) = refl
leftInv Iso-A2□-join (inr x) = refl
leftInv Iso-A2□-join (push a i) = refl
isContrA4□ : isContr (A4□ whitehead3x3)
fst isContrA4□ = inr tt
snd isContrA4□ (inl x) = sym (push x)
snd isContrA4□ (inr x) = refl
snd isContrA4□ (push a i) j = push a (i ∨ ~ j)
A4□≃Unit : A4□ whitehead3x3 ≃ Unit
A4□≃Unit = isContr→≃Unit isContrA4□
Iso-A□0-Susp : Iso (A□0 whitehead3x3) (Susp A)
fun Iso-A□0-Susp (inl x) = x
fun Iso-A□0-Susp (inr x) = north
fun Iso-A□0-Susp (push a i) = merid a₀ (~ i)
inv Iso-A□0-Susp x = inl x
rightInv Iso-A□0-Susp x = refl
leftInv Iso-A□0-Susp (inl x) = refl
leftInv Iso-A□0-Susp (inr x) = (λ i → inl (merid a₀ i)) ∙ push x
leftInv Iso-A□0-Susp (push a i) j =
hcomp (λ k → λ { (i = i0) → inl (merid a₀ (k ∨ j))
; (i = i1) → compPath-filler
(λ i₁ → inl (merid a₀ i₁))
(push (idfun B a)) k j
; (j = i0) → inl (merid a₀ (~ i ∧ k))
; (j = i1) → push a (i ∧ k)})
(inl (merid a₀ j))
Iso-A□2-Susp× : Iso (A□2 whitehead3x3) (Susp A × B)
fun Iso-A□2-Susp× (inl x) = north , x
fun Iso-A□2-Susp× (inr x) = south , x
fun Iso-A□2-Susp× (push a i) = merid (fst a) i , (snd a)
inv Iso-A□2-Susp× (north , y) = inl y
inv Iso-A□2-Susp× (south , y) = inr y
inv Iso-A□2-Susp× (merid a i , y) = push (a , y) i
rightInv Iso-A□2-Susp× (north , snd₁) = refl
rightInv Iso-A□2-Susp× (south , snd₁) = refl
rightInv Iso-A□2-Susp× (merid a i , snd₁) = refl
leftInv Iso-A□2-Susp× (inl x) = refl
leftInv Iso-A□2-Susp× (inr x) = refl
leftInv Iso-A□2-Susp× (push a i) = refl
Iso-A□4-Susp : Iso (A□4 whitehead3x3) (Susp A)
fun Iso-A□4-Susp (inl x) = north
fun Iso-A□4-Susp (inr x) = south
fun Iso-A□4-Susp (push a i) = merid a i
inv Iso-A□4-Susp north = inl tt
inv Iso-A□4-Susp south = inr tt
inv Iso-A□4-Susp (merid a i) = push a i
rightInv Iso-A□4-Susp north = refl
rightInv Iso-A□4-Susp south = refl
rightInv Iso-A□4-Susp (merid a i) = refl
leftInv Iso-A□4-Susp (inl x) = refl
leftInv Iso-A□4-Susp (inr x) = refl
leftInv Iso-A□4-Susp (push a i) = refl
Iso-PushSusp×-Susp×Susp :
Iso (Pushout {A = Susp A × B} fst fst) (Susp A × Susp B)
Iso-PushSusp×-Susp×Susp = theIso
where
F : Pushout {A = Susp A × B} fst fst
→ Susp A × Susp B
F (inl x) = x , north
F (inr x) = x , north
F (push (x , b) i) = x , σB b i
G : Susp A × Susp B → Pushout {A = Susp A × B} fst fst
G (a , north) = inl a
G (a , south) = inr a
G (a , merid b i) = push (a , b) i
retr : retract F G
retr (inl x) = refl
retr (inr x) = push (x , b₀)
retr (push (a , b) i) j = help j i
where
help : PathP (λ i → Path (Pushout fst fst) (inl a) (push (a , b₀) i))
(cong G (λ i → a , σB b i))
(push (a , b))
help = cong-∙ (λ x → G (a , x)) (merid b) (sym (merid b₀))
◁ λ i j → compPath-filler
(push (a , b))
(sym (push (a , b₀)))
(~ i) j
theIso : Iso (Pushout fst fst) (Susp A × Susp B)
fun theIso = F
inv theIso = G
rightInv theIso (a , north) = refl
rightInv theIso (a , south) = ΣPathP (refl , merid b₀)
rightInv theIso (a , merid b i) j =
a , compPath-filler (merid b) (sym (merid b₀)) (~ j) i
leftInv theIso = retr
Iso-A□○-PushSusp× :
Iso (A□○ whitehead3x3) (Pushout {A = Susp A × B} fst fst)
Iso-A□○-PushSusp× =
pushoutIso _ _ fst fst
(isoToEquiv Iso-A□2-Susp×)
(isoToEquiv Iso-A□0-Susp)
(isoToEquiv Iso-A□4-Susp)
(funExt (λ { (inl x) → refl
; (inr x) → merid a₀
; (push a i) j → help₁ a j i}))
(funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i) j
→ fun Iso-A□4-Susp (rUnit (push (fst a)) (~ j) i)})
where
help₁ : (a : A × B)
→ PathP (λ i → north ≡ merid a₀ i)
(cong (fun Iso-A□0-Susp)
(cong (f□1 whitehead3x3) (push a)))
(merid (fst a))
help₁ a =
(cong-∙∙ (fun Iso-A□0-Susp)
(λ i → inl (merid (fst a) i))
(push (snd a))
refl)
◁ (λ i j → hcomp (λ k → λ {(i = i1) → merid (fst a) (j ∨ ~ k)
; (j = i0) → merid (fst a) (~ k)
; (j = i1) → merid a₀ i})
(merid a₀ (i ∨ ~ j)))
Iso-A□○-Susp×Susp : Iso (A□○ whitehead3x3) (Susp A × Susp B)
Iso-A□○-Susp×Susp = compIso Iso-A□○-PushSusp× Iso-PushSusp×-Susp×Susp
Iso-A○□-cofibW : Iso (A○□ whitehead3x3) cofibW
Iso-A○□-cofibW =
pushoutIso _ _
W (λ _ → tt)
(isoToEquiv Iso-A2□-join) (isoToEquiv Iso-A0□-⋁)
A4□≃Unit
(funExt lem)
λ _ _ → tt
where
lem : (x : A2□ whitehead3x3)
→ A0□→A∨B (f1□ whitehead3x3 x) ≡ W (fun Iso-A2□-join x)
lem (inl x) = (λ i → inl (merid a₀ (~ i)))
lem (inr x) = refl
lem (push (a , b) i) j = help j i
where
help : PathP (λ i → Path (Pushout (λ _ → north) (λ _ → north))
((inl (merid a₀ (~ i))))
(inr north))
(cong A0□→A∨B (cong (f1□ whitehead3x3) (push (a , b))))
(cong W (cong (fun Iso-A2□-join) (push (a , b))))
help = (cong-∙∙ A0□→A∨B (λ i → inl (merid a (~ i))) (push b) refl
∙ λ j → (λ i₂ → inl (merid a (~ i₂)))
∙∙ compPath-filler (push tt) (λ i → inr (σB b (~ i))) (~ j)
∙∙ λ i → inr (σB b (~ i ∧ j)))
◁ (λ j → (λ i → inl (sym (compPath-filler
(merid a) (sym (merid a₀)) j) i))
∙∙ push tt
∙∙ λ i → inr (σB b (~ i)))
Iso₁-Susp×Susp-cofibW : Iso (Susp A × Susp B) cofibW
Iso₁-Susp×Susp-cofibW =
compIso (invIso Iso-A□○-Susp×Susp)
(compIso (3x3-Iso whitehead3x3) Iso-A○□-cofibW)
-- Main iso
Iso-Susp×Susp-cofibJoinTo⋁ : Iso (Susp A × Susp B) cofibW
Iso-Susp×Susp-cofibJoinTo⋁ =
compIso (Σ-cong-iso-snd (λ _ → invSuspIso))
Iso₁-Susp×Susp-cofibW
-- The induced function A ∨ B → Susp A × Susp B satisfies
-- the following identity
Susp×Susp→cofibW≡ : Path (A∨B → Susp A × Susp B)
(Iso.inv Iso-Susp×Susp-cofibJoinTo⋁ ∘ inl)
⋁↪
Susp×Susp→cofibW≡ =
funExt λ { (inl x) → ΣPathP (refl , (sym (merid b₀)))
; (inr north) → ΣPathP (refl , (sym (merid b₀)))
; (inr south) → refl
; (inr (merid a i)) j → lem₂ a j i
; (push a i) j → north , (merid b₀ (~ j))}
where
f₁ = fun Iso-PushSusp×-Susp×Susp
f₂ = fun Iso-A□○-PushSusp×
f₃ = backward-l whitehead3x3
f₄ = fun (Σ-cong-iso-snd (λ _ → invSuspIso))
lem : (b : B)
→ cong (f₁ ∘ f₂ ∘ f₃) (push b)
≡ (λ i → north , σB b i)
lem b = cong (cong f₁) (sym (rUnit (push (north , b))))
lem₂ : (a : B)
→ PathP (λ i → (north , merid b₀ (~ i)) ≡ (north , south))
(cong (f₄ ∘ f₁ ∘ f₂ ∘ f₃ ∘ A∨B→A0□ ∘ inr) (merid a))
λ i → north , merid a i
lem₂ a =
cong (cong f₄) (cong-∙ (f₁ ∘ f₂ ∘ f₃) (push b₀) (sym (push a))
∙∙ cong₂ _∙_ (lem b₀ ∙ (λ j i → north , rCancel (merid b₀) j i))
(cong sym (lem a))
∙∙ sym (lUnit (λ i₁ → north , σB a (~ i₁))))
∙ (λ i j → north , cong-∙ invSusp (merid a) (sym (merid b₀)) i (~ j) )
◁ λ i j → north , compPath-filler (sym (merid a)) (merid b₀) (~ i) (~ j)
|
{
"alphanum_fraction": 0.4915209675,
"avg_line_length": 37.0170316302,
"ext": "agda",
"hexsha": "2198fdee3bb9b94e757ce7e62f9a346e1236e69e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Whitehead.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Whitehead.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Whitehead.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 6546,
"size": 15214
}
|
------------------------------------------------------------------------------
-- Data and postulates
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Are the FOTC natural numbers defined by data and postulates the
-- same?
module DataPostulate where
------------------------------------------------------------------------------
postulate
D : Set
zero : D
succ : D → D
-- The FOTC natural numbers using data.
data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)
N-ind : (P : D → Set) →
P zero →
(∀ {n} → N n → P n → P (succ n)) →
∀ {n} → N n → P n
N-ind P P0 h zN = P0
N-ind P P0 h (sN Nn) = h Nn (N-ind P P0 h Nn)
-- The FOTC natural numbers using postulates (we chose 'M' by 'Model').
postulate
M : D → Set
zM : M zero
sM : ∀ {n} → M n → M (succ n)
M-ind : (P : D → Set) →
P zero →
(∀ {n} → M n → P n → P (succ n)) →
∀ {n} → M n → P n
------------------------------------------------------------------------------
-- The predicates
-- From the data predicate to the postulated one: Using the induction
-- principle.
nat-D2P : ∀ {n} → N n → M n
nat-D2P = N-ind M zM (λ _ Mn → sM Mn)
-- From the data predicate to the postulated one: Using pattern
-- matching.
nat-D2P' : ∀ {n} → N n → M n
nat-D2P' zN = zM
nat-D2P' (sN Nn) = sM (nat-D2P' Nn)
-- From the postulated predicate to the data one.
nat-P2D : ∀ {n} → M n → N n
nat-P2D = M-ind N zN (λ _ Nn → sN Nn)
------------------------------------------------------------------------------
-- The induction principles
-- The postulated inductive principle from the data one.
D2P-ind : (P : D → Set) → P zero →
(∀ {n} → M n → P n → P (succ n)) →
∀ {n} → M n → P n
D2P-ind P P0 ih Mn = N-ind P P0 (λ {_} Nn → ih (nat-D2P Nn)) (nat-P2D Mn)
-- The data inductive principle from the postulated one.
P2D-ind : (P : D → Set) → P zero →
(∀ {n} → N n → P n → P (succ n)) →
∀ {n} → N n → P n
P2D-ind P P0 ih Nn = M-ind P P0 (λ {_} Mn → ih (nat-P2D Mn)) (nat-D2P Nn)
|
{
"alphanum_fraction": 0.430324277,
"avg_line_length": 30.4266666667,
"ext": "agda",
"hexsha": "d4a576932de3da699f1921e2c2cd8505c61b26ec",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/DataPostulate.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/DataPostulate.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/DataPostulate.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 709,
"size": 2282
}
|
import Common.Reflect
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data Bool : Set where
true false : Bool
data True : Set where
true : True
-- Should print names as "quote Bool.true" (making sure to disambiguate)
-- and "quote false" rather than "Issue619.Bool.true/false" in error message.
not-true : quote Bool.true ≡ quote Bool.false
not-true = refl
|
{
"alphanum_fraction": 0.6835106383,
"avg_line_length": 22.1176470588,
"ext": "agda",
"hexsha": "342e26ece44e074c961cc0fa467b4e010798d648",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/fail/Issue619.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/fail/Issue619.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue619.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 115,
"size": 376
}
|
-- It seems as if our fix for singleton records was not good enough;
-- the following code was accepted by Agda 2.2.6.
-- Fixed now.
module Issue245 where
record ⊤ : Set where
postulate
A : Set
x : A
record R₁ (P : A → Set) : Set where
field
f : P x
record R₂ : Set₁ where
field
F : A → Set
f : R₁ F
record R₃ (R : R₂) : Set where
field
f : A
R : R₂
R = record
{ F = λ (x : A) → ⊤
; f = record {}
}
foo : R₃ R → A
foo = R₃.f {_}
-- No unsolved metas at the following locations:
-- /home/nad/research/dtp/lib/Bug.agda:32,13-14
|
{
"alphanum_fraction": 0.5933098592,
"avg_line_length": 15.7777777778,
"ext": "agda",
"hexsha": "7b703e070f95077b0b5d7651bc2684ea3d570880",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/Issue245.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/Issue245.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue245.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 211,
"size": 568
}
|
open import Agda.Builtin.IO
open import Agda.Builtin.Reflection
open import Agda.Builtin.Strict
open import Agda.Builtin.String
open import Agda.Builtin.Unit
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
main : IO ⊤
main = primForce commitTC λ _ → putStr "Success\n"
|
{
"alphanum_fraction": 0.6861924686,
"avg_line_length": 25.1578947368,
"ext": "agda",
"hexsha": "50c04bf572495e68077782ba7124ec60a6676b95",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue5421.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue5421.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue5421.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 128,
"size": 478
}
|
{-# OPTIONS --sized-types #-}
module SizedTypesFunctionFromSuccSize where
open import Common.Size
data Nat : {size : Size} → Set where
zero : {size : Size} → Nat {↑ size}
suc : {size : Size} → Nat {size} → Nat {↑ size}
bad : {i : Size} → Nat {↑ i} → Set
bad zero = bad zero
bad (suc x) = Nat
|
{
"alphanum_fraction": 0.6032786885,
"avg_line_length": 20.3333333333,
"ext": "agda",
"hexsha": "ddade568ad78cb163f0616341629b0cd0b294b39",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/SizedTypesFunctionFromSuccSize.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/SizedTypesFunctionFromSuccSize.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/SizedTypesFunctionFromSuccSize.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 100,
"size": 305
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on strings
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.String.Properties where
open import Data.Bool.Base using (Bool)
import Data.Char.Properties as Charₚ
import Data.List.Properties as Listₚ
import Data.List.Relation.Binary.Pointwise as Pointwise
import Data.List.Relation.Binary.Lex.Strict as StrictLex
open import Data.String.Base
open import Function
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′; isYes)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality.Core
import Relation.Binary.Construct.On as On
import Relation.Binary.PropositionalEquality as PropEq
------------------------------------------------------------------------
-- Primitive properties
open import Agda.Builtin.String.Properties public
renaming ( primStringToListInjective to toList-injective)
------------------------------------------------------------------------
-- Properties of _≈_
≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ = toList-injective _ _
∘ Pointwise.Pointwise-≡⇒≡
∘ Pointwise.map Charₚ.≈⇒≡
≈-reflexive : _≡_ ⇒ _≈_
≈-reflexive = Pointwise.map Charₚ.≈-reflexive
∘ Pointwise.≡⇒Pointwise-≡
∘ cong toList
≈-refl : Reflexive _≈_
≈-refl {x} = ≈-reflexive {x} {x} refl
≈-sym : Symmetric _≈_
≈-sym = Pointwise.symmetric (λ {i j} → Charₚ.≈-sym {i} {j})
≈-trans : Transitive _≈_
≈-trans = Pointwise.transitive (λ {i j k} → Charₚ.≈-trans {i} {j} {k})
≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ
≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p
infix 4 _≈?_
_≈?_ : Decidable _≈_
x ≈? y = Pointwise.decidable Charₚ._≈?_ (toList x) (toList y)
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record
{ refl = λ {i} → ≈-refl {i}
; sym = λ {i j} → ≈-sym {i} {j}
; trans = λ {i j k} → ≈-trans {i} {j} {k}
}
≈-setoid : Setoid _ _
≈-setoid = record
{ isEquivalence = ≈-isEquivalence
}
≈-isDecEquivalence : IsDecEquivalence _≈_
≈-isDecEquivalence = record
{ isEquivalence = ≈-isEquivalence
; _≟_ = _≈?_
}
≈-decSetoid : DecSetoid _ _
≈-decSetoid = record
{ isDecEquivalence = ≈-isDecEquivalence
}
-----------------------------------------------------------------------
-- Properties of _≡_
infix 4 _≟_
_≟_ : Decidable _≡_
x ≟ y = map′ ≈⇒≡ ≈-reflexive $ x ≈? y
≡-setoid : Setoid _ _
≡-setoid = PropEq.setoid String
≡-decSetoid : DecSetoid _ _
≡-decSetoid = PropEq.decSetoid _≟_
------------------------------------------------------------------------
-- Properties of _<_
infix 4 _<?_
_<?_ : Decidable _<_
x <? y = StrictLex.<-decidable Charₚ._≈?_ Charₚ._<?_ (toList x) (toList y)
<-isStrictPartialOrder-≈ : IsStrictPartialOrder _≈_ _<_
<-isStrictPartialOrder-≈ =
On.isStrictPartialOrder
toList
(StrictLex.<-isStrictPartialOrder Charₚ.<-isStrictPartialOrder-≈)
<-isStrictTotalOrder-≈ : IsStrictTotalOrder _≈_ _<_
<-isStrictTotalOrder-≈ =
On.isStrictTotalOrder
toList
(StrictLex.<-isStrictTotalOrder Charₚ.<-isStrictTotalOrder-≈)
<-strictPartialOrder-≈ : StrictPartialOrder _ _ _
<-strictPartialOrder-≈ =
On.strictPartialOrder
(StrictLex.<-strictPartialOrder Charₚ.<-strictPartialOrder-≈)
toList
<-strictTotalOrder-≈ : StrictTotalOrder _ _ _
<-strictTotalOrder-≈ =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Charₚ.<-strictTotalOrder-≈)
toList
------------------------------------------------------------------------
-- Alternative Boolean equality test.
--
-- Why is the definition _==_ = primStringEquality not used? One
-- reason is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.
infix 4 _==_
_==_ : String → String → Bool
s₁ == s₂ = isYes (s₁ ≟ s₂)
private
-- The following unit test does not type-check (at the time of
-- writing) if _==_ is replaced by primStringEquality.
data P : (String → Bool) → Set where
p : (c : String) → P (_==_ c)
unit-test : P (_==_ "")
unit-test = p _
-- Version 1.1
setoid = ≡-setoid
{-# WARNING_ON_USAGE setoid
"Warning: setoid was deprecated in v1.1.
Please use ≡-setoid instead."
#-}
decSetoid = ≡-decSetoid
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.1.
Please use ≡-decSetoid instead."
#-}
strictTotalOrder = <-strictTotalOrder-≈
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v1.1.
Please use <-strictTotalOrder-≈ instead."
#-}
|
{
"alphanum_fraction": 0.6163969795,
"avg_line_length": 27.2647058824,
"ext": "agda",
"hexsha": "e7947bb79bf5911e9326815c0d9dde7b559687bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/String/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/String/Properties.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/String/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1461,
"size": 4635
}
|
-- {-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.with.top:25 #-}
-- {-# OPTIONS -v tc.with:40 -v tc.interaction:20 -v interaction.give:20 -v tc:10 #-}
open import Common.Equality
data Unit : Set where
unit : Unit
id : (A : Set) → A → A
id A a = a
module Works where
dx : (x : Unit) → Unit → Unit
dx x unit = x
g : (x : Unit) → ∀ u → x ≡ dx x u
g x with x
g x | unit = id ((u : Unit) → unit ≡ dx unit u) ?
-- Now if we make (x : Unit) a module parameter
-- then we turn all applications (dx _) into just dx,
-- which actually means (dx x), i.e., dx applied to
-- the module free variables.
-- This leads to an incomprehendable rejection
-- of the following code (culprit is the first argument to id).
module M (x : Unit) where
dx : Unit → Unit
dx unit = x
g : ∀ u → x ≡ dx u
g with x
g | unit = id ((u : Unit) → unit ≡ dx u) ?
-- Now, `with x` is a plain error.
-- Also in harmless cases like the one below:
module CollateralDamage (x : Unit) where
x′ = x
bla : x ≡ x′
bla with x
bla | unit = id (unit ≡ unit) refl
|
{
"alphanum_fraction": 0.5934579439,
"avg_line_length": 20.9803921569,
"ext": "agda",
"hexsha": "ad55d2e15966bb2e23dc184372bb7667296ec66d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1342a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1342a.agda",
"max_line_length": 85,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1342a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 357,
"size": 1070
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
module Number.Bundles where
private
variable
ℓ ℓ' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Binary.Base -- Rel
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import MoreAlgebra
open import Number.Structures
-- ℕ ℤ ℚ ℝ ℂ and ℚ₀⁺ ℝ₀⁺ ...
-- ring without additive inverse
record RCommSemiring : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
Carrier : Type ℓ
_#_ : Rel Carrier Carrier ℓ'
-- RCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
isRCommSemiring : IsRCommSemiring _#_ 0f 1f _+_ _·_
open IsRCommSemiring isRCommSemiring public
-- ℤ ℚ ℝ ℂ
record RCommRing : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
Carrier : Type ℓ
_#_ : Rel Carrier Carrier ℓ'
-- RCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- RCommRing
-_ : Carrier → Carrier
isRCommRing : IsRCommRing _#_ 0f 1f _+_ _·_ -_
open IsRCommRing isRCommRing public
-- ℚ ℝ ℂ
record RField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
Carrier : Type ℓ
_#_ : Rel Carrier Carrier ℓ'
-- RCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- RCommRing
-_ : Carrier → Carrier
-- RField
_⁻¹ : (x : Carrier) → {{ x # 0f }} → Carrier
isRField : IsRField _#_ 0f 1f _+_ _·_ -_ _⁻¹
-- Finₖ ℕ ℤ ℚ ℚ₀⁺ ℚ⁺ ℝ ℝ₀⁺ ℝ⁺
record RLattice : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor rlattice
field
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
isRLattice : IsRLattice _<_ _≤_ _#_ min max
open IsRLattice isRLattice public
infixl 4 _<_
infixl 4 _≤_
infixl 4 _#_
-- ℕ ℤ ℚ ℚ₀⁺ ℚ⁺ ℝ ℝ₀⁺ ℝ⁺
-- ring without additive inverse
record ROrderedCommSemiring : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
-- RLattice
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
-- ROrderedCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- _-_ : (x y : Carrier) → (y ≤ x) → Carrier -- is that a good idea?
isROrderedCommSemiring : IsROrderedCommSemiring _<_ _≤_ _#_ min max 0f 1f _+_ _·_
open IsROrderedCommSemiring isROrderedCommSemiring public
-- ℤ ℚ ℝ
record ROrderedCommRing : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
-- RLattice
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
-- ROrderedCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- ROrderedCommRing
-_ : Carrier → Carrier
isROrderedCommRing : IsROrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_
open IsROrderedCommRing isROrderedCommRing public
abs : Carrier → Carrier
abs x = max x (- x)
field
isAbsOrderedCommRing : IsAbsOrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ abs
open IsAbsOrderedCommRing isAbsOrderedCommRing public
-- ℚ ℝ
record ROrderedField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
-- RLattice
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
-- ROrderedCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- ROrderedCommRing
-_ : Carrier → Carrier
-- ROrderedField
_⁻¹ : (x : Carrier) → {{ x # 0f }} → Carrier
isROrderedField : IsROrderedField _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ _⁻¹
open IsROrderedField isROrderedField public
abs : Carrier → Carrier
abs x = max x (- x)
field
isAbsOrderedCommRing : IsAbsOrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ abs
open IsAbsOrderedCommRing isAbsOrderedCommRing public
{-
-- ℚ₀⁺ ℝ₀⁺
record ROrderedSemifield : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
-- RLattice
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
-- ROrderedCommSemiring
0f 1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
-- ROrderedSemifield
_-_ : (x y : Carrier) → (y ≤ x) → Carrier -- is that a good idea?
_⁻¹ : (x : Carrier) → {{ 0f < x }} → Carrier
-- ℚ⁺ ℝ⁺
record ROrderedSemifieldWithoutZero : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
field
-- RLattice
Carrier : Type ℓ
_<_ _≤_ _#_ : Rel Carrier Carrier ℓ'
min max : Carrier → Carrier → Carrier
-- ROrderedSemifieldWithoutZero
1f : Carrier
_+_ _·_ : Carrier → Carrier → Carrier
_-_ : (x y : Carrier) → (y < x) → Carrier -- is that a good idea?
_⁻¹ : Carrier → Carrier
-}
|
{
"alphanum_fraction": 0.6120810757,
"avg_line_length": 28.9709302326,
"ext": "agda",
"hexsha": "e7321321efe964235dbbfc82bde4d47ff44e5db8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Bundles.agda",
"max_line_length": 88,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1816,
"size": 4983
}
|
module Lvl where
open import Type
open import Agda.Primitive public
using (Level; _⊔_)
renaming (lzero to 𝟎; lsuc to 𝐒)
-- Wraps a lower level set in a higher level wrapper set.
record Up {ℓ₁ ℓ₂} (T : Type{ℓ₂}) : Type{ℓ₁ ⊔ ℓ₂} where
constructor up
field obj : T
of : ∀{ℓ} → Type{ℓ} → Level
of {ℓ} _ = ℓ
{-# INLINE of #-}
ofType : ∀{ℓ} → Type{𝐒(ℓ)} → Level
ofType {ℓ} _ = ℓ
{-# INLINE ofType #-}
|
{
"alphanum_fraction": 0.6225490196,
"avg_line_length": 19.4285714286,
"ext": "agda",
"hexsha": "a4db4ea94ed3ea6061088fbc234e0db3a475d70d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Lvl.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Lvl.agda",
"max_line_length": 57,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Lvl.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 168,
"size": 408
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.UnivariateFun.Polyn-nPoly where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.GradedRing.DirectSumFun
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyHIT
open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X]
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.AB-An[X]Bn[X]
open import Cubical.Algebra.Polynomials.UnivariateHIT.Polyn-nPoly
open CommRingEquivs renaming (compCommRingEquiv to _∘-ecr_ ; invCommRingEquiv to inv-ecr)
private variable
ℓ : Level
-----------------------------------------------------------------------------
-- Definition
Equiv1 : (A' : CommRing ℓ) → CommRingEquiv (nUnivariatePolyHIT A' 1) (nUnivariatePolyFun A' 1)
Equiv1 A' = CommRingEquiv-DirectSumGradedRing _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Equiv-Polyn-nPolyFun : (A' : CommRing ℓ) → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (nUnivariatePolyFun A' n)
Equiv-Polyn-nPolyFun A' zero = CRE-Poly0-A A'
Equiv-Polyn-nPolyFun A' (suc n) = inv-ecr _ _ (CRE-PolyN∘M-PolyN+M A' 1 n)
∘-ecr (lift-equiv-poly _ _ 1 (Equiv-Polyn-nPolyFun A' n)
∘-ecr (Equiv-Polyn-nPolyHIT (nUnivariatePolyFun A' n) 1
∘-ecr Equiv1 (nUnivariatePolyFun A' n)))
|
{
"alphanum_fraction": 0.7090611354,
"avg_line_length": 45.8,
"ext": "agda",
"hexsha": "17fb2dcf8aa0252171f353370d779c0722327a37",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Polyn-nPoly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Polyn-nPoly.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Polyn-nPoly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 558,
"size": 1832
}
|
-- Make the type checker loop. How can we ensure that the record is not
-- recursive?
module RecursiveRecord where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
F : Set -> Set
F _ = R
where
record R : Set where
field x : F Nat
r : F Nat
r = _
|
{
"alphanum_fraction": 0.6278195489,
"avg_line_length": 15.6470588235,
"ext": "agda",
"hexsha": "0875849fed22c4063d51eaf4e3aa5f7b8a0d7c80",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/bugs/RecursiveRecord.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/bugs/RecursiveRecord.agda",
"max_line_length": 71,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/bugs/RecursiveRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 80,
"size": 266
}
|
module examplesPaperJFP.WxGraphicsLib where
open import SizedIO.Base
open import StateSizedIO.GUI.BaseStateDependent
open import Size
open import Data.Bool.Base
open import Data.List.Base
open import Function
open import NativeIO
open import StateSizedIO.GUI.WxBindingsFFI
open import StateSizedIO.GUI.VariableList
data GuiLev1Command : Set where
makeFrame : GuiLev1Command
makeButton : Frame → GuiLev1Command
addButton : Frame → Button → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool → GuiLev1Command
repaint : Frame → GuiLev1Command
GuiLev1Response : GuiLev1Command → Set
GuiLev1Response makeFrame = Frame
GuiLev1Response (makeButton _) = Button
GuiLev1Response _ = Unit
GuiLev1Interface : IOInterface
Command GuiLev1Interface = GuiLev1Command
Response GuiLev1Interface = GuiLev1Response
GuiLev2State : Set₁
GuiLev2State = VarList
data GuiLev2Command (s : GuiLev2State) : Set₁ where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setOnPaint : Frame
→ List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set
GuiLev2Response _ (level1C c) = GuiLev1Response c
GuiLev2Response _ (createVar {A} a) = Var A
GuiLev2Response _ _ = Unit
GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State
GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s _ _ = s
GuiLev2Interface : IOInterfaceˢ
Stateˢ GuiLev2Interface = GuiLev2State
Commandˢ GuiLev2Interface = GuiLev2Command
Responseˢ GuiLev2Interface = GuiLev2Response
nextˢ GuiLev2Interface = GuiLev2Next
translateLev1Local : (c : GuiLev1Command) → NativeIO (GuiLev1Response c)
translateLev1Local makeFrame = nativeNewFrame "dummy title"
translateLev1Local (makeButton fra) = nativeMakeButton fra "dummy button label"
translateLev1Local (addButton fra bt) = nativeAddButton fra bt
translateLev1Local (drawBitmap dc bm p b) = nativeDrawBitmap dc bm p b
translateLev1Local (repaint fra) = nativeRepaint fra
translateLev1 : {A : Set} → IO GuiLev1Interface ∞ A → NativeIO A
translateLev1 = translateIO translateLev1Local
translateLev1List : {A : Set} → List (IO GuiLev1Interface ∞ A) → List (NativeIO A)
translateLev1List l = map translateLev1 l
translateLev2Local : (s : GuiLev2State)
→ (c : GuiLev2Command s)
→ NativeIO (GuiLev2Response s c)
translateLev2Local s (level1C c) = translateLev1Local c
translateLev2Local s (createVar {A} a) = nativeNewVar {A} a
translateLev2Local s (setButtonHandler bt proglist) =
nativeSetButtonHandler bt
(dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist))
translateLev2Local s (setOnPaint fra proglist) =
nativeSetOnPaint fra (λ dc rect → dispatchList s
(map (λ prog aa → translateLev1 (prog aa dc rect)) proglist))
translateLev2 : ∀ {A s} → IOˢ GuiLev2Interface ∞ (λ _ → A) s → NativeIO A
translateLev2 = translateIOˢ translateLev2Local
|
{
"alphanum_fraction": 0.6847731869,
"avg_line_length": 34.9595959596,
"ext": "agda",
"hexsha": "7ba24d93d3576aaffa806dd86cfda4607e0d2461",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/WxGraphicsLib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/WxGraphicsLib.agda",
"max_line_length": 87,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/WxGraphicsLib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1116,
"size": 3461
}
|
{-# OPTIONS --safe --cubical #-}
open import Container
module Container.Membership {s p} (𝒞 : Container s p) where
open import Prelude
open import HLevels
infixr 5 _∈_ _∈!_
_∈_ : A → ⟦ 𝒞 ⟧ A → Type _
x ∈ xs = fiber (snd xs) x
_∈!_ : A → ⟦ 𝒞 ⟧ A → Type _
x ∈! xs = isContr (x ∈ xs)
|
{
"alphanum_fraction": 0.6048951049,
"avg_line_length": 17.875,
"ext": "agda",
"hexsha": "1cfcb4b0130f4a3317e75793d09c9fc2eab5a0f1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Container/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Container/Membership.agda",
"max_line_length": 59,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Container/Membership.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 115,
"size": 286
}
|
{-# OPTIONS --copatterns #-}
-- {-# OPTIONS -v tc.lhs.split:50 -v tc.cover:20 -v tc.cc:15 -v tc.lhs.top:10 #-}
-- {-# OPTIONS -v term:20 #-}
-- {-# OPTIONS --no-positivity-check #-}
-- {-# OPTIONS -v tc.def.fun:50 #-}
-- {-# OPTIONS -v 100 #-}
module CoPatStream where
import Common.Level
open import Common.Prelude hiding (map)
open import Common.Equality
record Stream (A : Set) : Set where
coinductive
constructor cons
field
head : A
tail : Stream A
module S = Stream
record _≈_ {A : Set}(s t : Stream A) : Set where
coinductive
field
head : S.head s ≡ S.head t
tail : S.tail s ≈ S.tail t
module B = _≈_
repeat : {A : Set}(a : A) → Stream A
-- repeat a = cons a (repeat a)
S.head (repeat a) = a
S.tail (repeat a) = repeat a
module Cycle where
cycle : Nat -> Stream Nat
cycle n = cycle' n where
cycle' : Nat -> Stream Nat
S.head (cycle' n) = n
S.tail (cycle' zero ) = cycle n
S.tail (cycle' (suc n')) = cycle' n'
module CoPat where
map : {A B : Set} → (A → B) → Stream A → Stream B
S.head (map f s) = f (S.head s)
S.tail (map f s) = map f (S.tail s)
map_id : {A : Set}(s : Stream A) → map (λ x → x) s ≈ s
B.head (map_id s) = refl
B.tail (map_id s) = map_id (S.tail s)
module HandTranslated where
{-# NON_TERMINATING #-}
map : {A B : Set} → (A → B) → Stream A → Stream B
map f s = record
{ head = f (S.head s)
; tail = map f (S.tail s)
}
{- rejected because map is not unfolded
{-# NON_TERMINATING #-}
map_id : {A : Set}(s : Stream A) → map (λ x → x) s ≈ s
map_id s = record
{ head = refl
; tail = map_id (S.tail s)
}
-}
module DeepCoPat where
repeat₂ : {A : Set}(a₁ a₂ : A) → Stream A
( (S.head (repeat₂ a₁ a₂))) = a₁
(S.head (S.tail (repeat₂ a₁ a₂))) = a₂
(S.tail (S.tail (repeat₂ a₁ a₂))) = repeat₂ a₁ a₂
repeat≈repeat₂ : {A : Set}(a : A) → repeat a ≈ repeat₂ a a
( (B.head (repeat≈repeat₂ a))) = refl
(B.head (B.tail (repeat≈repeat₂ a))) = refl
(B.tail (B.tail (repeat≈repeat₂ a))) = repeat≈repeat₂ a
module ProjectionRHS where
repeat′ : {A : Set}(a : A) → Stream A
( (S.head (repeat′ a))) = a
(S.head (S.tail (repeat′ a))) = a
(S.tail (S.tail (repeat′ a))) = S.tail (repeat′ a)
-- -- Type error:
-- repeat≈repeat′ : {A : Set}(a : A) → repeat a ≈ repeat′ a
-- ( (B.head (repeat≈repeat′ a))) = refl
-- (B.head (B.tail (repeat≈repeat′ a))) = refl
-- (B.tail (B.tail (repeat≈repeat′ a))) = repeat≈repeat′ a
|
{
"alphanum_fraction": 0.5657418577,
"avg_line_length": 26.1789473684,
"ext": "agda",
"hexsha": "e2e8454b862ca51cc029f50891a27fbbf564223e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/CoPatStream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/CoPatStream.agda",
"max_line_length": 81,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/CoPatStream.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 903,
"size": 2487
}
|
{-
Definition of and facts about Smith normal form
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.IntegerMatrix.Smith.NormalForm where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
hiding (_·_)
renaming (_+_ to _+ℕ_ ; +-assoc to +Assocℕ)
open import Cubical.Data.Int
hiding (_+_ ; _·_ ; _-_ ; -_ ; addEq)
open import Cubical.Data.Int.Divisibility
open import Cubical.Data.FinData
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit as Unit
open import Cubical.Data.Sigma
open import Cubical.Data.List
open import Cubical.Relation.Nullary
open import Cubical.Algebra.Matrix.CommRingCoefficient
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Int
renaming (ℤ to ℤRing)
private
variable
m n k : ℕ
open Coefficient ℤRing
-- Sequence of consecutively divisible integers
_∣all_ : ℤ → List ℤ → Type
n ∣all [] = ¬ n ≡ 0
n ∣all (x ∷ ys) = n ∣ x × n ∣all ys
isProp∣all : {n : ℤ}{xs : List ℤ} → isProp (n ∣all xs)
isProp∣all {xs = []}= isPropΠ (λ _ → isProp⊥)
isProp∣all {xs = x ∷ xs} = isProp× isProp∣ isProp∣all
isConsDivs : List ℤ → Type
isConsDivs [] = Unit
isConsDivs (x ∷ xs) = x ∣all xs × isConsDivs xs
isPropIsConsDivs : (xs : List ℤ) → isProp (isConsDivs xs)
isPropIsConsDivs [] = isPropUnit
isPropIsConsDivs (x ∷ xs) = isProp× isProp∣all (isPropIsConsDivs xs)
ConsDivs : Type
ConsDivs = Σ[ xs ∈ List ℤ ] isConsDivs xs
cons : (n : ℤ)(xs : ConsDivs) → n ∣all xs .fst → ConsDivs
cons n (xs , _) _ .fst = n ∷ xs
cons n ([] , _) p .snd = p , tt
cons n (x ∷ xs , q) p .snd = p , q
-- Smith normal matrix
_+length_ : ConsDivs → ℕ → ℕ
xs +length n = length (xs .fst) +ℕ n
smithMat : (xs : List ℤ)(m n : ℕ) → Mat (length xs +ℕ m) (length xs +ℕ n)
smithMat [] _ _ = 𝟘
smithMat (x ∷ xs) _ _ = x ⊕ smithMat xs _ _
smithMat∣ :
(a : ℤ)(xs : ConsDivs){m n : ℕ}
→ ¬ a ≡ 0
→ ((i : Fin (xs +length m))(j : Fin (xs +length n)) → a ∣ smithMat (xs .fst) m n i j)
→ a ∣all xs .fst
smithMat∣ _ ([] , _) q _ = q
smithMat∣ a (x ∷ xs , p) q h = h zero zero , smithMat∣ a (xs , p .snd) q (λ i j → h (suc i) (suc j))
smithMat⊕ :
(a : ℤ)(xs : ConsDivs){m n : ℕ}
→ (div : a ∣all xs .fst)
→ a ⊕ smithMat (xs .fst) m n ≡ smithMat (cons a xs div .fst) m n
smithMat⊕ _ _ _ = refl
-- Matrix with smith normality
record isSmithNormal (M : Mat m n) : Type where
field
divs : ConsDivs
rowNull : ℕ
colNull : ℕ
rowEq : divs +length rowNull ≡ m
colEq : divs +length colNull ≡ n
matEq : PathP (λ t → Mat (rowEq t) (colEq t)) (smithMat (divs .fst) rowNull colNull) M
open isSmithNormal
row col : {M : Mat m n} → isSmithNormal M → ℕ
row isNorm = isNorm .divs +length isNorm .rowNull
col isNorm = isNorm .divs +length isNorm .colNull
smith∣ :
(a : ℤ){M : Mat m n}(isNorm : isSmithNormal M)
→ ¬ a ≡ 0
→ ((i : Fin m)(j : Fin n) → a ∣ M i j)
→ a ∣all isNorm . divs .fst
smith∣ a isNorm p h =
let a∣smith = λ
{ i j →
subst (a ∣_) (λ t → isNorm .matEq (~ t)
(subst-filler Fin (isNorm .rowEq) i (~ t))
(subst-filler Fin (isNorm .colEq) j (~ t))) (h _ _) }
in smithMat∣ _ (isNorm .divs) p a∣smith
-- Similarity to a normal form
open Sim
record Smith (M : Mat m n) : Type where
field
sim : Sim M
isnormal : isSmithNormal (sim .result)
open Smith
simSmith : {M : Mat m n}(sim : Sim M) → Smith (sim .result) → Smith M
simSmith simM smith .sim = compSim simM (smith .sim)
simSmith _ smith .isnormal = smith .isnormal
-- Simple special cases of normal matrices
isSmithNormal𝟘 : isSmithNormal (𝟘 {m = m} {n = n})
isSmithNormal𝟘 .divs = [] , tt
isSmithNormal𝟘 {m = m} .rowNull = m
isSmithNormal𝟘 {n = n} .colNull = n
isSmithNormal𝟘 .rowEq = refl
isSmithNormal𝟘 .colEq = refl
isSmithNormal𝟘 .matEq = refl
isSmithNormalEmpty : (M : Mat 0 n) → isSmithNormal M
isSmithNormalEmpty _ .divs = [] , tt
isSmithNormalEmpty _ .rowNull = 0
isSmithNormalEmpty {n = n} _ .colNull = n
isSmithNormalEmpty _ .rowEq = refl
isSmithNormalEmpty _ .colEq = refl
isSmithNormalEmpty _ .matEq = isContr→isProp isContrEmpty _ _
isSmithNormalEmptyᵗ : (M : Mat m 0) → isSmithNormal M
isSmithNormalEmptyᵗ _ .divs = [] , tt
isSmithNormalEmptyᵗ {m = m} _ .rowNull = m
isSmithNormalEmptyᵗ _ .colNull = 0
isSmithNormalEmptyᵗ _ .rowEq = refl
isSmithNormalEmptyᵗ _ .colEq = refl
isSmithNormalEmptyᵗ _ .matEq = isContr→isProp isContrEmptyᵗ _ _
smith𝟘 : Smith (𝟘 {m = m} {n = n})
smith𝟘 .sim = idSim _
smith𝟘 .isnormal = isSmithNormal𝟘
smithEmpty : (M : Mat 0 n) → Smith M
smithEmpty _ .sim = idSim _
smithEmpty M .isnormal = isSmithNormalEmpty M
smithEmptyᵗ : (M : Mat m 0) → Smith M
smithEmptyᵗ _ .sim = idSim _
smithEmptyᵗ M .isnormal = isSmithNormalEmptyᵗ M
|
{
"alphanum_fraction": 0.6525831416,
"avg_line_length": 27.4770114943,
"ext": "agda",
"hexsha": "0a42763c9476983099e6ba2d3186df7737d82079",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/NormalForm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/NormalForm.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Smith/NormalForm.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1814,
"size": 4781
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Solver for equations in commutative monoids
--
-- Adapted from Algebra.Solver.Monoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Algebra.Solver.CommutativeMonoid {m₁ m₂} (M : CommutativeMonoid m₁ m₂) where
open import Data.Fin using (Fin; zero; suc)
open import Data.Maybe as Maybe
using (Maybe; decToMaybe; From-just; from-just)
open import Data.Nat as ℕ using (ℕ; zero; suc; _+_)
open import Data.Nat.GeneralisedArithmetic using (fold)
open import Data.Product using (_×_; uncurry)
open import Data.Vec using (Vec; []; _∷_; lookup; replicate)
open import Function using (_∘_)
import Relation.Binary.Reasoning.Setoid as EqReasoning
import Relation.Binary.Reflection as Reflection
import Relation.Nullary.Decidable as Dec
import Data.Vec.Relation.Binary.Pointwise.Inductive as Pointwise
open import Relation.Binary.PropositionalEquality as P using (_≡_; decSetoid)
open import Relation.Nullary using (Dec)
open CommutativeMonoid M
open EqReasoning setoid
------------------------------------------------------------------------
-- Monoid expressions
-- There is one constructor for every operation, plus one for
-- variables; there may be at most n variables.
infixr 5 _⊕_
infixr 10 _•_
data Expr (n : ℕ) : Set where
var : Fin n → Expr n
id : Expr n
_⊕_ : Expr n → Expr n → Expr n
-- An environment contains one value for every variable.
Env : ℕ → Set _
Env n = Vec Carrier n
-- The semantics of an expression is a function from an environment to
-- a value.
⟦_⟧ : ∀ {n} → Expr n → Env n → Carrier
⟦ var x ⟧ ρ = lookup ρ x
⟦ id ⟧ ρ = ε
⟦ e₁ ⊕ e₂ ⟧ ρ = ⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ
------------------------------------------------------------------------
-- Normal forms
-- A normal form is a vector of multiplicities (a bag).
Normal : ℕ → Set
Normal n = Vec ℕ n
-- The semantics of a normal form.
⟦_⟧⇓ : ∀ {n} → Normal n → Env n → Carrier
⟦ [] ⟧⇓ _ = ε
⟦ n ∷ v ⟧⇓ (a ∷ ρ) = fold (⟦ v ⟧⇓ ρ) (λ b → a ∙ b) n
------------------------------------------------------------------------
-- Constructions on normal forms
-- The empty bag.
empty : ∀{n} → Normal n
empty = replicate 0
-- A singleton bag.
sg : ∀{n} (i : Fin n) → Normal n
sg zero = 1 ∷ empty
sg (suc i) = 0 ∷ sg i
-- The composition of normal forms.
_•_ : ∀{n} (v w : Normal n) → Normal n
[] • [] = []
(l ∷ v) • (m ∷ w) = l + m ∷ v • w
------------------------------------------------------------------------
-- Correctness of the constructions on normal forms
-- The empty bag stands for the unit ε.
empty-correct : ∀{n} (ρ : Env n) → ⟦ empty ⟧⇓ ρ ≈ ε
empty-correct [] = refl
empty-correct (a ∷ ρ) = empty-correct ρ
-- The singleton bag stands for a single variable.
sg-correct : ∀{n} (x : Fin n) (ρ : Env n) → ⟦ sg x ⟧⇓ ρ ≈ lookup ρ x
sg-correct zero (x ∷ ρ) = begin
x ∙ ⟦ empty ⟧⇓ ρ ≈⟨ ∙-congˡ (empty-correct ρ) ⟩
x ∙ ε ≈⟨ identityʳ _ ⟩
x ∎
sg-correct (suc x) (m ∷ ρ) = sg-correct x ρ
-- Normal form composition corresponds to the composition of the monoid.
comp-correct : ∀ {n} (v w : Normal n) (ρ : Env n) →
⟦ v • w ⟧⇓ ρ ≈ (⟦ v ⟧⇓ ρ ∙ ⟦ w ⟧⇓ ρ)
comp-correct [] [] ρ = sym (identityˡ _)
comp-correct (l ∷ v) (m ∷ w) (a ∷ ρ) = lemma l m (comp-correct v w ρ)
where
flip12 : ∀ a b c → a ∙ (b ∙ c) ≈ b ∙ (a ∙ c)
flip12 a b c = begin
a ∙ (b ∙ c) ≈⟨ sym (assoc _ _ _) ⟩
(a ∙ b) ∙ c ≈⟨ ∙-congʳ (comm _ _) ⟩
(b ∙ a) ∙ c ≈⟨ assoc _ _ _ ⟩
b ∙ (a ∙ c) ∎
lemma : ∀ l m {d b c} (p : d ≈ b ∙ c) →
fold d (a ∙_) (l + m) ≈ fold b (a ∙_) l ∙ fold c (a ∙_) m
lemma zero zero p = p
lemma zero (suc m) p = trans (∙-congˡ (lemma zero m p)) (flip12 _ _ _)
lemma (suc l) m p = trans (∙-congˡ (lemma l m p)) (sym (assoc a _ _))
------------------------------------------------------------------------
-- Normalization
-- A normaliser.
normalise : ∀ {n} → Expr n → Normal n
normalise (var x) = sg x
normalise id = empty
normalise (e₁ ⊕ e₂) = normalise e₁ • normalise e₂
-- The normaliser preserves the semantics of the expression.
normalise-correct : ∀ {n} (e : Expr n) (ρ : Env n) →
⟦ normalise e ⟧⇓ ρ ≈ ⟦ e ⟧ ρ
normalise-correct (var x) ρ = sg-correct x ρ
normalise-correct id ρ = empty-correct ρ
normalise-correct (e₁ ⊕ e₂) ρ = begin
⟦ normalise e₁ • normalise e₂ ⟧⇓ ρ
≈⟨ comp-correct (normalise e₁) (normalise e₂) ρ ⟩
⟦ normalise e₁ ⟧⇓ ρ ∙ ⟦ normalise e₂ ⟧⇓ ρ
≈⟨ ∙-cong (normalise-correct e₁ ρ) (normalise-correct e₂ ρ) ⟩
⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ
∎
------------------------------------------------------------------------
-- "Tactics"
open module R = Reflection
setoid var ⟦_⟧ (⟦_⟧⇓ ∘ normalise) normalise-correct
public using (solve; _⊜_)
-- We can decide if two normal forms are /syntactically/ equal.
infix 5 _≟_
_≟_ : ∀ {n} (nf₁ nf₂ : Normal n) → Dec (nf₁ ≡ nf₂)
nf₁ ≟ nf₂ = Dec.map Pointwise-≡↔≡ (decidable ℕ._≟_ nf₁ nf₂)
where open Pointwise
-- We can also give a sound, but not necessarily complete, procedure
-- for determining if two expressions have the same semantics.
prove′ : ∀ {n} (e₁ e₂ : Expr n) → Maybe (∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ)
prove′ e₁ e₂ =
Maybe.map lemma (decToMaybe (normalise e₁ ≟ normalise e₂))
where
lemma : normalise e₁ ≡ normalise e₂ → ∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ
lemma eq ρ =
R.prove ρ e₁ e₂ (begin
⟦ normalise e₁ ⟧⇓ ρ ≡⟨ P.cong (λ e → ⟦ e ⟧⇓ ρ) eq ⟩
⟦ normalise e₂ ⟧⇓ ρ ∎)
-- This procedure can be combined with from-just.
prove : ∀ n (e₁ e₂ : Expr n) → From-just (prove′ e₁ e₂)
prove _ e₁ e₂ = from-just (prove′ e₁ e₂)
-- prove : ∀ n (es : Expr n × Expr n) →
-- From-just (uncurry prove′ es)
-- prove _ = from-just ∘ uncurry prove′
|
{
"alphanum_fraction": 0.541447703,
"avg_line_length": 29.6432160804,
"ext": "agda",
"hexsha": "8268d100f368fdaa6d503ad0c12282850bc61d73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/CommutativeMonoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2096,
"size": 5899
}
|
open import Data.List hiding ([_]) renaming (_∷_ to _∷ₗ_)
open import Data.Maybe
open import Data.Product
open import AEff
open import EffectAnnotations
open import Renamings
open import Substitutions renaming (⟨_,_⟩ to ⟨_,,_⟩)
open import Types
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
module Preservation where
-- BINDING CONTEXTS
BCtx = List VType
-- WELL-TYPED EVALUATION CONTEXTS
data _⊢E[_]⦂_ (Γ : Ctx) : (Δ : BCtx) → CType → Set where
[-] : {C : CType} →
-------------
Γ ⊢E[ [] ]⦂ C
let=_`in_ : {Δ : BCtx}
{X Y : VType}
{o : O}
{i : I} →
Γ ⊢E[ Δ ]⦂ X ! (o , i) →
Γ ∷ X ⊢C⦂ Y ! (o , i) →
------------------------
Γ ⊢E[ Δ ]⦂ Y ! (o , i)
↑ : {Δ : BCtx}
{X : VType}
{o : O}
{i : I} →
(op : Σₛ) →
op ∈ₒ o →
Γ ⊢V⦂ proj₁ (payload op) →
Γ ⊢E[ Δ ]⦂ X ! (o , i) →
--------------------------
Γ ⊢E[ Δ ]⦂ X ! (o , i)
↓ : {Δ : BCtx}
{X : VType}
{o : O}
{i : I}
(op : Σₛ) →
Γ ⊢V⦂ proj₁ (payload op) →
Γ ⊢E[ Δ ]⦂ X ! (o , i) →
---------------------------
Γ ⊢E[ Δ ]⦂ X ! op ↓ₑ (o , i)
promise_∣_↦_`in_ : {Δ : BCtx}
{X Y : VType}
{o o' : O}
{i i' : I} →
(op : Σₛ) →
(o' , i') ⊑ lkpᵢ op i →
Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i') →
Γ ∷ ⟨ X ⟩ ⊢E[ Δ ]⦂ Y ! (o , i) →
----------------------------------------------
Γ ⊢E[ X ∷ₗ Δ ]⦂ Y ! (o , i)
spawn : {Δ : BCtx}
{C D : CType} →
Γ ■ ⊢C⦂ C →
Γ ⊢E[ Δ ]⦂ D →
---------------
Γ ⊢E[ Δ ]⦂ D
coerce : {Δ : BCtx}
{X : VType}
{o o' : O}
{i i' : I} →
o ⊑ₒ o' →
i ⊑ᵢ i' →
Γ ⊢E[ Δ ]⦂ X ! (o , i) →
------------------------
Γ ⊢E[ Δ ]⦂ X ! (o' , i')
-- MERGING AN ORDINARY CONTEXT AND A BINDING CONTEXT
infix 30 _⋈_
_⋈_ : Ctx → BCtx → Ctx
Γ ⋈ [] = Γ
Γ ⋈ (X ∷ₗ Δ) = (Γ ∷ ⟨ X ⟩) ⋈ Δ
-- FINDING THE TYPE OF THE HOLE OF A WELL-TYPED EVALUATION CONTEXT
hole-ty-e : {Γ : Ctx} {Δ : BCtx} {C : CType} → Γ ⊢E[ Δ ]⦂ C → CType
hole-ty-e {_} {_} {C} [-] =
C
hole-ty-e (let= E `in M) =
hole-ty-e E
hole-ty-e (↑ op p V E) =
hole-ty-e E
hole-ty-e (↓ op V E) =
hole-ty-e E
hole-ty-e (promise op ∣ p ↦ M `in E) =
hole-ty-e E
hole-ty-e (spawn M E) =
hole-ty-e E
hole-ty-e (coerce p q E) =
hole-ty-e E
-- FILLING A WELL-TYPED EVALUATION CONTEXT
infix 30 _[_]
_[_] : {Γ : Ctx} {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → Γ ⋈ Δ ⊢C⦂ (hole-ty-e E) → Γ ⊢C⦂ C
[-] [ M ] =
M
(let= E `in N) [ M ] =
let= (E [ M ]) `in N
(↑ op p V E) [ M ] =
↑ op p V (E [ M ])
(↓ op V E) [ M ] =
↓ op V (E [ M ])
(promise op ∣ p ↦ N `in E) [ M ] =
promise op ∣ p ↦ N `in (E [ M ])
(spawn N E) [ M ] =
spawn N (E [ M ])
(coerce p q E) [ M ] =
coerce p q (E [ M ])
-- STRENGTHENING OF GROUND VALUES WRT BOUND PROMISES
strengthen-var : {Γ : Ctx} → (Δ : BCtx) → {X : VType} →
mobile X →
X ∈ Γ ⋈ Δ →
--------------------------------------
X ∈ Γ
strengthen-var [] p x = x
strengthen-var (y ∷ₗ Δ) p x with strengthen-var Δ p x
... | Tl-v z = z
strengthen-■-var : {Γ : Ctx} → (Γ' : Ctx) →
(Δ : BCtx) → {X : VType} →
X ∈ (Γ ⋈ Δ) ■ ++ₖ Γ' →
--------------------------
X ∈ Γ ■ ++ₖ Γ'
strengthen-■-var Γ' [] x = x
strengthen-■-var [] (y ∷ₗ Δ) x with strengthen-■-var [] Δ x
... | Tl-■ p (Tl-v z) = Tl-■ p z
strengthen-■-var (Γ' ∷ Z) (y ∷ₗ Δ) Hd = Hd
strengthen-■-var (Γ' ∷ Z) (y ∷ₗ Δ) (Tl-v x) with strengthen-■-var Γ' (y ∷ₗ Δ) x
... | q = Tl-v q
strengthen-■-var (Γ' ■) (y ∷ₗ Δ) (Tl-■ p x) with strengthen-■-var Γ' (y ∷ₗ Δ) x
... | q = Tl-■ p q
mutual
strengthen-■-v : {Γ Γ' : Ctx} {Δ : BCtx} {X : VType} →
(Γ ⋈ Δ) ■ ++ₖ Γ' ⊢V⦂ X →
-------------------------------------
Γ ■ ++ₖ Γ' ⊢V⦂ X
strengthen-■-v {_} {Γ'} {Δ} (` x) =
` strengthen-■-var Γ' Δ x
strengthen-■-v (´ c) =
´ c
strengthen-■-v ⋆ =
⋆
strengthen-■-v {Γ} {Γ'} {Δ} (ƛ M) =
ƛ (strengthen-■-c {Γ} {Γ' ∷ _} {Δ} M)
strengthen-■-v {Γ} {Γ'} {Δ} ⟨ V ⟩ =
⟨ strengthen-■-v {Γ} {Γ'} {Δ} V ⟩
strengthen-■-v {Γ} {Γ'} {Δ} (□ V) =
□ (strengthen-■-v {Γ' = _ ■} {Δ = Δ} V)
strengthen-■-c : {Γ Γ' : Ctx} {Δ : BCtx} {C : CType} →
(Γ ⋈ Δ) ■ ++ₖ Γ' ⊢C⦂ C →
-------------------------------------
Γ ■ ++ₖ Γ' ⊢C⦂ C
strengthen-■-c {Γ} {Γ'} {Δ} (return V) =
return (strengthen-■-v {Γ} {Γ'} {Δ} V)
strengthen-■-c {Γ} {Γ'} {Δ} (let= M `in N) =
let= (strengthen-■-c {Γ} {Γ'} {Δ} M) `in (strengthen-■-c {Γ} {Γ' ∷ _} {Δ} N)
strengthen-■-c {Γ} {Γ'} {Δ} (V · W) =
(strengthen-■-v {Γ} {Γ'} {Δ} V) · (strengthen-■-v {Γ} {Γ'} {Δ} W)
strengthen-■-c {Γ} {Γ'} {Δ} (↑ op p V M) =
↑ op p (strengthen-■-v {Γ} {Γ'} {Δ} V) (strengthen-■-c {Γ} {Γ'} {Δ} M)
strengthen-■-c {Γ} {Γ'} {Δ} (↓ op V M) =
↓ op (strengthen-■-v {Γ} {Γ'} {Δ} V) (strengthen-■-c {Γ} {Γ'} {Δ} M)
strengthen-■-c {Γ} {Γ'} {Δ} (promise op ∣ p ↦ M `in N) =
promise op ∣ p ↦ (strengthen-■-c {Γ} {Γ' ∷ proj₁ (payload op) ∷ _} {Δ} M) `in (strengthen-■-c {Γ} {Γ' ∷ ⟨ _ ⟩} {Δ} N)
strengthen-■-c {Γ} {Γ'} {Δ} (await V until N) =
await (strengthen-■-v {Γ} {Γ'} {Δ} V) until (strengthen-■-c {Γ} {Γ' ∷ _} {Δ} N)
strengthen-■-c {Γ} {Γ'} {Δ} (unbox V `in N) =
unbox (strengthen-■-v {Γ} {Γ'} {Δ} V) `in (strengthen-■-c {Γ} {Γ' ∷ _} {Δ} N)
strengthen-■-c {Γ} {Γ'} {Δ} (spawn M N) =
spawn (strengthen-■-c {Γ' = _ ■} {Δ = Δ} M) (strengthen-■-c {Δ = Δ} N)
strengthen-■-c {Γ} {Γ'} {Δ} (coerce p q M) =
coerce p q (strengthen-■-c {Γ} {Γ'} {Δ} M)
strengthen-val : {Γ : Ctx} {Δ : BCtx} {X : VType} →
mobile X →
Γ ⋈ Δ ⊢V⦂ X →
----------------------------------
Γ ⊢V⦂ X
strengthen-val {_} {Δ} p (` x) =
` strengthen-var Δ p x
strengthen-val p (´ c) =
´ c
strengthen-val p ⋆ =
⋆
strengthen-val {Γ} {Δ} p (□ V) =
□ (strengthen-■-v {Γ} {[]} {Δ} V)
-- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED COMPUTATIONS
-- (ADDITIONALLY SERVES AS THE PRESERVATION THEOREM)
infix 10 _↝_
data _↝_ {Γ : Ctx} : {C : CType} → Γ ⊢C⦂ C → Γ ⊢C⦂ C → Set where
-- COMPUTATIONAL RULES
apply : {X : VType}
{C : CType} →
(M : Γ ∷ X ⊢C⦂ C) →
(V : Γ ⊢V⦂ X) →
----------------------
(ƛ M) · V
↝
M [ sub-id [ V ]s ]c
let-return : {X Y : VType}
{o : O}
{i : I} →
(V : Γ ⊢V⦂ X) →
(N : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
-----------------------------
let= (return V) `in N
↝
N [ sub-id [ V ]s ]c
let-↑ : {X Y : VType}
{o : O}
{i : I}
{op : Σₛ} →
(p : op ∈ₒ o) →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(M : Γ ⊢C⦂ X ! (o , i)) →
(N : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
-----------------------------
let= (↑ op p V M) `in N
↝
↑ op p V (let= M `in N)
let-promise : {X Y Z : VType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
(p : (o' , i') ⊑ lkpᵢ op i) →
(M₁ : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) →
(M₂ : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
(N : Γ ∷ Y ⊢C⦂ Z ! (o , i)) →
----------------------------------------------------------------------------------------------------------
let= (promise op ∣ p ↦ M₁ `in M₂) `in N
↝
(promise op ∣ p ↦ M₁ `in (let= M₂ `in (C-rename (ren-cong ren-wk) N)))
let-await : {X Y Z : VType}
{o : O}
{i : I} →
(V : Γ ⊢V⦂ ⟨ X ⟩) →
(M : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
(N : Γ ∷ Y ⊢C⦂ Z ! (o , i)) →
-------------------------------------------------------
let= (await V until M) `in N
↝
await V until (let= M `in C-rename (ren-cong ren-wk) N)
let-spawn : {X Y : VType}
{C : CType}
{o : O}
{i : I} →
(M : Γ ■ ⊢C⦂ C) →
(N : Γ ⊢C⦂ X ! (o , i)) →
(K : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
---------------------------------------
let= (spawn M N) `in K
↝
spawn M (let= N `in K)
promise-↑ : {X Y : VType}
{o o' : O}
{i i' : I}
{op op' : Σₛ} →
(p : (o' , i') ⊑ lkpᵢ op i) →
(q : op' ∈ₒ o) →
(V : Γ ∷ ⟨ X ⟩ ⊢V⦂ proj₁ (payload op')) →
(M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
-----------------------------------------------------------------------------------------
(promise op ∣ p ↦ M `in (↑ op' q V N))
↝
↑ op' q (strengthen-val {Δ = X ∷ₗ []} (proj₂ (payload op')) V) (promise op ∣ p ↦ M `in N)
promise-spawn : {X Y : VType}
{C : CType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
(p : (o' , i') ⊑ lkpᵢ op i) →
(M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ■ ⊢C⦂ C) →
(K : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
---------------------------------------------------------------------------
(promise op ∣ p ↦ M `in (spawn N K))
↝
spawn (strengthen-■-c {Γ' = []} {Δ = X ∷ₗ []} N) (promise op ∣ p ↦ M `in K)
↓-return : {X : VType}
{o : O}
{i : I}
{op : Σₛ} →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(W : Γ ⊢V⦂ X) →
----------------------------------------------------------------
↓ {o = o} {i = i} op V (return W)
↝
return {o = proj₁ (op ↓ₑ (o , i))} {i = proj₂ (op ↓ₑ (o , i))} W
↓-↑ : {X : VType}
{o : O}
{i : I}
{op : Σₛ}
{op' : Σₛ} →
(p : op' ∈ₒ o) →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(W : Γ ⊢V⦂ proj₁ (payload op')) →
(M : Γ ⊢C⦂ X ! (o , i)) →
--------------------------------
↓ op V (↑ op' p W M)
↝
↑ op' (↓ₑ-⊑ₒ op' p) W (↓ op V M)
↓-promise-op : {X Y : VType}
{o o' : O}
{i i' : I}
{op : Σₛ} →
(p : (o' , i') ⊑ lkpᵢ op i) →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
--------------------------------------------------------------------------------------------------------------------------------------------------------
↓ op V (promise op ∣ p ↦ M `in N )
↝
(let= (coerce (⊑ₒ-trans (proj₁ (⊑-proj p (proj₂ (proj₂ (⊑-just p))))) (↓ₑ-⊑ₒ-o' {o = o} (proj₂ (proj₂ (⊑-just p)))))
(⊑ᵢ-trans (proj₂ (⊑-proj p (proj₂ (proj₂ (⊑-just p))))) (↓ₑ-⊑ₒ-i' {o = o} (proj₂ (proj₂ (⊑-just p)))))
(M [ (sub-id [ V ]s)
[ ƛ (promise op ∣ subst (λ oi → (o' , i') ⊑ oi) (sym ite-≡) ⊑-refl ↦ C-rename (ren-cong (ren-cong ren-wk)) M `in return (` Hd)) ]s ]c))
`in (↓ op (V-rename ren-wk V) N))
↓-promise-op' : {X Y : VType}
{o o' : O}
{i i' : I}
{op op' : Σₛ} →
(p : ¬ op ≡ op') →
(q : (o' , i') ⊑ lkpᵢ op' i) →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(M : Γ ∷ proj₁ (payload op') ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op' ↦ just (o' , i') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o' , i')) →
(N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
----------------------------------------------------------------------------------------------------------
↓ op V (promise op' ∣ q ↦ M `in N )
↝
promise op' ∣ (lkpᵢ-↓ₑ-neq-⊑ {o = o} {i = i} p q) ↦ M `in ↓ op (V-rename ren-wk V) N
↓-await : {X Y : VType}
{o : O}
{i : I}
{op : Σₛ} →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(W : Γ ⊢V⦂ ⟨ X ⟩) →
(M : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
------------------------------------------
↓ op V (await W until M)
↝
await W until (↓ op (V-rename ren-wk V) M)
↓-spawn : {X : VType}
{C : CType}
{o : O}
{i : I}
{op : Σₛ} →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(M : Γ ■ ⊢C⦂ C) →
(N : Γ ⊢C⦂ X ! (o , i)) →
--------------------------------
↓ op V (spawn M N)
↝
spawn M (↓ op V N)
await-promise : {X : VType}
{C : CType} →
(V : Γ ⊢V⦂ X) →
(M : Γ ∷ X ⊢C⦂ C) →
--------------------
await ⟨ V ⟩ until M
↝
M [ sub-id [ V ]s ]c
box-unbox : {X : VType}
{C : CType} →
(V : Γ ■ ⊢V⦂ X) →
(M : Γ ∷ X ⊢C⦂ C) →
-------------------
unbox (□ V) `in M
↝
M [ ⟨ sub-id ,, ■-str-v {Γ' = []} V ⟩ ]c
-- EVALUATION CONTEXT RULE
context : {Δ : BCtx}
{C : CType} →
(E : Γ ⊢E[ Δ ]⦂ C) →
{M N : Γ ⋈ Δ ⊢C⦂ (hole-ty-e E)} →
M ↝ N →
-------------------------------
E [ M ] ↝ E [ N ]
-- COERCION RULES
-- (THE RESULT OF WORKING WITH WELL-TYPED SYNTAX AND MAKING SUBSUMPTION INTO AN EXPLICIT COERCION)
coerce-return : {X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'} →
(V : Γ ⊢V⦂ X) →
--------------------------------
coerce p q (return V) ↝ return V
coerce-↑ : {X : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'}
{op : Σₛ} →
(r : op ∈ₒ o) →
(V : Γ ⊢V⦂ proj₁ (payload op)) →
(M : Γ ⊢C⦂ X ! (o , i)) →
--------------------------------
coerce p q (↑ op r V M)
↝
↑ op (p op r) V (coerce p q M)
coerce-promise : {X Y : VType}
{o o' o'' : O}
{i i' i'' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'}
{op : Σₛ} →
(r : (o'' , i'') ⊑ lkpᵢ op i)
(M : Γ ∷ proj₁ (payload op) ∷ (𝟙 ⇒ (⟨ X ⟩ ! (∅ₒ , ∅ᵢ [ op ↦ just (o'' , i'') ]ᵢ))) ⊢C⦂ ⟨ X ⟩ ! (o'' , i'')) →
(N : Γ ∷ ⟨ X ⟩ ⊢C⦂ Y ! (o , i)) →
-------------------------------------------------------------------------------------------------------------
coerce p q (promise op ∣ r ↦ M `in N)
↝
promise_∣_↦_`in_ op (subst (λ oi → (o'' , i'') ⊑ oi) (sym (lkpᵢ-next-eq q (proj₂ (proj₂ (⊑-just r)))))
(⊑-trans r (proj₂ (proj₂ (⊑-just r))) (
(lkpᵢ-next-⊑ₒ q (proj₂ (proj₂ (⊑-just r)))) ,
(lkpᵢ-next-⊑ᵢ q (proj₂ (proj₂ (⊑-just r)))))))
M
(coerce p q N)
coerce-await : {X Y : VType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'} →
(V : Γ ⊢V⦂ ⟨ X ⟩) →
(M : Γ ∷ X ⊢C⦂ Y ! (o , i)) →
-----------------------------
coerce p q (await V until M)
↝
await V until (coerce p q M)
coerce-spawn : {X : VType}
{C : CType}
{o o' : O}
{i i' : I}
{p : o ⊑ₒ o'}
{q : i ⊑ᵢ i'} →
(M : Γ ■ ⊢C⦂ C) →
(N : Γ ⊢C⦂ X ! (o , i)) →
-------------------------
coerce p q (spawn M N)
↝
spawn M (coerce p q N)
|
{
"alphanum_fraction": 0.2629817497,
"avg_line_length": 37.0600775194,
"ext": "agda",
"hexsha": "e8d34b584b1a6b54e120ac8705b22e900034c4ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danelahman/modal-aeff-agda",
"max_forks_repo_path": "Preservation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danelahman/modal-aeff-agda",
"max_issues_repo_path": "Preservation.agda",
"max_line_length": 172,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "b41df71f4456666aab4bd14e13d285c31af80ff6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danelahman/higher-order-aeff-agda",
"max_stars_repo_path": "Preservation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T18:50:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-17T15:00:34.000Z",
"num_tokens": 6678,
"size": 19123
}
|
{-# OPTIONS --sized-types #-}
module FormalLanguage.Proofs {ℓ} where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Proofs
open import Data.Boolean.Operators
open Data.Boolean.Operators.Programming
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs
import Data.Tuple as Tuple
open import FormalLanguage
open import FormalLanguage.Equals
open import Functional using (id)
open import Sized.Data.List renaming (∅ to [])
open import Lang.Size
open import Logic.Predicate
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_)
open import Relator.Equals.Proofs
import Function.Names as Names
open import Structure.Setoid
open import Structure.Operator.Monoid
import Structure.Operator.Names as Names
open import Structure.Operator.Proofs
open import Structure.Operator.Properties
-- open import Structure.Operator.SetAlgebra
open import Structure.Operator
open import Structure.Function.Domain
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
-- TODO: Prove all these
-- TODO: http://www.cse.chalmers.se/~abela/jlamp17.pdf
private variable s s₁ s₂ s₃ : Size
{-
module _ {Σ : Alphabet{ℓ}} where
open Oper{ℓ}{Σ}
open Language renaming (accepts-ε to accepts ; suffix-lang to suffix)
instance
[∪]-associativity : Associativity ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
Associativity.proof([∪]-associativity {s = s}) = [∪]-associativity-raw {s = s} where
[∪]-associativity-raw : ∀{s} → Names.Associativity ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
_≅[_]≅_.accepts-ε ([∪]-associativity-raw {x = A}) = associativity(_||_) {Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∪]-associativity-raw {x = A}) {c} = [∪]-associativity-raw {x = Language.suffix-lang A c}
instance
[∪]-commutativity : Commutativity ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
Commutativity.proof([∪]-commutativity {s = s}) = [∪]-commutativity-raw {s = s} where
[∪]-commutativity-raw : ∀{s} → Names.Commutativity ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
_≅[_]≅_.accepts-ε ([∪]-commutativity-raw {x = A}) = commutativity(_||_) {Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∪]-commutativity-raw {x = A}) {c} = [∪]-commutativity-raw {x = Language.suffix-lang A c}
instance
[∪]-identityₗ : Identityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(∅)
Identityₗ.proof([∪]-identityₗ {s = s}) = [∪]-identityₗ-raw {s = s} where
[∪]-identityₗ-raw : ∀{s} → Names.Identityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(∅)
_≅[_]≅_.accepts-ε ([∪]-identityₗ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∪]-identityₗ-raw {x = A}) {c} = [∪]-identityₗ-raw {x = Language.suffix-lang A c}
instance
[∪]-identityᵣ : Identityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(∅)
Identityᵣ.proof([∪]-identityᵣ {s = s}) = [∪]-identityᵣ-raw {s = s} where
[∪]-identityᵣ-raw : ∀{s} → Names.Identityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(∅)
_≅[_]≅_.accepts-ε ([∪]-identityᵣ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∪]-identityᵣ-raw {x = A}) {c} = [∪]-identityᵣ-raw {x = Language.suffix-lang A c}
instance
[∪]-identity : Identity ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(∅)
[∪]-identity = intro
instance
[∪]-absorberₗ : Absorberₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(𝐔)
Absorberₗ.proof([∪]-absorberₗ {s = s}) = [∪]-absorberₗ-raw {s = s} where
[∪]-absorberₗ-raw : ∀{s} → Names.Absorberₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(𝐔)
_≅[_]≅_.accepts-ε ([∪]-absorberₗ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∪]-absorberₗ-raw {x = A}) {c} = [∪]-absorberₗ-raw {x = Language.suffix-lang A c}
instance
[∪]-absorberᵣ : Absorberᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(𝐔)
Absorberᵣ.proof([∪]-absorberᵣ {s = s}) = [∪]-absorberᵣ-raw {s = s} where
[∪]-absorberᵣ-raw : ∀{s} → Names.Absorberᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(𝐔)
_≅[_]≅_.accepts-ε ([∪]-absorberᵣ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∪]-absorberᵣ-raw {x = A}) {c} = [∪]-absorberᵣ-raw {x = Language.suffix-lang A c}
instance
[∪]-absorber : Absorber ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(𝐔)
[∪]-absorber = intro
instance
[∪]-binary-operator : BinaryOperator ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
BinaryOperator.congruence([∪]-binary-operator {s = s}) = [∪]-binary-operator-raw {s = s} where
[∪]-binary-operator-raw : ∀{s} → Names.Congruence₂ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
_≅[_]≅_.accepts-ε ([∪]-binary-operator-raw aeq beq) = [≡]-with-op(_||_) (_≅[_]≅_.accepts-ε aeq) (_≅[_]≅_.accepts-ε beq)
_≅[_]≅_.suffix-lang ([∪]-binary-operator-raw aeq beq) = [∪]-binary-operator-raw (_≅[_]≅_.suffix-lang aeq) (_≅[_]≅_.suffix-lang beq)
instance
[∪]-monoid : Monoid ⦃ [≅]-equiv {s = s} ⦄ (_∪_)
Monoid.identity-existence [∪]-monoid = [∃]-intro(∅)
instance
[∩]-associativity : Associativity ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
Associativity.proof([∩]-associativity {s = s}) = [∩]-associativity-raw {s = s} where
[∩]-associativity-raw : ∀{s} → Names.Associativity ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
_≅[_]≅_.accepts-ε ([∩]-associativity-raw {x = A}) = associativity(_&&_) {Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∩]-associativity-raw {x = A}) {c} = [∩]-associativity-raw {x = Language.suffix-lang A c}
instance
[∩]-commutativity : Commutativity ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
Commutativity.proof([∩]-commutativity {s = s}) = [∩]-commutativity-raw {s = s} where
[∩]-commutativity-raw : ∀{s} → Names.Commutativity ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
_≅[_]≅_.accepts-ε ([∩]-commutativity-raw {x = A}) = commutativity(_&&_) {Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∩]-commutativity-raw {x = A}) {c} = [∩]-commutativity-raw {x = Language.suffix-lang A c}
instance
[∩]-identityₗ : Identityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(𝐔)
Identityₗ.proof([∩]-identityₗ {s = s}) = [∩]-identityₗ-raw {s = s} where
[∩]-identityₗ-raw : ∀{s} → Names.Identityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(𝐔)
_≅[_]≅_.accepts-ε ([∩]-identityₗ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∩]-identityₗ-raw {x = A}) {c} = [∩]-identityₗ-raw {x = Language.suffix-lang A c}
instance
[∩]-identityᵣ : Identityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(𝐔)
Identityᵣ.proof([∩]-identityᵣ {s = s}) = [∩]-identityᵣ-raw {s = s} where
[∩]-identityᵣ-raw : ∀{s} → Names.Identityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(𝐔)
_≅[_]≅_.accepts-ε ([∩]-identityᵣ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∩]-identityᵣ-raw {x = A}) {c} = [∩]-identityᵣ-raw {x = Language.suffix-lang A c}
instance
[∩]-identity : Identity ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(𝐔)
[∩]-identity = intro
instance
[∩]-absorberₗ : Absorberₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(∅)
Absorberₗ.proof([∩]-absorberₗ {s = s}) = [∩]-absorberₗ-raw {s = s} where
[∩]-absorberₗ-raw : ∀{s} → Names.Absorberₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(∅)
_≅[_]≅_.accepts-ε ([∩]-absorberₗ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∩]-absorberₗ-raw {x = A}) {c} = [∩]-absorberₗ-raw {x = Language.suffix-lang A c}
instance
[∩]-absorberᵣ : Absorberᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(∅)
Absorberᵣ.proof([∩]-absorberᵣ {s = s}) = [∩]-absorberᵣ-raw {s = s} where
[∩]-absorberᵣ-raw : ∀{s} → Names.Absorberᵣ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(∅)
_≅[_]≅_.accepts-ε ([∩]-absorberᵣ-raw {x = A}) = [≡]-intro
_≅[_]≅_.suffix-lang ([∩]-absorberᵣ-raw {x = A}) {c} = [∩]-absorberᵣ-raw {x = Language.suffix-lang A c}
instance
[∩]-absorber : Absorber ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(∅)
[∩]-absorber = intro
instance
[∩]-binary-operator : BinaryOperator ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
BinaryOperator.congruence([∩]-binary-operator {s = s}) = [∩]-binary-operator-raw {s = s} where
[∩]-binary-operator-raw : ∀{s} → Names.Congruence₂ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄ ⦃ [≅]-equiv {s = s} ⦄(_∩_)
_≅[_]≅_.accepts-ε ([∩]-binary-operator-raw aeq beq) = [≡]-with-op(_&&_) (_≅[_]≅_.accepts-ε aeq) (_≅[_]≅_.accepts-ε beq)
_≅[_]≅_.suffix-lang ([∩]-binary-operator-raw aeq beq) = [∩]-binary-operator-raw (_≅[_]≅_.suffix-lang aeq) (_≅[_]≅_.suffix-lang beq)
instance
[∩]-monoid : Monoid ⦃ [≅]-equiv {s = s} ⦄ (_∩_)
Monoid.identity-existence [∩]-monoid = [∃]-intro(𝐔)
instance
[∪][∩]-distributivityₗ : Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(_∩_)
Distributivityₗ.proof([∪][∩]-distributivityₗ {s = s}) = [∪][∩]-distributivityₗ-raw {s = s} where
[∪][∩]-distributivityₗ-raw : ∀{s} → Names.Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∪_)(_∩_)
_≅[_]≅_.accepts-ε ([∪][∩]-distributivityₗ-raw {x = A}) = distributivityₗ(_||_)(_&&_) {x = Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∪][∩]-distributivityₗ-raw {x = A}) {c} = [∪][∩]-distributivityₗ-raw {x = Language.suffix-lang A c}
instance
[∩][∪]-distributivityₗ : Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(_∪_)
Distributivityₗ.proof([∩][∪]-distributivityₗ {s = s}) = [∩][∪]-distributivityₗ-raw {s = s} where
[∩][∪]-distributivityₗ-raw : ∀{s} → Names.Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_∩_)(_∪_)
_≅[_]≅_.accepts-ε ([∩][∪]-distributivityₗ-raw {x = A}) = distributivityₗ(_&&_)(_||_) {x = Language.accepts-ε A}
_≅[_]≅_.suffix-lang ([∩][∪]-distributivityₗ-raw {x = A}) {c} = [∩][∪]-distributivityₗ-raw {x = Language.suffix-lang A c}
instance
[𝁼][∪]-distributivityₗ : Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
Distributivityₗ.proof ([𝁼][∪]-distributivityₗ {s = s}) = [𝁼][∪]-distributivityₗ-raw {s = s} where
[𝁼][∪]-distributivityₗ-raw : ∀{s} → Names.Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
_≅[_]≅_.accepts-ε ([𝁼][∪]-distributivityₗ-raw {x = x}) with accepts x
... | 𝑇 = [≡]-intro
... | 𝐹 = [≡]-intro
_≅[_]≅_.suffix-lang ([𝁼][∪]-distributivityₗ-raw {x = x}{y}{z}) {c} with accepts x
... | 𝑇 =
((suffix x c) 𝁼 (y ∪ z)) ∪ ((suffix y c) ∪ (suffix z c)) 🝖[ _≅_ ]-[ congruence₂ₗ(_∪_) _ [𝁼][∪]-distributivityₗ-raw ]
(((suffix x c) 𝁼 y) ∪ ((suffix x c) 𝁼 z)) ∪ ((suffix y c) ∪ (suffix z c)) 🝖[ _≅_ ]-[ One.associate-commute4 (commutativity(_∪_)) ]
(((suffix x c) 𝁼 y) ∪ (suffix y c)) ∪ (((suffix x c) 𝁼 z) ∪ (suffix z c)) 🝖[ _≅_ ]-end
... | 𝐹 = [𝁼][∪]-distributivityₗ-raw
{-TODO
idempotence-by-dist-id-abs-idemp
x ∪ x
(x ∩ x) ∪ (x ∩ x)
(x ∪ x) ∩ x
(x ∪ x) ∩ (x ∪ ∅)
x ∪ (x ∩ ∅)
x ∪ ∅
x
idempotence-by-dist-inv-id
x ∪ x
(x ∪ x) ∩ 𝐔
(x ∪ x) ∩ (x ∪ (∁ x))
x ∪ (x ∩ (∁ x))
x ∪ ∅
x
-}
instance
[𝁼][∪]-distributivityᵣ : Distributivityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
Distributivityᵣ.proof ([𝁼][∪]-distributivityᵣ {s}) = [𝁼][∪]-distributivityᵣ-raw where
[𝁼][∪]-distributivityᵣ-raw : ∀{s} → Names.Distributivityᵣ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
_≅[_]≅_.accepts-ε ([𝁼][∪]-distributivityᵣ-raw {x = x}{y}{z}) with accepts z
... | 𝑇 = [≡]-intro
... | 𝐹 = [≡]-intro
_≅[_]≅_.suffix-lang ([𝁼][∪]-distributivityᵣ-raw {x = x}{y}{z}) {c} with accepts x | accepts y
... | 𝑇 | 𝑇 =
(((suffix x c) ∪ (suffix y c)) 𝁼 z) ∪ (suffix z c) 🝖[ _≅_ ]-[ congruence₂ₗ(_∪_) _ [𝁼][∪]-distributivityᵣ-raw ]
(((suffix x c) 𝁼 z) ∪ ((suffix y c) 𝁼 z)) ∪ (suffix z c) 🝖[ _≅_ ]-[ congruence₂ᵣ(_∪_) _ {!!} ]-sym
(((suffix x c) 𝁼 z) ∪ ((suffix y c) 𝁼 z)) ∪ ((suffix z c) ∪ (suffix z c)) 🝖[ _≅_ ]-[ One.associate-commute4 (commutativity(_∪_)) ]
(((suffix x c) 𝁼 z) ∪ (suffix z c)) ∪ (((suffix y c) 𝁼 z) ∪ (suffix z c)) 🝖[ _≅_ ]-end
... | 𝑇 | 𝐹 = {!!}
... | 𝐹 | 𝑇 = {!!}
... | 𝐹 | 𝐹 = {!!}
instance
[𝁼]-associativity : Associativity ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)
Associativity.proof ([𝁼]-associativity {s = s}) = [𝁼]-associativity-raw {s = s} where
[𝁼]-associativity-raw : ∀{s} → Names.Associativity ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)
_≅[_]≅_.accepts-ε ([𝁼]-associativity-raw {s = s} {x} {y} {z} ) with Language.accepts-ε(x)
... | 𝑇 = [≡]-intro
... | 𝐹 = [≡]-intro
_≅[_]≅_.suffix-lang ([𝁼]-associativity-raw {s = s} {x} {y} {z}) {c} {sₛ} with [𝁼]-associativity-raw {s = sₛ} {suffix x c}{y}{z} | accepts(x) | accepts(y)
... | p | 𝑇 | 𝑇 =
((((suffix x c) 𝁼 y) ∪ (suffix y c)) 𝁼 z) ∪ (suffix z c) 🝖[ _≅_ ]-[ congruence₂ₗ(_∪_) _ (distributivityᵣ(_𝁼_)(_∪_)) ]
((((suffix x c) 𝁼 y) 𝁼 z) ∪ ((suffix y c) 𝁼 z)) ∪ (suffix z c) 🝖[ _≅_ ]-[ congruence₂ₗ(_∪_) _ (congruence₂ₗ(_∪_) _ p) ]
(((suffix x c) 𝁼 (y 𝁼 z)) ∪ ((suffix y c) 𝁼 z)) ∪ (suffix z c) 🝖[ _≅_ ]-[ associativity(_∪_) ]
((suffix x c) 𝁼 (y 𝁼 z)) ∪ (((suffix y c) 𝁼 z) ∪ (suffix z c)) 🝖[ _≅_ ]-end
... | p | 𝑇 | 𝐹 =
(((suffix x c) 𝁼 y) ∪ (suffix y c)) 𝁼 z 🝖[ _≅_ ]-[ distributivityᵣ(_𝁼_)(_∪_) ]
(((suffix x c) 𝁼 y) 𝁼 z) ∪ ((suffix y c) 𝁼 z) 🝖[ _≅_ ]-[ congruence₂ₗ(_∪_) _ p ]
((suffix x c) 𝁼 (y 𝁼 z)) ∪ ((suffix y c) 𝁼 z) 🝖[ _≅_ ]-end
... | p | 𝐹 | _ = p
{- TODO: Is it possible to describe concatenation using an algebraic property? Maybe something about that it behaves like (_⨯_) (combining every element with each other in some way)? Probably a "Kleene algebra".
postulate [𝁼]-identityₗ : Identityₗ(_𝁼_)(ε)
-- Identityₗ.proof([𝁼]-identityₗ) {x} =
postulate [𝁼]-identityᵣ : Identityᵣ(_𝁼_)(ε)
postulate [𝁼]-absorberₗ : Absorberₗ(_𝁼_)(∅)
postulate [𝁼]-absorberᵣ : Absorberᵣ(_𝁼_)(∅)
-- postulate [*]-fixpoint-[ε] : FixPoint(_*)(ε)
postulate [*]-on-[∅] : (∅ * ≡ ε)
postulate [*]-on-[*] : ∀{L} → ((L *)* ≡ L *)
postulate [𝁼]-commutativity-with-[*] : ∀{L} → ((L *) 𝁼 L ≡ L 𝁼 (L *))
-- postulate [𝁼]-set-algebra : SetAlgebra -- TODO: Complement is missing
-}
-}
module _ {Σ : Alphabet{ℓ}} where
open Oper{ℓ}{Σ}
open Language renaming (accepts-ε to accepts ; suffix-lang to suffix)
open import Logic.IntroInstances
open import Structure.Sets.Operator hiding (_∪_ ; _∩_ ; ∁ ; ∅ ; 𝐔)
open import Structure.Sets.Relator hiding (_≡_ ; _⊆_)
instance
[≅]-set-equality : SetEqualityRelation([ s ]_∈_)([ s ]_∈_)(_≅[ s ]≅_)
SetEqualityRelation.membership [≅]-set-equality {A}{B} = [↔]-intro (l{A = A}{B = B}) (r{A = A}{B = B}) where
l : ∀{A B : Language(Σ)} → (A ≅[ s ]≅ B) ← (∀{w} → ([ s ] w ∈ A) ↔ ([ s ] w ∈ B))
_≅[_]≅_.accepts-ε (l {A = A} {B = B} p) with accepts A | accepts B | p{[]}
... | 𝑇 | 𝑇 | _ = [≡]-intro
... | 𝑇 | 𝐹 | q with () ← [↔]-to-[→] q <>
... | 𝐹 | 𝑇 | q with () ← [↔]-to-[←] q <>
... | 𝐹 | 𝐹 | _ = [≡]-intro
_≅[_]≅_.suffix-lang (l {A = A} {B = B} p) {c} = l {A = suffix A c}{B = suffix B c} (\{w} → p{c ⊰ w})
r : ∀{A B : Language(Σ)} → (A ≅[ s ]≅ B) → (∀{w} → ([ s ] w ∈ A) ↔ ([ s ] w ∈ B))
Tuple.left (r ab {[]}) wB = substitute₁ₗ(IsTrue) (_≅[_]≅_.accepts-ε ab) wB
Tuple.right (r ab {[]}) wA = substitute₁ᵣ(IsTrue) (_≅[_]≅_.accepts-ε ab) wA
Tuple.left (r {s = s} {A} {B} ab {_⊰_ {sₛ} x w}) wB = [↔]-to-[←] (r {s = sₛ} (_≅[_]≅_.suffix-lang {s = s} ab {sₛ = sₛ}) {w}) wB
Tuple.right (r {s = s} {A} {B} ab {_⊰_ {sₛ} x w}) wA = [↔]-to-[→] (r {s = sₛ} (_≅[_]≅_.suffix-lang {s = s} ab {sₛ = sₛ}) {w}) wA
instance
[∪]-operator : UnionOperator([ s ]_∈_)([ s ]_∈_)([ s ]_∈_)(_∪_)
UnionOperator.membership [∪]-operator {A}{B}{w} = [↔]-intro (l{w = w}{A}{B}) (r{w = w}{A}{B}) where
l : ∀{w}{A B} → ([ s ] w ∈ (A ∪ B)) ← (([ s ] w ∈ A) ∨ ([ s ] w ∈ B))
l {w = []} = [↔]-to-[←] IsTrue.preserves-[||][∨]
l {w = c ⊰ w} = l {w = w}
r : ∀{w}{A B} → ([ s ] w ∈ (A ∪ B)) → (([ s ] w ∈ A) ∨ ([ s ] w ∈ B))
r {w = []} = [↔]-to-[→] IsTrue.preserves-[||][∨]
r {w = c ⊰ w} = r {w = w}
instance
[∩]-operator : IntersectionOperator([ s ]_∈_)([ s ]_∈_)([ s ]_∈_)(_∩_)
IntersectionOperator.membership [∩]-operator {A}{B}{w} = [↔]-intro (l{w = w}{A}{B}) (r{w = w}{A}{B}) where
l : ∀{w}{A B} → ([ s ] w ∈ (A ∩ B)) ← (([ s ] w ∈ A) ∧ ([ s ] w ∈ B))
l {w = []} = [↔]-to-[←] IsTrue.preserves-[&&][∧]
l {w = c ⊰ w} = l {w = w}
r : ∀{w}{A B} → ([ s ] w ∈ (A ∩ B)) → (([ s ] w ∈ A) ∧ ([ s ] w ∈ B))
r {w = []} = [↔]-to-[→] IsTrue.preserves-[&&][∧]
r {w = c ⊰ w} = r {w = w}
instance
[∁]-operator : ComplementOperator([ s ]_∈_)([ s ]_∈_)(∁_)
ComplementOperator.membership [∁]-operator {A}{w} = [↔]-intro (l{w = w}{A}) (r{w = w}{A}) where
l : ∀{w}{A} → ([ s ] w ∈ (∁ A)) ← ¬([ s ] w ∈ A)
l {w = []} = [↔]-to-[←] IsTrue.preserves-[!][¬]
l {w = c ⊰ w} = l {w = w}
r : ∀{w}{A} → ([ s ] w ∈ (∁ A)) → ¬([ s ] w ∈ A)
r {w = []} = [↔]-to-[→] IsTrue.preserves-[!][¬]
r {w = c ⊰ w} = r {w = w}
instance
[∅]-set : EmptySet([ s ]_∈_)(∅)
EmptySet.membership [∅]-set {x = w} = p{w = w} where
p : ∀{w} → ¬([ s ] w ∈ ∅)
p {w = []} ()
p {w = x ⊰ w} = p {w = w}
instance
[𝐔]-set : UniversalSet([ s ]_∈_)(𝐔)
UniversalSet.membership [𝐔]-set {x = w} = p{w = w} where
p : ∀{w} → ([ s ] w ∈ 𝐔)
p {w = []} = [⊤]-intro
p {w = c ⊰ w} = p {w = w}
[ε]-set : ∀{x} → (x ∈ ε) ↔ (x ≡ [])
[ε]-set {x} = [↔]-intro (l{x}) (r{x}) where
l : ∀{x} → (x ∈ ε) ← (x ≡ [])
l {[]} [≡]-intro = [⊤]-intro
r : ∀{x} → (x ∈ ε) → (x ≡ [])
r {[]} _ = [≡]-intro
r {a ⊰ l} proof with () ← [∅]-membership {x = l} proof
{-open import Structure.Container.SetLike hiding (_∪_ ; _∩_ ; ∁ ; ∅ ; 𝐔)
-- TODO: Copy-pasted from the previous code that only used coinduction
instance
[𝁼][∪]-distributivityₗ : Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
Distributivityₗ.proof ([𝁼][∪]-distributivityₗ {s = s}) = [𝁼][∪]-distributivityₗ-raw {s = s} where
[𝁼][∪]-distributivityₗ-raw : ∀{s} → Names.Distributivityₗ ⦃ [≅]-equiv {s = s} ⦄ (_𝁼_)(_∪_)
_≅[_]≅_.accepts-ε ([𝁼][∪]-distributivityₗ-raw {x = x}) with accepts x
... | 𝑇 = [≡]-intro
... | 𝐹 = [≡]-intro
_≅[_]≅_.suffix-lang ([𝁼][∪]-distributivityₗ-raw {s = s} {x = x}{y}{z}) {c} with accepts x
... | 𝑇 =
((suffix x c) 𝁼 (y ∪ z)) ∪ ((suffix y c) ∪ (suffix z c)) 🝖[ _≅[ s ]≅_ ]-[ congruence₂ₗ(_∪_) _ [𝁼][∪]-distributivityₗ-raw ]
(((suffix x c) 𝁼 y) ∪ ((suffix x c) 𝁼 z)) ∪ ((suffix y c) ∪ (suffix z c)) 🝖[ _≅[ s ]≅_ ]-[ One.associate-commute4 (commutativity(_∪_)) ]
(((suffix x c) 𝁼 y) ∪ (suffix y c)) ∪ (((suffix x c) 𝁼 z) ∪ (suffix z c)) 🝖[ _≅[ s ]≅_ ]-end
... | 𝐹 = [𝁼][∪]-distributivityₗ-raw
-}
{- -- TODO: Sizes and (_++_)
[𝁼]-membershipₗ : ∀{x y}{A B : Language(Σ)} → ([ s ] x ∈ A) → ([ s ] y ∈ B) → ([ s ] (x ++ y) ∈ (A 𝁼 B))
[𝁼]-membershipₗ {x = []} {[]} {A}{B} xA yB with accepts A | accepts B
... | 𝑇 | 𝑇 = <>
[𝁼]-membershipₗ {x = []} {c ⊰ y}{A}{B} xA yB with accepts A
... | 𝑇 = [↔]-to-[←] (Union.membership {a = suffix A c 𝁼 B} {b = suffix B c} {x = y}) ([∨]-introᵣ yB)
[𝁼]-membershipₗ {x = c ⊰ x}{y}{A}{B} xA yB with accepts A
... | 𝑇 = {!!}
... | 𝐹 = [𝁼]-membershipₗ {x = x}{y}{suffix A c}{B} {!xA!} {!!}
-}
-- [𝁼]-membershipₗ {[]}{y}{suffix }
-- [↔]-to-[←] (Union.membership {a = {!!}}{b = {!!}}{x = {!!}}) ([∨]-introᵣ yB)
{-
single-containment : ⦃ _ : ComputablyDecidable(_≡_) ⦄ → ∀{x}{a} → (x ∈ single(a)) ↔ (x ≡ singleton(a))
single-containment ⦃ dec ⦄ = [↔]-intro l r where
postulate l : ∀{x}{a} → (x ∈ single(a)) ← (x ≡ singleton(a))
{-l {c ⊰ w} [≡]-intro with ComputablyDecidable.decide(_≡_) ⦃ dec ⦄ c c
... | 𝑇 = {!!}
... | 𝐹 = {!!}-}
postulate r : ∀{x}{a} → (x ∈ single(a)) → (x ≡ singleton(a))
--r {c ⊰ w} p = {![↔]-to-[←] (ComputablyDecidable.proof-istrue(_≡_) {x = ?}) ?!}
Language-list-suffix : Language(Σ) → List(Σ) → Language(Σ)
Language-list-suffix A [] = A
Language-list-suffix A (x ⊰ l) = Language.suffix-lang(A)(x)
postulate suffix-concat-step : ∀{A : Language(Σ)}{l₁ l₂} → ((l₁ ++ l₂) ∈ A) → (l₂ ∈ Language-list-suffix(A)(l₁))
-- suffix-concat-step {A}{[]} p = p
-- suffix-concat-step {A}{x ⊰ l₁}{l₂} p = {!!}
postulate [𝁼]-containmentₗ : ∀{x y}{A B : Language(Σ)} → (x ∈ A) → (y ∈ B) → ((x ++ y) ∈ (A 𝁼 B))
-- [𝁼]-containmentₗ {x} {y} {A} {B} xa xb with Language.accepts-ε(A) | y Oper.∈? B
{-[𝁼]-containmentₗ {LongOper.empty} {LongOper.empty} {A} {B} xa xb with Language.accepts-ε(A) | Language.accepts-ε(B)
[𝁼]-containmentₗ {LongOper.empty} {LongOper.empty} {A} {B} xa xb | 𝑇 | 𝑇 = [⊤]-intro
[𝁼]-containmentₗ {LongOper.empty} {LongOper.prepend x y} {A} {B} xa xb = {![⊤]-intro!} where
test : ∀{A B : Language(Σ)}{a} → ([] ∈ A) → (a ∈ B) → (a ∈ (A 𝁼 B))
test {A}{B}{LongOper.empty} p q with Language.accepts-ε(A) | Language.accepts-ε(B)
test {A}{B}{LongOper.empty} p q | 𝑇 | 𝑇 = [⊤]-intro
test {A}{B}{LongOper.prepend x a} p q = {!test {A}{B}{a} p !}
-- test {LongOper.prepend x a} p q with test {a} p (Language.suffix-lang q)
-- ... | test = ?
[𝁼]-containmentₗ {LongOper.prepend x x₁} {LongOper.empty} {A} {B} xa xb = {!!}
[𝁼]-containmentₗ {LongOper.prepend x x₁} {LongOper.prepend x₂ y} {A} {B} xa xb = {!!}
-}
-- [𝁼]-containment : ∀{x}{A B : Language(Σ)} → (x ∈ (A 𝁼 B)) ↔ ∃(a ↦ ∃ b ↦ (a ++ b ≡ x)∧(a ∈ A)∧(b ∈ B))
-- [𝁼]-containment {x} = [↔]-intro (l{x}) (r{x}) where
-- TODO: Set properties
-- TODO: Connection with logic (from sets) in relations
-}
|
{
"alphanum_fraction": 0.5112946887,
"avg_line_length": 50.0607476636,
"ext": "agda",
"hexsha": "eafbec6774d16517c840503cdf31f06be1f8de7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "FormalLanguage/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "FormalLanguage/Proofs.agda",
"max_line_length": 213,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "FormalLanguage/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 9975,
"size": 21426
}
|
module comb where
infixr 50 _⟶_
data Ty : Set where
ι : Ty
_⟶_ : Ty -> Ty -> Ty
data Tm : Ty -> Set where
K : {σ τ : Ty} -> Tm (σ ⟶ τ ⟶ σ)
S : {σ τ ρ : Ty} -> Tm ((σ ⟶ τ ⟶ ρ) ⟶ (σ ⟶ τ) ⟶ σ ⟶ ρ)
_$_ : {σ τ : Ty} -> Tm (σ ⟶ τ) -> Tm σ -> Tm τ
data Nf : Ty -> Set where
Kⁿ : {σ τ : Ty} -> Nf (σ ⟶ τ ⟶ σ)
Kⁿ¹ : {σ τ : Ty} -> Nf σ -> Nf (τ ⟶ σ)
Sⁿ : {σ τ ρ : Ty} -> Nf ((σ ⟶ τ ⟶ ρ) ⟶ (σ ⟶ τ) ⟶ σ ⟶ ρ)
Sⁿ¹ : {σ τ ρ : Ty} -> Nf (σ ⟶ τ ⟶ ρ) -> Nf ((σ ⟶ τ) ⟶ σ ⟶ ρ)
Sⁿ² : {σ τ ρ : Ty} -> Nf (σ ⟶ τ ⟶ ρ) -> Nf (σ ⟶ τ) -> Nf (σ ⟶ ρ)
_$$_ : {σ τ : Ty} -> Nf (σ ⟶ τ) -> Nf σ -> Nf τ
Kⁿ $$ x = Kⁿ¹ x
Kⁿ¹ x $$ y = x
Sⁿ $$ x = Sⁿ¹ x
Sⁿ¹ x $$ y = Sⁿ² x y
Sⁿ² x y $$ z = (x $$ z) $$ (y $$ z)
nf : {σ : Ty} -> Tm σ -> Nf σ
nf K = Kⁿ
nf S = Sⁿ
nf (t $ u) = nf t $$ nf u
data _$ⁿ_⇓_ : {σ τ : Ty} -> Nf (σ ⟶ τ) -> Nf σ -> Nf τ -> Set where
rKⁿ : {σ τ : Ty} -> {x : Nf σ} -> Kⁿ {σ} {τ} $ⁿ x ⇓ Kⁿ¹ x
rKⁿ¹ : {σ τ : Ty} -> {x : Nf σ} -> {y : Nf τ} -> Kⁿ¹ x $ⁿ y ⇓ x
rSⁿ : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> Sⁿ $ⁿ x ⇓ Sⁿ¹ x
rSⁿ¹ : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> {y : Nf (σ ⟶ τ)} ->
Sⁿ¹ x $ⁿ y ⇓ Sⁿ² x y
rSⁿ² : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> {y : Nf (σ ⟶ τ)} ->
{z : Nf σ} -> {u : Nf (τ ⟶ ρ)} -> x $ⁿ z ⇓ u -> {v : Nf τ} ->
y $ⁿ z ⇓ v -> {w : Nf ρ} -> u $ⁿ v ⇓ w -> Sⁿ² x y $ⁿ z ⇓ w
data _⇓_ : {σ : Ty} -> Tm σ -> Nf σ -> Set where
rK : {σ τ : Ty} -> K {σ} {τ} ⇓ Kⁿ
rS : {σ τ ρ : Ty} -> S {σ} {τ} {ρ} ⇓ Sⁿ
r$ : {σ τ : Ty} -> {t : Tm (σ ⟶ τ)} -> {f : Nf (σ ⟶ τ)} -> t ⇓ f ->
{u : Tm σ} -> {a : Nf σ} -> u ⇓ a -> {v : Nf τ} -> f $ⁿ a ⇓ v ->
t $ u ⇓ v
data _==_ {A : Set}(a : A) : {B : Set} -> (b : B) -> Set where
refl : a == a
data Σ {A : Set}(B : A -> Set) : Set where
sig : (a : A) -> (b : B a) -> Σ B
σ₀ : {A : Set} -> {B : A -> Set} -> Σ B -> A
σ₀ (sig x _) = x
σ₁ : {A : Set} -> {B : A -> Set} -> (s : Σ B) -> B (σ₀ s)
σ₁ (sig _ y) = y
_$$⁼_&_ : {σ τ : Ty} -> (f : Nf (σ ⟶ τ)) -> (a : Nf σ) -> {n : Nf τ} ->
f $ⁿ a ⇓ n -> Σ \(n' : Nf τ) -> n' == n
Kⁿ $$⁼ x & rKⁿ = sig (Kⁿ¹ x) refl
Kⁿ¹ x $$⁼ y & rKⁿ¹ = sig x refl
Sⁿ $$⁼ x & rSⁿ = sig (Sⁿ¹ x) refl
Sⁿ¹ x $$⁼ y & rSⁿ¹ = sig (Sⁿ² x y) refl
Sⁿ² x y $$⁼ z & (rSⁿ² p q r) with x $$⁼ z & p | y $$⁼ z & q
Sⁿ² x y $$⁼ z & (rSⁿ² p q r) | sig u refl | sig v refl with u $$⁼ v & r
Sⁿ² x y $$⁼ z & (rSⁿ² p q r) | sig u refl | sig v refl | sig w refl =
sig w refl
nf⁼ : {σ : Ty} -> (t : Tm σ) -> {n : Nf σ} -> t ⇓ n ->
Σ \(n' : Nf σ) -> n' == n
nf⁼ K rK = sig Kⁿ refl
nf⁼ S rS = sig Sⁿ refl
nf⁼ (t $ u) (r$ p q r) with nf⁼ t p | nf⁼ u q
nf⁼ (t $ u) (r$ p q r) | sig f refl | sig a refl with f $$⁼ a & r
nf⁼ (t $ u) (r$ p q r) | sig f refl | sig a refl | sig v refl =
sig v refl
proof : {σ : Ty} -> (t : Tm σ) -> Σ \(n : Nf σ) -> t ⇓ n
proof = {! !}
nf⇓ : {σ : Ty} -> Tm σ -> Nf σ
nf⇓ t = σ₀ (nf⁼ t (σ₁ (proof t)))
|
{
"alphanum_fraction": 0.3696927856,
"avg_line_length": 32.5505617978,
"ext": "agda",
"hexsha": "d08b4abb76e3ba1061ba10698fbda63be2a97dbd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Termination/comb.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Termination/comb.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/Termination/comb.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1678,
"size": 2897
}
|
{-
Constant structure: _ ↦ A
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Constant where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Structures.Constant
private
variable
ℓ ℓ' : Level
-- Structured relations
module _ (A : hSet ℓ') where
preservesSetsConstant : preservesSets {ℓ = ℓ} (ConstantStructure (A .fst))
preservesSetsConstant _ = A .snd
ConstantRelStr : StrRel {ℓ = ℓ} (ConstantStructure (A .fst)) ℓ'
ConstantRelStr _ a₀ a₁ = a₀ ≡ a₁
open SuitableStrRel
constantSuitableRel : SuitableStrRel {ℓ = ℓ} (ConstantStructure (A .fst)) ConstantRelStr
constantSuitableRel .quo _ _ _ = isContrSingl _
constantSuitableRel .symmetric _ = sym
constantSuitableRel .transitive _ _ = _∙_
constantSuitableRel .prop _ = A .snd
constantRelMatchesEquiv : StrRelMatchesEquiv {ℓ = ℓ} ConstantRelStr (ConstantEquivStr (A .fst))
constantRelMatchesEquiv _ _ _ = idEquiv _
|
{
"alphanum_fraction": 0.7584070796,
"avg_line_length": 27.5609756098,
"ext": "agda",
"hexsha": "e2f5bbe5f61a157b686de8a06bc02036be75e44a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Constant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Constant.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Constant.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 336,
"size": 1130
}
|
module SystemF.BigStep.Extrinsic.Terms where
open import Prelude
open import SystemF.BigStep.Types
open import Data.List
open import Data.Fin.Substitution
-- erased (type-free) System F syntax
data Term : Set where
unit : Term
ƛ : Term → Term
Λ : Term → Term
_·_ : Term → Term → Term
_[-] : Term → Term
var : ℕ → Term
|
{
"alphanum_fraction": 0.6987951807,
"avg_line_length": 20.75,
"ext": "agda",
"hexsha": "d432946dcc3ffc6a360ab49c9bcba8638e4afd02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/BigStep/Extrinsic/Terms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/BigStep/Extrinsic/Terms.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/BigStep/Extrinsic/Terms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 102,
"size": 332
}
|
-- There was a bug with module applications in let.
module Issue34 where
module A (X : Set) where
postulate A : Set
T : (X : Set) -> let open A X in A -> Set
T X _ = X
record B (X : Set) : Set where
open A X
field f : A
postulate
foo : (X : Set)(b : B X) ->
let open A X
open B b in
A -> Set
|
{
"alphanum_fraction": 0.5481927711,
"avg_line_length": 17.4736842105,
"ext": "agda",
"hexsha": "4151289fda91fdd9e2129faee26c2c3a99a36092",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue34.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue34.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue34.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 111,
"size": 332
}
|
-- Andreas, 2019-11-11, issue #4189, reported by nad.
-- Record constructors living in the record module are problematic
-- as the record module is parameterized over the record value,
-- but the constructor not.
-- Thus, a record constructor does not live in the record module
-- any more.
-- {-# OPTIONS -v tc.mod.apply:100 #-}
record ⊤ : Set where
constructor tt
module Unit = ⊤ renaming (tt to unit)
-- WAS: internal error
-- NOW: warning about tt not being in scope
tt′ : ⊤
tt′ = ⊤.tt
-- WAS: success
-- NOW: Not in scope: ⊤.tt
|
{
"alphanum_fraction": 0.6775956284,
"avg_line_length": 23.8695652174,
"ext": "agda",
"hexsha": "c114401602fe8261139309d2904819a407731890",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4189.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4189.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4189.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 154,
"size": 549
}
|
{-# OPTIONS --instance-search-depth=10 #-}
open import Agda.Primitive
it : ∀ {a} {A : Set a} {{x : A}} -> A
it {{x}} = x
infixr 5 _,_
postulate
Pair : ∀ {a} (A : Set a) {b} (B : Set b) -> Set (a ⊔ b)
_,_ : ∀ {a} {A : Set a} {b} {B : Set b} -> A -> B -> Pair A B
data Constraint {a} {A : Set a} (x : A) : Set where
mkConstraint : Constraint x
record Inner {l a} {A : Set a} (x : A) (_ : Constraint x) (C : Set l) : Set l where
field
value : C
Class : ∀ {l a} {A : Set a} (x : A) (C : Set l) -> Set l
Class x C = Inner x mkConstraint C
FunctionClass = λ
{a} (A : Set a)
-> Class A (A -> A)
DiagonalClass = λ
{i} {I : Set i}
{r} (R : I -> I -> Set r)
x
-> Class (R , x) (R x x)
DiagonalFunctionClass = λ
{i} {I : Set i}
{r} (R : I -> I -> Set r)
x
-> Class (R , x) (R x x -> R x x)
postulate
toDiagonalFunctionClass : ∀
{i} {I : Set i}
{r} {R : I -> I -> Set r}
{{iD : ∀ {x} -> DiagonalClass R x}}
-> ∀ {x} -> DiagonalFunctionClass R x
DiagonalPropertyType = λ
{i r p} {I : Set i}
(R : I -> I -> Set r)
(P : ∀ x -> R x x -> Set p)
-> ∀ x (d : R x x) -> P _ d
DiagonalPropertyClass = λ
{i r p} {I : Set i}
(R : I -> I -> Set r)
(P : ∀ x -> R x x -> Set p)
(C : FunctionClass I)
-> Class (R , P , C) (DiagonalPropertyType R P)
diagonalProperty : ∀
{i r p} {I : Set i}
{R : I -> I -> Set r}
{P : ∀ x -> R x x -> Set p}
{{C : FunctionClass I}}
{{iDP : DiagonalPropertyClass R P C}}
-> DiagonalPropertyType R P
diagonalProperty {{iDP = iDP}} = Inner.value iDP
-- works-1 works-2
fails : ∀
{r p} {I : Set}
{R : I -> I -> Set r}
{P : ∀ x -> R x x -> Set p}
(C : FunctionClass I)
{{iDP : DiagonalPropertyClass R P C}}
-> DiagonalPropertyType R P
-- works-1 C x d =
-- let instance iC = C
-- in diagonalProperty _ d
-- works-2 C x d =
-- let instance iC = C
-- iDF = toDiagonalFunctionClass
-- in diagonalProperty {{it}} _ d
fails C x d =
let instance iC = C
iDF = toDiagonalFunctionClass
in diagonalProperty _ d -- Instance search depth exhausted
|
{
"alphanum_fraction": 0.5203446625,
"avg_line_length": 22.956043956,
"ext": "agda",
"hexsha": "52d85cc3c75d37e000c452cb324bffa98fc5f3cf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2713.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2713.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2713.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 805,
"size": 2089
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommRing.RadicalIdeal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Powerset using (⊆-isProp)
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Sum hiding (map)
open import Cubical.Data.FinData hiding (elim)
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
; _choose_ to _ℕchoose_ ; snotz to ℕsnotz)
open import Cubical.Data.Nat.Order
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
module RadicalIdeal (R' : CommRing ℓ) where
private R = fst R'
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
open Sum (CommRing→Ring R')
open CommRingTheory R'
open Exponentiation R'
open BinomialThm R'
open CommIdeal R'
open isCommIdeal
√ : CommIdeal → CommIdeal
fst (√ I) x = (∃[ n ∈ ℕ ] x ^ n ∈ I) , isPropPropTrunc
+Closed (snd (√ I)) {x = x} {y = y} = map2 +ClosedΣ
where
+ClosedΣ : Σ[ n ∈ ℕ ] x ^ n ∈ I → Σ[ n ∈ ℕ ] y ^ n ∈ I → Σ[ n ∈ ℕ ] (x + y) ^ n ∈ I
+ClosedΣ (n , xⁿ∈I) (m , yᵐ∈I) = (n +ℕ m)
, subst-∈ I (sym (BinomialThm (n +ℕ m) _ _)) ∑Binomial∈I
where
binomialCoeff∈I : ∀ i → ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i) ∈ I
binomialCoeff∈I i with ≤-+-split n m (toℕ i) (pred-≤-pred (toℕ<n i))
... | inl n≤i = subst-∈ I (sym path) (·Closed (I .snd) _ xⁿ∈I)
where
useSolver : ∀ a b c d → a · (b · c) · d ≡ a · b · d · c
useSolver = solve R'
path : ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡ ((n +ℕ m) choose toℕ i) · x ^ (toℕ i ∸ n) · y ^ (n +ℕ m ∸ toℕ i) · x ^ n
path = ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ k → ((n +ℕ m) choose toℕ i) · x ^ k · y ^ (n +ℕ m ∸ toℕ i))
(sym (≤-∸-+-cancel n≤i)) ⟩
((n +ℕ m) choose toℕ i) · x ^ ((toℕ i ∸ n) +ℕ n) · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ z → ((n +ℕ m) choose toℕ i) · z · y ^ (n +ℕ m ∸ toℕ i))
(sym (·-of-^-is-^-of-+ x (toℕ i ∸ n) n)) ⟩
((n +ℕ m) choose toℕ i) · (x ^ (toℕ i ∸ n) · x ^ n) · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ useSolver _ _ _ _ ⟩
((n +ℕ m) choose toℕ i) · x ^ (toℕ i ∸ n) · y ^ (n +ℕ m ∸ toℕ i) · x ^ n ∎
... | inr m≤n+m-i = subst-∈ I (sym path) (·Closed (I .snd) _ yᵐ∈I)
where
path : ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡ ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m
path = ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (n +ℕ m ∸ toℕ i)
≡⟨ cong (λ k → ((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ k)
(sym (≤-∸-+-cancel m≤n+m-i)) ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ (((n +ℕ m ∸ toℕ i) ∸ m) +ℕ m)
≡⟨ cong (((n +ℕ m) choose toℕ i) · x ^ toℕ i ·_)
(sym (·-of-^-is-^-of-+ y ((n +ℕ m ∸ toℕ i) ∸ m) m)) ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · (y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m)
≡⟨ ·Assoc _ _ _ ⟩
((n +ℕ m) choose toℕ i) · x ^ toℕ i · y ^ ((n +ℕ m ∸ toℕ i) ∸ m) · y ^ m ∎
∑Binomial∈I : ∑ (BinomialVec (n +ℕ m) x y) ∈ I
∑Binomial∈I = ∑Closed I (BinomialVec (n +ℕ m) _ _) binomialCoeff∈I
contains0 (snd (√ I)) =
∣ 1 , subst-∈ I (sym (0LeftAnnihilates 1r)) ((I .snd) .contains0) ∣
·Closed (snd (√ I)) r =
map λ { (n , xⁿ∈I) → n , subst-∈ I (sym (^-ldist-· r _ n)) ((I .snd) .·Closed (r ^ n) xⁿ∈I) }
^∈√→∈√ : ∀ (I : CommIdeal) (x : R) (n : ℕ) → x ^ n ∈ √ I → x ∈ √ I
^∈√→∈√ I x n =
map (λ { (m , [xⁿ]ᵐ∈I) → (n ·ℕ m) , subst-∈ I (sym (^-rdist-·ℕ x n m)) [xⁿ]ᵐ∈I })
∈→∈√ : ∀ (I : CommIdeal) (x : R) → x ∈ I → x ∈ √ I
∈→∈√ I _ x∈I = ∣ 1 , subst-∈ I (sym (·Rid _)) x∈I ∣
-- important lemma for characterization of the Zariski lattice
open KroneckerDelta (CommRing→Ring R')
√FGIdealCharLImpl : {n : ℕ} (V : FinVec R n) (I : CommIdeal)
→ √ ⟨ V ⟩[ R' ] ⊆ √ I → (∀ i → V i ∈ √ I)
√FGIdealCharLImpl V I √⟨V⟩⊆√I i = √⟨V⟩⊆√I _ (∈→∈√ ⟨ V ⟩[ R' ] (V i)
∣ (λ j → δ i j) , sym (∑Mul1r _ _ i) ∣)
√FGIdealCharRImpl : {n : ℕ} (V : FinVec R n) (I : CommIdeal)
→ (∀ i → V i ∈ √ I) → √ ⟨ V ⟩[ R' ] ⊆ √ I
√FGIdealCharRImpl V I ∀i→Vi∈√I x = PT.elim (λ _ → √ I .fst x .snd)
λ { (n , xⁿ∈⟨V⟩) → ^∈√→∈√ I x n (elimHelper _ xⁿ∈⟨V⟩) }
where
elimHelper : ∀ (y : R) → y ∈ ⟨ V ⟩[ R' ] → y ∈ √ I
elimHelper y = PT.elim (λ _ → √ I .fst y .snd)
λ { (α , y≡∑αV) → subst-∈ (√ I) (sym y≡∑αV)
(∑Closed (√ I)
(λ i → α i · V i)
(λ i → √ I .snd .·Closed (α i) (∀i→Vi∈√I i))) }
√FGIdealChar : {n : ℕ} (V : FinVec R n) (I : CommIdeal)
→ √ ⟨ V ⟩[ R' ] ⊆ √ I ≃ (∀ i → V i ∈ √ I)
√FGIdealChar V I = propBiimpl→Equiv (⊆-isProp (√ ⟨ V ⟩[ R' ] .fst) (√ I .fst))
(isPropΠ (λ _ → √ I .fst _ .snd))
(√FGIdealCharLImpl V I)
(√FGIdealCharRImpl V I)
√+RContrLIncl : (I J : CommIdeal) → √ (I +i √ J) ⊆ √ (I +i J)
√+RContrLIncl I J x = PT.elim (λ _ → isPropPropTrunc)
(uncurry (λ n → PT.elim (λ _ → isPropPropTrunc)
(uncurry3 (curriedIncl1 n))))
where
curriedIncl1 : (n : ℕ) (y : R × R)
→ (y .fst ∈ I)
→ (y . snd ∈ √ J)
→ (x ^ n ≡ y .fst + y .snd)
→ x ∈ √ (I +i J)
curriedIncl1 n (y , z) y∈I = PT.elim (λ _ → isPropΠ λ _ → isPropPropTrunc) Σhelper
where
yVec : (m : ℕ) → FinVec R m
yVec m = (BinomialVec m y z) ∘ suc
∑yVec∈I : ∀ m → ∑ (yVec m) ∈ I
∑yVec∈I zero = I .snd .contains0
∑yVec∈I (suc m) = ∑Closed I (yVec (suc m))
λ _ → subst-∈ I (useSolver _ _ _ _) (I .snd .·Closed _ y∈I)
where
useSolver : (bc y y^i z^m-i : R) → (bc · y^i · z^m-i) · y ≡ bc · (y · y^i) · z^m-i
useSolver = solve R'
path : (m : ℕ) → x ^ n ≡ y + z → x ^ (n ·ℕ m) ≡ ∑ (yVec m) + z ^ m
path m p = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩
(x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩
(y + z) ^ m ≡⟨ BinomialThm m y z ⟩
∑ (BinomialVec m y z) ≡⟨ useSolver _ _ ⟩
∑ (yVec m) + z ^ m ∎
where
useSolver : (zm ∑yVec : R) → 1r · 1r · zm + ∑yVec ≡ ∑yVec + zm
useSolver = solve R'
Σhelper : Σ[ m ∈ ℕ ] (z ^ m ∈ J) → x ^ n ≡ y + z → x ∈ √ (I +i J)
Σhelper (m , z^m∈J) x^n≡y+z =
∣ n ·ℕ m , ∣ (∑ (yVec m) , z ^ m) , ∑yVec∈I m , z^m∈J , path m x^n≡y+z ∣ ∣
√+RContrRIncl : (I J : CommIdeal) → √ (I +i J) ⊆ √ (I +i √ J)
√+RContrRIncl I J x = PT.elim (λ _ → isPropPropTrunc) (uncurry curriedIncl2)
where
curriedIncl2 : (n : ℕ) → (x ^ n ∈ (I +i J)) → x ∈ √ ((I +i √ J))
curriedIncl2 n = map λ ((y , z) , y∈I , z∈J , x≡y+z)
→ n , ∣ (y , z) , y∈I , ∈→∈√ J z z∈J , x≡y+z ∣
√+RContr : (I J : CommIdeal) → √ (I +i √ J) ≡ √ (I +i J)
√+RContr I J = CommIdeal≡Char (√+RContrLIncl I J) (√+RContrRIncl I J)
√+LContr : (I J : CommIdeal) → √ (√ I +i J) ≡ √ (I +i J)
√+LContr I J = cong √ (+iComm (√ I) J) ∙∙ √+RContr J I ∙∙ cong √ (+iComm J I)
√·RContrLIncl : (I J : CommIdeal) → √ (I ·i √ J) ⊆ √ (I ·i J)
√·RContrLIncl I J x = PT.elim (λ _ → isPropPropTrunc)
(uncurry (λ n → PT.elim (λ _ → isPropPropTrunc)
(uncurry4 (curriedIncl1 n))))
where
curriedIncl1 : (n m : ℕ) (α : FinVec R m × FinVec R m)
→ (∀ i → α .fst i ∈ I)
→ (∀ i → α .snd i ∈ √ J)
→ (x ^ n ≡ linearCombination R' (α .fst) (α .snd))
→ x ∈ √ (I ·i J)
curriedIncl1 n m (α , β) α∈I β∈√J xⁿ≡∑αβ = ^∈√→∈√ (I ·i J) x n
(subst-∈ (√ (I ·i J)) (sym xⁿ≡∑αβ)
(∑Closed (√ (I ·i J)) (λ i → α i · β i) λ i → prodHelper i (β∈√J i)))
where
curriedHelper : ∀ x y → x ∈ I → ∀ l → y ^ l ∈ J → (x · y) ∈ √ (I ·i J)
curriedHelper x y x∈I zero 1∈J = subst (λ K → (x · y) ∈ √ K)
(sym (·iRContains1id I J 1∈J)) --1∈J → √J ≡ √ ⊃ I
(∈→∈√ I _ (·RClosed (I .snd) y x∈I))
curriedHelper x y x∈I (suc l) y^l+1∈J = -- (xy)^l+1 ≡ x^l · x (∈I) · y^l+1 (∈J)
∣ suc l , subst-∈ (I ·i J) (sym (^-ldist-· _ _ (suc l)))
(prodInProd I J _ _ (subst-∈ I (·-comm _ _) (I .snd .·Closed (x ^ l) x∈I)) y^l+1∈J) ∣
prodHelper : ∀ i → β i ∈ √ J → α i · β i ∈ √ (I ·i J)
prodHelper i = PT.elim (λ _ → isPropPropTrunc) (uncurry (curriedHelper (α i) (β i) (α∈I i)))
√·RContrRIncl : (I J : CommIdeal) → √ (I ·i J) ⊆ √ (I ·i √ J)
√·RContrRIncl I J x = PT.elim (λ _ → isPropPropTrunc) (uncurry curriedIncl2)
where
curriedIncl2 : (n : ℕ) → x ^ n ∈ (I ·i J) → x ∈ √ (I ·i √ J)
curriedIncl2 n = map λ (m , (α , β) , α∈I , β∈J , xⁿ≡∑αβ)
→ n , ∣ m , (α , β) , α∈I , (λ i → ∈→∈√ J (β i) (β∈J i)) , xⁿ≡∑αβ ∣
√·RContr : (I J : CommIdeal) → √ (I ·i √ J) ≡ √ (I ·i J)
√·RContr I J = CommIdeal≡Char (√·RContrLIncl I J) (√·RContrRIncl I J)
√·LContr : (I J : CommIdeal) → √ (√ I ·i J) ≡ √ (I ·i J)
√·LContr I J = cong √ (·iComm (√ I) J) ∙∙ √·RContr J I ∙∙ cong √ (·iComm J I)
√·IdemLIncl : ∀ (I : CommIdeal) → √ (I ·i I) ⊆ √ I
√·IdemLIncl I x = map λ (n , x^n∈II) → (n , ·iLincl I I _ x^n∈II)
√·IdemRIncl : ∀ (I : CommIdeal) → √ I ⊆ √ (I ·i I)
√·IdemRIncl I x = map λ (n , x^n∈I) → (n +ℕ n , subst-∈ (I ·i I)
(·-of-^-is-^-of-+ x n n) -- x²ⁿ≡xⁿ (∈I) · xⁿ (∈I)
(prodInProd I I _ _ x^n∈I x^n∈I))
√·Idem : ∀ (I : CommIdeal) → √ (I ·i I) ≡ √ I
√·Idem I = CommIdeal≡Char (√·IdemLIncl I) (√·IdemRIncl I)
√·Absorb+LIncl : ∀ (I J : CommIdeal) → √ (I ·i (I +i J)) ⊆ √ I
√·Absorb+LIncl I J x = map λ (n , x^n∈I[I+J]) → (n , ·iLincl I (I +i J) _ x^n∈I[I+J])
√·Absorb+RIncl : ∀ (I J : CommIdeal) → √ I ⊆ √ (I ·i (I +i J))
√·Absorb+RIncl I J x = map λ (n , x^n∈I) → (n +ℕ n , subst-∈ (I ·i (I +i J))
(·-of-^-is-^-of-+ x n n) -- x²ⁿ≡xⁿ (∈I) · xⁿ (∈I⊆I+J)
(prodInProd I (I +i J) _ _ x^n∈I (+iLincl I J _ x^n∈I)))
√·Absorb+ : ∀ (I J : CommIdeal) → √ (I ·i (I +i J)) ≡ √ I
√·Absorb+ I J = CommIdeal≡Char (√·Absorb+LIncl I J) (√·Absorb+RIncl I J)
|
{
"alphanum_fraction": 0.4514181153,
"avg_line_length": 46.313559322,
"ext": "agda",
"hexsha": "2e4d95f1d41b3e2db52b7d9808710a916de34645",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/RadicalIdeal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5112,
"size": 10930
}
|
module sum-thms where
open import eq
open import sum
open import list
open import product
open import negation
inj₁-inj : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{x : A}{x'} → inj₁{ℓ}{ℓ'}{A}{B} x ≡ inj₁ x' → x ≡ x'
inj₁-inj refl = refl
¬∨ : ∀ {A B : Set} → ¬ A ∧ ¬ B → ¬ (A ∨ B)
¬∨ (u , u') (inj₁ x) = u x
¬∨ (u , u') (inj₂ y) = u' y
¬Σ : ∀{A : Set}{B : A → Set} → (∀(x : A) → ¬ B x) → ¬ Σ A B
¬Σ p (a , b) = p a b
¬∧1 : ∀ {A B : Set} → ¬ A → ¬ (A ∧ B)
¬∧1 f (a , b) = f a
¬∧2 : ∀ {A B : Set} → ¬ B → ¬ (A ∧ B)
¬∧2 f (a , b) = f b
¬∀ : ∀{A : Set}{B : A → Set} → Σ A (λ x → ¬ B x) → ¬ ∀(x : A) → B x
¬∀ (a , b) f = b (f a)
|
{
"alphanum_fraction": 0.4048387097,
"avg_line_length": 22.962962963,
"ext": "agda",
"hexsha": "e2f5fe0ad2ca2d9fbae49e0df99e34db9ce4de4c",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "sum-thms.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "sum-thms.agda",
"max_line_length": 93,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "sum-thms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 337,
"size": 620
}
|
{-# OPTIONS --safe --without-K #-}
-- Proof relevant separation algebras
module Relation.Ternary.Separation where
open import Function
open import Level
open import Data.Unit using (tt; ⊤)
open import Data.Product hiding (map)
open import Data.List.Relation.Ternary.Interleaving.Propositional hiding (map)
open import Data.List.Relation.Binary.Equality.Propositional
open import Relation.Unary hiding (Empty)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Relation.Binary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Algebra
open import Algebra.Structures using (IsMonoid)
open import Algebra.FunctionProperties.Core
∥_∥ : ∀ {ℓ a} {A : Set a} {P : Pred A ℓ} {Φ} → P Φ → A
∥_∥ {Φ = Φ} _ = Φ
Exactly : ∀ {a} {A : Set a} → A → Pred A a
Exactly x y = y ≡ x
module _ where
open import Data.List
Just : ∀ {a} {A : Set a} → A → Pred (List A) _
Just t = Exactly [ t ]
record RawSep {a} (Carrier : Set a) : Set (suc a) where
SPred : (ℓ : Level) → Set _
SPred ℓ = Pred Carrier ℓ
field
_⊎_≣_ : (Φ₁ Φ₂ : Carrier) → SPred a
-- we can see the three point relation as a predicate on the carrier
_⊎_ = _⊎_≣_
-- buy one, get a preorder for free
_≤_ : Rel Carrier _
Φ₁ ≤ Φ = ∃ λ Φ₂ → Φ₁ ⊎ Φ₂ ≣ Φ
-- remainder
rem : ∀ {x y} → x ≤ y → Carrier
rem (z , _) = z
-- separating conjunction
infixr 10 _×⟨_⟩_
record Conj {p q} (P : SPred p) (Q : ∀ {Φ} → P Φ → SPred q) Φ : Set (p ⊔ q ⊔ a) where
inductive
constructor _×⟨_⟩_
field
{Φₗ Φᵣ} : Carrier
px : P Φₗ
sep : Φₗ ⊎ Φᵣ ≣ Φ
qx : Q px Φᵣ
infixr 9 ∃[_]✴_
∃[_]✴_ = Conj
infixr 9 _✴_
_✴_ : ∀ {p q} → SPred p → SPred q → SPred (p ⊔ q ⊔ a)
P ✴ Q = ∃[ P ]✴ const Q
-- | Separating implication / magic is what you wand
infixr 8 _─✴[_]_
record _─✴[_]_ {b p q} {A : Set b} (P : Pred A p) (j : A → Carrier) (Q : SPred q) (Φᵢ : Carrier) : Set (p ⊔ q ⊔ a ⊔ b) where
constructor wand
field
app : ∀ {Φₚ} → P Φₚ → ∀ {Φ} → Φᵢ ⊎ j Φₚ ≣ Φ → Q Φ
open _─✴[_]_ public
infixr 8 _─✴_
_─✴_ : ∀ {p q} (P : SPred p) (Q : SPred q) → SPred (p ⊔ q ⊔ a)
_─✴_ = _─✴[ id ]_
_$⟨_⟩_ : ∀ {p q Φ₁ Φ₂ Φ} {P : SPred p} {Q : SPred q} →
(P ─✴ Q) Φ₁ → Φ₁ ⊎ Φ₂ ≣ Φ → P Φ₂ → Q Φ
f $⟨ σ ⟩ px = app f px σ
-- | The update modality
-- the naked version, which doesn't coop well with inference:
⤇' : ∀ {p} (P : SPred p) → SPred (a ⊔ p)
⤇' P Φᵢ = ∀ {Φⱼ Φₖ} → Φᵢ ⊎ Φⱼ ≣ Φₖ → ∃₂ λ Φₗ Φ → Φₗ ⊎ Φⱼ ≣ Φ × P Φₗ
-- Φᵢ is what we own, Φⱼ is an arbitrary frame.
-- We may update Φᵢ as long as we do not disturb the framing
-- wrapped
record ⤇ {p} (P : SPred p) Φᵢ : Set (a ⊔ p) where
constructor local
field
update : ⤇' P Φᵢ
open ⤇ public
infixr 8 _==✴_
_==✴_ : ∀ {p q} → (P : SPred p) (Q : SPred q) → SPred (p ⊔ q ⊔ a)
P ==✴ Q = P ─✴ (⤇ Q)
record IsSep {ℓ₁} {A} (s : RawSep {ℓ₁} A) : Set ℓ₁ where
open RawSep s
field
⊎-comm : ∀ {Φ₁ Φ₂} → ∀[ Φ₁ ⊎ Φ₂ ⇒ Φ₂ ⊎ Φ₁ ]
⊎-assoc : ∀ {a b ab c abc} → a ⊎ b ≣ ab → ab ⊎ c ≣ abc →
∃ λ bc → a ⊎ bc ≣ abc × b ⊎ c ≣ bc
⊎-unassoc : ∀ {b c bc a abc} → a ⊎ bc ≣ abc → b ⊎ c ≣ bc →
∃ λ ab → a ⊎ b ≣ ab × ab ⊎ c ≣ abc
⊎-unassoc σ₁ σ₂ =
let _ , σ₃ , σ₄ = ⊎-assoc (⊎-comm σ₂) (⊎-comm σ₁)
in -, ⊎-comm σ₄ , ⊎-comm σ₃
variable
Φ₁ Φ₂ Φ₃ Φ : A
module _ where
resplit : ∀ {a b c d ab cd abcd} →
a ⊎ b ≣ ab → c ⊎ d ≣ cd → ab ⊎ cd ≣ abcd →
∃₂ λ ac bd → a ⊎ c ≣ ac × b ⊎ d ≣ bd × ac ⊎ bd ≣ abcd
resplit σ₁ σ₂ σ with ⊎-assoc σ₁ σ
... | bcd , σ₃ , σ₄ with ⊎-unassoc σ₄ (⊎-comm σ₂)
... | bd , σ₅ , σ₆ with ⊎-unassoc σ₃ σ₆
... | abd , σ₇ , σ₈ with ⊎-unassoc (⊎-comm σ₈) σ₇
... | ac , τ , τ' = -, -, ⊎-comm τ , σ₅ , τ'
-- pairs commute
module _ {p q} {P : SPred p} {Q : SPred q} where
✴-swap : ∀[ (P ✴ Q) ⇒ (Q ✴ P) ]
✴-swap (px ×⟨ σ ⟩ qx) = qx ×⟨ ⊎-comm σ ⟩ px
-- pairs rotate and reassociate
module _ {p q r} {P : SPred p} {Q : SPred q} {R : SPred r} where
✴-assocₗ : ∀[ P ✴ (Q ✴ R) ⇒ (P ✴ Q) ✴ R ]
✴-assocₗ (p ×⟨ σ₁ ⟩ (q ×⟨ σ₂ ⟩ r)) =
let _ , σ₃ , σ₄ = ⊎-assoc (⊎-comm σ₂) (⊎-comm σ₁) in
(p ×⟨ ⊎-comm σ₄ ⟩ q) ×⟨ ⊎-comm σ₃ ⟩ r
✴-assocᵣ : ∀[ (P ✴ Q) ✴ R ⇒ P ✴ (Q ✴ R) ]
✴-assocᵣ ((p ×⟨ σ₁ ⟩ q) ×⟨ σ₂ ⟩ r) =
let _ , σ₃ , σ₄ = ⊎-assoc σ₁ σ₂ in
p ×⟨ σ₃ ⟩ q ×⟨ σ₄ ⟩ r
✴-rotateᵣ : ∀[ P ✴ (Q ✴ R) ⇒ R ✴ P ✴ Q ]
✴-rotateᵣ (p ×⟨ σ₁ ⟩ (q ×⟨ σ₂ ⟩ r)) =
let _ , σ₃ , σ₄ = ⊎-assoc (⊎-comm σ₂) (⊎-comm σ₁) in
r ×⟨ σ₃ ⟩ p ×⟨ ⊎-comm σ₄ ⟩ q
✴-rotateₗ : ∀[ P ✴ (Q ✴ R) ⇒ Q ✴ R ✴ P ]
✴-rotateₗ (p ×⟨ σ₁ ⟩ (q ×⟨ σ₂ ⟩ r)) =
let _ , σ₃ , σ₄ = ⊎-assoc σ₂ (⊎-comm σ₁) in
q ×⟨ σ₃ ⟩ r ×⟨ σ₄ ⟩ p
module _ {p q} {P : SPred p} {Q : SPred q} where
apply : ∀[ (P ─✴ Q) ✴ P ⇒ Q ]
apply (px ×⟨ sep ⟩ qx) = app px qx sep
-- mapping
module _ {p q p' q'}
{P : SPred p} {Q : SPred q} {P' : SPred p'} {Q' : SPred q'} where
⟨_⟨✴⟩_⟩ : ∀[ P ⇒ P' ] → ∀[ Q ⇒ Q' ] → ∀[ P ✴ Q ⇒ P' ✴ Q' ]
⟨_⟨✴⟩_⟩ f g (px ×⟨ sep ⟩ qx) = (f px) ×⟨ sep ⟩ (g qx)
both : ∀[ (P ─✴ P') ✴ (Q ─✴ Q') ⇒ P ✴ Q ─✴ P' ✴ Q' ]
app (both (f ×⟨ σ₁ ⟩ g)) (px ×⟨ σ₂ ⟩ qx) σ₃ with resplit σ₁ σ₂ σ₃
... | _ , _ , σ₄ , σ₅ , σ₆ = apply (f ×⟨ σ₄ ⟩ px) ×⟨ σ₆ ⟩ apply (g ×⟨ σ₅ ⟩ qx)
module _ {p q r} {P : SPred p} {Q : SPred q} {R : SPred r} where
✴-curry : ∀[ (P ─✴ (Q ─✴ R)) ⇒ (P ✴ Q) ─✴ R ]
app (✴-curry f) (p ×⟨ σ₁ ⟩ q) σ₂ =
let _ , σ₃ , σ₄ = ⊎-unassoc σ₂ σ₁ in app (app f p σ₃) q σ₄
intro : ∀[ (P ✴ Q) ⇒ R ] → ∀[ P ⇒ (Q ─✴ R) ]
app (intro f px) qx s = f (px ×⟨ s ⟩ qx)
com : ∀[ (P ─✴ Q) ✴ (Q ─✴ R) ⇒ (P ─✴ R) ]
app (com (f ×⟨ s ⟩ g)) px s' = let _ , eq₁ , eq₂ = ⊎-assoc (⊎-comm s) s' in app g (app f px eq₂) eq₁
✴-uncurry : ∀[ (P ✴ Q ─✴ R) ⇒ P ─✴ (Q ─✴ R) ]
app (app (✴-uncurry f) p σ₁) q σ₂ = let _ , σ₃ , σ₄ = ⊎-assoc σ₁ σ₂ in app f (p ×⟨ σ₄ ⟩ q) σ₃
module _ where
≤-trans : Φ₁ ≤ Φ₂ → Φ₂ ≤ Φ₃ → Φ₁ ≤ Φ₃
≤-trans (τ₁ , Φ₁⊎τ₁=Φ₂) (τ₂ , Φ₂⊎τ₂=Φ₃) =
let τ₃ , p , q = ⊎-assoc Φ₁⊎τ₁=Φ₂ Φ₂⊎τ₂=Φ₃ in τ₃ , p
module _ where
-- disjointness
_◆_ : _ → _ → SPred _
Φₗ ◆ Φᵣ = Exactly Φₗ ✴ Exactly Φᵣ
record IsUnitalSep {c} {C : Set c} (sep : RawSep C) un : Set (suc c) where
field
overlap {{ isSep }} : IsSep sep
open RawSep sep
ε = un
field
⊎-idˡ : ∀ {Φ} → ε ⊎ Φ ≣ Φ
⊎-id⁻ˡ : ∀ {Φ₁ Φ₂} → ε ⊎ Φ₁ ≣ Φ₂ → Φ₁ ≡ Φ₂
open IsSep isSep
⊎-idʳ : ∀ {Φ} → Φ ⊎ ε ≣ Φ
⊎-idʳ = ⊎-comm ⊎-idˡ
⊎-id⁻ʳ : ∀ {Φ} → ∀[ (Φ ⊎ ε) ⇒ (Φ ≡_) ]
⊎-id⁻ʳ = ⊎-id⁻ˡ ∘ ⊎-comm
infix 10 ε[_]
ε[_] : ∀ {ℓ} → Pred C ℓ → Set ℓ
ε[ P ] = P ε
{- Emptyness -}
module _ where
data Empty {p} (P : Set p) : SPred (c ⊔ p) where
emp : P → Empty P ε
pattern empty = emp tt
Emp : SPred c
Emp = Empty ⊤
module _ where
ε⊎ε : ∀[ ε ⊎ ε ⇒ Emp ]
ε⊎ε p with ⊎-id⁻ˡ p
... | (P.refl) = empty
✴-idʳ : ∀ {p} {P : SPred p} → ∀[ P ⇒ P ✴ Emp ]
✴-idʳ px = px ×⟨ ⊎-idʳ ⟩ empty
-- a resource-polymorphic function is a pure wand
wandit : ∀ {p q} {P : SPred p} {Q : SPred q} → ∀[ P ⇒ Q ] → ε[ P ─✴ Q ]
app (wandit f) p σ rewrite ⊎-id⁻ˡ σ = f p
_⟨✴⟩_ : ∀ {p q} {P : SPred p} {Q : SPred q} → ε[ P ─✴ Q ] → ∀[ P ⇒ Q ]
w ⟨✴⟩ p = app w p ⊎-idˡ
{- A free preorder -}
module _ where
≤-reflexive : Φ₁ ≡ Φ₂ → Φ₁ ≤ Φ₂
≤-reflexive P.refl = ε , ⊎-idʳ
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans }
≤-preorder : Preorder _ _ _
≤-preorder = record { isPreorder = ≤-isPreorder }
ε-minimal : ∀ {Φ} → ε ≤ Φ
ε-minimal {Φ} = Φ , ⊎-idˡ
{- Framing where we forget the actual resource owned -}
module ↑-Frames where
infixl 1000 _↑
_↑ : ∀ {ℓ} → SPred ℓ → SPred _
P ↑ = P ✴ U
pattern _⇑_ p sep = p ×⟨ sep ⟩ tt
module _ {ℓ} {P : SPred ℓ} where
return : ∀[ P ⇒ P ↑ ]
return p = p ×⟨ ⊎-idʳ ⟩ tt
join : ∀[ (P ↑) ↑ ⇒ P ↑ ]
join ((p ×⟨ σ₁ ⟩ tt) ×⟨ σ₂ ⟩ tt) =
let _ , σ₃ = ≤-trans (-, σ₁) (-, σ₂) in p ×⟨ σ₃ ⟩ tt
module _ {ℓ₁ ℓ₂} {P : SPred ℓ₁} {Q : SPred ℓ₂} where
map : ∀[ P ⇒ Q ] → ∀[ P ↑ ⇒ Q ↑ ]
map f (px ⇑ sep) = f px ⇑ sep
module _ {ℓ₁ ℓ₂} {P : SPred ℓ₁} {Q : SPred ℓ₂} where
↑-bind : ∀[ P ⇒ Q ↑ ] → ∀[ P ↑ ⇒ Q ↑ ]
↑-bind f px = join (map f px)
{- Projections out of separating conjunction using framing -}
module _ where
π₁ : ∀ {p q} {P : SPred p} {Q : SPred q} → ∀[ (P ✴ Q) ⇒ P ↑ ]
π₁ (px ×⟨ sep ⟩ _) = px ⇑ sep
π₂ : ∀ {p q} {P : SPred p} {Q : SPred q} → ∀[ (P ✴ Q) ⇒ Q ↑ ]
π₂ (_ ×⟨ sep ⟩ qx) = qx ⇑ ⊎-comm sep
record IsConcattative {c} {C : Set c} (sep : RawSep C) : Set (suc c) where
open RawSep sep
field
overlap {{ isSep }} : IsSep sep
_∙_ : C → C → C
⊎-∙ₗ : ∀ {Φ₁ Φ₂ Φ Φₑ} → Φ₁ ⊎ Φ₂ ≣ Φ → (Φₑ ∙ Φ₁) ⊎ Φ₂ ≣ (Φₑ ∙ Φ)
open IsSep isSep
⊎-∙ᵣ : ∀ {Φ₁ Φ₂ Φ Φₑ} → Φ₁ ⊎ Φ₂ ≣ Φ → Φ₁ ⊎ (Φₑ ∙ Φ₂) ≣ (Φₑ ∙ Φ)
⊎-∙ᵣ s = ⊎-comm (⊎-∙ₗ (⊎-comm s))
record IsPositive {c} {C : Set c} (sep : RawSep C) : Set (suc c) where
open RawSep sep
field
{ε} : _
overlap {{ isUnitalSep }} : IsUnitalSep sep ε
overlap {{ isSep }} : IsSep sep
open IsUnitalSep isUnitalSep using (⊎-id⁻ˡ)
field
⊎-εˡ : ∀ {Φ₁ Φ₂} → Φ₁ ⊎ Φ₂ ≣ ε → Φ₁ ≡ ε
⊎-ε : ∀ {Φ₁ Φ₂} → Φ₁ ⊎ Φ₂ ≣ ε → Φ₁ ≡ ε × Φ₂ ≡ ε
⊎-ε σ with ⊎-εˡ σ
... | P.refl with ⊎-id⁻ˡ σ
... | P.refl = P.refl , P.refl
record Separation c : Set (suc c) where
field
Carrier : Set c
overlap {{ raw }} : RawSep Carrier
overlap {{ isSep }} : IsSep raw
record UnitalSep c : Set (suc c) where
field
Carrier : Set c
ε : _
overlap {{ sep }} : RawSep Carrier
overlap {{ isUnitalSep }} : IsUnitalSep sep ε
record MonoidalSep c : Set (suc c) where
field
Carrier : Set c
ε : _
overlap {{ sep }} : RawSep Carrier
overlap {{ isSep }} : IsSep sep
overlap {{ isUnitalSep }} : IsUnitalSep sep ε
overlap {{ isConcat }} : IsConcattative sep
open RawSep sep
open IsSep isSep
open IsConcattative isConcat
open IsUnitalSep isUnitalSep hiding (ε)
field
overlap {{ monoid }} : IsMonoid {A = Carrier} _≡_ _∙_ ε
open IsMonoid monoid
⊎-∙ : ∀ {Φₗ Φᵣ : Carrier} → Φₗ ⊎ Φᵣ ≣ (Φₗ ∙ Φᵣ)
⊎-∙ {Φₗ} {Φᵣ} =
P.subst (λ φ → φ ⊎ Φᵣ ≣ (Φₗ ∙ Φᵣ))
(identityʳ Φₗ)
(⊎-∙ₗ {Φₑ = Φₗ} (⊎-idˡ {Φᵣ}))
instance unital : UnitalSep _
unital = record { ε = ε }
module _ {c} {C : Set c} where
εOf : ∀ (r : RawSep C) {u} {{ _ : IsUnitalSep r u }} → C
εOf _ {{ un }}= IsUnitalSep.ε un
open RawSep ⦃...⦄ public
open IsConcattative ⦃...⦄ public
open IsUnitalSep ⦃...⦄ public
open IsPositive ⦃...⦄ hiding (ε) public
open UnitalSep ⦃...⦄ public hiding (Carrier; ε)
open IsSep ⦃...⦄ public
open MonoidalSep ⦃...⦄ public hiding (Carrier; ε)
|
{
"alphanum_fraction": 0.484414643,
"avg_line_length": 27.8686868687,
"ext": "agda",
"hexsha": "b14d5a421fd2999b0e720e8636d83ee1ef0e04ce",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation.agda",
"max_line_length": 126,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 5417,
"size": 11036
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Theory
{- Useful lemmas concerning the functorial action of C -}
module cohomology.Functor {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
CF-inverse : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y)) (g : fst (Y ⊙→ X))
→ g ⊙∘ f == ⊙idf _ → (CF-hom n f) ∘ᴳ (CF-hom n g) == idhom _
CF-inverse n f g p = ! (CF-comp n g f) ∙ ap (CF-hom n) p ∙ CF-ident n
|
{
"alphanum_fraction": 0.6111111111,
"avg_line_length": 28.8,
"ext": "agda",
"hexsha": "3e307028982706143be3b1fa614b8dc7b8798267",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/Functor.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 169,
"size": 432
}
|
{-# OPTIONS --copatterns #-}
module LecStr where
open import CS410-Prelude
open import CS410-Nat
open import CS410-Functor
record Stream (X : Set) : Set where
coinductive
field
head : X
tail : Stream X
open Stream
count : Nat -> Stream Nat
head (count n) = n
tail (count n) = count (suc n)
nats : Stream Nat
nats = count zero
poke : Nat
poke = head (tail (tail (tail nats)))
repeat : {X : Set} -> X -> Stream X
head (repeat x) = x
tail (repeat x) = repeat x
strApp : {S T : Set} -> Stream (S -> T) -> Stream S -> Stream T
head (strApp fs ss) = (head fs) (head ss)
tail (strApp fs ss) = strApp (tail fs) (tail ss)
strMap : {S T : Set} -> (S -> T) -> Stream S -> Stream T
strMap f ss = strApp (repeat f) ss
diagonal : {X : Set} -> Stream (Stream X) -> Stream X
head (diagonal xss) = head (head xss)
tail (diagonal xss) = diagonal (strMap tail (tail xss))
{- productivity checker rejects
fibo : Stream Nat
head fibo = 1
head (tail fibo) = 1
tail (tail fibo) = strApp (strApp (repeat _+N_) (tail fibo)) fibo
-}
data CoList' (X : Set) : Set
record CoList (X : Set) : Set where
coinductive
constructor thunk
field
force : CoList' X
data CoList' X where
[] : CoList' X
_::_ : X -> CoList X -> CoList' X
module CoListExamples where
open CoList
short : CoList Nat
short = thunk (0 :: thunk (1 :: thunk (2 :: thunk [])))
long : forall {X} -> Stream X -> CoList X
force (long s) = head s :: long (tail s)
_++_ : forall {X} -> CoList X -> CoList X -> CoList X
force (xs ++ ys) with force xs
force (xs ++ ys) | [] = force ys
force (xs ++ ys) | x :: xs' = x :: (xs' ++ ys)
{-
concat : forall {X} -> CoList (CoList X) -> CoList X
force (concat xss) with force xss
force (concat xss) | [] = []
force (concat xss) | xs :: xss' with force xs
force (concat xss) | xs :: xss' | [] = ? -- oops force (concat xss')
force (concat xss) | xs :: xss' | x :: xs' = x :: concat (thunk (xs' :: xss'))
-}
-- nonempty CoLists
-- tails for Streams
-- " n.e. CoLists
|
{
"alphanum_fraction": 0.6035856574,
"avg_line_length": 23.9047619048,
"ext": "agda",
"hexsha": "ce3a7d1a3832d31d167c2b72cf5584437ecec8ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "LecStr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "LecStr.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "LecStr.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 699,
"size": 2008
}
|
--{-# OPTIONS -v tc.data:100 #-}
module Issue830 where
_⟶_ : Set₁ → Set → Set₁
A ⟶ B = A → B
data ⟨Set⟩ : Set where
[_] : Set ⟶ ⟨Set⟩
-- should fail
|
{
"alphanum_fraction": 0.5519480519,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "4f902727be61878b78da4b980d7d1bf8e43cc528",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue830.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue830.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue830.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 154
}
|
module x where
{-
------------------------------------------------------------------------------
Abstract
Relational program derivation technique :
- stepwise refining a relational spec to a program by algebraic rules.
- program obtained is correct by construction
Dependent type theory rich enough to express correctness properties verified by type checker.
Library, Algebra of Programming in Agda (AoPA)
- http://www.iis.sinica.edu.tw/~scm/2008/aopa/
- encodes relational derivations
- A program is coupled with an algebraic derivation whose correctness is guaranteed by type system
------------------------------------------------------------------------------
1 Introduction
relational program derivation
- specs are input-output relations that are stepwise refined by an algebra of programs.
paper show how program derivation can be encoded in a type and its proof term.
- case study using Curry-Howard isomorphism
- modelled a many concepts that occur in relational program derivation
including relational folds, relational division, and converse-of-a-function.
- e.g., Minimum, is defined using division and intersection
- e.g., greedy theorem proved using the universal property of minimum.
- the theorem can be used to deal with a number of optimisation problems specified as folds.
• to ensure termination with unfolds and hylomorphisms, enable programmer to
model an unfold as the relational converse of a fold, but demand a proof of accessibility
before it is refined to a functional unfold.
------------------------------------------------------------------------------
2 Overview of Relational Program Derivation
Merit of functional programming : programs can be manipulated by equational reasoning.
Program derivation in Bird-Meertens style 1989b) typically start with a specification,
as a function, that is obviously correct but not efficient.
Algebraic identities are then applied, in successive steps,
to show that the specification equals another functional program that is more efficient.
Typical example : Maximum Segment Sum (Gries, 1989; Bird, 1989a), specification :
max · map sum · segs
where
- segs produces all consecutive segments of the input list of numbers
- map sum computes their summation
- maximum is picked by max
Specification can be shown, after transformation, to be equal a version using foldr (linear).
In 90’s there was a trend in the program derivation community to move from functions to relations.
- spec given in terms of an input/output relation
- relation is refined to smaller, more deterministic relations in each step,
- until obtaining a function
Relational derivation advantages:
- spec often more concise than corresponding functional specification
- optimisation problems can be specified using relations generating all possible solutions
- easier to talk about program inversion
The catch: *must reason in terms of inequalities rather than equalities*
denoted by R : B ← A
- relation R from A to B
- subset of set of pairs B × A
- A function f is seen as a special case where (b, a) ∈ f and (b' , a) ∈ f implies b = b'
converse R˘ : A ← B of R : B ← A
- defined by (a, b) ∈ R ˘ if (b, a) ∈ R
composition of two relations R : C ← B and S : B ← A
- defined by: (c, a) ∈ R ◦ S if ∃b : (c, b) ∈ R ∧ (b, a) ∈ S
power transpose ΛR of R : B ← A
- is a function from A to P B (subsets of B)
- ΛR a = { b | (b, a) ∈ R }.
relation ∈ : A ← P A
- maps a set to one of its arbitrary members
- converse: ∋ : P A ← A
product of two relations, R × S
- defined by ((c, d), (a, b)) ∈ R × S if (c, a) ∈ R and (d, b) ∈ S
-- step fun base input output
foldr : (A → B → B) → B → List A → B
generalisation to a relation, denote foldR
input step relation base cases
foldR R : B ← List A ← (B ← (A×B)) (set s : PB)
-- relation mapping a list to one of its arbitrary subsequences
subseq = foldR (cons ∪ outr) {[ ]}
where
cons (x, xs) = x :: xs -- cons keeps the current element
outr (x, xs) = xs -- outr drops the current element
Relational fold defined in terms of functional fold:
foldR R s = ∈ ◦ foldr Λ(R ◦ (id " ∈)) s
of type List A → P B that collects all the results in a set.
step function Λ(R ◦ (id " ∈)) : has type (A × P B) → P B
(id " ∈) : (A × B) ← (A × P B) : pairs current element with one of the results from previous step
before passing the pair to R
foldR R s satisfies the universal property:
foldR R s = S ⇔ R ◦ (id " S) = S ◦ cons ∧ s = ΛS [ ]
-- induction rule
-- states that foldR R s is the unique fixed-point of the monotonic function
λ X → (R ◦ (id " X) ◦ cons ˘) ∪ {(b, [ ]) | b ∈ s}
-- computation rule
-- foldR R s is also the least prefix-point, therefore
foldR R s ⊆ S ⇐ R ◦ (id " S) ⊆ S ◦ cons ∧ s ⊆ ΛS [ ],
R ◦ (id " foldR R s) ⊆ foldR R s ◦ cons ∧ s ⊆ Λ(foldR R s) [ ].
If an optimisation problem can be specified by generating all possible solutions using
foldR or converse of foldR before picking the best one, Bird and de Moor (1997) gave a
number of conditions under which the specification can be refined to a greedy algorithm, a
dynamic programming algorithm, or something in-between.
------------------------------------------------------------------------------
3 A Crash Course in Agda
-}
-- Fig. 2. Some examples of datatype definitions.
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data _≤_ : ℕ → ℕ → Set where
≤-refl : {n : ℕ} → n ≤ n
≤-step : {m n : ℕ} → m ≤ n → m ≤ suc n
_<_ : ℕ → ℕ → Set
m < n = suc m ≤ n
-- Fig. 3. An encoding of first-order intuitionistic logic in Agda.
-- Truth : has one unique term — a record with no fields
record ⊤ : Set where
-- Falsity : type with no constructors therefore no inhabitants
data ⊥ : Set where
-- Disjunction : proof deduced either from a proof of P or a proof of Q
data _⨄_ (A B : Set) : Set where
inj1 : A → A ⨄ B
inj2 : B → A ⨄ B
-- Dependent Pair : type of 2nd may depend on the first component
data Σ (A : Set)(B : A → Set) : Set where
_,_ : (x : A) → (y : B x) → Σ A B
proj₁ : ∀ {A B} → Σ A B → A
proj₁ (x , y) = x
proj₂ : ∀ {A B} → (p : Σ A B) → B (proj₁ p)
proj₂ (x , y) = y
-- Conjunction
_×_ : (A B : Set) → Set
A × B = Σ A (λ _ → B)
-- Existential Quantification
-- to prove the proposition ∃ P, where P is a predicate on terms of type A
-- provide, in a pair, a witness w : A and a proof of P w.
∃ : {A : Set} (P : A → Set) → Set
∃ = Σ _
-- Universal Quantification
-- of predicate P on type A is encoded as a dependent function type
-- whose elements, given any x : A, must produce a proof of P x.
-- Agda provides a short hand ∀ x → P x in place of (x : A) → P x when A can be inferred.
-- Implication
-- P → Q is represented as a function taking a proof of P to a proof of Q
-- no new notation for it
-- Predicates
-- on type A are represented by A → Set.
-- e.g., (λ n → zero < n) : N → Set
-- is a predicate stating that a natural number is positive.
{-
3.2 Identity Type
term of type x ≡ y is proof x and y are equal
-}
data _≡_ {A : Set}(x : A) : A → Set where
≡-refl : x ≡ x
-- REFLEXIVE : by definition
-- SYMMETRIC
≡-sym : {A : Set}{x y : A} → x ≡ y → y ≡ x
≡-sym {A}{x}{.x} ≡-refl = ≡-refl
-- TRANSITIVE
≡-trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
≡-trans {A}{x}{.x}{z} ≡-refl x≡z = x≡z -- could replace x≡z with ≡-refl
-- SUBSTITUTIVE — if x ≡ y, they are interchangeable in all contexts
≡-subst : {A : Set}(P : A → Set){x y : A} → x ≡ y → P x → P y
≡-subst P ≡-refl Px = Px
≡-cong : {A B : Set}(f : A → B){x y : A} → x ≡ y → f x ≡ f y
≡-cong f ≡-refl = ≡-refl
{-
≡ NOT EXTENSIONAL
Qquality of terms is checked by expanding them to normal forms.
Problem comparing higher-order values: e.g., sum·map sum and sum · concat
while defining the same function summing up a list of lists of numbers, are not “equal” under ≡ .
Can define extensional equality for (non-dependent) functions on first-order values:
-}
_≐_ : {A B : Set} → (A → B) → (A → B) → Set
f ≐ g = ∀ x → f x ≡ g x
{-
≐ NOT SUBSTITUTIVE : congruence of ≐ has to be proved for each context.
Refinement in preorder reasoning usually involves replacing terms in provably monotonic contexts.
This is a significant overhead; but given that this overhead
is incurred anyway, not having extensional equality is no extra trouble.
3.3 Preorder Reasoning
To prove e1 ≡ e2 is to construct a term having that type.
For any binary relation ∼ that is reflexive and transitive
- for which one can construct terms ∼-refl and ∼-trans having the types described in above
can derive a set of combinators, shown in Fig. 4,
which enables one to construct a term of type e₁ ∼ en in algebraic style.
-- Fig. 4. Combinators for preorder reasoning.
infixr 2 _∼⟨_⟩_
infix 2 _∼∎
_∼⟨_⟩_ : {A : Set}(x : A){y z : A} → x ∼ y → y ∼ z → x ∼ z
x ∼⟨ x∼y ⟩ y∼z = ∼-trans x∼y y∼z
_∼∎ : {A : Set}(x : A) → x ∼ x
x ∼∎ = ∼-refl
implication as a relation:
-}
_⇒_ : Set → Set → Set
P ⇒ Q = P → Q
_⇐_ : Set → Set → Set
P ⇐ Q = Q ⇒ P
{-
Reflexivity and transitivity of ⇐ , for example, can be simply given by ⇐-refl = id and
⇐-trans = · , where · is function composition. Therefore, they induce a pair of operators
_⇐⟨_⟩_ and ⇐∎ for logical reasoning.
Hierarchy of universes
- Set, the type of small types, is in sort Set1
When instantiating ∼ in Fig. 4 to ⇐ : Set → Set → Set
- notice that the type A : Set itself cannot be instantiated to Set, which is in Set1
We resolve this by using different module generators for different universes.
More on this in Sect. 4.1.
3.4 Functional Derivation
Since _≐_ is reflexive and transitive (not shown), it induces its preorder reasoning operators.
Fig. 5 shows a proof of the universal property of foldr.
The steps using ≡-refl are equivalences Agda proves by expanding definitions.
The inductive hypothesis is established by a recursive call to foldr-universal.
-}
infix 3 _≡∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 1 begin_
begin_ : {A : Set} {x y : A} → x ≡ y → x ≡ y
begin_ x≡y = x≡y
_≡⟨⟩_ : {A : Set} (x {y} : A) → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : {A : Set} (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ x≡y ⟩ y≡z = ≡-trans x≡y y≡z
_≡∎ : {A : Set} (x : A) → x ≡ x
_≡∎ _ = ≡-refl
{-
Fig. 5. Proving the universal property for foldr
-}
foldr : {A B : Set}
→ (A → B → B) → B → List A
→ B
foldr f e [] = e
foldr f e (x ∷ xs) = f x (foldr f e xs)
{- https://www.cs.nott.ac.uk/~pszgmh/fold.pdf
For finite lists, the universal property of fold can be stated as the following equivalence
between two definitions for a function g that processes lists:
g [] = v
⇔ g = fold f v
g (x ∷ xs) = f x (g xs)
right-to-left : substituting g = fold f v into the two equations for g gives recursive fold def
left-to-right : two equations for g are the assumptions required to show that g = fold f v
using a simple proof by induction on finite lists (Bird, 1998)
universal property states that for finite lists the function fold f v is not just a
solution to its defining equations, but the unique solution.
Utility of universal property : makes explicit the two assumptions
required for a certain pattern of inductive proof.
For specific cases, by verifying the two assumptions (typically done without need for induction)
can then appeal to the universal property to complete the inductive proof that g = fold f v.
universal PROPERTY of fold : encapsulates a pattern of inductive proof concerning lists
just as the fold OPERATOR : encapsulates a pattern of recursion for processing lists
-}
foldr-universal : ∀ {A B} (h : List A → B) f e
→ (h [] ≡ e)
→ (∀ x xs → h (x ∷ xs) ≡ f x (h xs))
→ h ≐ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) =
begin
h (x ∷ xs)
≡⟨ step x xs ⟩
f x (h xs)
≡⟨ ≡-cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs)
≡⟨ ≡-refl ⟩
foldr f e (x ∷ xs)
≡∎
{-
-- Can use the universal property to prove the foldr-fusion theorem:
_·_ : {A : Set} {B : A → Set} {C : (x : A) → B x → Set}
→ (f : {x : A} (y : B x) → C x y)
→ (g : (x : A) → B x)
→ (x : A) → C x (g x)
(f · g) x = f (g x)
-- TODO compile problems
foldr-fusion : ∀ {A B C} (h : B → C) {f : A → B → B} {g : A → C → C}
→ {e : B}
→ (∀ x y → h (f x y) ≡ g x (h y))
→ (h · foldr f e) ≐ (foldr g (h e))
foldr-fusion h {f} {g} e fuse =
foldr-universal (h · foldr f e) g (h e) ≡-refl (λ x xs → fuse x (foldr f e xs))
-}
|
{
"alphanum_fraction": 0.6350999131,
"avg_line_length": 34.2189189189,
"ext": "agda",
"hexsha": "43f2470d19aec492fe80589ed4ceeff8eb0c919d",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda",
"max_line_length": 98,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3961,
"size": 12661
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.PtdAdjoint
open import homotopy.SuspAdjointLoop
open import cohomology.WithCoefficients
module cohomology.SuspAdjointLoopIso where
module SuspAdjointLoopIso {i} where
private
hadj : HomAdjoint {i} {i} Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor
hadj = counit-unit-to-hom Σ⊣Ω.adj
module A = HomAdjoint hadj
module _ (X Y : Ptd i) where
abstract
pres-comp : (h₁ h₂ : ⊙Susp X ⊙→ ⊙Ω Y)
→ –> (A.eq X (⊙Ω Y)) (⊙Ω-∙ ⊙∘ ⊙fanout h₁ h₂)
== ⊙Ω-∙ ⊙∘ ⊙fanout (–> (A.eq X (⊙Ω Y)) h₁) (–> (A.eq X (⊙Ω Y)) h₂)
pres-comp h₁ h₂ =
B.nat-cod h₁ h₂ ⊙Ω-∙
∙ ap (_⊙∘ ⊙fanout (–> (A.eq X (⊙Ω Y)) h₁) (–> (A.eq X (⊙Ω Y)) h₂))
arr2-lemma
where
module A× = RightAdjoint× hadj
module B = RightAdjointBinary hadj
ap2-lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
(f : A × B → C) {r s : A × B} (p : r == s)
→ ap f p == ap2 (curry f) (ap fst p) (ap snd p)
ap2-lemma f idp = idp
⊙ap2-lemma : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : X ⊙× Y ⊙→ Z)
→ ⊙Ω-fmap f == ⊙Ω-fmap2 f ⊙∘ ⊙fanout (⊙Ω-fmap ⊙fst) (⊙Ω-fmap ⊙snd)
⊙ap2-lemma (f , idp) = ⊙λ= (ap2-lemma f) idp
arr2-lemma : B.arr2 ⊙Ω-∙ == ⊙Ω-∙
arr2-lemma =
⊙Ω-fmap ⊙Ω-∙ ⊙∘ A×.⊙out _ _
=⟨ ⊙ap2-lemma ⊙Ω-∙ |in-ctx _⊙∘ A×.⊙out _ _ ⟩
(⊙Ω-fmap2 ⊙Ω-∙ ⊙∘ A×.⊙into _ _) ⊙∘ A×.⊙out _ _
=⟨ ⊙∘-assoc (⊙Ω-fmap2 ⊙Ω-∙) (A×.⊙into _ _) (A×.⊙out _ _) ⟩
⊙Ω-fmap2 ⊙Ω-∙ ⊙∘ (A×.⊙into _ _ ⊙∘ A×.⊙out _ _)
=⟨ A×.⊙into-out _ _ |in-ctx ⊙Ω-fmap2 ⊙Ω-∙ ⊙∘_ ⟩
⊙Ω-fmap2 ⊙Ω-∙
=⟨ ⊙Ω-fmap2-∙ ⟩
⊙Ω-∙ ∎
iso : Trunc-⊙→Ω-group (⊙Susp X) Y ≃ᴳ Trunc-⊙→Ω-group X (⊙Ω Y)
iso = Trunc-group-emap (≃-to-≃ᴳˢ (A.eq X (⊙Ω Y)) pres-comp)
abstract
nat-dom : {X Y : Ptd i} (f : X ⊙→ Y) (Z : Ptd i)
→ fst (iso X Z) ∘ᴳ Trunc-⊙→Ω-group-fmap-dom (⊙Susp-fmap f) Z
== Trunc-⊙→Ω-group-fmap-dom f (⊙Ω Z) ∘ᴳ fst (iso Y Z)
nat-dom f Z = group-hom= $ λ= $ Trunc-elim
(λ _ → =-preserves-level Trunc-level)
(λ g → ap [_] (! (A.nat-dom f (⊙Ω Z) g)))
|
{
"alphanum_fraction": 0.4751455441,
"avg_line_length": 34.890625,
"ext": "agda",
"hexsha": "e4569cc867ec0a8568e9b7100d61a8dec48d1dc6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/SuspAdjointLoopIso.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/SuspAdjointLoopIso.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/SuspAdjointLoopIso.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1149,
"size": 2233
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Induction.Everything where
open import Cubical.Induction.WellFounded public
|
{
"alphanum_fraction": 0.784,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "b189b82cdb05835b21ee294e05313d14cc110a21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Induction/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Induction/Everything.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Induction/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 32,
"size": 125
}
|
module Examples.PingPong where
open import ActorMonad public
open import Prelude
-- An example including three actors: spawner, pinger, ponger
--
-- Spawner is the actor that starts it all.
-- Spawner spawns both pinger and ponger.
-- Then spawner send the reference of ponger to pinger,
-- and the reference of pinger to ponger.
--
-- Pinger is an actor that can receive Bool messages.
-- Pinger counts the number of 'false' messages it receives, until it receives a 'true'
--
-- Ponger is an actor that can receive Nat messages.
-- Ponger keeps sending 'false' until it receives a message containing 10.
Spawnbox : InboxShape
Spawnbox = []
mutual
PingValues = [ Bool ]ˡ
PongValues = [ ℕ ]ˡ
PingRefs : TypingContext
PingRefs = [ ⊠-of-values PongValues ]ˡ
PongRefs : TypingContext
PongRefs = [ ⊠-of-values PingValues ]ˡ
PongReferenceMessage : MessageType
PongReferenceMessage = [ ReferenceType (⊠-of-values PongValues) ]ˡ
BoolMessage : MessageType
BoolMessage = [ ValueType Bool ]ˡ
Pingbox : InboxShape
Pingbox = BoolMessage ∷ [ PongReferenceMessage ]ˡ
PingReferenceMessage : MessageType
PingReferenceMessage = [ ReferenceType (⊠-of-values PingValues) ]ˡ
NatMessage : MessageType
NatMessage = [ ValueType ℕ ]ˡ
Pongbox : InboxShape
Pongbox = NatMessage ∷ [ PingReferenceMessage ]ˡ
constPingrefs : {A : Set₁} → (A → TypingContext)
constPingrefs _ = PingRefs
pingMainActor : (i : Size) (A : Set₁) → Set₂
pingMainActor i A = ∞ActorM i Pingbox A PingRefs constPingrefs
mutual
pingReceive : ∀ {i} (msg : Message Pingbox) → ∞ActorM i Pingbox (Lift (lsuc lzero) Bool) (add-references PingRefs msg) constPingrefs
pingReceive (Msg Z (b ∷ [])) = return b
pingReceive (Msg (S Z) _) = strengthen [ S Z ]ᵐ >> loopTillPingValue
pingReceive (Msg (S (S ())) x₁)
loopTillPingValue : ∀ {i} → pingMainActor i (Lift (lsuc lzero) Bool)
loopTillPingValue .force = receive ∞>>= pingReceive
pinger : ∀ {i} → ∞ActorM (↑ i) Pingbox ⊤₁ [] constPingrefs
pinger .force = loopTillPong ∞>> pingMain 0
where
loopTillPong : ∀ {i} → ∞ActorM i Pingbox ⊤₁ [] constPingrefs
loopTillPong .force = receive ∞>>= ((λ
{ (Msg Z x₁) → loopTillPong
; (Msg (S Z) x₁) → return _
; (Msg (S (S ())) x₁)
}))
pingMain : ∀ {i} → ℕ → pingMainActor i ⊤₁
pingMain n .force = loopTillPingValue ∞>>= λ
{ (lift false) → (Z ![t: Z ] ( [ lift n ]ᵃ)) >> pingMain (suc n)
; (lift true) → return _}
constPongrefs : {A : Set₁} → (A → TypingContext)
constPongrefs _ = PongRefs
pongMainActor : (i : Size) (A : Set₁) → Set₂
pongMainActor i A = ∞ActorM i Pongbox A PongRefs constPongrefs
mutual
pongReceive : ∀ {i} (msg : Message Pongbox) → ∞ActorM i Pongbox (Lift (lsuc lzero) ℕ) (add-references PongRefs msg) constPongrefs
pongReceive (Msg Z (n ∷ [])) = return n
pongReceive (Msg (S Z) _) = strengthen [ S Z ]ᵐ >> loopTillPongValue
pongReceive (Msg (S (S ())) _)
loopTillPongValue : ∀ {i} → pongMainActor i (Lift (lsuc lzero) ℕ)
loopTillPongValue .force = receive ∞>>= pongReceive
ponger : ∀ {i} → ∞ActorM (↑ i) Pongbox ⊤₁ [] constPongrefs
ponger .force = loopTillPing ∞>> ((Z ![t: Z ] ([ lift false ]ᵃ)) >> pongMain)
where
loopTillPing : ∀ {i} → ∞ActorM i Pongbox ⊤₁ [] constPongrefs
loopTillPing .force = receive ∞>>= λ {
(Msg Z _) → loopTillPing
; (Msg (S Z) _) → return _
; (Msg (S (S ())) _)
}
pongMain : ∀ {i} → pongMainActor i ⊤₁
pongMain .force = loopTillPongValue ∞>>= λ {
(lift 10) → Z ![t: Z ] [ lift true ]ᵃ
; (lift n) → Z ![t: Z ] [ lift false ]ᵃ >> pongMain
}
spawner : ∀ {i} → ∞ActorM i Spawnbox ⊤₁ [] (λ _ → Pingbox ∷ [ Pongbox ]ˡ)
spawner = do
spawn∞ ponger
spawn∞ pinger
Z ![t: S Z ] [ [ S Z ]>: [ Z ]ᵐ ]ᵃ
S Z ![t: S Z ] [ [ Z ]>: [ Z ]ᵐ ]ᵃ
|
{
"alphanum_fraction": 0.6460363445,
"avg_line_length": 33.3070175439,
"ext": "agda",
"hexsha": "33e79e5ce8140aa8a5ee099f41113dbff941a868",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Examples/PingPong.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Examples/PingPong.agda",
"max_line_length": 134,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Examples/PingPong.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 1359,
"size": 3797
}
|
module Issue1252 where
data Bool : Set where
true false : Bool
{-# COMPILE GHC Bool = data Bool (True | False) #-}
foo : Bool → Bool
foo true = false
foo false = true
{-# COMPILE GHC foo as foohs #-}
|
{
"alphanum_fraction": 0.652173913,
"avg_line_length": 15.9230769231,
"ext": "agda",
"hexsha": "afa6d3ea38540a47bcddb879ddbd806a34898c85",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue1252.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue1252.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue1252.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 59,
"size": 207
}
|
{-# OPTIONS --without-K --safe #-}
-- https://www.cs.bham.ac.uk/~mhe/papers/omniscient-journal-revised.pdf
module Constructive.OmniscienceAlt where
open import Level renaming (zero to lzero; suc to lsuc)
import Data.Bool as 𝔹 using (_≤_)
open import Data.Bool as 𝔹 using (Bool; true; false; T; f≤t; b≤b; _∧_; not; _∨_)
import Data.Bool.Properties as 𝔹ₚ
open import Data.Empty
open import Data.Unit using (tt)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product as Prod
open import Data.Sum as Sum
open import Function.Base
open import Relation.Binary as B
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable
import Relation.Unary as U
-- agda-misc
open import Constructive.Axiom
open import Constructive.Axiom.Properties
open import Constructive.Axiom.Properties.Base.Lemma
open import Constructive.Common
open import Constructive.Combinators
ℕ∞ : Set
ℕ∞ = Σ (ℕ → Bool) λ x → ∀ i → T (x i) → T (x (suc i))
fromℕ-C : ℕ → ℕ → Bool
fromℕ-C zero zero = false
fromℕ-C zero (suc n) = true
fromℕ-C (suc m) zero = false
fromℕ-C (suc m) (suc n) = fromℕ-C m n
fromℕ-convergent : ∀ n i → T (fromℕ-C n i) → T (fromℕ-C n (suc i))
fromℕ-convergent zero (suc i) t = tt
fromℕ-convergent (suc n) (suc i) t = fromℕ-convergent n i t
fromℕ : ℕ → ℕ∞
fromℕ n = fromℕ-C n , fromℕ-convergent n
∞ : ℕ∞
∞ = (λ _ → false) , (λ i x → x)
_≈_ : Rel (ℕ → Bool) lzero
α ≈ β = ∀ i → α i ≡ β i
_≉_ : Rel (ℕ → Bool) lzero
α ≉ β = ¬ (α ≈ β)
_#_ : Rel (ℕ → Bool) lzero
α # β = ∃ λ i → α i ≢ β i
#⇒≉ : {α β : ℕ → Bool} → α # β → α ≉ β
#⇒≉ {α} {β} (i , αi≢βi) α≈β = αi≢βi (α≈β i)
≈-refl : {α : ℕ → Bool} → α ≈ α
≈-refl _ = refl
≈-sym : {α β : ℕ → Bool} → α ≈ β → β ≈ α
≈-sym α≈β i = sym (α≈β i)
≈-trans : {α β γ : ℕ → Bool} → α ≈ β → β ≈ γ → α ≈ γ
≈-trans α≈β β≈γ i = trans (α≈β i) (β≈γ i)
_≈∞_ : Rel ℕ∞ lzero
x ≈∞ y = proj₁ x ≈ proj₁ y
_≉∞_ : Rel ℕ∞ lzero
x ≉∞ y = proj₁ x ≉ proj₁ y
_#∞_ : Rel ℕ∞ lzero
x #∞ y = proj₁ x # proj₁ y
-- Proposition 3.1
-- r = ≤-any
≤-any : (ℕ → Bool) → (ℕ → Bool)
≤-any α zero = α 0
≤-any α (suc n) = α (suc n) ∨ ≤-any α n
≤-any-idem : ∀ α → ≤-any (≤-any α) ≈ ≤-any α
≤-any-idem α zero = refl
≤-any-idem α (suc n) = begin
(α (suc n) ∨ ≤-any α n) ∨ ≤-any (≤-any α) n
≡⟨ cong ((α (suc n) ∨ ≤-any α n) ∨_) $ ≤-any-idem α n ⟩
(α (suc n) ∨ ≤-any α n) ∨ ≤-any α n
≡⟨ 𝔹ₚ.∨-assoc (α (suc n)) (≤-any α n) (≤-any α n) ⟩
α (suc n) ∨ (≤-any α n ∨ ≤-any α n)
≡⟨ cong (α (suc n) ∨_) $ 𝔹ₚ.∨-idem (≤-any α n) ⟩
α (suc n) ∨ ≤-any α n
∎
where open ≡-Reasoning
private
T-∧-× : ∀ {x y} → T (x ∧ y) → (T x × T y)
T-∧-× {true} {true} t = tt , tt
T-×-∧ : ∀ {x y} → (T x × T y) → T (x ∧ y)
T-×-∧ {true} {true} (tt , tt) = tt
T-∨-introʳ : ∀ {x y} → T y → T (x ∨ y)
T-∨-introʳ {true} {true} t = tt
T-∨-introʳ {false} {true} t = tt
T-∨-introˡ : ∀ {x y} → T x → T (x ∨ y)
T-∨-introˡ {true} {true} t = tt
T-∨-introˡ {true} {false} t = tt
≤-any-convergent : ∀ α i → T (≤-any α i) → T (≤-any α (suc i))
≤-any-convergent α n t = T-∨-introʳ t
≤-any-ℕ∞ : (ℕ → Bool) → ℕ∞
≤-any-ℕ∞ α = ≤-any α , ≤-any-convergent α
≤-any-construct : ∀ α n → T (α n) → T (≤-any α n)
≤-any-construct α zero t = t
≤-any-construct α (suc n) t = T-∨-introˡ t
private
not-injective : ∀ {x y} → not x ≡ not y → x ≡ y
not-injective {false} {false} refl = refl
not-injective {true} {true} refl = refl
x≢y⇒not[x]≡y : ∀ {x y} → x ≢ y → not x ≡ y
x≢y⇒not[x]≡y {false} {false} x≢y = contradiction refl x≢y
x≢y⇒not[x]≡y {false} {true} x≢y = refl
x≢y⇒not[x]≡y {true} {false} x≢y = refl
x≢y⇒not[x]≡y {true} {true} x≢y = contradiction refl x≢y
x≢y⇒x≡not[y] : ∀ {x y} → x ≢ y → x ≡ not y
x≢y⇒x≡not[y] {x} {y} x≢y = subst (_≡ not y) (𝔹ₚ.not-involutive x) $
x≢y⇒not[x]≡y {not x} {not y} (x≢y ∘′ not-injective)
x≡y⇒not[x]≢y : ∀ {x y} → x ≡ y → not x ≢ y
x≡y⇒not[x]≢y {false} {false} p ()
x≡y⇒not[x]≢y {false} {true} () q
x≡y⇒not[x]≢y {true} {false} () q
x≡y⇒not[x]≢y {true} {true} p ()
not[x]≡true→x≢true : ∀ {x} → not x ≡ true → x ≢ true
not[x]≡true→x≢true {false} refl ()
not[x]≡true→x≢true {true} () p
false≢true : false ≢ true
false≢true ()
lpo-Bool⇒∀x→x#∞⊎x≈∞ : LPO-Bool ℕ → ∀ x → (x #∞ ∞) ⊎ (x ≈∞ ∞)
lpo-Bool⇒∀x→x#∞⊎x≈∞ lpo-Bool (α , con) with lpo-Bool α
... | inj₁ (x , αx≡true) = inj₁ (x , λ αx≡false → false≢true (trans (sym αx≡false) αx≡true))
... | inj₂ ¬∃x→αx≡true = inj₂ λ i → x≢y⇒x≡not[y] $′ ¬∃P→∀¬P ¬∃x→αx≡true i
T-to-≡ : ∀ {x} → T x → x ≡ true
T-to-≡ {true} tx = refl
≡-to-T : ∀ {x} → x ≡ true → T x
≡-to-T {true} x≡true = tt
private
T-¬-not : ∀ {x} → ¬ (T x) → T (not x)
T-¬-not {false} n = tt
T-¬-not {true} n = n tt
T-not-¬ : ∀ {x} → T (not x) → ¬ (T x)
T-not-¬ {false} tt ()
T-not-¬ {true} () y
¬T-≤-any : ∀ α x → ¬ T (≤-any α x) → ∃ λ y → ¬ T (α y)
¬T-≤-any α zero ¬T with α 0 | inspect α 0
... | true | [ α0≡true ] = contradiction tt ¬T
... | false | [ α0≡false ] = zero , (λ T[α0] → subst T α0≡false T[α0])
¬T-≤-any α (suc x) ¬T with α (suc x) | inspect α (suc x)
... | true | [ αsn≡true ] = ¬T-≤-any α x ¬T
... | false | [ αsn≡false ] = (suc x) , (λ T[αsn] → subst T αsn≡false T[αsn])
{-
¬T-≤-any′ : ∀ α x → ¬ T (≤-any (not ∘′ α) x) → ∃ λ y → T (α y)
¬T-≤-any′ α x ¬T =
Prod.map₂ (λ nt → subst T (𝔹ₚ.not-involutive _) (T-¬-not nt)) $′
¬T-≤-any (not ∘ α) x ¬T
∀x→x#∞⊎x≈∞⇒lpo-Bool : (∀ x → (x #∞ ∞) ⊎ (x ≈∞ ∞)) → LPO-Bool ℕ
∀x→x#∞⊎x≈∞⇒lpo-Bool ≈∞? P with ≈∞? (≤-any-ℕ∞ (λ n → not (P n)))
... | inj₁ (x , ≤-any[not∘P,x]≢true) =
inj₁ (Prod.map₂ T-to-≡ (¬T-≤-any′ P x (contraposition T-to-≡ ≤-any[not∘P,x]≢true)))
... | inj₂ ∀i→≤-any[not∘P,i]≡true =
inj₂ (∀¬P→¬∃P λ i → not[x]≡true→x≢true (T-to-≡ $ ≤-any-extract (not ∘ P) i $ ≡-to-T (∀i→≤-any[not∘P,i]≡true i)))
-- ≤-any (λ n → not (P n)) x ≡ true → ⊥
-- ≤-any (not ∘ P) x ≡ false
--
-- ---------------------------
-- T (≤-any P x)
-}
|
{
"alphanum_fraction": 0.5173459077,
"avg_line_length": 29.69,
"ext": "agda",
"hexsha": "c0f917cecdde401ad898fca8076c68c1275de268",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Constructive/OmniscienceAlt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Constructive/OmniscienceAlt.agda",
"max_line_length": 114,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Constructive/OmniscienceAlt.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 3106,
"size": 5938
}
|
module UnSizedIO.Object where
open import Data.Product
record Interface : Set₁ where
field
Method : Set
Result : (m : Method) → Set
open Interface public
-- A simple object just returns for a method the response
-- and the object itself
record Object (i : Interface) : Set where
coinductive
field
objectMethod : (m : Method i) → Result i m × Object i
open Object public
|
{
"alphanum_fraction": 0.7088607595,
"avg_line_length": 19.75,
"ext": "agda",
"hexsha": "c5a990787903226158e3bd418c5c6bbf3ed1e544",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/UnSizedIO/Object.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/UnSizedIO/Object.agda",
"max_line_length": 57,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/UnSizedIO/Object.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 104,
"size": 395
}
|
module Equality where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
-- so that we know to parse
infixr 40 _::_
-- some hacks 'cuz we don't do pragmas
one : Nat
one = suc zero
two : Nat
two = suc (suc zero)
three : Nat
three = suc (suc (suc zero))
3things : Vec Nat three
3things = zero :: one :: zero :: []
3things' : Vec Nat (one + two)
3things' = 3things
-- getting boring aint it?
3things'' : Vec Nat (two + one)
3things'' = 3things'
|
{
"alphanum_fraction": 0.5821371611,
"avg_line_length": 16.9459459459,
"ext": "agda",
"hexsha": "5143e33aa559df2d9e2621345362799660ce5de1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/Equality.agda",
"max_line_length": 51,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 222,
"size": 627
}
|
{-# OPTIONS --show-implicit #-}
{-# OPTIONS -v tc.interaction:20 #-}
------------------------------------------------------------------------
-- Library
id : ∀ {X : Set} → X → X
id x = x
infixr 9 _∘_
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
record Σ (X : Set) (Y : X → Set) : Set where
constructor _,_
field
proj₁ : X
proj₂ : Y proj₁
open Σ public
syntax Σ X (λ x → Y) = Σ[ x ∈ X ] Y
data _≡_ {X : Set} (x : X) : X → Set where
refl : x ≡ x
subst : ∀ {A} (P : A → Set) {x y} → x ≡ y → P x → P y
subst P refl p = p
record _▷_ (I O : Set) : Set₁ where
constructor _◃_/_
field
Parameter : (o : O) → Set
Arity : ∀ {o} (p : Parameter o) → Set
input : ∀ {o} (p : Parameter o) (a : Arity p) → I
open _▷_ public
Pow : Set → Set₁
Pow X = X → Set
infix 4 _⊆_
_⊆_ : ∀ {X} → Pow X → Pow X → Set
P ⊆ Q = ∀ {x} → P x → Q x
⟦_⟧ : ∀ {I O} → I ▷ O → (Pow I → Pow O)
⟦ P ◃ A / s ⟧ X o = Σ[ p ∈ P o ] ((a : A p) → X (s p a))
Alg : ∀ {O} → O ▷ O → Pow O → Set
Alg Σ X = ⟦ Σ ⟧ X ⊆ X
module _ {I₁ I₂ O₁ O₂} where
record ContainerMorphism
(C₁ : I₁ ▷ O₁) (C₂ : I₂ ▷ O₂)
(f : I₁ → I₂) (g : O₁ → O₂)
(_∼_ : I₂ → I₂ → Set) (_≈_ : Set → Set → Set)
(_·_ : ∀ {A B} → A ≈ B → A → B) :
Set where
field
parameter : Parameter C₁ ⊆ Parameter C₂ ∘ g
arity : ∀ {o} {p₁ : Parameter C₁ o} →
Arity C₂ (parameter p₁) ≈ Arity C₁ p₁
coherent : ∀ {o} {p₁ : Parameter C₁ o} {a₂ : Arity C₂ (parameter p₁)} →
f (input C₁ p₁ (arity · a₂)) ∼ input C₂ (parameter p₁) a₂
open ContainerMorphism public
_⇒[_/_]_ : I₁ ▷ O₁ → (I₁ → I₂) → (O₁ → O₂) →
I₂ ▷ O₂ → Set
C₁ ⇒[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁)
(λ f x → f x)
⟪_⟫ : ∀ {I} {C₁ C₂ : I ▷ I} →
C₁ ⇒[ id / id ] C₂ → (X : Pow I) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪ m ⟫ X (c , k) = parameter m c , λ a₂ →
subst X (coherent m) (k (arity m a₂))
------------------------------------------------------------------------
-- Example
weaken : ∀ {I} {Ω : I ▷ I} {Ψ : I ▷ I} {X : Pow I} →
Alg Ψ X → Ω ⇒[ id / id ] Ψ → Alg Ω X
weaken {I}{Ω}{Ψ}{X = X} φ m {i} (p , k) = φ {x = i} (⟪ m ⟫ {!X!} (p , k))
weaken2 : ∀ {I} {Ω : I ▷ I} {Ψ : I ▷ I} {X : Pow I} →
Alg Ψ X → Ω ⇒[ id / id ] Ψ → Alg Ω X
weaken2 {I}{Ω}{Ψ}{X = X} φ m {i} (p , k) = φ {i} (⟪ m ⟫ X (p , k))
|
{
"alphanum_fraction": 0.3940563489,
"avg_line_length": 27.5638297872,
"ext": "agda",
"hexsha": "29859de970e59b793aefa26560a53ca0e2056297",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1353.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1353.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1353.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1143,
"size": 2591
}
|
{-# OPTIONS -v impossible:10 #-}
-- Andreas, 2021-05-12, issue #5379
module ImpossibleVerboseReduceM where
-- Note: keep ReduceM as first word after IMPOSSIBLE!
{-# IMPOSSIBLE ReduceM should also print this debug message. #-}
-- Should print the text after IMPOSSIBLE and then raise an internal error.
|
{
"alphanum_fraction": 0.75,
"avg_line_length": 33.7777777778,
"ext": "agda",
"hexsha": "ea584aa77f0abdc8d70347a488ecd0e49657e7d3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/ImpossibleVerboseReduceM.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/ImpossibleVerboseReduceM.agda",
"max_line_length": 75,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/ImpossibleVerboseReduceM.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 78,
"size": 304
}
|
-- Andreas, 2014-03-27 fixed issue
{-# OPTIONS --copatterns --sized-types #-}
open import Common.Size
mutual
data D (i : Size) : Set where
inn : R i → D i
record R (i : Size) : Set where
-- Note: not coinductive
field
force : (j : Size< i) → D j
open R
inh : (i : Size) → R i
force (inh i) j = inn (inh j)
-- inh should be rejected by termination checker
data ⊥ : Set where
elim : D ∞ → ⊥
elim (inn r) = elim (force r ∞)
absurd : ⊥
absurd = elim (inn (inh ∞))
|
{
"alphanum_fraction": 0.5833333333,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "29ef33bb54609d5d2c152ffd8a05e95e2940e7d6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue1015.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue1015.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue1015.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 172,
"size": 492
}
|
module Issue276 where
boo : {S T : Set}(f : S -> T)(x y : S) ->
((P : S -> Set) -> P x -> P y) ->
(P : T -> Set) -> P (f x) -> P (f y)
boo = \ f x y q P -> q (\ s -> P (f s))
record Pack (S : Set) : Set where
constructor pack
field
unpack : S
open Pack
unpack' : {S : Set} -> Pack S -> S
unpack' (pack s) = s
foo : {S : Set}(x : Pack S)(P : Pack S -> Set) -> P (pack (unpack x)) -> P x
foo = \ x P p -> p
goo : {S : Set}(x : Pack S)(P : S -> Set) -> P (unpack x) -> P (unpack' x)
goo = \ x -> boo unpack' (pack (unpack x)) x (foo x)
{- normal form of goo is \ x P p -> p -}
goo' : {S : Set}(x : Pack S)(P : S -> Set) -> P (unpack x) -> P (unpack' x)
goo' = \ x P p -> p
{-
/Users/conor/Desktop/fooling/RecConBug.agda:27,19-20
unpack x != unpack' x of type .S
when checking that the expression p has type P (unpack' x)
-}
|
{
"alphanum_fraction": 0.5035294118,
"avg_line_length": 25.7575757576,
"ext": "agda",
"hexsha": "66cd17a5fc82a0008638d43b11b971b7d6c374e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue276.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue276.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue276.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 323,
"size": 850
}
|
module Reduction where
open import Prelude
open import Lambda
open import Subst
open import Trans
infix 10 _⟶β_
data _⟶β_ : forall {Γ τ} -> (t u : Term Γ τ) -> Set where
β : forall {Γ σ τ}{t : Term (Γ , σ) τ} Δ {u : Term (Γ ++ Δ) σ} ->
(ƛ t) ↑ Δ • u ⟶β t ↑ Δ / [ Δ ⟵ u ]
wk⟶ : forall {Γ σ τ}{t₁ t₂ : Term Γ τ} ->
t₁ ⟶β t₂ -> wk {σ = σ} t₁ ⟶β wk t₂
•⟶L : forall {Γ σ τ}{t₁ t₂ : Term Γ (σ ⟶ τ)}{u : Term Γ σ} ->
t₁ ⟶β t₂ -> t₁ • u ⟶β t₂ • u
•⟶R : forall {Γ σ τ}{t : Term Γ (σ ⟶ τ)}{u₁ u₂ : Term Γ σ} ->
u₁ ⟶β u₂ -> t • u₁ ⟶β t • u₂
ƛ⟶ : forall {Γ σ τ}{t₁ t₂ : Term (Γ , σ) τ} ->
t₁ ⟶β t₂ -> ƛ t₁ ⟶β ƛ t₂
_⟶β*_ : {Γ : Ctx}{τ : Type}(x y : Term Γ τ) -> Set
x ⟶β* y = [ _⟶β_ ]* x y
↑⟶β : {Γ : Ctx}(Δ : Ctx){τ : Type}{t u : Term Γ τ} ->
t ⟶β u -> t ↑ Δ ⟶β u ↑ Δ
↑⟶β ε r = r
↑⟶β (Δ , σ) r = wk⟶ (↑⟶β Δ r)
|
{
"alphanum_fraction": 0.439862543,
"avg_line_length": 29.1,
"ext": "agda",
"hexsha": "b27b9808881270ac2ee779a2ad39bd52e9f52d56",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tait/Reduction.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tait/Reduction.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tait/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 451,
"size": 873
}
|
------------------------------------------------------------------------------
-- Distributive laws on a binary operation: Task B
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.TaskB-HalvedStepsATP where
open import DistributiveLaws.Base
open import Common.FOL.Relation.Binary.EqReasoning
------------------------------------------------------------------------------
-- We prove the half of the proof steps (skipping the even ones) of
-- DistributiveLaws.TaskB-I using the ATPs.
prop₂ : ∀ u x y z →
(x · y · (z · u)) · ((x · y · (z · u)) · (x · z · (y · u))) ≡
x · z · (y · u)
prop₂ u x y z =
-- The numbering of the proof step justifications are associated with
-- the numbers used in DistributiveLaws.TaskB-I.
xy·zu · (xy·zu · xz·yu) ≡⟨ j₁₋₃ ⟩
xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡⟨ j₃₋₅ ⟩
xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡⟨ j₅₋₇ ⟩
xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡⟨ j₇₋₉ ⟩
xy·zu · (xz · xyu · (yxz · yu)) ≡⟨ j₉₋₁₁ ⟩
xy·zu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₁₋₁₃ ⟩
xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₃₋₁₅ ⟩
xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡⟨ j₁₅₋₁₇ ⟩
xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡⟨ j₁₇₋₁₉ ⟩
xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₁₉₋₂₁ ⟩
xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₁₋₂₃ ⟩
xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₃₋₂₅ ⟩
(xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡⟨ j₂₅₋₂₇ ⟩
xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡⟨ j₂₇₋₂₉ ⟩
xz · xyu · (y·zy · xu·zu) ≡⟨ j₂₉₋₃₁ ⟩
xz·xy · xzu · (y·zy · xzu) ≡⟨ j₃₁₋₃₃ ⟩
x·zy · y·zy · xzu ≡⟨ j₃₃₋₃₅ ⟩
xzy · xzu ≡⟨ j₃₅ ⟩
xz·yu ∎
where
-- Two variables abbreviations
xz = x · z
yu = y · u
yz = y · z
zy = z · y
{-# ATP definitions xz yu yz zy #-}
-- Three variables abbreviations
xyu = x · y · u
xzu = x · z · u
xzy = x · z · y
yxz = y · x · z
{-# ATP definitions xyu xzu xzy yxz #-}
x·zu = x · (z · u)
x·zy = x · (z · y)
{-# ATP definitions x·zu x·zy #-}
y·xu = y · (x · u)
y·yu = y · (y · u)
y·zu = y · (z · u)
y·zy = y · (z · y)
{-# ATP definitions y·xu y·yu y·zu y·zy #-}
z·xu = z · (x · u)
z·yu = z · (y · u)
{-# ATP definitions z·xu z·yu #-}
-- Four variables abbreviations
xu·yu = x · u · (y · u)
xu·zu = x · u · (z · u)
{-# ATP definitions xu·yu xu·zu #-}
xy·zu = x · y · (z · u)
{-# ATP definition xy·zu #-}
xz·xy = x · z · (x · y)
xz·yu = x · z · (y · u)
xz·yz = x · z · (y · z)
{-# ATP definitions xz·xy xz·yu xz·yz #-}
yz·yu = y · z · (y · u)
{-# ATP definition yz·yu #-}
zy·xu = z · y · (x · u)
zy·zu = z · y · (z · u)
{-# ATP definitions zy·xu zy·zu #-}
-- Steps justifications
postulate j₁₋₃ : xy·zu · (xy·zu · xz·yu) ≡
xy·zu · (x·zu · xz·yu · (y·zu · xz·yu))
{-# ATP prove j₁₋₃ #-}
postulate j₃₋₅ : xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡
xy·zu · (xz · xu·yu · (y·zu · xz·yu))
{-# ATP prove j₃₋₅ #-}
postulate j₅₋₇ : xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡
xy·zu · (xz · xyu · (yz·yu · xz·yu))
{-# ATP prove j₅₋₇ #-}
postulate j₇₋₉ : xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡
xy·zu · (xz · xyu · (yxz · yu))
{-# ATP prove j₇₋₉ #-}
postulate j₉₋₁₁ : xy·zu · (xz · xyu · (yxz · yu)) ≡
xy·zu · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₉₋₁₁ #-}
postulate j₁₁₋₁₃ : xy·zu · (xz · xyu · (y·xu · z·yu)) ≡
xz·yz · xyu · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₁₋₁₃ #-}
postulate j₁₃₋₁₅ : xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡
xz · xyu · (yz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₃₋₁₅ #-}
postulate j₁₅₋₁₇ : xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡
xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu))
{-# ATP prove j₁₅₋₁₇ #-}
postulate j₁₇₋₁₉ : xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡
xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₁₇₋₁₉ #-}
postulate
j₁₉₋₂₁ : xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₁₉₋₂₁ #-}
postulate
j₂₁₋₂₃ : xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₂₁₋₂₃ #-}
postulate j₂₃₋₂₅ : xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡
(xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu))
{-# ATP prove j₂₃₋₂₅ #-}
postulate j₂₅₋₂₇ : (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡
xz · xyu · (y · xu·zu · (zy·xu · zy·zu))
{-# ATP prove j₂₅₋₂₇ #-}
postulate j₂₇₋₂₉ : xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡
xz · xyu · (y·zy · xu·zu)
{-# ATP prove j₂₇₋₂₉ #-}
postulate j₂₉₋₃₁ : xz · xyu · (y·zy · xu·zu) ≡
xz·xy · xzu · (y·zy · xzu)
{-# ATP prove j₂₉₋₃₁ #-}
postulate j₃₁₋₃₃ : xz·xy · xzu · (y·zy · xzu) ≡
x·zy · y·zy · xzu
{-# ATP prove j₃₁₋₃₃ #-}
postulate j₃₃₋₃₅ : x·zy · y·zy · xzu ≡ xzy · xzu
{-# ATP prove j₃₃₋₃₅ #-}
postulate j₃₅ : xzy · xzu ≡ xz·yu
{-# ATP prove j₃₅ #-}
|
{
"alphanum_fraction": 0.3896403827,
"avg_line_length": 34.4431818182,
"ext": "agda",
"hexsha": "8a395bedb22ec5936a6b2ae8466e9755ef747663",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/TaskB-HalvedStepsATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/TaskB-HalvedStepsATP.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/TaskB-HalvedStepsATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2738,
"size": 6062
}
|
-- Two out-of-scope variables are given the same name #3678
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
postulate
A : Set
B : A → Set
a : A
Pi : (A → Set) → Set
Pi B = {x : A} → B x
foo : Pi \ y → Σ (B y) \ _ → Pi \ z → Σ (y ≡ a → B z) \ _ → B y → B z → A
foo = {!!} , (\ { refl → {!!} }) , {!!}
-- Expected:
-- ...
-- ?2 : B x₁ → B x₂ → A (not the same name for these variables)
|
{
"alphanum_fraction": 0.5169082126,
"avg_line_length": 20.7,
"ext": "agda",
"hexsha": "26c996ae310ff1adb4f09d07114acfd31426f570",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3678.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3678.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3678.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 161,
"size": 414
}
|
-- Long version, the final version is Nat.agda
module NatTry where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
one two three four : ℕ
one = suc zero
two = suc one
three = suc two
four = suc three
_+_ : ℕ → ℕ → ℕ
zero + b = b
suc a + b = suc (a + b)
data Bool : Set where
true : Bool
false : Bool
_≟_ : ℕ → ℕ → Bool
zero ≟ zero = true
suc a ≟ suc b = a ≟ b
_ ≟ _ = false
infix 4 _≟_
assocProp : ℕ → ℕ → ℕ → Bool
assocProp a b c = (a + b) + c ≟ a + (b + c)
reflProp : ℕ → Bool
reflProp n = n ≟ n
module isTrue-direct where
data isTrue : Bool → Set where
ok : isTrue true
unitTest : isTrue (assocProp one one two)
unitTest = ok
refl-True : (n : ℕ) → isTrue (reflProp n)
refl-True zero = ok
refl-True (suc n) = refl-True n
assocProp-zero-True : (n m : ℕ) → isTrue (assocProp zero n m)
assocProp-zero-True n m = refl-True (n + m)
assocProp-True : (n m k : ℕ) → isTrue (assocProp n m k)
assocProp-True zero m k = assocProp-zero-True m k
assocProp-True (suc n) m k = assocProp-True n m k
-------- switch to _≡_
module ≡-Bool where
-- propositional equalitiy on Bool
data _≡_ : Bool → Bool → Set where
refl : {a : Bool} → a ≡ a -- the Bool paramter is hidden
infix 4 _≡_
isTrue : Bool → Set
isTrue x = x ≡ true
-- generic propositional equality
data _≡_ {A : Set} : A → A → Set where
refl : {a : A} → a ≡ a
infix 4 _≡_
-- This is the type of the refl constructor
-- The parameters are hidden
refl′ : {A : Set} {a : A} → a ≡ a
refl′ = refl
isTrue : Bool → Set
isTrue x = x ≡ true
refl-True : (n : ℕ) → isTrue (reflProp n)
refl-True zero = refl
refl-True (suc n) = refl-True n
unitTest : isTrue (assocProp one one two)
unitTest = refl
assocProp-zero-True : (n m : ℕ) → isTrue (assocProp zero n m)
assocProp-zero-True n m = refl-True (n + m)
assocProp-True : (n m k : ℕ) → isTrue (assocProp n m k)
assocProp-True zero m k = assocProp-zero-True m k
assocProp-True (suc n) m k = assocProp-True n m k
---- switch from _≟_
cong : {A B : Set} {a b : A} (f : A → B) → a ≡ b → f a ≡ f b
cong f refl = refl
cong-suc : {a b : ℕ} → a ≡ b → suc a ≡ suc b
cong-suc = cong suc
≡-to-≟ : {a b : ℕ} → a ≡ b → isTrue (a ≟ b)
≡-to-≟ {a} refl = refl-True a
≟-to-≡ : (a b : ℕ) → isTrue (a ≟ b) → a ≡ b
≟-to-≡ zero zero i = refl
≟-to-≡ zero (suc b) ()
≟-to-≡ (suc a) zero ()
≟-to-≡ (suc a) (suc b) i = cong-suc (≟-to-≡ a b i)
-- the rest is in Nat.agda
|
{
"alphanum_fraction": 0.5841910251,
"avg_line_length": 21.1217391304,
"ext": "agda",
"hexsha": "e0a8f0faf74055e8e02b03784c2555bd7bb2f5a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "divipp/agda-intro-prezi",
"max_forks_repo_path": "NatTry.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "divipp/agda-intro-prezi",
"max_issues_repo_path": "NatTry.agda",
"max_line_length": 63,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "divipp/agda-intro-prezi",
"max_stars_repo_path": "NatTry.agda",
"max_stars_repo_stars_event_max_datetime": "2020-01-21T14:53:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-27T02:50:48.000Z",
"num_tokens": 985,
"size": 2429
}
|
------------------------------------------------------------------------
-- η-expansion of simply-kinded types in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Kinding.Simple.EtaExpansion where
open import Data.Fin using (Fin; zero; suc; raise; lift)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.List using ([]; _∷_; _∷ʳ_)
open import Data.Maybe using (Maybe)
open import Data.Nat using (zero; suc)
open import Data.Product as Prod using (_,_)
open import Data.Vec as Vec using ([])
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.SingleVariableSubstitution
open import FOmegaInt.Syntax.HereditarySubstitution
open import FOmegaInt.Syntax.Normalization
open import FOmegaInt.Syntax.WeakEquality
open import FOmegaInt.Kinding.Simple
------------------------------------------------------------------------
-- η-expansion of simply kinded types.
--
-- TODO: explain the point of this and how "simple" kinding differs
-- from "canonical" kinding.
open Syntax
open SimpleCtx
open Substitution hiding (_↑; _↑⋆_; sub; subst)
open SimpHSubstLemmas
open RenamingCommutes
open WeakHereditarySubstitutionEquality
open WeakEqEtaExpansion
open KindedRenaming
open KindedHereditarySubstitution
open Kinding
module TrackSimpleKindsKindedEtaExp where
private
module V = VarSubst
module TK = TrackSimpleKindsEtaExp
-- NOTE. The definition of the functions η-exp-Var∈ and η-exp-Ne∈
-- below are structurally recursive in the *shape* parameter k, but
-- *not* in the kind j because we need to weaken the domain j₁ of
-- the dependent kind (j = Π j₁ j₂) in the arrow case. The
-- additional hypothesis ⌊ j ⌋≡ k ensures that k is indeed the shape
-- of the kind j.
mutual
-- η-expansion preserves simple kinding of neutral types.
η-exp-Var∈ : ∀ {n} {Γ : Ctx n} {x j k} (hyp : ⌊ j ⌋≡ k) →
Γ ⊢ j kds → Γ ⊢Var x ∈ k →
Γ ⊢Nf TK.η-exp j hyp (var∙ x) ∈ k
η-exp-Var∈ hyp j-kd x∈k = η-exp-Ne∈ hyp j-kd (∈-∙ x∈k ∈-[])
η-exp-Ne∈ : ∀ {n} {Γ : Ctx n} {a j k} (hyp : ⌊ j ⌋≡ k) →
Γ ⊢ j kds → Γ ⊢Ne a ∈ k → Γ ⊢Nf TK.η-exp j hyp a ∈ k
η-exp-Ne∈ is-★ (kds-⋯ b∈* c∈*) a∈★ = ∈-ne a∈★
η-exp-Ne∈ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) (kds-Π j₁-kds j₂-kds)
(∈-∙ {x} {_} {_} {as} x∈l l∋as∈k₁⇒k₂) =
subst (λ j → _ ⊢Nf η-x∙as ∈ j ⇒ _) (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁)
(∈-Π-i j₁-kds (η-exp-Ne∈ ⌊j₂⌋≡k₂ j₂-kds x∙as·z∈k₂))
where
η-x∙as = TK.η-exp _ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) (var x ∙ as)
z∈k₁ = η-exp-Var∈ (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (kds-weaken j₁-kds)
(∈-var zero (cong kd (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁)))
x∙as·z∈k₂ = Ne∈-Π-e (Ne∈-weaken (∈-∙ x∈l l∋as∈k₁⇒k₂)) z∈k₁
mutual
-- η-expansion of neutrals followed by hereditary substitution
-- vanishes if the substitution hits the head of the neutral.
η-exp-var-Hit-/⟨⟩ : ∀ {k m n Γ Δ} {x a j} (hyp : ⌊ j ⌋≡ k) {σ : SVSub m n} →
Hit σ x a → Γ ⊢ j kds → Γ ⊢Var x ∈ k → Δ ⊢/⟨ k ⟩ σ ∈ Γ →
TK.η-exp j hyp (var∙ x) /⟨ k ⟩ σ ≈ var∙ x /⟨ k ⟩ σ
η-exp-var-Hit-/⟨⟩ hyp hitP j-kds x∈k σ∈Γ =
η-exp-ne-Hit-/⟨⟩ hyp hitP j-kds (∈-∙ x∈k ∈-[]) σ∈Γ
η-exp-ne-Hit-/⟨⟩ : ∀ {k l m n Γ Δ} {x a as j} (hyp : ⌊ j ⌋≡ k)
{σ : SVSub m n} → Hit σ x a → Γ ⊢ j kds →
Γ ⊢Ne var x ∙ as ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
TK.η-exp j hyp (var x ∙ as) /⟨ l ⟩ σ ≈
var x ∙ as /⟨ l ⟩ σ
η-exp-ne-Hit-/⟨⟩ is-★ hitP j-kds a∈k σ∈Γ = ≈-refl _
η-exp-ne-Hit-/⟨⟩ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) hitP
(kds-Π j₁-kds j₂-kds) (∈-∙ {as = as} x∈l l∋as∈k₁⇒k₂) σ∈Γ
with lookup-/⟨⟩∈-Hit σ∈Γ x∈l hitP
η-exp-ne-Hit-/⟨⟩ {l = l} {Γ = Γ} {a = a}
(is-⇒ {j₁} {j₂} {k₁} {k₂} ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) {σ} hitP
(kds-Π j₁-kds j₂-kds)
(∈-∙ {as = as} (∈-var {l} x Γ[x]≡kd-l) l∋as∈k₁⇒k₂) σ∈Γ
| a∈l , refl =
let hitP-σ↑ = hitP ↑
ηz = TK.η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
as′ = weakenSpine as
ηz∈k₁ = η-exp-Var∈ (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (kds-weaken j₁-kds)
(∈-var zero refl)
kd-l∷Γ[x+1]≡kd-l = trans (lookup-suc (kd l) Γ x) Γ[x]≡kd-l
x+1∈l = ∈-var (suc x) kd-l∷Γ[x+1]≡kd-l
l∋as∈k₁⇒k₂′ = Sp∈-weaken l∋as∈k₁⇒k₂
σ↑∈k₁∷Γ = ∈-H↑ σ∈Γ
l∋as//σ∈k₁⇒k₂ = Sp∈-/⟨⟩ l∋as∈k₁⇒k₂ σ∈Γ
a∙as/σ∈k₁⇒k₂ = Nf∈-∙∙ a∈l l∋as//σ∈k₁⇒k₂
j′ , a′ , j′-kds , a′∈k₁⇒k₂ , rest = Nf∈-⇒-inv a∙as/σ∈k₁⇒k₂
⌊j′⌋≡k₁ , a∙as/σ≡Λj′a′ = rest
⌊j₁/σ⌋≡⌊j′⌋ = let open ≡-Reasoning in begin
⌊ j₁ Kind/⟨ l ⟩ σ ⌋ ≡⟨ ⌊⌋-Kind/⟨⟩ j₁ ⟩
⌊ j₁ ⌋ ≡⟨ ⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁ ⟩
k₁ ≡⟨ sym ⌊j′⌋≡k₁ ⟩
⌊ j′ ⌋ ∎
open ≈-Reasoning
in begin
TK.η-exp (Π j₁ j₂) (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) (var x ∙ as) /⟨ l ⟩ σ
≈⟨ ≈-Λ∙ ⌊j₁/σ⌋≡⌊j′⌋ (begin
TK.η-exp j₂ ⌊j₂⌋≡k₂
(weakenElim (var x ∙ as) ⌜·⌝ ηz) /⟨ l ⟩ σ ↑
≡⟨ cong (λ y → TK.η-exp _ ⌊j₂⌋≡k₂ (var y ∙ as′ ⌜·⌝ ηz) /⟨ l ⟩ σ ↑)
(VarLemmas.lookup-wk x) ⟩
TK.η-exp j₂ ⌊j₂⌋≡k₂ (var (suc x) ∙ as′ ⌜·⌝ ηz) /⟨ l ⟩ σ ↑
≈⟨ η-exp-ne-Hit-/⟨⟩ ⌊j₂⌋≡k₂ hitP-σ↑
(subst (λ k → kd k ∷ _ ⊢ _ kds) (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁)
j₂-kds)
(∈-∙ x+1∈l (∈-∷ʳ l∋as∈k₁⇒k₂′ ηz∈k₁)) σ↑∈k₁∷Γ ⟩
var (suc x) ∙ as′ ⌜·⌝ ηz /⟨ l ⟩ σ ↑
≡⟨ cong (_?∙∙⟨ l ⟩ ((as′ ∷ʳ ηz) //⟨ l ⟩ σ ↑)) (lookup-Hit hitP-σ↑) ⟩
weakenElim a ∙∙⟨ l ⟩ ((as′ ∷ʳ ηz) //⟨ l ⟩ σ ↑)
≡⟨ cong (_ ∙∙⟨ l ⟩_) (++-//⟨⟩ (as′) (_ ∷ [])) ⟩
weakenElim a ∙∙⟨ l ⟩ (as′ //⟨ l ⟩ σ ↑ ∷ʳ ηz /⟨ l ⟩ σ ↑)
≡⟨ Nf∈-++-∙∙⟨⟩ (Nf∈-weaken a∈l) (Sp∈-/⟨⟩ l∋as∈k₁⇒k₂′ σ↑∈k₁∷Γ)
(∈-∷ (Nf∈-/⟨⟩ ηz∈k₁ σ↑∈k₁∷Γ) ∈-[]) ⟩
weakenElim a ∙∙⟨ l ⟩ (as′ //⟨ l ⟩ σ ↑) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ (ηz /⟨ l ⟩ σ ↑)
≡⟨ cong (λ bs → weakenElim a ∙∙⟨ l ⟩ bs ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ (ηz /⟨ l ⟩ σ ↑))
(wk-//⟨⟩-↑⋆ 0 as) ⟩
weakenElim a ∙∙⟨ l ⟩ weakenSpine (as //⟨ l ⟩ σ) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩
(ηz /⟨ l ⟩ σ ↑)
≡˘⟨ cong (_⌜·⌝⟨ k₁ ⇒ k₂ ⟩ (ηz /⟨ l ⟩ σ ↑))
(∙∙⟨⟩-/Var a l (as //⟨ l ⟩ σ)) ⟩
weakenElim (a ∙∙⟨ l ⟩ (as //⟨ l ⟩ σ)) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ (ηz /⟨ l ⟩ σ ↑)
≡⟨ cong ((_⌜·⌝⟨ k₁ ⇒ k₂ ⟩ _) ∘ weakenElim) a∙as/σ≡Λj′a′ ⟩
weakenElim (Λ∙ j′ a′) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ (ηz /⟨ l ⟩ σ ↑)
≡⟨ cong (weakenElim (Λ∙ j′ a′) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩_)
(TK.η-exp-ne-Miss-/⟨⟩ zero zero (⌊⌋≡-weaken ⌊j₁⌋≡k₁) under) ⟩
weakenElim (Λ∙ j′ a′) ⌜·⌝⟨ k₁ ⇒ k₂ ⟩
TK.η-exp (weakenKind′ j₁ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ (⌊⌋≡-weaken ⌊j₁⌋≡k₁))
(var∙ zero)
≈⟨ Nf∈-[]-η-var [] (⌊⌋≡-/⟨⟩ (⌊⌋≡-weaken ⌊j₁⌋≡k₁))
(kds-/⟨⟩ (kds-weaken j₁-kds) σ↑∈k₁∷Γ) a′∈k₁⇒k₂ ⟩
a′
∎) ⟩
Λ∙ j′ a′
≡⟨ sym a∙as/σ≡Λj′a′ ⟩
a ∙∙⟨ l ⟩ (as //⟨ l ⟩ σ)
≡˘⟨ cong (_?∙∙⟨ l ⟩ (as //⟨ l ⟩ σ)) (lookup-Hit hitP) ⟩
var x ∙ as /⟨ l ⟩ σ
∎
-- Hereditary substitutions of a variable by its η-expansion vanish.
--
-- NOTE. Both the statement and the proof of this lemma are
-- complicated by the use of de Bruijn notation in combination
-- with single-variable (hereditary) substitution. When
-- formulated using the usual, human-readable variable notation,
-- the lemma simply says that
--
-- e [ηⱼ(x)/ʲx] = e
--
-- where "e [a/ʲx]" denotes hereditary substitution of a for x in
-- expression e at kind j, and "ηⱼ(x)" denotes the η-expansion of
-- x at kind j. Using de Bruijn notation, this substitution only
-- makes sense if there are actually _two_ copies of the variable
-- x in e on the LHS (say x and x′): one to be replaced (x) and a
-- second one (x′) to be η-expanded and substituted for x. To
-- make the equation well-scoped, we therefore weaken e to
-- introduce a new variable x′ = (suc x) just after x, which after
-- substitution for x will correspond precisely to the de Bruijn
-- index of x itself. The stated form of the lemma is obtained by
-- letting x be the n-th variable in a context with (n + m) free
-- variables, i.e. we fix x = (raise n zero) in e.
--
-- Note also that the proof of this lemma is currently the only
-- place in the development where the Eq? predicate from the
-- FOmegaInt.Syntax.SingleVariableSubstitution module is used.
-- It's probably possible to reformulate the proof without using
-- this predicate, but that will likely render the proof even
-- harder to follow than it already is.
kds-[]-η-var : ∀ {k m n} (Γ₂ : CtxExt (suc m) n) {Γ₁ j l}
(hyp : ⌊ j ⌋≡ k) → kd k ∷ Γ₁ ⊢ j kds →
Γ₂ ++ kd k ∷ Γ₁ ⊢ l kds →
let l′ = l Kind′/Var (V.wk V.↑) V.↑⋆ n
in l′ Kind/⟨ k ⟩ sub (TK.η-exp j hyp (var∙ zero)) ↑⋆ n ≋ l
kds-[]-η-var Γ₂ hyp j-kds (kds-⋯ a∈★ b∈★) =
≋-⋯ (Nf∈-[]-η-var Γ₂ hyp j-kds a∈★) (Nf∈-[]-η-var Γ₂ hyp j-kds b∈★)
kds-[]-η-var Γ₂ hyp j-kds (kds-Π k-kds l-kds) =
≋-Π (kds-[]-η-var Γ₂ hyp j-kds k-kds)
(kds-[]-η-var (_ ∷ Γ₂) hyp j-kds l-kds)
Nf∈-[]-η-var : ∀ {k m n} (Γ₂ : CtxExt (suc m) n) {Γ₁ a j l}
(hyp : ⌊ j ⌋≡ k) → kd k ∷ Γ₁ ⊢ j kds →
Γ₂ ++ kd k ∷ Γ₁ ⊢Nf a ∈ l →
let a′ = a Elim/Var (V.wk V.↑) V.↑⋆ n
in a′ /⟨ k ⟩ sub (TK.η-exp j hyp (var∙ zero)) ↑⋆ n ≈ a
Nf∈-[]-η-var Γ₂ hyp j-kds ∈-⊥-f = ≈-refl ⊥∙
Nf∈-[]-η-var Γ₂ hyp j-kds ∈-⊤-f = ≈-refl ⊤∙
Nf∈-[]-η-var Γ₂ hyp j-kds (∈-∀-f k-kds a∈★) =
≈-∀∙ (kds-[]-η-var Γ₂ hyp j-kds k-kds)
(Nf∈-[]-η-var (_ ∷ Γ₂) hyp j-kds a∈★)
Nf∈-[]-η-var Γ₂ hyp j-kds (∈-→-f a∈★ b∈★) =
≈-⇒∙ (Nf∈-[]-η-var Γ₂ hyp j-kds a∈★) (Nf∈-[]-η-var Γ₂ hyp j-kds b∈★)
Nf∈-[]-η-var {k} {_} {n} Γ₂ hyp j-kds (∈-Π-i {l} l-kds a∈k) =
let open ≡-Reasoning
ρ = (V.wk V.↑) V.↑⋆ n
σ = sub (TK.η-exp _ hyp (var∙ zero)) ↑⋆ n
in ≈-Λ∙ (begin
⌊ l Kind′/Var ρ Kind/⟨ k ⟩ σ ⌋ ≡⟨ ⌊⌋-Kind/⟨⟩ (l Kind′/Var ρ) ⟩
⌊ l Kind′/Var ρ ⌋ ≡⟨ ⌊⌋-Kind′/Var l ⟩
⌊ l ⌋ ∎)
(Nf∈-[]-η-var (_ ∷ Γ₂) hyp j-kds a∈k)
Nf∈-[]-η-var {_} {_} {n} Γ₂ hyp j-kds (∈-ne (∈-∙ (∈-var x _) k∋as∈★))
with compare n x
Nf∈-[]-η-var {k} {_} {n} Γ₂ {Γ₁} {_} {j} hyp j-kds
(∈-ne (∈-∙ {as = as} (∈-var ._ Γ[x]≡kd-k′) k′∋as∈★))
| yes refl =
begin
lookupSV σ (x V./ (V.wk V.↑) V.↑⋆ n) ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≡⟨ cong (λ z → lookupSV σ z ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ))
(lookup-raise-↑⋆ n zero refl) ⟩
lookupSV σ (raise n zero) ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≡⟨ cong (_?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)) (lookup-Hit hitP) ⟩
weakenElim⋆ n ηz ∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≡˘⟨ cong (_∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)) (EL./Var-wk⋆ n) ⟩
(ηz Elim/Var V.wk⋆ n) ∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≈⟨ ≈-∙∙⟨⟩ k (≈-refl _) (Sp∈-[]-η-var Γ₂ hyp j-kds k∋as∈★) ⟩
(ηz Elim/Var V.wk⋆ n) ∙∙⟨ k ⟩ as
≡⟨ cong (_∙∙⟨ k ⟩ as) (TK.η-exp-/Var hyp (var∙ zero)) ⟩
TK.η-exp (j Kind′/Var V.wk⋆ n) (⌊⌋≡-/Var hyp)
(var∙ zero Elim/Var V.wk⋆ n) ∙∙⟨ k ⟩ as
≡⟨ cong (λ y → TK.η-exp (j Kind′/Var V.wk⋆ n) (⌊⌋≡-/Var hyp)
(var∙ y) ∙∙⟨ k ⟩ as)
(lookup-wk⋆ zero n) ⟩
TK.η-exp (j Kind′/Var V.wk⋆ n) (⌊⌋≡-/Var hyp) (var∙ x) ∙∙⟨ k ⟩ as
≈⟨ η-exp-ne-∙∙ (⌊⌋≡-/Var hyp)
(subst (_ ⊢_kds) (sym (KL./Var-wk⋆ n))
(kds-weaken⋆ Γ₂ j-kds))
(∈-∙ (∈-var x Γ[x]≡kd-k) ∈-[]) k∋as∈★ ⟩
var x ∙ as
∎
where
x = raise n zero
Γ = Γ₂ ++ kd k ∷ Γ₁
Γ[x]≡kd-k = begin
lookup Γ (raise n zero) ≡⟨ lookup-weaken⋆ n Γ₂ _ zero ⟩
weakenSAsc⋆ n (kd k) ≡⟨ weakenSAsc⋆-id n ⟩
kd k ∎
where open ≡-Reasoning
ηz = TK.η-exp j hyp (var∙ zero)
σ = sub ηz ↑⋆ n
as′ = as //Var (V.wk V.↑) V.↑⋆ n
hitP = Hit-sub-↑⋆ n
k′≡k = kd-inj′ (trans (sym Γ[x]≡kd-k′) Γ[x]≡kd-k)
k∋as∈★ = subst (_ ⊢_∋∙ _ ∈ _) k′≡k k′∋as∈★
open ≈-Reasoning
open ExtLemmas₁ VarLemmas.lemmas₁ using (lookup-wk⋆; lookup-raise-↑⋆)
module EL = TermLikeLemmas termLikeLemmasElim
module KL = TermLikeLemmas termLikeLemmasKind′
Nf∈-[]-η-var {k} {_} {n} Γ₂ {_} {_} {j} hyp j-kds
(∈-ne (∈-∙ {as = as} (∈-var ._ Γ[x]≡kd-k′) k′∋as∈★))
| no y refl =
begin
lookupSV σ (x V./ (V.wk V.↑) V.↑⋆ n) ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≡⟨ cong (λ z → lookupSV σ z ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)) eq ⟩
lookupSV σ (lift n suc x) ?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)
≡⟨ cong (_?∙∙⟨ k ⟩ (as′ //⟨ k ⟩ σ)) (lookup-Miss (Miss-sub-↑⋆ n x)) ⟩
var x ∙ (as′ //⟨ k ⟩ σ)
≈⟨ ≈-∙ (≈-var x) (Sp∈-[]-η-var Γ₂ hyp j-kds k′∋as∈★) ⟩
var x ∙ as
∎
where
x = lift n suc y
ηz = TK.η-exp j hyp (var∙ zero)
σ = sub ηz ↑⋆ n
as′ = as //Var (V.wk V.↑) V.↑⋆ n
eq = begin
x V./ (V.wk V.↑) V.↑⋆ n ≡⟨ VarLemmas.lookup-wk-↑⋆-↑⋆ 1 n x ⟩
lift n (lift 1 suc) x ≡⟨⟩
lift n (lift 1 suc) (lift n suc y) ≡⟨ sym (lift-commutes 0 n y) ⟩
lift n suc (lift n suc y) ≡⟨⟩
lift n suc x ∎
where open ≡-Reasoning
open ≈-Reasoning
Sp∈-[]-η-var : ∀ {k m n} (Γ₂ : CtxExt (suc m) n) {Γ₁ as j l₁ l₂}
(hyp : ⌊ j ⌋≡ k) → kd k ∷ Γ₁ ⊢ j kds →
Γ₂ ++ kd k ∷ Γ₁ ⊢ l₁ ∋∙ as ∈ l₂ →
let as′ = as //Var (V.wk V.↑) V.↑⋆ n
in as′ //⟨ k ⟩ sub (TK.η-exp j hyp (var∙ zero)) ↑⋆ n ≈Sp as
Sp∈-[]-η-var Γ₂ hyp j-kds ∈-[] = ≈-[]
Sp∈-[]-η-var Γ₂ hyp j-kds (∈-∷ a∈l₁ l₂∋as∈l₃) =
≈-∷ (Nf∈-[]-η-var Γ₂ hyp j-kds a∈l₁) (Sp∈-[]-η-var Γ₂ hyp j-kds l₂∋as∈l₃)
-- Reducing applications cancel out η-expansion of neutrals.
η-exp-ne-∙∙ : ∀ {n} {Γ : Ctx n} {a bs j k} (hyp : ⌊ j ⌋≡ k) →
Γ ⊢ j kds → Γ ⊢Ne a ∈ k → Γ ⊢ k ∋∙ bs ∈ ★ →
TK.η-exp j hyp a ∙∙⟨ k ⟩ bs ≈ a ∙∙ bs
η-exp-ne-∙∙ is-★ j-kds a∈k ∈-[] = subst (_ ≈_) (sym (∙∙-[] _)) (≈-refl _)
η-exp-ne-∙∙ {a = a} (is-⇒ {j₁} {j₂} {k₁} {k₂} ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂)
(kds-Π j₁-kds j₂-kds) a∈k₁⇒k₂ (∈-∷ {b} {bs} b∈k₁ k₂∋bs∈★) =
begin
TK.η-exp (Π j₁ j₂) (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) a ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ b ∙∙⟨ k₂ ⟩ bs
≈⟨ ≈-∙∙⟨⟩ k₂ (η-exp-ne-⌜·⌝ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂ j₁-kds a∈k₁⇒k₂ b∈k₁)
(≈Sp-refl bs) ⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (a ⌜·⌝ b) ∙∙⟨ k₂ ⟩ bs
≈⟨ η-exp-ne-∙∙ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) j₂[b]-kds (Ne∈-Π-e a∈k₁⇒k₂ b∈k₁) k₂∋bs∈★ ⟩
(a ⌜·⌝ b) ∙∙ bs
≡⟨ ∙∙-++ a (b ∷ []) bs ⟩
a ∙∙ (b ∷ bs)
∎
where
open ≈-Reasoning
j₂[b]-kds = kds-/⟨⟩ (subst (λ k → kd k ∷ _ ⊢ j₂ kds)
(⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁) j₂-kds)
(∈-hsub b∈k₁)
η-exp-ne-⌜·⌝ : ∀ {n} {Γ : Ctx n} {a b j₁ j₂ k₁ k₂}
(hyp₁ : ⌊ j₁ ⌋≡ k₁) (hyp₂ : ⌊ j₂ ⌋≡ k₂) →
Γ ⊢ j₁ kds → Γ ⊢Ne a ∈ k₁ ⇒ k₂ → Γ ⊢Nf b ∈ k₁ →
TK.η-exp (Π j₁ j₂) (is-⇒ hyp₁ hyp₂) a ⌜·⌝⟨ k₁ ⇒ k₂ ⟩ b ≈
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ hyp₂) (a ⌜·⌝ b)
η-exp-ne-⌜·⌝ {b = b} {j₁} {j₂} {k₁} ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂ j₁-kds
(∈-∙ {x} {_} {_} {as} x∈l l∋as∈k₁⇒k₂) b∈k₁ =
let ηz = TK.η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
in begin
TK.η-exp j₂ ⌊j₂⌋≡k₂
(weakenElim (var∙ x) ∙∙ weakenSpine as ⌜·⌝ ηz) /⟨ k₁ ⟩ sub b
≡⟨ cong (λ y → TK.η-exp _ ⌊j₂⌋≡k₂ (var y ∙ weakenSpine as ⌜·⌝ ηz) /⟨ k₁ ⟩ _)
(VarLemmas.lookup-wk x) ⟩
TK.η-exp j₂ ⌊j₂⌋≡k₂ (var (suc x) ∙ weakenSpine as ⌜·⌝ ηz) /⟨ k₁ ⟩ sub b
≡⟨ TK.η-exp-ne-Miss-/⟨⟩ (suc x) x ⌊j₂⌋≡k₂ over ⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(var x ∙ ((weakenSpine as ∷ʳ ηz) //⟨ k₁ ⟩ sub b))
≡⟨ cong (λ bs → TK.η-exp _ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var x ∙ bs))
(++-//⟨⟩ (weakenSpine as) _) ⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(var x ∙ (weakenSpine as //⟨ k₁ ⟩ sub b) ⌜·⌝ (ηz /⟨ k₁ ⟩ sub b))
≡⟨ cong (λ bs → TK.η-exp _ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var x ∙ bs ⌜·⌝ _))
(//Var-wk-↑⋆-hsub-vanishes 0 as) ⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(var x ∙ as ⌜·⌝ (ηz /⟨ k₁ ⟩ sub b))
≈⟨ ≈-η-exp′ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(≈-⌜·⌝ (≈-refl (var x ∙ as))
(η-exp-var-Hit-/⟨⟩ (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (Hit-sub-↑⋆ 0)
(kds-weaken j₁-kds)
(∈-var zero refl) (∈-hsub b∈k₁))) ⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var x ∙ as ⌜·⌝
(var∙ zero /⟨ k₁ ⟩ sub b))
≡⟨⟩
TK.η-exp (j₂ Kind[ b ∈ k₁ ]) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var x ∙ as ⌜·⌝ b)
∎
where open ≈-Reasoning
private module TK = TrackSimpleKindsKindedEtaExp
-- η-expansion preserves simple kinding of neutral types.
η-exp-Var∈ : ∀ {n} {Γ : Ctx n} {x k} →
Γ ⊢ k kds → Γ ⊢Var x ∈ ⌊ k ⌋ → Γ ⊢Nf η-exp k (var∙ x) ∈ ⌊ k ⌋
η-exp-Var∈ k-kd x∈⌊k⌋ = TK.η-exp-Var∈ (⌊⌋-⌊⌋≡ _) k-kd x∈⌊k⌋
η-exp-Ne∈ : ∀ {n} {Γ : Ctx n} {a k} →
Γ ⊢ k kds → Γ ⊢Ne a ∈ ⌊ k ⌋ → Γ ⊢Nf η-exp k a ∈ ⌊ k ⌋
η-exp-Ne∈ k-kd a∈⌊k⌋ = TK.η-exp-Ne∈ (⌊⌋-⌊⌋≡ _) k-kd a∈⌊k⌋
-- η-expansion of neutrals followed by hereditary substitution
-- vanish if the substitution hits the head of the neutral.
η-exp-ne-Hit-/⟨⟩ : ∀ {k m n Γ Δ} {x a as j} {σ : SVSub m n} →
Hit σ x a → Γ ⊢ j kds → Γ ⊢Ne var x ∙ as ∈ ⌊ j ⌋ →
Δ ⊢/⟨ k ⟩ σ ∈ Γ →
η-exp j (var x ∙ as) /⟨ k ⟩ σ ≈ var x ∙ as /⟨ k ⟩ σ
η-exp-ne-Hit-/⟨⟩ hitP j-kds x∙as∈k σ∈Γ =
TK.η-exp-ne-Hit-/⟨⟩ (⌊⌋-⌊⌋≡ _) hitP j-kds x∙as∈k σ∈Γ
η-exp-var-Hit-/⟨⟩ : ∀ {k m n Γ Δ} {x a j} {σ : SVSub m n} →
Hit σ x a → Γ ⊢ j kds → Γ ⊢Var x ∈ ⌊ j ⌋ →
Δ ⊢/⟨ k ⟩ σ ∈ Γ →
η-exp j (var∙ x) /⟨ k ⟩ σ ≈ var∙ x /⟨ k ⟩ σ
η-exp-var-Hit-/⟨⟩ hitP j-kds x∈k σ∈Γ =
η-exp-ne-Hit-/⟨⟩ hitP j-kds (∈-∙ x∈k ∈-[]) σ∈Γ
-- Hereditary substitutions of a variable by its η-expansion vanish.
kds-[]-η-var : ∀ {m n} (Γ₂ : CtxExt (suc m) n) {Γ₁ j k} →
Γ₁ ⊢ j kds → Γ₂ ++ kd ⌊ j ⌋ ∷ Γ₁ ⊢ k kds →
let j′ = weakenKind′ j
k′ = k Kind′/Var (VarSubst.wk VarSubst.↑) VarSubst.↑⋆ n
in k′ Kind/⟨ ⌊ j′ ⌋ ⟩ sub (η-exp j′ (var∙ zero)) ↑⋆ n ≋ k
kds-[]-η-var Γ₂ {Γ₁} {j} j-kds k-kds =
TK.kds-[]-η-var Γ₂ (⌊⌋-⌊⌋≡ _) (kds-weaken j-kds)
(subst (λ l → Γ₂ ++ kd l ∷ Γ₁ ⊢ _ kds)
(sym (⌊⌋-Kind′/Var j)) k-kds)
Nf∈-[]-η-var : ∀ {m n} (Γ₂ : CtxExt (suc m) n) {Γ₁ a j k} →
Γ₁ ⊢ j kds → Γ₂ ++ kd ⌊ j ⌋ ∷ Γ₁ ⊢Nf a ∈ k →
let j′ = weakenKind′ j
a′ = a Elim/Var (VarSubst.wk VarSubst.↑) VarSubst.↑⋆ n
in a′ /⟨ ⌊ j′ ⌋ ⟩ sub (η-exp j′ (var∙ zero)) ↑⋆ n ≈ a
Nf∈-[]-η-var Γ₂ {Γ₁} {a} {j} j-kds a∈k =
TK.Nf∈-[]-η-var Γ₂ (⌊⌋-⌊⌋≡ _) (kds-weaken j-kds)
(subst (λ l → Γ₂ ++ kd l ∷ Γ₁ ⊢Nf _ ∈ _)
(sym (⌊⌋-Kind′/Var j)) a∈k)
|
{
"alphanum_fraction": 0.4274466813,
"avg_line_length": 46.8878504673,
"ext": "agda",
"hexsha": "9d3eb44e14c785517910fa529e051b4359252052",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Kinding/Simple/EtaExpansion.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Kinding/Simple/EtaExpansion.agda",
"max_line_length": 83,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Kinding/Simple/EtaExpansion.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 10288,
"size": 20068
}
|
------------------------------------------------------------------------
-- Some examples related to Nat.Wrapper, defined in Cubical Agda
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
open import Equality.Path as P
open import Prelude hiding (zero; suc; _+_)
open import Bijection equality-with-J using (_↔_)
module Nat.Wrapper.Cubical
-- The underlying representation of natural numbers.
(Nat′ : Type)
-- A bijection between this representation and the unary natural
-- numbers.
(Nat′↔ℕ : Nat′ ↔ ℕ)
where
open import Equality.Path.Univalence
open import Logical-equivalence using (_⇔_)
import Equivalence equality-with-J as Eq
open import Erased.Cubical equality-with-paths
open import Function-universe equality-with-J as F hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc
import Nat equality-with-J as Nat
import Univalence-axiom equality-with-J as U
open import Nat.Wrapper equality-with-J Nat′ Nat′↔ℕ as NW
open NW.[]-cong instance-of-[]-cong-axiomatisation
private
variable
A : Type
m n : A
------------------------------------------------------------------------
-- Could Nat have been defined using the propositional truncation
-- instead of Erased?
-- Could Nat have been defined using ∥_∥ instead of Erased? Let us
-- try.
-- Given a truncated natural number we can kind of apply Nat-[_] to
-- it, because Nat-[_] is a family of contractible types. (The code
-- uses univalence.)
Nat-[]′ : ∥ ℕ ∥ → ∃ λ (A : Type) → Contractible A
Nat-[]′ = Trunc.rec
(U.∃-H-level-H-level-1+ ext univ 0)
(λ n → Nat-[ n ]
, propositional⇒inhabited⇒contractible
Nat-[]-propositional
( _↔_.from Nat′↔ℕ n
, [ _↔_.right-inverse-of Nat′↔ℕ n ]
))
Nat-[_]′ : ∥ ℕ ∥ → Type
Nat-[ n ]′ = proj₁ (Nat-[]′ n)
-- Thus we can form a variant of Nat.
Nat-with-∥∥ : Type
Nat-with-∥∥ = Σ ∥ ℕ ∥ Nat-[_]′
-- However, this variant is isomorphic to the unit type.
Nat-with-∥∥↔⊤ : Nat-with-∥∥ ↔ ⊤
Nat-with-∥∥↔⊤ =
_⇔_.to contractible⇔↔⊤ $
Σ-closure 0
(propositional⇒inhabited⇒contractible
truncation-is-proposition ∣ 0 ∣)
(proj₂ ∘ Nat-[]′)
-- And thus it is not isomorphic to the natural numbers.
¬-Nat-with-∥∥↔ℕ : ¬ (Nat-with-∥∥ ↔ ℕ)
¬-Nat-with-∥∥↔ℕ =
Nat-with-∥∥ ↔ ℕ ↝⟨ F._∘ inverse Nat-with-∥∥↔⊤ ⟩
⊤ ↔ ℕ ↝⟨ (λ hyp → _↔_.injective (inverse hyp) refl) ⟩
0 ≡ 1 ↝⟨ Nat.0≢+ ⟩□
⊥ □
------------------------------------------------------------------------
-- Addition of "wrapped" numbers is commutative and associative
module _ (o : Operations) where
open Operations-for-Nat o
open Operations-for-Nat-correct o
private
-- A lemma used several times below.
from[to+to]≡+ :
∀ m →
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n) ≡ m + n
from[to+to]≡+ {n = n} m =
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n) ≡⟨ cong (_↔_.from Nat↔ℕ) $ sym $ to-ℕ-+ m n ⟩
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ (m + n)) ≡⟨ _↔_.left-inverse-of Nat↔ℕ _ ⟩∎
m + n ∎
-- First two "traditional" proofs.
-- Addition is commutative.
+-comm-traditional : ∀ m {n} → m + n ≡ n + m
+-comm-traditional m {n = n} =
m + n ≡⟨ sym $ from[to+to]≡+ m ⟩
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n) ≡⟨ cong (_↔_.from Nat↔ℕ) $ Nat.+-comm (_↔_.to Nat↔ℕ m) ⟩
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ n Prelude.+ _↔_.to Nat↔ℕ m) ≡⟨ from[to+to]≡+ n ⟩∎
n + m ∎
-- Addition is associative.
+-assoc-traditional : ∀ m {n o} → m + (n + o) ≡ (m + n) + o
+-assoc-traditional m {n = n} {o = o} =
m + (n + o) ≡⟨ cong (m +_) $ sym $ from[to+to]≡+ n ⟩
m + (_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ n Prelude.+ _↔_.to Nat↔ℕ o)) ≡⟨ sym $ from[to+to]≡+ m ⟩
_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m
Prelude.+
_↔_.to Nat↔ℕ (_↔_.from Nat↔ℕ
(_↔_.to Nat↔ℕ n Prelude.+ _↔_.to Nat↔ℕ o))) ≡⟨ cong (λ n → _↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ n)) $
_↔_.right-inverse-of Nat↔ℕ _ ⟩
_↔_.from Nat↔ℕ
(_↔_.to Nat↔ℕ m
Prelude.+
(_↔_.to Nat↔ℕ n Prelude.+ _↔_.to Nat↔ℕ o)) ≡⟨ cong (_↔_.from Nat↔ℕ) $ Nat.+-assoc (_↔_.to Nat↔ℕ m) ⟩
_↔_.from Nat↔ℕ
((_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n)
Prelude.+
_↔_.to Nat↔ℕ o) ≡⟨ cong (λ n → _↔_.from Nat↔ℕ (n Prelude.+ _↔_.to Nat↔ℕ o)) $ sym $
_↔_.right-inverse-of Nat↔ℕ _ ⟩
_↔_.from Nat↔ℕ
(_↔_.to Nat↔ℕ (_↔_.from Nat↔ℕ
(_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n))
Prelude.+
_↔_.to Nat↔ℕ o) ≡⟨ from[to+to]≡+ (_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n)) ⟩
(_↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n)) + o ≡⟨ cong (_+ o) $ from[to+to]≡+ {n = n} m ⟩∎
(m + n) + o ∎
-- The following proofs are instead based on a technique used by
-- Vezzosi, Mörtberg and Abel in "Cubical Agda: A Dependently Typed
-- Programming Language with Univalence and Higher Inductive Types".
-- The type of unary natural numbers is equal to the type of wrapped
-- natural numbers.
ℕ≡Nat : ℕ ≡ Nat
ℕ≡Nat = sym (≃⇒≡ (Eq.↔⇒≃ Nat↔ℕ))
-- Addition of unary natural numbers is, in a certain sense, equal
-- to addition of wrapped natural numbers.
+≡+ : P.[ (λ i → ℕ≡Nat i → ℕ≡Nat i → ℕ≡Nat i) ] Prelude._+_ ≡ _+_
+≡+ =
Prelude._+_ ≡⟨ (λ i → transport
(λ j → ℕ≡Nat (min i j) → ℕ≡Nat (min i j) → ℕ≡Nat (min i j))
(- i) Prelude._+_) ⟩h
transport (λ i → ℕ≡Nat i → ℕ≡Nat i → ℕ≡Nat i) 0̲ Prelude._+_ ≡⟨⟩
(λ m n → _↔_.from Nat↔ℕ (_↔_.to Nat↔ℕ m Prelude.+ _↔_.to Nat↔ℕ n)) ≡⟨ (⟨ext⟩ λ m → ⟨ext⟩ λ _ → from[to+to]≡+ m) ⟩∎
_+_ ∎
-- Addition is commutative.
+-comm-cubical : ∀ m {n} → m + n ≡ n + m
+-comm-cubical =
transport
(λ i → (m {n} : ℕ≡Nat i) → +≡+ i m n ≡ +≡+ i n m)
0̲
Nat.+-comm
-- Addition is associative.
+-assoc-cubical : ∀ m {n o} → m + (n + o) ≡ (m + n) + o
+-assoc-cubical =
transport
(λ i → (m {n o} : ℕ≡Nat i) →
+≡+ i m (+≡+ i n o) ≡ +≡+ i (+≡+ i m n) o)
0̲
Nat.+-assoc
-- This proof technique seems to scale better than the one used
-- above, at least for examples of the kind used here.
|
{
"alphanum_fraction": 0.4810939026,
"avg_line_length": 36.5663265306,
"ext": "agda",
"hexsha": "6b5915d943aa81d45f6ec1d979c9c4cb67d203a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Nat/Wrapper/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Nat/Wrapper/Cubical.agda",
"max_line_length": 145,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Nat/Wrapper/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2568,
"size": 7167
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A bunch of properties about natural number operations
------------------------------------------------------------------------
module Data.Nat.Properties.Simple where
open import Data.Nat as Nat
open import Function
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
open import Data.Product
open import Data.Sum
------------------------------------------------------------------------
+-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o)
+-assoc zero _ _ = refl
+-assoc (suc m) n o = cong suc $ +-assoc m n o
+-right-identity : ∀ n → n + 0 ≡ n
+-right-identity zero = refl
+-right-identity (suc n) = cong suc $ +-right-identity n
+-suc : ∀ m n → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
+-comm : ∀ m n → m + n ≡ n + m
+-comm zero n = sym $ +-right-identity n
+-comm (suc m) n =
begin
suc m + n
≡⟨ refl ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨ sym (+-suc n m) ⟩
n + suc m
∎
+-*-suc : ∀ m n → m * suc n ≡ m + m * n
+-*-suc zero n = refl
+-*-suc (suc m) n =
begin
suc m * suc n
≡⟨ refl ⟩
suc n + m * suc n
≡⟨ cong (λ x → suc n + x) (+-*-suc m n) ⟩
suc n + (m + m * n)
≡⟨ refl ⟩
suc (n + (m + m * n))
≡⟨ cong suc (sym $ +-assoc n m (m * n)) ⟩
suc (n + m + m * n)
≡⟨ cong (λ x → suc (x + m * n)) (+-comm n m) ⟩
suc (m + n + m * n)
≡⟨ cong suc (+-assoc m n (m * n)) ⟩
suc (m + (n + m * n))
≡⟨ refl ⟩
suc m + suc m * n
∎
*-right-zero : ∀ n → n * 0 ≡ 0
*-right-zero zero = refl
*-right-zero (suc n) = *-right-zero n
*-comm : ∀ m n → m * n ≡ n * m
*-comm zero n = sym $ *-right-zero n
*-comm (suc m) n =
begin
suc m * n
≡⟨ refl ⟩
n + m * n
≡⟨ cong (λ x → n + x) (*-comm m n) ⟩
n + n * m
≡⟨ sym (+-*-suc n m) ⟩
n * suc m
∎
distribʳ-*-+ : ∀ m n o → (n + o) * m ≡ n * m + o * m
distribʳ-*-+ m zero o = refl
distribʳ-*-+ m (suc n) o =
begin
(suc n + o) * m
≡⟨ refl ⟩
m + (n + o) * m
≡⟨ cong (_+_ m) $ distribʳ-*-+ m n o ⟩
m + (n * m + o * m)
≡⟨ sym $ +-assoc m (n * m) (o * m) ⟩
m + n * m + o * m
≡⟨ refl ⟩
suc n * m + o * m
∎
*-assoc : ∀ m n o → (m * n) * o ≡ m * (n * o)
*-assoc zero n o = refl
*-assoc (suc m) n o =
begin
(suc m * n) * o
≡⟨ refl ⟩
(n + m * n) * o
≡⟨ distribʳ-*-+ o n (m * n) ⟩
n * o + (m * n) * o
≡⟨ cong (λ x → n * o + x) $ *-assoc m n o ⟩
n * o + m * (n * o)
≡⟨ refl ⟩
suc m * (n * o)
∎
|
{
"alphanum_fraction": 0.4182509506,
"avg_line_length": 23.6936936937,
"ext": "agda",
"hexsha": "6c5cb93c5abd78775059fbbb22d5917b66fe6ce7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties/Simple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties/Simple.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Nat/Properties/Simple.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1112,
"size": 2630
}
|
{-# OPTIONS --safe #-}
module Definition.Conversion.Lift where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Conversion.Soundness
open import Definition.Conversion.Reduction
open import Definition.Conversion.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Equality
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Lifting of algorithmic equality of types from WHNF to generic types.
liftConv : ∀ {A B rA Γ}
→ Γ ⊢ A [conv↓] B ^ rA
→ Γ ⊢ A [conv↑] B ^ rA
liftConv A<>B =
let ⊢A , ⊢B = syntacticEq (soundnessConv↓ A<>B)
whnfA , whnfB = whnfConv↓ A<>B
in [↑] _ _ (id ⊢A) (id ⊢B) whnfA whnfB A<>B
-- Lifting of algorithmic equality of terms from WHNF to generic terms.
liftConvTerm : ∀ {t u A Γ l}
→ Γ ⊢ t [conv↓] u ∷ A ^ l
→ Γ ⊢ t [conv↑] u ∷ A ^ l
liftConvTerm t<>u =
let ⊢A , ⊢t , ⊢u = syntacticEqTerm (soundnessConv↓Term t<>u)
whnfA , whnfT , whnfU = whnfConv↓Term t<>u
in [↑]ₜ _ _ _ (id ⊢A) (id ⊢t) (id ⊢u) whnfA whnfT whnfU t<>u
mutual
-- Helper function for lifting from neutrals to generic terms in WHNF.
lift~toConv↓!′ : ∀ {t u A A′ Γ l lA }
→ Γ ⊩⟨ l ⟩ A′ ^ [ ! , lA ]
→ Γ ⊢ A′ ⇒* A ^ [ ! , lA ]
→ Γ ⊢ t ~ u ↓! A ^ lA
→ Γ ⊢ t [conv↓] u ∷ A ^ lA
lift~toConv↓!′ (Uᵣ′ _ l r l' l< PE.refl d) D ([~] A D₁ whnfB k~l)
rewrite U≡A-whnf (trans (sym (subset* (red d))) (subset* D)) whnfB =
ne ([~] A D₁ Uₙ k~l)
lift~toConv↓!′ (ℕᵣ D) D₁ ([~] A D₂ whnfB k~l)
rewrite PE.sym (whrDet* (red D , ℕₙ) (D₁ , whnfB)) =
ℕ-ins ([~] A D₂ ℕₙ k~l)
lift~toConv↓!′ (ne′ K D neK K≡K) D₁ ([~] A D₂ whnfB k~l)
rewrite PE.sym (whrDet* (red D , ne neK) (D₁ , whnfB)) =
let _ , ⊢t , ⊢u = syntacticEqTerm (soundness~↑! k~l)
A≡K = subset* D₂
in ne-ins (conv ⊢t A≡K) (conv ⊢u A≡K) neK ([~] A D₂ (ne neK) k~l)
lift~toConv↓!′ (Πᵣ′ rF lF lG l< l<' F G D ⊢F ⊢G A≡A [F] [G] G-ext) D₁ ([~] A D₂ whnfB k~l) with PE.sym (whrDet* (red D , Πₙ) (D₁ , whnfB))
lift~toConv↓!′ (Πᵣ′ ! lF lG l< l<' F G D ⊢F ⊢G A≡A [F] [G] G-ext) D₁ ([~] A D₂ whnfB k~l) | PE.refl =
let ⊢ΠFG , ⊢t , ⊢u = syntacticEqTerm (soundness~↓! ([~] A D₂ Πₙ k~l))
neT , neU = ne~↑! k~l
⊢Γ = wf ⊢F
var0 = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here)
(genRefl (var (⊢Γ ∙ ⊢F) here))
0≡0 = lift~toConv↑′ ([F] (step id) (⊢Γ ∙ ⊢F)) (var-refl′ (var (⊢Γ ∙ ⊢F) here))
k∘0≡l∘0 = lift~toConv↑′ ([G] (step id) (⊢Γ ∙ ⊢F) var0)
(~↑! (app-cong (wk~↓! (step id) (⊢Γ ∙ ⊢F) ([~] A D₂ Πₙ k~l)) 0≡0))
in η-eq l< l<' ⊢F ⊢t ⊢u (ne neT) (ne neU)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x ^ _)
(wkSingleSubstId _)
k∘0≡l∘0)
lift~toConv↓!′ (Πᵣ′ % lF lG l< l<' F G D ⊢F ⊢G A≡A [F] [G] G-ext) D₁ ([~] A D₂ whnfB k~l) | PE.refl =
let ⊢ΠFG , ⊢t , ⊢u = syntacticEqTerm (soundness~↓! ([~] A D₂ Πₙ k~l))
neT , neU = ne~↑! k~l
⊢Γ = wf ⊢F
var0 = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here)
(genRefl (var (⊢Γ ∙ ⊢F) here))
k∘0≡l∘0 = lift~toConv↑′ ([G] (step id) (⊢Γ ∙ ⊢F) var0)
(~↑! (app-cong (wk~↓! (step id) (⊢Γ ∙ ⊢F) ([~] A D₂ Πₙ k~l)) (%~↑ (var (⊢Γ ∙ ⊢F) here) (var (⊢Γ ∙ ⊢F) here))))
in η-eq l< l<' ⊢F ⊢t ⊢u (ne neT) (ne neU)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x ^ _)
(wkSingleSubstId _)
k∘0≡l∘0)
lift~toConv↓!′ (emb emb< [A]) D t~u = lift~toConv↓!′ [A] D t~u
lift~toConv↓!′ (emb ∞< [A]) D t~u = lift~toConv↓!′ [A] D t~u
-- Helper function for lifting from neutrals to generic terms.
lift~toConv↑!′ : ∀ {t u A Γ l lA}
→ Γ ⊩⟨ l ⟩ A ^ [ ! , lA ]
→ Γ ⊢ t ~ u ↑! A ^ lA
→ Γ ⊢ t [conv↑] u ∷ A ^ lA
lift~toConv↑!′ [A] t~u =
let B , whnfB , D = whNorm′ [A]
t~u↓ = [~] _ (red D) whnfB t~u
neT , neU = ne~↑! t~u
_ , ⊢t , ⊢u = syntacticEqTerm (soundness~↓! t~u↓)
in [↑]ₜ _ _ _ (red D) (id ⊢t) (id ⊢u) whnfB
(ne neT) (ne neU) (lift~toConv↓!′ [A] (red D) t~u↓)
lift~toConv↑′ : ∀ {t u A Γ l lA}
→ Γ ⊩⟨ l ⟩ A ^ [ ! , lA ]
→ Γ ⊢ t ~ u ↑ A ^ [ ! , lA ]
→ Γ ⊢ t [conv↑] u ∷ A ^ lA
lift~toConv↑′ [A] (~↑! x) = lift~toConv↑!′ [A] x
-- Lifting of algorithmic equality of terms from neutrals to generic terms in WHNF.
lift~toConv↓! : ∀ {t u A Γ lA}
→ Γ ⊢ t ~ u ↓! A ^ lA
→ Γ ⊢ t [conv↓] u ∷ A ^ lA
lift~toConv↓! ([~] A D whnfB k~l) =
lift~toConv↓!′ (reducible (proj₁ (syntacticRed D))) D ([~] A D whnfB k~l)
lift~toConv↓ : ∀ {t u A Γ lA}
→ Γ ⊢ t ~ u ↓! A ^ lA
→ Γ ⊢ t [conv↓] u ∷ A ^ lA
lift~toConv↓ x = lift~toConv↓! x
-- Lifting of algorithmic equality of terms from neutrals to generic terms.
lift~toConv↑! : ∀ {t u A Γ lA}
→ Γ ⊢ t ~ u ↑! A ^ lA
→ Γ ⊢ t [conv↑] u ∷ A ^ lA
lift~toConv↑! t~u =
lift~toConv↑!′ (reducible (proj₁ (syntacticEqTerm (soundness~↑! t~u)))) t~u
lift~toConv↑ : ∀ {t u A Γ lA}
→ Γ ⊢ t ~ u ↑ A ^ [ ! , lA ]
→ Γ ⊢ t [conv↑] u ∷ A ^ lA
lift~toConv↑ (~↑! t~u) = lift~toConv↑! t~u
|
{
"alphanum_fraction": 0.5033978933,
"avg_line_length": 43.2794117647,
"ext": "agda",
"hexsha": "bd14ccf63be06e783f93ea8607259d26f4535ef3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Lift.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Lift.agda",
"max_line_length": 143,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 2533,
"size": 5886
}
|
module Data.Fin.Extra where
open import Data.Nat
renaming (suc to S; zero to Z; _+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Fin
open import Function
open import Relation.Nullary.Negation
open import Relation.Binary.PropositionalEquality
inject-1 : ∀ {n} → (i : Fin (S n)) → toℕ i ≢ n → Fin n
inject-1 {Z} zero p = contradiction refl p
inject-1 {Z} (suc i) p = i
inject-1 {S n} zero p = zero
inject-1 {S n} (suc i) p = suc (inject-1 i (p ∘ cong S))
|
{
"alphanum_fraction": 0.6573275862,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "8edc61d10fc62799ffb86b6292fae10c16325484",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Data/Fin/Extra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Data/Fin/Extra.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Data/Fin/Extra.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 170,
"size": 464
}
|
module Extensions.List where
open import Prelude
open import Data.List
open import Data.Fin using (fromℕ≤; zero; suc)
open import Data.List.All hiding (lookup; map)
open import Data.Maybe hiding (All; map)
open import Relation.Nullary
open import Relation.Nullary.Decidable using (map′)
open import Relation.Binary.Core using (REL; Reflexive; Transitive)
open import Relation.Binary.List.Pointwise hiding (refl; map)
data _[_]=_ {a} {A : Set a} : List A → ℕ → A → Set where
here : ∀ {x xs} → (x ∷ xs) [ 0 ]= x
there : ∀ {x y xs n} → xs [ n ]= x → (y ∷ xs) [ suc n ]= x
[]=-functional : ∀ {a} {A : Set a} → (l : List A) → (i : ℕ) →
∀ {x y : A} → l [ i ]= x → l [ i ]= y → x ≡ y
[]=-functional .(_ ∷ _) .0 here here = refl
[]=-functional .(_ ∷ _) .(suc _) (there p) (there q) = []=-functional _ _ p q
[]=-map : ∀ {a b}{A : Set a}{B : Set b}{l : List A}{i x}{f : A → B} →
l [ i ]= x → (map f l) [ i ]= (f x)
[]=-map here = here
[]=-map (there p) = there ([]=-map p)
maybe-lookup : ∀ {a}{A : Set a} → ℕ → List A → Maybe A
maybe-lookup n [] = nothing
maybe-lookup zero (x ∷ μ) = just x
maybe-lookup (suc n) (x ∷ μ) = maybe-lookup n μ
maybe-lookup-safe : ∀ {a}{A : Set a}{l : List A} {i x} → l [ i ]= x → maybe-lookup i l ≡ just x
maybe-lookup-safe here = refl
maybe-lookup-safe (there p) = maybe-lookup-safe p
lookup : ∀ {a} {A : Set a} → (l : List A) → Fin (length l) → A
lookup [] ()
lookup (x ∷ l) zero = x
lookup (x ∷ l) (suc p) = lookup l p
dec-lookup : ∀ {a} {A : Set a} → (i : ℕ) → (l : List A) → Dec (∃ λ x → l [ i ]= x)
dec-lookup _ [] = no (λ{ (_ , ())})
dec-lookup zero (x ∷ l) = yes (x , here)
dec-lookup (suc i) (_ ∷ l) = map′
(λ{ (x , p) → x , there p})
(λ{ (x , there p) → x , p})
(dec-lookup i l)
all-lookup : ∀ {a} {A : Set a} {l : List A} {i x p P} → l [ i ]= x → All {p = p} P l → P x
all-lookup here (px ∷ l) = px
all-lookup (there i) (px ∷ l) = all-lookup i l
infixl 10 _[_]≔_
_[_]≔_ : ∀ {a} {A : Set a} → (l : List A) → Fin (length l) → A → List A
[] [ () ]≔ x
(x ∷ xs) [ zero ]≔ x' = x' ∷ xs
(x ∷ xs) [ suc i ]≔ y = xs [ i ]≔ y
module _ where
open import Data.List.Any
open Membership-≡
_[_]≔'_ : ∀ {a} {A : Set a}{x} → (l : List A) → x ∈ l → A → List A
[] [ () ]≔' y
(x ∷ l) [ here px ]≔' y = y ∷ l
(x ∷ l) [ there px ]≔' y = x ∷ (l [ px ]≔' y)
≔'-[]= : ∀ {a} {A : Set a}{x}{l : List A} (p : x ∈ l) → ∀ {y} → y ∈ (l [ p ]≔' y)
≔'-[]= (here px) = here refl
≔'-[]= (there p) = there (≔'-[]= p)
-- proof matters; update a particular witness of a property
_All[_]≔_ : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} {i x} →
All P xs → xs [ i ]= x → P x → All P xs
[] All[ () ]≔ px
(px ∷ xs) All[ here ]≔ px' = px' ∷ xs
(px ∷ xs) All[ there i ]≔ px' = px ∷ (xs All[ i ]≔ px')
-- prefix predicate for lists
infix 4 _⊑_
data _⊑_ {a} {A : Set a} : List A → List A → Set where
[] : ∀ {ys} → [] ⊑ ys
_∷_ : ∀ x {xs ys} → xs ⊑ ys → x ∷ xs ⊑ x ∷ ys
⊑-refl : ∀ {a} {A : Set a} → Reflexive (_⊑_ {A = A})
⊑-refl {x = []} = []
⊑-refl {x = x ∷ xs} = x ∷ ⊑-refl
⊑-trans : ∀ {a} {A : Set a} → Transitive (_⊑_ {A = A})
⊑-trans [] _ = []
⊑-trans (x ∷ p) (.x ∷ q) = x ∷ ⊑-trans p q
-- list extensions; reverse prefix relation
infix 4 _⊒_
_⊒_ : ∀ {a} {A : Set a} → List A → List A → Set
xs ⊒ ys = ys ⊑ xs
-- appending to a list gives a list extension;
-- or, appending to a list makes the original a prefix
∷ʳ-⊒ : ∀ {a} {A : Set a} (x : A) xs → xs ∷ʳ x ⊒ xs
∷ʳ-⊒ x [] = []
∷ʳ-⊒ x (x₁ ∷ Σ₁) = x₁ ∷ (∷ʳ-⊒ x Σ₁)
-- indexes into a prefix point to the same element in extensions
xs⊒ys[i] : ∀ {a} {A : Set a} {xs : List A} {ys : List A} {i y} →
xs [ i ]= y → (p : ys ⊒ xs) → ys [ i ]= y
xs⊒ys[i] here (x ∷ q) = here
xs⊒ys[i] (there p) (x ∷ q) = there (xs⊒ys[i] p q)
-- prefix is preserved by map
⊑-map : ∀ {a b} {A : Set a} {B : Set b} {xs ys : List A} {f : A → B} →
xs ⊑ ys → map f xs ⊑ map f ys
⊑-map [] = []
⊑-map {f = f} (x ∷ p) = f x ∷ (⊑-map p)
module Pointwise where
pointwise-length : ∀ {a b ℓ A B P l m} → Rel {a} {b} {ℓ} {A} {B} P l m → length l ≡ length m
pointwise-length [] = refl
pointwise-length (x∼y ∷ p) = cong suc (pointwise-length p)
[]=-length : ∀ {a} {A : Set a} {L : List A} {i x} → L [ i ]= x → i < length L
[]=-length here = s≤s z≤n
[]=-length (there p) = s≤s ([]=-length p)
∷ʳ[length] : ∀ {a} {A : Set a} (l : List A) x → (l ∷ʳ x) [ length l ]= x
∷ʳ[length] [] y = here
∷ʳ[length] (x ∷ Σ) y = there (∷ʳ[length] Σ y)
all-∷ʳ : ∀ {a p} {A : Set a} {l : List A} {x} {P : A → Set p} → All P l → P x → All P (l ∷ʳ x)
all-∷ʳ [] q = q ∷ []
all-∷ʳ (px ∷ p) q = px ∷ (all-∷ʳ p q)
pointwise-∷ʳ : ∀ {a b ℓ A B P l m x y} → Rel {a} {b} {ℓ} {A} {B} P l m → P x y →
Rel {a} {b} {ℓ} {A} {B} P (l ∷ʳ x) (m ∷ʳ y)
pointwise-∷ʳ [] q = q ∷ []
pointwise-∷ʳ (x∼y ∷ p) q = x∼y ∷ (pointwise-∷ʳ p q)
pointwise-lookup : ∀ {a b ℓ A B P l m i x} → Rel {a} {b} {ℓ} {A} {B} P l m →
l [ i ]= x → ∃ λ y → P x y
pointwise-lookup (x∼y ∷ r) here = , x∼y
pointwise-lookup (x∼y ∷ r) (there p) = pointwise-lookup r p
pointwise-maybe-lookup : ∀ {a b ℓ A B P l m i x} → Rel {a} {b} {ℓ} {A} {B} P l m →
l [ i ]= x → ∃ λ y → maybe-lookup i m ≡ just y × P x y
pointwise-maybe-lookup [] ()
pointwise-maybe-lookup (x∼y ∷ r) here = , refl , x∼y
pointwise-maybe-lookup (x∼y ∷ r) (there p) = pointwise-maybe-lookup r p
postulate
pointwise-[]≔ : ∀ {a b ℓ A B P l m i x y} →
Rel {a} {b} {ℓ} {A} {B} P l m → (p : l [ i ]= x) → (q : i < length m) → P x y →
Rel {a} {b} {ℓ} {A} {B} P l (m [ fromℕ≤ q ]≔ y)
{-}
pointwise-[]≔ [] () r
pointwise-[]≔ (x∼y ∷ r) here (s≤s z≤n) z = z ∷ r
pointwise-[]≔ (x∼y ∷ r) (there p) (s≤s q) z = subst (λ x → Rel _ _ x) {!!} (x∼y ∷ pointwise-[]≔ r p q z)
-}
open Pointwise public
|
{
"alphanum_fraction": 0.4815636736,
"avg_line_length": 36.3850931677,
"ext": "agda",
"hexsha": "c5aaea1a9a142a73766ad5b5d0d72c03564f899b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Extensions/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Extensions/List.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Extensions/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2692,
"size": 5858
}
|
-- Andreas 2016-01-06
-- {-# OPTIONS -v error.checkclause:60 #-}
data D : Set where
c : D
test : (x y z : D) → Set
test _ c _ with D
test x y z | _ = D
-- Expected output: clause should be printed as is in error message,
-- including underscore patterns.
|
{
"alphanum_fraction": 0.6436781609,
"avg_line_length": 18.6428571429,
"ext": "agda",
"hexsha": "78ccc5e5ba0579d78ea40db40f5d8bdc91c6a3f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/PrintClauseUnderscorePattern.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/PrintClauseUnderscorePattern.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/PrintClauseUnderscorePattern.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 80,
"size": 261
}
|
module n2o.Network.Socket where
open import proto.IO
open import proto.Base
data SocketType : Set where
NoSocketType : SocketType
Stream : SocketType
Datagram : SocketType
Raw : SocketType
RDM : SocketType
SeqPacket : SocketType
{-# COMPILE GHC SocketType = data Network.Socket.SocketType
( NoSocketType
| Stream
| Datagram
| Raw
| RDM
| SeqPacket ) #-}
data SockFamily : Set where
AF_UNSPEC : SockFamily
AF_UNIX : SockFamily
AF_INET : SockFamily
AF_INET6 : SockFamily
AF_IMPLINK : SockFamily
AF_PUP : SockFamily
AF_CHAOS : SockFamily
AF_NS : SockFamily
AF_NBS : SockFamily
AF_ECMA : SockFamily
AF_DATAKIT : SockFamily
AF_CCITT : SockFamily
AF_SNA : SockFamily
AF_DECnet : SockFamily
AF_DLI : SockFamily
AF_LAT : SockFamily
AF_HYLINK : SockFamily
AF_APPLETALK : SockFamily
AF_ROUTE : SockFamily
AF_NETBIOS : SockFamily
AF_NIT : SockFamily
AF_EIE : SockFamily
AF_ISO : SockFamily
AF_OSI : SockFamily
AF_NETMAN : SockFamily
AF_X25 : SockFamily
AF_AX25 : SockFamily
AF_OSINET : SockFamily
AF_GOSSIP : SockFamily
AF_IPX : SockFamily
Pseudo_AF_XTP : SockFamily
AF_CTF : SockFamily
AF_WAN : SockFamily
AF_SDL : SockFamily
AF_NETWARE : SockFamily
AF_NDD : SockFamily
AF_INTF : SockFamily
AF_COIP : SockFamily
AF_CNT : SockFamily
Pseudo_AF_RTIP : SockFamily
Pseudo_AF_PIP : SockFamily
AF_SIP : SockFamily
AF_ISDN : SockFamily
Pseudo_AF_KEY : SockFamily
AF_NATM : SockFamily
AF_ARP : SockFamily
Pseudo_AF_HDRCMPLT : SockFamily
AF_ENCAP : SockFamily
AF_LINK : SockFamily
AF_RAW : SockFamily
AF_RIF : SockFamily
AF_NETROM : SockFamily
AF_BRIDGE : SockFamily
AF_ATMPVC : SockFamily
AF_ROSE : SockFamily
AF_NETBEUI : SockFamily
AF_SECURITY : SockFamily
AF_PACKET : SockFamily
AF_ASH : SockFamily
AF_ECONET : SockFamily
AF_ATMSVC : SockFamily
AF_IRDA : SockFamily
AF_PPPOX : SockFamily
AF_WANPIPE : SockFamily
AF_BLUETOOTH : SockFamily
AF_CAN : SockFamily
{-# COMPILE GHC SockFamily = data Network.Socket.Family
( AF_UNSPEC
| AF_UNIX
| AF_INET
| AF_INET6
| AF_IMPLINK
| AF_PUP
| AF_CHAOS
| AF_NS
| AF_NBS
| AF_ECMA
| AF_DATAKIT
| AF_CCITT
| AF_SNA
| AF_DECnet
| AF_DLI
| AF_LAT
| AF_HYLINK
| AF_APPLETALK
| AF_ROUTE
| AF_NETBIOS
| AF_NIT
| AF_802
| AF_ISO
| AF_OSI
| AF_NETMAN
| AF_X25
| AF_AX25
| AF_OSINET
| AF_GOSSIP
| AF_IPX
| Pseudo_AF_XTP
| AF_CTF
| AF_WAN
| AF_SDL
| AF_NETWARE
| AF_NDD
| AF_INTF
| AF_COIP
| AF_CNT
| Pseudo_AF_RTIP
| Pseudo_AF_PIP
| AF_SIP
| AF_ISDN
| Pseudo_AF_KEY
| AF_NATM
| AF_ARP
| Pseudo_AF_HDRCMPLT
| AF_ENCAP
| AF_LINK
| AF_RAW
| AF_RIF
| AF_NETROM
| AF_BRIDGE
| AF_ATMPVC
| AF_ROSE
| AF_NETBEUI
| AF_SECURITY
| AF_PACKET
| AF_ASH
| AF_ECONET
| AF_ATMSVC
| AF_IRDA
| AF_PPPOX
| AF_WANPIPE
| AF_BLUETOOTH
| AF_CAN ) #-}
data SocketOption : Set where
Debug : SocketOption
ReuseAddr : SocketOption
Type : SocketOption
SoError : SocketOption
DontRoute : SocketOption
Broadcast : SocketOption
SendBuffer : SocketOption
RecvBuffer : SocketOption
KeepAlive : SocketOption
OOBInline : SocketOption
TimeToLive : SocketOption
MaxSegment : SocketOption
NoDelay : SocketOption
Cork : SocketOption
Linger : SocketOption
ReusePort : SocketOption
RecvLowWater : SocketOption
SendLowWater : SocketOption
RecvTimeOut : SocketOption
SendTimeOut : SocketOption
UseLoopBack : SocketOption
UserTimeout : SocketOption
IPv6Only : SocketOption
CustomSockOpt : ℤ × ℤ → SocketOption
{-
{-# COMPILE GHC SocketOption = data Network.Socket.SocketOption
( Debug
| ReuseAddr
| Type
| SoError
| DontRoute
| Broadcast
| SendBuffer
| RecvBuffer
| KeepAlive
| OOBInline
| TimeToLive
| MaxSegment
| NoDelay
| Cork
| Linger
| ReusePort
| RecvLowWater
| SendLowWater
| RecvTimeOut
| SendTimeOut
| UseLoopBack
| UserTimeout
| IPv6Only
| CustomSockOpt ) #-}
-}
postulate
Family : Set
Socket : Set
{-# COMPILE GHC Family = type Network.Socket.Family #-}
{-# COMPILE GHC Socket = type Network.Socket.Socket #-}
ProtocolNumber : Set
ProtocolNumber = ℤ
data SocketStatus : Set where
NotConnected : SocketStatus
Bound : SocketStatus
Listening : SocketStatus
Connected : SocketStatus
ConvertedToHandle : SocketStatus
Closed : SocketStatus
{-# COMPILE GHC SocketStatus = data Network.Socket.SocketStatus
( NotConnected
| Bound
| Listening
| Connected
| ConvertedToHandle
| Closed ) #-}
-- data SockAddr where
-- SockAddrInet : PortNumber → HostAddress → SockAddr
-- SockAddrInet6 : PortNumber → FlowInfo → HostAddress6 → ScopeID → SockAddr
-- SockAddrUnix : String → SockAddr
-- SockAddrCan : ℤ → SockAddr
-- record Socket : Set where
-- constructor MkSocket
-- field
-- sock : ℤ
-- family : Family
-- type : SocketType
-- protonum : ProtocolNumber
-- status : MVar SocketStatus
-- open Socket
-- {-# COMPILE GHC Socket = #-}
{-# FOREIGN GHC
import Unsafe.Coerce
import Foreign.C.Types
import Network.Socket
coeCInt :: Integer -> Foreign.C.Types.CInt
coeCInt n = Unsafe.Coerce.unsafeCoerce (n :: Integer) :: Foreign.C.Types.CInt
#-}
postulate
socket : SockFamily → SocketType → ProtocolNumber → IO Socket
-- setSocketOption : Socket → SocketOption → ℤ → IO ⊤
-- bind : Socket → SockAddr → IO ⊤
-- listen : Socket → ℤ → IO ⊤
-- accept : Socket → IO (Socket × SockAddr)
{-# COMPILE GHC socket = \ f t n -> Network.Socket.socket f t (coeCInt n) #-}
|
{
"alphanum_fraction": 0.4164107994,
"avg_line_length": 34.4708029197,
"ext": "agda",
"hexsha": "e714010915b160e5960bcc836c184619784d1770",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "o4/n2o",
"max_forks_repo_path": "n2o/Network/Socket.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "o4/n2o",
"max_issues_repo_path": "n2o/Network/Socket.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "o4/n2o",
"max_stars_repo_path": "n2o/Network/Socket.agda",
"max_stars_repo_stars_event_max_datetime": "2019-01-02T06:37:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-30T11:37:10.000Z",
"num_tokens": 2043,
"size": 9445
}
|
------------------------------------------------------------------------------
-- Testing the η-expansion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Eta4 where
infix 7 _≡_
infixl 10 _*_
postulate
D : Set
zero : D
_≡_ : D → D → Set
_+_ : D → D → D
lam : (D → D) → D
rec : D → D → D → D
*-helper₂ : D → D → D
-- We don't η-expand the definition of _*_ before the translation,
-- because we cannot translate the λ-abstraction generated from
-- *-helper₂ n to FOL terms.
_*_ : D → D → D
m * n = rec m zero (lam (*-helper₂ n))
{-# ATP definition _*_ #-}
postulate
foo : ∀ n → n * n ≡ n * n
{-# ATP prove foo #-}
|
{
"alphanum_fraction": 0.4246885617,
"avg_line_length": 25.2285714286,
"ext": "agda",
"hexsha": "5cfad90c52960ce739dfa3eb2d4f2d108a630ce5",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Eta4.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Eta4.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Eta4.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 234,
"size": 883
}
|
------------------------------------------------------------------------
-- Instantiation of Contractive for streams
------------------------------------------------------------------------
-- Taken from the paper.
-- The definition of Eq has been changed slightly, as compared to the
-- paper. The paper uses
-- Eq = λ n xs ys → take n xs ≡ take n ys.
-- The reason for the change is that with the definition above
-- coherence does not say anything about the first element in limU s.
-- With the definition in the paper head (s 0), which is the first
-- element in limU s, does not have to be related to head (s n) for
-- any other n, and this makes it impossible to prove isLimitU.
-- (Unless I have missed something.)
module Contractive.Stream {A : Set} where
open import Codata.Musical.Notation
open import Codata.Musical.Stream
open import Contractive
open import Data.Nat
open import Data.Nat.Induction
open import Data.Nat.Properties
import Data.Vec as Vec
open Vec using (_∷_; [])
open import Function
open import Relation.Unary
open import Relation.Binary.PropositionalEquality
<′-isWellFoundedOrder : IsWellFoundedOrder _<′_
<′-isWellFoundedOrder = record
{ trans = λ {i} {j} {k} i+1≤j j+1≤k → ≤⇒≤′ (begin
suc i ≤⟨ ≤′⇒≤ (≤′-step i+1≤j) ⟩
suc j ≤⟨ ≤′⇒≤ j+1≤k ⟩
k ∎)
; isWellFounded = <′-wellFounded
}
where open ≤-Reasoning
ofe : OFE
ofe = record
{ Carrier = ℕ
; Domain = Stream A
; _<_ = _<′_
; isWellFoundedOrder = <′-isWellFoundedOrder
; Eq = λ n xs ys → take (suc n) xs ≡ take (suc n) ys
; isEquivalence = λ _ → record
{ refl = refl
; sym = sym
; trans = trans
}
}
open OFE ofe
private
limU : (ℕ → Stream A) → Stream A
limU s = head (s 0) ∷ ♯ limU (tail ∘ s ∘ suc)
η : ∀ {n} {xs : Stream A} → Eq n xs (head xs ∷ ♯ tail xs)
η {xs = x ∷ xs} = refl
step : ∀ s →
IsCoherent {U} (lift s) →
IsCoherent {U} (lift (tail ∘ s ∘ suc))
step s coh {m} {n} _ _ m<n = begin
take (suc m) (tail (s (suc m))) ≡⟨ lem (s (suc m)) ⟩
Vec.tail (take (2 + m) (s (1 + m))) ≡⟨ cong Vec.tail $ coh {1 + m} {1 + n} _ _ (s≤′s m<n) ⟩
Vec.tail (take (2 + m) (s (1 + n))) ≡⟨ sym $ lem (s (suc n)) ⟩
take (suc m) (tail (s (suc n))) ∎
where
open ≡-Reasoning
lem : ∀ {n} (xs : Stream A) →
take n (tail xs) ≡ Vec.tail (take (1 + n) xs)
lem (x ∷ xs) = refl
isLimitU : ∀ s →
IsCoherent {U} (lift s) →
IsLimit {U} (lift s) (limU s)
isLimitU s coh {zero} _ = begin
take 1 (s 0) ≡⟨ η ⟩
head (s 0) ∷ [] ∎
where open ≡-Reasoning
isLimitU s coh {suc n} _ = begin
take (2 + n) (s (1 + n)) ≡⟨ η ⟩
head (s (1 + n)) ∷ take (1 + n) ((tail ∘ s ∘ suc) n) ≡⟨ cong₂ _∷_ lem₁ (isLimitU (tail ∘ s ∘ suc)
(step s coh) {n} _) ⟩
head (s 0) ∷ take (1 + n) (limU (tail ∘ s ∘ suc)) ∎
where
open ≡-Reasoning
lem₂ : ∀ {n} (xs ys : Stream A) →
Eq n xs ys → head xs ≡ head ys
lem₂ (x ∷ xs) (y ∷ ys) = cong Vec.head
lem₁ : head (s (1 + n)) ≡ head (s 0)
lem₁ = lem₂ _ _ $ sym $ coh {0} {suc n} _ _ (s≤′s z≤′n)
lim↓ : A → ∀ n → (∀ n' → n' <′ n → Stream A) → Stream A
lim↓ x zero s = repeat x
lim↓ x (suc n) s = s n ≤′-refl
isLimit↓ : ∀ x n (s : Family (↓ n)) →
IsCoherent s → IsLimit s (lim↓ x n s)
isLimit↓ x zero s coh ()
isLimit↓ x (suc n) s coh ≤′-refl = refl
isLimit↓ x (suc n) s coh (≤′-step m<n) =
coh (≤′-step m<n) ≤′-refl m<n
-- The paper implicitly assumes that A is non-empty.
cofe : A → COFE
cofe x = record
{ ofe = ofe
; limU = limU
; isLimitU = isLimitU _
; lim↓ = lim↓ x
; isLimit↓ = λ n {s} → isLimit↓ x n s
}
|
{
"alphanum_fraction": 0.4969681657,
"avg_line_length": 32.1788617886,
"ext": "agda",
"hexsha": "0de8ee77de8da7081c6a00af08ca5dd845a79472",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Contractive/Stream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Contractive/Stream.agda",
"max_line_length": 110,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Contractive/Stream.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1436,
"size": 3958
}
|
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module MorePropAlgebra.Consequences where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Function.Base using (_∋_; _$_)
open import Cubical.Foundations.Logic renaming
( inl to inlᵖ
; inr to inrᵖ
; _⇒_ to infixr 0 _⇒_ -- shifting by -6
; _⇔_ to infixr -2 _⇔_ --
; ∃[]-syntax to infix -4 ∃[]-syntax --
; ∃[∶]-syntax to infix -4 ∃[∶]-syntax --
; ∀[∶]-syntax to infix -4 ∀[∶]-syntax --
; ∀[]-syntax to infix -4 ∀[]-syntax --
)
open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣
open import Cubical.HITs.PropositionalTruncation.Properties using (propTruncIsProp) renaming (elim to ∣∣-elim)
open import Utils
open import MoreLogic.Reasoning
open import MoreLogic.Definitions renaming
( _ᵗ⇒_ to infixr 0 _ᵗ⇒_
; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax
; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax
; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax
; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax
)
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions
-- NOTE: hProps need to be explicit arguments (that is not a necessity, but we need to give them completely and not just their witnesses)
-- NOTE: I think one can make all `isProp` implementations `abstract` to save some compilation time
-- because we have `isPropIsProp` anyways
-- but for the logic part, it depends on how coslty
-- ⊔-elim, ⊥-elim, ⇒∶_⇐∶_, isoToPath, hProp≡, etc.
-- are and whether they could actually reduce some terms
module _ {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ')
(let _<_ = R)
(let _≤_ = R)
(let _#_ = R)
where
-- abstract
irrefl+trans⇒asym : [ isIrrefl R ] → [ isTrans R ] → [ isAsym R ]
irrefl+trans⇒asym' : [ isIrrefl R ] → [ isTrans R ] → [ isAsym' R ]
<-cotrans⇒≤-trans : [ isCotrans _<_ ] → [ isTrans (λ x y → ¬(y < x)) ]
connex⇒refl : [ isConnex _≤_ ] → [ isRefl _≤_ ]
isIrrefl⇔isIrrefl' : [ isIrrefl _<_ ⇔ isIrrefl' _<_ ]
isIrrefl'⇔isIrrefl'' : (<-asym : [ isAsym _<_ ]) → [ isIrrefl' _<_ ⇔ isIrrefl'' _<_ ]
isAsym⇔isAsym' : [ isAsym R ⇔ isAsym' R ]
isTight⇔isTight' : [ isTight R ⇔ isTight' R ]
isTight'⇔isTight'' : [ isTight' R ⇔ isTight'' R ]
isTight'⇔isTight''' : [ isTight' _<_ ⇔ isTight''' (λ x y → (x < y) ⊔ (y < x)) ]
isTight''⇔isTight''' : (<-asym : [ isAsym _<_ ]) → [ isTight'' _<_ ⇔ isTight''' (λ x y → [ <-asym x y ] (x < y) ⊎ᵖ (y < x)) ]
isTight⇔isAntisym : [ isTight _<_ ⇔ isAntisym (λ x y → ¬ (y < x)) ]
strictlinearorder⇒strictpartialorder : [ isStrictLinearOrder _<_ ⇒ isStrictPartialOrder _<_ ]
linearorder⇒partialorder : [ isLinearOrder _≤_ ⇒ isPartialOrder _≤_ ]
irrefl+trans⇒asym isIrrefl isTrans a b a<b b<a = isIrrefl _ (isTrans _ _ _ a<b b<a)
irrefl+trans⇒asym' isIrrefl isTrans a b (a<b , b<a) = isIrrefl _ (isTrans _ _ _ a<b b<a)
<-cotrans⇒≤-trans <-cotrans a b c ¬b<a ¬c<b c<a = ⊔-elim (c < b) (b < a) (λ _ → ⊥)
(λ c<b → ¬c<b c<b)
(λ b<a → ¬b<a b<a)
(<-cotrans _ _ c<a b)
connex⇒refl is-connex a = case is-connex a a as a ≤ a ⊔ a ≤ a ⇒ a ≤ a of λ{ (inl p) → p ; (inr p) → p }
isIrrefl⇔isIrrefl' .fst <-irrefl a b a<b⊔b<a a≡b =
substₚ (λ b → a < b ⊔ b < a ⇒ ⊥) a≡b
(λ p → case p as R a a ⊔ R a a ⇒ ⊥ of λ{ (inl p) → <-irrefl _ p ; (inr p) → <-irrefl _ p })
a<b⊔b<a
isIrrefl⇔isIrrefl' .snd <-irrefl' x x<x = <-irrefl' x x (inlᵖ x<x) ∣ refl ∣
isIrrefl'⇔isIrrefl'' <-asym .fst <-irrefl' a b (inl a<b) = <-irrefl' a b (inlᵖ a<b)
isIrrefl'⇔isIrrefl'' <-asym .fst <-irrefl' a b (inr b<a) = <-irrefl' a b (inrᵖ b<a)
isIrrefl'⇔isIrrefl'' <-asym .snd <-irrefl'' a b a<b⊎b<a = case a<b⊎b<a as a < b ⊔ b < a ⇒ ¬ a ≡ₚ b of λ
{ (inl a<b) → <-irrefl'' a b (inl a<b)
; (inr b<a) → <-irrefl'' a b (inr b<a) }
isAsym⇔isAsym' .fst <-asym a b (a<b , b<a) = <-asym a b a<b b<a
isAsym⇔isAsym' .snd <-asym a b = fst (¬-⊓-distrib (a < b) (b < a) (<-asym a b))
isTight⇔isTight' .fst <-tightᵖ a b ¬ᵗ[a<b⊔b<a] = let (¬ᵗ[a<b] , ¬ᵗ[b<a]) = deMorgan₂ (a < b) (b < a) ¬ᵗ[a<b⊔b<a] in <-tightᵖ a b ¬ᵗ[a<b] ¬ᵗ[b<a]
isTight⇔isTight' .snd <-tightᵖ' a b ¬ᵗ[a<b] ¬ᵗ[b<a] = <-tightᵖ' a b (deMorgan₂-back (a < b) (b < a) (¬ᵗ[a<b] , ¬ᵗ[b<a]))
isTight'⇔isTight'' .fst <-tightᵖ' a b ¬ᵗ[a<b⊎b<a] = <-tightᵖ' a b (pathTo⇒ (∥¬A∥≡¬∥A∥ _) ∣ ¬ᵗ[a<b⊎b<a] ∣)
isTight'⇔isTight'' .snd <-tightᵖ'' a b ¬ᵗ[a<b⊔b<a] = <-tightᵖ'' a b (λ [a<b⊎b<a] → ¬ᵗ[a<b⊔b<a] (⊎⇒⊔ (a < b) (b < a) [a<b⊎b<a]))
isTight'⇔isTight''' .fst x = x
isTight'⇔isTight''' .snd x = x
isTight''⇔isTight''' <-asym .fst x = x
isTight''⇔isTight''' <-asym .snd x = x
isTight⇔isAntisym .fst <-tight a b a≤b b≤a = <-tight a b b≤a a≤b
isTight⇔isAntisym .snd ≤-antisym a b b≤a a≤b = ≤-antisym a b a≤b b≤a
strictlinearorder⇒strictpartialorder is-StrictLinearOrder = isstrictpartialorder is-irrefl is-trans is-cotrans where
is-irrefl = IsStrictLinearOrder.is-irrefl is-StrictLinearOrder
is-trans = IsStrictLinearOrder.is-trans is-StrictLinearOrder
is-tricho = IsStrictLinearOrder.is-tricho is-StrictLinearOrder
is-asym = irrefl+trans⇒asym is-irrefl is-trans
is-cotrans : [ isCotrans _<_ ]
is-cotrans a b a<b x with is-tricho a x | is-tricho x b
... | inl (inl a<x) | q = inlᵖ a<x
... | inl (inr x<a) | inl (inl x<b) = inrᵖ x<b
... | inl (inr x<a) | inl (inr b<x) = ⊥-elim $ is-irrefl x (is-trans x b x (is-trans x a b x<a a<b) b<x)
... | inl (inr x<a) | inr x≡b = ⊥-elim $ is-asym a b a<b (substₚ (λ p → p < a) x≡b x<a)
... | inr a≡x | inl (inl x<b) = inrᵖ x<b
... | inr a≡x | inl (inr b<x) = ⊥-elim $ is-asym b x b<x (substₚ (λ p → p < b) a≡x a<b)
... | inr a≡x | inr x≡b = ⊥-elim $ is-irrefl b (substₚ (λ p → p < b) x≡b $ substₚ (λ p → p < b) a≡x a<b)
linearorder⇒partialorder is-LinearOrder =
let (islinearorder is-connex is-antisym is-trans) = is-LinearOrder
in ispartialorder (connex⇒refl is-connex) is-antisym is-trans
-- consequences on sets
module _ (is-set : isSet A) where
-- abstract
isIrreflˢ''⇔isIrrefl'' : (is-asym : [ isAsym R ]) → [ isIrreflˢ'' R is-set ⇔ isIrrefl'' R ]
isAntisymˢ⇔isAntisym : [ isAntisymˢ R is-set ⇔ isAntisym R ]
isAntisymˢ'⇔isAntisym' : [ isAntisymˢ' R is-set ⇔ isAntisym' R ]
isTightˢ⇔isTight : [ isTightˢ R is-set ⇔ isTight R ]
isTightˢ'⇔isTight' : [ isTightˢ' R is-set ⇔ isTight' R ]
isTightˢ''⇔isTight'' : [ isTightˢ'' R is-set ⇔ isTight'' R ]
isTightˢ'''⇔isTight''' : [ isTightˢ''' R is-set ⇔ isTight''' R ]
isTightˢ'''⇔isAntisymˢ : (is-asym : [ isAsym R ]) → [ isTightˢ''' (λ x y → [ is-asym x y ] (x < y) ⊎ᵖ (y < x)) is-set
⇔ isAntisymˢ (λ x y → ¬ (y < x) ) is-set ]
isTrichotomousˢ⇔isTrichotomous : (is-irrefl : [ isIrrefl'' R ]) → (is-irreflˢ : [ isIrreflˢ'' R is-set ]) → (is-asym : [ isAsym R ]) → [ isTrichotomousˢ R is-set is-irreflˢ is-asym ⇔ isTrichotomous R is-irrefl is-asym ]
-- tricho⇒cotrans : (is-irrefl : [ isIrrefl'' R ]) → (is-asym : [ isAsym R ])
-- → [ isTrichotomous _<_ is-irrefl is-asym ⇒ isCotrans _<_ ]
isIrreflˢ''⇔isIrrefl'' <-asym .fst <-irreflˢ'' a b a<b a≡b = <-irreflˢ'' a b a<b (∣∣-elim (λ c → is-set a b) (λ x → x) a≡b)
isIrreflˢ''⇔isIrrefl'' <-asym .snd <-irrefl'' a b a<b a≡b = <-irrefl'' a b a<b ∣ a≡b ∣
isAntisymˢ⇔isAntisym .fst ≤-antisymˢ a b a≤b b≤a = ∣ ≤-antisymˢ a b a≤b b≤a ∣
isAntisymˢ⇔isAntisym .snd ≤-antisym a b a≤b b≤a = ∣∣-elim (λ c → is-set a b) (λ x → x) (≤-antisym a b a≤b b≤a)
isAntisymˢ'⇔isAntisym' .fst ≤-antisymˢ' a b a≤b ¬ᵗa≡b = ≤-antisymˢ' a b a≤b (λ z → ¬ᵗa≡b ∣ z ∣)
isAntisymˢ'⇔isAntisym' .snd ≤-antisym' a b a≤b ¬ᵗa≡b = ≤-antisym' a b a≤b (λ ∣z∣ → ∣∣-elim {P = λ _ → ⊥⊥} (λ _ → isProp⊥) ¬ᵗa≡b ∣z∣)
isTightˢ⇔isTight .fst <-tightˢ a b a<b b<a = ∣ <-tightˢ a b a<b b<a ∣
isTightˢ⇔isTight .snd <-tightᵖ a b a<b b<a = ∣∣-elim (λ c → is-set a b) (λ x → x) (<-tightᵖ a b a<b b<a)
isTightˢ'⇔isTight' .fst <-tightˢ' a b ¬ᵗ[a<b⊔b<a] = ∣ <-tightˢ' a b ¬ᵗ[a<b⊔b<a] ∣
isTightˢ'⇔isTight' .snd <-tightᵖ' a b ¬ᵗ[a<b⊔b<a] = ∣∣-elim (λ c → is-set a b) (λ x → x) (<-tightᵖ' a b ¬ᵗ[a<b⊔b<a])
isTightˢ''⇔isTight'' .fst <-tightˢ'' a b ¬ᵗ[a<b⊎b<a] = ∣ <-tightˢ'' a b ¬ᵗ[a<b⊎b<a] ∣
isTightˢ''⇔isTight'' .snd <-tightᵖ'' a b ¬ᵗ[a<b⊎b<a] = ∣∣-elim (λ c → is-set a b) (λ x → x) (<-tightᵖ'' a b ¬ᵗ[a<b⊎b<a])
isTightˢ'''⇔isTight''' .fst #-tightˢ''' a b ¬ᵗ[a#b] = ∣ #-tightˢ''' a b ¬ᵗ[a#b] ∣
isTightˢ'''⇔isTight''' .snd #-tightᵖ''' a b ¬ᵗ[a#b] = ∣∣-elim (λ c → is-set a b) (λ x → x) (#-tightᵖ''' a b ¬ᵗ[a#b])
isTightˢ'''⇔isAntisymˢ <-asym .fst #-tight a b a≤b b≤a = #-tight a b (deMorgan₂-back' (b≤a , a≤b))
isTightˢ'''⇔isAntisymˢ <-asym .snd ≤-antisym a b ¬ᵗa#b = let (b≤a , a≤b) = deMorgan₂' ¬ᵗa#b in ≤-antisym a b a≤b b≤a
isTrichotomousˢ⇔isTrichotomous <-irreflˢ <-irrefl <-asym .fst <-trichoˢ a b with <-trichoˢ a b
... | inl a<b⊎b<a = inl a<b⊎b<a
... | inr a≡b = inr ∣ a≡b ∣
isTrichotomousˢ⇔isTrichotomous <-irreflˢ <-irrefl <-asym .snd <-tricho a b with <-tricho a b
... | inl a<b⊎b<a = inl a<b⊎b<a
... | inr a≡b = inr (∣∣-elim (λ c → is-set a b) (λ x → x) a≡b)
-- for these pathes, `A` and `hProp.fst` need to be in the same universe to omit ugly lifting into `ℓ-max ℓ ℓ'`
-- although this would be possible to have (with lifting)
module _ {ℓ : Level} {A : Type ℓ} (_≤_ : hPropRel A A ℓ)
(let R = _≤_)
(let _<_ = R) -- different semantics
(let _≤_ = R) --
(let _#_ = R) --
where
-- equivalence of "not apart" and "equal"
[¬ᵗ#]⇔[≡] : hProp ℓ
[¬ᵗ#]⇔[≡] = ∀[ a ] ∀[ b ] ¬ (a # b) ⇔ a ≡ₚ b
[¬ᵗ#]⇔[≡]ᵗ : Type (ℓ-suc ℓ)
[¬ᵗ#]⇔[≡]ᵗ = ∀ a b → (¬ᵗ [ a # b ]) ≡ (a ≡ b)
-- double negation elimination over _≡_
dne-over-≡ᵗ : Type (ℓ-suc ℓ)
dne-over-≡ᵗ = ∀(a b : A) → (¬ᵗ ¬ᵗ (a ≡ b)) ≡ (a ≡ b)
abstract
irrefl+tight⇒[¬ᵗ#]⇔[≡] : [ isIrrefl _#_ ] → [ isTight''' _#_ ] → [ [¬ᵗ#]⇔[≡] ]
irrefl+tight⇒[¬ᵗ#]⇔[≡] #-irrefl #-tight a b .fst ¬ᵗ[a#b] = #-tight a b ¬ᵗ[a#b]
irrefl+tight⇒[¬ᵗ#]⇔[≡] #-irrefl #-tight a b .snd a≡b a#b = #-irrefl b (substₚ (λ x → x # b) a≡b a#b)
[¬ᵗ#]≡[≡]⇒dne-over-≡ : [¬ᵗ#]⇔[≡]ᵗ → dne-over-≡ᵗ
[¬ᵗ#]≡[≡]⇒dne-over-≡ [¬ᵗ#]≡[≡] a b =
( ¬ᵗ ¬ᵗ ( a ≡ b ) ≡⟨ (λ i → ¬ᵗ ¬ᵗ [¬ᵗ#]≡[≡] a b (~ i)) ⟩
¬ᵗ ¬ᵗ ¬ᵗ [ a # b ] ≡⟨ ¬¬-involutiveᵗ [ a # b ] ⟩
¬ᵗ [ a # b ] ≡⟨ [¬ᵗ#]≡[≡] a b ⟩
a ≡ b ∎)
-- consequences on sets
module _ (is-set : isSet A) where
-- equivalence of "not apart" and "equal" on sets
[¬ᵗ#]⇔[≡ˢ] = ∀[ a ] ∀[ b ] ¬ (a # b) ⇔ [ is-set ] a ≡ˢ b
-- double negation elimination over _≡_ on sets
dne-over-≡ˢ = ∀[ a ] ∀[ b ] ¬ ¬ ([ is-set ] a ≡ˢ b) ⇔ [ is-set ] a ≡ˢ b
irrefl+tight⇒[¬ᵗ#]⇔[≡ˢ] : [ isIrrefl _#_ ] → [ isTightˢ''' _#_ is-set ] → [ [¬ᵗ#]⇔[≡ˢ] ]
[¬ᵗ#]⇔[≡ˢ]⇒dne-over-≡ˢ : [ [¬ᵗ#]⇔[≡ˢ] ] → [ dne-over-≡ˢ ]
irrefl+tight⇒dne-over-≡ˢ : [ isIrrefl _#_ ] → [ isTightˢ''' _#_ is-set ] → [ dne-over-≡ˢ ]
irrefl+tight⇒[¬ᵗ#]≡[≡ˢ] : [ isIrrefl _#_ ] → [ isTightˢ''' _#_ is-set ] → ∀ a b → (¬ᵗ [ a # b ]) ≡ (a ≡ b)
irrefl+tight⇒dne-over-≡ˢᵗ : [ isIrrefl _#_ ] → [ isTightˢ''' _#_ is-set ] → ∀(a b : A) → (¬ᵗ ¬ᵗ (a ≡ b)) ≡ (a ≡ b)
-- x ≤ y ≡ ¬(y < x)
-- x <' y ≡ ¬(y ≤ x) ≡ ¬¬(x < y)
-- ¬¬(x < y) ⇔ (x < y) ??
-- x ≤ y ⇔ ∀[ ε ] (y < ε) ⇒ (x < ε)
-- https://en.wikipedia.org/wiki/Total_order
-- We can work the other way and start by choosing < as a transitive trichotomous binary relation; then a total order ≤ can be defined in two equivalent ways:
-- https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings
-- IsStrictLinearOrder _<_ ⇒ IsLinearOrder _≤_
irrefl+tight⇒[¬ᵗ#]⇔[≡ˢ] #-irrefl #-tight a b .fst ¬ᵗ[a#b] = #-tight a b ¬ᵗ[a#b]
irrefl+tight⇒[¬ᵗ#]⇔[≡ˢ] #-irrefl #-tight a b .snd a≡b a#b = #-irrefl b (subst (λ x → [ x # b ]) a≡b a#b)
irrefl+tight⇒[¬ᵗ#]≡[≡ˢ] #-irrefl #-tight a b = isoToPath γ where
γ : Iso _ _
γ .Iso.fun ¬ᵗ[a#b] = #-tight a b ¬ᵗ[a#b]
γ .Iso.inv a≡b a#b = #-irrefl b (subst (λ x → [ x # b ]) a≡b a#b)
γ .Iso.rightInv f = is-set a b _ f
γ .Iso.leftInv g = isProp[] (¬ (a # b)) _ g
[¬ᵗ#]⇔[≡ˢ]⇒dne-over-≡ˢ [¬ᵗ#]⇔[≡ˢ] a b = snd ( -- this first proof works better with `_≡⟨_⟩_`
-- ( ¬ ¬ ([ is-set ] a ≡ˢ b)) ⇔⟨ (map-× (subst (λ p → fst p → snd p) (cong₂ _,_ {! ¬¬-introᵗ (a ≡ b) !} {! !})) {! !} $ swap $ [¬ᵗ#]⇔[≡ˢ] a b) ⟩
( ¬ ¬ ([ is-set ] a ≡ˢ b)) ⇔⟨ (map-× (λ z z₁ z₂ → z₂ (λ z₃ → z₁ (λ z₄ → z z₄ z₃))) (λ z z₁ z₂ → z₂ (z (λ z₃ → z₁ (λ z₄ → z₄ z₃)))) $ swap $ [¬ᵗ#]⇔[≡ˢ] a b) ⟩ -- how did Agsy find this out??
( ¬ ¬ ¬ (a # b)) ⇔⟨ ¬¬-involutive (a # b) ⟩
( ¬ (a # b)) ⇔⟨ [¬ᵗ#]⇔[≡ˢ] a b ⟩
( [ is-set ] a ≡ˢ b ) ∎ᵖ)
irrefl+tight⇒dne-over-≡ˢ #-irrefl #-tight = [¬ᵗ#]⇔[≡ˢ]⇒dne-over-≡ˢ (irrefl+tight⇒[¬ᵗ#]⇔[≡ˢ] #-irrefl #-tight)
irrefl+tight⇒dne-over-≡ˢᵗ #-irrefl #-tight = [¬ᵗ#]≡[≡]⇒dne-over-≡ (irrefl+tight⇒[¬ᵗ#]≡[≡ˢ] #-irrefl #-tight)
module _ {ℓ : Level} {A : Type ℓ} (is-set : isSet A) where
nzinvˢ''+comm⇒invnzˢ : (0f 1f : A) (_·_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ')
→ [ isNonzeroInverseˢ'' is-set 0f 1f _·_ _#_ ⊓ isCommutativeˢ _·_ is-set
⇒ isInverseNonzeroˢ is-set 0f 1f _·_ _#_ ]
nzinvˢ''+comm⇒invnzˢ 0f 1f _·_ _#_ (is-nzinv , ·-comm) x y x·y≡1 .fst = fst (is-nzinv x) ∣ y , x·y≡1 ∣
nzinvˢ''+comm⇒invnzˢ 0f 1f _·_ _#_ (is-nzinv , ·-comm) x y x·y≡1 .snd = fst (is-nzinv y) ∣ x , ·-comm y x ∙ x·y≡1 ∣
module _ {ℓ ℓ'} {X : Type ℓ} {_<_ : hPropRel X X ℓ'} (<-SPO : [ isStrictPartialOrder _<_ ])
(let _#'_ : hPropRel X X ℓ'
x #' y = (x < y) ⊔ (y < x)
_≤'_ : hPropRel X X ℓ'
x ≤' y = ¬ (y < x)
(isstrictpartialorder <-irrefl <-trans <-cotrans) = <-SPO
) where
abstract
-- Lemma 4.1.7.
-- Given a strict partial order < on a set X:
-- 1. we have an apartness relation defined by
-- x # y := (x < y) ∨ (y < x), and
#'-isApartnessRel : [ isApartnessRel _#'_ ]
#'-isApartnessRel .IsApartnessRel.is-irrefl a a#a =
case a#a as a < a ⊔ a < a ⇒ ⊥ of λ where
(inl a<a) → <-irrefl _ a<a
(inr a<a) → <-irrefl _ a<a
#'-isApartnessRel .IsApartnessRel.is-sym a b p = pathTo⇒ (⊔-comm (a < b) (b < a)) p
#'-isApartnessRel .IsApartnessRel.is-cotrans a b p =
case p as a < b ⊔ b < a ⇒ ∀[ x ] (a #' x) ⊔ (x #' b) of λ where
(inl a<b) x → case (<-cotrans _ _ a<b x) as a < x ⊔ x < b ⇒ (a #' x) ⊔ (x #' b) of λ where
(inl a<x) → inlᵖ (inlᵖ a<x)
(inr x<b) → inrᵖ (inlᵖ x<b)
(inr b<a) x → case (<-cotrans _ _ b<a x) as b < x ⊔ x < a ⇒ (a #' x) ⊔ (x #' b) of λ where
(inl b<x) → inrᵖ (inrᵖ b<x)
(inr x<a) → inlᵖ (inrᵖ x<a)
-- 2. we have a preorder defined by
-- x ≤ y := ¬ᵗ(y < x).
≤'-isPreorder : [ isPreorder _≤'_ ]
≤'-isPreorder .IsPreorder.is-refl = <-irrefl
≤'-isPreorder .IsPreorder.is-trans a b c ¬ᵗb<a ¬ᵗc<b c<a =
⊔-elim (c < b) (b < a) (λ _ → ⊥)
(λ c<b → ¬ᵗc<b c<b)
(λ b<a → ¬ᵗb<a b<a)
(<-cotrans _ _ c<a b)
module _ {ℓ ℓ'} {X : Type ℓ} {_<_ : hPropRel X X ℓ'} (<-SPO : [ isStrictPartialOrder _<_ ]) (<-asym : [ isAsym _<_ ])
(let _#''_ : hPropRel X X ℓ'
x #'' y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x)
_≤'_ : hPropRel X X ℓ'
x ≤' y = ¬ (y < x)
(isstrictpartialorder <-irrefl <-trans <-cotrans) = <-SPO
) where
abstract
#''-isApartnessRel : [ isApartnessRel _#''_ ]
#''-isApartnessRel .IsApartnessRel.is-irrefl a (inl a<a) = <-irrefl _ a<a
#''-isApartnessRel .IsApartnessRel.is-irrefl a (inr a<a) = <-irrefl _ a<a
#''-isApartnessRel .IsApartnessRel.is-sym a b p = ⊎-swap p
#''-isApartnessRel .IsApartnessRel.is-cotrans a b (inl a<b) x =
case (<-cotrans _ _ a<b x) as a < x ⊔ x < b ⇒ (a #'' x) ⊔ (x #'' b) of λ where
(inl a<x) → inlᵖ (inl a<x)
(inr x<b) → inrᵖ (inl x<b)
#''-isApartnessRel .IsApartnessRel.is-cotrans a b (inr b<a) x =
case (<-cotrans _ _ b<a x) as b < x ⊔ x < a ⇒ (a #'' x) ⊔ (x #'' b) of λ where
(inl b<x) → inrᵖ (inr b<x)
(inr x<a) → inlᵖ (inr x<a)
module _ {ℓ ℓ'} {X : Type ℓ} {_<_ : hPropRel X X ℓ'} (<-SLO : [ isStrictLinearOrder _<_ ])
(let _≤'_ : hPropRel X X ℓ'
x ≤' y = ¬ (y < x)
(isstrictlinearorder <-irrefl <-trans <-tricho) = <-SLO
) where
private
<-cotrans : [ isCotrans _<_ ]
<-cotrans = IsStrictPartialOrder.is-cotrans (strictlinearorder⇒strictpartialorder _<_ <-SLO)
abstract
≤'-isLinearOrder : [ isLinearOrder _≤'_ ]
IsLinearOrder.is-connex ≤'-isLinearOrder a b with <-tricho a b
... | inl (inl a<b) = inlᵖ λ b<a → <-irrefl a $ <-trans a b a a<b b<a
... | inl (inr b<a) = inrᵖ λ a<b → <-irrefl a $ <-trans a b a a<b b<a
... | inr a≡b = inlᵖ λ b<a → <-irrefl b (substₚ (λ p → b < p) a≡b b<a)
IsLinearOrder.is-antisym ≤'-isLinearOrder a b a≤b b≤a with <-tricho a b
... | inl (inl a<b) = ⊥-elim (b≤a a<b)
... | inl (inr b<a) = ⊥-elim (a≤b b<a)
... | inr a≡b = a≡b
IsLinearOrder.is-trans ≤'-isLinearOrder a b c a≤b b≤c c<a =
let γ : [ ¬ (b < a ⊔ c < b) ]
γ = deMorgan₂-back (b < a) (c < b) (a≤b , b≤c)
κ : [ b < a ⊔ c < b ]
κ = pathTo⇐ (⊔-comm (b < a) (c < b)) $ <-cotrans c a c<a b
in γ κ
|
{
"alphanum_fraction": 0.4985297206,
"avg_line_length": 53.7966101695,
"ext": "agda",
"hexsha": "a443338d7720c32a9452c283931a559cbbe1f8c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Consequences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Consequences.agda",
"max_line_length": 223,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 9056,
"size": 19044
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reflexivity {{eqrel : EqRelSet}} where
open import Definition.Untyped
open import Definition.Typed
open import Definition.LogicalRelation
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Reflexivity of reducible types.
reflEq : ∀ {l Γ A r} ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ A ≡ A ^ r / [A]
reflEq (Uᵣ′ _ _ _ _ l< PE.refl D) = red D
reflEq (ℕᵣ D) = red D
reflEq (Emptyᵣ D) = red D
reflEq (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) =
ne₌ _ [[ ⊢A , ⊢B , D ]] neK K≡K
reflEq (Πᵣ′ rF lF lG _ _ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
Π₌ _ _ D A≡A
(λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a]))
reflEq (∃ᵣ′ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
∃₌ _ _ D A≡A
(λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a]))
reflEq {ι ¹} (emb X [A]) = reflEq [A]
reflEq {∞} (emb X [A]) = reflEq [A]
reflNatural-prop : ∀ {Γ n}
→ Natural-prop Γ n
→ [Natural]-prop Γ n n
reflNatural-prop (sucᵣ (ℕₜ n d t≡t prop)) =
sucᵣ (ℕₜ₌ n n d d t≡t
(reflNatural-prop prop))
reflNatural-prop zeroᵣ = zeroᵣ
reflNatural-prop (ne (neNfₜ neK ⊢k k≡k)) = ne (neNfₜ₌ neK neK k≡k)
reflEmpty-prop : ∀ {Γ n l}
→ Empty-prop Γ n l
→ [Empty]-prop Γ n n l
reflEmpty-prop (ne x) = ne x x
-- Reflexivity of reducible terms.
-- We proceed in a layered way because Agda does not understand our
-- recursions are well founded
reflEqTerm⁰ : ∀ {Γ A t r} ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ r)
→ Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ⁰ ⟩ t ≡ t ∷ A ^ r / [A]
reflEqTerm⁰ (ℕᵣ D) (ℕₜ n [[ ⊢t , ⊢u , d ]] t≡t prop) =
ℕₜ₌ n n [[ ⊢t , ⊢u , d ]] [[ ⊢t , ⊢u , d ]] t≡t
(reflNatural-prop prop)
reflEqTerm⁰ (Emptyᵣ D) (Emptyₜ (ne x)) = Emptyₜ₌ (ne x x)
reflEqTerm⁰ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) =
neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k)
reflEqTerm⁰ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ d) = neₜ₌ d d
reflEqTerm⁰ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ₌ f f d d funcF funcF f≡f
(Πₜ f d funcF f≡f [f] [f]₁)
(Πₜ f d funcF f≡f [f] [f]₁)
(λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm⁰ ([F] ρ ⊢Δ) [a]))
reflEqTerm⁰ {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm⁰ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm¹ : ∀ {Γ A t r} ([A] : Γ ⊩⟨ ι ¹ ⟩ A ^ r)
→ Γ ⊩⟨ ι ¹ ⟩ t ∷ A ^ r / [A]
→ Γ ⊩⟨ ι ¹ ⟩ t ≡ t ∷ A ^ r / [A]
reflEqTerm¹ (Uᵣ (Uᵣ r ⁰ X PE.refl D)) (Uₜ A d typeA A≡A [A]) =
Uₜ₌ (Uₜ A d typeA A≡A [A]) (Uₜ A d typeA A≡A [A])
A≡A (λ [ρ] ⊢Δ → reflEq ([A] [ρ] ⊢Δ))
reflEqTerm¹ (Uᵣ (Uᵣ r ¹ () PE.refl D)) (Uₜ A d typeA A≡A [A])
reflEqTerm¹ (ℕᵣ D) (ℕₜ n [[ ⊢t , ⊢u , d ]] t≡t prop) =
ℕₜ₌ n n [[ ⊢t , ⊢u , d ]] [[ ⊢t , ⊢u , d ]] t≡t
(reflNatural-prop prop)
reflEqTerm¹ (Emptyᵣ D) (Emptyₜ (ne x)) = Emptyₜ₌ (ne x x)
reflEqTerm¹ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) =
neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k)
reflEqTerm¹ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ d) = neₜ₌ d d
reflEqTerm¹ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ₌ f f d d funcF funcF f≡f
(Πₜ f d funcF f≡f [f] [f]₁)
(Πₜ f d funcF f≡f [f] [f]₁)
(λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm¹ ([F] ρ ⊢Δ) [a]))
reflEqTerm¹ {r = [ % , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm¹ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm¹ (emb X [A]) = reflEqTerm⁰ [A]
reflEqTerm∞ : ∀ {Γ A t r} ([A] : Γ ⊩⟨ ∞ ⟩ A ^ r)
→ Γ ⊩⟨ ∞ ⟩ t ∷ A ^ r / [A]
→ Γ ⊩⟨ ∞ ⟩ t ≡ t ∷ A ^ r / [A]
reflEqTerm∞ (Uᵣ (Uᵣ r ⁰ X eq D)) (Uₜ A d typeA A≡A [A]) =
Uₜ₌ (Uₜ A d typeA A≡A [A]) (Uₜ A d typeA A≡A [A]) A≡A (λ [ρ] ⊢Δ → reflEq ([A] [ρ] ⊢Δ))
reflEqTerm∞ (Uᵣ (Uᵣ r ¹ X eq D)) (Uₜ A d typeA A≡A [A]) =
Uₜ₌ (Uₜ A d typeA A≡A [A]) (Uₜ A d typeA A≡A [A]) A≡A (λ [ρ] ⊢Δ → reflEq ([A] [ρ] ⊢Δ))
reflEqTerm∞ (ℕᵣ D) (ℕₜ n [[ ⊢t , ⊢u , d ]] t≡t prop) =
ℕₜ₌ n n [[ ⊢t , ⊢u , d ]] [[ ⊢t , ⊢u , d ]] t≡t
(reflNatural-prop prop)
reflEqTerm∞ (Emptyᵣ D) (Emptyₜ (ne x)) = Emptyₜ₌ (ne x x)
reflEqTerm∞ {r = [ ! , l ]} (ne′ K D neK K≡K) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) =
neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k)
reflEqTerm∞ {r = [ % , l ]} (ne′ K D neK K≡K) (neₜ d) = neₜ₌ d d
reflEqTerm∞ {r = [ ! , l ]} (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ₌ f f d d funcF funcF f≡f
(Πₜ f d funcF f≡f [f] [f]₁)
(Πₜ f d funcF f≡f [f] [f]₁)
(λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm∞ ([F] ρ ⊢Δ) [a]))
reflEqTerm∞ {r = [ % , l ]} (Πᵣ′ rF lF lG F G _ _ D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm∞ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) X = X , X
reflEqTerm∞ (emb X [A]) = reflEqTerm¹ [A]
reflEqTerm : ∀ {l Γ A t r} ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A]
→ Γ ⊩⟨ l ⟩ t ≡ t ∷ A ^ r / [A]
reflEqTerm {l = ι ⁰} [A] [t] = reflEqTerm⁰ [A] [t]
reflEqTerm {l = ι ¹} [A] [t] = reflEqTerm¹ [A] [t]
reflEqTerm {l = ∞} [A] [t] = reflEqTerm∞ [A] [t]
|
{
"alphanum_fraction": 0.4882753404,
"avg_line_length": 42.304,
"ext": "agda",
"hexsha": "a3c08d0470b30a5fe208c9e87611c53eda0e1102",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_line_length": 106,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 3051,
"size": 5288
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Limit.Ran where
open import Level
open import Data.Product using (Σ)
open import Categories.Category
open import Categories.Category.Complete
import Categories.Category.Construction.Cones as ConesCat
open import Categories.Category.Construction.Comma
open import Categories.Category.Construction.Properties.Comma
open import Categories.Category.Instance.One using (One)
open import Categories.Diagram.Cone using (Cone; Cone⇒)
open import Categories.Diagram.Cone.Properties
open import Categories.Diagram.Limit
open import Categories.Diagram.Limit.Properties
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.Functor.Construction.Constant
open import Categories.Kan
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≊_)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; module ≃; _ⓘˡ_)
open import Categories.Object.Terminal using (Terminal)
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
-- construct a Ran from a limit
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : Category o′ ℓ′ e′} {D : Category o ℓ e} {E : Category o″ ℓ″ e″}
(F : Functor C D) (X : Functor C E) (Com : Complete (o′ ⊔ ℓ) (ℓ′ ⊔ e) e′ E) where
private
module C = Category C
module D = Category D
module E = Category E
module F = Functor F
module X = Functor X
open Limit using (limit; proj; apex; module terminal)
open Cone using () renaming (commute to K-commute)
open ConesCat.Cone⇒ using (arr) renaming (commute to ⇒-commute)
open Mor E using (_≅_)
G : (d : D.Obj) → Functor (d ↙ F) E
G d = X ∘F Cod {A = One} {B = C} {C = D} (const! d) F
⊤Gd : (d : D.Obj) → Limit (G d)
⊤Gd d = Com (G d)
module ⊤Gd d = Limit (⊤Gd d) using (proj; limit; rep; rep-cone; apex; module terminal)
f↙F : {Y Z : D.Obj} (f : Y D.⇒ Z) → Functor (Z ↙ F) (Y ↙ F)
f↙F = along-natˡ′ F
Gf≃ : {Y Z : D.Obj} (f : Y D.⇒ Z) → G Z ≃ G Y ∘F f↙F f
Gf≃ f = record
{ F⇒G = record
{ η = λ z/F → let j = CommaObj.β z/F in X.₁ {j} C.id -- help inference a bit
; commute = λ _ → [ X ]-resp-square id-comm-sym
; sym-commute = λ _ → [ X ]-resp-square id-comm
}
; F⇐G = record
{ η = λ _ → X.₁ C.id
; commute = λ _ → [ X ]-resp-square id-comm-sym
; sym-commute = λ _ → [ X ]-resp-square id-comm
}
; iso = λ _ → record
{ isoˡ = [ X ]-resp-∘ C.identity² ○ X.identity
; isoʳ = [ X ]-resp-∘ C.identity² ○ X.identity
}
}
where open MR C using (id-comm-sym; id-comm)
open E.HomReasoning using (_○_)
Compl : {Y Z : D.Obj} (f : Y D.⇒ Z) → Limit (G Y ∘F f↙F f)
Compl {Y} f = Com (G Y ∘F f↙F f)
limY⇒limZ∘ : {Y Z : D.Obj} (f : Y D.⇒ Z) →
ConesCat.Cones (G Y ∘F f↙F f) [ F-map-Coneʳ (f↙F f) (limit (Com (G Y))) , limit (Compl f) ]
limY⇒limZ∘ {Y} f = F⇒arr Com (f↙F f) (G Y)
limZ∘≅limZ : {Y Z : D.Obj} (f : Y D.⇒ Z) → ⊤Gd.apex Z ≅ apex (Compl f)
limZ∘≅limZ {Y} {Z} f = ≃⇒lim≅ (Gf≃ f) (⊤Gd Z) (Compl f)
limit-is-ran : Ran F X
limit-is-ran = record
{ R = R
; ε = ε
; δ = δ
; δ-unique = λ {M γ} δ′ eq → δ-unique {M} {γ} δ′ eq
; commutes = commutes
}
where
open MR E
open E.HomReasoning
module DH = D.HomReasoning
R₀ : D.Obj → E.Obj
R₀ = ⊤Gd.apex
R₁ : ∀ {A B} → D [ A , B ] → E [ R₀ A , R₀ B ]
R₁ {A} f = _≅_.to (limZ∘≅limZ f) E.∘ arr (limY⇒limZ∘ f)
↙⇒ : {Y Z : D.Obj} (K : CommaObj {A = One} {C} {D} (const Z) F) (f : Y D.⇒ Z) → CommaObj {A = One} {C} {D} (const Y) F
↙⇒ K f = record { β = CommaObj.β K; f = D.id D.∘ CommaObj.f K D.∘ f }
proj-red : {Y Z : D.Obj} (K : CommaObj (const Z) F) (f : Y D.⇒ Z) → ⊤Gd.proj Z K E.∘ R₁ f E.≈ ⊤Gd.proj Y (↙⇒ K f)
proj-red {Y} {Z} K f = begin
⊤Gd.proj Z K E.∘ R₁ f ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ (≃.sym (Gf≃ f)) (Compl f) (⊤Gd Z))) ⟩
(X.₁ C.id E.∘ proj (Compl f) K) E.∘ arr (limY⇒limZ∘ f) ≈⟨ pullʳ (⇒-commute (limY⇒limZ∘ f)) ⟩
X.₁ C.id E.∘ ⊤Gd.proj Y f/K ≈⟨ elimˡ X.identity ⟩
⊤Gd.proj Y f/K ∎
where
f/K : CommaObj {A = One} {C} {D} (const Y) F
f/K = ↙⇒ K f
commaF : {d : D.Obj} {c : C.Obj} (f : d D.⇒ F.₀ c) → CommaObj {A = One} {C} {D} (const d) F
commaF f = record { f = f }
proj≈ : {d : D.Obj} {b : C.Obj} {f g : d D.⇒ F.₀ b} → f D.≈ g → ⊤Gd.proj d (commaF f) E.≈ ⊤Gd.proj d (commaF g)
proj≈ {d} {b} {f} {g} eq = begin
⊤Gd.proj d (commaF f) ≈⟨ introˡ X.identity ⟩
X.₁ C.id E.∘ ⊤Gd.proj d (commaF f) ≈⟨ K-commute (⊤Gd.limit d) C⇒ ⟩
⊤Gd.proj d (commaF g) ∎
where
C⇒ : Comma⇒ (commaF f) (commaF g)
C⇒ = record
{ h = C.id
; commute = DH.begin
F.₁ C.id D.∘ f DH.≈⟨ D.∘-resp-≈ F.identity eq ⟩
D.id D.∘ g DH.≈⟨ MR.id-comm-sym D ⟩
g D.∘ D.id DH.∎
}
ConesGd : {d : D.Obj} → Functor (Comma {A = One} (const d) F) E
ConesGd {d} = X ∘F Cod {A = One} {B = C} {C = D} (const d) F
R-identity : {d : D.Obj} → R₁ {d} D.id E.≈ E.id
R-identity {d} = G.terminal.⊤-id ConeArr
where
open E
module G = Limit (Com (G d))
ConeArr : Cone⇒ (ConesGd {d}) G.limit G.limit
ConeArr = record
{ arr = R₁ D.id
; commute = λ {Z} → begin
G.proj Z ∘ R₁ D.id ≈⟨ proj-red Z D.id ⟩
G.proj (↙⇒ Z D.id) ≈⟨ proj≈ (D.Equiv.trans D.identityˡ D.identityʳ) ⟩
G.proj Z ∎
}
R-hom : {Y Z W : D.Obj} {f : D [ Y , Z ]} {g : D [ Z , W ]} → E [ R₁ (D [ g ∘ f ]) ≈ E [ R₁ g ∘ R₁ f ] ]
R-hom {Y} {Z} {W} {f} {g} = terminal.!-unique₂ (⊤Gd W) {A = cc} {f = f⇒} {g = g⇒}
where
module ⊤GY = Cone (⊤Gd.limit Y)
module H = Functor (f↙F (g D.∘ f)) using (₀; ₁)
open E
cc : Cone (X ∘F Cod (const W) F)
cc = record { N = ⊤GY.N; apex = record
{ ψ = λ K → ⊤GY.ψ (H.₀ K)
; commute = λ h → ⊤GY.commute (H.₁ h)
} }
f⇒ : Cone⇒ (ConesGd {W}) cc (⊤Gd.terminal.⊤ W)
f⇒ = record
{ arr = R₁ (g D.∘ f)
; commute = λ {K} → proj-red K (g D.∘ f)
}
g⇒ : Cone⇒ (ConesGd {W}) cc (⊤Gd.terminal.⊤ W)
g⇒ = record
{ arr = R₁ g ∘ R₁ f
; commute = λ {K} → begin
⊤Gd.proj W K ∘ R₁ g ∘ R₁ f ≈⟨ pullˡ (proj-red K g) ⟩
⊤Gd.proj Z (↙⇒ K g) ∘ R₁ f ≈⟨ proj-red (↙⇒ K g) f ⟩
⊤Gd.proj Y (↙⇒ (↙⇒ K g) f) ≈⟨ proj≈ (D.Equiv.trans D.identityˡ (MR.assoc²' D)) ⟩
⊤Gd.proj Y (↙⇒ K (g D.∘ f)) ∎
}
R-resp-≈ : {Y Z : D.Obj} {f g : D [ Y , Z ]} → D [ f ≈ g ] → E [ R₁ f ≈ R₁ g ]
R-resp-≈ {Y} {Z} {f} {g} f≈g = terminal.!-unique₂ (⊤Gd Z) {A = cc} {f = fc} {g = gc}
where
open E
module ⊤GY = Cone (⊤Gd.limit Y)
module H = Functor (f↙F f)
cc : Cone (X ∘F Cod (const Z) F)
cc = record { apex = record
{ ψ = λ K → ⊤GY.ψ (H.F₀ K)
; commute = λ h → ⊤GY.commute (H.F₁ h)
} }
F-resp-≈-commute : ∀ {Y Z} {K : Category.Obj (Z ↙ F)} {f g : Y D.⇒ Z} → f D.≈ g →
⊤Gd.proj Z K ∘ R₁ f ≈ ⊤Gd.proj Y (↙⇒ K g)
F-resp-≈-commute {Y} {Z} {K} {f} {g} eq = begin
⊤Gd.proj Z K ∘ R₁ f ≈⟨ proj-red K f ⟩
⊤Gd.proj Y (↙⇒ K f) ≈⟨ proj≈ (D.∘-resp-≈ʳ (D.∘-resp-≈ʳ eq)) ⟩
⊤Gd.proj Y (↙⇒ K g) ∎
fc : Cone⇒ (ConesGd {Z}) cc (⊤Gd.terminal.⊤ Z)
fc = record
{ arr = R₁ f
; commute = λ {X} → F-resp-≈-commute {Y} {Z} {X} {f} {f} D.Equiv.refl
}
gc : Cone⇒ (ConesGd {Z}) cc (⊤Gd.terminal.⊤ Z)
gc = record
{ arr = R₁ g
; commute = λ {X} → F-resp-≈-commute {Y} {Z} {X} {g} {f} (D.Equiv.sym f≈g)
}
R : Functor D E
R = record
{ F₀ = R₀
; F₁ = R₁
; identity = λ {d} → R-identity {d}
; homomorphism = λ {A B C} {f g} → R-hom {A} {B} {C} {f} {g}
; F-resp-≈ = λ {A B} {f g} → R-resp-≈ {A} {B} {f} {g}
}
,Fc : (c : C.Obj) → CommaObj {A = One} {B = C} {C = D} (const (F.₀ c)) F
,Fc c = record { β = c ; f = D.id }
ε : NaturalTransformation (R ∘F F) X
ε = ntHelper record
{ η = λ c → ⊤Gd.proj (F.F₀ c) record { f = D.id }
; commute = λ {Y Z} f → begin
⊤Gd.proj (F.F₀ Z) _ ∘ Functor.F₁ (R ∘F F) f ≈⟨ proj-red _ (F.F₁ f) ⟩
⊤Gd.proj (F.F₀ Y) _ ≈˘⟨ K-commute {C = E} (⊤Gd.limit (F.F₀ Y)) record { h = f ; commute = D.Equiv.sym (D.Equiv.trans (D.∘-resp-≈ˡ D.identityˡ) (D.∘-resp-≈ˡ D.identityˡ)) } ⟩
X.F₁ f ∘ ⊤Gd.proj (F.F₀ Y) _ ∎
}
where open E
{-
ε : NaturalTransformation (R ∘F F) X
ε = ntHelper record
{ η = λ c → ⊤Gd.proj (F.₀ c) (,Fc c)
; commute = λ {Y Z} f → let module G = Limit (Com (G (F.₀ Y))) in begin
⊤Gd.proj (F.₀ Z) (,Fc Z) E.∘ Functor.F₁ (R ∘F F) f ≈⟨ proj-red (,Fc Z) (F.₁ f) ⟩
G.proj (↙⇒ (,Fc Z) (F.₁ f)) ≈˘⟨ K-commute {C = E} {J = Comma (const (F.₀ Y)) F} {F = ConesGd {F.₀ Y}}
G.limit (,⇒ f) ⟩
X.₁ f E.∘ G.proj (,Fc Y) ∎
}
where
,⇒ : {Y Z : C.Obj} (f : Y C.⇒ Z) → Comma⇒ (,Fc Y) (↙⇒ (,Fc Z) (F.₁ f))
,⇒ f = record
{ g = _
; h = f
; commute = DH.begin
F.₁ f D.∘ D.id DH.≈˘⟨ D.identityˡ DH.⟩∘⟨refl ⟩
((D.id D.∘ F.₁ f) D.∘ D.id) DH.≈˘⟨ D.identityˡ DH.⟩∘⟨refl ⟩
(D.id D.∘ D.id D.∘ F.₁ f) D.∘ D.id DH.∎
}
-}
δ-Cone : ∀ d (M : Functor D E) → NaturalTransformation (M ∘F F) X → Cone (G d)
δ-Cone d M γ = record
{ apex = record
{ ψ = λ K → γ.η (β K) E.∘ M.₁ (f K)
; commute = λ {Y Z} g → begin
X.₁ (h g) E.∘ γ.η (β Y) E.∘ M.₁ (f Y) ≈˘⟨ pushˡ (γ.commute (h g)) ⟩
(γ.η (β Z) E.∘ M.₁ (F.₁ (h g))) E.∘ M.₁ (f Y) ≈⟨ pullʳ ([ M ]-resp-∘ (D.Equiv.trans (commute g) D.identityʳ)) ⟩
γ.η (β Z) E.∘ M.₁ (f Z)
∎
}
}
where module M = Functor M
module γ = NaturalTransformation γ
open CommaObj
open Comma⇒
δ : (M : Functor D E) → NaturalTransformation (M ∘F F) X → NaturalTransformation M R
δ M γ = record
{ η = λ d → ⊤Gd.rep d (δ-Cone d M γ)
; commute = λ {Y Z} f → terminal.!-unique₂ (⊤Gd Z) {cc f} {q⇒ f} {w⇒ f}
; sym-commute = λ {Y Z} f → terminal.!-unique₂ (⊤Gd Z) {cc f} {w⇒ f} {q⇒ f}
}
where module M = Functor M
module γ = NaturalTransformation γ
module δ-Cone d = Cone (δ-Cone d M γ)
open CommaObj
cc : {Y Z : D.Obj} → Y D.⇒ Z → Cone (X ∘F Cod (const Z) F)
cc {_} {Z} f = record
{ apex = record
{ ψ = λ W → δ-Cone.ψ Z W E.∘ M.F₁ f
; commute = λ g → pullˡ (δ-Cone.commute Z g)
}
}
q⇒ : {Y Z : D.Obj} → (f : Y D.⇒ Z) → Cone⇒ (ConesGd {Z}) (cc f) (⊤Gd.terminal.⊤ Z)
q⇒ {Y} {Z} f = record
{ arr = ⊤Gd.rep Z (δ-Cone Z M γ) E.∘ M.F₁ f
; commute = pullˡ (⇒-commute (⊤Gd.rep-cone Z (δ-Cone Z M γ)))
}
w⇒ : {Y Z : D.Obj} → (g : Y D.⇒ Z) → Cone⇒ (ConesGd {Z}) (cc g) (⊤Gd.terminal.⊤ Z)
w⇒ {Y} {Z} g = record
{ arr = R₁ g E.∘ ⊤Gd.rep Y (δ-Cone Y M γ)
; commute = λ {W} → begin
⊤Gd.proj Z W E.∘ R₁ g E.∘ ⊤Gd.rep Y (δ-Cone Y M γ) ≈⟨ pullˡ (proj-red W g) ⟩
⊤Gd.proj Y (↙⇒ W g) E.∘ ⊤Gd.rep Y (δ-Cone Y M γ) ≈⟨ ⇒-commute (⊤Gd.rep-cone Y (δ-Cone Y M γ)) ⟩
γ.η (β W) E.∘ M.F₁ (D.id D.∘ f W D.∘ g) ≈˘⟨ refl⟩∘⟨ [ M ]-resp-∘ ( D.Equiv.sym D.identityˡ ) ⟩
γ.η (β W) E.∘ M.F₁ (f W) E.∘ M.F₁ g ≈⟨ E.sym-assoc ⟩
(γ.η (β W) E.∘ M.F₁ (f W)) E.∘ M.F₁ g ∎
}
δ-unique : ∀ {M : Functor D E} {γ : NaturalTransformation (M ∘F F) X}
(δ′ : NaturalTransformation M R) → γ ≊ ε ∘ᵥ δ′ ∘ʳ F → δ′ ≊ δ M γ
δ-unique {M} {γ} δ′ eq {d} = ⟺ (⊤Gd.terminal.!-unique d C⇒)
where
module M = Functor M using (₁)
module γ = NaturalTransformation γ using (η)
module δ = NaturalTransformation δ′ using (η; commute)
open CommaObj
C⇒ : Cone⇒ (X ∘F Cod (const d) F) (δ-Cone d M γ) (terminal.⊤ (⊤Gd d))
C⇒ = record
{ arr = δ.η d
; commute = λ {W} → begin
⊤Gd.proj d W E.∘ δ.η d ≈˘⟨ proj≈ (D.Equiv.trans D.identityˡ D.identityˡ) ⟩∘⟨refl ⟩
⊤Gd.proj d (↙⇒ (commaF D.id) (f W)) E.∘ δ.η d ≈˘⟨ pullˡ (proj-red (commaF D.id) (f W)) ⟩
⊤Gd.proj (F.₀ (β W)) (commaF D.id) E.∘ R₁ (f W) E.∘ δ.η d ≈˘⟨ pullʳ (δ.commute (f W)) ⟩
(⊤Gd.proj (F.₀ (β W)) (commaF D.id) E.∘ δ.η (F.₀ (β W))) E.∘ M.₁ (f W) ≈˘⟨ eq ⟩∘⟨refl ⟩
γ.η (β W) E.∘ M.₁ (f W)
∎
}
commutes : (M : Functor D E) (γ : NaturalTransformation (M ∘F F) X) → γ ≊ ε ∘ᵥ δ M γ ∘ʳ F
commutes M γ {c} = begin
η γ c ≈˘⟨ elimʳ M.identity ⟩
η γ c E.∘ M.₁ D.id ≈˘⟨ ⇒-commute (⊤Gd.rep-cone (F.₀ c) (δ-Cone (F.₀ c) M γ)) {,Fc c} ⟩
η (ε ∘ᵥ δ M γ ∘ʳ F) c ∎
where
open NaturalTransformation
module M = Functor M using (₁; identity)
|
{
"alphanum_fraction": 0.4503566334,
"avg_line_length": 43.2716049383,
"ext": "agda",
"hexsha": "799c7a758bc8f841891ca6ee3e74fe022880cf29",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Limit/Ran.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Limit/Ran.agda",
"max_line_length": 205,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Limit/Ran.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 5993,
"size": 14020
}
|
------------------------------------------------------------------------------
-- Test case due to Agda new unifier
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Agda.NewUnifier where
infixl 7 _·_
infixr 5 _∷_
infix 4 _≡_
-- The universe of discourse/universal domain.
postulate D : Set
-- The identity type on the universe of discourse.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
postulate
_·_ : D → D → D -- FOTC application.
-- List constants.
postulate [] cons head tail null : D -- FOTC partial lists.
-- Definitions
abstract
_∷_ : D → D → D
x ∷ xs = cons · x · xs
-- The FOTC lists type (inductive predicate for total lists).
data List : D → Set where
lnil : List []
lcons : ∀ x {xs} → List xs → List (x ∷ xs)
{-# ATP axioms lnil lcons #-}
postulate
_++_ : D → D → D
++-[] : ∀ ys → [] ++ ys ≡ ys
++-∷ : ∀ x xs ys → (x ∷ xs) ++ ys ≡ x ∷ (xs ++ ys)
{-# ATP axioms ++-[] ++-∷ #-}
++-List : ∀ {xs ys} → List xs → List ys → List (xs ++ ys)
++-List {ys = ys} lnil Lys = prf
where postulate prf : List ([] ++ ys)
{-# ATP prove prf #-}
++-List {ys = ys} (lcons x {xs} Lxs) Lys = prf (++-List Lxs Lys)
where postulate prf : List (xs ++ ys) → List ((x ∷ xs) ++ ys)
{-# ATP prove prf #-}
|
{
"alphanum_fraction": 0.4792092706,
"avg_line_length": 27.1666666667,
"ext": "agda",
"hexsha": "ce67277a14f6189d02d7df46c774090c3935f2d9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Agda/NewUnifier.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Agda/NewUnifier.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Agda/NewUnifier.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 455,
"size": 1467
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Monad.Relative where
open import Level
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; Endofunctor; _∘F_) renaming (id to idF)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_)
open import Categories.NaturalTransformation.Equivalence
open NaturalIsomorphism
private
variable
o ℓ e o′ ℓ′ e′ : Level
C : Category o ℓ e
D : Category o′ ℓ′ e′
record Monad {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (J : Functor C D) : Set (o ⊔ o′ ⊔ ℓ′ ⊔ e′) where
private
module C = Category C
module D = Category D
module J = Functor J
open D using (_⇒_; _∘_; _≈_)
field
F₀ : C.Obj → D.Obj
unit : {c : C.Obj} → J.₀ c ⇒ F₀ c
extend : {x y : C.Obj} → (J.₀ x ⇒ F₀ y) → F₀ x ⇒ F₀ y
identityʳ : {x y : C.Obj} { k : J.₀ x ⇒ F₀ y} → extend k ∘ unit ≈ k
identityˡ : {x : C.Obj} → extend {x} unit ≈ D.id
assoc : {x y z : C.Obj} {k : J.₀ x ⇒ F₀ y} {l : J.₀ y ⇒ F₀ z} → extend (extend l ∘ k) ≈ extend l ∘ extend k
extend-≈ : {x y : C.Obj} {k h : J.₀ x ⇒ F₀ y} → k ≈ h → extend k ≈ extend h
-- From a Relative Monad, we can extract a functor
RMonad⇒Functor : {J : Functor C D} → Monad J → Functor C D
RMonad⇒Functor {C = C} {D = D} {J = J} r = record
{ F₀ = F₀
; F₁ = λ f → extend (unit ∘ J.₁ f)
; identity = identity′
; homomorphism = hom′
; F-resp-≈ = λ f≈g → extend-≈ (∘-resp-≈ʳ (J.F-resp-≈ f≈g))
}
where
open Monad r
module C = Category C
module D = Category D
module J = Functor J
open Category D hiding (identityˡ; identityʳ; assoc)
open HomReasoning
open MR D
identity′ : {c : C.Obj} → extend {c} (unit ∘ J.₁ C.id) ≈ id
identity′ = begin
extend (unit ∘ J.₁ C.id) ≈⟨ extend-≈ (elimʳ J.identity) ⟩
extend unit ≈⟨ identityˡ ⟩
id ∎
hom′ : {X Y Z : C.Obj} {f : X C.⇒ Y} {g : Y C.⇒ Z} →
extend (unit ∘ J.₁ (g C.∘ f)) ≈ extend (unit ∘ J.₁ g) ∘ extend (unit ∘ J.F₁ f)
hom′ {f = f} {g} = begin
extend (unit ∘ J.₁ (g C.∘ f)) ≈⟨ extend-≈ (pushʳ J.homomorphism) ⟩
extend ((unit ∘ J.₁ g) ∘ J.₁ f) ≈⟨ extend-≈ (pushˡ (⟺ identityʳ)) ⟩
extend (extend (unit ∘ J.₁ g) ∘ (unit ∘ J.F₁ f)) ≈⟨ assoc ⟩
extend (unit ∘ J.₁ g) ∘ extend (unit ∘ J.F₁ f) ∎
|
{
"alphanum_fraction": 0.5717188135,
"avg_line_length": 38.453125,
"ext": "agda",
"hexsha": "e795584112881390fced385e81f869aea2f6e08f",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Monad/Relative.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Monad/Relative.agda",
"max_line_length": 111,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Monad/Relative.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 969,
"size": 2461
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Sigma {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening using (_∷_⊆_ ; _•ₜ_)
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Weakening
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Weakening
open import Definition.LogicalRelation.Substitution.Properties
open import Definition.LogicalRelation.Substitution.MaybeEmbed
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Empty using (⊥; ⊥-elim)
-- Validity of ∃.
∃ᵛ : ∀ {F G Γ l∃ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
→ Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] ∙ [F]
→ Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ^ [ % , ι l∃ ] / [Γ]
∃ᵛ {F} {G} {Γ} {l∃} {l} [Γ] [F] [G] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([F]σ [σ])
⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′]))
⊢F≡F = escapeEq [σF] (reflEq [σF])
[G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F [σ′])
(liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′])
⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′]))
⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ])))
⊢∃F▹G = ∃ⱼ un-univ (⊢F [σ]) ▹ un-univ (⊢G [σ])
in ∃ᵣ′ (subst σ F) (subst (liftSubst σ) G) (idRed:*: (univ ⊢∃F▹G)) (⊢F [σ]) (⊢G [σ]) (≅-univ (≅ₜ-∃-cong (⊢F [σ]) (≅-un-univ ⊢F≡F) (≅-un-univ ⊢G≡G)))
(λ ρ ⊢Δ₁ → wk ρ ⊢Δ₁ [σF]) (λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a]
in Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(λ {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[b]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b]
in irrelevanceEq″
(PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp b σ G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′))
(Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
([ρσ] , [b]′)
(reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′)))
, λ {σ′} [σ′] [σ≡σ′] →
let var0 = var (⊢Δ ∙ ⊢F [σ])
(PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ]))
(wk-subst F) here)
[wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′]
[wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′]
[F][wk1σ] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[F][wk1σ′] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ′])
var0′ = conv var0
(≅-eq (escapeEq [F][wk1σ]
(proj₂ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[wk1σ′] [wk1σ≡wk1σ′])))
in ∃₌ _ _ (id (univ (∃ⱼ un-univ (⊢F [σ′]) ▹ un-univ (⊢G [σ′]))))
(≅-univ (≅ₜ-∃-cong (⊢F [σ])
(≅-un-univ (escapeEq (proj₁ ([F] ⊢Δ [σ]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])))
(≅-un-univ (escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ])
([wk1σ′] , neuTerm [F][wk1σ′] (var 0) var0′ (~-var var0′))
([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ]
(var 0) (var 0) var0 var0 (~-var var0)))))))
(λ ρ ⊢Δ₁ → wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
(λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ]))
(proj₁ ([F] ⊢Δ₁ [ρσ′]))
(proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′]
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])
[F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ′ G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′))
(Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″)
[ρσa≡ρσ′a]))
-- Validity of ∃-congurence.
∃-congᵛ : ∀ {F G H E Γ l∃ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
([G] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ] ∙ [F])
([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ % , ι l∃ ] / [Γ])
([E] : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ E ^ [ % , ι l∃ ] / [Γ] ∙ [H])
([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ^ [ % , ι l∃ ] / [Γ] / [F])
([G≡E] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ≡ E ^ [ % , ι l∃ ] / [Γ] ∙ [F] / [G])
→ Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] / [Γ] / ∃ᵛ {F} {G} [Γ] [F] [G]
∃-congᵛ {F} {G} {H} {E} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] {σ = σ} ⊢Δ [σ] =
let [∃FG] = ∃ᵛ {F} {G} [Γ] [F] [G]
[σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
[σF] = proj₁ ([F] ⊢Δ [σ])
⊢σF = escape [σF]
[σG] = proj₁ ([G] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
⊢σE = escape (proj₁ ([E] (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
in ∃₌ (subst σ H)
(subst (liftSubst σ) E)
(id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
(≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE)))
(λ ρ ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst H)) PE.refl PE.refl
(proj₁ ([F] ⊢Δ₁ [ρσ]))
([F]′ ρ ⊢Δ₁)
([F≡H] ⊢Δ₁ [ρσ]))
(λ {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl
([F]′ [ρ] ⊢Δ₁)
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ E)) PE.refl PE.refl
(proj₁ ([G] ⊢Δ₁ [aρσ]))
([G]′ [ρ] ⊢Δ₁ [a])
([G≡E] ⊢Δ₁ [aρσ])
)
-- Validity of ∃ as a term.
∃ᵗᵛ₁ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF]
→ Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})
→ ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ (∃ F ▹ G) ∷ subst σ (Univ % l∃) ^ [ ! , next l∃ ] / proj₁ ([U∃] ⊢Δ [σ])
∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let
l = ∞
l∃ = ¹
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])
[Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])
⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ
⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ)
[F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′
in Uₜ (∃ subst σ F ▹ subst (liftSubst σ) G) (idRedTerm:*: (∃ⱼ ⊢Fₜ ▹ ⊢Gₜ)) ∃ₙ (≅ₜ-∃-cong ⊢F ⊢F≡Fₜ ⊢G≡Gₜ)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let
⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ
⊢Gₜ' = Definition.Typed.Weakening.wkTerm
(Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ
[wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
[wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))
[⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ)
(reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
[⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))))
[wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ¹ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ % , ι l∃ ]
[wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ))
(wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
in maybeEmb′ l∃≤ [wkFₜ]Type
in ∃ᵣ′ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G))
(idRed:*: (univ (∃ⱼ ⊢Fₜ' ▹ ⊢Gₜ')))
(univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-∃-cong (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ]))
[wkFₜ]Type
(λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G)))
(PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G)))
PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ))
(PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )
([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′))))
∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let
l = ∞
l∃ = ⁰
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])
[Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])
⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ
⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ)
[F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) l∃≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′
in Uₜ (∃ subst σ F ▹ subst (liftSubst σ) G) (idRedTerm:*: (∃ⱼ ⊢Fₜ ▹ ⊢Gₜ)) ∃ₙ (≅ₜ-∃-cong ⊢F ⊢F≡Fₜ ⊢G≡Gₜ)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let
⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ
⊢Gₜ' = Definition.Typed.Weakening.wkTerm
(Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ
[wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
[wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))
[⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ)
(reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
[⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))))
[wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ⁰ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ % , ι l∃ ]
[wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ))
(wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
in maybeEmb′ l∃≤ [wkFₜ]Type
in ∃ᵣ′ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G))
(idRed:*: (univ (∃ⱼ ⊢Fₜ' ▹ ⊢Gₜ')))
(univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-∃-cong (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ]))
[wkFₜ]Type
(λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G)))
(PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G)))
PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ))
(PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )
([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′))))
∃ᵗᵛ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF]
→ Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})
→ Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U∃]
∃ᵗᵛ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let l = ∞
l∃ = ¹
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in ∃ᵗᵛ₁ {F} {G} {¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
, (λ {σ′} [σ′] [σ≡σ′] →
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
[wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
var0 = conv (var (⊢Δ ∙ ⊢F)
(PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ]))
(proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0)
var0 (~-var var0)
⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
univΔ = proj₁ ([UF] ⊢Δ [σ])
univΔ′ = proj₁ ([UF] ⊢Δ [σ′])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′]))
⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′]))
⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
[F]₀ = univᵛ {F} [Γ] l∃≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[∃FG-cong] = ∃-congᵛ {F} {G} {F} {G} [Γ] [F]₀ [G]₀ [F]₀ [G]₀
(λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁))
(λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁))
[∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
[∃FG]ᵗ′ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′]
[∃FG] = ∃ᵛ {F} {G} {Γ} {l∃ = ¹} [Γ] [F]₀ [G]₀
in Uₜ₌ [∃FG]ᵗ
[∃FG]ᵗ′
(≅ₜ-∃-cong ⊢F ⊢F≡F′ ⊢G≡G′)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [∃FG-cong]′ = [∃FG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
X = irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ F ▹ G)))
PE.refl PE.refl
(proj₁ ([∃FG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
(LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁)
[∃FG-cong]′
[σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
[ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ])
⊢σF₀ = escape [σF]₀
[σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ]))
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′])
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′]))
⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′])))
univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ])
[ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]
[σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′])
⊢σF≡σH = escapeEq [σF]₀ [σF≡σH]
[σF] = proj₁ ([F] ⊢Δ₁ [ρσ])
⊢σF = escape [σF]
liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]
[wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′]
var0 = conv (var (⊢Δ₁ ∙ ⊢σF)
(PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]))
(proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′]))))
[liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷
Γ ∙ F ^ [ % , ι l∃ ] / [Γ] ∙ [F] /
(⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0)
var0 (~-var var0)
liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′]
univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ)
[σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′]))
⊢σG≡σE = escapeEq [σG]₀ [σG≡σE]
X = ∃₌ (subst (ρ •ₛ σ′) F)
(subst (liftSubst (ρ •ₛ σ′)) G)
(id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
((≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE))))
(λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ →
let
[ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst F)) PE.refl PE.refl
[ρσ₂F]₀
([F]′ [ρ₂] ⊢Δ₂)
[σF≡σH])
(λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] →
let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a]
[a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]))
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
(proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂
(wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ])
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])
[F]₀ [a]′
in irrelevanceEq″
(PE.sym (singleSubstWkComp a (ρ •ₛ σ) G))
(PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′))
(Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
([ρσ₂′] , [a]″)
[ρσa≡ρσ′a] ))
in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ F ▹ G)))
PE.refl PE.refl
(proj₁ ([∃FG] ⊢Δ₁ [ρσ]))
(LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁)
X))
∃ᵗᵛ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let l = ∞
l∃ = ⁰
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in ∃ᵗᵛ₁ {F} {G} {⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
, (λ {σ′} [σ′] [σ≡σ′] →
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
[wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
var0 = conv (var (⊢Δ ∙ ⊢F)
(PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ ∙ subst σ F ^ [ % , ι l∃ ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ]))
(proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0)
var0 (~-var var0)
⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
univΔ = proj₁ ([UF] ⊢Δ [σ])
univΔ′ = proj₁ ([UF] ⊢Δ [σ′])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′]))
⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′]))
⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
[F]₀ = univᵛ {F} [Γ] (≡is≤ PE.refl) [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ % l∃} {r = [ ! , next l∃ ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ % l∃} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) l∃≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[∃FG-cong] = ∃-congᵛ {F} {G} {F} {G} [Γ] [F]₀ [G]₀ [F]₀ [G]₀
(λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁))
(λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁))
[∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
[∃FG]ᵗ′ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′]
[∃FG] = ∃ᵛ {F} {G} {Γ} {l∃ = ⁰} [Γ] [F]₀ [G]₀
in Uₜ₌ [∃FG]ᵗ
[∃FG]ᵗ′
(≅ₜ-∃-cong ⊢F ⊢F≡F′ ⊢G≡G′)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [∃FG-cong]′ = [∃FG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
X = irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ F ▹ G)))
PE.refl PE.refl
(proj₁ ([∃FG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
(LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁)
[∃FG-cong]′
[σ∃FG] = proj₁ ([∃FG] ⊢Δ [σ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
[ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ])
⊢σF₀ = escape [σF]₀
[σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ]))
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′])
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′]))
⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′])))
univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ])
[ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]
[σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′])
⊢σF≡σH = escapeEq [σF]₀ [σF≡σH]
[σF] = proj₁ ([F] ⊢Δ₁ [ρσ])
⊢σF = escape [σF]
liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]
[wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′]
var0 = conv (var (⊢Δ₁ ∙ ⊢σF)
(PE.subst (λ x → 0 ∷ x ^ [ % , ι l∃ ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]))
(proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′]))))
[liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ % , ι l∃ ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷
Γ ∙ F ^ [ % , ι l∃ ] / [Γ] ∙ [F] /
(⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0)
var0 (~-var var0)
liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′]
univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ)
[σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′]))
⊢σG≡σE = escapeEq [σG]₀ [σG≡σE]
X = ∃₌ (subst (ρ •ₛ σ′) F)
(subst (liftSubst (ρ •ₛ σ′)) G)
(id (univ (∃ⱼ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
((≅-univ (≅ₜ-∃-cong ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE))))
(λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ →
let
[ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst F)) PE.refl PE.refl
[ρσ₂F]₀
([F]′ [ρ₂] ⊢Δ₂)
[σF≡σH])
(λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] →
let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σ∃FG] = proj₁ ([∃FG] ⊢Δ₁ [ρσ])
_ , ∃ᵣ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (∃-elim [σ∃FG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a]
[a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]))
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
(proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂
(wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ])
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])
[F]₀ [a]′
in irrelevanceEq″
(PE.sym (singleSubstWkComp a (ρ •ₛ σ) G))
(PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′))
(Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
([ρσ₂′] , [a]″)
[ρσa≡ρσ′a] ))
in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ F ▹ G)))
PE.refl PE.refl
(proj₁ ([∃FG] ⊢Δ₁ [ρσ]))
(LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁)
X))
-- Validity of ∃-congurence as a term equality.
∃-congᵗᵛ : ∀ {F G H E l∃ Γ} ([Γ] : ⊩ᵛ Γ) →
let l = ∞
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[U∃] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ % , ι l∃ ] / [Γ])
([UG] : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F])
([UE] : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [H])
([F]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF])
([G]ₜ : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ}))
([H]ₜ : Γ ⊩ᵛ⟨ l ⟩ H ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF])
([E]ₜ : Γ ∙ H ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [H] / (λ {Δ} {σ} → [UE] {Δ} {σ}))
([F≡H]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [UF])
([G≡E]ₜ : Γ ∙ F ^ [ % , ι l∃ ] ⊩ᵛ⟨ l ⟩ G ≡ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] ∙ [F]
/ (λ {Δ} {σ} → [UG] {Δ} {σ}))
→ Γ ⊩ᵛ⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U∃]
∃-congᵗᵛ {F} {G} {H} {E} {l∃ = ¹} {Γ}
[Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] =
let l = ∞
l∃ = ¹
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ¹} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
[∃HE]ᵗ = ∃ᵗᵛ₁ {H} {E} {l∃ = ¹} {Γ} [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) l∃≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ)
[E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) l∃≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ)
[F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ
[G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ
in Uₜ₌ [∃FG]ᵗ [∃HE]ᵗ (≅ₜ-∃-cong ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ]))
(escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ])))
λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
X = ∃-congᵛ {F} {G} {H} {E} {Γ} {¹} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ]
in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ H ▹ E))) PE.refl PE.refl
(proj₁ (∃ᵛ {F} {G} [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X
∃-congᵗᵛ {F} {G} {H} {E} {l∃ = ⁰} {Γ}
[Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] =
let l = ∞
l∃ = ⁰
l∃≤ = ≡is≤ PE.refl
[UF] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[∃FG]ᵗ = ∃ᵗᵛ₁ {F} {G} {l∃ = ⁰} {Γ} [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
[∃HE]ᵗ = ∃ᵗᵛ₁ {H} {E} {l∃ = ⁰} {Γ} [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [F]ₜ {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
[G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) l∃≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ)
[E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) l∃≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ)
[F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ
[G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ
in Uₜ₌ [∃FG]ᵗ [∃HE]ᵗ (≅ₜ-∃-cong ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ]))
(escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ])))
λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
X = ∃-congᵛ {F} {G} {H} {E} {Γ} {⁰} [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ]
in irrelevanceEq″ (PE.sym (wk-subst (∃ F ▹ G)))
(PE.sym (wk-subst (∃ H ▹ E))) PE.refl PE.refl
(proj₁ (∃ᵛ {F} {G} [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [∃FG]ᵗ [ρ] ⊢Δ₁) X
-- Validity of non-dependent sum types.
××ᵛ : ∀ {F G l∃ Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ F ×× G ^ [ % , ι l∃ ] / [Γ]
××ᵛ {F} {G} [Γ] [F] [G] =
∃ᵛ {F} {wk1 G} [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G])
-- Validity of non-dependent sum type congurence.
××-congᵛ : ∀ {F F′ G G′ l∃ Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ % , ι l∃ ] / [Γ])
([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ % , ι l∃ ] / [Γ] / [F])
([G] : Γ ⊩ᵛ⟨ l ⟩ G ^ [ % , ι l∃ ] / [Γ])
([G′] : Γ ⊩ᵛ⟨ l ⟩ G′ ^ [ % , ι l∃ ] / [Γ])
([G≡G′] : Γ ⊩ᵛ⟨ l ⟩ G ≡ G′ ^ [ % , ι l∃ ] / [Γ] / [G])
→ Γ ⊩ᵛ⟨ l ⟩ F ×× G ≡ F′ ×× G′ ^ [ % , ι l∃ ] / [Γ] / ××ᵛ {F} {G} [Γ] [F] [G]
××-congᵛ {F} {F′} {G} {G′} [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] =
∃-congᵛ {F} {wk1 G} {F′} {wk1 G′} [Γ]
[F] (wk1ᵛ {G} {F} [Γ] [F] [G])
[F′] (wk1ᵛ {G′} {F′} [Γ] [F′] [G′])
[F≡F′] (wk1Eqᵛ {G} {G′} {F} [Γ] [F] [G] [G≡G′])
××ᵗᵛ : ∀ {F G l∃ Γ} ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[U] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ % , ι l∃ ] / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U]
→ Γ ⊩ᵛ⟨ l ⟩ G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / (λ {Δ} {σ} → [U] {Δ} {σ})
→ Γ ⊩ᵛ⟨ l ⟩ F ×× G ∷ Univ % l∃ ^ [ ! , next l∃ ] / [Γ] / [U]
××ᵗᵛ {F} {G} {l∃} [Γ] [F] [Fₜ] [Gₜ] =
let l = ∞
[U] = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l∃)) [Γ])
[Gₜ]′ = wk1ᵗᵛ {F} {G} {[ % , ι l∃ ]} {%} {l∃} [Γ] [F] [Gₜ]
[wU] = maybeEmbᵛ {A = Univ % _} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → Uᵛ (proj₂ (levelBounded l∃)) (_∙_ {A = F} [Γ] [F]) {Δ} {σ})
[wU]′ = wk1ᵛ {Univ _ _ } {F} [Γ] [F] [U]
in ∃ᵗᵛ {F} {wk1 G} [Γ] [F] (λ {Δ} {σ} → [wU]′ {Δ} {σ}) [Fₜ]
(S.irrelevanceTerm {A = Univ _ _} {t = wk1 G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F])
(λ {Δ} {σ} → [wU] {Δ} {σ}) (λ {Δ} {σ} → [wU]′ {Δ} {σ}) [Gₜ]′)
|
{
"alphanum_fraction": 0.2869458128,
"avg_line_length": 73.7196261682,
"ext": "agda",
"hexsha": "fb852e6594492522f654757ce237c74aca6f7a52",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Sigma.agda",
"max_line_length": 186,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 23786,
"size": 55216
}
|
module ElaborateGive where
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Reflection
open import Agda.Builtin.String
open import Agda.Builtin.Unit
five : Nat
five = {!!}
five' : Nat
five' = {!!}
five'' : Nat
five'' = {!!}
macro
addUnknown : Term → TC ⊤
addUnknown goal = unify goal
(def (quote _+_)
(arg (arg-info visible relevant) unknown ∷
arg (arg-info visible relevant) unknown ∷ []))
unknownPlus : Nat
unknownPlus = {!!} + {!!}
macro
literalNat : Nat → Term → TC ⊤
literalNat n hole = unify hole (lit (nat n))
macro
literalString : String → Term → TC ⊤
literalString s hole = unify hole (lit (string s))
seven : Nat
seven = {!!}
seven' : Nat
seven' = {!!}
hello : String
hello = {!!}
hello' : String
hello' = {!!}
hi : String
hi = {!!}
|
{
"alphanum_fraction": 0.5891647856,
"avg_line_length": 17.3725490196,
"ext": "agda",
"hexsha": "722d4b86cca08db0ab7e34dec6863982733886fb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/ElaborateGive.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/ElaborateGive.agda",
"max_line_length": 74,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/ElaborateGive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 243,
"size": 886
}
|
module main where
{- unsized Versions omitted in talk -}
import interactiveProgramsAgdaUnsized
import objectsInAgdaUnsized
{- end unsized Versions omitted in talk -}
import interactiveProgramsAgda
import objectsInAgda
{- Probably omit because of time -}
import interfaceExtensionAndDelegation
{- End Probably omit because of time -}
{- Omit later parts about proofs -}
import stateDependentObjects
{- End Omit later parts about proofs -}
import stateDependentIO
import drawingProgram
import objectOrientedGui
import spaceShipSimpleVar
import spaceShipCell
import spaceShipAdvanced
|
{
"alphanum_fraction": 0.8151260504,
"avg_line_length": 18.0303030303,
"ext": "agda",
"hexsha": "5758da81a50989bcd18048f8ad90c4e1808e530d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda",
"max_line_length": 42,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 137,
"size": 595
}
|
{-
The subset "goodness" of can w.r.t. other ρθ-reductions. For each of the 7 non-merge
ρθ-reductions, there are two corresponding Can subset lemmas.
The lemmas for shared variables and sequential variables are merged together,
using term-raise and term-nothing to capture the relevant esterel Terms
(see Base for their definitions):
canₛ-raise : ∀ {E any/shr any/var r r' p} θ →
term-raise any/shr any/var r' p →
r ≐ E ⟦ r' ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ ρ (Θ SigMap.empty any/shr any/var) · p ⟧e) θ →
Signal.unwrap S ∈ Canₛ r θ
canₛ-term-nothin : ∀ {r' E r} θ θ' →
Env.sig θ ≡ Env.sig θ' →
term-nothin r' →
r ≐ E ⟦ r' ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ nothin ⟧e) θ' →
Signal.unwrap S ∈ Canₛ r θ
-}
module Esterel.Lang.CanFunction.NonMergePotentialRules where
open import utility
open import Esterel.Lang
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Base
open import Esterel.Lang.CanFunction.CanThetaContinuation
open import Esterel.Lang.CanFunction.SetSigMonotonic
open import Esterel.Lang.CanFunction.Plug
open import Esterel.Context
open import Esterel.Context.Properties
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ) renaming (unwrap to _ˢ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ) renaming (unwrap to _ˢʰ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ) renaming (unwrap to _ᵛ)
open import Data.Bool
using (Bool ; true ; false ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; _++_ ; map)
open import Data.List.Properties
using (map-id ; map-compose ; map-cong)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using (++⁻)
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_ ; _∸_ ; _<_ ; _≤_ ; _<′_ ; _≤′_)
open import Data.Nat.Properties.Simple
using (+-comm ; +-assoc)
open import Data.Nat.Properties
-- using (n∸n≡0 ; +-∸-assoc ; m≢1+m+n ; z≤′n)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Product
using (Σ ; Σ-syntax ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; id ; _∋_)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; inspect ; [_] ; Reveal_·_is_
; module ≡-Reasoning)
open ListSet Data.Nat._≟_
using (set-subtract ; set-subtract-[] ; set-subtract-merge ; set-subtract-split ;
set-remove ; set-remove-removed ; set-remove-mono-∈ ; set-remove-not-removed ;
set-subtract-[a]≡set-remove)
module LCode = ListSet Code._≟_
open _≤′_
open _≤_
open ≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
can-is-unknown-lemma : ∀ q θ S →
¬ (Env.isSig∈ S θ) →
Can q θ ≡ Can q (θ ← [ S ↦ Signal.unknown ])
canθ'-is-unknown-lemma : ∀ sigs' S' q θ S →
S ∉ proj₁ (Dom θ) →
S ∉ map (_+_ S') (SigMap.keys sigs') →
Canθ' sigs' S' (Can q) θ ≡
Canθ' sigs' S' (Can q ∘ (_← [ (S ₛ) ↦ Signal.unknown ])) θ
canθ-is-unknown-lemma : ∀ sigs' S' q θ S →
¬ (Env.isSig∈ S θ) →
Signal.unwrap S ∉ map (_+_ S') (SigMap.keys sigs') →
Canθ sigs' S' q θ ≡ Canθ sigs' S' q (θ ← [ S ↦ Signal.unknown ])
canθ-is-unknown-lemma sigs' S' q θ S S∉Domθ S∉map-+-S'-sigs'
rewrite unfold sigs' S' q θ
| unfold sigs' S' q (θ ← [S]-env S)
| canθ'-search-acc sigs' S' (Can q) θ (Signal.unwrap S) Signal.unknown
S∉map-+-S'-sigs'
= canθ'-is-unknown-lemma sigs' S' q θ (Signal.unwrap S) S∉Domθ S∉map-+-S'-sigs'
can-is-unknown-lemma nothin θ S S∉Domθ = refl
can-is-unknown-lemma pause θ S S∉Domθ = refl
can-is-unknown-lemma (signl S' q) θ S S∉Domθ
with Env.Sig∈ S ([S]-env S')
... | yes S∈Domθ'
rewrite canθ-shadowing-irr (Env.sig ([S]-env S')) 0
q S Signal.unknown θ
(subst (Signal.unwrap S ∈_)
(sym (map-id (proj₁ (Dom ([S]-env S')))))
S∈Domθ')
= refl
... | no S∉Domθ'
rewrite canθ-is-unknown-lemma (Env.sig ([S]-env S')) 0
q θ S S∉Domθ
(subst (Signal.unwrap S ∉_)
(sym (map-id (proj₁ (Dom ([S]-env S')))))
S∉Domθ')
= refl
can-is-unknown-lemma (present S' ∣⇒ p ∣⇒ q) θ S S∉Domθ
with S' Signal.≟ S
can-is-unknown-lemma (present S' ∣⇒ p ∣⇒ q) θ S S∉Domθ
| yes refl with Env.Sig∈ S' θ | Env.Sig∈ S' (θ ← [ S ↦ Signal.unknown ])
... | no S'∉Domθ | yes S'∈Domθ←[S]
rewrite Env.sig-stats-1map-right-← S Signal.unknown θ S'∈Domθ←[S]
| can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
... | S'∈?Domθ | no S'∉Domθ←[S] =
⊥-elim (S'∉Domθ←[S] (Env.sig-∈-single-right-← S Signal.unknown θ))
... | yes S'∈Domθ | S'∈?Domθ←[S] = ⊥-elim (S∉Domθ S'∈Domθ)
can-is-unknown-lemma (present S' ∣⇒ p ∣⇒ q) θ S S∉Domθ
| no S'≠S with Env.Sig∈ S' θ | Env.Sig∈ S' (θ ← [ S ↦ Signal.unknown ])
... | no S'∉Domθ | yes S'∈Domθ←[S]
= ⊥-elim
(Data.Sum.[ S'∉Domθ , Env.sig-∉-single S' S Signal.unknown S'≠S ]
(Env.sig-←⁻ {θ} {[ S ↦ Signal.unknown ]} S' S'∈Domθ←[S]))
... | yes S'∈Domθ | no S'∉Domθ←[S]
= ⊥-elim (S'∉Domθ←[S] (Env.sig-←-monoˡ S' θ [ S ↦ Signal.unknown ] S'∈Domθ))
... | no S'∉Domθ | no S'∉Domθ←[S]
rewrite can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
... | yes S'∈Domθ | yes S'∈Domθ←[S]
rewrite sym (Env.sig-←-∉-irr-stats' S' θ [ S ↦ Signal.unknown ]
S'∈Domθ (Env.sig-∉-single S' S Signal.unknown S'≠S) S'∈Domθ←[S])
with Env.sig-stats {S'} θ S'∈Domθ
... | Signal.present
rewrite can-is-unknown-lemma p θ S S∉Domθ
= refl
... | Signal.absent
rewrite can-is-unknown-lemma q θ S S∉Domθ
= refl
... | Signal.unknown
rewrite can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (emit S') θ S S∉Domθ = refl
can-is-unknown-lemma (p ∥ q) θ S S∉Domθ
rewrite can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (loop q) θ S S∉Domθ =
can-is-unknown-lemma q θ S S∉Domθ
can-is-unknown-lemma (loopˢ p q) θ S S∉Domθ =
can-is-unknown-lemma p θ S S∉Domθ
can-is-unknown-lemma (p >> q) θ S S∉Domθ
with any (Code._≟_ Code.nothin) (Canₖ p θ)
| any (Code._≟_ Code.nothin) (Canₖ p (θ ← [ S ↦ Signal.unknown ]))
... | yes nothin∈can-p-θ | yes nothin∈can-p-θ←[S]
rewrite can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
... | no nothin∉can-p-θ | no nothin∉can-p-θ←[S]
rewrite can-is-unknown-lemma p θ S S∉Domθ
= refl
... | yes nothin∈can-p-θ | no nothin∉can-p-θ←[S]
rewrite can-is-unknown-lemma p θ S S∉Domθ
= ⊥-elim (nothin∉can-p-θ←[S] nothin∈can-p-θ)
... | no nothin∉can-p-θ | yes nothin∈can-p-θ←[S]
rewrite can-is-unknown-lemma p θ S S∉Domθ
= ⊥-elim (nothin∉can-p-θ nothin∈can-p-θ←[S])
can-is-unknown-lemma (suspend q S') θ S S∉Domθ =
can-is-unknown-lemma q θ S S∉Domθ
can-is-unknown-lemma (trap q) θ S S∉Domθ
rewrite can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (exit n) θ S S∉Domθ = refl
can-is-unknown-lemma (shared s ≔ e in: q) θ S S∉Domθ
rewrite can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (s ⇐ e) θ S S∉Domθ = refl
can-is-unknown-lemma (var x ≔ e in: q) θ S S∉Domθ
rewrite can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (x ≔ e) θ S S∉Domθ = refl
can-is-unknown-lemma (if x ∣⇒ p ∣⇒ q) θ S S∉Domθ
rewrite can-is-unknown-lemma p θ S S∉Domθ
| can-is-unknown-lemma q θ S S∉Domθ
= refl
can-is-unknown-lemma (ρ⟨ θ' , A ⟩· q) θ S S∉Domθ
with Env.Sig∈ S θ'
... | yes S∈Domθ'
rewrite canθ-shadowing-irr (Env.sig θ') 0 q S Signal.unknown θ
(subst (Signal.unwrap S ∈_)
(sym (map-id (proj₁ (Dom θ'))))
S∈Domθ')
= refl
... | no S∉Domθ'
rewrite canθ-is-unknown-lemma (Env.sig θ') 0 q θ S S∉Domθ
(subst (Signal.unwrap S ∉_)
(sym (map-id (proj₁ (Dom θ'))))
S∉Domθ')
= refl
canθ'-is-unknown-lemma [] S' q θ S S∉Domθ S∉map-+-S'-sigs' =
can-is-unknown-lemma q θ (S ₛ) S∉Domθ
canθ'-is-unknown-lemma (nothing ∷ sigs') S' q θ S S∉Domθ S∉map-+-S'-sigs'
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθ'-is-unknown-lemma sigs' (suc S') q θ S S∉Domθ S∉map-+-S'-sigs'
canθ'-is-unknown-lemma (just Signal.present ∷ sigs') S' q θ S S∉Domθ S∉map-+-S'-sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
= canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env-present (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env-present (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.present
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
canθ'-is-unknown-lemma (just Signal.absent ∷ sigs') S' q θ S S∉Domθ S∉map-+-S'-sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
= canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env-absent (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env-absent (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.absent
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
canθ'-is-unknown-lemma (just Signal.unknown ∷ sigs') S' q θ S S∉Domθ S∉map-+-S'-sigs'
with any (_≟_ S') (proj₁ (Canθ' sigs' (suc S') (Can q)
(θ ← [S]-env (S' ₛ))))
| any (_≟_ S') (proj₁ (Canθ' sigs' (suc S') (Can q ∘ (_← [ (S ₛ) ↦ Signal.unknown ]))
(θ ← [S]-env (S' ₛ))))
... | yes S∈canθ'-sigs'-can-q-θ←[S'] | yes S∈canθ'-sigs'-can-q←[S]-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
= canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.unknown
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
... | no S∉canθ'-sigs'-can-q-θ←[S'] | no S∉canθ'-sigs'-can-q←[S]-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
= canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env-absent (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env-absent (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.absent
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
... | yes S∈canθ'-sigs'-can-q-θ←[S'] | no S∉canθ'-sigs'-can-q←[S]-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.unknown
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
= ⊥-elim (S∉canθ'-sigs'-can-q←[S]-θ←[S'] S∈canθ'-sigs'-can-q-θ←[S'])
... | no S∉canθ'-sigs'-can-q-θ←[S'] | yes S∈canθ'-sigs'-can-q←[S]-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| canθ'-is-unknown-lemma sigs' (suc S') q (θ ← [S]-env (S' ₛ))
S (Env.sig-↚⁻ {θ} {[S]-env (S' ₛ)} (S ₛ)
S∉Domθ
(Env.sig-∉-single (S ₛ) (S' ₛ) Signal.unknown
(S∉map-+-S'-sigs' ∘ here ∘ cong Signal.unwrap)))
(S∉map-+-S'-sigs' ∘ there)
= ⊥-elim (S∉canθ'-sigs'-can-q-θ←[S'] S∈canθ'-sigs'-can-q←[S]-θ←[S'])
can-is-present-lemma : ∀ p q S θ S∈ E →
Env.sig-stats {S} θ S∈ ≡ Signal.present →
Can (E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) θ ≡
Can (E ⟦ p ⟧e) θ
can-is-present-lemma p q S θ S∈ [] θS≡present with Env.Sig∈ S θ
... | no S∉ = ⊥-elim (S∉ S∈)
... | yes S∈' rewrite Env.sig-stats-∈-irr {S} {θ} S∈ S∈'
with Signal.present Signal.≟ₛₜ Env.sig-stats {S} θ S∈'
... | no θS≢present = ⊥-elim (θS≢present (sym θS≡present))
... | yes θS≡present' = refl
can-is-present-lemma p q S θ S∈ (epar₁ _ ∷ E) θS≡present
rewrite can-is-present-lemma p q S θ S∈ E θS≡present
= refl
can-is-present-lemma p q S θ S∈ (epar₂ _ ∷ E) θS≡present
rewrite can-is-present-lemma p q S θ S∈ E θS≡present
= refl
can-is-present-lemma p q S θ S∈ (eloopˢ _ ∷ E) θS≡present = can-is-present-lemma p q S θ S∈ E θS≡present
can-is-present-lemma p q S θ S∈ (eseq _ ∷ E) θS≡present
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ p ⟧e) θ)
| can-is-present-lemma p q S θ S∈ E θS≡present
... | yes nothin∈can-E⟦present⟧ | yes nothin∈can-E⟦p⟧ | eq rewrite eq = refl
... | yes nothin∈can-E⟦present⟧ | no nothin∉can-E⟦p⟧ | eq rewrite eq
= ⊥-elim (nothin∉can-E⟦p⟧ nothin∈can-E⟦present⟧)
... | no nothin∉can-E⟦present⟧ | yes nothin∈can-E⟦p⟧ | eq rewrite eq
= ⊥-elim (nothin∉can-E⟦present⟧ nothin∈can-E⟦p⟧)
... | no nothin∉can-E⟦present⟧ | no nothin∉can-E⟦p⟧ | eq rewrite eq = refl
can-is-present-lemma p q S θ S∈ (esuspend S' ∷ E) θS≡present
rewrite can-is-present-lemma p q S θ S∈ E θS≡present
= refl
can-is-present-lemma p q S θ S∈ (etrap ∷ E) θS≡present
rewrite can-is-present-lemma p q S θ S∈ E θS≡present
= refl
can-is-absent-lemma : ∀ p q S θ S∈ E →
Env.sig-stats {S} θ S∈ ≡ Signal.absent →
Can (E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) θ ≡
Can (E ⟦ q ⟧e) θ
can-is-absent-lemma p q S θ S∈ [] θS≡absent with Env.Sig∈ S θ
... | no S∉ = ⊥-elim (S∉ S∈)
... | yes S∈' rewrite Env.sig-stats-∈-irr {S} {θ} S∈ S∈'
with Signal.present Signal.≟ₛₜ Env.sig-stats {S} θ S∈'
... | yes present≡θS = ((Signal.present ≡ Signal.absent → _) ∋ λ ())
(trans present≡θS θS≡absent)
... | no present≢θS
with Signal.absent Signal.≟ₛₜ Env.sig-stats {S} θ S∈'
... | no absent≢θS = ⊥-elim (absent≢θS (sym θS≡absent))
... | yes absent≡θS = refl
can-is-absent-lemma p q S θ S∈ (epar₁ _ ∷ E) θS≡absent
rewrite can-is-absent-lemma p q S θ S∈ E θS≡absent
= refl
can-is-absent-lemma p q S θ S∈ (epar₂ _ ∷ E) θS≡absent
rewrite can-is-absent-lemma p q S θ S∈ E θS≡absent
= refl
can-is-absent-lemma p q S θ S∈ (eloopˢ _ ∷ E) θS≡absent = can-is-absent-lemma p q S θ S∈ E θS≡absent
can-is-absent-lemma p q S θ S∈ (eseq _ ∷ E) θS≡absent
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ q ⟧e) θ)
| can-is-absent-lemma p q S θ S∈ E θS≡absent
... | yes nothin∈can-E⟦present⟧ | yes nothin∈can-E⟦p⟧ | eq rewrite eq = refl
... | yes nothin∈can-E⟦present⟧ | no nothin∉can-E⟦p⟧ | eq rewrite eq
= ⊥-elim (nothin∉can-E⟦p⟧ nothin∈can-E⟦present⟧)
... | no nothin∉can-E⟦present⟧ | yes nothin∈can-E⟦p⟧ | eq rewrite eq
= ⊥-elim (nothin∉can-E⟦present⟧ nothin∈can-E⟦p⟧)
... | no nothin∉can-E⟦present⟧ | no nothin∉can-E⟦p⟧ | eq rewrite eq = refl
can-is-absent-lemma p q S θ S∈ (esuspend S' ∷ E) θS≡absent
rewrite can-is-absent-lemma p q S θ S∈ E θS≡absent
= refl
can-is-absent-lemma p q S θ S∈ (etrap ∷ E) θS≡absent
rewrite can-is-absent-lemma p q S θ S∈ E θS≡absent
= refl
can-is-present : ∀ {r p q S E} θ S∈ →
r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e →
Env.sig-stats {S} θ S∈ ≡ Signal.present →
Can r θ ≡
Can (E ⟦ p ⟧e) θ
can-is-present {_} {p} {q} {S} {E} θ S∈ r≐E⟦present⟧ rewrite sym (unplug r≐E⟦present⟧) =
can-is-present-lemma p q S θ S∈ E
canθ-is-present-lemma : ∀ {r p q E} sigs S'' S θ →
r ≐ E ⟦ present (S ₛ) ∣⇒ p ∣⇒ q ⟧e →
(Σ[ S''≤S ∈ S'' ≤′ S ]
∃ λ S-S''∈sigs →
SigMap.lookup {_} {(S ∸ S'')ₛ} sigs S-S''∈sigs ≡ Signal.present) ⊎
(Σ[ S<S'' ∈ S <′ S'' ]
∃ λ S∈Domθ →
Env.sig-stats {S ₛ} θ S∈Domθ ≡ Signal.present) →
Canθ sigs S'' r θ ≡
Canθ sigs S'' (E ⟦ p ⟧e) θ
canθ-is-present-lemma [] S'' S θ r≐E⟦present⟧ (inj₁ (S''≤S , () , sigs⟨S-S''⟩≡present))
canθ-is-present-lemma [] S'' S θ r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡present)) =
can-is-present θ S∈Domθ r≐E⟦present⟧ θS≡present
canθ-is-present-lemma (nothing ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite n∸n≡0 S''
= ⊥-elim (n∉map-suc-n-+ 0 (SigMap.keys sigs) S-S''∈sigs)
canθ-is-present-lemma (just Signal.present ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡present))
= canθ-is-present-lemma sigs (suc S'') S'' (θ ← [S]-env-present (S'' ₛ)) r≐E⟦present⟧
(inj₂ (≤′-refl , S''∈Domθ←[S''] ,
trans (Env.sig-stats-←-right-irr' (S'' ₛ) θ
([S]-env-present (S'' ₛ)) S''∈[S''] S''∈Domθ←[S''])
(Env.sig-stats-1map' (S'' ₛ) Signal.present S''∈[S''])))
where S''∈[S''] = Env.sig-∈-single (S'' ₛ) Signal.present
S''∈Domθ←[S''] = Env.sig-←-monoʳ (S'' ₛ) ([S]-env-present (S'' ₛ)) θ S''∈[S'']
canθ-is-present-lemma (just Signal.absent ∷ sigs) S'' .S'' θ
r≐E⟦present⟧(inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite n∸n≡0 S'' with sigs⟨S-S''⟩≡present
... | ()
canθ-is-present-lemma (just Signal.unknown ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite n∸n≡0 S'' with sigs⟨S-S''⟩≡present
... | ()
canθ-is-present-lemma (nothing ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-present-lemma sigs (suc S'') (suc S) θ
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {nothing} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
canθ-is-present-lemma (just Signal.present ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-present (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.present} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
canθ-is-present-lemma (just Signal.absent ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡present))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-absent (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.absent} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
canθ-is-present-lemma {r = r} {p} {E = E} (just Signal.unknown ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡present))
with any (_≟_ S'') (Canθₛ sigs (suc S'') (E ⟦ p ⟧e) (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ sigs (suc S'') r (θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-absent (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
| canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
= ⊥-elim (S''∉canθ-sig-r-θ←[S''] S''∈canθ-sig-E⟦p⟧-θ←[S''])
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
| canθ-is-present-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡present))
= ⊥-elim (S''∉canθ-sig-E⟦p⟧-θ←[S''] S''∈canθ-sig-r-θ←[S''])
canθ-is-present-lemma (nothing ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡present))
= canθ-is-present-lemma sigs (suc S'') S θ
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ ,
θS≡present))
canθ-is-present-lemma (just Signal.present ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡present)) =
canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env-present (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡present))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.present
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
canθ-is-present-lemma (just Signal.absent ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡present)) =
canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env-absent (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡present))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.absent
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
canθ-is-present-lemma {r = r} {p} {E = E} (just Signal.unknown ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡present))
with any (_≟_ S'') (Canθₛ sigs (suc S'') (E ⟦ p ⟧e) (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ sigs (suc S'') r (θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S''] =
canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡present))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S''] =
canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env-absent (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡present))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.absent
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ ,
(trans
(sym
(Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
(Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ)))
θS≡present)))
= ⊥-elim (S''∉canθ-sig-r-θ←[S''] S''∈canθ-sig-E⟦p⟧-θ←[S''])
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite canθ-is-present-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ ,
(trans
(sym
(Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
(Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ)))
θS≡present)))
= ⊥-elim (S''∉canθ-sig-E⟦p⟧-θ←[S''] S''∈canθ-sig-r-θ←[S''])
canθ-is-present : ∀ {S r p q E} sigs S∈ θ → -- perhaps θ is not needed at all
r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e →
SigMap.lookup {_} {S} sigs S∈ ≡ Signal.present →
Canθ sigs 0 r θ ≡
Canθ sigs 0 (E ⟦ p ⟧e) θ
canθ-is-present {S ₛ} sigs S∈ θ r≐E⟦present⟧ sigs-S≡present =
canθ-is-present-lemma sigs 0 S θ r≐E⟦present⟧
(inj₁ (z≤′n , S∈ , sigs-S≡present))
can-is-absent : ∀ {r p q S E} θ S∈ →
r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e →
Env.sig-stats {S} θ S∈ ≡ Signal.absent →
Can r θ ≡
Can (E ⟦ q ⟧e) θ
can-is-absent {_} {p} {q} {S} {E} θ S∈ r≐E⟦present⟧ rewrite sym (unplug r≐E⟦present⟧) =
can-is-absent-lemma p q S θ S∈ E
canθ-is-absent-lemma : ∀ {r p q E} sigs S'' S θ →
r ≐ E ⟦ present (S ₛ) ∣⇒ q ∣⇒ p ⟧e →
(Σ[ S''≤S ∈ S'' ≤′ S ]
∃ λ S-S''∈sigs →
SigMap.lookup {_} {(S ∸ S'')ₛ} sigs S-S''∈sigs ≡ Signal.absent) ⊎
(Σ[ S<S'' ∈ S <′ S'' ]
∃ λ S∈Domθ →
Env.sig-stats {S ₛ} θ S∈Domθ ≡ Signal.absent) →
Canθ sigs S'' r θ ≡
Canθ sigs S'' (E ⟦ p ⟧e) θ
canθ-is-absent-lemma [] S'' S θ r≐E⟦present⟧ (inj₁ (S''≤S , () , sigs⟨S-S''⟩≡absent))
canθ-is-absent-lemma [] S'' S θ r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡absent)) =
can-is-absent θ S∈Domθ r≐E⟦present⟧ θS≡absent
canθ-is-absent-lemma (nothing ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite n∸n≡0 S''
= ⊥-elim (n∉map-suc-n-+ 0 (SigMap.keys sigs) S-S''∈sigs)
canθ-is-absent-lemma (just Signal.present ∷ sigs) S'' .S'' θ
r≐E⟦present⟧(inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite n∸n≡0 S'' with sigs⟨S-S''⟩≡absent
... | ()
canθ-is-absent-lemma (just Signal.absent ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
= canθ-is-absent-lemma sigs (suc S'') S'' (θ ← [S]-env-absent (S'' ₛ)) r≐E⟦present⟧
(inj₂ (≤′-refl , S''∈Domθ←[S''] ,
trans (Env.sig-stats-←-right-irr' (S'' ₛ) θ
([S]-env-absent (S'' ₛ)) S''∈[S''] S''∈Domθ←[S''])
(Env.sig-stats-1map' (S'' ₛ) Signal.absent S''∈[S''])))
where S''∈[S''] = Env.sig-∈-single (S'' ₛ) Signal.absent
S''∈Domθ←[S''] = Env.sig-←-monoʳ (S'' ₛ) ([S]-env-absent (S'' ₛ)) θ S''∈[S'']
canθ-is-absent-lemma (just Signal.unknown ∷ sigs) S'' .S'' θ
r≐E⟦present⟧ (inj₁ (≤′-refl , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite n∸n≡0 S'' with sigs⟨S-S''⟩≡absent
... | ()
canθ-is-absent-lemma (nothing ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-absent-lemma sigs (suc S'') (suc S) θ
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {nothing} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
canθ-is-absent-lemma (just Signal.present ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-present (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.present} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
canθ-is-absent-lemma (just Signal.absent ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-absent (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.absent} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
canθ-is-absent-lemma {r = r} {p} {E = E} (just Signal.unknown ∷ sigs) S'' (suc S) θ
r≐E⟦present⟧ (inj₁ (≤′-step S''≤S , S-S''∈sigs , sigs⟨S-S''⟩≡absent))
with any (_≟_ S'') (Canθₛ sigs (suc S'') (E ⟦ p ⟧e) (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ sigs (suc S'') r (θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
= canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env-absent (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
| canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
= ⊥-elim (S''∉canθ-sig-r-θ←[S''] S''∈canθ-sig-E⟦p⟧-θ←[S''])
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite +-∸-assoc 1 (≤′⇒≤ S''≤S)
| canθ-is-absent-lemma sigs (suc S'') (suc S) (θ ← ([S]-env (S'' ₛ)))
r≐E⟦present⟧
(inj₁
(s≤′s S''≤S ,
SigM.n∈S {S ∸ S''} {just Signal.unknown} {sigs} S-S''∈sigs ,
sigs⟨S-S''⟩≡absent))
= ⊥-elim (S''∉canθ-sig-E⟦p⟧-θ←[S''] S''∈canθ-sig-r-θ←[S''])
canθ-is-absent-lemma (nothing ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡absent))
= canθ-is-absent-lemma sigs (suc S'') S θ
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ ,
θS≡absent))
canθ-is-absent-lemma (just Signal.present ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡absent)) =
canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env-present (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡absent))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-present (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.present
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
canθ-is-absent-lemma (just Signal.absent ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡absent)) =
canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env-absent (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡absent))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.absent
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
canθ-is-absent-lemma {r = r} {p} {E = E} (just Signal.unknown ∷ sigs) S'' S θ
r≐E⟦present⟧ (inj₂ (S<S'' , S∈Domθ , θS≡absent))
with any (_≟_ S'') (Canθₛ sigs (suc S'') (E ⟦ p ⟧e) (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ sigs (suc S'') r (θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S''] =
canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡absent))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S''] =
canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env-absent (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
S∈Domθ←[S''] ,
trans (sym θS≡⟨θ←[S'']⟩S) θS≡absent))
where
S∈Domθ←[S''] = Env.sig-←-monoˡ (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
θS≡⟨θ←[S'']⟩S =
Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env-absent (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.absent
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
S∈Domθ←[S'']
... | yes S''∈canθ-sig-E⟦p⟧-θ←[S''] | no S''∉canθ-sig-r-θ←[S'']
rewrite canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ ,
(trans
(sym
(Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
(Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ)))
θS≡absent)))
= ⊥-elim (S''∉canθ-sig-r-θ←[S''] S''∈canθ-sig-E⟦p⟧-θ←[S''])
... | no S''∉canθ-sig-E⟦p⟧-θ←[S''] | yes S''∈canθ-sig-r-θ←[S'']
rewrite canθ-is-absent-lemma sigs (suc S'') S (θ ← [S]-env (S'' ₛ))
r≐E⟦present⟧
(inj₂
(≤′-step S<S'' ,
Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ ,
(trans
(sym
(Env.sig-←-∉-irr-stats' (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ
(Env.sig-∉-single (S ₛ) (S'' ₛ) Signal.unknown
(<⇒≢ (≤′⇒≤ S<S'') ∘ cong Signal.unwrap))
(Env.sig-←-monoˡ (S ₛ) θ ([S]-env (S'' ₛ)) S∈Domθ)))
θS≡absent)))
= ⊥-elim (S''∉canθ-sig-E⟦p⟧-θ←[S''] S''∈canθ-sig-r-θ←[S''])
canθ-is-absent : ∀ {S r p q E} sigs S∈ θ →
r ≐ E ⟦ present S ∣⇒ q ∣⇒ p ⟧e →
SigMap.lookup {_} {S} sigs S∈ ≡ Signal.absent →
Canθ sigs 0 r θ ≡
Canθ sigs 0 (E ⟦ p ⟧e) θ
canθ-is-absent {S ₛ} sigs S∈ θ r≐E⟦present⟧ sigs-S≡absent =
canθ-is-absent-lemma sigs 0 S θ r≐E⟦present⟧
(inj₁ (z≤′n , S∈ , sigs-S≡absent))
canₛₕ-emit-lemma : ∀ S θ E →
∀ s →
s ∈ Canₛₕ (E ⟦ nothin ⟧e) θ →
s ∈ Canₛₕ (E ⟦ emit S ⟧e) θ
canₛₕ-emit-lemma S θ [] s s∈can-E⟦nothin⟧ = s∈can-E⟦nothin⟧
canₛₕ-emit-lemma S θ (epar₁ q ∷ E) s s∈can-E∥q⟦nothin⟧
with ++⁻ (Canₛₕ (E ⟦ nothin ⟧e) θ) s∈can-E∥q⟦nothin⟧
... | inj₁ s∈can-E⟦nothin⟧ = ++ˡ (canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧)
... | inj₂ s∈can-q = ++ʳ (Canₛₕ (E ⟦ emit S ⟧e) θ) s∈can-q
canₛₕ-emit-lemma S θ (epar₂ p ∷ E) s s∈can-p∥E⟦nothin⟧
with ++⁻ (Canₛₕ p θ) s∈can-p∥E⟦nothin⟧
... | inj₁ s∈can-p = ++ˡ s∈can-p
... | inj₂ s∈can-E⟦nothin⟧ = ++ʳ (Canₛₕ p θ) (canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧)
canₛₕ-emit-lemma S θ (eloopˢ q ∷ E) s s∈can-E⟦nothin⟧ = canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧
canₛₕ-emit-lemma S θ (eseq q ∷ E) s s∈can-E⟦nothin⟧
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ emit S ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ nothin ⟧e) θ)
... | yes nothin∈can-E⟦emit⟧ | no nothin∉can-E⟦nothin⟧ =
⊥-elim (nothin∉can-E⟦nothin⟧
(canₖ-term-nothin-lemma θ E (temit S) tnothin
Code.nothin nothin∈can-E⟦emit⟧))
... | no nothin∉can-E⟦emit⟧ | yes nothin∈can-E⟦nothin⟧ =
⊥-elim (nothin∉can-E⟦emit⟧
(canₖ-term-nothin-lemma θ E tnothin (temit S)
Code.nothin nothin∈can-E⟦nothin⟧))
... | no nothin∉can-E⟦emit⟧ | no nothin∉can-E⟦nothin⟧ =
canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧
... | yes nothin∈can-E⟦emit⟧ | yes nothin∈can-E⟦nothin⟧
with ++⁻ (Canₛₕ (E ⟦ nothin ⟧e) θ) s∈can-E⟦nothin⟧
... | inj₁ s∈can-E⟦nothin⟧-θ = ++ˡ (canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧-θ)
... | inj₂ s∈can-q-θ = ++ʳ (Canₛₕ (E ⟦ emit S ⟧e) θ) s∈can-q-θ
canₛₕ-emit-lemma S θ (esuspend S' ∷ E) s s∈can-E⟦nothin⟧ =
canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧
canₛₕ-emit-lemma S θ (etrap ∷ E) s s∈can-E⟦nothin⟧ =
canₛₕ-emit-lemma S θ E s s∈can-E⟦nothin⟧
canₛₕ-emit : ∀ {S r E} θ S∈ →
r ≐ E ⟦ emit S ⟧e →
¬ (Env.sig-stats {S} θ S∈ ≡ Signal.absent) →
∀ s →
SharedVar.unwrap s ∈ Canₛₕ (E ⟦ nothin ⟧e) (Env.set-sig {S} θ S∈ Signal.present) →
SharedVar.unwrap s ∈ Canₛₕ r θ
canₛₕ-emit {S} {r} {E} θ S∈ r≐E⟦emitS⟧ θS≢absent s s∈can-E⟦nothin⟧-θ'
rewrite sym (unplug r≐E⟦emitS⟧)
with Env.sig-stats {S} θ S∈ | inspect (Env.sig-stats {S} θ) S∈
... | Signal.present | [ θS≡present ]
rewrite (sym θS≡present) | sym (SigMap.getput-m S (Env.sig θ) S∈)
= canₛₕ-emit-lemma S θ E (SharedVar.unwrap s) s∈can-E⟦nothin⟧-θ'
... | Signal.absent | [ θS≡absent ] = ⊥-elim (θS≢absent refl)
... | Signal.unknown | [ θS≡unknown ] =
canₛₕ-emit-lemma S θ E (SharedVar.unwrap s)
(canₛₕ-set-sig-monotonic (E ⟦ nothin ⟧e) S θ S∈ Signal.present
θS≡unknown (SharedVar.unwrap s) s∈can-E⟦nothin⟧-θ')
canₛ-emit-lemma : ∀ S θ E →
∀ S'' →
S'' ∈ Canₛ (E ⟦ nothin ⟧e) θ →
S'' ∈ Canₛ (E ⟦ emit S ⟧e) θ
canₛ-emit-lemma S θ [] S'' ()
canₛ-emit-lemma S θ (epar₁ q ∷ E) S'' S''∈can-E∥q⟦nothin⟧
with ++⁻ (Canₛ (E ⟦ nothin ⟧e) θ) S''∈can-E∥q⟦nothin⟧
... | inj₁ S''∈can-E⟦nothin⟧ = ++ˡ (canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧)
... | inj₂ S''∈can-q = ++ʳ (Canₛ (E ⟦ emit S ⟧e) θ) S''∈can-q
canₛ-emit-lemma S θ (epar₂ p ∷ E) S'' S''∈can-p∥E⟦nothin⟧
with ++⁻ (Canₛ p θ) S''∈can-p∥E⟦nothin⟧
... | inj₁ S''∈can-p = ++ˡ S''∈can-p
... | inj₂ S''∈can-E⟦nothin⟧ = ++ʳ (Canₛ p θ) (canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧)
canₛ-emit-lemma S θ (eloopˢ q ∷ E) S'' S''∈can-E⟦nothin⟧ = canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧
canₛ-emit-lemma S θ (eseq q ∷ E) S'' S''∈can-E⟦nothin⟧
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ emit S ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ nothin ⟧e) θ)
... | yes nothin∈can-E⟦emit⟧ | no nothin∉can-E⟦nothin⟧ =
⊥-elim (nothin∉can-E⟦nothin⟧
(canₖ-term-nothin-lemma θ E (temit S) tnothin
Code.nothin nothin∈can-E⟦emit⟧))
... | no nothin∉can-E⟦emit⟧ | yes nothin∈can-E⟦nothin⟧ =
⊥-elim (nothin∉can-E⟦emit⟧
(canₖ-term-nothin-lemma θ E tnothin (temit S)
Code.nothin nothin∈can-E⟦nothin⟧))
... | no nothin∉can-E⟦emit⟧ | no nothin∉can-E⟦nothin⟧ =
canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧
... | yes nothin∈can-E⟦emit⟧ | yes nothin∈can-E⟦nothin⟧
with ++⁻ (Canₛ (E ⟦ nothin ⟧e) θ) S''∈can-E⟦nothin⟧
... | inj₁ S''∈can-E⟦nothin⟧-θ = ++ˡ (canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧-θ)
... | inj₂ S''∈can-q-θ = ++ʳ (Canₛ (E ⟦ emit S ⟧e) θ) S''∈can-q-θ
canₛ-emit-lemma S θ (esuspend S' ∷ E) S'' S''∈can-E⟦nothin⟧ =
canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧
canₛ-emit-lemma S θ (etrap ∷ E) S'' S''∈can-E⟦nothin⟧ =
canₛ-emit-lemma S θ E S'' S''∈can-E⟦nothin⟧
canₛ-emit : ∀ {S r E} θ S∈ →
r ≐ E ⟦ emit S ⟧e →
¬ (Env.sig-stats {S} θ S∈ ≡ Signal.absent) →
∀ S'' →
Signal.unwrap S'' ∈ Canₛ (E ⟦ nothin ⟧e) (Env.set-sig {S} θ S∈ Signal.present) →
Signal.unwrap S'' ∈ Canₛ r θ
canₛ-emit {S} {r} {E} θ S∈ r≐E⟦emitS⟧ θS≢absent S'' S''∈can-E⟦nothin⟧-θ'
rewrite sym (unplug r≐E⟦emitS⟧)
with Env.sig-stats {S} θ S∈ | inspect (Env.sig-stats {S} θ) S∈
... | Signal.present | [ θS≡present ]
rewrite (sym θS≡present) | sym (SigMap.getput-m S (Env.sig θ) S∈)
= canₛ-emit-lemma S θ E (Signal.unwrap S'') S''∈can-E⟦nothin⟧-θ'
... | Signal.absent | [ θS≡absent ] = ⊥-elim (θS≢absent refl)
... | Signal.unknown | [ θS≡unknown ] =
canₛ-emit-lemma S θ E (Signal.unwrap S'')
(canₛ-set-sig-monotonic (E ⟦ nothin ⟧e) S θ S∈ Signal.present
θS≡unknown (Signal.unwrap S'') S''∈can-E⟦nothin⟧-θ')
canθₛ-emit-lemma : ∀ sigs S'' p θ S S∈ →
(S'' + S) ∈ Canθₛ sigs S'' p θ →
SigMap.lookup {_} {S ₛ} sigs S∈ ≡ Signal.unknown →
∀ S' →
S' ∈ Canθₛ (SigMap.update sigs (S ₛ) Signal.present) S'' p θ →
S' ∈ Canθₛ sigs S'' p θ
canθₖ-emit-lemma : ∀ sigs S'' p θ S S∈ →
(S'' + S) ∈ Canθₛ sigs S'' p θ →
SigMap.lookup {_} {S ₛ} sigs S∈ ≡ Signal.unknown →
∀ k →
k ∈ Canθₖ (SigMap.update sigs (S ₛ) Signal.present) S'' p θ →
k ∈ Canθₖ sigs S'' p θ
canθₖ-emit-lemma [] S'' p θ S () S''+S∈canθ-sigs-p-θ lk==u k k∈
canθₖ-emit-lemma (nothing ∷ sigs) S'' p θ zero S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈ = ⊥-elim (SigM.0∈S S∈)
canθₖ-emit-lemma (just Signal.present ∷ sigs) S'' p θ zero S∈ S''+S∈canθ-sigs-p-θ () k k∈
canθₖ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ zero S∈ S''+S∈canθ-sigs-p-θ () k k∈
canθₖ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ zero S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
... | yes is∈ = canθₖ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.present k k∈
... | no ¬is∈ rewrite +-comm S'' 0 = ⊥-elim
(¬is∈
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
S'' S''+S∈canθ-sigs-p-θ))
canθₖ-emit-lemma (nothing ∷ sigs) S'' p θ (suc S) S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p θ S (SigM.n∈S {S} {nothing} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k k∈
canθₖ-emit-lemma (just Signal.present ∷ sigs) S'' p θ (suc S) S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.present} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k k∈
canθₖ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ (suc S) S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.absent} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k k∈
canθₖ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ (suc S) S∈ S''+S∈canθ-sigs-p-θ lk==u k k∈
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ (SigMap.update sigs (S ₛ) Signal.present) (suc S'') p
(θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k k∈
... | no S''∉canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k k∈
... | no S''∉canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= ⊥-elim
(S''∉canθ-sigs-p-θ←[S'']
(canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
(suc (S'' + S)) S''+S∈canθ-sigs-p-θ)
lk==u S'' S''∈canθ-θ'-p-θ←[S'']))
... | yes S''∈canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₖ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ lk==u k
(canθₖ-add-sig-monotonic
(SigM.m-insert (just Signal.present) S sigs) (suc S'') p θ (S'' ₛ)
Signal.absent k k∈)
canθₛ-emit-lemma [] S'' p θ S () S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
canθₛ-emit-lemma (nothing ∷ sigs) S'' p θ zero S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p =
⊥-elim (SigM.0∈S S∈)
canθₛ-emit-lemma (nothing ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p θ S (SigM.n∈S {S} {nothing} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
canθₛ-emit-lemma (just Signal.present ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
with sigs-S≡unknown
... | ()
canθₛ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
with sigs-S≡unknown
... | ()
canθₛ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
... | no S''∉canθ-sigs-θ←[S''] rewrite +-comm S'' 0
= ⊥-elim
(S''∉canθ-sigs-θ←[S'']
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
S'' S''+S∈canθ-sigs-p-θ))
... | yes S''∈canθ-sigs-θ↽[S''] =
canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.present
S' S'∈canθ-θ'-p
canθₛ-emit-lemma (just Signal.present ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.present} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
canθₛ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.absent} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
canθₛ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ (SigMap.update sigs (S ₛ) Signal.present) (suc S'') p
(θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
... | no S''∉canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S' S'∈canθ-θ'-p
... | no S''∉canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= ⊥-elim
(S''∉canθ-sigs-p-θ←[S'']
(canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
(suc (S'' + S)) S''+S∈canθ-sigs-p-θ)
sigs-S≡unknown S'' S''∈canθ-θ'-p-θ←[S'']))
... | yes S''∈canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown S'
(canθₛ-add-sig-monotonic
(SigM.m-insert (just Signal.present) S sigs) (suc S'') p θ (S'' ₛ)
Signal.absent S' S'∈canθ-θ'-p)
canθₛ-emit : ∀ {S r E} θ S∈ θ' →
r ≐ E ⟦ emit S ⟧e →
¬ (Env.sig-stats {S} θ S∈ ≡ Signal.absent) →
Signal.unwrap S ∈ Canθₛ (Env.sig θ) 0 r θ' →
∀ S'' →
Signal.unwrap S'' ∈ Canθₛ (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) θ' →
Signal.unwrap S'' ∈ Canθₛ (Env.sig θ) 0
r θ'
canθₛ-emit {S} {r} {E} θ S∈ θ' r≐E⟦emitS⟧ θS≢absent S∈canθ-r S'' S''∈canθ-E⟦nothin⟧
rewrite sym (unplug r≐E⟦emitS⟧)
with Env.sig-stats {S} θ S∈ | inspect (Env.sig-stats {S} θ) S∈
... | Signal.present | [ θS≡present ]
rewrite (sym θS≡present) | sym (SigMap.getput-m S (Env.sig θ) S∈)
= canθₛ-subset-lemma (Env.sig θ) 0 (E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*)
(Signal.unwrap S'') S''∈canθ-E⟦nothin⟧
... | Signal.absent | [ θS≡absent ] = ⊥-elim (θS≢absent refl)
... | Signal.unknown | [ θS≡unknown ] =
canθₛ-emit-lemma (Env.sig θ) 0 (E ⟦ emit S ⟧e) θ' (Signal.unwrap S) S∈
S∈canθ-r θS≡unknown (Signal.unwrap S'')
(canθₛ-subset-lemma (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*) (Signal.unwrap S'')
S''∈canθ-E⟦nothin⟧)
canθₖ-emit : ∀ {S r E} θ S∈ θ' →
r ≐ E ⟦ emit S ⟧e →
¬ (Env.sig-stats {S} θ S∈ ≡ Signal.absent) →
Signal.unwrap S ∈ Canθₛ (Env.sig θ) 0 r θ' →
∀ k →
k ∈ Canθₖ (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) θ' →
k ∈ Canθₖ (Env.sig θ) 0
r θ'
canθₖ-emit {S} {r} {E} θ S∈ θ' r≐E⟦emitS⟧ θS≢absent S∈canθ-r k k∈canθ'-E⟦nothin⟧
rewrite sym (unplug r≐E⟦emitS⟧)
with Env.sig-stats {S} θ S∈ | inspect (Env.sig-stats {S} θ) S∈
... | Signal.present | [ θS≡present ]
rewrite (sym θS≡present) | sym (SigMap.getput-m S (Env.sig θ) S∈)
= canθₖ-subset-lemma (Env.sig θ) 0 (E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*)
(λ θ* S* → canₖ-term-nothin-lemma θ* E tnothin (temit S) S*)
k k∈canθ'-E⟦nothin⟧
... | Signal.absent | [ θS≡absent ] = ⊥-elim (θS≢absent refl)
... | Signal.unknown | [ θS≡unknown ] =
canθₖ-emit-lemma (Env.sig θ) 0 (E ⟦ emit S ⟧e) θ' (Signal.unwrap S) S∈
S∈canθ-r θS≡unknown k
(canθₖ-subset-lemma (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*)
(λ θ* S* → canₖ-term-nothin-lemma θ* E tnothin (temit S) S*)
k
k∈canθ'-E⟦nothin⟧)
canθₛₕ-emit-lemma : ∀ sigs S'' p θ S S∈ →
(S'' + S) ∈ Canθₛ sigs S'' p θ →
SigMap.lookup {_} {S ₛ} sigs S∈ ≡ Signal.unknown →
∀ s →
s ∈ Canθₛₕ (SigMap.update sigs (S ₛ) Signal.present) S'' p θ →
s ∈ Canθₛₕ sigs S'' p θ
canθₛₕ-emit-lemma [] S'' p θ S () S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
canθₛₕ-emit-lemma (nothing ∷ sigs) S'' p θ zero S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p =
⊥-elim (SigM.0∈S S∈)
canθₛₕ-emit-lemma (nothing ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p θ S (SigM.n∈S {S} {nothing} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
canθₛₕ-emit-lemma (just Signal.present ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
with sigs-S≡unknown
... | ()
canθₛₕ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
with sigs-S≡unknown
... | ()
canθₛₕ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ 0 S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
... | no S''∉canθ-sigs-θ←[S''] rewrite +-comm S'' 0
= ⊥-elim
(S''∉canθ-sigs-θ←[S'']
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
S'' S''+S∈canθ-sigs-p-θ))
... | yes S''∈canθ-sigs-θ↽[S''] =
canθₛₕ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.present
s s∈canθ-θ'-p
canθₛₕ-emit-lemma (just Signal.present ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p (θ ← [S]-env-present (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.present} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
canθₛₕ-emit-lemma (just Signal.absent ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.absent} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
canθₛₕ-emit-lemma (just Signal.unknown ∷ sigs) S'' p θ (suc S) S∈
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← [S]-env (S'' ₛ)))
| any (_≟_ S'') (Canθₛ (SigMap.update sigs (S ₛ) Signal.present) (suc S'') p
(θ ← [S]-env (S'' ₛ)))
... | yes S''∈canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
... | no S''∉canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p (θ ← [S]-env-absent (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s s∈canθ-θ'-p
... | no S''∉canθ-sigs-p-θ←[S''] | yes S''∈canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= ⊥-elim
(S''∉canθ-sigs-p-θ←[S'']
(canθₛ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
(canθₛ-add-sig-monotonic sigs (suc S'') p θ (S'' ₛ) Signal.absent
(suc (S'' + S)) S''+S∈canθ-sigs-p-θ)
sigs-S≡unknown S'' S''∈canθ-θ'-p-θ←[S'']))
... | yes S''∈canθ-sigs-p-θ←[S''] | no S''∉canθ-θ'-p-θ←[S'']
rewrite +-comm S'' (suc S) | +-comm S S''
= canθₛₕ-emit-lemma sigs (suc S'') p (θ ← [S]-env (S'' ₛ)) S
(SigM.n∈S {S} {just Signal.unknown} {sigs} S∈)
S''+S∈canθ-sigs-p-θ sigs-S≡unknown s
(canθₛₕ-add-sig-monotonic
(SigM.m-insert (just Signal.present) S sigs) (suc S'') p θ (S'' ₛ)
Signal.absent s s∈canθ-θ'-p)
canθₛₕ-emit : ∀ {S r E} θ S∈ θ' →
r ≐ E ⟦ emit S ⟧e →
¬ (Env.sig-stats {S} θ S∈ ≡ Signal.absent) →
Signal.unwrap S ∈ Canθₛ (Env.sig θ) 0 r θ' →
∀ s →
SharedVar.unwrap s ∈ Canθₛₕ (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) θ' →
SharedVar.unwrap s ∈ Canθₛₕ (Env.sig θ) 0
r θ'
canθₛₕ-emit {S} {r} {E} θ S∈ θ' r≐E⟦emitS⟧ θS≢absent S∈canθ-r s s∈canθ'-E⟦nothin⟧
rewrite sym (unplug r≐E⟦emitS⟧)
with Env.sig-stats {S} θ S∈ | inspect (Env.sig-stats {S} θ) S∈
... | Signal.present | [ θS≡present ]
rewrite (sym θS≡present) | sym (SigMap.getput-m S (Env.sig θ) S∈)
= canθₛₕ-subset-lemma (Env.sig θ) 0 (E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*)
(λ θ* s* → canₛₕ-emit-lemma S θ* E s*)
(SharedVar.unwrap s) s∈canθ'-E⟦nothin⟧
... | Signal.absent | [ θS≡absent ] = ⊥-elim (θS≢absent refl)
... | Signal.unknown | [ θS≡unknown ] =
canθₛₕ-emit-lemma (Env.sig θ) 0 (E ⟦ emit S ⟧e) θ' (Signal.unwrap S) S∈
S∈canθ-r θS≡unknown (SharedVar.unwrap s)
(canθₛₕ-subset-lemma (Env.sig (Env.set-sig {S} θ S∈ Signal.present)) 0
(E ⟦ nothin ⟧e) (E ⟦ emit S ⟧e) θ'
(λ θ* S* → canₛ-emit-lemma S θ* E S*)
(λ θ* s* → canₛₕ-emit-lemma S θ* E s*)
(SharedVar.unwrap s) s∈canθ'-E⟦nothin⟧)
canₖ-raise-lemma : ∀ {any/shr any/var r p A} θ E →
term-raise any/shr any/var r p →
Canₖ (E ⟦ r ⟧e) θ ≡
Canₖ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ
canₖ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tshared n s e .p)
rewrite can-shr-var-irr p θ (θ ← Θ SigMap.empty any/shr any/var)
(SigMap.union-comm {_} SigMap.empty (Env.sig θ) (λ _ ()))
| set-subtract-[] (Canₛ p (θ ← Θ SigMap.empty any/shr any/var))
= refl
canₖ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tvar n x e .p)
rewrite can-shr-var-irr p θ (θ ← Θ SigMap.empty any/shr any/var)
(SigMap.union-comm {_} SigMap.empty (Env.sig θ) (λ _ ()))
| set-subtract-[] (Canₛ p (θ ← Θ SigMap.empty any/shr any/var))
= refl
canₖ-raise-lemma θ (epar₁ q ∷ E) tr
rewrite canₖ-raise-lemma θ E tr
= refl
canₖ-raise-lemma θ (epar₂ p ∷ E) tr
rewrite canₖ-raise-lemma θ E tr
= refl
canₖ-raise-lemma {any/shr} {any/var} {r} {p} θ (eloopˢ q ∷ E) tr = canₖ-raise-lemma θ E tr
canₖ-raise-lemma {any/shr} {any/var} {r} {p} {A} θ (eseq q ∷ E) tr
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ)
... | no nothin∉can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧ =
canₖ-raise-lemma θ E tr
... | yes nothin∈can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦ρΘp⟧ nothin∈can-E⟦r⟧)
... | no nothin∉can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦r⟧ nothin∈can-E⟦ρΘp⟧)
... | yes nothin∈can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma θ E tr
= refl
canₖ-raise-lemma θ (esuspend S ∷ E) tr =
canₖ-raise-lemma θ E tr
canₖ-raise-lemma θ (etrap ∷ E) tr
rewrite canₖ-raise-lemma θ E tr
= refl
canₛ-raise-lemma : ∀ {any/shr any/var r p A} θ E →
term-raise any/shr any/var r p →
Canₛ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ ≡
Canₛ (E ⟦ r ⟧e) θ
canₛ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tshared n s e .p)
rewrite set-subtract-[] (Canₛ p θ) = refl
canₛ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tvar n x e .p)
rewrite set-subtract-[] (Canₛ p θ) = refl
canₛ-raise-lemma {any/shr} {any/var} {r} {p} {A = A} θ (epar₁ q ∷ E) tr
rewrite canₛ-raise-lemma {any/shr} {any/var} {r} {p} {A = A} θ E tr = refl
canₛ-raise-lemma {A = A} θ (epar₂ p ∷ E) tr
rewrite canₛ-raise-lemma {A = A} θ E tr = refl
canₛ-raise-lemma {any/shr} {any/var} {r} {p} θ (eloopˢ q ∷ E) tr = canₛ-raise-lemma θ E tr
canₛ-raise-lemma {any/shr} {any/var} {r} {p} {A} θ (eseq q ∷ E) tr
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ)
... | no nothin∉can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧ = canₛ-raise-lemma θ E tr
... | yes nothin∈can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦ρΘp⟧ nothin∈can-E⟦r⟧)
... | no nothin∉can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦r⟧ nothin∈can-E⟦ρΘp⟧)
... | yes nothin∈can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
rewrite canₛ-raise-lemma {A = A} θ E tr = refl
canₛ-raise-lemma θ (esuspend S' ∷ E) tr = canₛ-raise-lemma θ E tr
canₛ-raise-lemma θ (etrap ∷ E) tr = canₛ-raise-lemma θ E tr
canθₛ-raise-lemma : ∀ {any/shr any/var r p A} sigs S' θ E →
term-raise any/shr any/var r p →
Canθₛ sigs S' (E ⟦ r ⟧e) θ ≡
Canθₛ sigs S' (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ
canθₛ-raise-lemma [] S' θ E tr = sym (canₛ-raise-lemma θ E tr)
canθₛ-raise-lemma (nothing ∷ sigs) S' = canθₛ-raise-lemma sigs (suc S')
canθₛ-raise-lemma (just Signal.present ∷ sigs) S' θ = canθₛ-raise-lemma sigs (suc S') (θ ← _)
canθₛ-raise-lemma (just Signal.absent ∷ sigs) S' θ = canθₛ-raise-lemma sigs (suc S') (θ ← _)
canθₛ-raise-lemma {any/shr} {any/var} {r} {p} {A} (just Signal.unknown ∷ sigs) S' θ E tr
with any (_≟_ S') (Canθₛ sigs (suc S') (E ⟦ r ⟧e) (θ ← ([S]-env (S' ₛ))))
| any (_≟_ S') (Canθₛ sigs (suc S') (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) (θ ← ([S]-env (S' ₛ))))
... | yes S'∈CanE⟦r⟧ | yes S'∈CanE⟦ρ⟧ = canθₛ-raise-lemma sigs (suc S') (θ ← _) E tr
... | no S'∉CanE⟦r⟧ | no S'∉CanE⟦ρ⟧ = canθₛ-raise-lemma sigs (suc S') (θ ← _) E tr
... | yes S'∈CanE⟦r⟧ | no S'∉CanE⟦ρ⟧
rewrite (canθₛ-raise-lemma {A = A} sigs (suc S') (θ ← ([S]-env (S' ₛ))) E tr)
= ⊥-elim (S'∉CanE⟦ρ⟧ S'∈CanE⟦r⟧)
canθₛ-raise-lemma {any/shr} {any/var} {r} {p} {A = A} (just Signal.unknown ∷ sigs) S' θ E tr | no S'∉CanE⟦r⟧ | yes S'∈CanE⟦ρ⟧
rewrite (canθₛ-raise-lemma {A = A} sigs (suc S') (θ ← ([S]-env (S' ₛ))) E tr)
= ⊥-elim (S'∉CanE⟦r⟧ S'∈CanE⟦ρ⟧)
canθₖ-raise-lemma : ∀ {any/shr any/var r p A} sigs S' θ E →
term-raise any/shr any/var r p →
Canθₖ sigs S' (E ⟦ r ⟧e) θ ≡
Canθₖ sigs S' (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ
canθₖ-raise-lemma [] S' = canₖ-raise-lemma
canθₖ-raise-lemma (nothing ∷ sigs) S' = canθₖ-raise-lemma sigs (suc S')
canθₖ-raise-lemma (just Signal.present ∷ sigs) S' θ = canθₖ-raise-lemma sigs (suc S') (θ ← _)
canθₖ-raise-lemma (just Signal.absent ∷ sigs) S' θ = canθₖ-raise-lemma sigs (suc S') (θ ← _)
canθₖ-raise-lemma {any/shr} {any/var} {r} {p} {A} (just Signal.unknown ∷ sigs) S' θ E tr
with any (_≟_ S') (Canθₛ sigs (suc S') (E ⟦ r ⟧e) (θ ← ([S]-env (S' ₛ))))
| any (_≟_ S') (Canθₛ sigs (suc S') (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) (θ ← ([S]-env (S' ₛ))))
... | yes S'∈CanE⟦r⟧ | yes S'∈CanE⟦ρ⟧ = canθₖ-raise-lemma sigs (suc S') (θ ← _) E tr
... | no S'∉CanE⟦r⟧ | no S'∉CanE⟦ρ⟧ = canθₖ-raise-lemma sigs (suc S') (θ ← _) E tr
... | yes S'∈CanE⟦r⟧ | no S'∉CanE⟦ρ⟧
rewrite (canθₛ-raise-lemma {A = A} sigs (suc S') (θ ← ([S]-env (S' ₛ))) E tr)
= ⊥-elim (S'∉CanE⟦ρ⟧ S'∈CanE⟦r⟧)
canθₖ-raise-lemma {any/shr} {any/var} {r} {p} {A = A} (just Signal.unknown ∷ sigs) S' θ E tr | no S'∉CanE⟦r⟧ | yes S'∈CanE⟦ρ⟧
rewrite (canθₛ-raise-lemma {A = A} sigs (suc S') (θ ← ([S]-env (S' ₛ))) E tr)
= ⊥-elim (S'∉CanE⟦r⟧ S'∈CanE⟦ρ⟧)
canₛ-raise : ∀ {E any/shr any/var r r' p A} θ →
term-raise any/shr any/var r' p →
r ≐ E ⟦ r' ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ →
Signal.unwrap S ∈ Canₛ r θ
canₛ-raise {E} {A = A} θ tr r≐E⟦shared⟧ S S∈
rewrite sym (unplug r≐E⟦shared⟧)
| canₛ-raise-lemma {A = A} θ E tr
= S∈
canₛₕ-raise-lemma : ∀ {any/shr any/var r p A} θ E →
term-raise any/shr any/var r p →
∀ s'' →
s'' ∈ Canₛₕ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ →
s'' ∈ Canₛₕ (E ⟦ r ⟧e) θ
canₛₕ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tshared n s e .p) s'' s''∈can-ρΘp-θ
rewrite ShrMap.keys-1map s (SharedVar.old ,′ n)
| set-subtract-[a]≡set-remove (Canₛₕ p θ) (SharedVar.unwrap s)
= s''∈can-ρΘp-θ
canₛₕ-raise-lemma {any/shr} {any/var} {r} {p} θ [] (tvar n x e .p) s'' s''∈can-ρΘp-θ
rewrite set-subtract-[] (Canₛₕ p θ)
= s''∈can-ρΘp-θ
canₛₕ-raise-lemma {any/shr} {any/var} {r} {p} {A} θ (epar₁ q ∷ E) tr s'' s''∈can-E⟦ρΘp⟧∥q-θ
with ++⁻ (Canₛₕ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ) s''∈can-E⟦ρΘp⟧∥q-θ
... | inj₁ s''∈can-E⟦ρΘp⟧-θ = ++ˡ (canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧-θ)
... | inj₂ s''∈can-q-θ = ++ʳ (Canₛₕ (E ⟦ r ⟧e) θ) s''∈can-q-θ
canₛₕ-raise-lemma θ (epar₂ p ∷ E) tr s'' s''∈can-p∥E⟦ρΘp⟧-θ
with ++⁻ (Canₛₕ p θ) s''∈can-p∥E⟦ρΘp⟧-θ
... | inj₁ s''∈can-p-θ = ++ˡ s''∈can-p-θ
... | inj₂ s''∈can-E⟦ρΘp⟧-θ = ++ʳ (Canₛₕ p θ) (canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧-θ)
canₛₕ-raise-lemma {any/shr} {any/var} {r} {p} θ (eloopˢ q ∷ E) tr s'' s''∈can-E⟦ρΘp⟧>>q-θ = canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧>>q-θ
canₛₕ-raise-lemma {any/shr} {any/var} {r} {p} {A} θ (eseq q ∷ E) tr s'' s''∈can-E⟦ρΘp⟧>>q-θ
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ)
... | no nothin∉can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧ =
canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧>>q-θ
... | yes nothin∈can-E⟦r⟧ | no nothin∉can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦ρΘp⟧ nothin∈can-E⟦r⟧)
... | no nothin∉can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
rewrite canₖ-raise-lemma {any/shr} {any/var} {A = A} θ E tr
= ⊥-elim (nothin∉can-E⟦r⟧ nothin∈can-E⟦ρΘp⟧)
... | yes nothin∈can-E⟦r⟧ | yes nothin∈can-E⟦ρΘp⟧
with ++⁻ (Canₛₕ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ) s''∈can-E⟦ρΘp⟧>>q-θ
... | inj₁ s''∈can-E⟦ρΘp⟧ = ++ˡ (canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧)
... | inj₂ s''∈can-q = ++ʳ (Canₛₕ (E ⟦ r ⟧e) θ) s''∈can-q
canₛₕ-raise-lemma θ (esuspend S' ∷ E) tr s'' s''∈can-E⟦ρΘp⟧-θ =
canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧-θ
canₛₕ-raise-lemma θ (etrap ∷ E) tr s'' s''∈can-E⟦ρΘp⟧-θ =
canₛₕ-raise-lemma θ E tr s'' s''∈can-E⟦ρΘp⟧-θ
canₛₕ-raise : ∀ {E any/shr any/var r r' p A} θ →
term-raise any/shr any/var r' p →
r ≐ E ⟦ r' ⟧e →
∀ s'' →
SharedVar.unwrap s'' ∈ Canₛₕ (E ⟦ ρ⟨ (Θ SigMap.empty any/shr any/var) , A ⟩· p ⟧e) θ →
SharedVar.unwrap s'' ∈ Canₛₕ r θ
canₛₕ-raise {E} θ tr r≐E⟦shared⟧ s'' s''∈
rewrite sym (unplug r≐E⟦shared⟧)
= canₛₕ-raise-lemma θ E tr (SharedVar.unwrap s'') s''∈
canₛ-term-nothin-lemma : ∀ {r} θ E →
term-nothin r →
∀ S →
S ∈ Canₛ (E ⟦ nothin ⟧e) θ →
S ∈ Canₛ (E ⟦ r ⟧e) θ
canₛ-term-nothin-lemma θ [] tn S ()
canₛ-term-nothin-lemma {r} θ (epar₁ q ∷ E) tn S S∈can-E⟦nothin⟧∥q
with ++⁻ (Canₛ (E ⟦ nothin ⟧e) θ) S∈can-E⟦nothin⟧∥q
... | inj₁ S∈can-E⟦nothin⟧ = ++ˡ (canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧)
... | inj₂ S∈can-q = ++ʳ (Canₛ (E ⟦ r ⟧e) θ) S∈can-q
canₛ-term-nothin-lemma θ (epar₂ p ∷ E) tn S S∈can-p∥E⟦nothin⟧
with ++⁻ (Canₛ p θ) S∈can-p∥E⟦nothin⟧
... | inj₁ S∈can-q = ++ˡ S∈can-q
... | inj₂ S∈can-E⟦nothin⟧ =
++ʳ (Canₛ p θ) (canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧)
canₛ-term-nothin-lemma {r} θ (eloopˢ q ∷ E) tn S S∈can-E⟦nothin⟧>>q = canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧>>q
canₛ-term-nothin-lemma {r} θ (eseq q ∷ E) tn S S∈can-E⟦nothin⟧>>q
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ nothin ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
... | yes nothin∈can-E⟦nothin⟧ | no nothin∉can-E⟦r⟧ =
⊥-elim
(nothin∉can-E⟦r⟧
(canₖ-term-nothin-lemma θ E tnothin tn Code.nothin
nothin∈can-E⟦nothin⟧))
... | no nothin∉can-E⟦nothin⟧ | yes nothin∈can-E⟦r⟧ =
⊥-elim
(nothin∉can-E⟦nothin⟧
(canₖ-term-nothin-lemma θ E tn tnothin Code.nothin
nothin∈can-E⟦r⟧))
... | no nothin∉can-E⟦nothin⟧ | no nothin∉can-E⟦s'⇐e⟧ =
canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧>>q
... | yes nothin∈can-E⟦nothin⟧ | yes nothin∈can-E⟦s'⇐e⟧
with ++⁻ (Canₛ (E ⟦ nothin ⟧e) θ) S∈can-E⟦nothin⟧>>q
... | inj₁ S∈can-E⟦nothin⟧ = ++ˡ (canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧)
... | inj₂ S∈can-q = ++ʳ (Canₛ (E ⟦ r ⟧e) θ) S∈can-q
canₛ-term-nothin-lemma θ (esuspend S' ∷ E) tn S S∈can-E⟦nothin⟧ =
canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧
canₛ-term-nothin-lemma θ (etrap ∷ E) tn S S∈can-E⟦nothin⟧ =
canₛ-term-nothin-lemma θ E tn S S∈can-E⟦nothin⟧
canₛ-term-nothin : ∀ {r' E r} θ θ' →
Env.sig θ ≡ Env.sig θ' →
term-nothin r' →
r ≐ E ⟦ r' ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ nothin ⟧e) θ' →
Signal.unwrap S ∈ Canₛ r θ
canₛ-term-nothin {r'} {E} {r} θ θ' θₛ≡θ'ₛ tn r≐E⟦r'⟧ S S∈can-E⟦nothin⟧-θ'
rewrite can-shr-var-irr (E ⟦ nothin ⟧e) θ' θ (sym θₛ≡θ'ₛ)
| sym (unplug r≐E⟦r'⟧)
= canₛ-term-nothin-lemma θ E tn (Signal.unwrap S) S∈can-E⟦nothin⟧-θ'
canₛₕ-term-nothin-lemma : ∀ {r} θ E →
term-nothin r →
∀ S →
S ∈ Canₛₕ (E ⟦ nothin ⟧e) θ →
S ∈ Canₛₕ (E ⟦ r ⟧e) θ
canₛₕ-term-nothin-lemma θ [] tn S ()
canₛₕ-term-nothin-lemma {r} θ (epar₁ q ∷ E) tn s'' s''∈can-E⟦nothin⟧∥q
with ++⁻ (Canₛₕ (E ⟦ nothin ⟧e) θ) s''∈can-E⟦nothin⟧∥q
... | inj₁ s''∈can-E⟦nothin⟧ = ++ˡ (canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧)
... | inj₂ s''∈can-q = ++ʳ (Canₛₕ (E ⟦ r ⟧e) θ) s''∈can-q
canₛₕ-term-nothin-lemma θ (epar₂ p ∷ E) tn s'' s''∈can-p∥E⟦nothin⟧
with ++⁻ (Canₛₕ p θ) s''∈can-p∥E⟦nothin⟧
... | inj₁ s''∈can-q = ++ˡ s''∈can-q
... | inj₂ s''∈can-E⟦nothin⟧ =
++ʳ (Canₛₕ p θ) (canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧)
canₛₕ-term-nothin-lemma {r} θ (eloopˢ q ∷ E) tn s'' s''∈can-E⟦nothin⟧>>q = canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧>>q
canₛₕ-term-nothin-lemma {r} θ (eseq q ∷ E) tn s'' s''∈can-E⟦nothin⟧>>q
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ nothin ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
... | yes nothin∈can-E⟦nothin⟧ | no nothin∉can-E⟦r⟧ =
⊥-elim
(nothin∉can-E⟦r⟧
(canₖ-term-nothin-lemma θ E tnothin tn Code.nothin
nothin∈can-E⟦nothin⟧))
... | no nothin∉can-E⟦nothin⟧ | yes nothin∈can-E⟦r⟧ =
⊥-elim
(nothin∉can-E⟦nothin⟧
(canₖ-term-nothin-lemma θ E tn tnothin Code.nothin
nothin∈can-E⟦r⟧))
... | no nothin∉can-E⟦nothin⟧ | no nothin∉can-E⟦s'⇐e⟧ =
canₛₕ-term-nothin-lemma {r} θ E tn s'' s''∈can-E⟦nothin⟧>>q
... | yes nothin∈can-E⟦nothin⟧ | yes nothin∈can-E⟦s'⇐e⟧
with ++⁻ (Canₛₕ (E ⟦ nothin ⟧e) θ) s''∈can-E⟦nothin⟧>>q
... | inj₁ s''∈can-E⟦nothin⟧ = ++ˡ (canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧)
... | inj₂ s''∈can-q = ++ʳ (Canₛₕ (E ⟦ r ⟧e) θ) s''∈can-q
canₛₕ-term-nothin-lemma θ (esuspend S' ∷ E) tn s'' s''∈can-E⟦nothin⟧ =
canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧
canₛₕ-term-nothin-lemma θ (etrap ∷ E) tn s'' s''∈can-E⟦nothin⟧ =
canₛₕ-term-nothin-lemma θ E tn s'' s''∈can-E⟦nothin⟧
canₛₕ-term-nothin : ∀ {r' E r} θ θ' →
Env.sig θ ≡ Env.sig θ' →
term-nothin r' →
r ≐ E ⟦ r' ⟧e →
∀ s'' →
SharedVar.unwrap s'' ∈ Canₛₕ (E ⟦ nothin ⟧e) θ' →
SharedVar.unwrap s'' ∈ Canₛₕ r θ
canₛₕ-term-nothin {r'} {E} {r} θ θ' θₛ≡θ'ₛ tn r≐E⟦r'⟧ s'' s''∈can-E⟦nothin⟧-θ'
rewrite can-shr-var-irr (E ⟦ nothin ⟧e) θ' θ (sym θₛ≡θ'ₛ)
| sym (unplug r≐E⟦r'⟧)
= canₛₕ-term-nothin-lemma θ E tn (SharedVar.unwrap s'') s''∈can-E⟦nothin⟧-θ'
canₖ-if-true-lemma : ∀ x p q θ E →
∀ k →
k ∈ Canₖ (E ⟦ p ⟧e) θ →
k ∈ Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₖ-if-true-lemma x p q θ [] k k∈can-E⟦p⟧ = ++ˡ k∈can-E⟦p⟧
canₖ-if-true-lemma x p q θ (epar₁ q' ∷ E) k k∈can-E⟦p⟧∥q' =
map-mono² {xs = Canₖ (E ⟦ p ⟧e) θ} Code._⊔_ (canₖ-if-true-lemma x p q θ E) (λ _ → id) k k∈can-E⟦p⟧∥q'
canₖ-if-true-lemma x p q θ (epar₂ p' ∷ E) k k∈can-p'∥E⟦p⟧ =
map-mono² {xs = Canₖ p' θ} Code._⊔_ (λ _ → id) (canₖ-if-true-lemma x p q θ E) k k∈can-p'∥E⟦p⟧
canₖ-if-true-lemma x p q θ (eloopˢ q' ∷ E) k k∈can-E⟦p⟧>>q' = canₖ-if-true-lemma x p q θ E k k∈can-E⟦p⟧>>q'
canₖ-if-true-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦p⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ p ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
canₖ-if-true-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦p⟧>>q'
| yes nothin∈can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-true-lemma x p q θ E Code.nothin nothin∈can-E⟦p⟧))
canₖ-if-true-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦p⟧>>q'
| no nothin∉can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
canₖ-if-true-lemma x p q θ E k k∈can-E⟦p⟧>>q'
canₖ-if-true-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦p⟧>>q'
| no nothin∉can-E⟦p⟧ | yes nothin∈can-E⟦if⟧
with Code.nothin Code.≟ k
... | yes refl = ⊥-elim (nothin∉can-E⟦p⟧ k∈can-E⟦p⟧>>q')
... | no nothin≢k =
++ˡ
(CodeSet.set-remove-not-removed nothin≢k
(canₖ-if-true-lemma x p q θ E k
k∈can-E⟦p⟧>>q'))
canₖ-if-true-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦p⟧>>q'
| yes nothin∈can-E⟦p⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (CodeSet.set-remove (Canₖ (E ⟦ p ⟧e) θ) Code.nothin) k∈can-E⟦p⟧>>q'
... | inj₂ k∈can-q' = ++ʳ (CodeSet.set-remove (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) Code.nothin) k∈can-q'
... | inj₁ k∈can-E⟦p⟧-nothin
with Code.nothin Code.≟ k
... | yes refl = ⊥-elim (CodeSet.set-remove-removed {Code.nothin} {Canₖ (E ⟦ p ⟧e) θ} k∈can-E⟦p⟧-nothin)
... | no nothin≢k =
++ˡ
(CodeSet.set-remove-not-removed nothin≢k
(canₖ-if-true-lemma x p q θ E k
(CodeSet.set-remove-mono-∈ Code.nothin
k∈can-E⟦p⟧-nothin)))
canₖ-if-true-lemma x p q θ (esuspend S' ∷ E) k k∈can-E⟦p⟧ =
canₖ-if-true-lemma x p q θ E k k∈can-E⟦p⟧
canₖ-if-true-lemma x p q θ (etrap ∷ E) k k∈can-E⟦p⟧ =
map-mono Code.↓* (canₖ-if-true-lemma x p q θ E) k k∈can-E⟦p⟧
canₖ-if-false-lemma : ∀ x p q θ E →
∀ k →
k ∈ Canₖ (E ⟦ q ⟧e) θ →
k ∈ Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₖ-if-false-lemma x p q θ [] k k∈can-E⟦q⟧ = ++ʳ (Canₖ p θ) k∈can-E⟦q⟧
canₖ-if-false-lemma x p q θ (epar₁ q' ∷ E) k k∈can-E⟦q⟧∥q' =
map-mono² {xs = Canₖ (E ⟦ q ⟧e) θ} Code._⊔_ (canₖ-if-false-lemma x p q θ E) (λ _ → id) k k∈can-E⟦q⟧∥q'
canₖ-if-false-lemma x p q θ (epar₂ p' ∷ E) k k∈can-p'∥E⟦q⟧ =
map-mono² {xs = Canₖ p' θ} Code._⊔_ (λ _ → id) (canₖ-if-false-lemma x p q θ E) k k∈can-p'∥E⟦q⟧
canₖ-if-false-lemma x p q θ (eloopˢ q' ∷ E) k k∈can-E⟦q⟧>>q' = canₖ-if-false-lemma x p q θ E k k∈can-E⟦q⟧>>q'
canₖ-if-false-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦q⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ q ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
canₖ-if-false-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦q⟧>>q'
| yes nothin∈can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-false-lemma x p q θ E Code.nothin nothin∈can-E⟦q⟧))
canₖ-if-false-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦q⟧>>q'
| no nothin∉can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
canₖ-if-false-lemma x p q θ E k k∈can-E⟦q⟧>>q'
canₖ-if-false-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦q⟧>>q'
| no nothin∉can-E⟦q⟧ | yes nothin∈can-E⟦if⟧
with Code.nothin Code.≟ k
... | yes refl = ⊥-elim (nothin∉can-E⟦q⟧ k∈can-E⟦q⟧>>q')
... | no nothin≢k =
++ˡ
(CodeSet.set-remove-not-removed nothin≢k
(canₖ-if-false-lemma x p q θ E k
k∈can-E⟦q⟧>>q'))
canₖ-if-false-lemma x p q θ (eseq q' ∷ E) k k∈can-E⟦q⟧>>q'
| yes nothin∈can-E⟦q⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (CodeSet.set-remove (Canₖ (E ⟦ q ⟧e) θ) Code.nothin) k∈can-E⟦q⟧>>q'
... | inj₂ k∈can-q' = ++ʳ (CodeSet.set-remove (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) Code.nothin) k∈can-q'
... | inj₁ k∈can-E⟦q⟧-nothin
with Code.nothin Code.≟ k
... | yes refl = ⊥-elim (CodeSet.set-remove-removed {Code.nothin} {Canₖ (E ⟦ q ⟧e) θ} k∈can-E⟦q⟧-nothin)
... | no nothin≢k =
++ˡ
(CodeSet.set-remove-not-removed nothin≢k
(canₖ-if-false-lemma x p q θ E k
(CodeSet.set-remove-mono-∈ Code.nothin
k∈can-E⟦q⟧-nothin)))
canₖ-if-false-lemma x p q θ (esuspend S' ∷ E) k k∈can-E⟦q⟧ =
canₖ-if-false-lemma x p q θ E k k∈can-E⟦q⟧
canₖ-if-false-lemma x p q θ (etrap ∷ E) k k∈can-E⟦q⟧ =
map-mono Code.↓* (canₖ-if-false-lemma x p q θ E) k k∈can-E⟦q⟧
canθₖ-if-false-lemma : ∀ sig S → ∀ x p q θ E →
∀ k →
k ∈ Canθₖ sig S (E ⟦ q ⟧e) θ →
k ∈ Canθₖ sig S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₖ-if-false-lemma sig S x p q θ E =
(canθₖ-plugE S sig E (if x ∣⇒ p ∣⇒ q) q (λ θ₁ k x₁ → ++ʳ (Canₖ p θ₁) x₁) ((λ θ₁ k x₁ → ++ʳ (Canₛ p θ₁) x₁)) θ)
canθₖ-if-true-lemma : ∀ sig S → ∀ x p q θ E →
∀ k →
k ∈ Canθₖ sig S (E ⟦ p ⟧e) θ →
k ∈ Canθₖ sig S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₖ-if-true-lemma sig S x p q θ E =
(canθₖ-plugE S sig E (if x ∣⇒ p ∣⇒ q) p (λ θ₁ k x₁ → ++ˡ x₁) ((λ θ₁ k x₁ → ++ˡ x₁)) θ)
canθₛ-if-false-lemma : ∀ sig S → ∀ x p q θ E →
∀ S' →
S' ∈ Canθₛ sig S (E ⟦ q ⟧e) θ →
S' ∈ Canθₛ sig S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₛ-if-false-lemma sig S x p q θ E =
(canθₛ-plugE S sig E (if x ∣⇒ p ∣⇒ q) q (λ θ₁ k x₁ → ++ʳ (Canₛ p θ₁) x₁) ((λ θ₁ k x₁ → ++ʳ (Canₖ p θ₁) x₁)) θ)
canθₛ-if-true-lemma : ∀ sig S → ∀ x p q θ E →
∀ S' →
S' ∈ Canθₛ sig S (E ⟦ p ⟧e) θ →
S' ∈ Canθₛ sig S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₛ-if-true-lemma sig S x p q θ E =
(canθₛ-plugE S sig E (if x ∣⇒ p ∣⇒ q) p (λ θ₁ k x₁ → ++ˡ x₁) ((λ θ₁ k x₁ → ++ˡ x₁)) θ)
canθₛₕ-if-true-lemma : ∀ sigs S → ∀ x p q θ E →
∀ s →
s ∈ Canθₛₕ sigs S (E ⟦ p ⟧e) θ →
s ∈ Canθₛₕ sigs S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₛₕ-if-true-lemma sig S x p q θ E = (canθₛₕ-plugE S sig E (if x ∣⇒ p ∣⇒ q) p (λ θ₁ k x₁ → ++ˡ x₁) ((λ θ₁ k x₁ → ++ˡ x₁)) ((λ θ₁ k x₁ → ++ˡ x₁)) θ)
canθₛₕ-if-false-lemma : ∀ sigs S → ∀ x p q θ E →
∀ s →
s ∈ Canθₛₕ sigs S (E ⟦ q ⟧e) θ →
s ∈ Canθₛₕ sigs S (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canθₛₕ-if-false-lemma sig S x p q θ E
= (canθₛₕ-plugE S sig E (if x ∣⇒ p ∣⇒ q) q (λ θ₁ k x₁ → ++ʳ (Canₛₕ p θ₁) x₁) ((λ θ₁ k x₁ → ++ʳ ((Canₖ p θ₁)) x₁)) ((λ θ₁ k x₁ → ++ʳ ((Canₛ p θ₁)) x₁)) θ)
canₛ-if-true-lemma : ∀ x p q θ E →
∀ S →
S ∈ Canₛ (E ⟦ p ⟧e) θ →
S ∈ Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₛ-if-true-lemma x p q θ [] S S∈can-E⟦p⟧ = ++ˡ S∈can-E⟦p⟧
canₛ-if-true-lemma x p q θ (epar₁ q' ∷ E) S S∈can-E⟦p⟧∥q'
with ++⁻ (Canₛ (E ⟦ p ⟧e) θ) S∈can-E⟦p⟧∥q'
... | inj₁ S∈can-E⟦p⟧ = ++ˡ (canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧)
... | inj₂ S∈can-q' = ++ʳ (Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) S∈can-q'
canₛ-if-true-lemma x p q θ (epar₂ p' ∷ E) S S∈can-p'∥E⟦p⟧
with ++⁻ (Canₛ p' θ) S∈can-p'∥E⟦p⟧
... | inj₁ S∈can-p' = ++ˡ S∈can-p'
... | inj₂ S∈can-E⟦p⟧ = ++ʳ (Canₛ p' θ) (canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧)
canₛ-if-true-lemma x p q θ (eloopˢ q' ∷ E) S S∈can-E⟦p⟧>>q' = canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧>>q'
canₛ-if-true-lemma x p q θ (eseq q' ∷ E) S S∈can-E⟦p⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ p ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
... | yes nothin∈can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-true-lemma x p q θ E Code.nothin nothin∈can-E⟦p⟧))
... | no nothin∉can-E⟦p⟧ | yes nothin∈can-E⟦if⟧ =
++ˡ (canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧>>q')
... | no nothin∉can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧>>q'
... | yes nothin∈can-E⟦p⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (Canₛ (E ⟦ p ⟧e) θ) S∈can-E⟦p⟧>>q'
... | inj₁ S∈can-E⟦p⟧ = ++ˡ (canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧)
... | inj₂ S∈can-q' = ++ʳ (Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) S∈can-q'
canₛ-if-true-lemma x p q θ (esuspend S' ∷ E) S S∈can-E⟦p⟧ =
canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧
canₛ-if-true-lemma x p q θ (etrap ∷ E) S S∈can-E⟦p⟧ =
canₛ-if-true-lemma x p q θ E S S∈can-E⟦p⟧
canₛ-if-true : ∀ {x p q E r} θ →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ p ⟧e) θ →
Signal.unwrap S ∈ Canₛ r θ
canₛ-if-true {x} {p} {q} {E} θ r≐E⟦if⟧ S S∈can-E⟦p⟧
rewrite sym (unplug r≐E⟦if⟧)
= canₛ-if-true-lemma x p q θ E (Signal.unwrap S) S∈can-E⟦p⟧
canₛ-if-false-lemma : ∀ x p q θ E →
∀ S →
S ∈ Canₛ (E ⟦ q ⟧e) θ →
S ∈ Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₛ-if-false-lemma x p q θ [] S S∈can-E⟦q⟧ = ++ʳ (Canₛ p θ) S∈can-E⟦q⟧
canₛ-if-false-lemma x p q θ (epar₁ q' ∷ E) S S∈can-E⟦q⟧∥q'
with ++⁻ (Canₛ (E ⟦ q ⟧e) θ) S∈can-E⟦q⟧∥q'
... | inj₁ S∈can-E⟦q⟧ = ++ˡ (canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧)
... | inj₂ S∈can-q' = ++ʳ (Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) S∈can-q'
canₛ-if-false-lemma x p q θ (epar₂ p' ∷ E) S S∈can-p'∥E⟦q⟧
with ++⁻ (Canₛ p' θ) S∈can-p'∥E⟦q⟧
... | inj₁ S∈can-p' = ++ˡ S∈can-p'
... | inj₂ S∈can-E⟦q⟧ = ++ʳ (Canₛ p' θ) (canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧)
canₛ-if-false-lemma x p q θ (eloopˢ q' ∷ E) S S∈can-E⟦q⟧>>q' = canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧>>q'
canₛ-if-false-lemma x p q θ (eseq q' ∷ E) S S∈can-E⟦q⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ q ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
... | yes nothin∈can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-false-lemma x p q θ E Code.nothin nothin∈can-E⟦q⟧))
... | no nothin∉can-E⟦q⟧ | yes nothin∈can-E⟦if⟧ =
++ˡ (canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧>>q')
... | no nothin∉can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧>>q'
... | yes nothin∈can-E⟦q⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (Canₛ (E ⟦ q ⟧e) θ) S∈can-E⟦q⟧>>q'
... | inj₁ S∈can-E⟦q⟧ = ++ˡ (canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧)
... | inj₂ S∈can-q' = ++ʳ (Canₛ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) S∈can-q'
canₛ-if-false-lemma x p q θ (esuspend S' ∷ E) S S∈can-E⟦q⟧ =
canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧
canₛ-if-false-lemma x p q θ (etrap ∷ E) S S∈can-E⟦q⟧ =
canₛ-if-false-lemma x p q θ E S S∈can-E⟦q⟧
canₛ-if-false : ∀ {x p q E r} θ →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
∀ S →
Signal.unwrap S ∈ Canₛ (E ⟦ q ⟧e) θ →
Signal.unwrap S ∈ Canₛ r θ
canₛ-if-false {x} {p} {q} {E} θ r≐E⟦if⟧ S S∈can-E⟦q⟧
rewrite sym (unplug r≐E⟦if⟧)
= canₛ-if-false-lemma x p q θ E (Signal.unwrap S) S∈can-E⟦q⟧
canₛₕ-if-true-lemma : ∀ x p q θ E →
∀ S →
S ∈ Canₛₕ (E ⟦ p ⟧e) θ →
S ∈ Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₛₕ-if-true-lemma x p q θ [] s s∈can-E⟦p⟧ = ++ˡ s∈can-E⟦p⟧
canₛₕ-if-true-lemma x p q θ (epar₁ q' ∷ E) s s∈can-E⟦p⟧∥q'
with ++⁻ (Canₛₕ (E ⟦ p ⟧e) θ) s∈can-E⟦p⟧∥q'
... | inj₁ s∈can-E⟦p⟧ = ++ˡ (canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧)
... | inj₂ s∈can-q' = ++ʳ (Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) s∈can-q'
canₛₕ-if-true-lemma x p q θ (epar₂ p' ∷ E) s s∈can-p'∥E⟦p⟧
with ++⁻ (Canₛₕ p' θ) s∈can-p'∥E⟦p⟧
... | inj₁ s∈can-p' = ++ˡ s∈can-p'
... | inj₂ s∈can-E⟦p⟧ = ++ʳ (Canₛₕ p' θ) (canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧)
canₛₕ-if-true-lemma x p q θ (eloopˢ q' ∷ E) s s∈can-E⟦p⟧>>q' = canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧>>q'
canₛₕ-if-true-lemma x p q θ (eseq q' ∷ E) s s∈can-E⟦p⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ p ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
... | yes nothin∈can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-true-lemma x p q θ E Code.nothin nothin∈can-E⟦p⟧))
... | no nothin∉can-E⟦p⟧ | yes nothin∈can-E⟦if⟧ =
++ˡ (canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧>>q')
... | no nothin∉can-E⟦p⟧ | no nothin∉can-E⟦if⟧ =
canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧>>q'
... | yes nothin∈can-E⟦p⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (Canₛₕ (E ⟦ p ⟧e) θ) s∈can-E⟦p⟧>>q'
... | inj₁ s∈can-E⟦p⟧ = ++ˡ (canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧)
... | inj₂ s∈can-q' = ++ʳ (Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) s∈can-q'
canₛₕ-if-true-lemma x p q θ (esuspend S' ∷ E) s s∈can-E⟦p⟧ =
canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧
canₛₕ-if-true-lemma x p q θ (etrap ∷ E) s s∈can-E⟦p⟧ =
canₛₕ-if-true-lemma x p q θ E s s∈can-E⟦p⟧
canₛₕ-if-true : ∀ {x p q E r} θ →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
∀ s →
SharedVar.unwrap s ∈ Canₛₕ (E ⟦ p ⟧e) θ →
SharedVar.unwrap s ∈ Canₛₕ r θ
canₛₕ-if-true {x} {p} {q} {E} θ r≐E⟦if⟧ s s∈can-E⟦p⟧
rewrite sym (unplug r≐E⟦if⟧)
= canₛₕ-if-true-lemma x p q θ E (SharedVar.unwrap s) s∈can-E⟦p⟧
canₛₕ-if-false-lemma : ∀ x p q θ E →
∀ S →
S ∈ Canₛₕ (E ⟦ q ⟧e) θ →
S ∈ Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ
canₛₕ-if-false-lemma x p q θ [] s s∈can-E⟦q⟧ = ++ʳ (Canₛₕ p θ) s∈can-E⟦q⟧
canₛₕ-if-false-lemma x p q θ (epar₁ q' ∷ E) s s∈can-E⟦q⟧∥q'
with ++⁻ (Canₛₕ (E ⟦ q ⟧e) θ) s∈can-E⟦q⟧∥q'
... | inj₁ s∈can-E⟦q⟧ = ++ˡ (canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧)
... | inj₂ s∈can-q' = ++ʳ (Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) s∈can-q'
canₛₕ-if-false-lemma x p q θ (epar₂ p' ∷ E) s s∈can-p'∥E⟦q⟧
with ++⁻ (Canₛₕ p' θ) s∈can-p'∥E⟦q⟧
... | inj₁ s∈can-p' = ++ˡ s∈can-p'
... | inj₂ s∈can-E⟦q⟧ = ++ʳ (Canₛₕ p' θ) (canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧)
canₛₕ-if-false-lemma x p q θ (eloopˢ q' ∷ E) s s∈can-E⟦q⟧>>q' = canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧>>q'
canₛₕ-if-false-lemma x p q θ (eseq q' ∷ E) s s∈can-E⟦q⟧>>q'
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ q ⟧e) θ)
| any (Code._≟_ Code.nothin) (Canₖ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ)
... | yes nothin∈can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
⊥-elim (nothin∉can-E⟦if⟧ (canₖ-if-false-lemma x p q θ E Code.nothin nothin∈can-E⟦q⟧))
... | no nothin∉can-E⟦q⟧ | yes nothin∈can-E⟦if⟧ =
++ˡ (canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧>>q')
... | no nothin∉can-E⟦q⟧ | no nothin∉can-E⟦if⟧ =
canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧>>q'
... | yes nothin∈can-E⟦q⟧ | yes nothin∈can-E⟦if⟧
with ++⁻ (Canₛₕ (E ⟦ q ⟧e) θ) s∈can-E⟦q⟧>>q'
... | inj₁ s∈can-E⟦q⟧ = ++ˡ (canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧)
... | inj₂ s∈can-q' = ++ʳ (Canₛₕ (E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) θ) s∈can-q'
canₛₕ-if-false-lemma x p q θ (esuspend S' ∷ E) s s∈can-E⟦q⟧ =
canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧
canₛₕ-if-false-lemma x p q θ (etrap ∷ E) s s∈can-E⟦q⟧ =
canₛₕ-if-false-lemma x p q θ E s s∈can-E⟦q⟧
canₛₕ-if-false : ∀ {x p q E r} θ →
r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e →
∀ s →
SharedVar.unwrap s ∈ Canₛₕ (E ⟦ q ⟧e) θ →
SharedVar.unwrap s ∈ Canₛₕ r θ
canₛₕ-if-false {x} {p} {q} {E} θ r≐E⟦if⟧ s s∈can-E⟦q⟧
rewrite sym (unplug r≐E⟦if⟧)
= canₛₕ-if-false-lemma x p q θ E (SharedVar.unwrap s) s∈can-E⟦q⟧
canθₛ-set-sig-monotonic-absence-lemma : ∀ sigs S'' →
∀ p S θ S∈ →
SigMap.lookup{_}{S} sigs S∈ ≡ Signal.unknown →
∀ S' →
S' ∈ Canθₛ (SigMap.update{_} sigs S Signal.absent) S'' p θ →
S' ∈ Canθₛ sigs S'' p θ
canθₛ-set-sig-monotonic-absence-lemma [] S'' p (S ₛ) θ () status eq
canθₛ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (zero ₛ) θ S∈ eq = ⊥-elim (SigM.0∈S S∈)
canθₛ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₛ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₛ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (zero ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | no S∉Cansigs = λ k z → z
... | yes S∈Cansigs
with canθₛ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
... | r rewrite
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= r
canθₛ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) θ ((SigM.n∈S{S}{nothing}{sigs} S∈)) eq
canθₛ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.present}{sigs} S∈)) eq
canθₛ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.absent}{sigs} S∈)) eq
canθₛ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
| any (_≟_ S'') (Canθₛ (SigMap.update{_} sigs (S ₛ) Signal.absent) (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | yes S∈Cansigs | yes S∈Cansigs←a
= canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | no S∉Cansigs←a
= canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | yes S∈Cansigs←a
= ⊥-elim (S∉Cansigs (canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq S'' S∈Cansigs←a))
... | yes S∈Cansigs | no S∉Cansigs←a
with (canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq)
... | r rewrite
sym
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= λ k k∈ → canθₛ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ))
((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent
((Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
k (r k k∈)
canθₖ-set-sig-monotonic-absence-lemma : ∀ sigs S'' →
∀ p S θ S∈ →
SigMap.lookup{_}{S} sigs S∈ ≡ Signal.unknown →
∀ k →
k ∈ Canθₖ (SigMap.update{_} sigs S Signal.absent) S'' p θ →
k ∈ Canθₖ sigs S'' p θ
canθₖ-set-sig-monotonic-absence-lemma [] S'' p (x ₛ) θ () eq
canθₖ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (zero ₛ) θ S∈ status eq = ⊥-elim (SigM.0∈S S∈)
canθₖ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₖ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₖ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (zero ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | no S∉Cansigs = λ k z → z
... | yes S∈Cansigs
with canθₖ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
... | r rewrite
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= r
canθₖ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) θ ((SigM.n∈S{S}{nothing}{sigs} S∈)) eq
canθₖ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.present}{sigs} S∈)) eq
canθₖ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.absent}{sigs} S∈)) eq
canθₖ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
| any (_≟_ S'') (Canθₛ (SigMap.update{_} sigs (S ₛ) Signal.absent) (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | yes S∈Cansigs | yes S∈Cansigs←a
= canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | no S∉Cansigs←a
= canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | yes S∈Cansigs←a
= ⊥-elim (S∉Cansigs (canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq S'' S∈Cansigs←a))
... | yes S∈Cansigs | no S∉Cansigs←a
with (canθₖ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq)
... | r rewrite
sym
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= λ k k∈ → canθₖ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ))
((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent
((Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
k (r k k∈)
canθₛₕ-set-sig-monotonic-absence-lemma : ∀ sigs S'' →
∀ p S θ S∈ →
SigMap.lookup{_}{S} sigs S∈ ≡ Signal.unknown →
∀ s →
s ∈ Canθₛₕ (SigMap.update{_} sigs S Signal.absent) S'' p θ →
s ∈ Canθₛₕ sigs S'' p θ
canθₛₕ-set-sig-monotonic-absence-lemma [] S'' p (x ₛ) θ () eq
canθₛₕ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (zero ₛ) θ S∈ status eq = ⊥-elim (SigM.0∈S S∈)
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (zero ₛ) θ S∈ ()
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (zero ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | no S∉Cansigs = λ k z → z
... | yes S∈Cansigs
with canθₛₕ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ)) (Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
... | r rewrite
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= r
canθₛₕ-set-sig-monotonic-absence-lemma (nothing ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) θ ((SigM.n∈S{S}{nothing}{sigs} S∈)) eq
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.present ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.present}{sigs} S∈)) eq
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.absent ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
= canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← _) ((SigM.n∈S{S}{just Signal.absent}{sigs} S∈)) eq
canθₛₕ-set-sig-monotonic-absence-lemma (just Signal.unknown ∷ sigs) S'' p (suc S ₛ) θ S∈ eq
with any (_≟_ S'') (Canθₛ sigs (suc S'') p (θ ← ([S]-env (S'' ₛ))))
| any (_≟_ S'') (Canθₛ (SigMap.update{_} sigs (S ₛ) Signal.absent) (suc S'') p (θ ← ([S]-env (S'' ₛ))))
... | yes S∈Cansigs | yes S∈Cansigs←a
= canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | no S∉Cansigs←a
= canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq
... | no S∉Cansigs | yes S∈Cansigs←a
= ⊥-elim (S∉Cansigs (canθₛ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq S'' S∈Cansigs←a))
... | yes S∈Cansigs | no S∉Cansigs←a
with (canθₛₕ-set-sig-monotonic-absence-lemma sigs (suc S'') p (S ₛ) (θ ← [S]-env-absent (S'' ₛ)) ((SigM.n∈S{S}{just Signal.unknown}{sigs} S∈)) eq)
... | r rewrite
sym
(begin
(Env.set-sig{(S'' ₛ)} (θ ← [S]-env (S'' ₛ)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent)
≡⟨ sym (Env.sig-switch-right (S'' ₛ) Signal.absent θ ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))) ⟩
(θ ← (Env.set-sig{(S'' ₛ)} ([S]-env (S'' ₛ)) ((Env.sig-∈-single (S'' ₛ) Signal.unknown)) Signal.absent))
≡⟨ cong (_←_ θ) (Env.sig-put-1map-overwrite' (S'' ₛ) Signal.unknown Signal.absent ((Env.sig-∈-single (S'' ₛ) Signal.unknown))) ⟩
(θ ← [S]-env-absent (S'' ₛ)) ∎)
= λ k k∈ → canθₛₕ-set-sig-monotonic sigs (suc S'') p (S'' ₛ) (θ ← [S]-env (S'' ₛ))
((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ)) Signal.absent
((Env.sig-stats-1map-right-← (S'' ₛ) Signal.unknown θ ((Env.sig-∈-single-right-← (S'' ₛ) Signal.unknown θ))))
(n∉map-suc-n-+ S'' (SigM.Dom' sigs))
k (r k k∈)
canθₖ-term-nothin-lemma : ∀ sigs S' → ∀ {r} θ E →
term-nothin r →
∀ k →
k ∈ Canθₖ sigs S' (E ⟦ nothin ⟧e) θ →
k ∈ Canθₖ sigs S' (E ⟦ r ⟧e) θ
canθₖ-term-nothin-lemma sigs S' {r} θ E tr
= canθₖ-subset-lemma sigs S' (E ⟦ nothin ⟧e) (E ⟦ r ⟧e) θ
(λ θ' S x → canₛ-term-nothin-lemma θ' E tr S x)
(λ θ → canₖ-term-nothin-lemma θ E tnothin tr)
canθₛ-term-nothin-lemma : ∀ sigs S' → ∀ {r} θ E →
term-nothin r →
∀ S →
S ∈ Canθₛ sigs S' (E ⟦ nothin ⟧e) θ →
S ∈ Canθₛ sigs S' (E ⟦ r ⟧e) θ
canθₛ-term-nothin-lemma sigs S' {r} θ E tr
= canθₛ-subset-lemma sigs S' (E ⟦ nothin ⟧e) (E ⟦ r ⟧e) θ (λ θ' S x → canₛ-term-nothin-lemma θ' E tr S x)
|
{
"alphanum_fraction": 0.5409799236,
"avg_line_length": 48.3346495558,
"ext": "agda",
"hexsha": "fdac92bf3823b2be1d33c17bfa2447cd98e8b642",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/CanFunction/NonMergePotentialRules.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/CanFunction/NonMergePotentialRules.agda",
"max_line_length": 184,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/CanFunction/NonMergePotentialRules.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 50568,
"size": 97926
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Quadricity
open import Oscar.Class.Injectivity
open import Oscar.Class.Congruity
open import Oscar.Class.Leftstar
open import Oscar.Class.Properthing
open import Oscar.Class.Smap
open import Oscar.Class.Symmetry
open import Oscar.Data.Fin
open import Oscar.Data.Substitunction
open import Oscar.Data.Term
open import Oscar.Data.Surjcollation
open import Oscar.Data.Surjextenscollation
open import Oscar.Data.Proposequality
open import Oscar.Property.Setoid.Proposequality
open import Oscar.Property.Setoid.Proposextensequality
open import Oscar.Property.Functor.SubstitunctionExtensionTerm
open import Oscar.Property.Thickandthin.FinTermProposequalityMaybeProposequality
import Oscar.Class.Congruity.Proposequality
import Oscar.Class.Congruity.Proposextensequality
import Oscar.Class.Surjection.⋆
open import Oscar.Property.Setoid.ṖropertyEquivalence
import Oscar.Class.Properthing.Ṗroperty
open import Oscar.Data.ProductIndexEquivalence
import Oscar.Data.ExtensionṖroperty
open import Oscar.Data.ProperlyExtensionNothing
import Oscar.Class.Properthing.ExtensionṖroperty
import Oscar.Class.Smap.TransitiveExtensionLeftṖroperty
import Oscar.Class.Smap.ExtensionṖroperty
import Oscar.Class.[ExtensibleType].Proposequality
import Oscar.Class.HasEquivalence.ExtensionṖroperty
import Oscar.Class.HasEquivalence.Ṗroperty
import Oscar.Class.HasEquivalence.Substitunction
open import Oscar.Class.Reflexivity
open import Oscar.Class.Similarity
open import Oscar.Class.Quadricity
open import Oscar.Class.Surjection
open import Oscar.Class.Leftunit
module Oscar.Property.Propergroup.Substitunction where
module _
{𝔭} {𝔓 : Ø 𝔭}
{ℓ : Ł}
where
open Substitunction 𝔓
instance
𝓢urjectextenscongruityArrowṖropertySubstitunction : Similarity,smaphomarrow!.class Substitunction (LeftṖroperty ℓ Substitunction) _≈_
𝓢urjectextenscongruityArrowṖropertySubstitunction .⋆ _ (∁ P⇔Q) .π₀ = P⇔Q
𝓢urjectextenscongruityArrowExtensionṖropertySubstitunction : Similarity,smaphomarrow!.class Substitunction (LeftExtensionṖroperty ℓ Substitunction _≈_) _≈_
𝓢urjectextenscongruityArrowExtensionṖropertySubstitunction .⋆ _ (∁ (∁ P⇔Q)) .π₀ = ∁ P⇔Q -- P⇔Q
module _
{𝔭} {𝔓 : Ø 𝔭}
where
open Term 𝔓
module S = Surjcollation (Arrow Fin Term) _≡_
module Ṡ = Surjextenscollation (Arrow Fin Term) _≡̇_
instance
𝒫roperfact1UnifiesSubstitunctionFork : ∀ {n} → Properfact1.class S._⟹_ (_fork_ {n = n})
𝒫roperfact1UnifiesSubstitunctionFork .⋆ _ _ _ _ .π₀ = (λ s≡t → injectivity₂,₀,₁ s≡t , injectivity₂,₀,₂ s≡t) , uncurry (congruity₂ _fork_)
𝒫roperfact1ExtensionalUnifiesSubstitunctionFork : ∀ {n} → Properfact1.class Ṡ._⟹_ (_fork_ {n = n})
𝒫roperfact1ExtensionalUnifiesSubstitunctionFork .⋆ _ _ _ _ .π₀ .π₀ = (λ s≡t → injectivity₂,₀,₁ s≡t , injectivity₂,₀,₂ s≡t) , uncurry (congruity₂ _fork_)
instance
𝓕actsurj3Regular : ∀ {ℓ} → Leftunit,equivalence,smaphomarrow!.class (Arrow Fin Term) (LeftṖroperty ℓ (Arrow Fin Term))
𝓕actsurj3Regular .⋆ .π₀ = ¡ , ¡
𝓕actsurj3Extension : ∀ {ℓ} → Leftunit,smaphomarrow.class (Arrow Fin Term) (LeftExtensionṖroperty ℓ (Arrow Fin Term) (Pointwise Proposequality)) ε surjection smaparrow _≈_
𝓕actsurj3Extension .⋆ .π₀ .π₀ = ¡ , ¡
open Substitunction 𝔓
instance
𝓕actsurj4Regular : ∀ {ℓ} → Leftstar,smaphomarrow!.class (LeftṖroperty ℓ (Arrow Fin Term)) (Arrow Fin Term) Nothing
𝓕actsurj4Regular .⋆ _ (∁ nop) .π₀ = nop
𝓕actsurj4Extension : ∀ {ℓ} → Leftstar,smaphomarrow!.class (LeftExtensionṖroperty ℓ Substitunction (Pointwise Proposequality)) (Arrow Fin Term) Nothing
𝓕actsurj4Extension .⋆ _ (∁ nop) .π₀ = nop
instance
𝓕actsurj6Extension : ∀ {ℓ} → Similarity,cosmaphomarrow!.class Substitunction (ArrowExtensionṖroperty ℓ Fin Term Proposequality) _≈_ _≈_
𝓕actsurj6Extension .⋆ P f≐g .π₀ .π₀ {f = h} = π₁ P (congruity (smap h) ∘ f≐g) , π₁ P (symmetry (congruity (smap h) ∘ f≐g)) -- FIXME replacing symmetry with Sym.[] fails
|
{
"alphanum_fraction": 0.7787893701,
"avg_line_length": 41.8969072165,
"ext": "agda",
"hexsha": "b822128926ba04e47489945e6aa813f0d966ab46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Propergroup/Substitunction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Propergroup/Substitunction.agda",
"max_line_length": 175,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Propergroup/Substitunction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1380,
"size": 4064
}
|
-- Andreas, 2014-06-27
-- {-# OPTIONS -v tc.lhs:40 #-}
{-# OPTIONS --copatterns #-}
record Coind : Set where
coinductive
field ind : Coind
open Coind
loop : Set -> Coind
ind A (loop B) = ind (loop A)
-- WAS: Internal error.
-- NOW: Proper error.
-- Cannot eliminate type Coind with pattern ind A (did you supply too many arguments?)
-- when checking that the clause ind A (loop B) = ind (loop A) has
-- type Set → Coind
|
{
"alphanum_fraction": 0.6573426573,
"avg_line_length": 21.45,
"ext": "agda",
"hexsha": "37e496d5e9e3f219fd062bb1799b8a860ec1daef",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1216a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1216a.agda",
"max_line_length": 86,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1216a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 429
}
|
open import Agda.Builtin.String
open import Agda.Builtin.Equality
test : String → String → String
test "x" b = "left"
test a "x" = "right"
test a b = "nowhere"
_ : test "a" "x" ≡ "right"
_ = refl
|
{
"alphanum_fraction": 0.648241206,
"avg_line_length": 16.5833333333,
"ext": "agda",
"hexsha": "8cd8eca645214666cff7e89d6e2677b16930cfad",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2954.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2954.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2954.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 199
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.